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ABSTRACT

Despite their wide use in empirical applications, traditional econometric tools may

perform poorly in applied work, as the difficulties faced by researchers in applied work

are often overlooked through reasonings that depend on restrictive conditions. This

dissertation consists of three connected chapters on essential issues in conducting

robust estimation and causal inference for key economic parameters under different

setups.

The first chapter discusses identification and estimation issues on the treatment

effect with anticipation, a generalization of widely used stringent assumptions. Po-

tential outcomes frameworks with assumptions motivated by economic models are

provided and bounds for treatment effects are achived. Correpsonding estimation

and inference procedures are provided, as well as generalizations to incorporate com-

plicated situations to achieve improvement over current practice.

The second chapter provides estimation and inference procedures robust to high-

dimensional covariates in an important class of broadly applied cluster models. Ro-

bustness is achieved through either generalization of heteroskedasticity consistent

estimators or the leave-one-out procedure.

The third chapter studies a strategic trading model between a market maker

who behaves like an “econometrician” and uses econometric tools to price and a

well-informed inside trader. We focus on the application of econometric tools in

estimating unknown parameters in a model that is robust to information ambiguity.

Unique linear equilibrium exhibits the underreaction phenomenon. We also show

the equivalence between a robust linear strategy and a specific two-way learning

procedure regardless of the statistical models chosen by the market maker.

xi



CHAPTER I

Introduction

As a field that is important in both theory and application, econometrics provide

people with tools to better understand models and data. However, traditional econo-

metric tools may perform poorly in applications, as conditions required to achieve

theoretical results may not be consistent with the situations faced by applied re-

searchers. It is important to provide more robust frameworks to better deal with

empirical problems and models. This dissertation concerns conducting robust es-

timation and causal inference for key economic parameters under various setups,

either through the improvement of existing econometric tools or the introduction of

econometric tools to new models.

Chapter II analyzes the treatment effect with the existence of anticipatory be-

havior. The concept of anticipation is not unfamiliar to researchers in economics

and social sciences. It occurs when forward-looking units change their behaviors

in reaction to the possibility of a new policy, and a treatment thus has an impact

before its implementation. Instead of assuming ‘no anticipation’ like other papers,

I propose analysis of the treatment effect robust to anticipation. In this chapter,

I employ a potential outcomes framework and propose partial identification, esti-

mation and inference strategies for the treatment effect robust to the presence of

anticipation. I start with a classical difference-in-differences model with two time

periods and provide partially identified sets with easy-to-implement estimation and

inference strategies for causal parameters. Modifications to incorporate more empir-
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ically relevant situations and empirical applications are also included to show how

this method can be used in applied work.

Following a similar logic, chapter III presents novel cluster robust inference tech-

niques for linear regression models with many controls. Researchers often include

many covariates in their linear regression models to control for confounders in empir-

ical research in economics, statistics and social sciences. It is also common practice

in empirical work to use cluster-robust standard errors. Chapter III, joint with Ma-

tias Cattaneo, Michael Jansson and Whitney K. Newey develops inference methods

that are robust to the presence of many covariates and to clustering. We find that

when the number of included covariates grows at a rate related to both cluster and

sample sizes, the Liang-Zeger and HC-k cluster robust standard errors are invalid in

general. We propose two cluster robust standard error formulas that are robust to

the inclusion of many covariates. One follows the spirit of the “Hamard” estimator

studied by Cattaneo, Jansson, and Newey (2018) and the other follows the spirit of

the leave-out estimator. These standard errors are also valid when the regressors

and error terms cluster at different levels and when the cluster size is not ignorable.

In particular, we highlight important inference problems related to clustering used

in current practice.

Chapter IV concerns an applied theory model where the robustness is achieved

by introducing econometric tools into this framework. In this chapter, joint with

Shaowei Ke, Rui Shen and Yawen Qiu, we study strategic trading with a market

maker who does not know the joint distribution of public information and an assets

value, and hence cannot interpret information properly. Following a public event,

liquidity traders and a probabilistically informed trader who knows the distribution

trade. The market maker, who behaves like an “econometrician” with some basic

statistical knowledge, adopts a robust pricing strategy that has the best worst-case

payoff guarantee to estimate the parameter unknown to him. We show that such

a strategy is equivalent to a two-step learning procedure with first step estimation

satisfying desired econometric properties and characterize the unique linear equilib-

rium. Expected equilibrium prices exhibit underreaction. If the trading frequency

is arbitrarily high, it is as if the market maker fully learns and reveals the unknown

2



distribution to the public. By introducing econometric tools to construct the pro-

cess of getting unknown parameters, we analyze this strategic trading model that is

robust to the ambiguity of a specific parameter.

3



CHAPTER II

Bounds for Treatment Effects in the Presence of

Anticipatory Behavior

II.1 Introduction

This paper accommodates the matter of anticipation in the analysis of treat-

ment effects by employing a potential outcomes framework (see e.g. Neyman (1923),

Rubin (1974), Rubin (1978)) in a difference-in-differences model. The concept of

anticipation is not unfamiliar to researchers in economics and social sciences, as seen

in the work of Malani and Reif (2015), as well as Bošković and Nøstbakken (2018),

for example. When anticipation occurs, forward-looking units change their behavior

in reaction to the possibility of a new policy, and thus a treatment has an impact

before its implementation. Therefore, it is crucial to consider the role of anticipa-

tion when evaluating an economic process and its outcome. However, despite its

importance, most available published studies do not formally consider anticipation.

A ‘no anticipation’ assumption is made, combined with a procedure of dropping data

closely before the treatment if it is possibly violated, based on the argument that

anticipation occurs only within a fixed time period prior to the introduction of a pol-

icy. Even in the few cases where anticipation is taken into account, the anticipatory

behavior is accounted for in a restricted manner, such as an ad hoc restriction on

This chapter is based on the working paper “Bounds for Treatment Effects in the Presence of
Anticipatory Behavior”(Gong (2021))
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units’ forward-looking behavior like rational or adaptive expectations.

When anticipatory behavior takes place, the identification strategies commonly

used with multiple periods, such as the difference-in-differences model, fall apart.

Consider an early retirement incentive program for teachers nearing the age of re-

tirement. If those teachers foresee the possibility of retiring early, their behavior

might change before the program is introduced. Due to the effect of future treat-

ment status on pre-treatment periods, the observable pre-treatment outcomes are

no longer drawn from the distribution of potential outcomes, if the treatment never

takes place. Individuals will change their responses according to how they expect

to be treated in the future. Thus, further information about units’ anticipatory be-

havior is required. But such information is usually unattainable, since it is generally

impossible to observe.

This paper provides novel strategies to build identified sets for treatment effects

under assumptions restricting anticipatory behavior. Easy-to-implement estimation

and inference strategies are also provided. I start from a difference-in-differences

model with two time periods, and then generalize it to incorporate more complex

models. I provide conditions for partial identification results of causal parameters

when the anticipation status is unknown and incorporate anticipation in many widely

used empirical designs. Employing a potential outcome framework, I analyze the

treatment and the effects of anticipation based on the treatment rules, the anticipa-

tion assignments, and outcomes.

The departure from point identification starts with formulating restrictions on

anticipatory behavior. In most cases, I do not have additional information, such as

proxy variables, that helps us identify which participants have anticipated the policy

change. As a result, I can say nothing about the pre-treatment distortion caused by

anticipation. In this paper, I introduce a two-period difference-in-differences model

where anticipation occurs in the first period and the treatment occurs in the second

period. Further, I introduce two natural assumptions to help construct bounds for

the treatment effect in the absence of such additional information. The first is a

bound for the proportion of anticipators within the treatment group. This bound

should be available from observed data. It can be a constant, or a parameter that
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can be estimated. This is common practice in the literature, such as the work of

Manski and Pepper (2013). The selection of this bound can vary from application to

application, with one possible example being the treatment ratio. I provide models

to motivate specific choices of the bound under various circumstances. The second

assumption restricts the magnitude of the anticipatory effect. It requires that the

absolute value of the anticipatory effect is no larger than that of the actual treat-

ment effect. By doing so I build a link between the magnitude of an anticipator’s

reaction and the response to the implementation of the policy. Based on this an

inequality between the average pre-treatment bias caused by anticipation and the

treatment effect can be constructed with the help of the proportion of anticipators

discussed above. Therefore, I can find a corresponding treatment effect range for

the anticipators by characterizing how they react and linking that anticipatory effect

to the actual treatment effect. Under these two assumptions, the fraction of units

that anticipate the policy change may vary, but the average distortion caused by

anticipation is successfully bounded and the parameter of interest is set identified.

As for the implementation purpose, I propose estimation and inference strategies

based on easy-to-implement modifications to existing methods. The identification

strategy provides an identified set with perfectly correlated and proportional upper

and lower bounds. I propose a uniformly valid confidence set for my estimators

with some modifications to Imbens and Manski (2004) under this specific setup.

In their method, the upper and lower bounds of the confidence set are found by

extending both sides of the identified set. The extension lengths are proportional

to the standard errors of the bound estimators, and differ between upper and lower

bounds. However, suppose this method is applied directly here. In that case, it

may run into a counterintuitive situation where the confidence set for the treatment

effect is shorter when the parameter is partially identified than when it is point-

identified. I propose modifying this approach by extending both sides of the identified

set by the same length proportional to the larger standard error of the two, which

is a natural way to ensure the uniform validity. Analyzing this confidence set also

provides researchers with further empirical implications. When the treatment and

anticipatory effect go in different directions, I find a specific range of t-statistics

6



when the null hypothesis is zero treatment effect. If the t-statistic obtained when

anticipation is ignored falls within this range, the conclusion of whether rejecting

the null hypothesis does not change when considering anticipation. This confidence

set also helps to build a framework for sensitivity analysis on certain conclusions of

interest by choosing different bounds for anticipation possibility.

I apply the results of this paper to examine the effect of an early retirement

incentive program on student achievement. This program is aimed at teachers near

the age of retirement, and offers them financial incentives to retire before becoming

eligible for full pension benefits. If the program is anticipated, eligible teachers

may react in advance of its introduction, and such behavior might affect students’

grades. The empirical results illustrate the potential pitfalls of failing to consider

anticipation in program evaluation: the effect can be greatly overestimated in the

worst case. I also conduct a sensitivity check by analyzing the level of anticipation

probability one is willing to tolerate while maintaining the consistency of the original

conclusion. It shows the conclusion is robust even when about three fourths of target

units anticipate.

To permit the incorporation of anticipation in other common empirical setups, I

provide several modifications. Instead of only focusing on the pre-treatment effect

of anticipatory behavior in control group, I discuss the anticipatory behavior in

control group by introducing an imperfect anticipation setup, where individuals make

mistakes while anticipating. Post-treatment effects of anticipatory behavior are also

discussed. To be consistent with common empirical approaches, generalizations to

include covariates, multiple periods and nonlinear potential outcomes are provided

and analyzed in the appendix.

This paper contributes to the literature on causal inference and program evalu-

ation (Abadie and Cattaneo (2018), Athey and Imbens (2017)). Among them, my

paper is most closely related to the work of Malani and Reif (2015), which discusses

anticipatory behavior by interpreting the pre-trend phenomenon as a result of an-

ticipation. Its authors propose a parametric time series model in which anticipation

is an expectation of the future treatment for everybody by relying on the ratio-

nal or adaptive expectation assumption. I incorporate the idea of anticipation in

7



a difference-in-differences framework with potential outcomes to remove parametric

restrictions and allow heterogeneous anticipatory behavior among units. Heckman

and Navarro (2007), under a different scenario, present a reduced form dynamic

treatment effect model that also permits anticipation, but at the price of imposing

further assumptions on the functional structure of the outcome equation.

This paper also contributes to the literature on difference-in-differences and event-

study designs by considering anticipatory behavior. The additional anticipation

could have impact prior to the introduction of a policy. Therefore, the present

research is related to the literature aiming at more robust inference and identifica-

tion strategies that allow for non-parallel trends assumptions, and to papers focusing

on pre-trend analysis.

To interpret and deal with observed changes in outcomes prior to a treatment,

Manski and Pepper (2018) propose a result on partial identification for the average

treatment effect under “bounded variation” assumptions. This relaxes the paral-

lel trends assumption by allowing for differences within a certain magnitude. Roth

and Rambachan (2020) follow the idea that pre-treatment differences in trends are

informative about counterfactual post-treatment differences and provide identifica-

tion and inference results based on several common restrictions of this relationship.

Freyaldenhoven, Hansen, and Shapiro (2019) propose a method that includes an ad-

ditional covariate that is correlated with the outcomes through confounds only, and

not treatments. Ye, Keele, Hasegawa, and Small (2021) propose a partial identifica-

tion method for treatment effects with two groups of control units whose outcomes

exhibit a negative correlation relative to the treated units. In this paper I interpret

pre-trends as a result of unobservable anticipation activities. It is possible that peo-

ple change their behavior because of their anticipation of future treatment. If people

have information and may benefit by acting on it before a treatment, anticipation is

a reasonable explanation for an observed pre-treatment effect, even when the parallel

trends assumption is valid.

This paper is also complementary to the causal interpretation of event study coef-

ficients, see Borusyak and Jaravel (2017), Sun and Abraham (2020), De Chaisemartin

and d’Haultfoeuille (2020), and Goodman-Bacon (2021). With a generalization to
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the longitudinal data, this paper can be regarded as relaxation of the ‘no anticipa-

tion’ assumption of these papers. This paper is also related more generally to the

partial identification literature. In the present study, partial identification is obtained

through moment inequalities, a method that is discussed in the handbook chapter

of Molinari (2020). The sign restriction I impose is popular in time series literature

to set-identify structural vector autoregressions (SVARs); see Kilian and Lütkepohl

(2017).

The rest of this paper is organized as follows: Section II.2 generalizes the com-

monly used difference-in-differences model and introduces the basic setup about an-

ticipation; Section II.3 provides extra assumptions and shows readers how to build

the identified sets; Section II.4 describes estimation and inference; Section II.5 pro-

vides an empirical application; Section II.6 makes further discussion; and Section

II.7 concludes. The mathematical proofs, together with some additional results,

discussions and generalizations are collected in the supplemental appendix.

II.2 Setup and Assumptions

To illustrate anticipation in program evaluation, I consider an early retirement

incentive program available for teachers, which offers experienced teachers financial

incentives to retire before they would be eligible for full pension benefits. Suppose

that one is interested in the effect of this early retirement incentive program on

students’ grades. There are several reasons to expect anticipation from teachers,

whether treated or not, in this program. Teachers who anticipate may have received

inside information from others, and it is also possible for them to speculate based

on changes that have already happened. Younger teachers ineligible for the program

won’t react to it regardless of the anticipation status in both cases. However, teach-

ers who anticipate the program and decide to retire early may put in less effort than

younger teachers. Such behavior may harm students’ grades before the implemen-

tation of the early retirement incentive program, and ignoring anticipation can lead

to a bias while analyzing the effect of this program. The fact that teachers can an-

ticipate based on unobservable information and adjust their behavior accordingly to
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gain benefits implies that the future treatment will have an effect before its adoption

and distort the treatment effect estimation if ignored. An accurate assessment of

anticipation is therefore essential for the program evaluation.

II.2.1 The Basic Difference-In-Differences Model

To start with, I briefly describe the ‘canonical’ two-period difference-in-differences

model in this section. As a well-understood starting point, this simple setting serves

as a good baseline for understanding the approach I am going to use.

Consider a model with two periods t ∈ {0, 1} and n units, i ∈ {1, . . . , n}. Each

unit is assigned an observable binary treatment Di that takes value d ∈ {0, 1} in the

second period. The key identifying assumption requires that the treated and control

group should change following parallel trends in the absence of treatment and the

parameter of interest is the average treatment effect for treated (ATT).

Potential outcomes, defined below, depend on the time period and binary treat-

ment status. The potential outcome for unit i in period t is denoted by the random

variable Yit(d). Given a value of the implemented treatment d, the observed outcome

of unit i at period t, Yit can be written as

Yit =
∑

d∈{0,1}

Yit(d)I(Di = d) = DiYit(1) + (1−Di)Yit(0)

and the parameter of interest µ = E[Yi1(1)−Yi1(0)|Di = 1]. For identifying purpose,

I need to assume “Parallel Trends” and “No Anticipation” which require

E[Yi1(0)− Yi0(0)|Di = 1] = E[Yi1(0)− Yi0(0)|Di = 0]

and

Yi0(0) = Yi0(1) for all i

Under these two assumptions, the parameter of interest µ is identified and for es-

timation purpose, I need to further put independent restrictions on the sampling

process. The key idea here is that following the parallel trends assumption, one can

10



use the change in the control group to mimic that in the treated group if there were

no treatment and get information about the unobservable potential outcomes for

treated group in the absence of treatment in the post-treatment period. However,

as pointed out, this approach requires no anticipatory behavior which states that

the future treatment status should have no impact on pre-treatment outcomes. This

assumption may be too restrictive in some situations, for example, the early retire-

ment incentive program mentioned above. Thus it is important to figure out a way

to accommodate anticipatory behavior under this difference-in-differences setup.

II.2.2 Introducing Anticipatory Behavior

In order to deal with the unobservable anticipatory behavior, I introduce another

indicator for anticipation status. Suppose that in the first period, each unit has an

unobservable binary anticipation status Ai that takes value a ∈ {0, 1}. Here a = 1

means this unit anticipates the future, and a = 0 means this unit does not anticipate

the future. The potential outcomes can now be written as Yit(a, d). Introducing a

second index in the expression of potential outcomes is commonly used when analyz-

ing indirect effects, for example, analysis of spillover effects in Vazquez-Bare (2021).

By implicitly assuming perfect anticipation, which means the anticipated treatment

status should be the same as the actual treatment, I only focus on the pre-treatment

anticipatory behavior in the treated group at this time. Anticipatory behavior in the

control group and the post-treatment effect of the anticipatory behavior will be dis-

cussed later. After introducing another index for the anticipatory behavior, potential

outcomes, defined below, can now depend on the binary treatment and anticipation

status. I refer to the existence of the latent treatment in the first period as anticipa-

tion and the effect of the anticipatory behavior on unit i’s potential outcome before

the treatment occurs as the anticipatory effect.

As stated above, I am only focusing on the pre-treatment anticipatory behavior in

the treated group now which means I am allowing Yi0(0, 1) and Yi0(1, 1) to be different

from each other with no changes on Yi0(0), Yi1(0) and Yi1(1). With a little abuse of

the notation, I am using the single index expression Yit(d) for the potential outcomes
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when there is no difference in the value of anticipation status. With the existence

of anticipatory behavior, the observed pre-treatment outcomes of the treated group

are now a mixture of those who anticipate and those who don’t. This brought extra

difficulties in identification as one cannot tell the anticipators from those who do

not anticipate and further assumptions are needed. To start with, I consider those

assumptions that come from the canonical difference-in-differences model.

Assumption II.2.1 (Sampling). {Yi0(0, 1), Yi0(1, 1), Yi0(0), Yi1(0), Yi1(1), Di, Ai}ni=1

are independently and identically distributed across i.

Assumption II.2.1 models the sampling process and states the potential outcomes,

treatments, and unobservable anticipation status to be independent and identically

distributed across units so that expectations are not indexed by i.

Assumption II.2.2. Yi0(0) = Yi0(0, 1).

Recall that Yi0(0) represents the pre-treatment potential outcome if one will not

get treated where anticipation does not make a difference right now. One can under-

stand this either as no anticipatory behavior happens or as a statement that people

who will not get treated anticipate the future that they will not get treated perfectly

so that they will not make any change. This implicit assumption can be relaxed later

and I will make further discussion about it. Based on the above argument, assump-

tion II.2.2 states that anticipation of a future treatment is the only channel through

which future events affect the present. In the early retirement incentive program

example, this assumption implies that the pre-treatment grades for students taught

by the same teacher are indifferent regardless of the teacher’s decision about early

retirement if he has no anticipation of the program.

I can now make a table for potential outcomes in the difference-in-differences

model with two periods.

t=0 t=1

Di = 0 Yi0(0) Yi1(0)

Ai = 0, Di = 1 Yi0(0, 1) Yi1(1)

Ai = 1, Di = 1 Yi0(1, 1) Yi1(1)
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Compared with the commonly used difference-in-differences framework, the criti-

cal difference is that the observed pre-treatment outcome Yi0 for the treated group

is a mixture of the potential outcomes for those who do not anticipate Yi0(0, 1)

and those who anticipate Yi0(1, 1) in the treated group in the pre-treatment period.

E[Yi0|Di = 1] is no longer a good measure for the first period potential outcome

without treatment for the treated group.

Under this setup, the parameter of interest I focus on is still the average treatment

effect for treated (ATT) with a slight modification.

µg = E[g(Yi1(1))− g(Yi1(0))|Di = 1].

where g(.) is a known measurable real function with E|g(Y )| < ∞. Define the

corresponding anticipatory effect for anticipators as

τg = E[g(Yi0(1, 1))− g(Yi0(0, 1))|Di = 1, Ai = 1].

The g(.) function is slightly generalized from the commonly defined average treatment

effect for treated (ATT). When g(.) is the identity function, µg is the widely used

ATT. If g(.) is an indicator function like gu(Y ) = I(Y ≤ u), then µg can be interpreted

as the change in the probability for the outcomes to be no more than a specific cutoff

u and can be used to help identify the distribution of potential outcomes. Different

choices of this g(.) function lead to different estimators. Introducing the g function

helps handle some nonlinear structures for parameters I am interested in. For the

simplicity of notation, I will write µg as µ and τg as τ when g(.) is the identity

function.

Assumption II.2.3 (Parallel Trends).

E[g(Yi1(0))− g(Yi0(0))|Di = 1] = E[g(Yi1(0))− g(Yi0(0))|Di = 0].

Although the expression seems to be the same as the parallel trends assumption

in the canonical difference-in-differences model, assumption II.2.3 requires that the

treatment and control group change following parallel trends before and after the
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treatment in the absence of both anticipation and the treatment.

Remark II.1. As explained above, for the benchmark model and basic results, I am

only focusing on the pre-treatment anticipatory behavior in the treated group. For

the anticipatory behavior in the control group, one can understand this simplification

as an implicit assumption that all people anticipate their future correctly so that if

one anticipates no future treatment, then he or she has no incentive to change his

or her behavior. Whether one anticipates the future and realizes no treatment or no

anticipation will not make any difference. Further modifications to incorporate an-

ticipatory behavior in the control group and the post-treatment effect of anticipatory

behavior will be discussed later.

Then I briefly discuss what the commonly used difference-in-differences estimator

estimates without considering anticipation and compare it with the parameter that I

am interested in. Throughout this part, I will choose g(.) to be the identity function.

In the difference-in-differences regression model with two periods

Yit = β0 + β1t+ β2Di + β3tDi + εit

Under Assumptions II.2.1-II.2.3, the coefficient of interest, β3, can be written as

β3 = E[Yi1|Di = 1]− E[Yi0|Di = 1]− E[Yi1|Di = 0] + E[Yi0|Di = 0]

= µ− P[Ai = 1|Di = 1]τ

= P[Ai = 1|Di = 1](µ− τ) + (1− P[Ai = 1|Di = 1])µ

If the difference-in-differences estimator is used directly, it will suffer from a bias

equal to the average distortion caused by anticipation. This bias arises from the

fact that the observable pre-treatment outcomes for the treated group do not re-

flect the potential outcomes for them without the treatment. Those who anticipate

have already reacted in the first period and deviated from the parallel-trends bench-

mark. Thus, applying the difference-in-differences estimator directly suffers from a

bias determined by both the proportion of those who anticipate and the magnitude

of anticipatory effects. The last equality points out that this parameter can also be
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written as a weighted average of the treatment effect µ for those who do not antici-

pate and the net treatment effect after the adoption of the policy for those who do

anticipate µ − τ . In general, the relationship between this estimand and the treat-

ment effect depends on the sign of the anticipatory effects. Suppose the treatment

and anticipatory effects have the same sign. In that case, anticipation will drive the

difference-in-differences estimator towards zero relative to the treatment effect be-

cause of contamination. The idea of this distortion is captured in the graphs below.

Figure II.1 shows the result obtained by applying the difference-in-differences esti-

mator directly while Figure II.2 describes the situation that considers anticipation.

The distortion between β3 and µ is caused by anticipation.

II.3 Upper and Lower Bounds for Treatment Effects

II.3.1 Main Results

Anticipation makes the commonly used difference-in-differences estimator a mix-

ture of anticipatory and treatment effects. The fundamental difficulty in obtaining

identification is distinguishing between those who anticipate and those who do not.

This section introduces several assumptions to build upper and lower bounds for

treatment effects under different circumstances. Motivations for specific assump-

tions are provided. The following results link observed outcomes, potential outcomes,

treatment assignments, and anticipation status and are used in further discussions.

From the analysis above, it is clear that two unobservable variables are con-

tributing to the pre-treatment distortion. One is the possibility for treated units to

anticipate, P[Ai = 1|Di = 1], and the other is the anticipatory effect for anticipators

τg. These two variables both need to be analyzed to recover the treatment effect.

If there is a reasonable proxy available for the anticipation treatment, then one can

use this proxy variable to measure the anticipation status for each unit. However,

such a proxy variable is not always available. To overcome the difficulty of not being

able to tell people who anticipate from others, I introduce a bounding parameter

π ∈ (0, 1) that summarizes how the anticipation probability can be bounded. Here
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E[Yi0|Di = 0]
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DID estimator

Figure II.1: Difference-In-Differences without Anticipation
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E[Yi0|Di = 0]

E[Yi1|Di = 0]

E[Yi0|Di = 1]

E[Yi1|Di = 1]

E[Yi1(0)|Di = 1]

E[Yi0(0)|Di = 1]

µ = E[Yi1(1)− Yi1(0)|Di = 1]

P[Ai = 1|Di = 1]τ

Figure II.2: Difference-In-Differences With Anticipation
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π is a parameter that can be obtained from available information, including the

treatment assignment and outcomes of units, and it can be either constant or at

least estimated from observable terms. Researchers can choose a π based on their

empirical setups, and I will discuss possible choices of π in the next section.

Assumption II.3.1. P[Ai = 1|Di = 1] ≤ π

For the anticipatory effect τg, although I cannot observe it directly, I can build

a relationship between it and the treatment effect for treated µg. τg is caused by

people’s anticipation of a possible future treatment and behavior before the treatment

to gain benefit. People’s reactions and behavior are guided by their own guesses of

the future policy. On the other hand, µg measures the treatment effect treated people

receive when the policy is adopted. This effect happens based on revealed policy and

treatment status. For example, suppose someone is going to sell his property at a

lower than usual price because of anticipation of possible negative price shock in the

future. In that case there is no reason for him to accept a price that is even lower

than the price when the shock really comes. Therefore, it is reasonable to expect that

the magnitude of treatment effects should be no smaller than that of the anticipatory

effect as the former is a reaction based on known information while the latter one

is based on uncertain information. Even when they anticipate the future, they may

be reluctant to it. In the example of the early retirement incentive program, this

statement requires that the effect caused by teachers who put less effort because of

anticipating a possible early retirement opportunity is no larger than the treatment

effect when the early retirement incentive program is implemented. Furthermore, as

the anticipatory effect and treatment effect may not be in the same direction, I only

impose restrictions on the magnitude.

Assumption II.3.2. |τg| ≤ |µg|

Assumption II.3.1 and Assumption II.3.2 help build bounds for the two unob-

servable terms, the proportion of anticipators among treated and the magnitude of

anticipatory effect separately and based on the above assumptions, the parameter of

interest µg is partially identified using observed variables, especially with the help of

the commonly used difference-in-differences estimand.
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Theorem II.1. Under Assumptions II.2.1-II.3.2, the parameter of interest µg is

partially identified via a closed interval in the following form.

µg ∈ mg

[
min

{
1,

1

1− sgn(τgµg)π

}
,max

{
1,

1

1− sgn(τgµg)π

}]
with mg = E[g(Yi1)− g(Yi0)|Di = 1]− E[g(Yi1)− g(Yi0)|Di = 0].

Theorem II.1 points out that the treatment effect is located in an interval where

the difference-in-differences parameter without anticipation is one of its bounds. The

other bound is obtained by enlarging or reducing it by a specific ratio depending on

the bounding parameter π and signs of treatment and anticipation effects. As shown

in Figures II.1 and II.2, the distortion only happens within the group of treated

and anticipate units, so once the sign of the anticipatory effect is determined, the

sign of the bias is also determined. The difference-in-differences parameter without

anticipation is by design one side of the interval. If anticipatory behavior happens

in both the control and the treated group, then distortions happen in both groups,

and the sign of the bias is ambiguous. The distortion bias has a limited magnitude

restricted by both the bounding parameter π and the treatment effect magnitude,

so I can build partial identification results for the parameter of interest based on

observables.

Although I impose the bounds for anticipation probability and magnitude re-

strictions, these assumptions are not the only way to build partial identification

results for the parameter of interest with anticipation. There might be empirical

setups where these assumptions are not reasonable, and researchers would like to

impose alternative assumptions, such as bounded outcomes or further conditional

independent restrictions. These assumptions are also reasonable under specific situ-

ations, such as when the g(.) function I am interested in is bounded by itself. It is

not the case that identified set under one assumption is tighter than the other so I

should pick one of them, but different sets of assumptions may be reasonable under

different empirical circumstances. Incorporating more combinations of alternative

assumptions and providing identification results allow us to incorporate anticipation

in more situations and give researchers the freedom to modify assumptions based on
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the empirical setup. I propose several different combinations of assumptions as well

as corresponding upper and lower bounds expression of the treatment effects in the

appendix.

II.3.2 Choice of π

This section discusses several possible choices of the bounding parameter π for

the anticipation probability among treated units under different setups.

Example II.1 π = π0 where π0 is a constant number. If π is a constant number,

this implies that there is a common upper bound for the possibility of anticipation.

This choice of π may be consistent with the setup where people get treated randomly

receive private information that helps with anticipation. Then the overall anticipa-

tion possibility should be no more than the proportion of people that have access to

this private information.

Example II.2 π = P[Di = 1]. This example states that the possibility for people

within the treatment group to anticipate does not exceed the proportion of people

treated at last. This argument follows the idea that anticipation will happen when a

future treatment sends some signals and unobservable information in advance. These

are the bases for someone to anticipate a treatment. Suppose the density of these

signals caused by future adoptions of policies is related to the overall scope of the

treatment. In that case, it is reasonable to use the treated probability to help bound

the proportion of people who anticipate. I will explain this choice and corresponding

assumptions later in a model where people anticipate from public information.

Example II.3 The univariate bound can be modified to incorporate the idea of

stratification. Suppose researchers are willing to divide units into several subgroups

and allow anticipation behavior to differ among subgroups. In that case, I can pick

π as a k dimensional vector if I have k subgroups in total. For instance, the vector

of assignment can be summarized according to genders or geographical areas, and

researchers can get a bound separately for each subgroup. This can also be regarded

as a bound conditional on a discrete variable that divides the group based on several

categories and link to the case with covariates.
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Example II.4 Suppose anticipation behavior happens among known reference

groups for each unit, as mentioned in Manski (2013). In that case, I can pick π based

on subgroup information. For example, if researchers would like to use the treatment

ratio to capture the density of information and on the other hand they also believe

this kind of interaction only happens among units within a specific geographical

distance, they can pick π as the treatment ratio for each subgroup defined by the

given geographical distance.

Besides, the choice of π can also play the role of sensitivity analysis. The ex-

pression of the bounds should be monotonic in π, and researchers can use different

choices of π to explore the robustness of obtained conclusions by checking the specific

cutoff under which the consistency of conclusion can be maintained. This sensitiv-

ity analysis also helps us understand to what extent the conclusion depends on the

choice of bounds, and researchers can report the range of anticipation probability

that rejects a particular null hypothesis.

II.3.2.1 A Toy Economic Behavior Model

This section provides a toy economic behavior model that motivates the choice

of π = P[Di = 1] and explains what assumptions one needs to imply this choice of

bounding parameter. Consider a setup where a future policy has led to some public

information prior to its implementation, and people can take advantage of this kind

of signals to anticipate. For example, there might be rumors and changes in teaching

assignments before the early retirement incentive program occurs and teachers may

anticipate based on them. The density of the signals is correlated with the overall

treatment ratio as a higher ratio of experienced teachers that are eligible for the

program implies more people are interested in the policy, and they may talk more

about it. There will be more information about this program.

For simplicity, consider a case where P[Ai = 1|Di = 0] = P[Ai = 1|Di = 1], which

means the probability to anticipate is the same between the control and treatment

groups. Suppose the density of information generated by the future implementation

of the treatment, denoted by u, is proportional to the treatment ratio P[Di = 1] in
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the form

u = αP[Di = 1] α > 0,

and that this information is known to both treated and control groups. This for-

mula captures the idea that a higher treatment ratio will lead to a case where the

information needed for anticipation is more explicit for people.

For each unit i, I introduce a random variable Ui that represents the level of

information to which one needs to be exposed for anticipation to occur. A higher Ui

means this unit needs more signals to realize the possible treatment. In contrast, a

lower Ui indicates that this unit has a keen observation and can reach a conclusion

with less information. I will use F (.) to represent the c.d.f of Ui across the population.

For any single unit i, the anticipatory behavior follows

Ai = I[Ui ≤ u],

which means the density of information needs to be larger than the cutoff Ui for unit

i to anticipate, and I have

P[Ai = 1] = P[Ui ≤ u] = F (αP[Di = 1]).

I further assume that f ′(.) ≥ 0 where f(.) is the probability density function of

the random variable Ui. This assumption states that the fraction of people who

can marginally anticipate increases with the level of information needed to form

anticipation, consistent with the intuition that people who can anticipate based on

little information should be small.

Based on the assumptions above, I can conclude that

∂2P[Ai = 1]

∂P[Di = 1]2
= α2f ′(αP[Di = 1]) ≥ 0,

which means P[Ai = 1] should be a convex function on interval [0, 1] with respect

to P[Di = 1]. If P[Di = 1] = 0, I conclude P[Ai = 1] = 0 as there is nothing to

anticipate. I also know that when P[Di = 1] = 1, P[Ai = 1] ≤ 1. This combined
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with the convex function argument shows

P[Ai = 1] ≤ P[Di = 1]× 1 + 0 = P[Di = 1].

The above model illustrates that under a setup where units can get information

public among all the groups but unobservable to econometricians and anticipate

future treatments, Assumption II.3.1 will be satisfied by choosing π = P[Di = 1] as

long as one is willing to assume fewer people can anticipate from less information and

as information accumulates, the number of people who marginally learn it increases.

II.4 Estimation and Inference

The previous section illustrates that by using a difference-in-differences approach,

the treatment effect for treated with anticipation is partially identified under cer-

tain assumptions. The population average expressions of the interval bounds lead

to straightforward estimators using sample means under independent assumptions.

This section builds uniformly effective confidence sets for the partially identified

parameters.

Assume that researchers observe data from a distribution P ∈ P with the unob-

servable parameter, P[Ai = 1|Di = 1] ∈ [0, π]. P refers to the family of distributions

that satisfy the sampling, potential outcomes restrictions. For the inferential goal

under partial identification, I would like to build a confidence set that is uniformly

consistent in level α i.e.

lim
n→∞

inf
P∈P,P[Ai=1|Di=1]∈[0,π]

P[µg ∈ CSµ
α] ≥ α,

where CSµ
α is the α level confidence set for the parameter of interest µg.

Here I provide confidence sets based on Imbens and Manski (2004), Stoye (2009),

and Stoye (2020). The upper and lower bounds for the identified set are estimated

using the same sample and thus highly correlated. I can build an easy-to-implement

confidence set by modifying the method addressed above. For notation simplicity,
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call the upper and lower bounds of parameter µg as µg,u and µg,l. A uniformly

effective confidence set can be built if the corresponding estimators µ̂g,u and µ̂g,l

exist and satisfy

Assumption II.4.1.
√
n

(
µ̂g,l − µg,l

µ̂g,u − µg,u

)
d−→ N

([
0

0

]
,

[
σ2
l ρσlσu

ρσlσu σ2
u

])
uni-

formly in P ∈ P, and there are estimators (σ̂2
l , σ̂

2
u, ρ̂) converge to their population

values uniformly in P ∈ P

Assumption II.4.2. For all P ∈ P, σ2 ≤ σ2
l , σ

2
u ≤ σ̄2 for some positive and finite

σ2 and σ̄2 and µg,u − µg,l = ∆ ≤ ∆̄ < ∞

Theorem II.2. Under Assumption II.4.1 and II.4.2, define σ̂ = max{σ̂l, σ̂u} and

find Cn that satisfies

Φ

(
Cn +

√
n
µ̂g,u − µ̂g,l

σ̂

)
− Φ(−Cn) = α.

Φ represents the cumulative distribution function for standard normal distribution.

Then I have

lim
n→∞

inf
P∈P,P[Ai=1|Di=1]∈[0,π]

P
(
µg ∈

[
µ̂g,l − Cn

σ̂√
n
, µ̂g,u + Cn

σ̂√
n

])
≥ α.

To be consistent with the setup in the empirical application, I focus on the case

τg ≤ 0 ≤ µg as an example, and I have µg ∈ mg

[
1

1+π
, 1
]
. Corresponding bound

estimators will be

µ̂g,u =
1

n1

n∑
i=1

[g(Yi1)− g(Yi0)]Di −
1

n0

n∑
i=1

[g(Yi1)− g(Yi0)](1−Di)

µ̂g,l =
µ̂g,u

1 + π̂
n1 =

n∑
i=1

Di n0 = n− n1 π̂ is a consistent estimator for π

If one would like to pick π = P[Di = 1] then a straightforward π̂ will be 1
n

∑n
i=1Di.

The standard errors can be found in the supplemental appendix.
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The assumptions and results mainly follow Imbens and Manski (2004) and Stoye

(2009). When compared with the Imbens and Manski (2004) approach, the confi-

dence set I construct has a slight difference that I choose to extend along with the

upper and lower bounds by the same length Cn
σ̂√
n
, while in Imbens and Manski

(2004) the same critical value is picked but the standard errors are different. An

intuitive explanation is that although the estimators of the upper and lower bounds

are ordered by construction, which is an important assumption mentioned in Stoye

(2009), the upper and lower bounds can have reverse order and the interval changes

from [ mg

1+π
,mg] to [mg,

mg

1+π
] when the confidence set contains both positive and neg-

ative values. Therefore the corresponding variances for the estimators of upper and

lower bound need to be accommodated to use the larger one for both bounds. This

modification works for the construction of confidence sets with perfectly correlated

and proportional upper and lower bounds, especially when the confidence set contains

zero. The proof is discussed in the appendix.

The change in the expression of confidence sets changes the significance level

of rejecting specific null hypothesis, H0 : µg = 0 in many cases compared with the

situation without anticipation. One interesting case worth mentioning happens when

µg and τg have different signs. For the specific null hypothesis H0 : µg = 0, I can

calculate the value of t-statistics that guarantee the conclusion of whether rejecting

it or not unchanged regardless of anticipation.

Corollary II.1. Suppose t∗ satisfies

Φ(t∗)− Φ(−t∗/2) = α.

Φ represents the cumulative distribution function for standard normal distribution

and the inferential goal is to test H0 : µg = 0 at level α. Suppose confidence set CSµ
α

is constructed following the procedure in Theorem II.2. If µg and τg have different

signs and the t-statistic from the difference-in-differences model without anticipation

t̃ satisfies |t̃| > t∗, then for any π, 0 ̸∈ CSµ
α.

Corollary II.1 gives empirical researchers a specific cutoff t∗ for the most common

case of testing H0 : µg = 0. If the absolute value of t-statistic exceeds t∗ for the

24



case of different signs, then taking anticipation into consideration will not change

the conclusion of rejecting the null hypothesis. For example, when α = 0.95, the

corresponding t∗ is 3.3. This means if the absolute value of t-statistic is larger than

3.3 without anticipation, you can still reject zero hypothesis for treatment effect

regardless of the anticipation probability when the treatment and anticipatory effects

have different signs. This corollary gives empirical researchers a cutoff where they

can claim the effectiveness of their conclusions even with anticipation as long as the

t-statistics is large enough.

II.5 Empirical Application

In this section, I illustrate the results of this paper in the environment estab-

lished by Fitzpatrick and Lovenheim (2014), which analyzes the effects of an early

retirement incentive program on students’ achievement. The authors conducted a

difference-in-differences based analysis using exogenous variations from the early re-

tirement incentive (ERI) program targeting on teachers in Illinois during the mid-

1990s to evaluate the effect of large-scale teacher retirements on student achievement.

The Teacher Retirement System in Illinois requires retired members who are at least

55 years old and have 20 years of service experience to collect pension benefits at a

6% discount rate below age 60. If both the employer and employee pay a one-time

fee, an Early Retirement Option allows eligible members to collect their full benefit.

In 1992-1993 and 1993-1994, an early retirement incentive (ERI) program was offered

as an alternative to ERO, which allowed employees to buy five extra years of age

and experience as long as they retired immediately, and this allowed those with at

least 50 years old and 15 years of service credit to increase their retirement benefits.

Notably, the ERI programs may impact students’ learning as this might lead to

a change in teachers’ experience and age structure, which will eventually influence

students’ grades. In their paper, the authors used a difference-in-differences approach

to analyze how promoting the ERI program affected the students’ grades. It turned

out that they found no evidence of an adverse effect and even a positive effect on

grades in some circumstances. I analyze the average treatment effect for treated by
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taking anticipation into consideration. The outcome of interest is students’ grades,

and the major difference is now teachers might anticipate the program in advance

and make benefit from it.

