
Planning, Control, and Estimation for Diverse Multi-UAS Missions

by

Matthew Romano

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in the University of Michigan
2022

Doctoral Committee:

Professor Ella M. Atkins, Chair
Assistant Professor Nima Fazeli
Associate Professor Dimitra Panagou
Assistant Professor Hossein Rastgoftar, University of Arizona

Matthew Romano

mmroma@umich.edu

ORCID iD: 0000-0001-5542-1273

© Matthew Romano 2022

ACKNOWLEDGMENTS

I would love to thank my advisor Prof. Ella M Atkins. You have been a phenomenal advisor.
You’ve supported me, pushed me, and made me the researcher and engineer that I am today. You
have dreamt up the most daring applications of UAS technology (re: nailgun drone) and I have
absolutely loved seeing them to fruition with your guidance. I loved having the luxury of enjoying
Domino’s pizza during lab meetings because of your sponsorship for the past five years. You truly
made me and I’m sure everyone else feel like they are part of the A2Sys family. You are more than
just a research advisor because I know that I could come to you for anything and you would be
more than willing to help. Thank you to my committee members Prof. Panagou, Prof. Rastgoftar,
and Prof. Fazeli for their valuable feedback. I appreciate each of your perspectives and guidance.

Thank you to the A2Sys lab members: Mia Stevens, Brian Yao, Cosme Ochoa, Jeremy Castagno,
Prashin Sharma, Akshay Mathur, Joseph Kim, Mark Nail, Paul Flanigen, Brandon Apodaca, and
Jianyang (Joe) Tang. Special thanks to Prince Kuevor who is absolutely amazing. We came into the
program together and you were with me every step of the way, helping, pushing, and supporting
me. Thank you to Michael Gonzalez for putting in so much time and effort for our game nights
and random escapades. Thank you to my hackathon buddies Jeremy, Prince, and Prashin! I
had an absolute blast solving complex problems with little sleep and caffeine raging through my
bloodstream. I’ve had the pleasure of working with several master’s, undergraduate, and high school
students during the course of my PhD. Thank you to Derek Lukacs, Owen Marshall, Catherine
Ferrey, Jack Getty, Yuxin Chen, N.M.T. Vijay, Vansh Amin, Anne Ye, and John Pye. Thank you Dr.
Peter Gaskell. I will never forget the days going to your office in the basement of the SRB and the
conversations to get me started with XBees and the kill switch. You provided invaluable help and
are a genuinely kind person willing to give your time even when your workload is high.

I would love to thank my family. Dad, Joey, and Mia, even though we were a four hour drive
apart, I always felt your presence and support to keep me focused on finishing. Finally, I want to
thank my fiance, Pha. While I am grateful that you pushed my payload, I am even more grateful
that you pushed and supported me to do my best. You dealt with me when I didn’t feel like writing
and were woken up for the hundreds of night time flight testing. But the journey we are on together
is incredible and I am the luckiest person in the world to share it with you. I love you. Thank you.

ii

TABLE OF CONTENTS

Acknowledgments . i

List of Figures . vi

List of Tables . ix

List of Algorithms . x

List of Appendices . xi

List of Abbreviations . xii

List of Symbols . xiv

Abstract . xix

Chapter

1 Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Research Approach and Thesis Outline . 4
1.4 Contributions and Innovations . 6

2 Quadrotor Design, Instrumentation, and Automation Infrastructure 7

2.1 Introduction . 7
2.2 M330-Quadrotor . 7

2.2.1 Hardware Description . 8
2.2.2 Quadrotor Model . 9

2.3 Open Source Autopilot rc pilot a2sys . 11
2.3.1 Cascaded PID Controller . 12
2.3.2 Motor Mapping and Saturation . 13

2.4 Motion Capture Integration . 15
2.4.1 XBee vs. WiFi . 15
2.4.2 Six Simultaneous Senders . 16

2.5 Instrumented Payload . 18
2.5.1 Overview . 18
2.5.2 Force Sensor Calibration . 20
2.5.3 Tether Tension Sensor Data Processing 21

iii

2.5.4 Push Force Sensor Data Processing . 21
2.6 Conclusions and Future Work . 22

3 Distributed Quadrotor Deformable Formation Control 23

3.1 Introduction . 23
3.2 Related Work . 24
3.3 Continuum Deformation Review . 25

3.3.1 Continuum Deformation Definition . 25
3.3.2 Continuum Deformation Acquisition 25
3.3.3 Continuum Deformation Coordination Safety 26

3.4 Generating the Leading Triangle Path . 27
3.5 Experimental Setup . 29
3.6 Experimental Results . 30

3.6.1 Determining Controller Error . 30
3.6.2 Five-Agent Flight: Followers with Pre-set Waypoints 32
3.6.3 Five-Agent Flight: Followers with Local Communication 34

3.7 Global Deviation Bound from Local . 34
3.8 Conclusion . 38

4 Cooperative Payload Transportation with Haptic Guidance 39

4.1 Introduction . 39
4.1.1 Related Work . 40
4.1.2 Contributions and Outline . 43

4.2 Problem Statement . 43
4.3 Dynamics Model . 44

4.3.1 Vehicle Model . 45
4.3.2 Payload Model . 45

4.4 Control . 46
4.4.1 Payload Controller . 46
4.4.2 Quadrotor Controller . 47

4.5 User Force Estimation . 49
4.6 Payload Guidance with Admittance Control . 50
4.7 Experimental Setup . 51

4.7.1 System Level Description . 52
4.7.2 Instrumented Payload . 52
4.7.3 System Operation . 52
4.7.4 Quadrotor Vehicles . 54
4.7.5 Virtual Dynamics Parameter Selection 54

4.8 Simulation Results . 54
4.9 Experimental Results . 56

4.9.1 User Force Estimation Validation . 57
4.9.2 Haptic Guidance Validation . 57
4.9.3 Full System Validation . 59

4.10 Conclusion . 62

5 Multi-UAS Wildfire Mapping . 64

iv

5.1 Introduction . 64
5.2 Related Work . 67

5.2.1 Automation System Architectures . 67
5.2.2 Terrain Avoidance - 3D Safe Path Planning for Fixed-Wing UAS 67
5.2.3 Multi-Vehicle Coverage Path Planning 68

5.3 Problem Statement . 69
5.4 Multi-UAS Planning . 70

5.4.1 AMASE Wildfire Mapping Simulation Environment 70
5.4.2 Task Planning . 72
5.4.3 Exploration Search Pattern . 73
5.4.4 SVM-Based Line Follower . 74
5.4.5 Altitude Aware Straight Line Planner (AASLP) 75

5.5 Results . 77
5.5.1 Local Boundary Line Estimation . 77
5.5.2 Terrain Avoidance . 78

5.6 Discussion . 80
5.7 Conclusion . 81

6 Deformable Formation Path Planning . 82

6.1 Low-Level Vehicle Guidance . 82
6.1.1 Introduction . 82
6.1.2 Problem Statement . 84
6.1.3 Approach . 84
6.1.4 Safety Analysis . 86
6.1.5 Results . 87
6.1.6 Conclusion and Future Work . 90

6.2 High-Level Global Path Planning . 91
6.2.1 Introduction . 91
6.2.2 Related Work . 92
6.2.3 Problem Statement . 93
6.2.4 Approach . 93
6.2.5 Results . 95
6.2.6 Conclusion and Future Work . 97

7 Conclusion and Future Work . 102

7.1 Contributions . 102
7.2 Future Work . 104

Appendices . 107

A.1 Printed Circuit Boards . 107
B.1 Maximizing the Global Deviation Norm . 116

Bibliography . 117

v

LIST OF FIGURES

FIGURE

1.1 Multi-UAS mission #1: Cooperative control for UAS traffic management[1] 2
1.2 Multi-UAS mission #2: Payload transportation with direct haptic guidance 2
1.3 Multi-UAS mission #3: Wildfire detection and boundary mapping 3
1.4 Research approach and dissertation outline . 5

2.1 High level hardware block diagram of the experimental test bed. 7
2.2 Custom M330-Quadrotor . 8
2.3 Electrical block diagram of M330-Quadrotor . 9
2.4 System overview and motor model . 10
2.5 rc pilot a2sys controller block diagram . 12
2.6 Motion capture data sent over a WiFi link with latency between 100ms and 400ms. . . 16
2.7 Motion capture data sent over an XBee link with latency consistently at 40ms. 16
2.8 XBee system that simultaneously sends motion capture data and kill switch signals. . . 17
2.9 XBee serial packet with number of Bytes listed per entry (24 Bytes total). 18
2.10 XBee strategy using six XBees . 19
2.11 Instrumented payload constructed with embedded sensing and computation. 20
2.12 Payload hardware block diagram. Real-time sensor data is collected for use in our

control algorithms. 20

3.1 A) Test quadrotor, B) M-Air netted facility, C) Mid-flight, overhead snapshot in M-Air
with three leaders (1,2,3) and two followers (4,5) flying a continuum deformation. . . 24

3.2 Leaders and followers shown in their global desired positions for initial and contracted
configurations, respectively, with leading (smaller) and bounding (larger) triangles
shown. Ds, Db, and Dl are shown in the initial configuration. 26

3.3 Waypoints traversed by leaders during flight. Poses 1-2 show motion to the contracted
position. Poses 2-5 show leaders traversing three sides of the 1m edge-length square.
From pose 5, leaders return to pose 2 then to pose 1. 28

3.4 Experimental system block diagram . 29
3.5 Vehicle software block diagram . 30
3.6 Data is received consistently over Xbee radios at 60Hz for single-agent flights. Packets

dropped in five-agent flights. 32
3.7 In-flight constraint values over time for the five-quadrotor continuum deformation

trajectory. Follower desired positions are computed from desired leader positions. . . . 33

vi

3.8 In-flight constraint values over time for the five-quadrotor continuum deformation
trajectory. Follower desired positions are computed from local communication of
actual neighbor positions. 35

4.1 Haptically guided slung load system. The payload travels in the user applied force
direction. 41

4.2 Cooperative payload transportation system . 44
4.3 Controller block diagram . 46
4.4 Mass-damper virtual dynamics . 51
4.5 Experimental setup. A ground control station communicates between the payload and

quadrotors. 51
4.6 Instrumented payload flight modes state machine (left) and force estimate zeroing (right). 53
4.7 Flight test area including motion capture area (red), geofence (black), and vehicle error

bound (blue). 54
4.8 Haptic guidance simulation results with a 2.5N user force guiding the system forward. 56
4.9 User force estimation validation (Table 4.2: Test A1). 58
4.10 Admittance controller validation (Table 4.2: Test B2). User applied force updates

payload guidance commands. 58
4.11 Admittance controller validation (Table 4.2: Test B3). An approximately 6 N user

force guides the system forward. 59
4.12 Full system test (Table 4.2: Test C2). A small 2N force followed by a larger 4N force

guides the system forward. 60

5.1 AMASE GUI screenshot. Simulation controls (bottom), UAS states (right), and a 2D
map (center) depicting UAS (”flying Vs”), fires (yellow polygons), and fire boundary
estimates (purple polygons) are shown. 65

5.2 Multi-UAS software block diagram. The planner translates UAS states and local
fire boundary information to UAS commands that keep UAS safe and support data
collection for fire boundary estimation. 66

5.3 Caption for LOF . 66
5.4 Flight modes state machine . 72
5.5 Multi-UAS exploration strategy. a) Description of waypoints/paths. b) Generated paths

on a scenario. 74
5.6 3D line follower. Weighted SVM provides a linear fire boundary estimate with nearby

free and fire points and a proportional controller follows this estimate at an offset in
2D with altitude coming from AASLP. 75

5.7 Local boundary estimation results for scenario 1 with a static boundary. 78
5.8 Altitude plan example with complex terrain. AASLP meets hmin but cannot always

meet hmax. A* is slower but has slightly better performance in meeting hmax. 80

6.1 Q1 fails and stays in place within the solid red circle. Q2 uses the CEM navigation
algorithm to smoothly avoid the failed vehicle and travels along the dashed red path.
The blue circles indicate five time points for Q2. 83

6.2 CEM navigation through ideal fluid flow pattern. 84
6.3 Six vehicle test velocities and ϕ . 88

vii

6.4 Six vehicle test ∆ϕ and nearest neighbor distance . 89
6.5 Effects of varying NK . 89
6.6 Two vehicle 2D plot and controller error . 90
6.7 Two vehicle exclusion zone distance and ∆ϕ . 90
6.8 Configurations of deformable formation (λmin = 0.5, θr = 0). 94
6.9 OMPL block diagram with modified portions indicated [2]. 96
6.10 Easy environment. Rotation and translation is all that is needed to traverse. 97
6.11 Medium environment. Scaling is needed to fit through the narrow passage. 97
6.12 Impossible environment. Impossible to pass through while maintaining a formation. . 98
6.13 Easy environment results . 100
6.14 Medium environment results . 101
6.15 Impossible environment results . 101

A.1 Relay cape 3D view . 108
A.2 Relay cape schematic . 109
A.3 XBee kill switch 3D view . 110
A.4 XBee kill switch schematic . 111
A.5 Instrumented payload interface board 3D view . 112
A.6 Instrumented payload interface board schematic . 113

viii

LIST OF TABLES

TABLE

3.1 Statistical parameters of controller error increase as vmax increases. Tests performed
indoors at 150cm altitude. 31

3.2 Statistical parameters of inter-agent disturbance characterization. Tests performed
outdoors at 150cm altitude . 32

4.1 Simulation parameters . 55
4.2 Flight test conditions . 57

5.1 Local boundary estimation results. Our method, W-SVM, provided estimates nearly as
accurate as W-LOG at 5x faster. W-LS was fast but provided poor estimates. 79

5.2 Terrain avoidance planning algorithm benchmark results. 80

6.1 Deformable planning methods state space variables bounds 96
6.2 Success rate (sr) and total distance (dt) results averaged over 10 runs with a 1s time limit. 98
6.3 Success rate (sr) and total distance (dt) results averaged over 10 runs with a 5s time limit. 99
6.4 Success rate (sr) and total distance (dt) results averaged over 10 runs with a 60s time

limit. 99

ix

LIST OF ALGORITHMS

ALGORITHM
1 Altitude Aware Straight Line Planner . 76
2 CEM Navigation . 85
3 CalcXY . 86

x

LIST OF APPENDICES

A Supplement to Hardware Description . 107

B Local to Global Deviation Supplemental Derivation 114

xi

LIST OF ABBREVIATIONS

AASLP Altitude Aware Straight Line Planer
ADC Analog-To-Digital Converter
AFRL Air Force Research Lab
AGL Above Ground Level
AI Artificial Intelligence
AMASE Aerospace Multi-Agent Simulation Environment
APM ArduPilot
BBb BeagleBone Blue
BVLOS Beyond-Visual-Line-Of-Sight
CAD Computer-Aided Design
CEM Containment Exclusion Mode
CCW Counter-Clockwise
CPP Coverage Path Planning
CW Clockwise
DC Direct Current
DOF Degrees of Freedom
DTED Digital Terrain Elevation Data
ESC Electronic Speed Controller
FPV First Person View
GCS Ground Control Station
GND Ground
GPIO General-Purpose Input/Output
GPS Global Positioning System
GPU Graphics Processing Unit
GUI Graphical User Interface
IMU Inertial Measurement Unit
IOU Intersection over Union
I2C Inter-Integrated Circuit
KS Kill Switch
LiPo Lithium Polymer
MCU Microcontroller
MILP Mixed Integer Linear Programming

xii

MSL Mean Sea Level
MQS Multi-Quadrotor System
NED North-East-Down
OMPL Open Motion Planning Library
PCB Printed Circuit Board
PID Proportional-Integral-Derivative
PSD Power Spectral Density
PSO Particle Swarm Optimization
PWM Pulse Width Modulation
RRT Rapidaly-Exploring Random Tree
RTK Real-Time Kinematic Positioning
SVM Support Vector Machine
UART Universal Asynchronous Receiver Transmitter
UAS Unmanned Aircraft System
USGS United States Geological Survey
UTM UAS Traffic Management
W-LOG Weighted Logistic Regression
W-LS Weighted Least Squares Regression
W-SVM Weighted Support Vector Machine

xiii

LIST OF SYMBOLS

a Rotor arm length

af Virtual cylindrical obstacle radius

aAb Acceleration of body b in frame A

bi Damping coefficient for tether i

cac Admittance Controller Virtual Damping Coefficient

c1, c2 Motor constants

d Payload Diameter

ddes Line follower desired offset from local boundary

di Sensor i offset term

dline Actual offset from local boundary

dmin Minimum separation distance between agents

d Displacement vector of deformable formation

dg Vector used in Chapter 3 derivation

dl Vector used in Chapter 3 derivation

f A scalar force

fc Cutoff frequency

fs Sampling frequency

g Acceleration due to gravity on Earth

hmax Maximum AGL for terrain avoidance

hmin Minimum AGL for terrain avoidance

ki Spring constant for tether i

xiv

l Side length of leading triangle

li Tether i length

m Number of time steps to run CEM navigation function for

mac Admittance Controller Virtual Mass

mP Payload Mass

mV Vehicle Mass

n Number of dimensions

oj Sensor measurement j

pi, qi, ri Attitude rates (about (x, y, and z respectively) for body i)

ri Vehicle i position

rd,i Local desired position of agent i

ri,HT Global desired formation position of agent i

rs AASLP start position

rg AASLP goal position

ri,s Starting position for vehicle i

ri,g Goal position for vehicle i

rP Payload position

rP,i Mounting point for tether i

si Sensor i scale term

sPi Planned Formation Position of Vehicle i in the Payload Frame

tGP,i Tether vector i connected between quadrotor i and the payload

tx x minutes into the simulation

ui, vi, wi Body frame velocities (x, y, and z respectively) for body i

v UAS scalar speed

wi,j Communication weight from j to i

C Regularization parameter

Cg Constant to encapsulate gradient of ϕ

xv

Ds Minimum separation distance between any pair of agents at t = t0

Db Minimum distance from any follower to the leading triangle

Dl Distance between two parallel sides of the leading and bounding triangle

Dloc Used for derivation in Chapter 3

Dg Used for derivation in Chapter 3

E Set of edges in graph

FA
b Force b in frame A

FHS(t) Fire Hack Score at time t

G Ground Coordinate Frame

G Weighted directed graph that defines inter-agent communication

H Low Pass Filter transfer function

J Jacobian of potential and streamline functions

Jx,i, Jy,i, Jz,i Moment of inertia about x, y, and z for body i

K Gain Matrix

K Used for derivation in Chapter 3

Li Tether i unstretched length

NV Number of Vehicles

Nf Number of Failed Vehicles

NF Number of fires

Nh Number of Healthy Vehicles

NO Number of obstacles

NK Number of times to run CEM navigation function per time step

Ni Number of iterations in CalcXY

P Payload Coordinate Frame

Psensor Power Spectral Density Height for Sensor Noise

Pdist Power Spectral Density Height for Disturbance Forces

P0 Matrix of leader starting positions

xvi

Pd Matrix of leader desired positions

P Matrix of agent positions

PA,HT Matrix of agent global desired positions

PL,HT Matrix used for derivation in Chapter 3

Q Deformation matrix of deformable formation

RA
B Rotation matrix from frame B to frame A

Si Scenario score, a weighted sum of FHS(t)

V Set of agents

VL Set of leader agents

VF Set of follower agents

W Used for derivation in Chapter 3

α Low pass filter parameter

αi Elevation angle to describe the formation position of vehicle i relative to the
payload

αi,j Global communication weight from j to i

α Used for derivation in Chapter 3

βi Used for derivation in Chapter 3

γi Azimuthal angle to describe the formation position of vehicle i relative to the
payload

δj,i PWM signal to spin rotor j on vehicle i

δg Global deviation bound

δl Local deviation bound

δmax Largest of inter-agent and follower-boundary distance in starting formation

∆x AASLP Forward discretization distance

∆z+ Discretized climb rate limit

∆z− Discretized descent rate limit

∆t AASLP time discretization

ϵ Radius of enclosing ball around vehicles

xvii

ηi Used in Chapter 3 derivation

θr Rotation angle of deformable formation (Chapter 6)

θd Deformation angle of deformable formation (Chapter 6)

θi Pitch angle for body i

λ1 First eigenvalue of deformable formation

λ2 Second eigenvalue of deformable formation

λmin Minimum safe eigenvalue of deformable formation

µ Weighting factor to shift planned load distribution between center vehicle and
others

σ Standard deviation

τAb Torque b in frame A

ϕi Roll angle for body i

ϕ Potential Function

ψi yaw angle for body i

ψ Stream Function

xviii

ABSTRACT

Unmanned Aircraft Systems (UAS) are being used for a variety of single vehicle missions such
as surveillance, inspection, and payload delivery. Teams of UAS can perform these same missions
more efficiently and can pursue novel cooperative missions not possible with a single vehicle.
However, this comes at the cost of increased system complexity and introduces the challenge of
safe team coordination. This motivates our research to pursue four diverse multi-UAS mission
configurations. We propose novel methods to command and control teams of UAS with the majority
supported with full-scale experimental validation.

To support all experiments conducted in this thesis, an experimental test bed consisting of a
custom, open-source quadrotor, flight controller, and supporting infrastructure is developed with
designs and code shared publicly.

This thesis offers four specific contributions to enable the deployment of UAS teams in missions
with potential to benefit society. First, an existing formation control method, continuum deformation,
is experimentally validated with observed tracking errors and delays informing the theory. Required
inter-vehicle separation constraints are defined and applied to the real system. A global minimum
separation bound based on a local controller error bound is derived to guarantee safety during
real-world flights.

Second, a novel heads-up haptic pushing interface is developed that enables a user to move
a heavy payload carried by multiple small UAS through a crowded cluttered environment. Real-
time estimation of user applied force via an instrumented payload updates virtual dynamics of an
admittance controller to guide the system. This capability will support resilient and safe package
delivery to untrained consumers and can assist in delivering medical and survival supplies in disaster
relief scenarios.

Third, computationally efficient planning methods are developed to support wildfire mapping
over a large area by a team of UAS. A state machine is used to handle multi-vehicle task allocation
between exploration (coverage) and exploitation (line following). Efficiency gains are achieved by
separating the 3D problem into 2D lateral and 1D terrain avoidance sub-problems. This work offers
a first step towards mapping increasingly severe wildfire threats that cause significant damage and
claim the lives of hundreds of people every year.

Fourth, a generalized path planner is developed to manage a deformable small UAS formation

xix

capable of rotating, expanding, contracting, and shearing. Provably sufficient inter-agent collision
avoidance constraints are leveraged to efficiently plan safe trajectories in large-scale complex but
static environments. An integrated guidance and control module onboard each small UAS tracks
the designed trajectory while avoiding pop-up obstacles and vehicle failures by following an ideal
fluid flow field airspace template.

We are only beginning to imagine and prototype the missions made possible with teams of UAS.
This thesis provides problem formulations, solution methods, and experimental realizations for
four multi-UAS mission configurations. Countless other missions can be pursued that will operate
safely and can improve quality of life. Continued research is needed to achieve this including full
system integration with onboard sensing and collaboration with key stakeholders for each mission
that deeply understand the problem spaces. Nonetheless, this thesis provides a solid foundation for
future researchers to build upon.

xx

CHAPTER 1

Introduction

1.1 Motivation

Unmanned Aircraft Systems (UAS) are becoming cheaper and more widely available. Single
vehicle missions such as surveillance [3], inspection [4], and payload delivery [5] are being
performed. Teams of multiple UAS might execute these same missions more efficiently and
can pursue novel cooperative missions (Figures 1.1, 1.2, and 1.3). However, a multi-vehicle solution
increases system complexity and introduces the challenge of safely coordinating the vehicle team.

In UAS Traffic Management (UTM), the goal is to safely fly many vehicles in a shared airspace.
This is an active area of research and a wide array of solutions are being considered [1]. Formation
flying is one method that can be used to group vehicles together to more easily manage traffic.
Inter-agent collision avoidance, obstacle avoidance, and scalable communication are all challenges
within formation control. Rigid formation control of UAS has been developed theoretically [6, 7]
and validated experimentally [8]. Continuum deformation [9] theory provides versatility and
supports deformable formations among other benefits described in Chapter 3. This dissertation is
first to experimentally validate continuum deformation. Path planning for deformable formations
is necessary to fully realize these benefits in the context of UTM. Plans developed offline with
environment and airspace maps can prescribe formation motions and deformation plans through
complex obstacle fields over extended route distances. In real-time, single-vehicle failures and pop-
up obstacles need to be handled in a way that guarantees the entire formation will avoid obstacles by
reactively deforming around them. This thesis investigates offline and reactive planning strategies
needed to plan deformable formation flights and to modify them to avoid pop-up obstacles and
failed vehicles.

Multiple small UAS can carry heavier payloads than can a single small vehicle. Counteracting
tether forces provide stability to reduce or eliminate disturbances such as pendulum swinging
and spinning about a single tether. Existing techniques consider either pre-planned guidance or
remotely piloting the system [10, 11]. However, in dynamic, cluttered, and unknown environments
representative of scenarios such as disaster relief, workers might be untrained in UAS flight, and

1

Figure 1.1: Multi-UAS mission #1: Cooperative control for UAS traffic management[1]

existing maps will likely be outdated. For package delivery an untrained consumer could be ready
to receive their package but neither qualified nor authorized to take control of a UAS or UAS team.
This dissertation presents a novel and intuitive haptic guidance interface that enables an untrained
user to safely guide a slung payload through a cluttered environment. The user applies force in the
direction they want the payload to move with a heads-up interface that allows the user to maintain
continuous situational awareness. The close proximity and physical touch allows the user to have
greater precision as compared with alternative guidance schemes. Ref. [12] conceived of this idea
and laid a theoretical foundation. Simulation results however rely on simplifying assumptions
for user interaction, sensors, and state estimation. This dissertation realizes and evaluates this
haptically-guided small UAS payload transport system with consideration of all the necessary user
interface, sensing, and state estimation details.

Figure 1.2: Multi-UAS mission #2: Payload transportation with direct haptic guidance

Cooperative UAS teams can support wide area surveillance and mapping when deployed

2

individually as well as in close formations. For wildfire mapping, UAS teams have the potential to
support emergency response personnel by providing accurate real-time map updates of moving and
growing wildfire regions. Teams of UAS equipped with fire sensors have the capability to gather
local observations and acquire real-time maps of fire boundaries. Each vehicle must gather pertinent
data while avoiding potentially complex terrain, remaining within sensor range to terrain, and rapidly
exploring large spaces efficiently. Given computational resource constraints, 3D multi-vehicle path
planning can be effective for offline planning but too slow for dynamic, real-time replanning [13].
This dissertation presents a computationally efficient multi-UAS planning strategy to cover a large
area and follow/map wildfire boundaries once fire(s) are detected.

Figure 1.3: Multi-UAS mission #3: Wildfire detection and boundary mapping

The three missions considered in this dissertation are diverse even beyond the specific posed
applications. The environments considered vary from obstacle-free to cluttered with rough terrain to
being unknown and dynamically-varying. Communication is assumed perfect in wildfire mapping,
but with limited network topology in formation control. Centralized command and control is
modeled for wildifre mapping and payload transportation, but distributed networking is explored
for formation control in UTM. State estimation is assumed accurate for most missions, but user
force must be estimated with low-cost sensors in haptic guidance payload transportation. Due
to the diversity within these multi-UAS missions, it is unlikely that a single method will be
universally effective. Therefore, for these multi-UAS missions (and in general), it is very important
to carefully develop solutions for each that properly respect mission constraints and truly satisfy the
requirements.

1.2 Problem Statement

This dissertation aims to address the following challenges:

1. Continuum deformation offers deformable and safe formation control developed only in

3

theory and simulation prior to this dissertation. This work seeks to experimentally validate
continuum deformation theory with a multiple quadcopter system. We define assumptions
and address practical related challenges in real-world communication and control.

2. Multi-UAS payload transportation allows for heavy loads to be carried by many relatively
smaller vehicles. In dynamic, cluttered, and unknown environments pre-planned or human
piloted guidance is ineffective. A novel, intuitive, heads-up haptic guidance scheme has been
proposed in theory but has relied on simplifying assumptions for user interaction, sensors,
and state estimation. This dissertation realizes the haptic guidance scheme and experimentally
validates its use to direct a team of UAS carrying a common payload.

3. UAS teams offer a low-cost method to assist emergency response teams during wildfires.
Under computational constraints, existing methods struggle to plan safe trajectories in real-
time to find fires while avoiding complex 3D terrain. This thesis investigates an integrated
planning approach to develop safe, computationally efficient trajectories in real-time for a
team of UAS to find and map wildfires.

4. Continuum deformation supports deformable formation control with safety constraint guaran-
tees. Existing work [14] shows its effectiveness in traversing between user-specified formation
leader waypoints. This dissertation proposes a generalized deformable formation path planner.
Additionally, a scheme is developed to guarantee team-wide collision avoidance given failed
vehicle(s) or other pop-up obstacle(s).

1.3 Research Approach and Thesis Outline

Figure 1.4 shows an outline of the proposed research centered around the guidance, estimation,
and communication and control of multiple UAS teams. The organization of this dissertation is
described below with challenge problems 1-4 addressed as defined below in corresponding items
1-4.

1. Guarantee safety for distributed and deformable UAS formations. (Ch. 3)

2. Demonstrate and explore haptic guidance of a cooperative payload transportation system.
(Ch. 4)

3. Manage a team of UAS to map wildfires via computationally efficient exploration planning
and 3D terrain avoidance. (Ch. 5)

4. Plan paths to optimize and manage deformable formations offline as well as safely circumvent
pop-up obstacles in real-time. (Ch. 6)

The rest of Chapter 1 describes the contributions and innovations from this dissertation. Chapter
2 of the dissertation describes the affordable custom quadrotor design, instrumentation, and automa-

4

Figure 1.4: Research approach and dissertation outline

tion infrastructure developed and utilized in this work. This quadrotor system has been refined,
replicated, and flight tested in cooperative control and cooperative transport experiments as well as
modeled for supporting simulation studies. In Chapter 3, continuum deformation is experimentally
validated and extended via five quadrotor team formation flights. The existing safety theorem relied
on global deviation bounds being met to guarantee inter-agent collision avoidance and containment.
However, only local controller error bounds can be obtained experimentally. This chapter derives a
global deviation bound given communication weights and local bounds to guarantee a safe trajectory
can be planned under continuum deformation using local communication. Chapter 4 explores haptic
guidance of a multilift slung load transportation system. An experimental system consisting of an
instrumented payload, user, and five quadrotor team is used to demonstrate the concept. Online
user force estimation updates virtual dynamics of an admittance controller which is tracked by
a payload controller in the direction of user applied force. Chapter 5 proposes computationally
efficient planning methods for a team of UAS to map wildfires. A state machine handles multi-UAS
task planning to distribute UAS between finding new fires (exploration mode) and mapping known
fires (boundary follower mode). A 1D terrain avoidance technique works in tandem with these 2D
planning modes to support efficient 3D path planning. Lastly, Chapter 6 considers the path planning
problem for deformable formations by splitting it into two modules. A high level, global planner
considers a static, known environment and generates a reference trajectory for the system that can
translate, rotate, and deform through space while avoiding obstacles and inter-agent collision. The
low-level guidance module follows planned trajectories but additionally must deal with sudden
vehicle failures and pop-up obstacles. Our solution uses a fluid flow field to direct UAS traffic along
streamlines and wrap each failed agent with a repulsive ”bubble” that efficiently redirects UAS
traffic streamlines around the bubble without collision.

5

1.4 Contributions and Innovations

Specific contributions of this dissertation include:

• M330 Quadrotor and rc pilot a2sys flight controller open source software project
including the integration of a reliable, low latency motion capture feedback system for
multi-vehicle systems.

• First experimental evaluation of continuum deformation using a team of five UAS.

• Instrumented payload open source software project for cooperative payload transport with
haptic guidance.

