
Data-Driven Modeling of Compressible Reacting
Flow Using Hardware-Oriented Algorithms

by

Shivam Barwey

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2022

Doctoral Committee:

Professor Venkat Raman, Chair
Associate Professor Jesse Capecelatro
Professor Karthik Duraisamy
Assistant Professor Aaron Towne

Shivam Barwey
sbarwey@umich.edu

ORCID iD: 0000-0002-1717-1805

© Shivam Barwey 2022

Dedicated to my parents, Dinesh and Sangeeta Barwey.

ii

ACKNOWLEDGEMENTS

I would first like to thank my family for their invaluable support and encourage-

ment throughout this journey. Thank you for always finding a way to get my mind off

of research and de-stress when I most needed it. I always looked forward to coming

to Phoenix to visit (in winter, at least!).

This work would not have been possible without the support of the following

friends and co-workers. Andy, Chris, and Smriti – thank you for making my transition

to graduate school easier and fun. Malik, I am truly grateful for your guidance,

especially during my first few years as a doctoral student. I am indebted to you for

all of the time you took to help with my research, from high-level ideas to menial

code-related issues. Also, thank you for never failing to find the best accommodation

options at conferences (I had to say it). Alex, our shared enthusiasm over sports kept

me sane that first year when things were especially busy with coursework. Yihao,

thank you for answering all of my combustion-related questions and for giving me

the best movie recommendations (although I have yet to see Sharknado). Ral, Caleb,

Michael, Shivank, and Vansh – thank you for always being ready to get a coffee and

(more often than not) a beer. Your company has made the past few years fly by. Ral

– I have to thank you specifically for sharing in my suffering related to GPU solver

development, and, as much as you refuse to admit, for being my main reference on

detonation theory and numerics. Takuma, Negin, and Supraj – I am eternally grateful

for your friendship. Negin, our countless walks and conversations in the office were

highlights during my time in Ann Arbor. Supraj, there is not much to say at this

iii

point. After the memorable times in undergrad, going through this roller-coaster

of a Ph.D experience with you has been an honor. I will never forget the endless

nights working on papers, proposals, presentations, and codes – especially during the

disaster that was 2020!

I would like to thank the members of my dissertation committee – Professors

Karthik Duraisamy, Aaron Towne, and Jesse Capecelatro – for taking the time to

provide valuable technical feedback and advice related to the topics covered in this

dissertation.

Lastly, I must thank my advisor, Professor Venkat Raman. None of this would

have been possible without your motivation, encouragement, guidance, and patience.

Thank you for giving me the freedom to explore a wide variety of research problems,

and for always being open to discuss any idea, no matter how ridiculous or far-fetched

(looking back, this was often the case). You have taught me a great deal within and

beyond research – too much to list here. All I can say is that the dedication you show

to your work and to your students has inspired me immensely. I am truly lucky to

have you as an advisor and a friend.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

LIST OF TABLES . xxiii

LIST OF APPENDICES . xxiv

LIST OF ABBREVIATIONS . xxv

ABSTRACT .xxviii

CHAPTER

I. Simulations of Hypersonic Propulsion Devices 1

1.1 Introduction . 1
1.2 Next-Generation Hypersonic Propulsion Devices 4
1.3 Role of High-Fidelity Simulations 7
1.4 Computational Challenges for Reacting Flow Solvers 10

1.4.1 Spatial Resolution Constraints 11
1.4.2 Temporal Resolution Constraints 15
1.4.3 Treating Complex Geometries 18

1.5 Overview and Scope of Dissertation 19

II. Models for Accelerating High-Fidelity Reacting Flow Simu-
lations . 23

2.1 Introduction . 23
2.2 Governing Equations . 25

2.2.1 Chemical Source Term 26
2.2.2 Dynamical System Formulation 28

2.3 High-Performance Computing Trends 29

v

2.4 Physics-based Models . 36
2.4.1 Large-Eddy Simulation 38
2.4.2 Combustion Models 42
2.4.3 Adaptive Mesh Refinement 46
2.4.4 Approximate Inertial Manifolds (AIM) 49
2.4.5 Computational Singular Perturbation (CSP) 51
2.4.6 Operator Splitting 54
2.4.7 Summary and Limitations of Physics-Based Models 56

2.5 Data-Based Models . 58
2.5.1 Modal Decomposition via Space-Time Decoupling . 60
2.5.2 Proper Orthogonal Decomposition (POD) 62
2.5.3 Dynamic Mode Decomposition (DMD) 65
2.5.4 Cluster-based reduced-order modeling (CROM) . . 69
2.5.5 Nonlinear Projection via Autoencoders 71
2.5.6 Data-based Chemistry Tabulation 74
2.5.7 Field Transformation and Super-Resolution 77
2.5.8 Summary and Limitations of Data-based Models . . 79

2.6 Research Contribution of Dissertation 81
2.6.1 Distinction from Related Work in Physics-Informed

Modeling . 83

III. K-means Clustering and Motivational Reacting Flow Appli-
cations . 87

3.1 Introduction . 87
3.2 K-means Algorithm . 91
3.3 Properties of K-means Clustering 97

3.3.1 Comparison with Proper Orthogonal Decomposition 100
3.4 Cluster-Based Analysis and Prediction of Flame Transition in

Gas Turbine Combustors . 103
3.4.1 Background . 103
3.4.2 Experimental Configuration and Dataset 105
3.4.3 Cluster-Based ROM Methodology 107

3.4.3.1 Utilization of K-means Clustering 108
3.4.3.2 Transition Matrix 109
3.4.3.3 Forward Propagation Model 110

3.4.4 Labeling of Centroids 111
3.4.5 Analysis of the Transition Mechanism 114

3.4.5.1 Number of Clusters 115
3.4.5.2 Description of the Bistable State via Cen-

troids 117
3.4.5.3 Analysis of the Bistable Transition via

Transition Matrix 121
3.4.6 Prediction of Flame Transition 123

3.4.6.1 Determination of Prediction Horizon Time125

vi

3.4.6.2 Number of Clusters 125
3.4.6.3 Horizon Time Comparisons 128
3.4.6.4 Forward State Predictions 129

3.4.7 Summary and Conclusions 137
3.5 Time-Axis Clustering for Modeling Turbulent Reacting Flows 139

3.5.1 Background . 139
3.5.2 Methodology . 143

3.5.2.1 Space-Axis Versus Time-Axis 143
3.5.2.2 Decomposition Perspective 146

3.5.3 Time-Axis Decomposition 149
3.5.4 Demonstration of the Method 150
3.5.5 Summary and Conclusions 153

3.6 Conclusion . 154

IV. Data-driven Classification andModeling of Combustion Regimes
in Detonation Waves . 156

4.1 Introduction . 156
4.2 Description of Data . 160

4.2.1 Numerical Solver and Chemical Mechanism 160
4.2.2 Training and Testing Data 161

4.3 Regime Classification . 165
4.3.1 K-means Clustering Context 165
4.3.2 Clustering Results 167
4.3.3 Analysis of Time Evolution of Segmented Field . . . 172
4.3.4 Feature Importance in Flowfield Classification . . . 174

4.4 Source Term Regression . 180
4.4.1 ANN Architecture 181
4.4.2 ANN Results . 182

4.5 Conclusion . 188

V. Physics-Guided Clustering Strategies for Improved Flowfield
Classification . 191

5.1 Introduction . 191
5.2 Description of Data . 196
5.3 Jacobian-Scaled K-means Clustering 200

5.3.1 Differences from Other K-means Variants 204
5.3.2 Jacobian-Scaled K-means Algorithm 205
5.3.3 Localized Source Term Modeling 208
5.3.4 Scaling Procedure for Jacobian Regularization . . . 210
5.3.5 Results . 211

5.3.5.1 Toy Problem 211
5.3.5.2 Detonation Dataset: Analysis of Clusters 215

vii

5.3.5.3 Detonation Dataset: Source Term Pre-
dictions 227

5.4 Hierarchical K-means Strategy 232
5.4.1 Refinement Procedure 233
5.4.2 Results . 237

5.4.2.1 Toy Problem 237
5.4.2.2 Detonation Dataset 240

5.5 Conclusion . 246

VI. Summary, Conclusions, and Future Directions 250

6.1 Summary . 250
6.2 Conclusions . 255
6.3 Future Directions, Challenges, and Outlook 260

6.3.1 Next Steps for Classification-Based Regression Method-
ology . 260

6.3.2 Future Challenges and Recommendations 262
6.3.2.1 Integration with Flow Solvers 262
6.3.2.2 Integration with Other Models 263

6.3.3 Closing Remarks . 266

APPENDICES . 267

A. Derivation of Centroid Update Rule 268

A.1 Standard K-means . 270
A.2 Constant Scaling Factor . 271
A.3 Centroid-Dependent Scaling Factor 272

B. Matrix Formulations of Chemical Kinetics for Acceleration
on GPUs . 275

B.1 Methodology . 278
B.1.1 Matrix-Based Kinetics Equations 279
B.1.2 Organization of Data 286
B.1.3 Reaction Decomposition and Classification 287

B.2 GPU Performance Analysis 291
B.2.1 Compute Times and Throughput 293
B.2.2 Speedup . 298
B.2.3 Cost of Reaction Types 301
B.2.4 Improving Speedup for Large Mechanisms 304

C. GPU-Based Chemical Time Integration for Compressible Re-
acting Flow . 310

viii

C.1 Context and Overview . 311
C.2 Conventional CPU-based Algorithm 314

C.2.1 Cell-local Offloading Strategy 315
C.2.2 Single-Kernel Offloading Strategy 315

C.3 Vectorized GPU-based Algorithm 316
C.3.1 Static GPU Algorithm 317
C.3.2 Adaptive GPU Algorithm 318

C.4 Saturation and Speedup Trends 324
C.5 Performance Comparison . 327

BIBLIOGRAPHY . 333

ix

LIST OF FIGURES

Figure

1.1 Visualization of Moore’s Law in logarithm scale, where scatter points
reflect commerically-available hardware and black line reflects linear
fit (image licensed under CC-BY from https://ourworldindata.org). 2

1.2 Examples of modern applications that leverage multi-physics simula-
tion. (a) Prediction of contaminant dispersion in urban environments
(from Ref. [233]). (b) Determining safety bounds for Tokamak re-
actors, which are energy generation devices based on nuclear fusion
(from Ref. [104]). (c) Designing rotating detonation engines for hy-
personic propulsion (from Ref [282]). 4

1.3 (Left) Instantaneous flowfield within a rotating detonation engine
[274]. (Right) Instantaneous flowfield within a scramjet [30]. Thrust
vectors are given by the yellow arrows, and major flow features within
each device are labeled in the respective images. Both images were
generated using rendered snapshot data from UMReactingFlow [30],
a high-fidelity compressible reacting flow solver for full-geometry com-
bustors developed at the University of Michigan. 6

1.4 The scope of high-fidelity, full-geometry simulations in the applica-
tion context of driving better designs for propulsion devices like RDEs. 8

1.5 Examples of extreme events in combustion. (Left) Spontaneous
flame shape transition in lean premixed operating conditions (from
Ref. [10]), (Middle) High-altitude relight/ignition failure due to in-
distinguishable variations in turbulent inflow (from Ref. [123]). (Right)
Wave-splitting phenomena in RDEs, where one initial wave evolves
into two or more for same operating condition (from Ref. [297]). . . 9

1.6 (Left) Idealized detonation wave structure obtained from steady
state 1d solutions to the compressible Navier-Stokes equations us-
ing the hydrogen-air mechanism of Burke et al. [45]. Plot is in shock
reference frame, such that x=0 corresponds to the shock front – black
is pressure and blue is HO2 mass fraction. (Right) Peak detonation
pressure normalized by analytic value versus grid resolution obtained
from unsteady detonation simulations for three different mechanisms
(from Ref. [17]). 13

x

1.7 (Left) Comparison of acoustic versus chemical timescales obtained
at detonation fronts in high-fidelity RDE simulations using three dif-
ferent chemical mechanisms (adapted from Ref. [30]). (Right) Plot
of number of reactions versus number of species for detailed chemical
mechanisms used in high-fidelity reacting flow simulations (adapted
from Ref. [183]). 17

1.8 Mesh used for a single fuel injector geometry within a rotating deto-
nation engine simulation (from Ref. [30]). 19

1.9 Pathways for accelerating high-fidelity, full-gometry simulations of
compressible reacting flow. The scope of this dissertation is focused
on model-based acceleration (boxed in red). RDE and scramjet snap-
shots reproduced from Ref. [30]. 21

2.1 (Left) Evolution of theoretical peak performances for Intel Xeon
CPUs (black) and NVIDIA GPUs (blue) in both single precision
(empty squares) and double precision (filled circles) computing for-
mats from 2008 to present-day. (Right) Evolution of memory band-
width limitations for NVIDIA GPUs (filled circles) and Intel CPUs
(empty circles). Annotations provided for hardware used in NASA
Pleiades (CPU-based) and ORNL Summit (GPU-based) HPCs. Data
extracted from Intel and NVIDIA specification sheets. 31

2.2 (Left) Illustration of the coupling between research advances in AI
and data science, development of specialized hardware (i.e. GPUs),
and societal demands. (Right) State-of-the-art HPCs commissioned
by the USA Department of Energy. Underneath compute power (red
text), type of GPU used and total number of available GPUs is pro-
vided. Data and images obtained from Refs. [12, 227, 228]. 32

2.3 Illustration of heterogeneous node architecture used in Summit HPC.
Gray boxes denote IBM Power9 CPUs, green boxes denote NVIDIA
V100 GPUs, and arrows denote data transfer pathways. The GPUs
are responsible for roughly 98% of the node compute power. Repro-
duced from Ref. [241]. 33

2.4 (Left) Illustration of domain decomposition approach for a 2D square
geometry. Red lines indicates domain boundary, black lines indicate
subdomain overlap regions. (Right) Offloading procedure between
the CPU cores and GPU accelerators within the MPI+X paradigm.
For illustrative purposes, this figure assumes a one-to-one mapping
between core and GPU; this does not have to be the case in practice. 34

2.5 Flowchart for GPU-based finite-volume explicit compressible reacting
flow solver (based on UMReactingFlow [30]). Red boxes indicate
CPU-only evaluations (the bottlenecks). Blue boxes indicate areas
that should be offloaded to GPU. Flowchart operates under domain
decomposition framework of Fig. 2.4 and dynamical system of Eq. 2.12. 37

2.6 Interpretation of the effect of filtering in large-eddy simulations via
non-invertible linear operator A [165]. 40

xi

2.7 (Left) Example of a counterflow flame configuration used to derive
the flamelet equations. (Right) Output combustion model G, here
shown as a tabulation of progress variable source term in the enthalpy
(y-axis) and progress variable (x-axis) space. Both figures reproduced
from Ref. [331]. 45

2.8 Schematic of coarse grid and fine grid communication steps carried
out in block-structured AMR. Grid overlap region (blue) ideally con-
tains a propagating discontinuity. 48

2.9 (Left) Velocity field magnitude for resolved scales from direct nu-
merical simulations of homogeneous isotropic turbulence. (Right)
Modeled resolved scales using AIM approach. Reproduced from Ref. [6]. 52

2.10 Diagram of Strang splitting approach used to solve Eq. 2.12, where
t0 denotes the initial time, ∆t the simulation timestep, and τ the
chemical timescale. Dashed arrows indicate state initialization. . . . 55

2.11 Pathways for data-based reduced order model development within
the modal decomposition framework based on space-time decoupling. 62

2.12 Visualization of two DMD modes extracted from large-eddy simula-
tions of a model scramjet combustor (reproduced from Ref. [177]). . 68

2.13 (Left) Visualization of Voronoi tesselation produced by K-means in
a projected 2-dimensional space. Gray markers are data samples and
red markers are centroids. From Ref. [19] (Right) Transition matrix
visualization for flame transition prediction. Arrows indicate transi-
tion pathways, and brighter colored arrows mean higher probabilities.
From Ref. [18]. 70

2.14 Illustration of the basic difference between POD (left) and autoencoder-
based (right) compression. 73

2.15 (Left) Deploying an ANN as a stiff time integrator (Eq. 2.43, im-
age reproduced from Ref. [32]). (Right) Deploying ANN as an in-
stantaneous source term evaluator (Eq. 2.44, image reproduced from
Ref. [306]). 76

2.16 (Top) Applying field transformations via artifical neural networks to
recover three-component planar velocity fields from an input reacting
scalar field in a premixed gas turbine combustor (reproduced from
Ref. [21]). (Bottom) Illustration of GAN-based super-resolution
used for data-based turbulence closure modeling (repurposed from
Ref. [71]). 79

2.17 Overview and scope of research contribution in light of limitations in
standard modeling pathways. 82

2.18 Classification-based regression strategy for chemical source term es-
timation. 84

3.1 Taxonomy of data clustering algorithms reproduced from Saxena
et al. [299]. The focus of this dissertation is on K-means clustering,
which falls within the distance-based partitional category. 89

xii

3.2 MPI implementation of Alg. 1 following the method of Ref. [72].
Dataset properties are N = 108 and D = 20. Results are shown for
K = 5 (black) and K = 10 (red). 95

3.3 (Left) K-means clustering for moon dataset using K = 2. Small
markers denote data points, large markers denote centroids. (Mid-
dle) Spectral clustering output for moon dataset using K = 2. Small
markers denote data points, large markers denote locations of data
belonging to same cluster. (Right) K-means clustering for moon
dataset using K = 10. Colors denote cluster assignments, black
markers denote centroids. 99

3.4 (Left) Illustration of adaptive mesh refinement in physical space us-
ing finite volume based discretization. Refinement occurs in regions
of high flow gradients. (Right) 2D visualization of K-means out-
put performed on the Lorenz system [180]. Gray points denote data
samples, red points denote centroids, and black lines denote Voronoi
cells. Zoom-in on one Voronoi cell is shown to emphasize variation
in centroid-sample distances. 101

3.5 (Left) POD modes (dashed arrows and black markers) for a simple
2d ellipse dataset (gray markers). Center of ellipse is given by red
marker. (Right) K-means clustering (K = 10) on the same dataset.
Colors indicate cluster labels and centroids are given by dashed ar-
rows and black markers. 102

3.6 (a) DLR combustor schematic. The fuel consists of 80% CH4 and
20% CO2 by volume. (b) OH-PLIF snapshots of detached (top)
and attached (bottom) flames in units of relative pixel intensity. (c)
Sketches of M-shaped detached flame (top) and V-shaped attached
flame (bottom) (from Ref. [10]). 108

3.7 An example of a PLIF snapshot of an attached flame with its corre-
sponding centroid. 109

3.8 (a) Transition matrix with substructures boxed. (b) Distance matrix
with substructures boxed. 112

3.9 CROM workflow. The K-means clustering procedure occurs between
the first two steps. Centroids and transition matrix shown here are
arbitrary. 114

3.10 (Top) Transition matrices for K = 3, 9, and 16. (Bottom) Corre-
sponding cluster time series for the first 0.2 seconds. 116

3.11 Attached centroids of the combined dataset. OH-PLIF isocontours
indicated in black lines. PIV-x and y components given by arrow
overlays, and PIV-z is given by the heatmap (colorbar units in m/s).
Circled regions enclose regions of increased OH-concentration. . . . 118

3.12 Transition centroids of the combined dataset. OH-PLIF isocontours
indicated in black lines. PIV-x and y components given by arrow
overlays, and PIV-z is given by the heatmap (colorbar units in m/s).
Recirculation zone centers in indicated by markers. 119

xiii

3.13 Detached centroids of the combined dataset. OH-PLIF isocontours
indicated in black lines. PIV-x and y components given by arrow
overlays, and PIV-z is given by the heatmap (colorbar units in m/s).
In centroids 3 and 7, the hook-like structures are indicated by red
arrows and the recirculation zones near the burner exit are marked
in red. 120

3.14 Probability paths for the cluster transitions in the flame detachment
process. Arrows indicate the paths and are color-coded with the same
colorbar as the transition matrix; darker colors are smaller probabil-
ities, and brighter colors are higher probabilities. 123

3.15 Probability paths for the cluster transitions in the flame attachment
process. Arrows indicate the paths and are color-coded with the same
colorbar as the transition matrix; darker colors are smaller probabil-
ities, and brighter colors are higher probabilities. 124

3.16 Example of second-largest eigenvalue convergence for some P . The
horizon time, τh, is the time at which the slope of λ2 falls below some
threshold ε. 126

3.17 Out-of-plane velocity field transition matrix uncertainties (left) and
horizon times (right) versus K. Maximum and minimum bounds are
indicated by shaded boundaries derived from individual K-means++
runs, red lines indicate mean. 127

3.18 Comparisons of transition matrix uncertainty (left) and horizon times
(right) for the four tested data types. The curves are averaged quanti-
ties from 20 independent K-means++ runs on the dataset. Maximum
and minimum bounds are indicated by shaded boundaries. 129

3.19 Schematic juxtaposing the procedure for finding Pτp,exp (directly from
data) and the procedure for for finding Pτp (from CROM). 131

3.20 Forecast results for τp = τf for out-of-plane velocity (left) and OH-
PLIF (right) data, with the initial condition in the attached state
(flame detachment, or liftoff). Probability values indicated in bars,
and relative precent error e with respect to data-derived quantities
is also shown. Y-axis is future probability at τp. Results shown for
τp/τf = 1. 132

3.21 Forecast results for τp = τf for out-of-plane velocity (left) and OH-
PLIF (right) data, with the initial condition in the detached state
(flame attachment). Probability values indicated in bars, and relative
percent error e with respect to data-derived quantities is also shown.
Y-axis is future probability at τp. Results shown for τp/τf = 1. . . . 135

3.22 Short-time forecast results for τp = 0.1τf for out-of-plane velocity
(left) and OH-PLIF (right) data. Upper row is detachment forecast
and lower row is attachment. Annotations made in same manner as
Figs. 3.22 and 3.23. 135

xiv

3.23 Long-time forecast results for τp = 7.0τf for out-of-plane velocity
(left) and OH-PLIF (right) data. Upper row is detachment forecast
and lower row is attachment. Annotations made in same manner as
Figs. 3.22 and 3.23. 136

3.24 Relative error, e, as a function of normalized prediction time for
the ”attached” label in the detachment process. Vertical red lines
indicate horizon times. 136

3.25 (Left) Representation of a space-axis cluster used in Sec. 3.4. (Right)
Representation of a time-axis cluster using the approach described
in Sec. 3.5.2. Clustering outputs generated from planar OH PLIF
dataset sourced from model DLR combustor configuration described
in Sec. 3.4.2. 147

3.26 (Top row) Time-axis modes (columns of R) for K = 5 clusters. (Bot-
tom row) Temporal coefficients (centroids) for each mode, with red
line indicating y = 0 mark. 150

3.27 Examples of segmented flowfields obtained from the time-axis decom-
position using K = 5 and K = 7. Note that cluster colors are not
consistently defined across the two images. 153

4.1 Full-scale simulation snapshot with the detailed flow features of a
typical RDE combustor [295]. 159

4.2 Configurations of the (a) linear injector array with isocontour of H2

= 0.016 and OH = 0.0053 colored by temperature and (b) channel
with stratified fuel-air mixture of integral length scale L11 = 1.854
mm, which serve as the training and testing datasets, respectively. . 162

4.3 The top row shows numerical Schlieren images of the detonation wave
through (a) the linear injector array and (b) a stratified fuel-air mix-
ture in a confined channel. The bottom row shows a few of the
training and testing set snapshots displaying the time evolution of
density (units of kg/m3). For convenience, the first snapshot in the
dataset sequence is denoted as the initial state (t = 0). 163

4.4 (Left) Grid point labels for the 6 clusters for one snapshot, where
white regions correspond to cluster assignment. (Right) Combina-
tion of the labels into segmented field, where different colors indicate
clusters. 168

4.5 Spatial classification of the detonation wave in (left) the training and
(right) testing datasets. Shown is the time progression for each con-
figuration given by a smaller subset of the available snapshots. The
evolution of the segmented field is compared to the pressure (atm)
and temperature (K) distributions. A blow-up of an intermediate
snapshot is provided in each case for clearer visualization of the seg-
mented field. 171

xv

4.6 Absolute cluster sizes as percentage of total grid points (left) and
cluster sizes normalized by the sizes at t = 0 (right). Colors repre-
sent different cluster numbers. Solid lines correspond to training set,
dashed to testing set. Note that lines corresponding to testing set
end at a lower maximum time (less testing snapshots). 174

4.7 Representation of pressure versus inverse-density for all clusters. The
larger points with white outline indicate centroids. Insets indicate
cluster-specific scatter plots. Colors indicate cluster number. 175

4.8 Cluster PDFs conditioned on temperature (left), pressure (middle),
and YHO2 (right) for the testing dataset (trends for training set were
identical). 176

4.9 Feature importance measures with cluster contributions for the train-
ing (left) and testing (right) datasets. Cluster contributions for im-
portance value for each feature by respective colors. 179

4.10 Comparison of the clustering output (only one snapshot shown) be-
tween original full feature set and the reduced set. (a) Segmented
fields for training dataset. (b) Distance fields for training dataset.
(c) Segmented fields for testing dataset. (d) Distance fields for test-
ing dataset. 180

4.11 (a) Representation of the training and two testing snapshots for the
demonstration of ANN source term regression (corresponding time
instances are given at bottom). (b) Illustration of ANN architecture,
where the input corresponds to a grid point represented by the re-
duced feature set as described in Sec. 4.3.4, and the output is a set
of source terms for the same grid point. 182

4.12 Comparison of MSE values for each cluster for global (red bars) and
local (blue bars) ANN source term predictions. First row corresponds
to the training LMDE dataset, second row to the testing set with
the same LMDE configuration but at a future timestep, and last
row to the testing set in a stratified fuel-air mixture configuration.
Within each plot, MSE is compared over all five features as listed
at bottom. MSE is computed over standardized outputs to better
facilitate comparisons across multiple features. 184

4.13 Scatter plots showing global (red points) and local (blue points) pre-
dictions on the y-axis versus ground-truth on the x-axis for clusters
2 to 6. Diagonal solid black lines correspond to exact solutions. Top
block corresponds to LMDE testing snapshot (same configuration as
training snapshot) and the bottom block to testing snapshot for the
stratified mixture configuration. Within each block, the upper row
of plots correspond to ẎH2O predictions and lower row to Ṫ predic-
tions. In these plots, source terms have been scaled by the simulation
timestep (same value for all grid points) such that the ẎH2O is unitless
and Ṫ is in units of Kelvin. 186

xvi

4.14 Exact and predicted source term fields for the LMDE testing snap-
shot (left block) and stratified mixture snapshot (right block). Within
each block, the left and right group of fields show ẎH2O and Ṫ , respec-
tively. In these plots, source terms have been scaled by the simulation
timestep (same value for all grid points) such that ẎH2O is unitless
and Ṫ is in Kelvin. 188

5.1 Computational domain for channel detonation simulation. 197
5.2 Cropping procedure for an instantaneous detonation flowfield at t =

50 µs used to generate the clustering dataset. Colorbar ranges for
T , ρYH2, and ρYH2O are [300, 3200] K, [0.001, 0.006] kg/m3s, and
[0.1, 0.2] kg/m3s respectively. 199

5.3 Singular value distribution for the dataset Φ (see Sec. 5.2) derived
from unscaled (top) and scaled (top) chemical Jacobians. The x-axis
denotes the singular value index. For each index, spread in singular
value for all N sample points is plotted and colored by temperature
– 10th index is undefined due to presence inert N2 species. Bands
are alternately shaded for ease of visualization. 212

5.4 (Left) Plot of source term (black) and Jacobian (blue) versus phase
space variable ϕ for the 1D toy problem in Eq. 5.16. (Right) Plot
of normalized objective functions for standard (solid) and physics-
guided (dashed) K-means clustering approaches versus number of
iterations. The first 300 iterations is a burn-in phase that utilizes
the standard K-means algorithm in Alg. 1. The next 300 iterations
utilize the modified physics-guided K-means algorithm in Alg. 2. . . 214

5.5 Cluster visualizations provided by the standard K-means algorithm
(top row) and physics-guided K-means algorithm (bottom row) for
K = 5, 10, and 15. Centroid locations are provided as the filled
markers in each plot. 215

5.6 Cluster size versus Jacobian value evaluated at centroid Ak for stan-
dard K-means and physics-guided K-means approaches in the 1D toy
problem (K = 10). Cluster size is defined as percentage recovered
from the ratio of within-cluster samples to total number of samples. 216

5.7 Standard K-means (black, Eq. 3.1) and physics-based K-means (blue,
Eq. 5.2) objective function values during the iterative procedure for
K = 5 (top), K = 15 (middle), and K = 30 (bottom). As in
Fig. 5.4, the gray shaded regions denote the burn-in period in which
the standard K-means algorithm is run for 300 iterations – the red
shaded region denotes the switch to the JS-K-means algorithm in
Alg. 2. 218

5.8 Evaluation of physics-based RMS objective function (Eq. 5.17) versus
number of clusters using standard K-means output (black) and JS-
K-means output (blue). 219

xvii

5.9 From top-to-bottom: pressure, temperature, standard K-means la-
bels, and JS-K-means labels for detonation dataset as described in
Sec. 5.2. Flowfields have been transposed (wave is moving towards
bottom of page) for ease of visualization. 221

5.10 (a) Pressure profile within detonation wave in the domain window of
x = [0.087, 0.094] m and y = [0.04, 0.05] m (coordinate axes supplied
in Fig. 5.2). Red box indicates zoom-in region on triple point struc-
tures for remainder of plots in the figure. (b) Standard K-means
labels in triple point region. (c) JS-K-means labels in triple point
region. (d) Fluid density (kg/m3) in the triple point region. (e) Heat
release rate (W/m3/s) in the triple point region. White boxes in (b)-
(e) indicate correspondence in respective segmented field structure
and key flow features. 222

5.11 Energy contribution versus mode index, measured as a percentage of
total variance captured by the PODmodes, from the phase/composition
space decomposition (Eq. 5.18) and source term decomposition (Eq. 5.19).225

5.12 (Top row) From left-to-right, visualization of temperature field in
units of Kelvin, H2O mass fraction, and temperature source term
(nondimensinoalized as per Sec. 5.3.4) in the two-dimensional com-
position POD coordinates (Eq. 5.18). Black circle indicates ambient
region (unreacted gas ahead of the detonation wave), and red circle
indicates regions of high chemical heat release at reactivity (high-
sensitivity regions within the detonation wave structure). (Bottom
row) Same as top row, but for source term POD coordinates (Eq. 5.19).226

5.13 Visualizations of cluster labels from standard K-means (left column)
and JS-K-means (right column) in the two-dimensional composition
POD space (Eq. 5.18) forK = 15, 30, and 100. Centroids are denoted
by larger markers outlined in black. Black circle outlines chemically
non-reacting and ambient regions, whereas red circle outlines chemi-
cally reacting/sensitive regions at or near the detonation wave front. 228

5.14 Same as Fig. 5.13, but centroids and cluster labels are plotted in the
source term POD space (Eq. 5.19. 229

5.15 Source term predictions using standard and JS-K-means approaches
for temperature source terms (left), ρYH2O source terms (middle),
and ρYH2O2 source terms (right) for K = 15, 30 and 100. In each
plot, colors indicate cluster ownership. 231

5.16 Scope of the JS-K-means approach of Sec. 5.3 and the H-K-means
approach presented in this section. Both take in as input the result
of a standard K-means procedure (dashed box). 234

xviii

5.17 Illustration of the H-K-means approach (gray shaded region) forKinit =
3, KRF = 2 and Lmax = 2. Bold black arrows denote independent K-
means calls. Red circles indicate flagged clusters/centroids that sat-
isfy the ek ≥ etol criteria, which are subsequently refined. Black cir-
cles indicate clusters/centroids that do not require refinement. Cen-
troids grouped within the same dashed box imply a shared owner (in
the case of L0, the ”owner” is simply the full input dataset). Blue
shaded region contains composite set of centroids Ccomp produced by
aggregation function F . 236

5.18 (Top row) Visualization of the refinement procedure output in H-
K-means. Left plot shows phase space variables with source term
colored, middle plot shows output of standard K-means algorithm,
and right plot shows output of H-K-means with Kinit = 10, etol =
0.15, and KRF = 3. Black markers correspond to level 0 centroids,
red to level 1, and blue to level 2. (Bottom row) Illustration of
the hierarchy produced by H-K-means for one level 0 cluster that has
been flagged for refinement (see also Fig. 5.17. Clusters flagged for
refinement indicated by star markers for respective centroids. 239

5.19 (Top row) Centroid hierarchy as a function of etol for the 2-d toy
problem. Level 0 centroids are black, level 1 centroids red, level
2 blue, and level 3 green. (Bottom row) Visualization of cluster
labels for composite centroid list Ccomp produced by the corresponding
hierarchy. 241

5.20 (Left) Standard K-means centroids for detonation dataset usingK =
100. (Middle) JS-K-means centroids using K = 100. (Right)
Composite H-K-means centroids using etol = 0.34, Kinit = 15, and
KRF = 3. Centroids shown as black-outlined markers and colors
indicate cluster assignments. Top row plots show projection in com-
position POD coordinates and bottom shows projection in source
term POD coordinates (see Sec. 5.3.5 for explanation of projection
method). Red circle denotes region of high chemical reactivity and
black circle denotes near-ambient region. 243

5.21 (Left) Source term predictions using hierarchical K-means withKinit =
15, etol = 0.34 and KRF = 3. (Middle) Same as left, but with
Kinit = 30. (Right) Source term predictions using JS-K-means ap-
proach of Sec. 5.3 with K = 100. In all plots, colors denote cluster
assignments and solid black line denotes perfect prediction. 244

5.22 Source term predictions for temperature (top row), ρYH2O (middle
row), and ρYH2O2 (bottom row) using the hierarchical K-means strat-
egy for various etol values. Output number of clusters K for each etol
is provided in header. Solid black line denotes perfect predcition. . . 246

5.23 Root-mean squared errors in scaled source term predictions produced
by the hierarchical K-means algorithm as a function of etol for all
D = 10 components. 247

xix

B.1 UMChemGPU library interface. Wrappers around CUDA-based sub-
routines are compiled and then linked to the flow solver. Python
module extracts key parameters from mechanism file via Cantera li-
brary [109] (e.g. stoichiometric coefficients, polynomial coefficients,
etc.). 276

B.2 End-user operating scope of UMChemGPU. (Top) Matrix-based in-
stantaneous chemical source term evaluation, which is described in
this Appendix. Blue matrix on left is matrix of species concentra-
tions, and red matrix is corresponding chemical source terms (al-
though not shown in schematic, temperature source term also pro-
vided). NC is number of cells and NS number of species. (Bottom)
Matrix-based chemical time integration routine that uses matrix-
based rate evaluations, which is described in detail in Appendix C. . 277

B.3 Illustrations of ANN-based formulations for NC = 1, NS = 4, and
NR = 8. Since NC = 1, input/outputs are vectors and cell indices are
ignored. (a) Schematic of Eqs. B.2 and B.4. Exponential activation
functions are used to produce forward/reverse rates. (b) Schematic
of Arrhenius layer for forward rate constant (Eq. B.6), which is in-
terpreted as a bias term for the output of the forward rate layer in
(a) (see Eq. B.4). (c) Schematic of Gibbs layer equilibrium constant
(Eq. B.11). The schematics in both (b,c) produce the logarithm of
the reverse rate constant, which is interpreted as a bias term for the
output of the reverse rate layer in (a) (see Eq. B.4). 281

B.4 (a) Interpretations of a matrix in column major (left) and row major
(right) formats. The gray shapes within the matrices show the stor-
age method as a stacking of NR column vectors (for column major) or
NC row vectors (for row major). (b) Decomposition of a reaction ma-
trix into NR,irv irreversible and NR,rev reversible sub-matrices, each
with another set of sub-matrices corresponding to standard, falloff,
and pressure-log reaction types. 287

B.5 Reaction distributions shown as pie charts for the mechanisms listed
in Table B.1. The top row shows proportions of reversible and ir-
reversible reactions, whereas the bottom row shows proportions of
standard, falloff, and pressure-log reactions. Indicated for each wedge
is the proportion (reaction number normalized by total number of re-
actions) as a percentage, and the absolute reaction number in paren-
theses. The significant difference in the reaction distribution for C2
with respect to reversibility is due to the fact that most of the re-
versible reactions were parameterized with Arrhenius expressions for
both forward and reverse components (see the introductory comments
of Sec. B.1.3). 291

B.6 Absolute compute time (time-to-solution) as a function of cell num-
ber NC for the GPU evaluation of the species source terms for the
mechanisms listed in Table B.1. Saturation points for each mecha-
nism group are indicated by the black arrows. 294

xx

B.7 (a) Roofline model for mechanism B3 for all kernels encountered dur-
ing the source term computation. Each marker represents a unique
kernel evaluated for the number of cells NC indicated by its color.
(b) Roofline model for the DGEMM kernel. (c) Roofline model for
the Troe falloff kernel. In (b,c), the different colors represent differ-
ent mechanisms (see Table B.1) and the distribution of points of the
same color comes from the various NC values. 296

B.8 (Left) GPU-derived speedup in log-scale with respect to the Cantera-
based CPU baseline for all mechanisms listed in Table B.1. (Right)
Same as left but with linear-scale in the y-axis. 300

B.9 Cost per reaction for forward rate constant (log(Kf)) and equilibrium
constant (log(Kc)) routines as a function of NC for: Mechanism A2
(left plot); Mechanism B3 (middle); and Mechanism C1 (right). . 302

B.10 Cost per reaction for all mechanisms for: standard reactions (left);
pressure-log reactions (middle); and falloff reactions (right). See
Table B.1 for mechanism information. 303

B.11 Computational budget (routine time normalized by total compute
time) for the preprocessing routine (Component 1, blue curve), for-
ward rate constant routine (Component 2, green curve), equilibrium
rate constant routine (Component 3, red curve), and net production
rate routine (Component 4, yellow curve). The results are shown for
the same three mechanisms as in Fig. B.9. 306

B.12 (Left) Mechanism sparsity and average component 4 budget (the
budget corresponding to the evaluation of Equations (B.2) and (B.4))
versus number of reactions NR. (Right) Dense (cuBLAS) to sparse
(cuSPARSE) matrix multiplication speedup (dense compute times di-
vided by sparse compute times) for evaluating Equation (B.2) shown
for all mechanisms with respect to NC . See Table B.1 for mechanism
information. 308

B.13 Updated GPU-to-CPU speedup values when taking into account the
mechanism sparsity (analogous to Fig. B.8). 309

C.1 Overview of reaction-advection-reaction Strang splitting algorithm.
The variable ϕ denotes the set of all transported state variables
stored on the NC grid points. The reaction step (red box) is lo-
cal in physical space, but non-local in thermochemical phase space.
The advection/diffusion step is non-local in physical space, but local
in thermochemical in phase space. 312

C.2 (a) Schematic of the static-cell time integration algorithm: as subcy-
cles (while loop iterations) proceed, some cells finish reacting before
others. The static-cell algorithm fixes NC and assigns zero source
terms to completed cells. (b) Schematic of the adaptive-cell algo-
rithm. There are two stages: the time-integration stage (blue box)
and the data re-arrangement stage (green box). The time-integration
stage is the same as (a), but it operates on the quantity NA

C instead
of NC ; N

A
C is reduced on-the-fly in the re-arrangement stage. 322

xxi

C.3 Illustration of saturation effect (top) and speedup trends over CPU
(bottom) versus NC (cells-per-GPU) for a key kernel, here taken to
be the chemical source term evaluation. During chemical time inte-
gration, the number of chemically active cells drops, as shown by the
arrows. Point A is in the saturated regime. Point B is the satura-
tion point. Point C is the NC value at which a CPU evaluation is
faster than GPU. The locations of point B and C depend on the GPU
architecture and the chemical mechanism. Note that these diagrams
are exaggerations of true behavior – see Ref. [16] for true profiles. . 326

C.4 1d detonation configuration, whereNC represents the number of cells-
per-GPU. Each case maintains the same resolution. Length of driver
region is fixed at 3mm. 328

C.5 Time evolution of simulation time step (blue) and chemical timescales
(black) during steady detonation propagation for the three mecha-
nisms defined in Tab. C.2. Reproduced from Fig. 1.7 for ease of
readability. 329

C.6 (a) Speedup on average provided by the adaptive time integration
(Alg. 5) over the static algorithm (Alg. 4) as a function of NC . (b)
Correlation between subcycle (while loop) iterations and runtime
(time-to-solution) for the chemical time integration phase. 332

xxii

LIST OF TABLES

Table

2.1 Summary of physics-based models used to accelerate high-fidelity
simulations of the Navier-Stokes equations. 57

2.2 Summary of data-based models used to accelerate high-fidelity sim-
ulations of the Navier-Stokes equations 80

3.1 OptimalK values with corresponding uncertainties and horizon times
as extracted from Fig.3.18. 128

5.1 Comparison of K-means variations with the Jacobian-scaled K-means
approach. 205

B.1 List of mechanisms used throughout this work arranged in ascending
order of NR. They are grouped into three classes based on NR for
ease of reference. Class A is for smaller mechanisms (NR = O(10)),
Class B for medium-sized mechanisms (NR = O(100)), and Class C
for large mechanisms (NR = O(1000)). Note that the mechanism
labeled C1 is unrelated to the jet fuel of the same name. 290

C.1 Implications of various parameter configurations in Alg. 5. Option
3 recovers the static algorithm (Alg. 4) and Option 4 recovers the
conventional CPU algorithm (Alg. 3). If the GPU is heavily satu-
rated, the ideal configuration is adaptive (Options 1 and 2). If GPUs
are undersaturated, performance difference between (1/2) and (3) is
expected to be minimal. 324

C.2 List of mechanisms used along with driver gas properties for 1d deto-
nation configuration (see Fig. C.4). Ambient gas properties were set
to equivalance ratio of unity with T = 300K and P = 1atm. The last
three columns provide input parameter settings needed by the adap-
tive algorithm (see Alg. 5 and Sec. C.3.2). In all cases, Nsat = 1000,
NCPU = 100, and UF = 10. 328

xxiii

LIST OF APPENDICES

xxiv

Appendix

A. Derivation of Centroid Update Rule 268

B. Matrix Formulations of Chemical Kinetics for Acceleration on GPUs . 275

C. GPU-Based Chemical Time Integration for Compressible Reacting Flow 310

LIST OF ABBREVIATIONS

AI Artificial intelligence

AIM Approximate inertial manifold

AMR Adaptive mesh refinement

ANN Artificial neural network

CFD Computational fluid dynamics

CFL Courant-Friedrichs-Lewy

CJ Chapman-Jouguet

CNS Compressible Navier-Stokes

CPU Central processing unit

CROM Cluster-based reduced order modeling

CSP Computational singular perturbation

DMD Dynamic mode decomposition

xxv

DNS Direct numerical simulation

EMD Earth mover’s distance

FLOPs Floating point operations

FPV Flamelet/progress variable

GPU Graphics processing unit

HPC High-performance computers / high-performance computing

ISAT In-situ adaptive tabulation

JS Jacobian-scaled

LES Large-eddy simulation

LMDE Linearized model detonation engine

ML Machine learning

MPI Message passing interface

MSE Mean-squared error

ODE Ordinary differential equation

PDF Probability density function

PDE Partial differential equation

PINN Physics-informed neural network

xxvi

POD Proper orthogonal decomposition

PRISM Piecewise reusable implementation of solution mapping

PVC Precessing vortex core

QOI Quantity of interest

RDE Rotating detonation engine

RHS Right-hand side

ROM Reduced-order model

SIMT Single-instruction multiple-thread

TVD Total variation diminishing

WCSS Within-cluster sum of squares

ZND Zeldovich-von Neumann-Döring

xxvii

ABSTRACT

High-fidelity numerical simulations of combustion processes in next-generation

hypersonic propulsion devices (including, but not limited to, rotating detonation en-

gines and scramjets) play a crucial role in enabling robust design strategies for their

real-world deployment. These simulations, however, require full-geometry numeri-

cal solutions of the compressible reacting Navier-Stokes equations. Spatiotemporal

resolution requirements stemming from multi-scale interactions between turbulence,

shockwaves, and chemical reactions contained in these governing equations induce

computationally prohibitive bottlenecks that render the required long-time resolved

simulations of these propulsion devices infeasible. A particularly elusive bottleneck

comes from the treatment of detailed chemical kinetics required to accurately describe

the time evolution of species concentrations and flow-chemistry interactions within

the combustors. The computational hurdles emerge here from the arithmetic intensity

of chemical source term evaluations and immense disparities in chemical timescales

for practical fuels.

The goal of this work is to provide a physics-guided data-driven modeling strategy

for accelerating high-fidelity compressible reacting flow solvers via elimination of the

chemistry bottleneck. Since unsteady features of interest in compressible reacting

flow (e.g. detonations) are sustained by chemical reactions, the principle assumption

is that local regions in the thermochemical state space can be used to classify spa-

tially coherent regions of dynamical similarity within the reacting flowfield in physical

space. Based on this assumption, the modeling approach finds these local regions us-

ing an unsupervised clustering algorithm and deploys targeted models for accelerated

xxviii

chemical source term evaluation within each region. The novelty comes from (a) en-

suring that flowfield classifications enabled by the clustering procedure are consistent

with physical expectations in complex compressible reacting flow (e.g. the clusters

identify meaningful regions within detonation wave structure in rotating detonation

engines), and (b) embedding physical knowledge directly into the clustering objective

function. Emphasis is placed on ensuring the modeling framework can be extended to

in-situ (or online) integration with flow solvers, such that the method is not tied down

to single geometric configurations. Additional steps are taken to ensure that the algo-

rithms used in the modeling approach are compatible with modern high-performance

computing trends dominated by GPU-centric node architectures.

xxix

CHAPTER I

Simulations of Hypersonic Propulsion Devices

1.1 Introduction

The unabated evolution of computing power, supplemented by the accessibility

of easy-to-use software development frameworks in modern times, has cemented the

role of numerical simulations as a reliable method of scientific inquiry in a myriad

(if not all) of natural sciences. Continued progression of compute capability, and the

subsequent evolution of simulation fidelity, is evidenced in part by the predictions of

Moore’s law, shown in Fig. 1.1, which comes from the empirical observation that the

number of transistors in a given microchip doubles approximately every two years

[210]1. If one is to isolate a single effect of the ubiquity of simulations in the 21st

century, it is that field experts now have a means to generate an exorbitant amount

of synthetic data to supplement real-world observations obtained from traditional

experiments. In other words, the big-data phenomenon often used to characterize

modern times is ultimately made ”bigger” by these simulations by means of leverag-

ing the centuries of underlying physical knowledge of the respective systems under

investigation.

In all fields, research and development funding and manpower targeted at im-

1Despite some claims that the progression of Moore’s law is set to decay in the coming decades,
continued breakthroughs in hardware are expected to maintain the steadfast rise of compute capa-
bility [309].

1

1,000

10,000

100,000

1M

10M

100M

1B

10B

1970 1980 1990 2000 2010 2020

Tr
an

si
st

or
 C

ou
nt

Year

Incre
ase

 in sim
ulati

on cap
ability

Figure 1.1: Visualization of Moore’s Law in logarithm scale, where scatter points re-
flect commerically-available hardware and black line reflects linear fit (image licensed
under CC-BY from https://ourworldindata.org).

proving the potency of these numerical simulation codebases depend entirely on the

physical complexity of the set of objects or phenomena in study. As a consequence,

it is to the interest of all members of the given field that these simulations produce

results that are not only physically consistent (i.e. the simulation-generated data

can be trusted to some quantifiable level of error), but are also available at a fast

turnaround time, which can be on the order of minutes, hours, or days depending on

levels of complexity, industry requirements, and available computing/user resources.

As computing platforms and state-of-the-art hardware become more power effi-

cient, the scope of numerical simulations in tandem becomes increasingly ambitious

in terms of physical complexity. A primary example, which is the focus of this work,

is the rapid research progress made within the field of computational fluid dynam-

ics (CFD); numerical simulation tools that utilize CFD, termed colloquially as flow

solvers, are readily used these days to model and characterize so-called multi-physics

phenomena. As the term implies, applications and industrial devices that exhibit

multi-physics behavior are characterized by an amalgamation of physical phenomena

2

that operate at a wide range of length and time scales – flow solvers are deemed ”high-

fidelity” are capable of resolving the effect of these multi-scale interactions within the

simulation process. In other words, within fluid dynamics applications, multi-physics

problems imply that the application or device of interest is described by the inter-

actions of more than one form of underlying physical source. As emphasized further

below, these sources can include turbulence, chemical reactions, electromagnetism,

gravity, and shockwaves, among other effects.

Because of these interactions, the research challenge comes from (a) understand-

ing physically how devices exhibiting multi-physics behavior operate and (b) creating

prognostic simulation frameworks using the extracted physical knowledge. Naturally,

advances in the predictive capability for multi-physics flow, as well as its physical un-

derstanding, is enhanced and spurred by the back-and-forth feedback between these

two challenges. Engineering advances resulting from addressing these challenges hinge

on the fact that the wide ranges in length and timescales emanating from the inter-

actions of the varying multi-physical sources need to be accounted for in simulations,

and well-understood physically.

To this end, multi-physics flow simulations have emerged as crucial tools used

in a plethora of application fronts particularly relevant to the defense, energy, and

national security industries – some examples of applications that gain significant

benefit from the utilization of high-fidelity multi-physics simulation output include,

but are not limited to, description of pollutant dispersion in urban environments

(Fig. 1.2(a)), thermonuclear reactor design (Fig. 1.2(b)), and development of next-

generation propulsion devices (Fig. 1.2(c)). As implied by these applications, the

output of these simulations is in general most valuable when either little physical

knowledge about a device can be extracted using existing experimental technology,

or the potential risks/expenses in exploring a design space for the device in the real-

world are too high.

3

(a) (b) (c)

Figure 1.2: Examples of modern applications that leverage multi-physics simulation.
(a) Prediction of contaminant dispersion in urban environments (from Ref. [233]).
(b) Determining safety bounds for Tokamak reactors, which are energy generation
devices based on nuclear fusion (from Ref. [104]). (c) Designing rotating detonation
engines for hypersonic propulsion (from Ref [282]).

1.2 Next-Generation Hypersonic Propulsion Devices

Of all these applications, the scope for this dissertation is narrowed to the design

and development of next-generation propulsion devices governed by compressible re-

acting flow, which indeed admits the aforementioned complex multi-physics behavior

via interactions between shocks, chemical reactions, and turbulence (or turbulent

combustion). For context, two types of devices immediately relevant to the field of

hypersonic propulsion, namely rotating detonation engines (RDEs) and scramjets,

are described briefly in the paragraphs below, as the primary goal of compressible

reacting flow simulations is to properly predict and characterize the behavior of such

devices in an accessible way to guide their designs.

The goal of the rotating detonation engine, a schematic of which is shown in

Fig. 1.3, is to utilize detonations instead of the more commonly used combustion

mode of deflagration to produce net pressure gains and therefore higher thrust out-

puts [181, 327]. Detonation waves are, in broad terms, self-sustained shock fronts

that are tightly coupled with reaction zones [86]. One can show, using fundamental

4

physical principles of compressible reacting flow, that the speed at which the deto-

nation wave travels (termed the Chapman-Jouguet (CJ) speed) is a function of both

the ambient conditions of the gas and the composition (or description) of the fuel and

oxidizer mixture [106]. In the typical RDE, one or more detonation waves traveling

at this CJ speed (which can readily exceed thousands of meters per second) propa-

gate azimuthally in an annular chamber, processing a mixture of fuel and air injected

axially (or radially, depending on the configuration) from the bottom of the device.

Due to the unsteady nature of the self-sustained detonations, as well as complexi-

ties in fuel injection schemes, the combustion processes within an RDE are known

to be highly chaotic, often departing from canonical detonation behavior [304]. Det-

onations observed in RDEs are non-ideal [278], since the reaction zones within the

detonation wave structure are significantly broader than the theoretical expectations

derived from simpler steady-state solutions attributed to the idealized Zeldovich-von

Neumann-Döring (ZND) structure [225]. These complexities and non-idealities are

exacerbated by the interaction of many flow features and combustion regimes, such

as (a) combustion zones ahead of the wave that perturb the detonation dynamics

(termed parasitic deflagration) [52, 53], (b) the oscillation of high-pressure regions

(triple points) at the wavefront due to collisions between the principle shockwave

and an erratic distribution of weaker transverse shockwaves [114, 173, 195], and (c)

slow, decayed heat release that extends far behind the wavefront, homogenizing the

mixture of chemical composition at fast timescales [298, 355]. Physical analysis of

RDEs in various formats, from both experimental and high-fidelity numerical perspec-

tives [295], has focused on evaluating the effects of mass flow rates in the injection

scheme [297], understanding impacts of different industry-relevant fuel compositions

[274, 281], and studies of non-idealities in the detonation wave structure due to geo-

metric effects such as annulus curvature [14, 171, 278] and perturbations induced by

turbulence-chemistry interactions [97, 271, 272, 298].

5

Reactant Gas

Product Gas

Wave direction

Shock Front

Figure 1.3: (Left) Instantaneous flowfield within a rotating detonation engine [274].
(Right) Instantaneous flowfield within a scramjet [30]. Thrust vectors are given by
the yellow arrows, and major flow features within each device are labeled in the re-
spective images. Both images were generated using rendered snapshot data from UM-
ReactingFlow [30], a high-fidelity compressible reacting flow solver for full-geometry
combustors developed at the University of Michigan.

On the other hand, scramjets (supersonic combustion ramjets), a schematic of

which is also shown in Fig. 1.3, are air-breathing propulsion systems that utilize a

series of shock-waves to decelerate the flow (the compression stage) until it reaches

the combustion chamber, in which fuel is injected and subsequently mixed to induce

chemical reactions and produce thrust downstream [59, 67]. In contrast to ramjets,

which observe flow deceleration to subsonic levels during the shock train-induced com-

pression stage, combustion in scramjets occurs in the supersonic regime [98]. As such,

similar to RDEs, the unsteady combustion processes are highly nonlinear, advection-

dominated, and amenable to high levels of instability. However, in contrast to RDEs,

the mixing process in scramjets play a major role: as fuel is supplied to the combus-

tion chamber in an injection phase, the chaotic mixing processes and recirculation

zones at supersonic conditions gives rise to complex auto-ignition and flame behavior

that is notoriously difficult to predict [35, 305]. Physical analysis of scramjets has

focused on the effect of thermochemical models on autoignition propensity [89, 136],

relations between boundary layer development and the shock train [88, 95], and gen-

eral thermoacoustic instabilities emanating from the chaotic combustion processes

induced by acoustic wave reflections within the device [189, 247].

6

1.3 Role of High-Fidelity Simulations

Because of the exciting theoretical potential of hypersonic propulsion and energy-

generation devices like RDEs and scramjets, frameworks for optimizing their design

for real-world testing are essential. As such, design exploration for all devices inte-

grating these propulsion concepts is a highly active area of research within academia,

government-sponsored labs, and the defense industry. Fast iterations on various de-

sign considerations for these devices – e.g. fuel injection angles for RDEs and cavity

geometries for scramjets – are required in order to bring these devices into the main-

stream.

As suggested by the descriptions in Sec. 1.2, one of the primary research challenges

in the design process for these propulsion devices lies in the physical characterization

of, and modeling strategies for, combustion phenomena described by the evolution

of compressible reacting flow [276]. In other words, the design of future energy gen-

eration and propulsion devices requires characterizing their macroscopic behavior –

this can be specific impulse, thrust, pollutant generation, or some other performance-

related quantity of interest (QOI) – for industry-relevant operating conditions and

various geometric configurations. Through the development of robust flow solvers,

high-fidelity numerical simulations are used in the iterative design process alongside

real-world experiments of model configurations. On one hand, experiments, which

are typically constrained to single model geometries, are used to validate the numeri-

cal implementations of flow solvers and supply informative boundary conditions. On

the other hand, the then validated high-fidelity simulation codebase can be used to

extrapolate to different geometric configurations that ultimately inform the end-user

or customer, by means of detailed flowfield analysis, of real-world viability. Although

commissioning high-fidelity simulations can be expensive, the crux of this procedure

is to minimize the development of as many experimental configurations as possible,

which is generally more cost and labor-intensive than running simulations. Figure 1.4

7

Low-fidelity
ground truth

data

High-fidelity
synthetic data

Industry Requirements

Increased physical understanding,
better models

Real-world
experiments

Full-geometry
simulations

Boundary
conditions

Validation

Mode of Inquiry

System
Observations

Practical
Impact

Constraints High-fidelity compressible reacting flow solver

Reactant Gas

Product Gas

Wave direction

Shock Front

Figure 1.4: The scope of high-fidelity, full-geometry simulations in the application
context of driving better designs for propulsion devices like RDEs.

illustrates this scope of high-fidelity numerical simulations and associated feedback

with experiments, where the idea is to probe as many industry-relevant operating con-

ditions as possible. In the end, both simulations and experiments produce valuable

data that can be used by field experts to not only increase physical understanding

of the devices or physical features in question, but also to produce robust modeling

frameworks that accelerate the exploration of the combustor design space.

It should be emphasized that detailed exploration of design envelopes for propul-

sion devices like RDEs and scramjets from a purely experimental or real-world stand-

point without simulations is inherently not only high-cost due to geometric complex-

ities, but also high-risk due to the nonlinearities associated with multi-physics in-

teractions stemming from the governing equations of compressible reacting flow (the

Navier-Stokes equations). In other words, accurate trends in macroscopic QOIs re-

quired to characterize practical design envelopes for these applications are only recov-

ered by capturing the small-scale, chaotic interactions between diffusion-dominated

processes (turbulence), chemical reactions (species production rates), and advection-

dominated processes (acoustic waves and shock waves of varying strength). When

8

A
tt

ac
he

d
Fl

am
e

Li
ft

ed

Fl
am

e

Su
cc

es
s

Fa
ilu

re In
te

ra
ct

io
n

of

D
et

on
at

io
n

W
av

es

Figure 1.5: Examples of extreme events in combustion. (Left) Spontaneous flame
shape transition in lean premixed operating conditions (from Ref. [10]), (Middle)
High-altitude relight/ignition failure due to indistinguishable variations in turbulent
inflow (from Ref. [123]). (Right) Wave-splitting phenomena in RDEs, where one
initial wave evolves into two or more for same operating condition (from Ref. [297]).

considering target operating condition requirements such as lean premixed combus-

tion at high-altitudes, supersonic combustion, and sustained detonation, these non-

linearities can give rise to seemingly spontaneous changes in the system state that

drastically alter device operation behavior. Examples of such state changes present

in combustion processes relevant to propulsion applications are provided in Fig. 1.5;

these are known formally as extreme events [119, 122], and include (a) the spawning

of multiple detonation waves from a single detonation wave in RDEs, (b) spontaneous

flame shape transitions due to stringent equivalence ratio and fuel requirements in

power generation devices, and (c) high-altitude relight failures in scramjets. Due to

the fact that undetected and unmitigated extreme events can very well result in ir-

reparable structural damage, costly changes to maintenance/repair/overhaul (MRO)

schedules, and potentially loss of human life, a fail-safe and low-risk design itera-

tion loop must be facilitated by high-fidelity numerical simulations that accurately

describe the multi-physics behavior of the devices in question.

As illustrated in Fig. 1.4, in an example scenario, a user may commission full-

geometry simulations of a model combustor in a first step. Then, in a second step,

the validated simulation tools can be used to extrapolate to new designs as needed

to accumulate and saturate relevant QOIs in the design space. Overall, within the

9

context of such design frameworks, the above discussion emphasizes the crucial role

high-fidelity simulations play – the downside, however, is that ensuring all levels

of complexity in devices like RDEs and scramjets are resolved in numerical imple-

mentations is generally a computationally prohibitive task. The next section gives

background on some of these inevitable computational challenges.

1.4 Computational Challenges for Reacting Flow Solvers

As discussed in Sec. 1.3, one of the drivers of robust design strategies for im-

proving and deploying hypersonic propulsion devices like RDEs and scramjets is the

commissioning of high-fidelity, full-geometry compressible reacting flow simulations

at industry-relevant operating conditions. In this context, high-fidelity treatment

amounts to resolved numerical predictions of flowfields inside of the combustion cham-

bers of these devices of interest, the dynamics of which are governed by the compress-

ible reacting Navier-Stokes equations. For these applications, ”resolved” refers to the

fact that all all length and timescales are properly accounted for in the numerical

solutions. In other words, the governing equations must be directly solved by means

of numerical discretization schemes without the usage of models for residual forcing

terms. This is known as direct numerical simulation (DNS) [209], which is a highly

computationally intensive task in situations where there is a large disparity in length

and time-scales.

In full-geometry DNS of compressible reacting flow, computational challenges

come from two primary sources: (1) the stringent spatial resolution requirements

associated with turbulent lengthscales, detonations, and shock-fronts, and (2) the

prohibitive temporal resolution requirements that come from very fast chemical re-

actions required to correctly predict species production and consumption rates. An

additional challenge comes from the fact that the complex geometry itself must be

represented numerically in a meshing phase – the numerical treatment of complex ge-

10

ometries has significant impact on how one designs discretization schemes to treat the

above two challenges related to spatiotemporal resolution, and as a result, contributes

significantly to general computational challenges in conducting accurate simulations

of industrial burners. These three aspects – lengthscale requirements, timescale re-

quirements, and complex geometry treatment – will be described in more detail in the

paragraphs below. The discussion will be tailored to the application scope of RDE

and scramjet simulations, but the discussion holds in general for any application that

is described by compressible reacting flow. Before proceeding, it should be noted

that alongside the numerical challenges induced by the underlying physics that define

the governing equations of interest, the programming challenges required to develop

a reliable production-level solver or code to carry out such simulations is in itself a

significant effort that requires several months, if not years, of software development

effort. Ensuring algorithms are properly verified and validated is a monumental task

in itself – detailed discussions on these types of topics are out of scope here (see

Refs. [15, 283, 294] for more information on these subjects).

1.4.1 Spatial Resolution Constraints

Many of the relevant spatial flow features in devices like RDEs and scramjets,

which are driven by advection-based compressible flow phenomena, occur over very

small lengthscales which in turn induces high numerical resolution penalties [163, 278].

Accurate numerical representation of shockwaves, for example, presents a difficult

computational problem for high-fidelity simulation of any supersonic or hypersonic

propulsion device. Because the shockwave is inherently discontinuous, the challenge

comes from ensuring that the discretization of advection terms, as well as treat-

ment of numerical fluxes, must be not only physically consistent (e.g. kinetic energy-

preserving), but also numerically stable such that the flowfields are not polluted by

numerical errors [335]. This requirement traditionally amounts to utilizing low-order

11

numerical schemes that are highly dissipative near shock and contact discontinuities

in order to ensure spurious oscillations characteristic of higher-order and/or disper-

sive numerical schemes are not generated [64]. Ultimately, stability requirements in

production-level compressible flow solvers forces the user to (a) use globally low-order

numerical schemes (e.g. TVD schemes) and refine the mesh to exceedingly high levels

such that numerical diffusion is diminished in all regions in space [23, 234], (b) utilize

complex hybrid schemes that are dissipative only near shock or contact discontinuities

and preserve kinetic energy [54, 257], but require ad-hoc and non-intuitive parameter

tuning steps that may introduce other physically inconsistent flow effects, or (c) set

aside the low-order schemes entirely and use expensive, locally adaptive high-order

schemes with explicit filtering steps to directly eliminate non-physical dispersive errors

that tend to perturb boundary conditions to unacceptable levels [55, 249, 333]. Re-

gardless of which path is taken, due to the prescence of shockwaves alone, all three of

the above scenarios lead to significant added computational expenses for high-fidelity

compressible reacting flow solvers.

A key example for RDE-based applications is the sufficient resolution of detonation

waves, which is interpreted in general terms as shockwave sustained by chemical

reactions, and is the driving flow feature for predicting macroscopic device operation

trends [311]. In other words, for the solver to capture correct theoretical detonation

wave speeds, one must properly discretize the spatial domain within the detonation

wave to acceptable levels. This discretization requirement is problematic not only

because of high levels of unsteadiness and chaoticity present within the wave itself

in unsteady settings, but also because the relevant detonation lengthscales are also

a function of the parametrization of chemical heat release (e.g. the chemical kinetic

model) [270, 313].

Figure 1.6 shows the output of an idealized hydrogen-air detonation wave in one

spatial dimension obtained from a steady-state ZND solution of the compressible

12

Distance Behind Shock [m]

Idealized Detonation Wave

Cells per Induction Zone

Pe
ak

 P
re

ss
ur

e

Mech. A
Mech. B
Mech. C

Resolved
Under-

resolved

Detonation Convergence

Figure 1.6: (Left) Idealized detonation wave structure obtained from steady state 1d
solutions to the compressible Navier-Stokes equations using the hydrogen-air mecha-
nism of Burke et al. [45]. Plot is in shock reference frame, such that x=0 corresponds
to the shock front – black is pressure and blue is HO2 mass fraction. (Right) Peak
detonation pressure normalized by analytic value versus grid resolution obtained from
unsteady detonation simulations for three different mechanisms (from Ref. [17]).

Navier-Stokes equations2. This figure illuminates the three flow features that must

be sufficiently numerically represented for RDE simulation: (a) the shockwave, which

constitutes a jump condition from the ambient state to the compressed post-shock

state, (b) the induction zone, defined as the distance behind the shock-front at which

the flow features remain fixed at the post-shock conditions (region of constant pressure

in Fig. 1.6), and (c) the reaction zone, defined as the lengthscale required to consume

the fuel at a rate defined by certain kinetics-induced timescales (indicated by the

radical species generation in Fig. 1.6).

In practical applications, unsteady detonations deviate from the steady state so-

lutions [278] – despite this, the idealized wave structure shown in Fig. 1.6 serves as

a guideline for convergence studies and mesh generation, as it provides the baseline

resolution requirements for detonation simulation. In the end, to guarantee that the

correct unsteady detonation dynamics are represented within RDEs (e.g. the interac-

tion between detonation and deflagration regimes, movement of pressure waves within

2See Sec. 2.2 for a description of the governing equatinos. The reader is referred to Chapter 5 in
the textbook by Glassman and Yetter [106] for details on ZND and fundamental detonation theory.

13

the induction zone, and correct radical generation in the reaction zone), the compu-

tational grid must ensure that some cutoff number of cells – typically on the order of

10 to 100, depending on the combustion properties of the fuel-oxidizer mixtures – are

contained within the detonation wave structure at all times [17, 191, 313]. The associ-

ated lengthscales for industry-relevant fuels renders this requirement very expensive,

particularly in cases where complex geometric configurations are required and when

long simulation times are desired. For example, failure to properly resolve the wave

structure, as shown in Fig. 1.6, results in incorrect prediction of detonation wave

properties, which eventually cascades into inaccurate and misleading representations

of important design parameters for these devices (e.g. thrust, specific impulse, peak

pressures loads, etc.).

Although the key flow features in propulsion devices like RDEs and scramjets are

characeterized by advection-dominated reacting flow, diffusion-dominated features

also play key roles and introduce additional lengthscale requirements on these simu-

lations related to turbulence and mixing. In RDEs, for example, the stability of the

detonation wave, as well as the propensity to generate additional detonation waves

from a single wave, is highly influenced by the fuel-air mixing process in the injector

array, which is driven by the high shear generated from the injection scheme (this is

why injection angles are key design parameters in hypersonic propulsion applications

in general). Hence, capturing the turbulent mixing mechanisms and their interplay

within the unsteady detonation process is crucial, but expensive due to tradition-

ally prohibitive turbulent lengthscale resolution requirements [274, 278, 298]. Similar

requirements hold for scramjet simulations, for which high resolution of boundary

layers are required to properly capture shock interactions and pressure loads at the

boundaries [88, 159]. Additionally, accurate numerical representation of the impact of

turbulence on combustion processes within these devices is of paramount importance

overall – the impact of reacting scalars on the turbulent energy spectra in mixing-

14

dominated regions must be accounted for by means of high levels of numerical reso-

lution. Since these mixing dominated features may not be local in space, addressing

these requirements is highly nontrivial and often results in very large meshes that

slow down computations. For context, within RDEs, turbulent combustion plays a

key role in detonation wave structure dynamics via fuel stratification effects – the det-

onation wave itself induces an energy spectrum in the reacting scalars parametrized

by an integral lengthscale, such that the stability of subsequent passes of the deto-

nation wave is a function of this lengthscale [271, 272, 336]. On the other hand, in

scramjets, turbulent combustion effects manifest in the fuel injection, mixing, and

autoignition phenomena after the shock-induced compression of the flowfield [159].

1.4.2 Temporal Resolution Constraints

Ensuring robust direct numerical simulations of complex propulsion devices goes

beyond addressing the spatial resolution constraints discussed above in isolation.

Temporal constraints also prohibit high-fidelity simulation capability. In the same

spirit of ensuring accuracy and stability by means of stable spatial discretization

methods and high grid resolution, the same ideas must also be held in temporal

discretization [110].

In many cases, physical constraints for the simulation time step in advection-

dominated systems are provided by the Courant-Friedrichs-Lewy (CFL) condition

[65], which is a mathematical rule that provides the highest timestep that can be used

within the flow solver (here assumed to be utilizing explicit time-marching methods)

while preserving physical bounds of information propagation [335]. This required

timestep scales linearly with the local spatial grid size and inversely with wavespeed

estimates – in other words, higher grid resolutions produce smaller required timesteps

to ensure stability, and higher wavespeeds compound this effect. As such, since

devices like scramjets and RDEs observe both high spatial resolution requirements as

15

well as large local wavespeeds (detonation velocities can routinely exceed 1500 m/s,

for example [278]), the advection-based limitations on temporal resolution naturally

creates significant computational hurdles.

For devices described by compressible reacting flow, the impact of chemical reac-

tions on the flowfield must also be properly accounted for in the governing equations

[296]. In the end, the most accurate representations of chemistry in the governing

equations provided by so-called detailed chemical kinetic descriptions [90, 183]. In de-

tailed kinetics, the multi-physics behavior stemming from chemical reactions induces

a highly complex Arrhenius-based expression for the species source terms, the non-

linearity of which produces an extremely stiff set of equations for the time evolution

of the reacting chemical species [261]. These detailed kinetic descriptions, referred

to colloquially in the numerical combustion community as ”detailed chemistry”, are

experimentally validated models for species production rates that consist of a col-

lection of physically constrained elementary chemical reactions. Although these are

technically models, these are referred to as the ground-truth in numerical applica-

tions due to the fact that they are the most accurate baseline for representing the

highly nonlinear effects of chemical reactions on the flowfield numerically [183, 258].

Depending on the target fuel and oxidizer, these detailed chemistry descriptions re-

quire transporting and storing on the order of tens, hundreds, or thousands of addi-

tional transport equations per computational grid point (one for each species), which

amounts to increasing the simulation degrees of freedom by at least one order of mag-

nitude. Alongside the added storage requirements and addition of more transport

equations, these Arrhenius-derived nonlinearities induce a wide range of timescales

that must be resolved to accurately represent the characteristic turbulence–chemistry

interactions required to properly predict macroscopic trends driven by unsteady pro-

cesses in devices like RDEs and scramjets. This disparity in chemical timescales,

known as chemical stiffness [218], is a universal bottleneck in high-fidelity reacting

16

Acoustic Timescale

Chemical Timescale

101 102 103 104

102

103

104

Number of Species, K

N
um

be
r o

f R
ea

ct
io

ns
, I

I = 5K

Figure 1.7: (Left) Comparison of acoustic versus chemical timescales obtained at det-
onation fronts in high-fidelity RDE simulations using three different chemical mecha-
nisms (adapted from Ref. [30]). (Right) Plot of number of reactions versus number
of species for detailed chemical mechanisms used in high-fidelity reacting flow simu-
lations (adapted from Ref. [183]).

flow simulations.

To emphasize the impact of chemistry-related timescale restrictions, a comparison

between acoustic timescales and chemical timescales extracted from numerical simu-

lations of detonation waves for three different detailed kinetic mechanisms of varying

degrees of complexity are shown in Fig. 1.7. Acoustic timescales are obtained using

standard wavespeed estimates, and chemical timescales at the wavefront are extracted

from the chemical Jacobian eigenvalues [190]. The trends in Fig. 1.7 emphasize the

sensitivity of chemical stiffness to the fuel/oxidizer combination and illuminate the

chemistry-derived bottlenecks that arise in the simulation of propulsion devices like

RDEs. In the case of industry-relevant fuels like RP2 [360], the chemical timescales

are several orders magnitude smaller than the CFL-derived acoustic timescales.

An important point is that chemistry treatment required in these flow solvers

does not only add stiffness, but also adds the evaluation of an additional source

term on the right-hand-side (the chemical source term). Numerical evaluation of

the chemical source term itself is a computationally intensive task due to the high

17

arithmetic intensity of the Arrhenius formulation (see Sec. 2.2); a major issue is

that this complexity not only scales inversely with the limiting timestep (the number

of RHS evaluations increases as the timestep decreases), but also linearly with the

number of species retained in the kinetic mechanism [16, 183]. As a result, increasing

the accuracy of the representation of chemistry in the flow solver, which effectively

amounts to increasing the number of species, translates ultimately to a significant

increase in computational cost required to evaluate the chemical source terms. This

phenomenon, illustrated in Fig. 1.7, comes from the physical constraints of elementary

reactions which are the building blocks for these detailed mechanisms. For a given

chemical mechanism, Fig. 1.7 shows how increasing the number species results in a

5X increase in the number of reactions, which amounts to a superlinear scaling of

source term evaluation times.

1.4.3 Treating Complex Geometries

The above computational challenges are exacerbated when treating complex ge-

ometries that produce complex, irregular meshes3. In general, there are two options to

integrate complex geometries into simulation workflows: (1) utilize unstructured grids

[219], or (2) utilize an immersed or embedded boundary method, which represents

implicitly the effect of a complex geometry on a structured grid by means of storing

additional level set scalar fields [200, 250]. An example of the output of unstructured

meshing required to discretize the interior domain of an injector in a rotating detona-

tion engine simulation is shown in Fig. 1.8. Complexities induced by these methods

on both boundary condition treatment and data structure arrangement eventually

add to computational costs, especially for numerical flux evaluation. For example,

in unstructured meshes, the connectivity matrix that assigns cell centroids to cell

3As discussed in the CFD vision 2030 study, it should be noted that the meshing procedure is
in itself a very time-consuming part of the workflow, and can take days to weeks depending on the
resolution requirements and available computer storage/memory [317].

18

Figure 1.8: Mesh used for a single fuel injector geometry within a rotating detonation
engine simulation (from Ref. [30]).

faces is very large and irregularly organized in memory [30] – as such, computing

surface integrals by means of cell-to-face interpolation and the Gauss divergence the-

orem, which is a backbone routine for finite volume methods [335], inevitably adds to

computational cost when treating irregular geometries required to explore advanced

propulsion concepts.

1.5 Overview and Scope of Dissertation

The discussion in Sec. 1.3 and 1.4 brings forward two conflating requirements: the

first is that simulations of propulsion devices must utilize complex geometry and high-

fidelity numerical solutions of compressible reacting flow that present computationally

prohibitive bottlenecks, and the second is that a large number of long-time simulations

must be commissioned for robust exploration of design spaces. As such, this has

led to immense research in exploring pathways for simulation acceleration – that is,

strategies for addressing these computational challenges by eliminating the critical

bottlenecks/challenges outlined in Sec. 1.4.

19

As illustrated in Fig. 1.9, there are two such pathways by which one can accelerate

high-fidelity simulations:

• Hardware-oriented acceleration: the goal here is to ensure that existing al-

gorithms required to execute direct numerical simulations of complex geometries

are compatible with state-of-the-hart high-performance computers (HPCs). In

the context of modern-day exascale computing dominated by power-efficient

GPUs tailored to scientific applications [7, 302], this amounts to ensuring that

algorithms are vectorized in formats compatible with the single-instruction,

multiple-thread (SIMT) execution framework [16]. Put another way, hardware-

oriented acceleration targets algorithm scalability and throughput optimiza-

tion on modern HPC platforms, where the objective is to decrease time-to-

solution by ensuring conventional CFD algorithms sustain peak-performance

on the available computational nodes during the entirety of the simulation run

[222].

• Model-oriented acceleration: in contrast to hardware-oriented acceleration,

which amounts to flow solvers playing a catch-up game with the rapid evolu-

tion of hardware, model-oriented acceleration seeks to increase time-to-solution

by deploying models derived from scientific modes of inquiry (experiments or

simulations, as illustrated in Fig. 1.4) that are consistent with prior physical

knowledge and empirical observations (data) [79, 258]. The goal of these models

is to either (a) drop the total number of degrees of freedom in the simulation by

reducing the number of required spatial grid points and/or required time steps,

or (b) derive alternate, cheaper analytic formulations of traditionally computa-

tionally expensive algorithms by leveraging physical assumptions.

