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ABSTRACT

The year 1972 marks the date of the first experimental demonstration of what is known today as

a Cylindrical Vector Beam (CVB). Since 1972, multiple passive antennas have been proposed to

generate Cylindrical Vector Beams (CVBs). However, up to date there is one common downside

between all the proposed passive CVBs antennas. Current passive CVBs antennas can be used to

generate only standard beams, such as Gaussian beams or Bessel beams, and arbitrarily defined

CVBs are generated only using active antennas. In this thesis, the mode converting capabilities of

metasurfaces are used to design passive antennas that can generate arbitrarily defined, axially sym-

metric CVBs in the radiative near field. Generating arbitrarily defined CVBs, opens the door to a

new class of CVBs that can be optimized for specific applications or functions. For example, using

this method, the long-standing problem of maximum coupling between circular apertures within

the Fresnel zone is tackled. The problem of maximum coupling between apertures is considered

to demonstrate the potential of the proposed CVB antenna over standard CVB antennas.

The proposed CVB antenna consists of a mode-converting metasurface atop a coaxially-fed ra-

dial cavity. The mode-converting metasurface is a passive and lossless device that can be designed

to transform a set of incident modes to a desired set of reflected/transmitted modes. Notably, the

normal power density does not have to be conserved locally across a mode-converting metasur-

face. Mode-converting metasurfaces can abruptly change the amplitude and the phase profiles of

incident fields, which allows for extreme control over the transmitted and reflected fields. Con-

xiii



sequently, a mode-converting metasurface can shape the field radiated by a radial cavity at very

close distances from the cavity’s aperture, or even directly at the cavity’s aperture. At the same

time, a mode-converting metasurface can control the reflected fields to match a coaxial feed to the

antenna, eliminating the need of an additional matching circuitry.

Finally, the design of two CVB antennas at 30 GHz is reported in this thesis to demonstrate

the utility and versatility of mode-converting metasurfaces in antenna design. Moreover, measured

results of a fabricated CVB antenna are reported. The fabricated CVB antenna is designed to

generate a radial Gaussian (RG) beam.
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CHAPTER 1

Introduction

1.1 Background and Motivation

First experimental demonstration of what is known today as a Cylindrical Vector Beam (CVB)

dates back to 1972 [1, 2]. In 1972, Mushiake et al. reported the first practical generation of a

radially polarized optical beam using laser oscillation [2]. Later in 1987, Durnin proposed for the

first time the non-diffractive properties of the radial Bessel (RB) beam [3]. The RB beam is a

classic example of a CVB. It resists diffraction over a finite range within the Fresnel zone of the

generating apparatus, known as the non-diffractive range [4, 5, 6, 7]. Another classic example of

a CVB is the radial Gaussian (RG) beam. The RG beam also incurs minimal diffraction within

the Rayleigh length of the beam [8]. In fact, by a means of focusing, the RG beam can attain

zero diffraction loss at a particular tangential plane within its Rayleigh length [9]. Later in 2000,

another interesting property of the CVBs was reported [10]. It was numerically shown in [10] that

a tighter focusing spot can be attained using radially polarized beams instead of typical linearly

polarized beams. The numerical results in [10] were experimentally verified as shown in [11, 12].

CVBs can be formally defined as radially or azimuthally polarized beams that solve the exact or

the paraxial vector wave equation in free space [13, 14, 15]. Because of their diffraction-resisting
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properties [8], and the fact that they exhibit a tighter focusing spot compared to similar beams

with a homogeneous polarization state [10, 11, 16], they have found several applications [16]. The

applications include; imaging and microscopy [17, 18], optical trapping [19], laser machining [20],

and radiative wireless power transfer [21, 22, 9].

Given the scientific significance of CVBs and their applicability in different industrial branches,

there is a need to find a general and simple method to generate tailored CVBs, preferably using

low-profile, flat structures. In general, passive methods of generating CVBs involve the use of

polarization conversion devices, where the polarization of homogeneously, linearly or circularly

polarized beams, is converted to the desired inhomogeneous polarization state. A summary of

such methods can be found in [16]. Another method used to generate CVBs, is to carefully excite

the TE01 mode or TM01 mode in an optical fiber while suppressing the fundamental HE11 mode

[23, 24, 25]. More recent methods to generate CVBs use metasurface technology [26, 27, 7, 28].

All the aforementioned methods can be used to generate only standard CVBs such as Gaus-

sian beams or Bessel beams, since these methods do not possess the ability to arbitrarily control

the amplitude and the phase distributions of the generated CVB. In this thesis, we propose a

novel method to generate arbitrarily-defined, axially-symmetric CVBs. The proposed method uses

mode-converting metasurfaces to generate any desired axially-symmetric CVB via mode conver-

sion, instead of polarization conversion. Arbitrarily controlling the amplitude and phase distri-

butions of the generated CVB is what truly differentiates this method from all other methods of

generating CVBs. Given this unique property, the proposed method opens the door to a new class

of CVBs that can be optimized and tailored for specific applications or functions. For example,

using this method the long-standing problem of maximum coupling between circular apertures

within the Fresnel zone is tackled. Solving this problem could enable the design of future radiative
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Figure 1.1: Generating arbitrarily-defined, axially-symmetric CVBs by shaping the modal pro-
file inside an excited radial metallic cavity. The cascaded-sheet, mode-converting metasurface
atop the radial cavity and specifically shapes the modal profile to generate the desired CVB. The
mode-converting metasurface comprises a stack of spatially-varying electric sheets separated by
dielectric spacers. The electric sheets can be realized as concentric metallic rings.

wireless power transfer systems or free-space planar resonators. In this thesis, we will discuss

in detail how this method can be used to solve the problem of maximum power transfer between

circular apertures.

The proposed method of generating arbitrarily-defined CVBs utilizes mode-converting meta-

surfaces to establish the desired CVB. The mode-converting metasurface consists of a stack of

electric sheet impedances. Each eclectic sheet impedance can be realized as concentric metallic

rings [29, 30]. The mode-converting metasurface can be placed atop an over-moded, metallic radial

cavity, as shown in Fig. 1.1. The main role of the mode-converting metasurface is to transform the

excited modal distribution in the cavity to the modal distribution of the desired CVB. The radial

cavity modes are orthogonal and they form a complete set, thus an arbitrary CVB can be written

as a superposition of the radial cavity modes. Consequently, any axially-symmetric CVB can be

generated using this proposed antenna. It is worth noting that, the metallic cavity is not central to

the method presented here. In fact, any other radial waveguides or cavities can be used instead of
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the metallic cavity.

The invention of the so-called spatially-dispersive mode-converting metasurface constitutes the

fundamental contribution of this thesis. It is a passive, lossless device that comprises multiple

electric impedance sheets separated by dielectric spacers. The sheets are arranged parallel to each

other and placed transversely along the waveguide axis. A spatially-varying admittance profile is

assigned to each electric sheet. As explained in [29, 31], standard optimization algorithms are used

to find the admittance profiles needed for a targeted modal transformation. The objective function

in the optimization routine is calculated using two primary tools: modal network theory and the

DHT. The DHT allows the complex coefficients of the modes to be computed from a given field

distribution and vice versa, through simple matrix multiplication. As a result, the DHT can be

used to efficiently, calculate the modal scattering matrix of a spatially-varying electric impedance

sheet [29]. On the other hand, modal network theory allows the waveguide modes to be translated

(propagated or evanesced) between the electric sheets again using simple matrix multiplication.

This technique to designing mode-converting metasurfaces, was inspired by the ABCD matrix and

the wave matrix techniques developed to design cascaded-sheet, metasurface-based, polarization

converters [32, 33].

It should be noted that, the optimization technique or ”design technique” of mode-converting

metasurfaces accounts for spatial dispersion due the finite thickness of the metasurface [29, 31].

Additionally, the technique does not enforce the normal power density to be locally conserved

across a lossless metasurface. For these two reasons, this technique is fundamentally different

from conventional techniques for metasurface design. Generally, metasurfaces are designed by

defining local boundary conditions, known as,Generalized Sheet Transition Conditions (GSTCs)

[34, 35]. The GSTCs neglect the spatial dispersion of the metasurface. Thus, they are not intrinsic
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and unique to the metasurface, since each plane wave of the incident fields sees different GSTCs.

The GSTCs enforce normal power density to be locally conserved across any lossless metasurface.

Such a stringent constraint is very difficult, if not impossible, to meet given the finite thickness of

the metasurface. Recently, GSTCs have been extended to include spatially-dispersive metasurfaces

[36, 37]. Even so, the optimization technique in [29, 31] appears to be more practical than the

extended GSTCs defined in [36, 37], since the latter technique does not take into account the

metasurface thickness.

In this thesis, we design and realize two CVB antennas at 30 GHz to demonstrate the utility

of mode-converting metasurfaces in antenna design. The first antenna generates an unconven-

tional, non-paraxial CVB. This beam was recently shown to be an optimal aperture illumination

for coupling between two circular apertures within the Fresnel zone [9]. It is constructed from a

superposition of orthogonal Bessel beams with different complex coefficients. The complex co-

efficients of the orthogonal Bessel beams are optimized to maximize power transfer between two

identical apertures. For convenience, this beam will be referred to as the OBS beam. In addition to

this beam, we use the proposed method to generate the well-known RG beam. In the following two

sections, a brief introduction to CVBs and their application in wireless power transfer is provided.

Also, mode-converting metasurfaces and their properties are briefly discussed.

1.2 CVBs and their Applications in Wireless Power Transfer

As has been described earlier, CVBs are known for their diffraction-resisting properties. For this

reason, wireless power transfer using CVBs was the topic of multiple recent papers [9, 21, 22, 38].

In [22], authors considered coupling between two metasurface-based Bessel beam launchers at
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microwave frequencies. It was shown that the two launchers can couple through an even or odd

free-space mode. In [9, 38], the authors considered coupling between circular apertures support-

ing several types of CVBs. Notably, it was shown that, the OBS beam can transfer power between

circular apertures with zero diffraction loss depending on the separation distance between the aper-

tures [9].

An OBS beam, can be designed to radiate the complex conjugate of its original transverse pro-

file at a fixed plane, which results in zero diffraction loss at that plane. In contrast, a conventional

RB beam endures minimal, but not zero, diffraction loss within a specific range known as the non-

diffractive range [8, 39]. For maximum coupling between two apertures, the diffraction loss due

to the finite size of the apertures should be minimum, ideally zero. Therefore, the OBS beam is

constructed such that the beam radiated by one aperture restores its original shape and attains a

conjugate phase at the plane of the opposing aperture, as shown in Fig. 1.2. This statement is sub-

stantiated by Borgiotti’s investigation of the problem of maximum power transfer between planar

apertures [40]. Borgiotti showed that the problem of finding the optimal illumination for maximum

power transfer, and the problem of finding the mode with minimum diffraction loss in confocal res-

onator mirrors, are governed by similar integral equations. In his investigation, Borgiotti utilized

the formula for the coupling coefficient between two radiating apertures derived by Hu [41]. He

rewrote Hu’s formula compactly using the concept of electromagnet reaction developed by Rumsy

[42]. According to Borgiotti, the coupling coefficient between two radiating apertures is simply

the electromagnet reaction between the two apertures normalized by the total radiated power from

both apertures.

A radially-polarized OBS beam that maximizes the coupling between two circular apertures

separated by a distance zs, can be generated using a circular aperture that supports the following
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Figure 1.2: Two opposing, radially symmetric apertures (Aper.a, and Aper.b), both apertures sup-
porting a magnetic current distribution M̄ . For zero diffraction losses, and accordingly maximum
coupling between the apertures, the fields due to Aper.a at the plane of Aper.b are the complex
conjugate of the fields due to Aper.a at the plane of Aper.a.

magnetic current distribution M̄zs ,

M̄zs =
N∑
n=1

Azsn
un

J1

(
jn
R
ρ

)
ϕ̂, (1.1)

where, jn is the nth null of the Bessel function of first kind and order zero, R is the radius of

the physical aperture, and un =

√
J2
1 (jn)R

2

2
. The complex coefficients Azsn are found through

optimization. The optimization procedure will be presented in Chapter 2. The OBS has a very

interesting property. If the OBS maximizes the coupling between two apertures separated by a

distance zs, then the following condition is always satisfied,

T (ρ) H̄Aper = bT (ρ) H̄∗
zs , (1.2)
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where, H̄Aper is the tangential magnetic field due to the propagating spectrum of M̄zs evaluated

at the plane of the aperture, H̄zs is the tangential magnetic field due to the propagating spectrum

of M̄zs evaluated at the plane z = zs, T (ρ ≤ R) = 1, and T (ρ > R) = 0, and b is a complex

constant. The condition in (1.2) can be translated into an eigen problem. Using the free space

Green’s function, the tangential magnetic fields H̄Aper, and H̄zs in (1.2) can be both written in

terms of the magnetic current distribution M̄zs in (1.1). Thus, the magnetic current distribution

M̄zs of an OBS beam that maximizes the coupling between two apertures separated by a distance

zs, must be the eigenfunction with the maximum eigenvalue of the following integral equation,

T (ρ)

∫ R

0

M̄zs (ρ
′) gp (0, ρ

′; ρ) ρ′dρ′ = λT (ρ)

∫ R

0

M̄∗
zs (ρ

′) gp (zs, ρ
′; ρ) ρ′dρ′, (1.3)

where, gp (z, ρ′; ρ) =
∫ 2π

0

sin
(
k
√
z2+ρ2+ρ′2−2ρρ′cos(ϕ)

)
√
z2+ρ2+ρ′2−2ρρ′cos(ϕ)

dϕ. Note that the free space Green’s functions

has been slightly modified so that only the propagating spectrum is considered when evaluating the

fields. As it was first noted by Borgiotti [40], the integral equation in (1.3) is very similar to integral

equation found by Boyd and Kogelnik for the mode patterns of the field in a generalized confocal

resonator [43]. Thus, the OBS has similar properties to the beams formed between two resonant

mirrors or apertures. That being said, the OBS can be generated using a single metasurface antenna,

as it will be shown in the coming sections.

Comparing a Bessel beam to an OBS beam, or even to an RG beam, we notice that the Bessel

beam is the natural mode of a uniform radial waveguide. Therefore, it is easy to generate a Bessel

beam using a radial cavity. For example, a Bessel beam can be generated using a leaky radial cavity

covered by a single homogeneous capacitive sheet [7, 28], or by using a radial cavity loaded with

metallic gratings [44]. On the other hand, generating OBS and RG beams requires the excitation

8



of multiple radial waveguide modes with appropriate complex amplitudes. Completely controlling

the modal distribution in a cavity requires a structure more complicated than a single homogeneous

capacitive sheet or metallic grating. Therefore, OBS and RG beams cannot be generated using

standard methods of generating CVBs. Generating these two beams will demonstrate, in detail,

what the proposed method has to offer compared to standard methods.

In Chapter 2, we provide a detailed discussion on coupling between axially-symmetric apertures

supporting several types of CVBs. The considered CVBs include RG, BG, LG, and RB beams. We

compare the performances of these CVBs to the performance of the OBS beam, in order to show

that the OBS beam is indeed the optimal aperture illumination for wireless power transfer between

apertures. It should be noted that wireless power transfer between apertures is not the major theme

of this thesis. As it has been mentioned, the major theme of the thesis is generating arbitrarily-

defined CVBs. The example of the OBS or equivalently the optimal aperture illumination for

maximum coupling was chosen carefully to highlight the potential of the proposed method.

1.3 Near-field Shaping Using Spatially-Dispersive Mode-

Converting Metasurfaces

The proposed method of generating CVBs relies on the cascaded-sheet, mode-converting meta-

surface. As shown in Fig. 1.1, the mode-converting metasurface establishes the desired CVB by

shaping the modal distribution excited by a radial cavity. In this thesis, it is shown that the mode-

converting metasurface can shape the near field and the far field of the excited cavity. This is in

contrast to most metasurface antennas that manipulate only the radiated far field [30].
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(a) (b)

Figure 1.3: Modal network representation of a cascaded-sheet mode-converting metasurface (a)
Cascaded-sheet mode-converting metasurface comprises multiple electric sheet admittances sepa-
rated by dielectric spacers (b) Modal network representation of the mode-converting metasurface.
the modal network is constructed by cascading the modal networks of the constitutive electric
sheets and the spacers.

Mode-converting metasurfaces are passive lossless devices, that transform a set of incident

modes on the metasurface to a set of desired transmitted modes from the metasurface. They con-

sist of a stack of closely-spaced electric sheets separated by dielectric spacers, as shown in Fig.

1.3a. The close spacing between the sheets gives rise to evanescent/higher-order coupling between

the sheets. This evanescent mode interaction allows the normal power to be efficiently redistributed

along the transverse direction of the metasurface [29]. The work is concerned with azimuthally in-

variant TM fields, therefore the discussion will be limited to the cylindrical TM0n modes. However,

the work can be generalized to both polarization states.

In earlier work, an analytical design method was proposed for synthesizing the constitutive

electric sheets of a mode-converting metasurface [45]. This analytical method was limited to the

simple scenario of single mode-to-single mode conversion. Later, the analytical design method

[45] was replaced by an optimization-based one [29, 31]. In the optimization method, the consti-
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tutive electric sheets of the metasurface are optimized to realize targeted entries of the metasurface

modal scattering matrix. This allowed the transmission of a targeted modal distribution given an

arbitrary incident modal distribution. The optimization-based design method is general and is not

limited to specific mode conversions. In addition, the optimization can be tailored to for ease of

metasurface realizability. For example, the admittance profiles of the synthesized electric sheets

can be restricted to have capacitive values. As it has been shown in [29], a capacitive electric sheet

can be easily realized with printed metallic rings on both sides of a thin substrate.

The analytical and optimization-based design methods rest upon two key concepts: the DHT,

and modal network theory. The DHT is an accurate mathematical tool that transforms fields from

the spatial to the modal domains, and vice versa, using only matrix multiplication. On the other

hand, modal network theory allows translation of the modes from one sheet to another again via

matrix multiplication. Together, the DHT and modal network theory are ideally suited to rapidly

optimize the admittance profiles of the constitutive electric sheets of the metasurface [46]. Next,

the implementation and the usefulness of these two tools, the DHT and modal network theory, will

be discussed.

Field solutions within a waveguide are usually constructed in the modal (spectral) domain.

Conversely, the metasurface’s boundary conditions are typically stipulated in the spatial domain.

As a result, the metasurface boundary conditions need to be transformed from the spatial domain to

the modal domain. This transformation involves the calculation of the modal, mutual admittances

between all the modes at each electric sheet of the metasurface. The exact formulas of the modal

mutual admittances of an electric sheet were derived in [29]. These exact formulas require the

evaluation of oscillatory integrals: the Hankel transform. In general, the Hankel transform is

performed through numerical integration. Doing so, can be computationally expensive, especially

11



if the admittance profiles of the sheets need to be computed at each optimization step. Alternatively,

the Hankel transform can be performed using the DHT. The DHT utilizes matrix multiplication

and only specific discrete points in space to calculate the modal mutual admittances of an electric

sheet. Replacing the numerical integration with simple matrix operations greatly increases the

efficiency of the optimization routine. As shown in [29], the modal wave matrix of a radially

inhomogeneous electric sheet can be obtained in closed-form using the DHT without the evaluation

of integrals. Details concerning the DHT, its accuracy, implementation, and applications can be

found in [29, 47, 48].

Another key concept to the analysis and design of mode-converting metasurfaces, is modal net-

work theory. Recently, modal network theory was extended to discontinuities beyond conventional

geometrical waveguide discontinuities. It was applied to discontinuities caused by metasurfaces

placed transversely to a waveguide axis [29]. Using modal network theory, a waveguide discon-

tinuity can be described with a multi-port modal network. This multi-port modal network relates

the waveguide’s modes on both sides of the discontinuity. The mode-converting metasurface, or

any of its constitutive electric sheets, can be regarded as a waveguide discontinuity. Ports of the

multi-port modal network correspond to the waveguide modes on both sides of the metasurface.

The characteristic impedance of each port is equal to the modal wave impedance [49].

Waveguide modes can be classified as either accessible or inaccessible (localized) modes [50].

By definition, accessible modes are those that can be detected at adjacent discontinuities. They

include propagating modes, as well as evanescent modes that reach adjacent discontinuities. In

contrast, inaccessible modes are only detectable very close to the discontinuity, and do not interact

with adjacent discontinuities. In most practical cases, a terminal description of a discontinuity is

more desirable than a complete field description. Within modal network theory, a terminal de-
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Figure 1.4: A metasurface-based antenna that consists of a mode-converting metasurface backed
by a coaxially-fed metallic radial cavity. The antenna can be divided into three sections: the
metallic cavity, the metasurface, and the feed. Each section can be described using a modal network
parameters. The entire antenna can be analyzed and designed by cascading the modal network
parameters of each section.

scription of a discontinuity is obtained by only considering the ports that pertain to accessible

modes. While the ports that pertain to inaccessible modes are terminated in their reactive modal

wave impedances [49, 50]. The classification of waveguide modes into accessible and inaccessible

modes is more general than the well-known classification into propagating and evanescent modes

[29]. An evanescent mode could be an accessible if the separation between the adjacent disconti-

nuities (separation between the electric sheets of metasurface) is comparable to the decay length

of the evanescent mode. Different modal matrices can be used to describe modal networks. In

Chapter 3, we introduce these matrices. Also, we derive the modal matrices of radially-varying,

cascaded-sheet mode-converting metasurfaces.

As opposed to conventional metasurfaces, the normal power density does not have to be con-

served locally across a lossless, mode-converting metasurface. Thus, the mode-converting meta-

surface can abruptly change the amplitude and phase profiles of incident fields. Therefore, com-
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pared to conventional metasurfaces, mode-converting metasurfaces allow for greater control over

transmitted and reflected fields. Consequently, a mode-converting metasurface can shape the field

radiated by a radial cavity at very close distances from the cavity, or even directly at the cavity’s

aperture [51]. At the same time, a mode-converting metasurface can control the reflected fields,

for example to match a coaxial feed to an antenna, eliminating the need for additional matching

circuitry.