The authors collected data from several sources. Teacher Service Record is an

administrative dataset that contains information of employees from Illinois Public

Schools. The second set of data provides school-level information on test scores for

given subjects and grades. The third source contains demographic information of

students in schools. The analysis is restricted to teachers of third, sixth and eighth

grades as standardized testing in Illinois focuses on these grades. One major issue

for the data is the ERI take-up is not observed directly. The authors exploited the

fact that teachers with 15 or more years of experience were most likely to take up the

program and used it as a proxy for the intensity of treatment by the ERI program.

Consider the restrictions I impose on potential outcomes for the case with antici-

pation. It requires that the students’ grades of teachers that are ineligible or choose

not to retire early should not be affected, and it also requires if teachers are not

aware of this program in advance, there should be no change in the grades. Further,

it restricts once the ERI program is implemented, whether teachers anticipate or

not should no longer affect the students’ grades. The parallel trends assumption re-

quires that trends in students’ grades among schools with fewer treated teachers are

precise counterfactuals for trends among schools with more treated teachers without

anticipation.

Following the idea that teachers, whether eligible or not, may have some infor-

mation from a third party before the implementation of the ERI program so that

they may have anticipated something, I pick π = P[Di = 1] and the probability of

getting treated is estimated by calculating the proportion of experienced teachers

with more than 15 years of service credit and I get correpsonding π̂. Recall that this

bound is used to capture the intensity of potential unobservable information, which

is proportional to the intensity of treatment, and I can use the proportion of teachers

with more than 15 years of teaching experience to bound the anticipation probabil-

ity. The magnitude effect assumption requires that the anticipatory effect, τ , which

is the result of potential behavior changes of teachers who think it is possible for

26



them to retire early, has a smaller magnitude compared with the treatment effect, µ,

which is the change in students grades caused by the ERI program after its imple-

mentation. Even under a perfect anticipation setup from econometricians’ view, the

teachers themselves do not have the confidence that they would definitely be eligible

for the policy and take it up so it is reasonable to expect the anticipatory effect

does not have a larger magnitude than the treatment effect when the policy occurs.

Further, it is reasonable to expect the treatment effect µ to have the same sign as

the non-negative difference-in-differences estimator from Fitzpatrick and Lovenheim

(2014). On the other hand, I follow the argument in the same paper that claims

teachers near the retirement age and anticipate the possibility of early retirement

may put less effort than younger teachers. Therefore, it is reasonable to argue that

the anticipatory effect τ is non-positive.

With all the assumptions discussed above, I can analyze the treatment effect

with anticipation starting from the following equation in Fitzpatrick and Lovenheim

(2014) that estimates the difference-in-differences estimator.

Y s
igt = β0+β1(Teachers ≥ 15)ig×Postt+β2Teachersig×Postt+γXit+δig+φtg+εsitg

Y s
igt is the test score of grade g for subject s in school i and year t. Teachers ≥ 15 is

the number of teachers with at least 15 years of experience before 1994 and thus eligi-

ble for the program. Teachers is the average total numbers of teachers. Post serves

as the period, an indicator variable that equals one after the school year of 1993.

The vector X contains demographic information while δ and φ are corresponding

fixed effect terms. Although covariates are included here, the parametric assumption

that it enters the outcome linearly implies that the treatment effect is homogeneous

across different values of controls. The intensity of information related to the choice

of π has already been captured by the proportion of experienced teachers. If there

is no anticipation, β1 from this equation estimates the effect of the ERI program on

students’ grades. Based on the estimator for β1 and π I choose, I can analyze the

results with anticipation. I check the results for different grades and subjects and

compare the cases for all teachers. Results are shown in Table II.1. Similar results
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using data from subject-specific teachers are listed in the supplemental appendix.

Table II.1: Effects of the Early Retirement Incentive Program on Test Scores

Original Results With Anticipation

Math Reading Math Reading

All Grade 0.003 0.009 [0.002,0.003] [0.006,0.009]
(0.004) (0.003)

[-0.003,0.010] [0.002,0.015] [-0.004,0.010] [0.001,0.014]
Grade 3 0.002 -0.009 [0.001,0.002] [-0.018,-0.009]

(0.01) (0.008)
[-0.017,0.021] [-0.025,0.008] [-0.018,0.021] [-0.05,0.022]

Grade 6 -0.0001 0.006 [-0.0002,-0.0001] [0.004,0.006]
(0.005) (0.004)

[-0.01,0.01] [-0.003,0.015] [-0.022,0.021] [-0.004,0.014]
Grade 8 0.005 0.013 [0.003,0.005] [0.008,0.013]

(0.005) (0.005)
[-0.005,0.015] [0.004,0.022] [-0.006,0.014] [0.001,0.021]

Notes: This table contains data for all teachers. Each column presents results
from a separate regression. Teachers who teach multiple grades are included in each
grade. Teachers who teach in self-contained classrooms are assumed to teach both
math and English. I list identified sets in the first row and 95% level confidence sets
in the third row for each result with anticipation. For comparison purposes, I also
provide estimators, standard errors and 95% confidence intervals for results from
Fitzpatrick and Lovenheim (2014). Standard errors are displayed with parentheses.

For the partial identification results, I provide identified sets as well as the 95%

confidence sets. I notice that the estimate is at times negative from the initial results

in Fitzpatrick and Lovenheim (2014). As these negative estimates are insignificant

at the 95% level, I conclude that this distortion error is due to the finite sample bias.

For these estimators, I adjust my way to get the identified sets and confidence sets by

changing the sign restriction and find that the confidence sets, after incorporating

anticipation, still cannot reject the null hypothesis µ = 0 no matter which sign I

choose. The changes in the result are mainly in two aspects. On the one hand, the

results with anticipation suggest the treatment effect can be smaller than the one
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we get directly from the difference-in-differences approach as the DID estimator also

captures the pre-treatment negative effect caused by anticipation. The effect can be

overestimated up to about 30% because of anticipation. On the other hand, the con-

fidence sets, compared with the difference-in-differences approach, are slightly shifted

leftwards and this result also reminds people to be more careful when interpreting

the non-negative treatment effect. Despite these differences, results incorporating

anticipation still support the conclusion that the ERI programs have a non-negative

effect on students’ grades. These results imply that incorporating anticipation can

make the result more robust and still support our idea of the non-negative effect of

ERI programs on student achievement.

I conduct a robustness check to see the range of choices for π that keeps the

significance of the estimator at a 95% level and show the result in Figure II.3. I

focus on the effect of the early retirement incentive program on the reading grade in

grade 8. I present the identified set as well as the 95% confidence set for a sequence

of π, including 0.1, 0.25, 0.5, P[Di = 1], 0.75 and 0.9. The shorter interval represents

the identified set while the longer one represents the confidence set. I observe that

at an anticipation probability of 0.75, more precisely around 0.7, the confidence set

marginally contains point 0, which means this positive treatment effect is quite robust

even when taking anticipation into consideration. The null hypothesis will only be

rejected when about three fourths of the target teachers anticipate it.

II.6 Discussion

This section discusses modifications on the two-period difference-in-differences

model that only considers the pre-treatment anticipatory behavior in the treated

group to incorporate anticipation in broader setups. These generalizations build the

anticipation framework on more empirical related assumptions and cover problems

researchers encounter in applied work.

First we focus on the restrctions on pre-treatment anticipatory behavior in the

treated group only. In our discussion about the Assumption II.2.2, I said that one

can understand the focus only on anticipatory behavior within the treated group
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as an implicitly assumption of ‘perfect anticipation’, which implies that units that

make anticipation will get the anticipated treatment status in the future. However,

this might be too strong in some circumstances. For example, sometimes people may

anticipate the existence of a specific policy but they are not clear whether or not they

will get treated. In the early retirement incentive program example, it is possible for

teachers to anticipate the possibility of early retirement but they are not sure about

the exact amount of service credit they can buy and thus cannot anticipate their

future treatment status perfectly. I consider the consequences if a mistake is made

when anticipating a future treatment in this section and successfully incorporate the

anticipatory behavior in the control group. Furthermore, it is essential to explore the

robustness of our conclusion by checking the error rate under which consistent con-

clusions can still be obtained. If researchers aim to test a particular null hypothesis,

they can also report the lowest error rate at which the null hypothesis is no longer

rejected.

In order to distinguish between anticipated treatment status and the actual treat-

ment units receive and incorporate imperfect anticipation, I now define the anticipa-

tion status variable Ai as a random variable that takes three values {−1, 0, 1}. The
difference between Ai = 0 and Ai ̸= 0 distinguishes between those who anticipate

and those who don’t. However, among those who anticipate, Ai = 1 indicates that

this unit makes correct anticipation while Ai = −1 indicates a wrong one. The po-

tential outcome for unit i in period t still depends on both anticipation and treatment

(a, d) and is denoted by the random variable Yit(a, d). The only difference is now

a ∈ {−1, 0, 1} and Ai is no longer a binary treatment. Compared with the bench-

mark model, some modifications need to be made on the assumptions to incorporate

imperfect anticipation.

The random sampling assumption remains unchanged and the only modification

is that anticipatory behavior also happens within the control group so we have more

potential outcomes now and we need another index in the expression of pre-treatment

potential outcomes for the control group as well.

Assumption II.6.1. {Yi0(a, d), Yi1(d), Di, Ai}ni=1 are independently and identically

distributed across i.
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The assumption that requires anticipation is the only channel for the future to

affect present is still needed. However, it needs to be addressed that now one’s pre-

treatment behavior is affected by his anticipated status, which is likely to be different

from the treatment status he receives in the future.

Assumption II.6.2. The potential outcomes satisfy

Yi0(0, 0) = Yi0(0, 1) = Yi0(1, 0) = Yi0(−1, 1) Yi0(−1, 0) = Yi0(1, 1)

Assumption II.6.2 mainly describes two groups of units. The first group either

does not anticipate or they anticipate they will not get treated in the future so they

will behave in the same way. People in the second group expect that they will get

treated in the future and they will behave in the other way. As anticipation is the

only way I am allowing the future to affect present, one’s pre-treatment behavior

is decided by their anticipated treatment status. A treated person with the wrong

anticipation should have the same anticipated treatment status as an untreated per-

son who anticipates correctly and thus they should behave in the same way as those

who do not anticipate. However, those who will get treated and anticipate correctly

should behave in the same way as those who won’t be treated but anticipate wrongly

as they all think they will be covered. This assumption points out that what drives

people’s pre-treatment behavior is their beliefs of the treatment status. Trying to

distinguish between anticipated treatment status and real treatment received is im-

portant in the case where people make mistakes while anticipating.

One may argue that in the situation of imperfect anticipation, it is possible that

people no longer make clear anticipation about the future treatment and they believe

they will get treated at a probability. Different people hold different beliefs about

their treatment possibilities and behave differently. This situation can be regarded

as a case where anticipation is a multivalue treatment and people with different

beliefs receive different levels of anticipation treatment. As all the things related

to anticipation are unobservable, introducing more levels of different anticipation

treatments also requires more assumptions regarding each group. Therefore I still

focus on the case where people’s anticipation about the future is whether he is treated
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or not.

The parameter of interest µg is still

µg = E[g(Yi1(1))− g(Yi1(0))|Di = 1]

with similar restrictions on g(.) function. As people’s post treatment outcomes are

not affected by anticipation status so I still use one index to represent the potential

outcomes Yit(d). The anticipatory effect is modified as

τg = E[g(Yi0(1, 1))− g(Yi0(0, 0))|Di = 1, Ai = 1]

= E[g(Yi0(−1, 0))− g(Yi0(0, 0))|Di = 1, Ai = −1]

where I implicitly require that the anticipatory effect for those who anticipate cor-

rectly and wrongly are the same.

Assumption II.6.3.

E[g(Yi1(0))− g(Yi0(0, 0))|Di = 1] = E[g(Yi1(0))− g(Yi0(0, 0))|Di = 0].

The key idea of the parallel trend is to require those who get treated and not get

treated should behave in the same way without the treatment. Following this idea,

I need to pick those who have an anticipated untreated status when compared with

the outcome in the first period.

Assumption II.6.4.

P[Ai ̸= 0|Di = 1],P[Ai ̸= 0|Di = 0] ≤ π

P[Ai = −1|Di = 1, Ai ̸= 0] = P[Ai = −1|Di = 0, Ai ̸= 0] = ε.

The first part of Assumption II.6.4 requires us to pick a π as the bound for the

probability of anticipation among treated and control groups. This is straightforward

as under the ‘perfect anticipation’ situation, units that won’t get treated will not react
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to the anticipation but now they may react to it because of the wrong anticipation.

If one would like to argue there is a specific relationship between the possibility of

anticipation within treated and control groups, this assumption might be relaxed.

For now I am assuming a common bound π for two probabilities is picked. In the

second part, I assume the fraction of units that make wrong anticipation is known

as ε across treated and control groups. Recall that in the discussion about the bias

caused by anticipation, I point out that the bias is driven by those who anticipate

and react to it in the first period. Under the setup of imperfect anticipation, the

proportion of units that cause the bias is determined by anticipated treatment status

and thus related to both the proportion of those who anticipate and the accurate

rate among anticipators.

Assumption II.6.5. |τg| ≤ |µg|.

Assumption II.6.5 is the same magnitude restriction as before. Based on the

assumptions above, now we are able to partially identify the parameter of interest

µg.

Theorem II.3. Under Assumptions II.6.1-II.6.5, the parameter of interest µg is

partially identified via a closed interval based on mg = E[g(Yi1) − g(Yi0)|Di = 1] −
E[g(Yi1) − g(Yi0)|Di = 0], π and ε. Define µg,1(ε) = mg

1+sgn(τgµg)πε
and µg,2(ε) =

mg

1−sgn(τgµg)π(1−ε)
. Then we have form

µg ∈ [min {µg,1(ε), µg,2(ε)} ,max {µg,1(ε), µg,2(ε)}]

If ε = 0, which represents the situation of perfect anticipation, this interval de-

generates to the interval we get in the benchmark model for the treatment effect.

Compared with the interval I get for the treatment effect above, one significant dif-

ference is now the treatment effect is not bounded by the difference-in-differences

estimator from one side. That difference derives from the fact that both the control

group and the treated group deviate in the first period. For a perfect anticipation

setup, those in the control group will not react to the anticipation and only the

treated group is moving either upward or downward depending on the signs of antic-
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ipatory effect. When imperfect anticipation is allowed and both control and treated

groups react to it, the distortion in the first period can be either positive or nega-

tive depending on the anticipation possibility in different groups. To accommodate

this framework in more empirical settings, I don’t impose specific assumptions on the

relationship between the possibility to anticipate in different groups. If in specific sit-

uations, for example, a case where those who get treated receive private information,

researchers are comfortable to decide the relationship between these two possibilities,

it is possible to improve the identified set based on further assumptions.

Although I start with the case where ε is known, a better explanation for including

the error rate of anticipation is to understand this procedure as a sensitivity check.

Researchers can pick different possible error rates ε and analyze the region where

their conclusions are robust to the pick of error rate. Further, if a specific null

hypothesis is tested, the error rate among which the conclusion holds consistently

can also be reported. This helps people to understand to what extent the conclusion

is affected by the assumption of perfect anticipation.

Another thing that one might be interested in is, what if the anticipatory be-

havior in the treated group has an effect on the post treatment behavior and the

post-treatment potential outcomes in the treated group are also different between

those who anticipate and those who do not. Starting from the benchmark model,

now let us assume that Yi1(0, 1) and Yi1(1, 1) are different. Then we have two ef-

fects related to anticipation τ1 = E[g(Yi0(1, 1)) − g(Yi0(0, 1))|Di = 1] and τ2 =

E[g(Yi1(1, 1))− g(Yi1(0, 1))|Di = 1]. Following similar logic above, one can find that

µg = mg + P[Ai = 1|Di = 1](τ1 − τ2), which implies that if no more assumptions

about the relationship between pre and post treatment effect caused by anticipation

are imposed then nothing more can be said. Further, if one would like to assume that

the effect caused by anticipation remains unchanged before and after the treatment,

this equation points out that the existence of anticipation will have no effect on the

identification and estimation of the parameter of interest here. This is a general-

ization of the no anticipation assumption in the canonical difference-in-differences

model where both effects are assumed to be zero.

Besides the modifications mentioned above, further generalizations including the
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model incorporates anticipation with covariates in multiple periods as well as non-

linear outcomes that involves change-in-changes model are also provided in the ap-

pendix.

II.7 Conclusion

This paper proposes a potential outcome framework for analyzing treatment ef-

fects with the presence of anticipatory behavior. Based on a two-period difference-in-

differences model, the findings of this paper show how the standard estimator can be

biased and provide a weighted average of the treatment and the anticipatory effect.

I also provide conditions under which I can obtain upper and lower bounds for the

treatment effects. The motivation and implication of each assumption are discussed

to accommodate empirical research backgrounds. This paper contributes to the em-

pirical research by introducing anticipation in a practical and easy to generalize way

starting from the classical difference-in-differences model, which makes it robust to

the existence of this kind of forward looking behavior. An easy-to-implement estima-

tion and inference strategy is also provided. I propose a sensitivity analysis approach

based on it that discusses the validity of conclusions under different restrictions on

the anticipation possibility, and this approach suggests a specific range of t-statistics

that guarantee the effectiveness of the conclusion got without anticipation when the

treatment and anticipatory effect have different signs. I illustrate the results in this

paper by examining the effect of early retirement incentive programs on student

achievement while considering anticipation and show potential pitfalls if anticipa-

tion is ignored. To make this framework more general and less restrictive, I provide

several modifications based on the two-period difference-in-differences model to be

consistent with common empirical setups.

The analysis for this paper still leaves some open questions, with some of them

discussed in the appendix. I provide several alternative combinations of assump-

tions that can be used to obtain partial identification results for treatment effects

with anticipation. For example, bounded outcomes assumptions and further condi-

tional independence restrictions on potential outcomes and treatments. The choice
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of these assumptions depends on the empirical backgrounds researchers are working

on. Alternative assumptions combined with available bounds provide applied work-

ers with more choices that fit into broad applied circumstances. Further work can

focus on some frequent issues in empirical studies, for example, anticipation effects

related to instrumental variables. When a time gap exists between the instrumental

variable and the treatment, the instrumental variable can cause people to anticipate

future treatment and thus react to it before the treatment occurs. This setup is

also related to cases with imperfect compliance and situations where anticipation

will affect people’s future selections into treatments. Another possible extension is

to incorporate the anticipation phenomenon in the synthetic control framework. It

makes sense as the treatments in typical synthetic control applications are often big

policy changes that would naturally be anticipated. Following Ferman and Pinto

(2019) the anticipation treatment can be regarded as an unobservable confounder

that is correlated with treatment because only those get treated in the future will

react to anticipation. In that case, the pre-treatment weight that fits well may not

construct good counterfactual post-treatment outcomes for the treated unit and thus

causes problem. Trying to analyze the behavior of synthetic control estimator and

difference-in-difference estimator with anticipation and compare the performance of

these two approaches will be of interest for applied work. By taking these situa-

tions into consideration, I am more likely to incorporate anticipation in more diverse

empirically relevant situations and introduce it to more applied models.
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CHAPTER III

Cluster Robust Inference in Linear Regression

Models with Many Covariates

III.1 Introduction

In empirical research, it is common practice to safeguard against possible corre-

lation between specific units by employing the cluster-robust standard error. At the

same time, researchers often include a lot of control variables in the linear model to

control for confounders. However, the inclusion of a large set of control variables can

be problematic for the commonly used inference procedure, even without the clus-

ter structure, see Cattaneo et al. (2018) and Jochmans (2020), for example. When

introducing clustering structure, this problem can be more severe and needs further

adjustment.

Motivated by the observations above, this paper studies the consequences of al-

lowing the error term to be correlated within clusters with a high-dimensional co-

variates. To be more specific, the dimension of the covariates are allowed, but not

required to be high and as we are focusing on the OLS-based inference procedures,

we are not allowing the covariates have a higher dimension than the sample size.

Our main purpose is to build a valid inference procedure for the OLS-based

estimator that is robust to the existence of clustering and the existence of many

This chapter is based on the working paper “Cluster Robust Inference in Linear Regression
Model with Many Covariates” with Matias D. Cattaneo, Michael Jansson and Whitney K. Newey .
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covariates with as least restrictions on the cluster designs and the covariate structure

as possible. We get several main results there. First of all, we provide sufficient

conditions to guarantee the asymptotic normality of the OLS-based estimator under

this setup. Second, we analyze a class of variance estimators that incorporate several

commonly used cluster robust standard errors and analyze the performance of these

estimators. On one hand, we point out the conditions under which some previously

used standard errors may still be effective with a trade-off between the dimension of

covariates and the largest cluster sample size. On the other hand, we also propose

an alternative cluster robust standard error that is consistent under such setup and

more flexible cluster designs. Another separate conclusion that is consistent with

what we get in Cattaneo et al. (2018) in heteroskedasticity case shows that the

jackknife estimator, a cluster generalization of the HC-3 estimator is conservative

even when we have many covariates, which means if one reject the null hypothesis

using the jackknife estimator, he or she should be confident about the conclusion.

On one hand, our paper contributes to the huge literature on cluster robust stan-

dard errors in linear models. There are a series of papers about cluster robust infer-

ence that varies from empirical guide to specific inference problems in clustering de-

signs, for example, “few” clusters problem. See, Bertrand, Duflo, and Mullainathan

(2004), Cameron and Miller (2015), Ibragimov and Müller (2016), Abadie, Athey,

Imbens, and Wooldridge (2017), Conley, Gonçalves, and Hansen (2018), MacKin-

non (2019), Hansen and Lee (2019), Esarey and Menger (2019), Canay, Santos, and

Shaikh (2021), MacKinnon, Nielsen, and Webb (2022), for example. Our paper con-

tributes to this literature by analyzing a new class of cluster robust standard error

under the setup of containing high dimensional covariates in the linear model and

allowing as much flexibility as possible in cluster designs.

On the other hand, our paper also adds to the literature in linear models whose

number of regressors is non-ignorable compared with sample size. To be more precise,

the condition shows that the dimension of covariates matters when the largest cluster

size combined with the increasing speed of the covariates’ dimension compared with

the sample size is non-ignorable. The main method generalizes from Cattaneo et al.

(2018) and also discusses results related to Jochmans (2020). Generalizations from
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independent error terms to cluster design is not trivial in the sense that when the

clusters are allowed to contain infinite elements within each of them, the convergence

result is affected not only by the dimension of covariates, but also by the cluster size.

Further, the difference in the correlation structures between covariates and error

terms are also allowed to bring more flexibilities. D’Adamo (2019) also puts an eye

on this problem, however, the results in that paper only focus on the case where

each cluster has finite number of elements with some extra assumptions restricting

the behavior of the asymptotic variance directly. That paper also does not study the

property of the estimator by providing further conditions to guarantee the validity.

The rest of this article is organized as follows. Section 2 introduces the basic setup

and main assumptions. Section 3 discusses the class of standard errors we study and

provides a general expression for all the standard errors mentioned here. Section 4

gives the main results of the article. Section 5 reports the simulation results and

section 6 concludes. Proofs as well as additional theoretical results are discussed in

the appendix.

III.2 Setup and Assumptions

Suppose {(yi,n,x′
i,n,w

′
i,n) : 1 ≤ i ≤ n} is generated by a model of the form

yi,n = β′xi,n + γ ′
nwi,n + ui,n, i = 1 . . . n, (III.1)

where xi,n is of fixed dimension d and wi,n is of (possibly) growing dimension Kn.

Our main goal is to conduct valid OLS-based inference for the parameter β that is

robust to clustering as well as the existence of high dimensional covariates. Here,

the high dimension works in the sense that Kn cannot be a complete ignorable part

compared with the sample size.

Similarly to Cattaneo et al. (2018), henceforth CJN, we impose three high-level

conditions. To state the first condition, let Xn and Wn denote collections of random
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variables satisfying E[xi,n|Xn] = xi,n and E[wi,n|Wn] = wi,n, respectively, and define

Ui,n = yi,n − E[yi,n|Xn,Wn] and Vi,n = xi,n − E[xi,n|Wn].

Also, let the cardinality of a set A be denoted #A.

Assumption III.2.1. Assume that CS,n = max1≤G≤NS,n
#SG,n = o(

√
n) and CT ,n =

max1≤g≤NT ,n
#Tg,n = o( 3

√
n), where {SG,n : 1 ≤ G ≤ NS,n} and {Tg,n : 1 ≤ g ≤ NT ,n}

are partitions of {1, . . . , n} such that {Vs,n : s ∈ SG,n} are independent over G

conditional on Wn and {Ut,n : t ∈ Tg,n} are independent over g conditional on

(Xn,Wn).

To state the next condition, define

Γ̃n =
1

n

n∑
i=1

Ṽi,nṼ
′
i,n,

where

Ṽi,n =
n∑

j=1

Mij,nVj,n, Mij,n = I(i = j)−w′
i,n

(
n∑

k=1

wk,nw
′
k,n

)−1

wj,n.

Also, define

Un (g) = (Utg,n(1),n, . . . , Utg,n(#Tg,n),n)
′, g = 1, . . . , NT ,n,

where tg,n(·) is any function such that {tg,n(1), . . . , tg,n(#Tg,n)} = Tg,n. Finally, define

Cn = max
1≤i≤n

{E[U4
i,n|Xn,Wn] + E[∥Vi,n∥4|Wn]}

+ max
1≤g≤NT ,n

{1/λmin(E[Un(g)Un(g)
′|Xn,Wn])}+ 1/λmin(E[Γ̃n|Wn]),

where λmin(·) denotes the minimum eigenvalue of its argument.

Assumption III.2.2. P[λmin(
∑n

i=1 wi,nw
′
i,n) > 0] → 1, lim supn→∞Kn/n < 1, and

Cn = Op(1).
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To state the last condition, define

ϱn =
1

n

n∑
i=1

E[R2
i,n], Ri,n = E[ui,n|Xn,Wn],

ρn =
1

n

n∑
i=1

E[r2i,n], ri,n = E[ui,n|Wn],

χn =
1

n

n∑
i=1

E[∥Qi,n∥2], Qi,n = E[vi,n|Wn],

where ∥ · ∥ denotes the Euclidean norm and where

vi,n = xi,n − E

[
n∑

j=1

xj,nw
′
j,n

](
E

[
n∑

j=1

wj,nw
′
j,n

])−1

wi,n

is the population counterpart of

v̂i,n = xi,n −

(
1

n

n∑
j=1

xj,nw
′
j,n

)(
1

n

n∑
j=1

wj,nw
′
j,n

)−1

wi,n =
n∑

j=1

Mij,nxj,n.

Assumption III.2.3. χn = O(1), ϱn+n(ϱn−ρn)+nχnϱn = o(1), and 1
n2

∑n
i=1 ∥v̂i,n∥4 =

op(1).

Remark III.1. � We invariably set Xn = (x1,n, . . . ,xn,n), but it is convenient to

allow Wn ̸= (w1,n, . . . ,wn,n).

� If Assumption 1 of CJN is satisfied, then Assumption III.2.1 is satisfied with

{SG,n} = {Tg,n}, CS,n = CT ,n = O(1), and E[Ui,nUj,n|Xn,Wn] = 0 for i ̸= j.

Our main objective is to relax the latter assumption, but we will also explore

the consequences of allowing CT ,n to grow. When doing so, it turns out to be

convenient to relax the requirement {SG,n} = {Tg,n}.

� If E[Ui,nUj,n|Xn,Wn] = 0 for i ̸= j, then

max
1≤g≤NT ,n

{1/λmin(E[Un(g)Un(g)
′|Xn,Wn])} = max

1≤i≤n
{1/E[U2

i,n|Xn,Wn]}.
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As a consequence, if Assumption 1 of CJN is satisfied, then Assumption III.2.2

is equivalent to Assumption 2 of CJN.

� If max1≤i≤n E[∥Vi,n∥2|Wn] = Op(1) and if χn = O(1), then n−1
∑n

i=1 ∥v̂i,n∥2 =
Op(1). If also n−1/2max1≤i≤n ∥v̂i,n∥ = op(1), then

1

n2

n∑
i=1

∥v̂i,n∥4 ≤
(

1√
n

max
1≤i≤n

∥v̂i,n∥
)2
(
1

n

n∑
i=1

∥v̂i,n∥2
)

= op(1).

As a consequence, if Assumption III.2.2 is satisfied, then Assumption III.2.3 is

implied by Assumption 3 of CJN.

III.3 Variance Estimators

It is convenient to write the OLS estimator β̂ as

β̂ = β +

(
n∑

i=1

v̂i,nv̂
′
i,n

)−1( n∑
i=1

v̂i,nui,n

)

and our first result provides the conditions under which the OLS estimator follows

the asymptotic normality distribution with an infeasible estimator in the following

form.

Ω−1/2
n

√
n(β̂n − β) →d N (0, Id), Ωn = Γ̂−1

n ΣnΓ̂
−1
n , (III.2)

where

Γ̂n =
1

n

∑
1≤i≤n

v̂i,nv̂
′
i,n and Σn =

1

n
V

[ ∑
1≤i≤n

v̂i,nui,n

∣∣∣∣∣Xn,Wn

]
.

Theorem III.1. Suppose Assumptions III.2.1-III.2.2 hold and suppose Assumption

III.2.3 holds with

CS,nρn = o(1) and
C3
T ,n

n2

∑
1≤i≤n

||v̂i,n||4 = op(1).
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Then (III.2) holds.

If (III.2) is satisfied and if Σ−1
n = Op(1), then a (variance) estimator Σ̂n satisfying

Σ̂n = Σn + op(1) will also satisfy

Ω̂−1/2
n

√
n(β̂n − β) →d N (0, Id), Ω̂n = Γ̂−1

n Σ̂nΓ̂
−1
n . (III.3)

Under Assumption III.2.1, the matrix Σn is given by

Σn =
1

n

∑
1≤g≤NT ,n

V̂n(g)
′E[Un(g)Un(g)

′|Xn,Wn]V̂n(g),

where V̂n (g) = (v̂tg,n(1),n, . . . , v̂tg,n(#Tg,n),n)
′. For our purposes, it turns out to be

convenient to work with the folllowing alternative representation, obtained using

standard properties of the Kronecker product:

Σn = vec−1
d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′E[Un(g)⊗Un(g)|Xn,Wn]

 ,

where vec−1
d is the inverse of the vectorization operator vecd : Rd×d → Rd2 . In

what follows, we consider estimators of Σn obtained by replacing each E[Un(g) ⊗
Un(g)|Xn,Wn] with an estimator.

The simplest plausible estimator of E[Un(g)⊗Un(g)|Xn,Wn] is arguably ûn(g)⊗
ûn(g), where ûn (g) = (ûtg,n(1),n, . . . , ûtg,n(#Tg,n),n)

′. The associated estimator of Σn is

the Liang and Zeger (1986) estimator

Σ̂LZ
n =

1

n

∑
1≤g≤NT ,n

V̂n(g)
′ûn(g)ûn(g)

′V̂n(g)

= vec−1
d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(ûn(g)⊗ ûn(g))

 ,
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a degrees-of-freedom corrected version of which (used in Stata) is

Σ̌LZ
n = µnΣ̂

LZ
n , µn =

NT ,n

NT ,n − 1

n− 1

n−Kn

.

In the special case where CT ,n = 1 (i.e., when each Tg,n is a singleton), these estimators

reduce to the so-called HC0 and HC1 estimators, respectively, and it follows from

CJN that the estimators are inconsistent in general when Kn/n ↛ 0. Also, because

µn =
1

1−Kn/n
{1 + o(1)}

when CT ,n = o(n), the estimators Σ̌LZ
n and Σ̂LZ

n are not asymptotically equivalent

when Kn/n ↛ 0. In fact, even if Kn/n → 0 the estimators Σ̌LZ
n and Σ̂LZ

n can fail

to be asymptotically equivalent because Σn = Op(CT ,n) ̸= O(1) in general. On the

other hand, suppose CT ,nMn = op(1), where

Mn = 1− min
1≤i≤n

Mii,n.

Then Σ̌LZ
n = Σn + op(1) whenever Σ̂

LZ
n = Σn + op(1), the reason being that µnΣn =

Σn + op(1) because Mn ≥ Kn/n.

For g, h ∈ {1, . . . , NT ,n}, let Mn (g, h) be a (#Tg,n)× (#Th,n) matrix obtained by

partitioning

Mn = In −Wn(W
′
nWn)

−1W′
n, Wn = (Wn(1)

′, . . . ,Wn(NT ,n)
′)′,

as

Mn =


Mn(1, 1) · · · Mn(1, NT ,n)

...
. . .

...

Mn(NT ,n, 1) · · · Mn(NT ,n, NT ,n)

 ,

where Wn (g) = (wtg,n(1),n, . . . ,wtg,n(#Tg,n),n)
′. Assuming each Mn(g, g) is invertible,

a “bias reduced” (in the terminology of Imbens and Kolesar (2016)) estimator of Σn
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is given by

Σ̂BR
n = vec−1

d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(Mn(g, g)

−1/2ûn(g)⊗Mn(g, g)
−1/2ûn(g))

 .

By construction, this estimator reduces to CJN’s version of HC2 when CT ,n = 1.

Similarly, an estimator that reduces to CJN’s version of HC3 when CT ,n = 1 is the

“jackknife” estimator

Σ̂JK
n = vec−1

d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(Mn(g, g)

−1ûn(g)⊗Mn(g, g)
−1ûn(g))

 .

Although not necessarily consistent, this estimator turns out to be asymptotically

conservative under weak conditions even when Kn/n ↛ 0.

A cluster robust analog of the “Hadamard” estimator Σ̂HC
n studied by CJN is

given by

Σ̂CR
n = vec−1

d

 1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κCRn (g, h)(ûn(h)⊗ ûn(h))

 ,

where
κCRn (1, 1) · · · κCRn (1, NT ,n)

...
. . .

...

κCRn (NT ,n, 1) · · · κCRn (NT ,n, NT ,n)



=


Mn(1, 1)⊗Mn(1, 1) · · · Mn(1, NT ,n)⊗Mn(1, NT ,n)

...
. . .

...

Mn(NT ,n, 1)⊗Mn(NT ,n, 1) · · · Mn(NT ,n, NT ,n)⊗Mn(NT ,n, NT ,n)


−1

.

By construction, this estimator reduces to CJN’s Σ̂HC
n when CT ,n = 1. More im-

portantly, this estimator turns out to be consistent under conditions permitting
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Kn/n ↛ 0.

The estimators Σ̂LZ
n , Σ̌LZ

n , Σ̂BR
n , Σ̂JK

n , and Σ̂CR
n can be embedded in a class of es-

timators that can be analyzed in a unified way. To define this class, let Nκ,n =∑
1≤g≤NT ,n

(#Tg,n)
2 and let κn be a symmetric Nκ,n ×Nκ,n matrix partitioned as

κn =


κn(1, 1) · · · κn(1, NT ,n)

...
. . .

...

κn(NT ,n, 1) · · · κn(NT ,n, NT ,n)

 ,

where each κn (g, h) is a (#Tg,n)
2 × (#Th,n)

2 matrix possibly depending on Wn, and

define

Σ̂n(κn) = vec−1
d

 1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κn(g, h)(ûn(h)⊗ ûn(h))

 .

Also, let Mn ⊛n Mn and diagn(Mn ⊛n Mn) be shorthand for
Mn(1, 1)⊗Mn(1, 1) · · · Mn(1, NT ,n)⊗Mn(1, NT ,n)

...
. . .

...

Mn(NT ,n, 1)⊗Mn(NT ,n, 1) · · · Mn(NT ,n, NT ,n)⊗Mn(NT ,n, NT ,n)


and 

Mn(1, 1)⊗Mn(1, 1) · · · 0
...

. . .
...

0 · · · Mn(NT ,n, NT ,n)⊗Mn(NT ,n, NT ,n)

 ,
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respectively. Then

Σ̂LZ
n = Σ̂n(INκ,n),

Σ̌LZ
n = Σ̂n(µnINκ,n),

Σ̂BR
n = Σ̂n(κ

BR
n ), κBRn = [diagn(M

1/2
n ⊛n M

1/2
n )]−1,

Σ̂JK
n = Σ̂n(κ

JK
n ), κJKn = [diagn(Mn ⊛n Mn)]

−1,

Σ̂CR
n = Σ̂n(κ

CR
n ), κCRn = (Mn ⊛n Mn)

−1.

Remark III.2. An estimator in the spirit of the leave-out estimator of Kline, Saggio,

and Sølvsten (2020) is given by

Σ̂LO
n = vec−1

d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(yn(g)⊗Mn(g, g)

−1ûn(g))

 .

and under specific assumptions, this estimator also serves as a valid estimator. The

validity of this estimator and corresponding assumptions will be discussed in the

appendix.

III.4 Main Results

Let ∥·∥∞ denote the maximum row sum of its argument.

Theorem III.2. Suppose Assumptions III.2.1-III.2.2 hold and suppose Assumption

III.2.3 holds with

C3
T ,n[CS,nρn + n(ϱn − ρn) + nχnϱn] = o(1) and

C4
T ,n

n2

∑
1≤i≤n

||v̂i,n||4 = op(1).

(a) If C3
T ,nMn = op(1) and if

lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1/2||−2

∞ > δ

]
= 1,
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then (III.3) holds with Σ̂n = Σ̂BR
n .

(b) If C2
T ,nMn = op(1), then (III.3) holds with Σ̂n ∈

{
Σ̂LZ

n , Σ̌LZ
n , Σ̂JK

n

}
.

(c) If

lim
δ↓0

lim inf
n→∞

P

 min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ −
∑

1≤h≤NT ,n,h̸=g

||Mn(g, h)||2∞

 > δ

 = 1,

then (III.3) holds with Σ̂n = Σ̂CR
n .

(d) If

lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ > δ

]
= 1,

then Σ̂JK
n ≥ Σn + op(1).

If CT ,n = O(1), then the displayed condition of part (a) of Theorem III.2 holds

whenever Mn = op(1).

Corollary III.1. Suppose Assumption III.2.1 holds with CS,n + CT ,n = O(1) and

suppose Assumptions III.2.2-III.2.3 hold. If Mn = op(1), then (III.3) holds with

Σ̂n ∈
{
Σ̂LZ

n , Σ̌LZ
n , Σ̂BR

n , Σ̂JK
n

}
.

Whether or not the cluster sizes are bounded, the displayed conditions of parts

(c) and (d) of Theorem III.2 admit sufficient conditions involving only CT ,n and Mn.

Corollary III.2. Suppose the assumptions of Theorem III.2 are satisfied. If

lim
δ↓0

lim inf
n→∞

P
[
(C2

T ,n − CT ,n + 2)Mn +
√

(CT ,n − 1)(1−Mn)Mn < 1− δ

]
= 1,

then (III.3) holds with Σ̂n = Σ̂CR
n .

Corollary III.3. Suppose the assumptions of Theorem III.2 are satisfied. If

lim
δ↓0

lim inf
n→∞

P [CT ,nMn < 1− δ] = 1,

then Σ̂JK
n ≥ Σn + op(1).
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Because

(C2
T ,n − CT ,n + 2)Mn +

√
(CT ,n − 1)(1−Mn)Mn

is an increasing function of Mn ∈ [0, 1/2) and CT ,n ∈ N, there exists a decreasing

function MCR : N → (0, 1/2] such that

(C2
T ,n − CT ,n + 2)Mn +

√
(CT ,n − 1)(1−Mn)Mn < 1

if and only if

Mn < MCR(CT ,n).

The function MCR satisfies

√
C − 1 + 4(C2 − C + 2)−

√
C − 1

2(C2 − C + 2)
≤
√
MCR(C) ≤

√
C−1
2

+ 4(C2 − C + 2)−
√

C−1
2

2(C2 − C + 2)
,

but does not seem to admit a closed form solution.

Theorem III.2 is silent about the properties of the various variance estimators in

the case where the design is cluster-orthogonal in the sense that Mn (g, h) is a zero

matrix whenever g ̸= h. Indeed, if the design is cluster-orthogonal, then Mn (g, g) is

idempotent for every g, so Σ̂BR
n , Σ̂JK

n , and Σ̂CR
n are undefined. Moreover, the condition

C2
T ,nMn = op(1) is violated because

CT ,nMn ≥ 1,

the reason being that if Mn (g, g) ̸= I#Tg,n , then (#Tg,n)Mn ≥ 1 because

#Tg,n − 1 ≥ tr [Mn (g, g)] ≥ (#Tg,n) min
1≤s≤#Tg,n

Mtg,n(s),tg,n(s),n ≥ (#Tg,n) (1−Mn) .

