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ABSTRACT

We propose an action of a certain motivic cohomology group on the coherent coho-

mology of Hilbert modular varieties, extending conjectures of Venkatesh, Prasanna,

and Harris. The action is described in two ways: on cohomology modulo p and

over C, and we conjecture that they both lift to an action on cohomology with in-

tegral coefficients. The conjecture is supported by theoretical evidence based on

Stark’s conjecture on special values of Artin L-functions, and by numerical evidence

in base change cases.
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CHAPTER I

Introduction

The goal of this thesis is to explore the connection between two seemingly distant

mathematical theories: the theory of algebraic cycles and the Langlands program.

The guiding question we consider is:

Can “symmetries” in the Langlands program be explained from the point of view of

algebraic cycles?

We start the introduction by informally explaining what we mean by algebraic cycles,

the Langlands program, and why the two should be connected. We then explain

how the motivic action conjectures give a positive answer to the above question for a

particular type of “symmetry” — the multiple contributions of an automorphic form

to cohomology.

This naturally leads to the question:

Can the multiple contributions of a Hilbert modular form to coherent cohomology be

explained by the presence of a certain unit group?

which is answered by the conjectures presented in this thesis.

1
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1.1 Algebraic cycles and the Langlands program

The purpose of this section of the introduction is to give broader context for the

results of this thesis. For the sake of brevity, we do not give precise statements or

references to the literature.

1.1.1 The Hodge and Tate conjectures

The theory of algebraic cycles goes back to the Hodge conjecture (1930–40) in

complex algebraic geometry. In simple terms, it asserts that basic topological infor-

mation about a geometric object X (a complex algebraic variety) can be understood

in terms of its subsets Z cut out by polynomial equations (algebraic cycles). The

precise conjecture is stated in terms of Hodge theory:

(1.1.1) H2k(X,Q) ∩Hk,k(X)︸ ︷︷ ︸
Hodge cycles

is spanned by algebraic cycles Z ⊆ X.

Resolving this conjecture is one of the Millennium Prize Problems.

The Tate conjecture (1963) gives an arithmetic analogue — for a variety defined

over the rational numbers, it asserts that the Galois-invariants of its étale cohomology

are exhausted by algebraic cycles:

(1.1.2) H2k
ét (XQ,Q`(k))Gal(Q/Q)︸ ︷︷ ︸

Tate cycles

is spanned by algebraic cycles Z ⊆ X.

1.1.2 Maps between cohomology groups

Given a map between the cohomology of two algebraic varieties X1, X2:

(1.1.3) Hk1(X1,Q)→ Hk2(X2,Q),

we get a class in:

Hk1(X1,Q)⊗Hk2(X2,Q)∨ ∼= Hk1(X1,Q)⊗H2 dimX2−k2(X2,Q) Poincaré duality

⊆ Hk1+2 dimX2−k2(X1 ×X2,Q) Künneth’s formula.

https://www.claymath.org/millennium-problems/hodge-conjecture
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If 2k = k1 + 2 dimX2− k2 for some k (e.g. dimX1 = dimX2 = k1 = k2 = k) and the

resulting class lies in Hk,k(X1 ×X2), the Hodge conjecture (1.1.1) predicts that:

(1.1.4) Hk1(X1,Q)→ Hk2(X2,Q) is given by an algebraic cycle Z ⊆ X1 ×X2.

Similarly, if we have a map between étale cohomology groups:

(1.1.5) Hk1
ét (X1,Q,Q`(j1))→ Hk2

ét (X2,Q,Q`(j2)),

we get a class in:

Hk1
ét (X1,Q,Q`(j1))⊗Hk2

ét (X2,Q,Q`(j2))∨

∼= Hk1
ét (X1,Q,Q`(j1))⊗H2 dimX2−k2

ét (X2,Q,Q`(dimX2 − j2)) Poincaré duality

⊆ Hk1+2 dimX2−k2
ét ((X1 ×X2)Q,Q`(j1 + dimX2 − j2)) Künneth’s formula.

If k1 − k2 = 2(j1 − j2) (e.g. k1 = k2 and j1 = j2 = 0) and the map is Galois-

equivariant, then the Tate conjecture (1.1.2) predicts that:

(1.1.6)

Hk1
ét (X1,Q,Q`(j1))→ Hk2

ét (X2,Q,Q`(j2)) is given by an algebraic cycle Z ⊆ X1 ×X2.

1.1.3 The Langlands program

The Langlands program is a web of conjectures that connects the theory of au-

tomorphic forms and Galois representations. Perhaps its most famous instance is

Wiles’ modularity theorem, which says that each rational elliptic curve has an as-

sociated modular form f of weight two; indeed, this led to the proof of one of the

biggest open problems in number theory: Fermat’s Last Theorem. In fact, the el-

liptic curve associated with f may be realized using the Jacobian of an associated

Shimura curve X, and the resulting Galois representation is H1
ét(X,Q`)f , where the

subscript f denotes the f -isotypic component under the action of the Hecke algebra.
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Within the Langlands program, the functoriality principle predicts the existence

of maps between the cohomology of certain symmetric spaces. This leads to the

fundamental question:

Can the Langlands functoriality principle be realized by algebraic cycles?

For example, the Jacquet–Langlands functoriality for two d-dimensional quaternionic

Shimura varieties X1 and X2 gives an isomorphism

(1.1.7) Hd
ét(X1,Q,Q`)f

∼=→ Hd
ét(X2,Q,Q`)f .

As explained above (1.1.6), the Tate conjecture predicts that such a map is given by

an algebraic cycle on the product X1 × X2. Let us mention that Yichao Tian and

Liang Xiao [74] constructed the relevant algebraic cycles modulo p, while Atsushi

Ichino and Kartik Prasanna [37] constructed a Hodge class which gives rise to these

isomorphisms. According to the Hodge conjecture (1.1.4), such a Hodge class should

also come from an algebraic cycle (in characteristic 0).

In simple terms, the isomorphism (1.1.7) means that f occurs in the étale co-

homology of both X1 and X2. Therefore, the aforementioned results suggest that

the occurrence of f in the cohomology of multiple varieties is closely related to the

existence of an algebraic cycle on their product.

1.2 Motivic action conjectures

This naturally leads to the question of whether other aspects of the Langlands

program are related to algebraic cycles. For example, instead of considering the con-

tributions of an automorphic form f to the cohomology of two different varieties X1

and X2, we may consider a single variety X (or, more generally, a locally symmetric

space) and ask whether f makes multiple contributions to the cohomology of X.
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Can the multiple contributions of an automorphic form to cohomology be explained

from the point of view of algebraic cycles?

Akshay Venkatesh and his collaborators (Soren Galatius, Michael Harris, Kartik

Prasanna) proposed a series of conjectures which give an affirmative answer to this

question in various settings. The connection lies quite deep: they proposed that

a hidden degree-shifting action of a motivic cohomology group (an object from the

realm of algebraic cycles) explains all the contributions.

For singular cohomology of locally symmetric spaces, this action was realized in

two ways: over the complex numbers [60] and the p-adic numbers [79]; and conjec-

tured to come from the same rational action. It has a remarkable connection [22] with

Galois deformation theory and the recent modularity lifting theorem of Calegari–

Geraghty [9].

Perhaps a simpler example to consider comes from modular forms of weight one

which contribute to degrees 0 and 1 of coherent cohomology. In this case, an action

of a Stark unit group (which is an example of a motivic cohomology group) was

constructed modulo pn via derived Hecke operators and conjectured to lift to an

integral action [31].

For a general introduction to this subject, see [77, 78].

1.3 The results of the thesis

In this thesis, we tackle the above question for the coherent cohomology of the

Hodge bundle on Hilbert modular varieties. We give an analogous conjecture which

connects the Stark unit group to the contributions to coherent cohomology of a

Hilbert modular form of parallel weight one.



6

1.3.1 Formulation of the conjectures

To give a more precise statement, we first set up some notation. Let F be a

totally real extension of Q of degree d and let f be a parallel weight one, cuspidal,

normalized Hilbert modular eigenform for F , with Fourier coefficients in the ring of

integers OE of a number field E. One can identify f with a section of the Hodge

bundle ω on a Hilbert modular variety X:

f ∈ H0(X,ω)⊗OE.

More specifically, we consider an integral model X of the toroidal compactification

of the open Hilbert modular variety with good reduction away from primes dividing

the discriminant of F and the conductor of f . While this choice is not canonical, the

resulting cohomology groups are independent of the choice of X.

The action of the Hecke algebra extends to higher cohomology groups H i(X,ω)⊗

OE and we may consider the subspace on which the Hecke algebra acts with the

same eigenvalues as on f , which we denote by H i(X,ω)f . It follows from [72] that

(1.3.1) rankH i(X,ω)f =

(
d

i

)
(c.f. Corollary 2.3.5). There is a motivic cohomology group Uf associated with f ,

which is an OE-module of rank d = [F : Q] (Corollary 3.3.2); explicitly, it is the Stark

unit group [71] for the trace zero adjoint representation of f . We conjecture that there

is a degree-shifting action of its dual U∨f on the cohomology space H∗(X,ω)f which

makes H∗(X,ω)f a module of rank one over the exterior algebra
∧∗ U∨f , generated

by f ∈ H0(X,ω)f .

We can describe this action in two ways: modulo p and over C. Let p be a prime

of OE, n ≥ 1 be an integer, and ι : E ↪→ C be an embedding. We show that there is:
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(1) a map
d⊕
j=1

U pn

f,j → U∨f ⊗OE/pn

for some free OE/pn-modules U pn

f,j of rank one (Proposition 4.1.4), and define

an action of U pn

f,j on H∗(X,ω)f ⊗OE/pn by derived Hecke operators (Definition

4.3.1),

(2) an isomorphism
d⊕
j=1

UC
f,j

∼=→ U∨f ⊗ C

for some one-dimensional C-vector spaces UC
f,j (Proposition 5.2.2), and define

an action of UC
f,j on H∗(X,ω)f ⊗ C by partial complex conjugation zj 7→ zj

(Definition 5.2.4).

The following conjecture predicts that these actions come from a single “motivic”

action that is defined rationally or even integrally.

Conjecture 1.3.1 (Conjectures 4.4.1, 5.3.1). There is a graded action ? of the ex-

terior algebra
∧∗ U∨f on H∗(X,ω)f such that:

(1) the action of
∧∗ U∨f ⊗OE/pn is the same as that in ((1)) above, up to GLd(OE)

ambiguity,

(2) the action of
∧∗ U∨f ⊗ C is the same as that in ((2)) above, up to GLd(E)

ambiguity.

Moreover, H∗(X,ω)f is generated by f ∈ H0(X,ω)f over
∧∗ U∨f .

The conjectures will be stated precisely in the main body of the thesis.

Part (1) is a generalization of the main conjecture of Harris and Venkatesh [31,

Conjecture 3.1]. It should be seen as a first step towards establishing a p-adic conjec-

ture, similar to Venkatesh’s conjecture [79]. In fact, our original motivation to study
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the Stark unit group Uf for Hilbert modular forms was to generalize the conjecture

of Darmon–Lauder–Rotger [15] to elliptic curves over totally real fields. A p-adic

version of Conjecture 1.3.1 may explain the appearance of p-adic logarithms of Stark

units therein.

Part (2) is similar to the main conjecture of Prasanna and Venkatesh [60, Con-

jecture 1.2.1] but in the coherent (as opposed to singular) cohomology setting. We

discuss the precise relationship in Chapter VIII. As far as we know, it is new even

when F = Q. In the Hilbert case, it is also closely related to the study of period

invariants attached to Hilbert modular forms at the infinite places. Such period in-

variants had previously been defined by Shimura [68, 70], Harris [29, 28, 30], and

Ichino–Prasanna [38] in cases where the weight of f is at least two at some of the

infinite places. The parallel weight one case is different because the form does not

transfer to a quaternion algebra ramified at any infinite place, so the periods at

infinite places do not admit a simple interpretation as periods of a holomorphic dif-

ferential form on a Shimura curve, or even as ratios of periods of holomorphic forms

on quaternionic Shimura varieties. Instead, we give specific linear combinations of

the higher coherent cohomology classes which we expect to be rational in coherent

cohomology. The expressions involve logarithms of units which is natural because

the adjoint L-value is non-critical at s = 1 in this case, so one should expect the

periods to be of “Beilinson-type”.

Part (2) of the conjecture admits a natural generalization to partial weight one

Hilbert modular forms, which we discuss in Chapter VIII. In that case, however, the

motivic cohomology group in question does not admit an interpretation as a unit

group.

These conjectures lead to many interesting questions about potential generaliza-
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tions to other reductive groups which we are currently pursing elsewhere. We were

also recently made aware of the forthcoming work of Gyujin Oh on this topic.

Next, we give a more explicit versions of Conjecture 1.3.1 in the cases [F : Q] = 1

and [F : Q] = 2 and summarize our evidence for them. For simplicity, we assume

that the automorphic representation associated with f is not supercuspidal at p = 2

(this assumption avoids a potential factor of
√

2 and we expect it to be unnecessary;

see Remark 6.1.10).

1.3.2 The case [F : Q] = 1: modular curves.

When [F : Q] = 1, X is a modular curve and f is a classical modular form of

weight one. This is the situation considered by Harris–Venkatesh [31] and Conjec-

ture 1.3.1 (1) specializes to their conjecture. Conjecture 1.3.1 (2) is its archimedean

version and follows from Stark’s conjecture on special values of Artin L-functions.

Theorem 1.3.2 (Corollary 6.1.4). Let f be a modular form of weight one. If f

does not have CM or the Fourier coefficients of f are not rational, assume Stark’s

conjecture 3.2.2. Then Conjecture 1.3.1 (2) is true and has the following explicit

form: there is an action ? of
∧∗ U∨f ⊗E on H∗(X,ω)f such that given u∨f ∈ U∨f , the

action:

H0(X,ω)f
u∨f ?−→ H1(X,ω)f

is given by:

f 7→
ω∞f

log |uf |
,

where:

ω∞f = f(−z) y
dz ∧ dz
y2

∈ H1(XC, ω)f

and uf ∈ UL is a unit in the splitting field L of the adjoint Artin representation of f ,

associated with u∨f .
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In fact, the rationality of
ω∞f

log |uf |
is equivalent to Stark’s conjecture for the trace 0

adjoint representation of f .

1.3.3 The case [F : Q] = 2: Hilbert modular surfaces.

When [F : Q] = 2, X is a Hilbert modular surface and f is a Hilbert modular

form in two variables z1, z2. We give an explication of Conjecture 1.3.1 (2) in this

case and summarize our evidence for it.

Corollary 2.3.5 gives an explicit basis for H∗(X,ω)f ⊗ C:

f ∈ H0(X,ω)f

ωσ1
f , ω

σ2
f ∈ H

1(X,ω)f ⊗ C

ωσ1,σ2

f ∈ H2(X,ω)f ⊗ C,

where we choose a fundamental unit ε such that ε1 < 0, ε2 > 0 and let:

ωσ1
f = f(ε1z1, ε2z2)y1

dz1 ∧ dz1

y2
1

,(1.3.2)

ωσ2
f = f(ε2z1, ε1z2)y2

dz2 ∧ dz2

y2
2

,(1.3.3)

ωσ1,σ2

f = f(−z1,−z2)y1y2
dz1 ∧ dz1

y2
1

dz2 ∧ dz2

y2
2

.(1.3.4)

Conjecture 1.3.1 (2) gives explicit linear combinations of these cohomology classes

which should be E-rational in cohomology. Specifically, there are four units

u11, u12, u21, u22 ∈ UL ⊗ E

in the splitting field L of the adjoint Artin representation of f , and we can form the

Stark regulator matrix:

Rf =

log |τ(u11)| log |τ(u12)|

log |τ(u21)| log |τ(u22)|

 ,
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where τ : L ↪→ C is a complex embedding of L. We show that there is an explicit

basis u∨1 , u
∨
2 of U∨f ⊗ E such that the action of u∨1 and u∨2 is explicitly given by:

u∨1 ? f =
log |τ(u22)| · ωσ1

f − log |τ(u21)| · ωσ2
f

detRf

∈ H1(X,ω)f ⊗ C,(1.3.5)

u∨2 ? f =
− log |τ(u12)| · ωσ1

f + log |τ(u11)| · ωσ2
f

detRf

∈ H1(X,ω)f ⊗ C(1.3.6)

and the action of u∨1 ∧ u∨2 is given by:

(u∨1 ∧ u∨2 ) ? f =
ωσ1,σ2

f

detRf

∈ H2(X,ω)f ⊗ C.(1.3.7)

We then have the following explicit version of Conjecture 1.3.1 (2) for [F : Q] = 2.

Conjecture 1.3.3 (Conjecture 5.3.2).

(a) A basis of H1(X,ω)f is given by:

log |τ(u22)| · ωσ1
f − log |τ(u21)| · ωσ2

f

detRf

,

− log |τ(u12)| · ωσ1
f + log |τ(u11)| · ωσ2

f

detRf

.

(b) A basis of H2(X,ω)f is given by:

ωσ1,σ2

f

detRf

.

A previous version of the manuscript incorrectly assumed that the matrix of the

isomorphism U∨f ⊗ C ∼=
d⊕
j=1

UC
f,j is diagonal in certain natural bases. This led to

a different rationality statement, namely that some multiples of ωσ1
f and ωσ2

f are

rational. We would like to thank the anonymous referee for the previous version and

Gyujin Oh for pointing out that this claim may be false in general.

1.3.4 Theoretical evidence

We next summarize our evidence for this conjecture. The theoretical evidence in

the case [F : Q] = 2 is summarized in the following theorem.
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Theorem 1.3.4 (Corollary 6.2.6, Corollary 6.1.3). If the Fourier coefficients of f

are not rational, assume Stark’s conjecture 3.2.2.

(a) The determinant of the basis u∨1 ? f , u∨2 ? f is E-rational, i.e.

(u∨1 ? f) ∧ (u∨2 ? f) ∈ ∧2H1(X,ω)f ⊆ ∧2H1(X,ω)f ⊗ C.

(b) The cohomology class (u∨1 ∧ u∨2 ) ? f is E-rational, i.e. belongs to H2(X,ω)f .

In fact, the rationality of (u∨1 ∧ u∨2 ) ? f is equivalent to Stark’s conjecture for the

trace 0 adjoint representation of f . Therefore, we may think of Conjecture 1.3.3 as a

refinement of Stark’s conjecture for this representation. We thank Samit Dasgupta

for suggesting this phrasing.

See Chapter VI for generalizations of these results and further evidence in the

case [F : Q] > 2.

1.3.5 Numerical evidence

The next goal of the thesis is to verify the rationality of the classes

(1.3.8) u∨1 ? f, u
∨
2 ? f ∈ H1(X,ω)f ⊗ C

numerically. These cohomology classes are a linear combination of ωσ1
f , ωσ2

f , which

are defined in equations (1.3.2), (1.3.3) as Dolbeault classes. We identify them with

sheaf cohomology classes via the Dolbeault and the GAGA theorems. To check that

they are E-rational is to show that the resulting sheaf cohomology classes come from

base change of cohomology classes in H1(X,ω)f . The translation between Dolbeault

and sheaf cohomology is not explicit enough to yield a satisfactory criterion for

rationality. Worse yet, there seems to be no natural automorphic criterion to verify

rationality. Indeed, the integral representations of Rankin–Selberg or triple product

L-functions for Hilbert modular forms only involve cohomology classes ωJf where J
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is the set of places where f is dominant (see [28] for details). Since parallel weight

one forms are never dominant at any place, the cohomology classes we are interested

in do not feature in these integral representations.

Instead, we consider an embedded modular curve ι : C ↪→ X and check compu-

tationally in some cases that the restriction of u∨i ? f for i = 1, 2 to C is rational,

i.e.

(1.3.9) ι∗ (u∨i ? f) ∈ H1(C, ι∗ω)⊗ E.

The drawback of this approach is that this restriction is non-zero only if the Hilbert

modular form f is the base change of a modular form over Q (see, for example,

Proposition 7.4.3). Let us hence assume that f is the base change of a weight one

modular form f0. Then Conjecture 1.3.3 (a) can be restated in the simpler form

(Conjecture 7.2.2): the classes

ωσ1
f + ωσ2

f

log |uf0|
∈ H1(X,ω)f ⊗ C,(1.3.10)

ωσ1
f − ω

σ2
f

log |uFf0
|
∈ H1(X,ω)f ⊗ C(1.3.11)

belong to the rational structure H1(X,ω)f , where uf0 is the unit associated with the

adjoint representation of f0 and uFf0
is a unit associated with a twist of the adjoint

representation of f0. Finally, we check that this conjecture is equivalent to the single

rationality statement:

(1.3.12)
ι∗(ωσ1

f )

log |uf0|
∈ H1(C, ι∗ω)⊗ E ⊆ H1(C, ι∗ω)⊗ C

as long as ι∗(ωσ1
f ) 6= 0 (c.f. Conjecture 7.4.2, Proposition 7.4.5).

We develop an algorithm to compute the trace of this cohomology class, i.e. an

integral on the modular curve C(C) (see Conjecture 7.4.2). We use results of Nel-

son [56] to derive an expression for this integral (Theorem 7.5.4) which may be of
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independent interest. To use it, we give explicit formulas for the q-expansion of f at

other cusps when the level of f is square-free (Theorem 7.6.2), generalizing results

of Asai [2]. Finally, we compute the integral numerically up to at least 15 digits of

accuracy to give evidence for equation (1.3.12) in several cases (Tables 7.7.1, 7.7.2).

1.4 Organization

The manuscript is organized as follows.

• Chapter II defines Hilbert modular forms (classically and adelically) and discusses

their contributions to coherent cohomology.

• Chapter III discusses Stark’s conjecture, introduces the unit group Uf , computes

its rank, and gives a relation to a motivic cohomology group.

• Chapter IV introduces the derived Hecke action and the generalization of the

conjecture of Harris and Venkatesh [31] to the Hilbert modular case (Conjec-

ture 1.3.1 (1)).

• Chapter V introduces partial complex conjugation operators on cohomology and

the archimedean conjectures (Conjectures 1.3.1(2) and 1.3.3).

• Chapter VI discusses how the results of Stark and Tate give evidence for the

archimedean conjecture, proving Theorems 1.3.2 and 1.3.4.

• Chapter VII discusses base change cases, proves Theorems 7.5.4 and 7.6.2, and

provides numerical evidence for the archimedean conjecture.

• Chapter VIII explains how Conjecture 1.3.1 (2) fits in the framework of Prasanna–

Venkatesh [60] and gives a version of this conjecture for partial weight one

Hilbert modular forms.
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Chapters IV and V are independent of one another and hence may be read in

any order. The reader who wants to understand the full statements of the two

conjectures as fast as possible may just skim Section 3.3 and proceed directly to

these two sections.



