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Pitch coefficient relative to max. wing characteristics –
D Drag N

Di Coefficients from linear model fits varies
Ei Coefficients from linear model fits varies
F Force vector N

Gi Coefficients from linear model fits varies
I Moment of inertia tensor kg ·m−2

Ixx Moment of inertia component about the x-axis kg ·m−2

Ixz Moment of inertia component in the x-z plane kg ·m−2

Iyy Moment of inertia component about the y-axis kg ·m−2

Izz Moment of inertia component about the z-axis kg ·m−2

L Lift N

M Pitching moment N ·m
M Moment vector N ·m
S Characteristic area m2

St Tail area m2

Sw Wing area m2

Smax Maximum wing area for all morphed configurations m2

U x-axis velocity component m · s−1

U∞ Freestream scalar velocity m · s−1
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U Input vector varies
V y-axis velocity component m · s−1

W z-axis velocity component m · s−1

VH Tail volume coefficient –
W Weight N

X State vector varies
α Angle of attack rad or ◦

αOU Selection strength of the OU model –
β Sideslip angle rad

γ Flight path angle rad

ε Downwash angle due to the wing rad

ζ Damping ratio –
η Effect size component (i.e., partial η2 is the effect size) –
ηt Dynamic pressure ratio at the horizontal tail –
θ Pitch angle in the body axis rad

θCG Phenotypic optimum of the center of gravity varies
θSM Phenotypic optimum of the static margin varies
λ Eigenvalue varies
ν Inverse Wishart scalar degrees of freedom –
µ Dynamic viscosity kg·m−1·s−1

ρ Fluid density kg ·m−3

σ Variance varies
φ Roll angle in the body axis rad

ψ Yaw angle in the body axis rad

ω Frequency rad/s

ω Angular velocity vector rad/s

Γ Sweep angle at the shoulder joint ◦

Λ Dihedral angle at the shoulder joint ◦

*Note: Overdot signifies a time derivative of the variable. Subscript of 0 indicates the trim condition.
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BM Brownian Motion
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Abstract
Uncrewed aerial vehicle (UAV) design has advanced substantially over the past century;

however, there are still scenarios where birds outperform UAVs. Birds regularly maneuver

through cluttered environments or adapt to sudden changes in flight conditions, tasks that chal-

lenge even the most advanced UAVs. Thus, there remains a gap in our general knowledge of

flight maneuverability and adaptability that can be filled by improving our understanding of

how birds achieve these desirable flight characteristics. Although maneuverability is difficult

to quantify, one approach is to leverage an expected trade-off between stability and maneu-

verability, wherein a stable flyer must generate larger moments to maneuver than an unstable

flyer. Bird’s stability, and adaptability, has previously been associated with their ability to

morph their wing shape in flight. Birds morph their wings by actuating their musculoskeletal

system, including the shoulder, elbow and wrist joints. Thus, to take an important step towards

deciphering avian flight stability and adaptability, I investigated how the manipulating avian

wing joints affect longitudinal stability and control characteristics.

First, I used an open-source low fidelity model to calculate the lift and pitching moment of

a gull wing and body across the full range of flexion and extension of the elbow and wrist. To

validate the model, I measured the forces and moments on nine 3D printed equivalent wing-

body models mounted in a wind tunnel. With the validated numerical results, I identified that

extending the wing using different combinations of elbow and wrist angles would provide a

method for adaptive control of loads and static stability. However, I also found that gulls were

unable to trim for the tested shoulder angle.

Next, I developed an open-source, mechanics-based method (AvInertia) to calculate the

inertial characteristics of 22 bird species across the full range of flexion and extension of the

elbow and wrist. This method allowed a detailed investigation of how manipulating the elbow

and wrist angle changed the center of gravity and moment of inertia tensor. Leveraging the pre-

vious aerodynamic results, I developed a method to estimate the neutral point of any bird wing

xvii



configuration and derived a novel metric for pitch agility. With the neutral point and center of

gravity, I found that the majority of investigated species had the ability to shift between stable

and unstable flight. Further, I implemented an evolutionary analysis that revealed evidence of

evolutionary pressures maintaining this capacity to shift, which transforms our understanding

of avian flight evolution.

Finally, I combined the aerodynamic and inertial results to investigate the dynamic stability

of a gull across a range of shoulder, elbow, and wrist angles. This analysis revealed that a

positive dihedral and forward-swept wing allowed a trimmed flight condition. For trimmed

configurations, I found that high wrist angles were statically unstable and exhibited a non-

oscillating, divergent response to disturbances. Lower wrist angles were both statically and

dynamically stable and exhibited a short period and phugoid mode like traditional aircraft. I

found that most trimmed configurations exhibited short period characteristics that would be

flyable by a human pilot, although with a heavily damped phugoid mode.

In summary, I found that the avian elbow and wrist joints can act as adaptive controls

and permit birds to shift between stable and unstable flight. Identifying these characteristics

provides a starting point for future UAV designs that hope to incorporate avian-like maneuver-

ability and adaptability.
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Chapter 1

Introduction
I saw a billboard with a bird sitting on the rim of a nest, nurturing her young

fledglings into the flying world. It read, “Birds Learn to Fly. Why Can’t You?”

That did it.

– Janet Harmon Bragg

1.1 The rise of the uncrewed aerial vehicle

From our first successful gliders to modern supersonic jets, aircraft design has come a long

way and broken through many seemingly impossible barriers. One such barrier was to remove

the human pilot while maintaining control of the aircraft’s flight path. In 1898, Nicola Tesla

laid the necessary ground work by designing the first radio-controlled vehicle, an electric boat

[1, 2]. Following the advent of this technology, the UK’s Royal Aircraft Factory developed the

“Aerial Target”, a deceptively-named, radio-controlled, explosive-filled aircraft [3, 4]. The first

flight tests for this aircraft were in 1916 [4], just 13 years after the Wright brothers made world

history with the first powered, controlled (and crewed) flight. For the following two decades,

most developments in radio-controlled aerial vehicles focused on, what was essentially the

precursor to the modern cruise missiles, such as the Curtiss-Sperry Aerial Torpedo and the

Kettering Bug [2, 5]. It was not until 1932 that De Havilland designed and flew an uncrewed

target aircraft designed for training the UK’s anti-aircraft defenses. Originally named the Fairey

Queen, the company adjusted to a lower-cost design that was re-named the DH-82B Queen Bee

[3, 4]. The Queen Bee is largely considered to be the precursor of the modern uncrewed aerial

vehicle (UAV). Notably, the name of this aircraft is believed to be have been the origin of the

terminology “drone”, which is also a name for a male honey bee [2].
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Since these early days, UAV designs have evolved drastically, ranging across multiple or-

ders of magnitude in scale and weight. Designs have also branched out from a conventional

fixed-wing design into rotorcraft and aircraft that morph the shape of their wings in flight [6].

In addition to their “morphological” diversity, modern UAVs are also no longer solely used

for warfare or combat [3, 7], having become indispensable tools for many different missions.

Modern uses for UAVs include environmental and climate monitoring [8, 9], assessing in-

frastructure [10, 11], agriculture [12, 13], humanitarian missons such as disaster management

[14, 15] and public health support [16, 17], and possibly package delivery [18].

Despite the extraordinary advancements in the field, UAVs still exhibit a few key weak-

nesses. UAVs are often constrained by their range, endurance, and/or payload capacity. Fur-

ther, UAVs struggle to operate effectively between distinct missions or disparate flight con-

ditions. For example, a surveillance drone is not effective for maneuvering through cluttered

environments and maneuverable quadcopters can be destabilized by gusty conditions. Thus,

it would be beneficial for a UAV to be able to adapt to different missions and to sudden flight

disturbances. It is this challenge, the concept of adaptability, that is a focus for this thesis.

UAV adaptability is limited, in part, because of an expected trade-off between aircraft ma-

neuverability and efficiency. Since maneuverability can encompass a broad range of attributes,

for the purposes of this work, I define maneuverability as the ability to change the velocity

vector direction and/or magnitude [19, 20]. Conventionally, a surveillance drone with longer

wings is more aerodynamically efficient and can cover a larger range than smaller designs.

However, aircraft with large wingspans also have a larger moment of inertia and mass, which

reduce their capacity for translational and rotational accelerations. This trade-off is one of the

reasons that there is such a diversity of aircraft designs, as each aircraft needs to be inten-

tionally designed to satisfy its particular mission constraints and goals. Therefore, with the

intention of advancing adaptability and maneuverability in mind, we can now look for novel

ways to improve and advance the design of adaptable and maneuverable UAVs.
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1.2 Deriving inspiration from birds

There are over 10,000 species of birds [21] with body masses spanning four-orders of mag-

nitude, from 0.002 kg to 20 kg. Avian morphology is extremely diverse with much variation

in the size and shape of wings, tails, and bodies. Understanding avian diversity as well as the

evolutionary pressures that have led to modern species is a major driver for some ornithological

studies. To survive and procreate, different species rely on different strategies that may, or may

not, require specific flight characteristics for success. In fact, flightlessness has independently

evolved across and within multiple lineages of birds [22]. Thus, it cannot be assumed that birds

have been evolving towards an optimal flight configuration [23].

Nevertheless, some birds exhibit flight styles that are more maneuverable and adaptable

than comparatively-sized aircraft [24] such as navigating through crowded cities and forests

[25] as well as performing evasive maneuvers to escape from predators [26]. For example,

gulls (colloquially seagulls) are flight generalists that can perform thermal or dynamic soaring

[27] as well as cleverly maneuver to steal food from other unsuspecting birds (or tourists) [28].

These flight generalists provide a promising model for adaptable UAV designs as a single bird

can effectively operate at conditions that would satisfy many disparate mission profiles.

1.3 Defining comparable regimes

To this end, birds have long provided a source of inspiration for UAV design [6, 29–33].

However, it is important to understand the similarities and differences between birds and UAVs

to best identify the characteristics of bird flight that are most desirable for enhancing UAV

designs. Although many birds rely heavily on flapping flight as a means of transportation, in

this thesis I narrowed my focus to gliding flight in particular. This allows for a more direct

comparison to non-rotary and non-flapping vehicles that fall within Class I as defined by the

NATO classification (i.e., UAVs with a mass less than 20 kg) [34]. Of note, the heaviest flighted

bird, the great buzzard (Otis tarda) also weighs up to 20 kg.

To enable a comparison between two flyers, it is important to quantify two flow similarity

parameters: the Mach number and the Reynolds number. As these numbers were not readily
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Figure 1.1: Gliding bird Reynolds and Mach number regimes. (a) Reynolds (Re) and Mach
(M) number flight regimes. (b) Flight regime for gliding birds colored by clade. (c) Reynolds
number regime for each avian clade, the transparent gray line represents approximately the
critical Reynolds number ≈ 104 per smooth airfoil classifications.

available for birds, I surveyed the literature to identify studies that reported both non-flapping

airspeeds and wing shape parameters. With the outputs of this survey, I calculated the range

of Mach and Reynolds numbers used by birds, insects, UAVs, and crewed aircraft (Fig. 1.1)

[8, 25, 33, 35–114]. For birds, the ranges were computed from live measurements where birds

were observed to hold their wings extended during some portion of the flight and does not in-

clude any flapping-only flights. Airspeed measurements were reported using varied techniques

including global positioning system (GPS) loggers, rangefinders, radar, and wind tunnel stud-

ies.
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The first important flow similarity parameter is the Mach number, which quantifies the

compressibility of the flow. Mach number is the ratio of the freestream velocity to the speed

of sound. Defining the Mach number regime is important when traveling close to or above the

speed of sound. Gliding birds do not approach this barrier with a Mach number range of 0.01

to 0.08 (Fig. 1.1a and b). Since this range of gliding bird flight occurs well below 0.3, it can

be modeled as incompressible flow [115].

The second important flow similarity parameter is the Reynolds number, which quantifies

the ratio of inertial to viscous properties in a flow as defined by:

Reynolds number =
ρcU∞
µ

(1.1)

where c represents the characteristic length scale, U∞ represents the incoming freestream ve-

locity, and ρ and µ represent the air density and dynamic viscosity, respectively.

Unlike large aircraft or small insects, birds and UAVs operate at an intermediate Reynolds

number where neither viscous nor inertial effects can be neglected (Fig. 1.1a and b). Specifi-

cally, I found that gliding bird flight occurs between a Reynolds number of 1.5×104 to 5.2×105,

if the characteristic length (c) is selected to be the mean projected wing chord (defined as the

projected wing area divided by projected wingspan). In the aeronautical literature, the charac-

teristic length is usually chosen as the mean aerodynamic chord, defined as a weighted average

of the wing chord along the span. However, most avian studies do not publish the wing chord

as a function of span and instead often publish a mean projected chord calculated from a fully

extended wing. Because birds have been observed to both increase or decrease their mean

projected chord as wind speeds increase, there is increased uncertainty on the upper Reynolds

number bound [39, 85].

It is informative to separate the collected avian data into major clades defined by the phylo-

genetic classification established by Prum et. al (Fig. 1.1c and Table 1.1) [116]. A phylogeny

captures how closely related different species are, in a manner similar to a family tree. Clades

with large species such as seabirds (Aequorlitornithes) and raptors (Accipitriformes) tend to

glide near the upper bound of the Reynolds number range whereas small birds such as swifts

(Strisores) and passerines (Passeriformes) tend to glide near the lower bound (Fig. 1.1c). These
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Table 1.1: Phylogenetic grouping of avian species.

Clade Example species
Galloanserae Quail, ducks, geese, chickens

Strisores Common nighthawk, swift
Columbaves Pigeon, Wood pigeon
Gruiformes Common crane

Aequorlitornithes Gulls, albatrosses, storks, pelicans
Accipitriformes Hawks, harriers, buzzards, eagles

Strigiformes Great horned owl, barn owl
Coraciimorphae Lewis’ woodpecker, European bee-eater

Australaves Falcons, merlins, kestrals
Passeriformes Starlings, jackdaws, jays, magpies

trends are largely a function of the overall size of the birds within these clades. Figure 1.2a

shows Reynolds number as a function of the total mass of the bird where the increasing trend

is expected because heavier birds tend to have larger mean projected chords (c, Fig. 1.2b) and

fly at higher speeds (U∞) [117].

Next, I separated the avian Reynolds number regime into four sub-regimes that Carmichael

defined for smooth airfoils (Table 1.2) [118]. Birds glide within subcritical and supercritical

sub-regimes . In a subcritical regime (Reynolds number≤ 7×104), once the laminar boundary
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Table 1.2: Reynolds number sub-regimes for gliding birds. The bold line separates subcrit-
ical from supercritical regimes as defined for smooth airfoils by Carmichael [118].

Regime Reynolds number Clades Example species

subcritical 1× 104 to 3× 104

Strisores
Aequorlitornithes
Coraciimorphae

Australaves
Passeriformes

Swifts (low speed)
Small petrel
Woodpecker

Common kestrel, budgerigar
Skylark

subcritical 3× 104 to 7× 104

Strisores
Columbaves

Aequorlitornithes
Accipitriformes

Strigiformes
Coraciimorphae

Australaves
Passeriformes

Swifts (high speed)
Pigeon (low speed)
Prion, small petrel

Harris’s hawk
Barn owl

European bee-eater
Kestrels, falcons

Jackdaw, magpie, woodpecker

supercritical 7× 104 to 2× 105

Columbaves
Aequorlitornithes
Accipitriformes

Strigidae
Australaves

Passeriformes

Pigeon (average speed)
Gulls, albatross, large petrels

Hawks, vultures, eagles, osprey
Barn owl, barred owl

Falcons
Jackdaw, magpie

supercritical 2× 105 to 7× 105

Columbaves
Gruiformes

Aequorlitornithes
Accipitriformes

Pigeon (high speed)
Common crane

Storks, pelicans, albatrosses
Large eagles, vultures, condors

layer separates from the surface, the airfoil chord is too short relative to the flow velocity to

allow the separated boundary layer to transition to turbulent flow and reattach [118, 119]. This

severely degrades performance. Carmichael noted that for Reynolds number ≤ 3 × 104 the

flow is extensively laminar which results in higher aerodynamic efficiency, albeit at lower lift

coefficients, than at the higher subcritical sub-regime [118].

The supercritical regimes used by birds are normally characterized by laminar separation

bubbles (LSBs). LSBs occur when the laminar boundary layer separates from an airfoil, tran-

sitions to turbulent flow, and then reattaches to the airfoil as a turbulent boundary layer [119].

The region of separated flow is the “bubble” and degrades wing performance depending on its

stability and length [118, 119]. LSBs can be partially or completely eliminated by artificially
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tripping a laminar boundary layer to transition to turbulent flow. Introducing surface roughness

can trip a boundary layer and feather roughness performs a similar function [33, 120]. For

Reynolds number ≥ 2 × 105, LSBs still exist although the performance markedly improves

over the lower regimes [118].

Note that Table 1.2 is meant to support a qualitative understanding, but bird wings are three-

dimensional, rough, porous, flexible, and have a variable chord length. As such, a single bird

wing may have airfoils simultaneously operating in multiple Reynolds number regimes that do

not correspond to the Reynolds number regimes experienced by a smooth airfoil.

This survey does not encompass all avian biodiversity because some birds do not glide and

not all birds that do glide have been studied. Of note, I identified only one published gliding

measurement for the Galloanserae clade (Table 1.1), the barnacle goose (Branta leucopsis) that

was gliding at an airspeed of approximately 14.2 m/s (Reynolds number = 1.5× 105 and Mach

number = 0.04) [121].

1.4 Why not discuss efficiency

Throughout the literature on bio-inspired UAVs, birds’ superior aerodynamic efficiency is

often cited as a source of inspiration for design. However, there is no direct comparison be-

tween the efficiency of birds and UAVs that could readily support such an assertion. Therefore,

I reviewed the literature and compared the aerodynamic efficiencies of gliding birds to UAVs

[122]. I quantified the aerodynamic efficiency of both flyers with the maximum lift-to-drag

ratio.

First, I surveyed the aeronautical literature to identify UAVs that are comparable to birds.

The UAVs included in this comparison had wing loadings and total mass on the same scale

as birds (Fig. 1.3a and b) [8, 33, 40, 45, 46, 48, 53–55, 57, 64, 70, 96, 97, 104, 110]. How-

ever, multiple UAVs were lighter than birds that glided at similar Reynolds number, including

Aerovironment’s Black Widow and the Colorado MAV [55, 57]. One heavier exception was

the URCUNINA-UAV, which weighs 16 kg and has a wing loading of 21 kg/m2 [8]. This

UAV literature survey included force measurements from wind tunnel experiments, velocity

measurements from onboard equipment in free flight, and numerical predictions from CFD
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methods. The uncertainty of each method can be highly variable and is discussed in more de-

tail in [122]. I found that the maximum lift-to-drag ratio of UAVs that fly in the same regime

as birds, ranges from 3–14 with a few exceptions (Fig. 1.3c). The URCUNINA-UAV and an

SBXC glider have a high reported efficiency of 18 and 24, respectively [8, 53]. This is not

a surprise as URCUNINA-UAV was designed for volcano monitoring and utilizes a pusher

propeller configuration while the SBXC is a hand-launched unpowered glider.
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Next, I surveyed the biological literature to identify measurements of the maximum lift-

to-drag ratio of gliding birds (Fig. 1.4). Similar to UAVs, these results were obtained with

different measurement methodologies that each have different sources of uncertainty. These

are discussed in detail in [122]. Of note, I found that there was evidence of extremely high

experimental uncertainty in the theoretical predictions and glider based studies (upside down

triangles and crosses in Fig. 1.4). Further, measurements on live birds in steady, gliding flight in

a wind tunnel were noted to represent a minimum bound on the birds’ aerodynamic efficiency

due to behavioral implications [122].

With this collected data it is now possible to compare the aerodynamic efficiency of gliding

birds to UAVs. Figure 1.5a incorporates all published estimates of avian and UAV aerodynamic

efficiency. However, due to the high experimental uncertainty in theoretical predictions and

glider-based studies [122], the avian data points were limited to wind tunnel measurements

(Fig. 1.5b). Note that live bird studies are affected by the individual bird’s behaviour and as a

result these avian data points represent a minimum bound on avian aerodynamic efficiency and

it is possible that birds are physically capable of more efficient glides[122]. With this reduced

data set, there was at least one UAV design that had a higher aerodynamic efficiency than any

bird flying within the same supercritical Reynolds numbers sub-regime. This observation is
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based on the airfoil sub-regimes defined by Table 1.2 with divisions demarcated by the x-axis

ticks in Fig. 1.5b [118, 119, 123].

Reconsidering the full dataset in Fig. 1.5a, it remains possible that birds can outperform

UAVs operating within supercritical regimes. Note that even with that complete dataset, a

UAV (the SBXC) is the most efficient glider [53]. Unfortunately, there is high uncertainty in

the published avian theoretical estimates and wind tunnel results are not able to measure birds

that are expected to be highly efficient (such as an albatross). Therefore, I cannot state with

absolute certainty that birds are more or less efficient than UAVs in the supercritical Reynolds

number regimes. At best it can be noted that the efficiency of birds and comparable UAVs in

supercritical Reynolds number regimes appear to be within a similar range.

I was only able to identify one comparable UAV with a published aerodynamic efficiency

metric operating in the subcritical Reynolds number regimes. This is possibly because the

subcritical regimes are dominated by rotary or flapping wing designs. The CICADA UAV (a

low-cost, disposable glider) had a maximum lift-to-drag ratio of 3, substantially less than the

western jackdaw (Coloeus monedula), laggar falcon (Falco jugger), and common swift (Apus

apus) that fly within this same regime (Fig. 1.5b) [39, 54, 92, 124]. Subcritical UAVs are often

designed to minimize their wing loading (thus maximizing the wing area and chord for a fixed

wingspan) to provide controllability and to operate close to critical Reynolds numbers to allow
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sufficient chord length for flow reattachment [80, 125]. However, this leads to reduced aero-

dynamic efficiencies than could be achieved in the lower subcritical range [118]. In addition

to controllability requirements, the CICADA and other fixed-wing UAV designs must satisfy

constraints on their geometry such as the need to stack easily within a specified enclosure [54].

Unlike the CICADA, birds can morph their wings to both adjust their stability characteristics

and fold their wings flat to their body when needed. It is likely that birds’ adaptable wing

geometry allows geometric and stability constraints to be satisfied without needing to sacrifice

performance when flying in these subcritical regimes.

In all, although this literature review suggests that there are many exciting discoveries yet to

be made about avian aerodynamic efficiency, my goal is to begin by analyzing the characteris-

tics of bird flight that readily outperform comparable UAVs: maneuverability and adaptability.

1.5 How birds morph their wings

Multiple studies have identified that bird’s ability to morph the shape of their wings al-

lows adaptable and maneuverable flight [39, 85, 127–129]. Birds can morph their wings both

passively and actively to adjust aerodynamic forces and moments in flight. Active wing mor-

phing is realized by actuating the skeletal joints, predominately the shoulder, elbow, wrist, and

digits (Fig. 1.6) [32, 126, 128, 130]. A bird’s wing joints are homologous to other tetrapod

(four-limbed animal) forearms including the human arm [131]. However, unlike our arms, the

range of motion of a bird’s elbow and wrist is often constrained at higher extension angles

[126, 128]. This constriction was historically explained as being a result of a planar four-bar

linkage system (parallelogram or ”drawing parallels”) [132]. However, a recent study on pi-

geons identified that two additional linkages were required to properly replicate the observed

out-of-plane effects of wing morphing, resulting in a non-planar six-bar linkage [133]. Under

this improved linkage model, the coupled motion of the elbow and wrist are prescribed while

the digit and shoulder joints operate independently from the rest of the linkage. Within their

available range of motion, birds use muscular control to actuate their skeleton and realize a

wide range of distinct, and often non-planar, wing shapes in flight [126, 128].

The majority of the wing surface is formed by the main flight feathers (also known as
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Figure 1.6: Key bird wing morphing parameters. Simplified view of a bird’s wing highlight-
ing the skeletal structure which can be actively controlled by activating the wing muscles. The
skeletal drawing is adapted from [126].

remiges) including the primary and secondary feathers. They are attached to the bones and

each other via a complex system of ligaments, tendons, and muscles [134]. Primaries are

distributed along the length of the carpometacarpus and onto the digits. They are numbered

from the most proximal to the most distal feather (Fig. 1.7, I - X). Secondaries are attached to,

what are effectively, protrusions on the ulna and are numbered from the most distal to the most

proximal feather (Fig. 1.7, 1-10). Different species of birds have different amounts of primary

and secondary feathers.

The simplification of modeling the wing as a six-bar linkage does not capture that the

elbow and wrist joints do have some capacity for rotation about three degrees of freedom:

extension/flexion, pronation/supination (twist) and elevation/depression [126], although each

joint’s range of motion varies based on the species [126, 130, 135]. The shoulder joint is also

important in bird flight and results in a solid body rotation of the wing shape about the root.

This joint is discussed within multiple chapters of this work, but future directed studies on the
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Figure 1.7: Simplified anatomical drawings of a bird’s wing bones and feather attach-
ments. Drawing is based on a turkey vulture (Cathartes aura). The musculature is not in-
cluded for clarity. This anatomical view is for reference only, as there is a lot of diversity in
bone and feather shapes. The proximal airfoil shape (dashed line, a-a) differs substantially
from the distal airfoil shape (dashed line, b-b).

role of the shoulder joint in avian flight are required. In addition, birds can actively control two

of their digits: digit I (a thumb-like appendage) and digit II (a pointer-finger-like appendage)

(Fig. 1.7) [133–135]. Here, I focus on the role of the elbow and the wrist predominately as they

have been shown to be responsible for the majority of wing shape variation in birds [122, 126].
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1.6 Maneuverability vs. stability

Avian flight capabilities are, in part, permitted by neurological control [130, 136] combined

with the physical capability to dynamically morph their wing or tail shape [127, 137]. In this

thesis, I focus on deciphering the role that wing morphing plays in adaptable and maneuverable

bird flight. Although I have defined maneuverability as the ability to adjust the velocity vector

direction and/or magnitude [19, 20], it is still challenging to quantify maneuverability with a

single metric. Therefore, throughout this work I leveraged another flight trade-off, that between

stability and maneuverability.

shoulder
joint

in front of 

stable

unstable

NP

behindNP

: center of gravity
NP : neutral point

(a) (b)

(c) (d)

Figure 1.8: Simplified diagram of static stability responses. (a) A stable flyer tends to
return back towards it’s trim condition after a perturbation, similar to (b) a ball on a concave
surface. (c) In contrast, an unstable flyer tends to move even further from it’s trim condition
after a perturbation, similar to (d) a ball on a convex surface. The outlined shapes represent the
equilibrium condition for both the bird and the ball.

