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analytical form of the eigenvalues is σ = ((n − 1)π/2)
√
T0/R1 for

n = 1, . . . , 46 (black plusses). D) The eleven lowest wavenumber
eigenmodes (Re(Y (x)) in green, Im(Y (x)) in blue), from the most
unstable (most negative σI) on the left to the most stable (largest
positive σI) on the right. The vertical black line separates unstable
modes (on its left) and stable modes (on its right). . . . . . . . . . . 86

3.13 The shapes Y (x) of the most unstable eigenmode as a function of
R1 and T0 in the free–free case. The real part of Y (x) is shown in
green and the imaginary part of Y (x) is shown in blue. Each shape
is scaled, both vertically and horizontally, to fit within the plot. The
shapes are superposed on the same stability boundary (red line) as
in figure 3.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.14 For two values of membrane mass (R1), 103 (left column) and 101

(right column), the imaginary (A, C) and real parts (B, D) of the
eigenvalues versus pretension (T0) for free–free membranes. Numer-
ical results are shown as points with color coded according to the
value of the RMS of the membrane’s slope for each (R1, T0) pair
given by (3.32), as given in the colorbar. The horizontal black line
in the top panels located at A) σI = ±10−6, C) σI = ±10−4 distin-
guishes stable modes (above) and unstable modes (below). We also
show typical modes that correspond to each branch with Y ′RMS < 9π/2. 89

3.15 Fixed–fixed membranes at R1 = 10−1 and A) T0 = 10−0.1, B)
T0 = 100, C) T0 = 100.1, and D) T0 = 100.2. These membranes lose
stability by divergence. We compare the most unstable modes ob-
tained from the eigenvalue analysis (dashed green lines) to the mem-
brane shapes of the time-stepping simulations in the small-amplitude
(growth) regime—in each panel, 15 equally spaced snapshots are
shown in the growth regime, gray and then black at the last time.
The arbitrary amplitudes of the green lines are set to match those
of the black lines. The light blue curves indicate shapes in the large-
amplitude steady state regime. . . . . . . . . . . . . . . . . . . . . 91
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3.16 Fixed–free membranes at R1 = 10−0.5 and R3 = 101.5, with T0 =
10−0.8 for A, C, E and T0 = 10−0.7 for B, D, and F. In panels A
and B the solid red lines are Re(ynonlin(α)) estimated from the time-
stepping simulation, which are close to Re(Y (x)) from the eigenvalue
problem (dotted black lines). The solid green lines are Im(ynonlin(α)),
close to Im(Y (x)) from the eigenvalue problem (dotted blue lines).
The gray lines are a subset of snapshots in the linear growth regime.
In panels C and D we show snapshots during the small-amplitude
(growth) regime, but with the exponential growth removed. Panels
E and F show snapshots during the steady-state large-amplitude
motions. We show 20 equally spaced snapshots of membranes over
a period, ranging from light blue at earlier times to dark blue at the
last time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.17 Same quantities as described in figure 3.16 but with R1 = 101 and
R3 = 101.5, and T0 = 10−0.1 (for A, C, and E); T0 = 100 (for B, D,
and F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Schematic diagram of a flexible membrane (dark green surface) at an
instant in time. U is the oncoming flow velocity and W is the mem-
brane’s spanwise width. The leading edge and the trailing edge of
the membrane is attached to inextensible rods (red frames) that ro-
tate freely about their hinged ends (small black/blue circles). There
is also a vortex wake (light green surface) emanating from the mem-
brane’s trailing edge. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Slice through the membrane in figure 4.1. Schematic diagram of a
flexible membrane (green line) at an instant in time. The leading
edge of the membrane with position (x(−1, t), y(−1, t)) is attached
to an inextensible rod frame (red line) whose motion is restricted to
a circle of radius R (length of rod frame) and whose other end is fixed
at (−R, 0) for all time. The membrane’s trailing edge with position
(x(1, t), y(1, t)) is attached to another rod frame whose other end is
fixed at (2+R, 0) for all time. There is also a vortex wake emanating
from the membrane’s trailing edge (light green line). . . . . . . . . . 102

4.3 Examples of membrane (black) and rod (red and blue) snapshots at
two different times, superposed on a larger set of membrane snap-
shots (gray) within a period. Each column corresponds to a rod
length R: 10−0.5 (left column), 100 (middle column), and 100.5 (right
column). Here R3 = 101.5 and T0 = 10−2. . . . . . . . . . . . . . . . 104
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4.4 (Inextensible rods) Snapshots of large-amplitude membrane motions
in R-R3 space for fixed T0 = 10−2 and R1 = 10−0.5. Colors represent
the time-averaged deflection of the membranes defined by (4.11).
For rods with length R ≤ 10−1 the membranes behave similarly to
those with fixed–fixed ends, yielding a single hump solution, whereas
when R ≥ 10−0.5 the membranes oscillate as in some cases with free–
free ends. At each (R,R3) value, the set of snapshots is scaled to
fit within a colored rectangle centered at that value and normalized
by the maximum deflection of the snapshots to show the motions
more clearly. The red solid line separates membranes with m = 40
points (above) and m = 120 points (below). In the framed figure
we look at a finer grid between R = 10−0.7 and 10−0.5, to investigate
dynamics near the transition between the single-hump solution and
the flapping state occurs. The red dashed lines indicate a jump in
the increment of R values. . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 (Inextensible rods) Time-averaged deflections of the membranes (de-
fined by (4.11)) versus R3 for various R and fixed R1 = 100.5,

T0 = 10−2. The dotted black line indicates the scaling R
−1/2
3 . . . . . 107

4.6 (Inextensible rods) Membrane profiles in the large-amplitude steady-
state regime, in R1-R space for fixed T0 = 10−2 (dimensionless pre-
tension) and R3 = 101.5 (dimensionless stretching rigidity). The
colored background represents the time-averaged deflection of the
membranes defined by (4.11). . . . . . . . . . . . . . . . . . . . . . 110

4.7 (Inextensible rods) Colors represent the time-averaged number of
zero-crossings (values in color bar at right) for membrane flutter in
the R1-R parameter space for fixed T0 = 10−2 and R3 = 101.5. Note
that R1 is the dimensionless membrane mass, T0 is the dimensionless
pretension, and R3 is the dimensionless stretching modulus. We also
define R to be the length of the inextensible rods at either end of
the membrane. The white background corresponds to membranes
with no zero-crossings. At each (R1, R) value the set of snapshots is
normalized by the maximum deflection of the snapshots to show the
motions more clearly. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8 (Inextensible rods) Colors represent the time-averaged number of
zero-crossings (values in color bar at right) for membrane flutter in
the R1-R parameter space for fixed T0 = 10−2 and R3 = 101.5 for
light membranes (R1 ≤ 10−1). Snapshots of these large-amplitude
membrane motions are superposed to show the motions clearly in
this region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.9 (Inextensible rods) Time-averaged number of local extrema of the
membranes versus the dimensionless mass density R1 for various R
and fixed R3 = 101.5 and T0 = 10−2. The dotted black line at small
R1 indicates the scaling R−1

1 . . . . . . . . . . . . . . . . . . . . . . . 114
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4.10 (Inextensible rods) Colors represent the dominant periods (values in
color bar at right) of large-amplitude motions for various R1 and
R, and fixed T0 = 10−2 and R3 = 101.5. The data in the bottom-
left corner are obtained for a shorter time and so we neglect the
computational results for those values of R1 and R. . . . . . . . . . 115

4.11 Plots of the dominant period (T ) versus mass density R1 for various
R and fixed R3 = 101.5 and T0 = 10−2. The dotted black line at
large R1 shows the scaling R

1/2
1 and the dotted black line at small

R1 shows the scaling R
5/6
1 . . . . . . . . . . . . . . . . . . . . . . . . 116

4.12 Schematic diagram of a flexible membrane (green surface) at an in-
stant in time. U is the oncoming flow velocity. There is also a
vortex wake (light green surface) emanating from the membrane’s
trailing edge. The leading edge of the membrane with position
(x(−1, t), y(−1, t)) is attached to springs (red coils) of spring con-
stant ks whose other ends are fixed at (0, 0) for all time. The mem-
brane’s trailing edge with position (x(1, t), y(1, t)) is attached to an-
other spring whose other end is fixed at (2, 0). . . . . . . . . . . . . 117

4.13 Schematic diagram of a flexible membrane (green surface) at an in-
stant in time. U is the oncoming flow velocity. There is also a vortex
wake (light green surface) emanating from the membrane’s trailing
edge. The leading edge of the membrane with position (0, y(−1, t))
is attached to vertical springs (red coils) of spring constant ks whose
other end is fixed at (0,0) for all time. The membrane’s trailing edge
with position (2, y(1, t)) is attached to another vertical spring whose
other end is fixed at (2, 0). . . . . . . . . . . . . . . . . . . . . . . . 119

4.14 (Vertical springs) Snapshots of large-amplitude membrane motions
in ks-R3 space for fixed T0 = 10−2 and R1 = 10−0.5. Colors represent
the time-averaged deflection of membranes defined by (4.11). Oscil-
latory (ks ≤ 100) and steady single-hump solutions (ks ≥ 100.5) are
obtained. At each (ks, R3) value, the set of snapshots is scaled to
fit within a colored rectangle at the (ks, R3) value and normalized
by the maximum deflection of the snapshots to show the motions
more clearly. The framed panel at right shows a finer grid between
ks = 100.12 and 100.18, near the transitional ks value. The red line
separates membranes with m = 40 points (above) and m = 80 points
(below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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4.15 (Vertical springs) The region in R1-T0 space in which membranes
are unstable. The springs attached at the leading and trailing edges
of the membrane have spring constant ks = 10−1. The red line and
red dots indicate the position of the stability boundary computed
using linear interpolation between σI of the smallest T0 that gives a
stable membrane and the σI of the largest T0 that gives an unstable
membrane (shown in the error bars). The color of the dots below the
stability boundary labels: A) The imaginary part of the eigenvalue
(σI) corresponding to the most unstable modes. It represents the
temporal growth rate. B) The real part of the eigenvalues (σR) for
the most unstable mode, representing the angular frequency. The
gray dots correspond to modes that lose stability by divergence and
have σR ≤ 10−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.16 (Vertical springs) The shapes Y (x) of the most unstable eigenmode
as a function of R1 and T0 with springs that have a spring stiff-
ness of ks = 10−1. The real part of Y (x) is shown in green and
the imaginary part of Y (x) is shown in blue. Each shape is scaled,
both vertically and horizontally, to fit within the plot. Modes ex-
hibiting a divergence instability have a gray rectangle outline. The
shapes are superposed on the same stability boundary (red line) as
in figure 4.15. The blue dotted line represents the stability bound-
ary for fixed–fixed membranes and the black dotted line represents
the stability boundary for free–free membranes from chapter III. We
include them here for comparison. . . . . . . . . . . . . . . . . . . . 126

4.17 (Vertical springs) Same as figure 4.15 but with ks = 100. . . . . . . 128
4.18 (Vertical springs) Same as figure 4.16 but with ks = 100. . . . . . . 129
4.19 (Vertical springs) Same as figure 4.15 but with ks = 101. . . . . . . 130
4.20 (Vertical springs) Same as figure 4.16 but with ks = 101. . . . . . . 131
4.21 Schematic diagram of a section of an infinite, flexible membrane

(green surface) at an instant in time. Here L is the x-period of the
membrane, y(x, t) is the membrane deflection and the red springs of
stiffness ks are spaced one unit apart. The distance between springs
is smaller than the membrane’s period (L > 1, L ∈ N). . . . . . . . 134

4.22 Imaginary part of the most unstable eigenmode [Im(y(x))] in T0-ks
parameter space for A) R1 = 10−4, B) R1 = 10−1, C) R1 = 100,
and D) R1 = 104. Modes exhibiting a divergence instability with
σR ≤ 10−9 have a gray rectangle outline. In all the panels, we use
N = 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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4.23 (Infinite, periodic membrane) The region in R1-T0 space in which
membranes are unstable. The color of the dots in the instability re-
gion labels the imaginary part of the eigenvalues (σI) corresponding
to the most unstable modes. It represents the growth rate. The
springs have stiffness values of: A) ks = 0 (analytical result), B)
ks = 10−1, C) ks = 100, and D) ks = 101. The numerical results
shown in panels B–D are with N = 29. The red rectangle in panel A
indicates the region we consider in panels B–D to facilitate compar-
ison. The red outline on some of the colored dots indicates the cases
where convergence with respect to N (as defined by (4.50)) was not
obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.24 (Infinite, periodic membrane) The region in R1-T0 space in which
membranes are unstable. The color of the dots in the instability
region labels the real part of the eigenvalues (σR) corresponding to
the most unstable modes. It represents the angular frequency. The
springs have stiffness values of: A) ks = 0 (analytical result), B)
ks = 10−1, C) ks = 100, and D) ks = 101. The numerical results
shown in panels B–D are with N = 29. The gray dots correspond
to modes that lose stability by divergence and have σR ≤ 10−9.
The red rectangle in panel A indicates the region we consider in
panels B–D to facilitate comparison. The red outline on some of the
colored/gray dots indicates the cases where convergence with respect
to N (as defined by (4.50)) was not obtained. . . . . . . . . . . . . 141

4.25 (Infinite, periodic membrane) Plots showing the membrane’s domi-
nant wavenumber versus T0 for various fixed R1 values at four values
of spring constants: A) ks = 0 (analytical results), B) ks = 10−1, C)
ks = 100, and D) ks = 101. We show typical examples of the imagi-
nary part of the eigenmode shapes. The dotted black line shows the
scaling T−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.26 (Infinite, periodic membrane) Plots showing the real parts of the

eigenvalues for spring constants: A) ks = 0 (analytical result), B)
ks = 10−1, C) ks = 100, and D) ks = 101. Panels B–D share the
same legend, and result from computations with N = 29. The dotted
black line at moderate-to-large values of R1 shows the scaling R−1

1 . . 147
4.27 (Infinite, periodic membrane) Plots showing the imaginary parts of

the eigenvalues for spring constants: A) ks = 0 (analytical result),
B) ks = 10−1, C) ks = 100, and D) ks = 101. Panels B–D share the
same legend, and for the numerical results shown we use N = 29.
The dotted black line at moderate-to-large values of R1 shows the

scaling R
−1/2
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
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5.1 Schematic diagram (in perspective view) showing a three-dimensional
membrane (dark green surface) with fixed leading and trailing edges
and free side edges. Along a free edge, points are fixed to massless
rings that slide without friction along vertical poles. U êx is the on-
coming flow velocity, W is the membrane’s spanwise width, and 2L
is the membrane’s chord. There is also a flat vortex wake (light blue
surface) that emanates from the membrane’s trailing edge. In the
lower portion of the figure, we also show schematically (in top view)
the 12 distinct boundary conditions explored in the current work.
The diagonal marks indicate a fixed (F) boundary and other bound-
aries are free (R). The arrows indicate the far-field flow direction
which is the same for each configuration. . . . . . . . . . . . . . . . 157

5.2 Discretization of the membrane surface into panels with vortex rings.
On the left, we show an example of an FRRR deformed membrane
(dark green surface) used for computing the inertial and elasticity
terms, together with the flat membrane panels (light blue surface)
and flat wake panels (light gray surface) used for the kinematic con-
dition. On the right, we show a zoomed-in version of the same
membrane with a subset of the vortex rings (blue rounded rectan-
gles) on top of the flat membrane and flat wake panels. The curved
arrows illustrate the velocity induced by positive Γ according to the
right-hand rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3 Comparisons of fixed–fixed (2D) and FRFR (3D) computations at
three choices of (R1, T0, R3): (a) (100, 10−0.25, 103), (b) (10−0.5, 10−0.5, 101),
and (c) (100.25, 10−0.75, 101.5). Recall that R1 is the dimensionless
membrane mass, T0 is the dimensionless pretension, and R3 is the
dimensionless stretching rigidity. The panels at left show plots of
log10 |zcenter| versus time. At right, snapshots of membranes at equally
spaced times (labeled at top left) are shown. The plots and snap-
shots are green for 2D membranes and light pink (M = 40), dark
pink (M = 80), or black (M = 160) for 3D membranes. Here the
aspect ratio W/2L = 4, N = 10, and σ = 10−6 in (5.26). . . . . . . . 174

5.4 Comparisons of fixed–free (2D) and FRRR (3D) computations at
three choices of (R1, T0, R3): (a) (100, 10−1, 102), (b) (10−0.5, 10−1, 102),
and (c) (100.5, 10−0.5, 102). The panels at left show plots of log10 |zcenter|
versus time. At right, snapshots of membranes at equally spaced
times (labeled at top left) are shown. The plots and snapshots
are green for 2D membranes and light pink (M = 40), dark pink
(M = 80), or black (M = 160) for 3D membranes. Here the aspect
ratio W/2L = 4, N = 10, and σ = 10−6 in (5.27). . . . . . . . . . . 175
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5.5 Comparisons of free–free (2D) and RRRR (3D) computations at
three choices of (R1, T0, R3): (a) (10−0.5, 10−0.75, 101), (b) (100.5, 10−0.5, 102),
and (c) (10−0.25, 10−0.8, 102). The panels at left show plots of log10 |max(z)−
min(z)| and zcenter versus time. At right, snapshots of membranes at
equally spaced times (labeled at top left) are shown. The plots and
snapshots are green for 2D membranes and light pink (M = 40),
dark pink (M = 80), or black (M = 160) for 3D membranes. Here
the aspect ratio W/2L = 4, N = 10, and σ = 10−3 in (5.28). . . . . 177

5.6 Two examples of how the pressure distribution changes with in-
creasing numbers of streamwise panels. Panels (a)–(c) show plots
of log10 |zcenter| versus time and z(α1, 0, tp) and [p](α1, 0, tp) versus
x(α1, 0, tp), respectively, for an FRRR membrane with R1 = 10−0.25,
T0 = 10−0.75, and R3 = 101 at times tp where |zcenter(t)| has a peak
that is closest to 14.5 (enclosed in the orange square), for each M .
Panels (d)–(f) show the same quantities for an FRRR membrane
with R1 = 100, T0 = 10−0.75, and R3 = 101, for the troughs in
|zcenter(t)| nearest to tp ≈ 12.6. The plots are black for M = 40, blue
for M = 80, red for M = 160, and green for M = 320. Here the
aspect ratio W/2L = 4, N = 10, and σ = 10−4 in (5.27). . . . . . . . 178

5.7 Comparisons of 2D and 3D membrane deflections at three bound-
ary conditions and (R1, T0, R3) values: (a) fixed–fixed versus FRFR
at (100, 10−0.25, 103); (b) fixed–free versus FRRR at (100, 10−1, 102)
and (c) free–free versus RRRR at (10−0.25, 10−0.8, 102), where both
log10 |max(z) −min(z)| and zcenter are plotted, at left and right re-
spectively. The plots are green for 2D membranes and light pink
(N = 10), dark pink (N = 20), or black (N = 40) for 3D mem-
branes. Here 41 Chebyshev-Lobatto points are used in 2D and for
the 3D cases W/2L = 4, M = 40, and σ = 10−6, 10−6, and 10−3

respectively in (a)–(c). . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.8 Comparisons of stability boundaries in 2D (orange from chapter II;

red from chapter III) and 3D with aspect ratios 1, 2, 4, and 8 (rang-
ing from light blue to dark blue) for (a) fixed–fixed and FRFR,
(b) fixed–free and FRRR, and (c) free–free and RRRR cases. Be-
low the stability boundary, 3D midspan profiles with aspect ratio
8 (black) are compared with 2D profiles (green) during the linear
growth regime. Here R3 = 101, N = 10, M = 40 (for FRFR and
FRRR membranes) and M = 80 (for RRRR membranes) for all
aspect ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.9 Stability boundaries for the 12 boundary conditions, listed at right,
and placed in four groups that depend on only the leading and trail-
ing edge conditions, as in figure 5.1. . . . . . . . . . . . . . . . . . . 185
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5.10 Time-averaged deflections of the membranes (defined by (5.29)) ver-
sus R3 for various R1 (listed in the top panel of each column except
column 2 which uses the same values as column 1) and fixed T0

for all 12 boundary conditions. Recall that R1 is the dimensionless
membrane mass, T0 is the dimensionless pretension, and R3 is the
dimensionless stretching rigidity. Columns 1–4 correspond to groups
1–4 in figures 5.1 and 5.9. The dotted black line in each subpanel

indicates the scaling R
−1/2
3 . . . . . . . . . . . . . . . . . . . . . . . . 187

5.11 Plots of mean frequency log10 f versus mass density log10R1 with
variousR3 and fixed T0 values for all 12 boundary conditions. Columns
1–4 correspond to groups 1–4 in figures 5.1 and 5.9. The dotted black

line in each subpanel indicates the scaling R
−1/2
1 . . . . . . . . . . . . 189

5.12 Typical membrane dynamics with fixed leading and trailing edges.
The color plots classify the different membrane dynamics across a
grid of (R1, T0) values for three values of R3 (100, 101, 102) with black
dots indicating periodic motions. Recall that R1 is the dimension-
less membrane mass, T0 is the dimensionless pretension, and R3 is
the dimensionless stretching rigidity. Representative examples of
motions in the purple, green, and yellow regions are shown in the
bottom three rows, identified by small colored rectangles. To the
right of the rectangles are overlaid sequences of 11 midspan snap-
shots in black, for FFFF boundary conditions. To the right of the
midspan snapshots are a smaller representative sequence of four 3D
snapshots, from left to right with increasing time. To the left of
the midspan snapshots are single 3D snapshots representing similar
cases with other side-edge conditions (FRFF and FRFR). . . . . . . 193

5.13 Typical membrane dynamics with fixed leading edges and free trail-
ing edges. The color plots in the top row show the time-averaged
number of zero-crossings of the membranes’ midspan profiles at var-
ious (R1,T0) values for R3 = 101. The black dots indicate periodic
motions. Representative examples of motions at a sequence of R1

values from 10−1 to 101.5 are shown in the bottom six rows. Over-
laid sequences of 11 midspan snapshots are shown in black, for FRRF
boundary conditions. To the right of the midspan snapshots are a
smaller representative sequence of four 3D snapshots, from left to
right with increasing time. To the left of the midspan snapshots are
single 3D snapshots representing similar cases with other side-edge
conditions (FFRF and FRRR). . . . . . . . . . . . . . . . . . . . . 195
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5.14 Typical membrane dynamics with free leading edges and fixed trail-
ing edges. The color plots classify the different membrane dynamics
across a grid of (R1, T0) values for three values of R3 (100, 101, 102)
with black dots indicating periodic motions. Representative exam-
ples of motions in the light purple, yellow, and dark purple regions
are shown in the bottom three rows, identified by small colored rect-
angles. To the right of the rectangles are overlaid sequences of 11
midspan snapshots in black, for RFFF boundary conditions (top two
rows) and RRFF boundary conditions (bottom row). To the right of
the midspan snapshots are a smaller representative sequence of four
3D snapshots, from left to right with increasing time. To the left of
the midspan snapshots are single 3D snapshots representing similar
cases with other side-edge conditions (RRFR and RRFF). . . . . . . 198

5.15 Typical membrane dynamics with free leading and trailing edges.
The color plots classify the different membrane dynamics across a
grid of (R1, T0) values for three values of R3 (100, 101, 102) with black
dots indicating periodic motions. Representative examples of mo-
tions in all the colored regions are shown in the bottom seven rows,
identified by small colored rectangles with symbols. To the right
of the rectangles are overlaid sequences of 11 midspan snapshots in
black, for RFRF (rows 1, 3, 4, and 5), RRRF (row 2), and RRRR
boundary conditions (rows 6 and 7). To the right of the midspan
snapshots are a smaller representative sequence of four 3D snapshots,
from left to right with increasing time. To the left of the midspan
snapshots are single 3D snapshots representing similar cases with
other side-edge conditions (RRRF and RRRR). . . . . . . . . . . . 199

C.1 (Free–free.) Surface plot of the mean frequency computed from the
time series of the circulation, once the membranes have entered the
large-amplitude regime, with T0 = 10−2. The corresponding power
spectra for each of the membranes are also shown on the surface
plot. The data in the right bottom corner are obtained for a shorter
time and so, we neglect the computational results for those values of
R1 and R3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

D.1 Comparison between the A) real and B) imaginary parts of the eigen-
modes with fixed–free boundary conditions, using grids with m = 80
and m = 120. Each shape is scaled in both vertical and horizontal
directions to fit within the plot. The red dots indicate the position
of the stability boundary (same as in figure 3.9). . . . . . . . . . . . 212

D.2 At each (R1, T0) in the instability region (below red line), the relative
error (D.2) in the eigenvalues when using m = 80 and m = 120
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ABSTRACT

Despite the advantages associated with extensible membranes in biological and

engineering applications, the majority of previous studies have focused on the motion

of bending-dominated flexible bodies through a fluid flow. In this thesis, we develop

a variety of mathematical models and numerical methods to analyze the small- and

large-amplitude dynamics of thin membranes (of zero bending rigidity) with vortex-

sheet wakes in two- and three-dimensional inviscid flows.