In Theorem III.2(a), the purpose of the condition C2
T ,nMn = op(1) is to ensure

that a key component of the bias of Σ̂LZ
n is asymptotically negligible. When the

design is cluster-orthogonal, the bias component in question is absent and the con-

dition C2
T ,nMn = op(1) can therefore be dropped when analyzing Σ̂LZ

n . In the case of
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Σ̂BR
n , Σ̂JK

n , and Σ̂CR
n , arguably the most natural way of accommodating (possibly) sin-

gular Mn (g, g) is to replace matrix inverses with Moore-Penrose inverses. In slight

abuse of notation, we therefore define

Σ̂BR
n = vec−1

d

 1

n

NT ,n∑
g=1

(V̂n(g)⊗ V̂n(g))
′([Mn(g, g)

1
2 ]+ûn(g)⊗ [Mn(g, g)

1
2 ]+ûn(g))

 ,

Σ̂JK
n = vec−1

d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(Mn(g, g)

+ûn(g)⊗Mn(g, g)
+ûn(g))

 ,

and

Σ̂CR
n = vec−1

d

 1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κCRn (g, h)(ûn(h)⊗ ûn(h))

 ,

where
κCRn (1, 1) · · · κCRn (1, NT ,n)

...
. . .

...

κCRn (NT ,n, 1) · · · κCRn (NT ,n, NT ,n)



=


Mn(1, 1)⊗Mn(1, 1) · · · Mn(1, NT ,n)⊗Mn(1, NT ,n)

...
. . .

...

Mn(NT ,n, 1)⊗Mn(NT ,n, 1) · · · Mn(NT ,n, NT ,n)⊗Mn(NT ,n, NT ,n)


+

,

and where (·)+ denotes the Moore-Penrose inverse.

With this interpretation, we have Σ̂LZ
n = Σ̂BR

n = Σ̂JK
n = Σ̂CR

n when the design is

cluster-orthogonal.

Theorem III.3. Suppose Assumptions III.2.1-III.2.2 hold and suppose Assumption

III.2.3 holds with

C3
T ,n[CS,nρn + n(ϱn − ρn) + nχnϱn] = o(1) and

C4
T ,n

n2

∑
1≤i≤n

||v̂i,n||4 = op(1).
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If the design is cluster-orthogonal, then (III.3) holds with Σ̂n ∈
{
Σ̂LZ

n , Σ̂BR
n , Σ̂JK

n , Σ̂CR
n

}
.

If also CT ,nMn = op(1), then (III.3) holds with Σ̂n = Σ̌LZ
n .

III.5 Simulation

III.5.1 Simulation Design

We conduct a simulation study to assess the finite sample properties of the stan-

dard errors we proposed here and compared them with other cluster robust standard

errors available in the literature. Based on the regression model III.1, we consider

a linear data generating process with growing dimensions that includes a series of

different standard errors including the well known Liang-Zeger estimator for clusters

(LZ) with and without degree of freedom adjustment (LZ-df) that degenerates to

HC0 and HC1 standard error when each cluster has only one unit. We also include

the ‘bias-reduction’ standard error (BR) and the ‘jackknife’ standard error (JK) that

are clustered versions of HC2 and HC3 estimators. We also contain the cluster robust

standard error we proposed here (CR), and the leave-out standard error (LO).

Our paper presents theory for Gaussian-based inference methods and for each

inference method we report both empirical coverage and their average interval length.

The latter provides a summary of efficiency for each inference method.

The Gaussian-based confidence interval takes the form

Il =

β̂ − Φ−1(1− α/2)

√
Ω̂l

n
, β̂ − Φ−1(α/2)

√
Ω̂l

n

 Ω̂l = Γ̂−1Σ̂lΓ̂
−1

where Φ−1 denotes the inverse of the c.d.f of the Gaussian distribution and Σ̂l with l ∈
{LZ,LZ-df,BR,JK,LO,CR} corresponds to each of the variance estimator discussed

in the paper.

The data generating process for the linear regression model with many covari-

ates follows Cattaneo et al. (2018). For simplicity, we drop the subindex n in the
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discussion below and the data follow

yi = βxi + γ ′
nwi + ui, i = 1, . . . , n,

xi|wi ∼ N (0, σ2
x,i) σ2

x,i = κx(1 + (ι′wi)
2)

The data generating process of the error term ui,n follows MacKinnon, Nielsen, Webb,

et al. (2020). For each cluster of the error term, we define

un(g) = (utg,n(1), . . . , utg,n(#Tg,n))
′, g = 1, 2, . . . , NT ,n

which follows

un(g) = Pξξn(g) + pεεn(g), εn(g) ∼ N
(
0, diag{σ2

u,tg,n(1), . . . , σ
2
u,tg,n(#Tg,n)}

)
,

ξn(g) = [ξg1,n, . . . , ξgJ,n] is a J-vector of unobserved random factors. The #Tg,n × J

loading matrix Pξ has (i,j)-th entry pξI (j = ⌊(i− 1)J/#Tg,n⌋+ 1) where ⌊.⌋ denotes
the integer part of the argument. When J=1, entries of the loading matrix Pξ

are ones and the error term degenerates to the commonly known random effect

model. In order to avoid the situation where cluster fixed effect fully captured the

correlation within each cluster, we require that the J unobserved random factors are

also correlated with each other following

ξg1,n ∼ N (0, 1), ξgj,n = ρξgj−1,n + egj,n egj,n ∼ N (0, 1− ρ2), j = 2, . . . , J

εn(g) is a noise term with independent normal distribution and conditional hetero-

geneous variance where

σ2
u,i = κu(t(xi) + ι′wi)

2

Regarding the selection of parameters, we have that ι = (1, 1, . . . , 1)′, d = 1,

β = 1, γn = 0, t(a) = aI(−2 ≤ a ≤ 2) + 2sgn(a)(1− I(−2 ≤ a ≤ 2)) and κx and κu

are constant that makes V[xtG,n(1)
] = V[utg,n(1)

] = 1. We also pick ρ = 0.5, pξ = 0.7,

pε =
√

1− p2ξ and J=3 for error terms.
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For the generation of covariates, we also allow them to have certain form of

correlation and we allow the cluster design for covariates to be different from that

of the error term. If the regressors are independent, then we build them based on

wi
i.i.d∼ U[−1, 1]K . If we would like to impose some correlation structure on the

covariates, the data generating process of regressors is almost the same as that of

the error term where for the k-th regressor

wk
n(G) = (wk

tG,n(1)
, . . . , wk

tG,n(#SG,n)
)′, G = 1, 2, . . . , NS,n

has the form

wk
n(G) = Lλλ

k
n(G) + lϵϵ

k
n(G), ϵki

i.i.d∼ U[−1, 1], G = 1, 2, . . . , NT ,n

λk
n(g) = [λk

g1,n, . . . , λ
k
gJ,n] is a J-vector of unobserved random factors. The #SG,n× J

loading matrix Lλ has (i,j)-th entry lλI (j = ⌊(i− 1)J/#SG,n⌋+ 1). The J unob-

served random factors are also correlated with each other following

λG1,n ∼ U[−1, 1], λGj,n = ρλGj−1,n+ẽGj,n ẽGj,n ∼
√

1− ρ2U[−1, 1], j = 2, . . . , J

We pick J=10 for covariates, and choose lλ = 0.7, lϵ =
√
1− l2λ.

In order to analyze the effect of the cluster design on the performance of different

standard errors, we conduct simulation designs on both homogeneous and hetero-

geneous error term clusters. Under homogeneous design, all the clusters have the

same size with #Tg,n = 6 while for the heterogeneous case half of the clusters have

a cluster size of 4 and half of them have a cluster size of 8. For the regressors, we

allow them either to be independent or follow the correlated data generation process

mentioned above with #SG,n = 24. We study s = 1000 simulations to study the

finite sample performance of different variance estimators on a sample whose size is

n = 600. In total there should be 4 models with different choices of homogeneous

or heterogeneous cluster sizes and independent or dependent regressors and for each

of the models, we allow the number of regressors to grow at the same rate as the

sample size. We consider five dimensions of K with {1, 1 + 0.1n, . . . , 1 + 0.4n} and
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the results are shown below.

III.5.2 Results and Discussions

In practice, one thing worth mentioning is that as the estimator is not guaranteed

to be nonnegative by construction like the HC-k estimator, we need to make some

finite sample adjustments to avoid calculating the square root of a negative term.

This will happen to the variance estimator calculated from each cluster as well as the

total variance. In our setup, we try three different regularization for Cluster Robust

estimator(CR) and Leave-One-Out(LO) estimators and list the result separately.

Σ̂LO
n =

1

n

NT ,n∑
g=1

V̂n(g)
′yn(g)Mn(g, g)

−1û(g)V̂n(g)

Σ̂CR
n =

1

n

NT ,n∑
g=1

V̂n(g)
′
NT ,n∑
h=1

κn(g, h)ûn(h)ûn(h)
′V̂n(g)

Adjustment 1 Drop Negative Σ̂n and only calculate P[coverage|Σ̂n > 0].

Adjustment 2 For those have negative Σ̂n, we calculate

Σ̃LO
n (g) = max{V̂n(g)

′yn(g)Mn(g, g)
−1û(g)V̂n(g), 0}

Σ̃CR
n (g) = max{V̂n(g)

′
NT ,n∑
h=1

κn(g, h)ûn(h)ûn(h)
′V̂n(g), 0}

for each cluster and then calculate Σ̂n =
∑NT ,n

g=1 Σ̃n(g)

Adjustment 3 Implement Adjustment 2 not only for Σ̂n < 0 but for all Σ̂n.

We also list two negative ratios, the first negative ratio measure P[Σ̂n < 0] and

the second ratio measures P[Σ̃n(g) = 0] among all clusters for reference.

Simulation results for four different models with 1000 replications are summarized

below. For each of them, I include the performance of LZ-estimator, LZ-df, BR, JK

estimator, the performance of leave-one-out estimator and cluster robust estimator

we propose with three different kinds of finite adjustment. We also list two different
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kinds of negative ratio for leave-one-out and cluster-robust estimator.

Table III.1: Simulation Results, Independent Regressors, n=600, S=1000
Homogeneous Cluster Size

(a): Empirical Coverage
LZ HC1 HC2 HC3 LO1 LO2 LO3 CR1 CR2 CR3

K/n=0.002 0.956 0.958 0.956 0.957 0.952 0.950 0.986 0.956 0.956 0.956
K/n=0.102 0.922 0.937 0.937 0.947 0.941 0.940 0.971 0.939 0.939 0.942
K/n=0.202 0.886 0.924 0.922 0.950 0.910 0.913 0.968 0.931 0.931 0.934
K/n=0.302 0.855 0.918 0.919 0.972 0.932 0.932 0.975 0.934 0.934 0.950
K/n=0.402 0.824 0.911 0.911 0.974 0.922 0.922 0.966 0.934 0.934 0.954

(b): Interval Length
LZ HC1 HC2 HC3 LO1 LO2 LO3 CR1 CR2 CR3

K/n=0.002 0.192 0.193 0.192 0.192 0.191 0.191 0.229 0.192 0.192 0.192
K/n=0.102 0.264 0.280 0.279 0.295 0.287 0.286 0.333 0.286 0.286 0.288
K/n=0.202 0.245 0.275 0.274 0.307 0.285 0.285 0.336 0.287 0.287 0.291
K/n=0.302 0.237 0.284 0.283 0.338 0.305 0.304 0.357 0.302 0.302 0.312
K/n=0.402 0.241 0.313 0.311 0.402 0.341 0.340 0.396 0.337 0.337 0.358

(c): Negative Ratio
LONeg1 CRNeg1 LONeg2 CRNeg2

K/n=0.002 0.000 0.000 0.465 0.037
K/n=0.102 0.001 0.000 0.394 0.239
K/n=0.202 0.005 0.000 0.386 0.325
K/n=0.302 0.001 0.000 0.380 0.397
K/n=0.402 0.001 0.000 0.368 0.454

From the tables we can see that as the dimension of covariates increasing, the

performance of commonly used LZ estimator and LZ-df, BR standard errors perform

worse and have a relatively low empirical coverage. JK standard error is always

conservative. For the two standard errors we propose in our paper, Cluster-robust

standard error is always nonnegative if we take the sum while the LO standard error

will be negative but with a relatively low ratio. If we consider the estimator for

each cluster separately, the negative ratio is huge. What is surprising is the third

adjustment for CR estimator, performs really well although it always drives LO

estimator too conservative. The CR estimator exhibits a consistent improvement

against other estimators while the performance of LO standard error is not quite

ideal. The overall negative ratio for the standard error is not huge while the negative

ratio for each cluster is relatively large but on average the performance is fine. The
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Table III.2: Simulation Results, Independent Regressors, n=600, S=1000
Heterogeneous Cluster Size

(a): Empirical Coverage
LZ LZ-df BR JK LO1 LO2 LO3 CR1 CR2 CR3

K/n=0.002 0.946 0.946 0.946 0.946 0.945 0.942 0.984 0.946 0.946 0.946
K/n=0.102 0.924 0.941 0.941 0.956 0.921 0.923 0.974 0.948 0.948 0.950
K/n=0.202 0.881 0.928 0.926 0.950 0.933 0.934 0.962 0.934 0.934 0.939
K/n=0.302 0.861 0.930 0.930 0.967 0.923 0.921 0.972 0.940 0.940 0.950
K/n=0.402 0.823 0.907 0.903 0.968 0.917 0.920 0.977 0.931 0.931 0.948

(b): Interval Length
LZ LZ-df BR JK LO1 LO2 LO3 CR1 CR2 CR3

K/n=0.002 0.192 0.193 0.192 0.193 0.192 0.192 0.232 0.192 0.192 0.192
K/n=0.102 0.265 0.280 0.279 0.295 0.284 0.284 0.333 0.287 0.287 0.288
K/n=0.202 0.265 0.298 0.297 0.332 0.312 0.312 0.361 0.311 0.311 0.316
K/n=0.302 0.242 0.291 0.289 0.346 0.308 0.307 0.363 0.309 0.309 0.319
K/n=0.402 0.206 0.268 0.266 0.344 0.290 0.291 0.354 0.288 0.288 0.306

(c): Negative Ratio
LONeg1 CRNeg1 LONeg2 CRNeg2

K/n=0.002 0.000 0.000 0.460 0.039
K/n=0.102 0.005 0.000 0.387 0.239
K/n=0.202 0.004 0.000 0.367 0.329
K/n=0.302 0.001 0.000 0.371 0.400
K/n=0.402 0.006 0.000 0.385 0.455

performance of different standard errors are quite consistent across either change in

cluster size or change in dependent structures of covariates.

III.6 Conclusion

In this paper we established asymptotic normality results of the OLS-based esti-

mator when we possibly have many covariates in the sense of non-ignorable compared

with the sample size and have correlations between error terms with a clustering

structure. Starting from there, we investigate the performance of a series of cluster-

robust standard errors under this high dimensional setup. We analyze and provide

different conditions for previously used cluster robust standard errors to be effective

and point out a trade-off between the cluster designs, mainly on the largest cluster

size, and the dimension of the covariates for the purpose of keeping the validity. We

also propose a new formula for the standard error that is robust to the existence of
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Table III.3: Simulation Results, Dependent Regressors, n=600, S=1000
Homogeneous Cluster Size

(a): Empirical Coverage
LZ LZ-df BR JK LO1 LO2 LO3 CR1 CR2 CR3

K/n=0.002 0.964 0.965 0.965 0.965 0.966 0.962 0.990 0.965 0.965 0.965
K/n=0.102 0.923 0.937 0.939 0.956 0.913 0.912 0.974 0.946 0.946 0.948
K/n=0.202 0.876 0.919 0.918 0.946 0.905 0.906 0.958 0.927 0.927 0.932
K/n=0.302 0.854 0.928 0.927 0.965 0.917 0.919 0.972 0.938 0.938 0.947
K/n=0.402 0.825 0.917 0.909 0.971 0.918 0.920 0.969 0.924 0.924 0.946

(b): Interval Length
LZ LZ-df BR JK LO1 LO2 LO3 CR1 CR2 CR3

K/n=0.002 0.189 0.190 0.190 0.190 0.190 0.189 0.227 0.190 0.190 0.190
K/n=0.102 0.253 0.268 0.268 0.284 0.271 0.271 0.324 0.274 0.274 0.276
K/n=0.202 0.226 0.254 0.253 0.285 0.262 0.262 0.320 0.265 0.265 0.269
K/n=0.302 0.242 0.291 0.287 0.347 0.305 0.305 0.362 0.306 0.306 0.318
K/n=0.402 0.229 0.297 0.291 0.378 0.316 0.316 0.378 0.313 0.313 0.335

(c): Negative Ratio
LONeg1 CRNeg1 LONeg2 CRNeg2

K/n=0.002 0.000 0.000 0.466 0.038
K/n=0.102 0.004 0.000 0.400 0.259
K/n=0.202 0.007 0.000 0.397 0.347
K/n=0.302 0.006 0.000 0.380 0.414
K/n=0.402 0.006 0.000 0.382 0.465

clustering and high-dimensional covariates under fewer restrictions. Sufficient con-

ditions to make this standard error work are also provided and numerical evidence

is also presented.

Although closely connected, our results are not trivially generalized from linear

models with many covariates with independent errors. Following the idea of keep-

ing the cluster structure flexible, we do not impose restrictions on how units are

correlated with each other within clusters. What is more, we do not restrict the

cluster size to be finite and allow that the covariates and error terms have different

correlation structures. The trade-off between the largest cluster size and the number

of covariates brings more flexibilities and also makes the challenge caused by many

covariates happen more easily when we have relatively large clusters.

Further, although this approach is conducted under the structure of one-way

clustering, I would expect this method can be generalized to multiway-clustering

setup to incorporate more empirically related setup. It will also be interesting to

58



Table III.4: Simulation Results, Dependent Regressors, n=600, S=1000
Heterogeneous Cluster Size

(a): Empirical Coverage
LZ LZ-df BR JK LO1 LO2 LO3 CR1 CR2 CR3

K/n=0.002 0.946 0.948 0.947 0.947 0.950 0.944 0.977 0.946 0.946 0.946
K/n=0.102 0.919 0.933 0.933 0.948 0.913 0.914 0.972 0.938 0.938 0.940
K/n=0.202 0.872 0.910 0.908 0.939 0.900 0.899 0.962 0.921 0.921 0.926
K/n=0.302 0.852 0.921 0.918 0.967 0.907 0.910 0.978 0.932 0.932 0.941
K/n=0.402 0.817 0.913 0.901 0.960 0.910 0.910 0.966 0.915 0.915 0.943

(b): Interval Length
LZ LZ-df BR JK LO1 LO2 LO3 CR1 CR2 CR3

K/n=0.002 0.188 0.189 0.189 0.189 0.189 0.188 0.229 0.189 0.189 0.189
K/n=0.102 0.250 0.265 0.265 0.281 0.268 0.268 0.323 0.271 0.271 0.273
K/n=0.202 0.250 0.280 0.279 0.315 0.291 0.290 0.347 0.292 0.292 0.297
K/n=0.302 0.225 0.270 0.267 0.322 0.283 0.284 0.345 0.284 0.284 0.295
K/n=0.402 0.227 0.294 0.287 0.373 0.310 0.310 0.375 0.309 0.309 0.331

(c): Negative Ratio
LONeg1 CRNeg1 LONeg2 CRNeg2

K/n=0.002 0.000 0.000 0.458 0.039
K/n=0.102 0.009 0.000 0.393 0.264
K/n=0.202 0.006 0.000 0.379 0.355
K/n=0.302 0.009 0.000 0.383 0.418
K/n=0.402 0.007 0.000 0.379 0.467

think about the inclusion of many covariates in other related setup, for example, the

time series models.
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CHAPTER IV

Robust Pricing Under Strategic Trading

IV.1 Introduction

Economic theory often assumes that the joint distribution of random variables is

common knowledge. For example, participants in financial markets know the distri-

bution of asset returns, employers know the distribution of employees’ unobserved

ability, and consumers know the distribution of a new product’s quality. In practice,

however, such distributions are often unknown, in which case information will be

difficult to process even if it is public and precise. For instance, when a publicly

traded company discloses information or a central bank cuts interest rates, it is of-

ten unclear to many market participants how much of the information is already

anticipated and priced in.

When the distribution is unknown, people face ambiguity (see Ellsberg (1961)).

A seminal paper by Gilboa and Schmeidler (1989) characterizes an axiomatic model

that exhibits ambiguity aversion, the maxmin expected utility model. In this model,

people maximize the worst-case (across all plausible distributions) payoff guarantee;

that is, people behave in an optimal way that is robust to the unknown distribution.

This model and, more generally, the maxmin principle have been widely used in

many applications (see Section 8).

This chapter is based on the paper “Robust Pricing Under Strategic Trading”(Gong, Ke, Qiu,
and Shen (2022))

60



We follow this approach and examine how people react to public information in

a simple model of strategic trading. Specifically, an asset is traded in the market.

Market participants are the probabilistically informed trader, the market maker, and

liquidity traders. None of them has private information about the value of the asset

v. They receive the same signal s from a public event at the beginning. Then,

on each of the trading dates, all traders submit market orders to trade and the

market maker determines a price of the asset at which the orders are traded. The

probabilistically informed trader trades to maximize profit, and liquidity traders

trade for idiosyncratic reasons.

After the public event, the probabilistically informed trader (she) can update her

belief about v based on the joint distribution of v and s. The joint distribution is

normal and the mean of s is s̄.1 However, not all market participants know how

to translate s into information about v. As noted above, it is often unclear what

public information should have been anticipated, or even whether the information is

positive or negative given the price. Therefore, we consider a situation in which the

market maker (he) knows everything about the joint distribution except s̄—that is,

what to expect from s in the first place.

Without knowing s̄, the market maker does not know how to form the posterior

of v based on the public information, but he prices the asset in a way that is robust

to the unknown s̄—he chooses a pricing strategy that has the best worst-case (across

all possible values of s̄) payoff. We assume that the market maker wants to set a

fair price for traders, and his payoff is the sum of his current and future price errors

(differences between prices and v) evaluated according to some general loss function.

Due to the asymmetric information about s̄, the probabilistically informed trader

may manipulate her orders to affect the market maker’s behavior, and the market

maker’s aversion to mispricing determines how she takes the orders into account as

she sets prices.

We study the linear equilibrium of such a model, called the dynamic linear robust

1The normal distribution can be replaced with the more general elliptical distribution, which
could allow for thick-tailed distributions. We discuss this after Proposition IV.2.
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pricing (RP) equilibrium.2 First, we show that given any linear trading strategy

of the probabilistically informed trader, the market maker’s backward-induction op-

timal robust linear pricing strategy is equivalent to the following two-step learning

procedure.3 On each trading date, based on the received orders (and the initial public

signal), the market maker first estimates the unknown parameter s̄ optimally using

the best linear unbiased estimator (BLUE), which depends on the probabilistically

informed trader’s strategy. Then, the market maker uses the estimated joint distri-

bution to update his belief about v and lets the price be the conditional expectation

of v. The two-step learning procedure resembles how people deal with unknown

distributions in practice: They often estimate the distribution. As Hansen (2007)

emphasizes, it is important to understand how real-time distribution estimation af-

fects people’s behavior and equilibrium outcomes.

This result enables us to characterize the unique dynamic linear RP equilibrium

indirectly by characterizing the unique dynamic BLUE equilibrium. In a dynamic

BLUE equilibrium, instead of finding the optimal robust linear pricing strategy, the

market maker is assumed to adopt the two-step learning procedure. Every dynamic

linear RP equilibrium is equivalent to a dynamic BLUE equilibrium, and vice versa.

The indirect characterization of the dynamic linear RP equilibrium is useful in

many ways. First, a key variable in the dynamic BLUE equilibrium is the BLUE

of s̄, which does not appear in the definition of the dynamic linear RP equilibrium.

The BLUE of s̄ can be thought of as an auxiliary variable in the dynamic linear RP

equilibrium, which turns out to help us understand the structure of the equilibrium

better—not only the market maker’s behavior, but also the probabilistically informed

trader’s.

Second, we show that the dynamic linear RP equilibrium exhibits two properties

by analyzing the dynamic BLUE equilibrium. First, on average, the equilibrium

prices exhibit underreaction under the true joint distribution; that is, the expected

2The linearity assumption is common in models based on Kyle (1985). This assumption might be
descriptively appealing, because linear strategies are parsimonious for the probabilistically informed
trader and the market maker to use. Technically, it makes our analysis tractable.

3Mathematically, this characterization extends some results from the literature on minimax
statistical estimation to a dynamic setting using a different proof strategy.
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prices are less sensitive to public information than in a benchmark model in which the

market maker knows s̄, and as time goes by the expected prices move toward the price

in the benchmark model. Classic economic theories posit that the market is efficient

and public information will rapidly be fully reflected in prices. The benchmark model

is consistent with this. In sharp contrast, a large amount of empirical evidence

finds underreaction to public events. For example, stock returns often experience

post-earnings announcement drift.4 Thus, our theory provides an explanation for

underreaction.5

The second property of the dynamic linear RP equilibrium addresses a basic

question. Without knowing s̄, the market maker faces ambiguity. What does the

market maker do with ambiguity as he solves the dynamic robust pricing problem?

Will ambiguity be eliminated? We show that if the trading frequency is arbitrarily

high, the market maker will learn s̄ in the dynamic BLUE equilibrium in the end—or,

equivalently, as the market maker implements the optimal robust pricing strategy in

the dynamic linear RP equilibrium, eventually s̄ will be revealed in the price and the

public information will be fully incorporated into the price.

Last, we examine how the above findings rely on our assumptions about the

market maker’s behavior. First, we compare our model to a model with a Bayesian

market maker. The Bayesian market maker also does not know s̄ but treats it as

a random variable and has a prior over it. We show that underreaction does not

always arise in the Bayesian case. Second, we analyze how the equilibrium behavior

changes if the market maker uses some estimator of s̄ other than the BLUE in the

first step of the two-step learning procedure. We find that multiple equilibria exist,

and the probabilistically informed trader does not necessarily benefit from the fact

4Ball and Brown (1968) and Beaver (1968) first document the post-earnings announcement drift,
whose robustness is confirmed in many studies (see Bernard and Thomas (1989, 1990); Bernard
(1992); Chan, Jegadeesh, and Lakonishok (1996); and Hou, Chen, and Zhang (2018)). For underre-
action to other public events, see Ikenberry, Lakonishok, and Vermaelen (1995); Michaely, Thaler,
and Womack (1995); Hong, Lim, and Stein (2000); Hilary and Shen (2013); and Ng, Tuna, and
Verdi (2013).

5Several theories featuring limited attention, momentum traders, short-selling constraints, or
other financial constraints have been proposed to explain underreaction. See Daniel, Hirshleifer,
and Subrahmanyam (1998); Hong and Stein (1999); Frazzini (2006); and Hirshleifer, Lim, and Teoh
(2009), among others.
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that the market maker uses a “suboptimal” estimator.

The structure of the paper is as follows. Section 2 describes the setup that applies

to all models in our paper. The benchmark model is introduced in Section 3, the

static model in Section 4, and the dynamic model in Section 5. Section 6 studies

underreaction and market efficiency in the dynamic model. In Section 7, we analyze

how our findings depend on the assumptions about the market maker’s behavior.

Section 8 discusses related literature, and Section 9 concludes.

IV.2 The Setup

An asset is traded in the market. Market participants consist of a probabilistically

informed trader, a market maker, and liquidity traders.6 The value of the asset v, a

normally distributed random variable with mean v̄ and variance σ2
v , will be revealed

sometime after the end of all trades. The distribution of the value of the asset is

common knowledge to all market participants, and none of the participants will ever

have private information about v.

Before any trading begins there is a public event, from which all participants

receive the same public signal s. The signal is informative about the value of the asset

only if a market participant knows the joint distribution of v and s. Upon receiving

the signal, the probabilistically informed trader (she) updates her belief according to

the joint distribution of v and s, N

([
v̄

s̄

]
,

[
σ2
v ρσvσs

ρσvσs σ2
s

])
.7 We assume ρ > 0

throughout the paper, since the other case is symmetric. The market maker (he)

knows that the probabilistically informed trader knows the joint distribution, but he

may or may not know the joint distribution. In the benchmark model, he knows. In

our main model, he knows that the joint distribution is normal and all parameters

of the distribution except for s̄.8

6Sometimes the number of liquidity traders is important (see, for example, Han, Tang, and
Yang (2016)), but in our model it is not.

7We discuss how the normal distribution assumption can be relaxed after Proposition IV.2.
8The assumption that the market maker knows the covariance matrix but not s̄ may be under-

stood as follows. Suppose the public information is disclosed from a source (e.g., a firm) that the
market maker is familiar with. Then, he may have a good understanding of how noisy the signal
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Following the public event, trading begins. Our main model, called the dynamic

model, has multiple trading dates. On each trading date, the following sequence

of events takes place. First, based on the (only) public signal and past prices, the

probabilistically informed trader submits a market order at the same time as liquidity

traders submit their orders. A market order specifies the quantity of the asset a trader

commits to trade at a price that will be determined by the market maker. The

probabilistically informed trader is risk-neutral and trades to maximize her profit.

Liquidity traders trade for idiosyncratic reasons, and their (total) order is a normally

distributed random variable that is independent of all other random variables. These

are common knowledge.

Next, the market maker observes the total order, which consists of the probabilis-

tically informed trader’s order and liquidity traders’ orders. He trades the quantity

that clears the market at a price determined by him according to some criterion

that will be elaborated on later. Note that the market maker cannot differentiate

between the probabilistically informed trader’s order and liquidity traders’ orders.

Nonetheless, the total order is potentially useful for him to set the optimal price.

Again, these are common knowledge.

The above setup applies to all models in our paper. The benchmark model men-

tioned above will be introduced in Section 3, which will help us understand market

participants’ behavior when s̄ is known to everyone and will help us define underreac-

tion later. Then, before introducing the dynamic model in which the market maker

does not know s̄ in Section 5, we will first present in Section 4 its static special case.

The static model will help us explain some key ingredients of the dynamic model in

a simple setting. Finally, the models in Section 7, which are variations or extensions

of the static model, will also use the same setup, except that we will make different

assumptions about what the maket maker knows or does.

typically is and how it usually correlates with the fundamental. The particular event underlying the
signal s, however, is new. We may assume that the variance and covariance of this signal are the
same as before and therefore the market maker knows them, but he will not know what s̄ “usually”
is for this new event.
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IV.3 The Benchmark

Our benchmark model assumes that the market maker knows the joint distri-

bution of v and s. At t = 0, every market participant observes s. For a reason

that will soon become clear, we assume without loss of generality that there is only

one trading date at t = 1. For any s, the probabilistically informed trader’s order

is X(s). The liquidity traders’ order is u, a normally distributed random variable

with mean 0 and variance σ2
u that is independent of all other random variables. Let

y = X(s)+u denote the total order. Based on s and y, the market maker determines

the price at which the orders are traded, P (s, y). When v is revealed after t = 1, the

probabilistically informed trader receives profit π = (v − P (s, y))X(s).

The following equilibrium notion is from Kyle (1985), except that our model does

not have a trader who knows v but has a public signal s.

Definition IV.1. The pair of functions X and P is an equilibrium if

1. given X(s), P (s, y) = E[v|s, y]; and

2. given P (s, y), X(s) maximizes E[π|s].

The probabilistically informed trader is risk-neutral and maximizes the expected

profit.9 The market maker sets the price equal to the conditional expectation of

v. Note that assuming P (s, y) = E[v|s, y] is equivalent to assuming that the market

maker’s goal is to find a pricing strategy that minimizes the mean squared price error

function; that is, P (s, y) solves

min
P̃ (s,y)

E[(P̃ (s, y)− v)2]. (IV.1)

In other words, the market maker wants the price to deviate from v as little as

possible, measured by the mean squared price error function.10 Therefore, Definition

9See Subrahmanyam (1991) and Holden and Subrahmanyam (1994) for models that relax the
risk neutrality assumption.

10See footnote 12 for discussion of an alternative way to interpret the market maker’s behavior.
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IV.1 is equivalent to the following definition, and this equivalence will be useful in

the next section.

Definition IV.2. The pair of functions X and P is an equilibrium if

1. given X(s), P (s, y) solves (IV.1); and

2. given P (s, y), X(s) maximizes E[π|s].

The total order y does not contain any information beyond s, and the market

maker already knows s. Therefore, Definition IV.1 implies that

P (s, y) = E[v|s, y] = E[v|s] = v̄ +
ρσv

σs

(s− s̄).

Given this,

E[π|s] = E[(v − P (s, y))X(s)|s] = 0

for any X(s). Hence, in any equilibrium, following the public event, the price should

be immediately adjusted to E[v|s], which fully reflects the information from the

public signal s.11 We summarize these observations below and omit the proof.

Proposition IV.1. The pair of functions X and P is an equilibrium if and only if

P (s, y) = E[v|s].

It is straightforward to verify that even if there are multiple trading dates, the

price will become E[v|s] on the first trading date and remain unchanged. More-

over, P (s, y) = E[v|s] even if the market maker receives a zero total order; that

is, the benchmark model does not require any order for the price adjustment to be

completed.

IV.4 A Special Case: The Static Model

From here on, we assume that the market maker does not know s̄ and focus

on linear strategies as in Kyle (1985); that is, the trading strategy and the pricing

11The price of the asset before the public event is v̄.
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strategy are both affine functions. Before introducing the dynamic model, we exam-

ine a special case in which the only trading date is at t = 1. The probabilistically

informed trader’s order is given by her linear trading strategy X(s̄, s). To emphasize

that she is the only market participant who knows s̄, we write X as a function of

both s and s̄. The assumption on liquidity traders’ order u is the same as before and

y = X(s̄, s) + u is the total order.

To model the market maker’s behavior, we follow the approach from the literature

on ambiguity and robust contract and mechanism design, which often involves people

confronting unknown distributions. The main assumption is that the strategy that

has the best worst-case payoff guarantee will be adopted in this situation. This

model is axiomatized by Gilboa and Schmeidler (1989).

To think about the worst-case payoff, the market maker must first have a payoff

function. Recall that the benchmark model in Section IV.3 implicitly assumes that

the market maker’s goal is to find a pricing strategy that minimizes the mean squared

price error (see equation (IV.1)).12 Thus, with an unknown s̄, a natural idea is

to assume that the market maker chooses a (linear) pricing strategy P r(s, y) that

minimizes the maximal (across all possible values of s̄) mean squared price error:13

min
P̃ (s,y) is affine

max
s̃∈R

Es̃[(P̃ (s, y)− v)2],

in which Es̃[·] denotes the expectation assuming that the joint distribution of v and

s is N

([
v̄

s̃

]
,

[
σ2
v ρσvσs

ρσvσs σ2
s

])
, even though the actual mean of s is s̄.

An obvious problem with this idea is whether it is reasonable to assume that

the market maker’s payoff is well described by the mean squared function. Will

his behavior be rather different if we assume instead that his payoff function is the

12Kyle (1985) offers a second interpretation of the market maker’s behavior: At least two risk-
neutral profit-maxmizing market makers simultaneously compete on prices; that is, traders’ orders
go to the market maker with the best price. Such a Bertrand competition drives market makers’
profits to zero and leads to condition 1 of Definition IV.1. The robust version of such a Bertrand
competition, however, is nontrivial and beyond the scope of this paper.

13We allow the value of the objective function to be ±∞ (extended real numbers) in all minimax
problems in the paper.
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absolute difference between P̃ (s, y) and v?

Therefore, we consider a more general robustness problem for the market maker.

We assume that the market maker minimizes the maximal (across all possible values

of s̄) price error under some loss function c:

min
P̃ (s,y) is affine

max
s̃∈R

Es̃[c(|P̃ (s, y)− v|)]. (IV.2)

Then, at a time when v is revealed after t = 1, the probabilistically informed trader

receives profit π = (v − P r(s, y))X(s̄, s). We call a function c : R+ → R+ a loss

function if c is twice continuously differentiable, c(0) = 0, c′ ≥ 0, c′′ ≥ 0, and

c′′ = 0 ⇒ c′ > 0.14 The last condition is to rule out the case in which c is a zero

function. A straightforward and useful implication of these assumptions is that c is

unbounded. A loss function describes the market maker’s attitude toward mispricing.

While (IV.2) is general in the sense that the loss function is arbitrary, it makes

three restrictive assumptions. First, it is assumed that the underlying variable the

market maker cares about is the price error. This assumption is taken from Definition

IV.2 and is a simple natural starting point. Our results will depend on it—if, for

example, the market maker instead cares about the trading volume, results could be

rather different.15 Second, we focus on linear trading and pricing strategies. Again,

our results crucially depend on this assumption. Moreover, although this assumption

is taken from Kyle (1985), there is some difference. In Kyle, the assumption that the

insider’s trading strategy is linear implies that the market maker’s optimal pricing

strategy is linear, but this is not necessarily the case in our model. Last, we assume

that the market maker faces a special type of ambiguity. On the one hand, the joint

distributions the market maker considers plausible only differ in one parameter, the

14We can define c on R, but we must then allow c to not be differentiable at 0 to allow the loss
function to be the absolute value function.

15One way to understand this assumption is to think of the market maker as someone hired to
clear the market and set the price. Suppose that the main goal of the market maker’s employer
(some firm, or perhaps the government) is to ensure that its clients—traders who might be paying a
fixed amount of money (not modeled explicitly in our setup) to the market maker’s employer—feel
that prices are set “fairly” so that they are willing to continue to be its clients. Then, the employer
may want to reward or punish the market maker based on the price error.
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mean of s. On the other hand, the market maker believes that this parameter may

take any value; that is, this parameter cannot be bounded above or below. This

assumption is important in making (IV.2) tractable.

Next, we define the equilibrium. The definition below is a robust (linear) version

of Definition IV.2.

Definition IV.3. The pair of affine functions X(s̄, s) and P r(s, y) is a linear robust

pricing (RP) equilibrium if

1. given X(s̄, s), P r(s, y) solves (IV.2); and

2. given P r(s, y), X(s̄, s) maximizes Es̄[π|s].

Before we analyze the linear RP equilibrium, let us emphasize that the market

maker is non-Bayesian. He does not have a prior over s̄. We believe that this is a

better description of the situation we want to model. Nonetheless, there will be a

connection between our approach and the Bayesian approach. We will return to this

at the end of this section and compare the two approaches more formally in Section

7.1.

The solution to the market maker’s robustness problem has a simple character-

ization, which will shed light on a basic question about the robustness approach.

Without knowing the joint distribution, the market maker faces ambiguity. What

does the market maker do with ambiguity? For example, does the market maker

“learn” the distribution as he implements the robust pricing strategy? This question

will be particularly relevant in the dynamic model, and our model provides a sharp

answer.

IV.4.1 An Equivalent Two-step Learning Procedure

Our first main result will show that assuming that the market maker solves the

robustness problem (IV.2) is equivalent to assuming that he follows the following two-

step learning procedure. The market maker first estimates the unknown parameter

using the available data, which is what people usually do in practice when they
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face unknown distributions. He then updates his belief about v according to the

estimated distribution and public signal s.

Specifically, after observing s and y, the market maker first computes an estimate

of s̄, denoted by ŝ(s, y). There are many ways to estimate s̄ in general, such as the

maximum likelihood method, ordinary least squares, generalized method of moments,

etc., but a basic rationality requirement will suggest that we assume the market

maker uses the “optimal” method to estimate s̄. Then, the market maker uses the

estimated joint distribution, N

([
v̄

ŝ(s, y)

]
,

[
σ2
v ρσvσs

ρσvσs σ2
s

])
, to determine the

price at which orders are traded, Pŝ(s,y)(s, y), according to the conditional expectation

of v.

The notion of the optimal estimator is standard in econometrics and statistics.

Again, similar to Kyle (1985), we restrict our attention to a linear setting.

Definition IV.4. A real-valued function ŝ(s, y) is an unbiased estimator of s̄ if

E[ŝ(s, y)] = s̄, and a linear estimator if it is affine.16 A real-valued function ŝ(s, y)

is a best linear unbiased estimator (BLUE) of s̄ if (i) ŝ(s, y) is a linear unbiased

estimator of s̄ and (ii) the variance of ŝ(s, y) is the lowest among all linear unbiased

estimators of s̄.

The probabilistically informed trader’s strategy determines the information con-

tent of y, and hence affects whether an estimator of s̄ is unbiased or minimum-

variance.

The result below shows that when the market maker adopts a robust linear pricing

strategy, it is as if he learns s̄ as well as he can following the two-step learning

procedure. From here on, all omitted proofs can be found in the Appendix.

Proposition IV.2. Given any affine X(s̄, s), P r(s, y) = Eŝ(s,y)[v|s, y], in which

P r(s, y) solves (IV.2) and ŝ(s, y) is the unique BLUE of s̄.

This characterization is related to the literature on minimax estimation. If we

require that the market maker’s loss function be the squared function, Proposition

16In other words, ŝ(s, y) = k1 + k2s+ k3y for some constants k1, k2, k3.

71



IV.2 would follow from some classic results in Chapter 5 of Lehmann and Casella

(1998) and Chapter 4 of Shao (2003) applied to our setting. Similar to our model,

Hirano and Porter (2003a,b) consider general loss functions; they discuss the equiv-

alence between the minimax estimator and the maximum likelihood estimator. We

will soon show that the maximum likelihood method is one way to derive the BLUE

of s̄ in our model, and therefore Proposition IV.2 is closely related to Hirano and

Porter’s findings. The loss function Hirano and Porter (2003b) consider does not

need to be differentiable and hence is more general than our result if applied to our

setting. Our proof, however, uses calculus and is to some extent simpler. In addi-

tion, in the dynamic model, dynamic programming will turn out to be important

for a similar characterization result to hold, which does not appear in the results

mentioned above.