The scope of this dissertation is concerned with developing novel strategies for

accelerating reacting flow simulations via the latter pathway, namely model-based

20

Acceleration
pathways

Modeling
Goal: modify governing

equations using prior
physical knowledge and data

Hardware
Goal: maximize solver

throughput on state-of-the-art
computing platforms

Figure 1.9: Pathways for accelerating high-fidelity, full-gometry simulations of com-
pressible reacting flow. The scope of this dissertation is focused on model-based
acceleration (boxed in red). RDE and scramjet snapshots reproduced from Ref. [30].

simulation acceleration. Within this theme, to overcome the bottlenecks described in

Sec. 1.4, this dissertation explores data-driven strategies – the idea is to use the large

amount of data accumulated from a small number of high-fidelity simulations to de-

velop fast predictive models such that extrapolations into new designs can be explored

in a much more cost-efficient way. It should be noted that although both pathways in

Fig. 1.4 are presented as separate, they are very much intertwined through the idea

that any developed modes should also be compatible and scalable with evolving hard-

ware. Because of this requirement, often times hardware and HPC trends may drive

the way models are constructed [130, 276] – as such, although the focus here is on

model-oriented acceleration, a brief overview of hardware-oriented acceleration (par-

ticularly GPU computing) and its influence on high-fidelity reacting flow simulations

is provided later on in Chapter II, Sec. 2.3.

To conclude this chapter, the following gives an overview of the remaining chapters

in the dissertation. In Chapter II, the governing equations of compressible reacting

flow (the Navier-Stokes equations) are presented (Sec. 2.2), an overview of HPC trends

is provided (Sec. 2.3), and a detailed survey of modeling approaches used for simu-

lation acceleration in reacting flow is presented under the classes of physics-based

(Sec. 2.4) and data-based (Sec. 2.5) models. Details on the research contribution

21

provided by this dissertation are then provided in Sec. 2.6. The contribution relies on

combining beneficial qualities of both physics-based and data-based approaches in a

physics-informed data-driven modeling strategy grounded in unsupervised data clus-

tering, with primary focus on in-situ acceleration of expensive kinetics evaluations.

The approach, termed classification-based regression of chemical kinetics, relies on

utilizing a clustering strategy to isolate regions of dynamical similarity with reacting

flowfields such that localized models can be deployed for speeding up chemical source

term evaluations. Given this research contribution, Chapter III presents the funda-

mentals (e.g. algorithms, advantages, and limitations) of the clustering strategy used,

namely K-means clustering, and provides examples of extending the baseline K-means

algorithm for reduced order modeling in turbulent combustion applications for moti-

vational purposes. Then, in Chapter IV, the classification-based regression strategy

is presented and applied to detonation-containing flows. In Chapter V, the method-

ology for extending the clustering strategy used in Chapter IV (standard K-means)

to account for underlying physical constraints from the governing equations is formu-

lated, leading to the development of the class of physics-guided K-means clustering

algorithms. Applications of the approach are demonstrated on similar detonation-

containing flows as used in Chapter IV. Concluding remarks, future directions, and

outlooks are provided in Chapter VI. Lastly, the Appendices contain additional in-

formation related to derivations concerning the K-means algorithm (Appendix A),

matrix-based evaluation of analytic chemical source terms on GPUs (Appendix B),

and GPU-optimal chemical time integration routines relevant to compressible reacting

flow solvers (Appendix C).

22

CHAPTER II

Models for Accelerating High-Fidelity Reacting

Flow Simulations

2.1 Introduction

Chapter I described the need for high-fidelity compressible reacting flow simula-

tions for both physical analysis and design of next-generation propulsion devices, and

concluded with comments on the importance of exploring acceleration pathways for

these simulations to overcome the wide variety of computational challenges/bottlenecks

(Sec. 1.4). As immense research has been carried out to this end in the past several

decades, this chapter builds on the concluding comments of Chapter I and provides

to the reader a detailed survey and classification of select modeling strategies used to

accelerate compressible reacting flow solvers within the greater CFD and numerical

combustion community.

Additionally, alongside surveying modeling strategies, a brief description of the

hardware perspective – particularly related to the heterogeneous node architectures

that dominate state-of-the-art supercomputing – will be provided to emphasize the

fact that modeling frameworks compatible with emerging trends in HPC (namely

GPU computing) should be preferred over alternatives.

The goal of this chapter is twofold: the first objective is to provide a detailed sur-

23

vey of routinely used modeling approaches used within the numerical combustion and

CFD community to accelerate high-fidelity simulations for reacting flow applications,

and the second objective is to present the research contribution of this dissertation in

light of the shortcomings of these existing modeling approaches. In general, regard-

less of the class in which a given modeling approach fits, models achieve simulation

acceleration using some combination of the following three overarching goals: (1)

acceleration by means of spatial order reduction, (2) acceleration by means of elim-

inating limiting timescales (increasing the allowable simulation time step), and (3)

acceleration by means of reducing arithmetic intensity of computationally intensive

routines. The survey of modeling approaches below is not meant to be completely

exhaustive. It is intended to describe some of the more popular approaches that are

used in frameworks that not only drive faster alternatives to unsteady high-fidelity

DNS of reacting flows in terms of time-to-solution, but are also inherently compatible

with modern state-of-the-art high-performance computing trends.

As an overview, Sec. 2.2 presents the governing partial differential equations

(PDEs) for compressible reacting flow with emphasis on the dynamical systems per-

spective. Then, in Sec. 2.3, to motivate the survey of modeling approaches, high-

performance computing trends are presented to (a) outline the basic concepts of

hardware-oriented acceleration, and (b) describe the way in which flow solvers have

adapted to the now prominent heterogeneous computing paradigm. This is followed

by the survey of existing modeling approaches used in reacting flow simulations, with

models classified into two main categories: physics-based models (Sec. 2.4) and data-

based models (Sec. 2.5). Within this classification, the ways in which these models

achieve solver acceleration are discussed and their practical limitations are outlined.

In light of the survey presented in Sec. 2.4 and 2.5, the chapter concludes in Sec. 2.6

with a description of the primary research contribution of this dissertation. The re-

search contribution is the development of a physics-informed data-driven modeling

24

strategy for accelerating chemical kinetics evaluations. The method utilizes flowfield

classification grounded in data clustering, and additional emphasis in the discussion in

Sec. 2.6 is placed on developing modeling frameworks amenable to in-situ, or online,

parameter updates (i.e. models that adapt to the simulation as it progresses).

2.2 Governing Equations

The governing equations are the compressible reacting Navier-Stokes equations.

They are given as

∂ρ

∂t
+
∂ρui
∂xi

= 0, (2.1)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij) =

∂τij
∂xj

, (2.2)

∂ρet
∂t

+
∂

∂xj
(ρujet + puj) =

∂τijui
∂xj

+
∂

∂xj

(
κ
∂T

∂xj

)
, (2.3)

and

∂ρYk
∂t

+
∂ρujYk
∂xj

=
∂

∂xj

(
ρD

∂Yk
∂xj

)
+ ω̇k, k = 1, . . . , NS. (2.4)

In the above equations, repeated indices indicate summations (Einstein conven-

tion) – Eq. 2.1 is the conservation of mass, Eq. 2.2 is the conservation of momentum,

Eq. 2.3 denotes the conservation of energy, and Eq. 2.4 the conservation of species

concentration. The quantity ρ denotes the fluid density, ui the fluid velocity, p the

pressure, et the total energy, and Yk the mass fraction for species k of NS total species.

In the above formulation of the energy equation, the total energy et includes chemical,

25

sensible, and kinetic contributions, and is defined by

et =

T∫
T0

CpdT +

NS∑
k=1

∆h0f,kYk +
1

2
uiui −

p

ρ
, (2.5)

where Cp is the heat capacity of the mixture at constant pressure and ∆h0f,k is the

formation enthalpy of the k-th species obtained at a reference temperature T0 [261].

The stress tensor, which contributes to the diffusion terms in Eqs. 2.2 and 2.3, is

defined by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij. (2.6)

The transport coefficients present in Eqs. 2.3, 2.4 and Eqs. 2.6 – the dynamic

viscosity µ, the thermal conductivity κ, and the species diffusivity D – are typically

estimated numerically in kinetics libraries (e.g. Chemkin [144] or Cantera [109]) by

means of tabulations facilitated by high-order polynomials of temperature. Addition-

ally, the equations are closed by assuming an ideal gas equation of state,

p =
ρR̂T

W
, (2.7)

where R̂ is the universal gas constant and W is the mean molecular weight of the

mixture.

2.2.1 Chemical Source Term

The chemical source term ω̇k is present only in the conservation equation for

species mass fraction because the total energy is defined in Eq. 2.5 to include the

chemical contribution (species formation enthalpies). As described in Sec. 1.4, the

chemical source terms are obtained using an Arrhenius formulation from detailed

chemical kinetic mechanisms, where NS is usually on the order of 10 or greater. The

mechanisms are described by a collection of NR elementary reactions, which can be

26

concisely represented through a symbolic notation for the set of species {S1, . . . ,SNS
}.

In this notation, a general detailed chemical mechanism is represented as

NS∑
k=1

ν ′
kjSk ⇌

NS∑
k=1

ν ′′
kjSk, j = 1, . . . , NR, (2.8)

where ν ′ ∈ RNS×NR (respectively, ν ′′) is the reactant (respectively, product) stoichio-

metric coefficient matrix, and the net stoichiometric coefficient matrix is produced as

ν = ν ′′ − ν ′. The chemical source term, which is defined as a net production rate

(kg/m3s) for species concentration ρYk, is a linear combination of net reaction rates:

ω̇k = W

NR∑
j=1

νkjQnetj . (2.9)

In Eq. 2.9, Qnetj contains the net reaction rate for elementary reaction j, where

j = 1, . . . , NR. The characteristic nonlinearity of the chemical source term comes

from the definition of the net reaction rate, which is expressed as

Qnetj = Qfj −Qrj = Kfj

NS∏
k=1

C
ν′kj
k −Krj

NS∏
k=1

C
ν′′kj
k . (2.10)

Above, Qfj and Qrj are the forward and reverse reaction rates for reaction j, respec-

tively; Kfj and Krj are the forward and reverse rate constants, respectively; and Ck

is the species molar concentration. The forward rate constant satisfies the Arrhenius

model – the reverse rate constant can either also be cast in the Arrhenius form, or, as

is more commonly done, can be computed by means of evaluation of the equilibrium

rate constant via NASA polynomial tabulations. The reader is referred to Ref. [109]

for additional information on the numerical implementation of chemical source term

evaluations using the above equations.

27

2.2.2 Dynamical System Formulation

To facilitate the discussion below, the PDEs presented in Eqs. 2.1-2.4 can be re-

cast concisely through a collection of flux divergences and volumetric source terms ob-

tained from a single conserved state vectorQ(x, t) = [ρ(x, t), ρui(x, t), ρet(x, t), ρYk(x, t)]
T ∈

RNT ; i indexes the spatial dimension and k indexes the NS species, such that NT =

5+NS in three spatial dimensions. The compressible Navier-Stokes (CNS) equations

then read as

∂Q(x, t)

∂t
+∇ · [A(Q(x, t)) +DQ(x, t)] = S(Q(x, t)), (2.11)

whereA is a nonlinear operator that represents advective fluxes, D is a linear operator

that represents diffusive fluxes, and S is a nonlinear operator that represents the

volumetric chemical reaction source term.

Spatial discretization of the CNS on a computational grid or mesh by means of

the method of lines (e.g. utilizing finite difference [226], finite element [62], finite

volume [175], or spectral methods among others [94, 243]) allows one to reformulate

the governing equations in Eq. 2.11 in a semi-discrete form that invokes a dynamical

system representation of the physical phenomena at play. Without loss of generality,

a finite-volume based discretization is assumed to have been carried out such that

the mesh is interpreted as a collection of non-intersecting NC cells, and that the NT

conserved transport variables are stored at the centroids of each of these cells (i.e.

they are cell volume averages).

In this formulation, a dynamical system state vector is defined at time t as y(t) ∈

RNF , where NF = NC × NT . In contrast to Q, the state vector y encapsulates

the instantaneous position of all transport variables stored at the cell centers in the

NF -dimensional phase space. It should be noted that in high-fidelity simulations,

the quantity NF can reach extremely high values – for example, even for a modest

28

mesh size of 10 million cells, a reacting flow simulation utilizing NS = 100 species in

the detailed chemical mechanism produces a state vector comprised of over 1 billion

degrees-of-freedom.

Proceeding by means of the spatial discretization method, the evolution of the

dynamical system state vector is then given by

dy

dt
= A(y) +Dy +R(y) = F(y) ∈ RNF , y(t = 0) = y0. (2.12)

The above equation is characterized by (1) the nonlinear operator A, which represents

the action of computing numerical divergences of the advective fluxes using stencils

that adapt to the flowfield (upwind schemes), (2) the symmetric linear operator D,

which represents the action of computing numerical divergences of diffusive fluxes

(equivalent to the numerical Laplacian operator), and (3) the nonlinear operator R,

which represents the Arrhenius-based evaluations of chemical source terms for the NF

discretization points contained in the state vector y.

2.3 High-Performance Computing Trends

Before discussing the various modeling strategies for achieving simulation accelera-

tion, it is important to first outline key trends in the development of modern hardware

and state-of-the-art high-performance computers (HPCs) as well as the way in which

the CNS equations are solved on these HPCs. These trends not only give context

to how flow solvers should be developed, but also govern the way in which candi-

date models are selected for simulation acceleration purposes. Ideally, models should

be compatible with the way modern hardware has evolved to optimally execute al-

gorithms and minimize time-to-solution. As such, this section introduces ideas of

hardware-oriented acceleration (see Fig. 1.9 and associated discussion).

In broad terms, quantitative assessment of hardware capability relevant to sci-

29

entific computing is derived from (a) peak performance measurements in terms of

floating point operations (FLOPs) per second, which determines the rate at which

the particular piece of hardware can perform arithmetic evaluations, (b) bandwidth

measurements in terms of bytes-per-second, which determines the rate at which data

can be transferred to and from global memory, and (c) the power consumption of

the device at sustained operation, which provides a measure for energy efficiency. Al-

though other performance-related quantities are also important [244], requirements

based on the the above three quantities are the main drivers for hardware selection

in HPC nodes.

With these quantities of interest in mind, trends in both peak performance and

bandwidth for a subset of hardware devices are shown in Fig. 2.1 to emphasize the dif-

ference between conventional central processing units (CPUs) and the now prominent

graphics processing units (GPUs). More specifically, the figure compares evolution

in terms of performance (FLOPs-per-second) and bandwidth (Gigabytes-per-second)

for select Intel CPUs and NVIDIA GPUs – although only a small subset is devices

is shown, the implications of Fig. 2.1 are reflective of overall hardware trends that

drive modern HPC for computational science [7]. Ultimately, Fig. 2.1 shows how

both peak performance and bandwidth rates for state-of-the-art GPUs are steadily

higher than those of CPUs – the implication is that, for scientific applications requir-

ing high arithmetic intensity, GPUs must be utilized in some way due to their sheer

computational advantage. Additionally, although not shown in Fig. 2.1, GPUs also

provide greater power efficiency over CPUs in terms of FLOPs/Watt, which further

motivates their usage at large scales.

The consequence is that modeling frameworks and algorithms inherently incom-

patible with GPUs, despite how potent they are from a mathematical or philosophical

lens, are usually not considered in the computational science community if scalability

is requirement. This effect is formally known as the hardware lottery [129], which ar-

30

Intel Xeon Gold 6154
(NASA Pleiades)

NVIDIA V100
(ORNL Summit)

NVIDIA A100

NVIDIA H100
NVIDIA V100

(ORNL Summit)

Intel Xeon Gold 6154
(NASA Pleiades)

NVIDIA A100

NVIDIA H100

Figure 2.1: (Left) Evolution of theoretical peak performances for Intel Xeon CPUs
(black) and NVIDIA GPUs (blue) in both single precision (empty squares) and double
precision (filled circles) computing formats from 2008 to present-day. (Right) Evo-
lution of memory bandwidth limitations for NVIDIA GPUs (filled circles) and Intel
CPUs (empty circles). Annotations provided for hardware used in NASA Pleiades
(CPU-based) and ORNL Summit (GPU-based) HPCs. Data extracted from Intel and
NVIDIA specification sheets.

gues that despite the physical and mathematical viability of a wide variety of modeling

frameworks in any given field of study, the tight feedback between societal demands

and hardware availability at a particular time biases the scientific community towards

models whose algorithms are intrinsically compatible with current hardware. As these

algorithms and models become widely adopted and successful, the hardware in turn

becomes more optimized for these models, which amplifies the feedback mechanism.

This phenomenon, illustrated in Fig. 2.2 (left), explains the meteoric rise in the rate

of adoption of methods derived from AI (e.g. neural networks) into other seemingly

unrelated fields like fluid dynamics [79] and numerical combustion [133] in the 21st

century. For example, the backbones of neural networks are batched matrix mul-

tiplications and convolutions which thrive in the single-instruction multiple-thread

(SIMT) computing formats favored by GPUs [235]. The feedback comes from the

fact that GPUs are now becoming increasingly tuned for low and mixed-precision

arithmetic (visualized in the peak performance trends in Fig. 2.1) due to the societal

demand for reducing costs in training and inference algorithms for very large neural

31

Society/
Economic
Demand

AI
break-

throughs

Specialized
computing
hardware

Summit
2018-2022
(Oak Ridge)

Frontier
2022 - Pres.
(Oak Ridge)
Aurora
2022 - Pres.
(Argonne)

Compute Power

0.2 ExaFLOPs/Sec
NVIDIA V100 GPU

(> 25,000 GPUs)

1.6 ExaFLOPs/Sec
AMD Instinct 250x GPU

(> 37,000 GPUs)

> 2.0 ExaFLOPs/Sec
Intel Ponte Vecchio GPU

(> 60,000 GPUs)

Supercomputer

Figure 2.2: (Left) Illustration of the coupling between research advances in AI and
data science, development of specialized hardware (i.e. GPUs), and societal demands.
(Right) State-of-the-art HPCs commissioned by the USA Department of Energy. Un-
derneath compute power (red text), type of GPU used and total number of available
GPUs is provided. Data and images obtained from Refs. [12, 227, 228].

networks that excel in low-precision numerical environments.

From the scientific computing perspective, these feedback mechanisms and asso-

ciated hardware trends in Fig. 2.1 drive the way in which state-of-the-art HPCs are

now commissioned and deployed for scientific computing applications like combustion

simulations [7]. Some examples of supercomputing platforms sponsored by the USA

Department of Energy are shown in Fig. 2.2 (right). With the goal of ushering in the

exascale computing era, the most powerful HPCs are now entirely built on so-called

heterogeneous node architectures that contain both CPUs and a set of GPU ”accel-

erators” or ”offloaders” – as the names imply, the intended workflow is to utilize the

CPUs to send computationally intensive tasks to the GPUs [207]. A schematic of a

heterogeneous node architecture is shown in Fig. 2.3. The fastest and most power-

efficient HPCs (three of which are shown in Fig. 2.2) now consist of thousands of such

heterogeneous nodes, which translates to housing on the order of tens of thousands

of GPUs per HPC. In all of the HPCs listed in Fig. 2.2, the GPUs are responsible

for over 95% of the overall compute power. As such, to realize hardware-oriented

acceleration (Fig. 1.9), top-of-the-line flow solvers must adapt to the new heteroge-

neous computing paradigm by demonstrating scaling on thousands of GPUs that are

32

Figure 2.3: Illustration of heterogeneous node architecture used in Summit HPC.
Gray boxes denote IBM Power9 CPUs, green boxes denote NVIDIA V100 GPUs,
and arrows denote data transfer pathways. The GPUs are responsible for roughly
98% of the node compute power. Reproduced from Ref. [241].

optimized for AI and not CFD [30, 340].

To this end, standard methods of GPU-integration for compressible reacting flow

solvers accommodates spatial discretization based on domain decomposition, shown

in Fig. 2.4. In domain decomposition, a parallel programming library (usually MPI

[346]) is used to assign non-overlapping subsets of the spatial domain to individual

CPU cores. Each core (or MPI rank) then operates on its own subset of cells in

isolation until a synchronization stage is reached, at which consistency in the flow

solution along the boundaries of the subdomains is enforced in a bandwidth-limited

communication operation. The presence of GPUs as the source of dominant com-

puting power within the HPC node now requires traditional domain-decomposition

based flow solvers to operate within the MPI+X framework for optimal through-

put, where the ”X” refers to some type or brand of GPU to which the CPU core

offloads its computationally intensive tasks. As a result, new programming frame-

works that supplement standard GPU libraries like CUDA have emerged to alleviate

solver development hurdles related to memory management and coding challenges in

the heterogeneous MPI+X environment (examples include Kokkos [81], Raja [25], Le-

33

CORE 1 CORE 2 CORE 3 CORE 4

GPU 1 GPU 2 GPU 3 GPU 4

Data
transfer

Data
transfer

Data
transfer

Data
transfer

Boundary communication (bandwidth-limited)

Arithmetic operations (compute-limited)

CORE 1

GPU 1

CORE 2

GPU 2

CORE 4

GPU 4

CORE 3

GPU 3

Figure 2.4: (Left) Illustration of domain decomposition approach for a 2D square ge-
ometry. Red lines indicates domain boundary, black lines indicate subdomain overlap
regions. (Right) Offloading procedure between the CPU cores and GPU accelerators
within the MPI+X paradigm. For illustrative purposes, this figure assumes a one-to-
one mapping between core and GPU; this does not have to be the case in practice.

gion [24], and compiler directive-based frameworks like OpenMP [172] and OpenACC

[352]).

All aspects of solver performance now revolve around how well the GPUs within

the HPC nodes are utilized in the flow solver. Achieving theoretical peak perfor-

mance on GPUs requires algorithms to operate at high levels of arithmetic intensity,

defined as the ratio of floating point operations (FLOPs) determined by the algo-

rithm arithmetic (i.e. number of multiplications and additions) to the amount of

data transferred to and from the global memory source as determined by the required

inputs and outputs. Pathways to achieve high arithmetic intensity are provided by

rewriting (or refactoring) computationally intensive solver routines in a matrix-based

or tensor format for which the GPUs are inherently designed (i.e. rewriting routines

in flow solvers to mimick neural network forward passes) [16]. Aside from refactor-

ing algorithms, other pathways for increasing arithmetic intensity include increasing

the number of local cells offloaded to the GPU by the MPI rank within the domain

decomposition framework until the saturation point of the GPU is reached. This

results in GPU scaling behavior that may seem counterintuitive: in practice, better

34

utilization of the GPU often comes from dropping the number of subdomains for a

given geometry in the domain decomposition framework until a saturation point is

reached [30].

The structure for a reacting flow solver used for numerical simulation of the com-

pressible Navier-Stokes equations is shown in Fig. 2.5. In a fully offloaded solver,

the role of the GPU is to perform all intensive arithmetic operations within the time

step such that (1) GPU utilization is sustained for as long as possible, and (2) CPU-

to-GPU data transfer overhead is minimized. This amounts to GPU treatment of

flux and divergence evaluations for advection and diffusion terms, as well as chemical

source term evaluations for reactions [30]. Note that reaction source terms for each

cell can either be computed from instantaneous rate evaluations via the Arrhenius

formulation (Eq. 2.9), or extracted from the result of a stiff time integrator within an

operator splitting framework (see Sec. 2.4.6 and Appendix C). Offloading the com-

putationally intensive evaluations from a CPU solver to a GPU in this manner not

only results significant time-to-solution speedups, ranging from 2X to 10X in prac-

tice [30, 340], but also ensures that solvers are future-proof in the event that HPCs

continue to prioritize GPU computing.

Despite the computational gains provided by GPU computing and hardware-

oriented acceleration, there are a few caveats: (1) the act of offloading a CPU-based

solver to perform expensive evaluations on GPUs provides a one-time speedup (once

a solver is offloaded, it is ”caught-up” with the state-of-the-art hardware), and (2)

GPU offloading eventually reaches a restrictive MPI-derived communication bottle-

neck that stems from the domain-decomposition approach used to solve the govern-

ing equations – this comes from the bandwidth-limited MPI cost of communicating

boundary conditions across subdomains (shown in Fig. 2.5). For these reasons, mod-

eling approaches are required to truly realize the long-time simulation capability re-

quired for robust design strategies (see Sec. 1.5). As described next in Sec. 2.4 and

35

2.5, the broad goal for these models (or model-oriented acceleration) is to extract fur-

ther computational gain on top of that provided by hardware-oriented acceleration

to eliminate physics-derived restrictions based on high resolution requirements, such

as the detailed chemistry bottlenecks mentioned in Sec. 1.4.

As a final note, some may argue the above hardware advantages provided by GPU

computing have eliminated the need for highly intrusive models whose goals are to

produce drastic reduction in overall degrees-of-freedom. For example, innovations in

ROM frameworks in the 80s and 90s (i.e. proper orthogonal decomposition and large-

eddy simulation, discussed in detail in the next sections) were driven by the disparity

between desired simulation run times and available computing power. With HPCs

now reaching the exascale (see Fig. 2.2), the argument for motivating model devel-

opment due to lack of computing power no longer holds, which limits the traditional

scope of ROMs. In other words, ensuring ROM compatibility with HPCs requires

the amount of order reduction provided for a single simulation to decrease, either by

(a) retaining more modes in the context of modal decomposition based ROMs, or (b)

increasing the grid resolution in implicit large-eddy simulations. These qualities effec-

tively inch ROM frameworks closer to the capabilities of direct numerical simulations

(DNS), to the point where it may be more worthwhile to concentrate research effort

towards accelerating solver routines using non-intrusive models embedded in DNS,

as opposed to completely replacing DNS with ROMs. This quality has motivated

the research contribution of this dissertation, which as outlined in Sec. 2.6, involves

accelerating prohibitive chemical kinetics routines found in reacting flow solvers.

2.4 Physics-based Models

Physics-based models utilize the governing equations as the starting point for

model development, either from the PDE perspective (Eq. 2.11) or the semi-discrete

dynamical systems perspective (Eq. 2.12). Detailed descriptions of some widely used

36

Domain decomposition

Boundary condition update

Cell-to-face interpolation

Numerical flux evaluation

Surface integration

Subdomain at time t + dt
y(t + dt)

Explicit state update

Subdomain at time t
y(t)

Chemical source term
evaluation

A
dv

ec
tio

n
an

d
D

iff
us

io
n

R
ea

ct
io

n

Write-to-disk

Figure 2.5: Flowchart for GPU-based finite-volume explicit compressible reacting
flow solver (based on UMReactingFlow [30]). Red boxes indicate CPU-only evalua-
tions (the bottlenecks). Blue boxes indicate areas that should be offloaded to GPU.
Flowchart operates under domain decomposition framework of Fig. 2.4 and dynami-
cal system of Eq. 2.12.

37

methods in reacting flow simulations are provided below – additional reviews of meth-

ods used in reacting flow applications are provided in Refs. [258, 261, 276]. It should

be noted that the methods discussed below are relevant for accelerating predictions of

unsteady reacting flow phenomena. As such, low-fidelity statistical frameworks that

produce time-averaged flowfields like Reynolds-averaged Navier-Stokes [245] are not

discussed.

2.4.1 Large-Eddy Simulation

Large-eddy simulation (LES), the modern versions of which are built on the initial

studies by Smagorinsky [318], is a statistical reduced-order modeling (ROM) approach

for turbulent flows [267]. Significant research effort in the past decades has put LES

at the forefront for the accelerated prediction of unsteady combustion and turbulent

reacting flow phenomena [258], from canonical free-shear applications like turbulent

reacting jets [142, 277] and jets in crossflow [143], to full-geometry simulations of

industrial propulsion devices [168, 238, 291].

LES takes advantage of the concept of scale separation and energy cascade in

canonical turbulent flows. The large scales that contain a majority of the turbulent

kinetic energy are directly resolved in the simulation and the small scales are modeled

[267]. The ideal cutoff between large and small scales is an expert-guided input, and is

determined not only by the physics of the problem through a representative turbulent

Reynolds number, but also by target prediction horizon times for a given application

and the level of desired reduction in the total number of degrees-of-freedom.

In LES, the governing equations in Eq. 2.11 are passed through spatial filter of

size ∆, producing a set of filtered equations that are solved numerically (Ref. [267],

Chapter 13). The filtering step acts as a scale separation mechanism through the

filter size ∆: lengthscales above ∆ are called resolved scales and are represented in

the numerical solution, whereas lengthscales below ∆ are called unresolved scales.

38

Since only the resolved scales are represented in the filtered equations, the modeling

goal in LES is to properly account for the dynamical impact of the unresolved scales

on the resolved scales without directly representing the unresolved scales numerically.

Because the governing equations are nonlinear, this constitutes an elusive closure

problem that is referred to as the sub-grid scale modeling task. Higher filter widths

produce greater potential for speedup by means of reducing the overall number of

degrees-of-freedom in the underlying dynamical system (Eq. 2.12), but also increase

the impact of the unresolved scales on the overall dynamics, which in turn implies a

more difficult role for the closure modeling task.

The starting point in LES is to define a filter. The filter can be defined implicitly

or explicitly – implicit filtering, which is the most commonly used approach, interprets

the mesh as the output of a filtering approach. In implicit LES, the user does not

directly execute a filtering operation in the code; rather, the starting point is to set

an under-resolved characteristic lengthscale for the cell size, and proceed with the

simulation on this coarse mesh [196]. On the other hand, in explicit LES (or explicit

filtering), the unresolved scales are recovered in an approximate manner by means of

algebraic relations based on the filter definition [186] – this can be accomplished with

methods like approximate deconvolutions [197] or digital filtering [153].

Regardless of which filtering method is used, the end-result is that it must result

in information loss by means of a reduction in the dimensionality, or degrees-of-

freedom, of the dynamical system in Eq. 2.12. The filter must also be non-invertible.

If this property is not satisfied, the dynamics of the unfiltered equations, which are the

high-fidelity direct numerical simulations, would be identical to the filtered equations,

resulting in a trivial ROM.

There are many pathways by which one can mathematically present the central

concepts of large-eddy simulations. Here, we will opt for the description more in-line

with the dynamical systems representation provided in Eq. 2.12. This formulation,

39

High-fidelity
DNS grid

High-fidelity
DNS grid

y

Medium/Low-Fidelity
LES Grid

Ay

Filtering

Smoothing
Down

sampling

Figure 2.6: Interpretation of the effect of filtering in large-eddy simulations via non-
invertible linear operator A [165].

known as ideal LES [165], is derived from methods of stochastic estimation and prob-

ability density function (PDF) transport, as described in the works of Adrian [2] and

Pope [266]. As a starting point, we define the filter as a linear, non-invertible operator

A. The action of A on the fully resolved high-fidelity flowfield y ∈ RNF produces

a filtered flowfield ŷ that not only eliminates the unresolved scales below the filter

width prescribed by A, but also drops the number of degrees-of-freedom of y from

NF to NLES
F . That is,

ŷ = Ay ∈ RNLES
F . (2.13)

Intuitively, the filter procedure in Eq. 2.13 can be described as the result of two

successive steps: (1) a smoothing step that eliminates the lengthscales below the filter

width from the ground-truth instantaneous flowfield y, and (2) a down-sampling step

that reduces the dimensionality of the flowfield and effectively moves it to the LES

grid. An example of the effect of the filtering operation is shown in Fig. 2.6.

The governing equation for the filtered high-fidelity flowfield (filtered DNS) can

then be obtained from Eq. 2.12 as

A
dy

dt
= AF(y) ∈ RNLES

F . (2.14)

40

In an LES simulation, the high-fidelity DNS fields given by y are never available.

Instead, the LES procedure solves for a different flowfield, denoted w, which exists

on the LES grid. The evolution of the LES field is defined by the dynamical system

dw

dt
= F(w) +M(w) ∈ RNLES

F , (2.15)

where F(w) denotes the evaluation of the discretized compressible reacting Navier-

Stokes equations on the LES grid, and the quantity M(w) denotes the LES model.

Note that both Eqs. 2.14 and 2.15 exist on the same mesh, which is designed to not

resolve all relevant lengthscales for the problem at hand (see Sec. 1.4 for a discussion

on lengthscale requirements). As described in Ref. [165], the LES model can at best

be equivalent to the following residual,

M(w) =
〈
A
dy

dt

∣∣∣Ay = w
〉
− F(w), (2.16)

where the term in brackets denotes an ensemble average of the filtered RHS condi-

tioned on all possible DNS (or high-fidelity) flowfields that produce the instantaneous

LES field w when filtered.

Since the conditional average in Eq. 2.16 cannot be feasibly computed (it requires

evaluating companion ensemble DNS simulations), we instead use conventional LES

models with extensions to reacting flow based on eddy viscosities and diffusivities

for predicting subgrid stress tensors, scalar variances, and scalar dissipation rates.

The model-form errors in these ad-hoc LES models should be compared with the

residual defined by the ideal formulation in Eq. 2.16. Overall, the advantage of LES

models is their simplicity and compatiblity with HPC trends: frameworks that utilize

LES can increase throughput by simply decreasing the filter width. However, despite

the widespread usage of eddy-viscosity based LES models in turbulent combustion

applications [43, 105, 258, 259], these models are derived under simplistic canon-

41

ical configurations based on local homogeneity and isotropy of the subgrid scales,

which are violated in complex, advection-dominated environments found in propul-

sion devices like rotating detonation engines and scramjets [278]. Additionally, the

problems of correctly prescribing filter widths, grid convergence trends, and wall mod-

els in LES applications remain either unsolved for complex reacting flows or highly

configuration-specific [36, 265]. Despite this, because of demonstrated success on key

applications (particularly in the low-Mach regime), LES continues to remain a go-to

tool for simulation of all types of turbulent fluid flows at various levels of fidelity.

2.4.2 Combustion Models

In a broad sense, combustion models of various forms use principles derived from

canonical flame configurations to achieve simulation acceleration by (a) removing the

need for detailed chemical kinetic mechanisms and (b) ensuring compatibility with

large-eddy simulations [258]. These methods have seen significant success in several

reacting flow applications primarily in the low-Mach regime, such as simulations for

soot formation in gas turbines [58, 116, 213], prediction of complex ignition phenom-

ena [48, 331], simulations of jet-in-crossflow configurations [351], and representation

of multi-phase combustion [155].

Adopting the notation of Ref. [276], a general combustion model takes the form

ϕ = G(ψ) ∈ RNϕ , (2.17)

where the variable ϕ is a chemical composition vector of sizeNϕ, ψ is an input vector of

sizeNψ, and G is the combustion model that can be interpreted as a mapping function.

Within the LES framework, combustion models are used primarily to supply filtered

42

scalar fields through the input variable ψ as

ϕ̃ =

∫
G(ψ)ρ(ψ)dψ, (2.18)

where ϕ̃ denotes the filtered composition vector and ρ(ψ) the joint sub-filter PDF of

the input variables. Note that the formulation in Eq. 2.18 generalizes to non-LES

settings (e.g. in situations where the grid resolution is below all required lengthscales)

if the joint-PDF is supplied as a delta function. Combustion modeling research efforts

can be divided into four major focuses [276]: (1) reducing the size of the composition

vector ϕ (this amounts to replacing detailed chemistry with reduced chemistry for-

mulations), (2) selecting the proper input variables ψ for the task at hand, (3) deriva-

tion of the combustion model G from canonical configurations, and (4) evaluation

and parametrization of the joint PDF ρ, which is nontrivial in turbulent combustion

applications because it is a function of both space and time. Based on the method

used, the amount of complexity attributed each of these four thrusts is different. For

example, PDF transport approaches solve for the joint PDF ρ directly using a sepa-

rate set of PDEs and/or particle-in-cell methods, while representing G as an identity

map [264, 277]. On the other hand, mechanism reduction [182] and manifold-based

approaches [213] (one of which is discussed below) reduce the dimensionality of ϕ,

such that developing the combustion model G becomes much more computationally

feasible.

One modeling framework that has achieved significant success in the combustion

community is the flamelet/progress variable (FPV) method. This method was ini-

tially introduced by Pierce and Moin [255, 256] for diffusion flames and has since

seen continued development into premixed [208, 331] and partially-premixed config-

urations [220, 269]. As the name implies, FPV methods model turbulent flames as

a collection of laminar flamelets [251], which are loosely defined as regions in which

43

chemical reactions occur in locally stoichiometric regions at timescales smaller than

those of turbulence. Based on the physical characteristics of flamelets, FPV ap-

proaches design the combustion model G to recover solutions from a set of PDEs

called the flamelet equations. The derivation of these equations depends entirely

on the type of combustion processes one wishes to capture. In many applications,

treatment of diffusion flames utilize steady-state solutions to the flamelet equations

[258], whereas treatment of premixed flames often retain the unsteady terms [188]

and derive the flamelet PDEs from either simplified counterflow or freely-propagating

flames (as shown in Fig. 2.7). Based on the canonical configuration used, many FPV

methods define ψ using two major input parameters: (1) the mixture fraction Z,

which can be interpreted as a normalized equivalence ratio [252], and (2) the progress

variable C, which is a problem-dependent linear combination of a small subset of the

total set of NS species mass fractions.

The FPV workflow is as follows. In a pre-processing step, the flamelet equations

are solved numerically with no models using detailed chemistry, which effectively

samples the true joint-PDF of mixture fraction and progress variable. Then, the

combustion model G is constructed using a tabulation strategy, where the input vec-

tor ψ includes Z, C, and other variables depending on the application [217]. The

combustion model G is then deployed in the flow solver (usually LES-based): LES

generates the required inputs ψ for the combustion model (updated mixture frac-

tion, progress variable, and other required parameters like scalar dissipation rate),

and the combustion model generates the filtered scalar fields required for LES [258].

In general, FPV accelerates high-fidelity reacting flow simulations based on detailed

kinetics by reducing the size of the composition vector Nϕ from NS (the number of

species) to 2 (mixture fraction and progress variable). This reduction comes from

the invocation of a flamelet-generated manifold (FGM) [220, 343]. In other words,

instead of transporting mass fractions for all species as described by Eq. 2.4, the

44

Figure 2.7: (Left) Example of a counterflow flame configuration used to derive the
flamelet equations. (Right) Output combustion model G, here shown as a tabulation
of progress variable source term in the enthalpy (y-axis) and progress variable (x-axis)
space. Both figures reproduced from Ref. [331].

FPV-based flow solver instead transports only mixture fraction and progress vari-

able. As shown in Fig. 2.7, the combustion model produces the effect of the chemical

source term through a tabulation strategy without having to evaluate the expensive

Arrhenius-based expression associated with detailed chemistry in Eq. 2.9.

Despite the widespread usage and modeling capabilities provided by FPV ap-

proaches, they have significant limitations [155]. Perhaps the biggest lies in the se-

lection of the canonical regime used to derive the flamelet equations. Conventional

derivations used to produce flamelet models assume constant pressure, which are valid

in low-Mach applications but break down in scenarios described by compressible re-

acting flow required in simulations of scramjets and RDEs. Although methods that

extend compressibility into FPV methods have been recently explored [290, 292], they

add additional costs and assumptions when solving the unsteady flamelet equations

used to produce the combustion model, and their extension into complex configura-

tions has yet to be demonstrated. Additional limitations are attributed to proper

specification of the input variables ψ (i.e. what to include alongside Z and C) – ac-

counting for complex physical effects such as heat loss, strain, ignition, as well as com-

pressibility, requires appending ψ with several additional variables that may render

45

accurate tabulation of the flamelet PDE solutions infeasible. Another major challenge

for combustion modeling in general is the specification of the joint PDF of the input

variables – to avoid transporting this PDF in the solver directly, it is commonplace

to enforce simplified expressions (e.g. beta PDFs [347]) to keep computational costs

small. Other combustion models, such as the level-set based G-equation method used

to treat premixed turbulent combustion [253], have similar limitations – exhaustive

discussion on other combustion modeling methods is provided in Refs. [258, 276] and

the references therein.

2.4.3 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is another physics-based modeling approach

that has connections with nonlinear multigrid methods [39, 138]. Early applications

of AMR on compressible flow were performed by Berger and Oliger [28] for non-

reacting shock-containing solutions of the Euler equations – since then, various for-

mulations of AMR have been popularized and extended to several complex reacting

flow applications in both high-speed [70] and low-Mach regimes [248].

In AMR, a baseline mesh is set to an under-resolved level. Using a set of local error

estimators that flag regions in the flowfield which observe high levels of numerical

discretization error, the baseline mesh (called the coarse grid) is refined such that

acceptable high-fidelity resolution requirements for the simulation are satisfied in a

subset of the domain instead of in the entire domain. If the error estimators (usually

flow gradients computed on the coarse grid [344]) are highly localized in space, the

hope is that the AMR approach produces the same results as a single-grid high-fidelity

simulaton with a significantly reduced total number of spatial discretization points

or degrees-of-freedom.

As with LES, there are many variants of AMR depending on whether or not

structured grids, unstructured grids, or overset meshes are utilized [260]. Regardless

46

of the variant used, a key feature of AMR is that the mesh changes with the potentially

unsteady local flow features that are tagged for refinement (e.g. traveling shockwaves,

detonation waves, or free shear layers). The requirement of mesh adaptation invokes

an interpolation step from a coarse grid to a fine grid in regions where the error

estimators activate in places where no fine grids existed previously. This interpolation

step is inherently ill-defined and is similar in spirit to explicit filtering methods used

in LES.

Without loss of generality, the discussion here focuses on one such variant known

as block-structured AMR developed by Berger and Colella [27]. Here, the baseline

coarse grid is nested with successively finer grid levels in high-error regions until

the desired resolution is reached. So long as grid nesting guidelines are satisfied, an

arbitrarily high number of refinement levels can be added. A schematic of the meshing

approach is shown in Fig. 2.8. Grids on different levels are treated as independently

evolving simulations; the flowfields on fine grid levels are then ”synced” with the

overlapping solutions on coarse grid cells based on the simulation time step by means

of a volume averaging procedure. For coarse cells tagged by the error estimators,

coarse-to-fine interpolation routines provide initial and boundary conditions for finer

grid levels.

In the AMR framework, the evolution equation on the coarse grid level has the

form

dyc
dt

= F(yc) +M(yc) ∈ RNcoarse
F , yc(t = 0) = yc,0. (2.19)

where F(yc) is the same forcing obtained from numerical discretization of the com-

pressible Navier-Stokes equations as in Eq. 2.12, and M is a residual forcing term

that is assumed to be significant in regions where high flow gradients exist. The fine

grid equations are given by

dyf
dt

= F(yf) ∈ RNfine
F , yf (t = 0) = Ifc [yc,0], (2.20)

47

Coarse Grid Fine GridGrid
overlap
region

Send flowfield (interpolation)

Send residual (restriction)

Figure 2.8: Schematic of coarse grid and fine grid communication steps carried out
in block-structured AMR. Grid overlap region (blue) ideally contains a propagating
discontinuity.

where Ifc denotes a coarse-to-fine interpolation operation. Equation 2.20 is mathemat-

ically identical to Eq. 2.12 – the only difference is the number of degrees-of-freedom,

N fine
F , which should be significantly smaller than the single-grid high-fidelity dimen-

sionality NF for AMR to be cost-effective. The residual forcing function M on the

coarse grid, which constitutes the modeling approach in AMR, is obtained from fine

grid projections as

M(yc) = Icf [F(yf)]− F(Icf [yf]), (2.21)

where Icf denotes a conservative fine-to-coarse restriction operation. The procedure in

Eq. 2.21 can be interpreted as a residual correction analogous to nonlinear multigrid

methods (termed the full approximation scheme correction [82]) or as the result of a

refluxing method used in the widely used Berger-Collela timestepping strategy [27].

Overall, AMR-based methods can produce significant speedup for applications

dominated by flow features highly localized in space, which is especially appealing for

steady hydrodynamic phenomena (e.g. external shock-containing flow) and canonical

unsteady shock-dominated flows. In these scenarios, the added costs associated with

memory management stemming from fine-grid initialization is insignificant compared

to the reduction in the number of degrees of freedom [367]. The primary issue with

AMR, however, is that if the desired flowfields are unsteady, grid movement at finer

48

levels can produce significant errors in characterizing turbulent combustion processes

that are non-local in nature [314], such as fuel stratification effects observed in RDEs

[272]. Additionally, in applications where features of interest span the entire do-

main (e.g. domain-wide pressure waves that drive thermoacoustic instabilities in gas

turbine combustors or turbulent eddies in a channel flow), AMR loses acceleration

capability due to the fact that the generated fine grids must also span the entire

domain.

2.4.4 Approximate Inertial Manifolds (AIM)

Approximate inertial manifolds (AIM), popularized in Ref. [92, 334], are a physics-

based method for producing ROMs for fluid flows governed by parabolic PDEs, which

upon spatial discretization (Eq. 2.12) reduce to nonlinear dynamical systems heavily

influenced by diffusion. As such, the method has been successfully used to produce

physics-based ROMs for canonical turbulent flows and turbulent reacting flows [5, 6],

resulting in interpretations of the AIM approach as a type of LES subgrid scale model

[4] or nonlinear Galerkin method [193].

In the AIM modeling approach, the diffusive, linear, and self-adjoint operator

D in Eq. 2.12 is assumed to invoke a manifold M, which exists in a subset of the

full-dimensional phase space. This manifold, among other properties, exponentially

attracts all solutions of Eq. 2.12; in other words, all initial conditions in the NF

dimensional phase space will eventually lie within the manifoldM in the long-time

limit.

In AIM, orthogonal projection operators that rotate the state vector y into an

alternate, manifold-conforming space are derived from an eigendecomposition of the

linear diffusive operator D. Because the diffusive operator in the compressible Navier-

Stokes equation is a Laplacian, the decomposition results in an orthonormal basis that

can be used to split the state-space into resolved and unresolved components, similar

49

to the concept of filtering in LES [4]. Because the resolved and unresolved components

in the projected space are uncorrelated, they can be treated as independently evolving

dynamical systems. The objective of AIM is to (a) retain only the resolved compo-

nents in the simulation, and (b) account for the effect of the unresolved components

on the resolved components using manifold properties.

Using the full-order state vector y ∈ RNF , the resolved and unresolved projections

are given as w = Py and u = Qy respectively. The projection operators P and Q are

derived from subsets of the eigenvectors of A based on the eigenvalue distribution.

Known as the spectral gap condition [334], the idea is to choose P such that its

corresponding smallest eigenvalue is much larger than the largest eigenvalue of Q. If

the eigenvalues of A are sorted in ascending order as

0 < λ1 < λ2 < . . . < λNF
, (2.22)

one can interpret the spectral gap condition as the index i at which the ratio λi+1/λi

is maximized. The dimensionality of the resolved modes in u, which provides the

degree of order reduction, can then be extracted from the cutoff index i.

The evolution equations for the resolved and unresolved scales are, respectively,

dw

dt
= Dw + PA(y) + PR(y), w(t = 0) = Py0 (2.23)

and

du

dt
= Du+QA(y) +QR(y), u(t = 0) = Qy0. (2.24)

In AIM, only Eq. 2.23 is treated numerically – analogous to LES, the modeling task

comes from the closure problem of estimating the full state vector y from only the

resolved components w such that the nonlinear terms can be evaluated. This closure

problem is addressed by invoking a manifold assumption through a so-called slaving

50

principle. The argument is that an existence of a manifold implies that the unresolved

scales instantaneously relax to the conditions prescribed by the resolved scales, such

that their rates can be set to zero:

du

dt
= Du+QA(y) +QR(y) = 0. (2.25)

By expressing the full-order state vector as y = Pw+Qu, the convergence of implicit

Newton iterations on Eq. 2.25 based on an initial guess for w produces an approxi-

mation to the full flowfield y, which can then be used to close the nonlinear terms in

Eq. 2.23. Figure. 2.9 shows an application of the AIM procedure on modeling the re-

solved scales in homogeneous isotropic turbulence. Although the method can produce

significant reduction in computational time in canonical turbulent flows combustion

phenomena such as extinction/re-ignition [4], extensions of the AIM approach to flows

dominated by advection and reaction are invalid due to the inherent assumption that

a large part of the flow energy must come from the diffusion operator (other methods

such as computational singular perturbation, described in Sec 2.4.5, can address this

limitation). Additionally, unless the diffusion operator is already diagonalized (this

can only be true in periodic domains), another issue is that the projection operators

come from a potentially prohibitive eigendecomposition of a large Laplacian matrix.

2.4.5 Computational Singular Perturbation (CSP)

CSP is another physics-based modeling approach based on manifold theory that

is similar conceptually to AIM, but focuses primarily on the chemical reaction contri-

bution (the chemical source term) instead of the turbulence contribution (diffusion).

Since the introduction of the technique by Lam and Goussis [164], CSP has been

successfully used to accelerate stiff chemistry time integration routines that arise in

the simulation of compressible reacting flow using detailed chemistry [111, 365].

51

DNS AIM

Figure 2.9: (Left) Velocity field magnitude for resolved scales from direct numerical
simulations of homogeneous isotropic turbulence. (Right) Modeled resolved scales
using AIM approach. Reproduced from Ref. [6].

To describe CSP in clear terms, instead of treating the original system in Eq. 2.12,

we treat the nonlinear ODE that governs the evolution of the thermochemical state

vector ϕ ∈ RNS+1,

dϕ

dt
= S(ϕ), (2.26)

where ϕ consists of species concentrations and some variable for energy (usually tem-

perature), and S is the chemical source term. Equation 2.26 is a highly stiff nonlinear

dynamical system used to model autoignition processes at either constant volume or

constant pressure1. Similar to AIM, the idea is to use a basis projection to separate

the full state vector into resolved modes and unresolved modes. Instead of deriving

the basis from the decomposition of the linear operator A, CSP derives the basis from

the Jacobian of the chemical source term,

J =
∂S(ϕ)

∂ϕ
. (2.27)

The goal in CSP is to eliminate chemical stiffness through these basis projections.

The resolved modes, which are solved for numerically, contain only the slow chemical

timescales, whereas the unresolved modes containing the fast chemical timescales are

1The reader is pointed to Chapter 1 in the textbook by Peters [252] for a derivation of the ODE
in Eq. 2.26 for constant-pressure reactors.

52

modeled. It can be shown that the eigenvectors of the chemical Jacobian provide

a leading-order approximation of the true manifold, termed by Maas and Pope as

the intrinsic low-dimensional manifold [190, 341]. Since the fundamental modeling

procedure is the same as in AIM, equations used in CSP will not be repeated here:

the projection operators P and Q are extracted from the eigenvectors of the chemical

Jacobian based on a spectral gap condition, and the closure model for the impact of

the unresolved (fast) scales on the dynamics of the resolved (slow) scales is derived

algebraically via a slaving principle through Newton iterations on Eq. 2.25.

As implied above, the primary difference between CSP and AIM is in the deriva-

tion of the basis functions. In CSP, the basis functions are derived from the eigende-

composition of the Jacobian of a nonlinear reaction source term operator, which means

the projection operators are functions of the state, and are therefore time-evolving.

This also implicitly assumes that the energy budget of the flowfield is dominated by

chemical reactions as opposed to diffusion terms as in AIM. Additionally, because

the basis functions must be updated as the state variables change during time inte-

gration, significant computational cost is added to the CSP modeling approach [101].

The hope is that the timestep savings provided by eliminating the fast scales offsets

the additional cost incurred by eigendecompositions, which scale in complexity as as

the cube of the state vector dimensionality and linearly with the number of cells in

the computational domain. Lastly, it should be noted that the idea of CSP – namely,

using an eigendecomposition of the RHS Jacobian to obtain a time-varying basis – can

be applied to any arbitrary dynamical system RHS, such as the full high-fidelity sys-

tem in Eq. 2.12. This is typically not done, however, because computing full-system

Jacobians is infeasible in practical applications. For this reason, applications of CSP

are almost exclusively used for thermochemical state transport based on the chemical

source term contribution in isolation (Eq. 2.26) within operator splitting frameworks

described in the next section.

53

2.4.6 Operator Splitting

Although not technically a modeling approach, operator splitting is included here

in the class of phyics-based modeling strategies because the method induces a residual

on the underlying dynamical system of Eq. 2.12. As discussed below, this residual

itself is not addressed or accounted for in the method (which means it is not technically

a model), but since it provides simulation acceleration in a practical way at the cost

of introducing error into the equations, it is interpreted here as a modeling strategy.

Initially presented and popularized by Strang [325], the class of operator splitting

methods are models that decouple the physical processes in the underlying dynamical

system of Eq. 2.12. Interpretations of operator splitting as a type of physics-based

modeling framework have been made through the lens of manifold methods like CSP

[321].

Operator splitting methods are ideal when a single operator – for example, the

chemical source term contribution – is responsible for the system stiffness, and the

timescales required to resolve the dynamics stemming from the remaining operators

(e.g. acoustic or diffusive timescales) are not prohibitive [166]. As decribed in Sec. 1.4,

this is the scenario in the simulation of advection-dominated compressible reacting

flow such as detonations. The central idea in operator splitting is to decouple the

physical processes (i.e. A, D, and R in Eq. 2.12) during a single simulation timestep

prescribed by the CFL condition, allowing the user to target optimal time integration

routines for each physical phenomena in isolation. This concept, shown in Fig. 2.10

for the case of symmetric Strang splitting [325], is particularly useful in chemically

reacting flows because (1) stiff solvers or models for chemistry (e.g. CSP-based meth-

ods) can be linked to the flow solver as external modules to essentially eliminate

the originally prohibitive cost associated with chemical stiffness, and (2) stability-

preserving explicit methods based on the more reasonable CFL timescale, combined

with well established approximate Riemann solvers and turbulence models, can be

54

Reactions Adv/Diff Reactions

t0

t0 + Δt/2

t0 + Δt

τ

Stiff Solver Stable
Explicit

Solver Stiff Solver

Figure 2.10: Diagram of Strang splitting approach used to solve Eq. 2.12, where t0
denotes the initial time, ∆t the simulation timestep, and τ the chemical timescale.
Dashed arrows indicate state initialization.

used to treat advection and diffusion terms. In this sense, operator splitting methods

do not achieve acceleration by reducing system dimensionality; instead, computa-

tional cost is alleviated through the decoupling procedure by allowing the user to

deploy targeted algorithms for each respective physical source in isolation.

The widespread usage of operator splitting is due in part to the 2nd order temporal

accuracy provided by one such variant known as Strang splitting [321]. However, the

decoupling procedure introduces a residual, called the splitting error, that causes the

operator-split system to deviate from the baseline fully-coupled system – since this

deviation is a forcing term that is not accounted for, it resembles a truncation or

model-form error [166, 325]. More formally, if the flowfield obtained using operator

splitting is denoted ỹ, then its governing equation can be described in a similar way

as other modeling approaches like LES (Eq. 2.15) and AMR (Eq. 2.19) as

dỹ

dt
= F(ỹ) +M(ỹ). (2.28)

For Strang splitting, the residual M is proportional to (1) the square of the sim-

ulation timestep, ∆t, and (2) the limiting timescales of each of the operators in

Eq. 2.12 – as shown in Ref. [166], the residual can be analytically expressed using

55

the operator Jacobians as M = ∆t2f(∂Dỹ
∂ỹ
, ∂A(ỹ)

∂ỹ
, ∂R(ỹ)

∂ỹ
), where f is a linear function.

Although operator splitting is widely used due to its compatibility with other com-

bustion modeling frameworks [268], splitting errors are known to pollute reacting flow

simulations by misrerpresenting key combustion processes and flow features such as

autoignition [357, 362], extinction [184], and detonation wave structures [17]. Addi-

tionally, when the ratio between the simulation timestep and the limiting timescale is

extremely high, convergence trends may deviate from theoretical second-order expec-

tations [321]. Lastly, operator splitting should not be used when (1) one requires a

global temporal discretization error to be higher second order, and (2) when the lim-

iting timescales of all physical processes at play (e.g. advection, diffusion, reaction)

are all of the same order. However, because the decoupling procedure allowed by

operator splitting leads to (a) highly stable and efficient (albeit low-order) numerical

schemes, and (b) compatibility with optimized libraries for both kinetics evaluations

[16] and stiff time integration [63, 111], this method continues to be widely used in

almost all numerical combustion applications at varying levels of fidelity.

2.4.7 Summary and Limitations of Physics-Based Models

A summary of the physics-based approaches discussed above is presented in Ta-

ble 2.1. The above discussion outlined a few key pathways for physics-based modeling

that are routinely used to accelerate high-fidelity simulations of reacting flow. Over-

all, the primary advantage in these models is interpretability – model-form errors

can easily be accounted for, as the starting point in all of the above approaches is

the governing equations (Eq. 2.11) and any present parameters are tuned by field

experts. The disadvantage, however, is lack model extendability (also referred to

as non-universality [276]). Physics-based models by design are derived from sim-

ple canonical configurations, and therefore cannot be extended reliably to complex,

full-geometry simulations that contain a wide variety of flow turbulent combustion

56

Modeling
Approach

Modeling
Goal /
Residual

Acceleration
Mode

Target
Application

Key
References

Large-eddy
Simulation
(Sec. 2.4.1)

Eq. 2.16
Fixed order
reduction

Canonical
turbulence

[165, 258, 265]

Flamelet /
Progress
Variable

(Sec. 2.4.2)

Eq. 2.18
Chemistry
tabulation

Low-Mach
turbulent
combustion

[252, 256, 258]

Adaptive
Mesh

Refinement
(Sec. 2.4.3)

Eq. 2.21
Dynamic
order

reduction

Advection-
dominated

flows
[27]

Approximate
Inertial

Manifolds
(Sec. 2.4.4)

Eq. 2.25
Fixed order
reduction

Diffusion-
dominated

flows
[4, 334]

Computational
Singular

Perturbation
(Sec. 2.4.5)

Same as AIM
Stiffness

elimination
Stiff reacting

flows
[111, 164]

Operator
Splitting

(Sec. 2.4.6)
Eq. 2.28

Decoupling
forcing
functions

General
multi-physics

flows
[166, 325]

Table 2.1: Summary of physics-based models used to accelerate high-fidelity simula-
tions of the Navier-Stokes equations.

57

regimes that may or may not be dominated by diffusion-based (where LES excels),

advection-based (where AMR excels), or reaction-based processes (where CSP and

flamelet models excel). In light of the shortcomings of physics-based models, Sec. 2.5

describes a different strategy, namely data-based modeling, that alleviates some of

these issues.

2.5 Data-Based Models

Data-based modeling has emerged as a useful pathway for simulation accelera-

tion in recent years [79, 156]. The popularity of these methods comes not only from

the unprecedented availability of high-quality data in the fluid dynamics community

both from numerical simulations and experimental diagnostics [276], but also from

the advances in HPC-compatible algorithms developed in the data science, artificial

intellgience (AI), and machine learning (ML) communities [41]. Within the field of

numerical combustion, this has led to the fusion and replacement of many conven-

tional modeling approaches with ML strategies [78, 369]. The rate of adoption of

ML/AI approaches that thrive in data-rich environments for simulation acceleration

purposes is exacerbated by the now widespread availability of high-fidelity reacting

flow solver suites capable of leveraging the exascale-ready class of supercomputers

[7, 30, 55, 349]. Ultimately, as data continues to grow, modeling approaches that

scale with available data are required.

Instead of starting from the governing equations directly, data-based models achieve

simulation acceleration by constructing models that optimize global objective func-

tions based on training data, which are high-quality datasets derived from the govern-

ing equations in some way. For example, the training datasets can be obtained from

the governing equations directly using a small number of data-rich high-fidelity DNS

trajecories (e.g. from solutions to Eq. 2.12), or indirectly, via observable functions

of the underlying flowfields through experimental inquiry (e.g. planar flowfield mea-

58

surements and laser diagnostics). Data-based model development is comprised of two

stages: (1) an offline training stage, where algorithms are used to tune model param-

eters such that objective functions are optimized, and (2) the deployment or inference

stage, where the trained models are actually used to accelerate flow solvers. Most of

the computational effort in data-based modeling comes from the training stage – the

hope is that this high offline cost is offset by achieving significant acceleration in the

deployment stage.

A survey of several popular data-based techniques used to achieve simulation

acceleration within the CFD and numerical combustion communities is provided in

the sections below. These methods can be classified into either the unsupervised or

supervised modeling categories [214]. Unsupervised data-based models cast objective

functions as functions of only the training dataset – their goal is to produce models

based on flowfield compression by extracting only the salient features of the original

data, where the quantitative measure for salience is defined implicitly through the

objective function. On the other hand, supervised models cast objectives functions

as functions of two datasets, the training dataset and a target dataset, where the

target dataset contains samples of the modeling quantity of interest that is assumed

to be statistically correlated to the training dataset samples. The goal in supervised

methods is to parameterize this correlation with efficient mapping functions (e.g.

neural networks). As with the physics-based models in Sec. 2.4, this overview is not

meant to cover every single data-based method used in the fluid dynamics community

(there are hundreds if not thousands of variations), but rather a few key frameworks

that see widespread use for the purpose of accelerating high-fidelity reacting flow

solvers.

59

2.5.1 Modal Decomposition via Space-Time Decoupling

Modal decomposition methods can be used to achieve order reduction, and there-

fore simulation acceleration, by decoupling the space and time components of the

flowfield y(t) (Eq. 2.12) [77, 330]. The decomposition is described in a flowfield re-

construction procedure using a linear combination of a finite set of spatial modes and

temporal coefficients as

ŷ(t) =
M∑
m=1

am(t)um, (2.29)

where M denotes the total number of retained spatial modes in the decomposition.

In Eq. 2.29, um is the m-th spatial mode that is fixed in time – these spatial modes

exist in the same phase space as the flowfield, and are therefore interpreted as visual-

izable flow directions that can be analyzed like any other flow variable. The quantity

am(t) indexes the m-th component of the vector a ∈ RM , which contains the full

set of M time-evolving coefficients, called the temporal coefficents, that encode the

contribution/importance of each of the respective modes on the flowfield at a single

time instant t. It is emphasized that the formulation in Eq. 2.29 is a single approach

to the general class of modal decomposition methods – modal decompositions do

not necessarily have to take the form of fixed-in-time spatial modes with temporal

coefficients encoding time variation. For example, methods that extend the above de-

composition with time-evolving spatial modes (i.e. um = um(t)) have been explored

to good effect [83, 279]. In the survey described hereafter, the context of modal de-

composition applies to static spatial modes and time-evolving temporal coefficients,

as many of the techniques used to accelerate reacting flow simulations (discussed next

in Sec. 2.5.2-2.5.4) utilize this framework.

The error incurred in the decomposition (i.e. deviation ŷ(t) from the true flowfield

y(t)) depends on both the number of modes M and the method by which the modes

are recovered from the underlying dataset. This dataset is given as a matrix Y =

60

[y(t1),y(t2), . . . ,y(tN)] ∈ RNF×N ; its columns contain a set of NF -dimensional high-

fidelity flowfield samples (referred to as snapshots), and its rows represent the N time

samples of the spatial discretization points in each of the snapshots. The data matrix

Y can be populated by means of high-fidelity solutions of the dynamical system in

Eq. 2.12 or by time-resolved experimental diagonstic measurements.

Modal decomposition methods based on space-time decoupling are used in two

contexts: (1) conducting an expert-guided analysis of the spatial modes, which may

contain physically relevant information of the system under study , and (2) con-

structing reduced-order models (ROMs) that describe the evolution of the temporal

coefficients. The modal decomposition based ROM must ensure that the transport

model for a(t) results in a faster alternative to solving the high-fidelity solutions of

the full-order dynamical system that describes the evolution of y – in other words, M

(the number of retained modes) must be significantly smaller than NF (the flowfield

dimensionality).

The various modal decomposition strategies outlined below – namely proper or-

thogonal decomposition (Sec. 2.5.2) [29], dynamic mode decomposition (Sec. 2.5.3)

[300], and cluster-based reduced order modeling (Sec. 2.5.4) [140] – are similar in that

they obey the same decomposition goal described in Eq. 2.29. The difference between

these methods, however, is in how they go about extracting the ui spatial modes from

the dataset Y using optimization strategies, and how order reduction facilitated by

projection onto these modes is used to accelerate simulations. Nonlinear extensions of

decomposition strategies based on Eq. 2.29 are provided by autoencoders, described

in Sec. 2.5.5.

There are many ways to derive methods for transporting the temporal coefficients

a(t) using the spatial modes [330]. In one strategy, the transport rule for the tempo-

ral coefficients can be extracted by projecting the spatial modes onto the governing

PDEs using linear or non-linear Galerkin-type approaches [161, 169, 316]. In an alter-

61

Spatial Modes

=[[, …,,
y1 y2 y3

Training Dataset

, …,,=[[u1 u2 u3
U

Project on Governing
Equations

Project on Training Data

Optimization
(Training)

Optimization
(Training)

Prognostic ROM Prognostic ROM

Figure 2.11: Pathways for data-based reduced order model development within the
modal decomposition framework based on space-time decoupling.

nate strategy, temporal coefficient dynamics are evaluated a-priori by projecting the

snapshot data Y onto the reatined spatial modes, producing a ”reduced” dataset A.

Then, separate data-based optimization strategies can be used to produce lightweight

models for predicting the temporal coefficient dynamics in A instead of Y (e.g. su-

pervised training of recurrent neural networks [199], residual networks [117], dynamic

mode decomposition [300], and other data-based strategies for predicting time series

[198]) . This procedure is outlined in Fig. 2.11.

2.5.2 Proper Orthogonal Decomposition (POD)

POD is one of the most widely used modal decomposition techniques because it

provides optimal linear compression; it directly optimizes the flowfield reconstruc-

tion in Eq. 2.29 using the lowest number of spatial modes. Popularized in Sirovich

[315] and Berkooz et al. [29] for the description of turbulent flows, POD is formally

equivalent to principal component analysis [356] and Karhunen-Loeve decomposition

62

[40]. This unsupervised decomposition procedure outputs the set of spatial modes

– here represented as the matrix U = [u1, . . . ,uM] – from an eigendecomposition of

the data covariance matrix. The covariance matrix can be derived from the centered

data matrix Ỹ as

C =
1

N

(
ỸỸT

)
= VΛV−1 ∈ RNF×NF , (2.30)

where the superscript T denotes a matrix transpose and the set of um modes are

recovered from the eigenvectors of the covariance matrix V. Since C is symmetric

and positive semidefinite, the um modes contained in V are real and orthonormal,

i.e. V−1 = VT and ⟨ui,uj⟩ = δij.

The total number of available modes is Mfull, and is bounded by the rank of the

data matrix Y . The number of retained modes, on the other hand, isM ≤Mfull. The

retained modes, referred to as the POD modes, are collected in the columns of the

matrix U and can be interpreted as a subset of the eigenvector matrix V. Projection

of the data matrix Y onto the subspace spanned by the M POD modes produces the

M ×N temporal coefficient matrix A as

A = UTY , (2.31)

where the instantaneous coefficient vectors a(t) are contained in the columns of A,

and the m-th row of A describes the time evolution of a scalar coefficient for the m-th

mode.

Since the POD modes diagonalize the covariance matrix of the data [315], the

eigenvalue Λm represents the energy contribution to the flow from mode um. The

mode corresponding to the highest eigenvalue of C thus captures the most amount of

flow ”energy” or variance. In POD-based analysis, assuming the modes are arranged

by their eigenvalues in descending order, this attribute guides the question of how to

determinedM : the firstM modes are kept such that a sufficiently high amount of the

63

flow energy is resolved (typically over 90%) [29]. POD is most advantageous when a

small number of modes contains a large amount of the flow energy, which amounts

to a spectral gap condition in the spectrum of the covariance C (this is analogous

to physics-based methods like CSP and AIM). The advantage of POD is that energy

captured by the firstM modes is easily accessed by the sum of the firstM eigenvalues

of the covariance matrix. If these modes are contained in the first M columns of the

matrix U ∈ RNF×M , it can be shown that the POD formulation in Eq. 2.30 solves the

following optimization problem:

min
U
∥Y −UUTY∥F , s.t. UTU = I, (2.32)

where F is the Frobenius norm and I is the size NF identity matrix . In other

words, POD provides an orthogonal set of modes in U that optimally reconstruct the

snapshot set Y . The reconstruction error vanishes when M =Mfull.

Overall, POD has facilitated better understanding of complex flow phenomena and

has led to a wide variety of data-driven ROM frameworks for complex compressible

reacting flow applications, from low-Mach turbulent combustion [91, 134, 229, 322]

to advection-dominated combustion settings found in scramjets and rotating deto-

nation engines [303, 363, 368]. It should be noted that the utilization of POD in

many of these complex full-geometry applications is restricted exclusively to modal

analysis (i.e. visual inspection of the POD modes obtained from DNS or experi-

mental flowfields) – development of robust predictive frameworks for the evolution

of temporal coefficients is, with some exceptions, primarily restricted to canonical

flows [127, 179, 198, 293]. Additionally, POD faces disadvantages in capturing ex-

treme events that may stem from low-energy contributions, which are by design not

retained in the mode truncation [122]. Despite these shortcomings, due to its sim-

plicity and optimal nature, POD continues to see widespread usage and has led to

64

the development of several variant such as gappy POD [353], balanced POD [286],

and spectral POD [337]) among others, each with their own targeted applications.

2.5.3 Dynamic Mode Decomposition (DMD)

Introduced in Schmid [300] and inspired by the initial work in Mezić [205], DMD

has gained significant popularity in the past decade as a data-based reduced order

modeling method and shares significant overlap with discrete Fourier decompositions

and spectral analysis [287, 337]. Although it is a modal decomposition technique,

DMD is fundamentally different from POD as it models the time evolution of the

state vector y using linear dynamics.

More specifically, we define the discrete-time dynamical system that acts on the

snapshots in Y = [y1,y2, . . . ,yN] as the nonlinear propagator F , such that

ys+1 = F(ys). (2.33)

The operator F can be derived from the underlying nonlinear dynamical system in

Eq. 2.23. As described in Ref. [339], DMD approximates the above equation using

linear dynamics via

ys+1 = ADMDys. (2.34)

In Eq. 2.34,ADMD is stationary linear operator derived from a least-squares regression

approach using the data matrix Y . The linear model in Eq. 2.34 has close connections

with Koopman operator theory [206] – a brief overview of these connections are

provided in the following paragraphs, as is the procedure by which one obtains the

linear operator from Y and the associated DMD modes.

Consider an arbitrarily defined observable function (which can be scalar or vector-

valued) of the state, g(y). The Koopman operator U of the dynamical system is the

65

linear propagator of any such observable,

Ug(ys) = g(F(y)). (2.35)

If an observable function ϕj satisfies the time evolution given by

Uϕj(ys) = λjϕj(ys), (2.36)

then the function ϕj is called a Koopman eigenfunction. A primary assumption in

DMD is that the Koopman operator can be described purely by a discrete spectrum

[205]. That is, any observable is contained within the span of the eigenfunctions of

the Koopman operator and can be expressed by the expansion

g(ys) =
∞∑
j=1

ϕj(ys)vj, (2.37)

where vj is called the Koopman mode. If such an expansion is valid, then the evolution

of the observable can be expressed directly in terms of the Koopman modes and

eigenvalues as

U tg(ys) = g(ys+t) =
∞∑
j=1

λtjvj, (2.38)

where the initial condition information ϕj(ys) has been absorbed into the Koopman

mode. The discrete spectrum assumption is valid if the dynamics described by F is

a truly periodic or linear system. To extend Koopman analysis to nonlinear systems

that are quasi-periodic or chaotic, there is also a continuous portion of the U spec-

trum that is orthogonal to the space spanned by the eigenfunctions that should be

accounted for in the expansion of g(xs). For more on this topic, see Refs. [205] and

[206].

Using the identity observable function g(ys) = ys, one can connect the Koopman

66

expansion above to the dynamics of the system F . It can be shown that if F is

linear, and the dynamics is described by a linear propagator A : RNp 7→ RNp where

ys+1 = Ays, then the operator A is the Koopman operator and the eigenvectors of A

are the Koopman modes vj [206, 287].

The underlying concept of DMD comes from this connection between the Koop-

man operator and the linear operator A. Since the actual system F is in fact nonlin-

ear (Eq. 2.12), no true A exists for the system. In standard DMD algorithms, which

deal with the identity observable function, a linear operator ADMD of Eq. 2.34 is in-

stead approximated from the nonlinear data using regression techniques. Once such

an ADMD is recovered, its eigenvalues and eigenvectors provide the DMD temporal

coefficients and spatial modes used in the modal decomposition of Eq. 2.29. These

quantities approximate the Koopman eigenvalues and modes from Eq. 2.38.

If the data in Y is arranged in snapshot pairs such that Y1 = [y1, . . . ,yN−1] and

Y2 = [y2, . . . ,yN] (i. e. Y2 = F(Y1)), then ADMD can be recovered by finding a

linear map between Y1 and Y2 in the least squares sense. This is accomplished with

the pseudo-inverse of Y1: ADMD = Y+
1 Y2, where + denotes the pseudo-inverse. As

implied by Eq. 2.38, the complex eigenvectors of ADMD yield the full set of DMD

modes; the complex eigenvalues provide the temporal coefficients. The real part of

the eigenvalues provides a decay rate of the dynamics projected onto the respective

modes, and the imaginary part provides oscillation frequencies which are fixed for

each coefficient. This is very similar to Fourier-type decompositions – in fact, it can

be shown that DMD produces the same results as discrete Fourier transforms under

certain assumptions [56].

As with POD, DMD has been used for both modal analysis/visualization as well

as predictive modeling [339]. Specific applications include predicting canonical turbu-

lent flows [102], analysis of swirl flames [194], analysis of thermoacoustic instabilities

in gas turbine combustors [211], and modeling wake dynamics in scramjet engines

67

Figure 2.12: Visualization of two DMD modes extracted from large-eddy simulations
of a model scramjet combustor (reproduced from Ref. [177]).

[177] (see Fig. 2.12). Due to the limitations of constant-frequency temporal coeffi-

cients, standard DMD algorithms often struggles to predict multi-frequency transition

phenomena and highly transient flow that are often present in turbulent combustion

applications. Additionally, for physical interpretation and analysis, it is not realistic

to retain all DMD modes – as with POD, a truncation from the full set of Mfull

modes to a reduced set of size M is required to achieve order reduction. However,

mode selection in DMD is not as clear-cut as with POD [339] – common metrics are

to use either 1) growth rate (keep the modes which decay the least over successive

operations of ADMD), or 2) mode amplitude (selecting the modes with the highest

L2 norm). Exclusively using mode amplitude as the criteria for mode selection might

result in choosing a mode active for a very short amount of time. Similarly, selecting

the mode based on growth factor alone may lead to a mode that is slowly decaying

but of minimal amplitude. These ambiguities often force the end-user to carry out

expert-guided visual analysis of the flow patterns contained within the modes, which

is a time-consuming post-processing step.

The class of DMD-based methods continues to evolve to address these limitations

and is an active field of research [301]. Powerful extensions to the baseline DMD for-

mulation provided above involve kernel strategies where DMD is applied in a trans-

formed latent space that better satisfies the linear dynamics constraint [187, 239, 240].

Movement into a latent space is often facilitated by an autoencoder, as described in

Sec. 2.5.5.

68

2.5.4 Cluster-based reduced-order modeling (CROM)

Cluster-based reduced order modeling (CROM) is another data-based modeling

approached connected to modal decompositions introduced in the work ofKaiser et al.

[140]. Instead of modeling dynamics of individual phase space trajectories, CROM

constructs a reduced-order model for the underlying Liouville equations which trans-

port PDFs of the state [103]. The crux of the approach is to use an unsupervised

K-means clustering algorithm on the snapshot data Y to discretize the phase space

into a set of non-overlapping clusters. By minimizing a cluster-based optimization

problem, the output clusters are conditioned to represent only the regions explored

by the trajectories contained in Y . More specifically, the clustering via K-means

produces a data-adapted Voronoi tesselation (or mesh) of the NF -dimensional phase

space (shown in Fig. 2.13. The spatial modes in CROM are referred to as centroids,

which are computed as regional averages of all the snapshots in the corresponding

clusters. The temporal coefficients are obtained through a one-hot encoding, or clas-

sification, that informs by means of Euclidean distances the cluster in which a given

instantaneous snapshot y resides.

The primary output of CROM is a prognostic model, called the transition matrix,

that estimates the probability of snapshot transitions between clusters as

pt+∆t = Ppt ∈ RM , (2.39)

where p encode the cluster probabilities, and P is a Markovian transition matrix ex-

tracted from cluster transitions obtained from the data. The methodology of CROM

can be interpreted as a discretization approach for the Perron-Frobenius operator,

which is the dual of the Koopman operator [140, 154].