CHAPTER II

Hilbert Modular Forms

The goal of this chapter is to introduce both Hilbert modular forms, explain their

interpretation as sections of automorphic sheaves on Hilbert modular varieties, and

compute the higher cohomology of these sheaves.

2.1 Classical Hilbert modular forms

We refer to [26, 76, 21] for surveys of classical Hilbert modular forms. Let F be

a totally real field of degree d. For simplicity, we assume that F has narrow class

number one. Let D be the different ideal of the field F .

We let {σ1, . . . , σd} be the embeddings F ↪→ R. We consider the group GL(OF ⊕

D−1)+ defined by:
a b

c d

 ∈ GL2(F )

∣∣∣∣∣∣∣ a ∈ OF , b ∈ D−1, c ∈ D, d ∈ OF , ad− bc ∈ O×,+F


and let Γ be a congruence subgroup. Each embedding σj : F → R gives rise to an

embedding

σj : GL(OF ⊕D−1)+ ↪→ GL2(R)+.

For x ∈ F , we will write xi = σi(x) and similarly γi = σi(γ). Altogether, this gives

16
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an action of Γ on Hd by:

γ(z1, . . . , zd) = (γ1z1, . . . , γdzd).

Definition 2.1.1. The open Hilbert modular surface Y (Γ) for the congruence sub-

group Γ is the quotient Γ\Hd. For Γ = Γ1(N) and Γ = Γ0(N), we write Y1(N) and

Y0(N), respectively.

Given a matrix γ∞ =

a b

c d

 ∈ GL2(R)+, we define

(2.1.1) j(γ∞, z) = (cz + d) det γ−1/2
∞ .

Moreover, for a vector k = (k1, . . . , kd), we define:

(2.1.2) jk(γ, z) =
d∏
i=1

j(γi, zi)
ki .

Finally, given a function f : Hd → C and γ ∈ GL(OF ⊕D−1)+, we put

j|kγ(z) = jk(γ, z)−1f(γz).

Definition 2.1.2. We fix a weight k and a congruence subgroup Γ.

(1) Suppose that a holomorphic function f : Hd → C satisfies f |kγ = f for all γ ∈ Γ.

Consider the module

M = MΓ =

a ∈ F
∣∣∣∣∣∣∣
1 a

0 1

 ∈ Γ

 ⊆ F

and note that f is invariant by these matrices, and hence possesses a q-expansion:

f(z) =
∑
ν∈M∨

aνe
2πiTr(νz),

where M∨ is the dual of M with respect to Tr and we use the notation

Tr(νz) = ν1z1 + · · · νdzd.
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(2) A holomorphic Hilbert modular form of weight k and level Γ is a holomorphic

function f : Hd → C such that f |kγ = f for all γ ∈ Γ, which is holomorphic

at the cusps, i.e. if g = g|kµ for some µ ∈ GL2(F )+, then the q-expansion of g

satisfies aν = 0 unless ν = 0 or ν � 0.

Note that when Γ = GL(OF ⊕D−1), then M ∼= D−1 and the q-expansion is a sum

over M∨ ∼= OF .

Remark 2.1.3. It is also possible to work with GL2(OF )+ instead of GL(OF⊕D−1),

which only leads to a different normalization. For example, M ∼= OF and M∨ ∼= D−1.

More generally, one can work with GL(OF ⊕ A) for any ideal A of F , as discussed

in [26].

Theorem 2.1.4 (Koecher’s principle, [26, Theorem 3.3]). Let f(z) =
∑

ν∈M∨
aνe

2πiTr(νz)

be a modular form of weight k and level Γ. If d > 1, then aν 6= 0 implies ν � 0 or

ν = 0. In particular, if f is holomorphic on Hd, then it is automatically holomorphic

at the cusps.

Definition 2.1.5. A Hilbert modular form f with respect to Γ is a cusp form if the

constant a0 in its q-expansion at a cusp corresponding to µ ∈ GL2(F )+ is 0.

2.2 Hilbert modular forms as sections of line bundles

In this section, we reinterpret Hilbert modular forms as sections of line bundles on

the Hilbert modular variety, following [28]. We use the adelic language and translate

this to the classical language at the end of the chapter. For a full adelic treatment

of Hilbert modular forms, see Garrett’s book [23].

Let G = RF/Q GL2,F be the Weil restriction of scalars of GL2,F , and ZG be its

center.
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Definition 2.2.1. An (automorphic) Hilbert modular form of weight (k, r) for F ,

where k = (k1, . . . , kd) ∈ N>0 and r ∈ Z satisfies ki ≡ r (2) for 1 ≤ i ≤ d, is an

automorphic form ϕ on G(Q)\G(A) such that

(1) ϕ(z∞g) = NF/Q(z∞)rϕ(g) for g ∈ G(A), z∞ ∈ ZG(R),

(2) ϕ(grj(θ)) = eikjθ · ϕ(g) for g ∈ G(A) and rj(θ) the rotation by θ matrix in the

jth coordinate,

(3) R(p−)ϕ = 0, where p− is the antiholomorphic tangent space to Hd at (i, . . . , i)

and R(·) is the right regular action on functions of the universal enveloping

algebra of gC.

In sections to follow, we will occasionally drop the r from the notation and just

write k for the weight for simplicity. Note that each index j corresponds to an infinite

place σj of F .

We consider the Shimura variety Y associated with G, which is the Hilbert modular

variety. It is defined over Q and its C-points are

Y (C) = lim←−
Kf

G(Q)\G(A)/K+
∞Kf

where Kf runs over the set of open compact subgroups of G(Afin), and K+
∞ = SO(2)d.

We often fix the level Kf and consider

Y (C) = G(Q)\G(A)/K+
∞Kf

instead of the above tower of varieties. In the introduction, we denoted the integral

model of its toroidal compactification (with fixed level structure) by X.

Modular forms of weight (k, r) with kj ≥ 2 are cohomological (c.f. [46]), i.e. they

appear in the de Rham cohomology of a local system on the Hilbert modular variety.
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One may then define period invariants using rational de Rham cohomology, making

them much easier to study (see, for example, [75]).

However, if at least one weight kj = 1, they seize to be cohomological and only

appear in the cohomology of line bundles on the Shimura variety Y . Michael Harris

developed this theory in more generality in [27] and specialized to the case of Hilbert

modular forms in [28]. We mainly follow the second reference here.

Consider the representation

ZG(R) ·K+
∞ → C,

z∞(r1(θ), . . . , rd(θ)) 7→ NF/Q(z∞)−r
d∏
j=1

e−ikjθ,

which naturally extends to any conjugate P of B =


∗ ∗

0 ∗


 in G(C). We hence

have a 1-dimensional representations

ρk,r : P → Lk,r.

Let M be the homogeneous space G/B with the natural Q-rational structure. The

G(R)-orbit of the point of G/B corresponding to P is isomorphic to (C \ R)d, with

P mapping to (i, . . . , i).

We define the homogeneous line bundle Lk,r as

(g, v) G×ρk,r Lk,r := (G× Lk,r)/ ∼

g G/P ∼= G/B = M

where ∼ is given by (gp, v) ∼ (g, ρk,r(p)v). Any homogeneous section of this line

bundle is a map

ϕ : M → Lk,r
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such that

(z∞r(θ)g, ϕ(z∞r(θ)g)) =

(
g,NF/Q(z∞)−r

d∏
j=1

e−ikjθϕ(z∞r(θ)g)

)

= (g, ϕ(g))

which shows that ϕ satisfies conditions (1) and (2) of the definition of a Hilbert

modular forms of weight (k, r), but is valued in Lk,r instead of C.

Next, we descend the line bundle Lk,r on M to a line bundle

Ek,r = G(Q)+\Lk,r|G+ ×G(Afin)/Kf

on Y (C). Note that the system lim←−
Kf

Ek,r gives a vector bundle on the entire Shimura

tower. However, we usually focus on one fixed level structure Kf .

Remark 2.2.2. We identify here the two notions of line bundle on a manifold: a

vector bundle of rank 1 and an invertible sheaf.

As discussed above, the global section of this line bundle are Hilbert modular

forms of weight (k, r). We summarize this in the following theorem.

Theorem 2.2.3 ([28, (1.2.5)]). Let A(k, r) be the space of Hilbert modular forms of

weight (k, r) for F . Then there is an isomorphism:

Liftk,r : H0(Y (C), Ek,r) ∼= A(k, r)

which depends only on the choice of trivialization trivialization

(2.2.1) Trivk,r : Lk,r
∼=→ C.

Proof. This follows from the above discussion. Indeed, H0(Y (C), Ek,r) is a priori iden-

tified Lk,r-valued Hilbert modular forms, and Trivk,r gives the describes isomorphism

with A(k, r).
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We describe our choice of Trivk,r next, but refer to [28, Section 1.3] for details.

Remark 2.2.4. Our choice of trivialization differs from Harris’ by a power of (2πi).

Specifically, we choose Trivk,r so that Liftk,r identifies rational sections of Ek,r with

normalized Hilbert modular eigenform. In particular, this means that the analogous

statement to [28, (1.6.4)] is simply F arith = F norm.

Recall that we chose a parabolic P above which maps to (i, . . . , i) under the

identification G/B ∼= (C\R)d, and we have the representation

ρk,r : P → Lk,r.

Recall also that we have a line bundle Lk,r on G/B ∼= M , and P defines a point

hP ∈ M . Then Lk,r is trivialized in a neighborhood U ⊆ M of hP and we let s be

a rational section (for the rational structure on M) which trivializes it; finally, let

ek,r = s(hP ). We finally choose:

(2.2.2) Triv(ek,r) = (2πi)
1
2

(dr+
d∑
j=1

kj)

.

Let us elaborate on what this means. We first note that

Ω1
Y
∼=

d⊕
j=1

E2j ,0

where 2j = (0, . . . , 0, 2, 0 . . . , 0) with the 2 at the jth place. In particular,

Ωd
Y
∼=

d∧
Ω1
Y
∼= E2,0

where 2 = (2, . . . , 2). In fact, there is a natural decomposition

Ω1
Y =

d⊕
j=1

Ω1
j

and ΩY,j
∼= E2j ,0

.
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Note that dzj is a KG(R) ·K+
∞ eigenvector with eigenvalue corresponding to the

sheaf L2j ,0. We have chosen Trivk,r in equation (2.2.2) so that:

Liftk,r : H0(Y (C), Ek,r)→ A(k, r)

dzj 7→ (2πi).

Theorem 2.2.5 (Harris). The G(Afin)-equivariant bundle Ek,r is rational over F (k) =

F Γ(k), where Γ(k) = {σ ∈ GQ | kσ = k}. Moreover, if f is a normalized Hilbert mod-

ular eigenform with coefficients in a number field E, then

Lift−1
k,r(f) ∈ H0(Y, Ek,r)⊗ E.

Proof. The first part is [28, Corollary 1.2.9]. The second part follows from the q-

expansion principle as stated in [28, Proposition 1.3.3] and recalling that our choice

of trivialization of the line bundle 2.2.2 differs from Harris’ by a power of (2πi).

Throughout the rest of the thesis, we identify such f with the associated coherent

cohomology class with this normalization.

2.3 Partial complex conjugation and higher sheaf cohomology

We now compute the higher cohomology of the automorphic line bundles Ek,r. In

order to do that, we discuss Hilbert modular forms that are not holomorphic, which

will come from partial complex conjugation [68, 28].

We define for a subset I ⊆ ΣF = {σ1, . . . , σd}:

HI
π = {ϕ ∈ Hπ | R(p+

j )ϕ = 0 for σj ∈ I, R(p−j )ϕ = 0 for σj 6∈ I}.

Equivalently, if we let

ϕI(g) = ϕ(gJ I),
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where J I = (J I1 , . . . , J
I
d ) ∈ G(R) is given by

J Ij =



−1 0

0 1

 if j ∈ I,

1 0

0 1

 if j 6∈ I,

then

HI
π = (Hhol

π )I = {ϕI | ϕ ∈ Hhol
π }.

Remark 2.3.1. Thinking about these as functions on Hd, this roughly corresponds

to applying the automorphism zj 7→ −zj at all places σj ∈ I. We discuss the precise

translation of this and the rest of the results of this section to classical language at

the end of this chapter — Section 2.4.

We next discuss which cohomology groups these non-holomorphic subspaces of

Hπ live in. An element ϕ ∈ HI
π may be regarded as global C∞-section of the line

bundle Ek(I)′,r, where

k(I)′j =


kj if j 6∈ I,

−kj if j ∈ I.

To express it as a holomorphic section, note that we have an isomorphism:

H0(Y (C)an, (Ek(I)′,r)
∞)→ Γ

(
Y (C)an, (Ek(I)′,r)

∞ ⊗
∧
j∈I

(Ω1
Y,j)
∞ ∧

∧
j∈I

(Ω1
Y,j)

)
,

ϕ 7→ ϕ ·
∧
j∈I

dzj ∧ dzj,

and

(Ek(I)′,r)
∞ ⊗

∧
j∈I

(Ω1
Y,j)
∞ ∼= (Ek(I)′,r)

∞ ⊗

(∧
j∈I

E2j ,0

)∞
∼= (Ek(I),r)

∞,
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where

k(I)j =


kj if j 6∈ I,

2− kj if j ∈ I.

We hence get a map:

HI
π
∼= H0(Y (C)an, (Ek(I)′,r)

∞)→ H0(Y (C)an,Ω
0,|I|
Y ⊗ Ek(I),r)

ϕ 7→ ωϕ = ϕ ·
∧
j∈I

dzj ∧ dzj

where Ω
0,|I|
Y denotes the sheaf of (0, |I|)-forms on Y (C)an. Finally, we note that

∂ωϕ = ∂

(
ϕ ·
∧
j∈I

dzj ∧ dzj

)

= (∂ϕ) ∧
∧
j∈I

dzj ∧ dzj ± ϕ · ∂
∧
j∈I

dzj ∧ dzj︸ ︷︷ ︸
=0

=

(∑
j∈I

∂ϕ

∂zj
dzj

)
∧

(∧
j∈I

dzj ∧ dzj

)
ϕ holomorphic at j 6∈ I

= 0.

Thus ωϕ is a closed (0, |I|)-form and defines a Dolbeault cohomology class

ωϕ ∈ H0,|I|(Y (C), Ek(I),r) ∼= H |I|(Y (C), Ek(I),r)

with the last isomorphism given by Dolbeault Theorem. We identify the last group

with the Zariski cohomology of a sheaf on YC via the GAGA Theorem.

The above discussion is summarized in the following lemma.

Lemma 2.3.2 ([28, Lemma 1.4.3]). For any subset I ⊆ Σ∞, there is a natural

embedding

HI
π ↪→ H

|I|
(YC, Ek(I),r)

of G(Af )-modules.
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Recall that Y is an open Hilbert modular variety. We let X be a smooth toroidal

compactification of Y defined over Q. The automorphic sheaf Ek,r over Y can be

extended to X in two ways, denoted Ecan
k,r and E sub

k,r . The cohomology of these sheaves

is independent of the choice of toroidal compactification. Following Harris [28], we

will be interested in the space:

(2.3.1) Hq(X, Ek,r) = im(Hq(X, E sub
k,r )→ Hq(X, Ecan

k,r ))

which is a vector space over F (k) = F Γ(k) where Γ(k) = {σ ∈ GQ | kσ = k}.

As above, we write π for the automorphic representation generated by ϕ. Let πf

for its finite component, which is a representation of G(Af ). Since G(Af ) acts on

Hq(X, Ek,r), we may consider its πf -isotypic component:

(2.3.2) Hq(X, Ek,r)πf = HomG(Af )(πf , H
q(X, Ek,r)).

We compute the dimensions of these spaces and give an explicit basis over the com-

plex numbers.

Theorem 2.3.3 (Harris, Su).

(1) The cohomology classes ωJϕ extend to toroidal compactifications:

ωJϕ ∈ H |J |(XC, Ek(J),r)πf .

(2) Let J ⊆ Σ∞ be any subset. Then a basis of H |J |(XC, Ek(J),r)πf is given by

{ωIϕ | |I| = |J | and k(I) = k(J)}.

In particular, if we write J1 = {σj ∈ Σ∞ | kj = 1}, then:

dimH |J |(XC, Ek(J),r)f =

(
|J1|
|J ∩ J1|

)
.
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Proof. For kj ≥ 2, see [28, Lemmas 1.4.3, 2.4.5]. When kj = 1 for some j, this

follows from the main theorem of [72] and an analogous computation of (P, K)-

cohomology.

Definition 2.3.4. The partial complex conjugation at J of a Hilbert modular form

ϕ of weight (k, r) is:

ωJϕ ∈ H |J |(XC, Ek(J),r)πf .

We are particularly interested in the case (k, r) = (1, 1). In this case, E1,1 is the

Hodge bundle ω, which will be used in the next chapter.

Corollary 2.3.5. Suppose (k, r) = (1, 1). Then a basis of Hj(XC, E1,1)πf is given by

{ωJϕ | J ⊆ Σ∞ and |J | = j}.

In particular,

dimHj(XC, E1,1)πf =

(
d

j

)
.

It is also important to note when the cohomology spaces are one-dimensional.

Corollary 2.3.6. For any J ⊆ Σ∞, dimH |J |(XC, Ek(J),r)πf > 1 if and only if both J

and Σ∞ \ J contain a place at which ϕ has weight one.

Proof. For the ‘if’ implication, take σ ∈ J ∩ J1 and σ′ ∈ (Σ∞ \ J) ∩ J1, and define

J ′ = (J \ {σ}) ∪ {σ′}.

Then |J ′| = |J | and k(J ′) = k(J), so ωJf , ω
J ′

f ∈ H |J |(XC, Ek(J),r)f are linearly inde-

pendent.

Conversely, suppose dimH |J |(XC, Ek(J),r)πf > 1. Then there exists J ′ 6= J such

that ωJ
′

f ∈ H |J |(XC, Ek(J),r)πf , i.e. |J ′| = |J | and (J ∪ J ′) \ (J ∩ J ′) ⊆ J1. Then

σ ∈ J \ J ′ belongs to J ∩ J1 and σ′ ∈ J ′ \ J belongs to (Σ∞ \ J) ∩ J1.
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2.4 Translation to classical language

We discuss how to translate the definitions and results of the above section to

classical language.

2.4.1 Classical and automorphic Hilbert modular forms

The translation of the automorphic Definition 2.2.1 of a Hilbert modular form to

the classical definition is standard (see, for example, [23]). We recall it briefly here.

Let O = OF be the ring of integers of F and D be the different ideal of F . For

each finite v, let Ov be the ring of integers of Fv, $v be the uniformizer, and qv be

the cardinality of Ov/($v). Let D = DF be the discriminant of F and dv be the

non-negative integer such that

D⊗O Ov = δv = $−dvv .

Note that

NF/QD =
∏
v finite

qdvv .

Let h = hF be the narrow class number of F and let {ti}hi=1 be elements of AF

whose infinity part is 1 and that form a complete set of representatives of the narrow

class group. Then

GL2(AF ) =
h∐
i=1

GL2(F )

t−1
i

1


︸ ︷︷ ︸

xi

GL2(F∞)+K(N)

where

K(N) =
∏
v finite

Kv(N),

Kv(N) = d(π−dvv )−1


a b

c d

 ∈ GL2(Ov)

∣∣∣∣∣∣∣ c ∈ NvOFv

 d(π−dvv ).
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Define

Γti0 (N) =


 a t−1

i b

tic d


∣∣∣∣∣∣∣ a ∈ O, b ∈ D−1, c ∈ ND, d ∈ O

 .

Definition 2.4.1. A (classical) Hilbert modular form of weight k, where

k = (k1, . . . , kd) ∈ Zn satisfies kj ≡ r mod 2 for all j, level N, character ω such that

ω(ξ) = sgn(ξ)r for ξ ≡ 1 mod× N

is a holomorphic function f : Hd → C such that

(f |kγ)(z) = ω(d)f(z) for all γ =

a b

c d

 ∈ Γti0 (N).

Given a collection of h classical modular forms f = (f1, . . . , fh), we get an auto-

morphic Hilbert modular form ϕf of weight (k, r) for an appropriate r by defining

(2.4.1) ϕf (γxig∞k0) = (fi|kg∞)(i)ωfin(d)

where γ =

a b

c d

 ∈ GL2(F ), g∞ ∈ GL2(F∞)+, k0 ∈ K(N), i = (i, . . . , i), and ωfin

is the finite part of ω = ωf .

When F has narrow class number 1, h = 1, so each classical Hilbert modular form

corresponds to one automorphic Hilbert modular form. We assume this from now

on for simplicity.

2.4.2 Automorphic line bundles classically

We defined a sheaf Ek,r over Y (C) such that

H0(Y (C), Ek,r) ∼= A(k, r).

We have an isomorphism:
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Ek,r Fk,r = Γ\(Hd × C) (z, τ) γ(z, τ) = (γτ , jk(γ, z)τ)

Y (C) Γ\Hd z

g = γg∞k0 g∞(i)

∼=

∼=

for Γ = Γ1(N), which induces the above correspondence between classical and auto-

morphic Hilbert modular forms. Once again, Y (C) is the Shimura variety with fixed

level structure (as opposed to the projective system of varieties).

Remark 2.4.2. If F has narrow class number h, then

Y (C) ∼=
h∐
i=1

Γi\Hd

and the statements above still hold. We restrict our attention to h = 1 purely for

simplicity of notation.

2.4.3 Partial complex conjugation operators classically

We keep the simplifying assumption that h = 1. Recall the natural map

H0(Y, Ek,r)→ H0(Y (C), (Ek(I)′,r)
∞)

ϕ 7→ (g 7→ ϕ(g · J I))

for

J Ij =



−1 0

0 1

 if j ∈ I,

1 0

0 1

 if j 6∈ I.

We want to work out what this map corresponds to after translating to Γ\Hd.
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For any I, we assume that there exists a fundamental unit εI such that
σ(εI) > 0 if σ 6∈ I,

σ(εI) < 0 if σ ∈ I.

When d = 2, this amounts to the standard assumption (e.g., [58]) that there is a

fundamental unit in OF of negative norm. One can easily check that the classical

description of the partial complex conjugation operator is independent of the choice

of unit εI .

Then define

H0(Γ\Hd,Fk,r)→ H0(Γ\Hd,F Ik,r)

f(z) 7→ f(zI)

where

(zI)j =


σj(εI)zj j 6∈ I,

σj(εI)zj j ∈ I.

and F Ik,r is the C∞ line bundle given by

F Ik,r = Γ\(Hd × C) γ(z, τ) = (γz, jk(γ, z
I)τ),

Γ\Hd.

The next lemma will allow us to change the automorphic factor jk(γ, z
I) to one

just involving z.