In chapter II, we study the dynamics of membranes initially aligned with a uni-

form background flow. This is a benchmark fluid-structure interaction that has

previously been studied mainly in the small-deflection limit, where the flat state

may be unstable. Here we study the initial instability and large-amplitude dynamics

with respect to three parameters: membrane mass density, stretching rigidity, and

pretension. With both membrane ends fixed, we find that all membranes become

unstable by divergence below a critical pretension close to the value identified in pre-

vious studies, and converge to steady deflected shapes. With the leading edge fixed

and trailing edge free, divergence and/or flutter occurs, and a variety of periodic

and aperiodic oscillations are found. With both edges free, the membrane may also

translate transverse to the flow, with steady, periodic, or aperiodic trajectories.

In chapter III, we investigate the instability of membranes in terms of growth

rates, angular frequencies, and eigenmode shapes, by solving a nonlinear eigenvalue

problem iteratively. When both membrane ends are fixed, the stability boundary is

xxvii



fairly simple: light membranes become unstable by divergence and heavy membranes

lose stability by flutter and divergence, which occurs for a pretension value that

increases with the mass. With the leading edge fixed and trailing edge free, or

both edges free, the membrane eigenmode shapes become more complicated and

eigenmodes transition in shape across the stability boundary. We also compare our

results against the simulations of the corresponding initial value problem in the

growth regime and find excellent agreement.

In chapter IV, we consider membranes that are held by freely-rotating tethers

and find that the tethered boundary condition allows a variety of unsteady large-

amplitude motions—both periodic and chaotic. We characterize the oscillations over

ranges of: membrane mass density, stretching stiffness, pretension, and tether length

and determine the region of instability and small-amplitude behavior by solving

a nonlinear eigenvalue problem. We additionally consider a simplified model: an

infinite periodic membrane, which yields a regular eigenvalue problem, analytical

results, and asymptotic scaling laws. We find qualitative similarities among all three

models in terms of the oscillation frequencies and membrane shapes at small and

large values of membrane mass, pretension, and tether length/stiffness.

In chapter V, we develop a model and numerical method to study the large-

amplitude flutter of rectangular membranes that shed a trailing vortex-sheet wake in

a 3D inviscid fluid flow. For all 12 combinations of boundary conditions at the mem-

brane edges we compute the stability thresholds and the subsequent large-amplitude

dynamics across the same three-parameter space as before. We find that 3D dynam-

ics in the 12 cases naturally form four groups based on the conditions at the leading

and trailing edges. The conditions at the side edges, though generally less impor-

tant, may have qualitative effects on the membrane dynamics—e.g. steady versus

xxviii



unsteady, periodic versus chaotic, or the variety of spanwise curvature distributions—

depending on the group and the physical parameter values.

xxix



CHAPTER I

Introduction

1.1 Motivation

Interactions between flexible structures and high-Reynolds-number flows are ubiq-

uitous in nature and engineering applications. The physical mechanisms that govern

these fluid-structure interactions provide us with important insights into the fluid

dynamics of biolocomotion. For example, fish can exploit energy from surround-

ing vortices and move efficiently by undulating their bodies [49,189], or synchronize

their motions with the oncoming vortices [104]. These observations have inspired

engineers to design and manufacture continuously deformable robots that exhibit

these behaviors [98, 101, 148]. Birds and other flying animals also take advantage of

such mechanisms to achieve efficient locomotion. In particular, bats—one of nature’s

most agile fliers [27,157,158,164,165]—can adapt to the surrounding flow conditions

by deforming their thin, compliant membrane wings.

An extensible membrane is a soft material that undergoes significant stretching

in a fluid flow and has negligible bending modulus. When it is aligned with a fluid

flow, the surrounding fluid forces can cause it to flutter and become unstable. Being

able to predict the onset of membrane instability across parameter space, either by

flutter, divergence, or a combination of the two, is fundamental to a wide range
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of applications. Stable membranes can be used in a variety of configurations in

pneumatic membrane structures such as roofs in civil engineering [64, 92, 166–168],

supersonic aircraft and rockets [15, 118, 192], ballutes for space exploration [142,

152], parachutes [135,161], and bio-inspired propulsion: aircraft and shape-morphing

airfoils [74,79,102,137,151,191], micro-air vehicles [1,11,103,157,160], and sails [30,

91,126,127,130].

When a rigid wing moves through a flow its upper surface may experience flow

separation and significant reductions in aerodynamic efficiency in both steady and

unsteady flows, thus limiting the aircraft’s maneuverability and performance. How-

ever, a flexible membrane is able to adapt quickly to unsteady airflow conditions by

assuming a deformed shape that can inhibit flow separation and enhance aircraft ma-

neuverability. [137] studied how a membrane wing adjusts its shape to fluid pressure

loading at various angles of attack. [191] coupled thin airfoil theory with a membrane

equation to study the effects of wing compliance, inertia, and flapping kinematics

on aerodynamic performance. The passive adaptivity of a membrane wing has the

potential to increase lift forces and delay the occurrence of stall to higher angles

of attack for micro-air vehicles (MAVs) [74, 102, 160]. [151] used electrostatic forces

to control a membrane shape and delay the transition from a laminar boundary

layer, reducing viscous drag. Recent developments in membrane aerodynamics are

reviewed in [103,185].

There is a wealth of literature describing the fluid dynamics induced by the motion

of a flexible body through a fluid flow. In most studies the body motion is bending-

dominated, with a moderate bending modulus, but essentially inextensible [3,10,14,

42,43,93,117,153,154,173,178,179,196,207,208,210]. The important case of extensible

membranes of zero bending modulus has received somewhat less attention. In this
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thesis we develop models and numerical methods for extensible membranes with a

vortex-sheet wake. This extends the work on inextensible bending bodies [2, 4].

1.2 Literature Review

1.2.1 Range of Parameters

The initial, small-amplitude stage of the flutter instability has been the focus of

several experimental, theoretical, and numerical studies. We classify these works and

the results within this thesis in terms of three dimensionless parameters: membrane

mass density (R1), stretching modulus (R3), and pretension (T0), with typical ranges

shown in table 1.1. The methods developed in this thesis allow us to consider wider

ranges of the parameters than those of the previous studies.

Table 1.1: Typical values of parameter ranges relevant to our current work as used in previous mem-
brane studies. Computational (c), experimental (e), or theoretical (t) ranges of the dimensionless
body mass density R1, stretching modulus R3, and pretension T0.

Reference Material R1 =
ρsh

ρfL
R3 =

Eh

ρfU2L
T0 =

T

ρfU2LW

[128]t sail 0–6 — 0–2
[99]e sail 0–0.8 101, 50, 102, 500, 103 —
[168]e& t latex rubber 0.1, 1 — 130.6, 217
[79]c& e latex rubber 2.4 100, 200, 400, 614 4, 10, 20, 30.7
[184]c — 0–80 — 0–6
[124]c — 0–60 — 0–3
[32]e silicone rubber 2.5–31.25 3.75× 10−5–0.04 1–4
[33]e silicone rubber 2.5–31.25 3.75× 10−5–0.04 1–4
Chapter IIc& t — 10−3–102 100–104 10−3–103

Chapter IIIc& t — 10−3–103 — 10−1.5–102

Chapter IVc& t — 10−4–104 100.5–104 10−3–102

Chapter Vc& t — 10−3–102 100–104 10−1.5–102

Next, we give a brief summary of the contents of each work mentioned in table 1.1.

[128] used an infinite periodic membrane model with a low-mode approximation and

found that stability is lost through divergence. [99] used a vortex sheet model to

study a more complex situation—the motions of a sail membrane under harmonic
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perturbations of the trailing edge and with randomly perturbed inflow velocities.

[168] studied the membrane flutter threshold and divergence modes theoretically,

with some experimental validation. Although most works omit specific values of the

thickness ratio h/L and the bending modulus R2 = Eh3/(12ρfU
2L3) = R3(h/L)2/12,

an example is given in [79] for a latex rubber, where the thickness ratio is h/L = 1/750

and the bending modulus is therefore about a factor of 10−7 smaller than R3. There

they studied a heaving and pitching membrane airfoil in a fluid stream numerically at

Reynolds number 2500, and found elastic modulus and prestress parameters that led

to enhanced thrust and propulsive efficiency. [184] presented a more detailed flutter

threshold calculation using an inviscid, small amplitude vortex sheet model. [124]

compared a reduced-order model with direct numerical simulations to study the

effect of Reynolds number on the flutter stability threshold and small-amplitude

membrane deflection modes.

[32] modeled the material properties of ultrasoft dielectric elastomers over a range

of elastic properties, prestretch, and thicknesses. They measured the mechanical re-

sponse of the silicone membranes and found that stiffer membranes harden at lower

stretch ratios due to the increased fraction of polymer chains in them. [33] studied the

deformations, forces, and flow fields associated with a highly compliant membrane

disk placed head-on in a uniform flow field. With increasing flow velocity, the mem-

brane deforms hyper-elastically into parachute-like shapes. A resulting drag increase

correlates with the unsteady fluid-structure interactions between the membrane and

the flow.

So far there has been relatively little work on the large-amplitude dynamics follow-

ing the initial flutter instability, and this is the focus of chapters II and V. Throughout

this thesis, we set the bending modulus R2 to zero and study the dynamics of mem-
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branes over wide ranges of the remaining parameters—R1, R3, and T0—as well as

the tether length or stiffness (in chapter IV). There unsteady dynamics are possible

because, unlike in previous studies, the membrane is attached to inextensible rod

tethers whose lengths set the transition between steady and unsteady motions.

1.2.2 Boundary Conditions

In an early work, Nielsen [130] studied a membrane with both edges fixed in a

two-dimensional flow, and determined the critical value of the pretension parameter

that gives rise to a fully convex membrane shape. An overview of early models

based on potential-flow aerodynamics can be found in [126]. Previous works have

studied the difference between the flutter of membranes with zero bending rigidity

and plates in the limit of zero bending rigidity. Because the bending rigidity term

has the highest (fourth-order) spatial derivative, it is a singular limit, and thus the

two problems can have significant differences. In the case of panels in supersonic

flows, the membrane is stable whereas the plate can be unstable to flutter in the

limit [39, 82, 159]; see also [38, pp. 25–26]. This so-called “membrane paradox” also

arises in solar sails [53], and a related boundary-layer phenomenon occurs for heaving

plates, hanging under gravity [110]. Over the past few decades, theoretical [128,168],

computational [79,113,124,184], and experimental [99] studies of membrane stability

have revealed a wide range of membrane stability behavior and dynamics with various

boundary conditions.

In chapters II and III we investigate how the membrane dynamics change when

using different boundary conditions at the two ends of the membrane. In the first

case, fixed–fixed, the membrane ends were held fixed, as in most previous studies of

membrane flutter [99, 124, 168, 184]. In the second case, fixed–free, we allowed the

trailing edge of the membrane to move, but only in the direction perpendicular to the

5



oncoming flow. This gives the free-end boundary condition for a string or membrane

in classical mechanics [45, 59], where the membrane end has horizontal slope. The

physical meaning of the boundary condition is that the end slides without friction

perpendicularly to the membrane’s flat equilibrium state (for example, in [45] the end

is attached to a frictionless, massless ring). The third case, free–free, corresponds to

a membrane whose leading and trailing edges are both free to move in the vertical

direction.

Although well known in classical mechanics, free-end boundary conditions have

not been studied much in membrane (as opposed to beam/plate) flutter problems.

In [74], the authors study membrane wings with partially free trailing edges and find

that trailing edge fluttering may occur at relatively low angles of attack. Another

recent experimental study found that membrane wing flutter can be enhanced by

the vibrations of flexible leading and trailing edge supports [13]. Partially free edges

occur also in sails: the shape of a sail membrane can be controlled by altering the

tension in cables running along its free edges [91]. Flutter can occur when the tension

in these edges is sufficiently low [30]. A related application is to energy harvesting

by membranes mounted on tensegrity structures (networks of rigid rods and elastic

fibers) and placed in fluid flows [163, 204]. In such cases the membrane ends have

some degrees of freedom akin to the free-end boundary conditions defined above.

1.2.3 Three-dimensional Flows

The regions in parameter space where membrane flutter occurs have been pre-

dicted by linear models that mostly assume an infinite membrane span and two-

dimensional (2D) flow. In chapter V of this thesis we use a three-dimensional (3D)

inviscid flow model based on the vortex lattice method to study membrane stability

in the linear regime of small deflections as well as large-amplitude nonlinear mem-
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brane dynamics. We find qualitative changes in flutter behavior in some cases due

to three-dimensionality.

Only a small number of studies have considered fully-coupled interactions of flex-

ible bodies and 3D inviscid flows. The formulation of the mechanical force balance

laws and the numerical methods are more complicated in 3D than in 2D and the com-

putational expense is much higher. Inviscid flow models such as the vortex lattice

method are widely used to model viscous high-Reynolds-number flows for aquatic

and aerodynamic propulsion [17,86,88,116,156,202] because the computational cost

is generally much lower than for direct solvers (e.g., in the case of complex and

deforming body geometries, immersed-boundary, lattice-Boltzmann, and deforming-

mesh methods [72, 90, 199, 209]). In the inviscid models computational elements are

distributed along surfaces rather than throughout the flow volume. However, tradi-

tional inviscid approximations of flow separation work well only in certain cases such

as low-angle-of-attack airfoils where trailing edge separation is dominant. Recently

leading-edge separation has been included in such models [100,134,141].

Several recent works have studied the effect of various dimensionless control pa-

rameters such as Reynolds number, density ratio, shear modulus, and aspect ratio

on the flutter of one or more thin plates or flags with bending rigidity in three-

dimensional viscous, high-Reynolds-number flows [18, 26, 37, 76, 180, 206]. Immersed

boundary methods were used by [76,180], while [206] used a fictitious domain method

and [18] used a coordinate transformation method.

Immersed boundary methods have also been used to study a number of 3D swim-

ming problems, such as the self-propulsion of flapping flexible plates [112, 174], the

role of active muscle contraction, passive body elasticity and fluid forces in forward

swimming [20, 34, 70, 72, 119], and the propulsive forces acting on flexible fish bod-
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ies [71].

Boundary element methods have helped identify the effects of body kinematics

on thrust production and efficiency of 3D swimmers with non-deforming [106, 107]

and deforming wakes [211]. [120] used a boundary element method to examine the

self-propelled swimming of undulatory fins and manta rays [48], and to derive three-

dimensional heaving and pitching scaling laws [16, 17].

There are relatively few studies of 3D coupled interactions of inviscid flows and

flexible bodies. Recently, [66, 68] used nonlinear beam theory and the vortex-lattice

method to analyze the limit cycle oscillations of a rectangular plate and plate vibra-

tion under harmonic forced excitation [67]. Previously [52,54] studied the 3D linear

stability problem for a flexible plate in an inviscid flow with various boundary condi-

tions. [175,176] used the method to study the stability of delta wings and rectangular

plates, and [122] reviewed the vortex lattice method in similar applications.

1.3 Thesis Overview

We now provide an overview of this thesis and emphasize the aims and main

contributions of each chapter. Any appendices appear after the main body of all the

chapters and all references may be found at the end of the thesis. Broadly speaking,

chapters II–IV address membrane-fluid interactions in two-dimensional inviscid flow

and chapter V considers small- and large-amplitude dynamics of membranes in three-

dimensional inviscid flow.

1.3.1 Chapter II: Large-amplitude Membrane Flutter in Inviscid Flow

We begin by focusing on extensible membrane flutter: how a membrane, initially

aligned with a fluid flow, becomes unstable to transverse deflections and eventually

reaches steady-state large-amplitude dynamics. We classify the membrane dynamics
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in terms of three dimensionless parameters:

• membrane mass density (R1),

• stretching modulus (R3),

• pretension (T0)—the tension in the membrane in its flat, undeflected state.

The governing equations are the extensible membrane equation:

mass×acceleration︷ ︸︸ ︷
R1∂ttζ −

forces︷ ︸︸ ︷
∂α((T0 +R3(∂αs− 1))̂s)︸ ︷︷ ︸

stretching resistance

= −[p]+−∂αs n̂︸ ︷︷ ︸
pressure jump

,

the unsteady Bernoulli equation (which couples the membrane to the fluid), and the

Birkhoff-Rott equation (to evolve the vortex sheet).

Aim 1: to determine the typical large-amplitude steady-state dynamics that occur

when the flat state is unstable, for a wide range of parameters and for three

canonical boundary conditions—both ends fixed, one end fixed and one free,

and both free.

Aim 2: to approximate the large-amplitude behaviors using asymptotic scaling laws.

For example, we find that the time-averaged deflection scales as R
−1/2
3 and that

the temporal frequency scales as R
−1/2
1 .

We approximate the thin viscous boundary layers along the body with vortex sheets,

which are advected from the membrane’s trailing edge into the flow downstream.

Such flows are challenging to simulate directly due to the need to resolve sharp

layers of vorticity in the vicinity of an unsteady, deforming solid boundary. In this

approximation we only compute flow quantities on one-dimensional contours (the

body and the vortex sheet wake), which is orders of magnitude less expensive to

compute than fully-resolved viscous simulations. We use an explicit two-step Adams-

Bashforth scheme for the free vortex sheet evolution. For the membrane and bound
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vortex sheet equations we implement a nonlinear quasi-Newton solver (Broyden’s

method).

This work is the first time a large-amplitude model has been developed to study

the dynamics of membranes following the initial flutter instability for a wide range of

parameter values. We believe that our study enhances our understanding of stability,

leading to an improved understanding of micro-air and underwater vehicles with

membrane propulsors having a wide range of physical properties.

This chapter is published in the Journal of Fluid Mechanics [113].

1.3.2 Chapter III: Eigenmode Analysis of Membrane Stability in Inviscid Flow

In this chapter, we investigate in more detail the small-amplitude fluid flow so-

lutions by focusing on the linearized version of the membrane-vortex-sheet model.

By assuming a certain form for the solutions we convert the problem to a quadratic

eigenvalue problem:

[σ2A2 + σA1 + A0(σ0)]w = 0,

where the matrices A2, A1, A0 are known from the governing equations. Since

a generic perturbation is a superposition of all the eigenmodes multiplied by the

corresponding eiσt = eiσRte−σIt, we classify the instability of generic perturbations in

the (R1, T0) parameter space based on the eigenmode shape and the value of σR for

the most unstable mode (with the most negative σI) at a given (R1, T0).

Aim 1: to predict the onset of membrane instability across parameter space, either

by flutter, divergence, or a combination of the two, for three boundary condi-

tions—both ends fixed, one end fixed and one free, and both free.

Aim 2: to show quantitative agreement with unsteady time-stepping simulations

(chapter II) for small amplitude motions.

10



We solve the nonlinear eigenvalue problem iteratively with large ensembles of initial

guesses, for the three boundary conditions. Due to the vortex wake, simple exact

eigenmode solutions are difficult to obtain, but in this work we present a comprehen-

sive characterization of the modes and growth rates in the vicinity of the stability

boundary.

A version of this method was previously used to study the flutter instability of

bending beams in inviscid flows [3]. There, solutions were obtained by continuation,

starting from the known oscillation modes of a beam in a vacuum. Here we study

membranes and find that the continuation approach is more susceptible to jumping

between different eigenmode branches as we vary parameters. Therefore, we solve

the nonlinear eigenvalue problem using dense meshes of initial eigenvalue guesses

that cover the range of lower-mode states. As a result, we obtain a larger ensemble

of eigenmodes at each parameter value set. We obtain good agreement with the

stability results in chapter II, but are able to extend the results to much larger and

smaller values of the membrane-to-fluid density ratio, and resolve shapes with finer

structures.

Previous work by other groups was limited to the fixed–fixed case and a smaller

range of membrane mass densities (R1). The time-stepping simulations in chapter II

are difficult to resolve for small-amplitude motions at small R1 due to limited spatial

resolution, and at large R1 due to the very slow growth of instabilities. In this

chapter, our nonlinear eigenmode solver is a less expensive alternative to study the

stability problem.

This chapter is published in Physical Review Fluids [115].
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1.3.3 Chapter IV: Dynamics of Tethered Membranes in Inviscid Flow

Our work in chapter II has shown that membranes with fixed ends—the focus

of most membrane studies—converge to a fixed steady deflected shape when they

become unstable. With one or both ends free, unsteady motions are possible, but

such boundary conditions have not been realized experimentally. In this chapter,

we consider a simple physical setup that can be carried out in an experiment—a

membrane held by tethers with hinged ends. In particular, we attach the membrane’s

leading and trailing edges to two inextensible rods of equal length R. We show that

a variety of unsteady, periodic, and chaotic oscillations can occur. The dynamics

obtained from these tethered membranes could be useful in the design of systems for

energy harvesting from flows.

Aim 1: to analyze how large-amplitude dynamics depend on four key parameters:

membrane mass density, stretching stiffness, pretension, and tether length.

Aim 2: to investigate via a nonlinear eigenvalue problem how the stability properties

of tethered membranes change.

Aim 3: to study a more analytically tractable model than the nonlinear eigenvalue

problem and compute asymptotic scaling laws for the frequencies, growth rates,

and eigenmodes’ dependences on membrane pretension and mass density.

To achieve Aim 3 we propose an infinite membrane model mounted on a periodic

array of Hookean springs with spring stiffness ks (localized spring forces at x =

0,±1,±2, ...). To solve this problem we use approximate delta functions for the spring

forces and solve for the spatial Fourier modes of y(x, t). This model corresponds to

a standard eigenvalue problem, and is much faster to compute than the nonlinear

eigenvalue problem of the membrane-vortex-wake model. We can thus extend our
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study to a much wider range of the physical parameters R1, T0, and ks.

This chapter is published in Journal of Fluids and Structures [114].

1.3.4 Chapter V: Membrane Flutter in Three-dimensional Inviscid Flow

In chapters II–IV we studied membrane dynamics in a 2D flow, where the mem-

brane is a 1D curvilinear segment that undergoes small and large deflections. In this

chapter, we consider a 2D membrane in a 3D flow.

We develop a model and numerical method to investigate the large-amplitude

flutter of thin membranes, with zero bending rigidity, that shed a flat trailing vortex-

sheet wake in a 3D inviscid fluid flow. The computational method involves a 3D

nonlinear, unsteady vortex-lattice method [88] and Broyden’s method [140] to solve

for the coupled system of equations for the membrane position, vortex sheet strength,

and pressure jump, using suitable initial and boundary conditions.

Aim 1: to determine the stability boundary location in mass-pretension parameter

space, for a total of 12 distinct boundary conditions.

Aim 2: to compute scaling laws for the deflection magnitudes and oscillation frequen-

cies.

Aim 3: to classify the large-amplitude dynamics for all 12 boundary conditions based

on the membrane mass density ratio, pretension, and stretching modulus and

draw meaningful conclusions about the effect of three-dimensionality on their

behavior.

To our knowledge this work is the first 3D study of large-amplitude dynamics of

membranes (of zero bending rigidity) in inviscid flows.

This chapter is currently under review.
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CHAPTER II

Large-amplitude Membrane Flutter in Inviscid Flow

2.1 Introduction

In this chapter, we study the large-amplitude flutter of membranes (of zero bend-

ing rigidity) with vortex-sheet wakes in 2D inviscid fluid flows. We apply small

initial deflections and track their exponential decay or growth and subsequent large-

amplitude dynamics in the space of three dimensionless parameters: membrane pre-

tension, mass density, and stretching modulus.

Previous work investigated the nonlinear dynamics of a periodically pitching flexi-

ble body in a fluid stream [4] and the flapping-flag instability [10], among many other

studies of this problem [7, 25, 43, 76, 117, 153, 177]. As bending rigidity is decreased

below the flutter threshold, the flag transitions from periodic to chaotic dynamics.

Our model, presented in this chapter, includes the separation of vortex sheets at

sharp edges [83, 84, 96, 131], and regularizes free vortex sheets to avoid singulari-

ties [5, 21,28,94,132].

In this model, vortex sheets approximate the thin viscous boundary layers along

the body, which are advected from its trailing edge into the flow downstream. This

can be regarded as the inviscid limit of the viscous flow, and gives a good rep-

resentation of the large-scale features of the flow and the vortex wake dynamics
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at Reynolds numbers of O(102–105) [131, 155, 156, 203]. These flows are challeng-

ing to simulate directly due to the need to resolve sharp layers of vorticity in the

vicinity of an unsteady, possibly deforming solid boundary. The immersed bound-

ary method [50, 61, 63, 136, 171, 181, 190, 210] can successfully simulate this class of

problems. Very fine grids are needed to resolve the vorticity, and these are refined

adaptively for efficiency [60,147]. However, by only computing flow quantities on one-

dimensional contours (the body and the vortex sheet wake), the vortex sheet model

is typically much less expensive to compute when the far-field wake is approximated,

as described at the end of this thesis, in appendix B.

