Motivic Action on Coherent Cohomology of Hilbert Modular Varieties

by
Aleksander Horawa
A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
(Mathematics)
in The University of Michigan

2022

Doctoral Committee:
Professor Kartik Prasanna, Chair
Professor Bhargav Bhatt
Professor Reetuparna Das
Professor Tasho Kaletha
Professor Andrew Snowden

Aleksander Horawa
ahorawa@umich.edu
ORCID iD: 0000-0002-1289-1336
(C) Aleksander Horawa 2022

All Rights Reserved

ACKNOWLEDGEMENTS

First and foremost, I am grateful to my advisor, Kartik Prasanna, for his constant support and for everything he has taught me. It has been a privilege to learn from him and benefit from his insight and advice throughout the years. Number theory can be overwhelming due to the amount of background knowledge required, but he guided me through the process of learning it and suggested a specific problem which gave context to what I was learning. In the years that followed, we had countless helpful discussions without which this thesis would not be. I would also like to thank him for encouraging me to pursue numerical evidence for the conjectures presented in this thesis, and for comments of various versions of the manuscript.

I would like to thank the rest of my thesis committee - Bhargav Bhatt, Reetuparna Das, Tasho Kaletha, and Andrew Snowden - for their time and effort.

I have benefited from discussions related to this manuscript with Henri Darmon, Samit Dasgupta, Michael Harris, Gyujin Oh, Jesse Silliman, Akshay Venkatesh, and Carl Wang-Erickson. I really appreciated their interest in these results and their support. I am also grateful to Victor Rotger for the mini-course at Iwasawa 2019 on his joint work with Henri Darmon and Alan Lauder - questions about generalizing their work to Hilbert modular forms eventually led to the conjectures presented here. Finally, I would like to thank the referee of the resulting paper for their insightful comments.

It has been a pleasure to be part of the Number Theory group at the University
of Michigan. The professors (including Bhargav Bhatt, Wei Ho, Tasho Kaletha, Jeffrey Lagarias, Kartik Prasanna, and Andrew Snowden) and post docs (Alexander Bertoloni-Meli, Karol Kozioł, Yuan Liu, Shizhang Li, Jakub Witaszek, and many others) made great efforts to make graduate students feel included by organizing events and seminars, teaching topics classes, and always being available to answer our questions. I cannot overstate the influence this had on my development as a mathematician. I will sincerely miss being here.

I am extremely grateful to my friends and close ones for always being there for me. I have been lucky to have your constant and unwavering support, without which I could not have completed this thesis.

During my time as a graduate student at the University of Michigan, I was supported by the Allen Shields Fellowship, NSF grant DMS-2001293, and the Rackham Predoctoral Fellowship.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
LIST OF TABLES vi
ABSTRACT vii
CHAPTER
I. Introduction 1
1.1 Algebraic cycles and the Langlands program 2
1.1.1 The Hodge and Tate conjectures 2
1.1.2 Maps between cohomology groups 2
1.1.3 The Langlands program 3
1.2 Motivic action conjectures 4
1.3 The results of the thesis 5
1.3.1 Formulation of the conjectures 6
1.3.2 The case $[F: \mathbb{Q}]=1$: modular curves. 9
1.3.3 The case $[F: \mathbb{Q}]=2$: Hilbert modular surfaces. 10
1.3.4 Theoretical evidence 11
1.3.5 Numerical evidence 12
1.4 Organization 14
II. Hilbert Modular Forms 16
2.1 Classical Hilbert modular forms 16
2.2 Hilbert modular forms as sections of line bundles 18
2.3 Partial complex conjugation and higher sheaf cohomology 23
2.4 Translation to classical language 28
2.4.1 Classical and automorphic Hilbert modular forms 28
2.4.2 Automorphic line bundles classically 29
2.4.3 Partial complex conjugation operators classically 30
III. Stark Units and Stark's Conjecture 37
3.1 Stark units 37
3.2 Stark's conjecture [71, 73] 41
3.3 Stark units for Hilbert modular forms 44
3.4 Stark's conjecture for Hilbert modular forms 47
3.5 Examples 48
3.6 Comparison with motivic cohomology 55
3.6.1 Motivic cohomology 55
3.6.2 Motivic cohomology of the coadjoint motive 56
IV. Derived Hecke Operators on the Special Fiber 59
4.1 Dual Stark units mod \mathfrak{p}^{n} 61
4.1.1 Taylor-Wiles primes 61
4.1.2 Reduction of dual Stark units at a Taylor-Wiles prime 62
4.2 The Shimura class 64
4.3 Construction of derived Hecke operators 66
4.4 The conjecture 67
V. Archimedean Realization of the Motivic Action 72
5.1 Partial complex conjugation operators and Harris' period invariants 73
5.2 The action 76
5.3 The conjectures 78
VI. Evidence: Stark's Conjecture 81
6.1 Action of top degree elements 81
6.2 Further evidence 86
VII. Evidence: Base Change Forms 91
7.1 Stark units for base change forms 92
7.2 Consequences of Conjecture 5.3.2 95
7.3 Embedded Hilbert modular varieties 96
7.4 The case of real quadratic extensions 97
7.5 Computing the integrals numerically 102
$7.6 \quad q$-expansions at other cusps 109
7.6.1 Explicit formula, following [2] 110
7.6.2 Numerical method, following [12] 118
7.7 Numerical evidence 120
7.7.1 Modular forms associated with cubic extensions 120
7.7.2 Weight one form of level 47 121
VIII. Comparison to Prasanna-Venkatesh 124
BIBLIOGRAPHY 129

LIST OF TABLES

Table

$$
\begin{aligned}
& \text { 7.7.1 This table presents constants } c \text { such that equation }(7.7 .1) \text { holds for the unit } u \text { and } \\
& \text { the base change to } \mathbb{Q}(\sqrt{d}) \text { of the modular form of level } N \text { associated with the } \\
& \text { polynomial } P(x) \text {. We give the lmfdb.org label of the modular form. The time } \\
& \text { taken to perform the computation with at least } 15 \text { digits of accuracy is displayed } \\
& \text { in the format hh:mm:ss. } 121 \\
& \text { This table presents constants } c \text { such that equation }(7.7 .1) \text { holds for the unit } u_{f_{0}} \\
& \text { and the base change to } \mathbb{Q}(\sqrt{d}) \text { of the modular form } f_{0} \text { of level } 47 \text {. The time taken } \\
& \text { to perform the computation with at least } 15 \text { digits of accuracy is displayed in the } \\
& \text { format hh:mm:ss. } 123
\end{aligned}
$$

Abstract

We propose an action of a certain motivic cohomology group on the coherent cohomology of Hilbert modular varieties, extending conjectures of Venkatesh, Prasanna, and Harris. The action is described in two ways: on cohomology modulo p and over \mathbb{C}, and we conjecture that they both lift to an action on cohomology with integral coefficients. The conjecture is supported by theoretical evidence based on Stark's conjecture on special values of Artin L-functions, and by numerical evidence in base change cases.

CHAPTER I

Introduction

The goal of this thesis is to explore the connection between two seemingly distant mathematical theories: the theory of algebraic cycles and the Langlands program. The guiding question we consider is:

Can"symmetries" in the Langlands program be explained from the point of view of algebraic cycles?

We start the introduction by informally explaining what we mean by algebraic cycles, the Langlands program, and why the two should be connected. We then explain how the motivic action conjectures give a positive answer to the above question for a particular type of "symmetry" - the multiple contributions of an automorphic form to cohomology.

This naturally leads to the question:

Can the multiple contributions of a Hilbert modular form to coherent cohomology be explained by the presence of a certain unit group?
which is answered by the conjectures presented in this thesis.

1.1 Algebraic cycles and the Langlands program

The purpose of this section of the introduction is to give broader context for the results of this thesis. For the sake of brevity, we do not give precise statements or references to the literature.

1.1.1 The Hodge and Tate conjectures

The theory of algebraic cycles goes back to the Hodge conjecture (1930-40) in complex algebraic geometry. In simple terms, it asserts that basic topological information about a geometric object X (a complex algebraic variety) can be understood in terms of its subsets Z cut out by polynomial equations (algebraic cycles). The precise conjecture is stated in terms of Hodge theory:

$$
\begin{equation*}
\underbrace{H^{2 k}(X, \mathbb{Q}) \cap H^{k, k}(X)}_{\text {Hodge cycles }} \text { is spanned by algebraic cycles } Z \subseteq X . \tag{1.1.1}
\end{equation*}
$$

Resolving this conjecture is one of the Millennium Prize Problems.
The Tate conjecture (1963) gives an arithmetic analogue - for a variety defined over the rational numbers, it asserts that the Galois-invariants of its étale cohomology are exhausted by algebraic cycles:

$$
\begin{equation*}
\underbrace{H_{\text {et }}^{2 k}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(k)\right)^{\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}}_{\text {Tate cycles }} \text { is spanned by algebraic cycles } Z \subseteq X . \tag{1.1.2}
\end{equation*}
$$

1.1.2 Maps between cohomology groups

Given a map between the cohomology of two algebraic varieties X_{1}, X_{2} :

$$
\begin{equation*}
H^{k_{1}}\left(X_{1}, \mathbb{Q}\right) \rightarrow H^{k_{2}}\left(X_{2}, \mathbb{Q}\right) \tag{1.1.3}
\end{equation*}
$$

we get a class in:

$$
H^{k_{1}}\left(X_{1}, \mathbb{Q}\right) \otimes H^{k_{2}}\left(X_{2}, \mathbb{Q}\right)^{\vee} \cong H^{k_{1}}\left(X_{1}, \mathbb{Q}\right) \otimes H^{2 \operatorname{dim} X_{2}-k_{2}}\left(X_{2}, \mathbb{Q}\right) \quad \text { Poincaré duality }
$$

$$
\subseteq H^{k_{1}+2 \operatorname{dim} X_{2}-k_{2}}\left(X_{1} \times X_{2}, \mathbb{Q}\right) \quad \text { Künneth's formula. }
$$

If $2 k=k_{1}+2 \operatorname{dim} X_{2}-k_{2}$ for some k (e.g. $\operatorname{dim} X_{1}=\operatorname{dim} X_{2}=k_{1}=k_{2}=k$) and the resulting class lies in $H^{k, k}\left(X_{1} \times X_{2}\right)$, the Hodge conjecture (1.1.1) predicts that:

$$
\begin{equation*}
H^{k_{1}}\left(X_{1}, \mathbb{Q}\right) \rightarrow H^{k_{2}}\left(X_{2}, \mathbb{Q}\right) \text { is given by an algebraic cycle } Z \subseteq X_{1} \times X_{2} \tag{1.1.4}
\end{equation*}
$$

Similarly, if we have a map between étale cohomology groups:

$$
\begin{equation*}
H_{\mathrm{et}}^{k_{1}}\left(X_{1, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(j_{1}\right)\right) \rightarrow H_{\mathrm{ett}}^{k_{2}}\left(X_{2, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(j_{2}\right)\right), \tag{1.1.5}
\end{equation*}
$$

we get a class in:

$$
\begin{aligned}
& H_{\mathrm{et}}^{k_{1}}\left(X_{1, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(j_{1}\right)\right) \otimes H_{\mathrm{ett}}^{k_{2}}\left(X_{2, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(j_{2}\right)\right)^{\vee} \\
& \quad \cong H_{\mathrm{ett}}^{k_{1}}\left(X_{1, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(j_{1}\right)\right) \otimes H_{\mathrm{ett}}^{2 \operatorname{dim} X_{2}-k_{2}}\left(X_{2, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(\operatorname{dim} X_{2}-j_{2}\right)\right) \\
& \quad \subseteq H_{\mathrm{et}}^{k_{1}+2 \operatorname{dim} X_{2}-k_{2}}\left(\left(X_{1} \times X_{2}\right)_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(j_{1}+\operatorname{dim} X_{2}-j_{2}\right)\right) \quad \text { Poincaré duality } \\
& \text { Künneth's formula. }
\end{aligned}
$$

If $k_{1}-k_{2}=2\left(j_{1}-j_{2}\right)$ (e.g. $k_{1}=k_{2}$ and $\left.j_{1}=j_{2}=0\right)$ and the map is Galoisequivariant, then the Tate conjecture (1.1.2) predicts that:
$H_{\text {ett }}^{k_{1}}\left(X_{1, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(j_{1}\right)\right) \rightarrow H_{\text {ett }}^{k_{2}}\left(X_{2, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\left(j_{2}\right)\right)$ is given by an algebraic cycle $Z \subseteq X_{1} \times X_{2}$.

1.1.3 The Langlands program

The Langlands program is a web of conjectures that connects the theory of automorphic forms and Galois representations. Perhaps its most famous instance is Wiles' modularity theorem, which says that each rational elliptic curve has an associated modular form f of weight two; indeed, this led to the proof of one of the biggest open problems in number theory: Fermat's Last Theorem. In fact, the elliptic curve associated with f may be realized using the Jacobian of an associated Shimura curve X, and the resulting Galois representation is $H_{\text {ett }}^{1}\left(X, \mathbb{Q}_{\ell}\right)_{f}$, where the subscript f denotes the f-isotypic component under the action of the Hecke algebra.

Within the Langlands program, the functoriality principle predicts the existence of maps between the cohomology of certain symmetric spaces. This leads to the fundamental question:

Can the Langlands functoriality principle be realized by algebraic cycles?

For example, the Jacquet-Langlands functoriality for two d-dimensional quaternionic Shimura varieties X_{1} and X_{2} gives an isomorphism

$$
\begin{equation*}
H_{\mathrm{et}}^{d}\left(X_{1, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right)_{f} \cong H_{\mathrm{et}}^{d}\left(X_{2, \overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}\right)_{f} . \tag{1.1.7}
\end{equation*}
$$

As explained above (1.1.6), the Tate conjecture predicts that such a map is given by an algebraic cycle on the product $X_{1} \times X_{2}$. Let us mention that Yichao Tian and Liang Xiao [74] constructed the relevant algebraic cycles modulo p, while Atsushi Ichino and Kartik Prasanna [37] constructed a Hodge class which gives rise to these isomorphisms. According to the Hodge conjecture (1.1.4), such a Hodge class should also come from an algebraic cycle (in characteristic 0).

In simple terms, the isomorphism (1.1.7) means that f occurs in the étale cohomology of both X_{1} and X_{2}. Therefore, the aforementioned results suggest that the occurrence of f in the cohomology of multiple varieties is closely related to the existence of an algebraic cycle on their product.

1.2 Motivic action conjectures

This naturally leads to the question of whether other aspects of the Langlands program are related to algebraic cycles. For example, instead of considering the contributions of an automorphic form f to the cohomology of two different varieties X_{1} and X_{2}, we may consider a single variety X (or, more generally, a locally symmetric space) and ask whether f makes multiple contributions to the cohomology of X.

Can the multiple contributions of an automorphic form to cohomology be explained from the point of view of algebraic cycles?

Akshay Venkatesh and his collaborators (Soren Galatius, Michael Harris, Kartik Prasanna) proposed a series of conjectures which give an affirmative answer to this question in various settings. The connection lies quite deep: they proposed that a hidden degree-shifting action of a motivic cohomology group (an object from the realm of algebraic cycles) explains all the contributions.

For singular cohomology of locally symmetric spaces, this action was realized in two ways: over the complex numbers [60] and the p-adic numbers [79]; and conjectured to come from the same rational action. It has a remarkable connection [22] with Galois deformation theory and the recent modularity lifting theorem of CalegariGeraghty [9].

Perhaps a simpler example to consider comes from modular forms of weight one which contribute to degrees 0 and 1 of coherent cohomology. In this case, an action of a Stark unit group (which is an example of a motivic cohomology group) was constructed modulo p^{n} via derived Hecke operators and conjectured to lift to an integral action [31].

For a general introduction to this subject, see [77, 78].

1.3 The results of the thesis

In this thesis, we tackle the above question for the coherent cohomology of the Hodge bundle on Hilbert modular varieties. We give an analogous conjecture which connects the Stark unit group to the contributions to coherent cohomology of a Hilbert modular form of parallel weight one.

1.3.1 Formulation of the conjectures

To give a more precise statement, we first set up some notation. Let F be a totally real extension of \mathbb{Q} of degree d and let f be a parallel weight one, cuspidal, normalized Hilbert modular eigenform for F, with Fourier coefficients in the ring of integers \mathcal{O}_{E} of a number field E. One can identify f with a section of the Hodge bundle ω on a Hilbert modular variety X :

$$
f \in H^{0}(X, \omega) \otimes \mathcal{O}_{E}
$$

More specifically, we consider an integral model X of the toroidal compactification of the open Hilbert modular variety with good reduction away from primes dividing the discriminant of F and the conductor of f. While this choice is not canonical, the resulting cohomology groups are independent of the choice of X.

The action of the Hecke algebra extends to higher cohomology groups $H^{i}(X, \omega) \otimes$ \mathcal{O}_{E} and we may consider the subspace on which the Hecke algebra acts with the same eigenvalues as on f, which we denote by $H^{i}(X, \omega)_{f}$. It follows from [72] that

$$
\begin{equation*}
\operatorname{rank} H^{i}(X, \omega)_{f}=\binom{d}{i} \tag{1.3.1}
\end{equation*}
$$

(c.f. Corollary 2.3.5). There is a motivic cohomology group U_{f} associated with f, which is an \mathcal{O}_{E}-module of $\operatorname{rank} d=[F: \mathbb{Q}]$ (Corollary 3.3.2); explicitly, it is the Stark unit group [71] for the trace zero adjoint representation of f. We conjecture that there is a degree-shifting action of its dual U_{f}^{\vee} on the cohomology space $H^{*}(X, \omega)_{f}$ which makes $H^{*}(X, \omega)_{f}$ a module of rank one over the exterior algebra $\bigwedge^{*} U_{f}^{\vee}$, generated by $f \in H^{0}(X, \omega)_{f}$.

We can describe this action in two ways: modulo p and over \mathbb{C}. Let \mathfrak{p} be a prime of $\mathcal{O}_{E}, n \geq 1$ be an integer, and $\iota: E \hookrightarrow \mathbb{C}$ be an embedding. We show that there is:
(1) a map

$$
\bigoplus_{j=1}^{d} U_{f, j}^{\mathfrak{p}^{n}} \rightarrow U_{f}^{\vee} \otimes \mathcal{O}_{E} / \mathfrak{p}^{n}
$$

for some free $\mathcal{O}_{E} / \mathfrak{p}^{n}$-modules $U_{f, j}^{\mathfrak{p}^{n}}$ of rank one (Proposition 4.1.4), and define an action of $U_{f, j}^{\mathfrak{p}^{n}}$ on $H^{*}(X, \omega)_{f} \otimes \mathcal{O}_{E} / \mathfrak{p}^{n}$ by derived Hecke operators (Definition 4.3.1),
(2) an isomorphism

$$
\bigoplus_{j=1}^{d} U_{f, j}^{\mathbb{C}} \stackrel{\cong}{\rightrightarrows} U_{f}^{\vee} \otimes \mathbb{C}
$$

for some one-dimensional \mathbb{C}-vector spaces $U_{f, j}^{\mathbb{C}}$ (Proposition 5.2.2), and define an action of $U_{f, j}^{\mathbb{C}}$ on $H^{*}(X, \omega)_{f} \otimes \mathbb{C}$ by partial complex conjugation $z_{j} \mapsto \overline{z_{j}}$ (Definition 5.2.4).

The following conjecture predicts that these actions come from a single "motivic" action that is defined rationally or even integrally.

Conjecture 1.3.1 (Conjectures 4.4.1, 5.3.1). There is a graded action \star of the exterior algebra $\bigwedge^{*} U_{f}^{\vee}$ on $H^{*}(X, \omega)_{f}$ such that:
(1) the action of $\bigwedge^{*} U_{f}^{\vee} \otimes \mathcal{O}_{E} / \mathfrak{p}^{n}$ is the same as that in ((1)) above, up to $\mathrm{GL}_{d}\left(\mathcal{O}_{E}\right)$ ambiguity,
(2) the action of $\bigwedge^{*} U_{f}^{\vee} \otimes \mathbb{C}$ is the same as that in ((2)) above, up to $\mathrm{GL}_{d}(E)$ ambiguity.

Moreover, $H^{*}(X, \omega)_{f}$ is generated by $f \in H^{0}(X, \omega)_{f}$ over $\bigwedge^{*} U_{f}^{\vee}$.

The conjectures will be stated precisely in the main body of the thesis.
Part (1) is a generalization of the main conjecture of Harris and Venkatesh [31, Conjecture 3.1]. It should be seen as a first step towards establishing a p-adic conjecture, similar to Venkatesh's conjecture [79]. In fact, our original motivation to study
the Stark unit group U_{f} for Hilbert modular forms was to generalize the conjecture of Darmon-Lauder-Rotger [15] to elliptic curves over totally real fields. A p-adic version of Conjecture 1.3.1 may explain the appearance of p-adic logarithms of Stark units therein.

Part (2) is similar to the main conjecture of Prasanna and Venkatesh [60, Conjecture 1.2.1] but in the coherent (as opposed to singular) cohomology setting. We discuss the precise relationship in Chapter VIII. As far as we know, it is new even when $F=\mathbb{Q}$. In the Hilbert case, it is also closely related to the study of period invariants attached to Hilbert modular forms at the infinite places. Such period invariants had previously been defined by Shimura [68, 70], Harris [29, 28, 30], and Ichino-Prasanna [38] in cases where the weight of f is at least two at some of the infinite places. The parallel weight one case is different because the form does not transfer to a quaternion algebra ramified at any infinite place, so the periods at infinite places do not admit a simple interpretation as periods of a holomorphic differential form on a Shimura curve, or even as ratios of periods of holomorphic forms on quaternionic Shimura varieties. Instead, we give specific linear combinations of the higher coherent cohomology classes which we expect to be rational in coherent cohomology. The expressions involve logarithms of units which is natural because the adjoint L-value is non-critical at $s=1$ in this case, so one should expect the periods to be of "Beilinson-type".

Part (2) of the conjecture admits a natural generalization to partial weight one Hilbert modular forms, which we discuss in Chapter VIII. In that case, however, the motivic cohomology group in question does not admit an interpretation as a unit group.

These conjectures lead to many interesting questions about potential generaliza-
tions to other reductive groups which we are currently pursing elsewhere. We were also recently made aware of the forthcoming work of Gyujin Oh on this topic.

Next, we give a more explicit versions of Conjecture 1.3.1 in the cases $[F: \mathbb{Q}]=1$ and $[F: \mathbb{Q}]=2$ and summarize our evidence for them. For simplicity, we assume that the automorphic representation associated with f is not supercuspidal at $p=2$ (this assumption avoids a potential factor of $\sqrt{2}$ and we expect it to be unnecessary; see Remark 6.1.10).

1.3.2 The case $[F: \mathbb{Q}]=1$: modular curves.

When $[F: \mathbb{Q}]=1, X$ is a modular curve and f is a classical modular form of weight one. This is the situation considered by Harris-Venkatesh [31] and Conjecture 1.3.1 (1) specializes to their conjecture. Conjecture 1.3.1 (2) is its archimedean version and follows from Stark's conjecture on special values of Artin L-functions.

Theorem 1.3.2 (Corollary 6.1.4). Let f be a modular form of weight one. If f does not have CM or the Fourier coefficients of f are not rational, assume Stark's conjecture 3.2.2. Then Conjecture 1.3.1 (2) is true and has the following explicit form: there is an action \star of $\bigwedge^{*} U_{f}^{\vee} \otimes E$ on $H^{*}(X, \omega)_{f}$ such that given $u_{f}^{\vee} \in U_{f}^{\vee}$, the action:

$$
H^{0}(X, \omega)_{f} \xrightarrow{u_{f}^{\vee}} H^{1}(X, \omega)_{f}
$$

is given by:

$$
f \mapsto \frac{\omega_{f}^{\infty}}{\log \left|u_{f}\right|},
$$

where:

$$
\omega_{f}^{\infty}=f(-\bar{z}) y \frac{d z \wedge d \bar{z}}{y^{2}} \in H^{1}\left(X_{\mathbb{C}}, \omega\right)_{f}
$$

and $u_{f} \in U_{L}$ is a unit in the splitting field L of the adjoint Artin representation of f, associated with u_{f}^{\vee}.

In fact, the rationality of $\frac{\omega_{f}^{\infty}}{\log \left|u_{f}\right|}$ is equivalent to Stark's conjecture for the trace 0 adjoint representation of f.

1.3.3 The case $[F: \mathbb{Q}]=2$: Hilbert modular surfaces.

When $[F: \mathbb{Q}]=2, X$ is a Hilbert modular surface and f is a Hilbert modular form in two variables z_{1}, z_{2}. We give an explication of Conjecture 1.3.1 (2) in this case and summarize our evidence for it.

Corollary 2.3.5 gives an explicit basis for $H^{*}(X, \omega)_{f} \otimes \mathbb{C}$:

$$
\begin{gathered}
f \in H^{0}(X, \omega)_{f} \\
\omega_{f}^{\sigma_{1}}, \omega_{f}^{\sigma_{2}} \in H^{1}(X, \omega)_{f} \otimes \mathbb{C} \\
\omega_{f}^{\sigma_{1}, \sigma_{2}} \in H^{2}(X, \omega)_{f} \otimes \mathbb{C}
\end{gathered}
$$

where we choose a fundamental unit ϵ such that $\epsilon_{1}<0, \epsilon_{2}>0$ and let:

$$
\begin{align*}
\omega_{f}^{\sigma_{1}} & =f\left(\epsilon_{1} \overline{z_{1}}, \epsilon_{2} z_{2}\right) y_{1} \frac{d z_{1} \wedge d \overline{z_{1}}}{y_{1}^{2}} \tag{1.3.2}\\
\omega_{f}^{\sigma_{2}} & =f\left(\epsilon_{2} z_{1}, \epsilon_{1} \overline{z_{2}}\right) y_{2} \frac{d z_{2} \wedge d \overline{z_{2}}}{y_{2}^{2}} \tag{1.3.3}\\
\omega_{f}^{\sigma_{1}, \sigma_{2}} & =f\left(-\overline{z_{1}},-\overline{z_{2}}\right) y_{1} y_{2} \frac{d z_{1} \wedge d \overline{z_{1}}}{y_{1}^{2}} \frac{d z_{2} \wedge d \overline{z_{2}}}{y_{2}^{2}} . \tag{1.3.4}
\end{align*}
$$

Conjecture 1.3.1 (2) gives explicit linear combinations of these cohomology classes which should be E-rational in cohomology. Specifically, there are four units

$$
u_{11}, u_{12}, u_{21}, u_{22} \in U_{L} \otimes E
$$

in the splitting field L of the adjoint Artin representation of f, and we can form the Stark regulator matrix:

$$
R_{f}=\left(\begin{array}{ll}
\log \left|\tau\left(u_{11}\right)\right| & \log \left|\tau\left(u_{12}\right)\right| \\
\log \left|\tau\left(u_{21}\right)\right| & \log \left|\tau\left(u_{22}\right)\right|
\end{array}\right)
$$

where $\tau: L \hookrightarrow \mathbb{C}$ is a complex embedding of L. We show that there is an explicit basis $u_{1}^{\vee}, u_{2}^{\vee}$ of $U_{f}^{\vee} \otimes E$ such that the action of u_{1}^{\vee} and u_{2}^{\vee} is explicitly given by:

$$
\begin{align*}
& u_{1}^{\vee} \star f=\frac{\log \left|\tau\left(u_{22}\right)\right| \cdot \omega_{f}^{\sigma_{1}}-\log \left|\tau\left(u_{21}\right)\right| \cdot \omega_{f}^{\sigma_{2}}}{\operatorname{det} R_{f}} \in H^{1}(X, \omega)_{f} \otimes \mathbb{C}, \tag{1.3.5}\\
& u_{2}^{\vee} \star f=\frac{-\log \left|\tau\left(u_{12}\right)\right| \cdot \omega_{f}^{\sigma_{1}}+\log \left|\tau\left(u_{11}\right)\right| \cdot \omega_{f}^{\sigma_{2}}}{\operatorname{det} R_{f}} \in H^{1}(X, \omega)_{f} \otimes \mathbb{C} \tag{1.3.6}
\end{align*}
$$

and the action of $u_{1}^{\vee} \wedge u_{2}^{\vee}$ is given by:

$$
\begin{equation*}
\left(u_{1}^{\vee} \wedge u_{2}^{\vee}\right) \star f=\frac{\omega_{f}^{\sigma_{1}, \sigma_{2}}}{\operatorname{det} R_{f}} \in H^{2}(X, \omega)_{f} \otimes \mathbb{C} \tag{1.3.7}
\end{equation*}
$$

We then have the following explicit version of Conjecture 1.3.1 (2) for $[F: \mathbb{Q}]=2$.
Conjecture 1.3.3 (Conjecture 5.3.2).
(a) A basis of $H^{1}(X, \omega)_{f}$ is given by:

$$
\begin{gathered}
\frac{\log \left|\tau\left(u_{22}\right)\right| \cdot \omega_{f}^{\sigma_{1}}-\log \left|\tau\left(u_{21}\right)\right| \cdot \omega_{f}^{\sigma_{2}}}{\operatorname{det} R_{f}} \\
-\log \left|\tau\left(u_{12}\right)\right| \cdot \omega_{f}^{\sigma_{1}}+\log \left|\tau\left(u_{11}\right)\right| \cdot \omega_{f}^{\sigma_{2}} \\
\operatorname{det} R_{f}
\end{gathered}
$$

(b) A basis of $H^{2}(X, \omega)_{f}$ is given by:

$$
\frac{\omega_{f}^{\sigma_{1}, \sigma_{2}}}{\operatorname{det} R_{f}}
$$

A previous version of the manuscript incorrectly assumed that the matrix of the isomorphism $U_{f}^{\vee} \otimes \mathbb{C} \cong \bigoplus_{j=1}^{d} U_{f, j}^{\mathbb{C}}$ is diagonal in certain natural bases. This led to a different rationality statement, namely that some multiples of $\omega_{f}^{\sigma_{1}}$ and $\omega_{f}^{\sigma_{2}}$ are rational. We would like to thank the anonymous referee for the previous version and Gyujin Oh for pointing out that this claim may be false in general.

1.3.4 Theoretical evidence

We next summarize our evidence for this conjecture. The theoretical evidence in the case $[F: \mathbb{Q}]=2$ is summarized in the following theorem.

Theorem 1.3.4 (Corollary 6.2.6, Corollary 6.1.3). If the Fourier coefficients of f are not rational, assume Stark's conjecture 3.2.2.
(a) The determinant of the basis $u_{1}^{\vee} \star f, u_{2}^{\vee} \star f$ is E-rational, i.e.

$$
\left(u_{1}^{\vee} \star f\right) \wedge\left(u_{2}^{\vee} \star f\right) \in \wedge^{2} H^{1}(X, \omega)_{f} \subseteq \wedge^{2} H^{1}(X, \omega)_{f} \otimes \mathbb{C} .
$$

(b) The cohomology class $\left(u_{1}^{\vee} \wedge u_{2}^{\vee}\right) \star f$ is E-rational, i.e. belongs to $H^{2}(X, \omega)_{f}$.

In fact, the rationality of $\left(u_{1}^{\vee} \wedge u_{2}^{\vee}\right) \star f$ is equivalent to Stark's conjecture for the trace 0 adjoint representation of f. Therefore, we may think of Conjecture 1.3.3 as a refinement of Stark's conjecture for this representation. We thank Samit Dasgupta for suggesting this phrasing.

See Chapter VI for generalizations of these results and further evidence in the case $[F: \mathbb{Q}]>2$.

1.3.5 Numerical evidence

The next goal of the thesis is to verify the rationality of the classes

$$
\begin{equation*}
u_{1}^{\vee} \star f, u_{2}^{\vee} \star f \in H^{1}(X, \omega)_{f} \otimes \mathbb{C} \tag{1.3.8}
\end{equation*}
$$

numerically. These cohomology classes are a linear combination of $\omega_{f}^{\sigma_{1}}, \omega_{f}^{\sigma_{2}}$, which are defined in equations (1.3.2), (1.3.3) as Dolbeault classes. We identify them with sheaf cohomology classes via the Dolbeault and the GAGA theorems. To check that they are E-rational is to show that the resulting sheaf cohomology classes come from base change of cohomology classes in $H^{1}(X, \omega)_{f}$. The translation between Dolbeault and sheaf cohomology is not explicit enough to yield a satisfactory criterion for rationality. Worse yet, there seems to be no natural automorphic criterion to verify rationality. Indeed, the integral representations of Rankin-Selberg or triple product L-functions for Hilbert modular forms only involve cohomology classes ω_{f}^{J} where J
is the set of places where f is dominant (see [28] for details). Since parallel weight one forms are never dominant at any place, the cohomology classes we are interested in do not feature in these integral representations.

Instead, we consider an embedded modular curve ι : $C \hookrightarrow X$ and check computationally in some cases that the restriction of $u_{i}^{\vee} \star f$ for $i=1,2$ to C is rational, i.e.

$$
\begin{equation*}
\iota^{*}\left(u_{i}^{\vee} \star f\right) \in H^{1}\left(C, \iota^{*} \omega\right) \otimes E \tag{1.3.9}
\end{equation*}
$$

The drawback of this approach is that this restriction is non-zero only if the Hilbert modular form f is the base change of a modular form over \mathbb{Q} (see, for example, Proposition 7.4.3). Let us hence assume that f is the base change of a weight one modular form f_{0}. Then Conjecture 1.3.3 (a) can be restated in the simpler form (Conjecture 7.2.2): the classes

$$
\begin{align*}
& \frac{\omega_{f}^{\sigma_{1}}+\omega_{f}^{\sigma_{2}}}{\log \left|u_{f_{0}}\right|} \in H^{1}(X, \omega)_{f} \otimes \mathbb{C}, \tag{1.3.10}\\
& \frac{\omega_{f}^{\sigma_{1}}-\omega_{f}^{\sigma_{2}}}{\log \left|u_{f_{0}}^{F}\right|} \in H^{1}(X, \omega)_{f} \otimes \mathbb{C} \tag{1.3.11}
\end{align*}
$$

belong to the rational structure $H^{1}(X, \omega)_{f}$, where $u_{f_{0}}$ is the unit associated with the adjoint representation of f_{0} and $u_{f_{0}}^{F}$ is a unit associated with a twist of the adjoint representation of f_{0}. Finally, we check that this conjecture is equivalent to the single rationality statement:

$$
\begin{equation*}
\frac{\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)}{\log \left|u_{f_{0}}\right|} \in H^{1}\left(C, \iota^{*} \omega\right) \otimes E \subseteq H^{1}\left(C, \iota^{*} \omega\right) \otimes \mathbb{C} \tag{1.3.12}
\end{equation*}
$$

as long as $\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right) \neq 0$ (c.f. Conjecture 7.4.2, Proposition 7.4.5).
We develop an algorithm to compute the trace of this cohomology class, i.e. an integral on the modular curve $C(\mathbb{C})$ (see Conjecture 7.4.2). We use results of Nelson [56] to derive an expression for this integral (Theorem 7.5.4) which may be of
independent interest. To use it, we give explicit formulas for the q-expansion of f at other cusps when the level of f is square-free (Theorem 7.6.2), generalizing results of Asai [2]. Finally, we compute the integral numerically up to at least 15 digits of accuracy to give evidence for equation (1.3.12) in several cases (Tables 7.7.1, 7.7.2).

1.4 Organization

The manuscript is organized as follows.

- Chapter II defines Hilbert modular forms (classically and adelically) and discusses their contributions to coherent cohomology.
- Chapter III discusses Stark's conjecture, introduces the unit group U_{f}, computes its rank, and gives a relation to a motivic cohomology group.
- Chapter IV introduces the derived Hecke action and the generalization of the conjecture of Harris and Venkatesh [31] to the Hilbert modular case (Conjecture 1.3.1 (1)).
- Chapter V introduces partial complex conjugation operators on cohomology and the archimedean conjectures (Conjectures 1.3.1(2) and 1.3.3).
- Chapter VI discusses how the results of Stark and Tate give evidence for the archimedean conjecture, proving Theorems 1.3.2 and 1.3.4.
- Chapter VII discusses base change cases, proves Theorems 7.5.4 and 7.6.2, and provides numerical evidence for the archimedean conjecture.
- Chapter VIII explains how Conjecture 1.3 .1 (2) fits in the framework of PrasannaVenkatesh [60] and gives a version of this conjecture for partial weight one Hilbert modular forms.

Chapters IV and V are independent of one another and hence may be read in any order. The reader who wants to understand the full statements of the two conjectures as fast as possible may just skim Section 3.3 and proceed directly to these two sections.

CHAPTER II

Hilbert Modular Forms

The goal of this chapter is to introduce both Hilbert modular forms, explain their interpretation as sections of automorphic sheaves on Hilbert modular varieties, and compute the higher cohomology of these sheaves.

2.1 Classical Hilbert modular forms

We refer to $[26,76,21]$ for surveys of classical Hilbert modular forms. Let F be a totally real field of degree d. For simplicity, we assume that F has narrow class number one. Let \mathfrak{D} be the different ideal of the field F.

We let $\left\{\sigma_{1}, \ldots, \sigma_{d}\right\}$ be the embeddings $F \hookrightarrow \mathbb{R}$. We consider the group $\operatorname{GL}\left(\mathcal{O}_{F} \oplus\right.$ $\left.\mathfrak{D}^{-1}\right)^{+}$defined by:

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(F) \right\rvert\, a \in \mathcal{O}_{F}, b \in \mathfrak{D}^{-1}, c \in \mathfrak{D}, d \in \mathcal{O}_{F}, a d-b c \in \mathcal{O}_{F}^{\times,+}\right\}
$$

and let Γ be a congruence subgroup. Each embedding $\sigma_{j}: F \rightarrow \mathbb{R}$ gives rise to an embedding

$$
\sigma_{j}: \operatorname{GL}\left(\mathcal{O}_{F} \oplus \mathfrak{D}^{-1}\right)^{+} \hookrightarrow \mathrm{GL}_{2}(\mathbb{R})^{+}
$$

For $x \in F$, we will write $x_{i}=\sigma_{i}(x)$ and similarly $\gamma_{i}=\sigma_{i}(\gamma)$. Altogether, this gives
an action of Γ on \mathcal{H}^{d} by:

$$
\gamma\left(z_{1}, \ldots, z_{d}\right)=\left(\gamma_{1} z_{1}, \ldots, \gamma_{d} z_{d}\right) .
$$

Definition 2.1.1. The open Hilbert modular surface $Y(\Gamma)$ for the congruence subgroup Γ is the quotient $\Gamma \backslash \mathcal{H}^{d}$. For $\Gamma=\Gamma_{1}(\mathfrak{N})$ and $\Gamma=\Gamma_{0}(\mathfrak{N})$, we write $Y_{1}(\mathfrak{N})$ and $Y_{0}(\mathfrak{N})$, respectively.