Proposition IV.2 shows that regardless of the loss function, the solution to the

market maker’s robustness problem (IV.2) is the same: First, set the worst-case

mean of the price error to zero and then minimize its variance. To see this, take

an arbitrary linear trading strategy X(s̄, s) = α1 + α2s + α3s̄. The market maker’s

pricing strategy P r(s, y) should solve the robustness problem:

min
P̃ (s,y) is affine

max
s̃∈R

Es̃[c(|P̃ (s, y)− v|)].

Let P̃ (s, y) = λ1 + λ2s+ λ3y. Since y = X(s̄, s) + u,

v − P̃ (s, y) = v − λ1 − λ2s− λ3(α1 + α2s+ α3s̃+ u),

which is a normal random variable. Its mean is µ = v̄−λ1−λ3α1−(λ2+λ3α2+λ3α3)s̃

and variance is σ2 = σ2
v + (λ2 + λ3α2)

2σ2
s + λ2

3σ
2
u − 2(λ2 + λ3α2)ρσvσs.

Note that the mean µ is affine in s̃, but the variance σ2 is independent of s̃.

Because the market maker will consider the worst s̃, if the coefficient of s̃ in µ is

nonzero, his worst-case expected loss will be infinite. Thus λ2 + λ3α2 + λ3α3 = 0.

In fact, µ itself must be zero. Define f(µ, σ) := E[c(|P̃ (s, y) − v|)], taking into

account λ2 + λ3α2 + λ3α3 = 0. We first verify that under our assumptions on
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c, ∂f
∂µ

∣∣∣
µ=0

= 0 and ∂2f
∂µ2 > 0. Next, suppose the solution of the robustness problem

(λ⋆
1, λ

⋆
2, λ

⋆
3) implies that the mean of P̃ (s, y)−v is µ⋆ ̸= 0 and the standard deviation of

P̃ (s, y)−v is σ⋆. Since σ⋆ does not depend on λ⋆
1, we can replace λ⋆

1 with λ̃⋆
1 = v̄−λ⋆

3α1.

This change does not affect σ⋆ and sets the mean of P̃ (s, y) − v to zero. Since
∂f
∂µ

∣∣∣
µ=0

= 0 and ∂2f
∂µ2 > 0, this change must have reduced the expected loss. Therefore,

the mean of P̃ (s, y)− v must be zero.

Finally, we verify that ∂f
∂σ

∣∣
µ=0

> 0. This means that to solve the robustness

problem, we only need to ensure that the mean of P̃ (s, y) − v is zero and minimize

its variance, which eventually implies that the BLUE of s̄ must be used.

Although we have only considered normal distributions so far, the above proof

strategy continues to work if we assume that the joint distribution of v and s is

instead elliptical. Normal distributions are elliptical, and some elliptical distributions

are thick-tailed. In the Appendix, we explain how to generalize Proposition IV.2 to

the case with elliptical distributions.

One may wonder what will happen if we assume instead that the market maker

does not know ρ. There are two difficulties. First, when s̄ is unknown, the market

maker has two sources of information to learn s̄: s and y. When ρ is unknown, the

market maker will only have one source of information (y) to learn ρ, in which case

the strategic interaction is different—it turns out that the market maker must ignore

y when setting the price in equilibrium. One natural idea for fixing this is to give the

market maker an additional noisy signal of ρ. However, because whenever ρ appears

in the strategy it is always multiplied with s, the problem often becomes nonlinear.

For example, assuming that the noisy signal of ρ is uniformly distributed between

0 and 1 renders the problem intractable. We may assume that the noisy signal of

ρ follows a symmetric two-point discrete distribution to regain tractability, but this

distribution seems unrealistic and no longer gives us the equivalence between the

robustness problem and the two-step learning procedure.

Next, we define a useful alternative equilibrium based on the two-step learning

procedure, which modifies the market maker’s objective in Definition IV.1. Under

the notations for the two-step learning procedure, at the time when v is revealed
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after t = 1, the profit the probabilistically informed trader receives is π = (v −
Pŝ(s,y)(s, y))X(s̄, s).

Definition IV.5. The pair of affine functions X(s̄, s) and Pŝ(s,y)(s, y) is a BLUE

equilibrium if

1. given X(s̄, s), Pŝ(s,y)(s, y) = Eŝ(s,y)[v|s, y], in which ŝ(s, y) is a BLUE of s̄; and

2. given ŝ(s, y) and Pŝ(s,y)(s, y), X(s̄, s) maximizes Es̄[π|s].

In the benchmark model (and most models that follow Kyle (1985)), we can

think of the market maker’s goal as to offer a reasonable price (Definition IV.1) or,

equivalently, as the result of minimizing the mean squared price error (Definition

IV.2). The BLUE equilibrium extends Definition IV.1 and the linear RP equilibrium

extends Definition IV.2.

Observe that Proposition IV.2 holds for an arbitrary affine X(s̄, s), which is not

necessarily an equilibrium trading strategy. Then, together with the observation

that the probabilistically informed trader’s behavior is identical in Definitions IV.3

and IV.5, Proposition IV.2 implies that all market participants’ best responses in a

linear RP equilibrium are the same as those in a BLUE equilibrium. The following

corollary immediately follows.

Corollary IV.1. Every linear RP equilibrium is a BLUE equilibrium, and vice versa.

IV.4.2 Characterization of the Equilibrium

We characterize the linear RP equilibrium indirectly through the BLUE equilib-

rium. The comparison between (the dynamic generalization of) this equilibrium and

the benchmark model will be discussed in Section 6.

Theorem IV.1. There exists a unique BLUE equilibrium in which ŝ(s, y) = s− σs

2σu
y,

X(s̄, s) = σu

σs
(s− s̄), and Pŝ(s,y)(s, y) = v̄ + ρσv

2σu
y.

Due to Proposition IV.2, we know that the unique linear RP equilibrium must

consist of X(s̄, s) = σu

σs
(s − s̄) and P r(s, y) = v̄ + ρσv

2σu
y. We characterize the linear
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RP equilibrium indirectly, because the BLUE equilibrium offers additional procedural

interpretation of the market maker’s behavior. In the dynamic model, the estimation

of s̄ from the indirect characterization will play a more important role.

Without knowing s̄, when observing the public signal s, the market maker does

not know whether s should be interpreted as a positive or negative signal. If the

market maker observes a high total order y, however, he will infer that the public

signal s is most likely positive; that is, s̄ should be well below s, which means that

ŝ(s, y) should be decreasing in y.

The equilibrium pricing strategy does not depend on s directly. The intuition is

that s alone cannot help the market maker determine what price yields a smaller

price error, but the total order y can. It is equal to σu

σs
(s− s̄) + u in equilibrium, in

which the difference term s − s̄ is what matters in predicting the value of the asset

v. Therefore, the market maker only needs y to set the optimal price in equilibrium.

How exactly does the market maker estimate s̄? Below, we discuss two methods

often used by economists and explain how they are applied to our setting to generate

the unique BLUE of s̄: the maximum likelihood method and the optimal generalized

method of moments (optimal GMM).17 We focus on the latter, since it is useful in

the proof of the dynamic model.

IV.4.2.1 The BLUE of s̄

A GMM estimator uses moment conditions and a weighting matrix. To apply the

GMM in our setting, we first analyze the probabilistically informed trader’s behavior.

The probabilistically informed trader faces the profit maximization problem

max
X

Es̄[(v − Pŝ(s,y)(s, y))X|s]. (IV.3)

Suppose she believes that the market maker’s linear pricing strategy is

Pŝ(s,y)(s, y) = λ1 + λ2s+ λ3y. (IV.4)

17See Hansen (1982), Greene (2012), and Wooldridge (2016).
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Then,

Es̄[(v − Pŝ(s,y)(s, y))X|s] = Es̄[(v − λ1 − λ2s− λ3(X + u))X|s]

= −λ3X
2 + (Es̄[v|s]− λ1 − λ2s)X,

and the solution to (IV.3) given (IV.4) is

X(s̄, s) =
1

2λ3

[
v̄ +

ρσv

σs

(s− s̄)− λ1 − λ2s

]
. (IV.5)

The moment conditions come from E(s) = s̄ and E(y|s) = X(s̄, s) (because

y = X(s̄, s)+u). A GMM estimator with an arbitrary positive-definite 2×2 weighting

matrix W is the solution ŝW (s, y) to a minimization problem:

ŝW (s, y) = argmin
s̃

([
s

y

]
−

[
s̃

X(s̃, s)

])′

W

([
s

y

]
−

[
s̃

X(s̃, s)

])
; (IV.6)

that is, given s, y, and W , the GMM estimator minimizes the deviation from the two

moment conditions. Let W be the set of all positive-definite 2 × 2 matrices. When

a GMM estimator ŝW (s, y) satisfies

Var(ŝW (s, y)) = min
W̃∈W

Var(ŝW̃ (s, y)),

it is called an optimal GMM estimator. Let us use ŝGMM(s, y) to denote an optimal

GMM estimator. The following lemma follows from standard econometrics/statistics

arguments.

Lemma IV.1. The unique BLUE ŝ(s, y) of s̄ satisfies ŝ(s, y) = ŝGMM(s, y).

The lemma does not say that to obtain a BLUE of s̄ the market maker must use

the optimal GMM. It only says that if an estimator of s̄ is a BLUE, it will be equal to

ŝGMM(s, y). Indeed, the next lemma confirms that the maximum likelihood method

yields the same estimator, which also follows from standard econometrics/statistics

arguments. The maximum likelihood estimator ŝML(s, y) induces a joint distribution
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N

([
v̄

ŝML(s, y)

]
,

[
σ2
v ρσvσs

ρσvσs σ2
s

])
that maximizes the likelihood of observing

s and y.

Lemma IV.2. ŝML(s, y) = ŝGMM(s, y).

Not all popular econometric/statistical methods yield a BLUE of s̄. Obviously,

if the market maker uses a nonoptimal GMM estimator, the estimator may not be

a BLUE of s̄. In fact, if the market maker uses some estimator that is not a BLUE,

there may exist infinitely many equilibria. We discuss this in detail in Section IV.7.2.

Finally, it is well known that the maximum likelihood method is often equiva-

lent to a Bayesian approach with an improper uniform prior. Indeed, in addition to

the two-step learning procedure characterization in Proposition IV.2, our robustness

approach is equivalent to a Bayesian approach in which the market maker has an im-

proper uniform prior over s̄ (see the discussion after Proposition IV.5). Because this

additional characterization of the robustness approach does not offer any new insight

beyond the two-step learning procedure characterization, and does not separate the

learning of s̄ and the prediction of v as clearly as in the two-step learning procedure,

we will focus on the latter. The estimators of s̄ emphasized in the two-step learning

procedure will be important in the dynamic model.

IV.5 The Dynamic Model

Does the characterization result in the static model (Proposition IV.2) continue

to hold in a dynamic setting? If yes, what does the equilibrium look like, and will

the market maker eventually “learn s̄” as he implements the robust pricing strategy?

The dynamic model addresses these questions.

The basic assumptions of the setup are the same as in Section IV.2. Following the

public information disclosure, there are N trading dates, 0 < t1 < t2 < · · · < tN = 1.

Let ∆tn = tn − tn−1, in which t0 = 0. At each tn, the probabilistically informed

trader’s order is Xn(s̄, s, p1, . . . , pn−1), in which p1, . . . , pn−1 denote the past prices

she observes. Liquidity traders’ order is un ∼ N (0, σ2
u∆tn) and independent of all
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other random variables. Let yn = Xn(s̄, s, p1, . . . , pn−1) + un be the total order at

tn. Given the current and past total orders, the market maker determines the price

P r
n(s, y1, . . . , yn) to minimize the maximal sum of current and future price errors

under some loss function. We use X and Pr to denote the N -tuples (X1, . . . , XN)

and (P r
1 , . . . , P

r
N), respectively. When v is revealed after t = 1, let πn =

∑N
m=n[v −

P r
m]Xm denote the profit the probabilistically informed trader receives for her orders

submitted at tn, . . . , tN . Sometimes, to emphasize that πn depends on X and Pr, we

write πn(X,Pr). Below, we define the equilibrium.

Definition IV.6. The set of affine functions {Xm, P
r
m}Nm=1 is a dynamic linear RP

equilibrium if for each n ∈ {1, . . . , N},

1. given X and {P r
m}n−1

m=1, P
r
n , . . . , P

r
N solve

min
P̃n,...,P̃N are affine

max
s̃∈R

Es̃

[
N∑
l=n

c(|P̃l(s, y1, . . . , yl)− v|)

]
; (IV.7)

and

2. given Pr and {Xm}n−1
m=1, Xn, . . . , XN solve

max
X̃n,...,X̃N are affine

Es̄[πn((X1, . . . , Xn−1, X̃n, . . . , X̃N),P
r)|s, p1, . . . , pn−1].

A dynamic linear RP equilibrium is recursive if P r
n = P r

n−1+λnyn for n = 1, . . . , N

and some constants λ1, . . . , λN .

Discounting can easily be added to the definition of πn and the market maker’s loss

function, but is not essential to our results and is ignored for simplicity. Throughout

the paper, it is understood that the pricing strategy at time zero is to let the price

be v̄.

Under ambiguity, there are two popular approaches to model learning/updating:

the full Bayesian (prior-by-prior) approach and the maximum likelihood approach

(see Cheng (2020) for a recent discussion). The robustness problem in (IV.7) implies
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that we take the full Bayesian approach. Similar to many other models of ambiguity

(e.g., Hansen and Sargent (2001)), our market maker’s preference over linear pricing

strategies induced by (IV.7) does not satisfy the dynamic consistency axiom and

the rectangularity condition of Epstein and Schneider (2003). However, the market

maker is sophisticated: On each trading date, he correctly anticipates his future

pricing strategies.

The following result shows how Proposition IV.2 can be extended to the dynamic

setting.

Theorem IV.2. Suppose the set of affine functions {Xm, P
r
m}Nm=1 satisfies part 1

of Definition IV.6 for each n ∈ {1, . . . , N}. Then, for each n ∈ {1, . . . , N}, P r
n =

Eŝn(s,y1,...,yn)[v|s, y1, . . . , yn], in which ŝn(s, y1, . . . , yn) is the unique BLUE of s̄.

The BLUE of s̄ at tn is defined in the same way as in Definition IV.4, except that

an estimate of s̄ at tn is now a function of s, y1, . . . , yn.

Theorem IV.2 shows that given any trading strategy, the market maker’s optimal

robust pricing strategy is equivalent to the two-step learning procedure. If the market

maker’s loss function at tn is simply c(|P̃l(s, y1, . . . , yl) − v|), Theorem IV.2 will

be a straightforward extension to its static version. The market maker’s objective

function, however, is the sum of current and future price errors measured by the loss

function c; he is not myopic.

The assumption that Part 1 of Definition IV.6 holds for each n ∈ {1, . . . , N}
ensures that we can extend Proposition IV.2 to the dynamic setting. This assumption

implies that given any trading strategy X, the market maker determines the robust

pricing strategy Pr through backward induction—at tN , P
r
N must be optimal; at

tN−1, given that the optimal P r
N will be used on the next trading date, P r

N−1 must

be optimal; and so on.

To see why backward induction is important, consider an alternative assumption.

Suppose the theorem only requires that given an arbitrary {Xm, P
r
m}Nm=1\{P r

n}, P r
n

minimizes the maximal sum of price errors under c. For example, let N = 2. Suppose

that at t1, the market maker determines the optimal P r
1 taking some future pricing

strategy P r
2 as given. Note that in this alternative assumption, P r

2 may not be
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optimal at t2. For instance, let P
r
2 be equal to −P r

1 . Then, the solution to (IV.7) at

t1 may not involve the BLUE of s̄.

Under backward induction, in contrast, we can first verify that the optimal robust

pricing strategy at tN is equivalent to the two-step learning procedure using the

BLUE of s̄. This is an extension of Proposition IV.2. Next, we show that P r
N−1 should

also be equivalent to the two-step learning procedure using the BLUE of s̄. To show

this, the key step is to prove that the market maker will not benefit from manipulating

the price at tN−1 to affect yN , and hence his payoff c(|P̃N−1(s, y1, . . . , yN−1) − v|) +
c(|P̃N(s, y1, . . . , yN)− v|).

Imagine that the market maker manipulates the price at tN−1. This affects the

probabilistically informed trader’s belief and yN , but it does not affect the market

maker’s pricing strategy at tN—the market maker can “undo” the manipulation and

convert a manipulated yN into an unmanipulated one. One can show that fixing X,

the information content of yN is the same regardless of whether pN−1 is manipulated

or not. This helps us establish that the optimal robust pricing strategy at tN is

independent of the pricing strategy at tN−1. Then, another simple extension of

Proposition IV.2 will imply that P r
N−1 is also equivalent to the two-step learning

procedure using the BLUE of s̄.

Again, to obtain a better understanding of the dynamic linear RP equilibrium, we

will characterize it indirectly via the equivalent two-step learning procedure. Specif-

ically, at each tn, based on the public signal s received at t = 0 and the orders

y1, . . . , yn, the market maker computes the BLUE of s̄, denoted by ŝn(s, y1, . . . , yn).

Next, using the estimated joint distribution N

([
v̄

ŝn

]
,

[
σ2
v ρσvσs

ρσvσs σ2
s

])
, the

market maker determines the price, Pn,ŝn(s, y1, . . . , yn), at which the orders at tn are

traded according to the conditional expectation of v. We use Pŝ to denote the N -

tuple (P1,ŝ1 , . . . , PN,ŝN ). Under these notations for the two-step learning procedure,

when v is revealed after t = 1, the profit the probabilistically informed trader receives

for her orders at tn, . . . , tN is πn =
∑N

m=n[v − Pm,ŝm ]Xm. Sometimes, to emphasize

the fact that πn depends on X and Pŝ, we write πn(X,Pŝ).

Definition IV.7. The set of affine functions {Xm, Pm,ŝm}Nm=1 is a dynamic BLUE
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equilibrium if for each n = 1, . . . , N ,

1. given X and {Pm,ŝm}n−1
m=1, Pn,ŝn = Eŝn [v|s, y1, . . . , yn], in which ŝn is a BLUE

of s̄; and

2. given Pŝ and {Xm}n−1
m=1, Xn, . . . , XN solve

max
X̃n,...,X̃N are affine

Es̄[πn((X1, . . . , Xn−1, X̃n, . . . , X̃N),Pŝ)|s, p1, . . . , pn−1].

A dynamic BLUE equilibrium is recursive if Pn,ŝn = Pn−1,ŝn−1 + λnyn for n =

1, . . . , N and some constants λ1, . . . , λN .

It is implicit that ŝ0 = s, because before the market maker observes any order,

the BLUE of s̄ is equal to the public signal s. Due to Theorem IV.2 and the fact

that the probabilistically informed trader’s behavior is identical in Definitions IV.6

and IV.7, we know that all market participants’ backward-induction best responses

in a dynamic linear RP equilibrium are the same as those in a dynamic BLUE

equilibrium. Hence, we have the following corollary.

Corollary IV.2. Every dynamic linear RP equilibrium is a dynamic BLUE equilib-

rium, and vice versa.

Again, we characterize the dynamic linear RP equilibrium indirectly through the

dynamic BLUE equilibrium, and leave the comparison between this equilibrium and

the benchmark model to Section 6.

Theorem IV.3. There exists a unique dynamic BLUE equilibrium and it is recur-

sive. In the dynamic BLUE equilibrium,

ŝn = ŝn−1 −
σs

ρσv

λnyn,

Pn,ŝn = Pn−1,ŝn−1 + λnyn,

Xn = βn∆tn(ŝn−1 − s̄),

Es̄[πn|s, p1, . . . , pn−1] = αn−1(ŝn−1 − s̄)2 + δn−1,

ωn = ωn−1 +
β2
n∆tn
σ2
u
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in which {αn, βn, λn, δn, ωn}Nn=1 are the unique solution to the following difference

equation system:

λnβn∆tn =
ρσv

σs

(
1− ωn−1

ωn

)
,

ωn−1

ωn

=
1

2
(
1− αnλn

(ρσv/σs)2

) ,
αn−1 =

(
ωn−1

ωn

)2

αn +
ρσv

σs

ωn−1

ωn

βn∆tn,

δn−1 = δn +
αnβ

2
n∆tn

ω2
nσ

2
u

subject to ω0 = 1/σ2
s , αN = δN = 0, and λn

(
1− αnλn

(ρσv/σs)2

)
> 0. Moreover,

{αn, βn, λn, δn, ωn}Nn=1 are nonnegative.

In the dynamic BLUE equilibrium, if we plug ŝn into the trading and pricing

strategies, we will obtain the unique dynamic linear RP equilibrium. Alternatively,

ŝn may be thought of as an auxiliary variable in the dynamic linear RP equilibrium.

This auxiliary variable not only helps us better understand the market maker’s be-

havior, but also the probabilistically informed trader’s. By introducing ŝn, we can see

that the structure of the dynamic linear RP equilibrium is similar to Kyle’s (1985)

equilibrium: The equilibrium trading strategy is proportional to the probabilistically

informed trader’s information advantage, and the current and future profit term πn

is a quadratic function of the information advantage. This is essentially due to the

linearity, normal distribution, and risk neutrality assumptions.

The proof strategy of Theorem IV.3 differs from Kyle’s (1985). For example, in

Kyle, the martingale property of the prices is crucial and directly implies that prices

are recursive. This greatly simplifies the proof of Kyle’s result. The same proof idea

does not go through in our model with an unknown s̄. In our model, to show that

prices are recursive, we first prove that in a dynamic BLUE equilibrium, at each tn,

the optimal GMM estimator of s̄ is equal to the unique BLUE of s̄. Next, we show

that the optimal GMM estimator can be derived recursively: Although at each tn
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an estimator of s̄ can depend on s, y1, . . . , yn−1, yn, the market maker only needs to

use the new order yn and the optimal GMM estimator of s̄ at tn−1, ŝn−1, to form

the optimal GMM estimator of s̄ at tn. This is a key step, but is still insufficient to

show that prices are recursive. We guess the structure of the equilibrium directly,

and verify that prices are recursive as we verify our guess.

IV.6 Underreaction and Market Efficiency

Corollary IV.2 and the dynamic BLUE equilibrium enable us to unveil two inter-

esting properties of the dynamic linear RP equilibrium. First, on average, we observe

underreaction to public information. Suppose there is a positive public signal (from

the probabilistically informed trader’s point of view, or equivalently, under the true

joint distribution of v and s). At each tn, the equilibrium price on average reacts less

sensitively to the public signal s compared with the benchmark model. Moreover,

the equilibrium price on average gradually increases toward Es̄[v|s], which is the

conditional expectation of the value of the asset under the true joint distribution.

However, these statements seem to require that at least to some outside re-

searchers, the true joint distribution must be known, even though the model assumes

that the only person who knows s̄ is the probabilistically informed trader. The sec-

ond property of the dynamic BLUE equilibrium addresses this concern, as well as

the question about what the market maker will do with the ambiguity about s̄ as

he solves the robustness problem. We show that as ∆tn’s go to zero, the price at

t = 1, PN,ŝN , converges to Es̄[v|s]; that is, as the market maker implements the ro-

bust pricing strategy, it is as if he fully learns s̄ in the end if the trading frequency

is arbitrarily high. Therefore, if the trading frequency is sufficiently high, the price

of the asset will reveal s̄ in the end, even though this is not the goal of the market

maker in the robustness approach.

Definition IV.8. We say that a dynamic BLUE equilibrium exhibits underreaction

if for each n = 1, . . . , N ,

Es̄[Pn,ŝn(s, y)|s] = v̄ + θn
ρσv

σs

(s− s̄)
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for some θn ∈ [0, 1) and θ1 < θ2 < · · · < θN . Each θn is called the underreaction

parameter at tn.

If s̄ is known, the price should be equal to v̄+ ρσv

σs
(s− s̄); that is, the underreaction

parameters should be replaced with 1. The result below shows that the dynamic

BLUE equilibrium exhibits underreaction.

Proposition IV.3. The dynamic BLUE equilibrium exhibits underreaction. In par-

ticular, θn = 1− ω0

ωn
.

According to Theorem IV.3, the weights ω0, ω1, . . . , ωN are positive and strictly

increasing. Therefore, 0 < ω0

ωn
< 1 and 1− ω0

ωn
is strictly increasing. Underreaction is

due to the gradual information revelation by the probabilistically informed trader.

For a specific realization of the random variables, s, u1, . . . , uN , we may not observe

that the prices slowly increase (decrease) when the public signal is positive (negative).

It could be the case that liquidity traders submit large positive orders early on, and

hence the market maker is overly pessimistic about s̄. At some later time, the price

may fall back to the correct level Es̄[v|s]. In this case, the prices do not monotonically

increase.

Knowing the existence of underreaction, why does the market maker not elimi-

nate underreaction if, as in the dynamic BLUE equilibrium, he wants to set a fair

price for the asset? 18 It is easier to see the answer if we return to the robustness

approach. In the robustness approach, if the market maker uses higher λn’s (reacts

more aggressively to orders compared with the equilibrium), it is not difficult to see

that the underreaction parameters will become closer to 1. However, higher λn’s

will render the prices more volatile. According to Theorem IV.2, they will generate

higher worst-case price errors measured by any loss function c. Therefore, it is not

optimal for the market maker to eliminate underreaction.

One may wonder how Proposition IV.3 depends on our assumption about the

market maker’s objective in the dynamic linear RP equilibrium. For example, is

ambiguity or the use of the maxmin expected utility model crucial in deriving the

18To be more precise, the market maker knows that there will be underreaction under the true
joint distribution of v and s, which is unknown to him.
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underreaction result? The answers to these questions are positive and will be pro-

vided in Section IV.7.1.

Our theory is not the only one that explains underreaction. A testable implication

of our theory that may distinguish it from alternative theories of underreaction, such

as Daniel et al. (1998) and Hirshleifer et al. (2009), is as follows. A distinctive feature

of our theory of underreaction is that the price drift is rational. One can easily verify

that an uninformed arbitrager (a profit-maximizing trader who does not know s̄)

cannot profit from the price drift in our theory. Therefore, an implication of our

theory is that the price drift would not vary with limits to arbitrage such as trading

constraints. This prediction is different from alternative behavioral theories that rely

on limits to arbitrage to sustain the price drift.

One way to implement this idea is to use the regulation SHO pilot program

adopted by the SEC in 2004. Regulation SHO relaxed the trading constraints for

a random set of pilot stocks from the Russell 3000 index (see Chu, Hirshleifer, and

Ma (2020)). Our theory predicts that the price drift will not differ significantly

across pilot firms and non-pilot firms, while alternative behavioral theories predict

significant differences.

Next, we examine how much information from the public signal will be absorbed

into the price in the end. This depends on how much the market maker eventually

learns about s̄ in the dynamic BLUE equilibrium. It could be that although θn

increases as n goes to N , θN is still quite far from 1. For example, when N = 1, the

dynamic model becomes static and θN = 1/2, which is quite different from 1. The

result below shows that if the traders can trade frequently, the price at t = 1, PN,ŝN ,

will converge to Es̄[v|s].

Proposition IV.4. In the dynamic BLUE equilibrium, if ∆tn’s go to zero and N

goes to infinity, PN,ŝN converges to Es̄[v|s].

Therefore, if the trading frequency is sufficiently high, s̄ will be revealed in the

price, and underreaction can be verified by anyone ex post. As the market maker

solves the dynamic robustness problem, it is as if the ambiguity about s̄ is completely

eliminated.
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This proposition is closely related to Theorems 3 and 4 of Kyle (1985). Kyle

shows that as ∆tn’s go to zero, his discrete-time model converges to a continuous-

time model in which the market maker learns at a constant rate and learns everything

eventually. Our proof strategy closely follows that of Kyle’s Theorem 4.

IV.7 Assumptions about the Market Maker’s Behavior

In this section, we return to the static setting and analyze how our main findings

depend on the assumptions about the market maker’s behavior. First, we study how

our static model differs from a model in which the market maker is Bayesian. The

main finding is that underreaction does not always occur when the market maker is

Bayesian. Second, we examine what happens when the market maker uses estimators

of s̄ other than the BLUE in the first step of the two-step learning procedure. We

show that there will be multiple equilibria in this case, which makes it possible that

the equilibrium trading order and price depend on “animal spirits,” as in Epstein

and Wang (1994).

IV.7.1 A Bayesian Market Maker

Consider the setup of Section 4. Now, assume that the market maker is Bayesian

instead. In particular, the market maker still does not know s̄, but he believes

that s̄ is a random variable that follows the normal distribution N (µs̄, σ
2
s̄) and is

independent of u and v. For each realization of s̄, the joint distribution of v and s is

the same as before. Thus,
v

s

s̄

u

 ∼ N




v̄

µs̄

µs̄

0

 ,


σ2
v ρσvσs 0 0

ρσvσs σ2
s̄ + σ2

s σ2
s̄ 0

0 σ2
s̄ σ2

s̄ 0

0 0 0 σ2
u


 .

Let P b(s, y) denote the (Bayesian) market maker’s pricing strategy. Other nota-

tions remain unchanged. Then, we can follow Kyle (1985) to define the following
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equilibrium.

Definition IV.9. The pair of affine functions X(s̄, s) and P b(s, y) is a linear Bayesian

equilibrium if

1. given X(s̄, s), P b(s, y) = E[v|s, y]; and

2. given P b(s, y), X(s̄, s) maximizes E[π|s̄, s].

Recall that in the benchmark model, we have P (s, y) = v̄ + ρσv

σs
(s − s̄) in equi-

librium. From Corollary IV.1 and Theorem IV.1, the static model in Section 4 has

P r(s, y) = v̄ + ρσv

2σu
y and X(s̄, s) = σu

σs
(s − s̄) in equilibrium. Hence, in equilibrium,

viewed under full information (i.e., the probabilistically informed trader’s informa-

tion or, equivalently, the information that will be revealed to the market at the end

of all trades in the dynamic model with an infinitely high trading frequency),

Es̄[P
r(s, y)|s] = v̄ +

1

2

ρσv

σs

(s− s̄). (IV.8)

According to Definition IV.8, 1/2 is the underreaction parameter (on the only trading

date). Clearly, for any s̄, the expected price always exhibits underreaction regardless

of the realization of s. The following result shows that this is not the case when the

market maker is Bayesian.

Proposition IV.5. There exists a unique linear Bayesian equilibrium in which

E[P b(s, y)|s̄, s] = v̄ +

(
1

2
+

σ2
s

2 (σ2
s̄ + σ2

s)

)
ρσv

σs

(
s− s̄ /σ2

s + µs̄ /(σ
2
s̄ + σ2

s)

1 /σ2
s + 1/(σ2

s̄ + σ2
s)

)
(IV.9)

= v̄ +
1

2

ρσv

σs

(s− s̄) +
1

2

ρσvσs

σ2
s̄ + σ2

s

(s− µs̄).

Let š denote the weighted average of s̄ and µs̄,
s̄/σ2

s +µs̄/(σ2
s̄+σ2

s)
1/σ2

s +1/(σ2
s̄+σ2

s)
, in the first equality

of (IV.9). To prove Proposition IV.5, we first characterize the unique Bayesian

equilibrium in a manner similar to Kyle (1985). It can be seen from the proof that

as σ2
s̄ converges to infinity, the linear Bayesian equilibrium converges to the linear

RP equilibrium. In particular, E[P b(s, y)|s̄, s] converges to (IV.8).
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Focus on the first equality of (IV.9). Compared with (IV.8), the scalar multiplied

in front of ρσv

σs
is strictly between 1/2 and 1. More importantly, rather than subtract-

ing s̄ from s as in (IV.8), š, which depends on µs̄, is subtracted from s. Therefore,

as can be seen from the second equality in Proposition IV.5, we do not always have

underreaction under full information (the probabilistically informed trader’s infor-

mation) in the linear Bayesian equilibrium.19 This suggests that ambiguity is crucial

in deriving Proposition IV.3.

This result also suggests that if the maxmin expected utility model in (IV.2) is

replaced with another popular model of ambiguity, the smooth ambiguity model (see

Klibanoff, Marinacci, and Mukerji (2005)), it is likely that underreaction will not

always arise. This is because, similar to the case of the Bayesian market maker, the

market maker under the smooth ambiguity model also has a nontrivial expectation

of s̄.

IV.7.2 “Suboptimal” Estimators of s̄

From Section 4, we know that in the two-step learning procedure, the market

maker first uses the BLUE to estimate s̄. What happens if the market maker uses

other estimators? For example, if he uses a biased estimator, how would the equi-

librium be affected? Below, we first relax the definition of the BLUE equilibrium so

that we can allow the market maker to use other estimators.

Definition IV.10. The pair of affine functions X(s̄, s) and Pŝ(s,y)(s, y) is a linear-

estimator (LE) equilibrium if

1. given X(s̄, s), Pŝ(s,y)(s, y) = Eŝ(s,y)[v|s, y], in which ŝ(s, y) is affine; and

2. given ŝ(s, y) and Pŝ(s,y)(s, y), X(s̄, s) maximizes Es̄[π|s].

If, in addition, ŝ(s, y) is unbiased, the pair of functions is a linear-unbiased-

estimator (LUE) equilibrium.

19Although we do not prove the following claim for the case with a Bayesian market maker, it
can be verified that the probabilistically informed trader’s information is again the information that
will be learned by the market at the end of all trades in the dynamic model with an infinitely high
trading frequency.
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When we require that the affine function ŝ(s, y) be the BLUE of s̄, ŝ(s, y) needs to

satisfy the two assumptions in Definition IV.4. Note that assumption (ii) efficiency

implies assumption (i) unbiasedness. Therefore, if we drop both assumptions, we

will be interested in LE equilibria. If we impose assumption (ii) only, we will be

interested in LUE equilibria.

Proposition IV.6. The following statements are true:

1. For any λ1, λ2 ∈ R, and λ3 > 0, the pair of functions

X(s̄, s) = 1
2λ3

[
v̄ + ρσv

σs
(s− s̄)− λ1 − λ2s

]
and Pŝ(s,y) = λ1+λ2s+λ3y is an LE

equilibrium.

2. For any λ3 > 0, the pair of functions X(s̄, s) = ρσv

2λ3σs
(s−s̄) and Pŝ(s,y) = v̄+λ3y

is an LUE equilibrium.

3. There exist LUE (and hence LE) equilibria such that the probabilistically in-

formed trader’s expected profit conditional on s is always lower than that in the

BLUE equilibrium regardless of s.

4. There exist LUE (and hence LE) equilibria such that the probabilistically in-

formed trader’s expected profit conditional on s is always higher than that in

the BLUE equilibrium regardless of s.

Intuitively, the number of properties imposed on the estimator of s̄ in the BLUE

equilibrium ensures that λ1, λ2, and λ3 can be exactly identified. Once we impose

fewer properties, this is no longer the case. The first statement says that if we impose

no restriction on the estimator of s̄, an arbitrary pricing strategy and the trading

strategy that responds to it optimally form an LE equilibrium. The second shows

that under unbiasedness, we still have infinitely many LUE equilibria. These LUE

equilibria are not trivial equilibria in which the market maker ignores the order and

therefore the probabilistically informed trader has infinitely many best responses.

One may wonder if the probabilistically informed trader’s expected profit will be

higher under LE or LUE equilibria than under the BLUE equilibrium, because the

market maker uses “suboptimal” estimators. The third statement says this is not
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the case, and the fourth shows that neither is the opposite case true. As for the

market maker’s payoff, under most LE equilibria, it can be verified that the market

maker’s maximal expected loss is infinity.

IV.8 Related Literature

A large body of research in macroeconomics and finance has examined situa-

tions in which agents face unknown distributions of random variables. On the one

hand, similar to our dynamic linear RP equilibrium approach, many studies adopt

the maxmin expected utility model to model agents’ behavior. For example, Epstein

and Wang (1994) show that ambiguity may lead to multiple equilibria in an otherwise

standard general equilibrium model. In a continuous-time asset pricing model, Chen

and Epstein (2002) characterize an ambiguity premium in addition to the standard

risk premium. Epstein and Schneider (2008) find that ambiguity-averse investors

react more strongly to bad news than to good news. To study model misspecifica-

tion, Hansen and Sargent (2008) connect models of ambiguity with robust control

techniques and study macroeconomic applications. Several others have followed this

approach to study optimal policy design under ambiguity (see Karantounias (2013)

and Benigno and Paciello (2014), among others). Easley and O’Hara (2009, 2010)

analyze the relation between ambiguity and market participation. Condie and Gan-

guli (2011) show that under ambiguity, equilibrium market prices may only partially

reveal traders’ private information even without noise introduced by, for example,

liquidity traders. Galanis, Ioannou, and Kotronis (2019) find that information ag-

gregation fails when some traders face ambiguity.

On the other hand, following Hansen (2007), some other studies examine the

real-time consequence of distribution estimation, which is related to our dynamic

BLUE equilibrium approach. Orlik and Veldkamp (2015) show numerically that if

the unknown distribution has non-normal tails, real-time distribution estimation may

lead to large uncertainty fluctuations. In Kozlowski, Veldkamp, and Venkateswaran

(2019), agents estimate the unknown distribution via the kernel density estimator.

It is found numerically that extreme transitory events may induce persistent changes
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in beliefs and macroeconomic outcomes.

The maxmin principle is also widely used in the literature on robust contract

and mechanism design. Among others, Bose and Renou (2014) show that ambiguous

mediated communication in mechanisms helps implement social choice functions that

are not incentive compatible. In a moral hazard problem in which the agent may act

in ways unknown to the principal, Carroll (2015) shows that the optimal contract is

linear. Miao and Rivera (2016) study the optimal contract when the principal faces

ambiguity about project cash flows. Di Tillio, Kos, and Messner (2017) show how a

seller can use ambiguous mechanisms to increase the profit. Carroll (2017) examines

a robust screening problem in which the agent’s type is multidimensional, and the

principal knows the marginal distribution of each component of the agent’s type but

not the joint distribution. The optimal solution is that the principal screens along

each component separately.

There is a growing literature that studies strategic interactions between players

using non-Bayesian econometric/statistical methods. Eliaz and Spiegler (2018) ex-

amine incentive compatibility when the principal learns from a penalized regression

such as LASSO (see Hastie, Tibshirani, and Wainwright (2015)). In Jéhiel (2018),

investors do not know the joint distribution of signals and projects’ returns, and

implement projects according to a simple heuristic. Duffie and Dworczak (2018)

study the estimation of a reference rate such as LIBOR by an administrator who

uses the best linear estimator. Liang (2018) analyzes games with players who learn

from public information via different methods, and characterizes rationalizable ac-

tions and Nash equilibria under a finite dataset. Levy and Razin (2018) consider a

dynamic model in which a decision maker adopts the maximum likelihood method

to learn from forecasts.

Our paper belongs to the literature on market microstructure. Kyle (1985) shows

that in a setting with an insider, liquidity traders, and a market maker, the insider’s

private information will be slowly incorporated into the price. Following Kyle, many

papers have explored other possible information and market structures. For exam-

ple, Holden and Subrahmanyam (1992) show that the competition among insiders

with identical private information may lead to immediate full revelation of private
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information. More complicated interactions among insiders with different private

information is considered by Foster and Viswanathan (1996) and Back, Cao, and

Willard (2000). Huddart, Hughes, and Levine (2001) examine the situation in which

the insider needs to disclose their trades. In Caldentey and Stacchetti (2010), the

value of the asset is revealed at a random time. Lambert, Ostrovsky, and Panov

(2018) characterize the equilibrium in a static setting that allows for arbitrary cor-

relations among the value of the asset, insiders’ and market makers’ signals, and

liquidity traders’ orders. In Yang and Zhu (2019), there are fundamental investors

and back-runners. The former can observe components of the value of the asset, and

the latter have noisy signals about fundamental investors’ collective trade.

The closest to us is Hu (2018), who studies a two-period model whose market

participants are the insider and the market maker from Kyle (1985), together with

a number of arbitrageurs. The distribution of the value of the asset is normal with

some probability and Laplacian with some probability. The Laplace distribution has

fat tails but the same variance as the normal one. The market maker knows the

normal distribution but does not know the possibility of the Laplace distribution.

Arbitrageurs receive a common signal about the type of the distribution, but do not

know the variance of the Laplace distribution. Hu finds that the arbitrageur’s robust

optimal strategy is equivalent to learning based on LASSO.

Our paper is also related to the literature on minimax statistical estimation.

Under the squared loss function, a partial list includes Wald (1950); Li (1982); Heck-

man (1988); Lehmann and Casella (1998); and Shao (2003). Under more general loss

functions, see Donoho (1994); Hirano and Porter (2003a,b); and Zinodiny, Rezaei,

and Nadarajah (2017), as well as our discussion after Proposition IV.2.

It is a well-established empirical finding that prices drift after public events (see

footnote 4). One important example is the post-earnings-announcement drift, in

which prices continue going up (down) after positive (negative) earnings surprises

(see Bernard and Thomas (1989, 1990) and Chan et al. (1996)). Researchers have

proposed several explanations for this phenomenon. Daniel et al. (1998) argue that

investors are overconfident and hence overweight private information, which causes

an underreaction to public information. Hong and Stein (1999) show that two types
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of behavioral agents, news-watchers and momentum traders, can together generate

not only underreaction in the short run but overreaction in the long run. Hirshleifer

et al. (2009) argue that investors do not use full public information due to limited

attention. In a recent review, Blankespoor, deHaan, and Marinovic (2020) call for

theoretical analyses of how public disclosures may translate into private information

due to disclosure processing costs. This is similar to a main idea behind our theory

of underreaction: Since different market participants have different abilities to inter-

pret public information, public information generates private information for some

participants.