Lemma 2.4.3. The line bundle

L = Γ\(Hd × C), γ(z, τ) = (γz, |cz + d|2τ)

is trivialized as follows:
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(z, τ) (z, Im(z)τ)

Hd × C Hd × C

L = Γ\(Hd × C) (Γ\Hd)× C

Γ\Hd Γ\Hd=

where we write:

|cz + d|2 =
d∏
j=1

|cjzj + dj|2,

Im(z) =
d∏
j=1

Im(zj).

Proof. We just need to check that

Im(γz) = |cz + d|−2Im(z).

Both sides are products over infinite places, so this follows from the modular curve

case.

Corollary 2.4.4. There is an isomorphism

(z, τ) (z, Im(z)kIτ)

F Ik,r Fk(I)′,r

Γ\Hd Γ\Hd

∼=

=

where

(kI)j =


kj j ∈ I,

0 j 6∈ I

and we recall that:

k(I)′j =


kj if j 6∈ I,

−kj if j ∈ I.
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Therefore, we have an isomorphism:

H0(Γ\Hd,Fk,r)→ H0(Γ\Hd,Fk(I)′,r)

f(z) 7→ Im(z)kI · f(zI).

We let f I(z) = Im(z)kI · f(zI) so that the above map may be written f 7→ f I .

Proposition 2.4.5. The diagram

ϕ ϕI

H0(Y, Ek,r) H0(Y, (Ek(I)′,r)
∞)

H0(Γ\Hd,Fk,r) H0(Γ\Hd,Fk(I)′,r)

f f I

∼= ∼=

is commutative.

Proof. We need to check that for γ =

a b

c d

 ∈ GL2(F ), g∞ ∈ GL2(F∞)+,

k0 ∈ K(N),

ϕI(γg∞k0) = (f I |kg∞)(i)ωfin(d).

By definition,

ϕI(γg∞k0) = ϕ(γg∞k0J
I)

and we note that

γg∞k0J
I = γg∞J

Ik0 = (γE−1
I )((EI)∞g∞J

I)((EI)fink0)
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where EI =

εI
1

 ∈ GL2(F ), and hence

γE−1
I =

∗ ∗
∗ d

 ∈ GL2(F )

(EI)∞g∞J
I ∈ GL2(F∞)+

(EI)fink0 ∈ K(N).

Therefore,

ϕI(γg∞k0) = ϕ((γE−1
I )((EI)∞g∞J

I)((EI)fink0))

= (f |k(EI)∞g∞J I)(i)ωfin(d)

= jk((EI)∞g∞J
I , i)−1f((EI)∞g∞J

Ii)ωfin(d).

Finally, if we write τ = g∞i, then

(EI)∞g∞J
Ii = zI

in the notation above. Moreover, if (g∞)j =

aj bj

cj dj

, then

((EI)∞g∞J
I)j =



−εjaj εjbj

−cj dj

 j ∈ I,

εjaj εjbj

cj dj

 j 6∈ I,

and hence

jk((EI)∞g∞J
I , i) =

∏
j∈I

(−cji+ dj)
kj det((g∞)j)

−kj/2 · (−εj)·

·
∏
j 6∈I

(cji+ dj)
kj det((g∞)j)

−kj/2 · εj.
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Thus this shows that

ϕI(γg∞k0) = Im(z)kI · f(zI) = f I(z),

completing the proof.

We finally want to translate Lemma 2.3.2 to the classical setting. This is very

similar to the above discussion. Note that under the isomorphism

Ω1
M
∼=

d⊕
j=1

Ωj,

we have elements [
dzj ∧ dzj

y2
j

]
∈ H0(Γ\H,Ωj ⊗ Ωj).

We also have

[f I(z)] ∈ H0(Γ\H,Fk(I)′,r).

We can hence consider the cohomology class:

(2.4.2) ηIf =

[
f I(z) ·

∧
j∈I

dzj ∧ dzj
y2
j

]
∈ H0

(
Γ\H, Fk(I)′,r ⊗

∧
j∈I

Ωj ⊗ Ωj

)
.

Since

(2.4.3) Fk(I)′,r ⊗
∧
j∈I

Ωj
∼= Fk(I),r

by definition of k(I), the image of ηIf under the resulting isomorphism gives

ωIf ∈ H0

(
Γ\H, Fk(I),r ⊗

∧
j∈I

Ωj

)
⊆ H0,|I|(Γ\H,Fk(I),r) = H |I|(Γ\H,Fk(I),r).

The isomorphism in equation (2.4.3) is sends dzj 7→ (2πi) because of our choice of

trivialization (2.2.2). Therefore, the image ωIf of ηIf is explicitly given by:

(2.4.4) ωIf = (2πi)|I|f I(z)
∧
j∈I

dzj
y2
j

∈ H |I|(XC,Fk(I),r).
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One can verify directly that this is an H0,|I| Dolbeault class valued in the line bundle

Fk(I),r.

We summarize the results of this section in the following theorem. This describes

partial complex conjugation operators classically and hence justifies the name.

Theorem 2.4.6. Let f be a classical Hilbert modular form and let ϕf be the cor-

responding automorphic Hilbert modular form via equation (2.4.1). Via the above

identifications, the cohomology class ωIϕ from Definition 2.3.4 corresponds to the co-

homology class ωIf defined by equation (2.4.4).

Throughout the rest of the manuscript, we will identify the sheaves Ek,r and Fk,r

via the above discussion. We will use the classical language for the sake of exposi-

tion with the understanding that everything could be rephrased in the automorphic

language using this theorem.

For a classical Hilbert modular eigenform f , we may use Hecke operators instead

of the G(Af )-action to isolate the contributions of f to coherent cohomology. For

this, let us assume that T (p)f = apf and ap ∈ Ef for all p not dividing the level N.

Hecke operators act on the higher cohomology groups and we write:

(2.4.5)

Hq(X, Ek,r)f = {ω ∈ Hq(X, Ek,r)⊗ Ef | T (p)ω = apω for all p not dividing N}

for the f -isotypic component under the action of the Hecke algebra. Then Theo-

rem 2.3.3 amounts to the fact that the classes ωJf give all the contributions of the

Hecke eigensystem of f to cohomology of the automorphic sheaves over the complex

numbers.



CHAPTER III

Stark Units and Stark’s Conjecture

The goal of this section is to introduce the unit group Uf mentioned in the intro-

duction, compute its rank, and discuss its relation to motivic cohomology. We start

by briefly recalling the definition of Stark units and Stark’s conjecture. We then

compute the unit group explicitly in the case of Hilbert modular forms.

3.1 Stark units

We follow [71] to introduce the group of Stark units associated with an Artin

representation. We caution the reader that the representations in loc. cit. are right

representations, whereas we consider left representations, which leads to some dis-

crepancies in notation. See also Dasgupta’s excellent survey [16].

Consider any Artin representation, i.e. a representation of the absolute Galois

group GQ which factors through a finite Galois extension L of Q:

GQ GL(M)

GL/Q

%

ResL %

where M is a free OE-module of rank n and E is a finite extension of Q. We often

write G for the Galois group GL/Q and UL for the group of units of OL.

37
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Definition 3.1.1. The group of Stark units associated with % : GL/Q → GL(M) is:

UL[%] = HomOE [G](M,UL ⊗Z OE).

We will soon check that UL[%] depends only on % and not on the choice of L. To

describe the group UL[%] in more detail, we first need to understand the structure of

UL as a GL/Q-module.

Fix an embedding τ : L ↪→ C which induces a complex conjugation c0 of L. Note

that rankUL + 1 = #(G/〈c0〉) by Dirichlet’s units theorem.

Lemma 3.1.2 (Minkowski’s unit theorem, [71, Lemma 2]). There is a unit ε of L,

fixed by c0, such that there is only one relation among the rankUL + 1 units εσ
−1

for

σ ∈ G/〈c0〉, and this relation is

∏
σ∈G/〈c0〉

εσ
−1

= ±1.

Definition 3.1.3. A unit whose existence is guaranteed by Lemma 3.1.2 is called a

Minkowski unit of L with respect to τ : L ↪→ C.

Corollary 3.1.4. The log map induces a G-equivariant isomorphism:

UL/U
tors
L

∼=−→ Z[log(|τ(εσ
−1

)|) | σ ∈ G/〈c0〉]〈 ∑
σ∈G/〈c0〉

log(|τ(εσ−1)|)

〉 ,

(the numerator on the right hand side is the free abelian group in those variables)

and there is also a G-equivariant isomorphism:

IndG〈c0〉 Z
∼=→ Z[log(|τ(εσ

−1

)|) | σ ∈ G/〈c0〉],

(f : G/〈c0〉 → Z) 7→
∑

σ∈G/〈c0〉

f(σ〈c0〉)[log(|τ(εσ
−1

)|)].

In particular,

UL/U
tors
L
∼= IndG〈c0〉 Z− Z as a representation of G = GL/Q.
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We now compute the rank of UL[%] and find a natural basis for UL[%]⊗OE E, given

a basis of ME = M ⊗OE E. Let

(3.1.1) a = dimEM
〈c0〉
E .

Note that a = (Tr%(1) + Tr%(c0))/2, so since any two complex conjugations of L are

conjugate, this number is independent of the choice of c0. We write b = n− a where

n = dimEME.

Proposition 3.1.5. Suppose % does not contain a copy of the trivial representation.

Then

UL[%]⊗ E ∼= (M
〈c0〉
E )∨

and hence rankUL[%] = a.

Moreover, if m1, . . . ,ma is a basis of M
〈c0〉
E and we complete it to a basis m1, . . . ,mn

of ME such that %(c0) =

Ia 0

0 −Ib

 in this basis, then the corresponding basis of

UL[%]⊗OE E consists of the homomorphisms ϕ1, . . . , ϕa defined by:

(3.1.2) ϕi(mj) =
∏
σ∈G

(εσ
−1

)aij(σ) ∈ UL ⊗ E,

where

%(σ) = (aij(σ))i,j in the basis m1, . . . ,mn.

Proof. We have that

UL[%]⊗OE E = HomE[G](ME, UL ⊗Z E)

= HomE[G]

(
ME, IndG〈c0〉E − E

)
Corollary 3.1.4

= HomE[G]

(
ME, IndG〈c0〉E

)
% does not contain the trivial rep.

= HomE[〈c0〉](ME, E) Frobenius reciprocity

= (M
〈c0〉
E )∨.
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Now, pick a basis m1, . . . ,mn of M such that %(c0) =

Ia 0

0 −Ib

 in it. By definition

of the matrix (aij(σ))i,j,

%(σ)mj =
n∑
k=1

akj(σ)mk.

Hence a map ϕ ∈ HomOE(M,UL ⊗Z OE) is G-equivariant if and only if:

(3.1.3) (ϕ(mj))
τ = ϕ(%(τ)mj) = ϕ

(
n∑
k=1

akj(τ)mk

)
=

n∏
k=1

ϕ(mk)
akj(τ)

(where the group of units is written multiplicatively).

We check that each ϕi defined above satisfies this equation. Let

uij =
∏
σ∈G

(εσ
−1

)aij(σ) ∈ UL ⊗OE.

Then:

uτij =

(∏
σ∈G

(εσ
−1

)aij(σ)

)τ

=
∏
σ∈G

(ετσ
−1

)aij(σ)

=
∏
σ′∈G

(ε(σ
′)−1

)aij(σ
′τ) for σ′ = στ−1

=
∏
σ′∈G

(ε(σ
′)−1

)

n∑
k=1

aik(σ′)akj(τ)

=
n∏
k=1

(∏
σ∈G

(εσ
−1

)aik(σ)

)
︸ ︷︷ ︸

uik

akj(τ)

for σ′ = σ

=
n∏
k=1

u
akj(τ)

ik .

This shows that the functions ϕi given by ϕi(mj) = uij are G-equivariant (3.1.3).

Indeed:

ϕi(mj)
τ = uτij =

n∏
k=1

u
akj(τ)

ik =
n∏
k=1

ϕi(mk)
akj(τ).
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Hence ϕ1, . . . , ϕa ∈ UL[%].

Tracing through the isomorphism

UL[%]⊗OE E ∼= (M
〈c0〉
E )∨

established above, we see that

ϕi 7→ m∨i for i = 1, . . . , a,

where m∨i is a basis of M∨
E dual to the basis mi of ME. Since this is an isomorphism

and m1, . . . ,ma is a basis of M
〈c0〉
E , ϕ1, . . . , ϕa is a basis of UL[%]⊗ E.

Corollary 3.1.6. Suppose % : GQ → GL(M) is an Artin representation. Then

UL[%]⊗ E is independent of the choice of splitting field L/Q.

Proof. For an extension L′/L, the natural inclusion UL ↪→ UL′ induces an inclusion

UL[%] → UL′ [%
′]. By Proposition 3.1.5, dimUL[%] ⊗ E = dimUL′ [%

′] ⊗ E, which

completes the proof.

We will later be interested in the reduction of UL[%] modulo pn for a prime p of

E. For now, we just remark that the following follows from Proposition 3.1.5.

Corollary 3.1.7. Let t = #U tors
L and p be a prime not dividing t. Then UL[%]⊗ZZp[1

t
]

is a free OE ⊗Z Zp[1
t
]-module of rank d.

Proof. This follows immediately from Proposition 3.1.5 and the structure theorem

for modules over PIDs.

3.2 Stark’s conjecture [71, 73]

We give a brief summary of the results and conjectures on special values of Artin

L-functions.
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For any Artin representation % : GL/Q → GL(M) where M is an n-dimensional

E-vector space and an embedding E ↪→ C, we consider the L-function L(s, %) of %.

If we need to make the embedding ι : E ↪→ C explicit, we write L(s, %, ι) for L(s, %).

The completed L-function is then:

(3.2.1) Λ(s, %) =

(
f%
πn

)s/2
Γ(s/2)aΓ((s+ 1)/2)bL(s, %)

where:

f% = Artin conductor of %,(3.2.2)

a = dimEM
〈c0〉
E , (as above)(3.2.3)

b = n− a.(3.2.4)

It satisfies a functional equation of the form:

Λ(1− s, %) = W (%)Λ(s, %)

where |W (%)| = 1.

Stark gives a formula for the special value of L at s = 1 (or, equivalently, the

residue of the pole at s = 0). Associated with the units uij in Proposition 3.1.5 is a

regulator defined in terms of their logarithms.

Fix an embedding τ : L ↪→ C and let c0 be the complex conjugation associated

with τ . Define

log : C ∼= L⊗τ C→ R

z 7→ log |z|

and extend it linearly to

log : (L⊗τ C)⊗ (E ⊗ι C)→ C

z ⊗ λ 7→ λ log |z|.
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Thus for x⊗ y ∈ L⊗ E, we write

(3.2.5) log |τ ⊗ ι(x⊗ y)| = ι(y) · log |τ(x)| ∈ C.

We often make the choice of embeddings ι and/or τ implicit in the notation and

write simply log |τ(−)| or log |(−)| for log |τ ⊗ ι(−)|.

Definition 3.2.1. The Stark regulator matrix associated with % (and the embeddings

τ : L ↪→ C and ι : E ↪→ C) is

R(%) = (| log(τ ⊗ ι(uij))|)1≤i,j≤a.

Abstractly, there is a perfect pairing

UL[%]×M c0 → C

(ϕ,m) 7→ log(|τ ⊗ ι(ϕ(m))|)

via Proposition 3.1.5 and R(%) is the matrix of this pairing.

Conjecture 3.2.2 (Stark, [71, 73]). If % does not contain the trivial representation,

then

L(1, %) =
W (%)2aπb

f
1/2
%

· θ(%) · detR(%),

for some θ(%) ∈ Q(Tr %)×, where Q(Tr %) is the field generated by the values of the

character of %.

Remark 3.2.3. The assumption that % does not contain the trivial representation

is completely innocuous. Indeed, L(s, χ1,L) = ζL(s), so the value at s = 1 is given

by the class number formula for L. Moreover, L(s, %1 ⊕ %2) = L(s, %1) · L(s, %2).

Stark’s conjecture is known for representations with rational characters.

Theorem 3.2.4 (Stark [71, Theorem 1], Tate [73, Corollary II.7.4]). Conjecture 3.2.2

is true for representations % whose characters take rational values.
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3.3 Stark units for Hilbert modular forms

We now discuss Stark units for Artin representations associated with weight one

Hilbert modular forms. Let F be a totally real field. By [62], normalized weight

one Hilbert modular eigenforms f with Fourier coefficients in OEf correspond to

2-dimensional odd irreducible Artin representations

GF GL(M)

GL/F

%f

ResL %f

where M is a OE-module of rank 2 and E is a finite extension of Ef . By enlarging

L if necessary, we may assume that L is Galois over Q. We write G = GL/Q and

G′ = GL/F for simplicity.

As in the previous section, fix an embedding τ : L ↪→ C which induces a complex

conjugation c0 of L. Note that c0 necessarily lies in G′ because F is totally real.

Since %f is an odd representation,

%f (c0) is conjugate to

1 0

0 −1

 .

Consider the adjoint representation of %, i.e.

Ad %f : GL/F → GL(End(M))

σ 7→ (T 7→ %(σ)T%(σ)−1).

We note that if T has trace 0, then so does %(σ)T%(σ)−1. The representation is hence

reducible, and we define the trace zero adjoint representation as

Ad0 %f : GL/F → GL(End0(M)),

where End0(M) = {T : M →M | TrT = 0}. This is a 3-dimensional representation.



45

Choosing a basis of ME such that %(c0) =

1 0

0 −1

, we see that

(Ad %)(c0)

a b

c −a

 =

1 0

0 −1


a b

c −a


1 0

0 −1

 =

 a −b

−c −a

 .

Hence rank
(
(Ad0 %f )

〈c0〉
)

= 1.

Definition 3.3.1. Let UL be the units of L and O = OE be the ring over which %f

is defined. The group of Stark units associated with f is

Uf = HomO[GL/F ](Ad0 %f , UL ⊗Z O).

We sometimes write Ad∗ % = HomO[GL/F ](Ad0 %f ,O), so that Uf = Ad∗ %⊗Z[GL/F ]UL.

Write σ1, . . . , σd ∈ G for representatives of G/G′. Having fixed an embedding

τ : L ↪→ C, we have embeddings τj = τσj : L ↪→ C. We sometimes identify σj with

the embedding τj|F : F ↪→ R. We write cj = σjc0σ
−1
j for the complex conjugation

associated with τj.

Corollary 3.3.2. Suppose that %f is irreducible. Then:

Uf = UL[IndGG′ Ad0 %f ],

is the group of Stark units associated with the 3d-dimensional Artin representation

IndGG′ Ad0 %f . Therefore,

Uf ∼= ((IndGG′ Ad0 %f )
〈c0〉)∨ ∼=

d⊕
j=1

((Ad0 %f )
〈cj〉)∨

and hence

rankUf = d.



46

Moreover, for each j = 0, . . . , d, fix a basis m1,j,m2,j,m3,j of Ad0 %f such that

%(cj) =

I1 0

0 −I2

 in this basis, and consider the basis

{σjmi,j | j = 1, . . . , d, i = 1, 2, 3} of IndGG′ Ad0 %.

Let a0(σ) be the matrix of Ad0 %f (σ) in the basis {m0,i} and write Pj for the change

of basis matrix from {mi,0} to {mi,j}. Then there is a basis ϕ1, . . . , ϕd of Uf defined

by Proposition 3.1.5 such that

ϕj(σkm1,k) =
∏
σ′∈G′

(
ε(σkσ

′σ−1
j )−1

)(Pka
0(σ′)P−1

j )11

Proof. We have that:

Uf = HomO[G′](Ad0 %f , UL ⊗Z O)

= HomO[G](IndGG′ Ad0 %f , UL ⊗Z O) Frobenius reciprocity

= UL[IndGG′ Ad0 %f ].

Since %f is irreducible, Ad0 %f does not contain a copy of the trivial representation.

We may hence apply Proposition 3.1.5 to the Artin representation IndGG′ Ad0 %f to

get the result. Finally:

(IndGG′ Ad0 %f )
c0 =

d⊕
j=1

(
σj Ad0 %f

)c0
=

d⊕
j=1

(
Ad0 %f

)cj ,
completing the proof of the first part.

It remains to prove the final assertion. To compute the action of an element σ ∈ G

on σj Ad0 %, we find σk and σ′ ∈ G′ such that σσj = σkσ
′ and send

σjm 7→ σk(σ
′m) ∈ σj′ Ad0 %f .
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By Proposition 3.1.5, for 1 ≤ j, k ≤ d:

ϕj(σkm1,k) = ujk =
∏
σ∈G

(εσ
−1

)ajk(σ),

where ajk(σ) is the matrix of IndGG′ Ad0 %(σ) in the chosen basis. Then for 1 ≤ j, k ≤

d:

ajk(σ) =


(Pka

0(σ′)P−1
j )11 if σ−1

k σσj = σ′ for some σ′ ∈ G′,

0 otherwise.

Therefore:

ujk =
∏
σ′∈G′

(
ε(σkσ

′σ−1
j )−1

)ajk(σkσ
′σ−1
j )

=
∏
σ′∈G′

(
ε(σkσ

′σ−1
j )−1

)(Pka
0(σ′)P−1

j )11

,

as claimed.

Remark 3.3.3. The decomposition in Corollary 3.3.2 generalizes to any plectic Artin

representation [55], i.e. an Artin representation of GF for a totally real field F . We

have not used anything specific to Hilbert modular forms.

Remark 3.3.4. There is also a description of Uf similar to [15]. For a chosen

prime p of F , for each ϕσ, we may consider the component of ϕσ(Ad0 %f ) ⊆ UL on

which a chosen Frobenius Frobp ∈ GL/F acts by α/β where α and β are the ordered

eigenvalues %f (Frobp). As in loc. cit. this space should be one-dimensional under

extra assumptions; for example, that α 6= −β. This description may be useful when

considering a p-adic analogue of the conjecture, but we omit this here entirely.

3.4 Stark’s conjecture for Hilbert modular forms

We now state Stark’s conjecture for the trace zero adjoint representation associ-

ated with a Hilbert modular form of parallel weight one.
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Definition 3.4.1. The Stark regulator matrix associated with (the trace zero adjoint

representation of) f is

Rf = (log(|ujk|))1≤j,k≤d,

with

ujk =
∏
σ′∈G′

(
ε(σkσ

′σ−1
j )−1

)(Pka
0(σ′)P−1

j )11

(notation as in Corollary 3.3.2). If we need to specify f , we write ufjk for ujk.

Proposition 3.4.2. Stark’s conjecture 3.2.2 is equivalent to the statement:

L(1,Ad0 %f ) ∼E×
π2d

f
1/2
%

· detRf ,

where f% is the conductor of % = IndGG′ Ad0 %f .