Given a matrix $\gamma_{\infty}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})^{+}$, we define

$$
\begin{equation*}
j\left(\gamma_{\infty}, z\right)=(c z+d) \operatorname{det} \gamma_{\infty}^{-1 / 2} \tag{2.1.1}
\end{equation*}
$$

Moreover, for a vector $\underline{k}=\left(k_{1}, \ldots, k_{d}\right)$, we define:

$$
\begin{equation*}
j_{\underline{k}}(\gamma, z)=\prod_{i=1}^{d} j\left(\gamma_{i}, z_{i}\right)^{k_{i}} . \tag{2.1.2}
\end{equation*}
$$

Finally, given a function $f: \mathcal{H}^{d} \rightarrow \mathbb{C}$ and $\gamma \in \operatorname{GL}\left(\mathcal{O}_{F} \oplus \mathfrak{D}^{-1}\right)^{+}$, we put

$$
\left.j\right|_{\underline{k}} \gamma(z)=j_{\underline{k}}(\gamma, z)^{-1} f(\gamma z) .
$$

Definition 2.1.2. We fix a weight \underline{k} and a congruence subgroup Γ.
(1) Suppose that a holomorphic function $f: \mathcal{H}^{d} \rightarrow \mathbb{C}$ satisfies $\left.f\right|_{\underline{\underline{\gamma}}} \gamma=f$ for all $\gamma \in \Gamma$.

Consider the module

$$
M=M_{\Gamma}=\left\{a \in F \left\lvert\,\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \in \Gamma\right.\right\} \subseteq F
$$

and note that f is invariant by these matrices, and hence possesses a q-expansion:

$$
f(z)=\sum_{\nu \in M^{\vee}} a_{\nu} e^{2 \pi i \operatorname{Tr}(\nu z)}
$$

where M^{\vee} is the dual of M with respect to Tr and we use the notation

$$
\operatorname{Tr}(\nu z)=\nu_{1} z_{1}+\cdots \nu_{d} z_{d}
$$

(2) A holomorphic Hilbert modular form of weight \underline{k} and level Γ is a holomorphic function $f: \mathcal{H}^{d} \rightarrow \mathbb{C}$ such that $\left.f\right|_{\underline{k}} \gamma=f$ for all $\gamma \in \Gamma$, which is holomorphic at the cusps, i.e. if $g=\left.g\right|_{\underline{k}} \mu$ for some $\mu \in \mathrm{GL}_{2}(F)^{+}$, then the q-expansion of g satisfies $a_{\nu}=0$ unless $\nu=0$ or $\nu \gg 0$.

Note that when $\Gamma=\operatorname{GL}\left(\mathcal{O}_{F} \oplus \mathfrak{D}^{-1}\right)$, then $M \cong \mathfrak{D}^{-1}$ and the q-expansion is a sum over $M^{\vee} \cong \mathcal{O}_{F}$.

Remark 2.1.3. It is also possible to work with $\mathrm{GL}_{2}\left(\mathcal{O}_{F}\right)^{+}$instead of $\mathrm{GL}\left(\mathcal{O}_{F} \oplus \mathfrak{D}^{-1}\right)$, which only leads to a different normalization. For example, $M \cong \mathcal{O}_{F}$ and $M^{\vee} \cong \mathfrak{D}^{-1}$. More generally, one can work with $\operatorname{GL}\left(\mathcal{O}_{F} \oplus \mathfrak{A}\right)$ for any ideal \mathfrak{A} of F, as discussed in [26].

Theorem 2.1.4 (Koecher's principle, [26, Theorem 3.3]). Let $f(z)=\sum_{\nu \in M^{\vee}} a_{\nu} e^{2 \pi i \operatorname{Tr}(\nu z)}$ be a modular form of weight \underline{k} and level Γ. If $d>1$, then $a_{\nu} \neq 0$ implies $\nu \gg 0$ or $\nu=0$. In particular, if f is holomorphic on \mathcal{H}^{d}, then it is automatically holomorphic at the cusps.

Definition 2.1.5. A Hilbert modular form f with respect to Γ is a cusp form if the constant a_{0} in its q-expansion at a cusp corresponding to $\mu \in \mathrm{GL}_{2}(F)^{+}$is 0 .

2.2 Hilbert modular forms as sections of line bundles

In this section, we reinterpret Hilbert modular forms as sections of line bundles on the Hilbert modular variety, following [28]. We use the adelic language and translate this to the classical language at the end of the chapter. For a full adelic treatment of Hilbert modular forms, see Garrett's book [23].

Let $G=R_{F / \mathbb{Q}} \mathrm{GL}_{2, F}$ be the Weil restriction of scalars of $\mathrm{GL}_{2, F}$, and Z_{G} be its center.

Definition 2.2.1. An (automorphic) Hilbert modular form of weight (\underline{k}, r) for F, where $\underline{k}=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{N}_{>0}$ and $r \in \mathbb{Z}$ satisfies $k_{i} \equiv r(2)$ for $1 \leq i \leq d$, is an automorphic form φ on $G(\mathbb{Q}) \backslash G(\mathbb{A})$ such that
(1) $\varphi\left(z_{\infty} g\right)=N_{F / \mathbb{Q}}\left(z_{\infty}\right)^{r} \varphi(g)$ for $g \in G(\mathbb{A}), z_{\infty} \in Z_{G}(\mathbb{R})$,
(2) $\varphi\left(g r_{j}(\theta)\right)=e^{i k_{j} \theta} \cdot \varphi(g)$ for $g \in G(\mathbb{A})$ and $r_{j}(\theta)$ the rotation by θ matrix in the j th coordinate,
(3) $R\left(\mathfrak{p}^{-}\right) \varphi=0$, where \mathfrak{p}^{-}is the antiholomorphic tangent space to \mathcal{H}^{d} at (i, \ldots, i) and $R(\cdot)$ is the right regular action on functions of the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$.

In sections to follow, we will occasionally drop the r from the notation and just write \underline{k} for the weight for simplicity. Note that each index j corresponds to an infinite place σ_{j} of F.

We consider the Shimura variety Y associated with G, which is the Hilbert modular variety. It is defined over \mathbb{Q} and its \mathbb{C}-points are

$$
Y(\mathbb{C})=\lim _{K_{f}} G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{\infty}^{+} K_{f}
$$

where K_{f} runs over the set of open compact subgroups of $G\left(\mathbb{A}_{\mathrm{fin}}\right)$, and $K_{\infty}^{+}=\mathrm{SO}(2)^{d}$. We often fix the level K_{f} and consider

$$
Y(\mathbb{C})=G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_{\infty}^{+} K_{f}
$$

instead of the above tower of varieties. In the introduction, we denoted the integral model of its toroidal compactification (with fixed level structure) by X.

Modular forms of weight (\underline{k}, r) with $k_{j} \geq 2$ are cohomological (c.f. [46]), i.e. they appear in the de Rham cohomology of a local system on the Hilbert modular variety.

One may then define period invariants using rational de Rham cohomology, making them much easier to study (see, for example, [75]).

However, if at least one weight $k_{j}=1$, they seize to be cohomological and only appear in the cohomology of line bundles on the Shimura variety Y. Michael Harris developed this theory in more generality in [27] and specialized to the case of Hilbert modular forms in [28]. We mainly follow the second reference here.

Consider the representation

$$
\begin{aligned}
Z_{G}(\mathbb{R}) \cdot K_{\infty}^{+} & \rightarrow \mathbb{C} \\
z_{\infty}\left(r_{1}(\theta), \ldots, r_{d}(\theta)\right) & \mapsto N_{F / \mathbb{Q}}\left(z_{\infty}\right)^{-r} \prod_{j=1}^{d} e^{-i k_{j} \theta}
\end{aligned}
$$

which naturally extends to any conjugate P of $B=\left\{\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)\right\}$ in $G(\mathbb{C})$. We hence have a 1-dimensional representations

$$
\rho_{\underline{k}, r}: P \rightarrow L_{\underline{k}, r} .
$$

Let M be the homogeneous space G / B with the natural \mathbb{Q}-rational structure. The $G(\mathbb{R})$-orbit of the point of G / B corresponding to P is isomorphic to $(\mathbb{C} \backslash \mathbb{R})^{d}$, with P mapping to (i, \ldots, i).

We define the homogeneous line bundle $\mathcal{L}_{\underline{k}, r}$ as

where \sim is given by $(g p, v) \sim\left(g, \rho_{\underline{k}, r}(p) v\right)$. Any homogeneous section of this line bundle is a map

$$
\varphi: M \rightarrow L_{\underline{k}, r}
$$

such that

$$
\begin{aligned}
\left(z_{\infty} r(\theta) g, \varphi\left(z_{\infty} r(\theta) g\right)\right) & =\left(g, N_{F / \mathbb{Q}}\left(z_{\infty}\right)^{-r} \prod_{j=1}^{d} e^{-i k_{j} \theta} \varphi\left(z_{\infty} r(\theta) g\right)\right) \\
& =(g, \varphi(g))
\end{aligned}
$$

which shows that φ satisfies conditions (1) and (2) of the definition of a Hilbert modular forms of weight (\underline{k}, r), but is valued in $L_{\underline{k}, r}$ instead of \mathbb{C}.

Next, we descend the line bundle $\mathcal{L}_{\underline{k}, r}$ on M to a line bundle

$$
\mathcal{E}_{\underline{k}, r}=\left.G(\mathbb{Q})^{+} \backslash \mathcal{L}_{\underline{k}, r}\right|_{G^{+}} \times G\left(\mathbb{A}_{\text {fin }}\right) / K_{f}
$$

on $Y(\mathbb{C})$. Note that the system ${\underset{K}{K_{f}}}_{\lim } \mathcal{E}_{\underline{k}, r}$ gives a vector bundle on the entire Shimura tower. However, we usually focus on one fixed level structure K_{f}.

Remark 2.2.2. We identify here the two notions of line bundle on a manifold: a vector bundle of rank 1 and an invertible sheaf.

As discussed above, the global section of this line bundle are Hilbert modular forms of weight (\underline{k}, r). We summarize this in the following theorem.

Theorem 2.2.3 ([28, (1.2.5)]). Let $\mathcal{A}(\underline{k}, r)$ be the space of Hilbert modular forms of weight (\underline{k}, r) for F. Then there is an isomorphism:

$$
\underline{\operatorname{Lift}}_{\underline{k}, r}: H^{0}\left(Y(\mathbb{C}), \mathcal{E}_{\underline{k}, r}\right) \cong \mathcal{A}(\underline{k}, r)
$$

which depends only on the choice of trivialization trivialization

$$
\begin{equation*}
\underline{\operatorname{Triv}}_{\underline{k}, r}: L_{\underline{k}, r} \cong \mathbb{C} . \tag{2.2.1}
\end{equation*}
$$

Proof. This follows from the above discussion. Indeed, $H^{0}\left(Y(\mathbb{C}), \mathcal{E}_{\underline{k}, r}\right)$ is a priori identified $L_{\underline{k}, r}$-valued Hilbert modular forms, and $\underline{\operatorname{Triv}}_{\underline{k}, r}$ gives the describes isomorphism with $\mathcal{A}(\underline{k}, r)$.

We describe our choice of $\underline{\operatorname{Triv}}_{\underline{k}, r}$ next, but refer to [28, Section 1.3] for details.

Remark 2.2.4. Our choice of trivialization differs from Harris' by a power of ($2 \pi i$). Specifically, we choose $\underline{\operatorname{Triv}}_{\underline{k}, r}$ so that $\underline{\operatorname{Lift}}_{\underline{k}, r}$ identifies rational sections of $\mathcal{E}_{\underline{k}, r}$ with normalized Hilbert modular eigenform. In particular, this means that the analogous statement to $[28,(1.6 .4)]$ is simply $F^{\text {arith }}=F^{\text {norm }}$.

Recall that we chose a parabolic P above which maps to (i, \ldots, i) under the identification $G / B \cong(\mathbb{C} \backslash \mathbb{R})^{d}$, and we have the representation

$$
\rho_{\underline{k}, r}: P \rightarrow L_{\underline{k}, r} .
$$

Recall also that we have a line bundle $\mathcal{L}_{\underline{k}, r}$ on $G / B \cong M$, and P defines a point $h_{P} \in M$. Then $\mathcal{L}_{\underline{k}, r}$ is trivialized in a neighborhood $U \subseteq M$ of h_{P} and we let s be a rational section (for the rational structure on M) which trivializes it; finally, let $e_{\underline{k}, r}=s\left(h_{P}\right)$. We finally choose:

$$
\begin{equation*}
\underline{\operatorname{Triv}}\left(e_{\underline{k}, r}\right)=(2 \pi i)^{\frac{1}{2}\left(d r+\sum_{j=1}^{d} k_{j}\right)} . \tag{2.2.2}
\end{equation*}
$$

Let us elaborate on what this means. We first note that

$$
\Omega_{Y}^{1} \cong \bigoplus_{j=1}^{d} \mathcal{E}_{\underline{2}_{j}, 0}
$$

where $\underline{2}_{j}=(0, \ldots, 0,2,0 \ldots, 0)$ with the 2 at the j th place. In particular,

$$
\Omega_{Y}^{d} \cong \bigwedge^{d} \Omega_{Y}^{1} \cong \mathcal{E}_{\underline{2}, 0}
$$

where $\underline{2}=(2, \ldots, 2)$. In fact, there is a natural decomposition

$$
\Omega_{Y}^{1}=\bigoplus_{j=1}^{d} \Omega_{j}^{1}
$$

and $\Omega_{Y, j} \cong \mathcal{E}_{\underline{2}_{j}, 0}$.

Note that $d z_{j}$ is a $K_{G}(\mathbb{R}) \cdot K_{\infty}^{+}$eigenvector with eigenvalue corresponding to the sheaf $\mathcal{L}_{2_{j}, 0}$. We have chosen $\underline{\operatorname{Triv}}_{k, r}$ in equation (2.2.2) so that:

$$
\begin{aligned}
\operatorname{Lift}_{\underline{k}, r}: H^{0}\left(Y(\mathbb{C}), \mathcal{E}_{\underline{k}, r}\right) & \rightarrow \mathcal{A}(\underline{k}, r) \\
d z_{j} & \mapsto(2 \pi i) .
\end{aligned}
$$

Theorem 2.2.5 (Harris). The $G\left(\mathbb{A}_{\mathrm{fin}}\right)$-equivariant bundle $\mathcal{E}_{\underline{k}, r}$ is rational over $F(\underline{k})=$ $F^{\Gamma(\underline{k})}$, where $\Gamma(\underline{k})=\left\{\sigma \in G_{\mathbb{Q}} \mid \underline{k}^{\sigma}=\underline{k}\right\}$. Moreover, if f is a normalized Hilbert modular eigenform with coefficients in a number field E, then

$$
\underline{\operatorname{Lift}_{\underline{k}, r}^{-1}}(f) \in H^{0}\left(Y, \mathcal{E}_{\underline{k}, r}\right) \otimes E .
$$

Proof. The first part is [28, Corollary 1.2.9]. The second part follows from the q expansion principle as stated in [28, Proposition 1.3.3] and recalling that our choice of trivialization of the line bundle 2.2.2 differs from Harris' by a power of $(2 \pi i)$.

Throughout the rest of the thesis, we identify such f with the associated coherent cohomology class with this normalization.

2.3 Partial complex conjugation and higher sheaf cohomology

We now compute the higher cohomology of the automorphic line bundles $\mathcal{E}_{\underline{k}, r}$. In order to do that, we discuss Hilbert modular forms that are not holomorphic, which will come from partial complex conjugation [68, 28].

We define for a subset $I \subseteq \Sigma_{F}=\left\{\sigma_{1}, \ldots, \sigma_{d}\right\}$:

$$
H_{\pi}^{I}=\left\{\varphi \in H_{\pi} \mid R\left(\mathfrak{p}_{j}^{+}\right) \varphi=0 \text { for } \sigma_{j} \in I, R\left(\mathfrak{p}_{j}^{-}\right) \varphi=0 \text { for } \sigma_{j} \notin I\right\} .
$$

Equivalently, if we let

$$
\varphi^{I}(g)=\varphi\left(g J^{I}\right),
$$

where $J^{I}=\left(J_{1}^{I}, \ldots, J_{d}^{I}\right) \in G(\mathbb{R})$ is given by

$$
J_{j}^{I}= \begin{cases}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) & \text { if } j \in I, \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \text { if } j \notin I,\end{cases}
$$

then

$$
H_{\pi}^{I}=\left(H_{\pi}^{\mathrm{hol}}\right)^{I}=\left\{\varphi^{I} \mid \varphi \in H_{\pi}^{\mathrm{hol}}\right\}
$$

Remark 2.3.1. Thinking about these as functions on \mathcal{H}^{d}, this roughly corresponds to applying the automorphism $z_{j} \mapsto-\overline{z_{j}}$ at all places $\sigma_{j} \in I$. We discuss the precise translation of this and the rest of the results of this section to classical language at the end of this chapter - Section 2.4.

We next discuss which cohomology groups these non-holomorphic subspaces of H_{π} live in. An element $\varphi \in H_{\pi}^{I}$ may be regarded as global C^{∞}-section of the line bundle $\mathcal{E}_{\underline{\underline{k}}(I)^{\prime}, r}$, where

$$
\underline{k}(I)_{j}^{\prime}= \begin{cases}k_{j} & \text { if } j \notin I \\ -k_{j} & \text { if } j \in I\end{cases}
$$

To express it as a holomorphic section, note that we have an isomorphism:

$$
\begin{aligned}
H^{0}\left(Y(\mathbb{C})^{\mathrm{an}},\left(\mathcal{E}_{\underline{k}(I)^{\prime}, r}\right)^{\infty}\right) & \rightarrow \Gamma\left(Y(\mathbb{C})^{\mathrm{an}},\left(\mathcal{E}_{\underline{k}(I)^{\prime}, r}\right)^{\infty} \otimes \bigwedge_{j \in I}\left(\Omega_{Y, j}^{1}\right)^{\infty} \wedge \bigwedge_{j \in I} \overline{\left(\Omega_{Y, j}^{1}\right)}\right) \\
\varphi & \mapsto \varphi \cdot \bigwedge_{j \in I} d z_{j} \wedge d \overline{z_{j}}
\end{aligned}
$$

and

$$
\left(\mathcal{E}_{\underline{k}(I)^{\prime}, r}\right)^{\infty} \otimes \bigwedge_{j \in I}\left(\Omega_{Y, j}^{1}\right)^{\infty} \cong\left(\mathcal{E}_{\underline{k}(I)^{\prime}, r}\right)^{\infty} \otimes\left(\bigwedge_{j \in I} \mathcal{E}_{2_{j}, 0}\right)^{\infty} \cong\left(\mathcal{E}_{\underline{k}(I), r}\right)^{\infty},
$$

where

$$
k(I)_{j}= \begin{cases}k_{j} & \text { if } j \notin I \\ 2-k_{j} & \text { if } j \in I\end{cases}
$$

We hence get a map:

$$
\begin{aligned}
H_{\pi}^{I} \cong H^{0}\left(Y(\mathbb{C})^{\mathrm{an}},\left(\mathcal{E}_{\underline{k}(I)^{\prime}, r}\right)^{\infty}\right) & \rightarrow H^{0}\left(Y(\mathbb{C})^{\mathrm{an}}, \Omega_{Y}^{0,|I|} \otimes \mathcal{E}_{\underline{k}(I), r}\right) \\
\varphi & \mapsto \omega_{\varphi}=\varphi \cdot \bigwedge_{j \in I} d z_{j} \wedge d \overline{z_{j}}
\end{aligned}
$$

where $\Omega_{Y}^{0,|I|}$ denotes the sheaf of $(0,|I|)$-forms on $Y(\mathbb{C})^{\text {an }}$. Finally, we note that

$$
\begin{aligned}
\bar{\partial} \omega_{\varphi} & =\bar{\partial}\left(\varphi \cdot \bigwedge_{j \in I} d z_{j} \wedge d \overline{z_{j}}\right) \\
& =(\bar{\partial} \varphi) \wedge \bigwedge_{j \in I} d z_{j} \wedge d \overline{z_{j}} \pm \varphi \cdot \bar{\partial} \underbrace{\bigwedge_{j \in I} d z_{j} \wedge d \overline{z_{j}}}_{=0} \\
& =\left(\sum_{j \in I} \frac{\partial \varphi}{\overline{z_{j}}} d \overline{z_{j}}\right) \wedge\left(\bigwedge_{j \in I} d z_{j} \wedge d \overline{z_{j}}\right) \quad \varphi \text { holomorphic at } j \notin I \\
& =0 .
\end{aligned}
$$

Thus ω_{φ} is a closed $(0,|I|)$-form and defines a Dolbeault cohomology class

$$
\omega_{\varphi} \in H^{0,|I|}\left(Y(\mathbb{C}), \mathcal{E}_{\underline{k}(I), r}\right) \cong H^{|I|}\left(Y(\mathbb{C}), \mathcal{E}_{\underline{k}(I), r}\right)
$$

with the last isomorphism given by Dolbeault Theorem. We identify the last group with the Zariski cohomology of a sheaf on $Y_{\mathbb{C}}$ via the GAGA Theorem.

The above discussion is summarized in the following lemma.

Lemma 2.3.2 ([28, Lemma 1.4.3]). For any subset $I \subseteq \Sigma_{\infty}$, there is a natural embedding

$$
H_{\pi}^{I} \hookrightarrow \bar{H}^{|I|}\left(Y_{\mathbb{C}}, \mathcal{E}_{\underline{k}(I), r}\right)
$$

of $G\left(\mathbb{A}^{f}\right)$-modules.

Recall that Y is an open Hilbert modular variety. We let X be a smooth toroidal compactification of Y defined over \mathbb{Q}. The automorphic sheaf $\mathcal{E}_{\underline{k}, r}$ over Y can be extended to X in two ways, denoted $\mathcal{E}_{\underline{k}, r}^{\mathrm{can}}$ and $\mathcal{E}_{\underline{k}, r}^{\text {sub }}$. The cohomology of these sheaves is independent of the choice of toroidal compactification. Following Harris [28], we will be interested in the space:

$$
\begin{equation*}
H^{q}\left(X, \mathcal{E}_{\underline{k}, r}\right)=\operatorname{im}\left(H^{q}\left(X, \mathcal{E}_{\underline{k}, r}^{\text {sub }}\right) \rightarrow H^{q}\left(X, \mathcal{E}_{\underline{k}, r}^{\mathrm{can}}\right)\right) \tag{2.3.1}
\end{equation*}
$$

which is a vector space over $F(\underline{k})=F^{\Gamma(\underline{k})}$ where $\Gamma(\underline{k})=\left\{\sigma \in G_{\mathbb{Q}} \mid \underline{k}^{\sigma}=\underline{k}\right\}$.
As above, we write π for the automorphic representation generated by φ. Let π_{f} for its finite component, which is a representation of $G\left(\mathbb{A}_{f}\right)$. Since $G\left(\mathbb{A}_{f}\right)$ acts on $H^{q}\left(X, \mathcal{E}_{\underline{k}, r}\right)$, we may consider its π_{f}-isotypic component:

$$
\begin{equation*}
H^{q}\left(X, \mathcal{E}_{\underline{k}, r}\right)_{\pi_{f}}=\operatorname{Hom}_{G\left(\mathbb{A}_{f}\right)}\left(\pi_{f}, H^{q}\left(X, \mathcal{E}_{\underline{k}, r}\right)\right) \tag{2.3.2}
\end{equation*}
$$

We compute the dimensions of these spaces and give an explicit basis over the complex numbers.

Theorem 2.3.3 (Harris, Su).
(1) The cohomology classes ω_{φ}^{J} extend to toroidal compactifications:

$$
\omega_{\varphi}^{J} \in H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{\pi_{f}}
$$

(2) Let $J \subseteq \Sigma_{\infty}$ be any subset. Then a basis of $H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{\pi_{f}}$ is given by

$$
\left\{\omega_{\varphi}^{I}| | I|=|J| \text { and } \underline{k}(I)=\underline{k}(J)\}\right.
$$

In particular, if we write $J_{1}=\left\{\sigma_{j} \in \Sigma_{\infty} \mid k_{j}=1\right\}$, then:

$$
\operatorname{dim} H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{f}=\binom{\left|J_{1}\right|}{\left|J \cap J_{1}\right|} .
$$

Proof. For $k_{j} \geq 2$, see [28, Lemmas 1.4.3, 2.4.5]. When $k_{j}=1$ for some j, this follows from the main theorem of [72] and an analogous computation of (\mathfrak{P}, K)cohomology.

Definition 2.3.4. The partial complex conjugation at J of a Hilbert modular form φ of weight (\underline{k}, r) is:

$$
\omega_{\varphi}^{J} \in H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{\pi_{f}} .
$$

We are particularly interested in the case $(\underline{k}, r)=(\underline{1}, 1)$. In this case, $\mathcal{E}_{\underline{1}, 1}$ is the Hodge bundle ω, which will be used in the next chapter.

Corollary 2.3.5. Suppose $(\underline{k}, r)=(\underline{1}, 1)$. Then a basis of $H^{j}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{\pi_{f}}$ is given by

$$
\left\{\omega_{\varphi}^{J} \mid J \subseteq \Sigma_{\infty} \text { and }|J|=j\right\} .
$$

In particular,

$$
\operatorname{dim} H^{j}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{\pi_{f}}=\binom{d}{j}
$$

It is also important to note when the cohomology spaces are one-dimensional.

Corollary 2.3.6. For any $J \subseteq \Sigma_{\infty}, \operatorname{dim} H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{\pi_{f}}>1$ if and only if both J and $\Sigma_{\infty} \backslash J$ contain a place at which φ has weight one.

Proof. For the 'if' implication, take $\sigma \in J \cap J_{1}$ and $\sigma^{\prime} \in\left(\Sigma_{\infty} \backslash J\right) \cap J_{1}$, and define

$$
J^{\prime}=(J \backslash\{\sigma\}) \cup\left\{\sigma^{\prime}\right\}
$$

Then $\left|J^{\prime}\right|=|J|$ and $\underline{k}\left(J^{\prime}\right)=\underline{k}(J)$, so $\omega_{f}^{J}, \omega_{f}^{J^{\prime}} \in H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{f}$ are linearly independent.

Conversely, suppose $\operatorname{dim} H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{\pi_{f}}>1$. Then there exists $J^{\prime} \neq J$ such that $\omega_{f}^{J^{\prime}} \in H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{\pi_{f}}$, i.e. $\left|J^{\prime}\right|=|J|$ and $\left(J \cup J^{\prime}\right) \backslash\left(J \cap J^{\prime}\right) \subseteq J_{1}$. Then $\sigma \in J \backslash J^{\prime}$ belongs to $J \cap J_{1}$ and $\sigma^{\prime} \in J^{\prime} \backslash J$ belongs to $\left(\Sigma_{\infty} \backslash J\right) \cap J_{1}$.

2.4 Translation to classical language

We discuss how to translate the definitions and results of the above section to classical language.

2.4.1 Classical and automorphic Hilbert modular forms

The translation of the automorphic Definition 2.2.1 of a Hilbert modular form to the classical definition is standard (see, for example, [23]). We recall it briefly here.

Let $\mathcal{O}=\mathcal{O}_{F}$ be the ring of integers of F and \mathfrak{D} be the different ideal of F. For each finite v, let \mathcal{O}_{v} be the ring of integers of F_{v}, ϖ_{v} be the uniformizer, and q_{v} be the cardinality of $\mathcal{O}_{v} /\left(\varpi_{v}\right)$. Let $\mathfrak{D}=\mathfrak{D}_{F}$ be the discriminant of F and d_{v} be the non-negative integer such that

$$
\mathfrak{D} \otimes_{\mathcal{O}} \mathcal{O}_{v}=\delta_{v}=\varpi_{v}^{-d_{v}} .
$$

Note that

$$
N_{F / \mathbb{Q}} \mathfrak{D}=\prod_{v \text { finite }} q_{v}^{d_{v}}
$$

Let $h=h_{F}$ be the narrow class number of F and let $\left\{t_{i}\right\}_{i=1}^{h}$ be elements of \mathbb{A}_{F} whose infinity part is 1 and that form a complete set of representatives of the narrow class group. Then

$$
\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)=\coprod_{i=1}^{h} \mathrm{GL}_{2}(F) \underbrace{\left(\begin{array}{ll}
t_{i}^{-1} & \\
& \\
& 1
\end{array}\right)}_{x_{i}} \mathrm{GL}_{2}\left(F_{\infty}\right)^{+} K(\mathfrak{N})
$$

where

$$
\begin{aligned}
K(\mathfrak{N}) & =\prod_{v \text { finite }} K_{v}(\mathfrak{N}) \\
K_{v}(\mathfrak{N}) & =d\left(\pi_{v}^{-d_{v}}\right)^{-1}\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathcal{O}_{v}\right) \right\rvert\, c \in \mathfrak{N}_{v} \mathcal{O}_{F_{v}}\right\} d\left(\pi_{v}^{-d_{v}}\right)
\end{aligned}
$$

Define

$$
\Gamma_{0}^{t_{i}}(\mathfrak{N})=\left\{\left.\left(\begin{array}{cc}
a & t_{i}^{-1} b \\
t_{i} c & d
\end{array}\right) \right\rvert\, a \in \mathcal{O}, b \in \mathfrak{D}^{-1}, c \in \mathfrak{N D}, d \in \mathcal{O}\right\}
$$

Definition 2.4.1. A (classical) Hilbert modular form of weight \underline{k}, where $\underline{k}=\left(k_{1}, \ldots, k_{d}\right) \in \mathbb{Z}^{n}$ satisfies $k_{j} \equiv r \bmod 2$ for all j, level \mathfrak{N}, character ω such that

$$
\omega(\xi)=\operatorname{sgn}(\xi)^{r} \text { for } \xi \equiv 1 \bmod ^{\times} \mathfrak{N}
$$

is a holomorphic function $f: \mathcal{H}^{d} \rightarrow \mathbb{C}$ such that

$$
\left(\left.f\right|_{\underline{k}} \gamma\right)(\underline{z})=\omega(d) f(\underline{z}) \quad \text { for all } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}^{t_{i}}(\mathfrak{N}) .
$$

Given a collection of h classical modular forms $\mathbf{f}=\left(f_{1}, \ldots, f_{h}\right)$, we get an automorphic Hilbert modular form φ_{f} of weight (\underline{k}, r) for an appropriate r by defining

$$
\begin{equation*}
\varphi_{f}\left(\gamma x_{i} g_{\infty} k_{0}\right)=\left(\left.f_{i}\right|_{k} g_{\infty}\right)(\mathbf{i}) \omega_{\mathrm{fin}}(d) \tag{2.4.1}
\end{equation*}
$$

where $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(F), g_{\infty} \in \mathrm{GL}_{2}\left(F_{\infty}\right)^{+}, k_{0} \in K(\mathfrak{N}), \mathbf{i}=(i, \ldots, i)$, and $\omega_{\text {fin }}$ is the finite part of $\omega=\omega_{f}$.

When F has narrow class number $1, h=1$, so each classical Hilbert modular form corresponds to one automorphic Hilbert modular form. We assume this from now on for simplicity.

2.4.2 Automorphic line bundles classically

We defined a sheaf $\mathcal{E}_{\underline{k}, r}$ over $Y(\mathbb{C})$ such that

$$
H^{0}\left(Y(\mathbb{C}), \mathcal{E}_{\underline{k}, r}\right) \cong \mathcal{A}(\underline{k}, r)
$$

We have an isomorphism:

for $\Gamma=\Gamma_{1}(\mathfrak{N})$, which induces the above correspondence between classical and automorphic Hilbert modular forms. Once again, $Y(\mathbb{C})$ is the Shimura variety with fixed level structure (as opposed to the projective system of varieties).

Remark 2.4.2. If F has narrow class number h, then

$$
Y(\mathbb{C}) \cong \coprod_{i=1}^{h} \Gamma_{i} \backslash \mathcal{H}^{d}
$$

and the statements above still hold. We restrict our attention to $h=1$ purely for simplicity of notation.

2.4.3 Partial complex conjugation operators classically

We keep the simplifying assumption that $h=1$. Recall the natural map

$$
\begin{aligned}
H^{0}\left(Y, \mathcal{E}_{\underline{k}, r}\right) & \rightarrow H^{0}\left(Y(\mathbb{C}),\left(\mathcal{E}_{\underline{k}(I)^{\prime}, r}\right)^{\infty}\right) \\
\varphi & \mapsto\left(g \mapsto \varphi\left(g \cdot J^{I}\right)\right)
\end{aligned}
$$

for

$$
J_{j}^{I}= \begin{cases}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) & \text { if } j \in I, \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \text { if } j \notin I .\end{cases}
$$

We want to work out what this map corresponds to after translating to $\Gamma \backslash \mathcal{H}^{d}$.

For any I, we assume that there exists a fundamental unit ϵ_{I} such that

$$
\begin{cases}\sigma\left(\epsilon_{I}\right)>0 & \text { if } \sigma \notin I \\ \sigma\left(\epsilon_{I}\right)<0 & \text { if } \sigma \in I\end{cases}
$$

When $d=2$, this amounts to the standard assumption (e.g., [58]) that there is a fundamental unit in \mathcal{O}_{F} of negative norm. One can easily check that the classical description of the partial complex conjugation operator is independent of the choice of unit ϵ_{I}.

Then define

$$
\begin{aligned}
H^{0}\left(\Gamma \backslash \mathcal{H}^{d}, \mathcal{F}_{\underline{k}, r}\right) & \rightarrow H^{0}\left(\Gamma \backslash \mathcal{H}^{d}, \mathcal{F}_{\underline{k}, r}^{I}\right) \\
f(\underline{z}) & \mapsto f\left(\underline{z}^{I}\right)
\end{aligned}
$$

where

$$
\left(\underline{z}^{I}\right)_{j}= \begin{cases}\sigma_{j}\left(\epsilon_{I}\right) z_{j} & j \notin I \\ \sigma_{j}\left(\epsilon_{I}\right) \overline{z_{j}} & j \in I\end{cases}
$$

and $\mathcal{F}_{\underline{k}, r}^{I}$ is the C^{∞} line bundle given by

$$
\begin{gathered}
\mathcal{F}_{\underline{k}, r}^{I}=\Gamma \backslash\left(\mathcal{H}^{d} \times \mathbb{C}\right) \quad \gamma(\underline{z}, \tau)=\left(\gamma \underline{z}, j_{\underline{k}}\left(\gamma, \underline{z}^{I}\right) \tau\right), \\
\downarrow \\
\Gamma \backslash \mathcal{H}^{d} .
\end{gathered}
$$

The next lemma will allow us to change the automorphic factor $j_{\underline{k}}\left(\gamma, \underline{z}^{I}\right)$ to one just involving \underline{z}.

Lemma 2.4.3. The line bundle

$$
L=\Gamma \backslash\left(\mathcal{H}^{d} \times \mathbb{C}\right), \quad \gamma(\underline{z}, \tau)=\left(\gamma \underline{z},|\underline{z} \underline{z}+d|^{2} \tau\right)
$$

is trivialized as follows:

where we write:

$$
\begin{aligned}
|c \underline{z}+d|^{2} & =\prod_{j=1}^{d}\left|c_{j} z_{j}+d_{j}\right|^{2}, \\
\operatorname{Im}(\underline{z}) & =\prod_{j=1}^{d} \operatorname{Im}\left(z_{j}\right) .
\end{aligned}
$$

Proof. We just need to check that

$$
\operatorname{Im}(\gamma \underline{z})=|c \underline{z}+d|^{-2} \operatorname{Im}(\underline{z}) .
$$

Both sides are products over infinite places, so this follows from the modular curve case.

Corollary 2.4.4. There is an isomorphism

$$
\begin{aligned}
&(\underline{z}, \tau) \longrightarrow\left(\underline{z}, \operatorname{Im}(\underline{z})^{\underline{k_{I}}} \tau\right) \\
& \mathcal{F}_{\underline{k}, r}^{I} \longrightarrow \mathcal{F}_{\underline{k}(I)^{\prime}, r} \\
& \downarrow \downarrow \\
& \Gamma \backslash \mathcal{H}^{d} \longrightarrow \mathcal{H}^{d}
\end{aligned}
$$

where

$$
\left(\underline{k}_{I}\right)_{j}= \begin{cases}k_{j} & j \in I \\ 0 & j \notin I\end{cases}
$$

and we recall that:

$$
\underline{k}(I)_{j}^{\prime}= \begin{cases}k_{j} & \text { if } j \notin I \\ -k_{j} & \text { if } j \in I\end{cases}
$$

Therefore, we have an isomorphism:

$$
\begin{aligned}
H^{0}\left(\Gamma \backslash \mathcal{H}^{d}, \mathcal{F}_{\underline{k}, r}\right) & \rightarrow H^{0}\left(\Gamma \backslash \mathcal{H}^{d}, \mathcal{F}_{\underline{k}(I)^{\prime}, r}\right) \\
f(\underline{z}) & \mapsto \operatorname{Im}(\underline{z})^{\underline{k}_{I}} \cdot f\left(\underline{z}^{I}\right) .
\end{aligned}
$$

We let $f^{I}(\underline{z})=\operatorname{Im}(\underline{z})^{\underline{k}_{I}} \cdot f\left(\underline{z}^{I}\right)$ so that the above map may be written $f \mapsto f^{I}$.