With both ends fixed, all the membranes converge to steady deflected shapes with

single humps that are nearly fore-aft symmetric, except when the deformations are

unrealistically large. With leading edges fixed and trailing edges free to move in

the transverse direction, the membranes flutter periodically at intermediate values

of mass density. As mass density increases, the motions are increasingly aperiodic,

and the amplitudes increase and spatial and temporal frequencies decrease. As mass

density decreases from the periodic regime, the amplitudes decrease and spatial and

temporal frequencies increase until the motions become difficult to resolve numer-

ically. With both edges free to move in the transverse direction, the membranes

flutter similarly to the fixed–free case but also translate vertically with steady, peri-

odic, or aperiodic trajectories, and with nonzero slopes that lead to small angles of

attack with respect to the oncoming flow.

The rest of the chapter is as follows: §2.2 presents the membrane and vortex sheet

model, §2.3 presents the membrane dynamics for each of the three sets of boundary

conditions: fixed–fixed, fixed–free, and free–free. We characterize the dynamics in

terms of the time-averaged deflection of the membrane, the mean frequency, and
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the number of zero crossings which is associated with the waviness of the membrane

profile. §2.4 summarizes our findings.

2.2 Membrane-vortex-sheet Model

We first consider the motion of an extensible membrane that is fixed at two

endpoints and held in a two-dimensional fluid flow, like much of the previous work.

A uniform background flow is prescribed with velocity U , directed parallel to the

chord connecting the endpoints (see figure 2.1). The instantaneous position of the

membrane is given by X(α, t) = (x(α, t), y(α, t)), parameterized by the material

coordinate α,−L ≤ α ≤ L (L is half the chord length), and time t. It is convenient

to also describe the membrane position in complex notation, ζ(α, t) = x(α, t) +

iy(α, t). The inviscid flow can be represented by a vortex sheet—a curve across

which the tangential velocity component is discontinuous [149]—and whose position

and strength evolve in time. The vortex sheet consists of two parts. One is “bound”

(it coincides with the membrane, for−L ≤ α ≤ L), and the other is “free,” emanating

from the trailing edge of the membrane at α = L. The bound and free vortex sheets

have strength densities denoted by γ and positions denoted by ζ.

Figure 2.1: Schematic diagram of a flexible membrane (solid curved line) at an instant in time.
Here 2L is the chord length (the distance between the endpoints), U is the oncoming flow velocity,
(x(α, t), y(α, t)) is the membrane position, and the dashed line is the free vortex sheet wake.
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The membrane dynamics are described by the unsteady extensible elastica equa-

tion with body inertia, stretching resistance, and fluid pressure loading [169], ob-

tained by writing a force balance equation for a small section of membrane lying

between α and α + ∆α:

(2.1)

ρshW∂ttζ(α, t)∆α = T (α+ ∆α, t)ŝ−T (α, t)ŝ− [p](α, t)n̂W (s(α + ∆α, t)− s(α, t)) .

Dividing by ∆α and taking the limit ∆α→ 0, we obtain:

(2.2) ρshW∂ttζ(α, t) = ∂α(T (α, t)ŝ)− [p](α, t)W∂αsn̂,

where ρs is the mass per unit volume of the undeflected membrane, h is its thick-

ness, and W is its out-of-plane width, all uniform along the length. The material

coordinate α ∈ [−L,L] is the x-coordinate of the membrane in the initial flat, uni-

formly prestretched state. Other quantities that appear in (2.2) are ŝ, n̂ ∈ C, which

represent the unit vectors tangent and normal to the membrane, respectively,

(2.3) ŝ = ∂αζ(α, t)/∂αs(α, t) = eiθ(α,t) and n̂ = iŝ = ieiθ(α,t),

with θ(α, t) the local tangent angle, s(α, t) the local arc length coordinate, and

κ(α, t) = ∂αθ/∂αs the membrane’s curvature. [p](α, t) is the local pressure difference

across the membrane, from the side toward which n̂ points to the other side.

The membrane tension T (α, t) is given by linear elasticity [22, 23,123,125]:

(2.4) T (α, t) = T + EhW (∂αs(α, t)− 1),

where E is the Young’s modulus. Thus the tension is a constant T , the “pretension,”

in the (initial) undeflected equilibrium state ζ(α, 0) = α.
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2.2.1 Nondimensionalization

We nondimensionalize the governing equations by the density of the fluid ρf , the

half-chord L, and the imposed fluid flow velocity U . In particular, we use

(2.5) t̃ =
t

L/U
, (ζ̃ , α̃, s̃) =

(ζ, α, s)

L
, [̃p] =

[p]

ρfU2
.

The membrane equation (2.2) becomes

(2.6)
ρshU

2W

L
∂̃ttζ =

1

L
∂̃α[(T + EhW (∂̃αs− 1))ŝ]− ρfU2W [̃p]∂̃αsn̂,

with dimensionless quantities (and their dimensionless derivatives) denoted by tildes.

Dividing (2.6) by ρfU
2W throughout yields

(2.7)
ρsh

ρfL
∂̃ttζ =

1

ρfU2LW
∂̃α[(T + EhW (∂̃αs− 1))ŝ]− [̃p]∂̃αsn̂.

Thus the dimensionless membrane equation (dropping tildes) is

(2.8) R1∂ttζ − ∂α ((T0 +R3(∂αs− 1))ŝ) = −[p]∂αsn̂.

The dimensionless parameters of the membrane are

(2.9) R1 =
ρsh

ρfL
, T0 =

T

ρfU2LW
, and R3 =

Eh

ρfU2L
,

where R1, T0, and R3 are the dimensionless membrane mass density, pretension, and

stretching modulus, respectively. We assume that the thickness ratio h/L is small,

but ρs/ρf may be large, soR1 may assume any non-negative value. We have neglected

bending rigidity, denoted R2 in [10]. In the extensible membrane regime studied

here, R3 is finite, so R2 = R3h
2/12L2 → 0 in the limit h/L → 0. By contrast, the

inextensible beam or plate regime studied previously [7,25,43,76,117,153,177] has R2

finite and R3 → +∞ as (h/L)−2 in the limit h/L→ 0, resulting in inextensibility. We

have also neglected the effects of rotary inertia and the Poisson ratio (the transverse
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contraction due to axial stretching), which have usually been neglected at leading

order in nonlinear membrane models [125] and the aforementioned membrane studies.

The rotary inertia and bending rigidity terms are given in [169], and those involving

Poisson ratio are given in [125].

For large-Reynolds-number flows, there are thin viscous boundary layers along

the sides of the membrane. Across these boundary layers, the component of fluid

velocity that is tangent to the membrane is brought to zero on the membrane [19].

When the fluid in the boundary layer is advected off of the membrane’s trailing

edge, a free shear layer forms [5, 149]. In the limit of large Reynolds number, the

two boundary layers tend to vortex sheets which coincide as a single bound vortex

sheet (approximating the body thickness as zero for the fluid computation). The free

shear layer tends to a free vortex sheet [149]. The free sheet circulation is defined as

an integral of the vortex sheet strength γ (the jump in the tangential component of

the fluid velocity) over the free vortex sheet

(2.10) Γ(s, t) = −
∫ smax

s

γ(s′, t) ds′, 0 < s < smax,

where s is arc length along the free sheet, starting from 0 where the free sheet

meets the membrane’s trailing edge and ending at smax at the free sheet’s far end.

Following [83] and [4] we define the (negative of the) total circulation in the free

sheet:

(2.11) Γ+(t) = Γ(0, t) = −
∫ smax

0

γ(s, t) ds.

The complex conjugate of the flow velocity u = (ux, uy) at any point z in the flow

(not on the vortex sheets) can be calculated in terms of γ by integrating the vorticity
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in the bound and free vortex sheets against the Biot-Savart kernel [149]:

(2.12)

ux(z)− iuy(z) = 1 +
1

2πi

∫ 1

−1

γ(α, t)

z − ζ(α, t)
∂αs(α, t) dα +

1

2πi

∫ smax

0

γ(s, t)

z − ζ(s, t)
ds,

with unity on the right hand side representing the imposed background flow and the

dimensionless material coordinate α ranging from −1 to 1 on the membrane. By

Kelvin’s circulation theorem, Γ is conserved at fixed material elements of the free

vortex sheet. Thus we reparameterize the free sheet position as ζ(Γ, t) and evolve

the position at a fixed Γ simply by following the local fluid velocity. This is done by

taking the average of the limits of (2.12) as z approaches ζ(Γ, t) from both sides [149]:

(2.13)

∂ζ

∂t
(Γ, t) = 1 +

1

2πi

∫ 1

−1

γ(α, t)

ζ(Γ, t)− ζ(α, t)
∂αs(α, t) dα− 1

2πi
−
∫ Γ+(t)

0

dΓ′

ζ(Γ, t)− ζ(Γ′, t)
.

In (2.13), ∂ζ/∂t is the complex conjugate velocity at ζ(Γ, t), and the second integral

is a Cauchy-principal-value integral. We have reparameterized the free sheet integral

using γ ds = −dΓ. This form of the integral appears in the Birkhoff-Rott equation

for the evolution of a free vortex sheet [83, 84, 139, 149]. In this form dΓ may have

either sign.

We may solve for the bound vortex sheet strength γ(α, t) in terms of the membrane

velocity by equating the components of the fluid and membrane velocities normal to

the membrane (“the kinematic condition”), which are found by taking the average

of the limits of (2.13) as z approaches the membrane from both sides:

Re(n̂ ∂tζ(α, t)) = Re

(
n̂

(
1 +

1

2πi
−
∫ 1

−1

γ(α′, t)∂αs(α
′, t)

ζ(α, t)− ζ(α′, t)
dα′

− 1

2πi

∫ Γ+(t)

0

dΓ′

ζ(α, t)− ζ(Γ′, t)

))
.(2.14)

When the left hand side and the second integral on the right hand side of (2.14) are

known, the general solution γ(α, t) has inverse-square-root singularities at α = ±1.
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Therefore we define v(α, t), the bounded part of γ(α, t), by

(2.15) γ(α, t) =
v(α, t)√
1− α2

.

An additional scalar constraint is required to uniquely specify the solution γ (or v)

to (2.14). It is the conservation of total circulation (Kelvin’s circulation theorem):

(2.16)

∫ 1

−1

γ∂αs dα =

∫ 1

−1

v(α, t)√
1− α2

∂αs dα = Γ+(t).

In (2.13) and (2.14) it is helpful to replace the free-sheet integral with a regularized

version to avoid singularities in the sheet curvature [94]. The second integral in (2.13)

becomes

(2.17) − 1

2πi
−
∫ Γ+(t)

0

ζ(Γ, t)− ζ(Γ′, t)

|ζ(Γ, t)− ζ(Γ′, t)|2 + δ(Γ′, t)2
dΓ′,

with a regularization parameter

(2.18) δ(Γ, t) = δ0

(
1− e−s(Γ,t)2/ε2

)
.

The effect of δ is to inhibit the growth of free sheet structures (e.g., inner turns of

spirals) on scales smaller than δ while maintaining the shape and motion of the sheet

on larger scales. Our choice of δ tends to 0 quadratically over a scale given by ε as

the membrane trailing edge is approached, to decrease the effect of regularization on

the flow near the trailing edge and the production of circulation [4, 5]. Here we set

ε to 0.4 and δ0 to 0.2, choices that make the effect of regularization on circulation

production small without a significant increase in the total number of points needed

to resolve the free sheet [5]. The Kutta condition determines the rate of circulation

production dΓ+(t)/dt by making the fluid velocity at the trailing edge finite. This

means γ(1, t) must be finite, and thus v(1, t) = 0 by (2.15).
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The vortex sheet strength γ(α, t) is coupled to the pressure jump [p](α, t) across

the membrane using a version of the unsteady Bernoulli equation written at a fixed

material point on the membrane:

(2.19) ∂αs∂tγ + (µ− τ)∂αγ + γ(∂αµ− ∂αsνκ) = ∂α[p].

This equation is derived in appendix A, and generalizes the derivation in [6, ap-

pendix A] to the case of an extensible body.

In (2.19), µ is the tangential component of the average flow velocity at the mem-

brane,

(2.20)

µ(α, t) = Re

(
ŝ

(
1 +

1

2πi
−
∫ 1

−1

γ(α′, t)∂αs(α
′, t)

ζ(α, t)− ζ(α′, t)
dα′ − 1

2πi

∫ Γ+(t)

0

dΓ′

ζ(α, t)− ζ(Γ′, t)

))
,

and τ and ν are the components of the membrane’s velocity tangent and normal to

itself, respectively:

(2.21) τ(α, t) = Re
(
∂tζ(α, t)ŝ

)
; ν(α, t) = Re

(
∂tζ(α, t)n̂

)
.

The pressure jump across the free sheet is zero, which yields

(2.22) [p]|α=1 = 0,

the boundary condition we use to integrate (2.19) and obtain [p](α, t) on the mem-

brane.

2.2.2 Boundary and Initial Conditions

Figure 2.2: Schematic diagrams of the three sets of boundary conditions considered: fixed–fixed
(left), fixed–free (center), and free–free (right).

22



We investigate three cases of boundary conditions at the two ends of the mem-

brane, shown schematically in figure 2.2. In all three cases, the x-coordinates of the

ends are constant: x(−1, t) = 0 and x(1, t) = 2. In the first case, “fixed–fixed,” the

membrane is flat at t = 0, and we set the deflection to zero at both ends of the

membrane after a small initial perturbation. More precisely, we smoothly perturb

y at the leading edge slightly away from zero and relax it to zero exponentially in

time:

(2.23) y(−1, t) = σ

(
t

η

)3

e−(t/η)3 ,

where σ is a constant chosen in the range 10−6–10−3 (depending on whether small

or large amplitude dynamics are studied) and η = 0.2. We set the trailing edge

deflection y(1, t) to zero for all t. This is essentially the case considered by most

previous studies of membrane flutter [99,124,168,184], and here we find, surprisingly,

that all physically-reasonable deflected membrane states are steady (i.e., without

oscillations). In the second case, “fixed–free,” we again make the membrane flat

initially and then set the leading edge position according to (2.23), but allow the

trailing edge to deflect freely in the vertical direction. This is the classical free-end

boundary condition for a membrane [45, 59] and corresponds to the membrane end

fixed to a massless ring that slides without friction along a vertical pole (see figure 2.2,

center). Without friction, the force from the pole on the ring at the membrane end is

horizontal. The tension force from the membrane on the ring must also be horizontal,

or else the ring would have an infinite vertical acceleration. Therefore, ŝ = êx at the

trailing edge, or equivalently, ∂αy(1, t) = 0.

Although well-known in classical mechanics, free-end boundary conditions have

not been studied much in membrane (as opposed to beam/plate) flutter problems.

[172] studied membrane wings with partially free trailing edges and found that trail-
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ing edge fluttering may occur at relatively low angles of attack. Another recent

experimental study found that membrane wing flutter can be enhanced by the vi-

brations of flexible leading and trailing edge supports [13]. Partially free edges occur

also in sails: the shape of a sail membrane can be controlled by altering the tension

in cables running along its free edges (the “leech” and “foot”) [91]. Flutter can occur

when the tension in these edges is sufficiently low [30]. A related application is to

energy harvesting by membranes mounted on tensegrity structures (networks of rigid

rods and elastic fibers) and placed in fluid flows [163, 204]. In such cases the mem-

brane ends have some degrees of freedom akin to the free-end boundary conditions

we have defined.

We will show that free ends allow for a wide range of unsteady membrane dy-

namics, unlike in the fixed–fixed case. Related work has studied the dynamics and

flutter of membranes and cables under gravity with free ends [110, 188]. Here we

neglect gravity to focus specifically on the basic flutter problem [154]. Without grav-

ity, some restriction on the motion of the free membrane ends is needed to avoid

ill-posedness due to membrane compression [188]. This is provided by the vertical

poles in figure 2.2. Although this type of free-end boundary condition has mainly

been studied theoretically, it has been realized experimentally by [87], with the mem-

brane represented by an extensional spring that is tethered by steel wires to vertical

supports.

In the third case, “free–free,” both ends are free: ∂αy(−1, t) = ∂αy(1, t) = 0. Here

the membrane is perturbed differently: it is initially set with a small nonzero slope,

(2.24) ζ(α, 0) = (α + 1)(1 + iσ)

for σ = 10−3.
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2.3 Numerical Results and Discussion

We now describe the range of dynamics of the extensible membrane with the

three sets of boundary conditions. In each case, we first present the flutter stability

region for the flat membrane in the R1-T0 plane (it is independent of R3 because it

depends only on the small-deflection behavior). We then consider the large-amplitude

dynamics using three main quantities to characterize them. One is the time-averaged

deflection of the membrane,

〈ydefl〉 ≡
1

t2

∫ t1+t2

t1

(
max
−1≤α≤1

y(α, t)− min
−1≤α≤1

y(α, t)

)
dt,(2.25)

where t1 and t2 are sufficiently large (typically 50–100) that 〈ydefl〉 changes by less

than 1% with further increases in these values. 〈ydefl〉 is the maximum membrane

deflection minus the minimum deflection, averaged over time.

The second quantity is the frequency, defined as the mean frequency in the power

spectrum computed using Welch’s method [197]. The power spectrum is obtained

from a time series of the free sheet circulation when the membrane has reached

steady-state large-amplitude dynamics. The third quantity is the time-averaged

number of zero crossings along the membrane, computed with the same temporal

data as the power spectrum. The number of zero crossings is a measure of the

“waviness” of the membrane shape.

2.3.1 Fixed–fixed Membranes

We begin by presenting the dynamics of membranes with both ends fixed, the

case considered by previous studies on membrane flutter. The most detailed linear

stability analysis of the problem is by [184]. Their model is essentially a linearized

version of ours, and includes a flat vortex wake extending to infinity downstream.

They find that all membranes become unstable when the pretension T0 drops below
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a critical value ≈ 1.73, independent of R1. A qualitatively similar result was found

by [128] for an infinite periodic membrane with no free vortex wake. Below the

critical pretension, the membranes in [184] lose stability by divergence (exponential

growth of deflection) at small R1 or by divergence with flutter (exponential growth

with a complex growth rate—i.e., growth with oscillation) at large R1.
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Figure 2.3: (Fixed–fixed.) Examples of the log10 of the total wake circulation versus time with
(a) (R1, T0) = (10−1.8, 10−1.2), (b) (R1, T0) = (10−0.2, 100.2), (c) (R1, T0) = (102, 101), and (d)
(R1, T0) = (101, 103). The growth/decay rates are given by the slopes of the dot-dashed red lines.
In all cases we set R3 = 1, but the linear growth rates are independent of R3 (we show the R3 term
to be cubic in deflection in equation (2.26), and therefore negligible in the linear growth regime).

We use our nonlinear simulation to compute the stability threshold for membranes

by applying the small transient perturbation (2.23) at the leading edge and observing

exponential growth (followed by large-amplitude, nonlinear dynamics) or exponential

decay, in membrane deflection and wake circulation Γ+(t). Examples are shown in

figure 2.3. For the stability results presented in figures 2.3 and 2.4 we use (2.23)

with σ = 10−6.
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Figure 2.4: A contour plot of the exponential (base 10) growth and decay rates of wake circulation
after a small transient perturbation, in the fixed–fixed case. The thicker line separates the stable
and unstable cases.

We compute the growth and decay rates of the initial perturbation from data

analogous to those in figure 2.3, on a fine grid of values in the R1-T0 space spanning

several orders of magnitude in each parameter. Figure 2.4 is a contour plot of the

growth/decay rates, i.e., β in the early-time interval where Γ+(t) ≈ K 10βt for some

constant K. Values (well) above 5 occur in the lower left corner but are omitted for

visual clarity. Above a critical pretension T0 ≈ 1.78 the membranes are stable, with

small transient deflections decaying to the flat state. Below the critical pretension

we have a divergence instability: small transient deflections grow exponentially at a

rate that is purely real. [184] found a critical pretension of 1.73 in a slightly different

model; unlike that study, we do not find evidence of neutral flutter or divergence

with flutter in the fixed–fixed case at any R1. The main differences are that our wake

length grows from zero while that in [184] is infinite, and our model is a nonlinear,

unsteady version of that in [184].
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Figure 2.5: Fixed–fixed membrane shapes. (a) For R1 = 10−0.5, R3 = 101, and T0 = 10−3 the
membrane shapes at t = 1 (red), 1.5, 2.5, 3.5, 4.5, . . . , 16.5 (light gray to black), (b) steady
membrane shapes at late times, with y coordinates scaled by maximum deflection, for R3 ranging
from 101 to 104 and T0 ranging from 10−3 to 1. (c) The maximum membrane deflection at steady
state versus the stretching modulus R3.

During the initial stages of the divergence instability, the membrane deflection

grows from small amplitude without change of shape. Nonlinearities become im-

portant when the amplitude reaches order one, and the membrane shape evolves

to its eventual steady state. For the large-amplitude analysis of fixed–fixed mem-

branes that follows, the small transient perturbation (2.23) applied at the leading

edge is used with σ = 10−4. Figure 2.5(a) shows a sequence of membrane snap-

shots during the nonlinear dynamics. The earliest shape (red) is similar to those

during the linear instability, with largest deflection near the trailing edge. Subse-

quent shapes (ranging from light to dark gray and black) show the evolution to

the eventual steady-state. The final membrane shape is nearly fore-aft symmetrical,

similar to those in [124, 127, 144, 191, 193, 194]. These works also discuss membrane

dynamics at nonzero angle of attack with applications to lift and thrust generation

by membrane airfoils (possibly heaving and/or pitching [79]). Then vortices shed

from the membrane’s leading edge provide an unsteady forcing, causing membrane

oscillations even in the fixed–fixed case. However, the present work is focused on the

problem of membrane flutter at zero angle of attack, for which leading edge vortex

shedding should be less significant. As for most vortex panel methods [88], leading
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edge separation is difficult to represent in our model, so we focus on situations where

trailing-edge vortex shedding is expected to be dominant, i.e., membranes at zero

angle of attack with small-to-moderate deflections.
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Figure 2.6: Membrane profiles in the fixed–fixed case, at steady state with moderate deflections
(colored background), or unphysically large or unsteady deflections (white background). In the
unsteady cases a few snapshots at large times are shown. The colors show the deflection of the
membrane (equation (2.25)). Here, R1 = 10−0.5 but the steady shapes are independent of R1, the
dimensionless mass.

Figure 2.6 shows the late-time membrane shapes across several decades of R3

and T0. The shapes are all steady for R3 > 100.5 (and thus independent of R1 here,

as the acceleration term in (2.8) is zero), but may oscillate chaotically for R3 ≤ 100.5,

in which case a few snapshots are shown at late times. In these cases, the deflections

are so large as to violate the assumption that vortex shedding is confined to the

trailing edge, so we do not consider them further. For R3 > 100.5, the colors show the

maximum membrane deflection. At a given R3, the deflection increases slightly as T0
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decreases from the stability threshold to≈ 0.1, then converges as T0 decreases further,

the T0 term becoming insignificant in the membrane equation (2.8). At a given T0,

the deflection decreases with increasing R3 as a power law. Figure 2.5(b) shows

that the shapes are almost identical, however, when the amplitudes are normalized.

Figure 2.5(c) shows that the deflection 〈ydefl〉 ∼ 1/
√
R3 (for R1 = 10−0.5 here, but

these values are independent of R1).

We explain how the scaling 〈ydefl〉 ∼ 1/
√
R3 arises from the y-component of the

membrane equation (2.8) with small deflections. For this we assume ∂αy � 1

and ∂αx ≈ 1. Then ∂αs − 1 =
√

(∂αx)2 + (∂αy)2 − 1 ≈ ∂αy
2/2 and ŝy ≈ ∂αy.

With these approximations, the y-components of the T0 and R3 terms in (2.8) are

linear and cubic in deflection, respectively:

∂α (T0ŝy) ≈ T0∂ααy ; ∂α (R3(∂αs− 1)ŝy) ≈ R3∂α
(
(∂αy)3 /2

)
.(2.26)

The R1 term (multiplying ∂tty) is also linear in deflection (and zero here at steady

state, but not for the oscillating membranes considered later). The pressure jump is

linear in the bound vortex sheet strength because the left side of (2.19) ≈ ∂tγ + ∂αγ

with small deflections. The bound vortex sheet strength is linear in the deflection

by the linearized version of (2.14),

∂ty(α, t) ≈ 1

2π
−
∫ 1

−1

γ(α′, t)

x(α, t)− x(α′, t)
dα′ − 1

2π

∫ Γ+(t)

0

x(α, t)− x(Γ′, t)

(x(α, t)− x(Γ′, t))2 + δ(Γ′, t)2
dΓ′,

(2.27)

in which the second integral consists of bound vorticity advected from the trailing

edge, so it has the same dependence on deflection as the bound vorticity. Here,

with small deflections, we have assumed ∂αx ≈ 1, and then the linearization is

the same as in [10]. Without viscous stresses, horizontal membrane deformations

arise only through nonlinear terms in the elastic and pressure forces associated with
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large deflections, so it is reasonable to neglect them, and this is consistent with the

simulation results. Balancing the terms that are linear in deflection with the product

of R3 and a term that scales with deflection cubed gives 〈ydefl〉 ∼ 1/
√
R3.