• Simulation and experimental validation of deformable formation planning and collision
avoidance.

Specific innovations of this dissertation include:

• Definition of required inter-vehicle separation constraints applied to a real world experimental
system for deformable formations under continuum deformation. Derivation of a global
minimum separation bound based on a local controller error bound.

• Instrumentation, algorithms, and software enabling a heads-up haptic pushing interface in
which a novice user can direct a heavy payload carried by multiple UAS through a crowded
or cluttered environment.

• System integration of a neural network fire boundary characterization with multi-UAS path
planning to support wildfire mapping over a large area.

• Hierarchical deformable formation path planning with UTM application. To-date UTM has
considered only considered single vehicle routing solutions and vehicle pair detect-and-avoid
solutions.

6

CHAPTER 2

Quadrotor Design, Instrumentation, and Automation Infrastructure

2.1 Introduction

This chapter presents the hardware and software systems developed to enable experimental
realizations of the multi-UAS missions considered in this dissertation. This includes a reliable
quadrotor platform (Sec. 2.2), flight controller (Sec. 2.3), low-latency motion capture integration
(Sec. 2.4), and an instrumented payload (Sec. 2.5). Figure 2.1 shows a high level view of this
system. The full system was used for Chapter 4 which included the slung instrumented payload and
user. Chapters 3 and 6 used a subset of the system with just quadrotor vehicles.

Figure 2.1: High level hardware block diagram of the experimental test bed.

2.2 M330-Quadrotor

The M330-Quadrotor (”M”ichigan, ”330”mm diagonal motor-to-motor distance, ”Quadrotor”)
is a low-cost (≈$300) quadrotor designed using off-the-shelf components and 3D printed parts

7

(Figure 2.2). It was specifically designed to support multi-vehicle research and a graduate level
experimental UAS course. The mass of the vehicle is 1.08kg with an enclosing circle radius of 28cm.
Four 920kV brushless DC motors spin 8” x 4.5” Nylon propellers and a 4S 2650mAh LiPo battery
powers the vehicle. A BeagleBone Blue single-board Linux computer runs the rc pilot a2sys

flight controller to enable autonomous flight capabilities. This autopilot is available as an open
source project with a bill of materials, build and operation manuals, CAD files, and software [15].
This platform’s low-cost, replaceable parts, and propeller guard design facilitate multi-vehicle
research. With vehicles operating close to their neighbors at theoretical safety limits, likelihood
of collisions are increased, but propeller guards allow adjacent vehicles to bump off each other
instead of crashing. Individual parts can be replaced, most commonly propeller guards, allowing
the researcher to pursue bold new ideas in safe facilities such as M-Air.

Figure 2.2: Custom M330-Quadrotor

2.2.1 Hardware Description

An electrical block diagram can be seen in Figure 2.3. It is mostly a standard configuration of
hardware components. The main LiPo battery powers four electronic speed controllers (ESCs) and
the Beaglebone Blue (BBb) through a power distribution board. The ESCs spin the brushless motors
and propellers based on the pulse width modulation (PWM) signal they receive from the BBb. A
DSMX receiver communicates with the BBb to allow for pilot control signals to be received. The
Beaglebone Blue provides all of the necessary low level hardware interfaces including UART, I2C,
PWM, DSMX, and GPIO if needed.

There are three design decisions that differ from a standard configuration. First, most quadrotors
would use a microcontroller (MCU) as opposed to a full single-board Linux computer like the BBb.
This gives the advantage of additional computing power and the convenience of a Linux system.

8

However, it gives up certain guarantees of real-time performance that MCUs can have. This is
due to low-level Linux kernel operations and other scheduling details but it is mitigated by using a
”real-time” image that only contains necessary functionality. Second and partially related, another
smaller battery powers the BBb to allow for hot swapping of the main battery. This is useful since
each restart of the BBb would take several minutes and require additional steps otherwise.

Third, an optional kill switch (”KS”) is included that can either pass through the PWM signals
from the BBb to the ESCs or pass through a GND signal to effectively stop the motors. This allows
a ground control station operator to safely disable the motors in an emergency even if the BBb fails.
This will be discussed further in the motion capture integration section below.

Figure 2.3: Electrical block diagram of M330-Quadrotor

2.2.2 Quadrotor Model

Considering NV vehicles, define an inertial North-East-Down (NED) ground reference coor-
dinate frame G with a local origin, and a coordinate frame for vehicle i ∈ {1, ..., NV } (Figure
2.4a with one vehicle shown). Define vehicle i position as ri, (i ∈ {1, ..., NV }). Gravity and total
propeller thrust force act on each vehicle i as given by

Fi
net,i = Fi

Gravity,i + Fi
Thrust,i. (2.1)

Propeller forces and torques apply a net torque vector on vehicle i as given by

9

(a) Vehicle and Ground Reference Frames (b) Quadrotor motor spin directions

Figure 2.4: System overview and motor model

τ inet,i =

τϕ,iτθ,i

τψ,i

 . (2.2)

A pulse width modulation (PWM) signal value (δj,i) is sent to each motor that spins it such that
Fj,i = c1δj,i and τj,i = c2δj,i are the generated forces and torques from each rotor j ∈ {1, 2, 3, 4}
on each vehicle i ∈ {1, ..., NV } (per Figure 2.4b). With vehicle arm length a the total force and
torques exerted onto the vehicle by the propellers are given by

fthrust,i

τϕ,i

τθ,i

τψ,i

 =

c1 c1 c1 c1

−
√
2
2
ac1

√
2
2
ac1

√
2
2
ac1 −

√
2
2
ac1√

2
2
ac1 −

√
2
2
ac1

√
2
2
ac1 −

√
2
2
ac1

c2 c2 −c2 −c2

δ1,i

δ2,i

δ3,i

δ4,i

 , (2.3)

and thrust and gravity forces are

Fi
Thrust,i = −fthrust,ie3, Fi

Gravity,i = Ri
Gmige3. (2.4)

where mi is the mass of vehicle i, Ri
G is the rotation matrix from frame G to vehicle frame i, and

e3 = [0; 0; 1]. Vehicle position is defined in the ground frame as rGi . The vehicle i body frame is
used to define velocity vector [ui, vi, wi], roll/pitch/yaw attitude vector [ϕi, θi, ψi], and angular rate
vector [pi, qi, ri]. Mass moments of inertia (Jx,i, Jy,i, Jz,i) are also defined for each vehicle i.

Theses forces and torques act on the quadrotor according to standard rigid body dynamics as
given by

10

ṙGB = RG
B

uBvB
wB

 (2.5)

u̇Bv̇B
ẇB

 =

rBvB − qBwBpBwB − rBuB
qBuB − pBvB

+
1

mB

FB
net,B, (2.6)

ϕ̇Bθ̇B
ψ̇B

 =

1 sinϕB tan θB cosϕB tan θB

0 cosϕB − sinϕB

0 sinϕB
cos θB

cosϕB
cos θB

pBqB
rB

 (2.7)

ṗBq̇B
ṙB

 =

Jy,B−Jz,B

Jx,B
qBrB

Jz,B−Jx,B
Jy,B

pBrB
Jx,B−Jy,B

Jz,B
pBqB

+

1

Jx,B
1

Jy,B
1

Jz,B

 · τBnet,B, (2.8)

where B ∈ {1, ..., NV , P} and P is the payload as described later.

2.3 Open Source Autopilot rc pilot a2sys

The M330-Quadrotor flight controller is coded in the customized open source software package
rc pilot a2sys. This software is intentionally simple, efficient, and effective in supporting
research via autonomous trajectory tracking and ease of modification. It was created as a fork from
rc pilot, which was an incomplete project developed by James Strawson that leveraged the
librobotcontrol library. This library provides access to the low level robotics peripherals as
well as convenient math and filter functionality so that the flight controller simply has to use these
functions to implement the core logic needed [16]. The original project wasn’t intended to be fully
functional nor for public use and it had some critical software bugs. We fixed these bugs and added
some additional functionality for use in our research vehicles and are now calling the flight control
software, rc pilot a2sys.

For the first two years of my PhD I used Ardupilot (APM) as the flight controller (also
running on a BeagleBone Blue). APM supports different hardware platforms (Pixhawk, Beaglebone
Blue, etc), different vehicle types (multirotor, plane, rover, sub), and many, many extra features.
To enable this rich feature set, the full APM project has over 4,000 files and over 1,000,000 lines
of code (300,000 in .cpp/.h files). However, the majority of these features weren’t directly needed
for my use case. Moreover, I needed to develop additional features to support my research. I
developed a library to integrate motion capture data using XBees, added custom logging, command

11

line telemetry, and an operation state machine, among other things. After development, the system
worked and was used in Chapter 3. However, the large codebase made it challenging to develop
additional features for research and educational use cases. Specifically, bringing a new developer up
to speed took too long and often discouraged those with limited development experience.

Conversely, rc pilot a2sys has twelve core (.c/.h) files and only about 10,000 lines of
.c/.h code in the entire project. This is because rc pilot a2sys only supports the Beaglebone
Blue and multirotors, although it has also been adapted for a quadplane which confirms ease of
adaptation. It was successfully used in an experimental UAS course and by several researchers
across the University of Michigan and around the country. The relative simplicity with core
functionality allowed new developers to quickly learn and use the system.

Specific improvements that I made to rc pilot to arrive at rc pilot a2sys include: a
general overhaul of flight modes (and introduction of several new ones), a new controller (inspired
by APM), a bug fix to allow for consistent control loops without dangerous delays, motion capture
integration over XBee, and setpoint commands using MAVLink messages over WiFi. Some of
the flight modes available include manual commanding of attitude and total thrust through an RC
transmitter, a loiter mode that tracks a transmitter-commanded position, and autonomous flight that
tracks pre-loaded or real-time computed trajectories. A cascaded proportional-integral-derivative
(PID) controller enables setpoint tracking. State estimation is accomplished with a combination of
the onboard IMU and motion capture feedback.

A high level view of the controller can be seen in Figure 2.5.

Figure 2.5: rc pilot a2sys controller block diagram

2.3.1 Cascaded PID Controller

The cascaded PID controller encompasses both the position and attitude controller from Figure
2.5. This results in a 4-stage cascaded PID controller to track the desired state. Tracking error in the
outer loops feed as setpoints to the inner PID control loop to compute desired body frame forces
and torques. Position (rGd,i), velocity (ṙGd,i), feedforward thrust (fhover,i), and attitudes (ϕFF,i,θFF,i,
ψd,i) setpoints are commanded by a guidance module (pre-loaded or in real-time over WiFi). The
controller is

12

˙̄rd,i = K1,p

(
rGd,i − rGi

)
+K1,int

∫ t

0

(
rGd,i − rGi

)
dτ +K1,d

d

dt

(
rGd,i − rGi

)
+ ṙGd,i (2.9)

r̈d,i = K2,p

(
˙̄rd,i − ṙGi

)
+K2,int

∫ t

0

(
˙̄rd,i − ṙGi

)
dτ +K2,d

d

dt

(
˙̄rd,i − ṙGi

)
(2.10)

ϕd,i =
−sψiẍd,i + cψiÿd,i

g
+ ϕFF,i (2.11)

θd,i =
−cψiẍd,i − sψiÿd,i

g
+ θFF,i (2.12)

fthrust,i =
fhover,i + z̈d
cϕicθi

(2.13)

ωd,i = K3,p (Ωd,i −Ωi) + ωFF,i (2.14)

τi = K4,p (ωd,i − ωi) +K4,int

∫ t

0

(ωd,i − ωi) dτ +K4,d
d

dt
(ωd,i − ωi) , (2.15)

where ˙̄rd,i is an intermediate control desired velocity and (ϕd,i, θd,i, ψd,i) is the desired attitude.
This controller itself (Eqs. 2.9-2.15) is not novel, but rather represents a common open source

control approach that many off-the-shelf vehicles utilize. The inner loop controller uses linear Euler
angle error dynamics. However, this remains valid and effective when aggressive angles are not
used. However, quaternion-based error dynamics and others that properly represent the entire space
of SO(3) could be used to allow the system to perform well at all angles as opposed to just near
hover [17, 18, 19].

2.3.2 Motor Mapping and Saturation

The output of the cascaded PID controller is a desired thrust force (fthrust,i) and torques
(τϕ,i, τθ,i, τψ,i). The goal of the motor mapping module is to determine what ESC signals to send to
achieve that (per Eq. 2.3).

Since δi is normalized from 0 to 1 we can calculate the maximum and minimum values for the
torques and force, and then normalize the mixing matrix to arrive at

fz,norm

τx,norm

τy,norm

τz,norm

 =

−0.25 −0.25 −0.25 −0.25
−0.5 0.5 0.5 −0.5
0.5 −0.5 0.5 −0.5
0.5 0.5 −0.5 −0.5

δ1

δ2

δ3

δ4

 (2.16)

And inverting we have

13

δ1

δ2

δ3

δ4

 =M4x2

0

0

fz

τx

τy

τz

(2.17)

M4x2 =

0 0 −1 −0.5 0.5 0.5

0 0 −1 0.5 −0.5 0.5

0 0 −1 0.5 0.5 −0.5
0 0 −1 −0.5 −0.5 −0.5

 (2.18)

Note that this mixing matrix is specific to the M330-Quadrotor platform but for arbitrary multirotor
platforms a different matrix can be derived and used interchangeably.

In most cases, Eq. 2.17 can be used directly without issue. However, motor commands are
constrained to be between 0 and 1 and so therefore a more careful approach needs to be taken.

The approach taken in rc pilot a2sys is to pass through desired forces and torques one by
one, keeping track of the cumulative motor command values and making sure not to saturate them
at any point as

δ1

δ2

δ3

δ4

 =M4x2

0

0

fz,1

0

0

0

+

0

0

0

τx

0

0

+

0

0

0

0

τy

0

+

0

0

fz,2

0

0

0

+

0

0

0

0

0

τz

. (2.19)

This is a mathematical representation of the algorithm. Throttle force is separated into two compo-
nents fz,1 and fz,2 where fz,1 = min(fz, 0.5) and fz = fz,1 + fz,2. First, up to half of the throttle
is passed through (fz,1). Second, roll torque is passed through (τx saturated to 0.2 magnitude in
motor space). Third, pitch torque is passed through (τy saturated to 0.2 magnitude in motor space).
Fourth, any remaining throttle force is passed through (fz,2). Fifth, yaw torque is passed through
(τz saturated to 0.2 magnitude in motor space). Due to the structure of the mixing matrix, all three
torques saturate at 0.4 magnitude (but this could be different for differing vehicle models). This
means that 0.5 throttle, roll, and pitch are all guaranteed to run without saturation issues (this adds
to 0.9 out of 1.0 max). However, the full throttle and yaw are not guaranteed to run without being
saturated out. This is a design choice that allows the vehicle to maintain level flight and give up

14

some throttle and all yaw control authority when faced with saturation. It was chosen this way
particularly for the payload transportation mission (Chapter 4) but in general saturation could be
designed to prioritize these control objectives in different ways if the mission necessitated it. For
example, in drone racing, pilot feedback is provided via first-person-view (FPV) goggles and so yaw
may also be important to prioritize over throttle such that a reasonable view could be maintained.

2.4 Motion Capture Integration

Real-time motion capture supports accurate state estimation allowing research to focus on
guidance, control, and higher-level automation. An eight Optitrack camera system with a 3m x 4m
trackable area was used for indoor testing. Outdoors, a 32 Qualisys camera system with a 10m x
10m trackable area in M-Air, Michigan’s netted flight facility, was used. Each rigid body of interest,
quadrotors and instrumented payload, was equipped with motion capture markers that are tracked
in real-time by the motion capture system. This data is then relayed through 900MHz, low-latency
XBee wireless serial modems to the quadrotors and instrumented payload. This method supports
low-latency pose feedback for up to six entities (vehicles/payload) simultaneously.

2.4.1 XBee vs. WiFi

Both motion capture applications (Qualisys Tracker Manager and Optitrack Motive) run on
a ground control station computer which is connected to a network of cameras via ethernet. 2D
camera data is received and the application uses multiple observations of markers to estimate their
3D positions. Additionally, groups of markers are assigned to rigid bodies which can have their
positions and orientations estimated. This information can be shared in real-time using provided
sample real-time client code via UDP multicast.

As a first pass, we connected a quadrotor via UDP multicast over WiFi to the data stream
coming from Optitrack Motive. We performed a very smooth roll motion that was sensed by both
the onboard IMU and motion capture system. Figure 2.6 shows the results. Data came in near a
100ms latency for most of the test, but went up to 400ms for later portions. This is quite high and
would be unacceptable for any reasonable feedback control system.

Next, we considered using 900MHz wireless serial XBee modules (XBeePRO900HP). This
required another system in between the motion capture application and the receiving XBee to ”relay”
the data and transform it from the UDP packet into a minimal serial packet. The same test was
performed and the results are shown in Figure 2.7. Motion capture data came in at a consistent
40ms delay as compared with the onboard IMU. This value is very reasonable to support aggressive
feedback control systems and so XBees were chosen for this purpose.

Separately, a comparison was done between 2.4GHz and 900MHz XBees. It was determined

15

(a) Motion capture data is delayed by at least 100ms (b) Motion capture data is delayed by up to 400ms

Figure 2.6: Motion capture data sent over a WiFi link with latency between 100ms and 400ms.

that the 2.4GHz XBees experienced intermittent interference to cause some drop packets, likely due
to many devices operating on that frequency (WiFi, bluetooth, etc). However, the 900MHz XBees
experienced near zero drop packets.

(a) XBee packet receipt histogram (1/90Hz peak). (b) A 40ms shift aligns the data very well.

Figure 2.7: Motion capture data sent over an XBee link with latency consistently at 40ms.

2.4.2 Six Simultaneous Senders

Reliable motion capture data feedback was achieved for a single vehicle in the previous section.
However, for the multi-UAS missions considered in this dissertation it was required to develop a
reliable system for six receivers (five vehicles and one payload). Additionally, an optional ”kill
switch” was needed such that the ground control station operator could flip a switch and disable the
motors at any time.

16

Figure 2.8 shows the system developed to achieve this. The Optitrack Relay Cape attaches
to a Beaglebone Black which receives motion capture data packets over ethernet and sends out
serial (UART) data packets to the custom PCB. Six XBees connect (five through hardware UART
ports, one through a USB UART dongle) and receive the UART data over separate pins. A physical
switch on the GCS PCB sets the state of a pin on the sending XBee which is mirrored through
a feature of the XBees on the receiving XBee. When the switch is toggled, the state of the pin
on the quadrotor side toggles, which is logically ANDed (via hardware logic gates) alongside the
ESC signals. This means that even if the BBb fails and commands the motors erroneously for
any reason, a completely separate system can safely shut them down. Additionally, a timeout is
set such that if communication is lost between the XBees, the default state is to kill the motors.
This was essential during development and testing of an autonomous roofing concept using a
nailgun-equipped octocopter [20]. Additional details of these PCBs are included in Sec. A.1.1 and
Sec. A.1.2.

Figure 2.8: XBee system that simultaneously sends motion capture data and kill switch signals.

The specific serial packet used is shown in Figure 2.9. The onboard IMU estimates roll and
pitch effectively, but does a poorer job with yaw and has no direct way of measuring global position.
Therefore, yaw and 3D position are sent along with a timestamp. Two start Bytes and two checksum
Bytes are also sent to allow for explicit error handling during transmission. The XBee modules
themselves were configured to be transparent serial devices with minimal error handling features
enabled. Specific settings can be found in the M330-Quadrotor project [15].

While 900MHz XBees were chosen to avoid interference with over devices, consideration was
needed to avoid interference between the XBees themselves. This was performed via time and

17

Figure 2.9: XBee serial packet with number of Bytes listed per entry (24 Bytes total).

frequency separation simultaneously as shown in Figure 2.10. The 900MHz band has 63 channels
and each XBee requires a minimum of 25 enabled channels to operate. Therefore, two independent
network of XBees were setup, 31 channels each with an unused channel to separate them. In time,
three sending periods were allocated such that no two XBees sent on the same channel at the same
time resulting in a total of six reliable XBee transmissions per sequence. Additionally, 57,600 baud
was the value experimentally determined to be the most reliable while also giving a high data rate.
Therefore, the theoretical throughput limit of this transmission strategy is

1Sequence

3Packets
× 1Packet

24Bytes
× 1Byte

8bits
× 57, 600bits

1s
= 100Hz. (2.20)

However, in practice 60 Hz was the value that we were able to use while achieving reliable
performance.

Lastly, another benefit of this setup was the ability to send ”fake” motion capture data to facilitate
software testing. Instead of sending real motion capture data, the serial relay application can send
specific data to help test and debug the flight controller. Testing in M-Air with a full system is very
time consuming and requires additional personnel. However, testing via fake motion capture data
doing software in the loop tests is much faster and efficient to find bugs, not to mention the added
benefit of not crashing the vehicle.

2.5 Instrumented Payload

In support of the cooperative payload transport haptic guidance mission, an instrumented
payload capable of real-time sensor data acquisition was developed (Figure 2.11). This device was
custom-built for this project and the bill of materials, build guide, and software for the system can be
found in an open source project [21]. The rest of this section describes the hardware, construction,
and core software while Chapter 4 details the research use case and operation.

2.5.1 Overview

Five tether lines with inline load cell tension sensors are wrapped around a 24.6cm Styrofoam
ball in guide channels cut to prevent slippage (Figure 2.11d). Using Styrofoam as the main structural
component allowed the payload to be both lightweight and easy to manufacture through the use
of channels and inserts cut with a hot knife. This allowed us to rapidly iterate on the design by

18

Figure 2.10: XBee strategy using six XBees

adding new inserts and wire channels as they were required without rebuilding the entire payload.
The outer surface of the ball is a weak point where the Styrofoam could break into smaller pieces,
however, this was rectified by wrapping the ball in electrical tape. Not only does this maintain
structural integrity for the payload in the face of collisions and external forces, this also provides
a smooth surface for lower aerodynamic drag. On the bottom, the Styrofoam has an 8cm square
extrusion cut to an 18cm depth to host the main payload insert (Figure 2.11b). The end of the main
payload insert houses a custom printed circuit board (PCB) that receives sensor cables from the
load cells. The PCB contains five HX711, 24-bit ADCs (one for each sensor) that are sampled at
80Hz by an Arduino Nano. This PCB is described in further detail in Sec. A.1.3. On the front,
the Styrofoam has another square extrusion cut to host the push sensor insert (Figure 2.11c). The
push sensor insert holds a push force sensor (four compression load cells with a combinator) and
one HX711 that is sampled with another Arduino Nano at 10Hz. A BeagleBone Blue single-board
Linux computer receives tension sensor and push sensor data from the Arduino Nanos serially,
receives motion capture data over wireless serial (XBee), and samples its onboard 9-axis IMU. The
BeagleBone Blue WiFi communicates with the ground control station and all quadrotors. Power is
provided by a 3s, 3000mAh Lithium Polymer (LiPo) battery. All of the electronics in both inserts
are mounted to custom 3D-printed frames with spherical end caps to fit flush with the payload

19

surface. Once inserted, the end caps are covered in electrical tape to smoothly secure the payload.
The instrumented payload weighs 1.211kg. A hardware diagram of the payload can be seen in
Figure 2.12. The tethers are arranged symmetrically at a 45◦ cone angle with an additional tether on
top.

(a) In PVC test rig (b) Main Insert (bottom) (c) Validation Sensor (d) Construction

Figure 2.11: Instrumented payload constructed with embedded sensing and computation.

Wi-Fi

XBee Signal

+12 V

GND

Data & Power

Custom PCB

Beaglebone Blue

XBee

Combinator

HX711 BoB

Arduino Nano

Push Sensor

Tension Sensor

45°

Figure 2.12: Payload hardware block diagram. Real-time sensor data is collected for use in our
control algorithms.

2.5.2 Force Sensor Calibration

The force sensors used in the payload are load cells. They change resistance based on the
applied force; these resistances are measured by ADCs. We assume the sensors are linear such that

20

oj = simj + di, (2.21)

with measurement oj coming from mass mj with a scale of si and offset of di for sensor i ∈
{1, ..., NV , P}. Ideally, these parameters should be constant; however, these are sensitive to
temperature and other factors and must be calibrated. We used a two-step calibration routine for all
five tension sensors and the push force sensor. Given two measurements (o1 of mass m1 and o2 of
mass m2) we can solve for the scale and offset according to

si =
o2 − o1

g(m2 −m1)
, di = m1 − (sim1g). (2.22)

For the tension sensor we used two masses of 0.410kg and 1.372kg to cover the range of expected
forces (0 to payload mass of 1.211kg and beyond). For the push force sensor we used the payload
mass and no mass. To obtain the force applied after calibration we rearrange the equation as

fj =
oj − di
si

. (2.23)

2.5.3 Tether Tension Sensor Data Processing

After converting the raw ADC reading, oj , for tension sensor i, into a force reading in Newtons,
fj , it is still potentially noisy. To account for this we constrain the force reading to be between
0N and 20N, defaulting to the previously obtained reading if out of those bounds to obtain f̄i.
Additionally, this is still only a 1D reading. However, we require a 3D force vector. We circumvent
this problem by assuming that the vehicles are in their desired, known formation to obtain the
direction vectors and combine this with our force data from the load cell tension sensors such that

FP
Tether,i = Rz,γiRy,αi

f̄i. (2.24)

2.5.4 Push Force Sensor Data Processing

The push force sensor also only provides a 1D force reading. Since it is rigidly attached to
the payload, we make the assumption that pushes will always be in the direction of the sensor, i.e.

FP
User =

[
fPush 0 0

]T
, where fPush is the measured 1D force, thus

FG
User = RG

P

[
fPush 0 0

]T
. (2.25)

21

2.6 Conclusions and Future Work

This chapter presented the hardware and embedded software developed to support the research
in the rest of the dissertation. Key elements include a quadrotor platform, real-time flight controller,
low-latency motion capture integration, and an instrumented payload.

These systems were effective in supporting the research in this dissertation. However, there is
room for future work to explore additional state-of-the-art research. The rc pilot a2sys flight
controller could have additional features (more flight modes, more sensor support). Larger variants
of the M330-Quadrotor could be pursued to enable carrying larger payloads. This is very important
for supporting state estimation via onboard sensing alone. A companion computer and additional
sensors could be mounted to achieve this. Lastly, the core principles of simplicity, low-cost, and
open-source should be upheld for all of these future developments so that they are accessible by
everyone.

22

CHAPTER 3

Distributed Quadrotor Deformable Formation Control

3.1 Introduction

Existing formation control methods such as containment control [22, 6], virtual structure [7],
and consensus [23] support rigid formations of agents that can translate and rotate. However,
rigid formations have certain limitations including fitting through narrow passages. Continuum
deformation is a cooperative control technique that can be used for versatile, deformable formation
control. A theoretical foundation has been laid that supports coordination and provides certain
safety guarantees but results have been restricted to simulations. This chapter improves upon the
existing continuum deformation theory considering formation control of a team of five quadrotors
using a three leader, two follower continuum deformation specification.

Continuum deformation is a distributed leader-follower algorithm and treats all agents as points
in a deformable rigid body (in two dimensions this is called the ”leading triangle”). Based on
an initial configuration of the agents, the leading triangle is deformed according to a desired
homogeneous transformation. The leaders are commanded directly, whereas the followers update
their desired positions based on a weighted sum of their neighbors’ actual positions, which are
acquired via local communication. Based on a global deviation bound, constraints are placed on the
homogeneous transformation that guarantee inter-agent collision avoidance and containment of all
the agents within the leading triangle [9, 24]. In this chapter, a local deviation bound is determined
empirically for a single quadrotor (Fig 3.1A). This is used as the global deviation bound to generate
leader agent trajectories that put the system at the theoretical safety limit (assuming local deviation
is equal to global deviation). The five-quadrotor team using motion capture feedback is deployed
in tests where leaders execute the prescribed trajectories. Followers either use globally desired
positions (guarantees safety) or update their desired positions based on the communication topology
in Fig. 3.1C (pushes system beyond safety limit). The results are analyzed and the actual global
deviation bound is derived.

Sec. 3.2 compares related work. Sec. 3.3 summarizes continuum deformation theory, while
Sec. 3.4 describes leader flight planning and presents test trajectories. Sec. 3.5 summarizes the

23

BA

C

𝒘𝟒,𝟏

𝒘𝟒,𝟓

𝒘𝟒,𝟑

𝒘𝟓,𝟐

𝒘𝟓,𝟑

𝒘𝟓,𝟒

2

3

54

1

Figure 3.1: A) Test quadrotor, B) M-Air netted facility, C) Mid-flight, overhead snapshot in M-Air
with three leaders (1,2,3) and two followers (4,5) flying a continuum deformation.

experimental apparatus including quadrotors, electronics, sensors, and software. Sec. 3.6 presents
flight test results, a global deviation bound is derived in Sec. 3.7 and Sec. 3.8 concludes the chapter.

3.2 Related Work

Commonly, there are two approaches in cooperative control: centralized (a single station
controls every vehicle) and distributed (there is no central station and computation and control
happen onboard of each vehicle, with information being shared between neighbors) [25]. Consensus
[23, 26], containment control [22, 6], and continuum deformation [9, 27] are examples of the
distributed approach. Virtual structure [28] is an example of the centralized approach. Consensus is
the most commonly-applied decentralized cooperative control technique [29, 25, 26, 30]. Distributed
consensus was applied for agent coordination in [31, 32] and flight tested in [33, 34]. Consensus
guided by a single leader is studied in [35, 36] and flight tested in [37, 38]. Cooperative control has
been applied to unmanned aircraft system (UAS) teams for tasks such as surveillance [39], area
surveys [40], and payload delivery [12].

Continuum deformation is a multi-agent control technique that allows translation, rotation, and
shearing of a bounding envelope while ensuring agents remain within the bounding envelope and
avoid collisions. To do this, continuum deformation treats agents as particles of a body that deforms
under a homogeneous transformation [9, 24]. A desired n-D homogeneous transformation (n =

1, 2, 3) is defined by n+ 1 leaders in Rn and acquired by followers through local communication.
Shared state data is weighted based on a reference configuration. Continuum deformation stability
is analyzed in [9], while coordination under switching communication topologies is studied in
[27]. Characterization of the homogeneous transformation and safety guarantees are key features of
continuum deformation.

24

3.3 Continuum Deformation Review

3.3.1 Continuum Deformation Definition

An n−D continuum deformation (n ∈ {2, 3}) is defined by homogeneous transformation t ≥
t0, ri,HT (t) = Q(t, t0)ri,0 + d(t, t0), where the initial time is t0, Q(t, t0) ∈ Rn×n is a non-singular
deformation matrix, d(t, t0) ∈ Rn×1 is a displacement vector, and ri,HT (t) ∈ Rn×1 is the global

desired formation position of agent i. Note that d(t0, t0) = 0 ∈ Rn×1 and Q(t0, t0) = In ∈ Rn×n,
so ri,0 = ri,HT (t0) is the initial position of quadrotor i ∈ V . For this chapter, a 2D continuum
deformation was considered (n = 2).

Assume an NV -agent quadrotor team V = {1, · · · , NV } with leaders VL = {1, 2, 3} and
followers VF = {4, · · · , NV }. Leaders form a leading triangle for all t ≥ t0 such that all
followers are contained within it. Q and d uniquely relate to leader positions as in [9] by t ≥

t0,

[
vec
(
QT
)

d

]
=
[
I2 ⊗P0 I2 ⊗ 13

]−1

vec (Pd), where ”⊗” is the Kronecker product symbol,

I2 ∈ R2×2 is the identity matrix, and 13 ∈ R3×1 is a vector of ones, P0 =

r
T
1,0

rT2,0

rT3,0

 ∈ R3×2, Pd =

r
T
1,d

rT2,d
rT3,d

 ∈ R3×2.