Proposition 2.4.5. The diagram

is commutative.
Proof. We need to check that for $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(F), g_{\infty} \in \mathrm{GL}_{2}\left(F_{\infty}\right)^{+}$, $k_{0} \in K(\mathfrak{N})$,

$$
\varphi^{I}\left(\gamma g_{\infty} k_{0}\right)=\left(\left.f^{I}\right|_{k} g_{\infty}\right)(\mathbf{i}) \omega_{\mathrm{fin}}(d)
$$

By definition,

$$
\varphi^{I}\left(\gamma g_{\infty} k_{0}\right)=\varphi\left(\gamma g_{\infty} k_{0} J^{I}\right)
$$

and we note that

$$
\gamma g_{\infty} k_{0} J^{I}=\gamma g_{\infty} J^{I} k_{0}=\left(\gamma E_{I}^{-1}\right)\left(\left(E_{I}\right)_{\infty} g_{\infty} J^{I}\right)\left(\left(E_{I}\right)_{\mathrm{fin}} k_{0}\right)
$$

where $E_{I}=\left(\begin{array}{cc}\epsilon_{I} & \\ & \\ & 1\end{array}\right) \in \mathrm{GL}_{2}(F)$, and hence

$$
\begin{gathered}
\gamma E_{I}^{-1}=\left(\begin{array}{ll}
* & * \\
* & \\
\hline
\end{array}\right) \in \mathrm{GL}_{2}(F) \\
\left(E_{I}\right)_{\infty} g_{\infty} J^{I} \in \mathrm{GL}_{2}\left(F_{\infty}\right)^{+} \\
\left(E_{I}\right)_{\text {fin }} k_{0} \in K(\mathfrak{N}) .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
\varphi^{I}\left(\gamma g_{\infty} k_{0}\right) & =\varphi\left(\left(\gamma E_{I}^{-1}\right)\left(\left(E_{I}\right)_{\infty} g_{\infty} J^{I}\right)\left(\left(E_{I}\right)_{\mathrm{fin}} k_{0}\right)\right) \\
& =\left(\left.f\right|_{k}\left(E_{I}\right)_{\infty} g_{\infty} J^{I}\right)(\mathbf{i}) \omega_{\mathrm{fin}}(d) \\
& =j_{k}\left(\left(E_{I}\right)_{\infty} g_{\infty} J^{I}, \mathbf{i}\right)^{-1} f\left(\left(E_{I}\right)_{\infty} g_{\infty} J^{I} \mathbf{i}\right) \omega_{\mathrm{fin}}(d) .
\end{aligned}
$$

Finally, if we write $\underline{\tau}=g_{\infty} \mathbf{i}$, then

$$
\left(E_{I}\right)_{\infty} g_{\infty} J^{I} \mathbf{i}=\underline{z}^{I}
$$

in the notation above. Moreover, if $\left(g_{\infty}\right)_{j}=\left(\begin{array}{ll}a_{j} & b_{j} \\ c_{j} & d_{j}\end{array}\right)$, then

$$
\left(\left(E_{I}\right)_{\infty} g_{\infty} J^{I}\right)_{j}=\left\{\begin{array}{lc}
\left(\begin{array}{cc}
-\epsilon_{j} a_{j} & \epsilon_{j} b_{j} \\
-c_{j} & d_{j}
\end{array}\right) & j \in I, \\
\left(\begin{array}{cc}
\epsilon_{j} a_{j} & \epsilon_{j} b_{j} \\
c_{j} & d_{j}
\end{array}\right) & j \notin I,
\end{array}\right.
$$

and hence

$$
\begin{aligned}
j_{k}\left(\left(E_{I}\right)_{\infty} g_{\infty} J^{I}, \mathbf{i}\right)= & \prod_{j \in I}\left(-c_{j} i+d_{j}\right)^{k_{j}} \operatorname{det}\left(\left(g_{\infty}\right)_{j}\right)^{-k_{j} / 2} \cdot\left(-\epsilon_{j}\right) . \\
& \cdot \prod_{j \notin I}\left(c_{j} i+d_{j}\right)^{k_{j}} \operatorname{det}\left(\left(g_{\infty}\right)_{j}\right)^{-k_{j} / 2} \cdot \epsilon_{j} .
\end{aligned}
$$

Thus this shows that

$$
\varphi^{I}\left(\gamma g_{\infty} k_{0}\right)=\operatorname{Im}(\underline{z})^{k_{I}} \cdot f\left(\underline{z}^{I}\right)=f^{I}(\underline{z})
$$

completing the proof.

We finally want to translate Lemma 2.3.2 to the classical setting. This is very similar to the above discussion. Note that under the isomorphism

$$
\Omega_{M}^{1} \cong \bigoplus_{j=1}^{d} \Omega_{j},
$$

we have elements

$$
\left[\frac{d z_{j} \wedge d \overline{z_{j}}}{y_{j}^{2}}\right] \in H^{0}\left(\Gamma \backslash \mathcal{H}, \Omega_{j} \otimes \overline{\Omega_{j}}\right)
$$

We also have

$$
\left[f^{I}(\underline{z})\right] \in H^{0}\left(\Gamma \backslash \mathcal{H}, \mathcal{F}_{\underline{k}(I)^{\prime}, r}\right)
$$

We can hence consider the cohomology class:

$$
\begin{equation*}
\eta_{f}^{I}=\left[f^{I}(\underline{z}) \cdot \bigwedge_{j \in I} \frac{d z_{j} \wedge d \overline{z_{j}}}{y_{j}^{2}}\right] \in H^{0}\left(\Gamma \backslash \mathcal{H}, \mathcal{F}_{\underline{k}(I)^{\prime}, r} \otimes \bigwedge_{j \in I} \Omega_{j} \otimes \overline{\Omega_{j}}\right) \tag{2.4.2}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mathcal{F}_{\underline{k}(I)^{\prime}, r} \otimes \bigwedge_{j \in I} \Omega_{j} \cong \mathcal{F}_{\underline{k}(I), r} \tag{2.4.3}
\end{equation*}
$$

by definition of $\underline{k}(I)$, the image of η_{f}^{I} under the resulting isomorphism gives

$$
\omega_{f}^{I} \in H^{0}\left(\Gamma \backslash \mathcal{H}, \mathcal{F}_{\underline{k}(I), r} \otimes \bigwedge_{j \in I} \overline{\Omega_{j}}\right) \subseteq H^{0,|I|}\left(\Gamma \backslash \mathcal{H}, \mathcal{F}_{\underline{k}(I), r}\right)=H^{|I|}\left(\Gamma \backslash \mathcal{H}, \mathcal{F}_{\underline{k}(I), r}\right)
$$

The isomorphism in equation (2.4.3) is sends $d z_{j} \mapsto(2 \pi i)$ because of our choice of trivialization (2.2.2). Therefore, the image ω_{f}^{I} of η_{f}^{I} is explicitly given by:

$$
\begin{equation*}
\omega_{f}^{I}=(2 \pi i)^{|I|} f^{I}(\underline{z}) \bigwedge_{j \in I} \frac{d \overline{z_{j}}}{y_{j}^{2}} \in H^{|I|}\left(X_{\mathbb{C}}, \mathcal{F}_{\underline{k}(I), r}\right) . \tag{2.4.4}
\end{equation*}
$$

One can verify directly that this is an $H^{0,|I|}$ Dolbeault class valued in the line bundle $\mathcal{F}_{\underline{\underline{k}}(I), r}$.

We summarize the results of this section in the following theorem. This describes partial complex conjugation operators classically and hence justifies the name.

Theorem 2.4.6. Let f be a classical Hilbert modular form and let φ_{f} be the corresponding automorphic Hilbert modular form via equation (2.4.1). Via the above identifications, the cohomology class ω_{φ}^{I} from Definition 2.3.4 corresponds to the cohomology class ω_{f}^{I} defined by equation (2.4.4).

Throughout the rest of the manuscript, we will identify the sheaves $\mathcal{E}_{\underline{k}, r}$ and $\mathcal{F}_{\underline{\underline{k}}, r}$ via the above discussion. We will use the classical language for the sake of exposition with the understanding that everything could be rephrased in the automorphic language using this theorem.

For a classical Hilbert modular eigenform f, we may use Hecke operators instead of the $G\left(\mathbb{A}_{f}\right)$-action to isolate the contributions of f to coherent cohomology. For this, let us assume that $T(\mathfrak{p}) f=a_{\mathfrak{p}} f$ and $a_{\mathfrak{p}} \in E_{f}$ for all \mathfrak{p} not dividing the level \mathfrak{N}. Hecke operators act on the higher cohomology groups and we write:

$$
\begin{equation*}
H^{q}\left(X, \mathcal{E}_{\underline{k}, r}\right)_{f}=\left\{\omega \in H^{q}\left(X, \mathcal{E}_{\underline{k}, r}\right) \otimes E_{f} \mid T(\mathfrak{p}) \omega=a_{\mathfrak{p}} \omega \text { for all } \mathfrak{p} \text { not dividing } \mathfrak{N}\right\} \tag{2.4.5}
\end{equation*}
$$

for the f-isotypic component under the action of the Hecke algebra. Then Theorem 2.3.3 amounts to the fact that the classes ω_{f}^{J} give all the contributions of the Hecke eigensystem of f to cohomology of the automorphic sheaves over the complex numbers.

CHAPTER III

Stark Units and Stark's Conjecture

The goal of this section is to introduce the unit group U_{f} mentioned in the introduction, compute its rank, and discuss its relation to motivic cohomology. We start by briefly recalling the definition of Stark units and Stark's conjecture. We then compute the unit group explicitly in the case of Hilbert modular forms.

3.1 Stark units

We follow [71] to introduce the group of Stark units associated with an Artin representation. We caution the reader that the representations in loc. cit. are right representations, whereas we consider left representations, which leads to some discrepancies in notation. See also Dasgupta's excellent survey [16].

Consider any Artin representation, i.e. a representation of the absolute Galois $\operatorname{group} G_{\mathbb{Q}}$ which factors through a finite Galois extension L of \mathbb{Q} :

where M is a free \mathcal{O}_{E}-module of rank n and E is a finite extension of \mathbb{Q}. We often write G for the Galois group $G_{L / \mathbb{Q}}$ and U_{L} for the group of units of \mathcal{O}_{L}.

Definition 3.1.1. The group of Stark units associated with $\varrho: G_{L / \mathbb{Q}} \rightarrow \operatorname{GL}(M)$ is:

$$
U_{L}[\varrho]=\operatorname{Hom}_{\mathcal{O}_{E}[G]}\left(M, U_{L} \otimes_{\mathbb{Z}} \mathcal{O}_{E}\right)
$$

We will soon check that $U_{L}[\varrho]$ depends only on ϱ and not on the choice of L. To describe the group $U_{L}[\varrho]$ in more detail, we first need to understand the structure of U_{L} as a $G_{L / \mathbb{Q}}$-module.

Fix an embedding $\tau: L \hookrightarrow \mathbb{C}$ which induces a complex conjugation c_{0} of L. Note that $\operatorname{rank} U_{L}+1=\#\left(G /\left\langle c_{0}\right\rangle\right)$ by Dirichlet's units theorem.

Lemma 3.1.2 (Minkowski's unit theorem, [71, Lemma 2]). There is a unit ϵ of L, fixed by c_{0}, such that there is only one relation among the $\operatorname{rank} U_{L}+1$ units $\epsilon^{\sigma^{-1}}$ for $\sigma \in G /\left\langle c_{0}\right\rangle$, and this relation is

$$
\prod_{\sigma \in G /\left\langle c_{0}\right\rangle} \epsilon^{\sigma^{-1}}= \pm 1 .
$$

Definition 3.1.3. A unit whose existence is guaranteed by Lemma 3.1.2 is called a Minkowski unit of L with respect to $\tau: L \hookrightarrow \mathbb{C}$.

Corollary 3.1.4. The \log map induces a G-equivariant isomorphism:

$$
U_{L} / U_{L}^{\text {tors }} \cong \xrightarrow{\mathbb{Z}\left[\log \left(\left|\tau\left(\epsilon^{\sigma^{-1}}\right)\right|\right) \mid \sigma \in G /\left\langle c_{0}\right\rangle\right]} \underset{\left\langle\sum_{\sigma \in G /\left\langle c_{0}\right\rangle} \log \left(\left|\tau\left(\epsilon^{\sigma^{-1}}\right)\right|\right)\right\rangle}{\langle }
$$

(the numerator on the right hand side is the free abelian group in those variables) and there is also a G-equivariant isomorphism:

$$
\begin{aligned}
& \operatorname{Ind}_{\left\langle c_{0}\right\rangle}^{G} \mathbb{Z} \cong \\
&\left(f: G /\left\langle c_{0}\right\rangle \rightarrow \mathbb{Z}\left[\log \left(\left|\tau\left(\epsilon^{\sigma^{-1}}\right)\right|\right) \mid \sigma \in G /\left\langle c_{0}\right\rangle\right]\right. \\
& \sum_{\sigma \in G /\left\langle c_{0}\right\rangle} f\left(\sigma\left\langle c_{0}\right\rangle\right)\left[\log \left(\left|\tau\left(\epsilon^{\sigma^{-1}}\right)\right|\right)\right] .
\end{aligned}
$$

In particular,

$$
U_{L} / U_{L}^{\text {tors }} \cong \operatorname{Ind}_{\left\langle c_{0}\right\rangle}^{G} \mathbb{Z}-\mathbb{Z} \text { as a representation of } G=G_{L / \mathbb{Q}}
$$

We now compute the rank of $U_{L}[\varrho]$ and find a natural basis for $U_{L}[\varrho] \otimes_{\mathcal{O}_{E}} E$, given a basis of $M_{E}=M \otimes_{\mathcal{O}_{E}} E$. Let

$$
\begin{equation*}
a=\operatorname{dim}_{E} M_{E}^{\left\langle c_{0}\right\rangle} \tag{3.1.1}
\end{equation*}
$$

Note that $a=\left(\operatorname{Tr} \varrho(1)+\operatorname{Tr} \varrho\left(c_{0}\right)\right) / 2$, so since any two complex conjugations of L are conjugate, this number is independent of the choice of c_{0}. We write $b=n-a$ where $n=\operatorname{dim}_{E} M_{E}$.

Proposition 3.1.5. Suppose ϱ does not contain a copy of the trivial representation. Then

$$
U_{L}[\varrho] \otimes E \cong\left(M_{E}^{\left\langle c_{0}\right\rangle}\right)^{\vee}
$$

and hence $\operatorname{rank} U_{L}[\varrho]=a$.
Moreover, if m_{1}, \ldots, m_{a} is a basis of $M_{E}^{\left\langle c_{0}\right\rangle}$ and we complete it to a basis m_{1}, \ldots, m_{n} of M_{E} such that $\varrho\left(c_{0}\right)=\left(\begin{array}{cc}I_{a} & 0 \\ 0 & -I_{b}\end{array}\right)$ in this basis, then the corresponding basis of $U_{L}[\varrho] \otimes_{\mathcal{O}_{E}} E$ consists of the homomorphisms $\varphi_{1}, \ldots, \varphi_{a}$ defined by:

$$
\begin{equation*}
\varphi_{i}\left(m_{j}\right)=\prod_{\sigma \in G}\left(\epsilon^{\sigma^{-1}}\right)^{a_{i j}(\sigma)} \in U_{L} \otimes E \tag{3.1.2}
\end{equation*}
$$

where

$$
\varrho(\sigma)=\left(a_{i j}(\sigma)\right)_{i, j} \text { in the basis } m_{1}, \ldots, m_{n}
$$

Proof. We have that

$$
\begin{array}{rlr}
U_{L}[\varrho] \otimes_{\mathcal{O}_{E}} E & =\operatorname{Hom}_{E[G]}\left(M_{E}, U_{L} \otimes_{\mathbb{Z}} E\right) \\
& =\operatorname{Hom}_{E[G]}\left(M_{E}, \operatorname{Ind}_{\left\langle c_{0}\right\rangle}^{G} E-E\right) & \quad \text { Corollary 3.1.4 } \tag{Corollary 3.1.4}\\
& =\operatorname{Hom}_{E[G]}\left(M_{E}, \operatorname{Ind}_{\left\langle c_{0}\right\rangle}^{G} E\right) \quad \varrho \text { does not contain the trivial rep. } \\
& =\operatorname{Hom}_{E\left[\left\langle c_{0}\right\rangle\right]}\left(M_{E}, E\right) & \text { Frobenius reciprocity } \\
& =\left(M_{E}^{\left\langle c_{0}\right\rangle}\right)^{\vee} . &
\end{array}
$$

Now, pick a basis m_{1}, \ldots, m_{n} of M such that $\varrho\left(c_{0}\right)=\left(\begin{array}{cc}I_{a} & 0 \\ 0 & -I_{b}\end{array}\right)$ in it. By definition of the matrix $\left(a_{i j}(\sigma)\right)_{i, j}$,

$$
\varrho(\sigma) m_{j}=\sum_{k=1}^{n} a_{k j}(\sigma) m_{k}
$$

Hence a map $\varphi \in \operatorname{Hom}_{\mathcal{O}_{E}}\left(M, U_{L} \otimes_{\mathbb{Z}} \mathcal{O}_{E}\right)$ is G-equivariant if and only if:

$$
\begin{equation*}
\left(\varphi\left(m_{j}\right)\right)^{\tau}=\varphi\left(\varrho(\tau) m_{j}\right)=\varphi\left(\sum_{k=1}^{n} a_{k j}(\tau) m_{k}\right)=\prod_{k=1}^{n} \varphi\left(m_{k}\right)^{a_{k j}(\tau)} \tag{3.1.3}
\end{equation*}
$$

(where the group of units is written multiplicatively).
We check that each φ_{i} defined above satisfies this equation. Let

$$
u_{i j}=\prod_{\sigma \in G}\left(\epsilon^{\sigma^{-1}}\right)^{a_{i j}(\sigma)} \in U_{L} \otimes \mathcal{O}_{E}
$$

Then:

$$
\begin{array}{rlr}
u_{i j}^{\tau} & =\left(\prod_{\sigma \in G}\left(\epsilon^{\sigma^{-1}}\right)^{a_{i j}(\sigma)}\right)^{\tau} \\
& =\prod_{\sigma \in G}\left(\epsilon^{\tau \sigma^{-1}}\right)^{a_{i j}(\sigma)} \\
& =\prod_{\sigma^{\prime} \in G}\left(\epsilon^{\left(\sigma^{\prime}\right)^{-1}}\right)^{a_{i j}\left(\sigma^{\prime} \tau\right)} \quad \text { for } \sigma^{\prime}=\sigma \tau^{-1} \\
& =\prod_{\sigma^{\prime} \in G}\left(\epsilon^{\left(\sigma^{\prime}\right)^{-1}}\right)^{\sum_{k=1}^{n} a_{i k}\left(\sigma^{\prime}\right) a_{k j}(\tau)} \\
& =\prod_{k=1}^{n} \underbrace{\left(\prod_{\sigma \in G}\left(\epsilon^{\sigma^{-1}}\right)^{a_{i k}(\sigma)}\right)^{a_{k j}(\tau)}}_{u_{i k}} \\
& =\prod_{k=1}^{n} u_{i k}^{a_{k j}(\tau)} . & \text { for } \sigma^{\prime}=\sigma
\end{array}
$$

This shows that the functions φ_{i} given by $\varphi_{i}\left(m_{j}\right)=u_{i j}$ are G-equivariant (3.1.3). Indeed:

$$
\varphi_{i}\left(m_{j}\right)^{\tau}=u_{i j}^{\tau}=\prod_{k=1}^{n} u_{i k}^{a_{k j}(\tau)}=\prod_{k=1}^{n} \varphi_{i}\left(m_{k}\right)^{a_{k j}(\tau)}
$$

Hence $\varphi_{1}, \ldots, \varphi_{a} \in U_{L}[\varrho]$.
Tracing through the isomorphism

$$
U_{L}[\varrho] \otimes_{\mathcal{O}_{E}} E \cong\left(M_{E}^{\left\langle c_{0}\right\rangle}\right)^{\vee}
$$

established above, we see that

$$
\varphi_{i} \mapsto m_{i}^{\vee} \quad \text { for } i=1, \ldots, a,
$$

where m_{i}^{\vee} is a basis of M_{E}^{\vee} dual to the basis m_{i} of M_{E}. Since this is an isomorphism and m_{1}, \ldots, m_{a} is a basis of $M_{E}^{\left\langle c_{0}\right\rangle}, \varphi_{1}, \ldots, \varphi_{a}$ is a basis of $U_{L}[\varrho] \otimes E$.

Corollary 3.1.6. Suppose $\varrho: G_{\mathbb{Q}} \rightarrow \mathrm{GL}(M)$ is an Artin representation. Then $U_{L}[\varrho] \otimes E$ is independent of the choice of splitting field L / \mathbb{Q}.

Proof. For an extension L^{\prime} / L, the natural inclusion $U_{L} \hookrightarrow U_{L^{\prime}}$ induces an inclusion $U_{L}[\varrho] \rightarrow U_{L^{\prime}}\left[\varrho^{\prime}\right]$. By Proposition 3.1.5, $\operatorname{dim} U_{L}[\varrho] \otimes E=\operatorname{dim} U_{L^{\prime}}\left[\varrho^{\prime}\right] \otimes E$, which completes the proof.

We will later be interested in the reduction of $U_{L}[\varrho]$ modulo \mathfrak{p}^{n} for a prime \mathfrak{p} of E. For now, we just remark that the following follows from Proposition 3.1.5.

Corollary 3.1.7. Let $t=\# U_{L}^{\text {tors }}$ and p be a prime not dividing t. Then $U_{L}[\varrho] \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\left[\frac{1}{t}\right]$ is a free $\mathcal{O}_{E} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}\left[\frac{1}{t}\right]$-module of rank d.

Proof. This follows immediately from Proposition 3.1.5 and the structure theorem for modules over PIDs.

3.2 Stark's conjecture [71, 73]

We give a brief summary of the results and conjectures on special values of Artin L-functions.

For any Artin representation $\varrho: G_{L / \mathbb{Q}} \rightarrow \mathrm{GL}(M)$ where M is an n-dimensional E-vector space and an embedding $E \hookrightarrow \mathbb{C}$, we consider the L-function $L(s, \varrho)$ of ϱ. If we need to make the embedding $\iota: E \hookrightarrow \mathbb{C}$ explicit, we write $L(s, \varrho, \iota)$ for $L(s, \varrho)$. The completed L-function is then:

$$
\begin{equation*}
\Lambda(s, \varrho)=\left(\frac{f_{\varrho}}{\pi^{n}}\right)^{s / 2} \Gamma(s / 2)^{a} \Gamma((s+1) / 2)^{b} L(s, \varrho) \tag{3.2.1}
\end{equation*}
$$

where:

$$
\begin{align*}
f_{\varrho} & =\text { Artin conductor of } \varrho \tag{3.2.2}\\
a & =\operatorname{dim}_{E} M_{E}^{\left\langle c_{0}\right\rangle}, \quad \text { (as above) } \tag{3.2.3}\\
b & =n-a \tag{3.2.4}
\end{align*}
$$

It satisfies a functional equation of the form:

$$
\Lambda(1-s, \bar{\varrho})=W(\varrho) \Lambda(s, \varrho)
$$

where $|W(\varrho)|=1$.
Stark gives a formula for the special value of L at $s=1$ (or, equivalently, the residue of the pole at $s=0$). Associated with the units $u_{i j}$ in Proposition 3.1.5 is a regulator defined in terms of their logarithms.

Fix an embedding $\tau: L \hookrightarrow \mathbb{C}$ and let c_{0} be the complex conjugation associated with τ. Define

$$
\begin{aligned}
\log : \mathbb{C} \cong L \otimes_{\tau} \mathbb{C} & \rightarrow \mathbb{R} \\
z & \mapsto \log |z|
\end{aligned}
$$

and extend it linearly to

$$
\begin{aligned}
\log :\left(L \otimes_{\tau} \mathbb{C}\right) \otimes\left(E \otimes_{\iota} \mathbb{C}\right) & \rightarrow \mathbb{C} \\
z \otimes \lambda & \mapsto \lambda \log |z|
\end{aligned}
$$

Thus for $x \otimes y \in L \otimes E$, we write

$$
\begin{equation*}
\log |\tau \otimes \iota(x \otimes y)|=\iota(y) \cdot \log |\tau(x)| \in \mathbb{C} \tag{3.2.5}
\end{equation*}
$$

We often make the choice of embeddings ι and/or τ implicit in the notation and write simply $\log |\tau(-)|$ or $\log |(-)|$ for $\log |\tau \otimes \iota(-)|$.

Definition 3.2.1. The Stark regulator matrix associated with ϱ (and the embeddings $\tau: L \hookrightarrow \mathbb{C}$ and $\iota: E \hookrightarrow \mathbb{C})$ is

$$
R(\varrho)=\left(\left|\log \left(\tau \otimes \iota\left(u_{i j}\right)\right)\right|\right)_{1 \leq i, j \leq a} .
$$

Abstractly, there is a perfect pairing

$$
\begin{aligned}
U_{L}[\varrho] \times M^{c_{0}} & \rightarrow \mathbb{C} \\
(\varphi, m) & \mapsto \log (|\tau \otimes \iota(\varphi(m))|)
\end{aligned}
$$

via Proposition 3.1.5 and $R(\varrho)$ is the matrix of this pairing.

Conjecture 3.2.2 (Stark, $[71,73]$). If ϱ does not contain the trivial representation, then

$$
L(1, \varrho)=\frac{W(\bar{\varrho}) 2^{a} \pi^{b}}{f_{\varrho}^{1 / 2}} \cdot \theta(\bar{\varrho}) \cdot \operatorname{det} R(\bar{\varrho})
$$

for some $\theta(\bar{\varrho}) \in \mathbb{Q}(\operatorname{Tr} \varrho)^{\times}$, where $\mathbb{Q}(\operatorname{Tr} \varrho)$ is the field generated by the values of the character of ϱ.

Remark 3.2.3. The assumption that ϱ does not contain the trivial representation is completely innocuous. Indeed, $L\left(s, \chi_{1, L}\right)=\zeta_{L}(s)$, so the value at $s=1$ is given by the class number formula for L. Moreover, $L\left(s, \varrho_{1} \oplus \varrho_{2}\right)=L\left(s, \varrho_{1}\right) \cdot L\left(s, \varrho_{2}\right)$.

Stark's conjecture is known for representations with rational characters.

Theorem 3.2.4 (Stark [71, Theorem 1], Tate [73, Corollary II.7.4]). Conjecture 3.2.2 is true for representations @ whose characters take rational values.

3.3 Stark units for Hilbert modular forms

We now discuss Stark units for Artin representations associated with weight one Hilbert modular forms. Let F be a totally real field. By [62], normalized weight one Hilbert modular eigenforms f with Fourier coefficients in $\mathcal{O}_{E_{f}}$ correspond to 2-dimensional odd irreducible Artin representations

where M is a \mathcal{O}_{E}-module of rank 2 and E is a finite extension of E_{f}. By enlarging L if necessary, we may assume that L is Galois over \mathbb{Q}. We write $G=G_{L / \mathbb{Q}}$ and $G^{\prime}=G_{L / F}$ for simplicity.

As in the previous section, fix an embedding $\tau: L \hookrightarrow \mathbb{C}$ which induces a complex conjugation c_{0} of L. Note that c_{0} necessarily lies in G^{\prime} because F is totally real. Since ϱ_{f} is an odd representation,

$$
\varrho_{f}\left(c_{0}\right) \text { is conjugate to }\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Consider the adjoint representation of ϱ, i.e.

$$
\begin{aligned}
\operatorname{Ad} \varrho_{f}: G_{L / F} & \rightarrow \operatorname{GL}(\operatorname{End}(M)) \\
\sigma & \mapsto\left(T \mapsto \varrho(\sigma) T \varrho(\sigma)^{-1}\right) .
\end{aligned}
$$

We note that if T has trace 0 , then so does $\varrho(\sigma) T \varrho(\sigma)^{-1}$. The representation is hence reducible, and we define the trace zero adjoint representation as

$$
\operatorname{Ad}^{0} \varrho_{f}: G_{L / F} \rightarrow \operatorname{GL}\left(\operatorname{End}^{0}(M)\right)
$$

where $\operatorname{End}^{0}(M)=\{T: M \rightarrow M \mid \operatorname{Tr} T=0\}$. This is a 3-dimensional representation.

Choosing a basis of M_{E} such that $\varrho\left(c_{0}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, we see that

$$
(\operatorname{Ad} \varrho)\left(c_{0}\right)\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
a & -b \\
-c & -a
\end{array}\right)
$$

Hence $\operatorname{rank}\left(\left(\operatorname{Ad}^{0} \varrho_{f}\right)^{\left\langle c_{0}\right\rangle}\right)=1$.

Definition 3.3.1. Let U_{L} be the units of L and $\mathcal{O}=\mathcal{O}_{E}$ be the ring over which ϱ_{f} is defined. The group of Stark units associated with f is

$$
U_{f}=\operatorname{Hom}_{\mathcal{O}\left[G_{L / F}\right]}\left(\operatorname{Ad}^{0} \varrho_{f}, U_{L} \otimes_{\mathbb{Z}} \mathcal{O}\right)
$$

We sometimes write $\operatorname{Ad}^{*} \varrho=\operatorname{Hom}_{\mathcal{O}\left[G_{L / F}\right]}\left(\operatorname{Ad}^{0} \varrho_{f}, \mathcal{O}\right)$, so that $U_{f}=\operatorname{Ad}^{*} \varrho \otimes_{\mathbb{Z}\left[G_{L / F}\right]} U_{L}$.
Write $\sigma_{1}, \ldots, \sigma_{d} \in G$ for representatives of G / G^{\prime}. Having fixed an embedding $\tau: L \hookrightarrow \mathbb{C}$, we have embeddings $\tau_{j}=\tau^{\sigma_{j}}: L \hookrightarrow \mathbb{C}$. We sometimes identify σ_{j} with the embedding $\left.\tau_{j}\right|_{F}: F \hookrightarrow \mathbb{R}$. We write $c_{j}=\sigma_{j} c_{0} \sigma_{j}^{-1}$ for the complex conjugation associated with τ_{j}.

Corollary 3.3.2. Suppose that ϱ_{f} is irreducible. Then:

$$
U_{f}=U_{L}\left[\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho_{f}\right],
$$

is the group of Stark units associated with the 3d-dimensional Artin representation $\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho_{f}$. Therefore,

$$
U_{f} \cong\left(\left(\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho_{f}\right)^{\left\langle c_{0}\right\rangle}\right)^{\vee} \cong \bigoplus_{j=1}^{d}\left(\left(\operatorname{Ad}^{0} \varrho_{f}\right)^{\left\langle c_{j}\right\rangle}\right)^{\vee}
$$

and hence

$$
\operatorname{rank} U_{f}=d
$$

Moreover, for each $j=0, \ldots$, , fix a basis $m_{1, j}, m_{2, j}, m_{3, j}$ of $\mathrm{Ad}^{0} \varrho_{f}$ such that $\varrho\left(c_{j}\right)=\left(\begin{array}{cc}I_{1} & 0 \\ 0 & -I_{2}\end{array}\right)$ in this basis, and consider the basis

$$
\left\{\sigma_{j} m_{i, j} \mid j=1, \ldots, d, i=1,2,3\right\} \text { of } \operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho .
$$

Let $a^{0}(\sigma)$ be the matrix of $\operatorname{Ad}^{0} \varrho_{f}(\sigma)$ in the basis $\left\{m_{0, i}\right\}$ and write P_{j} for the change of basis matrix from $\left\{m_{i, 0}\right\}$ to $\left\{m_{i, j}\right\}$. Then there is a basis $\varphi_{1}, \ldots, \varphi_{d}$ of U_{f} defined by Proposition 3.1.5 such that

$$
\varphi_{j}\left(\sigma_{k} m_{1, k}\right)=\prod_{\sigma^{\prime} \in G^{\prime}}\left(\epsilon^{\left(\sigma_{k} \sigma^{\prime} \sigma_{j}^{-1}\right)^{-1}}\right)^{\left(P_{k} a^{0}\left(\sigma^{\prime}\right) P_{j}^{-1}\right)_{11}}
$$

Proof. We have that:

$$
\begin{aligned}
U_{f} & =\operatorname{Hom}_{\mathcal{O}\left[G^{\prime}\right]}\left(\operatorname{Ad}^{0} \varrho_{f}, U_{L} \otimes_{\mathbb{Z}} \mathcal{O}\right) \\
& =\operatorname{Hom}_{\mathcal{O}[G]}\left(\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho_{f}, U_{L} \otimes_{\mathbb{Z}} \mathcal{O}\right) \quad \text { Frobenius reciprocity } \\
& =U_{L}\left[\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho_{f}\right] .
\end{aligned}
$$

Since ϱ_{f} is irreducible, $\operatorname{Ad}^{0} \varrho_{f}$ does not contain a copy of the trivial representation. We may hence apply Proposition 3.1.5 to the Artin representation $\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho_{f}$ to get the result. Finally:

$$
\begin{aligned}
\left(\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho_{f}\right)^{c_{0}} & =\bigoplus_{j=1}^{d}\left(\sigma_{j} \operatorname{Ad}^{0} \varrho_{f}\right)^{c_{0}} \\
& =\bigoplus_{j=1}^{d}\left(\operatorname{Ad}^{0} \varrho_{f}\right)^{c_{j}}
\end{aligned}
$$

completing the proof of the first part.
It remains to prove the final assertion. To compute the action of an element $\sigma \in G$ on $\sigma_{j} \operatorname{Ad}^{0} \varrho$, we find σ_{k} and $\sigma^{\prime} \in G^{\prime}$ such that $\sigma \sigma_{j}=\sigma_{k} \sigma^{\prime}$ and send

$$
\sigma_{j} m \mapsto \sigma_{k}\left(\sigma^{\prime} m\right) \in \sigma_{j^{\prime}} \operatorname{Ad}^{0} \varrho_{f} .
$$

By Proposition 3.1.5, for $1 \leq j, k \leq d$:

$$
\varphi_{j}\left(\sigma_{k} m_{1, k}\right)=u_{j k}=\prod_{\sigma \in G}\left(\epsilon^{\sigma^{-1}}\right)^{a_{j k}(\sigma)}
$$

where $a_{j k}(\sigma)$ is the matrix of $\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho(\sigma)$ in the chosen basis. Then for $1 \leq j, k \leq$ d :

$$
a_{j k}(\sigma)= \begin{cases}\left(P_{k} a^{0}\left(\sigma^{\prime}\right) P_{j}^{-1}\right)_{11} & \text { if } \sigma_{k}^{-1} \sigma \sigma_{j}=\sigma^{\prime} \text { for some } \sigma^{\prime} \in G^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Therefore:

$$
u_{j k}=\prod_{\sigma^{\prime} \in G^{\prime}}\left(\epsilon^{\left(\sigma_{k} \sigma^{\prime} \sigma_{j}^{-1}\right)^{-1}}\right)^{a_{j k}\left(\sigma_{k} \sigma^{\prime} \sigma_{j}^{-1}\right)}=\prod_{\sigma^{\prime} \in G^{\prime}}\left(\epsilon^{\left(\sigma_{k} \sigma^{\prime} \sigma_{j}^{-1}\right)^{-1}}\right)^{\left(P_{k} a^{0}\left(\sigma^{\prime}\right) P_{j}^{-1}\right)_{11}}
$$

as claimed.

Remark 3.3.3. The decomposition in Corollary 3.3 .2 generalizes to any plectic Artin representation [55], i.e. an Artin representation of G_{F} for a totally real field F. We have not used anything specific to Hilbert modular forms.

Remark 3.3.4. There is also a description of U_{f} similar to [15]. For a chosen prime \mathfrak{p} of F, for each φ_{σ}, we may consider the component of $\varphi_{\sigma}\left(\operatorname{Ad}^{0} \varrho_{f}\right) \subseteq U_{L}$ on which a chosen Frobenius $\operatorname{Frob}_{\mathfrak{p}} \in G_{L / F}$ acts by α / β where α and β are the ordered eigenvalues $\varrho_{f}\left(\right.$ Frob $\left._{\mathfrak{p}}\right)$. As in loc. cit. this space should be one-dimensional under extra assumptions; for example, that $\alpha \neq-\beta$. This description may be useful when considering a p-adic analogue of the conjecture, but we omit this here entirely.

3.4 Stark's conjecture for Hilbert modular forms

We now state Stark's conjecture for the trace zero adjoint representation associated with a Hilbert modular form of parallel weight one.

Definition 3.4.1. The Stark regulator matrix associated with (the trace zero adjoint representation of) f is

$$
R_{f}=\left(\log \left(\left|u_{j k}\right|\right)\right)_{1 \leq j, k \leq d},
$$

with

$$
u_{j k}=\prod_{\sigma^{\prime} \in G^{\prime}}\left(\epsilon^{\left(\sigma_{k} \sigma^{\prime} \sigma_{j}^{-1}\right)^{-1}}\right)^{\left(P_{k} a^{0}\left(\sigma^{\prime}\right) P_{j}^{-1}\right)_{11}}
$$

(notation as in Corollary 3.3.2). If we need to specify f, we write $u_{j k}^{f}$ for $u_{j k}$.

Proposition 3.4.2. Stark's conjecture 3.2.2 is equivalent to the statement:

$$
L\left(1, \overline{\operatorname{Ad}^{0} \varrho_{f}}\right) \sim_{E^{\times}} \frac{\pi^{2 d}}{f_{\varrho}^{1 / 2}} \cdot \operatorname{det} R_{f}
$$

where f_{ϱ} is the conductor of $\varrho=\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho_{f}$.

Remark 3.4.3. In Chapter VI, we will relate the adjoint L-function to the Petersson inner product of f. This will give evidence for our archimedean conjecture (Conjecture 5.3.1).

3.5 Examples

The Stark unit group can be determined explicitly in many cases. We provide a few illustrative examples.

Example 3.5.1 (Heegner units). The first example of Stark units comes from the theory of elliptic units.

Let $F=\mathbb{Q}$ and K / \mathbb{Q} be an imaginary quadratic extension. For any Dirichlet character $\chi: G_{H / K} \rightarrow \mathbb{C}^{\times}$of K, where H / K is an abelian extension, there is an associated weight one form $f=\theta_{\chi}$, the theta function of χ, such that

$$
L(s, \chi)=L(s, f)
$$

The Artin representation ϱ associated with f is the 2-dimensional representation:

$$
\varrho_{f}=\operatorname{Ind}_{G_{H / K}}^{G_{H / \mathbb{Q}}} \chi=\left\{\phi: G_{H / \mathbb{Q}} \rightarrow \mathbb{C} \mid \phi(\sigma \tau)=\chi(\sigma) \phi(\tau) \quad \text { for } \sigma \in G_{H / K}\right\} .
$$

For the non-trivial element $c \in G_{K / \mathbb{Q}}$, we can define a character $\chi^{c}(\sigma)=\chi(c \sigma c)$. Writing 1 for the trivial representation and χ_{0} for $\chi \cdot\left(\chi^{c}\right)^{-1}$, we see that

$$
\operatorname{Ad}^{0} \varrho_{f} \cong 1 \oplus \operatorname{Ind}_{G_{H / K}}^{G_{H / Q}} \chi_{0} .
$$

Since the unit group does not contain a copy of the trivial representation, this shows that

$$
U_{f} \cong U_{H}\left[\chi_{0}\right],
$$

the χ_{0}-isotypic component of the units of H. For a Minkowski unit $\epsilon \in \mathcal{O}_{H}^{\times}$, the unit associated with f is:

$$
u_{f}=u_{\chi_{0}}=\prod_{\sigma \in G_{H / K}}\left(\epsilon^{\sigma^{-1}}\right)^{\chi_{0}(\sigma)} .
$$

In literature, this unit is often written additively as $u_{\chi_{0}}=\sum_{\sigma \in G_{H / K}} \chi_{0}(\sigma)^{-1} u^{\sigma} \in$ $U_{H}\left[\chi_{0}\right]$. Elliptic units, constructed using singular values of modular functions, provide an explicit construction of Minkowski units $u \in \mathcal{O}_{H}^{\times}$, and hence of Stark units u_{f}.

The logarithms of these units appear as special values of the L-function of χ_{0}, via Kronecker's second limit formula. This also has a p-adic analogue: the p-adic logarithm of $u_{\chi_{0}}$ accounts for the special value of the Katz p-adic L-function evaluated at the finite order character χ_{0}^{-1}, which is outside of the range of interpolation [43, 10.4, 10.5]. More generally, Darmon, Lauder, and Rotger conjecture [15, Conjecture ES] that p-adic logarithms of other Stark units associated with weight one modular forms appear in a formula for values of triple product p-adic L-functions outside the range of interpolation.

The following example is suitable for computations in the case $F=\mathbb{Q}$. In fact, it is the example where Harris-Venkatesh [31] perform their computations. It is also a simple example where our archimedean conjecture (Conjecture 5.3.1) can be proved (Corollary 6.1.4).

Example 3.5.2 (Units in cubic fields, $F=\mathbb{Q}$). This example is discussed in [31, Sec. 5.6], but we recall it here in detail to provide context for the generalizations to $[F: \mathbb{Q}]=2$ we make below.