Flight stability traditionally quantifies a flyer’s response to being disturbed (or perturbed)

from an equilibrium condition, also known as trimmed flight. Stability is evaluated by consid-

ering both the static and dynamic response after a flyer has been disturbed from it’s initial trim

condition. A gust is a common example of a flight disturbance. A flyer is statically stable if,

after a disturbance, the flyer initially tends back towards it’s trim condition (Fig. 1.8a). This

response is similar to a ball after being nudged when it is resting on a surface that is concave

(Fig. 1.8b). A flyer is statically unstable if, after a disturbance, the flyer tends to move even
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further from the initial condition (Fig. 1.8c), like a ball on a convex surface (Fig. 1.8d).

Static stability is often investigated for either the longitudinal or lateral degrees of freedom.

This differentiation can be made for a rigid aircraft with six degrees of freedom that is given

the constraints of symmetric flight and undergoes only small disturbances. In this case, the

longitudinal and lateral degrees of freedom can be decoupled [138, 139]. Throughout this work,

I make these assumptions to permit a focus on the longitudinal degrees of freedom specifically.

Longitudinal static stability requires that the center of gravity of the flyer is behind the neutral

point of the flyer (Fig. 1.8a). The neutral point is the location where the pitching moment

is independent of the angle of attack. Of note, static stability is independent of time and is a

necessary, but insufficient condition for complete stability.

To be completely stable, a flyer must also be stable over time, often called dynamic stability.

This is the case if, after a disturbance, the flyer eventually returns to its trim condition without

the use of any control inputs. The path followed after the disturbance can be quantified by

calculating the eigenvalues of the resultant dynamic system [138, 139]. Once the eigenvalues

(λ) are known the natural frequency and damping ratio can be calculated as:

λ = (re)± j(im)

ω =
√
re2 + im2

ζ =
−re
ω

(1.2)

Where re and im represent the real and imaginary parts of each eigenvalue respectively.

Whether the dynamic response is stable depends on the sign of the eigenvalue’s real com-

ponent. If the real component is positive, the flyer is unstable (Fig. 1.9c and f). If the real

component is negative, the flyer is stable (Fig. 1.9a and d). If the eigenvalue has no real com-

ponent, the response will be considered neutrally stable. Neutral stability indicates that there

would not be any amplification or decay of the natural frequency amplitude that resulted due

to a disturbance (Fig. 1.9b and e). Note that if the eigenvalue has no imaginary component,

the response will be steady and non-oscillatory (Fig. 1.9d, e, f). However, most commonly

in aircraft analyses the roots will be a complex pair, which signifies an oscillating response

after a disturbance (Fig. 1.9a, b, c). The dynamic response associated with each eigenvalue
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Figure 1.9: Simplified diagram of dynamic stability responses. The dynamic stability of a
system is quantified through the eigenvalues, which can be plotted on the real (x) and imaginary
(y) axes. If the eigenvalues are complex pairs, the response is oscillatory. The stability of
the system depends on the sign of the real component, where (a) negative is stable, (b) zero
is neutrally stable, and (c) positive is unstable. Note only the complex pair with a positive
imaginary value is shown in this diagram. If the eigenvalues are real numbers, the response
is steady and non-oscillatory. Again, the stability depend on the sign of the real number. The
response is (d) stable if the root is negative, (e) neutrally stable if the root is zero, and (f)
unstable if the root is positive.

of a linear system can be superimposed to obtain the complete response of the aircraft. For

example, the longitudinal response of rigid body aircraft undergoing small disturbances will be

characterized by four eigenvalues, often composed of two complex pairs.

A stable flyer inherently develops restorative moments to return to its trim position after

a disturbance, whether that disturbance is accidental or purposeful. However, to perform a

maneuver requires a purposeful departure from the trim condition and thus a stable flyer must

generate sufficient moments that overcome the inherent restorative moments. These restorative

moments lead to the expected trade-off between stability and maneuverability. It is for this

reason that fighter aircraft, which prioritize maneuverability, are designed to be more unstable

than passenger aircraft, which prioritize safety and fuel efficiency.

The advantage to approaching maneuverability through a stability-based analysis is that

there are well-established methods to evaluate the static and dynamic stability of an aircraft
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[138–140]. These approaches are implemented and discussed in detail throughout this work.

1.7 Dissertation outline

Within this thesis, I investigated the effects of manipulating the avian elbow and wrist on

longitudinal gliding flight stability. This analysis was approached as three core components

that support and reinforce each other. Each component is covered in a separate chapter.

First, Chapter 2 investigates the aerodynamic characteristics of the gull wing across it’s

complete range of flexion and extension of the elbow and wrist. Using an experimentally val-

idated, open source numerical lifting line method, I calculated the lift and pitching moment

associated with over 1000 real gull wing shapes. With the outputs from this study, I used sta-

tistical techniques to investigate the adaptive control permitted by using different combinations

of the elbow and the wrist to morph the wing. This revealed that there is an extension trajec-

tory that acts similar to a conventional flap by linearly increasing the lift and pitching moment

without affecting the longitudinal static stability. A separate extension trajectory was found

to linearly decrease the static stability with negligible effects to the lift and pitching moment.

These two trajectories highlight the broad range of possible control that could be gained by

implementing gull-inspired elbow and wrist joints in a morphing wing UAV design. Notably, I

found that none of the gull wing configurations could trim at the set shoulder angle. This study

focuses on a single species of gull and was limited to discussing the stability characteristics

with the pitching moment origin at the shoulder joint since there was no existing method to

estimate the center of gravity of a bird. A version of this chapter has been published [141].

Next, Chapter 3 addresses the lack of knowledge on inertial characteristics of birds with a

comparative analysis of 22 bird species. In this chapter, I developed an open source software

(AvInertia) that uses classic mechanical techniques to estimate the center of gravity and mo-

ment of inertia tensor for any flying bird with any wing configuration. With the output inertial

characteristics and the aerodynamic results from Chapter 2, I investigated the complete static

stability of these birds and found that modern birds have the capacity to shift between longitu-

dinally stable and unstable flight. Further, the comparative approach allowed me to implement

an evolutionary analysis, which revealed evidence of evolutionary pressures acting to main-
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tain this capability to shift between stability modes. This work focused specifically on static

stability characteristics. A version of this chapter has been published [142].

Finally, Chapter 4 combines the aerodynamic approach introduced in Chapter 2 with the

inertial approach introduced in Chapter 3 to quantify the complete dynamic stability of an indi-

vidual gull. This analysis accounts for the different wing configurations that can be achieved by

manipulating the gull’s shoulder, elbow, and wrist angle. I included a variable shoulder angle

in this work to enable a trimmed flight condition. Of the identified configurations that could

trim, those with high wrist angles had non-oscillatory, unstable responses. Within the stable

configurations, I found strong interactive effects between the shoulder, elbow, and wrist angles.

Compared to UAV metrics, the gull wing configurations are expected to be controllable by a

human pilot, albeit with a heavily damped phugoid mode. This heavily damped response indi-

cates that to effectively perform a given maneuver a gull may need to morph into an unstable

configuration.

In all, this thesis provides the first complete investigation of the longitudinal stability asso-

ciated with morphing the avian elbow and wrist. These analyses were completed in a manner

that allow for comparison to traditional aeronautical metrics, which in turn allows the identifi-

cation of the aspects of bird flight that may best enhance future UAV designs.
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Chapter 2

Adaptive Control with Gull Wing Joints
Science is fun. Science is curiosity. We all have natural curiosity. Science is a

process of investigating. It’s posing questions and coming up with a method. It’s

delving in.

– Sally Ride

2.1 Summary

Birds dynamically adapt to disparate flight behaviors and unpredictable environments by

actively manipulating their skeletal joints to change their wing shape. This in-flight adaptability

has inspired many uncrewed aerial vehicle (UAV) wings, which predominately morph within

a single geometric plane. In contrast, avian joint-driven wing morphing produces a diverse set

of non-planar wing shapes. Here, we investigated if joint-driven wing morphing is desirable

for UAVs by quantifying the longitudinal aerodynamic characteristics of gull-inspired wing-

body configurations. We used a numerical lifting-line algorithm (MachUpX) to determine the

aerodynamic loads across the range of motion of the elbow and wrist, which was validated

with wind tunnel tests using 3D printed wing-body models. We found that joint-driven wing

morphing effectively controls lift, pitching moment and static margin, but other mechanisms

are required to trim. Within the range of wing extension capability, specific paths of joint

motion (“trajectories”) permit distinct longitudinal flight control strategies. We identified two

unique trajectories that decoupled stability from lift and pitching moment generation. Further,

extension along the trajectory inherent to the musculoskeletal linkage system produced the

largest changes to the investigated aerodynamic properties. Collectively, our results show that

gull-inspired joint-driven wing morphing allows adaptive longitudinal flight control and could
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promote multifunctional UAV designs [141].

2.2 Background

A bird can begin its day foraging in a slow glide, suddenly needing to evade a predator,

only to later fly home battling an incoming storm. The adaptability demonstrated by birds is in

part due to their ability to morph the shape of their wings, both actively and passively [85, 127,

137, 143]. Previous research has shown that active wing morphing allows birds to dynamically

adapt their aerodynamic performance and stability characteristics in response to changing flight

conditions or requirements [127, 128]. In comparison, fixed-wing UAVs are often designed to

satisfy specific functions, such as high altitude surveillance or long endurance flights, and

efficient operation is limited to their intended mission parameters [6]. The adaptability offered

by avian wing morphing is highly desirable for UAVs as it may broaden the efficient operational

range, reduce operating costs as well as offer enhanced or novel capabilities [6, 143–145].

In addition, UAVs often face aerodynamic control challenges including the need to adapt to

variable environmental conditions [146] or maneuver through complex territories [147], while

birds complete similar tasks with apparent ease. Therefore, it is of no surprise that as engineers

strive towards the objective of an adaptive, multifunctional UAV, bird wings have directly and

indirectly inspired many morphing wing designs [6, 29–33].

The majority of current engineered morphing wings adjust their wing geometry discretely

within one or two planes such as span, sweep, dihedral, etc. [29, 30, 32, 33]. In contrast, bird

wings are composed of an underlying musculoskeletal system that can be approximated as a

non-planar six-bar linkage system [133]. When the applicable muscles are activated, the non-

planar musculoskeletal linkage causes three-dimensional (3D) changes to the overall wing ge-

ometry [126, 128, 133]. Active manipulation of only two skeletal joints, the elbow and wrist is

responsible for the majority of this wing shape change (Fig. 2.1) [126, 128]. These joints have

three degrees of freedom i.e. the ability to extend/flex, pronate/supinate and elevate/depress

[126]. However, within gliding flight extension/flexion dominates the range of motion and

thus we have limited our study to focus only on the range of motion of extension and flexion

for the elbow and the wrist (hereafter referred to as “joint-driven wing morphing”). Therefore,
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in this work the elbow and the wrist represent an approximated minimum set of coordinates

that is required to define the overall wing shape. In this case, traditional geometric properties

including distributions of wing twist, sweep, dihedral and the final wingspan can be approx-

imated as functions of the joint positions [128, 148]. Further, these non-planar wing shapes

likely have aerodynamic characteristics that differ from comparable planar wing aerodynamic

theory [122], as highlighted by the Hyper Elliptical Cambered Span (HECS) wing inspired by

gulls, which had improved aerodynamic efficiency (higher lift-to-drag ratio) compared to an

equivalent planar wing [149].

Despite the physical differences, no engineered morphing wing designs have implemented

biologically accurate joint-driven wing morphing. This discrepancy is likely due to the many

challenges associated with implementing a non-planar morphing wing including complex man-

ufacturing methods as well as additional mechanism weight and structural rigidity considera-

tions [6]. In addition, because we cannot assume that a bird’s wing has been optimized for

flight [150], it follows that we cannot assume that a biologically accurate morphing wing will

provide any advantage over a planar morphing wing. This leads to the main question of this

first chapter: does avian-inspired joint-driven wing morphing provide sufficient aerodynamic

benefits to warrant implementation in a future UAV wing design?

To address this question, we investigated the benefits of gull-inspired joint-driven wing

morphing by quantifying longitudinal aerodynamic stability and control, which are critical for

any successful flight, be it high-altitude surveillance or evasive maneuvers [137, 138, 140].

We assumed a symmetric glider with no sideslip, to permit longitudinal (pitch, motion in the

x-z plane, Fig. 2.1) and lateral (roll and yaw, motion in the x-y or y-z planes) components to

be decoupled [140]. In this work, longitudinal control refers to a morphing wing’s ability to

actively adjust its generated lift force and pitching moment. Traditional aircraft can control lift

through wing flap deflections and the pitching moment through elevator deflections [138, 140].

In addition to longitudinal control, we considered the effects of joint-driven wing morphing

on longitudinal stability and balance. Longitudinal stability is the tendency of an aircraft to

return to its equilibrium after an external disturbance, which requires an evaluation of both the

static (initial) and dynamic (time-dependent) response [140]. Here, we focused solely on static

stability, a necessary but insufficient condition for full stability. Finally, longitudinal balance is
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Figure 2.1: Gull wings inspired our analyses of how avian joint-driven wing morphing
affects longitudinal aerodynamic control, stability and balance. (a) Wings from gull ca-
davers (n = 3) were manually manipulated throughout the range of motion of the elbow and
wrist while tracking the 3D position of seven peripheral landmarks (black points) and four joint
landmarks (white points). (b) The identified wing shapes were simplified using linear approx-
imations between the peripheral landmarks. Four airfoils were used to create the wing-body
configurations. (c) The simplified wing shapes were reflected about the x-z plane and investi-
gated using MachUpX and cosine clustering to distribute the control points along the span. (d)
To validate the numerical results, nine wing shapes were 3D printed and tested in a 2ft-by-2ft
low-speed wind tunnel.

the ability for a glider to fly at an equilibrium, also known as trimmed flight.

To quantify the longitudinal control, stability, and balance associated with gull-inspired

joint-driven wing morphing, we first identified the 3D simplified wing shapes associated with

the extension and flexion of the elbow and wrist for hybrid glaucous-winged (Larus glaucescens)

× western (Larus occidentalis) gulls (n = 3, Fig. 2.1a). We selected gulls as our study species

because their non-planar wing shape is known to be actively controlled by elbow and wrist

manipulation [128]. In addition, gulls are a good model species for multifunctional UAVs as

they are generalist flyers, using a wide variety of flight styles from steady glides to sudden ma-

neuvers [112, 151]. Next, we aligned and simplified each extracted wing shape (n = 1031) and

connected these wings to a gull-shaped body (Fig. 2.1b). With each final wing-body configura-

tion, we predicted the aerodynamic properties using MachUpX, a low-order numerical general

lifting-line model (Fig. 2.1c) [152–154]. We validated the outputs from MachUpX with exper-

imental wind tunnel measurements on 3D-printed half-span equivalent wing-body models (Fig.

2.1d). Finally, we investigated four quasi-steady joint extension trajectories within the range

of motion that could be implemented to improve the adaptability of a gull-inspired joint-driven
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morphing UAV wing.

2.3 Methodology

2.3.1 Determining the wing-body configurations

Wings from gull cadavers (n = 3) were manually manipulated throughout their full range

of elbow and wrist extension and flexion while filming eleven key landmarks with three high

speed cameras. Seven landmarks on the wing periphery (black points, Fig. 2.1a) provided an

outline of the overall wing shape through the range of motion and four landmarks on the wing

joints (white points, Fig. 2.1a), allowed us to calculate the elbow and wrist angle associated

with each wing outline. The videos were digitized using DLTdv5 software [155] to return the

3D position of each landmark. For a detailed methodology on how the 3D landmarks were

obtained please refer to Harvey et. al [128].

The final extracted 3D landmarks were reoriented using a custom R script to align the wrist

joint with the humerus head on the y- and z-axis (Fig. 2.1b). We defined 0° angle of attack by

rotating the wing about the y-axis until the tip of the first secondary feather (S1) was aligned

with the wrist joint along the x-axis. Next, we exported the aligned landmarks into a custom

Python script to ease interfacing with MachUpX and limited the configurations to those with

elbow and wrist angles above the minimum angles used in vivo by gliding gulls [128]. Next,

the wings were segmented along the x-axis at each peripheral landmark. For each segment,

the custom script returned simplified leading and trailing edge points, and a value of sweep,

dihedral, and twist within that segment. The last 5% of the wing segment span was linearly

blended into the next segment to avoid sharp changes in wing geometry. These geometric

properties were selected to minimize error between the true peripheral landmarks and the final

simplified wing shapes. The maximum summed error for all landmarks was found to be 2.1mm.

There are a few key assumptions on the final wing shapes. First, we assumed that through-

out elbow and wrist extension and flexion, the digits (including the alula) remain fixed. Next,

we elected to not consider the capability to elevate/depress or supinate/pronate along joints

within the wing or to adjust overall wing position via rotation at the shoulder joint. Addition-
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ally, we neglected wing porosity, roughness, and flexibility to isolate the effects solely due

to the shape change created by joint-driven wing morphing. Due to these assumptions and

the alignment routine, the final wing shapes are not necessarily representative of an in-flight

configuration used by live gulls.

Each final wing shape was attached to a gull-inspired body. We selected a NACA0020

airfoil based on an estimated body length (41cm) and body height that was estimated using

an allometric relationship with a body mass of 0.91kg [156, 157]. The shoulder joint was

positioned at the quarter-chord of the body. The body width and position of the shoulder joint

along the y-axis (Fig. 2.1b) was determined from allometric relationships with the same body

mass [157]. To create an avian-like body shape, we reduced the body chord from a maximum at

the body’s center to the wing root chord length at the body’s edges using a cosine distribution.

For each wing-body configuration, we quantified a few traditional geometric properties

including the total and projected wing area, as well as wing tip twist, sweep, and dihedral (Fig.

2.5c). The total wing area is the total wing-body area and the projected wing area is the wing-

only area projected onto the y-x plane at 0°, the body projected area remains approximately

constant. The wing tip twist, dihedral and sweep values were calculated for the most distal

wing segment within our custom Python script. Note that all tested wing shapes had wing tips

with some degree of backwards sweep and anhedral.

2.3.2 Airfoil properties

Next, we selected three airfoils to distribute along the wingspan. We extracted two airfoils

from a previously published scan of a gull wing at 20% (Liu S20) and 40% (LiuS20) span (Fig.

2.1b) [158]. As the species was not identified in that study, we assumed that the airfoil shape

is similar between different gull species. We defined the airfoils for each segment based on the

locations of the skeletal joints as illustrated in Fig. 2.1b. For segments more distal than the

wrist joint, we assigned a NACA 3603 airfoil because the scan did not capture the wing after

77.2% span [158]. We selected the NACA 3603 after compiling a list of measured distal avian

airfoils [159–161]. All aerofoils were linearly blended to create a smooth wing surface within

the MachUpX framework [152].

MachUpX requires the airfoil performance data (lift, drag and pitching moment) at an ap-
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propriate Reynolds number as inputs. We used XFOIL to predict the 2D airfoil properties

for each of the four selected airfoils used on the wing and body [162]. Following XFoil’s

implementation of the en method for transition prediction, we assumed a critical N-factor at

transition of 9. This value is commonly used to model the turbulence intensity in an average

wind tunnel. We estimated the range of Reynolds numbers that would be experienced by each

airfoil and stored each data set separately. For Reynolds numbers above 100,000 we incre-

mented by 50,000 (to a maximum of 300,000 on the body) and below 100,000 we incremented

by 10,000 (to an enforced minimum of 10,000 on the wing tip). Our custom Python script

predicted the Reynolds numbers experienced by each wing segment and selected the closest

Reynolds numbers number file for the segment airfoil. This methodology accounts for changes

in aerofoil performance at variable Reynolds numbers across the wingspan. MachUpX linearly

interpolates the 2D airfoil properties across wing segments from the provided files.

2.3.3 Numerical lifting-line solution (MachUpX)

MachUpX is a Python implementation of the Goates-Hunsaker (G-H) general numerical

lifting-line method, which is a modern extension of Prandtl’s classical lifting-line theory [152–

154]. Within the G-H method, the wing is replaced by a set of horseshoe vortices and Prandtl’s

lifting-line hypothesis is enforced at a single control point on each vortex to determine the

aerodynamics of the wing. Wings are modelled in MachUpX using the quarter-chord distribu-

tion of sweep, dihedral, and twist. Multiple spanwise sections can also be used to incorporate

viscous effects by allowing for viscous section lift, drag, and moment coefficients. The outputs

from MachUpX used in this study are the total forces and moments for a given wing-body

configuration. As a low-order numerical method, MachUpX is ideal for quickly performing

comprehensive investigations of multi-degree-of-freedom design spaces.

We evaluated the wings as a symmetric full-span configuration at a velocity (U∞) of 10

m/s to approximate a gull’s gliding speed (density (ρ): 1.225 kg/m3, kinematic viscosity:

1.81×10−5 m2/s) [25, 128]. We specified a grid resolution of 200 cosine clustered vortices

for the wing and 60 for the body (Fig. 2.1c). We used MachUpX’s non-linear solver with a

convergence tolerance of 10−6 and a relaxation factor of 1, 0.8, 0.5 or 0.01. Each wing was

tested from -10° to 10° in increments of 1°. In total, we had convergence for at least one angle
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Figure 2.2: MachUpX effectively predicted the aerodynamic forces and moments for the
investigated wing shapes. (a) The in vivo range of motion used by gliding gulls was in-
vestigated using MachUpX (n = 1031, translucent gray points; higher-sampled configurations
accordingly appear darker) and validated with wind tunnel tests of 3D printed wing shapes
distributed across the range (white squares). (b) Experimental wings (photo, left) were tested
at an 80% scale from the numerical wings (front view of Fig. 2.1b, right). (c) Planform views
of the 3D printed wing shapes corresponding in location/arrangement to the white squares in
(a) and the plots in (d) and (e). Wing shapes in (b) and (c) are described by (elbow angle, wrist
angle). (d) MachUpX predicted the lift force within the expanded uncertainty range at low
angles of attack. (e) The numerical results for lift and pitching moment lie within the expanded
uncertainty range on both variables. The error bars represent the expanded uncertainty range,
approximately a 95% confidence interval.
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of attack for 1031 wing-body configurations with a total of 9720 converged test cases. The

majority of the convergence was at lower angles of attack.

We used the MachUpX outputs to investigate the lift and pitching moment for the wing-

body configurations. We were not able to investigate the maximum lift produced by each con-

figuration due to the limitations of the numerical method for the complex shapes. Additionally,

we did not investigate drag as it was outside the scope of this study, but it likely plays a variable

role in avian wing morphing and warrants future investigation. Note that MachUpX predicted

the experimental drag within the expanded experimental uncertainty range for all wings except

for configurations 6, 7, 8, and 9 (Fig. 2.2c).

To allow comparison between the experimental and numerical lift and pitching moments,

we non-dimensionalized the outputs by the dynamic pressure (1
2
ρU2
∞), maximum total wing

area (Smax) and maximum wing-body mean chord (cmax) for each specimen across all mor-

phed configurations to obtain CLmorph and Cmmorph , respectively. These adjusted aerodynamic

coefficients allow comparisons across different wing specimens without filtering out the wing

area change due joint-driven wing morphing. As there is relatively little information about

the location of a bird’s center of gravity, we evaluated the pitching moment about the body’s

quarter-chord (aligned with the shoulder joint); this effectively assumes that the center of grav-

ity is located at the body’s quarter chord (Fig. 2.1a).

2.3.4 Wind tunnel study

To validate the numerical results from MachUpX, we 3D printed nine wing-body config-

urations across the range of motion (Fig. 2.2a, b and c and Fig. 2.3). The wing shapes are

identical to those tested in MachUpX due to a feature that outputs the DXF files for a specified

wing shape [152]. These files were prepared into a 3D model and 3D printed on a CON-

NEX500 printer in rigid plastic (VeroWhitePlus). We printed half-span wing-body models at

80% scale to ensure that the largest wingspan only extended to 71% of the tunnel width. The

printed wings were lightly sanded to minimize surface roughness.

The final wings were tested in the University of Michigan 2ft-by-2ft low-speed wind tunnel

at 12.5m/s (Fig. 2.3). This enforced a constant Reynolds number (Re) between the experimen-

tal and numerical tests of approximately 1.4-1.5×105 based on the maximum mean chord for
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Figure 2.3: All final 3D printed wings. (a) Organized from left to right based on Fig. 2.2c as
configuration 7, 8, 9, 4, 5, 6, 1, 2, 3.

the wing-body specimen. The wings were mounted to the top of the wind tunnel on a 6-axis

load cell (ATI Delta) that sampled at 4kHz for 45 seconds. There was a 0.5-inch gap between

the body and the tunnel edge. The load cell was installed on a rotary table (Parker 30012-S)

connected to a motor (VEXTA PK266-03B) and a VELMAX motor controller. This installa-

tion method used the reflection plane methodology and blockage constraints were neglected

due to the minimal size of the wings relative to the tunnel test section [163]. Using a custom

MATLAB script, we performed an angle of attack sweep from 0° to 24° (∆2°), 25° to 1° (∆2°),

0° to -3° (∆1°) and -4° to -20° (∆2°).