IV.9 Concluding Remarks

We study how people react to public information when the prior distribution

is unknown in a model of strategic trading. Market participants consist of liquidity

traders, a probabilistically informed trader who knows the joint distribution of public

information and an asset’s value, and a market maker who does not know the mean

of the public signal. We assume that the market maker adopts a robust pricing

strategy that induces the best worst-case performance. The performance is defined

as the sum of current and future price errors (how much the price deviates from the

value of the asset) measured by a general loss function.

We show that the market maker’s backward-induction optimal robust pricing

strategy is equivalent to the following two-step learning procedure. On each trading

date, the market maker first uses the best linear unbiased estimator (BLUE) to

estimate the unknown distribution based on public information, market orders, and

other participants’ strategies. With the estimated distribution, the market maker

updates his belief about the value of the asset and, as in Kyle (1985), determines a

fair price at which traders’ orders are executed.

We characterize the unique linear equilibrium and show that under the true dis-

tribution, expected equilibrium prices exhibit underreaction; that is, the price of the

asset on average moves in the same direction as the initial impact from the public

event for some period of time. Moreover, if the trading frequency is arbitrarily high,
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as the market maker solves the dynamic robustness problem, in the end the public

information will be fully incorporated into the price and the true distribution will be

fully revealed.
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APPENDIX A

Proofs and Discussions for Chapter II

Proof of Theorem II.1. Based on different signs of µg and τg, the expression of the

upper and lower bounds of the closed intervals might be different. However, the

critical logic to get the identified set is the same. Here I take the case where 0 ≤
τg ≤ µg, for example, and all the other cases can be analyzed based on similar logic.

I know that

µg = E[g(Yi1(0, 1))− g(Yi1(0, 0))|Di = 1]

= E[g(Yi1(0, 1))− g(Yi0(0, 0))− (g(Yi1(0, 0)− g(Yi0(0, 0)))|Di = 1]

= E[g(Yi1(1))|Di = 1]− E[g(Yi0(0))|Di = 1]

− (E[g(Yi1(0))|Di = 0]− E[g(Yi0(0))|Di = 0])

The first, third and the fourth terms are observable while for the second one

E[g(Yi0)|Di = 1] = E[g(Yi0(0, 1))|Di = 1] + E[Ai(g(Yi0(1, 1))− g(Yi0(0, 1)))|Di = 1]

= E[g(Yi0(0, 1))|Di = 1] + P[Ai = 1|Di = 1]τg ≤ E[g(Yi0(0))|D = 1] + πτg

For simplicity I call mg = E[g(Yi1) − g(Yi0)|Di = 1] − E[g(Yi1) − g(Yi0)|Di = 0]. I
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further apply the inequality that 0 ≤ τg ≤ µg and get

τg ≤ µg ≤ mg + πτg

. Then I can conclude that

0 ≤ τg ≤
mg

1− π
τg ≤ µg ≤

mg

1− π

From the equation above I notice that µg = P[Ai = 1|Di = 1]τg +mg ≥ mg. I can

conclude that µ ∈
[
mg,

mg

1−π

]
.

Proof of Theorem II.3. Like in the previous situation, I will take the situation 0 ≤
τg ≤ µg as an example.

µg = E[g(Yi1(1))− g(Yi1(0))|Di = 1]

= E[g(Yi1(1))− g(Yi0(0, 0))− (g(Yi1(0)− g(Yi0(0, 0)))|Di = 1]

= E[g(Yi1(1))|Di = 1]− E[g(Yi0(0, 0))|Di = 1]

− (E[g(Yi1(0))|Di = 0]− E[g(Yi0(0, 0))|Di = 0])

The first and the third term are observable as E[g(Yi1)|Di = 1] and E[g(Yi1)|Di = 0].

For the second one, those who anticipate their treatment status correctly will make

a difference

E[g(Yi0)|Di = 1] = E[g(Yi0(0, 0))|Di = 1] + P[Ai = 1|Di = 1]τg

while for the fourth term, those who wrongly anticipate their future will react to it

E[g(Yi0)|Di = 0] = E[g(Yi0(0, 0))|Di = 0] + P[Ai = −1|Di = 0]τg

Then I will have

µg = E[g(Yi1(1))|Di = 1]− E[g(Yi0)|Di = 1] + P[Ai = 1|Di = 1]τg
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−E[g(Yi1(0))|Di = 0] + E[g(Yi0)|Di = 0]− P[Ai = −1|Di = 0]τg

µg = mg + (P[Ai ̸= 0|Di = 1](1− ε)− P[Ai ̸= 0|Di = 0]ε)τg

Use the bound from Assumption II.6.4 I can get that the coefficient before τg belongs

to the interval [−πε, π(1−ε)] and follow the same approach from the proof of theorem

II.1, I will have that µg ∈
[

mg

1+πε
, mg

1−(1−ε)π

]
Including covariates. By taking all the assumptions conditionally, this approach can

be generalized to include covariates. We will use notation b(x) to represent the

value of parameter b when conditional on “X = x”. Following similar argument in

Theorem II.1, I focus on the case where 0 ≤ τg(x) ≤ µg(x). From proof of theorem

II.1 I know that

µg(x) = E[g(Yi1(1))|Di = 1, X]− E[g(Yi0(0))|Di = 1, X]

−(E[g(Yi1(0))|Di = 0, X]− E[g(Yi0(0))|Di = 0, X])

The first, third and the fourth term are observable while for the second one

E[g(Yi0)|Di = 1, X] = E[g(Yi0(0, 1))|Di = 1, X]

+ E[Ai(g(Yi0(1, 1))− g(Yi0(0, 1)))|Di = 1, X]

= E[g(Yi0(0, 1))|Di = 1, X] + P[Ai = 1|Di = 1, X]τg(x)

≤ E[g(Yi0(0))|Di = 1, X] + π(x)τg(x)

I further apply the inequality that 0 ≤ τg(x) ≤ µg(x), and call mg(x) = E[g(Yi1) −
g(Yi0)|Di = 1, X]− E[g(Yi1)− g(Yi0)|Di = 0, X]. I get

τg(x) ≤ µg(x) ≤ mg(x) + π(x)τg(x)

, and I can conclude that

0 ≤ τg(x) ≤
mg(x)

1− π(x)
τg(x) ≤ µg(x) ≤

mg(x)

1− π(x)

98



I notice that µg(x) = P[Ai = 1|Di = 1, X]τg(x) +mg(x) ≥ mg(x) and can conclude

that µg(x) ∈
[
mg(x),

mg(x)

1−π(x)

]
or I can write it in the way

E[µg −mg|X] ≥ 0 E
[
µg −

mg

1− π(x)

∣∣∣∣X] ≤ 0

To avoid calculating so many conditional expectations, I follow Abadie (2005) and

write

mg(x) = E[ρ0(g(Y1)− g(Y0))|X = x] ρ0 =
Di − P[Di = 1|X]

P[Di = 1|X](1− P[Di = 1|X])

.

Multiple Periods. In applied work, the standard two periods difference-in-differences

model is not the majority and people would like to incorporate data from multiple

periods to support their conclusions. It is crucial to consider the case with multiple

periods besides the two-period model to accommodate anticipation in longitudinal

data. I will follow the framework of Sun and Abraham (2020) and consider antic-

ipation in a staggered adoption case with multiple periods and possibly different

treatment times. Sun and Abraham (2020) analyzes this framework to address the

effect of treatment effect heterogeneity in two way fixed effects model and propose a

difference-in-differences form estimator. My focus is on how to incorporate anticipa-

tion in a multiple-periods model and if homogeneity assumptions are imposed and

researchers use an alternative approach, a similar logic can be applied to incorporate

anticipation.

Suppose the potential outcome for unit i at period t is represented by Yit(a, e).

i ∈ {1, 2, · · · , n} indexes the unit and e ∈ supp(Ei) = {1, 2, · · · , T,∞} denotes the

date when this unit gets the first treatment and Ei is one realization of e. In a setting

with staggered adoption, one unit will always get treated after the first treatment. A

binary random variable Ait that takes value a ∈ {0, 1} represents the unobservable

anticipation status for unit i at period t. e = ∞ implies this unit has never been

treated and thus belongs to the control group. I am still focusing on the pre-treatment
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anticipatory behavior within the treated group which means I am only distinguishing

Yit(0, e) and Yit(1, e) for t < e and e ̸= ∞. In order to incorporate anticipation in the

multiple periods model, the assumptions in the two-period difference-in-differences

model need some modification.

Assumption A.1. The potential outcomes {Yit(a, e), Ei, Ait}Tt=1 are independently

and identically distributed across i for (a, e) ∈ {0, 1} × {1, 2, . . . , T,∞}.

Assumption A.2. Yit(0, e) = Yit(0, e
′) for t < min{e, e′}

Assumption A.1 restricts the sampling process by imposing i.i.d. restrictions and

assumption A.2 restricts the anticipatory behavior to be the only reason for the

future to affect the present, both in the same way as in the two-period difference-in-

differences model.

Under this setup, the parameter of interest I focus on is

µg(e, t) = E[g(Yit(0, e))− g(Yit(0,∞))|Ei = e]

with similar restrictions on function g(.). Define the corresponding anticipatory effect

for anticipators as

τg(e, t) = E[g(Yit(1, e))− g(Yit(0, e))|Ei = e, Ai = 1]

and write µg(e, t) as µ(e, t) and τg(e, t) as τ(e, t) if g(.) is the identity function.

Assumption A.3. For all t1 ̸= t2, we have

E[g(Yit1(0,∞))− g(Yit2(0,∞))|Ei = e] = E[g(Yit1(0,∞))− g(Yit2(0,∞))|Ei = ∞]

for all e.

Parallel trends assumption is imposed and it implies potential outcomes without

anticipation and treatment will change in the same way among different groups who

get treated at different times.
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Following Sun and Abraham (2020), I build a difference-in-differences form vari-

able to help us analyze the parameter of interest while considering anticipation.

Unlike the two periods model, I do not have a natural period 0 to compare with and

need to pick one by myself. Consider the following term for t ≥ e and s < e,

mg(e, s, t) = E[g(Yit)− g(Yis)|Ei = e]− E[g(Yit)− g(Yis)|Ei = ∞].

For simplicity I define P[Ais = 1|Ei = e] = h(e, s) which denotes the probability to

anticipate in period s before the treatment happens at period e. t is a post-treatment

period that I am interested in, e is the period when unit i receives the treatment and

s is a chosen pre-treatment period that helps us build the difference-in-differences

estimator as introduced in Sun and Abraham (2020). I will discuss the choice of

period s later. Impose assumptions as in the two-period difference-in-differences

model to get the bounds for the treatment effect.

Assumption A.4. 0 ≤ h(e, s) ≤ π(e, s).

Based on the discussion in the two-period difference-in-differences model, I know

that the source of distortion is those who anticipate and react to it before the treat-

ment. In the multiple periods model, it is important to think about the probability

for those who will be treated at period e to anticipate at period s chosen as the

benchmark. Further, magnitude restrictions on anticipatory effect and treatment

effect at different periods are also imposed.

Assumption A.5. |τg(e, s)| ≤ |µg(e, t)|.

In the Assumption A.4, I can choose π(e, s) not only based on the treatment

period, but also based on the benchmark period s I pick. One common strategy

in empirical work to deal with anticipation is to argue that anticipation only exists

within a certain time length before the treatment and if people have rich enough

data they can always drop data when people might anticipate. This is equivalent to

saying pick a far enough period s and pick π(e, s) = 0 for that period in our setup.

However, it is not always reasonable to drop a subset of data and claim anticipation

disappears after this. When I need to consider the bound π(e, s), one analogy to
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the choice of P[Di = 1] in the two-period model that measures the intensity of

treatment is given by the proportion of the group that receives treatment no later

than period e, P[Ei ≤ e], which also captures the idea that people might anticipate

from information produced by prior implementations of treatment besides their own

future treatments. On the other hand, researchers may want to take the time gap

between the benchmark period s and the treatment period e into consideration to

capture the idea that the further from the treatment, the more difficult for people

to anticipate and multiply a time discount factor, for example, δe−s, for a known

discounting factor δ ∈ (0, 1). Thus one possible choice of π(e, s) = δe−sP[Ei ≤
e]. Researchers can pick different π(e, s) based on their situations and empirical

backgrounds.

The choice of s also affects the validity of Assumption A.5 as the relative time

gap for the period t and s to e might differ and possibly affect the strength of this

magnitude assumption. Although it seems fascinating to pick an s that is really

far from the treatment period to reduce the anticipation probability and restrict

the anticipatory effect magnitude, it is not cost-free. Sometimes a long period of

pre-treatment data is not available. Even when it is possible to do this, picking a

benchmark period s that is far from the treatment period requires the parallel trends

assumption to sustain in a relatively long period and increases the risk of violation.

Based on the assumptions above, I can get the following result.

Theorem A.1. Under Assumptions A.1-A.5 and a chosen s satisfying s < e ,

the parameter of interest µg(e, t) is partially identified via a closed interval in the

following form, µg(e, t) ∈ mg(e, s, t)×[
min

{
1,

1

1− sgn(τg(e, s)µg(e, t))π(e, s)

}
,max

{
1,

1

1− sgn(τg(e, s)µg(e, t))π(e, s)

}]
with mg(e, s, t) = E[g(Yit)− g(Yis)|Ei = e]− E[g(Yit)− g(Yis)|Ei = ∞].

In the multiple periods model, I end up with an expression similar to the two pe-

riods model with one side being the difference-in-differences form estimator proposed

by Sun and Abraham (2020) and the other side enlarging or reducing by a specific
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ratio depending on the signs of the treatment and anticipatory effect and the bound

for anticipation probability. Researchers can still implement a sensitivity check by

changing the choice of π(e, s) and period s to examine whether the conclusion is

robust.

The proof strategy carries from two periods model and I am still taking the case

where 0 ≤ τ(e, s) ≤ µ(e, t) as an example. For the difference-in-differences estimand

mg(e, s, t)

E[g(Yit)− g(Yis)|Ei = e]− E[g(Yit)− g(Yis)|Ei = ∞]

= E[g(Yit)|Ei = e]− E[g(Yis)|Ei = e]− E[g(Yit(0,∞))− g(Yis(0,∞))|Ei = ∞]

= E[g(Yit(0, e)) + Ait(g(Yit(1, e))− g(Yit(0, e)))|Ei = e]

− E[g(Yis(0, e)) + Ais(g(Yis(1, e))− g(Yis(0, e)))|Ei = e]

− E[g(Yit(0,∞))− g(Yis(0,∞))|Ei = ∞]

= E[g(Yit(0, e))|Ei = e] + h(e, t)τ(e, t)− E[g(Yis(0, e))|Ei = e]− h(e, s)τ(e, s)

− E[g(Yit(0,∞))− g(Yis(0,∞))|Ei = e]

= E[g(Yit(0, e))− g(Yit(0,∞))|Ei = e]− h(e, s)τ(e, s) = µg(e, t)− h(e, s)τg(e, s)

From the equation above, I can introduce Assumption A.4 and A.5, and then get

mg(e, s, t) ≤ µg(e, t) ≤
mg(e, s, t)

1− π(e, s)

Change-In-Changes Setup. As an alternative approach to the difference-in-differences

model, Athey and Imbens (2006) proposes a change-in-changes model that does not

depend on the scale of dependent variables and recovers the entire counterfactual

distribution of effects of the treatment on the treatment group. The change-in-

changes model also incorporates nonlinear potential outcomes. The key identifying

assumption is a time-invariant distribution of the unobservable variable across differ-

ent groups. In this section, I generalize the change-in-changes model to incorporate

anticipation.
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Following the two-period difference-in-differences setup, suppose there are n units

i ∈ {1, . . . , n} with two periods t ∈ {0, 1}. Each unit is assigned a binary treatment

Di in the second period and has an unobservable binary anticipation status Ai in

the first period. The sampling process and potential outcomes have the same restric-

tion as before. However, to incorporate nonlinear outcomes and not use the parallel

trends assumption, I follow the assumptions introduced in Athey and Imbens (2006).

Assumption A.6. The potential outcome of a unit in the absence of both antic-

ipation and treatment for unit i at period t is affected by an unobservable random

variable Ui that represents the unit i’s characteristic and satisfy

Yit(0, 0) = φ(Ui, t) with φ(u, t) strictly increasing in u for t ∈ {0, 1}.

Assumption A.7. U ⊥⊥ t|D and U1 ⊆ U0 where Ut represents the support of random

variable U in period t.

Assumption A.6 and A.7 build the change-in-changes model. Assumption A.6

requires that the potential outcomes can be captured in a single unobservable random

variable U and a higher value of random variable leads to a strictly higher potential

outcome. Assumption A.7 restricts that the population does not change over time as

the random variable that determines the potential outcome is independent of time

period conditional on the group it belongs, which is an analogy to the parallel trends

assumption in difference-in-differences model. Based on this assumption, the trend

in one group can be used to recover the unobservable potential trend of the other

group and comparison is possible. For this nonlinear setup where one can recover

the distribution information of the potential outcomes, the parameter of interest I

focus on is the quantile treatment effect for the treated group at a given quantile q

µ(q) = F−1
Y 1
i1(0,1)

(q)− F−1
Y 1
i1(0,0)

(q) = F−1
Y 1
i1(1)

(q)− F−1
Y 1
i1(0)

(q)

FY represents the cumulative distribution function for the random variable Y and

F−1
Y (q) represents the q-th quantile of the random variable Y . The switch from
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two indexes to one index is based on potential outcome restrictions I impose as the

potential outcomes in the second period should not depend on the anticipation status.

For notation simplicity, I use Y d
it to represent the distribution of the random variable

Yit|Di = d, and Y d2
it (d1) for the random variable Yit(d1)|Di = d2, and Y d2

it (a, d1) for

the random variable Yit(a, d1)|Di = d2. Under this setup, Athey and Imbens (2006)

proposes the following identification result.

Lemma A.1 (Athey and Imbens (2006) Theorem 3.1). Suppose Assumptions II.2.1,

II.2.2, A.6 and A.7 hold. The distribution of Y 1
i1(0) can be written as

FY 1
i1(0)

(y) = FY 1
i0(0,0)

(
F−1
Y 0
i0

(
FY 0

i1
(y)
))

.

The potential outcome Y 1
i0(0, 0) should have the same distribution as Y 1

i0 without

anticipation, and thus the quantile of Y 1
i1(0) and µ(q) are identified. However, it is

known from the previous discussion that the existence of anticipation causes pre-

treatment distortions, and the outcomes observed are no longer good measures of

potential outcomes if there is no treatment and anticipation. Following the logic

in the previous section, I need some extra assumptions to help bound the quantile

treatment effect:

µ(q) = F−1
Y 1
i1(1)

(q)− F−1
Y 1
i1(0)

(q) = F−1
Y 1
i1(1)

(q)− F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0(0,0)

(q)
))

The first term can be estimated from the treated group, while the second term

F−1
Y 1
i0(0,0)

(q) is not identified from the data. Here I introduce the corresponding quantile

anticipatory effect

τ(q) = F−1
Y 1
i0(1,1)

(q)− F−1
Y 1
i0(0,0)

(q)

and use a similar strategy.

Assumption A.8. P[Ai = 1|Di = 1] ≤ π.

Assumption A.9. |τ(q)| ≤ |µ(q)|

Assumption A.8 is identical to the assumption I impose in the two periods

difference-in-differences model. Assumption A.9 is also similar to what has been
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imposed and the only difference is now I am restricting the magnitude relationship

between the quantile anticipatory effect and quantile treatment effect. Based on

the assumptions above, I can build bounds for the quantile treatment effect in the

change-in-changes model while incorporating anticipation.

Theorem A.2. Under Assumptions II.2.1, II.2.2 and Assumptions A.6-A.9, the

parameter of interest, µ(q), is partially identified via a closed interval. For the sake

of notation simplicity, let us define

m(q) = F−1
Y 1
i1(1)

(q)− F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0
(q)
))

ϕu(q)is the closest to zero solution for F−1
Y 1
i1(1)

(q)−F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0
(q)− x

))
−x = 0

ϕl(q)is the closest to zero solution for F−1
Y 1
i1(1)

(q)−F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0
(q) + x

))
−x = 0

With the restriction that ϕu(q) and ϕl(q) have the same signs as µ(q). Further define

ϕ̃u(q) =

{
F−1
Y 1
i1(1)

(q)− F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0
(q − π)

))
q > π

+∞ q ≤ π

ϕ̃l(q) =

{
F−1
Y 1
i1(1)

(q)− F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0
(q + π)

))
q < 1− π

−∞ q ≥ 1− π

Then we have:

0 ≤ τ(q) ≤ µ(q) µ(q) ∈ [m(q),min{ϕu(q), ϕ̃u(q)}]

τ(q) ≤ 0 ≤ µ(q) µ(q) ∈ [max{ϕl(q), ϕ̃l(q)},m(q)]

µ(q) ≤ 0 ≤ τ(q) µ(q) ∈ [m(q),min{ϕl(q), ϕ̃u(q)}]

µ(q) ≤ τ(q) ≤ 0 µ(q) ∈ [max{ϕu(q), ϕ̃l(q)},m(q)]

Proof of Theorem A.2. Like before, I am taking the case 0 ≤ τ(q) ≤ µ(q) for

example. For the lower bound, I know that τ(q) ≥ 0 so I can conclude that
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F−1
Y 1
i0(0,0)

(q) ≤ F−1
Y 1
i0
(q) and will have

µ(q) ≥ F−1
Y 1
i1(1)

(q)− F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0
(q)
))

which is identifiable from observable variables. On the other hand, I can build the

upper bound for µ(q) through that F−1
Y 1
i0
(q) ≤ F−1

Y 1
i0(0,0)

(q) + τ(q) ≤ F−1
Y 1
i0(0,0)

(q) + µ(q)

using magnitude restriction. Then the upper bound for µ(q), represented by ϕu(q)

can be solved by the equation

ϕu(q) = F−1
Y 1
i1(1)

(q)− F−1
Y 0
i1
(FY 0

i0
(F−1

Y 1
i0
(q)− ϕu(q)))

when ϕu(q) = 0, left is smaller or equal than the right hand side. Both side are in-

creasing functions so the minimum nonnegative solution should be ϕu(q). It is worth

mentioning that ϕu(q) is not guaranteed to exist in this approach and it depends on

the distribution of all these random variables. For this approach, I do not use the

information from Assumption A.9. If I would like to introduce that assumption, I

can make an improvement on ϕu(q) for some circumstances.

If q ≤ π, then there is not much thing I can do to improve as the worst case is

that all the people who anticipate lies in the lowest q percentage and you gain no

information about the original distribution without anticipation. If q > π, then at

most π of the people exceed the original q-th quantile of Y 1
i0(0, 0) after the anticipation

so I should have that F−1
Y 1
i0
(q − π) ≤ F−1

Y 1
i0(0,0)

(q) and then I have

µ(q) ≤ F−1
Y 1
i1(1)

(q)− F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0
(q − π)

))
= ϕ̃u(q)

For the case 0 ≤ τ(q) ≤ µ(q), I will have the lower and upper bound for µ(q) as

θl(q) = F−1
Y 1
i1(1)

(q)− F−1
Y 0
i1

(
FY 0

i0

(
F−1
Y 1
i0
(q)
))

θu(q) = min{ϕu(q), ϕ̃u(q)}

From the form of the intervals, one can find that the way to build bounds for the
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quantile treatment effect is different from what I have done in the linear outcome

case. The key difference is that I need both of these two assumptions to build the

identified set in the difference-in-differences model while in the change-in-changes

setup, either restriction on anticipation probability or magnitude anticipation is pos-

sible to provide an identified set. ϕu(q) and ϕl(q) are possible bounds based on

the magnitude restrictions following the idea that to the maximum extent, the pre-

treatment potential outcomes without anticipation and treatment deviate from the

observed pre-treatment outcomes up to a magnitude that is equal to the treatment

effect. If one can find a solution to the formula, then the solution will be the cor-

responding bounds for the treatment effect. ϕ̃u(q) and ϕ̃l(q) are bounds obtained

from the restrictions on anticipation probability. The intuition for the bounds is

that if one is interested in the performance of q-th quantile treatment effect and the

proportion of those anticipate is up to π, then at least (q − π) of the observation is

not affected by anticipation. For example, if the anticipation effect is positive, then

the q-th quantile of potential outcomes without anticipation and treatment should

be no less than (q−π)-th quantile of observed outcomes as at least this part of units

don’t anticipate and there is no distortion. Similar logic can be used to analyze other

cases. Although it seems that relying on fewer assumptions represents an advantage

over the difference-in-differences model and having two approaches can provide a

tighter bound if researchers are willing to impose both assumptions, this approach

has its own problem. Either the solution to the formula or the effectiveness of the

bound achieved from the probability restriction is not guaranteed. The former one

depends on the specific distribution properties of the potential outcomes and support

of random variables while the latter one depends on the relationship between q one

is interested in and π one picks. For example if q ≤ π a negative quantile does not

provide any useful information and this bound is useless. For the purpose of covering

more cases, I suggest imposing two assumptions and picking the tighter one as the

identified set while applying this method.

Empirical Related Tables. This section provides extra empirical results for the em-
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pirical application using data from subject specific teachers.

Table A.1: Effects of the Early Retirement Incentive Program on Scores

Original Results With Anticipation

Math Reading Math Reading

All Grade 0.013 0.013 [0.008,0.013] [0.008,0.013]
(0.008) (0.007)

[-0.002,0.028] [-0.001,0.027] [-0.005,0.026] [-0.004,0.025]
Grade 3 0.01 -0.003 [0.007,0.010] [-0.007,-0.003]

(0.013) (0.01)
[-0.015,0.035] [-0.024,0.017] [-0.016,0.033] [-0.05,0.04]

Grade 6 0.004 0.016 [0.002,0.004] [0.010,0.016]
(0.01) (0.009)

[-0.016,0.024] [-0.002,0.035] [-0.017,0.023] [-0.006,0.033]
Grade 8 0.032 0.03 [0.020,0.032] [0.019,0.03]

(0.018) (0.017)
[-0.004,0.067] [-0.003,0.063] [-0.011,0.063] [-0.01,0.059]

Notes: This table contains results using data from subject specific teachers.
Each column presents results from a separate regression. Teachers who teach
multiple grades are included in each grade. Teachers who teach in self-contained
classrooms are assumed to teach both math and English. I list identified sets in
the first row and 95% level confidence sets in the third row for each result with
anticipation. For comparison purposes, I also provide estimators, standard errors
and 95% confidence intervals for results from Fitzpatrick and Lovenheim (2014).
Standard errors are displayed with parentheses.

Estimation and Inference. Here I will calculate these estimators for inference explic-

itly. To be consistent with the setup in empirical application, I work on the case

where τg ≤ 0 ≤ µg as an example and the other cases can be analyzed similarly.

When I have these assumptions I know that µg ∈ [µg,l, µg,u] where µg,l =
mg

1+π
while

θu = mg. Corresponding estimators for lower and upper bound of the interval will
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be

µ̂g,u =
1

n1

n∑
i=1

[g(Yi1)− g(Yi0)]Di −
1

n0

n∑
i=1

[g(Yi1)− g(Yi0)](1−Di)

µ̂g,l =
µ̂g,u

1 + π̂
n1 =

n∑
i=1

Di n0 = n− n1 π̂ is a consistent estimator for π

For simplicity let me define δ̂dt =
1
nd

∑n
k=1 g(Ykt)I[Dk = d] for (d, t) ∈ {0, 1}2. I use

d to index the group and t for time period here. I can also define

σ̂2
dt =

1

nd − 1

n∑
k=1

[g(Ykt)− δ̂dt]
2I[Dk = d]

ˆcovd =
1

nd − 1

n∑
k=1

[g(Yk1)− δ̂d1][g(Yk0)− δ̂d0]I[Dk = d]

which measure the variance for group d at period t and covariance between two time

periods for group d. For well behaved function g(.), which guarantee the asymptotic

normality of average, I will have

σ̂2
u =

σ̂2
11 + σ̂2

10 − 2 ˆcov1
p̂

+
σ̂2
01 + σ̂2

00 − 2 ˆcov0
1− p̂

σ̂2
l =

σ̂2
11 + σ̂2

10 − 2 ˆcov1
p̂(1 + π̂)2

+
σ̂2
01 + σ̂2

00 − 2 ˆcov0
(1− p̂)(1 + π̂)2

with p̂ = n1

n
.

For the validity of the inference procedure, when Assumption (i) and (ii) are

satisfied and the upper and lower bound estimators are ordered by construction, the

procedure of Imbens and Manski (2004) is valid by Stoye (2009). The only thing

need to be addressed is that now the variance of the lower and upper bounds might

change so to guarantee the effectiveness of the confidence set, one needs to choose

the larger variance for both bounds.

Proof of Theorem II.2. To keep consistency with the estimation procedure, concen-
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trate on the case

µg ∈
[
min

{
mg,

mg

1 + π

}
,max

{
mg,

mg

1 + π

}]
µ̂g,u = m̂g µ̂g,l =

µ̂g,u

1 + π̂

If mg > 0 thus µg > 0, then based on Assumption (i) and (ii) plus the ordered

upper and lower bounds estimators, the proposed interval is effective automatically

following Imbens and Manski (2004) and Stoye (2009). However, when mg < 0 thus

µg < 0 but I get m̂g > 0, then although µ̂g,u is still larger, now it is the estimator

for the lower bound. Intuitively, when this situation happens, one can find that my

inference strategy uses a smaller estimator to construct the lower bound and a larger

estimator for the upper bound. At the same time, I am using the larger standard

error to calculate on both sides even though the upper and lower bound estimator

may change so this method should still work well. For notation simplicity, use λ to

represent P[Ai = 1|Di = 1] and I know λ ∈ [0, π]. Define σ = max{σl, σu}, in this

setup, σ is the standard deviation of mg.

P
(

m̂g

1 + π̂
− Cn

σ̂√
n
≤ mg

1 + λ
≤ m̂g + Cn

σ̂√
n

)
= P

(√
n m̂g(λ−π̂)

1+π̂
− Cnσ̂(1 + λ)

σ
≤

√
n
mg − m̂g

σ
≤

√
nλm̂g + Cnσ̂(1 + λ)

σ

)

For ε > 0, there exists N0 such that N > N0 I have | σ̂−σ
σ

| < ε and thus ε > 1 − σ̂
σ
.

Then the probability has a lower bound

P

( √
nm̂g(λ−π̂)

1+π̂
− Cnσ(1 + λ)(1− ε)

σ
≤

√
n
mg − m̂g

σ
≤

√
nλm̂g + Cnσ(1 + λ)(1− ε)

σ

)

Use Φ to represent the cumulative value of standard normal distribution and ϕ to

represent the p.d.f for standard normal here. By Berry-Essen central limit theorem,
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this term is arbitrarily close to

Φ

(√
nλm̂g

σ
+ Cn(1 + λ)(1− ε)

)
− Φ

(√
n m̂g(λ−π̂)

1+π̂

σ
− Cn(1 + λ)(1− ε)

)

= Φ

(√
nλm̂g

σ
+ Cn(1 + λ)

)
− Φ

(√
n m̂g(λ−π̂)

1+π̂

σ
− Cn(1 + λ)

)
+ 2(1 + λ)εCnϕ(ω)

for some ω. Cn is bounded and ε can be arbitrarily small so the last term can be

ignored. Using similar logic, the left term can be written as

≥ Φ

(√
nλm̂g

σ̂
+ Cn(1 + λ)

)
− Φ

(
−
√
n m̂g(π̂−λ)

1+π̂

σ̂
− Cn(1 + λ)

)

− C0ελ

(√
n
m̂g −mg

σ̂
+
√
n
mg

σ̂

)
ϕ(ω′)

for some other ω′ and constant number C0. The first term within bracket is normally

distributed and the second term is negative and I can take ε arbitrarily small. Recall

that λ ∈ [0, π] and the smallest value is taken at λ = 0. I have at last

P
(

m̂g

1 + π̂
− Cn

σ̂√
n
≤ mg

1 + λ
≤ m̂g + Cn

σ̂√
n

)
≥ Φ (Cn)− Φ

(
−
√
n(µ̂g,u − µ̂g,l)

σ̂
− Cn

)
= α

Proof of Corollary II.1. Take the case τg ≤ 0 ≤ µg for example. The new confidence

set has the form [
µ̂g,u

1 + π̂
− Cn

σ̂√
n
, µ̂g,u + Cn

σ̂√
n

]
with

Φ

(
Cn +

√
n
µ̂g,u − µ̂g,l

σ̂

)
− Φ(−Cn) = Φ

(
Cn +

π̂

1 + π̂
t̃

)
− Φ(−Cn) = α.

112



Given that the right hand side of the confidence set is always positive, I only need

to compare µ̂g,u

1+π̂
− Cn

σ̂√
n
and 0.

µ̂g,u

1 + π̂
− Cn

σ̂√
n
=

σ̂

(1 + π̂)
√
n
(t̃− Cn(1 + π̂))

I know that Φ
(
Cn +

π̂
1+π̂

t̃
)
− Φ(−Cn) is increasing in both Cn and t̃ so the solution

for Cn is a decreasing function for t̃ at any given π. For any specific π, the smallest

t̃ that guarantees t̃
1+π

≥ Cn is the value that solves

Φ
(
t̃
)
− Φ

(
− t̃

1 + π

)
= α.

The left handside is an increasing function in t̃ and a decreasing function in π so the

worst case happens at π = 1 and that gives you the expression Φ(t∗)−Φ(−t∗/2) = α.

As long as t̃ > t∗ then t̃
1+π

> Cn is guaranteed and I can conclude that 0 ̸∈ CSµ
α.

Alternative Assumptions and Corresponding Bounds. Sometimes, it might be rea-

sonable to propose specific assumptions other than what have already been assumed.

In this part, I will try to discuss several alternative assumptions that will also give

partial identification results under different circumstances.

The first alternative approach mentioned here identifies the parameter of interest

through a boundary on the outcomes. The advantage is that it falls naturally to

certain setups, for example, binary outcomes and setups when the outcomes are

scores and does not need to make discussions based on different signs of the treatment

effects and do not need to bound the magnitude of effect. It will also benefit from a

certain choice of bounded g(.) function. However, I may need some other assumptions

to validate it.

Assumption A.10. E[g(Yi0(0, 0))|Di = 1, Ai = 0] = E[g(Yi0(0, 0))|Di = 1, Ai = 1]

This assumption states that for those who will get treated, their potential outcome

without treatment in the first period should be the same across those who anticipate
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and those who do not. This is a weaker assumption compared with independent

anticipation, and I only restrict this for the treated group.

Assumption A.11. The outcome variable in the first period is bounded, which means

g(Yi0) ∈ [a, b].

The bounded outcome assumption is not quite restrictive and fits into different

situations, for example, the binary outcome case. It will naturally have a bounded

outcome between 0 and 1. For example, in other cases, when the outcome is grade

score or the g(.) function itself is bounded, this assumption is automatically satisfied.

Theorem A.3. Under Assumptions II.2.1-II.2.3, Assumption A.10 and A.11, the

parameter of interest µg is partially identified in a closed interval. The lower bound

and upper bounds of that interval µg,l, µg,u have the following form

µg,l = E
[

Di − P[Di = 1]

P[Di = 1](1− P[Di = 1])
g(Yi1) +

1−Di

1− P[Di = 1]
g(Yi0)− b

]

µg,u = E
[

Di − P[Di = 1]

P[Di = 1](1− P[Di = 1])
g(Yi1) +

1−Di

1− P[Di = 1]
g(Yi0)− a

]
The proof is relatively straightforward as I can see that for the unobserved term,

I will have

E[g(Yi0(0, 0))|Di = 1] = E[g(Yi0)|Di = 1, Ai = 0]

under Assumption A.10, which can help build a bound by conditional expectation.

The case with covariates is similar after making all the things conditionally and is

skipped here.

One may argue that the identified set given by bounded outcome might be too

loose in some circumstances as it just used the upper and lower bound of the out-

come itself. If people do not like to put restrictions on the signs and magnitudes

of treatment effects, I can also provide a corresponding identification result under

some other assumptions. The idea is that, I may not observe the anticipation status

for everybody, however, if I have a bound for the anticipation probability among the

group I am interested in, I can get an bound about it by assigning anticipation treat-
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ment to those with highest or lowest outcomes. As among all possible anticipation

treatment status satisfying the proportion restriction, I am picking the worst and

best one based on the observed outcomes so I can get corresponding upper and lower

bounds.

Theorem A.4. Under Assumption II.2.1-II.2.3, II.3.1 and Assumption A.10, I can

build a closed interval for the parameter of interest µg with upper and lower bounds

µg,l and µg,u satisfying

µg,l = E
[

Di − P[Di = 1]

P[Di = 1](1− P[Di = 1])
g(Yi1) +

1−Di

1− P[Di = 1]
g(Yi0)

]
−E[g(Yi0)|Di = 1, g(Yi0) ≥ g(Yi0)η]

µg,u = E
[

Di − P[Di = 1]

P[Di = 1](1− P[Di = 1])
g(Yi1) +

1−Di

1− P[Di = 1]
g(Yi0)

]
−E[g(Yi0)|Di = 1, g(Yi0) ≤ g(Yi0)1−η]

g(Yi0)α denotes the α-th quantile of g(Yi0) conditional on Di = 1 and η = π.

The proof for this theorem follows the idea that I can assign the anticipation

treatment group to those with highest or lowest outcomes under a bounded propor-

tion and this will provide bounds for the purpose of partial identification. For these

bounds, all the items are observable and can be estimated and I do not need to put

restrictions on signs and magnitudes of the treatment effect.
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APPENDIX B

Proofs for Chapter III

First we introduce some technical lemmas that are used to establish our main

results. The main results are obtained by working with the representation

√
n(β̂n − β) = Γ̂−1

n Sn,

where

Γ̂n =
1

n

∑
1≤i≤n

v̂i,nv̂
′
i,n

and

Sn =
1√
n

∑
1≤i≤n

v̂i,nui,n =
1√
n

∑
1≤g≤NT ,n

V̂n(g)
′un(g),

un (g) = (utg,n(1),n, . . . , utg,n(#Tg,n),n)
′.

Strictly speaking, the displayed representation is valid only when λmin(
∑n

i=1wi,nw
′
i,n) >

0 and λmin(Γ̂n) > 0. Both events occur with probability approaching one under our

assumptions, so without loss of generality we may assume that they occur almost

surely.

The first lemma can be used to bound Γ̂−1
n .

Lemma B.1. If Assumptions III.2.1-III.2.3 hold, then Γ̂−1
n = Op(1).
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Let Σn = Σn(Xn,Wn) = V[Sn|Xn,Wn]. The second lemma can be used to bound

Σ−1
n and to show asymptotic normality of Sn.

Lemma B.2. Suppose Assumptions III.2.1-III.2.3 hold and suppose that

CS,nρn = o(1) and
C3
T ,n

n2

∑
1≤i≤n

||v̂i,n||4 = op(1).

Then Σ−1
n = Op(1) and Σ

−1/2
n Sn →d N (0, Id).

The third lemma can be used to approximate

Σ̂n = Σ̂n(κn) = vec−1
d

 1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κn(g, h)(ûn(h)⊗ ûn(h))


by means of

Σ̄n = Σ̄n(κn;Xn,Wn) = E[Σ̃n(κn)|Xn,Wn],

where

Σ̃n(κn) = vec−1
d

 1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κn(g, h)(Ũn(h)⊗ Ũn(h))

 ,

Ũn (h) = (Ũth,n(1),n, . . . , Ũth,n(#Th,n),n)
′, Ũi,n =

∑
1≤j≤n

Mij,nUj,n.

Lemma B.3. Suppose Assumptions III.2.1-III.2.3 hold and suppose that

C3
T ,n[CS,nρn + n(ϱn − ρn) + nχnϱn] = o(1) and

C4
T ,n

n2

∑
1≤i≤n

||v̂i,n||4 = op(1).

If ∥κn∥∞ = Op(1), then Σ̂n = Σ̄n + op(1).

The fourth lemma can be combined with the third lemma to show consistency of

Σ̂n.
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Lemma B.4. Suppose Assumptions III.2.1 and III.2.2 hold and suppose that χn =

O(1). If

CT ,n

∥∥κn(Mn ⊛n Mn)− INκ,n

∥∥
∞ = op(1),

then Σ̄n = Σn + op(1).

Lemmas 3 and 4 make high-level assumptions about κn. The fifth lemma gives

sufficient conditions for the assumptions for specific κn.

Lemma B.5. Suppose Assumptions III.2.1 and III.2.2 hold and suppose that χn =

O(1).

(a) If κn = INκ,n , then ∥κn∥∞ = Op(1). If also C2
T ,nMn = op(1), then Σ̄n =

Σn + op(1).

(b) Suppose κn = κBRn . If

lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1/2||−2

∞ > δ

]
= 1,

then ∥κn∥∞ = Op(1). If also C3
T ,nMn = op(1), then Σ̄n = Σn + op(1).

(c) Suppose κn = κJKn . If

lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ > δ

]
= 1,

then ∥κn∥∞ = Op(1) and Σ̄n ≥ Σn + op(1).