2.3.2 Fixed–free Membranes

We now investigate membranes with the leading edge fixed and the trailing edge

free to move vertically (with ∂αy = 0 there—an extra equation that determines

y(1, t), now an extra unknown). With the free end, the membrane has a wide range

of unsteady dynamics with small and moderate amplitude, unlike in the fixed–fixed

case, and similar in some respects to the fixed–free flag with bending rigidity [10].
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Figure 2.7: (Fixed–free.) Examples of the total wake circulation versus time for R3 = 1 on a log
scale, with (a) (R1, T0) = (10−3, 10−2.8), (b) (R1, T0) = (10−1.4, 10−1.4), (c) (R1, T0) = (101, 10−0.2),
and (d) (R1, T0) = (10−0.8, 102.2). The slopes of the dot-dashed red lines give the growth/decay
rates. Recall that R1 is the dimensionless membrane mass, T0 is the dimensionless pretension, and
R3 is the dimensionless stretching modulus.

Figure 2.7 shows examples of the growth of wake circulation in time after small

transient perturbations, analogous to figure 2.3. As before, for the analysis of

the small-amplitude dynamics we use (2.23) with σ = 10−6. The main novelty is

panel (c), an example of divergence with flutter—shown by the regularly-spaced ver-

tical asymptotes in the logarithm of wake circulation, corresponding to an oscillatory

component—exponential growth with a complex growth rate.
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Figure 2.8: A contour plot of the exponential (base 10) growth and decay rates of wake circulation
after a small transient perturbation, in the fixed–free case. The thicker line separates the regions
where the membranes are stable and unstable. Growth rates (well) above 5 occur at the lower left
but are omitted for visual clarity.

Figure 2.8 is a contour plot of the growth/decay rates and stability boundary

in R1-T0 space, analogous to figure 2.4. Notable differences are that the stability

boundary now varies with R1. The critical pretension is close to that in figure 2.4 at

the largest R1, but decreases as R1 decreases, and eventually reaches a lower plateau

at R1 � 1. The red triangles in figure 2.8 show cases like figure 2.7(c), membranes

that become unstable through flutter and divergence.

The membranes in the unstable region of figure 2.8 eventually reach large ampli-

tudes, where nonlinearities (e.g. the R3 term) determine the eventual steady-state

motion. With fixed–free boundary conditions, oscillatory motions are typical, unlike

for the fixed–fixed case. As for the fixed–fixed case, unrealistically large deflections

occur for R3 ≤ 1, so we focus on R3 & 1.
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Figure 2.9: (Fixed–free.) Snapshots of large-amplitude membrane motions in the unstable region
of R1-T0 space, for fixed R3 = 101.5. Colors denote log10 of the average deflection defined by
equation (2.25). At each (R1, T0) value, the set of snapshots is normalized by the maximum
deflection of the snapshots to show the deformation modes more clearly and scaled to fit within a
colored rectangle at the (R1, T0) value.

Now we study the large-amplitude dynamics and we use σ = 10−4 in (2.23). Fig-

ure 2.9 shows typical membrane snapshots in the unstable region of R1-T0 space from

figure 2.8. At each (R1, T0) value, the set of snapshots is normalized by the maximum

deflection of the snapshots to show the motions more clearly and scaled to fit within

a colored rectangle at the (R1, T0) value. Each snapshot has the corresponding R1

value at its horizontal midpoint, and the T0 value at its leading edge. Here R3 is

fixed at 101.5, a value giving moderately large deflections for the steady-state motion.
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The colors denote the average deflection of the membrane (equation (2.25)).

The motions in figure 2.9 have largest deflection amplitudes and smallest spa-

tial frequency components at the largest R1 (101.5). Intuitively speaking, large R1

(membrane inertia) allows the membrane to maintain its momentum for longer times

against restoring fluid forces, and obtain larger deflections before reversing direction.

The same has been observed for flutter with bending rigidity [10,31]. As R1 decreases,

the membrane deflection amplitudes progressively decrease and spatial frequencies

increase until the motions become difficult to resolve numerically (to the left of the

red vertical line). In this region, we find chaotic membrane oscillations with very

small amplitudes and high spatial frequencies that become independent of R1. When

the number of points on the membrane is increased from 40 (here) to 80, 160, and

200, the membranes with R1 ≤ 10−1 still oscillate chaotically but with even higher

spatial frequency components, while those with R1 ≥ 10−0.5 do not change signifi-

cantly. Although the motions to the left of the red line are not converged with respect

to the spatial grid, we retain their snapshots in figure 2.9 to indicate the behavior of

the simulations. We find quasi-periodic motions in a finite band of R1 values between

10−0.5 and 100.5. Above and below this range, the motions become more irregular

and chaotic, and more up-down asymmetrical at large R1. The membrane motion

depends weakly on T0 except near the stability boundary (at the largest T0 shown).

At smaller T0, the pretension does not affect the dynamics because it is negligible

compared to the R3 (stretching) term.
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Figure 2.10: (Fixed–free.) Snapshots of large-amplitude membrane motions in R1-R3 space, for
fixed T0 = 10−2. Colors denote log10 of the average deflection defined by equation (2.25). To the
right of the vertical red dividing line the membrane motions are nearly periodic but to the left of
the red line, the membrane oscillations are chaotic. At each (R1, R3) value, the set of snapshots
is scaled to fit within a colored rectangle at the (R1, R3) value and normalized by the maximum
deflection of the snapshots to show the motions more clearly.

Next we look at the same quantities in a different two-dimensional slice through

R1-T0-R3 space. We fix T0 = 10−2 and in figure 2.10 show the membrane motions

across R1 and R3. In the lower right corner and at (R1, R3) = (10−1, 100.5), snapshots

are omitted because steady-state membrane motions were not obtained. We find that

R3 mainly affects the amplitudes of the snapshots, but not their shapes, particularly

for the periodic motions with R1 = 10−0.5. The shapes do change noticeably for

the more irregular and chaotic motions, which are sensitive to small changes in

parameters, and near the smallest stretching modulus where steady-state motions
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occur, R3 ≈ 100.5.

We find that membranes with R1 = 10−0.5–100.5 move almost like traveling waves:

their peaks and troughs translate downstream in forward time. Some of those with

larger R1 (101 and 101.5) move approximately like standing waves, with a node and

an antinode at certain locations. Similar dynamics have been found for fixed–fixed

membranes perturbed by vortices shed from the leading edge [56, 158,182].
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Figure 2.11: (Fixed–free.) Time-averaged deflections of the membranes (defined by equation (2.25))
versus R3, for various R1 and fixed T0 = 10−2. The black dashed line indicates the scaling 1/

√
R3.

We show how the time-averaged deflection depends on R3 at several fixed values

of R1 in figure 2.11. The plots follow the same 1/
√
R3 dependence at large R3 as in

the fixed–fixed case and for the same reason (explained in section 2.3.1).

Figure 2.10 has shown the typical membrane motions at various R1 and R3

at fixed T0 (and the phenomena are similar at other T0 that yield flutter). We

now quantify the membrane shapes in terms of the time-averaged number of “zero

crossings”—the number of times the membrane crosses y = 0. This is one way to

measure the “waviness” of a shape which is not sinusoidal (so the wavelength is not

36



well defined) [7, 10]. Figure 2.12 shows examples of shapes with zero, one, and two

zero-crossings, respectively.
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Figure 2.12: Examples of where zero crossings (red stars) are counted for model membranes (blue
solid lines). Note that the leading edge of the membrane is not included as a zero crossing.
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Figure 2.13: (Fixed–free.) Colors denote the time-averaged number of zero-crossings for membrane
flutter in the R1-R3 parameter space, for fixed T0 = 10−2. In the lower right corner and at
(R1, R3) = (10−1, 100.5), snapshots are omitted because steady-state membrane motions were not
obtained. Note that R1 is the dimensionless membrane mass, T0 is the dimensionless pretension,
and R3 is the dimensionless stretching modulus. At each (R1, R3) value the set of snapshots is
normalized by the maximum deflection of the snapshots to show the motions more clearly.
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We have already mentioned the trend to higher spatial frequency components

with decreasing R1. Figure 2.13 quantifies this relationship by showing the average

number of zero crossings for the same snapshots in figure 2.10 (where the deflection

amplitude was plotted). Decreasing R1 from the largest value (102), the average

number of zero crossings actually decreases slightly to about 1 near 101 and then

increases with further decreases in R1 as the motions become more periodic and then

more irregular at yet smaller R1 where the motions are not fully resolved spatially.

The temporal dynamics corresponding to these motions are quantified by comput-

ing the power spectra of time series of the total wake circulation, Γ+(t). Figure 2.14

shows examples of the time series of Γ+(t) that correspond to the different types of

power spectra. Panel (a) shows an example with a periodic motion at R1 = 10−0.5.

The corresponding Γ+(t) is periodic though not sinusoidal, resulting in a sequence

of sharp peaks in the power spectrum. Panel (b) shows a less periodic response

at larger R1, still dominated by a single frequency but with clear variations from

one cycle to the next. In panel (c) at still larger R1, the trend toward aperiodicity

continues. Nonetheless, the time series (left) shows peaks with a somewhat regular

spacing. The corresponding power series (right) has a single peak close to zero fre-

quency and a gradual decay in the power spectrum at higher frequencies, typical of

chaotic dynamics.
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Figure 2.14: (Fixed–free.) Portion of time series of total wake circulation Γ+(t) (left) and corre-
sponding power spectra (right) for membranes with increasing mass density R1 from top to bottom:
(a) (R1, R3) = (10−0.5, 102), (b) (R1, R3) = (100.5, 103.5), and (c) (R1, R3) = (101.5, 101.5). In all
cases T0 = 10−2.

Figure 2.15 shows these spectra, computed using Welch’s method [197], across R1-

R3 space, with T0 = 10−2. The colors denote the mean frequencies—i.e., the first

moments of the power spectra, normalized by total power. As R1 increases from

10−0.5 to 102 and the dynamics change from periodic to chaotic, the power spectra

change as described in the previous figure, with little dependence on R3 except at the

lowest values. The mean frequencies decrease by about a factor of five. Thus there is a

strong correlation between number of zero-crossings (or flutter mode) and oscillation

frequency, as has been seen previously in flag flutter problems [7,10,43,153]. The two

are in linear proportion for the modes of the linear wave equation for a membrane in

a vacuum [45,59]. The power spectra to the left of the red line (for motions which are

not converged with respect to grid spacing) show higher frequencies and a broadband
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response, reflecting chaotic dynamics.
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Figure 2.15: Colors denote the mean frequencies of large-amplitude motions in the fixed–free case
for various R1 and R3, all with T0 = 10−2. The corresponding power spectra for each membrane
are plotted in black. In the lower right corner and at (R1, R3) = (10−1, 100.5), power spectra are
omitted because steady-state membrane motions were not obtained. Each power spectrum is a plot
of power density (per unit frequency) versus frequency as in the panels of figure 2.14, right side.
The axis scales are omitted due to space constraints but our focus here is on the qualitative features
only.
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Figure 2.16: (Fixed–free.) Plots of the mean frequency log10 f versus mass density log10R1 with
various R3 and fixed T0 = 10−2. The black dashed line shows f = 1/

√
R1.

Figure 2.16 shows more quantitatively how the mean frequency varies with pa-

rameters. There is very little dependence on R3 except near the smallest R3 where

stable motions can be computed, ≈ 101. There is a steady decrease from R1 = 10−1

to 100 followed by a small plateau for 100 ≤ R1 ≤ 101, and another decrease within

101 ≤ R1 ≤ 102. The trend at the largest R1 is well approximated by f ∼ 1/
√
R1

(admittedly over a short range of R1), except at the two smallest R3 values. This

scaling arises when one approximates the normal component of the membrane equa-

tion (2.8) by its y component, and chooses a characteristic time scale t0 so that

R1∂tty balances other terms that depend on y but not its time-derivatives (i.e., the

R3 and T0 terms and some of the fluid pressure terms). At large R1, R1∂tty is com-

parable to the other terms when R1/t
2
0 ∼ 1 or t0 ∼

√
R1, giving a typical frequency

f0 ∼ 1/
√
R1.
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Figure 2.17: (Fixed–free.) Snapshots of the membrane motion (in black) and the vortex wake in
a portion of the R1-R3 parameter space for fixed T0 = 10−2. In each case the (R1, R3) values are
marked at the left endpoint of the membrane. The wake is color-coded according to the vortex sheet
strength at the last time step. It is also thickness-coded according to 15|γ|1/3. Counterclockwise
rotating vortices are shown in orange and clockwise rotating vortices in blue. For example, for
(R1, R3) = (10−0.5, 103) we have max |γ| = 0.0041 and for (R1, R3) = (100.5, 101) we have max |γ| =
1.9.

We have mainly focused on the membrane dynamics, but we conclude this section

by briefly considering the vortex sheet wake dynamics. Figure 2.17 shows snapshots

of vortex wakes in a small portion of R1-R3 space where the membranes’ motions

transition from small to large amplitudes. At smaller amplitudes (top and left),

the wakes are mostly flat (despite the complexity of the corresponding membrane

snapshots, shown in figure 2.10), and have periodic undulations, as the membrane

motions are approximately periodic at these parameters. Here the vorticity is weak,

so there is little vortex wake roll-up before the wake is advected many body lengths

downstream by the background flow. With smaller membrane deflections, we observe

two pairs of oppositely signed vortices per flapping period (R1 = 10−0.5 with R3 =

101–103, and R1 = 100 with R3 = 101.5–103), akin to a 2P wake [198]. At larger

deflections, there is more roll-up and the wake resembles a von Kármán vortex street

in some cases (R1 = 100.5 with R3 = 101.5–102.5), or a less regular wake with many

spirals per flapping period (bottom right, R1 = 100–100.5 with R3 = 101). In general,

the wake is spatially periodic to the extent that the membrane motion is temporally
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periodic. The more irregular wakes reflect the greater aperiodicity of the membrane

motion at large amplitudes.

2.3.3 Free–free Membranes

We have seen that changing the trailing edge boundary condition from fixed to free

dramatically changes the membrane dynamics, from static deflections with a single

maximum to a wide range of oscillatory modes that have some commonalities with

flapping plates and flags [154]. Therefore it is natural to consider the effect of making

both ends free, and determine if the membrane dynamics undergo further dramatic

changes. Computationally, the method is the same as before, but the system of

unknowns now includes the values of y at both endpoints, corresponding to the two

equations ∂αy(−1, t) = ∂αy(1, t) = 0.

-3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3

-0.1

-0.01

0.01

0.1

0.30.5
0.71

0.7
1

2

2
3

4
5

Figure 2.18: A contour plot of the exponential (base 10) growth and decay rates of wake circulation
after a small transient perturbation, in the free–free case. The thicker line separates the stable
membranes from the unstable ones.

The contour plot of growth/decay rates of the initial perturbation (equation (2.24)
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with σ = 10−3) is shown in figure 2.18. It is similar to that in the fixed–free case

(figure 2.8), particularly in the location of the stability boundary and the contours

in the stable region. In the unstable region, the growth rates are significantly smaller

and there are slight differences in where divergence with flutter occurs (red triangles).

We now consider the large-amplitude membrane motions in R1-R3 space with T0

fixed at 10−2, the free–free analog of figure 2.10. Figure 2.19 shows the motions su-

perposed on a color field that labels the time-averaged membrane deflections (2.25).

The membrane is now free to translate in the y-direction, which leads to additional

complexities in the motions. Like in the fixed–free case (figure 2.10), increasing R3

decreases the deflections of the snapshots without significantly changing the qualita-

tive features of their shapes. Decreasing R1 generally decreases the deflections also,

except near the largest R1. The membranes mostly oscillate within a fixed vertical

region, except at R1 = 100.5, where the membranes mostly translate steadily in y, and

with a steady shape. The membranes are somewhat straighter than in the fixed–free

case, possibly because their translational freedom allows them to align more closely

with the oncoming flow. As R1 decreases below 100.5, the membranes develop sharper

curvatures until they again become difficult to resolve numerically at and below 10−1.

To the left of the red dividing line, increasing the number of points on the membrane

leads to similarly complex oscillatory motions with somewhat sharper curvatures in

most cases.
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Figure 2.19: Membrane snapshots in the free–free case superposed on colors labeling the time-
averaged deflection for each (R1, R3) pair with T0 = 10−2 defined by equation (2.25). Recall
that R1 is the dimensionless membrane mass, T0 is the dimensionless pretension, and R3 is the
dimensionless stretching modulus. At each (R1, R3) value, the set of snapshots is scaled to fit
within a colored rectangle at the (R1, R3) value and normalized by the maximum deflection of the
snapshots to show the motions more clearly.

To show the net translational motions of the membranes, we plot in figure 2.20

the y coordinates of the membranes’ midpoints over time. The color denotes the net y

displacement up to t = 250. At R1 = 102, the membranes’ translational motions are

generally oscillatory with long time intervals between changes in vertical direction.

Decreasing R1 generally decreases the lengths of these intervals, corresponding to

higher frequency translational motions. At R1 = 100.5, the membranes translate

steadily (with occasional changes in direction, at R3 = 101 and 101.5). We find that

steady (or nearly steady) translational motions actually occur at various R1 in the
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range (100.4, 101). At R1 = 100, essentially periodic trajectories occur (at this R1,

periodic motions were also seen in the fixed–free case, figure 2.10). Decreasing R1

to 10−0.5, we have many cases of oscillation superposed on a steady (or somewhat

meandering) translation. This trend continues to the left of the red line, where the

solutions become difficult to resolve numerically. The net membrane translations

generally decrease with increases in R3, presumably because the membranes are

flatter, so they have a more tangential motion with respect to the oncoming flow if

their vertical translations are smaller, and tangential motions are not resisted in this

inviscid model.

Figure 2.20: Time series of the y coordinates of the free–free membranes’ midpoints, superposed
on colors giving the maximum values of the time series for each (R1, R3) pair with T0 = 10−2. In
the lower right corner, data are omitted because long-time trajectories were not obtained. For each
membrane’s midpoint y-coordinate time series, the axis scales are omitted due to space constraints
but our focus here is on the qualitative features only.
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We can use the power spectra of the total wake circulation to again characterize

the membranes’ temporal dynamics in the same R1-R3 parameter space. We find

properties that are similar to the fixed–free case: low-frequency, somewhat aperiodic

motions at the largest R1, and a steady transition to higher-frequency motions with

decreasing R1 until, near R1 = 100.5, the steady motions appear which have only a

zero-frequency component in the wake circulation (the total wake circulation decays

to zero in these cases). At R1 = 100, periodic motions appear, and then become

increasingly aperiodic with further decreases in R1. The diverse types of translational

motions do not lead to large qualitative changes in the power spectra, except for the

steadily translating motions. We present power spectrum data for the free–free case

in appendix C.

When both membrane ends are free, the “waviness” of the membrane is more

difficult to define. Our definition is the number of crossings that a membrane makes

with the line connecting its two endpoints, averaged over time. A definition based

on crossings of a horizontal line would ignore the fact that many of the free–free

membranes have small undulations about a line with nonzero net slope. The combi-

nation of a steady background flow with a nearly steady vertical translation makes

a line with nonzero slope the state of pure tangential motion relative to the fluid,

and thus the basic state of minimal resistance to the fluid. Figure 2.21 illustrates

the zero crossings using this definition for several membrane examples. We omit the

two endpoints from the set of zero crossings.
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Figure 2.21: Schematic diagram that explains the term zero-crossings for a membrane with both
endpoints free. The dot-dashed black line is the linear line that connects the two endpoints of the
membrane at each time step, the blue solid line resembles the membrane at an instant of time, and
the red star denotes the zero-crossing, which is the intersection point between the linear line and
the membrane profile.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

4

2

2.5

3

3.5

4

4.5

5

 5.5

Figure 2.22: (Free–free.) Snapshots of the membrane motion at the large-amplitude regime, plotted
on top of colors that correspond to the number of zero-crossings in the R1-R3 parameter space for
fixed T0 = 10−2. The data in the right bottom corner are obtained for a shorter time and so, we
neglect the computational results for those values of R1 and R3. At each (R1, R3) value, the set
of snapshots is scaled to fit within a colored rectangle at the (R1, R3) value and normalized by the
maximum deflection of the snapshots to show the motions more clearly.

Figure 2.22 shows the average number of zero crossings in the R1-R3 space already
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discussed. Like the power spectra, this measure of membrane motion filters out some

of the differences in translational motion. Starting at R1 = 102, the number of zero

crossings decreases to about 2 for the steady translating motions near R1 = 100.5,

and then increases with further decreases in R1 as the motions become more periodic

and then more irregular at yet smaller R1 where the motions are not fully resolved

spatially. The trend is generally the same as in the fixed–free case.
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Figure 2.23: (Free–free.) Snapshots of the membrane motion (in black) and the vortex wake in a
portion of the R1-R3 parameter space for fixed T0 = 10−2. In each case the (R1, R3) values are
marked at the left endpoint of the membrane. The wake is color-coded according to the vortex
sheet strength at the last time step. It is also thickness-coded according to 15|γ|1/3. Counterclock-
wise rotating vortices are shown in orange and clockwise rotating vortices in blue. For example,
for (R1, R3) = (10−0.5, 102.5) we have max |γ| = 0.0076 and for (R1, R3) = (100.5, 101) we have
max |γ| = 2.3.

Examples of vortex wakes in the free–free case are shown in figure 2.23. The wakes

have oscillatory patterns like those in the fixed–free case (figure 2.17). Here, however,

the membranes’ translational motion leads to more complexity in the wakes’ spatial

configurations. Fewer of these cases resemble a von Kármán vortex street than those

in the fixed–free case. For example, the membrane with R1 = 100 and R3 = 100.5

in figure 2.22 oscillates almost periodically in the y direction. The motion is shown

enlarged in figure 2.24(a). The corresponding vortex wake, shown in figure 2.23
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Table 2.1: Comparison of frequencies in the small-amplitude and large-amplitude regimes with
R3 = 101.5 for three pairs of (R1, T0) at the flutter and divergence region for fixed–free and free–
free membranes.

(R1, T0) Small-amplitude frequency Large-amplitude frequency

(100, 10−0.5) 0.1717 0.1313
Fixed–free (100.5, 10−0.5) 0.0970 0.1240

(101.5, 100) 0.0362 0.0543

Free–free (100, 10−0.5) 0.1607 0.1303
(101, 100) 0.0241 0.0542

(middle column, bottom row) is more complex than a von Kármán vortex street. At

the upper right of figure 2.23 are approximately straight-line wakes, corresponding to

membranes that translate steadily with a constant shape, e.g., the enlarged example

in figure 2.24(b). Here the vortex wakes have zero strength density in the large-time

limit, and so they translate steadily downstream without any self-induced undulatory

motion or roll-up.
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Figure 2.24: (Free–free.) Membrane snapshots at the large-amplitude regime, for (a) R1 = 100

and R3 = 100.5 and (b) R1 = 100.5 and R3 = 102.5. The shading of the membrane indicates the
different phases in the motion, varying from gray at earlier times to black at current times.

Our final results are a brief comparison of membrane frequencies in the small-

amplitude exponential growth regime, the focus of previous membrane flutter studies,

and the large-amplitude steady-state regime. The top three rows of table 2.1 compare
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the small- and large-amplitude frequencies of three fixed–free membranes, shown in

figure 2.9 (at R3 = 101.5), that become unstable through flutter and divergence

and oscillate with a single dominant frequency. The bottom two rows compare the

frequencies for two free–free membranes that also oscillate with single dominant

frequencies. We note that the frequency may become significantly lower or higher as

the membranes transition from small to large amplitude. It is unclear in general if

aspects of the large amplitude motion can be inferred from the shapes and frequencies

of the unstable modes in the linearized, small-amplitude regime.

2.4 Conclusions

In this chapter we have studied the flutter instability and large amplitude dy-

namics of thin membranes. These are made of elastic materials—e.g., rubber, textile

fabric, or the skin of swimming or flying animals—with Young’s moduli sufficiently

small that stretching provides the primary resistance to fluid forces and bending

resistance is negligible. Previous studies have considered the flutter instability of

membranes with fixed ends. We find that all such membranes become unstable by

divergence below a critical pretension T0 close to the value identified in previous

studies. Surprisingly, we find that all cases that exhibit large (but physically rea-

sonable) deflections converge to states of steady deflection with single humps that

are almost fore-aft symmetric, and the deflections scale as 1/
√
R3, where R3 is the

stretching modulus. These deformations are similar to those found with linearized

models that assumed steady deflection at a fixed angle of attack [191,194].

We then considered membranes with the leading edge fixed and the trailing edge

free, and found a wide range of unsteady dynamics, somewhat similar to those seen

in studies of flapping plates or flags. The critical pretension T0 now depends on the
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membrane mass density R1. Membranes become unstable with divergence or with

a combination of flutter and divergence in some cases near the stability boundary.