To determine the experimental uncertainty, we implemented the definition and procedures

outlined in the Guide to Uncertainty Measurement [164] through the R package errors [165].

The calculated uncertainties were multiplied by a coverage factor k = 2 to determine an ap-

proximate 95% confidence level on the experimental data and are included as error bars in Fig.

2.2d and e [164].

Finally, to investigate the differences between the wind tunnel and numerical results, we fit

a first order linear model to the numerical and experimental results from the nine tested wing

shapes. The lift and pitching moment data were the independent variables for the models and
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Figure 2.4: Wings installed in the wind tunnel. (a) Front view of configuration 6 (Fig. 2.2c)
(b) Side view of configuration 1 (Fig. 2.2c).

the elbow, wrist, angle of attack (or lift for the pitching moment model) and method were the

dependent variables.

Turbulence intensity

Turbulence intensity is known to affect the aerodynamic performance of wings tested at

low Reynolds numbers. We quantified the free stream turbulence in the wind tunnel using a

hotwire anemometer (DANTEC MiniCTA with unidirectional 55P11 probe and 55H20 probe

support) located at the center line of the tunnel approximately at the location of the wing

leading edge. The hotwire was calibrated against a pitot tube at 20 velocities using King’s law.

This test revealed a base level turbulence intensity of 0.7% of the freestream velocity at the test

speed of 12.5 m/s. We found that the turbulence intensity increased towards the edges of the

tunnel to approximately 1.8%. It is not simple to directly link the root-mean-square turbulence

intensity result to a critical N-factor at transition per the en method that is implemented by

XFoil [166]. As the experimental results agree well with the numerical results at low angles of
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attack, we expect that the role of turbulence was relatively minor. But as the wing approaches

stall, turbulent flow in the wind tunnel may have contributed to improved flow attachment and

thus higher lift than was predicted by the numerical results.

2.4 Results

2.4.1 MachUpX validation

The MachUpX lift and pitching moment results fell within the expanded experimental un-

certainty range for low angles of attack (Fig. 2.2d and e)[164]. Disregarding the expanded

uncertainty range, there was an average absolute error in the lift and pitching moment of 0.08

and 0.04 at 0°, respectively. Note that this is largely manifested by MachUpX under predicting

the lift for lower wrist angles and higher elbow angles (Fig. 2.2d, configurations 6, 8, and 9).

By 5°, the error in both metrics more than doubled. We found that there was no significant

effect of methodology (experimental or numerical) on the predicted coefficient of regressions

for either the elbow or the wrist. However, there was a significant effect of methodology (p-

value < 0.001) on the predicted coefficient of regression for the angle of attack for both the

lift and pitching moment models. Specifically, at high angles of attack MachUpX either did

not converge, or under predicted the magnitude of lift and pitching moment, likely due to more

stalled regions. Informed by these outcomes, the rest of our analyses were limited to angles of

attack less than 5°.

2.4.2 Lift force and pitching moment production

With the outputs from MachUpX, we evaluated the lift and pitching moment at a constant 0°

angle of attack for all wing-body configurations (Fig. 2.5a and b). We found that the majority of

the configurations produced a negative (nose-down) pitching moment and a positive lift force.

Figures 2.5a and b reveal that wings with high elbow and low wrist angles had the highest

lift and lowest pitching moment, representing the highest absolute loading condition. We used

the R package GGally [167] to determine the normalized values of the wing tip geometry,

wing area parameters (that were first normalized for each specimen’s maximum wing area) and
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aerodynamic forces and moments as shown in Fig. 2.5c. Unexpectedly, we found that these

highly loaded wing-body configurations did not have the highest wing area (total or projected)

but instead had the most positive twist angle at the wing tips (Fig. 2.5c).
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Figure 2.5: Joint-driven wing morphing provides a reliable method to control the lift and
pitching moment. (a) and (b) Constant lift and pitching moment contour lines overlaid on
the numerical results at 0° angle of attack (n = 414) highlight a region of high magnitude lift
and pitching moment. (c) Normalized geometric properties, centered on 0° twist angle (black
line). The black dashed line represents the wing configuration with the maximum projected
wing area. The color scheme is based on the normalized value of CLmorph .

Positive twist known as wash-in, occurs when the wing tips are at a higher angle of at-

tack than the wing root. Traditional aircraft are designed with wash-out so that the wing root

will stall before the wing tip, which improves the handling characteristics of the aircraft [168].

The importance of twist in lift and pitching moment production is supported by a previous

experimental study that demonstrated that active wing twist morphing alone provides effec-

tive longitudinal control of a tailless aircraft [169]. For the tested configurations, we found

that wash-in was associated with a highly swept wing while the less swept (extended) wings

exhibited wing tip wash-out. Although wing tip twist was a good predictor of the developed
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forces and moments, models informed by the elbow and wrist also successfully predicted the

developed lift and pitching moment.

To quantify and visualize the longitudinal control characteristics of the wings from the

MachUpX outputs, we fit linear mixed effects models with an interaction term between all the

first order fixed explanatory variables to CLmorph and Cmmorph . The fixed explanatory variables

included the elbow and wrist angle for both models, and the angle of attack for the lift model

which was replaced with CLmorph for the pitching moment model. In addition, we included the

wing specimen identification number as a random effect in each model. Higher order terms on

each explanatory variable were included and the final polynomial forms were selected using

Akaike Information Criterion (AIC) to compare the weights of each model. The goodness-of-

fit of a linear mixed effects model can be assessed through the marginal R2, which quantifies

the variance explained by the fixed effects and the conditionalR2, which quantifies the variance

explained by the full model [170]. We calculated the marginal and conditional R2 using the

R package MuMIN [171]. Both the lift and pitching moment models fit our numerical results

well. The lift model had a marginal R2 of 0.81 and a conditional R2 of 0.90 while the pitching

moment model had a marginal R2 of 0.97 and a conditional R2 of 0.98. The good model fits

suggest that an engineered joint-driven morphing wing could provide a reliable method for

controlling the lift and pitching moment in flight, similar to twist control.

Our results have important consequences for estimations of aerodynamic forces on live

gliding birds. Specifically, the wing area may not be an effective metric to differentiate between

the lift and pitching moment produced by different wing shapes used by the same bird (Fig.

2.2c). Instead, if they can be obtained the wing tip twist and sweep angle can provide improved

metrics.

Next, we assessed longitudinal balance and stability using the pitch-stability derivative

(slope) and zero-lift pitching moment (y-intercept) from the linear model:

Cmmorph =
dCmmorph
dCLmorph

CLmorph + Cmmorph,L=0
(2.1)

A flyer is statically stable if the pitch-stability derivative is negative, and a flyer can be

balanced while statically stable if the zero-lift pitching moment is positive. To quantify the

pitch-stability derivative, we fit a linear model (Eqn. 2.1) to the outputs of each wing-body
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configuration if it had converged for a minimum of four angles of attack. We verified that the

data fit was linear (R2 > 0.99). We then extracted the slope (
dCmmorph
dCLmorph

) and the y-intercept

(Cmmorph,L=0
) for each configuration.

CLmorph

Cm morph

trim

m

dCm

dC L morph

morph

C morph, L = 0

Figure 2.6: Representative example of the relationship between lift and pitching moment
for a statically stable wing. Longitudinal static stability can be quantified with the zero-lift
pitching moment and pitch-stability derivative.

2.4.3 Longitudinal static stability

First, we evaluated the static stability, which requires that a stable glider perturbed from

its equilibrium by an external disturbance (Fig. 2.6) will develop a change in pitching mo-

ment with an opposite sign to the change in the lift force. This returns the glider towards its

equilibrium. We found that all the investigated wing-body configurations had entirely negative

pitch-stability derivatives and thus were statically stable (Fig. 2.7a). The magnitude of the

static stability was higher for more folded wing configurations. Next, we evaluated the tradi-

tional aircraft static margin metric which is equal and opposite to the pitch-stability derivative:

static margin = −
dCmmorph
dCLmorph

=
xCG − xNP

cmax
(2.2)

Where xCG is the location of the center of gravity and xNP is the neutral point of the wing-

body configuration. The neutral point is the location where the pitching moment is independent

of the angle of attack. The negative pitch-stability derivatives (positive static margins) for

all our tested configurations indicated that xNP is substantially aft of the body quarter-chord.
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When we considered the magnitude of the change, our results revealed that joint-driven wing

morphing permits a maximum static margin shift of 24% of cmax, or approximately 5.1 cm.

Moreover, if the gull-inspired wing-body xCG was relocated between 4.1 to 9.2 cm behind

the shoulder joint, this sizable static margin shift would allow the glider to shift between stable

and unstable configurations. This large static margin shift would result in significantly different

handling qualities between configurations, which is usually an undesirable condition for human

pilots [138].

In addition, we found that joint-driven wing morphing provides an effective method to con-

trol the static margin as the elbow and wrist angles were good predictors of the pitch-stability

derivative. We fit a mixed effect model to all of our wing-body configurations following a simi-

lar procedure as used for the lift and pitching moment models with the elbow and wrist angle as

fixed explanatory variables. We found that this model provided a good fit for the pitch-stability

derivative with a marginal R2 of 0.69 and a conditional R2 of 0.83.

This analysis assumes a fixed xCG, but in actuality morphing a wing can cause the center

of gravity to shift. To estimate an approximate xCG shift associated with joint-driven wing

morphing, we investigated the solid 3D printed wings and found a maximum backwards shift

of 1.3 cm. Note that this will not necessarily be comparable to an engineered morphing wing

because the weight distribution will depend on the manufactured design. However, the xCG

shift for a real bird wing-body is likely smaller than the 3D printed wings due to the lightweight

nature of feathers compared to the musculoskeletal system and body. To obtain an approximate

estimate of the static margin shift, we assumed that the xCG moves opposite to the xNP . This

situation would reduce the maximum static margin shift to 3.8 cm (18%). Note that we non-

dimensionalized the static margin using cmax, but traditional static margin analyses use the

mean aerodynamic chord which will be smaller than cmax. In all, we expect that our calculated

static margin shift of 18% represents a conservative estimate.
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Figure 2.7: Joint-driven wing morphing provides a reliable method to control static sta-
bility characteristics, but not the trim state. (a) constant zero-lift pitching moment and (b)
constant pitch-stability derivative contour lines overlaid on the results obtained from all wings
that converged at more than four independent angles of attack (n = 1012).

2.4.4 Longitudinal balance

Next, we investigated the longitudinal balance condition which ensures that while in trimmed

flight a glider can create sufficient lift to support its weight when there is no net moment (math-

ematically represented by a positive x-intercept of Eqn. 2.2, Fig. 2.6). Because we require a

negative slope for static stability, this in turn requires the y-intercept or zero-lift pitching mo-

ment to be positive. We found that none of our wing-body configurations had a positive zero-lift

pitching moment (Fig. 2.7b). As a result, a gull-inspired wing-body with the wings aligned

following our convention could not be balanced at 0° while flying in a stable condition. This

result is identical to a positively cambered aircraft wing which has a negative zero-lift pitching

moment [140]. Furthermore, our results showed that the elbow and wrist would not provide a

reliable method to control the trim position because they were poor predictors of the zero-lift

pitching moment (marginal R2 of 0.39 and a conditional R2 of 0.42).

However, like fixed-wing aircraft a horizontal tail with control surfaces could be added

to gain control. Interestingly, unlike fixed wing aircraft, birds not only have a controllable

horizontal tail, but they also can rotate their wing about their shoulder joint. This is especially

relevant because birds are capable of sustained flight without their tails, possibly suggesting
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an alternative method can be used to maintain trimmed flight [137]. It follows that to have

controllable, balanced flight for the wing-body configurations investigated, it will be necessary

to investigate the possible roles of both a controllable horizontal tail and a controllable shoulder

angle.

2.5 Discussion

Joint-driven wing morphing creates a two-dimensional morphing space (Fig. 2.8a, shaded

region) that encompasses a wide variety of aerodynamic properties available to a single wing.

In flight, a joint-driven morphing wing can follow any continuous joint trajectory through this

space. We defined a joint trajectory as a specific set of elbow and wrist angles obtained by

following any continuous line within the shaded region of Fig. 2.8a, and a joint extension

trajectory as a specific subset of joint trajectories that progress from left to right on Fig. 2.8a.

Note that it is also possible to implement these trajectories in reverse (flexion), however in this

work we focus on the effects of extension alone. Each specific joint extension trajectory will be

associated with differing gradients in aerodynamic properties where gradients can be visualized

by considering the contour lines in Fig. 2.5a, b, and 2.7. Contour lines were extracted from

the lift, pitching moment and pitch stability derivative models using the R package ContoureR

[172].

2.5.1 The role of joint extension trajectories

To identify joint extension trajectories that could be useful for a gull-inspired morphing

UAV, we examined four unique trajectories at a fixed 0° angle of attack while assuming a

quasi-steady extension that neglects any unsteady aerodynamic effects (Fig. 2.8a). The first

three trajectories were selected by individually extracting constant contour lines from the lift

(number 1), pitching moment (number 2) and pitch-stability derivative models (number 3)

(Fig. 2.8a). The final trajectory considered is the linkage trajectory (number 4) which is the

set of coupled elbow and wrist angles that are provided by the mechanical advantage of the

gull wing’s six-bar linkage system (Fig. 2.8a) [126, 133]. These angles were determined in a

previous study by fixing the humeral head of a specimen’s wing and manually applying a point
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force within an approximate x-y plane (Fig. 2.1) to a point on the wrist; this causes both the

elbow and wrist joints to extend due to the linkage coupling [126]. This approach allows us

to extract the kinematics of the coupled linkage system that is caused by the displacement of

a single point, the point on the wrist in this case. Finally, we visualized the wing shape at the

start and end of each trajectory from the ventral view (Fig. 2.8c) and head-on view (Fig. 2.8d).

We found that both the constant lift and constant pitch-stability derivative trajectories de-

coupled stability characteristics from load production. First, the constant lift trajectory (Fig.

2.8a, number 1) created the highest absolute change in the pitch-stability derivative, exhibiting

a linear response (R2 > 0.99) throughout the extension (Fig. 2.8b and e). This linear trend

indicates that the control effectiveness remains constant, removing the need for a controller to

know the exact position of the wing. In addition, this trajectory had a minimal effect on the

pitching moment, where the instantaneous control effectiveness (instantaneous slope from Fig.

2.8e) of the pitching moment was below 5× 10−4/◦ until over halfway extended but increased

as the wing neared maximum extension. In all, extension along the first half of the constant

lift trajectory would allow a simple trajectory for a morphing UAV to adjust its static margin

without affecting the lift or pitching moment. This extension trajectory could allow a gull-

inspired morphing UAV to shift from a stable to an unstable configuration without affecting its

longitudinal position or orientation. Decreasing static stability may be useful when a flight en-

vironment becomes gustier because lower static stability reduces the strength of the inherently

developed pitching moment and may reduce path oscillations [128]. As a result, this morphing

trajectory may allow an active form of gust rejection.

The second trajectory that decouples stability from load production is the constant pitch-

stability derivative trajectory (Fig. 2.8a, number 3). This extension trajectory created a large

magnitude increase in lift and decrease in pitching moment both with linear responses (R2 >

0.99) throughout extension (Fig. 2.8b and e). This trajectory acts similar to a traditional sym-

metric flap deflection because a downward flap deflection increases lift and creates a nose-down

pitching moment, which can be counteracted with a controllable horizontal tail. Thus, as with

flaps this extension trajectory could be used to steepen the approach angle during landing. Also

similar to flaps that do not change the overall wing area, this trajectory avoids the undesirable

change to an aircraft’s handling qualities that is caused by a static margin shift [138]. However,
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Figure 2.8: Constant joint extension trajectories allow variable longitudinal control
strategies. (a) The entire range of motion investigated (shaded region) overlaid with the four
investigated trajectories: 1) constant lift force, 2) constant pitching moment, 3) constant pitch-
stability derivative, and 4) linkage trajectory. (b) The total control effectiveness of the trajectory
(y-axis) is defined as the change in a parameter between the start and end per degree of exten-
sion along the entire trajectory arc length. Planform view (c) and head-on view (d) of the wing
shapes at the start of each trajectory overlaid with the shapes at the end. (e) The instantaneous
control effectiveness of each longitudinal quantity, represented by the instantaneous slope at
each point, is highly variable. Each quantity is scaled between its absolute minimum and max-
imum based on the results at 0° angle of attack. 0% represents the lowest loads, least stable
and least balanced configuration.

because the relationship between lift and pitching moment is directly affected by the location

of xCG, a successful implementation of this morphing trajectory in a gull-inspired morphing

UAV will need to include a detailed trade-off study investigating the most beneficial placement

of xCG.

Our results showed that minor variations off the identified trajectories recouples the stabil-

ity and loading characteristics. Consider the constant pitching moment trajectory (Fig. 2.8a,
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number 2) which appears to be slightly askew from the constant lift trajectory (Fig. 2.8a, num-

ber 1). Yet, the constant pitching moment trajectory has a strong non-linear coupling between

the developed lift and static stability (Fig. 2.8b and e). Thus, precise joint angle control will

be needed for a UAV to gain the discussed benefits from the two decoupled trajectories. This

required precision increases the challenge of manufacturing an effective joint-driven morphing

wing.

Finally, we investigated extension along the linkage trajectory (Fig. 2.8a, number 4) and

found that this extension does not cause the largest change to any individual parameter but

does cause the largest magnitude change across all parameters compared to the other investi-

gated trajectories. Interestingly, there was a non-linear response, such that the instantaneous

control effectiveness differs substantially from the total control effectiveness (Fig. 2.8e and

b). Specifically, at the start of the extension trajectory CLmorph increases by 6.3×10−3/° and

Cmmorph decreases by 2.2×10−3/°, increasing the absolute load on the wing. Near the end of the

extension trajectory CLmorph decreases by 4.7×10−3/° and Cmmorph increases by 2.2×10−3/°,

decreasing the absolute load on the wing. Thus, extension alone allows a method to both

increase and decrease aerodynamic loads, solely dependent on the wing’s position along the

extension. Note that these instantaneous control effectiveness values are a larger magnitude

compared to those obtained by all other investigated trajectories (Fig. 2.8b and e). The strong

variability in the response possibly allows the linkage trajectory to serve many different func-

tions in flight such as initiating and maintaining complex manoeuvres. Moreover, due to the

mechanical advantage of the linkage system, following this trajectory requires input from only

a single actuator which would simplify the manufacturing process of such a wing. However,

the lift and pitching moment are strongly coupled to the balance and stability characteristics

for the linkage trajectory. As such, flight control using joint-driven wing morphing along the

linkage trajectory would be undesirable for human pilots without an additional controller to

account for the shifting static margin.

2.5.2 Comparison to existing UAV

There are few comparably-sized engineered morphing wing aircraft with published longi-

tudinal characteristics. One great example is a goshawk-inspired drone with a maximum wing
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span (1.05m) that is 87% of the scale of our largest wing (1.21m) [29]. This aircraft saw a min-

imal change in the lift and pitching moment produced between a swept and extended position

(with a furled tail) around 0° but, at higher angles of attack the extended wing had substantially

higher loads with an absolute variation up to roughly 0.5 in CL and 0.4 in Cm. Note that Cm

was non-dimensionalized by the mean aerodynamic chord which is smaller than cmax and thus

our range of pitching moment cannot be compared directly. Our morphing wing-body numeri-

cal results showed an absolute variation of 0.48 in CLmorph and 0.18 in Cmmorph at 0°. Further

investigation of our experimental results indicated that the absolute variation remains relatively

constant across the investigated angles of attack with the range only beginning to reduce be-

low -5°. This suggests that a joint-driven morphing wing UAV may effectively provide lift and

pitching moment control across a broader range of angles of attack when compared with planar

sweep-only morphing.

2.5.3 Open loop vs. closed loop

The preceding discussions of longitudinal stability and balance have assumed that the gull-

inspired morphing UAV would be controlled with open-loop stability (as is done when a glider

is statically stable). Instead, it is possible to use closed-loop stability to successfully fly while

in an unstable configuration [138]. For the gull-inspired morphing UAV, the xCG would have

to be shifted backwards by over 9.2 cm from the body quarter-chord to render the entire range

of motion unstable. In this configuration, the pitch-stability derivative will be positive and

thus, a negative zero-lift pitching moment would permit a trimmed position. In traditional

aircraft design this is called relaxed static stability. Such an aircraft benefits from improved

drag performance and maneuverability characteristics but requires a high degree of control

to avoid the potentially serious consequences of an unstable response to external inputs such

as gusts [138]. Our current results cannot comment on whether live birds utilize open-loop

or closed-loop control, but for a gull-inspired morphing UAV, closed-loop control offers an

alternative to installing a horizontal tail. In this case, the trim position would still need an

effective control method. This control could possibly be provided by the shoulder angle similar

to hang gliders [137, 140].
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2.6 Limitations

It is important to note that our previous study of real prepared gull wings found the oppo-

site relationship between elbow angle and the pitch-stability derivative compared to the current

rigid wing results [128]. We expect that differences between the two studies may be caused

by feather flexibility, feather porosity, different wing alignments, and/or the inclusion of wing-

body interaction effects within the current study. Further investigation to understand the differ-

ences between a rigid 3D printed wing shape and a real gull wing will be necessary.

To this end, many assumptions were required to allow a targeted analysis of the effects of

elbow and wrist morphing and will require investigation in future studies to approach a general

understanding of how birds fly. For example, in this study we did not include variations in

velocity or Reynolds number. Birds use an intermediate Reynolds number and it is therefore

possible that shifting into a lower or higher regime could have a measurable effect on the lon-

gitudinal characteristics of an avian-inspired wing [122]. Additionally, it will be necessary to

evaluate the coupled role of shoulder joint control with elbow and wrist morphing to develop a

holistic understanding of flight control due to avian wing morphing. Further, our work assumed

quasi-steady extension, however in reality, birds can manipulate their joints very quickly. This

quick motion could result in induced flow along all major directions. A detailed mechanistic

study is warranted in the future to determine the presence and the role of specific unsteady aero-

dynamic effects. Finally, we only investigated a single species, but birds have a broad range of

species diversity, each of which may offer unique insights on how to efficiently design UAVs.

In particular, we expect different control effectiveness values between different bird species

due to variable wing range of motion, linkage structures and overall geometry [122, 126, 148].

2.7 Conclusion

We investigated the potential benefits of gull-inspired joint-driven wing morphing for future

UAV applications. First, we determined a set of simplified wing shapes across the range of

motion of the elbow and wrist used by gliding gulls. Next, we used a numerical general lifting-

line model (MachUpX) validated with wind tunnel experiments to determine the longitudinal
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characteristics of the wing-body configurations. Our results showed that wings with the highest

load production had low wrist and high elbow angles and were associated with wing tip wash-

in. Additionally, although the inherent response to an external disturbance for all wing-body

configurations was stable, we found that a controllable horizontal tail or shoulder angle would

be necessary to successfully provide open-loop control. Importantly, we found that the elbow

and wrist angle could provide a reliable method to control the lift, pitching moment, and overall

static margin but would not be sufficient to control the zero-lift pitching moment alone.

Our study revealed that the two-dimensional morphing space allowed by the elbow and

wrist joints permits a wide variety of flight control strategies. In particular, we identified two

trajectories that decoupled longitudinal static stability and longitudinal load production. One

trajectory (Fig. 2.8a, number 1) linearly adjusts static stability without affecting the load pro-

duction and the other (Fig. 2.8a, number 3) linearly adjusts the lift and pitching moment

without affecting stability, in a manner similar to an aircraft flap that does not change the wing

area. Moreover, the identified linear response is highly advantageous for a simplified controller

design. However, we found that a unique but similar trajectory (Fig. 2.8a, number 2) recouples

the loads and stability, suggesting that precise control of the elbow and wrist would be neces-

sary to realize these aerodynamic benefits in a UAV. Finally, the linkage trajectory (Fig. 2.8a,

number 4) afforded by the gull’s musculoskeletal linkage system yielded the highest instanta-

neous control effectiveness of all our investigated trajectories and represents a simple actuation

trajectory that can quickly adjust the longitudinal characteristics. However, the load produc-

tion and stability are highly coupled for this trajectory and other control mechanisms would

be required to negate this effect. In all, investigation of these unique trajectories highlights the

multifunctional capabilities of gull-inspired joint-driven wing morphing.

Despite the identified aerodynamic benefits of a joint-driven morphing wing, a major chal-

lenge for any bio-inspired UAV is to design an efficient actuation mechanism that can realize

the proposed benefits in practice. In the past, a non-planar wing design that was indirectly

inspired by gulls, the HECS wing (discussed in the Section 2.2) was shown to yield mini-

mal aerodynamic benefits when it was actively morphed into its furled configuration [173]

despite promising rigid model results [149]. This emphasizes the multidisciplinary challenges

associated with effective morphing wing design. Successful implementation of gull-inspired
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joint-driven morphing wings will require detailed structural analyses, flight tests, and multidis-

ciplinary investigations to determine if the benefits identified within this study could effectively

and efficiently be realized in a morphing wing UAV.

Do the benefits provided by joint-driven wing morphing outweigh engineered morphing

wing designs? Our results show that gull-inspired joint-driven wing morphing creates a sim-

ilar magnitude of control effectiveness as an equivalent aircraft with a sweeping mechanism,

but with the added multifunctional capabilities permitted by the variable joint extension tra-

jectories. This is especially promising because we found that a joint-driven morphing wing

can produce a similar aerodynamic response to traditional flaps but would not be limited to

this singular functionality. Combined with future multidisciplinary investigations, we expect

that gull-inspired joint-driven wing morphing could provide a future generation of UAVs the

unique ability to adapt on the fly by morphing along the specific joint trajectory that realizes

the desired aerodynamic characteristics.
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Chapter 3

The Evolution of Avian Pitch Stability
I am among those who think that science has great beauty. A scientist in [their]

laboratory is not only a technician, [they are] also a child placed before natural

phenomenon, which impress [them] like a fairy tale.