Remark 3.4.3. In Chapter VI, we will relate the adjoint L-function to the Pe-

tersson inner product of f . This will give evidence for our archimedean conjecture

(Conjecture 5.3.1).

3.5 Examples

The Stark unit group can be determined explicitly in many cases. We provide a

few illustrative examples.

Example 3.5.1 (Heegner units). The first example of Stark units comes from the

theory of elliptic units.

Let F = Q and K/Q be an imaginary quadratic extension. For any Dirichlet

character χ : GH/K → C× of K, where H/K is an abelian extension, there is an

associated weight one form f = θχ, the theta function of χ, such that

L(s, χ) = L(s, f).
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The Artin representation % associated with f is the 2-dimensional representation:

%f = Ind
GH/Q
GH/K

χ = {φ : GH/Q → C | φ(στ) = χ(σ)φ(τ) for σ ∈ GH/K}.

For the non-trivial element c ∈ GK/Q, we can define a character χc(σ) = χ(cσc).

Writing 1 for the trivial representation and χ0 for χ · (χc)−1, we see that

Ad0 %f ∼= 1⊕ Ind
GH/Q
GH/K

χ0.

Since the unit group does not contain a copy of the trivial representation, this shows

that

Uf ∼= UH [χ0],

the χ0-isotypic component of the units of H. For a Minkowski unit ε ∈ O×H , the unit

associated with f is:

uf = uχ0 =
∏

σ∈GH/K

(εσ
−1

)χ0(σ).

In literature, this unit is often written additively as uχ0 =
∑

σ∈GH/K
χ0(σ)−1uσ ∈

UH [χ0]. Elliptic units, constructed using singular values of modular functions, pro-

vide an explicit construction of Minkowski units u ∈ O×H , and hence of Stark units

uf .

The logarithms of these units appear as special values of the L-function of χ0,

via Kronecker’s second limit formula. This also has a p-adic analogue: the p-adic

logarithm of uχ0 accounts for the special value of the Katz p-adic L-function evaluated

at the finite order character χ−1
0 , which is outside of the range of interpolation [43,

10.4, 10.5]. More generally, Darmon, Lauder, and Rotger conjecture [15, Conjecture

ES] that p-adic logarithms of other Stark units associated with weight one modular

forms appear in a formula for values of triple product p-adic L-functions outside the

range of interpolation.
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The following example is suitable for computations in the case F = Q. In fact, it

is the example where Harris–Venkatesh [31] perform their computations. It is also a

simple example where our archimedean conjecture (Conjecture 5.3.1) can be proved

(Corollary 6.1.4).

Example 3.5.2 (Units in cubic fields, F = Q). This example is discussed in [31,

Sec. 5.6], but we recall it here in detail to provide context for the generalizations to

[F : Q] = 2 we make below.

Let K be a cubic field of signature [1, 1] and write L for the Galois closure of K.

Then GL/Q ∼= S3 and we may assume that K is the fixed field L(12) of the action of

the cycle (12) ∈ S3 on L.

To give a 2-dimensional representation of GL/Q, we need to give a 2-dimensional

representation of S3. There is a unique irreducible 2-dimensional representation: the

regular representation % : GQ � S3 → GL(M) ∼= GL2(Z), obtained by considering

the action of S3 on

M =
{

(x1, x2, x3) ∈ Z3
∣∣∣ ∑xi = 0

}
by permuting the coordinates.

In the basis e1 = (1, 0,−1), e2 = (0, 1,−1) of M , we have that:

σ = (12) 7→ S =

0 1

1 0

 ,

τ = (123) 7→ T =

−1 −1

1 0

 .

Note that % is an odd Galois representation since detS = −1. Therefore, there is a

weight one modular form f corresponding to %.
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Recall that

Uf = HomGL/Q(Ad0 %, UL).

Lemma 5.7 in [31] shows that

Uf ⊗ Z
[

1

6

]
∼=→ U

(1)
K ⊗ Z

[
1

6

]
(3.5.1)

(ϕ : Ad0 %→ UL) 7→ ϕ(S),

where U
(1)
K are the norm 1 units of K.

We recall the proof here. By definition

Ad0 % ∼= End0(M),

with the action of S3 on the right hand side given by conjugation. Note that each

element of S3 gives an element of End(M) and we may use the S3-invariant projection

End(M)→ End0(M)

A 7→ A− (1/2)Tr(A)

to get a spanning set for Hom0(M,M) this way. Since the lengths of cycles are

conjugation-invariant, we see that

Hom0(M,M) ∼= span(images of (123), (132))⊕ span(images of (12), (13), (23)).

One checks that span(images of (123), (132)) = Z[e], where e ∈ Hom0(M,M) is the

common image of (123) and (132). We write W = span(images of (12), (13), (23)).

Hence

Ad0 % ∼= Z[e]⊕W.

Now, for any S3-representation V :

• HomS3(Z[e], V ) = V sgn, the sgn-isotypic part of V ,
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• HomS3(W,V ) ∼= {v ∈ V (12) | v + (123)v + (132)v = 0} via ϕ 7→ ϕ(S).

This shows that:

Uf ∼= U sgn
L ⊕ U (1)

K

Since Q(
√

disc(L)) = L〈(123)〉, U sgn
L = UQ

(√
disc(L)

) is a finite group of order at most

6. Hence

Uf ⊗ Z
[

1

6

]
∼= U

(1)
K ⊗ Z

[
1

6

]
.

The following is the simplest example of explicit Stark units over real quadratic

fields. It is the base change of Example 3.5.2 to a real quadratic field and one of the

examples in which we will do the numerical computations later on.

Example 3.5.3 (Units in cubic extensions of F for [F : Q] = 2). Consider K as

in Example 3.5.2 and consider a quadratic extension F of Q. Then KF is a cubic

extension of F of signature [2, 2]:

LF

KF L

F K

Q

S3

3

2
3

S3

As above, we consider the Galois representation % : GLF/F
∼= S3 → GL(M). If f is

the weight one Hilbert modular form associated with %, then one can check that

Uf ⊗ Z[1/6] ∼= HomGLF/F (Ad0 %, ULF )⊗ Z[1/6]

∼= U sgn
LF ⊗ Z[1/6]⊕ {u ∈ UKF | NKF

F u = 1} ⊗ Z[1/6]

∼= ({u ∈ UK | NK
Q u = 1} ⊕ {u ∈ UKF | uσ = u−1, NKF

F u = 1})⊗ Z[1/6],
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where we write Gal(L/Q) = 〈σ〉. The Hilbert modular form f is the base change of

the modular form f0 associated with K in the previous example. We will later prove

a more general result of this form in Corollary 7.1.3.

Finally, we present the “simplest” non base change example where explicit Stark

units are available over real quadratic fields. It is a direct analogue of Example 3.5.2,

but the Galois theory is more complicated.

Example 3.5.4 (Units in cubic extensions of F for [F : Q] = 2, non base change).

We generalize Example 3.5.2 to the case [F : Q] = 2 and a cubic extension K of F

of signature [2, 2]:

L

K

F

Q

12

3

S3×S3

2

S3oC2

We may assume that K = LS3×〈(12)〉. Consider the representation

% = sgn�reg : S2
3 → GL2(Z),

(σ, (12)) 7→ sgn(σ) ·

0 1

1 0

 ,

(σ, (123)) 7→ sgn(σ) ·

−1 1

−1 0

 .

Then % corresponds to a Hilbert modular form f of parallel weight one.

As before,

Ad0 % ∼= Z[e]⊕W

and for any S2
3 -representation V :
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• HomS2
3
(Z[e], V ) ∼= V sgn� sgn,

• HomS2
3
(W,V ) ∼= {v ∈ V S3×(12) | v + (1, (123))v + (1, (132))v = 0} with the

isomorphism given by sending ϕ : W → V to ϕ(S).

Therefore,

Uf = HomS2
3
(Ad0 %, UL)

= Hom(Z[e], UL)⊕ Hom(W,UL)

= (U sgn� sgn
L )⊕ {u ∈ UK | NK

F u = 1}.

We claim that the group U sgn� sgn
L is torsion. If u ∈ U sgn� sgn

L , then u is fixed by

a subgroup H ⊆ S2
3 of order 18 of elements (σ, σ′) such that sgn(σ) = sgn(σ′). One

can check that LH = F (
√

disc(L/F), which is a CM extension of F . Therefore, if

Gal(F (
√

disc(L/F)/F )) ∼= 〈τ〉,

U sgn� sgn
L

∼= (U
F (
√

disc(L/F))
)τ=−1.

Since F (
√

disc(L/F))/F is CM, the ranks of the two unit groups are equal. On the

other hand, if u ∈ U τ=−1

F (
√

disc(L/F))
was a non-torsion element, then u would generate

an infinite subgroup of U
F (
√

disc(L/F))
)τ=−1 which does not belong to UF . This is a

contradiction.

Finally, let N be the order of the torsion group U sgn� sgn
L . Then:

(3.5.2) Uf ⊗ Z[1/N ] ∼= {u ∈ UK | NK
F u = 1} ⊗ Z[1/N ].

As expected by Corollary 3.3.2 this is a group of rank 2. In terms of the notation

of Definition 3.4.1, the units u11, u12 give a basis of the last space. Identifying the

units u21, u22 seems more difficult.
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3.6 Comparison with motivic cohomology

This section is not used in the remainder of this manuscript. The general con-

jectures of Venkatesh [79] predict the action of the dual of a motivic cohomology

group associated with the coadjoint motive of f . We identify this motivic cohomol-

ogy group with the group of Stark units Uf , analogously to [31, Sec. 2.8]. Some of

this section is based on standard conjectures.

3.6.1 Motivic cohomology

Let k be any number field and Ok be its ring of integers. (In general, Ok could be

any Dedekind domain and k its field of fractions). Let E be a field of characteristic

0.

For any Chow motive M defined over k with coefficients in E, we may define

motivic cohomology groups (cf. [5] or [51, Definition 3.4])

Hr
Mk

(M,E(n))

which are equipped with specialization maps to various cohomology theories, includ-

ing étale cohomology:

Hr
Mk

(M,E(n))⊗ Ep → Hr
ét(M,Ep(n)).

Scholl [64, Theorem 1.1.6] proved that these have a subspace of integral classes

Hr
MOk

(M,E(n)) ⊆ Hr
Mk

(M,E(n)).

We will be concerned with the case r = 1, n = 1. For the trivial motive M = k,

conjecturally:

H1
MOk

(k,E(1)) ∼= Uk ⊗ E.

This statement is certainly true in all realizations; see, for example, [54, 4.3] or [51,

Corollary 4.2].



56

3.6.2 Motivic cohomology of the coadjoint motive

Conjecturally, there is a 3-dimensional Chow motive Mcoad with coefficients in E,

the coadjoint motive of f , associated with the dual of the trace zero adjoint repre-

sentation, Ad∗ %f . By definition, for any prime p of E, its p-adic étale realization is

isomorphic to:

H•λ(Mcoad ×Q Q, Ep) ∼= Ad∗ %f ⊗E Ep

(concentrated in cohomological degree 0). Without loss of generality, we assume that

Mcoad is defined over F (and not just Fλ).

Remark 3.6.1. Motives associated with Hilbert modular forms were constructed

in [4] in some cases where the weights are cohomological. Since weight one Hilbert

modular forms are not cohomological, there is no known construction of the motive,

but we assume that (at least) the coadjoint motive exists.

According to [79, 60], we should consider the motivic cohomology group

H1
MOF

(Mcoad, E(1)).

There is a natural map

H1
MOF

(Mcoad, E(1))→ H1
MOL

(Mcoad, E(1))GL/F

and we will work with the codomain instead. According to [31, (2.8)], this map

should be an isomorphism. In the proof of Proposition 3.6.2 below, we check this in

the étale realization (the induced map is denoted by i).

For a prime p of E, the p-adic étale realization map:

H1
MOF

(Mcoad, E(1))⊗Op → H1
f (F, (Ad∗ %f ⊗Op)(1))
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is conjecturally an isomorphism [6, 5.3(ii)]. Here, H1
f denotes the Bloch–Kato Selmer

group [6]. (We apologize for the clash of notation with the Hilbert modular form f

and hope that this does not cause confusion.) We compute the last group.

Proposition 3.6.2. We have that

H1
f (F, (Ad∗ %f ⊗Op)(1)) ∼= Uf ⊗Q⊗Op

for all p such that Np is coprime to [L : F ].

Proof. This argument is adapted from [31, Lemma 4.5]. We claim that

H1
f (GF ,Ad∗ %f ⊗Op) ∼= (UL ⊗Q⊗ Ad∗ %f ⊗Op)

GL/F .

Recall that (UL ⊗Ad∗ %f )
GL/F = Uf by definition, so this will prove the proposition.

We write Ad∗ %p for Ad∗ %f ⊗Op for simplicity. The (global) Bloch–Kato Selmer

group H1
f is defined by the short exact sequence:

0 H1
f (F,Ad∗ %p(1)) H1(F,Ad∗ %p(1))

⊕
v

H1(Fv ,Ad∗ %p(1))

H1
f (Fv ,Ad∗ %p(1))

.

where H1
f (Fv,Ad∗ %p(1)) are the local Bloch–Kato Selmer groups. The restriction

maps to the subgroup GL/L ⊆ GF/F give a commutative diagram

0 H1
f (F,Ad∗ %p(1)) H1(F,Ad∗ %p(1))

⊕
v

H1(Fv ,Ad∗ %p(1))

H1
f (Fv ,Ad∗ %p(1))

0
(
H1
f (L,Ad∗ %p(1))

)GL/F (H1(L,Ad∗ %p(1)))
GL/F

(⊕
w

H1(Lw,Ad∗ %p(1))

H1
f (Lw,Ad∗ %p(1))

)GL/Fi j k

with exact rows. Since Ad∗ %p(1) is trivial as a GL/L-representation, we have that:

(
H1
f (L,Ad∗ %p(1))

)GL/F ∼= (Ad∗ %p ⊗Op H
1(L,Op(1))

)GL/F
∼=
(
Ad∗ %p ⊗Op UL ⊗Op ⊗Q

)GL/F ,
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so we just need to show that the map i is an isomorphism.

Since Np is coprime to [L : F ], the restriction map j is an isomorphism by a

general group cohomology result [66, I.2.4]. By the Snake Lemma, this shows that i

is also injective.

To show that it is surjective, we must show that k is injective. In fact, for a place

w of L above a place v of F , the restriction map

H1(Fv,Ad∗ %p(1))

H1
f (Fv,Ad∗ %p(1))

→ H1(Lw,Ad∗ %p(1))

H1
f (Lw,Ad∗ %p(1))

is split by the corestriction map divided by [Lw : Fv] (since [Lw : Fv] is invertible in

Op).



CHAPTER IV

Derived Hecke Operators on the Special Fiber

Let:

• f be a normalized Hilbert modular eigenform of parallel weight one, new of level

N, with coefficients in the ring OEf ;

• % = %f be the associated Artin representation, defined over O = OE where E is

a finite extension of Ef ,

• Uf be the group of Stark units, which has rank d = [F : Q] over O,

• p be a prime of OE such that (p) = p ∩ Q has good reduction in F and p is

coprime to N, and let k = OE/pn.

We consider a smooth, compact, integral model X = X1(N) for the Hilbert mod-

ular variety associated with F and the level Γ1(N) (the level of f). Such integral

models for the toroidal compactifications with the level structures considered here

were developed in [18], following the standard methods of Rapoport [61]. They are

defined over Z[1/NF/QN], where NF/Q denotes the norm from F to Q. See also [10],

[17], or [26] for surveys on Hilbert modular varieties and Hilbert modular forms.

Let ω be the Hodge bundle on the integral Hilbert modular surface XZ[1/NF/QN],

59
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so that

f ∈ H0(XZ[1/NF/QN], ω)⊗Z OEf .

In this section we construct an action of U∨f ⊗OE k on the cohomology space

(H∗(XZ[1/NF/QN], ω)⊗Z OE)f ⊗OE k ∼= H∗(Xk, ω)f

via derived Hecke operators on the special fiber and conjecture that it lifts to OE.

This is an analogue of the Harris–Venkatesh conjecture [31] for the coherent coho-

mology of the Hodge bundle on Hilbert modular varieties.

Recall (c.f. Section 3.3) that the Artin representation associated with f factors

through a finite Galois extension L/F and has coefficients in the integers OE of a

number field E, i.e. %f : Gal(L/F ) → GL2(OE). Let q > 5 be a prime and q be a

prime of F above it such that Nq ≡ 1 (pn). We fix a choice of a prime ideal Q of L

above q. We write G′ = Gal(L/F ) and G = Gal(L/Q).

This configuration is summarized by the following diagram:

Q L

Nq ≡ 1 (pn) q F E p

q Q p

G′

G

We will describe:

• a map

θ∨q :
⊕

σ∈G/G′
U∨f,σ → U∨f ⊗ k

in Section 4.1 (Proposition 4.1.4);

• an action of the domain via derived Hecke operators:

Tσq,z : Hq(Xk, ω)f → Hq+1(Xk, ω)f
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associated with z ∈ U∨f,σ in Sections 4.2, 4.3 (Definition 4.3.1);

and conjecture that the resulting action of U∨f ⊗k lifts to characteristic 0 in Section 4.4

(Conjecture 4.4.1).

4.1 Dual Stark units mod pn

We start by describing the group U∨f ⊗OE k. The description will depend on a

choice of a Taylor–Wiles prime q of F .

4.1.1 Taylor–Wiles primes

Suppose p is a prime of E above p and for any n, consider

k = OE/pn.

Definition 4.1.1. A Taylor–Wiles prime for f of level n ≥ 1 consists of the following

data:

(1) a prime q of of F , relatively prime to the level of f , such that Nq ≡ 1 (pn),

(2) a choice (α, β) ∈ F2
p with α 6= β such that

%(Frobq) =

α 0

0 β

 ,

where % is the reduction of % modulo p.

If q is a Taylor–Wiles prime, (OF/q)× contains a subgroup ∆ ∼= Z/pnZ of size pn.

We frequently denote it by (OF/q)×pn .

We also write

(4.1.1) k〈1〉q = k ⊗ (OF/q)×pn , k〈−1〉q = Hom((OF/q)×pn , k),

both non-canonically isomorphic to k. When the underlying prime q is clear, we

drop it from the notation.
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Finally, for any Z-module M , we write

(4.1.2) M〈m〉 = M ⊗Z k〈m〉 for m = ±1.

For example, Fp〈1〉 is canonically identified with a quotient of (OF/q)× of size p.

4.1.2 Reduction of dual Stark units at a Taylor–Wiles prime

Let Q be a prime of L above a Taylor–Wiles prime q of F . Let

FrobQ = FrobQ/q ∈ GL/F ⊆ GL/Q

be the Frobenius automorphism associated with the prime Q above q.

Lemma 4.1.2. For any Artin representation %0 : GL/Q → GL(M0) where M0 is an

OE-module, there is a natural pairing

(UL[%0]⊗ k)× (MFrobQ
0 ⊗ k)→ k〈1〉

(ϕ,m) 7→ reduction of ϕ(m).

Proof. For ϕ ∈ UL[%0] and m ∈MFrobQ
0 , we have

ϕ(m) ∈ (UL ⊗ k)FrobQ .

The composition

UL ↪→ ULQ
� ULQ

/(1 + Q) ∼= F×Q

induces a reduction map

(UL ⊗ k)FrobQ → (F×Q ⊗ k)FrobQ ∼= k〈1〉,

where we recall that k〈1〉 = k ⊗ (OF/q)×pn .

Remark 4.1.3. We think of the reduction map as a discrete logarithm. Then this

lemma is the discrete analogue of Lemma 5.2.1, where the actual logarithm will be

used. To generalize this result p-adically, one would use a p-adic logarithm.
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Proposition 4.1.4. Let % : G′ = GL/F → GL(M) be the Artin representation asso-

ciated with f . Recall the notation G = GL/Q. Then there is a natural map:

θ∨q :
⊕

σ∈G/G′
(Ad0M ⊗ k)FrobσQ/σq ⊗ k〈−1〉 → U∨f ⊗ k

where the domain is a direct sum of free k-modules of rank 1.

We will later use the shorthand U∨f,σ = (Ad0M ⊗ k)FrobσQ/σq ⊗ k〈−1〉. In the

notation of the introduction, U∨f,σi = U pn

f,i if we label the representatives of G/G′ by

σ1, . . . , σd.

Proof. Applying Lemma 4.1.2 to %0 = IndGG′ Ad0 %, we see that there is a pairing:

(Uf ⊗ k)× (MFrobQ
0 ⊗ k〈−1〉)→ k,

which induces a map

(MFrobQ
0 ⊗ k〈−1〉)→ (U∨f ⊗ k).

Then

MFrobQ
0 = (IndGG′ Ad0M)FrobQ

=

 ⊕
σ∈G/G′

σAd0M

FrobQ

=
⊕

σ∈G/G′
(Ad0M)FrobσQ/σq

because σ FrobQ/q σ
−1 = FrobσQ/σq ∈ G′.

Finally, using the basis such that %(FrobQ) =

α
β

 for α 6= β, we have that

Ad0 %(FrobQ) =


α
β

β
α

1

 .

Since α 6= β, this shows that (Ad0M)FrobσQ/σq has rank 1.
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We finally recast this in the language of [31, Section 2.9]. For any Q, we may

consider the element

eQ = %(FrobQ)− (1/2)Tr%(FrobQ) ∈ Ad0 %.

Note that for all g ∈ GL/F ,

egQ = Ad(%(g))eQ.

Therefore:

Ad0(FrobQ)eQ = eFrobQ Q = eQ,

showing that

eQ ∈ (Ad0 %)FrobQ .

By Proposition 4.1.4, this choice defines a map

(4.1.3) θ∨q :
⊕

σ∈G/G′
k〈−1〉 → U∨f ⊗ k.

When F = Q, this recovers the map θ∨q from [31, Section 2.9].

4.2 The Shimura class

We consider two level structures: for an ideal N ⊆ OF ,

Γ0(N) =


a b

c d

 ∈ GL(OF ⊕D−1)

∣∣∣∣∣∣∣ c ∈ N

 ,

Γ1(N) =


a b

c d

 ∈ GL(OF ⊕D−1)

∣∣∣∣∣∣∣ c, a− 1 ∈ N

 .

Note that Γ1(N) ⊆ Γ0(N) and the quotient is isomorphic to (O/N)×. We let

X0(N) = Hilbert modular variety with Γ0(N)-level structure,

X1(N) = Hilbert modular variety with Γ1(N)-level structure.
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For N large enough, both of these are schemes over Z[1/NF/QN] (c.f. [18]) and they

have good reduction modulo primes p not dividing NF/QN. The covering

X1(N)→ X0(N)

descends to a covering

X1(N)k → X0(N)k

with Galois group (O/N)×.