A mode-converting metasurface antenna can be designed to generate any arbitrarily, axially-

symmetric CVB with arbitrary amplitude and phase. The antenna can be broken down into three

sections: the coaxial feed, the mode-converting metasurface, and the radial cavity, as shown in

Fig. 1.4. In Chapter. 4, it is shown how the proposed mode-converting metasurface antenna can

be analyzed and designed using modal network theory. To illustrate the design method of the

proposed CVB antenna, two CVB antennas are designed and realized at 30 GHz. In Chapter 5, the

design and measurements of these two antennas are reported. Prior to concluding this chapter, a

summary of contributions of this thesis work are provided in the next section.

1.4 Contribution

The invention of the mode-converting metasurface is the major contribution of this thesis. It was

invented in pursuit of the realization of low-profile, and planar antennas that can generate con-

ventional and unconventional CVBs for wireless power transfer applications. In general we can

breakdown the contribution of this thesis into three main themes. Next, we will discuss the contri-

bution related to each theme.

• First Theme: Cylindrical Vector Beams for Wireless Power Transfer
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This theme is discussed in Chapter 2. As part of this theme, wireless power transfer in the

Fresnel zone using CVBs is investigated. First, a generalized coupling coefficient between

two circular apertures in the Fresnel zone was derived [52, 9]. From the generalized cou-

pling coefficient, explicit coupling coefficients between two circular (focused or unfocused)

apertures supporting Gaussian, Bessel–Gaussian, and Laguerre–Gaussian beams were found

in closed form. The analytically derived coupling coefficients and corresponding efficiencies

were compared with those obtained through numerical integration of the reaction integral, as

well as the results of a commercial electromagnetic solver. Subsequently, it is demonstrated

that a finite aperture, which supports a cylindrically apodized Bessel beam, is close to the

optimal illumination. Finally, the optimal aperture illumination was found numerically by

constructing an aperture field from an summation of orthogonal Bessel beams OBS with

different axicon angles [9]. That is, the complex amplitude of each Bessel beam was found

that maximizes coupling between the two apertures. The optimal illumination radiates a

magnetic field equal to the complex conjugate of the receiver aperture’s magnetic field. This

observation agrees with those for optimal illumination in the context of a confocal optical

resonator [9].

• Second Theme: Modal Network Formulation for the Analysis and Design of Mode-

Converting Metasurfaces in Cylindrical Waveguides

This theme is discussed in Chapter 3. Modal network theory has proven to be a use-

ful tool in analyzing waveguide discontinuities. Ports of a modal network correspond to

waveguide eigenmodes on either side of the discontinuity. In this work, modal network the-

ory was extended beyond conventional/geometrical waveguide discontinuities [29, 45, 31].
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The modal network formulation was used to analyze discontinuities resulting from metasur-

faces. Specifically, azimuthally invariant cascaded sheet metasurfaces placed in a cylindrical

waveguide excited by TM0n modes were analyzed. The metasurface comprises multiple

radially varying electric admittance sheets separated by dielectric spacers. The modal rep-

resentation were derived for a single inhomogeneous, electric sheet admittance using two

approaches: a conventional numerical integration approach and a DHT approach [53]. It

was shown that the DHT approach is more efficient. Subsequently, the modal matrices of

cascaded sheet metasurfaces were derived using the DHT. Finally, an optimization-based

procedure was proposed for synthesizing transparent, metasurface-based mode converters.

The mode converters transform a set of incident modes on one side to another set of desired

modes on the opposite side of the metasurface. Two designs were synthesized at 10 GHz: a

single-mode converter, and a mode splitter. The designs were verified using the commercial

finite element electromagnetic solvers [29].

• Third Theme: Antenna Aperture Synthesis Using Mode-Converting Metasurfaces

This theme is discussed in Chapter 4, and 5. Mode-converting metasurfaces are passive,

lossless devices that can be designed to transform a set of incident modes to a desired set

of transmitted modes. In this theme, mode-converting metasurfaces were utilized to syn-

thesize arbitrary, azimuthally-invariant TM apertures. The methods presented in this work

can be used to design antennas that can meet specific near-field and far-field criteria unlike

most metasurfaces which solely manipulate the far field [30, 46, 51]. The proposed antennas

consist of a coaxially-excited, radial cavity topped by a mode-converting metasurface. The

main role of the mode-converting metasurface is to establish the desired aperture by convert-
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ing the modal distribution of the excitation to that of desired aperture. Its secondary role is

to impedance match the coaxial feed to the radial cavity. Using modal network theory, an

optimization-based design procedure was developed to synthesize the proposed metasurface

antennas. The admittance profiles of the electric sheets that comprise the metasurface were

optimized to establish the desired aperture profile [30].
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CHAPTER 2

CVBs for Wireless Power Transfer

2.1 Introduction

Over the past decade, wireless power transfer has gained significant interest in both academia and

industry. Most of the work in this area has concentrated on power transfer in the nonradiative

(reactive) near field [54]. Power transfer in the reactive near field has also prompted questions

about efficient power transfer in the radiative near field, namely the Fresnel zone, and how it can

be implemented [22, 21, 55].

Beams within the radiative near field have been studied in optical and quasi-optical systems.

A well-known example is the Gaussian beam, which has negligible diffraction over a distance

known as the Rayleigh range. Another beam that has attracted significant interest is the RB beam

[55]. It can maintain its transverse profile over a distance referred to as the “nondiffractive range.”

Due to their invariant nature in the Fresnel zone, such beams show promise for transferring power

[22]. An obvious question to ask is which beam is better to use and results in more efficient power

transfer? Also, does focusing (specifying a parabolic phase distribution) maximize power transfer?

These questions are intimately related to the problem of optimal illumination for maximum power

transfer between two planar apertures in the Fresnel zone.
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Borgiotti [40] was the first to consider this problem in detail. Borgiotti [40] obtained an integral

equation for the optimal amplitude distribution on two apertures focused on each other. The nu-

merical and analytical solution of these integral equations, derived by Borgiotti, has been discussed

in detail in the theory of confocal optical resonators [56, 43]. The solution of the obtained integral

equations involves special functions known as prolate spheroidal wave functions for the case of

rectangular apertures [57]. Solutions have also been derived for the case of cylindrical apertures in

[58].

Subsequently, Takeshita [59] investigated power transfer efficiency between two focused cir-

cular apertures supporting linearly polarized Gaussian beams. In his work, he concluded that a

Gaussian illumination is close to the optimal illumination derived from the theory of confocal

optical resonators.

To summarize, analysis has been limited to the particular case where the separation distance

between two apertures is equal to their focal distance. Furthermore, Borgiotti and Takeshita con-

sidered only linear polarization. However, recent works have shown that radially or azimuthally

polarized cylindrical apertures can be easily generated in the Fresnel zone using simple radial

waveguides [39, 46, 51, 7, 28, 60, 61, 62, 63]. However, such apertures have not been analytically

considered to date for wireless power transfer.

In this chapter, we approach the problem of wireless power transfer in the radiative near field,

from a practical perspective. We consider and compare two types of cylindrical vector beams:

Gaussian beams which include BG and LG beams, and finite aperture RB beams. Here, radial

polarization is considered, but a similar analysis can be performed for azimuthal polarization.

Radial Gaussian beams are considered with both uniform and parabolic phase distributions, as

shown in Fig. 2.1. Both Gaussian and Bessel beams are of interest since they can be realized in
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Figure 2.1: Two circular apertures facing each other, with identical amplitude and phase profiles.
The two apertures are focused to a focal length L0 and separated by a longitudinal distance zs .

practice using planar structures [39, 46, 51, 7, 28, 60, 61, 62, 63] and are amenable to analytical

treatment. Therefore, practically realizable beams are studied, and the separation distance between

apertures is no longer restricted to the focal distance.

The coupling coefficient between two identical, on-axis Gaussian apertures within the Fresnel

zone is analytically derived. Beam profiles and phase distributions are chosen that maximize cou-

pling for a given separation distance. We also analytically calculate the radiation from an aperture

supporting a RB beam within the Fresnel zone. We show that an RB beam is close to the optimal

aperture illumination that maximizes coupling between two circular apertures. Subsequently, we

find the optimal illumination through a simple optimization. The optimization process is simplified

significantly by decomposing the magnetic current (tangential electrical field) on the apertures into

an orthogonal set of Bessel beams with different axicon angles (radial wavelength).
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This chapter is organized as follows. First, Borgiotti’s formulation [40] is adapted to circularly

symmetric apertures with radially polarized magnetic current distributions. Then, both BG and LG

beams are reviewed and the coupling coefficients between apertures supporting such beams are

derived in closed form. Next, we consider the case of a finite (cylindrically apodized) RB beam

aperture and show that for certain axicon angles, an RB beam is close to the optimal solution.

Subsequently, the optimal aperture, or the OBS, is constructed as a sum of Bessel beams. The

complex coefficient of each Bessel beam comprising the OBS is optimized to maximize coupling.

2.2 Coupling Coefficients for Circular Symmetric Apertures

Based on the Reciprocity theorem, Hu [41] derived a general expression for the near-zone trans-

mission formula between two antennas. Later, Borgiotti [40] reformulated Hu’s expression into a

compact form using the concept of Electromagnetic Reaction, introduced by Rumsey [42]. Electro-

magnetic Reaction is a measure of coupling between two electromagnetic emitters. The coupling

coefficient Γ is simply the reaction integral between the apertures normalized by the total power

radiated from the two apertures

Γ =
|⟨aRb⟩|2

16PaPb
, (2.1)

where ⟨aRb⟩ is the electromagnetic reaction between apertures a and b (see Fig. 2.2), and Pa,

Pb are the total powers radiated by the two apertures [40]. In the case of two circular apertures

facing each other (see Fig. 2.2), one can consider homogeneously polarized aperture such as linear,

circular, or in general elliptical polarization. One can also consider inhomogeneously polarized

apertures such as radial or azimuthal. Each polarization results in a different reaction integral. As

noted, only radial polarizations are considered in this chapter.
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Figure 2.2: Two circular apertures a and b facing each other and supporting magnetic currents M̄a

and M̄b. The magnetic current on aperture b radiates magnetic field H̄b that reacts with magnetic
current M̄a on aperture a.

According to the Surface Equivalence Principle, the two apertures backed by a perfect electric

conducting (PEC) ground plane can be represented using equivalent magnetic current distributions,

of the form

M̄aϕ = −2Eaρϕ̂, M̄bϕ′ = 2Ebρ′ϕ̂′, (2.2)

where the subscripts a and b denote the two apertures, and Eaρ and Eaρ′ refer to the tangential

electric fields in ρ and ρ′ directions along apertures a and b . The electromagnetic reaction can be

written as

⟨aRb⟩ =
∫∫

Sa

M̄aϕ.H̄bϕ′dSa, (2.3)

where H̄bϕ′ is the magnetic field radiated by the magnetic current distribution M̄bϕ′ on aperture b,

evaluated at the plane of aperture a. The integral is over the area of aperture a (Sa).
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From (2.3), we see that the reaction integral requires the magnetic field radiated by aperture b

onto a , which is generally a difficult problem to solve in closed form. Nevertheless, the radiation

integral can be approximated using the Fresnel approximation for distances within the Fresnel

zone. Recall that the electric vector potential, F̄m, due to a magnetic current distribution is

F̄m = ϵ

∫∫∫
M̄

e−ik|r−r
′|

4π |r − r′|
dV ′, (2.4)

where M̄ is the magnetic current distribution. Within the Fresnel zone, where z ≫ ρ
′ , the term in

the exponent can be approximated with a Taylor series

|r − r′| ≈ z +
ρ

2z

2

+
ρ

2z

′2
− ρρ′ cos(ϕ− ϕ′)

z
. (2.5)

The same term in the denominator can be approximated with only the first term of (2.5). This

approximation is the well-known paraxial approximation. Substituting (2.5) and the magnetic

current definitions given by (2.2) into (2.4), the vector potential can be rewritten as

F̄m =
ϵe−ikz

2πz
ϕ̂′
∫∫

Ebρ′e
−ik

(
ρ
2z

2+ ρ
2z

′2− ρρ′ cos(ϕ−ϕ′)
z

)
dSb. (2.6)

If the tangential field distribution is assumed to be azimuthally invariant, then the following rela-

tion:

ϕ̂′ = sin (ϕ− ϕ′) ρ̂+ cos (ϕ− ϕ′) ϕ̂
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can be used to rewrite (2.6) as

F̄m = ϕ̂
iϵe

−ik
(
z+ ρ2

2z

)
z

∫ b

0

Ebρ′e
− ik

2z
ρ
′2
J1

(
k

z
ρρ′
)
ρ′dρ′. (2.7)

In the above expression, Jn (.) is the Bessel function of the first kind and nth order. The magnetic

field can be written in terms of the electric vector potential as

H̄ =
1

jωµϵ
(∇(∇.F̄m) + k2F̄m). (2.8)

Substituting (2.7) into (2.8), the magnetic field in the Fresnel zone can be approximated as

H̄bϕ′ = ϕ̂
ke

−ik
(
z+ ρ2

2z

)
η0z

∫ b

0

Ebρ′e
− ik

2z
ρ
′2
J1

(
k

z
ρρ′
)
ρ′dρ′, (2.9)

where η0 = 120πΩ is the characteristic impedance of free space. Substituting (2.9) into the reaction

integral (2.3), and again assuming that the tangential field is azimuthally invariant results in

⟨aRb⟩ = −4πk

η0z

∫ a

0

Eaρdρ

∫ b

0

EbJ1

(
kρρ′

z

)
e
−ik

(
z+ ρ2+ρ

′2
2z

)
ρ′dρ′. (2.10)

In addition, it is straightforward to show (refer to Appendix.A.1) that, under the paraxial ap-

proximation

Pa =
π

η0
∫ |Ea (ρ′)|2 ρ′dρ′

Pb =
π

η0
∫ |Eb (ρ′)|2 ρ′dρ′. (2.11)
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Finally, substituting (2.10) and (2.11) into (2.1), the coupling coefficient can be rewritten as

Γ =

∣∣∣∣∣∣∣kz
∫ a
0
Eaρdρ

∫ b
0
EbJ1

(
kρρ′

z

)
e
−

ik

(
ρ2+ρ

′2
)

2z
ρ′dρ′

∣∣∣∣∣∣∣
2

∫ a
0
|Ea(ρ)|2 dρ

∫ b
0
|Eb (ρ′)|2 dρ′

. (2.12)

Expression (2.12) is the coupling coefficient, in the paraxial limit, between two azimuthally invari-

ant circular apertures facing each other (on axis), as shown in Fig. 2.2.

2.3 Coupling Coefficients for Different Radial Gaussian Beams

In this section, the coupling coefficients of some well-known Gaussian beams are derived, namely

LG and BG beams. In this analysis, we solve for the general case of a focused beam. The special

case of uniform phase can be obtained simply by setting the focal distance to infinity.

Gaussian beams are solutions to the paraxial-wave equation [64]. The paraxial-wave equation

is a special case of the Helmholtz equation. In the paraxial approximation, we assume that the

fields are of the form

E(ρ, z) = u(ρ, z)e−ikz, (2.13)

where the amplitude function u(ρ, z) is a slowly varying function in the direction of propagation

(ẑ direction). In a cylindrical system with azimuthal invariance, the paraxial-wave equation for a

linearly polarized wave is given by [64]

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
− 2jk

∂u

∂z
= 0, (2.14)
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where u is the amplitude function of the wave. However, if the wave is cylindrically polarized, the

paraxial-wave equation takes the following form [13]

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
− u

ρ2
− 2jk

∂u

∂z
= 0. (2.15)

Since the wave equation is different for the two polarizations, the tangential fields of the resulting

field solutions are also different.

Several methods have been developed to generate linearly or circularly polarized Gaussian

beams. Typically, corrugated horn antennas are used to generate Gaussian beams [64]. In cor-

rugated horn antennas, the dominant mode considered is the hybrid HE11 mode which results in a

linearly polarized aperture [64]. Also, metasurface-based antennas have been used to realize lin-

early or circularly polarized Gaussian antennas [39]. In [39], a reflectionless metasurface was used

to convert vector RB beams generated by a radial cavity into a linear or circular Gaussian beam.

Recently, metasurface antennas that generate a RG beam were proposed [46, 51]. The RG

beam antenna proposed in [51] consists of a radial cavity fed by a coaxial cable, and topped by

a metasurface. The metasurface was designed to convert the excited TM0n cylindrical waveguide

modes to a Gaussian beam aperture profile.

2.3.1 LG Apertures

LG beams are well known in optics. Sometimes, they are referred to as higher order Gaussian

beams. The tangential fields of a radially polarized LG beam are given by [64]

Ea = Eb =

(√
2ρ2

w2

)
L1
n

(
2ρ2

w2

)
e−

ρ2

w2 (1−i 1α), (2.16)
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Figure 2.3: Aperture field profiles magnitudes that radiate radially polarized Gaussian beams. BG
refers to Bessel–Gaussian beam, and LG refers to Laguerre–Gaussian beam.

where Lmn (.) is the associated Laguerre polynomial, and w is the beam waist. The phase term α

can be written as α = 2L0

kw2 , where L0 is an arbitrary focal length. Therefore, α is the focal length

normalized by Rayleigh range zc = kw2

2
. In the cases that follow, the field will be focused to a

specific focal length L0, but evaluated at all points in space. The focal length L0 simply describes

the parabolic phase distribution (focusing term) on the apertures. Fig. 2.3 plots the tangential

aperture fields for different values of n . As shown in Fig. 2.3, the excitation of LG beams typically

requires apertures that are three to four times the waist, in order to capture key features of the beam.

This will decrease the Rayleigh length since a smaller waist is needed for a fixed aperture.

The coupling coefficient between two circular apertures supporting radially polarized LG beams
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can be solved analytically (see Appendix.A.2) and written in closed form as

Γ =

 4z2r(
z2r

(
1− C2

)
+ 1

)2

+ 4z4rC
2

P (1,0)
n ×


(
z2r

(
1 + C2

)
− 1

)2

− 4z2r(
z2r

(
1− C2

)
+ 1

)2

+ 4z4rC
2




2

, (2.17)

where C = kw2

2

(
1
z
− 1

L0

)
= 1

zr
− 1

α
,and zr = 2z

kw2 . Note that the beam radius can be written as a

function of z as

w2(z) = w2z2r (1 + C2). (2.18)

And the radius of curvature of the beam is given by

R (z) = z

[
zr (1 + C2)

C − zr (1 + C2)

]
. (2.19)

Peak coupling occurs at a distance (zmax) equal to

zmax =
2L0

1 +
(

2L0

kw2

)2 . (2.20)

The expression for zmax is derived by maximizing the coupling coefficient Γ in (2.12), as ex-

plained in Appendix.A.4. Alternatively, it can be derived using ray transfer matrices and the ABCD

law. Although ray transfer matrices and the ABCD law are typically applied to analyze linearly

polarized beams in quasi-optical systems [64], here, they are applied to analyze radially polarized

beams. To apply the ABCD law, the parabolic phase distribution on each aperture is replaced by a

thin lens with focal length L0. Using ray transfer matrices properties and the ABCD law, it is easy
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to show that

qout =

(
1− z

L0

)
qin + z(

z−2L0

L2
0

)
qin + 1− z

L0

, (2.21)

where qin and qout are the complex beam parameters at the input (transmitting aperture) and the

output (receiving aperture). Based on the assumption that both apertures, given by (2.16), are the

same, for maximum efficiency, we set qout = qin = jkw2
2

. Solving for the separation distance z in

(2.21) results in (2.20).

It should be noted that zmax is not a function of the Laguerre polynomial order. Therefore, all

the LG beams have the same zmax , and it is equal to that for a RG beam.

2.3.2 BG Apertures

BG beams have also attracted scientific interest [13]. The tangential field of a radially polarized

BG beam is given by

Ea = Eb = J1(βρ)e
− ρ2

w2 (1−i 1α), (2.22)

where β is the transverse wavenumber dictated by the axicon angle of the beam, and w is the beam

waist. Again, α = 2L0

kw2 where L0 is an arbitrary focal length that describes the parabolic phase

distribution on the aperture Fig. 2.3 plots the tangential fields for different values of β. Fig. 2.3

shows that the excitation of a BG beam requires a physical aperture that is only about twice as

large as the waist. As a result, a larger Rayleigh range can be achieved for a fixed aperture size, in

comparison with the LG aperture.

The coupling coefficient between two circular apertures supporting radially polarized BG beams
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can be solved analytically (see Appendix.A.3) and written in closed form as

Γ =

 4z2r(
z2r

(
1− C

2
)
+ 1
)2

+ 4z4rC
2

×

∣∣∣∣∣∣e
β2w2

4

(1−z2r(1+C2))
(1+(zr(1+iC))2)

J1

(
β2w2

4
2zr

1+(zr(1+iC))2

)
I1

(
β2w2

4

)
∣∣∣∣∣∣
2

, (2.23)

where C = kw2

2

(
1
z
− 1

L0

)
= 1

zr
− 1

α
,and zr = 2z

kw2 .

In contrast to LG apertures, it is difficult to explicitly solve for the distance at which maximum

coupling occurs for two apertures supporting BG beams.

2.4 RB Beams

RB beams have been introduced more recently than conventional Gaussian beams [7, 28, 60, 61,

62, 63]. An interesting property of RB beams is that they maintain their transverse profile as

they propagate normal to the aperture. However, it is impossible to generate ideal RB beams

since they require infinite energy and aperture size. Nevertheless, RB beams can be approximated

and generated from finite apertures with finite energy. A RB beam apodized by a right circular

cylindrical function only exists within a region known as the nondiffractive range. The tangential

field of an ideal RB beam is given as

Ea = Eb = J1 (βρ) , (2.24)

where β is the transverse wavenumber of the beam. The nondiffractive range of a RB beam is

within the Fresnel zone. Therefore, it is suitable for wireless power transfer only within this zone
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[55]. The nondiffractive range of a finite aperture RB beam is given by [7]

znd = b

√
k20
β2

− 1 (2.25)

where b is the finite radius of the aperture.

