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ABSTRACT

In clinical research and randomized clinical trials, intermediate endpoints can serve several

purposes. It is possible that an intermediate marker may serve as a surrogate S for a true clinical

outcome of interest T with the goal of making the trial run more efficiently or cost-effectively.

Rigorous assessment as to whether a proposed surrogate endpoint is valid is challenging, however.

Chapter II extends causal inference approaches to validate a candidate surrogate outcome us-

ing potential outcomes. Using the principal surrogacy criteria, we incorporate baseline covariates

in the setting of normally-distributed endpoints. In particular, our setting of interest allows us to

assume the surrogate under the placebo, S(0), is zero-valued. We develop methods to incorporate

conditional independence and other modeling assumptions and explore their impact on the assess-

ment of surrogacy. We demonstrate our approach via simulation of data that mimics an ongoing

study of a muscular dystrophy gene therapy.

Chapter III also considers the motivating clinical trial for muscular dystrophy, whereas now

the true outcomes T (0), T (1) are measured longitudinally. We develop a mixed model approach

that can potentially gain estimation efficiency. Further, it may be possible to measure additional T

and S outcomes in a delayed treatment start or cross-over trial design. In this situation, subjects

who are first administered the placebo may be given the gene therapy at a later time. This chapter

addresses models and metrics for validation in such a trial. We also consider how to define the

quantities for validation such that they may depend on time.

In Chapter IV, we extend these ideas to the surrogate validation framework with time-to-event

xiv



data. We develop a method that incorporates the censoring and semi-competing risk structure that

is often encountered with multiple survival endpoints. We consider novel ways to define the pa-

rameters measuring the association between outcomes and relevant principal strata using a illness-

death framework. We model conditional hazards while maintaining a valid causal interpretation

by viewing this through the lens of a causal multi-state model. Finally, we apply our proposed

methods to a prostate cancer randomized clinical trial.
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CHAPTER I

Introduction

In randomized clinical trials, intermediate endpoints can serve multiple important purposes. It is

possible that an intermediate marker may serve as a surrogate for a true clinical outcome of inter-

est with the goal of making the trial run more efficiently or cost-effectively. Popular examples of

potential surrogate endpoints include CD4 blood counts for HIV mortality and immune responses

for vaccine efficacy. Rigorous assessment as to whether a proposed surrogate endpoint is valid is

challenging, however. This dissertation extends causal inference approaches to validate a candidate

surrogate outcome using potential outcomes. We provide methods for a variety of types of end-

points. Specifically, we consider when the outcomes are either normally-distributed, longitudinally

measured, or time-to-event endpoints.

Prentice’s landmark paper proposed two criteria to evaluate statistical surrogates in a single trial

setting (1989). Based on associations between the surrogate and treatment and the surrogate and

true outcome, the criteria require conditional independence between the treatment and outcome

after adjusting for the surrogate value. These principles can be difficult to achieve and statistically

validate in practice. While the method is applicable to a variety of endpoints for a single trial,

it relies on conditioning on the observed value of S, which undesirably leads to a non-causal

interpretation. Since the surrogate biomarker is measured after treatment assignment, adjusting for

the surrogate distorts the causal pathway and interpretation of the treatment effect in a regression
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model. Rubin’s causal model proposes a framework where a potential outcome is the outcome

that would have been observed under the opposite treatment (Rubin 1974; Little and Rubin 2000).

However, the glaring inability to directly observe both outcomes and subsequent missing data

problem has been deemed the “fundamental problem of causal inference.”

More recent frameworks to determine if a surrogate marker is appropriate for use in a future

trial can be broadly grouped into the causal effects and causal association paradigms (Joffe and

Greene, 2009). The methods considered in this dissertation are based on principal stratification,

a framework that was proposed as a solution to maintain a causal interpretation while properly

incorporating the potential intermediate outcomes under both treatments (Frangakis and Rubin

2002). This work builds on the methods of Frangakis and Rubin and the corresponding Causal

Effect Predictiveness (CEP) curve proposed by Gilbert and Hudgens (2008). Principal surrogacy

can be used to assess a surrogate endpoint S for a true outcome T where S(z) and T (z) refer to

the endpoint values had the treatment, possibly counter-factually, been assigned to level z. Since

the potential outcomes are hypothetically determined prior to randomization, surrogates can be

evaluated based on causal effects that are defined within principal strata based on (S(0), S(1)).

In a simple case where S and T are Gaussian outcomes measured at one time point, surrogates

can then be evaluated based on principal causal effects defined on the distribution of T (1)− T (0)

conditional on principal strata defined by S(1)−S(0). In this case, the CEP curve for validation is

based on E(T (1)− T (0)|S(1)− S(0) = s). Gilbert and Hudgens elaborated on causal necessity,

as proposed by Frangakis and Rubin, by terming average causal necessity and average causal

sufficiency (2008). These conditions require that there be no average effect of the treatment on the

true outcome in the strata where there is no average effect on the surrogate, and similarly that there

exists an average treatment effect on the true outcome in the strata where is there an average effect

on the surrogate.
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The CEP curve is a visualization of both requirements across the value of the surrogate end-

points s = (s1, s0). Broadly speaking, desired features of a surrogate are for this quantity to be

close to zero when s = 0, and far from zero when s is not equal to zero. Figure I.1 graphically

shows these concepts since we can write E(T (1) − T (0)|S(1) − S(0) = s) as being equal to a

function of two key parameters γ0 + γ1s. In this setting, γ0 corresponds to the intercept of the

curve and γ1 the slope. We see that the CEP curve in black labeled as “valid” goes through the

origin and has a positive slope. Conversely, the red curve denoted as “invalid” fails to meet the

criterion of going through the origin (corresponding to γ0 ̸= 0). Quantifying if a surrogate is valid

will also depend on the uncertainty estimate around the curve. We build upon this CEP curve and

principal stratification framework for different endpoint types and under different assumptions to

aid in validation.
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Figure I.1: Example CEP Plot demonstrating valid and invalid potential surrogates based on the
validation quantities. γ0 can be interpreted as the intercept and γ1 as the slope of the CEP curves
in this case.

Essentially we propose a series of statistical models and extract quantities in order to define

specific estimands for validation. These quantities have been deemed appropriate to determine

whether a surrogate endpoint is valid. Chapter II evaluates the principal stratification method

performance under several model assumptions that are tailored to the motivating trial for muscu-

lar dystrophy. Specifically in this trial of a new gene transfer therapy, patients receive a micro-

dystrophin transgene to produce the micro-dystrophin protein. The potential surrogate S is micro-

dystrophin expression, and the primary outcome of interest T is a functional score on a continuous

scale. In our trial setting, patients do not produce significant amounts of micro-dystrophin protein

at baseline, so it can be assumed that the value of the surrogate under placebo, S(0) is approxi-

mately equal to 0. This is an assumption that also naturally arises in vaccine efficacy trials and has
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been termed the constant biomarker assumption (Gilbert and Hudgens, 2008).

Using the principal surrogacy criteria, we utilize the joint conditional distribution of the po-

tential outcomes T , given the potential outcomes S. We build upon previous models of the joint

distribution of potential outcomes S(0), S(1), T (0), T (1) proposed by Conlon et al. (2014) by

exploring trial and modeling considerations when only three of these endpoints vary, as is appli-

cable to our motivating trial. Modeling the joint distribution of potential outcomes results in non-

identified correlation parameters that must be addressed during estimation. We propose techniques

and design considerations with the goal of achieving gains in estimation efficiency. One novel

contribution is the motivation that we incorporate baseline covariates in the setting. Since muscu-

lar growth and deterioration due to the disease have major impact on physical movement during

childhood, both baseline ambulatory ability and age are important to take into consideration. We

develop methods to incorporate conditional independence and other modeling assumptions and

explore their impact on the assessment of surrogacy. We then compare the estimation properties

of a fully Bayesian imputation method using Markov Chain Monte Carlo to an algorithm using

the observed data only. Within the simulation studies, we explore the impact of different prior

distributions on non-identified parameters. We demonstrate our approach via simulation of data

that mimics the ongoing muscular dystrophy study of the gene therapy.

Chapter III accommodates trials where the outcomes are measured longitudinally. In the same

motivating trial of a gene therapy for muscular dystrophy patients, patients are followed over time,

and subjects who are first administered the placebo may be given the gene therapy mid-trial. This

chapter addresses models and metrics for surrogacy validation in such a trial. We propose a causal

inference approach to validate a surrogate by incorporating these longitudinal measurements using

a mixed modeling approach for random intercept or random slope models. The value of the surro-

gate is based on the relationship between the surrogate S and the random effects for T . Based on

5



these models, we define quantities for surrogacy validation that may vary across the study period

using principal surrogacy criteria. We also consider how to define the quantities for surrogacy

validation such that they may depend on time. We utilize a surrogate-dependent treatment efficacy

curve that allows us to validate the surrogate at different time points, or it is possible to integrate

over multiple time points for an overall measure of surrogate validity. Special cases we consider

are when T is measured prior to randomization and the delayed-treatment trial design. While in

the standard trial design there are non-identified correlation parameters in the complete data like-

lihood, the potential for crossover treatment arms or use of the pre-treatment measurement allows

us to estimate these correlation parameters that arise between treatment arms.

In Chapter IV, we extend these ideas to the surrogate validation framework where both the

surrogate marker and the main outcome are time-to-event. Our motivating data source is a local-

ized prostate cancer clinical trial where the two treatments being compared are post-prostatectomy

radiation therapy with or without antiandrogen therapy. The trial features men with recurrently

elevated prostate-specific antigen (PSA) prostate cancer. The two survival endpoints in the trial

are time to distant metastasis and time to death from any cause. New considerations in this set-

ting include the censored nature of these data if patients are lost to follow up or do not experience

the events during the study period. Further, it is possible that a patient will experience the termi-

nal outcome without the surrogate endpoint being observed. These considerations complicate the

methods proposed within the principal stratification framework so far.

We develop a method that incorporates these issues that arise with multiple survival endpoints.

This work considers novel ways to define the parameters measuring the association between out-

comes and relevant principal strata. We model conditional hazards while maintaining a valid causal

interpretation by viewing this through the lens of a causal multi-state model. In particular, we

propose illness death models to accommodate the censored and semi-competing risk structure of
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survival data. The proposed causal version of these models involves estimable and counterfactual

frailty terms. We propose fixing non-identified parameters using sensitivity analysis. Via these

multi-state models, we characterize what a valid surrogate would look like using a causal effect

predictiveness plot. We evaluate the estimation properties of a Bayesian method using Markov

Chain Monte Carlo using the observed data likelihood and assess the sensitivity of our model

assumptions before a concluding discussion.
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CHAPTER II

Incorporating Baseline Covariates to Validate

Surrogate Endpoints with a Constant Biomarker

Under Control Arm

2.1 Introduction

Although randomized clinical trials are largely considered the gold standard to evaluate treatment

efficacy, methods that lower trial cost and shorten the length of the study are often sought after

in the medical field. In general, surrogate endpoints S are biologically plausible intermediate

outcomes that are strongly related to the true outcome of interest T that could act as a substitute

for the clinical outcome. In a trial, these endpoints may be measured earlier or more effectively to

quickly disperse treatments to patients. Popular examples of potential surrogate endpoints include

CD4 blood counts for HIV mortality and immune responses for vaccine efficacy. It is crucial

to collect data and validate such an endpoint before using in a large-scale trial. In this paper,

we will refer to a surrogate as any intermediate endpoint that occurs between the treatment and

measurement of T . Prior to validation, during which the value of potential surrogate is properly

assessed, we will use this terminology to mean the surrogate is still a candidate surrogate, whereas

we will label it either as a valid or invalid surrogate after such validation procedures.
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Prentice’s landmark 1989 paper proposed criteria in a single trial setting to evaluate statistical

surrogates: that the surrogate S both be related to the outcome and that it captures the effect of the

treatment Z on T (Prentice, 1989). Other criteria, such as proportion explained and other causal

metrics, have since been proposed, as it has been shown simple criteria may not ensure a seem-

ingly useful surrogate will predict a beneficial treatment effect (VanderWeele, 2013; Freedman et

al. 1992). S(z) and T (z) refer to the endpoint values had the treatment, possibly counter-factually,

been assigned to level z. Since S is measured after treatment assignment, conditioning on the sur-

rogate distorts the causal pathway and interpretation of the treatment effect in a regression model.

Using Rubin’s potential outcome causal framework (Rubin, 1974; Little and Rubin, 2000), princi-

pal surrogacy proposed the solution of using both potential intermediate outcomes by considering

the surrogate values under each treatment as pre-treatment variables (Frangakis and Rubin, 2002).

Since both surrogate outcomes are hypothetically determined prior to randomization, surrogates

can be evaluated based on principal causal effects. In the case of categorical variables, these are

defined on the distribution of T (1), T (0) conditional on principal strata with respect to the pair of

posttreatment variables S(1), S(0). Gilbert and Hudgens (forward as GH) defined principal sur-

rogate endpoints based on suggested risk functions of (s1, s0) (2008). They elaborated on causal

necessity, as proposed by Frangakis and Rubin, by terming average causal necessity and average

causal sufficiency. These require that there be no average effect of the treatment on the true out-

come in the strata where there is no average effect on the surrogate, and similarly that there exists

an average treatment effect on the true outcome in the strata where is there an average effect on the

surrogate. Further, they define the Causal Effect Predictiveness (CEP) curve as a visualization of

both requirements across the value of the surrogate endpoints (s1, s0). The CEP surface is defined

based on a chosen contrast function of these risk quantities. In our setting of continuous S and T ,

we use extensions of the strata formulation using the corresponding quantities T (1) − T (0) and
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S(1)− S(0) that are consistent with the previously proposed risk functions.

Our work is motivated by an ongoing study of a muscular dystrophy treatment (Mendell et al.,

2020). In this trial of a new gene transfer therapy, patients received a micro-dystrophin transgene to

produce the micro-dystrophin protein. The potential surrogate S is micro-dystrophin expression as

measured by western blot methods, and the primary outcome of interest T is the North Star Ambu-

latory Assessment (NSAA) functional score on a continuous scale. S is measured at only one time

point, while T is measured before randomization as well as after the gene transfer therapy. Since

muscular growth and deterioration due to the disease have major impact on physical movement

during childhood, both baseline ambulatory ability and age are important to take into considera-

tion. In this setting, patients do not produce significant amounts of micro-dystrophin protein at

baseline, so it can be assumed that the value of the surrogate under placebo is approximately equal

to 0. This scenario where S(0) is fixed to 0 also commonly arises in vaccine efficacy studies. Since

those in the placebo group necessarily have no immune response without the vaccine antigens, GH

refer to this simplified setting as the constant biomarker case.

Quantities related to vaccine efficacy were developed in the HIV and pertussis settings (Hallo-

ran, Préziosi, and Chu, 2003; Préziosi and Halloran, 2003; Hudgens and Halloran, 2006), and GH

were among the first to formalize the surrogate validation methodology in a HIV vaccine efficacy

trial. Still, a major challenge of characterizing these causal effect summaries is dealing with non-

identified parameters arising from use of potential outcomes, so Follmann suggested the closeout

placebo vaccination design to avoid the unobserved outcomes (2006). GH focused on modeling

assumptions to identify the causal quantities and generalized previous work of the baseline im-

munogenicity predictor (BIP) W to estimate the missing S(z) value. Related work has proposed

augmented trial design ideas such as the baseline surrogate measure and the cross-over design, re-

spectively, and other authors have imposed conditional independence assumptions of the outcomes
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(Gabriel et al. 2014). Subsequently, several authors have addressed particular models and designs

for vaccines and immune correlates of protection (see Gilbert, Qin, and Self, 2008; Wolfson and

Gilbert, 2010; Huang, Gilbert, and Wolfson, 2013; Gabriel and Gilbert, 2014; Zhuang, Huang,

and Gilbert, 2019; Gilbert and Huang, 2016). In work using principal stratification for a different

analytic goal of calculating the average causal effect in a vaccine efficacy study, Shepherd et al.

incorporated baseline covariates with the stated purpose of better understanding the mechanism by

which the vaccine works (2006).

Under the general Bayesian paradigm, with specific assumptions about parameter values, both

Zigler and Belin (2012) and Conlon, Taylor, and Elliott (2014a) proposed to consider the full joint

distribution of potential outcomes to create the CEP curve using imputation strategies applicable

to settings beyond the constant biomarker case. Work in the frequentist setting by Alonso, Van der

Elst, and Meyvisch utilized potential outcomes and the information-theoretic framework to pro-

pose a surrogate predictive function with a two-step procedure for dealing with non-identifiability

(2017). Making the constant biomarker assumption results in fewer missing potential outcomes

to impute, which allows us to focus on the sensitivity of modeling assumptions. In this work, we

build upon previous models of the joint distribution of potential outcomes S(0), S(1), T (0), T (1)

by exploring trial and modeling considerations when controlling only three of these endpoints as

applicable to our motivating clinical trial (Conlon et al. 2014a; Conlon et al., 2017b).

We propose techniques and design considerations with the goal of achieving gains in estima-

tion efficiency. Since the surrogate and true outcome values are only observed for the assigned

treatment, we consider the counterfactual outcomes as missing data and implement an imputa-

tion strategy for estimation. We compare this algorithm to instead using only observed data and

prior distributions for nonidentified correlation parameters. Within our particular goal of surrogate

validation, the novelty of this work is the incorporation of baseline covariates with two objec-
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tives in mind: first, conditioning on baseline covariates may improve the plausibility of conditional

independence assumptions, and second, it allows us to make inference about whether there are sub-

groups of the population for whom the quality of the surrogate varies. For the latter, we propose

to stratify the previously marginal estimands for validation by conditioning on patient character-

istics. In our application, we focus on one such example of a baseline covariate, namely that of

the true outcome measured pre-treatment, which is similar to the BSM proposed by other authors.

This particular measurement allows for multiple definitions of the true outcome of interest and

other trial design decisions. We recognize that by viewing the baseline as a noisy estimate of T (0)

similar to a measurement error problem, it could provide improved identifiability or yield more

informative prior distributions for nonidentified parameters.

In Section 2.2, we propose the model and incorporation of baseline covariates in the surrogate

setting. We define the conditional surrogacy validation metrics and suggest potential reasons to

use the covariates such as to make conditional independence assumptions and raise consideration

for how to define the trial endpoint. In Section 2.3, we describe the proposed Bayesian estima-

tion methods using either an imputation scheme or observed data algorithm. Simulation studies

are shown in Section 2.4, and our data example is explored in Section 2.5 before a concluding

discussion in Section 2.6.

2.2 The Model

Using the causal association framework, we first consider the joint distribution of three continuous

potential outcomes under a binary treatment Z. Since S(0) = 0, we assume a multivariate normal
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distribution of the counterfactual surrogate and true outcomes for each subject:


S(1)

T (0)

T (1)

 ∼MVN




δ1

δ2

δ3

 ,


σ2
S1 ρ10σS1σT0 ρ11σS1σT1

σ2
T0 ρTσT0σT1

σ2
T1



 (2.1)

2.2.1 Assumptions

In this setting, we focus on clinical trial scenarios where we can assume S(0) = 0 (the meth-

ods can be extended to more general settings). The causal inference assumptions we make are

the Stable Unit Treatment Values Assumption and ignorable treatment assignment, meaning the

potential outcomes for any individual do not vary with the treatments assigned to other individu-

als, and treatment assignment is independent of potential outcomes conditional on all covariates

(P (Z = 1|T (0), T (1), X) = P (Z = 1|X)), respectively. Since we do not observe combinations

of joint outcomes {T (0), S(1)} or {T (0), T (1)}, the correlation parameters ρ10, ρT are not identi-

fied. We will consider various approaches to obtain identifiability through the use of proper priors,

conditional independence assumptions, and/or fixing unknown parameters via sensitivity analyses,

and consider how our models may be adapted if additional baseline data is available. Then we

use the specified joint model to impute the missing counterfactual values. This potential outcomes

approach captures the causal associations for validation.

The multivariate normality assumption provides many convenient results by being analytically

tractable and allowing for closed form quantities for surrogate validation which we describe below.

As this may not hold in practice, we later verify the sensitivity of this distributional assumption

and assess the robustness of the results in the presence of model misspecification. Other work has

incorporated copula models for non-normal data (Taylor et al. 2015).
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2.2.2 Baseline Covariates

Some estimates for surrogacy quality have wide confidence bands that make definitive recommen-

dations difficult. While most causal metrics are reported marginally, it may be beneficial to use

baseline covariates X in the analysis. One interest is to assess effect modification: that is, if there

exist subgroups of patients to determine for whom the surrogate will work particularly well for the

true outcome, such as for males or those who are young. This has the potential to reduce the risk

of observing the surrogate fail in a certain patient population after approval for use in subsequent

trials. It is also possible that covariates would help predict membership of principal strata. X may

explain dependence or confounding between S and T that may occur in finite samples, even after

trial randomization. Statistical benefits may be seen in the estimation accuracy as well via more

accurate imputation of the missing counterfactual values to both reduce bias and gain efficiency.

Finally, conditioning on X might be expected to reduce correlations amongst the potential out-

comes, allowing us to make stronger conditional independence statements after conditioning on

baseline covariates. Note that these latter examples’ effects can be reported as either conditional

on X , or integrated over the empirical distributions of covariates to provide marginal estimates.

The conditional model can be written with effects of X in the mean structure (therefore the

parameters in this covariance structure differ and θ represents the conditional correlations)


S(1)

T (0) X

T (1)

 ∼ N




ω1 + ω2X

ω3 + ω4X

ω5 + ω6X

 ,


ϵ2S1 θ10ϵS1ϵT0 θ11ϵS1ϵT1

ϵ2T0 θT ϵT0ϵT1

ϵ2T1



 (2.2)

We note that this model still has two nonidentified parameters, θ10 and θT . In the above model

X is a scalar, but it could be generalized to a vector. Furthermore, one of the X components might
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be known to be highly related to either S or T (such as a pre-treatment measurement). In these

specific cases that provide additional information, it may be feasible to make further assumptions

about the model structure.

2.2.3 Surrogacy Validation

The validation causal quantities derived from conditioning on strata of the surrogate can be written

as a function of the model parameters. These quantities can be viewed graphically in the causal

effect predictiveness (CEP) surface as a line with intercept and slope based on causal effects as

the difference in surrogate potential outcomes S(1) − S(0) = s on the x-axis and difference in

the expected, conditional true outcomes E(T (1) − T (0)|S(1) − S(0) = s) on the y-axis. In the

case of Gaussian distributions, as in equation 2.1, this assumption means E(T (1) − T (0)|S(1) −

S(0) = s) is linear in s and has the form = γ0 + γ1s. By displaying expected change in potential

outcomes, conditional on the actual surrogate change s, the plots demonstrate if the surrogate is

valid, meaning small (large) causal effects on a surrogate are associated with small (large) causal

effects on the outcome. When the distribution of outcomes is multivariate normal, average causal

necessity and average causal sufficiency are fulfilled if γ0 = 0, the expected change in true outcome

when there is no change in the surrogate outcome at the origin, and γ1 ̸= 0, the expected change

in true outcome when there is a nonzero change in the surrogate outcome. Under the multivariate

normal distribution in equation 2.1, these values from the conditional expectation can be written as

γ0 = (µT1 − µT0)− γ1µS1 = (δ3 − δ2)− γ1δ1 γ1 =
ρ11σT1 − ρ10σT0

σS1

or when incorporating baseline covariates, γ0 = (µT1|X − µT0|X) − γ1µS1|X where γ1 =

θ11ϵT1−θ10ϵT0

ϵS1
. Our goal is to estimate all parameters in the distribution so we can calculate γ0
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and γ1 and determine if S is a valid surrogate for T . We can understand γ1 by rewriting the

quantity as ω11−ω10

σS1
and can consider when ω11 > ω10 that the slope will be positive, and when

the ratio ω11/ω10 is larger, the magnitude of γ1 is larger. Another way to look at this term is as

Cov(T (1),S(1))−Cov(T (0),S(1))
V ar(S(1))

, where the sign and magnitude of γ1 is determined by the covariances

between S(1) and the true outcomes.

For scenarios where we believe the surrogate works particularly poorly for certain patient

groups, we would be interested in a stratified CEP curve. In other settings, we may simply in-

corporate covariates as an intermediate step to benefit from the possibility of gains in efficiency

by making stronger assumptions while remaining interested in the marginal CEP curve. To denote

the difference, let γ0,C and γ1,C correspond to a model fit using X , compared to the marginal-

ized estimates that is accomplished by empirically averaging over the distribution of X . Later,

we will further differentiate these respective conditional C and marginal M models based on how

we define the outcome. From equation 2.1, T (1) − T (0)|S(1), x has a normal distribution, so the

expected value will be written as γ0,C + γ1,Cs. In this expression γ0,C can depend on the covariate

X , but by the assumptions of the model γ1,C (i.e. the covariance) does not depend on X . From

these values, the marginalization is written

∫
x

E(T (1)−T (0)|S(1), X = x)f(X|S(1) = s)dx =

∫
x

E(T (1)− T (0)|S(1), x)f(S(1)|x)f(X)

f(S(1))
dx

(2.3)

using Bayes rule (see Appendix A). Once we obtain these quantities, we plot the marginal effect

over values of s and summarize it by fitting a linear model to estimate γ0,M and γ1,M .
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2.2.4 Subgroups in Surrogacy and Treatment Effects

Based on our definition of γ0, our concept of surrogacy subgroups is analogous to heterogeneous

treatment effects existing. Since the quantity γ0,C depends on x, a surrogacy subgroup effect will

occur only when there is an interaction with the treatment effect on either the surrogate or the true

outcome. In contrast, we are not assuming the absence of unobserved heterogeneity in the sense

of a sharp null existing (as discussed in Ding, Feller, and Miratrix, 2014).

2.2.5 Conditional Independence

Conditional independence assumptions are frequently made in causal inference and for surrogate

endpoint validation in particular (see Conlon et al., 2014a for examples of assumptions made;

Parast, Cai, and Tian, 2016; Parast, McDermott, and Tian, 2016; Gilbert et al., 2008, and others).

Briefly, when S(0) is not restricted to the value of 0, common assumptions among the endpoints

include strong statements about the outcomes such as 1) T (0) ⊥ T (1)|S(0), S(1); 2) S(0) ⊥

T (1)|S(1); 3) S(1) ⊥ T (0)|S(0); and intuitively weaker 4) S(0) ⊥ T (1)|S(1), T (0) and 5) S(1) ⊥

T (0)|S(0), T (1).

In our setting, the plausible assumption that is still feasible is a collapsed version of 5:

S(1) ⊥ T (0)|T (1). Determining if a conditional independence assumption is plausible is context-

dependent, and we note that this is a potentially weaker assumption than others that have been

made in related work such as assuming T (0) and T (1) are conditionally independent (Daniels et

al. 2012) Examining the assumption, it is not unreasonable to believe that given the true outcome

under Z = 1, the surrogate for Z = 1 is independent of the true outcome under the opposing

treatment. Since we are considering continuous S and T outcomes, we anticipate that T (1) will

have sufficient variability and is therefore likely to capture the underlying mechanism of functional
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capability in our motivating data example. Making this assumption implies the relationship among

equation 2.2 parameters that θT = θ10/θ11. In the multivariate normal setting, this combination of

correlation parameters on the joint normal scale is derived by setting a conditional covariance term

to 0 (described in Appendix A), which corresponds to a zero element in the inverse of the correla-

tion matrix. After adjusting for baseline covariates X , conditional independence of the outcomes

may be more likely to hold, which in turn reduces the number of parameters to estimate by one (a

restatement of equation 2.2 in which θ10 has been replaced by θ11 × θT ):


S(1)

T (0) X

T (1)

 ∼ N




ω1 + ω2X

ω3 + ω4X

ω5 + ω6X

 ,


ϵ2S1 θ11θT ϵS1ϵT0 θ11ϵS1ϵT1

ϵ2T0 θT ϵT0ϵT1

ϵ2T1



 (2.4)

This potentially increases efficiency and helps with identifiability since there is only one noniden-

tified parameter (θT ).

2.2.6 Design Considerations and Defining the Endpoint

In our motivating clinical trial, one of our baseline covariates is actually a pre-treatment measure-

ment of the outcome T. Because of this, we could choose to define the true outcomes several ways

with the possible benefit of maximizing efficiency. For example, we could define the outcomes

T (0), T (1) as the original values of the endpoints and use X for subgroup analysis. Alternatively,

we could analyze the outcomes as the change from baseline measurement X to later measure-

ments, denoted as TD(0) and TD(1). We would like to know if it is advantageous to define a trial

outcome in terms of change from baseline compared to using the baseline value as a covariate. To

be explicit about the quantities we are estimating, we can outline the relevant joint and conditional
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distributions based on the choice of endpoint definition and involvement of X . All four methods

we consider are based on the joint 4x4 distribution from equation 2.1 extended to include X . In

the special setting where our covariate is a pre-measurement of T (0), we briefly consider other

strong assumptions that could be made. For example, in the strongest case we could plug in X in

for T (0) and gain identifiability. Alternatively, we could view X and T (0) as repeated measures

and assume certain parameters are equal, such as identifiable means and variances or nonidentified

correlations. We consider how these relate to conditional independence assumptions proposed by

other authors in future work.