Let q > 5 be a prime and q be a prime of F above it. Then

X1(q)→ X0(q)

is a (O/q)×-covering. We may pass to the unique subcovering with Galois group

∆ = (O/q)×pn :

X1(q)∆ → X0(q).

This extends to an étale covering of schemes over Z[1/q], and hence induces an étale

covering

X1(q)∆
k → X0(q)k

(c.f. [50, Corollary 2.3] for [F : Q] = 1 and [17, Prop. 3.4] for [F : Q] > 1; the

assumption that q > 5 is needed to avoid elliptic points).

We hence get a class

(4.2.1) Sk ∈ H1
ét(X0(q)k, k〈1〉),

where we recall that k〈1〉 ∼= k ⊗∆. Using the natural map k → Ga of étale sheaves

over X0(q)k, we obtain a class:

(4.2.2) SGa ∈ H1
ét(X0(q)k,Ga〈1〉).
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Finally, using Zariski–étale comparison, we have an isomorphism:

H1(X0(q)k,O〈1〉)→ H1(X0(q)k,Ga〈1〉)

and hence SGa defines a class

(4.2.3) S ∈ H1(X0(q)k,O〈1〉).

Definition 4.2.1. The Shimura class is the cohomology class S ∈ H1(X0(q)k,O〈1〉)

obtained above (4.2.3).

We will use it next to construct a mod pn derived Hecke operator.

4.3 Construction of derived Hecke operators

Let N be the level of f and recall that we consider X = X1(N) over Z[1/NF/QN].

Write X0,1(q,N) for X with added Γ0(q)-level structure at q. This is a Hilbert

modular variety for the group Γ1(q,N) in the notation of [18], and hence also has a

smooth, projective, integral model.

Then the Shimura class S pulls back to a class

SX ∈ H1(X0,1(q,N)k,O〈1〉).

Cupping with this class gives a map

(4.3.1) H0(X0,1(q,N)k, ω)
∪SX−→ H1(X0,1(q,N)k, ω)〈1〉.

Classically, Hecke operators are defined as operators on cohomology induced by

certain correspondences:

X0,1(q,N)

X X

π1 π2
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We define the derived Hecke operator by the same push-pull procedure but cupping

with SX in the middle:

H0(Xk, ω) H0(X0,1(q,N)k, ω) H1(X0,1(q,N)k, ω)〈1〉 H1(Xk, ω)〈1〉.
π∗1 ∪SX π2,∗

Finally, for any z ∈ k〈−1〉, we define

(4.3.2) Tq,z : H0(Xk, ω)→ H1(Xk, ω)

by composing the above map with multiplication by z.

More generally, for each z ∈ k〈−1〉, there is an operator

(4.3.3) Tq,z : Hq(Xk, ω)→ Hq+1(Xk, ω),

defined analogously.

Recall that equation (4.1.3) defines a map:

θ∨q :
⊕

σ∈G/G′
k〈−1〉 → U∨f ⊗ k.

We may hence define an action of the codomain on coherent cohomology of the

special fiber as follows.

Definition 4.3.1. For each σ ∈ G/G′ and z ∈ k〈−1〉, we define the action of z in

the σ-component of
⊕

σ∈G/G′
k〈−1〉 by:

Tσq,z : H∗(Xk, ω)f → H∗+1(Xk, ω)f .

This naturally extends to an action of
∧∗ ⊕

σ∈G/G′
k〈−1〉 on H∗(Xk, ω)f .

4.4 The conjecture

We conjecture there is an action of U∨f on the f -isotypic component of the coho-

mology space H∗(X,ω)f which reduces modulo pn to the action of the operators Tq,z.
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For h ∈ H∗(XO[1/N(N)], ω), we write h ∈ H∗(Xk, ω) for its reduction. Equa-

tion (4.1.3) defines a map:

θ∨q :
⊕

σ∈G/G′
k〈−1〉 → U∨f ⊗ k.

associated with a Taylor–Wiles primes q of F and a prime Q above it. In Defi-

nition 4.3.1, we defined an action of the domain by derived Hecke operators. We

conjecture that the resulting action of U∨f ⊗ k on the special fiber lifts to an integral

action of U∨f .

Conjecture 4.4.1. There is an action ? of the exterior algebra
∧∗(U∨f ) on

H∗(XO[1/N(N)], ω)f

such that the induced action of
∧∗(U∨f )⊗ k on

H∗(XO[1/N(N)], ω)f ⊗ k

is the one described above. More specifically, fix a quadruple (p, n, σ, q) with

• p a prime of E satisfying the above conditions,

• n ≥ 1 an integer,

• σ ∈ G/G′,

• q > 5 a prime and q a Taylor–Wiles primes of level n above it; in particular

Nq ≡ 1 (pn).

For an element u∨ ∈ U∨f , consider its reduction u∨ ∈ U∨f ⊗ k, and suppose that

u∨ =
∑

σ∈G/G′
θ∨q (zσ) for some zσ ∈ k〈−1〉.

Then:

α · u∨ ? ωf =
∑

σ∈G/G′
Tσq,zσωf

for some constant α.
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Remark 4.4.2. Harris and Venkatesh [31] and Marcil [49] provide numerical evi-

dence for this conjecture for F = Q and n = 1. To do that, they first perform an

explication ([31, Section 5]), putting the conjecture in a more computable form. They

relate it to a question about a pairing considered by Mazur [50] and then rely on a

computation of this pairing due to Merel [52]. While the initial steps of the explica-

tion can be performed in our case, putting Conjecture 4.4.1 in a similar framework,

the analogue of Merel’s computation is currently not available in the literature.

In dihedral cases, the conjecture of Harris and Venkatesh has since been proved

by Darmon–Harris–Rotger–Venkatesh [14].

When F = Q and n = 1, Harris–Venkatesh [31, Section 4] prove the following

result:

vanishing of Tq,zf =⇒ vanishing of the map θ∨q : k〈−1〉 → U∨f ⊗ k,

assuming an “R = T” theorem. It would be interesting to obtain a similar result in

our case. We expect that the rank r of the map

θ∨q :
⊕

σ∈G/G′
k〈−1〉 → U∨f ⊗ k

from equation (4.1.3) can be any number 0 ≤ r ≤ d. Hence the strongest analogue

of the above result should be:

rank〈Tσq,zf | σ ∈ G/G′〉 = rank(θ∨q ).

A weaker version simply states:

vanishing of Tσq,zf for all σ ∈ G/G′ =⇒ vanishing of the map θ∨q .

Note that the proof in the case F = Q relies on the approach of Calegari–

Geraghty [9] to modularity lifting. Since their results apply to general F , one could
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hope to prove the above results in a similar way, but we have not explored this further

yet.

Since we expect that the map θ∨q may sometimes have rank d, we want to make

sure that we can produce a rank d group of operators Tq,z in order to pin down the

conjectural action.

Lemma 4.4.3. For any p and n, there is a prime q ≡ 1 (pn) which splits completely

in F and the primes q1, . . . , qd above q are Taylor–Wiles primes for f of level n.

Proof. We first show that there exists a positive density of primes q of Q that split

completely in F such that q ≡ 1 (pn). Consider the field F (ζpn) for a primitive pnth

root of unity and a prime q of Q in the field diagram:

Q F (ζpn)

q F Q(ζpn)

q Q

Since we assume that p has good reduction in F , the fields Q(ζpn) and F have disjoint

ramification, and hence we have isomorphisms:

GF (ζpn )/F GQ(ζpn )/Q (Z/pnZ)×

D(Q/q) D(Q ∩Q(ζpn)/q) 〈q〉

∼= ∼=

∼= ∼=

via the restriction map. By Cheboratev density theorem, there is a positive density

of primes q of Q that splits completely in F (ζpn). These q also split completely in F

and in Q(ζpn) which shows that

q ≡ 1 mod pn

using the above diagram.
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Since there is a positive density of primes q with the above property, there exists

a positive density for which q1, . . . , qd are Taylor–Wiles primes for f of level n.

In this case, we have d derived Hecke operators Tq1,z1 , . . . , Tqd,zd and we expect

that if they are linearly independent, then the map θ∨q is an isomorphism.



CHAPTER V

Archimedean Realization of the Motivic Action

We continue using the notation of Section 3.3: the Artin representation %f asso-

ciated with f factors through a finite Galois extension L/F and has coefficients in a

number field E, i.e. %f : Gal(L/F )→ GL2(E).

Fix embeddings τ : L ↪→ C and ι : E ↪→ C. We will describe:

• an isomorphism

θ∨C :
d⊕
j=1

UC
f,j

∼=→ U∨f ⊗ι C

for some one-dimensional spaces UC
f,j in Proposition 5.2.2;

• an action of the codomain via partial complex conjugation operators:

Hq(XC, ω)f → Hq+1(XC, ω)f

ωf 7→ ω
σj
f

for a chosen element of UC
f,j in Sections 5.1 and 5.2 (Definition 5.2.4);

and conjecture that the resulting action of U∨f ⊗E ⊆ U∨f ⊗ C preserves the rational

structure on coherent cohomology in Section 5.3 (Conjecture 5.3.1).

Remark 5.0.1. For ease of exposition, we continue to use the classical language for

Hilbert modular forms with the understanding that everything could be translated

to the automorphic language via Section 2.4; see in particular Theorem 2.4.6.

72
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5.1 Partial complex conjugation operators and Harris’ period invariants

Let f be a normalized Hilbert modular eigenform f of weight (k, r) and level

Γ1(N) such that T (p)f = apf and ap ∈ Ef . Hecke operators act on the higher

cohomology groups and we write:

(5.1.1) Hq(X, Ek,r)f = {ω ∈ Hq(X, Ek,r)⊗ Ef | T (p)ω = apω}

for the f -isotypic component under the action of the Hecke algebra.

Recall that in Section 2.3, we defined partial complex conjugation operators for

each J ⊆ {σ1, . . . , σd}:

H0(XC, Ek,r)f → H |J |(XC, Ek(J),r)f

f 7→ ωJf

(c.f. Definition 2.3.4 and Theorem 2.4.6).

Corollary 2.3.6 gave a criterion for when the spaces H |J |(X, Ek(J),r)f are

1-dimensional. In these cases, this leads to the definition of Harris’ period invariants.

Lemma 5.1.1 ([28, Lemma 1.4.5]). Let J be a set of infinite places which contains

either all or none of the weight one places of f . Then there is a number νJ(f) ∈ C×,

well-defined up to multiplication by elements in Ef (J)× where Ef (J) = EfF (k(J)),

such that

ωJf
νJ(f)

∈ H |J |(X, Ek,r)f ⊆ H |J |(XC, Ek,r)f .

Clearly, when J = ∅, we may take νJ(f) = 1.

Definition 5.1.2. Let J be a set of infinite places which contains either all or none of

the weight one places of f . Then the complex number νJ(f) defined by Lemma 5.1.1

is the period or period invariant associated with f and J . It is well-defined up to

Ef (J)×.
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Remark 5.1.3. Despite of the difference in trivializations of the line bundles — Re-

mark 2.2.4 — the above period invariants νJ(f) agree with Harris’ period invariants

νJ(πf ), where πf is the automorphic representation associated with f . Indeed, note

that both of the normalizations result in ν∅(f) = ν∅(πf ) = 1.

Shimura defines periods by considering Petersson inner products on Shimura va-

rieties associated with quaternion algebras over F . Harris’ definition is much less

explicit, but it is related to Petersson inner products as follows.

Proposition 5.1.4 ([28, Prop. 1.5.6]). For any J ⊆ Σ∞, we have that:

νJ(f) · νΣ∞\J(f%) ∼E(J)× 〈f, f〉

where f%(z) = f(−z) is Shimura’s complex conjugation, and

〈f, g〉 =

∫
Γ\Hd

f(z)g(z)
d∏
j=1

y
kj
j

dzj ∧ dzj
y2
j

.

Therefore, we may think of νJ(f) as a certain factor of the Petersson inner product

〈f, f〉.

Remark 5.1.5. Here and elsewhere we use the above normalization of Petersson

inner products. This is consistent with [34, 35], which we refer to later. However,

this differs from Shimura’s normalization of Petersson inner products [68, (2.27,

2.28)]:

〈f, g〉Shimura =
1

µ(Γ\Hd)
〈f, g〉,

where µ(Γ\Hd) is the volume of the fundamental domain, and from Harris’ normal-

ization, since:

(5.1.2) 〈f, f〉Harris ∼Q× (2πi)−dr〈f, f〉Shimura.

[28, (1.6.3)].
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Remark 5.1.6. The proof in loc. cit. is based on the rationality of (a Tate twist of)

the Serre duality pairing [28, (1.5.4)]:

(5.1.3) ∪ : H |J |(X, Ek(J),r)f ×H |Σ∞\J |(X, Ek(Σ∞\J),r)f% → E(J)

induced by the cup product, and the identity [28, (1.5.5.2)]:

(5.1.4) ωJf ∪ ω
Σ∞\J
f% = ±〈f, f〉.

Remark 5.1.7. In this extended remark, we discuss the relation of Harris’ periods

to other periods attached to Hilbert modular forms. The study of period invariants

was initiated by Shimura [69, 70], who studied the case when the weights at all places

are at least two. In this case, Shimura conjectured the existence of a set of period

invariants cσ, one attached to each infinite place σ of F ; moreover, he conjectured

that if B is any quaternion algebra over F such that f transfers to a form fB on

B×, then the Petersson norm of fB (if fB is chosen to be algebraic) is essentially a

product of some of the cσ up to algebraic factors. More precisely, defining

qB(f) := 〈fB, fB〉,

Shimura conjectured that

(5.1.5) qB(f) ∼Q×
∏

σ∈ΣB,∞

cσ,

where ΣB,∞ is the set of infinite places where B is split. This conjecture was proved

by Harris [29], using the theta correspondence for unitary groups. In this work, the

periods cσ are essentially defined as suitable ratios of periods on quaternion algebras.

The fact that the definition of the periods does not depend on choices of quaternion

algebras boils down to proving relations between periods on different quaternion

algebras, which provides the main thread of Harris’ argument. This work admits
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an integral refinement which is studied in the ongoing work of Ichino–Prasanna (for

example, [38]).

In related work [28, 30], Harris gave another definition of such period invariants

using rational structures on coherent cohomology. This is what was recalled in

Definition 5.1.2. The advantage of this definition is that it does not require working

with quaternion algebras; rather everything happens on the Hilbert modular variety

attached to the group GL2,F . This also makes it easy to see the relations between

these periods and the transcendental factors of Rankin–Selberg and triple product

L-functions attached to two (respectively, three) Hilbert modular forms.

The point of our work is to define periods attached to parallel weight one forms,

and relate them to rational structures on coherent cohomology. For dimension rea-

sons, one cannot simply use these rational structures directly to define periods.

Indeed, the proof of Lemma 5.1.1 relies on higher cohomology groups being one-

dimensional whereas the dimensions are greater than one for weight one forms (c.f.

Corollary 2.3.5). Instead, we give an ad hoc definition using logarithms of units, and

conjecture (Conjecture 5.3.2) a relationship to rational structures.

5.2 The action

To define the action of U∨f ⊗ C on coherent cohomology via partial complex con-

jugation operators, we first give an identification of this group with the trace zero

adjoint representation of f .

Lemma 5.2.1. For any Artin representation %0 : GL/Q → GL(M0) where M0 is an

E-vector space, there is a natural perfect pairing

(UL[%0]⊗ι C)× (M c0
0 ⊗ι C)→ C

(ϕ,m) 7→ log(|(τ ⊗ ι)(ϕ(m))|)
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which induces an isomorphism

UL[%0]∨ ⊗ C
∼=→M c0

0 ⊗ C.

Proof. This is a paraphrase of Proposition 3.1.5.

Proposition 5.2.2. Let % : G′ = GL/F → GL(M) be the Artin representation as-

sociated with a Hilbert modular newform of parallel weight one. We then have an

isomorphism:

θ∨C :
d⊕
j=1

(Ad0M ⊗ι C)cj
∼=→ U∨f ⊗ι C.

For each j, consider the element m1,j in (Ad0M)cj as in Corollary 3.3.2 and let

{ϕj} be the corresponding basis of Uf ⊗ E. Finally, let {u∨j } be the dual basis of

U∨f ⊗E. Then the matrix of the map θ∨C in these bases is the Stark regulator matrix

Rf = (log |ujk|)j,k (c.f. Definition 3.4.1).

Proof. The result is obtained by applying Lemma 5.2.1 to %0 = IndGG′ Ad0 % and

recalling that M c0
0
∼=

⊕
σ∈G/G′

(
Ad0M

)σc0σ−1

by the proof of Corollary 3.3.2. The

explicit description of the map is given by the second part of Corollary 3.3.2.

Remark 5.2.3. Note that both U∨f ⊗ιC and (Ad0M⊗ιC)cj have natural E-rational

structures U∨f ⊗Ef and (Ad0M ⊗Ef )cj but the above isomorphism does not respect

them. The rational structures differ by the Stark regulator matrix.

Definition 5.2.4. We define the action of
d⊕
j=1

(Ad0M ⊗ι C)cj on H∗(XC, E1,1)f by

letting m1,j act by

H i(XC, E1,1)f → H i+1(XC, E1,1)f

ωIf 7→


ωI∪{σj} σj 6∈ J

0 σj ∈ J.
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This defines a graded action of
∧∗ d⊕

j=1

(Ad0M ⊗ι C)cj on H∗(XC, E1,1)f such that

H∗(XC, E1,1)f is generated in degree 0 by f ∈ H0(X, E1,1)f .

5.3 The conjectures

Recall that Proposition 5.2.2 defined an isomorphism:

(5.3.1) θ∨C :
d⊕
j=1

(Ad0M ⊗ι C)cj
∼=→ U∨f ⊗ι C

and Definition 5.2.4 described an action of the latter group on coherent cohomology.

We conjecture that the resulting action of U∨f ⊗ E is rational.

Conjecture 5.3.1. Fix embeddings τ : L → C and ι : E → C. Then the action

of U∨f ⊗ E ⊆ U∨f ⊗ι C on H∗(XC, E1,1)f via equation (5.3.1) and Definition 5.2.4

preserves the rational structure H∗(X, E1,1)f ⊗Ef E.

This is the analogue of the main conjecture of Prasanna–Venkatesh [60]. In Ap-

pendix VIII, we discuss the specific relation to their conjecture and justify why the

definition of the action is natural.

Next, we give a more explicit statement of rationality of cohomology classes, via

Propositon 5.2.2.

Conjecture 5.3.2. Let A = (aij) = R−1
f be the inverse of the Stark regulator matrix.

Then for j = 1, . . . , d, the cohomology classes

u∨i ? f =
n∑
i=1

aijω
σi
f ∈ H

1(XC, E1,1)f

belong to the rational subspace H1(X, E1,1)f ⊗ E. More generally, the rational coho-

mology classes in Hj(XC, E1,1)f are given by the entries of the vector:

(∧j A
)

ωJ1
f

...

ω
J
(dj)
f
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where J1, . . . , J(dj)
are the subsets of Σ∞ of order j. In particular, the cohomology

class

ωΣ∞
f

detRf

∈ Hd(XC, E1,1)f

is rational.

The final statement is equivalence to Stark’s conjecture 3.2.2 for Ad0 %f (Theo-

rem 6.1.1). Therefore, this conjecture may be interpreted as a refinement of Stark’s

conjecture in this case.

Remark 5.3.3. A previous version of this manuscript incorrectly assumed that the

Stark regulator matrix Rf is diagonal, which lead to a different rationality statement.

Example 5.3.4 (d = 1). Suppose d = 1, i.e. f is a modular form of weight one.

Then the conjecture simply asserts that:

(5.3.2)
ω∞f

log |τ(uf )|
∈ H1(X, E1,1)⊗ E

where uf ∈ UL is a unit associated with f . As far as we know, this conjecture

is new in this case. It gives an archimedean analogue of the main conjecture of

Harris–Venkatesh [31]. As we will see (Corollary 6.1.4), it is equivalent to Stark’s

conjecture 3.2.2 for Ad0 %f , and hence is true when the Fourier coefficients of f are

rational or when f has CM.

Example 5.3.5 (d = 2). Suppose d = 2, i.e. f is a Hilbert modular form of parallel

weight one for a real quadratic field F . Then there are four units u11, u12, u21, u22 ∈

UL ⊗ E associated with f and

Rf =

log |τ(u11)| log |τ(u12)|

log |τ(u21)| log |τ(u22)|

 .
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Its inverse is:

A =
1

detRf

 log |τ(u22)| − log |τ(u12)|

− log |τ(u21)| log |τ(u11)|

 .

Therefore, the rational classes in H1(XC, E1,1)f should be:

u∨1 ? f =
log |τ(u22)| · ω1

f − log |τ(u21)| · ω2
f

detRf

∈ H1(X, E1,1)f ⊗ E,(5.3.3)

u∨2 ? f =
− log |τ(u12)| · ω1

f + log |τ(u11)| · ω2
f

detRf

∈ H1(X, E1,1)f ⊗ E.(5.3.4)

We will give the following evidence for this:

(1) the determinant of this basis of H1(XC, E1,1)f ⊗E is rational, assuming Stark’s

conjecture 3.2.2 (Chapter VI),

(2) in base change cases, we give numerical evidence that the restrictions of these

cohomology classes to an embedded modular curve is rational (Chapter VII).

Finally, we expect the following class in H2(XC, E1,1)f to be rational:

(5.3.5) (u∨1 ∧ u∨2 ) ? f =
ωσ1,σ2

f

detRf

∈ H2(X, E1,1)f ⊗ E.

We prove this assertion in Corollary 6.1.3.

The goal of the next two sections is to present our evidence for Conjecture 5.3.1,

or rather its explicit version — Conjecture 5.3.2.



CHAPTER VI

Evidence: Stark’s Conjecture

In this section, we present the theoretical evidence for Conjecture 5.3.2. These

follow from results of Stark and Tate presented in Section 3.2.

6.1 Action of top degree elements

We show that Stark’s conjecture 3.2.2 for Ad0 %f is equivalent to the following con-

sequence of Conjecture 5.3.2. In particular, Theorem 3.2.4 implies this consequence

when f has rational Fourier coefficients.

Theorem 6.1.1. Let f be a parallel weight one Hilbert modular form and %f be the

associated Artin representation. Stark’s conjecture 3.2.2 for Ad0 %f is equivalent to

the statement:

(6.1.1) 〈f, f〉 ∼E× f 1/2
%,2 detRf ,

where f%,2 = 2a(%,2) is the Artin conductor at p = 2 of the trace 0 adjoint representa-

tion. In particular, equation (6.1.1) is true unconditionally if f has rational Fourier

coefficients.

