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ABSTRACT

Tensor decompositions have been studied for nearly a century, but the well-known

notion of tensor rank does not capture all the properties that one may desire of a

rank function on tensors. For that reason, in recent years many alternative notions of

tensor rank have been developed and studied. Some have also studied related notions

of norms on tensors, especially the nuclear norm, which can be viewed as a convex

relaxation of tensor rank.

In this thesis, we calculate the value of the recently introduced G-stable rank for

all weights on 2× 2× 2 and 2× 2× 3 complex-valued tensors, and introduce X-rank,

which can be viewed as a refinement of G-stable rank.

We then investigate the nuclear norm, and how it and some other norms on tensor

product spaces behave with respect to the vertical, or Kronecker, tensor product.

Finally, we introduce some notions of stable ranks on tensors, built from common

norms on tensor products, and discuss how these stable ranks relate to other notions

of tensor rank.
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CHAPTER I

Introduction

1.1 History and Motivation

One of the most fundamental concepts in linear algebra is that of matrix rank. In

some sense, rank measures the “amount of information” contained within a matrix.

For this reason, we are often motivated to find the rank of a matrix, or to approximate

a matrix by one of lower rank. This occurs in many subfields of mathematics - signal

processing, numerical linear algebra, computer vision, and many others.

While data from these fields can often be classified using two indices (the rows

and columns of a matrix), it is often desirable to have more indices for the data. For

example, an image may be described using a matrix where each entry represents the

color of a single pixel in a given row and column, but processing a video may require

an extra index to represent the color of a pixel in a given row and column at a certain

point in time. Data with multiple indices may be arranged into a mathematical object

known as a tensor, which can be seen as a generalization of vectors and matrices.

As with matrices, mathematicians are motivated to measure the “amount of

information” contained within tensors, and so are motivated to generalize the concept

of matrix rank to higher orders. Such problems were studied as early as the 1920’s

(Hitchcock (1927)), and were of interest in the fields of psychometrics (Tucker (1966))

and chemometrics (Appellof and Davidson (1981)) before gaining more traction in the
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subfields of mathematics discussed above (e.g. De Lathauwer and De Moor (1998),

De Lathauwer et al. (2000), Vasilescu and Terzopoulos (2002)).

Psychometricians were among the first to make use of CP (Canonical Polyadic)

decompositions (which we will refer to as rank decompositions) - a decomposition of a

rank r tensor into a sum of r rank one tensors. In chemometrics, these decompostions

were studied as a tool in fluorescent spectroscopy - lights of different wavelengths

are shined into n samples of a mixture of chemicals, and the intensity of different

wavelengths of emitted light is measured. This data naturally forms a tensor, and

each molecule which appears in the mixture has its own characteristic fluorescent

spectrum, which corresponds to a rank one tensor. If there are r chemicals present in

the mixture, then the resulting tensor should have rank r. The CP decomposition

further gives information about the relative concentration of different compounds in

the mixture. For a more detailed history, Kolda and Bader (2009) is an excellent

resource.

Unfortunately, it soon became obvious that the most standard generalization of

matrix rank to higher order tensors, known as tensor rank, is not as well-behaved

as matrix rank. For example, a tensor may have different rank when its entries are

considered to be elements of R as opposed to elements of C (see Example 1.4), some

tensors can be arbitrarily well-approximated by tensors of lower rank (see Example

1.5), and even computing the rank of a tensor can be an NP-hard problem (Håstad

(1990)). For these reasons, we are motivated to find alternative notions of rank for

tensors which may not have all of the same issues.

In Chapter 2 we explore the recently introduced G-stable α-rank, and in particular,

we calculate its values for all tensors of small dimension, in Proposition 2.20. We also

offer an unweighted version of this rank, which we have called the X-rank, and discuss

some of its basic properties.

As rank, even for matrices, is not a continuous function, the nuclear norm, which
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can be viewed as a convex relaxation of rank, is sometimes used a substitute (Candès

and Recht (2012)). Much as when the l1 norm is used a substitute for sparsity (the ‘l0

norm’), the nuclear norm is generally easier to work with, and produces good results

with high probability, and so if one is interested in tensor rank then they are motivated

to understand the nuclear norm for tensors too.

In Chapter 3, we explore some questions about the nuclear norm which have

classically been posed about tensor rank, and in particular show it is multiplicative

under the tensor Kronecker product (see Proposition 3.6). We also show that a similar

property holds for a wider class of norms (see Proposition 3.14).

In the final Chapter, we explore the relationship between this nuclear norm, and

the more commonly known spectral and Frobenius norms, and use these to develop

some new notions of rank which unlike norms are invariant under multiplication by

scalars, and which are more ‘stable’ than some other notions of rank in that the ranks

in the small neighborhood of a tensor are not expected to vary wildly. We give some

bounds on low-rank approximations to tensors depending on these stable ranks in

Proposition 4.21.

1.2 Elementary Notions of Tensor Products and Notation

We will mostly follow the notation of Derksen (Derksen (2016)). In particular, a

d-th order tensor product space is a pair U = (U, (U (1), . . . , U (d))) where each U (i) is a

finite dimensional vector space and

U = U (1) ⊗ · · · ⊗ U (d).

For ease of notation, we will sometimes write U (i) as Ui.

A tensor u ∈ U with u = u(1) ⊗ . . .⊗ u(d) where u(i) ∈ U (i) for all i is said to be a

pure or simple tensor.
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We will often denote the standard basis vectors in Kn by e1, e2, . . . , en or sometimes

as [1], [2], . . . , [n]. Under this shorthand, we may abbreviate the tensor [i1]⊗[i2]⊗. . . [id]

by [i1, i2, . . . , id].

For a tensor product space U, and S, T ∈ U, we will denote the Frobenius inner

product of S and T by ⟨S, T ⟩, and the associated Frobenius norm (sometimes also

known as the Euclidean norm) of S by

∥S∥ :=
√

|⟨S, S⟩|.

For a tensor S in a tensor product space U, we may write S as a sum of pure (or

simple) tensors

S =
r∑

i=1

vi where vi = v
(1)
i ⊗ . . .⊗ v

(d)
i and v

(e)
i ∈ U (e). (1)

We define the nuclear norm of S to be the infimum of
r∑

i=1

∥vi∥ over all such

decompositions (1), and denote it by ∥S∥⋆. It can be shown that this infimum can

always be achieved (Friedland and Lim (2018)), and so we may take the minimum

over such decompositions instead.

The spectral norm of S, denoted ∥S∥σ, is defined to be the maximum value of

|⟨S, u⟩| where u ranges over all pure tensors of unit length. More generally, as in

Derksen (2016), for an r-tuple of tensors, S = (S1, . . . Sr), and 1 ≤ α < ∞, we will

define [S]α as the maximum of

(
r∑

i=1

|⟨Si, u⟩|α
)1/α

over all pure tensors u of unit length. For α = ∞, we will define [S]α as the maximum

over all pure tensors u of unit length of max
i

|⟨Si, u⟩|, or equivalently, as max
i

∥Si∥σ.

If U = (U, (U (1), . . . , U (d))) and V = (V, (V (1), . . . , V (d))) are tensor product spaces,
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then we define their vertical tensor product as

U ⊠ V =
(
U ⊗ V, (U (1) ⊗ V (1), . . . , U (d) ⊗ V (d))

)
.

For S ∈ U, T ∈ V, we define S⊠T to be S⊗T , viewed as an element of U⊠V. Note

that for order d tensors S and T , S ⊠ T is an order d tensor, where S ⊗ T has order

2d. In particular, it is easy to see that for matrices A and B, A⊠B is the well-known

Kronecker product of A and B. For this reason, the vertical tensor product is also

sometimes known as the tensor Kronecker product.

For S = (S1, . . . , Sr) ∈ Ur, T = (T1, . . . , Ts) ∈ Vs, we define

S ⊠ T = (Si ⊠ Tj|1 ≤ i ≤ r, 1 ≤ j ≤ s).

If U = (U, (U (1), . . . , U (d))) and V = (V, (V (1), . . . , V (d))) are tensor product spaces,

then we define their direct sum as

U ⊕ V =
(
U ⊕ V, (U (1) ⊕ V (1), . . . , U (d) ⊕ V (d))

)
.

For S ∈ U, T ∈ V, we define S ⊕ T as an element of U ⊕ V in the obvious way.

1.3 Rank for Tensors

One of the most foundational notions in linear algebra is the rank of a matrix.

There are many equivalent notions of rank for matrices. We will make use of one

which involves defining, for finite dimensional vector spaces V,W over a field K, an

isomorphism V ⋆ ⊗W ∼= Hom(V,W ):

Definition 1.1. Let V,W be finite dimensional vector spaces and denote by V ⋆ the

dual space to V . For f ∈ V ⋆ and w ∈ W , we may define a linear map f ⊗w : V → W
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by v 7→ f(v)w. Any linear map A : V → W may be described as

r∑
i=1

fi ⊗ wi

for some combination of fi and wi. The minimum value of r required is precisely the

rank of the matrix A.

This definition may be extended from linear maps to multilinear maps to give us

the concept of a tensor.

Definition 1.2. Let V1, . . . , Vd−1,W be finite dimensional vector spaces. A function

S : V1 × . . .× Vd−1 → W

is said to be multilinear if it is linear in each factor Vi. The space of such multilinear

functions is isomorphic to the tensor product space V ⋆
1 ⊗ . . .⊗ V ⋆

d−1 ⊗W .

There are many notions of rank for tensors. The most common is simply known

as tensor rank.

Definition 1.3. Let S ∈ V1 ⊗ . . .⊗ Vd. Then we may express

S =
r∑

j=1

v1,j ⊗ . . .⊗ vd,j

where we have vi,k ∈ Vi for all i, k. The minimum value of r required for such an

expression of S is known as the rank of S, and is denoted rk(S). A tensor of rank 1 is

said to be simple.

The rank for matrices has a number of useful algebraic and topological properties.

A convincing generalization of rank to higher order tensors (let us call such a function

Rank) would hope to satisfy some of these properties. Note that these properties all

hold for matrices in the case that the tensors involved have order d = 2.
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1. (Zero tensor) Rank(S)=0 if and only if S is the zero tensor.

2. (Scale invariance) For a nonzero scalar λ and a tensor S, Rank(λS)= Rank(S).

3. (Simple tensors) If v is a simple tensor then Rank(v)=1.

4. (Diagonal tensor) If Ir =
r∑

i=1

ei⊗ ei⊗ . . .⊗ ei where ei are unit basis vectors then

Rank(Ir)=r.

5. (Whole numbers) For any tensor S, Rank(S) is a whole number.

6. (Field invariance) If K ⊆ L are fields and S is a tensor over K, then its rank

when considered as a tensor over K is the same as its rank when considered as

a tensor over L.

7. (Basis invariance) For a tensor S ∈ V1⊗V2⊗ . . .⊗Vd, and g ∈ GL(V1)×GL(V2)×

. . .×GL(Vd), Rank(g · S)=Rank(S).

8. (Rank Closure) The set {S : Rank(S) ≤ r} is Zariski closed for all r.

9. (Triangle inequality) For matrices S and T , Rank(S + T ) ≤ Rank(S)+Rank(T ).

10. (Direct sums) For matrices S and T , Rank(S ⊕ T )=Rank(S)+Rank(T ).