In the setting we are considering, there is a pre-planned analysis of the final clinical trial data,

and defining the endpoint is necessary to test for a treatment effect. Like we have suggested for

assessing surrogacy, this step involves fitting marginal or conditional models with the original

outcome or difference from baseline endpoint. For efficiency or to incorporate treatment effect

subgroups, we may choose to condition on baseline covariates X . We enumerate the potential

analysis models for the treatment effect based on the observed outcome T and the corresponding

surrogate validation models for the potential outcomes T (0) and T (1) conditional on S(1) = s.

These are differentiated by the endpoint:

1. Original outcome: T (0), T (1) Treatment effect model Ti = β0 + β1Zi + ϵi

Surrogate validation metric E(T (1)− T (0)|s) = γ0,M + γ1,Ms

2. Also condition on X: T (0), T (1)|X Treatment effect model Ti = β2 + β3Zi + β4Xi + ϵi

Surrogate validation metric E(T (1)− T (0)|X, s) = γ0,C + γ1,Cs

3. Difference from baseline: TD(0), TD(1) Treatment effect model TDi = β5 + β6Zi + ϵi

Surrogate validation metric E(TD(1)− TD(0)|s) = γ0,M + γ1,Ms
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4. Also condition onX: TD(0), TD(1)|X Treatment effect model TDi = β7+β8Zi+β9Xi+ϵi

Surrogate validation metric E(TD(1)− TD(0)|X, s) = γ0,C + γ1,Cs

Parameters β1, β3, β6, and β8 estimate the respective treatment effects. We expect the first and

third methods to produce estimates of the same population, marginal treatment effect regardless

of subtracting off the baseline measurement, though finite sample equality is unlikely to hold for

even a randomized trial. These same considerations extend to the surrogate validation framework,

where some of these methods will estimate the same marginal validation estimates. We will later

consider a further reason to thoughtfully define the endpoint, which is to determine which scale it

is reasonable to assume conditional independence.

2.3 Bayesian Methods

2.3.1 Imputation-Estimation Algorithms

While we observe only S(0), T (0) for n0 subjects and S(1), T (1) for n1 subjects, our validation

quantities involve correlations that can only be calculated from counterfactual outcomes. In order

to simultaneously estimate the model parameters, address nonidentified terms, and to appropriately

propagate the uncertainty of imputing missing outcomes, we use a Bayesian method for estimation.

There are three types of variables that will be iteratively drawn in the MCMC algorithm: the

correlation parameters inR, the model mean and variance parameters (µ’s and σ’s), and the missing

potential outcomes. The imputation strategy is a full process that iteratively imputes the missing

potential outcomes and uses the posterior distribution to draw values of the parameters.

We assume vague, normal priors for the identified mean parameters. Rather than use an Inverse-

Wishart prior or another method that would sample the entire matrix at once that lacks needed
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flexibility, we implement a separation method on the covariance matrix Σ. This decomposes the

matrix Σ = QRQ into standard deviation and correlation matrices where R is a correlation matrix

with 1’s on the diagonal to easily place less informative priors on the identified terms (Barnard

et al. 2000). To ensure iterative draws satisfy the positive definite constraint on Σ, the method

uses the griddy Gibbs algorithm to draw from the appropriate bounded posterior (see Conlon et

al., 2014a). Specifically, we compute the posterior of each parameter over a set of realizable

grid points and re-evaluate over a region of high posterior density with more precision (finer grid

points) before randomly drawing the value for that iteration. We consider different priors for the

correlation parameter and find that it is important to carefully choose on which parameters to place

priors when implementing the conditional independence constraint. Since we are in a setting with

nonidentified correlation parameters where the data will provide no direct information about the

true values of these parameters, we are careful to not impose unreasonable prior distributions as

we expect the posterior to mimic the prior. We consider both vague and more informative Uniform

and Beta priors on the correlation terms, though the marginal distribution of each correlation under

positive definite constraints can become less straightforward. We assume S(1) ⊥ T (0)|T (1) (or

its equivalent based on the exact model fit and incorporation of X), by drawing suitable values of

θT and θ11 using the grid search. Essentially, as demonstrated in equation 2.4, the term θ10 is no

longer involved in the likelihood, and the product θT × θ11 takes its place.

2.3.2 Observed Data Algorithm

An alternative way to estimate the identifiable parameters is by using the observed data likelihood

and devising an MCMC algorithm to obtain draws from the posterior distribution. This approach

avoids imputing the counterfactual values of S and T . Since the data contain no information about

θT or θ10, we expect the posterior to match the distribution of the chosen prior, provided the priors
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are independent. Thus, we propose to draw the nonidentified correlation parameters directly from

the prior solely for the purposes of estimating γ0 and γ1. Since the value of θ11 is estimable from the

observed data, we use the posterior distribution for its draw, but it is the only correlation parameter

drawn from a conditional distribution. When assuming conditional independence, we replace the

term θ10 with θT × θ11 (after θ11 is drawn from the posterior and θT is drawn directly from

Uniform(-1, 1)) in the same way as explained above when calculating values of γ1 and ensuring the

matrix is positive definite. We then fit the regression models on the observed data only to estimate

the other parameters.

Here we carry out basic Bayesian estimation of the identified parameters for comparability

of uncertainty estimates to isolate the effect of using the imputation scheme and priors for non-

identified parameters. We find that we can bypass the full MCMC scheme intended to provide

parameter estimates while addressing the nonidentified parameters, and instead we can draw these

independently from the prior. This is related to work by Gustafson (2009) that demonstrates any

difference between the prior and posterior distribution for non-identified parameters is due to prior

dependence in the parameters. Using his transparent reparameterization here, there is no indirect

learning of the correlations outside of the positive definite and conditional independence assump-

tion constraints, which are still enforced with this algorithm. In this setting, we expect results from

this method to be generally equivalent to imputation while being less computationally expensive.

We also note that using an MCMC scheme to estimate the variance and mean parameters may not

be necessary at all, and a maximization of the posterior or maximum likelihood method may be

used instead.
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2.4 Simulation Studies

We explore the impact of using a baseline covariate in terms of efficiency and making conditional

independence assumptions. In particular, our simulations are meant to assess how we define the

true endpoint based on different relationships with the baseline covariate. Using simulation studies,

we generate data that mimics a randomized trial, meaning for half of the subjects assigned Z = 0,

we observe only T (0), X , and for the other half we observe S(1), T (1), X . The six sets of genera-

tive parameters for equation 2.2 are shown in Table 2.1. The six settings have different generating

parameters that vary the treatment effect and quality of the surrogate endpoint to demonstrate the

method’s performance over a variety of scenarios. Based on the model in equation 2.2 for observed

data of sample size n = 100, we generate data from parameter combinations that allow us to assess

different settings expected to occur during validation.

The surrogate is valid marginally only for settingsA,B. The covariateX is normally distributed

in settings A-E and binary in F ; settings D,F represent the existence of a subgroup effect. After

generating the data, we fit the models described below and vary which conditional independence

assumption is made, if any. To perform surrogacy validation, we fit four models of tri-variate

normal distributions derived from the distribution of S(1), T (0), T (1), X (see Appendix B for

details). The four analysis designs are based on the distribution of the three outcomes and baseline

covariates, and the different parameterizations can be easily equated algebraically. For any X (we

simulate X ∼ N(δ4, σ
2
X) or X ∼ Bernoulli(0.5)),

1.


S(1)

T (0)

T (1)


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2.


S(1)

T (0) X

T (1)



3.


S(1)

TD(0)

TD(1)



4.


S(1)

TD(0) X

TD(1)


We consider that conditional on baseline covariates based on context, we may decide to intro-

duce strong modeling assumptions. For example, when X is a pre-treatment measurement of T

(like a measurement-error prone value of T (0)), priors may be informed by estimates of the ob-

served correlation of X and T (1), or we may be able to estimate some nonidentified correlations.

Currently we use a Beta prior (truncated between -0.4 to 1 with a positive mean equal to 0.23)

on the correlation between either T (0), T (1) or TD(0), TD(1) and a Uniform(-1, 1) prior on the

correlation between S(1), T (1) or S(1), TD(1) when conditional independence is not assumed. To

perform sensitivity analyses, we will both vary the prior distributions on the nonidentified parame-

ters to integrate over the range of plausible values and fix the correlations to see at what boundaries

the conclusions change.

These models allow us to contrast the estimation of marginal quantities γ0,M and γ1,M and also

those for subgroups of participants based on baseline covariates X from models 2 and 4. For our

purposes, we first compare the marginal estimates for γ1 and γ0 which are directly calculated in
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settings 1 and 3 and are derived by marginalization for models 2 and 4. The definition of the end-

points (either the difference from baseline D and corresponding γ.D or the original value O and

γ.O) is important as γ1,D ̸= γ1,O when there is an effect of X . Further, the validity of conditional

independence varies in our data generating mechanism directly by changing the true values of the

correlations so that we can assess how the method performs when this is violated. In particular, the

data generating mechanism directly violates the conditional independence assumption in setting

E when we condition on X and use the original endpoint. The assumption is also violated indi-

rectly in certain other settings when we fit marginal models or take the difference from baseline.

For example, when T (0) ⊥ S(1)|T (1), X , it is also true that T (0)D ⊥ S(1)|T (1)D, X. However,

this corresponding satisfaction of conditional independence does not necessarily hold between

T (0) ⊥ S(1)|T (1) and T (0)D ⊥ S(1)|T (1)D when we do not condition on X . To quantify this

discrepancy when this condition is not met, we calculate the deviation from meeting the condi-

tional independence requirement, i.e. how incorrect it is to make this conditional independence

assumption (see Appendix C).

2.4.1 Simulation Results

We present the posterior mean point estimates averaged over 1,000 datasets for each setting us-

ing the observed data algorithm. To assess variability, we also report the standard deviation of

the Bayesian point estimates and the average standard error of the parameter value (the posterior

standard deviation) within each replication. We run each MCMC for 3,000 iterations and ensure

convergence is reached using traceplots. Using this method, computation is fast enough to run

the algorithm in parallel over many replicates in a few hours. Since our goal is to effectively vali-

date surrogate endpoints, we focus on inference for the quantities γ0 and γ1. The results show the

contrast in estimation accuracy and efficiency when the constraints are enforced during estimation

25



compared to when no assumptions are imposed during the MCMC procedure.

2.4.2 Marginal Estimates

Below [Figure 2.2] (and in the Appendix C) are results with sample size n = 100 using a truncated

Beta(5, 6) prior. Bias for rows 1 and 2 as well as 3 and 4 is calculated based on the same true,

marginal values. Overall, the identified mean and variance parameters are estimated with little

bias. However, the nonidentified correlations are sensitive to the prior distribution. Compared

to supplementary tables in Appendix C, for comparability across settings Figure 2.2 has been

adjusted by the empirical variability in the validation estimates from complete counterfactual data:

we calculated the maximum likelihood estimates under a scenario where we would observe all n

counterfactual outcomes and fit a model for T (1)−T (0) conditional on S(1). We adjusted the bias

and standard errors relative to the standard deviation of the estimates across 1,000 simulations to

provide quantities that can interpreted in proportion to the amount of variability in the data and the

estimates.

These results show there can be reduced bias in the estimates when making conditional indepen-

dence assumptions such as in settingsB andC. Notably, the credible intervals for the nonidentified

parameters are very conservative for all settings as expected due to the non-identified correlation

parameter and its associated relatively weak prior, and the corresponding coverage probabilities are

near one. Further, the within simulation average, over-estimation of the standard error decreases

when making conditional independence assumptions, though the SD of the estimates is not neces-

sarily smaller when making these assumptions (through less under-identification in the conditional

independence model, this reduction in SE improves the agreement between the average SE and

SD). This is seen in Figure 2.2 when comparing the average standard errors, as shown in the

dotted lines, to the usually smaller standard deviation of the point estimates, as seen in the solid,
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shaded lines. The scenarios assuming conditional independence in red have better correspondence

than the scenarios without the assumption during model fitting, shown in blue. We see that con-

ditioning on X can also decrease the standard error of the estimates, particularly in the scenario

where we do not make conditional independence assumptions in settings B, D, and E for exam-

ple. In other settings, the difference is not as clear. In setting E, we also see very directly the

impact of assuming conditional independence when it does not hold. In the case where we use the

original endpoint, the bias is slightly reduced when we do not make the conditional independence

assumption.

2.4.3 Sensitivity to Distributional Assumptions

We show results in Appendix E for fitting conditional models when the outcomes are heavy tailed

(t-distributed) or skewed (gamma-distributed). When data follows these non-Gaussian distribu-

tions, the estimation results do vary from previous simulations as seen in the point estimates and

their corresponding variability intervals. While there is some increased bias and variability of the

estimates as compared to those with a normal distribution, generally there is some robustness in

the estimation such that the conclusions regarding surrogate validity (i.e. if the credible interval

for γ0 covers zero while that for γ1 does not) seem to be similar in the settings we considered. We

further explore the role of distributional assumptions and limitations in the discussion.

2.4.4 Subgroup Analysis

Now we focus on the results of simulation setting E where subgroups exist for the models fit using

methods 2 and 4 (conditional on X). Since X is binary in this setting, we report the conditional

values of γ0 when X = 0 and X = 1. [Table 2.2] Whereas Figure 2.2 shows marginalized
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estimates of the quantities, Table 2.3 shows the estimates of γ0 and γ1 conditional on the values

of X , which allows us to determine if the surrogate is valid for patients with certain baseline

characteristics. Looking at the validity of S as a surrogate for subgroups in setting F , we see

that the surrogate is valid for X = 0 but not for X = 1 by examining the estimates of γ for the

values of X separately. If X were gender, for example, this would indicate that the surrogate is

valid only for males and not females. Our validation criteria state S is a valid surrogate when the

credible interval for γ0 covers 0 and the interval for γ1 does not. Table 2.3 shows the proportion of

simulations for which this is the case. The criteria that S is a valid surrogate for the group X = 0

is only detected for the model where we make a conditional independence assumption. When we

do not, the credible interval of γ1 overlaps with 0 in almost all simulation replications, signaling

that we are not able to declare the surrogate as valid for any individuals.

2.5 Duchenne Muscular Dystrophy Data Example

We generate “observed” data for three normally-distributed outcomes aimed to mimic an ongoing

clinical trial and the natural progression and deterioration of ambulatory function for Duchenne

muscular dystrophy patients (Muntoni et al. 2019). Since the trial has not been unblinded, the

parameter values were chosen to match the preliminary data when available, and for other param-

eters the values were chosen in a subjective way to be what the authors considered as reasonable.

Based on the literature and company analysis standards, to assess surrogacy, we condition on age

at baseline, A, and the baseline NSAA score measurement, X .
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2.5.1 Data Example Results

First we show the estimated treatment effects that would be calculated in a clinical trial measuring

the efficacy of the treatment based on the true, observed endpoints T . [Table 2.3] It is clear that the

standard error estimates for γ0 and γ1 are markedly smaller, and credible intervals more narrow,

when we make the conditional independence assumptions. We can see that marginally, the surro-

gate of micro-dystrophin is not a valid surrogate for improvement of the NSAA score across the

entire study sample. However, there are strong effects of both age and baseline measurement on

the outcome. We can identify a region of the covariate space based on age and baseline measure-

ment where the surrogate is valid for a subgroup of patients. We create CEP curves for these data

to show what the surface looks like when we stratify based on covariates. [Figure 2.1]

Figure 2.1: The CEP plot shows the conditional functions of γ0 and γ1 across possible values of
S(1). The empirical distribution of S(1) is shown in the blue density curve.

.
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The CEP plot is conditional on baseline NSAA and age, and we demonstrate that the surrogate

is valid for those at four years of age. Since age is modeled with linear and quadratic effects, the

surrogate will be invalid for those six and older as the estimated CEP curve moves farther from 0.

This demonstrates that due to the combination of natural growth and degeneration due to disease

over time, the surrogate would only be valid within a certain younger patient population.

We also explore the consequences of different prior distributions for the non-identified param-

eter θT and compare this to fixing θT at some value, shown in supplementary figures in Appendix

D. We see that the results for γ0 and γ1 are somewhat sensitive to the choice, but the conclusion

that the surrogate is valid holds for values of θT which we believe to be reasonable. The results are

the same for both the imputation and observed data algorithms.

2.6 Discussion

In this work, we have focused on incorporating baseline covariates into the validation process

for surrogate endpoints. Our motivation for including such covariates to assess surrogacy is

to potentially increase efficiency through the use of modeling assumptions and to allow for the

possibility of heterogeneity in the utility of the surrogate endpoint across patients. Considering

the harmful implications of incorrectly validating a surrogate endpoint, it may be worthwhile to

consider the CEP as a function of X and identify potential subgroups of patients for which a

surrogate is appropriate.

While we have identified scenarios where there are gains by incorporating baseline covariates,

there are some situations where efficiency improvements are limited. Further, when implementing

the proposed model assumptions, it is important to assess the plausibility of conditional inde-

pendence assumptions even in this context of adjusting for baseline covariates which we believe
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makes the assumptions more likely. Introducing these conditional independence constraints aids

in improved estimation properties, but they should not be implemented without proper, context-

dependent reasoning. Further, there are many ways to implement the constraints, although these

simulations suggest certain strategies (using observed data only) may reduce the burden of im-

puting potential outcomes but still require reasonably well-specified prior distributions. There are

many ways in which these methods and simulations will be extended, particularly to verify its

robustness. Work is ongoing to incorporate baseline covariates and conditional independence as-

sumptions into this framework while fully utilizing the longitudinal data. In the longitudinal

study design setting, the potential for crossover treatment arms or use of the pretreatment measure-

ment allows for more direct incorporation of potentially identified correlation parameters that arise

between treatment arms.

A limitation of the proposed method is that it relies on a well-specified model to validate sur-

rogate endpoints. Using the CEP curve with the normality assumption results in a linear form

for the conditional expectation of interest, though the CEP concept itself does not rely on such a

distributional assumption, and more flexible copula or other modeling could be implemented in-

stead (Taylor et al. 2015; Kim et al. 2017; Ma et al., 2011). Making the normality assumption is

a helpful first step to develop surrogacy metrics in closed-form. Semi-parametric methods could

be employed to assess surrogacy under more flexible models. Here we have briefly explored the

method’s performance under model misspecification where the outcomes are not multivariate nor-

mal, and we have found some sensitivity to this in our results. In general, the method does still

demonstrate reasonable performance as far as suggesting the appropriate surrogacy conclusions in

the considered scenarios. Other extensions that do not rely on the multivariate normality assump-

tion include methods for time-to-event data using different assumptions to estimate subject-specific

∆Si = S(1)i − S(0)i and ∆Ti = T (1)i − T (0)i and empirically fitting CEP curves to these es-
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timates. Finally, principal stratification and CEP curves are one of many strategies to determine

the validity of surrogate endpoints. Future investigation into potential correspondence between

different assumptions of models as done in Conlon et al. (2014a) for more metrics such as propor-

tion explained may be informative in comparing the methods and their sensitivities to modeling

assumptions.

2.7 Publication

The content of this chapter has been published in Statistics in Medicine at DOI: 10.1002/sim.9201
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2.8 Figures

A B C D E F
Valid S Valid S: No X Effect Invalid S Valid S for SG Invalid CI Valid S for SG

σX 0.5 0.5 0.5 0.5 0.5 NA
δ4 1 1 1 1 1 NA
ω1 2 2 2 2 0.5 2
ω2 0 0 0 0 0 0
ω3 3 3 3 3 3 3
ω4 1 0 1 3 1 -0.75
ω5 4.1 4.1 4.1 4.1 4.1 4.1
ω6 1 0 1 1 1 2
ϵS1 = ϵT0 = ϵT1 1 1 1 1 1 1
θ10 0.15 0.15 0.15 0.08 -0.05 0.15
θ11 0.7 0.7 0.7 0.3 0.25 0.7
θT 0.21 0.21 0.21 0.26 0.21 0.21
γ0,O 0 0 -1.00 -1.35 0.95 1.31
γ1,O 0.55 0.55 0.55 0.22 0.30 0.58
γ0,D -0.06 0 -1.02 -1.33 0.95 NA
γ1,D 0.58 0.55 0.56 0.22 0.31 NA

Table 2.1: Generative parameter values for the six scenarios to compare definition of the endpoint
and using baseline covariates. SG stands for subgroup based on X . The meaning of these param-
eters is shown in equation 2.2. Note ‘difference from baseline’ (subscript D) is not defined when
X is binary and T is continuous (F ).

Setting Fit Conditional γ0,C γ0,C γ1,C
Independence True Est SE SD Covers True Est SE SD Covers True Est SE SD Covers
Assumption X = 0 0 X = 1 0 0

2F T (0) ⊥ S(1)|T (1), X 0 0.068 0.465 0.307 0.987 2.75 2.797 0.460 0.319 0.000 0.55 0.514 0.176 0.087 0.003
2F None 0 0.090 0.984 0.308 1.000 2.75 2.808 0.985 0.319 0.040 0.55 0.503 0.466 0.088 0.978

Table 2.2: Simulation results demonstrating effect of estimating subgroups. Estimates of γ0 and
γ1 are conditional on the values of X , so values of γ0 estimates are conditional on X = 0, 1. The
columns denoting ‘covers 0’ indicate what proportions of simulations have credible intervals that
do contain 0. This helps determine for how many simulations the surrogate would be considered
valid. For γ0, the credible interval covering 0 denotes a valid surrogate, while the interval of γ1
should not.
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Figure 2.2: Simulation results for the two definitions of the endpoint (here categorized by su-
perscript to denote O = Original Endpoint (Settings 1 and 2) compared to D = Difference from
baseline (Settings 3 and 4)) and different generating parameter values (A− F ). The values shown
below are the bias and variability (both the average within-sample standard error across datasets
and the standard deviation of the point estimates) of the validation quantities that are adjusted by
the variability of the hypothetical surrogate values if all counterfactuals were to be observed (from
the full data) using the standard deviation of point estimates from standard regression models for
T (1)− T (0)|S(1).
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Endpoint Treatment Conditional Independence γ0 γ0 γ1 γ1
Type Effect Assumption Estimate SE Estimate SE
TD 0.227 TD(0) ⊥ S(1)|TD(1), X,A -2.215 0.408 0.396 0.101

None -2.198 1.107 0.391 0.277
T 0.271 T (0) ⊥ S(1)|T (1), X,A -2.218 0.409 0.397 0.102

None -2.194 1.109 0.391 0.278

Table 2.3: Simulated muscular dystrophy estimates of treatment effect and marginal surrogacy
quantities.
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CHAPTER III

Solutions for Surrogacy Validation with

Longitudinal Outcomes for a Gene Therapy

3.1 Introduction

Valid surrogate endpoints, which we will refer to as S, can be used as substitutes for a true outcome

of interest T to measure the efficacy of treatment Z in a clinical trial. Surrogate endpoints can

lower clinical trial costs and shorten study lengths. Unfortunately, using an inadequate endpoint

can lead to inaccurate conclusions regarding treatment effects. Statistical criteria for validation

have been proposed since Prentice’s landmark paper (Prentice, 1989), including causal inference

approaches where S(z) and T (z) refer to the endpoint values had the treatment been assigned to

treatment level Z = z. Principal surrogacy is one causally-valid solution where the treatment Z

and counterfactual values of S and T are jointly modeled (Frangakis and Rubin, 2002). In our

setting of multivariate normal endpoints, principal causal effects are defined on the distribution

of T (1) − T (0) conditional on S(1) − S(0). Building upon these ideas, Gilbert and Hudgens

defined the Causal Effect Predictiveness (CEP) curve to verify the quality of the surrogate within

this framework (2008).

In our motivating muscular dystrophy trial with a binary therapy Z, with Z = 1 denoting the
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gene therapy and Z = 0 denoting the placebo, T is a measure of the mobility and strength of an

individual. The candidate surrogate S is an expression of micro-dystrophin that is measured a few

weeks after the therapy is initiated. A characteristic of the disease is a lack of protein due to micro-

dystrophin, and the gene therapy is aiming to activate this gene. The outcomes T (0), T (1) are

measured longitudinally, and we can assume S(0) = 0 since subjects with the disease and without

gene therapy will have essentially zero gene expression. Gilbert and Hudgens formalized surrogate

validation methods for a vaccine efficacy trial with non-longitudinal outcomes and refer to the

setting where placebo participants have no immune response (i.e. S(0) is fixed to 0) as the constant

biomarker case. Work by Roberts, Elliott, and Taylor (2021) incorporates baseline covariates in

this setting for a trial with cross-sectional measures. The natural history of ambulatory ability due

to disease progression has been characterized by Muntoni et al. (2019). Since muscular growth

and deterioration from disease have major impact on mobility, effects of time are important to

consider when evaluating surrogacy. Further, the trial design includes a cross-over or delayed-start

treatment portion, so it may be possible to measure otherwise counterfactual T and S outcomes

since placebo subjects receive the treatment mid-trial.

Most existing literature on time-varying effects for surrogate validation describe joint mod-

els where either the treatment or surrogate is time-varying or repeatedly measured (Hsu et al.,

2015; Agniel and Parast, 2020) without addressing our situation of repeated true outcomes. To our

knowledge, there has not been work in this setting where the true outcome is repeatedly measured

in the context of surrogacy validation for a single trial. Validation metrics have been proposed

for multiple trials with repeated measures using meta-analysis (Alonso et al., 2003; Alonso et al.,

2004; Renard et al., 2003). Related work by Gabriel and Gilbert (2014) introduces the time- and

surrogate-dependent treatment efficacy curve for time-to-event data. This work makes inference

on the time-varying value of S as a surrogate using the estimated causal quantities over a range of
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time points. In subsequent research, Gabriel, Sachs, and Gilbert (2015) incorporate time for their

proposed standardized total gain metric for censored data and suggest it can be integrated over

time.

Similar trials with delayed-start treatment, closeout, or stepped wedge designs have been con-

sidered in the literature (Follmann, 2006; Brown and Lilford, 2006). Validation methods for a

vaccine closeout trial in Qin et al. (2008) assume time constancy where the closeout measurement

is equal to the true value of S plus measurement error. Luedtke and Wu (2020) similarly assume the

true outcomes for the crossover individuals are equal to what would have been observed had they

received treatment at baseline. We will use crossover to denote the time that an individual moves

from the placebo to treated arm. A strength of our proposed mixed model is its allowance for

time-dependence, which addresses the concern that T (1) in the delayed-treatment group individu-

als may not be identical to what would be observed at time of randomization without controlling

for time.

In this paper, we build upon work for the joint distribution of normally-distributed potential

outcomes by incorporating observed longitudinal outcomes for T and focus on the setting where

S(0) = 0. We extend established estimands for validation based on the conditional expectation

E(T (1) − T (0)|S(1) − S(0) = s) where the desired features of a surrogate are for this quantity

to be close to zero when s = 0, and far from zero when s is not equal to zero. We explore how

this distribution and validation metric can allow for repeated measures. Further, special cases we

consider are when T is also measured prior to randomization and a delayed-start of treatment trial

design. We model these additional endpoints in our proposed validation framework to demonstrate

the potential benefit of these designs.
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3.2 The Model

We first consider the joint distribution of three potential outcomes under the causal association

framework. Previous work with cross-sectional data assumed a multivariate normal (MVN) dis-

tribution of the counterfactual surrogate and true outcomes by parameterizing the model in the

following way (Conlon, Taylor, and Elliott, 2014a; Roberts et al., 2021)


S(1)

T (0)

T (1)

 ∼MVN




α1

β0

β1

 ,


σ2
S1 θ10σS1σT0 θ11σS1σT1

σ2
T0 θTσT0σT1

σ2
T1



 (3.1)

Here the population means are represented by {α1, β0, β1}, σ2 terms denote variances, and θ pa-

rameters indicate correlations among the outcomes. In a standard trial design, where the patients

are randomly assigned to either z = 1 or z = 0 arm, both correlations θT and θ10 are non-identified.

3.2.1 Repeated Measurements in a Standard Trial Design

We extend the above MVN model to the situation where each individual i = 1, ..., n has several

observed and counterfactual outcomes S(1)i, T (0)ij, T (1)ij for j = 1, ...,mi repeated measures in

a randomized trial. In this paper, we derive distributions where m is equal for all individuals and

S(1)i is only measured once, and is therefore a scalar, but this could be relaxed. In the simplest

random intercept model, we propose that each individual has one random effect for the vector of

T (0) measurements and one for T (1) measurements, denoted b(0) and b(1) respectively. Then,

each measurement T (z)ij for subject i and time j is assumed to follow a linear mixed model:
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T (0)ij = β0Xij +Zijb
(0)
.i + eij0 T (1)ij = β1Xij +Zijb

(1)
.i + eij1 eijz ∼ N(0, σ2

e) (3.2)

and S(1)i = α1 + ϵi, ϵi ∼ N(0, σ2
S1) with baseline or time-dependent covariates X and Z. Later

we will discuss the special case when there is also a pre-treatment measurement of T .