Typically, an axicon is used to generate a RB beam. The axicon works very well at optical

wavelengths; however, its size can become problematic at lower frequencies. Therefore, several

methods have been proposed and experimentally verified to generate RB beams in the microwave

region. For example, cylindrical cavities [7, 28] topped with capacitive sheet impedances as well as

radial line slot arrays [60] have been used to generate RB beams at microwave frequencies. Evanes-

cent RB beams have also been generated using near-field plates [61]. Furthermore, broadband RB

beams have been realized using a flared coaxial cable that is partially filled with a dielectric [62]

or with a gradient index dielectric [63].

Before considering practical RB beams, let us first consider the case of an ideal RB beam with

infinite aperture. In the case of an ideal RB beam, the coupling coefficient is unity. This becomes

obvious when we substitute the following relation [65]

∫ ∞

0

J1 (βρ) J1

(
kρρ′

z

)
e
−

jk

(
ρ2+ρ

′2
)

2z

ρ′dρ′ = −z
k
J1 (βρ) e

j β
2z
2k

into (2.12). Based on this, one can anticipate that a truncated (practical) finite aperture RB beam

would be close to the optimal illumination within its nondiffractive region. To show that this is

in fact true, let us analytically solve for the magnetic fields radiated by an aperture supporting a
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Figure 2.4: Aperture field profiles with different transverse wavenumbers that radiate radially
polarized RB beams, βn, are given by (2.27).

truncated Bessel beam. The solution can be cast into the following form (see Appendix.A.6)

H̄ϕ =
−1

η0
e
j

(
β2z
2k

−kz
)
J1 (βρ) +

i

η0
e
−j

(
kb2

2z
+kz+ kρ2

2z

)

×
∞∑
m=0

(−i)m
(

2z

b2k

)m
dm

dxm

{
J1
(√

xβb
)
J1

(√
x
kbρ

z

)}
x=1

(2.26)

where b is the aperture radius. We can see from (2.26) that there are two terms. The first term is

the nondiffractive term. The second diffractive term includes an infinite series with higher order

derivatives. These diffraction terms are written in terms of increasing powers of the factor 2z
b2k

.

For distances within the Fresnel zone, this factor, 2z
b2k

, is less than one. Thus, the infinite series in

(2.26) converges within the Fresnel zone. We see that the first term of the series expansion in (2.26)
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is of the same order as the nondiffractive term. Therefore, to minimize diffraction, the transverse

wavenumber should be chosen such that

βn =
λn
b
, (2.27)

where λn is the nth null of the function J1 (.) , and b is the aperture radius. Field profiles with

different transverse wavenumbers given by (2.27) are plotted in Fig. 2.4. Analytical formulas of

the coupling coefficients between two finite apertures supporting RB beams aren’t available. Thus,

the coupling coefficient of different RB beams satisfying the condition in (2.27) will be computed

numerically and verified using the commercial full-wave solver COMSOL in Section 2.5.

2.5 Comparison and Discussion

In the following, we examine the coupling coefficient as a function of separation distance between

apertures for all the aforementioned beams. In all the cases considered, we will compare the ana-

lytical formulas for coupling coefficient, if available, to the coupling coefficient (2.1) numerically

computed from the fields resulting from the vector potential (2.4). In addition, the coupling co-

efficient computed using the axially symmetric electromagnetic solver of the commercial finite

element package, COMSOL, will be shown. The frequency of operation will be set to 10 GHz

for all the beams, and the beam waist for Gaussian beams will be set to w = 2λ. We will start

with the various Gaussian beams, then consider finite aperture RB beams. Lastly, we will compare

Gaussian and RB beams.

33



0.2 0.4 0.6 0.8 1

z
r

0.2

0.4

0.6

0.8

1

Gaussian

 BG  = .1k
0

 BG  = .2k
0

LG n = 1

LG n = 2

(a)

0.2 0.4 0.6 0.8 1

z
r

0.2

0.4

0.6

0.8

1
Gaussian

 BG  = .1k
0

 BG  = .2k
0

LG n = 1

LG n = 2

(b)

Figure 2.5: Coupling coefficients vs. distance normalized by Rayleigh range for (a) a uniform
aperture phase and (b) focused aperture (L0 = 1.5kw2). Dashed line: numerical. Solid line:
analytical. Circles: full-wave solver (COMSOL).

2.5.1 Gaussian Beams

Gaussian beams minimally diffract within Fresnel zone, especially those that are paraxial (beams

with a small angle). As a result, the discussion will be limited to cases where the focal length

(L0) is beyond the Rayleigh range (ensuring a paraxial beam) and separation distances are within

Rayleigh range. First, let us consider the special case where (L0 = ∞ −→ α = 0). This is

the case where the phase on both apertures is uniform. Fig. 2.5b shows that when the phase

on the apertures is uniform, maximum coupling occurs at z = 0, and coupling drops off with

distance. An additional observation can also be made from the plot. Coupling for BG apertures

with small values of β(βw
2

≪ 1) resembles that for fundamental Gaussian beams. Before moving

on to focused apertures, let us revisit relation (2.20). For the purposes of design, (2.20) should be

inverted, such that for a given separation distance zgiven , an optimal focal length Loptimal0 is found
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that maximizes coupling between two LG apertures. Inverting (2.20) results in

Loptimal0 =
z2c

zgiven
±

√(
z2c

zgiven

)2

− z2c , (2.28)

where zc = kw2

2
is Rayleigh range. To thoroughly understand (2.28), the separation distance will

be written in terms of the Rayleigh range

zgiven = szc (2.29)

where s is the ratio between the given separation distance and the Rayleigh range. Substituting

(2.29) in (2.28) yields

Loptimal0 =
zc
s

(
1±

√
1− s2

)
. (2.30)

Given (2.30), two remarks can be made. The first remark is that real solutions for Loptimal0 are

obtained for s ≤ 1. This observation points to the fact that it is not possible to have maximum

coupling at distances larger than Rayleigh range. The second remark is that for distances shorter

than Rayleigh range, s ≤ 1 , there are two positive solutions for Loptimal0 . One solution satisfies

Loptimal0 ≤ zc, and the other solution satisfiesLoptimal0 ≥ zc. In wireless power transfer applications,

it is desirable to have more paraxial beams, since they undergo less diffraction as they propagate.

Therefore, we will choose an optimal focal length that satisfies Loptimal0 ≤ zc.

Based on these two arguments, we will consider separation distances within Rayleigh range and

a focal length outside Rayleigh range, in the following examples. Fig. 2.5a shows the specific case

where the focal length is three times the Rayleigh length: L0 = 1.5kw2. We notice that BG and

LG apertures achieve maximum coupling at different separation distances zr . It should be noted
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that the coupling maxima of BG beams are aligned with those of the fundamental/conventional

Gaussian aperture, given by (2.20). It should also be highlighted that for distances less than zmax,

the BG with small β maintains a coupling coefficient that is higher than that for conventional

Gaussian beams.

For all the cases shown in Fig. 2.5, we notice that the Fresnel approximation in (2.5) agrees very

well with the full-wave solver COMSOL, even in the reactive near field. This can be attributed to

two factors. First, Gaussian beams are minimally diffractive within the Rayleigh length, or in other

words, Gaussian beams maintain their transverse profiles as they propagate. Second factor is that,

unlike linearly polarized Gaussian beams, radially polarized Gaussian beams do not generate cross

polarized fields in the extreme near field nor the Fresnel zone, as it can be seen from (2.8).

2.5.2 RB Beams

As noted earlier, it is complicated to evaluate the coupling coefficient between RB beam apertures

in closed form. So, we numerically calculate the coupling coefficient between the first three RB

beam apertures that satisfy condition (2.27). The aperture radius is chosen to be b = 4λ. In

Fig. 2.6, the coupling coefficient is shown as function of the separation distance, normalized by

the nondiffractive range of each beam. The nondiffractive range is calculated using (2.25).

Fig. 2.6 shows close agreement between the numerically calculated coupling coefficient (dashed

line) evaluated using (2.1), and that computed using the commercial full-wave solver COMSOL.

Computations, not shown here for brevity, show that the more paraxial (smaller β ) the beam is,

the higher the coupling coefficient is.
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Figure 2.6: Coupling coefficients vs. distance normalized by the nondiffractive range given by
(2.25) for three transverse wavenumbers. Aperture radius is b = 4λ, and frequency is f = 10GHz
. Dashed line: numerical. Dashed line: analytical. Circles: full-wave solver (COMSOL).

2.5.3 RG Versus RB Beams

Lastly, we compare a finite aperture RB beam with a small transverse wavenumber (denoted as β1

in Fig. 2.4) to a conventional RG beam. The RG beam waist is set to w = 2λ, and its aperture size

is set to twice the beam waist b = 2w = 4λ. The separation distances between the apertures are

limited to less than the RG beam Rayleigh range. The coupling coefficients are calculated using

the full-wave solver COMSOL. From Fig. 2.7, it is clear that the RB beam exhibits higher coupling

coefficients compared with the RG beam. This is due to the Bessel beam’s nondiffractive nature,

as demonstrated in (2.26).
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Figure 2.7: Coupling coefficients for RB and RG beam aperture vs. distance normalized by the
Rayleigh range of the RG aperture. Aperture radius is b = 4λ , RG beam waist w = 2λ , RB beam
transverse wavenumber angle β = β1, and frequency is f = 10GHz.

2.6 Optimal Illumination: The OBS Beam

Up to this point, well-known beams such as RG beams and RB beams were analyzed and con-

sidered. The analysis and the discussion were limited to paraxial beams, where the small angle

approximation, in (2.5), of the free space Green’s function is valid. It was demonstrated that RB

beams generally exhibit higher coupling than RG beams within Rayleigh range of the RG beam.

Also, it was shown that RG beams can have unity coupling at certain distances within the Rayleigh

range by way of focusing. However, a general method to find the optimal illumination for any

distance within or outside the Rayleigh range is developed here. When developing this method,

the exact free space Green’s function is considered rather than the small angle approximation in

(2.5). This method uses optimization since analytically solving for the optimal illumination is a

38



daunting task.

Iterative optimization is computationally expensive, since several integrals need to be evaluated

with each iteration. To reduce the complexity of the problem, we decompose the optimal illumi-

nation into a superposition of RB beams with different transverse wavenumbers. The formulation

draws on the previous section’s finding that a RB beam is close to an optimal illumination. Further-

more, Bessel functions are orthogonal functions into which azimuthally invariant apertures can be

decomposed. The transverse wavenumbers considered in the decomposition are the discrete modes

of a cylindrical waveguide with radius equals to the aperture radius. Thus, the magnetic current on

both apertures can be written as

M̄OBS
zs =

N∑
n=1

Azsn
un

J1

(
jn
R
ρ

)
ϕ̂, (2.31)

where, jn is the nth null of the Bessel function of first kind and order zero, R is the radius of the

physical aperture, un =

√
J2
1 (jn)R

2

2
, and zs denotes the separation distance between the apertures.

The coupling coefficient can then be written in terms of the complex coefficients Azsn of the

constituent Bessel beams as follows (see Appendix.A.7)

Γ =

∣∣∣( ¯̃AT ¯̄Gzs
R (n,m) ¯̃A

)∣∣∣2(
Re

{(
¯̃A
)+ ¯̄G0

R (n,m) ¯̃A

})2 (2.32)
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Table 2.1: Complex Coefficients Of M̄zs

Azs=2.5λ
1 0.4411∠67.8474◦

Azs=2.5λ
2 0.7867∠44.3187◦

Azs=2.5λ
3 0.4222∠− 1.5983◦

Azs=2.5λ
4 0.0911∠− 78.7668◦

Azs=2.5λ
5 0.0059∠136.1688◦

where

¯̄Gzs
R (n,m) =

k

η0unum

∫ ∞

0

e−ikzzs

kz
L

(
jm
R
, kρ

)
L

(
jn
R
, kρ

)
kρdkρ,

L

(
jq
R
, kρ

)
=

∫ R

0

J1

(
jq
R
ρ

)
J1 (kρρ) ρdρ, and ¯̃A (m) = Ãzsm.

The coupling coefficients, given by (2.32), allow the coupling between the constituent RB beams

to be precomputed. The complex coefficients of the beams can then be optimized to maximize Γ

for a specific distance zs.

The MATLAB optimization toolbox was used to find the complex coefficients that maxi-

mize (2.32) using five constituent RB beams considered in (2.31). The aperture radius was

set to R = 2.5λ at 30GHz, and the separation distance was set to zs = R. For this aper-

ture radius, all the considered RB beam are propagating, in the sense that their transverse

wavenumbers βn = jn
R

are less than the frespace wavenumber. The optimal complex coeffi-

cients Azsn are given in Table 2.1. Note in Table 2.1 the coefficients are normalized such that[
Azs=2.5λ

1 , . . . , Azs=2.5λ
5

] [
Azs=2.5λ

1 , . . . , Azs=2.5λ
5

]T
= 1. The constructed OBS, or the optimal

aperture, has been simulated using the commercial full-wave solver COMSOL. The simulation

results show unity coupling at the specified separation distance zs.

Fig. 2.8 shows the normalized magnetic current distribution M̄zs , the normalized radiated mag-
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Figure 2.8: The amplitude and the phase distributions of a magnetic current the can generate an
OBS beam M̄OBS

zs , the shown OBS beam maximizes the coupling between two apertures separated
by a distance zs = 2.5λ at 30GHz. We also show the magnetic field H̄ (0; zs) at the aperture z = 0,
due to the propagating spectrum of M̄OBS

zs , as well as the complex conjugate of the magnetic field
H̄∗ (ρ; zs) at the plane z = zs, due to the propagating spectrum of M̄OBS

zs .

netic field H̄ (0; zs) at the aperture z = 0, due to the propagating spectrum of M̄OBS
zs , and the com-

plex conjugate of the magnetic field H̄∗ (ρ; zs) at the plane z = zs, due to the propagating spectrum

of M̄OBS
zs . An obvious conclusion can be drawn from the field profiles. The radiated magnetic field

H̄ (0; zs) at the aperture z = 0 is the complex conjugate of the magnetic field H̄∗ (ρ; zs) at the plane

z = zs. This observation is stated in (1.2), and (1.3), which agrees with Borgiotti’s findings [40]

and with confocal optical resonator theory [56, 43]. As it has been discussed earlier, all these intro-

duced CVBs, including the OBS beam, can be generated using the proposed method of generating

CVBs. In the next chapter, we discuss the mode-converting metasurface which is the pivot of the

proposed method.
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CHAPTER 3

Modal Network Formulation for the Analysis and

Design of Mode-Converting Metasurfaces in

Cylindrical Waveguides

3.1 Introduction

Microwave network theory is an essential tool in analyzing and designing microwave circuits [66].

In his paper on the history of microwave field theory, Oliner argued that “it is in fact this capa-

bility of phrasing microwave field problems in terms of suitable networks that has permitted the

microwave field to make such rapid strides” [67]. In microwave networks, voltages and currents

are defined at the network ports. Then, circuit theory or transmission-line theory is used to relate

the voltages and currents at the ports to each other. The relation between the port voltages and

currents of the network can be represented by a matrix [66]. Several different matrices (network

parameters) can be used to describe a given network. These matrices include the impedance matrix

Z, the admittance matrix Y, the scattering matrix S, etc. However, depending on the analysis to be

performed or application, some matrices are more suitable than others.
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Figure 3.1: A cascaded sheet metasurface placed within an over-moded cylindrical waveguide,
perpendicular to its propagation axis. The cascaded sheet metasurface consists of multiple inho-
mogeneous electric sheet admittances separated by dielectric spacers.

Network analysis has not only been used to solve microwave circuits. It has also been employed

to analyze modal networks [49, 68, 50]. In modal networks, the voltages and currents at the

circuit ports are replaced by the modal voltages and the modal currents of the waveguide ports

that represent the complex coefficients of the modes supported. As shown in [69], modal networks

can be described by the same matrices used to describe microwave networks. As a result, modal

network matrices and microwave network matrices share similar properties. For instance, a lossless

reciprocal modal network is described by a modal impedance matrix Z that is symmetric and purely

imaginary [49].

The modal network formulation was originally developed to treat waveguide discontinuities in

the context of the Mode Matching Technique (MMT) [49, 50]. By recasting the MMT solution into

a modal network, a terminal description of a discontinuity can be obtained rather than a complete
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field description. A terminal description of a discontinuity corresponds to a modal network that

only relates the modal voltages and currents of the accessible modes to each other. While the ports

representing the inaccessible (localized) modes are terminated in their wave impedances [50].

Waveguide discontinuities can be classified into different classes. One particular class of prob-

lems, that has been studied extensively using the modal network formulation, is the waveguide

junction [49, 50]. In [70], the properties of the modal scattering matrix S for waveguide junc-

tions have been discussed. It has been shown that the modal scattering matrix S is not always

unitary unless all the modes considered are propagating. The modal admittance matrix Y has also

been derived for waveguide junctions and equivalent circuit models constructed for isolated and

interacting waveguide junctions [49].

In this chapter, modal network theory is extended beyond conventional waveguide discontinu-

ities. We use the modal network formulation to analyze an isotropic metasurface that is placed

perpendicular to the propagation axis, see Fig. 3.1. Although, the waveguide cross section remains

uniform, the metasurface introduces a field discontinuity. In fact, spatially-varying (inhomoge-

neous) metasurfaces can be used to convert/transform waveguide modes. As will be shown in

detail using the modal network formulation, lossless and reflectionless mode converters can be

synthesized with metasurfaces. A mode converter transforms a set of incident modes on one side

to another set of desired modes on the opposite side of the metasurface. The discussion here will

be limited to cylindrical waveguides and azimuthally-invariant TM modes. Therefore, the meta-

surfaces considered are also azimuthally-invariant (printed metallic rings). Cylindrical waveguides

are considered not only because they can be easily analyzed but rather because they have some in-

teresting applications. For example, they can be used to generate non-diffractive RB beams [7], or

design high gain low profile antennas [71].
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In electromagnetics problems, boundary conditions are typically stipulated in the spatial do-

main. The DHT allows boundary conditions in the cylindrical basis to be transformed from spatial

to modal (spectral) domains, or vice versa, with simple matrix operations. Using the DHT, closed-

form expressions will be derived for modal matrices. On the other hand, network analysis allows

fields to be computed and propagated efficiently in the modal domain using simple matrix oper-

ations. Together, the DHT and modal network analysis are ideal tools for analyzing waveguide

discontinuities. In this work, they are both used to efficiently analyze metasurface in waveguide

problems, and rapidly optimize metasurface designs.

This chapter begins with the definitions of the modal matrices, as well as the reduced modal

matrices which only consider the accessible modes in the waveguide. Next, we explain why meta-

surfaces should be modeled as a cascade of simple electric sheets admittances rather than an ide-

alized single bianisotropic sheet. Subsequently, the modal representation of a single electric sheet

admittance is derived using two approaches: a conventional numerical integration approach, and a

DHT approach. We show that the DHT approach is more efficient since it only uses matrix multi-

plications. Subsequently, the modal matrices of a single electric sheet are derived in closed-form

using the DHTapproach. Next, the modal matrices of a cascaded sheet metasurface are constructed

by multiplying the modal wave matrices of the individual sheets and the dielectric spacers. Finally,

we propose a systematic optimization procedure to synthesize metasurface-based mode convert-

ers. To illustrate the optimization procedure, a metasurface-based single mode converter and a

metasurface-based mode splitter are synthesized at 10 GHz.

45



(a)

(b) (c)

Figure 3.2: Waveguide and network representations of a cascaded sheet metasurface. (a) 2D side
view of a cascaded sheet metasurface, placed perpendicular to ẑ axis within a cylindrical waveg-
uide. The cascaded sheet metasurface consists of multiple electric sheets with admittance profile
yn (ρ). Na , and Np are the number of accessible modes and the number of the propagating modes,
respectively. (b) Multiport modal network representation of the cascaded sheet metasurface. (c)
Reduced modal network representation of the cascaded sheet metasurface.

3.2 Modal Matrices

Modal matrices (network parameters) are used to describe modal networks. These matrices are of

the same form as those used in microwave networks or polarization converting devices [66, 33].

However, they relate modal quantities rather than circuit quantities or polarization states. Hence,
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the distinct name ‘modal matrices’.

It is more instructive to define the modal matrices within the context of the problem at hand:

the design of a mode converter. Consider the azimuthally-invariant metasurface, consisting of

cascaded sheets, shown in Fig. 3.2a. The metasurface, composed of multiple radially-varying

electric sheet admittances, is placed perpendicular to the ẑ axis within a cylindrical waveguide.

The metasurface, shown in Fig. 3.2a, consists of four electric sheets admittances. Each of these

sheets is described by an admittance profile y(ρ). These electric sheets are separated by dielectric

spacers with thickness d. As can be seen from Fig. 3.2a, the metasurface divides the waveguide

into two main regions (regions 1 and 2), and multiple inner regions between the sheets. Each

region supports different modes, and therefore has different modal coefficients associated with it.

An equivalent multiport modal network can be used to describe the relations between the modal

coefficients of one or more adjacent regions. Throughout this section, modal matrices will be

defined relating the modal coefficients in the two main regions, region 1 and region 2 shown in

Fig. 3.2a. Nevertheless, the same exact definitions apply to any other region.

The modal network, depicted in Fig. 3.2b, relates the modes in region 1 and region 2 to each

other. Each port of this modal network corresponds to a waveguide mode in either region 1 or

region 2. The characteristic impedance of each port is equal to the modal wave impedance of the

mode represented by the port. In region p, the forward traveling modal coefficients a(p)n and the

backward traveling modal coefficients b(p)n can be arranged into vectors as follows,

Ā(p) =
[
a
(p)
1 , a

(p)
2 . . . , a

(p)
N

]T
(3.1)

B̄(p) =
[
b
(p)
1 , b

(p)
2 . . . , b

(p)
N

]T
, (3.2)
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where, N is the highest mode that is considered. The modal voltages (or, equivalently, the electric

field modal coefficients) in region p, Ẽ(p)
n , can also be arranged into a vector as follows,

˜̄E
(p)

=
[
Ẽ

(p)
1 , Ẽ

(p)
2 . . . , Ẽ

(p)
N

]T
. (3.3)

The modal currents (or, equivalently, the magnetic field modal coefficients) in region p, H̃(p)
n , can

be similarly arranged into a vector,

˜̄H
(p)

=
[
H̃

(p)
1 , H̃

(p)
2 . . . , H̃

(p)
N

]T
. (3.4)

The total electric field and magnetic field modal coefficients, (3.3) and (3.4), are related to the

forward and backward modal coefficients, (3.1) and (3.2), by the following relations,

 ˜̄E(p)

˜̄H(p)

 =

 g(p)
(
Ā(p) + B̄(p)

)
(
g(p)
)−1 (

Ā(p) − B̄(p)
)
, (3.5)

where, g(p) is a diagonal normalization matrix that takes the following form,

g(p) =



√
η
(p)
1 · · · 0

... . . . ...