– Marie Curie

3.1 Summary

Birds morph their wing shape to accomplish extraordinary maneuvers [174–177], which

are governed by avian-specific equations of motion. Solving these equations requires infor-

mation about a bird’s aerodynamic and inertial characteristics [138]. Avian flight research

to date has focused on resolving aerodynamic features, whereas inertial properties including

center of gravity and moment of inertia are seldom addressed. Here, we used an analytical

method to determine the inertial characteristics of 22 species across the full range of elbow and

wrist flexion and extension. We find that wing morphing allows birds to substantially change

their roll and yaw inertia but has a minimal impact on the center of gravity position. With

the addition of inertial characteristics, we derived a novel metric of pitch agility and estimated

the static pitch stability, which revealed that the agility and static margin ranges are reduced

as body mass increases. Surprisingly, our results provide quantitative evidence that evolution

selects for both stable and unstable flight, a result that contrasts with the prevailing narrative

that birds are evolving away from stability [178]. This comprehensive analysis of avian iner-

tial characteristics provides the key features required to establish a theoretical model of avian

maneuverability.
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3.2 Background

There is currently no theory that provides hypotheses to guide studies of avian maneuver-

ability. This is not due to a lack of physical understanding; maneuverability can be broadly de-

fined as a bird’s ability to change the magnitude and/or direction of its velocity vector [19, 20].

Like comparable UAVs, a bird’s flight dynamics, and thus maneuverability, are dictated by its

governing equations of motion. For example, aircraft dynamics depend on a minimum of six

equations; three translational and three rotational that can be derived from Newton’s second

law and it’s rotational counterpart [138, 179]:

F =
d(mv)

dt
(3.1)

M =
d(Iω)

dt
(3.2)

Where v is the velocity vector and ω is the angular velocity vector. These equations can be

combined to solve for a flyer’s acceleration (translationally: dv
dt

and rotationally: dω
dt

), but this

requires knowledge of both the aerodynamically informed external forces (F) and moments

(M) as well as the inertial characteristics including the mass (m) and moment of inertia tensor

(I). However, avian inertial characteristics are not currently available with sufficient breadth or

resolution.

Therefore, avian flight maneuverability is often evaluated experimentally by tracking in-

dividuals to measure accelerations during observed maneuvers [176, 177]. However, tracking

data do not provide a bird’s maximal maneuvering capabilities or allow extrapolation to un-

observed behaviors. Determining these attributes requires a robust and general framework for

maneuverability, equivalent to the maneuverability equations for aircraft [19, 180]. Obtaining

generalizable data is further complicated because aerodynamic and inertial characteristics vary

substantially within and among species, and even dynamically for an individual bird [126, 174].

For example, birds can initiate maneuvers by changing the orientation and shape of their wings,

body and tail, known as morphing [20, 137, 181]. To progress towards a theoretical formula-

tion of avian maneuverability, there has been a marked and justifiable focus on resolving the

aerodynamic characteristics of a bird in flight [127, 128, 141]. However, studies often overlook
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the equally essential inertial properties (Fig. 3.1a) or use static morphology approximations for

individual species [51, 137, 182–184]. Here, we fill this gap by investigating the variable in-

ertial characteristics of flying birds to provide the necessary next step towards establishing a

general framework of avian maneuverability.

Another challenge to solving a flying bird’s equations of motion is how to properly for-

mulate the equations. For example, the equations can be simplified by defining the origin at

the center of gravity (Fig. 3.1a), which is equivalent to the center of mass within a constant

gravitational field [179]. If the center of gravity moves substantially relative to the body, addi-

tional terms in the equations are required to properly capture flight dynamics [180]. Physically

shifting a bird’s morphology will shift the center of gravity but, it is not currently known how

much the center of gravity moves as a bird morphs. In addition, the rotational inertia, quanti-

fied by the mass moment of inertia tensor (I) about the origin will also be affected by morphing

(Fig. 3.1a and b). This symmetric matrix describes the body mass distribution where diagonal

elements quantify the distribution relative to the major axes (Ixx: roll, Iyy: pitch, Izz: yaw) and

off-diagonal elements quantify distribution within the three major geometric planes (only Ixz

is non-zero for symmetric configurations, Fig. 3.1a) [179].

(a)

(b)

aerodynamic
inertial

lift
drag

NP CG

humeral
head

roll
yaw

pitch

Figure 3.1: Inertial properties must be determined to quantify avian maneuverability. (a)
A bird’s center of gravity (CG) is the position about which weight is equally distributed, and
the neutral point (NP) is where aerodynamics forces can be modeled as point forces and the
pitching moment is independent of angle of attack. The moment of inertia components (I) are
obtained by integrating differential mass elements (dm) over the entire bird. (b) Flight dynam-
ics are affected by adjusting either inertial or aerodynamic characteristics. (c) We modeled
birds as a composite of simple geometric components.
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We calculated a bird’s center of gravity and I to evaluate avian maneuverability through

the lens of agility and static stability. Agility encompasses a bird’s ability to perform linear

accelerations (axial agility) and angular accelerations (torsional agility) [20], and depends on

both the center of gravity and I [138]. In contrast, static stability refers to the initial tendency

to return towards an equilibrium after a disturbance [128]. We quantified static pitch stability

with the static margin, which is the distance between the center of gravity and neutral point

(NP, Fig. 3.1a) [138, 141]. If the neutral point is aft of the center of gravity, the static margin

will be positive and thus stable. Often, stability is inversely related to agility because larger

maneuvering forces and moments are sometimes necessary to overcome stabilizing forces and

moments [128].

3.3 Methodology - Inertial characteristics

To determine how inertial characteristics vary during wing morphing, we developed a gen-

eral analytical method to quantify any flying bird’s center of gravity and I, and used a compar-

ative analysis to investigate 22 species spanning the phylogeny defined by Prum et al. [116]

except for Palaeognathae as this clade contains largely flightless birds. First, we measured ge-

ometric and mass properties of cadavers (Section 3.3.1) and used motion tracking on cadaveric

wings to extract the range of extension and flexion for the elbow and wrist (Fig. 3.2e, Sec-

tion 3.3.2). We limited our study to solely investigate the role of wing morphing due to elbow

and wrist flexion and extension because previous studies have shown that this range of motion

(ROM) allows a substantial shift in the neutral point [128, 141]. The investigated ROM defines

a bird’s physical capability to adjust its inertial characteristics and includes wing configurations

outside of those likely used in flight. In addition, we assumed that the shoulder was set to allow

a comparable wing orientation (see Section 3.3.3) and that the tail is furled, but these degrees

of freedom play an important role in avian flight control [185] and warrant future morphing

studies. Finally, we developed an open-source R package (AvInertia) that models birds as a

composite structure of simple geometric objects and uses morphological data to calculate the

center of gravity and I for any bird using any wing configuration (Fig. 3.2a, b, c, d, Appendix

A, Section 3.3.3). We validated this methodology with previous static wing measurements
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(Fig. 3.3, Section 3.3.4).
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Figure 3.2: Elbow and wrist joint range of motion informed our analysis. (a) We modeled
birds as a composite of simple geometric components. Each component’s center of gravity
varies as a wing morphs from an extended (a and c) to a folded (b and d) configuration. (e)
Convex hulls showcase the range of motion (ROM) of the elbow and wrist for 22 species.

3.3.1 Collecting morphological data

We obtained morphological data for 36 adult specimens representing 22 species (Fig. 3.4a)

from frozen cadavers acquired from the Cowan Tetrapod Collection at the Beaty Biodiversity

Museum (University of British Columbia, Vancouver, Canada). Sample size was a function

of the availability and quality of specimens from the museum as we could only rely on fully-

intact, well-preserved specimens. The cadavers were inspected to ensure adequate condition

and completeness, after which we measured the full body mass, wingspan, and body length.
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Next, we disarticulated the wing at the shoulder joint, taking care to ensure that each wing’s

skin, propatagial elements, and feathers remained intact. One wing from each cadaver was

used to determine wing ROM and corresponding wing shape change (see following section).

The cadaver was further dissected to obtain length and mass measurements for the head, neck,

torso, wing components, legs, and tail. We obtained the center of gravity coordinates for the

torso (body without head, neck, tail, wings) by manually balancing the torso and measuring

the distance from the clavicle reference point to the balanced position. Note that because of

the preservation of the storm petrel specimens, we estimated the mass based on humerus bone

length and the torso center of gravity as being proportional to that of the gull. Finally, we

individually weighed and photographed each flight feather allowing geometric parameters to

be extracted using ImageJ software [186]. Refer to the publicly available data repository for

details on all assumptions used for extracting the morphological measurements. This study

consisted of a single experimental group and thus randomization and blinding was not neces-

sary.

3.3.2 Determining the elbow and wrist range of motion

To determine the wing ROM and corresponding shape change, we actuated the cadaver

wings throughout the full range of extension and flexion of the elbow and wrist joints by hand

(following methods established by Baliga et. al [126], Fig. 3.2e). We tracked the location of

ten 4-mm diameter, reflective markers (gray and white points in Fig. 3.2a-d) with automated

3D data capture at 30 frames per second via a four- or five-camera tracking system (OptiTrack:

NaturalPoint, Inc.). Using NaturalPoint, Inc. tools, each recording was calibrated to have less

than 0.5 mm overall mean reprojection error. Joint angles were calculated as the interior angle

defined by three key points: points 1, 2 (vertex), and 3 for the elbow, and points 2, 3 (vertex),

and 4 for the wrist (Appendix A).

3.3.3 Developing AvInertia

We developed an open-source R package (AvInertia) to calculate the center of gravity and

moment of inertia tensor (I) for any flying bird (Fig. 3.1a) in RStudio (version 1.3.1093)[187]
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running R (version 4.0.3) [188]. A high-level overview of the code methodology follows in

this section. Further details are provided in Appendix A, as each individual component of the

avian models required specific procedures and approximations.

To allow a generalized approach, we used a common methodology from mechanics to es-

timate the center of gravity and inertia components using simple geometric shapes [179]. We

elected to use as many elements as possible to allow the best resolution. For each species, we

first modeled the bird’s body without the wings as a composite of five components: head, neck,

torso, legs, and tail. To determine the inertial properties of the wings, we aligned each wing

configuration extracted from the ROM measurements so that the wrist joint was in line with

the shoulder joint along the y- and z-axes and so that the wrist joint was aligned with the first

secondary feather (S1) along the x-axis (extended wing: Fig. 3.2a and c; folded wing: Fig.

3.2b and d). Note that this positioning results in a different shoulder angle between each wing

configuration and wings with extremely low elbow angles and high wrist angles may be at

substantially different incidence angles than the body. Each wing was then modeled as a com-

posite of twelve components: bones (humerus, radius, ulna, carpometacarpus/digit, radiale and

ulnare), muscles (brachial, antebrachial and manus groups), skin, coverts, and tertiary feathers.

In addition, each primary and secondary feather was modeled and positioned individually as

a composite structure of five components: calamus, rachis (cortex exterior and medullar inte-

rior), and distal and proximal vanes. AvInertia permits a variable number of flight feathers.

With our methodology, a bird with 10 primaries and 10 secondaries that flies with an extended

neck will be represented by a composite model with 232 individual simple geometric shapes.

In our study, we investigated only symmetric wing configurations for a full bird and considered

the effects of a single wing independently. We assumed that anisotropic effects such as the air

space within the body would have a minimal impact on the overall center of gravity [189].

To calculate the final inertial characteristics of this composite bird, each component’s shape,

mass, and positioning was informed by its corresponding morphological measurements. We

began by determining the center of gravity and I for one of the basic geometric shapes with

respect to an origin and frame of reference that simplified the formulation of the center of

gravity and I for that shape. Next, AvInertia computed the mass-weighted summation of the

center of gravity of each object and shifted the origin to the bird reference point, located at the

51



center of the spinal cord when cut at the clavicle. The center of gravity was then transformed

into the full bird frame of reference, which is defined by Fig. 3.2a-d. We used the parallel

axis theorem and the appropriate transformation matrices to transform I to be defined about the

final center of gravity within the full bird frame of reference.

3.3.4 Validating AvInertia

We validated our methodology by comparing the maximum rotational inertia about the roll

axis for a single wing (Ixxwing, origin at the humeral head) to data from previous experimental

studies that measured Ixxwing by cutting an extended wing into strips (Fig. 3.3) [190, 191]. Our

95% confidence intervals on the exponent of body mass marginally overlapped with Berg and

Rayner’s predictions [190] but were significantly lower than Kirkpatrick’s predictions [191].

However, Kirkpatrick used 10 wing strips while Berg and Rayner later found that at least 15

strips were necessary to minimize systematic error [190, 191]. Next, we directly compared

results for the pigeon (Columba livia), the only species in common between the studies, and

found Ixxwing(×104) was between 1.42 to 1.92 kg-m2, which encompasses results from previ-

ous studies (1.72 and 1.83 kg-m2) [190–192]. The pigeon wing’s maximum center of gravity

position along the y-axis (yCGwing) was only 3% of the half span more proximal than Berg

and Rayner’s measurement [190]. We expect minor differences because strip methods enforce

that all wing mass is contained within the x-y plane while AvInertia accounts for out-of-plane
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Figure 3.3: Our results agreed with previous estimates of the wing’s moment of inertia.
The computed maximum Ixxwing was comparable to published estimates. 95% confidence in-
tervals visualized by transparent ribbons (n = 36 individual specimens).
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morphology (Fig. 3.3).

3.3.5 Statistical analyses

All phylogenetically informed analyses were carried out using the time-calibrated Maxi-

mum Clade Credibility tree from Baliga et al.[126], which was pruned to the 22 focal taxa in

this study (Fig. 3.4a). To determine the linear trends with body mass, we fit first-order phyloge-

netic generalized linear mixed models (PGLMM) to the data using the R package MCMCglmm

[193] where the random effects are informed by the phylogeny (Table 3.1). These results will

be discussed in further detail in the following sections. All PGLMM models had priors speci-

fied with the inverse Wishart scaling parameters V = 1 and ν = 0.02 and used 1.3×107 Markov

chain Monte Carlo (MCMC) iterations. To determine the significance and effect of the elbow

and wrist on the center of gravity and I components, we independently fit first order inter-

active models to each specimens’ data with a constant scaling on the elbow and wrist angle.

We calculated the effect size of the elbow and wrist using the R package effectsize [194] and

independently fit first order interactive models to each specimens’ data with scaled and mean

centered elbow and wrist angles.

3.4 Results - Inertial characteristics

3.4.1 Center of gravity

With our validated results, we first asked: what effect does the elbow and wrist ROM have

on a bird’s center of gravity when its wings are held symmetrically? Our results revealed that

the ROM had a minimal effect on the center of gravity position (Fig. 3.4b, opaque polygons).

The maximum shift along the x-axis and z-axis (xCG and zCG, normalized by the full bird’s

length) was 3% (great blue heron, Ardea herodias, 2.0 cm) and 2% (barn owl, Tyto alba, 0.7

cm), respectively (Fig. 3.4b). Despite the small magnitude, wrist extension consistently shifted

xCG forwards (p-values < 0.002) and the wrist angle explained a high amount of variance in

the data leading to a high effect size, quantified by partial eta-squared (η2) [194, 195]. We

found partial η2 was greater than 0.34 for all species (Fig. 3.4e). Similarly, elbow extension
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Table 3.1: MCMCglmm outputs for inertial phylogenetic generalized linear mixed models
(PGLMM).

Dependent variable Independent variable Slope 95% credible intervals p-value
log(−xCG) log(body mass) -0.007, 0.174 0.062
log(zCG∗) log(body mass) -0.06, 0.19 0.314

∆xCG wingspan to length ratio 0.02, 0.09 0.002
log(yCGwing) log(body mass) -0.01, 0.07 0.166

∆yCGwing arm to hand ratio 0.05, 0.24 0.016
∆xCG arm to hand ratio -0.09, 0.09 0.952
∆zCG arm to hand ratio -0.08, 0.11 0.954

log(Ixx) log(body mass) 1.51, 1.83 < 0.001
log(Iyy) log(body mass) 1.46, 1.77 < 0.001
log(Izz) log(body mass) 1.50, 1.76 < 0.001

log(Ixxwing) log(body mass) 1.37, 1.81 < 0.001

tended to shift xCG forwards, but its effect size varied across species. Both elbow and wrist

extension predominately shifted zCG dorsally, but the magnitude and effect size varied. We

could not differentiate the log-transformed mean xCG or zCG position from those expected if

birds were simply scaled by preserving all length scales, known as isometry (Fig. 3.4f, Table

3.1). As visualized by Fig. 3.4f, we cannot definitively exclude the possibility that the lower

95% confidence interval on xCG may be positive, which would indicate that xCG scales greater

than isometric predictions. However, multiple MCMCglmm runs returned an insignificant

result.

The small effect of the elbow and wrist on the center of gravity location led us to question

if this would carry over to shoulder joint motion as well. To obtain a conservative estimate,

we assumed that wings could rotate about the humeral head by 90° forwards, aft, up, and

down (Fig. 3.4b, transparent squares). This revealed that the maximum ∆xCG and ∆zCG shift

was 18% (10.9 cm) for the great blue heron, approximately sixfold greater than that achieved

with elbow and wrist morphing alone. Such a large center of gravity shift likely could not be

neglected when formulating the equations of motion. At the other extreme, the Lady Amherst’s

pheasant (Chrysolophus amherstiae) had a negligible shift of 1% (1.4 cm) with shoulder joint

motion. Across the full range of taxa, we found a significant positive relationship between

∆xCG due to shoulder motion and the ratio of maximum wingspan to body length (Fig. 3.4d,
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Figure 3.4: A bird’s center of gravity is minimally affected by elbow and wrist flexion and
extension. (a) Time-calibrated phylogeny for 22 species (mya, million years ago). The elbow
and wrist ROM (opaque polygons, convex hulls) affect (b) xCG and zCG (over bar indicates
normalization by body length), and (c) yCGwing(over bar indicates normalization by maximum
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shoulder rotation (transparent polygons), which (d) increase with increasing ratio of wingspan
to body length. e, Effect size (partial η2) of elbow, wrist, and interaction on each center of
gravity component per specimen. The log-transformed mean values of (f) xCG, zCG∗ (∗ denotes
the z position relative to the dorsal origin defined by Fig. 3.2a) and (g) yCGwing did not scale
with body mass as the phylogenetic generalized linear mixed model (PGLMM; solid line) did
not differ significantly from the null slope (dashed line). 95% confidence intervals visualized
on d, f, and g by transparent ribbons (n = 36 individual specimens).
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Table 3.1). This trend suggests that proper modeling of flight dynamics for birds with wings

substantially longer than their body length will require an estimation of the expected center of

gravity shift to verify if a fixed center of gravity is an appropriate assumption.

Although the full bird’s center of gravity defines its symmetric flight dynamics, the wing-

only parameters can give insight into asymmetric configurations. We found that the elbow and

wrist ROM caused the center of gravity to shift along the y-axis (yCGwing, normalized by the

maximum half span) from 10% (black swift, Cypseloides niger) to 27% (American white peli-

can, Pelecanus erythrorhynchos) (Fig. 3.4c), where the most distal yCGwing was 28% (western

grebe, Aechmophorus occidentalis). Additionally, ∆yCGwing was positively associated with

the arm-to-hand wing ratio (Table 3.1), such that birds with longer hand wings than arm wings

(like the swift) would have a reduced capacity to shift the wing’s CG. The center of gravity shift

was largely driven by elbow extension (p-values < 0.001, partial η2 > 0.51, Fig. 3.4e) whereas

the effect of the wrist varied across species. These results highlight a well-conserved proximal

location of the wing center of gravity across species. Contrary to a previous study [190], we

did not find that the log-transformed mean yCGwing differed from isometric expectations (Fig.

3.4g, Table 3.1).

3.4.2 Moment of inertia

The center of gravity is crucial to formulating the governing equations, but their solution

depends on a bird’s rotational inertia. Like the CG, we found that a bird’s rotational inertia (log-

transformed mean diagonal components of I) scaled isometrically with body mass (Fig. 3.5a,

Table 3.1). However, we found that elbow and wrist extension provided over an 11-fold Ixx

increase (heron) and 3-fold Izz increase (heron and owl, Fig. 3.5c). This capability was largely

driven by elbow extension (Fig. 3.5b), which had a significant effect on both Ixx (p-values

< 0.001, partial η2 > 0.23; except Leach’s storm petrel, Hydrobates leucorhous) and Izz (p-

values < 0.009, partial η2 > 0.45). The absolute values of Iyy and Ixz were minimally affected

by joint extension and the effect size varied substantially across species (Fig. 3.5b). We next

computed the contribution of each major body part to the overall rotational inertia for birds

with wings at maximum elbow and wrist extension (Fig. 3.5d, e, and f). Because the wings

were extended along the y-axis, this captures approximately the lowest wing contribution to Iyy
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Figure 3.5: Wing morphing, specifically driven by the elbow, has a strong effect on roll
and yaw inertia components. (a) All log-transformed mean diagonal components scaled iso-
metrically with body mass (PGLMM model for each component; solid line). 95% confidence
intervals visualized by transparent ribbons (n = 36 individual specimens). (b) Elbow extension
has the largest effect on Ixx and Izz but joint angles were not strong predictors of Iyy or Ixz.
(c) The ability to adjust I varies substantially across species. At maximum wing extension,
the wing components (bones, feathers, muscle, skin) had the largest contribution to (d) Ixx
while body components (head, neck, torso, tail) played a larger role for (e) Iyy and (f) Izz.
Components are colored following the bird schematic.

but the highest wing contribution to Ixx. The percentage contribution of each body part varied

substantially across the species, but as expected the wings were responsible for the majority of

Ixx. These results indicate that elbow and wrist ROM provides substantial inertial control over

the roll and yaw axes (Ixx, Izz), but less so for the pitch axis (Iyy), although species-specific

differences were also apparent in our results. Incorporating the shoulder joint ROM would

increase the wing’s contribution to inertial pitch control.
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3.5 Methodology - Aerodynamic characteristics

Next, to obtain information about the static stability of the birds, we investigated the aero-

dynamic characteristics associated with wing morphing. To estimate the neutral point of a

bird’s wing-body configuration, we leveraged our previous study on rigid gull wing-body con-

figurations across the in vivo range of motion of elbow and wrist flexion and extension (Chapter

2)[141]. In this previous study, we extracted the neutral point of the wing-body configurations

by fitting a linear model to the change of the pitching moment with the lift force [138, 140]

and provided the morphological information about the associated wing shapes. We used the

same wing orientation as the current chapter. The aerodynamic results were calculated using a

numerical lifting line model which was validated with wind tunnel tests on 3D printed wings.

As it was not feasible to replicate this analysis for each species in this study, we investigated if

there was a metric that could be used to appropriately estimate the neutral point using morphol-

ogy alone. We assumed that the bird’s neutral point could be approximated by the wing-body

configuration neutral point. This approximation is appropriate if the wing produces the major-

ity of the lift as is expected with a furled tail [196], but Section 3.7.5 discusses the implications

of incorporating the tail.

3.5.1 Estimating the neutral point

Our approach was informed by traditional aerodynamic theory which predicts that the aero-

dynamic center of a 2D thin airfoil will be at the quarter-chord location [197]. This result can

be extended to lifting line theory for steady flight conditions (commonly used in gliding flight)

or blade element theory for revolving airfoils (commonly used in flapping flight). However, 2D

thin airfoil approximations do not hold for the thick airfoils known to be used on the proximal

wing sections of bird wings[158] nor for 3D wing shapes [197]. Although advances in analyt-

ical methods have resulted in mathematical relationships that account for constant taper ratios

or sweep [198, 199], little information exists for wing shapes as complex as bird wings that

have substantial and often nonlinear distributions of geometric twist, taper, sweep, and dihe-

dral. Therefore, we investigated six different chord-based metrics[140, 199, 200] to establish
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which would best approximate the neutral point. The origin for all metrics within this study

was set at the shoulder joint. This investigation included:

1. Root chord. A simplistic approach that estimates the neutral point to be at the quar-

ter chord of the root chord. This approach cannot account for a neutral point shifting

forwards of the root leading edge.

2. Mean chord. The mean chord (cm) is first found as [199]:

cm =
Sw
b
, (3.3)

Where Sw is the total wing area and b is the wingspan. Next, we located the most interior

span section that had a chord equal to cm. At that span section we extracted the leading

edge position along the x-axis and added it to the quarter chord of cm while accounting

for any wing twist at this span section. This final value was taken as the quarter chord

position of the mean chord.

3. Mean projected chord. A similar approach as the mean chord but the wing area used is

that calculated by projecting the wing periphery onto the x-y plane.

4. Mean aerodynamic chord. A similar approach as the mean chord but the mean aerody-

namic chord is calculated as [199]:

MAC =

∫ b/2
0

c(y)2dy∫ b/2
0

c(y)dy
, (3.4)

Where c(y) is the chord length along the span as a function of the location on the y-

axis. The mean aerodynamic chord is calculated numerically by disctretizing each wing

along the y-axis into 1000 segments. All integral equations that follow used the same

discretization.

5. Centroid area chord. In this approach we first numerically calculated the position of
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the wing’s centroid along the y-axis as [199]:

ycen =

∫ b/2
0

c(y)ydy∫ b/2
0

c(y)dy
(3.5)

Then, at this span location we calculated the chord of the wing. Similar to the approach

in the mean chord we next determined the quarter chord and leading edge position.

6. Standard mean chord. This method numerically calculates the quarter chord position

directly as [199]:

x̃c/4 =

∫ b/2
0

c(y)xc/4(y)dy∫ b/2
0

c(y)dy
, (3.6)

Where xc/4(y) is the quarter-chord location as a function of the location on the y axis.