To extend the structure in (1), we assume that the joint distribution of (S(1)i,T (0)i,T (1)i) is

determined by the distribution of (S(1)i, b
(0)
i , b

(1)
i ) and consider the joint distribution of the surro-

gate and the random effects for a random intercept model:


S(1)i

b
(0)
i

b
(1)
i

 ∼MVN




α1

0

0

 ,Ψ =


σ2
S1 ρ10σS1σb0 ρ11σS1σb1

σ2
b0

ρTσb0σb1

σ2
b1



 (3.3)

The corresponding distribution of outcomes conditional on random effects then is written


S(1)i

T (0)i b
(0)
i

T (1)i b
(1)
i

 ∼MVN




α1 + δ1b

(0)
i + δ2b

(1)
i

β0Xj +Zib
(0)
i

β1Xj +Zib
(1)
i

 ,


σ2
S1 − δ3 0 0

σ2
e 0

σ2
e




where δ1 =

(ρ10−ρ11ρT )σS1

σb0−ρ2T σb0
, δ2 =

(ρ11−ρ10ρT )σS1

σb1−ρ2T σb1
, and δ3 =

−(ρ210+ρ
2
11−2ρ10ρ11ρT )σ2

S1

ρ2T−1
.

In our trial, we will model age or time over the course of the trial using random slopes. Consider

the random intercept and random slopes models for T (0) and T (1) in equation 3.4 where the

random effect vectors and covariance matrices increase in dimensionality.
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
S(1)i

b
(0)
i.

b
(1)
i.

 =



S(1)i b
(0)
i0

b
(0)
i1


 b

(1)
i0

b
(1)
i1




∼MVN





α1

0

0

0

0


,Ψ


,Ψ =



σ2
S1 σS1σb01ρS101 σS1σb11ρS111 σS1σb02ρS102 σS1σb12ρS112

σ2
b01 σb01σb11ρ0111 σb01σb02ρ0102 σb01σb12ρ0112

σ2
b11 σb11σb02ρ1102 σb11σb12ρ1112

σ2
b02 σb02σb12ρ0212

σ2
b12


(3.4)

We denote a baseline covariate Bi and time from randomization using the vector ti. For

each individual, T (0)i,T (1)i have random and fixed effects where Zi = (1 ti), Xi =(
1 Bi × 1 ti

)
, β0 = (β

(0)
0 β

(0)
1 β

(0)
2 ), β1 = (β

(1)
0 β

(1)
1 β

(1)
2 ), and each T (z)ij has a

distribution that depends on time. Letting each δ be a function of covariance parameters in Ψ, we

make the assumption that


S(1)i b

(0)
i0 , b

(1)
i0 ,

T (0)i b
(0)
i1 , b

(1)
i1 ,

T (1)i Bi, ti

 ∼MVN with mean


α1 + δ1b

(0)
i0 + δ2b

(1)
i0 + δ3b

(0)
i1 + δ4b

(1)
i1

β
(0)
0 + β

(0)
1 Bi + β

(0)
2 ti + b

(0)
i0 + b

(0)
i1 ti

β
(1)
0 + β

(1)
1 Bi + β

(1)
2 ti + b

(1)
i0 + b

(1)
i1 ti

 . (3.5)

3.2.2 Pre-treatment Observations of T

We consider that the covariates may have a special form and explore the use of a pre-treatment

observation of T , denoted by TBLi
. When this additional data is available, we can either include

this as a baseline covariate or treat it as an outcome measure of T (0) at t = 0 in our mixed model.

This extension may help with identifiability, because both TBL and T (1) are measured in the same

person, giving information about the previously non-identified parameters ρ0102, ρ0112, ρS101. If we

chose to model TBL as a covariate, after fitting the conditional model we will have to integrate over

TBL to obtain marginal quantities of our validation metrics. These ideas are explained in more

detail in Section 3.3 and in Appendix H.
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3.2.3 Delayed-Start of Treatment Design

In the muscular dystrophy trial with a delayed-start of treatment, crossover from placebo into the

treated group happens at time V . Notably, we do not observe data for T (0) at time t > V if all

individuals crossover to treatment, and we assume S is measured after crossover for all individuals.

In this design, we can observe both previously counterfactual values for at least some individuals,

thus allowing us to estimate all correlation terms that were previously nonidentified from the data.

To be precise about when individuals receive treatment, we use the notation T (0, t) and T (1, t)

to indicate these depend on time. Let Bi be age at randomization, τi be age at crossover, ageij age

at time j, and ti be time from randomization so we can represent ageij as Bi + tij . Individuals

who start on treatment follow the proposed model for the z = 1 group. For those who crossover to

treatment at age τi, for ageij < τi, an individual’s trajectory follows the described z = 0 model. At

the time of crossover, the trajectory of individuals changes to follow the z = 1 model. Our model

is designed to generate data that is similar to the published natural history model by Muntoni et

al. (2019). The formulation is based on reasonable expected changes based on the natural history

model and has both fixed and random effects for the intercept and slope and fixed effect of age. At

the time of the intervention, the subject changes their level by (β
(1)
0 +b

(1)
i0 −β(0)

0 −b(0)i0 ) and changes

their slope from (β
(0)
1 + b

(0)
i1 ) to (β

(1)
1 + b

(1)
i1 ) from that time onward. More details and motivation

can be found in Appendix J describing how Equation 3.6 is a revision of the model in Equation

3.5 using time since randomization as the time scale. Based on these modeling assumptions, we

assume the mean of
(
S(1)i T (0, t)i T (1, t)i

)
is
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
α1 + δ1b

(0)
i0 + δ2b

(1)
i0 + δ3b

(0)
i1 + δ4b

(1)
i1

β
(0)
0 + β

(0)
1 (Bi + ti) + β2(Bi + ti)

2 + b
(0)
i0 + b

(0)
i1 (Bi + ti)

β
(1)
0 + β

(0)
1 Bi + β

(1)
1 ti + β2(Bi + ti)

2 + b
(1)
i0 + b

(0)
i1 Bi + b

(1)
i1 ti

 (3.6)

where each δ regression coefficient is a function of covariance parameters from Equation 3.4. We

show an example of how these data look for crossover time V = 3 in Figure 3.1.

Figure 3.1: Counterfactual data for the delayed-start treatment design.
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3.2.4 Conditional Independence

Conditional independence assumptions about potential outcomes are commonly used in causal

inference settings to reduce or eliminate non-identified parameters and are frequently made in

surrogacy validation as discussed in Conlon et al. (2017b). One such conditional independence

assumption in the case of non-longitudinal T is S(1)i ⊥ T (0)i|T (1)i. It was previously argued that

this particular assumption was reasonable in the context where T (1) is continuous and therefore
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informative, particularly compared to others that could be made (Roberts et al., 2021). In our

longitudinal setting, we extend these ideas of conditional independence to the random effects. To

increase identifiability, we might assume S(1)i ⊥ b
(0)
i |b(1)i . The consequence of this assumption

in the model is that the coefficient for b(0)i is equal to 0 in the S(1)i model that follows Equation

3.3. Algebraically, this is true when ρTρ11 = ρ10 holds. In the covariance matrix of the random

slopes model in Equation 3.4, six of the ten correlations are nonidentified. For this model, we

might believe some other conditional independence assumption among the measure of S and the

random effects such as:

Assumption 1: S(1)i ⊥ (b
(0)
i0 , b

(0)
i1 )|b

(1)
i0 , b

(1)
i1 . The conditional covariances Cov(S1, b(0)i0 |b

(1)
i0 , b

(1)
i1 )

and Cov(S1, b(0)i1 |b
(1)
i0 , b

(1)
i1 ) must be 0. This gives the constraints on the correlation scale that

ρ1112 =
ρ20212ρS111−ρ0212ρS112ρ1102+(ρS102ρ1102−ρS111)

ρ0212ρS102−ρS112
and

ρ0112 =
ρ20212ρS101−ρ0212ρS112ρ0102+(ρS102ρ0102−ρS101)

ρ0212ρS102−ρS112
.

Assumption 2: S(1)i ⊥ b
(0)
i1 |b

(1)
i0 , b

(1)
i1 , b

(0)
i0 and S(1)i ⊥ b

(0)
i0 |b

(1)
i0 , b

(1)
i1 , b

(0)
i1 . Under the multivariate

normal setting, this would instead impose corresponding constraints in the form of structural zeroes

on the precision matrix. While this assumption may also be plausible, we do not consider this

assumption in the simulation study in this paper.

3.3 Surrogacy Validation

In the setting without longitudinal data, the CEP curve for jointly normal potential surrogate mark-

ers and outcomes has previously been shown to be E(T (1) − T (0)|S(1) = s) = γ0 + γ1s where

γ0 and γ1 are functions of model parameters (Conlon et al., 2014a). This linear form and inter-

pretation of the γ parameters as an intercept and slope term is a consequence of our normality

assumptions. The CEP curve captures the validity of the surrogate through the two γ quantities.
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Visually, for MVN endpoints the plot of E(T (1) − T (0)|S(1) = s) over values of S(1) = s for

a valid surrogate would cross through the origin and have a positive slope. By construction of the

principal stratification framework, a poor surrogate would fail to meet at least one criterion. We

note the interpretation of γ0 may require extrapolation when we estimate a large treatment effect

on the surrogate and no data are observed in the region where S(1) = 0.

We explore this conditional quantity when T (z) is a vector. We derive the CEP curve when ran-

dom effects exist; this requires the distribution of T (1)−T (0)|S(1) marginalized over the random

effects. Consider the simple case of random intercepts with no fixed effects of time following Equa-

tion 3.3; in this case, β0 and β1 are scalars. To calculate E(T (1) − T (0)|S(1) = s), we integrate

over the random effects:
∫
b(0)

∫
b(1)

E(T (1) − T (0)|S(1) = s, b(0), b(1))f(b(0), b(1)|s)db(1)db(0). For

this model, γ1 = ρ11σb1−ρ10σb0
σS1

and γ0 = β1 − β0 − γ1α1. These quantities are similar to previous

work without repeated measures.

Since T (0) and T (1) may depend on time, our validation metrics γ0 and γ1 can depend on

time where there is, at minimum, a fixed effect of time. We denote our time-dependent curve

as CEP (t) = γ0(t) + γ1(t)s. Due to the time-varying nature of the mean structure, the con-

sequence of a fixed effect of time will be apparent in the intercept term, γ0(t). The slope γ1(t)

may also depend on time when we incorporate random effects of time. While the endpoint T

may be measured several times, we consider the validation measure at one time j. When we

take the expected difference between T (1)ij and T (0)ij at time j from Equation 3.5, we have

γ1(tij) =
σb02ρS102+(σb12ρS112−σb11ρS111)tij−σb01ρS101

σS1
and γ0(tij) = β

(1)
0 + β

(1)
1 Bi + β

(1)
2 tij − (β

(0)
0 +

β
(0)
1 Bi + β

(0)
2 tij) − γ1(tij)α1. This tells us the quantity for γ1(tij) will vary over time if there is

a non-zero and non-equal covariance between S(1) and the random slopes b(0)1 , b
(1)
1 . Further, the

quantity for γ0(tij) will depend on time if there is a non-zero and non-equal main effect of time for

T (0) and T (1) outcomes (a time-treatment group interaction). Our proposed models with delayed-

45



start treatment give the expected difference between T (1)ij and T (0)ij and same γ1(tij) that was

derived in the standard design setting with γ0(tij) = β
(1)
0 + β

(1)
1 tij − (β

(0)
0 + β

(0)
1 tij)− γ1(tij)α1.

The trial endpoint could be defined as a weighted average of the repeated measures. Rather than

calculate γ0, γ1 at a specified time j, we could think of time continuously and calculate an average

over a time range. To obtain a marginal value for overall surrogacy evaluation, we could take a

weighted average of these values across a time range by integrating over a set of weights w(t),∫
t
w(t)CEP (t)dt, with different w(t) such that

∫
t
w(t) = 1 based on our desired interpretation.

A consideration for conditioning and then averaging over baseline variables to calculate the CEP

curve was proposed in Roberts et al. (2021) to increase plausibility of conditional independence

assumptions and improve efficiency. In a clinical trial, it is usual to present marginal treatment

effects, which could be estimated by calculating conditional treatment effects then averaging over

the baseline covariate. If we wanted to first condition on then integrate over a baseline covariate

Bi, for reasons such as making conditional independence assumptions about the outcomes condi-

tional on these covariates, we would integrate with respect to f(Bi|S(1) = s) to obtain marginal

surrogacy validation quantities as detailed in the supporting information in Appendix H.

3.4 Estimation Methods for Standard Trial Design

In this section, we describe multiple approaches to estimation and inference for the model pa-

rameters and in turn for γ0(t) and γ1(t). The different methods will be compared in a simulation

study.
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3.4.1 Counterfactual Imputation Methods

We will assume that individuals have m measurements collected at the same time points. We also

assume a standard randomized trial design with no crossover or pre-randomization values of the

outcome variable. For sample size n, outcomes for each respective treatment are observed for only

n0 = n1 = n/2 subjects. The complete data likelihood for this approach is the product over all n

subjects of the joint distribution of the observed and counterfactual observations and the random

effects. The counterfactual imputation algorithm is a Bayesian method with Markov Chain Monte

Carlo (MCMC) that alternates between imputing the missing counterfactuals and corresponding

random effects and drawing model parameters. The Gaussian outcomes permit conjugate priors

and Gibbs sampling, though we also consider other computational options.

Let µ, σ, and ρ denote the mean, variance, and correlation parameters, respectively, for the

model of interest; for random intercept models µ = {α1, β0, β1}, σ = {σS1, σb0 , σb1 , σe}, ρ =

{ρ10, ρ11, ρT}. This general notation allows for any dimension of the random effects. Conditional

on parameter starting values, we impute the counterfactual values S(1),T (0),T (1) from the dis-

tributions of

 T (0) b(0),T (1), b(1)

S(1), µ, ρ, σ

 and

 S(1) b(0),T (0),

T (1) b(1), µ, ρ, σ

.

From these, we draw the random effect estimates b(0). , b(1). |S(1), T (0), T (1), µ, ρ, σ from a mul-

tivariate normal distribution. More details on deriving conditional forms of the distribution to

impute counterfactuals and drawing random effects can be found in the supporting information in

Appendices G and H. We assume vague priors for the identified mean parameters µ and inverse

gamma priors for the variances σ2. Conditional on the imputed outcomes, b(z). , µ, and σ, we draw

the correlation parameters ρ. To control the prior distribution on each correlation term, we decom-

pose the variance-covariance matrices Ψ into standard deviations S and correlations R (Barnard,

McCulloch, and Meng, 2000). In many cases, we assume Uniform(-1, +1) priors and compare
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this to more informative rescaled Beta priors placed on nonidentified correlations when we have

reason to expect the correlation is likely to be non-negative. For computational efficiency, we use a

Metropolis-Hastings (MH) step with Fisher’s z-approximation and Jacobian transformation as de-

scribed in Appendix I. The positive definiteness constraint on R is based on the determinant being

positive: for the random intercept model, this is analytically written as 1 − ρ2T + ρ211 > ρ210. For

the random slope, the closed form boundaries for each correlation parameter are more complex to

solve, and the positive definiteness constraint is handled by rejection. Interestingly, the positive

definite constraint for the random intercept model is fulfilled when the conditional independence

constraint is assumed.

To further help with identifiability and efficiency, we can implement our proposed conditional

independence assumptions. For the random intercept conditional independence assumption and

assumption 1 for random slopes, we fulfill the constraints using algebraic equalities. To imple-

ment the second conditional assumption for random slopes, we could use the precision matrix

decomposition described in Wong, Carter, and Kohn (2003) since there are two structural zeroes in

Ψ−1 when this assumption holds. Once all parameters are drawn, we calculate γ0, γ1 based on the

formulas provided in Section 3.3 and repeat this process over many iterations to obtain posterior

distributions.

3.4.2 Observed Data Methods with Random Effects

Alternatively, we can use only the observed data likelihood without imputing counterfactu-

als, where the observed data likelihood is comprised of the observed values of S and T and

the corresponding random effects. For example, the observed data for m time points are

T (0)l1, T (0)l2, ..., T (0)lm for l = 1, ..., n0 and S(1)k, T (1)k1, T (1)k2, ..., T (1)km for k = 1, ..., n1.

Consider the random intercept model where T (0)lj = β
(0)
0 +b

(0)
l +elj and T (1)kj = β

(1)
0 +b

(1)
k +ekj
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with e. ∼ N(0, σ2
e). From the distribution of (S(1)i b

(0)
i b

(1)
i )T in Section 3.4.1, we need only the

components b(0)l ∼ N(0, σ2
b0
) and

 S(1)k

b
(1)
k

 ∼MVN


 α1

0

 ,

 σ2
S1 ρ11σS1σb1

σ2
b1


 that

correspond to observed data.

For this simplified algorithm, we estimate the identified parameters and b(0), b(1) related to

S(1), T (1) for those with z = 1 separately from those for T (0) with z = 0, and we use the same

priors described in the previous section, namely normal priors on the means (α1, β0, β1), inverse-

gamma priors on the variance terms (σS1, σb1 , σb0 , σe), and either Uniform or rescaled Beta priors

on the correlations (ρ11, ρT , ρ10) for random intercept models. Since σe is shared between the two

arms of the study, it is drawn based on the residuals of both arms. While ρ11 is identified and drawn

based on Fisher’s z-approximation from data for the z = 1 arm, the nonidentified correlation ρT is

drawn from its prior, and conditional independence can be assumed to solve for ρ10. We directly

calculate γ1, γ0 from these quantities without the imputation of the counterfactual outcomes.We

implement this method using MCMC, though other non-Bayesian options are available, and this

algorithm is applicable to more complex mean structures and random slopes models.

3.4.3 Observed Data Methods Integrating Out Random Effects

For this Gaussian model, we can also integrate out b(0)l , b
(1)
k from the likelihood and calculate γ0 and

γ1 directly. In addition to using the observed data without imputing counterfactuals as described

in Section 3.4.2, we can maximize the likelihood or posterior directly and bypass the estimation of

random effects. The random intercept model for this method can be written out for m time points

from the marginal (meaning integrated over the random effects) likelihood, where for z = 0, the
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vector T (0) has mean β
(0)
0 and covariance


σ2
e + σ2

b0
· · · σ2

b0

. . . ...

σ2
e + σ2

b0


m×m

.

Similarly for z = 1, (S(1) T (1)) has mean (α1 β
(1)
0 ) and covariance

σ2
S1 ρ11σS1σb1 · · · ρ11σS1σb1

σ2
e + σ2

b1
· · · σ2

b1

. . . ...

σ2
e + σ2

b1


m+1×m+1

.

For comparability across methods, the prior distributions proposed earlier can be used to draw

ρ10 and ρT , and in turn calculate γ0 and γ1. Standard errors can be derived in part from the Hessian

matrix. We draw ρT from a Beta distribution 100 times, use the mean of the draws for the point

estimate of ρT , and account for this variability in the final γ variability estimates using a within-

plus between-variance type formula (detailed in Appendix L). Since this method does not require

the computation of repeated draws of random effects, this option lends itself well to a maximum

likelihood-based method and sensitivity analyses of fixing the nonidentified parameters to a range

of values. For this optimization method, we suggest maximizing the likelihood using the optim

function in R (R Core Team, 2012). The procedure is also applicable to random slope models,

though the closed-form, marginal distribution is more complex and not included here.

3.4.4 Methods Simplifying the Repeated Trial Outcome

Whereas the previous sections considered models and algorithms for the repeated measures, we

consider alternative ways to simplify these data. Albert (1999) describes standard options to sum-

marize longitudinal observations for a clinical trial, which will be similar to options for summa-

rizing a longitudinal metric of surrogacy. For efficiency comparisons, we simply use the first
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measurement or average of the repeated measurements and define T (0)1, T (1)1 or T (0), T (1) as

the outcomes respectively. By condensing the outcomes into scalars, our algorithm is the same as

when we did not consider repeated measurements (Roberts et al., 2021). We compare these two

methods to fitting mixed models on the repeated measurements.

3.5 Simulation Studies

The purpose of our simulation study is to mimic clinical trials. In the standard randomized design,

we have non-identified parameters. In designs with pretreatment measures or delayed-treatment

start for the placebo arm, some non-identifiability is alleviated. We compare the performance of

estimation strategies proposed in Section 3.4 of estimating the γ quantities of interest. We also

assess the robustness of our results across sample sizes and model misspecification.

3.5.1 Results Comparing Methods and Models with Random Intercepts

We compare algorithmic and modeling strategies for the random intercept model for 200 simu-

lation replications. In this section, there are three repeated T (0), T (1) outcomes and one cross-

sectional, normally-distributed value of S that is correlated with the random effects for T (z). Data

are generated with n = 300 subjects, with true values: α1 = 2, β0 = 22, β1 = 23.1, ρ10 =

0.15, ρ11 = 0.7, ρT = 0.214, σS1 = σb0 = σb1 = 0.25, σe = 0.3 (Equation 3.2 and 3.3).

In fitting the models, we use either a Beta(8, 5) prior that is rescaled, meaning we draw U ∼

Beta(8, 5) then transform the draw to x = 2 × U − 1, or a Uniform prior on the parameter ρT .

We note that this rescaled Beta(8,5) prior has mean equal to 0.231 and standard deviation equal

to 0.260 and is therefore mildly informative. The observed data scenarios explained in Section

3.4.2 are denoted Obs Data, whereas rows marked Imputation use the imputation algorithm in
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4.1. Both algorithms are consistent with the generated data, since the differences between the two

algorithms are primarily in how the non-identified parameters and counterfactual outcomes are

handled. Lastly, we vary making the conditional independence assumption across methods, which

is denoted as CI or No CI. The likelihood-based optimization method from Section 3.4.3 is labeled

as such. The simplified methods considered in Section 3.4.4 are shown in the bottom two rows of

the results table.

Notably, the concept of true, data generating values and corresponding bias of the estimates

may be considered somewhat ambiguous when handling nonidentified parameters. To account for

the fact that several sets of values for the non-identified parameters could generate the observed

data, we take a more broad approach of defining the ‘true’ values of γ0 and γ1. Similar ideas

are explored by Zhang and Rubin (2003) by creating large sample bounds of causal quantities;

these tend to be quite wide in practice. In our work, the range of values that could generate

the simulated data are determined by obtaining thousands of draws from a non-informative prior

distribution for non-identified parameters, fixed values of the identified parameters, and evaluating

which sets of correlations produce positive definite covariance matrices. These can be thought

of as possible generative matrices in the infinite data case where we consider a non-informative

prior to be Uniform(-1, 1), and we describe more motivation and complexities of this procedure in

Appendix K. The corresponding, valid γ values describe a range of possible truths.

The simulation results for γ0 and γ1, found in Table 3.1, show that in the setting of non-identified

parameters, the standard error estimates are larger than the standard deviation of the point estimates

across simulations. The impact of different priors on ρT is demonstrated between the first set of

results. As we would expect in the setting of non-identified parameters, there is some sensitivity to

the prior, particularly in the standard error estimates. When holding all else constant, we see that

assuming conditional independence results in gains in efficiency. When comparing the impact of
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different algorithms for estimating random effects, we expect the row of results involving impu-

tation of counterfactuals to match the results for using the observed data without imputing coun-

terfactuals. This suggests we can implement the more efficient algorithm using the observed data

only and expect similar results to using the complete likelihood-based method. The method that

maximizes the observed data likelihood provides similar results to the other observed data meth-

ods, demonstrating its potential as a computationally efficient alternative to the Bayesian methods.

We see some gains in efficiency when we use the average of three measures compared to using

only the first measurement when comparing the standard deviation of point estimates for γ0 and

γ1. Notably the mixed modeling approach, which makes full use of the available information in the

data, was most efficient. Across different modeling assumptions, some of the simulation results

largely suggest that S would be a valid surrogate based on the estimated values of γ0 and γ1. In

particular, as desired for a valid surrogate, the credible interval for γ0 covers 0 while the credible

interval for γ1 does not in the settings where informative priors (Beta) and conditional indepen-

dence are assumed. This underscores the importance of implementing context-plausible modeling

assumptions.

We assess robustness by varying the sample size in simulations. In results shown in Appendix

M, we see that for sample sizes considered (100 - 1,000), the average standard error is larger than

the standard deviation of the point estimates, as non-identifiability persists even with increasing

sample size. Noting data from only n/2 subjects will be available for estimation using the observed

data algorithm, smaller sample sizes result in noticeably larger of variance.

Model misspecification is likely in practice. To explore the consequence of model violation,

we generated the joint distribution of the random effects and S(1) as skewed based on a correlated

multivariate Gamma distribution with means adjusted to be (α1, 0, 0). Based on results found

in Appendix M, we see differences in estimation properties. The average standard error across
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simulated datasets is larger for the skewed, misspecified distribution of the random effects. The

average posterior means are also different, though they fall within the true, generated values. From

this, we conclude that there will be differences in estimated γ0 and γ1 quantities when models are

misspecified, though the algorithm is still able to be fit and produces reasonable results.

3.5.2 Results Comparing Assumptions with Random Slopes

We conduct simulations with 200 replications for more complex random slope models in a larger

trial size of n = 900 to assess the performance. There are six repeated measurements of T post-

randomization for both arms. We generate data according to Equation 3.5 with generating val-

ues α1 = 2, β
(0)
0 = 22, β

(1)
0 = 23.45, β

(0)
1 = 0, β

(1)
1 = −0.4, β2 = 0, ρS01 = 0.025, ρS11 =

0.022, ρS02 = 0.71, ρS12 = 0.25, ρ0111 = 0.15, ρ0102 = 0.03, ρ0112 = 0.05, ρ1102 = 0.02, ρ1112 =

0.10, ρ0212 = 0.25, σS1 = σb01 = σb02 = 0.75, σb11 = σb12 = 0.45, σe = 0.15. We use the Bayesian

observed data algorithm described in Section 3.4.2 as we expect these results to mimic those from

an imputation method. The metrics are shown at various time points to demonstrate their time-

varying nature. Again we provide the true values of γ based on infinite data scenarios as described

in Section 3.5.1 since the observed data in the simulations may be consistent with multiple full

data likelihoods.

Our results are shown in Table 3.2, and we compare estimation properties when we do or do not

make the first conditional independence assumption. The results suggest that the surrogate might

be valid at the first two evaluated time points (1-2) based on the credible interval for γ0 containing

zero and the interval for γ1 being strictly positive. We again see gains in efficiency when we

make the conditional independence assumption. The credible intervals also become wider as time

increases, which is expected based on the increasing complexity of formulas for γ0 and γ1 over

time.
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3.5.3 Results for Pretreatment Measures

We consider the setting of a pre-treatment measurement of T and six repeated measurements post-

randomization. We contrast modeling this measure as an outcome in the mixed model versus as

a baseline covariate. The simulations use the observed data only, so we can further compare this

to the previous section where we do not incorporate this measurement. To obtain the presented

marginal quantities over the baseline covariate for γ0 and γ1, we complete a marginalization step

as described in Section 3.3 and Appendix H. The main results, shown in Table 3.3 part a, display

the estimated surrogacy measures at time one. The results incorporating this pretreatment measure

show an efficiency gain by including T (0) at baseline in the model as an outcome. We would

recommend using this measurement as an outcome in the model, as it is also more computationally

efficient than using it as a covariate and integrating over it. One reason to use T (0) at baseline as

a covariate is to make the conditional independence assumptions more plausible.

3.6 Motivating Data Example

The motivating study for the proposed method investigates a gene therapy for Duchenne muscular

dystrophy patients. This method was developed to accommodate the particularities of the study

design and longitudinal data collection. Based on published literature related to the disease, we

propose to model effects over time since age, growth, and disease deterioration have strong effects

on the functional outcome of interest, North Star Ambulatory Assessment (NSAA) score, T . This

trial is ongoing and has not been unblinded, so individual patient level data is not publicly available.

The presented data are simulated from parameter values to match summary statistics from the

preliminary data or natural history plots when available. As estimates of random effects were not

available, the authors chose parameters to match what they considered reasonable values. Briefly,
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we consider the delayed-treatment design with longitudinal measures of the outcome T and a post-

treatment measure of gene expression S. Data include a crossover from placebo to treatment group

at time V = 3 with a total of k = 6 post-treatment measurements and a measure of T at baseline.

Based on the model in Eq. 6 and a trial with sample size n = 900, we use the generating values

described in section 5.2 with details on the procedure found in Appendix J.

Based on these data, we estimate the parameters using the observed data algorithm. First we

look at tabular results across multiple datasets for γ evaluated at time one in Table 3.3 part b.

Overall, there are large efficiency gains in the standard error when using the data available from

a delayed-treatment start design compared to the other considered designs that do not. There are

further efficiency gains when there is a pre-treatment measurement of T as well. Notably, the

average standard error is close to the standard deviation of the point estimates for the delayed-

treatment start setting, because we have identifiability. This substantial reduction in the standard

error demonstrates the clear gains of conducting a delay-start design from a statistical perspective.