0 · · ·
√
η
(p)
N

 . (3.6)

In (3.6), η(p)n represents the modal wave impedance of the nth mode in region p.

Now, let’s define the modal matrices that will be used throughout the chapter. These modal

matrices will be defined as block matrices, where each submatrix relates one of the vectors in
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(3.1), (3.2), (3.3), or (3.4) to another one. The reference planes of the ports (modes) are assumed

to be at the two outermost sheets of the metasurface. Namely, just before y1(ρ) for modes in region

1, and just after y4(ρ) for modes in region 2 (see Fig. 3.2a).

The modal ABCD matrix relates the total (summation of incident and reflected) modal voltages

and modal currents in one region to the modal voltages and modal currents in the other region,

 ˜̄E(1)

˜̄H(1)

 =

A B

C D


 ˜̄E(2)

˜̄H(2)

. (3.7)

The modal wave matrix M relates the incident and the reflected modes in one region to the incident

and the reflected modes in the other region,

Ā(1)

B̄(1)

 =

M11 M12

M21 M22


Ā(2)

B̄(2)

. (3.8)

The modal ABCD matrix can be transformed to the modal wave matrix M using the following

transformation,

M =

 g(1) g(1)(
g(1)
)−1 −

(
g(1)
)−1


−1

ABCD

 g(2) g(2)(
g(2)
)−1 −

(
g(2)
)−1

 . (3.9)

The modal scattering matrix S relates the reflected modes in both regions to the incident modes in

both regions, B̄(1)

Ā(2)

 =

S11 S12

S21 S22


Ā(1)

B̄(2)

. (3.10)
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Here, we adopt the following convention for the S matrix,

Skp =


S
(1,1)
kp · · · S

(1,N)
kp

... . . . ...

S
(N,1)
kp · · · S

(N,N)
kp

 , (3.11)

where, for S(i,j)
kp the subscripts k, and p denote the measurement and the excitation regions, respec-

tively, and the superscripts (i, j) denote the measured and the excited modes, respectively. The M

matrix can be transformed to the S matrix and vice versa, using the following relations [33],

S =

0 M11

I M21


−1 I −M12

0 −M22

 (3.12)

M =

 I 0

S11 S21


S21 S22

0 I


−1

. (3.13)

where, I is the N × N identity matrix. It should be noted that all the aforementioned modal

matrices are of the size 2N × 2N .

Attention should be drawn to the fact that not all N modes, considered in (3.1) and (3.2), are

detectable everywhere in a region. Some of these modes exist only in very close proximity to

the individual electric sheets that compose the metasurface. These modes adhere to the sheet’s

surface and do not interact with adjacent sheets. This fact leads to the notion of accessible modes

and inaccessible modes [50, 49]. For the individual sheets of the metasurface, shown in Fig. 3.2a,

an accessible mode is a mode that interacts with an adjacent sheet. While an inaccessible mode

is a mode that adheres to the sheet’s surface and does not interact with an adjacent sheet. This
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classification of waveguide modes into accessible and inaccessible modes, is more general than

the well-known classification into propagating and evanescent modes. Since, an accessible mode

could be an evanescent mode if the separation distance d is comparable to the decay length of the

mode. We should keep in mind that the accessible modes of the individual sheets and the accessible

modes of the metasurface (multiple cascaded sheets) are, generally different. For the metasurface

(the cascaded sheets as a whole), shown in Fig. 3.2a, the accessible modes are only the propagating

modes, since the metasurface is isolated in the waveguide.

As discussed in [49], ports that represent the inaccessible modes should be terminated in their

modal wave impedances, see Fig. 3.2c. Therefore, a reduced modal network that only considers

the accessible modes (see Fig. 3.2c), can be obtained from the original modal network shown in

Fig. 3.2b. Terminating the ports that represent the inaccessible modes with modal wave impedances

results in,

Ā
(1)
in = 0̄ (3.14)

B̄
(2)
in = 0̄ (3.15)

where, Ā(1)
in is a subvector of the vector Ā(1) that contains the inaccessible modes, and B̄

(2)
in is

defined similarly. Based on the two expressions, (3.14) and (3.15), it is straightforward to show

that the reduced modal scattering S
′

can be written as,

S
′
=

Saa11 Saa12

Saa21 Saa22

, (3.16)

where, Saakp is the submatrix of Skp that pertains only to the accessible modes. The reduced modal

wave matrix M
′
cannot be constructed by simply choosing the elements in the original modal wave
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matrix M that pertain to the accessible modes. Rather, the original modal wave matrix M should

be transformed to the modal scattering matrix S using (3.12). Then S should be reduced to S
′
using

(3.16), and finally S
′

transformed to M
′

using (3.13). A similar procedure can be used to find the

reduced modal ABCD matrix.

3.3 Metasurfaces

Metasurfaces are the 2D equivalent of metamaterials, since they have negligible thickness com-

pared to the wavelength. Because of their low profile and corresponding low-loss properties,

metasurfaces have been used in numerous applications over the last decade [34]. Applications

of metasurfaces include, antenna design [72], control of guided modes [73, 45], polarization con-

version [32, 33], and wavefront manipulation [74, 75]. Typically, metasurfaces are realized as a

2D arrangement of subwavelength cells. In practice, the cells are composed of a patterned metallic

cladding on a thin dielectric substrate. The patterned metallic cladding can be homogenized as an

electric sheet admittance. It is designed to have tailored reflection and transmission properties.

Unlike metamaterials, which are characterized by equivalent material parameters, metasurfaces

are characterized by surface boundary conditions. These surface boundary conditions are referred

to as GSTCs (Generalized Sheet Transition Conditions) [76, 77]. The GSTCs can be derived by

modeling the metasurface’s cells as polarizable particles. The local dipole moments of the cells

can be related to the local fields using polarizability tensors. Exploiting the equivalence between

the dipole moments and surface currents, the following matrix form of the GSTCs can be obtained
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[32],  Js

Ms

 =

Y Χ

Υ Z


E

H

 . (3.17)

The vectors on the left side of (3.17) denote the surface currents at the metasurface, while the vec-

tors on the right side denote the average fields across the metasurface. The 2 × 2 submatrices Y,

and Z represent the electric admittance and magnetic impedance of the metasurface, respectively.

Likewise, the 2 × 2 submatrices Χ, and Υ represent the magnetoelectric response of the metasur-

face. For a reciprocal metasurface, Y = YT , Z = ZT , andΧ = −ΥT [32]. For lossless metasurface

Re(Y) = Re(Z) = Im(Χ) = 0 [35]. In the case of inhomogeneous metasurfaces, all the vector

and matrix elements in (3.17) are written as a continuous function of space. It should be noted

that this form of the GSTCs represents metasurfaces without normal polarizabilities. A detailed

discussion on metasurfaces that exhibit normal polarizabilities can be found in [34, 76, 77].

In synthesis problems, the metasurface can be modeled either by a single bianisotropic sheet

boundary condition [35, 75] given by (3.17), or as a cascade of electric sheet admittances [33, 32].

In the single bianisotropic boundary model, the metasurface is replaced by a fictitious surface

defined by boundery condition (3.17) with, in general, non-vanishing submatrices Y, Z, and Χ. In

the cascaded electric sheet model, the metasurface is modeled by a cascade of simple electric sheets

admittances (see Fig. 3.2a). The cascade of sheets can be designed to exhibit electric, magnetic

and magnetoelectric properties. For each sheet, the only non-vanishing submatrix in (3.17) is the

Y submatrix. As it was pointed out earlier, here we model the metasurface with cascaded electric

sheets admittances, as shown in Fig. 3.2a.

The cascaded electric sheet model is chosen rather than the idealized single bianisotropic

boundary (GSTC) model for the following two main reasons. First, in the cascaded sheet model,
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the power normal to the metasurface only needs to be conserved globally for a lossless metasur-

face, not locally. Whereas in the bianisotropic boundary model, normal power must be conserved

not just globally but also locally for a lossless metasurface [35]. This local power continuity condi-

tion unnecessarily restricts metasurface functionality. The second reason is that the cascaded sheet

model is more compatible with the physical realization of the metasurface. In most cases, meta-

surfaces are implemented as a cascade of patterned metallic claddings regardless of the synthesis

approach used [35]. This is due to the fact that such metasurfaces can be manufactured using stan-

dard planar fabrication approaches. The cascaded sheets are simply a homogenized model of the

practical realization. On the other hand, replacing the bianisotropic boundary with three impedance

sheet implementation [32] post design, as in [78, 35, 79], is restrictive for extreme field transfor-

mations. It requires extremely thin dielectric spacers and extreme impedance values in order to

neglect the lateral prorogation between the constitutive sheets. In addition to these two reasons, an

important benefit of the cascaded sheet model is that it also accounts for spatial dispersion [80].

This is in contrast to the single bianisotropic boundary which is a fictitious, local boundary con-

dition. In summary, the single bianisotropic boundary model imposes additional constraints on

the metasurface functionality compared to the cascaded sheet model, does not account for spatial

dispersion, and complicates the practical realization of the metasurface.
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3.4 Modal Representation of The Electric Sheet Admittance

Boundary Condition

In waveguide problems, it is more convenient to construct solutions in the modal (spatial spectrum)

domain rather than the spatial domain [22, 81], given that the spatial spectrum is discrete. As a

result, the modal network formulation is regarded as a powerful tool for solving waveguide prob-

lems. Conversely, metasurface problems are best handled in the spatial domain, since boundary

conditions representing the metasurface are typically given in the spatial domain. Consequently,

an efficient method to go from the spatial domain to the modal domain and vice versa is essential to

rapidly solving and optimizing electromagnetic problems that involve metasurfaces and waveguide

structures.

In cylindrical waveguides, the Hankel transform and its inverse relate the spatial and modal

domains. Conventionally, the Hankel transform is computed using numerical integration. As we

will discuss in detail, computing the Hankel transform via numerical integration is computationally

expensive, especially in synthesis problems. Alternatively, the Hankel transform can be computed

using the DHT. The DHT only utilizes discrete points in the spatial and the modal domains to

accurately compute the Hankel transform and its inverse [47, 48]. It does this via matrix multi-

plications, which makes the DHT compatible with the modal network (matrix) description of the

electromagnetic problems.

In the following two subsections, first we will see how the spatial boundary condition of a

single electric sheet admittance can be transformed to the modal domain via numerical integration.

Subsequently, we will show how similar results can be obtained using the DHT. Comparing the

results of these two subsections, it will be clear why the DHT is favored over numerical integrations
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Figure 3.3: A metasurface placed perpendicular to the propagation axis within an over-moded
cylindrical waveguide. The metasurface comprises a single electric sheet with an inhomogeneous
admittance profile y(ρ).

when computing the Hankel transform.

3.4.1 Modal Representation of The Electric Sheet Admittance’s Boundary

Condition Using Integrals

Consider a single electric sheet admittance placed perpendicular to the ẑ axis of a cylindrical

waveguide, as shown in Fig. 3.3. It is described by an inhomogeneous admittance profile y(ρ). At

this point, it is instructional to recall some cylindrical waveguide modal analysis. Recall, the az-

imuthally invariant TM fields in each region of the waveguide, shown in Fig. 3.3, can be expanded

in terms of modes as follows [22, 82],

Eρ
(p) =

∞∑
n=1

√
η
(p)
n

un

(
a(p)n e−ik

(p)
zn z + b(p)n eik

(p)
zn z
)
J1

(
jn
R
ρ

)
(3.18)

Hϕ
(p) =

∞∑
n=1

1

un

√
η
(p)
n

(
a(p)n e−ik

(p)
zn z − b(p)n eik

(p)
zn z
)
J1

(
jn
R
ρ

)
, (3.19)
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where, jn is the nth null of J0(.) and J ′
0(.) = −J1(.). R is the waveguide radius. For the nth

mode in region p, a(p)n and b(p)n denote the forward and backward modal coefficients, respectively,

η
(p)
n , k(p)zn denote the TM modal wave impedance, and propagation constant, respectively. The TM

modal wave impedance η(p)n , and the propagation constant k(p)zn take the following form,

η(p)n =
k
(p)
zn

ωϵ0ϵ
(p)
r

(3.20)

k(p)zn =


√
ω2µ0ϵ0ϵ

(p)
r −

(
jn
R

)2
for propagating modes

−i
√(

jn
R

)2 − ω2µ0ϵ0ϵ
(p)
r for evanescent modes

. (3.21)

The normalization factor is given by,

un =

√
J2
1 (jn)R

2

2
. (3.22)

Let us assume that the electric sheet is placed along the (z = 0) plane. Using (3.5), we can rewrite

the fields tangential to the metasurface in (3.18) and (3.19) as,

E(p)
ρ =

∞∑
n=1

Ẽ
(p)
n

un
J1

(
jn
R
ρ

)
(3.23)

H(p)
ϕ =

∞∑
n=1

H̃
(p)
n

un
J1

(
jn
R
ρ

)
. (3.24)

Considering only TM fields, the boundary condition (3.17) at the electric sheet admittance y(ρ),

shown in Fig. 3.3 simplifies to,

Eρ = E(1)
ρ = E(2)

ρ (3.25)
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Jsρ = H(1)
ϕ − H(2)

ϕ = y (ρ)Eρ. (3.26)

Substituting (3.23) and (3.24) into (3.26) and only retaining the first N modes, we can write,

N∑
n=1

J̃n
un

J1

(
jn
R
ρ

)
= y (ρ)

N∑
n=1

Ẽn
un

J1

(
jn
R
ρ

)
, (3.27)

where, J̃n is the modal coefficient of the surface current Jsρ, and Ẽn is the modal coefficient of the

electric field Eρ. They are related to the modal coefficients of the fields in (3.23), and (3.24) as

follows,

Ẽn = Ẽ(1)
n = Ẽ(2)

n (3.28)

J̃n = H̃(1)
n − H̃(2)

n . (3.29)

Using the orthogonality of Bessel functions,

∫ R

0

J1

(
jn
R
ρ

)
J1

(
jm
R
ρ

)
ρdρ =


0 n ̸= m

u2n n = m

, (3.30)

the surface current modal coefficients J̃n, can be related to the electric field modal coefficients Ẽn

as follows,

J̃m =
N∑
n=1

ỹm,nẼn. (3.31)

In (3.31), ỹm,n is the modal mutual admittance that defines the ratio between the mth modal coef-

ficient of the surface current J̃m and the nth modal coefficient of the electric field Ẽn. This mutual
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impedance ỹm,n is given by the following integral,

ỹm,n =

∫ R
0
y (ρ) J1

(
jn
R
ρ
)
J1
(
jm
R
ρ
)
ρdρ

unum
. (3.32)

Note that (3.31) can be written in matrix form as,

˜̄J = Ỹ ˜̄E (3.33)

where, ˜̄J =
[
J̃1 . . . , J̃N

]T
, ˜̄E =

[
Ẽ1 . . . , ẼN

]T
, and Ỹ (m,n) = ỹm,n. From (3.32), it is apparent

that in order to write (3.33), we need to evaluate at least N(N+1)
2

integrals to transform the metasur-

face boundary condition from the spatial domain to the modal domain. We will see next that these

integrals can be replaced by simple matrix multiplications using the DHT. This can significantly

improve the computation efficiency of solving the metasurface in waveguide problems considered

in this work.

3.4.2 Modal Representation of The Electric Sheet Admittance’s Boundary

Condition Using the DHT

The DHT is an accurate and simple tool to approximate the Hankel transform. In cylindrical

waveguides, the Hankel transform is needed to calculate the modal coefficients of the fields. To il-

lustrate this, consider the Bessel-Fourier expansion of the function f(ρ), that satisfies the condition

f(ρ) = 0, for ρ > R,

f (ρ) =
∞∑
n=1

f̃n
un

J1

(
jn
R
ρ

)
. (3.34)
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Note that, the expansion in (3.34) is the same as the modal field expansion of (3.23), and (3.24).

The spectral (modal) coefficients f̃n are calculated by applying the Hankel transform to (3.34), and

exploiting the Bessel functions orthogonality in (3.30), as follows,

f̃n =

∫ R
0
f(ρ)J1

(
jn
R
ρ
)
ρdρ

un
. (3.35)

Applying the DHT will simplify the expression in (3.35), since the DHT uses matrix multiplication

rather than numerical integration. As the name suggests, the DHT utilizes only discrete point in

space. These discrete points in space are labeled ρq. As discussed in Appendix.A.8, the discrete

points ρq are sampled in terms of the tangential fields nulls (J1 (.) nulls),

ρq =
λq
λN

R, (3.36)

where, λi is the ith null of the function J1 (.).The function values at theses points f(ρq) are related

to the modal coefficients f̃n by the transformation matrices as,

˜̄f = ¯̄Tf f̄ (3.37)

f̄ = ¯̄Ti
˜̄f, (3.38)

where, f̄ = [f (ρ1) . . . , f (ρN)]
T , ˜̄f =

[
f̃1 . . . , f̃N

]T
, ¯̄Tf and ¯̄Ti are the forward and inverse trans-

formation matrices, respectively. As explained in Appendix.A.8, the transformation matrices are
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known in closed-form and given by,

¯̄Tf (n, q) = 2

(
R

λNJ0(λq)

)2J1

(
jnλq
λN

)
un

(3.39)

¯̄Ti (q, n) =
J1

(
jnλq
λN

)
un

(3.40)

On the left side of the above two equations, the numbers between the parenthesis indicate the

element index in the matrix. The transformation matrices satisfy the following relation,

¯̄Ti
¯̄Tf
¯̄L = I (3.41)

¯̄Tf
¯̄L ¯̄Ti = I (3.42)

where, I is the identity matrix, and ¯̄L is a diagonal matrix with all entries equal to one except for

the last entry, as follows,

¯̄L =


1 . . . 0

... . . . ...

0 . . . 1
2

 (3.43)

To derive the modal representation of the metasurface, shown in Fig. 3.3, using the DHT, let’s

first discretize the metasurface boundary condition in (3.26). The boundary condition (3.26) is

discretized at the points specified by (3.36). Therefore, we write,

J̄ = ¯̄Y Ē, (3.44)
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where, J̄ =
[
Jsρ (ρq) . . . , J

s
ρ (ρN)

]T , Ē = [Eρ (ρq) . . . ,Eρ (ρN)]
T , and ¯̄Y is a diagonal matrix of the

form,

¯̄Y =


y (ρ1) . . . 0

... . . . ...

0 . . . y (ρN)

 (3.45)

Note that, the vectors J̄ , and Ē in (3.44) are related to the vectors ˜̄J , and ˜̄E in (3.33), by the

transformation matrices (3.37), and (3.38). So, (3.44) can be rewritten as,

¯̄Ti
˜̄J = ¯̄Y ¯̄Ti

˜̄E. (3.46)

Using (3.42), (3.46) can be rewritten as,

˜̄J = ¯̄Tf
¯̄L ¯̄Y ¯̄Ti

˜̄E. (3.47)

Comparing (3.47), and (3.33), we deduce that Ỹ can be written in closed-form as,

Ỹ = ¯̄Tf
¯̄L ¯̄Y ¯̄Ti. (3.48)

It should be pointed out that the DHT form of the modal representation of the metasurface Ỹ

in (3.48) does not require any numerical integration. This is in contrast to (3.33) which requires at

least N(N+1)
2

integrals. Therefore, the DHT form of the modal representation of the metasurface is

more efficient in the analysis and the synthesis of metasurfaces within cylindrical waveguides.
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Figure 3.4: A metasurface consisting of cascaded electric sheets placed perpendicular to the prop-
agation axis within an over-moded cylindrical waveguide. The metasurface comprises four electric
sheets described by inhomogeneous admittance profiles yn(ρ). The sheets are separated by dielec-
tric spacers of thickness d. The metasurface divides the waveguide into two outer regions (Region
1 & 5), and three inner regions (Region 2 to 4).

3.5 Modal Matrices of Cascaded Sheet Metasurfaces

In the previous section, we have seen that the boundary condition of a single electric sheet admit-

tance y(ρ), can be efficiently transformed from the spatial domain to modal domain Ỹ using the

DHT. In this section, the goal is to use the modal representation of a single electric sheet admit-

tance Ỹ, derived using the DHT (3.48), to obtain the modal matrices of the metasurface consisting

of cascaded electric sheets. Although, the metasurface shown in Fig. 3.4 comprises 4 electric

sheets, the derivation is applicable to an arbitrary number of electric sheets. First, the modal ma-

trices of the individual electric sheets of the metasurface are derived. Then, the modal matrices of

the cascaded sheet comprising the metasurface are derived.

3.5.1 Modal Matrix of an Inhomogeneous Electric Admittance Sheet

Consider the electric sheet admittance yn(ρ), where the subscript n denotes one of electric sheets

of the metasurface shown in Fig. 3.4. Using (3.48), the modal representation Ỹn of the isotropic
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electric sheet admittance yn(ρ) can be written as,

Ỹn = ¯̄Tf
¯̄L ¯̄Yn

¯̄Ti, (3.49)

where, the ¯̄Yn is given by,

¯̄Yn =


yn(ρ1) . . . 0

... . . . ...