Visualization of the transition matrix P is useful for extracting causal features

for macroscopic transition phenomena – this quality is shown in Fig. 2.13 within the

69

α1

α2

Attached

Transition

Detached

Figure 2.13: (Left) Visualization of Voronoi tesselation produced by K-means in a
projected 2-dimensional space. Gray markers are data samples and red markers are
centroids. From Ref. [19] (Right) Transition matrix visualization for flame transition
prediction. Arrows indicate transition pathways, and brighter colored arrows mean
higher probabilities. From Ref. [18].

context of flame transition prediction in gas turbine combustors [18]. In general, as an

alternative to traditional modal decomposition methods like POD and DMD, CROM

has been used in a wide variety other applications such as predicting vortex shedding

patterns [350], cycle-to-cycle variation in internal combustion engines [47], ignition

behavior in high-altitude relight applications [123], and hydrofoil cavitation [19]. The

major drawbacks in this approach are (1) the selection of the number of clusters,

which is equivalent to the number of modes M used in the decomposition, and (2)

treating the diffusivity or low prediction-horizon times of the transition matrix P .

Different cluster numbers and observable functions (or data types) have significant

effect on the predictive capability in the transition matrix. As such, significant work

has been focused on providing application-dependent criteria for selecting optimal

cluster numbers [18, 140, 157]. Furthermore, decompositions obtained from clustering

algorithms have been used in other ROM applications alongside CROM, including (a)

Galerkin projections of centroids onto the governing equations [44], (b) development

of alternate transition models that improve the prediction horizon times of the original

CROM method [176], and (c) utilizing other forms of clustering that address some

limitations of the K-means framework, such as spectral clustering [57, 115, 320] and

70

other variations [66, 174].

A detailed description of the K-means clustering approach – the algorithm, its

advantages compared to other clustering algorithms, and applications of cluster-based

decompositions on turbulent combustion problems – is delayed to Chapter III, as K-

means is the backbone of the research contribution of this dissertation (see Sec. 2.6).

2.5.5 Nonlinear Projection via Autoencoders

Autoencoders are a class of neural network (NN) based models used for data com-

pression and feature extraction. They were first introduced in Kramer [160], and have

since then gained immense popularity in fluid dynamics applications for ROM devel-

opment [41]. Within the scope of data-based ROM development for general dynamical

systems, autoencoders can be thought of as nonlinear extensions (or generalizations)

of POD. Instead of casting the flowfield reconstruction as a linear function of the

temporal coefficients with respect to global spatial modes, the autoencoder strategy

can be expressed as a nonlinear function of the coefficients as

ŷ(t) = DθD (a(t)) , a(t) = EθE (y(t)). (2.40)

In the above equation, EθE : RNF 7→ RM is a nonlinear mapping function called

the encoder and DθD : RM 7→ RNF is the decoder. The encoder and decoder are

parametrized by θE and θD respectively. Due to their expressive power, the functional

forms of E and D are almost always neural networks of various architectures, with

specific architecture type dependent on the application [113]; as such, the respective

parameters represent weights and biases of the NNs. The goal of the encoder is to

provide a mechanism for optimal nonlinear compression of the instantaneous flowfield

into a smaller-sized vector a ∈ RM , which is referred to as the latent vector and is

analogous to the temporal coefficients in Eq. 2.29. The goal of the decoder is to

71

recover the original flowfield from the latent vector, which is a nontrivial task since

the nonlinearity and potential complexity of E renders inversion difficult.

The objective function in standard autoencoding applications takes the form

ε =
1

N

N∑
i=1

∥yi − ŷi∥22, (2.41)

which is a mean-squared error (MSE) between the reconstructed field and input field

(N is the number of snapshots or data samples). Optimization is usually accom-

plished via gradient descent based on automatic differentiation [242]. As with any

ROM strategy, the motivation here is order reduction – the latent vector dimension-

ality M must be significantly smaller than the input flowfield dimensionality for the

autoencoder to be practical. A comparison with POD is provided in Fig. 2.14 – POD

is recovered from the general autoencoder formulation if one casts D and E as linear

operators [160].

Due to the nonlinear transformations in the encoding phase, nonlinear projection

methods using autoencoders have been applied successfully in a variety of ROM

frameworks that improve the predictive accuracy of POD-based models, for both

nonreacting and reacting flow [169, 358]. In some applications, the task of optimizing

the autoencoder parameters is performed independently of learning the latent space

dynamics – in other words, after obtaining converged encoder/decoder architectures

that sufficiently minimize the reconstruction objective, another ML-based modeling

strategy (e.g. recurrent neural networks) can be employed to recover the dynamics of

the latent space [199]. In other applications, the reconstruction errors as well as the

time-evolution of the latent space can be learned in an end-to-end manner [170].

Much of the success in predictive capability for autoencoders (and data-based

ROMs in general) is found in diffusion-dominated model problems [41, 100, 107], al-

though extensions to advection-dominated scenarios [198, 199], as well as canonical

72

y(t) ̂y (t)a(t) y(t) ̂y (t)a(t)

`

`

Figure 2.14: Illustration of the basic difference between POD (left) and autoencoder-
based (right) compression.

reacting flow scenarios [169], have been made in recent years. Extensions of con-

ventional autoencoding strategies to graph-based settings (described in Ref. [113])

are promising for complex geometry treatment, although applications of these tech-

niques for robust predictive modeling of full-geometry simulations of reacting flows

(e.g. RDE or scramjet simulations) is currently out-of-reach. Overall, the architec-

ture complexity (e.g. number of weights and biases in the encoder and decoder) and

inherent nonlinearity in the transformation to the latent space is both an advantage

and a disadvantage for modeling purposes. On one hand, the nonlinear transforma-

tion allows the method to capture a much greater level of complexity and feature

interaction from the underlying dataset than a linear projection method (POD). On

the other hand, model interpretability is lost in this approach – since the encoders

readily consist of many nonlinear neural network layers, basis vector visualization

methods used in POD and DMD cannot be applied. Complex fluid dynamics appli-

cations are expected to require large encoder/decoder architectures, and in turn large

datasets for the training phase, to achieve respectable predictive accuracy. For this

reason, research into autoencoder interpretability has gained appreciable momentum,

specifically with regards to disentanglement approaches that seek to drive the en-

coder optimization into regions that produce uncorrelated latent space components

73

(the goal is essentially to balance the advantages of orthogonal decomposition with

nonlinear projection) [21, 38, 135].

As with POD, autoencoders should be interpreted as a general-purpose tool; their

strength is revealed when they are leveraged alongside other modeling approaches.

For example, nonlinear projections enabled by the encoder can enable more robust

DMD modeling strategies [187], and latent spaces discovered by autoencoders can

be shown to improve vanilla cluster-based methods [49]. Alternate training methods

based on Bayesian inference can also be used to apply autoencoders as frameworks

for generative modeling by imposing prior distributions on the latent vectors – see

Refs. [152, 203] for additional details on this topic.

2.5.6 Data-based Chemistry Tabulation

In numerical combustion and reacting flow applications, a great deal of focus has

been placed on accelerating detailed chemistry evaluations using data-based methods

[133, 369]. Initial data-based tabulation strategies leveraging ANNs were performed

by Christo et al. [60] and Blasco et al. [31] – since then, several extensions of similar

ANN strategies have been applied in reacting flow solvers [20, 96, 145, 307], as well as

ROM-type strategies grounded in principle component analysis [66, 192] and neural

ODEs [150, 236]. Additionally, methods like in-situ adaptive tabulation (ISAT) [263]

and PRISM [26] have been very successful to this end; further discussion on these

approaches is delayed to Sec. 2.6.

As with physics-based tabulation methods like FPVA (Sec. 2.4.2) and CSP (Sec. 2.4.5),

the motivation for data-based chemistry tabulation comes from accelerating the time-

integration of the dynamical system that transports the thermochemical state ϕ for

each cell in the computational domain (reproduced from Eq. 2.26 for clarity):

dϕi
dt

= S(ϕi), i = 1, . . . , NC , (2.42)

74

where ϕ is the thermochemical state vector that contains the NS species mass frac-

tions (or concentrations) and temperature, S(ϕ) is the chemical source term, and

NC is the total number of cells or grid-points used in the spatial discretization. The

batched ODE solve in Eq. 2.42 arises when utilizing operator splitting methods for

time integration of the compressible Navier-Stokes equations (see Sec. 2.4.6). The

above time integration task is problematic for two reasons: the dynamical system

is highly stiff (small time steps are required in explicit integration approaches, see

Fig. 1.7), and the evaluation of the instantaneous chemical source term is expensive

due to the complex Arrhenius-based expression (Eq. 2.9).

Based on the above issues, the data-based chemistry tabulation effort can be

divided into two application scopes: (1) accelerating the batched ODE solve for some

target integration time T [31, 60, 96, 310], and (2) accelerating the instantaneous

evaluation of the chemical source terms [20, 306, 307, 348]. To solidify these scopes,

we define a general-purpose mapping function A, parametrized in some way. If one

wishes use data to fit the parameters of A to recover the state ϕ after the integration

time T , the application scope becomes

ϕ(t+ T) = A(ϕ(t)). (2.43)

On the other hand, if the end-goal is to fit A to obtain the instantaneous source

terms, the application scope becomes

S(ϕ(t)) = A(ϕ(t)). (2.44)

Note that the above two approaches are practically equivalent for an infinitesimally

small integration time T . However, even in high-fidelity reacting flow solvers, the

integration time for each cell T is often much higher than the limiting chemical

timescales τ [30]. In this scenario, the modeling task in Eq. 2.43 is much more

75

Figure 2.15: (Left) Deploying an ANN as a stiff time integrator (Eq. 2.43, image
reproduced from Ref. [32]). (Right) Deploying ANN as an instantaneous source
term evaluator (Eq. 2.44, image reproduced from Ref. [306]).

broad in scope than that of Eq. 2.44 – the former plays the role of a stiff time

integrator (i.e. it replaces the role played by algorithms like CVODE [63]), whereas the

latter plays the isolated role of providing only accelerated instantaneous source term

evaluations. The differences between the two approaches is illustrated in Fig. 2.15.

Although the formulation in Eq. 2.43 is much more ambitious in the sense that it

replaces existing stiff time integration algorithms entirely, in some cases, limiting the

modeling scope of A to Eq. 2.44 can be more advantageous. Often times, throwing

out numerically validated stiff time integrators with provable convergence properties

(such as CVODE, Newton methods, or stiff explicit solvers) is either (a) not necessary

because of their optimal code implementations, or (b) too risky for production-level

flow solvers. As detailed in Sec. 2.6, the research contribution of this dissertation lies

in the development of a data-driven method that fits within the class of accelerating

instantaneous source term evaluations (Eq. 2.44).

76

2.5.7 Field Transformation and Super-Resolution

Data-based models for field transformations have seen widespread use in several

CFD-related applications from processes related to optical flow (e.g. using data to

recover velocity fields from scalar fields [21, 75, 326]) as well as super-resolution – that

is, upsampling a coarse field to a finer-resolution field for explicit closure modeling in

turbulence [148]. The general-purpose mapping goal in these applications is described

by

g(y) = f(h(y)), (2.45)

where h(y) ∈ RNh is an input that meaasures an observable function of the state

vector y at some timestep (say pressure or scalar field samples), g(y) ∈ RNg is a

simultaneously measured output observable function of the flowfield that is different

from g(y) (say a velocity field), and f is a stationary mapping function that may be

cast as a neural network or other functional form parametrized in some way. The

quantity Nh represents the input dimensionality and Ng the output dimensionality.

Depending on the application Ng and Nh may or may not be equal – for example, if

the modeling goal for f is to recover one scalar field from another on the same grid,

Ng = Nh. On the other hand, if the modeling goal is upsampling or super-resolution,

Ng > Nh.

In applications related to turbulent combustion, simultaneously measured exper-

imental diagnostic data has been used to produce cross-field transformation models

via convolutional and artificial neural network based mappings functions [3, 22]. In

one such application, the function f was trained in an optical-flow type application

to produce multi-component velocity fields from reacting scalar fields at a given time

instant for a model gas turbine combustor (Fig. 2.16). In another application, a

convolutional neural network was trained to produce spatial chemical source term

fields for sub-grid scale LES models [167]. Additionally, methods based on canon-

77

ical correlation analysis [118] and singular value decompositions of cross-covariance

matrices [21] have also been applied in geophysical and combustion applications to

produce linear formulations of f that are less generalizable but more interpretable

than nonlinear field transformations based on deep neural networks.

Super-resolution applications have been carried out extensively in recent years

primarily for data-based closure modeling in large eddy simulations [99, 148]. In this

class of methods, the input h(y) exists on a coarse grid that is under-resolved (i.e. the

LES grid described in Sec. 2.4.1), and the output g(y) exists on a fine grid that resolves

the relevant lengthscales. The goal of the super-resolution task is essentially one of

enhanced interpolation or explicit filtering. In supervised approaches, the mapping

function f is cast as a type of neural network (this is typically a convolutional neural

network for structured grid applications, or a graph neural network for unstructured

grid applications), and is optimized by fitting explicitly filtered DNS data represented

as a set of stored high-fidelity simulation trajectories to the corresponding unfiltered

data. This strategy has been used to reconstruct temperature fields in supersonic

combustion environments to good effect [158].

Super-resolution strategies that use generative modeling frameworks have also

been explored, which take a fundamentally different approach that standard field

transformation methods [71]. In generative approaches, the input to the mapping

function is a latent vector whose PDF is known through a prior distribution – in

super-resolution applicaions for closure modeling, the latent vector may be a flowfield

on an under-resolved coarse grid. Generative models parametrize the distribution of

the fully resolved fields conditioned on this latent vector, e.g. via a generative adver-

sarial networks (GAN), Gaussian processes, polynomial chaos expansions, Gaussian

mixture models, among others. A training procedure then optimizes the parameters

of the generative model to produce a sampling mechanism for the underlying distri-

bution of the high-fidelity resolved fields conditioned on the unresolved fields, which

78

Input

Target

ANN

Ux Uy Uz

Figure 2.16: (Top) Applying field transformations via artifical neural networks to
recover three-component planar velocity fields from an input reacting scalar field in
a premixed gas turbine combustor (reproduced from Ref. [21]). (Bottom) Illustra-
tion of GAN-based super-resolution used for data-based turbulence closure modeling
(repurposed from Ref. [71]).

effectively amounts to probabilistic field transformations. In fluid flow applications,

this approach has been applied for statistical super-resolution, closure modeling, and

data synthesis turbulent non-reacting flows [124] and reacting flows [34] – an example

of GAN-based super-resolution used in turbelence modeling is provided in Fig. 2.16.

2.5.8 Summary and Limitations of Data-based Models

The above discussion provided background on popular data-based modeling strate-

gies that can be used to accelerate high-fidelity reacting flow simulations. A summary

of the discussed methods is provided in Tab. 2.2. The advantage with data-based ap-

proaches is that output models, if properly optimized during the training stage, are

able to capture all of the complex physics contained in the training data. The ability

to represent complex physics through optimal modal decomposition strategies based

on space-time decoupling, neural network fits, and graph-based models among others

79

Modeling
Approach

Modeling /
Optimiza-
tion Goal

Class
Application

Scope
Key

References

Proper
orthogonal

decomposition
(Sec. 2.5.2)

Eq. 2.30
Unsupervised

modal
decomposition

Orthogonal
linear

projection
[29, 315]

Dynamic
mode

decomposition
(Sec. 2.5.3)

Eq. 2.34
Unsupervised

modal
decomposition

Linear
dynamics

[300, 301]

Cluster-based
reduced order

model
(Sec. 2.5.4)

Eq. 2.39
Unsupervised
clustering

State
transition

probabilities
[18, 140]

Autoencoders
(Sec. 2.5.5)

Eq. 2.40
Unsupervised

neural
networks

Nonlinear
projection

[41, 160]

Data-based
chemistry
tabulation
(Sec. 2.5.6)

Eqs. 2.43-2.44
Supervised
neural

networks

Chemical time
integration +
source term
evaluation

[60, 369]

Field transfor-
mations

(Sec. 2.5.7)
Eq. 2.45

Supervised
neural

networks,
generative
models

Optical flow,
sensor

upsampling,
coarse grid
super-

resolution

[22, 148]

Table 2.2: Summary of data-based models used to accelerate high-fidelity simulations
of the Navier-Stokes equations

.

80

addresses a major limitation in physics-based modeling, namely the limiting restric-

tion to canonical configurations.

The disadvantages in data-based approaches, however, must also be considered.

A major drawback is the time-consuming training stage, which requires an expensive

data collection step – populating the data matrix Y requires running high-fidelity

simulations that are expensive to store and query. Additionally, once the data has

been obtained, the optimization (training) task in itself is a primary bottleneck, as

evidenced by the significant efforts undertaken to accelerate training routines like

backpropagation through the development of specialized hardware. Another disad-

vantage is in model interpretability – at the cost of ensuring qualities like prediction

accuracy and optimality with respect to the training data (i.e. black-box modeling),

understanding how the models operate in data-based frameworks is a significant chal-

lenge. For example, interpreting the complex features contained in spatial modes in

modal decomposition strategies, as well as isolating the way in which neural networks

arrive at their decisions for tabulation approaches, can be highly nontrivial (and in

some cases infeasible) tasks. Perhaps the biggest practical drawback is the tendency

of data-based models to overfit the training data. If the training data is derived from

a complex geometry with fixed boundary conditions, the ability of data-based mod-

els to extrapolate to different geometries (or even the same geometry with altered

boundary conditions) in complex configurations like RDEs or scramjets is hindered.

In this sense, the issue of non-universality present in physics-based models via con-

straints to canonical configurations is also present in data-based models, but at the

other extreme (overfitting to complex geometries).

2.6 Research Contribution of Dissertation

In light of limitations found in both physics-based and data-based modeling strate-

gies, the research contribution of this dissertation is focused on fusing both strategies

81

Physics-based models
Issue: derived from canonical physical

configurations
Benefit: interpretable

Physics-constrained
Data-driven Models

Requirements: (1) adherence
to underlying physics, (2)
can be extended to in-situ/

online settings

Compressible Reacting
Flow Solver

Data-based models
Issue: constrained to single configuration,

not interpretable
Benefit: captures complex physics

Standard Modeling Pathways

Current
flowfield

Updated
model

Research Contribution

Figure 2.17: Overview and scope of research contribution in light of limitations in
standard modeling pathways.

together into a generalized approach termed physics-informed data-driven modeling,

illustrated in Fig. 2.17. The objective here is twofold: the first goal is to augment con-

ventional data-based modeling strategies with constraints derived from the underlying

governing equations, and the second is to design these physics-informed data-driven

models to be compatible with in-situ, or online, parameter adaptation. On one hand,

the embedding of physical knowledge into the data-based optimization goals discussed

in Sec. 2.5 eliminates the black-box nature of data-based models, and therefore allows

for enhanced interpretability of predictions and confidence that the model outputs ad-

heres to known physical trends. On the other hand, designing data-based frameworks

that are able to adapt to simulation flowfields as they evolve (i.e. in-situ methods)

ensures that models are not tied down to geometric configurations, and therefore im-

proves upon the limitations in data-based and physics-based approaches related to

non-universality.

The specific contribution of this dissertation is to accelerate chemical kinetics eval-

uations for compressible reacting flow simulations using physics-guided data-driven

modeling strategy that addresses the two criteria discussed above. The approach,

outlined in Fig. 2.18, utilizes a classification-based regression strategy for accelerated

chemical source term estimation. In a first step, an unsupervised K-means cluster-

ing strategy is used to delineate (or classify) regions in the flow that are physically

82

similar. Then, in a second step, localized models are deployed in each region for

simulation acceleration purposes. Note that similar divide-and-conquer approaches

have been explored previously for localized data-driven modeling in both reacting

and non-reacting applications [80, 96, 280] – the novelty in the approach utilized here

comes from (a) ensuring that the output segmentation is consistent with physical ex-

pectations in compressible reacting flow (e.g. the clusters identify meaningful regions

within the detonation wave structure in RDEs), and (b) embedding physical knowl-

edge directly into the clustering procedure itself through modifications of distance

functions (termed physics-guided clustering), such that the classification identifies

regions of dynamical similarity within the flowfield.

A principle modeling goal is to ensure that the flowfield delineations obtained by

the algorithms adapt to the local unsteady features as the simulation evolves in time.

As described in Chapters IV and V, since unsteady features of interest in compressible

reacting flow like detonations are sustained by chemical reactions, the assumption

is that local regions in composition space will identify coherent regions of physical

similarity within the reacting flowfield. As discussed in Chapter V, appending the

standard K-means optimization objective with knowledge of the governing equations

results in more robust flowfield classifications that in turn produce enhanced pathways

for localized combustion modeling in complex reacting flows.

2.6.1 Distinction from Related Work in Physics-Informed Modeling

The idea of embedding physical knowledge into in-situ data-based modeling frame-

works for reacting flow is not new. Physics-guided modeling strategies that attempt

to tackle chemistry tabulation from a reduction point of view include methods such

as in-situ adaptive tabulation (ISAT) [263] and the PRISM [26] approach. In these

methods, the computationally expensive numerical integration of chemical source

terms (Eq. 2.43) is replaced by a look-up table. In particular, ISAT builds a trust

83

Input:
Reacting Flowfield

Classified
Flowfield Localized Combustion

Modeling

Output:
Chemical Source Term

Prediction Target

Physics-
guided

K-means
clustering

Figure 2.18: Classification-based regression strategy for chemical source term estima-
tion.

region in thermochemical composition space using a set of ellipsoids determined by

the Jacobian of the source terms, which is similar to the approach presented in Chap-

ter V. However, in methods like ISAT and PRISM, the cost of building and accessing

such tables can become expensive for large mechanisms, especially on modern high-

performance computers (HPCs) that use extensive concurrency in computations to

reach high throughput efficiency – the method presented in Chapter V, on the other

hand, addresses these limitations by leveraging highly scalable K-means algorithms.

It should also be noted that methods sharing properties with adaptive mesh re-

finement (AMR) can also be interpreted as in-situ modeling frameworks that rely on

data – the class of heterogeneous multiscale methods [1] and equation-free approaches

[147] obtain closed-form solutions to coarse-grid residuals using online data regression

strategies sourced from fine-grid simulations that may be solving a different set of gov-

erning equations valid at the target lengthscale (i.e. utilizing Boltzmann equations

to feed fluxes to the Navier-Stokes equations near shocks [1]).

Additionally, the recent upheaval in physics-constrained (or physics-guided) data-

driven modeling approaches in the greater CFD community has been spurred in large

part by the ubiquity of supervised learning strategies based on neural networks, for

which extremely fast, GPU-friendly optimization algorithms centered on backpropa-

84

gation have been matured by the data science and machine learning (ML) fields. As

a result, there has been a widespread adoption of various forms of so-called physics-

informed neural networks (PINNs), which were brought into the mainstream in the

works of Raissi et al. [275] and now exist as an entire field of research. The idea of

the PINN framework is to regularize (or in some cases completely replace) standard

data-based loss functions used in neural networks (e.g. the MSE loss described in

Eq. 2.41) with residuals defined by the Navier-Stokes equations. Upon convergence

in the training stage, the result is that the black-box parametrization (neural net-

work layers) produces physically consistent outputs conditioned on the training data

distribution. Although there is still a training stage here, because the physics are

embedded in the loss function, much less data (or none at all [328]) is required from

the training perspective to saturate the neural network parameters. Overall, the idea

of embedding physics in the neural network framework is promising, though the lin-

gering issues with the neural-network based approaches such as interpretability and

quantification of error bounds are still present [289]. For example, at best, the numer-

ics reflected by the PINNs will match those apparent in the training data, but due to

the sub-optimal training procedure (the neural network parameters are initialization

at random and converge to local minima), it is difficult to guarantee consistent grid

convergence trends [141]. Addressing these issues remains an area of highly active

research.

Alongside PINNs, physics-assisted modal decomposition strategies have also been

implemented – in these methods, the modal decomposition formulation in Eq. 2.29

is modified to include time-varying basis functions, and the evolution of these basis

functions can be derived from the governing equations [83, 121]. These strategies have

been used as extensions to traditional data-driven ROM strategies like POD and DMD

to analyze canonical turbulent reacting flows and other chaotic dynamical systems

[120, 279]. It should also be noted that the idea of projecting modes derived from

85

datasets (i.e. POD modes) onto the governing equations, as described in Fig. 2.11,

can also be interpreted as a type of physics-infromed data-driven modeling approach

as the governing equations are utilized in a predictive setting.

Overall, within the field of physics-informed data-driven modeling, much less at-

tention has been paid to embedding physics in unsupervised methods based on data

clustering, which as described above is the focus of this dissertation. It will be shown

in Chapters III-V that physics-guided clustering strategies based on K-means can

produce valuable pathways for accelerating reacting flow solvers that are markedly

different from the above physics-informed data-driven modeling approaches, and im-

prove upon the limitations discussed in Sec. 2.4.7 and Sec. 2.5.8. The objectives of

the remaining chapters are as follows: Chapter III outlines the standard K-means

clustering algorithm and demonstrates some applications of the method to gener-

ate ROMs for turbulent reacting flow; Chapter IV demonstrates the classification-

based regression strategy for accelerating chemical kinetics evaluations described in

Fig. 2.18 on high-fidelity detonation simulations; Chapter V extends the formulation

in Chapter IV to include physical knowledge in the clustering objective, thereby pro-

ducing delineations that are more consistent with underlying physics and combustion

regimes.

86

CHAPTER III

K-means Clustering and Motivational Reacting

Flow Applications

3.1 Introduction

Clustering methods constitute a foundational branch of data science and are

used in countless applications including image compression, natural language pro-

cessing, and feature extraction among others [137]. Initial clustering algorithms can

be traced back to the 1930s [76]; they have since seen continued developments and

breakthroughs and will undoubtedly remain as mainstays in the data science and AI

literature in the future. Their application in the field of fluid dynamics – particularly

for ROM development and post-processing purposes – continues to broaden in scope

and robustness as the availability of high-quality, complex datasets becomes more

commonplace.

Figure 3.1 displays a concise classification of the variety of algorithms in the

data science literature that can be used to accomplish the general clustering goal.

Although the methods are similar in that they are all clustering algorithms, each

algorithm has been developed and refined by means of decades of research. As such,

target application scopes of each method, and the way in which they are used to

drive clustering, can vary significantly. As shown in Fig. 3.1, the approaches can be

87

divided into two overarching categories [299]: hierarchical clustering and partitional

clustering. In hierarchical clustering [215], a cluster hierarchy is formed where each

level in the hierarchy represents data sample similarity at a given lengthscale (or

characteristic distance) in the feature space. The primary output is a dendrogram,

which is a visualization tool that allows the end-user to interpret the various levels

in the hierarchy without specifying the number of clusters directly. On the other

hand, partitional clustering approaches take as input the number of clusters K and

assign the data to each of the K clusters using an optimization criterion [51]. The

methods used in this dissertation (which are variations of K-means clustering) are

categorized as partitional clustering algorithms – as such, the class of hierarchical

clustering methods used in data science applications are out-of-scope here and will

not be covered. Hereafter, unless specified otherwise, references to clustering operate

within the context of partitional applications. It is noted, however, that there are

pathways by which partitional and hierarchical approaches can be combined, i.e.

utilizing partitional clustering strategies to drive hierarchical refinement procedures in

a manner analogous to adaptive mesh refinement in physical space – one application

of this is provided in Chapter V for flowfield classification and kinetics modeling

purposes.

In general, all clustering methods are unsupervised data-based algorithms that

group samples into a set of clusters, where each cluster encodes some notion of sample

similarity. The primary output of the class of partitional clustering algorithms is

a type of labeling mechanism that provides, for a given input sample, either (a)

its corresponding cluster index represented by an integer (hard clustering), or (b)

a probability mass function that encodes cluster ownership (soft clustering)1. The

objective of the partitional clustering procedure is to ensure that samples belonging

1Although there is a distinction between hard and soft-clustering methods, for practical purposes,
they often coincide. For example, in soft clustering methods, an additional step that extracts the
”most probable” cluster from the probability mass function is usually performed.

88

Figure 3.1: Taxonomy of data clustering algorithms reproduced from Saxena et al.
[299]. The focus of this dissertation is on K-means clustering, which falls within the
distance-based partitional category.

to the same cluster are similar and, conversely, samples belonging to different clusters

are dissimilar. Quantification of the notion of similarity, which typically takes the

form of a distance function in the underlying phase space (or feature space) in which

each of the data samples reside, is one of the primary challenges in data clustering.

Once the distance function is provided, the clustering goal can be mathematically

represented as a type of optimization problem over the dataset (termed the clustering

objective function) – the way in which various clustering tasks go about formulating

the clustering objective based on the provided distance measure is what separates the

different algorithms and approaches.

Clustering methods of all types have been applied to both non-reacting and react-

ing flow problems. A common application is to utilize clustering for feature extraction,

thereby facilitating easier expert-guided post-processing strategies that drive physical

understanding of complex flow-chemistry interactions [18, 93, 254]. Clustering strate-

gies have been used for modeling purposes as well, where the goal is to either deploy

89

the resulting cluster labeling mechanism within a flow solver for acceleration purposes

(e.g. for cluster-guided combustion modeling [20, 33, 237, 280], which is the focus of

Chapters IV and V), or to drive projection-based ROMs via data-based modal decom-

positions (see Sec. 2.5.1) that replace conventional CFD-based flow solvers entirely

[18, 44, 140].

The goal of this chapter is to describe the basic methodology and characteristics

of the K-means clustering algorithm [323], which is one of the most widely used

partitional clustering algorithms in data science. As detailed in Sec. 2.6, because

the K-means strategy drives the primary research contribution of this dissertation

(flowfield classification for accelerating chemical kinetics evaluations), this chapter

intends to inform the reader of all relevant algorithmic and model-oriented properties

of K-means as a precursor to Chapters IV and V.

The remainder of the chapter is outlined as follows. Section 3.2 presents the

standard K-means algorithm. Then, Sec. 3.3 outlines some of the advantages and

disadvantages of the K-means clustering framework from the modeling perspective –

particular emphasis is placed on comparisons with POD and spectral clustering meth-

ods due to their prevalence in combustion analysis and modeling. Sections 3.4 and 3.5

present key extensions of the K-means algorithm that allow for data-based model de-

velopment in complex reacting flows. More specifically, Sec. 3.4 applies the K-means

driven cluster-based reduced order modeling (CROM [140], as described in Sec. 2.5.4)

strategy to predict flame transition in swirl stabilized combustors, and Sec. 3.5 uses

K-means to produce an alternate modal decomposition framework referred to as time-

axis clustering. These sections are included in this chapter to provide the reader some

additional physical context related to the robustness of the K-means algorithm for

modeling turbulent reacting flow, beyond the classification-based regression approach

discussed later on in Chapters IV and V. Lastly, concluding remarks are provided in

Sec. 3.6.

90

3.2 K-means Algorithm

The input dataset is given by the matrix Φ = [ϕ1, ϕ2, . . . , ϕN] ∈ RD×N , where N

is the number of data samples. A sample ϕi in the dataset (i-th column of Φ) resides

in a D-dimensional phase space2 (i.e. ϕi ∈ RD). Note that the source of the dataset

for purposes of presenting the K-means algorithm below is left ambiguous here – the

representation and significance of each of the D dimensions of the ϕi depends on the

application, which in turn depends on the sampling procedure used to populate Φ.

For example, if each of the ϕi represents an instantaneous flowfield snapshots derived

from simulations or experimental measurements, D is the number of grid points or

pixels describing the underlying numerical grid and each individual component of ϕi

represents a measurement (i.e. velocity magnitude, pressure, etc.) at the grid point.

As another example, the dataset Φ can contain samples of points in a thermochemical

composition space, in which case D is equivalent to the number of species NS and

the individual components of the ϕi contain species concentrations or mass fractions.

The K-means procedure uses the dataset Φ to discretize the the D-dimensional

phase space into finite set of K clusters denoted K = {K1,K2, . . . ,KK}. The clusters

satisfy the following four qualities: 1) Kl ⊆ RD for l = 1, . . . , K, 2) the Kl are strictly

disjoint and non-intersecting, 3) the union of all elements in K exactly reconstructs

RD (the clusters are space-filling), and 4) the cardinality of K, which is the number of

clusters K, must be between 1 and N . The end-result is that the clusters contained

in K produce a centroidal Voronoi tessellation [44] of the underlying phase space in

which the data samples ϕi reside – the K-means procedure can therefore be interpreted

as a means for data-adaptive coarse-graining for RD, which, as seen in Sec. 3.4, is a

useful property that can be leveraged for ROM development.

Given the samples ϕi ∈ RD, the K-means procedure produces the non-intersecting

2”Phase space” and ”feature space” can be used interchangeably in this context.

91

set of clusters in K by minimizing the objective function

Eϕ =
K∑
k=1

N∑
i=1

∥∥Li,k[ϕi − ck]∥∥2

2
(3.1)

based on the initialization and convergence of a finite set of K centroids denoted C =

{c1, c2, . . . , cK}. The number of clusters K is one of two major inputs to the K-means

algorithm, the other being the initial locations of the centroids in the D-dimensional

phase space (the initialization procedure is described further below). Equation 3.1

is referred to as the within-cluster sum of squares (WCSS), and depends entirely on

the centroid values. It provides a statistical scalar measure of the clustering objective

based on within cluster variances about the centroids: a cluster set K produces a low

value for the K-means objective if (a) all samples of the same cluster are similar, and

(b) samples belonging to different clusters are dissimilar. As implied by Eq. 3.1, the

notion of similarity (i.e. the distance function) is supplied by the Euclidean distance

between sample ϕi and centroid ck as

d(ϕi, ck) = ∥ϕi − ck∥22 =

√√√√ D∑
d=1

(ϕi,d − ck,d)2, (3.2)

where d(·, ·) represents a distance evaluation and ϕi,d (resp. ck,d) is the d-th component

of the sample (resp. centroid).

The centroid ck ∈ RD is defined as the arithmetic mean of all samples within the

k-th cluster as

ck =

∑N
i=1 Li,kϕi∑N
i=1 Li,k

. (3.3)

In both Eqs. 3.1 and 3.3, the quantity Li,k is the integer value extracted from the i-th

row and k-th column of the cluster assignment matrix L ∈ ZN×K . In the standard

K-means algorithm, for sample ϕi and cluster index k, the corresponding value in

the cluster assignment matrix is unity if the respective sample is closest to ck in the

92

Euclidean sense and zero otherwise. This can be formally expressed as

Li,k =

1 if k = argmin

j

∥∥ϕi − ck∥∥2

2
, and

0 otherwise.

(3.4)

In other words, a sample ϕi resides in cluster Kk if it is closest to the corresponding

centroid ck in the Euclidean sense. Consequently, samples belonging to the same

cluster are closest to the same centroid, and a sample can belong to only one cluster.

Note that the centroid is a statistical quantity that exists in the same phase space

as the samples in the dataset Φ, as per Eq. 3.4. As such, the k-th centroid is inter-

preted as a representative (also known as a generator) of the underlying cluster or

Voronoi cell Kk. For example, if the samples ϕi are flowfields that can be visualized

in physical space (i.e. time snapshots), the ck centroids represent locally averaged

flowfields that can also be visualized in physical space. Similarly, if the ϕi are ther-

mochemical composition vectors, the centroids are ”average” composition vectors or

species concentrations. This quality not only allows the K-means partitions to be

inherently interpretable, but also allows for the development of modeling frameworks

based on treatment of the ideally small set of K centroids.

The baseline K-means algorithm is provided in Alg. 1. Given the dataset Φ, the

desired number of clusters K, and initial locations for the centroids Cold, the goal of

the K-means algorithm is to find new centroid positions Cnew that reduce the objective

function in Eq. 3.1. In short, the algorithm (known as Lloyd’s algorithm) consists of

an iterative procedure that alternates between two steps: 1) update centroid locations

via Eq. 3.3 using the cluster assignment matrix L from the previous iteration, and 2)

update the cluster assignment matrix L via Eq. 3.4 using the newly updated centroids.

These two steps are repeated until centroid positions converge, where convergence is

defined as the point at which the centroids change by a negligibly small amount.

93

It can be shown that given an initial set of centroids, the above iterative procedure

guarantees monotonic decrease of the objective function in Eq. 3.1, thereby producing

a phase space partition K that minimizes within-cluster variance with respect to the

input data [37].

Algorithm 1 K-means Clustering Algorithm (Lloyd’s Algorithm)

Data:
(1) Set number of clusters K
(2) Set convergence error tolerance εtol
(3) Initialize dataset Φ = [ϕ1, ϕ2, . . . , ϕN] to be clustered.
(4) Set initial centroids Cold.
(5) Initialize convergence criterion: εc ← Inf
(6) Set value for maximum number of iterations.

Result:
(1) Converged set of centroids Cnew.
(2) Cluster assignment matrix L (Eq. 3.4).

while εc ≥ εtol do
a) Copy centroids: Cnew ← Cold

b) Update cluster assignment matrix using Cold: L← Eq. 3.4
d) Update centroids using cluster assignment matrix: Cnew ← Eq. 3.3
e) Compute convergence criterion: εc ← ∥Cnew −Cold∥F
f) Break if maximum number of iterations is reached

end

A primary advantage of K-means the simplicity of Alg. 1, leading to fast con-

vergence times. The complexity of K-means scales as O(NKDT), where T is the

total number of iterations required to converge the centroids [323]. The linear scaling

in number of clusters K, number of samples N and sample dimensionality D allows

for a great deal of flexibility when considering parallel programming strategies to

accelerate the baseline algorithm. In most data science applications, one typically

observes N ≫ D – as such, extensions of Alg. 1 utilize parallel programming frame-

works on CPUs (e.g. MPI [366] or OpenMP [216]) and GPUs (e.g. CUDA [85])

to distribute the distance evaluations and centroid updates over many cores and/or

threads. An example of the linear scaling in computational cost provided by an an

MPI implementation of Alg. 1 is shown in Fig. 3.2 for reference.

94

Figure 3.2: MPI implementation of Alg. 1 following the method of Ref. [72]. Dataset
properties are N = 108 and D = 20. Results are shown for K = 5 (black) and K = 10
(red).

Centroid convergence rates are highly dependent on initial centroid locations as

well as the input number of centroids, K. The naive approach is to simply initial-

ize centroids randomly – this is ill-advised, because random initialization not only

scales poorly with increase in sample dimensionality D, but also faces the risk of

initializing two or more centroids close to one another in the phase space, which in-

creases the chances of producing redundant clusters and sub-optimal values for the

WCSS. Instead, an alternative approach that in practice avoids these problems is

the K-means++ initialization procedure [13]. Instead of picking the initial locations

arbitrarily, K-means++ initializes centroids with the goal of achieving a large amount

of separation between the centroids. The procedure is summarized as follows. The

first centroid, c1, is randomly assigned to a snapshot ϕi in Φ. Then, c2 is assigned

to another snapshot with probability proportional to the squared distance from its

closest centroid. This initialization progresses for all centroids up to cK , and ensures

that the chance of choosing an initial centroid location far from an already existing

centroid is high. Note that the K-means++ initialization is stochastic, whereas the

K-means algorithm itself is deterministic for a fixed initial set of centroids. There-

95

fore, convergence of Alg. 1 using multiple realizations of starting centroid locations is

necessary to ensure statistical confidence in the K-means output [18]. In general, if

the dataset Φ is amenable to the clustering goal (i.e. the data is arranged in clusters

suitable for the K-means procedure), the locations of the converged centroids will

largely be independent of the starting positions.

Perhaps the biggest disadvantage in K-means (and almost all partitional clustering

methods) is the requirement of providing K as an input to the algorithm [157]. One

approach is to utilize the objective function directly to inform an optimal number

of clusters. Here, the K-means algorithm is run for a wide range of K values, and

the K value that results in a significant decrease in the objective function is chosen

(this is referred to as the ”elbow” effect and is analogous to truncation methods used

to determine the number of retained modes in POD). Other approaches like the

silhouette score [285] and X-means [246] formulate different measures for clustering

quality as alternatives to the WCSS in Eq. 3.1 to drive cluster number selection.

It should be noted that the above scalar metrics for guiding K selection are de-

signed for low-dimensional datasets that exhibit ”true” clustering patterns, where the

quality of the clustering output can be determined based on label accuracy computed

using class assignments known a-priori. However, in most physics-based applications,

there is no notion of cluster accuracy because there is no reason to believe a ”true”

clustering exists. Instead, the focus is either on (a) interpretability of the clustering

output through the centroids (to guide physical analysis of flowfields, for example),

or (b) the prediction accuracy of a given model constructed from the coarse-grained

phase space. Since these facets are rarely considered in data science applications,

conventional cluster number selection methodologies derived from the data science

literature often do not work for fluid flow applications [19]. For example, in the

context of flowfield classification discussed in Chapters IV and V, the clustering algo-

rithm is not used to discover ”true” clusters in a sense. It is instead used to partition

96

the phase space in which the observed system resides in a coarse-graining procedure,

thereby enabling localized modeling strategies for kinetics acceleration. In such cases,

cluster number selection should be driven by optimizing application-specific modeling

accuracy. Pathways to do so are provided in both Sec. 3.4 as well as in Chapter V.

3.3 Properties of K-means Clustering

K-means is useful because it allows the user to associate a single value, the cen-

troid ck, to the general behavior of the cluster. In other words, in K-means it is

straightforward to assign a single representative to the group. This is both a good

and a bad thing. The good is that interpretability becomes easy, since the phase

space of the centroid and what it represents (a local average) is known and accessible.

The bad is that, from a statistical viewpoint, the ability to assign the mean value to

a group (i.e. assigning the centroid to the cluster) is an implicit characteristic of a

Gaussian density in the cluster. In fact, the K-means clusters represent multivariate

Gaussian distributions, of which the centroid is the mean and the covariance is a

scaled identity matrix [214, 323]. Since the covariance is a scaled identity matrix, the

resulting density for each cluster is spherical, which is why K-means can only be used

to produce globular clusters in whatever phase space the centroids reside.

This Gaussian interpretation comes by considering the more general case of the

mixture model representation of the data probability density function (PDF)

f =
K∑
k=1

αkfk, (3.5)

where αk is the probability of encountering cluster k, fk denotes the the cluster-local

PDF, and f is the final density function output. From Bayes rule, the posterior

97

probability of a snapshot belonging to cluster k is

p(k | ϕi) =
p(k)p(ϕi | k)

p(ϕi)
=

αkfk(ϕi)∑
k αkfk(ϕi)

. (3.6)

If one chooses to represent the densities fk as multivariate normal distributions with

identity covariance matrices scaled by a single paramter σ, then the maximum like-

lihood estimates for the parameters of the normal distributions (the means and σ,

which is a scalar that encodes the cluster size) using the expectation-maximization

algorithm based on the above posterior lead to the K-means algorithm [214].

With this background, it is easy to identify situations in which K-means ”fails”.

In particular, K-means clusters become unreliable when (a) the data contained within

each cluster are not accurately modeled by Gaussian distributions, and (b) the within-

cluster sample size is very small, such that there is little statistical confidence in the

definition of the centroid. Additionally, in data-science applications, failure of a

clustering algorithm qualitatively assessed by its inability to accurately identify the

true clustering of some manufactured dataset using prior knowledge of the number

of clusters. This can be illustrated with the famous half-moon example shown in

Fig. 3.3, for which the true number of clusters is K = 2. K-means has clear difficulties

in representing the moons with K = 2 – it cannot capture the concavity of the half-

moons due to the globular nature of its clusters.

Many other clustering algorithms are able to capture the two half-moon clusters

and the associated concavity. One example is shown in the middle plot of Fig. 3.3 for

spectral clustering [345], which is a manifold-type method based on running standard

K-means in a subspace spanned by eigenvectors of a graph Laplacian matrix [345].

From the results in Fig. 3.3, one might be inclined to say that a method like spectral

clustering (or any other clustering approach that can pick up non-spherical shapes)

is better than K-means. What is less obvious is that even though spectral clustering

98

K-means, K=2 Spectral, K=2 K-means, K=10

Figure 3.3: (Left) K-means clustering for moon dataset using K = 2. Small mark-
ers denote data points, large markers denote centroids. (Middle) Spectral clustering
output for moon dataset using K = 2. Small markers denote data points, large mark-
ers denote locations of data belonging to same cluster. (Right) K-means clustering
for moon dataset using K = 10. Colors denote cluster assignments, black markers
denote centroids.

gives the true result for K = 2 for this example, the clusters are not space-filling in

the D-dimensional phase space. In other words, complex, non-globular clusters that

may be identified by other clustering algorithms (such as spectral clustering) by their

nature cannot be easily characterized by a single representative point (i.e. the mean)

in the same phase space as the objects being clustered. In this sense, the simplicity

of the K-means clusters can be seen as both and advantage and a disadvantage.

Ultimately, the simplicity of clusters produced by K-means is desired for inter-

pretability, but the ability to cluster complex geometries like the half-moon is re-

quired if one is to use these methods for complex fluid dynamics applications. This is

because structures are much more likely to be concave in extremely high-dimensional

phase spaces characterized by complex dynamical systems, where the curse of dimen-

sionality prevents the user from representing volumes properly unless unrealistically

large amounts of data are available.

A workaround is to use K-means with higher values of K. This is somewhat anal-

ogous to using a series of piecewise linear functions to approximate a single nonlinear

function. As a result, the usage of K-means becomes more nuanced: for the moon

example, since this amounts to requiring K > 2 to cluster what are truly only 2

99

groups, an additional labeling step for the K-means clusters is needed to facilitate

interpretation. For example, the rightmost plot of Fig. 3.2 shows how K-means can

recover the complex moon structures. However, to make any sense of the output,

an additional step that assigns meaning to each cluster is required. In other words,

the user must specify that in Fig. 3.2 (right), the first 5 clusters are associated with

the top moon and the remaining with the bottom moon. Note that in practice, this

labeling step is only required in physical analysis of the clustering output – practical

utilization of the labeling step is shown in Sec. 3.4. If the goal is to use the partition

as a model, interpretation of the clusters themselves become less important, and K

selection is instead guided by balancing modeling accuracy with computational cost

(see Chapter V).

With respect to modeling, a major benefit of K-means is the fact that the space-

filling Voronoi tessellation can be thought of as a mesh consisting for theD-dimensional

phase space. This is shown in Fig. 3.4. The figure displays an analogy to finite vol-

ume based adaptive mesh refinement methods (see Sec. 2.4.3) – the centroids can be

represented as ”cell centers” inherently adapted to the subset of phase space occupied

by the dataset Φ. As described in Chapters IV and V, equipped with this partition,

tabulating expensive nonlinear functions like chemical source terms for a set of input

query points in RD using the centroids as proxies for average cluster behavior becomes

possible.

3.3.1 Comparison with Proper Orthogonal Decomposition

A useful perspective to the minimization provided by K-means is as follows. If the

centroids (here D-dimensional) are organized in the matrix C ∈ RD×K , then Eq. 3.1

can be re-written in matrix form as

Eϕ = tr[(Φ− Φ̂)(Φ− Φ̂)T], (3.7)

100

Cell

Cell
center

x

y α2

α1

Cluster

Centroid

α1

Centroid-
sample

distance

AMR in physical space
Refinement near high gradients

K-means in phase space
Refinement near data samples

Figure 3.4: (Left) Illustration of adaptive mesh refinement in physical space using
finite volume based discretization. Refinement occurs in regions of high flow gradients.
(Right) 2D visualization of K-means output performed on the Lorenz system [180].
Gray points denote data samples, red points denote centroids, and black lines denote
Voronoi cells. Zoom-in on one Voronoi cell is shown to emphasize variation in centroid-
sample distances.

where Φ̂ is the reconstructed data matrix defined as

Φ̂ = CL̃ ≈ Φ. (3.8)

In Eq. 3.8, L̃ is the matrix L from Eq. 3.4 whose columns are divided by the cor-

responding number of samples in the cluster. Given the above formulation of the

K-means objective, an interesting parallel to the objective of proper orthogonal de-

composition (see Sec. 2.5.2) can be made, which seeks to minimize the Frobenius

norm of the error due to data reconstruction as follows (reproduced from Eq. 2.30 for

clarity):

EPOD = ∥Φ− Φ̂POD∥F =

√
tr[(Φ− Φ̂POD)(Φ− Φ̂POD)T]. (3.9)

In Eq. 3.9, Φ̂POD is the reconstructed data matrix facilitated by the reduced set

of POD modes. As implied by the similarity between the corresponding objectives

(Eq. 3.7 and Eq. 3.9), K-means can be interpreted as a type of discrete version of

POD in that it optimizes the reconstruction of Φ using K basis vectors (the centroids)

with the additional constraint that the corresponding K clusters are space-filling and

101

POD/PCA K-means

Figure 3.5: (Left) POD modes (dashed arrows and black markers) for a simple 2d
ellipse dataset (gray markers). Center of ellipse is given by red marker. (Right)
K-means clustering (K = 10) on the same dataset. Colors indicate cluster labels and
centroids are given by dashed arrows and black markers.

non-overlapping in D-dimensional phase space. This is formally shown in [74].

Both K-means and POD rely intrinsically on the covariance of the error matrix

(Φ − Φ̂)(Φ − Φ̂)T ; however, the optimization approaches for each method produce

modes that are fundamentally different within the modal decomposition framework

(see Sec. 2.5.1). To illustrate the basic differences, a comparison between K-means

centroids and POD modes is shown for a simple ellipse-derived two-dimensional

dataset in Fig. 3.5. It can be shown that optimal data reconstruction, which is the

goal of POD, requires the POD modes to be recovered from the eigenvectors of the

data covariance matrix, thereby producing an orthonormal basis. On the other hand,

the goal of K-means centroids is to minimize within-cluster variation in the data.

The disadvantage in the centroids is that they can be redundant depending on the

value of K (or sub-optimal from the reconstruction perspective), but the advantage is

that they provide an accessible coarse-grained representation of the underlying phase

space, which allows for the development of interpretable modal decomposition and

tabulation strategies for modeling reacting flows.

102

3.4 Cluster-Based Analysis and Prediction of Flame Transi-

tion in Gas Turbine Combustors

3.4.1 Background

The issue of flame stabilization is critical for lean premixed flames with the per-

spective of controlling pollutant formation and ensuring robustness at various operat-

ing loads [10]. In swirl-stabilized combustors, the interaction of multiple recirculation

zones with flame propagation impacts the stabilization process. Two different sta-

bilization mechanisms are feasible [61, 329, 332]: a) a shear layer stabilized flame

resulting in a flame attachment to some feature of the geometry, and b) lifted flames

that are stabilized near the stagnation surface formed between inflowing gases and

an inner recirculation zone. For practical considerations, the transition into a lifted

state might serve as a precursor for flame blow-off [324]. Prior studies have focused

on elucidating physical mechanisms that cause transition between the attached and

lifted flame states, which are due to either inflow or other operational variations.

The focus of this work is to use one such experimental study to develop a prognostic

data-driven model with a twofold purpose: 1) to understand how the flame instability

occurs and 2) to predict the flame transition.

Instabilities in complex systems such as gas turbines are subject to multi-scale

mechanisms that require a simplified representation to be meaningful. A first tech-

nique is to quantify the growth rates of perturbations, which are obtained using system

identification (SI) methods [223]. The perturbations are quantified for some quantity

of interest, e.g. pressure at some location. The SI technique can be input-output

based, where the response of the combustor to perturbations are used, or output

based [223, 224, 262]. A second technique utilizes data decomposition to obtain a

simplified representation of the governing equations. Proper orthogonal decompo-

sition (POD) [29, 322] projects the governing equations onto some meaningful flow

103

modes, and dynamic mode decomposition (DMD) attempts to linearize the governing

equations [300]. Such methods determine instability modes from experimental data

and the variation of their relative contribution to the flow field. These characteristic

modes can be used to directly analyze physical system properties of interest, and also

to construct a reduced-order model (ROM) of the system. As described in Chapter II,

these approaches have been used in the past for combustion chambers [11, 211], and

additional studies have utilized laser diagnostics to determine characteristic modes

[112, 229].

From a prognostic viewpoint, the above methods are derived from two different

processes. SI and DMD-related techniques are purely data-driven approaches, where

finite measurements of the system are used to construct empirical tools which may

then be used to predict combustor state transitions. While such tools are easier to use

in a practical setting, interpreting the model in terms of the physical processes is not

straightforward. Further, DMD related methods invoke linearization of the underlying

dynamics, which may not be valid in many practical configurations. In contrast, POD-

type techniques attempt to simplify the theoretical governing equations to predict the

future states of the system. First, data from the system is used to construct lower-

order representations, or a ROM; second, this model can be propagated in time in

order to predict the future state of the system. Since the decomposition techniques

can be related to physical processes, the first step provides meaningful projection

operators which can be used to analyze the physics of the combustion. However,

the projection applied to the governing equations leads to issues with closure and

numerical discretization, similar to those encountered in reduced-fidelity models such

as RANS/LES [265, 266, 276].

Recently, a so-called cluster-based reduced-order modeling (CROM) framework

built on K-means clustering has been proposed by Kaiser et al. [140], and was de-

scribed briefly in Sec. 2.5.4. Unlike prior decomposition tools that obtain a linear

104

operator to describe the nonlinear dynamics, CROM retains the nonlinearity of the

underlying system. Furthermore, CROM avoids a direct projection of the governing

equations, thereby alleviating the closure problem; instead, it constructs a discrete-

time Markov process from a set of experimental or high-resolution simulation data. As

a result, CROM provides a physically-meaningful decomposition of the dataset which

allows to understand from the available data how the flame instability occurs [122].

It also provides a probabilistic model for the forecast of the combustor state. In

the original work of Kaiser et al. [140], CROM was used to construct the model of

a turbulent mixing layer. This method has also been used to predict cycle-to-cycle

variations in internal combustion engines via cluster discretization of data [47] and

cavitation mode transitions for model hydrofoils [19].

In this study, CROM is used to develop a means for transition mechanism analysis

and to model flame topology transition in a swirl combustor. Experimental stereo-

scopic particle image velocimetry (S-PIV) and OH planar laser induced fluorescence

(PLIF) images are used to develop a predictive ROM for flame transition. The flow

modes obtained are analyzed to illustrate the physical information that can be ob-

tained from the CROM methodology. The remainder of this paper is organized as

follows: experimental data and operating conditions are provided in Sec. 3.4.2; the

CROM methodology is discussed in Sec. 3.4.3; outcomes of the CROM approach are

used to gain physical intuition about the flame transition mechanism in Sec. 3.4.5;

results of the CROM approach both in terms of the prediction horizon time and fore-

cast capability for different data types are discussed in Sec. 3.4.6. Finally, conclusions

and future directions are presented in Sec. 3.4.7.

3.4.2 Experimental Configuration and Dataset

The data used for this analysis was acquired in the experiments of Ref. [8], which

contains additional details on the combustor and diagnostic techniques. A brief sum-

105

mary is provided here.

Figure 3.6a shows the gas turbine model combustor, which has been used for a

number of previous studies, both experimental [50, 202, 231] and numerical [58]. A

review addressing progress and key findings in experimental studies on hydrodynamic

instabilities, including additional perspective on the advancements in numerical simu-

lations of instabilities in swirling combustors is provided in Ref. [132]. The schematic

shown in Figure 3.6c depicts the type of flame shape geometry observed in the at-

tached and lifted states as seen by this particular swirl combustor.

Premixed fuel and air are fed through a plenum to the radial swirler before en-

tering the combustion chamber, where vortex breakdown generates a strong inner

recirculation zone. In the present case, a fuel-air mixture of equivalence ratio of

ϕ = 0.60 is fed to the combustor at a preheated temperature of 400 K. The fuel is

made of 80% CH4 and 20% CO2 by volume. The air flow rate is 400 SLPM. This

case was selected from the test matrix in Ref. [8] because it exhibits a high number

of transitions between clearly defined attached and detached flame states (8 observed

in a span of 1.5s), while operating at fixed equivalence ratio and flow rates. Thus,

the flow conditions were not changed to force a transition, and the inherent system

can be considered ergodic; the flame experienced intermittent and spontaneous (in

the sense of being apparently random in time) transitions between the detached and

lifted states.

Data was collected using 10 kHz repetition-rate OH PLIF and S-PIV, providing

simultaneous time-resolved 2D measurements of the OH radical distribution and of

the three velocity components over a time span of 1.5 s. Figure 3.6b shows typical in-

stantaneous OH PLIF images in attached and detached states. In the attached state,

high OH concentrations are present in the shear layers that separate the inner and

outer recirculation zones, while in the detached state, a rotating helical vortex core

generates a highly asymmetric OH field. Attached and detached flame configuration

106

shapes are shown in the drawings in Fig. 3.6c – the flame in the attached state takes on

the characteristic V-shape, whereas the M-shape is observed in the detached. There

were roughly 8 total transitions captured in the 1.5 s dataset (combining attached-

to-detached transitions and the detached-to-attached transitions). For the specified

operating conditions, the flow-through time is 14.6 ms (from Ref. [8]) and the flame

transition timescale (determined by manually observing the 8 detached-to-attached

and attached-to-detached transition times in the OH-PLIF images) is on the order of

10 ms.

In order to reduce the computational overhead, the PLIF images were reduced

in size from 832 × 504 pixels to 104 × 63 pixels via nearest-neighbor interpolation

based filtering, which preserves the large-scale flame features. The effective resolution

of the down-sampled OH PLIF was 0.71 mm. The full-resolution PIV data was

used (79 × 53), with a vector spacing of 0.78 mm and interrogation box size of

1.56 mm. Note that in Fig. 3.6a, the PIV window is not perfectly symmetric about

the combustor centerline, which is reflected accordingly in the figures and discussion

below. Nevertheless, the procedure used here only requires the data to coincide in

time. Different datasets spanning different parts of the combustors can therefore be

used.

3.4.3 Cluster-Based ROM Methodology

In this section, the CROM methodology is described. Essentially, it processes

time-resolved data of any kind, identifies recurrent patterns in the system dynamics,

and creates a probabilistic predictive model for these patterns. Here, the data are

the 2D experimental OH-PLIF and PIV images. The set of experimental images is

denoted by the data matrix Φ = [ϕ1, . . . , ϕN] ∈ RD×N , where N is the number of

snapshots available and each subscript denotes a different snapshot. The snapshots

are ordered in time and are contained in the columns of Φ. This time-ordered quality

107

Figure 3.6: (a) DLR combustor schematic. The fuel consists of 80% CH4 and 20%
CO2 by volume. (b) OH-PLIF snapshots of detached (top) and attached (bottom)
flames in units of relative pixel intensity. (c) Sketches of M-shaped detached flame
(top) and V-shaped attached flame (bottom) (from Ref. [10]).

is important to create the predictive model, but not important when classifying the

data. Each column ϕi in Φ is a vector of pixel values associated with PIV and/or OH-

PLIF images, and is of size D (i.e, ϕi ∈ RD). Snapshots are separated by a time-step

∆t that is determined by the 10 kHz sampling rate identical across all measurement

types. In this section, the data classification (clustering) and the probabilistic model

(transition matrix) obtained from the CROM methodology are described. Further,

a procedure to relate the cluster outputs to the individual swirler states is also pre-

sented (a systematic labeling of the clusters as detached flame, attached flame or

transitioning flame).

3.4.3.1 Utilization of K-means Clustering

The first step of CROM is to map the set of snapshots Φ to a smaller set of

centroids C = {c1, c2, · · · , cK} using the K-means procedure described in Sec. 3.2,

where ci ∈ RD. In this application, because the input dataset Φ contains snapshots

made of D pixels, the centroids are also images made of D pixels that represent some

108

Figure 3.7: An example of a PLIF snapshot of an attached flame with its correspond-
ing centroid.

pattern of the flow field. Centroids in CROM can be interpreted as delta functions

that discretize the probability density function (PDF) of the states. States nearby

one another are represented by the same delta function. This step is reminiscent

of classification methods used in language interpretation: the same word can be

pronounced differently, but a language interpreter finds common characteristics of

these different signals to assign them the same meaning.

Depending on the flow pattern represented by each centroid, the average distance

of the snapshots assigned to each centroid can vary. Ideally, each centroid ci should be

as close as possible to its assigned snapshots such that the centroid actually represents

these snapshots. Note that the centroids are not flow fields that can be observed, but

statistical patterns that approximate what can be observed. An illustration of this

statistical effect is shown in Fig. 3.7, which juxtaposes an example PLIF snapshot

with its corresponding centroid.

3.4.3.2 Transition Matrix

The prediction tool of the CROM approach is the transition matrix, which is the

practical ROM necessary to make state forecasts. The transition matrix provides the

probability of a snapshot transitioning from one cluster to another within a given

forward time-step ∆t. In a mathematical sense, this matrix represents a Marko-

vian discrete time-step mapping. The transition probability of an image in cluster j

109

transitioning to an image in cluster k is obtained based on the association matrix L

as:

Pj,k =
∑N−1

m=1 Lm,jLm+1,k∑N−1
m=1 Lm,j

, for k = 1, ..., K. (4)

The transition matrix P defined above is valid only for a finite time-step ∆t. A key

assumption regarding the cluster-based ROM framework is that of Markovianity, i.e.,

that the finite time-step transport of probability distributions using the transition

matrix generated by the snapshots in Φ is memoryless. Any finite-dimensional spa-

tial discretization of Markovian governing equations will naturally yield a Markovian

dynamical system. Here, it has only been assumed that the governing equations for

the field measured are themselves memoryless. This is reasonable since fluid flow

equations are memoryless. Moreover, given the large density of data points, it is

reasonable to consider the system experimentally observed to follow Markovian dy-

namics as well. Model validation techniques for forecasting purposes are presented in

Sec. 3.4.6. Additional details are provided in Ref. [140].

Additionally, before centroid analysis and implementation of the transition matrix

P in a prediction setting, it is useful to re-arrange the clusters in some probability-

based order. One method (used in these results) is to order the clusters by descending

eigenvalue modulus of P for clearer identification of cluster groups within the matrix

structure [140].

3.4.3.3 Forward Propagation Model

The centroid set C combined with the transition matrix P now serve as the prog-

nostic model. From an initial PDF of the clusters P0 ∈ RK the forward model

determines the probability distribution of centroids at a future time t:

Pt = PnsP0, (5)

110

where ns = t/∆t. It is important to note that in the infinite time limit, the probability

distribution represents the statistically stationary state that can be obtained from all

the snapshots. This is the ergodic behavior of the transition matrix:

lim
t→∞

Pt = e ≈ q, qk =

∑N
m=1 Tm,k
N

, for k = 1, ..., K. (6)

In Eq. 6, e represents the PDF in the ergodic limit of the transition matrix, and q

represents the initial cluster distribution of the snapshots. Furthermore, as P is a

Markov matrix, its first eigenvector v1 corresponds to the distribution e (e = v1).

Simply put, this feature states that the model gradually loses its predictive capability

as P is raised to successively higher powers. Therefore, the transition matrix does not

give information about any upcoming flame transition or flame state after a certain

finite number of time-steps. This point can be defined as a finite critical time, τh, after

which the probability distribution remains stationary regardless of the initial PDF

P0; this is referred to as the prediction horizon time [140]. As will be discussed in

the results section, τh is highly sensitive to the type of data used to apply the CROM

methodology, and is a key metric in evaluating the forecast power of one particular

dataset over another. This will be the object of the discussion in Sec. 3.4.6.

3.4.4 Labeling of Centroids

The clusters obtained from K-means isolate flow patterns in an unsupervised man-

ner, but need to be assigned to states of interest for meaningful interpretation and

forecasts. Here, it is explained how each cluster is labeled with the “detached flame”,

“attached flame” or “transitioning flame” category. The centroid classification pro-

cedure is presented using a model generated with a combined dataset (OH-PLIF +

PIV-x/y/z components).

Figure 3.8a displays the transition matrix with probabilities appearing as elements

111

(a) (b)

Figure 3.8: (a) Transition matrix with substructures boxed. (b) Distance matrix with
substructures boxed.

of the heatmap color-coded in log scale for K = 16. Three distinct structures are

identified within the transition matrix as indicated by the blue boxes; further detail

regarding the assignment of each structure to a physical state follows this list:

1. Clusters 1-7 represent a periodic step-like probability structure, where the most

likely path (aside from remaining in the same cluster) is to move on to the next

cluster.

2. Clusters 12-16 represent a highly interconnected probability structure (i.e. a

snapshot in one cluster in this group has a roughly equally probable chance of

moving on to any other cluster in this group, not just the next cluster).

3. Clusters 8-11 are also step-like and periodic, similar to 1-7, but are probabilis-

tically connected to both of the regions described in (1) and (2).

Centroid groups are further identified via the cluster distance matrix shown in

Fig. 3.8b, which displays the L2 distance between each centroid [140]. The distance

matrix is symmetric with diagonal equal to zero.

112

Centroids corresponding to the attached state are expected to be relatively similar

in the phase space, as there should be far fewer possible phase space realizations of

an attached flame in the given domain than a detached flame. This coincides with

centroids 12-16 as indicated by the distance matrix, which is a grouping of centroids

markedly close together. A clear cluster grouping is also visible when observing

centroids 12-16 in the transition matrix – the probabilistic interconnection of these

centroids is related directly to their phase space similarity. Based on the above

analysis, centroids 12-16 are associated with the attached flame state. Visualizing

these centroids confirms the classification, as seen in Fig.3.11.

Of the two remaining groups (1-7 and 8-11), one must be assigned a “detached”

label and the other a “transition” label. Centroids 8-11 in the transition matrix are

connected to the other two groups: for example, a snapshot starting in clusters 8-

11 has some probability of entering either clusters 1-7 or clusters 12-16. Centroids

8-11 are also identifiable as transition centroids via the distance matrix; centroids

1-7 are far from centroids 12-16, but centroids 8-11 are closer to both. Clusters 8-11

are therefore assigned the transition label. The corresponding centroids are plotted

below in Fig. 3.13.

This leaves the detached label assignment for clusters 1-7. These clusters differ

from the transition centroids since the matrix P does not allow transition to the

attached centroids (12-16). Centroids 1-7 are plotted in Fig. 3.13, confirming the

detached assignment. Note that there are more detached clusters than there are

attached clusters, as is expected – the detached flame state should occupy a larger

region of the phase space than the attached state based on the experimental dataset.

CROM then provides the labeled centroids and the transition matrix, which can

be used for a) analysis of the centroids and transition mechanism (Sec. 3.4.5), and

b) prediction of flame transition and analysis of horizon time (Sec. 3.4.6). In context

of the current experimental setup, this approach is valid only when the system is

113

Figure 3.9: CROM workflow. The K-means clustering procedure occurs between the
first two steps. Centroids and transition matrix shown here are arbitrary.

ergodic. For additional perspective, a summary schematic of the model procedure is

shown in Fig. 3.9.

3.4.5 Analysis of the Transition Mechanism

Not only does the CROM methodology allow for the construction of a predictive

model, but it also helps infer the physical mechanism through which particular events

happen. In this case, CROM can be used to extract the sequence of events leading to

flame detachment or attachment. The outcomes of CROM (centroids and transition

matrix) are used in this section to perform this analysis.

First, an ideal cluster number K is chosen such that it is low enough to simplify

the analysis but high enough to better identify all three flame states (Sec. 3.4.5.1).

Second, the clustering process is applied to the full dataset combining OH-PLIF and

all the velocity components. As a result, each centroid obtained is composed of 4

different fields (OH and the three velocity directions). It will therefore be possible

to describe the interaction between the flame and the velocity field during the flame

transition process. Third, this transition process (both from detached to attached

flame and attached to detached flame) is analyzed by combining the information

provided by the transition matrix in the form of cluster transition probabilities with

the centroids for the combined dataset. In particular, the most likely sequence of

114

events leading to attachment or detachment will be extracted.

3.4.5.1 Number of Clusters

For optimal mechanism analysis, it is critical to choose a cluster number that

discretizes the phase space in such a way that all states of interest are captured. In

this case, the goal is to choose a lower bound on K such that the attached, detached,

and transition flame states are properly refined. Transition matrix structures and

cluster time series are compared in Fig. 3.10. The cluster time series plots (bottom

row in Fig. 3.10) show the time evolution of the images represented by associating

each snapshot to its closest centroid. As seen from the data, the flame is initially in

one state, but quickly transitions to another. Later in time (around t = 0.12s), the

combustor undergoes another transition and moves back to the original state. The

red highlighted regions in Fig 3.10 show this second transition – as the total number

of clusters is increased, so too is the refinement of the transition mechanism. The

number of clusters chosen is K = 16, as it best captures the transition process and

contains the necessary resolution of all three flame states of interest. The transition

matrix structure shows clear groups that can be labeled as explained in Sec. 3.4.4 –

clusters 1-3 are associated with an attached flame, clusters 8-16 with detached, and

clusters 4-7 with a transition state. Figure 3.10 also implies that the selection of K

is more complex than assigning simply one cluster to one state (i.e. for three states,

K = 3), as the cluster number is dependent on the time spent in each state. Because

the K requirement depends on the sufficient resolution of the transition process, and

the flame transition between attached/detached states occurs very quickly compared

to the flame residence time in either attached or lifted states, in the end of the

clustering process there should be more than one cluster per label. The transition

matrix then has non-zero transition probability for several cluster changes, which

allows variations in the density of trajectories in each individual flame state to be

115

K = 3 K = 9 K = 16

Figure 3.10: (Top) Transition matrices forK = 3, 9, and 16. (Bottom) Corresponding
cluster time series for the first 0.2 seconds.

better represented. For example, having only one centroid in the detached state

would be a drastic oversimplification of the evolution of trajectories corresponding

to a detached flame, and would not capture the associated periodicity of the flame

anchoring point.

Besides facilitating the interpretation of the CROM output, using the smallest

possible cluster number that captures the states of interest decreases the statistical

uncertainty for the entries of the transition matrix. Therefore, it should be noted

that if the sole interest is the forecasting power of the model, the optimal number

of clusters K will be different as will be shown in Sec. 3.4.6. For the purposes of

centroid analysis as it pertains to transition mechanism identification, in the following

discussion, centroids were produced for a cluster discretization of K = 16.

116

3.4.5.2 Description of the Bistable State via Centroids

In this section, the centroids obtained for the value K = 16 are analyzed to

illuminate the behavior of the swirling flame during the attached, detached and tran-

sitioning phases.

The complete set of attached, transition, and detached centroids are shown in

Figs. 3.11, 3.12, and 3.13 respectively for the full dataset. These images essentially

show how the clustering algorithm organizes the raw snapshots. In the figures, OH

isocontours are shown as black lines, and the arrows represent the velocity in the axial

and transverse directions (x and y). Out-of-plane velocity (z component) is shown by

the colored contour.

In the attached state, full flame symmetry is observed for centroids 15 and 16 which

is expected – the OH isocontours indicate a similar flame shape to the instantaneous

PLIF attached image seen in Fig. 3.6. However, in some attached centroids (12, 13,

14), there exists asymmetric alternating high-OH concentration regions (circled in

red Fig. 3.11). For the same centroids, some slight velocity field asymmetries are also

observed (”bending” of the out-of-plane velocity streaks and alternating recirculation

zone presence), potentially indicating the initial formation of a precessing vortex core

(PVC). This is also observed in experimental results [10, 230].

Images corresponding to the transition centroids (8-11, Fig. 3.12) show more

complex structures for the velocity and OH profiles. These centroids show strong

flame and flow asymmetry, suggesting that the PVC gained in strength. All transition

centroids clearly display alternating recirculation zones (zig-zag structure as observed

in [230]) with coinciding high OH-concentration fields. It appears that the vortices

creating vorticity normal to the measurement plane serve as flame anchoring points.

The transition centroids obtained can be associated in pairs 8/10 and 9/11 which

exhibit symmetry with respect to the swirling axis. The radial symmetry implies

that the detachment process happens independently of the swirling process, but is

117

Figure 3.11: Attached centroids of the combined dataset. OH-PLIF isocontours in-
dicated in black lines. PIV-x and y components given by arrow overlays, and PIV-z
is given by the heatmap (colorbar units in m/s). Circled regions enclose regions of
increased OH-concentration.

localized in the azimuthal direction.

The detached centroids are shown in Fig. 3.13. The OH concentration and the

flow field are similar to those of the transition centroids, and are more pronounced.

The flame front and the recirculation zones are in particular more lifted. One key

difference that can be noted in terms of the flame topology is the existence of hook-

like structures for the OH contour in centroid 3 and 7 (red arrows). This suggests

that the flame is exposed to stronger strain rates than during the transition.

A key aspect from the above discussion is that a pure phase-space clustering pro-

cess is able to isolate important flow features relevant to the transition phenomenon

in an unsupervised manner.

118

Figure 3.12: Transition centroids of the combined dataset. OH-PLIF isocontours
indicated in black lines. PIV-x and y components given by arrow overlays, and PIV-
z is given by the heatmap (colorbar units in m/s). Recirculation zone centers in
indicated by markers.

119

Figure 3.13: Detached centroids of the combined dataset. OH-PLIF isocontours
indicated in black lines. PIV-x and y components given by arrow overlays, and PIV-z
is given by the heatmap (colorbar units in m/s). In centroids 3 and 7, the hook-like
structures are indicated by red arrows and the recirculation zones near the burner
exit are marked in red.

120

3.4.5.3 Analysis of the Bistable Transition via Transition Matrix

In this section, two different transition mechanisms are analyzed: the detach-

ment process (attached to detached flame) and the attachment process (detached to

attached flame). This section combines the physical information gained from individ-

ual centroid analysis (Sec 3.4.5.2) with the probability transition information from

the transition matrix in Fig. 3.8a in order to interpret the dynamics of the transi-

tion mechanism. The analysis below is conducted for model generated with the full

dataset (OH and all three velocity field components).

Flame Detachment Process: Figure 3.14 displays the probability paths as out-

putted by the model for detachment. Colors associated with the arrows are coded in

the same scale as the probabilities in Fig. 3.8a – lighter colored arrows indicate higher

probabilities. In Fig. 3.14, an interesting distinction is that the attached centroids

associated with slight asymmetry in the OH field (centroids 12, 13, 14 and 15) have

a higher chance of moving on to the transition clusters. Interestingly, the attached

centroid that is most symmetric (centroid 16) has zero chance of moving on directly to

a transition centroid, implying that asymmetry is a leading indicator of detachment.

The velocity field asymmetry was also used as a marker of the beginning of flame de-

tachment in the study of Oberleithner et al. [230]. Here, the results suggest that slight

asymmetry of the flame itself could be at the inception of the detachment. Further

analysis will be required to clearly identify the causes of the detachment. Neverthe-

less, this finding highlights the capabilities of CROM in assisting the interpretation

of experimental data for transient flows.

The transition centroids are characterized by the tendency to evolve into a neigh-

boring centroid. Each cluster appears to resolve a particular phase of the periodic

swirling motion. Centroid 8 tends to evolve into 9, 9 into 10, 10 into 11, and 11 back

into 8, etc. In the case of a detachment, both centroids 10 and 11 are likely to evolve

into the detached centroids 5 and 7. Centroids 8 and 9 can each evolve into different

121

detached centroids: 1/2 and 3/4 respectively. Similar features are seen within tran-

sition centroid pairs in the evolution to the lifted state; for example, centroids 9 and

11 (one mirrored pair) each evolve into detached centroids which exhibit a hook-like

feature on the same side of the symmetry plane. Furthermore, centroids 8 and 10 (the

other transition centroid mirrored pair) evolve into lifted centroids which depict the

flame on the opposing side of the symmetry plane (i.e. centroid 8 is left-leaning and

evolves into a right-leaning lifted flame – vice-versa for centroid 10). The detached

centroids depict a similar periodic tendency as the transition centroids, as the most

probable path is to simply evolve into the next centroid. Assessment of the lower

stagnation point in the detached regime gives insight to the PVC structure location,

and it can be seen that this feature oscillates back and forth across the symmetry

plane. An interesting feature to note is that the detachment process does not include

centroid 6, which may be a product of the chosen cluster number.

Flame Attachment Process: In the flame attachment case as outlined in Fig. 3.15,

it is seen that a snapshot in the first cluster has no chance to directly enter the tran-

sition region. The most likely detached-to-transition pathway is given by the progres-

sion from centroid 2 (right-leaning detached flame) to centroid 9. Centroid 2 differs

from the other detached centroids in that there exists a strong recirculation zone on

the left of the image (highlighted in red) almost at the same axial location as the

flame anchoring point on the right. The flame can therefore be entrained toward the

nozzle by the local negative axial velocity.

It is noted that centroids 1 and 2 exhibit a very similar flame front but have a

very different velocity field. Centroid 1 does not play a direct role in the attachment

mechanism while centroid 2 is key for the inception of the attachment. The velocity

field is therefore not only at the root of the flame detachment, but also plays a

key role in flame attachment. In the case that centroid 2 evolves into centroid 9,

development of a recirculation zone very near the nozzle exit is seen. In fact, higher

122

Figure 3.14: Probability paths for the cluster transitions in the flame detachment
process. Arrows indicate the paths and are color-coded with the same colorbar as
the transition matrix; darker colors are smaller probabilities, and brighter colors are
higher probabilities.

probability cases in which a flame enters the transition state (e.g. centroids 4 to 10,

5 to 11) all depict the presence of a lower recirculation zone near the nozzle. The

most probable path for transition-to-attached is the progression from centroid 8 to

centroid 13. Centroid 8 is the most symmetric centroid of all the transition clusters

in terms of both the velocity and OH concentration. This appears to help the flame

stabilize into the ”V-shape” profile characteristic of the attached configuration.