Let K be a cubic field of signature $[1,1]$ and write L for the Galois closure of K. Then $G_{L / \mathbb{Q}} \cong S_{3}$ and we may assume that K is the fixed field $L^{(12)}$ of the action of the cycle $(12) \in S_{3}$ on L.

To give a 2-dimensional representation of $G_{L / \mathbb{Q}}$, we need to give a 2-dimensional representation of S_{3}. There is a unique irreducible 2-dimensional representation: the regular representation $\varrho: G_{\mathbb{Q}} \rightarrow S_{3} \rightarrow \mathrm{GL}(M) \cong \mathrm{GL}_{2}(\mathbb{Z})$, obtained by considering the action of S_{3} on

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{3} \mid \sum x_{i}=0\right\}
$$

by permuting the coordinates.
In the basis $e_{1}=(1,0,-1), e_{2}=(0,1,-1)$ of M, we have that:

$$
\begin{gathered}
\sigma=(12) \mapsto S=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
\tau=(123) \mapsto T=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Note that ϱ is an odd Galois representation since $\operatorname{det} S=-1$. Therefore, there is a weight one modular form f corresponding to ϱ.

Recall that

$$
U_{f}=\operatorname{Hom}_{G_{L / \mathbb{Q}}}\left(\operatorname{Ad}^{0} \varrho, U_{L}\right)
$$

Lemma 5.7 in [31] shows that

$$
\begin{align*}
U_{f} \otimes \mathbb{Z}\left[\frac{1}{6}\right] & \cong \tag{3.5.1}\\
\rightrightarrows & U_{K}^{(1)} \otimes \mathbb{Z}\left[\frac{1}{6}\right] \\
\left(\varphi: \mathrm{Ad}^{0} \varrho\right. & \left.\rightarrow U_{L}\right)
\end{align*}>\varphi(S), ~ \$
$$

where $U_{K}^{(1)}$ are the norm 1 units of K.
We recall the proof here. By definition

$$
\operatorname{Ad}^{0} \varrho \cong \operatorname{End}^{0}(M)
$$

with the action of S_{3} on the right hand side given by conjugation. Note that each element of S_{3} gives an element of $\operatorname{End}(M)$ and we may use the S_{3}-invariant projection

$$
\begin{aligned}
\operatorname{End}(M) & \rightarrow \operatorname{End}^{0}(M) \\
A & \mapsto A-(1 / 2) \operatorname{Tr}(A)
\end{aligned}
$$

to get a spanning set for $\operatorname{Hom}^{0}(M, M)$ this way. Since the lengths of cycles are conjugation-invariant, we see that
$\operatorname{Hom}^{0}(M, M) \cong \operatorname{span}($ images of $(123),(132)) \oplus \operatorname{span}($ images of $(12),(13),(23))$.

One checks that span(images of $(123),(132))=\mathbb{Z}[e]$, where $e \in \operatorname{Hom}^{0}(M, M)$ is the common image of (123) and (132). We write $W=\operatorname{span}($ images of $(12),(13),(23))$. Hence

$$
\operatorname{Ad}^{0} \varrho \cong \mathbb{Z}[e] \oplus W
$$

Now, for any S_{3}-representation V :

- $\operatorname{Hom}_{S_{3}}(\mathbb{Z}[e], V)=V^{\text {sgn }}$, the sgn-isotypic part of V,
- $\operatorname{Hom}_{S_{3}}(W, V) \cong\left\{v \in V^{(12)} \mid v+(123) v+(132) v=0\right\}$ via $\varphi \mapsto \varphi(S)$.

This shows that:

$$
U_{f} \cong U_{L}^{\mathrm{sgn}} \oplus U_{K}^{(1)}
$$

Since $\mathbb{Q}(\sqrt{\operatorname{disc}(L)})=L^{\langle(123)\rangle}, U_{L}^{\text {sgn }}=U_{\mathbb{Q}(\sqrt{\operatorname{disc}(L)})}$ is a finite group of order at most 6. Hence

$$
U_{f} \otimes \mathbb{Z}\left[\frac{1}{6}\right] \cong U_{K}^{(1)} \otimes \mathbb{Z}\left[\frac{1}{6}\right] .
$$

The following is the simplest example of explicit Stark units over real quadratic fields. It is the base change of Example 3.5.2 to a real quadratic field and one of the examples in which we will do the numerical computations later on.

Example 3.5.3 (Units in cubic extensions of F for $[F: \mathbb{Q}]=2$). Consider K as in Example 3.5.2 and consider a quadratic extension F of \mathbb{Q}. Then $K F$ is a cubic extension of F of signature $[2,2]$:

As above, we consider the Galois representation $\varrho: G_{L F / F} \cong S_{3} \rightarrow \operatorname{GL}(M)$. If f is the weight one Hilbert modular form associated with ϱ, then one can check that

$$
\begin{aligned}
U_{f} \otimes \mathbb{Z}[1 / 6] & \cong \operatorname{Hom}_{G_{L F / F}}\left(\operatorname{Ad}^{0} \varrho, U_{L F}\right) \otimes \mathbb{Z}[1 / 6] \\
& \cong U_{L F}^{\mathrm{sgn}} \otimes \mathbb{Z}[1 / 6] \oplus\left\{u \in U_{K F} \mid N_{F}^{K F} u=1\right\} \otimes \mathbb{Z}[1 / 6] \\
& \cong\left(\left\{u \in U_{K} \mid N_{\mathbb{Q}}^{K} u=1\right\} \oplus\left\{u \in U_{K F} \mid u^{\sigma}=u^{-1}, N_{F}^{K F} u=1\right\}\right) \otimes \mathbb{Z}[1 / 6]
\end{aligned}
$$

where we write $\operatorname{Gal}(L / \mathbb{Q})=\langle\sigma\rangle$. The Hilbert modular form f is the base change of the modular form f_{0} associated with K in the previous example. We will later prove a more general result of this form in Corollary 7.1.3.

Finally, we present the "simplest" non base change example where explicit Stark units are available over real quadratic fields. It is a direct analogue of Example 3.5.2, but the Galois theory is more complicated.

Example 3.5.4 (Units in cubic extensions of F for $[F: \mathbb{Q}]=2$, non base change). We generalize Example 3.5.2 to the case $[F: \mathbb{Q}]=2$ and a cubic extension K of F of signature $[2,2]$:

We may assume that $K=L^{S_{3} \times\langle(12)\rangle}$. Consider the representation

$$
\begin{aligned}
& \varrho=\operatorname{sgn} \boxtimes \mathrm{reg}: S_{3}^{2} \rightarrow \mathrm{GL}_{2}(\mathbb{Z}), \\
& (\sigma,(12)) \mapsto \operatorname{sgn}(\sigma) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
& (\sigma,(123)) \mapsto \operatorname{sgn}(\sigma) \cdot\left(\begin{array}{rr}
-1 & 1 \\
-1 & 0
\end{array}\right) .
\end{aligned}
$$

Then ϱ corresponds to a Hilbert modular form f of parallel weight one.
As before,

$$
\operatorname{Ad}^{0} \varrho \cong \mathbb{Z}[e] \oplus W
$$

and for any S_{3}^{2}-representation V :

- $\operatorname{Hom}_{S_{3}^{2}}(\mathbb{Z}[e], V) \cong V^{\operatorname{sgn} \boxtimes \operatorname{sgn}}$,
- $\operatorname{Hom}_{S_{3}^{2}}(W, V) \cong\left\{v \in V^{S_{3} \times(12)} \mid v+(1,(123)) v+(1,(132)) v=0\right\}$ with the isomorphism given by sending $\varphi: W \rightarrow V$ to $\varphi(S)$.

Therefore,

$$
\begin{aligned}
U_{f} & =\operatorname{Hom}_{S_{3}^{2}}\left(\operatorname{Ad}^{0} \varrho, U_{L}\right) \\
& =\operatorname{Hom}\left(\mathbb{Z}[e], U_{L}\right) \oplus \operatorname{Hom}\left(W, U_{L}\right) \\
& =\left(U_{L}^{\mathrm{sgn} \boxtimes \operatorname{sgn}}\right) \oplus\left\{u \in U_{K} \mid N_{F}^{K} u=1\right\} .
\end{aligned}
$$

We claim that the group $U_{L}^{\operatorname{sgn} \boxtimes \mathrm{sgn}}$ is torsion. If $u \in U_{L}^{\operatorname{sgn} \boxtimes \operatorname{sgn}}$, then u is fixed by a subgroup $H \subseteq S_{3}^{2}$ of order 18 of elements $\left(\sigma, \sigma^{\prime}\right)$ such that $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{\prime}\right)$. One can check that $L^{H}=F(\sqrt{\operatorname{disc}(\mathrm{~L} / \mathrm{F})}$, which is a CM extension of F. Therefore, if $\operatorname{Gal}(F(\sqrt{\operatorname{disc}(\mathrm{~L} / \mathrm{F})} / F)) \cong\langle\tau\rangle$,

$$
U_{L}^{\operatorname{sgn} \boxtimes \operatorname{sgn}} \cong\left(U_{F(\sqrt{\operatorname{disc}(L / F)})}\right)^{\tau=-1} .
$$

Since $F(\sqrt{\operatorname{disc}(\mathrm{~L} / \mathrm{F})}) / F$ is CM , the ranks of the two unit groups are equal. On the other hand, if $u \in U_{F(\sqrt{\operatorname{disc}(L / F)})}^{\tau=-1}$ was a non-torsion element, then u would generate an infinite subgroup of $\left.U_{F(\sqrt{\operatorname{disc}(L / F)})}\right)^{\tau=-1}$ which does not belong to U_{F}. This is a contradiction.

Finally, let N be the order of the torsion group $U_{L}^{\operatorname{sgn} \boxtimes \mathrm{sgn}}$. Then:

$$
\begin{equation*}
U_{f} \otimes \mathbb{Z}[1 / N] \cong\left\{u \in U_{K} \mid N_{F}^{K} u=1\right\} \otimes \mathbb{Z}[1 / N] . \tag{3.5.2}
\end{equation*}
$$

As expected by Corollary 3.3.2 this is a group of rank 2. In terms of the notation of Definition 3.4.1, the units u_{11}, u_{12} give a basis of the last space. Identifying the units u_{21}, u_{22} seems more difficult.

3.6 Comparison with motivic cohomology

This section is not used in the remainder of this manuscript. The general conjectures of Venkatesh [79] predict the action of the dual of a motivic cohomology group associated with the coadjoint motive of f. We identify this motivic cohomology group with the group of Stark units U_{f}, analogously to [31, Sec. 2.8]. Some of this section is based on standard conjectures.

3.6.1 Motivic cohomology

Let k be any number field and \mathcal{O}_{k} be its ring of integers. (In general, \mathcal{O}_{k} could be any Dedekind domain and k its field of fractions). Let E be a field of characteristic 0 .

For any Chow motive M defined over k with coefficients in E, we may define motivic cohomology groups (cf. [5] or [51, Definition 3.4])

$$
H_{\mathcal{M}_{k}}^{r}(M, E(n))
$$

which are equipped with specialization maps to various cohomology theories, including étale cohomology:

$$
H_{\mathcal{M}_{k}}^{r}(M, E(n)) \otimes E_{\mathfrak{p}} \rightarrow H_{\text {ett }}^{r}\left(M, E_{\mathfrak{p}}(n)\right)
$$

Scholl [64, Theorem 1.1.6] proved that these have a subspace of integral classes

$$
H_{\mathcal{M}_{\mathcal{O}_{k}}^{r}}^{r}(M, E(n)) \subseteq H_{\mathcal{M}_{k}}^{r}(M, E(n))
$$

We will be concerned with the case $r=1, n=1$. For the trivial motive $M=k$, conjecturally:

$$
H_{\mathcal{M}_{\mathcal{O}_{k}}}^{1}(k, E(1)) \cong U_{k} \otimes E
$$

This statement is certainly true in all realizations; see, for example, [54, 4.3] or [51, Corollary 4.2].

3.6.2 Motivic cohomology of the coadjoint motive

Conjecturally, there is a 3 -dimensional Chow motive $M_{\text {coad }}$ with coefficients in E, the coadjoint motive of f, associated with the dual of the trace zero adjoint representation, $\mathrm{Ad}^{*} \varrho_{f}$. By definition, for any prime \mathfrak{p} of E, its \mathfrak{p}-adic étale realization is isomorphic to:

$$
H_{\lambda}^{\bullet}\left(M_{\text {coad }} \times_{\mathbb{Q}} \overline{\mathbb{Q}}, E_{\mathfrak{p}}\right) \cong \operatorname{Ad}^{*} \varrho_{f} \otimes_{E} E_{\mathfrak{p}}
$$

(concentrated in cohomological degree 0). Without loss of generality, we assume that $M_{\text {coad }}$ is defined over F (and not just $\overline{F_{\lambda}}$).

Remark 3.6.1. Motives associated with Hilbert modular forms were constructed in [4] in some cases where the weights are cohomological. Since weight one Hilbert modular forms are not cohomological, there is no known construction of the motive, but we assume that (at least) the coadjoint motive exists.

According to [79, 60], we should consider the motivic cohomology group

$$
H_{\mathcal{M}_{\mathcal{O}_{F}}}^{1}\left(M_{\text {coad }}, E(1)\right) .
$$

There is a natural map

$$
H_{\mathcal{M}_{\mathcal{O}_{F}}}^{1}\left(M_{\text {coad }}, E(1)\right) \rightarrow H_{\mathcal{M}_{\mathcal{O}_{L}}}^{1}\left(M_{\text {coad }}, E(1)\right)^{G_{L / F}}
$$

and we will work with the codomain instead. According to [31, (2.8)], this map should be an isomorphism. In the proof of Proposition 3.6.2 below, we check this in the étale realization (the induced map is denoted by i).

For a prime \mathfrak{p} of E, the \mathfrak{p}-adic étale realization map:

$$
H_{\mathcal{M}_{\mathcal{O}_{F}}^{1}}\left(M_{\text {coad }}, E(1)\right) \otimes \mathcal{O}_{\mathfrak{p}} \rightarrow H_{f}^{1}\left(F,\left(\operatorname{Ad}^{*} \varrho_{f} \otimes \mathcal{O}_{\mathfrak{p}}\right)(1)\right)
$$

is conjecturally an isomorphism $[6,5.3(i i)]$. Here, H_{f}^{1} denotes the Bloch-Kato Selmer group [6]. (We apologize for the clash of notation with the Hilbert modular form f and hope that this does not cause confusion.) We compute the last group.

Proposition 3.6.2. We have that

$$
H_{f}^{1}\left(F,\left(\operatorname{Ad}^{*} \varrho_{f} \otimes \mathcal{O}_{\mathfrak{p}}\right)(1)\right) \cong U_{f} \otimes \mathbb{Q} \otimes \mathcal{O}_{\mathfrak{p}}
$$

for all \mathfrak{p} such that $N \mathfrak{p}$ is coprime to $[L: F]$.

Proof. This argument is adapted from [31, Lemma 4.5]. We claim that

$$
H_{f}^{1}\left(G_{F}, \operatorname{Ad}^{*} \varrho_{f} \otimes \mathcal{O}_{\mathfrak{p}}\right) \cong\left(U_{L} \otimes \mathbb{Q} \otimes \operatorname{Ad}^{*} \varrho_{f} \otimes \mathcal{O}_{\mathfrak{p}}\right)^{G_{L / F}}
$$

Recall that $\left(U_{L} \otimes \operatorname{Ad}^{*} \varrho_{f}\right)^{G_{L / F}}=U_{f}$ by definition, so this will prove the proposition.
We write $\mathrm{Ad}^{*} \varrho_{\mathfrak{p}}$ for $\mathrm{Ad}^{*} \varrho_{f} \otimes \mathcal{O}_{\mathfrak{p}}$ for simplicity. The (global) Bloch-Kato Selmer group H_{f}^{1} is defined by the short exact sequence:

$$
0 \longrightarrow H_{f}^{1}\left(F, \operatorname{Ad}^{*} \varrho_{\mathfrak{p}}(1)\right) \longrightarrow H^{1}\left(F, \operatorname{Ad}^{*} \varrho_{\mathfrak{p}}(1)\right) \longrightarrow \underset{v}{\bigoplus} \frac{H^{1}\left(F_{v}, \mathrm{Ad}^{*} \varrho_{p}(1)\right)}{H_{f}^{1}\left(F_{v}, \mathrm{Ad}^{*} \rho_{p}(1)\right)} .
$$

where $H_{f}^{1}\left(F_{v}, \mathrm{Ad}^{*} \varrho_{\mathfrak{p}}(1)\right)$ are the local Bloch-Kato Selmer groups. The restriction maps to the subgroup $G_{\bar{L} / L} \subseteq G_{\bar{F} / F}$ give a commutative diagram

with exact rows. Since $\mathrm{Ad}^{*} \varrho_{\mathfrak{p}}(1)$ is trivial as a $G_{\bar{L} / L}$-representation, we have that:

$$
\begin{aligned}
\left(H_{f}^{1}\left(L, \operatorname{Ad}^{*} \varrho_{\mathfrak{p}}(1)\right)\right)^{G_{L / F}} & \cong\left(\operatorname{Ad}^{*} \varrho_{\mathfrak{p}} \otimes_{\mathcal{O}_{\mathfrak{p}}} H^{1}\left(L, \mathcal{O}_{\mathfrak{p}}(1)\right)\right)^{G_{L / F}} \\
& \cong\left(\operatorname{Ad}^{*} \varrho_{\mathfrak{p}} \otimes_{\mathcal{O}_{\mathfrak{p}}} U_{L} \otimes \mathcal{O}_{\mathfrak{p}} \otimes \mathbb{Q}\right)^{G_{L / F}}
\end{aligned}
$$

so we just need to show that the map i is an isomorphism.
Since $N \mathfrak{p}$ is coprime to $[L: F]$, the restriction map j is an isomorphism by a general group cohomology result [66, I.2.4]. By the Snake Lemma, this shows that i is also injective.

To show that it is surjective, we must show that k is injective. In fact, for a place w of L above a place v of F, the restriction map

$$
\frac{H^{1}\left(F_{v}, \operatorname{Ad}^{*} \varrho_{\mathfrak{p}}(1)\right)}{H_{f}^{1}\left(F_{v}, \operatorname{Ad}^{*} \varrho_{\mathfrak{p}}(1)\right)} \rightarrow \frac{H^{1}\left(L_{w}, \operatorname{Ad}^{*} \varrho_{\mathfrak{p}}(1)\right)}{H_{f}^{1}\left(L_{w}, \operatorname{Ad}^{*} \varrho_{\mathfrak{p}}(1)\right)}
$$

is split by the corestriction map divided by $\left[L_{w}: F_{v}\right]$ (since $\left[L_{w}: F_{v}\right]$ is invertible in $\mathcal{O}_{\mathfrak{p}}$).

CHAPTER IV

Derived Hecke Operators on the Special Fiber

Let:

- f be a normalized Hilbert modular eigenform of parallel weight one, new of level \mathfrak{N}, with coefficients in the ring $\mathcal{O}_{E_{f}}$;
- $\varrho=\varrho_{f}$ be the associated Artin representation, defined over $\mathcal{O}=\mathcal{O}_{E}$ where E is a finite extension of E_{f},
- U_{f} be the group of Stark units, which has rank $d=[F: \mathbb{Q}]$ over \mathcal{O},
- \mathfrak{p} be a prime of \mathcal{O}_{E} such that $(p)=\mathfrak{p} \cap \mathbb{Q}$ has good reduction in F and p is coprime to \mathfrak{N}, and let $k=\mathcal{O}_{E} / \mathfrak{p}^{n}$.

We consider a smooth, compact, integral model $X=X_{1}(\mathfrak{N})$ for the Hilbert modular variety associated with F and the level $\Gamma_{1}(\mathfrak{N})$ (the level of f). Such integral models for the toroidal compactifications with the level structures considered here were developed in [18], following the standard methods of Rapoport [61]. They are defined over $\mathbb{Z}\left[1 / N_{F / \mathbb{Q}} \mathfrak{N}\right]$, where $N_{F / \mathbb{Q}}$ denotes the norm from F to \mathbb{Q}. See also [10], [17], or [26] for surveys on Hilbert modular varieties and Hilbert modular forms.

Let ω be the Hodge bundle on the integral Hilbert modular surface $X_{\mathbb{Z}\left[1 / N_{F / \mathbb{Q}} \mathcal{N}\right]}$,
so that

$$
f \in H^{0}\left(X_{\mathbb{Z}\left[1 / N_{F / Q} \mathfrak{Q}\right]}, \omega\right) \otimes_{\mathbb{Z}} \mathcal{O}_{E_{f}}
$$

In this section we construct an action of $U_{f}^{\vee} \otimes_{\mathcal{O}_{E}} k$ on the cohomology space

$$
\left(H^{*}\left(X_{\mathbb{Z}\left[1 / N_{F / \mathbb{Q}} \mathfrak{N}\right]}, \omega\right) \otimes_{\mathbb{Z}} \mathcal{O}_{E}\right)_{f} \otimes_{\mathcal{O}_{E}} k \cong H^{*}\left(X_{k}, \omega\right)_{f}
$$

via derived Hecke operators on the special fiber and conjecture that it lifts to \mathcal{O}_{E}. This is an analogue of the Harris-Venkatesh conjecture [31] for the coherent cohomology of the Hodge bundle on Hilbert modular varieties.

Recall (c.f. Section 3.3) that the Artin representation associated with f factors through a finite Galois extension L / F and has coefficients in the integers \mathcal{O}_{E} of a number field E, i.e. $\varrho_{f}: \operatorname{Gal}(L / F) \rightarrow \operatorname{GL}_{2}\left(\mathcal{O}_{E}\right)$. Let $q>5$ be a prime and \mathfrak{q} be a prime of F above it such that $N \mathfrak{q} \equiv 1\left(p^{n}\right)$. We fix a choice of a prime ideal \mathfrak{Q} of L above \mathfrak{q}. We write $G^{\prime}=\operatorname{Gal}(L / F)$ and $G=\operatorname{Gal}(L / \mathbb{Q})$.

This configuration is summarized by the following diagram:

We will describe:

- a $m a p$

$$
\theta_{\mathfrak{q}}^{\vee}: \bigoplus_{\sigma \in G / G^{\prime}} U_{f, \sigma}^{\vee} \rightarrow U_{f}^{\vee} \otimes k
$$

in Section 4.1 (Proposition 4.1.4);

- an action of the domain via derived Hecke operators:

$$
T_{\sigma \mathfrak{q}, z}: H^{q}\left(X_{k}, \omega\right)_{f} \rightarrow H^{q+1}\left(X_{k}, \omega\right)_{f}
$$

associated with $z \in U_{f, \sigma}^{\vee}$ in Sections 4.2, 4.3 (Definition 4.3.1);
and conjecture that the resulting action of $U_{f}^{\vee} \otimes k$ lifts to characteristic 0 in Section 4.4 (Conjecture 4.4.1).

4.1 Dual Stark units mod \mathfrak{p}^{n}

We start by describing the group $U_{f}^{\vee} \otimes_{\mathcal{O}_{E}} k$. The description will depend on a choice of a Taylor-Wiles prime \mathfrak{q} of F.

4.1.1 Taylor-Wiles primes

Suppose \mathfrak{p} is a prime of E above p and for any n, consider

$$
k=\mathcal{O}_{E} / \mathfrak{p}^{n}
$$

Definition 4.1.1. A Taylor-Wiles prime for f of level $n \geq 1$ consists of the following data:
(1) a prime \mathfrak{q} of of F, relatively prime to the level of f, such that $N \mathfrak{q} \equiv 1\left(p^{n}\right)$,
(2) a choice $(\alpha, \beta) \in \mathbb{F}_{\mathfrak{p}}^{2}$ with $\alpha \neq \beta$ such that

$$
\bar{\varrho}\left(\text { Frob }_{\mathfrak{q}}\right)=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

where $\bar{\varrho}$ is the reduction of ϱ modulo \mathfrak{p}.

If \mathfrak{q} is a Taylor-Wiles prime, $\left(\mathcal{O}_{F} / \mathfrak{q}\right)^{\times}$contains a subgroup $\Delta \cong \mathbb{Z} / p^{n} \mathbb{Z}$ of size p^{n}. We frequently denote it by $\left(\mathcal{O}_{F} / \mathfrak{q}\right)_{p^{n}}^{\times}$.

We also write

$$
\begin{equation*}
k\langle 1\rangle_{\mathfrak{q}}=k \otimes\left(\mathcal{O}_{F} / \mathfrak{q}\right)_{p^{n}}^{\times}, \quad k\langle-1\rangle_{\mathfrak{q}}=\operatorname{Hom}\left(\left(\mathcal{O}_{F} / \mathfrak{q}\right)_{p^{n}}^{\times}, k\right), \tag{4.1.1}
\end{equation*}
$$

both non-canonically isomorphic to k. When the underlying prime \mathfrak{q} is clear, we drop it from the notation.

Finally, for any \mathbb{Z}-module M, we write

$$
\begin{equation*}
M\langle m\rangle=M \otimes_{\mathbb{Z}} k\langle m\rangle \quad \text { for } m= \pm 1 \tag{4.1.2}
\end{equation*}
$$

For example, $\mathbb{F}_{p}\langle 1\rangle$ is canonically identified with a quotient of $\left(\mathcal{O}_{F} / \mathfrak{q}\right)^{\times}$of size p.

4.1.2 Reduction of dual Stark units at a Taylor-Wiles prime

Let \mathfrak{Q} be a prime of L above a Taylor-Wiles prime \mathfrak{q} of F. Let

$$
\operatorname{Frob}_{\mathfrak{Q}}=\operatorname{Frob}_{\mathfrak{Q} / \mathfrak{q}} \in G_{L / F} \subseteq G_{L / \mathbb{Q}}
$$

be the Frobenius automorphism associated with the prime \mathfrak{Q} above \mathfrak{q}.
Lemma 4.1.2. For any Artin representation $\varrho_{0}: G_{L / \mathbb{Q}} \rightarrow \operatorname{GL}\left(M_{0}\right)$ where M_{0} is an \mathcal{O}_{E}-module, there is a natural pairing

$$
\begin{aligned}
\left(U_{L}\left[\varrho_{0}\right] \otimes k\right) \times\left(M_{0}^{\text {Frob } \mathcal{Q}} \otimes k\right) & \rightarrow k\langle 1\rangle \\
(\varphi, m) & \mapsto \text { reduction of } \varphi(m) .
\end{aligned}
$$

Proof. For $\varphi \in U_{L}\left[\varrho_{0}\right]$ and $m \in M_{0}^{\text {Frob }}$, we have

$$
\varphi(m) \in\left(U_{L} \otimes k\right)^{\text {Frob }_{2}}
$$

The composition

$$
U_{L} \hookrightarrow U_{L_{\mathfrak{Q}}} \rightarrow U_{L_{\mathfrak{Q}}} /(1+\mathfrak{Q}) \cong \mathbb{F}_{\mathfrak{Q}}^{\times}
$$

induces a reduction map

$$
\left(U_{L} \otimes k\right)^{\mathrm{Frob}_{\mathfrak{2}}} \rightarrow\left(\mathbb{F}_{\mathfrak{Q}}^{\times} \otimes k\right)^{\mathrm{Frob} \mathfrak{\mathfrak { Z }}} \cong k\langle 1\rangle,
$$

where we recall that $k\langle 1\rangle=k \otimes\left(\mathcal{O}_{F} / \mathfrak{q}\right)_{p^{n}}^{\times}$.

Remark 4.1.3. We think of the reduction map as a discrete logarithm. Then this lemma is the discrete analogue of Lemma 5.2.1, where the actual logarithm will be used. To generalize this result p-adically, one would use a p-adic logarithm.

Proposition 4.1.4. Let $\varrho: G^{\prime}=G_{L / F} \rightarrow \mathrm{GL}(M)$ be the Artin representation associated with f. Recall the notation $G=G_{L / \mathbb{Q}}$. Then there is a natural map:

$$
\theta_{\mathfrak{q}}^{\vee}: \bigoplus_{\sigma \in G / G^{\prime}}\left(\operatorname{Ad}^{0} M \otimes k\right)^{\mathrm{Frob}_{\sigma \Omega 2 / \sigma \mathfrak{q}}} \otimes k\langle-1\rangle \rightarrow U_{f}^{\vee} \otimes k
$$

where the domain is a direct sum of free k-modules of rank 1 .
 notation of the introduction, $U_{f, \sigma_{i}}^{\vee}=U_{f, i}^{\mathfrak{p}^{n}}$ if we label the representatives of G / G^{\prime} by $\sigma_{1}, \ldots, \sigma_{d}$.

Proof. Applying Lemma 4.1.2 to $\varrho_{0}=\operatorname{Ind}_{G^{\prime}}^{G} \mathrm{Ad}^{0} \varrho$, we see that there is a pairing:

$$
\left(U_{f} \otimes k\right) \times\left(M_{0}^{\text {Frob } \mathfrak{Q}} \otimes k\langle-1\rangle\right) \rightarrow k,
$$

which induces a map

$$
\left(M_{0}^{\text {Frob }_{\mathfrak{Q}}} \otimes k\langle-1\rangle\right) \rightarrow\left(U_{f}^{\vee} \otimes k\right) .
$$

Then

$$
\begin{aligned}
M_{0}^{\text {Frob }_{\mathfrak{Q}}} & =\left(\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} M\right)^{\text {Frob }_{\mathfrak{Q}}} \\
& =\left(\bigoplus_{\sigma \in G / G^{\prime}} \sigma \operatorname{Ad}^{0} M\right)^{\text {Frob }} \mathfrak{\mathfrak { Z }} \\
& =\bigoplus_{\sigma \in G / G^{\prime}}\left(\operatorname{Ad}^{0} M\right)^{\text {Frob }_{\sigma \mathfrak{Z} / \sigma \mathfrak{q}}}
\end{aligned}
$$

because $\sigma \operatorname{Frob}_{\mathfrak{Q} / \mathfrak{q}} \sigma^{-1}=\operatorname{Frob}_{\sigma \mathfrak{Q} / \sigma \mathfrak{q}} \in G^{\prime}$.
Finally, using the basis such that $\varrho\left(\operatorname{Frob}_{\mathfrak{Q}}\right)=\left(\begin{array}{ll}\alpha & \\ & \beta\end{array}\right)$ for $\alpha \neq \beta$, we have that

$$
\operatorname{Ad}^{0} \varrho\left(\operatorname{Frob}_{\mathfrak{Q}}\right)=\left(\begin{array}{lll}
\frac{\alpha}{\beta} & & \\
& \frac{\beta}{\alpha} & \\
& & 1
\end{array}\right)
$$

Since $\alpha \neq \beta$, this shows that $\left(\operatorname{Ad}^{0} M\right)^{\text {Frob }_{\sigma \Omega / \sigma q}}$ has rank 1 .

We finally recast this in the language of [31, Section 2.9]. For any \mathfrak{Q}, we may consider the element

$$
e_{\mathfrak{Q}}=\varrho\left(\operatorname{Frob}_{\mathfrak{Q}}\right)-(1 / 2) \operatorname{Tr} \varrho\left(\operatorname{Frob}_{\mathfrak{Q}}\right) \in \operatorname{Ad}^{0} \varrho .
$$

Note that for all $g \in G_{L / F}$,

$$
e_{g \mathfrak{Q}}=\operatorname{Ad}(\varrho(g)) e_{\mathfrak{Q}} .
$$

Therefore:

$$
\operatorname{Ad}^{0}\left(\operatorname{Frob}_{\mathfrak{Q}}\right) e_{\mathfrak{Q}}=e_{\operatorname{Frob}_{\mathfrak{Q}} \mathfrak{Q}}=e_{\mathfrak{Q}}
$$

showing that

$$
e_{\mathfrak{Q}} \in\left(\operatorname{Ad}^{0} \varrho\right)^{\mathrm{Frob}_{\mathfrak{Q}}} .
$$

By Proposition 4.1.4, this choice defines a map

$$
\begin{equation*}
\theta_{\mathfrak{q}}^{\vee}: \bigoplus_{\sigma \in G / G^{\prime}} k\langle-1\rangle \rightarrow U_{f}^{\vee} \otimes k \tag{4.1.3}
\end{equation*}
$$

When $F=\mathbb{Q}$, this recovers the map θ_{q}^{\vee} from [31, Section 2.9].

4.2 The Shimura class

We consider two level structures: for an ideal $\mathfrak{N} \subseteq \mathcal{O}_{F}$,

$$
\begin{aligned}
& \Gamma_{0}(\mathfrak{N})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{GL}\left(\mathcal{O}_{F} \oplus \mathfrak{D}^{-1}\right) \right\rvert\, c \in \mathfrak{N}\right\}, \\
& \Gamma_{1}(\mathfrak{N})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{GL}\left(\mathcal{O}_{F} \oplus \mathfrak{D}^{-1}\right) \right\rvert\, c, a-1 \in \mathfrak{N}\right\} .
\end{aligned}
$$

Note that $\Gamma_{1}(\mathfrak{N}) \subseteq \Gamma_{0}(\mathfrak{N})$ and the quotient is isomorphic to $(\mathcal{O} / \mathfrak{N})^{\times}$. We let

$$
\begin{aligned}
& X_{0}(\mathfrak{N})=\text { Hilbert modular variety with } \Gamma_{0}(\mathfrak{N}) \text {-level structure } \\
& X_{1}(\mathfrak{N})=\text { Hilbert modular variety with } \Gamma_{1}(\mathfrak{N}) \text {-level structure. }
\end{aligned}
$$

For \mathfrak{N} large enough, both of these are schemes over $\mathbb{Z}\left[1 / N_{F / \mathbb{Q}} \mathfrak{N}\right]$ (c.f. [18]) and they have good reduction modulo primes p not dividing $N_{F / \mathbb{Q}} \mathfrak{N}$. The covering

$$
X_{1}(\mathfrak{N}) \rightarrow X_{0}(\mathfrak{N})
$$

descends to a covering

$$
X_{1}(\mathfrak{N})_{k} \rightarrow X_{0}(\mathfrak{N})_{k}
$$

with Galois group $(\mathcal{O} / \mathfrak{N})^{\times}$.
Let $q>5$ be a prime and \mathfrak{q} be a prime of F above it. Then

$$
X_{1}(\mathfrak{q}) \rightarrow X_{0}(\mathfrak{q})
$$

is a $(\mathcal{O} / \mathfrak{q})^{\times}$-covering. We may pass to the unique subcovering with Galois group $\Delta=(\mathcal{O} / \mathfrak{q})_{p^{n}}^{\times}:$

$$
X_{1}(\mathfrak{q})^{\Delta} \rightarrow X_{0}(\mathfrak{q})
$$

This extends to an étale covering of schemes over $\mathbb{Z}[1 / q]$, and hence induces an étale covering

$$
X_{1}(\mathfrak{q})_{k}^{\Delta} \rightarrow X_{0}(\mathfrak{q})_{k}
$$

(c.f. $[50$, Corollary 2.3] for $[F: \mathbb{Q}]=1$ and $[17$, Prop. 3.4$]$ for $[F: \mathbb{Q}]>1$; the assumption that $q>5$ is needed to avoid elliptic points).

We hence get a class

$$
\begin{equation*}
\mathfrak{S}_{k} \in H_{\mathrm{et}}^{1}\left(X_{0}(\mathfrak{q})_{k}, k\langle 1\rangle\right) \tag{4.2.1}
\end{equation*}
$$

where we recall that $k\langle 1\rangle \cong k \otimes \Delta$. Using the natural map $k \rightarrow \mathbb{G}_{a}$ of étale sheaves over $X_{0}(\mathfrak{q})_{k}$, we obtain a class:

$$
\begin{equation*}
\mathfrak{S}_{\mathbb{G}_{a}} \in H_{\hat{\mathrm{et}}}^{1}\left(X_{0}(\mathfrak{q})_{k}, \mathbb{G}_{a}\langle 1\rangle\right) \tag{4.2.2}
\end{equation*}
$$

Finally, using Zariski-étale comparison, we have an isomorphism:

$$
H^{1}\left(X_{0}(\mathfrak{q})_{k}, \mathcal{O}\langle 1\rangle\right) \rightarrow H^{1}\left(X_{0}(\mathfrak{q})_{k}, \mathbb{G}_{a}\langle 1\rangle\right)
$$

and hence $\mathfrak{S}_{\mathbb{G}_{a}}$ defines a class

$$
\begin{equation*}
\mathfrak{S} \in H^{1}\left(X_{0}(\mathfrak{q})_{k}, \mathcal{O}\langle 1\rangle\right) \tag{4.2.3}
\end{equation*}
$$

Definition 4.2.1. The Shimura class is the cohomology class $\mathfrak{S} \in H^{1}\left(X_{0}(\mathfrak{q})_{k}, \mathcal{O}\langle 1\rangle\right)$ obtained above (4.2.3).

We will use it next to construct a mod \mathfrak{p}^{n} derived Hecke operator.

4.3 Construction of derived Hecke operators

Let \mathfrak{N} be the level of f and recall that we consider $X=X_{1}(\mathfrak{N})$ over $\mathbb{Z}\left[1 / N_{F / \mathbb{Q}} \mathfrak{N}\right]$.
Write $X_{0,1}(\mathfrak{q}, \mathfrak{N})$ for X with added $\Gamma_{0}(\mathfrak{q})$-level structure at \mathfrak{q}. This is a Hilbert modular variety for the group $\Gamma_{1}(\mathfrak{q}, \mathfrak{N})$ in the notation of [18], and hence also has a smooth, projective, integral model.

Then the Shimura class \mathfrak{S} pulls back to a class

$$
\mathfrak{S}_{X} \in H^{1}\left(X_{0,1}(\mathfrak{q}, \mathfrak{N})_{k}, \mathcal{O}\langle 1\rangle\right)
$$

Cupping with this class gives a map

$$
\begin{equation*}
H^{0}\left(X_{0,1}(\mathfrak{q}, \mathfrak{N})_{k}, \omega\right) \xrightarrow{\cup \mathfrak{S}_{\mathfrak{x}}} H^{1}\left(X_{0,1}(\mathfrak{q}, \mathfrak{N})_{k}, \omega\right)\langle 1\rangle \tag{4.3.1}
\end{equation*}
$$

Classically, Hecke operators are defined as operators on cohomology induced by certain correspondences:

We define the derived Hecke operator by the same push-pull procedure but cupping with \mathfrak{S}_{X} in the middle:

$$
H^{0}\left(X_{k}, \omega\right) \xrightarrow{\pi_{1}^{*}} H^{0}\left(X_{0,1}(\mathfrak{q}, \mathfrak{N})_{k}, \omega\right) \xrightarrow{\cup \mathfrak{S}_{\mathbf{x}}} H^{1}\left(X_{0,1}(\mathfrak{q}, \mathfrak{N})_{k}, \omega\right)\langle 1\rangle \xrightarrow{\pi_{2, *}} H^{1}\left(X_{k}, \omega\right)\langle 1\rangle .
$$

Finally, for any $z \in k\langle-1\rangle$, we define

$$
\begin{equation*}
T_{\mathfrak{q}, z}: H^{0}\left(X_{k}, \omega\right) \rightarrow H^{1}\left(X_{k}, \omega\right) \tag{4.3.2}
\end{equation*}
$$

by composing the above map with multiplication by z.
More generally, for each $z \in k\langle-1\rangle$, there is an operator

$$
\begin{equation*}
T_{\mathfrak{q}, z}: H^{q}\left(X_{k}, \omega\right) \rightarrow H^{q+1}\left(X_{k}, \omega\right) \tag{4.3.3}
\end{equation*}
$$

defined analogously.
Recall that equation (4.1.3) defines a map:

$$
\theta_{\mathfrak{q}}^{\vee}: \bigoplus_{\sigma \in G / G^{\prime}} k\langle-1\rangle \rightarrow U_{f}^{\vee} \otimes k
$$

We may hence define an action of the codomain on coherent cohomology of the special fiber as follows.