3.3.2 Continuum Deformation Acquisition

A weighted directed graph G = G (V , E) defines inter-agent communication as shown in Fig.
3.1C. Given edge set E ⊂ V × V , the in-neighbor agents of follower i ∈ VF are defined by

∀i ∈ VF , Ni = {j|i ∈ VF , j ∈ Ni}.

For an n-D continuum deformation,
∣∣Ni

∣∣ = n + 1, ∀i ∈ VL and in-neighbor agents of every
follower form an n-D polytope. Therefore, each follower communicates with three in-neighbor
agents, forming a triangle in a 2D continuum deformation. Let i1, i2, and i3 denote index numbers
of follower i’s in-neighbor agents, initially positioned at ri1,0, ri2,0, and ri3,0. Then, communication
weights of follower i ∈ VF denoted wi,i1 , wi,i2 , and wi,i3 are given by [9]:

wi,i1wi,i2

wi,i3

 =

xi1,0 xi2,0 xi3,0

yi1,0 yi2,0 yi3,0

1 1 1

−1 xi,0yi,0

1

 . (3.1)

25

Let ri denote actual position and rd,i be the local desired position of each agent i ∈ V .
Local Communication Guidance Under ”Local Communication” guidance, leader agents have
direct access to their global desired position, ri,HT , but followers acquire this via a weighted sum of
neighbors’ actual positions via local communication.

rd,i =

ri,HT i ∈ VL∑
j∈Ni

wi,jrj i ∈ VF
(3.2)

where wi,j is the weight on the directed edge of a communication graph from j to i.
Global Desired Guidance Under ”Global Desired” guidance all agents have direct access to their
global desired positions.

rd,i = ri,HT i ∈ V (3.3)

3.3.3 Continuum Deformation Coordination Safety

Given leader desired trajectories, we define a bounding triangle as a dilation of the original
leading triangle with the following properties: (1) Both leading and bounding triangles have a
common centroid at any time t, (2) Parallel sides of both triangles are separated by Dl at any time t
(see Fig. 3.2).

-400 -300 -200 -100 0 100 200 300 400

Y Position [cm]

-100

0

100

200

300

400

500

600

X
 P

os
iti

on
 [

cm
]

Leader
Follower
Quad Radius ()
 +

D
s
 = 172.6cm

D
b
 = 86.3cm

D
l
 = 68.0cm

-400 -300 -200 -100 0 100 200 300 400

Y Position [cm]

-100

0

100

200

300

400

500

600

X
 P

os
iti

on
 [

cm
]

Leader
Follower
Quad Radius ()
 +

(a) Initial configuration.

-400 -300 -200 -100 0 100 200 300 400

Y Position [cm]

-100

0

100

200

300

400

500

600

X
 P

os
iti

on
 [

cm
]

Leader
Follower
Quad Radius ()
 +

D
s
 = 172.6cm

D
b
 = 86.3cm

D
l
 = 68.0cm

-400 -300 -200 -100 0 100 200 300 400

Y Position [cm]

-100

0

100

200

300

400

500

600

X
 P

os
iti

on
 [

cm
]

Leader
Follower
Quad Radius ()
 +

(b) Contracted configuration.

Figure 3.2: Leaders and followers shown in their global desired positions for initial and contracted
configurations, respectively, with leading (smaller) and bounding (larger) triangles shown. Ds, Db,
and Dl are shown in the initial configuration.

Theorem 1. Assume each quadrotor is enclosed by a ball of radius ϵ. Ds denotes the minimum

separation distance between any pair of agents at t = t0, Db is the minimum distance from any

26

follower to the leading triangle boundary, and Dl = δg + ϵ is the distance of two parallel sides of

the leading and bounding triangles. Here, δg is the maximum deviation from the global desired

position for every quadrotor: ∥ri − ri,HT∥ ≤ δg,∀i ∈ V . Additionally, define a local deviation

bound as ∥ri − rd,i∥ ≤ δl,∀i ∈ V where rd,i is the local desired position being tracked for every

agent. Let

δmax = min{Ds − 2ϵ

2
, Db − ϵ}. (3.4)

Inter-agent collision avoidance is guaranteed, no follower leaves the leading triangle, and no agent

leaves the bounding triangle if

λmin ≤ inf
∀t

{
λ1 (t) , λ2 (t)

}
, (3.5)

where

λmin =
δg + ϵ

δmax + ϵ
, (3.6)

λ1 and λ2 denote eigenvalues of matrix UD =
(
QTQ

) 1
2 .

Proof. See the proof in [41].

3.4 Generating the Leading Triangle Path

Flight tests investigate if real-world continuum deformation will satisfy four constraints: follower
containment within the leading triangle, collision avoidance between agents, bounding of deviation
from local desired position, and bounding of deviation from global desired position. To evaluate,
leaders are set as close together as they theoretically can be. Leader separation is given by scaling
factor λmin (Eq. 3.6). With ϵ = 28cm (Sec. 3.5) and δg = 40cm (Sec. 3.6), the leaders form an
equilateral triangle with edge length l = 3.72m at the contracted λmin limit.

Fig. 3.3 shows the planned trajectory. The flight begins with the leaders contracting from an
initial state to the λmin limit, then continues with the leaders traversing a square with edge-length
1m. The flight concludes with leaders expanding back to the initial configuration; the pilot then
commands simultaneous descent and landing. During the flight, the leaders fly to six waypoints.
Leaders move from their initial equilateral triangle (pose 1) with edge length l = 4.72m to their
contracted configuration (pose 2) with l = 3.72m. Leaders then traverse three of the four sides of
the 1m edge-length square through poses 3, 4, and 5. From pose 5, the leaders complete the square
by returning to pose 2 and finally expand to pose 1 to end in their initial configuration.

All leaders move in straight lines to reach their next waypoint. The following quintic spline

27

-300 -200 -100 0 100 200 300

Y Position [cm]

-100

0

100

200

300

400

500

X
 P

os
iti

on
 [

cm
]

Frame A) Pose 1 to Pose 2

Pose 1
Pose 2

-300 -200 -100 0 100 200 300

Y Position [cm]

-100

0

100

200

300

400

500

X
 P

os
iti

on
 [

cm
]

Frame B) Pose 2 to Pose 3

Pose 2
Pose 3

-300 -200 -100 0 100 200 300

Y Position [cm]

-100

0

100

200

300

400

500

X
 P

os
iti

on
 [

cm
]

Frame C) Pose 3 to Pose 4

Pose 3
Pose 4

-300 -200 -100 0 100 200 300

Y Position [cm]

-100

0

100

200

300

400

500

X
 P

os
iti

on
 [

cm
]

Frame D) Pose 4 to Pose 5

Pose 4
Pose 5

Figure 3.3: Waypoints traversed by leaders during flight. Poses 1-2 show motion to the contracted
position. Poses 2-5 show leaders traversing three sides of the 1m edge-length square. From pose 5,
leaders return to pose 2 then to pose 1.

guidance law is used for generating the desired trajectory for each leader:

i ∈ VL, rd,i(t) = ai + bit+ cit
2 + dit

3 + eit
4 + fit

5

ṙd,i(t) = bi + 2cit+ 3dit
2 + 4eit

3 + 5fit
4

r̈d,i(t) = 2ci + 6dit+ 12eit
2 + 20fit

3,

(3.7)

where rd,i(t), ṙd,i(t), and r̈d,i(t) are the 2D desired position, velocity, and acceleration of the
ith agent, respectively. With Eq. 3.7 we enforce six constraints: rd,i(t0) = r0,i, rd,i(tf) = rf,i,
ṙd,i(t0) = ṙd,i(tf) = 0, and r̈d,i(t0) = r̈d,i(tf) = 0 to solve for coefficients {ai,bi, ci,di, ei, fi}
where r0,i and rf,i are the initial and final positions of the ith agent, respectively. From this guidance
law, we define vmax as the largest desired velocity of any agent ṙd,i(t) for all flight times t. This
desired velocity serves as a feed-forward term in the velocity-tracking portion of the cascaded PID
controller (Sec. 3.5). Time of flight (tf − t0) between each pair of poses is 3.75s resulting in a

28

translation of 1m when vmax = 50 cm
s

.

3.5 Experimental Setup

Five M330-Quadrotors were used running a modified version of ArduPilot (APM) open-
source flight controller software (Chapter 2.2). Fig. 3.4 describes the experimental setup. Vehicle
pose is provided by an Optitrack motion capture system with eight Prime13 cameras. A BeagleBone
Black Ground Control Station receives pose estimates of all vehicles from the motion capture system
and uses individual XBee radios to send the pose estimate, desired position (followers only), and a
synchronization variable at 60Hz to each quadrotor. A pilot uses a 2.4GHz DSMX Transmitter for
manual override in case of system anomalies and a separate computer receives telemetry data from
each vehicle over WiFi. All multi-vehicle tests were conducted in M-Air, a 80’×120’×50’ outdoor
netted facility at the University of Michigan. A wind vane and cup anemometer were used to obtain
wind data. Outdoor tests were conducted at night to improve motion capture performance.

Transmitter

Manual Pilot
Override

Vehicles
VehiclesVehiclesOptitrack

Cameras

Motion Capture
Application

BeagleBone
Black GCS

Control Station

Test Area

XBee Comms

Vehicles

Figure 3.4: Experimental system block diagram

Fig. 3.5 outlines vehicle software. We modified APM’s cascaded proportional-integral-derivative
(PID) position control to use Optitrack position data. In cascaded PID, position tracking error is
scaled by a proportional gain and added to the feed-forward velocity set by the desired velocity ṙd.
Velocity estimates are obtained from a derivative filter on the position estimate (Eq. 3.8) where T is
the sampling period [42]. Velocity tracking error becomes a desired acceleration and error from the
acceleration tracking loop is fed into an attitude controller that relies on three-axis onboard inertial
measurement unit (IMU) data. APM runs the control loop at 400Hz. Leaders use a synchronization
variable and a pre-loaded flight path file to generate desired positions and velocities for the position
controller. Followers receive a position setpoint via XBee that is the weighted sum of its neighbors’
real-time positions set per continuum deformation.

ˆ̇r (t) =
2 [r (t− T)− r (t− 3T)] + [r (t)− r (t− 4T)]

8T
(3.8)

29

Figure 3.5: Vehicle software block diagram

3.6 Experimental Results

We conducted a series of flights with a single vehicle to empirically bound controller error, δl
(Sec. 3.6.1). Results were used to set bounding parameter δg as δl in the computation for λmin in
Eq. 3.6. Given the set of prescribed leader trajectories, we command the follower agents in two
ways. In the first test series, (Sec. 3.6.2) we set the desired position of each follower (rd,i) to its
global desired position (ri,HT) ∀i ∈ VF as depicted in Fig. 3.2. In effect, the desired position of
the followers is a weighted sum of leaders’ desired positions. With this approach, δl and δg are
equivalent meaning collision avoidance and containment are guaranteed from Thm. 1. In the second
approach (Sec. 3.6.3) we compute desired follower position as a weighted sum of the actual position
of three neighbor agents as prescribed in Eq. 3.2 (using the weights in Eq. 3.9). This approach,
although more practical for a large and spatially distributed system (due to shorter communication
links), no longer guarantees that the controller error bound for each agent δl is a bound on the global
deviation of the followers ∥ri − ri,HT∥ ∀i ∈ VF .w4,1

w4,3

w4,5

 =

 0.5

0.134

0.366

 ,
w5,2

w5,3

w5,4

 =

 0.5

0.134

0.366

 (3.9)

3.6.1 Determining Controller Error

To determine controller error bound δl, we flew a single vehicle in a 1m edge-length square while
varying parameters to characterize error sources. Parameters varied include battery voltage and
environment (indoor vs. outdoor with negligible wind), largest desired velocity from quintic spline
guidance (vmax), and altitude above ground level. We also considered the effect of disturbances
induced by nearby vehicles by flying all five agents, with followers using global desired positions,
to see if controller performance varied from the single-vehicle tests.

Results show that battery voltage, indoor vs. outdoor environment, and altitude above ground

30

(minimum 1m) have negligible impact on controller error δl. Battery voltage was varied from 11.4V
to 12.5V, a typical operating range, with less than 10% change in δl. We varied flight altitude from
0.75m to 1.75m in increments of 0.25m, with a 15% larger standard deviation in error at 0.75m than
at other altitudes. Since all altitudes above 0.75m had similar performance, we flew multi-agent
tests at 1.5m above ground level.

To check dependence on vmax, a single vehicle was flown using the quintic spline guidance law
from Eq. 3.7. We relax the constraint on final desired position rd,i(tf) = rf,i and instead command
a particular velocity halfway through each flight segment ṙd,i(

tf−t0
2

) = vmax. For this test series,
time of flight between each waypoint pair is fixed at (tf − t0) = 3.75s which results in a translation
of 1m when vmax = 50 cm

s
.

Table 3.1: Statistical parameters of controller error increase as vmax increases. Tests performed
indoors at 150cm altitude.

vmax (cm/s) Mean (cm) Std. Dev (cm) Max (cm)
0 4.80 1.90 12.44

25 6.64 3.04 15.95
50 7.94 4.27 22.65
75 11.64 6.65 29.77

100 14.53 9.23 36.44

Table 3.1 shows that tracking error mean, max, and standard deviation increase as vmax increases.
We believe a large source of error is introduced in state estimate delay. Each agent receives a
position estimate from Optitrack with about a 40ms delay. Then, a derivative filter (Eq. 3.8) is used
on position data to estimate the actual velocity. The filter adds an additional delay to the velocity
estimate, but characterization of the derivatives filter’s delay and its effects on position error was
not explored for this chapter.

For data shown in Table 3.1, the vmax = 0 cm
s

hover case is computed over 40 flights. The other
datapoints, vmax = {25, 50, 75, 100} cm

s
in Table 3.1, have ten flights for each vmax. All flights in

this dataset were conducted indoors at an altitude of 150 cm above the floor.
To investigate downwash impact on neighboring agents, we flew all five quadrotors with

followers using global desired positions and compared results to those in Table 3.1. Leaders flew
the trajectory from Sec. 3.4 with δg = 40cm, (tf − t0) = 3.75s and vmax = 50 cm

s
as before. Two full

flights with five vehicles were flown resulting in ten datasets overall.
Table 3.2 shows the results of the five-agent flights alongside the single-agent flight data copied

from the 50 cm
s

case in Table 3.1. For the five-agent flights, agent 4 had an anomaly where it did not
run any controller-related computations for 0.3s resulting a maximum error of 41.68cm. which is
treated as an outlier and excluded from error characterization.

During the five-agent flights, the XBees occasionally drop packets. Fig. 3.6 shows the change in

31

Table 3.2: Statistical parameters of inter-agent disturbance characterization. Tests performed
outdoors at 150cm altitude

Mean (cm) Std. Dev (cm) Max (cm)
Five-Agent Flights 9.69 5.16 30.33

Single-Agent Flights 7.94 4.27 22.65

time ∆t between two consecutive Optitrack pose estimates received by an agent over Xbee. Fig.
3.6a shows a typical single-agent flight while Fig. 3.6b is from a five-agent flight where the larger
∆t corresponds to an integer number of packets lost. Five-agent flights may have larger error in part
because of Optitrack data packet drop. Results from Tables 3.1 and 3.2 show that an error bound of
δl = 40cm is sufficient. The first five-agent flights sent followers global desired positions to support
analysis of continuum deformation constraints in Sec. 3.6.2.

0 5 10 15 20 25 30 35 40

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

t [
s]

(a) Single-agent flight.

0 10 20 30 40 50

Time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3
t [

s]

(b) Five-agent flight.

Figure 3.6: Data is received consistently over Xbee radios at 60Hz for single-agent flights. Packets
dropped in five-agent flights.

3.6.2 Five-Agent Flight: Followers with Pre-set Waypoints

Fig. 3.7 shows the results for a five-agent test with follower positions based on a weighted sum
of the leader desired positions. The wind speed was measured to be 0mph. δg = 40cm was used
as a conservative error bound. This test was run to distinguish experimental setup error sources
(downwash, communication interference, etc) from coordination-induced error. The four plots
in Fig. 3.7 show team performance with respect to the four constraints from Sec. 3.4: follower
containment within the leading triangle, collision avoidance between agents, bounding of deviation
from the local desired position, and bounding of deviation from the global desired position. The

32

black vertical lines on each plot use the same symbols from Fig. 3.3 to show the desired waypoint
of the leaders in time. The unlabeled vertical lines between Star (⋆) and Diamond (♢) represent an
intermediate waypoint added to fit all agents within our motion capture workspace.

Fig. 3.7A shows the distance from both followers to the leader boundary with a flat horizontal
line at ϵ = 28cm and another horizontal line at −δg = -40cm. Crossing the ϵ line means the follower
left the leader boundary while crossing the −δg line means the follower left the outer bounding
triangle. Thus, the followers never leave the leading triangle since their lines never go below the
horizontal ϵ line. Fig. 3.7B shows each agent’s distance to its nearest neighbor along with a 2ϵ

= 56cm line. There are no inter-agent collisions because no agent has a distance that goes below
the 2ϵ line. Fig. 3.7C and Fig. 3.7D show the deviation of each agent from its local and global
desired position. No agent has a local or global deviation exceeding δg = 40cm (represented by the
horizontal line). Figs. 3.7C and 3.7D are identical since followers are being commanded to global
desired positions.

Figure 3.7: In-flight constraint values over time for the five-quadrotor continuum deformation
trajectory. Follower desired positions are computed from desired leader positions.

33

3.6.3 Five-Agent Flight: Followers with Local Communication

Fig. 3.8 shows results for the five quadrotor system running continuum deformation under local
communication. The average wind speed was 2.1mph at 75◦ relative to +X (effectively the direction
of motion in Fig. 3.3C: □ to⃝).

Figs. 3.8B and Figs. 3.8C show there are no inter-agent collisions and that no agent exceeds
the local deviation bound. Fig. 3.8D shows that followers violate the global deviation constraint
in all segments except when the formation moves in the direction of the wind:(□ to⃝) and (♢ to
the intermediate waypoint). In segments where the global deviation constraint is satisfied, neither
follower leaves the leader triangle as predicted by Thm. 1. However, there is a segment (intermediate
waypoint to ♢) where followers violate global deviation while within the leader boundary.

The large follower deviation in Fig. 3.8D is caused in part by steady-state error in agent y-
components, most likely due to wind which effectively shifted the entire formation in +Y. Follower
local desired positions (rd,i) shift with the leaders while their global desired positions (ri,HT) are
unaffected, resulting in a compounding error effect with respect to the follower global desired
position reference.

3.7 Global Deviation Bound from Local

Continuum deformation guarantees collision avoidance and containment when a global deviation
bound used for trajectory generation is met. In tests where the local deviation bound is met and also
equal to the global deviation bound (Fig. 3.7), we observed the system meeting all four constraints.

However, under strictly local communication of actual positions, the actual global deviation
bound is unknown and constraints cannot be guaranteed using a local deviation bound (Fig. 3.8).
The collision and local deviation constraints were met while containment and global deviation
were violated. Importantly, all constraints were satisfied in segments of the flight where the global
deviation constraint was met (Thm. 1).

A very large global deviation bound can be prescribed to satisfy all constraints, but such a
conservative approach would require the quadrotors to be substantially separated which may not be
practical.

This section derives the actual global deviation bound for each agent as a function of the
communication weights and individual local deviation bounds. Definitions from Sec. 3.3 are used
along with additional notation when necessary.

Let

34

Figure 3.8: In-flight constraint values over time for the five-quadrotor continuum deformation
trajectory. Follower desired positions are computed from local communication of actual neighbor
positions.

P =

rT1
...
rTn

 ∈ Rnx2, Pd =

rTd,1

...
rTd,n

 ∈ Rnx2

PA,HT =

rT1,HT

...
rTn,HT

 ∈ Rnx2, PL,HT =

rT1,HT
rT2,HT
rT3,HT

0(n−3)×2

 ∈ Rnx2

These are matrices of stacked position vectors (actual, desired, global desired, and leader global
desired respectively). Note, these are different from P0, PHT ∈ R3×2 (Sec. 3.3) which will not be
referenced.

Let Dloc = P−Pd and Dg = P−PA,HT be the local and global position offsets, respectively.
Define a matrix of the communication weights (Eq. 3.1) as

35

W =

03×1 03×1 . . . 03×1

w4,1 w4,2 . . . w4,n

...
...

wn,1 wn,2 . . . wn,n

 (3.10)

Define ”Global communication weights” αi,j such that

ri,HT =
3∑
j=1

αi,jrj,0 (3.11)

αi,1αi,2

αi,3

 =

x1,0 x2,0 x3,0

y1,0 y2,0 y3,0

1 1 1

−1 xi,0yi,0

1

 (3.12)

Combining these weights into a single matrix, also define

α =

I3 03×(n−3)

α4,1 α4,2 α4,3 01×(n−3)

...
...

...
...

αn,1 αn,2 αn,3 01×(n−3)

 (3.13)

Let ∥rd,i − ri∥ ≤ δi,l and δl = max1≤i≤n δi,l be the individual local deviation bounds and
the local deviation bound, respectively. Let ∥ri,HT − ri∥ ≤ δg,i and δg = max1≤i≤n δg,i be the
individual global deviation bounds and the global deviation bound, respectively.

Define dl =
[
δ1,l . . . δn,l

]T
and dg =

[
δg,1 . . . δg,n

]T
. Next define a relationship between

individual local deviation bounds (dl) and individual global deviation bounds (dg).

Theorem 2.
Dg = (I−W)−1Dloc (3.14)

Proof. We can express the desired agent positions as

Pd = PL,HT +WP (3.15)

We can also write the position of each agent as

P = Pd +Dloc (3.16)

Solving for P yields

36

P = PL,HT +WP+Dloc

(I−W)P = PL,HT +Dloc

P = (I−W)−1 (PL,HT +Dloc)

The global position offset can then be written as

Dg = P−PA,HT

= (I−W)−1 (PL,HT +Dloc)−αPL,HT

= (I−W)−1Dloc +
[
(I−W)−1 −α

]
PL,HT

The second term in the above equation is zero as shown in detail in Appendix B. Thus,

Dg = (I−W)−1Dloc

Theorem 3.
dg = (I−W)−1 dl (3.17)

Proof. Because (I−W) is a non-singular M-matrix, all entries of its matrix inverse are greater
than or equal to 0. Note that D derived in Appendix B is inverse positive [27]. Therefore, (I−W)

is inverse-positive and an M-matrix.
Let K = (I−W)−1 and define

Dloc =

η1 cos β1 η1 sin β1

...
...

ηn cos βn ηn sin βn

 , 0 ≤ ηi ≤ δi,l, 0 ≤ βi ≤ 2π

as a general local deviation that satisfies the local deviation bound. Then,

∥ri,HT − ri∥

=

√√√√[n∑
m=1

Ki,mηm cos βm

]2
+

[
n∑

m=1

Ki,mηm sin βm

]2

37

This expression is maximized when βi = βj∀i, j and ηi = δi,c∀i as shown in Appendix B.1,
yielding

dg = (I−W)−1 dl

Eq. 3.17 and communication weights from Eq. 3.9 yields

δg = 2.5773 δl (3.18)

Using Eq. 3.18 and our experimentally determined local deviation bound of 40 cm results in a
global deviation bound of 103.092 cm. The methods from Sec. 3.4 can then be repeated with this
new δg to actually design a safe trajectory under continuum deformation as opposed to using the
local deviation bound which does not.

3.8 Conclusion

This research conducted the first experimental evaluation of continuum deformation. Local
deviation bounds were obtained experimentally and used to plan λmin trajectories to test the theory.
Under ”global desired” guidance, continuum deformation constraints were satisfied and safety
guarantees were provided. Under ”local communication” guidance, constraints were violated for
most of the flight. To address this issue, δg bounds were updated theoretically given a local controller
error. Therefore, a trajectory can now be planned using local controller errors for each agent that
guarantees collision avoidance and containment.

In the future, this result will allow inter-agent collision avoidance and containment to be
guaranteed by satisfying a local deviation bound alone. We plan to conduct further experiments that
both validate this new global deviation bound as well as directly compare continuum deformation
to other cooperative control techniques.

38

CHAPTER 4

Cooperative Payload Transportation with Haptic Guidance

4.1 Introduction

Payloads that do not fit conveniently within an aircraft or rotorcraft cargo bay can be transported
short distances as a tethered slung load. Single vehicle slung load transportation is well studied,
especially in military applications with large transport helicopters [5]. However, as the payload
weight increases so must the carrying capacity of the single vehicle. Alternatively, instead of
using one large vehicle, many comparatively smaller vehicles can be used to carry the same heavy
payload. Cooperative slung load transportation is focused on this problem; carrying a single load by
a group of air vehicles all tethered to it [43, 44, 11, 45, 46, 47, 10, 48, 49]. It offers the advantage of
redundancy: if a single vehicle fails the system level mission might continue. Dynamics modes that
are problematic with a single tether such as spinning about the tether and pendulum swinging can be
more easily damped out with multiple vehicles pulling in multiple directions. As the payload weight
scales up (multi-ton and higher) each of these factors become even more important. Total system
cost (development and production) of a single utility vehicle that can be reconfigured for multi-lift
missions when needed will likely be much cheaper than a single vehicle designed specifically for
massive loads that is infrequently used. However, this comes at the cost of system complexity and
the need to avoid collisions between vehicles, avoid tether entanglement, and consistently cooperate
as a team to maintain control system efficiency and stability.

A typical slung load system would be guided by directly piloting the vehicle(s) or following pre-
planned trajectories. However, when a payload needs to be guided through an unknown cluttered,
dynamic environment neither existing option might be effective. Consider a disaster relief mission
where a cooperative slung load system needs to transport supplies into a truck bed that is beyond
visual line of sight. A remote pilot might use a first-person camera mounted on the payload to
guide it into the truck bed, but the operator would then not maintain situational awareness of the
quadrotors or tethers. Further, pilot projection into the first-person payload viewpoint will reduce
the pilot’s awareness of their own surroundings. As an alternative, suppose the slung payload
was cooperatively flown to a safe location near the truck bed. On approach, suppose there was a

39

person ready to receive the payload by physically guiding it into place. This end user might not be
trained as a remote pilot and so the interface would need to be simple and intuitive. This chapter
proposes a haptic feedback system enabling such an end user to apply force onto the slung payload
to accurately guide it in the direction they want it to move. This type of system isn’t limited to
this disaster relief scenario and has wide reaching applications. For military applications, rapid
construction in hostile environments is a possible use of the system as a versatile crane where a
ground operator could precisely position heavy materials via the haptic guidance. Likewise for
civilian applications, material or equipment delivery onto a rooftop could be precisely placed by a
worker using this system.

This chapter describes a haptically guided slung load cooperative transportation system (Figure
4.1). A centralized controller runs on an instrumented payload equipped with force sensors.
Real-time estimation of user applied force is performed on the payload. This force estimate is
input into an admittance controller. This type of controller is commonly used for human-robot
interaction and uses virtual dynamics to allow for external force inputs into a system to modify
a reference trajectory. This reference trajectory is then tracked by a payload controller which
commands individual quadrotor reference states in real time. Individual quadrotor controllers track
this trajectory, which in turn causes the tethers to move the payload in the direction of the user
applied force or hover when no force is applied.

Ref. [12] first conceived of the haptic guidance concept. Simulation results however relied on
simplifying assumptions for user interaction, sensors, and state estimation. This chapter realizes
and evaluates this system in an experimental platform equipped with sensors, state estimation, and
control laws necessary to accurately measure user applied forces and accurately translate them
into the desired payload movements. Particular elements from Ref. [12] that were used in this
chapter include the haptic guidance concept as a whole as well as a starting point for the force
estimation and guidance modules. Force estimation was improved by considering real sensors,
real-time filtering, and including an offset term and guidance was improved from an ad-hoc set of
discrete waypoints traversed at a constant velocity to a general admittance controller formulation
with inclusion of an activation force.

4.1.1 Related Work

The multi-vehicle slung load problem is well studied [43, 44, 11, 45, 46, 47, 10, 48, 49, 12].
Cooperative control among the vehicles can be centralized or distributed [50]. Centralized methods
have a single agent that computes and communicates guidance and control commands for all
vehicles [51, 52, 10]. Distributed methods are designed such that each agent can compute its own
guidance and control solution with minimal inter-agent communication [53, 54]. The multi-vehicle
slung load problem is typically managed with centralized control [10, 49, 55, 56]. For example,

40

(a) Third person view (b) First person view

Figure 4.1: Haptically guided slung load system. The payload travels in the user applied force
direction.

Ref. [10] applies a centralized, hierarchical approach that optimizes cable angles and validates
controllability with flight testing. However, Ref. [57] achieves communication-less distributed
control via a leader-follower system with admittance controllers. In this chapter, a centralized
control scheme was chosen. This is a practical choice since for the application a fully connected
network can be assumed and safety for the user is a top priority (e.g. distributed communication
delays could introduce system instability and be dangerous). Various models and control schemes
have been studied for the multi-vehicle slung load problem in theory and simulation [44, 11, 45]. In
Ref. [11] a geometric controller was constructed to track a rigid body payload trajectory and was
validated in simulation. Flight test validation has also been performed [10, 49, 56, 55]. For example,
Ref. [49] focuses on a military application with a dual-lift helicopter system. A 6DOF force/torque
sensor measured tether tension and was used in the controller to adjust the height of the secondary
vehicle to balance the 40 lb load between them. In this work, flight experiments are also used as a
means to validate the haptic guidance system methodology proposed herein. Tether force feedback
is also used but is distinct in its determination of user guidance inputs. An important element of the
haptic guidance system is the motion tracking control of which there are many methods available.
Each of these methods provide different benefits in terms of motion tracking of a desired payload
trajectory with stability and conditions of stability being the most important factor. Ref. [11] shows
asymptotic stability with a geometric nonlinear PID controller in a global formulation in theory
and simulation. Ref. [10] demonstrated stability and disturbance rejection through flight testing
of their hierarchical approach. Ref. [58] used a model predictive controller and also validates its
performance via flight test results. In this work, the motion tracking controller was not the focus,
but was used to support the haptic guidance scheme. A hierarchical approach (inspired by Ref.

41

[10]) was used. The 3D position tracking PI controller was validated to be stable for the ranges of
states and inputs considered in the simulation and experimental results. Guidance for this complex
system is typically pre-planned or transmitter-based [10, 11, 55]. However, Ref. [12] introduced the
haptic guidance concept in theory and simulation. In this work, we also employ the haptic guidance
concept but add several new elements (described later) to make it into a realizable form.

Haptic guidance can be achieved via admittance control. This allows for applied forces to pass
through virtual dynamics which then prescribes a reference velocity command with magnitude
and direction based on measured force application. Admittance control is well studied and has
applications in industrial robot arms, exoskeletons, and multirotors [59, 60, 61, 62, 63, 64, 65].
For example, in Ref. [65], an admittance controller ran on a quadrotor and a user applied force to
modify its trajectory. Ref. [57] used admittance control in a multi-vehicle slung load application
where all vehicles are tethered directly above their mounting points. In hover, they had zero roll
and pitch and could thus apply a thrust upwards to carry their portion of the load, with no 2D
(lateral) external forces experienced. During transportation, a leader vehicle was directly piloted
by a user to move in a desired 2D direction, which also pulled on the tether in this direction.
The tether force pulled the payload and consequently pulled on the follower vehicles in the same
direction. Follower vehicles ran admittance controllers which updated their 2D guidance based
on the estimated force experienced, therefore they moved in the direction they were pulled and
allowed the leader to guide the system without explicit communication. This was experimentally
demonstrated on wide payloads that allowed every vehicle to be directly above their mounting point.
However, this method would not work if the vehicles were not directly over their mounting points
because they would experience horizontal tether forces during hover causing the vehicles to move
over their mounting points away from the desired formation. The scope of vehicle configurations
and payload dimensions are severely limited because of this. In this chapter, an admittance controller
is developed for the payload itself rather than for one or more multirotors. This offers the advantage
of arbitrary placements of the vehicles relative to their mounting points on the payload and allows
them to have non-zero feedforward roll and pitch values.