3.4.6 Prediction of Flame Transition

Along with providing information about the transition mechanism, the transi-

tion matrix can also be used as a forecasting tool. The quantification of model

predictability (or predictive strength) is found in the prediction horizon time, τh,

defined in Sec. 3.4.3. It is the time after which the transition matrix converges to

the ergodic probability distribution e. This convergence is not a sudden process,

123

Figure 3.15: Probability paths for the cluster transitions in the flame attachment
process. Arrows indicate the paths and are color-coded with the same colorbar as
the transition matrix; darker colors are smaller probabilities, and brighter colors are
higher probabilities.

since the transition matrix continuously diffuses towards its stationary state as it is

raised to successively higher powers. Therefore, any input probability distribution

will eventually converge to e given a large enough number of time-steps.

Similar to Sec. 3.4.5, it is necessary to choose a value for parameter K, the number

of clusters. Here, K is chosen to optimize forecasting or predictive purposes. With

different constraints than in Sec. 3.4.5, it will be seen that the optimal number of

cluster will also be different. It should be noted that in this section, the primary

focus is to compare the predictive power of different types of data, where the data

types in this case are OH-PLIF, PIV-x, y, and z. This means that unlike in Sec. 3.4.5,

which utilized a single model composed of a combined dataset to assess the physical

mechanisms of the transition, different models will be created for each type of data

to compare horizon times, uncertainty and predictive capability.

This section is organized in the following manner. First, the process of extracting

124

the horizon time τh from the transition matrix is demonstrated in Sec. 3.4.6.1. Then,

the procedure used to set the optimal number of clusters is described in Sec. 3.4.6.2.

In Sec. 3.4.6.3, horizon times obtained with different datasets are compared. Finally,

in Sec. 3.4.6.4, flame transition forecasts are compared across models constructed

with different data-types (PIV measurements and OH-PLIF).

3.4.6.1 Determination of Prediction Horizon Time

The prediction capability of the transition matrix can be quantified by the predic-

tion horizon time τh (see Sec. 3.4.3). There are several methods outlined in Ref. [140]

that can be used to obtain τh for a given transition matrix P (second eigenvalue con-

vergence to zero, probability distribution convergence to ergodic distribution, conver-

gence of finite-time Lyapunov exponent, and Kullback-Leibler entropy convergence);

here, the eigenvalue spectrum of Pn is monitored as n increases. An inherent property

of P is that the largest eigenvalue is unity and is stationary (does not change in time),

meaning that an eigendecomposition of the transition matrix raised to any discrete

positive power always yields a maximum eigenvalue of one. The corresponding eigen-

vector of the unity eigenvalue is the statistically stationary state (the ergodic limit).

As the system evolves in time, the remaining K − 1 eigenvalues gradually converge

zero (this is a property of Markov chains). The second largest eigenvalue λ2 is the

last eigenvalue to reach zero. Its value is tracked as the transition matrix is raised to

higher and higher powers. Figure 3.16 shows a typical evolution of the second-largest

eigenvalue with respect to time. In practice, the prediction horizon time is defined as

the time at which dλ2/dt < ε. Here, ε = 1e−5.

3.4.6.2 Number of Clusters

Similar to what was done for the analysis of the transition mechanism in Sec. 3.4.5,

the cluster number must be carefully chosen. In this section, the purpose of CROM

125

Figure 3.16: Example of second-largest eigenvalue convergence for some P . The
horizon time, τh, is the time at which the slope of λ2 falls below some threshold ε.

is different than in Sec. 3.4.5, and as such the optimal number of clusters/centroids

K is determined differently. Here, the goal is to optimize the prediction horizon time

τh while decreasing the statistical uncertainty of the transition matrix entries. The

measure of this statistical uncertainty is explained below.

Consider the square transition matrix P , where each entry of the matrix is Pi,j

and i, j = 1, ..., K. One can then associate a relative error to each element Pi,j as

δPi,j =

√
1− Pi,j
NPi,j

, (7)

where N is the total number of snapshots in the dataset. The measure chosen for the

uncertainty quantity is the Frobenius norm of the relative uncertainty matrix,

||δP|| =

√√√√ 1

N

K∑
i=1

K∑
j=1

1− Pi,j
Pi,j

. (8)

In the rest of the section, the transition matrices and the clusters are constructed

with data in the range [0s, 1s] of the available measurement. This training set covers

4 of the 8 flame transitions available in the data. The last two transitions (range [1s,

1.5s]) are kept to test the model performances (testing set). Transition matrices are

constructed for different number of clusters in order to find the optimal K sought

126

Uncertainty vs K Horizon Time vs K

K K
Figure 3.17: Out-of-plane velocity field transition matrix uncertainties (left) and
horizon times (right) versus K. Maximum and minimum bounds are indicated by
shaded boundaries derived from individual K-means++ runs, red lines indicate mean.

here.

Figure 3.17 displays the uncertainty measure and normalized prediction horizon

time as a function of cluster number, K, for the PIV-z (out-of-plane velocity) dataset.

Prediction horizon time τh was normalized with the combustor flow-through time

τf = 14.6 ms. Because the K-means++ algorithm is stochastic (see Sec. 3.4.3), 20

realizations were run to ensure that the conclusions are meaningful. The enclosed

shaded regions in Fig. 3.17 represent maximum and minimum boundaries obtained

from individual runs of the clustering algorithm, and the red line indicates the average

of all runs.

The uncertainty metric growth rate in Fig. 3.17 decreases dramatically after an

initial increase until K = 6. The error metric appears to be increasing, albeit slowly,

beyond a small relative maximum at K = 10 after the sharp increase at lower cluster

numbers. A similar sharp increase trend is seen in the normalized prediction horizon

plot, where the mean stabilizes after K = 10 ∼ 11. The results of both the prediction

horizon and the matrix uncertainty suggest that the optimal cluster number for the

PIV-z dataset could be K = 11.

127

Table 3.1: Optimal K values with corresponding uncertainties and horizon times as
extracted from Fig.3.18.

3.4.6.3 Horizon Time Comparisons

The process of choosing an optimal cluster number based on horizon time and

transition matrix uncertainty was conducted for the other data-types in the same

manner as shown for the PIV-z dataset in Sec. 3.4.6.2. In the end of the process,

different optimal cluster numbers K are found for different data types. The results

are summarized in Table 3.1. Similar model validation test trends as shown for PIV-z

in the Appendix were observed for models derived from all data-types.

Figure 3.18 shows a more detailed comparisons of normalized horizon times and

uncertainty measures for the four different datasets (OH-PLIF, PIV-x, y, and z direc-

tions) as a function of cluster number – this is the same plot as presented in Fig. 3.17,

but with overlays for all data types for clearer trend visualization. The curves shown

are average quantities of 20 runs for each data type with minimum and maximum

bounds for each curve displayed in the same corresponding color.

The plot shows that the out-of-plane component of velocity (PIV-z) provides the

highest horizon time for nearly all cluster numbers. In contrast, the OH-PLIF dataset

interestingly gives the lowest horizon time for most of the tested cluster numbers. This

is counter-intuitive since the OH concentration is a marker of the flame position and

can be expected to be a good descriptor of the lift-off or attached states. This finding

can be interpreted by considering the cause and effect of flame transition. The OH

signal could be an effect of the flame transitioning to a new state, while the out-of-

plane velocity field could be a cause. As a results, the PIV-z data contains more

detail about the future state of the combustor. This agrees with prior analyses in

128

Uncertainty vs K Horizon Time vs K

K K
Figure 3.18: Comparisons of transition matrix uncertainty (left) and horizon times
(right) for the four tested data types. The curves are averaged quantities from 20
independent K-means++ runs on the dataset. Maximum and minimum bounds are
indicated by shaded boundaries.

that the PIV-z data was actually found to be at the root of flame transitions [9, 10].

The flame lift-off, for example, is aided by high-strain rates in the inner recirculation

zone, which causes flame extinction and formation of a PVC. Since a signature of the

PVC can be found in the out-of-plane velocity component (PIV-z), it is unsurprising

that the predictive power of this field is high compared to other measurements.

3.4.6.4 Forward State Predictions

In practice, a tool to forecast transitions between different macroscopic states is

invaluable to anticipate and control flame instabilities. As discussed in Sec. 3.4.3,

CROM can be used to predict the future probability distribution of the combus-

tor state in terms of the clusters. Using the cluster labeling method described in

Sec. 3.4.4, the predictions can be formulated in terms of the macroscopic flame states.

Starting from a state where the flame is in either the detached or attached state, the

goal is to understand if the model can accurately predict the probability of exiting

the initial state, or transitioning. In other words, the objective is to determine how

accurately the model can predict a flame detachment (flame exiting the attached

state) as well as a flame attachment (flame exiting the detached state). The data was

129

partitioned in training and testing sets in the same way as indicated in Sec. 3.4.6.2.

The state prediction process is conducted as follows:

1. Pick one cluster labeled as attached (resp. detached). Start with a δ−distribution

P0 in this particular cluster. P0 is a vector equal to 0 everywhere and 1 for the

index of the cluster picked. This situation would correspond to observing the

flame as being in a state that corresponds to the cluster picked.

2. Determine all snapshots associated with the chosen attached (resp. detached)

centroid in (a) in the cluster time series for the testing dataset.

3. Advance P0 to Pτp using the transition matrix (Eq. 5), where τp is the time in

the future at which predictions are sought.

4. Use the experimental snapshots at time τp relative to the original snapshots

determined in (b) to determine an experimentally obtained Pτp,exp from the

testing dataset.

The computed (from model, Pτp,exp) and experimental (from data, Pτp) probabili-

ties are then compared to determine the accuracy of the ROM. This is schematically

shown in Fig. 3.19.

Forecasts are compared for out-of-plane velocity field (PIV-z) and OH-PLIF mea-

surements for conciseness. The number of cluster used for each data-type is indicated

in Table 3.1. Two prediction scenarios were tested for each data-type: 1) the snapshot

initially resides in the attached state (100% chance of a snapshot in attached cluster),

and 2) the snapshot initially resides in the detached state (100% chance of a snapshot

in detached cluster). For each scenario, three prediction times were assigned to illus-

trate model performance at various time scales: τp = τf = 14.6 ms (one flow-through

time), τp = 0.1τf = 1.46 ms (short-time prediction), and τp = 7.0τf = 10.22 ms (long-

time prediction, i.e. beyond the prediction horizons for both PIV-z and OH-PLIF).

130

Figure 3.19: Schematic juxtaposing the procedure for finding Pτp,exp (directly from
data) and the procedure for for finding Pτp (from CROM).

The initial cluster distributions P0 were propagated through the transition matrix for

these specified τp values, and the resulting final distribution was then compared with

that of the testing dataset.

Because different models are generated when using PIV-z and PLIF data (different

cluster numbers, different clusters, different transition matrix), the comparison of

performance between datasets is non-trivial. Here, the initial cluster for each dataset

is chosen such that 1) the cluster appears to depict a similar flow state, and 2)

the final probability distributions Pτp,exp are similar for both model outputs. This

ensures that both clusters are representative of a similar combustor state. Therefore,

the test compares the ability of both datasets to predict transitions that are as close

as possible. This criterion becomes more apparent in the results below. This method

was used with different pairs of clusters showing similar results. Here it is shown for

one of these pairs.

Detachment prediction results for τp = τf are shown in Fig. 3.20. Note that final

probabilities are in terms of two categories: 1) ”attached” and 2) ”not-attached”.

The category ”attached” is essentially a persistence probability for remaining in the

attached state after time τp. The category ”not-attached” includes probability of

131

Figure 3.20: Forecast results for τp = τf for out-of-plane velocity (left) and OH-PLIF
(right) data, with the initial condition in the attached state (flame detachment, or
liftoff). Probability values indicated in bars, and relative precent error e with respect
to data-derived quantities is also shown. Y-axis is future probability at τp. Results
shown for τp/τf = 1.

entering both transitioning and detached clusters from the attached state. As the

quantity of interest in this case is the probability of exiting the attached state, or

transitioning out of the attached state, only these two categories are considered.

In Fig. 3.20, plots on the left reflect PIV-z results, and tables on the right reflect

OH-PLIF results. The results show predicted probabilities (red) and observed proba-

bilities (green) for both data types. Note that, as alluded to above, the data-derived

probabilities (green bars) across PIV-z and PLIF models are nearly equal. Rela-

tive percent errors e between model and data-derived quantities are shown above the

corresponding bars. Note that the PLIF model severely overshoots the probability

of a snapshot leaving the attached state when compared to PIV-z (relative error of

129.47% versus 11.07%). It is clear that in forecasting flame detachment, PIV-z pre-

dictions are much more representative of the testing data than PLIF counterparts.

This is in line with previously observed experimental results showing OH-PLIF as a

lagging indicator of PVC-induced strain rate, a direct catalyst for flame lift-off [10].

When predicting flame attachment for τp = τf in Fig. 3.20, errors associated with

the OH-PLIF models are again expectedly higher. Note that the data-derived proba-

132

bilities also match to a reasonable degree across the different models. An interesting

feature to note is the increased accuracy of models across the board for prediction

of flame attachment (Fig. 3.21) versus flame detachment (Fig. 3.20): both PIV-z

and PLIF model relative errors observe notable drops in relative error. Nevertheless,

results show that in both detachment and attachment predictions, PIV-z produces

more accurate forecasts when compared to the PLIF model.

Prediction results for τp = 0.1τf and τp = 7.0τf are shown in Figs. 3.22 and 3.23,

respectively. In each of these figures, the flame detachment predictions (similar to

Fig. 3.20) are shown in the upper row and attachment (similar to Fig. 3.21) in the

lower row. As in the τp = τf predictions, the short-time predictions in Fig. 3.22

show a similar trend of higher PIV-z model performance in the detachment process.

Because the forecasting time is smaller by a factor of 10, this effect is not seen to

the same level as in Fig. 3.14. Despite the slightly lower level of performance here

for OH-PLIF, there is high accuracy in both models in short-time predictions – they

both forecast the expected state persistence with minimal relative errors. In fact, the

predictions in Fig. 3.22 for PIV-z in the attachment process gives zero relative error.

Note that probabilities for the ”not-attached” and ”not-detached” labels are low in

Fig. 3.22 because the prediction time is extremely small.

The long-time predictions in Fig. 3.23 are provided to showcase CROM-based

forecasting for timescales at or beyond model horizon times. Although trends of sig-

nificantly lower OH-PLIF performance are seen here in the attachment process again,

in the long-time prediction setting, both PIV-z and OH-PLIF model predictions show

similar patterns. For example, they overshoot transition probability in the detach-

ment process and undershoot in the attachment process. The model predictions (red

bars) between PIV-z and PLIF are similar (especially in the detachment process) be-

cause the limit of the horizon time for both models has been reached. In other words,

in the long-time limit, the models will always approximate the initial distribution of

133

snapshots based on the training data (see Eq. 6). Additionally, if the initial distri-

bution does not perfectly match the ergodic distribution of the Markov chains, and

if there are differences between the ergodic distributions in the training and testing

data, the discrepancy in the CROM predictions at times at or beyond the prediction

horizon is expected to rise even higher.

For a clear illustration of prediction time effect on model performance, the vari-

ation in relative errors as a function of prediction time for the ”attached” label in

the detachment process is shown for PIV-z and OH-PLIF in Fig. 3.24. The red ver-

tical lines indicate the horizon times for the respective models. As evidenced in the

discussion above, the plot shows large performance advantage in the PIV-z model in

the ranges of τp/τf = 0.1 to about τp/τf = 5.0, after which both errors appear to

converge. Note that this apparent convergence occurs before the PIV-z horizon time

and after the OH-PLIF horizon time. This importantly verifies that the prediction

horizon time can indeed be used as indicator of forecasting strength when considering

prediction times smaller than the horizon times. An important result from Fig. 3.24

is that although one can use horizon time as a metric for forecasting strength, the

horizon time itself is not a prediction time at which one should necessarily expect ac-

curate forecasts. Note that the OH-PLIF curve increases until a peak near its horizon

time, followed by a decrease until the convergence point. In contrast, the PIV-z curve

appears to increase with heavy fluctuations. The intricacies of such behaviors require

further study and are out-of-scope here, though this is an object of future work.

Ultimately, with the test conditions and model inputs used, out-of-plane velocity

can be comfortably classified as the most potent dataset with regards to flame transi-

tion prognostics. This essentially hints that the prediction horizon time τh is a good

indicator to quantify the predictive strength of dataset.

134

Figure 3.21: Forecast results for τp = τf for out-of-plane velocity (left) and OH-PLIF
(right) data, with the initial condition in the detached state (flame attachment).
Probability values indicated in bars, and relative percent error e with respect to
data-derived quantities is also shown. Y-axis is future probability at τp. Results
shown for τp/τf = 1.

Figure 3.22: Short-time forecast results for τp = 0.1τf for out-of-plane velocity (left)
and OH-PLIF (right) data. Upper row is detachment forecast and lower row is at-
tachment. Annotations made in same manner as Figs. 3.22 and 3.23.

135

Figure 3.23: Long-time forecast results for τp = 7.0τf for out-of-plane velocity (left)
and OH-PLIF (right) data. Upper row is detachment forecast and lower row is at-
tachment. Annotations made in same manner as Figs. 3.22 and 3.23.

Figure 3.24: Relative error, e, as a function of normalized prediction time for the
”attached” label in the detachment process. Vertical red lines indicate horizon times.

136

3.4.7 Summary and Conclusions

A cluster-based ROM was employed to analyze experimental data of flame tran-

sitions in a swirling combustor, and to create a model to anticipate such transitions.

As an analysis tool, the method allows for the classification of data into modes that

are statistically representative of the flow field and extraction of the most probable

path between these modes during flame transitions. An appealing property of this

process is that it can be done in an unsupervised manner, making the analysis as

objective as possible. However, in order to use CROM, the number of modes must be

set directly by the user. Two different approaches to set this number were presented

in this work.

For the swirl combustor analyzed here, the flame detachment and attachment

process were both analyzed by means of the transition matrix and modes outputted

by CROM. It was shown how the modes could be associated to a macroscopic flame

states (attached, detached, transition) and thereby derive a physical interpretation

from the CROM output. It was found that the flame detachment process stems from

an asymmetry in the flow field and for the flame. This suggests that an asymmetric

process causes the flame detachment. This finding is in line with prior experimental

analysis which identified PVC as the cause of flame detachment. The flame attach-

ment appears to be triggered by a recirculation zone located at the same axial location

as the flame, far from the nozzle. This recirculation seems to drive the flame down

next to the nozzle. This analysis illustrates the potential of data-driven methods to

analyze complex flows in a systematic way while highlighting key processes.

For forecasting purposes, the prediction horizon time of the transition matrix can

be computed to help quantify the predictive power of a particular dataset. The pre-

dictive capabilities of the OH concentration and the three velocity components were

compared. It was shown that z-component of velocity (swirling velocity) holds the

largest prediction power while the OH signal leads to the shortest prediction window.

137

This is consistent with the experimental observation that the cause of the flame tran-

sitions lies in the velocity field while the flame simply responds to strain rates. The

present methodology allows to confirm that the swirling velocity is a better causal

indicator than the OH signal. Using the cluster labeling method, the forecasting can

be formulated in terms of the macroscopic flame state rather than individual modes.

The PIV-z based model significantly increased prediction accuracy while the PLIF-

based model misrepresents probability considerably. The prediction horizon time is

therefore a good indicator for the predictive power of a dataset. Interestingly, both

PIV-z and PLIF data accurately captured the probability of attachment process. This

suggests that a different physical process involving OH concentration might govern

the flame attachment.

This study introduces many pathways for future work. The horizon time analysis,

as it was extended to analyze forecasting strength of specific data types, can also

be used to search for an optimal sensor that would hold the best predictive power.

Furthermore, the forecasting tool is an important step towards constructing actuation

or other control strategies in combustors. In particular, this model can used to

determine acceptable probability thresholds for initiating actuation procedure, and

also to understand what part of the flow to inhibit in the actuation process. While

the CROM application here shows considerable promise, there is a need to fully

understand how the clustering techniques can be “goal-oriented” in order to optimize

the prediction for certain purposes only. The type of data is best suited for CROM

forecasts was found by comparing OH-PLIF and PIV, but a similar study can also be

conducted by comparing different spatial locations, proceeding with an analysis of the

effect of prediction horizon time on model accuracy. These topics will be considered

in future work.

138

3.5 Time-Axis Clustering for Modeling Turbulent Reacting

Flows

3.5.1 Background

In this section, K-means clustering is used to demonstrate a new data-based re-

duction and decomposition technique called time-axis clustering, which is inspired

by the idea of time series classification. Though the concept of time series classi-

fication has been around for many decades [178], its relation to feature extraction

and ROM development in the context of traditional decomposition methods in fluid

dynamics has not been explored. The application of time-axis clustering throughout

this work is geared primarily towards the above mentioned second pathway. How-

ever, it provides a unique route towards interpretable ROM development that can

facilitate connection with the first pathway. The connection between these pathways

are important to recognize, as their combination illuminates the ability of ML-based

techniques to construct data-derived reduced order models (ROMs) that are both a)

highly accurate in a predictive sense and b) interpretable.

The idea of constructing data-derived reduced order models for both prediction

and system interpretation has been explored extensively in the past via modal de-

composition methods based on decoupling the spatial and temporal components of

the evolving flowfield (see Sec. 2.5.1 and Ref. [330]). The spatial component, or the

mode, exists in the same phase space as the input data and can therefore be visualized

directly. In many applications, the mode is a frozen spatial structure (i.e. it is not

time-evolving), which allows for the recovery of a corresponding temporal coefficient

that provides a coupling to the dynamics observed in the data3. As described in

Sec. 2.5.1, in the context of modal decomposition methods with fixed spatial modes,

3It is important to reiterate that modal decompositions do not necessarily have to take the form
of fixed-in-time spatial modes with temporal coefficients encoding time variation – however, the
general goal of all modal decomposition methods is to provide a mechanism for order reduction for
physical analysis and/or simulation acceleration.

139

the set of scalar temporal coefficients encode the relevance or importance of the cor-

responding modes at a particular time instant. Then, with a limited number of such

modes and their temporal coefficients, a spatial analysis on the modes combined with

a temporal analysis on the joint evolution of the coefficients can be performed to

make physical conclusions about the flow process contained within the scope of the

data. The hope is for these physical conclusions to drive the development of more

accurate and economical ROMs.

Though this fundamental notion of space-time decoupling is generally the same

across many modal decomposition approaches, the manner in which this splitting is

achieved can lead to vastly different data-based interpretations. A powerful yet simply

implemented modal decomposition tool mentioned and applied throughout this disser-

tation is proper orthogonal decomposition (POD), a covariance-based method which

produces the modes as orthonormal basis vectors from the data [29, 128, 185, 315].

The full set of resultant basis vectors, called the POD modes, are then truncated

to construct a reduced description of the underlying system dynamics by means of

preserving some arbitrary amount of the variance of the original dataset used to con-

struct the basis. Most usefully, the basis vectors can themselves be analyzed to reveal

certain qualitative aspects of the flowfield, as they represent directions in which a

specific amount of flow “energy” (in the form of explained variance) is captured. As

described in Sec. 2.5.2, this technique has been studied widely and applied successfully

in many different fronts. Another decomposition approach that has gained consid-

erable attention is dynamic mode decomposition (DMD) [162, 300, 339], the details

of which are found in Sec. 2.5.3. In its most basic form, DMD approximates the dy-

namics contained in the input dataset by a single linear operator which is considered

as an approximation to the Koopman transfer operator and can be obtained using a

least-squares regression technique from the original time-ordered dataset. Assuming

the linear operator sufficiently characterizes the dynamical complexity contained in

140

the data, its spectral decomposition can be used to assess the underlying dynamical

properties. The resulting DMD modes, which are the complex eigenvectors of linear

operator, are not orthogonal, but are instead characterized by specific frequencies

similar to a traditional temporal discrete Fourier transform. In other words, DMD

removes the orthgonality in the global spatial modes by instead attributing single,

unique frequencies to the corresponding temporal coefficients. As with POD, DMD

has been effectively utilized in the fluid dynamics community due to its utility in

capturing scale-separated spatiotemporal coherence [205, 301].

Despite the clear and historically demonstrated utility of the above described

(and other similar) decomposition techniques, they also bring forward key issues that

should be illuminated. One issue lies in the interpretability of the modes. In POD, for

example, the high-energy modes are clearly interpretable, but the low-energy modes

often contain extremely complex spatial structures that cannot be easily analyzed.

This is especially problematic in cases where physical processes contained in the data

are driven by small-scale interactions (i.e. in the case of extreme-events and ergodic

intermittency) [119, 276]. A similar problem arises in DMD, where the modes are not

easily interpreted for datasets that exhibit high levels of chaoticity and intermittency,

since they cannot be characterized well by discrete spectra [205, 267]. Further, the

ranking of DMD modes is a non-trivial task – oftentimes, a-priori knowledge of the

underlying physical processes (in the form of characteristic frequencies) is required

to isolate the DMD modes of interest, which on can argue is against the spirit of

data-based feature extraction [19].

In light of these issues, a different take on the data-driven analysis and decompo-

sition of complex datasets based on K-means clustering was presented in Sec. 3.4 via

cluster-based reduced order modeling (CROM [140]). In CROM, K-means is applied

over a set of high-dimensional snapshots, leading to the unique ability to extract in-

termittent and extreme events contained the data as individual clusters [18, 19, 140].

141

More specifically, in this type of clustering (referred to in this section as space-axis

clustering), the high-dimensional trajectory contained in the dataset is discretized

(or coarse-grained) through the K-means algorithm into a set of representative sym-

bols, where each symbol represents a particular flow pattern or coherent shape (i.e.

a mode). The evolution of the system is then represented by a string of such symbols

in time, which encode the residence time of the trajectory in the different K-means

clusters. This casting of the complex dynamics into a symbolic setting has led to

the creation of data-driven symbolic dynamics based predictive ROMs [18, 47, 140].

Similar ideas based on symbolic dynamics (not reliant on the K-means technique)

are widespread in the study of dynamical systems, and have been recently utilized to

discover quasiperiodic regions in turbulence [42, 69, 284].

In this section, the aforementioned time-axis clustering method is presented and

demonstrated, which extends the previously used space-axis (i.e. CROM) method

used in Sec. 3.4. This is motivated by shifting the interpretation of the input dataset.

More specifically, instead of interpreting the input dataset as a high dimensional

multivariate time series (as is the standard fashion), it is instead interpreted as a

large number of 1-dimensional time-evolutions, each given by the individual degrees-

of-freedom that compose the set of snapshots. It will be shown that the modal

decomposition produced by the K-means output when representing the data in this

way (which can be releated to methods based on time-series classification) results

in spatial modes that display discrete delineations of dynamically similar regions

in physical space. As such, a unique and highly interpretable avenue for modal

decomposition and data reduction is recovered.

Dataset: Before proceeding, it is emphasized that the time-axis clustering tech-

nique is applied to the same experimental dataset sourced from a premixed swirl-

stabilized combustor used in Sec. 3.4, which exhibits highly complex turbulent com-

bustion phenomena. A description of the experimental configuration is provided in

142

Sec. 3.4.2 and will not be repeated in this section. From the full set of 15000 available

snapshots of simultaneously measured OH fields and velocity fields, a 1000-snapshot

subset of the detached flame dynamics of only the OH field is used below to demon-

strate the time-axis clustering technique.

The sections proceed as follows. In Sec. 3.5.2, differences between the space-axis

and time-axis clustering methods are provided in the form of a general methodology.

The time-axis decomposition is then produced and analyzed in Sec. 3.5.3, and closing

remarks are provided in Sec. 3.5.5.

3.5.2 Methodology

Before proceeding with the time-axis decomposition output, a generalized method-

ology is provided. In particular, a juxtaposition of the time-axis clustering with the

more commonly used space-axis framework [18, 140] applied in Sec. 3.4 is outlined.

Both rely on the output of a K-means clustering algorithm [323]. The focus here is on

how time-axis clustering (the output of K-means in the time-axis setting) shifts the

interpretation of the representation of data reduction in phase space. An interpre-

tation of the time-axis clustering output from the modal decomposition lens is then

provided.

3.5.2.1 Space-Axis Versus Time-Axis

In usual fashion, the dataset in consideration is cast in the form of a matrix

denoted Φ ∈ RD×N . Each point (or snapshot) ϕj ∈ RD is a column of Φ (for ex-

ample, in Sec. 3.4, D is the number of grid points in a 2-dimensional flowfield), and

j = 1, . . . , N , where N is the number of time steps (length of the time series of each

degree of freedom defined by the time step ∆t between each snapshot). It is standard

to interpret the dataset Φ as the set of the N instantaneous D-dimensional snap-

shots ϕj, i.e. to consider Φ as a set of instantaneous high-dimensional flowfields that

143

represent a D-dimensional time-series. Alternatively, the dataset can be interpreted

as a series of D 1-dimensional coupled time-series. From this perspective, a single

scalar time-series, which is a row of Φ, is denoted wi ∈ RN where i = 1, . . . , D. Each

scalar entry of wi provides the time-evolution of the i-th grid point. We will refer

to the representation of Φ by the N snapshots ϕj as the space-axis description, and

the representation of Φ by the D one-dimensional time series wi as the time-axis

description.

In a general sense, the clustering goal is to find a set of K different groups,

called clusters, that organize the data in such a way as to capture low within-cluster

variation and high between-cluster variation. Here, the organization of the data into

these K groups is done in a hard-assignment manner, which is one of the motivators

for the usage of K-means. Hard-assignment means that from the K recovered groups,

each data point can only be assigned to one of K groups and no other. This hard-

assignment (or hard-clustering) of the data results in useful symbolic, orthogonal

representations beneficial to dynamical analysis of the clustering output, and will be

utilized below.

The interpretation of the data-matrix Φ directly affects how the these K groups,

or clusters, are represented. For example, in the space-axis setting, the dataset is

represented as a series of N instantaneous flowfields ϕj ∈ RD. As such, the clusters

partition the N instantaneous snapshots into K clusters. In contrast, in the time-axis

setting, the dataset is represented as a series of D one-dimensional time evolutions

wi ∈ RN . Then, the resulting K clusters instead bin the D degrees-of-freedom and

not the N snapshots. A single member of one of K clusters in the time-axis setting

is the entire time-evolution of one of D grid points. As such, the time-axis clustering

can be thought of as a type of time-series classification of the grid points.

Depending on whether the time- or space-axis representation of ϕ is considered,

to produce the K clusters, the K-means algorithm discretizes either the RN or RD

144

phase space respectively in a coarse-graining procedure. As described in Sec. 3.2, the

resulting clusters are guaranteed to be non-overlapping subspaces of the respective

phase space (a member of one cluster is unique to that cluster), and are organized

in the set K = {K1,K2, ...,KK}, where each element of K is a single cluster. Note

that the set K is fundamentally different depending on which representation (space-

or time-axis) is considered. In particular, the space-filling quality in RD (space-

axis) or RN (time-axis) effectively translates to the following: a) in the space-axis

interpretation of Φ, any conceivable flowfield defined in RP can be assigned to one of

K clusters, and b) in the time-axis interpretation, any conceivable univariate time-

series consisting of N time-steps defined in RN can be assigned to one of K clusters.

The assignment process itself is explained further below.

More generally, if the value S is equal to either D (space-axis) or N (time-axis),

the set K must observe the following: 1) each Ki ⊆ RS, 2) the Ki are strictly non-

intersecting in the S-dimensional phase space, 3) the union of all elements in K exactly

reconstructs RS, and 4) the cardinality of K, which is the number of clusters K, must

strictly lie between 1 and S.

Through the variance-minimization procedure outlined in Alg. 1, the K-means

algorithm outputs the non-intersecting Kj clusters based on the placement and con-

vergence of the centroids denoted by the set C = {c1, c2, . . . , cK}, where ci ∈ RS

(S = P in space-axis case and S = N in time-axis). Recall that centroids are com-

puted as regional averages of the data in the corresponding clusters. For example, in

the time-axis case (S = N),

cj =

∑D
i=1 1Kj

(wi)wi∑D
i=1 1Kj

(wi)
. (3.10)

145

Here, 1Kj
is the indicator function for each cluster Kj, where

1Kj
(wi) =

1, if wi ∈ Kj

0, otherwise.

(3.11)

Note that the above definition of the centroid is equivalent to that provided in Eq. 3.3

– the version above based on the indicator is used here for notational convenience.

For classification purposes, the time-series wi is said to reside in cluster Kj if the

snapshot is closest to centroid cj in the N -dimensional Euclidean sense. In other

words, if 1Kj
(wi) = 1, then the i-th member is said to be represented by the j-th

centroid. The above equations are analogous for the S = D space-axis case, where

instead the indicator functions act on the D-dimensional snapshots ϕi.

This implies that depending on the clustering dimension, the centroids cj are either

1) images made of D pixels that represent the associated clusters Kj (space-axis) or 2)

time-evolving quantities that represent the evolution of dynamically similar degrees-

of-freedom (time-axis). Ideally, each centroid should be as close as possible to its

assigned members such that the centroid represents the behavior of the entire cluster

well. Figure 3.25 shows illustrative examples of a single cluster using both space-axis

and time-axis frameworks. The comparison shows that small temporal fluctuations

are damped by the centroid in the time-axis setting in the same way small spatial

fluctuations are damped by the centroid in the space-axis clustering. The level at

which this damping occurs is related directly to the parameter K.

3.5.2.2 Decomposition Perspective

The clustering procedure results in two primary outputs: a set of centroids C and

labels provided by the indicator functions. The labels are the cluster assignments

of either a) the N instantaneous snapshots in the space-axis setting, or b) the time-

146

Figure 3.25: (Left) Representation of a space-axis cluster used in Sec. 3.4. (Right)
Representation of a time-axis cluster using the approach described in Sec. 3.5.2. Clus-
tering outputs generated from planar OH PLIF dataset sourced from model DLR
combustor configuration described in Sec. 3.4.2.

evolution of D grid points in the time-axis setting. The information contained in the

centroids and labels can be organized in a way that allows the clustering output to

be interpreted as a traditional modal decomposition. Casting the clustering in the

decomposition framework provides useful insights, as will be seen below.

As described in Chapter II, Sec. 2.5.1, modal decomposition methods with the

goal of space-time decoupling split the data Φ into 1) a finite set of spatially frozen

modes, and 2) time-evolving scalar weights for each mode called temporal coefficients.

The modes are stationary and exist in RD; they can be interpreted as time-averaged

spatial directions which can be visualized. Formally, for a finite set of modes, the

decomposition approximates the snapshot ϕi as

ϕ̂i =
K∑
k=1

Tk
i rk, (3.12)

where ϕ̂i ≈ ϕi (ϕ̂i recovers the mean flow when K = 1 and the exact field when

K = S). Here, the number of modes K corresponds directly to the number of

clusters. The quantity rk the k-th mode. All K modes can be contained in the

matrix R ∈ RD×K , where rk is the k-th column of R. The quantity Tk
i is a scalar

corresponding to the temporal coefficient of snapshot i for mode k. Similarly, if all

temporal coefficients for all modes are contained in the matrix T ∈ RK×N , then Tk
i

147

indexes the i-th column and k-th row of T. The decomposition provided in Eq. 3.12

is a convenient way to relate the space- and time-axis clustering outputs. First, the

space-axis perspective will be considered followed by the time-axis perspective.

In space-axis clustering used in the CROM approach of Sec. 3.4, the centroids are

conditional averages of the snapshots and are stationary flowfields. Since the centroids

ck are D-dimensional and the clustering occurs over the various ϕi (a D-dimensional

time series), classification using the indicator functions (Eq. 3.11) produce a single

cluster label/assignment for each snapshot. To recover the temporal coefficients, the

cluster assignments can be organized in the columns of the matrix T. The i-th column

in T represents the cluster label for the i-th snapshot through the indicator function:

its j-th element is given by 1Kj
(ϕi), i = 1, . . . , N . If the centroids are organized in the

columns of R (i.e. if rk = ck), then, in the space-axis setting, the temporal coefficients

are the cluster labels for each snapshot and the spatial modes are the centroids. Due

to the nature of the indicator function, the rows of T can be scaled to be orthogonal

in the space-axis decomposition such that

⟨Ti,Tj⟩ = δij, (3.13)

where Ti and Tj represent the i-th and j-th rows of the coefficient matrix T, respec-

tively.

In time-axis clustering, the centroids become conditional averages of a set of grid

point time-series. As such, the centroids themselves are time-evolving quantities, as

shown in Fig. 3.25. The centroids are interpreted as the temporal coefficients: each

row of T can be populated with the K time-axis centroids ck. What remains is the

determination of the time-axis modes. Just as the space-axis temporal coefficients

were obtained through the snapshot labels, the time-axis modes are obtained through

the grid-point labels. In the time-axis decomposition, each D-dimensional column of

148

R contains the k-th time-axis mode. This is obtained through the indicator function

for the time-series of each of the D grid points: for mode k, the p-th element is

obtained as 1Kk
(wp), where p = 1, . . . , D indexes an individual grid point or cell in

the domain. The properties of the indicator functions for each cluster provides (with

scaling assumed) orthogonal modes such that

⟨ri, rj⟩ = δij. (3.14)

It will be shown in Sec. 3.5.3 how this mode orthogonality provided by the time-axis

decomposition is especially beneficial for interpretation and feature extraction.

Since the interpretation of the data matrix is flipped in the space-axis setting, in

space-axis clustering, the coefficients are orthogonal and the modes (which are the

centroids) are not. In time-axis clustering, the reverse is seen: the modes are given by

the cluster labels and are orthogonal, and the temporal coefficients are the centroids,

which are not orthogonal. Note that in Eq. 3.12, it has been assumed that information

has been lost in the decomposition – this is a product of the coarse-graining induced

by the clustering, which assumes K ≪ S. Only in the case of K = S does ϕ̂i = ϕi,

though this renders an effectively redundant clustering output. Further, it has been

assumed that each mode in Eq. 3.12 has been appropriately scaled by the number of

members in the corresponding cluster.

3.5.3 Time-Axis Decomposition

Here, the time-axis decomposition as applied to the OH PLIF detached flame

dataset is investigated. A demonstration is provided with K = 5. Then, the effect of

changing to a higher value is of K = 7 is shown. Note that although these values for

K serve the purpose of demonstrating the technique, details of quantitative methods

related to choosing optimal K values are not discussed here.

149

Figure 3.26: (Top row) Time-axis modes (columns of R) for K = 5 clusters. (Bottom
row) Temporal coefficients (centroids) for each mode, with red line indicating y = 0
mark.

3.5.4 Demonstration of the Method

The time-axis clustering results for a the OH PLIF detached flame are shown in

Fig. 3.26. Shown are the individual modes separately for K = 5. The orthogonality

of the modes is clearly evident since the regions are non-overlapping in the physi-

cal space (this is a product of hard-assignment of pixels, or alternatively, enforcing

non-intersecting clusters in RN). The non-zero values in these modes (white regions)

represent pixels which exhibit similar behavior in the time-span given by the N snap-

shots in the data. The centroids, which are the temporal coefficients contained in T ,

are also shown for each corresponding delineated region in the lower row of Fig. 3.26.

Due to the non-overlapping property of the clusters, all of the modes can be visual-

ized at once, as seen in Fig. 3.27. This creates a segmented flowfield based on the

time-axis clustering of the scalar field in Φ, where the different colors represent the 5

different spatial modes shown in Fig. 3.26.

A number of useful qualities can be extracted from the decomposition. Firstly,

the clustering algorithm appears to separate the non-reacting region (cluster 5) from

the reacting region (other 4 clusters). In other words, the non-zero values for mode

5 correspond to regions in which little-to-no OH signal fluctuation is present. This

is evidenced in the corresponding centroid, which is nearly zero at all times. The

150

time-axis decomposition then uses the remaining 4 clusters to partition the physical

domain corresponding to region in which there is OH signal fluctuation present in the

time-series. It can clearly be seen that, among these 4 modes, the time-axis clustering

results recover large amounts of pair-wise symmetry for this particular dataset. These

pairings are provided in Fig. 3.26. A crucial detail is that the symmetry is captured in

cluster structure, but not in cluster identification. For example, the cluster groupings

on the left side of the domain are similar in structure to those on the right, but

the cluster assignments (labels) for these pixels are different. This is more clearly

visualized in Fig. 3.27.

Furthermore, when examining the modes, many of the spatial structures show

neighborhoods of pixel groupings; in other words, pixels nearby one another tend to

belong to the same time-axis cluster, which points to the fact that dynamical similar-

ity can be captured in discretely defined flow features which may be joint or disjoint

in the physical space. For example, modes 3 and 4 (second pair of symmetric clusters

in Fig. 3.26) are unique from the rest because they exhibit disjoint flow features. In

particular, they identify a relation between the flame anchoring point just above the

burner exit and the OH signal located in the top of the domain on the opposing side,

where rapid turbulent fluctuations dominate. The decomposition therefore extracts

much of the relevant flame-turbulence interaction generated by the swirl-stabilized

flame dynamics (from the perspective of OH) in this single mode pair; the orthogo-

nality of the modes allow for these interactions to be clearly visualized through the

pixel groupings. The other mode pair (modes 1 and 2) show the characteristic sym-

metric trends, but is localized to the middle y-axis region of the domain above the

flame anchor, and does not contain disjoint groupings of pixels.

More information can be extracted when pairing the spatial information contained

in the modes to the corresponding time-evolving centroids, which are the temporal

coefficients in the modal decomposition context. Within each mode-pair, the cen-

151

troids are similar: the only major differences are phase shifts. Across the different

mode pairs, centroid behavior is different: for example, cluster 5 displays minimal

centroid fluctuation, indicating that this particular region of the domain can be al-

most perfectly characterized by the mean OH signal, and is therefore not interesting

from a dynamical standpoint. The centroids between cluster pairs 1/2 and 3/4 are

different in that they capture different peak amplitudes at similar frequency. In par-

ticular, modes 1 and 2 reflect higher peak amplitudes when compared to modes 3 and

4, which implies that the first mode pair better localizes the effect of the precessing

vortex core (PVC) structure, and the second mode pair (3 and 4) reflects localized

regions in which entrainment effects imposed by the PVC dynamics (secondary PVC

effects) are more prominent.

Since the spatial modes are discrete and non-overlapping, they may be interpreted

more easily than, for example, POD modes which are also orthogonal. This is because

a single pixel is attributed to only one trend (given by the corresponding centroid)

and no other. Further, unlike POD which may contain uninterpretable, complex flow

features in the low-energy modes, the time-axis modes capturing low fluctuations

(such as cluster 5) can be easily interpretable. The trade-off is the dependency on

K. Though the above interpretations provided by the time-axis decompositon are

powerful, there is no reason to believe that the choice of K = 5 is the most optimal

from an analysis standpoint. This choice of K was motivated by a user-decision, in

that it was low enough to simplify analysis but high enough to capture physically

relevant regions. One can argue that the above conclusions derived from the K = 5

selection are arbitrary as a result. As such, the effect of changing K must be assessed.

This is shown in the right plot of Fig. 3.27, which shows the segmented flowfield for

K = 7. It can be seen that with an increase in K, the domain classified as the

steady region is for the most part unchanged; instead, the decomposition chooses to

refine the more relevant reacting regions into more clusters while maintaining the

152

Figure 3.27: Examples of segmented flowfields obtained from the time-axis decompo-
sition using K = 5 and K = 7. Note that cluster colors are not consistently defined
across the two images.

symmetric cluster structure. This structural consistency with increasing K (which

was also observed for even higher K values) gives a form of loose validation for the

K = 5 analysis conducted above.

3.5.5 Summary and Conclusions

In this section, the idea of time-axis clustering as a new decomposition method

using the K-means algorithm was outlined and demonstrated at a basic level in the

context of on an experimental swirl-stabilized combustor dataset. Since the spatial

time-axis modes are discrete and non-overlapping, they provide a much more clear

route to interpretation than other decompositions. This is because a single pixel is

attributed to only one trend (given by the corresponding centroid) and no other.

The consideration of the flow features contained in these discrete time-axis modes

(which are the cluster assignments derived from the time-evolving centroids) led to

the recovery of discrete, localized identification of dynamically inactive and active

regions in space. Further, the ability to isolate a single dynamical pattern (the time-

axis centroid) to the time evolution of one pixel via the time-axis modes provides a

clear visualization of dominant spatial lengthscales and correlation as a function of

the unique dynamical patterns represented by the corresponding centroids.

From the demonstrations shown in the results above, the time-axis clustering

153

framework provides a promising avenue for a different type of decomposition that

emphasizes the spatial localization of dynamically similar degrees-of-freedom. As

such, the finer and more subtle implications of the time-axis decomposition framework

from both the reduced order modeling perspective andK-selection are currently being

pursued, and will be explored in future work. It is noted that the idea of producing

segmented fields amenable to localized model development is also used in the main

contribution of this dissertation by means of feature space clustering (running K-

means in the space of mass fractions, for example) – this is covered in detail in

Chapters IV and V.

3.6 Conclusion

The main goal of this chapter was to introduce some fundamental concepts of

K-means clustering. In summary, in Sec. 3.2, the underlying objective function (the

WCSS) was described and an iterative algorithm by which the objective function can

be minimized (Alg. 1) was presented. Additional properties and nuances related to

the K-means clustering output, which is a set of centroids that serve as generators

for an underlying Voronoi tessellation, were then outlined in Sec. 3.3 – included

for illustrative reasons were comparisons with spectral clustering and POD. Overall,

emphasis was placed on interpretation of the K-means clusters from the fluid dynamics

and modeling perspective.

Given the background of the standard K-means approach presented in Sec. 3.2 and

3.3, the remainder of the chapter was dedicated to applications of the K-means al-

gorithm for analysis, modal decomposition, and reduced-order modeling of turbulent

combustion phenomena. In Sec. 3.4, using K-means clustering on a dataset consisting

of time-resolved planar simultaneous experimental measurements of OH and velocity

fields, a cluster-based ROM was employed to analyze experimental data of flame tran-

sitions in a swirling combustor, and to create a model to anticipate such transitions.

154

As an analysis tool, the intepretability garnered by the K-means centroids allowed

for (a) the classification of data into clusters representing attached, detached, and

transition regions of phase space that are statistically representative of the flow field

data, and (b) extraction of the most probable path between these clusters during the

flame transition phenomena. In Sec. 3.5, the idea of time-axis clustering as a new

modal decomposition method derived from a different extension of the K-means al-

gorithm was outlined and demonstrated at a basic level using the same experimental

dataset. In particular, the time-axis approach showed how a re-interpretation of the

input data matrix allows K-means to produce spatial modes that are discrete and

non-overlapping, providing a potentially clearer route for physical interpretation and

decoupling of complex reacting flow processes than other decomposition approaches.

Note that the applications presented in Sec. 3.4 and 3.5 were included in this

chapter to provide the reader some additional physical context regarding the robust-

ness and versatility of the K-means algorithm in modeling turbulent reacting flow. As

such, these sections are precursors to the classification-based regression approach dis-

cussed next in Chapters IV and V, which constitutes the main research contribution

of this dissertation (see Sec. 2.6).

155

CHAPTER IV

Data-driven Classification and Modeling of

Combustion Regimes in Detonation Waves

4.1 Introduction

In turbulence-driven combustion processes, computational modeling of complex

chemical reactions pose a perpetual challenge [276]. This challenge, as discussed

in Chapter I in the discussion surrounding Fig. 1.7, is primarily due to the com-

putational burden associated with solving highly nonlinear stiff equations for the

advancement of chemical state, which becomes especially prohibitive in combustion

environments that require detailed chemical mechanisms to properly describe the ef-

fect of turbulence-chemistry interactions at small length and time scales. Thus, in a

general sense, the primary goal of source-term modeling is to reduce the cost of these

computations through the construction of physics-inspired reduced representations

using data-driven techniques or other means. This objective has ultimately led to the

development of a wide variety of modeling approaches related to the underlying goal

of computationally-efficient source term estimation [258, 276]. Common chemical ki-

netics modeling pathways to accelerate source term evaluations grounded in physics

include the class of flamelet/progress variable approaches [258], in-situ tabulation

approaches [26, 263], and virtual chemistry approaches [46, 90] – for greater detail,

156

the reader is directed to the physics-based combustion modeling survey provided in

Chapter 2.4.2 and the references therein.

As described in Sec. 2.4.7, the disadvantage in the above physics-based modeling

strategies is lack model extendability – the validity of the model is closely linked to

the selection of canonical systems. In other words, physics-based models by design

are derived from simple canonical configurations, and therefore cannot be extended

reliably to complex, full-geometry simulations that contain a wide variety of flow

turbulent combustion regimes. In light of these shortcomings, an alternate data-based

route for kinetics modeling that must also be mentioned is enabled by artificial neural

networks (ANNs), which was covered in detail in Sec. 2.5.6. ANNs are well-suited

for source term modeling and build upon the above techniques for many reasons: 1)

they utilize nonlinear representations of linear combinations of the thermochemical

state to generate source term predictions, 2) they can be more memory-efficient than

traditional tabulation-based approaches, and 3) they are well-primed for the newer

GPU-accelerated HPC architectures. ANNs have been used both recently and in

previous decades for combustion modeling for these above reasons [60, 145, 306].

While each of the above techniques have been used for different combustion sys-

tems, the focus of this dissertation as described in Chapter I is on emerging hypersonic

propulsion concepts such as RDEs and scramjets. A unique need in the modeling of

such combustors is the high-fidelity simulation of long-time behavior for design pur-

poses – see Fig. 1.4 and the associated discussion. Currently, the computational cost

associated with chemistry limits the total simulation time to tens of milliseconds,

which is not sufficient to ensure that the system has reached a statistically stationary

state [295]. The focus of this chapter is on simulation acceleration for RDEs; more

specifically, the goal is to develop a machine learning-based chemistry representation

that vastly accelerates the integration of chemical source terms to enable long-time

RDE simulations.

157

The primary physical characteristics of RDE device operation as well as non-

idealities are repeated here from Sec. 1.2 for convenience. In a typical RDE as shown in

Fig. 4.1, a detonation wave propagates azimuthally in an annular chamber, processing

a mixture of fuel and air injected axially (or radially, depending on the configuration)

from the bottom of the device. However, the combustion processes within an RDE can

be highly unsteady and chaotic, with both detonative and deflagrative combustion

due to mixture non-uniformity and adverse wave behavior. The detonation process

is highly non-ideal, with a reaction zone significantly broader than the theoretical

expectation, flanked by parasitic deflagration ahead of the wave and slow, delayed

heat release that extends far behind the wave and homogenizes the mixture [53, 272].

Since detonations occur over short length and time scales, the computational grids

used to simulate the geometries need to fully resolve the chemical reactions and flow

gradients. Further, the stability of the detonation wave is highly influenced by the

fuel-air mixing process which is driven by the high-shear generated from the injection

scheme. Hence, capturing the turbulent mixing mechanisms and their interplay within

the unsteady detonation process is crucial, but expensive. From the modeling side,

challenges emerge from the fact that the detonation domain is segmented into distinct

detonation, deflagration, and transitional (or intermediary) regions [273]. Thus, it is

crucial from both perspectives to systematically differentiate between the different

forms of combustion. These combustion regimes vary spatially, resulting in highly

stiff chemistry contained within small portions of the domain that greatly increase the

computational cost of these studies. Therefore, to enable the long-time simulations

of RDEs, associated models should both a) take into account differences between

these complex spatially-varying regimes and b) properly leverage the rich datasets

generated by the well-resolved numerical simulations.

The contribution of this chapter lies in the demonstration of the classification-

based regression strategy for source term estimation described in Sec. 2.6 and Fig. 2.18,

158

Figure 4.1: Full-scale simulation snapshot with the detailed flow features of a typical
RDE combustor [295].

which constitutes a different data-driven combustion modeling approach that ad-

dresses the above mentioned numerical and modeling challenges. The approach con-

sists of two steps. In the first step (classification), a standard K-means clustering

algorithm is used in the thermochemical composition space to extract the varying

regimes of combustion in the detonation wave structure in an unsupervised fashion.

In the second step (regression), the clustering output (which produces a delineated

flowfield) is used to drive the training of several ANNs, each of which produces source

term estimations that are localized to the regimes identified in the first step by de-

sign. More specifically, using datasets generated from direct numerical simulations of

canonical detonating flows relevant to the study of RDE physics, the primary focus

of this work is to show that a) the clustering output recovers physically relevant de-

lineations of combustion regimes in the detonation wave structure in an unsupervised

manner, and b) the source term estimations obtained from ANNs tailored to these

different combustion regimes (i.e. local ANNs) are more accurate than the estima-

tions obtained when not considering the clustering output during ANN training (i.e.

global ANN).

The paper proceeds as follows. In Sec. 4.2, the sample detonation datasets derived

159

from past direct numerical simulations are described, and the reasoning for their

selection is explained. In Sec. 4.3, the clustering results are discussed in terms of

detonation wave structure delineations termed segmented fields. In Sec. 4.4, the

localized training of ANNs derived from the segmenteed fields produced in Sec. 4.3 is

carried out. Both improvements and advantages of the classification-based regression

approach are discussed. Lastly, in Sec. 4.5, concluding remarks and directions for

future work are presented.

4.2 Description of Data

A direct numerical simulation (DNS) approach is used to generate the models for

the detonation wave structure. In this section, the numerical details of the associated

solver are described and the details of the training/testing datasets used for the data-

driven modeling results throughout the paper are presented.

4.2.1 Numerical Solver and Chemical Mechanism

The numerical simulation must capture the small-scale turbulence structures and

the induction region, which is very thin compared to other length scales that dictate

detonation wave behavior. For most chemical compositions and flow conditions, the

detonation wave – a primary shock wave coupled with a reaction zone – is on the

order of a few micrometers in width. The flow gradients must therefore be accurately

resolved to capture the interactions between the fuel-air mixture and the detonation

wave. Furthermore, detailed chemical mechanisms are required to model the species

transient behavior across the wave accurately. To this end, the governing equations

for fluid flow consist of the mass, momentum, and energy conservation equations

augmented by the species conservation equations that incorporate chemical reactions.

The system of equations is closed using the ideal gas equation of state.

The Navier-Stokes equations in compressible form as described in Sec. 2.2 are

160

incorporated in the in-house compressible flow solver UTCOMP, which has been val-

idated for a range of shock-containing flows [87–89]. The detailed chemical kinetics

for hydrogen-oxygen combustion with a nitrogen diluter is derived from the 9-species

19-reaction chemical mechanism of Mueller et al. [212] using CHEMKIN-based sub-

routines [144]. The solver has been validated for hydrogen-air and hydrogen-oxygen

detonation using a series of one-, two-, and three-dimensional canonical cases [273].

A structured grid is utilized with a cell-centered, collocated variable arrangement. A

5th order weighted essentially non-oscillatory (WENO) scheme [139] is used for com-

puting the non-linear convective fluxes and the non-linear scalar terms are calculated

using a quadratic upstream interpolation for convective kinematics (QUICK) scheme

[126]. A 4th order central scheme is used to calculate the diffusive terms and a 4th

order Runge-Kutta scheme is used for temporal discretization. Additional details on

solver parameters used in this work are provided in Ref. [273].

4.2.2 Training and Testing Data

In the investigation of RDE flow physics, the primary flow features stem from the

injector dynamics and the mixture inhomogeneity within the annulus. The fuel-air

mixture is highly stratified due to the turbulent mixing characterized by recirculation

zones and free-shear/jet interactions within the combustor. These interactions can be

simulated through canonical channel flow geometries. The training dataset is derived

from case 1b of the linear injector array simulation of Ref. [273]. The testing dataset

is sourced from a channel detonation simulation with a stratified fuel-air mixture, as

implemented in Ref. [272]. The schematic of the numerical configuration and fuel-air

distribution in the training and testing datasets are given in Fig. 4.2. The two cases

are at similar operating conditions and the same combustion regimes are present,

allowing for a convenient way to assess confidence in the data-driven approach.

The full training dataset is a set of snapshots from a linear injector array, known

161

Figure 4.2: Configurations of the (a) linear injector array with isocontour of H2 =
0.016 and OH = 0.0053 colored by temperature and (b) channel with stratified fuel-
air mixture of integral length scale L11 = 1.854 mm, which serve as the training and
testing datasets, respectively.

as the linearized model detonation engine (LMDE), as depicted in Fig. 4.2a. In

the LMDE configuration, a fully-developed detonation wave processes a partially-

premixed stoichiometric hydrogen-air mixture injected from an array of 15 injectors.

Here, the jet turbulent mixing controls the local gas composition before the detonation

wave processes the mixture. For numerical cost considerations, the operating pressure

was lowered to 0.5 atm with an ambient temperature of 297 K when simulating

the LMDE. Upon running the respective simulations at these prescribed operating

conditions, a set of thirteen consecutive two-dimensional snapshots, separated by

dt = 0.25 µs, was extracted along the depthwise mid-plane of the domain. The

thirteen snapshots capture the detonation wave structure as it passes through the

12th injector.

The full testing dataset is composed of ten snapshots (dt = 0.25 µs) sourced from a

canonical simulation of channel detonation with a quiescent stratified fuel-air mixture.

The range of equivalence ratios is constrained from 0 to 1.3. This is shown in Fig.

4.2b. In a confined channel of dimensions identical to the LMDE, fuel-air stratification

is introduced through a method used for turbulent mixing studies in homogeneous

isotropic turbulence; further details are provided in Ref. [272]. Similar to the training

162

Figure 4.3: The top row shows numerical Schlieren images of the detonation wave
through (a) the linear injector array and (b) a stratified fuel-air mixture in a confined
channel. The bottom row shows a few of the training and testing set snapshots
displaying the time evolution of density (units of kg/m3). For convenience, the first
snapshot in the dataset sequence is denoted as the initial state (t = 0).

163

dataset, the ambient pressure and temperature are 0.5 atm and 297 K. The snapshots

are recorded as the detonation wave reaches near the end of the channel. Though the

testing set data may seem less physically complex, the gas mixture spans a greater

range of thermochemical state space in a more controlled manner in comparison to the

training dataset, allowing for ideal model testing conditions. Further, this testing set

particularly useful as it contains similar detonation-induced combustion regimes as

the LMDE training case. However, the differences in spatial fuel-air distribution and

influence of each regime on wave propagation due to the presence of fuel stratification

make it a good candidate for assessing model extrapolation.

As a visual example, numerical Schlieren images of the depthwise mid-plane of a

single snapshot (one of thirteen) of the training (left) and testing (right) datasets are

shown in Fig. 4.3a. The datasets are cropped to the outlined regions which capture all

of the combustion regimes around a detonation wave: a) an ambient fuel-air mixture,

b) a shock-separated region in the absence of fuel, c) a primary detonation region, and

d) a post-detonation deflagrative combustion region trailing the shock front. After

cropping, each training snapshot is composed of 1011 pixels in the x direction and

363 in the y direction, resulting in 3.7 × 105 grid points per snapshot. Each testing

snapshot consists of 411 pixels in the x direction and 858 pixels in the y direction,

for a total of 3.5× 105 grid points per snapshot.

As a final note, in the regime classification analysis (Sec. 4.3), all 13 of the LMDE

snapshots are used in training and all 10 of the stratified mixture snapshots are used

in testing. To demonstrate the source-term estimation concept in Sec. 4.4, only one of

13 available LMDE snapshots is used in training (i.e. data from one snapshot is used

to train the neural networks), and one of 10 available stratified mixture snapshots in

testing. Additionally, for better assessment of the model dependence on configuration,

the source term estimation ANN models will also be evaluated on an unseen snapshot

from the same LMDE training configuration at a future time.

164

4.3 Regime Classification

The goal in this section is to a) classify grid points within the domain to macro-

scopic regions of interest, and b) assess the physical significance of these classifications.

In particular, the demarcations of regions associated with detonation and deflagration

are desired, as they will guide a localized modeling procedure in Sec. 4.4. Although

there are many potential routes available to the user for successful labeling, the one

used here is the K-means clustering approach described in Chapter III. For algorith-

mic details and information on the formulation of the standard K-means algorithm,

the reader is referred Sec. 3.2. The finer mathematical details of K-means can be

found in Refs. [13, 323].

4.3.1 K-means Clustering Context

Consider a set of grid points Φ = {ϕ1, ϕ2, ..., ϕN} extracted from one or more

numerical or experimental snapshots. For example, in the training dataset described

in Sec. 4.2, there are 13 snapshots each composed of 3.7 × 105 grid points, yielding

a total number of grid points N = (3.7 × 105) × 13. Further, consider another

set F = {F1, F2, ..., FD} of features associated with each grid point in ϕ (i.e. each

grid point is of dimension D). As described in Chapter III, the elements in Φ can

include velocities, temperature, density, mass fractions, progress variable, or any other

quantities of interest. In this work, K-means clustering is performed over the set Φ.

In non-hierarchical hard-clustering algorithms such as K-means, the three facets that

govern the clustering output are 1) how the grid point is represented via F , 2) how

the similarity between two grid points is defined (through a distance function), and

3) the number of clusters, K.

The K-means algorithm (Alg. 1 described in Sec. 3.2) upon convergence produces

a set of centroids C = {c1, c2, . . . , cK} and labels for each grid point in Φ contained

in the assignment matrix L (Eq. 3.4). Recall that these centroids are statistical

165

quantities that are similar to the grid points in that they are also made up of D

features. A subset of grid points in Φ which have similar feature values is represented

by the same centroid. The centroid that represents a grid point is the one that is the

closest to the grid point based the L2-norm in the RD composition space. As such,

the grid point is labeled to cluster k if it is closest to centroid k in the Euclidean

sense. This restricts each grid point in S to be labeled with only one centroid. The

K clusters can then be visualized in physical space through the grid point labels,

as all members in Φ which share the same centroid label occupy the same cluster.

Further, the same set C produced from one dataset can be used to classify any other

dataset so long as each grid point in this new dataset contains the same number of

features D as the original data used to generate the centroids. In the results below,

the clustering generated by the training set (LMDE described in Sec. 4.2) will also

be extended to the testing set (stratified fuel-air mixture) to validate the physical

significance of the clusters.

It should be noted that the selection of features F requires some level of physical

intuition by the user. In this application, the features should properly characterize

differences in regions of differing chemical mechanisms in the detonation and defla-

gration regimes. With this in mind, F should contain at minimum temperature,

pressure, and intermediary species as these are the primary drivers of the combustion

chemistry in the computation of reaction source terms and in the determination of

local flow enthalpies. Thus, F = {ρ, T, P, YH , YO, YH2O, YOH , YHO2 , YH2O2} is selected

as a starting point, producing D = 9. This set should be treated as an upper bound

on the total ”required” number of elements in F – it is not guaranteed that the con-

tribution of each feature to the resulting classifications is equal. As such, to reduce

the level of supervision required in feature selection, a downselection procedure for F

using an importance metric is provided in Sec. 4.3.4.

As described in Chapter III, the selection of the number of clusters, K, is non-

166

trivial and can vary based on the clustering application. Broadly speaking, the num-

ber of clusters should be high enough such that there is sufficient resolution of the

macroscopic regions in the domain and low enough such that there is a sufficient

number of grid points per cluster. Note that although there are two overarching re-

gions of interest in the domain (detonation and deflagration regimes), this does not

necessarily translate to the selection of K = 2. Since the level of chemical complexity

in these regimes is not the same, a higher level of refinement is expected to estab-

lish finer distinctions between detonation and deflagration. Through a user-guided

inspection, it was found that cluster numbers beyond 6 for the dataset used here did

not result in significant differences in the delineation structure. As such, all of the

clustering results below are shown for K = 6. Further detail regarding the subtlety

of K selection is provided in Chapter III, Sec. 3.2. Methods to guide cluster number

selection based on hierarchical cluster refinement strategies are provided in Chapter V

via physics-guided K-means extensions.

4.3.2 Clustering Results

The clustering procedure was carried out on the training set for K = 6. Before

proceeding with the physical interpretation of the clusters themselves, an illustration

of the way in which the resulting delineations can be visualized is shown in Fig. 4.4.

The grid point assignments of one training snapshot for each of the 6 clusters is shown

on the left. Each delineated region represents a single cluster whose grid points are

colored in white. Figure 4.4 shows that 1) some clusters represent more grid points

than others, and 2) the cluster structures preserve a large amount of coherence in

space. These two points will be assessed further below. Additionally, since these grid

point labels are non-overlapping (a grid point is only assigned to one cluster), all of the

cluster labels can be consolidated into a single image called the segmented field, shown

on the right of Fig. 4.4. Such segmented flowfields provide a concise juxtaposition

167

Figure 4.4: (Left) Grid point labels for the 6 clusters for one snapshot, where white
regions correspond to cluster assignment. (Right) Combination of the labels into
segmented field, where different colors indicate clusters.

of the various cluster patterns and will be used to facilitate the discussion of the

clustering output below.

A summary of the labeling results as produced by the clustering is provided in

Fig. 4.5 for both training (left) and testing (sets). In each of the training and testing

sets, three snapshots are used to concisely illustrate the effect of the time-evolution

of the segmented fields. Pressure and temperature fields at the same time instances

are also shown. It should be noted that although only three training snapshots are

shown in Fig. 4.5, all 13 were used to produce the K-means output.

From the training data results in the left of Fig. 4.5, it can be seen that the

selection of K = 6 produces distinct clusters corresponding to the different flow

states within the training data domain. Cluster 1 corresponds to the ambient mixture

region of varying equivalence ratio at 0.5 atm and 297 K. Cluster 5 signifies the shock-

separated region where the lack of fuel causes the detonation wave to transition to

a leading pressure wave followed by a lagging region of high-temperature products.

Furthermore, these regions appear along the entire detonation wavefront, highlighting

the finite distance behind the shock front before the gas mixture begins to react.

Thus, cluster 5 represents a region where the gas has been compressed but is largely

non-reacting. The shock wave acts as a near-sonic throat, where past analysis has

shown that the Mach number is approximately 1.3 [273]. Cluster 6, the smallest of

168

all clusters (in terms of proportion of represented grid points) is classified in regions

around and including the triple points at the detonation wavefront.

The triple points are concentrations of high-pressure and temperature, resulting

in high heat release rates. Along the shock front, sections of the wavefront where

cluster 6 is observed signify strong detonation, where the leading shock wave and the

reaction zone are closely coupled. Here, the profile of the thermodynamic parame-

ters across the wave closely resembles the ideal ZND profile. It is important to note

that cluster 6 exists only in parts of the wavefront. Surrounding cluster 6, regions

identified by cluster 5 signify shocked gas, either with entrained non-reacting gas or

gas undergoing the induction process. Interestingly, the triple points highlighted by

cluster 6 appear in the transition to the shock-separated region, becoming progres-

sively smaller as the pressure concentrations are dissipated within the upper portion

of the frame. Thus, the three-dimensional detonation wave structure varies spatially

along the front, leading to a corrugated temperature and pressure profile. As the

detonation wave moves through the partially-premixed distribution of fuel and air,

triple points propagate along the wave front. As they near regions of non-detonable

mixture, the pressure concentrations diminish, such as near the shock-separated re-

gion and base of the channel. The propagation of these triple points is crucial to

maintaining wave strength and the trailing transverse waves form vortical structures

that support post-detonation homogenization.

Following the detonation mode, combustion transitions to deflagration represented

by clusters 2, 3, and 4. Here, the post-detonation gases burn at high temperatures,

rendering temperature a main driver for the distinction between different combustion

regimes. Due to post-detonation expansion, temperature and pressure decrease. The

separation of the detonation front above the fill height of the injectors, highlighted

by cluster 5, creates a shear layer that bisects the wavefront. Post-detonation gases

travel upwards behind the wavefront and are turned by the shear layer, increasing the

169

mixing of residual gases. It is interesting to note that this results in more complete

combustion of gases. The post-detonation region is identified by cluster 3, where high

temperature deflagration and gas expansion supports detonation wave propagation.

However, regions of slower heat release within clusters 2 and 4 extend farther behind

the wave front. The post-detonation region within the primary fill height of the in-

jected mixture is highlighted by cluster 3, signifying a more ideal detonation process

within this height range. Cluster 2 exists within regions of lower temperature defla-

gration and increased mixing enforced by the shear layer at the fill height. The base of

the channel where regions of air in between the injectors are entrained is highlighted

by cluster 5 (shocked gas) and cluster 4 (weaker, low temperature deflagration). Re-

lating the temperature and pressure contours to the classified regions, deflagration is

captured primarily by clusters 2 and 3 whereas cluster 4 represents the transition to

cluster 5.

The application of the learned classifications to the testing data (right of Fig. 4.5)

essentially shows where the same features/regimes recovered from the training LMDE

dataset (the 6 clusters) are located in the stratified testing case. Interestingly, the

representation of the features along the detonation wavefront are quite similar in

physical significance to that of the training set, which validates the above analysis.

For example, strong detonation where the shock and reaction fronts are closely at-

tached occur only in areas where fuel exists, denoted by cluster 6 along the wave front.

Cluster 5 is entrained within the post-shock region due to regions of non-detonable

gas processed by the wave front that is characterized by high pressures due to shock

compression. In the training dataset, cluster 5 was visible near the fringes of the

detonable mixture. Here, the compressed gas exists throughout the post-detonation

region in regions roughly corresponding to the size of the stratification. Cluster 3

represents high-temperature deflagration and gas expansion in the post-detonation

region, where a slower heat release process consumes the residual reactant mixture.

170

Figure 4.5: Spatial classification of the detonation wave in (left) the training and
(right) testing datasets. Shown is the time progression for each configuration given
by a smaller subset of the available snapshots. The evolution of the segmented field
is compared to the pressure (atm) and temperature (K) distributions. A blow-up
of an intermediate snapshot is provided in each case for clearer visualization of the
segmented field.

The eddy structures stemming from the collision of triple points and transverse waves

ensure that the partially burnt gases are consumed through the deflagration process.

Similar to the training dataset, clusters 2 and 4 exist further from the wave front.

However, as the wave front is largely perpendicular to the propagation direction, the

transition between clusters 2, 3, and 4 is more evident. Cluster 4 exists closer to the

wave front and may be characterized by lower temperature deflagration. The appear-

ance of cluster 2 at distances far from the front signify that this region represents a

more homogeneous mixture where the reacting gas has reached some equilibrium con-

dition. This further qualifies that the regions represented by cluster 2 in the training

dataset may represent a more homogeneous mixture due to the mixing enforced by

the shear interactions at the injector fill height.

171

4.3.3 Analysis of Time Evolution of Segmented Field

The above discussion assigned physical significance to each cluster in the context

of the training data, and then extended the findings into the testing set. To assess

the effect of time progression on the segmented flowfield, Fig. 4.6 shows the time

evolution of the cluster size for both training (solid lines) and testing (dashed lines)

datasets. The cluster size is defined as the proportion of total number of grid points

per snapshot occupied by a particular cluster – as such, for each time instance, the

cluster sizes sum to unity. To see which clusters dominate at a particular time instant,

the absolute cluster sizes are shown in the left plot of Fig. 4.6. To better represent how

cluster sizes evolve, the right plot shows the absolute sizes normalized by the initial

sizes at t = 0. Since the clusters themselves have physical meaning, the evolution of

cluster size is useful metric when combined with the physical space representation in

Fig. 4.5 in that it both 1) provides a coarse-grained picture of the time evolution of

the detonation structure and 2) allows for the comparison of this structure evolution

across different datasets.

From Fig. 4.5, the spatial structure of the delineated clusters is maintained with

time progression, with introduction of clusters 2 and 4 on the left-hand side far

from the wave front as the detonation wave passes to the right. Regions identified by

clusters 2 and 4 are coherent between snapshots as they convect behind the wave front.

However, there is transition between clusters 3 and clusters 2/4 as the mixing behavior

in the post-detonation region changes with time. The triple point propagation is

identified by the movement of cluster 6 with time in a direction along the wave

front surface. Thus, the clustering process identifies and tracks the movement of the

triple points with reasonable accuracy. Most importantly, the cluster classification is

consistent between snapshots, allowing for each cluster to be interpreted with some

physical relevance to flow structures with time.

Figure 4.6 displays trends that are both shared different across both datasets.

172

An expected result is the decrease in size of cluster 1 (the ambient region) in both

datasets – as the wave progresses through the domain, the ambient domain proportion

is reduced with time. Further, the identification of the triple point regions, cluster

6, is nearly consistent with time. This is an important result as this region occurs

primarily near the shock front. As a fixed portion of the detonation front exists within

each snapshot, the total number of points corresponding to this cluster remains stable.

For both the training and testing dataset, cluster 6 is the lowest populated cluster as

the triple points are concentrated regions due to wave interactions. In the training

dataset, the size of the post-detonation cluster 3 along with deflagration clusters 2 and

4 increase in time. However, as cluster 3 was observed to be contained to a finite region

behind the wave front, the cluster size increases slightly as the detonation wave fully

enters the frame and reaches a stable size - this is evident in the normalized cluster

size evolution (right plot of Fig. 4.6) of the training dataset. On the other hand, the

sizes of cluster 2 and 4 increase a greater rate, with the increase in cluster 2 most

dominant for both the training and testing dataset. This is expected, as the post-

detonation regions represented by cluster 2 increase in size to match the reduction in

cluster 1. Cluster 5 increases rapidly for the training dataset whereas this region is

largely constant for the testing set; the shock-separated region increases as the wave

progresses to the right in the LMDE, but in the stratified gas case, the amount of

entrained high-pressure gas is consistent prior homogenization due to post-detonation

mixing.

The rate of change in cluster size in the training dataset is more drastic in com-

parison to that of the testing set as the the training set features distinct regions, such

as the shock-separated region, that are enforced by the fuel-air distribution due to

injection. In the testing set, the stratification ahead of the wave is distributed more

randomly, and does not ensure one cluster will dominate within different locations

perpendicular to the shock front. Ultimately, the interpretation of time-evolution of

173

Figure 4.6: Absolute cluster sizes as percentage of total grid points (left) and cluster
sizes normalized by the sizes at t = 0 (right). Colors represent different cluster
numbers. Solid lines correspond to training set, dashed to testing set. Note that lines
corresponding to testing set end at a lower maximum time (less testing snapshots).

cluster size allows for a unique and useful way to a) assess a coarse-grained surrogate

of the evolution of the full detonation wave structure, and to b) compare the evolution

across different detonation configurations.

4.3.4 Feature Importance in Flowfield Classification

Following the above macroscopic analysis of the physical representation and time

evolution for each cluster, the discussion below explores the finer details related to

conditional distributions of grid points within each cluster. In particular, the infor-

mation provided by the various features as it relates to the output segmented fields

is analyzed, and a pathway for quantifying feature importance and downselection (or

pruning) is provided.

Figure 4.7 shows typical pressure versus inverse-density relations for the training

set. The points corresponding to each cluster are identified by their respective colors,

and the centroids are indicated by the larger white-enclosed markers. An expected

trend is observed for cluster 1, which is an outlier in this space since this cluster repre-

sents ambient chemical conditions. Some separation is seen along the density axis for

174

Figure 4.7: Representation of pressure versus inverse-density for all clusters. The
larger points with white outline indicate centroids. Insets indicate cluster-specific
scatter plots. Colors indicate cluster number.

cluster 5, whose centroid occupies the highest density value. This is evidenced by the

its spatial distribution in Fig. 4.5, which revealed that this cluster strongly represents

a high-compression minimum-reaction region. Interestingly, the peak pressures near

50 atm are realized by points belonging to the cluster 6 (the region near the wavefront

affected by triple-point structures). However, the presence of overlapping densities

in the pressure versus inverse-density space (especially for clusters 2, 3, 4, and 6) is

telling with regards to detonation wave structure classification: the primary role of

the pressure and density features lies in 1) creating the delineation between reacting

and ambient portions of the domain, and 2) identifying cluster 5 as a particularly

high-density region. Ultimately, the remaining 7 features must contain the additional

contribution to the variation in cluster-based probability densities of the grid points

for the production of the segmented field structures. In other words, many more

axes must be added to Fig. 4.7 to fully explain the regime delineations produced in

Fig. 4.5.

The above discussion regarding Fig. 4.7 necessitates a more complete analysis of

feature contribution to the overall delineation output. This relies on the interpretation

175

Figure 4.8: Cluster PDFs conditioned on temperature (left), pressure (middle), and
YHO2 (right) for the testing dataset (trends for training set were identical).

and manipulation of probability distribution functions (PDFs) conditioned on both

cluster number and feature. To illustrate this, Fig. 4.8 shows cluster-conditional

PDFs for three of the nine total features: temperature (left), pressure (middle), and

YHO2 (right). Each color corresponds to the grid point distribution in a single cluster.