Definition 4.3.1. For each $\sigma \in G / G^{\prime}$ and $z \in k\langle-1\rangle$, we define the action of z in the σ-component of $\underset{\sigma \in G / G^{\prime}}{\bigoplus} k\langle-1\rangle$ by:

$$
T_{\sigma \mathfrak{q}, z}: H^{*}\left(X_{k}, \omega\right)_{f} \rightarrow H^{*+1}\left(X_{k}, \omega\right)_{f} .
$$

This naturally extends to an action of $\bigwedge^{*} \bigoplus_{\sigma \in G / G^{\prime}} k\langle-1\rangle$ on $H^{*}\left(X_{k}, \omega\right)_{f}$.

4.4 The conjecture

We conjecture there is an action of U_{f}^{\vee} on the f-isotypic component of the cohomology space $H^{*}(X, \omega)_{f}$ which reduces modulo \mathfrak{p}^{n} to the action of the operators $T_{\mathfrak{q}, z}$.

For $h \in H^{*}\left(X_{\mathcal{O}[1 / N(\mathfrak{N})]}, \omega\right)$, we write $\bar{h} \in H^{*}\left(X_{k}, \omega\right)$ for its reduction. Equation (4.1.3) defines a map:

$$
\theta_{\mathfrak{q}}^{\vee}: \bigoplus_{\sigma \in G / G^{\prime}} k\langle-1\rangle \rightarrow U_{f}^{\vee} \otimes k
$$

associated with a Taylor-Wiles primes \mathfrak{q} of F and a prime \mathfrak{Q} above it. In Definition 4.3.1, we defined an action of the domain by derived Hecke operators. We conjecture that the resulting action of $U_{f}^{\vee} \otimes k$ on the special fiber lifts to an integral action of U_{f}^{\vee}.

Conjecture 4.4.1. There is an action \star of the exterior algebra $\bigwedge^{*}\left(U_{f}^{\vee}\right)$ on

$$
H^{*}\left(X_{\mathcal{O}[1 / N(\mathfrak{N})]}, \omega\right)_{f}
$$

such that the induced action of $\bigwedge^{*}\left(U_{f}^{\vee}\right) \otimes k$ on

$$
H^{*}\left(X_{\mathcal{O}[1 / N(\mathfrak{N})]}, \omega\right)_{f} \otimes k
$$

is the one described above. More specifically, fix a quadruple ($\mathfrak{p}, n, \sigma, \mathfrak{q}$) with

- \mathfrak{p} a prime of E satisfying the above conditions,
- $n \geq 1$ an integer,
- $\sigma \in G / G^{\prime}$,
- $q>5$ a prime and \mathfrak{q} a Taylor-Wiles primes of level n above it; in particular $N \mathfrak{q} \equiv 1\left(p^{n}\right)$.

For an element $u^{\vee} \in U_{f}^{\vee}$, consider its reduction $\overline{u^{\vee}} \in U_{f}^{\vee} \otimes k$, and suppose that

$$
\overline{u^{\vee}}=\sum_{\sigma \in G / G^{\prime}} \theta_{\mathfrak{q}}^{\vee}\left(z_{\sigma}\right) \quad \text { for some } z_{\sigma} \in k\langle-1\rangle .
$$

Then:

$$
\alpha \cdot \overline{u^{\vee} \star \omega_{f}}=\sum_{\sigma \in G / G^{\prime}} T_{\sigma \mathfrak{q}, z_{\sigma}} \overline{\omega_{f}}
$$

for some constant α.

Remark 4.4.2. Harris and Venkatesh [31] and Marcil [49] provide numerical evidence for this conjecture for $F=\mathbb{Q}$ and $n=1$. To do that, they first perform an explication ([31, Section 5]), putting the conjecture in a more computable form. They relate it to a question about a pairing considered by Mazur [50] and then rely on a computation of this pairing due to Merel [52]. While the initial steps of the explication can be performed in our case, putting Conjecture 4.4.1 in a similar framework, the analogue of Merel's computation is currently not available in the literature.

In dihedral cases, the conjecture of Harris and Venkatesh has since been proved by Darmon-Harris-Rotger-Venkatesh [14].

When $F=\mathbb{Q}$ and $n=1$, Harris-Venkatesh [31, Section 4] prove the following result:

$$
\text { vanishing of } T_{q, z} \bar{f} \quad \Longrightarrow \quad \text { vanishing of the map } \theta_{q}^{\vee}: k\langle-1\rangle \rightarrow U_{f}^{\vee} \otimes k,
$$

assuming an " $R=T$ " theorem. It would be interesting to obtain a similar result in our case. We expect that the rank r of the map

$$
\theta_{\mathfrak{q}}^{\vee}: \bigoplus_{\sigma \in G / G^{\prime}} k\langle-1\rangle \rightarrow U_{f}^{\vee} \otimes k
$$

from equation (4.1.3) can be any number $0 \leq r \leq d$. Hence the strongest analogue of the above result should be:

$$
\operatorname{rank}\left\langle T_{\sigma \mathfrak{q}, z} \bar{f} \mid \sigma \in G / G^{\prime}\right\rangle=\operatorname{rank}\left(\theta_{\mathfrak{q}}^{\vee}\right)
$$

A weaker version simply states:

$$
\text { vanishing of } T_{\sigma \mathfrak{q}, z} \bar{f} \text { for all } \sigma \in G / G^{\prime} \quad \Longrightarrow \quad \text { vanishing of the map } \theta_{\mathfrak{q}}^{\vee} \text {. }
$$

Note that the proof in the case $F=\mathbb{Q}$ relies on the approach of CalegariGeraghty [9] to modularity lifting. Since their results apply to general F, one could
hope to prove the above results in a similar way, but we have not explored this further yet.

Since we expect that the map $\theta_{\mathfrak{q}}^{\vee}$ may sometimes have rank d, we want to make sure that we can produce a rank d group of operators $T_{\mathfrak{q}, z}$ in order to pin down the conjectural action.

Lemma 4.4.3. For any \mathfrak{p} and n, there is a prime $q \equiv 1\left(p^{n}\right)$ which splits completely in F and the primes $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{d}$ above q are Taylor-Wiles primes for f of level n.

Proof. We first show that there exists a positive density of primes q of \mathbb{Q} that split completely in F such that $q \equiv 1\left(p^{n}\right)$. Consider the field $F\left(\zeta_{p^{n}}\right)$ for a primitive p^{n} th root of unity and a prime q of \mathbb{Q} in the field diagram:

Since we assume that p has good reduction in F, the fields $\mathbb{Q}\left(\zeta_{p^{n}}\right)$ and F have disjoint ramification, and hence we have isomorphisms:

via the restriction map. By Cheboratev density theorem, there is a positive density of primes q of \mathbb{Q} that splits completely in $F\left(\zeta_{p^{n}}\right)$. These q also split completely in F and in $\mathbb{Q}\left(\zeta_{p^{n}}\right)$ which shows that

$$
q \equiv 1 \quad \bmod p^{n}
$$

using the above diagram.

Since there is a positive density of primes q with the above property, there exists a positive density for which $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{d}$ are Taylor-Wiles primes for f of level n.

In this case, we have d derived Hecke operators $T_{\mathfrak{q}_{1}, z_{1}}, \ldots, T_{\mathfrak{q}_{d}, z_{d}}$ and we expect that if they are linearly independent, then the map $\theta_{\mathfrak{q}}^{\vee}$ is an isomorphism.

CHAPTER V

Archimedean Realization of the Motivic Action

We continue using the notation of Section 3.3: the Artin representation ϱ_{f} associated with f factors through a finite Galois extension L / F and has coefficients in a number field E, i.e. $\varrho_{f}: \operatorname{Gal}(L / F) \rightarrow \mathrm{GL}_{2}(E)$.

Fix embeddings $\tau: L \hookrightarrow \mathbb{C}$ and $\iota: E \hookrightarrow \mathbb{C}$. We will describe:

- an isomorphism

$$
\theta_{\mathbb{C}}^{\vee}: \bigoplus_{j=1}^{d} U_{f, j}^{\mathbb{C}} \xlongequal{\cong} U_{f}^{\vee} \otimes_{l} \mathbb{C}
$$

for some one-dimensional spaces $U_{f, j}^{\mathbb{C}}$ in Proposition 5.2.2;

- an action of the codomain via partial complex conjugation operators:

$$
\begin{aligned}
H^{q}\left(X_{\mathbb{C}}, \omega\right)_{f} & \rightarrow H^{q+1}\left(X_{\mathbb{C}}, \omega\right)_{f} \\
\omega_{f} & \mapsto \omega_{f}^{\sigma_{j}}
\end{aligned}
$$

for a chosen element of $U_{f, j}^{\mathbb{C}}$ in Sections 5.1 and 5.2 (Definition 5.2.4);
and conjecture that the resulting action of $U_{f}^{\vee} \otimes E \subseteq U_{f}^{\vee} \otimes \mathbb{C}$ preserves the rational structure on coherent cohomology in Section 5.3 (Conjecture 5.3.1).

Remark 5.0.1. For ease of exposition, we continue to use the classical language for Hilbert modular forms with the understanding that everything could be translated to the automorphic language via Section 2.4; see in particular Theorem 2.4.6.

5.1 Partial complex conjugation operators and Harris' period invariants

Let f be a normalized Hilbert modular eigenform f of weight (\underline{k}, r) and level $\Gamma_{1}(\mathfrak{N})$ such that $T(\mathfrak{p}) f=a_{\mathfrak{p}} f$ and $a_{\mathfrak{p}} \in E_{f}$. Hecke operators act on the higher cohomology groups and we write:

$$
\begin{equation*}
H^{q}\left(X, \mathcal{E}_{\underline{k}, r}\right)_{f}=\left\{\omega \in H^{q}\left(X, \mathcal{E}_{\underline{k}, r}\right) \otimes E_{f} \mid T(\mathfrak{p}) \omega=a_{\mathfrak{p}} \omega\right\} \tag{5.1.1}
\end{equation*}
$$

for the f-isotypic component under the action of the Hecke algebra.
Recall that in Section 2.3, we defined partial complex conjugation operators for each $J \subseteq\left\{\sigma_{1}, \ldots, \sigma_{d}\right\}$:

$$
\begin{aligned}
H^{0}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}, r}\right)_{f} & \rightarrow H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}(J), r}\right)_{f} \\
f & \mapsto \omega_{f}^{J}
\end{aligned}
$$

(c.f. Definition 2.3.4 and Theorem 2.4.6).

Corollary 2.3 .6 gave a criterion for when the spaces $H^{|J|}\left(X, \mathcal{E}_{\underline{k}(J), r}\right)_{f}$ are 1-dimensional. In these cases, this leads to the definition of Harris' period invariants.

Lemma 5.1.1 ([28, Lemma 1.4.5]). Let J be a set of infinite places which contains either all or none of the weight one places of f. Then there is a number $\nu^{J}(f) \in \mathbb{C}^{\times}$, well-defined up to multiplication by elements in $E_{f}(J)^{\times}$where $E_{f}(J)=E_{f} F(\underline{k}(J))$, such that

$$
\frac{\omega_{f}^{J}}{\nu^{J}(f)} \in H^{|J|}\left(X, \mathcal{E}_{\underline{k}, r}\right)_{f} \subseteq H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}, r}\right)_{f}
$$

Clearly, when $J=\emptyset$, we may take $\nu^{J}(f)=1$.

Definition 5.1.2. Let J be a set of infinite places which contains either all or none of the weight one places of f. Then the complex number $\nu^{J}(f)$ defined by Lemma 5.1.1 is the period or period invariant associated with f and J. It is well-defined up to $E_{f}(J)^{\times}$.

Remark 5.1.3. Despite of the difference in trivializations of the line bundles - Remark 2.2.4 - the above period invariants $\nu^{J}(f)$ agree with Harris' period invariants $\nu^{J}\left(\pi_{f}\right)$, where π_{f} is the automorphic representation associated with f. Indeed, note that both of the normalizations result in $\nu^{\emptyset}(f)=\nu^{\emptyset}\left(\pi_{f}\right)=1$.

Shimura defines periods by considering Petersson inner products on Shimura varieties associated with quaternion algebras over F. Harris' definition is much less explicit, but it is related to Petersson inner products as follows.

Proposition 5.1.4 ([28, Prop. 1.5.6]). For any $J \subseteq \Sigma_{\infty}$, we have that:

$$
\nu^{J}(f) \cdot \nu^{\Sigma_{\infty} \backslash J}\left(f^{\varrho}\right) \sim_{E(J)^{\times}}\langle f, f\rangle
$$

where $f^{\varrho}(z)=\overline{f(-\bar{z})}$ is Shimura's complex conjugation, and

$$
\langle f, g\rangle=\int_{\Gamma \backslash \mathcal{H}^{d}} f(\underline{z}) \overline{g(\underline{z})} \prod_{j=1}^{d} y_{j}^{k_{j}} \frac{d z_{j} \wedge d \overline{z_{j}}}{y_{j}^{2}} .
$$

Therefore, we may think of $\nu^{J}(f)$ as a certain factor of the Petersson inner product $\langle f, f\rangle$.

Remark 5.1.5. Here and elsewhere we use the above normalization of Petersson inner products. This is consistent with [34, 35], which we refer to later. However, this differs from Shimura's normalization of Petersson inner products [68, (2.27, 2.28)]:

$$
\langle f, g\rangle_{\text {Shimura }}=\frac{1}{\mu\left(\Gamma \backslash \mathcal{H}^{d}\right)}\langle f, g\rangle,
$$

where $\mu\left(\Gamma \backslash \mathcal{H}^{d}\right)$ is the volume of the fundamental domain, and from Harris' normalization, since:

$$
\begin{equation*}
\langle f, f\rangle_{\text {Harris }} \sim_{\mathbb{Q}^{\times}}(2 \pi i)^{-d r}\langle f, f\rangle_{\text {Shimura }} . \tag{5.1.2}
\end{equation*}
$$

[28, (1.6.3)].

Remark 5.1.6. The proof in loc. cit. is based on the rationality of (a Tate twist of) the Serre duality pairing [28, (1.5.4)]:

$$
\begin{equation*}
\cup: H^{|J|}\left(X, \mathcal{E}_{\underline{k}(J), r}\right)_{f} \times H^{\left|\Sigma_{\infty} \backslash J\right|}\left(X, \mathcal{E}_{\underline{k}\left(\Sigma_{\infty} \backslash J\right), r}\right)_{f^{e}} \rightarrow E(J) \tag{5.1.3}
\end{equation*}
$$

induced by the cup product, and the identity [28, (1.5.5.2)]:

$$
\begin{equation*}
\omega_{f}^{J} \cup \omega_{f e}^{\Sigma_{\infty} \backslash J}= \pm\langle f, f\rangle \tag{5.1.4}
\end{equation*}
$$

Remark 5.1.7. In this extended remark, we discuss the relation of Harris' periods to other periods attached to Hilbert modular forms. The study of period invariants was initiated by Shimura [69, 70], who studied the case when the weights at all places are at least two. In this case, Shimura conjectured the existence of a set of period invariants c_{σ}, one attached to each infinite place σ of F; moreover, he conjectured that if B is any quaternion algebra over F such that f transfers to a form f_{B} on B^{\times}, then the Petersson norm of f_{B} (if f_{B} is chosen to be algebraic) is essentially a product of some of the c_{σ} up to algebraic factors. More precisely, defining

$$
q_{B}(f):=\left\langle f_{B}, f_{B}\right\rangle,
$$

Shimura conjectured that

$$
\begin{equation*}
q_{B}(f) \sim_{\overline{\mathbb{Q}}^{\times}} \prod_{\sigma \in \Sigma_{B, \infty}} c_{\sigma}, \tag{5.1.5}
\end{equation*}
$$

where $\Sigma_{B, \infty}$ is the set of infinite places where B is split. This conjecture was proved by Harris [29], using the theta correspondence for unitary groups. In this work, the periods c_{σ} are essentially defined as suitable ratios of periods on quaternion algebras. The fact that the definition of the periods does not depend on choices of quaternion algebras boils down to proving relations between periods on different quaternion algebras, which provides the main thread of Harris' argument. This work admits
an integral refinement which is studied in the ongoing work of Ichino-Prasanna (for example, [38]).

In related work [28, 30], Harris gave another definition of such period invariants using rational structures on coherent cohomology. This is what was recalled in Definition 5.1.2. The advantage of this definition is that it does not require working with quaternion algebras; rather everything happens on the Hilbert modular variety attached to the group $\mathrm{GL}_{2, F}$. This also makes it easy to see the relations between these periods and the transcendental factors of Rankin-Selberg and triple product L-functions attached to two (respectively, three) Hilbert modular forms.

The point of our work is to define periods attached to parallel weight one forms, and relate them to rational structures on coherent cohomology. For dimension reasons, one cannot simply use these rational structures directly to define periods. Indeed, the proof of Lemma 5.1.1 relies on higher cohomology groups being onedimensional whereas the dimensions are greater than one for weight one forms (c.f. Corollary 2.3.5). Instead, we give an ad hoc definition using logarithms of units, and conjecture (Conjecture 5.3.2) a relationship to rational structures.

5.2 The action

To define the action of $U_{f}^{\vee} \otimes \mathbb{C}$ on coherent cohomology via partial complex conjugation operators, we first give an identification of this group with the trace zero adjoint representation of f.

Lemma 5.2.1. For any Artin representation $\varrho_{0}: G_{L / \mathbb{Q}} \rightarrow \operatorname{GL}\left(M_{0}\right)$ where M_{0} is an E-vector space, there is a natural perfect pairing

$$
\begin{aligned}
\left(U_{L}\left[\varrho_{0}\right] \otimes_{\iota} \mathbb{C}\right) \times\left(M_{0}^{c_{0}} \otimes_{\iota} \mathbb{C}\right) & \rightarrow \mathbb{C} \\
(\varphi, m) & \mapsto \log (|(\tau \otimes \iota)(\varphi(m))|)
\end{aligned}
$$

which induces an isomorphism

$$
U_{L}\left[\varrho_{0}\right]^{\vee} \otimes \mathbb{C} \xlongequal{\cong} M_{0}^{c_{0}} \otimes \mathbb{C} .
$$

Proof. This is a paraphrase of Proposition 3.1.5.

Proposition 5.2.2. Let $\varrho: G^{\prime}=G_{L / F} \rightarrow \mathrm{GL}(M)$ be the Artin representation associated with a Hilbert modular newform of parallel weight one. We then have an isomorphism:

$$
\theta_{\mathbb{C}}^{\vee}: \bigoplus_{j=1}^{d}\left(\operatorname{Ad}^{0} M \otimes_{\iota} \mathbb{C}\right)^{c_{j}} \xlongequal{\cong} U_{f}^{\vee} \otimes_{\iota} \mathbb{C}
$$

For each j, consider the element $m_{1, j}$ in $\left(\operatorname{Ad}^{0} M\right)^{c_{j}}$ as in Corollary 3.3.2 and let $\left\{\varphi_{j}\right\}$ be the corresponding basis of $U_{f} \otimes E$. Finally, let $\left\{u_{j}^{\vee}\right\}$ be the dual basis of $U_{f}^{\vee} \otimes E$. Then the matrix of the map $\theta_{\mathbb{C}}^{\vee}$ in these bases is the Stark regulator matrix $R_{f}=\left(\log \left|u_{j k}\right|\right)_{j, k}$ (c.f. Definition 3.4.1).

Proof. The result is obtained by applying Lemma 5.2.1 to $\varrho_{0}=\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Ad}^{0} \varrho$ and recalling that $M_{0}^{c_{0}} \cong \bigoplus_{\sigma \in G / G^{\prime}}\left(\operatorname{Ad}^{0} M\right)^{\sigma c_{0} \sigma^{-1}}$ by the proof of Corollary 3.3.2. The explicit description of the map is given by the second part of Corollary 3.3.2.

Remark 5.2.3. Note that both $U_{f}^{\vee} \otimes_{\iota} \mathbb{C}$ and $\left(\operatorname{Ad}^{0} M \otimes_{\iota} \mathbb{C}\right)^{c_{j}}$ have natural E-rational structures $U_{f}^{\vee} \otimes E_{f}$ and $\left(\operatorname{Ad}^{0} M \otimes E_{f}\right)^{c_{j}}$ but the above isomorphism does not respect them. The rational structures differ by the Stark regulator matrix.

Definition 5.2.4. We define the action of $\bigoplus_{j=1}^{d}\left(\operatorname{Ad}^{0} M \otimes_{\iota} \mathbb{C}\right)^{c_{j}}$ on $H^{*}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{f}$ by letting $m_{1, j}$ act by

$$
\begin{aligned}
H^{i}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{f} & \rightarrow H^{i+1}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{f} \\
\omega_{f}^{I} & \mapsto \begin{cases}\omega^{I \cup\left\{\sigma_{j}\right\}} & \sigma_{j} \notin J \\
0 & \sigma_{j} \in J .\end{cases}
\end{aligned}
$$

This defines a graded action of $\bigwedge^{*} \bigoplus_{j=1}^{d}\left(\operatorname{Ad}^{0} M \otimes_{\iota} \mathbb{C}\right)^{c_{j}}$ on $H^{*}\left(X_{\mathbb{C}}, \mathcal{E}_{1,1}\right)_{f}$ such that $H^{*}\left(X_{\mathbb{C}}, \mathcal{E}_{1,1}\right)_{f}$ is generated in degree 0 by $f \in H^{0}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f}$.

5.3 The conjectures

Recall that Proposition 5.2.2 defined an isomorphism:

$$
\begin{equation*}
\theta_{\mathbb{C}}^{\vee}: \bigoplus_{j=1}^{d}\left(\operatorname{Ad}^{0} M \otimes_{\iota} \mathbb{C}\right)^{c_{j}} \xlongequal{\cong} U_{f}^{\vee} \otimes_{\iota} \mathbb{C} \tag{5.3.1}
\end{equation*}
$$

and Definition 5.2.4 described an action of the latter group on coherent cohomology. We conjecture that the resulting action of $U_{f}^{\vee} \otimes E$ is rational.

Conjecture 5.3.1. Fix embeddings $\tau: L \rightarrow \mathbb{C}$ and $\iota: E \rightarrow \mathbb{C}$. Then the action of $U_{f}^{\vee} \otimes E \subseteq U_{f}^{\vee} \otimes_{\iota} \mathbb{C}$ on $H^{*}\left(X_{\mathbb{C}}, \mathcal{E}_{1,1}\right)_{f}$ via equation (5.3.1) and Definition 5.2.4 preserves the rational structure $H^{*}\left(X, \mathcal{E}_{1,1}\right)_{f} \otimes_{E_{f}} E$.

This is the analogue of the main conjecture of Prasanna-Venkatesh [60]. In Appendix VIII, we discuss the specific relation to their conjecture and justify why the definition of the action is natural.

Next, we give a more explicit statement of rationality of cohomology classes, via Propositon 5.2.2.

Conjecture 5.3.2. Let $A=\left(a_{i j}\right)=R_{f}^{-1}$ be the inverse of the Stark regulator matrix. Then for $j=1, \ldots, d$, the cohomology classes

$$
u_{i}^{\vee} \star f=\sum_{i=1}^{n} a_{i j} \omega_{f}^{\sigma_{i}} \in H^{1}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{f}
$$

belong to the rational subspace $H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f} \otimes E$. More generally, the rational cohomology classes in $H^{j}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{f}$ are given by the entries of the vector:

$$
\left(\Lambda^{j} A\right)\left(\begin{array}{c}
\omega_{1}^{j_{1}^{\prime}} \\
\vdots \\
\omega_{f}^{(5)}
\end{array}\right)
$$

where $J_{1}, \ldots, J_{\binom{d}{j}}$ are the subsets of Σ_{∞} of order j. In particular, the cohomology class

$$
\frac{\omega_{f}^{\Sigma \infty}}{\operatorname{det} R_{f}} \in H^{d}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{f}
$$

is rational.

The final statement is equivalence to Stark's conjecture 3.2.2 for $\operatorname{Ad}^{0} \varrho_{f}$ (Theorem 6.1.1). Therefore, this conjecture may be interpreted as a refinement of Stark's conjecture in this case.

Remark 5.3.3. A previous version of this manuscript incorrectly assumed that the Stark regulator matrix R_{f} is diagonal, which lead to a different rationality statement.

Example 5.3.4 $(d=1)$. Suppose $d=1$, i.e. f is a modular form of weight one. Then the conjecture simply asserts that:

$$
\begin{equation*}
\frac{\omega_{f}^{\infty}}{\log \left|\tau\left(u_{f}\right)\right|} \in H^{1}\left(X, \mathcal{E}_{1,1}\right) \otimes E \tag{5.3.2}
\end{equation*}
$$

where $u_{f} \in U_{L}$ is a unit associated with f. As far as we know, this conjecture is new in this case. It gives an archimedean analogue of the main conjecture of Harris-Venkatesh [31]. As we will see (Corollary 6.1.4), it is equivalent to Stark's conjecture 3.2.2 for $\mathrm{Ad}^{0} \varrho_{f}$, and hence is true when the Fourier coefficients of f are rational or when f has CM.

Example 5.3.5 $(d=2)$. Suppose $d=2$, i.e. f is a Hilbert modular form of parallel weight one for a real quadratic field F. Then there are four units $u_{11}, u_{12}, u_{21}, u_{22} \in$ $U_{L} \otimes E$ associated with f and

$$
R_{f}=\left(\begin{array}{ll}
\log \left|\tau\left(u_{11}\right)\right| & \log \left|\tau\left(u_{12}\right)\right| \\
\log \left|\tau\left(u_{21}\right)\right| & \log \left|\tau\left(u_{22}\right)\right|
\end{array}\right)
$$

Its inverse is:

$$
A=\frac{1}{\operatorname{det} R_{f}}\left(\begin{array}{cc}
\log \left|\tau\left(u_{22}\right)\right| & -\log \left|\tau\left(u_{12}\right)\right| \\
-\log \left|\tau\left(u_{21}\right)\right| & \log \left|\tau\left(u_{11}\right)\right|
\end{array}\right)
$$

Therefore, the rational classes in $H^{1}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{f}$ should be:

$$
\begin{align*}
& u_{1}^{\vee} \star f=\frac{\log \left|\tau\left(u_{22}\right)\right| \cdot \omega_{f}^{1}-\log \left|\tau\left(u_{21}\right)\right| \cdot \omega_{f}^{2}}{\operatorname{det} R_{f}} \in H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f} \otimes E \tag{5.3.3}\\
& u_{2}^{\vee} \star f=\frac{-\log \left|\tau\left(u_{12}\right)\right| \cdot \omega_{f}^{1}+\log \left|\tau\left(u_{11}\right)\right| \cdot \omega_{f}^{2}}{\operatorname{det} R_{f}} \in H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f} \otimes E . \tag{5.3.4}
\end{align*}
$$

We will give the following evidence for this:
(1) the determinant of this basis of $H^{1}\left(X_{\mathbb{C}}, \mathcal{E}_{1,1}\right)_{f} \otimes E$ is rational, assuming Stark's conjecture 3.2.2 (Chapter VI),
(2) in base change cases, we give numerical evidence that the restrictions of these cohomology classes to an embedded modular curve is rational (Chapter VII).

Finally, we expect the following class in $H^{2}\left(X_{\mathbb{C}}, \mathcal{E}_{1,1}\right)_{f}$ to be rational:

$$
\begin{equation*}
\left(u_{1}^{\vee} \wedge u_{2}^{\vee}\right) \star f=\frac{\omega_{f}^{\sigma_{1}, \sigma_{2}}}{\operatorname{det} R_{f}} \in H^{2}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f} \otimes E \tag{5.3.5}
\end{equation*}
$$

We prove this assertion in Corollary 6.1.3.

The goal of the next two sections is to present our evidence for Conjecture 5.3.1, or rather its explicit version - Conjecture 5.3.2.

CHAPTER VI

Evidence: Stark's Conjecture

In this section, we present the theoretical evidence for Conjecture 5.3.2. These follow from results of Stark and Tate presented in Section 3.2.

6.1 Action of top degree elements

We show that Stark's conjecture 3.2.2 for $\operatorname{Ad}^{0} \varrho_{f}$ is equivalent to the following consequence of Conjecture 5.3.2. In particular, Theorem 3.2.4 implies this consequence when f has rational Fourier coefficients.

Theorem 6.1.1. Let f be a parallel weight one Hilbert modular form and ϱ_{f} be the associated Artin representation. Stark's conjecture 3.2.2 for $\operatorname{Ad}^{0} \varrho_{f}$ is equivalent to the statement:

$$
\begin{equation*}
\langle f, f\rangle \sim_{E^{\times}} f_{\varrho, 2}^{1 / 2} \operatorname{det} R_{f} \tag{6.1.1}
\end{equation*}
$$

where $f_{\varrho, 2}=2^{a(\varrho, 2)}$ is the Artin conductor at $p=2$ of the trace 0 adjoint representation. In particular, equation (6.1.1) is true unconditionally if f has rational Fourier coefficients.

Remark 6.1.2. We expect that the factor $f_{\varrho, 2}^{1 / 2}$ is rational; see Remark 6.1.10 for more details. If we could prove this, we could remove "up to a possible factor of $\sqrt{2}$ " in the corollaries below.

Before presenting the proof of Theorem 6.1.1, we give two corollaries.

Corollary 6.1.3. Stark's conjecture 3.2.2 for the Artin representation $\operatorname{Ad}^{0} \varrho_{f}$ is equivalent to the assertion that top degree elements, i.e. elements in $\bigwedge^{d} U_{f}^{\vee} \otimes E$, act rationally, up to a possible factor of $\sqrt{2}$. In particular, the latter is true if f has rational Fourier coefficients.

Proof. Recall from Conjecture 5.3.2 that top degree elements act by

$$
f \mapsto \frac{\omega_{f}^{\Sigma_{\infty}}}{\operatorname{det} R_{f}}
$$

Then:

$$
\left\langle f^{\varrho}, \frac{\omega_{f}^{\Sigma_{\infty}}}{\operatorname{det} R_{f}}\right\rangle_{\mathrm{SD}}=\frac{\langle f, f\rangle}{\operatorname{det} R_{f}}
$$

Since $H^{d}\left(X, \mathcal{E}_{1,1}\right)_{f}$ is one-dimensional and the Serre duality pairing is rational, the rationality of $\frac{\omega_{f}^{\Sigma \infty}}{\operatorname{det} R_{f}}$ is equivalent to equation 6.1.1.

Corollary 6.1.4. Conjecture 5.3.1 is equivalent to Stark's conjecture 3.2.2 for $\operatorname{Ad}^{0} \varrho_{f}$ when $F=\mathbb{Q}$, up to a possible factor of $\sqrt{2}$. Hence Conjecture 5.3 .1 is true unconditionally when f has rational Fourier coefficients or complex multiplication.

Remark 6.1.5. We checked computationally (using the method of Collins [12]) that for a few modular forms f of weight one from Example 3.5.2, we have that $\langle f, f\rangle=3 \log \left(\left|\iota\left(u_{f}\right)\right|\right)$. This was already observed by Stark [71, pp. 91].

The proof of Theorem 6.1.1 requires 2 steps:
(1) relating $L\left(1, \operatorname{Ad}^{0} \varrho_{f}\right)$ to $\langle f, f\rangle$,
(2) showing that f_{ϱ} is a square when $\varrho=\operatorname{Ind}_{G_{F}}^{G_{Q}} \operatorname{Ad}^{0}\left(\varrho_{f}\right)$, so that $f_{\varrho}^{1 / 2} \in \mathbb{Q}^{\times}$(away from 2).

We will then conclude Theorem 6.1.1 from Proposition 3.4.2.
The relation of the adjoint L-value to the Petersson inner product was first observed by Hida, based on the work of Shimura [67]. He also related the prime factors of the quotient $\frac{L(1, \operatorname{Ad}(f))}{\langle f, f\rangle}$ to congruence primes of the modular form $f[32,32,33]$. This work was later generalized to Hilbert modular forms [34, 35, 25]. An integral refinement of Conjecture 5.3.2 would hence have to account for congruence primes.

Theorem 6.1.6 ([35, Theorem 7.1]). Let f is a primitive Hilbert modular form of weight (\underline{k}, r), level \mathfrak{N}. Then

$$
\langle f, f\rangle=\left|D_{F}\right|^{m-1} \Gamma_{F}(k) N_{F / \mathbb{Q}}(\mathfrak{N}) 2^{-2\{\underline{k}\}+1} \pi^{-d-\{k\}} L_{S}(1, f, \mathrm{Ad}),
$$

where

$$
L_{S}(s, f, \mathrm{Ad})=\prod_{\mathfrak{q} \in S} L_{\mathfrak{q}}\left(N_{F / \mathbb{Q}}(\mathfrak{q})^{-s}\right) L(s, f, \mathrm{Ad})
$$

S is a set of bad places, $L_{\mathfrak{q}}\left(N_{F / \mathbb{Q}}(\mathfrak{q})^{-s}\right)$ are bad local factors, $\{k\}=\sum_{j} k_{j}$, and m is an explicit integer which accounts for Hida's unitarization [34, (4.2a), (7.1)].

For an automorphic proof relating $L(1, \operatorname{Ad}(f))$ to $\langle f, f\rangle$, see [38, Prop. 6.6].
For parallel weight one Hilbert modular forms, this specializes to the following result we will use.

Corollary 6.1.7. Suppose $(\underline{k}, r)=(\underline{1}, 1)$. Then:

$$
\langle f, f\rangle \sim_{E^{\times}} \pi^{-2 d} L(1, f, \mathrm{Ad})
$$

To finish the proof of Theorem 6.1.1, we need to check that f_{ϱ} is a square (away from $p=2$).

Proposition 6.1.8. Let π_{v} be the local representation of $\mathrm{GL}_{2}\left(F_{v}\right)$ associated with f at a finite place v of F. When v lies above 2, assume that π_{v} is not a theta lift from a ramified quadratic extension. Then the adjoint conductor of π_{v} is a square.

Proof. It is enough to prove that the analytic conductors of the Rankin-Selberg L-functions $L\left(\pi_{v} \otimes \pi_{v}^{\vee}, s\right)$ are squares. When π_{v} is not supercuspidal, Jacquet's results [39] give explicit formulas for the local conductors (see, for example, [12, Section 4.2]) and they are visibly squares.

We hence just need to show the conductor is a square at places v where π_{v} is supercuspidal. Suppose throughout the rest of the proof that F is a finite extension of \mathbb{Q}_{p} and π is a supercuspidal representation of $\mathrm{GL}(2, F)$. We write $a(-)$ for the valuation of the conductor of a representation and prove that $a\left(\pi \times \pi^{\vee}\right)$ is even.

Since π is supercuspidal, it is a theta lift of a character ξ of a quadratic extension $K / F[24$, Theorem 7.4]. Then:

$$
\begin{equation*}
a\left(\pi \times \pi^{\vee}\right)=2 v_{F}\left(d_{K / F}\right)+f_{K / F} \cdot a\left(\xi\left(\xi^{\varrho}\right)^{-1}\right) \tag{6.1.2}
\end{equation*}
$$

where $d_{K / F}$ is the discriminant of $K / F, f_{K / F}$ is the residue degree of K / F, and ϱ is the non-trivial element of $\operatorname{Gal}(K / F)$. Indeed, if ϱ is the Galois representation corresponding to π via the local Langlands correspondence, then $\varrho=\operatorname{Ind}_{K}^{F}(\chi)$ where χ corresponds to ξ via class field theory, and hence

$$
\begin{align*}
a\left(\pi \times \pi^{\vee}\right) & =a\left(\varrho \otimes \varrho^{\vee}\right) \\
& =a\left(\operatorname{Ind}_{K}^{F} \chi \otimes \operatorname{Ind}_{K}^{F} \chi^{-1}\right) \\
& =a\left(\operatorname{Ind}_{K}^{F} \mathbb{1} \oplus \operatorname{Ind}_{K}^{F} \chi\left(\chi^{\varrho}\right)^{-1}\right) \\
& =a\left(\operatorname{Ind}_{K}^{F} \mathbb{1}\right)+a\left(\operatorname{Ind}_{K}^{F} \chi\left(\chi^{\varrho}\right)^{-1}\right) \\
& =2 v_{F}\left(d_{K / F}\right)+f_{K / F} \cdot a\left(\chi\left(\chi^{\varrho}\right)^{-1}\right) \tag{65,pp.101}\\
& =2 v_{F}\left(d_{K / F}\right)+f_{K / F} \cdot a\left(\xi\left(\xi^{\varrho}\right)^{-1}\right)
\end{align*}
$$

When K / F is unramified, $f_{K / F}=2$, so $a\left(\pi \times \pi^{\vee}\right)$ is even by equation (6.1.2). Suppose that K / F is ramified and has residue characteristic different than 2. Let
$\varpi=\varpi_{K}, \varpi_{F}$ be uniformizers of K, F, respectively. Then $\varpi_{K}^{Q}=-\varpi_{K}$. Also, since $f_{K / F}=1, \mathcal{O}_{K} / \varpi_{K} \cong \mathcal{O}_{F} / \varpi_{F}$. There is a filtration on the unit group U_{K}

$$
U_{K}^{0}=U_{K}, \quad U_{K}^{i}=1+\varpi_{K}^{i} \mathcal{O}_{K} \quad \text { for } i \geq 1
$$

with quotients:

$$
\begin{equation*}
U_{K}^{0} / U_{K}^{1} \cong\left(\mathcal{O}_{K} / \varpi_{K}\right)^{\times}, \quad U_{K}^{i} / U_{K}^{i+1} \cong \mathcal{O}_{K} / \varpi_{K} \tag{6.1.3}
\end{equation*}
$$

We show that if $\left.\xi\left(\xi^{\varrho}\right)^{-1}\right|_{U_{K}^{i}}=\mathbb{1}$ for i odd, then $\left.\xi\left(\xi^{\varrho}\right)^{-1}\right|_{U_{K}^{i-1}}=\mathbb{1}$.
For $i=1$, if $\left.\xi\left(\xi^{\varrho}\right)^{-1}\right|_{U_{K}^{1}}=\mathbb{1}$, then $\xi\left(\xi^{\varrho}\right)^{-1}(x)$ for $x \in U_{K}$ depends only on the residue class of x (equation (6.1.3)). We may hence assume $x \in \mathcal{O}_{F}$ since $\mathcal{O}_{K} / \varpi_{K} \cong \mathcal{O}_{F} / \varpi_{F}$. Then

$$
\xi\left(\xi^{\varrho}\right)^{-1}(x)=\xi(x) \xi\left(x^{\varrho}\right)^{-1}=1
$$

Similarly, for $i>1$ odd, if $\left.\left(\xi\left(\xi^{\varrho}\right)^{-1}\right)\right|_{U_{K}^{i}}=\mathbb{1}$, then $\xi\left(\xi^{\varrho}\right)^{-1}\left(1+\varpi^{i-1} x\right)$ for $x \in \mathcal{O}_{K}$ depends only on the residue class of x (equation (6.1.3)). We may hence assume $x \in \mathcal{O}_{F}$ since $\mathcal{O}_{K} / \varpi_{K} \cong \mathcal{O}_{F} / \varpi_{F}$. Then

$$
\xi\left(\xi^{\varrho}\right)^{-1}\left(1+\omega_{K}^{i-1} x\right)=\xi\left(1+\omega_{K}^{i-1} x\right) \xi\left(1+\left(-\omega_{K}\right)^{i-1} x^{\varrho}\right)^{-1}=1 .
$$

Therefore, $a\left(\xi\left(\xi^{\varrho}\right)^{-1}\right)$ is even, which completes the proof.