For one data set, we plot the corresponding CEP curves in Figure 3.2 since the γ(tij) quantities

are a function of time. From these CEP curves, we see that there is some treatment-time interaction

based on changing γ(tij) estimates across evaluation times. S may be a valid surrogate at any time

point where the credible interval for γ0 overlaps 0 and the interval for γ1 does not, which occurs at

times one through three for this dataset. Importantly, we see the density of S(1) in Figure 3.2 and

are reassured that the values of E(T (1, t)− T (0, t)|S(1) = s) are positive where we observe data

for S(1), indicating proper surrogacy should hold. In other trials, it is plausible that S may only be

valid closer to the time that T is measured or that its value is less clear in the region where S(1)

is observed. We see in the differences between Table 3.3 part a and b that assessment of surrogacy

would be more difficult without the data collected from the delayed-start treatment design.
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Figure 3.2: Results of the CEP plot where age is both a fixed and a random effect for the delayed-
treatment Muscular Dystrophy trial simulated data with baseline measures of T . Each panel de-
notes a different time point that the surrogate is evaluated. The displayed credible intervals are
pointwise credible intervals of γ0 + γ1s. The blue curve shows the density plot of observed values
of S.
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We explored the consequences of mean structure specifications that differ from the generating

model. Here we investigated when the data exhibits a quadratic effect of time, but the model

only accounts for a linear effect of time and see larger variability of the estimates in this case.

We anticipate that model selection could be performed in this setting to accurately specify fixed

effects.

3.7 Discussion and Future Directions

We have proposed a causal inference approach to validating surrogate endpoints when the true

outcome of interest is measured repeatedly throughout the trial. This paper demonstrates several

algorithms and benefits of incorporating the mixed modeling framework, particularly in the set-
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ting of a delayed-start treatment design. In our longitudinal setting, the potential for crossover

treatment arms or use of a pretreatment measurement allows us to estimate potentially identified

correlation parameters that arise between treatment arms, indicating benefits of this trial design.

Beyond the proposed model, we could also let the quantities γ0 and γ1 depend on Bi by allow-

ing the coefficients for Bi to differ between treatment arms, or we could include age-treatment,

age-squared-treatment, or age-surrogate interactions in the model, for example. There is potential

for efficiency gains when incorporating the proposed conditional independence assumptions of the

random effects.

In Section 3.4, we introduced three alternatives for estimation in the general longitudinal setting.

While all of the algorithms should produce similar results, we suggest using the observed data

methods for computational gains. In particular, the likelihood based method will be the fastest.

However, parameterizing the longitudinal model after marginalizing over the random effects can

be challenging when random slopes are modeled, and the variance parameters may be poorly

estimated in some settings. The proposed optimization method that marginalizes over random

effects will also be more difficult in complex situations such as generalized linear mixed models

where an approximation of integrals may be necessary. For these reasons, we believe that the

Bayesian methods using MCMC with the observed data likelihood and prior distributions are a

reliable choice.

Further questions can be explored in this data setting regarding trial design. It is important to

understand the amount of efficiency gain that is possible by including the baseline NSAA score.

Similarly, it is beneficial to quantify the gains of conducting the crossover portion of the trial and

assess the optimal time to do crossover. This must be considered within the cost-benefit context of

treating all patients in the placebo arm and following them over time. Given our observation that

small sample sizes can result in wide credible intervals of the validation quantities, it is of interest
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to explore how historical trials may be leveraged when the current trial has a small sample size.

As noted by Vanderweele (2013), additional criteria (one-sided average causal sufficiency) may

assure against the so-called surrogate paradox, an unfortunate phenomenon that can occur when the

treatment effect on the surrogate is positive, the correlation between the surrogate and true outcome

is positive, yet the treatment effect on the true outcome is negative. Further work in this area is

available in Elliott et al. (2015) and Price et al. (2018). A limitation of the proposed method is that

it relies on a properly specified, parametric model to validate surrogate endpoints. The model can

be extended to be more flexible, handle more types of endpoints, or accommodate time-varying

covariates (see Kim et al., 2017 for an example). As noted in previous work, the CEP curve

framework does not directly rely on the normality assumption, and copula or other modeling could

be implemented instead (see Taylor, Conlon, and Elliott, 2015). This becomes more complex with

the repeated measures, but extensions into generalized linear mixed models would be an interesting

area of future research. Further, the time-varying CEP curve will be relevant for time-to-event data

where censoring and semi-competing risks must be taken into account.

3.8 Data Availability and Software

Due to the proprietary and ongoing nature of the clinical trial, the individual patient level data

is not available for use. Programming was done in R v3.6.2 (R Core Team). The R code for il-

lustrative simulation studies is available at https://github.com/emilykroberts/Surrogacy-Validation-

Longitudinal-Outcomes. The content of this chapter has been accepted for publication in Biomet-

rics.
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3.9 Tables

Setting γ0 γ0 SE γ0 SD γ1 γ1 SE γ1 SD
Range of Data Generating Value Unif, No CI (-2.052, 1.466) (-0.182, 1.575)
Comparing the Impact of Priors and CI Assumptions
MCMC, Obs Data, Random Effects, No CI, MH Unif(-1, 1) Prior -0.300 0.931 0.143 0.706 0.470 0.072
MCMC, Obs Data, Random Effects, CI, MH Unif(-1, 1) Prior -0.264 0.736 0.174 0.686 0.372 0.087
MCMC, Obs Data, Random Effects, No CI, MH Beta(8, 5) Prior -0.057 0.914 0.160 0.581 0.461 0.080
MCMC, Obs Data, Random Effects, CI, MH Beta(8, 5) Prior 0.002 0.408 0.155 0.552 0.205 0.078
Comparing the Impact of Different Methods/Algorithms
MCMC, Imputation, Random Effects, CI, MH Beta(8, 5) Prior 0.022 0.392 0.161 0.542 0.199 0.080
MCMC, Obs Data, Random Effects, CI, MH Beta(8, 5) Prior 0.002 0.408 0.155 0.552 0.205 0.078
Optimization, Obs Data, Integrated, CI, MH Beta(8, 5) Prior 0.046 0.404 0.150 0.528 0.201 0.074
MCMC, Obs Data, First Measure, CI, Beta(8, 5) Prior 0.038 0.441 0.198 0.530 0.211 0.095
MCMC, Obs Data, Measure Average, CI, Beta(8, 5) Prior 0.052 0.448 0.152 0.522 0.212 0.072

Table 3.1: Simulation results of random intercept models comparing different assumptions and
models. The true values of γ0 and γ1 are listed as the 2.5th and 97.5th quantiles of repeated draws
from an infinite data setting of valid covariance matrices under conservative settings, meaning
the identified parameters are set to their true generating values, and non-identified parameters are
drawn from a Uniform(-1, 1) distribution with no conditional independence (CI) assumptions.
Results shown for γ quantities are the posterior mean, average estimated standard error within
simulation, and standard deviation of the point estimates across simulation replications. Obs Data
represents algorithms that use only the observed data (rather than an imputation scheme), and
MH denotes when Metropolis Hastings steps were involved in the Markov Chain Monte Carlo
(MCMC).
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γ0 γ0 SE γ0 SD γ1 γ1 SE γ1 SD
Range for Data Generating Values at Time 1 (-1.508, 1.356) (0.145, 1.577)
No CI 0.029 0.789 0.093 0.807 0.395 0.043
CI -0.050 0.612 0.103 0.848 0.306 0.045
Range for Data Generating Values at Time 2 (-1.900, 1.945) (0.048, 1.973)
No CI 0.224 1.093 0.122 0.908 0.547 0.056
CI 0.090 0.832 0.147 0.978 0.416 0.068
Range for Data Generating Values at Time 3 (-2.399, 2.647) (-0.101, 2.422)
No CI 0.433 1.427 0.159 1.003 0.714 0.071
CI 0.231 1.084 0.201 1.108 0.541 0.094
Range for Data Generating Values at Time 4 (-2.943, 3.392) (-0.273, 2.894)
No CI 0.642 1.774 0.199 1.099 0.888 0.089
CI 0.372 1.349 0.258 1.238 0.674 0.121

Table 3.2: Simulation results of random slope models over time. The true values of γ0 and γ1
are listed as the 2.5th and 97.5th quantiles of repeated draws from an infinite data setting of valid
covariance matrices, meaning the identified parameters are set to their true generating values, and
non-identified parameters are drawn from a non-informative prior. CI or No CI denotes whether
conditional independence was assumed.

γ0 γ0 SE γ0 SD γ1 γ1 SE γ1 SD
a
Range for Data Generating Values at Time 1 (-1.508, 1.356) (0.145, 1.577)
Standard Design, No TBL Covariate, No CI 0.029 0.789 0.093 0.807 0.395 0.043
Standard Design, No TBL Covariate, CI -0.050 0.612 0.103 0.848 0.306 0.045
Standard Design, TBL As Outcome, No CI 0.053 0.466 0.153 0.776 0.233 0.059
Standard Design, TBL As Outcome, CI 0.015 0.324 0.111 0.802 0.165 0.053
Standard Design, TBL As Covariate, No CI -0.037 0.764 0.123 0.835 0.388 0.055
Standard Design, TBL As Covariate, CI -0.103 0.614 0.109 0.870 0.313 0.050
b
Delayed-Start Design, TBL As Covariate, No CI -0.012 0.149 0.141 0.868 0.071 0.066
Delayed-Start Design, TBL As Covariate, CI -0.038 0.126 0.093 0.837 0.060 0.048

Table 3.3: Simulation results of random slope models comparing trial designs. Here we compare
either a standard randomized design (a) to a delayed-start treatment design (b). We also assess the
impact of incorporating a pre-treatment, baseline measurement of T, TBL. In some scenarios, TBL
is treated as a covariate and in others as an outcome in the mixed models. The true values of γ0 and
γ1 are listed as the 2.5th and 97.5th quantiles of repeated draws from an infinite data setting of valid
covariance matrices, meaning the identified parameters are set to their true generating values, and
non-identified parameters are drawn from a non-informative prior. CI or No CI denotes whether
conditional independence was assumed.
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CHAPTER IV

Surrogacy Validation for Time-to-Event Outcomes

with Illness-Death Frailty Models

4.1 Introduction

Time-to-event endpoints are common in oncology trials, though it can often take many years to

accrue enough observed events to complete the study (Kemp et al. 2017). In a randomized clinical

trial, an appropriate surrogate endpoint can serve as a substitute indicator for if a treatment effect

exists on some true outcome of interest. In this work, our data come from a prostate cancer clinical

trial with a binary treatment of adding anti-androgen therapy to an existing regimen (Shipley et al.

2017). The two endpoints of interest are the occurrence of distant metastasis and overall survival.

Here the terminal event is death from any cause and is the primary endpoint for the trial. For these

patients, death from prostate cancer will only occur if the person has had metastases. However,

some men will experience death during follow-up with or without experiencing distant metastases

spreading first. Overall survival is therefore a mixture of two death types, death from prostate

cancer and death from other causes. However, in the data the cause of death is not known. Mech-

anistically understanding whether distant metastases is a desirable surrogate for overall survival in

this setting may be beneficial for clinicians and trialists.
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Given the substantial risk of potentially using an invalid surrogate endpoint in a large scale trial,

rigorous standards have been proposed to validate a surrogate (Vanderweele, 2013). The first cri-

teria to determine the validity of candidate surrogate endpoints were suggested by Prentice (1989)

which test whether a treatment affects the true endpoint only through the pathway of the surrogate

endpoint. While the criteria are applicable to different outcomes such as time-to-event endpoints

that we will be focusing on, they involve regression models that rely on conditioning on the ob-

served value of S, leading to a non-causal interpretation. More recent frameworks to determine if

a surrogate marker is appropriate for use in a future trial can be broadly grouped into the causal

effects and causal association paradigms (Joffe and Greene, 2009). The causal association frame-

work aims to evaluate the relationship of the treatment effect on the surrogate S with the treatment

effect on the true clinical endpoint T . These methods are often built upon counterfactual outcomes

T (z), which are the clinical outcomes of interest, and S(z), the surrogate endpoints, where the

notation Z = z represents the treatment under either the observed or counterfactual assignment.

Methods within the causal association framework have been proposed for trials where the true

outcome T is a time-to-event outcome under different corresponding surrogate endpoint types.

Tanaka et al. (2017) consider a binary surrogate for a survival primary outcome within the meta-

analytic framework, and Gao (2012) considers a time-to-event T and binary S for a single trial

using principal stratification methods (Frangakis and Rubin, 2002). Taylor et al. (2015) propose

a Gaussian copula model with a survival endpoint for T and ordinal endpoint S. The principal

stratification estimand proposed by Qin et al. (2008) allows for a continuous S and time-to-event

T . This was expanded upon in Gabriel and Gilbert (2014) and Gabriel, Sachs, and Gilbert (2015) in

pursuit of a causal effect interpretation. Causal solutions for validation become more challenging

when the surrogate is also subject to censoring. Instead, others such as Parast and colleagues

(2017) rely on different measures such as proportion explained for time-to-event outcomes, and
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likewise Hsu et al. (2015), Vandenberghe et al. (2018), and Weir et al. (2021) address time-

varying surrogates using mediation approaches that rely on proportion mediated metrics within the

causal effects paradigm.

To our knowledge, the setting where both S and T are time-to-event endpoints has not been

fully addressed within the principal stratification framework. Building on the work of Frangakis

and Rubin (2002), we aim to develop a corresponding Causal Effect Predictiveness (CEP) curve

proposed by Gilbert and Hudgens (2008) to validate a surrogate endpoint when both S and T are

time-to-event. The key to obtaining a causal assessment in this paradigm is classifying individuals

based on their set of potential values of the post-treatment variable, which here would be the

surrogate endpoint. In a simple case where S and T are Gaussian outcomes and Z takes on the

value 0 or 1, the analog to surrogate-specific strata and the corresponding CEP curve for validation

is based on the quantityE(T (1)−T (0)|S(1)−S(0) = s).Briefly, the CEP criteria intuitively assert

that there be no average treatment effect on T for the strata of patients defined by no treatment

effect on S, and conversely that there exist an overall treatment effect on T for the strata of patients

defined by a treatment effect on S. A comparable contrast and consideration of principal strata

when T (z) and S(z) are subject to censoring and a semi-competing risk structure will be explored

in this chapter.

Outside of the surrogacy validation setting, semi-competing risks based on counterfactual haz-

ards have been explored (Huang, 2021). Within the principal stratification framework, unobserved

outcomes due to truncation by death can be addressed by defining strata based on survivorship

cohorts (Zhang and Rubin, 2003). Comment et al. (2019) define a survivor average causal effect

in the presence of a semi-competing risk where principal causal effects are defined for individu-

als who would survive regardless of the assigned treatment. Xu et al. (2020) propose a causal

estimand for a semi-competing risk structure to address truncation by death P (S(1)<τ |T (0)≥τ,T (1)≥τ)
P (S(0)<τ |T (0)≥τ,T (1)≥τ)
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which conditions on these survivor principal strata.

The estimands for surrogacy validation with a continuous S by Qin et al. (2008) and Gabriel,

Sachs, and Gilbert (2015) described earlier can be written as 1− P (T (1)=τ |T (1)≥τk−1,S(1)=s1,S(0)=s0)

P (T (0)=τ |T (0)≥τk−1,S(1)=s1,S(0)=s0)

and 1−P (T (1)>t|T (0)≥τ,T (1)≥τ,S(1)=s1,S(0)=s0)
1−P (T (0)>t|T (0)≥τ,T (1)≥τ,S(1)=s1,S(0)=s0) for some time τ , respectively. In our setting where S

may not be observed before T , our goal of conditioning on counterfactual surrogate outcomes

as suggested by the previous CEP quantities becomes less straightforward while accounting for

semi-competing risks. For example, while it may be possible to condition on strata defined

by S(0) and S(1) occurring or not by time τ , the proper surrogacy validation estimand re-

mains unclear. For example, candidate estimands may include either P (T (1)<τ |S(0)≥τ,S(1)≥τ)
P (T (0)<τ |S(0)≥τ,S(1)≥τ) or

P (T (1)<τ |T (0)≥τ,S(0)≥τ,S(1)≥τ)
P (T (0)<τ |T (1)≥τ,S(0)≥τ,S(1)≥τ) for some time τ .

Rather than conditioning on surrogate outcomes, we develop a principal stratification approach

that conditions on counterfactual hazards and outline causal quantities based on these. We pro-

pose an illness-death model to incorporate the censored and semi-competing risk structure of the

data. Previous work using principal surrogacy for repeated outcome measurements incorporates

estimation of subject-specific random effects in Chapter III. Here we utilize frailty terms to cap-

ture subject specific heterogeneity and allow dependence among the transitions of the illness-death

model. Frailties have been proposed for surrogate validation settings that differ from our single

trial with subject-level, counterfactual outcomes. These methods include joint frailty-copula mod-

els for meta-analysis to define valid surrogates (Emura et al., 2017; Sofeau, Emura, and Rondeau,

2019; Sofeau, Emura, and Rondeau, 2020).

In Section 4.2, we propose the causal modeling strategy based on the illness-death approach

for a single trial and link this formulation to the Prentice criteria. In Section 4.3, we provide

the likelihood of the illness-death model and propose a Bayesian estimation strategy. Section 4.4

describes our proposed CEP quantities and explores CEP plots that correspond to different data
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settings to help define what an ideal surrogate would look like. A simulation study is provided in

Section 4.5 with a real data analysis from a prostate cancer trial in Section 4.6. Discussion and

future work are provided in Section 4.7.

4.2 Illness-Death Approach

The structure of the illness-death model is a natural way to describe data with the semi-competing

risk structure and has potential use for surrogacy validation (O’Quigley and Flandre, 2012). Here

we consider counterfactual illness-death models and the principal stratification framework. Let

Tjk(z) denote the gap time between two states (j = 1, 2, k = 2, 3) and corresponding transition

intensities λzjk between states in the treatment-specific illness-death models for treatment Z = z as

shown in Figure 4.1.
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Figure 4.1: Counterfactual illness-death models for baseline, illness (S), and death (T ). The po-
tential pathways are labeled with the gap time and corresponding transition intensity for each
treatment arm.

Notably, this conceptualization is related to the models used in the Prentice criteria (1989).

In short, the Prentice criteria assess whether a) the treatment and true endpoint are conditionally

independent, given the surrogate endpoint, and b) the surrogate and the treatment are correlated.

This determination is made by fitting two regression models and determining if the coefficient for
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the treatment effect becomes null after adjusting for the surrogate in the model. These ensure that

a treatment effect on the true endpoint will imply a treatment effect on the surrogate endpoint. In

particular, Prentice’s measures, which identify statistical surrogates, are only correlative.

We propose a more rigorous and flexible strategy to identify a consistent surrogate using poten-

tial outcomes and counterfactual illness-death models in pursuit of a causal interpretation (Vander-

Weele, 2013). Motivation for our proposed models can be seen through a special case of regression

models that are related to models used to evaluate the Prentice criteria. For example, consider the

models for the observed data

λ12(t) exp(ω12i + ϕ1 Zi + η1 Xi) (4.1)

λ13(t) exp(ω13i + ϕ2 Zi + η2 Xi)

λ23(t) exp(ω23i + θ Si + ϕ3 Zi + η3 Xi + β Si Zi)

where S denotes the time of the surrogate outcome occurring, ωjk denote frailty terms, Z denotes

treatment, X denotes baseline covariates, and t is measured from randomization. These three

models can be viewed as a generalization of the models suggested by Prentice. Some differences

with our proposed models are that they have additive transitions, allow for more interaction terms

(when β ̸= 0, ϕ1 ̸= ϕ2 ̸= ϕ3 ̸= 0) and include frailties. Further extension of the models and their

connection with the counterfactual illness-death models in Figure 4.1 can be found in Appendix O.

In the model we propose and explore in detail in the following sections, each counterfactual arm

has its own set of transition hazard models.
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4.2.1 Defining Causal Quantities Based on Hazards and Frailty Models

We propose to model the transition intensities that correspond to the gap times Tjk(z) in Figure 4.1.

Shared or common frailty terms, which quantify the dependence between the different processes

within the same person, can provide information on the dependence structure between the time

to intermediate event and the time to terminating event in standard multi-state models (Zhang

et al., 2014; Xu et al., 2010). Frailties are commonly incorporated to model correlation among

events, heterogeneity among individuals, or to capture the effect of some omitted covariate. In

our setting, we consider both counterfactual outcomes and transitions, and we want to allow for

possible dependence between the counterfactual outcomes. As this association is integral to the

value of the surrogate, we propose to use illness-death frailty models where the hazards are linked

via frailty terms. Here we consider multiple hazards with frailties both to allow dependence across

state transitions and to link observable transitions in arm Z = z to the counterfactual transitions

for Z = 1− z.

For a single time-to-event and a general frailty ω, the hazard can be written λ(t|X, β, ω, κ) =

λ0(t) exp(κω + Xβ), where ω has some pre-specified distribution and may have an associated

coefficient parameter κ. Various assumptions can be made about the frailty term ω, such as that

it follows a Normal or Gamma distribution, for simplicity and computational feasibility. For the

illness-death models specified in Figure 4.1, a set of the six correlated frailties are required, one for

each model. However, for identifiability and computational concerns, we impose some restrictions

and simplifying assumptions. We initially propose two different formulations of the sets of models,

and for ease of notation, we exclude baseline covariates X .
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Model A using Time Dependent Covariates

For z = 0,

λ012(t|ω0
12i) = λ012,0(t) exp(κ

0
12ω

0
12i) (4.2)

λ013(t|ω0
13i) = λ013,0(t) exp(κ

0
13ω

0
13i)

λ023(t|T12i(0), ω0
23i) = λ023,0(t− T12i(0)) exp(κ

0
23ω

0
23i + θ023T12i(0))I(t > T12i(0))

Similarly for z = 1,

λ112(t|ω1
12i) = λ112,0(t) exp(κ

1
12ω

1
12i)

λ113(t|ω1
13i) = λ113,0(t) exp(κ

1
13ω

1
13i)

λ123(t|T12i(1), ω1
23i) = λ123,0(t− T12i(1)) exp(κ

1
23ω

1
23i + θ123T12i(1))I(t > T12i(1))

where T12i is the time that subject i moves into state S. Here we include θ23 in the λ23 model as

the coefficient for our time dependent covariate T12. The purpose is to capture the effect of this

transition time, and the time that an individual experiences S may help to assess the strength of

association between S and T . We model the transition using a clock reset for λ23 (ie the time scale

is t− T12(z)).

The restrictions and assumptions we will be considering are to make ωz13i = ωz23i and to set

some of the κzjk = 1. If the κ parameters vary, they essentially influence how variable the frailty

terms are. We will refer to κ as frailty coefficients. One rationale for assuming ωz13i = ωz23i in this

setting is that both are frailties that influence time to death from others causes in our motivating

trial. For example, since our variable T is death from any cause, we may expect that some men will

die of old age. It may be reasonable to expect that an individual may have their own propensity

for experiencing death from other causes irrespective of whether or not S has occurred. Another
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consideration is that by including the coefficient for our time-varying covariate, θz23, the model

captures the magnitude of the effect for the time it takes to experience the intermediate outcome

S. This makes it more plausible that certain frailties are equal and conditional independence as-

sumptions may be more likely. Lastly, the frailties capture heterogeneity on the individual level.

There may still be heterogeneity on the population level for the variability in the hazard of going

from baseline to T or from S to T which can be reflected in the baseline hazards. We explore these

variations in later sections.

Model B using Multiple Frailties in Place of Time Dependent Covariates

We include an alternate option to incorporate the dependence between the different transitions such

as a model that includes two frailty terms in the S → T transition

λ012(t|ω0
12i) = λ012,0(t) exp(κ

0
12ω

0
12i) (4.3)

λ013(t|ω0
13i) = λ013,0(t) exp(κ

0
13ω

0
13i)

λ023(t|T12i(0), ω∗0
13i, ω

∗0
12i) = λ023,0(t− T12i(0)) exp(κ

∗0
12ω

0
12i + κ∗013ω

0
13i)I(t > T12i(0))

λ112(t|ω1
12i) = λ112,0(t) exp(κ

1
12ω

1
12i)

λ113(t|ω1
13i) = λ113,0(t) exp(κ

1
13ω

1
13i)

λ123(t|T12i(1), ω∗1
13i, ω

∗1
12i) = λ123,0(t− T12i(1)) exp(κ

∗1
12ω

1
12i + κ∗113ω

1
13i)I(t > T12i(1))

The motivation of this model is an alternative way to capture the subject specific relationship

between the different transitions via the κ∗12 and κ∗13 coefficients. This model does not include T12

as a time-varying covariate. When we assume ωz23 = ωz13, the key difference between models A and
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B would be how we parameterize the way in which the transition from baseline to the intermediate

outcome and the time following that transition are related; these are linked using either a time

varying covariate (in model A) or another frailty term (in model B). Again, the frailty coefficients

κ can be thought of parameters that increase or decrease the magnitude of the effect of the frailties.

We would not expect κ∗z12 and κz12 to be necessarily equal across the models given the different

assumptions in each model.

Here we will first consider the six correlated frailties in model A.



ω0
12i

ω1
12i

ω0
13i

ω1
13i

ω0
23i

ω1
23i



∼ N





0

0

0

0

0

0



,



1 ρS ρ00 ρ01 ρS1 ρS2

1 ρ10 ρ11 ρS3 ρS4

1 ρT ρT1 ρT2

1 ρT3 ρT4

1 ρST

1




While this model has a very general form, it may not be necessary or even desirable to consider

this level of generality. We will be focusing on special cases of this general model, which we think

are appropriate for the setting of surrogacy assessment.

To reduce the number of frailties to estimate to four in model A, we assume that both transitions

into T have the same frailty (ωz13 = ωz23) since they are both relevant for time to the terminal event.

As discussed above, since the terminal event is death from any cause, it seems justifiable to assume

that conditional on all other terms in the model, frailties toward death from any cause would be

the same on the individual level with or without spreading of the cancer. This assumption will

be useful for estimation since T23i is not defined for all individuals. With this assumption, our
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transition models from S to T in model A can be written

λ023(t|T12i(0), ω0
13i) = λ023,0(t− T12i(0)) exp(κ

0
23ω

0
13i + θ023T12i(0))I(t > T12i(0))

λ123(t|T12i(1), ω1
13i) = λ123,0(t− T12i(1)) exp(κ

1
23ω

1
13i + θ123T12i(1))I(t > T12i(1))

Ideally, we would like to allow κz23 to take on different values from κz13 to accommodate different

amounts of dependence between the transitions. For both models A and B we consider the joint

distribution 

ω0
12i

ω1
12i

ω0
13i

ω1
13i


∼ N





0

0

0

0


,



1 ρS ρ00 ρ01

1 ρ10 ρ11

1 ρT

1




In most of the work presented in this chapter, we will also assume ωz12i ⊥ ωz13i (the frailties for

an individual are independent across states), meaning ρ00 = ρ01 = ρ11 = ρ10 = 0. We thus assume

 ω0
12i

ω1
12i

 ∼ N


 0

0

 ,

 1 ρS

ρS 1




 ω0
13i

ω1
13i

 ∼ N


 0

0

 ,

 1 ρT

ρT 1



(4.4)

This type of independence assumption may aid in estimation. We could instead impose a strong

assumption in the opposite direction that ωz12 = ωz13. Another possible assumption would be to

consider a single frailty for each arm, ie ω0
12i = ω0

13i = ω0
23i and ω1

12i = ω1
13i = ω1

23i. The

motivation for this comes from considering the frailty as representing an omitted covariate. We do

not further pursue this assumption.
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4.2.2 Identifiability and Sensitivity Analysis

Within an observed arm, we can evaluate the sensitivity of the assumed models. For example,

we can vary which frailties are assumed to be independent or equal, alter which values of κzjk

are set to 1, change the baseline hazard from a Weibull distribution to piecewise exponential or

something more flexible, assess different effects of covariates in the transitions, and modify the

time-reset parameterization. The parameters ρS and ρT are not identifiable, so they will be fixed

at preset values. Based on biological considerations under the counterfactual framework, we may

not expect these correlation parameters to be negative or exactly equal to 1. We provide a tool for

assessing the sensitivity of these values and commentary on the feasibility and identifiability of

estimating these models with and without these assumptions in later sections.

4.3 Likelihood and Estimation

4.3.1 Likelihood Contributions

We consider a randomized clinical trial of n subjects for a binary treatment Z. For generality, let nz

denote the number of subjects in treatment arm Z = z (and we may assume that n/2 subjects are

in treatment group z = 1 and n/2 are in treatment group z = 0 since the treatment assignment is

randomized and under the control of the investigator). Let {Si, δSi, Ti, δT i, Xi, Zi} be the observed

data for subject i for i = 1, ..., n. We will also consider a random or administrative censoring time

Ci. Si denotes the time to transition to state S, Ti denotes the time that the terminal event T occurs,

and δT and δS denote the censoring indicators for T (z) and S(z) being observed. Then δT i = 1

when Ti < Ci and δSi = 1 when Si < Ci and Si < Ti.