11. (Kronecker multiplicativity) If S ⊠ T is the Kronecker product of S and T then

Rank(S ⊠ T )=Rank(S)Rank(T ).

Note that some of these properties are stronger than others - for example, property 4

is implied if properties 3 and 10 hold.

One additional property that we might hope holds for a rank function on tensors

of higher order is:

12. (Tensor multiplicativity) If S ⊗ T is the usual tensor product of S and T then

Rank(S ⊗ T )=Rank(S)Rank(T ).
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While there are many other criteria that we may desire a rank function to satisfy,

even this list is not known to be fully satisfied by any notion of tensor rank. While

our usual notion of tensor rank satisfies properties 1-5, 7, 9, and 10, it does not satisfy

the others. Some well-known counter-examples for some of these properties are listed

below:

Example 1.4. Let U (1) = U (2) = U (3) = R2 and let S ∈ U (1) ⊗ U (2) ⊗ U (3) be given

by

[112] + [121] + [211]− [222].

It is not hard to show that this S has rank 3. However, if instead U (1) = U (2) = U (3) =

C2 and S ∈ U (1) ⊗ U (2) ⊗ U (3) is defined in the same way as before, we may rewrite S

as

1

2i
((e1 + ie2)⊗ (e1 + ie2)⊗ (e1 + ie2)− (e1 − ie2)⊗ (e1 − ie2)⊗ (e1 − ie2)) ,

and hence the rank of S is 2. Thus tensor rank does not satisfy Field invariance

property.

Example 1.5. Let the (real or complex) tensor St be defined by

St = [112] + [121] + [211] + t ([122] + [212] + [221]) + t2[222].

For t ̸= 0, we may rewrite St as

1

t
((e1 + te2)⊗ (e1 + te2)⊗ (e1 + te2)− e1 ⊗ e1 ⊗ e1) ,

which has rank 2. However, for t = 0, we have

S0 = [112] + [121] + [211],
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which has rank 3. Hence the tensor S0 has rank 3, but lies in the Zariski closure of

the tensors of rank less than or equal to 2.

As the usual tensor rank does not satisfy all the properties one might hope it

would, many alternate notions of tensor rank have also been studied. The concept of

border rank in particular was developed as a version of rank which does satisfy the

Rank Closure property (originally in Bini et al. (1979), see Bürgisser et al. (1997),

Landsberg (2012) for more recent developments).

Definition 1.6. The border rank of a tensor S, denoted by brk(S), is the smallest

value of r such that there exists a sequence of tensors of rank r whose limit is S.

Equivalently, if X(r) ⊆ V1 ⊗ . . . ⊗ Vd denotes the Zariski closure of the set of

tensors of rank at most r, then brk(S) is the smallest value of r such that S ∈ X(r).

As we saw in Example 1.5, the tensor S = [112] + [121] + [211] has rank 3, but

border rank 2. The tensor S ⊕ S has rank 6 and border rank 4, and in general S⊕n

has rank 3n and border rank 2n, so the difference between rank and border rank can

be arbitrarily large.

Another popular notion of rank, introduced recently (Tao and Sawin (2016)), is

slice rank.

Definition 1.7. A nonzero tensor S ∈ V1 ⊗ . . .⊗ Vd has slice rank 1 if it is contained

in

V1 ⊗ · · · ⊗ Vi−1 ⊗ v ⊗ Vi+1 ⊗ · · · ⊗ Vd

for some i and v ∈ Vi. The slice rank of an arbitrary tensor S ∈ V1⊗ . . .⊗Vd, denoted

by srk(S) is the smallest value of r such that S is the sum of r tensors of slice rank 1.

The motivation for slice rank was found in algebraic combinatorics, where the slice

rank of a particular tensor was used to give an alternate proof of the best-known upper

bounds in the capset problem, from Ellenberg and Gijswijt (2017). This motivated

9



Derksen to introduce a new notion of rank, the G-stable rank, which was used to

further improve those upper bounds (Derksen (2020)).

In Chapter II, we investigate the G-stable rank in more detail, and calculate the

value of the G-stable rank of all possible weights on tensors of small dimension. We

also introduce a new notion of rank inspired by the G-stable rank, which we call

“X-rank”, and prove that it has some of our desired properties for a rank function.

As most versions of rank are difficult to calculate, authors often prefer to work with

the nuclear norm of tensors. The nuclear norm can be seen as a convex relaxation of

rank, in the sense that the convex hull of unit simple tensors forms the unit ball for the

nuclear norm. In Chapter III, we investigate the nuclear, and related, norms on tensor

product spaces, and prove that the nuclear norm has the Kronecker multiplicativity

property mentioned above.

Extending this further, we introduce in Chapter IV some new notions of “stable

ranks” which are relatively easy to calculate or approximate compared to more

conventional notions of rank. The tradeoff is that these do not satisfy even some of

the more basic notions of rank (not even the triangle inequality).
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CHAPTER II

G-Stable Rank

Derksen (Derksen (2020)) introduced the notion of the G-stable α-rank, rkGα (S),

of a tensor S over a perfect field K. We reproduce this definition below, restricted

to the case where K is algebraically closed. It makes use of the ring K[[t]] of formal

power series and its quotient field K((t)) of formal Laurent series, and valuations of

its elements.

Definition 2.1. The t-valuation of a power series a(t) ∈ K((t)), denoted by valt(a(t)),

is the largest integer d such that a(t) = tdb(t) for some b(t) ∈ K[[t]]. By convention,

valt(0) = ∞.

If W is a K-vector space and v(t) ∈ K((t))⊗W , then we define

valt(v(t)) = max{d | v(t) = tdw(t) and w(t) ∈ K[[t]]⊗W}.

We have val(v(t)) ≥ 0 if and only if w(t) ∈ K[[t]]⊗W , and in this case, we say

v(t) has no poles. We say that limt→0 v(t) exists, and is equal to v(0) ∈ W .

We denote by GL(W,K((t))) the group of invertible K((t))-linear endomorphisms

of the space K((t))⊗W . This group can be viewed as a subset of K((t))⊗ End(W ).

For W = Kn, we have K((t))⊗W ∼= K((t))n and we can identify GL(W,K((t))) with

the set of n × n matrices with entries in the field K((t)). For any K-subalgebra
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R ⊆ K((t)) of K((t)), then we denote by GL(W,R) the intersection of GL(W,K((t)))

with R⊗ End(W ) in K((t))⊗ End(W ). It is important to note that the elements of

GL(W,R) must have an inverse in GL(W,K((t))), but not necessarily in GL(W,R).

We will consider the action of G = GL(V1)×GL(V2)× . . .×GL(Vd) on the tensor

product space V = V1 ⊗ V2 ⊗ . . . ⊗ Vd. For any K-subalgebra R ⊆ K((t)), we may

define

G(R) = GL(V1, R)× . . .×GL(Vd, R).

The group G (K((t))) acts on K((t))⊗V. We will call any nonzero α = (α1, α2, . . . , αd) ∈

Rd
≥0 a weight. Let g(t) = (g1(t), g2(t), . . . , gd(t)) ∈ G (K[[t]]), S ∈ V, and valt(g(t) ·

S) > 0. Then we may consider the slope,

µα(g(t), S) =

∑d
i=1 αi valt(det gi(t))

valt(g(t) · S)
.

In general, a small slope means that S is unstable, in the sense that as t → 0,

g(t) · S goes to 0 quickly in comparison to the eigenvalues of gi(t). It is this property

which leads to the notion of G-stable α-rank.

Definition 2.2. For a fixed nonzero weight α = (α1, α2, . . . , αd) ∈ Rd
≥0 and S ∈ V,

the G-stable α-rank of S, denoted by rkGα (S), is the infimum of all µα(g(t), S) where

g(t) ∈ G (K[[t]]) and valt(g(t) · S) > 0.

The case where α = (1, 1, . . . , 1), is sometimes referred to as the G-stable rank of

S, and is denoted by rkG(S).

Derksen furthermore showed that it is sufficient to consider g(t) which are 1-

parameter subgroups of G without poles. Here, g(t) = (g1(t), g2(t), . . . , gd(t)) ∈

G (K[[t]]) is a 1-parameter subgroup if for every i we can choose a basis of Vi such that

the matrix of gi(t) is diagonal and each diagonal entry of that matrix is a nonnegative

power of t.

This notion of rank satisfies many nice properties. However, one important
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difference to many other notions of rank is that the G-stable rank does not have to be

a whole number:

Example 2.3. As we will show, the tensor S = e2⊗e1⊗e1+e1⊗e2⊗e1+e1⊗e1⊗e2

has rkGα (S) =
3
2
.

Derksen also gave an alternate characterization of the G-stable α-rank, specifically

over C, which we will use later.

Definition 2.4. For S ∈ V = V1⊗ . . .⊗Vd, let Φi(S) : (V1⊗ . . .⊗ V̂i⊗ . . .⊗Vd)
⋆ → Vi

be the i-th flattening. For a weight α = (α1, . . . , αd) ∈ Rd
≥0, the G-stable α-rank of S

is

rkGα (S) := sup
g∈G

min
i

αi∥g · S∥2

∥Φi(g · S)∥2σ
.

We will aim to investigate the G-stable α-rank for tensors of small dimensions. To

do this, we will start by calculating a related notion of rank for these tensors.

Recall that to find the G-stable α-rank, we look for the infimum of µα(g(t), S) over

all 1-parameter subgroups g(t) with valt(g(t) · S) > 0. Every 1-parameter subgroup is

contained in some maximal torus T (which itself is contained in some Borel subgroup

B of G). For that reason, we are motivated to fix a maximal torus T and consider

all 1-parameter subgroups contained within it. Choosing a maximal torus of G is

equivalent to choosing a basis in each vector space Vi. Let us choose bases in each Vi

such that GL(Vi) can be identified with GLni
. Denote by Tni

the subgroup of GLni
of

invertible ni ×ni diagonal matrices, and let T = Tn1 ×Tn2 × · · · ×Tnd
⊆ G. Then T is

a maximal torus of G. This naturally leads to Derksen’s concept of T -stable α-rank:

Definition 2.5. The T -stable α-rank of S, denoted by rkTα(S) is the infimum of

µα(g(t), S) over all 1-parameter subgroups g(t) ∈ T (K[t]) of T with valt(g(t) · S) > 0.

Using the fact that every 1-parameter subgroup is conjugate to one in the maximal

torus T , we immediately obtain:
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Lemma 2.6. We have

rkGα (S) = inf
g∈G

rkTα(g · S).

The form of T allows us to calculate the T -stable α-rank using a particular linear

program. We will make use first of the notion of the T -support of a tensor in a fixed

basis.

Definition 2.7. For a field K and a tensor S = (si1,i2,...,id) ∈ Kn1 ⊗Kn2 ⊗ . . .⊗Knd ,

we define its T -support by

suppT (S) = {(i1, i2, . . . , id) | si1,i2,...,id ̸= 0}.

Definition 2.8. Let S ∈ Kn1 ⊗ Kn2 ⊗ . . . ⊗ Knd be a tensor. Then the linear

program LPα(suppT (S)) is to find the minimum of
d∑

i=1

αi

ni∑
j=1

x(i, j) where the x(i, j)

are non-negative real variables with the constraints that
d∑

i=1

x(i, ti) ≥ 1 for all t =

(t1, t2, . . . , td) ∈ suppT (S).