0 . . . yn(ρN)

. (3.50)

At the electric sheet yn(ρ), the modal coefficients of the surface current ˜̄J (n) can be related to the

modal coefficients of the electric field ˜̄E(n), using (3.49) as follows,

˜̄J (n) = Ỹn
˜̄E(n). (3.51)

Substituting (3.29) in (3.51), we have

˜̄H(n) − ˜̄H(n+1) = Ỹn
˜̄E(n). (3.52)

Given that the tangential electric field is continuous across the electric sheet admittance (3.25), we

write,

˜̄E(n) = ˜̄E(n+1) (3.53)
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The equations (3.52), and (3.53) can be rewritten in matrix form as,

 ˜̄E(n)

˜̄H(n)

 =

 I 0

Ỹn I


 ˜̄E(n+1)

˜̄H(n+1)

. (3.54)

Comparing (3.54) to (3.7), we see the modal ABCD matrix of the electric sheet admittance yn(ρ)

is,

(ABCD)yn(ρ) =

 I 0

Ỹn I

. (3.55)

The modal wave matrix (M)yn(ρ) of the electric sheet admittance yn(ρ), can be obtained by apply-

ing (3.9) to (3.55). So, we get,

(M)yn(ρ) =
1

2

V + (V )−1 +Q V − (V )−1 +Q

V − (V )−1 −Q V + (V )−1 −Q

, (3.56)

where, V =
(
g(n)
)−1

g(n+1), and Q = g(n)Ỹng
(n+1). Also, the modal scattering matrix (S)yn(ρ)

of the electric sheet admittance yn(ρ), can be obtained from (M)yn(ρ), by using (3.12). The re-

duced modal scattering matrix (S)
′

yn(ρ)
of the electric sheet admittance yn(ρ), can be obtained

from (S)yn(ρ) by using (3.16). In all these network representations (matrices), the reference plane

of the ports (modes) is chosen to be at the plane of the electric sheet.

As was explained earlier, an evanescent mode in the reduced modal scattering matrix (S)
′

yn(ρ)

can be regarded as an accessible mode, if the decay length of the mode is comparable to the

separation distance, d, between the sheets. Therefore, the number of accessible modes Na for the

individual electric sheets in the metasurface is typically larger than the number of the propagating
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modes Np.

3.5.2 Modal Matrix of the Metasurface

The modal wave matrix of a metasurface consisting of cascaded electric sheets (M)MS is simply

obtained by multiplying the modal wave matrices of the individual electric admittance sheets and

the dielectric spacers between them [33]. Since inaccessible modes do not interact with adjacent

sheets, the reduced modal wave matrices of the sheets (M)
′

yn(ρ)
should be used instead of the

original modal wave matrices of the sheets (M)yn(ρ). The reduced modal wave matrix of an electric

sheet (M)
′

yn(ρ)
is obtained from its reduced modal scattering matrix (S)

′

yn(ρ)
by using (3.13). The

modal wave matrix of a dielectric spacer (M)
(n)
d in region n with thickness d, takes the following

form,

(M)
(n)
d =




eik

(n)
z1 d . . . 0

... . . . ...

0 . . . eik
(n)
zNa

d

 0

0


e−ik

(n)
z1 d . . . 0

... . . . ...

0 . . . e−ik
(n)
zNa

d





. (3.57)

Now, we can write the modal wave matrix of the cascaded sheet metasurface shown in Fig. 3.4, as

follows,

(M)MS = (M)
′

yn(ρ)
(M)

(2)
d (M)

′

yn(ρ)
. . . (M)

(4)
d (M)

′

yn(ρ)
. (3.58)

To obtain the modal scattering matrix (S)MS from (M)MS , we use relation (3.12). Note that, since

the metasurface consisting of cascaded electric sheets is isolated in the waveguide, the number
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(a) (b) (c)

Figure 3.5: Discretized susceptance profiles for the electric sheets comprising the metasurface-
based mode converter. (a) A single sheet is shown that is discretized into four concentric annuli,
where bn is the susceptance of each annulus. (b) The susceptance profiles for the sheets comprising
the single mode converter. (c) The susceptance profiles for the sheets comprising the mode splitter.

of the accessible modes for the overall metasurface Na is equal to the number of the propagat-

ing modes Np. Using (3.16), we can derive the unitary modal scattering matrix (S)uMS that only

considers propagating modes [70].

In summary, the metasurface modal representation Ỹ, derived by the DHT, was used to find

the modal wave matrices (M)yn(ρ) of the individual electric sheets. Then, following the procedure

outlined in Section.3.2, the reduced modal wave matrix (M)
′

yn(ρ)
is derived by terminating the in-

accessible modes. Next, the metasurface modal wave matrix (M)MS is constructed by multiplying

the reduced modal wave matrices (M)
′

yn(ρ)
of the individual sheets and the modal wave matrices of

the dielectric spacers (M)
(n)
d . As described in Section 3.2, all the evanescent modes in (M)MS are

terminated in modal characteristic impedances to derive the unitary modal scattering matrix (S)uMS .

In the next section, this matrix will be used to synthesize a metasurface-based mode converters.
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3.6 Metasurface-Based Mode Converters

Fields within a waveguide are uniquely determined by their modal distribution. Therefore, mode

conversion in a waveguide is equivalent to field transformation. As a result, mode conversion can

be of great use in antenna design, specifically antenna aperture synthesis [46, 51]. The metasurface-

based mode converters proposed here are low profile, lossless, and passive devices that are designed

to convert a set of incident TM0n modes to a desired set of TM0n reflected/transmitted modes within

an overmoded cylindrical waveguide [45]. Inspired by metasurface-based polarization converters

[33, 32], and given the arguments presented in Section 3.3, the metasurface-based mode converter

is synthesized using the cascaded electric sheet model of a metasurface. The number of the elec-

tric sheets in the metasurface is dictated by the mode converter specifications. In the examples

presented here, the metasurface comprises four electric sheets, (see Fig. 3.2a and Fig. 3.4). The

number of sheets can vary depending on the bandwidth requirements and number of incident and

transmitted/reflected modes that are specified.

The metasurface-based mode converter is synthesized using optimization. In the synthesis pro-

cess, the admittances profiles of the electric sheets are optimized to meet performance targets: re-

alize targeted entries of the desired metasurface’s unitary modal scattering matrix (S)uMS . In other

words, the metasurface is designed to convert incident modes to desired transmitted modes. In each

iteration of the optimization routine, the metasurface’s unitary modal scattering matrix (S)uMS is

computed by following the procedure outlined in Section 3.5. The optimization of the metasurface

is rapid due to the fast computation of the metasurface’s response within each iteration, enabled by

modal network theory and the DHT. The sheet profiles are assumed to be purely imaginary func-

tions to ensure that the metasurface is lossless and passive. Moreover, each sheet profile is assumed
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Simulated performance of the metasurface-based single mode converter and the mode
splitter with ideal electric admittance sheets using the 2D, axially symmetric fullwave solver
of COMSOL Multiphysics. (a) A 2D surface plot of the real part of the electric field for the
metasurface-based single mode converter. (b) Time-averaged power density in ẑ direction evalu-
ated at two different planes: the input and the output planes of the metasurface-based single mode
converter. (c) Normalized magnitude of the ρ̂ component of the electric field evaluated at the meta-
surface’s input plane, and at a plane displaced 0.3λ away from the input plane, for the single mode
converter. For a reference, the normalized magnitude of the ρ̂ component of the electric field of
the TM01 mode is also plotted. (d) Normalized magnitude of the ρ̂ component of the electric field
evaluated at the metasurface’s output plane, and at a plane displaced 0.3λ away from the output
plane, for the single mode converter. For a reference, the normalized magnitude of the ρ̂ compo-
nent of the electric field of the TM02 mode is also plotted. (e) A 2D surface plot of the real part
of the electric field for the metasurface-based mode splitter. (f) Time-averaged power density in
ẑ direction evaluated at two different planes: the input and the output planes of the metasurface-
based mode splitter. (g) Normalized magnitude of the ρ̂ component of the electric field evaluated
at the metasurface’s input plane, and at a displane placed 0.3λ away from the input plane, for the
mode splitter. For a reference, the normalized magnitude of the ρ̂ component of the electric field of
the TM01 mode is also plotted. (h) Normalized magnitude of the ρ̂ component of the electric field
evaluated at the metasurface’s output plane, and at a plane displaced 0.3λ away from the output
plane, for the mode splitter. For a reference, the normalized magnitude of the ρ̂ component of the
electric field for the sum of TM01 and TM02 modes is also plotted.

to consist of capacitive, concentric annuli, which can be easily realized as printed metallic rings.

The number of concentric annuli per sheet is also dictated by the mode converter specifications.

To illustrate the design process, two design examples at 10 GHz are outlined below. A single
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mode converter is shown, as well as a mode splitter. The single mode converter transforms an

incident TM01 mode to a TM02 mode with −45◦ transmission phase. The mode splitter evenly splits

an incident TM01 mode between TM01 and TM02 modes with −45◦ transmission phase for both

modes. In both examples, an air-filled waveguide is considered. The waveguide radius is chosen

to be R = 40mm = 1.33λ. Both examples were synthesized using a metasurface comprising

four electric sheets separated by freespace. The separation distance between the sheets was set to

d = 0.1λ for both designs. Each electric sheet of the metasurface is a lossless, passive electric

sheet admittance. Therefore, it can be represented by a radially varying susceptance. The electric

sheets are uniformly segmented into four capacitive concentric annuli, as shown in Fig. 3.5a. Thus,

the susceptance profile of each sheet b(ρ) can be written as a piece-wise function,

b(ρ) =



b1 0 < ρ < R
4

b2
R
4
< ρ < R

2

...

b4
3R
4
< ρ < R,

(3.59)

where, b1 to b4 are all real positive numbers. Based on the waveguide radius, only the TM01 and

TM02 modes are propagating. Consequently, the unitary modal scattering matrix of the metasurface

(S)uMS is a 4 × 4 square matrix. According to (3.10), (3.11), and Fig. 3.2a, it takes the following
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block matrix form,

(S)uMS =



S
(1,1)
11 S

(1,2)
11

S
(2,1)
11 S

(2,2)
11


S

(1,1)
12 S

(1,2)
12

S
(2,1)
12 S

(2,2)
12

S
(1,1)
21 S

(1,2)
21

S
(2,1)
21 S

(2,2)
21


S

(1,1)
22 S

(1,2)
22

S
(2,1)
22 S

(2,2)
22




. (3.60)

The optimization objective functions to be minimized for the single mode converter, F1, and the

mode splitter, F2, can be defined as,

F1 =
∥∥∥S(2,1)

21 − 1∠−45◦
∥∥∥ (3.61)

F2 =

∥∥∥∥[S(1,1)
21 S

(2,1)
21

]
− 1√

2
[∠−45◦ ∠−45◦]

∥∥∥∥, (3.62)

where, S(2,1)
21 is an entry of the unitary modal scattering matrix (3.60) of the metasurface (S)uMS .

Using the interior-point algorithm within the built-in Matlab function fmincon, the susceptance

profiles of the sheets were optimized to minimize the objective functions F1 defined in (3.61),

and F2 defined in (3.62). The optimal susceptance profiles of the sheets are shown in Fig. 3.5b,

and Fig. 3.5c for the single mode converter and the mode splitter, respectively. The metasurface

designs were verified using the commercial fullwave solver COMSOL Multiphysics. A 2D surface

plot of the electric field computed using COMSOL Multiphysics (see Fig. 3.6a) shows that the

incident TM01 mode in region 1 is converted to TM02 mode in region 2. As shown in Fig. 3.6b,

the normal power density profiles at the input and the output of the metasurface are different. That

is in contrast to a single bianisotropic sheet metasurface, where the power density profiles must

be continuous across the metasurface if it is lossless and passive [35]. The discontinuities in the
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power density profiles, shown in Fig. 3.6b, result from the discretization of the electric sheets.

The discretization excites evanescent modes that distort not only the power density profiles, but

also the electric field profiles at both the input and the output planes, as shown in Fig. 3.6c, and

Fig. 3.6d. As a result, when the electric fields are evaluated at planes that are 0.3λ (roughly

the sheet discretization width) away from the metasurface planes, the discontinuities disappear

and the desired modes are observable, as shown in Fig. 3.6c, and Fig. 3.6d. In Fig. 3.6c, the

electric field profile is shown at a plane in region#1 that is 0.3λ away from the metasurface input

plane. It closely matches the electric field profile of the TM01 mode, which is the desired mode

in that region. Similarly, in Fig. 3.6d the electric field profile is shown at a plane in region#2

that is 0.3λ away from the metasurface output plane. It closely matches the electric field profile

of the TM02 mode, which is the desired mode in that region. As shown in [46, 51], the design

procedure presented here for metasurface-based mode converters can control the field profiles is

close proximity to the metasurface planes. However, a finer discretization of the sheets is needed

for this, and higher evanescent modes need to be considered in the modal scattering matrix. The

results of the metasurface-based mode splitter are shown in Fig. 3.6e, Fig. 3.6f, Fig. 3.6g, and

Fig. 3.6h. Argument similar to those for the metasurface-based single mode converter on power

and the field profiles, can be made on the metasurface-based mode splitter.

The susceptance profiles shown in Fig. 3.5b, and Fig. 3.5c can be realized as printed metallic

rings on both sides of a thin dielectric substrate, as shown in Fig. 3.7a. To increase the capacitance

of the sheet, the bottom rings are shifted by half a cell with respect to the top rings, as shown in

the inset of Fig. 3.7a. In these two designs, Rogers RO3006 substrate is assumed. The dielectric

constant of the substrate is ϵr = 6.15. The commercially available thickness 127 µm (0.005”) was

chosen for the substrate in these two designs. The cell size L, see Fig. 3.7a(a), was set to L = λ
12

.
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(a) (b)

Figure 3.7: Realization of the capacitive sheets. (a) Metallic rings are printed on both sides of
a thin substrate. The bottom rings are shifted by half a cell with respect to the top rings. The
dielectric substrate is RO3006 with ϵr = 6.15, a thickness of 0.005”, and L = λ

12
. (b) Design curve

showing cell susceptance vs. parameter G at 10 GHz, where G = W
L

.

So, each sheet has in total 16 cells (R
L
= 1.33λ

λ
12

= 16). To extract the cell susceptance, first we build

a homogeneous patterned surface of 16 cells so that it fits inside the waveguides considered in these

two examples. Note that, for a homogeneous patterned surface, the gap size W is uniform across

all the cells. Therefore, a homogeneous patterned surface and its individual cells have the same

susceptance. Next, the modal reflection coefficients from the homogeneous patterned surface were

calculated for both modes TM01, and TM02, using the full wave solver ANSYS-HFSS. The modal

reflection coefficients from the homogeneous patterned surface are calculated as a function of the

parameter G, which is defined as the ratio between the gap size W and the cell size L: G = W
L

.

Finally, the homogeneous patterned surface susceptance, and accordingly the cell susceptance, can

be obtained for each mode from the modal reflection coefficients as explained in [75]. The cell

susceptance as function of the parameter G = W
L

is shown in Fig. 3.7b. The minimum gap size

considered in Fig. 3.7b corresponds to a gap size equal to 67.2 µm (3 mil), which is attainable
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: The scattering parameters of the ideal design and the realized patterned surface design
calculated as function of frequency using the full wave solver ANSYS-HFSS, for the metasurface-
based mode converter and the metasurface-based mode splitter (a) Magnitude and phase of S(2,1)

21

for the single mode converter. (b) Magnitude of S(1,1)
21 for the single mode converter. (c) Magnitude

of S(1,1)
11 for the single mode converter. (d) Magnitude and phase of S(2,1)

21 for the mode splitter. (e)
Magnitude and phase of S(1,1)

21 for the mode splitter. (f) Magnitude of S(1,1)
11 for the mode splitter.

In (a)-(f) S(2,1)
21 is the transmission coefficient from the TM01 mode in region 1 to the TM02 mode in

region 2, S(1,1)
21 is the transmission coefficient from the TM01 mode in region 1 to the TM01 mode

in region 2, and S(1,1)
11 is the reflection coefficient of the TM01 mode in region 1 to the TM01 mode

in region 1.

using standard fabrication tools. One thing to notice in Fig. 3.7b, is that the capacitive susceptance

of the rings remains nearly constant for both modes. This is due to the fact that metallic strips are

not spatially dispersive for excitations where the tangential electric field appears perpendicular to

the strips [83]. If inductive susceptances (radial strips) were used, their spatial dispersion would

need to be accounted for in the design process.

The scattering parameters of the ideal sheet design and the realized patterned surfaces design

were calculated as function of frequency using the full wave solver ANSYS-HFSS. The magnitude
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and the phase of S(2,1)
21 (transmission from the TM01 mode in region 1 to the TM02 mode in region 2)

are shown in Fig. 3.8a, for the single mode converter design. The magnitude of S(1,1)
21 (transmission

from the TM01 mode in region 1 to the TM01 mode in region 2), and S(1,1)
11 (reflection from the TM01

mode in region 1 to the TM01 mode in region 1) are shown in Fig. 3.8b, Fig. 3.8c, respectively.

The results show that there is nearly zero reflection at the design frequency 10 GHz. Also, the

plots show full transmission to the desired mode TM02 (see Fig. 3.8a), and no transmission to the

undesired mode TM01 in region 2 (see Fig. 3.8b). The magnitude and the phase of S(2,1)
21 , and

S
(1,1)
21 are shown in Fig. 3.8d, and Fig. 3.8e, respectively, and the magnitude of S(1,1)

11 is shown in

Fig. 3.8f, for the mode splitter design. The results again show that there is nearly zero reflection

of the incident TM01 mode in region 1 at the design frequency 10 GHz. Also, an even split of the

incident power in region 2 between TM01 and TM02 modes (see Fig. 3.8d, and Fig. 3.8e) is clear.

In all the subfigures of Fig. 3.8, we assumed that the ideal susceptances vary with the frequency as

those of a capacitance. The slight mismatch between the results of the ideal sheet design and the

patterned surface design, is due to the substrate and the copper losses.

In the next chapter, we discuss how the mode-converting metasurface can be used to shape the

radiated near and far of a metallic radial cavity.
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CHAPTER 4

Antenna Aperture Synthesis Using Mode-Converting

Metasurfaces

4.1 Introduction

Due to their negligible thickness compared to the wavelength, metasurfaces have enabled the de-

sign of numerous low-profile microwave and optical devices [84, 34]. At microwave and mil-

limeter wave frequencies, metasurfaces are often realized as printed metallic claddings on thin

dielectric substrates. Metasurfaces are modeled theoretically as either a single infinitesimally-

thin bianisotropic sheet using generalized sheet transition conditions (GSTCs) or as a stack of

infinitesimally-thin, electric sheets separated by dielectric spacers [29, 35, 33, 32]. GSTCs relate

the magnetic and electric surface currents on a sheet to the average fields at a sheet [76, 77].

Both models are used to design metasurface-based devices for a variety of applications. These

applications include, antenna design [72], control of guided modes [73, 29], polarization conver-

sion [32, 33], and wavefront manipulation [74]. Nonetheless, as explained in [29], the cascaded

electric sheet model is indeed better than the GSTC model for two main reasons. First, the cas-

caded sheet model takes into account the finite thickness of the metasurface and therefore models
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spatial dispersion. Second, a lossless and passive GSTC has to conserve power locally through its

surface. Thus, it cannot be used to reshape the normal power density profile, without introducing

reflection or additional auxiliary surface waves onto its outer surfaces [85]. On the other hand,

a lossless, passive cascaded-sheet metasurface can be synthesized to reshape the normal power

density profile without these requirements [29].

In general, metasurface-based antennas, or simply metasurface antennas, can be designed to

have desired aperture profiles or radiation patterns [86, 87]. This can be achieved by tailoring

the metasurface’s individual cells. Metasurface antennas can serve as a low-profile, simple-to-

feed alternative to conventional antenna arrays, reflectors, or reflectarrays. They are typically

designed using a single electric sheet above a grounded dielectric substrate. This design approach is

simple and yields practically realizable antennas. Typically, the electric sheet of these metasurface

antennas is realized as a printed metallic cladding. Examples of this class of antennas include

modulated metasurface antennas [87, 88], and reflectarray antennas [89]. Nonetheless, a single

electric sheet does not provide sufficient degrees of freedom to control both the magnitude and the

phase of the aperture field. In order to increase the degrees of freedom, a weakly radiative (WR)

field [87] or surface waves [89] should be incorporated into the desired aperture field. Introducing

WR fields or surface waves to the desired aperture profile, distorts the near field of the antenna.

Therefore, a single electric sheet antenna cannot be designed to meet specific near field criteria.

Another approach to attain added degrees of freedom is to use a bianisotropic sheet in lieu of the

electric sheet. In general, a reciprocal, bianisotropic sheet is described using three non-vanishing

tensors [35, 32]. Following the notation in [32], these three 2× 2 or 3× 3 tensors are: the electric

admittance Y, the magnetic impedance Z, and the magnetoelectric coupling coefficient Χ. These

tensors define the GSTC. GSTCs are local boundary conditions that relate the electric and the
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Figure 4.1: A cascaded sheet mode-converting metasurface used to synthesize, in both amplitude
and phase, a desired azimuthally invariant aperture profile. The mode-converting consists of mul-
tiple electric sheets separated by dielectric spacers..

magnetic surface currents on the sheet to the average fields at the sheet. As noted earlier, the normal

power density profile must be continuous across a bianisotropic sheet. Such a constraint, in fact,

limits metasurface functionality. For instance, a lossless, passive, and reflectionless bianisotropic

sheet cannot be synthesized to reshape the incident normal power profile, unless auxiliary surface

waves are added to the solution. Adding auxiliary surface waves, does not affect an antenna’s far

field but does alter its near field. Additionally, bianisotropic sheets are challenging to realize in

practice. A three-sheet implementation [35, 32] of the idealized bianisotropic boundaries requires

extremely thin dielectric spacers [85]. In addition, the spatial dispersion resulting from the finite
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thickness of the three-sheet cascade, and the transverse propagation of the fields between the three

sheets are neglected in the design procedure. All these factors deteriorate the realized metasurface

performance.