Force estimation of the input applied force is required for admittance control to function. Two
main approaches exist for estimating the total applied external force when it cannot be directly
measured. The first approach applies a low pass filter on sensor data to compute the force of interest
[12, 66]. Ref. [12] used an averaging filter on the tether forces before adding the remaining forces in
the multi-vehicle slung load application. The drawback of this first approach is the need for sensors
to directly measure all forces except the one being estimated. The second approach assumes that
direct force measurements of external forces are not available and instead relies on an inertial sensor
and more complex filtering techniques [67, 68, 69]. For example, Ref. [57] used an augmented state
extended Kalman filter to estimate external forces and torques on follower vehicles. The drawback

42

of this approach is the requirement of accurate models of the system and well tuned observers to
achieve good results. In this chapter, the first approach is used because it is expected the payload
mass and drag properties will differ between flights, and also the multirotor vehicles will not be
accurately modeled due to their nonlinear dynamics.

4.1.2 Contributions and Outline

This work offers four contributions. First, it develops and validates the first user haptic guidance
system applying admittance control for cooperative airborne payload transport. Second, it develops
and validates the first user applied force estimation capability for cooperative airborne payload
transportation. The system estimates real-time applied force on the payload from tether tension
force. Third, it presents the first experimental validation of an integrated cooperative airborne
payload system haptically guided by a user. Fourth, it analyzes the viability of a haptically guided
cooperative airborne payload transportation system.

Section 4.2 defines the haptically guided slung load cooperative transportation problem that the
proposed system is solving. Section 4.3 presents the system dynamics model, and the control strategy
is described in Section 4.4. User force estimation (Section 4.5) and payload guidance (Section 4.6)
approaches are described. Experimental test set-up, simulation results, and experimental results are
presented in Sections 4.7, 4.8, and 4.9, respectively, followed by conclusions in Section 4.10.

4.2 Problem Statement

An NV agent multirotor team is attached to a common payload by NV individual tethers, one
per vehicle. The team must lift and carry the payload along a path that follows user applied force
commands over time. User haptic guidance with 3D translation without rotation is supported,
however, the payload is carried at constant shoulder level above ground (2D translation) to make
applying force onto the payload as simple as possible. Accurate, real-time 6DOF pose updates are
available to each of the multirotors as well as the payload through motion capture. The payload
hosts an embedded computer connected to tether inline tension sensors to provide force estimates
that augment motion capture data. All vehicle and payload computers are connected to a low-latency
network enabling data to be shared in real-time across the team.

One multirotor is placed directly above the payload while the NV − 1 remaining multirotors
are spread equally around a virtual circle of given radius in a fixed formation. We define a virtual
inverted cone with the slung payload at the vertex and multirotors positioned above on the cone’s
base. The angle between the cone’s central axis and the multirotor circle is 45◦ for this work,
offering a balance between stability due to applied side forces and payload weight carrying capacity
[10]. The placement of the overhead multirotor is atypical, but provides a powerful benefit. The

43

overhead multirotor carries weight more efficiently than the others because its tether force vector
directly counters gravity, while each other multirotor applies a tether force to the payload at an
angle. The multirotor team is homogeneous and the system must be controlled so that there is
approximately equal tension along each tether during operation to balance the overall load.

This chapter focuses on design, implementation, and evaluation of the multi-vehicle payload
control system enabling the multirotor team to stabilize and carry the payload in the direction of
user applied force. Given raw sensor data, an estimate of user applied force must be computed.
Next, desired payload state (position and velocity) must be updated based on the estimated user
applied force input. Payload desired state must then be transformed to a desired state or setpoint
for each multirotor such that the vehicles apply the correct tether force to move the payload and
stabilize it per user inputs. System performance is evaluated with respect to stability and payload
trajectory tracking.

4.3 Dynamics Model

Figure 4.2 shows the cooperative payload transportation system with NV = 5 vehicles, a
spherical payload, and NV = 5 tethers that connect quadrotor centroids to mounting points on the
payload surface. Define a North-East-Down (NED) ground reference coordinate frame G with a
local origin, a body coordinate frame for each vehicle i ∈ {1, ..., NV }, and a payload coordinate
frame P .

𝒙𝒙𝐺𝐺

𝒚𝒚𝐺𝐺

𝒛𝒛𝐺𝐺

𝒙𝒙𝑖𝑖
𝒚𝒚𝑖𝑖

𝒛𝒛𝑖𝑖

(a) 3D System Overview (b) 2D Tether and Payload Diagram

Figure 4.2: Cooperative payload transportation system

44

4.3.1 Vehicle Model

Consider the quadrotor model from chapter 2.2.2. Define NV mounting points on the payload as
rP,i, (i ∈ {1, ..., NV }). Each vehicle i is tethered from its center of mass (ri) to payload mounting
point i given by rP,i. Gravity, aerodynamic drag, tether force, and total propeller thrust force act on
each vehicle i as given by

Fi
net,i = Fi

Gravity,i + Fi
Drag,i − Fi

T ether,i + Fi
Thrust,i. (4.1)

4.3.2 Payload Model

A payload of mass mP and diameter d is attached via tethers between each vehicle i center of
mass (ri) and their respective mounting points on the payload (rP,i). This work assumes tethers are
massless and do not disturb the flow around them. The tether for each vehicle i has unstretched
length Li and is modelled as a spring-damper with spring constant ki and damping constant bi.
Define payload position in the ground frame as rGP , the tether vector tGP,i = rGP,i − rGi with direction

t̂GP,i =
tGP,i

∥tGP,i∥
, and tether length li =

∥∥tGP,i∥∥. The tether length rate of change is then l̇i = ṫGP,i · t̂GP,i,

where ṫGP,i =

pPqP
rP

× (RG
P r

P
P,i

)
+ ṙGP − ṙGi . Gravity, aerodynamic drag, and tether forces act on the

payload as

FP
net,P = FP

Gravity,P + FP
Drag,P +

n∑
i=1

FP
Tether,i + FP

User. (4.2)

Tether forces induce a net moment

τ Pnet,P =
n∑
i=1

rPP,i × FP
Tether,i. (4.3)

A spring-damper model governs each ground frame tether force per

FG
Tether,i =

(
ki (li − Li) + bil̇i

) (
−t̂GP,i

)
. (4.4)

Tether and applied gravity forces in the payload frame are thus

FP
Tether,i = RP

GF
G
Tether,i, Fi

T ether,i = Ri
GF

G
Tether,i, FP

Gravity,P = RP
GmPge3. (4.5)

where mP is payload mass, RP
G is the rotation matrix from frame G to payload frame P , and

e3 = [0; 0; 1]. The payload frame defines velocity vector (uP , vP , wP), attitude vector (ϕP , θP , ψP),

45

and angular rate vector (pP , qP , rP). Payload moments of inertia are defined as Jx,P , Jy,P , Jz,P .

4.4 Control

Figure 4.3 shows the controller block diagram. Each component will be discussed in the
following sections.

Payload
Guidance

User Force
Estimation

Payload
Controller

Vehicle #1

Payload
Dynamics

Motion
Capture

Vehicle #2

Vehicle #3

Vehicle #4

Vehicle #5

Control Block Diagram

𝑿𝑿𝑑𝑑,𝑖𝑖

𝑭𝑭𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺

𝑿𝑿𝑖𝑖

𝑿𝑿𝑃𝑃

𝑿𝑿𝑑𝑑,𝑃𝑃�𝑭𝑭𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺

Figure 4.3: Controller block diagram

4.4.1 Payload Controller

Actual payload state is defined as XP =
[
rTP ṙTP

]T
, desired payload state as Xd,P =

[
rTd,P ṙTd,P

]T
,

and payload error state as eload = XG
d,P − XG

P . The goal of payload control is to track the de-

sired payload state by commanding desired vehicle states Xd,i =
[
rTd,i ṙTd,i

]T
. The implemented

proportional-integral (PI) controller is

[
rGd,i
ṙGd,i

]
=

[
rGd,P + sPi

ṙGd,P +KLoad,peload +KLoad,i

∫ t
0
eload dτ

]
, (4.6)

where KLoad,p ∈ R3×6 is the proportional gain matrix, KLoad,i ∈ R3×6 is the integral gain matrix,
and sPi is the planned position for vehicle i in the payload frame. Note that this formulation
assumes the vehicles are in a rigid formation that only translates and doesn’t rotate. This outer loop
payload PID controller commands a fixed vehicle position offset regardless of the payload error but
adds correction commands to vehicle velocities in the direction of decreasing error. The vehicle
controllers (described in Section 4.4.2) then track these commands to bring the payload towards its

46

desired setpoint. This strategy can be seen as an extension of the four-stage cascaded PID vehicle
controller from which it was inspired.

Define the rigid multirotor formation through a set of azimuthal (γi) and elevation angles (αi)
relative to the payload for each vehicle i. The planned vehicle positions are:

sPi = Rz,γiRy,αi

ld,i0
0

+ rPP,i, ŝ
P
i =

sPi
∥sPi ∥

, (4.7)

where ŝPi is the planned vehicle direction relative to the payload and ld,i is the desired tether i length.
There are a variety of considerations when choosing the formation (γi,αi). Modifying α, the ”cone
angle”, affects vehicle separation, controllability, and efficiency [10]. A wider formation has larger
vehicle separation and better controllability but worse energy efficiency since the vehicles waste
effort pulling against each other. A tighter formation will have less vehicle separation, be less
controllable, and more efficient. For this work, a balanced tradeoff between end cases was chosen.
For the five vehicle (NV = 5) system define γi = {π4 ,

3π
4
, −3π

4
, −π

4
, 0} and αi = {π4 ,

π
4
, π
4
, π
4
, π
2
} with

one vehicle on top pulling directly against the payload weight and four vehicles pulling diagonally
to balance lateral forces. Additionally, define payload mounting points

rPP,i = Rz,γiRy,αi

[
d
2

0 0
]T
. (4.8)

In general, the tethers will apply desired forces along the tether vector, −t̂PP,i. However, for the
chosen formation and mounting points, the planned tether vectors are collinear with the mounting
point vectors such that the tethers will apply desired forces along ŝPi (also collinear).

4.4.2 Quadrotor Controller

The goal of the quadrotor controller is to track the desired vehicle states Xd,i =
[
rTd,i ṙTd,i

]T
as

commanded by the payload controller in real-time (Section 4.4.2.1). However, this may require the
vehicles to apply horizontal forces which thus requires non-zero equilibrium attitudes and thrusts
based on the formation (Section 4.4.2.2).

4.4.2.1 Quadrotor Controller

The experimental system deployed five M330 quadrotors running the rc pilot a2sys flight
controller. A 4-stage cascaded PID controller runs on each quadrotor to track the desired state
(Chapter 2.3.1). This same controller was implemented for the simulation results. Position (rGd,i) and
velocity (ṙGd,i) setpoints are commanded by the payload controller (Eq. 4.6), while the feedforward

47

thrust (fhover,i) and attitudes (ϕFF,i,θFF,i) are obtained via Section 4.4.2.2. Desired yaw (ψd,i) is set
to a zero (North) local reference in this work without loss of generality.

4.4.2.2 Feedforward Thrust and Attitude Calculation

Next, the feedforward thrust (fhover,i) and attitudes (ϕFF,i,θFF,i) required to maintain hover
equilibrium while carrying the payload are calculated. Given a rigid formation (γi,αi) solve
for a static payload hover equilibrium considering tether forces and gravity as

∑n
i=1F

P
Tether,i =

−FP
Gravity,P =

[
0 0 −mpg

]T
. Defining a weighting factor 0 ≤ µ ≤ 1 allows shifting the planned

load distribution between the center vehicle and the other four vehicles such that FP
Tether,5 =

−µFP
Gravity,P and

∑4
i=1F

P
Tether,i · e3 = −(1 − µ)FP

Gravity,P · e3. The remaining components of

FP
Tether,i are given by

∥∥FP
Tether,i

∥∥ =
−(1−µ)FP

Gravity,P ·e3
4ŝPi ·e3

, where FP
Tether,i =

∥∥FP
Tether,i

∥∥ ŝPi . Desired
tether lengths are then

ld,i =

∥∥FP
Tether,i

∥∥
ki

+ Li. (4.9)

Because the vehicles are identical, define µ such that every tether force pulling on the payload is
equal, i.e.,

∥∥FP
Tether,i

∥∥ =
∥∥FP

Tether,j

∥∥ ,∀i, ∀j. Note that if a larger, more powerful center vehicle
were deployed, µ could increase so that the center vehicle would do the majority of the carrying and
the other vehicles primarily serve to stabilize the payload. Quadrotors force magnitudes are then

∥∥FP
Tether,i

∥∥ =

µmPg i = 5

(1−µ)mP g

2
√
2

1 ≤ i ≤ 4
. (4.10)

With all five force magnitudes equal, µ = 1
2
√
2+1
≈ 0.26

Applied gravity, tether, and thrust forces are balanced when FG
Thrust,i = FG

Tether,i − FG
Gravity,i .

Substituting and expanding terms:− cosϕi sin θifthrust,i

sinϕifthrust,i

− cosϕi cos θifthrust,i

 = RG
PF

P
Tether,i −

 0

0

mV g

 =

fd,i,1fd,i,2

fd,i,3

 ,
where fd,i,1, fd,i,2, fd,i,3 are desired force components. Solving this equation provides feedforward

thrust and attitude commands for each vehicle i ∈ {1, ..., NV }

fhover,i =

∥∥∥∥∥∥∥
fd,i,1fd,i,2

fd,i,3

∥∥∥∥∥∥∥ , ϕFF,i = arcsin

(
fd,i,2
fthrust,i

)
, θFF,i = arctan

(
fd,i,1
fd,i,3

)
. (4.11)

48

4.5 User Force Estimation

Newton’s Second Law for the payload in the ground frame is

FG
net,P = FG

Gravity,P + FG
Drag,P +

NV∑
i=1

FG
Tether,i + FG

User = mPa
G
P . (4.12)

User force, tether forces, drag, and gravity act on the payload and the net force produces a payload
acceleration. The payload will move slowly, therefore a quasi-static assumption is made (aGP ≈ 03).
Also, for estimation purposes drag will be assumed to be negligible (FG

Drag,P ≈ 03). Solving Eq.
4.12 for user force with these assumptions yields

FG
User = −FG

Gravity,P −
NV∑
i=1

FG
Tether,i, (4.13)

where the constant gravity force FG
Gravity,P =

[
0 0 mPg

]T
. The instrumentation measures

individual tether force magnitudes fTether,i and directions t̂GP,i which can be combined as:

FG
Tether,i = fTether,i

(
−t̂GP,i

)
. (4.14)

To reduce noise, this estimate (Eq. 4.13) is processed with a low pass filter digital transfer
function H with cutoff frequency fc and sampling frequency fs in Hz. An exponential averaging
law of the following form was chosen:

y[k] = αy[k − 1] + (1− α)x[k] (4.15)

H(z) =
1− α

1− αz−1
(4.16)

where y[k] is the filter output at time step k, x[k] is the input, and α is the filter parameter. It
performs an average of inputs, with exponentially decreasing weights for older measurements.
However, it achieves this with only one computation of Eq. 4.15 per time step. Thus, this filter is
computationally inexpensive and suitable for real-time implementation on a lightweight embedded
processor. fs = 200Hz and through experimentation fc = 1.6Hz was chosen which translates to
α = 0.95 as sufficient for noise reduction without adding too much filter delay [70]. The haptic
guidance application requires relatively low latency for the user to effectively guide the system.
To account for unmodelled effects, a constant offset FZero was introduced. The full user force
estimation equation is then:

49

F̂G
User = H(s)

(
−FG

Gravity,P −
NV∑
i=1

FG
Tether,i

)
− FZero. (4.17)

Offset FZero is set/calibrated at the beginning of each experiment while the payload hovers in the air
with no user applied force input per FZero = F̂G

User. This accounts for any constant offset in force
estimate for the system. Without it, a constant offset is sensed as an applied force and would cause
the system to drift. Thus, using it, the intent of the user’s applied force can be correctly obtained.

4.6 Payload Guidance with Admittance Control

Payload guidance is based on user applied force inputs plus preset autonomous team behaviors
such as liftoff to fixed-altitude hover and coordinated landing. The haptic guidance goal is for the
payload to act like a neutrally buoyant object that is easily moved by the user but not impacted by
other forces. An admittance controller can provide this capability. With admittance control, force
applied to a system goes through virtual dynamics that control the position and velocity setpoint the
system tracks over time. Since the dynamics are purely virtual, they can be designed to achieve a
desired system behavior (e.g., hockey puck on ice, fly in molasses) [60]. The admittance controller
is given user applied force as input. It calculates a desired payload position (rGd,P) and velocity (ṙGd,P)
to guide slung payload motion by user force inputs over time. A full 3D admittance controller is
presented next, but only a 2D version with constant payload altitude was flight tested because the
payload was required to remain fixed at shoulder height.

Virtual dynamics for the admittance controller are given by

macr̈
G
d,P + cacṙ

G
d,P = F̂G

User, (4.18)

where mac is virtual mass and cac is virtual damping coefficient. Choosing mac > 0 and cac > 0

yields mass-damper virtual dynamics

Rd(s)

F (s)
=

1

macs2 + cacs
. (4.19)

While mass-damper dynamics for admittance control is not new ([57, 60]), its use in airborne
cooperative payload guidance is new along with the tuning procedure and parameter definitions
presented in this chapter.

Defining mac = 0, cac > 0 results in a massless-damper system in which desired velocity would
be directly proportional to applied force (cacsRd(s) = F (s)). A massless virtual system would
present no inertia when a user applied force or stopped. Values mac > 0, cac = 0 would yield
a system in which a moving payload would never stop unless the user applied force in the other

50

direction (e.g., a hockey puck on friction-less ice). Therefore virtual dynamics with positive mass
and damping coefficient was selected to get the desired response; that is when the user applies force
the payload moves and when they stop the payload stops.

To handle disturbance rejection when not being actively manipulated a threshold function was
included as shown in Figure 4.4. When the norm of the input force exceeds the activation force,
Fmin, the input force is passed through. Otherwise, a zero force is passed through. Ref. [57] uses a
four parameter method to capture similar logic to activate and deactivate an admittance controller
running directly on each multirotor.

1
𝑠𝑠

𝑐𝑐𝑎𝑎𝑎𝑎

1
𝑚𝑚𝑎𝑎𝑎𝑎

1
𝑠𝑠

�𝑭𝑭𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺 > 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚: �𝑭𝑭𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺

𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 :𝟎𝟎3
+ -

�̇�𝒓𝑑𝑑,𝑃𝑃
𝐺𝐺

𝒓𝒓𝑑𝑑,𝑃𝑃
𝐺𝐺

𝑿𝑿𝑑𝑑,𝑃𝑃

�𝑭𝑭𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺

Figure 4.4: Mass-damper virtual dynamics

4.7 Experimental Setup

A snapshot of the experimental setup can be seen in Figure 4.5. It consists of five quadrotors, a
custom-built instrumented payload, and a ground control station. Further details are provided in the
following sections.

(a) Quadrotors and payload prepared for tethered
flight.

(b) Ground control station with communication
links.

Figure 4.5: Experimental setup. A ground control station communicates between the payload and
quadrotors.

51

4.7.1 System Level Description

The system level experimental setup can be seen in Figure 2.1. Flight tests were conducted
in M-Air, an outdoor netted flight facility equipped with 34 Qualisys motion capture cameras
that provide real-time six degree-of-freedom pose data for the payload and quadrotors. A Ground
Control Station (GCS) computer receives pose updates from the motion capture system over a local
ethernet network and relays them to the quadrotors and payload over wireless serial connection.

A 2.4 GHz WiFi router connects the GCS computer, payload, and quadrotors. The GCS operator
can view real-time telemetry data from each vehicle and the payload. Payload flight modes can be
initiated via keyboard commands from the GCS operator. Quadrotor trajectory commands are sent
directly from the payload to the vehicles over WiFi.

The ”user” is tasked with operating the system using haptic guidance. While admittance control
mode is enabled the user approaches the system and applies force on the payload to guide it.
Additionally, a safety pilot stands by with a transmitter that connects to each vehicle and enables
switching into a manual flight mode for safe landing (via throttle regulation) or activating a kill
switch to turn off the motors in an emergency.

4.7.2 Instrumented Payload

An instrumented payload capable of real-time sensor data acquisition is shown in Figure 2.11
and described in detail in Chapter 2.5. Five tether lines with inline load cell tension sensors and a
haptic force validation sensor are mounted to the 24.6 cm sphere. A BeagleBone Blue single-board
Linux computer receives data from the tension sensors, haptic force validation sensor, motion
capture system, and samples its onboard 9-axis IMU. Power is provided by a 3 s (3-cell), 3000 mAh
Lithium Polymer (LiPo) battery. The instrumented payload weighs 1.211 kg.

The load cell force sensors were assumed to have an affine model (scale and offset) and were
calibrated using two known masses. After calibration, 1D forces, f̄i, are computed from the raw
ADC values. The 3D tension forces are obtained via FP

Tether,i = Rz,γiRy,αi
f̄i which assumes that

the vehicles are in their desired known formation. The 3D haptic validation force is computed as

FG
User = RG

P

[
fP 0 0

]T
, which assumes the applied force is directly into the sensor.

4.7.3 System Operation

Figure 4.6 gives an overview of the system operation for the instrumented payload. All compu-
tation and commands are generated and sent from the BeagleBone Blue computer embedded in the
instrumented payload. The GCS operator is able to initiate flight mode transitions via ”Keyboard
inputs” and the payload itself is able to transition via ”Events” whenever the takeoff and landing

52

trajectories are completed. Additionally, the user force estimate can be zeroed out at anytime via
keyboard input.

The instrumented payload begins in the Grounded state. Here, the grounded positions for each
vehicle (Figure 4.5a) are given with zero velocity commands. After the GCS operator commands
a takeoff, the flight mode transitions into Taking Off. Within Taking Off, a 2-stage trajectory is
followed for each vehicle consisting of a quintic spline trajectory from the grounded positions to
the tensioning point (Eq. 4.6 with payload at origin), and then another from the tensioning point to
the hover point. Once the trajectory is finished, the instrumented payload enters into the Hovering
flight mode. In Hover, all of the controllers begin to run as described in Section 4.4 except for
the admittance controller. From this point forward, the GCS operator can transition into Landing
mode via a keyboard input which follows the Taking Off trajectory identically except in reverse.
Alternatively, they can enter the Admittance Control flight mode which enables the admittance
controller (Section 4.6). Landing can also be initiated from Admittance Control.

In Admittance Control, a geofence boundary on the desired payload position is in place so that
the vehicles remain within ideal view of the motion capture cameras (Figure 4.7). A conservative
bound on the motion capture coverage area is 6 m x 6 m. Corner vehicles are offset from the
payload by 1.075 m in both x̂G and ŷG and it is expected that disturbances and controller error may
move the vehicle up to 1 m from its setpoint. This results in a 2 m x 2 m square geofence centered
at the origin to ensure safety. When the payload is within it, the system behaves as described
in the relevant guidance and control sections. At the limit, the system rejects all haptic guidance
commands that would force it outside of this square and only accepts commands that push it along
the boundary or back inside it.

Figure 4.6: Instrumented payload flight modes state machine (left) and force estimate zeroing
(right).

53

Figure 4.7: Flight test area including motion capture area (red), geofence (black), and vehicle error
bound (blue).

4.7.4 Quadrotor Vehicles

Five M330 quadrotors were used for flight tests (Figure 4.5a with description in Chapter 2.2).
Underneath, a tether mounting point is tied such that the tether pulls directly on the center of
mass of the vehicle. A 4 s (four-cell), 2650 mAh battery powers the system and a Beaglebone
Blue single-board Linux computer runs the rc pilot a2sys flight controller [15]. A series
of cascaded PID control loops track desired setpoints sent over a WiFi link from the payload via
MAVLink messages [71].

4.7.5 Virtual Dynamics Parameter Selection

The virtual mass was chosen as 1.211 kg, which is the actual payload mass. Through some
initial experimentation an activation force of 1.5 N was chosen which was small enough to register
comfortable applied forces but large enough to reject non-user disturbances. For safety, a maximum
virtual system speed of 0.25 m/s was set. The damping coefficient is calculated using cac = Fss

vss
,

where Fss is the steady state force and vss is the steady state velocity. Assuming Fss = 2.5N and
vss = 0.25m/s, then cac = 10. At the activation force of 1.5 N the steady state velocity is 0.15 m/s.

4.8 Simulation Results

MATLAB/Simulink was used to implement and evaluate the controller, force estimator, and
guidance using the payload and vehicle models and standard rigid body dynamics [72]. The
simulation code can be found in a publicly-accessible repository [73]. The main goal of simulation

54

was to validate the equations and methods before implementing them in experimental hardware.
Table 4.1 shows the simulation parameters. Physical parameters (mP ,mV , Li) were selected to

match the experimental system. Tether spring constant ki was obtained experimentally by hanging
weights of different masses on the tether, measuring the extension, and then making a linear fit.
Tether damping coefficient bi was selected in the simulation such that the dynamics matched the
damped behavior. Virtual dynamics parameters (mca, cca) were chosen per Section 4.7.5. Zero mean,
band-limited, white, Gaussian noise was used to simulate sensor noise and disturbance forces on the
payload and all five vehicles. The magnitude of the power spectral density (PSD) function for this
noise was selected to adjust the intensities. Define Psensor and Pdist as the magnitude of the PSD for
state feedback (position, velocity, attitude, attitude rate) and disturbance forces respectively. Noise
values were chosen to match the experimental system. Aerodynamic drag forces were modeled
assuming standard temperature and pressure. Spherical payload drag force was modeled based on
Ref. [74] which is valid for relative wind speeds of 12.0 m/s or less. A lumped drag model was
used for quadrotor drag [75, 76]. Wind velocity was set to 0 relative to the ground frame. Therefore,
drag forces were only experienced while bodies were in motion relative to the ground frame.

Table 4.1: Simulation parameters

mca cca mP mV L1-L4 L5 ki bi Psensor Pdist

1.21 kg 10 1.21 kg 1.05 kg 2.02 m 1.44 m 750 N/m 40 Ns/m 10−8 10−5

KLoad,p =

0.7 0 0 0.2 0 0

0 0.7 0 0 0.2 0

0 0 0.7 0 0 0.2

 , KLoad,i =

0.05 0 0 0 0 0

0 0.05 0 0 0 0

0 0 0.05 0 0 0

 .
A forward applied force simulation was conducted to validate the system. Figure 4.8 shows

the results for a forward applied force of 2.5 N. Within the first 2 seconds the payload controller
stabilizes the system at hover with no applied force exerted on the payload. Next, the user force is
applied in a ramp up, hold, and ramp down sequence (Figure 4.8b). This causes the virtual dynamics
of the admittance controller to update between 3 seconds and 7 seconds with a positive x̂G desired
velocity. During this applied force, the payload controller tracked the desired trajectory with an
overshoot of less than 10 cm. The velocity was tracked as well with a 10 cm/s overshoot when
manipulation began and a 15 cm/s overshoot when it ended. This overshoot behavior is expected to
be seen in the experimental system, but is acceptable since the position (which is the focus of the
controller) tracked effectively. The haptic force estimate followed the actual value within about 0.1
N for the majority of the test with slightly higher error during the ramp up and ramp down phases.

55

(a) 3D view at 10s (blue payload path, green tethers). (b) Haptic Force Estimate

(c) Payload Position (d) Payload Velocity

Figure 4.8: Haptic guidance simulation results with a 2.5N user force guiding the system forward.

4.9 Experimental Results

A flight validation was conducted using a progression from simple ground test runs to complex
flying test runs. Table 4.2 summarizes the conditions of flight test runs performed. The force
estimation method and associated sensor sensor data in Section 4.9.1 (Test A1) was validated first.
Next, the haptic guidance was tested in both a software test (B2) as well as a remote, haptic guidance
flight test (B3) shown in Section 4.9.2. Finally, the full system was tested with the user applying
force directly on the payload to guide the team of vehicles as they carried it (test C2) in Section
4.9.3. An accompanying video of the flights can be found in Ref. [77].

56

Table 4.2: Flight test conditions

Test Payload Vehicles Haptic Guidance Payload Controller

A1 In Test Rig Grounded N/A N/A
B2 In Test Rig Grounded Enabled N/A
B3 In Test Rig Flying Enabled Feedforward Only
C2 In Flight Flying Enabled Full

4.9.1 User Force Estimation Validation

Figure 4.9 shows the test results that validate the user force estimation. The instrumented
payload was tethered to the test rig as shown in Fig 2.11a. The user was instructed to give three
light presses onto the payload where the haptic force validation sensor was placed. This provided
ground truth and standard tension force data of user applied force. The tension force data was
used to compute a user force estimate which was compared against the force data coming from
the haptic force validation sensor. Both values agree in magnitude for x̂G and ŷG. The estimate
in ẑG does not. This is likely due to the applied force being slightly upwards (negative ẑG) as the
payload rotates (violating the positive x̂G force application assumption) as well as a steady state
force offset resulting from the direction vectors being more vertical than assumed. Additionally, as
the payload moves relative to its mounting points, the assumption that the tether vectors are fixed in
their equilibrium positions (which was used to calculate the 3D tether forces from 1D sensors) is
potentially violated, resulting in the upwards force estimate. Due to the experimental system using
2D lateral haptic guidance, the ẑG estimate was not needed. In time, the haptic force validation
data lags by about 100 ms. This can be attributed to known differences in the sampling rates of the
load cell ADCs (tension sensors at 80 Hz, haptic force validation sensor at 10 Hz) which caused
a slightly higher delay for the haptic force validation sensor. However, the 10 Hz sampling mode
provides half of the sampling noise as compared with the 80 Hz mode which makes it suitable to act
as a ground truth for magnitude. Additionally, no zeroing was used for this test to obtain a baseline
for system performance for future tests.

4.9.2 Haptic Guidance Validation

Haptic guidance was validated via an isolated test. The instrumented payload was attached
via tethers to the test stand. User force estimation and payload guidance were active and run
normally, while the payload and vehicle controllers were inactive. The user applied force to the
instrumented payload while the payload guidance commands were recorded in software. This test
was performed to validate the parameters from Section 4.7.5 for the admittance controller as a
whole, and demonstrate 2D guidance commands. Figure 4.10 shows the results, where at 26 s a

57

(a) Tension Sensor Data (b) User Force Estimate

Figure 4.9: User force estimation validation (Table 4.2: Test A1).

positive x̂G applied force of about 3.0 N was estimated. This commanded a positive x̂G velocity and
increased the x̂G position command from 0.0 m to 0.6 m until the applied force was released at 28 s.
At 31 s another positive x̂G applied force of about 2.5 N was estimated. However, at 32 s the 1.0 m
geofence boundary was reached (× symbol). This caused the commanded velocity in x̂G to go to
zero and the x̂G position command to be limited at 1.0 m. At 35 s a diagonal press (negative x̂G and
negative ŷG) was estimated. This caused both the x̂G and ŷG velocity commands to be negative and
decreased the position commands accordingly. Using the activation force threshold on the input of
the admittance controller was effective at distinguishing user applied force from model errors or
other disturbance forces. Additionally, using the payload mass as the virtual mass worked well.

Figure 4.10: Admittance controller validation (Table 4.2: Test B2). User applied force updates
payload guidance commands.