Derksen showed in his paper that the value of LPα(suppT (S)) is precisely rkTα(S).

Since this is a linear program, it is often straight-forward to calculate the T -stable

α-rank for a fixed T -support. The G-stable α-rank can then be found by applying

Lemma 2.6.

This motivates us to consider the T -stable α-rank on different G-orbits. We will

begin by considering 2× 2× 2 tensors.

2.1 The G-stable rank for small tensors

For 2 × 2 × 2 tensors over an algebraically closed field, there are seven G =

GL(V1)×GL(V2)×GL(V3) orbits (e.g. see Landsberg (2012)). A representative for

each orbit is given below:
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1. 0

2. e1 ⊗ e1 ⊗ e1

3. e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2

4. e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e2

5. e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1

6. e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2

7. e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2

The T -supports of these representatives, respectively, are

1. 0

2. {(1, 1, 1)}

3. {(1, 1, 1), (1, 2, 2)}

4. {(1, 1, 1), (2, 1, 2)}

5. {(1, 1, 1), (2, 2, 1)}

6. {(2, 1, 1), (1, 2, 1), (1, 1, 2)}

7. {(1, 1, 1), (2, 2, 2)}

For the first representative, the linear program detailed in Definition 2.8 has no

constraints, and so it is clear that rkTα(0) = 0 for all α. For the other representatives, let

us consider how the T -stable α-rank varies over α = (α1, α2, α3) with α1+α2+α3 = 1.

Example 2.9. Suppose S has T -support {(1, 1, 1)}. Our linear program is to minimize

α1 (x(1, 1) + x(1, 2)) + α2 (x(2, 1) + x(2, 2)) + α3 (x(3, 1) + x(3, 2))
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subject to

x(1, 1) + x(2, 1) + x(3, 1) ≥ 1

and all the x(i, j) being nonnegative.

Suppose that minj aj = ai. Then this minimum is achieved when x(i, 1) = 1 and

all other variables are 0. In that case, we have rkT
α(S) = αi. Hence rkTα(S) = mini{αi}.

We represent the possible values of rkTα(S) with α1 + α2 + α3 = 1 in Figure 2.1

using a bifurcation diagram with 3 vertices, each representing a point where one of

the αi is 1 and the others are 0. Points close to vertex i have a large value of αi, and

points further from it have a small αi.

Figure 2.1: T -stable rank for T -support {(1, 1, 1)}

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

α2 α1

α3

Example 2.10. Suppose S has T -support {(1, 1, 1), (1, 2, 2)}. Our linear program is

to minimize

α1 (x(1, 1) + x(1, 2)) + α2 (x(2, 1) + x(2, 2)) + α3 (x(3, 1) + x(3, 2))

subject to

x(1, 1) + x(2, 1) + x(3, 1) ≥ 1

x(1, 1) + x(2, 2) + x(3, 2) ≥ 1
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and all the x(i, j) being nonnegative.

Suppose that α1 is small relative to α2 and α3. Then this minimum is achieved

when x(1, 1) = 1 and all other variables are 0. In that case, we have rkTα(S) = α1.

Otherwise, if α2 is small relative to α1 and α3 then the minimum is achieved when

x(2, 1) = x(2, 2) = 1 and all other variables are 0. In that case, we have rkTα(S) = 2α2.

The situation for small α3 is similar. Hence rkT
α(S) = min{α1, 2α2, 2α3}. This situation

is represented by Figure 2.2.

Figure 2.2: T -stable rank for T -support {(1, 1, 1), (1, 2, 2)}

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

2α2 α1

2α3

Example 2.11. The cases for the fourth and fifth T -supports follow from the above

example by symmetry. Suppose S has support {(1, 1, 1), (2, 1, 2)}. Then rkTα(S) =

min{2α1, α2, 2α3}. This situation is represented by Figure 2.3. Suppose S has T -

support {(1, 1, 1), (2, 2, 1)}. Then rkTα(S) = min{2α1, 2α2, α3}. This situation is

represented by Figure 2.4.

Example 2.12. Suppose S has T -support {(2, 1, 1), (1, 2, 1), (1, 1, 2)}. Our linear

program is to minimize

α1 (x(1, 1) + x(1, 2)) + α2 (x(2, 1) + x(2, 2)) + α3 (x(3, 1) + x(3, 2))
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Figure 2.3: T -stable rank for T -support {(1, 1, 1), (2, 1, 2)}

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

α2 2α1

2α3

Figure 2.4: T -stable rank for T -support {(1, 1, 1), (2, 2, 1)}

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

2α2 2α1

α3

subject to

x(1, 2) + x(2, 1) + x(3, 1) ≥ 1

x(1, 1) + x(2, 2) + x(3, 1) ≥ 1

x(1, 1) + x(2, 1) + x(3, 2) ≥ 1

and all the x(i, j) being nonnegative.

Suppose that α1 is small relative to α2 and α3. Then this minimum is achieved

when x(1, 1) = x(1, 2) = 1 and all other variables are 0. In that case, we have
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rkTα(S) = 2α1. The cases for small α2 and α3 are similar. If instead the αi are close to

each other then there is a another possibility - the minimum can be achieved when

x(1, 1) = x(2, 1) = x(3, 1) = 1
2
, in which case we have rkT

α(S) =
1
2
(α1 + α2 + α3) =

1
2
.

Hence rkTα(S) = min{2α1, 2α2, 2α3,
1
2
}. This situation is represented by Figure 2.5.

Figure 2.5: T -stable rank for T -support {(2, 1, 1), (1, 2, 1), (1, 1, 2)}

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

2α2 2α1

2α3

1
2

Example 2.13. Suppose S has T -support {(1, 1, 1), (2, 2, 2)}. Our linear program is

to minimize

α1 (x(1, 1) + x(1, 2)) + α2 (x(2, 1) + x(2, 2)) + α3 (x(3, 1) + x(3, 2))

subject to

x(1, 1) + x(2, 1) + x(3, 1) ≥ 1

x(1, 2) + x(2, 2) + x(3, 2) ≥ 1

and all the x(i, j) being nonnegative.

Suppose that α1 is small relative to α2 and α3. Then this minimum is achieved when

x(1, 1) = x(1, 2) = 1 and all other variables are 0. In that case, we have rkTα(S) = 2α1.

The cases for small α2 and α3 are similar. Hence rkTα(S) = min{2α1, 2α2, 2α3}. This

situation is represented by Figure 2.6.
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Figure 2.6: T -stable rank for T -support {(1, 1, 1), (2, 2, 2)}

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

2α2 2α1

2α3

We are interested in proving that these T -stable α ranks are enough to classify the

G-stable α ranks of the same tensors. To do this, we will introduce an intermediary

concept - instead of working with the maximal torus T , we will work with the maximal

Borel subgroup B where B is defined as follows: For each Vi, denote by Bni
the

subgroup of GLni
consisting of invertible ni × ni upper triangular matrices, and let

B = Bn1 ×Bn2 × . . . Bnd
. The B is a maximal Borel subgroup of G, and T is contained

in B.

Definition 2.14. For a field K and a tensor S = (si1,i2,...,id) ∈ Kn1 ⊗Kn2 ⊗ . . .⊗Knd ,

we define its Borel support, or B-support by

suppB(S) = {(i1, i2, . . . , id) | ∃(j1, j2, . . . , jd) with ik ≤ jk for all k and sj1,j2,...,jd ̸= 0}.

In other words, we have (i1, i2, . . . , id) ∈ suppB(S) if and only if there is (j1, j2, . . . , jd) ∈

supp(S) with ik ≤ jk for all k.

Definition 2.15. Let S ∈ Kn1⊗Kn2⊗ . . .⊗Knd be a tensor. Then the linear program

LP’α(suppB(S)) is to find the minimum of
d∑

i=1

αi

ni∑
j=1

x(i, j) where the x(i, j) are non-
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negative real variables with the constraints that
d∑

i=1

x(i, ti) ≥ 1 for all t ∈ suppB(S),

and whenever j1 ≤ j2, we have x(i, j1) ≥ x(i, j2).

We define the B-stable α-rank of S to be

rkBα (S) := LP’α(suppB(S)).

Remark 2.16. Let S1, S2 be tensors such that suppT (S1) ⊆ suppT (S2). Then

rkTα(S1) ≤ rkTα(S2).

This is clear when we consider that the linear program for S2 has more constraints

than the one for S1 but the objective functions are the same. This means the minimum

obtained in the linear program for S1 is smaller than the one for S2. Similarly, we

always have

LPα(suppB(S)) ≤ LP’α(suppB(S)),

and hence

rkTα(S) ≤ rkBα (S)

whenever T ⊆ B.

Lemma 2.17. Let S be a tensor. Then

inf
g∈G

rkTα(g · S) = inf
g∈G

rkBα (g · S).

Proof. From Remark 2.16, we see that

inf
g∈G

rkTα(g · S) ≤ inf
g∈G

rkBα (g · S).

Additionally, the value of the linear program LPα(suppT (S)) is invariant under
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permutations of the coordinates in each mode, so we may assume that the variables

x(i, j) are weakly decreasing. Hence we may assume the non-zero variables x(i, j)

come from a B-support, which solves the linear program LP’α(suppB(σ · S)) for some

σ ∈ G, i.e. rkTα(S) = rkBα (σ · S) for some σ ∈ G. Acting by g ∈ G on both sides, and

taking the infimum, gives the desired result.

Combining this with Lemma 2.6, we see that when we are trying to calculate the

G-stable α-rank of a tensor S, we may restrict our attention to the B-stable α-ranks

of minimal B-supports of S.

Lemma 2.18. Suppose that S ∈ Kn1 ⊗Kn2 ⊗ . . .⊗Knd is a tensor and that T is a

maximal torus such that for every minimal B-support, suppBi(S), of S, there exist

permutations σ1, σ2, . . . , σd with σj ∈ Snj
for all j such that

(σ1, σ2, . . . , σd) · suppT (S) ⊆ suppBi(S).

Then we have

rkGα (S) = rkTα(S).

Proof. Using Lemmas 2.6 and 2.17, we see that for some Bi, we have rkGα (S) = rkBi
α (S).

Since there exist σ1, σ2, . . . , σd such that (σ1, σ2, . . . , σd) · suppT (S) ⊆ suppBi(S),

we must have rkTα(S) ≤ rkBi
α (S) = rkGα (S). But from Lemma 2.6, we must have

rkGα (S) ≤ rkTα(S), and so we have equality, as claimed.

For 2× 2× 2 tensors, it is easy to see that most of the seven orbits described above

have a unique minimal B-support. The first two are obvious:

1. The orbit of 0 has minimal B-support ∅.

2. The orbit of e1 ⊗ e1 ⊗ e1 has minimal B-support {(1, 1, 1)}.
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For the next orbit, note that it has slice rank 1, and so any minimal B-support

must contain only elements of the form (1, a, b). It must have (1, 1, 1), an if it had only

one more element (either (1, 1, 2) or (1, 2, 1)), then the resulting tensor would have

only rank one. For that reason, it must have both these elements. Permuting the basis

elements in the 3rd mode for e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2 gives e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1

which does in fact have B-support {(1, 1, 1), (1, 2, 1), (1, 1, 2)}. Hence:

3. The orbit of e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2 has minimal B-support

{(1, 1, 1), (1, 2, 1), (1, 1, 2)}.