Remark 6.1.2. We expect that the factor f
1/2
%,2 is rational; see Remark 6.1.10 for

more details. If we could prove this, we could remove “up to a possible factor of
√

2”

in the corollaries below.
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Before presenting the proof of Theorem 6.1.1, we give two corollaries.

Corollary 6.1.3. Stark’s conjecture 3.2.2 for the Artin representation Ad0 %f is

equivalent to the assertion that top degree elements, i.e. elements in
∧d U∨f ⊗E, act

rationally, up to a possible factor of
√

2. In particular, the latter is true if f has

rational Fourier coefficients.

Proof. Recall from Conjecture 5.3.2 that top degree elements act by

f 7→
ωΣ∞
f

detRf

.

Then: 〈
f%,

ωΣ∞
f

detRf

〉
SD

=
〈f, f〉
detRf

.

Since Hd(X, E1,1)f is one-dimensional and the Serre duality pairing is rational, the

rationality of
ωΣ∞
f

detRf
is equivalent to equation 6.1.1.

Corollary 6.1.4. Conjecture 5.3.1 is equivalent to Stark’s conjecture 3.2.2 for Ad0 %f

when F = Q, up to a possible factor of
√

2. Hence Conjecture 5.3.1 is true uncondi-

tionally when f has rational Fourier coefficients or complex multiplication.

Remark 6.1.5. We checked computationally (using the method of Collins [12])

that for a few modular forms f of weight one from Example 3.5.2, we have that

〈f, f〉 = 3 log(|ι(uf )|). This was already observed by Stark [71, pp. 91].

The proof of Theorem 6.1.1 requires 2 steps:

(1) relating L(1,Ad0 %f ) to 〈f, f〉,

(2) showing that f% is a square when % = Ind
GQ
GF

Ad0(%f ), so that f
1/2
% ∈ Q× (away

from 2).
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We will then conclude Theorem 6.1.1 from Proposition 3.4.2.

The relation of the adjoint L-value to the Petersson inner product was first ob-

served by Hida, based on the work of Shimura [67]. He also related the prime factors

of the quotient L(1,Ad(f))
〈f,f〉 to congruence primes of the modular form f [32, 32, 33].

This work was later generalized to Hilbert modular forms [34, 35, 25]. An integral

refinement of Conjecture 5.3.2 would hence have to account for congruence primes.

Theorem 6.1.6 ([35, Theorem 7.1]). Let f is a primitive Hilbert modular form of

weight (k, r), level N. Then

〈f, f〉 = |DF |m−1ΓF (k)NF/Q(N)2−2{k}+1π−d−{k}LS(1, f,Ad),

where

LS(s, f,Ad) =
∏
q∈S

Lq(NF/Q(q)−s)L(s, f,Ad),

S is a set of bad places, Lq(NF/Q(q)−s) are bad local factors, {k} =
∑
j

kj, and m is

an explicit integer which accounts for Hida’s unitarization [34, (4.2a), (7.1)].

For an automorphic proof relating L(1,Ad(f)) to 〈f, f〉, see [38, Prop. 6.6].

For parallel weight one Hilbert modular forms, this specializes to the following

result we will use.

Corollary 6.1.7. Suppose (k, r) = (1, 1). Then:

〈f, f〉 ∼E× π−2dL(1, f,Ad).

To finish the proof of Theorem 6.1.1, we need to check that f% is a square (away

from p = 2).

Proposition 6.1.8. Let πv be the local representation of GL2(Fv) associated with f

at a finite place v of F . When v lies above 2, assume that πv is not a theta lift from

a ramified quadratic extension. Then the adjoint conductor of πv is a square.
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Proof. It is enough to prove that the analytic conductors of the Rankin–Selberg

L-functions L(πv ⊗ π∨v , s) are squares. When πv is not supercuspidal, Jacquet’s

results [39] give explicit formulas for the local conductors (see, for example, [12,

Section 4.2]) and they are visibly squares.

We hence just need to show the conductor is a square at places v where πv is

supercuspidal. Suppose throughout the rest of the proof that F is a finite extension

of Qp and π is a supercuspidal representation of GL(2, F ). We write a(−) for the

valuation of the conductor of a representation and prove that a(π × π∨) is even.

Since π is supercuspidal, it is a theta lift of a character ξ of a quadratic extension

K/F [24, Theorem 7.4]. Then:

(6.1.2) a(π × π∨) = 2vF (dK/F ) + fK/F · a(ξ(ξ%)−1)

where dK/F is the discriminant of K/F , fK/F is the residue degree of K/F , and %

is the non-trivial element of Gal(K/F ). Indeed, if % is the Galois representation

corresponding to π via the local Langlands correspondence, then % = IndFK(χ) where

χ corresponds to ξ via class field theory, and hence

a(π × π∨) = a(%⊗ %∨)

= a(IndFK χ⊗ IndFK χ
−1)

= a(IndFK 1⊕ IndFK χ(χ%)−1)

= a(IndFK 1) + a(IndFK χ(χ%)−1)

= 2vF (dK/F ) + fK/F · a(χ(χ%)−1) [65, pp. 101]

= 2vF (dK/F ) + fK/F · a(ξ(ξ%)−1).

When K/F is unramified, fK/F = 2, so a(π × π∨) is even by equation (6.1.2).

Suppose that K/F is ramified and has residue characteristic different than 2. Let
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$ = $K , $F be uniformizers of K, F , respectively. Then $%
K = −$K . Also, since

fK/F = 1, OK/$K
∼= OF/$F . There is a filtration on the unit group UK

U0
K = UK , U i

K = 1 +$i
KOK for i ≥ 1

with quotients:

(6.1.3) U0
K/U

1
K
∼= (OK/$K)×, U i

K/U
i+1
K
∼= OK/$K .

We show that if ξ(ξ%)−1|U iK = 1 for i odd, then ξ(ξ%)−1|U i−1
K

= 1.

For i = 1, if ξ(ξ%)−1|U1
K

= 1, then ξ(ξ%)−1(x) for x ∈ UK depends only on

the residue class of x (equation (6.1.3)). We may hence assume x ∈ OF since

OK/$K
∼= OF/$F . Then

ξ(ξ%)−1(x) = ξ(x)ξ(x%)−1 = 1.

Similarly, for i > 1 odd, if (ξ(ξ%)−1)|U iK = 1, then ξ(ξ%)−1(1 +$i−1x) for x ∈ OK

depends only on the residue class of x (equation (6.1.3)). We may hence assume

x ∈ OF since OK/$K
∼= OF/$F . Then

ξ(ξ%)−1(1 + ωi−1
K x) = ξ(1 + ωi−1

K x)ξ(1 + (−ωK)i−1x%)−1 = 1.

Therefore, a(ξ(ξ%)−1) is even, which completes the proof.

Remark 6.1.9. The strategy in the proof of Proposition 6.1.8 gives an explicit

formula for a(π × π∨) in terms of a(ξ) when p 6= 2. For example, when K/F is

ramified:

a(π × π∨) =


a(ξ) + 2 if a(ξ) is even

a(ξ) + 1 if a(ξ) is odd.

A similar result was obtained by Nelson–Pitale–Saha [57, Proposition 2.5] when

F = Q and the central character of πv is trivial.
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It would be interesting to compare these formulas with the ones given in [8], but

we have not attempted to do this.

Remark 6.1.10. In fact, Nelson–Pitale–Saha [57] prove that the adjoint conductor

is always a square when F = Q and f has trivial Nebentypus. We expect that the

adjoint conductor is a square also in our more general setting. However, proving

this would require a careful analysis of dyadic representations [7, Chapter 12] and

we decided not to pursue it here.

We are finally ready to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. By construction of %f [62],

L(1, f,Ad) = L(1,Ad0 %f ).

Then, by Corollary 6.1.7, we have that

〈f, f〉 = 〈f%, f%〉 ∼E× π−2dL(1,Ad(f), ι) = π−2dL(1,Ad0 %f , ι).

By Proposition 3.4.2, Stark’s conjecture for Ad0 %f is equivalent to the statement:

L(1,Ad0 %f , ι) ∼E×
π2d

f
1/2
%

· detRf .

Putting these together and noting that W (%) = ±1 and f% is a square away from

p = 2 (Proposition 6.1.8) gives the result.

6.2 Further evidence

We now present further evidence for the conjecture which may be deduced from

Stark’s conjecture 3.2.2.

We first observe that we have an algebraic operation given by complex conjugation.

Recall that the vector space H |J |(X, Ek(J),r) is defined over the field F (k(J)) ⊆ F
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which is totally real, and hence H |J |(X, Ek(J),r) ⊗F (J) C ∼= H |J |(XC, Ek(J),r) has an

action of complex conjugation F∞. By definition, it preserves the rational structure

H |J |(X, Ek(J),r).

Lemma 6.2.1. The complex conjugation F∞ : H |J |(XC, Ek(J),r) → H |J |(XC, Ek(J),r)

is given on the basis ωIf where |I| = |J | and k(I) = k(J) by

ωIf 7→ ωIf% ,

where f%(z) = f(−z) is Shimura’s complex conjugation. In particular, on f -isotypic

subspaces, it defines a map:

F∞ : H |J |(X, Ek(J),r)f → H |J |(X, Ek(J),r)f% .

Proof. This is a paraphrase of an observation of Harris [28, pp. 164].

Proposition 6.2.2. There is an E-linear isomorphism Uf ∼= Uf%. In particular,

Conjecture 5.3.2 for f is equivalent to Conjecture 5.3.2 for f%.

Proof. The first assertion follows from the observation that %∨f
∼= %f = %f% , so we can

realize Ad0 %f ⊆ %f ⊗ %f% . Since %f ⊗ %f% ∼= %f% ⊗ %f , we have that Ad0 %f ∼= Ad0 %f% .

This induces an isomorphism Uf ∼= Uf% .

Next, recall that we have a Serre duality pairing (5.1.3):

(6.2.1) 〈−,−〉SD : H |J |(X, Ek(J),r)f ⊗H
|Σ∞\J |

(X, Ek(Σ∞\J),r)f% → E(J)

which is E(J)-rational. We modify it slightly to replace f% with f via Lemma 6.2.1.

Definition 6.2.3. We define a pairing

〈−,−〉 : Hj(X, E1,1)f ×Hd−j(X, E1,1)f → E×

by 〈−,−〉 = 〈−, F∞(−)〉SD.
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Proposition 6.2.4. Assume Stark’s conjecture 3.2.2. Conjecture 5.3.2 in cohomo-

logical degree j if equivalent to Conjecture 5.3.2 in cohomological degree d− j (up to

a factor of
√

2).

Proof. Recall that Conjecture 5.3.2 in cohomological degree j states that the ele-

ments:

(∧j A
)

ωJ1
f

...

ω
J
(dj)
f


give a rational basis of Hj(X, E1,1)f . Let us assume that this is true and prove that

the elements

(∧d−j A
)


ωJ1
f

...

ω
J
( d
d−j)

f


are rational in Hd−j(X, E1,1)f . It is enough to check that each of these classes pair

rationally with the classes in Hj(X, E1,1)f using the pairing 〈−,−〉. Note that the

pairing 〈−,−〉 is induced by cup product and

〈ωJf , ωJ
′

f 〉 =


±〈f, f〉 if J ′ = Σ∞ \ J,

0 otherwise.

Since A = R−1
f and 〈f, f〉 ∼E× f

1/2
%,2 detRf by Theorem 6.1.1, this completes the

proof.

Now, suppose that j = d−j, i.e. d = 2j is even and we consider the middle degree

sheaf cohomology. Definition 6.2.3 then gives a non-degenerate bilinear pairing

〈−,−〉 : Hj(X, E1,1)f ⊗Hj(X, E1,1)f → E
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which satisfies:

〈ω1, ω2〉 = (−1)j〈ω2, ω2〉.

Proposition 6.2.5. Suppose d = 2j is even. Consider the basis of Hj(XC, E1,1)f

given by the entries of the vector

(∧j A
)

ωJ1
f

...

ω
J
(dj)
f

 ,

ordered so that the pairs ωJf and ω
Σ∞\J
f are consecutive. Then the of the pairing

〈−,−〉 ⊗ C is block-diagonal with 2× 2 blocks given by 0 ∗

(−1)j∗ 0

 .

Moreover, assuming Stark’s conjecture 3.2.2, we have that ∗ ∈ E[
√

2]×.

Proof. This follows from the same arugment as the proof of Proposition 6.2.4.

Corollary 6.2.6. When d = 2, we showed in Example 5.3.5 that Conjecture 5.3.2

predicts that

u∨1 ? f =
log |τ(u22)| · ω1

f − log |τ(u21)| · ω2
f

detRf

∈ H1(X, E1,1)f ⊗ E,

u∨2 ? f =
− log |τ(u12)| · ω1

f + log |τ(u11)| · ω2
f

detRf

∈ H1(X, E1,1)f ⊗ E.

Assuming Stark’s conjecture 3.2.2, the determinant of this basis lies in E[
√

2]×.

Proof. Suppose that ω1, ω2 is a rational basis of H1(X, E1,1)f ⊗ E and

ω1 = au∨1 ? f + bu∨2 ? f

ω2 = cu∨1 ? f + du∨2 ? f
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for some a, b, c, d ∈ C. Then:

〈ω1, ω2〉 = 〈au∨1 ? f + bu∨2 ? f, cu
∨
1 ? f + du∨2 ? f〉

= (ad− bc)〈u∨1 ? f, u∨2 ? f〉,

showing that ad − bc ∈ E[
√

2]× by Proposition 6.2.5, assuming Stark’s conjec-

ture 3.2.2. Finally, this shows that (u∨1 ?f)∧ (u∨2 ?f) = ω1∧ω2

ad−bc is E[
√

2]×-rational.



CHAPTER VII

Evidence: Base Change Forms

Let F0 be a totally real number field and consider a totally real extension F of

F0. Any Galois representation of GQ/F0
may be restricted to a Galois representation

GQ/F . Hence, according to Langlands’ functoriality conjecture, for any automorphic

representation π0 of ResF0/Q GL2,F0 , there exists an associated base change represen-

tation π of ResF/Q GL2,F , written π = BCF
F0
π0. This is discussed in detail and proved

when F/F0 is a cyclic Galois extension in [47]. See also [1].

We now make the following definition.

Definition 7.0.1. A Hilbert modular form f for F is a base change form from F0, if

the associated automorphic representation π is equal to BCF
F0
π0 for some automorphic

representation π0.

Of course, this leaves the following question: given a Hilbert modular form f0 ∈ π0,

how to choose an explicit Hilbert modular form f ∈ π = BCF
F0
π0? As far as we know,

there is no canonical choice of f in this generality.

When F is a real quadratic extension of F0 = Q and the weight of f0 is at least

two, one can define f as a theta lift of f0, called the Doi–Naganuma lift. The reader

can consult [20, 53, 80] for the original results and [58, Ch. III] or [76, Ch. VI.4] for

an overview. In examples below, we will primarily be interested in cases where the

91
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level of f0 is coprime to the discriminant of F ; such cases were treated by Kumar–

Manickam [45]. When f0 has weight one, we are not aware of an explicit construction

of the base change of f0 to a real quadratic extension in the literature. We expect

these forms can be constructed using the theta correspondence as above.

We will instead satisfy ourselves with the fact that these forms exist according to

the Strong Artin Conjecture, which is known in several relevant cases [41, 42].

Definition 7.0.2. Let f0 be a normalized parallel weight one Hilbert modular eigen-

form for F0 and %0 be the associated Artin representation. The base change of f0 to F

is the normalized parallel weight one Hilbert modular eigenform f whose associated

Galois representation is %f = ResGQ/F
%0.

The goal of this section is to consider Conjecture 5.3.2 for base change forms.

We compute Stark units for base change forms, give a more explicit from of the

conjecture in this case, and provide numerical evidence for it in the case of real

quadratic extensions.

7.1 Stark units for base change forms

For a Hilbert modular form f which is the base change of f0, we want to relate

the unit groups Uf and Uf0 . We fix a common splitting field L which is Galois over

Q. We denote the three Galois groups by:

G = GL/Q ⊇ G′0 = GL/F0 ⊇ G′ = GL/F .

If %0 : G′0 → GL2(E) is the Artin representation associated with f0, then the Artin

representation % associated with f is % = Res
G′0
G′ %0 by our definition of base change

forms.

The goal of this section is to discuss the relation between the Stark unit groups

and regulators for f and f0.
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Proposition 7.1.1.

(1) We have a natural isomorphism:

Uf ∼= UL[Ad0 %0 ⊗ P ],

where P is the permutation representation of G′0 on the cosets G′0/G
′.

(2) In particular, if we consider the G′0-invariant subrepresentation

P0 = span

 ∑
σG′∈G′0/G′

σG′

 ⊆ P,

then

Uf0
∼= UL[Ad0 %0 ⊗ P0] ⊆ Uf .

Proof. Part (2) clearly follows from part (1), so we just prove part (1). We have that:

Uf = HomG′(Ad0 %,ResGG′ UL)

= HomG′(Res
G′0
G′ Ad0 %0,ResGG′ UL)

= HomG(IndGG′ Res
G′0
G′ Ad0 %0, UL)

= HomG(IndGG′0(Ad0 %0 ⊗ P ), UL),

= HomG′0
(Ad0 %0 ⊗ P,UL)

as claimed. The penultimate equality follows form the following fact from represen-

tation theory: if K ⊆ H ⊆ G and V is a representation of H, then

IndGK ResHK V
∼=
⊕
g∈G/K

g(ResHK V )

∼=
⊕
g∈G/H

⊕
h∈H/K

gh(ResHK V )

∼=
⊕
g∈G/H

g(V ⊗ P ) g(hv) 7→ g(h · v ⊗ h)

∼= IndGH(V ⊗ P )
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where P is a permutation representation of H on the cosets H/K.

Suppose now that F0 = Q for simplicity.

Proposition 7.1.2.

(1) Let f be the base change of a modular form f0 of weight one. Then the units

ufjk associated with f as in Definition 3.4.1 are given by:

ufjk =
∏
σ′∈G′

(ε(σkσ
′σ−1
j )−1

)a
0(σkσ

′σ−1
j )11 ,

where a0(σ) is the matrix of Ad0 %0(σ) in the basis mi,0.

(2) For any j, we have that
d∏

k=1

ufjk = uf0 .

In particular,

Rf


1

...

1

 = log |uf0|


1

...

1

 .

Proof. For part (1), we may take Mj = Ad0 %0(σj) for j = 1, . . . , d in Corollary 3.3.2

to get this expression for ufjk. Part (2) then follows from Proposition 7.1.1 (2).

Corollary 7.1.3. Suppose [F : Q] = 2. Let uf0 be the unit associated with f0 and

uFf0
be the unit associated with the Artin representation Ad0 %0 ⊗ ωF/Q, where ωF/Q

is the quadratic character associated with the extension F/Q. Then:

u11 · u12 = uf0 ,(7.1.1)

u21 · u22 = uf0 ,(7.1.2)

u11 · u−1
12 = uFf0

,(7.1.3)

u−1
21 · u22 = uFf0

.(7.1.4)
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In particular,

(7.1.5)

Rf =

log |u11| log |u12|

log |u21| log |u22|

 =

1 −1

1 1


log |uf0| 0

0 log |uFf0
|


1 −1

1 1


−1

.

Proof. Fix representatives σ1, σ2 of G/G′ and assume that σ1 ∈ G′. Then the per-

mutation representation P of G on G′/G decomposes as

P ∼= Q(σ1 + σ2)⊕Q(σ1 − σ2).

Therefore,

Uf ∼= Uf0 ⊕ UL[Ad0 %0 ⊗ ωF/Q]

by Proposition 7.1.1. Tracing through this isomorphism under the chosen bases, we

obtain equations (7.1.1)–(7.1.4) and the resulting equation (7.1.5).

7.2 Consequences of Conjecture 5.3.2

Recall that we can use the matrix R−1
f to predict which cohomology classes in

H1(XC, E1,1) are rational. When f is the base change of a modular form f0, Propo-

sition 7.1.2 (2) implies that:

R−1
f


1

...

1

 =
1

log |uf0|


1

...

1

 .

Therefore, the following is a consequence of Conjecture 5.3.2.

Conjecture 7.2.1. Suppose f is the base change of a modular form f0 of weight

one. Then the cohomology class

1

log |uf0|

d∑
j=1

ω
σj
f ∈ H

1(X, E1,1)f

is rational.
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When [F : Q] = 2, Corollary 7.1.3 gives the following stronger rationality state-

ment.

Conjecture 7.2.2. Suppose [F : Q] = 2 and f is the base change to F of a modular

form f0 of weight one. Then a rational basis for H1(X, E1,1)f is given by:

ωσ1
f + ωσ2

f

log |uf0|
,

ωσ1
f − ω

σ2
f

log |uFf0
|
.

In light of Corollary 6.1.3, this is equivalent to Conjecture 5.3.1.

7.3 Embedded Hilbert modular varieties

To check if Conjecture 5.3.2 is compatible with base change, we consider the

Hilbert modular variety for F0 embedded in the Hilbert modular variety for F .

We will write d = [F : F0] and d′ = [F0 : Q]. Let τ1, . . . , τd′ be the infinite places

of F0. Above each place τi, there are d infinite places σi,j for j = 1, . . . , d of F . We

write ζi, i = 1, . . . , d′, for the variables on H⊗ F0 and zi,j, i = 1, . . . , d′, j = 1, . . . , d

for the variables on H⊗ F . Here ζi corresponds to τi and zi,j corresponds to σi,j.

We write X0 and X for the Hilbert modular varieties associated with F0 and F ,

respectively. There is a natural embedding

ι : X0 ↪→ X.

Over C, it descends from the map

H⊗ F0 ↪→ H⊗ F

(ζ1, . . . , ζd′) 7→ (ζ1, . . . , ζ1, ζ2, . . . , ζ2, ζd′ , . . . , ζd′),

i.e. the subvariety is given by the equation zi,j = ζi for all i, j.

We are interested in the restriction map

H i(X, E1,1)
ι∗→ H i(X0, Ed,d).
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Particularly, we defined a class ωJf ∈ HI(X, E1,1) associated with f ∈ H0(X, E1,1)

which is represented by

(7.3.1) ωJf (z) = f(zJ) · yJ ·
∧

σi,j∈J

dzi,j ∧ dzi,j
y2
i,j

as a Dolbeault class, and we consider ι∗(ωJf ).

Lemma 7.3.1. If J contains σi,j and σi,j′ for j 6= j′,

ι∗(ωJf ) = 0.

Proof. This follows immediately from the expression (7.3.1) and the identity zi,j = ζi

on X0.

Let us assume that J only contains at most one σi,j for each i, so that it is possible

that ι∗(ωJf ) is non-zero.