The large-amplitude dynamics are independent of the pretension except close to the

stability boundary, where the dynamics are in some cases more periodic and have

smaller amplitudes. The dynamics depend most strongly on the membrane mass

density R1. At the largest R1 studied we find the smallest oscillation frequencies and

largest membrane deflections corresponding to somewhat chaotic and asymmetrical

membrane motions. Here the mean temporal frequency scales as 1/
√
R1. As R1

decreases, the membrane motions become more periodic and symmetrical, and with

larger spatial frequency components (sharper curvatures and more zero-crossings).

At R1 ≤ 0.1, the motions become more chaotic again, with much finer spatial features

that are difficult to resolve numerically.

With both edges free, the membrane motions show two new features—a vertical

translational component that may be nearly steady or oscillatory, and a nonzero

slope. The combination of the two yields a small angle of attack with respect to

the oncoming flow. The translational motion may be steady, periodic, or chaotic,

and switch among these states with small changes of parameters. Superposed on

the translational motions with nonzero slope are modes with oscillatory spatial and

temporal features, similar to those in the fixed–free case in how they vary with T0,

R1, and R3.

Membrane (as opposed to beam/plate) flutter with free ends has barely been ex-

plored. However, our study shows that these boundary conditions allow for a much

wider range of membrane dynamics with potential future applications in enhancing

the performance of membrane wings [13,172], sails [30,91], and energy harvesting by

membranes mounted on tensegrity structures [163, 204]. Extensional deformations
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may be used in conjunction with [24, 40] or as an alternative to bending-dominated

deformations for energy harvesting, e.g., the flutter of piezoelectric beams and bilay-

ers [36, 44,51,89,133,138,195].
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CHAPTER III

Eigenmode Analysis of Membrane Stability in Inviscid Flow

3.1 Introduction

In chapter II we used a non-linear time-stepping algorithm to compute the sta-

bility thresholds for membranes with three sets of boundary conditions: fixed–fixed,

fixed–free, and free–free leading and trailing edges. Membrane tension has a sta-

bilizing effect in all cases. The ratio of membrane-to-fluid inertia has a less obvi-

ous effect—heavier membranes may be unstable when a lighter membrane was not,

but the instability grows more slowly as membrane mass increases, to the point

where it is difficult to determine whether the membrane is stable or not. Nonlinear

time-stepping simulations with evolving vortex sheet wakes are expensive when large

simulation times are required (i.e., to assess the stability of heavy membranes), and

when the membrane develops fine deformations (as occurs for lighter membranes and

smaller pretension values). In the latter case a fine grid on the membrane is required,

increasing the size of the coupled system of equations that is solved implicitly, and

making it more ill-conditioned, slowing convergence at each time step.

Therefore, in this chapter, we develop a less expensive alternative to study the

stability problem—a nonlinear eigenmode solver. We solve for an ensemble of eigen-

modes and corresponding eigenvalues (growth rates and frequencies) corresponding
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to small-amplitude deformations. By comparing with unsteady simulations, we find

that the modes accurately capture the early stages of the unsteady motion starting

from the undeflected state. By comparing at later times, we find that the mode

shapes qualitatively resemble those of the steady-state large amplitude motions to

varying degrees.

Due to the vortex wake, it is difficult to obtain simple exact eigenmode solutions,

and the physical mechanisms that underlie the membrane instability are somewhat

elusive, but in this chapter we are able to present a comprehensive characterization of

the modes and growth rates in the vicinity of the stability boundary. The eigenmode

approach has been used previously to study membrane stability with fixed–fixed [124,

130, 168, 184] and periodic [128] boundary conditions. We use our method on the

fixed–fixed case, as well as the fixed–free and free–free cases introduced in chapter II,

where a wider range of dynamics can occur. In each case, we study a much wider

range of membrane mass density and pretension values than previous studies.

Over several orders of magnitude of membrane mass density, we find instability

by divergence or flutter (particularly at large mass density, or with one or both

ends free). The most unstable eigenmodes generally become “wavier” at smaller

mass density and smaller tension, but with regions of nonmonotonic behavior. We

find good quantitative agreement with unsteady time-stepping simulations at small

amplitude, but only qualitative similarities with the eventual steady-state large-

amplitude motions.

The structure of this chapter is as follows. In §3.2 we present the membrane and

vortex sheet model and in §3.3 its linearized, small-amplitude version, along with a

summary of the numerical method for determining the eigenvalues and eigenmodes

(§3.3.1). In §§3.4–3.6 we present our results for an extensive range of parameters for
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each of the three boundary conditions. We then turn to simulations of the initial

value problem and examine how the unsteady motions compare to the eigenmode

shapes from the linearized model (§3.7). §3.8 presents conclusions.

3.2 Membrane-vortex-sheet Model

We model the dynamics of an extensible membrane that is nearly aligned with a

two-dimensional background fluid flow with speed U in the far field (see figure 3.1).

Figure 3.1: Schematic diagram of flexible membranes (solid curved black lines) at an instant in
time. Here 2L is the chord length (the distance between the endpoints) and U is the oncoming flow
velocity. For the nonlinear, large-amplitude model (panels A, C, and E), y(x, t) is the membrane
deflection and the dashed line is the free vortex wake. The right columns show the corresponding
linearized, small-amplitude eigenvalue problems, where the motions are represented by the real
and imaginary parts of the eigenmodes Y (x), shown as green and blue lines, respectively, and flat
vortex wakes of fixed length Lw shown as dashed lines at y = 0 (panels B, D, and F). The boundary
conditions shown are: fixed–fixed membranes (panels A and B), fixed–free membranes (panels C
and D), and free–free membranes (panels E and F).

In figure 3.1, we illustrate schematically the three cases of boundary conditions at

the two ends of the membrane that we investigated in chapter II: fixed–fixed (panels A

and B), fixed–free (panels C and D), and free–free (panels E and F). In all three cases,
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the x-coordinates of the ends are fixed at 0 and 2L. In the “fixed–fixed” case, we

set the deflection to zero at both ends of the membrane; most previous studies of

membrane flutter considered this boundary condition [99, 124, 146, 168, 184]. In the

“fixed–free” case, the leading edge deflection is again set to zero but the trailing

edge is allowed to deflect freely in the vertical direction. This is the classical free-

end boundary condition for a membrane [45, 59]. The membrane end is fixed to a

massless ring that slides along a vertical frictionless pole (represented by the red lines

in figure 3.1). Since the pole is frictionless and the ring is massless, the membrane

can exert no vertical force on the free end by tension, and hence the membrane slope

must be zero.

Free-end boundary conditions have been implemented in various problems in clas-

sical mechanics such as beam flutter [10,12,14,31,35,42,58,75,80,81,89,93,109,117,

121, 133, 153, 177, 186, 210], but they have not been used to a great extent in mem-

brane flutter problems. Recently, an experimental study determined that membrane

wing flutter can be enhanced by the vibrations of flexible leading and trailing edge

supports [13]. For membrane wings with partially free trailing edges, trailing edge

fluttering may occur at relatively low angles of attack [74]. Partially free edges occur

also in sails. In [91], it is shown that by altering the tension in cables running along

its free edges one can control the shape of a sail membrane and when the tension

in these edges is sufficiently low, flutter can occur [30]. A related application is to

energy harvesting by membranes mounted on tensegrity structures and placed in

fluid flows [163,204].

The authors in [110, 188] consider the dynamics and flutter of membranes and

cables under gravity with free ends. In chapter II and in the current work, to focus on

the basic flutter problem [154], we do not include gravity in the model. However, we

57



still need to ensure that the problem remains well-posed by requiring some restriction

on the motion of the free membrane ends to eliminate the possibility of membrane

compression [188]. This restriction is provided by the vertical frictionless poles. This

has been carried out experimentally by representing a membrane as an extensional

spring tethered by steel wires to vertical supports [87], for example.

The model here is the same as in chapter II but we repeat the main points for

completeness. The membrane dynamics are described by the unsteady extensible

elastica equation with body inertia, stretching resistance, and fluid pressure loading,

obtained by writing a force balance equation for a small section of membrane lying

between α and α + ∆α:

(3.1)

ρshW∂ttζ(α, t)∆α = T (α+∆α, t)ŝ−T (α, t)ŝ−[p]+−(α, t)n̂W (s(α + ∆α, t)− s(α, t)) .

Here ρs is the mass per unit volume of the undeflected membrane, h is its thickness,

and W is its out-of-plane width, all uniform along the length. In (3.1), ζ(α, t) =

x(α, t) + iy(α, t) is the membrane position in the complex plane, parameterized by

the material coordinate α, −L ≤ α ≤ L (L is half the chord length) and time t. The

pressure jump across the membrane is [p]+−, the local arc length coordinate is s(α, t),

the local stretching factor is ∂αs, and the unit vectors tangent and normal to the

membrane are ŝ and n̂, respectively. These are given by

(3.2) ŝ = ∂αζ(α, t)/∂αs(α, t) = eiθ(α,t) and n̂ = iŝ = ieiθ(α,t),

with θ(α, t) the local tangent angle. For the pressure jump term we use + to denote

the side towards which the membrane normal n̂ is directed, and − for the other side.

However, for the remainder of this chapter, we drop the + and − for ease of notation.
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Dividing (3.1) by ∆α and taking the limit ∆α→ 0, we obtain:

(3.3) ρshW∂ttζ(α, t) = ∂α(T (α, t)ŝ)− [p](α, t)W∂αsn̂.

The membrane tension T (α, t) is given by linear elasticity [22, 123,125] as

(3.4) T (α, t) = T + EhW (∂αs(α, t)− 1),

where E is the Young’s modulus and T is the tension in the (initial) undeflected

equilibrium state. Equation (3.3) is made dimensionless by nondimensionalizing

length by the membrane’s half-chord L, time by L/U , and pressure by ρfU
2, where

ρf is the density of the fluid and U is the oncoming flow velocity. The nonlinear,

extensible membrane equation becomes

(3.5) R1∂ttζ − ∂α((T0 +R3(∂αs− 1))̂s) = −[p]∂αsn̂.

The dimensionless membrane mass is R1 = ρsh/(ρfL), the dimensionless stretching

rigidity is R3 = Eh/(ρfU
2L), and finally, T0 = T/(ρfU

2LW ) is the dimensionless

pretension. The model is linearized for small-amplitude membrane deflections in §3.3

(shown schematically in figure 3.1, right column).

We let z = x + iy to use the complex representation of the xy flow plane. The

complex conjugate of the fluid velocity at any point z not on the vortex sheets is a

sum of the horizontal background flow with dimensionless speed unity and the flow

induced by the bound and free vortex wakes:

(3.6) ux(z)− iuy(z) = 1 +
1

2πi

∫ 1

−1

γ(α, t)

z − ζ(α, t)
∂αsdα +

1

2πi

∫ smax

0

γ(s, t)

z − ζ(s, t)
ds,

where s is the arc length along the free sheet starting at 0 at the membrane’s trailing

edge and extending to smax at the free sheet’s far end. To determine the bound

vortex sheet strength γ we require that the fluid does not penetrate the membrane,
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i.e., the kinematic boundary condition. Here γ also represents the jump in the

component of the flow velocity tangent to the membrane from the − to the + side,

i.e., γ = −[(ux, uy) · ŝ]. The normal components of the fluid and membrane velocities

are equal:

(3.7)

Re(n̂∂tζ(α, t)) = Re

(
n̂

(
1 +

1

2πi

∫ 1

−1

γ(α, t)

z − ζ(α, t)
∂αsdα +

1

2πi

∫ smax

0

γ(s, t)

z − ζ(s, t)
ds

))
,

where n̂ is written as a complex scalar. Solving (3.7) for γ on the body requires an

additional constraint that the total circulation is zero for a flow started from rest. At

each instant the part of the circulation in the free sheet, or alternatively, the strength

of γ where the free sheet meets the trailing edge of the membrane, is set by the Kutta

condition which makes the flow velocity finite at the trailing edge. At every other

point of the free sheet, γ is set by the criterion that circulation (the integral of γ)

is conserved at material points of the free sheet. The vortex sheet strength γ(α, t)

is coupled to the pressure jump [p](α, t) across the membrane using a version of the

unsteady Bernoulli equation written at a fixed material point on the membrane:

(3.8) ∂αs∂tγ + ∂α (γ(µ− τ)) + γ(∂ατ − νκ∂αs) = ∂α[p],

where µ is the average flow velocity tangent to the membrane, τ and ν are the tan-

gential and normal components of the membrane velocity, respectively, and κ(α, t) =

∂αθ/∂αs is the membrane’s curvature. At the trailing edge, [p]|α=1 = 0. The deriva-

tion of (3.8) is included in appendix A.

3.3 Small-amplitude Linearization

The large-amplitude, nonlinear system described in §3.2 becomes more amenable

to analysis in the small-amplitude regime. Here we focus on the computation of
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eigenmodes and eigenvalues for the three boundary conditions studied in chapter II:

“fixed–fixed,” “fixed–free,” and “free–free” membranes. We are thereby able to

present the small-amplitude motions of the membranes at larger and smaller mem-

brane densities than in the previous work, and in much greater detail. A similar

linearized model was derived in [3] for the dynamics of a flapping flag. We consider

small deflections y(x, t) from the straight configuration, aligned with the flow. Since

the membrane stretching factor is ∂αs ≈ 1 + ∂xy
2/2, to linear order α ≈ s ≈ x, all

α-derivatives in (3.5) are x-derivatives, and ζ(α, t) ≈ ζ(x, t) = x+ iy(x, t). At linear

order, the tangent and normal vectors are:

(3.9) ŝ ≈ (1, ∂xy)>, n̂ ≈ (−∂xy, 1)>.

The linearized version of the membrane equation is

(3.10) R1∂tty − T0∂xxy = −[p].

The term in the tension force T (α, t) = T0 +R3(∂αs−1) involving R3 (dimensionless

stretching rigidity) is of quadratic order, so the linear dynamics are governed by

the dimensionless membrane mass R1 and the dimensionless pretension T0. The

boundary conditions are:

fixed–fixed: y(±1, t) = 0,(3.11)

fixed–free: y(−1, t) = 0, ∂xy(1, t) = 0,(3.12)

free–free: ∂xy(±1, t) = 0.(3.13)

The dynamics of the membrane are coupled to the fluid flow through the pressure

jump term [p](x, t). The linearized version of the pressure jump equation is

(3.14) ∂tγ + ∂xγ = ∂x[p].
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The set of equations is closed by relating the vortex sheet strength γ(x, t) back to

the membrane position y(x, t), through the kinematic condition, in linearized form:

(3.15) ∂ty(x, t) = −∂xy(x, t) +
1

2π
−
∫ 1

−1

v(x′, t)√
1− x′2(x− x′)

dx′ +
1

2π

∫ `w+1

1

γ(x′, t)

x− x′ dx′,

with −1 < x < 1. Here, we use that ∂tζ(x, t) ≈ −i∂ty and from (3.9), the normal

velocity component Re(n̂∂tζ) ≈ ∂ty. The general solution γ(x, t) has inverse square-

root singularities at x = ±1 and so we define v(x, t), the bounded part of γ(x, t) by

γ = v/
√

1− x2. The second integral in (3.15) represents the velocity induced by the

vortex sheet wake, which extends downstream from the membrane on the interval

1 < x < `w +1, y = 0. Therefore, the eigenvalue problem assumes a free vortex wake

of a given fixed length `w, which we take to be large (i.e., we assume we start with

a deflection that is sufficiently small that we remain in the small-amplitude regime

for a long time).

The circulation in the wake,

(3.16) Γ(x, t) = −
∫ `w+1

x

γ(x′, t) dx′,

is conserved along material points of the wake by Kelvin’s circulation theorem. At

linear order, the wake moves at the constant speed (unity) of the free stream; self-

interaction is negligible.

At each time t, the total circulation in the wake, Γ(1, t), is set by the Kutta

condition, which in linearized form is unchanged, i.e.,

(3.17) v(1, t) = 0.

Using the system of equations (3.10), (3.14), (3.15), and (3.17) we solve for the

following unknowns: the motion of the membrane and the strengths of the vortex

sheets along the membrane and in the wake.
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For the linearized system, we may write solutions in the following form:

y(x, t) = Y (x)eiσt,(3.18)

γ(x, t) = g(x)eiσt,(3.19)

v(x, t) = V (x)eiσt,(3.20)

Γ(1, t) = Γ0e
iσt,(3.21)

where Y , g, V , and Γ0 are components of eigenmodes with complex eigenvalues

σ = σR + iσI ∈ C. The real parts of the eigenvalues are the angular frequencies and

the imaginary parts are the temporal growth rates. If σI > 0, small perturbations

decay exponentially and the mode is stable, while if σI < 0, small perturbations grow

exponentially and the mode is unstable. If σI = 0 the mode is neutrally stable.

We wish to identify the region of R1-T0 space in which unstable eigenmodes exist,

and when there are multiple unstable modes, identify the fastest growing mode.

Since Γ is conserved at material points of the free vortex sheet as they move

downstream (at speed 1), and the material point at location x ≥ 1 at time t was at

location x = 1 at time t− (x− 1), we can write

Γ(x, t) = Γ0e
iσ(t−(x−1)) = Γ0e

−iσ(x−1)eiσt, 1 < x < `w + 1,(3.22)

γ(x, t) = ∂xΓ(x, t) = −iσΓ0e
−iσ(x−1)eiσt, 1 < x < `w + 1,(3.23)

using (3.21). Inserting the eigenmodes (3.18)–(3.21) into the governing equations, (3.10)

and (3.15), yields

(3.24) − σ2R1Y = T0∂xxY − iσ
∫ 1

−1

g dx− g,

and

(3.25)

iσY = −∂xY+
1

2π
−
∫ 1

−1

V (x′)√
1− x′2(x− x′)

dx′− 1

2π
iσΓ0

∫ `w+1

1

e−iσ(x′−1)

x− x′ dx′, −1 < x < 1,
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respectively. Because σ appears in the exponential in the second integral in (3.25),

this is a nonlinear eigenvalue problem.

3.3.1 Numerical Method for Finding the Eigenvalues and Eigenmodes

We solve the nonlinear eigenvalue problem iteratively. At each iteration, we have

an approximation σ0 to a given eigenvalue σ. We approximate the equations as a

quadratic eigenvalue problem:

(3.26) [σ2A2 + σA1 + A0(σ0)]w = 0,

where the matrices A2, A1, A0 are known from equations (3.24), (3.25), and g(x) =

V (x)/
√

1− x2. The eigenvector w consists of: (a) values of the eigenmodes, defined

as Y (x) on the Chebyshev grid {xj = cos θj, θj = (j− 1)π/m, j = 1, . . . ,m+ 1} and

(b) the scalar Γ0. The term A0(σ)w includes the exponential integral involving σ

in (3.25) as well as terms that are constant in σ. In the exponential integral, σ is fixed

at σ0, the value of σ from the previous iteration, resulting in the quadratic eigenvalue

problem (3.26), which is solved using polyeig in Matlab. Equation (3.26) has

2m + 4 eigenvalue solutions. As in [3], we define an error function as the difference

between σ0 and the eigenvalue (out of the 2m + 4 possibilities) closest to it. We

also compute the derivatives of the error function (i.e., the Jacobian matrix) with

respect to σR and σI using finite differences at the initial iterate, and update it at

subsequent iterates using Broyden’s approximate formula [140]. The error function

and Jacobian define the search direction (via Newton’s formula) for the next iterate.

With this approach we obtain superlinear convergence to a given eigenvalue. By

using a wide range of initial guesses, we obtain convergence to various eigenvalues

and corresponding eigenmodes.

The numerical solution procedure followed in the current work differs from [3].
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There we used a continuation method, which for the current problem would start

from the analytical solution for each eigenvalue in the limit R1, T0 � 1, and use the

solution at a given (R1, T0) as an initial guess for slightly smaller (R1, T0) (continuing

to smaller and smaller (R1, T0)). We find that this method fails to find solutions at

certain (R1, T0) and therefore at smaller values also, so we use a more robust approach

here. We compute a large set of eigenvalues at each (R1, T0) using a large grid of

initial eigenvalue guesses in the complex plane covering in most cases σR ∈ [−8, 8] and

σI ∈ [−3,−0.5]. For each initial guess we perform the eigenvalue iteration described

above until it converges. This reveals the basins of attraction of the eigenvalues

under Broyden’s iteration, which shows that the imaginary part is not as important

as the real part of the eigenvalue guess (especially for large R1 values). We note that

in the system of equations (3.24)–(3.25) the eigenvalue σ appears in powers of iσ.

For each solution {iσ, w}, the complex conjugate {−iσ̄, w̄} is also a solution, so we

need only compute one member of the pair, and obtain the other by conjugation.

For the eigenvalue iσ = iσR − σI, the conjugate is −iσ̄ = −iσR − σI; i.e., the sign of

σR is reversed. Thus we can restrict to σR ≥ 0.

We now present typical examples of our eigenmode computations. Throughout

the present chapter we use m = 120 for the Chebyshev grid, unless noted otherwise.

Comparisons between m = 80 and 120 (as well as 240) are presented in appendix D.

Figure 3.2 shows results for (R1, T0) = (10−1, 10−0.27) with both membrane edges

fixed. The coloring in panels A and B indicates the converged values of σR (panel A)

and σI (panel B) over a grid of initial eigenvalue guesses in the complex plane span-

ning 320 values in the real direction and 4 values in the imaginary direction. In

panel C we plot the 25 distinct eigenvalues found with this set of initial guesses

and in D, the corresponding eigenmodes from the most unstable (smallest—or most
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negative—σI) on the left to the most stable (largest σI) on the right. The vertical

black line in D separates the (only) unstable mode (on its left) from the stable modes

(on its right). The unstable mode loses stability through divergence as is evident

from panel C, where the associated eigenvalue has σR ≈ 10−9 and σI < 0. We also

illustrate with a red circle in panels A and B an instance of an initial guess that gives

rise to this mode. The converged σ values are more sensitive to the real than to the

imaginary part of the initial guess, which motivates the wider range of σR used here

and subsequently.
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Figure 3.2: Fixed–fixed eigenvalues and eigenmodes with R1 = 10−1 and T0 = 10−0.27. Com-
puted σR (panel A, values in colorbars at right) and computed σI (panel B, values in colorbars at
right), both plotted over the initial guess complex plane. C) The distinct eigenvalues generated by
the numerical method replotted as red dots in the (σR, σI) plane. D) The corresponding eigenmodes
(Re(Y (x)) in green, Im(Y (x)) in blue) from the only unstable one (with negative σI) on the left to
the most stable one (largest σI) on the right. The vertical black line separates the unstable mode
(on its left) and stable modes (on its right).

In figure 3.3 we show another example of the eigenvalue computation for fixed–

fixed membranes, with larger membrane mass and pretension: (R1, T0) = (103, 101.5).

In panels A and B we use a grid of initial eigenvalue guesses spanning 640 values

in the real direction and 6 values in the imaginary direction. For smaller R1 (as in

figure 3.2) the converged σ vary more with the initial choice of σI compared to the

larger R1 here, where the converged eigenvalues are independent of the initial σI, and
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depend only on the initial σR.

-3

-2.5

-2

-1.5

-1

-0.5

1

2

3

4

5

6

0 1 2 3 4 5

-3

-2.5

-2

-1.5

-1

-0.5

0

5

10

10-4

1 2 3 4 5

-2

0

2

4

6

8

10

12

14

16
10-4

Figure 3.3: Fixed–fixed eigenvalues and eigenmodes with R1 = 103 and T0 = 101.5 and other
quantities as described in figure 3.2.

Since a generic perturbation is a superposition of all the eigenmodes multiplied

by eiσt = eiσRte−σIt, we classify the stability of generic perturbations in the (R1, T0)

parameter space based on the value of σR + iσI for the smallest σI at a given (R1, T0):

1. σI > 0: stable,

2. σI = 0: stability boundary location,

3. σI < 0 and σR = 0: divergence (“static” instability),

4. σI < 0 and σR 6= 0: flutter and divergence.

3.4 Fixed–fixed Membranes

We start with membranes that have both edges fixed at zero deflection (satisfy-

ing (3.11)). We plot the stability boundary as the red dots connected by red lines in

figure 3.4A and B. Below and to the right is the unstable region. The red dots are

computed by linear interpolation of σI between neighboring T0 values (shown by the

horizontal black bars) that bracket the boundary: all σI are positive at the larger of

the T0 values and above, but one σI is negative at the smaller of the T0 values.
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The stability boundary (red line) agrees well with that of our nonlinear time-

stepping simulations (orange line, from chapter II) and with the results of [184]. For

each R1, an eigenmode first becomes unstable when the pretension T0 drops below a

critical value T0C(R1). For R1 < 102, T0C(R1) ∈ [1.7, 2], almost independent of R1. In

our nonlinear, unsteady simulations (chapter II), we found a similar range of T0C(R1),

[1.7, 1.92], for R1 < 101.5. The small discrepancy could arise from the δ-smoothing

on the free vortex sheet (that is not used in the eigenvalue solution but is used in the

time-stepping simulation). Another possible explanation (as stated in [3]) is that in

the time-stepping simulation in chapter II the wake grows from zero length but in

the current eigenvalue problem the wake has fixed length `w. In our simulations we

use `w = 39, and the modes are essentially unchanged at larger `w. In chapter II we

were not able to compute the upward sloping portion of the stability boundary for

R1 > 101.5 using the unsteady simulations, due to the slow growth/decay of small

perturbations with large R1.