Remark 6.1.9. The strategy in the proof of Proposition 6.1.8 gives an explicit formula for $a\left(\pi \times \pi^{\vee}\right)$ in terms of $a(\xi)$ when $p \neq 2$. For example, when K / F is ramified:

$$
a\left(\pi \times \pi^{\vee}\right)= \begin{cases}a(\xi)+2 & \text { if } a(\xi) \text { is even } \\ a(\xi)+1 & \text { if } a(\xi) \text { is odd. }\end{cases}
$$

A similar result was obtained by Nelson-Pitale-Saha [57, Proposition 2.5] when $F=\mathbb{Q}$ and the central character of π_{v} is trivial.

It would be interesting to compare these formulas with the ones given in [8], but we have not attempted to do this.

Remark 6.1.10. In fact, Nelson-Pitale-Saha [57] prove that the adjoint conductor is always a square when $F=\mathbb{Q}$ and f has trivial Nebentypus. We expect that the adjoint conductor is a square also in our more general setting. However, proving this would require a careful analysis of dyadic representations [7, Chapter 12] and we decided not to pursue it here.

We are finally ready to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. By construction of ϱ_{f} [62],

$$
L(1, f, \mathrm{Ad})=L\left(1, \mathrm{Ad}^{0} \varrho_{f}\right)
$$

Then, by Corollary 6.1.7, we have that

$$
\langle f, f\rangle=\left\langle f^{\varrho}, f^{\varrho}\right\rangle \sim_{E^{\times}} \pi^{-2 d} L(1, \operatorname{Ad}(f), \bar{\iota})=\pi^{-2 d} L\left(1, \operatorname{Ad}^{0} \varrho_{f}, \bar{\iota}\right) .
$$

By Proposition 3.4.2, Stark's conjecture for $\mathrm{Ad}^{0} \varrho_{f}$ is equivalent to the statement:

$$
L\left(1, \operatorname{Ad}^{0} \varrho_{f}, \bar{\iota}\right) \sim_{E^{\times}} \frac{\pi^{2 d}}{f_{\varrho}^{1 / 2}} \cdot \operatorname{det} R_{f}
$$

Putting these together and noting that $W(\varrho)= \pm 1$ and f_{ϱ} is a square away from $p=2$ (Proposition 6.1.8) gives the result.

6.2 Further evidence

We now present further evidence for the conjecture which may be deduced from Stark's conjecture 3.2.2.

We first observe that we have an algebraic operation given by complex conjugation. Recall that the vector space $H^{|J|}\left(X, \mathcal{E}_{\underline{k}(J), r}\right)$ is defined over the field $F(\underline{k}(J)) \subseteq F$
which is totally real, and hence $H^{|J|}\left(X, \mathcal{E}_{\underline{k}(J), r}\right) \otimes_{F(J)} \mathbb{C} \cong H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{k(J), r}\right)$ has an action of complex conjugation F_{∞}. By definition, it preserves the rational structure $H^{|J|}\left(X, \mathcal{E}_{\underline{k}(J), r}\right)$.

Lemma 6.2.1. The complex conjugation $F_{\infty}: H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{k(J), r}\right) \rightarrow H^{|J|}\left(X_{\mathbb{C}}, \mathcal{E}_{k(J), r}\right)$ is given on the basis ω_{f}^{I} where $|I|=|J|$ and $k(I)=k(J)$ by

$$
\omega_{f}^{I} \mapsto \omega_{f e^{e}}^{I},
$$

where $f^{\varrho}(z)=\overline{f(-\bar{z})}$ is Shimura's complex conjugation. In particular, on f-isotypic subspaces, it defines a map:

$$
F_{\infty}: H^{|J|}\left(X, \mathcal{E}_{k(J), r}\right)_{f} \rightarrow H^{|J|}\left(X, \mathcal{E}_{k(J), r}\right)_{f e} .
$$

Proof. This is a paraphrase of an observation of Harris [28, pp. 164].

Proposition 6.2.2. There is an E-linear isomorphism $U_{f} \cong U_{f^{e}}$. In particular, Conjecture 5.3.2 for f is equivalent to Conjecture 5.3.2 for f°.

Proof. The first assertion follows from the observation that $\varrho_{f}^{\vee} \cong \overline{\varrho_{f}}=\varrho_{f}$, so we can realize $\operatorname{Ad}^{0} \varrho_{f} \subseteq \varrho_{f} \otimes \varrho_{f}$. Since $\varrho_{f} \otimes \varrho_{f} \cong \cong \varrho_{f} \varrho \otimes \varrho_{f}$, we have that $\operatorname{Ad}^{0} \varrho_{f} \cong \operatorname{Ad}^{0} \varrho_{f e}$. This induces an isomorphism $U_{f} \cong U_{f e}$.

Next, recall that we have a Serre duality pairing (5.1.3):

$$
\begin{equation*}
\langle-,-\rangle_{\mathrm{SD}}: H^{|J|}\left(X, \mathcal{E}_{\underline{k}(J), r}\right)_{f} \otimes \bar{H}^{\left|\Sigma_{\infty} \backslash J\right|}\left(X, \mathcal{E}_{\underline{k}\left(\Sigma_{\infty} \backslash J\right), r}\right)_{f^{e}} \rightarrow E(J) \tag{6.2.1}
\end{equation*}
$$

which is $E(J)$-rational. We modify it slightly to replace f^{ϱ} with f via Lemma 6.2.1.

Definition 6.2.3. We define a pairing

$$
\langle-,-\rangle: H^{j}\left(X, \mathcal{E}_{1,1}\right)_{f} \times H^{d-j}\left(X, \mathcal{E}_{1,1}\right)_{f} \rightarrow E^{\times}
$$

by $\langle-,-\rangle=\left\langle-, F_{\infty}(-)\right\rangle_{\mathrm{SD}}$.

Proposition 6.2.4. Assume Stark's conjecture 3.2.2. Conjecture 5.3.2 in cohomological degree j if equivalent to Conjecture 5.3.2 in cohomological degree $d-j$ (up to a factor of $\sqrt{2}$).

Proof. Recall that Conjecture 5.3.2 in cohomological degree j states that the elements:

$$
\left(\bigwedge^{j} A\right)\left(\begin{array}{c}
\omega_{f}^{J_{1}} \\
\vdots \\
\left.\omega_{f}^{J} \begin{array}{l}
d \\
j
\end{array}\right)
\end{array}\right)
$$

give a rational basis of $H^{j}\left(X, \mathcal{E}_{1,1}\right)_{f}$. Let us assume that this is true and prove that the elements
are rational in $H^{d-j}\left(X, \mathcal{E}_{1,1}\right)_{f}$. It is enough to check that each of these classes pair rationally with the classes in $H^{j}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f}$ using the pairing $\langle-,-\rangle$. Note that the pairing $\langle-,-\rangle$ is induced by cup product and

$$
\left\langle\omega_{f}^{J}, \omega_{f}^{J^{\prime}}\right\rangle= \begin{cases} \pm\langle f, f\rangle & \text { if } J^{\prime}=\Sigma_{\infty} \backslash J \\ 0 & \text { otherwise }\end{cases}
$$

Since $A=R_{f}^{-1}$ and $\langle f, f\rangle \sim_{E^{\times}} f_{\varrho, 2}^{1 / 2} \operatorname{det} R_{f}$ by Theorem 6.1.1, this completes the proof.

Now, suppose that $j=d-j$, i.e. $d=2 j$ is even and we consider the middle degree sheaf cohomology. Definition 6.2.3 then gives a non-degenerate bilinear pairing

$$
\langle-,-\rangle: H^{j}\left(X, \mathcal{E}_{1,1}\right)_{f} \otimes H^{j}\left(X, \mathcal{E}_{1,1}\right)_{f} \rightarrow E
$$

which satisfies:

$$
\left\langle\omega_{1}, \omega_{2}\right\rangle=(-1)^{j}\left\langle\omega_{2}, \omega_{2}\right\rangle
$$

Proposition 6.2.5. Suppose $d=2 j$ is even. Consider the basis of $H^{j}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{1}, 1}\right)_{f}$ given by the entries of the vector

$$
\left(\Lambda^{j} A\right)\left(\begin{array}{c}
\omega_{f}^{J_{1}} \\
\vdots \\
\vdots \\
\omega_{f}^{(s)}
\end{array}\right) \text {, }
$$

ordered so that the pairs ω_{f}^{J} and $\omega_{f}^{\Sigma_{\infty} \backslash J}$ are consecutive. Then the of the pairing $\langle-,-\rangle \otimes \mathbb{C}$ is block-diagonal with 2×2 blocks given by

$$
\left(\begin{array}{cc}
0 & * \\
(-1)^{j} * & 0
\end{array}\right) .
$$

Moreover, assuming Stark's conjecture 3.2.2, we have that $* \in E[\sqrt{2}]^{\times}$.

Proof. This follows from the same arugment as the proof of Proposition 6.2.4.

Corollary 6.2.6. When $d=2$, we showed in Example 5.3.5 that Conjecture 5.3.2 predicts that

$$
\begin{aligned}
& u_{1}^{\vee} \star f=\frac{\log \left|\tau\left(u_{22}\right)\right| \cdot \omega_{f}^{1}-\log \left|\tau\left(u_{21}\right)\right| \cdot \omega_{f}^{2}}{\operatorname{det} R_{f}} \in H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f} \otimes E \\
& u_{2}^{\vee} \star f=\frac{-\log \left|\tau\left(u_{12}\right)\right| \cdot \omega_{f}^{1}+\log \left|\tau\left(u_{11}\right)\right| \cdot \omega_{f}^{2}}{\operatorname{det} R_{f}} \in H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f} \otimes E .
\end{aligned}
$$

Assuming Stark's conjecture 3.2.2, the determinant of this basis lies in $E[\sqrt{2}]^{\times}$.

Proof. Suppose that ω_{1}, ω_{2} is a rational basis of $H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f} \otimes E$ and

$$
\begin{aligned}
& \omega_{1}=a u_{1}^{\vee} \star f+b u_{2}^{\vee} \star f \\
& \omega_{2}=c u_{1}^{\vee} \star f+d u_{2}^{\vee} \star f
\end{aligned}
$$

for some $a, b, c, d \in \mathbb{C}$. Then:

$$
\begin{aligned}
\left\langle\omega_{1}, \omega_{2}\right\rangle & =\left\langle a u_{1}^{\vee} \star f+b u_{2}^{\vee} \star f, c u_{1}^{\vee} \star f+d u_{2}^{\vee} \star f\right\rangle \\
& =(a d-b c)\left\langle u_{1}^{\vee} \star f, u_{2}^{\vee} \star f\right\rangle,
\end{aligned}
$$

showing that $a d-b c \in E[\sqrt{2}]^{\times}$by Proposition 6.2.5, assuming Stark's conjecture 3.2.2. Finally, this shows that $\left(u_{1}^{\vee} \star f\right) \wedge\left(u_{2}^{\vee} \star f\right)=\frac{\omega_{1} \wedge \omega_{2}}{a d-b c}$ is $E[\sqrt{2}]^{\times}$-rational.

CHAPTER VII

Evidence: Base Change Forms

Let F_{0} be a totally real number field and consider a totally real extension F of F_{0}. Any Galois representation of $G_{\overline{\mathbb{Q}} / F_{0}}$ may be restricted to a Galois representation $G_{\overline{\mathbb{Q}} / F}$. Hence, according to Langlands' functoriality conjecture, for any automorphic representation π_{0} of $\operatorname{Res}_{F_{0} / \mathbb{Q}} \mathrm{GL}_{2, F_{0}}$, there exists an associated base change representation π of $\operatorname{Res}_{F / \mathbb{Q}} \mathrm{GL}_{2, F}$, written $\pi=\mathrm{BC}_{F_{0}}^{F} \pi_{0}$. This is discussed in detail and proved when F / F_{0} is a cyclic Galois extension in [47]. See also [1].

We now make the following definition.

Definition 7.0.1. A Hilbert modular form f for F is a base change form from F_{0}, if the associated automorphic representation π is equal to $\mathrm{BC}_{F_{0}}^{F} \pi_{0}$ for some automorphic representation π_{0}.

Of course, this leaves the following question: given a Hilbert modular form $f_{0} \in \pi_{0}$, how to choose an explicit Hilbert modular form $f \in \pi=\mathrm{BC}_{F_{0}}^{F} \pi_{0}$? As far as we know, there is no canonical choice of f in this generality.

When F is a real quadratic extension of $F_{0}=\mathbb{Q}$ and the weight of f_{0} is at least two, one can define f as a theta lift of f_{0}, called the Doi-Naganuma lift. The reader can consult $[20,53,80]$ for the original results and [58, Ch. III] or [76, Ch. VI.4] for an overview. In examples below, we will primarily be interested in cases where the
level of f_{0} is coprime to the discriminant of F; such cases were treated by KumarManickam [45]. When f_{0} has weight one, we are not aware of an explicit construction of the base change of f_{0} to a real quadratic extension in the literature. We expect these forms can be constructed using the theta correspondence as above.

We will instead satisfy ourselves with the fact that these forms exist according to the Strong Artin Conjecture, which is known in several relevant cases [41, 42].

Definition 7.0.2. Let f_{0} be a normalized parallel weight one Hilbert modular eigenform for F_{0} and ϱ_{0} be the associated Artin representation. The base change of f_{0} to F is the normalized parallel weight one Hilbert modular eigenform f whose associated Galois representation is $\varrho_{f}=\operatorname{Res}_{G_{\bar{\varrho} / F}} \varrho_{0}$.

The goal of this section is to consider Conjecture 5.3.2 for base change forms. We compute Stark units for base change forms, give a more explicit from of the conjecture in this case, and provide numerical evidence for it in the case of real quadratic extensions.

7.1 Stark units for base change forms

For a Hilbert modular form f which is the base change of f_{0}, we want to relate the unit groups U_{f} and $U_{f_{0}}$. We fix a common splitting field L which is Galois over \mathbb{Q}. We denote the three Galois groups by:

$$
G=G_{L / \mathbb{Q}} \supseteq G_{0}^{\prime}=G_{L / F_{0}} \supseteq G^{\prime}=G_{L / F}
$$

If $\varrho_{0}: G_{0}^{\prime} \rightarrow \mathrm{GL}_{2}(E)$ is the Artin representation associated with f_{0}, then the Artin representation ϱ associated with f is $\varrho=\operatorname{Res}_{G^{\prime}}^{G_{0}^{\prime}} \varrho_{0}$ by our definition of base change forms.

The goal of this section is to discuss the relation between the Stark unit groups and regulators for f and f_{0}.

Proposition 7.1.1.

(1) We have a natural isomorphism:

$$
U_{f} \cong U_{L}\left[\operatorname{Ad}^{0} \varrho_{0} \otimes P\right]
$$

where P is the permutation representation of G_{0}^{\prime} on the cosets $G_{0}^{\prime} / G^{\prime}$.
(2) In particular, if we consider the G_{0}^{\prime}-invariant subrepresentation

$$
P_{0}=\operatorname{span}\left\{\sum_{\sigma G^{\prime} \in G_{0}^{\prime} / G^{\prime}} \sigma G^{\prime}\right\} \subseteq P,
$$

then

$$
U_{f_{0}} \cong U_{L}\left[\operatorname{Ad}^{0} \varrho_{0} \otimes P_{0}\right] \subseteq U_{f} .
$$

Proof. Part (2) clearly follows from part (1), so we just prove part (1). We have that:

$$
\begin{aligned}
U_{f} & =\operatorname{Hom}_{G^{\prime}}\left(\operatorname{Ad}^{0} \varrho, \operatorname{Res}_{G^{\prime}}^{G} U_{L}\right) \\
& =\operatorname{Hom}_{G^{\prime}}\left(\operatorname{Res}_{G^{\prime}}^{G_{0}^{\prime}} \operatorname{Ad}^{0} \varrho_{0}, \operatorname{Res}_{G^{\prime}}^{G} U_{L}\right) \\
& =\operatorname{Hom}_{G}\left(\operatorname{Ind}_{G^{\prime}}^{G} \operatorname{Res}_{G^{\prime}}^{G_{0}^{\prime}} \operatorname{Ad}^{0} \varrho_{0}, U_{L}\right) \\
& =\operatorname{Hom}_{G}\left(\operatorname{Ind}_{G_{0}^{\prime}}^{G}\left(\operatorname{Ad}^{0} \varrho_{0} \otimes P\right), U_{L}\right), \\
& =\operatorname{Hom}_{G_{0}^{\prime}}\left(\operatorname{Ad}^{0} \varrho_{0} \otimes P, U_{L}\right)
\end{aligned}
$$

as claimed. The penultimate equality follows form the following fact from representation theory: if $K \subseteq H \subseteq G$ and V is a representation of H, then

$$
\begin{aligned}
\operatorname{Ind}_{K}^{G} \operatorname{Res}_{K}^{H} V & \cong \bigoplus_{g \in G / K} g\left(\operatorname{Res}_{K}^{H} V\right) \\
& \cong \bigoplus_{g \in G / H} \bigoplus_{h \in H / K} g h\left(\operatorname{Res}_{K}^{H} V\right) \\
& \cong \bigoplus_{g \in G / H} g(V \otimes P) \quad g(h v) \mapsto g(h \cdot v \otimes h) \\
& \cong \operatorname{Ind}_{H}^{G}(V \otimes P)
\end{aligned}
$$

where P is a permutation representation of H on the cosets H / K.

Suppose now that $F_{0}=\mathbb{Q}$ for simplicity.

Proposition 7.1.2.

(1) Let f be the base change of a modular form f_{0} of weight one. Then the units $u_{j k}^{f}$ associated with f as in Definition 3.4.1 are given by:

$$
u_{j k}^{f}=\prod_{\sigma^{\prime} \in G^{\prime}}\left(\epsilon^{\left(\sigma_{k} \sigma^{\prime} \sigma_{j}^{-1}\right)^{-1}}\right)^{a^{0}\left(\sigma_{k} \sigma^{\prime} \sigma_{j}^{-1}\right)_{11}}
$$

where $a^{0}(\sigma)$ is the matrix of $\operatorname{Ad}^{0} \varrho_{0}(\sigma)$ in the basis $m_{i, 0}$.
(2) For any j, we have that

$$
\prod_{k=1}^{d} u_{j k}^{f}=u_{f_{0}}
$$

In particular,

$$
R_{f}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=\log \left|u_{f_{0}}\right|\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

Proof. For part (1), we may take $M_{j}=\operatorname{Ad}^{0} \varrho_{0}\left(\sigma_{j}\right)$ for $j=1, \ldots, d$ in Corollary 3.3.2 to get this expression for $u_{j k}^{f}$. Part (2) then follows from Proposition 7.1.1 (2).

Corollary 7.1.3. Suppose $[F: \mathbb{Q}]=2$. Let $u_{f_{0}}$ be the unit associated with f_{0} and $u_{f_{0}}^{F}$ be the unit associated with the Artin representation $\operatorname{Ad}^{0} \varrho_{0} \otimes \omega_{F / \mathbb{Q}}$, where $\omega_{F / \mathbb{Q}}$ is the quadratic character associated with the extension F / \mathbb{Q}. Then:

$$
\begin{align*}
& u_{11} \cdot u_{12}=u_{f_{0}} \tag{7.1.1}\\
& u_{21} \cdot u_{22}=u_{f_{0}} \tag{7.1.2}\\
& u_{11} \cdot u_{12}^{-1}=u_{f_{0}}^{F} \tag{7.1.3}\\
& u_{21}^{-1} \cdot u_{22}=u_{f_{0}}^{F} . \tag{7.1.4}
\end{align*}
$$

In particular,

$$
R_{f}=\left(\begin{array}{cc}
\log \left|u_{11}\right| & \log \left|u_{12}\right| \tag{7.1.5}\\
\log \left|u_{21}\right| & \log \left|u_{22}\right|
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\log \left|u_{f_{0}}\right| & 0 \\
0 & \log \left|u_{f_{0}}^{F}\right|
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)^{-1}
$$

Proof. Fix representatives σ_{1}, σ_{2} of G / G^{\prime} and assume that $\sigma_{1} \in G^{\prime}$. Then the permutation representation P of G on G^{\prime} / G decomposes as

$$
P \cong \mathbb{Q}\left(\sigma_{1}+\sigma_{2}\right) \oplus \mathbb{Q}\left(\sigma_{1}-\sigma_{2}\right) .
$$

Therefore,

$$
U_{f} \cong U_{f_{0}} \oplus U_{L}\left[\operatorname{Ad}^{0} \varrho_{0} \otimes \omega_{F / \mathbb{Q}}\right]
$$

by Proposition 7.1.1. Tracing through this isomorphism under the chosen bases, we obtain equations (7.1.1)-(7.1.4) and the resulting equation (7.1.5).

7.2 Consequences of Conjecture 5.3.2

Recall that we can use the matrix R_{f}^{-1} to predict which cohomology classes in $H^{1}\left(X_{\mathbb{C}}, \mathcal{E}_{1,1}\right)$ are rational. When f is the base change of a modular form f_{0}, Proposition 7.1.2 (2) implies that:

$$
R_{f}^{-1}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)=\frac{1}{\log \left|u_{f_{0}}\right|}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

Therefore, the following is a consequence of Conjecture 5.3.2.

Conjecture 7.2.1. Suppose f is the base change of a modular form f_{0} of weight one. Then the cohomology class

$$
\frac{1}{\log \left|u_{f_{0}}\right|} \sum_{j=1}^{d} \omega_{f}^{\sigma_{j}} \in H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f}
$$

is rational.

When $[F: \mathbb{Q}]=2$, Corollary 7.1.3 gives the following stronger rationality statement.

Conjecture 7.2.2. Suppose $[F: \mathbb{Q}]=2$ and f is the base change to F of a modular form f_{0} of weight one. Then a rational basis for $H^{1}\left(X, \mathcal{E}_{1,1}\right)_{f}$ is given by:

$$
\frac{\omega_{f}^{\sigma_{1}}+\omega_{f}^{\sigma_{2}}}{\log \left|u_{f_{0}}\right|}, \quad \frac{\omega_{f}^{\sigma_{1}}-\omega_{f}^{\sigma_{2}}}{\log \left|u_{f_{0}}^{F}\right|}
$$

In light of Corollary 6.1.3, this is equivalent to Conjecture 5.3.1.

7.3 Embedded Hilbert modular varieties

To check if Conjecture 5.3.2 is compatible with base change, we consider the Hilbert modular variety for F_{0} embedded in the Hilbert modular variety for F.

We will write $d=\left[F: F_{0}\right]$ and $d^{\prime}=\left[F_{0}: \mathbb{Q}\right]$. Let $\tau_{1}, \ldots, \tau_{d^{\prime}}$ be the infinite places of F_{0}. Above each place τ_{i}, there are d infinite places $\sigma_{i, j}$ for $j=1, \ldots, d$ of F. We write $\zeta_{i}, i=1, \ldots, d^{\prime}$, for the variables on $\mathcal{H} \otimes F_{0}$ and $z_{i, j}, i=1, \ldots, d^{\prime}, j=1, \ldots, d$ for the variables on $\mathcal{H} \otimes F$. Here ζ_{i} corresponds to τ_{i} and $z_{i, j}$ corresponds to $\sigma_{i, j}$.

We write X_{0} and X for the Hilbert modular varieties associated with F_{0} and F, respectively. There is a natural embedding

$$
\iota: X_{0} \hookrightarrow X
$$

Over \mathbb{C}, it descends from the map

$$
\begin{aligned}
\mathcal{H} \otimes F_{0} & \hookrightarrow \mathcal{H} \otimes F \\
\left(\zeta_{1}, \ldots, \zeta_{d^{\prime}}\right) & \mapsto\left(\zeta_{1}, \ldots, \zeta_{1}, \zeta_{2}, \ldots, \zeta_{2}, \zeta_{d^{\prime}}, \ldots, \zeta_{d^{\prime}}\right),
\end{aligned}
$$

i.e. the subvariety is given by the equation $z_{i, j}=\zeta_{i}$ for all i, j.

We are interested in the restriction map

$$
H^{i}\left(X, \mathcal{E}_{1,1}\right) \xrightarrow{\iota^{*}} H^{i}\left(X_{0}, \mathcal{E}_{\underline{d}, d}\right)
$$

Particularly, we defined a class $\omega_{f}^{J} \in H^{I}\left(X, \mathcal{E}_{1,1}\right)$ associated with $f \in H^{0}\left(X, \mathcal{E}_{1,1}\right)$ which is represented by

$$
\begin{equation*}
\omega_{f}^{J}(\underline{z})=f\left(\underline{z}^{J}\right) \cdot y^{J} \cdot \bigwedge_{\sigma_{i, j} \in J} \frac{d z_{i, j} \wedge d \overline{z_{i, j}}}{y_{i, j}^{2}} \tag{7.3.1}
\end{equation*}
$$

as a Dolbeault class, and we consider $\iota^{*}\left(\omega_{f}^{J}\right)$.

Lemma 7.3.1. If J contains $\sigma_{i, j}$ and $\sigma_{i, j^{\prime}}$ for $j \neq j^{\prime}$,

$$
\iota^{*}\left(\omega_{f}^{J}\right)=0 .
$$

Proof. This follows immediately from the expression (7.3.1) and the identity $z_{i, j}=\zeta_{i}$ on X_{0}.

Let us assume that J only contains at most one $\sigma_{i, j}$ for each i, so that it is possible that $\iota^{*}\left(\omega_{f}^{J}\right)$ is non-zero.

The following conjecture is a consequence of Conjecture 5.3.2.

Conjecture 7.3.2. Let $A=\left(a_{i j}\right)=R_{f}^{-1}$ be the inverse of the Stark regulator matrix. Then for all $j=1 \ldots, d$:

$$
\sum_{i=1}^{n} a_{i j} \iota^{*}\left(\omega_{f}^{\sigma_{i}}\right) \in H^{|I|}\left(X_{0}, \mathcal{E}_{\underline{d}, d}\right) \otimes E \subseteq H^{|I|}\left(\left(X_{0}\right)_{\mathbb{C}}, \mathcal{E}_{\underline{d}, d}\right) \otimes E .
$$

Note that it is possible that $\iota^{*}\left(\omega_{f}^{\sigma_{j}}\right)=0$ for all j in which case this conjecture is void. In fact, we expect that $\iota^{*}\left(\omega_{f}^{\sigma_{j}}\right)=0$ if f is not a base change form from F_{0} (see Proposition 7.4.3 for an example of this phenomenon).

7.4 The case of real quadratic extensions

We finally restrict our attention to real quadratic extensions F / \mathbb{Q}. In the previous notation, $F_{0}=\mathbb{Q}$ and $d=2$. We denote by z_{1}, z_{2} (instead of $\left.z_{1,1}, z_{1,2}\right)$ the variables on $X_{\mathbb{C}}$ and by $z\left(\operatorname{instead}\right.$ of $\left.\zeta_{1}\right)$ the variable on $\left(X_{0}\right)_{\mathbb{C}}$.

Let f be a holomorphic Hilbert modular form of parallel weight (k, k) and consider $\omega_{f}^{\sigma_{1}} \in H^{1}\left(X_{\mathbb{C}}^{\text {an }}, \mathcal{E}_{(2-k, k)}^{\text {an }}\right)$, locally given by:

$$
\begin{equation*}
\omega_{f}^{\sigma_{1}}\left(z_{1}, z_{2}\right)=f\left(\epsilon_{1} \overline{z_{1}}, \epsilon_{2} z_{2}\right) y_{1}^{k} \frac{d z_{1} \wedge d \overline{z_{1}}}{y_{1}^{2}} \tag{7.4.1}
\end{equation*}
$$

There are embedded modular curves $\iota: C \hookrightarrow X$ in the Hilbert modular surface, studied extensively by Hirzebruch-Zagier [36]. We only consider the simplest example which is obtained by considering the map:

$$
\begin{aligned}
\iota: C_{\mathbb{C}}^{\mathrm{an}} & \hookrightarrow X_{\mathbb{C}}^{\mathrm{an}} \\
z & \mapsto(z, z)
\end{aligned}
$$

over \mathbb{C} which descends to varieties over \mathbb{Q}. Via this map,

$$
\iota^{*}\left(\mathcal{E}_{(2-k, k)}^{\mathrm{an}}\right) \cong \mathcal{E}_{2}^{\mathrm{an}} \cong \Omega_{C}^{1, \mathrm{an}}(\infty)
$$

by the Kodaira-Spencer isomorphism, where (∞) indicates that differentials are allowed to have poles of orders at most one at the cusps. Hence:

$$
\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)(z)=f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}}
$$

defines a class in $H^{1}\left(C_{\mathbb{C}}^{\text {an }}, \Omega_{C}^{1, \text { an }}(\infty)\right)$. Via the trace map, we have:

$$
\begin{aligned}
\operatorname{Tr}: H^{1}\left(C_{\mathbb{C}}^{\mathrm{an}}, \Omega_{C}^{1, \mathrm{an}}(\infty)\right) & \stackrel{\cong}{\rightarrow} \mathbb{C} \\
\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)(z) & \mapsto \int_{C_{\mathbb{C}}^{\mathrm{an}}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}},
\end{aligned}
$$

and the isomorphism respects rational structures.

Lemma 7.4.1. For a Hilbert modular form of weight $(k, k), \iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)=(-1)^{k+1} \iota^{*}\left(\omega_{f}^{\sigma_{2}}\right)$.

Proof. It suffices to check that $\operatorname{Tr}\left(\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)\right)=\operatorname{Tr}\left(\iota^{*}\left(\omega_{f}^{\sigma_{2}}\right)\right)$. This follows by a change
of variables:

$$
\begin{aligned}
\operatorname{Tr}\left(\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)\right) & =\int_{C_{\mathbb{C}}^{\mathrm{an}}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}} \\
& =-\int_{C_{\mathbb{C}}^{\mathrm{an}}} f\left(-\epsilon_{1} z,-\epsilon_{2} \bar{z}\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}} \\
& =(-1)^{k+1} \int_{C_{\mathbb{C}}^{\mathrm{an}}} f\left(\left(-\epsilon_{1}^{-1}\right) z,\left(-\epsilon_{2}^{-1}\right) \bar{z}\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}}\left(\begin{array}{l}
1 \\
\\
\\
\\
\epsilon^{2}
\end{array}\right) \in \Gamma, N(\epsilon)=-1 \\
& =(-1)^{k+1} \operatorname{Tr}\left(\iota^{*}\left(\omega_{f}^{\sigma_{2}}\right)\right)
\end{aligned}
$$

as claimed.

Putting this together with Conjectures 7.2.2 and 7.3.2, we get the following conjecture.

Conjecture 7.4.2. Let f be the base change of a weight one modular form f_{0}. Then:

$$
\int_{C_{\mathbb{C}}^{\text {an }}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}} \sim_{E^{\times}} \log \left|u_{f_{0}}\right| .
$$

For $k \geq 2$ and full level, these integrals were considered by Asai [3]. The following result was also obtained by Oda [58]. See also [76, Proposition (VI.7.9)].

Proposition 7.4.3 ([58, Theorem 16.5]). Suppose f is a Hilbert modular form of parallel weight $k \geq 2$ and level one. If f is not a base change form, then

$$
\int_{C_{\mathbb{C}}^{\mathrm{an}}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}}=0
$$

Otherwise, if f is the Doi-Naganuma lift of a modular form g of weight $k \geq 2$, level $D=\operatorname{disc}(F / \mathbb{Q})$, and character $\omega_{F / \mathbb{Q}}$, then there is a constant $c \in \mathbb{Q}^{\times}$such that

$$
\begin{equation*}
\int_{C_{\mathbb{C}}^{\mathrm{an}}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}}=c \frac{\langle f, f\rangle}{\langle g, g\rangle} . \tag{7.4.2}
\end{equation*}
$$

Remark 7.4.4. The proof of Proposition 7.4.3 in loc. cit. uses the explicit realization of f as a Doi-Naganuma lift of a modular form g, which is currently not available in the literature for weight one forms. If an appropriate analogue of Proposition 7.4.3 holds for a weight one forms f_{0} of arbitrary weight, level, and character, then we expect that Stark's conjecture 3.2.2 implies Conjecture 7.4.2 for base change forms of f_{0} to a real quadratic fields.

Verifying the details of this would take us too far afield, so we will pursue this elsewhere. Instead, in the next section we describe some explicit numerical computations that support Conjecture 7.4.2.

We end this section by proving that Conjectures 7.2.2 and 7.4.2 are equivalent for base change forms, as long as $\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right) \neq 0$.

Proposition 7.4.5. Let f be the base change of a weight one modular form f_{0}. Assume:
(1) Stark's conjecture for the adjoint representation associated with f, (2) $\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right) \neq 0$,

Then Conjecture 7.2.2 for f is equivalent to Conjecture 7.4.2 for f, up to a potential factor of $\sqrt{2}$.

Proof. Clearly, Conjecture 7.2.2 implies Conjecture 7.4.2. We will prove the converse.
Consider the algebraic map $\varphi: X \rightarrow X$ given on $X_{\mathbb{C}} \rightarrow X_{\mathbb{C}}$ by $\left(z_{1}, z_{2}\right) \mapsto\left(z_{2}, z_{1}\right)$. By examining the proof of Theorem 2.3.3, one can deduce that if f is a base change form, then φ preserves f-isotypic components of coherent cohomology and hence induces a map:

$$
\varphi^{*}: H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f} \rightarrow H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f}
$$

Clearly, $\varphi_{\mathbb{C}}^{*}\left(\omega_{f}^{\sigma_{1}}\right)=\omega_{f}^{\sigma_{2}}$ and $\varphi_{\mathbb{C}}^{*}\left(\omega_{f}^{\sigma_{2}}\right)=\omega_{f}^{\sigma_{1}}$. Letting

$$
\omega^{ \pm}=\omega_{f}^{\sigma_{1}} \pm \omega_{f}^{\sigma_{2}}
$$

we see that $\varphi_{\mathbb{C}}^{*}\left(\omega_{f}^{ \pm}\right)= \pm \omega_{f}^{ \pm}$. Hence $\omega_{f}^{ \pm}$are eigenvectors for the linear map $\varphi_{\mathbb{C}}^{*}$ with distinct eigenvalues, and so there exist $\lambda^{ \pm} \in \mathbb{C}$ such that:

$$
\lambda^{ \pm} \omega^{ \pm} \in H^{1}\left(X, \mathcal{E}_{\underline{1}, 1}\right)_{f}
$$

We have a rational functional $\operatorname{Tr} \circ \iota: H^{1}\left(X, \mathcal{E}_{1,1}\right)_{f} \otimes E \rightarrow E$ such that:

$$
(\operatorname{Tr} \circ \iota)\left(\lambda^{+} \omega^{+}\right) \sim_{E^{\times}} \lambda^{+} \int_{C_{\mathbb{C}}^{\mathrm{an}}} \iota^{*}\left(\omega_{f}^{\sigma_{1}}\right), \quad(\operatorname{Tr} \circ \iota)\left(\lambda^{-} \omega^{-}\right)=0
$$

by Lemma 7.4.1. Conjecture 7.4.2 then shows that we may take

$$
\lambda^{+}=\frac{1}{\log \left|u_{f_{0}}\right|}
$$

Finally, by Corollary 6.2.6, we know that the determinant of the basis

$$
\frac{\omega^{+}}{\log \left|u_{f_{0}}\right|}, \frac{\omega^{-}}{\log \left|u_{f_{0}}^{F}\right|}
$$

is $E[\sqrt{2}]$-rational, and hence

$$
\lambda^{+} \cdot \lambda^{-} \sim_{E[\sqrt{2}] \times} \frac{1}{\log \left|u_{f_{0}}\right| \cdot \log \left|u_{f_{0}}^{F}\right|}
$$

showing that we may take $\lambda^{-}=\frac{1}{\log \left|u_{f_{0}}^{F}\right|}$.
Remark 7.4.6. The idea to use the map φ was communicated to us by the referee for a previous version for this manuscript. We thank them for this suggestion.

Remark 7.4.7. We expect that the condition (2) in Proposition 7.4.5 (i.e. $\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right) \neq$ $0)$ is equivalent to the character χ_{0} of f_{0} being quadratic. One implication is clear: $\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)$ transforms by the character χ_{0}^{2} under the action of $\Gamma_{0}(N)$, and hence
$\operatorname{Tr}\left(\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)\right)=0$ unless $\chi_{0}^{2}=1$. Conversely, if $\chi_{0}^{2}=1$, then the global analogue of Jacquet's conjecture $[40,59]$ implies that the automorphic representation π generated by f contains a non-zero $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$-invariant functional. We predict that $f \mapsto \iota^{*}\left(\omega_{f}^{\sigma_{1}}\right)$ is this functional, i.e. $\iota^{*}\left(\omega_{f}^{\sigma_{1}}\right) \neq 0$.

Finally, we expect that Proposition 7.4.5 has a refinement when $\chi_{0}^{2} \neq 1$. If ω_{0} is the character of $\mathbb{A}_{\mathbb{Q}}^{\times}$corresponding to χ_{0} by class field theory and $\widetilde{\omega_{0}}$ is its extension to \mathbb{A}_{F}^{\times}(which always exists), then Jacquet's conjecture predicts that the representation $\pi \otimes{\widetilde{\omega_{0}}}^{-1}$ has a non-zero $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$-invariant functional. One could hope to translate this to a classical statement analogous to Conjecture 7.4.2.