The following conjecture is a consequence of Conjecture 5.3.2.

Conjecture 7.3.2. Let A = (aij) = R−1
f be the inverse of the Stark regulator matrix.

Then for all j = 1 . . . , d:

n∑
i=1

aijι
∗(ωσif ) ∈ H |I|(X0, Ed,d)⊗ E ⊆ H |I|((X0)C, Ed,d)⊗ E.

Note that it is possible that ι∗(ω
σj
f ) = 0 for all j in which case this conjecture is

void. In fact, we expect that ι∗(ω
σj
f ) = 0 if f is not a base change form from F0 (see

Proposition 7.4.3 for an example of this phenomenon).

7.4 The case of real quadratic extensions

We finally restrict our attention to real quadratic extensions F/Q. In the previous

notation, F0 = Q and d = 2. We denote by z1, z2 (instead of z1,1, z1,2) the variables

on XC and by z (instead of ζ1) the variable on (X0)C.
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Let f be a holomorphic Hilbert modular form of parallel weight (k, k) and consider

ωσ1
f ∈ H1(Xan

C , Ean
(2−k,k)), locally given by:

(7.4.1) ωσ1
f (z1, z2) = f(ε1z1, ε2z2)yk1

dz1 ∧ dz1

y2
1

.

There are embedded modular curves ι : C ↪→ X in the Hilbert modular surface,

studied extensively by Hirzebruch–Zagier [36]. We only consider the simplest exam-

ple which is obtained by considering the map:

ι : Can
C ↪→ Xan

C

z 7→ (z, z)

over C which descends to varieties over Q. Via this map,

ι∗(Ean
(2−k,k))

∼= Ean
2
∼= Ω1,an

C (∞)

by the Kodaira–Spencer isomorphism, where (∞) indicates that differentials are

allowed to have poles of orders at most one at the cusps. Hence:

ι∗(ωσ1
f )(z) = f(ε1z, ε2z)yk

dz ∧ dz
y2

defines a class in H1(Can
C ,Ω

1,an
C (∞)). Via the trace map, we have:

Tr : H1(Can
C ,Ω

1,an
C (∞))

∼=→ C,

ι∗(ωσ1
f )(z) 7→

∫
Can

C

f(ε1z, ε2z)yk
dz ∧ dz
y2

,

and the isomorphism respects rational structures.

Lemma 7.4.1. For a Hilbert modular form of weight (k, k), ι∗(ωσ1
f ) = (−1)k+1ι∗(ωσ2

f ).

Proof. It suffices to check that Tr(ι∗(ωσ1
f )) = Tr(ι∗(ωσ2

f )). This follows by a change
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of variables:

Tr(ι∗(ωσ1
f )) =

∫
Can

C

f(ε1z, ε2z)yk
dz ∧ dz
y2

= −
∫
Can

C

f(−ε1z,−ε2z)yk
dz ∧ dz
y2

= (−1)k+1

∫
Can

C

f((−ε−1
1 )z, (−ε−1

2 )z)yk
dz ∧ dz
y2

1

ε2

 ∈ Γ, N(ε) = −1

= (−1)k+1 Tr(ι∗(ωσ2
f )),

as claimed.

Putting this together with Conjectures 7.2.2 and 7.3.2, we get the following con-

jecture.

Conjecture 7.4.2. Let f be the base change of a weight one modular form f0. Then:∫
Can

C

f(ε1z, ε2z)yk
dz ∧ dz
y2

∼E× log |uf0|.

For k ≥ 2 and full level, these integrals were considered by Asai [3]. The following

result was also obtained by Oda [58]. See also [76, Proposition (VI.7.9)].

Proposition 7.4.3 ([58, Theorem 16.5]). Suppose f is a Hilbert modular form of

parallel weight k ≥ 2 and level one. If f is not a base change form, then∫
Can

C

f(ε1z, ε2z)yk
dz ∧ dz
y2

= 0.

Otherwise, if f is the Doi–Naganuma lift of a modular form g of weight k ≥ 2, level

D = disc(F/Q), and character ωF/Q, then there is a constant c ∈ Q× such that

(7.4.2)

∫
Can

C

f(ε1z, ε2z)yk
dz ∧ dz
y2

= c
〈f, f〉
〈g, g〉

.
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Remark 7.4.4. The proof of Proposition 7.4.3 in loc. cit. uses the explicit realization

of f as a Doi–Naganuma lift of a modular form g, which is currently not available in

the literature for weight one forms. If an appropriate analogue of Proposition 7.4.3

holds for a weight one forms f0 of arbitrary weight, level, and character, then we

expect that Stark’s conjecture 3.2.2 implies Conjecture 7.4.2 for base change forms

of f0 to a real quadratic fields.

Verifying the details of this would take us too far afield, so we will pursue this else-

where. Instead, in the next section we describe some explicit numerical computations

that support Conjecture 7.4.2.

We end this section by proving that Conjectures 7.2.2 and 7.4.2 are equivalent for

base change forms, as long as ι∗(ωσ1
f ) 6= 0.

Proposition 7.4.5. Let f be the base change of a weight one modular form f0.

Assume:

(1) Stark’s conjecture for the adjoint representation associated with f ,

(2) ι∗(ωσ1
f ) 6= 0,

Then Conjecture 7.2.2 for f is equivalent to Conjecture 7.4.2 for f , up to a potential

factor of
√

2.

Proof. Clearly, Conjecture 7.2.2 implies Conjecture 7.4.2. We will prove the converse.

Consider the algebraic map ϕ : X → X given on XC → XC by (z1, z2) 7→ (z2, z1).

By examining the proof of Theorem 2.3.3, one can deduce that if f is a base change

form, then ϕ preserves f -isotypic components of coherent cohomology and hence

induces a map:

ϕ∗ : H1(X, E1,1)f → H1(X, E1,1)f .
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Clearly, ϕ∗C(ωσ1
f ) = ωσ2

f and ϕ∗C(ωσ2
f ) = ωσ1

f . Letting

ω± = ωσ1
f ± ω

σ2
f ,

we see that ϕ∗C(ω±f ) = ±ω±f . Hence ω±f are eigenvectors for the linear map ϕ∗C with

distinct eigenvalues, and so there exist λ± ∈ C such that:

λ±ω± ∈ H1(X, E1,1)f .

We have a rational functional Tr ◦ι : H1(X, E1,1)f ⊗ E → E such that:

(Tr ◦ι)(λ+ω+) ∼E× λ+

∫
Can

C

ι∗(ωσ1
f ), (Tr ◦ι)(λ−ω−) = 0

by Lemma 7.4.1. Conjecture 7.4.2 then shows that we may take

λ+ =
1

log |uf0|
.

Finally, by Corollary 6.2.6, we know that the determinant of the basis

ω+

log |uf0|
,

ω−

log |uFf0
|

is E[
√

2]-rational, and hence

λ+ · λ− ∼E[
√

2]×
1

log |uf0| · log |uFf0
|
,

showing that we may take λ− = 1
log |uFf0 |

.

Remark 7.4.6. The idea to use the map ϕ was communicated to us by the referee

for a previous version for this manuscript. We thank them for this suggestion.

Remark 7.4.7. We expect that the condition (2) in Proposition 7.4.5 (i.e. ι∗(ωσ1
f ) 6=

0) is equivalent to the character χ0 of f0 being quadratic. One implication is

clear: ι∗(ωσ1
f ) transforms by the character χ2

0 under the action of Γ0(N), and hence



102

Tr(ι∗(ωσ1
f )) = 0 unless χ2

0 = 1. Conversely, if χ2
0 = 1, then the global analogue of

Jacquet’s conjecture [40, 59] implies that the automorphic representation π generated

by f contains a non-zero GL2(AQ)-invariant functional. We predict that f 7→ ι∗(ωσ1
f )

is this functional, i.e. ι∗(ωσ1
f ) 6= 0.

Finally, we expect that Proposition 7.4.5 has a refinement when χ2
0 6= 1. If ω0 is

the character of A×Q corresponding to χ0 by class field theory and ω̃0 is its extension to

A×F (which always exists), then Jacquet’s conjecture predicts that the representation

π ⊗ ω̃0
−1 has a non-zero GL2(AQ)-invariant functional. One could hope to translate

this to a classical statement analogous to Conjecture 7.4.2.

7.5 Computing the integrals numerically

The next goal is to provide numerical evidence of Conjecture 7.4.2, i.e. check that

(7.5.1)

∫
Can

C

f(ε1z, ε2z)y
dz ∧ dz
y2

∼E× log |uf0|.

We will assume that χ2
0 = 1 (c.f. Remark 7.4.7), and hence the integral may be taken

over Γ0(N)\H instead of Γ1(N)\H. Indeed, equation (7.5.1) is equivalent to:

(7.5.2)

∫
Γ0(N)\H

f(ε1z, ε2z)y
dz ∧ dz
y2

∼E× log |uf0|,

because the two integrals differ by a factor of ϕ(N).

We first derive a formula (Theorem 7.5.4) for the integral on the left hand side

using Nelson’s technique [56] for evaluating integrals on modular curves.

Let Γ ⊆ SL2(Z) be a finite index subgroup and let F : Γ\H → C be a Γ-invariant

function on the upper half plane H. Suppose we have its q-expansions, i.e. for all

τ ∈ SL2(Z), we have

(7.5.3) F (τz) =
∑
n∈Q

aF (n, y; τ)e(nx)
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where e(nx) = e2πinx.

Theorem 7.5.1 ([56, Theorem 5.6]). Suppose F is bounded, measurable, and satisfies

F (τz) � y−α for some fixed α > 0, almost all z = x + iy with y ≥ 1, and all

τ ∈ SL2(Z). Then for 0 < δ < α we have that:∫
Γ\H

F (z)
dxdy

y2
=

∫
(1+δ)

(2s− 1)2ξ(2s)
∑

τ∈Γ\ SL2(Z)

aF (0, ·; τ)∧(1− s) ds

2πi

where

ξ(2s) =
Γ(s)

πs
ζ(2s),

aF (0, ·; τ)∧(1− s) =

∞∫
0

aF (0, y; τ)ys−1 dy

y
.

Applying this to F (z) = f0(z) · f0(z) · yk gives an explicit expression for the

Petersson inner product 〈f0, f0〉.

Corollary 7.5.2 (Nelson, [12, Theorem 4.2]). Suppose f0 is a cusp form in Sk(N,χ).

For a cusp s, let
∑
n

an,sq
n be the q-expansion at∞ of f0|[τs,h]k, where τs,h = τs

hs 0

0 1


and τs∞ = s. Then we have that:

〈f0, f0〉 =
4

vol(Γ\H)

∑
s∈Γ\P1(Q)

hs,0
hs

∞∑
m=1

|am,s|2

mk−1

∞∑
n=1

( x
8π

)k−1

(xKk−2(x)−Kk−1(x)),

where x = 4πn
√

m
hs

, Kv is a K-Bessel function, hs,0 is the classical width of the cusp

s, and hs is the width described in [12, Lemma 2.1].

Remark 7.5.3. An algorithm to compute these Petersson inner products was de-

veloped and implemented by Collins [12, Algorithm 4.3].

The goal for this section is to prove the following theorem, which is an explicit

form of Theorem 7.5.1 in our case.
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Recall that for α ∈ SL2(OF ), we write αi = σi(α) and

f |[α]k(z1, z2) = f(α1z1, α2z2)j(α1, z1)−k1j(α2, z2)−k2

where

j(g, z) = det(g)−1/2(cz + d).

By definition, if f is a Hilbert modular form of weight (k1, k2) and level Γ and

character χ, then f |[α]k = χ(d) · f for α =

a b

c d

 ∈ Γ.

Theorem 7.5.4. Let f be a normalized parallel weight k Hilbert modular newform

of level N and character χ. For each cusp s ∈ P1(Q)/Γ0(N), let τ ∈ SL2(Z) satisfy

τ∞ = s. Let hs be the width of the cusp as described in [12, Lemma 2.1], and

τ ε =

ε 0

0 1

 τ

ε 0

0 1


−1

,

τ εh = τ ε

hs 0

0 1

 .

If
∑
m�0

a(m),sq
m is the q-expansion of f |[τ εh]k at ∞, then

∫
Γ0(N)\H

f(ε1z, ε2z)yk
dz ∧ dz
y2

=4
∑
s

hs,0
hs

∞∑
m=1

a(m),s

(m/
√
d)k−1

·

·
∞∑
n=1

( x

23−iπ

)k−1

(xKk−2(x)−Kk−1(x))

where x = 22−i/2πn
√

m
hs
√
d

and hs,0 is the classical width of the cusp s, and i = 0 if

d ≡ 1 (4) or i = 1 if d ≡ 3 (4).

Remark 7.5.5. This formula is very similar to the formula for 〈f0, f0〉 in Corol-

lary 7.5.2. We can hence adapt the algorithm [12, Algorithm 4.3] to compute the

integral. The computation of q-expansions of f at other cusps given the q-expansion

at ∞ is discussed in the next section (7.6).
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We devote the rest of this section to the proof of this theorem. We want to apply

Theorem 7.5.1 to the function

(7.5.4) F (z) = F σ1
f (z) = f(ε1z, ε2z) · yk

where f is a Hilbert modular form of parallel weight k.

We will need q-expansions of F (z) at other cusps, i.e. q-expansions of F (τz)

for τ ∈ SL2(Z), as in equation (7.5.3). The idea is to express them in terms of

q-expansions at ∞ of another Hilbert modular form.

Lemma 7.5.6. Suppose f is a Hilbert modular form of weight (k, k). For a cusp s,

let τ ∈ SL2(OF ) be such that τ∞ = s and set

τ ε =

ε 0

0 1

 τ

ε 0

0 1


−1

.

Then we have that:

F σ1
f (τz) = F σ1

f |[τε]k(z).

Proof. For τ ∈ SL2(Z), we have that:

f(ε1(τz1), ε2(τz2)) = f

∣∣∣∣

ε 0

0 1

 τ


k

(z1, z2) · (NF/Q(ε))−k/2 · j(τ, z1)kj(τ, z2)k

= f

∣∣∣∣
τ ε

ε 0

0 1



k

(z1, z2) · (NF/Q(ε))−k/2 · j(τ, z1)kj(τ, z2)k

= f |[τ ε]k(ε1z1, ε2z2) · j(τ, z1)kj(τ, z2)k.
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Therefore,

F σ1
f (τz) = f(ε1(τz), ε2(τz)) · (Im(τz))k

= f |[τ ε]k(ε1z, ε2z) · |j(τ, z)|2k · (Im(τz))k

= f |[τ ε]k(ε1z, ε2z) · Im(z)k

= Ff |[τε]k(z),

since Im(τz) = |j(τ, z)|−2y.

Lemma 7.5.7. For a cusp s, consider τ ∈ SL2(Z) such that τ∞ = s. Let hs be the

width of cusp s (as in [12, Lemma 2.1]) and

τ εh = τ ε

hs 0

0 1

 .

The q-expansion coefficients of F (τz) (as in equation (7.5.3)) are given by

aF (n/hs, y; τ) = (y/hs)
k ·

∑
m�0

Tr(εm)=n

a(m),s · e−2π(ε2m2/δ2−ε1m1/δ1)y/hs ,

where a(m),s are Fourier coefficients of f |[τ εh]k. In particular,

aF (0, y; τ) = (y/hs)
k ·

∞∑
m=1

a(m),s · e−2π 21−im√
d

(y/hs)

where i = 0 if d ≡ 1 (4) and i = 1 if d ≡ 3 (4).

Proof. We write h = hs for simplicity. Suppose the q-expansion of f |[τ εh]k is:

f |[τ εh]k(z1, z2) =
∑
m�0

a(m),sq
m/δ.

Then:

f |[τ ε]k(z1, z2) = h−k
∑
m�0

a(m),sq
m/(δh).
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By Lemma 7.5.6,

F (τz) = f |[τ ε]k(ε1z, ε2z) · yk

= (y/h)k
∑
m∈O+

F

a(m),s · e2πi(ε1m1/δ1(z/h)+ε2m2/δ2(z/h))

= (y/h)k
∑
m∈O+

F

a(m),s · e−2π(ε2m2/δ2−ε1m1/δ1)(y/h)e2πi(Trεm/δ)(x/h)

= (y/h)k
∑
n∈Z

 ∑
m∈O+

F
Tr(εm/δ)=n

a(m),s · e−2π(ε2m2/δ2−ε1m1/δ1)(y/h)

 e((n/h)x).

Hence

aF (n/h, y; τ) = (y/h)k ·
∑
m�0

Tr(εm/δ)=n

a(m),s · e−2π(ε2m2/δ2−ε1m1/δ1)(y/h),

and in particular,

aF (0, y; τ) = (y/h)k ·
∑
m�0

Tr(εm/δ)=0

a(m),se
−2π(ε2m2/δ2−ε1m1/δ1)(y/h).

To make this last formula more explicit, we write m = α+ β
√
d. We may choose

δ = 2i
√
d · ε to be the totally positive generator of the different ideal. Then

εm/δ =
β

2i
+

α

2id

√
d.

If Tr(εm/δ) = 0, then β = 0, so m = α ∈ Z>0. Moreover:

ε2m2/δ2 − ε1m1/δ1 =
21−im√

d
.

We may hence rewrite the above sum as

aF (0, y; τ) = (y/h)k ·
∞∑
m=1

a(m),s · e−2π 21−im√
d

(y/h)
,

proving the lemma.
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We finally complete the proof of Theorem 7.5.4.

Proof of Theorem 7.5.4. We will apply Theorem 7.5.1 to the invariant function F (z) =

F σ1
f (z). By Lemma 7.5.7,

aF (0, y; τ) = (y/hs)
k ·

∞∑
m=1

a(m),s · e−2π 21−im√
d

(y/hs).

Hence:

aF (0, ·; τ)∧(1− t) =

∞∫
0

aF (0, y; τ) yt−1 dy

y
.

=
∞∑
m=1

a(m),s

∞∫
0

e
−2π 21−im√

d
(y/hs) yt−1 (y/hs)

k dy

y

=
∞∑
m=1

a(m),sh
−k
s

∞∫
0

e
−2π 21−im

hs
√
d
y
yt+k−1 dy

y

=
∞∑
m=1

a(m),sh
−k
s

Γ(t+ k − 1)

(2π 21−im
hs
√
d

)t+k−1

=
∞∑
m=1

a(m),s

(22−iπm/
√
d)k−1hs

Γ(t+ k − 1)

(22−iπ m
hs
√
d
)t
.

According to [56, Lemma A.4]:∫
(1+δ)

(t− 1/2)
Γ(t)Γ(t+ ν)

(x/2)2t+ν

dt

2πi
= xKν−1(x)−Kν(x)

for ν ∈ C with Re(ν) ≥ 0.
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By Theorem 7.5.1,∫
Γ\H

F (z)
dxdy

y2
=

∫
(1+δ)

(2t− 1)2ξ(2t)
∑
τ

aF (0, ·; τ)∧(1− t) dt

2πi

= 4
∑
s

hs,0

∞∑
m=1

a(m),s

(22−iπm/
√
d)k−1hs

·

·
∞∑
n=1

∫
(1+δ)

(t− 1/2)
Γ(t)Γ(t+ k − 1)

(22−iπ2 m
hs
√
d
)t

1

n2t

dt

2πi

= 4
∑
s

hs,0
hs

∞∑
m=1

a(m),s

(22−iπm/
√
d)k−1

·

·
∞∑
n=1

∫
(1+δ)

(t− 1/2)
Γ(t)Γ(t+ k − 1)

(22−iπ2 mn2

hs
√
d
)t

ds

2πi

= 4
∑
s

hs,0
hs

∞∑
m=1

a(m),s

(m/
√
d)k−1hs

∞∑
n=1

( x

23−iπ

)k−1

(xKk−2(x)−Kk−1(x))

where we set x = 22−i/2πn
√
m/hs

√
d in the last line.

In order to use Theorem 7.5.4, we need to compute the q-expansions of the Hilbert

modular form f at other cusps, i.e. q-expansions of f |[α]k at ∞ for a matrix α. We

discuss this problem in the next section.

7.6 q-expansions at other cusps

In this section, we address the following question: given the q-expansion of a

Hilbert modular form f(z) at the cusp ∞, what is the q-expansion of f(z) at any

cusp of Γ0(N)\H2?

We take two methods available for modular forms and discuss their generalization

to Hilbert modular forms:

• Asai’s explicit formula [2] (Theorem 7.6.2),

• Collins computational method based on a least-squares algorithm [12] (Algo-

rithm 7.6.4).
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The first one is much faster in practice but only works for square-free level. The

second one works for any level, but our implementation is too slow in practice to

compute the above integrals. We include it here since it might be of independent

interest.

Collins also introduced an improved computational method for modular forms

using twists of eigenforms [12, Algorithm 2.6]. This is also discussed in Chen’s

thesis [11, Chapter 4].

An alternative approach is to use the adelic language. The Fourier coefficients of a

modular form are given by value of the Whittaker newform of f at certain matrices.

Loeffler–Weinstein [48] give an algorithm to compute the local representations, so one

just needs an algorithm to compute the local newforms. For more details, see [13,

Section 3] .

7.6.1 Explicit formula, following [2]

Let F be a totally real field of narrow class number 1 (of arbitrary degree d).

Suppose f is a Hilbert modular eigenform of level N with character χ : (OF/N)× →

C× and parallel weight k. Suppose the level N is square-free. We write Γ = Γ0(N)

throughout this section.

The goal is to prove an explicit formula (Theorem 7.6.2) for the q-expansion of a

Hilbert modular form f at a cusp C = a/b ∈ F in terms of the q-expansion at ∞,

generalizing the main result of [2] to the Hilbert modular case.

Since N is square-free, the cusps C = a/b of Γ\H2 are in bijection with decom-

positions N = A · B, where B = ((b),N). For each divisor A, we consider the

matrix

WA =

Aα β

Nγ Aδ

 =

 α β

Bγ Aδ


A 0

0 1
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such that:

• A, N are totally positive generators of A, N, respectively; then B = N/A is a

totally positive generator of B,

• detWA = A,

• α, β, γ, δ ∈ OF .

Such a matrix always exists: since A = (A) and B = (B) are coprime, we have

that 1 = λA+µB, for some λ, µ ∈ OF , so A = λA2+µN, and we may take α = β = 1

and γ = −µ, δ = λ to obtain such a matrix:

WA =

 A 1

−Nµ Aλ

 .

Conversely, for a matrix WA,

W−1
A ∞ =

δ

−Bγ

is a cusp with ((Bγ),N) = B, because

1 = Aαδ −Bβγ ≡ −Bβγ mod A,

so (γ) is coprime to A.