If C2
T ,nMn = op(1), then ∥κn∥∞ = Op(1) and Σ̄n = Σn + op(1).

(d) Suppose κn = κCRn . If

lim
δ↓0

lim inf
n→∞

P

 min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ −
∑

1≤h≤NT ,n,h̸=g

||Mn(g, h)||2∞

 > δ

 = 1,

then ∥κn∥∞ = Op(1) and Σ̄n = Σn + op(1).

Proof of Theorem III.1. Theorem III.1 follows from Lemmas B.1 and B.2.
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Proof of Theorem III.2. Theorem III.2 follows from combining Theorem III.1 with

Lemmas B.3, B.4, and B.5.

Proof of Corollary III.1. The function M 7→||M−1/2||−2
∞ is continuous at M = I. As

a consequence, if CT ,n = O(1) and if Mn = op(1), then

min
1≤g≤NT ,n

||Mn(g, g)
−1/2||−2

∞ = 1 + op(1),

implying in particular that

lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1/2||−2

∞ > δ

]
= 1.

In other words, the assumptions of Theorem III.2 (a)-(b) are satisfied under the

conditions of Corollary III.1.

Proof of Corollary III.2. If g ̸= h, then

||Mn(g, h)||2∞ ≤ CT ,n||Mn(g, h)||2F = CT ,n

∑
1≤k≤#Tg,n,1≤K≤#Th,n

M2
tg,n(k),th,n(K),n,

and therefore∑
1≤h≤NT ,n,h̸=g

||Mn(g, h)||2∞ ≤ CT ,n

∑
1≤k≤#Tg,n

Mtg,n(k),tg,n(k),n(1−Mtg,n(k),tg,n(k),n)

≤ C2
T ,n max

1≤i≤n
{Mii,n(1−Mii,n)} ,

implying in particular that if Mn < 1/2, then∑
1≤h≤NT ,n,h ̸=g

||Mn(g, h)||2∞ ≤ C2
T ,n(1−Mn)Mn.

Suppose

(C2
T ,n − CT ,n + 2)Mn +

√
(CT ,n − 1)(1−Mn)Mn < 1.

119



Then

CT ,nMn < 1 and Mn < 1/2,

so Mn ⊛n Mn is block diagonally dominant because

||Mn(g, g)
−1||−2

∞ −
∑

1≤h≤NT ,n,h̸=g

||Mn(g, h)||2∞

≥ (1−Mn)
2 + (CT ,n − 1)(1−Mn)Mn − (1−Mn)

√
(CT ,n − 1)(1−Mn)Mn

−C2
T ,n(1−Mn)Mn

= (1−Mn)

{
1− (C2

T ,n − CT ,n + 2)Mn −
√

(CT ,n − 1)(1−Mn)Mn

}
> 0.

In particular,

lim
δ↓0

lim inf
n→∞

P

 min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ −
∑

1≤h≤NT ,n,h̸=g

||Mn(g, h)||2∞

 > δ


≥ lim

δ↓0
lim inf
n→∞

P
[
(C2

T ,n − CT ,n + 2)Mn +
√

(CT ,n − 1)(1−Mn)Mn < 1− δ

]
,

so the assumptions of Theorem III.2 (c) are satisfied under the conditions of Corollary

III.2.

Proof of Corollary III.3. It is shown in the proof of Lemma B.5 (c) that

lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ > δ

]
≥ lim

δ↓0
lim inf
n→∞

P [CT ,nMn < 1− δ] .

Therefore, the assumptions of Theorem III.2 (d) are satisfied under the conditions

of Corollary III.3.

Proof of Theorem III.3. If the design is cluster-orthogonal, then Ũn(g) = Mn(g, g)Un(g)

and V̂n(g) = Mn(g, g)Xn(g), where Xn (g) = (xtg,n(1),n, . . . ,xtg,n(#Tg,n),n)
′ and where

each Mn(g, g) is idempotent. and therefore Mn(g, g)
1/2 = Mn(g, g),Mn(g, g)

2 =
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Mn(g, g), and Mn(g, g)
+ = Mn(g, g).

It follows from Lemma B.3 that

Σ̂LZ
n = Σ̂n(INκ,n) = E[Σ̃n(INκ,n)|Xn,Wn] + op(1),

where E[Σ̃n(INκ,n)|Xn,Wn] = Σn because

Σ̃n(INκ,n) = vec−1
d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))(Ũn(g)⊗ Ũn(g))


= vec−1

d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))(Un(g)⊗Un(g))

 ,

the second equality using

V̂n(g)
′Ũn(g) = Xn(g)

′Mn(g, g)
2Un(g) = Xn(g)

′Mn(g, g)Un(g) = V̂n(g)
′Un(g).

Moreover,

Σ̂BR
n = Σ̂JK

n = Σ̂CR
n = Σ̂LZ

n ,

where the first equality uses Mn(g, g)
1/2 = Mn(g, g), the second equality uses block

diagonality of κCRn , and the last equality uses

Mn(g, g)
+ = Mn(g, g), V̂n(g)

′Mn(g, g)Ũn(g) = V̂n(g)
′Un(g).

Finally, if CT ,nMn = op(1), then µnΣn = Σn + op(1) and therefore

Σ̌LZ
n = µnΣ̂

LZ
n = Σn + op(1).

Then we introduce the proof of technical lemmas. Throughout the proofs we

simplify the notation by assuming without loss of generality that d = 1. In Lemma

B.2 the case where d > 1 can be handled by means of the Cramér-Wold device and
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simple bounding arguments.

Proof of Lemma B.1. It suffices to show that Γ̃n = E[Γ̃n|Wn] + op(1) and that Γ̂n −
Γ̃n ≥ op(1).

First,

Γ̃n =
1

n

∑
1≤G≤NS,n

aGG,n+
2

n

∑
1≤G,H≤NS,n,G<H

aGH,n, aGH,n =
∑

s∈SG,n,t∈SH,n

Mst,nVs,nVt,n,

where
∑

1≤G,H≤NS,n
V[aGH,n|Wn] = op(n

2) because

V[aGH,n|Wn] ≤ (#SG,n)(#SH,n)
∑

s∈SG,n,t∈SH,n

M2
st,nV[Vs,nVt,n|Wn]

≤ C2
S,nCV,n

∑
s∈SG,n,t∈SH,n

M2
st,n,

where CS,n = o(
√
n), CV,n = 1 +max1≤i≤n E[V 4

i,n|Wn] = Op(1), and∑
1≤G,H≤NS,n

∑
s∈SG,n,t∈SH,n

M2
st,n =

∑
1≤i,j≤n

M2
ij,n =

∑
1≤i≤n

Mii,n ≤ n.

As a consequence,

V

 1

n

∑
1≤G≤NS,n

aGG,n

∣∣∣∣∣∣Wn

 =
∑

1≤G≤NS,n

V[aGG,n|Wn]

n2
≤

∑
1≤G,H≤NS,n

V[aGH,n|Wn]

n2
= op(1)

and

V

 1

n

∑
1≤G,H≤NS,n,G<H

aGH,n

∣∣∣∣∣∣Wn

 =
1

n2

∑
1≤G,H≤NS,n,G<H

V[aGH,n|Wn]

≤ 1

n2

∑
1≤G,H≤NS,n

V[aGH,n|Wn] = op(1),

implying in particular that Γ̃n = E[Γ̃n|Wn] + op(1).
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Next, defining Q̃i,n =
∑

1≤j≤nMij,nQj,n, we have

Γ̂n − Γ̃n =
1

n

∑
1≤i≤n

Q̃2
i,n +

2

n

∑
1≤i≤n

Q̃i,nṼi,n

≥ 2

n

∑
1≤i≤n

Q̃i,nṼi,n =
2

n

∑
1≤i≤n

Q̃i,nVi,n = Op

(
CS,nχn

n

)
= op(1),

the penultimate equality using the facts that E[Q̃i,nVi,n|Wn] = 0 and

V

[
1

n

∑
1≤i≤n

Q̃i,nVi,n

∣∣∣∣∣Wn

]
=

1

n2

∑
1≤G≤NS,n

V

 ∑
s∈SG,n

Q̃s,nVs,n

∣∣∣∣∣∣Wn


≤ CS,nCV,n

n2

∑
1≤G≤NS,n

∑
s∈SG,n

Q̃2
s,n =

CS,nCV,n
n

χ̃n,

where

χ̃n =
1

n

∑
1≤G≤NS,n

∑
s∈SG,n

Q̃2
s,n =

1

n

∑
1≤i≤n

Q̃2
i,n ≤ 1

n

∑
1≤i≤n

Q2
i,n = Op(χn).

Remark B.1. � The following assumptions are used in the proof:

– CS,n = o(
√
n)

– max1≤i≤n E[∥Vi,n∥4|Wn] = Op(1)

– χn = O(
√
n)

Proof of Lemma B.2. Defining S̃n = Sn − E[Sn|Xn,Wn] =
∑

1≤i≤n v̂i,nUi,n/
√
n and

employing the decomposition

Sn − S̃n =
1√
n

∑
1≤i≤n

Ṽi,nri,n +
1√
n

∑
1≤i≤n

Q̃i,nri,n +
1√
n

∑
1≤i≤n

v̂i,n(Ri,n − ri,n),

we begin by showing that Sn = S̃n + op(1).
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First, defining r̃i,n =
∑

1≤j≤nMij,nrj,n and using E[r̃i,nVi,n|Wn] = 0 and

V

[
1√
n

∑
1≤i≤n

r̃i,nVi,n

∣∣∣∣∣Wn

]
=

1

n

∑
1≤G≤NS,n

V

 ∑
s∈SG,n

r̃s,nVs,n

∣∣∣∣∣∣Wn

 ≤ CS,nCV,nρ̃n,

where

ρ̃n =
1

n

∑
1≤i≤n

r̃2i,n ≤ 1

n

∑
1≤i≤n

r2i,n = Op(ρn),

we have
1√
n

∑
1≤i≤n

Ṽi,nri,n =
1√
n

∑
1≤i≤n

r̃i,nVi,n = Op(CS,nρn) = op(1).

Also, using the Cauchy-Schwarz inequality,∣∣∣∣∣ 1√
n

∑
1≤i≤n

Q̃i,nri,n

∣∣∣∣∣
2

=

∣∣∣∣∣ 1√
n

∑
1≤i≤n

Q̃i,nr̃i,n

∣∣∣∣∣
2

≤ nχ̃nρ̃n = Op(nχnρn) = op(1)

and∣∣∣∣∣ 1√
n

∑
1≤i≤n

v̂i,n(Ri,n − ri,n)

∣∣∣∣∣
2

≤ nΓ̂n

(
1

n

∑
1≤i≤n

|Ri,n − ri,n|2
)

= Op[n(ϱn − ρn)] = op(1),

where the penultimate equality uses

Γ̂n =
1

n

∑
1≤i≤n

v̂2i,n ≤ 1

n

∑
1≤i≤n

v2i,n ≤ 2

n

∑
1≤i≤n

Q2
i,n +

2

n

∑
1≤i≤n

V 2
i,n = Op(χn + 1) = Op(1)

and E[|Ri,n − ri,n|2] = E[R2
i,n]− E[r2i,n]. As a consequence, Sn = S̃n + op(1).
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Next,

Σn =
1

n

∑
1≤g≤NT ,n

V[V̂n(g)
′Un(g)|Xn,Wn]

=
1

n

∑
1≤g≤NT ,n

V̂n(g)
′E[Un(g)Un(g)

′|Xn,Wn]V̂n(g)

≥ Γ̂n min
1≤g≤NT ,n

λmin(E[Un(g)Un(g)
′|Xn,Wn]),

so Σ−1
n = Op(1). The proof can therefore be completed by showing that Σ

−1/2
n S̃n →d

N (0, 1).

We shall do so assuming without loss of generality that λmin(Σn) > 0 (a.s.).

Because

Σ−1/2
n S̃n =

1√
n

∑
1≤g≤NT ,n

ηn(g), ηn(g) = Σ−1/2
n V̂n(g)

′Un(g) = Σ−1/2
n

∑
t∈Tg,n

v̂t,nUt,n,

where, conditional on (Xn,Wn), ηn(g) are mean zero independent random variables

with
1

n

∑
1≤g≤NT ,n

V[ηn(g)|Xn,Wn] = 1,

it suffices to show that the following Lyapunov condition is satisfied:

1

n2

∑
1≤g≤NT ,n

E[ηn(g)4|Xn,Wn] = op(1).
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Now,

∑
1≤g≤NT ,n

E[ηn(g)4|Xn,Wn]

n2
≤

∑
1≤g≤NT ,n

E
[(∑

t∈Tg,n v̂t,nUt,n

)4∣∣∣∣Xn,Wn

]
nλmin(Σn)2

≤
C3
T ,nCU,n

n2λmin(Σn)2

∑
1≤g≤NT ,n

∑
t∈Tg,n

v̂4t,n

=
CU,n

λmin(Σn)2

(
C3
T ,n

n2

∑
1≤i≤n

v̂4i,n

)
= op(1),

where CU,n = 1 +max1≤i≤n E[U4
i,n|Xn,Wn] = Op(1).

Remark B.2. � The following assumptions are used in the proof:

– Γ̂−1
n = Op(1)

– max1≤i≤n E[U4
i,n|Xn,Wn] = Op(1)

– max1≤i≤n E[∥Vi,n∥4|Wn] = Op(1)

– max1≤g≤NT ,n
{1/λmin(E[Un(g)Un(g)

′|Xn,Wn])} = Op(1)

– χn = O(1)

– CS,nρn = o(1)

– n(ϱn − ρn) = o(1)

– nχnρn = o(1)

– C3
T ,nn

−2
∑

1≤i≤n ||v̂i,n||4 = op(1)

� The rate of convergence of β̂n can be slower than
√
n : Because

Σn =
1

n

∑
1≤g≤NT ,n

V[V̂n(g)
′Un(g)|Xn,Wn]

=
1

n

∑
1≤i≤NT ,n

V̂n(g)
′E[Un(g)Un(g)

′|Xn,Wn]V̂n(g)

≤ CT ,nCU,n
n

∑
1≤g≤NT ,n

V̂n(g)
′V̂n(g) = CT ,nCU,nΓ̂n,
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we have
√
n(β̂n − β) = Op(

√
CT ,n) ̸= Op(1) in general.

� For each G ∈ {1, . . . , NS,n}, let

r̃n(G) = (r̃sG,n(1),n, . . . , r̃sG,n(#SG,n),n)
′,

Vn (G) = (VsG,n(1),n, . . . ,VsG,n(#SG,n),n)
′,

where sG,n(·) is any function such that {sG,n(1), . . . , sG,n(#SG,n)} = SG,n.

Defining

CV,n = max
1≤G≤NS,n

λmax(E[Vn(G)Vn(G)′|Wn]) ≤ CS,nCV,n,

the inequality

V

[
1√
n

∑
1≤i≤n

r̃i,nVi,n

∣∣∣∣∣Wn

]
≤ CS,nCV,nρ̃n

can be generalized as follows:

V

[
1√
n

∑
1≤i≤n

r̃i,nVi,n

∣∣∣∣∣Wn

]
=

1

n

∑
1≤G≤NS,n

r̃n(G)′E[Vn(G)Vn(G)′|Wn ]̃rn(G)

≤ CV,n

n

∑
1≤G≤NS,n

r̃n(G)′r̃n(G) = CV,nρ̃n.

� Defining

CU,n = max
1≤g≤NT ,n

λmax(E[{Un(g)Un(g)
′} ⊗ {Un(g)Un(g)

′}|Xn,Wn]) ≤ C2
T ,nCU,n,

the inequality

λmin(Σn)
2

n2

∑
1≤g≤NT ,n

E[ηn(g)4|Xn,Wn] ≤
C3
T ,nCU,n
n2

∑
1≤i≤n

v̂4i,n
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can be generalized as follows:

λmin(Σn)
2

n2

∑
1≤g≤NT ,n

E[ηn(g)4|Xn,Wn] ≤
1

n2

∑
1≤g≤NT ,n

E[(V̂n(g)
′Un(g))

4|Xn,Wn]

The right hand side can be written as

1

n2

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′E[{Un(g)Un(g)

′} ⊗ {Un(g)Un(g)
′}|Xn,Wn]

(V̂n(g)⊗ V̂n(g)) ≤
CU,n

n2

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(V̂n(g)⊗ V̂n(g))

=
CU,n

n2

∑
1≤g≤NT ,n

(V̂n(g)
′V̂n(g))

2 ≤ CT ,nCU,n

n2

∑
1≤i≤n

v̂4i,n,

where the last inequality uses

(V̂n(g)
′V̂n(g))

2 = (
∑
t∈Tg,n

v̂2t,n)
2 ≤ CT ,n

∑
t∈Ti,n

v̂4t,n.

� Because v̂i,n = Ṽi,n + Q̃i,n, we have

1

n2

∑
1≤i≤n

v̂4i,n ≤ 8

n2

∑
1≤i≤n

Ṽ 4
i,n +

8

n2

∑
1≤i≤n

Q̃4
i,n,

where
1

n2

∑
1≤i≤n

Ṽ 4
i,n = Op

(C3
S,n

n

)
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because

E[Ṽ 4
i,n|Wn] = E

( ∑
1≤j≤n

Mij,nVj,n

)4
∣∣∣∣∣∣Wn


= E

 ∑
1≤G≤NS,n

∑
s∈SG,n

Mis,nVs,n

4∣∣∣∣∣∣Wn


=

∑
1≤G≤NS,n

E

 ∑
s∈SG,n

Mis,nVs,n

4∣∣∣∣∣∣Wn


+3

∑
1≤G,H≤NS,n,G ̸=H

E

 ∑
s∈SG,n

Mis,nVs,n

2 ∑
t∈SH,n

Mit,nVt,n

2∣∣∣∣∣∣Wn


≤ C3

S,nCV,n
∑

1≤G≤NS,n

∑
s∈SG,n

M4
is,n

+ 3C2
S,nCV,n

∑
1≤G,H≤NS,n,G ̸=H

∑
s∈SG,n,t∈SH,n

M2
is,nM

2
it,n

≤ 3C3
S,nCV,n

∑
1≤j,k≤n

M2
ij,nM

2
ik,n = 3C3

S,nCV,nM2
ii,n ≤ 3C3

S,nCV,n,

and where
1

n2

∑
1≤i≤n

Q̃4
i,n = Op(χ

2
n)

because

1

n2

∑
1≤i≤n

Q̃4
i,n ≤

(
1

n
max
1≤i≤n

Q̃2
i,n

)(
1

n

∑
1≤i≤n

Q̃2
i,n

)
≤

(
1

n

∑
1≤i≤n

Q̃2
i,n

)2

.

� To possibly improve the bound

1

n
max
1≤i≤n

Q̃2
i,n ≤ 1

n

∑
1≤i≤n

Q̃2
i,n = Op(χn),
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suppose that
1

n

∑
1≤i≤n

E[|Qi,n|θ] = O(1)

for some θ ≥ 2. Then, by the proof of Lemma SA-7 of the Supplemental

Appendix of CJN,

1

n
max
1≤i≤n

Q̃2
i,n = max

(
n− θ−2

θ ,Mnχn

)
Op(1)

and
1

n
max
1≤i≤n

Q̃2
i,n = n− θ−2

θ C2(θ−1)/θ
M,n Op(1).

� The condition
C3
T ,n

n2

∑
1≤i≤n

||v̂i,n||4 = op(1)

is satisfied if C3
S,nC3

T ,n = o(n) and if C3/2
T ,nχn = o(1).

� The conditions C3
S,nC3

T ,n = o(n) and CS,nρn + C3/2
T ,nχn = o(1) are satisfied if one

of the following sets of conditions is satisfied:

– C3
S,nC3

T ,n = o(n) and n1/3ρn + n1/2χn = O(1)

– CS,n = CT ,n = o(n1/6) and n1/6ρn + n1/4χn = O(1)

– CS,n = O(1), CT ,n = o(n1/3), ρn = o(1), and n1/2χn = O(1)

– CS,n = o(n1/3), CT ,n = O(1), n1/3ρn = O(1), and χn = o(1)

Proof of Lemma B.3. It suffices to show that Σ̃n = Σ̄n + op(1) and that Σ̂n = Σ̃n +

op(1).

First,

Σ̃n =
1

n

∑
1≤g≤NT ,n

cgg,n +
1

n

∑
1≤g,h≤NT ,n,g<h

[cgh,n + chg,n],
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where cgh,n is

cgh,n(κn) =
∑

1≤k,l≤NT ,n

[V̂n(k)⊗ V̂n(k)]
′κn(k, l)[Mn(l, g)⊗Mn(l, h)][Un(g)⊗Un(h)].

Defining Cκ,n = ||κn||∞, we have∑
1≤g,h≤NT ,n

V[cgh,n|Xn,Wn]

≤ C2
T ,nCU,n

∑
1≤k,l,K,L≤NT ,n

[V̂n(k)⊗ V̂n(k)]
′

κn(k, l)[Mn(l, L)⊗Mn(l, L)]κn(L,K)[V̂n(K)⊗ V̂n(K)]

= C2
T ,nCU,n(V̂n ⊛n V̂n)

′κ′
n(Mn ⊛n Mn)κn(V̂n ⊛n V̂n)

≤ C2
κ,nC2

T ,nCU,n||Mn ⊛n Mn||∞||V̂n ⊛n V̂n||2

≤ C2
κ,nC4

T ,nCU,n
∑

1≤i≤n

v̂4i,n = op(n
2),

where the first inequality uses∑
1≤g,h≤NT ,n

[Mn(l, g)Mn(g, L)⊗Mn(l, h)Mn(h, L)] = Mn(l, L)⊗Mn(l, L),

the first equality employs the notation

V̂n ⊛n V̂n =


V̂n(1)⊗ V̂n(1)

...

V̂n(NT ,n)⊗ V̂n(NT ,n)

 ,
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and where the last inequality uses

||Mn ⊛n Mn||∞

= max
1≤g≤NT ,n

max
1≤k,K≤#Tg,n

∑
1≤h≤NT ,n

 ∑
1≤l≤#Th,n

|Mtg,n(k),th,n(l),n|


 ∑

1≤L≤#Th,n

|Mtg,n(K),th,n(L),n|


≤ max

1≤g≤NT ,n

max
1≤k,K≤#Tg,n

∑
1≤h≤NT ,n

1

2

 ∑
1≤l≤#Th,n

|Mtg,n(k),th,n(l),n|

2

+

 ∑
1≤L≤#Th,n

|Mtg,n(K),th,n(L),n|

2
≤ max

1≤g≤NT ,n

max
1≤k,K≤#Tg,n

∑
1≤h≤NT ,n

(#Th,n)

1

2

 ∑
1≤l≤#Th,n

M2
tg,n(k),th,n(l),n

+
∑

1≤L≤#Th,n

M2
tg,n(K),th,n(L),n


≤ CT ,n max

1≤g≤NT ,n

max
1≤k≤#Tg,n

∑
1≤h≤NT ,n

∑
1≤l≤#Th,n

M2
tg,n(k),th,n(l),n

= CT ,n max
1≤g≤NT ,n

max
1≤k≤#Tg,n

Mtg,n(k),tg,n(k),n ≤ CT ,n
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and

||V̂n ⊛n V̂n||2 =
∑

1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(V̂n(g)⊗ V̂n(g))

=
∑

1≤g≤NT ,n

(V̂n(g)
′V̂n(g))

2 =
∑

1≤g≤NT ,n

∑
t∈Tg,n

v̂2t,n

2

≤
∑

1≤g≤NT ,n

(#Tg,n)
∑
t∈Tg,n

v̂4t,n ≤ CT ,n

∑
1≤g≤NT ,n

∑
t∈Tg,n

v̂4t,n

= CT ,n

∑
1≤i≤n

v̂4i,n.

As a consequence,

V

 1

n

∑
1≤g≤NT ,n

cgg,n

∣∣∣∣∣∣Xn,Wn

 =
1

n2

∑
1≤g≤NT ,n

V[cgg,n|Xn,Wn]

≤ 1

n2

∑
1≤g,h≤NT ,n

V[cgh,n|Xn,Wn] = op(1)

and

V

 1

n

∑
1≤g,h≤NT ,n,g<h

[cgh,n + chg,n]

∣∣∣∣∣∣Xn,Wn

 =
1

n2

g<h∑
1≤g,h≤NT ,n

V[cgh,n + chg,n|Xn,Wn]

≤ 2

n2

∑
1≤g,h≤NT ,n

V[cgh,n|Xn,Wn]

= op(1),

implying in particular that Σ̃n = Σ̄n + op(1).

To complete the proof, it therefore suffices to show that Σ̂n − Σ̃n = op(1). Using

the Cauchy-Schwarz inequality, simple bounding arguments, and the decompositions

ûn(h)− Ũn(h) = R̃n(h)− V̂n(h)(β̂n − β), R̃n(h) = r̃n(h) + (R̃n(h)− r̃n(h)),
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V̂n(h) = Ṽn(h) + Q̃n(h),

it can be shown that

Σ̂n − Σ̃n

=
1

n

∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn(g, h)[ûn(h)⊗ ûn(h)− Ũn(h)⊗ Ũn(h)]

=
1

n

∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn(g, h)[{ûn(h)− Ũn(h)} ⊗ {ûn(h)− Ũn(h)}]

+
1

n

∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn(g, h)[Ũn(h)⊗ {ûn(h)− Ũn(h)}

+ {ûn(h)− Ũn(h)} ⊗ Ũn(h)] = op(1)

if
1

4n

∑κ,n
{(Ṽ 2

tg,n(k),n + Ṽ 2
tg,n(K),n)(r̃

2
th,n(l),n

+ r̃2th,n(L),n)} = Op(CS,nCT ,nρn),

1

4n

∑κ,n
{(Ṽ 2

tg,n(k),n + Ṽ 2
tg,n(K),n)[(R̃th,n(l),n − r̃th,n(l),n)

2 + (R̃th,n(L),n − r̃th,n(L),n)
2]}

= Op[CT ,nn(ϱn − ρn)],

1

4n

∑κ,n
{(Q̃2

tg,n(k),n + Q̃2
tg,n(K),n)(R̃

2
th,n(l),n

+ R̃2
th,n(L),n

)} = Op(CT ,nnχnϱn),

(β̂n − β)2

4n

∑κ,n
{v̂4tg,n(k),n+ v̂4tg,n(K),n+ v̂4th,n(l),n+ v̂4th,n(L),n} =

(
C2
T ,n

n2

∑
1≤i≤n

v̂4i,n

)
Op(1),

and if
1

4n

∑κ,n
{(v̂2tg(k),n + v̂2tg(K),n)(Ũ

2
th(l),n

+ Ũ2
th(L),n

)} = Op(C2
T ,n),

where “
∑κ,n{·}” is shorthand for

“
∑

1≤g,h≤NT ,n

∑
1≤k,K≤#Tg,n

∑
1≤l,L≤#Th,n

|κ(k−1)(#Tg,n)+K,(l−1)(#Th,n)+L,n|{·}”.
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First,

1

4n

∑κ,n
{(Ṽ 2

tg(k),n + Ṽ 2
tg(K),n)(r̃

2
th(l),n

+ r̃2th(L),n)} = Op(CS,nCT ,nρn)

because

E
[

1

4n

∑κ,n
{(Ṽ 2

tg(k),n + Ṽ 2
tg(K),n)(r̃

2
th(l),n

+ r̃2th(L),n)}
∣∣∣∣Wn

]
=

1

4n

∑κ,n
{(r̃2th(l),n + r̃2th(L),n)E[(Ṽ

2
tg(k),n + Ṽ 2

tg(K),n)|Wn]}

≤ CS,nCV,n
2n

∑κ,n
{r̃2th(l),n + r̃2th(L),n}

≤ Cκ,nCS,nCT ,nCV,n
n

∑
1≤g≤NT ,n

∑
t∈Tg,n

r̃2t,n = Cκ,nCS,nCT ,nCV,nρ̃n,

where the first inequality uses

E[Ṽ 2
i,n|Wn] = E

( ∑
1≤j≤n

Mij,nVj,n

)2
∣∣∣∣∣∣Wn


= E

 ∑
1≤G≤NS,n

∑
s∈SG,n

Mis,nVs,n

2∣∣∣∣∣∣Wn


=

∑
1≤G≤NS,n

E

 ∑
s∈SG,n

Mis,nVs,n

2∣∣∣∣∣∣Wn


≤ CS,nCV,n

∑
1≤G≤NS,n

∑
s∈SG,n

M2
is,n = CS,nCV,nMii,n ≤ CS,nCV,n.
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Next,

1

4n

∑κ,n
{(Ṽ 2

tg(k),n + Ṽ 2
tg(K),n)[(R̃th(l),n − r̃th(l),n)

2 + (R̃th(L),n − r̃th(L),n)
2]}

≤ Cκ,nCT ,n

n

∑
1≤g,h≤NT ,n

∑
s∈Tg,n

∑
t∈Th,n

Ṽ 2
s,n(R̃t,n − r̃t,n)

2

= nCκ,nCT ,n

(
1

n

∑
1≤i≤n

Ṽ 2
i,n

)(
1

n

∑
1≤i≤n

|R̃i,n − r̃i,n|2
)

= Op[CT ,nn(ϱn − ρn)]

because
1

n

∑
1≤i≤n

Ṽ 2
i,n ≤ 1

n

∑
1≤i≤n

V 2
i,n = CV,nOp(1)

and
1

n

∑
1≤i≤n

|R̃i,n − r̃i,n|2 ≤
1

n

∑
1≤i≤n

|Ri,n − ri,n|2 = Op(ϱn − ρn).

Similarly, using

ϱ̃n =
1

n

∑
1≤i≤n

R̃2
i,n ≤ 1

n

∑
1≤i≤n

R2
i,n = Op(ϱn),

we have

1

4n

∑κ,n
{(Q̃2

tg(k),n + Q̃2
tg(K),n)(R̃

2
th(l),n

+ R̃2
th(L),n

)}

≤ Cκ,nCT ,n

n

∑
1≤g,h≤NT ,n

∑
s∈Tg,n

∑
t∈Th,n

Q̃2
s,nR̃

2
t,n = nCκ,nCT ,nχ̃nϱ̃n = Op(CT ,nnχnϱn).

Also,
(β̂n − β)2

4n

∑κ,n
{v̂4tg(k),n + v̂4tg(K),n + v̂4th(l),n + v̂4th(L),n}

=

(
C2
T ,n

n2

∑
1≤i≤n

v̂4i,n

)
Op(1)
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because n(β̂n − β)2 = Op(CT ,n) and∑κ,n{v̂4tg(k),n + v̂4tg(K),n + v̂4th(l),n + v̂4th(L),n}
4n2

≤ Cκ,nCT ,n

n2

∑
1≤g≤NT ,n

∑
t∈Tg,n

v̂4t,n

= Cκ,n
CT ,n

n2

∑
1≤i≤n

v̂4i,n.

Finally,
1

4n

∑κ,n
{(v̂2tg(k),n + v̂2tg(K),n)(Ũ

2
th(l),n

+ Ũ2
th(L),n

)} = Op(C2
T ,n)

because

E
[

1

4n

∑κ,n
{(v̂2tg(k),n + v̂2tg(K),n)(Ũ

2
th(l),n

+ Ũ2
th(L),n

)}
∣∣∣∣Xn,Wn

]
=

1

4n

∑κ,n
{(v̂2tg(k),n + v̂2tg(K),n)E[Ũ2

th(l),n
+ Ũ2

th(L),n
|Xn,Wn]}

≤ CT ,nCU,n
2n

∑κ,n
{(v̂2tg(k),n + v̂2tg(K),n)}

≤
Cκ,nC2

T ,nCU,n
n

∑
1≤g≤NT ,n

∑
t∈Tg,n

v̂2t,n = Cκ,nC2
T ,nCU,nΓ̂n = Op(C2

T ,n),

where the first inequality uses

E[Ũ2
i,n|Xn,Wn] = E

( ∑
1≤j≤n

Mij,nUj,n

)2
∣∣∣∣∣∣Xn,Wn


= E

 ∑
1≤g≤NT ,n

∑
s∈Tg,n

Mis,nUs,n

2∣∣∣∣∣∣Xn,Wn


=

∑
1≤g≤NT ,n

E

 ∑
s∈Tg,n

Mis,nUs,n

2∣∣∣∣∣∣Xn,Wn


≤ CT ,nCU,n

∑
1≤g≤NT ,n

∑
s∈Tg,n

M2
is,n = CT ,nCU,nMii,n ≤ CT ,nCU,n.
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Remark B.3. � The following assumptions are used in the proof:

– max1≤i≤n E[U4
i,n|Xn,Wn] = Op(1)

– max1≤i≤n E[∥Vi,n∥4|Wn] = Op(1)

– χn = O(1)

– CS,nC3
T ,nρn = o(1)

– C3
T ,nn(ϱn − ρn) = o(1)

– C3
T ,nnχnϱn = o(1)

– C4
T ,nn

−2
∑

1≤i≤n ||v̂i,n||4 = op(1)

– ||κn||∞ = Op(1)

� The proof makes repeated use of the following fact: By the triangle and Cauchy-

Schwarz inequalities, we have (in generic, but obvious, notation)∣∣∣∣∣∣ 14n
∑

1≤g,h≤NT ,n

[xn(g)⊗Xn(g)]
′κn(g, h)[yn(h)⊗Yn(h)]

∣∣∣∣∣∣
≤ 1

4n

∑κ,n
{|xtg,n(k),nXtg,n(K),nyth,n(l),nYth,n(L),n|}

≤
√

1

4n

∑κ,n
{x2

tg,n(k),n
y2th,n(l),n}

√
1

4n

∑κ,n
{X2

tg,n(K),nY
2
th,n(L),n

}

≤
√

1

4n

∑κ,n
{(x2

tg,n(k),n
+ x2

tg,n(K),n)(y
2
th,n(l),n

+ y2th,n(L),n)}√
1

4n

∑κ,n
{(X2

tg,n(k),n
+X2

tg,n(K),n)(Y
2
th,n(l),n

+ Y 2
th,n(L),n

)}
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and ∣∣∣∣∣∣ 14n
∑

1≤g,h≤NT ,n

[xn(g)⊗Xn(g)]
′κn(g, h)[yn(h)⊗Yn(h)]

∣∣∣∣∣∣
≤

√
1

4n

∑κ,n
{(x2

tg,n(k),n
+ x2

tg,n(K),n)(Y
2
th,n(l),n

+ Y 2
th,n(L),n

)}√
1

4n

∑κ,n
{(X2

tg,n(k),n
+X2

tg,n(K),n)(y
2
th,n(l),n

+ y2th,n(L),n)}.

� The proof uses

CS,nCT ,nρn + CT ,nnχnϱn + CT ,nn(ϱn − ρn) = o(1)

to show that

1

n

∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn(g, h)[R̃n(h)⊗ R̃n(h)] = op(1).

The stronger condition

C2
T ,n[CS,nCT ,nρn + CT ,nnχnϱn + CT ,nn(ϱn − ρn)] = o(1)

is used (only) to show that∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn(g, h)[Ũn(h)⊗ R̃n(h) + R̃n(h)⊗ Ũn(h)]

n

= op(1).
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The extra C2
T ,n is used to control the second term in the bound∣∣∣∣∣

∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn(g, h)[Ũn(h)⊗ R̃n(h) + R̃n(h)⊗ Ũn(h)]

8n

∣∣∣∣∣
≤

√
1

4n

∑κ,n
{(v̂2tg,n(k),n + v̂2tg,n(K),n)(R̃

2
th,n(l),n

+ R̃2
th,n(L),n

)}√
1

4n

∑κ,n
{(v̂2tg,n(k),n + v̂2tg,n(K),n)(Ũ

2
th,n(l),n

+ Ũ2
th,n(L),n

)},

where the inequality uses the previous remark.

� It is unclear whether a better bound on the magnitude of

1

n

∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn(g, h)[Ũn(h)⊗ R̃n(h) + R̃n(h)⊗ Ũn(h)]

can be obtained by exploiting the fact that E[Ui,n|Xn,Wn] = 0. Using the

representation

Ũth,n(L),n =
∑

1≤m≤NT ,n

∑
1≤M≤#Tm,n

Mth,n(L)tm,n(M),nUtm,n(M),n,

the term

1

n

∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn (g, h) [R̃n(h)⊗ Ũn(h)]

can be shown to have (conditional mean zero and) conditional variance bounded
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by

CT ,nCU,n
n2

∑
1≤m≤NT ,n

∑
1≤M≤#Tm,n(∑κ,n

{|v̂tg,n(k),nv̂tg,n(K),nR̃th,n(l),nM̄th,n(L)tm,n(M),n|}
)2

≤ CT ,nCU,n
(
1

n

∑κ,n
v̂2ti,n(k),nR̃

2
tj,n(l),n

)
 1

n

∑
1≤m≤NT ,n

∑
1≤M≤#Tm,n

∑κ,n
v̂2ti,n(K),nM

2
tj,n(L)tm,n(M),n


= CT ,nCU,n

(
1

n

∑κ,n
v̂2tg,n(k),nR̃

2
th,n(l),n

)(
1

n

∑κ,n
v̂2tg,n(K),nMth,n(L)th,n(L),n

)
,

where

1

n

∑κ,n
v̂2tg(k),nR̃

2
th(l),n

= Op[CS,nCT ,nρn + CT ,nn(ϱn − ρn) + CT ,nnχnϱn]

and
1

n

∑κ,n
v̂2tg,n(K),nMth,n(L)th,n(L),n ≤ Cκ,nCT ,n

n

∑
1≤g≤NT ,n

∑
t∈Tg,n

v̂2t,n

= Cκ,nCT ,nΓ̂n = Op(CT ,n).

As a consequence, we once again find that

1

n

∑
1≤g,h≤NT ,n

[V̂n(g)⊗ V̂n(g)]
′κn(g, h)[Ũn(h)⊗ R̃n(h) + R̃n(h)⊗ Ũn(h)] = op(1)

if

C2
T ,n[CS,nCT ,nρn + CT ,nnχnϱn + CT ,nn(ϱn − ρn)] = o(1).

� The condition
C4
T ,n

n2

∑
1≤i≤n

||v̂i,n||4 = op(1)

is satisfied if C3
S,nC4

T ,n = o(n) and if C2
T ,nχn = o(1)
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� The conditions C3
S,nC4

T ,n = o(n) and CS,nC3
T ,nρn+C3

T ,nnχnϱn+C3
T ,nn(ϱn− ρn)+

C2
T ,nχn = o(1) are satisfied if one of the following sets of conditions is satisfied:

– C3
S,nC4

T ,n = o(n) and n5/6ρn + n7/4χnϱn + n7/4(ϱn − ρn) + n1/2χn = O(1)

– CS,n = CT ,n = o(n1/7) and n4/7ρn + n10/7χnϱn + n10/7(ϱn − ρn) + n2/7χn =

O(1)

– CS,n = O(1), CT ,n = o(n1/4) and n3/4ρn+n7/4χnϱn+n7/4(ϱn−ρn)+n1/2χn =

O(1)

– CS,n = o(n1/3), CT ,n = O(1), n1/3ρn = O(1), and nχnϱn = o(1) + n(ϱn −
ρn) + χn = o(1)

Proof of Lemma B.4. Defining

Dn = Dn(κn) = κn(Mn ⊛n Mn)− INκ,n

and employing the notation

Un ⊛n Un =


Un(1)⊗Un(1)

...

Un(NT ,n)⊗Un(NT ,n)

 ,

we have

Σ̄n −Σn =
1

n
(V̂n ⊛n V̂n)

′DnE[Un ⊛n Un|Xn,Wn],

so if CT ,n||Dn||∞ = op(1), then

|Σ̄n −Σn| ≤
∥∥∥∥ 1n(V̂n ⊛n V̂n)

∥∥∥∥
1

||Dn||∞||E[Un ⊛n Un|Xn,Wn]||∞

≤ CT ,nCU,nΓ̂n||Dn||∞ = op(1),

where ∥·∥1 denotes the largest column sum of its argument and where the second
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inequality uses∥∥∥V̂n(g)⊗ V̂n(g)
∥∥∥
1
=
∥∥∥V̂n(g)

∥∥∥2
1
≤ CT ,n

∥∥∥V̂n(g)
∥∥∥2 = CT ,nV̂n(g)

′V̂n(g),

and

||E[Un ⊛n Un|Xn,Wn]||∞ ≤ CU,n.

Remark B.4. � The following assumptions are used in the proof:

– max1≤i≤n E[U4
i,n|Xn,Wn] = Op(1)

– max1≤i≤n E[∥Vi,n∥4|Wn] = Op(1)

– χn = O(1)

Proof of Lemma B.5. For any Nκ,n ×Nκ,n matrix Dn partitioned conformably with

Mn ⊛n Mn as

Dn =


Dn(1, 1) Dn(1, 2) · · · Dn(1, NT ,n)

Dn(2, 1) Dn(2, 2) · · · Dn(2, NT ,n)
...

...
. . .

...

Dn(NT ,n, 1) Dn(NT ,n, 2) · · · Dn(NT ,n, NT ,n)

 ,

let

diagn(Dn) = Dn(1, 1)⊕Dn(2, 2)⊕ . . .⊕Dn(NT ,n, NT ,n)

=


Dn(1, 1) 0 · · · 0

0 Dn(2, 2) · · · 0
...

...
. . .