We can also conceptualize the data in terms of the random variables in Figure 4.1. Based on gap
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times between states T zjk, the data can also be represented as {T12i, T13i, T23i, δSi, δT i, Xi, Zi}. In

the illness-death formulation, there are four possible combinations of observable δSi and δTi. We

assume that when neither event is observed, meaning δSi = δT i = 0, then T12i(z) and T13i(z) take

on the same value as being censored at Ci. Notably, T23i is not defined when Si is not observed.

Consider when T is observed before S, meaning δT i = 1, δSi = 0. Then the observed data related

to Si for individual i is equal to {T13i, δSi = 0}, and observed Ti is based on {T13i, δT i = 1}, while

T23i is not defined. Now consider when only S is observed, meaning δT i = 0, δSi = 1. Then the

observed data for individual i is Si based on {T12i, δSi = 1}. Assuming T is not observed after, the

value Ti takes on is censored at {Ci, δT i = 0}. If both S and T are observed with δT i = δSi = 1,

then Si is based on {T12i, δSi = 1}, and Ti is based on {T12i + T23i, δT i = 1}. We provide the

likelihood under these scenarios next.

We assume that each hazard in Figure 4.1 follows a Weibull distribution, so we have

T12(z) ∼ Weibull(αz12, γ
z
12), T13(z) ∼ Weibull(αz13, γ

z
13), and T23(z) ∼ Weibull(αz23, γ

z
23)

for shape parameters αzjk and scale parameters γzjk. The scale and shape parameters must be

positive: γzjk > 0, αzjk > 0. We parameterize the cumulative baseline hazard function as

Λzjk0(t) = γzjkt
αz
jk =

∫ t
0
λzjk0(u)du for a given Weibull model, where λzjk0(t) = γzjkα

z
jkt

αz
jk−1

and λzjk(t) = λzjk0(t) exp(κ
z
jkω

z
jk) for jk = 12 or 13. The model for λz23 is more complex than this

and depends on whether model A or B is assumed.

We will consider the likelihood of the observed data for each arm separately. For ease of

notation, we will drop the superscript in this section as the derivations apply to both treatment

arms. An alternative approach is to base estimation on the complete data likelihood, where that

likelihood is derived using the random variables in Figure 4.1 with both sets of counterfactual

outcomes under the two treatment arms T12(0), T12(1), T13(0), T13(1), T23(0), T23(1). However,

an important distinction is that this approach would jointly model the outcomes and involve all
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elements ρ of the correlation matrix in equation 4.4. Using this specification as an alternative form

of the likelihood, an imputation scheme could be proposed to fill in all missing outcomes. Any

relation between the potential outcomes across treatment arms for an individual in the complete

data likelihood is not identified. Based on previous exploration of methods that use either the

observed or the complete data likelihood in this dissertation, using this complete data likelihood

is not necessary. Here we will only focus on the observed data likelihood during estimation. Any

counterfactual quantities needed for calculation of the CEP curve will be described separately in

Section 4.4. We note that {T23i, ω23i} are not defined when δSi = 0 and do not contribute to the

likelihood, which is the case for either the complete data or observed data likelihood.

The likelihood contributions can be written similarly to work done by Conlon et al. (2014b).

For those who had not experienced S, we are in the setting where δSi = 0, and T23i is not defined:

λ13(T13)
δT exp(−

∫ T13
0

λ13(u)du−
∫ T13
0

λ12(u)du)

For those who experience S, and are either dead or alive, δSi = 1, and T23i is defined. δT i may be

equal to either 0 or 1 depending on if the terminal event is observed:

λ12(T12) exp(−
∫ T12
0

λ12(u)du−
∫ T12
0

λ13(u)du)λ23(T23|T12)δT exp(−
∫ t23
0

λ23(u|T12)du)

4.3.2 Bayesian Estimation

To facilitate estimation, we will take a Bayesian approach using Markov Chain Monte Carlo

(MCMC). We use prior distributions that are similar to those suggested in Gao et al. (2012) and

Sahu et al. (1997). Regression coefficients are assumed to have a diffuse normal prior distribu-

tion (Sahu et al. 1997). We assume a Gamma(p1, p2) prior for the scale parameters γjk of the

Weibull distribution, and we also assume a Gamma(p3, p4) prior for the shape parameters αjk with

hyperparameters p1 = p2 = p3 = p4 = 0.1.

Any parameters that do not have a closed-form posterior distribution (αzjk, γ
z
jk, ω

z
jk, θ

z
23, κ

z
23)
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are drawn using a Metropolis-Hastings step (Robert and Casella, 2004). At each iteration of the

MCMC, proposed draws of the parameters are taken from a Gaussian proposal distribution π with

mean equal to the previous accepted draw. For a general parameter β and iteration p of the MCMC,

we draw a proposed value of β ′ ∼ N(βp−1, σ2) based on using the previous iteration βp−1. The

acceptance ratio is calculated as P (β
′
)

P (βp−1)
× π(β

′
)

π(βp−1)
where P (β) represents the posterior distribu-

tion of β and π represents the proposal density. For a general Gaussian density, g(β ′|βp−1) =

1√
2πσ2

exp(−1/2σ2)(β
′ −βp−1)2 and g(βp−1|β ′

) = 1√
2πσ2

exp(−1/2σ2)(βp−1−β ′
)2. Based on our

proposal distribution, the exponential terms in the ratio of Gaussian densities will cancel, so when

we calculate the ratio P (β ′
)/P (βp−1), the proposed draw β

′ is accepted with the simplified proba-

bility min(1, P (β
′
)

P (βp−1)
). The variance of the proposal distribution σ2 is tuned to obtain convergence

of parameter draws and target a reasonable acceptance rate (Gelman et al. 1996).

The estimated frailties are also drawn using a Metropolis-Hastings step with a Gaussian pro-

posal distribution and a Gaussian prior with mean zero and standard deviation equal to 1. Each

proposed frailty term for an individual has its own acceptance ratio. For i = 1, ..., n
2
, we obtain

draws of ω0
12i, ω

0
13i, and for i = n

2
+ 1, ..., n, we obtain draws of ω1

12i, ω
1
13i using the posterior

distribution.

The likelihood contributions for L for each parameter can be found in Appendix P. Based on

the given likelihood components and prior distributions π∗, the posterior P for a given Z = z is

the product over individuals i:

∏
i(Li(T13i(z), T23i(z), T12i(z), δSi, δT i, ω

z
12i, ω

z
13i, ω

z
23i, β

z
12, γ

z
12, α

z
12, β

z
13, γ

z
13, α

z
13, β

z
23, γ

z
23, α

z
23, θ

z
23, κ

z
12, κ

z
13, κ

z
23)×

π∗(ω12i)π
∗(ω13i)π

∗(ω23i)π
∗(β12)π

∗(γ12)π
∗(α12)π

∗(β13)π
∗(γ13)π

∗(α13)π
∗(β23)π

∗(γ23)π
∗(α23)π

∗(θ23)π
∗(κ12)π

∗(κ13)π
∗(κ23))

Visually, we can see the hierarchy of parameters across different treatments and transitions and

how the terms are related in Figure 4.2.
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Figure 4.2: This diagram demonstrates the relationships between the parameters and data in the
proposed model (model A assuming that ωz13 = ωz23).

4.4 CEP Quantities

We develop a method for validating a surrogate endpoint using the principal stratification frame-

work (Frangakis and Rubin, 2002). The goal of this validation procedure is to develop causal

quantities that rigorously determine if a time-to-event S is a valid surrogate for use in a future trial
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in place of T . In a non-survival setting, Gilbert and Hudgens (2008) define a principal surrogate

endpoint for a binary T based on the comparison of the quantities risk(1)(s1, s0) ≡ P (T (1) =

1|S(1) = s1, S(0) = s0) and risk(0)(s1, s0) ≡ P (T (0) = 1|S(1) = s1, S(0) = s0). The con-

dition that these must be equal for all s1 = s0 is known as average causal necessity. Average

causal sufficiency is defined as risk(1)(s1, s0) ̸= risk(0)(s1, s0) for all |s1 − s0| > C for some

non-negative constant C. They define the causal effect of the treatment on the true endpoints as

h(P (T (1) = 1), P (T (0) = 1)) for some h(, ) contrast function that satisfies h(x, y) = 0 if and

only if x = y. The CEP surface is therefore equal to h(risk(1), risk(0)) over values of s = (s1, s0).

A specific case of this is the CEP plot of ∆T = E(T (1) − T (0)|S(1) − S(0) = s) over values

of ∆S = S(1) − S(0) = s when S and T are continuous. Based on these criteria, an ideal CEP

plot for a valid surrogate will go through the origin and have a positive slope. We generalize this

by defining new contrasts, ∆Ti and ∆Si for each subject in this time-to-event setting, forming a

scatterplot of (∆Si,∆Ti), and assessing whether a line through the points on this scatterplot goes

through the origin and has a positive slope. For ∆T we will use P (T (1) > τT ) − P (T (0) > τT )

evaluated at time τT . For ∆S we will use log
(

Λ0
12(τS)

Λ1
12(τS)

)
that depends on some time τS . τS and

τT must be chosen at meaningful or sensible times. For example, for a surrogate to be useful, it

is likely that τS < τT . These times should be chosen to be evaluated after a sufficient number of

events have occurred in order to make sensible decisions about the surrogate. It is also possible to

use the same estimands for both ∆S and ∆T . Here we have chosen this ∆T as a more interpretable

quantity that can be calculated regardless of whether S has occurred. It is also possible to express

∆S as a probability using a simple transformation of the cumulative hazards if desired.

While counterfactual draws of the frailties are not needed for the estimation procedure, they are

needed for the proposed CEP formulation. As the correlations between the observed and counter-

factual outcomes are non-identified, we fix ρS, ρT from the distributions in equation 4.4 to draw
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the counterfactual frailty terms. We use correlations of 0.5 as a starting point since it is a mid-point

between perfect and no correlation, and we also vary ρS and ρT for sensitivity analysis. We use the

prior distribution and fixed ρS, ρT to obtain draws of the ω estimates in the counterfactual arm from

the appropriate conditional normal distributions, such as ωz12|ω1−z
12 ∼ N(0+ρS(ω

1−z
12 ), 1−ρ2S) and

similarly ωz13|ω1−z
13 ∼ N(0 + ρT (ω

1−z
13 ), 1− ρ2T ). We repeat the process for the other treatment arm

to obtain sets of counterfactual frailties for each individual.

Each individual has a set of subject-specific hazards that will be used in a CEP plot. Let

∆Si = log
Λ0
12(τS |ω0

12i,xi)

Λ1
12(τS |ω1

12i,xi)
be on the x-axis of the plot where Λ0

12(τS|ω0
12, x) =

∫ τS
0
λ012(t|ω0

12, x)dt

and Λ1
12(τS|ω1

12, x) =
∫ τS
0
λ112(t|ω1

12, x)dt. For the y-axis, consider ∆Ti = P (Ti(1) >

τT |ω1
12i, ω

1
13i, ω

1
23i)− P (Ti(0) > τT |ω0

12i, ω
0
13i, ω

0
23i) based on the frailties in model A. For example,

using model A, ∆Si = log
Λ0
12,0(t) exp(κ

0
12ω

0
12i)

Λ1
12,0(t) exp(κ

1
12ω

1
12i)

.

Overall survival at time τ can be decomposed into components based on P (do not experience

S or T ) + P (experience S but not T ). More formally, this framework is similar to the likelihood

for a joint illness-death model proposed in Suresh et al. (2017) and for illness-death with a cure

fraction proposed by Conlon et al. (2014b) and Beesley et al. (2019). In formal notation, we are

interested in the quantities

P (T (0) > τT ) = P (T (0) > τT , S(0) > τT ) + P (T (0) > τT , S(0) < τT ) =

P (T (0) > τT |S(0) > τT )P (S(0) > τT ) + P (T (0) > τT |S(0) < τT )P (S(0) < τT )

and similarly for

P (T (1) > τT ) = P (T (1) > τT , S(1) > τT ) + P (T (1) > τT , S(1) < τT ) =
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P (T (1) > τT |S(1) > τT )P (S(1) > τT ) + P (T (1) > τT |S(1) < τT )P (S(1)) < τT )

These quantities can be written in terms of parameters

exp(−
∫ τT
0
λ12(u)du−

∫ τT
0
λ13(u)du) +

∫ τT
0

exp(−
∫ u
0
λ12(v)dv −

∫ u
0
λ13(v)dv)λ12(u) exp(−

∫ τT−u
0

λ23(v|u)dv)du

= exp(−Λ12(τT )− Λ13(τT )) +

∫ τT

0

exp(−Λ12(u)− Λ13(u))λ12(u) exp(−
∫ τT−u

0

λ23(v|u)dv)du

Based on the draws of all model parameters for a given iteration of the MCMC, we estimate ob-

served and counterfactual hazards for each individual. After calculating ∆Ti and ∆Si conditional

on the set of ωi, we create a scatterplot of ∆Ti vs. ∆Si and draw a loess or linear curve through

the points for a single iteration of the algorithm. Our γ0 and γ1 summary quantities are equal to the

intercept and slope of this line (and these quantities may need to be redefined for a loess curve).

This process is repeated for the next set of random draws of model parameters and frailties for all

individuals. These quantities are then averaged over the iterations of the MCMC after a burn-in

period.

4.4.1 Valid Surrogates under an Illness-Death CEP Curve

As our CEP curve is a fairly complex function of these quantities, we empirically investigate what

combination of illness-death models, meaning relationship between S and T , leads to CEP plots

that align with an intuitive notion of whether S is a good surrogate for T . We consider the eight

scenarios that may exist based on which transitions have treatment effects (defined as whether or

not the counterfactual hazards are equal) in Table 4.1.

In addition to which transitions have hazards that are moderated by treatment, each combi-

nation can be crossed with the effect of θ23 and κ23 being zero vs. nonzero in a factorial de-
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sign. We characterize the CEP curves under these scenarios using true generating parameter val-

ues to calculate ∆T and ∆S. In Appendix N, we show scatterplots of ∆Si vs. ∆Ti for simu-

lated data, for which the values of the frailties are known. An Rshiny app is also available at

https://emilyroberts.shinyapps.io/id_cep_parameters/ that allows users to

characterize the CEP curve for different parameter values. We also allow for the user to vary which

independence or equivalence assumptions are made about the frailty terms and the corresponding

impact on the CEP curve.

Based on these settings, we suggest which data scenarios should correspond to a decision that

the intermediate outcome is in fact a valid surrogate. We identify that for a perfect surrogate, the

paths that treatment effects should exist are through the baseline to intermediate outcome transition

only (ie λ012 ̸= λ112). In the null case, Scenario 1, and this ideal case Scenario 2, the estimated slope

is positive and the intercept is equal to 0. This is consistent with our consideration of the more

flexible Prentice Criteria, which also suggest that hazards from baseline to S should be non-equal

(λ012 ̸= λ112) and the hazards from baseline to T should be equal (λ013 = λ113) across treatment arms.

We can also examine the marginal effects on S and T for these scenarios. For scenario 1, they

are both zero as expected. For scenario 2, the marginal effect on T is rather small under these

parameter values. Further, while we anticipated differences between perfect, partial, and non-

surrogates would be easily apparent, the slope does not drastically change between the different

scenarios. Under the particular parameters we investigated, the slope may be positive for all of

the scenarios. We did observe that Scenarios 3-8 (denoted as partial and non-surrogates) produced

CEP curves that did not go through the origin and therefore were invalid.

Possible explanations for the small differences in slope values across the scenarios include

that the y-axis will always be constrained between -1 and 1 since it represents a difference in

two probabilities. This quantity ∆Ti on the y-axis is a relatively complex function of multiple
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model parameters that may not change drastically based on relatively small changes in the baseline

hazards. We do see that incorporating non-zero values of θz23 does change the slope and intercept

of the CEP curve in Figures 14.4 in the appendix. In other settings, we also find that the relative

magnitude of the baseline hazards for T12(z), T13(z), and T23(z) for a given treatment arm also

influences the slope and intercept of a CEP curve. Largely, slightly changing the values of ρ in the

correlation matrix of the frailty terms does not have a major impact on the CEP slope and intercepts,

though other settings in the online app demonstrate specific settings where these correlations may

be more consequential.

4.5 Simulation Study

4.5.1 Simulation Set-up

Here we start with a simulation setting where we assume each baseline hazard follows a Weibull

distribution where shape parameters for the baseline hazards and frailty coefficients are equal to

1. We conduct a simulation with 100 replicated datasets and n = 600. Data are generated under

simple settings that follow the θ parameterization shown in model A. Survival times are simulated

based on a Weibull baseline hazard specification (Austin, 2012). We generate the frailties to have

mean 0 and a standard deviation of 1. We will describe our assumptions about the frailties, where

we assume and generate them such that ωz13 = ωz23 in most settings.

We conduct the estimation procedure described in section 4.4. Initial estimates of the frail-

ties may be calculated using the frailtypack or frailtyEM packages in R (R Core Team;

Rondeau and Gonzalez, 2005; Balan and Putter, 2019). Parameter estimates are each drawn

from the proposal distribution individually. Under the parameterization in model A, θz23 is

drawn from a proposal distribution with a mean based on the estimated coefficient from a haz-
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ard model fit using observed data regressing time to T on time to S, among those who ex-

perience S. By doing this, θ123 and θ023 have unique starting values. The draws are accepted

in blocks for the Metropolis-Hastings step. The blocks are divided into treatment arm transi-

tions, and the parameters within a block are jointly accepted or rejected. For model A, we

have blocks ω0
12i; {γ012, α0

12};ω0
13i; {γ013, α0

13}; {γ023, α0
23, θ

0
23, κ

0
23};ω1

12i; {γ112, α1
12};ω1

13i; {γ113, α1
13};

{γ123, α1
23, θ

1
23, κ

1
23} when all of the model parameters are being estimated. The proposal distribu-

tions have standard deviation σ = 0.1.

The true values of the parameters are shown in the simulation results in the first row of each table

of results. Current simulation studies are shown for simple settings where true values are κz23 =

κz12 = κz13 = 1. In all cases we fix the shape parameters αzjk = 1 during estimation (essentially

assuming an exponential distribution). Based on identifiability of the baseline hazard, frailties, and

coefficients associated with the frailties, we consider two options: fix all scale parameters γzjk and

estimate the frailty coefficients κz23 or fix κz23 and estimate the scale parameters. In all explored

simulations, we assume that κz12 = κz13 equals the true value 1 for identifiability of the models. In

our main set of simulation studies, we generate and assume during estimation that all κzjk = 1, and

estimate the scale parameters γzjk and θz23 parameters.

We conduct simulation studies from the eight possible scenarios, highlighting Scenario 1 with

no treatment effects, Scenario 2 where there is a treatment effect only on S (a perfect surrogate),

and scenarios 3-8 where treatment effects exist such that we do not expect S to be a surrogate.

We generate treatment effects by differing the scale parameters between arms, meaning γ1jk ̸=

γ0jk. We also conduct some sensitivity analyses by varying the assumptions that ωz12 ⊥ ωz13 and

ωz13 = ωz23. In these cases, we assume either that ωz12 ⊥ ωz13 ⊥ ωz23 or that all three frailties

are correlated within a given counterfactual treatment arm. In these settings, we estimate the set

ωz12i, ω
z
13i, ω

z
23i for each individual. T z23i and corresponding ω23i does not exist for any individual
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that does not experience the intermediate event. In this case, ω23 is drawn directly from the prior

or its conditional multivariate normal distribution using our most general model formulation with

six frailties and a fixed covariance matrix. For example, we assume ρT1 = ρT4 = 0.95 and

ρT3 = ρT2 = ρST = ρT = 0.5. In these cases we set τS = 1 and τT = 2.

4.5.2 Simulation Results

In this section, we show results of the estimated model parameters as well as validation quantities,

the intercept γ0, and slope γ1. The estimation of the γ0 and γ1 quantities are calculated from fitting a

linear best fit line through the CEP cloud at each iteration and reporting the posterior mean of these

quantities for each simulated dataset. Parameter estimates are based on the posterior means and

corresponding measures of variability; the average estimated standard error (SE) and the standard

deviation (SD) of the posterior means are shown for the model parameters. We run the simulations

for 5,000 iterations with 500 burn in draws. In addition to trace plots of the parameter draws, we

assess the empirical mean and standard deviation of the estimated frailty terms over the iterations.

As mentioned in Section 4.5.1, we consider one strategy to fix all scale parameters and estimate

κz23 or fix κz23 and estimate the scale parameters. The estimates in Tables 17.1 and 17.2 in Appendix

Q show a subset of these results. Since we are estimating κ23 in these models, we fix the value of

γzjk to the true value. This assumption is for illustrative purposes of the model as this is restrictive

by essentially assuming the treatment effects are known. Exploration of different settings suggests

it may become difficult to estimate κz23 well when γz23 is not fixed due to identifiability issues.

In the main set of simulations in Tables 4.2 and 4.3, we fix κz23 at its true value and estimate the

scale parameters. In this case, γz12, γ
z
13, γ

z
23, and θ23 are estimated well when initial estimates are

reasonable. These identified model parameters seem to converge well based on the assumptions

we have made in these simulations. The distribution of the estimated frailty terms can deviate from
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the generating distribution with mean zero and fixed variance. While our method involves prior

and proposal distributions for the frailties, we are not directly enforcing any assumptions about

the mean or variability of the frailty parameters during the estimation algorithm. The shape of the

likelihood for frailty terms, particularly ωz12 terms for individuals with ∆Si = 0, seems to be fairly

flat, so the draws move around considerably during the algorithm. In these considered simulations,

the credible intervals around γ1, γ0 are somewhat wide for all scenarios. Since an ideal surrogate

will have values γ0 = 0 and γ1 > 0, the uncertainty can make it difficult to determine the value

of the surrogate. This may incorrectly lead us to draw the same conclusions about the surrogate

under all scenarios.

In Figure 4.3 we show the CEP curve conditional on estimated frailties for one dataset from

these studies under Scenario 2. Each point is the posterior mean of (∆Si, ∆Ti) across MCMC

iterations. The posterior values of the slope and intercept are shown, which convey the amount of

variability based on the posterior coordinates of (∆Si, ∆Ti) for each individual i. We see that the

estimated slope and intercept correctly meet our criteria of a valid surrogate under our proposed

set of model assumptions. Though there is substantial variability in the estimates of γ0 and γ1,

the respective posterior mean and credible intervals are -0.044 (-0.108, 0.020) and 0.087 (0.066,

0.108) for this dataset.
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Figure 4.3: Example of an estimated CEP curve, conditional on frailties, for a single simulated
dataset under Scenario 2. In this case, we assume all values of κzjk are fixed at 1 and estimate the
scale parameters in the Weibull distribution. On the left hand side, we assume that ωz13 = ωz23 and
ωz13 ⊥ ωz12. On the right hand side, we check the sensitivity of these assumptions and allow all six
counterfactual frailties for an individual to be unequal but correlated.

In our sensitivity analyses about the assumptions on the frailty terms, shown in Table 4.4, we

see some sensitivity to the assumptions being made, such as increased variability in the subject-

specific points. We show the results of one dataset under our sensitivity analyses in Figure 4.3.

How these factors influence the CEP curves should be investigated under trial specific contexts.

4.6 Data Example

Our motivating clinical study is a phase III, randomized trial for men with prostate cancer,

NRG/RTOG 9601 (Shipley et al., 2017). The trial features 760 men with recurrently or persistently

elevated prostate-specific antigen (PSA) prostate cancer. The two treatments being compared are

post-prostatectomy radiation therapy with or without antiandrogen therapy. There are 384 and 376
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men in each treatment arm. The two survival endpoints of interest are time to distant metastasis,

defined as radiographic evidence of metastatic cancer, and overall survival (OS). Notably, com-

posite endpoints such as metastasis-free survival (MFS) are often evaluated. However, within our

illness-death framework we consider time to distant metastasis and time to death separately. It

has been previously established by The Intermediate Clinical Endpoints in Cancer of the Prostate

(ICECaP) that MFS is a valid surrogate for OS in the setting of the initial treatment for localized

prostate cancer (Xi et al., 2017). Others have evaluated if MFS is a valid surrogate when assessing

the impact of antiandrogen therapy in recurrent prostate cancer following post-prostatectomy sal-

vage radiation therapy (Jackson et al., 2020). Covariates in the dataset are also available, including

PSA values at the time of randomization, Gleason score, and age in grouped categories.

We show in Figure 4.4 the Kaplan Meier curves for the intermediate and true outcomes without

considering the semi-competing risk as well as the curve for the transition from S to T for those

who experienced distant metastasis. S may be censored because it was not observed during the

study period or because the terminal event T occurred first. We also present the cumulative inci-

dence curve for S considering T as a semi-competing risk. The cumulative incidence estimates are

based on the non-parametric Aalen-Johansen estimate of the cumulative incidence function from

the mstate R package (Putter, 2011). The set of curves in Figure 4.5 are stratified into the two

treatment groups. The purpose of this figure is to overcome the inability to interpret the curves for

time to S in Figure 4.4 as probabilities due to the semi-competing risk structure.
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Figure 4.4: Kaplan Meier curves for the intermediate and true outcome demonstrating significant
treatment effects for the prostate cancer trial. We also show the Kaplan Meier curve for the transi-
tion from S to T among those who experienced S.
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Figure 4.5: Cumulative incidence curves for the two treatment groups in the prostate cancer clinical
trial.

4.6.1 Conventional Models

In the data, we consider the z = 1 group to be the treatment group for salvage radiation therapy with

antiandrogen therapy, and the z = 0 represents the group treated without antiandrogen therapy.

There is a significant treatment effect of the additional antiandrogen therapy on time to distant

metastasis using a parametric hazard model with a Weibull baseline hazard (HR = 0.622, p =

0.004). The median survival time to S for the z = 0 arm and z = 1 arm is not reached. There

is a marginally significant treatment effect on overall survival when considering the cause-specific

hazard (HR = 0.722, p = 0.049). The median survival times for OS in the two arms are 15.7

and 16.3 years, respectively. Based on the Kaplan Meier curves and typical survival times, we

chose τS = 5 and τT = 8. We calculate the number of individuals who go through each transition

and experience the events in our illness-death models. In total, 156 patients experienced distant
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metastases, and 239 total deaths were observed between the two arms. These numbers are shown

in Figure 4.6.

T(0)

Baseline

S(0)

T12
(0):

93

T
13(0): 77

T23(0): 54

T(1)

Baseline

S(1)

T12
(1):

63

T
13(1): 74

T23(1): 34

Figure 4.6: Counterfactual Illness-Death Models for baseline, illness (S), and death (T ) with the
number of individuals experiencing the events in each transition for the prostate cancer trial.

4.6.2 Surrogacy Evaluation

First we perform the analysis marginally. Here we show an estimated CEP curve based on several

assumptions: the baseline hazard follows an exponential distribution, and we use model A using

T12 as a time-varying covariate where we assume κz12 = κz13 = κz23 = 1. Table 4.5 shows the

posterior mean and corresponding 95% credible interval for each parameter being estimated. We

plot the posterior mean of ∆Si and ∆Ti for each individual across iterations in a CEP plot. We

also show the estimated slope and intercept lines on the CEP curve for each iteration of the MCMC

chain to assess the variability of the estimates of these validation quantities.

Based on this example dataset and CEP curve without covariates in Figure 4.7, the 95% credible

interval for the intercept term γ0 is (-0.152, 0.080) with posterior mean -0.036. For the slope γ1,

the 95% credible interval is (0.017, 0.135) with posterior mean 0.076. Based on these estimates,

we would conclude that the slope γ1 is positive and the estimated intercept γ0 is near zero since the
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credible interval for γ0 does include 0. These results would indicate that the surrogate seems valid,

though the credible interval for γ0 is somewhat wide. We also conducted a sensitivity analysis in a

similar way that was described in the simulation studies. Instead of assuming ωz13 = ωz23 and that

ωz12 ⊥ ωz13, we assumed that all six counterfactual frailties were correlated within an individual.

These results gave reasonably similar conclusions, with an estimated γ0 of -0.046 (-0.157, 0.073)

and estimated γ1 of 0.108 (0.045, 0.195).

Next we fit conditional surrogacy validation models. We include baseline PSA, age, and Glea-

son score as baseline covariates. It is likely that controlling for covariates will change the estimated

frailties, as the frailty terms capture the unexplained heterogeneity in treatment effects. Using com-

plete cases for covariates results in a sample size of 756 men, and we use each covariate in each

transition. Based on this, we see that the estimated γ0 is again near zero with a positive estimate of

γ1 in Figure 4.8. We find that the estimated quantities are 0.026 (-0.072, 0.124) for γ0 and 0.050

(0.029, 0.072) for γ1. Based on these analyses, we could also determine if the surrogate is valid for

certain subgroups of people (Roberts et al. 2021). It is also possible that different covariates may

be more important in different transition models. For example, we may expect age to be more im-

portant for the direct transition from baseline to death, while baseline PSA and Gleason score will

likely be more important for time to distant metastases. Model selection could lower the number

of parameters to estimate.
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Figure 4.7: Causal effect predictiveness plot for the motivating prostate cancer trial dataset. Each
point represents the posterior mean of ∆Si and ∆Ti for an individual. The collection of linear best
fit lines in gray represent the posterior slope γ1 and intercept γ0 evaluated at each iteration of the
MCMC. No covariates are considered in this model.
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Figure 4.8: Causal effect predictiveness plot for the motivating prostate cancer trial dataset includ-
ing the covariates age, PSA at baseline, and Gleason score as categorical covariates. Each point
represents the posterior mean of ∆Si and ∆Ti for an individual. On the left, the collection of linear
best fit lines in gray represent the posterior slope γ1 and intercept γ0 evaluated at each iteration of
the MCMC. On the right, each blue uncertainty interval represents the credible interval associated
with each individual and their coordinate on the plot.