Such a matrix WA associated with A is well-defined up multiplication by elements

of Γ. Moreover, WA normalizes Γ and A−1W 2
A ∈ Γ.

The q-expansion of f at the cusp corresponding to N = AB is the q-expansion of

the Hilbert modular form fA = f |WA at ∞.

For a prime ideal p = ($) of OF , coprime to N, with totally positive generator $,

the action of the Hecke operator T (p) on the space of cusp forms Sk(N, χ) is given

by

(7.6.1) f |T (p) = NF/Q(p)k/2−1

χ($)f

∣∣∣∣
k

$ 0

0 1

+
∑

ν∈OF /p

f

∣∣∣∣
k

1 ν

0 $


 .
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For example, when d = 2, this simplifies to the more familiar expression:

f |T (p) = NF/Q(p)k−1

χ($)f($1z1, $2z2) +NF/Qp
−k

∑
ν∈OF /p

f

(
z1 + ν1

$1

,
z2 + ν2

$2

) .

We will write T (p, χ) for the action of the Hecke operator T (p) on Sk(N, χ).

Remark 7.6.1. This normalization of Hecke operators is consistent with T ′(p) in

[68].

For simplicity, whenever we write down a generator of an ideal, it is assumed to

be totally positive. The main result of this section is the following.

Theorem 7.6.2. Let f be a newform in Sk(N, χ) and f |T (p, χ) = apf . For each

decomposition N = AB, let fA = f |WA. Then fA is a newform in Sk(N,
Aχ) and

fA|T (p, Aχ) = a
(A)
p fA

for every prime p = ($), where

a
(A)
p =


χA($)ap if p 6 | A,

χB($)ap if p 6 | B,

and

χA : (OF/AOF )× → C×,

m 7→ χ((−Bβγ)m+ (Aαδ)),

χB : (OF/BOF )× → C×,

m 7→ χ((Aαδ)m+ (−Bβγ)),

Aχ : (OF/NOF )× → C×,

m 7→ χ((Aαδ)m+ (−Bβγ)m−1).
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Proof. The proof is a straightforward generalization of [2, Theorem 1], so we just

give a sketch.

We first check that fA has character Aχ described above. Write

d : Γ = Γ0(N)→ (OF/N)×,a b

c d

 7→ d mod N.

Then we just need to check that

d
(
WAgW

−1
A

)
= Aχ(d(g)),

where

Aχ(m) ≡ (Aαδ)m+ (−Bβγ)m−1 mod N.

For g =

a b

c d

, we have that

WAγW
−1
A =

Aα β

Nγ Aδ


a b

c d


 δ −β/A

−Bγ α


=

Aα β

Nγ Aδ


aδ − bBγ −aβ/A+ bα

cδ − dBγ −cβ/A+ dα


so

d(WAγW
−1
A ) = −aβγB + bNαγ − cβδ + dAαδ

≡ (−βγB)a+ (Aαδ)d mod N since c ≡ 0 mod N

which proves the above result, since ad ≡ 1 mod N.

One then computes a formula for how the Hecke operator T (p, χ) commutes with

WA using the above expression for Hecke operators (c.f. [2, Lemma 2]). To check

that fA is a newform, one shows that WA preserves oldforms (c.f. [2, Lemma 1]).
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The Hecke eigenvalues an of T (n) may be computed from the eigenvalues ap of

T (p) in the standard way [68, (2.26)]. For n coprime to m, we have that

anm = an · am

and for n = pr, we have that

(7.6.2)
∞∑
r=0

aprN(p)−rs = [1− apN(p)−s + χ(p)N(p)k0−1−2s]−1

where k0 = max{k1, . . . , kn}.

We can then recover the q-expansion of fA, up to a constant λ, from the Hecke

eigenvalues a
(A)
p given by Theorem 7.6.2. There is an explicit expression for λ, de-

scribed in the next theorem.

Theorem 7.6.3. Let f be a normalized Hilbert newform with character χ and level

N. Then there is a constant λ such that

fA = λ ·
∑
ν�0

a
(A)
(ν)q

ν

︸ ︷︷ ︸
f (A)

where we define:

a
(A)
(1) = 1

a
(A)
(ν) = χA(ν)a(ν) if ((ν),A) = OF ,

a
(A)
(ν) = χB(ν)a(ν) if ((ν),B) = OF ,

a
(A)
(νµ) = a

(A)
(ν)a

(A)
(µ) if (ν, µ) = OF .

Moreover, there is an explicit formula for λ, analogous to [2, Theorem 2]. First,

for a decomposition N = pB for a prime ideal p = ($), let

Wp =

 $ 1

Nγ $δ
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be a matrix of determinant $ with γ, δ ∈ OF . Then

f |Wp = λpf
(p)

with

λp =


C(χp) ·Np−k/2 · ap if p divides cond(χ),

−Np1−k/2 · ap otherwise,

where

C(χp) =
∑

h mod p

χp(h) · e2πiTr(h/$)

is a Gauss sum associated with χp.

In general, for any N = AB with an associated matrix WA =

Aα β

Nγ Aδ

, we

have that

λ = χ(Aδ −Bγ)
∏

($)=p|A

χp(A/$)λp.

Proof. Once again, the proof generalizes the proof of [3, Theorem 2]. Since for A

coprime to A′, we may take WAA′ = WAWA′ , it is enough to check the assertion for

a prime ideal A = p.

By definition of a
(p)
(ν) and λp, we have that:

(7.6.3) f |T (p) ◦Wp = apf |Wp = apλp
∑
ν�0

a
(p)
(ν)q

ν/δ.

We compute the left hand side in another way to get the result.

Since detWp = $, we have that

Bγ ≡ Bγ −$δ = −1 mod p.

Hence for j 6≡ 1 mod p,

1 +Bγj ≡ 1− j 6≡ 0 mod p,



116

so there exists ` 6≡ 0 mod p such that

(1 +Bγj)` ≡ 1 mod p.

Moreover, this defines a bijection

{j ∈ OF/p | j 6≡ 1 mod p} ↔ {` ∈ OF/p | j 6≡ 0 mod p}.

One can then check that for j 6≡ 1 mod p1 j

$

Wp = σ1

1 `

$


$

1


for some σ1 ∈ Γ0(N) such that χ(d(σ1)) = χp(`).

For j = 1, we have that:1 1

$

Wp = σ2Wp

$
1


for some σ2 ∈ Γ0(N) such that χ(d(σ2)) = χB($).

Using the expression (7.6.1) for T (p):

f |T (p) ◦Wp = (NF/Qp)k/2−1

 ∑
j∈OF /p

f

∣∣∣∣
k

1 j

$

Wp


= (NF/Qp)k/2−1

∑
`6≡0

χp(`)f

∣∣∣∣
k

1 `

$


$

1


+

+ χB($)f

∣∣∣∣
k

Wp

$
1

 .

Using the q-expansions:

f =
∑
ν�0

a(ν)q
ν/δ, f |kWp = λp

∑
ν�0

a
(p)
(ν)q

ν/δ,
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we have that

f

∣∣∣∣
k

1 `

$


$

1

 =
∑
ν�0

a(ν)e
2πiTr(ν`/δ$)qν/δ,

f

∣∣∣∣
k

Wp

$
1

 = (NF/Qp)k/2λp
∑
ν�0

a
(p)
(ν)q

ν$/δ.

Hence

f |T (p) ◦Wp = (NF/Qp)k/2−1
∑
ν�0

a(ν)

(∑
`6≡0

χp(`)e
2πiTr(ν`/δ$)

)
qν/δ

+ (NF/Qp)k−1χB($)λp
∑
ν�0

a
(p)
(ν)q

ν$/δ.

If χp is primitive, then∑
6̀≡0

χp(`)e
2πiTr(ν`/δ$) = χp(ν)χp(δ)C(χp)

since δ is coprime to $, and hence

f |T (p) ◦Wp = (NF/Qp)k/2−1χp(δ)C(χp)
∑
ν�0

χp(ν)a(ν)q
ν/δ+

+ (NF/Qp)k−1χB($)λp
∑
ν�0

a
(p)
(ν)q

ν$/δ.

If χp is not primitive, then χp = 1p is the trivial character modulo p. Then, since

$ is coprime to δ,

∑
` 6≡0

χp(`)e
2πiTr(ν`/δ$) =

∑
`6≡0

e2πiTr(ν`/δ$) =


N(q)− 1 p|(ν),

−1 otherwise.

Hence:

f |T (p) ◦Wp = − (NF/Qp)k/2−1
∑
ν�0

a(ν)q
ν/δ·

·
∑
ν�0

(
(Np)k/2a(ν$)(NF/Qp)k−1χB($)λpa

(p)
(ν)

)
qν$/δ.

Comparing the expression for f |T (p)◦Wp in each case with equation (7.6.3) gives

the result.
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7.6.2 Numerical method, following [12]

The explicit formulas above only apply to Hilbert modular forms of square-free

level. We discuss how one could generalize a method of Collins to compute q-

expansions at other cusps for general levels.

As in [12, Section 2], we consider a matrix α which takes infinity to the cusp and

αh =

a b

c d


h 0

0 1

 .

For f ∈ Sk(Γ0(N)),

f |[αh]k ∈ Sk(Γ0(Nh))

and we want to compute its q-expansion:

(7.6.4) f |[αh]k =
∑
ν�0

a(ν),αq
m =

∑
n

an,α

(∑
m∈Z

qu
mν

)

where qm = e2πiTr(m/δ) and u ∈ (OF )×+ is a fundamental unit.

The idea of Collins [12, Section 2.3] is to sample points z1, . . . , zM ∈ H2 and use

the q-expansion at∞ of f to compute f [αh]k(z) for these values. Then to use a least

squares algorithm to approximate the constants an,α which satisfy

f [αh]k ≈
∑
n

an,α

(∑
m∈Z

qu
mν

)
.

Algorithm 7.6.4 (q-expansion at other cusps, adapted from [12, Algorithm 2.3]).

Given:

• a Hilbert modular form f of level N, weight (k, k), with an algorithm to compute

its Fourier coefficients an for arbitrarily large n,

• a cusp a/c ∈ Q of width h,

• a maximal norm K of Fourier coefficients needed,
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• a desired accuracy 10−E,

• an exponential decay factor e−C0 ,

we can compute the Fourier coefficients an,α for Norm(n) < N , accurate up to 10−E

as follows:

(1) Either increase K = K0 or decrease C = C0 so that KC ≈ log(10)E and work

with interpolating ∑
n

Nn≤K

an,α

(∑
m∈Z

qu
mν

)
.

(2) Choose M (for example, 2K0) and pick points z1, . . . , zM ∈ H2 with both imag-

inary parts equal to C/2π and Re(zj) randomly in (−d/ch−1/2,−d/ch+1/2)2.

(3) Numerically compute the values f |[αh](zj) = hk/2(ch(zj,1) + d)−k(ch(zj,2) +

d)−kf(αhzj) using the q-expansion of f , truncating until we have reached an

accuracy a little greater than 10−E, and fill these into a vector b.

(4) Numerically compute the values
∑
m∈Z

qu
mν for each z = z1, . . . , zM with an accu-

racy a little greater than 10−E, and store them in a matrix A.

(5) Numerically find the least squares solution to Ax = b as the exact solution to

(A∗A)x = A∗b. The solution vector is our approximation to the coefficients an,α

for each n of norm at most K.

We implemented this algorithm, but step (3) is very slow in practice. Since we

need a lot of Fourier coefficients in our case, it is not realistic to apply this algorithm

for our purposes.
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7.7 Numerical evidence

We can use Theorems 7.5.4, 7.6.2, and 7.6.3 to compute the integral and verify

that:

(7.7.1)

∫
Γ0(N)\H

f(ε1z, ε2z)y
dz ∧ dz
y2

= c · log |uf0|

for some c ∈ E×. This numerically verifies Conjecture 7.3.2 which we showed is

equivalent to Conjecture 5.3.1 in base change cases.

7.7.1 Modular forms associated with cubic extensions

In Example 3.5.3, the unit group UfF is described explicitly, so this is the first

case we consider. This is the base change of Example 3.5.2 to a real quadratic

extension F = Q(
√
d) of Q.

We briefly recall Example 3.5.2 to set up the notation. Let K = Q(α) be a cubic

field of signature [1, 1], obtained by adjoining a root α of a cubic polynomial P (x).

The splitting field L of P (x) is the Galois closure of K and GL/Q ∼= S3. We consider

the irreducible odd Artin representation

GL/Q ∼= S3 → GL2(Z).

It has an associated modular form f0 and we consider its base change f to F =

Q(
√
d). The associated unit group is Uf0

∼= U
(1)
K , the norm 1 units of K, and we

consider a generator u = uf0 of this group.

Table 7.7.1 shows constants c ∈ Q such that the equality (7.7.1) holds up to at

least 15 digits. The computations were performed on the High Performance Com-

puting cluster Great Lakes at the University of Michigan.
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d polynomial P (x) lmfdb.org label level N unit u constant c time taken

5 x3 − x2 + 1 23.1.b.a 23 α2 − α 2 00:09:34
5 x3 + x− 1 31.1.b.a 31 α −4 00:13:36
5 x3 + 2x− 1 59.1.b.a 59 α2 −8 01:56:22
5 x3 − x2 + 2x+ 1 87.1.d.b 87 α −2 04:15:09

13 x3 − x2 + 1 23.1.b.a 23 α2 − α 8 00:10:19
13 x3 + x− 1 31.1.b.a 31 α −2 00:49:47
13 x3 + 2x− 1 59.1.b.a 59 α2 −22 29:47:44
13 x3 − x2 + 2x+ 1 87.1.d.b 87 α −4 04:23:13

17 x3 − x2 + 1 23.1.b.a 23 α2 − α 14 00:16:52
17 x3 + x− 1 31.1.b.a 31 α −18 01:01:15
17 x3 − x2 + 2x+ 1 87.1.d.b 87 α −14 19:40:11

29 x3 − x2 + 1 23.1.b.a 23 α2 − α 4 00:32:08
29 x3 + x− 1 31.1.b.a 31 α −14 02:38:12

37 x3 − x2 + 1 23.1.b.a 23 α2 − α 10 00:25:45
37 x3 + x− 1 31.1.b.a 31 α −6 01:41:38

Table 7.7.1:
This table presents constants c such that equation (7.7.1) holds for the unit u and the
base change to Q(

√
d) of the modular form of level N associated with the polynomial

P (x). We give the lmfdb.org label of the modular form. The time taken to perform
the computation with at least 15 digits of accuracy is displayed in the format hh:mm:ss.

It is quite remarkable that all the constants c are even integers and not just

rational numbers. Rubin’s integral refinement of Stark’s conjecture [63] could provide

an explanation. Understanding this phenomenon may also be related to studying

congruence numbers for f [19] and a potential integral refinement of Conjecture 5.3.2

would have to take them into account.

7.7.2 Weight one form of level 47

We give an example where the coefficients of f0 are not rational and hence Stark’s

conjecture 3.2.2 is not known for the base change form f . Let f0 be the modular

form of weight one, level 47, label 47.1.b.a in lmfdb.org, and q-expansion:

f0 = q + (−1 + β)q2 − βq3 + (1− β)q4 + · · ·

where β = 1
2
(1 +

√
5).

lmfdb.org
lmfdb.org
lmfdb.org
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The associated Galois representation is:

% : Gal(L/Q) ∼= D5 = 〈s, r | s2 = 1, r5 = 1, srs = r4〉 → GL2(Z[ζ5])

s 7→

0 1

1 0

 ,

r 7→

ζ5 0

0 ζ4
5

 ,

where we choose s ∈ D5 corresponding to the complex conjugation c0 ∈ Gal(L/Q)

associated with L ↪→ C. For the basis

0 1

1 0

,

 0 1

−1 0

,

1 0

0 −1

 of Ad0 %, the

adjoint representation is:

% : Gal(L/Q) ∼= D5 → GL3(Z[ζ5])

s 7→


1

−1

−1

 ,

r 7→


(ζ2

5 + ζ−2
5 )/2 (ζ2

5 − ζ−2
5 )/2 0

(ζ2
5 − ζ−2

5 )/2 (ζ2
5 + ζ−2

5 )/2 0

0 0 1

 .

Finally, this shows that:

(7.7.2) u = uf0 =
4∏
i=0

(εr
−i

)ζ
2i+ζ−2i

,

where ε is the Minkowski unit (Definition 3.1.3) for the embedding τ : L ↪→ C such

that s is the complex conjugation associated with τ .

Note that β = ζ2 + ζ−2, so the coefficients ζ2i + ζ−2i lie in the coefficient field

Q(
√

5) of f .
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d lmfdb.org label level N unit uf0 constant c ∈ Q(
√

5) time taken

5 47.1.b.a 47 (7.7.2) 1−
√
5
5 04:44:15

13 47.1.b.a 47 (7.7.2) 5−
√

5 09:20:12

17 47.1.b.a 47 (7.7.2) 8− 8
√
5
5 02:04:28

29 47.1.b.a 47 (7.7.2) 3− 3
√
5
5 15:47:31

Table 7.7.2:
This table presents constants c such that equation (7.7.1) holds for the unit uf0 and

the base change to Q(
√
d) of the modular form f0 of level 47. The time taken to

perform the computation with at least 15 digits of accuracy is displayed in the format
hh:mm:ss.

Interestingly, in this case, the right hand side seems to always be an integer

multiple of 1−
√

5
5

. Once again, this may be related to congruence numbers for f .

lmfdb.org


CHAPTER VIII

Comparison to Prasanna–Venkatesh

Prasanna–Venkatesh gave a conjectural definition [60, Definition 4.2.1] of the ad-

joint motive. Beilinson’s regulator defines a map

(8.0.1) H1
M(Mcoad,Q(1))→ HB(Mcoad,C,R)WR ∼= ĝWR .

For a cohomological, tempered automorphic representation, they define an action

of
∧∗(ĝWR) on Betti cohomology of the associated symmetric space, and conjecture

that the action is rational for the rational structure given by motivic cohomology.

In this appendix, we explain that Conjecture 5.3.1 is the natural analogue of this

for coherent cohomology. In our case,

ĝ ∼=
d⊕
j=1

sl2,C.

The archimedean Langlands parameter associated with a Hilbert modular form f of

124
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weight (k, r) is given by

ϕ : WR = C× ∪ C×j →
d⊕
j=1

GL2(C)

C× 3 seiθ 7→

s2rei(kj−1)θ

s2re−i(kj−1)θ


j 7→

0 (−1)kj−1

1 0


(see [44]).

A simple computation of the adjoint action gives the following lemma.

Lemma 8.0.1. For a Hilbert modular form of weight (k, r), we have that:

(8.0.2) ĝWR ∼=
⊕

j s.t. kj=1

R

1 0

0 −1


j

This allows us to define the action of this Deligne cohomology group on coherent

cohomology.

Definition 8.0.2. Let f be a Hilbert modular form of weight (k, r). We define an

action ? of
∧∗ ĝWR on H∗(XC, Ek,r)f by letting

1 0

0 −1


j

for j such that kj = 1 act

by:

Hj(XC, Ek,r)f → Hj+1(XC, Ek,r)f

ωJf 7→


ω
J∪{σj}
f σj 6∈ J

0 σj ∈ J

Here, we use the bases of cohomology groups given in Corollary 2.3.5.

This is precisely the action we defined in Definition 5.2.4.
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Remark 8.0.3. Recall from Section 2.3 that the cohomology class ωIf is associated

with the action of right translation by the matrix JI ∈ G(R) where

(JI)j =



1 0

0 −1

 σj ∈ I,

1 0

0 1

 σj 6∈ I.

Although the elements in equation (8.0.2) belong to the Lie algebra ĝ and not G(R),

this seems like a natural way to define this action.

In the case (k, r) = (1, 1), we expect from Proposition 3.6.2 that

U∨f
∼= H1

M(Mcoad,Q(1).

Proposition 5.2.2 gives an explicit expression for the (inverse of the) Beilinson reg-

ulator (8.0.1). Therefore, Conjecture 5.3.1 amounts to the fact that the action of

H1
M(Mcoad,Q(1)) preserves the rational structure on coherent cohomology.

Finally, we briefly discuss the motivic action conjecture for partial weight one

Hilbert modular forms. Suppose f is a Hilbert modular form of weight (k, r) and

let M = Mcoad be the conjectural coadjoint motive of weight zero associated with f .

The Beilinson short exact sequence for M is:

(8.0.3) 0→ F 1(HdR(M))⊗Q R→ HB(MR,R)→ H1
D(MR,R(1))→ 0.

A simple calculation using the Hodge decomposition of HB(M) gives:

dimF 1(HdR(M)) = #{j | kj > 1},

and hence

dimH1
D(MR,R(1)) = #{j | kj = 1}.
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The last assertion is consistent with Lemma 8.0.1.

Consider the rational structure on H1
D(MR,R(1)) given by the motivic cohomology

group H1
M(M,Q(1)) via Beilinson’s regulator (8.0.1). This gives an action ? of

H1
M(M,Q(1)) on coherent cohomology H∗(XC, Ek,r)f via Definition 8.0.2.

Conjecture 8.0.4. The action ? of
∧∗H1

M(M,Q(1)) on H∗(XC, Ek,r)f preserves the

rational structure H∗(X, Ek,r)f .

The action of top-degree elements, i.e. the group
∧`H1

M(M,Q(1)) where ` =

#{j | kj = 1}, has a particularly nice description in terms of Beilinson’s conjecture

for the adjoint L-function. For m ∈
∧`H1

M(M,Q(1)), we have that

m ? f =
ωJ1
f

rD(m)
∈ H`(XC, Ek,r)f ,

where J1 = {j | kj = 1}. This final space is one-dimensional according to Theo-

rem 2.3.3 (2) and hence we may check the rationality of m ? f using Serre duality.

We consider the rational element

ω
Σ∞\J1

f

νΣ∞\J1(f)
∈ Hd−`(X, E2−k,r)f

(see Definition 5.1.2). Then:〈
ωJ1
f

rD(m)
,
ω

Σ∞\J1

f

νΣ∞\J1(f)

〉
∼Ef (k)×

〈f, f〉
rD(m) · νΣ∞\J1(f)

by Proposition 5.1.4. Using Theorem 6.1.6, this amounts to the statement

L(1, f,Ad) ∼Ef (k)× rD(m)νΣ∞\J1(f),

up to appropriate powers of π.

Finally, Beilinson’s conjecture implies that:

rD(detH1
M(M,Q(1))) = L(1, f,Ad) detHB(MR,Q)
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as rational structures on H1
D(MR,R(1)). Assuming this, Conjecture 8.0.4 is equiva-

lent to the statement:

νΣ∞\J1(f) = detHB(MR,Q),

which we would expect to be true. It would be interesting to verify this final equality,

but we decided to pursue this problem elsewhere.
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