In figure 3.4 the colored dots give the imaginary (panel A) and real parts (panel B)

of the most unstable eigenvalues (with corresponding eigenmodes shown later, in fig-

ure 3.5). The gray dots in panel B indicate negative σI and nearly zero σR (σR ≤ 10−9)

for the most unstable eigenmode, which corresponds to divergence. The colored dots

in panel B indicate a nonzero real part (value in colorbar at right) for the most

unstable eigenmode, corresponding to flutter and divergence. Within the instability

region (region below the red line) we find that for a fixed T0, the fastest growing

mode has a growth rate (σI) that generally decreases in magnitude as R1 increases.

We also find that membranes with R1 . 101.5, in general, lose stability by diver-

gence for T0 ∈ (10−0.5, T0C(R1)] but then for a smaller T0 (. 10−0.5), by flutter and

divergence. Heavier membranes generally lose stability by flutter and divergence for
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T0 ∈ (100.25, T0C(R1)].
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Figure 3.4: The region in R1-T0 space in which the fixed–fixed membrane is unstable. The red
line and red dots indicate the position of the stability boundary computed by linear interpolation
between σI of the smallest T0 that gives a stable membrane and the σI of the largest T0 that gives an
unstable membrane (shown in the error bars). The colors of the dots below the stability boundary
label: A) The imaginary parts of the eigenvalues (σI) corresponding to the most unstable modes.
They represent the temporal growth rate. B) The real parts of the eigenvalues (σR) for the most
unstable modes, representing the angular frequencies. The gray dots correspond to modes that
lose stability by divergence and have σR ≤ 10−9. The orange line that spans log10R1 ∈ [−2, 2]
represents the stability boundary computed numerically in chapter II.

In the limit R1, T0 � 1, the fluid pressure is negligible and the linearized mem-

brane equation (3.10) reduces to the homogeneous wave equation

(3.27) R1∂tty − T0∂xxy = 0,

which after substituting (3.18) becomes

(3.28) − σ2R1Y − T0∂xxY = 0.

The eigenmodes are linear combinations of cos(kx) and sin(kx), with k = ±σ
√
R1/T0,

satisfying the boundary conditions (3.11). Nontrivial linear combinations exist for k

values for which the determinant of the matrix

(3.29)




sin(−k) cos(−k)

sin(k) cos(k)



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vanishes, which occurs at k = nπ/2 for n ∈ Z>0. Each k gives a pair of eigenvalues:

(3.30) σ = ±k
√
T0

R1

,

and eigenmodes of the form

(3.31) Y (x) = sin
(nπ

2
(x+ 1)

)
,

for n ∈ Z>0 and −1 ≤ x ≤ 1, where the amplitude is arbitrary.

Similar to [3], in the limit of R1, T0 � 1 equation (3.30) shows that the frequency

scales as
√
T0/R1. We have observed this in our simulations: σR is approximately

constant along lines of constant T0/R1 in the upper right portion of figure 3.4B

(toward the vacuum limit). At smaller R1, the angular frequency is less sensitive to

the membrane pretension.

The numerical results for the eigenvalues (red dots) shown in figure 3.3C show

excellent agreement with the analytical form (3.30) of σ (black plusses), with very

small imaginary parts (vertical axis). In panel D there are two unstable modes (n = 2

and 4 in equation (3.31)), which are also the unstable modes that were found in [184]

for large values of R1 and T0.

In figure 3.5 we plot again the instability region in the R1-T0 parameter space for

fixed–fixed membranes, but with the eigenmode shapes corresponding to the most

unstable eigenvalues in figure 3.4. The real and imaginary parts of the eigenmode

Y (x) are shown in green and blue, respectively. We place gray rectangles around

the modes that lose stability by divergence. For R1 < 102 and T0 just below T0C ,

the unstable eigenmode is a single-hump shape that is nearly fore-aft symmetric.

As the pretension is decreased further below T0C the divergent eigenmode becomes

asymmetric, its maximum deflection point shifting towards the trailing edge. This

agrees with [184, Fig. 10]. In the divergence region of figure 3.5 when T0 = 100 and
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R1 decreases from 102 to 10−1, the maximum deflection point also shifts from the

midchord towards the trailing edge, in agreement with [184, figure 5]. For heavier

membranes (R1 ≥ 102), the membrane loses stability with an even-numbered mode

shape through flutter and divergence. In particular the second mode (n = 2) is the

most unstable mode for R1 ≥ 102 and T0 ∈ [100.5, T0C(R1)], as well as (R1, T0) =

(102, 100.25) and (103, 100.25). Decreasing the pretension value below 100.25, the fourth

mode (n = 4) becomes the most unstable for R1 > 102, followed by the sixth mode

at (R1, T0) = (102, 10−0.25), (102.5, 10−0.5). For heavy membranes with decreasing T0,

the most unstable mode apparently moves to progressively higher even-numbered

modes.
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Figure 3.5: The shapes Y (x) of the most unstable eigenmodes as a function ofR1 and T0 in the fixed–
fixed case. The real and imaginary parts of Y (x) are shown in green and blue, respectively. Each
shape is scaled both vertically and horizontally to fit within the plot. The shapes are superposed
on the same stability boundary (red line) as in figure 3.4. Modes exhibiting a divergence instability
have a gray rectangle outline.

We now study in more detail how the eigenvalues change in R1-T0 space by ex-

amining what happens when T0 passes through the stability boundary. We track the

stable and unstable modes using a grid of initial eigenvalue guesses in the complex
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plane covering σR ∈ (0, 8] and σI ∈ [−3, 3], with 160 values in the real direction

and 13 values in the imaginary direction. As can be observed in figure 3.5, in gen-

eral, as we move to smaller T0 values higher wavenumber modes become the most

unstable ones. We now consider the instability of higher wavenumber modes as we

cross the stability boundary, by fixing two values of R1 and decreasing T0, while

tracking the real and imaginary parts of the computed eigenvalues.
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Figure 3.6: For two values of membrane mass (R1), 103 (left column) and 101 (right column),
the imaginary (A, C) and real parts (B, D) of the eigenvalues versus pretension (T0) for fixed–
fixed membranes. The coloring represents the RMS of the membrane’s slope, Y ′RMS (3.32) for each
(R1, T0) pair. The horizontal black lines in the top panels located at A) σI = ±10−6 and C)
σI = ±3 × 10−4 distinguish stable modes (above) and unstable modes (below). To the left of and
within panels A and C, we show typical modes for branches with Y ′RMS < 4π.

In figure 3.6 we show the real (bottom row) and imaginary parts (top row) of the

eigenvalues for R1 = 103 (left column) and 101 (right column), while decreasing T0.

The colors show the normalized root mean square (RMS) slope of each membrane
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eigenmode on the Chebyshev mesh, defined by

(3.32) Y ′RMS :=

√∫ 1

−1

∣∣∣∣
dY

dx

∣∣∣∣
2

dx

/ ∫ 1

−1

|Y |2 dx,

which is a measure of the “waviness” of each mode. Each branch that possesses

approximately the same color (lying in a particular, small range of Y ′RMS) indicates

a distinct mode. At the highest mass (R1 = 1000), panels A and B, we connect the

eigenvalues by polygonal lines for the modes that are sufficiently distinct from the

others—the seven lowest wavenumber modes. The branches in panel A are somewhat

jagged when |σI| drops below 10−5. The corresponding σR (panel B) vary much more

smoothly, probably because their magnitudes are larger relative to numerical errors.

The blue branch with the most negative σI values first becomes unstable (σI changes

from positive to negative) at T0 ≈ 101.87, which coincides with the loss of stability

in figure 3.5. The mode associated with this blue branch is the second mode (n = 2

in equation (3.31)). The next branch to become unstable corresponds to the fourth

mode (n = 4) at T0 ≈ 101.56 and then the sixth mode (n = 6) at T0 ≈ 101.41.

Representative mode shapes at the smallest T0 = 101.2 are shown to the left of panel

A, for the three unstable branches (n = 2, 4, and 6) and four stable branches (n = 1,

3, 5, and 7). The Y ′RMS values that correspond to these seven lowest wavenumber

modes are approximately those of the analytical eigenmodes in (3.31), nπ/2 for

n = 1, 2, . . . , 7. We also illustrate examples at larger T0 values for the n = 2 and 4

branches, and find that the mode shapes are almost unchanged. In particular, we

note that the seven modes shown to the left of T0 = 101.2 all remain approximately the

same across the corresponding colored branch for T0 ∈ [101.2, 101.875]. In figure 3.6 we

focus on the lowest wavenumber shapes, as the higher wavenumber shapes (yellow

dots) are not numerically resolved. The odd-numbered modes remain stable for

all values of T0 shown. As we decrease the pretension T0 the number of distinct
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modes found—with the range of initial guesses that we are using—increases. This

is indicated by the higher density of dots at smaller T0 in figure 3.6B. Panels C

and D show the corresponding data for a smaller membrane mass, R1 = 10. The

modes deviate more from the analytical expression of equation (3.31), and change

more significantly across T0, compared to panel A. Representative modes at the

smallest T0 = 10−0.3 are shown at the left side of panel C. The shape of the curves

that connect the real part of the eigenvalues associated with a particular mode shape

(lower panels) seems to be similar for the two mass densities. However for the smaller

mass (R1 = 10) there is a “disordered” band of dark blue dots (with Y ′RMS < π/4)

that are stable (σI ≈ 10−1 is panel C) and have low frequency (σR . 1 in panel D).

To summarize, in agreement with [184], we have found that the stability boundary

has an upward slope for R1 ≥ 102, whereas for R1 < 102 the critical T0 for insta-

bility lies in [1.7, 2], almost independent of R1. When R1 and T0 are dominant over

fluid pressure forces, the membrane eigenmodes tend to neutrally-stable sinusoidal

functions. When the fluid forces are small but nonnegligible the mode shapes are

similar, with the even-numbered modes becoming unstable with very small growth

rates, starting with the second modes. We find roughly two regions: (a) at small R1

divergence occurs with the most unstable mode becoming more fore-aft asymmetric

as we decrease T0; and (b) at large R1 flutter and divergence occur with approxi-

mately sinusoidal eigenmodes. In both of these regions, the most unstable modes

become more wavy at smaller T0. We have extended previous studies of the fixed–

fixed membrane to a wider range of R1-T0 space. Next, we study cases in which the

membrane ends can move freely, which are less well-known.
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3.5 Fixed–free Membranes

We now investigate the stability of membranes with the leading edge fixed and the

trailing edge free to move vertically, i.e., satisfying the boundary conditions (3.12).

In chapter II we found that with one end free, the membrane has a wider range

of unsteady dynamics. In particular, in the steady-state large-amplitude regime we

showed in chapter II that this set of boundary conditions has a mixture of periodic

and chaotic dynamics as opposed to the steady single-hump solutions observed in

fixed–fixed membranes. In the small-amplitude (growth) regime we will now show

that the eigenmodes can also be somewhat more complicated.
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Figure 3.7: The region in R1-T0 space in which the fixed–free membrane is unstable. The red line
and red dots indicate the position of the stability boundary computed using linear interpolation
between σI of the smallest T0 that gives only stable eigenmodes and the σI of the largest T0 that
gives an unstable eigenmode (shown in the error bars). The color of the dots below the stability
boundary labels: A) The imaginary part of the eigenvalue (σI) corresponding to the most unstable
modes. It represents the temporal growth rate. B) The real part of the eigenvalues (σR) for the most
unstable mode, representing the angular frequency. The orange line that spans R1 ∈ [10−3, 102]
represents the stability boundary computed numerically in chapter II.

In figure 3.7 we plot the imaginary (panel A) and real parts (panel B) of the

most unstable eigenvalues in the region of instability for the fixed–free membranes

in R1-T0 space. The red line marks the boundary where the eigenvalues change

from all σI > 0 (stable membranes) to at least one σI < 0 (unstable membranes),
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analogous to figure 3.5. As in the fixed–fixed case, the stability boundary moves to

larger pretension (T0) values with increasing membrane mass (R1), but starting at

much smaller R1 now (≥ 10−1). As R1 decreases below 10−1, the critical pretension

reaches a lower plateau.

The stability boundary of the current study is compared against the boundary

from the nonlinear study in chapter II (orange line). Their shapes are very similar

and there is good agreement especially for R1 ∈ [10−0.75, 100.5]. As in figure 3.5, the

discrepancy may be due to δ-smoothing used on the free vortex sheet of chapter II,

the choice of the vortex wake `w, or the number of Chebyshev nodes (m + 1) on

the membrane. In the unsteady simulations (orange line) we used m = 40 because

the simulations require more computing time, but in the current work (red line) we

used m = 120. The eigenvalue solver shows that the boundary slopes upward over

R1 ∈ [102, 103], where it was difficult to obtain accurate results with the unsteady

simulations.

The trends of the most unstable eigenvalues (colored dots) are similar to the

fixed–fixed case (figure 3.4) in some ways: the growth rates σI generally become

larger in magnitude at smaller T0 and smaller R1 (panel A), and the growth rates

vary nonmonotonically with T0 at intermediate R1 ([100.5, 101.5] for fixed–free, and

smaller R1 for fixed–fixed). A difference is the slight decrease in growth rates as R1

decreases below 10−1 for the fixed–free case, which does not occur in the fixed–fixed

case. For R1 ∈ [102, 103], the fixed–free growth rates are qualitatively similar to

those in the fixed–fixed case above T0 = 100.1. Below this value, however, the fixed–

free growth rates jump by more than an order of magnitude. In both cases, the

real parts of the eigenvalues (the angular frequencies σR, panel B) generally decrease

with decreasing T0 and with increasing R1, particularly at the largest R1. Below
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R1 = 101.5, the frequencies are very different: divergence (σR ≈ 0) does not occur in

the fixed–free case, but is common in the fixed–fixed case.

To consider the eigenmodes in the fixed–free case we again start with R1 and T0 �

1, so the fluid forcing is negligible and the eigenmodes are again solutions of (3.27),

i.e., nontrivial linear combinations of cos(kx) and sin(kx), with k = ±σ
√
R1/T0, but

satisfying the boundary conditions (3.12) now. The k are now those for which the

determinant of

(3.33)




sin(−k) cos(−k)

cos(k) − sin(k)




is zero, which leads to k = (n − 1/2)π/2 for n ∈ Z>0, corresponding eigenvalues

σ = ±k
√
T0/R1, and eigenmodes now of the form

(3.34) Y (x) = sin

((
n− 1

2

)
π

2
(x+ 1)

)
,

for n ∈ Z>0 and −1 ≤ x ≤ 1. Each mode has one quarter wavelength less than that

of the corresponding fixed–fixed mode, so that the trailing edge has zero slope.
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Figure 3.8: Fixed–free eigenvalues and eigenmodes with R1 = 103 and T0 = 100.8. Com-
puted σR (panel A, values in colorbars at right) and computed σI (panel B, values in colorbars
at right), both in the initial guess complex plane. C) The computed eigenvalues replotted as red
dots in the (σR, σI) plane. The inset in panel C shows the ten computed eigenvalues (red ◦)
that correspond to the eigenmodes shown in panel D. The analytical form of the eigenvalues is
σ = ((n− 1/2)π/2)

√
T0/R1 = ((n− 1/2)π/2)

√
100.8/103 for n = 1, . . . , 10 (black plusses).
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Figure 3.8 shows an example of how the computed eigenvalues (real parts in

panel A and imaginary parts in panel B) vary over a grid of initial guesses in the

complex plane, for a fixed–free membrane with (R1, T0) = (103, 100.8), in the large

R1 region near the stability boundary. The quantities plotted are analogous to those

in figure 3.3. The grid of initial eigenvalue guesses in the complex plane covers

σR ∈ (0, 8] and σI ∈ [−2,−0.5], spanning 640 values in the real direction and 4

values in the imaginary direction. As in figure 3.3, we see that for large R1 (103)

and moderately large T0 (100.8) the eigenvalues obtained by the numerical method

depend mainly on the real part of the initial eigenvalue guess. However, here we

see that there is more variation in the computed eigenvalues with respect to the

choice of initial σR compared to figure 3.3, where the vertical bands of constant real

(panel A) and imaginary parts (panel B) of σ are wider. This may be due to the

smaller value of T0 considered in figure 3.8 (100.8 as opposed to 101.5 in figure 3.3).

As we decrease the membrane pretension (T0) the number of distinct modes found

(with our range of initial guesses) typically increases (e.g., figure 3.6A and B). The

numerically computed eigenvalues from figure 3.8A and B are replotted as red dots

in the (σR, σI) plane in panel C, and those at the smallest σR, shown in the inset,

agree closely with the analytical form (3.30) with k = (n − 1/2)π/2 for n ∈ Z>0

(black plusses in inset; note there is close agreement in the imaginary part due to

the small axis scale). Many eigenmodes are found with wavelengths decreasing down

to the mesh scale, but in figure 3.8D we show the ten modes with largest wavelengths

(i.e., n = 1, . . . , 10 in (3.34)), those that are best resolved numerically. Starting from

the left, the most unstable modes have n = 3, 5, 7, and 9, while n = 10, 8, 6,

4, 1 and 2 are stable. Except for n = 1, the modes with even and odd n have

the opposite stability behavior. Here we omit the computed modes with highest
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wavenumbers because they (and the corresponding eigenvalues) are not numerically

converged. For the large-R1, large-T0 limit solved analytically in equation (3.34), we

have a quadratic eigenvalue problem. When discretized by the numerical method in

§3.3.1, we have 2m + 2 eigenmodes Y (x) varying from low wavenumber modes to

very high wavenumber modes that oscillate on the mesh scale (due to the discretized

second x-derivative). For more general R1 and T0, we have a nonlinear eigenvalue

problem, but still have eigenmodes that oscillate on the mesh scale, and are thus not

resolved (i.e., not close to a continuum solution). Therefore, we focus on the lower

wavenumber eigenmodes—those with Y ′RMS (defined in (3.32)) below a threshold near

4π, or about four wavelengths for a sinusoidal Y (x)—which we can resolve well with

m = 120 grid points.
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Figure 3.9: The shapes Y (x) of the most unstable eigenmode as a function of R1 and T0 in the
fixed–free case. The real part of Y (x) is shown in green and the imaginary part of Y (x) is shown
in blue. Each shape is scaled, both vertically and horizontally, to fit within the plot. The shapes
are superposed on the same stability boundary (red line) as in figure 3.7.
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In figure 3.9 we examine the variations in the most unstable eigenmodes in the

same (R1, T0) space as figure 3.7, corresponding to the eigenvalues shown there.

There is a narrow band with R1 = 100 and 10−0.65 < T0 < 10−0.55 where our initial

guesses all produced σI > 0 and so the modes are stable, and therefore none are

shown in this range. Similar small bands of stability between unstable regions were

also observed in [124, 128] for fixed–fixed membranes. The shapes do not change

noticeably for the more irregular motions at R1 ∈ [10−3, 10−1.25] (the eigenvalues

in figure 3.7 were also nearly constant in this region). At these smallest R1 values

the deflection at the free end is nearly zero. As we decrease T0 for R1 ≤ 10−2.5,

the ripples move toward the trailing edge of the membrane while maintaining nearly

zero deflection at that end. Close to the stability boundary, all the shapes for R1 ∈

[100.75, 102] are also nearly alike. At moderate values of R1 ([10−1, 102]) the maximum

deflection occurs in most cases at the trailing edge of the membrane. At these and

larger values of R1, the mean slope of the membrane is nonzero. In a similar region

of R1 (i.e., [10−1, 101.75]) fixed–fixed membranes become unstable with a single hump,

losing stability via divergence. Fixed–free membranes, however, become unstable by

flutter and divergence. When T0 is below 10−0.2 the most unstable mode changes to a

“wavier” profile—the mode wavenumber increases with decreasing T0. Similar to the

fixed–fixed case where even-numbered modes become unstable for large R1, we see

in figure 3.9 that heavy fixed–free membranes (R1 > 102) with T0 ∈ [100.2, T0C(R1)],

become unstable with an odd-numbered mode—the third mode (the first mode is

stable). At T0 < 100.2 we are no longer in the vacuum limit (R1 � 1 but T0 is not).

Thus, the mode shape is not a simple sinusoidal function of the form (3.34), but the

waviness still increases with decreasing T0 for heavy membranes.
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Figure 3.10: For two values of membrane mass (R1), 103 (left column) and 101 (right column),
the imaginary (A, C) and real parts (B, D) of the eigenvalues versus pretension (T0) for fixed–free
membranes. The coloring represents the RMS of the membrane’s slope, Y ′RMS, for each (R1, T0)
pair given by (3.32). The horizontal black line in the top panels located at A) σI = ±10−6, C)
σI = ±10−4 distinguishes stable modes (above) and unstable modes (below). We also show typical
modes that correspond to each branch with Y ′RMS < 9π/2.

We now consider the changes in the eigenvalues and associated eigenmode shapes

as we pass through the stability boundary for a fixed mass density, the fixed–free

analog of figure 3.6. In figure 3.10 the colors label Y ′RMS, given by (3.32). For the

larger R1, 1000 (panel A) the unstable modes are odd-numbered and they become

unstable in order of increasing n. The third mode becomes unstable first, at T0 ≈

101.36—consistent with figure 3.9. Then the fifth mode (n = 5) becomes unstable at

T0 ≈ 101.33, the seventh mode at T0 ≈ 101.24, and the ninth mode at T0 ≈ 101.18. The

even-numbered modes and the first mode remain stable for all values of T0. Contrary

to the fixed–fixed case with R1 = 1000 (figure 3.6A) where the four branches with

the largest positive σI correspond to modes n = 1, 3, 5, 7, the branches with largest
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σI in the fixed–free case correspond to modes n = 1, 2, 4, 6, 8. This additional branch

with opposite parity (n = 1) in panel A has a slightly smaller σI than the second

mode at the smallest T0 = 101 shown. Above a certain T0 value the n = 1 branch

acquires the largest σI > 0.

We show the membrane shapes of the nine lowest wavenumber modes to the

left of panel A at the lowest T0 = 101, but also examples of membrane shapes at

a couple of larger T0 values for the first two unstable branches and observe that

the mode shapes are almost unchanged. The Y ′RMS values that correspond to these

nine lowest wavenumber modes are approximately those of the analytical eigenmodes

in (3.34), (n− 1/2)π/2 for n = 1, 2, . . . , 9. Even though higher wavenumber shapes

(yellow dots) appear to become unstable at a larger T0 value, such cases are not

numerically resolved and are thus not used in determining T0C here. At R1 = 1000,

the branches with the largest σI > 0 are all continuous but at R1 = 10, the same

branches (blue dots at the top of panel C and bottom of panel D) are more scattered.

There, the numerical method gives individual eigenvalues that do not seem to follow

a particular branch, as was also found for fixed–fixed membranes at R1 = 10. This

could potentially be due to our choice for the range and density of the mesh of initial

eigenvalue guesses. The loss of stability in figure 3.10C occurs at T0 ≈ 100.26. The

imaginary parts of the eigenvalues (panel C) are about two orders of magnitude

higher than in panel A. At R1 = 10 we see four branches that fall below σI = 0, each

having approximately its own distinct value of Y ′RMS. If we consider smaller values

of T0 we would expect to observe more branches becoming unstable. As opposed

to panel A, we see in panel C that the yellow dots (higher wavenumber modes) are

mostly stable. Similar to the fixed–fixed case in figure 3.6 we see that the curves

connecting the σR associated with a particular mode shape appear to be steeper in
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panel D than in panel B.

In summary, the fixed–free stability boundary is lower than the fixed–fixed bound-

ary at small and moderate values of R1—so more membranes are stable—but resem-

bles the upward-sloping portion of the fixed–fixed boundary at large R1 (≥ 102).

Similarly to fixed–fixed membranes (§3.4), when R1 and T0 dominate fluid pres-

sure forces the eigenmodes tend to neutrally stable sinusoidal functions with odd-

numbered modes becoming unstable, starting with the third mode. We find that

in the small R1 region (i.e., R1 < 10−1) the most unstable eigenmodes have small

deflection at the trailing edge, despite its freedom to move in the vertical direction.

The small-R1 modes are very wavy shapes. For all R1, the modes become wavier with

decreasing T0. At moderate and large R1, the waves are superposed on a background

shape with nonzero slope.

3.6 Free–free Membranes
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Figure 3.11: The region in R1-T0 space in which the free–free membrane is unstable. The red line
and red dots indicate the position of the stability boundary computed using linear interpolation
between σI of the smallest T0 that gives a stable membrane and the σI of the largest T0 that gives an
unstable membrane (shown in the error bars). The color of the dots below the stability boundary
labels: A) The imaginary part of the eigenvalue (σI) corresponding to the most unstable modes. It
represents the temporal growth rate. B) The real part of the eigenvalues (σR) for the most unstable
mode, representing the angular frequency. The orange line that spans R1 ∈ [10−3, 102] represents
the stability boundary computed numerically in chapter II.
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We have found that allowing the trailing edge to deflect freely in the vertical

direction dramatically changes the instability region and the membrane dynamics.