For each of the output quarter chord positions from the six different metrics, we normalized

by the maximum root chord (crmax) of the specimen. This normalization ensures that the result

could be scaled for different sized individuals. To assess the fit of each normalized metric to

the gull’s measured neutral point we fit log-transformed linear models in R:

ln

(
|xNPwb|
crmax

)
∼ A ln

(
|x?|
crmax

)
+ B. (3.7)

Note that for all configurations investigated in our previous study, the neutral point had a

negative position on the x-axis (aft of the shoulder joint), which allowed us to take the absolute

value of the data. Surprisingly, the best fit to our data was the standard mean chord (metric 6)

as shown by a low model offset (B) and higher adjusted R2 (Table 3.2). The other mean chord

parameters (metrics 2 and 3) were a particularly bad fit to our data because often the mean

chord was located distally. In that case, folding the wrist caused a substantial aftward shift of

the estimated quarter-chord location. With this information, we calculated the relationship for

every other species in our study with the exponent of 0.8 and assuming that e−0.052 = 0.949 ≈ 1

as:
|xNPwb|
crmax

≈
(
|x̃c/4|
crmax

)0.8

. (3.8)

We imported this relationship into our comparative analysis and computed the quarter chord

position of the standard mean chord for each specimen and configuration. We checked if the
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Table 3.2: Linear model fit results for each investigated chord metric.

Chord metric name Metric A (95% CI) B (95% CI) Adjusted R2

root 1 0.833 (0.764, 0.902) -0.997 (-1.015, -0.980) 0.358
mean projected 2 0.083 (0.062, 0.105) -1.102 (-1.127, -1.077) 0.053

mean 3 0.054 (0.033, 0.074) -1.115 (-1.145, -1.084) 0.025
mean aerodynamic 4 0.152 (0.135, 0.169) -0.930 (-0.960, -0.900) 0.235

centroid area 5 1.349 (1.285, 1.414) 1.436 (1.310, 1.562) 0.624
standard mean 6 0.812 (0.789, 0.835) -0.052 (-0.084, -0.021) 0.832

quarter-chord position was in front of the shoulder and if so we switched the signs of the output.

This essentially reflects the exponential trend that was established for the gull wings into the

positive neutral point region.

In all, this result provides insight into the aerodynamic implications of morphing however

this was informed by an aerodynamic analysis of only one species for rigid wing-body config-

urations. It will be important for future studies to account for inter-specific differences as well

as a neutral point shift due to flexibility and porosity.

3.5.2 Defining agility and stability metrics

We next asked if inertial characteristics could be used to estimate a bird’s pitch agility.

However, because both inertia and aerodynamics are fundamental to flight dynamics, we first

used aerodynamic theory and data from a rigid gull wing [141] to obtain an estimate for the

neutral point, and thus the static margin for each configuration. We developed a pitch agility

metric that estimates the change of the angular acceleration about the y-axis (∆q̇, known as the

time rate of change of the pitch rate) due to a degree change in the angle of attack (∆α) as:

∆q̇

∆α
∝

[((
x̃c/4
crmax

)0.8
crmax

)
− xCG

]
(m0.12)

2
Smax

Iyy
. (3.9)

Where m is the body mass, crmax is the maximum root chord for the specimen, Smax is the

maximum single wing area for the specimen and xCG is the center of gravity position on the

x-axis measured from the humeral head. This equation was derived beginning from the rigid

aircraft y-axis rotational equation of motion assuming a symmetric configuration undergoing
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small disturbances [138]:

∆M = Iyy∆q̇. (3.10)

From this equation, we estimated the change in pitching moment (∆M ) with a Taylor

series expansion method assuming that the largest effect is due to angle of attack and then

non-dimensionalized as follows [138]:

∆M =
∂M

∂α
∆α (3.11)

=
1

2
ρU2
∞(2Smax)crmax

∂CM
∂α

∆α (3.12)

=
1

2
ρU2
∞(2Smax)crmax

∂CM
∂CL

∂CL
∂α

∆α. (3.13)

Where U∞ is the freestream scalar velocity, and CL and CM are the coefficients of lift and

pitching moment, respectively. Because the pitching moment slope (∂CM
∂CL

) is proportional to

static margin [141, 197], we estimated each configuration’s neutral point using equation 3.8

(see Section 3.5). With the estimated neutral point, we calculated the static margin as:

static margin = −∂CM
∂CL

=

xCG −
((

x̃c/4
crmax

)0.8
crmax

)
crmax

. (3.14)

For the pitch agility metric, we incorporated a previously established allometric scaling

[117] of cruise velocity (U∞ ∝ m0.12). We assumed a constant air density (ρ) and constant lift

slope (∂CL
∂α

) across species to obtain the final proportional relationship as:

∆M ∝

[((
x̃c/4
crmax

)0.8

crmax

)
− xCG

] (
m0.12

)2
Smax∆α. (3.15)

This result was then returned to equation 3.10 and rearranged to obtain the pitch agility metric

as seen in equation 3.9. Note that agility in a stable configuration indicates that the developed

acceleration would tend to return the bird towards an equilibrium position.
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Figure 3.6: Modern birds exhibit highly variable pitch agility characteristics. We derived a
pitch agility metric that highlights (a) that heavier birds are less agile even when (b) normalized
as if the birds are flying at the same speed and have the same body length. Maximum and
minimum values for each individual due to elbow and wrist ROM are plotted.

3.6 Results - Aerodynamic characteristics

We found that the pitch agility range decreases as body mass increases, which was ex-

pected because flight speed and body size scale positively with mass [117] (Fig. 3.6a, Table

3.3). These results are further driven by the static margin whose range also decreases as mass

increases (Fig. 3.8a, Table 3.3). Because the pitch agility metric had units of s−2, we non-

dimensionalized this metric by multiplying by the square of the full bird’s length divided by

U2
∞ that was approximated by (m0.12)2. This normalization allows us to compare birds as if

they are the same length and flying at the same speed, similar to non-dimensional approaches

implemented in traditional aircraft studies (Fig. 3.6b) [201]. We found that the normalized

agility range decreases as body mass increases (Table 3.3). Note that the linear trend of the

pitch agility range with body mass remains significant even if the storm petrels are removed

from the data. Incorporating the shoulder joint ROM would broaden the static margin range

because the resultant neutral point shift is likely larger than the center of gravity shift as evi-

denced by morphing UAVs with shoulder-inspired joints [30, 202].
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Table 3.3: MCMCglmm outputs for agility and stability phylogenetic generalized linear
mixed models (PGLMM).

Dependent Independent Slope 95% p-value
variable variable credible intervals

pitch agility range body mass -3.50, -0.35 0.018
normalized pitch agility range body mass -0.29, -0.03 0.018

static margin range body mass -0.15, -0.02 0.010

3.7 Investigation of the evolutionary implications

Next, we asked if there is evidence of selective evolutionary pressures on avian pitch agility

and stability. We investigated the static margin specifically because it is both a component

of the pitch agility metric and dictates the static stability of a flying bird. We identified the

configurations with the maximum and minimum static margin for each individual (Fig. 3.7)

and then calculated the mean of each trait for each species (Fig. 3.8b).

3.7.1 Evolutionary modeling results

To investigate the phenotypic optimum of the pitch agility and stability traits, we indepen-

dently fit both Brownian motion (BM) and Ornstein Uhlenbeck (OU) models to the absolute

data using the R package geiger [203]. We assumed that all species belong to the same regime

Figure 3.7: The elbow and wrist angle configurations that yielded the maximum and min-
imum static margin for each species. The ROM investigated for each species with the maxi-
mum static margin and minimum static margin identified with a black diamond on each species.
Note that the diamonds are colored by the static margin.
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and thus, fit single-peak evolutionary models. We found that four species were entirely stable,

one species was entirely unstable, and 17 species had the capacity to shift between stable and

unstable flight (Fig. 3.8b and e). Using these data, we found that an Ornstein Uhlenbeck (OU)

model was significantly favored over a Brownian motion (BM) model, for both the maximum

(∆AICc = -8.24, Fig. 3.9b) and minimum static margin (∆AICc = -5.01, Fig. 3.9c), where

abs(Pitch agility) (s  )

Cooper's hawk
Sharp−shinned hawk

Western grebe

Mallard

Great blue heron

Canada goose

Common nighthawk

Lady Amherst's pheasant

Northern flicker

Pigeon

Common raven
Steller's jay

Black swift

Merlin
Peregrine falcon

Leach's storm petrel
Glaucous−winged gull

Himalayan monal

Silver pheasant

Belted kingfisher

American white pelican

Barn owl

min max

lower
agility 

higher
agility stableunstable

(b)

(c)

(d)

neutral

humeral 
head

θ    = 10%

in front of 

Body mass (kg)

(a)

10−2 10−1 100 101

(stable)

(unstable)

St
at

ic
 m

ar
gi

n 
(%

 o
f c

   
   

)
m

ax
r

min θsm

max θsm

unstable

stable

CG

−50 0 50

Static margin (% of c    ) maxr

swift

−60

−30

0

30

60

13579111315

−2

NP

behindNP
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birds have a reduced static margin range. Maximum and minimum values for each individual
due to elbow and wrist ROM are plotted. (b) The investigated species exhibited a wide variety
of static margins and absolute pitch agility. Dot color and size represents the mean maximum
and minimum value for each species. An Ornstein Uhlenbeck model provided evidence of
selection pressures acting on an unstable minimum (dashed line: min. θsm) and a stable maxi-
mum (dashed line: max. θsm) static margin, and xCG (θCG). This xCG position is (c) stable if
the neutral point is behind this position and (d) unstable if the neutral point is in front of this
position.
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AICc is the Akaike information criterion with correction for small sample sizes. Further, we

found that the optimal static margin phenotype (θsm) was stable for the maximum static margin

(26% of crmax , strength of selection (αOU ) = 0.53, variance (σ2) = 14.2 × 10−3) whereas the

optimal phenotype for the minimum static margin was unstable (−15% of crmax , αOU = 0.06,

σ2 = 2.7 × 10−3) (Fig. 3.8b). This suggests that evolutionary pressures act to maintain birds’

ability to transition between stable and unstable flight. The strength of selection (αOU ) was

relatively low, but our results were robust to measurement errors (details in Sections 3.7.2 and

3.7.3) and to a preliminary estimation of a neutral point shift due to the tail (details in Section

3.7.5). Further, an OU model was a good fit for the mean xCG such that the phenotypic opti-

mum (θcg) was 10% of the body length aft of the humeral head (∆AICc= -8.23, αOU = 0.11,

σ2 = 0.1 × 10−3, Fig. 3.9a). The stability of this center of gravity position depends on the

location of the neutral point (Fig. 3.8c and d).

3.7.2 Power analysis

Because of the smaller sample size of our study [204], we ran a Monte Carlo simulation

(n = 5000) with the R package pmc [205] to validate that selecting the OU model over the

BM model was appropriate (Fig. 3.9). This method returned a distribution of likelihood ratios

(twice the difference of the maximum log likelihood for each model) when the traits have been

simulated n times under each model. These distributions are then compared to the observed

likelihood ratio (black dashed vertical lines in Fig. 3.9). For details refer to Boettiger et. al

[205]. We found that the likelihood ratio predicted by a BM model was more extreme than

the observed ratio for the minority of simulations (xCG: 0.2%, maximum static margin: 0.1%,

minimum static margin: 1%). Further we had sufficient power to differentiate the two models

as the majority of the simulations under the OU model fell outside of 95th percentile of the BM

distribution (xCG: 73.8%, maximum static margin: 77.2%, minimum static margin: 67.2%).

95% confidence intervals were constructed for each reported metric of each trait (Table 3.4).

Together these results provide confidence that the observed likelihood ratio of each trait is more

likely to occur under an OU model than a BM model.
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Figure 3.9: A power analysis confirmed the validity of Ornstein Uhlenbeck (OU) models
for three key traits.We used a Monte Carlo-based method to investigate if our phylogeny pro-
vides support for the use of the OU model. This returns the distribution of likelihood ratios
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Comparing the likelihood ratios distributions produced under both a Brownian motion (BM)
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vealed that the OU model was a better fit for our three key traits (see methods).

3.7.3 Sensitivity analysis

Because both the pitch agility and stability metrics directly depend on xCG, we investigated

the sensitivity caused by shifting the combined torso and tail center of gravity forwards and aft
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Table 3.4: 95% confidence intervals on the OU metrics reported for each investigated
trait.

Trait Phenotypic optimum Selection strength Variance
(θtrait) (αOU ) (σ2)× 10−3

xCG -11.1%, -9.3% (of full length) 0.016, 2.718 0.02, 3.77
max. static margin 22.2%, 30.4% (of crmax) 0.017, 2.718 0.41, 81.39
min. static margin -21.0%, -9.6% (of crmax) 0.013, 2.718 0.60, 132.86

by up to 15% of the torso. Note that for some species there was a physical limit to the ability to

relocate the center of gravity while maintaining the known morphological properties and if the

shifted distance was larger than 4cm we removed it from the analysis as that was assumed to be

an overestimate. The final estimated shift of the relative maximum and minimum static margin

is shown in Fig. 3.10. This sensitivity analysis revealed a minor effect on the parameters.

In addition, we wanted to investigate the potential effect of error in our measured center of

gravity metric on our key evolutionary results. To this end, we used a custom bootstrapping
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Figure 3.10: Conservative measurement sensitivity analysis revealed a minimal effect on
pitch stability and agility metrics. We assumed that experimental error on the center of
gravity measured for the torso and tail was ±15% of the torso length (up to a maximum of
4cm) and recalculated the (a) maximum pitch agility for stable flight (most negative values in
Fig. 3.8 a), (b) minimum and (c) maximum static margin. The estimated error ranges from
panels b and c informed the bootstrapping analysis in Fig. 3.11.
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code (n = 5000) and randomly sampled (with replacements) from each specimen’s center of

gravity error range used for the sensitivity analysis to recalculate the mean value of the mini-

mum and maximum static margin for each species. With each of these new trait distributions,

we re-fit an OU model and extracted the optimal phenotype (Fig. 3.11). We found that even

allowing for this substantial center of gravity error, all minimum static margin cases had an un-

stable optimum and all maximum static margin cases had a stable optimum (Fig. 3.11). Note

that this analysis is equivalent to accounting for the same magnitude shift in the neutral point

with a fixed center of gravity as well as accounting for possible inter-specific variation within

the error bounds shown in Extended Fig. 3.10.
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Figure 3.11: Bootstrapping our results within the conservative center of gravity measure-
ment error supported our results. We used a Monte Carlo method to investigate the impact
of center of gravity measurement error on the phenotypic optima for the maximum static mar-
gin (green) and minimum static margin (purple). Our results for a stable maximum and an
unstable minimum are confirmed with over a 95% confidence interval.

3.7.4 Sensitivity of the neutral point approximation

We verified that our key static margin findings were not substantially affected by the expo-

nent selected for the neutral point (Eqn. 3.8) by performing a sensitivity analysis. We found

that despite varying the exponent from 0.7 to 1.1, all the optimal phenotypes for maximum

static stability were stable whereas the optimal phenotypes for minimum static stability were

unstable. Specifically, as the scaling parameter increased, we found that the optimal phenotype

for the maximum static margin shifted from 31% to 15% of the maximum root chord and the

69



minimum static margin shifted from -13% to -19%. Thus, increasing the exponent effectively

serves to shift the results towards instability but our evolutionary findings remain supported. As

the gull represents the only species with which we are able to estimate the relationship between

geometric parameters and the neutral point across the full range of flexion and extension, we

selected to proceed with the gull-informed exponent of 0.8.

3.7.5 Effects of including a furled tail

In Section 3.5, we established a morphological-based metric to estimate the neutral point

of the wing-body configuration. The neutral point of the wing-body configuration is assumed

to be a close approximation to the total flyer’s neutral point because in our study we assumed

that the tail is furled and thus generates minimal lift. In practice, any additional surface area on

a flyer will affect its aerodynamic properties. Further, on traditional aircraft the tail is a major

contributor to the overall stability due to the tail aerodynamic center always remaining aft of the

CG. Proper estimation of the tail contribution requires a detailed analysis of the aerodynamics

of the tail and body-wing-tail interactions, but it is possible to make a preliminary estimation

the tail contribution with aerodynamic theory. We used a standard equation [138, 140, 206] to

estimate the tail’s effect on the neutral point to the wing-body configurations (xNPwb) as:

xNP = xNPwb −
CLαt
CLα

(
1− dε

dα

)
ηtVHcm (3.16)

Where the tail volume coefficient is defined as:

VH =
ltSt
cmSw

(3.17)

Note that mean chord (cm) introduced in equation 3.17 is canceled out in equation 3.16.

For plotting purposes, we selected to use each individual specimen’s mean value of cm across

all morphed configurations. This allows a comparable metric to the traditional aircraft metrics

published by Raymer [206]. We estimated that the tail aerodynamic center was at 25% of the

tail length, although future work will need to account for the expected shift due to low tail

aspect ratio. Figure 3.12 shows the estimated tail volume per individual as a function of the
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Figure 3.12: Tail volume coefficients as a function of the body mass for the investigated
specimens.

overall body mass. The range for each specimen is largely caused by the changes in the total

wing area (Sw). Of note, traditional aircraft tail volume coefficients usually vary between 0.4

(black horizontal line, Fig. 3.12) to 1 and many of these bird tail volumes are substantially

lower [206, 207].

Next, we must estimate the factors that multiply the tail volume coefficient in equation

3.16. First, it is known that the dynamic pressure at the tail will be lower than that at the

wing due to the resultant wing wake, which indicates that ηt is less than one [138]. Next,

because the tail will have a substantially lower aspect ratio than the wing while it is furled,

we estimated that the lift-slope of the tail will be lower than that of the wing (i.e.
CLαt
CLα

is less

than one). Finally, dε
dα

is also always below one due to the downwash from the main wing

[138, 206]. For traditional aircraft in subsonic flight, this value decreases as the wing aspect

ratio and taper ratio increase and as the distance between the tail aerodynamic center and the

center of gravity increases [206]. Each of these characteristics varies substantially across bird

species. Because dε
dα

is subtracted from one in equation 3.16, decreasing dε
dα

will effectively

increase the tail contribution to the neutral point shift. Collectively, because all three discussed

multiplying factors are expected to be less than one, we selected each value to be 0.9 for birds:
CLαt
CLα

(1− dε
dα

)ηt ≈ 0.73. We selected 0.9 as it is expected to overestimate this multiplying factor,
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which will return the most aft neutral point shift and provide a highly conservative view on the

validity of our evolutionary results.

With these inputs we solved equation 3.16 and 3.14 to obtain the maximum and minimum

static margin for each specimen and then calculated the mean value for each species. Next,

we fit a Ornstein Uhlenbeck (OU) model to the data following the similar procedure detailed

in Section 3.7. This analysis revealed that even when accounting for the tail’s effect on the

neutral point there is evidence that evolution selects for a stable maximum static margin (38%

of crmax , αOU = 2.718, σ2 = 0.255) and an unstable minimum static margin (−6% of crmax ,

αOU = 0.395, σ2 = 0.022). As expected, the phenotypic optimum values of both the maximum

and minimum static margin models shifted towards increased stability, but there was evidence

of stronger selection pressure (αOU ) than in the wing-body configurations alone. As with our

key results, this again suggests that birds have the ability to shift their neutral point in front

of their center of gravity to balance the positive tail lift that is required for weight support in

slow gliding flight [208]. It is important to highlight that we expect inter-specific variation

within the multiplying parameters and that the selected value substantially overestimates the

tail’s contribution and likely results in a more stable output. In all, these results are expected to

provide a preliminary estimation of the tail’s contribution.

3.8 Limitations

It is important to highlight that further work is required to incorporate the inter- and intra-

specific aerodynamic capabilities, shoulder and tail ROM, and in vivo configurations to defini-

tively confirm the optimal phenotype(s) for static pitch stability. We expect that the shoulder

joint will enhance the available pitch control and the ability to shift between modes due to

an increased static margin range; the extent of this enhancement will depend on each species’

shoulder ROM [30, 138, 202]. Future work is also required to extend this analysis into the

roll and yaw axes to discuss lateral agility and stability, which will need to account for aerody-

namic and inertial coupling [138]. Finally, 23% of the species in our study were unable to shift

between stable and unstable modes with the elbow and wrist alone, and thus there are many

combinations of stability characteristics within modern birds.
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3.9 Conclusion

Although studies have suggested that modern birds may be capable of stabilized flight

[128, 137, 141], it is widely believed that birds have evolved to be unstable in pitch to enhance

maneuverability [178]. Our results offer a new perspective on the evolution of avian flight:

evolutionary pressures may be maintaining the ability to shift between stable and unstable

configurations. Elbow and wrist flexion and extension alone offers birds the capacity to shift

between these pitch stability modes. But, if and when a flying bird does shift between these

modes remains to be seen. As highlighted by Thomas and Taylor [137], dynamically switching

between stable and unstable modes likely requires substantially different control algorithms

and thus, switching between these modes would necessitate a complex flight control system.

Further, our findings offer insight on how birds perform slow glides with positive tail lift [208].

By maintaining the capacity to relocate the wing-body neutral point in front of the CG, birds

may achieve an equilibrium, albeit unstable, flight condition.

In summary, our results revealed that elbow and wrist ROM had a small relative effect

on the center of gravity location and pitch inertia, but had a substantial effect on the roll and

yaw inertia. Although inter- and intra-specific variation was apparent, we found that the mea-

sured range of wrist and elbow motion alone is sufficient to enable switching between stable

and unstable flight in 17 out of 22 bird species. Further, an evolutionary analysis showed

that the phenotypic optimum maximum and minimum static margin supports the ability to

transition between stable and unstable flight, suggesting the need for a complex flight control

system. Collectively, investigating the inertial characteristics of flying birds throughout elbow

and wrist ROM brings us one step closer to establishing a fundamental theory to quantify and

then evaluate avian maneuverability.

73



Chapter 4

Gull Wing Joints Control Dynamic Stability
Flying may not be all plain sailing, but the fun of it is worth the price.

– Amelia Earhart

4.1 Summary

Birds perform astounding aerial maneuvers by actuating their shoulder, elbow, and wrist

joints to morph their wing shape. This maneuverability is desirable for similar-sized UAVs

and can be analyzed through the lens of dynamic flight stability. Quantifying avian dynamic

stability is challenging as it is dictated by aerodynamics and inertia, which must both account

for birds’ complex and variable morphology. To date, avian dynamic stability across flight

conditions remains largely unknown. Here we fill this gap by quantifying how a gull can use

wing morphing to adjust its longitudinal dynamic response. We found that it was necessary to

adjust the shoulder angle to achieve trimmed flight, and that most trimmed configurations were

longitudinally stable, except for configurations with high wrist angles. Our results showed that

as flight speed increases, the gull could fold its wings or sweep its wings backwards to trim.

Further, a trimmed gull can use its wing joints to control the frequencies and damping ratios

of the longitudinal vibrational modes. We found a more damped phugoid mode than similar-

sized UAVs, possibly reducing speed sensitivity to perturbations such as gusts. Although most

configurations had controllable short period flying qualities, the heavily damped phugoid mode

indicates a sluggish response to control inputs, which may be overcome while maneuvering by

morphing into an unstable flight configuration. Our study shows that gulls use their shoulder,

wrist, and elbow joints to negotiate trade-offs in stability and control and highlights the path

forward for designing UAVs with avian-like maneuverability.
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4.2 Background

Imagine UAVs performing social aerial aerobatics like ravens [209], rapidly diving like

gannets [210], and skillfully maintaining their position in high wind and gusty conditions like

kestrels and gulls [37, 211]. These nature-documentary-worthy feats often exceed the maneu-

verability of modern comparable UAVs, especially non-rotary designs [129]. The ability for

UAVs to effectively maneuver is becoming increasingly important as UAVs are more often

operating close to or within crowded environments, such as urban centers [31, 212].

To determine how to best improve UAV maneuverability based on insights from birds, we

must first quantify maneuverability. Maneuverability is broadly defined as the ability to change

the magnitude and/or direction of a flyer’s velocity vector [19, 20]. Although, there are mul-

tiple ways to evaluate flight maneuverability, many traditional methods quantify an aircraft’s

stability and control characteristics across relevant flight conditions [138, 213]. This is often

done by linearizing the governing equations of motion about an equilibrium condition (trim

state) and solving the resultant eigenvalue problem to extract information about the aircraft’s

response to small perturbations [138, 139].

For complete stability, the flyer must be both statically and dynamically stable. A flyer is

statically stable if after a disturbance, the flyer’s initial tendency is to return towards its trim

state (time-invariant), while a flyer is dynamically stable if it eventually returns to its trim

state after a disturbance (time-variant). Static stability is a necessary but insufficient condition

for dynamic stability. In the longitudinal plane (x-z plane, Fig. 4.1), the dynamic response

is commonly characterized by two superimposed modes: the short period and phugoid. For

traditional aircraft, the short period mode is a heavily damped, high frequency vibration in

the angle of attack and pitch rate (Fig. 4.1a), while the phugoid mode is a lightly damped,

low frequency response in the flight speed and pitch angle (Fig. 4.1b) [138]. The associated

damping ratio and natural frequency of these modes dictate how “sluggish” or “sensitive” an

aircraft is to control inputs, and are used to define an aircraft’s flying qualities [139, 214–218].

This stability-based approach to quantifying maneuverability requires knowledge of the

aerodynamic and inertial characteristics across all flight conditions and configurations. Ob-

taining this data for birds is challenging because of their complex and variable geometries. As
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Figure 4.1: In the longitudinal plane, gliding flight dynamics are usually dominated by
the short period and phugoid modes. (a) The short period mode largely affects the angle of
attack (α) and pitch rate (q) and is visualized by the oscillation of the center line (dotted grey
line) about the fixed velocity vector (solid green line). (b) The phugoid mode largely affects
the flight speed (u) and pitch angle (θ) and is visualized by the oscillation of the centre line
(dotted grey line) about the fixed horizon (solid black line). (c) Side view of gull with key flight
parameters illustrated.

a result, there are few studies that have quantified the dynamic flight response of gliding birds

throughout wing morphing. Instead, studies of gliding maneuverability often leverage observa-

tions of live birds by tracking and analyzing their morphology and flight path [177, 219, 220].