In this chapter, we propose a framework to design a metasurface antenna consisting of cascaded

sheets, as shown in Fig. 4.1. The cascaded sheet metasurface is composed of tightly-coupled, elec-

tric sheets that are separated by dielectric spacers. The mainstay of the proposed antenna is the

cascaded sheet metasurface that acts as a mode converter. The mode-converting metasurface is a

passive, and lossless device that can be designed to transform a set of incident modes to a set of

desired transmitted modes, as shown in Fig. 4.1. Since the metasurface comprises multiple sheets,

added degrees of freedom are available to control the far field without relinquishing control over

the near field. As a result, the proposed antenna can be designed to meet specific far-field and

near-field criteria. In addition, the finite thickness of the metasurface is accounted for throughout

the design procedure. Thus, spatial dispersion is accounted for, and the fields within the metasur-

face are accurately modeled. The proposed design framework is shown for azimuthally-invariant

apertures. Such apertures can support CVBs, which include: RB beams, RG beams, and LG beams

[9, 16]. Moreover, CVBs include azimuthally variant beams such as vortices or orbital angular mo-

mentum apertures, which could be excited by azimuthally variant apertures. CVBs incur minimal

diffraction as they propagate within the Fresnel zone. Therefore, they can be used in the design

of wireless power transfer systems within the radiative near field [9]. In this chapter, we consider

cylindrical TM0n modes and therefore TM, azimuthally invariant apertures. These modes can

be easily generated by a radial cavity covered by a mode-converting metasurface using a central

coaxial feed. The analysis presented here can be easily modified for cylindrical TE apertures.
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Figure 4.2: A low-profile metasurface-based antenna that can be designed to generate an arbitrary
azimuthally invariant TM aperture profile. The antenna consists of a coaxially-fed radial cavity
topped by a cascaded-sheet, mode-converting metasurface.

4.2 Building Blocks of the Antenna

As depicted in Fig. 4.2, central to the proposed antenna is a radial cavity. To ensure azimuthally-

invariant, TM aperture fields, the cavity is coaxially-fed at its center and topped by an azimuthally

invariant cascaded sheet, mode-converting metasurface. The mode-converting metasurface estab-

lishes the desired aperture by converting the modal distribution of the coaxial feed to the modal

distribution of the desired aperture. In theory, the modal distribution of the desired aperture can

include as many evanescent modes as needed. As shown in Fig. 4.2, the antenna can be viewed as

the integration of three main building blocks. The antenna’s building blocks are: the radial cavity,

the mode-converting metasurface, and the coaxial-to-waveguide junction.

Modal network theory, which was originally developed to characterize waveguide discontinu-

ities [49], is ideally suited to analyze and design such antennas consisting of cascaded electric

sheets in a waveguide. The ports of the modal network represent the modal voltages and the modal

currents of the waveguide’s eigenmodes [69]. This is, in contrast to the well-known microwave
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network theory, where ports of the microwave circuit network represent voltages and currents at

the circuit terminals [66]. Hence, the distinct name modal network theory. In modal network the-

ory, as in microwave network theory, the modal network parameters of each building block can be

calculated separately. Subsequently, these modal network parameters can be cascaded/combined

using standard matrix operations. Modal network parameters relate the modal coefficients of the

waveguide eigenmodes to each other at the input and at the output of a given block [29]. Typi-

cally, modal network parameters are given in matrix form. Examples of modal matrices include

the modal scattering matrix, the modal impedance matrix, and the modal wave matrix. Throughout

this chapter, the modal scattering matrix will be utilized most often. The modal scattering matrix

relates the incident and the reflected modes on both sides of a waveguide section. Further details

concerning the modal network theory implementation and its usefulness will be presented in the

following subsections, as the context requires.

In Chapter 3, we discussed in detail the mode-converting metasurface. So, in the following

subsections, we will briefly discuss the other two building blocks of the antenna. Specifically, we

will show how the modal scattering matrix of these two building blocks can be calculated. First,

the radial cavity will be considered, and finally the coaxial-to-waveguide junction.

4.2.1 Radial Cavity

In recent years, radial cavities have been used as a base for multiple low-profile, simple-to-

fabricate, metasurface antennas. For example, RB beam launchers that are composed of an

air-filled or dielectric-filled radial cavity topped by a capacitive electric sheet, were reported in

[7, 28, 90]. Other examples include linearly and circularly polarized antennas fed by a RB beam
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reported in [39].

Fields inside a cavity propagate/evanesce as a finite set of orthogonal, discrete modes (modal

spectrum). The spatial frequencies of these discrete modes are dictated by the radius and the

materials of the cavity. In the free space region, outside the cavity, the fields have a continuous

spatial spectrum. Analyzing an open-ended radial cavity, or in general any open-ended cavity,

involves matching the tangential components of the discrete modes of the cavity to the tangential

free-space fields at the cavity aperture. Again, in this work the focus will be on cylindrical TM0n

modes and TM apertures fields. In [91], the simple case of a radial waveguide supporting only the

TM01 was considered in detail. The general case of an open-ended radial waveguide supporting an

arbitrary superposition of TM0n modes was treated in [22].

Here, we will follow a slightly different approach than the one reported in [22]. The tangential

electric field of the aperture will be expanded into a Fourier-Bessel series that is identical to the

modal expansion of the waveguide fields. Such an expansion is justified by the fact that over

the aperture’s plane, the tangential electric field vanishes everywhere outside the aperture. The

aperture’s tangential electric field uniquely and completely defines the fields everywhere in the

free space region above the cavity.

To begin, let’s place the aperture at the plane z = 0, so the modal expansion in (3.18), and

(3.19) at the aperture plane can be written as,

Ez=0−

ρ =
N∑
n=1

√
ηn

un
(an + bn) J1

(
jn
R
ρ

)
(4.1)

Hz=0−

ϕ =
N∑
n=1

1

un
√
ηn

(an − bn) J1

(
jn
R
ρ

)
, (4.2)
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where, the superscript z = 0− indicates a plane just below the aperture toward the waveguide. Note

in (4.1), and (4.2), only N modes are retained in the modal expansion. Based on the arguments

presented earlier, the aperture fields, from the free space side, can be expanded as a Fourier-Bessel

series,

Ez=0+

ρ =
N∑
n=1

en
un

J1

(
jn
R
ρ

)
(4.3)

Hz=0+

ϕ =
N∑
n=1

hn
un

J1

(
jn
R
ρ

)
, (4.4)

where, the superscript z = 0+ indicates a plane just above the aperture toward free space.

The electric and magnetic fields in free space, as well as at the aperture plane, are related by

the free space Green’s function. Using the spectral form of the free space Green’s function, the

magnetic field coefficients hn in (4.4) can be related to the electric field coefficients en in (4.3)

via the spectral admittance matrix B (provided in Appendix A.9). By matching the fields at the

aperture plane (z = 0), and expressing the magnetic field coefficients hn in terms of of the electric

field coefficients en usingB, we can explicitly solve for the aperture modal reflection matrix SAper.

The aperture modal reflection matrix SAper relates the reflected modes at the open-ended cavity

aperture to the incident modes as follows,

[b1, b2 . . . , bN ]
T = SAper [a1, a2 . . . , aN ]

T , (4.5)

where, SAper(q, p) is the reflection coefficient from mode p into mode q.

It is clear from (4.1), and (4.2), that the aperture fields due to any arbitrary set of incident modes

can be established once SAper is known. Specifically, the aperture electric field coefficient en is
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related to the incident mode an through the following relation,

E = g
(
I + SAper

)
A, (4.6)

where, E = [e1, e2 . . . , eN ]
T , A = [a1, a2 . . . , aN ]

T , I is the N × N identity matrix, and g is a

diagonal matrix defined as in (3.6).

Explicit formulas and detailed deviations of the aperture’s modal reflection matrix SAper, and

the spectral admittance matrix B are presented in Appendix A.9.

4.2.2 Coaxial-to-Waveguide Junction

A coaxial-to-waveguide junction is a special type of waveguide junction, where one side of the

junction is attached to a coaxial line. Waveguide junctions can be analyzed via the mode matching

technique (MMT). In the MMT, the fields, in the regions adjacent to the junction, are expanded

as finite sums of orthogonal modes with unknown complex coefficients [81]. These unknown

complex coefficients can be found by applying appropriate testing modes to enforce the continuity

of the fields at the junction plane [70, 22, 49]. A detailed discussion on the implementation of the

MMT can be found in [70].

In coaxial-to-waveguide junctions, the diameter of the coaxial line is typically very small com-

pared to the wavelength. Thus only the fundamental TEM mode is assumed inside the line [22]. In

the waveguide section, multiple modes are considered in the field expansion, even if the waveguide

only supports a single mode. Generally, the waveguide radius is significantly larger than the coax-

ial line radius. Such a large discrepancy in the radius introduces a significant impedance mismatch

and causes undesired reflection. Thus, a matching network is typically needed at the junction to
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reduce reflection to acceptable levels. For example, in [28], a two-section matching network was

implemented to match a coaxial line to an over-moded radial cavity. In the proposed metasurface

antenna, no external matching network is needed. The mode-converting metasurface is designed to

impedance match the coaxial line to the cavity. This is achieved by ensuring that the total radiated

power of the desired aperture is equal to the incident power.

The problem considered here is a junction between a coaxial line and an over-moded radial

cavity. The coaxial line is assumed to be placed at the center of the radial cavity. Due to the

rotational symmetry, and the polarization of the fields in the coaxial line, only TMon modes are

excited in the radial cavity. This problem has been considered in detail using the MMT in [22]. In

this thesis , for convenience, the commercially available 3D full wave solver ANSYS HFSS is used

to compute the modal scattering matrix of the coaxial-to-waveguide junction. Note, this approach

will not compromise the efficiency of the optimization routine, since neither the coaxial radius nor

the waveguide radius are variables in the optimization routine.

Thus far, the modal scattering matrices of the individual building blocks of the antenna have

been discussed in detail. These modal scattering matrices relate the incident modes to the reflected

modes at each building block of the antenna. In the coming section, we will see how these modal

scattering matrices can be cascaded to compute the antenna’s aperture and radiation. The synthesis

of the antenna apertures through optimization will also be discussed.
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Figure 4.3: Side view of the proposed metasurface-based antenna. The antenna is divided into
three main building blocks. Each building block is described by a modal scattering matrix. The
modal scattering matrix relates the incident modes to the reflected modes on both sides of a given
section.

4.3 Aperture Synthesis Using A Mode-Converting Metasurface

As noted earlier, the mode-converting metasurface is the mainstay of the proposed metasurface

antenna. Thus, the design of the antenna amounts to designing of the mode-converting metasur-

face. The mode-converting metasurface plays two fundamental roles in the proposed metasurface

antenna. First, it establishes the desired aperture profile, by converting the incident modal distri-

bution to the modal distribution of the desired aperture. Second, it matches the coaxial feed to the

radial cavity by enforcing that the total radiated power is equal to the incident power.

In the design of the proposed antenna, an optimization-based design procedure is used to syn-

thesize the mode-converting metasurface. In this procedure, the admittance profiles of the meta-

surface’s constitutive electric sheets are optimized to realize targeted field transformation needed
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to establish the aperture field. This targeted transformation is simply the transmission term of the

modal scattering matrix applied to the incident modes. The design procedure is similar to the

one reported in [29, 31]. However, in [29, 31] the mode-converting metasurface was assumed to

be isolated in an infinitely-long waveguide. Therefore, the objective function of the optimization

was only written in terms of the modal scattering matrix of the metasurface. Moreover, only the

propagating modes were considered in the modal scattering matrix of the overall metasurface (the

sheets and the spacers). In the case of the antenna design, it is clear that this assumption (isolated

metasurface in an infinitely-long circular waveguide) cannot be made. Thus, the objective function

should take into account the interaction between the metasurface, the coaxial feed, and the free-

space interface. Further, since the antenna elements are closely spaced, higher evanescent modes

should be considered in the modal scattering matrix of the mode-converting metasurface.

To solve for the radiated fields of the antenna, the modal scattering matrices of the individual

building blocks of the antenna are cascaded. As shown in Fig. 4.3, the modal scattering matrices of

the individual building blocks are labeled as follows, Sfeed represents the modal scattering matrix

of the coax-to-waveguide junction, SMTS represents the modal scattering matrix of the mode-

converting metasurface, and SAper represents the modal reflection matrix of the open-ended radial

cavity. In Fig. 4.3,A0, andB0 are vectors containing the complex coefficients of the forward modes

and the backward modes at any horizontal plane along the coaxial line, respectively. Similarly, A1,

and B1 are vectors containing the complex coefficients of the forward modes and the backward

modes at the input plane of the metasurface (at Y1(ρ)), respectively. Also, the vectors A2, and B2

contain the complex coefficients of the forward modes and the backward modes at the output plane

of the metasurface (at YN(ρ)), respectively. The modal coefficients in each vector are arranged

from the lowest to the highest considered mode. According to the size of the modal vectors (A,
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and B), the modal matrices Sfeed, SMTS , and SAper can be partitioned as follows (see Fig. 4.3),

B0

A1

 =

S
(1,1)
feed S

(1,2)
feed

S
(2,1)
feed S

(2,2)
feed


A0

B1

 (4.7)

B1

A2

 =

S
(1,1)
MTS S

(1,2)
MTS

S
(2,1)
MTS S

(2,2)
MTS


A1

B2

 (4.8)

B2 = DeSAperDeA2, (4.9)

where De is an embedding matrix. In (4.9), embedding is needed since the modal vectors A2

and B2 are defined at the metasurface output plane, which in general may not be the same as the

antenna aperture plane. Since only one mode is considered in the coaxial line, the size of the

matrix Sfeed is (N + 1)× (N + 1), where N is the number of accessible modes in the waveguide.

Additionally, the size of the matrix SMTS is (2N × 2N ). Finally, the size of the reflection matrix

SAper is (N ×N ).

To proceed, (4.7), and (4.9) are substituted into (4.8) to obtain,

B1

A2

 = (L)−1

S
(1,1)
MTSS

(2,1)
feedA0

S
(2,1)
MTSS

(2,1)
feedA0

, (4.10)

where L is written as follows,

L =

I − S
(1,1)
MTSS

(2,2)
feed −S(1,2)

MTSDeSAperDe

−S(2,1)
MTSS

(2,2)
feed I − S

(2,2)
MTSDeSAperDe

, (4.11)
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and I is the N ×N identity matrix. From (4.10), the forward modal vector, A2, at the metasurface

output plane can be found for a given coaxial excitation A0. Once A2 is known using (4.10), the

Fourier-Bessel coefficients of the aperture electric field en can be easily found using (4.6). So, we

have,

E = g
(
I + SAper

)
DeA2, (4.12)

where, E is defined as in (4.6), g is defined by (3.6), and the modal vector A2 has been de-

embedded to the aperture plane using De. The aperture fields can now be obtained from en using

(4.3).

To summarize, in order to find the radiated fields from the antenna shown in Fig. 4.3, due to a

given coaxial excitationA0, we calculate the modal vector at the metasurface output planeA2 using

(4.10). Then, the Fourier-Bessel coefficients of the aperture electric field en can be calculated using

(4.12). Finally, from the Fourier-Bessel coefficients of the aperture electric field, we can obtain the

aperture field profile using (4.3).

The Fourier-Bessel coefficients of the aperture electric field en uniquely determine the aper-

ture fields. Thus, the optimization objective function (the function to be minimized) F can be

straightforwardly written as follows,

F =
∥∥Ecalc − Edes

∥∥. (4.13)

In each iteration of the optimization Ecalc is calculated using (4.12). Edes is a vector containing

the Fourier-Bessel coefficient of the desired aperture electric field Edes (ρ). The nth Fourier-Bessel
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coefficient of the desired aperture electric field edesn is calculated as follows,

edesn =

∫ R
0

Edes (ρ) J1
(
jn
R
ρ
)
ρdρ

un
, (4.14)

where, R, jn, and un are defined as in (3.18) and (3.22). Note that, the desired aperture profile

Edes (ρ) should be normalized such that the total radiated power equals the total incident power.

Doing so ensures that the coaxial line is matched to the radial cavity.

Shaping the cavity aperture directly, requires shaping a significant portion of the invisible spec-

trum. This can be very challenging in some designs. Alternatively, the desired Edes can be formed

at a slightly displaced plane from the aperture, by which distance the evanescent waves excited by

the outer sheet of the metasurface becomes negligible. To do so, we should stipulate the spectrum

of the desired electric field denoted by Ẽdes, which is be related to Edes as follows,

Ẽdes =

∫ R

0

Edes (ρ) J1 (kρρ) ρdρ. (4.15)

The spectrum of the aperture’s electric field is given by,

ẼAper =
N∑
n=1

en
un

Ln (kρ) (4.16)

where, Ln (kρ) =
∫ R
0
J1
(
jn
R
ρ
)
J1 (kρρ) ρdρ which is known in closed-form [92]. Let’s assume,

that we wish the desired electric field to be formed at a displaced plane that is zd meters away from
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Figure 4.4: The discretization of the electric sheets comprising the metasurface. Each electric
sheet is segmented into concentric capacitive annuli with equal width r0. The annulus width is
equal to the ratio of the electric sheet radius R to the number of annuli N . A surface susceptance
value s(m)

n is assigned to the nth annulus in the mth electric sheet.

the aperture. Then, we can define the following objective function,

F =

∫ ∞

0

|ẼAper − ẼCV B|e−i
√
k20−k2ρzdkρdkρ. (4.17)

In the optimization routine, each of the constitutive electric sheets of the mode-converting meta-

surface is assumed to be lossless, and passive. Therefore, the admittance profile of each sheet
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Ym(ρ) (see Fig. 4.3) has only an imaginary part,

Ym(ρ) = ibm(ρ), (4.18)

where bm(ρ) is a real-valued function and m identifies the sheet number. Furthermore, each sheet

is uniformly segmented into N concentric capacitive annuli, as shown in Fig. 4.4. So, bm(ρ) is a

piece-wise function that can be defined as follows,

bm(ρ) =



s
(m)
1 0 < ρ < rn

s
(m)
2 rn < ρ < 2rn

...

s
(m)
N (N − 1)rn < ρ < Nrn,

(4.19)

where, s(m)
1 through s(m)

N are all positive numbers, rn = R
N

, R is the waveguide radius, and N is the

total number of capacitive annuli. This particular profile of the electric sheets was chosen since it

can be practically realized, as has been demonstrated in [29]. The concentric, capacitive annuli can

be realized using a printed metallic cladding on the top and bottom of a thin dielectric substrate.

In the following chapter, two examples that illustrate the design procedure are presented. First

antenna supports an RG beam and the second antenna supports an OBS beam.
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CHAPTER 5

Design Examples

5.1 Beams Parameters and Antenna Geometry

The design of two different antennas, at 30 GHz, will be presented in this chapter to explain the

proposed method of generating arbitrarily-defined, axially-asymmetric CVBs. The aperture radius

of both antennas is set toR = 5λ at 30GHz. The first antenna generates a non-paraxial OBS beam

that maximizes the power transfer between two opposing circular apertures placed zs = 2.5λ away

from each other. The beam is constructed from five orthogonal Bessel beams. The aperture of the

first antenna supports a magnetic current M̄OBS
zs of the following form,

M̄OBS
zs =

5∑
n=1

Azs=2.5λ
n J1

(
jn
R
ρ

)
ϕ̂, (5.1)

where, jn is the nth null of the Bessel function of first kind and order zero, and R is the radius

of the physical aperture (R = 2.5λ). The complex coefficients Azs=2.5λ
n are found using the opti-

mization procedure explained in Chapter 2. The coefficients are optimized to maximize coupling

at a separation distance zs = 2.5λ. The complex coefficients of the considered OBS beam, shown

in Fig. 5.1a, are give in Table 2.1. According to an earlier discussion in Section 1.2, the OBS
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Figure 5.1: The amplitude and the phase distributions of a magnetic current the can generate (a)
an OBS beam M̄OBS

zs , that maximizes the coupling between two apertures separated by a distance
zs = 2.5λ at 30GHz, and (b) an RG beam with a uniform phase aperture. In addition to the
magnetic currents, we show in (a) the magnetic field H̄ (0; zs) at the aperture z = 0, due to the
propagating spectrum of M̄OBS

zs , as well as the complex conjugate of the magnetic field H̄∗ (ρ; zs)
at the plane z = zs due to the propagating spectrum of M̄OBS

zs . We see that H̄∗ (ρ; zs) = H̄ (0; zs),
which is the case of zero diffraction and maximum coupling.

always satisfies the condition in (1.2), as shown in Fig. 5.1a. The second antenna generates an RG

beam with an uniform phase distribution. The aperture of the second antenna supports a magnetic

current M̄RG of the following form,

M̄RG =

√
2
ρ2

w0
2
e
− ρ2

w0
2 ϕ̂, (5.2)

where, w0 =
R
2
= 1.25λ at 30 GHz. The amplitude and the phase distributions of the considered

RG beam are shown in Fig. 5.1b.

Both antennas comprise a cascaded-sheet mode-converting metasurface that is backed by a

coaxially-fed metallic radial cavity, as shown in Fig. 5.2a. The cavity, the coaxial connector, and

the layout of metasurface are all the same for both antennas. Antenna dimensions are provided
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(a) (b)

Figure 5.2: Dimension of the metasurface antenna used to generate the design examples (a) Cavity
and feed dimensions, (b) mode-converting metasurface layout.

in Fig. 5.2. It is remarkable to note that, the total thickness of the mode-converting metasurface

is 4.54mm, which is 0.46λ at 30 GHz. An additional step was introduced in the radial cavity to

support the mode-converting metasurface, as shown in Fig. 5.2a. The depth of this additional step

was specified such that commercially available K-type coaxial connectors can be used. As shown

in Fig. 5.2b, the mode-converting metasurface consists of four electric sheet admittances separated

by dielectric spacers. In the presented examples, Astra MT77 0.03” (ϵr = 3, tanδ = 0.0017) was

assumed for the dielectric spacers. The admittance profile of the mth sheet is denoted by Ym (ρ),

where Y1 (ρ) indicates the sheet that is closest to the coaxial feed. The metallic pattern of the mth

sheet can be found form its admittance profile Ym (ρ).
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Figure 5.3: The optimal admittance profile needed to generate (a) the OBS beam shown in
Fig. 5.1a, and (c) the RG beam shown in Fig. 5.1b.
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Figure 5.4: Realization of the optimal capacitive sheets as concentric metallic rings, (a) 3D and 2D
views of concentric metallic rings, the side view shows a single ring that has a filling factor that is
equal Ff = W

L
, (b) a design curve for metallic rings placed between two Astra MT77 substrates,

the curve shows the admittance of a metallic ring as function of the ring’s filling factor.
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Figure 5.5: Simulated performance of the OBS and RG antennas using the full wave solver
ANSYS-HFSS, ”Desired” indicates the desired CVB, ”Sheets” indicates ANSYS-HFSS results
for optimal idealized sheets design, and ”Patterned” indicates ANSYS-HFSS results for the metal-
lic rings design, (a), and (b) are the normalized amplitude and phase distributions of the magnetic
fields radiated by the OBS antenna, H̄ (0; zs) denotes the magnetic fields due to the propagating
spectrum at the aperture z = 0, H̄∗ (0; zs) denotes the complex conjugate of the magnetic fields
due to the propagating spectrum at the plane z = zs = 2.5λ, (c), and (d) are the normalized am-
plitude and phase distributions of the electric fields radiated by the RG antenna, evaluated at the
displaced plane zd = λ.