For the second test, a remote, haptic guidance flight was performed (test B3 shown in Figure

58

4.11). The user applied forces to the instrumented payload in the test rig (located outside of the
flight area). However, the commanded trajectories were used as guidance for the quadrotor team in
flight. This test began with the vehicles in their grounded positions. After following the takeoff
trajectory, they assumed their formation positions and the user force estimate was zeroed out before
enabling admittance control mode. The operator applied a positive x̂G force on the payload until
reaching the 1 m limit in x̂G at 52 s (× symbol). The applied force was released at 55 s (⋆ symbol).
Afterwards, admittance control mode was disabled and the vehicles were commanded to land. The
virtual dynamics were designed with a 2.5 N control force in mind, such that a steady state 2.5 N
applied force results in a steady state 0.25 m/s commanded velocity. However, for this test a roughly
6 N force was applied (Figure 4.11b). The commanded velocity reached the limit of 0.25 m/s in
300 ms. However, without the limit, the 6.0 N force could have resulted in a 0.60 m/s steady state
velocity. Even larger forces would command even larger steady state velocities, at which tracking
performance would likely degrade. A user interacting with a system exhibiting these characteristics
would be placed at risk and find haptic guidance difficult. Therefore, this velocity limit is important
in maintaining a safe operating environment for the user even when commanded with larger than
expected user forces.

(a) Third person view at roughly 50 seconds. (b) Haptic Force Estimate

Figure 4.11: Admittance controller validation (Table 4.2: Test B3). An approximately 6 N user
force guides the system forward.

4.9.3 Full System Validation

The full system test (C2) used the same setup as B2 except the instrumented payload was
tethered to the vehicles, the full payload controller was enabled, and the user was inside the arena to
provide direct haptic guidance. Figure 4.12 shows the results. The Circles (◦) indicate when the

59

force estimation was zeroed, the Crosses (×) indicate when the geofence boundary was hit, and the
Stars (⋆) indicate when the user applied forces were released.

(a) Third person view at roughly 82 seconds. (b) Tension Sensor Based Haptic Force Estimate

(c) Payload Position (d) Payload Velocity

Figure 4.12: Full system test (Table 4.2: Test C2). A small 2N force followed by a larger 4N force
guides the system forward.

After takeoff, the vehicles assumed their formation positions and the force estimate was zeroed
(first ◦). Figure 4.12b displays, from top to bottom, the tension sensor based estimate in x̂G, the
estimate in ŷG, and the Euclidean norm of those two quantities. The horizontal dotted line in the
bottom plot indicates the activation force, Fmin, which controls when forces are input into the
admittance controller. When the first zeroing event occurs all three quantities reset to zero. At this
point, a payload position error in ŷG of about 20 cm was present (Fig. 4.12c middle). Next, the
system was given time to settle and the integral portion of the payload controller pushed the system
towards its setpoint. Note that the gains chosen for the feedback term of the payload controller were
conservative to increase safety for the user interacting with the system, yet it was still effective in

60

reducing the steady state tracking error.
At 68 s admittance control mode was enabled and the user approached the system. A second

zeroing was triggered at 70 s (second ◦). The user was then instructed to apply force in the positive
x̂G direction. The haptic force estimate norm was approximately 2 N for 2 seconds (Fig. 4.12b
bottom near 75 s). Although, the user intended to apply force in purely the x̂G direction, both a
positive x̂G and positive ŷG force were estimated. This is likely due to the true applied force
not being solely in x̂G combined with small calibration and modelling errors. This haptic force
exceeded the activation force and caused the admittance controller to update the setpoint (Figs.
4.12c and 4.12d). The commanded position in x̂G increased from 0.0 m to 0.2 m and also in ŷG

from 0.0 m to 0.1 m. The payload controller tracked this setpoint with an overshoot error of 18
cm. When the user force is below the activation force it is no longer updating the setpoint via the
admittance controller and therefore acts as a disturbance to the system, likely contributing to the
overshoot. This happened between 75.6 s and 76.3 s before the user force was released at 76.5 s
(first ⋆). After release, the payload converged to its setpoint in position.

At 80 s, the user applied a second force with an approximate 4 N magnitude. During this force
application the admittance controller updated the setpoint in x̂G from 0.2 m to the 1.0 m limit and
in ŷG from 0.1 m to 0.3 m. The actual payload position followed this guidance and led slightly by
about 20 cm. At 84.3 s, the 1.0 m x̂G limit was reached (× symbol). After this, all haptic force
inputs in the positive x̂G direction were set to zero so that the payload position setpoint remained
within the geofence boundary. The x̂G haptic force estimate was positive therefore the x̂G position
setpoint remained constant at 1.0 m and the x̂G velocity setpoint was zero. Therefore, between
the × and second ⋆ symbols the user force acted like a disturbance on the payload since it was no
longer updating the admittance controller. Because the conservatively tuned payload controller and
user force were fighting in opposite directions, a steady state error of up to 67 cm was experienced
before the user applied force was released (second ⋆) and the system converged back to its setpoint.
Afterwards, the user backed away from the system before admittance control mode was disabled
and the system landed. The conservatively tuned payload controller was effective with average 3D
tracking error of 14.9 cm before the geofence boundary was hit (between 40s and 84.3 s) and 17.9
cm for the full time period.

While the admittance controller is enabled, the force of the user actually helps to guide it along
the trajectory and work with the payload controller. When the admittance controller is disabled but
there still exists a user force it acts as a disturbance and works against the payload controller. For
the user this is like force feedback that can be used to determine where the virtual boundary is. At
the geofence boundary, it becomes harder to push the payload beyond the limit because the system
applies a greater control effort the further away it gets from its setpoint. This geofence system
behavior was effective and should be used in further development.

61

4.10 Conclusion

This chapter has presented the first experimentally validated haptic guidance system for cooper-
ative airborne payload transportation. A user force estimation method was developed that explicitly
estimates the force via multiple, inline tension sensors. Payload guidance was updated using this
force via virtual dynamics prescribed by the admittance controller running on the instrumented
payload. Flight test results validated the system with a series of real user applied force inputs, where
user force was successfully distinguished from other disturbances and used to intuitively guide the
payload.

An interesting behavior that emerged from this haptic guidance concept is related to the interplay
between applied user force, controller effort, and tracking performance. With the admittance
controller off and no user force applied, the system was able to track its setpoint effectively.
Acceptable tracking performance also occurred during manipulation with the admittance controller
activated. The applied user force worked in tandem with the payload controller to move it along the
desired trajectory. A reduced controller effort from the payload controller was needed as compared
with non-haptic guidance. In fact, in the ideal case (no delays, noise, disturbances), since the
virtual mass was selected as the payload mass there should be no controller effort as the applied
force should perfectly move the payload along the generated trajectory. Lastly, with the admittance
controller deactivated and user force applied, tracking error was non-trivial. This is because the
applied force acted as a disturbance to the system, rather than as guidance. This happened when
applied force was below the activation threshold, which resulted in minor overshoot. Additionally,
when a geofence boundary was reached this also occurred, with significant overshoot. However, this
can be seen as a feature of the geofence system, where the user is allowed to apply force and receive
feedback from the system to indicate where the boundary is located without having to consult maps.
This lends itself further to being an intuitive guidance scheme for an untrained user. In a deployed
system, geofence boundaries will typically be much larger and encountered less frequently.

A full 3D haptic guidance system was presented, but only a constant shoulder height 2D
guidance system was validated experimentally. This was due to the experimental estimate of user
applied force in the z-direction being coupled to lateral pushes. This is likely due to the assumption
of fixed tether directions used in force estimation being violated. To improve z-force estimation and
force estimation in general, an estimate of tether directions based on the real-time relative positions
of the vehicles and payload should be used to calculate a more accurate 3D tether force estimate.
However, even with the data as-is, if a separate threshold on force input in the z direction was
used and sized appropriately to reject these small forces (e.g. 3 N based on the data), this method
could still work. This would require there to be two separate admittance controllers running a 2D
lateral controller and a 1D vertical controller each with different force input thresholds. A vertical

62

geofence boundary could also be used to keep the payload within grasp of the user.
Future work is recommended to achieve haptic guidance in a deployed system. This chapter

shows that the multilift haptic guidance concept is feasible. The instrumented payload facilitated
centralized force estimation via inline tension sensors and force validation via the haptic force
validation sensor. However, in a real world application, the payload would not be instrumented.
Alternatively, the tension sensors could be placed inline with the tethers on the vehicle side. Vehicles
would then be able to share information in either a distributed or centralized manner to arrive at a
user force input estimate. Force estimation can be improved via automated force zeroing and real-
time calibration (e.g. Kalman filter to estimate scale and biases). Replacing motion capture with a
real-time kinematic positioning (RTK) GPS for position and velocity estimates and vehicle-mounted
cameras for relative pose estimation is also recommended in future work. Lastly, consideration
of resiliency to single vehicle and/or single tether failure should be explored to leverage the full
benefits of a multilift system.

63

CHAPTER 5

Multi-UAS Wildfire Mapping

5.1 Introduction

Wildfires have the potential to inflict serious harm on people and property. In 2018, California
suffered the worst wildfire season ever recorded; 1.8 million acres burned, 17,133 residences were
destroyed, and more than 100 people died due to the fires [78]. Unmanned aircraft system (UAS)
platforms have the potential to save lives and reduce damage through early fire detection and
mapping. However, significant research and beyond-visual-line-of-sight (BVLOS) testing must take
place before UAS can have appreciable fire surveillance impact.

Wildfire identification and boundary estimation requires a UAS team to offer large-scale area
coverage. The UAS might need to map multiple, dynamic fires with range-limited onboard sensors to
provide an accurate estimate of fire boundaries in real-time. Two distinct sub-problems are addressed
in this work: multi-UAS path planning and fire boundary estimation. The planning problem requires
commanding and controlling a team of UAS to safely traverse potentially mountainous terrain, avoid
wildfire damage, and acquire data of wildfire exterior boundaries using the modest-cost sensors a
UAS might reasonably carry. The boundary estimation problem requires fusing all incoming UAS
sensor readings, accounting for data age as well as content, to produce a global estimate of dynamic
fire boundaries.

The 2019 Air Force Research Lab (AFRL) Swarm and Search AI Competition was aimed at
solving both the multi-UAS path-planning and wildfire boundary estimation problems. It asked
competitors to develop algorithms for detecting and mapping a dynamic fire boundary in a simulation
environment using a team of fixed-wing UAS [79]. AMASE (Aerospace Multi-Agent Simulation
Environment) was used as the simulation environment; an AMASE GUI screenshot for one of the
scenarios is shown in Fig. 5.1 [80, 81]. AMASE provides a testbed for multi-agent teams of UAS
to observe wildfires, allowing for adjustable growth patterns of wildfires, handling UAS dynamics,
and providing sensor models. Users interact with the system by sending waypoint commands
and receiving state and sensor data. The main goal of the competition was to provide the best
estimate of fire zones using only UAS onboard sensor data readings. The authors took 1st place

64

in the competition, demonstrating algorithms that could consistently find and map wildfires in
mountainous terrain, heavy winds, and other anomalies introduced in the competition scenarios.
This chapter describes mission and path planning research contributing to our team’s first place
competition result. Fig. 5.2 shows a high level block diagram of the approach that separated path
planning and boundary estimation and Fig. 5.3 overviews the planning methods.

Figure 5.1: AMASE GUI screenshot. Simulation controls (bottom), UAS states (right), and a 2D
map (center) depicting UAS (”flying Vs”), fires (yellow polygons), and fire boundary estimates
(purple polygons) are shown.

A planning algorithm guides UAS to follow the lateral perimeter of fire boundaries and gather
pertinent sensor data for fire boundary estimation. A state machine allocates UAS between ex-
ploration and exploitation (line following) tasks. A terrain avoidance altitude path planner guides
the UAS to avoid ground impact but remain sufficiently low to collect fire data. The boundary
estimation algorithm rapidly constructs two-dimensional, concave polygonal estimates of dynamic
boundaries given point-wise observations along the boundary perimeter. For AMASE, point-wise
observations come from UAS-hosted fire sensors. The primary contributions of this chapter is a

1UAV in the figure is not distinct from UAS

65

Planning

Boundary
Estimation

AMASE

Sensor
Data

UAV
States

UAV
Commands

Boundary
Estimates

Figure 5.2: Multi-UAS software block diagram. The planner translates UAS states and local fire
boundary information to UAS commands that keep UAS safe and support data collection for fire
boundary estimation.

Sensor
Data UAV

Commands
UAV
States

Planning

Figure 5.3: Planning module for our Multi-UAS wildfire mapping approach1

multi-UAS planning framework to manage UAS team data collection while avoiding hazardous
conditions.
The remainder of this chapter is structured as follows. Section 5.2 is a review of related work
followed by a problem statement in Section 5.3. Section 5.4 details multi-UAS path planning to find
and observe wildfires without being destroyed by the fire or crashing into terrain. Finally, Section
5.5 shows AMASE simulation results for path planning followed by a discussion in Section 5.6 and
conclusion in Section 5.7.

66

5.2 Related Work

Mapping a dynamic boundary of interest (e.g. a wildfire) with a team of UAS requires a system
with diverse modules. Below, we present recent work on system automation architectures (Sec.
5.2.1), UAS terrain avoidance (Sec. 5.2.2), and coverage path planning (Sec. 5.2.3).

5.2.1 Automation System Architectures

Multi-UAS system architectures describe how mission-level and vehicle-level modules are orga-
nized, perform computations, and communicate with each other. Ref. [82] presents a classification
of multi-UAS architectures with a focus on control and communication. Four main categories
are described: 1) Physical coupling, 2) Formation groupings, 3) Decentralized swarms, and 4)
Task-level cooperation. Our architecture represents task-level cooperation by making supervision,
coordination, mission planning, and task allocation decisions centrally or in a distributed manner.

Distributed methods offer redundancy and scalability [83, 84, 85] and may reduce communi-
cation overhead when data is also distributed. Market-based techniques [84, 85] are often used
for distributed task allocation, though agents require time to converge on each new allocation.
Distributed processing for multi-UAS perception [86, 87] allows individual UAS to gather sensor
data, compute a local representation, then share it with their neighbors to augment overall awareness.
However, comprehensive data fusion and storage still requires task allocation and communication
overhead.

Centralized methods require communication between all agents and a central node. The required
computation at that node is significant, and increases as the number of agents increase [40, 88]. For
example, Ref. [88] uses operational constraints and UAS capabilities to allocate decision making
across the team with reliance on a centralized decision node communicating with each UAS. With
AMASE we can assume reliable communication and GPU enabled central processing, so we defined
a centralized architecture to manage computing and communication tasks.

5.2.2 Terrain Avoidance - 3D Safe Path Planning for Fixed-Wing UAS

For fixed-wing multi-UAS path planning, physically feasible collision-free paths that achieve
mission goals must be planned for all UAS in the team. This is complicated by nonholonomic
fixed-wing UAS motion constraints for turning radius and finite limits for climb/descent angle and
rate. Additionally, surveillance UAS cannot collide with terrain but must remain close enough to
the ground to successfully acquire data. A variety of fixed-wing terrain avoidance path planning
strategies have been developed.

Geometric path planning strategies based on Dubins paths, Bezier curves, and splines are
intuitive and can address nonholonomic path constraints [89, 90, 91]. Dubins paths [89] have been

67

widely used to rapidly compute minimum-length fixed-wing aircraft trajectories in free airspace
[92]. However, geometric methods typically do not consider variable terrain and other obstacles.
Sampling based methods offer another avenue and work well when extended to high dimensional
search spaces [93, 94, 13]. Ref. [13] uses Bezier curves in conjunction with a sampling-based
planner to generate kinematically feasible paths for a fixed-wing UAS, defining the search-space
as a rapidly-exploring random tree (RRT). This can generate feasible paths over a complex 3D
search space with obstacles, however, its computation time is still too slow for our application. With
optimization-based planners, a variety of constraints and cost functions can be considered to fully
consider both terrain and vehicle performance [95, 96, 97]. Ref. [95] uses mixed integer linear
programming (MILP) with position and speed constraints, UAS collision avoidance constraints, and
terrain avoidance constraints for the multi-UAS planning problem. However, MILP computation
time required is large, being NP-complete and thus not reliable for real-time applications of any
reasonable size. Lastly, discrete planners such as A* are very popular in low dimensional spaces
due to fast computation of optimal paths [98, 99, 100, 101]. Ref. [98] uses a two-phase approach.
First, A* is run on a large 3D grid to create an obstacle-free, kinematically feasible path. Second,
a sampling-based local planner with motion primitives connects coarse path segments. While
effective, this approach is also computationally intensive. Several methods reduce computation
time by performing 2D A* with added costs from a digital elevation map to effectively plan in 3D
[99, 100]. In particular, Ref. [101] pre-processes digital terrain data to generate a surface that is
flyable by the UAS in every direction while maintaining a minimum height clearance before 2D A*
search is performed. However, over large spaces search is also computationally expensive.

Our method is inspired by the reactionary nature of an automatic ground collision avoidance
system (Auto-GCAS) [102] and separation of the 3D path planning problem into a simpler 2D
lateral plane path planner with altitude-based terrain avoidance similar to techniques described in
[99, 100, 101]. While this approach isn’t optimal, it enables fast coverage and path planning to
support the 4x real-time performance needed with AMASE. Sections 5.4.3 and 5.4.4 describe our
2D lateral plane planning while Sec. 5.4.5 introduces our altitude-based terrain avoidance method.

5.2.3 Multi-Vehicle Coverage Path Planning

Coverage Path Planning (CPP) is the task of planning a path that goes through all points or
regions of interest while avoiding obstacles [103]. CPP survey papers, including [104], [103],
and [105], describe methods and their applications to ground-based, undersea, and aerial robotic
systems. Ref. [106] applies Boustrophedon decomposition to mobile (ground) robots to determine
how multiple robots cover a single cell and how robots are allocated among many cells. In
Ref. [107] integer programming is used for UAS coverage of a surveillance region. Ref. [108]
considers a mission with a team of heterogeneous UAS searching an area of interest with three

68

steps: determining relative capabilities of each UAS, cooperatively assigning search areas, and
generating efficient CPPs for each subregion. Ref. [109] proposes a local dispersion model for
global coverage with a team of robots, while Ref. [110] uses Morse-based decomposition to
assign UAS to subregions taking into account no-fly zones, environment geometry, and initial/final
waypoints. Most of the CPP literature presumes a complete coverage requirement. Our application
differs in that it does not require complete coverage, and the solution must be computed quickly and
updated in real-time based on collected data. Our CPP method (Sec. 5.4.3) is inspired by related
work but addresses these additional challenges. We specify a pre-defined set of waypoints within
our rectangular search region and then use the Hungarian Algorithm [111] for initial UAS waypoint
assignment. This approach is computationally efficient for real-time settings such as the AFRL
Swarm and Search AI Competition.

5.3 Problem Statement

An Nv agent fixed-wing UAS team is deployed to a large rectangular area defined by GPS
boundary coordinates. This region is known to contain active wildfire(s), but no additional informa-
tion on wildfire quantity, size, or location(s) is provided. The UAS team must find and accurately
map fire boundaries within a fixed time limit assuming a communication link with a central server is
always available. Each UAS accurately senses its own state (attitude, position, and derivatives) and
hosts an ideal communication system (no latency, no data rate limit). UAS can accurately execute
waypoint commands via onboard trajectory following controllers. Each UAS is equipped with a
gimballed, range-limited fire hazard sensor that returns accurate binary results for the presence
of fire where it is pointed at a rate of 2Hz. There are two hazards the UAS must avoid: collision
with mountainous terrain and flying above any wildfire for too long. Each UAS’s goal, then, is
to fly close enough to the fire to observe it while avoiding the two destructive hazards. UAS also
carry limited on-board energy that renders the vehicle unusable if fully depleted. If any failure
event occurs (collision, burning, energy depletion) that UAS will become disabled in the AMASE
simulation. UAS are considered expendable, however, so while a disabled UAS will no longer
provide data, the mission can continue.

Though the number of fires is fixed per scenario, each wildfire is a dynamic polygon that can
grow, shrink, and translate throughout a mission scenario. The quantity, size, and location of fires
are initially unknown to the UAS and the central planner. Once a fire is found, it must be repeatedly
surveyed due to its unknown propagation dynamics. Fire boundary estimates can be centrally
computed due to our ideal communication assumption. For this chapter, and the competition, the
prime performance metric is the accuracy of the fire boundary estimates as compared to the ground
truth boundaries. Since this metric is computed over the total wildfire area amongst all fires, it

69

captures both the ability to find fires and estimate their individual boundaries.
The multi-UAS planner must safely guide and control team members from their initial locations

to find fires and then follow their boundaries to persistently support boundary estimation. Each path
must respect UAS kinematic constraints and must keep the UAS sufficiently close to the boundary
and terrain surface to support collection of positive (fire) and negative (no-fire/free) points. Each
UAS must consistently avoid terrain and fire hazards, must avoid collision with other UAS, and
must operate efficiently to maximize endurance. Because the search area is large, sensor range is
limited, team size is small, and mission duration is fixed, complete area coverage is impossible.
Thus, an efficient sparse exploration UAS team planner is required.

Fire boundaries must be estimated from sparse observations; each is encoded as a hit (positive)
or miss (negative) along with observation location and time. We assume all positive and negative
observations are accurate and that each fire boundary can be entirely described by its perimeter (i.e.,
no interior holes). Because data is sparse, significant portions of the fire boundaries are not seen so
a sparse data boundary estimation inference engine is required.

UAS navigate inertially with GPS data, and sensor measurements are converted into the local
projected Universal Transverse Mercator coordinate system. This provides a local Euclidean
reference frame from which distance, shape, and area are minimally distorted.

5.4 Multi-UAS Planning

Multi-UAS planners must compute exploration and boundary following paths and assign UAS
team members to each. Each UAS locally executes trajectory tracking control and adjusts its altitude
as needed to avoid terrain. Fig. 5.2 illustrates our approach in the context of the AMASE simulation
environment. The AMASE environment including terrain and fire hazards is further described in
Sec. 5.4.1. Our state machine based task planner is summarized in Sec. 5.4.2. Sections 5.4.3 and
5.4.4 describe our 2D path planning methods for exploration and boundary following, respectively,
and Sec. 5.4.5 describes terrain avoidance.

5.4.1 AMASE Wildfire Mapping Simulation Environment

The AMASE simulation environment was used to test the presented methodologies on a group
of fixed-wing UAS equipped with a fire detection sensor [80, 81] 2. AMASE generates UAS
motions over time based on fixed-wing aircraft dynamics and wind disturbances. AMASE models
terrain, sensor pointing and measurements, and the dynamic evolution of wildfire boundaries.

2Ref. [81] is an open source repository for ”openAMASE” which is a different version of AMASE than what was
used for the competition and this chapter. openAMASE does not have the wildfire content. The version of AMASE we
used is governed by a signed software license agreement.

70

Our code interacts with AMASE by sending UAS commands and receiving state and sensor data.
The simulation treats collision with terrain and wildfires as hazards that disable the UAS. UAS
also expend onboard fuel or battery energy during flight as a function of airspeed and climb rate.
Recovery zones located sparsely throughout the scenario allowed UAS to replenish energy after
remaining within their bounds for 30 seconds.

All scenarios were simulated in a 60km by 60km mountainous region in California. At times,
avoiding steep mountains requires the UAS to stop observing fires for some time which provides a
realistic test case requiring intermittent wildfire observations. Each scenario simulated 6-12 UAS
each carrying a gimballed fire hazard sensor that returns the status (fire point or free point) of the
ground location to which the sensor is pointed so long as it is within range. The sensor range limit
forces the UAS to remain near the ground and thus requires effective terrain avoidance. If, for
example, the range limit was removed or very large, the terrain avoidance problem would become
trivial since the UAS could simply fly above all terrain. Additionally, the fire hazard sensor only
returns a single data point for each observation at a low rate (2Hz). While a UAS is following a fire,
this makes it much more difficult to estimate the local boundary for safe traversal than it would if
say a thermal camera provided dense, high rate sensing information. Wind, UAS battery energy
constraints, number of wildfires, and wildfire dynamics (translation rate and direction and growth
rate) are configurable within AMASE. Every scenario ran for one hour of simulation time with
UAS states updated every 0.5 simulation seconds. The AFRL Swarm and Search competition also
required each one-hour scenario be run at 4x real-time.

California Digital Terrain Elevation Data (DTED) Level 2 terrain data was obtained from the
U.S. Geological Survey (USGS) Earth Explorer website [112]. Data cover a uniform grid matrix
of terrain elevation values with post spacing of one arc second (about 30 meters). The keep-in
operating zone of 60km by 60km was centered at 39.81◦ N 121.06◦ W with maximum and minimum
elevations of 2388m and 226m, respectively. The steepest terrain rises about 150m in altitude
over 30m of horizontal movement. For all scenarios, the UAS had a maximum climb and descent
rate of ±5m/s with planar speeds of 25m/s making it impossible to avoid terrain and maintain
observability of the ground with naive reactive altitude guidance. With several point-wise fire and
free observations, a polygonal wildfire boundary estimate was computed by our code and sent to the
AMASE simulator for scoring. Scores were computed at 20, 40, and 60 minutes into each one-hour
scenario. The fire boundary estimate total score is a weighted sum of individual scores:

Si = 3FHS(t20)i + 2FHS(t40)i + FHS(t60)i (5.1)

FHS(t) =
area

(
(PBt ∩ GTt)− (PBt − GTt)

)
area

(
GTt

) (5.2)

71

where PB and GT are the predicted and ground truth boundaries at time t respectively, FHS(t) ∈
(−∞, 1] is a Fire Hack Score function which returns 1 for a perfectly matched fire boundary estimate,
0 for no estimate, and potentially negative values for overestimating fire boundaries, and tX is a
timestamp X-minutes into the simulation. This scoring is performed for all i ∈ [1, NF] fires in the
scenario for the three scoring instances t20, t40, and t60.

5.4.2 Task Planning

The UAS team is managed by a centralized state machine in constant communication with all
UAS. The state machine, shown in Fig. 5.4, offers four flight modes: an initial standby mode, an
exploration mode to find wildfires, a ”rally” mode to assist another UAS that has found a wildfire,
and a line following mode to gather observations along the wildfire perimeter. All vehicles start in
the standby flight mode ”Assign UAS” (FM0). Since there are no wildfires detected initially, all
UAS enter exploration mode (FM1) where UAS are assigned exploration paths that sparsely cover
the region and quickly find wildfires as explained in Sec. 5.4.3. If a vehicle observes a wildfire
(event ”saw fire” or SF), it transitions to line following mode (FM3) to traverse the perimeter of the
wildfire and gather observations per Sec. 5.4.4. In addition, the UAS sends a rally signal (RY) to
request its N nearest neighbors in FM1 assist in gathering observations of the wildfire. UAS in FM2,
”Go to Rally Point”, fly straight to the observed fire point and enter FM3 when they observe a fire
point. UAS assigned to a wildfire via rallying will follow the fire boundary in either the clockwise
(CW) or counter-clockwise (CCW) direction in an alternating fashion to more effectively map the
wildfire.

Onboard energy management is handled implicitly by flying all UAS at their most efficient
flight speeds. However, recovery zones are ignored because replenishing energy diverts a UAS from
finding/mapping fires, and mission time is limited. In fact, a scenario would typically end by the
time a UAS finished recovering. Flying without recovery at efficient speeds allows UAS to remain
alive for around 80-90% of each scenario. This strategy has benefit because there are no penalties
for losing the expendable UAS.

Figure 5.4: Flight modes state machine

72

5.4.3 Exploration Search Pattern

UAS assigned to FM1 are given a sparse-coverage exploration path to quickly find wildfires.
We initially considered using complete coverage paths, but found that the expansive search space
and limited flight time precluded their use since they would not finish in time nor were complete
coverage paths effective at finding fires in the available time. We emphasized finding large-area fires
quickly rather than trying to search the entire region. Once a fire was found it was also important for
other UAS to be nearby so they could rally to following the fire boundary. Therefore, our manually
designed exploration paths bias the UAS toward central region coverage rather than areas near the
perimeter. We used a priori knowledge of the keep-in zone to make a specific solution that was
effective for competition scenarios and could handle arbitrary numbers and starting locations for
UAS and fires.

Fig. 5.5 depicts our method. The UAS travel to a waypoint along the diagonal of the keep-in
zone, then to one of six waypoints along a circle, and finally to a waypoint at the center of the
region as shown in Fig. 5.5a. The ”diagonal waypoints”, green in Fig. 5.5a, are Nv linearly spaced
point along the diagonal of the keep-in zone: one waypoint for each of the Nv agents. The red
”circle waypoints” are computed by creating a circle with radius equal to 0.4 times the side length
of the keep-in zone. The six circle waypoints are assigned at 45 degree spacings excluding the
diagonal line. WhenNv > 6, some circle waypoints will be visited by multiple UAS. The Hungarian
algorithm (Munkres assignment algorithm) [111] is used to minimize total distance traveled by the
group of UAS when assigning diagonal and circle waypoints. Fig. 5.5b shows the exploration paths
for a nine agent UAS team in an example AMASE environment.

Since our exploration search pattern is calculated from the keep-in zone provided, it will
automatically scale to larger scenarios. However, as regions grow, generated paths may not be
traversed within the scenario time limit, or fires are found much later, potentially too late to survey.
For our 60km by 60km scenarios, the first fire was typically found at around 15min into the mission.
If we assume a fire is found on the first straight line path segment of at least one UAS, then the
mission time to first fire identification will scale with keep-in zone side length, e.g., doubling side
length to 120km by 120km would push the 15min fire ID time to 30min. The exploration search
pattern will still be effective for scenario scalings up to 2x-3x particularly if onboard energy stores
and/or mission time is increased. We currently assume a square keep-in zone consistent with the
AMASE competition; this constraint can be extended to any rectangular zone by using an ellipse
instead of a circle to compute waypoints.

Our assumption of a priori knowledge of the keep-in flight zone is consistent with general wildfire
response scenarios. Manned and unmanned aircraft would likely work in tandem, coordinated at a
high level from a ground control station where keep-in zones are applied to the unmanned aircraft
to provide additional safety to manned aircraft and also allow the large area surveillance problem to

73

be broken down into smaller search sectors, one per UAS team. It should also be noted that since
we search within a circle of radius 0.4 times keep-in zone side length, we are implicitly assuming
that there will be fires near the center. While this was true for the competition, and it would also be
true for a team deployed to a region centered on low-resolution satellite hot/bright spots, if there
was a scenario that only had fires at the corners our UAS team would never find them. Additionally,
our sparse coverage paths are expecting a few relatively large fires. If there were numerous, small
fires in practice more dense sensor information would be required given the same team size, large
search area, and mission time constraints.

(a) UAS traverse from initial positions to a point
along a diagonal of the search space (green), then
to a point on the circle shown (red), and finally to
the center of the space.

(b) Exploration path for a nine agent scenario. Col-
ored paths represent different UAS. As shown, UAS
paths cover a large area and intersect every fire for
this scenario.

Figure 5.5: Multi-UAS exploration strategy. a) Description of waypoints/paths. b) Generated paths
on a scenario.

5.4.4 SVM-Based Line Follower

UAS assigned to FM3 are tasked with following the fire boundary. This was achieved with two
sub-tasks: 1) Obtain a linear estimate of the fire boundary near the UAS, and 2) Guide the UAS
to move tangent to this line at a fixed, orthogonal offset that keeps the UAS clear of fire but still
supports fire point sensing. Fig. 5.6 illustrates the method.

For line estimation, we used weighted support vector machine (W-SVM) regression. Given the
most recent free and fire points detected by the UAS, W-SVM regression is performed that more
heavily values newer samples. W-SVM returns a line approximating the fire boundary near the UAS
separating the two classes (free and fire). Our assumption of a linear local boundary (as opposed to
a more complex geometry) simplifies the method and reduces computation time for both estimation
and guidance.