7.5 Computing the integrals numerically

The next goal is to provide numerical evidence of Conjecture 7.4.2, i.e. check that

$$
\begin{equation*}
\int_{C_{\mathbb{C}}^{\mathrm{a}}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y \frac{d z \wedge d \bar{z}}{y^{2}} \sim_{E^{\times}} \log \left|u_{f_{0}}\right| . \tag{7.5.1}
\end{equation*}
$$

We will assume that $\chi_{0}^{2}=1$ (c.f. Remark 7.4.7), and hence the integral may be taken over $\Gamma_{0}(N) \backslash \mathcal{H}$ instead of $\Gamma_{1}(N) \backslash \mathcal{H}$. Indeed, equation (7.5.1) is equivalent to:

$$
\begin{equation*}
\int_{\Gamma_{0}(N) \backslash \mathcal{H}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y \frac{d z \wedge d \bar{z}}{y^{2}} \sim_{E^{\times}} \log \left|u_{f_{0}}\right|, \tag{7.5.2}
\end{equation*}
$$

because the two integrals differ by a factor of $\varphi(N)$.
We first derive a formula (Theorem 7.5.4) for the integral on the left hand side using Nelson's technique [56] for evaluating integrals on modular curves.

Let $\Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ be a finite index subgroup and let $F: \Gamma \backslash \mathcal{H} \rightarrow \mathbb{C}$ be a Γ-invariant function on the upper half plane \mathcal{H}. Suppose we have its q-expansions, i.e. for all $\tau \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
\begin{equation*}
F(\tau z)=\sum_{n \in \mathbb{Q}} a_{F}(n, y ; \tau) e(n x) \tag{7.5.3}
\end{equation*}
$$

where $e(n x)=e^{2 \pi i n x}$.

Theorem 7.5.1 ([56, Theorem 5.6]). Suppose F is bounded, measurable, and satisfies $F(\tau z) \ll y^{-\alpha}$ for some fixed $\alpha>0$, almost all $z=x+i y$ with $y \geq 1$, and all $\tau \in \mathrm{SL}_{2}(\mathbb{Z})$. Then for $0<\delta<\alpha$ we have that:

$$
\int_{\Gamma \backslash \mathcal{H}} F(z) \frac{d x d y}{y^{2}}=\int_{(1+\delta)}(2 s-1) 2 \xi(2 s) \sum_{\tau \in \Gamma \backslash \mathrm{SL}_{2}(\mathbb{Z})} a_{F}(0, \cdot ; \tau)^{\wedge}(1-s) \frac{d s}{2 \pi i}
$$

where

$$
\begin{aligned}
\xi(2 s) & =\frac{\Gamma(s)}{\pi^{s}} \zeta(2 s), \\
a_{F}(0, \cdot ; \tau)^{\wedge}(1-s) & =\int_{0}^{\infty} a_{F}(0, y ; \tau) y^{s-1} \frac{d y}{y} .
\end{aligned}
$$

Applying this to $F(z)=f_{0}(z) \cdot \overline{f_{0}(z)} \cdot y^{k}$ gives an explicit expression for the Petersson inner product $\left\langle f_{0}, f_{0}\right\rangle$.

Corollary 7.5.2 (Nelson, [12, Theorem 4.2]). Suppose f_{0} is a cusp form in $S_{k}(N, \chi)$. For a cusp s, let $\sum_{n} a_{n, s} q^{n}$ be the q-expansion at ∞ of $f_{0} \mid\left[\tau_{s, h}\right]_{k}$, where $\tau_{s, h}=\tau_{s}\left(\begin{array}{cc}h_{s} & 0 \\ 0 & 1\end{array}\right)$ and $\tau_{s} \infty=s$. Then we have that:

$$
\left\langle f_{0}, f_{0}\right\rangle=\frac{4}{\operatorname{vol}(\Gamma \backslash \mathcal{H})} \sum_{s \in \Gamma \backslash \mathbb{P}^{1}(\mathbb{Q})} \frac{h_{s, 0}}{h_{s}} \sum_{m=1}^{\infty} \frac{\left|a_{m, s}\right|^{2}}{m^{k-1}} \sum_{n=1}^{\infty}\left(\frac{x}{8 \pi}\right)^{k-1}\left(x K_{k-2}(x)-K_{k-1}(x)\right),
$$

where $x=4 \pi n \sqrt{\frac{m}{h_{s}}}, K_{v}$ is a K-Bessel function, $h_{s, 0}$ is the classical width of the cusp s, and h_{s} is the width described in [12, Lemma 2.1].

Remark 7.5.3. An algorithm to compute these Petersson inner products was developed and implemented by Collins [12, Algorithm 4.3].

The goal for this section is to prove the following theorem, which is an explicit form of Theorem 7.5.1 in our case.

Recall that for $\alpha \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)$, we write $\alpha_{i}=\sigma_{i}(\alpha)$ and

$$
f \mid[\alpha]_{\underline{k}}\left(z_{1}, z_{2}\right)=f\left(\alpha_{1} z_{1}, \alpha_{2} z_{2}\right) j\left(\alpha_{1}, z_{1}\right)^{-k_{1}} j\left(\alpha_{2}, z_{2}\right)^{-k_{2}}
$$

where

$$
j(g, z)=\operatorname{det}(g)^{-1 / 2}(c z+d) .
$$

By definition, if f is a Hilbert modular form of weight $\left(k_{1}, k_{2}\right)$ and level Γ and character χ, then $f \mid[\alpha]_{\underline{k}}=\chi(d) \cdot f$ for $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$.
Theorem 7.5.4. Let f be a normalized parallel weight k Hilbert modular newform of level \mathfrak{N} and character χ. For each cusp $s \in \mathbb{P}^{1}(\mathbb{Q}) / \Gamma_{0}(N)$, let $\tau \in \mathrm{SL}_{2}(\mathbb{Z})$ satisfy $\tau \infty=s$. Let h_{s} be the width of the cusp as described in [12, Lemma 2.1], and

$$
\begin{aligned}
& \tau^{\epsilon}=\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right) \tau\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right)^{-1}, \\
& \tau_{h}^{\epsilon}=\tau^{\epsilon}\left(\begin{array}{ll}
h_{s} & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

If $\sum_{m \gg 0} a_{(m), s} q^{m}$ is the q-expansion of $f \mid\left[\tau_{h}^{\epsilon}\right]_{k}$ at ∞, then

$$
\begin{aligned}
\int_{\Gamma_{0}(N) \backslash \mathcal{H}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y^{k} \frac{d z \wedge d \bar{z}}{y^{2}}= & 4 \sum_{s} \frac{h_{s, 0}}{h_{s}} \sum_{m=1}^{\infty} \frac{a_{(m), s}}{(m / \sqrt{d})^{k-1}} . \\
& \cdot \sum_{n=1}^{\infty}\left(\frac{x}{2^{3-i} \pi}\right)^{k-1}\left(x K_{k-2}(x)-K_{k-1}(x)\right)
\end{aligned}
$$

where $x=2^{2-i / 2} \pi n \sqrt{\frac{m}{h_{s} \sqrt{d}}}$ and $h_{s, 0}$ is the classical width of the cusp s, and $i=0$ if $d \equiv 1$ (4) or $i=1$ if $d \equiv 3$ (4).

Remark 7.5.5. This formula is very similar to the formula for $\left\langle f_{0}, f_{0}\right\rangle$ in Corollary 7.5.2. We can hence adapt the algorithm [12, Algorithm 4.3] to compute the integral. The computation of q-expansions of f at other cusps given the q-expansion at ∞ is discussed in the next section (7.6).

We devote the rest of this section to the proof of this theorem. We want to apply Theorem 7.5.1 to the function

$$
\begin{equation*}
F(z)=F_{f}^{\sigma_{1}}(z)=f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) \cdot y^{k} \tag{7.5.4}
\end{equation*}
$$

where f is a Hilbert modular form of parallel weight k.
We will need q-expansions of $F(z)$ at other cusps, i.e. q-expansions of $F(\tau z)$ for $\tau \in \mathrm{SL}_{2}(\mathbb{Z})$, as in equation (7.5.3). The idea is to express them in terms of q-expansions at ∞ of another Hilbert modular form.

Lemma 7.5.6. Suppose f is a Hilbert modular form of weight (k, k). For a cusp s, let $\tau \in \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)$ be such that $\tau \infty=s$ and set

$$
\tau^{\epsilon}=\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right) \tau\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right)^{-1}
$$

Then we have that:

$$
F_{f}^{\sigma_{1}}(\tau z)=F_{f[\mid \tau \epsilon]_{k}}^{\sigma_{1}}(z) .
$$

Proof. For $\tau \in \mathrm{SL}_{2}(\mathbb{Z})$, we have that:

$$
\begin{aligned}
f\left(\epsilon_{1}\left(\tau z_{1}\right), \epsilon_{2}\left(\tau z_{2}\right)\right) & =f \left\lvert\,\left[\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right)\right]_{k}\left(z_{1}, z_{2}\right) \cdot\left(N_{F / \mathbb{Q}}(\epsilon)\right)^{-k / 2} \cdot j\left(\tau, z_{1}\right)^{k} j\left(\tau, z_{2}\right)^{k}\right. \\
& =f \left\lvert\,\left[\tau^{\epsilon}\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right)\right]_{k}\left(z_{1}, z_{2}\right) \cdot\left(N_{F / \mathbb{Q}}(\epsilon)\right)^{-k / 2} \cdot j\left(\tau, z_{1}\right)^{k} j\left(\tau, z_{2}\right)^{k}\right. \\
& =f \mid\left[\tau^{\epsilon}\right]_{k}\left(\epsilon_{1} z_{1}, \epsilon_{2} z_{2}\right) \cdot j\left(\tau, z_{1}\right)^{k} j\left(\tau, z_{2}\right)^{k} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
F_{f}^{\sigma_{1}}(\tau z) & =f\left(\epsilon_{1}(\tau \bar{z}), \epsilon_{2}(\tau z)\right) \cdot(\operatorname{Im}(\tau z))^{k} \\
& =\left.f\left|\left[\tau^{\epsilon}\right]_{k}\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) \cdot\right| j(\tau, z)\right|^{2 k} \cdot(\operatorname{Im}(\tau z))^{k} \\
& =f \mid\left[\tau^{\epsilon}\right]_{k}\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) \cdot \operatorname{Im}(z)^{k} \\
& =F_{f \mid[\tau]_{k}}(z),
\end{aligned}
$$

since $\operatorname{Im}(\tau z)=|j(\tau, z)|^{-2} y$.

Lemma 7.5.7. For a cusp s, consider $\tau \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\tau \infty=s$. Let h_{s} be the width of cusp s (as in [12, Lemma 2.1]) and

$$
\tau_{h}^{\epsilon}=\tau^{\epsilon}\left(\begin{array}{ll}
h_{s} & 0 \\
0 & 1
\end{array}\right)
$$

The q-expansion coefficients of $F(\tau z)$ (as in equation (7.5.3)) are given by

$$
a_{F}\left(n / h_{s}, y ; \tau\right)=\left(y / h_{s}\right)^{k} \cdot \sum_{\substack{m \gg 0 \\ \operatorname{Tr}(\epsilon m)=n}} a_{(m), s} \cdot e^{-2 \pi\left(\epsilon_{2} m_{2} / \delta_{2}-\epsilon_{1} m_{1} / \delta_{1}\right) y / h_{s}},
$$

where $a_{(m), s}$ are Fourier coefficients of $f \mid\left[\tau_{h}^{\epsilon}\right]_{k}$. In particular,

$$
a_{F}(0, y ; \tau)=\left(y / h_{s}\right)^{k} \cdot \sum_{m=1}^{\infty} a_{(m), s} \cdot e^{-2 \pi \frac{2^{1-i_{m}}}{\sqrt{d}}\left(y / h_{s}\right)}
$$

where $i=0$ if $d \equiv 1$ (4) and $i=1$ if $d \equiv 3$ (4).

Proof. We write $h=h_{s}$ for simplicity. Suppose the q-expansion of $f \mid\left[\tau_{h}^{\epsilon}\right]_{k}$ is:

$$
f \mid\left[\tau_{h}^{\epsilon}\right]_{k}\left(z_{1}, z_{2}\right)=\sum_{m \gg 0} a_{(m), s} q^{m / \delta}
$$

Then:

$$
f \mid\left[\tau^{\epsilon}\right]_{k}\left(z_{1}, z_{2}\right)=h^{-k} \sum_{m \gg 0} a_{(m), s} q^{m /(\delta h)} .
$$

By Lemma 7.5.6,

$$
\begin{aligned}
F(\tau z) & =f \mid\left[\tau^{\epsilon}\right]_{k}\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) \cdot y^{k} \\
& =(y / h)^{k} \sum_{m \in \mathcal{O}_{F}^{+}} a_{(m), s} \cdot e^{2 \pi i\left(\epsilon_{1} m_{1} / \delta_{1}(\bar{z} / h)+\epsilon_{2} m_{2} / \delta_{2}(z / h)\right)} \\
& =(y / h)^{k} \sum_{m \in \mathcal{O}_{F}^{+}} a_{(m), s} \cdot e^{-2 \pi\left(\epsilon_{2} m_{2} / \delta_{2}-\epsilon_{1} m_{1} / \delta_{1}\right)(y / h)} e^{2 \pi i(\operatorname{Tr} \epsilon m / \delta)(x / h)} \\
& =(y / h)^{k} \sum_{n \in \mathbb{Z}}\left(\sum_{\substack{m \in \mathcal{O}_{F}^{+} \\
\operatorname{Tr}(\epsilon m / \delta)=n}} a_{(m), s} \cdot e^{-2 \pi\left(\epsilon_{2} m_{2} / \delta_{2}-\epsilon_{1} m_{1} / \delta_{1}\right)(y / h)}\right) e((n / h) x) .
\end{aligned}
$$

Hence

$$
a_{F}(n / h, y ; \tau)=(y / h)^{k} \cdot \sum_{\substack{m \gg 0 \\ \operatorname{Tr}(\epsilon m / \delta)=n}} a_{(m), s} \cdot e^{-2 \pi\left(\epsilon_{2} m_{2} / \delta_{2}-\epsilon_{1} m_{1} / \delta_{1}\right)(y / h)},
$$

and in particular,

$$
a_{F}(0, y ; \tau)=(y / h)^{k} \cdot \sum_{\substack{m \gg 0 \\ \operatorname{Tr}(\epsilon m / \delta)=0}} a_{(m), s} e^{-2 \pi\left(\epsilon_{2} m_{2} / \delta_{2}-\epsilon_{1} m_{1} / \delta_{1}\right)(y / h)}
$$

To make this last formula more explicit, we write $m=\alpha+\beta \sqrt{d}$. We may choose $\delta=2^{i} \sqrt{d} \cdot \epsilon$ to be the totally positive generator of the different ideal. Then

$$
\epsilon m / \delta=\frac{\beta}{2^{i}}+\frac{\alpha}{2^{i} d} \sqrt{d} .
$$

If $\operatorname{Tr}(\epsilon m / \delta)=0$, then $\beta=0$, so $m=\alpha \in \mathbb{Z}_{>0}$. Moreover:

$$
\epsilon_{2} m_{2} / \delta_{2}-\epsilon_{1} m_{1} / \delta_{1}=\frac{2^{1-i} m}{\sqrt{d}}
$$

We may hence rewrite the above sum as

$$
a_{F}(0, y ; \tau)=(y / h)^{k} \cdot \sum_{m=1}^{\infty} a_{(m), s} \cdot e^{-2 \pi \frac{2^{1-i_{m}}}{\sqrt{d}}(y / h)}
$$

proving the lemma.

We finally complete the proof of Theorem 7.5.4.

Proof of Theorem 7.5.4. We will apply Theorem 7.5.1 to the invariant function $F(z)=$ $F_{f}^{\sigma_{1}}(z)$. By Lemma 7.5.7,

$$
a_{F}(0, y ; \tau)=\left(y / h_{s}\right)^{k} \cdot \sum_{m=1}^{\infty} a_{(m), s} \cdot e^{-2 \pi \frac{2^{1-i_{m}}}{\sqrt{d}}\left(y / h_{s}\right)} .
$$

Hence:

$$
\begin{aligned}
a_{F}(0, \cdot ; \tau)^{\wedge}(1-t) & =\int_{0}^{\infty} a_{F}(0, y ; \tau) y^{t-1} \frac{d y}{y} \\
& =\sum_{m=1}^{\infty} a_{(m), s} \int_{0}^{\infty} e^{-2 \pi \frac{2^{1-i_{m}}}{\sqrt{d}}\left(y / h_{s}\right)} y^{t-1}\left(y / h_{s}\right)^{k} \frac{d y}{y} \\
& =\sum_{m=1}^{\infty} a_{(m), s} h_{s}^{-k} \int_{0}^{\infty} e^{-2 \pi \frac{2^{1-i_{m}}}{h_{s} \sqrt{d}} y} y^{t+k-1} \frac{d y}{y} \\
& =\sum_{m=1}^{\infty} a_{(m), s} h_{s}^{-k} \frac{\Gamma(t+k-1)}{\left(2 \pi \frac{2^{1-i} i_{m}}{h_{s} \sqrt{d}}\right)^{t+k-1}} \\
& =\sum_{m=1}^{\infty} \frac{a_{(m), s}}{\left(2^{2-i} \pi m / \sqrt{d}\right)^{k-1} h_{s}} \frac{\Gamma(t+k-1)}{\left(2^{2-i} \pi \frac{m}{h_{s} \sqrt{d}}\right)^{t}} .
\end{aligned}
$$

According to [56, Lemma A.4]:

$$
\int_{(1+\delta)}(t-1 / 2) \frac{\Gamma(t) \Gamma(t+\nu)}{(x / 2)^{2 t+\nu}} \frac{d t}{2 \pi i}=x K_{\nu-1}(x)-K_{\nu}(x)
$$

for $\nu \in \mathbb{C}$ with $\operatorname{Re}(\nu) \geq 0$.

By Theorem 7.5.1,

$$
\begin{aligned}
\int_{\Gamma \backslash \mathcal{H}} F(z) \frac{d x d y}{y^{2}}= & \int_{(1+\delta)}(2 t-1) 2 \xi(2 t) \sum_{\tau} a_{F}(0, \cdot ; \tau)^{\wedge}(1-t) \frac{d t}{2 \pi i} \\
= & 4 \sum_{s} h_{s, 0} \sum_{m=1}^{\infty} \frac{a_{(m), s}}{\left(2^{2-i} \pi m / \sqrt{d}\right)^{k-1} h_{s}} \cdot \\
& \cdot \sum_{n=1}^{\infty} \int_{(1+\delta)}(t-1 / 2) \frac{\Gamma(t) \Gamma(t+k-1)}{\left(2^{2-i} \pi^{2} \frac{m}{h_{s} \sqrt{d}}\right)^{t}} \frac{1}{n^{2 t}} \frac{d t}{2 \pi i} \\
= & 4 \sum_{s} \frac{h_{s, 0}}{h_{s}} \sum_{m=1}^{\infty} \frac{a_{(m), s}}{\left(2^{2-i} \pi m / \sqrt{d}\right)^{k-1}} \cdot \\
& \cdot \sum_{n=1}^{\infty} \int_{(1+\delta)}(t-1 / 2) \frac{\Gamma(t) \Gamma(t+k-1)}{\left(2^{2-i} \pi^{2} \frac{m n^{2}}{h_{s} \sqrt{d}}\right)^{t}} \frac{d s}{2 \pi i} \\
= & 4 \sum_{s} \frac{h_{s, 0}}{h_{s}} \sum_{m=1}^{\infty} \frac{a_{(m), s}}{(m / \sqrt{d})^{k-1} h_{s}} \sum_{n=1}^{\infty}\left(\frac{x}{2^{3-i} \pi}\right)^{k-1}\left(x K_{k-2}(x)-K_{k-1}(x)\right)
\end{aligned}
$$

where we set $x=2^{2-i / 2} \pi n \sqrt{m / h_{s} \sqrt{d}}$ in the last line.

In order to use Theorem 7.5.4, we need to compute the q-expansions of the Hilbert modular form f at other cusps, i.e. q-expansions of $f \mid[\alpha]_{k}$ at ∞ for a matrix α. We discuss this problem in the next section.

$7.6 \quad q$-expansions at other cusps

In this section, we address the following question: given the q-expansion of a Hilbert modular form $f(z)$ at the cusp ∞, what is the q-expansion of $f(z)$ at any cusp of $\Gamma_{0}(N) \backslash \mathcal{H}^{2} ?$

We take two methods available for modular forms and discuss their generalization to Hilbert modular forms:

- Asai's explicit formula [2] (Theorem 7.6.2),
- Collins computational method based on a least-squares algorithm [12] (Algorithm 7.6.4).

The first one is much faster in practice but only works for square-free level. The second one works for any level, but our implementation is too slow in practice to compute the above integrals. We include it here since it might be of independent interest.

Collins also introduced an improved computational method for modular forms using twists of eigenforms [12, Algorithm 2.6]. This is also discussed in Chen's thesis [11, Chapter 4].

An alternative approach is to use the adelic language. The Fourier coefficients of a modular form are given by value of the Whittaker newform of f at certain matrices. Loeffler-Weinstein [48] give an algorithm to compute the local representations, so one just needs an algorithm to compute the local newforms. For more details, see [13, Section 3].

7.6.1 Explicit formula, following [2]

Let F be a totally real field of narrow class number 1 (of arbitrary degree d). Suppose f is a Hilbert modular eigenform of level \mathfrak{N} with character $\chi:\left(\mathcal{O}_{F} / \mathfrak{N}\right)^{\times} \rightarrow$ \mathbb{C}^{\times}and parallel weight k. Suppose the level \mathfrak{N} is square-free. We write $\Gamma=\Gamma_{0}(\mathfrak{N})$ throughout this section.

The goal is to prove an explicit formula (Theorem 7.6.2) for the q-expansion of a Hilbert modular form f at a cusp $C=a / b \in F$ in terms of the q-expansion at ∞, generalizing the main result of [2] to the Hilbert modular case.

Since \mathfrak{N} is square-free, the cusps $C=a / b$ of $\Gamma \backslash \mathcal{H}^{2}$ are in bijection with decompositions $\mathfrak{N}=\mathfrak{A} \cdot \mathfrak{B}$, where $\mathfrak{B}=((b), \mathfrak{N})$. For each divisor \mathfrak{A}, we consider the matrix

$$
W_{\mathfrak{A}}=\left(\begin{array}{cc}
A \alpha & \beta \\
N \gamma & A \delta
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \beta \\
B \gamma & A \delta
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right)
$$

such that:

- A, N are totally positive generators of $\mathfrak{A}, \mathfrak{N}$, respectively; then $B=N / A$ is a totally positive generator of \mathfrak{B},
- $\operatorname{det} W_{\mathfrak{A}}=A$,
- $\alpha, \beta, \gamma, \delta \in \mathcal{O}_{F}$.

Such a matrix always exists: since $\mathfrak{A}=(A)$ and $\mathfrak{B}=(B)$ are coprime, we have that $1=\lambda A+\mu B$, for some $\lambda, \mu \in \mathcal{O}_{F}$, so $A=\lambda A^{2}+\mu N$, and we may take $\alpha=\beta=1$ and $\gamma=-\mu, \delta=\lambda$ to obtain such a matrix:

$$
W_{\mathfrak{A}}=\left(\begin{array}{cc}
A & 1 \\
-N \mu & A \lambda
\end{array}\right)
$$

Conversely, for a matrix $W_{\mathfrak{A}}$,

$$
W_{\mathfrak{A}}^{-1} \infty=\frac{\delta}{-B \gamma}
$$

is a cusp with $((B \gamma), \mathfrak{N})=\mathfrak{B}$, because

$$
1=A \alpha \delta-B \beta \gamma \equiv-B \beta \gamma \quad \bmod \mathfrak{A},
$$

so (γ) is coprime to \mathfrak{A}.
Such a matrix $W_{\mathfrak{A}}$ associated with \mathfrak{A} is well-defined up multiplication by elements of Γ. Moreover, $W_{\mathfrak{A}}$ normalizes Γ and $A^{-1} W_{\mathfrak{A}}^{2} \in \Gamma$.

The q-expansion of f at the cusp corresponding to $\mathfrak{N}=\mathfrak{A} \mathfrak{B}$ is the q-expansion of the Hilbert modular form $f_{\mathfrak{A}}=f \mid W_{\mathfrak{A}}$ at ∞.

For a prime ideal $\mathfrak{p}=(\varpi)$ of \mathcal{O}_{F}, coprime to \mathfrak{N}, with totally positive generator ϖ, the action of the Hecke operator $T(\mathfrak{p})$ on the space of cusp forms $S_{k}(\mathfrak{N}, \chi)$ is given by

$$
f \left\lvert\, T(\mathfrak{p})=N_{F / \mathbb{Q}}(\mathfrak{p})^{k / 2-1}\left(\left.\chi(\varpi) f\right|_{k}\left(\begin{array}{cc}
\varpi & 0 \tag{7.6.1}\\
0 & 1
\end{array}\right)+\left.\sum_{\nu \in \mathcal{O}_{F} / \mathfrak{p}} f\right|_{k}\left(\begin{array}{cc}
1 & \nu \\
0 & \varpi
\end{array}\right)\right)\right.
$$

For example, when $d=2$, this simplifies to the more familiar expression:

$$
f \left\lvert\, T(\mathfrak{p})=N_{F / \mathbb{Q}}(\mathfrak{p})^{k-1}\left(\chi(\varpi) f\left(\varpi_{1} z_{1}, \varpi_{2} z_{2}\right)+N_{F / \mathbb{Q}} \mathfrak{p}^{-k} \sum_{\nu \in \mathcal{O}_{F} / \mathfrak{p}} f\left(\frac{z_{1}+\nu_{1}}{\varpi_{1}}, \frac{z_{2}+\nu_{2}}{\varpi_{2}}\right)\right)\right.
$$

We will write $T(\mathfrak{p}, \chi)$ for the action of the Hecke operator $T(\mathfrak{p})$ on $S_{k}(\mathfrak{N}, \chi)$.

Remark 7.6.1. This normalization of Hecke operators is consistent with $T^{\prime}(\mathfrak{p})$ in [68].

For simplicity, whenever we write down a generator of an ideal, it is assumed to be totally positive. The main result of this section is the following.

Theorem 7.6.2. Let f be a newform in $S_{k}(\mathfrak{N}, \chi)$ and $f \mid T(\mathfrak{p}, \chi)=a_{\mathfrak{p}} f$. For each decomposition $\mathfrak{N}=\mathfrak{A} \mathfrak{B}$, let $f_{\mathfrak{A}}=f \mid W_{\mathfrak{A}}$. Then $f_{\mathfrak{A}}$ is a newform in $S_{k}\left(\mathfrak{N},{ }^{\mathfrak{A}} \chi\right)$ and

$$
f_{\mathfrak{A} \mid} \mid T\left(\mathfrak{p},{ }^{\mathfrak{A}} \chi\right)=a_{\mathfrak{p}}^{(\mathfrak{A})} f_{\mathfrak{A}}
$$

for every prime $\mathfrak{p}=(\varpi)$, where

$$
a_{\mathfrak{p}}^{(\mathfrak{A})}= \begin{cases}\overline{\chi_{\mathfrak{A}}}(\varpi) a_{\mathfrak{p}} & \text { if } \mathfrak{p} \nmid \mathfrak{A}, \\ \chi_{\mathfrak{B}}(\varpi) \overline{a_{\mathfrak{p}}} & \text { if } \mathfrak{p} \not \subset \mathfrak{B},\end{cases}
$$

and

$$
\begin{aligned}
\chi_{\mathfrak{A}}:\left(\mathcal{O}_{F} / \mathfrak{A} \mathcal{O}_{F}\right)^{\times} & \rightarrow \mathbb{C}^{\times}, \\
m & \mapsto \chi((-B \beta \gamma) m+(A \alpha \delta)), \\
\chi_{\mathfrak{B}}:\left(\mathcal{O}_{F} / \mathfrak{B} \mathcal{O}_{F}\right)^{\times} & \rightarrow \mathbb{C}^{\times}, \\
m & \mapsto \chi((A \alpha \delta) m+(-B \beta \gamma)), \\
{ }^{\mathfrak{A}} \chi:\left(\mathcal{O}_{F} / \mathfrak{N} \mathcal{O}_{F}\right)^{\times} & \rightarrow \mathbb{C}^{\times}, \\
m & \mapsto \chi\left((A \alpha \delta) m+(-B \beta \gamma) m^{-1}\right) .
\end{aligned}
$$

Proof. The proof is a straightforward generalization of [2, Theorem 1], so we just give a sketch.

We first check that $f_{\mathfrak{A}}$ has character ${ }^{\mathfrak{A}} \chi$ described above. Write

$$
\begin{aligned}
d: \Gamma=\Gamma_{0}(\mathfrak{N}) & \rightarrow\left(\mathcal{O}_{F} / \mathfrak{N}\right)^{\times}, \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \mapsto d
\end{aligned} \quad \bmod \mathfrak{N} . \quad .
$$

Then we just need to check that

$$
d\left(W_{\mathfrak{A}} g W_{\mathfrak{A}}^{-1}\right)={ }^{\mathfrak{A}} \chi(d(g)),
$$

where

$$
\begin{aligned}
& \mathfrak{A} \chi(m) \equiv(A \alpha \delta) m+(-B \beta \gamma) m^{-1} \\
& \text { For } g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \text { wed } \mathfrak{N} . \\
& W_{\mathfrak{A} \gamma} W_{\mathfrak{A}}^{-1}=\left(\begin{array}{ll}
A \alpha & \beta \\
N \gamma & A \delta
\end{array}\right)\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\delta & -\beta / A \\
-B \gamma & \alpha
\end{array}\right) \\
&=\left(\begin{array}{cc}
A \alpha & \beta \\
N \gamma & A \delta
\end{array}\right)\left(\begin{array}{cc}
a \delta-b B \gamma & -a \beta / A+b \alpha \\
c \delta-d B \gamma & -c \beta / A+d \alpha
\end{array}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
d\left(W_{\mathfrak{A}} \gamma W_{\mathfrak{A}}^{-1}\right) & =-a \beta \gamma B+b N \alpha \gamma-c \beta \delta+d A \alpha \delta \\
& \equiv(-\beta \gamma B) a+(A \alpha \delta) d \quad \bmod \mathfrak{N} \quad \text { since } c \equiv 0 \quad \bmod \mathfrak{N}
\end{aligned}
$$

which proves the above result, since $a d \equiv 1 \bmod \mathfrak{N}$.
One then computes a formula for how the Hecke operator $T(\mathfrak{p}, \chi)$ commutes with $W_{\mathfrak{A}}$ using the above expression for Hecke operators (c.f. [2, Lemma 2]). To check that $f_{\mathfrak{A}}$ is a newform, one shows that $W_{\mathfrak{A}}$ preserves oldforms (c.f. [2, Lemma 1]).

The Hecke eigenvalues $a_{\mathfrak{n}}$ of $T(\mathfrak{n})$ may be computed from the eigenvalues $a_{\mathfrak{p}}$ of $T(\mathfrak{p})$ in the standard way $[68,(2.26)]$. For \mathfrak{n} coprime to \mathfrak{m}, we have that

$$
a_{\mathfrak{n} \mathfrak{m}}=a_{\mathfrak{n}} \cdot a_{\mathfrak{m}}
$$

and for $\mathfrak{n}=\mathfrak{p}^{r}$, we have that

$$
\begin{equation*}
\sum_{r=0}^{\infty} a_{\mathfrak{p}^{r}} N(\mathfrak{p})^{-r s}=\left[1-a_{\mathfrak{p}} N(\mathfrak{p})^{-s}+\chi(\mathfrak{p}) N(\mathfrak{p})^{k_{0}-1-2 s}\right]^{-1} \tag{7.6.2}
\end{equation*}
$$

where $k_{0}=\max \left\{k_{1}, \ldots, k_{n}\right\}$.
We can then recover the q-expansion of $f_{\mathfrak{A}}$, up to a constant λ, from the Hecke eigenvalues $a_{\mathfrak{p}}^{(\mathfrak{R})}$ given by Theorem 7.6.2. There is an explicit expression for λ, described in the next theorem.

Theorem 7.6.3. Let f be a normalized Hilbert newform with character χ and level \mathfrak{N}. Then there is a constant λ such that

$$
f_{\mathfrak{A}}=\lambda \cdot \underbrace{\sum_{\nu \gg 0} a_{(\nu)}^{(\mathfrak{A})} q^{\nu}}_{f^{(\mathfrak{l})}}
$$

where we define:

$$
\begin{array}{rlr}
a_{(1)}^{(\mathfrak{A l})}=1 & \\
a_{(\nu)}^{(\mathfrak{A l})}=\overline{\chi_{\mathfrak{A}}(\nu)} a_{(\nu)} & \text { if }((\nu), \mathfrak{A})=\mathcal{O}_{F}, \\
a_{(\nu)}^{(\mathfrak{P l})}=\chi_{\mathfrak{B}}(\nu) \overline{a_{(\nu)}} & \text { if }((\nu), \mathfrak{B})=\mathcal{O}_{F}, \\
a_{(\nu \mu)}^{(\mathfrak{A l})}=a_{(\nu)}^{(\mathfrak{A l})} a_{(\mu)}^{(\mathfrak{A l})} & \text { if }(\nu, \mu)=\mathcal{O}_{F} .
\end{array}
$$

Moreover, there is an explicit formula for λ, analogous to [2, Theorem 2]. First, for a decomposition $\mathfrak{N}=\mathfrak{p} \mathfrak{B}$ for a prime ideal $\mathfrak{p}=(\varpi)$, let

$$
W_{\mathfrak{p}}=\left(\begin{array}{cc}
\varpi & 1 \\
N \gamma & \varpi \delta
\end{array}\right)
$$

be a matrix of determinant ϖ with $\gamma, \delta \in \mathcal{O}_{F}$. Then

$$
f \mid W_{\mathfrak{p}}=\lambda_{\mathfrak{p}} f^{(\mathfrak{p})}
$$

with

$$
\lambda_{\mathfrak{p}}= \begin{cases}C\left(\chi_{\mathfrak{p}}\right) \cdot N \mathfrak{p}^{-k / 2} \cdot \overline{a_{\mathfrak{p}}} & \text { if } \mathfrak{p} \text { divides } \operatorname{cond}(\chi) \\ -N \mathfrak{p}^{1-k / 2} \cdot \overline{a_{\mathfrak{p}}} & \text { otherwise }\end{cases}
$$

where

$$
C\left(\chi_{\mathfrak{p}}\right)=\sum_{h \bmod \mathfrak{p}} \chi_{\mathfrak{p}}(h) \cdot e^{2 \pi i \operatorname{Tr}(h / \varpi)}
$$

is a Gauss sum associated with $\chi_{\mathfrak{p}}$.
In general, for any $\mathfrak{N}=\mathfrak{A} \mathfrak{B}$ with an associated matrix $W_{\mathfrak{A}}=\left(\begin{array}{cc}A \alpha & \beta \\ N \gamma & A \delta\end{array}\right)$, we have that

$$
\lambda=\chi(A \delta-B \gamma) \prod_{(\varpi)=\mathfrak{p} \mid \mathfrak{A}} \chi_{\mathfrak{p}}(A / \varpi) \lambda_{\mathfrak{p}} .
$$

Proof. Once again, the proof generalizes the proof of [3, Theorem 2]. Since for \mathfrak{A} coprime to \mathfrak{A}^{\prime}, we may take $W_{\mathfrak{A} \mathfrak{A}^{\prime}}=W_{\mathfrak{A}} W_{\mathfrak{A}^{\prime}}$, it is enough to check the assertion for a prime ideal $\mathfrak{A}=\mathfrak{p}$.