5.2 Optimization and Simulation Results

The design process of both antennas can be split into two consecutive steps. In the first step,

the sheets’ admittance profiles needed to generate specific CVB are found through optimization,
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as discussed in Section 4.3. The second step involves the realization of the optimal admittance

profiles with patterned cladding. The cladding pattern can be mapped to the admittances using

simulated scattering measurements [75]. In the beginning, the electric sheet admittances, in both

antennas, were discretized uniformly intoN = 15 annuli, as shown in Fig. 4.4. Each annulus (cell)

has a width r0 = L = 2.5λ
15

. So, the admittance profile of the mth sheet Ym (ρ), can be written as a

piece-wise function (see Fig. 4.4),

Ym(ρ) =



ism1 0 < ρ < R
15

ism2
R
15
< ρ < 2R

15

...

ism15
14R
15

< ρ < R,

(5.3)

where, R = 2.λ, and ym{1,2...,15} are all real positive numbers. So, Ym(ρ) is capacitive lossless sheet.

Next, the interior-point algorithm within the built-in Matlab function fmincon was used to optimize

the admittance of each annulus in the electric sheets. In the OBS example, the beam was formed

directly over the aperture. So, the objective function defined in (4.13) was minimized to design

the OBS antenna. In the RG example, the beam was formed at a slightly displaced plane from

the aperture (zd = λ). So, the objective function defined in (4.17) was minimized to design the

RG antenna. The optimal admittance profiles for both antennas (examples) are shown in Fig. 5.3a,

and Fig. 5.3b. Capacitive lossless electric sheets, as the optimal sheets shown in Fig. 5.3, can be

realized as concentric metallic rings, as shown in Fig. 5.4a. In the presented examples, the number

of metallic rings per sheet is 15. So, each admittance annulus in the electric sheet is realized with a

single metallic ring. A design curve that maps the filling factor of a metallic ring to its admittance
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can be extracted through simulated scattering measurements, as explained in [29]. The design

curve and the filling factor of a metallic ring is defined in Fig. 5.4b.

The full wave solver ANSYS-HFSS was used to verify the performance of the designed OBS

and RG beams antennas. The optimal admittance sheets design and the realized metallic rings

design have been simulated for each antenna. Fig. 5.5 shows the results of the simulation, where

”Desired” indicates the desired CVB, ”Sheets” indicates ANSYS-HFSS results for optimal ide-

alized sheets case, and ”Patterned” indicates ANSYS-HFSS results for the metallic rings design.

For the OBS beam antenna, H̄ (0; zs) denotes the magnetic field due to the propagating spectrum

at the aperture z = 0, H̄∗ (0; zs) denotes the complex conjugate of the magnetic field due to the

propagating spectrum at the palne z = zs = 2.5λ. We can see that the normalized simulated

results for both cases (Sheets and Patterned) agree very well with the normalized desired results,

for the magnitude and for the phase, as shown in Fig. 5.5a, and Fig. 5.5b. Furthermore, we see

that H̄ (0; zs) = barH∗ (0; zs) which is the condition of maximum coupling. For the RG beam

antenna, we show the electric fields evaluated at the displaced plane zd = λ. Again, we can see

that the normalized simulated results for both cases (Sheets and Patterned) agree very well with

the normalized desired results, for the magnitude and for the phase as shown in Fig. 5.5c, and

Fig. 5.5d. The reflection coefficients calculated using ANSYS-HFSS for both antennas are below

−20dB for the optimal admittance sheets design. For the metallic rings design, the reflection coef-

ficients calculated using ANSYS-HFSS for both antennas are below −17dB. The results reported

in Fig. 5.5 show that the proposed mode-converting metasurface can be used to design low-profile

antennas that generate arbitrarily-defined, axially-symmetric CVBs. Next, the RG beam antenna

is prototyped and the measurementa are reported.
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(a) (b) (c)

Figure 5.6: Pictures of the fabricated RG antenna prototype, (a) the cascaded-sheet, mode-
converting metasurface by itself, (b) the machined cavity with a hole in the center for the coaxial
connector, (c) the assembled antenna with the mode-converting metasurface atop the cavity.

5.3 Measurement Results

In the previous section, an RG antenna and an OBS antenna were designed using the proposed

method in this thesis. The optimal admittances needed to design both antennas are all within the

same range, as it is apparent from Fig. 5.3. Furthermore, both antennas have the same geomet-

rical dimensions as shown in Fig. 5.2. So, it suffices to fabricate one of the antennas in order

to experimentally demonstrate the proposed method of generating CVBs. The RG antenna has

been fabricated and the measurements of the fabricated prototype will be discussed throughout

this section.

Pictures of the fabricated mode-converting metasurface and the machined cavity are in Fig. 5.6a,

and Fig. 5.6b, respectively. Fig. 5.6c shows a picture of the antenna once assembled. The cavity

section and the feed transition were fabricated by machining a square 6061 aluminum plate per the

dimensions shown in Fig. 5.2a. The dimensions of the 6061 aluminum plate is 4” × 4” × 3/4”.
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Figure 5.7: Measurements and simulation results using the full wave solver ANSYS-HFSS, of
the RG antenna prototype (a) the reflection coefficients (S11) as a function of frequency, (b), (c),
(d), and (e) are the normalized amplitude and phase distributions of the electric field measured at
multiple tangential planes to the antenna aperture at 30.155 GHz, (b), and (d) are measured along
the horizontal x̂ axis (y = 0), (c), and (e) are measured along the vertical ŷ axis (x = 0), (f) is
the E-plane and the H-plane radiation patterns at the 30.155 GHz, and the at the shifted resonance
frequency 29.5 GHz.
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These dimensions were chosen such that standard precut aluminum plates can be used. The mode-

converting metasurface was fabricated using standard PCB technology. The metasurface layout is

shown in Fig. 5.2b. The minimum feature size of the mode-converting metasurface is larger than

0.003”.

Fig. 5.7a shows the reflection coefficients as a function of frequency. We see that the resonance

frequency shifted from 30 GHz to approximately 29.5 GHz which corresponds to less than 2%

shift in the frequency. At the shifted resonance S11 < −30dB which indicates a very good match-

ing. At the design frequency, the reflection coefficients is slightly less than −5dB. Fig. 5.7b shows

the amplitude of the electric field measured at multiple tangential planes to the antenna aperture.

In Fig. 5.7b, the electric field is measured along the horizontal x̂ axis (y = 0) and at the frequency

30.155 GHz. Also, we see clearly that the beam expands (diverges) similar to a Gaussian beam.

Fig. 5.7c shows the amplitude of the electric field measured at multiple tangential planes to the

antenna apertures. In Fig. 5.7c, the electric field is measured along the vertical ŷ axis (x = 0) and

at the frequency 30.155 GHz. Along both axes, we notice almost perfect symmetry of the beam

which is expected due the axial symmetry. We see clearly that the beam expands (diverges) similar

to a Gaussian beam. Fig. 5.7d, and Fig. 5.7e show the phase of the electric field measured along

the x̂ axis, and the ŷ axis, respectively. Again, the phases profiles are symmetric which is expected

due to the axial symmetry of the antenna. Moreover, the phase profiles are expanding spherically

which is what we except given the uniform phase aperture.

In Fig. 5.7b through Fig. 5.7e, the fields are measured using a rectangular waveguide. The finite

size of the waveguide blurs (distorts) the measurements, so we cannot compare these measurements

directly with the simulated electric fields at such proximity to the antenna. In order to verify the

antenna performance against the simulation, we should look at the measured far field of the antenna
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and compare it to the simulated far field. Fig. 5.7f shows the measured far field of the antenna along

the plane ϕ = 0 and the plane ϕ = π/2. We see very good agreements between the measured far

field and the simulated far field. Fig. 5.7f shows the measured far field at a different frequency

than the design frequency (the shifted resonance frequency 29.5 GHz). We see at the shifted

resonance that the far field resembles the far field of a Gaussian beam with a wider beam waist.

The measured directivity of the antenna at 301.155 GHz is D = 16.5dB. The antenna’s realized

gain is Gr = 13.34dB, and the antenna’s gain is G = 14.42dB. The efficiency of the antenna,

defined as the ratio between the gain and the directivity, is 62%.
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CHAPTER 6

Conclusion and Future Work

6.1 Summary of the Thesis

In this thesis, a novel method for generating CVBs was developed and experimentally demon-

strated. Unlike previous methods of CVBs generation, the developed method can be used to gener-

ate arbitrarily-defined CVBs. This feature of generating arbitrarily-defined CVBs opens the door

to a new class of CVBs that can be optimized and defined for specific applications or functions. To

highlight this feature, we used the proposed method to solve a long-standing problem: the problem

of optimal illumination for maximum wireless power transfer between apertures within Fresnel

zone. First, it was shown that the OBS beam is the optimal illumination. We developed an op-

timization technique to find the magnetic current that radiates this beam. Next, we designed and

realized a low-profile metasurface-based that can generate the OBS beam.

The proposed method relies on the cascaded-sheet mode-converting metasurface, which is a

novel subwavelength device that was introduced in this thesis. It was shown that the mode-

converting metasurface can be used to shape radiated near and far fields from a coaxially-fed

radial cavity. This is in contrast to typical metasurfaces which can manipulate solely the radi-

ated far field. The mode-converting metasurface comprises multiple electric sheets separated by
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dielectric spacers. The multiple sheets provide added degrees of freedom. As a result, the mode-

converting metasurface can establish the desired aperture field above the cavity and simultaneously

matches the coaxial feed to the cavity. Hereinafter, we summarize and breakdown each chapter of

the thesis.

In Chapter 2, well-known CVBs were considered for the wireless transmission of power in

the Fresnel zone. Using the Fresnel approximation, the coupling coefficients between focused

apertures supporting two types of CVBs (LG and BG) have been derived in closed form. For these

beams, it was shown that the maximum coupling location can be shifted within the Fresnel zone

through focusing.

Also, radiation from finite aperture RB beams was evaluated in closed form, and coupling

coefficients were numerically computed. It was shown that a finite aperture RB beam is close to

the optimal field profile for given values of the beam transverse wavenumbers. In general, finite

aperture RB beams outperform RG beams for wireless power transfer within the Fresnel zone.

Finally in Chapter 2, optimal field profiles for coupling between two circular apertures were

constructed from a finite set of Bessel beams OBS. Using optimization, the complex coefficients

of each of the constituent Bessel beams were found. The optimization process was carried out

using the exact Green’s function for radiation in free space, without the paraxial approximation.

The results obtained through optimization confirm that the optimal field profile is the one that

radiates its complex conjugate at the plane of the receiving aperture. This is in agreement with the

results of optimal illumination for confocal optical resonators.

In Chapter 3, using modal network theory and the DHT, metasurfaces placed perpendicular

to the propagation axis of cylindrical waveguides excited by TM0n modes have been analyzed.

The metasurface can be seen as a waveguide discontinuity. Thus, according to modal network
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theory, the metasurface can be represented by an equivalent multiport modal network. The modal

matrices (network parameters) of the metasurface are derived in closed-form using the DHT. The

DHT uses matrix multiplications, instead of numerical integration, to transform the metasurface

boundary conditions from the spatial domain to the modal (spectral) domain.

In order to overcome the local power continuity condition for lossless metasurfaces, and account

for spatial dispersion, the metasurface was modeled as a cascade of simple electric sheets admit-

tances and dielectric spacers, rather than an idealized, single bianisotropic boundary condition.

The modal matrices of a cascaded sheet metasurface were derived by following a three-step pro-

cedure. In the first step, a simple metasurface composed of a single electric sheet admittance was

considered. The modal representation of this simple metasurface was obtained by transforming

the admittance profile of the electric sheet y (ρ) from the spatial domain to the modal domain. The

transformation was performed using the DHT as opposed to conventional numerical integration.

Second, the modal matrices of a single electric sheet were found using the modal representation

of a single electric sheet admittance. Finally, the modal matrices of the cascaded sheet metasur-

face were derived by multiplying the modal wave matrices of the individual electric sheets and the

dielectric spacers.

Modal network theory and the DHT are ideal tools not just for analyzing metasurfaces in cylin-

drical waveguides and cavities, but also to rapidly optimize metasurface designs. Therefore, using

these two tools (modal network theory and the DHT) an optimization procedure to synthesize pas-

sive, lossless metasurface-based mode converters was proposed. The proposed mode converters

transform a set of incident TM0n modes on one side to another set of desired TM0n modes on the

opposite side of the metasurface within a cylindrical waveguide. As an example, two-mode con-

verters were synthesized at 10 GHz. The first example was a reflectionless, single-mode converter,
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which transforms an incident TM01 mode to a TM02 mode. The second example was a reflection-

less mode splitter, which splits an incident TM01 mode evenly between the TM01 mode and TM02

mode. The susceptance profiles of both designs were realized as metallic rings printed on both

sides of a thin substrate. The ideal sheet design and the patterend surface designs for both devices

(the mode converter and the mode splitter) were verified using the commercial full-wave solvers

COMSOL Multiphysics and ANSYS-HFSS. Such mode-converting devices will find applications

in antenna aperture synthesis.

In Chapter 4, a general method for synthesizing azimuthally-invariant, TM apertures using

low-profile, simple-to-feed, cascaded-sheet metasurface antennas was proposed. The proposed

antennas consist of a coaxially-excited radial cavity topped by a mode-converting metasurface. The

mode-converting metasurafce is the mainstay of the proposed antenna. It plays two fundamental

roles. First, it establishes the desired aperture profile by converting the modal distribution of the

excitation to the modal distribution of the desired aperture. Second, it impedance matches the

coaxial feed to the cavity. Unlike most metasurface antennas, the proposed antenna can be designed

to meet specific near field and far field criteria. Additionally, the cascaded-sheet model of the

metasurface is more straightforward to realize than an idealized bianisotropic sheet model.

Structurally, the antenna can be divided into three main building blocks: the coaxial-to-

waveguide junction, the open-ended radial cavity, and the mode-converting metasurface. Using

modal network theory, each building block of the antenna is described by a modal scattering ma-

trix. Cascading the modal scattering matrices of the building blocks through simple matrix op-

erations allows the overall antenna to be analyzed. An optimization-based design procedure was

developed to synthesize the proposed metasurface antennas. The admittance profiles of the con-

stitutive electric sheets of the mode-converting metasurface are optimized to establish the desired
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aperture profile and to impedance match the coax feed to the radial cavity.

Although the discussion in the chapter was focused on TM polarized, azimuthally-invariant

apertures, the presented design procedure can be generalized to include TE fields as well as az-

imuthal variation. Future work will include adding multiple coaxial feeds and additional sheets to

realize low-profile MIMO metasurface antennas.

In Chapter 5, we presented two design examples. The first example was the design of an antenna

that radiates an RG beam, and the second example was the design of an antenna that radiates an RG

beam. Both examples were designed using the methods outlined in Chapter 4. Both antennas were

designed at 30 GHz. We showed that both can be realized using simple multi-layer concentric

metallic rings. Furthermore, the RG antenna was prototyped, and the measurement results of the

prototype was reported in Chapter 5.

6.2 Future Work

Given the success with the RG prototype, in the future the proposed OBS antenna will be fabricated

following a similar procedure to the one implemented for the RG antenna. As it has been shown in

this thesis, the OBS antenna can be used to design novel radiative near-field wireless power transfer

systems. These systems are novel since most wireless power transfer systems operate in the non-

radiative near-field zone. Operating in the radiative near-field zone (Fresnel zone) increases the

power transfer range, given that the Fresnel zone, by definition, extends further than the non-

radiative near-field zone.

The methods developed in this thesis pave the path toward the realization of passive and low-

profile MIMO antennas for space applications. Specifically, the modal network formulation pre-
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sented here can be generalized to include multiple feeds. Similar optimization routines to the one

proposed in this thesis can be used to map each feed to a desirable far field beam or even near

field beam. Also, we can maintain high isolation between the feeds since the mode-converting

metasurface can control both the reflected and the transmitted fields, as demonstrated in this the-

sis. Moreover, the axial symmetry limitation can be overcome easily by considering higher order

azimuthal modes. In this case, fast 2D Fourier transform algorithms should replace the DHT. In

fact, the shape of the cavity does not have to be circular. It could have a rectangular shape or any

other desired shape.

In this thesis, the mode-converting metasurface was realized using concentric metallic rings for

two main reasons. The first reason was to maintain axial symmetry. The second reason was to min-

imize spatial dispersion since metallic rings suffer minimal or no spatial dispersion under TM0n

modes excitation. In the future, the spatial dispersion of the impedance sheets can be modeled and

accounted for in order to include different geometries than simple metallic rings. Including dif-

ferent geometries will dramatically increase the mode-converting functionality and provide greater

control over the cavity modes and, consequently, the transmitted and the reflected fields.
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APPENDIX A

A.1 Total Radiated Power by a Circular Aperture

The magnetic field radiated by a circular aperture with no azimuthal variation is

Hϕ (ρ, z) = −i k
η0

∫ ∞

0

M (kρ)
e−izkz

kz
J1(kρρ)kρdkρ, (A.1)

where M (kρ) =
∫∞
0
Etangential

(
ρ

′)
J1
(
kρρ

′)
ρ

′
dρ

′ .

The paraxial approximation can be applied by writing kz =
√
k2 − k2ρ ≈ k

(
1− k2ρ

2k2

)
in the

argument of the exponential and taking only the first term of this expansion in the denominator. To

find the tangential magnetic field along the radiating aperture, we set z = 0 to obtain

Hϕ(ρ, 0) ≈ − 1

η0

∫ ∞

0

M(kρ)J1(kρρ)kρdkρ. (A.2)

Given the paraxial approximation, we can write

Hϕ(ρ
′, 0) ≈ − 1

η0
Etangential(ρ

′). (A.3)
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The total radiated power from the circular aperture is

P = π ∫ Re
{
Etangential ×H∗

tangential

}
ρ′dρ′. (A.4)

Substituting (A.3) into (A.4) yields

P =
π

η0
∫ |Etangential (ρ′)|2 ρ′dρ′. (A.5)

A.2 Coupling Coefficient for LG Apertures

To solve for the coupling coefficients, recall that

Ea = Eb =

(√
2ρ2

w2

)
L1
n

(
2ρ2

w2

)
e−

ρ2

w2 (1−i 1α). (A.6)

Substituting (A.6) into (2.12), we write

Γ =

∣∣∣∣∣∣∣
(
k
z

) ∫∞
0
L1
n

(
2ρ2

w2

)
e−

ρ2

w2 (1+iC)I (ρ) ρ2dρ

P

∣∣∣∣∣∣∣
2

, (A.7)

. where

I(ρ) =

∫ ∞

0

J1

(
kρρ′

z

)
L1
n

(
2ρ

′2

w2

)
e−

ρ
′2

w2 (1+iC)ρ
′2dρ′

P =

∫ ∞

0

[
L1
n

(
2ρ2

w2

)]2
e

− 2ρ2

w2

ρ3dρ

C =

(
1

zr
− 1

α

)
, and zr =

2z

kw2
.
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The integrals in (A.7) can be evaluated analytically in closed form. To do so, let us recall the

following integrals involving Bessel function, exponential functions, and Laguerre polynomials

[93]

∫∞
0
e−βρ

2
L1
n (αρ

2) J1 (yρ) ρ
2dρ = (β−α)n

4βn+2 ye
− y2

4βL1
n

(
αy2

4β(β−α)

)
(A.8)∫∞

0
e−ρ(s+

a1+a2
2 )L1

n (a1ρ)L
1
n (a2ρ) ρdρ =

(n+1)!

n!b20
P

(1,0)
n

(
b21
b0b2

)
(A.9)

b0 = s+ a1+a2
2

, b21 = b0b2 + 2a1a2b2 = s− a1+a2
2∫∞

0
e−ρ [L1

n (ρ)]
2
ρdρ = (n+1)!

n!
. (A.10)

The integral in (A.8) can be used to evaluate I (ρ) as follows

I (ρ) =
kw4 (−1 + iC)n

z4 (1 + iC)n+2 ρe
− ρ2

w2z2r (1+iC)L1
n

(
2ρ2

w2z2r (1 + C2)

)
. (A.11)

Substituting (A.11) in (A.7) yields

Γ =
1

Z4
r (1 + C2)2

|Q
P
|2 (A.12)

where

Q =

∫ ∞

0

L1
n

(
2ρ2

w2

)
e
− ρ2

w2

(
1+iC+ 1

z2r (1+iC)

)
L1
n

(
2ρ2

w2z2r (1 + C2)

)
ρ3dρ.
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As in the case of I (ρ), integrals Q and P can be evaluated using relations (A.9) and (A.10),

respectively. Evaluating Q and P and substituting the results into ((A.10)), it can be shown that

Γ =

(
4z2r

(z2r (1− C2) + 1)2 + 4z4rC
2
P (1,0)
n

[
(z2r (1 + C2)− 1)

2 − 4z2r
(z2r (1− C2) + 1)2 + 4z4rC

2

])2

. (A.13)

A.3 Coupling Coefficient for BG Apertures

To solve for the coupling coefficients, recall that

Ea = Eb = J1(βρ)e
− ρ2

w2 (1−i 1α). (A.14)