By analyzing such PDFs for each feature, one can assess how effective each feature

is in determining the differences between grid points belonging to different clusters.

If cluster PDFs for a feature are similar (in both mean and variance), then that

particular feature contributes less to the distance measure used in the clustering.

Therefore, the degree of separation, or dissimilarity, between cluster distributions

in Fig. 4.8 is related directly to the ”importance” of those respective features in

the segmented field representation. As expected, in both temperature and pressure

distributions, cluster 1 is the outlier. Of the non-ambient clusters, there are much

greater differences in distribution in for temperature than for pressure (though the

pressure distributions still display differences in variation about the mean). Thus, for

these clusters, it can be surmised that temperature is a more contributing feature in

determining the delineations shown in Fig. 4.5, in particular for regions within the

deflagration regime. On the other hand, for YHO2 , the PDFs for all the clusters are

much more stacked, implying lower overall delineation contribution.

The analysis of the distributions in Fig. 4.8 allows for a qualitative assessment

of feature importance in the classifications shown in Fig. 4.5 based on cluster dis-

176

tributions. For a more quantitative analysis, a PDF-based measure known as the

Earth Mover’s Distance (EMD [288]) can be used to create an importance metric

for the features. The EMD is defined for two PDFs (which can be empirical) over

a specified domain support, and is given by D(p1, p2), where p1 and p2 are PDFs,

and D is the EMD function. The following distance properties hold: D(p1, p2) ≥ 0,

D(p1, p1) = D(p2, p2) = 0, and D(p1, p2) = D(p2, p1). A summary of the mathematical

formulation and definition is provided in the Appendix. Informally, if p1 and p2 are

visualized as piles of dirt, D(p1, p2) represents the ”cost” of morphing one pile of dirt

into the other. The factors which contribute to this ”cost” are 1) the distance required

to move the dirt, and 2) the amount of dirt present in the movement. The EMD is an

appropriate measure here over other PDF-based distances such as Kullback-Leibler

(KL) divergence, as it is well-defined for PDFs with nonzero densities in the feature

space. The EMD usefully takes into account differences in distribution means as well

as variance when determining the final dissimilarity score (the EMD of two identical

distributions centered around different values will result in a positive distance, as will

the EMD of two distributions with the identical centers but different standard devi-

ations). Thus, using the EMD, a quantifiable metric for feature importance, denoted

I(Fi), where Fi is the i-th feature in F , is defined as

I(Fi) =
K∑
j=1

(K∑
k=1

D(pFi
j , p

Fi
k)

)
, i = 1, ..., D. (4.1)

In Eq. 4.1, pFi
j represents the PDF of the j-th cluster corresponding to feature Fi.

The importance metric is essentially a sum of the EMD combinations of cluster dis-

tributions for a particular feature. The inner summation in Eq. 4.1 represents the

contribution of j-th cluster to the overall importance. By this metric, if feature 1 has

lower importance than feature 2, feature 1 is less significant overall in the clustering

output, i.e. it is less crucial in illuminating differences between grid points belonging

177

to different clusters. This metric can be used to effectively downsample the feature

selection used to generate the labels in Fig. 4.5.

Figure 4.9 shows importance metrics for each feature in the training and testing

datasets. Note that scaled quantities were used in the computation to allow for

comparison of importance across different features. The colors in each bar correspond

to the cluster contribution to the importance of that particular feature, which itself

can be useful in the identification of feature-regime relationships. For example, in the

case of YH2O, cluster 3 (active predominantly in the deflagration regime) contributes a

large amount to the importance. On the other hand, for YH and YO, cluster 6 (active

near the wavefront and triple point regions) dominates the importance value. Thus,

an ability to quantitatively assign a most ”relevant” cluster to a particular feature in

the context of delineation power can be obtained.

Interestingly, Fig. 4.9 shows that the distribution of importance is similar between

training and testing sets. In both cases, the metric implies that YHO2 and YH2O2 are

noticeably the least significant in the clustering. To illustrate the utility of the EMD-

based metric, the clustering is performed again using a reduced feature set without

YHO2 and YH2O2 . These results are shown in Figs. 4.10a and c for a single training

and testing snapshot respectively. Clustering using the downsampled set of features

results in a segmented field that is nearly identical to that generated from the original,

larger feature set. The same characteristics of the detonation wave and the regions

of interest are captured by the reduced feature set. Thus, the importance metric

provides useful insight into the necessary thermodynamic properties and species that

demarcate the different modes of combustion.

The comparison with the original and reduced feature sets is also shown in Figs. 4.10b

and d. These are distance plots, which is a proxy measure of uncertainty in the labels

used to generate the segmented fields. They depict the distances of each grid point

to its assigned centroid; high values in the distance field correlate directly with high

178

Figure 4.9: Feature importance measures with cluster contributions for the training
(left) and testing (right) datasets. Cluster contributions for importance value for each
feature by respective colors.

classification uncertainty. In both training and testing sets, points of highest distance

occur near the triple points. This means that despite the fact that the presence of the

triple points is captured within clusters 5 and 6 to an acceptable level, the uncertainty

in classification near the triple points is relatively high with the chosen parameters.

This is an indicator to the chemical complexity in this portion of the detonation wave.

However, alongside this, an important note is that this distance field is practically

unchanged when clustering with the reduced feature set (i.e. the removal of YHO2

and YH2O2 did not cause noticeable increase in label uncertainty), meaning that the

clustering output as a whole has been preserved in the process of reducing the feature

set. For this reason, it is important that the initial classification is performed with

a full (or very large) feature set available from the data in general applications. Us-

ing the original clustering followed by application of the importance metric, a lower

feature set can then be obtained to identify both redundant and important regime-

dependent features and also to reduce computational cost for in labeling for potential

online applications.

Ultimately, the discussion in Sec. 4.3.2-4.3.4 provided a physical interpretation of

the delineations produced by the clustering, as well as a pathway for feature downse-

lection based on the EMD importance score and preservation of distance fields. With

179

Figure 4.10: Comparison of the clustering output (only one snapshot shown) between
original full feature set and the reduced set. (a) Segmented fields for training dataset.
(b) Distance fields for training dataset. (c) Segmented fields for testing dataset. (d)
Distance fields for testing dataset.

this context, the localized source term modeling strategy conditioned on the compo-

sition space partition produced by K-means can now be performed.

4.4 Source Term Regression

In this section, the delineated regions for K = 6 obtained in Sec. 4.3 are used

to guide the modeling for thermochemical source terms of interest. The ANN-based

source term modeling approach is of particular interest here since the relations be-

tween the thermochemical state and the source terms are highly nonlinear and ren-

der computationally intensive chemistry routines intractible in reacting detonation

solvers. The goal is to show that proper utilization of the segmented fields produced

in Sec. 4.3 can lead to more robust modeling procedures that better enable long-time

simulations. Specific details into ANN methodology are omitted here, but can be

found in Refs. [108, 214].

180

4.4.1 ANN Architecture

Two types of ANNs are considered: global and local. The global ANN is trained

agnostic to the cluster labels and uses the full set grid points as the training data. In

contrast, the local ANN refers to the model trained only for data belonging to cluster

k. This means that there are a total of 1 global ANN and 6 local ANNs (1 for each

cluster). This is similar to the method used in Ref. [22] to display the advantage

of domain-localized modeling, but the difference here is that the domain localization

is learned via the clustering step. Throughout the results below, local versus global

ANN prediction accuracy for the source terms (conditioned on cluster number) will

be discussed.

All ANNs contain two hidden layers, each with 50 neurons. The hyperbolic tangent

function is used for hidden layer activations. As mentioned in the end of Sec. 4.2, in

the ANN implementation, the training set is restricted to a single snapshot from the

LMDE simulation. The testing set contains a snapshot from the stratified fuel-air

mixture case. Additionally, to assess model performance in both similar and different

configurations as the training data, the testing routine also consists of unseen snapshot

from the LMDE configuration at a later timestep than the training set. These training

and testing snapshots are shown in Fig. 4.11a.

The full ANN architecture is visualized in Fig. 4.11b. The ANN inputs are the

same as the reduced feature set defined in Sec. 4.3.4; that is, all input grid points

to the ANNs are described by {ρ, T, P, YH , YO, YH2O, YOH}. The output source terms

are given by {Ṫ , ẎH , ẎO, ẎH2O, ẎOH}. All inputs and outputs were standardized before

training. Gradients of an MSE loss function are found using backpropagation, and the

Adam algorithm was used for parameter optimization [125, 151]. Training samples

were randomly shuffled with 10% of the dataset set aside for validation to monitor

overfitting. The neural networks were implemented with the PyTorch library [242].

181

Figure 4.11: (a) Representation of the training and two testing snapshots for the
demonstration of ANN source term regression (corresponding time instances are given
at bottom). (b) Illustration of ANN architecture, where the input corresponds to a
grid point represented by the reduced feature set as described in Sec. 4.3.4, and the
output is a set of source terms for the same grid point.

4.4.2 ANN Results

The MSE values obtained after completion of the training procedure for both

local and global ANN models are shown in Fig. 4.12. In particular, the MSE values

for the LMDE training set (top row), LMDE testing set (middle row), and stratified

mixture testing set (bottom row) are compared for each of the five source terms and

are conditioned on the cluster number (the columns in Fig. 4.12). Note that since

the primary purpose of Fig. 4.12 is to show the improvements provided by the local

ANN models with reference to the global model, the MSE values are derived from the

standardized representation of the source terms to enable cross-feature comparisons.

Further, the output for cluster 1 is excluded for the sake of brevity as it represents

an ambient uninteresting region with regards to source term output.

For the training set, the MSE values indicate general improvement provided by

the domain-localized modeling. For example, in clusters 5 and 6 (which represent the

complex near-wavefront regions as shown in Fig. 4.5), the local ANNs display signifi-

cantly lower errors when compared to global counterparts. This is less pronounced for

182

the deflagration clusters 2, 3, and 4, although improvements provided by the localized

modeling is still seen in these clusters for all tested source terms. Further, the MSE

of the source term predictions for ẎOH in the training set are significantly higher than

the rest for most clusters in both local and global ANN settings (especially in cluster

4).

The middle row of Fig. 4.12 shows the respective MSE comparisons for a future

snapshot (the last of the available 13 as described in Sec. 4.2) in the same configu-

ration as the training set (the LMDE testing set). It is convincing that the overall

trends are preserved for the unseen data. Interestingly, in clusters 2, 3, and 6, the

local ANN MSE values are lower than those observed in the training set for all source

term features. This drop in error for the LMDE testing set is not observed in cluster

5, which indicates that the extrapolative power is not distributed uniformly through-

out cluster index. However, the fact that significant improvement provided by the

localized models is still seen across the board is a form of confirmation of the simi-

lar trends observed in the training set. The bottom row of Fig. 4.12 shows similarly

structured MSE plots, but for a testing snapshot (the last of 10 snapshots as described

in Sec. 4.2) from the stratified mixture configuration. In this testing set, MSE values

are significantly higher as expected – the configuration and spatial distribution of the

detonation structure are quite different from the training set, and as such, extension

of the ANN models to this setting becomes more difficult. Despite this, the MSE

trends again show comparatively much more accurate predictions generated by the

localized ANN models, especially in clusters 5 and 6. It should be noted that even

though such improvements are provided by the local models, instances of significantly

high error are seen again for ẎOH in clusters 2 and 4 in the stratification testing set,

even for the local ANNs.

The MSE plots in Fig. 4.12 were obtained by averaging error quantities over

all grid points – to visualize performance in a more direct sense, scatter plots of

183

Figure 4.12: Comparison of MSE values for each cluster for global (red bars) and
local (blue bars) ANN source term predictions. First row corresponds to the training
LMDE dataset, second row to the testing set with the same LMDE configuration but
at a future timestep, and last row to the testing set in a stratified fuel-air mixture
configuration. Within each plot, MSE is compared over all five features as listed at
bottom. MSE is computed over standardized outputs to better facilitate comparisons
across multiple features.

predicted source term values versus the ground-truth are shown in Fig. 4.13 for Ṫ

and ẎH2O outputs (other source term outputs excluded as all relevant trends are

readily identified by these two outputs). Predictions for both testing sets (LMDE at

future timestep and stratified mixture cases) are shown. Here, source term values in

each of these plots have been unscaled, and the dashed unit-slope lines represents an

ideal prediction.

The topmost set of plots in Fig. 4.13 show the results for the LMDE testing set

(same configuration as training set, but at a future time instance). The reduction

in variance of predicted quantities around the exact solution can be seen when con-

sidering the local ANN models – the largest improvement is observed for cluster 6,

which represents the region near the detonation wavefront and triple points. However,

the improvements provided by the localized modeling are more readily seen for ẎH2O

predictions than for the Ṫ counterparts. For example, in cluster 6, the local ANN

is slightly better at capturing the negative temperature source term values than the

184

global model, but is still overall inaccurate in this region. Further, consider the Ṫ

predictions for cluster 2 versus cluster 3. The local model fails to address negative

values in cluster 2; in cluster 3, though still not perfectly accurate due to the innate

complexity of temperature source term distributions in detonating flows, the local-

ized modeling better resolves the negative temperature source term than the global

counterpart. In clusters 4 and 5, predictions for both local and global models are

accurate in the LMDE testing set and follow the exact line quite well, though the

local models observe less variation around the exact solution.

The bottom set of plots in Fig. 4.13 show the results for the stratified fuel-air test-

ing case (different configuration from the training snapshot). As implied by Fig. 4.12,

both global and local model performances are altogether poorer than those seen in

the LMDE testing set, though this performance loss is much less severe in clusters

4 and 5. Despite the performance drop, improvement is still seen in the local model

predictions, particularly for the ẎH2O output. For example, in cluster 6, the ẎH2O

local ANN prediction curtails much of the sporadic variation from the global model.

The same is true to a lesser extent in clusters 2, 4, and 5 – cluster 3 predictions,

on the other hand, are altogether unsatisfactory, as both local and global predictions

show very little correlation with the ground truth. In the predictions for the stratified

testing case for Ṫ , noticeable local model improvement is only seen in clusters 4, 5,

and 6. The local ANN predictions for Ṫ in cluster 2 are almost identical to the global

ANN predictions, and the same issue with negative temperature source term as dis-

cussed for the LMDE testing snapshot is again apparent for the stratified mixture

testing snapshot.

From the results in Fig. 4.13, it can essentially be concluded that a) noticeable

localized model improvement is indeed observed in most cases, with highest improve-

ments seen for cluster 6, and b) the extrapolation error is much more pronounced

in the unseen stratified mixture configuration. A useful summary of these trends

185

Figure 4.13: Scatter plots showing global (red points) and local (blue points) predic-
tions on the y-axis versus ground-truth on the x-axis for clusters 2 to 6. Diagonal solid
black lines correspond to exact solutions. Top block corresponds to LMDE testing
snapshot (same configuration as training snapshot) and the bottom block to testing
snapshot for the stratified mixture configuration. Within each block, the upper row
of plots correspond to ẎH2O predictions and lower row to Ṫ predictions. In these
plots, source terms have been scaled by the simulation timestep (same value for all
grid points) such that the ẎH2O is unitless and Ṫ is in units of Kelvin.

186

lies in the visualization of the source term fields themselves, as shown in Fig. 4.14.

Fig. 4.14 (left) illustrates the increase in accuracy provided by the local ANN models

in the LMDE testing snapshot, though the accuracy gain is more apparent for ẎH2O

than for Ṫ . In particular, the region above the wavefront (represented by cluster 5

in Fig. 4.5) and the fluctuations of source term behind the wavefront present in the

local ANN predictions better resemble the ground truth. On the other hand, the pre-

dictions generated for the stratified mixture testing snapshot are much less accurate

for both global and local models. Though some regions are better captured by the

local models, such as the absence of ẎH2O fluctuation in the far-left domain and the

general source term structure in the region immediately behind the wavefront for Ṫ ,

it is apparent that extension of the neural network-based source term models into

different configurations is less plausible.

Ultimately, the application of cluster-based localization of source term modeling

is quite promising when considering configurations similar to the training set; such re-

strictions are expected in light of the highly nonlinear nature of chemical source terms

in detonating flows. More importantly, this demonstration of localized ANN mod-

eling highlights the potential for in-situ neural network-based source term modeling

(where the configuration does not change), a setting in which significant computa-

tional savings can be achieved and, as a result, long-time simulations of complex

geometries exhibiting detonating reacting flow behavior (such as RDEs) be realized.

It is possible that increasing the ANN parameter space, including time-history, includ-

ing soft physical constraints during the parameter estimation phase, and/or tuning

the input/output space for the networks may lead to better results with regards to

extension into different configurations (e.g. the stratified mixture case) – all of these

comments warrant a more detailed analysis into the localized modeling procedure and

will be explored in future work.

187

Figure 4.14: Exact and predicted source term fields for the LMDE testing snapshot
(left block) and stratified mixture snapshot (right block). Within each block, the left
and right group of fields show ẎH2O and Ṫ , respectively. In these plots, source terms
have been scaled by the simulation timestep (same value for all grid points) such that
ẎH2O is unitless and Ṫ is in Kelvin.

4.5 Conclusion

Using direct numerical simulation datasets of canonical detonation configurations,

a data-driven modeling procedure was developed with the goal of providing a path-

way to better realize long-time simulations for complex combustor geometries such

as RDEs. The modeling approach consisted of two linked phases, where the first

concerned the extraction of different combustion regimes within the wave structure,

and the second concerned the localized development of source term models guided by

the extracted regions obtained from the first phase.

Specifically, in the first phase of the procedure (Sec. 4.3), a classification of the

flowfield was obtained from a clustering on the progression of a detonation wave

through a linear injector array. These clusters represented the ambient fuel-air mix-

ture, a shock-separated region in the absence of fuel, a strong detonation region,

and post-detonation deflagration regions within the reaction zone. This assignment

of physical representations of each cluster allowed for the development of a useful

coarse-grained perspective on detonation chemistry in physical space. Further, the

extension of the clustering to the testing dataset (stratified fuel-air mixture) pro-

vided a manner in which detonation environments can be compared across different

188

simulation configurations.

A comparison of the source term estimations obtained from the local ANNs (i.e.

ANNs trained for each cluster in isolation) with the global ANN counterparts (i.e. a

single ANN trained for the whole domain) showed general improvement provided by

the domain-localized modeling in the training datasets. When predicting the source

terms for unseen detonation waves in the same configuration at a future timestep

(the LMDE testing snapshot), the improvements provided by the cluster-localized

modeling became especially apparent and promising. When ambitiously extending

the trained networks to the unseen data at a different configuration, it was found

that although in many regions the localized model alleviated some of the large source

term error variation seen in the global model, the source term predictions overall

were much poorer. Despite this, the successful demonstration of this cluster-based

localization of source term estimation on the unseen LMDE data is promising with

regards to the role of domain-localized neural networks in the enabling of long-time

simulations for complex combustion chemistry for situations in which the operating

configuration does not change.

This chapter illuminates the promising role of data-driven classification and re-

gression techniques both for concisely extracting segmented fields that delineate dif-

ferent combustion regimes and for guiding localized combustion modeling procedures

in complex detonating environments. However, there are many promising pathways

for future work. For example, for the ANN implementation, including physical con-

straints and tuning the input/output space for the local models may lead to better

results when extending to different configurations. Further, a detailed investigation

into computational cost savings is necessary. One of the major motivations for con-

verting the source term computation into an ANN evaluation is the compatibility with

GPU architectures (see Sec. 2.3). As such, assessment of the computational savings

stemming from both algorithm and architecture change is currently being pursued.

189

With the core concept of classification-based regression presented in this chapter,

the goal of Chapter V is to provide pathways for improved classification by embedding

the underlying physical knowledge of dynamics in the composition space (i.e. the

functional form of the chemical source term evaluation) into the clustering procedure,

such that (a) human-assisted validation steps carried out in Sec. 4.3 required to ensure

segmented fields are physically consistent are eliminated, and (b) simpler modeling

pathways that allow departure from potentially prohibitive neural network training

stages are provided.

190

CHAPTER V

Physics-Guided Clustering Strategies for Improved

Flowfield Classification

5.1 Introduction

As discussed in Chapter I, high-fidelity simulations of next-generation propul-

sion devices like RDEs and scramjets require resolved numerical treatment of the

compressible Navier-Stokes equations with detailed chemical kinetic descriptions to

properly account for the coupling of chemical reactions with turbulence and shock

waves [258, 276]. Treatment of detailed kinetics in these solvers constitutes a pro-

hibitive computational bottleneck due to the wide range of timescales present in the

building-block elementary chemical reactions [30]. The resulting stiffness and nonlin-

earity stemming from the underlying dynamical system driven by the chemical source

term, which comes from a linear combination of these elementary reaction rates, is

notoriously difficult to deal with in all reacting flow solvers for three reasons: (1)

accounting for flow-chemistry interactions requires solving a stiff ordinary differential

equation in the thermochemical phase space for all cells in the computational domain

at every simulation time step [258]; (2) the arithmetic intensity of the right-hand-side

evaluation for this ODE is very high (i.e. the evaluation of the chemical source term

is expensive due to the complexities of the Arrhenius formulation) [16]; and (3) the

191

costs due to time integration in (1) and source term evaluation in (2) scale super-

linearly with increases in chemical mechanism complexity [183]. Sections 2.4.2 and

2.5.6 in Chapter II describe existing modeling approaches used within the numerical

combustion community to treat these issues, with the ultimate goal of accelerating

time-to-solution for the required high-fidelity full-geometry reacting flow simulations.

The classification-based regression strategy presented in Chapter IV tackles the

targeted issue of chemical source term evaluation in detonation-containing flows using

a data-based localized modeling strategy. The method relies on two steps: (1) identi-

fying regions within the detonation wave structure using a clustering strategy in ther-

mochemical composition space, and (2) deploying ANN based models for source term

evaluations within each cluster. The analysis in Chapter IV showed that concept of

localized modeling driven by unsupervised K-means clustering improves source term

prediction accuracy when compared to a so-called ”global” approach that utilizes the

same regression strategy (i.e. trained ANNs) without knowledge of the cluster parti-

tions. The method is intended to extend the class of existing data-based chemistry

modeling approaches (see Sec. 2.5.6) by building on previous work related to neural

network based chemistry tabulation [32, 60] and clustering/partitioning strategies for

reacting flow [33, 96].

The motivation in Chapter IV was to utilize the local ANNs as a proxy for GPU-

optimal source term evaluation in the hope that they provide sufficient acceleration

over conventional analytic routines upon deployment into a flow solver. The problems

with ANN-based approaches, however, are the parametrization and training stages.

The parametrization stage consists of designing the neural network architecture –

although all ANNs are GPU-optimal, they are not necessarily faster than conven-

tional alternatives. The cost of an ANN forward pass scales with (1) the number of

hidden layers, (2) the number of neurons per layer, (3) the type of nonlinear activa-

tion function, and (4) the input-output scaling procedure. As such, additional steps

192

must be taken to ensure the ANN architecture actually minimizes time-to-solution

by comparing hardware-oriented quantities of interest (e.g. floating point operations

per second and global memory access times) to an an analytic GPU-optimal baseline,

which in-turn requires the development of GPU-based kinetics libraries [16]. Addi-

tionally, as described in Chapter IV, the training stage has the tendency overfit to

the configuration used to produce the model, limiting extrapolation capability and

overall reliability for solver deployment purposes.

The classification strategy in Chapter IV utilizes the standard K-means algorithm

in composition space to produce the required flowfield delineations (segmented fields)

for localized model deployment. Although the segmented fields can be determined by

expert-guided assessment to be correlated to key features such as combustion regimes

within the detonation wave structure, there is an inherent issue in the classification

approach of Chapter IV from the modeling perspective: in reality, if the source term

function is highly nonlinear, there is no reason to believe that clusters produced

from standard K-means (which minimize the within-cluster variation in composition

space) also minimize within-cluster variation in chemical source terms. This means

that conditioning source term estimations on partitions derived from standard Eu-

clidean distances (i.e. standard K-means in composition space) is overall unreliable

for complex reacting flows.

The goal of this chapter is to extend the classification-based regression approach

described in Chapter IV by embedding physical knowledge in the K-means clustering

procedure, which not only addresses the above issue of cluster consistency, but also

eliminates the need for ANN-based source term regression. This is accomplished by

augmenting the standard Euclidean distance that drives the flowfield partitioning

process with the functional form for the chemical source term, creating the class of

physics-guided K-means clustering methods. Two physics-guided K-means clustering

approaches based on the above ideas will be explored and compared:

193

1. Jacobian-Scaled K-means (JS-K-means): As the name implies, the Jacobian-

scaled K-means approach directly modifies the Euclidean distance function used

in K-means clustering by scaling the distance vector between two points in a

given cluster with the Jacobian of the chemical source term evaluated at the

centroid. This modification of the distance function induces a new objective

function that is different from that of standard K-means; minimization of the

new JS-K-means objective pushes clusters towards regions in composition space

that reduce within-cluster variation in chemical source term. This method is

therefore interpreted as a mechanism for redistributing (or biasing) a set of clus-

ters produced by the standard K-means algorithm towards regions of increased

dynamical similarity.

2. Hierarchical K-means (H-K-means): instead of modifying the standard

K-means algorithm directly as in the JS-K-means approach, the hierarchical

K-means strategy builds a cluster hierarchy by refining the clusters of an ex-

isting K-means partition into sub-clusters. Clusters are flagged for refinement

using an error estimation procedure based on similar Jacobian-based scaling of

distance vectors. Instead of prescribing the number of clusters K, the refine-

ment procedure terminates until a target error tolerance is met – as such, the

requirement of number of cluster specification is eliminated in this approach.

As described further in the chapter, the scope of the H-K-means approach is dif-

ferent than the JS-K-means approach described above: instead of redistributing

existing cluster locations towards regions of physical similarity, the hierarchical

approach adds clusters in regions of physical similarity by means of an error

estimation based refinement procedure.

The above physics-guided clustering algorithms present two separate pathways

that arrive at the similar end-result, which is ensuring that the resulting clusters/partitions

are intrinsically compatible with the modeling goal (source term estimation). This

194

allows for simpler methods for source term prediction. In other words, because the

physics-guided clustering approaches produce partitions that adapt to regions of dy-

namical similarity, a subsidiary objective of this chapter is to show how source term

regression via complex ANN-based frameworks can be traded for simpler, physics-

based cluster-dependent matrix-vector multiplications derived from Taylor expan-

sions, where the matrix is the cluster-conditioned chemical Jacobian matrix and the

vector is the sample-to-centroid distance vector.

The above methods are demonstrated on canonical detonation datasets sourced

from high-fidelity compressible reacting flow simulations. Note that in contrast to

Chapter IV, less emphasis in this chapter is placed on the physical interpretation of

the clusters in terms of regime identification within the detonation wave structure.

Instead, emphasis is placed on (a) the details of the algorithms themselves, as they

are novel extensions to the existing class of K-means based approaches, (b) the way in

which the partitions produced by the physics-guided algorithms deviate from those

produced by standard K-means, and (c) source term prediction quality within the

complex regions of the detonation wave (e.g. near the oscillating triple points).

Before proceeding, it should be noted that the general idea of embedding phys-

ical knowledge into data-based modeling frameworks for reacting flow is not new.

Physics-guided modeling strategies that attempt to tackle chemistry tabulation from

a reduction point of view include methods such as ISAT [263] and the PRISM [26]

approach. In these methods, the computationally expensive numerical integration of

chemical source terms (Eq. 2.43) is replaced by a look-up table. In particular, ISAT

builds a trust region in thermochemical composition space using a set of ellipsoids

determined by the Jacobian of the source terms, which is similar to the physics-guided

clustering approaches presented here. However, in methods like ISAT and PRISM,

the cost of building and accessing such tables can become expensive for large mech-

anisms, especially on modern HPCs that use extensive concurrency in computations

195

to reach high throughput efficiency – the method presented here, on the other hand,

attempts to address some of these limitations by leveraging highly scalable K-means

algorithms. As many of the core concepts in the physics-guided clustering approach

comes from ISAT, comments describing key differences between the approaches are

made in more detail in the sections below when describing the respective algorithms.

The following summarizes the remaining sections in this chapter. Section 5.2

describes detonation configuration used to generate the clustering data as well as

the flow solver. The Jacobian-scaled K-means approach is then described in Sec. 5.3,

followed by the hierarchical K-means strategy in Sec. 5.4. In both Sec. 5.3 and Sec. 5.4,

the respective methodologies and algorithms are detailed, followed by demonstrations

on simpler toy problems before moving to the more complex detonation dataset.

Concluding remarks are provided in Sec. 5.5.

5.2 Description of Data

This section describes the simulation procedure used to generate the clustering

dataset. More specifically, details on the simulation configuration, flow solver numer-

ics, and pre-processing steps are provided.

The dataset used in this analysis comes from high-fidelity hydrogen-air detonation

simulations in a 2-dimensional channel configuration, as shown in Fig. 5.1. The flow

solver is implemented with the finite-volume method in the AMReX library [367],

and the governing equations are the compressible reacting Navier-Stokes equations

(see Sec. 2.2 for an overview of the PDEs). Although the solver is implemented in the

AMReX framework, the simulations conducted for this study do not utilize AMR –

all data was collected from single-level runs. Solver numerics are globally 2nd-order

and are consistent with those used in UMReactingFlow [30]. Cell-to-face interpo-

lation required to compute numerical fluxes for the advection term is accomplished

with a slope-limited TVD method based on the monotonic upstream-centered scheme

196

P = 0.5 atm
T = 300 K
Equivalence ratio = 1

Driver gas:

Perturbations:
T = 2900 K
P = 14 atm
Ux = 1959.79 m/s
Equivalence ratio = 1

T = 2900 K
P = 14 atm
Ux = 1959.79 m/s

Lx = 0.14m

L y
=0

.07
m

Ambient gas:

O
ut

flo
w

Figure 5.1: Computational domain for channel detonation simulation.

for conservation laws (MUSCL) approach [342]. Modifications to the MUSCL-based

interpolation routines, detailed in Refs. [30, 126], ensure that species boundedness

is preserved on the cell faces. Advective fluxes are then evaluated with the Harten-

Lax-van Leer-Contact (HLLC) approximate Riemann solver [23]. Diffusive fluxes are

obtained using standard 2nd-order central schemes. Subsequent surface integration

required to compute advective and diffusive flux divergences for each cell utilizes a

2nd-order numerical quadrature. Timestepping is accomplished with a 2nd-order op-

erator splitting method that decouples reactions from the advection and diffusion

operators (see Fig. 2.10). Chemical time integration is accomplished with an explicit

stiff time integration strategy based on adaptive time stepping within a 2nd order

Runge-Kutta scheme. Time integration for advection and diffusion phases is treated

with an explicit TVD Runge-Kutta scheme that is also 2nd-order. Chemical kinetics

treatment for hydrogen-air chemistry comes from the mechanism of Mueller et al.

which consists of 9 species (H2,O2,H2O,H,O,OH,HO2,H2O2,N2) and 21 reactions

[212]. Equipped with this mechanism, the open-source library Cantera is used to

evaluate of chemical source terms, transport coefficients, and other relevant thermo-

dynamic quantities [109].

As shown in Fig. 5.1, the channel is 0.07 m in the y-direction and 0.14 m in the

197

x-direction. The boundary conditions consist of slip walls everywhere except for the

rightmost boundary, which is an outflow. The unsteady detonation is initiated by

prescribing a high-energy driver gas in a 2 mm region on the leftmost side of the

domain. The temperature, pressure, and x-component of the velocity for the driver

gas is set to 2900 K, 14 atm, and the CJ speed, respectively (the y-component of

the velocity is zero everywhere initially). The species mass fractions for the driver

gas are obtained from the CJ condition evaluated from the idealized ZND detonation

solution (the Caltech Shock and Detonation toolbox was used to this end [312]).

Similar to the approach used in Ref. [273], roughly 2 mm ahead of the driver gas, an

array of cube-like perturbations of high-energy stoichiometric hydrogen-air mixture is

placed slightly 2 mm ahead of the driver gas region. These perturbations are required

to initiate transverse wave reflections that produce the characteristic triple point

structures observed in unsteady detonations in 2 and 3 dimensions. The composition

for the ambient gas is stoichiometric H2/Air at 0.5 atm and 300 K.

The computational domain is discretized with 4096 cells in the x-direction and

2048 cells in the y-direction, producing a total cell count of roughly 8 million and a grid

resolution of ∆x ≈ 34 micron. At an ambient pressure of 0.5 atm, this grid resolution

results in roughly 10 cells within the induction zone and therefore exceeds required

spatial resolution limit for resolved unsteady H2/Air detonations [272]. Starting from

the conditions specified in Fig. 5.1, the simulation was run for a total time of 10−4

seconds at a CFL number of 0.6, which was enough time to ensure progression of the

developed CJ detonation through the entirety of the channel.

A subset of the full channel domain at t = 50 µs that contains the entirety of

the detonation wave structure is extracted in a cropping procedure similar to the

one used in Chapter IV. The cropped subdomain (bounded by x = [0.085, 0.95] and

y = [0, 0.07]) produces a set of N = 598, 015 thermochemical state vector samples

that describe all relevant details of the detonation wave structure (e.g. triple point

198

Cropped
region

Pressure atm T ρYH2 ρYH2O

Figure 5.2: Cropping procedure for an instantaneous detonation flowfield at t = 50 µs
used to generate the clustering dataset. Colorbar ranges for T , ρYH2, and ρYH2O are
[300, 3200] K, [0.001, 0.006] kg/m3s, and [0.1, 0.2] kg/m3s respectively.

oscillations, transverse waves, deflagration regions, ambient regions, etc.) and ignores

the regions beyond the sonic choke point that are irrelevant to the wave dynamics.

The individual samples are denoted ϕi ∈ RD, where i = 1, . . . , N . The ϕi reside

in the 10-dimensional composition space defined by temperature and species mass

concentrations (i.e. D = 10). More specifically, ϕi = [Ti, ρY1,i, . . . , ρYNS ,i]
T, where Ti

is the temperature for sample i, ρYk is the k-th species concentration, and T denotes

the transpose operation (not to be confused with temperature). This definition for

the composition vector produces a concise representation of the thermochemical state,

as the local fluid density can be obtained from a summation over the species mass

concentrations and the pressure from the ideal gas law. Using the composition space

samples, two datasets are created: the first is the composition data matrix Φ =

[ϕ1, ϕ2, . . . , ϕN] ∈ RD×N and the second is the ground-truth chemical source term data

matrix Ω = [S(ϕ1), S(ϕ2), . . . , S(ϕN)] ∈ RD×N , where Si(ϕ) = [dTi
dt
,
dρY1,i
dt

, . . . ,
dρYNS,i

dt
]T

is referred to as the chemical source term vector for sample i. The formulation for

species production rates are provided in Sec. 2.2. The temperature source term is

199

evaluated under the assumption of a constant-volume reactor as

dTi
dt

= − 1

cv

NS∑
k=1

ϵk
Wk

dρYk
dt

, (5.1)

where cv denotes the mass-based specific heat at constant volume for the mixture, ϵk

is the molar internal energy for species k (derived from NASA polynomials), Wk is

the species molecular weight, and dρYk
dt

is the production rate (source term) for species

concentration k. Ultimately, the composition data in Φ is used in the physics-guided

clustering procedures in Sec. 5.3 and 5.4 and the data in Ω is used to evaluate the

predictive capability and errors for the respective source term predictions.

5.3 Jacobian-Scaled K-means Clustering

The methodology discussed in this section assumes the reader is already familiar

with the standard K-means objective function and algorithm described in detail in

Chapter III. Additionally, for consistency and comparability, the notation used here

coincides with the way the standard K-means methodology is presented in Sec. 3.2.

Instead of minimizing the standard K-means objective described Eq. 3.1, the goal

of the Jacobian-Scaled (JS) clustering strategy is to minimize

EA =
K∑
k=1

N∑
i=1

∥∥LA
i,kAk[ϕi − ck]

∥∥2

2
, (5.2)

There are two main differences between Eq. 5.2 and the standard K-means objective

in Eq. 3.1. The first difference is the presence of the weighting matrix Ak ∈ RD×D,

which acts as a linear transformation, or scaling, on the standard distance vector

δϕ = ϕi−ck. As denoted by the subscript k, this matrix is cluster-dependent through

dependency on the centroid (i.e. Ak = A(ck)). As such, the objective in Eq. 5.2

comes from a modification to the standard Euclidean distance function used to define

200

sample similarity in the phase space. More specifically, if the Euclidean sample-

centroid distance function is given as

d(ϕi, ck) = ∥ϕi − ck∥22, (5.3)

the modified distance function implied by Eq. 5.2 is

d(ϕi, ck) = ∥Ak(ϕi − ck)∥22. (5.4)

The second difference from the standard K-means approach lies in the definition of the

cluster assignment matrix, LA, denoted by the superscript. The cluster assignment

mechanism is based on the modified distance measure in Eq. 5.4 as

LA
i,k =

1 if k = argmin

j

∥∥Ak(ϕi − ck)
∥∥2

2
, and

0 otherwise.

(5.5)

Note that although the above cluster assignment matrix LA provides the same func-

tionality as the standard K-means counterpart in Eq. 3.4 (i.e. it identifies the samples

belonging to a particular cluster), the distance function used to prescribes the sample-

centroid assignment has changed. The centroid ck in the JS-K-means approach is

defined in the same way as in the standard approach (Eq. 3.3), but instead uses this

modified cluster assignment matrix:

ck =

∑N
i=1 L

A
i,kϕi∑N

i=1 L
A
i,k

. (5.6)

The embedding of physical knowledge comes from the definition of the cluster-dependent

weighting matrix Ak. It is assumed that there exists a set of governing equations that

201

describes the evolution of the phase space vector ϕ as

dϕ

dt
= S(ϕ) ∈ RD, (5.7)

where the quantity S(ϕ) is the phase-space velocity or source term function assumed

to be nonlinear. As described in Sec. 5.2, the value ϕ is the thermochemical state vec-

tor and consists of temperature and species concentrations. As such, the phase space

velocity represents the chemical source term (Eq. 2.9), and the ordinary differential

equation in Eq. 5.7 describes the evolution of species mass fraction and temperature

in composition space. Due to the immense nonlinearity induced by the Arrhnenius-

based formulation of the chemical source term (see Eq. 2.9), the above dynamical

system is highly stiff and contains a very wide range of timescales. Within the con-

text of simulations of compressible reacting flow, the above dynamical system must

be solved at every simulation timestep for every cell in the computational domain to

properly represent the impact of chemical reactions on the flowfield.

The method for obtaining Ak is now described. The leading-order Taylor expan-

sion for the chemical source term via Eq. 5.7 is

S(ϕq)− S(ϕref) = ∂S(ϕ)

∂ϕ

∣∣∣∣
ϕ=ϕref

(
ϕq − ϕref

)
+O(|δϕ|2), (5.8)

where ϕref is a reference point in composition space, ϕq is a query point, and ∂S(ϕ)
∂ϕ

is

the chemical Jacobian matrix. By setting the reference point ϕref to the centroid ck,

the Jacobian-scaled clustering algorithm defines the expression for the scaling matrix

Ak as the chemical Jacobian evaluated at the centroid ck:

Ak =
∂S(ϕ)

∂ϕ

∣∣∣∣
ϕ=ck

. (5.9)

The assumption that motivates adoption of this physics-based clustering approach

202

is that because detonation-containing flows are fundamentally sustained by chemical

reactions, the reaction contribution to the dynamics should be accounted for in the

clustering and flowfield classification procedure. The idea is that one can account

for this contribution by deriving the linear scaling matrix Ak from the governing

equations in Eq. 5.7 via the chemical Jacobian. As shown below, the cluster partitions

produced in this setting provide physically-consistent delineations of the flowfield –

in other words, if the scaling matrix is derived from physics, the resulting clusters

in phase space identify regions of increased dynamical similarity in physical space

over the standard clustering algorithm, where ”dynamical similarity” is defined as

the degree to which two points in a local neighborhood can be described the same

source term vector. Ultimately, this implies that the cluster assignments produced

by the physics-based clustering approach in LA (Eq. 5.5) are more amenable for

developing localized source term modeling strategies than the standard cluster labels

in L (Eq. 3.4). This will be shown in Sec. 5.3.5.

It should be noted that by means of the Taylor expansion in Eq. 5.8 and the defi-

nition of the scaling matrix in Eq. 5.6, the distance function used in the JS-K-means

approach (Eq. 5.4) can be interpreted as a linear kernel function that approximates

the distance between the source terms of two points to leading order if the gradient

is assumed to be locally smooth. In other words,

d(ϕi, ϕj) = ∥Ak(ϕi − ϕj)∥22 ≈ ∥S(ϕi)− S(ϕj)∥22 = d(S(ϕi), S(ϕj)). (5.10)

As such, the objective for JS-K-means in Eq. 5.2 represents a leading-order approxi-

mation to the variation of chemical source term using only the distance between two

points in composition space. If such an objective function can be minimized, the

resulting clusters would identify regions of dynamical similarity by means of the as-

signment matrix LA. Additionally, prescribing the scaling matrix as the identity (e.g.

203

Ak = I for all k) recovers the baseline K-means algorithm, and implicitly assumes

an identity mapping (S(ϕ) = ϕ) for the source term in the Jacobian-sacled clustering

framework.

5.3.1 Differences from Other K-means Variants

The general idea of modifying the standard K-means algorithm with weighting

functions is not new. In the class of density-based K-means clustering strategies, in-

stead of modifying the distance function directly, the standard phase space distance in

Eq. 5.3 is scaled with an input PDF ρ(ϕi) [146], which effectively biases the centroid

locations to regions where this PDF is high. In other approaches, the distance vector

δϕ = ϕi − ck is scaled by a global diagonal matrix D, producing a modified distance

vector δ̃ϕ = Dδϕ that prioritizes certain components (or features) of ϕ over others in

the distance evaluation, where the diagonal elements of D are estimated during the

clustering optimization procedure [131, 338]. This amounts to a scaling operation on

the phase space vector, and these approaches are typically constrained to fixing the

same diagonal matrix D for all clusters, the advantage being that doing so leads to

no required changes in the convergence properties of the baseline K-means cluster-

ing algorithm. Additionally, the class of kernel K-means strategies reformulates the

distance computation by transforming the phase space variable ϕ ∈ RD into another

variable ψ ∈ RB [73, 84]. Distances are evaluated in the ψ-space by means of either

the kernel trick or latent-space transformations.

A comparison of the above K-means variations with the JS-K-means approach

presented here is shown in Table. 5.1. The primary differences are (a) the scaling

matrix Ak is a function of the cluster index, which means that during an iterative op-

timization procedure based on the convergence of centroid locations, the Ak must be

updated as the centroids change, (b) the scaling matrices are derived from underlying

physical rules via the right-hand-side Jacobian of the dynamical system, which en-

204

K-means
Variant

Sample-
Centroid
Distance

Description Key References

Standard K-means ∥ϕi − ck∥22
Standard

Euclidean distance
[323]

Jacobian-scaled
K-means

∥Ak[ϕi − ck]∥22

Cluster-dependent
scaling matrix
derived from

dynamical system
Jacobian

This work

Diagonal
Weighted
K-means

∥D[ϕi − ck]∥22
Global diagonal
scaling matrix

[131]

Density-based
K-means

ρ(ϕi)∥ϕi − ck∥22

Scaling of
standard
Euclidean

distance via PDF
evaluation

[146]

Kernel / Deep
K-means

∥ψi − ck∥22

Standard
Euclidean

distance evaluated
in latent space

[73, 84]

Table 5.1: Comparison of K-means variations with the Jacobian-scaled K-means ap-
proach.

sures that the clusters adapt to highly sensitive regions in the phase space, and (c) the

definition of the centroid as the arithmetic mean of within-cluster samples (Eq. 5.6)

is the same as the baseline algorithm, which allows for the utilization of the centroids

in tabulation strategies for modeling purposes (discussed further in Sec. 5.3.3).

5.3.2 Jacobian-Scaled K-means Algorithm

The centroids are collected in the matrixC = [c1, c2, . . . , cK] ∈ RD×K such that the

k-th column of C produces the corresponding D-dimensional centroid. The scaling

matrices (the chemical Jacobians evaluated at the centroids) are collected in the

set A = {A1,A2, . . . ,AK}. Given these definitions, the Jacobian-scaled K-means

algorithm to minimize the modified objective in Eq. 5.2 is provided in Alg. 2.

205

Algorithm 2 is similar to the standard K-means algorithm provided in Alg. 1 in

Chapter III. The major modification is in step (b), which consists of updating the

scaling matrices in A by computing the chemical Jacobians at the current centroid

locations as per Eq. 5.9. These Jacobian matrices are required in step (c), because

the labeling mechanism in JS-K-means comes from evaluating norms of the sample-

centroid distance vectors scaled by the Jacobian matrix Ak (see Eq. 5.5). Although

centroid initialization can be accomplished in the same way as with standard K-

means (e.g. via the K-means++ algorithm [13]), in this work, a burn-in procedure

that takes the converged centroids of the standard K-means algorithm is used for

initialization of the JS-K-means centroids. Through this approach, the converged

centroids produced by the JS-K-means algorithm in Alg. 2 can be interpreted as a

modifier to the standard K-means centroids, which allows one to pinpoint the effect

of the influence of Jacobian scaling in a clear way.

Algorithm 2 Jacobian-scaled K-means Clustering
Data:
(1) Set number of clusters K
(2) Set convergence error tolerance εtol
(3) Initialize dataset Φ = [ϕ1, ϕ2, . . . , ϕN] to be clustered (Sec. 5.2).
(4) Set initial centroids Cold.
(5) Initialize convergence criterion: εc ← Inf
(6) Set value for maximum number of iterations.

Result:
(1) Converged set of centroids Cnew.
(2) Cluster assignment matrix LA (Eq. 5.5).

while εc ≥ εtol do
a) Copy centroids: Cnew ← Cold

b) Evaluate Jacobians (scaling matrices) at Cold: A ← Eq. 5.9
c) Update cluster assignment matrix using A and Cold: L

A ← Eq. 5.5
d) Update centroids using cluster assignment matrix: Cnew ← Eq. 5.6
e) Compute convergence criterion: εc ← ∥Cnew −Cold∥F
f) Break if maximum number of iterations is reached

end

Note that in Alg. 2, the definition of the centroid during the iterative convergence

206

procedure has not changed from the standard K-means approach, but the assignment

mechanism has changed by means of a different distance function. This produces an

inconsistency, because the way in which the centroid update rule is derived is intrin-

sically tied to the distance function used in the definition of the K-means objective.

Since the distance function has changed in the Jacobian-scaled approach, and the def-

inition of the centroid has not changed, this inconsistency translates to eliminating

the convergence guarantees of the standard K-means algorithm.

More specifically, at a given iteration, the updated centroids are contained Cnew

and the previous centroids are contained in Cold. In the standard K-means approach,

the goal is to derive an update rule for Cnew based on the cluster labels Lϕ gener-

ated from the previous centroids Cold that results in a minimization of the objective

function in Eq. 3.1. As shown in Bottou and Bengio [37], the update rule for the K

centroids is Eq. 3.3.

However, in JS-K-means, the objective function is different from standard K-

means (Eq. 5.2 instead of Eq. 3.1). A derivation of the update rule for Cnew that

minimizes this new objective yields a slightly different expression. For centroid ck,new,

this update rule is

ck,new =

∑N
i=1 L

A
i,kϕi∑N

i=1 L
A
i,k

+R. (5.11)

In the above equation, the true centroid update for minimizing the physics-based K-

means objective in Eq. 5.2 departs from the one used in the algorithm by a residual R.

Described detail in Appendix A, the residual is proportional to both the within cluster

variance and the rate-of-change of the matrix Ak in the D-dimensional phase space

(e.g. the chemical Hessian matrix). As shown in Sec. 5.3.5, ignoring the residual

in Eq. 5.11 and retaining the original centroid definition ensures that the clusters

are localized in phase space at the cost of guaranteeing a monotonic decrease of the

modified objective function in Eq. 5.2 during the iterative procedure. In practice,

good convergence trends are still observed via Alg. 2, although future work involves

207

replacing the standard centroid update with the ”true” update defined by Eq. 5.11.

The reader is refferred to Appendix A for more information on derivations for the

centroid update rules.

5.3.3 Localized Source Term Modeling

The expression in Eq. 5.8 facilitates a localized source term modeling framework

based on a linear tabulation strategy. If both the chemical source term and chemical

Jacobians are stored at the K centroids (Jacobians are already required as a part of

the modified K-means algorithm), estimates of the chemical source term at a given

query point in composition space ϕq can be obtained as

S(ϕq) ≈ S(ck) +Ak (ϕ
q − ck) , (5.12)

for ϕq residing in cluster k. Recall that the idea of utilizing K-means clusters in

composition space for localized source term modeling was also explored in Chapter IV

with the training of ANNs. The linear evaluation approach in Eq. 5.12, however, is

advantageous due to its simplicity and inherent compatibility with the JS-K-means

strategy. If acceptable convergence in the centroids is observed, the clusters in the

Jacobian-scaled approach are expected to be biased towards regions in composition

space that are directly compatible with the linear prediction framework in Eq. 5.12.

Put another way, because the goal of the physics guided clustering framework is to

partition the D-dimensional composition space into regions that are similar in source

term, recovery of the source term via Eq. 5.12 becomes feasible, as will be shown in

Sec. 5.3.5.

Although the linear estimation is less expressive than ANN-based approaches, it

provides two main advantages: (1) elimination of the need for a training stage, and

(2) interpretability and control of error. The second quality is particularly appealing

208

and is the object of Sec. 5.4 – based on an error estimator derived from Eq. 5.12,

Sec. 5.4 shows how clusters producing high errors can be identified and refined such

that a preset tolerance is satisfied, leading to accurate source term estimates and,

most importantly, elimination of K as a parameter in the clustering procedure.

Before proceeding, it should be noted that the prediction approach of Eq. 5.12

based on linear extrapolations about reference points (which here are centroids) in

phase space is similar in spirit to the methodology of in-situ adaptive tabulation

(ISAT) developed by Pope [263]. Although the linear predictive framework is the

same, the tabulation and querying strategies are fundamentally different. In ISAT,

the partitioning mechanism is a set of ellipsoids produced by singular value decompo-

sitions (SVDs) of chemical Jacobian matrices at reference points which coincide with

points in the input dataset. Source terms for query points within the ellipsoids are

extracted based on extrapolation from the ellipsoid centers. The querying mechanism

consists of projections onto hyperplanes in the subspace spanned by the singular vec-

tors to assign the point to an ”owner” ellipsoid [263]. In the physics-guided clustering

approaches presented here, the partitioning is a space-filling tessellation of compo-

sition space – as such, the querying procedure is much simpler due to (a) cluster

assignment mechanisms by means of nearest-centroid distance evaluations (Eq. 5.5),

and (b) ensuring no ambiguity with regards to which partition (or cluster) the query

point belongs. Further, the reliance on SVD-facilitated projection is removed, which

is a benefit in situations where this projection is ill-defined (e.g. in cases of non-

reacting species or chemical equilibrium). Lastly, the K-means approach presented

here produces a tessellation of composition space that seeks to minimize a global

objective function (Eq. 5.2) that by design ensures similarity in source terms within

each cluster, which is amenable for the modeling task in Eq. 5.12. It is acknowledged,

however, the the ISAT framework is much more developed than the strategy pre-

sented here, and is more directly compatible and deployable for in-situ source term

209

modeling in combustion solvers – as mentioned in Chap. VI, direct comparison of

source term predictions bewteen the physics-guided clustering strategies developed

here and ISAT is an object of future work.

5.3.4 Scaling Procedure for Jacobian Regularization

A scaling procedure is carried out before clustering such that (a) the individual

components of ϕ (species concentration and temperature) have equal importance

during the clustering procedure, and (b) the Jacobian matrices are regularized. The

scaled phase space variable, denoted ϕ̃, is recovered from the original phase space

variable ϕi via

ϕ̃ = Bϕ =

1

max(ϕ1)−min(ϕ1)

. . .

1
max(ϕD)−min(ϕD)

ϕ1

...

ϕD

 . (5.13)

In the above equation, superscripts denote component indices (not powers) and B

is a diagonal scaling matrix that normalizes each respective component of ϕ by its

range. An analogous scaling matrix can be applied for the ground-truth source term

data as

S̃(ϕ) = CS(ϕ) =

1

max(S(ϕ)1)−min(S(ϕ)1)

. . .

1
max(S(ϕ)D)−min(S(ϕ)D)

S(ϕ)1

...

S(ϕ)D

 . (5.14)

Given the diagonal scaling matrices for the composition variable and source term (B

and C respectively), the scaled Jacobian matrix, denoted Ã, can recovered as

Ã = D⊙A, D = diag(C)diag(B−1)T, (5.15)

210

where ⊙ denotes an elementwise matrix product (Hadamard product) and the diag(·)

operation produces a column vector containing the diagonals of the input matrix. The

disadvantage here is that obtaining the Jacobian scaling matrix D requires knowledge

of the ranges (minimum and maximim values) of both composition and chemical

source term elements, which in practice are extracted from the input dataset – the

consequence is that the scaling matrices will be application or problem dependent.

Expert guided knowledge can be used to obtain ranges for composition values (e.g.

temperatures in detonations typically fall within the range of 200K to 6000K), but

the ranges for source term values cannot be prescribed this way. The advantage in

the scaling procedure, however, is that it non-dimensionalizes all variables involved

in the Taylor expansion (Eq. 5.8), which leads to improved predictive capability for

minor species concentrations via Eq. 5.12 as well as improved convergence of the

JS-K-means procedure in Alg. 2. This is evidenced in Fig. 5.3, which compares the

singular value distributions of the scaled and unscaled chemical Jacobians obtained

from the detonation dataset Φ. The scaling procedure can therefore be interpreted as

a type of preconditioner for the Jacobians, as it directly drops the disparity between

the largest and smallest singular values in the data distribution to be used in the

clustering procedure.

5.3.5 Results

5.3.5.1 Toy Problem

Before proceeding with the detonation dataset, this section demonstrates the JS-

K-means algorithm on a simple 1D toy problem. The intent is to illuminate the

manner in which inclusion of the Jacobian-scaled distances in the iterative procedure

in Alg. 2 modifies the centroid locations (and resultant cluster labels) produced by

the standard K-means procedure. In this toy problem, the underlying nonlinear

211

Range = 1e20

Range = 1e12

U
ns

ca
le

d
Si

ng
ul

ar
 V

al
ue

s
Sc

al
ed

 S
in

gu
la

r V
al

ue
s

Singular Value Index

Figure 5.3: Singular value distribution for the dataset Φ (see Sec. 5.2) derived from
unscaled (top) and scaled (top) chemical Jacobians. The x-axis denotes the singular
value index. For each index, spread in singular value for all N sample points is
plotted and colored by temperature – 10th index is undefined due to presence inert
N2 species. Bands are alternately shaded for ease of visualization.

212

dynamical system is represented as a quadratic function via

dϕ

dt
= S(ϕ) =

1

2
ϕ2 ∈ R, (5.16)

which produces the trivial Jacobian ∂S/∂ϕ = ϕ. The phase space variable ϕ is

sampled within the range [0, 10] at N = 10000 evenly spaced intervals. A plot of

the quadratic source term and linear Jacobian from Eq. 5.16 is shown in Fig. 5.4

– note that the variables in Fig. 5.4 have been scaled as per the procedure out-

lined in Sec. 5.3.4. The figure also provides convergence trends for both standard

K-means (Eq. 3.1) and JS-K-means procedures (Eq. 5.2) resulting from a number of

clusters K = 10. The convergence diagram follows the burn-in procedure discussed

in Sec. 5.3.2: the standard K-means algorithm is run for a prescribed number of it-

erations (here 300) using centroids initialized from the K-means++ procedure [13],

upon which the converged centroids from the standard procedure are fed into the

modified algorithm for the same number of iterations (or until the convergence cri-

terion is met). Convergence trends in Fig. 5.4 are visualized by plotting objective

functions normalized by their maximum observed value for both the standard and

Jacobian-scaled approach throughout these iterations.

During the burn-in procedure (which utilizes the standard K-means algorithm),

the standard objective function which encapsulates the within-cluster sum of squares

decreases monotonically as expected – interestingly, the JS-K-means objective func-

tion also decreases in a similar monotonic behavior, despite the fact that the stan-

dard objective is being minimized. At iteration 300, the converged centroids from the

standard approach are then supplied as the initial centroids to the Jacobian-scaled

approach. The effect on both objective functions after this switch is in-line with the

goal of the JS-K-means algorithm. Upon switching to the JS-K-means algorithm,

the objective function – which represents an approximation to the true within-cluster

213

ϕ

S(ϕ
)

∂S
/∂ϕ

Iterations

N
or

m
al

iz
ed

 O
bj

ec
tiv

e

Begin standard K-means Begin JS-K-means

Standard
Jacobian-Scaled

Figure 5.4: (Left) Plot of source term (black) and Jacobian (blue) versus phase space
variable ϕ for the 1D toy problem in Eq. 5.16. (Right) Plot of normalized objective
functions for standard (solid) and physics-guided (dashed) K-means clustering ap-
proaches versus number of iterations. The first 300 iterations is a burn-in phase that
utilizes the standard K-means algorithm in Alg. 1. The next 300 iterations utilize the
modified physics-guided K-means algorithm in Alg. 2.

variation in source terms using distances in phase space scaled by the Jacobians eval-

uated at the centroids – experiences a significant drop, and the standard objective

experiences a rise. This is indicative of nonlinearity in the source term, as it implies

that optimizing the cluster partitions in phase space for source term variation neces-

sitates a tradeoff in the optimization of the clusters for variation in the state variable.

Additionally, as described in Sec. 5.3.2, the JS-K-means algorithm does not guarantee

monotonic decrease of the corresponding objective function; instead, convergence of

Alg. 2 is indicated by a stabilization of the objective function curves at an equilibrium

point for which the centroids are stabilized in the D-dimensional phase space.

Ultimately, Fig. 5.4 shows how the Jacobian-scaled K-means algorithm drops the

corresponding Jacobian-based objective function in Eq. 5.2 as intended, producing

a set of converged centroids that attempt to minimize variation in nonlinear source

terms within the clusters. To better interpret this effect, a visualization of the change

in centroid locations provided by the JS-K-means algorithm with reference to the

converged centroids from the standard K-means algorithm is provided in Fig. 5.5

for K = 5, 10, and 15 clusters (note that, although not shown, the convergence

trends in Fig. 5.4 provided for K = 10 hold for the other values of K). In all cases,

214

St
an
da
rd

Ja
co
bi
an
-S
ca
le
d

K = 5 K = 10 K = 15

ϕ

S(ϕ
)

ϕ ϕ

S(ϕ
)

Figure 5.5: Cluster visualizations provided by the standard K-means algorithm (top
row) and physics-guided K-means algorithm (bottom row) for K = 5, 10, and 15.
Centroid locations are provided as the filled markers in each plot.

Fig. 5.4 shows how the physics-guided algorithm shifts and redistributes the standard

K-means clusters towards high-sensitivity regions in the phase space. This effect

can be quantitatively accessed by correlating the cluster sizes with centroid Jacobian

norms, as shown in Fig. 5.6 – the weighting towards high-sensitivity regions implies

that clusters are redistributed in regions where there is significant nonlinearity. Put

another way, for a finite set of K centroids, the physics-guided clustering algorithm

through Jacobian-scaling ensures that the K centroids are localized in regions of

dynamical similarity as prescribed by the governing equations via Eq. 5.16.

5.3.5.2 Detonation Dataset: Analysis of Clusters

The JS-K-means clustering algorithm is now extended to the detonation dataset

described in Sec 5.2. More specifically, in a similar manner as in the toy problem

above, convergence trends for various K values will be analyzed, and changes in

cluster assignments in both physical space and phase space due to Jacobian-scaling

215

Ak

Standard
Jacobian-Scaled

Figure 5.6: Cluster size versus Jacobian value evaluated at centroid Ak for standard
K-means and physics-guided K-means approaches in the 1D toy problem (K = 10).
Cluster size is defined as percentage recovered from the ratio of within-cluster samples
to total number of samples.

will be interpreted. Additionally, analysis of the linear source term prediction outputs

via Eq. 5.12 using phase space partitions produced by both standard and Jacobian-

scaled approaches is performed.

Before visualization and interpretation of the partitioned composition space, it is

important to ensure that the algorithm presented in Alg. 2 produces the a similar

decrease in the physics-based loss in the detonation dataset as observed in the 1d toy

problem in Fig. 5.4. To this end, convergence trends for both standard (Eq. 3.1) and

Jacobian-scaled (Eq. 5.2) objective functions are provided in Fig. 5.7 for K = 5, 15,

and 30. For each cluster number, the various curves (10 for each K value) represent

a different set of initial centroids provided to the standard K-means algorithm to

initiate the burn-in procedure, resulting in unique K-means runs. Because the K-

means algorithm depends on centroid initialization, analysis of performance should

take into consideration the effect of stochasticity due to centroid initialization.

Overall, the convergence trends in Fig. 5.7 show how Alg. 2 drops the physics-

based Jacobian-scaled objective in Eq. 5.5 even for the complex detonation dataset.

As with the toy problem, there is no noticeable oscillatory behavior in the objective

216

curves, indicating that the centroid locations have stabilized. Additionally, the effect

of K-means stochasticity due to initial centroid variation, as visualized by the spread

in objective function curves, is lowest for K = 5 and highest for K = 30 as expected.

Despite this, in all cases, the spread due to different centroid initialization in all

cases is minimal and inconsequential in terms of converged objective functions. The

trends in Fig. 5.7 imply that the advantage provided by the JS-K-means algorithm

in dropping the Jacobian-scaled objective function (Eq. 5.2) increases with cluster

number. In other words, the drop-off in the Jacobian-scaled objective provided by

the modified algorithm in Alg. 2, relative to the same objective function evaluated

with centroids produced by the standard K-means algorithm, increases with higher

cluster numbers. This is a motivating result with regards to scalability in terms of

K.

Figure. 5.8 shows the effect of cluster number on the objective function in Eq. 5.2

computed from both converged standard K-means clusters and JS-K-means clusters.

For consistent comparison across cluster numbers, a normalized version of the physics-

based objective, termed the root-mean-square (RMS) objective, is plotted instead of

the value in Eq. 5.2. This RMS objective is given by

ERMS
A =

√√√√ 1

N

K∑
k=1

N∑
i=1

∥∥LA
i,kAk[ϕi − ck]

∥∥2

2
. (5.17)

Recall that the initial set of centroids provided as input to the JS-K-means algo-

rithm come from the converged standard K-means centroids. As such, to produce

the curves in Fig. 5.8, the above RMS objective is computed using centroid and dis-

tance evaluations from both standard and Jacobian-scaled approaches. The trends in

Fig. 5.8 show how the modification of centroid locations provided by the JS-K-means

approach results in decreased within-cluster variations of source term. An increas-

ing cluster number in both standard and JS-K-means approaches results in a nearly

217

Iterations

St
an
da
rd

St
an
da
rd

St
an
da
rd

Ja
co
bi
an
-S
ca
le
d

Ja
co
bi
an
-S
ca
le
d

Ja
co
bi
an
-S
ca
le
d

K = 5

K = 15

K = 30

Figure 5.7: Standard K-means (black, Eq. 3.1) and physics-based K-means (blue,
Eq. 5.2) objective function values during the iterative procedure for K = 5 (top),
K = 15 (middle), and K = 30 (bottom). As in Fig. 5.4, the gray shaded regions
denote the burn-in period in which the standard K-means algorithm is run for 300
iterations – the red shaded region denotes the switch to the JS-K-means algorithm in
Alg. 2.

218

R
M

S
O

bj
ec

tiv
e

Number of Clusters, K

Standard
Jacobian-Scaled

Figure 5.8: Evaluation of physics-based RMS objective function (Eq. 5.17) versus
number of clusters using standard K-means output (black) and JS-K-means output
(blue).

constant-rate reduction in the Jacobian-based RMS objective, which is indicative of

the localization of clusters. Interestingly, despite the fact that the standard K-means

approach does not optimize Eq. 5.17, higher cluster numbers still result in lower val-

ues of Eq. 5.17, implying that source terms are localized in composition space for this

dataset. Usefully, even at higher cluster numbers (e.g. K = 100), the gap in RMS

objective between the JS-K-means and standard K-means evaluations remains, which

signifies that the JS-K-means algorithm succeeds in shifting the baseline clusters pro-

duced by standard K-means towards regions of greater dynamical similarity.

Although informative, analysis of trends in the objective function values must be

supplemented with a visual inspection of the cluster partitions in physical space for a

clearer interpretation of the impact of the JS-K-means clustering procedure. To this

end, cluster assignments obtained from standard K-means and JS-K-means are shown

in Fig. 5.9 for theK = 15 case – general trends discussed hereafter apply to all studied

K values. Note that the actual colors used to facilitate visualization of the cluster

labels in physical space come from the cluster index, and are not meaningful from

219

a physical perspective – however, as with Chapter IV, coherent regions in physical

space defined by cells of the same color (or cluster) are indicators for key flow features

extracted by the unsupervised algorithms. Borrowing terminology from Chapter IV,

the cluster label plots in physical space are termed the standard (obtained from

standard K-means) and Jacobian-scaled (obtained from JS-K-means) segmented fields

respectively.

The segmented fields in Fig. 5.9 reveal the way in which the JS-K-means algorithm

biases, or pushes, the cluster labels towards the wavefront and detonation reaction

zone (indicated by the white arrows in the repsective plot). This is consistent with

the fact that the difference between the standard and Jacobian-scaled approach is

in the chemical Jacobian based scaling of the distance function, which necessitates

the localization (or redistribution) of centroids towards regions of high composition

sensitivity. This phenomenon is directly analogous to the biasing and weighting of

the centroids seen in the toy problem in Fig. 5.5. As a result, the redistribution

of centroids in composition space provided by the JS-K-means algorithm effectively

translates to localizing the cluster partitions near regions of high chemical stiffness,

which is a useful property for modeling purposes that intend to target and eliminate

stiffness from the simulation procedure. On the other hand, the standard K-means

approach produces a segmented field that is significantly more refined and complex

in turbulence-dominated regions far behind the wavefront that are unimportant from

the chemical contribution perspective.

For a better visualization of the algorithm behavior near the wavefront, Fig. 5.10

shows a series of zoomed-in profiles of pressure, density, heat release rate, and the

same segmented fields from Fig. 5.9. Before assessing the near-wavefront trends in

the segmented fields, it should be noted that the pressure profile shown in Fig. 5.10

displays the characteristic triple-point structures that oscillate vertically along the

wavefront as it propagates through the channel. In short, triple points are local-

220

Temperature

Standard K-means Labels

Jacobian-Scaled K-means Labels

300 K

3200 K

Pressure

1 atm

14 atm

y

x

x

x

x

Figure 5.9: From top-to-bottom: pressure, temperature, standard K-means labels,
and JS-K-means labels for detonation dataset as described in Sec. 5.2. Flowfields have
been transposed (wave is moving towards bottom of page) for ease of visualization.

ized high-pressure regions at the detonation wave front emanating from collisions

between a weaker series of reflecting transverse waves and the leading shock wave

which travels at the CJ speed [311]. The triple point structures, indicated by the

small distributed regions of peak pressure throughout the wavefront, contribute to

significant complexity in the detonation wave dynamics and are known to heavily

influence chemical kinetic behavior within the detonation wave structure [278]. As

such, part of assessing the strength of any composition space partitioning algorithm

for detonation-containing flows is to ensure that areas near and within the triple point

structures are detected by the given algorithm with ideally minimal user input.

The differences between the segmented fields in this triple point region are quite

221

0.5

1e9

1e14

2.0

kg
/m

3
W

/(m
3

s)

(b)

(d)

(a) (c)

(e)

Figure 5.10: (a) Pressure profile within detonation wave in the domain window of
x = [0.087, 0.094] m and y = [0.04, 0.05] m (coordinate axes supplied in Fig. 5.2).
Red box indicates zoom-in region on triple point structures for remainder of plots
in the figure. (b) Standard K-means labels in triple point region. (c) JS-K-means
labels in triple point region. (d) Fluid density (kg/m3) in the triple point region. (e)
Heat release rate (W/m3/s) in the triple point region. White boxes in (b)-(e) indicate
correspondence in respective segmented field structure and key flow features.

apparent in the zoom-ins – for example, in the standard K-means segmented field, the

cluster partitions attempt to recover spatially coherent patterns that align more with

density fields and contact discontinuities away from the wavefront, which contribute

to the complex and somewhat turbulent cluster partitions observed downstream. This

comes from the definition of the composition vector, which consists of temperature

as well as density-weighted mass fractions (i.e. species concentration); as such, there

is an intrinsically higher weight placed on non-reacting transverse wave propagation

in the standard clustering procedure, which in turn leads to complex 2-dimensional

structures recovered in the segmented field.

On the other hand, the segmented fields produced by the JS-K-means approach

are markedly more 1-dimensional in overall structure (e.g. the variation in cluster

transitions along the y-direction is noticeably smaller than that observed in the stan-

dard K-means segmented fields). The effect of biasing clusters towards the wave front,

which was visualized macroscopically in Fig. 5.9, is also apparent in the zoom-ins.

The JS-K-means algorithm pushes clusters towards the regions of high chemical reac-

222

tivity/sensitivity, as encoded in corresponding regions of peak heat release rate and

the triple points. Because the contact discontinuities and transverse wave oscillations

behind the detonation wavefront produce much less chemical reactivity as implied

by the heat release rates, the cluster partitions from the Jacobian-scaled approach

are more vertically uniform behind the wavefront. Additionally, there is a higher

degree of noise in the physics-based segmented field than in the standard counter-

part – this is due to potentially high degrees of chemical stiffness, as well as possible

numerical truncation errors attributed to numerical chemical Jacobian estimates for

intermediary species.

The above discussion is geared towards interpretation of the output of the JS-K-

means clustering procedure in relation to the standard K-means approach in physical

space. However, additional insight into the workings of the JS approach can be

extracted by visualizing the cluster distributions in composition space. Because the

composition space is high-dimensional (D = 10), direct visual analysis of cluster

partitions is not straightforward. To facilitate an interpretable composition space

analysis, the approach here utilizes projections onto two-dimensional spaces facilitated

by proper orthogonal decomposition (POD). It is assumed that the reader is already

familiar with the basics of POD – fundamentals and background on the approach are

provided in Sec. 2.5.2 and the references therein.

To better visualize the effects of JS-K-means, two sets of POD bases are derived:

one from the dataset containing the phase space variables Φ, and another from the

dataset containing the ground-truth source terms Ω. The POD basis derived from Φ

is denoted UΦ ∈ RD×M , and the POD basis derived from Ω is denoted UΩ ∈ RD×M .

The columns of the matrices UΦ and UΩ contain the respective basis vectors (also

known as principal component directions), and M denotes the number of retained

modes in the expansion. Projection of the datasets onto their respective POD basis

vectors produces the POD coefficients, the components of which are uncorrelated due

223

to the orthonormal property of the basis vectors. More formally, the phase space

coefficients are obtained from the projection

A = [a1, . . . , aN] = UT
ΦΦ ∈ RM×N , (5.18)

and the source term coefficients from the analogous projection

B = [b1, . . . , bN] = UT
ΩΩ ∈ RM×N . (5.19)

In the above equations, the ai and bi are M -dimensional column vectors for the i-th

phase space and source term coefficient, respectively. One of the useful properties

of POD is that if the number of modes M is prescribed as the maximum (e.g. if

M is equal to the rank of the corresponding data matrices), the Euclidean distance

between two points in the phase space is equivalent to the Euclidean distance between

the same two points in the projected space defined by the POD basis. In other words,

for two samples i and j, if all basis vectors are retained in the POD representation,

the distance between two points ϕi and ϕj in composition space can be cast as

∥ϕi − ϕj∥22 = ∥ai − aj∥22, (5.20)

and similarly, the distance between the same two points in a so-called ”source-term”

space can be cast as

∥S(ϕi)− S(ϕj)∥22 = ∥bi − bj∥22. (5.21)

The above property comes from the fact that the data variance is preserved by design

in the POD expansion if all modes are retained [29]. Mode ”energies” extracted from

the eigenvalues of respective covariance matrices can then be used to quantify the

percentage amount that each POD mode contributes to the overall data variance.

This is shown in Fig. 5.11 – usefully, it is shown how for both composition and source

224

Figure 5.11: Energy contribution versus mode index, measured as a percentage of
total variance captured by the POD modes, from the phase/composition space de-
composition (Eq. 5.18) and source term decomposition (Eq. 5.19).

term data projections, the first two POD modes retain a majority of the data variance.

As such, 2-dimensional visualizations utilizing only the first two POD components

from both the composition dataset (Eq. 5.18) and source term dataset (Eq. 5.19) can

be used to directly assess the effects of the JS-K-means clustering procedure in terms

of centroid distributions and cluster labels.

Figure 5.12 shows examples of these visualizations in both the phase space coeffi-

cients (ai, Eq. 5.18) and source term coefficients (bi, Eq. 5.19) for select composition

variables and their corresponding source terms. There is significant correlation be-

tween the POD coefficients and key quantities of interest such as temperature fields,

H2O mass fraction (which can be interpreted as a reaction progress variable), as well

as chemical source terms; these correlations confirm that the respective POD pro-

jections facilitate a concise representation of data variance in both composition and

source term space in two dimensions. Note that in the source term space (bottom row

of Fig. 5.12), the regions in composition space (top row) that produce zero chemical

source term collapse to a single point (the (0, 0) coordinate). Usefully, the correla-

225

ai,1

ai,2

bi,2

bi,1

ai,1 ai,1

bi,1 bi,1

Temperature H2O Mass Fraction Temperature Source Term

Figure 5.12: (Top row) From left-to-right, visualization of temperature field in units
of Kelvin, H2O mass fraction, and temperature source term (nondimensinoalized as
per Sec. 5.3.4) in the two-dimensional composition POD coordinates (Eq. 5.18). Black
circle indicates ambient region (unreacted gas ahead of the detonation wave), and red
circle indicates regions of high chemical heat release at reactivity (high-sensitivity
regions within the detonation wave structure). (Bottom row) Same as top row, but
for source term POD coordinates (Eq. 5.19).

tion in temperature source term becomes much more linear in the source term space

as opposed to the composition space – in other words, an increase in values in the

first principle component of the source term POD coefficient produces, to reasonable

confidence, an increase in chemical reactivity.

Figure 5.13 compares the centroid locations and corresponding cluster labels pro-

duced by the standard K-means with those produced by JS-K-means in the two-

dimensional composition POD space. Figure 5.14 displays the same quantities in the

source term POD space. The plots in Figs. 5.13 and 5.14 illustrate (a) the way in

which the JS-K-means modifies centroid locations from the standard K-means output

at a given K (e.g. the cluster biasing or shifting effect), and (b) how JS-K-means

refines clusters in fundamentally different regions of phase space than in the standard

226

approach. More specifically, in Fig. 5.13 for a prescribed number of clusters, the

JS-K-means algorithm successfully redistributes centroids away from the ambient,

non-reacting regions (black circles) and towards the highly reactive regions (red cir-

cles) that characterize much of the complexity in the detonation wave structure (i.e.

regions of peak heat release rates). With regards to cluster refinement, the physics-

guided approach of JS-K-means refines clusters in this same reactive region, which is

equivalent to allocating additional clusters near the detonation wavefront and triple

point structures, where high chemical stiffness and species sensitvity is expected to

occur. In the same effect, increasing the number of clusters in the Jacobian-scaled

approach does not result in a refinement of the ambient, non-reacting region of the

flowfield, which is not true for standard K-means. This effect of centroid redistribu-

tion is particularly apparent in the source term POD space projections of Fig. 5.14,

which shows how JS-K-means increases the degree of spread of centroids in source

term space, which in turn drops the within-cluster variation of source term distances

within each cluster. This not only supports the segmented field behavior of the JS-

K-means clustering approach in physical space (Figs. 5.9 and 5.10), but also confirms

the fact that the modified algorithm in Alg. 2 is properly minimizing the modified

objective in Eq. 5.2.

5.3.5.3 Detonation Dataset: Source Term Predictions

The advantage of JS-K-means is that centroids are pushed towards regions in

which source terms are similar without invoking source term evaluations on the entire

dataset – this is useful for applying the JS-K-means partition to produce a-posteriori

source term estimates in solvers for combustion modeling. To this end, as a first

step, the discussion below assesses a-priori localized source term estimates using the

linear approximation method outlined in Sec. 5.3.3 – comparisons are made between

the estimates produced by the standard approach and the Jacobian-scaled approach,

227

Standard Jacobian-Scaled

K
 =

 1
5

K
 =

 3
0

K
 =

 1
00

Figure 5.13: Visualizations of cluster labels from standard K-means (left column) and
JS-K-means (right column) in the two-dimensional composition POD space (Eq. 5.18)
for K = 15, 30, and 100. Centroids are denoted by larger markers outlined in black.
Black circle outlines chemically non-reacting and ambient regions, whereas red circle
outlines chemically reacting/sensitive regions at or near the detonation wave front.