4.7 Discussion and Future Work

In this work, we have considered how to validate surrogate endpoints when trial outcomes are

time-to-event using principal stratification and illness-death models. We have provided examples

and an online app to explore CEP curves under different data settings. While the values of the

CEP curve can be written in a closed, analytic form when the outcomes are Gaussian in previous

chapters (Conlon et al., 2014a; Roberts et al., 2021), it is necessary to define and empirically assess

what an ideal CEP curve looks like for time-to-event data. A novel distinction in this chapter is

that in the Gaussian case, the CEP conditions on Si(1) − Si(0) = s, where the conditioning is on
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a contrast between potentially observable values, Si(1) and Si(0). In this paper, we are looking at

the contrast between Λz12i and Λ1−z
12i , which is a contrast between distributions.

While not the case in our considered scenarios, some extrapolation may be required to deter-

mine if the CEP curve goes through the origin of the plot depending on the size of the treatment

effect on S. The subject-specific plotted points may not appear in all four quadrants of the plot.

There is an interesting connection regarding individual specific ∆Si and ∆Ti within the quadrants

of the graph that has been considered when effects are plotted across trials in the meta-analytic

setting (Elliott et al., 2015). In particular, certain subject-specific coordinates may suggest that

the treatment has a beneficial effect on the surrogate endpoint but a detrimental effect on the true

outcome for certain individuals. This may be informative when considering the possibility of the

surrogate paradox (VanderWeele, 2013).

There are several areas for sensitivity analyses and exploration of identifiability for surrogacy

validation (Ghosh, 2012). While the variance of the frailty should be identifiable by including

sufficient covariates (Gao, 2012; Putter et al., 2015), it may still be difficult to accurately esti-

mate frailty terms in a complex model. In our proposed models, we include a prior distribution

for the variance of the frailty terms but do not assume the variance is known. Since allowing for

too much flexibility in the models may result in non-identifiability of parameters, this can lead to

identifiability problems when trying to estimate the coefficients associated with the frailties. We

believe our assumptions that κjk = 1 or that ωz13 = ωz23 about the frailty terms are justifiable for

this data example. They also help with computation during estimation, but they are still potentially

strong assumptions. Relaxing the assumption that the frailties going into the T state are equal (ie

ωz13 = ωz23) may impact identifiability since there will be less information available to estimate

these terms. To the extent that frailties can be estimated for one event time per person, the data

might inform these assumptions (e.g., the assumption is testable to the extent that frailties can be
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estimated well). We might try to assess the identifiability of frailty terms in the proposed causal

model by comparing the prior and posterior distributions for the frailty terms (Gao, 2012). Other

convergence metrics can be used to assess the convergence of the parameters, and more complex

algorithms or different distributional assumptions about the frailties may alleviate computational

problems (Clayton, 1991; Wen et al., 2016 for example). For assessment of robustness, our mod-

els can be evaluated under model misspecification. To increase the flexibility of the method, we

could also consider fitting a non-linear loess curve through the points on the CEP plot as opposed

to a linear fit. We can compare our proposed methods to copula models (Taylor et al., 2015).

These particular Gaussian copula models have potential of extending the closed-form correlation

structure we have focused on in previous chapters while incorporating conditional independence

assumptions on the appropriate correlation scale.

In the future, we can consider changing our model parameterization from our proposal to use

a time-varying covariate in the transition model from S to T to the alternative Model B or a dif-

ferent structure. We may extend beyond the proposed illness-death model to a different or more

complex multi-state model depending on the endpoints being evaluated. In different disease areas,

consideration about individuals being cured may be appropriate (Conlon et al, 2014b). We have

assumed here that time to S is known, but it may be subject to interval censoring. In some cases

we may even have exact information about time to T based on death registries without knowing if

S occurred (Beesley et al., 2019). Different models, definitions of the endpoint, and corresponding

∆Si may change our determination whether the surrogate is valid, and the assumptions made about

the models and frailties may be more appropriate for certain contexts.

It would be interesting to evaluate this illness death model when ∆Si is based on a composite

endpoint with T . For example, in the prostate cancer setting, distant metastases-free survival has

been considered as a surrogate endpoint for overall survival. Other potential surrogates have been
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considered such as biochemical recurrence or time to local metastases, and an alternative true clin-

ical outcome could be prostate cancer-specific survival. In our setting, it is likely that individuals

may only die from prostate cancer if they experience distant metastases, so there may be fewer indi-

viduals transitioning directly from baseline to cancer-specific death compared to baseline to death

from other causes. It is interesting to consider how our mechanistic approach to disease progres-

sion explored by the illness-death models may compare to other techniques such as meta-analysis

for surrogacy validation. For example, we may believe that our approach will assess surrogates in

a way that is more generalizable across treatments than methods that rely on composite endpoints.

This comparison and concept of transportability remains as future work (Pearl and Bareinboim,

2011).

There are several other directions for extending this work, particularly when considering the

overlap of causal inference and survival analysis and delicate interpretation of hazard ratios with

multiple time-to-event endpoints. Gran et al. (2015) explores other causal tools for multi-state

models such as inverse probability weighting, G-computation, and manipulating hypothetical tran-

sition intensities. Other directions for future work are to formally compare the proposed models

with the similar structures of the Prentice criteria, models using mediation strategies, or other

causal methods.
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4.8 Tables

λ012 = λ112 λ013 = λ113 λ023 = λ123 Surrogacy
Scenario 1 T T T Null Case
Scenario 2 F T T Perfect
Scenario 3 F T F Partial
Scenario 4 F F T Partial
Scenario 5 F F F Partial
Scenario 6 T F F Not a surrogate
Scenario 7 T T F Not a surrogate
Scenario 8 T F T Not a surrogate

Table 4.1: Eight possible scenarios of which pathways in the illness-death models exhibit treatment
effects based on the causal hazards. T denotes true and F denotes false. The right-hand column
represents an intuitive notion of whether S is a good surrogate for T .
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γ0 γ1
Scenario 1: True Value∗ -0.062 0.090

Estimates -0.061 0.089
SE 0.031 0.011
SD 0.029 0.008

Scenario 2: True Value∗ -0.043 0.093
Estimates -0.036 0.091

SE 0.023 0.007
SD 0.024 0.006

Scenario 3: True Value∗ -0.020 0.081
Estimates -0.017 0.080

SE 0.033 0.011
SD 0.032 0.008

Scenario 4: True Value∗ -0.029 0.103
Estimates -0.025 0.105

SE 0.033 0.011
SD 0.032 0.008

Scenario 5: True Value∗ 0.037 0.091
Estimates 0.044 0.091

SE 0.034 0.011
SD 0.034 0.008

Scenario 6: True Value∗ 0.035 0.086
Estimates 0.049 0.085

SE 0.032 0.011
SD 0.032 0.008

Scenario 7: True Value∗ 0.007 0.078
Estimates 0.010 0.077

SE 0.032 0.011
SD 0.030 0.008

Scenario 8: True Value∗ -0.035 0.098
Estimates -0.025 0.099

SE 0.031 0.012
SD 0.031 0.008

Table 4.2: Simulation results from illness-death models and estimated validation quantities. This
table shows the posterior mean, average estimated standard error (SE), and the standard deviation
(SD) of the posterior means across simulation replications.
In these calculations, the κjk parameters are fixed.
∗Based on empirical calculations from a larger sample size over many replications
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γ012 γ013 γ023 γ112 γ113 γ123 θ023 θ123
Scenario 1: True Value∗ 1 0.5 1 1 0.5 1 0 0

Estimates 0.93 0.47 0.97 0.93 0.48 0.98 0.004 0.008
SE 0.07 0.04 0.08 0.07 0.04 0.08 0.059 0.058
SD 0.07 0.04 0.08 0.07 0.04 0.10 0.086 0.082

Scenario 2: True Value∗ 1 0.5 1 0.61 0.5 1 0 0
Estimates 0.93 0.47 1.01 0.57 0.48 1.03 -0.066 -0.057

SE 0.07 0.04 0.09 0.05 0.04 0.10 0.059 0.056
SD 0.07 0.04 0.08 0.05 0.03 0.12 0.088 0.077

Scenario 3: True Value∗ 1 0.5 1 0.61 0.5 0.61 0 0
Estimates 0.93 0.47 1.03 0.57 0.48 0.64 -0.083 -0.075

SE 0.07 0.04 0.09 0.05 0.04 0.06 0.057 0.055
SD 0.07 0.04 0.08 0.05 0.03 0.07 0.088 0.073

Scenario 4: True Value∗ 1 0.5 1 0.61 0.31 1 0 0
Estimates 0.93 0.47 0.97 0.57 0.32 0.97 -0.002 0.011

SE 0.07 0.04 0.08 0.04 0.00 0.09 0.059 0.054
SD 0.07 0.04 0.08 0.04 0.04 0.12 0.085 0.076

Scenario 5: True Value∗ 1 0.5 1 0.61 0.31 0.61 0 0
Estimates 0.93 0.47 0.99 0.57 0.32 0.61 -0.023 -0.008

SE 0.07 0.04 0.08 0.04 0.04 0.07 0.084 0.070
SD 0.07 0.04 0.07 0.07 0.05 0.10 0.084 0.080

Scenario 6: True Value∗ 1 0.5 1 1 0.5 0.61 0 0
Estimates 0.93 0.47 0.94 0.93 0.36 0.58 0.040 0.049

SE 0.07 0.04 0.08 0.07 0.01 0.05 0.058 0.055
SD 0.07 0.04 0.07 0.06 0.05 0.06 0.081 0.074

Scenario 7: True Value∗ 1 0.5 1 1 0.5 0.61 0 0
Estimates 0.93 0.47 0.98 0.93 0.47 0.61 -0.021 -0.017

SE 0.07 0.04 0.08 0.07 0.04 0.05 0.059 0.058
SD 0.07 0.04 0.08 0.07 0.04 0.06 0.084 0.075

Scenario 8: True Value∗ 1 0.5 1 1 0.31 1 0 0
Estimates 0.94 0.47 0.93 0.93 0.36 0.93 0.065 0.072

SE 0.07 0.04 0.08 0.07 0.01 0.08 0.056 0.053
SD 0.07 0.04 0.07 0.07 0.05 0.10 0.084 0.080

Table 4.3: Simulation results from illness-death models of Weibull distribution parameters γ and
coefficients θ23.
∗The true value of γ112, γ

1
13, and γ123 depends on the scenario.

In these calculations, the κjk parameters are fixed, ωz13 = ωz23, we estimate θz23.
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γ0 γ1 γ012 γ013 γ023 γ112 γ113 γ123
Frailties Independent: True Value∗ 0.000 0.039 1 0.5 1 0.61 0.5 1

Estimates 0.014 0.030 0.98 0.49 0.94 0.60 0.49 0.96
SE 0.076 0.017 0.07 0.05 0.26 0.05 0.04 0.33
SD 0.025 0.008 0.07 0.04 0.10 0.05 0.04 0.11

Frailties Dependent: True Value∗ -0.009 0.083 1 0.5 1 0.61 0.5 1
Estimates -0.022 0.085 0.98 0.49 0.89 0.60 0.49 0.90

SE 0.091 0.019 0.07 0.05 0.29 0.05 0.04 0.36
SD 0.025 0.008 0.07 0.04 0.09 0.05 0.04 0.10

Table 4.4: Simulation results from illness-death models of Weibull distribution scale parameters
γjk and regression coefficients θ23. We compare the results when making different assumptions
about the frailties: either ωz12 ⊥ ωz13 ⊥ ωz23 or they are all correlated. In either case, they are
unequal.
∗ Scenario 2 shown here. In these calculations, the κjk and αjk parameters are fixed, and τS =
1, τT = 2.
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Parameter γ0 γ1 γ012 γ013 γ023 γ112 γ113 γ123 θ023 θ123
Marginal (no covariates)

Posterior Mean -0.036 0.076 0.018 0.018 0.172 0.013 0.015 0.266 0.097 0.035
SE 0.059 0.030 0.002 0.002 0.180 0.002 0.002 0.371 0.248 0.243

Parameter γ0 γ1 γ012 γ013 γ023 γ112 γ113 γ123 θ023 θ123
Including covariates

Posterior Mean 0.026 0.050 0.008 0.024 0.348 0.012 0.017 0.385 -0.033 -0.040
SE 0.050 0.011 0.004 0.003 0.047 0.002 0.004 0.070 0.017 0.020

Parameter β0
gleason12 β0

psa12 β0
age12 β1

gleason12 β1
psa12 β1

age12

Including covariates
Posterior Mean 0.046 0.623 -0.045 0.314 0.633 -0.001

SE 0.072 0.021 0.028 0.024 0.030 0.014

Parameter β0
gleason13 β0

psa13 β0
age13 β1

gleason13 β1
psa13 β1

age13

Including covariates
Posterior Mean 0.121 0.483 0.214 0.418 0.634 0.381

SE 0.014 0.025 0.018 0.036 0.012 0.097

Parameter β0
gleason23 β0

psa23 β0
age23 β1

gleason23 β1
psa23 β1

age23

Including covariates
Posterior Mean 0.222 0.275 0.329 0.233 0.082 0.518

SE 0.039 0.017 0.019 0.008 0.023 0.016

Table 4.5: Parameter estimates for the prostate cancer data example. The posterior mean and
estimated standard error are shown for each parameter. All αjk and κjk are set to 1.
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CHAPTER V

Conclusion

This dissertation develops methods that can be applied to randomized clinical trials using the causal

inference framework. Intermediate endpoints can serve as surrogates for a true clinical outcome

and improve the efficiency of the trial. The ability for a trial to run in shorter time could speed up

drug approval and help patients. As we have discussed in the previous chapters, valid assessment

as to whether a proposed surrogate endpoint is appropriate to use in a future trial is challeng-

ing. It is very costly and potentially dangerous to wrongly claim a treatment benefit based on a

biologically-lacking or otherwise inadequate endpoint (Vanderweele, 2013). The development of

rigorous trial protocols and methodology is crucial for the approval of beneficial treatments and

success of drug-development. This dissertation extends causal association approaches to validate

a candidate surrogate outcome using potential outcomes. We give attention to a range of outcome

types that are applicable in clinical trials for essentially any disease type. In this chapter, we sum-

marize the methods proposed in chapters II, III, and IV, and explore directions to continue this

work in the future.

The proposed surrogate validation methods are based on the principal stratification framework

(Frangakis and Rubin, 2002), where we jointly model the potential outcomes of the surrogate S

and true clinical endpoint T under a binary treatment. In chapters II and III, our approach is

motivated by an ongoing study of a muscular dystrophy gene therapy. The candidate surrogate
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is an expression of micro-dystrophin that is measured a few weeks after the therapy is initiated.

One characteristic of the disease is a lack of protein due to micro-dystrophin, and subjects with the

disease and without gene therapy will have essentially zero gene expression. The gene therapy is

aiming to activate this gene. Therefore this setting of interest allows us to assume the surrogate

under the placebo, S(0), is zero-valued, and ideally the treatment would increase the value of

S(1). This is a simplification we can reasonably make for this trial and is known as the constant

biomarker assumption (Gilbert and Hudgens, 2008). Based on this setting, we develop methods

to incorporate conditional independence and other modeling assumptions to explore their impact

on the assessment of surrogacy. We compare the estimation properties of a Bayesian imputation

method using Markov Chain Monte Carlo to strategies using the observed data only, and we explore

the impact of different prior distributions on non-identified parameters.

Chapter III also considers this motivating clinical trial for muscular dystrophy, where the out-

comes are measured longitudinally. We develop a mixed model approach that can potentially gain

estimation efficiency by modeling the repeated measures of T via random intercepts or random

slopes. Further, it may be possible to measure additional T and S outcomes in a delayed-treatment

start trial design. In this situation, subjects who are first administered the placebo may be given

the gene therapy mid-trial. This design would aid with identifiability of model parameters, and

we extend our models and metrics for validation in such a trial. This chapter also proposes novel

conditional independence assumptions of counterfactual random effects. Lastly, we also consider

how to define the quantities for validation such that they may depend on time. It is plausible that

S may only be valid within a certain time proximity that T is measured.

In Chapter IV, we extend these ideas to the surrogate validation framework with time-to-event

data for both the surrogate marker and the final outcome of interest. This setting becomes more

complex as S and T are not guaranteed to be observed during the study period. We develop
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a method that incorporates the censoring and semi-competing risk structure that is likely to be

encountered with multiple survival endpoints. We maintain a valid causal interpretation by viewing

this through the lens of a causal illness-death (multi-state) model. In this chapter, we extend our

proposal of subject-specific random effects using frailty terms. We investigate how to define the

parameters measuring the association between outcomes and relevant principal strata and quantify

which settings would result in a valid surrogate. Finally, we demonstrate our method on data from

a prostate cancer clinical trial.

A large component of this dissertation examines how to address the non-identified parameters

in the proposed causal models. Both chapters II and III assess how imputation algorithms with

the complete data likelihood compare to methods that use only the observed data. This is impor-

tant as we expect the constrained prior and posterior distributions to be equal for non-identified

correlation parameters once we account for constraints on the covariance matrix. The imputation

scheme can be computationally burdensome and may encounter converge issues. Estimation of

random effects based on these non-identified parameters relies upon an additional layer of distri-

butional assumptions. Bayesian methods allow for the incorporation of prior distributions on these

correlation parameters to help with identifiability. Sensitivity analyses are also a popular technique

that involve fixing the parameters and testing to what extent the results change over different fixed

values. Existing literature elaborates more on these topics in terms of transparent parameteriza-

tions, bounds, and sensitivity analysis (Gustafson, 2010; Richardson et al., 2010). These ideas are

relevant beyond the surrogate endpoint setting for other causal methods.

There are clear directions to make this work more general when we have non-Gaussian out-

comes. Generalized linear mixed models may be used to continue ideas from Chapters II and III

to make the methods applicable in more settings. Conceptually, extensions with non-linear link

functions are straightforward, though the computational complexity of estimating non-Gaussian
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random effects needs to be investigated. Another case we could extend this work would be where

S(0) is not necessarily equal to 0. The methods that are presented in Chapter II are all easily

extendable to this case. With covariates, the quantities for γ0 and γ1 can be derived from the condi-

tional distribution of T (1)−T (0)|S(1)−S(0), X which is based upon a larger multivariate normal

distribution.



Si(0)

Si(1)

Ti(0)

Ti(1)


∼MVN





µS0 + ψ1Xi

µS1 + (ψ1 + ψ2)Xi

µT0 + ω1Xi

µT1 + (ω1 + ω2)Xi


,



σ2
S0

ρSσS0σS1 ρ00σS0σT0 ρ01σS0σT1

σ2
S1

ρ10σS1σT0 ρ11σS1σT1

σ2
T0

ρtσT1σT0

σ2
T1




E(T (1)− T (0)|S(1)− S(0) = s,X = x) =

(µT1 − µT0)− (
ρ11σS1σT1 − ρ10σS1σT0 − ρ01σS0σT1 + ρ00σS0σT0

σ2
S0 + σ2

S1 − 2ρsσS0σS1
)(µS1 − µS0)

+(
ρ11σS1σT1 − ρ10σS1σT0 − ρ01σS0σT1 + ρ00σS0σT0

σ2
S0 + σ2

S1 − 2ρsσS0σS1
)s+

(ω2 − (
ρ11σS1σT1 − ρ10σS1σT0 − ρ01σS0σT1 + ρ00σS0σT0

σ2
S0 + σ2

S1 − 2ρsσS0σS1
)ψ2)x

= γ0 + γ1s+ (ω2 − (
ρ11σS1σT1 − ρ10σS1σT0 − ρ01σS0σT1 + ρ00σS0σT0

σ2
S0 + σ2

S1 − 2ρsσS0σS1
)ψ2)x

In this more general setting, there are more non-identified correlation parameters. We can

explore different conditional independence assumptions given X . From the distribution of T (1)−

T (0)|S(1)−S(0), possible assumptions and corresponding constraints can be written in a relative

order from most to least restrictive

1. T (1) ⊥ T (0)|X,S(0), S(1)⇒ ρt =
ρ11ρ10+ρ01ρ00−ρs(ρ01ρ10+ρ11ρ00)

(1−ρ2s)

2. S(1) ⊥ T (0)|X,S(0), T (1)
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3. S(0) ⊥ T (1)|X,S(1), T (0)

4. S(1) ⊥ T (0)|X,S(0)

5. S(0) ⊥ T (1)|X,S(1)

2 ⇒ ρSρ00 − ρ11ρ01ρ00 + ρtρ11 − ρSρtρ01
ρ10(1− ρ201)

=
σ2
S1σ

2
T0

σ2
S0σ

2
T1

3 ⇒ ρSρ11 − ρ00ρ10ρ11 + ρtρ00 − ρSρtρ10
ρ01(1− ρ210)

=
σ2
S0σ

2
T1

σ2
S1σ

2
T0

4 + 5 ⇒ ρ01
ρ11

=
ρ10
ρ00

= ρs

We can also reparameterize the model in the following way

S(0), S(1)|X ∼ N(

κ0 + ν1X

κ1 + ν2X

 ,
τ 21 π

π τ 22

)

T (0), T (1)|S(0), S(1), X ∼ N(

θ0 + δ1X + η1S0

θ1 + δ2X + η2S1

 ,
τ 23 λ

λ τ 24

)
for the constraint corresponding to

S(1) ⊥ T (0)|X,S(0) and S(0) ⊥ T (1)|X,S(1)

Due to the conditional independence assumption, two coefficient values are 0. Now there are

only two non-identified covariances, λ and π. Accommodating these parameters to ensure positive

definite covariance matrices may be more simple than considering a four-dimensional Gaussian

distribution.

Other possibilities to extend the models include when S is repeatedly measured. In this case, we
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would extend the models proposed in chapter III to include random effects for S(1) and potentially

S(0). In the case of random intercept models, this would lead to a four-dimensional multivariate

normal distribution similar to what was described above. With the longitudinal models, there may

be value in further considering the individual-level trajectories based on the random effects. For ex-

ample, we could interpret the area between the counterfactual, individual-specific outcome curves

over time. Alternatively, it may also be of interest to see how generalized estimating equations

may be implemented and interpreted at a population level instead of the mixed models.

Outside of surrogate validation, some existing methods to estimate causal effects use Bayesian

non-parametrics or Dirichlet process priors (Xu et. al, 2020). We could incorporate these semi- or

non-parametric methods in our framework for more flexibility. Alternatively, copula models show

promise for continuing the Gaussian-based correlation structure we have relied on in chapters II

and III. Conlon et al. (2017a) proposes a method for non-Gaussian endpoints that involves impu-

tation of censored survival times and transforming the ordinal and survival times to a joint normal

distribution. They estimate the correlation parameters among the latent, Gaussian variables and

impute missing counterfactual outcome values before transforming back to the original survival

and ordinal variable scale to calculate the validation metrics.

It is not readily apparent at which steps to include covariates in the model and on which scale

to invoke the conditional independence assumptions we have considered thus far. It seems reason-

able that the marginal distribution of the survival times could depend on covariates. Many authors

recommend using covariates in regression models on the original scale to preserve a marginal

interpretation of the coefficients (Song, 2009; Masarotto and Varin, 2012). Alternatively, the con-

ditional independence conditions we have been considering on the correlation matrix would be

applicable on the joint Gaussian scale. Pitt (2006) describes a Bayesian method for estimating a

copula regression model with conditional independence assumptions invoked on the correlation
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matrix rather than among the data that are actually observed (Bhadra et al., 2018). However, the

metrics used for validating the surrogate, such as the CEP surface, are assessed on the observed

(non-transformed) scale. Clarifying which scale to make these assumptions on is an area for further

exploration.

A major topic involved in Chapter IV is how to obtain causal interpretations for time-to-event

outcomes. One reason we propose causal illness-death models is that it is not clear what appro-

priate causal estimand can incorporate the risk sets of individuals who may experience S or T

when we want to condition on strata of individuals. Briefly, we explore some of the related is-

sues suggested about the commonly used hazard ratio and the difficulty in assigning it a causal

interpretation (Hernán, 2010). Since the population being assessed for a treatment effect becomes

smaller as events occur and the balance of the study population is lost, the hazard ratio may change

over time. That is, groups of individuals who survive to some t > 0 with and without treatment,

T (1) ≥ t, T (0) ≥ t will not be comparable if treatment affects the outcome since susceptibility

is only randomized at baseline. A selection bias appears due to this frailty effect, which has been

formalized by demonstrating that conditioning on survival to time t > 0 leads to a collider bias

(Aalen, Cook, and Røysland, 2015). Groups surviving past t with or without treatment will be

comparable if T (1) ⊥ T (0)|Z for any confounders Z. The related problem of unmeasured co-

variates in a Cox proportional hazards model has been long acknowledged (Henderson and Oman,

1999; Omori and Johnson, 1993). It is not clear if a simple frailty model will sufficiently ad-

dress this phenomena and to obtain a causal interpretation without considering potential outcomes.

A principal strata approach has been proposed to address this concern, including the conditional

hazard ratio limh→0 P (t≤T (1)<t+h|T (0)≥t,T (1)≥t)
limh→0 P (t≤T (0)<t+h|T (0)≥t,T (1)≥t) (Martinussen et al., 2020). This is based upon the

principal stratum of individuals who would have survived up to time t regardless of treatment. It

would be interesting to extend or compare our work in Chapter IV with principal strata under a
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multi-state model with frailty terms to these ideas. Methods could be borrowed across the topics to

obtain interpretable and causal estimands with for time-to-event data with or without intermediate

endpoints.

Other clinical trial designs using intermediate outcomes could be considered and integrated in

future work. We could consider using intermediate markers for the related purpose of defining a

stopping rule for futility in a trial (see Parmar et al., 2008 and others for examples where this futil-

ity marker is different from the true outcome). Building upon our notation in this dissertation, for

treatment Z = z, let S(z) denote the intermediate outcomes (though not necessarily validated sur-

rogates), T (z) denote the clinical outcomes of interest, and θ define the observable treatment effect

on S. The trial may be stopped early if θ̂ < k for some predetermined threshold k. Most existing,

rigorous rules for choosing the stopping rule threshold are based on error spending functions (Mau-

rer and Bretz, 2013) as opposed to causal concepts and potential outcomes. In particular, many are

based on error rates for the assumed distribution of the intermediate outcome (Sydes et al., 2009)

which does not directly incorporate the relationship between S and T . The value of such a futility

marker would depend largely on the correlation between the marker and the true outcome, which

suggests some connection to the surrogate validation framework that could be investigated with a

causal inference approach.

For an individual i, θi is defined as some contrast between Si(1) and Si(0) where we would

continue the trial when both Si(1) > Si(0) and Ti(1) > Ti(0) and stop early when both Si(1) <

Si(0) and Ti(1) < Ti(0). Wrongly stopping a beneficial treatment early is similar to a type II

error: Si(1) < Si(0) but Ti(1) > Ti(0), and the opposite type I-like error occurs when the trial

wrongly continues: Si(1) > Si(0) but Ti(1) < Ti(0). For surrogacy, the two conditions of average

causal necessity and average causal sufficiency are required, ensuring that there is no average

effect of the treatment on T where there is no average effect on S, and similarly that an average
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treatment effect on T exists where is there an average effect on S, respectively. Even if a candidate

surrogate does not pass stringent surrogate criteria, it can still serve as a helpful auxiliary variable

to improve inference on T (Li and Taylor, 2010), and thus S may still be informative for futility.

For stopping rules, we may unequally more concerned about making a type II error, which is a

concept not currently addressed in the principal surrogacy quantities. One possibility is that causal

criteria could be developed on the individual level to define a rule with these desired properties and

operating characteristics.

It seems natural to leverage information from completed trials to determine first, if an inter-

mediate endpoint could serve as the stopping rule marker, and secondly the value that the corre-

sponding cutoff k should take. Several methods for surrogate and biomarker validation are based

on correlative measures that can be identified from multiple trials. The meta-analytic framework

for surrogacy with mixed-effects models is based on the joint distribution of treatment effects for

trial i = 1, ..., n and individual j = 1, ...,m (Burzykowski and Buyse, 2006)

Sij = (µS +mSi) + (α + ai)Zij + ϵSij Tij = (µT +mT i) + (β + bi)Zij + ϵT ij



mSi

mTi

ai

bi


∼MVN





0

0

0

0


,



dss dst dsa dsb

dtt dta dtb

daa dab

dbb




 ϵSij

ϵTij

 ∼ BV N


 0

0

 ,

 σSS σST

σTT




The surrogate validation quantityR2
trial is obtained by regressing bi onmSi and ai, and anR2

trial

value close to one represents a highly valid surrogate. Further, for a valid surrogate the treatment
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effects on S and T must be correlated across trials with both null and nonzero treatment effects. In

futility analysis, we should also consider how the treatment effects are associated at the trial level.