For example, in their thesis Durston [219] used live birds, 3D printing techniques, and X-ray

computed tomography (CT scanning) to show that three species of raptors are dynamically un-

stable in the longitudinal axis while gliding towards their handler. Although this work provides

the first detailed investigation of avian dynamic stability, the results are limited to the wing

shapes and behaviors that the birds used during the recorded flights.

Here, we investigated a gull’s longitudinal dynamic stability across the full range of elbow

and wrist flexion and extension used in gliding flight. Our dynamic analyses were informed

our two previous studies on hybrid glaucous-winged (Larus glaucescens) × western (Larus
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occidentalis) gulls. The aerodynamic results were obtained with an open-source numerical

lifting line method (MachUpX) following similar procedures to Chapter 2 [141] and the inertial

characteristics were obtained with an open-source method that models birds as a composite of

simple objects (AvInertia) [142] following similar procedures to Chapter 3. As Chapter 2

showed that gull wing-body configurations were unable to trim at a fixed shoulder angle with

no sweep or dihedral, we incorporated a furled (unspread, Fig. 4.2b) tail and two new degrees

of freedom: shoulder dihedral (Fig. 4.2a) and sweep angle (Fig. 4.2b). By coupling these

extended aerodynamic and inertial results with the traditional stability-based dynamic analysis

framework, we derived the small perturbation equations of motion across the in vivo range of

motion of the elbow and wrist for a gliding gull [128]. Next, we investigated the free vibrational

response of the gull with its wings in each morphed configuration, which allowed us to extract

the natural frequencies and damping ratios of the system. Finally, to visualize the effect of

wing morphing on the gull’s time response, we investigated two types of simplified gusts: 1) a

simplified transverse-gust modelled by an initial offset in the angle of attack and 2) a simplified

streamwise-gust modelled by an increase in the forward speed with a 1-cosine profile [214].
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Figure 4.2: Gulls can morph their wings to adjust key flight parameters. (a) Front view
of gull, visualizing the shoulder dihedral angle where a positive angle is an upwards deflected
wing. (b) Dorsal view of gull, visualizing the shoulder sweep angle where positive is a back-
wards swept wing. Elbow and wrist angles are always positive with higher angles as the wing
extends.
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4.3 Methodology

We developed the governing equations of motion for a gliding gull in the longitudinal plane.

We assumed a rigid, non-porous, symmetric gull undergoing small perturbations in a quasi-

steady state. These assumptions allowed us to evaluate longitudinal (i.e., pitch) characteristics

separate from the lateral (i.e., roll and yaw) characteristics and obtain a state-space representa-

tion of the longitudinal governing equations. We formulated the equations of motion following

procedures similar to those outlined in aeronautical texts [138, 139]. Any deviations from these

texts are due to assumptions on the aerodynamic derivatives and are detailed in the following

sections. Note that although we modeled the bird as a rigid body, we accounted for a change in

the aerodynamic and inertial characteristics between each different wing configuration. This

approach of solving the dynamic response for each fixed configuration independently is simi-

lar to the approach used to establish the operating parameters for aircraft across different flight

conditions independently [139].

4.3.1 Frames of reference

There are four frames of reference to consider when discussing traditional aircraft dynam-

ics. First, we require an inertial frame to resolve the applicable equations of motion. We

selected an earth-fixed frame as our inertial frame due to the slow gliding speeds of birds

[122, 138]. Next, the body-fixed frame is often defined so that the origin is fixed on the center

of gravity of the glider with the x-axis pointing out of the nose of the aircraft, the z-axis pointing

downwards from the aircraft’s ventral surface and the y-axis pointing towards the right wing

tip (Fig. 4.1c, xc-y-zc axis). This body-fixed frame is defined relative to the inertial frame by

the traditional 3-2-1 Euler angles φ, θ, and ψ. Within this body axis, the traditional angular

velocities are defined: roll rate (p), pitch rate (q) and yaw rate (r).

From the body axis, we can define a stability frame of reference which is defined by a

rotation about the body’s y-axis (known as the angle of attack, α) so that the new stability

x-axis is in line and opposite to the incoming wind velocity (Fig. 4.1c, x-y-z axis). Finally,

we can define a wind frame of reference by rotating about the stability z-axis (known as the
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sideslip angle, β) until the new wind x-axis is directly in line and opposite to the incoming

wind velocity. It is within the wind frame of reference that the resultant aerodynamic loads can

be decomposed into lift (L), drag (D), side force, pitch (M ), roll, and yaw.

To simplify the formulation of the equations, we made a few key assumptions. First, we

assumed that when trimmed and at t = 0, the body-fixed frame of reference is aligned with the

stability axis (i.e. xc is parallel to x). This ensures that the entire incoming velocity is equal and

opposite to the x-axis. Next, to properly implement a rigid body dynamic analysis, we assumed

that the bird maintains a constant configuration as it undergoes perturbations, which ensures a

constant moment of inertia and center of gravity. In addition, we modeled only a single gull

specimen. We selected to use the specimen that was used to extract inertial measurements for

Chapter 3 [142].

4.3.2 Defining the dynamic response

With these initial assumptions, we implemented a Newton-Euler approach [138, 139] to

obtain the classic equations for a symmetric configuration of a rigid body aircraft within the

body axes:

Fx = m(U̇ + qW − rV )

Fy = m(V̇ + rU − pW )

Fz = m(Ẇ + pV − qU)

Mx = ṗIxx − Ixz(pq + ṙ) + qr (Izz − Iyy)

My = q̇Iyy + Ixz
(
p2 − r2

)
+ rp (Ixx − Izz)

Mz = ṙIzz − Ixz(ṗ− qr) + pq (Iyy − Ixx)

(4.1)

To investigate the dynamic stability about the equilibrium condition, we assumed a sym-

metric flight condition (i.e., V = p = q = r = φ = ψ = β = 0) and that the gliding bird

would only experience small perturbations about a given equilibrium condition, known as the

79



trim point (notified with a subscript of 0), defined as:

U = U0 + ∆U q = ∆q Fx = ∆Fx

V = ∆V r = ∆r Fz = ∆Fz

W = ∆W p = ∆p My = ∆My

For this small disturbance model any higher order terms (such as ∆q∆W ) are assumed to

be negligible. These assumptions reduced equation 4.1 to:

∆Fx = m(∆U̇)

∆Fz = m(∆Ẇ − U0∆q)

∆My = ∆q̇Iyy

(4.2)

Note that decoupling the longitudinal equations from the lateral equations is only an ap-

propriate assumption if we limit the glider to symmetric flight and low magnitude maneuvers

within the longitudinal axis [138]. Next, the translational velocity components can be rear-

ranged to simplify their formulation as:

u =
∆U

U0

w =
∆W

U0

= sin(∆α) ≈ ∆α

This leads to the final form of the small disturbance longitudinal equations as:

∆Fx = m(U0u̇)

∆Fz = m(U0∆α̇− U0∆q)

∆My = ∆q̇Iyy

(4.3)

Because there is a dependence of the forces on the pitch angle (θ) there are effectively four

unknowns and only three equations. Therefore, these equations are traditionally supplemented

by the definitional relationship:

∆θ̇ = ∆q (4.4)
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The final steps now include determining the inertial and aerodynamic characteristics that

are required prior to solving the system represented by equations 4.3 and 4.4.

4.3.3 Determining the trim states

The solution of this linear dynamic system requires an equilibrium condition or trim point.

Trim is defined so that Fx0 = Fz0 = My0 = 0. Evaluating the free body diagram shown in Fig.

4.1c assuming the stability axis is aligned with the body-fixed axis at t = 0, allows us to write

the full trimmed equations as:

Fx0 = −D0 −mgsin(γ0) = 0

Fz0 = −L0 +mgcos(γ0) = 0

My0 = 0

(4.5)

These equations show that to trim while supporting the glider’s weight during flight, there

must be a positive lift force to balance out the opposing body weight when the pitching moment

is equal to zero. However, in Chapter 2 we found that wing-body configurations were unable

to trim when the wings were held at a shoulder angle with 0◦ dihedral and 0◦ sweep [141]

(Fig. 4.2). These configurations could not trim because they generated a negative zero-lift

pitching moment and a negative pitch stability derivative, thus there was no angle of attack that

generated positive lift while the pitching moment was zero, which is necessary to trim.

However, the existence of a trim state is necessary for most stability analyses. To address

this issue, we first adjusted the model to include a furled, static tail (Fig. 4.2b). The tail

was modeled as a flat, thin, rectangular wing behind the body with a NACA 0006 airfoil and

dimensions based on previously obtained furled tail measurements from the same gull species

[142]. We found that the tail had a minor stabilizing effect but alone was not sufficient to

trim. We expect that the tail will have a larger impact when spread and/or if it is rotated at an

incidence angle relative to the body, like an aircraft’s elevator.

As gulls are capable of gliding with their tail furled, we next included two new degrees of

freedom: the sweep and dihedral angle at the shoulder joint (Fig. 4.2). We investigated setting

the shoulder dihedral angle at 0◦, 10◦and 20◦ and the shoulder sweep angle at -20◦, -10◦, 0◦,
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10◦, and 20◦. Because these new parameters required 15-fold more configurations to be tested,

we sub-sampled the elbow and wrist configurations that we ran in MachUpX to 200, down

from 1031 in the previous aerodynamic study [141]. We ensured that the configurations were

equally distributed by binning in increments of 5◦ of elbow angle by 5◦ of wrist angle and

randomly selecting one configuration from each bin. In addition, to increase the convergence

speed for these complex wing shapes, we implemented a custom line search that leverages an

inverse parabolic interpolation [221] to calculate the optimal relaxation factor for each iteration

of MachUpX’s Newton method [152, 154]. We verified that this update returned the same

converged result as MachUpX’s fixed relaxation factor. In addition to the updated aerodynamic

results, we used outputs from our previous inertia study [142] to recompute the center of gravity

and moment of inertia of each wing configuration allowing for the new degrees of shoulder

motion (see Section 4.3.4 for details).

Estimating aerodynamic coefficients

Because the modeled gull was not the same individual used to estimate the aerodynamic

parameters, we extracted the coefficient of lift (CL) and pitching moment (CM ) from the nu-

merical lifting-line method. Note that these are similar to the coefficients calculated in Chapter

2 but we decided to not use the “morph” subscript for brevity. Further in this chapter, the coef-

ficient of pitching moment was non-dimensionalized with the specimen’s maximum root chord

rather than the wing-body mean chord. In Chapter 2, we found that the numerical results best

agreed with experimental data within the expanded uncertainty range for angles of attack below

5◦ [141]. Therefore, in this work we limited our aerodynamic analysis to configurations that

could achieve a trimmed configuration below 5◦. In addition, numerical results were limited to

angles of attack greater than or equal to -10◦ to reduce the amount of models.

To extract the aerodynamic coefficients for the lift and pitching moment, we used linear

models fit to the outputs from MachUpX as:

CL = A0 + A1e+ A2w + A3α + A4ew + A5eα + A6wα + A7ewα + A8α
2+

A9α
3 + A10e

2 + A11w
2 + A12w

3 + A13Λ + A14Γ + A15Λα + A16Γα (4.6)
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CM = B0 +B1e+B2w +B3CL +B4ew +B5eCL +B6wCL +B7ewCL+

B8Λ +B9eΛ +B10wΛ +B11ewΛ +B12eΛCL +B13wΛCL+

B14ewΛCL +B15ΛCL +B16e
2 +B17e

3 +B18w
2 +B19Γ +B20ΓCL (4.7)

Where α is the angle of attack, e is the elbow angle, w is the wrist angle, Γ is the shoulder

dihedral angle, and Λ is the shoulder sweep angle. These models allow for interactive effects

between the key joint angles. The linear model coefficients (Ai and Bi) were determined using

a linear model fit in R and exported into the Python dynamic analysis code. The models had

an adjusted R2 value of 0.87 and 0.91, respectively. The linear models agree with the forms

determined in Chapter 2 [141] but were updated to include the effects of the shoulder sweep

and dihedral angle.

Note that the coefficient of pitching moment was adjusted to be calculated about the center

of gravity for each specific configuration. This required the center of gravity location for the

specimen used for the aerodynamic results. Thus, we assumed that the center of gravity of the

aerodynamic specimen would be located at the same distance from the shoulder joint as the

gull specimen used in the data analysis. This value ranged between 2.7 to 5.8 cm backwards,

and 0.00 to 0.02 cm downwards from the shoulder joint, depending on the wing joint angles.

This location was then used as the origin for recalculating the pitching moment coefficient.

We validated the fit of these models by estimating the lift and pitching moment of the ex-

perimental data. We found that the average absolute error between the linear model prediction

and the experimental measurement was 0.015 for the coefficient of pitching moment and 0.082

for the lift coefficient. In addition, we found that the average absolute error between the linear

model prediction and the numerical result was 0.012 for the coefficient of pitching moment

and 0.058 for the lift coefficient. These results highlight that there is error between our model

fit and both the experimental and numerical results. We investigated using machine learning

regression techniques to improve the model predictions however, there was no significant re-

duction in the error. As the overall error is relatively low, we decided to proceed with our

analysis, however improved model fits will improve the accuracy of our methods for future

work.

Next, we used a different approach for the drag because MachUpX drag predictions did
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not agree well with our experimental results for wing configurations that were heavily swept

backwards [141]. Therefore, we estimated the coefficient of drag (CD) directly from the ex-

perimental data as:

CD = D0 +D1e+D2w +D3α +D4α
2 +D5eα +D6wα +D7eα

2 +D8wα
2 (4.8)

This model had an adjusted R2 value of 0.89 and was used to estimate the drag for each wing

configuration. We found that the average absolute error between the linear model prediction

and the experimental measurement was 0.014 for the drag coefficient. Note that we did not

include the effect of shoulder sweep and dihedral in this model. This is because the experi-

mental results were only obtained for nine wings with a single fixed shoulder configuration.

Therefore, throughout this work we effectively assumed that the effect of the shoulder sweep

and dihedral angles on the drag force is negligible. For this reason, we limited the maximum

angles for the shoulder to 20◦ to minimize the effects on the drag production. Future research

is necessary to investigate the role of how the shoulder angle variation on complex gull wing

shapes will affect the drag force.

Trimmed configurations

With the linear models for each aerodynamic coefficient (equations 4.6, 4.7, and 4.8), we

reformulated equation 4.5 to equation 4.9. This system of equations allowed us to calculate the

trim angle of attack (α0), trim speed (U0), and trim glide angle (γ0) (Fig. 4.1c). We iterated

through all possible combinations of elbow, wrist, and shoulder angle in the in vivo gull gliding

range to calculate the trim position of each configuration (23). The elbow angle was varied

from 86◦ to 164◦ (∆2◦), wrist angle from 106◦ to 178◦ (∆2°), sweep angle from -20◦ to 20◦

(∆5◦), and dihedral angle from 10◦ to 20◦ (∆5◦).

0 = −1

2
ρU0

2SCD −mgsin (γ0)

0 = −1

2
ρU0

2SCL +mgcos(γ0)

0 =
1

2
ρU0

2ScCM

(4.9)

Where ρ is the air density, S is the maximum wing-body area across all morphed configura-
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tions, c is the maximum wing root chord across all morphed configurations, and m is the mass.

To ensure compatibility across all metrics, the reference area, chord, and mass are all from one

gull specimen with 0° shoulder sweep and dihedral angle that was investigated in our previous

inertial study [142]. Similar to the derivation of the linear models, we limited our outputs to

configurations that could trim at α0 < 5◦ because MachUpX best matched the experimental

data at low angles of attack [141]. If a configuration with a given combination of joint angles

could not trim within our set parameter space, it was not included in the analysis.

We found that increasing the shoulder dihedral angle and sweeping the wings forward al-

lowed more wing configurations to trim due to an increased zero-lift pitching moment. Because

we found that the majority of elbow and wrist configurations could trim at 20◦ dihedral with

forward swept wings, we limited our results to these shoulder angle parameters for the remain-

der of the study. Note that higher dihedral angles would allow all combinations of elbow and

wrist angles to trim, but we limited our analysis to 20◦ to minimize the effects on drag esti-

mation. Even with these limitations some of the configurations required extremely steep trim

glide angles (γ0), likely closer to terminal velocity than true gliding flight. Therefore, we lim-

ited our results to configurations that had γ0 < 45◦. In total, 1457 configurations both satisfied

our imposed limitations and were able to trim (Fig. 4.3F).

4.3.4 Inertial characteristics

The key inertial characteristics for the longitudinal dynamic response are the mass (m),

center of gravity, and moment of inertia about the y-axis (Iyy). We determined these inertial

characteristics using the gull specific outputs from Chapter 3 [142] and expanded the results

to account for the shoulder sweep and dihedral angle of each tested configuration. To do this,

we first recalculated the location of the center of gravity relative to the shoulder joint for each

morphed wing configuration. This location is important as it must be used as the new origin

for the pitching moment and moment of inertia.

Next, to adjust the moment of inertia, we extracted the wing-only inertial value, rotated the

wing about the shoulder joint to the appropriate dihedral and sweep angles and added it back

to the rest of the body moment of inertia. We then shifted the resultant moment of inertia so

that the origin was at the newly determined center of gravity.
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Because we wanted to investigate any general wing configuration, we fit a linear model to

the final moment of inertia calculated about the center of gravity. The elbow, wrist and shoulder

sweep and dihedral angles were the explanatory variables within this model and interaction

terms were included. This model was used to extract the final moment of inertia for each

wing configuration and had an adjusted R2 of 0.999. We found that the average absolute error

between the linear model prediction and the numerical estimates was 6.12×10−5 kg-m2 for the

moment of inertia.

4.3.5 Aerodynamic characteristics

The key aerodynamic characteristics are encapsulated by the left-hand side of equation

4.3. Following traditional aeronautical methods we recast these variables using a Taylor series

expansion as follows:

∆Fx =
∂Fx
∂u

u+
∂Fx
∂α

∆α +
∂Fx
∂α̇

∆α̇ +
∂Fx
∂q

∆q +
∂Fx
∂θ

∆θ + · · ·

∆Fz =
∂Fz
∂u

u+
∂Fz
∂α

∆α +
∂Fz
∂α̇

∆α̇ +
∂Fz
∂q

∆q +
∂Fz
∂θ

∆θ + · · ·

∆My =
∂My

∂u
u+

∂My

∂α
∆α +

∂My

∂α̇
∆α̇ +

∂My

∂q
∆q +

∂My

∂θ
∆θ + · · ·

(4.10)

Note that we have only incorporated the stability derivatives within this expansion, but con-

trol derivatives are normally also included [138, 139]. In this work, we selected not to treat the

elbow, wrist, and shoulder angles or the tail as control inputs, but rather to investigate each pos-

sible configuration independently as a rigid-body flyer. This simplified approach was intended

solely to provide an initial understanding of the dynamic stability of each morphological con-

figuration. Future work is warranted to investigate the role of the control derivatives associated

with each degree of freedom and to capture the dynamics of morphing between configurations.

To investigate the flight dynamics, each of the aerodynamic stability derivatives in equation

4.10 must be estimated. This can be simplified by investigating the free body diagram of the

configuration in question under a perturbed condition. From this perturbed aerodynamic state

we can next estimate the key derivatives.
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Forward speed, u

If we assume a perturbation in the forward speed from the equilibrium (Eqn. 4.5) [138], we

obtain:

Fx = ∆Fx = −∆D

Fz = ∆Fz = −∆L
(4.11)

This equation allows us to calculate the effect of a change in the flight speed on the initial

equations [138]:

∆Fx
∆u

≈ ∂Fx
∂u

=
1

2
ρU2

0Smax(−2CD0 −
∂CD
∂u

)

∆Fz
∆u
≈ ∂Fz

∂u
=

1

2
ρU2

0Smax(−2CL0 −
∂CL
∂u

)

∆My

∆u
≈ ∂My

∂u
=

1

2
ρU2

0Smaxcmax
∂CM
∂u

During our experimental analysis in Chapter 2 we tested the gull-inspired wings at two

different biologically relevant Reynolds numbers (approximately 1.5×105 and 2.2×105) and

found a statistically insignificant effect of velocity on the coefficient of lift, drag and pitching

moment for angles of attack used within the analysis (−10◦ < α < 5◦) [141]. This outcome

was expected since the testing was limited to speeds that birds are known to fly at, which are

well within the subsonic regime [122]. These simplifications led to the final form of the speed

derivatives:

∂Fx
∂u
≈ 1

2
ρU2

0Smax(−2CD0)

∂Fz
∂u
≈ 1

2
ρU2

0Smax(−2CL0)

∂My

∂u
≈ 0

(4.12)
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Angle of attack, α

Next, we assumed a perturbation in the angle of attack and a small angle assumption to

obtain the perturbed equations as:

∆Fx ≈ L0∆α−∆D

∆Fz ≈ −∆L−D0∆α
(4.13)

From here, the angle of attack derivatives can be estimated as:

∂Fx
∂α
≈ 1

2
ρU2

0Smax(CL0 −
∂CD
∂α

)

∂Fz
∂α
≈ 1

2
ρU2

0Smax(−
∂CL
∂α
− CD0)

∂My

∂α
=

1

2
ρU2

0Smaxcmax
∂CM
∂α

(4.14)

To estimate the derivatives with the angle of attack we took the derivative of our linear

model fits for the coefficient of lift (Eqn. 4.6), coefficient of pitching moment (Eqn. 4.7) and

coefficient of drag (Eqn. 4.8). It is possible that these angle of attack derivatives of the co-

efficient of lift have a lower magnitude than expected due to error between the numerical and

experimental results [141]. By limiting our analysis to lower angles of attack, we expect this er-

ror to be reduced but additional studies are required to improve the angle of attack relationship

with lift. Note that for the pitching moment derivative, we assumed that:

∂CM
∂α

=
∂CM
∂CL

× ∂CL
∂α

(4.15)

This approximation is valid at low angles of attack within the linear region of the pitching

moment and lift relationship.

Rate of change of the angle of attack, α̇

Because our gull is modeled with a furled tail, we neglected all of the aerodynamic deriva-

tives related to the rate of change of the angle of attack (α̇). This is equivalent to assuming

that the flow remains attached over the wings and is an acceptable assumption for a gliding
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configuration at small angles of attack. Note that for the force equations, this is commonly

done in large scale aircraft due to the small contribution of this term even with a tail [139].

Pitch rate, q

Following Pamadi’s derivation [138], it can be shown that:

∂Fx
∂q
≈ −1

2
ρU2

0Smax
∂CD
∂q

∂Fz
∂q
≈ −1

2
ρU2

0Smax
∂CL
∂q

∂My

∂q
≈ 1

2
ρU2

0Smaxcmax
∂CM
∂q

(4.16)

We directly calculated ∂CL
∂q

and ∂CM
∂q

from numerical results for the same nine wings con-

figuration that were tested in the wind tunnel. This was done by running MachUpX for each

wing held at each shoulder sweep and dihedral angle configuration while varying q from -0.5

to 0.5 rad/s. Given our problem formulation in MachUpX, while we estimated the stability

derivatives q was defined to be about the shoulder joint. Therefore in this work, we implicitly

assume that the change in the pitching moment coefficient about the center of gravity due to a

pitch rate at the shoulder joint is approximately equal to that due to a pitch rate about the center

of gravity. Similarly, we implicitly assume that the change in the lift coefficient due to a pitch

rate at the shoulder joint is approximately equal to that due to a pitch rate about the center of

gravity. With these outputs we then fit a linear model that predicted the pitch rate derivatives

for each joint angles as:

∂CL
∂q

= E0 + E1e+ E2w + E3Λ + E4ew + E5eΛ + E6wΛ + E7Γ (4.17)

∂CM
∂q

= G0 +G1e+G2w +G3Λ +G4Γ +G5
∂CL
∂q

(4.18)

The linear models had adjusted R2 values of 0.93 and 0.80, respectively. We assumed that

the effect of q on the drag (∂CD
∂q

) was negligible following traditional aircraft studies [138].
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Flight path angle, θ

Finally, we assumed that the pitch angle had been perturbed. Using trigonometric identities

and a small angle approximation on the pitch angle the following equations are obtained:

Fx = ∆Fx = −mgcos(γ0)∆γ

Fz = ∆Fz = −mgsin(γ0)∆γ

Further, because γ = θ−α and the change in the pitch angle (θ) is independent from the angle

of attack (α), ∆γ = ∆θ. This leads to:

∂Fx
∂θ

= −mgcos(γ0)

∂Fz
∂θ

= −mgsin(γ0)

∂My

∂θ
= 0

(4.19)

4.3.6 Complete formulation

Finally, all of the above stability derivatives can be integrated into equation 4.10 and equa-

tion 4.3. We can write the final small perturbation state-space representation of each bird

configuration as:

Ẋ = AX

X =


u

∆α

∆q

∆θ



A =


−2m̃CD m̃(CL − ∂CD

∂α
) 0 − g

U0
cos(γ0)

−2m̃CL m̃(−CD − ∂CL
∂α

) 1− m̃∂CL
∂q

− g
U0

sin(γ0)

0 Ĩyy
∂CM
∂α

Ĩyy
∂CM
∂q

0

0 0 1 0

 (4.20)
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Where:

m̃ =
ρU0S

2m
Ĩyy =

ρU2
0Sc

2Iyy

These equations model the longitudinal dynamics of the fixed-wing gull as a fourth-order sys-

tem under the simplifications outlined above.