228

Standard Jacobian-Scaled

K
 =

 1
5

K
 =

 3
0

K
 =

 1
00

Figure 5.14: Same as Fig. 5.13, but centroids and cluster labels are plotted in the
source term POD space (Eq. 5.19.

229

with the idea being that the source-term localization property provided by the clusters

produced in the Jacobian-scaled approach should result in better predictions via the

linear approximation method.

Source term predictions for temperature, ρYH2O, and ρYH2O2 are shown in Fig. 5.15.

For each component, source term predictions using the standard K-means and JS-K-

means are shown using K = 15, 30, and 100 for assessment of cluster number impact

on prediction quality. The variety of colors identify the cluster indices – points be-

longing to the same color utilize the same Jacobian (evaluated at the cluster centroid)

to produce source term estimates via Eq. 5.15 for the corresponding samples within

the cluster. Note the colors themselves are arbitrary and are provided for visual clar-

ity purposes within the context of a single plot – that is, points of the same color

appearing in different plots are not necessarily the same.

For the K = 15 cases, Fig. 5.15 shows general improvement in source term predic-

tions for all three components when moving from standard K-means to the physics-

guided approach. For example, the temperature source term predictions at K = 15

show how the error in standard K-means predictions increase for as ground-truth

source term values also increase, an effect not apparent in the JS-K-means predic-

tions. Additionally, the spread in source term values for the minor species is noticeably

lower in the JS-K-means predictions. This is motivating in particular for ρYH2O2 –

although the predictions produced from both methods here are far from ideal, the

standard clustering predictions capture almost no correlation with the ground-truth

data, whereas the Jacobian-scaled approach begins to extract a correlation. Fig-

ure 5.15 also shows how an increase in cluster number in general increases the quality

of the source term predictions for both standard and Jacobian-scaled K-means ap-

proaches. For K = 100, however, the disparity in the prediction accuracy between

the approaches decreases (e.g. for temperature predictions there is little noticeable

difference), and for H2O source term in particular, the JS-K-means fails to identify

230

Standard Jacobian-Scaled Standard Jacobian-Scaled Standard Jacobian-Scaled

K
 =

 1
5

K
 =

 3
0

K
 =

 1
00

Temperature rhoY_H2O rhoY_H2O2

Figure 5.15: Source term predictions using standard and JS-K-means approaches for
temperature source terms (left), ρYH2O source terms (middle), and ρYH2O2 source
terms (right) for K = 15, 30 and 100. In each plot, colors indicate cluster ownership.

one problematic cluster that is identified by the standard approach (the cyan cluster

for K = 30 and K = 100) . This could be due to the fact that this cluster is either

(a) attributed to a region of minimal chemical reactivity (e.g. within the black circled

region in Fig. 5.13), or (b) even after the scaling procedure in Sec. 5.3.4, the JS-K-

means clustering procedure is influenced disproportionately the temperature variable.

These aspects will be investigated in greater detail in future work.

Ultimately, source term predictions for temperature and intermediary species mass

concentrations enabled by the linear approximation in Eq. 5.12 display the advan-

tage of the JS-K-means clustering approach from the modeling perspective, especially

for lower cluster numbers. As such, the modified algorithm presented in Alg. 2 can

be used a useful extension to the standard K-means approach if one has underlying

knowledge of the dynamical rules in phase space via a velocity function (here the

231

chemical source term). The physics-guided approach presented here should be inter-

preted as a modifier of the standard K-means clusters and centroids as emphasized

by the burn-in procedure – given an input Voronoi partition produced by a standard

K-means algorithm, the JS-K-means algorithm successful biases, or redistributes, the

existing clusters towards regions of dynamical similarity by utilizing physics-based

scaling matrices.

There are, however, a few weaknesses which must be mentioned: (1) the method

relies on the selection of the number of clusters K as input, and (2) the improvement

in source term predictions provided by the approach over standard K-means for higher

cluster numbers (e.g. on the order of K = 100) appears to diminish. To address both

of these issues, the next section introduces a hierarchical refinement strategy that

eliminates the need for cluster number selection and provides an alternative pathway

for embedding physics into the clustering procedure.

5.4 Hierarchical K-means Strategy

Before describing the algorithmic details, it is important to first solidify the scope

of the hierarchical refinement strategy with respect to the JS-K-means approach pre-

sented in Sec. 5.3. JS-K-means is intrusive in the sense that it directly modifies

the distance function (and in turn, the objective function) of the standard K-means

approach and establishes a new algorithm which attempts to shift existing centroid lo-

cations towards regions of dynamical similarity. In this sense, JS-K-means algorithm

presented in Sec. 5.3 is a mechanism for redistributing a set of centroid locations pro-

duced by the standard K-means algorithm at a user-supplied input number of clusters

K.

The hierarchical K-means (H-K-means) approach presented here is fundamentally

different. Starting from the same input (an initial set of Kinit centroids produced by

the standard K-means algorithm), the hierarchical refinement strategy is an outer-

232

iteration loop that sits on top of the standard K-means algorithm – in other words, it

is non-intrusive and does not directly modify the standard K-means algorithm. The

termination of the outer iterations, which is governed implicitly by the error tolerance

criteria, then produces a final number of clusters K > Kinit. As such, although it

is still guided by physics through the cluster refinement criteria, the scope of the

method is different from JS-K-means presented in Sec. 5.3: instead of redistributing

existing centroid locations towards regions of high chemical sensitivity, the H-K-means

approach adds clusters in regions of high chemical sensitivity by means of the error

estimation based refinement procedure. To emphasize this point, an illustration of the

differences between H-K-Means and the previously described JS-K-Means is provided

in Fig. 5.16.

The main idea of the hierarchical refinement strategy is as follows. The inputs are

(1) an initial Voronoi partition of composition space produced either by the standard

K-means procedure or a K-means++ initialization for a prescribed number of clusters

Kinit, and (2) a target error tolerance etol. All clusters that fail to satisfy this error

tolerance are flagged for refinement, where the flagging procedure (to be described

further below) is facilitated by an error estimator. Then, smaller K-means routines

are run in these flagged clusters independently, the result of which increases the

total number of clusters from the baseline Kinit and adds a refinement level to the

now initialized hierarchy. This procedure is then repeated on the new level until

either clusters in the hierarchy satisfy the error tolerance criteria, or a user-supplied

maximum level criterion is met. This strategy is inspired by both adaptive mesh

refinement [27] and in-situ adaptive tabulation [263].

5.4.1 Refinement Procedure

As described above, the core of the H-K-means approach is the error estimation

procedure. Because the application focus is localized source term modeling, the role

233

Initial centroid
locations

Converged centroids

Standard K-means

Redistributed centroids
K = K_init

Refined cluster partition
K > K_init

Jacobian-Scaled
K-means

Hierarchical
K-means

Figure 5.16: Scope of the JS-K-means approach of Sec. 5.3 and the H-K-means ap-
proach presented in this section. Both take in as input the result of a standard
K-means procedure (dashed box).

of the error estimator is to predict the error incurred by the cluster-based linear

approximation in Eq. 5.12. For a sample in composition space ϕi residing in cluster

k, the estimated error is defined as

ei = ∥Ak(ϕi − ck)∥2, (5.22)

where Ak is the chemical Jacobian evaluated at centroid ck. Equation 5.22 produces

the L2 error due to a piecewise-constant prediction for the source term (i.e. the above

equation is equivalent to ∥S(ϕi) − S(ck)∥2). Note that this is the same estimation

pathway used in ISAT [263]; the primary difference here is that the reference point

is a cluster centroid ck, whereas in ISAT the reference point belongs to an ellipsoid

center prescribed by the singular value decomposition of the chemical Jacobian.

A reduction of the above error estimate for all samples within the k-th cluster

Ck ⊂ RD then produces the cluster error estimate ek as

ek = max(ej), j = 1, . . . , Nk, (5.23)

where Nk denotes the number of samples in cluster k. If ek ≥ etol, the cluster is

234

selected for refinement. The refinement procedure consists of the following two steps:

1. Extract the Nk-sized subset of data from Φ residing in the k-th cluster (denoted

Φk) using the cluster indicator matrix (Eq. 3.4).

2. Run the standard K-means algorithm (Alg. 1) on the dataset Φk withK = KRF ,

where KRF is a cluster refinement factor.

The end-result is the refinement of cluster Ck into KRF sub-clusters, which in turn

produces a hierarchy. Borrowing terminology from AMR, the procedure starts with a

zeroth level, denoted L0, populated by the output of a standard K-means procedure

using Kinit number of clusters. Performing the above refinement procedure on all

Kinit clusters instantiates the first level in the clustering hierarchy, denoted L1. The

same procedure can then be performed on the respective clusters in L1, which then

instantiates the second level L2, and so on. This procedure is outlined in Fig. 5.17.

The hierarchy can be concisely represented by the centroid setH = {C0, C1, . . . , CLmax},

where Lmax is the highest refinement level. The elements of H are themselves sets

that contains the centroids in each level – for example, the quantity C0 contains the

centroids in L0 and is of size Kinit. The size of C1 depends on the number of clusters

flagged for refinement in L0, and so on.

A so-called composite partition is the final output of the H-K-means algorithm.

The composite partition derives a new Voronoi partition for the phase space RD by

applying an aggregation function over all of the Ci contained within the hierarchy H.

The output of this aggregation function is the the list of composite centroids, denoted

Ccomp = {c1, . . . , cK} – in other words, Ccomp ← F(H), where F is the aggregation

function. The function F is a type of reduction operator that eliminates all centroids

in H that have children. More specifically, each element in Ccomp is a centroid that

represents a cluster which contains no higher refinement levels. The centroids con-

tained within Ccomp both (a) serve as generators for a new Voronoi partition for the

235

Le
ve

l 0Centroid 1 Centroid 2 Centroid 3

Le
ve

l 1
Le

ve
l 2

Dataset

{ {, , , , ,

H
ie

ra
rc

hi
ca

l R
efi

ne
m

en
t

Figure 5.17: Illustration of the H-K-means approach (gray shaded region) for Kinit =
3, KRF = 2 and Lmax = 2. Bold black arrows denote independent K-means calls.
Red circles indicate flagged clusters/centroids that satisfy the ek ≥ etol criteria, which
are subsequently refined. Black circles indicate clusters/centroids that do not require
refinement. Centroids grouped within the same dashed box imply a shared owner
(in the case of L0, the ”owner” is simply the full input dataset). Blue shaded region
contains composite set of centroids Ccomp produced by aggregation function F .

236

underlying D-dimensional phase space RD, and (b) provide the final number of clus-

ters K produced by the hierarchical refinement strategy, where K > Kinit in the case

that the initial partition on L0 requires refinement. A visualization of the aggregation

process to produce the composite centroid list is provided in Fig. 5.17. The composite

centroid list Ccomp is then used to facilitate the linear predictions for chemical source

terms via Eq. 5.12.

5.4.2 Results

5.4.2.1 Toy Problem

To better illustrate the underlying concepts of the hierarchical K-means strategy,

a simpler toy problem will be used before applying the technique to the detonation

dataset. This toy problem can be considered as a 2-dimensional extension to the 1-d

example case used in Sec. 5.3.5 to motivate the JS-K-means approach. Extension to

two dimensions allows for a clearer visualization of the behavior of the hierarchical

method.

The underlying dynamical system in this toy problem is

dϕ

dt
= S(ϕ) =

ϕ1ϕ2

0

 , (5.24)

which produces a Jacobian matrix whose nonzero elements scale linearly with both

arguments. The rate of the second phase space variable in Eq. 5.24 is set to zero to

simplify the formulation as much as possible – this has the side-effect of mimicking

an inert species. To populate the toy problem dataset, a each component of ϕ was

sampled within the range [0, 10] at 100 evenly space intervals, creating a dataset size

of N = 1002. All variables are scaled and nondimensinoalized using the procedure

described in Sec. 5.3.4.

Figure 5.18 displays plots of the phase space variables as a function of the above

237

nonlinear source term, illustrates the workflow of the H-K-Means approach, and pro-

vides a visualization of a simple cluster label hierarchy. As described in Fig. 5.16,

a standard K-means output is fed into the hierarchical refinement procedure, which

in turn refines clusters that fail to satisfy the error tolerance criterion as determined

by the error estimator described in Eq. 5.22. The refinement procedure, which is a

mechanism for adding additional clusters to the base phase space partition defined by

the level 0 (the standard K-means output), stops until all clusters satisfy the criteria.

For the example shown in Fig. 5.18, the level 0 partition consists of 10 clusters (i.e.

Kinit = 10) before the refinement procdeure is carried out. Upon termination of the

refinement algorithm using an etol = 0.15, the maximum level Lmax = 2 and the

final cluster number for the composite set of centroids (i.e. the list of centroids that

belong to clusters which have not been refined) is K = 26. Due to the fact that the

error estimation procedure comes from a piecewise linear approximation of the source

term using the centroids as tabulation points, the algorithm adds these additional

clusters in regions where source term estimates are predicted to be inaccurate. The

estimator implicitly assumes that points farther away from a given centroid in com-

position space produce linear source term predictions that are less accurate – in cases

of extreme nonlinearity, this property may not be true. In practice, however, this as-

sumption produces no major issue even for complex chemical kinetics type problems

(as discussed further below), especially in cases where the target error tolerance is

very small or the baseline number of clusters Kinit is high.

The refinement phenomenon in Fig. 5.18 is similar to that observed in the JS-

K-means approach (Fig. 5.4) in that the partition inherently adapts to the physics

of the problem by means of invoking the dynamical system Jacobian matrix in the

clustering procedure. As emphasized in Fig. 5.16, the JS-K-means approach of Sec. 5.3

accomplishes this by injecting the Jacobian matrix into the distance function for K-

means, whereas the hierarchical approach described here accomplishes this through

238

Standard K-means Hierarchical K-means

Level 0 Level 1 Level 2
ϕ1

ϕ2

ϕ1

ϕ2

ϕ1 ϕ1

ϕ1 ϕ1

S(ϕ)

Figure 5.18: (Top row) Visualization of the refinement procedure output in H-K-
means. Left plot shows phase space variables with source term colored, middle plot
shows output of standard K-means algorithm, and right plot shows output of H-K-
means with Kinit = 10, etol = 0.15, and KRF = 3. Black markers correspond to
level 0 centroids, red to level 1, and blue to level 2. (Bottom row) Illustration of
the hierarchy produced by H-K-means for one level 0 cluster that has been flagged
for refinement (see also Fig. 5.17. Clusters flagged for refinement indicated by star
markers for respective centroids.

239

a refinement procedure guided by a Jacobian-based error estimator.

Figure 5.19 shows the relationship between the centroid hierarchy H and the

partition produced by the composite centroid set Ccomp as a function of the error

tolerance. For all error tolerances shown in Fig. 5.19, the level 0 baseline partition at

Kinit = 10 is the same, which allows one to assess directly the influence of the error

estimator on the refinement process. The trends are consistent with expectations

in that the number of output clusters increases as etol decreases. Note that the

maximium refinement level is also a function of etol; for example, for etol = 0.2, only

two total levels were produced by the refinement procedure, wheres for etol = 0.1,

four total levels were created. Although not shown here, the number of required

levels to achieve a target etol is also a function of the number of clusters Kinit used to

generate the input level 0 partition. As with methods like adaptive mesh refinement,

guidelines for the prescription of the baseline level resolution are expected to be

problem-dependent, which can be seen as a disadvantage. However, if the error

estimation procedure is robust, the final partition due to the subsequent refinement

strategy will be insensitive to the baseline level resolution for modeling purposes.

Most importantly, Fig. 5.19 shows how the dropping the error tolerance indicates

a noticeable allocation of clusters (or equivalently, a refinement of the composite

Voronoi diagrams shown in the bottom row) in regions of high phase space sensitivity,

which is the intended result.

5.4.2.2 Detonation Dataset

The H-K-means strategy is extended here to the detonation dataset described in

Sec. 5.2. Note that the key trends of the hierarchical refinement procedure emphasized

above for the 2-dimensional toy problem are retained in the detonation dataset. For

conciseness, figures showing visualizations of refinement effects in composition space

due to decreases in error tolerance are not provided. Instead, emphasis on the analysis

240

Input

C
en

tro
id

H

ie
ra

rc
hy

C
om

po
si

te

Pa
rti

tio
n

Kinit = 10
etol = 0.2

K = 16
etol = 0.15

K = 26
etol = 0.10

K = 58

Figure 5.19: (Top row) Centroid hierarchy as a function of etol for the 2-d toy
problem. Level 0 centroids are black, level 1 centroids red, level 2 blue, and level 3
green. (Bottom row) Visualization of cluster labels for composite centroid list Ccomp
produced by the corresponding hierarchy.

below is placed on partition comparisons between the HK-means approach and the

JS-K-means approach presented in Sec. 5.3, as well as the effect of etol on source term

prediction accuracy. Before proceeding, it is noted that (a) prediction results derived

to the hierarchical K-means strategy come from partitions induced by the composite

centroids Ccomp (see Fig. 5.17 and the related discussion), and (b) all variables are

scaled as per the methodology in Sec. 5.3.4 unless specified otherwise.

Figure 5.20 compares composition space partitions between the standard, Jacobian-

scaled K-means, and hierarchical K-means approaches. Note that the visualizations

in Fig. 5.20 utilize the POD projections described in Sec. 5.3.5. For standard and JS-

K-means approaches, the partitions are shown for K = 100, and for the hierarchical

approach, Kinit = 15 was used with etol = 0.34 and KRF = 3. This particular error

tolerance was chosen purely to facilitate comparison with the other approaches, as it

provided a final cluster number close to K = 100. Overall, the composite centroid

distribution of the hierarchical approach for the detonation dataset behaves similarly

to the JS-K-means approach of Sec. 5.3. In particular, the automated cluster refine-

241

ment results in greater centroid concentrations in regions attributed to high chemical

reactivity and sensitivity (red circle in Fig. 5.20).

Interestingly, the H-K-means algorithm also places centroids in regions of low tem-

perature source term (black circles) to a much greater degree than the P-G-Kmeans

algorithm – this implies that the error estimation procedure allocates importance to

slightly different regions in composition space than the P-G-Kmeans approach driven

by Jacobian-based distance function modification. When assessing the distribution of

centroids in the source term space (bottom row of Fig. 5.20), the hierarchical proce-

dure achieves a greater degree of centroid variation than the others. In other words,

cluster refinement driven by the error estimator in Eq. 5.22 has the useful effect of

maximizing centroid variation in source term space to a much greater degree than the

other approaches, which is an advantage for modeling purposes. Although not shown

here, dropping the error tolerance further not only increases the overall number of

clusters recovered by the hierarchical approach, but further refines clusters in regions

of high chemical reactivity and sensitivity.

Figure 5.21 shows source term predictions via the linear approximation in Eq. 5.12

using both the hierarchical refinement strategy and the JS-K-means algorithm of

Sec. 5.3. Two sets of results are shown for the hierarchical refinement strategy: one

for Kinit = 15, corresponding to a coarse partition for level 0, and one for Kinit = 30,

which produces a finer partition for level 0. As with Fig. 5.20, to facilitate comparison

with the JS-K-means output, the error tolerance was set to etol = 0.34 such that the

output number of centroids in Ccomp was close to K = 100.

A useful implication in Fig. 5.21 is that the value for Kinit in the hierarchical pro-

cedure does not lead to noticeable difference in prediction accuracy across the board

– this confirms that the refinement criterion is robust to the resolution of the baseline

level 0 partition in composition space from which the higher levels are instantiated.

Additionally, the hierarchical approach produces noticeable improvement in predic-

242

Standard K-means
K = 100

C
om

po
si

tio
n

PO
D

So
ur

ce
 T

er
m

 P
O

D

JS-K-Means
K = 100

H-K-means
e_tol = 0.34, K = 98

Figure 5.20: (Left) Standard K-means centroids for detonation dataset using K =
100. (Middle) JS-K-means centroids using K = 100. (Right) Composite H-K-
means centroids using etol = 0.34, Kinit = 15, and KRF = 3. Centroids shown as
black-outlined markers and colors indicate cluster assignments. Top row plots show
projection in composition POD coordinates and bottom shows projection in source
term POD coordinates (see Sec. 5.3.5 for explanation of projection method). Red
circle denotes region of high chemical reactivity and black circle denotes near-ambient
region.

243

Hierarchical Hierarchical

Te
m
pe
ra
tu
re

rh
oY
_H
2O

rh
oY
_H
2O
2

Kinit = 15 Kinit = 30
K = 96 K = 98

Jacobian-Scaled
K = 100

Figure 5.21: (Left) Source term predictions using hierarchical K-means with Kinit =
15, etol = 0.34 and KRF = 3. (Middle) Same as left, but with Kinit = 30. (Right)
Source term predictions using JS-K-means approach of Sec. 5.3 with K = 100. In all
plots, colors denote cluster assignments and solid black line denotes perfect prediction.

244

tion accuracy over the JS-K-means strategy for temperature and H2O source terms

(in particular, the issue with the cyan cluster in the JS-K-means approach in H2O

source term prediction has been addressed by the hierarchical refinement procedure).

Interestingly, at a similar value of K, the predictions in H2O2 source term appear to

be slightly worse in the hierarchical approach than in the JS-K-means approach. This

result, however, illuminates a potential extension of the hierarchical strategy: because

the error estimation procedure as a concept is independent of the actual clustering al-

gorithm, instead of relying on the standard K-means algorithm as the clustering tool

within the refinement procedure, the JS-K-means algorithm can be used. In other

words, combining the hierarchical strategy with the JS-K-means approach may lead

to improved source term predictions for minor, notoriously difficult-to-predict species

such as H2O2. Detailed investigation into this extension is an object of future work.

The main advantage of the hierarchical approach is the etol parameter, which

eliminates the need to prescribe the number of clusters. Ideally, lowering the value

for etol should produce improved source term predictions via the linear approximation

in Eq. 5.12. This is indeed the case and is shown in Fig. 5.22, which plots the impact

of lowering etol by one order of magnitude on the source term prediction accuracy.

Prediction errors are lowered with decreasing etol across the board, especially for the

problematic case of H2O2 source term (although there are still lingering issues at

the zero-crossing). Note that although only three components are shown in Fig. 5.22,

these trends apply to all remaining species concentration source terms.

To supplement the scatter plots in Fig. 5.22, root-mean squared errors (RMSE) for

predicted source term for all components of ϕ are shown in Fig. 5.23 as a function of

the error tolerance. The figure confirms how the error tolerance parameter serves as an

effective knob for decreasing overall error at an almost linear rate for all components.

Interestingly, the rate of error decrease varies for each component; a possible cause for

this is the scaling procedure (i.e. the data normalization step described in Sec. 5.3.4)

245

Temperature

rhoY_H2O

rhoY_H2O2

etol=0.1
K=645

etol=0.2
K=235

etol=0.34
K=98

etol=0.4
K=75

etol=0.5
K=58

etol=1.0
K=42

Figure 5.22: Source term predictions for temperature (top row), ρYH2O (middle row),
and ρYH2O2 (bottom row) using the hierarchical K-means strategy for various etol
values. Output number of clusters K for each etol is provided in header. Solid black
line denotes perfect predcition.

and the definition of the refinement criterion. To this end, a potential direction for

future work is testing different methods for error estimation (e.g. applying different

norms of the Jacobian-scaled distance to flag clusters for refinement).

5.5 Conclusion

In this chapter, two methods for embedding physics within the K-means clustering

procedure were presented: the Jacobian-scaled K-means and hierarchical K-means.

The goal of these methods is to provide alternatives to the standard K-means clus-

tering strategy, which is based purely on composition space Euclidean distances, to

account for the underlying governing equations that describe the dynamics in com-

position space (i.e. the chemical source terms).

The JS-K-means algorithm was formulated to minimize a modified version of the

standard K-means objective; this modified objective measures within-cluster variation

in chemical source terms using scaled distances in composition space. The distance

scaling is accomplished by leveraging cluster-dependent chemical Jacobian matrices

evaluated at centroids. Convergence of the modified algorithm based on an initial

246

Line
ar

etol

Figure 5.23: Root-mean squared errors in scaled source term predictions produced by
the hierarchical K-means algorithm as a function of etol for all D = 10 components.

condition prescribed by the output of a standard K-means procedure (i.e. the burn-

in approach) results in a redistribution, or biasing, of centroids towards regions of

high chemical sensitivity. Visualization of this effect in physical space was performed

via the analysis of segmented fields for a canonical detonation wave – the flowfield

delineations produced by the JS-K-means algorithm pushed the standard K-means

clusters towards highly stiff regions of peak heat release rate near the detonation

reaction zone. Further visualization of this effect in composition space via POD pro-

jections showed how the Jacobian scaling separates (or maximizes variation between)

clusters in the source-term space without explicitly using source term data during

the clustering procedure, which provides improved pathways for localized kinetics

modeling. To this end, linear source term predictions derived from Taylor expansions

about the respective centroids demonstrated the improved modeling capability of the

JS-K-means partitions.

The hiearchical K-means strategy is presented as another physics-guided clustering

pathway that eliminates reliance on providing the number of clusters K as an input.

Instead of modifying the distance function directly as in JS-K-means, the hierarchical

strategy takes a fundamentally different approach by incorporating underlying phys-

247

ical knowledge into an error estimation procedure that drives cluster refinement. In

other words, the approach refines select clusters in an input coarse partition produced

by a standard K-means algorithm until a target error tolerance is met. An error es-

timation procedure based on piecewise constant predictions of chemical source term

is used to flag clusters for refinement, where the refinement of a cluster is performed

by running a smaller standard K-means algorithm on the subset of data belonging

to the flagged cluster. The end result is a cluster hierarchy that can be concisely

visualized and used for modeling purposes by extracting a so-called composite list

of centroids from the hierarchy. Although the clustering mechanism is different, the

cluster refinement procedure results in partitions that resemble those produced by

JS-K-means in that the final clusters are inherently biased towards regions of dynam-

ical similarity and chemical sensitivity. Usefully, the hierarchical K-means strategy

allows direct tuning of the source term prediction accuracy through a reduction in

the error tolerance.

Ultimately, the goal of this chapter was to extend the methodology of the classification-

based regression approach described in Chapter IV by simultaneously embedding

physical knowledge in the standard K-means clustering procedure and eliminating

the need for ANN-based source term regression. The above pathways for physics-

guided clustering successfully addressed this goal, and demonstration on the complex

detonation-containing flows emphasizes the capabilities and potential of the physics-

based flowfield classification strategies. Candidate next steps include comparison of

source term predictions with methods like ISAT and PRISM, as well as extension

of the algorithms to accommodate in-situ partition updates – to this end, part of

the advantage of relying on K-means as the foundation in the above approaches is

the rich literature on online K-means algorithms that render any desired in-situ ex-

tensions feasible. Additionally, an immediate next step is to utilize the source term

modeling procedure from a pre-generated partition in an a-posteriori context within

248

a high-fidelity compressible reacting flow solver. Upon solver integration, reports on

time-to-solution gains due to the localized linear approximation procedure for source

term modeling can then be made, and deterioration of source term evaluation times

with increasing number of clusters (or conversely, smaller error tolerances for the hi-

erarchical K-means approach) can be quantified. These details will be reported in

future manuscripts.

249

CHAPTER VI

Summary, Conclusions, and Future Directions

6.1 Summary

Enabling long-time and high-fidelity numerical simulations of next-generation

propulsion devices such rotating detonation engines and scramjets is necessary for

not only probing the multi-physics behavior that governs their operation to extract

physical knowledge, but also to enable robust design strategies for real-world deploy-

ment. Computational challenges that emerge in full-geometry compressible reacting

flow simulations dominated by advection processes like shockwaves and detonations,

however, produce prohibitive bottlenecks that require modeling strategies. In com-

pressible reacting flow, the most problematic of these bottlenecks is the treatment

of detailed chemical kinetics required to accurately describe the time evolution of

species concentrations – the computational hurdles here emerge from the complexity

of Arrhenius-based source term evaluations and treatment of stiffness (i.e. disparity

in chemical timescales) in the associated chemical time integration schemes.

The goal of this dissertation is to provide an alternative modeling pathway, termed

classification-based regression, for accelerating high-fidelity compressible reacting flow

solvers targeted at the eliminating the elusive chemical kinetics bottleneck. The ap-

proach, which takes the form of a physics-guided data-driven strategy, partitions the

thermochemical space using unsupervised clustering algorithms and deploys localized

250

source term models in each partition. The novelty comes from (a) ensuring that the

output segmentation produced by the partition is consistent with physical expecta-

tions in complex compressible reacting flow (e.g. the clusters identify meaningful

regions within detonation wave structures in RDEs), and (b) embedding physical

knowledge directly into the clustering objective function through the development of

so-called physics-guided clustering procedures, such that the output partitions and

classifications by design identify spatially coherent regions of dynamical similarity

within the flowfield. Emphasis is placed on designing and selecting algorithms to

be compatible with modern high-performance computing trends dominated by GPU-

centric node architectures. This strategy was successfully used to accelerate chemical

source term evaluations in complex detonation-containing flows.

Summaries of previous chapters are provided in the remainder of this section.

Then, key conclusions from the classification-based regression approach are provided

in Sec. 6.2. Lastly, future challenges and research directions are provided in Sec. 6.3.

Chapter I: This introductory chapter provides background on the application

context of this dissertation, which is geared towards enabling robust design strategies

for next generation propulsion devices like RDEs and scramjets using high-fidelity

numerical simulations. More specifically, this chapter defines both the role played

by compressible reacting flow simulations during the design process, and the com-

putational challenges stemming from spatiotemporal resolution restrictions, detailed

chemistry complexity, and complex geometry treatment that render the aforemen-

tioned simulations required for robust design procedures intractable. Particular em-

phasis was placed on the definition of ”high-fidelity” in the context of multi-physics

reacting flow simulations for full-geometry propulsion devices dominated by advec-

tion; a high-fidelity simulation satisfies (a) spatial resolution requirements stemming

from flow-chemistry interactions (i.e. resolution of the detonation wave structure, like

induction zones and reaction zones), (b) temporal resolution requirements stemming

251

from the wide ranges of turbulent, acoustic, and chemical timescales due to highly

chaotic properties of the reacting flowfields, and (c) detailed chemistry requirements

that enable accurate representation of the contribution of chemical reactions to the

unsteady combustor dynamics. As all of these requirements are computationally pro-

hibitive, this chapter concludes by describing the need for both hardware-oriented

acceleration and model-oriented simulation acceleration pathways, with the latter

being the focus of the dissertation.

Chapter II: Based on the target of model-oriented acceleration of compressible

reacting flow simulations presented at the end of Chapter I, the goal of this chapter is

to define the specific research contribution and novelty of this dissertation. To do so,

a survey of existing models used throughout the numerical combustion and greater

CFD community is presented via two overarching categories: physics-based models

and data-based models. Alongside describing a subset of existing models of both cate-

gories in detail, the chapter describes general limitations and disadvantages of conven-

tional physics-based and data-based modeling pathways regarding non-universality.

Given these limitations, the research contribution is presented as a physics-guided

data-driven modeling approach that utilizes a classification-based regression strategy

for accelerated source term evaluation based on composition space partitions derived

from K-means clustering. The objective of this research contribution is twofold:

the first goal is to augment conventional data-based modeling strategies with con-

straints derived from the underlying governing equations, and the second is to design

these physics-informed data-driven models to be compatible with in-situ, or online,

parameter adaptation. Additional emphasis in the chapter is placed on modern high-

performance computing trends to emphasize how chosen modeling frameworks should

be compatible with the way hardware and HPCs have evolved in the 21st century.

Chapter III: Because the K-means clustering strategy is used as the backbone

of the research contribution described in Chapter II, the goal of this chapter is to

252

provide the basic methodology and properties of K-means clustering within the con-

text of modeling reacting flows. The standard K-means algorithm (Lloyd’s algorithm)

is provided alongside discussions related to the modeling implications of the output

phase space partition (the centroidal Voronoi tessellation). Both advantages and

disadvantages of the standard K-means procedure are detailed, and properties of K-

means clusters are illustrated by comparisons with (a) spectral clustering outputs on

the illustrative half-moon dataset, (b) finite-volume based adaptive mesh refinement

(AMR), and (c) proper orthogonal decomposition (POD). Comparison with spec-

tral clustering illustrates how K-means trades cluster complexity for interpretability;

comparison with AMR shows how the K-means output – a space-filling tessellation

produced by centroids (generators) and a Euclidean distance function – can be inter-

preted as a data-adapted mesh of the phase space; comparison with POD illuminates

the role centroids play from the lens of modal decompositions. Based on these qual-

ities, the chapter provides two motivating applications to demonstrate the modeling

capability of K-means clustering for turbulent reacting flow. In the first application,

K-means is used to develop a data-based prognostic reduced-order model (known as

cluster-based reduced order modeling, or CROM) for the analysis and prediction of

flame transition in a model gas turbine combustor. In the second application, K-

means is used to develop a novel decomposition strategy termed time-axis clustering,

which departs from the CROM approach in that the clustering procedure is performed

over individual time-series instead of snapshots. These applications are intended to be

supplements/precursors to the classification-based regression approach demonstrated

in the next two chapters.

Chapter IV: The goal of this chapter is to demonstrate the classification-based

regression approach for unsupervised combustion regime identification and chemical

source term modeling in unsteady detonation waves found in RDEs. The approach

consists of two steps. In the first step (classification), a standard K-means clustering

253

algorithm is used in the thermochemical composition space to delineate combustion

regimes in the detonation wave structure via segmented flowfields. In the second

step (regression), the segmented fields are used to drive the training of several ANNs,

each of which produces source term estimations that are localized to the regimes

identified in the first step. The intent is to show that (a) the clustering output

recovers physically relevant delineations of combustion regimes in the detonation wave

structure in an unsupervised manner, and (b) the source term estimations obtained

from ANNs tailored to these different combustion regimes (i.e. local ANNs) are more

accurate than the estimations obtained when not considering the clustering output

during ANN training (i.e. global ANN).

Chapter V: This chapter extends the classification-based regression strategy in-

troduced in Chapter IV by embedding physical knowledge within the K-means clus-

tering procedure for flowfield classification. This is accomplished by augmenting the

standard Euclidean distance that drives the flowfield partitioning process with the

functional form for the chemical source terms (which is the modeling goal), creating

the class of physics-guided K-means clustering methods. Two strategies within this

class are developed in this chapter: Jacobian-scaled K-means (JS-K-means) and hi-

erarchical K-means (H-K-means). In JS-K-means, the Euclidean distance function

used in K-means clustering is modified by scaling the distance vector between two

points in a given cluster with the Jacobian of the chemical source term evaluated

at the centroid. This modification of the distance function induces a new objective

function that is different from that of standard K-means; minimization of the new

JS-K-means objective pushes clusters towards regions in composition space that re-

duce within-cluster variation in chemical source term without explicitly clustering

over source terms directly. This method is therefore interpreted as a mechanism for

redistributing (or biasing) a set of clusters produced by the standard K-means algo-

rithm towards regions of increased dynamical similarity. On the other hand, instead of

254

modifying the standard K-means algorithm directly as in the JS-K-means approach,

the H-K-means strategy builds a hierarchy by refining the clusters produced by the

standard K-means algorithm into sub-clusters. Clusters are flagged for refinement

using an error estimation procedure based on piecewise-constant predictions of chem-

ical source terms. Both of the above physics-guided clustering approaches are used

to drive a localized modeling strategy that departs from the ANN approach used in

Chapter IV, which is restricted by a training stage. Instead, because the new clus-

tering approaches are inherently biased towards regions of dynamical similarity, the

complex ANN-based source term estimation is traded for a much simpler linear ex-

trapolation prediction based on a Taylor expansion about the cluster centroids. The

physics-guided classification-based regression approach is demonstrated on a canoni-

cal channel detonation configuration.

6.2 Conclusions

High-fidelity simulations of next-generation propulsion devices like RDEs and

scramjets require resolved numerical treatment of the compressible Navier-Stokes

equations with detailed chemical kinetic descriptions to properly account for the cou-

pling of chemical reactions with turbulence and shock waves. Treatment of detailed

kinetics in these solvers constitutes a prohibitive computational bottleneck due to the

wide range of timescales present in the building-block elementary chemical reactions.

The resulting stiffness and nonlinearity stemming from the underlying dynamical sys-

tem driven by the chemical source term, which comes from a linear combination of

these elementary reaction rates, is notoriously difficult to deal with in all reacting

flow solvers for three reasons: (1) accounting for flow-chemistry interactions requires

solving a stiff ordinary differential equation in the thermochemical phase space for all

cells in the computational domain at every simulation time step; (2) the arithmetic in-

tensity of the right-hand-side evaluation for this ODE is very high (i.e. the evaluation

255

of the chemical source term is expensive due to the complexities of the Arrhenius for-

mulation); and (3) the costs due to time integration in (1) and source term evaluation

in (2) scale super-linearly with increases in chemical mechanism complexity.

In Chapter IV, using direct numerical simulation datasets of canonical detonation

configurations, a data-driven modeling procedure was developed with the goal of

treating the above chemistry bottlenecks to provide long-time simulation capability

for complex combustor geometries such as RDEs. The modeling approach, termed

classification-based regression, consisted of two linked phases with the end-goal of

accelerating chemical source term evaluations.

In the first phase (classification), classifications of instantaneous flowfields were

obtained from a standard K-means clustering algorithm on thermochemical compo-

sition data obtained from simulations of a detonation wave through a linear injector

array. Physical space projections of the cluster labels in composition space produced

the so-called segmented fields, which were found to delineate regions of the detona-

tion wave structure that are spatially coherent. Through an expert-guided analysis,

the various regions (clusters) in the segmented field represented the ambient fuel-air

mixture, a shock-separated region in the absence of fuel, a strong detonation region,

and post-detonation deflagration regions within the reaction zone. Although the clus-

tering procedure is itself unsupervised, the assignment of physical representations of

each cluster in a post-processing stage allowed for the development of a useful coarse-

grained perspective on detonation chemistry in physical space. Further, extending

the cluster partitions produced by the LMDE dataset into to another, unseen dataset

obtained from the stratified fuel-air mixture case showed how the classification strat-

egy can be used to quantify similarities in the detonation wave structure for different

configurations.

In the second phase (regression), ANNs were trained for each cluster (termed local

ANNs) to output chemical source terms given the input composition variables used to

256

produce the K-means partitions. A comparison of source term estimations obtained

from the local ANNs (i.e. ANNs trained for each cluster in isolation) with the global

ANN counterparts (i.e. a single ANN trained for the whole domain) showed general

improvement provided by the domain-localized modeling in the training datasets.

When predicting the source terms for unseen detonation waves in the same configu-

ration at a future timestep (the LMDE testing snapshot), the improvements provided

by the cluster-localized modeling became especially apparent and promising. When

ambitiously extending the trained networks to the unseen data at a different config-

uration, it was found that although in many regions the localized model alleviated

some of the large source term error variation seen in the global model, the source term

predictions overall were much poorer. Despite this, the successful demonstration of

this cluster-based localization of source term estimation on the unseen LMDE data is

promising with regards to the role of domain-localized neural networks in the enabling

of long-time simulations for complex combustion chemistry for situations in which the

operating configuration does not change. Overall, the quality of local ANN predic-

tions revealed the advantages and limitations of data-based modeling in general: the

prediction quality is high for unseen flowfields belonging to the same configuration as

that used to train the predictive models, and is low for unseen flowfields belonging

to a different configuration (the stratified detonation case). This is consistent with

expectations for purely data-driven approaches.

The classification strategy in Chapter IV utilizes the standard K-means algorithm

in thermochemical composition space to produce the required flowfield delineations

(segmented fields) for localized model deployment. Although the segmented fields

produced by visualizing the K-means cluster assignments in physical space can be

determined by expert-guided assessment to be correlated to key features within the

detonation wave structure, there is an inherent issue in the classification approach

of Chapter IV from the modeling perspective: by considering Euclidean distances

257

between points in composition space to drive the partitioning procedure, there is an

implicit assumption that the distance-based similarity of composition samples within

the same cluster equate to similarity in the source terms of the same samples. If

the underlying dynamics and sampling procedure used to populate the composition

space data is nonlinear, this quality is not generally true for all relevant regions in

composition space. In other words, there is no reason to believe that a partition

optimized to reduce within-cluster variation in composition space is also optimized

to reduce within-cluster variation in chemical source terms, especially if the source

term function is highly nonlinear (which is always the case).

Two physics-guided clustering strategies developed in Chapter V – Jacobian-scaled

K-means (JS-K-means) and hierarchical K-means (H-K-means) – address this issue

by providing alternatives to the standard K-means clustering strategy. The new

methods account for the underlying governing equations that describe the dynamics

in composition space (i.e. the chemical source terms) during the clustering proce-

dure. Ultimately, these physics-guided clustering algorithms present two separate

pathways that arrive at the similar end-result, which is ensuring that the resulting

clusters/partitions are intrinsically compatible with the modeling goal (source term

estimation) – this in turn allows for simpler methods for source term prediction based

on linearization (i.e. Taylor expansions) about the centroids, thereby eliminating the

need to train ANNs for the source term estimation task.

The JS-K-means algorithm minimizes a modified version of the standard K-means

objective; this modified objective measures within-cluster variation in chemical source

terms using scaled distances in composition space. The distance scaling is accom-

plished by using cluster-dependent chemical Jacobian matrices evaluated at centroids

to linearly transform the standard centroid-sample distance vector. Convergence of

the JS-K-means algorithm based on an initial condition prescribed by the output of

a standard K-means procedure (i.e. the burn-in approach) results in a redistribution,

258

or biasing, of centroids towards regions of high chemical sensitivity. Visualization

of this effect in physical space was performed via the analysis of segmented fields

for a canonical detonation wave – the flowfield delineations produced by the JS-K-

means algorithm pushed the standard K-means clusters towards highly stiff regions

of peak heat release rate near the detonation reaction zone. Further visualization

of this effect in composition space via POD projections showed how the Jacobian

scaling separates (or maximizes variation between) clusters in the source-term space

without explicitly using source term data during the clustering procedure, which in

turn provides improved pathways for localized kinetics modeling. To this end, linear

source term predictions derived from Taylor expansions about the respective centroids

demonstrated the improved modeling capability of the JS-K-means partitions.

The hiearchical K-means strategy provides a way to eliminate the number of clus-

ters K as an input. The approach refines select clusters in an input coarse partition

produced by a standard K-means algorithm until a target error tolerance is met.

An error estimation procedure based on piecewise constant predictions of chemical

source term is used to flag clusters for refinement, where the refinement of a cluster

is performed by running a smaller standard K-means algorithm on the subset of data

belonging to the flagged cluster. The end result is the production of a cluster hierar-

chy, which can be concisely visualized and used for modeling purposes by extracting

a so-called composite list of centroids with the help of an aggregation function. Al-

though the clustering mechanism is different, the cluster refinement procedure results

in partitions that resemble those produced by JS-K-means in that the final clusters

are inherently biased towards regions of dynamical similarity and chemical sensitivity.

Usefully, the hierarchical K-means strategy allows direct tuning of the source term

prediction accuracy through a reduction in the error tolerance.

Overall, the classification-based regression approach for source term estimation

presented in this work provides promising avenues for physics-guided data-driven ac-

259

celeration of compressible reacting flow simulations. Although clustering algorithms

based on Euclidean distances in thermochemical composition space (i.e. the distance

function used in standard K-means) can be correlated to physical regions of inter-

est in instantaneous reacting flowfields through expert-guided input, the concept of

embedding physics into the clustering procedure by means of Jacobian-based scal-

ing of distance vectors is a simple yet powerful tool that allows for the delineation

of dynamical similarity complex flowfields without user intervention. Although the

modeling strategies presented in this work were demonstrated to good success on

complex detonation-containing flows, several challenges and avenues for future work

remain. These are described in the next section.

6.3 Future Directions, Challenges, and Outlook

6.3.1 Next Steps for Classification-Based Regression Methodology

This dissertation presented two pathways for classification-based regression: the

first (Chapter IV) equips standard K-means partitions with local ANNs for source

term estimation (purely data-driven); the second (Chapter V) equips physics-guided

K-means partitions with linear models for source term estimation based on Taylor

expansions about the centroids. Although these strategies were demonstrated on com-

plex detonation containing flows, demonstrating these methods on datasets sourced

from full-geometry simulations of RDEs and scramjets in an a-priori setting is a tar-

get next step. A bigger challenge, and the ideal application of these methods, lies in

online integration within a GPU-based reacting flow solver – discussion on this aspect

is delayed to Sec. 6.3.2.

Additional next steps involve conducting more rigorous analysis of the physics-

guided clustering approaches (Jacobian-scaled K-means and the hierarchical refine-

ment strategy). This includes a more thorough analysis of the convergence properties

260

of the modified K-means algorithm used in the Jacobian-scaled K-means clustering

approach, such as investigation of centroid convergence trends with respect to number

of clusters and composition dimensionality. Further, the error estimation procedure

in the hierarchical refinement strategy is quite flexible and can be used in many dif-

ferent contexts: a promising future direction is considering an expert-selected subset

of components of the feature space (a few key species) in the cluster refinement cri-

terion instead of the entire set of features – this may be helpful for (a) extending

these methods to mechanisms of very high dimensionality (on the order of 100 or

1000 species), and (b) addressing issues related to poor source term predictions for

intermediary species source terms.

This dissertation focused on demonstrating a modeling approach designed to ac-

celerate full-geometry reacting flow simulations. As such, a required next step is the

direct analysis of time-to-solution gains using the classification-based regression ap-

proaches in Chapter IV and Chapter V. Note that both approaches were developed

with hardware considerations in mind: the ANN forward passes used in Chapter IV

and the simpler linear prediction framework of Chapter V, which consists of matrix-

vector multiplications of size equivalent to the number of species, are both ideal

for GPU execution. Properly assessing speedup for an apples-to-apples comparison,

however, requires the development of baseline chemical kinetics libraries that exe-

cute analytic source term evaluations in a GPU-optimal fashion. Development of

such a library is described in Appendix B, which provides a methodology for GPU-

optimal matrix-based kinetics. On a related note, Appendix C outlines pathways for

GPU treatment of chemical time integration algorithms using vectorized instanta-

neous source term evaluations produced either by the classification-based regression

models or the analytic baseline.

The linear prediction framework enabled by the physics-guided approaches is ex-

pected to be significantly faster than the analytic baselines (the Arrhenius-based

261

function evaluation is traded for a simple matrix-vector multiplication). Assessment

of speedup in the context of ANNs, however, is nontrivial due to the fact that the ANN

architecture must be specified a-priori – this was a primary motivator for adopting

the physics-guided clustering approaches. As such, for a given detailed mechanism,

an upper-bound on the complexity of the ANN architecture derived from the FLOPs

and arithmetic intensity of the analytic baseline in Ref. [16] must be prescribed.

Alongside source term evaluation times, assessment of overall time-to-solution in

the classification-based regression approach must also account for the cluster assign-

ment/labeling cost for a batch of query points, where the batch size is expected to

be equivalent to the number of cells in the computational domain. Cluster assign-

ment amounts to executing a nearest neighbor search in the composition space, the

optimization of which constitutes an active area of research in its own right. In the

end, for the strategy to be viable, the costs incurred by online classification cannot

outweigh speedup provided by the source term estimation model. Lastly, accuracy

and evaluation time comparisons with other tabulation approaches designed for in-

situ kinetics modeling (i.e. ISAT and PRISM) are necessary to verify the robustness

of the models presented in this dissertation.

6.3.2 Future Challenges and Recommendations

6.3.2.1 Integration with Flow Solvers

Integration of the physics-guided clustering approach into a GPU-based flow solver

for in-situ kinetics modeling is a natural next step, but constitutes a significant devel-

opmental challenge. A schematic of the target online framework is shown in Fig. 2.17.

Ideally, the classification-based regression framework should operate as an indepen-

dent module that takes as input from the solver an instantaneous flowfield, and pro-

vides as output to the solver the chemical source terms at each grid point for time

advancement. Within the module, the K-means partition should be adapted to the

262

flowfield as it evolves, in accordance with the error tolerance and error estimation

criteria provided in the H-K-means description in Chapter V. It is emphasized that

true online integration ensures flowfields provided to the modeling routine are never

written to disk, and are instead retained on device (i.e. GPU) memory – this is a

crucial requirement for high-fidelity simulations that produce large state vectors.

A major research challenge will likely come from reducing costs in the online

classification stage, which consists of batched nearest-neighbor evaluations (i.e. as-

signing points in composition space to their nearest centroids). Pathways to accel-

erate these evaluations, such as K-D trees, utilize bandwidth-limited tree traversal

strategies that are known to be incompatible with GPU programming environments;

conversely, brute-force search algorithms favored in GPU environments scale poorly

with high cluster numbers. Lastly, an additional challenge in solver integration comes

from ensuring compatibility of the physics-guided clustering algorithm (i.e. distance

evaluations, centroid updates, etc.) with the domain-decomposition based represen-

tation of the input flowfield (see the discussion related to the MPI+X computing

paradigm in Sec. 2.3).

6.3.2.2 Integration with Other Models

The modeling application in this dissertation focused on accelerating chemical

source term evaluations via cluster-based partitions; computational limitations due

to spatial resolution restrictions and chemical stiffness were unaddressed. The para-

graphs below describe how the physics-guided cluster partitions can be used to address

these challenges by means of combination with other modeling strategies.

Adaptive Mesh Refinement: Regarding spatial resolution restrictions, an in-

nate quality of the physics-guided clustering strategy is its ability to track features in

physical space as they evolve in time via the instantaneous segmented field. As such,

the method can readily be used alongside flow solvers built around adaptive mesh re-

263

finement. This is especially useful in detonation-containing flows where regions that

benefit from mesh refinement may not get picked up by conventional gradient-based

cell tagging routines (i.e. the induction zone in the detonation wave structure).

Computational Singular Perturbation: Chemical stiffness (i.e. the dispar-

ity in timescales stemming from the nonlinearity of the chemical source term) and

associated stiff time integration is a lingering challenge in solvers that utilize de-

tailed kinetics that, if addressed, can result in massive overall computational gain. A

physics-based ROM framework that treats this issue is computational singular per-

turbation (CSP, discussed in Sec. 2.4.5), which uses a basis projection to (a) decouple

the fast and slow chemical timescales, and (b) eliminate the fast timescales during

time integration using a manifold assumption. However, in practice, the cost of pro-

ducing the time-evolving basis functions (the eigenvectors of the chemical Jacobian

matrix) for each computational cell in the domain can negate the advantage provided

by timescale separation. To this end, the cluster partitions can be used to eliminate

the basis function evaluation cost via an extended tabulation procedure: for example,

points in physical space belonging to the same cluster in composition space can share

CSP basis functions. If successful, this strategy can reduce evaluation times by a

factor proportional to NC/K, where NC is the number of computational cells in the

domain and K is the number of clusters.

Autoencoders: An additional challenge touched on earlier in this section lies in

scaling the clustering procedure to very complex detailed mechanisms that contain

on the order of NS = 1000 species or higher. Due to the curse of dimensionality,

clustering in very high dimensions is challenging for several reasons, including (1)

increased dependence on initialization (initial centroid locations in K-means type

algorithms), (2) decreased expressive power of Euclidean-based distances, (3) higher

chance of encountering complex/irregular cluster structures, and (4) long nearest

neighbor search times. Mechanism reduction strategies are ultimately required to

264

address these issues. Although separate modeling approaches designed to reduce

mechanism size have been widely explored in the numerical combustion community

from both physics-based and data-based perspectives, the order reduction provided

by these methods does not guarantee a cluster-compatible latent space (or reduced

composition space). To this end, methods that integrate dimensionality reduction

objectives with clustering objectives into a unified framework can be used to scale

the classification-based regression strategy to high NS. An example of this is the class

of deep clustering methods which utilize autoencoders for dimension reduction (see

Sec. 2.5.5).

Time-Axis Clustering: Time-axis clustering was presented in Sec. 3.5 as a

novel modal decomposition strategy that produces a segmented field similar to the

clustering procedures used in Chapters IV and V. The fundamental difference is that

it executes K-means over time series data sampled from an ensemble of spatial col-

location points, where the ensemble size is equal to the number of grid points used

to discretize the spatial domain. As such, instead of centroids representing local

averages of thermochemical composition samples (Chapters IV and V), centroids in

the time-axis decomposition represent conditionally averaged time series for an ob-

servable function. Although the time-axis concept was introduced and demonstrated

briefly on a combustor dataset in Sec. 3.5, further applications of the technique are

warranted due to its ability to correlate these conditionally averaged time series with

unique locations in physical space. The concept of deriving order reduction from con-

ditional averages of underlying dynamics is also related to ideal large-eddy simulation

formulations (see Sec. 2.4.1) – solidifying this relationship is a promising avenue for

exploring the potential time-axis clustering.

265

6.3.3 Closing Remarks

The abundance of data in modern times has cemented the role of data-driven mod-

eling as a pathway for accelerating high-fidelity numerical simulations of fluid flows.

This is especially useful for guiding both design processes and physical understanding

of next-generation propulsion concepts like rotating detonation engines and scram-

jets, which are known to exhibit highly complex unsteady behavior stemming from

the multiscale interactions between turbulence, shockwaves, and chemical reactions.

By embedding underlying physical knowledge into the data-driven modeling work-

flow and ensuring algorithms can deployed in online (or in-situ) settings within flow

solvers, data-driven models have the powerful ability to treat issues of non-universality

present in both purely physics-based and purely data-based modeling alternatives.

It is important to recognize that the rapid rise in the availability of data in the

21st century is also reflected in the contemporaneous evolution of hardware via the

widespread adoption of energy-efficient GPUs. As such, when designing new data-

driven modeling approaches, the numerical combustion community must ensure that

developed algorithms are compatible with evolving trends in hardware such that mod-

eling approaches can be realistically deployed for solver acceleration purposes, and

are compatible with the now GPU-dominated high performance computing resources.

Ultimately, research into data-driven modeling for compressible reacting flow ap-

plications is still in its infancy – the techniques described in this dissertation provide

one pathway by which physics-guided data-driven modeling can be used to push new,

more efficient hypersonic energy generation devices into widespread usage.

266

APPENDICES

267

APPENDIX A

Derivation of Centroid Update Rule

The sections below outline derivations of the centroid update rule for three versions

of the K-means objective:

1. The standard K-means objective that utilizes the vanilla Euclidean distance

measure (Sec. A.1).

2. A modified K-means objective that scales sample-centroid distances by a fixed

scalar value that is independent of the centroid locations (Sec. A.2).

3. A modified K-means objective that scales sample-centroid distances by a centroid-

dependent scaling variable (Sec. A.3); this is the same modification used in the

Jacobian-scaled K-means approach in Sec. 5.3.

As will be seen below, the derivations show that the centroid update rule obtained

from minimizing (1) and (2) comes from the average of within-cluster samples – i.e.

scaling the K-means objective by a constant factor does not change the standard

centroid update rule as expected. However, for approach (3), which is the same

modification used in the Jacobian-Scaled K-means formulation in Sec. 5.3, minimiza-

tion of the modified objective produces a centroid update rule that deviates from

the within-cluster average by a residual proportional to the within-cluster variance of

samples.

268

For illustrative purposes and to simplify the derivations, the input samples here

are scalars (i.e. D = 1); derivation trends and main takeaways from the scalar case

are expected to apply in general to higher dimensional cases. Also, to facilitate clearer

and more readable derivations, the notation used below deviates from that used in

Chapter III, and instead follows the notation used in Ref. [37].

The input data samples are denoted ϕi ∈ R, i = 1, . . . , N , where N is the number

of samples. The centroids are denoted ck ∈ R, k = 1, . . . , K, where K is the number

of clusters. The set of centroids is given by c = {c1, c2, . . . , cK}.

The objective in the K-Means algorithm is to find a c that minimizes the within-

cluster variance. This can be expressed in the obective function E(c), where

E(c) =
∑
i

1

2

∥∥ϕi − csi(c)∥∥2

2
=

∑
i

1

2

(
ϕi − csi(c)

)2
. (A.1)

In Eq. A.1, si(c) encodes the centroid index that is closest to the sample ϕi. In

other words, si(c) = k if sample ϕi is closest to centroid ck in the Euclidean sense.

Equation A.1 is equivalent to the standard K-means objective provided in Eq. 3.1

in the scalar case – the factor of 1/2 is inconsequential and is included above for

convenience. Additionally, the function of si(c) is equivalent to the function of the

assignment matrix L in Eqs. 3.1 and 3.4.

In the standard K-means approach, the goal is to produce a set of K centroids

that minimizes the above objective. To accomplish this, one path is to recover an

centroid update equation from gradient descent as

∆c = ϵ
∂E(c)

∂c
, (A.2)

where ϵ is a so-called learning rate. Although we can proceed in the gradient descent

context, a more intuitive formulation comes from the expectation-maximization (EM)

perspective [37], which boils down to the following question: given some previous

269

value of the centroids, what are the values of si(w) that minimize the

objective? The derivations below proceed in the context of this question.

A.1 Standard K-means

We can cast the above question in the following cost function, which is related to

the original objective defined in Eq. A.1:

Q(c, c′) =
∑
i

1

2

∥∥ϕi − c′si(c)∥∥2

2
=

∑
i

1

2
(ϕi − c′si(c))

2. (A.3)

In Eq. A.3, the current set of centroids is c and the next (new) set of centroids is c′.

The goal is to find an update rule for c′k – the k-th centroid at the next iteration – that

minimizes the objective/cost function in Eq. A.3. This is referred to as ”standard”

K-means (see Chapter III) because the objective function in Eq. A.3 utilizes the usual

Euclidean distance.

The analytic solution to the minimization comes from solving the following alge-

braic equation:

∂Q(c, c′)

∂c′k
= 0. (A.4)

Because K-means is a hard clustering method, there are two conditions: si(c) = k

and si(c) ̸= k. If si(c) = k, the partial derivative in Eq. A.4 becomes

∂Q(c, c′)

∂c′k
=

∂

∂c′k

[∑
i

1

2
(ϕi − c′k)2

]

=
∑
i

∂

∂c′k

[
1

2
(ϕi − c′k)2

]
=

∑
i

c′k − ϕi.

(A.5)

If si(w) ̸= k, the partial derivative in Eq. A.4 is zero. Combining these conditions

270

leads to the expression

∂Q(c, c′)

∂c′k
=

∑
i

c′k − ϕi if si(c) = k,

0 otherwise.

→ ∂Q(c, c′)

∂c′k
=

∑
i:si(c)=k

(c′k − ϕi). (A.6)

Solving for Eq A.4 results in

∂Q(c, c′)

∂c′k
=

∑
i:si(c)=k

(c′k − ϕi) = 0,

∑
i:si(c)=k

c′k =
∑

i:si(c)=k

ϕi,

(A.7)

which ultimately provides the familiar centroid update rule:

c′k =
1

Nk

∑
i:si(c)=k

ϕi, where Nk =
∑

i:si(c)=k

1. (A.8)

In other words, the centroid at the next iteration c′k is the within-cluster sample

mean using labels from the previous iteration – convergence of the iterative procedure

minimizes the target objective in Eq. A.3, which was the starting point. This is the

update rule used in both Alg. 1 and Alg. 2.

A.2 Constant Scaling Factor

Here, the standard K-means objective is modified slightly with a constant-valued,

linear scaling factor a:

Q(c, c′) =
∑
i

1

2

∥∥a(ϕi − c′si(c))∥∥2

2
=

∑
i

1

2
(aϕi − ac′si(c))

2. (A.9)

Constant-valued here means a is set once a-priori and fixed – since both data points

ϕi and centroids ck are scalars, a in this case is also a scalar. In the case of si(c) = k,

271

the partial derivative becomes

∂Q(c, c′)

∂c′k
=

∂

∂c′k

[∑
i

1

2
(aϕi − ac′k)2

]

=
∑
i

∂

∂c′k

[
1

2
(aϕi − ac′k)2

]
=

∑
i

a2(c′k − ϕi).

(A.10)

Again, note that if si(c) ̸= k, the partial derivative ∂Q(c,c′)
∂c′k

= 0. This leads to

∂Q(c, c′)

∂c′k
=

∑
i

a2(c′k − ϕi) if si(c) = k,

0 otherwise.

→ ∂Q(c, c′)

∂c′k
=

∑
i:si(c)=k

a2(c′k − ϕi).

(A.11)

Because the parameter a is nonzero, solving ∂Q(c,c′)
∂c′k

= 0 for c′k produces the same

update rule as the standard case (Eq. A.8).

A.3 Centroid-Dependent Scaling Factor

The standard K-means objective is modified here with a centroid-dependent scal-

ing factor A(ck) ∈ R:

Q(c, c′) =
∑
i

1

2

∥∥A(c′si(c)) (ϕi − c′si(c))∥∥2

2
=

∑
i

1

2

(
A(c′si(c))ϕi − A(c

′
si(c)

)c′si(c)
)2
.

(A.12)

The scaling factor Ak = A(c′k) is evaluated at a specific centroid location and is

directly analogous to the role played by Ak in the Jacobian-scaled K-means formula-

tion used in Chapter V, Sec. 5.3. This means that the scaling factor Ak dynamically

adapts to the movement of the centroids during the K-Means iterations. As alluded in

Sec. 5.3.2, the derivations below show that the standard centroid update incurs an er-

ror when augmenting the distance function in the objective with a centroid-dependent

272

linear scaling, as in Eq. A.12.

In the case of si(c) = k, the partial derivative becomes

∂Q(c, c′)

∂c′k
=

∂

∂c′k

[∑
i

1

2
(A(c′k)ϕi − A(c′k)c′k)

2

]

=
∑
i

∂

∂c′k

[
1

2
(A(c′k)ϕi − A(c′k)c′k)

2

]
=

∑
i

(A(c′k)ϕi − A(c′k)c′k)
∂

∂c′k

[
A(c′k)ϕi − A(c′k)c′si(c)

]
︸ ︷︷ ︸

Ψ

(A.13)

Expanding for the term denoted Ψ in the above equation yields

Ψ =
∂

∂c′k

[
A(c′k)ϕi − A(c′k)c′si(c)

]
=

∂

∂c′k
[A(c′k)ϕi]−

∂

∂c′k
[A(c′k)c

′
k]

= ϕi
∂A(c′k)

∂c′k
−
(
c′k
∂A(c′k)

∂c′k
+ A(c′k)

)
=
∂A(c′k)

∂c′k
(ϕi − c′k)− A(c′k).

(A.14)

Plugging back in to Eq. A.13:

∂Q(c, c′)

∂c′k
=

∑
i

(A(c′k)ϕi − A(c′k)c′k)
(
∂A(c′k)

∂c′k
(ϕi − c′k)− A(c′k)

)
︸ ︷︷ ︸

Ψ

=
∑
i

−A(c′k) (A(c′k)ϕi − A(c′k)c′k) +
∂A(c′k)

∂c′k
(ϕi − c′k) (A(c′k)ϕi − A(c′k)c′k)

=
∑
i

∂A(c′k)

∂c′k
A(c′k)(ϕi − c′k)2︸ ︷︷ ︸

Variance contribution

− A(c′k)
2(ϕi − c′k)︸ ︷︷ ︸

Fluctuation contribution

.

(A.15)

Note that in Eq. A.15, the partial derivative contains the same fluctuation contribu-

tion as Eq. A.10, the constant scaling case. What is introduced by the additional

requirement of centroid-dependency in the scaling factor, however, is an additional

contribution that (a) depends on a gradient of A(c′k), and (b) scales with the within

273

cluster variance expressed as (ϕi − c′k)
2. This modification can also be interpreted

as the inclusion of a higher-order term in the form of an additional within-cluster

moment.

Recall again that in the case of si(c) ̸= k, we get the usual ∂Q(c,c′)
∂c′k

= 0. As such, an

iterative solution to the minimization problem requires solving the following equation

for c′k:

∂Q(c, c′)

∂c′k
=

∑
i:si(c)=k

∂A(c′k)

∂c′k
A(c′k)(ϕi − c′k)2︸ ︷︷ ︸

Variance contribution

−
∑

i:si(c)=k

A(c′k)
2(ϕi − c′k)︸ ︷︷ ︸

Fluctuation contribution

= 0. (A.16)

The key takeaway is that if the variance contribution diminishes, the update rule

for the centroids becomes the standard update of Eq. A.8. The above equation can

therefore be interpreted as deviation from the standard centroid update rule by a

residual proportional to the variance contribution. As implied by Eq. A.16, a variance

contribution of zero would require one the following conditions to be met:

• The gradient of the scaling factor within the cluster is zero.

• The within-cluster variance is zero.

• The scaling factor itself is zero.

If the scale factor A(ck) is derived from the Jacobian of a chemical source term

(as in the Jacobian-scaled K-means procedure described in Chapter V), the first

condition cannot be valid in regions of high chemical sensitivity. Further, within

this context, the second and third conditions are met only in trivial equilibrium and

ambient conditions in which there is no chemical contribution to the dynamics (i.e.

zero source term). As such, a centroid update that does not take into account the

variance contribution in Eq. A.16 cannot guarantee monotonic convergence of the

modified objective function in Eq. A.12 – this is consistent with the non-monotonic

convergence trends observed for the Jacobian-scaled K-means algorithm in Sec. 5.3.

274

APPENDIX B

Matrix Formulations of Chemical Kinetics for

Acceleration on GPUs

The objective of this Appendix is to provide a GPU-optimal analytic baseline for

source term evaluation required to assess the computational benefit of the classification-

based regression algorithms presented in Chapters IV and V. In a nutshell, the method

presented here achieves optimal GPU evaluation of the chemical source terms by re-

casting the analytic equations for the reaction rates in a matrix-oriented fashion that

resembles neural network layers [16]. The idea is to extract the computational ben-

efit of batched matrix-multiplications over cells provided by frameworks like neural

networks without the need for a training stage. This resulted in the development

of a CUDA-based library, UMChemGPU, which consists of wrappers around lower level

NVIDIA cuBLAS and cuSPARSE matrix multiplications to drive the chemical source

term evaluations. A schematic of the library-solver interface is shown in Fig. B.1, and

the end-user operating scope upon integration into a flow solver is shown in Fig. B.2.

It is a separately compiled module designed to be linked to any reacting flow solver to

enable GPU-optimal kinetics treatment for both instantaneous chemical source term

evaluation (discussed here) and chemical time integration (discussed in Appendix C –

see Refs. [16, 30, 340] for more detail on this matter, and for an analysis of the solver

performance gain provided by UMChemGPU when treated as a drop-in replacement for

275

UMChemGPU

Linking step

Compilation step (nvcc)

Provide
filepath

Provide
filepath

CUDA/cuBLAS/cuSPARSE Source Code Include
files

Python
module

C++ based flow solver: e.g. UMReactingFlow

Chemical source terms

Chemical time integration

Figure B.1: UMChemGPU library interface. Wrappers around CUDA-based subrou-
tines are compiled and then linked to the flow solver. Python module extracts key
parameters from mechanism file via Cantera library [109] (e.g. stoichiometric coeffi-
cients, polynomial coefficients, etc.).

conventional CPU-based kinetics libraries.

The method presented here is important not only for providing an ideal GPU-

based baseline for separate kinetics modeling approaches, but also for guiding the

development of new models that seek to achieve simulation acceleration via compati-

bility with this GPU-optimal approach. For example, the analytic approach presented

here provides an upper bound on floating point operations (FLOPs) and arithmetic in-

tensity for source term evaluation that can guide the design of ANN architectures used

in Chapter IV (the ANN forward pass should not be more expensive than the GPU-

optimal baseline). Additionally, GPU-optimal source term evaluations are required

for integrating the source term tabulation approach based on physics-guided cluster-

ing in Chapter V into flow solvers, as analytic source terms (as well as Jacobians) are

required at the reference points (which are the cluster centroids in Chapter V).

276

NC

NS

ρY(t) Ω(t) NC

NSMatrix-based Source Term Evaluation on GPU

NC

NS

ρY(t) NC

NSMatrix-based Time Integration on GPU

ρY(t + T)

Figure B.2: End-user operating scope of UMChemGPU. (Top) Matrix-based instan-
taneous chemical source term evaluation, which is described in this Appendix. Blue
matrix on left is matrix of species concentrations, and red matrix is correspond-
ing chemical source terms (although not shown in schematic, temperature source
term also provided). NC is number of cells and NS number of species. (Bottom)
Matrix-based chemical time integration routine that uses matrix-based rate evalua-
tions, which is described in detail in Appendix C.

Note that other approaches for GPU-offloading for chemical kinetics have been

explored in detail in recent years [68, 221, 308], and their implementation into high-

fidelity parallel solvers has also been demonstrated [249]. The novelty of the method

presented here is the emphasis on ensuring vectorization over number of cells, species,

and reactions via matrix formulations which are ideal for GPU computing environ-

ments. Additionally, emphasis here is placed on the importance of throughput analy-

sis, which ensures that the method is utilizing the GPU hardware to its fullest extent.

In the end, upon integration into flow solvers, the method (via the UMChemGPU library)

displays overall time-to-solution gains that increase as (a) the number of cells offloaded

to the GPU increases, and (b) the mechanism complexity increases [30, 340].

The remainder of this Appendix proceeds as follows. In Sec. B.1, the methodology

for the matrix-inspired formulation is presented in the language of artificial neural

networks, and a classification of reaction types that facilitates the GPU performance

277

analysis is provided. In Sec. B.2, the GPU performance is assessed in detail from

a compute time and throughput perspective, the costs of individual reaction types

are assessed, and a pathway for improving the speedup for very large mechanisms is

provided.

B.1 Methodology

This section first summarizes the chemical kinetic equations from a matrix-based

perspective (Sec. B.1.1), and then discusses the data structure and organization of the

matrices used in the GPU computations (Sec. B.1.2). The matrix-based formulations

are presented in the language of traditional artificial neural networks (ANNs) where

appropriate. Conveying the exact formulation of the source term computation with

ANNs is intended to inform the reader that the form of kinetics equations as-is is

efficiently described via neural network layers without any need for training or mod-

eling. For this reason, the ANN connections can lead to valuable insights regarding

the general interpretation and potential design of GPU-optimal chemical mechanisms.

Additionally, the neural network connections open pathways for constrained modeling

approaches, here called “approximate ANNs”, which can be designed to reduce the

overall computational effort undertaken during the exact source term computation

at the cost of perfect accuracy. Although it does not fall into the main scope of

this Appendix, additional details on the approximate ANN formulation are provided

Ref. [16].

Of special importance in Sec. B.1.2, and tied to the matrix data structures ex-

plained therein, is the distribution of different reaction types present in a given mech-

anism. In general, different algorithms are required for different reaction types—some

allow for matrix formulations and others do not. As such, a characterization of chem-

ical mechanisms based on the distribution of these reaction types is presented to

provide a pathway for assessing: (a) how beneficial the matrix representation can

278

be for a particular mechanism; and (b) how the prevalence of specific reaction types

can positively or negatively impact the GPU-derived speedup. The main reason for

introducing the reaction-type classification is to bring forward the idea that, in the

determination of GPU speedup, mechanism species and reaction numbers are not

the only factors; the complexity of the individual reactions themselves also plays an

important role.

B.1.1 Matrix-Based Kinetics Equations

The analytic equations for chemical source terms are repeated here from Sec. 2.2

for convenience, and are then recast in the matrix-based formulation. In the following,

the quantities NC , NS, and NR denote the batch size (which can be interpreted as the

number of reacting cells in a domain offloaded to the GPU), number of species, and

number of reactions, respectively. Unless otherwise indicated, matrices are denoted

by bold symbols (e.g., A) and vectors by non-bold symbols (e.g., a). The scalar entry

of matrix A in row i and column j is denoted Aij; similarly, the scalar ith entry of

vector a is denoted ai. Further, the quantities i, j, and k index NC , NR, and NS,

respectively (i.e., i = 1, . . . , NC , j = 1, . . . , NR, and k = 1, . . . , NS). For the set of

species {S1, . . . ,SNS
}, a general chemical mechanism is represented as

NS∑
k=1

ν ′
kjSk ⇌

NS∑
k=1

ν ′′
kjSk, j = 1, . . . , NR, (B.1)

where ν ′ ∈ RNS×NR (respectively, ν ′′) is the reactant (respectively, product) stoichio-

metric coefficient matrix and ν = ν ′′ − ν ′. The formulations below proceed, without

loss of generality, in the context that all NR reactions are reversible. In practice, as

discussed in greater detail in Sec. B.1.3, this may not be the case.

279

The molar net production rate (kmol/m3s) for species k in cell i is

Ωik =

NR∑
j=1

νkjQnetij , (B.2)

where Ω ∈ RNC×NS contains the source terms and Qnet ∈ RNC×NR contains the net

reaction rates. Note that Eq. B.2 can be expressed concisely through the matrix

multiplication Ω = Qnetν
T . The complexity comes from the net reaction rate, which

is expressed as

Qnetij = Qfij −Qrij = Kfij

NS∏
k=1

C
ν′kj
ik −Krij

NS∏
k=1

C
ν′′kj
ik . (B.3)

Above, Qf and Qr ∈ RNC×NR are the forward and reverse reaction rate matri-

ces, respectively; Kf and Kr ∈ RNC×NR are the forward and reverse rate constants,

respectively; and C ∈ RNC×NS contains the species molar concentrations. Since Qf

and Qr are non-negative, Eq. B.3 can be interpreted as a summation of two ANN

layers by enabling matrix multiplications in the logarithm space:

Qnet = exp
(
log(C)ν ′ + log(Kf)

)
− exp

(
log(C)ν ′′ + log(Kr)

)
. (B.4)

It can be seen through Eq. B.4 that the forward and reverse contributions are ANN

layers with exponential activation functions, where the input is the logarithm of the

concentration matrix C, the weight matrices are known stoichiometric coefficients ν ′

and ν ′′, and the biases are the logarithms of rate constants Kf and Kr for the forward

and reverse contributions, respectively. These rate constant bias terms can also be

interpreted as neural network layers and are the subjects of discussion further below.

Fig. B.3a summarizes the above formulation (Eqs. B.2 and B.4) through an ANN

architecture. Note that the leading matrix dimension of all input and output vari-

ables, which constitutes the batch size in the forward pass, is NC . This allows for

280

log C1

log CNS

log C1

log CNS

Qf1

QfNR

QrNR

Qr1

C
on

ce
nt

ra
tio

n
C

on
ce

nt
ra

tio
n

Fo
rw

ar
d

ra
te

R
ev

er
se

 ra
te

Qnet1

QnetNR

Ω1

ΩNS

N
et

 ra
te

So
ur

ce
 T

er
m

So
ur

ce
 T

er
m

log T

1/T

log Kf1

log KfNR

Wf

Arrhenius Neurons

Fo
rw

ar
d

C
on

st
an

t

log T

1/T

T

T2

T3

T4

log Kc1

log KcNR

WG

Gibbs Neurons

Eq
ui

lib
riu

m
 C

on
st

an
t

(a) (b)

(c)

Figure B.3: Illustrations of ANN-based formulations for NC = 1, NS = 4, and
NR = 8. Since NC = 1, input/outputs are vectors and cell indices are ignored. (a)
Schematic of Eqs. B.2 and B.4. Exponential activation functions are used to produce
forward/reverse rates. (b) Schematic of Arrhenius layer for forward rate constant
(Eq. B.6), which is interpreted as a bias term for the output of the forward rate layer
in (a) (see Eq. B.4). (c) Schematic of Gibbs layer equilibrium constant (Eq. B.11).
The schematics in both (b,c) produce the logarithm of the reverse rate constant,
which is interpreted as a bias term for the output of the reverse rate layer in (a) (see
Eq. B.4).

efficient threading and fast execution in high fidelity settings, assuming optimized

linear algebra libraries (such as cuBLAS) are utilized by the user. The remaining

task, described below, is to obtain the rate constants Kf and Kr.

The forward rate constant Kf ∈ RNC×NR is given by the Arrhenius expression

Kfij = AjT
βj
i exp

(
− Ej
RTi

)
, (B.5)

where A, β, and E are vectors each of size NR containing pre-exponential factors,

temperature exponents, and activation energies respectively for the elementary reac-

tions. These Arrhenius parameters are known to the user through the mechanism

files. The natural logarithm of the forward rate (required in Eq. B.4) usefully yields

281

a form that can also be interpreted as a linear ANN layer,

log(Kf) = XfWf +Bf , where (B.6)

Xf =

log T1 1/T1

log T2 1/T2
...

...

log TNC
1/TNC

, Wf =

 β1 · · · βNR

−E1/R · · · −ENR
/R

 , Bf =

logA1

logA2

...

logANR

T

.

In Eq. B.6, Xf ∈ RNC×2 is the temperature-dependent input, Wf ∈ R2×NR is

a weight matrix consisting of temperature exponents and activation energies, and

Bf ∈ R1×NR is a bias term of pre-exponential factors. In this sense, each row of the

layer output log(Kf) can be interpreted as a set of NR Arrhenius neurons.