Figure 5.1: Potential associations between the treatment effects, ∆S and ∆T , for different treatment
effects. While in most scenarios the two outcomes are correlated, that fact alone is not sufficient
to determine whether S is a good marker and if a trial should stop for futility.

Consider the effects in Figure 5.1 where the hazard ratio for T is on the y-axis and the hazard

ratio for S is on the x-axis. Elliott et al. (2015) explored regions of treatment effects within meta-

analysis to identify the minimum, observed treatment effect for a surrogate S that will reduce

the probability that the effect on T is harmful. A related goal for futility is to determine the

minimum observed beneficial treatment effect for S corresponding to a high probability that the

true treatment effect for T is null so that these trials can be stopped early. Based on the mixed

model parameters above, Burzykowski and Buyse define the upper prediction limit function and

corresponding surrogate threshold effect (STE). This estimates the minimum value of the treatment

effect on S for which the predicted effect on T will be significantly different from zero. For
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purposes of futility, we want to define a different threshold k such that if the treatment effect on

S does not cross k, we are confident we will not observe a treatment effect on T . While related,

this is distinct from the STE. Further, while these quantities are based on completed trials, Li and

Taylor note that the data available mid-trial is S on a fraction of the n subjects and potentially also

T on some subset of these. This is the information that would be available at an evaluation time

point for futility and should be formally modelled in future methods for futility.

Another area of possible relation with our work is the use of intermediate endpoints within

sequential multiple assignment randomized trials (SMART) (Murphy, 2005). In this design, also

known as a dynamic treatment regime, intermediate outcomes are used to make adaptive treatment

decisions. Examples of these decisions include dose or therapy modality at intermediate stages of

the trial based on patient outcomes and tailoring functions. The sequence of decision rules is made

on an individual patient basis with the goal of identifying the optimal adaptive treatment strategy.

Potential outcomes could be used to reframe SMART trial designs under the causal inference

lens, or we could develop methods and criteria to determine if the variable being used to make

intermediate treatment decisions is deemed valid.

A final direction stemming from our discussion of integrating multiple trials and work from

Chapter III with smaller sample sizes is the use of external data within surrogacy validation metrics.

The use of historical data during trials is of increasing interest, and there is excitement about using

electronic health records (EHR) or real world evidence and observational data to improve the

generalizability and efficacy of trials. The first step toward incorporating arbitrary observational

data for surrogacy is to create models that allow for external experimental or natural history data.

We first consider how to merge these data sets with a small sample size randomized clinical trial

to estimate a treatment effect and increase efficiency.

We consider the trial from Chapter III for a rare type of muscular dystrophy where the sam-
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ple size may be too small to obtain a precise estimated treatment effect. We allow for repeated

measures of the outcome which is the North Star Ambulatory Assessment (NSAA) functional

measure including a cross-over portion and pre-randomization measurements of NSAA. With

careful choice of the time scale (either age or time from randomization), we propose a com-

bined model that is applicable to integrating three collected data sets (randomized data, natural

history, and experimental data). From historical data, we define a model for the natural history

of NSAA in untreated children and append this to the model for the effect of treatment on the

longitudinal patterns of NSAA. For notation, let Ti be the outcome of NSAA measurement of

subject i, Bi is age, Ai is age of subject i at the time of the gene therapy, and τ denotes time

after randomization, so Ai = Bi + τ . Let H(τ, Ai) be the treatment effect for subject i where

H(τ, Ai) = E[Ti(τ)|Ai, zi = 1]−E[Ti(τ)|Ai, zi = 0]. This represents the difference in the NSAA

between the treated and untreated at time τ after treatment. To obtain an estimate of this quantity,

we can model the trajectories for each data source with fixed effects X and random effects Z.

Each subject has two pairs of random effects, an intercept and slope without treatment (b(0)i ), and

an intercept and slope with treatment (b(1)i )

 b
(0)
i

b
(1)
i

 =



 b
(0)
0i

b
(0)
1i


 b

(1)
0i

b
(1)
1i




∼MVN





0

0

0

0


,Ψ


The model structure and proposed trajectory for each individual in the randomized trial is the same

as we have proposed in Chapter III . At time of intervention, there is an immediate change in the

fixed effect and a change in the slope for age.

Let θj for j = 1, 2, 3 be the population parameters for each data set, where θj ∈ θ, the set of
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parameters. The likelihood from the randomized trial is LRCT (YR, θ1), from natural history study

is LHIST (YH , θ2), and from the experimental study is LEXP (YE, θ3). Let D = (YRCT , YH , YE)

for all of the data so that L(D, θ) = LRCT × LHIST × LEXP . Several options are available

for estimation, including maximum likelihood estimation or Bayesian estimation with potentially

mildly informative priors. We may want to down-weight the external data, meaning LRCT ×

(LHIST × LEXP )
α for some parameter α. There are several methods questions to pursue in this

setting. For example, the two arms of the randomized trial are likely to show differences due to

the small sample size. It is possible that the subjects in the two additional data sets have different

covariate distributions if they are generally more sick or healthy than the randomized patients. The

natural history data may be less relevant if it is not current. One advantage of the proposed mixed

model is that the timing and frequency of the T measurements can be different in the three data sets,

and each data set may have its own random effects to account for these differences. Ultimately,

this framework could also be extended to include the intermediate outcome being measured in at

least one of the data sets to assess surrogacy.
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APPENDIX A

Imputation Algorithm Details

For drawing the model parameters and potential outcomes, we consider the full data likelihood as

follows, first considering the case with no covariates in general:

(2π)−n/2|Σ|−1/2 exp

−1

2


S(1)− µS1

T (0)− µT0

T (1)− µT1


T

Σ−1


S(1)− µS1

T (0)− µT0

T (1)− µT1




As the conjugate, posterior distributions can be written in closed-form for most identified parame-

ters, we use Markov Chain Monte Carlo (MCMC) methods. Let subscript l denote the lth iteration

of the Gibbs sampler, µ generally denote the set of mean parameters in the model andQRQ denote

the set of variance and correlation parameters in the model.

Ti(0) Si(1), Ti(1),

µl−1, Rl−1, Ql−1

Si(1) Ti(0), µ
l−1,

Ti(1) Rl−1, Ql−1

During each iteration of the MCMC, we impute the missing potential outcome under treatment

z = 0 for those who we observed an outcome under treatment z = 1 and vice versa. After the

outcomes (denoted in general as Y ) are imputed, we draw the mean, variance, and correlation

parameters respectively:

For coefficients, µ|· ∼ Matrix Normal
(
(XTX + Λ0)(X

TY ), XTX + Λ0,Σ
)

for prior matrix Λ0

σY |· ∝ σ−n
Y exp(−1

2
Σn
i=1(Yi − µ)(QRQ)−1(Yi − µ)T )
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For j = T, 10, 11, ρj|· ∝ |R|−n/2 exp(−1
2
Σn
i=1(Yi−µ)(QRQ)−1(Yi−µ)T ) for Uniform prior and

within bounds determined by positive definiteness so the determinant is positive: 1−ρ2T+ρ210 > ρ211.

The condition that ρ10 = ρT × ρ11 is found by either setting a term in the precision matrix to 0 or

solving for the covariance of S(1), T (0)|T (1) and setting this equal to 0. Since the outcomes are

multivariate normal, the conditional covariance is equal to

 σ2
S1 − σ2

S1ρ11 ρ10σT0σS1 − σS1ρ11σT0ρT

ρ10σT0σS1 − σT0ρTσS1ρ11 σ2
T0 − σ2

T0ρ
2
T

.

Then we solve ρ10σS1σT0 − σS1ρ11σT0ρT = 0. The same process holds for the conditional

model for θ10 = θT × θ11.

Marginalization: Note the integral in equation 3 can be replaced with summation over the support

of X for discrete covariates. Let Fn(x) be the empirical distribution function of x, so for each

value of s, equation 3 can be approximated by

∫
X

(γ0,C + γ1,Cs)
1

ϵS1

√
2π

exp(− 1
2ϵ2S1

(s− (1 x)T (ω1 ω2)
2)dFn(x)

f(s)

Let Xk, k = 1, ..., n denote the discrete values of X and let γ0,Ck
be the value of γ0,C at Xk.

Then for a fixed s, we calculate wk = exp(− 1
2σ̂2

S1
(s − (1 Xk)

T (ω̂1 ω̂2))
2) for each value of Xk,

rescale wk such that Σkwk = 1, and calculate Σx(γ0,Ck
+ γ1,Cs)wk. This can be solved in closed

form when X is normally distributed.
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APPENDIX B

The Four Trivariate Normal Distributions and

Corresponding Surrogacy Quantities

These distributions in the main text are derived from the four-dimensional, joint normal distribution



S(1)

T (0)

T (1)

X


∼ N





δ1

δ2

δ3

δ4


,



σ2
S1 σS1σT0ρ10 σS1σT1ρ11 σS1σXρ1X

σ2
T0 σT0σT1ρT σT0σXρX0

σ2
T1 σT1σXρX1

σ2
X





1.


S(1)

T (0)

T (1)

 ∼ N




δ1

δ2

δ3

 ,


σ2
S1 ρ10σS1σT0 ρ11σS1σT1

σ2
T0 ρTσT0σT1

σ2
T1




2.


S(1) X

T (0)

T (1)

 ∼ N




ω1 + ω2X

ω3 + ω4X

ω5 + ω6X

 ,


ϵ2S1 ϵS1ϵT0θ10 ϵS1ϵT1θ11

ϵ2T0 ϵT0ϵT1θT

ϵ23




γ1,OC = ϵ3θ11−ϵ2θ10
ϵ1

, γ0,OC = (ω5 + ω6X − ω3 − ω4X)− γ1,OC(ω1 + ω2X)

γ1,O = σT1ρ11−σT0ρ10
σS1

, γ0,O = (δ3 − δ2)− γ1,Oδ1
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3.


S(1)

TD(0)

TD(1)

 ∼ N




η1

η2

η3

 ,


τ 2S1 τS1τT0π10 τS1τT1π11

τ 2T0 τT0τT1πT

τ 2T1




4.


S(1) X

TD(0)

TD(1)

 ∼ N




ϕ1 + ϕ2X

ϕ3 + ϕ4X

ϕ5 + ϕ6X

 ,


ξ2S1 ξS1ξT0ψ10 ξS1ξT1ψ11

ξ2T0 ξT0ξT1ψT

ξ2T1




γ1,DC = ξT1ψ11−ξT0ψ10

ξS1
, γ0,DC = (ϕ5 + ϕ6X − ϕ3 − ϕ4X)− γ1,DC(ϕ1 + ϕ2X)

γ1,D = τ3π11−τ2π10
τ1

, γ0,D = (η3 − η2)− γ1,Dη1

The conditional quantities γ1,OC and γ0,OC can be calculated only from model 2, which can be

subsequently marginalized over. The marginal quantities γ1,O and γ0,O are the same for models 1

and 2. Similarly, γ1,DC and γ0,DC from model 4 can be marginalized over to calculate the same

γ1,D and γ0,D as in model 3.
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APPENDIX C

Tables for Simulation Results Demonstrating

Different Definitions of the Endpoint and Different

Generating Parameter Values

119



Setting Fit Conditional γ0,M γ1,M True Distance
Independence Est Bias SE SD Est Bias SE SD from Cond. Ind.
Assumption on fit scale

3A TD(0) ⊥ S(1)|TD(1) 0.057 0.057 0.398 0.256 0.520 -0.030 0.175 0.093 0.002
3A None 0.067 0.127 0.956 0.255 0.515 -0.065 0.468 0.093 0.002
4A TD(0) ⊥ S(1)|T (1), X 0.058 0.118 0.422 0.478 0.527 -0.053 0.177 0.088 0.000
4A None 0.091 0.151 0.934 0.483 0.519 -0.061 0.455 0.090 0.000
1A T (0) ⊥ S(1)|T (1) 0.068 0.068 0.414 0.303 0.516 -0.034 0.181 0.111 -0.098
1A None 0.078 0.078 1.122 0.301 0.512 -0.038 0.552 0.110 -0.098
2A T (0) ⊥ S(1)|T (1), X 0.044 0.044 0.426 0.308 0.525 -0.025 0.179 0.091 0.000
2A None 0.080 0.080 0.989 0.493 0.522 -0.028 0.478 0.092 0.000
3B TD(0) ⊥ S(1)|TD(1) 0.056 0.056 0.413 0.293 0.518 -0.032 0.181 0.108 -0.101
3B None 0.066 0.066 1.117 0.291 0.514 -0.036 0.549 0.107 -0.101
4B TD(0) ⊥ S(1)|TD(1), X 0.052 0.052 0.424 0.479 0.522 -0.028 0.180 0.084 0.000
4B None 0.099 0.099 0.978 0.480 0.501 -0.049 0.471 0.085 0.000
1B T (0) ⊥ S(1)|T (1) 0.058 0.058 0.398 0.256 0.519 -0.031 0.175 0.093 0.000
1B None 0.067 0.067 0.955 0.255 0.516 -0.034 0.468 0.093 0.000
2B T (0) ⊥ S(1)|T (1), X 0.058 0.058 0.422 0.478 0.527 -0.023 0.177 0.088 0.000
2B None 0.082 0.082 0.998 0.479 0.517 -0.033 0.477 0.088 0.000
3C TD(0) ⊥ S(1)|TD(1) -0.974 0.046 0.399 0.286 0.534 -0.026 0.172 0.110 0.003
3C None -0.963 0.057 1.015 0.284 0.530 -0.030 0.497 0.109 0.003
4C TD(0) ⊥ S(1)|TD(1), X -0.944 0.076 0.422 0.478 0.529 -0.031 0.177 0.115 0.000
4C None -0.904 0.116 1.002 0.483 0.506 -0.054 0.478 0.109 0.000
1C T (0) ⊥ S(1)|T (1) -0.905 0.095 0.418 0.266 0.501 -0.049 0.188 0.093 0.003
1C None -0.895 0.105 1.056 0.265 0.497 -0.053 0.520 0.092 0.003
2C T (0) ⊥ S(1)|T (1), X -0.944 0.056 0.422 0.478 0.529 -0.021 0.177 0.115 0.000
2C None -0.919 0.081 0.998 0.479 0.519 -0.031 0.477 0.116 0.000
3D TD(0) ⊥ S(1)|TD(1) -1.288 0.045 0.324 0.304 0.191 -0.029 0.130 0.094 0.000
3D None -1.288 0.045 1.567 0.301 0.193 -0.027 0.779 0.092 0.000
4D TD(0) ⊥ S(1)|TD(1), X -1.370 -0.037 0.292 0.513 0.231 0.011 0.103 0.136 0.000
4D None -1.321 0.012 1.145 0.513 0.209 -0.011 0.555 0.136 0.000
1D T (0) ⊥ S(1)|T (1) -1.257 0.093 0.353 0.360 0.177 -0.043 0.145 0.100 -0.094
1D None -1.261 0.089 1.996 0.357 0.181 -0.039 0.995 0.097 -0.094
2D T (0) ⊥ S(1)|T (1), X -1.371 -0.021 0.291 0.512 0.232 0.012 0.099 0.189 0.000
2D None -1.343 0.007 1.167 0.511 0.222 0.002 0.563 0.189 0.000
3E TD(0) ⊥ S(1)|TD(1) 1.009 0.059 0.210 0.207 0.181 -0.129 0.116 0.105 0.415
3E None 1.011 0.061 0.359 0.207 0.182 -0.128 0.564 0.102 0.415
4E TD(0) ⊥ S(1)|TD(1), X 1.011 0.061 0.212 0.466 0.178 -0.132 0.118 0.106 0.414
4E None 1.002 0.052 0.364 0.466 0.195 -0.115 0.565 0.104 0.414
1E T (0) ⊥ S(1)|T (1) 1.012 0.063 0.219 0.233 0.181 -0.119 0.128 0.118 0.414
1E None 1.014 0.065 0.392 0.232 0.183 -0.117 0.630 0.115 0.414
2E T (0) ⊥ S(1)|T (1), X 1.011 0.062 0.212 0.466 0.178 -0.122 0.118 0.106 0.414
2E None 1.002 0.053 0.364 0.466 0.195 -0.105 0.565 0.104 0.414
1F T (0) ⊥ S(1)|T (1) 1.360 0.050 0.431 0.376 0.553 -0.027 0.187 0.148 0.183
1F None 1.387 0.077 1.163 0.375 0.539 -0.041 0.568 0.148 0.183
2F T (0) ⊥ S(1)|T (1), X 1.485 0.175 0.402 0.323 0.501 -0.079 0.170 0.222 0.000
2F None 1.501 0.191 0.977 0.322 0.498 -0.082 0.475 0.218 0.000

Table 3.1: Simulation results demonstrating different definitions of the endpoint (settings 1-4)
and different generating parameter values (A − F ). Estimates and bias are shown here since true
generating values differ across scenarios. These are shown in the main text Table 2.1.
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APPENDIX D

Simulation Results and Sensitivity Analysis of Data

Example Results

Figure 4.1: Simulation results and sensitivity analysis of data example results over different values
of θT using the observed data method and conditional independence assumption. The models are
fit by either fixing the value of θT or placing the prior distribution over the parameter that we
consider in the main text.
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Figure 4.2: Simulation results and sensitivity analysis of data example results over different values
of θT using the imputation method and conditional independence assumption.

The actual priors we used are Beta(2.7, 5) and Uniform(-1, 1). This is compared to fixing θT

at possible values one at a time and repeating the process. These plots show that we would say

γ0 > 0 if θT > 0.48, and γ1 > 0 if θT < 0.75 approximately. Also, we see that both the observed

data only and imputation methods return nearly the same results (perhaps except at the tails where

convergence at the boundaries of the parameter space may play a role).
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APPENDIX E

Simulation Results Demonstrating Effect of

Non-normal Distributions

Fit Conditional True γ0,M γ1,M
Setting Independence Assumption Distribution Estimate Bias SE SD Estimate Bias SE SD
2A T (0) ⊥ S(1)|T (1), X T 0.067 0.127 0.404 0.308 0.512 -0.068 0.171 0.124
2B T (0) ⊥ S(1)|T (1), X T 0.067 0.067 0.404 0.308 0.512 -0.038 0.171 0.124
2C T (0) ⊥ S(1)|T (1), X T -0.937 0.063 0.402 0.312 0.513 -0.037 0.170 0.123
2D T (0) ⊥ S(1)|T (1), X T -1.371 -0.021 0.285 0.378 0.229 0.009 0.097 0.150
2E T (0) ⊥ S(1)|T (1), X T 0.994 0.044 0.212 0.218 0.192 -0.118 0.090 0.153
2F T (0) ⊥ S(1)|T (1), X T 1.452 0.140 0.416 0.339 0.508 -0.068 0.174 0.118
2A T (0) ⊥ S(1)|T (1), X Gamma 0.133 0.193 0.396 0.252 0.481 -0.099 0.165 0.138
2B T (0) ⊥ S(1)|T (1), X Gamma 0.133 0.133 0.397 0.252 0.485 -0.065 0.166 0.137
2C T (0) ⊥ S(1)|T (1), X Gamma -0.868 0.132 0.396 0.258 0.481 -0.069 0.165 0.138
2D T (0) ⊥ S(1)|T (1), X Gamma -1.311 0.039 0.280 0.308 0.200 -0.020 0.093 0.128
2E T (0) ⊥ S(1)|T (1), X Gamma 1.015 0.065 0.210 0.194 0.164 -0.136 0.084 0.127
2F T (0) ⊥ S(1)|T (1), X Gamma 1.475 0.163 0.401 0.306 0.488 -0.088 0.168 0.149

Table 5.1: Simulation results demonstrating effect of non-normal distributions when fitting condi-
tional models that assume normality. Results are shown on the original scale and can be compared
to other supplemental tables.
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APPENDIX F

Generative Parameter Values for Plausible Clinical

Trial Data Example

We generate the S(1), T (0), T (1) outcomes at one time point and effects of age, A, and baseline,

X .

 X

A

 ∼ N


 δ1

δ2

 ,

 σ2
1 σ1σ2ρ1

σ2
2




We chose values for the means and variances: δ1 = 24, δ2 = 5, σ2
1 = 1, σ2

2 = 0.65, ρ1 = 0.7.

We expect there to be a quadratic effect of age, so we generate
S(1) X,

T (0) A,

T (1) A2

 ∼ N




ϕ1 + ϕ2X + ϕ3A

ϕ4 + ϕ5X + ϕ6A+ ϕ7A
2

ϕ8 + ϕ9X + ϕ10A+ ϕ11A
2

 ,


ξ2S1 ξS1ξT0ψ10 ξS1ξT1ψ11

ξ2T0 ξT0ξT1ψT

ξ2T1




ϕ1 = 3.8, ϕ2 = 0, ϕ3 = 0, ϕ4 = 0.1, ϕ5 = 1.14, ϕ6 = 0.45, ϕ7 = −0.2, ϕ8 = 10.6, ϕ9 = 1.1,

ϕ10 = −1.15, ϕ11 = −0.2, ξ2S1 = 1, ξ2T0 = 0.35, ξ2T1 = 0.35, ψ10 = 0.013, ψ11 = 0.65, ψT = 0.02
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APPENDIX G

Counterfactual Imputation Details

Here we look at the form of the covariance for (S(1), T (0), T (1), b(0), b(1)) for the random intercept

model with no effect of time. Here we assume each repeated measurement in T (z) has the same

distribution, so for any specific j

(
S(1)i T (0)ij T (1)ij b

(0)
i b

(1)
i

)T
∼MVN

((
α1 β0 β1 0 0

)T
,Ψ

)

if fixed and random effects, respectively denoted X and Z, are scalars and β0 = β0 and β1 = β1.

Ψ =



σ2
S1 ρ10σS1σb0 ρ11σS1σb1 ρ10σS1σb0 ρ11σS1σb1

σ2
b0
+ σ2

e ρTσb0σb1 σ2
b0

ρTσb0σb1

σ2
b1
+ σ2

e ρTσb0σb1 σ2
b1

σ2
b0

ρTσb0σb1

σ2
b1


While this is written in condensed form here, the vectors T (z) will result in a larger block struc-

tured covariance matrix Ψ of dimension 2m+ 3.
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

σ2
S1 ρ10σS1σb0 · · · ρ10σS1σb0 ρ11σS1σb1 · · · ρ11σS1σb1 ρ11σS1σb1 ρ10σS1σb0

σ2
b0
+ σ2

e · · · σ2
b0

ρTσb0σb1 · · · ρTσb0σb1 σ2
b0

ρTσb0σb1
. . . ...

...
...

...
...

...

σ2
b0
+ σ2

e ρTσb0σb1 · · · ρTσb0σb1 σ2
b0

ρTσb0σb1

σ2
b1
+ σ2

e · · · σ2
b1

ρTσb0σb1 σ2
b1

. . . ...
...

...

σ2
b1
+ σ2

e ρTσb0σb1 σ2
b1

σ2
b0

ρTσb0σb1

σ2
b1


In general, the conditional distribution of x1|x2 followsN(µ1+Σ12Σ

−1
22 (a−µ2),Σ11−Σ12Σ

−1
22 Σ21)

We impute the counterfactual values S(1),T (0),T (1) from the distributions of

 T (0) b(0),T (1), b(1)

S(1), µ, ρ, σ

 ∼ N(µ
′
,Σ

′
), µ

′
= µ

′
1 + Σ

′
12Σ

−1′

22 (a′ − µ′
2),Σ

′
= Σ

′
11 −

Σ
′
12Σ

−1′

22 Σ
′
21 µ

′
1 = β0, a

′ = (b(0) T (1) b(1) S(1)), µ
′
2 = (0 β1 0 α1),Σ

′
12 =(

ρ10σS1σb0 ρTσb0σb1 σ2
b0

ρTσb0σb1

)
,

Σ
′
11 = σ2

b0
+ σ2

e ,Σ
′
22 =



σ2
S1 ρ11σS1σb1 ρ10σS1σb0 ρ11σS1σb1

σ2
b1
+ σ2

e ρTσb0σb1 σ2
b1

σ2
b0

ρTσb0σb1

σ2
b1


 S(1) b(0),T (0),

T (1) b(1), µ, ρ, σ

 ∼ N(µ
′′
,Σ

′′
), µ

′′
= µ

′′
1 + Σ

′′
12Σ

−1′′

22 (a
′′ − µ

′′
2),Σ

′′
= Σ

′′
11 −

Σ
′′
12Σ

−1′′

22 Σ
′′
21 µ

′′
1 = (α1 β1), a

′′ = (b(0) T (0) b(1)), µ
′′
2 = (0 β1 0),Σ

′′
12 = ρ10σS1σb0 ρ10σS1σb0 ρ11σS1σb1

ρTσb0σb1 ρTσb0σb1 σ2
b1

 ,

Σ
′
11 =

 σ2
S1 ρ11σS1σb1

σ2
b1
+ σ2

e

 ,Σ
′
22 =


σ2
b0
+ σ2

e σ2
b0

ρTσb0σb1

σ2
b0

ρTσb0σb1

σ2
b1


For each, the conditional mean and covariances are calculated from the Ψ matrix. We draw the
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random effect estimates using related normal distributions with the conditioning terms changed.

This matrix will depend on time as the models become more complex. More details are shown

in the following section and further derivation for similar models is given in Schafer and Yucel

(2002).
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APPENDIX H

Derivations for Random Slopes Details

For shorthand, let Ψ =



σ2
S1 σS101 σS111 σS102 σS112

σ2
b01 σ0111 σ0102 σ0112

σ2
b11 σ1102 σ1112

σ2
b02 σ0212

σ2
b12


TBL is a measure of T (0) at time 0 and is equal to β(0)

0 + b
(0)
0 + e. The two models treating TBL

as either an outcome or a baseline covariate can be equated algebraically after integrating over the

random effects. Specifically, if we treat TBLi
as T (0)i0, we have:

(
S(1)i T (0)i T (1)i TBLi

)
∼MVN(



α1

β
(0)
0 + β

(0)
2 ti

β
(1)
0 + β

(1)
2 ti

β
(0)
0


,

 Σ11 Σ12

Σ22

) (8.1)

where we have parameterized the covariance matrix in this block structure to use properties of

conditional normal distributions. Σ22 is the variance of TBL, Σ11 is the covariance matrix of

S(1),T (0), and T (1), and Σ12 is the covariance between these.

When conditioning on TBLi
as a baseline covariate, we obtain:

128




S(1)i

T (0)i, TBLi

T (1)i

 ∼MVN(


α

′
1 + α

′
2TBLi

β
(0)′

0 + β
(0)′

1 TBLi
+ β

(0)′

2 ti

β
(1)′

0 + β
(1)′

1 TBLi
+ β

(1)′

2 ti

 ,Ω) (8.2)

where Ω = Σ11 − Σ12Σ
−1
22 Σ21 denotes the covariance of the conditional outcomes. The vector

of coefficients, denoted by ′ and corresponding to TBLi
for each potential outcome, is also an

algebraic function of Σ12 and Σ22. If we chose to model TBL as a covariate, after fitting the model

in Eq. 2, we will have to integrate over TBL to obtain marginal quantities of our validation metrics.

We also note for j = 1, ...,m, cov(TBL, S(1)) = cov(b
(0)
0 + e, S(1)) = σS101,

cov(TBL, T (0)j) = cov(b
(0)
0 , b

(0)
0 + b

(0)
1 j) = σ2

b01 + jσ0111, cov(TBL, T (1)j) = cov(b
(0)
0 , b

(1)
0 +

b
(1)
1 j) = σ0102 + jσ0112. Let Σ11 =



σ2
S1 σS101 + σS111 ... σS101 +mσS111 σS102 + σS1σb12ρS112 ... σS102 +mσS1σb12ρS112

σ2
b01 + σ2

b11 + σ2
e + σ0111 + σ0111 ... σ2

b01 + σ0111 +mσ0111 +mσ2
b11 σ0102 + σ0112 + σ1112 + σ1102 ... σ0102 +mσ0112 +mσ1112 + σ1102

. . . ...
...

...
...

σ2
b01 +m2σ2

b11 + σ2
e + σ0111 +mσ0111 σ0102 +mσ0112 +mσ1112 +mσ1102 ... σ0102 +mσ0112 +mσ1112 +mσ1102

σ2
b02 + σ2

b12 + σ2
e + σ0212 + σ0212 ... σ2

b02 +mσ2
b12 + σ0212 +mσ0212

. . . ...