As a natural next step, we now study the effect of making both ends free, satisfying

the boundary conditions (3.13). The stability boundary (red line) and most unstable

eigenvalues are shown in figure 3.11. The stability boundary is similar to the fixed–

free case (figure 3.7): the critical pretension increases with mass when R1 > 102,

it decreases as we decrease R1, and it plateaus when R1 � 1. In figure 3.11 we

show that there is close agreement for R1 ∈ [10−0.75, 100.5] between the stability

boundary computed here and in chapter II using unsteady simulations (orange line).

For smaller R1 ([10−3, 10−1]) and larger R1 ([100.75, 102]), the red line has slightly

higher T0. As noted in §3.5 the difference in m (40 in chapter II versus 120 here) may

be the main cause. As for the fixed–free case, we will show that the most unstable

eigenmodes have higher wavenumbers at the smallest R1, so numerical resolution is

an issue there: in chapter II we found that the small- and large-amplitude motions

were not converged with m = 40 for R1 < 10−1.

We can again use the imaginary (panel A) and real parts (panel B) of the eigenval-

ues to characterize the instability in (R1, T0) space. Within the region of instability

(below the red line) a comparison with fixed–fixed (figure 3.4) and fixed–free mem-

branes (figure 3.7) reveals that the colored dots (most unstable eigenvalues) have the

same general behavior: the temporal growth rates (panel A) increase in magnitude

with decreasing R1 and T0, but vary nonmonotonically with T0 at moderate values of

R1 ([100, 102]). The growth rates of free–free heavy membranes (R1 ∈ [102, 103]) are

qualitatively similar to those in the fixed–free case in the same region. The angular

frequencies (σR, panel B) are also larger for smaller R1, but vary nonmonotonically

with T0. Similar to the fixed–free case, we observe that membranes exhibit the flut-

84



ter and divergence instability but do not lose stability solely by divergence (i.e. with

σR ≈ 0) for any (R1, T0) pair. In the region R1 ≤ 10−1.25 the eigenvalues just be-

low the stability boundary are nearly constant; observed also in the fixed–free case

(figure 3.7).

For R1, T0 � 1 the eigenvalues are the same as for the fixed–fixed case (3.30),

with the addition of zero. The free–free eigenmodes are given by

(3.35) Y (x) = cos

(
(n− 1)π

2
(x+ 1)

)
,

for n ∈ Z>0 and −1 ≤ x ≤ 1, where the amplitude is arbitrary.

Figure 3.12 shows an example of how the computed eigenvalues (real parts in

panel A and imaginary parts in panel B) vary over a grid of initial guesses in the

complex plane for a free–free membrane with R1 = 103 and T0 = 101.1, with the

same mesh as in the fixed–free case of figure 3.8. We take R1 and T0 � 1 (vacuum

limit) to compare with the analytical values (3.30) with k = (n− 1)π/2 for n ∈ Z>0

(panel C). In panel D we show the eleven lowest wavenumber modes. Starting from

the left, the most unstable modes are n = 3, 5, 7, 9, and 11 whereas n = 1, 10, 8, 6,

4, and 2 are stable. The sixth shape from the left that is displayed is flat (n = 1),

with corresponding σR and σI ≈ 10−8.
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Figure 3.12: Free–free eigenvalues and eigenmodes with R1 = 103 and T0 = 101.1. Computed σR
(panel A, values in colorbars at right) and computed σI (panel B, values in colorbars at right),
both plotted in the initial guess complex plane. C) The distinct eigenvalues generated by the
numerical method plotted as red dots in the (σR, σI) plane. The analytical form of the eigenvalues
is σ = ((n − 1)π/2)

√
T0/R1 for n = 1, . . . , 46 (black plusses). D) The eleven lowest wavenumber

eigenmodes (Re(Y (x)) in green, Im(Y (x)) in blue), from the most unstable (most negative σI)
on the left to the most stable (largest positive σI) on the right. The vertical black line separates
unstable modes (on its left) and stable modes (on its right).

In figure 3.13 we show the most unstable eigenmodes across (R1, T0) space. The

mode shapes of light membranes (R1 ≤ 10−1.75) just below the stability boundary

seem very similar to fixed–free membranes with the same mass but have one less

peak and one less trough. Decreasing the pretension values for membranes with

R1 ≤ 10−1.5, not only makes the membrane profile more wavy but also causes the

ripples in the membrane shape to move rearward to the trailing edge. Mode shapes

with nearly zero deflection at the free ends exist up to R1 = 10−0.75, slightly higher

than in the fixed–free case (figure 3.9). When the mass density is between 100.75 and

102 and the pretension is between 100 and T0C(R1), the membranes are somewhat

straighter than in the fixed–free case. Finally, heavy membranes (R1 > 102) with T0

between 100.3 and T0C(R1) (the stability boundary) all lose stability with the third

mode, n = 3 in equation (3.35) (the highlighted mode in figure 3.12D).
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Figure 3.13: The shapes Y (x) of the most unstable eigenmode as a function of R1 and T0 in the
free–free case. The real part of Y (x) is shown in green and the imaginary part of Y (x) is shown in
blue. Each shape is scaled, both vertically and horizontally, to fit within the plot. The shapes are
superposed on the same stability boundary (red line) as in figure 3.11.

In figure 3.11 we studied how the most unstable eigenvalues change in the R1-T0

parameter space, and in figure 3.13 we investigated the trends in the corresponding

most unstable eigenmodes. Now in figure 3.14 we show the changes in the eigenvalues

and associated eigenmode shapes as we pass through the stability boundary for two

fixed values of mass density, as for the fixed–fixed and fixed–free cases (figures 3.6

and 3.10, respectively). Each dot’s color is used to label Y ′RMS (equation (3.32)).

For the largest R1 = 1000 (panel A) the unstable modes are odd-numbered. The

first branch to become unstable is the third mode (n = 3 in equation (3.35)) at

T0 ≈ 101.68—consistent with figure 3.13 (for the same R1). Then the fifth mode

(n = 5) becomes unstable at T0 ≈ 101.45, and the seventh mode at T0 ≈ 101.33.

The even-numbered modes are all stable for the entire range of T0 values considered
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here. We show the membrane mode shapes that correspond to the nine lowest

wavenumber modes to the left of panel A at the lowest T0 = 101.275. The Y ′RMS values

that correspond to these nine lowest wavenumber modes are approximately those of

the analytical eigenmodes in (3.35), (n − 1)π/2 for n = 1, 2, . . . , 9. We also show

instances of membrane shapes at a couple of larger T0 values for the first two unstable

branches and the flat mode. We see that in all cases, these mode shapes have the same

features as at the smallest T0. The branch corresponding to the flat mode (n = 1) in

figure 3.14A oscillates about σI = ±10−6 at T0 ≥ 101.6 (while σR lies on ±10−4)—it is

essentially zero. As in the fixed–fixed and fixed–free cases at R1 = 1000, the branches

with the largest σI > 0 are all continuous but at the smaller R1 (i.e., 10), the same

branches (blue dots at the top of panel C and bottom of panel D) appear more

disordered. The loss of stability in figure 3.10C occurs at T0 ≈ 100.275. The values

of σI in panel C are about two orders of magnitude higher than those in panel A (as

for fixed–free membranes at the same membrane masses). The downward tendency

of the darker orange branch when σI drops below 10−2 (panel C) suggests that the

mode may be the next to become unstable as T0 decreases. Contrary to panel A, we

see in panel C that the yellow dots (higher wavenumber modes) are mostly stable.

The free–free angular frequency (σR) behaves similarly to fixed–fixed and fixed–free

membranes: the curves connecting σR associated with particular modes are steeper

for R1 = 10 (panel D) compared to R1 = 1000 (panel B). The dotted part of the

most unstable branch shown in figures 3.14C and D is used to bridge a gap in T0 in

which we did not find eigenvalues and eigenmodes for the lowest branch.
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Figure 3.14: For two values of membrane mass (R1), 103 (left column) and 101 (right column),
the imaginary (A, C) and real parts (B, D) of the eigenvalues versus pretension (T0) for free–free
membranes. Numerical results are shown as points with color coded according to the value of the
RMS of the membrane’s slope for each (R1, T0) pair given by (3.32), as given in the colorbar. The
horizontal black line in the top panels located at A) σI = ±10−6, C) σI = ±10−4 distinguishes
stable modes (above) and unstable modes (below). We also show typical modes that correspond to
each branch with Y ′RMS < 9π/2.

3.7 Comparison with Unsteady and Large-amplitude Simulations

We now compare the most unstable eigenmodes, in a few cases, with the corre-

sponding small-amplitude motions as well as the eventual large-amplitude steady-

state motions in the unsteady time-stepping simulations of chapter II. The main dif-

ferences are that in the eigenvalue problem the free vortex wake has a finite length `w

whereas in the unsteady simulations it grows from zero length, and has δ-smoothing

to avoid chaotic dynamics. For fixed–fixed membranes, figure 3.15 compares eigen-

modes (dashed green lines) with snapshots of time-stepping simulations in the small-

amplitude growth regime (sequence of gray lines ending with black lines) and the

time-stepping simulations’ eventual large-amplitude steady states (blue lines). The
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comparison is made at R1 = 10−1 with T0 increasing: (A) 10−0.1, (B) 100, (C) 100.1,

and (D) 100.2, the last value close to the stability boundary. Here we have a divergence

instability, so the imaginary parts of the eigenmodes are zero; the green lines show

the real parts. As T0 increases, the small-amplitude membrane shapes change grad-

ually, from ones with both downward and upward curvature (A) to a nearly fore-aft

symmetric hump with upward curvature only (D). The close agreement between the

green and black lines shows that the linearized model captures the small-amplitude

unsteady dynamics well. Here the initial deflection is y(x, 0) = 10−12 sin(πx), but we

find essentially the same agreement with a different form of the initial perturbation,

in which the leading edge is moved slightly upward and then back to y = 0. In this

case the membrane initially forms a small bump near the trailing edge as it evolves

under the nonlinear membrane equation (3.5). Both types of initial deflections are

much smaller than the gray shapes in figure 3.15, and eventually converge to them

as the fastest growing mode outgrows the other modal components of the initial

deflections. At large times, all the unsteady shapes converge to steady humps (blue

lines), nearly fore-aft symmetric, despite the early-time differences. The magnitudes

of the humps’ deflections are set by the nonlinear stretching resistance in (3.5), the

term proportional to the stretching modulus R3. Here R3 is set to 10 but only

the magnitudes of the humps, and not their shapes, change much over the range

R3 ≥ 10 [113].
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Figure 3.15: Fixed–fixed membranes at R1 = 10−1 and A) T0 = 10−0.1, B) T0 = 100, C) T0 = 100.1,
and D) T0 = 100.2. These membranes lose stability by divergence. We compare the most unstable
modes obtained from the eigenvalue analysis (dashed green lines) to the membrane shapes of the
time-stepping simulations in the small-amplitude (growth) regime—in each panel, 15 equally spaced
snapshots are shown in the growth regime, gray and then black at the last time. The arbitrary
amplitudes of the green lines are set to match those of the black lines. The light blue curves indicate
shapes in the large-amplitude steady state regime.

We now investigate membranes with the leading edges fixed and the trailing edges

free. Now the membranes lose stability through divergence and flutter, so the eigen-

modes are complex. They are determined only up to a complex constant, with both a

magnitude and a phase that need to be matched to a given time-stepping simulation

of chapter II. In appendix E we give details about how the matching is done.

In figure 3.16, we compare two cases slightly below the stability boundary at

R1 = 10−0.5: T0 = 10−0.8 (panels A, C, and E) and T0 = 10−0.7 (panels B, D, and F).

In panels A and B, the gray lines again show sequences of snapshots from the time-

stepping simulations. We fit the values y(α, t) for such a sequence to a function of the

form Re ([Re(ynonlin(α)) + iIm(ynonlin(α))]eiσt). First σI and σR are estimated. Then

for each α, the real and imaginary parts of y(α, t)e−iσt are estimated (in amplitude-

phase form; see appendix E), giving Re(ynonlin(α)) (red solid lines in panels A and B)

and Im(ynonlin(α)) (green solid lines). The most unstable eigenmode Y (x) is arbi-

trary up to a complex constant. The function ynonlin(α) contains a complex factor

(magnitude and phase) that depends on the initial conditions of the time-stepping

simulation. To account for this, we scale Y (x) by the complex factor that gives
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the best L1-fit with ynonlin(α) ≈ ynonlin(x) (see appendix E) and plot the resulting

Re(Y ) and Im(Y ) as dotted black and blue lines respectively, in panels A and B. The

fit between Y (x) and ynonlin(x) is nearly as good as in the steady fixed–fixed cases

(figure 3.15). The slight increase of error in the fit may be due to the extra steps

involved in fitting the fixed–free eigenmodes because they are complex.

In panels C and D, we show 20 snapshots from the time-stepping simulations,

but multiplied by our estimate of eσIt, which should remove the exponential growth.

This shows the mode shapes much more clearly than in panels A and B. The rescaled

shapes are equally spaced over our estimate of one time period. They appear to follow

an up-down symmetric, periodic (as expected) oscillation with (A) seven and (B)

five “necks” in their envelopes, respectively. Panels E and F show snapshots in the

eventual large-amplitude periodic steady-state. The shapes are qualitatively similar

to those in C and D, but the numbers of necks are reduced to four in both E and F.

The shapes are nearly the same in both panels; as in the fixed–fixed case (figure 3.15)

the differences in the small-amplitude shapes disappear at large amplitude. This may

be because the T0 term in (3.5) is subdominant to the R3 term at large amplitudes,

even at T0C(R1), the largest T0 where the membranes are unstable.
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Figure 3.16: Fixed–free membranes at R1 = 10−0.5 and R3 = 101.5, with T0 = 10−0.8 for A, C, E
and T0 = 10−0.7 for B, D, and F. In panels A and B the solid red lines are Re(ynonlin(α)) estimated
from the time-stepping simulation, which are close to Re(Y (x)) from the eigenvalue problem (dotted
black lines). The solid green lines are Im(ynonlin(α)), close to Im(Y (x)) from the eigenvalue problem
(dotted blue lines). The gray lines are a subset of snapshots in the linear growth regime. In panels
C and D we show snapshots during the small-amplitude (growth) regime, but with the exponential
growth removed. Panels E and F show snapshots during the steady-state large-amplitude motions.
We show 20 equally spaced snapshots of membranes over a period, ranging from light blue at earlier
times to dark blue at the last time.

We show the same comparisons at larger R1 (10) in figure 3.17, at two T0 values

near the stability boundary. The wave numbers of the shapes are much reduced—only

one neck appears in each envelope now—but otherwise many of the same features

carry over from the previous figure. There is again good agreement between the

eigenmodes and the versions estimated from the time-stepping simulations (panels A

and B). The periodic parts of the small-amplitude motions have small but noticeable

differences in panels C and D—in particular, the widths of the necks relative to the

maximum widths of the envelopes. The large-amplitude motions (E and F) are again
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nearly indistinguishable, however.
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Figure 3.17: Same quantities as described in figure 3.16 but with R1 = 101 and R3 = 101.5, and
T0 = 10−0.1 (for A, C, and E); T0 = 100 (for B, D, and F).

We obtain similar levels of agreement in the free–free case; two examples are

shown in appendix F.

3.8 Conclusions

To summarize, we have used a linearized model and a nonlinear eigenvalue solver

to study small amplitude membrane motions, including the onset of membrane in-

stability, in inviscid fluid flows. We characterized the different types of possible

motions with respect to the two key dimensionless parameters—membrane mass and

pretension—and for three sets of boundary conditions: “fixed–fixed,” “fixed–free,”

and “free–free” leading and trailing edges. Previous work by other groups was lim-

ited to the fixed–fixed case, and a smaller range of membrane mass densities, and
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our own previous time-stepping simulations in chapter II were unable to resolve the

small-amplitude motions at small mass densities due to limited spatial resolution,

and at large mass densities due to the very slow growth of instabilities.

For each of the three sets of boundary conditions, when membrane inertia and

pretension dominate fluid pressure forces, the eigenmodes tend towards neutrally sta-

ble sinusoidal functions with half-integer or quarter-integer numbers of wavelengths.

When the fluid forces are small but nonnegligible, the mode shapes are similar,

but the even- (for fixed–fixed) or odd-numbered modes (for fixed–free and free–free)

become unstable, starting with the second and third modes, respectively. For the

fixed–fixed case, there are roughly two regimes: small membrane density, where di-

vergence occurs and the most unstable mode becomes more fore-aft asymmetric as

one moves further into the instability region; and large membrane density, where

flutter and divergence occur with approximately sinusoidal modes. In both regimes,

the most unstable modes become wavier at smaller T0, akin to the most unstable

beam modes at smaller bending rigidity in [3]. These results agree with those of [184]

in the same parameter regimes.

The stability boundaries for the fixed–free and free–free cases resemble the fixed–

fixed case at large membrane densities, showing an upward slope for R1 ≥ 102 (which

we were not able to compute using time-stepping simulations). The fixed–free and

free–free stability boundaries differ strongly from the fixed–fixed case at moderate

and small membrane densities. There the membranes remain stable down to smaller

pretension values, and eventually become unstable by flutter and divergence. For

10−3 ≤ R1 ≤ 10−1, the most unstable mode is very wavy, and we were unable to

resolve it with the time-stepping simulations in chapter II. Here we find that the most

unstable eigenmodes have small deflection at the leading and trailing edges, despite
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the free boundary conditions. For 10−1 ≤ R1 ≤ 102, the modes are wavy shapes

(wavier at smaller T0) superposed on background shapes with nonzero slopes (fixed–

free) and/or deflections (free–free). By tracking the eigenmodes across the stability

boundaries, we found that at moderate membrane densities, the modes resemble the

sinusoidal shapes at large densities, but with more disorder, and the appearance of

irregular bands of stable low-wavenumber modes that are difficult to associate with

a particular branch.

Finally, we compared the eigenmodes with the membrane motions in the time-

stepping simulations, and found very good agreement with the small-amplitude por-

tion of the time-stepping simulations in examples with the three different boundary

conditions. In all the examples, the large-amplitude motions qualitatively resembled

those in the small amplitude regime in terms of the number of necks in the deflection

envelopes, but had clear differences in the envelopes’ shapes and the relative sizes of

maxima and minima.
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CHAPTER IV

Dynamics of Tethered Membranes in Inviscid Flow

4.1 Introduction

The majority of previous studies of membranes showed that when they are held

with their ends fixed in a uniform oncoming fluid flow, they tend to adopt steady

shapes with a single hump (when the flat state is unstable) [113,158]. In the current

chapter, we show that periodic and chaotic oscillations can occur in a simple physical

setup. In our investigation we consider a passive case, i.e., we do not impose heaving

or pitching motions [57, 78, 187, 191]. We also do not have any forcing of oscilla-

tions from leading-edge vortex shedding (vortex induced vibrations), which can be

important in membranes that are driven by heaving and pitching motions or held at

nonzero angle of attack [79,143,162].

In this chapter (as in the previous ones) we do not include gravity in our model in

order to focus specifically on the basic flutter problem [154]. However, we need some

restriction on the motion of the free membrane ends to ensure that the problem

is well-posed (since membrane compression can lead to ill-posedness [188]). Such

a restriction was realized experimentally by [87], with the membrane represented

by an extensional spring that is tethered by steel wires to vertical supports. The

membrane is thus free to move perpendicularly to its flat rest state, but remains
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stretched between the supports, allowing for stable dynamics. The current chapter

uses this tethered boundary condition to study membrane dynamics in a fluid flow.

We study both small- and large-amplitude dynamics when the membrane is attached

to tethers—i.e., inextensible rods that rotate freely—or mounted on springs.

We show that as the tether length is increased, the membrane dynamics change

from static deflections with a single maximum, typical of the fixed–fixed case (similar

to the shapes in [124, 127, 145, 191, 193, 194]) to a wide range of oscillatory motions

that have some commonalities with flapping plates and flags [154]. We also study

the stability properties of tethered membranes via a nonlinear eigenvalue problem.

The nonlinearity makes it difficult to solve in certain regions of parameter space.

Therefore we consider an approximate problem—an infinite membrane mounted on

a periodic array of Hookean springs—that is easier to solve and allows us to obtain

asymptotic scaling laws for the eigenmodes’ dependences on membrane pretension

and mass density.

The chapter is structured as follows. We begin in §4.2 by presenting the membrane

and vortex-sheet model and in §4.2.1 we present the boundary conditions when the

membranes are attached to inextensible-rod tethers. In §4.3 we present the results

in the large-amplitude regime for this boundary condition. In §§4.3.1–4.3.2 we study

the related case of membranes mounted on Hookean springs. In §4.4 we present a

linearized, small-amplitude version of our model and study the stability properties

(§4.4.1). We then study the stability behavior of an infinite periodic membrane

mounted on a periodic array of springs and propose asymptotic scaling laws (§4.5).

Finally, in §4.6, we summarize our findings.
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4.2 Membrane and Vortex-sheet Model

Figure 4.1: Schematic diagram of a flexible membrane (dark green surface) at an instant in time.
U is the oncoming flow velocity and W is the membrane’s spanwise width. The leading edge and
the trailing edge of the membrane is attached to inextensible rods (red frames) that rotate freely
about their hinged ends (small black/blue circles). There is also a vortex wake (light green surface)
emanating from the membrane’s trailing edge.

We model the dynamics of an extensible membrane that is nearly aligned with

a two-dimensional background fluid flow that has speed U in the far field (see fig-

ure 4.1). The membrane is shown as a dark green surface with the vortex wake (light

green surface) emanating from its trailing edge. Each membrane end is attached to

a massless, open rigid frame of inextensible rods (red solid lines) that pivots freely

at the hinges shown by small black/blue circles in figure 4.1 and therefore the mem-

brane’s ends are constrained to move along circles of radius R centered at the hinges.

The motions of the membrane and open rod frames are assumed to be invariant in

the spanwise direction (along W ), and the effect of gravity is neglected for simplic-

ity. The four clamping poles (black lines) at the end of the rod frame away from the

membrane are sufficiently thin that their influence on the fluid flow is assumed to be

negligible.

The membrane and flow models are the same as in chapter II but we repeat them

briefly for completeness. The membrane dynamics are described by the unsteady ex-
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tensible elastica equation with body inertia, stretching resistance, and fluid pressure

loading, obtained by writing a force balance equation for a small section of membrane

that lies between material coordinates α and α + ∆α:

(4.1)

ρshW∂ttζ(α, t)∆α = T (α + ∆α)̂s− T (α, t)̂s− [p]+−(α, t)n̂W (s(α + ∆α, t)− s(α, t)).

Here ρs is the mass per unit volume of the undeflected membrane, h is the membrane’s

thickness, and W its spanwise width, all uniform along the length. In (4.1), ζ(α, t) =

x(α, t)+iy(α, t) denotes the membrane position in the complex plane, parameterized

by the material coordinate α, −L ≤ α ≤ L (L is half the initial length) and time t. T

is the tension in the membrane, [p]+− is the pressure jump across it, s(α, t) is the local

arc length coordinate, and the unit vectors tangent and normal to the membrane

are ŝ = ∂αζ(α, t)/∂αs(α, t) = eiθ(α,t) and n̂ = îs = ieiθ(α,t), respectively, with θ(α, t)

the local tangent angle and ∂αs the local stretching factor. We use + to denote the

side towards which the membrane normal n̂ is directed, and − for the other side.

However, for the remainder of this chapter, we drop the + and − for ease of notation.

Dividing (4.1) by ∆α and taking the limit ∆α→ 0, we obtain

(4.2) ρshW∂ttζ(α, t) = ∂α(T (α, t)̂s)− [p](α, t)W∂αsn̂,

where the membrane tension T (α, t) is given by linear elasticity [22,123,125] as

(4.3) T (α, t) = T + EhW (∂αs(α, t)− 1).

Here E is the Young’s modulus and T is the tension in the initial, undeflected

equilibrium state. After nondimensionalizing length by L, time by L/U , and pressure

by ρfU
2, where ρf is the density of the fluid and U is the oncoming flow velocity,

equation (4.2) becomes the nonlinear, extensible membrane equation

(4.4) R1∂ttζ − ∂α((T0 +R3(∂αs− 1))̂s) = −[p]∂αsn̂.
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In (4.4), R1 = ρsh/(ρfL) is the dimensionless membrane mass, T0 = T/(ρfU
2LW )

is the dimensionless pretension, and finally, R3 = Eh/(ρfU
2L) is the dimensionless

stretching rigidity. We use (4.4) to study large-amplitude motions in §4.3. We use a

linearized, small-amplitude version to study membrane stability in §§4.4 and 4.5.