Similarly,

4. The orbit of e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e2 has minimal B-support

{(1, 1, 1), (2, 1, 1), (1, 1, 2)}.

5. The orbit of e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1 has minimal B-support

{(1, 1, 1), (1, 2, 1), (2, 1, 1)}.

For the next orbit, note that the flattenings of e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗

e1 ⊗ e2 each have rank 2, and so any B-support must contain at least the elements

{(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}. This is a B-support for our representative and so

we have:

6. The orbit of e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2 has minimal B-support

{(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}.

The only orbit with more than one minimal B-support is that of e1 ⊗ e1 ⊗ e1 +

e2 ⊗ e2 ⊗ e2 which has three minimal B-supports - each of

• {(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (1, 2, 2)},

• {(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (2, 1, 2)}, and
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• {(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (2, 2, 1)}.

are minimal B-supports. To see this, note that the closure of this orbit contains the

closure of orbit 6, and so any minimal B-support of orbit 7 must contain the minimal

B-support, {(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}, of orbit 6. Conversely, any tensor with

the B-support {(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)} contains e2⊗ e1⊗ e1+ e1⊗ e2⊗ e1+

e1 ⊗ e1 ⊗ e2 in its G-orbit, and so {(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)} must be strictly

contained in any B-support of e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2. It is easy to verify that

permuting the basis elements in each mode can result in the three B-supports above.

As there exist permutations of basis vectors in each mode though so that our

representative lies in each B-support, Lemma 2.18 tells us that the T -support of this

representative is sufficient to calculate the G-stable rank.

This allows us to conclude our analysis of G-stable α-ranks of 2× 2× 2 tensors

over C:

Proposition 2.19. The G-stable α-ranks of 2× 2× 2 tensors over C are classified by

orbit as follows:

1. rkGα (0) = 0.

2. rkGα (e1 ⊗ e1 ⊗ e1) = mini{αi}.

3. rkGα (e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2) = min{α1, 2α2, 2α3}.

4. rkGα (e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e2) = min{2α1, α2, 2α3}.

5. rkGα (e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1) = min{2α1, 2α2, α3}.

6. rkGα (e2⊗e1⊗e1+e1⊗e2⊗e1+e1⊗e1⊗e2) = min{2α1, 2α2, 2α3,
1
2
(α1 + α2 + α3)}.

7. rkGα (e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2) = min{2α1, 2α2, 2α3}.

Proof. This is a result of applying Lemma 2.18 to Examples 2.9-2.13, together with

the determination of the minimal B-supports given above.
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For 2 × 2 × 3 tensors over an algebraically closed field, there are a total of 9

G = GL(V1)×GL(V2)×GL(V3) orbits - each of the orbits of 2× 2× 3 tensors embeds

into one in the space of 2× 2× 3 tensors, and there are two additional orbits, with

representatives given by:

8. e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e1 ⊗ e1 ⊗ e3

9. e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e3

Additionally, there are 3 more minimal B-supports for 2 × 2 × 3 tensors. The

tensor e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2 + e1 ⊗ e1 ⊗ e3 has B-support

{(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (1, 2, 2), (1, 1, 3)},

and by permuting the first two basis elements in the third mode, one obtains the

tensor e2 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e3 which has B-support

{(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (2, 1, 2), (1, 1, 3)}.

To see that these are the only minimal B-supports for this orbit, note first that

this orbit must contain some element of the form (a, b, 3), and that any B-support

which contains an element of this form must contain (1, 1, 3). It is also easy to see

that orbit 7 is contained in the closure of orbit 8 (by replacing e3 with te3 and taking

the limit as t → 0), and so any minimal B-support for orbit 8 should contain one of

the B-supports for orbit 7. Appending (1, 1, 3) to the first two B-supports of orbit 7

gives the claimed B-supports above. The only other possibility for orbit 8 would be

the B-support

{(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (2, 2, 1), (1, 1, 3)},
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but this is not minimal - one could make a change of basis in the third mode to

result in the B-support of

{(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (2, 2, 1)}.

The other minimal B-support is

{(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 1), (1, 1, 3)},

which is precisely the B-support for e1⊗e2⊗e2+e2⊗e1⊗e2+e2⊗e2⊗e1+e1⊗e1⊗e3.

To see that this is minimal for this orbit, first note that the closure of orbit 8 is

contained in that of 9, and so the minimal support must contain at least one of

{(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (1, 2, 2), (1, 1, 3)}

or

{(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (2, 1, 2), (1, 1, 3)}.

But it is easy to verify that any tensor whose B-support is strictly between one of

these and

{(1, 1, 1), (2, 1, 1)(1, 2, 1), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 1), (1, 1, 3)}

is contained in orbit 8. Thus, this B-support is the minimal one for orbit 9. Armed

with the knowledge that these representatives have minimal B-supports for their

orbits, we may determine the possible G-stable α-ranks for 2× 2× 3 tensors.

Proposition 2.20. The G-stable α-ranks of 2× 2× 3 tensors over C are classified by

orbit as follows:

1. rkGα (0) = 0.
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2. rkGα (e1 ⊗ e1 ⊗ e1) = mini{αi}.

3. rkGα (e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2) = min{α1, 2α2, 2α3}.

4. rkGα (e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e2) = min{2α1, α2, 2α3}.

5. rkGα (e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1) = min{2α1, 2α2, α3}.

6. rkGα (e2⊗e1⊗e1+e1⊗e2⊗e1+e1⊗e1⊗e2) = min{2α1, 2α2, 2α3,
1
2
(α1 + α2 + α3)}.

7. rkGα (e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2) = min{2α1, 2α2, 2α3}.

8. rkGα (e2⊗e1⊗e1+e1⊗e2⊗e2+e1⊗e1⊗e3) = min{2α1, 2α2, 3α3,
1
2
α1+

1
2
α2+α3}.

9. rkGα (e1⊗ e2⊗ e2+ e2⊗ e1⊗ e2+ e2⊗ e2⊗ e1+ e1⊗ e1⊗ e3) = min{2α1, 2α2, 3α3}.

Proof. The first seven orbits behave in the same way as for 2× 2× 2 tensors, and so

the results are the same as in Proposition 2.19.

As shown above, the representatives we have chosen for the other two orbits have

minimal B-supports, up to permutation of basis elements. Using Lemma 2.18, we

can see that these representatives we have chosen are thus sufficient to determine

the G-stable ranks on each orbit - we need only find the T -stable α-ranks for the

representatives of orbits 8 and 9.

For orbit 8, suppose S has T -support {(2, 1, 1), (1, 2, 2), (1, 1, 3)}. Our linear

program is to minimize

α1 (x(1, 1) + x(1, 2)) + α2 (x(2, 1) + x(2, 2)) + α3 (x(3, 1) + x(3, 2))

subject to

x(1, 2) + x(2, 1) + x(3, 1) ≥ 1

x(1, 1) + x(2, 2) + x(3, 2) ≥ 1

x(1, 1) + x(2, 1) + x(3, 3) ≥ 1
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and all the x(i, j) being nonnegative.

Suppose that α1 is small relative to α2 and α3. Then this minimum is achieved

when x(1, 1) = x(1, 2) = 1 and all other variables are 0. In that case, we have

rkTα(S) = 2α1. The case for small α2 is similar. When α3 is small, the minimum is

achieved when x(3, 1) = x(3, 2) = x(3, 3) = 1, and in that case we have rkTα(S) = 3α3.

If instead the αi are close to each other then there is a another possibility - the

minimum can be achieved when x(1, 1) = x(2, 1) = x(3, 1) = x(3, 2) = 1
2
, in which case

we have rkT
α(S) =

1
2
α1+

1
2
α2+α3. Hence rkTα(S) = min{2α1, 2α2, 3α3,

1
2
α1+

1
2
α2+α3}.

This situation is represented by Figure 2.7, where β = 1
2
α1 +

1
2
α2 + α3.

Figure 2.7: T -stable rank for T -support {(2, 1, 1), (1, 2, 2), (1, 1, 3)}

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

2α2 2α1

3α3

β

For orbit 9, suppose S has T -support {(2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 3)}. Our

linear program is to minimize

α1 (x(1, 1) + x(1, 2)) + α2 (x(2, 1) + x(2, 2)) + α3 (x(3, 1) + x(3, 2) + x(3, 3))

subject to

x(1, 2) + x(2, 1) + x(3, 1) ≥ 1

x(1, 1) + x(2, 2) + x(3, 1) ≥ 1
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x(1, 1) + x(2, 1) + x(3, 2) ≥ 1

x(1, 1) + x(2, 1) + x(3, 3) ≥ 1

and all the x(i, j) being nonnegative.

Suppose that α1 is small relative to α2 and α3. Then this minimum is achieved when

x(1, 1) = x(1, 2) = 1 and all other variables are 0. In that case, we have rkTα(S) = 2α1.

The case for small α2 is similar. When α3 is small, the minimum is achieved when

x(3, 1) = x(3, 2) = x(3, 3) = 1, and in that case we have rkTα(S) = 3α3. There are no

other possibilities - when (α1, α2, α3) = (3
8
, 3
8
, 1
4
), we have 2α1 = 2α2 = 3α3. Hence

rkTα(S) = min{2α1, 2α2, 3α3}. This situation is represented by Figure 2.8.

Figure 2.8: T -stable rank for T -support {(2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 3)}

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

2α2 2α1

3α3

Remark 2.21. From this analysis, we can see that for any pair S1, S2, of 2× 2× 2 or

2× 2× 3 tensors which do not belong to the same G-orbit, there exists a weight α

such that rkGα (S1) ̸= rkGα (S2). One might hope that this would be true for tensors

S1, S2, of arbitrary dimension. However, for sufficiently large dimensions, there are

infinitely many G-orbits, but still only finitely many possible T - (and B-) supports,

which implies that some orbits must share the same linear programs, and hence share
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the same G-stable α ranks for every value of α.

2.2 X-Rank

Recall that Derksen (Derksen (2020)) introduced the notion of the G-stable α-rank,

rkG
α (S), of a tensor S, as seen in Definition 2.4. The definition, over C, is restated

below:

Definition 2.22. For S ∈ V1 ⊗ . . .⊗ Vd, let Φi(S) : (V1 ⊗ . . .⊗ V̂i ⊗ . . . Vd)
⋆ → Vi be

the i-th flattening. For a weight α = (α1, . . . , αd) ∈ Rd
>0, the G-stable α-rank of S is

rkG
α (S) := sup

g∈G
min

i

αi∥g · S∥2

∥Φi(g · S)∥2σ
.

In the above paper, the author commonly uses the weight α = (1, . . . , 1). While

this is useful in many applications, it is not necessarily the case that weighting each

mode equally will be the best in every circumstance. Particularly when the dimensions

of the spaces Vi are not all equal, we are motivated to find weights in each mode which

are in some way optimal. This leads us to introduce a new notion of rank, which we

will call the X-rank.

Definition 2.23. The G-stable X-rank of a nonzero tensor S is given by

XrkG(S) = max
α

rkG
α (S)

where the maximum is taken over all α = (α1, . . . , αd) ∈ Rd
≥0 such that

d∑
i=1

αi = d.

By convention, we say that XrkG(0) = 0.

Unless otherwise stated, we will assume G = GL(V1)×GL(V2)× · · · ×GL(Vd).