74

When the actual boundary is linear and static, a linear estimate can separate free/fire points
appropriately. However, when the actual boundary is dynamic, it’s possible that old points are no
longer on the correct side of the boundary. By weighting newer points more heavily and older points
less, the estimate can more effectively follow the actual dynamic boundary. The same can be said
about a curved boundary. Our straight line estimate can’t follow the curve exactly. However, for
the location that is most important (boundary portion closest to the UAS), a linear approximation
is sufficient. The newest points are also closest to this area of interest so our W-SVM method is
able to follow the curve as new data is collected. For guidance, we used a proportional heading
controller (Eq. 5.3) to generate a 2D (horizontal plane) reference state such that the UAS remains
a desired perpendicular offset from the line (ddes) and tracks a reference heading in the direction
of the line (ψline). While tracking this heading, the sensor gimbal is guided to sample sensor data
near the vehicle. A preset observation sequence of observation offsets from the vehicle considering
terrain is executed to generate sufficient data for SVM and overall fire boundary estimation. AASLP
(Sec. 5.4.5) is used to plan the altitude to avoid terrain while still being sufficiently close to sense
fire points.

ψdes = ψline +Kp (ddes − dline) (5.3)

Figure 5.6: 3D line follower. Weighted SVM provides a linear fire boundary estimate with nearby
free and fire points and a proportional controller follows this estimate at an offset in 2D with altitude
coming from AASLP.

5.4.5 Altitude Aware Straight Line Planner (AASLP)

The Altitude Aware Straight Line Planner (AASLP) (Alg. 1) is used to command each UAS’s
altitude. AASLP prioritizes avoiding terrain while attempting to respect range limits of the onboard
fire hazard sensor. In exploration and rally modes, AASLP assumes the UAS is flying in a straight
line from starting location rs to a goal position rg and returns the altitude trajectory needed to
maintain flight between hmin and hmax where hmin is the lowest altitude above ground level (AGL)

75

the UAS should ever fly and hmax is the highest AGL altitude the UAS can fly and collect sensor
readings. Line following mode behavior is described below. Parameter hmin is treated as the
stricter constraint since violating this altitude limit could result in a crash. Climbing above hmax
does not cause an immediate crash though losing observability of the ground makes the UAS
”blind” to nearby wildfires that can inflict damage over time. Given a constant forward speed
v, maximum climb and descent rates vclimb > 0 and vdescent > 0, and time step ∆t, we simply
estimate ∆x = v∆t, ∆z+ = vclimb∆t, and ∆z− = vdescent∆t. AASLP calculates the required
altitude trajectory by assuring forward integration of the altitude over time given a terrain map
and climb/descent angle constraints respects hmin and hmax limits. To meet climb and descent
constraints, future terrain clearance requirements on hmin are back-propagated so the climb starts in
time to avoid future terrain. A similar strategy is followed for descent with terrain clearance hmin is
prioritized over hmax when necessary.

Algorithm 1 Altitude Aware Straight Line Planner

1: procedure AASLP(rs, rg, ∆z+, ∆z−, z0, hmin, hmax, ∆x)
2: Inputs: Start position rs, goal position rg, climb rate ∆z+, descent rate ∆z−, start altitude
3: z0, minimum AGL hmin, maximum AGL hmax, distance discretization ∆x
4: Output: An altitude plan, Z, for a straight line path from rs to rg
5: ∆r← rg − rs
6: N ← ceil(|∆r|

∆x
)+1

7: Z ← zeros(N)
8: zg ← terrain height(rs)
9: Z0 ← constrain(z0, zg + hmin, zg + hmax)

10: for i← 1, N-1 do
11: rnext ← i

N−1
∆r+ rs

12: zg ← terrain height(rnext)
13: Zi ← constrain(Zi−1, zg + hmin, zg + hmax)
14: if Zi − Zi−1 > ∆z+ then
15: for j ← i− 1, 0 do
16: if Zj+1 − Zj > ∆z+ then
17: Zj ← Zj+1 −∆z+

18: else
19: break
20: end if
21: end for
22: else if Zi − Zi−1 < −∆z− then
23: Zi ← Zi−1 −∆z−

24: end if
25: end for
26: return Z
27: end procedure

76

Exploration and rally flight modes use the altitude plan from AASLP directly. Line following
mode looks ahead over a finite time horizon to compute the next altitude command in a manner
analogous to model predictive control. Goal position (rg) is selected by projecting the vehicle’s
current position forward in a straight line based on its current heading. Straight lines at ±5◦

offset from the current heading are also considered to account for future heading adjustments; the
maximum altitude from all three lines is used to select the line following altitude.

5.5 Results

This section describes results obtained from a series of AMASE simulations. Line estimation
and terrain avoidance planning results were generated on a laptop with an Intel core i7-9750H
processor. Sec. 5.5.1 evaluates the weighted SVM local boundary line estimator while Sec. 5.5.2
compares our AASLP terrain avoidance algorithm against a baseline A* algorithm.

5.5.1 Local Boundary Line Estimation

Local boundary line estimation was evaluated on three AMASE scenarios with distinct fire
boundary behaviors. Data gathered from the three scenarios are used to compare local line estimates
from weighted SVM against estimates from baseline weighted least squares and weighted logistic
regression methods. Our combined 3D line following algorithm was used to guide a single UAS
in the AMASE simulation to obtain fire and free points with associated observation times. We
post-processed the data to provide the three different line estimation methods the last 15s of data for
each point in time. Fig. 5.7a shows scenario 1 which has a static fire zone with a straight boundary,
a river crossing (large terrain transition with missing data), an acute left turn, and an obtuse left
turn. Scenario 2 has the same fire boundary now with constant translation speed of 5m/s to the East.
Scenario 3 is the same region with constant fire translation speed of 5m/s to the West. Boundaries
update in distinct steps every 10 seconds (e.g., 50m jumps for 5m/s travel speed). The UAS flew at
20m/s and received a new sensor reading every 0.5s. Scenarios 1, 2, and 3 had 3, 357, 826, and 743

test instances respectively. Scenario 1 had 3,357 test instances; for this case the UAS ended at the
beginning of the third boundary edge, past the obtuse angle. Scenarios 2 and 3 had 826 and 743 test
instances, respectively. In these cases the UAS only traversed a portion of the first straight edge.

Our weighted support vector machine (W-SVM) method was compared with weighted least
squares (W-LS) and weighted logistic regression (W-LOG). Values were weighted linearly based on
time (e.g., a current observation has weight 1, a 15s old data point has weight 0.5) for all methods.
Several hyperparameters for each algorithm were considered and the best were used for testing.
The regularization parameter for W-SVM was set to C = 100; a standard scaling was applied
to W-SVM input; the regularization parameter for W-LOG was set to C = 1. All methods were

77

run with scikit-learn in Python. Fig. 5.7b shows line estimates from the three methods in
scenario 1 at 5.25 seconds.

(a) Scenario 1 initial conditions

200 150 100 50 0 50
X-position (m)

50

0

50

100

150

200

250

Y-
po

sit
io

n
(m

)

W-LS
W-LOG
W-SVM
Ground Truth
Free Points
Fire Points
UAV Position

(b) Scenario 1 line estimate at t=5.25 seconds

Figure 5.7: Local boundary estimation results for scenario 1 with a static boundary.

Three metrics were used for evaluation: Line Heading Error, Forward Alignment Error, and
Computation Time. Line Heading Error is the error in degrees between the ground truth line heading
and the estimated line heading. Forward Alignment Error is the average distance between ten points
on the ground truth line and ten points on the estimated line obtained by projecting the original
points normally from the ground truth line onto the estimated line. Ground truth lines points are
sampled in the forward direction every 10m starting at the nearest point to the UAS. Forward
Alignment Error is limited to a maximum of 1000m since orthogonal line estimates could produce
extremely large errors that skew statistics. Computation Time is algorithm execution time in ms.
Lower is better for all three metrics. Table 5.1 shows aggregated results. W-LOG had the best Line
Heading Error (9.01◦) and Forward Alignment Error (21.59m), however, it also took the longest
to compute (5.78ms on average). W-LS was fastest to compute (0.6ms average) but had the worst
performance with a Line Heading Error of 14.26◦ and a Forward Alignment Error of 52.65m. Our
method, W-SVM came close in performance to W-LOG (9.26◦ Line Heading Error and 24.85m
Forward Alignment Error) and also came very close in computation time to W-LS with an average
of 1.05ms.

5.5.2 Terrain Avoidance

This section evaluates the performance of our altitude aware straight line planner (AASLP)
as compared with a baseline A* algorithm. We used the coarse exploration waypoints from the
scenario depicted in Fig. 5.5b as our test data set. Each test instance is a straight line path in

78

Table 5.1: Local boundary estimation results. Our method, W-SVM, provided estimates nearly as
accurate as W-LOG at 5x faster. W-LS was fast but provided poor estimates.

Line Heading Error (◦) Forward Alignment Error (m) Computation Time (ms)
Method µ σ MAX µ σ MAX µ σ MAX

W-LS 14.26 11.54 86.74 52.65 84.23 1000.00 0.60 0.05 1.47
W-LOG 9.01 8.99 89.10 21.59 48.68 1000.00 5.78 0.61 10.48
W-SVM 9.26 9.35 88.59 24.85 63.81 1000.00 1.05 0.19 5.12

2D space, and each tested algorithm must plan an altitude path along this line that avoids terrain,
respects vehicle performance limits, and attempts to stay below a maximum above ground level
altitude. There were 27 total test instances, but only 19 had viable solutions. Both AASLP and
A* failed on the same eight cases because UAS climb rate was insufficient to clear the terrain.
Normally, AASLP will always return a safe, feasible path in the discretized space, with the caveat
that the desired initial altitude may differ from the actual initial altitude if it is either out of the
hmin − hmax range initially or no collision-free path is possible from the initial altitude. For the
competition this was a useful feature because it allowed us to perform additional 3D climbing
maneuvers, but for the results presented here any time there was a discrepancy between actual and
planned initial altitude we counted this as a failure. For both algorithms, ∆t was chosen as 10s so
that the discretization along the straight line path ∆x was about 300m. In general, setting ∆x equal
to terrain data resolution (about 30m for USGS) is the smallest practical value since all terrain grids
will be considered. However, in the competition and these results, 300m was used since it reduces
computation time while only introducing a small chance that dangerous terrain would be missed
between samples. For A*, a branching factor of three was used (max climb, straight, max descent).
Additionally, the UAS was assumed to fly at 30m/s with a maximum climb rate of 5 m/s (∆z+ ≈
50m) and a maximum descent rate of 5m/s (∆z− ≈ 50m). The minimum AGL altitude (hmin) was
chosen as 200m, and the maximum AGL altitude (hmax) was chosen as 300m. The UAS always
started at 250m AGL. Both A* and AASLP were run in Python.

Fig. 5.8 shows planned altitude time histories from both algorithms executing on one of the
test cases. The UAS’s AGL altitude never goes below hmin to ensure no collisions with terrain.
However, sometimes the steep terrain drops faster than the UAS’s descent rate causing violations of
hmax. Table 5.2 shows results from all case studies. A* performed slightly better with an average
distance above hmax of 14.82m vs. 18.71m with AASLP but A* required approximately 100 times
longer computation time (7.22ms vs. 0.09ms).

79

0 5 10 15 20 25
Distance along stright line path (km)

1.0

1.2

1.4

1.6

1.8

2.0

Al
tit

ud
e

(k
m

)

AASLP Path Altitude
A* Path Altitude
Ground Altitude

(a) MSL altitude trajectory

0 5 10 15 20 25
Distance along stright line path (km)

200

250

300

350

400

450

He
ig

ht
 A

bo
ve

 G
ro

un
d

(m
)

AASLP Path Altitude
A* Path Altitude
hmax

hmin

(b) AGL altitude trajectory

Figure 5.8: Altitude plan example with complex terrain. AASLP meets hmin but cannot always
meet hmax. A* is slower but has slightly better performance in meeting hmax.

Table 5.2: Terrain avoidance planning algorithm benchmark results.

Distance Above hmax (m) Computation Time (ms)
Method µ σ MAX µ σ MAX

AASLP 18.71 54.01 242.68 0.09 0.03 0.14
A* 14.82 43.50 181.29 7.22 5.98 25.08

5.6 Discussion

Multi-UAS Planning was developed to specifically support the fire boundary estimation mission
goal. Speed, safety, and optimality are important planning metrics. Execution speed is important
because updates were required in real-time. Additionally, boundary estimation relied on there being
operational UAS collecting sensor data, which requires a focus on UAS safety even though small
UAS are typically considered expendable. Gathering useful sensor measurements of the fire is
of course also important. Our local boundary line estimation and terrain avoidance algorithms
provided reasonable solutions with significantly less computation time than compared baselines. In
line estimation, our W-SVM method was more than five times faster than W-LOG with comparable
accuracy. Our method was also significantly more accurate than W-LS with a marginal increase in
computation time. For terrain avoidance path planning, our AASLP planner was more than 50 times
faster than A* with less than a four meter difference in altitude solutions. Overall, results show
our practical planners methods provide safe real-time solutions. Of course, our dynamic boundary
estimation domain was quite specific so extensions would likely be required for other multi-UAS
surveillance missions.

80

5.7 Conclusion

This chapter described planning and fire boundary estimation techniques enabling a team of
UAS to find and map fire boundaries in a large complex terrain region. UAS behaviors are governed
by a state machine supported by exploration, rally, and line-following planning and guidance laws.

At a system level, AMASE simulations showed our integrated multi-UAS planning and boundary
mapping system performs well despite a large operating area, complex terrain, wind disturbances,
and moving fire boundaries. The team of UAS rapidly found fire boundaries, rallied around them,
and successfully followed their outlines. Terrain and fire hazards were avoided while UAS were
sufficient close for point sampling. Our methods were further validated when the authors placed 1st
in the 2019 AFRL Swarm and Search AI Challenge.

While the AMASE environment focused on multi-UAS fire boundary characterization, the
proposed planning and boundary mapping methods may be applied to any problem domain that
requires multiple agents to identify and map a complex boundary from point observations. Our
method only requires models for point-wise observations and ground truth polygon estimates for
training the neural network. Future work is recommended to explore and potentially optimize
over the suite of possible large-area exploration patterns, to incorporate more complex sensor
data into boundary estimation, e.g., from thermal imagers, and to decentralize planning and local
boundary estimation computations for cases when a continuous global communication link cannot
be maintained.

This chapter developed a multi-UAS planning framework to manage UAS team data collection
while avoiding hazardous conditions in wildfire mapping. The 3D planning problem was separated
into 2D exploration and line following planning modes assigned via a state machine combined with
a 1D terrain avoidance planner. Methods were computationally efficient to support rapid avoidance
of terrain and fires.

81

CHAPTER 6

Deformable Formation Path Planning

This chapter investigates continuum deformation path planning strategies. We separate the
planning problem into a low-level guidance problem (Sec. 6.1) and a high level team planning
problem (Sec. 6.2). The team planner assumes there is a static, known environment and generates a
reference trajectory for the team that can translate, rotate, and deform through space while avoiding
obstacles and inter-agent collision. The guidance module follows this trajectory but additionally
must deal with sudden vehicle failures and pop-up obstacles. It must be reactive to break the
formation safely to avoid pop-up hazards.

6.1 Low-Level Vehicle Guidance

6.1.1 Introduction

Formation flying offers significant advantages over individual vehicles including reduced plan-
ning computation time, improved sensor coverage, and simplicity through abstraction. However,
when there are sudden vehicle failures or pop-up obstacles, the geometric rigidity of a formation
won’t allow the team to easily avoid all hazards. To address this challenge, we propose a novel
safety recovery algorithm for a multi-quadrotor system (MQS) and experimentally validate the
approach in simulation and quadrotor flight experiments. We consider quadrotors in a MQS as a
finite number of particles in an ideal fluid flow pattern. By classifying quadrotors as healthy and
failed agents, we consider failed quadrotors as singularity points of the fluid flow. We then define
desired trajectories of the healthy agents along flow streamlines so that the failed quadrotors are
safely partitioned outside the motion space (see Figure 6.1). We enclose the failed quadrotors with
virtual obstacles to define no-fly zones. Because we treat these obstacles as singularity points that
are excluded from the motion space, our proposed safety-recovery approach is called containment

exclusion mode (CEM) throughout this chapter.
The idea of using potential fields for real-time path planning was originally proposed for robot

arms [113]. An attractive potential is placed at the goal, repulsive potentials on obstacles, and
gradient descent is used to plan a path. This can be called a navigation function. This is a useful

82

Figure 6.1: Q1 fails and stays in place within the solid red circle. Q2 uses the CEM navigation
algorithm to smoothly avoid the failed vehicle and travels along the dashed red path. The blue
circles indicate five time points for Q2.

approach, however it has issues of local minima. The randomized potential field approach attempts
to get around this by executing a random walk whenever the planner gets stuck in a local minimum,
but still provides no guarantee of planning completeness [114]. For harmonic functions subject
to Laplace’s equations, a navigation function can be constructed that only has saddle points as
local minima such that they can be easily escaped [115]. This model has been applied to robot
formations, but with explicit models of repulsive functions between robots, one goal sink node,
and computation time on the order of one second. However, the scenario considered in this section
needs an algorithm to quickly respond to an abrupt failure on the order of milliseconds.

Compared to the existing literature, this work offers the following contributions:

1. We propose a real-time, computationally efficient CEM navigation algorithm that dynamically
modifies quadrotor sliding speed to maintain a desired maximum speed for all quadrotors in
the MQS.

2. We formally specify safety and collision avoidance constraints by providing a CEM safety
theorem considering a single obstacle.

3. We experimentally evaluate the CEM navigation algorithm using a team of quadrotors in
formation to validate our CEM safety theorem.

This chapter is organized as follows. Sec. 6.1.2 defines the problem we solve with the approach
in Sec. 6.1.3. Safety analysis is considered in Sec. 6.1.4 and simulation and experimental results to
validate the approach are provided in Sec. 6.1.5. Conclusions and future work are described in Sec.
6.1.6.

83

6.1.2 Problem Statement

Consider NV vehicles flying in a deformable formation, following a global path when at t0,
Nf abrupt vehicle failures occurs. It is assumed that these failed vehicles hover in place (e.g., a
predictable behavior given lost link failure) and are enclosed by virtual cylindrical obstacles of
radius af at zf = (xf , yf). The remaining Nh healthy vehicles must safely avoid these failed agents
in real-time.

6.1.3 Approach

An ideal fluid flow pattern is constructed around the failed agents defined by functions

ϕ (x, y) =
∑
f∈F

(
(x− xf)

(
(x− xf)2 + (y − yf)2 + a2p

)
(x− xf)2 + (y − yf)2

)
(6.1a)

ψ (x, y) =
∑
f∈F

(
(y − yf)

(
(x− xf)2 + (y − yf)2 − a2p

)
(x− xf)2 + (y − yf)2

)
(6.1b)

where ϕ is the potential function, ψ is the stream function, ap = af + δg+ ϵ is the planned exclusion
radius, δg is healthy vehicle controller error, and ϵ is vehicle radius. Figure 6.2a shows an example
of the fluid flow pattern. Note that ϕ and ψ satisfy Laplace’s equations (∇2ψ = 0,∇2ϕ = 0).
Healthy agents then travel along constant streamlines (ψ((xi(t0), yi(t0))) = ψi,0, ∀i ∈ H) at equal,
but dynamic ϕ̇ to safety. This method is called Containment Exclusion Method (CEM) and is
accomplished with a real-time CEM navigation algorithm.

(a) ϕ, ψ Contours. ap = 1, xf = yf = 0. (b) Six vehicle test 2D plot

Figure 6.2: CEM navigation through ideal fluid flow pattern.

CEM Navigation Algorithm Algorithm 2 guides agents along constant ψ streamlines in the fluid

84

flow pattern. This is performed in real-time such that the ”t for loop” (line 12) is run every ∆T

seconds a total of m times. ∆T = 10ms (100Hz) in this paper. To minimize computational
overhead, this method acts as a navigation function, calculating the immediate command for each
agent to avoid collisions and then incrementing the trajectory in ϕ on each subsequent loop.

Algorithm 2 CEM Navigation
1: procedure CEM(F , m, vdes, r)
2: Inputs: Failed agents F , number of timesteps m, desired speed vdes, healthy vehicle

positions r
3: Output: Trajectory for each vehicle via sendCommands()
4:
5: rd ← r
6: ∆ϕ← vdes ∗∆T
7: for i← 1, Nh do
8: ϕ[i]← ϕ(r[i],F) ▷ Eq. 6.1a
9: ψ[i]← ψ(r[i],F) ▷ Eq. 6.1b

10: end for
11:
12: for t← 1, m do
13: ϕlast ← ϕ
14: for k← 1, NK do
15: for i← 1, Nh do
16: ϕ[i]← ϕlast[i] + ∆ϕ
17: rd[i], ṙd[i]← CalcXY(ϕ[i],ψ[i],rd[i])
18: end for
19: vmax ← maxi∈Nh

||ṙd[i]||
20: ∆ϕ← ∆ϕ ∗ vdes/vmax
21: end for
22: sendCommands(rd,ṙd)
23: sleep(∆T)
24: end for
25: end procedure

ϕ and ψ values for each agent are initialized to their starting positions. Also, sliding speed
∆ϕ is set to match the desired vehicle velocities for the non-distorted case. At every time step,
ϕ is increased by ∆ϕ and the resulting position and velocity for each vehicle is calculated using
CalcXY (Alg. 3). Maximum velocity vmax is then used to update ∆ϕ for the next iteration to more
closely match vdes (Line 20). This update step assumes vmax = Cg∆ϕlast and wants to calculate
∆ϕnext such that vdes = Cg∆ϕnext where Cg is a constant assumed to encapsulate the gradient for
the small step sizes. Therefore, ∆ϕnext = ∆ϕlast

vdes
vmax

should calculate the proper ∆ϕ to obtain vdes.
This is executed NK times. If the assumption that Cg is constant is reasonable, then NK = 2 is
a good selection which effectively plans twice per time step, first to calculate ∆ϕ and second to

85

calculate the trajectories using ∆ϕ. NK = 2 was used in this paper for the main results and varied
for additional results to see its effects. After the NK loop, commands are output for that time step
and the process repeats for the next time step.

Alg. 3 calculates the position given ψ, ϕ using a gradient descent inspired approach. On each
iteration (Ni = 20 in this paper), the current estimate is used to calculate the associated ϕ and ψ
and then the estimate is updated in the direction of decreasing error via the inverse of the Jacobian
matrix, defined as:

J(x, y,F) =

[
∂ϕ
∂x

∂ϕ
∂y

∂ψ
∂x

∂ψ
∂y

]
. (6.2)

rnoise is added to the update step to escape saddle points on the edge of the exclusion zone as:

rnoise =

|N (0, σ)|r̂a +N (0, σ)r̂b if ||r− rf || ≤ ap

0, else
(6.3)

where N (0, σ) generates Gaussian noise with zero-mean and standard deviation σ, r̂a =
r−rf

||r−rf ||
is

the direction away from the exclusion zone, and r̂b =

[
0 1

−1 0

]
r̂a is perpendicular to r̂a. σ = 1mm

was used in this paper. This procedure ensures that commanded positions never violate the planned
exclusion radius ap. Lastly, the first-order difference equation is used to calculate the velocity.

Algorithm 3 CalcXY
1: procedure CALCXY(ϕ,ψ,r)
2: r−1 ← r
3: for i← 1, Ni do
4: ϕ1← ϕ(r,F) ▷ Eq. 6.1a
5: ψ1← ψ(r,F) ▷ Eq. 6.1b
6: J ← J(r,F) ▷ Eq. 6.2

7: r← r− J−1

[
ϕ1 − ϕ
ψ1 − ψ

]
+ rnoise ▷ Eq. 6.3

8: end for
9: ṙ← (r− r−1)/∆T

10: return r, ṙ
11: end procedure

6.1.4 Safety Analysis

Collision avoidance between healthy agents and obstacles is assured via the construction of the
ideal fluid flow pattern. The planned exclusion radius for obstacles is δg + ϵ larger than the actual

86

exclusion radius. Therefore, if no agents are initialized inside the planned exclusion radius, the
navigation function will never take them closer than δg + ϵ which guarantees safety.

Inter-agent collision avoidance is more complex as it involves distortion in the x − y plane
along constant ψ streamlines. Theorem 4 provides a tight bound on initial formation distances for
a collision avoidance guarantee condition for CEM but it works when there exists a single failed
agent in the x− y plane.

Theorem 4. Inter-agent collision between every agent pair is avoided if each minimum separation

distance dmin,0 at reference time t0, when the failed agent appears, satisfies the following condition:

dmin,0 = min
i,j, i̸=j

√
(xi,0 − xj,0)2 + (yi,0 − yj,0)2 ≥ 2 (δg + ϵ) + ap. (6.4)

Proof. Inter-agent collision between agents is avoided if dmin(t), defined by

dmin(t) = min
i,j

i ̸=j

√
(xi(t)− xj(t))2 + (yi (t)− yj (t))2 ∀t, (6.5)

satisfies the following condition:

dmin(t) ≥ 2 (δg + ϵ) , ∀t.

When a single failure exists in the x − y plane, ψ(x, y) = 0 wraps the failed agent by a circle
of radius ap with the center positioned at (xf , yf) (see Eq. (6.1b), Figure 6.2a). The maximum
contraction of the distance between two arbitrary recovery paths ψ(x, y) = ψi,0 and ψ(x, y) = ψj,0

is less than ap, and it occurs at x = xf . So, dmin(t) ≥ dmin,0 − ap = 2 (ϵ+ δg)∀t. Therefore,
inter-agent collision between every two agent pair is avoided if the minimum separation distance
dmin,0, obtained on the configuration of the healthy agents at reference time t0, satisfies inequality
(6.4).

6.1.5 Results

The experimental system described in Chapter 2 was used to demonstrate the methods in this
section. The minimum initial formation distance between any two vehicles is dmin = 2 (ϵ+ δg)+ap.
Additionally, when a failure occurs and CEM mode is activated we assume that the failed agent will
remain within δg of its setpoint so af = ϵ+ δg. Therefore, ap = 1.36m and dmin = 2.72m.
CEM Navigation Validation with Six Virtual Vehicles For this test, the ground control station
computer was configured to run exactly as described in the experimental setup section, except that

87

only the setpoints were logged and no vehicles were flying. This was done to validate that the
navigation algorithm was able to generate safe trajectories while also maintaining a desired velocity
along constant streamlines and operating within runtime constraints.

Figure 6.2b shows the formation and trajectory followed. The formation is similar to [116] with
a leading triangle and interior agents. The initial formation has agents with a minimum separation
of 2.72m. The vehicles begin in a six agent formation on the bottom before Q1 fails. This activates
the CEM navigation algorithm. An initial (ϕ, ψ) coordinate is calculated for each vehicle and then
on each iteration ϕ is advanced in a dynamic fashion to track a 1.0 m/s desired maximum velocity.
Figure 6.3a shows the commanded velocities. This shows each component of 2D velocity while
the norm at each step was the quantity being tracked. Figure 6.3b shows the values of ϕ advancing
while Figure 6.4a shows how ∆ϕ is changed to maintain the specified velocity. Notice how at about
6s and 13s ∆ϕ gets very small. This coincides with Q2 traversing saddle points at each end of the
exclusion zone. The Jacobian is large here which causes small changes in ϕ to produce a large
change in the x-y plane (i.e. Q2 moves fast while all other vehicles move slowly). Additionally,
Figure 6.4b shows the distance between nearest agents. Every agent pair maintains at least 2(δg + ϵ)

separation.

(a) Velocities (b) ϕ

Figure 6.3: Six vehicle test velocities and ϕ

To explore the effectiveness of the velocity tracking aspect of our navigation algorithm the six
vehicle flight was repeated while the value for NK was varied in the range {1,2,5}. Figure 6.5a
shows the maximum velocity of any agent for the various values of NK during one of the two saddle
points that cause the most difficulty. NK=1 reached a 2D speed of 2.4 m/s, much higher than the
1.0 m/s setpoint. Speed error with NK=2 was significant lower, while NK=5 performed a bit better.
However, increasing the value of NK essentially replans with a new ∆ϕ NK times each iteration.
This has a runtime cost which can be seen in Figure 6.5b. Runtime is proportional to the value of

88

(a) ∆ϕ (b) Nearest neighbor distance

Figure 6.4: Six vehicle test ∆ϕ and nearest neighbor distance

NK and the number of agents. Runtimes of roughly 0.2ms, 0.4ms, and 1ms were measured for the
values of 1, 2, and 5 respectively. 10ms is the hard upper limit since the navigation algorithm is
running at 100Hz. A value of NK = 2 follows the velocity profile well while offering a reasonably
low runtime.

(a) Velocity tracking (b) Runtime

Figure 6.5: Effects of varying NK

Two Vehicle Flight Test The same formation from the previous section in a reduced configuration
(only Q1 and Q2) was flight tested to validate the navigation algorithm working safely to avoid
collisions with non-zero controller error bounded by δg = 40cm for each vehicle. Figure 6.1 shows
this test. Figure 6.6a shows the trajectories for failed agent Q1 within its exclusion zone (solid red
circle) and Q2 which tracked its desired trajectory computed in real-time (dotted green) closely by
its actual trajectory (solid green). The controller error of both agents remained within the δg bound

89

as seen in Figure 6.6b. Figure 6.7a shows that the actual trajectory of Q2 was a safe distance away
from the exclusion zone. The dynamic value of ∆ϕ can be seen in Figure 6.7b.

(a) 2D plot (b) Controller error

Figure 6.6: Two vehicle 2D plot and controller error

(a) Exclusion zone distance (b) ∆ϕ

Figure 6.7: Two vehicle exclusion zone distance and ∆ϕ

Figure 6.2b shows results of the navigation algorithm for a six vehicle test in simulation. Q1 fails
and the remaining vehicles follow constant streamlines to avoid it. Validation was also successfully
performed with a two vehicle experimental team.

6.1.6 Conclusion and Future Work

This section presented a novel, real-time, fluid-flow based navigation algorithm to allow quadro-
tor formation flights to safely continue in the presence of vehicle failures. Healthy agents followed

90

constant streamlines and a safety proof was presented that guarantees safety in the presence of
single agent failure. Simulation and experimental results validate the method. Experiments were
conducted with quadrotors flying in the x direction of the x-y plane i.e., constant ψ direction of
the ϕ-ψ plane. Using a rotation matrix, the CEM navigation algorithm can be improved further
to accommodate quadrotor formation flight in any direction of the x-y plane. We will extend
simulation and experiments to larger teams with multiple failed quadrotors in future work.

6.2 High-Level Global Path Planning

6.2.1 Introduction

UTM offers the challenge of coordinating and routing many vehicles in a shared airspace
safely. This problem is very complex and involves avoiding collisions between vehicles as well
as generating feasible, efficient routes with reasonable planning times. In the general case, paths
need to be planned for each vehicle, and collision avoidance is typically considered between pairs
of vehicles. This offers flexibility in path choice but is computationally expensive and cannot
easily guarantee multi-vehicle collision avoidance. Planning for vehicles to fly in a formation is
more computationally efficient and offers multi-vehicle separation assurance as described with
CEM above. Formation flight requires a group of vehicles to have similar starting and destination
locations. Additionally, local group coordination may be required if there are communication limits
that only allow for a subset of the vehicles to communicate with a centralized UTM system. Also, for
applications such as terrain mapping, a formation may offer better sensor coverage. The formation
can be treated as rigid body that can translate and rotate through space so that cooperative control
techniques can be used to maintain the formation. However, the rigidity of this type of formation
can limit its use case to open spaces with easy to navigate obstacles. Deformable formations have
been proposed and explored in terms of control and formation keeping, but research in planning for
coordinated teams has been limited.