The reverse rate constant Kr ∈ RNC×NR is given by

Krij = Kfij/Kcij , (B.7)

where Kc ∈ RNC×NR contains the equilibrium rate constants. Since the expression for

log(Kf) is provided through the Arrhenius neurons (Eq. B.6), the task of determining

log(Kr) required in Eq. B.4 is accomplished by considering only log(Kc).

The equilibrium constant for cell i and reaction j is [261]

Kcij =

(
pref
RTi

)∑
k νkj

exp

(
∆Sj(Ti)

R
− ∆Hj(Ti)

RTi

)
, (B.8)

where ∆Sj and ∆Hj are changes in entropy and enthalpy for reaction j, and pref is

282

the reference pressure (1 bar). The logarithm of Eq. B.8 yields

log(Kcij) =

NS∑
k=1

νjk

(
−Gik +

pref
RTi

)
, (B.9)

whereG ∈ RNC×NS is the nondimensional Gibbs free energy matrix (hereafter referred

to as the Gibbs matrix) obtained from the nondimensional enthalpy (H ∈ RNC×NS)

and entropy (S ∈ RNC×NS) matrices. Each entry in the Gibbs matrix is determined

from NASA polynomials which provide species enthalpy and entropy as tabulated

functions of temperature. The result can be expressed as a matrix multiplication

G = H− S = XGWG +BG, where (B.10)

XG =

log T1 T1 T 2
1 T 3

1 T 4
1 1/T1

log T2 T2 T 2
2 T 3

2 T 4
2 1/T2

...
...

...
...

...
...

log TNC
TNC

T 2
NC

T 3
NC

T 4
NC

1/TNC

, WG =

α1,1 . . . α1,NS

α2,1 . . . α2,NS

...
. . .

...

α6,1 . . . α6,NS

, BG =

α7,1

α7,2

...

α7,NS

T

.

In Eq. B.10, XG ∈ RNC×6 is the input consisting of various functions of temper-

ature and α ∈ R7×NS is a matrix of polynomial coefficients; the first six rows of α

is the weight matrix WG and the last row is the bias BG. Note that, although not

shown in Eq. B.10 for conciseness, the quantities in α (and in turn WG and BG) are

also functions of the cell temperature Ti and the species index. This is because the

species polynomial coefficients change based on a cutoff temperature (usually 1000 K).

Regarding practical implementation, in the case that the NASA cutoff temperature

is the same for all of the species (say 1000 K), it is possible to treat the evaluation of

Eq. B.10 (the first layer in Fig. B.3c) with linear algebra libraries (i.e., cuBLAS op-

erations) by populating two copies of α based on the cutoff threshold. However, this

283

approach is only feasible in the case when the NASA cutoff temperature is the same

for all of the species. In the more general case where the cutoff temperature varies

with the species index, it is much more convenient to directly treat the evaluation

of Eq. B.10 using a custom matrix multiplication kernel that computes the polyno-

mial directly—with conditional logic that populates the values in α on-the-fly based

on the cell temperature—instead of a using the cuBLAS (or other similar) routines.

The convenience here outweighs the hit on GPU optimality, and, as such, this is the

approach used in the GPU implementation profiled in Sec. B.2.

Inserting Eq. B.10 into Eq. B.9 gives

log(Kc) = −(XGWG +BG)ν, (B.11)

where the standard concentration term pref/RTi has been integrated into the bias

BG. Eq. B.11 can be interpreted as a linear two-layer ANN. The parameters of the

first layer (the Gibbs layer) are the temperature-dependent WG and BG and those of

the second layer are the net stoichiometric coefficients ν. The intermediary neurons

(i.e., hidden layer neurons) here are referred to as the Gibbs neurons.

Illustrations of both the forward and the equilibrium rate constant formulations as

neural network-inspired architectures are shown in Fig. B.3b,c, with Arrhenius and

Gibbs neurons highlighted. Alongside the formulations provided above, however,

some additional complications arise when considering the forward rate constant in

detailed reaction mechanisms and the treatment of zero concentrations. These are

considered in the present work and brief descriptions on their implementation are

described below.

To handle three-body reactions, the quantity log(M) is added to log(Kf), where

M ∈ RNC×NR is a matrix of third-body concentrations for each reaction (Mij is 1 if

reaction j does not include a third body). The entries in M can be obtained through

284

the matrix multiplication M = CE, where E ∈ RNS×NR is a matrix of third-body

efficiency factors. In practice, for computational savings, the third body concentration

matrix equation is evaluated only for the subset of total reactionsNR, since third body

concentration terms are generally not present in every single reaction.

Additionally, falloff and pressure-log reactions, which constitute two of the reac-

tion types discussed further below in Sec. B.1.2, are treated separately from standard

Arrhenius reactions as defined in Eq. B.6. In summary, they modify the standard

matrix-based formulation of the forward rate constant logarithm by incorporating

much more complex and arithmetically intensive expressions. As such, pressure-log

and falloff formulations such as that of Lindemann, Troe, or SRI are handled on the

GPU in a custom non-matrix fashion. More information on the mathematical imple-

mentation expressions for these reactions can be found in the Cantera and Chemkin

documentation [109, 144].

Lastly, it is necessary to acknowledge that the treatment of kinetics in the log-

arithm space introduces scenarios in which logarithms of zero concentration are re-

quired. There are several ways to treat this with effectively zero propagating error –

some options are listed below.

1. Let the GPU handle the zero concentrations natively. For example, CUDA

supports the operation of exp(log(0))=0 through the Inf floating point place-

holder. That is, CUDA ensures that the operation log(0)=-Inf, and that

exp(-Inf)=0.

2. Replace either the zero concentrations or mass fractions with an extremely small

positive number and then proceed with the computations. This number should

be small enough (i.e. 1.0e-300) to effectively produce a huge negative number

upon taking the logarithm.

3. Replace the logarithm of the zero concentrations directly with a huge negative

285

number, e.g., through a re-definition as log(0)=-1.0e300.

It should be noted that errors are indeed introduced from all of the above treat-

ments of the zero logarithm, as it is mathematically undefined and the numerical

treatments incur some truncation penalties. However, these errors are microscopic

relative to other error sources that are encountered in a reacting flow simulation and

are unnoticeable in practice (verification is provided in the Appendix of Barwey and

Raman [16]).

B.1.2 Organization of Data

The notion of NC , NR, and NS introduces three matrix types that represent the

backbone of the methodology discussed above: an NC × NR reaction matrix, an

NC × NS species matrix, and an NS × NR (or the transpose) stoichiometric matrix.

As per the formulations in Sec. B.1.1, reaction matrices are used to define quanti-

ties such as rate constants and reaction rates, whereas species matrices are used to

define concentrations, mass fractions and species net production rates. Stoichiomet-

ric matrices can be interpreted as tools that transform a matrix from the species

representation to the reaction representation or vice versa.

Assuming the matrices occupy contiguous blocks of memory, there are two ways

to go about their storage: a row-major or a column-major representation. As an

example, consider some givenNC×NR matrixA (a reaction matrix). In the row-major

format, the reaction matrix is represented as an NC-sized stack of 1×NR row vectors.

On the other hand, in the column-major format, the matrix is interpreted as an NR-

sized stack of NC × 1 column vectors. This difference is shown in Fig. B.4a. There

are a few reasons the column-major representation is more beneficial here. First,

in most realistic high-fidelity applications, we have the condition NC ≫ NR > NS.

From a GPU efficiency perspective, it is important to have memory coalescence along

286

Rowmajor vs Column

NC

NR NR

Column major Row major

(a)

Irreversible Reversible

St
an

da
rd

Fa
llo

ff

Pr
es

su
re

-lo
g

St
an

da
rd

Fa
llo

ff

Pr
es

su
re

-lo
g

NC

NR,irv NR,rev

(b)

Figure B.4: (a) Interpretations of a matrix in column major (left) and row major
(right) formats. The gray shapes within the matrices show the storage method as a
stacking of NR column vectors (for column major) or NC row vectors (for row major).
(b) Decomposition of a reaction matrix into NR,irv irreversible and NR,rev reversible
sub-matrices, each with another set of sub-matrices corresponding to standard, falloff,
and pressure-log reaction types.

the highest dimension NC , which necessitates a column-major storage format for A.1

Second, the practical implications of designing a matrix as a collection of NC × 1

vectors is appealing – it allows for naturally extracting contiguous NC ×NX subsets

of the A matrix, where NX ≤ NR. This becomes especially useful when dealing

with different reaction types as discussed in Sec. B.1.3. Lastly, the column-major

format allows for seamless integration with cuBLAS, a highly efficient GPU-based

linear algebra library developed by NVIDIA.

B.1.3 Reaction Decomposition and Classification

As mentioned in Sec. B.1.1, not all reactions need to be reversible in a given

mechanism. Oftentimes, Arrhenius parameters for reverse rate constants are pro-

vided directly, in which case a physically reversible reaction is supplied to the user

through the mechanism files as two irreversible (forward) reactions parameterized by

1Good coalescence ensures that, for a given number of floating point operations (FLOPs) in the
kernel, the FLOPs executed by the GPU per byte of transferred global memory (arithmetic intensity)
is as high as possible. Arithmetic intensity is used as a general metric to assess GPU performance,
and it is discussed further in Sec. B.2.1. For more information on the specifics of global memory
coalescence, the reader is referred to the CUDA toolkit documentation.

287

the corresponding Arrhenius constants. In this scenario, the computation of the equi-

librium rate constant (Eq. B.9) for one reaction is effectively traded for an additional

Arrhenius rate constant evaluation (Eq. B.6).

With this in mind, any given reaction matrixA initialized as a contiguous column-

major matrix of size NC × NR is constructed such that it decomposes into two

sub-matrices: one for irreversible reactions and the other for reversible reactions.

More formally, in general, there are NR,irv and NR,rev irreversible and reversible re-

actions, respectively, where NR = NR,irv +NR,rev. The matrix A is then partitioned

into two smaller matrices along the reaction axis as A = [Airv;Arev], where Airv is

the NC ×NR,irv sub-matrix of A corresponding to irreversible reactions, Arev is the

NC ×NR,rev sub-matrix corresponding to reversible reactions, and [;] is a concatena-

tion operator. This separation is advantageous in practice because additional matrix

operations are required for reversible reactions (i.e., the equilibrium rate constant

evaluations of Eq. B.9) that are absent from irreversible reactions. Since these opera-

tions are expensive, performing them on the full matrix A is wasteful for mechanisms

that observe a large number of irreversible reactions. Furthermore, the column-major

data structure ensures that the two sub-matrices Airv and Arev are still contigu-

ous in memory, a necessary requirement for GPU-optimized matrix multiplication

algorithms. As a result, the arrangement of a reaction matrix as two concatenated

sub-matrices allows for efficient matrix operations on both subsets, or the full matrix,

whenever necessary.

In a similar process, each sub-matrix Airv and Arev can again be decomposed

into a set of smaller sub-matrices categorized by specific reaction types. As men-

tioned above, in this work, the three most commonly encountered reaction types are

considered:

1. Standard reactions utilize the standard Arrhenius equation for the forward rate

constant (Eq. B.6). They may or may not include third body contributions.

288

2. Falloff reactions employ significantly more complex expressions of the forward

rate constant computation for reactions involving third bodies. Falloff reac-

tions can be Lindemann, Troe, or SRI type, each with slightly different im-

plementations. The reader is referred to the Cantera [109] or Chemkin [144]

documentation for mathematical details.

3. Pressure-log reactions add pressure dependence into the computation of the

forward rate constant through an interpolation routine. They may or may not

include third body contributions. The reader is referred to the Cantera or

Chemkin documentation for mathematical details.

In the most general case, for each set of reversible and irreversible reactions, the

decomposition into reaction types ensures

NR,irv = NS
R,irv +NF

R,irv +NP
R,irv, (B.12)

NR,rev = NS
R,rev +NF

R,rev +NP
R,rev, (B.13)

where the superscripts S, F , and P indicate standard, falloff, and pressure-log reac-

tions respectively (e.g., NS
R,irv is the number of irreversible, standard-type reactions

in the mechanism). Additionally, the total number of reaction types present in the

mechanism discounting reaction reversibility is given by

NS
R = NS

R,irv +NS
R,rev, (B.14)

NF
R = NF

R,irv +NF
R,rev, (B.15)

NP
R = NP

R,irv +NP
R,rev, (B.16)

such that NR = NS
R+N

F
R +NP

R = NR,irv+NR,rev. In practice, for memory coalescence

reasons, the matrices Airv and Arev are again partitioned in a similar manner as

described above, creating a two-level hierarchy. The top-most level, to reiterate,

289

Class Reference Description NS NR

A1 Mueller et al. [212] Hydrogen/Air 9 21
A2 FFCMy-12 [319, 359] Methane/Oxygen 12 38
B1 FFCMy-30 [359] Ethylene/Air 30 231
B2 UCSD [232] Hydrogen/Air 57 268
B3 FFCMy-40 [359] Ethylene/Air 41 361
C1 AramcoMech 1.3 [204] – 253 1542
C2 LLNL [201] – 654 4846

Table B.1: List of mechanisms used throughout this work arranged in ascending order
of NR. They are grouped into three classes based on NR for ease of reference. Class
A is for smaller mechanisms (NR = O(10)), Class B for medium-sized mechanisms
(NR = O(100)), and Class C for large mechanisms (NR = O(1000)). Note that the
mechanism labeled C1 is unrelated to the jet fuel of the same name.

is A = [Airv;Arev]. The second level then provides Airv = [AS
irv;A

F
irv;A

P
irv] and

Arev = [AS
rev;A

F
rev;A

P
rev]. A schematic of this decomposition is provided Fig. B.4b.

For a given mechanism, the above decomposition (or classification) into reaction

types applies to all reaction matrices, i.e., matrices that are of size NC × NR. Note

that this is a by design an overly general classification. Most mechanisms do not

contain every aforementioned reaction type. For example, one mechanism may only

contain reversible reactions (NR,irv = 0), and another may contain both reversible and

irreversible reactions, but no falloff reactions (NF
R = 0). Each chemical mechanism

can therefore be characterized not only by the total number of reactions, but also by

the distribution of the reaction types. The mechanisms considered in this work are

detailed in Table B.1, and their corresponding reaction type distributions are visual-

ized in Fig. B.5. Sec. B.2 shows how knowledge of these distributions gives additional

insight into the speedup and GPU performance behavior, since each reaction type

brings forward a different amount of numerical complexity.

290

A1 A2 B1 B2 B3 C1 C2

R
ev

er
si

bi
lit

y
Ty

pe
s

Legend
100%
(21)

76.3%
(29)

23.7%
(9)

90.5%
(19)

9.5%
(2)

89.5%
(34)

10.5%
(4)

87.0%
(201)

13.0%
(30)

84.4%
(195)

7.4%
(17)

8.2%
(19)

100%
(268)

91.4%
(245)

8.6%
(23)

90.6%
(327)

9.4%
(34)

83.9%
(303)

8.6%
(31)

7.5%
(27)

89.9%
(1387)

10.1%
(155)

92.0%
(1419)

5.1%
(79)

2.9%
(44)

95.5%
(4626)

4.5%
(220)

99.3%
(4811)

0.7%
(35)

Reversible

Irreversible

Standard

Falloff

Pressure-log

Mechanism distributions

Figure B.5: Reaction distributions shown as pie charts for the mechanisms listed in
Table B.1. The top row shows proportions of reversible and irreversible reactions,
whereas the bottom row shows proportions of standard, falloff, and pressure-log re-
actions. Indicated for each wedge is the proportion (reaction number normalized
by total number of reactions) as a percentage, and the absolute reaction number in
parentheses. The significant difference in the reaction distribution for C2 with respect
to reversibility is due to the fact that most of the reversible reactions were parame-
terized with Arrhenius expressions for both forward and reverse components (see the
introductory comments of Sec. B.1.3).

B.2 GPU Performance Analysis

This section characterizes the GPU performance trends derived from the matrix-

oriented methodology described in Sec. B.1. In particular, speedup and saturation

behaviors are assessed with respect to: (a) the chemical mechanisms in Table B.1;

(b) the leading matrix dimension NC (here interpreted as the number of reacting

cells in a computational domain assigned to one GPU); and (c) the reaction distribu-

tions provided in Fig. B.5. The performance analysis is based on trends for absolute

compute times and throughput for the various arithmetic operations encountered dur-

ing the source term computation. Cost breakdowns for different reaction types and

specific advantages of the matrix-based formulation in light of mechanism sparsity

properties are also explored. The goal is ultimately to provide insight into how the

computationally intensive source term calculations scale with the reaction mechanism

complexity (Sections B.2.1 and B.2.2), which types of reactions benefit the GPU for-

mulations most (Sec. B.2.3), and how to exploit the matrix-based formulations to

provide optimal speedup for large mechanisms (Sec. B.2.4).

291

GPU performance in this work is assessed purely from the perspective of the source

term computation in isolation. The GPU-enabled speedup for an entire reacting

flow solver can drastically vary depending on: (a) the chemistry time-integration

algorithm; (b) GPU treatment of convective/diffusive fluxes; (c) GPU treatment of

boundary conditions and domain decomposition communication steps; and (d) the

amount (and implementation of) CPU-GPU data transfers. Since the methodology in

Sec. B.1 exists independently from these factors, the GPU speedup and performance

trends are also treated independently. Details on full solver integration using the

matrix-based kinetics methodology are found in Refs. [30, 340].

The methodology described in Sec. B.1 was implemented on the GPU with a

C++ library, UMChemGPU, serving as a high-level API to call lower-level CUDA and

cuBLAS routines. The API is a part of a larger GPU-based library used for offload-

ing computationally intensive routines commonly found in high-fidelity unstructured

multi-physics solvers; details of the full library will be provided in a future manuscript.

Further, since the formulations presented in Sec. B.1.1 are exact, a meticulous verifi-

cation study for the GPU implementation is not included here.

The calculations used in the analysis below were performed in double precision

on an ORNL Summit node consisting of IBM Power9 CPUs and NVIDIA V100

GPUs. All performance-related quantities were obtained from the nvprof profil-

ing tool. When constructing the performance profiles, species mass fractions were

obtained arbitrarily using a random sampling procedure and a normalization step

to ensure sums of unity—the choice of mass fractions (and species concentration)

has no effect on the profiling results, as the algorithm arithmetic and global memory

read/write points are independent of the species mass fraction distributions. Lastly,

it should be noted that absolute values of speedup will of course depend on the node

hardware as well as the user implementation of GPU functions—for these reasons,

the saturation and throughput trends (i.e., a measure of how well the GPU resources

292

are being utilized with respect to the theoretical limits) are more valuable overall,

as they better isolate GPU performance dependence on mechanism complexity over

compute architecture.

B.2.1 Compute Times and Throughput

Absolute GPU compute times for source term evaluation as a function of the

leading matrix dimension (or number of cells) NC are shown in Fig. B.6. Each curve

is characterized by three sequential features present in all GPU-based profiles: the

pre-saturated regime, the saturation point, and the saturated regime. In the pre-

saturated regime, the compute time curve observes a near-zero slope with increasing

computational complexity, where the effective knob for computational complexity

for a given reaction mechanism is here available through NC . In other words, in

the pre-saturated regime, the compute cost is independent of NC , implying that

the GPU resources are not fully utilized. On the other hand, the saturated regime is

characterized by a “filling-up” of the GPU resources where the compute time increases

roughly linearly with increasing NC . Finally, the saturation point is the marker that

indicates the onset of saturated regime, i.e., the point NC at which the curve roughly

begins to adhere to the linear trend.

In light of these three features, Fig. B.6 reveals many useful trends with regards to

reaction mechanism complexity. Perhaps the most apparent is the expected behavior

of increased GPU compute time with increasing mechanism complexity for any given

NC—in other words, as one traverses from mechanism A1 to C2 with NC fixed,

the compute time increases. Another more subtle trend lies in the NC-locations of

the indicated saturation points. Namely, the saturation point is correlated almost

uniquely with the number of reactions, NR, as opposed to the number of species,

NS. As NR increases by an order of magnitude (as one moves from mechanism class

A to B to C), the saturation point decreases in NC by roughly the same order of

293

Number of Cells, NC

GPU Compute Time

Saturation Point

Figure B.6: Absolute compute time (time-to-solution) as a function of cell number
NC for the GPU evaluation of the species source terms for the mechanisms listed in
Table B.1. Saturation points for each mechanism group are indicated by the black
arrows.

magnitude factor. A similar trend is seen in the saturated regime, where, for a given

NC (say 105), the average compute time for each mechanism class increases by order

of magnitude intervals, i.e., in proportion to the increase in NR. Interestingly, the NR-

based correlation is absent in the pre-saturated regime; the general trend of increased

compute time is indeed present, but, prior to saturation, increases in compute time

are not proportional to same degree of increase in NR. This behavior is characterized

the dominance of the computational budget in the saturated regime by dense matrix

multiplications involving very large reaction matrices, and is discussed in more detail

in Sec. B.2.4 to motivate the usage of sparse algorithms.

The information obtained from raw compute times in Fig. B.6 becomes much

more valuable when contextualized with a direct representation of GPU performance

relative to the theoretical limits of the hardware in question. This is the primary

294

purpose of the Roofline model [354], which is the de-facto judge in the GPU computing

literature for assessing saturation, GPU utilization, and throughput behavior for any

given application. Figure B.7a shows a typical Roofline plot. Before delving into the

details of the figure, the basics of the model are first described. The reader already

familiar with Rooflines may skip the next two paragraphs.

Briefly, there are two primary goals of the Roofline model. The first is to assess

whether or not a GPU kernel (or function) is bandwidth-limited or compute-limited,

and the second is to inform whether or not the theoretical limits of the hardware

have been reached by the kernel. The Roofline model illuminates both of these goals

in a single plot through the arithmetic intensity (x -axis of Fig. B.7) and throughput

performance (y-axis). For a given GPU kernel, arithmetic intensity is the ratio of

floating point operations (FLOPs), as defined by the kernel arithmetic, to the amount

of data (in bytes) transferred to and from the global memory source, as defined by

the kernel inputs/outputs. On the other hand, throughput performance is the ratio

of kernel FLOPs to execution time in seconds. In summary, arithmetic intensity has

units FLOPs-per-byte and throughput performance has units of FLOPs-per-second

(typically, the performance is given in units of GigaFLOPs-per-second).

Theoretical peak performance of the GPU (the horizontal black line in Fig. B.7a)

is available only when kernels have sufficiently high arithmetic intensity; otherwise,

the kernels are bandwidth-limited. The cutoff point at which a kernel goes from

bandwidth to compute-limited is the Roofline elbow—for arithmetic intensities below

the elbow, the maximum achievable performance decreases at a linear rate defined

by the hardware (typically measured in Gigabytes-per-second). The effective GPU

utilization for a kernel can then be visualized directly by plotting the two attributes of

the kernel (throughput performance versus arithmetic intensity) and comparing with

the theoretical device limits. Ideally, all kernels should approach the throughput

limits of the hardware regardless of arithmetic intensity. Lastly, it should be noted

295

(a) Roofline Model for All Kernels

(b) DGEMM

(c) Falloff

Number of Cells

106102 104

NR

NC

NC

Pe
rf

or
m

an
ce

 [G
FL

O
Ps

/S
ec

]

Arithmetic Intensity [FLOPs/Byte]

Figure B.7: (a) Roofline model for mechanism B3 for all kernels encountered during
the source term computation. Each marker represents a unique kernel evaluated for
the number of cells NC indicated by its color. (b) Roofline model for the DGEMM
kernel. (c) Roofline model for the Troe falloff kernel. In (b,c), the different colors
represent different mechanisms (see Table B.1) and the distribution of points of the
same color comes from the various NC values.

that the Roofline model concerns rates and not absolute quantities (i.e., throughput

performance and execution time are not interchangeable). In other words, kernels

that are compute-limited do not necessarily run faster in physical time than those

that are bandwidth-limited.

Proceeding with the analysis, Fig. B.7a shows a Roofline plot for all GPU ker-

nels encountered during the source term evaluation using different NC values for a

single chemical mechanism (B3) for brevity, as global Roofline trends with respect

to NC for all mechanisms are similar. Each point represents a kernel (i.e., matrix

multiplication operation, Gibbs matrix computation, exponentiation, etc.), and the

color of the point in Fig. B.7a denotes the NC for which the kernel was evaluated. It

is apparent that: (a) most of the kernels are bandwidth-limited; and (b) the kernels

approach near-theoretical limits in all cases as NC reaches the saturation point. In

general, increasing the value NC moves a kernel defined for a particular arithmetic

296

intensity vertically on the Roofline plot, eventually saturating the GPU and achieving

theoretical efficiency. Thus, for a large-scale application, one should allocate the MPI

resources to accommodate a high enough NC per GPU in order to ensure that node

resources are utilized to their fullest extent.

Examples of Rooflines extracted for individual kernels are shown in Fig. B.7b,c.

In these figures, the points are colored by reaction mechanism instead of NC to assess

direct effects of mechanism complexity. The spread of points for a single mechanism

(a single color) represents the various NC values at which the kernel was computed.

Figure B.7b shows the progression of the double-precision general matrix multi-

plication (DGEMM) operation provided by the cuBLAS backend, which is the main

driver for the matrix-based formulation implemented in this work. Immediately ap-

parent is an increase in arithmetic intensity with NR (i.e., the points are cleanly

clustered by reaction mechanism). The Class C mechanisms in particular allow for

the DGEMM operation to access peak performance for most NC values. The smaller

mechanisms are near the tail-end of the bandwidth-limited region, though they still

achieve theoretical peaks for sufficiently high NC .

Figure B.7c shows analogous results for the Troe falloff kernel, which is one of the

most arithmetically intensive routines encountered during source term computation.

The Troe falloff kernel results of Fig. B.7c also represent the results for other similarly

complex kernels such as Lindemann/SRI falloffs, Pressure-log reactions, and Gibbs

free energy evaluations. Interestingly, the mechanism-based clusters seen for DGEMM

are entirely absent here. As per the complexity of the kernel, all mechanisms lie in

the compute-limited region and reach near peak performance. The consequence of

the complexity of the Troe falloff kernel, however, lies in the high amount of variance

in performance for a given mechanism (spread in the y-axis) as compared to the

simpler, more optimized DGEMM routine. This is especially evident for mechanism

C2: the complexity of the Falloff function has effectively traded the horizontal spread

297

at peak performance seen in DGEMM (desired behavior) with vertical spread at

near-peak performance (less desired). A primary cause for this behavior is implied by

reaction distributions of Fig. B.5. Since, for a given mechanism, the DGEMM kernel

is utilized on a higher proportion of the total number of reactions than the falloff

kernel (this is evidenced by the standard versus falloff percentages in the reaction

type distributions), the theoretical device limits are expected to be achieved for a

wider range of NC for the DGEMM kernel. Additional causes include both the lack

of GPU-optimality of the form of the analytic falloff functions itself, and the fact

that the falloff kernels must be implemented as custom CUDA routines; that is,

the advantages of using a highly optimized backend such as cuBLAS are simply

less fruitful for a mechanism containing more falloff (and other similarly complex)

reactions or functions.

B.2.2 Speedup

The corresponding GPU speedup curves are shown in Fig. B.8 in both logarithmic

(left) and linear (right) scales. The CPU baseline from which the speedup is derived

is the C++ Cantera function getNetProductionRates evaluated with one MPI rank.

The speedup is intended to capture the tangible offloading effect for a single MPI rank

(or OpenMP thread) in the common case of a one-to-one correspondence between MPI

process and GPU. Although the Cantera CPU baseline does not present the fairest

comparison here (the arithmetic operations in Cantera are not vectorized in the same

way as those defined in Sec. B.1.1), it is routinely used in numerical reacting flow

simulations for kinetics and thermodynamics routines. As such, using this baseline to

derive the GPU speedup provides valuable information on the practical impact of a

CPU-to-GPU offload for many existing applications that use Cantera or comparable

libraries such as Chemkin. Although the CPU reference values used to compute the

speedup in Fig. B.8 come from the Cantera functions, the matrix-based forms were

298

also evaluated on the CPU to assess the effect of the Cantera implementations on the

perception of GPU speedup. It was found that for the same mechanisms, the matrix-

based formulations implemented on the CPU provided roughly a factor of 2 speedup

over the CPU-based Cantera functions for most cell counts. In other words, the GPU

speedup discussed below drops by roughly a factor of 2 when comparing against

the matrix-based formulation on the CPU instead of the Cantera function, though

the saturation trends remain the same. To reiterate, the speedups themselves are

secondary to the relative trends displayed between the individual reaction mechanism

curves.

As shown in Fig. B.8, the speedup increases linearly with cell number until the

saturated regime is reached, wherein the speedup stagnates at reasonably high values

across the board. This general trend is expected since the saturated regime is defined

by a GPU compute time that increases linearly with NC (Fig. B.6). The consequence

is that the maximum speedup is reached for lower values of NC as mechanism com-

plexity increases, as per the location of the saturation point. The converged speedup

values are high overall, varying between 100× to 500× at their maximum. However,

due to the dependence on the CPU implementation, the mechanism trends with re-

spect to speedup are not as intuitive as those present in the absolute compute time

curves of Fig. B.6. For instance, the pre-saturated regime (e.g., NC = 10) shows in-

creasing speedup with mechanism complexity, but this trend is absent in the saturated

regime.

Instead, in the saturated regime, the behaviors can be split into two groups. The

first group concerns mechanism Classes A and B, which concentrate in the regions

of 400–500× speedup. For these mechanisms the speedup trends are related directly

to the reaction mechanism distributions seen in Fig. B.5. In other words, for Classes

A and B, similar distribution types converge to similar saturated speedups. For

example, Mechanisms B1 and B3 converge near 500× and observe near-identical

299

Number of Cells, NC Number of Cells, NC Number of Cells, NC

GPU-derived Speedup (Log Scale) GPU-derived Speedup (Linear Scale) GPU Compute Time

Saturation Point

Figure B.8: (Left) GPU-derived speedup in log-scale with respect to the Cantera-
based CPU baseline for all mechanisms listed in Table B.1. (Right) Same as left but
with linear-scale in the y-axis.

reaction distributions—the same is true for Mechanisms A1 and B2, which converge

near 400×. The implication is that the GPU based speedup relies not only on the

number of reactions, but also on reaction types encountered in the mechanism. This

is the central focus of Sec. B.2.3.

The second group is tied to the larger mechanisms of Class C, where the afore-

mentioned trends break down. Though still high, the saturated speedups in Fig. B.8

progressively drop from C1 to C2. This drop relates directly to the connection be-

tween: (a) the presence of the overbearing reaction matrix (NC ×NR matrix) multi-

plications encountered in Eq. 2.9, which constitute a bottleneck for large mechanisms;

and (b) the mechanism sparsity as measured by the number of elements in the matrix

ν. The details of the interplay between these two elements, which leads to a signif-

icant improvement in the Class C speedups observed in Fig. B.8 by overcoming the

mentioned bottlenecks, are postponed to the end of this section (Sec. B.2.4). The

discussion hereafter continues in the context of the speedups shown in Fig. B.8 as

they stand.

300

B.2.3 Cost of Reaction Types

The above sections described general speedup and performance trends for the GPU

in light of the matrix-oriented methodology of Sec. B.1.1. As per the classifications

presented in Sec. B.1.3, a more detailed investigation into the GPU cost of individual

reaction types in the pre-saturated and saturated regimes can better illuminate both

the sources of speedup behavior and the types of mechanisms that are more suited

for GPU offloading.

To better isolate the GPU effects of individual routines and reaction types, the

quantity of interest here is defined as the cost per reaction. The cost per reaction is

measured by taking the compute time of a specific kernel (or routine composed of a

set of kernels) and normalizing by the size of the subset of total reactions on which

the routine acts. For example, in the case of reversible reactions, the computation of

equilibrium rate constants occur on the subset of total reactions of size NR,rev. To get

a measure on the total time per reaction taken during the computation of log(Kc), the

corresponding routine time is divided by NR,rev. This effectively provides an averaged

measure on the cost impact for individual reaction types or routines encountered in

a given mechanism.

Figure B.9 compares the cost per reaction for log(Kf) and log(Kc) routines for

the three Mechanisms A2, B3, and C1. The log(Kf) routine consists of the following:

Arrhenius-based matrix multiplication (Equation (B.9), uses a DGEMM kernel), eval-

uation of third body concentrations if present (DGEMM kernel), falloff rate constant

evaluations if applicable (custom kernels), and pressure-log rate constant evaluations

if applicable (custom kernels). The log(Kc) routine consists of the evaluation of Equa-

tion (B.9), which utilizes a first custom kernel to fill the Gibbs matrix and a second

DGEMM kernel to recover the rate constants.

In the pre-saturated regime, the cost per reaction of the log(Kf) routine consis-

tently outweighs that of log(Kc). However, the behavior is different in the saturated

301

C
os

t p
er

 R
ea

ct
io

n
[s

]

Number of Cells, NC

A2 (FFCMy-12)

Number of Cells, NC

B3 (FFCMy-40)

Number of Cells, NC

C1 (AramcoMech 1.3)

Figure B.9: Cost per reaction for forward rate constant (log(Kf)) and equilibrium
constant (log(Kc)) routines as a function of NC for: Mechanism A2 (left plot); Mech-
anism B3 (middle); and Mechanism C1 (right).

regime as mechanism complexity grows. An interesting feature is the consistent spike

in cost per reaction for log(Kc) at the saturation points (see Fig. B.6) of the respec-

tive mechanisms. For the smaller mechanisms, this jump leads to a convergence in

the difference between log(Kf) and log(Kc) costs in the saturated regime. For the

large Mechanism C1, this jump at the commencement of saturation near NC = 102

brings the log(Kc) cost per reaction to a higher value than the log(Kf) cost (though

not shown here, this effect is exacerbated for mechanism C2). The implication is that

more complex mechanisms (as determined by NS and NR) incur a higher penalty

for log(Kc) evaluations in the saturated regime. As such, in the case of very large

mechanisms, a useful driver to design mechanisms that are more “GPU-optimal” in

the saturated regime is to minimize the presence of reversible reactions, i.e., to steer

the mechanism distribution towards something akin to that of C2 (see the top row of

Fig. B.5).

Analogous costs for the three individual reaction types described in Sec. B.1.3 –

standard, pressure-log, and falloff – are shown for all mechanisms in Fig. B.10. Re-

call that these reaction types modify the computation of the forward rate constant

whenever applicable (i.e., they are sub-components of the log(Kf) computation).

The trends can again be characterized by behaviors in the pre-saturated and satu-

rated regimes. For all reaction types, the cost per reaction decreases with respect to

302

Standard Pressure-log Falloff

C
os

t p
er

 R
ea

ct
io

n
[s

]

Number of Cells, NC Number of Cells, NC Number of Cells, NC

Figure B.10: Cost per reaction for all mechanisms for: standard reactions (left);
pressure-log reactions (middle); and falloff reactions (right). See Table B.1 for
mechanism information.

mechanism complexity, most notably for the standard reactions. This is likely the

cause of the inverse trend in speedup (Fig. B.8) seen in the same pre-saturated re-

gions. Further, when comparing across reaction types, standard reactions (based on

the cuBLAS DGEMM) are significantly cheaper than pressure-log and falloff coun-

terparts. This is expected due to the inherent differences in arithmetic complexity

and also to the optimized implementations of the cuBLAS backend. In-line with the

Roofline-derived findings of Sec. B.2.1, mechanisms that attempt to minimize the

presence of non-standard reactions are likely to achieve a greater NC-range of cost

efficiency.

A prominent feature in Fig. B.10 is the convergence, for a specific reaction type,

of all mechanism curves to the same cost per reaction in the saturated regime. This

implies that, for the reaction types considered during the evaluation of log(Kf), the

cost advantage due to mechanism complexity per reaction only applies in the pre-

saturated regime. The fact that the cost per reaction mechanism curves converge

here in the saturated regime is consistent with the compute time trends seen earlier

in Fig. B.6 – namely, that the overall time-to-solution in the saturated regime increase

with each mechanism by the same factor of increase in NR.

303

B.2.4 Improving Speedup for Large Mechanisms

A valid concern related to the speedup in Fig. B.8 is the decreasing trend for Class

C mechanisms. A procedure to remove this speedup deterioration for these larger

mechanisms is provided here. Put briefly, the procedure relies on taking advantage of

the inherent sparsity that characterizes mechanisms with highNS andNR values. This

concept is first motivated by a computational budget analysis of the original routines

leading to the speedups shown in Fig. B.8. It is then shown that a simple replacement

of several problematic dense matrix multiplications with sparse counterparts very

usefully recovers the “lost” speedup for the Class C mechanisms.

The computational budget, measured as the proportion of total compute time

spent in the respective routines, is provided in Fig. B.11 for the same three mecha-

nisms shown in Fig. B.9. For each mechanism and NC , the budget is split into four

main components encountered during the source term computation:

1. The preprocessing routine consists of kernels that: (a) recover the primitive

species mass fractions from conserved values; (b) normalize the species mass

fractions in each cell to sum to unity; and (c) obtain molar concentrations from

the mass fractions.

2. The forward rate constant routine for log(Kf) computes Equation (B.6) along

with any other non-standard reaction types that modify the forward rate (three-

body, pressure-log, and falloff).

3. The equilibrium rate constant routine for log(Kc) is outlined in Equation (B.9).

4. The species net production rate routine for Ω, given by Equation (B.2)—the

cost of evaluating the net reaction rates Qnet required to recover Ω (Equation

(B.4))—is also included for this component.

A revealing result is that, for all mechanisms, upon entering the saturated regime,

304

the budget is dominated by Component 4 (evaluation of the production rates). In

fact, its contribution in both pre-saturated and saturated regimes grows with larger

mechanisms, and the effect of saturation on the budget itself (i.e., the amount that

the contribution of Component 4 changes upon entering the saturated regime) is

diminished when moving from mechanism Class A to Class B and then to Class C.

Therefore, it can be concluded to good confidence that the main culprit for the

diminishing speedup seen in large mechanisms in Fig. B.8 is derived from Compo-

nent 4. This is the direct cause of prohibitive dense cuBLAS DGEMM operations

involving the exceedingly large reaction matrices (matrices of size NC ×NR) found in

Equations (B.2) and (B.4). Such operations involve matrix multiplications with the

net, forward, and reverse stoichiometric matrices ν, ν ′ and ν ′′.

305

A2 (FFCMy-12) B3 (FFCMy-40) C1 (AramcoMech 1.3)

Pr
op

or
tio

n
of

 T
ot

al
 T

im
e

Number of Cells, NC Number of Cells, NC Number of Cells, NC

and

Figure B.11: Computational budget (routine time normalized by total compute time)
for the preprocessing routine (Component 1, blue curve), forward rate constant rou-
tine (Component 2, green curve), equilibrium rate constant routine (Component 3,
red curve), and net production rate routine (Component 4, yellow curve). The results
are shown for the same three mechanisms as in Fig. B.9.

As alluded to above, with the contribution of Component 4 on the budget in mind,

the diminishing speedups can be alleviated by recognizing that the common denom-

inator in the prohibitive routines—the stoichiometric matrices—are predominantly

sparse for large mechanisms due to the physical constraints of elementary reactions

that serve as the building blocks. This effect can be visualized through the inherent

correlation between mechanism sparsity, as measured by the ratio of the number of

zero to total elements in the net stoichiometric matrix ν, and the NC-averaged bud-

get contribution for component 42. This correlation is shown in Fig. B.12 (left). The

implication is that the primary reason for the rise in Component 4 budget, and thus

the main contributor to the diminishing speedup for large mechanisms observed in

Fig. B.8, is the sparsity. Fig. B.12 shows that the sparsity: (a) is quite significant

(roughly 60%) even for small mechanisms; and (b) converges to nearly 100% with

increasing NR.

The high sparsity for large mechanisms implies an abundance of wasted arith-

metic taking place in cuBLAS-based DGEMMs, which are dense operations, used

for the large reaction matrix mutiplications involving the stoichiometric matrices.

Therefore, a natural step is to consider different matrix multiplication algorithms

2the sparsity of the net stoichiometric matrix is a conservative estimate for overall mechanism
sparsity, since the forward and reverse stoichiometric matrices individually are generally more sparse

306

that are tailored towards sparse-dense matrix products for the larger mechanisms.

This brings forward one of the most useful qualities of the matrix-oriented formula-

tions of Sec. B.1.1—the mechanism sparsity can be integrated into the source term

computation without altering the underlying matrix-based methodology. Instead, the

backend used for the matrix multiplications affected by sparsity (i.e., Equations (B.2)

and (B.4)) can simply be changed from cuBLAS to cuSPARSE, a GPU-based linear

algebra library optimized for sparse computations also developed by NVIDIA.

The speedup achieved when moving to a sparse (driven by cuSPARSE) from a

dense (driven by cuBLAS) matrix multiplication algorithm for Equation (B.2) is

shown in Fig. B.12 (right)3. Note that the speedup shown in Fig. B.12 (right) com-

pares two routines both executed on the GPU. Without delving into the specifics,

the ultimate goal when switching to sparsity-based routines is that the savings in

FLOPs should outweigh the new costs arising from algorithmic complexities and

data retrieval. Based on these constraints, a general rule-of-thumb is to only use

sparse algorithms when the sparsity is roughly above 95%. This quality is observed

in Fig. B.12, which showcases significant matrix multiplication speedups for Mecha-

nisms C1 (2×) and C2 (4×) in the saturated regime. Note that, when computing the

sparse-to-dense speedup, the sparse compute times also include a necessary matrix

transpose operation due to the fact that the cuSPARSE algorithm supports sparse-

dense and not dense-sparse matrix multiplications (i.e., Equation (B.2) is transposed

in order to use the cuSPARSE algorithm, and then the output is again transposed

to conform to the data structures used in the authors’ API—all of this is taken into

account when computing the speedup in Fig. B.12).

The translation of the results in Fig. B.12 into overall GPU-to-CPU speedup

analogous to the original Fig. B.8—but instead using cuSPARSE as the backend for

3Sparse-dense matrix multiplications are actively researched in the field of GPU computing, and
there are many algorithms available. The one used here is based on the double-precision block sparse
row-format matrix-multiplication (DBSRMM).

307

Number of Cells, NCNumber of Reactions, NR

Comparing Sparsity and Component 4 Budget Sparse Matrix Multiplication Speedup

Pe
rc

en
t

Sp
ee

du
p

Figure B.12: (Left) Mechanism sparsity and average component 4 budget (the bud-
get corresponding to the evaluation of Equations (B.2) and (B.4)) versus number of
reactions NR. (Right) Dense (cuBLAS) to sparse (cuSPARSE) matrix multiplica-
tion speedup (dense compute times divided by sparse compute times) for evaluating
Equation (B.2) shown for all mechanisms with respect to NC . See Table B.1 for
mechanism information.

operations involving stoichiometric matrices—is shown in Fig. B.13. The results show

that taking into account the mechanism sparsity alleviates the speedup deterioration

seen before for the larger mechanisms of Class C. More importantly, all mechanisms

regardless of size converge to similar speedup values in the saturated regime. Overall,

it is encouraging that the relatively simple cuSPARSE backend modification signif-

icantly improves the GPU behavior for larger mechanisms. This warrants a more

detailed analysis of the sparse algorithms themselves in relation to the stoichiomet-

ric matrix sparsity structures, since the distribution of non-zero values in the sparse

matrix also affects the speedup. Such an analysis is left for future work.

308

Number of Cells, NC

Sp
ee

du
p

GPU-derived Speedup Using Sparsity

Figure B.13: Updated GPU-to-CPU speedup values when taking into account the
mechanism sparsity (analogous to Fig. B.8).

309

APPENDIX C

GPU-Based Chemical Time Integration for

Compressible Reacting Flow

This section outlines a GPU-based chemical time integration algorithm that is

designed to be compatible with the matrix-based formulation for source term evalu-

ation in Appendix B, as well as the methods for modeling chemical source terms in

Chapters IV and V. In other words, the purpose of this Appendix is to show how one

can deploy methods for instantaneous source term evaluations into a GPU-optimal

time integration algorithm. The main idea in the time integration is to ensure that

threads vectorized over the NC cells are doing the same amount of work at all times,

a nontrivial requirement in applications characterized by localized stiffness and heat

release rate (i.e. shock-dominated reacting flow). Particular emphasis is placed on (a)

vectorization over the number of cells, NC , (b) treatment of GPU saturation limits,

and (c) eliminating as many host-to-device data transfer penalties as possible. In

the text below, some background regarding the technical challenge of stiff time inte-

gration is provided, and conventional methods of stiff chemical time integration are

discussed. Then, the approach utilized in this work is presented from two perspec-

tives: (1) a static-cell algorithm (Sec. C.3.1), which does not consider the fact that

some cells in the domain are quicker to react than others, and (2) an adaptive-cell

algorithm (Sec. C.3.2), which adapts to the number of chemically active cells in the

310

domain, and allows for hybrid CPU/GPU treatment of chemical time integration to

maximize speedup.

C.1 Context and Overview

Broadly speaking, there are two pathways to treat chemistry effects in a com-

pressible reacting flow solver that handles advection and diffusion forces explicitly

(see Fig. 2.5 and associated discussion). The first is a fully-coupled method-of-lines

strategy, where the chemical source terms are computed instantaneously and added

to the right-hand-side. This is less practical due to chemical timescale restrictions – if

the chemical timescales are orders of magnitude smaller than the acoustic timescales

(which is commonplace), the added computational costs and associated increase in

boundary condition updates makes this approach impractical.

The second approach uses a de-coupled strategy such as operator splitting (de-

scribed in Sec. 2.4.6). This requires the flow solver to call a cell-localized chemistry

time integration routine (i.e reactor simulations batched over the number of cells NC)

that outputs the ”reacted” thermochemical state data, which is then fed into the

stable explicit solver for treated advection and diffusion contributions (see Fig. C.1).

The algorithms presented here are tailored to flow solvers that invoke this type of

strategy (or, in a more general sense, require some form of a batched reactor solve).

The chemistry integration step amounts to solving

d(ρY)i
dt

= Ωi, (C.1)

and

dTi
dt

= − 1

cv(Yi, Ti)

NS∑
k=1

ϵk(Ti)

Wk

Ωi,k. (C.2)

In Eq. C.1, i denotes the cell index, ρY ∈ RNC×NS is the species mass fraction matrix,

311

4) Do explicit RK update

ϕold ← ϕnew

3) Compute flux divergence:
F(ϕold) ← ϕold

ϕnew = ϕold + ΔtsimF(ϕold)

2) Update halo cells

Option 3:
Δtsim = ΔtCFL

1) Call stiff ODE integrator for reactions
ϕnew ← React() ϕold, Δtsim/2

ϕold ← ϕnew

5) Call stiff ODE integrator for reactions
ϕnew ← React() ϕold, Δtsim/2

ϕold ← ϕnew

Figure C.1: Overview of reaction-advection-reaction Strang splitting algorithm. The
variable ϕ denotes the set of all transported state variables stored on the NC grid
points. The reaction step (red box) is local in physical space, but non-local in ther-
mochemical phase space. The advection/diffusion step is non-local in physical space,
but local in thermochemical in phase space.

and Ω ∈ RNC×NS denotes the species net production rates (units of kg
m3s

) derived from

the Arrhenius-based reaction network. In Eq. C.2, cv denotes the mass-based specific

heat at constant volume for the mixture, ϵk is the molar internal energy for species

k (derived from NASA polynomials), Wk is the species molecular weight, and Ωi,k is

the production rate (chemical source term) for species k.

Equations C.1 and C.2 define a constant-volume reactor – in other words, the

cell density ρi is held constant throughout the chemical time integration. It is pos-

sible to also treat constant-pressure reactors instead. However, it can be argued

that a constant-volume approach is more consistent with the governing equations in

the operator splitting framework, since the chemical integration phase should not be

updating the mixture density. The consequence is that the underlying assumption

imposed here is (a) fixed total internal energy (sensible + chemical), (b) variable pres-

312

sure (by means of the EoS), and (c) variable total enthalpy throughout the chemistry

integration.

This Appendix operates under the context that Eq. C.1 is solved using an adaptive-

timestep explicit algorithm, and Eq. C.2 is replaced with an implicit Newton-Raphson

iterative solve based on the constant internal energy criterion [30]. In other words,

given an input species mass fraction vector and mixture internal energy, the functional

form of internal energy – described via NASA polynomials as an explicit functions of

temperature and mass fraction – is inverted to recover the temperature to a negligibly

small tolerance.

It can be argued that an explicit treatment of Eq. C.1 does not directly address

the issue related to prohibitive chemical timescales. Alternatives include using a fully

implicit time integrator based on backward differentiation formulas [63], or using a

manifold-based model to decouple the fast and slow scales [101]. Although this argu-

ment is valid, the computational advantage provided by the above methods within the

GPU scope is unclear – further GPU-targeted analysis of the tradeoff between large

timestep allowance (as provided by CVODE and CSP) and higher, potentially pro-

hibitive algorithmic costs introduced by these methods (memory limitations, start-up

costs, Jacobian evaluation, eigendecompositions, etc.) must be performed with openly

available GPU libraries that implement the above methods (i.e. TINES [149]). These

issues may be amplified when considering the fact that in the shock-dominated com-

pressible reacting flow applications described in Sec. 1.2 (e.g. RDEs and scramjets),

one often observes space-localized stiffness, where only a small fraction of computa-

tional cells carry prohibitive chemical timescales. As such, the time-adaptive explicit

algorithm for Eq. C.1 is retained here – as described below, explicit treatment brings

forward the ability to create highly vectorized offloading strategies for the chemical

time integration whose computational efficiency offsets potential timestep restrictions.

313

C.2 Conventional CPU-based Algorithm

A conventional CPU-based time integration algorithm is shown in Alg. 3. For

brevity, this algorithm displays an explicit Euler integration step – extensions to

higher-order Runge-Kutta schemes are straightforward. The inputs to the routine

are density, internal energy (sensible + chemical), temperature, and species mass

fraction (ρ, e, T , and Y respectively) at simulation time t. The outputs are both

temperature T and species mass fraction Y at the time t+∆tsim (note that within the

context of the second order Strang splitting scheme of Fig. C.1, the target time can

be modified to t + ∆tsim/2 without loss of generality). The local timestep, denoted

∆tlocal, is the cell-dependent timestep used to carry out the integration.

In a general sense, within the for loop over all cells, the user calls a per-cell

chemistry time integrator which is represented here as a while loop. The number

of while loop iterations per-cell denotes implicitly a degree of stiffness associated

with the initial thermochemical state of the cell. Step (e) ensures that no overshoot

occurs, and step (f) updates the local time step using a criterion based on the source

term magnitude: the local time step is set such that a given species mass fraction

does not change by more than some percentage (typically 1 − 5%) of its current

value. Candidate timesteps are obtained for all species, followed by a reduction over

the number of species to determine the final timestep (the minimum is used for all

species). Note that, although commonly used, prescribing a timestep in this fashion

estimates the chemical timescales with a diagonal Jacobian approximation (cross-

species sensitivities are not accounted for). Despite this, timestep estimations of this

type are known to work well in combustion and astrodynamical applications, and

reduce the need to decompose chemical Jacobians. Given Alg. 3, a user typically has

two offloading strategies.

314

C.2.1 Cell-local Offloading Strategy

We recognize that the computational bottleneck comes from the source term eval-

uation in Step (d). As such, a common approach is to offload this function within the

while-loop to the GPU, and keep all remaining elements on the CPU. Here, the scope

of the GPU-based evaluation of the source terms occurs on a per-cell basis, which

means the call to the GPU library must occur for each cell individually. Although

this is a fairly common and non-intrusive approach in terms of code re-structuring

requirements, it is not ideal for a few reasons. The first is that the GPU evaluation

is not vectorized over the number of cells NC , which means the user cannot rely on

NC to control GPU saturation levels. In situations where NC ≫ NS (the case in

practically all compressible reacting flow simulations), the GPU resources will be left

underutilized. Alternatively, the user must rely on very detailed mechanisms to en-

able GPU saturation (i.e. NS on the order of 1000 or higher). Although this may

provide saturation, the host-to-device (and vice versa) data transfer penalties will

negate any computational advantage provided by the source term offloading, since

the number of data transfers in this strategy scales linearly with both the number of

cells and the number of while-loop iterations per cell.

C.2.2 Single-Kernel Offloading Strategy

The entire for loop over cells is treated as a unified GPU kernel. Here, a single

GPU thread executes the entire while loop contained in Alg. 3. Although this solves

the issues related to data transfer penalties, and also addresses the issue of cell-based

vectorization, the tradeoff is that the scope of each thread is too large. In other words,

treating Alg. 3 with a single large kernel will lead to thread concurrency issues which

reduces speedup [16].

Due to these limitations, Alg. 3 must be redesigned to maximize thread concur-

rency and minimize data transfers. This is described in the following section.

315

Algorithm 3 Conventional explicit chemistry time integration.

Data: ρ(t) ∈ RNC×1, e(t) ∈ RNC×1, T (t) ∈ RNC×1, Y(t) ∈ RNC×NS

Result: Y(t+∆tsim), T (t+∆tsim)
for i in range(NC) do

a) Initialize local time: tlocal,i = 0
while tlocal,i < ∆tsim do

b) Correct temperature: Ti ← NewtonRaphson(Ti, ei,Yi)
c) Update pressure: pi ← ρiRTi/Wi

d) Get species source terms: Ωi ← netProdRates(pi, Ti,Yi)
e) Initialize integration timestep: ∆tlocal,i ← ∆tsim − tlocal,i
f) Adjust integration timestep: ∆tlocal,i ← adjustDt(Ωi, ρi,Yi)
g) Advance mass fractions: ρYi ← ρYi +∆tlocal,iΩi

h) Update local time: tlocal,i ← tlocal,i +∆tlocal,i
end
i) Correct temperature (see (b)).

end

C.3 Vectorized GPU-based Algorithm

In this section, a modified version of the conventional algorithm discussed in

Sec. C.2 is presented. Although the underlying structure of the time integration

is kept the same, some key modifications are required to enable full vectorization over

NC and to ensure GPU-optimality. The primary issue to address is the fact that some

cells are quicker to react than others – this quality introduces many viable algorithm

variations. Two such variations of the GPU-based algorithm are provided here, both

of which are used in the GPU solver UMReactingFlow as described in Ref. [30] de-

pending on the application: (1) a static-cell algorithm, which does fixes the number of

cells offloaded to the GPU regardless of reaction completion (NC does not change in

time), and (2) an adaptive algorithm, which both adapts to the number of chemically

active cells in the domain (i.e. NC changes in time within the chemistry integration

phase), and also allows for hybrid CPU/GPU treatment of chemical time integration

to maximize speedup.

316

C.3.1 Static GPU Algorithm

The goal of this algorithm is to maximize the thread concurrency and expose as

much parallelism as possible during the chemistry time integration phase. To properly

vectorize Alg. 3 over the number of cells NC , an indicator function F is introduced

such that

Fi =

0, if tlocal,i = ∆tsim,

1, if tlocal,i < ∆tsim,

(C.3)

where i = 1, . . . , NC . The indicator F encodes whether or not a cell has finished

reacting. Since F ∈ ZNC , we also have

NR
C =

∑
i

Fi, NNR
C = NC −NR

C , (C.4)

where NR
C denotes the number of cells that are still undergoing chemical reaction,

and NNR
C are the cells that have finished reacting.

The algorithm is provided in Alg. 4. Note that, although not shown in

Alg. 4, every step within the while loop is a batched operation over all NC

cells, regardless of the value of NR
C . To expose as much vectorization over NC

as possible, this algorithm essentially moves the inner while loop from Alg. 3 outside

of the for loop instances. This is possible through the reaction progress indicator

function, F , and the associated metric for evaluating the number of reacting cells

(Eq. C.4). The main idea is to terminate the while loop only when the number of

reacting cells, NR
C , reaches zero.

Every step within the while loop in Alg. 4, which is a for loop instance, is inter-

preted as a kernel to be executed on the GPU. The reason this is called a ”static-cell”

algorithm is because, regardless of the value NR
C , all kernels are threaded over the

total number of cells NC . Although this approach leads to wasted arithmetic opera-

tions, it is acceptable for scenarios in which the GPU is in an undersaturated regime

317

where the kernel evaluation times are not functions of NC .

The crucial kernels in Alg. 4 are described below:

• Alg. 4(g): GPU-based evaluation of source terms is performed with the matrix-

based formulation described in Ref. [16]. The source term evaluation is treated

as a batched operation over the number of cells NC – optimal acceleration is en-

abled by means of exposing general matrix multiplications (GEMMs) through-

out the computation (e.g. for reaction rate and rate constant evaluation). These

GEMMs are treated with cuBLAS/cuSPARSE linear algebra libraries.

• Alg. 4(h): This step utilizes multiplication by indicator F to force species

source terms for completed cells to zero. This ensures completed cells are not

advanced in the explicit update step (k).

• Alg. 4(k): The mass fractions are advanced in an explicit update step. This

explicit advance can be treated as a batched double-precision ”AX-Plus-Y”

(DAXPY) operation using a linear algebra library like cuBLAS, and contributes

very little to overall cost.

• Alg. 4(n): The while loop argument NR
C – the number of chemically reacting

cells – is updated via summation of the indicator variable F . This is a GPU-

based reduction of an integer array; as such, its cost is minimal. Upon reduction,

the new NR
C must be sent back to the CPU to proceed with the while loop (this

constitutes a single integer data transfer operation).

C.3.2 Adaptive GPU Algorithm

For situations in which the GPU is heavily saturated and there are a small number

of stiff cells that require significantly higher number of while loop iterations than the

rest, the static-cell approach discussed in Sec. C.3.1 is less ideal. Instead, the algo-

rithm must be modified to ensure that the for loops in Alg. 4 operate over NR
C instead

318

Algorithm 4 Static-Cell GPU Time Integration. Although not shown, each step
within while loop is a for loops over all NC cells.

Data: ρ(t) ∈ RNC×1, e(t) ∈ RNC×1, T (t) ∈ RNC×1, Y(t) ∈ RNC×NS

Result: Y(t+∆tsim), T (t+∆tsim)

Begin Initialization:
a) Perform host-to-device data transfers
b) Set local time: ∀i, tlocal,i ← 0
c) Set indicator (Eq. C.3): ∀i,Fi ← 1
d) Set NR

C : N
R
C ← NC

Begin Time Integration:
while NR

C > 0 do
e) Correct temperature: Ti ← NewtonRaphson(Ti, ei,Yi)
f) Update pressure:pi ← ρiRTi/Wi

g) Get species source terms (see Appendix B): Ωi ← netProdRates(pi, Ti,Yi)
h) Zero source terms if complete: Ωi ← ΩiFi
i) Initialize integration timestep: ∆tlocal,i ← ∆tsim − tlocal,i
j) Adjust integration timestep: ∆tlocal,i ← adjustDt(Ωi, ρi,Yi)
k) Advance mass fractions: ρYi ← ρYi +∆tlocalΩi

l) Update local time: tlocal ← tlocal +∆tlocal
m) Update indicator function: Fi ← Eq. C.3
n) Update NR

C (reduction, Eq. C.4): NR
C ← reduceSum(F)

end

o) Correct temperature: Ti ← NewtonRaphson(Ti, ei,Yi)

319

Algorithm 5 Adaptive-Cell GPU/CPU Time Integration

Data: ρ∗(t) ∈ RNA
C×1, e∗(t) ∈ RNA

C×1, T ∗(t) ∈ RNA
C×1, T (t) ∈ RNC×1, Y∗(t) ∈

RNA
C×NS , Y(t) ∈ RNC×NS , Nsat, NCPU , UF

Result: Y(t+∆tsim), T (t+∆tsim)

Begin Initialization:
a) Perform host-to-device data transfers
b) Set local time: ∀i, tlocal,i ← 0
c) Set indicator (Eq. C.3): ∀i,Fi ← 1
d) Set NR

C : N
R
C ← NC

e) Set NA
C : N

A
C ← NC

f) Set CPU flag: useCpu ← False
g) Set loop counter: counter ← 0

Begin Time Integration:
while NR

C > 0 do
h) Switch to CPU if needed:
if NA

C ≤ NCPU then
useCpu ← True
Exit while loop.

end
i) Do steps (e)-(n) from Alg. 4 using re-sized inputs ρ∗, e∗, T ∗, Y∗ (kernels
executed over NA

C instead of NC).
j) Accumulate loop counter: counter ← counter + 1.
k) Re-arrange state data (Fig. C.2(b)): NA

C : N
A
C ← NR

C

end

l) React remaining cells on CPU if needed:
if useCPU = True then

l-1) Device-to-host data transfer: send input state data from CPU to GPU.
l-2) Execute Alg. 3 on CPU for remaining NA

C cells.
l-3) Host-to-device data transfer: send reacted state data from GPU to CPU.

end
m) Perform final copy (see k-1-1).
n) Correct temperature (see Alg. 4(o)).

320

of NC . This modification, presented as the adaptive-cell algorithm in this section, is

nontrivial because NR
C changes in time (some cells finish reacting before others); this

quality requires on-the-fly re-arrangement of data on the GPU (see Fig. C.2(b)) in

order to satisfy the memory-contiguous requirements of kernel inputs. This data re-

arrangement step is the key difference from the static algorithm of Sec. C.3.1 – in

the end, the savings obtained from adaptively adjusting the number of reacting cells

should overcome the additional bandwidth-limited cost associated with re-arranging

the data on the GPU. The adaptive algorithm also takes into account that the CPU

executes time integration faster than the GPU for a very small number of cells (e.g.

5-10); as such, when the number of reacting cells is sufficiently small, the time inte-

gration is switched from the GPU to the CPU, resulting in a hybrid algorithm.

The adaptive algorithm is summarized in Alg. 5. The main difference from the

static algorithm (Alg. 4) is the introduction of NA
C – the number of active cells – which

replaces NC during the time integration step (instead of threading over NC during the

explicit update, the adaptive algorithm threads over NA
C which is smaller than NC for

most of the time integration phase). The number of active cells NA
C is re-synchronized

to NR
C (the number of cells that have finished reacting) in a data-rearrangement step

every UF while-loop iterations, where UF is the so-called update frequency to be

supplied by the user as input. For example, UF = 10 ensures that every 10 while

loop iterations, a check is made to see if NA
C can be reduced further. As described

further below, if this check (based on the GPU saturation point) is satisfied, a data

rearrangement step takes place (see Fig. C.2(b)) and NA
C is reduced to NR

C . Some key

steps in Alg. 5 are described in more detail below:

• Input Parameters: The algorithm requires three user supplied inputs: Nsat,

NCPU , and UF . Nsat is the GPU saturation point with respect to number of

cells (here NA
C) for the vectorized chemical source term evaluation, which is the

most computationally intensive step in the time integration procedure. The

321

(a)

(b)

Figure C.2: (a) Schematic of the static-cell time integration algorithm: as subcycles
(while loop iterations) proceed, some cells finish reacting before others. The static-cell
algorithm fixes NC and assigns zero source terms to completed cells. (b) Schematic
of the adaptive-cell algorithm. There are two stages: the time-integration stage (blue
box) and the data re-arrangement stage (green box). The time-integration stage is
the same as (a), but it operates on the quantity NA

C instead of NC ; N
A
C is reduced

on-the-fly in the re-arrangement stage.

322

saturation point is the cell value below which the time-to-solution for source

term evaluation is independent of NA
C . NCPU is the cell value at which the

CPU-based source term evaluation is faster than the GPU-based evaluation.

See Sec. C.4 for further clarification on saturation and speedup trends. Lastly,

UF is the update frequency; it sets the frequency (in terms of every UF while

loop iterations) at which the algorithm checks if a reduction to NA
C is necessary.

Nsat and NCPU will depend on the chemical mechanism complexity in terms

of NS (number of species) and NR (number of reactions). UF is purely user-

dependent: a high UF will ensure that minimal data rearrangement steps are

executed at the cost of potential wasted operations, and a small UF (say UF =

1) ensures that data rearrangement steps are executed as often as possible,

minimizing wasted operations but maximizing frequency of bandwidth-limited

data rearrangement operations. Table C.1 shows how to recover the static-cell

(Alg. 4) and conventional CPU-based (Alg. 3) routines directly from Alg. 5 by

means of appropriate parameter settings.

• Alg. 5(h): If the number of active cells NA
C drops below the value NCPU , the

conventional CPU-based routine in Alg. 3 is used to treat the remaining cells.

• Alg. 5(i): The same explicit update steps described in the static algorithm

(Alg. 4) are used here – the difference is that the for loops in Alg. 4(e)-(n)

operate over NA
C instead of NC .

• Alg. 5(k): Every UF while loop iterations, a set of update conditions based on

saturation trends is checked to determine if a data rearrangement on the GPU

is necessary. These checks are as follows:

1. NNR
C < NA

C : The update should only occur when the number of non-

reacting (or complete) cells is lower than the current number of active

cells.

323

Description Parameters

1) Adaptive, Hybrid GPU/CPU 1 < NCPU < Nsat

2) Adaptive, GPU only NCPU = −1, Nsat ≥ 1

3) Static, GPU only NCPU = −1, Nsat = Inf

4) Conventional, CPU only NCPU = Inf

Table C.1: Implications of various parameter configurations in Alg. 5. Option 3
recovers the static algorithm (Alg. 4) and Option 4 recovers the conventional CPU
algorithm (Alg. 3). If the GPU is heavily saturated, the ideal configuration is adaptive
(Options 1 and 2). If GPUs are undersaturated, performance difference between (1/2)
and (3) is expected to be minimal.

2. NA
C > Nsat: The update should only occur when the current number of

active cells is above the GPU saturation point for source term evaluation.

This is described in further detail in Sec. C.4.

If the conditions described above are satisfied, the following steps are executed

to update the number of active cells NA
C . First, the thermochemical state data

corresponding to the completed cells (of NNR
C amount) are transferred to a set

of ”final” matrices (of size NC) that stores the end result. Second, the remaining

NR
C cells (still reacting) are re-formatted to occupy a contiguous memory block.

Third, the number of active cells NA
C is reduced to NR

C , which concludes the

while loop iteration. This process is illustrated in Fig. C.2(b).

C.4 Saturation and Speedup Trends

A discussion on GPU saturation and speedup trends is described below to properly

motivate the data re-arrangement routine in the adaptive algorithm. This is intended

to outline how one can choose the NCPU (cell value at which the CPU takes over

the time integration from the GPU) and Nsat (cell value at which the GPU is fully

saturated) input parameters required by the adaptive algorithm.

324

Figure. C.3 illustrates the effect of GPU saturation on both absolute compute

time and speedup over CPU for a given kernel. The characteristic kernel here is the

evaluation of the chemical source terms, which is the most compute-intensive step

in the time integration algorithm. As such, the upper plot in Fig. C.3 corresponds

to time-to-solution for source term evaluation, and the bottom plot corresponds to

speedup over an unvectorized CPU-based evaluation of the source terms (e.g. from

Cantera). Note that Fig. C.3 intends only to illustrate the saturation phenomenon

schematically; plots derived from a true profiling study can be found in Appendix B.

The plots in Fig. C.3 can be split into undersaturated and saturated regimes on

the basis of cells-per-GPU (NC). The undersaturated regime is characterized by no

change in GPU compute time with respect to NC , whereas the saturated regime is

characterized by a linear increase in absolute compute time with NC . The saturation

point indicates the NC at which a transition between undersaturation and saturation

occurs on the GPU for the kernel in question.

The adaptive GPU time integration algorithm is motivated directly by the trends

shown in Fig. C.3. As chemistry time integraton proceeds, the number of reacting

cells NR
C begins to drop. This can be interpreted as a right-to-left traversal in Fig. C.3.

With this in mind, the saturation and speedup trends necessitate the following three

restrictions on adaptive cell updates on the GPU:

1. Update the number of cells (i.e. effectively change NC to NR
C) when in the

saturated regime, as this will give a proportional decrease in compute time.

This is the region between points A and B in Fig. C.3.

2. Do not update the number of cells when in the undersaturated regime, as this

gives no additional reduction in compute time. This is the region between points

B and C in Fig. C.3.

3. Offload back to the CPU when the number of reacting cells drops to the point

325

C
om

pu
te

 T
im

e
Sp

ee
du

p
ov

er
 C

PU

Cells-per-GPU

Saturation and Speedup Trends
SaturatedUndersaturated

Saturation
Point

A

BC

AB

C

Figure C.3: Illustration of saturation effect (top) and speedup trends over CPU (bot-
tom) versus NC (cells-per-GPU) for a key kernel, here taken to be the chemical source
term evaluation. During chemical time integration, the number of chemically active
cells drops, as shown by the arrows. Point A is in the saturated regime. Point B is
the saturation point. Point C is the NC value at which a CPU evaluation is faster
than GPU. The locations of point B and C depend on the GPU architecture and the
chemical mechanism. Note that these diagrams are exaggerations of true behavior –
see Ref. [16] for true profiles.

at which kernel evaluation on the CPU (host) is faster than the GPU (device).

This is the region below point C in Fig. C.3. Point C occurs at very small cell

numbers, typically around 5 or 10 depending on the chemistry mechanism. How-

ever, switching back to the CPU for low cell numbers can result in significant

computational savings when treating highly localized chemical stiffness where

a very small number of cells are responsible for the small chemical timescales.

This occurs frequently in advection-dominated compressible reacting flow (e.g.

detonations).

326

C.5 Performance Comparison

This section compares performance between the static (Alg. 4) and adaptive

(Alg. 5) GPU chemistry time integration algorithms in the context of shock-dominated

compressible reacting flow. The objective here is to demonstrate the advantage pro-

vided by the adaptive algorithm for problems containing highly localized heat release

and stiffness, which is characteristic of the application cases considered in this disser-

tation as outlined in Chapter I, Sec. 1.2. As such, a targeted study based on weak

scaling of 1-d detonation simulations is used to isolate the impact of localized stiffness

on the performance of the time integration algorithms with detailed chemistry. All

discussion hereafter applies within the context of a single MPI rank offloading the

chemistry time integration task to an associated GPU in a domain-decomposition

scope (e.g. the number of cells NC represents the per-GPU amount). All simulations

were performed using NVIDIA V100 GPUs.

The domain configuration is shown in Fig. C.4. Following the method of Ref. [364],

detonations are initiated by means of imposing a high-energy driver gas in a small

region on the leftmost side of the domain. As shown in Fig. C.4, three different domain

lengths are tested at different orders of magnitude with proportional increase in the

number of cells NC . This fixes the resolution in all cases to 50 micron. As mentioned

above, the idea here is to demonstrate the advantage of the adaptive algorithm by

isolating purely the effect of localized stiffness. In other words, since resolution is

fixed, the increase in number of cells-per-GPU (NC) does not change the physics

of the problems between cases; instead, as NC increases, the number of chemically

active cells in proportion to chemically inactive cells is expected to drop, which in

turn favors the need to adopt the adaptive-cell algorithm. As such, the goal is to

quantify the advantage provided by the adaptive-cell algorithm on the GPU with

direct comparison to the static-cell counterpart using NC as an effective knob for the

ratio of chemically active to inactive cells via the weak scaling of 1-d detonations.

327

D
riv

er

Ambient

L

Case L [m] [micron]
1 6,000 0.30 50
2 60,000 3.00 50
3 600,000 30.0 50

NC Δx

Figure C.4: 1d detonation configuration, where NC represents the number of cells-
per-GPU. Each case maintains the same resolution. Length of driver region is fixed
at 3mm.

Fuel Oxidizer Reference NS NR Driver Gas PD [atm] TD [K]

H2 Air [212] 9 21 Nitrogen 100 2500

CH4 O2 [359] 12 38 CJ condition 100 2500

RP2-2 O2 [361] 38 192 CJ condition 50 3900

Table C.2: List of mechanisms used along with driver gas properties for 1d detonation
configuration (see Fig. C.4). Ambient gas properties were set to equivalance ratio of
unity with T = 300K and P = 1atm. The last three columns provide input parameter
settings needed by the adaptive algorithm (see Alg. 5 and Sec. C.3.2). In all cases,
Nsat = 1000, NCPU = 100, and UF = 10.

Additionally, for each domain case in Fig. C.4 (each NC), three chemical mechanisms

are compared. These mechanisms are provided in Tab. C.2 in order of increasing

complexity.

Chemical Stiffness Trends: Figure C.5 shows how both the simulation

timesteps and the chemical timescales change during the time evolution of a sustained

detonation for the three mechanisms listed in Tab. C.2. For each point in time, the

simulation timestep is extracted from the CFL condition of 0.2 using a standard acous-

tic wavespeed estimate. Each cell provides a candidate timestep, and the minimum

over the entire domain is ultimately chosen (shown in blue in Fig. C.5). The chemi-

328

Simulation Timestep

Chemical Timescale

Figure C.5: Time evolution of simulation time step (blue) and chemical timescales
(black) during steady detonation propagation for the three mechanisms defined in
Tab. C.2. Reproduced from Fig. 1.7 for ease of readability.

cal timescales (black in Fig. C.5) are approximations; they are obtained by dividing

the simulation timestep at the corresponding time instant by the number of chem-

istry subcycles (while loop iterations in the chemistry time integration algorithm),

providing an interpretable representation of chemical stiffness within the context of

sustained detonation. Fig. C.5 shows how all three mechanisms observe simulation

timesteps at the same order of magnitude (roughly 6 nanoseconds), whereas the chem-

ical timescale estimates are noticeably different. This implies that, for the purposes of

this study, the selection of chemical mechanism provides a pathway for profiling the

effect of stiffness on the cell-adaptive GPU time integration algorithm. The stiffness

ratio – which is the ratio between simulation timestep and chemical timescale – is on

the order of 102 for both H2/Air and CH4/O2 mechanisms (less stiff), and is roughly

104 for the RP2 mechanism (most stiff), providing good baselines for assessment of

stiffness variation.

329

Speedup over Static Algorithm: Figure C.6(a) shows average speedup de-

rived from the adaptive GPU-based chemistry time integration algorithm (Alg. 5)

over the static GPU-based algorithm (Alg. 4) during the detonation simulation for

increasing cells-per-GPU. The adaptive algorithm parameters for each mechanism

(Nsat, NCPU , and the update frequency UF) are provided in Tab. C.2. The speedup

shown in Fig. C.6(a) comes from evaluating average times-to-solution for chemical

time integration during each simulation time step. As mentioned in the discussion

surrounding Fig. C.4, because the increase in cells-per-GPU NC corresponds directly

to an increase in localized stiffness (i.e. high NC in this problem configuration drops

the ratio of the number of chemically active to inactive cells), the speedup provided

by the adaptive algorithm increases at constant rate with cell count for all mecha-

nism tested. Further, the adaptive-cell algorithm provides greater speedup over the

static-cell counterpart for mechanisms with higher complexity (higher values of NC

and NR), as illustrated by the vertical shift of each curve in Fig. C.6(a). Note that

for the less complex mechanisms, speedup over the static-cell algorithm is minimal

when cell counts are low – for example, the adaptive-cell algorithm applied on the

H2/Air and CH4/O2 mechanisms do not see signifant computational gain at low NC .

This comes from the saturation limit – the adaptive algorithm is ideal in situations

where the baseline NC (cells-per-GPU) is above the GPU saturation point. Since

the saturation point decreases in proportion to the number of reactions in the chemi-

cal mechanism, the computational advantage provided by the adaptive-cell algorithm

increases significantly with chemical mechanism complexity.

It should be noted that the slope in Fig. C.6(a) (the rate of increase in speedup

with respect to to cells-per-GPU) increases with chemical mechanism stiffness. This

effect of stiffness on speedup derived from the adaptive-cell algorithm is shown in

Fig. C.6(b), which illustrates the correlation between time-to-solution for chemical

time integration (x-axis) and the number of subcycle iterations (while-loop iterations,

330

y-axis). A high subcycle iteration implies increased chemical stiffness. Figure. C.6(b)

shows how the increase in chemical stiffness indicates an increase in speedup provided

by the adaptive algorithm. Ultimately, the adaptive algorithm ensures that detailed,

highly stiff chemical mechanisms become significantly more practical on the GPU in

compressible reacting flow simulations.

Note that due to the application scope on flow solvers designed to treat advection-

dominated compressible reacting flow (which is the scope of this dissertation), this

performance analysis was designed to emphasize the computational advantage pro-

vided by the adaptive-cell algorithm over the static-cell counterpart in scenarios with

chemical heat release highly localized in space. Similar analysis of the adaptive-cell

chemical time integration algorithm for canonical problems with evenly distributed

chemical reactions (e.g. Taylor-Green vortex or homogeneous isotropic turbulence) is

left for future work. Preliminary analysis shows that similar trends seen in Fig. C.6 are

also observed in these situations, but with lower peak speedups – for problems with

spatially distributed chemical reactions dominated by turbulence, speedup over the

static-cell algorithms for complex mechanisms of moderate stiffness peaks at roughly

10x, with typical values ranging between 5-7x.