By definition of $a_{(\nu)}^{(\mathfrak{p})}$ and $\lambda_{\mathfrak{p}}$, we have that:

$$
\begin{equation*}
f\left|T(\mathfrak{p}) \circ W_{\mathfrak{p}}=a_{\mathfrak{p}} f\right| W_{\mathfrak{p}}=a_{\mathfrak{p}} \lambda_{\mathfrak{p}} \sum_{\nu \gg 0} a_{(\nu)}^{(\mathfrak{p})} q^{\nu / \delta} . \tag{7.6.3}
\end{equation*}
$$

We compute the left hand side in another way to get the result.
Since $\operatorname{det} W_{\mathfrak{p}}=\varpi$, we have that

$$
B \gamma \equiv B \gamma-\varpi \delta=-1 \quad \bmod \mathfrak{p} .
$$

Hence for $j \not \equiv 1 \bmod \mathfrak{p}$,

$$
1+B \gamma j \equiv 1-j \not \equiv 0 \quad \bmod \mathfrak{p},
$$

so there exists $\ell \not \equiv 0 \bmod \mathfrak{p}$ such that

$$
(1+B \gamma j) \ell \equiv 1 \quad \bmod \mathfrak{p}
$$

Moreover, this defines a bijection

$$
\left\{j \in \mathcal{O}_{F} / \mathfrak{p} \mid j \not \equiv 1 \quad \bmod \mathfrak{p}\right\} \leftrightarrow\left\{\ell \in \mathcal{O}_{F} / \mathfrak{p} \mid j \not \equiv 0 \quad \bmod \mathfrak{p}\right\} .
$$

One can then check that for $j \not \equiv 1 \bmod \mathfrak{p}$

$$
\left(\begin{array}{cc}
1 & j \\
& \varpi
\end{array}\right) W_{\mathfrak{p}}=\sigma_{1}\left(\begin{array}{ll}
1 & \ell \\
& \varpi
\end{array}\right)\left(\begin{array}{ll}
\varpi & \\
& 1
\end{array}\right)
$$

for some $\sigma_{1} \in \Gamma_{0}(\mathfrak{N})$ such that $\chi\left(d\left(\sigma_{1}\right)\right)=\chi_{\mathfrak{p}}(\ell)$.
For $j=1$, we have that:

$$
\left(\begin{array}{cc}
1 & 1 \\
& \varpi
\end{array}\right) W_{\mathfrak{p}}=\sigma_{2} W_{\mathfrak{p}}\left(\begin{array}{ll}
\varpi & \\
& 1
\end{array}\right)
$$

for some $\sigma_{2} \in \Gamma_{0}(\mathfrak{N})$ such that $\chi\left(d\left(\sigma_{2}\right)\right)=\chi_{\mathfrak{B}}(\varpi)$.
Using the expression (7.6.1) for $T(\mathfrak{p})$:

$$
\begin{aligned}
f \mid T(\mathfrak{p}) \circ W_{\mathfrak{p}}= & \left(N_{F / \mathbb{Q} \mathfrak{p}}\right)^{k / 2-1}\left(\left.\sum_{j \in \mathcal{O}_{F} / \mathfrak{p}} f\right|_{k}\left(\begin{array}{ll}
1 & j \\
& \varpi
\end{array}\right) W_{\mathfrak{p}}\right) \\
= & \left(N_{F / \mathbb{Q} \mathfrak{p})^{k / 2-1}\left(\left.\sum_{\ell \neq 0} \chi_{\mathfrak{p}}(\ell) f\right|_{k}\left(\begin{array}{ll}
1 & \ell \\
& \varpi
\end{array}\right)\left(\begin{array}{ll}
\varpi & \\
& 1
\end{array}\right)\right)+}\right. \\
& +\left.\chi_{\mathfrak{B}}(\varpi) f\right|_{k} W_{\mathfrak{p}}\left(\begin{array}{ll}
\varpi & \\
& 1
\end{array}\right)
\end{aligned}
$$

Using the q-expansions:

$$
f=\sum_{\nu \gg 0} a_{(\nu)} q^{\nu / \delta},\left.\quad f\right|_{k} W_{\mathfrak{p}}=\lambda_{\mathfrak{p}} \sum_{\nu \gg 0} a_{(\nu)}^{(\mathfrak{p})} q^{\nu / \delta},
$$

we have that

$$
\begin{aligned}
\left.f\right|_{k}\left(\begin{array}{ll}
1 & \ell \\
& \varpi
\end{array}\right)\left(\begin{array}{ll}
\varpi & \\
& 1
\end{array}\right) & =\sum_{\nu \gg 0} a_{(\nu)} e^{2 \pi i \operatorname{Tr}(\nu \ell / \delta \varpi)} q^{\nu / \delta}, \\
\left.f\right|_{k} W_{\mathfrak{p}}\left(\begin{array}{ll}
\varpi & \\
& 1
\end{array}\right) & =\left(N_{F / \mathbb{Q} p} \mathfrak{p}\right)^{k / 2} \lambda_{\mathfrak{p}} \sum_{\nu \gg 0} a_{(\nu)}^{(\mathfrak{p})} q^{\nu \varpi / \delta} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
f \mid T(\mathfrak{p}) \circ W_{\mathfrak{p}}= & \left(N_{F / \mathfrak{Q} \mathfrak{p})^{k / 2-1}} \sum_{\nu \gg 0} a_{(\nu)}\left(\sum_{\ell \neq 0} \chi_{\mathfrak{p}}(\ell) e^{2 \pi i \operatorname{Tr}(\nu \ell / \delta \varpi)}\right) q^{\nu / \delta}\right. \\
& +\left(N_{F / \mathbb{Q} \mathfrak{p})^{k-1} \chi_{\mathfrak{B}}(\varpi) \lambda_{\mathfrak{p}} \sum_{\nu \gg 0} a_{(\nu)}^{(\mathfrak{p})} q^{\nu \varpi / \delta}} .\right.
\end{aligned}
$$

If $\chi_{\mathfrak{p}}$ is primitive, then

$$
\sum_{\ell \neq 0} \chi_{\mathfrak{p}}(\ell) e^{2 \pi i \operatorname{Tr}(\nu \ell / \delta \varpi)}=\overline{\chi_{\mathfrak{p}}(\nu)} \chi_{\mathfrak{p}}(\delta) C\left(\chi_{\mathfrak{p}}\right)
$$

since δ is coprime to ϖ, and hence

$$
\begin{aligned}
f \mid T(\mathfrak{p}) \circ W_{\mathfrak{p}}= & \left(N_{F / \mathbb{Q} p}\right)^{k / 2-1} \chi_{\mathfrak{p}}(\delta) C\left(\chi_{\mathfrak{p}}\right) \sum_{\nu \gg 0} \overline{\chi_{\mathfrak{p}}(\nu)} a_{(\nu)} q^{\nu / \delta}+ \\
& +\left(N_{F / \mathbb{Q} p}\right)^{k-1} \chi_{\mathfrak{B}}(\varpi) \lambda_{\mathfrak{p}} \sum_{\nu \gg 0} a_{(\nu)}^{(\mathfrak{p})} q^{\nu \varpi / \delta} .
\end{aligned}
$$

If $\chi_{\mathfrak{p}}$ is not primitive, then $\chi_{\mathfrak{p}}=\mathbb{1}_{\mathfrak{p}}$ is the trivial character modulo \mathfrak{p}. Then, since ϖ is coprime to δ,

$$
\sum_{\ell \neq 0} \chi_{\mathfrak{p}}(\ell) e^{2 \pi i \operatorname{Tr}(\nu \ell / \delta \varpi)}=\sum_{\ell \neq 0} e^{2 \pi i \operatorname{Tr}(\nu \ell / \delta \varpi)}= \begin{cases}N(\mathfrak{q})-1 & \mathfrak{p} \mid(\nu) \\ -1 & \text { otherwise }\end{cases}
$$

Hence:

$$
\begin{aligned}
f \mid T(\mathfrak{p}) \circ W_{\mathfrak{p}}= & -\left(N_{F / \mathbb{Q} \mathfrak{p})^{k / 2-1} \sum_{\nu \gg 0} a_{(\nu)} q^{\nu / \delta} .}\right. \\
& \cdot \sum_{\nu \gg 0}\left((N \mathfrak{p})^{k / 2} a_{(\nu \varpi)}\left(N_{F / \mathbb{Q}} \mathfrak{p}\right)^{k-1} \chi_{\mathfrak{B}}(\varpi) \lambda_{\mathfrak{p}} a_{(\nu)}^{(\mathfrak{p})}\right) q^{\nu \varpi / \delta} .
\end{aligned}
$$

Comparing the expression for $f \mid T(\mathfrak{p}) \circ W_{\mathfrak{p}}$ in each case with equation (7.6.3) gives the result.

7.6.2 Numerical method, following [12]

The explicit formulas above only apply to Hilbert modular forms of square-free level. We discuss how one could generalize a method of Collins to compute q expansions at other cusps for general levels.

As in $[12$, Section 2], we consider a matrix α which takes infinity to the cusp and

$$
\alpha_{h}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
h & 0 \\
0 & 1
\end{array}\right) .
$$

For $f \in S_{k}\left(\Gamma_{0}(\mathfrak{N})\right)$,

$$
f \mid\left[\alpha_{h}\right]_{k} \in S_{k}\left(\Gamma_{0}(\mathfrak{N} h)\right)
$$

and we want to compute its q-expansion:

$$
\begin{equation*}
f \mid\left[\alpha_{h}\right]_{k}=\sum_{\nu \gg 0} a_{(\nu), \alpha} q^{m}=\sum_{\mathfrak{n}} a_{\mathfrak{n}, \alpha}\left(\sum_{m \in \mathbb{Z}} q^{u^{m} \nu}\right) \tag{7.6.4}
\end{equation*}
$$

where $q^{m}=e^{2 \pi i \operatorname{Tr}(m / \delta)}$ and $u \in\left(\mathcal{O}_{F}\right)_{+}^{\times}$is a fundamental unit.
The idea of Collins [12, Section 2.3] is to sample points $z_{1}, \ldots, z_{M} \in \mathcal{H}^{2}$ and use the q-expansion at ∞ of f to compute $f\left[\alpha_{h}\right]_{k}(z)$ for these values. Then to use a least squares algorithm to approximate the constants $a_{\mathfrak{n}, \alpha}$ which satisfy

$$
f\left[\alpha_{h}\right]_{k} \approx \sum_{\mathfrak{n}} a_{\mathfrak{n}, \alpha}\left(\sum_{m \in \mathbb{Z}} q^{u^{m_{\nu}}}\right) .
$$

Algorithm 7.6.4 (q-expansion at other cusps, adapted from [12, Algorithm 2.3]). Given:

- a Hilbert modular form f of level \mathfrak{N}, weight (k, k), with an algorithm to compute its Fourier coefficients $a_{\mathfrak{n}}$ for arbitrarily large \mathfrak{n},
- a cusp $a / c \in \mathbb{Q}$ of width h,
- a maximal norm K of Fourier coefficients needed,
- a desired accuracy 10^{-E},
- an exponential decay factor $e^{-C_{0}}$,
we can compute the Fourier coefficients $a_{\mathfrak{n}, \alpha}$ for $\operatorname{Norm}(\mathfrak{n})<N$, accurate up to 10^{-E} as follows:
(1) Either increase $K=K_{0}$ or decrease $C=C_{0}$ so that $K C \approx \log (10) E$ and work with interpolating

$$
\sum_{\substack{\mathfrak{n} \\ \mathbf{n} \leq K}} a_{\mathfrak{n}, \alpha}\left(\sum_{m \in \mathbb{Z}} q^{u^{m} \nu}\right) .
$$

(2) Choose M (for example, $2 K_{0}$) and pick points $z_{1}, \ldots, z_{M} \in \mathcal{H}^{2}$ with both imaginary parts equal to $C / 2 \pi$ and $\operatorname{Re}\left(z_{j}\right)$ randomly in $(-d / c h-1 / 2,-d / c h+1 / 2)^{2}$.
(3) Numerically compute the values $f \mid\left[\alpha_{h}\right]\left(z_{j}\right)=h^{k / 2}\left(\operatorname{ch}\left(z_{j, 1}\right)+d\right)^{-k}\left(\operatorname{ch}\left(z_{j, 2}\right)+\right.$ $d)^{-k} f\left(\alpha_{h} z_{j}\right)$ using the q-expansion of f, truncating until we have reached an accuracy a little greater than 10^{-E}, and fill these into a vector b.
(4) Numerically compute the values $\sum_{m \in \mathbb{Z}} q^{u^{m} \nu}$ for each $z=z_{1}, \ldots, z_{M}$ with an accuracy a little greater than 10^{-E}, and store them in a matrix A.
(5) Numerically find the least squares solution to $A x=b$ as the exact solution to $\left(A^{*} A\right) x=A^{*} b$. The solution vector is our approximation to the coefficients $a_{\mathfrak{n}, \alpha}$ for each \mathfrak{n} of norm at most K.

We implemented this algorithm, but step (3) is very slow in practice. Since we need a lot of Fourier coefficients in our case, it is not realistic to apply this algorithm for our purposes.

7.7 Numerical evidence

We can use Theorems 7.5.4, 7.6.2, and 7.6.3 to compute the integral and verify that:

$$
\begin{equation*}
\int_{\Gamma_{0}(N) \backslash \mathcal{H}} f\left(\epsilon_{1} \bar{z}, \epsilon_{2} z\right) y \frac{d z \wedge d \bar{z}}{y^{2}}=c \cdot \log \left|u_{f_{0}}\right| \tag{7.7.1}
\end{equation*}
$$

for some $c \in E^{\times}$. This numerically verifies Conjecture 7.3 .2 which we showed is equivalent to Conjecture 5.3.1 in base change cases.

7.7.1 Modular forms associated with cubic extensions

In Example 3.5.3, the unit group $U_{f_{F}}$ is described explicitly, so this is the first case we consider. This is the base change of Example 3.5.2 to a real quadratic extension $F=\mathbb{Q}(\sqrt{d})$ of \mathbb{Q}.

We briefly recall Example 3.5 .2 to set up the notation. Let $K=\mathbb{Q}(\alpha)$ be a cubic field of signature $[1,1]$, obtained by adjoining a root α of a cubic polynomial $P(x)$. The splitting field L of $P(x)$ is the Galois closure of K and $G_{L / \mathbb{Q}} \cong S_{3}$. We consider the irreducible odd Artin representation

$$
G_{L / \mathbb{Q}} \cong S_{3} \rightarrow \mathrm{GL}_{2}(\mathbb{Z})
$$

It has an associated modular form f_{0} and we consider its base change f to $F=$ $\mathbb{Q}(\sqrt{d})$. The associated unit group is $U_{f_{0}} \cong U_{K}^{(1)}$, the norm 1 units of K, and we consider a generator $u=u_{f_{0}}$ of this group.

Table 7.7.1 shows constants $c \in \mathbb{Q}$ such that the equality (7.7.1) holds up to at least 15 digits. The computations were performed on the High Performance Computing cluster Great Lakes at the University of Michigan.

d	polynomial $P(x)$	1mfdb.org label	level N	unit u	constant c	time taken
5	$x^{3}-x^{2}+1$	23.1.b.a	23	$\alpha^{2}-\alpha$	2	00:09:34
5	$x^{3}+x-1$	31.1.b.a	31	α	-4	00:13:36
5	$x^{3}+2 x-1$	59.1.b.a	59	α^{2}	-8	01:56:22
5	$x^{3}-x^{2}+2 x+1$	87.1.d.b	87	α	-2	04:15:09
13	$x^{3}-x^{2}+1$	23.1.b.a	23	$\alpha^{2}-\alpha$	8	00:10:19
13	$x^{3}+x-1$	31.1.b.a	31	α	-2	00:49:47
13	$x^{3}+2 x-1$	59.1.b.a	59	α^{2}	-22	29:47:44
13	$x^{3}-x^{2}+2 x+1$	87.1.d.b	87	α	-4	04:23:13
17	$x^{3}-x^{2}+1$	23.1.b.a	23	$\alpha^{2}-\alpha$	14	00:16:52
17	$x^{3}+x-1$	31.1.b.a	31	α	-18	01:01:15
17	$x^{3}-x^{2}+2 x+1$	87.1.d.b	87	α	-14	19:40:11
29	$x^{3}-x^{2}+1$	23.1.b.a	23	$\alpha^{2}-\alpha$	4	00:32:08
29	$x^{3}+x-1$	31.1.b.a	31	α	-14	02:38:12
37	$x^{3}-x^{2}+1$	23.1.b.a	23	$\alpha^{2}-\alpha$	10	00:25:45
37	$x^{3}+x-1$	31.1.b.a	31	α	-6	01:41:38

Table 7.7.1:
This table presents constants c such that equation (7.7.1) holds for the unit u and the base change to $\mathbb{Q}(\sqrt{d})$ of the modular form of level N associated with the polynomial $P(x)$. We give the 1 mfdb .org label of the modular form. The time taken to perform the computation with at least 15 digits of accuracy is displayed in the format hh:mm:ss.

It is quite remarkable that all the constants c are even integers and not just rational numbers. Rubin's integral refinement of Stark's conjecture [63] could provide an explanation. Understanding this phenomenon may also be related to studying congruence numbers for $f[19]$ and a potential integral refinement of Conjecture 5.3.2 would have to take them into account.

7.7.2 Weight one form of level 47

We give an example where the coefficients of f_{0} are not rational and hence Stark's conjecture 3.2.2 is not known for the base change form f. Let f_{0} be the modular form of weight one, level 47, label 47.1.b.a in lmfdb.org, and q-expansion:

$$
f_{0}=q+(-1+\beta) q^{2}-\beta q^{3}+(1-\beta) q^{4}+\cdots
$$

where $\beta=\frac{1}{2}(1+\sqrt{5})$.

The associated Galois representation is:

$$
\begin{aligned}
\varrho: \operatorname{Gal}(L / \mathbb{Q}) \cong D_{5} & =\left\langle s, r \mid s^{2}=1, r^{5}=1, s r s=r^{4}\right\rangle \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z}\left[\zeta_{5}\right]\right) \\
s & \mapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& r \mapsto\left(\begin{array}{ll}
\zeta_{5} & 0 \\
0 & \zeta_{5}^{4}
\end{array}\right)
\end{aligned}
$$

where we choose $s \in D_{5}$ corresponding to the complex conjugation $c_{0} \in \operatorname{Gal}(L / \mathbb{Q})$ associated with $L \hookrightarrow \mathbb{C}$. For the basis $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ of $\operatorname{Ad}^{0} \varrho$, the adjoint representation is:

$$
\begin{aligned}
& \varrho: \operatorname{Gal}(L / \mathbb{Q}) \cong D_{5} \rightarrow \mathrm{GL}_{3}\left(\mathbb{Z}\left[\zeta_{5}\right]\right) \\
& s \mapsto\left(\begin{array}{lll}
1 & & \\
& & \\
& -1 & \\
& & -1
\end{array}\right), \\
& r \mapsto\left(\begin{array}{ccc}
\left(\zeta_{5}^{2}+\zeta_{5}^{-2}\right) / 2 & \left(\zeta_{5}^{2}-\zeta_{5}^{-2}\right) / 2 & 0 \\
\left(\zeta_{5}^{2}-\zeta_{5}^{-2}\right) / 2 & \left(\zeta_{5}^{2}+\zeta_{5}^{-2}\right) / 2 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Finally, this shows that:

$$
\begin{equation*}
u=u_{f_{0}}=\prod_{i=0}^{4}\left(\epsilon^{r^{-i}}\right)^{\zeta^{2 i}+\zeta^{-2 i}} \tag{7.7.2}
\end{equation*}
$$

where ϵ is the Minkowski unit (Definition 3.1.3) for the embedding $\tau: L \hookrightarrow \mathbb{C}$ such that s is the complex conjugation associated with τ.

Note that $\beta=\zeta^{2}+\zeta^{-2}$, so the coefficients $\zeta^{2 i}+\zeta^{-2 i}$ lie in the coefficient field $\mathbb{Q}(\sqrt{5})$ of f.

d	lmfdb.org label	level N	unit $u_{f_{0}}$	constant $c \in \mathbb{Q}(\sqrt{5})$	time taken
5	$47.1 . \mathrm{b} . \mathrm{a}$	47	$(7.7 .2)$	$1-\frac{\sqrt{5}}{5}$	$04: 44: 15$
13	$47.1 . \mathrm{b} . \mathrm{a}$	47	$(7.7 .2)$	$5-\sqrt{5}$	$09: 20: 12$
17	47.1.b.a	47	$(7.7 .2)$	$8-8 \frac{\sqrt{5}}{5}$	$02: 04: 28$
29	47.1.b.a	47	$(7.7 .2)$	$3-3 \frac{\sqrt{5}}{5}$	$15: 47: 31$

Table 7.7.2:
This table presents constants c such that equation (7.7.1) holds for the unit $u_{f_{0}}$ and the base change to $\mathbb{Q}(\sqrt{d})$ of the modular form f_{0} of level 47 . The time taken to perform the computation with at least 15 digits of accuracy is displayed in the format hh:mm:ss.

Interestingly, in this case, the right hand side seems to always be an integer multiple of $1-\frac{\sqrt{5}}{5}$. Once again, this may be related to congruence numbers for f.

CHAPTER VIII

Comparison to Prasanna-Venkatesh

Prasanna-Venkatesh gave a conjectural definition [60, Definition 4.2.1] of the adjoint motive. Beilinson's regulator defines a map

$$
\begin{equation*}
H_{\mathcal{M}}^{1}\left(M_{\text {coad }}, \mathbb{Q}(1)\right) \rightarrow H_{B}\left(M_{\text {coad }, \mathbb{C}}, \mathbb{R}\right)^{W_{\mathbb{R}}} \cong \hat{\mathfrak{g}}^{W_{\mathbb{R}}} \tag{8.0.1}
\end{equation*}
$$

For a cohomological, tempered automorphic representation, they define an action of $\bigwedge^{*}\left(\hat{\mathfrak{g}}^{W_{\mathbb{R}}}\right)$ on Betti cohomology of the associated symmetric space, and conjecture that the action is rational for the rational structure given by motivic cohomology.

In this appendix, we explain that Conjecture 5.3.1 is the natural analogue of this for coherent cohomology. In our case,

$$
\hat{\mathfrak{g}} \cong \bigoplus_{j=1}^{d} \mathfrak{s l}_{2, \mathbb{C}}
$$

The archimedean Langlands parameter associated with a Hilbert modular form f of
weight (\underline{k}, r) is given by

$$
\begin{aligned}
\varphi: W_{\mathbb{R}}=\mathbb{C}^{\times} \cup \mathbb{C}^{\times} j & \rightarrow \bigoplus_{j=1}^{d} \mathrm{GL}_{2}(\mathbb{C}) \\
\mathbb{C}^{\times} \ni s e^{i \theta} & \mapsto\left(\begin{array}{ll}
s^{2 r} e^{i\left(k_{j}-1\right) \theta} & s^{2 r} e^{-i\left(k_{j}-1\right) \theta}
\end{array}\right) \\
j & \mapsto\left(\begin{array}{cc}
0 & (-1)^{k_{j}-1} \\
1 & 0
\end{array}\right)
\end{aligned}
$$

(see [44]).
A simple computation of the adjoint action gives the following lemma.

Lemma 8.0.1. For a Hilbert modular form of weight (\underline{k}, r), we have that:

$$
\hat{\mathfrak{g}}^{W_{\mathbb{R}}} \cong \bigoplus_{j \text { s.t. } k_{j}=1} \mathbb{R}\left(\begin{array}{cc}
1 & 0 \tag{8.0.2}\\
0 & -1
\end{array}\right)_{j}
$$

This allows us to define the action of this Deligne cohomology group on coherent cohomology.

Definition 8.0.2. Let f be a Hilbert modular form of weight (\underline{k}, r). We define an action \star of $\bigwedge^{*} \hat{\mathfrak{g}}^{W_{\mathbb{R}}}$ on $H^{*}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}, r}\right)_{f}$ by letting $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)_{j}$ for j such that $k_{j}=1$ act by:

$$
\begin{aligned}
& H^{j}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}, r}\right)_{f} \rightarrow H^{j+1}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}, r}\right)_{f} \\
& \omega_{f}^{J} \mapsto \begin{cases}\omega_{f}^{J \cup\left\{\sigma_{j}\right\}} & \sigma_{j} \notin J \\
0 & \sigma_{j} \in J\end{cases}
\end{aligned}
$$

Here, we use the bases of cohomology groups given in Corollary 2.3.5.

This is precisely the action we defined in Definition 5.2.4.

Remark 8.0.3. Recall from Section 2.3 that the cohomology class ω_{f}^{I} is associated with the action of right translation by the matrix $J_{I} \in G(\mathbb{R})$ where

$$
\left(J_{I}\right)_{j}=\left\{\begin{array}{ll}
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) & \sigma_{j} \in I \\
\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array} \quad \sigma_{j} \notin I\right.
$$

Although the elements in equation (8.0.2) belong to the Lie algebra $\hat{\mathfrak{g}}$ and not $G(\mathbb{R})$, this seems like a natural way to define this action.

In the case $(\underline{k}, r)=(\underline{1}, 1)$, we expect from Proposition 3.6.2 that

$$
U_{f}^{\vee} \cong H_{\mathcal{M}}^{1}\left(M_{\mathrm{coad}}, \mathbb{Q}(1) .\right.
$$

Proposition 5.2.2 gives an explicit expression for the (inverse of the) Beilinson regulator (8.0.1). Therefore, Conjecture 5.3.1 amounts to the fact that the action of $H_{\mathcal{M}}^{1}\left(M_{\text {coad }}, \mathbb{Q}(1)\right)$ preserves the rational structure on coherent cohomology.

Finally, we briefly discuss the motivic action conjecture for partial weight one Hilbert modular forms. Suppose f is a Hilbert modular form of weight (\underline{k}, r) and let $M=M_{\text {coad }}$ be the conjectural coadjoint motive of weight zero associated with f. The Beilinson short exact sequence for M is:

$$
\begin{equation*}
0 \rightarrow F^{1}\left(H_{\mathrm{dR}}(M)\right) \otimes_{\mathbb{Q}} \mathbb{R} \rightarrow H_{B}\left(M_{\mathbb{R}}, \mathbb{R}\right) \rightarrow H_{\mathcal{D}}^{1}\left(M_{\mathbb{R}}, \mathbb{R}(1)\right) \rightarrow 0 \tag{8.0.3}
\end{equation*}
$$

A simple calculation using the Hodge decomposition of $H_{B}(M)$ gives:

$$
\operatorname{dim} F^{1}\left(H_{\mathrm{dR}}(M)\right)=\#\left\{j \mid k_{j}>1\right\}
$$

and hence

$$
\operatorname{dim} H_{\mathcal{D}}^{1}\left(M_{\mathbb{R}}, \mathbb{R}(1)\right)=\#\left\{j \mid k_{j}=1\right\}
$$

The last assertion is consistent with Lemma 8.0.1.
Consider the rational structure on $H_{\mathcal{D}}^{1}\left(M_{\mathbb{R}}, \mathbb{R}(1)\right)$ given by the motivic cohomology group $H_{\mathcal{M}}^{1}(M, \mathbb{Q}(1))$ via Beilinson's regulator (8.0.1). This gives an action \star of $H_{\mathcal{M}}^{1}(M, \mathbb{Q}(1))$ on coherent cohomology $H^{*}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}, r}\right)_{f}$ via Definition 8.0.2.

Conjecture 8.0.4. The action \star of $\bigwedge^{*} H_{\mathcal{M}}^{1}(M, \mathbb{Q}(1))$ on $H^{*}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}, r}\right)_{f}$ preserves the rational structure $H^{*}\left(X, \mathcal{E}_{\underline{k}, r}\right)_{f}$.

The action of top-degree elements, i.e. the group $\bigwedge^{\ell} H_{\mathcal{M}}^{1}(M, \mathbb{Q}(1))$ where $\ell=$ $\#\left\{j \mid k_{j}=1\right\}$, has a particularly nice description in terms of Beilinson's conjecture for the adjoint L-function. For $m \in \bigwedge^{\ell} H_{\mathcal{M}}^{1}(M, \mathbb{Q}(1))$, we have that

$$
m \star f=\frac{\omega_{f}^{J_{1}}}{r_{\mathcal{D}}(m)} \in H^{\ell}\left(X_{\mathbb{C}}, \mathcal{E}_{\underline{k}, r}\right)_{f}
$$

where $J_{1}=\left\{j \mid k_{j}=1\right\}$. This final space is one-dimensional according to Theorem 2.3.3 (2) and hence we may check the rationality of $m \star f$ using Serre duality. We consider the rational element

$$
\frac{\omega_{f}^{\Sigma_{\infty} \backslash J_{1}}}{\nu^{\Sigma_{\infty} \backslash J_{1}}(f)} \in H^{d-\ell}\left(X, \mathcal{E}_{\underline{2}-\underline{k}, r}\right)_{f}
$$

(see Definition 5.1.2). Then:

$$
\left\langle\frac{\omega_{f}^{J_{1}}}{r_{\mathcal{D}}(m)}, \frac{\omega_{f}^{\Sigma_{\infty} \backslash J_{1}}}{\nu^{\Sigma_{\infty} \backslash J_{1}}(f)}\right\rangle \sim_{E_{f}(\underline{k})^{\times}} \frac{\langle f, f\rangle}{r_{\mathcal{D}}(m) \cdot \nu^{\Sigma_{\infty} \backslash J_{1}}(f)}
$$

by Proposition 5.1.4. Using Theorem 6.1.6, this amounts to the statement

$$
L(1, f, \mathrm{Ad}) \sim_{E_{f}(\underline{k})^{\times}} r_{\mathcal{D}}(m) \nu^{\Sigma_{\infty} \backslash J_{1}}(f)
$$

up to appropriate powers of π.
Finally, Beilinson's conjecture implies that:

$$
r_{\mathcal{D}}\left(\operatorname{det} H_{\mathcal{M}}^{1}(M, \mathbb{Q}(1))\right)=L(1, f, \operatorname{Ad}) \operatorname{det} H_{B}\left(M_{\mathbb{R}}, \mathbb{Q}\right)
$$

as rational structures on $H_{\mathcal{D}}^{1}\left(M_{\mathbb{R}}, \mathbb{R}(1)\right)$. Assuming this, Conjecture 8.0.4 is equivalent to the statement:

$$
\nu^{\Sigma_{\infty} \backslash J_{1}}(f)=\operatorname{det} H_{B}\left(M_{\mathbb{R}}, \mathbb{Q}\right),
$$

which we would expect to be true. It would be interesting to verify this final equality, but we decided to pursue this problem elsewhere.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] James Arthur and Laurent Clozel. Simple algebras, base change, and the advanced theory of the trace formula, volume 120 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1989.
[2] Tetsuya Asai. On the Fourier coefficients of automorphic forms at various cusps and some applications to Rankin's convolution. J. Math. Soc. Japan, 28(1):48-61, 1976.
[3] Tetsuya Asai. On the Doi-Naganuma lifting associated with imaginary quadratic fields. Nagoya Math. J., 71:149-167, 1978.
[4] Don Blasius and Jonathan D. Rogawski. Motives for Hilbert modular forms. Invent. Math., 114(1):55-87, 1993.
[5] Spencer Bloch. Algebraic cycles and higher K-theory. Adv. in Math., 61(3):267-304, 1986.
[6] Spencer Bloch and Kazuya Kato. L-functions and Tamagawa numbers of motives. In The Grothendieck Festschrift, Vol. I, volume 86 of Progr. Math., pages 333-400. Birkhäuser Boston, Boston, MA, 1990.
[7] Colin J. Bushnell and Guy Henniart. The local Langlands conjecture for GL(2), volume 335 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
[8] Colin J. Bushnell, Guy M. Henniart, and Philip C. Kutzko. Local Rankin-Selberg convolutions for GL_{n} : explicit conductor formula. J. Amer. Math. Soc., 11(3):703-730, 1998.
[9] Frank Calegari and David Geraghty. Modularity lifting beyond the Taylor-Wiles method. Invent. Math., 211(1):297-433, 2018.
[10] Ching-Li Chai. Arithmetic minimal compactification of the Hilbert-Blumenthal moduli spaces. Ann. of Math. (2), 131(3):541-554, 1990.
[11] Hao Chen. Computational aspects of modular parametrizations of elliptic curves, 2016. Thesis, https://digital.lib.washington.edu/researchworks/handle/1773/36754.
[12] Dan J. Collins. Numerical computation of Petersson inner products and q-expansions, 2018. https://arxiv.org/abs/1802.09740.
[13] Andrew Corbett and Abhishek Saha. On the order of vanishing of newforms at cusps. Math. Res. Lett., 25(6):1771-1804, 2018.
[14] Henri Darmon, Michael Harris, Victor Rotger, and Akshay Venkatesh. The derived Hecke algebra for dihedral weight one forms, 2021. https://www.math.mcgill.ca/darmon/pub/ Articles/Research/78.DHRV/DHRV.pdf.
[15] Henri Darmon, Alan Lauder, and Victor Rotger. Stark points and p-adic iterated integrals attached to modular forms of weight one. Forum Math. Pi, 3:e8, 95, 2015.
[16] Samit Dasgupta. Stark's conjecture, 1999. Senior thesis, https://services.math.duke.edu/ ~dasgupta/papers/Dasguptaseniorthesis.pdf.
[17] Mladen Dimitrov. Arithmetic aspects of Hilbert modular forms and varieties. In Elliptic curves, Hilbert modular forms and Galois deformations, Adv. Courses Math. CRM Barcelona, pages 119-134. Birkhäuser/Springer, Basel, 2013.
[18] Mladen Dimitrov and Jacques Tilouine. Variétés et formes modulaires de Hilbert arithmétiques pour $\Gamma_{1}(\mathfrak{c}, \mathfrak{n})$. In Geometric aspects of Dwork theory. Vol. I, II, pages 555-614. Walter de Gruyter, Berlin, 2004.
[19] Koji Doi, Haruzo Hida, and Hidenori Ishii. Discriminant of Hecke fields and twisted adjoint L-values for GL(2). Invent. Math., 134(3):547-577, 1998.
[20] Koji Doi and Hidehisa Naganuma. On the functional equation of certain Dirichlet series. Invent. Math., 9:1-14, 1969/70.
[21] Eberhard Freitag. Hilbert modular forms. Springer-Verlag, Berlin, 1990.
[22] Soren Galatius and Akshay Venkatesh. Derived Galois deformation rings. Adv. Math., 327:470623, 2018.
[23] Paul B. Garrett. Holomorphic Hilbert modular forms. The Wadsworth \& Brooks/Cole Mathematics Series. Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, CA, 1990.
[24] Stephen S. Gelbart. Automorphic forms on adèle groups. Annals of Mathematics Studies, No. 83. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975.
[25] Eknath Ghate. Adjoint L-values and primes of congruence for Hilbert modular forms. Compositio Math., 132(3):243-281, 2002.
[26] Eyal Z. Goren. Lectures on Hilbert modular varieties and modular forms, volume 14 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2002. With the assistance of Marc-Hubert Nicole.
[27] Michael Harris. Automorphic forms of $\bar{\partial}$-cohomology type as coherent cohomology classes. J. Differential Geom., 32(1):1-63, 1990.
[28] Michael Harris. Period invariants of Hilbert modular forms. I. Trilinear differential operators and L-functions. In Cohomology of arithmetic groups and automorphic forms (LuminyMarseille, 1989), volume 1447 of Lecture Notes in Math., pages 155-202. Springer, Berlin, 1990.
[29] Michael Harris. L-functions of 2×2 unitary groups and factorization of periods of Hilbert modular forms. J. Amer. Math. Soc., 6(3):637-719, 1993.
[30] Michael Harris. Period invariants of Hilbert modular forms. II. Compositio Math., 94(2):201226, 1994.
[31] Michael Harris and Akshay Venkatesh. Derived Hecke algebra for weight one forms. Exp. Math., 28(3):342-361, 2019.
[32] Haruzo Hida. Congruence of cusp forms and special values of their zeta functions. Invent. Math., 63(2):225-261, 1981.
[33] Haruzo Hida. Modules of congruence of Hecke algebras and L-functions associated with cusp forms. Amer. J. Math., 110(2):323-382, 1988.
[34] Haruzo Hida. On p-adic L-functions of GL(2) $\times \mathrm{GL}(2)$ over totally real fields. Ann. Inst. Fourier (Grenoble), 41(2):311-391, 1991.
[35] Hida Hida and Jacques Tilouine. Anti-cyclotomic Katz p-adic L-functions and congruence modules. Ann. Sci. École Norm. Sup. (4), 26(2):189-259, 1993.
[36] F. Hirzebruch and D. Zagier. Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math., 36:57-113, 1976.
[37] Atsushi Ichino and Kartik Prasanna. Hodge classes and the jacquet-langlands correspondence. arXiv preprint arXiv:1806.10563, 2018.
[38] Atsushi Ichino and Kartik Prasanna. Periods of quaternionic Shimura varieties. I, volume 762 of Contemporary Mathematics. American Mathematical Society, [Providence], RI, 2021.
[39] Hervé Jacquet. Automorphic forms on GL(2). Part II. Lecture Notes in Mathematics, Vol. 278. Springer-Verlag, Berlin-New York, 1972.
[40] Anthony C. Kable. Asai L-functions and Jacquet's conjecture. Amer. J. Math., 126(4):789820, 2004.
[41] Payman L. Kassaei. Modularity lifting in parallel weight one. J. Amer. Math. Soc., 26(1):199225, 2013.
[42] Payman L. Kassaei, Shu Sasaki, and Yichao Tian. Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case. Forum Math. Sigma, 2:Paper No. e18, 58, 2014.
[43] Nicholas M. Katz. p-adic interpolation of real analytic Eisenstein series. Ann. of Math. (2), 104(3):459-571, 1976.
[44] A. W. Knapp. Local Langlands correspondence: the Archimedean case. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 393-410. Amer. Math. Soc., Providence, RI, 1994.
[45] Balesh Kumar and Murugesan Manickam. On Doi-Naganuma and Shimura liftings. Ramanujan J., 48(2):279-303, 2019.
[46] Kai-Wen Lan. Cohomology of automorphic bundles. In Proceedings of the Seventh International Congress of Chinese Mathematicians, Vol. I, volume 43 of Adv. Lect. Math. (ALM), pages 303-325. Int. Press, Somerville, MA, 2019.
[47] Robert P. Langlands. Base change for GL(2), volume 96 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980.
[48] David Loeffler and Jared Weinstein. On the computation of local components of a newform. Math. Comp., 81(278):1179-1200, 2012.
[49] David Marcil. Numerical verification of a conjecture of Harris and Venkatesh. J. Number Theory, 221:484-495, 2021.
[50] Barry Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math., 47(1):33-186 (1978), 1977. With an appendix by Barry Mazur and Michael Rapoport.
[51] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel. Lecture notes on motivic cohomology, volume 2 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006.
[52] Loïc Merel. L'accouplement de Weil entre le sous-groupe de Shimura et le sous-groupe cuspidal de $J_{0}(p)$. J. Reine Angew. Math., 477:71-115, 1996.
[53] Hidehisa Naganuma. On the coincidence of two Dirichlet series associated with cusp forms of Hecke's "Neben"-type and Hilbert modular forms over a real quadratic field. J. Math. Soc. Japan, 25:547-555, 1973.
[54] Jan Nekovář. Bĕ̆linson's conjectures. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 537-570. Amer. Math. Soc., Providence, RI, 1994.
[55] Jan Nekovář and Anthony J. Scholl. Introduction to plectic cohomology. In Advances in the theory of automorphic forms and their L-functions, volume 664 of Contemp. Math., pages 321-337. Amer. Math. Soc., Providence, RI, 2016.
[56] Paul D. Nelson. Evaluating modular forms on Shimura curves. Math. Comp., 84(295):24712503, 2015.
[57] Paul D. Nelson, Ameya Pitale, and Abhishek Saha. Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels. J. Amer. Math. Soc., 27(1):147-191, 2014.
[58] Takayuki Oda. Periods of Hilbert modular surfaces, volume 19 of Progress in Mathematics. Birkhäuser, Boston, Mass., 1982.
[59] Dipendra Prasad. On a conjecture of Jacquet about distinguished representations of GL (n). Duke Math. J., 109(1):67-78, 2001.
[60] Kartik Prasanna and Akshay Venkatesh. Automorphic cohomology, motivic cohomology, and the adjoint L-function. Astérisque, 428:viii $+132,2021$.
[61] Michael Rapoport. Compactifications de l'espace de modules de Hilbert-Blumenthal. Compositio Math., 36(3):255-335, 1978.
[62] Jonathan D. Rogawski and Jerrold B. Tunnell. On Artin L-functions associated to Hilbert modular forms of weight one. Invent. Math., 74(1):1-42, 1983.
[63] Karl Rubin. A Stark conjecture "over Z" for abelian L-functions with multiple zeros. Ann. Inst. Fourier (Grenoble), 46(1):33-62, 1996.
[64] Anthony J. Scholl. Integral elements in K-theory and products of modular curves. In The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 467-489. Kluwer Acad. Publ., Dordrecht, 2000.
[65] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg.
[66] Jean-Pierre Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, english edition, 2002. Translated from the French by Patrick Ion and revised by the author.
[67] Goro Shimura. The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math., 29(6):783-804, 1976.
[68] Goro Shimura. The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J., 45(3):637-679, 1978.
[69] Goro Shimura. Algebraic relations between critical values of zeta functions and inner products. Amer. J. Math., 105(1):253-285, 1983.
[70] Goro Shimura. On the critical values of certain Dirichlet series and the periods of automorphic forms. Invent. Math., 94(2):245-305, 1988.
[71] Harold Mead Stark. L-functions at $s=1$. II. Artin L-functions with rational characters. Advances in Math., 17(1):60-92, 1975.
[72] Jun Su. Coherent Cohomology of Shimura Varieties and Automorphic Forms. ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)-Princeton University.
[73] John Tate. Les conjectures de Stark sur les fonctions L d'Artin en $s=0$, volume 47 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1984. Lecture notes edited by Dominique Bernardi and Norbert Schappacher.
[74] Yichao Tian and Liang Xiao. Tate cycles on some quaternionic Shimura varieties mod p. Duke Math. J., 168(9):1551-1639, 2019.
[75] Jacques Tilouine and Eric Urban. Integral period relations and congruences, 2018. https: //arxiv.org/abs/1811.11166.
[76] Gerard van der Geer. Hilbert modular surfaces, volume 16 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988.
[77] Akshay Venkatesh. Cohomology of arithmetic groups and periods of automorphic forms. Jpn. J. Math., 12(1):1-32, 2017.
[78] Akshay Venkatesh. Cohomology of arithmetic groups-Fields Medal lecture. In Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. I. Plenary lectures, pages 267-300. World Sci. Publ., Hackensack, NJ, 2018.
[79] Akshay Venkatesh. Derived Hecke algebra and cohomology of arithmetic groups. Forum Math. Pi, 7:e7, 119, 2019.
[80] Don Zagier. Modular forms associated to real quadratic fields. Invent. Math., 30(1):1-46, 1975.