This chapter proposes a general planning method for deformable formations. This includes
formations that can translate, rotate, scale, and shear through space to offer the greatest flexibility in
planning. We demonstrate our approach by considering a six vehicle 2D formation (the formation
from Chapter 3 with an additional vehicle added). First, a minimum deformation safety parameter
(λmin) is calculated based on the initial formation according to continuum deformation. Second, the
planning state space is defined as a decomposition of the homogeneous transformation relative to the
initial formation. Third, a standard state-of-the-art planner is used to plan through our defined state
space using custom inter-agent and formation-obstacle collision checkers. The inter-agent collision
checker is derived as a function of the state space variables themselves and can be computed in
constant time independent of team size. The formation-obstacle collision checker first computes a

91

convex hull approximation given the deformation variables and then feeds this into an algorithm
to check for and avoid collisions with the environment. For the 2D formation considered, the
convex hull is a triangle with rounded corners each approximated with six points. Three planning
environments of increasing difficulty are considered using an open source planning library to explore
the trade-offs between planning approaches assuming independent vehicles, a rigid formation, and
a general deformable formation.

This section offers the following contributions:

1. A general approach to plan for homogeneous deformable formations with the ability to
translate, rotate, scale, and shear through space.

2. Derivation of a constant-time inter-agent collision checking method for 2D deformable
formations.

3. An efficient formation-obstacle collision checking technique for 2D deformable formations
achieved by calculating an approximate formation convex hull and using it in standard
collision checking.

4. A comparison of independent multi-vehicle, rigid formation, and deformable formation
planning methods.

The remainder of this chapter section is organized as follows. Sec. 6.2.2 introduces recent
related work in multi-vehicle planning. A concise problem statement is given in Sec. 6.2.3 and our
approach to solve it is in Sec. 6.2.4. Results and conclusions are given in Sec. 6.2.5 and Sec. 6.2.6,
respectively.

6.2.2 Related Work

The general multi-vehicle path planning problem considers NV vehicles and allows all vehicles
to move independently through space. In n−D each vehicle has a start location and goal location.
Additionally, there are NO static, known obstacles in the environment. The objective is to plan
goal-seeking paths for each vehicle that avoid collisions with obstacles and each other. The
standard approach is to ”stack” each state space and plan in the combined state space. Considering
position only this makes a 3NV dimensional space with O(N2

V) inter-agent collision checking
and O(NVNO) agent-obstacle checking. As the number of vehicles increases this becomes a
computationally challenging problem.

To deal with the complexity of multi-vehicle path planning, most methods narrow the scope of
potential solutions by keeping vehicles in a formation as they travel. Cooperative control techniques
such as virtual structure or containment control define the behavior of the formation such that only
the formation center or leader vehicles need to follow planned paths. Solutions are typically rigid
formations or are selected from a small set of potential formations (e.g. line, triangle, diamond, etc).

92

Common path planners for these formations include evolutionary algorithms, optimization-based
methods, potential field planners, and roadmap-based search [117]. Simpler potential field planners
are computationally efficient but may have issues with local minima. More complex optimization-
based methods can be complete but are computationally expensive. Additionally, these existing
methods do not allow for general deformation of the formation that continuum deformation can
provide. Ref. [14] developed a path planner for a continuum deformation formation but restricted
motions to translations and used a computationally intensive particle swarm optimization (PSO)
technique that doesn’t guarantee convergence. In Refs. [118] and [119] an eigen decomposition
is performed on the deformation. However, global planning is still accomplished with a constant
size shape using A*. This shape represents a significant overestimate of the actual shape of the
formation at any given time, removing many possible paths from consideration.

6.2.3 Problem Statement

In n−D consider NV identical vehicles with starting positions ri,s ∈ Rn×1 and goal positions
ri,g ∈ Rn×1. Additionally assumeNO static, known obstacles exist in the environment. Both starting
and goal positions are free of collision. Under continuum deformation ri,HT (t) = Q(t, t0)ri,s +

d(t, t0) is the desired position of every agent at time t and is a function of initial position as well
as deformation matrix Q(t, t0) ∈ Rn×n and translation vector d(t, t0) ∈ Rn×1. The goal of the
deformable formation planner is to select Q(t, t0) and d(t, t0) for every time t in a continuous
manner such that the formation reaches its goal. In contrast to the general multi-vehicle planning
problem, this formulation has a planning space with dimension n2+n, inter-agent collision checking
complexity O(1) and obstacle collision checking complexity O(NO). Solutions are evaluated in
terms of total travel distance of all vehicles as well as computation time. Only geometric constraints
are considered and vehicles can translate and rotate in all directions. A 2-D workspace (n = 2) is
considered in this work but this dimension can be expanded to 3-D in future work.

6.2.4 Approach

Our approach is using state-of-the-art path planning algorithms in Q − d space with certain
modifications. First, we define the state space via a decomposition of the Q matrix, inter-agent
collision checking, and obstacle-formation collision checking.
State Space Definition Consider a decomposition of Q as follows:

93

Q = Rz,θrRz,θdΛR
T
z,θd

(6.6)

Rz,θr =

[
cos(θr) −sin(θr)
sin(θr) cos(θr)

]
, Rz,θd =

[
cos(θd) −sin(θd)
sin(θd) cos(θd)

]
, Λ =

[
λ1 0

0 λ2

]
(6.7)

where θr is the formation rotation angle, θd is the deformation angle, and λ1 and λ2 are the
eigenvalues of the deformation matrix [118]. This decomposition can produce any 2x2 Q matrix
and still maintains six degrees of freedom for the full transformation, four in Q and two in dd. More
formally, this state space is R4 × SO(2)2. Figure 6.8 shows four example configurations using this
decomposition. A six M330-Quadrotor formation (NV = 6) is shown.

(a) Start state (λ1 = 1, λ1 = 1, θd = 0) (b) Contracted (λ1 = 0.5, λ1 = 0.5, θd = 0)

(c) Contracted in Y (λ1 = 1, λ1 = 0.5, θd = 0) (d) Sheared (λ1 = 1, λ1 = 0.5, θd = π
6)

Figure 6.8: Configurations of deformable formation (λmin = 0.5, θr = 0).

Inter-Agent Collision Checking: Continuum deformation offers a simple way to check for inter-

94

agent collisions. Inter-agent collision avoidance is guaranteed when the smallest eigenvalue of
UD =

(
QTQ

) 1
2 is greater than λmin, a parameter derived from the initial formation. Since the

decomposition directly contains the eigenvalues we have

λmin ≤ inf
∀t

{
λ1 (t) , λ2 (t)

}
. (6.8)

When the state space variables satisfy this inequality we can guarantee that inter-agent collisions are
avoided. Therefore, inter-agent collision checking is a constant time operation that only depends on
the state space variables. Moreover, this can be used to bound the search space and therefore no
inter-agent collision checking is required.
Formation-Obstacle Collision Checking To handle formation-obstacle collision checking, a
convex hull approximation must be created and checked for collisions with its environment (Figure
6.8). This effectively maps the state from Q − d space into Euclidean space. This is a slight
overestimate of the formation but results in fast collision checking. First, the leading triangle
between all three leaders is considered. Each line segment is shifted by Ds away from the formation
center. Second, points on the leaders enclosing circles furthest from the center are calculated. Third,
six intersection points are calculated to form a bounding triangles with ”flattened corners.” This
method was inspired by Ref. [120]. This polygon can be used with standard collision checking
algorithms and is generated at each collision check.
Simulation Environment The Open Motion Planning Library (OMPL) was used to implement
the methods of this chapter [2]. Figure 6.9 shows a high level overview of the software system.
More specifically, OMPL.app which is an extension of OMPL was used. This includes standard
state-of-the-art planners, geometric environment setup, and the integration of the Flexible Collision
Library. Two major changes were made to develop the approach in this chapter. First, a new State
Space was made to reflect Eq. 6.6. Second, the StateValidityChecker was implemented
for this state space. This included inter-agent collision checking and formation-obstacle collision
checking as described previously.

6.2.5 Results

Planner performance was evaluated on three different test environments (Figures 6.10, 6.11, and
6.12). Several variations of the approach were considered per Table 6.1. RIGID is a rigid formation
that can only rotate and translate and represents an important baseline since it is a common approach
in the literature. HT-6DOF is the full approach as described in Sec. 6.2.4 and HT-4DOF and
HT-5DOF each consider varying degrees of freedom which place them between the baseline and
the full approach. Additionally, the general multi-vehicle planning approach ”MULTISE2” was
used as a baseline. This considers all vehicles independent with no formation constraints. RRT*, an

95

Figure 6.9: OMPL block diagram with modified portions indicated [2].

optimal sampling-based approach, was used as the planner for each method [121].

Table 6.1: Deformable planning methods state space variables bounds

Method d1 d2 θr λ1 λ2 θd

RIGID [-22,+22] [-5,+5] [-π,+π] 1 1 0
HT-4DOF [-22,+22] [-5,+5] [-π,+π] [0.5,1] λ1 0
HT-5DOF [-22,+22] [-5,+5] [-π,+π] [0.5,1] [0.5,1] 0
HT-6DOF [-22,+22] [-5,+5] [-π,+π] [0.5,1] [0.5,1] SO(2)

Results are shown in Tables 6.2, 6.3, and 6.4. Figures 6.13, 6.14, and 6.15 show the paths taken.
”DNF” indicates the approach did not find a solution for that test environment. With the 1s time
limit in the easy environment, the baseline MULTISE2 approach did poorly with a 0% success
rate. HT-4DOF was best with a 100% success rate and 129.1m total distance. However, the bottom
three approaches were quite close in total distance. For the medium environment, MULTISE2 was
competitive at 50% success rate and 132.3m total distance. RIGID did not find a solution since the

96

Figure 6.10: Easy environment. Rotation and translation is all that is needed to traverse.

Figure 6.11: Medium environment. Scaling is needed to fit through the narrow passage.

environment required scaling. The last three performed better with HT-4DOF achieving the best
total distance at 120.1m. Lastly, the impossible environment was impossible to pass through while
maintaining a formation and so all of the formation approaches did not find solutions. The baseline
MULTISE2 did find a solution with 20% success rate and total distance 172.1m. Similar results
are seen for a 5s timeout (Table 6.3) and 60s timeout (Table 6.4). The extra time primarily helps
MULTISE2 find a better solution as all of the formation methods have already converged near their
optimal solutions within the first 1 second.

6.2.6 Conclusion and Future Work

This chapter presented a two-layer planning method for deformable formations. A 2D formation
was considered that can deform through space according to a 6DOF homogeneous transformation.
The deformation was decomposed into isolated components which allowed for the derivation of

97

Figure 6.12: Impossible environment. Impossible to pass through while maintaining a formation.

Table 6.2: Success rate (sr) and total distance (dt) results averaged over 10 runs with a 1s time limit.

Test Environment
Easy Medium Impossible

Method sr (%) dt (m) sr (%) dt (m) sr (%) dt (m)

MULTISE2 0 DNF 50 132.3 20 172.1
RIGID 100 136.2 0 DNF 0 DNF

HT-4DOF 100 129.1 100 120.1 0 DNF
HT-5DOF 100 130.0 100 120.2 0 DNF
HT-6DOF 100 132.9 100 120.2 0 DNF

a constant-time inter-agent collision checker. An efficient formation-obstacle collision checking
technique was developed based on an approximate convex hull of the formation along with standard
collision checking methods. Three environments were considered to explore the trade-offs between
using the full 6DOF method, a rigid formation, or a baseline independent multi-vehicle method.

The test scenarios show the value of this general planning method for deformable formations.
All three method variants (HT-4DOF, HT-5DOF, HT-6DOF) produced shorter paths than both
the rigid formation (RIGID) and baseline (MULTISE2) approaches in all environments where a
solution could be found. In the impossible environment, maintaining a formation was impossible
and so only the MULTISE2 approach was able to find a solution. However, since the planning time
was quick for the other environments (100% success in 1s), a short timeout could be utilized to
quickly search for a solution and give up if one is not found and then transition to using the baseline
planner. Additionally, combining the approaches directly in the planning stage could be considered
as well. After planning stalls, or perhaps increasing with probability as time goes on, nodes could
be connected together using the MULTISE2 approach to get through cluttered environments. These
hybrid approaches should be considered in future work. A 3D extension of the method should be

98

Table 6.3: Success rate (sr) and total distance (dt) results averaged over 10 runs with a 5s time limit.

Test Environment
Easy Medium Impossible

Method sr (%) dt (m) sr (%) dt (m) sr (%) dt (m)

MULTISE2 30 191.6 60 124.3 40 155.7
RIGID 100 134.5 0 DNF 0 DNF

HT-4DOF 100 128.2 100 120.1 0 DNF
HT-5DOF 100 128.9 100 120.1 0 DNF
HT-6DOF 100 130.4 100 120.1 0 DNF

Table 6.4: Success rate (sr) and total distance (dt) results averaged over 10 runs with a 60s time
limit.

Test Environment
Easy Medium Impossible

Method sr (%) dt (m) sr (%) dt (m) sr (%) dt (m)

MULTISE2 40 161.9 90 124.3 60 148.2
RIGID 100 134.3 0 DNF 0 DNF

HT-4DOF 100 127.5 100 120.1 0 DNF
HT-5DOF 100 127.9 100 120.1 0 DNF
HT-6DOF 100 129.2 100 120.1 0 DNF

considered with a 12DOF state space decomposition, inter-agent collision checking derivation, and
bounding convex polyhedron.

99

(a) MULTISE2, 60s

(b) RIGID, 1s (c) RIGID, 60s

(d) HT-4DOF, 1s (e) HT-4DOF, 60s

(f) HT-5DOF, 1s (g) HT-5DOF, 60s

(h) HT-6DOF, 1s (i) HT-6DOF, 60s

Figure 6.13: Easy environment results

100

(a) MULTISE2, 1s (b) MULTISE2, 60s

(c) HT-4DOF, 1s (d) HT-4DOF, 60s

(e) HT-5DOF, 1s (f) HT-5DOF, 60s

(g) HT-6DOF, 1s (h) HT-6DOF, 60s

Figure 6.14: Medium environment results

(a) MULTISE2, 1s (b) MULTISE2, 60s

Figure 6.15: Impossible environment results

101

CHAPTER 7

Conclusion and Future Work

This dissertation has investigated autonomy to plan for and coordinate multiple UAS in a variety
of mission-appropriate configurations. Formation control and planning for UAS traffic management,
multilift payload transportation using haptic guidance, and wildfire mapping were considered.
Extensive experimental validation and realization as well as software studies for these missions
were performed. This results in well-defined proof of concepts for diverse missions that future
researchers and society at large can use as a spring-board to bring them into reality. Moreover, this
dissertation only scratches the surface of what can be pursued with the multi-UAS technology that
is available today. Our imagination and creativity are the only limits to what we can pursue. Below
are specific contributions with conclusions that lead to a discussion of future work.

7.1 Contributions

Chapter 2 provided the foundation for experimental realization of the multi-UAS missions
considered. The M330-Quadrotor, rc pilot a2sys flight controller, and instrumented payload
developed for this thesis are opensource and publicly available. This allows for more people to gain
access to this technology through its low costs and support via detailed documentation. Greater
access to these technologies will enable further research that will move the field forward.

In Chapter 3, a safe and deformable formation control solution based on continuum deformation
was refined and experimentally validated. A derivation was made to relate experimentally obtainable
vehicle controller errors to global deviation bounds needed to guarantee safety for the formation.
This resulted in a definition of required inter-vehicle separation constraints such that safe trajectories
could be planned for the system. This safety guarantee for any multi-UAS formation under
continuum deformation extends the existing theory into practical scenarios, rather than being
confined to idealized simulations.

In Chapter 4, we defined, implemented, and experimentally evaluated a haptically-guided
cooperative payload transportation capability. Five quadrotors tethered to an instrumented payload
were guided by a human user directly pushing on the payload. This required development of

102

real-time user force estimation based on inline tension force sensors as well as an admittance
controller to update virtual dynamics according to user input force. This novel user interaction
strategy can be used for package delivery, construction, and disaster relief applications. The results
uncovered an interesting interplay between user applied force and controller effort. Both work in
tandem with admittance control active, lowering the required controller effort to follow a desired
trajectory. However, when deactivated at a geofence boundary, they work in opposite directions
acting as a cue to the user. This results in a robust guidance system within a cluttered environment.

In Chapter 5, a multiple UAS team is directed through multi-agent coverage planning and
boundary following to find and map wildfire boundaries despite complex mountainous terrain.
Computationally efficient planning methods were developed to adhere to the resource constrained
environment. Multi-vehicle task allocation was handled by a state machine between exploration
(coverage) and exploitation (line following). Efficiency gains were achieved by separating the
3D problem into 2D lateral and 1D terrain avoidance sub-problems. Runtime constraints were a
major influence of the methods developed in this chapter. For this purpose, they were effective.
However, if given additional computational resources more general 3D planning methods would
outperform our methods. Therefore, when applying the methods from this chapter to new problems,
computational resources should be carefully considered.

In Chapter 6, path planning for a deformable formation was considered with both a high level
global planner to generate a trajectory that is followed by a reactive low level vehicle guidance
module. The guidance module utilized fluid flow fields to safely direct the team around obstacles.
Computational efficiency was achieved with a real-time navigation function that only computed the
immediate commands at each time step. Safety guarantees were provided that prescribed minimum
vehicle separation given obstacle size. The global planner proposed a general method for deformable
formation planning. Instead of planning in Euclidean space for individual vehicles, the method
planned for the deformation (translation, rotation, scale, and shear) of the formation itself via the
definition of a new state space. A constant-time inter-agent collision checker was derived based
on the state space variables themselves. Formation-obstacle collision checking was performed by
taking the approximation of the formation convex hull and using it in standard collision checking
algorithms. Together, these two modules allow for deformable formations to be applied in a wider
variety of domains. The guidance module will be effective in avoiding collision for lost link failures
and pop-up obstacles, but will be ineffective with more general failures. The global planner will
easily find paths in environments where formations are viable but will typically fail in cluttered
environments.

103

7.2 Future Work

While the Chapter 2 autopilot and software systems were sufficient for this dissertation, there
are many features that could further improve the rc pilot a2sys software package. The flight
controller might include new flight modes (e.g. follow me, primitive motions) and additional sensor
support. The M330-Quadrotor platform is sufficient for GPS or motion capture navigation but in
environments where GPS and motion capture are inaccessible a reliable onboard sensing system is
needed. Some work has been performed to integrate a RealSense system at the cost of weight and
reduced flight time resulting in migration to a hexacopter platform able to carry both a companion
computer and the necessary sensors. The core principles of simplicity, low-cost, and open-source
should be upheld so that this project is accessible to everyone.

Chapter 3 focused on the first experimental evaluation of continuum deformation. A realistic
communication topology where followers indirectly receive their setpoints allowed us to uncover
some improvements needed in the theory. However, motion capture was used to allow for ”perfect
sensing”, vehicle failures couldn’t be handled, specific vehicles were set as leaders without flexibility,
and only a 2D version of the formation control method was used. In the future to further develop
this work we should consider using onboard sensing on all vehicles, handle vehicle failures, allow
for dynamic reallocation of leadership to vehicles, and consider a full 3D continuum deformation.

Chapter 4 explored haptic guidance of a multi-lift slung payload transportation system on an
real system for the first time. The results are positive and indicate further development is warranted.
For a deployed application there will be several differences that need to be taken into account. First,
for the work in this chapter an instrumented payload was used to provide easy access to sensor data
in a centralized location as well as ground truth user applied force data. However, in a deployed
application payloads will not typically be instrumented and will be of varying size, shape, and mass.
Therefore, the inline tension sensors would need to be moved to the vehicle sides with data shared
to achieve the same results. Additionally, improved sensors could be used to provide more reliable
force data that could be further improved with online estimation of scale and bias terms of each
sensor. This would also allow for full 3D haptic guidance to be added because the z force estimate
should be improved. Also, consideration of hybrid vehicles (e.g. aircraft with aerodynamic lifting
surfaces) should be completed to enable both efficient forward flight as well as vertical take-off
and landing capabilities. A human subjects study with these improvements should be performed to
compare the effectiveness of the haptic interface vs. a joystick or a tablet interface. A simulated
disaster zone case study with expert human subject participants would support better assessment of
the feasibility for this system concept. Required flight times, payload masses, and general logistics
should be considered. A path towards safety certification of this type of system should be explored.
Failure probabilities of individual components can be accounted for to calculate a system wide

104

safety rate. This risk should then be compared against the risk from specific applications. Dangerous
applications such as military or time-sensitive disaster relief scenarios will likely tolerate a poorer
system wide safety rate since inaction could result in worse outcomes. However, safer applications
such as consumer package delivery will likely require a higher system wide safety rate to be worth
the additional risk to the user.

In Chapter 5, computationally efficient methods were developed in a simulation environment to
show the feasibility of using teams of UAS to find and map wildfires. Much work remains before
this system could be integrated into a real disaster response team where firefighters and other key
stakeholders are able to use it. FAA regulations currently make it difficult to implement this concept
system (see Part 107 for commercial operators). Every vehicle needs to have a remote pilot and
the vehicle needs to remain within line of sight. Additionally, vehicles must stay below 400 feet
Above Ground Level (AGL) and out of restricted airspace (including 5 miles around airports, and in
particular wildfires currently). FAA regulations are in constant development and will likely change
to be more supportive in the coming years. With respect to technology development, fixed wing
UAS have very good range and sensing capabilities but sensor range and autonomous in-flight
decision-making need to improve to assure real-time reactions and accurate real-time wildfire
mapping. Detailed terrain maps exist that could be pre-loaded to vehicles to avoid terrain and GPS-
based navigation allows for vehicles to track trajectories commanded from a central ground control
station. Several capabilities were assumed with the vehicles including perfect communication and
trajectory following controllers. In real life, emergency response systems would need to be carefully
integrated with existing equipment and people so as to not cause more harm than good. Preliminary
flight testing with ”simulated wildfires” in controlled areas would need to be handled to assure
mission efficacy. In wildfire mapping, alternative methods to acquire real-time maps of evolving
wildfires include satellite imagery (visual spectrum and infrared) as well as single aircraft at higher
altitudes. However, for this research the premise was that smoke would block the ability to sense
if a camera was too far away, therefore, the low flying UAS offer valuable fire data. Intelligent
integration into the existing emergency management response will be one of the most important
factors when actually implementing a swarm of UAS for wildfire management. Existing emergency
response teams will slowly integrate the new technology one step at a time. Airspace geofence
boundaries can ensure that manned vehicles always know where the UAS are flying to avoid mid-air
collision. Additionally, mission assignment (telling the swarm to map a specific area), and map
reporting (swarm telling emergency response team where the fires are) must be smooth and effective
for the extra burden of using a UAS swarm to add value.

The methods from Chapter 6 offer preliminary concepts for resilient and capable deformable
formations. However, many of the assumptions made currently limit their use. For the low level
guidance module, extension to 3D is required. Additionally, deriving tight bounds on safety

105

constraints for multiple heterogeneous failures with a heterogeneous formation should also be
considered. Introducing a higher level module that decides when it is safe to transition into the
fluid flow navigation function would make the method much more effective. The global planner
should also be extended to 3D. Additionally, considering a hybrid approach that is able to look at
the environment and select a planner that makes sense, or use a combination should be researched
as that can have far reaching impact in a range of applications. For UTM in particular, both of these
methods can be part of a larger planning system that efficiently routes hundreds of vehicles around
complex terrain and obstacles in real-time.

106

APPENDIX A

Supplement to Hardware Description

A.1 Printed Circuit Boards

I developed three PCBs during the course of my PhD to support experimental realizations of my
work. Each is a two layer board that allows convenient and reliable interfacing between different
electronic components. DipTrace was used to design them and all associated design files, gerber
files, and bill of materials are available1.

A.1.1 Relay Cape

Serial messages sent over XBees were used to achieve reliable, low-latency motion capture
integration. However, with multiple vehicles this meant that one serial port was needed for every
one vehicle receiving data. Six UART (serial) senders were needed (five vehicles, one payload). A
BeagleBone Black was used to receive the motion capture data packets over ethernet and construct
and send custom packets to the vehicles over XBee. The five hardware serial ports (and one USB
with a USB to XBee dongle) were used to achieve this. Therefore, these five ports needed to
be interfaced to five XBees on a ”cape” that fits into the GPIO pins of the BeagleBone Black.
Additionally, a kill switch needed to be integrated such that the XBees themselves could read the
state of a pin and transmit that to XBees on the vehicles, safely turning off when a kill switch is
toggled or after not receiving data for a configurable timeout value. Figure A.1 shows the 3D view
of the PCB and Figure A.2 shows the schematic.

A.1.2 XBee Kill Switch

On the receiving side of the kill switch messages over XBees is the XBee Kill Switch PCB.
This board is on the quadrotor and serves two purposes. First, it connects to the BeagleBone Blue
running the flight controller, receiving power and connecting the onboard XBee UART signal to it.
Second, it optionally passes through the PWM signals from the BeagleBone Blue to the ESCs to

1https://tinyurl.com/2ncv8rae

107

Figure A.1: Relay cape 3D view

act as a kill switch. Logical AND gates are used alongside a signal from the XBee to control this.
When the GCS operator flips a switch on the Relay Cape PCB, this signal get mirrored on the XBee
Kill Switch board, passing GND to the ESCs and turning off the motors. This also occcurs when a
timeout on communication loss is reach, acting as a deadman’s switch. Figure A.3 shows the 3D
view and Figure A.4 shows the schematic of the PCB.

A.1.3 Instrumented Payload Interface Board

The instrumented payload developed to support the research of Chapter 4 involved the use of
several different electronic subsystems. A BeagleBone Blue acted as the main computer but needed
to interface with five tension sensors and associated ADCs, a haptic force validation sensor, and be
powered by an onboard LiPo battery. Moreover, all of this needed to be neatly contained within
a lightweight Styrofoam sphere. Therefore, an interface board was developed to assist in these
connections. Specifically, this board mounts to a 3D printed piece that houses the BeagleBone Blue
and LiPo battery and it interfaces between the BeagleBone Blue and five inline tension sensors.
Figure A.5 shows the 3D view and Figure A.6 shows the schematic of the PCB.

108

Figure A.2: Relay cape schematic

109

Figure A.3: XBee kill switch 3D view

110

Figure A.4: XBee kill switch schematic

111

Figure A.5: Instrumented payload interface board 3D view

112

Figure A.6: Instrumented payload interface board schematic

113

APPENDIX B

Local to Global Deviation Supplemental Derivation

Verification of Zero Dg Equation Term
Here we show that

[
(I−W)−1 −α

]
PL,HT = 0

(I−W)−1 =

[
A B

C D

]−1

=

[
E F

G H

]

Block matrix inversion indicates:

E = A−1 +A−1B
(
D−CA−1B

)−1
CA−1

F = −A−1B
(
D−CA−1B

)−1

G = −
(
D−CA−1B

)−1
CA−1

H =
(
D−CA−1B

)−1

We can then assign A,B,C,D block matrices as:

A = I3, B = 03×(n−3)

C =

−w4,1 −w4,2 −w4,3

...
...

...
−wn,1 −wn,2 −wn,3

 , D =

1 . . . −w4,n

...
−wn,4 . . . 1

114

Since PL,HT has only three non-zero entries we can ignore F and H, and obtain the other two
matrices as:

E = A−1 +A−1B
(
D−CA−1B

)−1
CA−1

= A−1 = I3

G = −
(
D−CA−1B

)−1
CA−1

= −D−1C

= −

−1 . . . w4,n

...
wn,4 . . . −1

−1

w4,1 w4,2 w4,3

...
...

...
wn,1 wn,2 wn,3

Rastgoftar [27] has shown that the above expression is equal to a matrix of α parameters:

G =

α4,1 α4,2 α4,3

...
...

...
αn,1 αn,2 αn,3

Assembling the final system gives:

(In −W)−1 =

I3 × . . . ×

α4,1 α4,2 α4,3 × . . . ×
...

...
...

...
αn,1 αn,2 αn,3 × . . . ×

α =

I3 03×(n−3)

α4,1 α4,2 α4,3 01×(n−3)

...
...

...
...

αn,1 αn,2 αn,3 01×(n−3)

PL,HT =

[
r1,HT r2,HT r3,HT 02×(n−3)

]T
Therefore,

[
(I−W)−1 −α

]
PL,HT = 0

115

B.1 Maximizing the Global Deviation Norm

Maximizing the square of the norm is equivalent to maximizing the norm, so:

∥ri,HT − ri∥2

=

[
n∑

m=1

Ki,mηm cos βm

]2
+

[
n∑

m=1

Ki,mηm sin βm

]2

=
n∑

m=1

(Ki,mηm cos βm)
2 +

n∑
m=1

(Ki,mηm sin βm)
2

+ 2
n∑

m=1

n∑
t=m+1

(Ki,mηm cos βm) (Ki,tηt cos βt)

+ 2
n∑

m=1

n∑
t=m+1

(Ki,mηm sin βm) (Ki,tηt sin βt)

=
n∑

m=1

K2
i,mη

2
m

+ 2
n∑

m=1

n∑
t=m+1

Ki,mKi,tηmηt (cos βm cos βt + sin βm sin βt)

Since all entries of K are non-negative, this expression is maximized when βm = βt∀m, t and
ηm = δm,l∀m. Thus,

δg,i =

√√√√ n∑
m=1

K2
i,mδ

2
m,l + 2

n∑
m=1

n∑
t=m+1

Ki,mKi,tδm,lδt,l

=

√√√√(n∑
m=1

Ki,mδm,l

)2

=
n∑

m=1

Ki,mδm,l

and then dg = Kdl.

116

BIBLIOGRAPHY

[1] “Unmanned aircraft system traffic management (utm),” https://www.faa.gov/uas/research
development/traffic management/, 2021, accessed: 2022-03-17.

[2] I. A. S, ucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,” IEEE
Robotics& Automation Magazine, vol. 19, no. 4, pp. 72–82, 12 2012.

[3] D. C. De Oliveira and M. A. Wehrmeister, “Using deep learning and low-cost rgb and thermal
cameras to detect pedestrians in aerial images captured by multirotor uav,” Sensors, vol. 18,
no. 7, p. 2244, 2018.

[4] A. E. Jimenez-Cano, P. J. Sanchez-Cuevas, P. Grau, A. Ollero, and G. Heredia, “Contact-
based bridge inspection multirotors: Design, modeling, and control considering the ceiling
effect,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3561–3568, 2019.

[5] R. A. Stuckey, “Mathematical modelling of helicopter slung-load systems,” DEFENCE
SCIENCE AND TECHNOLOGY ORGANISATION VICTORIA (AUSTRALIA . . . , Tech.
Rep., 2001.

[6] Z. Li, Z. Duan, W. Ren, and G. Feng, “Containment control of linear multi-agent systems with
multiple leaders of bounded inputs using distributed continuous controllers,” International
Journal of Robust and Nonlinear Control, vol. 25, no. 13, pp. 2101–2121, 2015.

[7] C. B. Low and Q. San Ng, “A flexible virtual structure formation keeping control for fixed-
wing uavs,” in Control and Automation (ICCA), 2011 9th IEEE Intl. Conf. on. IEEE, 2011,
pp. 621–626.

[8] Y. Cao, D. Stuart, W. Ren, and Z. Meng, “Distributed containment control for multiple
autonomous vehicles with double-integrator dynamics: algorithms and experiments,” IEEE
Transactions on Control Systems Technology, vol. 19, no. 4, pp. 929–938, 2011.

[9] H. Rastgoftar, Continuum deformation of multi-agent systems. Springer, 2016.

[10] J. Geng and J. W. Langelaan, “Cooperative transport of a slung load using load-leading
control,” Journal of Guidance, Control, and Dynamics, p. 1–19, Mar 2020. [Online].
Available: http://dx.doi.org/10.2514/1.G004680

[11] T. Lee, “Geometric control of quadrotor uavs transporting a cable-suspended rigid body,”
IEEE Transactions on Control Systems Technology, vol. 26, no. 1, p. 255–264, Jan 2018.
[Online]. Available: http://dx.doi.org/10.1109/TCST.2017.2656060

117

https://www.faa.gov/uas/research_development/traffic_management/
https://www.faa.gov/uas/research_development/traffic_management/
http://dx.doi.org/10.2514/1.G004680
http://dx.doi.org/10.1109/TCST.2017.2656060

[12] H. Rastgoftar and E. M. Atkins, “Cooperative aerial payload transport guided by an in situ
human supervisor,” IEEE Transactions on Control Systems Technology, vol. 27, no. 4, pp.
1452–1467, 2018. [Online]. Available: https://doi.org/10.1109/TCST.2018.2832598

[13] A. A. Neto, D. G. Macharet, and M. F. Campos, “Feasible RRT-based path planning using
seventh order Bézier curves,” IEEE/RSJ 2010 International Conference on Intelligent Robots
and Systems, IROS 2010 - Conference Proceedings, pp. 1445–1450, 2010.