4.3.7 Free response characteristics

To determine the longitudinal dynamic stability characteristics, we began by solving the

eigenvalue problem (λI − A = 0) associated with the free response of the system, where I is

the identity matrix and λ represents the eigenvalues of the system. This returns a characteristic

equation that can be solved to extract the associated roots of the system. In aeronautical studies,

it is possible to make additional assumptions on the system to return the short period and

phugoid mode approximations, but we instead solved the complete fourth order system for

improved accuracy [138]. With these outputs, we calculated the damping ratio and frequency

of the short period and phugoid mode of each configuration [138] from equation 1.2.

4.3.8 Gust response

Next, we used the Python Control Systems Library [222] to solve for the time response of

the gull for two simplified gusts.

Transverse gust

First, to model a simplified transverse gust, we solved the free response of the system given

an initial angle of attack of 2◦. This is mathematically equivalent to an impulse in the angle of

attack. Due to the rigid body assumption, we did not model the joints as independent controls

and thus the input vector (U) is zeros for this case. To extract the time response, we solved the

following system for each trimmed wing configuration:

Ẋ = AX
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With the following initial condition:

Xt=0 =


0

2 π
180

0

0


Streamwise gust

Second, to model a streamwise gust, we solved for the forced response of a discrete gust

model as implemented within MIL-F-8785C, which uses a 1-cosine velocity profile [214]. We

assumed that the gust velocity was in the positive x direction such that:

ua = u− ug (4.21)

Note that the gust velocity will be subtracted from the body velocity as the governing

equations were developed with motion relative to the atmosphere [139]. This results in the

following state space system:

Ẋ = AX +BU

Where:

B =


2m̃CD

2m̃CL

0

0


U =

[
uf (t)

]
The initial condition was set to zero for all inputs. Finally, we solved the system by discretizing

in time (following methods outlined in the Python Control Systems Library [222]), so that the
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gust was modeled as:

uf (t) =


0 t = 0

ug
2

(1− cos( πt
tm

)) 0 < t ≤ tm

ug t > tm

Where ug is the gust amplitude, which was set as 2% of the trim speed (U0) and tm was 5

seconds. This model is similar to that introduced by MIL-F-8785C [214], although we defined

the gust relative to time rather than distance traveled.

4.4 Results

4.4.1 Trim states

With the aerodynamic coefficients for each wing configuration, we solved for the trim angle

of attack (α0), trim speed (U0), and trim glide angle (γ0) (Fig. 4.3a, see Section 4.3.3). For the

configurations capable of trimmed flight (n = 1457), we found that the trim speed ranged from

11.8 to 29.8 m/s and the shallowest trim glide angle was -12.2◦. In-flight measurements of gulls

gliding past an urban environment by Shepard et. al [25] showed an airspeed range from 8.1

to 19.9 m/s, which includes approximately half of our configurations (n = 768). This previous

study investigated gulls in transient flight and did not include behaviors with high glide angles

such as those used in landing flight. As such, we expect that gulls have the capability to trim at

the higher speeds as predicted by our model. Note that due to our imposed limits on the angle

of attack and dihedral angle, it is likely and probable that gulls can also trim at lower speeds

and shallower glide angles. Our identified trim states permit an initial evaluation of dynamic

stability in gull gliding flight.

To determine how the three different wing joints affect the trim state, we fit linear models

where the trim speed and glide angle were the dependent variables and the elbow, wrist, and

sweep angles were independent variables. This analysis revealed strong interactive effects

between the joint angles for both the trim speed and glide angle. Folding the wrist, increased

the trim glide speed for over 80% of tested configurations and folding the elbow, increased

the trim glide speed for 60% of tested configurations. Because there is evidence that many
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Figure 4.3: Wing morphing allows gulls to switch between statically stable and unstable
configurations. (a) The gull can fold its wrist to trim as speeds increase. The configurations
capable of trimmed flight (n = 1457) include multiple forward sweep angles (b and c). (d)
Gull wing morphing allows a substantial shift in the static margin largely due to neutral point
control as the motion of the center of gravity remains relatively small. (e) The gliding gull is
unstable if the neutral point is in front of the center of gravity and stable if it is behind. (f)
Adjusting the forward sweep angle ensures that the majority of elbow and wrist configurations
at 20◦ dihedral angle can trim, but most configurations with high wrist angles become statically
unstable (hollow squares).

bird species, including gulls, fold their wing joints as wind speeds increase [39, 52, 82, 85, 92,

100, 124, 128, 223], our results suggest that this wing morphing behavior allows gliding birds

to adjust their trim condition to adapt to different flight conditions. In addition, we found that

reducing the forward sweep at the shoulder joint caused the trim glide speed to increase (and the

glide angle to decrease) for each tested configuration as expected from traditional aeronautical

results [129]. Yet, there is little documented evidence of birds sweeping their wings backwards

at the shoulder joint in response to increased wind speeds. Therefore, it is possible that to trim,

birds preferentially fold their wings rather than just changing the shoulder joint sweep angle.

One benefit to folding the elbow and wrist over sweeping the entire wing would be that folding

the wing both reduces the total wing lifting area and moves the wings closer to the body. These
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two effects would reduce the wing bending moment, whereas adjusting the shoulder sweep

angle would not change the wing area and only marginally move the wings closer to the body.

A directed study is required to determine if and how birds balance trade-offs between structural

constraints and aerodynamic loading in trimmed flight.

4.4.2 Static stability about the trim state

With the known trim state for each configuration, we next investigated the static stability

of each configuration. We quantified static stability with the static margin, a measure of the

distance between the center of gravity and the neutral point. The neutral point is the location

where the distributed forces and moments can be modelled as point loads. It differs from the

center of pressure because the pitching moment about the neutral point is independent of the

angle of attack. If the neutral point is behind the center of gravity, the configuration has a

positive static margin and is statically stable (Fig. 4.3e) [141].

We found that the majority of trimmed elbow, wrist, and shoulder combinations for the gull

were statically stable (solid squares, n = 1331, Fig. 4.3f), but there was a set of configurations

with extended wrist angles that were unstable (hollow squares, n = 126, Fig. 4.3f). We found

that the progression towards instability for the gull wings was largely driven by a shift in the

neutral point rather than the center of gravity, as is expected since wing morphing has only a

marginal effect on shifting the center of gravity (Fig. 4.3d for a constant 15◦ forward sweep

angle) [142]. This result agrees with Durston’s finding that raptors gliding towards their trainers

with fully extended wing configurations were statically unstable [219]. However, our results

expand on this understanding to reveal that a gull can fold its wrist to achieve a stabilized

configuration, allowing a shift between stable and unstable flight conditions.

This capacity to shift stability with wing morphing agrees with a previous finding that most

species can shift between stable and unstable flight [142]. However, that previous study was

limited to 0◦ shoulder sweep and dihedral angles, which yields only statically stable configura-

tions for the gull. Here, we expanded on these results to show that including the shoulder joint

further enhances birds’ ability to transition between statically stable and unstable flight. It is

important to highlight that there is limited data on the true shoulder angles used in bird flight.

However, gulls are often observed flying with swept forwards wings held at a positive dihedral
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angle [224], therefore this stability shift is likely used by live gliding gulls.

4.4.3 Dynamic stability about the trim state

Static stability provides a necessary, but insufficient condition of full stability. To deter-

mine if a gull is completely stable, we next calculated the dynamic characteristics by solving

for the eigenvalues of the rigid gull modelled as a fourth-order system. We found that all the

statically stable configurations had eigenvalues with negative real values for both vibrational

modes (solid points, n = 1331, Fig. 4.4a and b) leading the gull to be dynamically, and thus

completely, stable in the longitudinal axis. Only statically unstable configurations had dynam-

ically unstable responses and exhibited a non-oscillatory divergent response, which was char-

acterized by eigenvalues with only real parts, similar to Durston’s results [219]. This indicates

that the gull was only ever completely stable or unstable and there were no configurations that

exhibited static stability and dynamic instability. Of note, we found that the phugoid mode re-

mained stable even for the statically unstable configurations (Fig. 4.4b) and thus the instability

was entirely due to the unstable short period response.

With the complex and real components of the eigenvalues, we calculated the damping ra-

tio (ζ) and natural frequency (ω) associated with the two vibrational modes for all the stable
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Figure 4.4: Root locus plot of the open-loop system. The poles of the fourth order system are
displayed for a forward sweep angle of 5◦ (triangles) and 15◦ (circles) for the short period (a)
and phugoid mode (b).
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configurations. First, one mode had a high frequency, highly damped response (Fig. 4.5a and

c) that was independent of the speed (demonstrated by the low magnitude of the teal dots in

Fig. 4.6a). This response is characteristic of the short period mode (Fig. 4.1a). The short

period frequency ranged from 8.9 to 41.0 rad/s, which is approximately half to more than

double the frequency of a similar sized UAV (Fig. 4.5a) [217]. Previous studies have shown

that small UAVs will have higher short period frequencies than large aircraft due to scaling

alone [217, 218]. The gull’s variable frequency response is because wing morphing allows a

substantial shift in the static margin, and thus the static stability, compared to values used in

traditional UAV designs [138, 139]. To this end, wing morphing has a strong effect on the short

period characteristics for gulls. Furthermore, we found significant interactive effects between

the elbow, wrist, and sweep angles (visualized in Fig. 4.5a and c). Despite these interactive

effects, general trends in the short period characteristics are apparent within our investigated

joint ranges. For example, wrist extension decreased the short period natural frequency (Fig.

4.5a) and increased the damping ratio (Fig. 4.5c), when the elbow angle was above 90◦.

Next, the second identified mode had a substantially lower frequency response (Fig. 4.5b)

that was independent of the angle of attack (demonstrated by the low magnitude of the light

blue dots in Fig. 4.6b). This response is characteristic of the phugoid mode (Fig. 4.1b). The

phugoid mode had a similar or slightly lower frequency than a similar sized UAV ranging from

0.45 to 1.10 rad/s (Fig. 4.5b). However, we found that the phugoid mode was heavily damped,

with a damping ratio on the same order of magnitude as the short period mode (Fig. 4.5d). This

is unlike most comparable UAVs or large scale aircraft [138, 217, 218], although a flight test

on a smaller morphing gull-wing UAV found a similar heavily damped phugoid mode [31]. We

expect that the high damping is because we investigated gliding flight rather than steady, level

cruise and because our configurations were limited to angles of attack below 5◦, which ex-

cludes the most aerodynamically efficiency results for these wing configurations. Per Pamadi’s

phugoid approximation, these combined approximations will decrease the phugoid frequency

and increase the damping ratio [138]. Therefore, it remains possible that at more efficient trim

conditions a gull configuration could be statically stable but dynamically unstable due to re-

duced phugoid damping. Like the short period mode, we found significant interactive effects

between the elbow, wrist, and sweep angles (visualized in Fig. 4.5b and d). Unlike the rela-
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Figure 4.5: The short period and phugoid mode characteristics are significantly affected
by the wing positioning. Within the in vivo range (above 90◦ elbow angle) wrist extension
tends to decrease the short period (a) natural frequency and increase the (b) damping ratio. The
effect of wrist extension on the phugoid (c) natural frequency and (d) damping ratio depends
on the elbow angle.

tively consistent wing morphing trends for the short period, the effect of wrist extension on the

phugoid frequency (Fig. 4.5b) and damping (Fig. 4.5d) reverses signs within our investigated

ranges. For example, the damping ratio tends to increase with wrist extension at low elbow

angles but tends to decrease with wrist extension at high elbow angles.

4.4.4 Flying qualities

To better understand the dynamic response characteristics, we compared the estimated fly-

ing qualities of the gull to known aircraft specifications. We evaluated the flying qualities as

established by the U.S. Department of Defense’s MIL-F-8785C specification [214]. This spec-

ification defines three levels of flying qualities: Level 1 flying qualities are clearly adequate for

98



0.00

0.25

0.50

0.75

1.00

Phase (°)

M
ag

ni
tu

de

(a)

0.0

0.5

1.0

1.5

2.0

2.5

Phase (°)

M
ag

ni
tu

de

(b)

speed
angle of attack
pitch rate
pitch angle

0

90

180

270

0

90

180

270

Figure 4.6: Short period and phugoid modes were identified from the magnitude of the
eigenvectors. All magnitudes and phases were normalized to the pitch rate (maroon dot) to
facilitate comparison. (a) The short period was characterized by the high magnitude response
in the pitch rate (maroon dots) and a small magnitude response in the speed (dark teal dots).
(b) The phugoid mode was characterized by a high magnitude response in the speed (dark teal
dots) and pitch angle (orange dots) with a small magnitude response in the angle of attack (pale
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the given flight phase; Level 2 necessitates a higher pilot workload and/or degradation of mis-

sion effectiveness; and Level 3 results in an excessive workload or inadequate mission effec-

tiveness. We considered only qualities associated with flight phases that include non-terminal

flight maneuvers such as a gliding descent (Category B per MIL-F-8785C).

MIL-F-8785C defines desirable short period characteristics by the damping ratio (ζ) and a

short period frequency metric, which is the ratio of the natural frequency squared (ω2
sp) to the

load factor per angle of attack (nα) (y-axis, Fig. 4.7). Considering the damping ratio limits, we

found that most configurations (n = 1232) satisfied the Level 1 requirements, however some

configurations (n = 99) with a 20◦ forward sweep angle only satisfied the Level 2 requirements

(Fig. 4.7, M, solid vertical lines). Considering the frequency metric requirements, we found

that only seven configurations satisfied Level 2 requirements (Fig. 4.7, M, solid horizontal

lines). Although interactive effects were again significant, we found that sweeping the wing

forwards, extending the wrist, or folding the elbow angle tended to reduce the short period

frequency metric, thus improving the flight quality (p-values < 0.001, R2 = 0.9083, Fig. 4.7).
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Figure 4.7: Most gull configurations satisfied Level 2 short period requirements for human
pilots per adjusted UAV guidelines. For the damping ratio, all configurations satisfy at least
Level 2 MIL-F-8785C (shortened to M, solid vertical lines). For the frequency metric, no
configurations satisfied the Level 1 MIL-F-8785C requirements (M, solid horizontal lines).
Adjusting for two previously published UAV metrics revealed that 185 configurations satisfied
Capello et. al’s Level 1 upper limits (C, grey dotted lines) and 457 configurations satisfied
Foster and Bowman’s Level 1 upper limits (FB, black dashed lines). All configurations satisfied
Foster and Bowman’s Level 2 upper limits.

All stable configurations exhibited at least Level 3 qualities in the damping ratio and frequency

limits, but this is indicative of a flyer that would be difficult to control [214].

However, studies on small UAVs have shown that the MIL-F-8785C short period frequency

metric guidelines do not accurately capture the flying qualities of small UAVs [215–218]. As a

result, new scaling parameters have been proposed. Incorporating Foster and Bowman’s [218]

scaling we found that all of our stable, trimmed gull configurations (n = 1331) would have

at least Level 2 flying qualities and 457 configurations would have Level 1 flying qualities

(Fig. 4.7, FB, dashed lines). Incorporating Capello et. al’s scaling [217], we found that 1167

configurations would have Level 2 flying qualities and 185 would have Level 1 flying qualities

(Fig. 4.7, C, dotted lines). Note that we used a Cessna 172 as the comparable large scale

aircraft to calculate the scaling constant [217, 225]. Thus, by accounting for known differences

between large scale aircraft and small UAVs, our results suggest that a gull-like UAV design
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with wings swept forward less than 20◦ would be flyable albeit with a higher pilot workload

for many configurations.

Unlike the short period mode, MIL-F-8785C only provides a minimum criterion on the

phugoid damping ratio and UAV-focused studies tend to agree with the effectiveness of this

parameter [217, 218]. Our results show that the gull was substantially above the Level 1 mini-

mum damping ratio of 0.04 (Fig. 4.5c) and had nearly an order of magnitude higher damping

ratio than comparable UAVs. As discussed previously, this is due both to our gliding analysis

and the lower aerodynamic efficiency in the tested configurations. Future work is required to

determine if these values exhibited by gliding gulls are too heavily damped for effective imple-

mentation in a gliding UAV. A higher damped phugoid mode may be beneficial as this mode

is notorious for pilot-induced oscillations, but the high damping also suggests that there is a

slow response to control inputs for the flight speed and pitch angle. This sluggish response to

elevator inputs was observed for a small gull-wing morphing UAV [31].

These differences in the phugoid modes between gulls and UAVs are intriguing because

they may play a role in avian gust response, which tends to outperform comparable fixed-wing

UAVs. Small perturbations in the forward velocity of a trimmed gliding gull would be quickly

damped out according to our model. However, the gull would need to use larger control inputs

to maneuver away from the equilibrium condition. These results reveal a reason that gulls may

elect to switch from a stable to an unstable configuration. Gulls could use a stable configuration

to reject undesired perturbations from their local environment while in transit or foraging for

food. Then, gulls could extend their wrists to morph into an unstable configuration to gain a

more sensitive reaction to control inputs, which would support rapid maneuvering.

4.4.5 Simplified gust response

Because the heavily damped phugoid mode pointed to possible gust-related benefits, we

explored the time response of the gull to transverse and streamwise gusts. Note that a bird’s

gust response affects their foraging and landing capabilities [226–228]. Intriguingly, a study of

live gulls in a wind tunnel found that increased turbulence intensity (a measure of variation in

the freestream velocity) had no effect to the overall metabolism of the bird and thus no effect

on their energetic requirements [229]. Since we found that both the phugoid and short period
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mode are heavily damped, it is possible that a gliding gull in a stabilized configuration does

not require active control to return quickly to an equilibrium condition, which eliminates any

additional energetic costs.

To visualize the effect of small environmental fluctuations, we calculated the dynamic re-

sponses to disturbances modeled with either a 2◦ step change in the angle of attack or a 2%

increase in the forward speed (see Section 4.3.8). We investigated configurations with a fixed

elbow angle (130°) and fixed shoulder sweep angle (15◦) but a variable wrist angle (Fig. 4.8).

This range allowed us to explore both stable and unstable configurations across a broad range

of wrist angles. Each wing configuration was at a different trim state. The wrist angle of 156°

had a trim glide angle (γ0) of 61◦ and was excluded from the previous analyses as it is steeper

than the imposed limit of 45◦ (see Section 4.3.3). We included it here for completeness.

The time responses of these configurations captured the quickly diverging dynamics asso-

ciated with higher wrist angles and showed that small perturbations in the angle of attack (Fig.

4.8a) or speed (Fig. 4.8b) would be quickly damped out for lower wrist angles. For the stable

configurations with lower wrist angles, the time to half the amplitude varied between 2.22 to

2.52 seconds for the phugoid mode and 0.05 to 0.12 seconds for the short period mode. For

the unstable configurations with higher wrist angles, time to double the amplitude varied from

0.80 to 1.69 seconds for the phugoid mode and 0.03 to 0.04 seconds for the short period mode.

In all, these results show that gulls gain significant control over their dynamic characteristics

through solely adjusting their wrist joint. It is important to again highlight that the strong in-

teractive effects acting between the elbow, wrist, and shoulder joints means that the effect of

each morphing joint depends on the other joint positions and these evaluated configurations are

only a representative sample. These interactive effects indicate that a complex control system

would be required to effectively pilot a gull-like UAV.

4.5 Limitations

There were many simplifications used throughout this study. Predominately, this approach

uses a quasi-steady aerodynamic analysis of a rigid gull undergoing small perturbations in

symmetric flight. Additional work is required to extend this analysis to include a lateral anal-
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ysis, non-linear and unsteady flight conditions, and larger scale atmospheric gusts. Further,

we used a single gull specimen to focus our study, but there will be individual differences as

well as species-specific differences in the dynamic characteristics of bird flight. To extend this

study, further work will be necessary to improve aerodynamic prediction capabilities at higher

angles of attack to allow an investigation of the most aerodynamically efficient configurations.

Although the discussed flight qualities are a useful comparative tool, the MIL-F-8785C and

the adjusted UAV guidelines are dictated by conversations with pilots [214, 217, 218]. These

flying qualities do not necessarily translate to avian flying qualities, which are unlikely to be

directly comparable to human metrics. Work is underway to investigate the neurological con-

trol mechanisms related to avian flight [136]. Connecting our results with information about

the avian neurological control system will be a necessary next step to understand avian flight

control methodologies.

4.6 Conclusion

Gulls regularly morph their wings in flight, which has been hypothesized to permit en-

hanced maneuverability and control. Our work incorporated existing studies on the aerody-

namic and inertial properties of a gliding gull to provide the first detailed investigation of

dynamic stability characteristics throughout wing morphing. Our results suggest that the gull

could fold its wing joints or sweep its wings backwards to remain in a trimmed state as wind

speeds increase. Further, we showed that most gull wing configurations have a short period

mode that satisfies the minimum controllability requirements for Level 2 human-piloted air-

craft as well as a heavily damped phugoid mode. We suggested that the high phugoid damping

acts to reduce the gull’s sensitivity to small perturbations in the localized environment. How-

ever, this reduced sensitivity suggests that the gull would have a sluggish response to control

inputs needed to effectively maneuver. Thus, we hypothesized that gulls initiate sudden ma-

neuvers by morphing into unstable configurations and shift into a stabilized configuration to

reject non-desirable perturbations to their flight path.

In all, our study confirms that gulls can negotiate trade-offs in stability and maneuverability

by morphing their wings between dynamically stable and unstable configurations and provides
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a mechanism for how birds exhibit both stable flight and sudden, rapid maneuvers. Our results

should encourage additional engineering investigations into morphing wings that may permit a

substantial shift in the static margin. With this capability, we will be able to identify whether the

ability to shift stability modes is a necessary condition to achieve avian-like maneuverability

and if this approach can be harnessed to advance the maneuverability of future UAVs.
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Chapter 5

Conclusion
I never am really satisfied that I understand anything; because, understand it well

as I may, my comprehension can only be an infinitesimal fraction of all I want to

understand about the many connections and relations which occur to me, how the

matter in question was first thought of or arrived at. . .

– Ada Lovelace

5.1 Key results

UAV design has advanced tremendously in the past century. However, UAVs still struggle

to adapt to variable conditions and missions, in part due to trade-offs between maneuverability

and stability. Understanding how birds negotiate similar trade-offs provides a common ground

that may inspire future more maneuverable and adaptable UAV designs. To date, it has been

challenging to quantify avian flight characteristics in a way that simplifies the comparison be-

tween engineered aircraft and birds. This thesis aims to fill this gap and provide a foundational

understanding of avian gliding flight stability throughout wing morphing. The stability focus

provides the necessary first step towards a holistic model of avian flight maneuverability and

adaptability. The main contributions and takeaways from this work are the outputs of each

major data chapter as follows. Note that the introduction includes a version of sections from

my published review papers [122, 129].

5.1.1 The elbow and wrist allow adaptive control

In Chapter 2, I performed the first experimentally validated lifting line analysis of a mor-

phing bird wing and found that the extension trajectory followed while morphing the wing

substantially affected the resultant aerodynamic characteristics [141].
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In this chapter, I implemented an open source software (MachUpX) that calculated the lift

and pitching moment of a gull’s wing across the full range of flexion and extension of the

elbow and wrist. To incorporate biologically-relevant wing shapes, I developed a code that

discretized real gull wings into shape parameters that could be implemented in MachUpX.

This methodology was informed by additional XFOIL studies on the airfoils selected to model

the gull wing. These final numerically implemented, gull-inspired wings were then exported

as half-wings that could be 3D printed and mounted in the wind tunnel at the University of

Michigan. I 3D printed nine wings and performed wind tunnel experiments to measure the

loads acting on the wing across a range of angles of attack. With the output data, I quantified the

experimental uncertainty and implemented statistical approaches to analyze how the elbow and

wrist angle affected the aerodynamic loads and stability across the complete range of motion.

My results identified that extending the wing with different combinations of elbow and

wrist angles yielded substantially different effects on the loads and stability. One extension

trajectory linearly decreased the static margin but kept the lift and pitching moment constant,

while another linearly increased the lift and pitching moment but kept the static margin con-

stant. These results are promising for two reasons. First, the linear response indicates that

there are certain extension trajectories that could be used by two joints that would not require

a control system to account for non-linear characteristics. Second, the substantially different

outputs indicate that the same joints can adapt to different control requirements depending on

the flight condition or mission.

However, I found that minor departures from the identified extension trajectories led to a

coupled change in the stability and loads. This indicates a thorough sensitivity analysis of

outputs would be necessary to successfully implement a gull-inspired joint-driven wing in a

UAV. A version of this chapter has been published [141].

5.1.2 Birds have the capacity to shift stability states

In Chapter 3, I developed the first generalized method to calculate the inertial characteristics

of flying birds and used a comparative analysis to investigate the static stability of 22 bird

species [142].

For this work, I leveraged a classic analytical approach to model a flying bird with over 200
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components. This approach can account for any wing posture and performs a quick calculation

of the moment of inertia tensor and center of gravity. This software is published as an open

source method on CRAN and GitHub. With measurements from 22 species of birds, obtained

by my collaborators at the University of British Columbia, I calculated the center of gravity

and moment of inertia associated with the complete range of motion of the elbow and wrist.

With the outputs from Chapter 2, I estimated the location of the neutral point as a function of

each bird’s full range of elbow and wrist extension and flexion. With the center of gravity and

neutral point, I then calculated the static margin of each species and developed a novel metric

for the torsional pitch agility of a flying bird. Finally, I performed an evolutionary analysis

to identify the time series model that best captured the modern birds’ static margin traits. To

validate and verify these results, I implemented multiple sensitivity analyses to account for

measurement error and statistical variation.

I found that the majority of the investigated species (17 out of 22) had the capacity to shift

between longitudinally stable and unstable flight within the range of motion of the elbow and

wrist. Further, I found evidence of evolutionary pressures acting to maintain this capacity to

shift between stable and unstable flight. This result shifts the field’s general understanding

of avian flight evolution as it was previously believed that birds were evolving towards being

entirely unstable. This outcome instead suggests that there may be adaptive benefits for birds

to maintain the capability to shift stability modes. Such a possibility should inspire future

UAV designs to implement the capacity to shift between stable and unstable flight to approach

avian-like maneuverability.