331

(a) Average Speedup Over Static Algorithm (b) Effect of Chemical Stiffness on Speedup

Static GPU
Algorithm

Adaptive GPU
Algorithm

Figure C.6: (a) Speedup on average provided by the adaptive time integration (Alg. 5)
over the static algorithm (Alg. 4) as a function of NC . (b) Correlation between
subcycle (while loop) iterations and runtime (time-to-solution) for the chemical time
integration phase.

332

BIBLIOGRAPHY

333

BIBLIOGRAPHY

[1] Abdulle, A., E. Weinan, B. Engquist, and E. Vanden-Eijnden (2012), The het-
erogeneous multiscale method, Acta Numerica, 21, 1–87.

[2] Adrian, R. (1990), Stochastic estimation of sub-grid scale mations, Applied
Mechanics Reviews, 43 (5), S214–S218.

[3] Akbari, G., and N. Montazerin (2021), Reconstruction of particle image ve-
locimetry data using flow-based features and validation index: a machine learn-
ing approach, Measurement Science and Technology, 33 (1), 015,203.

[4] Akram, M. (2021), Reduced-order modeling of turbulent reacting flows using
inertial manifold theory, Ph.D. thesis, University of Michigan, Ann Arbor.

[5] Akram, M., and V. Raman (2021), Using approximate inertial manifold ap-
proach to model turbulent non-premixed combustion, Physics of Fluids, 33 (3),
035,125.

[6] Akram, M., M. Hassanaly, and V. Raman (2020), A priori analysis of reduced
description of dynamical systems using approximate inertial manifolds, Journal
of Computational Physics, 409, 109,344.

[7] Alexander, F., et al. (2020), Exascale applications: skin in the game, Philo-
sophical Transactions of the Royal Society A, 378 (2166), 20190,056.

[8] An, Q., and A. M. Steinberg (2019), The role of strain rate, local extinction,
and hydrodynamic instability on transition between attached and lifted swirl
flames, Combustion and Flame, 199, 267–278.

[9] An, Q., B. D. Geraedts, and A. M. Steinberg (2015), Dynamics of flame lift-off
in biogas swirl flames, in 51st AIAA/SAE/ASEE Joint Propulsion Conference,
p. 4084.

[10] An, Q., W. Y. Kwong, B. D. Geraedts, and A. M. Steinberg (2016), Coupled
dynamics of lift-off and precessing vortex core formation in swirl flames, Com-
bustion and Flame, 168, 228–239.

[11] Ananthkrishnan, N., S. Deo, and F. E. Culick (2005), Reduced-order modeling
and dynamics of nonlinear acoustic waves in a combustion chamber, Combustion
Science and Technology, 177 (2), 221–248.

334

[12] Argonne Leadership Computing Facility (2022), https://www.alcf.anl.gov/
aurora/.

[13] Arthur, D., and S. Vassilvitskii (2006), k-means++: The advantages of careful
seeding, Tech. rep., Stanford.

[14] Athmanathan, V., J. Braun, Z. M. Ayers, C. A. Fugger, A. M. Webb, M. N.
Slipchenko, G. Paniagua, S. Roy, and T. R. Meyer (2022), On the effects of
reactant stratification and wall curvature in non-premixed rotating detonation
combustors, Combustion and Flame, 240, 112,013.

[15] Balci, O. (1995), Principles and techniques of simulation validation, verification,
and testing, in Proceedings of the 27th conference on Winter simulation, pp.
147–154.

[16] Barwey, S., and V. Raman (2021), A neural network-inspired matrix formula-
tion of chemical kinetics for acceleration on gpus, Energies, 14 (9), 2710.

[17] Barwey, S., and V. Raman (2021), Impact of operator splitting schemes on
detonation convergence, in APS Division of Fluid Dynamics Meeting Abstracts,
pp. Q03–001.

[18] Barwey, S., M. Hassanaly, Q. An, V. Raman, and A. Steinberg (2019), Ex-
perimental data-based reduced-order model for analysis and prediction of flame
transition in gas turbine combustors, Combustion Theory and Modelling, 23 (6),
994–1020.

[19] Barwey, S., H. Ganesh, M. Hassanaly, V. Raman, and S. Ceccio (2020), Data-
based analysis of multimodal partial cavity shedding dynamics, Experiments in
Fluids, 61 (4), 1–21.

[20] Barwey, S., S. Prakash, M. Hassanaly, and V. Raman (2021), Data-driven clas-
sification and modeling of combustion regimes in detonation waves, Flow, Tur-
bulence and Combustion, 106 (4), 1065–1089.

[21] Barwey, S., V. Raman, and A. M. Steinberg (2021), Extracting information
overlap in simultaneous oh-plif and piv fields with neural networks, Proceedings
of the Combustion Institute, 38 (4), 6241–6249.

[22] Barwey, S., M. Hassanaly, V. Raman, and A. Steinberg (2022), Using machine
learning to construct velocity fields from oh-plif images, Combustion Science
and Technology, 194 (1), 93–116.

[23] Batten, P., N. Clarke, C. Lambert, and D. M. Causon (1997), On the choice of
wavespeeds for the hllc riemann solver, SIAM Journal on Scientific Computing,
18 (6), 1553–1570.

335

https://www.alcf.anl.gov/aurora/
https://www.alcf.anl.gov/aurora/

[24] Bauer, M., S. Treichler, E. Slaughter, and A. Aiken (2012), Legion: Expressing
locality and independence with logical regions, in SC’12: Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage
and Analysis, pp. 1–11, IEEE.

[25] Beckingsale, D. A., et al. (2019), RAJA: Portable performance for large-scale
scientific applications, in 2019 ieee/acm international workshop on performance,
portability and productivity in hpc (p3hpc), pp. 71–81, IEEE.

[26] Bell, J. B., N. J. Brown, M. S. Day, M. Frenklach, J. F. Grcar, R. M. Propp, and
S. R. Tonse (2000), Scaling and efficiency of PRISM in adaptive simulations of
turbulent premixed flames, in Proceedings of the Combustion Institute, vol. 28,
pp. 107–113.

[27] Berger, M. J., and P. Colella (1989), Local adaptive mesh refinement for shock
hydrodynamics, Journal of computational Physics, 82 (1), 64–84.

[28] Berger, M. J., and J. Oliger (1984), Adaptive mesh refinement for hyperbolic
partial differential equations, Journal of computational Physics, 53 (3), 484–512.

[29] Berkooz, G., P. Holmes, and J. L. Lumley (1993), The proper orthogonal de-
composition in the analysis of turbulent flows, Annual review of fluid mechanics,
25 (1), 539–575.

[30] Bielawski, R., S. Barwey, S. Prakash, and V. Raman (In Preparation), Highly-
scalable gpu-accelerated compressible reacting solver for shock-containing flows,
Computers & Fluids.

[31] Blasco, J., N. Fueyo, C. Dopazo, and J. Ballester (1998), Modelling the temporal
evolution of a reduced combustion chemical system with an artificial neural
network, Combustion and Flame, 113 (1-2), 38–52.

[32] Blasco, J. A., N. Fueyo, J. Larroya, C. Dopazo, and Y.-J. Chen (1999), A
single-step time-integrator of a methane–air chemical system using artificial
neural networks, Computers & Chemical Engineering, 23 (9), 1127–1133.

[33] Blasco, J. A., N. Fueyo, C. Dopazo, and J. Chen (2000), A self-organizing-map
approach to chemistry representation in combustion applications, Combustion
Theory and Modelling, 4 (1), 61.

[34] Bode, M., M. Gauding, Z. Lian, D. Denker, M. Davidovic, K. Kleinheinz, J. Jit-
sev, and H. Pitsch (2021), Using physics-informed enhanced super-resolution
generative adversarial networks for subfilter modeling in turbulent reactive
flows, Proceedings of the Combustion Institute, 38 (2), 2617–2625.

[35] Bogdanoff, D. W. (1994), Advanced injection and mixing techniques for scram-
jet combustors, Journal of Propulsion and Power, 10 (2), 183–190.

336

[36] Bose, S. T., and G. I. Park (2018), Wall-modeled large-eddy simulation for
complex turbulent flows, Annual review of fluid mechanics, 50, 535.

[37] Bottou, L., and Y. Bengio (1994), Convergence properties of the k-means algo-
rithms, Advances in neural information processing systems, 7.

[38] Bouchacourt, D., R. Tomioka, and S. Nowozin (2018), Multi-level variational
autoencoder: Learning disentangled representations from grouped observations,
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32.

[39] Brandt, A., and N. Dinar (1979), Multigrid solutions to elliptic flow problems,
in Numerical methods for partial differential equations, pp. 53–147, Elsevier.

[40] Breuer, K. S., and L. Sirovich (1991), The use of the karhunen-loeve procedure
for the calculation of linear eigenfunctions, Journal of Computational Physics,
96 (2), 277–296.

[41] Brunton, S. L., B. R. Noack, and P. Koumoutsakos (2020), Machine learning
for fluid mechanics, Annual Review of Fluid Mechanics, 52 (1), 477–508, doi:
10.1146/annurev-fluid-010719-060214.

[42] Budanur, N. B., K. Y. Short, M. Farazmand, A. P. Willis, and P. Cvitanović
(2017), Relative periodic orbits form the backbone of turbulent pipe flow, Jour-
nal of Fluid Mechanics, 833, 274–301.

[43] Bulat, G., W. Jones, and A. Marquis (2013), Large eddy simulation of an in-
dustrial gas-turbine combustion chamber using the sub-grid pdf method, Pro-
ceedings of the combustion institute, 34 (2), 3155–3164.

[44] Burkardt, J., M. Gunzburger, and H.-C. Lee (2006), Centroidal voronoi
tessellation-based reduced-order modeling of complex systems, SIAM Journal
on Scientific Computing, 28 (2), 459–484.

[45] Burke, M. P., M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein (2012),
Comprehensive H2/O2 kinetic model for high-pressure combustion, Interna-
tional Journal of Chemical Kinetics, 44 (7), 444–474.

[46] Cailler, M., N. Darabiha, D. Veynante, and B. Fiorina (2017), Building-up
virtual optimized mechanism for flame modeling, Proceedings of the Combustion
Institute, 36 (1), 1251 – 1258, doi:10.1016/j.proci.2016.05.028.

[47] Cao, Y., E. Kaiser, J. Borée, B. R. Noack, L. Thomas, and S. Guilain (2014),
Cluster-based analysis of cycle-to-cycle variations: application to internal com-
bustion engines, Experiments in fluids, 55 (11), 1–8.

[48] Capecelatro, J., D. J. Bodony, and J. Freund (2017), Adjoint-based sensitivity
analysis of ignition in a turbulent reactive shear layer, in 55th AIAA Aerospace
Sciences Meeting, p. 0846.

337

[49] Caron, M., P. Bojanowski, A. Joulin, and M. Douze (2018), Deep clustering
for unsupervised learning of visual features, in Proceedings of the European
conference on computer vision (ECCV), pp. 132–149.

[50] Caux-Brisebois, V., A. M. Steinberg, C. M. Arndt, and W. Meier (2014),
Thermo-acoustic velocity coupling in a swirl stabilized gas turbine model com-
bustor, Combustion and Flame, 161 (12), 3166–3180.

[51] Celebi, M. E. (2014), Partitional clustering algorithms, Springer.

[52] Chacon, F., and M. Gamba (2019), Study of parasitic combustion in an optically
accessible continuous wave rotating detonation engine, in AIAA Scitech 2019
Forum, p. 0473.

[53] Chacon, F., A. Feleo, and M. Gamba (2019), Effect of parasitic and commensal
combustion on rotating detonation combustor properties, in Proceedings of the
27th International Colloquium on the Dynamics of Explosions and Reactive
Systems.

[54] Chandrashekar, P. (2013), Kinetic energy preserving and entropy stable finite
volume schemes for compressible euler and navier-stokes equations, Communi-
cations in Computational Physics, 14 (5), 1252–1286.

[55] Chen, J. H., et al. (2009), Terascale direct numerical simulations of turbulent
combustion using s3d, Computational Science & Discovery, 2 (1), 015,001.

[56] Chen, K. K., J. H. Tu, and C. W. Rowley (2012), Variants of dynamic mode
decomposition: boundary condition, koopman, and fourier analyses, Journal of
nonlinear science, 22 (6), 887–915.

[57] Chiavazzo, E., C. W. Gear, C. J. Dsilva, N. Rabin, and I. G. Kevrekidis (2014),
Reduced models in chemical kinetics via nonlinear data-mining, Processes, 2 (1),
112–140.

[58] Chong, S. T., M. Hassanaly, H. Koo, M. E. Mueller, V. Raman, and K.-P.
Geigle (2018), Large eddy simulation of pressure and dilution-jet effects on soot
formation in a model aircraft swirl combustor, Combustion and Flame, 192,
452–472.

[59] Choubey, G., Y. Devarajan, W. Huang, K. Mehar, M. Tiwari, and K. Pandey
(2019), Recent advances in cavity-based scramjet engine-a brief review, Inter-
national Journal of Hydrogen Energy, 44 (26), 13,895–13,909.

[60] Christo, F., A. Masri, and E. Nebot (1996), Artificial neural network imple-
mentation of chemistry with pdf simulation of h2/co2 flames, Combustion and
Flame, 106 (4), 406–427.

[61] Chterev, I., et al. (2014), Flame and flow topologies in an annular swirling flow,
Combustion Science and Technology, 186 (8), 1041–1074.

338

[62] Cockburn, B., G. E. Karniadakis, and C.-W. Shu (2012), Discontinuous
Galerkin methods: theory, computation and applications, vol. 11, Springer Sci-
ence & Business Media.

[63] Cohen, S. D., A. C. Hindmarsh, and P. F. Dubois (1996), Cvode, a stiff/nonstiff
ode solver in c, Computers in physics, 10 (2), 138–143.

[64] Colella, P., A. Majda, and V. Roytburd (1986), Theoretical and numerical
structure for reacting shock waves, SIAM Journal on Scientific and Statistical
Computing, 7 (4), 1059–1080.

[65] Courant, R., K. Friedrichs, and H. Lewy (1928), Über die partiellen differen-
zengleichungen der mathematischen physik, Mathematische annalen, 100 (1),
32–74.

[66] Coussement, A., O. Gicquel, and A. Parente (2013), Mg-local-pca method for
reduced order combustion modeling, Proceedings of the Combustion Institute,
34 (1), 1117–1123.

[67] Curran, E. T. (2001), Scramjet engines: the first forty years, Journal of Propul-
sion and Power, 17 (6), 1138–1148.

[68] Curtis, N. J., K. E. Niemeyer, and C.-J. Sung (2018), Using simd and simt
vectorization to evaluate sparse chemical kinetic jacobian matrices and thermo-
chemical source terms, Combustion and Flame, 198, 186–204.

[69] Cvitanović, P., and B. Eckhardt (1993), Symmetry decomposition of chaotic
dynamics, Nonlinearity, 6 (2), 277.

[70] Deiterding, R. (2003), Parallel adaptive simulation of multi-dimensional deto-
nation structures, Dissertation. de.

[71] Deng, Z., C. He, Y. Liu, and K. C. Kim (2019), Super-resolution reconstruction
of turbulent velocity fields using a generative adversarial network-based artificial
intelligence framework, Physics of Fluids, 31 (12), 125,111.

[72] Dhillon, I. S., and D. S. Modha (2002), A data-clustering algorithm on dis-
tributed memory multiprocessors, in Large-scale parallel data mining, pp. 245–
260, Springer.

[73] Dhillon, I. S., Y. Guan, and B. Kulis (2004), Kernel k-means: spectral clustering
and normalized cuts, in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 551–556.

[74] Ding, C., and X. He (2004), K-means clustering via principal component analy-
sis, in Proceedings of the twenty-first international conference on Machine learn-
ing, p. 29.

339

[75] Dosovitskiy, A., P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox (2015), Flownet: Learning optical flow
with convolutional networks, in Proceedings of the IEEE international confer-
ence on computer vision, pp. 2758–2766.

[76] Driver, H. E., and A. L. Kroeber (1932), Quantitative expression of cultural
relationships, vol. 31, Berkeley: University of California Press.

[77] Drmac, Z., I. Mezic, and R. Mohr (2018), Data driven modal decompositions:
analysis and enhancements, SIAM Journal on Scientific Computing, 40 (4),
A2253–A2285.

[78] Duraisamy, K. (2021), Perspectives on machine learning-augmented reynolds-
averaged and large eddy simulation models of turbulence, Physical Review Flu-
ids, 6 (5), 050,504.

[79] Duraisamy, K., G. Iaccarino, and H. Xiao (2019), Turbulence modeling in the
age of data, Annual Review of Fluid Mechanics, 51, 357–377.

[80] D’Alessio, G., A. Parente, A. Stagni, and A. Cuoci (2020), Adaptive chemistry
via pre-partitioning of composition space and mechanism reduction, Combus-
tion and Flame, 211, 68–82.

[81] Edwards, H. C., C. R. Trott, and D. Sunderland (2014), Kokkos: Enabling
manycore performance portability through polymorphic memory access pat-
terns, Journal of parallel and distributed computing, 74 (12), 3202–3216.

[82] Emmett, M., E. Motheau, W. Zhang, M. Minion, and J. B. Bell (2019), A
fourth-order adaptive mesh refinement algorithm for the multicomponent, react-
ing compressible navier–stokes equations, Combustion Theory and Modelling,
23 (4), 592–625.

[83] Farazmand, M., and T. P. Sapsis (2016), Dynamical indicators for the prediction
of bursting phenomena in high-dimensional systems, Physical Review E, 94 (3),
032,212.

[84] Fard, M. M., T. Thonet, and E. Gaussier (2020), Deep k-means: Jointly clus-
tering with k-means and learning representations, Pattern Recognition Letters,
138, 185–192.

[85] Farivar, R., D. Rebolledo, E. Chan, and R. H. Campbell (2008), A parallel
implementation of k-means clustering on gpus., in Pdpta, vol. 13, pp. 212–312.

[86] Fickett, W., and W. C. Davis (2000), Detonation: theory and experiment,
Courier Corporation.

[87] Fiévet, R., H. Koo, and V. Raman (2015), Numerical simulation of a scramjet
isolator with thermodynamic nonequilibrium, in 22nd AIAA Computational
Fluid Dynamics Conference, p. 3418, doi:10.2514/6.2015-3418.

340

[88] Fiévet, R., H. Koo, V. Raman, and A. H. Auslender (2017), Numerical in-
vestigation of shock-train response to inflow boundary-layer variations, AIAA
Journal, 55 (9), 2888–2901.

[89] Fiévet, R., S. Voelkel, H. Koo, V. Raman, and P. L. Varghese (2017), Effect of
thermal nonequilibrium on ignition in scramjet combustors, Proceedings of the
Combustion Institute, 36 (2), 2901–2910.

[90] Fiorina, B., and M. Caillier (2019), Accounting for complex chemistry in the
simulations of future turbulent combustion systems, in AIAA SciTech 2019
Forum, p. 0995.

[91] Fogleman, M., J. Lumley, D. Rempfer, and D. Haworth (2004), Application of
the proper orthogonal decomposition to datasets of internal combustion engine
flows, Journal of Turbulence, 5 (1), 023.

[92] Foias, C., G. R. Sell, and R. Temam (1988), Inertial manifolds for nonlinear
evolutionary equations, Journal of differential equations, 73 (2), 309–353.

[93] Fooladgar, E., and C. Duwig (2018), A new post-processing technique for an-
alyzing high-dimensional combustion data, Combustion and Flame, 191, 226–
238.

[94] Fornberg, B., and D. M. Sloan (1994), A review of pseudospectral methods for
solving partial differential equations, Acta numerica, 3, 203–267.

[95] Fotia, M. L., and J. F. Driscoll (2013), Ram-scram transition and flame/shock-
train interactions in a model scramjet experiment, Journal of Propulsion and
Power, 29 (1), 261–273.

[96] Franke, L. L., A. K. Chatzopoulos, and S. Rigopoulos (2017), Tabulation of
combustion chemistry via artificial neural networks (ANNs): Methodology and
application to LES-PDF simulation of Sydney flame L, Combustion and Flame,
185, 245–260.

[97] Frolov, S., A. Dubrovskii, and V. Ivanov (2013), Three-dimensional numeri-
cal simulation of operation process in rotating detonation engine, Progress in
Propulsion Physics, 4, 467–488.

[98] Fry, R. S. (2004), A century of ramjet propulsion technology evolution, Journal
of propulsion and power, 20 (1), 27–58.

[99] Fukami, K., K. Fukagata, and K. Taira (2019), Super-resolution analysis with
machine learning for low-resolution flow data, in 11th International Symposium
on Turbulence and Shear Flow Phenomena, TSFP 2019.

[100] Fukami, K., T. Nakamura, and K. Fukagata (2020), Convolutional neural net-
work based hierarchical autoencoder for nonlinear mode decomposition of fluid
field data, Physics of Fluids, 32 (9), 095,110.

341

[101] Galassi, R. M., P. P. Ciottoli, M. Valorani, and H. G. Im (2022), An adaptive
time-integration scheme for stiff chemistry based on computational singular
perturbation and artificial neural networks, Journal of Computational Physics,
451, 110,875.

[102] Garicano-Mena, J., B. Li, E. Ferrer, and E. Valero (2019), A composite dy-
namic mode decomposition analysis of turbulent channel flows, Physics of Flu-
ids, 31 (11), 115,102.

[103] Gaspard, P., G. Nicolis, A. Provata, and S. Tasaki (1995), Spectral signature
of the pitchfork bifurcation: Liouville equation approach, Physical Review E,
51 (1), 74.

[104] Gibney, E., et al. (2021), Fuel for world’s largest fusion reactor iter is set for
test run, Nature, 591 (7848), 15–16.

[105] Gicquel, L. Y., G. Staffelbach, and T. Poinsot (2012), Large eddy simulations
of gaseous flames in gas turbine combustion chambers, Progress in energy and
combustion science, 38 (6), 782–817.

[106] Glassman, I., R. A. Yetter, and N. G. Glumac (2014), Combustion, Academic
press.

[107] Glaws, A., R. King, and M. Sprague (2020), Deep learning for in situ data
compression of large turbulent flow simulations, Physical Review Fluids, 5 (11),
114,602.

[108] Goodfellow, I., Y. Bengio, and A. Courville (2016), Deep learning, MIT press.

[109] Goodwin, D. G., H. K. Moffat, I. Schoegl, R. L. Speth, and B. W. Weber (2022),
Cantera: An object-oriented software toolkit for chemical kinetics, thermody-
namics, and transport processes.

[110] Gottlieb, S., D. I. Ketcheson, and C.-W. Shu (2009), High order strong stability
preserving time discretizations, Journal of Scientific Computing, 38 (3), 251–
289.

[111] Goussis, D. A., and M. Valorani (2006), An efficient iterative algorithm for
the approximation of the fast and slow dynamics of stiff systems, Journal of
Computational Physics, 214 (1), 316–346.

[112] Graftieaux, L., M. Michard, and N. Grosjean (2001), Combining PIV, POD and
vortex identification algorithms for the study of unsteady turbulent swirling
flows, Measurement Science and Technology, 12 (9), 1422.

[113] Gruber, A., M. Gunzburger, L. Ju, and Z. Wang (2022), A comparison of
neural network architectures for data-driven reduced-order modeling, Computer
Methods in Applied Mechanics and Engineering, 393, 114,764.

342

[114] Gui, M.-Y., B.-C. Fan, and G. Dong (2011), Periodic oscillation and fine struc-
ture of wedge-induced oblique detonation waves, Acta Mechanica Sinica, 27 (6),
922–928.

[115] Hadjighasem, A., D. Karrasch, H. Teramoto, and G. Haller (2016), Spectral-
clustering approach to lagrangian vortex detection, Physical Review E, 93 (6),
063,107.

[116] Han, W., V. Raman, M. E. Mueller, and Z. Chen (2019), Effects of combus-
tion models on soot formation and evolution in turbulent nonpremixed flames,
Proceedings of the Combustion Institute, 37 (1), 985–992.

[117] Hansinger, M., Y. Ge, and M. Pfitzner (2022), Deep residual networks for
flamelet/progress variable tabulation with application to a piloted flame with
inhomogeneous inlet, Combustion Science and Technology, 194 (8), 1587–1613.

[118] Hardoon, D. R., S. Szedmak, and J. Shawe-Taylor (2004), Canonical correlation
analysis: An overview with application to learning methods, Neural computa-
tion, 16 (12), 2639–2664.

[119] Hassanaly, M. (2020), Extreme events in turbulent combustion, Ph.D. thesis,
University of Michigan, Ann Arbor.

[120] Hassanaly, M., and V. Raman (2019), Ensemble-les analysis of perturbation
response of turbulent partially-premixed flames, Proceedings of the Combustion
Institute, 37 (2), 2249–2257.

[121] Hassanaly, M., and V. Raman (2019), Lyapunov spectrum of forced homoge-
neous isotropic turbulent flows, Physical Review Fluids, 4 (11), 114,608.

[122] Hassanaly, M., and V. Raman (2021), Classification and computation of ex-
treme events in turbulent combustion, Progress in Energy and Combustion Sci-
ence, 87, 100,955.

[123] Hassanaly, M., Y. Tang, S. Barwey, and V. Raman (2021), Data-driven analysis
of relight variability of jet fuels induced by turbulence, Combustion and Flame,
225, 453–467.

[124] Hassanaly, M., A. Glaws, K. Stengel, and R. N. King (2022), Adversarial sam-
pling of unknown and high-dimensional conditional distributions, Journal of
Computational Physics, 450, 110,853.

[125] Hecht-Nielsen, R. (1992), Theory of the backpropagation neural network, in
Neural Networks for Perception, pp. 65–93, Elsevier.

[126] Herrmann, M., G. Blanquart, and V. Raman (2006), Flux corrected finite vol-
ume scheme for preserving scalar boundedness in reacting large-eddy simula-
tions, AIAA journal, 44 (12), 2879–2886.

343

[127] Hijazi, S., G. Stabile, A. Mola, and G. Rozza (2020), Data-driven pod-galerkin
reduced order model for turbulent flows, Journal of Computational Physics,
416, 109,513.

[128] Holmes, P., J. L. Lumley, G. Berkooz, and C. W. Rowley (2012), Turbulence,
coherent structures, dynamical systems and symmetry, Cambridge university
press.

[129] Hooker, S. (2021), The hardware lottery, Communications of the ACM, 64 (12),
58–65.

[130] Hooker, S. (2021), The hardware lottery, Communications of the ACM, 64 (12),
58–65.

[131] Huang, J. Z., M. K. Ng, H. Rong, and Z. Li (2005), Automated variable weight-
ing in k-means type clustering, IEEE transactions on pattern analysis and ma-
chine intelligence, 27 (5), 657–668.

[132] Huang, Y., and V. Yang (2009), Dynamics and stability of lean-premixed swirl-
stabilized combustion, Progress in energy and combustion science, 35 (4), 293–
364.

[133] Ihme, M., W. T. Chung, and A. A. Mishra (2022), Combustion machine learn-
ing: Principles, progress and prospects, Progress in Energy and Combustion
Science, 91, 101,010.

[134] Iudiciani, P., C. Duwig, S. Husseini, R.-Z. Szasz, L. Fuchs, and E. Gutmark
(2012), Proper orthogonal decomposition for experimental investigation of flame
instabilities, AIAA journal, 50 (9), 1843–1854.

[135] Jacobsen, C., and K. Duraisamy (2022), Disentangling generative factors of
physical fields using variational autoencoders, Frontiers in Physics, p. 536.

[136] Jacobsen, L. S., C. D. Carter, T. A. Jackson, S. Williams, J. Barnett,
D. Bivolaru, S. Kuo, C.-J. Tam, and R. A. Baurle (2008), Plasma-assisted
ignition in scramjets, Journal of Propulsion and Power, 24 (4), 641–654.

[137] Jain, A. K., M. N. Murty, and P. J. Flynn (1999), Data clustering: a review,
ACM computing surveys (CSUR), 31 (3), 264–323.

[138] Jameson, A. (1983), Solution of the euler equations for two dimensional tran-
sonic flow by a multigrid method, Applied mathematics and computation, 13 (3-
4), 327–355.

[139] Jiang, G., and D. Peng (2000), Weighted eno schemes for hamilton–jacobi
equations, SIAM Journal on Scientific Computing, 21 (6), 2126–2143, doi:
10.1137/S106482759732455X.

344

[140] Kaiser, E., et al. (2014), Cluster-based reduced-order modelling of a mixing
layer, Journal of Fluid Mechanics, 754, 365–414.

[141] Karnakov, P., S. Litvinov, and P. Koumoutsakos (2022), Optimizing a discrete
loss (odil) to solve forward and inverse problems for partial differential equations
using machine learning tools, arXiv preprint arXiv:2205.04611.

[142] Kaul, C. M., V. Raman, E. Knudsen, E. S. Richardson, and J. H. Chen (2013),
Large eddy simulation of a lifted ethylene flame using a dynamic nonequilib-
rium model for subfilter scalar variance and dissipation rate, Proceedings of the
Combustion Institute, 34 (1), 1289–1297.

[143] Kawai, S., and S. K. Lele (2010), Large-eddy simulation of jet mixing in super-
sonic crossflows, AIAA journal, 48 (9), 2063–2083.

[144] Kee, R. J., F. M. Rupley, and J. A. Miller (1989), Chemkin-ii: A fortran chem-
ical kinetics package for the analysis of gas-phase chemical kinetics, Tech. rep.,
Sandia National Lab.(SNL-CA), Livermore, CA (United States).

[145] Kempf, A., F. Flemming, and J. Janicka (2005), Investigation of lengthscales,
scalar dissipation, and flame orientation in a piloted diffusion flame by LES,
Proceedings of the Combustion Institute, 30 (1), 557–565.

[146] Kerdprasop, K., N. Kerdprasop, and P. Sattayatham (2005), Weighted k-means
for density-biased clustering, in International conference on data warehousing
and knowledge discovery, pp. 488–497, Springer.

[147] Kevrekidis, I. G., C. W. Gear, and G. Hummer (2004), Equation-free: The
computer-aided analysis of complex multiscale systems, AIChE Journal, 50 (7),
1346–1355.

[148] Kim, H., J. Kim, S. Won, and C. Lee (2021), Unsupervised deep learning for
super-resolution reconstruction of turbulence, Journal of Fluid Mechanics, 910.

[149] Kim, K., O. Diaz-Ibarra, C. Safta, and H. Najm (2021), TINES - Time Inte-
gration, Newton and Eigen Solver, Sandia Report, 0, 0.

[150] Kim, S., W. Ji, S. Deng, Y. Ma, and C. Rackauckas (2021), Stiff neural ordi-
nary differential equations, Chaos: An Interdisciplinary Journal of Nonlinear
Science, 31 (9), 093,122.

[151] Kingma, D. P., and J. Ba (2014), Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980.

[152] Kingma, D. P., M. Welling, et al. (2019), An introduction to variational au-
toencoders, Foundations and Trends® in Machine Learning, 12 (4), 307–392.

[153] Klein, M., A. Sadiki, and J. Janicka (2003), A digital filter based generation of
inflow data for spatially developing direct numerical or large eddy simulations,
Journal of computational Physics, 186 (2), 652–665.

345

[154] Klus, S., P. Koltai, and C. Schütte (2015), On the numerical approximation of
the perron-frobenius and koopman operator, arXiv preprint arXiv:1512.05997.

[155] Knudsen, E., H. Pitsch, et al. (2015), Modeling partially premixed combustion
behavior in multiphase les, Combustion and Flame, 162 (1), 159–180.

[156] Kochkov, D., J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer
(2021), Machine learning–accelerated computational fluid dynamics, Proceed-
ings of the National Academy of Sciences, 118 (21), e2101784,118.

[157] Kodinariya, T. M., and P. R. Makwana (2013), Review on determining number
of cluster in k-means clustering, International Journal, 1 (6), 90–95.

[158] Kong, C., J.-T. Chang, Y.-F. Li, and R.-Y. Chen (2020), Deep learning meth-
ods for super-resolution reconstruction of temperature fields in a supersonic
combustor, AIP Advances, 10 (11), 115,021.

[159] Koo, H., V. Raman, and P. L. Varghese (2015), Direct numerical simulation of
supersonic combustion with thermal nonequilibrium, Proceedings of the Com-
bustion Institute, 35 (2), 2145–2153.

[160] Kramer, M. A. (1991), Nonlinear principal component analysis using autoasso-
ciative neural networks, AIChE journal, 37 (2), 233–243.

[161] Kunisch, K., and S. Volkwein (2001), Galerkin proper orthogonal decomposition
methods for parabolic problems, Numerische mathematik, 90 (1), 117–148.

[162] Kutz, J. N. (2013), Data-driven modeling & scientific computation: methods for
complex systems & big data, Oxford University Press.

[163] Ladeinde, F. (2010), Advanced computational-fluid-dynamics techniques for
scramjet combustion simulation, Aiaa Journal, 48 (3), 513–514.

[164] Lam, S.-H., and D. A. Goussis (1989), Understanding complex chemical kinetics
with computational singular perturbation, in Symposium (International) on
Combustion, vol. 22, pp. 931–941, Elsevier.

[165] Langford, J. A., and R. D. Moser (1999), Optimal les formulations for isotropic
turbulence, Journal of fluid mechanics, 398, 321–346.

[166] Lanser, D., and J. G. Verwer (1999), Analysis of operator splitting for
advection–diffusion–reaction problems from air pollution modelling, Journal of
computational and applied mathematics, 111 (1-2), 201–216.

[167] Lapeyre, C. J., A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot (2019),
Training convolutional neural networks to estimate turbulent sub-grid scale
reaction rates, Combustion and Flame, 203, 255–264.

346

[168] Larsson, J., R. Vicquelin, and I. Bermejo-Moreno (2011), Large eddy simula-
tions of the hyshot ii scramjet, Center for Turbulence Research Annual Briefs,
pp. 63–74.

[169] Lee, K., and K. T. Carlberg (2020), Model reduction of dynamical systems on
nonlinear manifolds using deep convolutional autoencoders, Journal of Compu-
tational Physics, 404, 108,973.

[170] Lee, K., and E. J. Parish (2021), Parameterized neural ordinary differential
equations: Applications to computational physics problems, Proceedings of the
Royal Society A, 477 (2253), 20210,162.

[171] Lee, S., D.-R. Cho, and J.-Y. Choi (2008), Effect of curvature on the detonation
wave propagation characteristics in annular channels, in 46th AIAA Aerospace
Sciences Meeting and Exhibit, p. 988.

[172] Lee, S., S.-J. Min, and R. Eigenmann (2009), OpenMP to GPGPU: a compiler
framework for automatic translation and optimization, ACM Sigplan Notices,
44 (4), 101–110.

[173] Lefebvre, M., and E. Oran (1995), Analysis of the shock structures in a regular
detonation, Shock Waves, 4 (5), 277–283.

[174] Lei, C., J. Deng, K. Cao, L. Ma, Y. Xiao, and L. Ren (2018), A random forest
approach for predicting coal spontaneous combustion, Fuel, 223, 63–73.

[175] LeVeque, R. J., et al. (2002), Finite volume methods for hyperbolic problems,
vol. 31, Cambridge university press.

[176] Li, H., D. Fernex, R. Semaan, J. Tan, M. Morzyński, and B. R. Noack (2021),
Cluster-based network model, Journal of Fluid Mechanics, 906.

[177] Li, Q., and Z. Wang (2017), Dynamic mode decomposition of turbulent com-
bustion process in dlr scramjet combustor, Journal of Aerospace Engineering,
30 (5), 04017,034.

[178] Liao, T. W. (2005), Clustering of time series data—a survey, Pattern recogni-
tion, 38 (11), 1857–1874.

[179] Liberge, E., and A. Hamdouni (2010), Reduced order modelling method via
proper orthogonal decomposition (pod) for flow around an oscillating cylinder,
Journal of fluids and structures, 26 (2), 292–311.

[180] Lorenz, E. N. (1963), Deterministic nonperiodic flow, Journal of atmospheric
sciences, 20 (2), 130–141.

[181] Lu, F. K., and E. M. Braun (2014), Rotating detonation wave propulsion: ex-
perimental challenges, modeling, and engine concepts, Journal of Propulsion
and Power, 30 (5), 1125–1142.

347

[182] Lu, T., and C. K. Law (2005), A directed relation graph method for mechanism
reduction, Proceedings of the Combustion Institute, 30 (1), 1333–1341.

[183] Lu, T., and C. K. Law (2009), Toward accommodating realistic fuel chemistry
in large-scale computations, Progress in Energy and Combustion Science, 35 (2),
192–215.

[184] Lu, Z., H. Zhou, S. Li, Z. Ren, T. Lu, and C. K. Law (2017), Analysis of oper-
ator splitting errors for near-limit flame simulations, Journal of Computational
Physics, 335, 578–591.

[185] Lumley, J. L., and A. Poje (1997), Low-dimensional models for flows with
density fluctuations, Physics of Fluids, 9 (7), 2023–2031.

[186] Lund, T. (2003), The use of explicit filters in large eddy simulation, Computers
& Mathematics with Applications, 46 (4), 603–616.

[187] Lusch, B., J. N. Kutz, and S. L. Brunton (2018), Deep learning for universal
linear embeddings of nonlinear dynamics, Nature communications, 9 (1), 1–10.

[188] Lv, Y., and M. Ihme (2014), Discontinuous galerkin method for multicomponent
chemically reacting flows and combustion, Journal of Computational Physics,
270, 105–137.

[189] Ma, F., J. Li, V. Yang, K.-C. Lin, and T. Jackson (2005), Thermoacoustic flow
instability in a scramjet combustor, in 41st AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit, p. 3824.

[190] Maas, U., and S. B. Pope (1992), Simplifying chemical kinetics: intrinsic low-
dimensional manifolds in composition space, Combustion and flame, 88 (3-4),
239–264.

[191] Mahmoudi, Y., and K. Mazaheri (2011), High resolution numerical simulation
of the structure of 2-d gaseous detonations, Proceedings of the Combustion In-
stitute, 33 (2), 2187–2194.

[192] Malik, M. R., B. J. Isaac, A. Coussement, P. J. Smith, and A. Parente (2018),
Principal component analysis coupled with nonlinear regression for chemistry
reduction, Combustion and Flame, 187, 30–41.

[193] Marion, M., and R. Temam (1989), Nonlinear galerkin methods, SIAM Journal
on numerical analysis, 26 (5), 1139–1157.

[194] Markovich, D., S. Abdurakipov, L. Chikishev, V. Dulin, and K. Hanjalić
(2014), Comparative analysis of low-and high-swirl confined flames and jets
by proper orthogonal and dynamic mode decompositions, Physics of Fluids,
26 (6), 065,109.

348

[195] Massa, L., J. Austin, and T. Jackson (2007), Triple-point shear layers in gaseous
detonation waves, Journal of Fluid Mechanics, 586, 205–248.

[196] Mathew, J., R. Lechner, H. Foysi, J. Sesterhenn, and R. Friedrich (2003), An
explicit filtering method for large eddy simulation of compressible flows, Physics
of fluids, 15 (8), 2279–2289.

[197] Mathew, J., R. Lechner, H. Foysi, J. Sesterhenn, and R. Friedrich (2003), An
explicit filtering method for large eddy simulation of compressible flows, Physics
of fluids, 15 (8), 2279–2289.

[198] Maulik, R., A. Mohan, B. Lusch, S. Madireddy, P. Balaprakash, and D. Livescu
(2020), Time-series learning of latent-space dynamics for reduced-order model
closure, Physica D: Nonlinear Phenomena, 405, 132,368.

[199] Maulik, R., B. Lusch, and P. Balaprakash (2021), Reduced-order modeling of
advection-dominated systems with recurrent neural networks and convolutional
autoencoders, Physics of Fluids, 33 (3), 037,106.

[200] McCorquodale, P., P. Colella, and H. Johansen (2001), A cartesian grid embed-
ded boundary method for the heat equation on irregular domains, Journal of
Computational Physics, 173 (2), 620–635.

[201] Mehl, M., W. J. Pitz, C. K. Westbrook, and H. J. Curran (2011), Kinetic mod-
eling of gasoline surrogate components and mixtures under engine conditions,
Proceedings of the Combustion Institute, 33 (1), 193–200.

[202] Meier, W., P. Weigand, X. Duan, and R. Giezendanner-Thoben (2007), De-
tailed characterization of the dynamics of thermoacoustic pulsations in a lean
premixed swirl flame, Combustion and Flame, 150 (1-2), 2–26.

[203] Mescheder, L., S. Nowozin, and A. Geiger (2017), Adversarial variational bayes:
Unifying variational autoencoders and generative adversarial networks, in In-
ternational conference on machine learning, pp. 2391–2400, PMLR.

[204] Metcalfe, W. K., S. M. Burke, S. S. Ahmed, and H. J. Curran (2013), A hi-
erarchical and comparative kinetic modeling study of c1- c2 hydrocarbon and
oxygenated fuels, International Journal of Chemical Kinetics, 45 (10), 638–675.

[205] Mezić, I. (2005), Spectral properties of dynamical systems, model reduction and
decompositions, Nonlinear Dynamics, 41 (1), 309–325.

[206] Mezic, I. (2013), Analysis of fluid flows via spectral properties of the koopman
operator, Annual Review of Fluid Mechanics, 45 (1), 357–378.

[207] Mittal, S., and J. S. Vetter (2015), A survey of cpu-gpu heterogeneous comput-
ing techniques, ACM Computing Surveys (CSUR), 47 (4), 1–35.

349

[208] Mittal, V., and H. Pitsch (2013), A flamelet model for premixed combustion
under variable pressure conditions, Proceedings of the Combustion Institute,
34 (2), 2995–3003.

[209] Moin, P., and K. Mahesh (1998), Direct numerical simulation: a tool in turbu-
lence research, Annual review of fluid mechanics, 30 (1), 539–578.

[210] Moore, G. E. (1998), Cramming more components onto integrated circuits,
Proceedings of the IEEE, 86 (1), 82–85.

[211] Motheau, E., F. Nicoud, and T. Poinsot (2014), Mixed acoustic-entropy com-
bustion instabilities in gas turbines, Journal of Fluid Mechanics, 749, 542–576.

[212] Mueller, M., T. Kim, R. Yetter, and F. Dryer (1999), Flow reactor studies
and kinetic modeling of the H2/O2 reaction, International journal of chemical
kinetics, 31 (2), 113–125.

[213] Mueller, M. E., and H. Pitsch (2013), Large eddy simulation of soot evolution
in an aircraft combustor, Physics of Fluids, 25 (11), 110,812.

[214] Murphy, K. P. (2012), Machine learning: a probabilistic perspective, MIT press.

[215] Murtagh, F., and P. Contreras (2012), Algorithms for hierarchical clustering:
an overview, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, 2 (1), 86–97.

[216] Naik, D. S. B., S. D. Kumar, and S. Ramakrishna (2013), Parallel processing
of enhanced k-means using openmp, in 2013 IEEE International Conference on
Computational Intelligence and Computing Research, pp. 1–4, IEEE.

[217] Najafi-Yazdi, A., B. Cuenot, and L. Mongeau (2012), Systematic definition of
progress variables and intrinsically low-dimensional, flamelet generated mani-
folds for chemistry tabulation, Combustion and Flame, 159 (3), 1197–1204.

[218] Najm, H. N., P. S. Wyckoff, and O. M. Knio (1998), A semi-implicit numerical
scheme for reacting flow: I. stiff chemistry, Journal of Computational Physics,
143 (2), 381–402.

[219] Nakahashi, K., Y. Ito, and F. Togashi (2003), Some challenges of realistic flow
simulations by unstructured grid cfd, International Journal for Numerical Meth-
ods in Fluids, 43 (6-7), 769–783.

[220] Nguyen, P.-D., L. Vervisch, V. Subramanian, and P. Domingo (2010), Mul-
tidimensional flamelet-generated manifolds for partially premixed combustion,
Combustion and Flame, 157 (1), 43–61.

[221] Niemeyer, K. E., and C.-J. Sung (2014), Accelerating moderately stiff chemi-
cal kinetics in reactive-flow simulations using gpus, Journal of Computational
Physics, 256, 854–871.

350

[222] Niemeyer, K. E., and C.-J. Sung (2014), Recent progress and challenges in
exploiting graphics processors in computational fluid dynamics, The Journal of
Supercomputing, 67 (2), 528–564.

[223] Noiray, N., and B. Schuermans (2013), On the dynamic nature of azimuthal
thermoacoustic modes in annular gas turbine combustion chambers, Proc. R.
Soc. A, 469 (2151), 20120,535.

[224] Noiray, N., M. Bothien, and B. Schuermans (2011), Investigation of azimuthal
staging concepts in annular gas turbines, Combustion Theory and Modelling,
15 (5), 585–606.

[225] Nordeen, C. A., D. Schwer, F. Schauer, J. Hoke, T. Barber, and B. Cetegen
(2014), Thermodynamic model of a rotating detonation engine, Combustion,
Explosion, and Shock Waves, 50 (5), 568–577.

[226] Nordström, J. (2006), Conservative finite difference formulations, variable coef-
ficients, energy estimates and artificial dissipation, Journal of Scientific Com-
puting, 29 (3), 375–404.

[227] Oak Ridge Leadership Computing Facility (2018), https://www.olcf.ornl.
gov/summit/.

[228] Oak Ridge Leadership Computing Facility (2022), https://www.olcf.ornl.
gov/frontier/.

[229] Oberleithner, K., M. Sieber, C. N. Nayeri, C. O. Paschereit, C. Petz, H.-C. Hege,
B. R. Noack, and I. Wygnanski (2011), Three-dimensional coherent structures
in a swirling jet undergoing vortex breakdown: stability analysis and empirical
mode construction, Journal of Fluid Mechanics, 679, 383–414.

[230] Oberleithner, K., M. Stöhr, S. H. Im, C. M. Arndt, and A. M. Steinberg (2015),
Formation and flame-induced suppression of the precessing vortex core in a swirl
combustor: experiments and linear stability analysis, Combustion and Flame,
162 (8), 3100–3114.

[231] O’Connor, J., and T. Lieuwen (2011), Disturbance field characteristics of a
transversely excited burner, Combustion Science and Technology, 183 (5), 427–
443.

[232] of California at San Diego, U. (2016), Chemical-kinetic mechanisms for com-
bustion applications, http://web.eng.ucsd.edu/mae/groups/combustion/

mechanism.html, San Diego Mechanism web page, Mechanical and Aerospace
Engineering (Combustion Research), University of California at San Diego.

[233] Oke, T. R., G. Mills, A. Christen, and J. A. Voogt (2017), Urban climates,
Cambridge University Press.

351

https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/frontier/
https://www.olcf.ornl.gov/frontier/
http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html

[234] Osher, S. (1985), Convergence of generalized muscl schemes, SIAM Journal on
Numerical Analysis, 22 (5), 947–961.

[235] Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips
(2008), Gpu computing, Proceedings of the IEEE, 96 (5), 879–899.

[236] Owoyele, O., and P. Pal (2020), Chemnode: A neural ordinary differential equa-
tions approach for chemical kinetics solvers, arXiv preprint arXiv:2101.04749.

[237] Owoyele, O., P. Kundu, and P. Pal (2021), Efficient bifurcation and tabulation
of multi-dimensional combustion manifolds using deep mixture of experts: An
a priori study, Proceedings of the Combustion Institute, 38 (4), 5889–5896.

[238] Pal, P., C. Xu, G. Kumar, S. A. Drennan, B. A. Rankin, and S. Som (2020),
Large-eddy simulations and mode analysis of ethylene/air combustion in a non-
premixed rotating detonation engine, in AIAA Propulsion and Energy 2020
Forum, p. 3876.

[239] Pan, S., and K. Duraisamy (2020), Physics-informed probabilistic learning of
linear embeddings of nonlinear dynamics with guaranteed stability, SIAM Jour-
nal on Applied Dynamical Systems, 19 (1), 480–509.

[240] Pan, S., N. Arnold-Medabalimi, and K. Duraisamy (2021), Sparsity-promoting
algorithms for the discovery of informative koopman-invariant subspaces, Jour-
nal of Fluid Mechanics, 917.

[241] Papatheodore, T. (2018), Summit system overview, https://www.olcf.ornl.
gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdf.

[242] Paszke, A., et al. (2017), Automatic differentiation in pytorch.

[243] Patera, A. T. (1984), A spectral element method for fluid dynamics: laminar
flow in a channel expansion, Journal of computational Physics, 54 (3), 468–488.

[244] Patki, T., D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. De Supinski
(2013), Exploring hardware overprovisioning in power-constrained, high perfor-
mance computing, in Proceedings of the 27th international ACM conference on
International conference on supercomputing, pp. 173–182.

[245] Pecnik, R., V. E. Terrapon, F. Ham, G. Iaccarino, and H. Pitsch (2012),
Reynolds-averaged navier-stokes simulations of the hyshot ii scramjet, AIAA
journal, 50 (8), 1717–1732.

[246] Pelleg, D., A. W. Moore, et al. (2000), X-means: Extending k-means with
efficient estimation of the number of clusters., in Icml, vol. 1, pp. 727–734.

[247] Pellett, G., C. Bruno, and W. Chinitz (2002), Review of air vitiation ef-
fects on scramjet ignition and flameholding combustion processes, in 38th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 3880.

352

https://www.olcf.ornl.gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/05/Intro_Summit_System_Overview.pdf

[248] Pember, R. B., L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. Five-
land, and J. Jessee (1998), An adaptive projection method for unsteady, low-
mach number combustion, Combustion Science and Technology, 140 (1-6), 123–
168.

[249] Pérez, F. E. H., N. Mukhadiyev, X. Xu, A. Sow, B. J. Lee, R. Sankaran, and
H. G. Im (2018), Direct numerical simulations of reacting flows with detailed
chemistry using many-core/gpu acceleration, Computers & Fluids, 173, 73–79.

[250] Peskin, C. S. (2002), The immersed boundary method, Acta numerica, 11, 479–
517.

[251] Peters, N. (1988), Laminar flamelet concepts in turbulent combustion, in Sym-
posium (international) on combustion, vol. 21, pp. 1231–1250, Elsevier.

[252] Peters, N. (2001), Turbulent combustion.

[253] Peters, N., and M. Dekena (1999), Combustion modeling with the g-equation,
Oil & Gas Science and Technology, 54 (2), 265–270.

[254] Petrarolo, A., A. Ruettgers, and M. Kobald (2019), Data clustering of hybrid
rocket combustion flame, in AIAA Propulsion and Energy 2019 Forum, p. 4193.

[255] Pierce, C. D. (2001), Progress-variable approach for large-eddy simulation of
turbulent combustion, stanford university.

[256] Pierce, C. D., and P. Moin (2004), Progress-variable approach for large-eddy
simulation of non-premixed turbulent combustion, Journal of fluid Mechanics,
504, 73–97.

[257] Pirozzoli, S. (2002), Conservative hybrid compact-weno schemes for shock-
turbulence interaction, Journal of Computational Physics, 178 (1), 81–117.

[258] Pitsch, H. (2006), Large-eddy simulation of turbulent combustion, Annual Re-
view of Fluid Mechanics, 38 (1), 453–482, doi:10.1146/annurev.fluid.38.050304.
092133.

[259] Pitsch, H., O. Desjardins, G. Balarac, and M. Ihme (2008), Large-eddy simula-
tion of turbulent reacting flows, Progress in Aerospace Sciences, 44 (6), 466–478.

[260] Plewa, T., T. Linde, V. G. Weirs, et al. (2005), Adaptive mesh refinement-theory
and applications, Springer.

[261] Poinsot, T., and D. Veynante (2005), Theoretical and numerical combustion,
RT Edwards, Inc.

[262] Polifke, W. (2014), Black-box system identification for reduced order model
construction, Annals of Nuclear Energy, 67, 109–128.

353

[263] Pope, S. (1997), Computationally efficient implementation of combustion chem-
istry using in situ adaptive tabulation, Combustion Theory and Modelling, 1 (1),
41–63, doi:10.1080/713665229.

[264] Pope, S. B. (1985), Pdf methods for turbulent reactive flows, Progress in energy
and combustion science, 11 (2), 119–192.

[265] Pope, S. B. (2004), Ten questions concerning the large-eddy simulation of tur-
bulent flows, New journal of Physics, 6 (1), 35.

[266] Pope, S. B. (2010), Self-conditioned fields for large-eddy simulations of turbulent
flows, Journal of Fluid Mechanics, 652, 139–169.

[267] Pope, S. B., and S. B. Pope (2000), Turbulent flows, Cambridge university press.

[268] Pope, S. B., and Z. Ren (2009), Efficient implementation of chemistry in com-
putational combustion, Flow, turbulence and combustion, 82 (4), 437–453.

[269] Popp, S., F. Hunger, S. Hartl, D. Messig, B. Coriton, J. H. Frank, F. Fuest, and
C. Hasse (2015), Les flamelet-progress variable modeling and measurements of a
turbulent partially-premixed dimethyl ether jet flame, Combustion and Flame,
162 (8), 3016–3029.

[270] Powers, J. M., and S. Paolucci (2005), Accurate spatial resolution estimates for
reactive supersonic flow with detailed chemistry, AIAA journal, 43 (5), 1088–
1099.

[271] Prakash, S., and V. Raman (2021), The effects of mixture preburning on deto-
nation wave propagation, Proceedings of the Combustion Institute, 38 (3), 3749–
3758.

[272] Prakash, S., R. Fiévet, and V. Raman (2019), The effect of fuel stratification
on the detonation wave structure, in AIAA Scitech 2019 Forum, p. 1511.

[273] Prakash, S., R. Fiévet, V. Raman, J. Burr, and K. H. Yu (2020), Analysis of
the detonation wave structure in a linearized rotating detonation engine, AIAA
Journal, 58 (12), 5063–5077.

[274] Prakash, S., V. Raman, C. F. Lietz, W. A. Hargus Jr, and S. A. Schumaker
(2021), Numerical simulation of a methane-oxygen rotating detonation rocket
engine, Proceedings of the Combustion Institute, 38 (3), 3777–3786.

[275] Raissi, M., P. Perdikaris, and G. E. Karniadakis (2019), Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations, Journal of Computational
physics, 378, 686–707.

[276] Raman, V., and M. Hassanaly (2019), Emerging trends in numerical simulations
of combustion systems, Proceedings of the Combustion Institute, 37 (2), 2073–
2089.

354

[277] Raman, V., and H. Pitsch (2007), A consistent les/filtered-density function
formulation for the simulation of turbulent flames with detailed chemistry, Pro-
ceedings of the Combustion Institute, 31 (2), 1711–1719.

[278] Raman, V., S. Prakash, and M. Gamba (2022), Non-idealities in rotating deto-
nation engines, Annual Review of Fluid Mechanics, 48, 159–190.

[279] Ramezanian, D., A. G. Nouri, and H. Babaee (2021), On-the-fly reduced order
modeling of passive and reactive species via time-dependent manifolds, Com-
puter Methods in Applied Mechanics and Engineering, 382, 113,882.

[280] Ranade, R., and T. Echekki (2019), A framework for data-based turbulent
combustion closure: A posteriori validation, Combustion and flame, 210, 279–
291.

[281] Rankin, B. A., M. L. Fotia, A. G. Naples, C. A. Stevens, J. L. Hoke, T. A.
Kaemming, S. W. Theuerkauf, and F. R. Schauer (2017), Overview of per-
formance, application, and analysis of rotating detonation engine technologies,
Journal of Propulsion and Power, 33 (1), 131–143.

[282] Rankin, B. A., D. R. Richardson, A. W. Caswell, A. G. Naples, J. L. Hoke, and
F. R. Schauer (2017), Chemiluminescence imaging of an optically accessible
non-premixed rotating detonation engine, Combustion and Flame, 176, 12–22.

[283] Roache, P. J. (2002), Code verification by the method of manufactured solu-
tions, J. Fluids Eng., 124 (1), 4–10.

[284] Robinson, C. (1998), Dynamical systems: stability, symbolic dynamics, and
chaos, CRC press.

[285] Rousseeuw, P. J. (1987), Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis, Journal of computational and applied mathemat-
ics, 20, 53–65.

[286] Rowley, C. W. (2005), Model reduction for fluids, using balanced proper orthog-
onal decomposition, International Journal of Bifurcation and Chaos, 15 (03),
997–1013.

[287] Rowley, C. W., I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson (2009),
Spectral analysis of nonlinear flows, Journal of fluid mechanics, 641, 115–127.

[288] Rubner, Y., C. Tomasi, and L. J. Guibas (2000), The earth mover’s distance
as a metric for image retrieval, International journal of computer vision, 40 (2),
99–121.

[289] Rudin, C., C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong (2022), In-
terpretable machine learning: Fundamental principles and 10 grand challenges,
Statistics Surveys, 16, 1–85.

355

[290] Saghafian, A., L. Shunn, D. A. Philips, and F. Ham (2015), Large eddy sim-
ulations of the hifire scramjet using a compressible flamelet/progress variable
approach, Proceedings of the Combustion Institute, 35 (2), 2163–2172.

[291] Saghafian, A., L. Shunn, D. A. Philips, and F. Ham (2015), Large eddy sim-
ulations of the hifire scramjet using a compressible flamelet/progress variable
approach, Proceedings of the Combustion Institute, 35 (2), 2163–2172.

[292] Saghafian, A., V. E. Terrapon, and H. Pitsch (2015), An efficient flamelet-based
combustion model for compressible flows, Combustion and Flame, 162 (3), 652–
667.

[293] San, O., and T. Iliescu (2013), Proper orthogonal decomposition closure models
for fluid flows: Burgers equation, arXiv preprint arXiv:1308.3276.

[294] Sargent, R. G. (2010), Verification and validation of simulation models, in Pro-
ceedings of the 2010 winter simulation conference, pp. 166–183, IEEE.

[295] Sato, T. (2020), High-fidelity simulations for rotating detonation engines, Ph.D.
thesis, University of Michigan, Ann Arbor.

[296] Sato, T., S. Voelkel, and V. Raman (2018), Detailed chemical kinetics based
simulation of detonation-containing flows, in Turbo Expo: Power for Land, Sea,
and Air, vol. 51050, p. V04AT04A063, American Society of Mechanical Engi-
neers.

[297] Sato, T., F. Chacon, M. Gamba, and V. Raman (2021), Mass flow rate effect
on a rotating detonation combustor with an axial air injection, Shock Waves,
31 (7), 741–751.

[298] Sato, T., F. Chacon, L. White, V. Raman, and M. Gamba (2021), Mixing and
detonation structure in a rotating detonation engine with an axial air inlet,
Proceedings of the Combustion Institute, 38 (3), 3769–3776.

[299] Saxena, A., M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J.
Er, W. Ding, and C.-T. Lin (2017), A review of clustering techniques and
developments, Neurocomputing, 267, 664–681.

[300] Schmid, P. J. (2010), Dynamic mode decomposition of numerical and experi-
mental data, Journal of fluid mechanics, 656, 5–28.

[301] Schmid, P. J. (2022), Dynamic mode decomposition and its variants, Annual
Review of Fluid Mechanics, 54, 225–254.

[302] Schneider, D. (2022), The exascale era is upon us: The frontier supercomputer
may be the first to reach 1,000,000,000,000,000,000 operations per second, IEEE
Spectrum, 59 (1), 34–35.

356

[303] Schulze, P., J. Reiss, and V. Mehrmann (2019), Model reduction for a pulsed
detonation combuster via shifted proper orthogonal decomposition, in Active
Flow and Combustion Control 2018, pp. 271–286, Springer.

[304] Schwer, D., and K. Kailasanath (2011), Numerical investigation of the physics
of rotating-detonation-engines, Proceedings of the combustion institute, 33 (2),
2195–2202.

[305] Seiner, J. M., S. Dash, and D. Kenzakowski (2001), Historical survey on en-
hanced mixing in scramjet engines, Journal of Propulsion and Power, 17 (6),
1273–1286.

[306] Sen, B. A., and S. Menon (2009), Turbulent premixed flame modeling using ar-
tificial neural networks based chemical kinetics, Proceedings of the Combustion
Institute, 32 (1), 1605–1611.

[307] Sen, B. A., and S. Menon (2010), Linear eddy mixing based tabulation and
artificial neural networks for large eddy simulations of turbulent flames, Com-
bustion and Flame, 157 (1), 62–74.

[308] Sewerin, F., and S. Rigopoulos (2015), A methodology for the integration of
stiff chemical kinetics on gpus, Combustion and Flame, 162 (4), 1375–1394.

[309] Shalf, J. (2020), The future of computing beyond moore’s law, Philosophical
Transactions of the Royal Society A, 378 (2166), 20190,061.

[310] Sharma, A. J., R. F. Johnson, D. A. Kessler, and A. Moses (2020), Deep learning
for scalable chemical kinetics, in AIAA scitech 2020 forum, p. 0181.

[311] Shepherd, J. E. (2009), Detonation in gases, Proceedings of the Combustion
Institute, 32 (1), 83–98.

[312] Shepherd, J. E. (2021), Caltech Shock and Detonation Toolbox, Explosion Dy-
namics Laboratory.

[313] Short, M., and J. J. Quirk (1997), On the nonlinear stability and detonability
limit of a detonation wave for a model three-step chain-branching reaction,
Journal of Fluid Mechanics, 339, 89–119.

[314] Shunn, L., F. Ham, and P. Moin (2012), Verification of variable-density
flow solvers using manufactured solutions, Journal of Computational Physics,
231 (9), 3801–3827.

[315] Sirovich, L. (1987), Turbulence and the dynamics of coherent structures. i.
coherent structures, Quarterly of applied mathematics, 45 (3), 561–571.

[316] Sirovich, L., B. Knight, and J. Rodriguez (1990), Optimal low-dimensional
dynamical approximations, Quarterly of applied mathematics, 48 (3), 535–548.

357

[317] Slotnick, J. P., A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie,
and D. J. Mavriplis (2014), Cfd vision 2030 study: a path to revolutionary
computational aerosciences.

[318] Smagorinsky, J. (1963), General circulation experiments with the primitive
equations: I. the basic experiment, Monthly weather review, 91 (3), 99–164.

[319] Smith, G., Y. Tao, and H. Wang (2016), Foundational fuel chemistry model
version 1.0 (FFCM-1), http://nanoenergy.stanford.edu/ffcm1.

[320] Soize, C., and R. Ghanem (2022), Probabilistic learning on manifolds (plom)
with partition, International Journal for Numerical Methods in Engineering,
123 (1), 268–290.

[321] Sportisse, B. (2000), An analysis of operator splitting techniques in the stiff
case, Journal of computational physics, 161 (1), 140–168.

[322] Steinberg, A. M., I. Boxx, M. Stöhr, C. D. Carter, and W. Meier (2010), Flow–
flame interactions causing acoustically coupled heat release fluctuations in a
thermo-acoustically unstable gas turbine model combustor, Combustion and
Flame, 157 (12), 2250–2266.

[323] Steinley, D. (2006), K-means clustering: a half-century synthesis, British Jour-
nal of Mathematical and Statistical Psychology, 59 (1), 1–34.

[324] Stöhr, M., I. Boxx, C. Carter, and W. Meier (2011), Dynamics of lean blowout
of a swirl-stabilized flame in a gas turbine model combustor, Proceedings of the
Combustion Institute, 33 (2), 2953–2960.

[325] Strang, G. (1968), On the construction and comparison of difference schemes,
SIAM journal on numerical analysis, 5 (3), 506–517.

[326] Su, L. K., and W. J. Dahm (1996), Scalar imaging velocimetry measurements
of the velocity gradient tensor field in turbulent flows. ii. experimental results,
Physics of Fluids, 8 (7), 1883–1906.

[327] Suchocki, J., S.-T. Yu, J. Hoke, A. Naples, F. Schauer, and R. Russo (2012),
Rotating detonation engine operation, in 50th AIAA aerospace sciences meeting
including the new horizons forum and aerospace exposition, p. 119.

[328] Sun, L., H. Gao, S. Pan, and J.-X. Wang (2020), Surrogate modeling for fluid
flows based on physics-constrained deep learning without simulation data, Com-
puter Methods in Applied Mechanics and Engineering, 361, 112,732.

[329] Taamallah, S., Z. A. LaBry, S. J. Shanbhogue, and A. F. Ghoniem (2015),
Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and
their link to acoustically coupled and decoupled flame macrostructures, Pro-
ceedings of the combustion institute, 35 (3), 3273–3282.

358

http://nanoenergy.stanford.edu/ffcm1

[330] Taira, K., et al. (2017), Modal analysis of fluid flows: An overview, Aiaa Jour-
nal, 55 (12), 4013–4041.

[331] Tang, Y., and V. Raman (2021), Large eddy simulation of premixed turbulent
combustion using a non-adiabatic, strain-sensitive flamelet approach, Combus-
tion and Flame, 234, 111,655.

[332] Thumuluru, S. K., and T. Lieuwen (2009), Characterization of acoustically
forced swirl flame dynamics, Proceedings of the Combustion Institute, 32 (2),
2893–2900.

[333] Titarev, V. A., and E. F. Toro (2004), Finite-volume weno schemes for three-
dimensional conservation laws, Journal of Computational Physics, 201 (1), 238–
260.

[334] Titi, E. S. (1990), On approximate inertial manifolds to the navier-stokes equa-
tions, Journal of mathematical analysis and applications, 149 (2), 540–557.

[335] Toro, E. F. (2013), Riemann solvers and numerical methods for fluid dynamics:
a practical introduction, Springer Science & Business Media.

[336] Towery, C. A., K. M. Smith, P. Shrestha, P. E. Hamlington, and M. Van Schoor
(2014), Examination of turbulent flow effects in rotating detonation engines, in
44th AIAA Fluid Dynamics Conference, p. 3031.

[337] Towne, A., O. T. Schmidt, and T. Colonius (2018), Spectral proper orthog-
onal decomposition and its relationship to dynamic mode decomposition and
resolvent analysis, Journal of Fluid Mechanics, 847, 821–867.

[338] Tseng, G. C. (2007), Penalized and weighted k-means for clustering with scat-
tered objects and prior information in high-throughput biological data, Bioin-
formatics, 23 (17), 2247–2255.

[339] Tu, J. H. (2013), Dynamic mode decomposition: Theory and applications,
Ph.D. thesis, Princeton University.

[340] Uranakara, H., S. Barwey, F. Pérez, V. Vijayaranga, V. Raman, and H. Im
(2022), Accelerating turbulent reacting flow simulations on many-core/GPUs
using matrix-based kinetics, Accepted to Proceedings of the Combustion Insti-
tute.

[341] Valorani, M., D. A. Goussis, F. Creta, and H. N. Najm (2005), Higher order cor-
rections in the approximation of low-dimensional manifolds and the construction
of simplified problems with the csp method, Journal of Computational Physics,
209 (2), 754–786.

[342] Van Leer, B. (1979), Towards the ultimate conservative difference scheme. v.
a second-order sequel to godunov’s method, Journal of computational Physics,
32 (1), 101–136.

359

[343] Van Oijen, J., A. Donini, R. Bastiaans, J. ten Thije Boonkkamp, and
L. De Goey (2016), State-of-the-art in premixed combustion modeling using
flamelet generated manifolds, Progress in Energy and Combustion Science, 57,
30–74.

[344] Verfürth, R. (1994), A posteriori error estimation and adaptive mesh-refinement
techniques, Journal of Computational and Applied Mathematics, 50 (1-3), 67–
83.

[345] Von Luxburg, U. (2007), A tutorial on spectral clustering, Statistics and com-
puting, 17 (4), 395–416.

[346] Walker, D. W., and J. J. Dongarra (1996), MPI: a standard message passing
interface, Supercomputer, 12, 56–68.

[347] Wall, C., B. J. Boersma, and P. Moin (2000), An evaluation of the assumed beta
probability density function subgrid-scale model for large eddy simulation of
nonpremixed, turbulent combustion with heat release, Physics of fluids, 12 (10),
2522–2529.

[348] Wan, K., C. Barnaud, L. Vervisch, and P. Domingo (2020), Chemistry reduc-
tion using machine learning trained from non-premixed micro-mixing modeling:
Application to dns of a syngas turbulent oxy-flame with side-wall effects, Com-
bustion and Flame, 220, 119–129.

[349] Wang, Q., M. Ihme, Y.-F. Chen, and J. Anderson (2022), A tensorflow sim-
ulation framework for scientific computing of fluid flows on tensor processing
units, Computer Physics Communications, 274, 108,292.

[350] Wei, Z., Z. Yang, C. Xia, and Q. Li (2017), Cluster-based reduced-order mod-
elling of the wake stabilization mechanism behind a twisted cylinder, Journal
of Wind Engineering and Industrial Aerodynamics, 171, 288–303.

[351] Wen, X., K. Luo, Y. Luo, H. Wang, and J. Fan (2018), Large-eddy simulation
of multiphase combustion jet in cross-flow using flamelet model, International
Journal of Multiphase Flow, 108, 211–225.

[352] Wienke, S., P. Springer, C. Terboven, et al. (2012), OpenACC—first experiences
with real-world applications, in European Conference on Parallel Processing, pp.
859–870, Springer.

[353] Willcox, K. (2006), Unsteady flow sensing and estimation via the gappy proper
orthogonal decomposition, Computers & fluids, 35 (2), 208–226.

[354] Williams, S., A. Waterman, and D. Patterson (2009), Roofline: an insightful
visual performance model for multicore architectures, Communications of the
ACM, 52 (4), 65–76.

360

[355] Wolanski, P., J. Kindracki, T. Fujiwara, Y. Oka, and K. Shima-uchi (2005),
An experimental study of rotating detonation engine, in 20th International
Colloquium on the Dynamics of Explosions and Reactive Systems, vol. 31.

[356] Wold, S., K. Esbensen, and P. Geladi (1987), Principal component analysis,
Chemometrics and intelligent laboratory systems, 2 (1-3), 37–52.

[357] Wu, H., P. C. Ma, and M. Ihme (2019), Efficient time-stepping techniques
for simulating turbulent reactive flows with stiff chemistry, Computer Physics
Communications, 243, 81–96.

[358] Xu, J., and K. Duraisamy (2020), Multi-level convolutional autoencoder net-
works for parametric prediction of spatio-temporal dynamics, Computer Meth-
ods in Applied Mechanics and Engineering, 372, 113,379.

[359] Xu, R., and H. Wang (2018), Reduced reaction models for methane and ethylene
combustion, personal communication.

[360] Xu, R., et al. (2018), A physics-based approach to modeling real-fuel combustion
chemistry–ii. reaction kinetic models of jet and rocket fuels, Combustion and
Flame, 193, 520–537.

[361] Xu, R., et al. (2018), A physics-based approach to modeling real-fuel combustion
chemistry–ii. reaction kinetic models of jet and rocket fuels, Combustion and
Flame, 193, 520–537.

[362] Yang, B., and S. Pope (1998), An investigation of the accuracy of manifold
methods and splitting schemes in the computational implementation of com-
bustion chemistry, Combustion and Flame, 112 (1-2), 16–32.

[363] Yao, W., Y. Yuan, X. Li, J. Wang, K. Wu, and X. Fan (2018), Comparative
study of elliptic and round scramjet combustors fueled by rp-3, Journal of
Propulsion and Power, 34 (3), 772–786.

[364] Yungster, S., and K. Radhakrishnan (2004), Pulsating one-dimensional detona-
tions in hydrogen–air mixtures, Combustion Theory and Modelling, 8 (4), 745.

[365] Zagaris, A., H. G. Kaper, and T. J. Kaper (2004), Analysis of the computa-
tional singular perturbation reduction method for chemical kinetics, Journal of
Nonlinear Science, 14 (1), 59–91.

[366] Zhang, J., G. Wu, X. Hu, S. Li, and S. Hao (2011), A parallel k-means cluster-
ing algorithm with mpi, in 2011 Fourth International Symposium on Parallel
Architectures, Algorithms and Programming, pp. 60–64, IEEE.

[367] Zhang, W., et al. (2019), Amrex: a framework for block-structured adaptive
mesh refinement, Journal of Open Source Software, 4 (37), 1370–1370.

361

[368] Zhang, Y., L. Zhou, H. Meng, and H. Teng (2020), Reconstructing cellular
surface of gaseous detonation based on artificial neural network and proper
orthogonal decomposition, Combustion and Flame, 212, 156–164.

[369] Zhou, L., Y. Song, W. Ji, and H. Wei (2022), Machine learning for combustion,
Energy and AI, 7, 100,128.

362

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Simulations of Hypersonic Propulsion Devices
	Introduction
	Next-Generation Hypersonic Propulsion Devices
	Role of High-Fidelity Simulations
	Computational Challenges for Reacting Flow Solvers
	Spatial Resolution Constraints
	Temporal Resolution Constraints
	Treating Complex Geometries

	Overview and Scope of Dissertation
	Models for Accelerating High-Fidelity Reacting Flow Simulations
	Introduction
	Governing Equations
	Chemical Source Term
	Dynamical System Formulation
	High-Performance Computing Trends
	Physics-based Models
	Large-Eddy Simulation
	Combustion Models
	Adaptive Mesh Refinement
	Approximate Inertial Manifolds (AIM)
	Computational Singular Perturbation (CSP)
	Operator Splitting
	Summary and Limitations of Physics-Based Models

	Data-Based Models
	Modal Decomposition via Space-Time Decoupling
	Proper Orthogonal Decomposition (POD)
	Dynamic Mode Decomposition (DMD)
	Cluster-based reduced-order modeling (CROM)
	Nonlinear Projection via Autoencoders
	Data-based Chemistry Tabulation
	Field Transformation and Super-Resolution
	Summary and Limitations of Data-based Models

	Research Contribution of Dissertation
	Distinction from Related Work in Physics-Informed Modeling

	K-means Clustering and Motivational Reacting Flow Applications
	Introduction
	K-means Algorithm
	Properties of K-means Clustering
	Comparison with Proper Orthogonal Decomposition
	Cluster-Based Analysis and Prediction of Flame Transition in Gas Turbine Combustors
	Background
	Experimental Configuration and Dataset
	Cluster-Based ROM Methodology
	Utilization of K-means Clustering
	Transition Matrix
	Forward Propagation Model

	Labeling of Centroids
	Analysis of the Transition Mechanism
	Number of Clusters
	Description of the Bistable State via Centroids
	Analysis of the Bistable Transition via Transition Matrix

	Prediction of Flame Transition
	Determination of Prediction Horizon Time
	Number of Clusters
	Horizon Time Comparisons
	Forward State Predictions

	Summary and Conclusions

	Time-Axis Clustering for Modeling Turbulent Reacting Flows
	Background
	Methodology
	Space-Axis Versus Time-Axis
	Decomposition Perspective

	Time-Axis Decomposition
	Demonstration of the Method
	Summary and Conclusions

	Conclusion

	Data-driven Classification and Modeling of Combustion Regimes in Detonation Waves
	Introduction
	Description of Data
	Numerical Solver and Chemical Mechanism
	Training and Testing Data

	Regime Classification
	K-means Clustering Context
	Clustering Results
	Analysis of Time Evolution of Segmented Field
	Feature Importance in Flowfield Classification

	Source Term Regression
	ANN Architecture
	ANN Results

	Conclusion

	Physics-Guided Clustering Strategies for Improved Flowfield Classification
	Introduction
	Description of Data
	Jacobian-Scaled K-means Clustering
	Differences from Other K-means Variants
	Jacobian-Scaled K-means Algorithm
	Localized Source Term Modeling
	Scaling Procedure for Jacobian Regularization
	Results
	Toy Problem
	Detonation Dataset: Analysis of Clusters
	Detonation Dataset: Source Term Predictions

	Hierarchical K-means Strategy
	Refinement Procedure
	Results
	Toy Problem
	Detonation Dataset

	Conclusion

	Summary, Conclusions, and Future Directions
	Summary
	Conclusions
	Future Directions, Challenges, and Outlook
	Next Steps for Classification-Based Regression Methodology
	Future Challenges and Recommendations
	Integration with Flow Solvers
	Integration with Other Models

	Closing Remarks

	APPENDICES
	Derivation of Centroid Update Rule
	Standard K-means
	Constant Scaling Factor
	Centroid-Dependent Scaling Factor
	Matrix Formulations of Chemical Kinetics for Acceleration on GPUs
	Methodology
	Matrix-Based Kinetics Equations
	Organization of Data
	Reaction Decomposition and Classification

	GPU Performance Analysis
	Compute Times and Throughput
	Speedup
	Cost of Reaction Types
	Improving Speedup for Large Mechanisms
	GPU-Based Chemical Time Integration for Compressible Reacting Flow
	Context and Overview
	Conventional CPU-based Algorithm
	Cell-local Offloading Strategy
	Single-Kernel Offloading Strategy

	Vectorized GPU-based Algorithm
	Static GPU Algorithm
	Adaptive GPU Algorithm
	Saturation and Speedup Trends
	Performance Comparison
	BIBLIOGRAPHY