Proposition 2.24. For complex 2 × 2 × 3 tensors (and 2 × 2 × 2 tensors where

appropriate), we have:
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1. XrkG(0) = 0.

2. XrkG(e1 ⊗ e1 ⊗ e1) = 1.

3. XrkG(e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2) =
3
2
.

4. XrkG(e1 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e2) =
3
2
.

5. XrkG(e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1) =
3
2
.

6. XrkG(e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2) =
3
2
.

7. XrkG(e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2) = 2.

8. XrkG(e2 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e3) = 2.

9. XrkG(e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e3) = 3.

Proof. We use the results from Proposition 2.20. For most of the orbits, we may set

all of the minima equal, and solve for when α1 + α2 + α3 = 3. The only orbits for

which this is not appropriate are orbits 6 and 8.

For orbit 6, recall Figure 2.5. The maximum is obtained when α1, α2, and α3 are

relatively close, and in that case, the maximum is 1
2
(α1 + α2 + α3) =

3
2
.

For orbit 8, recall Figure 2.7. The maximum is obtained when β = 1
2
α1 +

1
2
α2 +α3

is as large as possible, while still being less than or equal to each of 2α1, 2α2, and 3α3.

This occurs when α1 = α2 = α3 = 1, which results in a maximum of 2.

The X-rank has many properties that we would desire a rank function to have.

Proposition 2.25. The X-rank satisfies the following properties:

1. (Zero tensor) XrkG(S) = 0 if and only if S is the zero tensor.

2. (Scale Invariance) For a nonzero scalar λ and a tensor S, XrkG(λS) = XrkG(S).

3. (Basis Invariance) The X-rank is constant on G-orbits.
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4. (Triangle Inequality) For all S, T ∈ V, XrkG(S + T ) ≤ XrkG(S) + XrkG(T ).

5. (Simple tensors) If v is a simple tensor, then XrkG(v)=1.

Proof. The first three properties are clear from the definition, and Property 4 is a

consequence of the triangle inequality for the G-stable rank.

For Property 5, recall that for a simple tensor v, we have for all i, ∥v∥ = ∥Φi(v)∥ =

∥Φi(v)∥σ, and also that g · v is simple for all g. Hence XrkG(v) = maxα mini αi.

This maximum is clearly achieved when α1 = α2 = · · · = αd = 1, and results in

XrkG(v) = 1.

An alternate description of the X-rank may be useful for computations:

Lemma 2.26. S ∈ V1 ⊗ . . .⊗ Vd, we have:

XrkG(S) = sup
g∈G

d∥g · S∥2∑
i

∥Φi(g · S)∥2σ
.

Proof. We have

XrkG(S) := sup
g∈G

max
α

min
i

αi∥g · S∥2

∥Φi(g · S)∥2σ
.

For a fixed g ∈ G,

max
α

min
i

αi∥g · S∥2

∥Φi(g · S)∥2σ

is obtained when for all i, j, we have

αi∥g · S∥2

∥Φi(g · S)∥2σ
=

αj∥g · S∥2

∥Φj(g · S)∥2σ
.

Therefore, for all i, we have

αi =
α1∥Φi(g · S)∥2σ
∥Φ1(g · S)∥2σ

.
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Since
∑

αi = d, we have

α1 =
d∥Φ1(g · S)∥2σ∑
i

∥Φi(g · S)∥2σ
.

Thus we have

XrkG(S) := sup
g∈G

α1∥g · S∥2

∥Φ1(g · S)∥2σ
= sup

g∈G

d∥g · S∥2∑
i

∥Φi(g · S)∥2σ
.

Proposition 2.27. For the tensor S =
r∑

i=1

ei ⊗ ei ⊗ . . .⊗ ei ∈ V1 ⊗ V2 ⊗ . . .⊗ Vd, we

have XrkG(S) = r.

Proof. We have ∥S∥2 = r and for all i, ∥Φi(S)∥σ = 1. Using Lemma 2.26, we see that

XrkG(S) ≥ dr
d
= r.

By Proposition 2.25, we know that XrkG(S) ≤
∑r

i=1 XrkG(ei ⊗ ei ⊗ . . .⊗ ei) = r.

Therefore, XrkG(S) = r.
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CHAPTER III

Nuclear Norm Under Tensor Kronecker Products

3.1 Introduction

Much work in algebraic complexity theory concerns the vertical tensor product,

alternatively known as the tensor Kronecker product. It is natural to ask which

properties of tensors are preserved under this product. It has been known since the

work of Strassen that properties such as the tensor rank and border rank are not

preserved when taking the vertical tensor product (or even the usual tensor product)

of tensors of order at least 3 (Christandl et al. (2018), Christandl et al. (2019)).

Meanwhile, it is clear that the Frobenius norm of tensors is preserved, and it has

been shown that the spectral norm of tensors is also multiplicative under the tensor

Kronecker product (Derksen (2016)), over both R and C.

The notion of cross norms - norms on tensor product spaces which are multiplicative

with respect to the usual tensor product - was originally introduced by Schatten

Schatten (1950) in the study of Banach spaces, and has seen much interest in the

decades since (e.g., Defant and Floret (1993), Diestel et al. (2008)). If such a norm

has a dual norm which is also a cross norm, then it is said to be reasonable. We may

say analogously that a norm on a tensor product space is a Kronecker-cross norm if it

is multiplicative with respect to the tensor Kronecker product, and that such a norm

is a reasonable Kronecker-cross norm if its dual is also Kronecker-cross. We will show
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that the nuclear norm is Kronecker-cross, and hence that it and the spectral norm of

tensors are reasonable Kronecker-cross norms.

This result can be generalized in a number of ways. We present two such generaliza-

tions. The first shows that a nuclear norm on tuples of tensors is also Kronecker-cross,

and the second extends the multiplicativity of the nuclear norm to a result about the

multiplicativity of injective norms on tensor products more generally.

3.2 Notation

In addition to our notation from Chapter I, we will require some more definitions

relating to tensor norms and tensor Kronecker products.

We say two norms ∥ · ∥X and ∥ · ∥Y on a tensor product space U are dual if for

all S, S ′ ∈ U, we have |⟨S, S ′⟩| ≤ ∥S∥X∥S ′∥Y , and for every S ∈ U, there exists some

nonzero S ′ ∈ U such that the above inequality becomes an equality. (It is easy to see

that the last condition is equivalent to: for every S ′ ∈ U there exists a nonzero S ∈ U

for which the inequality becomes an equality.)

Following the work of Schatten (Schatten (1950)), we will say that a norm ∥ · ∥X

on a tensor product space U ⊗ V is a cross norm if for all S ∈ U and T ∈ V, we

have ∥S ⊗ T∥X = ∥S∥X∥T∥X . Similarly, we will say that a norm ∥ · ∥X on a tensor

product space U ⊠ V is a Kronecker cross norm if for all S ∈ U and T ∈ V, we have

∥S ⊠ T∥X = ∥S∥X∥T∥X .

3.3 Norms under Tensor Kronecker Products

In this section, U = (U, (U (1), . . . , U (d))) and V = (V, (V (1), . . . , V (d))) will denote

d-th order tensor product spaces where for each i and j, U (i) = Kni and V (j) = Knj

where K = R or K = C and the ni, nj ∈ N are the dimensions of each space.

Many of the norms we will be interested in can be defined in similar ways on
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different tensor spaces, and so in an abuse of notation, we will often use ∥ · ∥X to

simultaneously denote the norms ∥ ·∥X,U, ∥ ·∥X,V, and ∥ ·∥X,U⊠V defined on the spaces

U, V, and U ⊠ V respectively.

The following is clear by direct calculation:

Proposition 3.1. The Frobenius norm is a cross norm. That is to say, if S and T

are tensors then ∥S ⊗ T∥ = ∥S∥∥T∥. Moreover, it is a Kronecker cross norm i.e. if

S ∈ U and T ∈ V are d-th order tensors, then ∥S ⊠ T∥ = ∥S∥∥T∥.

We will also make use of the following propositions. The first is well known (e.g.

see Lim and Comon (2014)).

Proposition 3.2. On any tensor product space, ∥ · ∥⋆ and ∥ · ∥σ are dual.

The second appears as Proposition 3.3 in Derksen (2016). Though the proof there

is performed over C, it also works over R.

Proposition 3.3. If S ∈ Ur and T ∈ Vs, then we have

[S ⊠ T ]α = [S]α[T ]α.

In particular, taking r = s = 1, we see that for S ∈ U, and T ∈ V, we have

∥S ⊠ T∥σ = ∥S∥σ∥T∥σ, i.e. the spectral norm is a Kronecker cross norm.

We aim to use the duality of the spectral and nuclear norms, together with the

above result on the spectral norm, to make a statement about the nuclear norm of

the vertical tensor product of tensors. We require the following Lemma:

Lemma 3.4. Let ∥ · ∥X and ∥ · ∥Y be dual on tensor product spaces U, V, and U⊠V,

and suppose that for all S ∈ U and T ∈ V, we have ∥S ⊠ T∥Y ≤ ∥S∥Y ∥T∥Y . Then

for all S ∈ U, T ∈ V, we have ∥S ⊠ T∥X ≥ ∥S∥X∥T∥X .
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Proof. Pick nonzero S ′ ∈ U and T ′ ∈ V such that |⟨S, S ′⟩| = ∥S∥X∥S ′∥Y and

|⟨T, T ′⟩| = ∥T∥X∥T ′∥Y . Then,

∥S ⊠ T∥X∥S ′∥Y ∥T ′∥Y ≥ ∥S ⊠ T∥X∥S ′ ⊠ T ′∥Y

≥ |⟨S ⊠ T, S ′ ⊠ T ′⟩|

= |⟨S, S ′⟩||⟨T, T ′⟩|

= ∥S∥X∥T∥X∥S ′∥Y ∥T ′∥Y .

Since S ′ and T ′ are nonzero, we conclude that ∥S ⊠ T∥X ≥ ∥S∥X∥T∥X .

Remark 3.5. Note that ∥ · ∥X and ∥ · ∥Y being dual and ∥ · ∥Y being a Kronecker

cross norm is not sufficient to conclude that ∥ · ∥X is a Kronecker cross norm. A

(Kronecker) cross norm whose dual is also a (Kronecker) cross norm is sometimes said

to be reasonable (Schatten (1950)).

Applying the above lemma to Proposition 3.3 allows us to deduce the following:

Proposition 3.6. The nuclear norm is a Kronecker cross norm, i.e. if S ∈ U, and

T ∈ V are d-th order tensors, then ∥S ⊠ T∥⋆ = ∥S∥⋆∥T∥⋆.

Proof. Combining Propositions 3.2 and 3.3 with Lemma 3.4, we see that ∥S ⊠ T∥⋆ ≥

∥S∥⋆∥T∥⋆. So it remains to show that ∥S ⊠ T∥⋆ ≤ ∥S∥⋆∥T∥⋆.