σ2
b02 +m2σ2

b12 +mσ0212 +mσ0212 + σ2
e



Σ22 =

(
σ2
b0 + σ2

e

)
, Σ12 =

(
σS101 σ2

b01 + σ0111 ... σ2
b01 +mσ0111 σ0102 + σ0112 ... σ0102 +mσ0112

)

When considering the coefficient for TBLi
in Eq. 2, and ultimately what the γ quantities will

look like, the coefficients for TBL will not be equal between the T (0) and T (1) outcomes unless

σ0102 + tσ0112 = σ2
b01 + tσ0111. Since there is an interaction between time and the effect of TBL,

rather than considering time-varying coefficients, we write the second and third terms as
σ2
b01

σ2
b01+σ

2
e
(TBL−β(0)

0 )+σb11σb01ρ0111
σ2
b01+σ

2
e

(TBL−β(0)
0 )ti,

σb02σb01ρ0102
σ2
b01+σ

2
e

(TBL−β(0)
0 )+σb01σb12ρ0112

σ2
b01+σ

2
e

(TBL−β(0)
0 )ti.

From this, E(T (1) − T (0)|s) = β
(1)
0 + β

(1)
2 tij +

σb02σb01ρ0102
σ2
b01+σ

2
e

(TBL − β
(0)
0 ) + σb01σb12ρ0112

σ2
b01+σ

2
e

(TBL −

β
(0)
0 )tij−β(0)

0 −β(0)
2 tij−(

σ2
b01

σ2
b01+σ

2
e
(TBL−β(0)

0 )+σb11σb01ρ0111
σ2
b01+σ

2
e

(TBL−β(0)
0 )tij)+γ1s = γ∗0(tij)+γ

∗
1(tij)s.
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In order to integrate over TBL, we need to calculate the conditional form of γ∗0(tij) and γ∗1(tij).

When integrating over a baseline covariate B,

∫
B

E(T (1)− T (0)|S(1), B = b)f(B|S(1) = s)db =

∫
B

(γ∗0 + γ∗1s)f(B|S(1) = s)db

We will calculate the empirical quantity of this marginal expectation for a fixed time tij using

Bayes rule. Let the subscript C denote the conditional quantities for a given set of covariates and

k be an index to denote the value X for a given s. Our empirical integration is calculated as

∑
X

(γ0,Ck
+ γ1,Cs)

1
|Ω|

√
2π

exp(−1
2
(s− (Xk)

T (Φ))Ω−1(s− (Xk)
T (Φ))dFn(x)

f(s)

where X is continuous and dFn(x) is an empirical distribution, summed for each particular value

in S(1) = s. The conditional distribution of S(1)|X will follow a Normal distribution. For a fixed

s, we calculate wk = exp(−1
2
(s − (Xk)

T (Φ̂))Ω−1(s − (Xk)
T (Φ̂)) for each value of Xk, rescale

wk such that Σkwk = 1, and calculate Σx(γ
∗
0 + γ∗1s)wk. Once we solve for these quantities, we

summarize the marginal effect over values of s by fitting a linear model to get γ0 and γ1.
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APPENDIX I

Fisher Approximation for Correlation Details

We use the Fisher z-transformation as an approximation for the posterior distribution of a correla-

tion parameter ρ and use this approximation as the proposal distribution in the Metropolis-Hastings

step within the MCMC algorithm. Fisher’s z transformation from ρ → z, also known as the arc-

tanh, can be written h(ρ) = 0.5 log((1+ρ)/(1−ρ)) with derivative h(ρ)′ = 1/(1−ρ2). We follow

the steps:

1. Calculate ρ̂ from the observed data or imputed counterfactual data as the empirical corre-

lation between the random effects (for ρ11 it is the correlation between S and b(1)). Let the

previous value of ρ be ρ−1. Since we expect ρ−1 and ρ̂ to be similar, we will only consider

ρ−1.

2. Draw a proposed, transformed value of ρ where z = h(ρ): z ∼ Normal(0.5 log((1 +

ρ−1)/(1− ρ−1)), 1/(n− 3))

3. Let ρ′
= h−1(z).

4. Because of the transformation, the density of ρ includes a Jacobian term. This is written

g(ρ|ρ−1) = f(z|ρ−1)(∂z/∂ρ) =
1√
2πσ2

exp(−1/2σ2)(z(ρ) − z(ρ−1))
2 × 1

1−ρ2 , where σ2 =

1
n−3

.

5. Calculate g(ρ−1|ρ) = 1√
2πσ2

exp(−1/2σ2)(z(ρ−1)− z(ρ))2 × 1
1−ρ−1

2 .
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6. Using the previous ρ−1, the exponential terms will cancel when calculating

g(ρ
′ |ρ−1)/g(ρ−1|ρ

′
), leaving 1

1−ρ2−1
/ 1
1−ρ′2 from the ratio of the values from 4 and

5.

7. The new value ρ′
= h−1(z) is accepted with probability min(1, P (ρ

′
)

P (ρ−1)
1

1−ρ2−1
/ 1
1−ρ′2 ). For ρT ,

we would like to incorporate an informative prior distribution, so we evaluate the posterior

P distribution for both the numerator and the denominator using the rescaled Beta(8, 5)

distribution. P is the product of the likelihood and the prior and can be written as

ρ ∝ |R|−n/2 exp
(
−1

2
Σn
i=1(b

(0)
. b(1). )Ψ−1(b(0). b(1). )T

)
(1−ρ)(5−1)(ρ+1)(8−1) where Ψ = SRS

is decomposed into matrices containing standard deviations (S) and correlations (R).

The MH step is computationally fast and can be run for many MCMC iterations (10,000 or

more) in a few hours.
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APPENDIX J

Delayed-Start Treatment Design Details

To develop the model in the Delayed-start treatment design, we first consider models for the natural

history of the outcome for a patient who does not receive the intervention compared to that patient

receiving the intervention at an early age. Let Ai denote current age and Bi age at baseline where

Ai = Bi+ti. Ignoring the measurement error term, Ti(0, Ai) = β
(0)
0 +β

(0)
1 Ai+β2A

2
i+b

(0)
i0 +b

(0)
i1 Ai.

Similarly Ti(1, Ai) = β
(1)
0 + β

(1)
1 Ai+ β2A

2
i + b

(1)
i0 + b

(1)
i1 Ai. Let V be time on study of the delayed-

treatment arm.

Since we model an individual’s repeated measurements while they receive the treatment, con-

sider what the smooth trajectory of outcomes would look like for an individual in the delayed-

treatment group. At time of intervention, the immediate change in the fixed effect is β(1)
0 −β(0)

0 , and

there is a change in the slope for age where the new fixed effect slope is β(1)
1 at the time of interven-

tion. The random intercept changes from b
(0)
i0 to b(1)i0 , and the random slope from that time forward

is b(1)i1 . Then for individuals in the z = 0 arm, their value of T prior to any crossover is given by

Ti(0, ti, Bi) = β
(0)
0 +β

(0)
1 (ti+Bi)+β2(ti+Bi)

2+b
(0)
0i +b

(0)
1i (ti+Bi). For an individual who starts the

study at age Bi, their baseline value is given by Ti(0, 0, Bi) = β
(0)
0 +β

(0)
1 Bi+β2B

2
i + b

(0)
0i + b

(0)
1i Bi

For those randomized to z = 1, their value right after randomization is given by Ti(1, 0+, Bi) =

β
(1)
0 + β

(0)
1 Bi + β2B

2
i + b

(1)
0i + b

(0)
1i Bi and for t > 0, their values are Ti(1, t, Bi) = β

(1)
0 + β

(0)
1 Bi +

β
(1)
1 ti + β2(Bi + t)2 + b

(1)
0i + b

(0)
1i Bi + b

(1)
1i t

For those who crossover at age τi = Bi + V , for age < τi an individual’s trajectory follows the

described z = 0 model. Just prior to V , their value of Ti = β
(0)
0 + β

(0)
1 τi + β

(0)
2 τ 2i + b

(0)
0i + b

(0)
1i τi
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= β
(0)
0 + β

(0)
1 (Bi + V ) + β

(0)
2 (Bi + V )2 + b

(0)
0i + b

(0)
1i (Bi + V ). At t = V +, Ti = β

(1)
0 + β

(0)
1 (Bi +

V ) + β2(Bi+ V )2 + b
(1)
0i + b

(0)
1i (Bi+ V ), and for t > V, Ti = β

(1)
0 + β

(0)
1 (Bi+ V ) + β

(1)
1 (t− V ) +

β2(Bi + V )2 + b
(1)
0i + b

(0)
1i (Bi + V ) + b

(1)
1i (t− V ).

We assume the observed data model for z = 0 in a regular design with a baseline measurement is



1 t0 +Bi 0 0 (t0 +Bi)
2

...

1 tj +Bi 0 0 (tj +Bi)
2

...

1 tm +Bi 0 0 (tm +Bi)
2





β
(0)
0

β
(0)
1

β
(1)
0

β
(1)
1

β2


+



1 t0 +Bi 0 0

...

1 tj +Bi 0 0

...

1 tm +Bi 0 0





b
(0)
0i

b
(0)
1i

b
(1)
0i

b
(1)
1i



For z = 1,



1 Bi 0 0 B2
i

0 Bi 1 t1 (t1 +Bi)
2

...

0 Bi 1 tj (tj +Bi)
2

...

0 Bi 1 tm (tm +Bi)
2





β
(0)
0

β
(0)
1

β
(1)
0

β
(1)
1

β2


+



1 Bi 0 0

0 Bi 1 t1
...

0 Bi 1 tj
...

0 Bi 1 tm





b
(0)
0i

b
(0)
1i

b
(1)
0i

b
(1)
1i


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For the delayed-treatment arm,



1 Bi 0 0 B2
i

1 t1 +Bi 0 0 (t1 +Bi)
2

...

1 tj +Bi 0 0 (tj +Bi)
2

...

0 V +Bi 1 1 (V +Bi)
2

...

0 V +Bi 1 tm − V (tm +Bi)
2





β
(0)
0

β
(0)
1

β
(1)
0

β
(1)
1

β2


+



1 Bi 0 0

1 t1 +Bi 0 0

...

1 tj +Bi 0 0

...

0 V +Bi 1 1

...

0 V +Bi 1 tm − V





b
(0)
0i

b
(0)
1i

b
(1)
0i

b
(1)
1i


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APPENDIX K

Generating Proper Covariance Matrices

Here we provide more details about prior distributions and generating positive definite matrices.

We have described using rescaled Beta(3, 3) and Beta(8, 5) priors in two separate scenarios. The

means (standard deviations) of these distributions are 0 (0.378) and 0.231 (0.260) respectively.

While it may seem a bit arbitrary to use these Beta distributions, they are motivated by empirical

observations. The first symmetric Beta distribution is meant to be noninformative for the purpose

of generating ‘true’ values in the infinite data case. We have looked extensively at the marginal dis-

tribution of the correlations after the positive definiteness rejections, and they tend to be unimodal

(under the setting of no conditional independence assumptions). In our exploration of generating

valid 5×5 covariance matrices with marginally Uniform priors on each correlation in the setting of

random slopes models, we found the acceptance rate of the matrices to be so low that it was com-

putationally prohibitive to draw thousands of valid covariance matrices when all ten correlation

parameters are drawn marginally from a Uniform(-1, 1) distribution. To avoid this, we simulated

from Beta distributions. We are deliberately using a Beta distribution to (largely) exclude corre-

lations that are very close to -1 and +1. Further, we found that the distribution of valid draws

of the correlations tended to be approximately Beta distributed after rejecting extreme correlation

values that are unlikely to form a valid covariance matrix. We compared this method of generat-

ing matrices to the LKJ way of simulating (non informative) correlation matrices (Lewandowski,

Kurowicka, and Joe, 2009) and found that the resulting marginal distributions of the correlation

parameters were similar. We also established that empirically the draws of the ρ’s were more or
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less independent of each other even after the positive definiteness rejections. Separately from this,

the second, non-symmetric Beta distribution is meant to be more informative for the purpose of

forcing a positive prior (and equivalent) posterior mean in the context of non-identified correlation

parameters.
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APPENDIX L

Optimization Method Details

For the optimization method, the standard error is calculated as follows. Remember that the γ

quantities of interest are functions of both the identified and non-identified model parameters. In

the setting of random intercepts assuming conditional independence:

γ0 = f(α1, β0, β1, σS1, σT0, σT1, ρ11, ρ10 = ρ11ρT )

γ1 = f(α1, β0, β1, σS1, σT0, σT1, ρ11, ρ10 = ρ11ρT )

Let θ = (α1, β0, β1, σS1, σT0, σT1, ρ11) be the identified parameters.

Then V ar(θ̂) is obtained from the Hessian.

Let V ar(γ̂.|ρ10) = ∂γ.
∂θ

T
V ar(θ̂)∂γ.

∂θ

For J repeated draws of ρ10 within a single dataset, we calculate the final variance as

V ar(γ̂.) =
1
J
ΣJ
j=1V ar(γ̂.|ρ10j) + 1

J−1
ΣJ
j=1(γ̂.(ρ10j)− γ̄.)

2

where this idea applies for both γ0 and γ1. This method of drawing the nonidentified parameters

from the prior many times and incorporating the uncertainty in the corresponding estimates is

similar to a Rubin’s Rules type formulation of combining within- and between-variability (Rubin,

1987).
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APPENDIX M

Simulation Results for Sensitivity Analyses

13.1 Sensitivity Results of Sample Size

Setting γ0 γ0 SE γ0 SD γ1 γ1 SE γ1 SD
Range of Data Generating Value Unif, No CI (-2.052, 1.466) (-0.182, 1.575)
n = 100, CI 0.169 0.450 0.242 0.474 0.225 0.119
n = 200, CI 0.040 0.425 0.202 0.534 0.213 0.097
n = 300, CI 0.002 0.408 0.155 0.552 0.205 0.078
n = 400, CI -0.002 0.404 0.150 0.552 0.202 0.074
n = 500, CI 0.000 0.402 0.140 0.553 0.201 0.068
n = 1000, CI 0.005 0.388 0.096 0.550 0.194 0.047

Table 13.1: Simulation results of random intercept models comparing different sample sizes for
the algorithm MCMC, Obs Data, Random Effects, MH Beta Prior. The true values are listed as
the 2.5th and 97.5th quantiles of repeated draws from an infinite data setting of valid covariance
matrices under conservative settings, meaning the identified parameters are set to their true gener-
ating values, and non-identified parameters are drawn from a Uniform(-1, 1) distribution with no
conditional independence (CI) assumptions. Results shown for γ quantities are the posterior mean,
average estimated standard error within simulation, and standard deviation of the point estimates
across simulation replications. Obs Data represents the observed data algorithm (rather than an im-
putation scheme), and MH denotes when Metropolis Hastings steps were involved in the Markov
Chain Monte Carlo (MCMC).
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13.2 Sensitivity Analysis of Distributional Assumptions

Setting γ0 γ0 SE γ0 SD γ1 γ1 SE γ1 SD
Range of Data Generating Value Unif, No CI (-2.052, 1.466) (-0.182, 1.575)
Correctly Specified 0.002 0.408 0.155 0.552 0.205 0.078
Misspecified -0.201 0.472 0.210 0.722 0.235 0.106

Table 13.2: Simulation results of random intercept models for misspecified models (true random
effects follow a skewed, joint Gamma distribution with rate and scale parameters 0.5) for the al-
gorithm MCMC, Obs Data, Random Effects, CI, MH Beta Prior. The true values are listed as
the 2.5th and 97.5th quantiles of repeated draws from an infinite data setting of valid covariance
matrices under conservative settings, meaning the identified parameters are set to their true gener-
ating values, and non-identified parameters are drawn from a Uniform(-1, 1) distribution with no
conditional independence (CI) assumptions. Results shown for γ quantities are the posterior mean,
average estimated standard error within simulation, and standard deviation of the point estimates
across simulation replications. Obs Data represents the algorithm that uses only the observed data
(rather than an imputation scheme).

13.3 Sensitivity Analysis of Sample Size

Setting γ0 γ0 SE γ0 SD γ1 γ1 SE γ1 SD
Range of Data Generating Value Unif, No CI (-1.508, 1.356) (0.145, 1.577)
n = 100, Time 1 0.194 0.450 0.354 0.704 0.215 0.162
n = 300, Time 1 0.079 0.266 0.250 0.777 0.128 0.124
n = 500, Time 1 0.059 0.207 0.204 0.786 0.100 0.091
n = 700, Time 1 0.010 0.174 0.147 0.804 0.083 0.062
n = 900, Time 1 -0.038 0.126 0.093 0.837 0.060 0.048

Table 13.3: Simulation results of random slopes models with varying sample sizes. We assess a
delayed-start treatment design with a pre-treatment, baseline measurement of T, TBL treated as a
covariate and assume conditional independence. The true values are listed as the 2.5th and 97.5th
quantiles of repeated draws from an infinite data setting of valid covariance matrices, meaning
the identified parameters are set to their true generating values, and non-identified parameters are
drawn from a non-informative (Beta(3, 3)) distribution rescaled between -1 and 1.
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13.4 Sensitivity Analysis of Random Slope Model Specification

Setting γ0 γ0 SE γ0 SD γ1 γ1 SE γ1 SD
Range of Data Generating Value Unif, No CI (-1.508, 1.356) (0.145, 1.577)
Correctly Specified, Time 1 -0.038 0.126 0.093 0.837 0.060 0.048
Non-linear effect of time (Misspecified) -0.098 0.133 0.153 0.860 0.063 0.074

Table 13.4: Simulation results of random slopes models for misspecified models where the true
generating model includes a non-linear (quadratic) term for time that is not specified in the fitted
model. We assess a delayed-start treatment design with a pre-treatment, baseline measurement of
T, TBL treated as a covariate and assume conditional independence. The true values are listed as the
2.5th and 97.5th quantiles of repeated draws from an infinite data setting of valid covariance ma-
trices, meaning the identified parameters are set to their true generating values, and non-identified
parameters are drawn from a non-informative (Beta(3, 3)) distribution rescaled between -1 and 1.
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APPENDIX N

Defining Ideal CEP Curves for Time-to-Event Data

Model A Parameterization

First we consider models of the form

λ012(t|ω0
12i) = λ012,0(t) exp(κ

0
12ω

0
12i) λ013(t|ω0

13i) = λ013,0(t) exp(κ
0
13ω

0
13i) (14.1)

λ023(t|T12i(0), ω0
23i) = λ023,0(t− T12i(0)) exp(κ

0
23ω

0
23i + θ023T12i(0))I(t > T12i(0))

λ112(t|ω1
12i) = λ112,0(t) exp(κ

1
12ω

1
12i) λ113(t|ω1

13i) = λ113,0(t) exp(κ
1
13ω

1
13i)

λ123(t|T12i(1), ω1
23i) = λ123,0(t− T12i(1)) exp(κ

1
23ω

1
23i + θ123T12i(1))I(t > T12i(1))

and the eight scenarios described in the main text and shown in Table 14.1.
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λ012 = λ112 λ013 = λ113 λ023 = λ123 Surrogacy
Scenario 1 T T T Null Case
Scenario 2 F T T Perfect
Scenario 3 F T F Partial
Scenario 4 F F T Partial
Scenario 5 F F F Partial
Scenario 6 T F F Not a surrogate
Scenario 7 T T F Not a surrogate
Scenario 8 T F T Not a surrogate

Table 14.1: Eight possible scenarios of which pathways in the illness death models exhibit treat-
ment effects based on the causal hazards. T denotes true and F denotes false. The right hand
column represents an intuitive notion of whether S is a good surrogate for T .

The generating parameter values are shown with each plot. Each plot also shows the number

of events observed in each arm for each transition: n12(z), n13(z), n23(z). First we present the

corresponding CEP plots for scenarios 1-8 when θ123 = θ023 = 0. We assume that ωz13 = ωz23.
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Figure 14.1: Scenarios 1-4: Null, perfect, and partial surrogates under the illness-death formula-
tion.

144



Figure 14.2: Scenarios 5-8: Partial and non-surrogates under the illness-death formulation.

We see that in the first two plots, when there are no treatment effects (Scenario 1) or only an

effect through the surrogate endpoint (Scenario 2), the intercept is approximately 0 and the slope is

positive. However, when there are treatment effects involved that do not go through the surrogate,

the intercept becomes nonzero. In general, we note that the slope does not drastically change

across the different scenarios above. Necessarily, the y-axis will always be constrained between

-1 and 1 since it represents a difference in two probabilities. Further, this quantity on the y-axis is

a relatively complex function of multiple model parameters. More exploration into what settings

may induce a different slope is needed.

We find that changing the fixed values of ρS and ρT affects the spread of the points across
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individuals. Consider this scenario comparing ρS = ρT = 0 to ρS = ρT = 0.95 in Figure 14.3.

Figure 14.3: CEP curve when ρS = ρT = 0 versus when ρS = ρT = 0.95.
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We consider when θz23 ̸= 0 so that the effect of time to the surrogate endpoint T12 affects time

from S to T . It is apparent that T z12 and T z23 will be more highly correlated when θz23 < 0, since

longer times to S will be associated with a lower hazard (and longer time) to T afterward. It is our

observation that the slope sometimes increases when θz23 < 0, as shown in the figures below for

Scenario 2. This behavior also depends on all of the other parameters, such as the magnitude of

θz23 and value of τT .

Figure 14.4: CEP curves comparing changing θz23 = −1, 0, 1.
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APPENDIX O

Prentice Approach Formulation and Relation to

Proposed Illness-Death Method

Consider two models:

A) λ(t) exp(ϕ1Zi + η1Xi)

B) λ(t) exp(ϕ2Zi + η2Xi + ωI(t > Si))

Prentice approach: Compare ϕ1 and ϕ2 and evaluate whether ϕ2 = 0.

First expand B with interactions with Zi.

λ(t) exp(ϕ2Zi + η02XiI(Zi = 0) + η12XiI(Zi = 1) + ω0(1− Zi)I(t > Si) + ω1ZiI(t > Si))

for Z = 0, = λ(t) exp(η02Xi + ω0I(t > Si))

for Z = 1, = λ(t) exp(ϕ2) exp(η
1
2Xi + ω1I(t > Si))

Now call these λ013, for t < Si, Z = 0, λ(t) exp(η02Xi)

λ023, for t ≥ Si, Z = 0, λ(t) exp(η02Xi + ω0)

λ113, for t < Si, Z = 1, λ(t) exp(ϕ2) exp(η
1
2Xi)

λ123, for t ≥ Si, Z = 1, λ(t) exp(ϕ2) exp(η
1
2 + ω1)

Generalize λz13, λ(t) → λ013(t), λ(t) exp(ϕ2) → λ113(t) and add frailties ω0
13i, ω

1
13i

⇒ λz13(t) exp(η
Z
2 Xi + ωz13i)

Generalize λz23, λ(t) exp(ω
0) → λ023(t), λ(t) exp(ω

1 + ϕ2) → λ123(t) and add frailties ω0
23i, ω

1
23i

⇒ λz23(t) exp(η
Z
2 Xi + ωz23i)I(t > Szi )

We can change the scale to τ = t− Szi and add dependence on S

λz23(τ) exp(ω
z
23i + ηz2Xi + θzSzi )
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Model A is some combination of λ12, λ13, λ23. We replace A by a specification of λz12(t)

⇒ λz12(t) exp(η
z
1Xi + ωz12i)

We can restrict either ωz23i = κωz13i and θz ̸= 0 or ωz23i = κ1ω
z
12i + κ2ω

z
13i and θz = 0 and see the

resemblance to our models proposed in the text.
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APPENDIX P

Likelihood Contributions for Illness-Death Model

Parameters

In this appendix, we provide the likelihood contributions for the parameters in Model A for use in

the Bayesian estimation strategy described in Chapter IV Section 4. For ease of notation, we will

consider other covariates later.

Contribution for regression coefficients that we consider here, θ23, κjk

Let β12i = exp(κ12w12i). From the likelihood, the contribution for the κ12 parameter comes

from Πnz
i exp(−Λ12(T12i))λ12(T12i)

δSi

∝ Πnz
i exp(−β12iΛ120(T12i)) exp(log(β12i)× δSi)

∝ exp(−γ12Σnz
i β12iT

α12
12i + Σnz

i δSiκ12ω12i)

Now consider the likelihood for parameters in λ13, κ13. Let n13 be the number of individuals who

do not experience S, n23 the number who do experience S, and β13i = exp(κ13w13i).

From the likelihood, Πn13
i exp(−Λ13(T13i))λ13(T13i)

δTi × Πn23
i exp(−Λ13(T12i))

∝ Πn13
i exp(−β13iΛ130(T13i)) exp(log(β13i)× δT i)× Πn23

i exp(−Λ13(T12i))

∝ exp(−Σn13
i (β13i γ13T

α13
13i + κ13ω13iδT i)) exp(−Σn23

i γ13T
α13
12i β13i)

Now consider the likelihood for parameters in λ23, θ23 and κ23. Let β23i = exp(κ23w23i+ θ23T12i).

From the likelihood, Πn23
i exp(−Λ23(T23i))λ23(T23i)

δTi

∝ Πn23
i exp(−β23iΛ230(T23i)) exp(log(β23i)× δT i)

∝ exp(−γ23Σn23
i β23iT

α23
23i + Σn23

i δT i(κ23ω23i + θ23T12i))
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The contributions for the frailty terms ωjki are similar, except they do not have the sum or

product over all individuals. The contributions for shape and scale parameters αjk and γjk are also

similar, specifically relying on the respective quantities

∝ exp(−γ12Σnz
i β12iT

α12
12i )

∝ exp(− γ13Σ
n13
i β13iT

α13
13i ) exp(−γ13Σ

n23
i Tα13

12i β13i)

∝ exp(−γ23Σn23
i β23iT

α23
23i )

for jk = 12, 13, and 23. Since T23 is not observed for all individuals, only individuals who

have δSi = 1 (so that the time T23i exists) contribute to the last likelihood component. This

sum is calculated over these n23 individuals for a given treatment arm. A closed-form posterior

distribution for a general scale parameter γjk (not considering the illness-death framework) is given

in Sahu et al. (1997) that may be applied under a Gamma prior with a Weibull baseline hazard.
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APPENDIX Q

Simulation Results for Illness-Death Model

Parameters

Here we provide a subset of results for illness-death proposed model assuming that the scale

parameters are fixed. In these simulations, θ23 is fixed to its true value to simplify the model,

ρs = ρT = 0.5, and τS = 0.5 and τT = 1.5.
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γ0 γ1
True Value∗ 0 0.035

Scenario 1: Estimates 0.012 0.021
SE 0.035 0.020
SD 0.049 0.023

True Value∗ 0 0.040
Scenario 2: Estimates 0.021 0.028

SE 0.032 0.018
SD 0.041 0.021

True Value∗ -0.089 0.054
Scenario 3: Estimates -0.046 0.028

SE 0.034 0.018
SD 0.043 0.022

True Value∗ -0.081 0.057
Scenario 7: Estimates -0.066 0.021

SE 0.037 0.019
SD 0.052 0.023

Table 17.1: Simulation results from illness-death models and estimated validation quantities. This
table shows the posterior mean, average estimated standard error (SE), and the standard deviation
(SD) of the posterior means across simulation replications.
In these calculations, the scale parameters are fixed.
∗Based on empirical calculations from a larger sample size over many replications

κ012 κ013 κ023 κ112 κ113 κ123
True Value 1 1 1 1 1 1

Scenario 1: Estimates 1.00 1.00 0.96 1.00 1.00 1.04
SE - - 0.14 - - 0.16
SD - - 0.15 - - 0.15

Scenario 2: Estimates 1.00 1.00 0.97 1.00 1.00 1.07
SE - - 0.16 - - 0.16
SD - - 0.15 - - 0.15

Scenario 3: Estimates 1.00 1.00 0.97 1.00 1.00 1.03
SE - - 0.16 - - 0.16
SD - - 0.17 - - 0.18

Scenario 7: Estimates 1.00 1.00 0.95 1.00 1.00 1.04
SE - - 0.16 - - 0.16
SD - - 0.16 - - 0.15

Table 17.2: Simulation results from illness-death models of regression coefficients when scale
parameters are fixed.
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APPENDIX R

Rshiny App for Illness-Death Model Parameters

Here we provide more details about the Rshiny app available at https://emilyroberts.

shinyapps.io/id_cep_parameters/ including a snapshot of the user-facing interface at

this link.

On the left hand panel, users can input several parameters to investigate, including scenarios

1-8, scale parameters of the Weibull distribution, τT and τS at which times the surrogate is evalu-
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ated, and several assumptions about the frailty terms. These include which frailties are equal (via

clickable buttons) and the values of several ρ parameters (via sliding bars) that control how the

frailties are correlated. The frailties are based on the parameterization



ω0
12i

ω1
12i

ω0
13i

ω1
13i

ω0
23i

ω1
23i


∼ N





0

0

0

0

0

0


,



1 ρS ρ00 ρ01 ρS1 ρS2

1 ρ10 ρ11 ρS3 ρS4

1 ρT ρT1 ρT2

1 ρT3 ρT4

1 ρST

1




The right hand side of the app provides the calculated CEP curve and the Kaplan-Meier plots for

time to T (through either pathway of the illness death model) and time to S (where S is censored

if T occurs first). In the top CEP curve, the red dashed line indicates the average ∆S and ∆T .

The numbers under the figure indicate the parameter values used in the plot and the number of

individuals who experienced T12(z) by τS or T23(z) and T13(z) by τT as n12(z), n23(z), n13(z),

respectively. With the Kaplan-Meier plots, we provide the difference in the heights of the curves

at τS and τT .
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