Substituting (A.14) into (2.12), we write

Γ =

∣∣∣∣∣∣
(
k
z

) ∫∞
0
J1(βρ)e

− ρ2

w2 (1+iC)I (ρ) ρdρ

P

∣∣∣∣∣∣
2

, (A.15)

where

I(ρ) =

∫ ∞

0

J1

(
kρρ′

z

)
J1(βρ)e

− ρ
′2

w2 (1+iC)ρ′dρ′

P =

∫ ∞

0

J1 (βρ)
2 e−

2ρ2

w2 ρdρ

C =

(
1

zr
− 1

α

)
, and zr =

2z

kw2
.
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The integrals in (A.15) can be evaluated in closed form. To do so, let us recall the following integral

involving Bessel and exponential functions [93]

∫ ∞

0

e−ηρ
2

J1(ζρ)J1(αρ)ρdρ =
1

2η
e−

ζ2+α2

4η I1

(
αζ

2η

)
. (A.16)

Also, recall the following identity

J1(ix) = iI1(x). (A.17)

Now, the integral in (A.16) and (A.17) can be used to evaluate I (ρ) as follows

I (ρ) = i
w2

2 (1 + iC)
ρe−

w2β2

4(1+iC) e
− ρ2

w2z2r (1+iC)J1

(
βρ

zr (i-C)

)
. (A.18)

Substituting (A.18) in (A.15), we write

Γ =
e
− w2β2

2(1+C2)

z2r (1 + C2)

∣∣∣∣QP
∣∣∣∣2 , (A.19)

where

Q =

∫ ∞

0

J1 (βρ) J1

(
βρ

zr (i-C)

)
e
− ρ2

w2

(
1+iC+ 1

z2r (1+iC)

)
ρdρ

As in the case of I (ρ) , integrals Q and P can be evaluated using (A.16). Evaluating Q and P and

substituting the results into (A.19), it can be shown that

Γ =

 4z2r(
z2r

(
1− C

2
)
+ 1
)2

+ 4z4rC
2


∣∣∣∣∣∣e

β2w2

4

(1−z2r(1+C2))
(1+(zr(1+iC))2)

J1

(
β2w2

4
2zr

1+(zr(1+iC))2

)
I1

(
β2w2

4

)
∣∣∣∣∣∣
2

. (A.20)
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A.4 Peak Location of RG and LG Beams Coupling

Let us revisit coupling between two Laguerre–Gaussian apertures. An inspection of (A.7) reveals

that by setting

z2r
(
1 + C2

)
= 1 (A.21)

the coupling coefficient becomes

Γ =

∣∣∣∣∣∫∞
0

(
L1
n

(
2ρ2

w2

)
e−

ρ2

w2

(√
2ρ2

w2

))2

ρdρ

∣∣∣∣∣
2

(∫∞
0

(
Lpoln

(
2ρ2

w2

)
e−

ρ2

w2

(√
2ρ2

w2

))2

ρdρ

)2 = 1. (A.22)

So, satisfying (A.21) maximizes coupling. Writing the expression in (A.21) in terms of focal length

and the actual distance, the location of this peak in coupling occurs at

zmax =
2L0

1 +
(

2L0

kw2

)2 . (A.23)

A.5 Lommel Functions of Two Variables

The Lommel function of two variables has been introduced to solve the problem of diffraction

from a circular aperture [65]. It is used in subsequent sections of the appendix. These functions

are denoted by the symbol Un (w, ζ) and Vn (w, ζ) , and defined as

Un (w, ζ) =
∑∞

m=0−1m
(
w
ζ

)n+2m

Jn+2m(ζ) (A.24)

Vn (w, ζ) =
∑∞

m=0−1m
(
w
ζ

)−n−2m

J−n−2m(ζ). (A.25)
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The two functions are related as follows

Un (w, ζ)− V−n+2 (w, ζ) = cos
(
w
2
+ ζ2

2w
− nπ

2

)
(A.26)

Un+1 (w, ζ)− V−n+1 (w, ζ) = sin
(
w
2
+ ζ2

2w
− nπ

2

)
. (A.27)

The integral representation of Un (w, ζ) is given as

Uv (w, ζ)±iUv+1 (w, ζ)=
wv

ζv−1

∫ 1

0

Jv−1 (ηζ) e
± i1

2
w(1−η2)ηvdη. (A.28)

A.6 Radiation From a Cylindrically Truncated RB Beam

The magnetic field radiated by a TM polarized cylindrically truncated RB aperture is given by

H̄ϕ = ϕ̂
ke

−ik
(
z+ ρ2

2z

)
η0z

I ′, (A.29)

where I ′
=
∫ b
0
Ebρ′e

−i k
2z
ρ
′2
J1
(
k
z
ρρ

′)
ρ

′
dρ

′ . The integral I ′ in (A.29) can be rewritten as

I ′ = b2
∫ 1

0

J1 (βbη) J1

(
kba

z
η

)
e−

ikb2η2

2z ηdη. (A.30)

From the addition theorem [65], we have

J1(ψη)J1(αη) =
1

π

∫ π

0

J0(w) cos(θ)dθ, (A.31)

116



where w = η
√
ψ2 + α2 − 2ψαcos (θ). Using the Lommel expansion [65], (A.31) can be rewritten

as

J1 (ψη) J1 (αη) =
1

π

∫ π

0

∞∑
p=0

(ηψα)p

p!

Jp

(
η
√
ψ2 + α2

)
(√

ψ2 + α2
)p (cos (θ))p+1 dθ. (A.32)

Note that when p is even, the integral over θ vanishes. Thus

1

π

∫ π

0

(cos (θ))2(p+1) dθ =
1

22(p+1)

(2p+ 2)!

(p+ 1)! (p+ 1)!
. (A.33)

Substituting (A.33) into (A.32), we have

J1 (ψη) J1 (αη) =
∞∑
p=0

(
ηψα
2

)2p+1

p! (p+ 1)!

J2p+1

(
η
√
ψ2 + α2

)
(√

ψ2 + α2
)2p+1 . (A.34)

Now, we use (A.34) in the original integral (A.30) to obtain

I ′ = b2
∞∑
p=0

(
βkρ
2z
b
)2p+1

p! (p+ 1)!

Ω2p+1(√
(β)2 +

(
kρ
z

)2)2p+1 , (A.35)

where

Ωv−1 =

∫ 1

0

Jv−1 (ηζ) e
i 1
2
wη2ηvdη, ζ = b

√
(β)2 +

(
kρ

z

)2

, and w =
kb2

z
.

Using (A.28), (A.35) can be rewritten as

I ′ = e−
ikb2

2z
z

k

∞∑
p=0

(
βρ
2

)2p+1

p! (p+ 1)!
(U2p+2 (w, ζ) + iU2p+3 (w, ζ)). (A.36)

The Lommel function of two variables denoted by the symbolUn (w, ζ) can be written in another

form denoted by the symbolVn (w, ζ), as shown in (A.26) and (A.27). Thus, using (A.26) and
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(A.27), the integral in (A.30) can be separated into two terms as follows

I ′nd = −z
k
e
i

(
β2z
2k

+ kρ2

2z

) ∞∑
p=0

(−1)p
(
βρ
2

)2p+1

p! (p+ 1)!
. (A.37)

The summation in (A.37) is actually the series expansion of a Bessel function of first order. There-

fore,

I ′nd = −z
k
e
i

(
β2z
2k

+ kρ2

2z

)
J1 (βρ) . (A.38)

The second term is given as

I ′d = e−i
ka2

2z
z

k

∞∑
p=0

(
βρ
2

)2p+1

p! (p+ 1)!
(V−2p (w, ζ) + iV−2p−1 (w, ζ)). (A.39)

To further simplify (A.39), we first differentiate (A.34) term by term to obtain

dm

dxm
{
J1
(√

xψη
)
J1
(√

xαη
)}

|x=1=

(
1

2
η

)m ∞∑
p=0

(
ηψα
2

)2p+1

p! (p+ 1)!

J2p+1−m

(
η
√
ψ2 + α2

)
(√

ψ2 + α2
)2p+1−m . (A.40)

Substituting (A.40), along with (A.25), into (A.39) yields

I ′d = ie−i
kb2

2z
z

k

∞∑
m=0

(−i)m
(

2z

b2k

)m
dm

dxm

{
J1
(√

xβb
)
J1

(√
x
kbρ

z

)}
x=1

. (A.41)

So, the overall integral in (A.30) can be written as

I ′ = I ′nd + I ′d. (A.42)
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Accordingly, the magnetic field expression is given by substituting (A.42) into (A.29)

H̄ϕ =
−1

η0
e
j

(
β2z
2k

−kz
)
J1 (βρ) +

i

η0
e
−j

(
kb2

2z
+kz+ kρ2

2z

)

×
∞∑
m=0

(−i)m
(

2z

b2k

)m
dm

dxm

{
J1
(√

xβb
)
J1

(√
x
kbρ

z

)}
x=1

. (A.43)

A.7 Optimal Illumination: The OBS Beam

Recall the Fourier–Bessel expansion of f (ρ) that is limited in space (i.e.,f (ρ) = 0, R > 0)

f (ρ) =
∞∑
m=1

2
F̃m

(RJ1 (jm))
2J1

(
jm
R
ρ

)
, (A.44)

where F̃m =
∫ R
0
f (ρ) J1

(
jm
R
ρ
)
ρdρ, jm: is the mth null of J0 (.). Now, the following relation

holds and is easily proven

∫ R

0

f (ρ) g (ρ) ρdρ =
∞∑
m=1

2
F̃m

RJ1 (jm)

G̃m

RJ1 (jm)
. (A.45)

If we expand the aperture field into the form of (A.44), and only retain a finite number of terms

M̄OBS
zs =

N∑
n=1

√
2

Azsn
RJ1

(
jn
R
ρ
)J1(jn

R
ρ

)
ϕ̂. (A.46)

We can also expand the magnetic field over a finite aperture in a similar manner

Hϕ′ (ρ) =
N∑
n=1

√
2

B̃zs
n

RJ1 (jn)
J1

(
jn
R
ρ

)
. (A.47)
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Using the spectral form of the free space Green’s function (A.1), we have

B̃zs
n =

k

η0

∫ ∞

0

e−ikzzs

kz

∞∑
m=1

2
Ãzsm

(RJ1 (jm))
2L

(
jm
R
, kρ

)
L

(
jn
R
, kρ

)
kρdkρ (A.48)

where

L

(
jq
R
, kρ

)
=

∫ R

0

J1

(
jq
R
ρ

)
J1 (kρρ) ρdρ.

Therefore, we can write the following matrix form, which relates the electric to the magnetic field

coefficients

¯̃B = ¯̄Gzs
R (n,m) ¯̃A (A.49)

¯̃B(n) = B̃zs
n ,

¯̃A(n) = Ãzsn (A.50)

¯̄Gzs
R (n,m) = 2k

Rη0J1(jn)J1(jm)
,
∫∞
0

e−ikzzs

kz
L
(
jm
R
, kρ
)
L
(
jn
R
, kρ
)
kρdkρ. (A.51)

To express the coupling coefficient given by (2.1) in terms of the complex field coefficients given

by (A.46), we use the relation (A.45) to express the total radiated power as

P = π ∗Re{( ¯̃A)+ ¯̄G0
R(n,m) ¯̃A} (A.52)

and the reaction integral as

⟨aRb⟩ = −4π
(
¯̃AT ¯̄Gzs

R (n,m) ¯̃A
)
.
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Substituting (A.52) and (A.7) into (2.1), the coupling coefficients can be written as follows

Γ =

∣∣∣( ¯̃AT ¯̄Gzs
R (n,m) ¯̃A

)∣∣∣2(
Re

{(
¯̃A
)+ ¯̄G0

R (n,m) ¯̃A

})2 . (A.53)

A.8 The DHT

The Hankel transform is simply the 2D Fourier transform in cylindrical coordinates. The Hankel

transform of order one F (k) of a space-limited function f (ρ), (i.e. f (ρ > R) = 0), takes the

following form,

F (k) =

∫ R

0

f (ρ) J1 (kρ) ρdρ. (A.54)

Note that waveguides fields are confined in space, and thus they are space-limited functions. For

the sake of defining a discrete version of the Hankel transform, let’s assume that there is a value

K, for which F (k > K) = 0. Then, the inverse Hankel transform of (A.54), takes the following

form,

f (ρ) =

∫ K

0

F (k) J1 (kρ) kdk. (A.55)

To obtain a discrete form of the Hankel transform, intuitively, we need to evaluate F (K) from a

set of discrete values f (ρq) of f (ρ). Similarly, we need to evaluate f (ρ) from a set of discrete

values F (kn) of F (k). Such a relation can be established using a Bessel-Fourier series. That is

because both functions are limited in their respective domains.

For the function F (K), we chose to expand it in the following form of the Bessel-Fourier series,

F (k) =

Q∑
q=1

f
(
λq
K

)
v2q

J1

(
λq
K
k

)
(A.56)
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(a) (b) (c)

Figure A.1: The forward Hankel transform of a space-limited Gaussian function. (a) The profile of
the space-limited Gaussian function f (ρ) considered in (A.72). (b) The forward Hankel transform
(spectrum) of the function f (ρ) calculated using the integral definition in (A.54), and the DHT
definition in (A.64), for the cases of (N = 10, N = 25, and N = 250). (c) The maximum
difference as a function on N between the spectrum of the function f (ρ) calculated using the
integral definition of (A.54), and the DHT definition of (A.64).

where, f
(
λq
K

)
=
∫ K
0
F (k) J1

(
λq
K
k
)
kdk, vq =

√
K2J2

0 (λq)

2
, and λq is the qth null of the function

J1 (.). Note that the series in (A.56) was truncated to q = Q. Since the function f (ρ) represents

the fields in the waveguide, it should be expanded in a type of Bessel-Fourier series that resembles

the modal expansion of the fields. Therefore, we have,

f (ρ) =
N∑
n=1

F
(
jn
R

)
u2n

J1

(
jn
R
ρ

)
, (A.57)

where, F
(
jn
R

)
=
∫ R
0
f (ρ) J1

(
jn
R
ρ
)
ρdρ, un =

√
R2J2

1 (jn)

2
, and jn is the nth null of the function

Jo (.). Note that the series in (A.57) was truncated to n = N . The Fourier-Bessel expansions in

(A.56) and (A.57) are very useful since they relate continuous functions in one domain to discrete

points in the other domain. Such an intermediate step will allow us to relate these discrete points

in both domains to each other, and eventually obtaining a rigorous definition for the DHT.

Examining the expansions in (A.56), and (A.57), we find that the spatial discrete points and the
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spectral discrete points are,

ρq =
λq
K

(A.58)

kn =
jn
R
. (A.59)

The discrete points given by (A.58), (A.59) result from the choice of the Bessel-Fourier series. If

a different type of Bessel-Fourier series is chosen for the expansion, the discrete points in (A.58),

(A.59) may change accordingly, as in [48]. To proceed we still need to determine the value of K.

That can be done by aligning the largest spatial discrete point ρQ with R. By doing so, we get,

K =
λQ
R
. (A.60)

Substituting, (A.60) into (A.58), we have,

ρq =
λq
λQ
R. (A.61)

To complete the definition of the DHT, the expressions in (A.56), and (A.57), should be evaluated

at the discrete points specified by (A.59), and (A.61). So, using (A.60) as well, we have,

F

(
jn
R

)
=

N∑
q=1

f
(
λq
λN
R
)

v2q
J1

(
jnλq
λN

)
(A.62)

f

(
λq
λN

R

)
=

N∑
n=1

F
(
jn
R

)
u2n

J1

(
jnλq
λN

)
. (A.63)

In these two definitions of the forward transform (A.62) and the inverse transform (A.63), we set

Q = N to ensure proper transformation of both domains.
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In matrix form, we can define the forward DHT, and the inverse DHT, in the following way,

F̄ = ¯̄Yf f̄ (A.64)

f̄ = ¯̄YiF̄ , (A.65)

where,

¯̄Yf (n, q) = 2

(
R

λNJ0 (λq)

)2

J1

(
jnλq
λN

)
(A.66)

¯̄Yi (q, n) =
J1

(
jnλq
λN

)
u2n

. (A.67)

Using (3.35), the discrete spectral values F
(
jn
R

)
are related to the fields modal coefficients f̃n in

(3.34), as follows,

F

(
jn
R

)
= unf̃n. (A.68)

Therefore, to calculate the modal coefficients f̃n of the fields using the DHT, (A.66) and (A.67)

should be modified according to (A.68). Thus, the DHT transformation matrices that should be

used to calculate the fields modal coefficients, are given by,

¯̄Tf (n, q) = 2

(
R

λNJ0 (λq)

)2 J1

(
jnλq
λN

)
un

(A.69)

¯̄Ti (q, n) =
J1

(
jnλq
λN

)
un

.. (A.70)

The DHT orthogonality stated in (3.41), and (3.42) is a direct result of the relation proven by
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Johnson [47],

N∑
n=1

4J1

(
jnλk
λN

)
J1

(
jnλp
λN

)
λ2pJ

2
1 (jn) J

2
0 (λk)

=



0 p ̸= k

1 p = k

2 p = k = N

. (A.71)

The relation in (A.71) is true for the case where N −→ ∞. However, for computational purposes it

is considered true for sufficiently large N . To illustrate this, consider the following space-limited

function (see Fig. A.1a),

f (ρ) =

√
2
ρ2

w2
e−

ρ2

w2 , (A.72)

where, w = 1
2
, and R = 1. The forward Hankel transform (spectrum) of function (A.72) was

calculated using (A.54), and using the DHT definition of (A.64), for the cases of (N = 10,N = 25,

and N = 250). Fig. A.1b shows that as N becomes larger the spectrum calculated using the

DHT approaches that calculated using (A.54). The same observation can be also deduced from

Fig. A.1c, which shows the maximum difference as a function of N between the spectrum of

(A.72) calculated using (A.54), and using the DHT definition of (A.64). It is clear from Fig. A.1c

that the difference approaches zero as N increases. Further details on the DHT accuracy and the

values of N can be found in [47].

A.9 Modal Reflection Matrix of an Open-Ended Radial Cavity

The modal reflection matrix SAper of an open-ended waveguide relates the reflected modes to the

incident modes at the waveguide aperture. Given that a sufficient number of modes are considered,
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the modal reflection matrix SAper completely determines the aperture fields for any arbitrary set of

incident modes. Recall from Section4.2, the electric field expansion on the waveguide side and on

the free space side, respectively,

Ez=0−

ρ =
N∑
n=1

√
ηn

un
(an + bn) J1

(
jn
R
ρ

)
(A.73)

Ez=0+

ρ =
N∑
n=1

en
un

J1

(
jn
R
ρ

)
, (A.74)

where, an and bn denote the forward and backward modal coefficients within the waveguide, and

en are the electric field coefficients of the aperture. The parameters, jn, R, ηn, kzn, and un are

defined as in (3.18), (3.20), (3.21), and (3.22). Note that the superscript z = 0− indicates that we

are approaching the aperture from below, or from the waveguide side. Likewise, the superscript

z = 0+ indicates that we are approaching the aperture from above, or from the free space side.

Also, recall the magnetic field expansion on the waveguide side and on the free space side are,

Hz=0−

ϕ =
N∑
n=1

1

un
√
ηn

(an − bn) J1

(
jn
R
ρ

)
(A.75)

Hz=0+

ϕ =
N∑
n=1

hn
un

J1

(
jn
R
ρ

)
, (A.76)

where, hn are the magnetic field coefficients of the aperture.

The modal reflection matrix SAper will be written in terms of the spectral admittance matrix

B. The spectral admittance matrix B relates the electric field coefficients of the aperture en to

the magnetic field coefficients of the aperture hn via the spectral Green’s functions. Using the

spectral Green’s function, we can write the tangential magnetic field at the aperture in terms of the
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tangential electric field at the aperture aperture, for the case of azimuthal symmetry, as follows [9],

Hϕ (ρ) =
k0
η0

∫ ∞

0

kρ
kz
J1 (kρρ)

∫ R

0

Eρ (ρ
′) J1 (kρρ

′) ρ′dρ′dkρ, (A.77)

where, k0 is the free space wavenumber, η0 is the free space characteristic impedance, and kz =√
k20 − k2ρ. Substituting (A.74) and (A.76) into (A.77), and exploiting the orthogonality relations

of Bessel functions [29], one can obtain the following relations

H = B E (A.78)

B (m,n) =
k0
η0

∫ ∞

0

kρ
kz
L

(
jn
R
, kρ

)
L

(
jm
R
, kρ

)
dkρ (A.79)

L

(
jq
R
, kρ

)
=

∫ R
0
J1

(
jq
R
ρ
)
J1 (kρρ) ρdρ

uq
, (A.80)

where, E = [e1, e2 . . . , eN ]
T , and H is defined similarly. The integral in (A.80) is known in closed

form and is reported in [92].

The following two equations can be obtained by enforcing field continuity. In other words, we

set (A.73) equal to (A.74), and (A.75) equal to (A.76). So, we can write,

g

[
A+B

]
= E, (A.81)

(g)−1

[
A−B

]
= B E, (A.82)

where, A = [a1, a2 . . . , aN ]
T , B = [b1, b2 . . . , bN ]

T , and g is a diagonal matrix defined as in (3.6).

It should be noted that (A.78) was used in (A.82). Solving (A.81), and (A.82) for B, we have the
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following,

B =
(
(g)−1 − gB

)(
(g)−1 + gB

)−1

A. (A.83)

Comparing (A.83) to (4.5), we see that we have obtained the modal reflection matrix SAper.
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Agarwal, M. Lončar et al., “Controlling propagation and coupling of waveguide modes using
phase-gradient metasurfaces,” Nature Nanotechnology, vol. 12, no. 7, p. 675, 2017.

[74] B. O. Raeker and A. Grbic, “Compound metaoptics for amplitude and phase control of wave
fronts,” Phys. Rev. Lett., vol. 122, no. 11, p. 113901, 2019.

[75] C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflec-
tionless sheets,” Phys. Rev. Lett., vol. 110, no. 19, p. 197401, 2013.

[76] C. L. Holloway, E. F. Kuester, and A. Dienstfrey, “Characterizing metasurfaces/metafilms:
The connection between surface susceptibilities and effective material properties,” IEEE An-
tennas and Wireless Propagation Letters, vol. 10, pp. 1507–1511, 2011.
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