[14] Z. Liang, H. Rastgoftar, and E. M. Atkins, “Multi-quadcopter team leader path
planning using particle swarm optimization,” Jun 2019. [Online]. Available: http:
//dx.doi.org/10.2514/6.2019-3258

[15] M. Romano, “M330-quadrotor documentation,” https://bit.ly/3Dkmm7T, 2021.

[16] beagleboard, “librobotcontrol,” https://github.com/beagleboard/librobotcontrol, 2014.

[17] A. Chovancová, T. Fico, P. Hubinskỳ, and F. Duchoň, “Comparison of various
quaternion-based control methods applied to quadrotor with disturbance observer and
position estimator,” Robotics and Autonomous Systems, vol. 79, pp. 87–98, 2016. [Online].
Available: https://doi.org/10.1016/j.robot.2016.01.011

[18] E. Fresk and G. Nikolakopoulos, “Full quaternion based attitude control for a quadrotor,” in
2013 European control conference (ECC). IEEE, 2013, pp. 3864–3869. [Online]. Available:
https://doi.org/10.23919/ECC.2013.6669617

[19] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,”
in 2011 IEEE international conference on robotics and automation. IEEE, 2011, pp.
2520–2525.

[20] M. Romano, Y. Chen, P. Kuevor, O. Marshall, and E. Atkins, “Nailed it: Autonomous roofing
with a nailgun-equipped octocopter,” in AIAA AVIATION 2021 FORUM, 2021, p. 3211.

[21] M. Romano, “Tethered payload,” https://bit.ly/3BVfX43, 2021.

[22] J. Qin, W. X. Zheng, H. Gao, Q. Ma, and W. Fu, “Containment control for second-order
multiagent systems communicating over heterogeneous networks,” IEEE transactions on
neural networks and learning systems, 2017.

[23] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle cooperative
control,” IEEE Control Systems, vol. 27, no. 2, pp. 71–82, 2007.

[24] H. Rastgoftar and S. Jayasuriya, “Evolution of multi-agent systems as continua,” J. Dynamic
Sys., Meas., & Control, vol. 136, no. 4, 2014.

[25] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of
distributed multi-agent coordination,” IEEE Trans. on Industrial informatics, vol. 9, no. 1,
pp. 427–438, 2013.

118

https://doi.org/10.1109/TCST.2018.2832598
http://dx.doi.org/10.2514/6.2019-3258
http://dx.doi.org/10.2514/6.2019-3258
https://doi.org/10.1016/j.robot.2016.01.011
https://doi.org/10.23919/ECC.2013.6669617

[26] N. Rahbari-Asr, U. Ojha, Z. Zhang, and M.-Y. Chow, “Incremental welfare consensus
algorithm for cooperative distributed generation/demand response in smart grid,” IEEE
Transactions on Smart Grid, vol. 5, no. 6, pp. 2836–2845, 2014.

[27] H. Rastgoftar and E. M. Atkins, “Continuum deformation of multi-agent systems under di-
rected communication topologies,” Journal of Dynamic Systems, Measurement, and Control,
vol. 139, no. 1, 2017.

[28] W. Ren and R. W. Beard, “Decentralized scheme for spacecraft formation flying via the
virtual structure approach,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 1, pp.
73–82, 2004.

[29] Y. Liu and Z. Geng, “Finite-time formation control for linear multi-agent systems: A motion
planning approach,” Systems & Control Letters, vol. 85, pp. 54–60, 2015.

[30] Z. Yang, J. Xiang, and Y. Li, “Distributed consensus based supply-demand balance algorithm
for economic dispatch problem in a smart grid with switching graph,” IEEE Trans. on Indust.
Electronics, 2016.

[31] S. Rao and D. Ghose, “Sliding mode control-based autopilots for leaderless consensus of
unmanned aerial vehicles,” IEEE transactions on control systems technology, vol. 22, no. 5,
pp. 1964–1972, 2014.

[32] W. Ren, “Distributed leaderless consensus algorithms for networked euler–lagrange systems,”
Intl. J. of Control, vol. 82, no. 11, 2009.

[33] J. Han and Y. Chen, “Multiple uav formations for cooperative source seeking and contour
mapping of a radiative signal field,” Journal of Intelligent & Robotic Systems, vol. 74, no.
1-2, pp. 323–332, 2014.

[34] J. A. Guerrero, P. Castillo, S. Salazar, and R. Lozano, “Mini rotorcraft flight formation
control using bounded inputs,” Journal of intelligent & robotic systems, vol. 65, no. 1-4, pp.
175–186, 2012.

[35] Q. Song, J. Cao, and W. Yu, “Second-order leader-following consensus of nonlinear multi-
agent systems via pinning control,” Systems & Control Letters, vol. 59, no. 9, pp. 553–562,
2010.

[36] L. Xu, H. Fan, Z. Dong, and W. Wang, “Robust consensus control for leader-following multi-
agent system under switching topologies,” in 2016 International Conference on Cybernetics,
Robotics and Control (CRC). IEEE, 2016, pp. 27–31.

[37] A. Drak, M. Hejase, M. ElShorbagy, A. Wahyudie, and H. Noura, “Autonomous formation
flight algorithm and platform for quadrotor uavs,” Intl. J. of Robotics & Mech., vol. 1, no. 4,
pp. 124–132, 2014.

[38] T. Namerikawa, Y. Kuriki, and A. Khalifa, “Consensus-based cooperative formation control
for multiquadcopter system with unidirectional network connections,” Journal of Dynamic
Systems, Measurement, and Control, vol. 140, no. 4, p. 044502, 2018.

119

[39] N. Nigam, S. Bieniawski, I. Kroo, and J. Vian, “Control of multiple uavs for persistent
surveillance: algorithm and flight test results,” IEEE Trans. on Cont. Systems Tech., vol. 20,
no. 5, pp. 1236–1251, 2012.

[40] J. Han, Y. Xu, L. Di, and Y. Chen, “Low-cost multi-uav technologies for contour mapping
of nuclear radiation field,” Journal of Intelligent & Robotic Systems, vol. 70, no. 1-4, pp.
401–410, 2013.

[41] H. Rastgoftar, H. G. Kwatny, and E. M. Atkins, “Asymptotic tracking and robustness of mas
transitions under a new communication topology,” IEEE Trans. on Automation Science and
Engineering, 2016.

[42] P. Holoborodko, “Smooth noise robust differentiators,”
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-
low-noise-differentiators/, 2008.

[43] G. Wu and K. Sreenath, “Geometric control of multiple quadrotors transporting a rigid-body
load,” in 53rd IEEE Conference on Decision and Control, 2014, pp. 6141–6148. [Online].
Available: https://doi.org/10.1109/CDC.2014.7040351

[44] T. Lee, K. Sreenath, and V. Kumar, “Geometric control of cooperating multiple quadrotor
uavs with a suspended payload,” in 52nd IEEE Conference on Decision and Control, 2013,
pp. 5510–5515. [Online]. Available: https://doi.org/10.1109/CDC.2013.6760757

[45] H. Rastgoftar and E. M. Atkins, “Cooperative aerial lift and manipulation (calm),”
Aerospace Science and Technology, vol. 82–83, p. 105–118, Nov 2018. [Online]. Available:
http://dx.doi.org/10.1016/j.ast.2018.09.005

[46] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation with
aerial robots,” Autonomous Robots, vol. 30, no. 1, p. 73–86, Sep 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10514-010-9205-0

[47] K. Sreenath and V. Kumar, “Dynamics, control and planning for cooperative manipulation of
payloads suspended by cables from multiple quadrotor robots,” rn, vol. 1, no. r2, p. r3, 2013.

[48] J. Enciu and J. F. Horn, “Flight performance optimization of a multilift rotorcraft
formation,” Journal of Aircraft, vol. 54, no. 4, pp. 1521–1538, 2017. [Online]. Available:
https://doi.org/10.2514/1.C034111

[49] M. D. Takahashi, M. S. Whalley, M. G. Berrios, and G. J. Schulein, “Flight validation of a
system for autonomous rotorcraft multilift,” Journal of the American Helicopter Society,
vol. 64, no. 3, pp. 1–13, 2019. [Online]. Available: https://doi.org/10.4050/JAHS.64.032001

[50] R. M. Murray, “Recent Research in Cooperative Control of Multivehicle Systems,” Journal
of Dynamic Systems, Measurement, and Control, vol. 129, no. 5, pp. 571–583, 05 2007.
[Online]. Available: https://doi.org/10.1115/1.2766721

120

https://doi.org/10.1109/CDC.2014.7040351
https://doi.org/10.1109/CDC.2013.6760757
http://dx.doi.org/10.1016/j.ast.2018.09.005
http://dx.doi.org/10.1007/s10514-010-9205-0
https://doi.org/10.2514/1.C034111
https://doi.org/10.4050/JAHS.64.032001
https://doi.org/10.1115/1.2766721

[51] M. Ji, G. Ferrari-Trecate, M. Egerstedt, and A. Buffa, “Containment control in mobile
networks,” IEEE Transactions on Automatic Control, vol. 53, no. 8, pp. 1972–1975, 2008.
[Online]. Available: https://doi.org/10.1109/TAC.2008.930098

[52] C. B. Low and Q. S. Ng, “A flexible virtual structure formation keeping control for fixed-wing
uavs,” in 2011 9th IEEE International Conference on Control and Automation (ICCA), 2011,
pp. 621–626. [Online]. Available: https://doi.org/10.1109/ICCA.2011.6137876

[53] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle cooperative
control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71–82, 2007. [Online].
Available: https://doi.org/10.1109/MCS.2007.338264

[54] H. Rastgoftar and E. M. Atkins, “Continuum Deformation of Multi-Agent Systems
Under Directed Communication Topologies,” Journal of Dynamic Systems, Measurement,
and Control, vol. 139, no. 1, 09 2016, 011002. [Online]. Available: https:
//doi.org/10.1115/1.4033866

[55] I. Maza, K. Kondak, M. Bernard, and A. Ollero, “Multi-uav cooperation and control for load
transportation and deployment,” Journal of Intelligent and Robotic Systems, vol. 57, no. 1–4,
p. 417–449, Aug 2009. [Online]. Available: http://dx.doi.org/10.1007/s10846-009-9352-8

[56] F. A. Goodarzi and T. Lee, “Stabilization of a rigid body payload with multiple cooperative
quadrotors,” Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 12, Aug
2016. [Online]. Available: http://dx.doi.org/10.1115/1.4033945

[57] A. Tagliabue, M. Kamel, R. Siegwart, and J. Nieto, “Robust collaborative
object transportation using multiple mavs,” The International Journal of Robotics
Research, vol. 38, no. 9, p. 1020–1044, Jun 2019. [Online]. Available: http:
//dx.doi.org/10.1177/0278364919854131

[58] M. Zürn, K. Morton, A. Heckmann, A. McFadyen, S. Notter, and F. Gonzalez, “Mpc
controlled multirotor with suspended slung load: System architecture and visual load
detection,” in 2016 IEEE Aerospace conference. IEEE, 2016, pp. 1–11. [Online]. Available:
https://doi.org/10.1109/AERO.2016.7500543

[59] D. E. Whitney, “Force feedback control of manipulator fine motions,” Journal of Dynamic
Systems, Measurement, and Control, vol. 99, no. 2, p. 91–97, Jun 1977. [Online]. Available:
http://dx.doi.org/10.1115/1.3427095

[60] A. Q. Keemink, H. van der Kooij, and A. H. Stienen, “Admittance control for physical
human–robot interaction,” The International Journal of Robotics Research, vol. 37, no. 11, p.
1421–1444, Apr 2018. [Online]. Available: http://dx.doi.org/10.1177/0278364918768950

[61] L. Bascetta, G. Ferretti, G. Magnani, and P. Rocco, “Walk-through programming for robotic
manipulators based on admittance control,” Robotica, vol. 31, no. 7, p. 1143–1153, May
2013. [Online]. Available: http://dx.doi.org/10.1017/S0263574713000404

121

https://doi.org/10.1109/TAC.2008.930098
https://doi.org/10.1109/ICCA.2011.6137876
https://doi.org/10.1109/MCS.2007.338264
https://doi.org/10.1115/1.4033866
https://doi.org/10.1115/1.4033866
http://dx.doi.org/10.1007/s10846-009-9352-8
http://dx.doi.org/10.1115/1.4033945
http://dx.doi.org/10.1177/0278364919854131
http://dx.doi.org/10.1177/0278364919854131
https://doi.org/10.1109/AERO.2016.7500543
http://dx.doi.org/10.1115/1.3427095
http://dx.doi.org/10.1177/0278364918768950
http://dx.doi.org/10.1017/S0263574713000404

[62] C. Carignan, J. Tang, and S. Roderick, “Development of an exoskeleton haptic
interface for virtual task training,” in 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2009, pp. 3697–3702. [Online]. Available:
https://doi.org/10.1109/IROS.2009.5354834

[63] W. Huo, J. Huang, Y. Wang, J. Wu, and L. Cheng, “Control of upper-limb power-assist
exoskeleton based on motion intention recognition,” in 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 2243–2248. [Online]. Available:
https://doi.org/10.1109/ICRA.2011.5980483

[64] H. Kim, L. M. Miller, Z. Li, J. R. Roldan, and J. Rosen, “Admittance control of an upper
limb exoskeleton - reduction of energy exchange,” in 2012 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 6467–6470. [Online].
Available: https://doi.org/10.1109/EMBC.2012.6347475

[65] F. Augugliaro and R. D’Andrea, “Admittance control for physical human-quadrocopter
interaction,” in 2013 European Control Conference (ECC), 2013, pp. 1805–1810. [Online].
Available: https://doi.org/10.23919/ECC.2013.6669643

[66] K. Kaneko, F. Kanehiro, M. Morisawa, E. Yoshida, and J.-P. Laumond, “Disturbance
observer that estimates external force acting on humanoid robots,” in 2012 12th IEEE
International Workshop on Advanced Motion Control (AMC), 2012, pp. 1–6. [Online].
Available: https://doi.org/10.1109/AMC.2012.6197026

[67] B. Yüksel, C. Secchi, H. H. Bülthoff, and A. Franchi, “A nonlinear force observer for
quadrotors and application to physical interactive tasks,” in 2014 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics, 2014, pp. 433–440. [Online]. Available:
https://doi.org/10.1109/AIM.2014.6878116

[68] S. Waslander and C. Wang, “Wind disturbance estimation and rejection for quadrotor position
control,” in AIAA Infotech@Aerospace Conference. American Institute of Aeronautics and
Astronautics, Apr 2009, pp. 1–14. [Online]. Available: http://dx.doi.org/10.2514/6.2009-1983

[69] D. Lee, K. D. Kumar, and M. Sinha, “Fault detection and recovery of spacecraft formation
flying using nonlinear observer and reconfigurable controller,” Acta Astronautica, vol. 97, p.
58–72, Apr 2014. [Online]. Available: http://dx.doi.org/10.1016/j.actaastro.2013.12.002

[70] R. G. Lyons, Understanding digital signal processing, 3/E. Pearson, 2004.

[71] L. Meier, “Mavlink – micro air vehicle message marshalling library.”
https://github.com/mavlink/mavlink, 2009.

[72] R. W. Beard, “Quadrotor dynamics and control,” Brigham Young University, vol. 19, no. 3,
pp. 46–56, 2008.

[73] M. Romano, “coop payload sim,” https://gitlab.eecs.umich.edu/mmroma/coop payload sim,
2020.

122

https://doi.org/10.1109/IROS.2009.5354834
https://doi.org/10.1109/ICRA.2011.5980483
https://doi.org/10.1109/EMBC.2012.6347475
https://doi.org/10.23919/ECC.2013.6669643
https://doi.org/10.1109/AMC.2012.6197026
https://doi.org/10.1109/AIM.2014.6878116
http://dx.doi.org/10.2514/6.2009-1983
http://dx.doi.org/10.1016/j.actaastro.2013.12.002

[74] P. P. Brown and D. F. Lawler, “Sphere drag and settling velocity revisited,” Journal
of environmental engineering, vol. 129, no. 3, pp. 222–231, 2003. [Online]. Available:
https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(222)

[75] B. Davoudi, E. Taheri, K. Duraisamy, B. Jayaraman, and I. Kolmanovsky, “Quad-rotor flight
simulation in realistic atmospheric conditions,” AIAA Journal, vol. 58, no. 5, p. 1992–2004,
May 2020. [Online]. Available: http://dx.doi.org/10.2514/1.J058327

[76] J. Svacha, K. Mohta, and V. Kumar, “Improving quadrotor trajectory tracking
by compensating for aerodynamic effects,” in 2017 International Conference on
Unmanned Aircraft Systems (ICUAS). IEEE, 2017, pp. 860–866. [Online]. Available:
https://doi.org/10.1109/ICUAS.2017.7991501

[77] M. Romano, “Cooperative transportation of a slung load using haptic guidance,”
https://www.youtube.com/watch?v=22yr16A7ELs, 2021.

[78] D. Romero, “California had nation’s worst fire season in 2018,” https://www.nbcnews.com/
news/us-news/california-had-nation-s-worst-fire-season-2018-n981431, 2018, accessed:
2020-09-14.

[79] J. Hempstead, “Afrl - swarm and search ai competition,” https://www.wbi-innovates.com/
blogs/post/2019-swarm-search-ai-challenge-fire-hack-press-kit, 2020, accessed: 2020-09-
14.

[80] M. Duquette, “Effects-level models for UAV simulation,” in AIAA Modeling and Simulation
Technologies Conference. American Institute of Aeronautics and Astronautics, Aug 2009.
[Online]. Available: https://doi.org/10.2514/6.2009-6139

[81] “Github - amase software,” https://github.com/afrl-rq/OpenAMASE, 2020, accessed: 2020-
09-14.

[82] I. Maza, A. Ollero, E. Casado, and D. Scarlatti, “Classification of multi-UAV architectures,”
in Handbook of Unmanned Aerial Vehicles. Springer Netherlands, Aug. 2014, pp. 953–975.
[Online]. Available: https://doi.org/10.1007/978-90-481-9707-1 119

[83] H. X. Pham, H. M. La, D. Feil-Seifer, and M. Deans, “A distributed control framework
for a team of unmanned aerial vehicles for dynamic wildfire tracking,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, Sep 2017, pp.
6648–6653. [Online]. Available: http://dx.doi.org/10.1109/IROS.2017.8206579

[84] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized auctions for robust
task allocation,” IEEE transactions on robotics, vol. 25, no. 4, pp. 912–926, 2009.

[85] S. Ismail and L. Sun, “Decentralized hungarian-based approach for fast and scalable task
allocation,” in 2017 International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2017, pp. 23–28.

123

https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(222)
http://dx.doi.org/10.2514/1.J058327
https://doi.org/10.1109/ICUAS.2017.7991501
https://www.nbcnews.com/news/us-news/california-had-nation-s-worst-fire-season-2018-n981431
https://www.nbcnews.com/news/us-news/california-had-nation-s-worst-fire-season-2018-n981431
https://www.wbi-innovates.com/blogs/post/2019-swarm-search-ai-challenge-fire-hack-press-kit
https://www.wbi-innovates.com/blogs/post/2019-swarm-search-ai-challenge-fire-hack-press-kit
https://doi.org/10.2514/6.2009-6139
https://github.com/afrl-rq/OpenAMASE
https://doi.org/10.1007/978-90-481-9707-1_119
http://dx.doi.org/10.1109/IROS.2017.8206579

[86] L. Merino, F. Caballero, J. R. Martı́nez-de Dios, J. Ferruz, and A. Ollero, “A cooperative
perception system for multiple uavs: Application to automatic detection of forest fires,”
Journal of Field Robotics, vol. 23, no. 3-4, pp. 165–184, 2006.

[87] P. Schmuck and M. Chli, “Multi-UAV collaborative monocular SLAM,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, May 2017, pp.
3863–3870. [Online]. Available: https://doi.org/10.1109/icra.2017.7989445

[88] J. Gancet, G. Hattenberger, R. Alami, and S. Lacroix, “Task planning and control for a
multi-uav system: architecture and algorithms,” in 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2005, pp. 1017–1022. [Online]. Available:
http://dx.doi.org/10.1109/IROS.2005.1545217

[89] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents,” American Journal of mathematics,
vol. 79, no. 3, pp. 497–516, 1957.

[90] M. Shanmugavel, A. Tsourdos, B. A. White, and R. Żbikowski, “Differential Geometric Path
Planning of Multiple UAVs,” Journal of Dynamic Systems, Measurement, and Control, vol.
129, no. 5, pp. 620–632, 01 2007. [Online]. Available: https://doi.org/10.1115/1.2767657

[91] S. Hota and D. Ghose, “Optimal geometrical path in 3d with curvature constraint,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2010, pp.
113–118.

[92] H. Chitsaz and S. M. LaValle, “Time-optimal paths for a dubins airplane,” in Decision and
Control, 2007 46th IEEE Conference on. Piscataway, NJ: IEEE, 2007, pp. 2379–2384.

[93] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-query path
planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Confer-
ence on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2.
IEEE, 2000, pp. 995–1001.

[94] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (bit*): Sampling-
based optimal planning via the heuristically guided search of implicit random geometric
graphs,” in 2015 IEEE international conference on robotics and automation (ICRA). IEEE,
2015, pp. 3067–3074.

[95] E. I. Grøtli and T. A. Johansen, “Path planning for UAVs under communication constraints us-
ing SPLAT! and MILP,” Journal of Intelligent and Robotic Systems: Theory and Applications,
vol. 65, no. 1-4, pp. 265–282, 2012.

[96] J. L. Foo, J. Knutzon, V. Kalivarapu, J. Oliver, and E. Winer, “Path planning of unmanned
aerial vehicles using b-splines and particle swarm optimization,” Journal of aerospace
computing, Information, and communication, vol. 6, no. 4, pp. 271–290, 2009.

[97] H.-b. Duan, X.-y. Zhang, J. Wu, and G.-j. Ma, “Max-min adaptive ant colony optimiza-
tion approach to multi-uavs coordinated trajectory replanning in dynamic and uncertain
environments,” Journal of Bionic Engineering, vol. 6, no. 2, pp. 161–173, 2009.

124

https://doi.org/10.1109/icra.2017.7989445
http://dx.doi.org/10.1109/IROS.2005.1545217
https://doi.org/10.1115/1.2767657

[98] M. Hwangbo, J. Kuffner, and T. Kanade, “Efficient two-phase 3d motion planning for small
fixed-wing uavs,” in Proceedings 2007 IEEE International Conference on Robotics and
Automation, 2007, pp. 1035–1041.

[99] M. Quigley, B. Barber, S. Griffiths, and M. Goodrich, “Towards real-world
searching with fixed-wing mini-UAVs,” in 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2005, pp. 3028–3033. [Online]. Available:
http://ieeexplore.ieee.org/document/1545051/

[100] Z. Qi, Z. Shao, Y. S. Ping, L. M. Hiot, and Y. K. Leong, “An improved heuristic algorithm for
UAV path planning in 3D environment,” Proceedings - 2010 2nd International Conference
on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2010, vol. 2, pp. 258–261,
2010.

[101] X. Li, J. Xie, M. Cai, M. Xie, and Z. Wang, “Path planning for UAV based on improved
heuristic A* algorithm,” ICEMI 2009 - Proceedings of 9th International Conference on
Electronic Measurement and Instruments, vol. 3, pp. 3488–3493, 2009.

[102] Wright Brothers Institute, “AFRL - Automatic Collision Avoidance Technol-
ogy (ACAT),” https://www.wpafb.af.mil/Welcome/Fact-Sheets/Display/Article/1578307/
afrl-automatic-collision-avoidance-technology-acat/, 2020, accessed: 2020-09-14.

[103] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics
and Autonomous Systems, vol. 61, no. 12, p. 1258–1276, Dec 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.robot.2013.09.004

[104] H. Choset, “Coverage for robotics – a survey of recent results,” Annals of Mathematics
and Artificial Intelligence, vol. 31, no. 1, pp. 113–126, Oct 2001. [Online]. Available:
https://doi.org/10.1023/A:1016639210559

[105] A. Khan, I. Noreen, and Z. Habib, “On complete coverage path planning algorithms for
non-holonomic mobile robots: Survey and challenges,” J. Inf. Sci. Eng., vol. 33, pp. 101–121,
2017.

[106] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient boustrophedon
multi-robot coverage: an algorithmic approach,” Annals of Mathematics and
Artificial Intelligence, vol. 52, no. 2, pp. 109–142, Apr 2008. [Online]. Available:
https://doi.org/10.1007/s10472-009-9120-2

[107] A. Ahmadzadeh, J. Keller, G. Pappas, A. Jadbabaie, and V. Kumar, “An optimization-based
approach to time-critical cooperative surveillance and coverage with uavs,” in Experimental
Robotics: The 10th International Symposium on Experimental Robotics, O. Khatib,
V. Kumar, and D. Rus, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
491–500. [Online]. Available: https://doi.org/10.1007/978-3-540-77457-0 46

[108] I. Maza and A. Ollero, “Multiple uav cooperative searching operation using polygon area de-
composition and efficient coverage algorithms,” in Distributed Autonomous Robotic Systems
6, R. Alami, R. Chatila, and H. Asama, Eds. Tokyo: Springer Japan, 2007, pp. 221–230.

125

http://ieeexplore.ieee.org/document/1545051/
https://www.wpafb.af.mil/Welcome/Fact-Sheets/Display/Article/1578307/afrl-automatic-collision-avoidance-technology-acat/
https://www.wpafb.af.mil/Welcome/Fact-Sheets/Display/Article/1578307/afrl-automatic-collision-avoidance-technology-acat/
http://dx.doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1023/A:1016639210559
https://doi.org/10.1007/s10472-009-9120-2
https://doi.org/10.1007/978-3-540-77457-0_46

[109] M. A. Batalin and G. S. Sukhatme, “Spreading out: A local approach to multi-robot cov-
erage,” in Distributed Autonomous Robotic Systems 5, H. Asama, T. Arai, T. Fukuda, and
T. Hasegawa, Eds. Tokyo: Springer Japan, 2002, pp. 373–382.

[110] D. C. Guastella, L. Cantelli, G. Giammello, C. D. Melita, G. Spatino, and G. Muscato,
“Complete coverage path planning for aerial vehicle flocks deployed in outdoor environments,”
Computers & Electrical Engineering, vol. 75, pp. 189–201, 2019. [Online]. Available:
https://app.dimensions.ai/details/publication/pub.1112541809

[111] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics
quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[112] “Usgs - earth explorer,” https://earthexplorer.usgs.gov/, 2020, accessed: 2020-09-14.

[113] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceed-
ings. 1985 IEEE International Conference on Robotics and Automation, vol. 2. IEEE, 1985,
pp. 500–505.

[114] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed representation
approach,” The International Journal of Robotics Research, vol. 10, no. 6, pp. 628–649,
1991.

[115] C. I. Connolly, J. B. Burns, and R. Weiss, “Path planning using laplace’s equation,” in
Proceedings., IEEE International Conference on Robotics and Automation. IEEE, 1990, pp.
2102–2106.

[116] M. Romano, P. Kuevor, D. Lukacs, O. Marshall, M. Stevens, H. Rastgoftar, J. Cutler, and
E. Atkins, “Experimental evaluation of continuum deformation with a five quadrotor team,”
in 2019 American Control Conference (ACC). IEEE, 2019, pp. 2023–2029.

[117] Y. Liu and R. Bucknall, “A survey of formation control and motion planning of multiple
unmanned vehicles,” Robotica, vol. 36, no. 7, p. 1019–1047, 2018.

[118] H. Rastgoftar, E. M. Atkins, and I. V. Kolmanovsky, “Scalable vehicle team continuum
deformation coordination with eigen decomposition,” IEEE Transactions on Automatic
Control, vol. 67, no. 5, pp. 2514–2521, 2022.

[119] H. Rastgoftar, “Integration of a* search and classic optimal control for safe planning of
continuum deformation of a multi-quadcopter system,” IEEE Transactions on Aerospace and
Electronic Systems, pp. 1–1, 2022.

[120] M. N. Stevens and E. M. Atkins, “Layered geofences in complex airspace environments,” in
2018 Aviation Technology, Integration, and Operations Conference, 2018, p. 3348.

[121] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The
international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.

126

https://app.dimensions.ai/details/publication/pub.1112541809
https://earthexplorer.usgs.gov/

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Appendices
	List of Abbreviations
	List of Symbols
	Abstract
	Introduction
	Motivation
	Problem Statement
	Research Approach and Thesis Outline
	Contributions and Innovations

	Quadrotor Design, Instrumentation, and Automation Infrastructure
	Introduction
	M330-Quadrotor
	Hardware Description
	Quadrotor Model

	 Open Source Autopilot rc_pilot_a2sys
	Cascaded PID Controller
	Motor Mapping and Saturation

	Motion Capture Integration
	XBee vs. WiFi
	Six Simultaneous Senders

	Instrumented Payload
	Overview
	Force Sensor Calibration
	Tether Tension Sensor Data Processing
	Push Force Sensor Data Processing

	Conclusions and Future Work

	Distributed Quadrotor Deformable Formation Control
	Introduction
	Related Work
	Continuum Deformation Review
	Continuum Deformation Definition
	Continuum Deformation Acquisition
	Continuum Deformation Coordination Safety

	Generating the Leading Triangle Path
	Experimental Setup
	Experimental Results
	Determining Controller Error
	Five-Agent Flight: Followers with Pre-set Waypoints
	Five-Agent Flight: Followers with Local Communication

	Global Deviation Bound from Local
	Conclusion

	Cooperative Payload Transportation with Haptic Guidance
	Introduction
	Related Work
	Contributions and Outline

	Problem Statement
	Dynamics Model
	Vehicle Model
	Payload Model

	Control
	Payload Controller
	Quadrotor Controller

	User Force Estimation
	Payload Guidance with Admittance Control
	Experimental Setup
	System Level Description
	Instrumented Payload
	System Operation
	Quadrotor Vehicles
	Virtual Dynamics Parameter Selection

	Simulation Results
	Experimental Results
	User Force Estimation Validation
	Haptic Guidance Validation
	Full System Validation

	Conclusion

	Multi-UAS Wildfire Mapping
	Introduction
	Related Work
	Automation System Architectures
	Terrain Avoidance - 3D Safe Path Planning for Fixed-Wing UAS
	Multi-Vehicle Coverage Path Planning

	Problem Statement
	Multi-UAS Planning
	AMASE Wildfire Mapping Simulation Environment
	Task Planning
	Exploration Search Pattern
	SVM-Based Line Follower
	Altitude Aware Straight Line Planner (AASLP)

	Results
	Local Boundary Line Estimation
	Terrain Avoidance

	Discussion
	Conclusion

	Deformable Formation Path Planning
	Low-Level Vehicle Guidance
	Introduction
	Problem Statement
	Approach
	Safety Analysis
	Results
	Conclusion and Future Work

	High-Level Global Path Planning
	Introduction
	Related Work
	Problem Statement
	Approach
	Results
	Conclusion and Future Work

	Conclusion and Future Work
	Contributions
	Future Work

	Appendices
	Supplement to Hardware Description
	Printed Circuit Boards
	Relay Cape
	XBee Kill Switch
	Instrumented Payload Interface Board

	Local to Global Deviation Supplemental Derivation
	Maximizing the Global Deviation Norm

	Bibliography