Although these results specifically indicate the capacity to shift, additional work is required

to identify if, and when, live flying birds shift between stability modes. As discussed previ-

ously, different control algorithms are usually implemented for stable (open-loop) or unstable

(closed-loop) configurations. Effectively implementing a control system in a UAV that can

shift between these distinct stability characteristics will require a directed study. Further work

is also required to identify how birds seamlessly adjust to these disparate flight conditions. A

version of this chapter has been published [142].
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5.1.3 Wing joints control the dynamic response

In Chapter 4, I performed the first analysis of the dynamic stability of a bird across its full

range of elbow and wrist extension and flexion.

For this work, I merged the aerodynamic analysis methodology established in Chapter 2

with the inertial analysis methodology established in Chapter 3. With these aerodynamic and

inertial inputs, I formulated the governing equations of motion for a rigid gull that undergoes

small disturbances in the longitudinal axis. To determine a trim condition, I incorporated the

shoulder joint in this analysis. I found that a positive dihedral and forward sweep angle at the

shoulder joint increased the amount of trimmed configurations. With the known trim condi-

tions for each configuration, I next calculated the eigenvalues associated with each wing joint

configuration. I found that trimmed wings with high wrist angles were dynamically unstable

with a non-oscillating divergent response. This unstable response was due to a negative static

margin. For wings with lower wrist angles, I found that wings were dynamically stable and

exhibited a traditional short period and phugoid mode. The associated natural frequency and

damping ratio of these modes was found to significantly depend on the wing joints and the

interactive effects between the joints.

My results showed that the stable wing configurations had short period characteristics that

would be controllable by a human pilot. To arrive at this conclusion, I incorporated a UAV-

based scaling to the traditional military flying quality specifications. This scaling accounts for

size differences between UAVs and large scale aircraft. Unlike the controllable short period,

the phugoid mode was heavily damped and would likely result in a sluggish response to control

inputs. Therefore, I hypothesized that gull’s ability to shift between stable and unstable flight

would be necessary to allow for effective pitch control in gliding flight. For example, the

heavily stabilized configurations with lower wrist angles could be used when it is desirable to

inherently reject flight path perturbations, whereas a gull could extend its wrist to switch into an

unstable configuration, which would result in more active control over its flight characteristics.

This initial evaluation of avian dynamic flight stability was limited to small disturbances,

longitudinal flight, and a rigid body analysis. However, there are many more characteristics

that must be incorporated to develop a holistic understanding of avian flight maneuverability.
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5.2 Next steps

In this work, I quantified the effect of the avian elbow and wrist on longitudinal stability

in a manner similar to traditional aircraft controls with the intention of identifying what as-

pects of bird flight control could inspire more maneuverable and adaptable UAVs. This thesis

specifically focuses on gliding flight and assumes non-elastic, quasi-steady characteristics in a

decoupled longitudinal plane. This approach lays the foundation for stability analysis in birds,

but future studies will need to incorporate lateral characteristics and the coupling between lon-

gitudinal and lateral characteristics. Needless to say, there are a multitude of paths that must

yet be explored to completely quantify and then evaluate avian flight stability, maneuverability,

and adaptability. Further, there are many steps that must be taken to effectively incorporate

a biological understanding of bird flight into future UAV designs. Here, I discuss three areas

of study that are necessary components to advance towards a complete understanding of bird

flight maneuverability.

5.2.1 Translating basic science to applied design

When approaching bio-inspired design, it is useful to begin with a comprehensive study of

a desirable attribute demonstrated by a model system. With a thorough understanding of the

system, it becomes possible to identify the model system’s characteristics that are critical to

effectively replicate the desired attribute in an engineered design. Here, the desired attribute

for an engineered design is bird’s enhanced maneuverability and adaptability. Therefore, the

critical characteristic identified in this work is the ability to shift between stable and unstable

flight. This critical characteristic is permitted by birds’ ability to adjust their elbow and wrist

angles.

Despite this advance in our understanding, implementing an avian-inspired elbow and wrist

joint in a UAV design is likely not the next step towards realizing avian-like maneuverability.

Replicating avian wing joints, or indeed any biological joint, is notoriously challenging. For an

aircraft, this is further complicated because a wing joint would need to be properly reinforced

to maintain an effective lifting surface and control authority under aerodynamic loading. In
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addition, actuation of any wing joint requires sufficient control force to properly operate across

a broad range of flight conditions. Therefore, next steps should look towards designs that use

simplified, existing wing morphing mechanisms to shift between stable and unstable flight. By

beginning with an example case, perhaps with a simple wing sweep morphing design, we can

explore the feasibility and effectiveness of a more complicated bio-inspired design. In addition,

we can evaluate if being able to shift stability modes in flight is required to enable avian-like

maneuverability.

5.2.2 Relaxing flexibility constraints

Throughout this work, I have approached both the aerodynamic and inertial characteristics

as if birds were rigid. This is certainly not the case. Bird feathers are flexible and result

in different loading conditions across different flight speeds [230]. However, my approach

allows for an initial understanding of the control provided by the wing joints and captures the

implications of morphing the overall wing shape changes.

There is a focus in the aeronautical discipline to understand the role of flexibility in aircraft

performance, stability, and control, however there is much left to understand about the role of

flexibility in bird flight. In particular, it will be an important next step to quantify the role of

flexibility in avian flight control. Specifically, it will be informative to identify how the control

effectiveness of the wing joints changes due to passive morphing at different flight conditions.

Aside from affecting control effectiveness, the passive response of the feathers may also serve

as a form of gust alleviation and when coupled with active morphing may be an integral part to

bird’s ability to adapt to various flight conditions.

5.2.3 Incorporating flapping characteristics

To date, my work has entirely focused on gliding flight with the goal of laying a solid foun-

dational understanding. Gliding flight is a valuable first step as it simplifies a direct comparison

to fixed-wing UAVs. However, to truly advance our understanding of avian flight maneuver-

ability, flapping flight cannot be overlooked.

Flapping flight and its associated unsteady characteristics play a significant role in avian

111



flight. In fact, some species of birds are not known to glide but instead use bounding flight,

which involves repeatedly transitioning between flapping flight and tucking their wings against

their body [100]. Such birds may provide inspiration for novel maneuverable UAV designs and

we require more directed studies to better understand this method of flight. Substantial future

work is necessary to advance towards a holistic model of bird flight that accurately captures

the attributes of both gliding and flapping flight.

5.3 Summary

Here, I investigated how varying the avian elbow and wrist affected the longitudinal sta-

bility of a gliding bird. This analysis revealed that the elbow and the wrist range of motion

alone permits a wide range of longitudinal control and stability characteristics. In particular,

the ability to shift between stable and unstable flight was identified as a key characteristic that

should be considered for future UAV designs. In all, investigating how birds control their glid-

ing flight provides new inspiration to advance the design of more maneuverable and adaptable

UAVs.
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Appendix A

AvInertia Implementation

This chapter provides a detailed breakdown of the assumptions and procedures used within

the development and implementation of AvInertia. The final outputs from AvInertia are re-

turned in the pre-selected origin and axis system: the bird (vehicle) reference point (VRP) and

“full bird” frame of reference (always right-handed axes). In our work, we selected the VRP

to be the location where the neck attaches to the torso (Fig. A.1) . This is approximately the

center of the spinal cord if cut at the clavicle. The x-axis points forwards along the center of the

bird, z-axis points ventrally and y-axis points along the right wing. The selection of the origin

and axis system is user-specific but must be consistently followed for all inputs. All measure-

ments input into the program should be defined relative to this same origin unless otherwise

noted in this document.

Multiple frames of reference are utilized throughout this program. Each individual section

will detail the appropriate frame of reference utilized. The wing is modeled as a composite

structure of bones, muscles, feathers and skin. When computing the final bird inertial properties

it is possible to model both symmetric and asymmetric wing shapes. In this work, we focused

solely on symmetric configurations.

A.0.1 High level methodology

1. Model all bird components as a simplified geometric shape.

2. Determine moment of inertia tensor (I) and center of gravity (CG) of each component

within a frame of reference and about an origin that simplifies their formulation.

3. Transform I and CG to be within the full bird frame frame of reference with the VRP as
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Figure A.1: Dorsal view of entire bird modeled as a composite of simplified geometric
shapes.

the origin. This procedure is highly variable and the following sub-sections detail how

each component is transformed to be in this final frame of reference.

4. Combine I and CG of each component appropriately.

5. Shift the origin of I to be about the final full CG location.

Note: Parallel axis theorem is only valid between an arbitrary point and the center of grav-

ity, not between two arbitrary points [179]. This was accounted for within the code.

A.0.2 Required measurements

1. Full bird mass, mbird

2. Single wing mass, mwing

3. Position of the wing defined by ten key landmarks (Fig. A.1). Note that the identity

of Pt11 varies among species; see “birdmeasurements readytorun.csv” in the publicly

available data repository for total feather counts. In addition, we do not include Pt5 and

Pt7 as these positions were not needed within the analysis. We did not renumber to avoid
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confusion.

• Pt1: Humeral head

• Pt2: Center of the elbow joint

• Pt3: Center of the wrist joint

• Pt4: Distal tip of the carpometacarpus

• Pt6: Wing leading edge ahead of the

wrist joint

• Pt8: The distal tip of the final primary

feather (usually P10)

• Pt9: Distal tip of the fourth-to-last pri-

mary feather (usually P7)

• Pt10: Distal tip of the first secondary

feather (S1)

• Pt11: Distal tip of the final secondary

feather

• Pt12: The most proximal location

along the leading edge of the wing

A.0.3 Assumptions

1. Base geometric shapes are the greatest assumption within this code although it is com-

monly used for estimating the inertial characteristics of complex objects [179]. Bio-

logical specimens are variable and the accuracy of this assumption will vary between

different species.

2. Wings were aligned so that the point on the wrist joint is in line with the shoulder along

the y-axis and along the x-axis. The wing was then rotated so that the point on the feather

tip at the wing root was at the same height (on the z-axis) as the shoulder. However, this

is not inherent to AvInertia and any wing alignment can be input.

A.1 Wing bones

The major wing bones (humerus, radius, ulna, and carpometacarpus) are modeled as hollow

cylinders with solid end caps [231, 232]. The radiale and ulnare are modeled as point masses

at the wrist joint (Pt3). In addition to all physical measurements, we must know the location of

the beginning of the bone and the end of the bone to extract the appropriate orientation.
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A.1.1 Methodology

1. Calculate the end cap thickness from:

mbone

ρbone
= 2(πr2otend) + π(ro

2 − ri2)(lbone − 2tend) (A.1)

2. Calculate the mass of each end cap and the hollow cylinder.

3. Determine I and CG of the hollow cylinder (eqn. A.5 and A.13) and two end caps (eqn.

A.6 and A.13) with respect to the bone specific frame of reference and origin (Fig. A.2).

4. Transform each I and CG to be measured with the VRP as the origin.

5. Sum I of the hollow cylinder and two end caps.

6. Transform I and CG to be expressed within the full bird frame.

7. Radiale and ulnare estimated as point masses on Pt3 within the full bird frame.

A.1.2 Required measurements

1. Mass of each bone, mbone

2. Length of each bone, lbone

3. Average radius of each bone, ro

116



A.1.3 Assumptions

1. Density (ρbone) treated as constant 2060 kg/m3 for all major bones [233].

2. Inner radius (ri) assumed to be 78% of the outer radius [234].

3. Neglect all other wing bones.

4. Carpometacarpus length and mass include digit II as well (Fig. ??).

5. CG is at the center of the measured bone length. This may differ slightly from that

extracted using the Optitrack markers. The start of the bone is assumed to be at the most

proximal Optitrack marker.

A.2 Wing muscles

The muscles in the wing are grouped into the brachial, antebrachial and manus regions and

assuming that the muscle mass is stretched the length of the major wing bones. In addition to

all physical measurements, we must know the location of the beginning of the bone and the

end of the bone associated with each muscle group to extract the appropriate orientation.

A.2.1 Methodology

1. Calculate the cylinder radius based on the mass and muscle density for the current group.

2. Determine I and CG of the cylinder (eqn. A.6 and A.13) within the bone frame of

reference and origin (Fig. A.2).

3. Transform each I and CG to be measured with the VRP as the origin.

A.2.2 Required measurements

1. Mass of each muscle group, mmuscle

2. Length of each bone, lbone
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A.2.3 Assumptions

1. Density (ρmuscles) was assumed to be 1100 kg/m−3 for all groups [235]. This is slightly

higher than 1060 kg/m−3 that was calculated for muscles alone [236] because we did

want to include the tendons and connective tissues in the overall calculation.

2. Muscles are stretched along the length. In reality, muscles will be more heavily grouped

to the start and end section but for simplicity we assumed a constant muscle width along

the bone length.

3. Radius of the muscles is determined based on the muscle group mass, estimated muscle

density and the length of the bones.

A.3 Flight feathers

The flight feathers including all primaries and secondaries are modeled as a composite

object (Fig. A.3). The calamus is modelled as a hollow cortex cylinder [237], the rachis as

a hollow cortex exterior square pyramid and a solid medullary interior square pyramid [237,

238], and the vanes as flat rectangular plates. In addition to all physical measurements, we

must provide the approximate location of the feather tip and root to extract the appropriate

orientation.

A.3.1 Methodology

1. Calculate the approximate vane mass assuming vanes are composed of solid cortex cylin-

drical barbs with a previously determined [239, 240] barb radius (rbarb) and spacing

(dbarb) per:

nbarbs = lvane/(dbarb + 2rbarb), (A.2)

mvane = ρcortexnbarbswvaneπr
2
barb. (A.3)

2. Substract the proximal and distal vane masses from the total feather mass mf to deter-

mine the total mass of the rachis and calamus (mrc).
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Figure A.3: Simplified feather diagram including the referenced frames of reference.

3. Calculate the inner radius (rical) of the calamus and width of the interior rachis pyramid

by ensuring that mrc is equal to the mass predicted by the volume and density of the

calamus and rachis components:

mrc = ρcor(π(r2ocal − r
2
ical

)lcal +
4

3
(r2ocal − r

2
ical

)lvane) + ρmed(
4

3
r2icallvane). (A.4)

4. Determine I and CG of the calamus (eqn. A.6 and A.13) within the calamus frame

assuming a hollow cylinder.

5. Determine I and CG of the rachis (eqn. A.10 and A.14) within the rachis frame assuming

exterior cortex and interior medullary retangular pyramids.
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6. Determine I and CG of each vane (eqn. A.11) within their respective vane frames as-

suming flat rectangular plates with a mass calculated in Step 1.

7. Transform each vane property into the rachis frame.

8. Combine the rachis and vane I and CG properties.

9. Transform rachis and vane I and CG to be expressed in the calamus frame, (rotate by

θvane) with the origin as the start of the feather.

10. Combine I and CG for the rachis and vane with the calamus components.

11. Transform I and CG to be expressed in the feather frame. Up to this point all of this

inertial data can be computed with no knowledge of the current wing positioning. For this

reason, the code has two seperate functions relating to the feather inertial calculations.

12. Transform I and CG to be expressed in the full bird frame using information about each

individual feather positioning and orientation.

13. Alula feathers estimated as a point mass on Pt6 within the full bird frame.

A.3.2 Required measurements

1. Mass of each feather, mf

2. Length of the calamus, lcal

3. Length of the vane, lvane

4. Outer radius of the calamus, rocal

5. Distance between barbs, dbarb

6. Radius of feather barbs, rbarb

7. Average width of proximal/distal vanes, wvane

8. Interior angle between calamus and rachis,

θvane

A.3.3 Assumptions

1. Density of cortex (ρcor)[238, 241–244] and of medullary (ρmed)[242, 245] material treated

as constant 1150 kg/m3 and 80 kg/m3, respectively.
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2. Shape of feathers was assumed to be constant within a species. We measured the shape

properties for only one specimen but, individually measured the mass of each specimen’s

feathers. Then we assumed isometric scaling to adjust the length and area measurements

for each feather as necessary.

3. Length of medullary part of the rachis extends all the way to the feather tip [238].

4. Mass of vanes is based on previously measured barb radii and distance between barbs

[239, 240].

5. Proximal and distal vane barb properties are treated as constant. Note that previous

work did find slight but measurable differences between the vanes that will be neglected

in this work[246].

6. Alula feathers are treated as a point mass on Pt6 although their structure differs between

species.

7. Feather positioning:

• The base of the secondaries are equally spaced along the ulna and their tips are

equally spaced along the line between Pt10 and Pt 11 (last secondary).

• The base of P1 through P6 are equally spaced along the carpometacarpus and their

tips are equally spaced along the line between Pt10 and Pt9.

• The base P7 and up are located at the end of the carpometacarpus (Pt4) and their

tips are equally spaced along the line between Pt9 and Pt8.

8. Feather orientation:

• Primaries lay flat on the plane defined by Pt3, Pt4 and their tip position as defined

above.

• Secondaries lay flat on the plane defined by Pt2, Pt3 and their tip position as defined

above.
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A.4 Tertiaries and skin/coverts

The tertiary feathers and skin/coverts are modeled as flat triangular plates. The tertiary

feather sections are defined as two sections, with vertices as follows: 1) Pt12, Pt2 and the

trailing edge of the wing at the body and 2) Pt11, Pt2 and the trailing edge of the wing at the

body. The skin/coverts section vertices are defined by Pt12, Pt2 and Pt6.

A.4.1 Methodology

1. Given the input positions calculate I and CG based on the general polygon formulations

[247] within a frame of reference and about an origin that simplifies their formulation.

2. Transform I and CG to be within the full bird frame and shift so that the VRP is the

origin.

A.4.2 Required measurements

1. Mass of the skin and coverts, mskin

2. Mass of the tertiaries, mtertiaries

A.4.3 Assumptions

1. Skin density (ρskin) treated as constant (1060 kg/m3) based on a previously measured

muscle-only measurement [236, 248]. This was used to calculate the final skin thickness

based on ensuring that the volume would return the known mass of the section.

2. Tertiary density is treated as constant and equal to the cortex density (ρcor)[238, 241–

244] of 1150 kg/m3. As with the skin this was used to calculate the final thickness of the

tertiary sections based on ensuring that the volume would return the known mass of the

section.

3. Tertiary mass is divided equally between the two tertiary sections.
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A.5 Head, neck, legs and tail

The head (including the beak) was modeled as a solid cone, the neck was modeled as a

solid cylinder, the legs were point masses and the tail was modeled as a flat rectangular plate.

A.5.1 Methodology

1. Calculate I and CG of the head (eqn. A.8 and eqn. A.14), neck (if used, eqn. A.6 and

eqn. A.13) and tail (eqn. A.11).

2. Calculate I and CG of the legs as point masses placed on the ventral sides of the bird.

3. Transform I and CG to be within the full bird frame and shift so that the VRP is the

origin.

A.5.2 Required measurements

1. Mass of the head, mhead

2. Length of the head (tip of beak to neck), lhead

3. Radius of the head (maximum), rhead

4. Mass of the neck, mneck

5. Length of the neck outstretched, lneck

6. Radius of the neck, rneck

7. Mass of the tail, mtail

8. Length of the furled tail, ltail

9. Width of the furled tail, wtail

10. Length of the torso + tail, ltot

11. Mass of both legs, mleg

12. x-location of leg insertion, lleg

A.5.3 Assumptions

1. Head/beak CG was measured on the specimens and we found that for all of the mea-

sured species the head CG was within 15% of the quarter of the head length (See “Veri-

ficationData.xlsx” tab “HeadCGVerification” in the publicly available data repository).

Thus, we assumed that a solid cone would be a fair approximation of the shape.
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2. Neck was only included for some species that are known to stretch out their neck while

in a cruise flight configuration. If not outstretched, the neck mass is added to the head

mass. This can be adjusted for general use.

3. Legs modeled as point masses however some birds do stick their legs behind their body

while in flight. Because grebes have very minimal tails and fly with their legs directly

behind their bodies the grebes’ legs were treated as a tail. However, for other species this

effect was neglected in our work and should be investigated in future studies.

A.6 Torso

The torso is modeled as a structure composed of a hemiellipsoid, partial elliptical cone and

either a full elliptical cone (3 individuals) or elliptical cylinder (33 individuals) (Fig. A.1). Due

to the complex structure, the center of gravity position of the torso + tail must be measured and

thus the code largely functions to estimate the associated moment of inertia for the torso. In

the study, we performed a sensitivity analysis for up to 15% error of the total torso length on

the CG measurement.

A.6.1 Methodology

1. Calculate the volume of each component assuming an elliptical cylinder for the back

piece.

2. Option 1: If the calculated average density places the CG within 5% of the measured

value, use the elliptical cylinder and continue to step 5.

3. Option 2: If not, calculate if the average density using an elliptical cone for a back piece

places the CG within 5% of the measured value. If so, use the elliptical cone and continue

to step 5. Figure A.1 illustrates option 2.

4. Option 3: If not, use an elliptical cylinder and an optimization routine to vary the density

between each of the three sections of the torso. The routine minimizes the difference

between the output densities and the calculated average density for the full torso. In
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addition, we assume that the CG is moved forwards by 5% of the total length. This is

necessary to ensure reasonable densities. We assumed that density measurements could

be very low due to the possibility that the majority of the volume is made from loosely

packed feathers. The lowest density was found to be 42 kg-m−3 for the end section of

a storm petrel. All section densities can be seen within the “VerificationData.xlsx” tab

“TorsoDensities” that is included within the publicly available data repository.

5. One of the three above options will provide the final calculated volume, mass and output

CG.

6. Given these parameters for each section, calculate I (eqn. A.12, A.9 and A.7) and CG

(eqn. A.15 and A.14) for each component in the torso frame, where ztorso = −xfullbird,

xtorso = zfullbird and ytorso = yfullbird.

7. Transform I and CG to be within the full bird frame and shift so that the VRP is the

origin.

A.6.2 Required measurements

1. Mass of the torso and legs, mtorso

2. Full torso length, ltorso

3. Mass of both legs, mleg

4. Body width at leg insertion, wleg

5. x-location of leg insertion, lleg

6. Maximum body width, wmax

7. Maximum body height, hmax

8. x-location of maximum body width, lbmax

9. x-location of the CG of torso + legs, CGx

10. z-location of the CG of torso + legs, CGz

A.6.3 Assumptions

1. Minimum density allowed by the optimizer for the front section is 200 kg/m3.
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A.7 Base moment of inertia tensors

All tensors are listed in a published handbook [249] except for the elliptical cone calculation

which was computed for this project.

1. Hollow cylinder. ro is the outer radius, ri is the inner radius, l is the length and m is

the mass. Origin is at the center of mass. Used for the bone interior, neck and feather

calamus.

I = m


1
12

(3(r2o + r2i ) + l2) 0 0

0 1
12

(3(r2o + r2i ) + l2) 0

0 0 1
2
(r2o + r2i )

 (A.5)

2. Solid cylinder. r is the radius, l is the length and m is the mass. Origin is at the center

of mass. Used for the bone end caps and muscles.

I = m


1
12

(3r2 + l2) 0 0

0 1
12

(3r2 + l2) 0

0 0 1
2
r2

 (A.6)

3. Elliptical cylinder. a is half the maximum height along the x direction, b is half the

maximum width along the y direction, l is the length, and m is the mass. Origin is at the

center of mass. Used for the last portion of the body if required.

I = m


1
12

(3b2 + l2) 0 0

0 1
12

(3a2 + l2) 0

0 0 1
4
(a2 + b2)

 (A.7)

4. Solid cone. r is the radius of the cone base, h is the height and m is the mass. Origin is
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at the center of the cone’s base, not the center of mass. Used for the head/beak.

I = m


1
10

(3
2
r2 + l2) 0 0

0 1
10

(3
2
r2 + l2) 0

0 0 3
10
r2

 (A.8)

5. Elliptical cone. l length until the tip of the cone, A is half the maximum height along

the x direction, B is half the maximum width along the y direction, and m is the mass.

Origin is at the base of the cone, not the center of mass. Used for the back two-thirds of

the body.

I = m


1
10

(3
2
B2 + l2) 0 0

0 1
10

(3
2
A2 + l2) 0

0 0 3
20

(A2 +B2)

 (A.9)

6. Solid square pyramid. w is the entire width of one side of the pyramid base, h entire

height of the pyramid and m is the mass. Origin is at the center of the pyramid’s base,

not the center of mass. Used for the rachis.

I = m


1
20

(w2 + 2h2) 0 0

0 1
20

(w2 + 2h2) 0

0 0 1
10
w2

 (A.10)

7. Flat rectangular plate. w is the entire width of one side, h entire height and m is the

mass. Origin is at the center of mass. Used for the feather vanes and tail.

I =
1

12
m


(w2 + h2) 0 0

0 h2 0

0 0 w2

 (A.11)

8. Solid hemi-ellipsoid. a is half the height along the x direction, b is half the width along

the y direction and c is half the length along the z direction. Origin is at the base of the
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hemi-ellipsoid, not the center of mass. Used for the front third of the body.

I =
1

5
m


(b2 + c2) 0 0

0 (a2 + c2) 0

0 0 (a2 + b2)

 (A.12)

A.8 Base center of gravity vectors

1. Cylinder. (hollow, solid, elliptical or circular) l is the length. Origin at the center of the

base.

CG =


0

0

1
2
l

 (A.13)

2. Pyramid. (circular, square or elliptical) h is the height. Origin at the center of the base.

CG =


0

0

1
4
h

 (A.14)

3. Hemi-ellipsoid. c is the height. Origin at the center of the base.

CG =


0

0

3
8
c

 (A.15)
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A.9 Illustrations of the required measurements
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Figure A.4: Entire bird measurements. Drawn by J.C.M. Wong for [142].
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Figure A.5: Wing specific measurements. Drawn by J.C.M. Wong for [142].
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