...

0 0 · · · Dn(NT ,n, NT ,n)


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and

diag⊥n (Dn) = Dn − diagn(Dn)

=


0 Dn(1, 2) · · · Dn(1, NT ,n)

Dn(2, 1) 0 · · · Dn(2, NT ,n)
...

...
. . .

...

Dn(NT ,n, 1) Dn(NT ,n, 2) · · · 0

 .

For any g ∈ {1, . . . , NT ,n} and any k,K ∈ {1, . . . ,#Tg,n}, we have∑
1≤h≤NT ,n

∑
1≤l,L≤#Th,n

I (g ̸= h) |Mtg,n(k),th,n(l),nMtg,n(K),th,n(L),n|

≤ 1

2

∑
1≤h≤NT ,n

∑
1≤l,L≤#Th,n

I (g ̸= h)
[
M2

tg,n(k),th,n(l),n
+M2

tg,n(K),th,n(L),n

]
≤ CT ,n

2

∑
1≤h≤NT ,n

∑
1≤l≤#Th,n

I (g ̸= h)
[
M2

tg,n(k),th,n(l),n
+M2

tg,n(K),th,n(l),n

]
≤ CT ,n

2

[
Mtg,n(k),tg,n(k),n(1−Mtg,n(k),tg,n(k),n)

+ Mtg,n(K),tg,n(K),n(1−Mtg,n(K),tg,n(K),n)
]
≤ CT ,nMn.

As a consequence,

||diag⊥n (Mn ⊛n Mn)||∞ = max
1≤g≤NT ,n

max
1≤k,K≤#Tg,n ∑

1≤h≤NT ,n

∑
1≤l,L≤#Th,n

I(g ̸= h)|Mtg,n(k),th,n(l),nMtg,n(K),th,n(L),n|


≤ CT ,nMn,

a fact that we shall use repeatedly in what follows.
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(a) Suppose κn = INκ,n . Then

||Dn(κn)||∞ ≤ ||diagn(Mn ⊛n Mn − INκ,n)||∞ + ||diag⊥n (Mn ⊛n Mn)||∞
≤ max

1≤g≤NT ,n

||Mn(g, g)⊗Mn(g, g)− I#Tg,n ⊗ I#Tg,n||∞ + CT ,nMn

≤ 2(1 + CT ,n)Mn,

where the last inequality uses

||Mn(g, g)⊗Mn(g, g)− I#Tg,n ⊗ I#Tg,n||∞
≤ max

1≤h≤NT ,n

max
1≤k,K≤#Th,n

{1−Mth,n(k),th,n(k),nMth,n(K),th,n(K),n}+ max
1≤h≤NT ,n

max
1≤k,K≤#Th,n ∑

1≤l,L≤#Th,n

{1− I(k = l,K = L)}|Mth,n(k),th,n(l),nMth,n(K),th,n(L),n|


and the fact that

1−Mth,n(k),th,n(k),nMth,n(K),th,n(K),n ≤ 1−
(
min
1≤i≤n

Mii,n

)2

=

(
1 + min

1≤i≤n
Mii,n

)
Mn ≤ 2Mn

and ∑
1≤l,L≤#Th,n

{1− I (k = l,K = L)}|Mth,n(k),th,n(l),nMth,n(K),th,n(L),n|

≤ 1

2

∑
1≤l,L≤#Th,n

[
I(k ̸= l)M2

th,n(k),th,n(l),n
+ I(K ̸= L)M2

th,n(K),th,n(L),n

]
≤ CT ,n

2

∑
1≤l≤#Th,n

[
I(k ̸= l)M2

th,n(k),th,n(l),n
+ I(K ̸= l)M2

th,n(K),th,n(l),n

]
≤ CT ,n

2

[
Mth,n(k),th,n(k),n(1−Mth,n(k),th,n(k),n)

+ Mth,n(K),th,n(K),n(1−Mth,n(K),th,n(K),n)
]
≤ CT ,nMn.
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This establishes part (a).

(b) Suppose ||Mn(g, g)
−1/2||−2

∞ > 0 for every g = 1, . . . , NT ,n and that κn = κBRn .

Then

||κn||∞ = max
1≤g≤NT ,n

{
||Mn(g, g)

−1/2 ⊗Mn(g, g)
−1/2||∞

}
= max

1≤g≤NT ,n

{
||Mn(g, g)

−1/2||2∞
}

=
1

min1≤g≤NT ,n
{||Mn(g, g)−1/2||−2

∞ }
.

Also, for any g ∈ {1, . . . , NT ,n} and any k,K ∈ {1, . . . ,#Tg,n}, we have

(
1−Mtg,n(k),tg,n(k),nMtg,n(K),tg,n(K),n

)2 ≤ 4M2
n

and ∑
1≤l,L≤#Tg,n

{1− I (k = l,K = L)}M2
tg,n(k),tg,n(l),nM

2
tg,n(K),tg,n(L),n

≤ Mtg,n(k),tg,n(k),n(1−Mtg,n(k),tg,n(k),n)Mtg,n(K),tg,n(K),n(1−Mtg,n(K),tg,n(K),n)

≤ M2
n,

so

||Mn(g, g)⊗Mn(g, g)− I#Tg,n ⊗ I#Tg,n||2F
=

∑
1≤k,K≤#Tg,n

(
1−Mtg,n(k),tg,n(k),nMtg,n(K),tg,n(K),n

)2
+

∑
1≤k,K,l,L≤#Tg,n

{1− I (k = l,K = L)}M2
tg,n(k),tg,n(l),nM

2
tg,n(K),tg,n(L),n

≤ 5C2
T ,nM2

n,

where ||·||F denotes the Frobenius norm. As a consequence, letting ||·||2 denote the
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spectral norm and using Lemma 2.2 of Schmitt (1992),

||Mn(g, g)
1/2 ⊗Mn(g, g)

1/2 − I#Tg,n ⊗ I#Tg,n||∞
≤ CT ,n||Mn(g, g)

1/2 ⊗Mn(g, g)
1/2 − I#Tg,n ⊗ I#Tg,n||2

≤ CT ,n||Mn(g, g)⊗Mn(g, g)− I#Tg,n ⊗ I#Tg,n||2
≤ CT ,n||Mn(g, g)⊗Mn(g, g)− I#Tg,n ⊗ I#Tg,n||F
≤

√
5C2

T ,nMn,

and therefore

||Dn(κn)||∞
≤ ||diagn[κn(Mn ⊛n Mn)− INκ,n ]||∞ + ||κndiag

⊥
n (Mn ⊛n Mn)||∞

≤ max
1≤g≤NT ,n

||Mn(g, g)
1/2 ⊗Mn(g, g)

1/2 − I#Tg,n ⊗ I#Tg,n||∞

+ ||κn||∞||diag⊥n (Mn ⊛n Mn)||∞ ≤
(√

5C2
T ,n + ||κn||∞CT ,n

)
Mn.

Part (b) now follows from the fact that

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1/2||−2

∞ > 0

]
→ 1

and
1

min1≤g≤NT ,n
||Mn(g, g)−1/2||−2

∞
= Op(1).

(c) Suppose ||Mn(g, g)
−1||−2

∞ > 0 for every g = 1, . . . , NT ,n and that κn = κJNn .

Then

||κn||∞ = max
1≤g≤NT ,n

{
||Mn(g, g)

−1 ⊗Mn(g, g)
−1||∞

}
= max

1≤g≤NT ,n

{
||Mn(g, g)

−1||2∞
}

=
1

min1≤g≤NT ,n
{||Mn(g, g)−1||−2

∞ }
.

Also,

Dn(κn) = κndiag
⊥
n (Mn ⊛n Mn)
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satisfies

E[vec(Σ̃n −Σn)|Xn,Wn] =
1

n
(V̂n ⊗n V̂n)

′Dn(κn)E[Un ⊛n Un|Xn,Wn] ≥ 0

and

||Dn(κn)||∞ ≤ ||κn||∞||diag⊥n (Mn ⊛n Mn)||∞ ≤ ||κn||∞CT ,nMn.

Finally, suppose

CT ,nMn < 1.

Then each Mn(g, g) is diagonally dominant: If k ∈ {1, . . . ,#Tg,n}, then

∑
1≤K≤#Tg,n,K ̸=k

|Mtg,n(k),tg,n(K),n| ≤
√

(#Tg,n − 1)
∑

1≤K≤#Tg,n,K ̸=k

M2
tg,n(k),tg,n(K),n

≤
√

(CT ,n − 1)Mtg,n(k),tg,n(k),n(1−Mtg,n(k),tg,n(k),n),

so

Mtg,n(k),tg,n(k),n −
∑

1≤K≤#Tg,n,K ̸=k

|Mtg,n(k),tg,n(K),n|

≥ min
1≤i≤n

{
Mii,n −

√
(CT ,n − 1)Mii,n(1−Mii,n)

}
= 1−Mn −

√
(CT ,n − 1)(1−Mn)Mn

=
√

1−Mn

{√
1−Mn −

√
CT ,nMn −Mn

}
> 0,

where the first equality uses the fact that M(1−M) is decreasing in M for M ≥ 1/2.

By Theorem 1 of Varah (1975), we therefore have

min
1≤g≤NT ,n

||Mn(g, g)
−1||−1

∞ ≥ g(CT ,nMn; CT ,n),
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where

g(η;C) =
C − η −

√
(C − 1)(C − η)η

C
, η ∈ [0, 1], C ∈ N.

For every C ∈ N, g(·;C) continuous and strictly decreasing with g(1;C) = 0. Also,

g(η;C) → 1−√
η as C → ∞. Using these facts, it can be shown that infC∈N g(η;C) >

0 for every η ∈ [0, 1). As a consequence,

lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ > δ

]
≥ lim

δ↓0
lim inf
n→∞

P [CT ,nMn < 1− δ] .

Part (c) now follows from the fact that

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ > 0

]
→ 1

and
1

min1≤g≤NT ,n
||Mn(g, g)−1||−2

∞
= Op(1).

(d) Suppose ||Mn(g, g)
−1||−2

∞ >
∑

1≤h≤NT ,n,h̸=g ||Mn(g, h)||2∞ holds for every g =

1, . . . , NT ,n and that κn = κCRn = (Mn⊛nMn)
−1, where the inverse exists by Theorem

1 of Feingold and Varga (1962). Then

||κn||∞ ≤ 1

min1≤g≤NT ,n

{
||Mn(g, g)−1||−2

∞ −
∑

1≤h≤NT ,n,h̸=g ||Mn(g, h)||2∞
}

by Theorem 2 of Varah (1975). Also, ||Dn(κn)||∞ = 0 by construction. Part (d) now

follows from the fact that

P

 min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ −
∑

1≤h≤NT ,n,h̸=g

||Mn(g, h)||2∞

 > 0

→ 1

and

1

min1≤g≤NT ,n

{
||Mn(g, g)−1||−2

∞ −
∑

1≤h≤NT ,n,h̸=g ||Mn(g, h)||2∞
} = Op(1).
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Remark B.5. � The following assumptions are used in the proof:

– max1≤i≤n E[U4
i,n|Xn,Wn] = Op(1)

– max1≤i≤n E[∥Vi,n∥4|Wn] = Op(1)

– χn = O(1)

� If it can be shown that

||Mn(g, g)
1/2 ⊗Mn(g, g)

1/2 − I#Tg,n ⊗ I#Tg,n||∞

≲ ||Mn(g, g)⊗Mn(g, g)− I#Tg,n ⊗ I#Tg,n||∞,

then the condition C3
T ,nMn = op(1) in part (b) can be weakened to C2

T ,nMn =

op(1).

� Because ||Mn(g, g)
−1||∞ ≤ ||Mn(g, g)

−1/2||2∞, we have

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1/2||−2

∞ > δ

]
≤ P

[
min

1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ > δ2
]

and therefore

lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1/2||−2

∞ > δ

]

≤ lim
δ↓0

lim inf
n→∞

P
[

min
1≤g≤NT ,n

||Mn(g, g)
−1||−2

∞ > δ

]
.

As a consequence, the conditions of part (c) are no stronger than those of part

(b).
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Discussion about the Leave-Out Estimator. Note that

Σ̂LO
n = vec−1

d

 1

n

∑
1≤g≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(Mn(g, g)

−1ûn(g)⊗ yn(g))


= vec−1

d

 1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)(ûn(h)⊗ yn(h))


κLOn = [diagn(Mn ⊛n In)]

−1

Our goal is to show that under certain regularity conditions we have Σ̂LO
n = Σn+op(1).

Define

Σ̃LO
n = vec−1

d

 1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)[Ūn(h)⊗Un(h)]


Σ̄LO

n = E[Σ̃LO
n |Xn,Wn]

Without loss of generality we assume d=1 like in the proof of other technical lemmas.

It suffices to show Σ̂LO
n = Σ̃LO

n + op(1), Σ̃
LO
n = Σ̄LO

n + op(1) and under our choice of κLOn

we have Σ̄LO
n = Σn + op(1).

In order to show Σ̂LO
n = Σ̃LO

n + op(1), let us first introduce the decomposition

ûn(h)− Ūn(h) = R̄n(h)− V̂n(h)(β̂n − β) R̄n(h) = r̄n(h) + (R̄n(h)− r̄n(h))

V̂n(h) = V̄n(h) + Q̄n(h)

Define µi,n = E[yi,n|Xn,Wn]

µn (g) = (µtg,n(1),n, . . . , µtg,n(#Tg,n),n)
′, g = 1, . . . , NT ,n,
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We also have yn(g) = µn(g) +Un(g).

Σ̂LO
n =

1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)

[(Ūn(h) + R̄n(h)− V̂n(h)(β̂n − β))⊗ (µn(h) +Un(h))]

= Σ̃LO
n +

1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)

[(R̄n(h)− V̂n(h)(β̂n − β))⊗Un(h)]

+
1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)[ûn(h)⊗ µn(h)]

To deal with the first term, we will repeatedly using the inequality introduced in the

proof of Technical Lemma B.3∣∣∣ 1
4n

∑
1≤g,h≤NT ,n

[xn(g)⊗Xn(g)]κn(g, h)[yn(g)⊗Yn(g)]
∣∣∣

≤
√

1
4n

∑κ,n
{
(x2

tg,n(k),n
+ x2

tg,n(K),n)(y
2
tg,n(l),n

+ y2tg,n(L),n)
}

√
1
4n

∑κ,n
{
(X2

tg,n(k),n
+X2

tg,n(K),n)(Y
2
tg,n(l),n

+ Y 2
tg,n(L),n

)
}

From the proof in technical lemma B.3, we have already known

1

4n

κ,n∑{
(Ṽ 2

tg,n(k),n + Ṽ 2
tg,n(K),n)(r̃

2
tg,n(l),n + r̃2tg,n(L),n)

}
= Op(CS,nCT ,nρn)

1

4n

κ,n∑{
(Ṽ 2

tg,n(k),n + Ṽ 2
tg,n(K),n)[(R̃tg,n(l),n − r̃tg,n(l),n)

2 + (R̃tg,n(L),n − r̃tg,n(L),n)
2]
}

= Op(CT ,nn(ϱn − ρn))

1

4n

κ,n∑{
(Q̃2

tg,n(k),n + Q̃2
tg,n(K),n)(R̃

2
tg,n(l),n + R̃2

tg,n(L),n)
}
= Op(CT ,nnχnϱn)

(β̂n − β)2

4n

κ,n∑{
v̂4tg,n(k),n + v̂4tg,n(K),n + v̂4tg,n(l),n + v̂4tg,n(L),n

}
=

(
C2
T ,n

n2

∑
1≤i≤n

v̂4i,n

)
Op(1)
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It still remains to show the magnitude of

1

4n

κ,n∑{
(v̂2tg,n(k),n + v̂2tg,n(K),n)(U

2
tg,n(l),n + U2

tg,n(L),n)
}
= Op(CT ,n)

because

E
[

1
4n

∑κ,n
{
(v̂2tg,n(k),n + v̂2tg,n(K),n)(U

2
tg,n(l),n

+ U2
tg,n(L),n

)
}∣∣∣Xn,Wn

]
= 1

4n

∑κ,n
{
(v̂2tg,n(k),n + v̂2tg,n(K),n)E

[
(U2

tg,n(l),n
+ U2

tg,n(L),n
)|Xn,Wn

]}
≤ CT ,nCU,n

n

∑
1≤g≤NT ,n

∑
t∈Tg,n v̂

2
t,n =

CT ,nCU,n

n

∑n
i=1 v̂

2
i,n = Op(CT ,n)

Combine all the results above, we can show that

1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)[(R̄n(h)− V̂n(h)(β̂n − β))⊗Un(h)] = op(1)

Then we can deal with the term

1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)[ûn(h)⊗ µn(h)]

=
1

n

∑
1≤g≤NT ,n

V̂n(g)
′Mn(g, g)

−1ûn(g)µn(g)
′V̂n(g)

Still we apply the decomposition ûn(h)−Ūn(h) = R̄n(h)−V̂n(h)(β̂n−β) and define

max1≤g≤ NT ,n
λmax(Mn(g, g)

−1) = CκLO,n
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(
1
n

∑
1≤g≤NT ,n

V̂n(g)
′Mn(g, g)

−1R̄n(g)µn(g)
′V̂n(g)

)2
≤

(
1
n

∑
1≤g≤NT ,n

{max1≤h≤NT ,n
∥µn(h)∥}

∥∥∥V̂n(g)
∥∥∥V̂n(g)

′Mn(g, g)
−1R̄n(g)

)2
≤ 1

n2{max1≤h≤NT ,n
∥µn(h)∥}2

(∑
1≤g≤NT ,n

∥∥∥V̂n(g)
∥∥∥V̂n(g)

′Mn(g, g)
−1R̄n(g)

)2
≤

C2
λ,κLO

n2 {max1≤h≤NT ,n
∥µn(h)∥}2

(∑
1≤g≤NT ,n

∥∥∥V̂n(g)
∥∥∥2R̄n(g)

)2

≤
C2
λ,κLO

n2 {max1≤h≤NT ,n
∥µn(h)∥}2

(∑
1≤g≤NT ,n

∥∥∥V̂n(g)
∥∥∥V̂n(g)

′R̄n(g)
)2

≤
C2
λ,κLO

n2 {max1≤h≤NT ,n
∥µn(h)∥}2

∑
1≤g≤NT ,n

(∥∥∥V̂n(g)
∥∥∥2)2∑

1≤i≤n R̃
2
i,n

≤ C2
λ,κLOCT ,n{max1≤h≤NT ,n

∥µn(h)∥}2
(

1
n2

∑n
i=1 v̂

4
i,n

)
nϱn

We would like to assume that CT ,n{max1≤h≤NT ,n
∥µn(h)∥}2

(
1
n2

∑n
i=1 v̂

4
i,n

)
nϱn = op(1)

and Cλ,κLO = Op(1).

Similarly we can have(
1
n

∑
1≤g≤NT ,n

V̂n(g)
′Mn(g, g)

−1V̂n(g)(β̂n − β)µn(g)
′V̂n(g)

)2
≤

C2
λ,κLO

n2 {max1≤h≤NT ,n
∥µn(h)∥}2

∑
1≤g≤NT ,n

(∥∥∥V̂n(g)
∥∥∥2)2∑

1≤i≤n v̂
2
i,n(β̂n − β)2

≤ C2
λ,κLOCT ,n{max1≤h≤NT ,n

∥µn(h)∥}2
(

1
n2

∑n
i=1 v̂

4
i,n

)
( 1
n

∑
1≤i≤n v̂

2
i,n)n(β̂n − β)2

This requires C2
T ,n{max1≤h≤NT ,n

∥µn(h)∥}2
(

1
n2

∑n
i=1 v̂

4
i,n

)
= op(1).

We are left with the term

1

n

∑
1≤g≤NT ,n

V̂n(g)
′Mn(g, g)

−1Ūn(g)µn(g)
′V̂n(g)
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which is conditional mean zero.

E
[
( 1
n

∑NT ,n

g=1 V̂n(g)
′Mn(g, g)

−1Ūn(g)µn(g)
′V̂n(g))

2|Xn,Wn

]
= 1

n2

∑NT ,n

g=1 E
[
(V̂n(g)

′Mn(g, g)
−1(
∑NT ,n

h=1 Mn(g, h)Un(h))µn(g)
′V̂n(g))

2|Xn,Wn

]
= 1

n2

∑NT ,n

g=1

∑NT ,n

h=1 E
[
(V̂n(g)

′Mn(g, g)
−1Mn(g, h)Un(h)µn(g)

′V̂n(g))
2|Xn,Wn

]
Here we define Cλ,U = max1≤g≤NT ,n

λmaxE[UgU
′
g|Xn,Wn].

We have that
∑

1≤h≤NT ,n
Mn(g, h)Mn(g, h) = Mn(g, g). Apply these two things and

similar logic from above process we have

E
[
( 1
n

∑
1≤g≤NT ,n

V̂n(g)
′Mn(g, g)

−1Ūn(g)µn(g)
′V̂n(g))

2|Xn,Wn

]
≤ Cλ,UC

λ,κLO

n2 {max1≤h≤NT ,n
∥µn(h)∥}2

∑
1≤g≤NT ,n

(∥∥∥V̂n(g)
∥∥∥2)2

≤ Cλ,UCλ,κLOCT ,n{max1≤h≤NT ,n
∥µn(h)∥}2

(
1
n2

∑n
i=1 v̂

4
i,n

)
We need Cλ,UCT ,n{max1≤h≤NT ,n

∥µn(h)∥}2
(

1
n2

∑n
i=1 v̂

4
i,n

)
= op(1).

Then we have Σ̂LO
n = Σ̃LO

n + op(1).

Next step we will show Σ̃LO
n = Σ̄LO

n +op(1) which means we will focus on V[Σ̃LO
n |Xn,Wn]

Σ̃LO
n =

1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)[Ūn(h)⊗Un(h)]

=
1

n

∑
1≤g≤NT ,n

dgg,n +
1

n

∑
1≤g,h≤NT ,n,g<h

(dgh,n + dhg,n)

where

dgh,n =
∑

1≤k,l≤NT ,n

(V̂n(k)⊗ V̂n(k))
′κLOn (k, l)(Mn(l, g)⊗ In(l, h))[Un(g)⊗Un(h)]
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Use the same logic from proof of technical lemma B.3

∑
1≤g,h≤NT ,n

V[dgh,n|Xn,Wn]

≤ C2
T ,nCU,n

∑
1≤l,k,L,K≤NT ,n

(V̂n(k)⊗ V̂n(k))
′κLOn (k, l)(Mn(l, L)⊗ In(l, L))

κLOn (L,K)(V̂n(K)⊗ V̂n(K))′

= C2
T ,nCU,n(V̂n ⊛n V̂n)

′κLO′n (Mn ⊛n In)κ
LO
n (V̂n ⊛n V̂n)

′

≤ C2
κ,nC2

T ,nCU,n∥Mn ⊛n In∥∞
∥∥∥V̂n ⊛n V̂n

∥∥∥2
≤ C2

κ,nC3
T ,nCU,n

∑
1≤i≤NT ,n

v̂4i,n = op(n
2)

where we use

∥Mn ⊛n In∥∞ ≤ ∥Mn∥∞ = Op(1)

As a consequence

V

 1
n

∑
1≤g≤NT ,n

dgg,n|Xn,Wn

 =
1

n2

∑
1≤g≤NT ,n

V [dgg,n|Xn,Wn]

≤ 1

n2

∑
1≤g,h≤NT ,n

V [dgh,n|Xn,Wn] = op(1)

and

V

 1
n

∑
1≤g,h≤NT ,n,g<h

dgh,n + dhg,n|Xn,Wn

 =
1

n2

g<h∑
1≤g,h≤NT ,n

V [dgh,n + dhg,n|Xn,Wn]

≤ 2

n2

∑
1≤g,h≤NT ,n

V [dgh,n|Xn,Wn] = op(1)

implying in particular that Σ̃LO
n = Σ̄LO

n + op(1).
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Further

Σ̃LO
n −Σn =

1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′κLOn (g, h)E[Ūn(h)⊗Un(h)|Xn,Wn]

=
1

n

∑
1≤g,h≤NT ,n

(V̂n(g)⊗ V̂n(g))
′(κLOn (g, h)(Mn ⊛n In)− INκ,n)

E[Un(h)⊗Un(h)|Xn,Wn]

By construction κLOn = [diagn(Mn ⊛n In)]
−1 = (Mn ⊛n In)

−1.

Remark B.6. Besides the assumptions in technical lemma B.3, some extra assump-

tions are used in the proof

� Cλ,κLO = Op(1).

� CT ,n{max1≤h≤NT ,n
∥µn(h)∥}2

(
1
n2

∑n
i=1 ∥v̂i,n∥4

)
nϱn = op(1).

� C2
T ,n{max1≤h≤NT ,n

∥µn(h)∥}2
(

1
n2

∑n
i=1 ∥v̂i,n∥4

)
= op(1).

� Cλ,UCT ,n{max1≤h≤NT ,n
∥µn(h)∥}2

(
1
n2

∑n
i=1 ∥v̂i,n∥4

)
= op(1).

� (Mn ⊛n In)
−1 exists.
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APPENDIX C

Proofs for Chapter IV

Proof of Lemma IV.1. According to (IV.5), the second moment condition is

E(y) = E(X(s̄, s) + u) = X(s̄, s)

=
1

2λ3

[
v̄ +

ρσv

σs

(s− s̄)− λ1 − λ2s

]
.

Computation of (IV.5) and the requirement that X is affine imply that we can focus

on the case with λ3 > 0. Define an unbiased estimator for s̄:

sy :=
σs

ρσv

(
v̄ − λ1 +

(
ρσv

σs

− λ2

)
s− 2λ3y

)
.

It is unbiased because

sy =
σs

ρσv

(
v̄ − λ1 +

(
ρσv

σs

− λ2

)
s− 2λ3(X(s̄, s) + u)

)
= s̄− 2λ3σs

ρσv

u.

Since s̄− sy is equal to some nonzero constant times X(s̄, s)− y,

E[sy] = s̄
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is an equivalent way to write down the second moment condition E(y) = X(s̄, s). It

may affect the optimal weighting matrix, but not the optimal GMM estimator.

Next, we solve the GMM minimization problem (see (IV.6)) with moment con-

ditions

E[sy] = s̄ and E[s] = s̄.

It is useful to write s as s = s̄ + εs in which εs ∼ N (0, σ2
s), and sy = s̄ + εsy in

which εsy = −2λ3σs

ρσv
u. Since

[
s

sy

]
∼ N

[ s̄

s̄

]
,

 σ2
s 0

0
(

2λ3σsσu

ρσv

)2
, standard

econometric arguments imply that the optimal GMM weighting matrix is(
E

[[
s̄− s

s̄− sy

]
×

[
s̄− s

s̄− sy

]′])−1

=

 1
σ2
s

0

0
(

ρσv

2λ3σsσu

)2
 .

Therefore, the GMM minimization problem becomes the problem of finding the es-

timator for s̄ that minimizes 1
σ2
s
(s̄− s)2 +

(
ρσv

2λ3σsσu

)2
(s̄− sy)

2, which is equivalent to

the following linear regression problem:[
1
σs
s

ρσv

2λ3σsσu
sy

]
=

[
1
σs

ρσv

2λ3σsσu

]
× s̄+

[
1
σs
εs

ρσv

2λ3σsσu
εsy

]
. (C.1)

Since 1
σs
εs and

ρσv

2λ3σsσu
εsy both follow the standard normal distribution and we have

Cov
(

1
σs
εs,

ρσv

2λ3σsσu
εsy

)
= 0, by the Gauss–Markov theorem, we conclude that the OLS

estimator of (C.1), and hence the optimal GMM estimator,

ŝGMM(s, y) = ŝTransformed OLS =
Var(εs)

−1 × s+Var(εsy)
−1 × sy

Var(εs)−1 +Var(εsy)
−1

, (C.2)

is the unique BLUE of s̄ among all linear unbiased estimators of s̄.

Proof of Proposition IV.2. Given an arbitrary affine trading strategy X(s̄, s) = α1+

α2s + α3s̄, we want to find the pricing strategy P r(s, y) that solves the robustness
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problem

min
P̃ (s,y) is affine

max
s̃∈R

Es̃[c(|v − P̃ (s, y)|)].

Assuming that P̃ (s, y) = λ1 + λ2s + λ3y and plugging in y = X(s̄, s) + u, the

robustness problem becomes

min
λ1,λ2,λ3

max
s̃∈R

Es̃[c(|v − λ1 − λ2s− λ3(α1 + α2s+ α3s̃+ u)|)].

Notice that v − λ1 − λ2s − λ3(α1 + α2s + α3s̃ + u) is a normal random variable

whose mean is µ = v̄ − λ1 − λ3α1 − (λ2 + λ3α2 + λ3α3)s̃ and variance is σ2 =

σ2
v + (λ2 + λ3α2)

2σ2
s + λ2

3σ
2
u − 2(λ2 + λ3α2)ρσvσs.

Note that the mean µ is affine in s̃, the variance σ2 is independent of s̃, and the

loss function c is unbounded. Therefore, as long as in µ the coefficient of s̃ is nonzero,

the worst-case expected loss will always go to infinity after maximizing over s̃. This

can be formalized via the following claim:

For a random variable Z ∼ N (µ, σ2), E[c(|Z|)] → +∞ if µ → ∞.

To verify this claim, first, without loss of generality, let µ > 0. Then,

E[c(|Z|)] =

+∞∫
−∞

c(|Z|) 1√
2πσ

e−
(Z−µ)2

2σ2 dZ =

+∞∫
−∞

c(|µ+ σt|) 1√
2π

e−
t2

2 dt

≥
+∞∫

−µ
σ

c(µ+ σt)
1√
2π

e−
t2

2 dt ≥
+∞∫
0

c(µ+ σt)
1√
2π

e−
t2

2 dt

≥
+∞∫
0

c(µ)
1√
2π

e−
t2

2 dt.

The last term,
∫ +∞
0

c(µ) 1√
2π
e−

t2

2 dt, will go to +∞ if µ → +∞.

Based on this observation, the coefficient of s̃ in µ must be zero; that is, λ2 +

λ3α2+λ3α3 = 0. Since s̃ becomes irrelevant, the market maker’s robustness problem
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can be rewritten as

min
λ1,λ3

E[c(|Z|)], (C.3)

in which

Z ∼ N (v̄ − λ1 − λ3α1, σ
2
v + (λ2 + λ3α2)

2σ2
s + λ2

3σ
2
u − 2(λ2 + λ3α2)ρσvσs)

and λ2 = −λ3α2 − λ3α3. Taking λ2 = −λ3α2 − λ3α3 into account,

Z ∼ N (v̄ − λ1 − λ3α1, σ
2
v + (λ3α3)

2σ2
s + λ2

3σ
2
u + 2λ3α3ρσvσs).

To solve this problem, let us first analyze the derivatives of c(|Z|) as a function

of Z’s mean µ and standard deviation σ. Again, without loss of generality, let µ ≥ 0.

Let

f(µ, σ) : = E[c(|Z|)] =
+∞∫

−∞

c(|Z|) 1√
2πσ

e−
(Z−µ)2

2σ2 dZ

=

+∞∫
−∞

c(|µ+ σt|) 1√
2π

e−
t2

2 dt

=

−µ
σ∫

−∞

c(−µ− σt)
1√
2π

e−
t2

2 dt+

+∞∫
−µ

σ

c(µ+ σt)
1√
2π

e−
t2

2 dt.

Since c(0) = 0,

∂f

∂µ
= −

−µ
σ∫

−∞

c′(−µ− σt)
1√
2π

e−
t2

2 dt+

+∞∫
−µ

σ

c′(µ+ σt)
1√
2π

e−
t2

2 dt.

In particular, regardless of the value of σ,

∂f

∂µ

∣∣∣∣
µ=0

= 0.
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Because c′′ ≥ 0 and c′′ = 0 ⇒ c′ > 0,

∂2f

∂µ2
=

−µ
σ∫

−∞

c′′(−µ− σt)
1√
2π

e−
t2

2 dt+

+∞∫
−µ

σ

c′′(µ+ σt)
1√
2π

e−
t2

2 dt

+
2

σ
c′(0)

1√
2π

e−
µ2

2σ2

> 0.

Therefore, fixing an arbitrary σ2 > 0, µ = 0 is the unique minimizer of f . Similar

analysis applies to the situation with µ ≤ 0.

Next, we show that the solution of (C.3) must have µ = 0. Suppose the solution

of (C.3), λ⋆
1, λ

⋆
2, and λ⋆

3, implies that the mean of Z is µ⋆ ̸= 0 and the standard

deviation of Z is σ⋆. Notice that λ⋆
1 does not appear in σ⋆. We can replace λ⋆

1 with

λ̃⋆
1 = v̄ − λ⋆

3α1; after this change, the mean of Z becomes zero but σ⋆ is unaffected.

Therefore, in the solution of (C.3), the mean of Z must be zero.

When µ is zero,

f(0, σ) =

0∫
−∞

c(−σt)
1√
2π

e−
t2

2 dt+

+∞∫
0

c(σt)
1√
2π

e−
t2

2 dt

and

∂f

∂σ

∣∣∣∣
µ=0

=

0∫
−∞

c′(−σt)(−t)
1√
2π

e−
t2

2 dt+

+∞∫
0

c′(σt)t
1√
2π

e−
t2

2 dt > 0.

This means that to solve (C.3), we only need to find λ1 and λ3 that minimize σ and

ensure that µ is zero; that is, we can rewrite the market maker’s robustness problem

one more time:

min
λ3

σ2
v + (λ3α3)

2σ2
s + λ2

3σ
2
u + 2λ3α3ρσvσs,

with v̄ = λ1 + λ3α1 and λ2 + λ3α2 + λ3α3 = 0. Solving the minimization problem

above, we have λ3 = − α3ρσvσs

σ2
u+α2

3σ
2
s
.

Note that y = α1 + α2s+ α3s̄+ u. If α3 ̸= 0, we can follow the proof of Lemma
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IV.1 and define sy =
y−α1−α2s

α3
= s̄+ u

α3
. According to (C.2),

ŝ(s, y) =

1
σ2
s
s+

α2
3

σ2
u
sy

1
σ2
s
+

α2
3

σ2
u

.

If α3 = 0, the optimal estimator of s̄ is simply s. Hence, with an abuse of notation,

we can still write

ŝ(s, y) =

1
σ2
s
s+

α2
3

σ2
u
sy

1
σ2
s
+

α2
3

σ2
u

.

Since

s− ŝ(s, y) = s−
1
σ2
s
s+

α2
3

σ2
u
sy

1
σ2
s
+

α2
3

σ2
u

=

α2
3

σ2
u

1
σ2
s
+

α2
3

σ2
u

(s− sy) =
α2
3σ

2
s

σ2
u + α2

3σ
2
s

(s− sy),

the pricing strategy P r(s, y) must satisfy

P r(s, y) = λ1 + λ2s+ λ3y = λ1 + λ2s+ λ3(α3sy + α1 + α2s)

= λ1 + λ3α1 + λ3α3(sy − s) = v̄ +
α2
3ρσvσs

σ2
u + α2

3σ
2
s

(s− sy)

= v̄ +
ρσv

σs

α2
3σ

2
s

σ2
u + α2

3σ
2
s

(s− sy) = v̄ +
ρσv

σs

(s− ŝ(s, y))

= Eŝ(s,y)[v|s, y].

Generalization to the Elliptical Distribution. Here we describe how we could extend

our results to the elliptical distribution. We focus on the following type of elliptical

distributions that generalizes the normal distribution: For a vector of (elliptically

distributed) random variables Z, its density function is equal to k·g((Z−µZ)
′Σ−1

Z (Z−
µZ)) for some normalizing constant k and some function g : [0,+∞) → [0,+∞), in

which we implicitly require that the mean and the covariance matrix of Z, µZ and
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ΣZ , exist.
1 This type of distribution is used by Ball (2020) recently to generalize the

normal distribution assumption. Now, replace all normal distributions in our setup

with such elliptical distributions. We focus on Proposition IV.2 below, but most of

our other results can also be generalized.

Proposition IV.2 continues to hold under the elliptical distribution, mainly be-

cause of three reasons. First, the elliptical distribution is closed under linear trans-

formations; that is, linear tranformations of elliptically distributed random variables

are still elliptical. Second, thanks to the form of the density function of the elliptical

distribution, similar to the proof of Proposition IV.2, we can again establish that

(i) regardless of the variance of P̃ (s, y) − v, ∂f
∂µ

∣∣∣
µ=0

= 0 and ∂2f
∂µ2 > 0, and (ii) given

µ = 0, the expected loss is increasing in the variance of P̃ (s, y)− v. Last, the ellip-

tical distribution’s conditional expectation satisfies Eŝ(s,y)[v|s] = v̄ + ρσv

σs
(s− ŝ(s, y))

(see Lemma 1 of Ball (2020)). This property allows us to show that the conditional

expectation in the two-step learning procedure and the solution to the robustness

problem must coincide.

Proof of Lemma IV.2. Following the proof of Lemma IV.1, we already know that[
s

sy

]
∼ N

[ s̄

s̄

]
,

 σ2
s 0

0
(

2λ3σsσu

ρσv

)2
. The maximum likelihood estimator of

s̄, ŝML, maximizes

L =
1√
2π

e
− (s−ŝML(s,y))2

2σ2
s

1√
2π

e
− (sy−ŝML(s,y))2

2( 2λ3σsσu
ρσv )

2

,

or equivalently,

l = logL = − log(2π)− (s− ŝML(s, y))
2

2σ2
s

− (sy − ŝML(s, y))
2

2
(

2λ3σsσu

ρσv

)2 .

1A general elliptical distribution does not require, for example, that the mean vector exist.
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Maximizing the log-likelihood function l, we find that

(s− ŝML(s, y))

σ2
s

+
(sy − ŝML(s, y))(

2λ3σsσu

ρσv

)2 = 0,

and hence

ŝML(s, y) =

1
σ2
s
× s+ 1

( 2λ3σsσu
ρσv

)
2 × sy

1
σ2
s
+ 1

( 2λ3σsσu
ρσv

)
2

=
Var(εs)

−1 × s+Var(εsy)
−1 × sy

Var(εs)−1 +Var(εsy)
−1

= ŝGMM(s, y).

Proof of Theorem IV.1. Let Pŝ(s,y)(s, y) = λ1 + λ2s + λ3y. From Lemma IV.1, we

know that

ŝ(s, y) =
Var(εs)

−1 × s+Var(εsy)
−1 × sy

Var(εs)−1 +Var(εsy)
−1

. (C.4)

Plugging in Var(εsy) =
(

2λ3σs

ρσv

)2
σ2
u and Var(εs) = σ2

s , we have

ŝ(s, y) =

1
σ2
s
× s+

(
ρσv

2λ3σsσu

)2
× sy

1
σ2
s
+
(

ρσv

2λ3σsσu

)2 .
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Recall that sy =
σs

ρσv

(
v̄ − λ1 + (ρσv

σs
− λ2)s− 2λ3y

)
. Definition IV.5 requires that

Eŝ(s,y)[v|s, y] = v̄ +
ρσv

σs

(s− ŝ(s, y))

= v̄ +
ρσv

σs

s− 1
σ2
s
× s+

(
ρσv

2λ3σsσu

)2
× sy

1
σ2
s
+
(

ρσv

2λ3σsσu

)2


=

v̄ − ρσv

σs

(
ρσv

2λ3σsσu

)2
σs

ρσv
(v̄ − λ1)

1
σ2
s
+
(

ρσv

2λ3σsσu

)2
+

ρσv

σs

(
ρσv

2λ3σsσu

)2
σs

ρσv

1
σ2
s
+
(

ρσv

2λ3σsσu

)2λ2s

+2
ρσv

σs

(
ρσv

2λ3σsσu

)2
σs

ρσv

1
σ2
s
+
(

ρσv

2λ3σsσu

)2λ3y

= Pŝ(s,y)(s, y) = λ1 + λ2s+ λ3y.

Matching the coefficients, we find λ1 = v̄, λ2 = 0, and λ3 =
ρσv

2σu
. Therefore,

ŝ(s, y) = s− σs

2σu

y

and

Pŝ(s,y)(s, y) = v̄ +
ρσv

2σu

y.

Given ŝ(s, y) and Pŝ(s,y)(s, y), X(s̄, s) maximizes Es̄[π|s]. Suppose the probabilis-
tically informed trader’s order is x. Then,

Es̄[π|s] = E[(v − Pŝ(s,y)(s, y))x|s]

= E
[(

v − v̄ − ρσv

2σu

(x+ u)

)
x

∣∣∣∣ s] .
The solution to the maximization of Es̄[π|s] yields

X(s̄, s) =
v̄ + ρσv

σs
(s− s̄)− v̄

2 ρσv

2σu

=
Es̄[v|s]− v̄

2 ρσv

2σu

=
σu

σs

(s− s̄).
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This completes the proof of the theorem.

Proof of Theorem IV.2. Consider arbitrary affine trading strategies

Xm(s̄, s, p1, . . . , pm−1) =

(
αm + β1,ms− β2,ms̄+

m−1∑
i=1

γi,mpi

)
∆tm

for each m ∈ {1, . . . , N}. Take any n ∈ {1, . . . , N}, and consider arbitrary affine

pricing strategies

P r
m(s, y1, . . . , ym) = λm,1 + λm,2s+

m∑
i=1

λm,i+2yi

for each m < n.