Let

S =

rS∑
i=1

ui with ui = u
(1)
i ⊗ . . .⊗ u

(d)
i and u

(e)
i ∈ U (e),

and similarly,

T =

rT∑
j=1

vj with vj = v
(1)
j ⊗ . . .⊗ v

(d)
j and v

(e)
j ∈ V (e).
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Then

S ⊠ T =

rS∑
i=1

rT∑
j=1

(u
(1)
i ⊗ v

(1)
j )⊗ . . .⊗ (u

(d)
i ⊗ v

(d)
j )

and so, applying Proposition 3.1,

∥S ⊠ T∥⋆ ≤
rS∑
i=1

rT∑
j=1

∥∥∥(u(1)
i ⊗ v

(1)
j )⊗ . . .⊗ (u

(d)
i ⊗ v

(d)
j )
∥∥∥

=

rS∑
i=1

rT∑
j=1

∥∥∥u(1)
i ⊗ . . .⊗ u

(d)
i

∥∥∥∥∥∥v(1)j ⊗ . . .⊗ v
(d)
j

∥∥∥
=

rS∑
i=1

∥∥∥u(1)
i ⊗ . . .⊗ u

(d)
i

∥∥∥ rT∑
j=1

∥∥∥v(1)j ⊗ . . .⊗ v
(d)
j

∥∥∥ .

Taking the minima of
rS∑
i=1

∥ui∥ and
rS∑
j=1

∥vj∥ over all decompositions S =
rS∑
i=1

ui and

T =
rT∑
j=1

vj, we see that ∥S ⊠ T∥⋆ ≤ ∥S∥⋆∥T∥⋆.

In fact, we may further generalize the above result by considering tuples of tensors.

Definition 3.7. For S ∈ Ur an r-tuple of tensors with S = (S1, . . . , Sr) and 1 ≤ β <

∞ we define [S]⋆β as the minimum of

m∑
j=1

(
r∑

i=1

|λi,j|β
)1/β

(3.1)

over all m and all {λi,j} for which there exist unit simple tensors v1, v2, . . . , vm and

decompositions Si =
∑m

j=1 λi,jvj, i = 1, 2, . . . , r. For β = ∞, we define [S]⋆∞ by

replacing (3.1) by
m∑
j=1

max
1≤i≤r

|λi,j|.

Remark 3.8. The minimum in the previous definition is well-defined. To see this,
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consider the compact set

{
(k1v, k2v, . . . krv)

∣∣∣∣∣
r∑

i=1

|ki|β = 1, v is a unit simple tensor

}
.

and let B be its convex hull. For an r-tuple S of tensors, it is easy to see that [S]⋆β

is the infimum of all t such that S ∈ tB. But if S ∈ tB, then by Carathéodory’s

Convexity Theorem (see (Barvinok , 2002, Theorem 2.3)), we can find decompositions

Si =
m∑
j=1

λi,jvj with
m∑
j=1

(
r∑

i=1

|λi,j|β
)1/β

≤ t, where m ≤ dimUr+1. So in Definition 3.7

we may take m = dimR Ur + 1. The set of all λi,j and vj for which Si =
m∑
j=1

λi,jvj

(1 ≤ i ≤ r) is closed, so the function (3.1) has a minimum on this set.

We make the following key observation:

Proposition 3.9. If 1 ≤ α, β ≤ ∞ are Hölder conjugates (i.e 1
α
+ 1

β
= 1 or {α, β} =

{1,∞}), then [·]α and [·]⋆β are dual.

Proof. Let S = (S1, . . . Sr) and T = (T1, . . . Tr) be r-tuples of tensors, and write

Ti =
∑
j

λi,jvj with vj simple unit tensors. Then, for 1 < α, β < ∞, using the Hölder

inequality,

|⟨S,T⟩| =

∣∣∣∣∣∑
i

〈
Si,
∑
j

λi,jvj

〉∣∣∣∣∣
≤
∑
i

∑
j

|λi,j||⟨Si, vj⟩|

≤
∑
j

(∑
i

|⟨Si, vj⟩|α
)1/α(∑

i

|λi,j|β
)1/β

≤ [S]α
∑
j

(∑
i

|λi,j|β
)1/β

.

Taking the minimum over all decompositions Ti =
∑
j

λi,jvj with vj simple unit tensors
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gives |⟨S,T⟩| ≤ [S]α[T]⋆β. The same inequality holds for {α, β} = {1,∞} using the

same reasoning.

Again suppose that 1 < α, β < ∞. Let u be a simple unit tensor such that

[S]α =

(
r∑

i=1

|⟨Si, u⟩|α
)1/α

and take T = (T1, . . . , Tr) with Ti = |⟨Si, u⟩|α/β−1⟨Si, u⟩u, where ⟨Si, u⟩ denotes the

complex conjugate of ⟨Si, u⟩ (or just denotes ⟨Si, u⟩ if our ground field is R). Then by

definition,

[T]⋆β ≤

(∑
i

(
|⟨Si, u⟩|α/β

)β)1/β

=

(∑
i

|⟨Si, u⟩|α
)1/β

.

We also have

|⟨Si, Ti⟩| = |⟨Si, u⟩|α/β+1 = |⟨Si, u⟩|α/β+α/α = |⟨Si, u⟩|α

and hence, since 1
α
+ 1

β
= 1,

|⟨S,T⟩| =
∑
i

|⟨Si, u⟩|α

=

(∑
i

|⟨Si, u⟩|α
)1/α(∑

i

|⟨Si, u⟩|α
)1/β

≥ [S]α[T]⋆β.

Thus, given any r-tuple of tensors S we can construct a nonzero T such that

|⟨S,T⟩| = [S]α[T]⋆β, and so the norms are dual, as claimed.

The proof for α = 1 and β = ∞ is similar - in particular, if u is a unit simple

tensor such that [S]1 =
∑r

i=1 |⟨Si, u⟩| and we take Ti = u for all i, then |⟨S,T⟩| =

[S]1 = [S]1[T]⋆∞.

Similarly, for α = ∞ and β = 1, if u is a unit simple tensor such that [S]∞ =
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max
i

|⟨Si, u⟩| = |⟨Sk, u⟩| for some k, then let Tk = |⟨Sk, u⟩|u and Ti = 0 otherwise.

Then |⟨S,T⟩| = |⟨Sk, u⟩|2 = [S]∞[T]⋆1.

Proposition 3.10. If S ∈ Ur, T ∈ Vs, and 1 ≤ β ≤ ∞, then [S ⊠ T ]⋆β = [S]⋆β[T ]
⋆
β.

Proof. Again combining Lemma 3.4 and Proposition 3.3, we see that [S ⊠ T ]⋆β ≥

[S]⋆β[T ]
⋆
β.

Suppose that 1 ≤ β < ∞. Let u1, . . . , un be unit simple tensors such that

Si =
n∑

j=1

λi,juj and

[S]⋆β =
n∑

j=1

(
r∑

i=1

|λi,j|β
)1/β

and similarly, let v1, . . . , vm be unit simple tensors such that Tk =
m∑
l=1

µk,lvl and

[T ]⋆β =
m∑
l=1

(
s∑

k=1

|µk,l|β
)1/β

.

Then Si ⊠ Tk =
n∑

j=1

m∑
l=1

λi,jµk,luj ⊠ vl and so

[S ⊠ T ]⋆β ≤
n∑

j=1

m∑
l=1

(
r∑

i=1

s∑
k=1

|λi,j|β|µk,l|β
)1/β

=
n∑

j=1

m∑
l=1

( r∑
i=1

|λi,j|β
)1/β ( s∑

k=1

|µk,l|β
)1/β


=

n∑
j=1

(
r∑

i=1

|λi,j|β
)1/β m∑

l=1

(
s∑

k=1

|µk,l|β
)1/β

= [S]⋆β[T ]
⋆
β.

By the same method, we can show that [S ⊠ T ]⋆∞ ≤ [S]⋆∞[T ]⋆∞

Hence for all 1 ≤ β ≤ ∞, we have [S ⊠ T ]⋆β = [S]⋆β[T ]
⋆
β.
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This is not the only way in which we can extend the multiplicativity of the nuclear

norm to other norms. We may consider how a wider class of norms - projective norms

- behaves under the Kronecker product.

Definition 3.11. Given norms ∥ · ∥X and ∥ · ∥Y on tensor product spaces U and V,

we may form their injective cross norm, ∥ · ∥X∨Y , defined for S ∈ U ⊗ V by

∥S∥X∨Y := sup {|⟨S, u⊗ v⟩|}

where the supremum is taken over all u ∈ U and v ∈ V with ∥u∥X ≤ 1 and ∥v∥Y ≤ 1.

Similarly, the projective cross norm for these norms is ∥·∥X∧Y , defined for S ∈ U⊗V

by

∥S∥X∧Y := inf

{
k∑

i=1

∥ui∥X∥vi∥Y

}

where the infimum is taken over all decompositions S =
k∑

i=1

ui ⊗ vi.

An important fact is shown in Diestel et al. (2008):

Proposition 3.12. Given norms ∥ · ∥X and ∥ · ∥Y on tensor product spaces U and

V, the injective cross norm is the smallest reasonable cross norm over them, and the

projective cross norm is the largest.

Remark 3.13. Note that when our base norms are both the Frobenius norm, the

injective cross norm is the spectral norm, and the projective cross norm is the nuclear

norm. Proposition 3.12 tells us that these are the smallest and largest reasonable

cross norms, respectively, over the Frobenius norm.

Proposition 3.14. Let ∥ · ∥X1 , ∥ · ∥X2 , ∥ · ∥Y1 , and ∥ · ∥Y2 be norms on tensor product

spaces U1, U2, V1, and V2 respectively. Let S1 ∈ U1 ⊗V1 and S2 ∈ U2 ⊗V2. Then

∥S1 ⊠ S2∥(X1∧X2)∨(Y1∧Y2) = ∥S1∥X1∨Y1∥S2∥X2∨Y2 .
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Proof. First, let u1 ∈ U1, u2 ∈ U2, v1 ∈ V1, and v2 ∈ V2 be such that ∥u1∥X1 =

∥u2∥X2 = ∥v1∥Y1 = ∥v2∥Y2 = 1 and

∥S1∥X1∨Y1 = |⟨S1, u1 ⊗ v1⟩| and ∥S2∥X2∨Y2 = |⟨S2, u2 ⊗ v2⟩|.

Then for B := u1 ⊠ u2 and C := v1 ⊠ v2, since the injective cross norm is a cross norm,

we have ∥B∥X1∧X2 = ∥C∥Y1∧Y2 = 1, and

|⟨S1 ⊠ S2, B ⊗ C⟩| = ∥S1∥X1∨Y1∥S2∥X2∨Y2 ,

and hence

∥S1 ⊠ S2∥(X1∧X2)∨(Y1∧Y2) ≥ ∥S1∥X1∨Y1∥S2∥X2∨Y2 .

Conversely, suppose that B ∈ U1⊠U2 and C ∈ V1⊠V2 are such that ∥B∥X1∧X2 ≤ 1

and ∥C∥Y1∧Y2 ≤ 1. Pick decompositions

B =
∑
j

b1,j ⊠ b2,j and C =
∑
k

c1,k ⊠ c2,k

with b1,j ∈ U1, b2,j ∈ U2, c1,k ∈ V1, and c2,k ∈ V2. Then

|⟨S1 ⊠ S2, B ⊗ C⟩| =

∣∣∣∣∣∑
j,k

⟨S1, b1,j ⊗ c1,k⟩⟨S2, b2,j ⊗ c2,k⟩

∣∣∣∣∣
≤
∑
j,k

|⟨S1, b1,j ⊗ c1,k⟩| |⟨S2, b2,j ⊗ c2,k⟩|

≤
∑
j,k

∥S1∥X1∨Y1∥b1,j∥X1∥c1,k∥Y1∥S2∥X2∨Y2∥b2,j∥X2∥c2,k∥Y2

≤ ∥S1∥X1∨Y1∥S2∥X2∨Y2
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where the second inequality comes from the definition of the injective cross norm

and the third comes from the fact that ∥B∥X1∧X2 ≤ 1 and ∥C∥Y1∧Y2 ≤ 1. Taking the

supremum over all choices of B and C, we see that

∥S1 ⊠ S2∥(X1∧X2)∨(Y1∧Y2) ≤ ∥S1∥X1∨Y1∥S2∥X2∨Y2 .