First, suppose β2,m ̸= 0 for every m ∈ {1, . . . , N}. We can define

sy,m =
ym −

(
αm + β1,ms+

∑m−1
i=1 γi,mpi

)
∆tm

−β2,m∆tm
= s̄− um

β2,m∆tm
.

Equivalently,

ym =

(
αm + β1,ms− β2,msy,m +

m−1∑
i=1

γi,mpi

)
∆tm.

Note that sy,m is an affine function of ym, s, and all past prices p1, . . . , pm−1, and ym

is an affine function of sy,m, s, and p1, . . . , pm−1.

We claim that every function P r
n that is affine in s, y1, . . . , yn can be written

as an affine function in s, sy,1, . . . , sy,n uniquely, and vice versa. With an abuse of

notation, when we think of P r
n as a function of s, y1, . . . , yn, we write P

r
n(s, y1, . . . , yn),

and when we think of it as a function of s, sy,1, . . . , sy,n, we write P
r
n(s, sy,1, . . . , sy,n).

We prove this claim by induction. If n = 1, this is straightforward. Suppose n > 1

and the claim holds for every m < n. Without loss of generality, let

P r
m(s, sy,1, . . . , sy,m) = ηm,1 + ηm,2s+ ηm,3sy,1 + · · ·+ ηm,m+2sy,m
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for every m < n. Take a function P r
n that is affine in s, y1, y2, . . . , yn:

P r
n(s, y1, . . . , yn) = λn,1 + λn,2s+

n∑
i=1

λn,i+2yi =



λn,1

λn,2

λn,3

...

λn,n+2



′ 

1

s

y1
...

yn


.

Because

ym = (αm + β1,ms− β2,msy,m +
m−1∑
i=1

γi,mpi)∆tm

= (αm + β1,ms− β2,msy,m +
m−1∑
i=1

γi,mP
r
i (s, sy,1, . . . , sy,i))∆tm,

we can convert P r
n(s, y1, . . . , yn) into an affine function P r

n(s, sy,1, . . . , sy,n) uniquely,

as follows:

P r
n(s, y1, . . . , yn) = λn,1 + λn,2s+ λn,3(α1 + β1,1s− β2,1sy,1)∆t1 + . . .

+ λn,n+2

(
αn + β1,ns− β2,nsy,n +

n−1∑
i=1

γi,nP
r
i (s, sy,1, . . . , sy,i)

)
∆tn

=



λn,1

λn,2

λn,3

...

λn,n+2



′

Ω



1

s

sy,1
...

sy,n


,

for some (n + 2) × (n + 2) matrix Ω. Moreover, this matrix is full-rank, because it

is lower triangular and the numbers along its diagonal are 1, 1, β2,1∆t1, . . . , β2,n∆tn,

none of which is zero. The fact that the matrix Ω is full-rank also implies that every
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P r
n(s, sy,1, . . . , sy,n) can be rewritten as some P r

n(s, y1, . . . , yn) uniquely. To see this,

P r
n(s, sy,1, . . . , sy,n) =



ηn,1

ηn,2

ηn,3
...

ηn,n+2



′ 

1

s

sy,1
...

sy,n


=



ηn,1

ηn,2

ηn,3
...

ηn,n+2



′

Ω−1



1

s

y1
...

yn


.

Thus, without loss of generality, we write pricing strategies in the form of

P r
m(s, sy,1, . . . , sy,m) = ηm,1 + ηm,2s+ ηm,3sy,1 + · · ·+ ηm,m+2sy,m

for every m ∈ {1, . . . , N}.
We need to solve

min
P̃n,...,P̃N are affine

max
s̃∈R

Es̃

[
N∑
l=n

c(|P̃l(s, sy,1, . . . , sy,l)− v|)

]
(C.5)

using backward induction. To do so, we start from the last date: The pricing strategy

at tN solves its robustness problem:

min
ηN,1,...,ηN,N+2

max
s̃∈R

Es̃[c(|v − ηN,1 − ηN,2s− ηN,3sy,1 − · · · − ηN,N+2sy,N |)]. (C.6)

Note that v − ηN,1 − ηN,2s− ηN,3sy,1 − · · · − ηN,N+2sy,N is a normal random variable

with mean µ = v̄ − ηN,1 − (ηN,2 + · · ·+ ηN,N+2)s̃ and variance

σ2 = σ2
v + η2N,2σ

2
s − 2ηN,2ρσvσs +

(
η2N,3

β2
2,1∆t1

+ · · ·+
η2N,N+2

β2
2,N∆tN

)
σ2
u.

To solve (C.6), following similar arguments used in the proof of Proposition IV.2,

the coefficient of s̃ in µ must be zero, µ must be zero, and σ2 is minimized given the

previous two requirements. In other words, we have ηN,1 = v̄ and ηN,2 = −ηN,3 −
· · ·−ηN,N+2. Plug ηN,2 = −ηN,3−· · ·−ηN,N+2 into the above equation for σ2. Then,
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to minimize σ2, we take partial derivatives of σ2 with respect to ηN,3, . . . , ηN,N+2.

We find that for any 3 ≤ m ≤ N + 2,

(ηN,3 + · · ·+ ηN,N+2)σ
2
s + ρσvσs +

ηN,mσ
2
u

β2
2,m−2∆tm−2

= 0,

which implies that

ηN,m = −
ρσvσsβ

2
2,m−2∆tm−2

(β2
2,1∆t1 + · · ·+ β2

2,N∆tN)σ2
s + σ2

u

= −ρσv

σs

β2
2,m−2∆tm−2

σ2
u

1
σ2
s
+

β2
2,1∆t1+···+β2

2,N∆tN

σ2
u

.

Then, we know that

P r
N(s, sy,1, . . . , sy,N) = v̄ +

ρσv

σs

∑N
i=1

β2
2,i∆ti

σ2
u

1
σ2
s
+
∑N

i=1

β2
2,i∆ti

σ2
u

s−
N∑
i=1

ρσv

σs

β2
2,i∆ti

σ2
u

1
σ2
s
+
∑n

i=1

β2
2,i∆ti

σ2
u

sy,i

= v̄ +
ρσv

σs

s−
1
σ2
s
s+

∑N
i=1

β2
2,i∆ti

σ2
u

sy,i

1
σ2
s
+
∑N

i=1

β2
2,i∆ti

σ2
u

 .

Since the BLUE of s̄ at tN is

ŝN =

1
σ2
s
s+

∑N
i=1

β2
2,i∆ti

σ2
u

sy,i

1
σ2
s
+
∑N

i=1

β2
2,i∆ti

σ2
u

,

we have P r
N(s, sy,1, . . . , sy,N) = EŝN [v|s, y1, . . . , yN ]. One important thing to notice

is that the coefficients ηN,1, . . . , ηN,N+2 in the optimal P r
N(s, sy,1, . . . , sy,N) do not

depend on any ηm,l for any m < N and l ∈ {1, . . . ,m+ 2}.
Consider the trading date tN−1. The robustness problem is min

ηN−1,1,...,ηN−1,N+1

max
s̃∈R

Es̃

[
c(|v − ηN−1,1 − ηN−1,2s− ηN−1,3sy,1 − · · · − ηN−1,N+1sy,N−1|)

+c(|v − ηN,1 − ηN,2s− ηN,3sy,1 − · · · − ηN,N+2sy,N |)

]
, (C.7)

in which ηN,1, . . . , ηN,N+2 are the optimal ones we find above. Since they are inde-
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pendent of ηN−1,1, . . . , ηN−1,N+1, the only way that ηN−1,1, . . . , ηN−1,N+1 may affect

c(|v−ηN,1−ηN,2s−ηN,3sy,1−· · ·−ηN,N+2sy,N |) is through sy,N . However, recall that re-

gardless of the past prices, sy,N is constructed in a way such that sy,N = s̄− uN

β2,N∆tN
,

which is also independent of ηN−1,1, . . . , ηN−1,N+1. Therefore, solving (C.7) is the

same as solving

min
ηN−1,1,...,ηN−1,N+1

max
s̃∈R

Es̃[c(|v− ηN−1,1 − ηN−1,2s− ηN−1,3sy,1 − · · · − ηN−1,N+1sy,N−1|)].

Then, following the same arguments, we know that P r
N−1(s, sy,1, . . . , sy,N−1)

= EŝN−1
[v|s, y1, . . . , yN−1], . . . , P

r
n(s, sy,1, . . . , sy,n) = Eŝn [v|s, y1, . . . , yn].

The proof above can be extended to the case in which β2,m = 0 for some m ∈
{1, . . . , N} in a manner similar to the case of α3 = 0 in the proof of Proposition IV.2.

The BLUE of s̄ will leave out every ym and sy,m such that β2,m = 0. When β2,m = 0,

including ym or sy,m only adds the liquidity traders’ order um into the price, which

increases the expected loss. Last, if β2,m = 0 for all m ∈ {1, . . . , N}, the BLUE of s̄

will be s.

Proof of Theorem IV.3. We proceed in several steps.

Step 1. We verify that on each trading date, the optimal GMM estimator is the

unique BLUE of s̄. At each tn, we have

Xn(s̄, s, p1, . . . , pn−1) =

(
α + β1,ns− β2,ns̄+

n−1∑
i=1

γi,npi

)
∆tn

due to the linearity assumption. If β2,n ̸= 0 for every n, similar to how we construct

sy from y in the proof of Lemma 1, we can construct the following variable for each

n given any realization of the public signal and past prices:

sy,n =
Xn + un − (α + β1,ns+

∑n−1
i=1 γi,npi)∆tn

−β2,n∆tn
= s̄− un

β2,n∆tn
.

Again, we can define s = s̄+ εs in which εs ∼ N (0, σ2
s), and sy,n = s̄+ εsy,n in which
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εsy,n = − un

β2,n∆tn
. Then, at each tn, we have (n+ 1) moment conditions

E[s] = s̄, E[sy,1 − s̄] = 0, . . . , E[sy,n − s̄] = 0.

The optimal GMM weighting matrix isE




s̄− s

s̄− sy,1
...

s̄− sy,n

×


s̄− s

s̄− sy,1
...

s̄− sy,n


′


−1

=


1
σ2
s

0 · · · 0

0
β2
2,1∆t1

σ2
u

. . .
...

...
. . . . . . 0

0 · · · 0
β2
2,n∆tn

σ2
u

 ,

which is diagonal. Therefore, we can rewrite the GMM minimization problem as

minŝ
1
σ2
s
(s− ŝ)2+

∑n
i=1

β2
2,i∆ti

σ2
u

(sy,i− ŝ)2, which can in turn be written as the following

OLS problem:
1
σs
s

β2,1
√
∆t1

σu
sy,1

...
β2,n

√
∆tn

σu
sy,n

 =


1
σs

β2,1
√
∆t1

σu
...

β2,n
√
∆tn

σu

× s̄+


1
σs
εs

β2,1
√
∆t1

σu
εsy,1

...
β2,n

√
∆tn

σu
εsy,n

 . (C.8)

All of the error terms in (C.8) are independent and follow the standard normal

distribution. According to the Gauss–Markov theorem, the OLS estimator of s̄ from

(C.8) is the unique BLUE of s̄. Therefore,

ŝn =

1
σ2
s
s+

∑n
i=1

β2
2,i∆ti

σ2
u

sy,i

1
σ2
s
+
∑n

i=1

β2
2,i∆ti

σ2
u

. (C.9)

This expression also covers the case in which β2,i = 0 for some i ≤ n. If β2,i = 0,

yi should not appear in ŝn because it contains no information about s̄, and indeed

“β2
2,isy,i”= 0 if β2,i = 0.
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Define ωn = 1
σ2
s
+
∑n

i=1

β2
2,i∆ti

σ2
u

and ω0 =
1
σ2
s
. We can write (C.9) recursively:

ŝn =
ωn−1ŝn−1 +

β2
2,n∆tnsy,n

σ2
u

ωn−1 +
β2
2,n∆tn

σ2
u

.

Now, the best estimate of s̄ at tn only depends on the best estimate of s̄ at tn−1 and

the new total order yn.

Step 2. We prove by induction that in any dynamic BLUE equilibrium, ŝn, Pn,ŝn , Xn,

πn satisfy the first five equations of the theorem. We start from the last period. First,

PN,ŝN = EŝN [v|s, y1, . . . , yn] = EŝN [v|s]. The first equality is from Definition IV.7.

The second equality is because once the distribution is chosen, the orders will be

interpreted by the market maker using the chosen distribution (as opposed to the

unknown true distribution), and they do not provide any additional information

about v on top of s. To see this, for a given distribution, orders are functions of s

and hence are weakly less informative about v than s. Since

EŝN [v|s] = v̄ +
ρσv

σs

(s− ŝN)

and ŝN only depends on ŝN−1 and yN , we know that the price at tN can be written

as PN,ŝN = λN,1 + λN,2s + λN,3yN + λN,4ŝN−1. From the probabilistically informed

trader’s profit maximization problem, we know that λN,3 ̸= 0.

The profit at tN is

Es̄[πN |s, ŝN−1] =

[
v̄ +

ρσv

σs

(s− s̄)− λN,1 − λN,2s− λN,3XN − λN,4ŝn−1

]
XN ,

and therefore the profit maximization problem yields

XN =
v̄ + ρσv

σs
(s− s̄)− λN,1 − λN,2s− λN,4ŝn−1

2λN,3

.
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Then, we can determine sy,N for the market maker:

sy,N = s− 2λN,3yN − v̄ + λN,1 + λN,2s+ λN,4ŝn−1
ρσv

σs

= s̄− 2λN,3uN
ρσv

σs

and
ρσv

σs

2λN,3

= β2,N∆tN .

Therefore, the price at tN is

PN,ŝN = v̄ +
ρσv

σs

s− ωN−1ŝN−1 +
β2
N∆tN
σ2
u

(s− 2λN,3yN−v̄+λN,1+λN,2s+λN,4ŝn−1
ρσv
σs

)

ωN−1 +
β2
N∆tN
σ2
u


= λN,1 + λN,2s+ λN,3yn + λN,4ŝn−1.

By matching the coefficients of the equation above, we find that λN,1 = v̄, λN,2 =
ρσv

σs
, and λN,4 = −ρσv

σs
. Therefore, we have

PN,ŝN = v̄ +
ρσv

σs

(s− ŝN−1) + λN,3yN = PN−1,ŝN−1
+ λN,3yN ,

ŝN = ŝN−1 −
σs

ρσv

λN,3yN ,

XN =
ρσv(ŝN−1 − s̄)

2λN,3

= β2,N∆tN(ŝN−1 − s̄),

and

Es̄[πN |s, ŝn] =

[
ρσv

σs

(s− s̄)− ρσv

σs

(s− ŝN−1)−
ρσv

σs

2β2,N∆tN
β2,N∆tN(ŝN−1 − s̄)

]
·β2,N∆tN(ŝN−1 − s̄) =

ρσv

2σs

β2,N∆tN(ŝN−1 − s̄)2.

Define λN := λN,3 and βN := β2,N . According to the definition of ωN , we know that

ωN = ωN−1 +
β2
N∆tN
σ2
u

.
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Therefore, all five equations are satisfied in the last period.

Next, assume we already know that at tn+1

Pn+1,ŝn+1 = Pn,ŝn + λn+1yn+1,

ŝn+1 = ŝn −
σs

ρσv

λn+1yn+1,

Xn+1 = βn+1∆tn+1(ŝn − s̄),

Es̄[πn+1|s, ŝn] = αn(ŝn − s̄)2 + δn,

and

ωn = ωn−1 +
β2
n∆tn
σ2
u

.

At tn, following a similar argument, we know that we can write the price as Pn,ŝn =

λn,1+λn,2s+λn,3yn+λn,4ŝn−1. Now, the probabilistically informed trader’s expected

profit Es̄[πn|s, ŝn−1] is

Es̄[πn|s, ŝn−1] = Es̄[αn(ŝn − s̄)2 + δn + (v − Pn,ŝn)Xn|s, ŝn−1]

=

(
v̄ +

ρσv

σs

(s− s̄)− λn,1 − λn,2s− λn,3Xn − λn,4ŝn−1

)
Xn

+αn

(
v̄ − λn,1 − λn,2s− λn,3Xn − λn,4ŝn−1

ρσv

σs

+ s− s̄

)2

+ δn.

The second equality relies on the observation that ŝn =
v̄−Pn,ŝn

ρσv
σs

+ s. The solution to

the profit maximization problem is

Xn =
1− 2αnλn,3

( ρσv
σs

)2

2λn,3

(
1− αnλn,3

( ρσv
σs

)2

) [v̄ − λn,1 − λn,2s− λn,4ŝn−1 +
ρσv

σs

(s− s̄)

]
,

in which we have used the second-order condition λn,3

(
1− αnλn,3

( ρσv
σs

)2

)
> 0.
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Using the probabilistically informed trader’s optimal order, we know that

sy,n = −
2λn,3

(
1− αnλn,3

( ρσv
σs

)2

)
[
1− 2αnλn,3

( ρσv
σs

)2

]
ρσv

σs

yn +
v̄ − λn,1 + (ρσv

σs
− λn,2)s− λn,4ŝn−1

ρσv

σs

= s̄− un

β2,n∆tn
,

2λn,3

(
1− αnλn,3

( ρσv
σs

)2

)
[
1− 2αnλn,3

( ρσv
σs

)2

]
ρσv

σs

=
1

β2,n∆tn
,

and

Pn,ŝn = v̄+
ρσv

σs

(
s− ωn−1ŝn−1 + (ωn − ωn−1)syn

ωn

)
= λn,1+λn,2s+λn,3yn+λn,4ŝn−1.

Again, we match the coefficients and get λn,1 = v̄, λn,2 = ρσv

σs
, and λn,4 = −ρσv

σs
.

Thus,

Pn,ŝn = v̄ +
ρσv

σs

(s− ŝn−1) + λn,3yn = Pn−1,ŝn−1 + λn,3yn,

ŝn =
v̄ − Pn,ŝn

ρσv

σs

+ s =
v̄ − Pn−1,ŝn−1 − λn,3yn

ρσv

σs

+ s = ŝn−1 −
σs

ρσv

λn,3yn,

Xn =
1− 2αnλn,3

( ρσv
σs

)2

2λn,3

(
1− αnλn,3

( ρσv
σs

)2

) ρσv

σs

(ŝn−1 − s̄) = β2,n∆tn(ŝn−1 − s̄),

and

Es̄[πn|s, ŝn−1] = Es̄[(v − Pn,ŝn)Xn + αn(ŝn − s̄)2 + δn|ŝn−1, s]

=

[
ρσv

σs

(ŝn−1 − s̄)− λ3,nXn

]
Xn + αn

(
ŝn−1 − s̄− σs

ρσv

λn,3Xn

)2

+αn

σ2
sλ

2
3,n

ρ2σ2
v

σ2
u∆tn + δn.

Define λn := λn,3 and βn := β2,n.
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In the last equation about Es̄[πn|s, ŝn−1], if we plug in Xn = βn∆tn(ŝn−1 − s̄), we

can write the first two terms that involve Xn as Cn(ŝn−1 − s̄)2 for some constant Cn.

Hence, we can write the profit as

Es̄[πn|s, ŝn−1] = αn−1(ŝn−1 − s̄)2 + δn−1.

Similarly,

ωn = ωn−1 +
β2
n∆tn
σ2
u

follows from the definition of ωn. Therefore, we have shown by induction that in

any dynamic BLUE equilibrium, ŝn, Pn,ŝn , Xn, πn satisfy the first five equations of

the theorem.

Step 3. We show that {αn, βn, λn, δn, ωn}Nn=1 satisfy the difference equation system.

We have

yn = Xn + un = βn(ŝn−1 − s̄)∆tn + un,

sy,n = s̄− un

βn∆tn
= ŝn−1 −

yn
βn∆tn

,

and

Pn,ŝn = v̄ +
ρσv

σs

(s− ŝn) = v̄ +
ρσv

σs

s−
ωn−1ŝn−1 +

β2
n∆tnsy,n

σ2
u

ωn−1 +
β2
n∆tn
σ2
u


= v̄ +

ρσv

σs

s−
ωn−1ŝn−1 +

β2
n∆tn(ŝn−1− yn

βn∆tn
)

σ2
u

ωn−1 +
β2
n∆tn
σ2
u


= v̄ +

ρσv

σs

(s− ŝn−1) +
ρσv

σs

βn

σ2
u

ωn−1 +
β2
n∆tn
σ2
u

yn

= Pn−1ŝn−1 + λnyn = v̄ +
ρσv

σs

(s− ŝn−1) + λnyn.

Comparing the two equations above and using the equation ωn = ωn−1 +
β2
n∆tn
σ2
u

, we
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find that

λn =
ρσv

σs

βn

σ2
u

ωn−1 +
β2
n∆tn
σ2
u

and

λnβn∆tn =
ρσv

σs

(
1− ωn−1

ωn

)
,

which is the first equation in the difference equation system.

Next, we analyze the optimal order Xn the probabilistically informed trader

chooses at tn. By maximizing the profit, we can get the second difference equa-

tion:

Es̄[πn|s, ŝn−1] = Es̄[(v − Pn,ŝn)Xn + αn(ŝn − s̄)2 + δn|s, ŝn−1]

=

[
v̄ +

ρσv

σs

(s− s̄)− Pn−1,ŝn−1 − λn(Xn + un)

]
Xn

+αnEs̄[(ŝn − s̄)2|s, ŝn−1] + δn.

Plugging in equation ŝn = v̄−Pn
ρσv
σs

+ s, we can write the profit as a quadratic function

of Xn:

Es̄[πn|s, ŝn−1] = Es̄

[
v̄ +

ρσv

σs

(s− s̄)− Pn−1,ŝn−1 − λn(Xn + un)|ŝn−1, s

]
Xn

+αnEs̄

( v̄ − Pn−1,ŝn−1 − λn(Xn + un)
ρσv

σs

+ s− s̄

)2
∣∣∣∣∣∣ ŝn−1, s

+ δn.

The solution is

Xn =
v̄ + ρσv

σs
(s− s̄)− Pn−1,ŝn−1 − 2αn

λn
ρσv
σs

(
v̄−Pn−1,ŝn−1

ρσv
σs

+ s− s̄
)

2λn

(
1− αnλn

( ρσv
σs

)2

) ,

along with the second-order condition λn

(
1− αnλn

(ρσv/σs)2

)
> 0.
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Recall that Pn−1,ŝn−1 = v̄ + ρσv

σs
(s− ŝn−1). We have

Xn =
1− 2αnλn

( ρσv
σs

)2

2λn

(
1− αnλn

( ρσv
σs

)2

) ρσv

σs

(ŝn−1 − s̄) = βn∆tn(ŝn−1 − s̄)

and

βn∆tn =
ρσv

2λnσs

1− 2αnλn

(ρσv/σs)2

1− αnλn

(ρσv/σs)2

.

Back to the equation about the profit:

Es̄[πn|s, ŝn−1] = Es̄[(v − Pn,ŝn)Xn + αn(ŝn − s̄)2 + δn|ŝn−1, s]

= Es̄

[
v̄ +

ρσv

σs

(s− s̄)− Pn−1,ŝn−1 − λn(Xn + un)|ŝn−1, s

]
Xn

+ αnEs̄

ωn−1ŝn−1 +
β2
n∆tn
σ2
u

(ŝn−1 − Xn+un

βn∆tn
)

ωn

− s̄

2∣∣∣∣∣∣ ŝn−1, s

+ δn

=

(ρσv

σs

− λnβn∆tn)βn∆tn + αn

(
ωn−1

ωn−1 +
β2
n∆tn
σu2

)2


·(ŝn−1 − s̄)2 + δn + αn

β2
n∆tn
σ2
u

(ωn−1 +
β2
n∆tn
σu2 )2

.

The last equation results from

Xn = βn∆tn(ŝn−1 − s̄) and βn∆tn =
ρσv

2λnσs

1− 2αnλn

(ρσv/σs)2

1− αnλn

(ρσv/σs)2

.

We also have

Es̄[πn|s, p1, . . . , pn−1] = αn−1(ŝn−1 − s̄)2 + δn−1 and ωn = ωn−1 +
β2
n∆tn
σ2
u

.
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By matching the coefficients, we can find that

αn−1 =

(
ωn−1

ωn

)2

αn +
ρσv

σs

ωn−1

ωn

βn∆tn

and

δn−1 = δn +
αnβ

2
n∆tn

ω2
nσ

2
u

.

By definition, πN+1 = 0, which implies that the boundary condition should be αN =

δN = 0. We have defined ω0 =
1
σ2
s
. Thus, we have shown that {αn, βn, λn, δn, ωn}Nn=1

is a solution to the difference equation system subject to ω0 = 1/σ2
s , αN = δN = 0,

and λn

(
1− αnλn

(ρσv/σs)2

)
> 0.

Step 4. Last, we show that this difference equation system has a unique solution.

Using the definition of ωn and the first equation in the difference equation system,

we have

λnβn∆tn =
ρσv

σs

(
1− ωn−1

ωn

)
=

ρσv

σs

β2
n∆tn
ωnσ2

u

.

Using

βn∆tn =
λnωnσ

2
uσs∆tn

ρσv

,

we have
λnωnσ

2
uσs∆tn

ρσv

=
ρσv

2λnσs

1− 2αnλn

(ρσv/σs)2

1− αnλn

(ρσv/σs)2

.

Rearranging it, we obtain

2

(
σsσu

ρσv

)2

ωn∆tn
αn

(ρσv/σs)2
λ3
n − 2

(
σsσu

ρσv

)2

ωn∆tnλ
2
n −

2αnλn

(ρσv/σs)2
+ 1 = 0. (C.10)

We analyze the solution uniqueness and the signs of the parameters in the equa-

tion above by induction. First, we will focus on the last trading date and show that

the solution is unique on the last trading date, and all the parameters are nonnega-

tive. Then, we will show that if all the parameters at tn are nonnegative and λn has

a unique solution, the parameters at tn−1 are also nonnegative and λn−1 also has a

unique solution.
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We start from tN , in which αN = 0. Equation (C.10) reduces to

2

(
σsσu

ρσv

)2

ωN∆tNλ
2
N = 1.

From the condition λN

(
1− αNλN

(ρσv/σs)2

)
> 0, we know that λN > 0 when αN = 0.

This means that equation (C.10) has a unique solution. Moreover, we know that

βN∆tN = ρσv

2λNσs
> 0 and αN−1 =

(
ωN−1

ωN

)2
αN + ρσv

σs

ωN−1

ωN
βN∆tN > 0.

Next, suppose we have already shown that αn is nonnegative. If αn = 0, the

argument is the same as above. If αn > 0, define

f(λn) = 2

(
σsσu

ρσv

)2

ωn∆tn
αn

(ρσv/σs)2
λ3
n − 2

(
σsσu

ρσv

)2

ωn∆tnλ
2
n −

2αnλn

(ρσv/σs)2
+ 1.

From the condition λn

(
1− αnλn

(ρσv/σs)2

)
> 0, we know that 0 < λn < (ρσv/σs)2

αn
. If we

plug in λn = 0 and λn = (ρσv/σs)2

2αn
, we will find that

f(0) = 1 > 0

and

f

(
(ρσv/σs)

2

2αn

)
= −

(
σsσu

ρσv

)2

ωn∆tnλ
2
n < 0.

As λn → +∞, this function diverges to +∞; as λn → −∞, this function di-

verges to −∞, which means that this function has a unique solution in the interval(
0, (ρσv/σs)2

2αn

)
. Thus, this difference equation system has a unique solution. Moreover,

we know that βn∆tn = ρσv

2λnσs

1− 2αnλn
(ρσv/σs)2

1− αnλn
(ρσv/σs)2

> 0 and αn−1 > 0. Therefore, by induction,

we have shown that the difference equation system has a unique solution and the

signs of all parameters are nonnegative.

Proof of Proposition IV.3. We prove this proposition by induction. First, suppose
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n = 1. From our characterization of the dynamic BLUE equilibrium,

Es̄[P1,ŝ1(s, y)|s] = Es̄[P0,s(s, y) + λ1y1|s]

= v̄ +
ρσv

σsβ1∆t1

(
1− ω0

ω1

)
β1∆t1(ŝ0 − s̄)

= v̄ +
ρσv

σs

(
1− ω0

ω1

)
(s− s̄).

Next, suppose that at tn, Es̄[Pn,ŝn(s, y)|s] = v̄+ θn
ρσv

σs
(s− s̄) with θn = 1− ω0

ωn
. Then,

at tn+1,

Es̄[Pn+1,ŝn+1(s, y)|s] = Es̄[Pn,ŝn(s, y) + λnyn|s]

= v̄ +
ρσv

σs

(
1− ω0

ωn

)
(s− s̄)

+
ρσv

σsβn+1∆tn+1

(
1− ωn

ωn+1

)
βn+1∆tn+1(ŝn − s̄)

= v̄ +
ρσv

σs

(
1− ω0

ωn

)
(s− s̄)

+
ρσv

σs

(
1− ωn

ωn+1

)
(ŝn − s̄).

According to the equation Es̄[Pn,ŝn(s, y)|s] = v̄ +
(
1− ω0

ωn

)
ρσv

σs
(s− s̄), we know that

s− ŝn =

(
1− ω0

ωn

)
(s− s̄) ⇒ ŝn − s̄ =

ω0

ωn

(s− s̄),

Es̄[Pn+1,ŝn+1(s, y)|s] = v̄ +
ρσv

σs

(
1− ω0

ωn

+
ωn+1 − ωn

ωn+1

ω0

ωn

)
(s− s̄)

= v̄ +
ρσv

σs

(
1− ω0

ωn+1

)
(s− s̄),

and therefore

θn+1 = 1− ω0

ωn+1

.
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Proof of Proposition IV.4. Combining the first two equations in the difference equa-

tion system with the (recursive) defintion of ωn, we have

λnβn∆tn =
ρσv

σs

β2
n∆tn

σ2
uωn−1

β2
n∆tn

σ2
uωn−1

+ 1

and

1− 2αnλn

(ρσv/σs)2
=

β2
n∆tn

σ2
uωn−1

.

From the first three equations in the difference equation system and eliminating ωn

using its definition, we obtain

αn−1 =
(ρσv/σs)

2

4λn

(
1− αnλn

(ρσv/σs)2

)
and

αn − αn−1

αn−1

=
4αnλn

(
1− αnλn

(ρσv/σs)2

)
(ρσv/σs)2

− 1 = −
(
1− 2αnλn

(ρσv/σs)2

)2

.

We can also rewrite the expression of βn∆tn as follows:

βn∆tn =
ρσv

2λnσs

1− 2αnλn

(ρσv/σs)2

1− αnλn

(ρσv/σs)2

=
2αn−1

(
1− 2αnλn

(ρσv/σs)2

)
(ρσv/σs)

.

Now, define Φn = 4α2
n

(ρσv/σs)2ωnσ2
u
. We have

1− 2αnλn

(ρσv/σs)2
=

β2
n∆tn

σ2
uωn−1

=

(
2αn−1

(
1− 2αnλn

(ρσv/σs)2

))2
(ρσv/σs)2∆tnωn−1σ2

u

and

1− 2αnλn

(ρσv/σs)2
=

∆tn
Φn−1

.
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From the definition of ωn, we know that

ωn = ωn−1 +
β2
n∆tn
σ2
u

,

ωn−1

ωn

=
1

β2
n∆tn

σ2
uωn−1

+ 1
=

1

1 + ∆tn
Φn−1

,

and hence
αn

αn−1

= 1−
(
1− 2αnλn

(ρσv/σs)2

)2

= 1−
(

∆tn
Φn−1

)2

.

These equations give us

Φn

Φn−1

=
α2
n

α2
n−1

ωn−1

ωn

=

[
1−

(
∆tn
Φn−1

)2
]2(

1 +
∆tn
Φn−1

)−1

=

[
1−

(
∆tn
Φn−1

)2
](

1− ∆tn
Φn−1

)

and

Φn − Φn−1 = −∆tn −
∆t2n
Φn−1

+
∆t3n
Φ2

n−1

.

The boundary condition is ΦN = 0. We iterate this difference equation for Φn

backward, and a cubic equation must be solved at each step:

Φ3
n−1 − ΦnΦ

2
n−1 −∆tnΦ

2
n−1 −∆t2nΦn−1 +∆t3n = 0.

Let f(Φn−1) = Φ3
n−1 − ΦnΦ

2
n−1 −∆tnΦ

2
n−1 −∆t2nΦn−1 +∆t3n. We have

f(0) = ∆t3n > 0,

f(Φn) = −∆tnΦ
2
n −∆t2nΦn +∆t3n < 0,

f(Φn +∆tn) = −Φn∆t2n < 0,
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and

f(Φn +
5

4
∆tn) = ∆tn[∆tn −

1

2
(Φn +

5

4
∆tn)]

2 > 0.

Because αn

αn−1
< 1 and ωn > ωn−1, we have Φn−1 > Φn. As Φn−1 → −∞, the function

f diverges to −∞.

Of the three roots of the cubic equation, only the one that lies between Φn+∆tn

and Φn +
5
4
∆tn satisfies Φn−1 > Φn. We have

−5

4
<

Φn − Φn−1

∆tn
< −1

and
Φn − Φn−1

∆tn
→ −1 as

Φn

∆tn
→ ∞.

Then, we know that Φn’s converge uniformly to a continuous-time version of Φ,

Φ(t) = 1− t.

Next, we work on the limiting behavior of ω(t). First, we have

ωn−1 − ωn

ωn

=
1

1 + ∆tn
Φn−1

− 1 = − ∆tn
1− tn

+ o(|∆tn|).

The solution to this equation converges to the solution of the difference equation

ω(t)′

ω(t)
=

1

1− t
,

which is

ω(t) =
1

ω0(1− t)
.

Therefore, we know that as ∆tn → 0, on the last trading date (t → 1), ωN → ∞, and

hence ŝN → s̄, which in turn implies that if the ∆tn’s go to zero, PN,ŝN converges to

Es̄[v|s].

Proof of Proposition IV.5. Suppose that the pricing strategy is P b(s, y) = λb
1+λb

2s+
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λb
3y and the trading strategy is X(s, s̄) = αb

1 + αb
2s+ αb

3s̄. Recall that v

s

s̄

 ∼ N


 v̄

µs̄

µs̄

 ,

 σ2
v ρσvσs 0

ρσvσs σ2
s + σ2

s̄ σ2
s̄

0 σ2
s̄ σ2

s̄


 .

First, we solve the profit maximization problem for the probabilistically informed

trader. This step is the same as in Lemma 1, except that we use a different notation

E[v|s̄, s] for the probabilistically informed trader’s conditional expectation of v rather

than Es̄[v|s]. Of course, the conditional expectation has not changed:

E[v|s̄, s] = v̄ +
ρσv

σs

(s− s̄).

Therefore, we know that αb
1 =

v̄−λb
1

2λb
3
, αb

2 =
ρσv/σs−λb

2

2λb
3

and αb
3 = − ρσv

2σsλb
3
.

Next, we calculate E[v|s, y]. Notice that v

s

y

 =

 1 0 0

0 1 0

0 αb
2 αb

3


 v

s

s̄

+

 0

0

αb
1 + u

 .

Thus, the joint distribution of (v, s, y)′ is multivariate normal:

N


 v̄

µs̄

(αb
2 + αb

3)µs̄ + αb
1

 ,


σ2
v ρσvσs αb

2ρσvσs

ρσvσs σ2
s + σ2

s̄ αb
2σ

2
s + (αb

2 + αb
3)σ

2
s̄

αb
2ρσvσs αb

2σ
2
s + (αb

2 + αb
3)σ

2
s̄

(αb
2)

2σ2
s

+(αb
2 + αb

3)
2σ2

s̄ + σ2
u


 .
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This implies that

E[v|s, y] = v̄ +

[
ρσvσs

αb
2ρσvσs

]′ [
σ2
s + σ2

s̄ αb
2σ

2
s + (αb

2 + αb
3)σ

2
s̄

αb
2σ

2
s + (αb

2 + αb
3)σ

2
s̄ (αb

2)
2σ2

s + (αb
2 + αb

3)
2σ2

s̄ + σ2
u

]−1

·

[
s− µs̄

y − E[y]

]

= v̄ +
1

σ2
u(σ

2
s + σ2

s̄) + (αb
3)

2σ2
sσ

2
s̄

[
ρσvσs

αb
2ρσvσs

]′

·

[
(αb

2)
2σ2

s + (αb
2 + αb

3)
2σ2

s̄ + σ2
u −αb

2σ
2
s − (αb

2 + αb
3)σ

2
s̄

−αb
2σ

2
s − (αb

2 + αb
3)σ

2
s̄ σ2

s + σ2
s̄

][
s− µs̄

y − E[y]

]

= v̄ +
1

σ2
u(σ

2
s + σ2

s̄) + (αb
3)

2σ2
sσ

2
s̄

[
ρσvσs[σ

2
u + (αb

2 + αb
3)α

b
3σ

2
s̄ ]

−ρσvσsα
b
3σ

2
s̄

]′

·

[
s− µs̄

y − (αb
2 + αb

3)µs̄ − αb
1

]
.

We match this expression with P b(s, y) = λb
1 + λb

2s + λb
3y. We first match the

coefficient of s and y, and obtain

− ρσvσsα
b
3σ

2
s̄

σ2
u(σ

2
s + σ2

s̄) + (αb
3)

2σ2
sσ

2
s̄

= λb
3 and

ρσvσs[σ
2
u + (αb

2 + αb
3)α

b
3σ

2
s̄ ]

σ2
u(σ

2
s + σ2

s̄) + (αb
3)

2σ2
sσ

2
s̄

= λb
2.

By plugging in αb
1 =

v̄−λb
1

2λb
3
, αb

2 =
ρσv/σs−λb

2

2λb
3

, and αb
3 = − ρσv

2σsλb
3
, we find that

λb
2 =

ρσvσs

σ2
s + σ2

s̄

and λb
3 =

ρσv

2σu

√
σ2
s̄

σ2
s + σ2

s̄

.

By matching the constant term, we get λb
1 = v̄ − ρσvσs

σ2
s+σ2

s̄
µs̄. Finally, plugging these
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parameters into the pricing strategy, we have

E[P b(s, y)|s̄, s] = v̄ +

(
1

2
+

σ2
s

2 (σ2
s̄ + σ2

s)

)
ρσv

σs

(
s− s̄ /σ2

s + µs̄ /(σ
2
s̄ + σ2

s)

1 /σ2
s + 1/(σ2

s̄ + σ2
s)

)
= v̄ +

1

2

ρσv

σs

(s− s̄) +
1

2

ρσvσs

σ2
s̄ + σ2

s

(s− µs̄).

Proof of Proposition IV.6. Suppose the market maker’s estimator of s̄ is ŝ(s, y) =

k1 + k2s+ k3sy, in which

sy =
σs

ρσv

(
v̄ − λ1 +

(
ρσv

σs

− λ2

)
s− 2λ3(X(s̄, s) + u)

)
= s̄− 2λ3σs

ρσv

u.

Then, the market maker uses this ŝ(s, y) to form the conditional expectation of v:

Eŝ(s,y)[v|s, y] = v̄ +
ρσv

σs

(s− ŝ(s, y))

= v̄ +
ρσv

σs

(s− k1 − k2s− k3sy)

= v̄ +
ρσv

σs

[
s− k1 − k2s

−k3
σs

ρσv

(
v̄ − λ1 +

(
ρσv

σs
− λ2

)
s− 2λ3(X(s̄, s) + u)

) ]
= v̄ − ρσv

σs

k1 − k3(v̄ − λ1) +
ρσv

σs

(1− k2)s− k3(
ρσv

σs

− λ2)s+ 2k3λ3y

= Pŝ(s,y)(s, y)

= λ1 + λ2s+ λ3y.

This implies that

λ1 = v̄ − 2ρσv

σs

k1, λ2 =
ρσv

σs

(1− 2k2), k3 = 1/2.

Therefore, the first statement of the proposition holds; that is, for any λ1, λ2, and λ3,

we can find k1, k2, and k3 that satisfy the equilibrium conditions. We can compute
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the conditionally expected profit of the probabilistically informed trader:

Es̄[π|s] = E[(v − Pŝ(s,y)(s, y))x|s]

= E
[(

v − v̄ +
2ρσvk1
σs

− ρσv

σs

(1− 2k2)s− λ3(x+ u)

)
x

∣∣∣∣ s]
= −λ3x

2 +

[
ρσv

σs

(s− s̄) +
2ρσv

σs

k1 −
ρσv

σs

(1− 2k2)s

]
x,

with the maximum conditionally expected profit being

Es̄[π
⋆|s] =

[
ρσv

σs
(s− s̄) + 2ρσv

σs
k1 − ρσv

σs
(1− 2k2)s

]2
4λ3

.

Next, if we further require that ŝ be unbiased, we will find that k1 = 0, k2 = 1/2,

λ1 = v̄, and λ2 = 0. Note that λ3 can take any value. Thus, we have the second

statement of the proposition. In addition, the optimal conditionally expected profit

of the probabilistically informed trader becomes

Es̄[π
⋆|s] = ρ2σ2

v

4λ3σ2
s

(s− s̄)2.

Comparing this equation with the one under the BLUE, it is clear that whether the

profit above is higher than the one under the BLUE depends on the value of λ3.

Since λ3 can take any positive value, statements 3 and 4 follow.
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