Remark 3.15. Note that if all the base norms are the Frobenius norm then Proposition

3.14 tells us that the spectral norm is Kronecker-cross (as we already saw in Lemma

3.3).

To see that

∥S1 ⊠ S2∥(X1∧X2)∨(Y1∧Y2) = ∥S1 ⊠ S2∥σ,

note first that for simple tensors u, v, we have ∥u∥ = ∥u∥⋆ and ∥v∥ = ∥v∥⋆, and hence

∥S1 ⊠ S2∥(X1∧X2)∨(Y1∧Y2) ≥ ∥S1 ⊠ S2∥σ.

Conversely, for u, v with ∥u∥⋆ = ∥v∥⋆ = 1, we may find decompositions u =
∑

ui

and v =
∑

vj where the ui and vj are simple tensors and
∑

∥ui∥ =
∑

∥vj∥ = 1, and

so

|⟨S1 ⊠ S2, u⊗ v⟩| = |⟨S1 ⊠ S2,
∑

ui ⊗ vj⟩|

≤
∑

|⟨S1 ⊠ S2, ui ⊗ vj⟩|

≤
∑

∥S1 ⊠ S2∥σ∥ui∥∥vj∥

≤ ∥S1 ⊠ S2∥σ.

Hence

∥S1 ⊠ S2∥(X1∧X2)∨(Y1∧Y2) = ∥S1 ⊠ S2∥σ.
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CHAPTER IV

Slice Spectral and Slice Nuclear Norm

The nuclear norm has seen much use as a convex relaxation of tensor rank. As the

slice rank has been of much recent interest, one may ask whether there is a similar

convex relaxation of the slice rank. Looking for a norm whose unit ball is the convex

hull of unit tensors of slice rank 1, we obtain the slice nuclear norm.

Definition 4.1. For S ∈ V = V1 ⊗ . . .⊗ Vd, let Φi(S) : (V1 ⊗ . . .⊗ V̂i ⊗ . . . Vd)
⋆ → Vi

be the i-th flattening. The slice nuclear norm of S, denoted by ∥S∥⋆̃ is the infimum of

∥Φ1(S1)∥⋆ + ∥Φ2(S2)∥⋆ + . . .+ ∥Φd(Sd)∥⋆,

taken over all decompositions S = S1 + . . .+ Sd.

Remark 4.2. It’s important to note that this is in fact a norm - for the triangle

inequality, if S = S1 + . . .+ Sd and T = T1 + . . .+ Td are decompositions of tensors S

and T , then a decomposition of S + T is given by (S1 + T1) + . . .+ (Sd + Td), and so

∥S + T∥⋆̃ ≤ ∥Φ1(S1 + T1)∥⋆ + . . .+ ∥Φd(Sd + Td)∥⋆

≤ ∥Φ1(S1)∥⋆ + . . .+ ∥Φd(Sd)∥⋆ + ∥Φ1(T1)∥⋆ + . . .+ ∥Φd(Td)∥⋆.

Taking infima over the decompositions of S and T , we see that ∥S+T∥⋆̃ ≤ ∥S∥⋆̃+∥T∥⋆̃
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Remark 4.3. When searching for a decomposition for S in the above definition, it is

clear that we may restrict ourselves to Si with ∥Si∥⋆ ≤ ∥S∥⋆. Therefore, we can view∑
i

∥Φi(Si)∥⋆ as a continuous function on a compact set, and hence by the Extreme

Value Theorem it obtains its infimum. Therefore, we may replace the word ‘infimum’

in the definition by ‘minimum’.

We also have a similar analogue of the spectral norm:

Definition 4.4. For v ∈ V = V1 ⊗ . . .⊗ Vd, let Φi(S) : (V1 ⊗ . . .⊗ V̂i ⊗ . . . Vd)
⋆ → Vi

be the i-th flattening. The slice spectral norm of S, denoted by ∥S∥σ̃, is the maximum

of ∥Φi(S)∥σ, taken over all 1 ≤ i ≤ d.

Proposition 4.5. The slice nuclear norm and the slice spectral norm are dual, i.e. for

all S, T ∈ V, we have |⟨S, T ⟩| ≤ ∥S∥σ̃∥T∥⋆̃, and for every S ∈ V, there exists some

nonzero T ∈ V such that the above inequality becomes an equality.

Proof. First, let S, T ∈ V and suppose T = T1 + · · ·+ Td is a decomposition which

satisfies ∥T∥⋆̃ = ∥Φ1(T1)∥⋆ + · · ·+ ∥Φd(Td)∥⋆. Then

|⟨S, T ⟩| =

∣∣∣∣∣
d∑

i=1

⟨S, Ti⟩

∣∣∣∣∣
≤

d∑
i=1

|⟨S, Ti⟩|

=
d∑

i=1

|⟨Φi(S),Φi(Ti)⟩|

≤
d∑

i=1

∥Φi(S)∥σ∥Φi(Ti)∥⋆

≤ max
i

∥Φi(S)∥σ
d∑

i=1

∥Φi(Ti)∥⋆

= ∥S∥σ̃∥T∥⋆̃
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where the second inequality follows from the duality of the spectral and nuclear

norms.

Given S ∈ V, let i be such that ∥S∥σ̃ = ∥Φi(S)∥σ. From the duality of the nuclear

and spectral norms, there exists T ′ ∈ V1 ⊗ . . .⊗ V̂i ⊗ . . . Vd such that |⟨Φi(S), T
′⟩| =

∥Φi(S)∥σ∥T ′∥⋆. Let T = Φ−1
i (T ′). Then, using T = 0 + · · · + T + · · · + 0 as a

decomposition, we have ∥T∥⋆̃ ≤ ∥T ′∥⋆, and so

|⟨S, T ⟩| = |⟨Φi(S), T
′⟩| = ∥Φi(S)∥σ∥T ′∥⋆ ≥ ∥S∥σ̃∥T∥⋆̃.

Hence we have found T such that |⟨S, T ⟩| = ∥S∥σ̃∥T∥⋆̃.

Remark 4.6. It is natural to ask whether these norms are Kronecker-cross norms. It

turns out that the answer is no:

Example 4.7. Consider the tensor S = e1 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e2. Then the sin-

gular values of both Φ2(S) and Φ3(S) are 1 (twice), and the only non-zero sin-

gular value of Φ1(S) is
√
2. Hence ∥S∥σ̃ =

√
2 and ∥S∥⋆̃ ≤

√
2. Similarly, for

T = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e1, we have ∥T∥σ̃ =
√
2 and ∥T∥⋆̃ ≤

√
2.

However, for S ⊠ T , we see that the non-zero singular values of both Φ1(S ⊠ T )

and Φ3(S ⊠ T ) are
√
2 (twice), and the non-zero singular values of Φ2(S ⊠ T ) are 1

(four times). Hence ∥S ⊠ T∥σ̃ =
√
2. Since ∥S ⊠ T∥2 = 4, we see by Proposition 4.5

that ∥S ⊠ T∥⋆̃ ≥ 4√
2
= 2

√
2.

It is easy to see that for any S and T , we have

∥S ⊠ T∥σ̃ = max
i

(∥Φi(S)∥σ∥Φi(T )∥σ)

≤ max
i

∥Φi(S)∥σ max
j

∥Φj(T )∥σ

= ∥S∥σ̃∥T∥σ̃.

By Lemma 3.4, it follows that ∥S ⊠ T∥⋆̃ ≥ ∥S∥⋆̃∥T∥⋆̃. The above example shows that
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in general we do not have equality for either. We may say more for tensor Kronecker

powers under the slice spectral norm, however.

Proposition 4.8. For any tensor S and positive integer n, we have ∥S⊠n∥σ̃ = ∥S∥nσ̃.

Proof. We have

∥S⊠n∥σ̃ = max
i

(∥Φi(S)∥n) = max
i

(∥Φi(S)∥)n = ∥S∥nσ̃.

For the slice nuclear norm, we do not have multiplicativity, even just over tensor

Kronecker powers:

Example 4.9. Let S =
∑n

k=1 e1 ⊗ ek ⊗ ek and let T =
∑n

k=1 ek ⊗ ek ⊗ e1. Then,

arguing as in Example 4.7, we see that ∥S∥⋆̃ = ∥T∥⋆̃ = ∥S ⊠ T∥σ̃ =
√
n and so

∥S ⊠ T∥⋆̃ ≥ n
√
n.

Let U = S ⊕ T . Then ∥U∥⋆̃ = ∥S ⊗ 0 + 0 ⊗ T∥⋆̃ ≤ ∥S∥⋆̃ + ∥T∥⋆̃ = 2
√
n, and

∥U ⊠ U∥⋆̃ ≥ ∥S ⊠ T∥⋆̃ ≥ n
√
n.

Therefore, for n ≥ 17, we see that ∥U ⊠ U∥⋆̃ > ∥U∥2⋆̃ (in particular, there is no

equality).

4.1 Stable ranks

There is a well-known surrogate of the rank of a matrix, known as the stable rank

or numerical rank (Rudelson and Vershynin (2007)), which we will instead call the

stable spectral rank. We show how the slice spectral and slice nuclear norms allow us

to generalize the concept of stable rank to tensors, in a number of ways.

Definition 4.10. The stable spectral rank of a matrix A is

(
∥A∥
∥A∥σ

)2

.
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The spectral stable rank finds traction in numerics as it is less sensitive than

the usual rank to perturbations in the smallest singular values (in particular to

perturbations of any singular values of 0). Although this version of stable rank is the

most common, there are some alternate but related notions:

Definition 4.11. The stable nuclear rank of a matrix A is

(
∥A∥⋆
∥A∥

)2

.

The stable nuclear-spectral rank of a matrix A is

∥A∥⋆
∥A∥σ

.

It is worth considering how these ranks compare for a given matrix:

Proposition 4.12. For any nonzero matrix A of rank r,

(
∥A∥
∥A∥σ

)2

≤ ∥A∥⋆
∥A∥σ

≤
(
∥A∥⋆
∥A∥

)2

≤ r.

Proof. Recall that the nuclear and spectral norms are dual, and so ∥A∥2 ≤ ∥A∥σ∥A∥⋆.

The first two inequalities result from rearranging this identity.

Suppose that A has rank r and {λ1, · · · , λr} are the (non-zero) singular values of

A, with λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0. Then recall that

∥A∥2 =
r∑

i=1

λ2
i

∥A∥2⋆ =

(
r∑

i=1

λi

)2

.
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By the generalized mean inequality,

(
1

r

r∑
i=1

λi

)2

≤ 1

r

r∑
i=1

λ2
i

and so

∥A∥2⋆ ≤ r∥A∥2,

as required.

Proposition 4.13. Let A be a matrix with stable nuclear rank s.

1. For r ≤ s
2

there exists a rank r approximation A′ to A with

∥A− A′∥2

∥A∥2
≤ 1− r

s
. (4.1)

2. For r ≥ s
2

there exists a rank r approximation A′ to A with

∥A− A′∥2

∥A∥2
≤ s

4r
. (4.2)

Proof. We may find a singular value decomposition

A =
n∑

i=1

σiui ⊗ vi

for A with ui, vi unit vectors, {ui} pairwise orthogonal, {vi} pairwise orthogonal, and

σ1 ≥ σ2 ≥ · · · ≥ σn the singular values of A.

Then ∥A∥2 =
n∑

i=1

σ2
i and ∥A∥2⋆ =

(
n∑

i=1

σi

)2

.

Let

A′ =
r∑

i=1

σiui ⊗ vi.

Then ∥A− A′∥2 =
n∑

i=r+1

σ2
i .
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Firstly, the generalized mean inequality tells us that

1

r

(
r∑

i=1

σi

)2

≤
r∑

i=1

σ2
i

and so
1

r

(
r∑

i=1

σi

)2

≤ ∥A∥2 − ∥A− A′∥2.

Therefore,
∥A− A′∥2

∥A∥2
≤ 1− 1

r∥A∥2

(
r∑

i=1

σi

)2

. (4.3)

However, there exists another upper bound. Since the singular values are in

descending order, we certainly have

1

r

r∑
i=1

σi ≥ σr+1 ≥ σr+2 ≥ · · · ≥ σn,

and so

n∑
i=r+1

σ2
i ≤ 1

r

r∑
i=1

σi

n∑
i=r+1

σi =
1

r

r∑
i=1

σi

(
∥A∥⋆ −

r∑
i=1

σi

)
.

Therefore,
∥A− A′∥2

∥A∥2
≤ 1

r∥A∥2
r∑

i=1

σi

(
√
s∥A∥ −

r∑
i=1

σi

)
. (4.4)

Now both 4.3 and 4.4 are quadratics in
r∑

i=1

σi. It should be clear that the maximum

upper bound in 4.4 occurs when
r∑

i=1

σi =

√
s∥A∥
2

, and in that case, we have

∥A− A′∥2

∥A∥2
≤ 1

r∥A∥2

(√
s∥A∥
2

)2

=
s

4r
.

Although this always gives an upper bound for the error in the approximation, it

is not always the most efficient one. The bound from 4.3 is a tighter constraint than
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the one from 4.4 when

1− 1

r∥A∥2

(
r∑

i=1

σi

)2

≤ 1

r∥A∥2
r∑

i=1

σi

(
√
s∥A∥ −

r∑
i=1

σi

)

which happens when
r∑

i=1

σi ≥
r∥A∥√

s
. In that case, from 4.3 we see that

∥A− A′∥2

∥A∥2
≤ 1− 1

r∥A∥2

(
r∥A∥√

s

)2

= 1− r

s
.

Of course, this is only relevant if
r∑

i=1

σi is sufficiently small, i.e. if
r∥A∥√

s
≤

√
s∥A∥
2

.

This happens when r ≤ s
2
, as claimed.

We may use our slice nuclear and spectral norms to introduce analogous versions

of these stable ranks for higher order tensors.

Definition 4.14. The stable spectral rank of a tensor S is

(
∥S∥
∥S∥σ

)2

.

The stable nuclear rank of a tensor S is

(
∥S∥⋆
∥S∥

)2

.

The stable nuclear-spectral rank of a tensor S is

∥S∥⋆
∥S∥σ

.

Remark 4.15. These stable ranks have a number of nice properties which are not

shared by the usual tensor rank. For example, since the Frobenius, spectral and

nuclear norms are Kronecker cross norms, these stable ranks are all multiplicative
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with respect to Kronecker tensor products.

A similar, but weaker, result to that of Proposition 4.12 holds for higher order

tensors, again using the duality of the spectral and nuclear norms.

Proposition 4.16. For any nonzero tensor S,

(
∥S∥
∥S∥σ

)2

≤ ∥S∥⋆
∥S∥σ

≤
(
∥S∥⋆
∥S∥

)2

.

Remark 4.17. A tensor S has stable spectral rank, stable nuclear, and stable nuclear-

spectral rank all equal if and only if it satisfies ∥S∥2 = ∥S∥σ∥S∥⋆. Such tensors are

sometimes said to be unitangent (Derksen (2018)).

Remark 4.18. Note that unlike the case for matrices, it is not true that for a tensor S

of rank r, we have
(

∥S∥⋆
∥S∥

)2
≤ r. In particular, if S is the matrix multiplication tensor

for n× n matrices

S =
n∑

i=1

n∑
j=1

n∑
k=1

ei,j ⊗ ej,k ⊗ ei,k

where ei,j is the matrix with 1 in the (i, j)-th position and 0s elsewhere, then it is

known that ∥S∥2 = n3 and ∥S∥⋆ = n3 (Derksen (2016)), but the rank of S is strictly

smaller than n3 for sufficiently large n (Landsberg (2014)).

As in the case with matrices, we should expect that a tensor with small stable

nuclear rank might be well approximated by low rank tensors. We will require some

technology:

Definition 4.19. A k-sparse combination of vectors v1, v2, . . . , vr ∈ Rn is a vector∑r
i=1 λivi where λi ̸= 0 for at most k values of i.

Lemma 4.20. Suppose that w, v1, v2, . . . , vr ∈ Rn are nonzero vectors and w =

v1 + v2 + · · ·+ vr. Then there exists a nonzero k-sparse combination u of v1, v2, . . . , vr

such that

sin2 θ ≤ C2 − 1

C2 − 1 + k

53



where θ is the angle between w and u and

C =
||v1||+ ||v2||+ · · ·+ ||vr||

||w||
.

Proof. Let pi = ∥vi∥ for all i. We can scale w, so without loss of generality we may

assume that p1 + p2 + · · · + pr = 1. Then C = ∥w∥−1. Let ui = p−1
i vi, so that

w =
∑r

i=1 piui and ∥ui∥ = 1 for all i. Let U1,U2, . . . ,Uk be independent random

vectors, where P(Ui = uj) = pj for all i and j. Then ∥Ui∥ = 1 and the expected value

of Ui is E(Ui) = w. We also have E(⟨Ui,Uj⟩) = ⟨E(Ui),E(Uj)⟩ = ⟨w,w⟩ = ∥w∥2

for i ̸= j. Let A be the largest possible value of cos(θ) where θ is the angle between

w and U := U1 + U2 + · · ·+ Uk. Note that the outcome of U is always a k-sparse

combination of v1, v2, . . . , vr. We always have

⟨w,U⟩ ≤ A∥w∥∥U∥

Taking the expected value gives

k∥w∥2 = ⟨w, kw⟩ = ⟨w,E(U)⟩ ≤ A∥w∥E(∥U∥).

Dividing by ∥w∥ and squaring gives

k2∥w∥2 ≤ A2E(∥U∥)2 ≤ A2E(∥U∥2) = A2
∑

1≤i,j≤k

E(⟨Ui,Uj⟩) = A2(k+ (k2 − k)∥w∥2)

So

A2 ≥ k

∥w∥−2 + (k − 1)
=

k

C2 − 1 + k
.

For some outcome of U, cos(θ) = A and

sin2(θ) = 1− A2 ≤ 1− k

C2 − 1 + k
=

C2 − 1

C2 − 1 + k
.
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Proposition 4.21. Let S be a tensor with stable nuclear rank s. Then there exists a

rank r approximation, Sr, to S with

∥S − Sr∥2

∥S∥2
≤ s− 1

s− 1 + r
.

Proof. Let S =
n∑

i=1

vi be a nuclear decomposition of S, i.e. ∥S∥⋆ =
n∑

i=1

∥vi∥ and each

vi is a simple tensor. We may apply Lemma 4.20 with w = S. This results in a

r-sparse combination (and hence a tensor of rank less than or equal to r) Sr with the

angle θ between S and Sr satisfying

sin2 θ ≤ C2 − 1

C2 − 1 + r

where

C2 =

(
||v1||+ ||v2||+ · · ·+ ||vn||

||Sr||

)2

= s.

Since ∥S − Sr∥ = ∥S∥ sin θ, we thus have

∥S − Sr∥2

∥S∥2
≤ s− 1

s− 1 + r
.

For r = 1, this estimate gives a square error bound of 1− 1
s
, which matches the

one found for matrices in Proposition 4.13.

4.2 Slice Stable Ranks

Although we have seen one way in which the stable ranks for matrices can be

generalized to higher order tensors, our notion of slice nuclear and slice spectral norms
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provide an alternative. Whereas the stable ranks for matrices may be useful substitutes

for the usual matrix rank, our slice stable ranks for higher order tensors are instead

useful substitutes for slice rank.

Definition 4.22. The stable slice spectral rank of a tensor S is

(
∥S∥
∥S∥σ̃

)2

.

The stable slice nuclear rank of a tensor S is

(
∥S∥⋆̃
∥S∥

)2

.

The stable slice nuclear-spectral rank of a tensor S is

∥S∥⋆̃
∥S∥σ̃

.

Remark 4.23. In Chapter II, we encountered Derksen’s (Derksen (2020)) G-stable

rank, and with α = (1, · · · , 1), we saw that it can be computed over C as

rkG(S) = sup
g∈G

min
i

∥g · S∥2

∥Φi(g · S)∥2σ
= sup

g∈G

∥g · S∥2

maxi ∥Φi(g · S)∥2σ
= sup

g∈G

∥g · S∥2

∥g · S∥2σ̃
.

In other words, over C, the G-stable rank of S is simply the supremum of the

stable slice spectral rank of all tensors in the G-orbit of S.

Proposition 4.24. For any nonzero tensor S of slice rank s,

(
∥S∥
∥S∥σ̃

)2

≤ ∥S∥⋆̃
∥S∥σ̃

≤
(
∥S∥⋆̃
∥S∥

)2

≤ s.

Proof. As in the proof of Proposition 4.12, the first two inequalities follow from the

duality of the slice spectral and slice nuclear norms.
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To see that the stable slice nuclear norm is less than or equal to the slice rank,

suppose S has slice rank s and let S = S1 + · · · + Sr be a decomposition with

rk(Φ1(S1)) + · · ·+ rk(Φr(Sr)) = s and such that the Si are pairwise orthogonal. Then

∥S∥2 =
∑
j

∥Sj∥2 =
∑
j

∥Φj(Sj)∥2.

By Proposition 4.12, for each Si, we have rk(Φ(Si)) ≥
∥Φi(Si)∥2⋆
∥Φi(Si)∥2

, and so

srk(S) =
r∑

i=1

rk(Φi(Si)) ≥
r∑

i=1

∥Φi(Si)∥2⋆
∥Φi(Si)∥2

≥ (
∑

i ∥Φi(Si)∥⋆)2∑
j ∥Φj(Sj)∥2

=
(
∑

i ∥Φi(Si)∥⋆)2

∥S∥2

where the second inequality follows from Sedrakyan’s inequality (itself a special case

of the Cauchy-Schwartz inequality). Using the definition of the slice nuclear norm, we

see that srk(S) ≥ ∥S∥2⋆̃
∥S∥2

.
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