We express the 2D flow past the membrane using z = x+ iy, the complex repre-

sentation of the xy flow plane. The complex conjugate of the fluid velocity at any

point z not on the vortex sheets is a sum of the horizontal background flow with

speed unity and the flow induced by the bound and free vortex sheets,

(4.5) ux(z)− iuy(z) = 1 +
1

2πi

∫ 1

−1

γ(α, t)

z − ζ(α, t)
∂αsdα +

1

2πi

∫ smax

0

γ(s, t)

z − ζ(s, t)
ds,

where s is the arc length along the free sheet starting at 0 at the membrane’s trailing

edge and extending to smax at the free sheet’s far end. To determine the bound

vortex sheet strength γ we require that the fluid does not penetrate the membrane,

which is known as the kinematic boundary condition. Here γ represents the jump

in the component of the flow velocity tangent to the membrane from the − to the

+ side, i.e., γ = −[(ux, uy) · ŝ]. The normal components of the fluid and membrane

velocities are equal along the membrane:

Re(n̂∂tζ(α, t)) =

Re

(
n̂

(
1 +

1

2πi

∫ 1

−1

γ(α, t)

z − ζ(α, t)
∂αsdα +

1

2πi

∫ smax

0

γ(s, t)

z − ζ(s, t)
ds

))
,(4.6)

where n̂ is written as a complex scalar. Solving (4.6) for γ requires an additional

constraint that the total circulation is zero for a flow started from rest. At each

instant the part of the circulation in the free sheet, or alternatively, the strength of

γ where the free sheet meets the trailing edge of the membrane, is set by the Kutta

condition which makes velocity finite at the trailing edge. At every other point on

the free sheet, γ is set by the criterion that circulation (the integral of γ) is conserved
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at fluid material points of the free sheet. The vortex sheet strength γ(α, t) is coupled

to the pressure jump [p](α, t) across the membrane using a version of the unsteady

Bernoulli equation written at a fixed material point on the membrane:

(4.7) ∂αs∂tγ + ∂α (γ(µ− τ)) + γ(∂ατ − νκ∂αs) = ∂α[p],

where µ is the average flow velocity tangent to the membrane, τ and ν are the tan-

gential and normal components of the membrane velocity, respectively, and κ(α, t) =

∂αθ/∂αs is the membrane’s curvature. At the trailing edge, [p]|α=1 = 0. The deriva-

tion of (4.7) can be found in appendix A.

4.2.1 Boundary Conditions: Inextensible-rod Tethers

Figure 4.2: Slice through the membrane in figure 4.1. Schematic diagram of a flexible mem-
brane (green line) at an instant in time. The leading edge of the membrane with position
(x(−1, t), y(−1, t)) is attached to an inextensible rod frame (red line) whose motion is restricted to
a circle of radius R (length of rod frame) and whose other end is fixed at (−R, 0) for all time. The
membrane’s trailing edge with position (x(1, t), y(1, t)) is attached to another rod frame whose other
end is fixed at (2 +R, 0) for all time. There is also a vortex wake emanating from the membrane’s
trailing edge (light green line).

A slice through the membrane and rod frame in the 2D flow plane is shown

schematically in figure 4.2. The rod frames pivot freely about the points (−R, 0) and

(2 +R, 0), respectively. Because the frames are inextensible, the membrane ends are

constrained to move along circular arcs of radius R. This is enforced by requiring

(4.8) (x−1 − (−R))2 + y2
−1 = R2 and (x1 − (2 +R))2 + y2

1 = R2,
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for all time, where x±1 = x(±1, t) and y±1 = y(±1, t) are four unknowns that denote

the x- and y-coordinates of the membrane ends, respectively. Two equations for the

four unknowns are (4.8) and the remaining two equations require the membrane and

rod frames to be tangent where they meet:

(4.9)
∂αy

∂αx

∣∣∣∣
α=−1

=
y−1 − 0

x−1 − (−R)
and

∂αy

∂αx

∣∣∣∣
α=1

=
0− y1

(2 +R)− x1

,

again for all time. Equations (4.9) follow from balancing the forces on an infinitessi-

mal length of membrane near the membrane ends; because its mass is infinitessimal,

the tension forces on it from the rods and from the adjacent portion of the membrane

must be aligned. The rod tether length R is an important parameter that influences

the dynamics of the membrane. With short rods (R → 0), we will show that the

membrane dynamics are similar to fixed–fixed membranes, whereas with longer rods

the dynamics resemble free–free membranes but without the large-scale translational

motions seen in chapter II.

4.3 Large-amplitude Results

We simulate the membrane starting from an initial condition in which the mem-

brane is perturbed from the flat horizontal equilibrium state: it has a linear profile

with a small nonzero slope,

(4.10) ζ(α, 0) = (α + 1)(1 + iσ),

for σ = 10−3. We evolve the membrane and vortex sheet wake forward in time using

a numerical method similar to those in [4] and chapter II.
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Figure 4.3: Examples of membrane (black) and rod (red and blue) snapshots at two different times,
superposed on a larger set of membrane snapshots (gray) within a period. Each column corresponds
to a rod length R: 10−0.5 (left column), 100 (middle column), and 100.5 (right column). Here
R3 = 101.5 and T0 = 10−2.

In figure 4.3 we show snapshots of membranes and rods for a fixed stretching

rigidity (R3 = 101.5) and pretension (T0 = 10−2), at six pairs of (R1, R) values that

give typical dynamics. In each case, two of the snapshots show the rods (blue in

one and red in the other) together with the membranes (black lines). The remaining

16 snapshots show only the membranes (gray lines), equally spaced in time within

a period of motion. R increases from left to right: 10−0.5 (left column), 100 (middle

column), and 100.5 (right column). The membrane deflection may be very small,

particularly at small R1 (bottom left case), and may be steady, particularly at small

R (top left case). In the bottom row, middle column case (i.e., R1 = 100.5 and

R = 100) and in the bottom row, right column case (i.e., R1 = 100 and R = 100.5) it

is evident that the inextensible rods may deflect upwards or downwards.

We characterize the large-amplitude dynamics using three main quantities. One

is the time-averaged deflection of the membrane, defined as

(4.11) 〈ydefl〉 ≡
1

t2

∫ t1+t2

t1

(
max
−1≤α≤1

y(α, t)− min
−1≤α≤1

y(α, t)

)
dt.

Here, as in chapter II, t1 and t2 are sufficiently large (typically 50–100) that 〈ydefl〉

changes by less than 1% with further increases in these values. So, 〈ydefl〉 is the

maximum membrane deflection minus the minimum membrane deflection, averaged

over time.
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The second quantity used to characterize the large-amplitude dynamics is the time

period. This is computed using the peak frequency in the power spectrum computed

using the fast Fourier transform (fft function in Matlab). The power spectrum

is obtained from a time series of the membrane’s midpoint when the membrane

has reached steady-state large-amplitude dynamics. The third quantity is the time-

averaged number of zero crossings along the membrane, computed using the same

temporal data as the power spectrum. Apart from the number of zero crossings, we

also use the time-averaged number of local extrema as a different measure of the

‘waviness’ of the membrane shape.

In figure 4.4 we show typical membrane snapshots in R-R3 space, while fixing

T0 = 10−2 and R1 = 10−0.5. At each (R,R3) value, the set of snapshots is normalized

by the maximum deflection of the snapshots to show the motions more clearly and

scaled to fit within a colored rectangle at the (R,R3) value. Each snapshot has the

corresponding R value at its horizontal midpoint, and the R3 value at its average

vertical position. Colors represent the time-averaged deflection defined by (4.11).

In the lower-left corner the snapshots are omitted because steady-state membrane

motions were not obtained. Two main types of membrane behaviors are seen: at

small R, a steady single-hump shape that is fore-aft symmetric, similar to membranes

that have both the leading and trailing edges fixed at zero deflection; at moderate-to-

large R, an oscillatory motion. The framed panel on the right-hand side of figure 4.4

shows the transition between these states in finer detail, between R = 10−0.65 and

10−0.57. The red dashed lines show where larger increments of R are taken, from

10−0.65 to 10−0.7 (where only single hump solutions are obtained for any R3) and from

R = 10−0.57 to 10−0.5 (where only flapping membranes are observed, for any R3). In

the framed panel we see that the initial condition of nonzero slope [equation (4.10)]
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may evolve to single-hump shapes that are concave up, concave down, or to oscillatory

motions when R is changed slightly. In the left panel, the oscillatory motions are

mostly close to periodic and fore-aft symmetric, with some deviations particularly

at R = 10−0.5 and 101.5, where a less wavy shape becomes more common.

For very large stretching rigidity R3 & 103 the code reaches the steady-state

regime only if we decrease the membrane discretization size to m = 40 (from m = 120

below the red dividing line). As we observed in chapter II, in many cases varying

the stretching rigidity R3 alters the overall deflection magnitudes but leaves the

membranes’ shapes nearly unchanged.
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Figure 4.4: (Inextensible rods) Snapshots of large-amplitude membrane motions in R-R3 space for
fixed T0 = 10−2 and R1 = 10−0.5. Colors represent the time-averaged deflection of the membranes
defined by (4.11). For rods with length R ≤ 10−1 the membranes behave similarly to those with
fixed–fixed ends, yielding a single hump solution, whereas when R ≥ 10−0.5 the membranes oscillate
as in some cases with free–free ends. At each (R,R3) value, the set of snapshots is scaled to fit
within a colored rectangle centered at that value and normalized by the maximum deflection of
the snapshots to show the motions more clearly. The red solid line separates membranes with
m = 40 points (above) and m = 120 points (below). In the framed figure we look at a finer grid
between R = 10−0.7 and 10−0.5, to investigate dynamics near the transition between the single-
hump solution and the flapping state occurs. The red dashed lines indicate a jump in the increment
of R values.
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Figure 4.5: (Inextensible rods) Time-averaged deflections of the membranes (defined by (4.11))
versus R3 for various R and fixed R1 = 100.5, T0 = 10−2. The dotted black line indicates the

scaling R
−1/2
3 .

In figure 4.5 we show how the time-averaged deflection quantitatively depends

on R3 at several fixed values of R ∈ {10−1.5, 10−1, . . . , 101.5}, for R1 = 100.5 and

T0 = 10−2 here. The 〈ydefl〉 ∼ R
−1/2
3 dependence at large R3 is the same for other

mass ratios from R1 = 10−0.5 to R1 = 102, again with T0 = 10−2. This was observed

also for fixed–fixed, fixed–free, and free–free membranes in chapter II. We include

the explanation for how the scaling 〈ydefl〉 ∼ R
−1/2
3 arises from the y-component of

the membrane equation (4.4) with small deflections. We assume that ∂αy � 1 and

∂αx ≈ 1. Then ∂αs− 1 =
√

(∂αx)2 + (∂αy)2− 1 ≈ ∂αy
2/2 and ŝy ≈ ∂αy. With these

approximations, the y-components of the T0 and R3 terms in (4.4) are linear and

cubic in deflection, respectively:

(4.12) ∂α(T0ŝy) ≈ T0∂ααy; ∂α(R3(∂αs− 1)ŝy) ≈ R3∂α((∂αy)3/2).

The R1 term that multiplies ∂tty is also linear in deflection. The pressure jump

is linear in the bound vortex sheet strength because the left-hand side of (4.7) ≈
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∂tγ + ∂αγ with small deflections. The bound vortex sheet strength is linear in the

deflection by the linearized version of (4.6),

(4.13)

∂ty(α, t) ≈ 1

2π
−
∫ 1

−1

γ(α′, t)

x(α, t)− x(α′, t)
dα′− 1

2π

∫ Γ+(t)

0

x(α, t)− x(Γ′, t)

(x(α, t)− x(Γ′, t))2 + δ(Γ′, t)2
dΓ′,

in which the second integral consists of bound vorticity advected from the trailing

edge, so it has the same dependence on deflection as the bound vorticity. Here, with

small deflections, we have assumed that ∂αx ≈ 1, and then the linearization is the

same as in [10, 113]. Without viscous stresses, horizontal membrane deformations

arise only through nonlinear terms in the elastic and pressure forces associated with

large deflections, so it is reasonable to neglect them, and this is consistent with the

simulation results. Balancing the terms that are linear in deflection with the product

of R3 and a term that scales with deflection cubed gives 〈ydefl〉 ∼ R
−1/2
3 . The slight

increase in 〈ydefl〉 between R3 = 102.5 and 103 when R = 101 (light blue line with

upward-pointing triangle) and R = 101.5 (dark red line with right-pointing triangle)

arises because for R3 = 102.5 the discretization size of the membrane is m = 120

whereas for R3 = 103 it is m = 40.
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Table 4.1: Table of plots showing snapshots of large-amplitude membrane motions in R1-R space
for two values of stretching rigidity R3 (101.5 in left column, 103 in right column) and two value of
pretension T0 (10−1 in top row, 10−2 in bottom row). Colors represent the time-averaged deflection
defined by (4.11).
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In figure 4.4 we saw that the motions do not change considerably with R3 (apart

from their amplitudes) except in the narrow transition region shown in the inset.

We also find that the motions do not depend much on T0 except close to the critical

value of T0 below which the flat state is unstable. In table 4.1 we show membrane

snapshots in the full four-dimensional parameter space R1-T0-R3-R, collected into

four subpanels, each with a particular value of T0 and R3 (labeled at top and left,

respectively), and with a range of values of R1 and R within each subpanel. There

is more variation within a given subpanel than between corresponding points in

different subpanels, indicating that R and R1 have a stronger effect on the dynamics

than T0 and R3. The white background and flat lines at R1 = 10−1 and R ≥ 100

when T0 = 10−1 (top row) indicate stable membranes, so the deflection there is zero.
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From this comparison we see that, as in the previous figure, the deflections decrease

with increasing R3 (values in color bars at right) but often the snapshot shapes do not

change much, at the same (R1, R) values. Some membranes with moderate values of

R1 (100 and 101) have more prominent differences as R3 is changed, sometimes by

altering the location of a transition between different types of dynamics. Decreasing

the value of T0 can cause stable membranes to become unstable (e.g., at R1 = 10−1),

but otherwise decreasing T0 has a small effect, mainly to increase the deflection

slightly at a given R3. Below 10−2, the T0 term in the membrane equation (4.4)

becomes insignificant, as noted in chapter II.
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Figure 4.6: (Inextensible rods) Membrane profiles in the large-amplitude steady-state regime, in
R1-R space for fixed T0 = 10−2 (dimensionless pretension) and R3 = 101.5 (dimensionless stretching
rigidity). The colored background represents the time-averaged deflection of the membranes defined
by (4.11).

In figure 4.6, we focus on the lower left subpanel of table 4.1, but double the density

of values of R1 and R, and decrease the lower limit of R1, to obtain a more compre-
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hensive picture of the dynamics. The motions in figure 4.6 have the largest deflection

amplitudes at the largest R1 = 102. As mentioned in chapter II, we hypothesize that

at large R1 membrane inertia allows the membrane to maintain its momentum for

longer times against restoring fluid forces, and obtain larger deflections (with longer

periods, as we will show) before reversing direction. The same has been observed for

flutter with bending rigidity [10,31]. AsR1 decreases, the membrane deflection ampli-

tudes progressively decrease until the motions become difficult to resolve numerically

(for R1 . 10−1). In this region, we find chaotic membrane oscillations with very small

amplitudes and high spatial frequencies. To obtain numerically-converged motions

with respect to the spatial grid when R1 ≤ 10−1 we use more discretization points.

In the lower-left corner in figure 4.6, i.e., (R1, R) = (10−1.5, 10−1), (10−1.5, 10−0.75),

and (10−1.25, 10−1), snapshots are omitted because steady-state membrane motions

were not obtained.

Decreasing the membrane mass ratio (R1) generally tends to introduce more oscil-

lating states and fewer single-hump solutions forR values in the range (10−0.75, 100.25).

For large R1 (heavy membranes) the maximum deflection of the membrane oc-

curs close to either the leading or trailing edge of the membrane. However, at

R1 ∈ [10−0.75, 100.25] the maximum membrane deflection seems to occur close to

the midpoint of the membrane, with the deflection at the endpoints decreasing with

decreasing R1 in this region.
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Figure 4.7: (Inextensible rods) Colors represent the time-averaged number of zero-crossings (values
in color bar at right) for membrane flutter in the R1-R parameter space for fixed T0 = 10−2 and
R3 = 101.5. Note that R1 is the dimensionless membrane mass, T0 is the dimensionless pretension,
and R3 is the dimensionless stretching modulus. We also define R to be the length of the inextensible
rods at either end of the membrane. The white background corresponds to membranes with no
zero-crossings. At each (R1, R) value the set of snapshots is normalized by the maximum deflection
of the snapshots to show the motions more clearly.

We now quantify the membrane shapes in terms of the time-averaged number

of ‘zero crossings’. Our definition is the number of crossings that a membrane

makes with the line connecting its two endpoints, averaged over time—excluding

the endpoints. This is one way to measure the ‘waviness’ of a shape that is not sinu-

soidal and whose wavelength is thus not well defined (chapter II, [7]). We first focus

on moderate-to-large values of R1 where the membranes have fewer zero-crossings

(figure 4.7). Decreasing R1 from the largest value (102), the average number of

zero crossings changes non-monotonically. In most cases it decreases until about

R1 = 101.25 for R ∈ [100, 101]. Further decreases in R1 give rise to more periodic
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motions with slightly larger numbers of zero-crossings. Independent of R1, when T0

and R3 are fixed at 10−2 and 101.5, respectively, and when the rods have a length

of ≤ 10−0.75 then the membrane behaves similarly to the fixed–fixed case, where a

single-hump solution is obtained. We use a white background for membranes with

no zero-crossings (single hump solutions).
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Figure 4.8: (Inextensible rods) Colors represent the time-averaged number of zero-crossings (values
in color bar at right) for membrane flutter in the R1-R parameter space for fixed T0 = 10−2

and R3 = 101.5 for light membranes (R1 ≤ 10−1). Snapshots of these large-amplitude membrane
motions are superposed to show the motions clearly in this region.

In figure 4.8 we present the zero-crossings in the small R1 (≤ 10−1) region, where

higher spatial frequency components occur with decreasing R1. The motions also

become more irregular at the smallest R1 values, where we increase the spatial grid

density to resolve the fine undulations that appear on the membranes. On the

right-hand side of figure 4.8 we show four panels with examples of sequences of

membrane snapshots, equally spaced in time (with the thicker black line representing
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the membrane at the last time), to emphasize that even though the number of zero-

crossings is a good measure of waviness it also misses some features of the shapes.

For example, we see that the shape at R1 = 10−1.5 and R = 100 (bottom row of right-

most column) has small undulatory features that are not reflected in the number of

zero-crossings. In the small-R1 region, the numbers of zero-crossings (shown by the

colors) vary more rapidly compared to figure 4.7. In the lower-left corner, snapshots

are omitted because steady-state membrane motions were not obtained.
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Figure 4.9: (Inextensible rods) Time-averaged number of local extrema of the membranes versus
the dimensionless mass density R1 for various R and fixed R3 = 101.5 and T0 = 10−2. The dotted
black line at small R1 indicates the scaling R−11 .

To quantify the small undulatory features on the membranes, we calculate the

time-averaged number of local extrema of deflection. In figure 4.9 we show that for

fixed R3 = 101.5, T0 = 10−2, and various fixed values of R, the time-averaged number

of local extrema for small R1 scales as R−1
1 approximately. At moderate-to-large

values of R1 (i.e., [100, 102]) and R small, the membranes tend to fore-aft symmetric,

single-hump solutions and therefore the average number of extrema is one. For the

oscillatory shapes that occur at larger values of R in the same region of R1, the

average number of local extrema is not large (i.e., between 1 and 5).
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Figure 4.10: (Inextensible rods) Colors represent the dominant periods (values in color bar at right)
of large-amplitude motions for various R1 and R, and fixed T0 = 10−2 and R3 = 101.5. The data in
the bottom-left corner are obtained for a shorter time and so we neglect the computational results
for those values of R1 and R.

We have considered the amplitude of membrane deflection and its spatial fre-

quency (in terms of zero crossings and numbers of extrema). The third main quantity

we consider is the temporal period. We compute the power spectra of the time series

of the membrane’s midpoint, y(1/2, t), using the fast Fourier transform. We identify

the dominant frequency as that corresponding to the largest local maximum in the

power spectrum (in a few cases excluding the peak closest to zero, which represents

the time scale of the entire time series, and occurs because of the discontinuity in

y(1/2, t) at the beginning and end of the time series). The background color in

figure 4.10 represents the dominant period, defined as the reciprocal of the domi-

nant frequency, and is white for the steady single-hump solutions since the dominant

period is undefined in the steady case. Similar to figures 4.6 and 4.8, in the lower-
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left corner, snapshots are omitted because steady-state membrane motions were not

obtained.

We find different types of power spectra in different regions of R1-R space, corre-

sponding to the different motions illustrated in figure 4.10. At small R1 (. 10−1) the

motions are more chaotic and there, the power spectra have a broad band of frequen-

cies. At small-to-moderate values of R1—between 10−0.75 and 100.25—the motions

are periodic and thus the power spectra have a discrete set of peaks. At moderate

values of R1—between 100.5 and 101—the peak frequencies are decreased. Finally,

for large values of R1 (≥ 101.25) the motions become somewhat chaotic again (as at

the smallest R1), and with little dependence on R except at values greater than 101,

where there is a slight increase in the dominant period.
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Figure 4.11: Plots of the dominant period (T ) versus mass density R1 for various R and fixed

R3 = 101.5 and T0 = 10−2. The dotted black line at large R1 shows the scaling R
1/2
1 and the dotted

black line at small R1 shows the scaling R
5/6
1 .

In figure 4.11 we show how the dominant period varies with R1 for various fixed

values ofR. The trend at the largestR1 is approximately T ∼ R
1/2
1 (admittedly over a

short range of R1). This scaling arises when one approximates the normal component
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of the membrane equation (4.4) by its y-component, and chooses a characteristic

time scale t0 so that R1∂tty balances other terms that depend on y but not its time

derivatives (i.e., the R3 and T0 terms and some of the fluid pressure terms). At large

R1, R1∂tty is comparable to the other terms when R1/T
2 ∼ 1 giving a typical period

T ∼ R
1/2
1 . For some values of R, when 100.25 < R1 < 101.25 and R1 > 101.5, the

period increases to > 30 as can be seen in figure 4.11. This range of moderate R1 is

a transition region, and at smaller R1, (here, 10−1.5 ≤ R1 < 100.25), another power

law behavior is observed: T ∼ R
5/6
1 .

4.3.1 Hookean Springs

The inextensible rods are a particular choice of tether motivated by the exper-

iment of [87]. In this section we briefly explore some alternative tethers involving

Hookean springs. In the first case, we replace the inextensible rods at the ends

of the membrane with springs of rest length zero that obey Hooke’s law [69]. We

illustrate schematically this alternative configuration in figure 4.12. The four pre-

scribed dimensionless parameters are: membrane mass R1, stretching rigidity R3,

pretension T0, and spring stiffness ks.

Figure 4.12: Schematic diagram of a flexible membrane (green surface) at an instant in time. U is
the oncoming flow velocity. There is also a vortex wake (light green surface) emanating from the
membrane’s trailing edge. The leading edge of the membrane with position (x(−1, t), y(−1, t)) is
attached to springs (red coils) of spring constant ks whose other ends are fixed at (0, 0) for all time.
The membrane’s trailing edge with position (x(1, t), y(1, t)) is attached to another spring whose
other end is fixed at (2, 0).
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We solve for the four endpoint unknowns (x±1, y±1) with four boundary condi-

tions. At the membrane-spring contact, the tension forces must be equal in magni-

tude and direction to avoid infinite acceleration at the membrane ends, as for the

rod tethers. Here the forces are equal in magnitude when:

(4.14) ks

√
x2
−1 + y2

−1 = T−1 and ks

√
(x1 − 2)2 + y2

1 = T1.

Here T±1 is the tension force at α = ±1 and
√
x2
−1 + y2

−1 is the stretch of the spring

(change in length from its rest length, zero). The directions of the tensions in the

membrane and springs are equal if the slopes of the membrane and springs are equal:

(4.15)
∂αy

∂αx

∣∣∣∣
α=−1

=
y−1 − 0

x−1 − 0
and

∂αy

∂αx

∣∣∣∣
α=1

=
0− y1

2− x1

.

When we simulate the spring-tethered membrane for various ks, we find that for

sufficiently large ks, the membrane behaves like the fixed–fixed case, converging to

a steady single-hump shape when the flat state is unstable. As we decrease ks, the

single hump solution continues until a threshold value of ks (near unity) where the

membrane develops a sharp spike at the trailing edge at early times and the simula-

tions fail to converge beyond a short time. Unlike the inextensible-rod tethers, here

the springs are too soft to ensure that the membrane remains under tension during

the dynamics, and the membrane equation is ill-posed under compression [188].
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4.3.2 Vertical Hookean Springs

Figure 4.13: Schematic diagram of a flexible membrane (green surface) at an instant in time. U is
the oncoming flow velocity. There is also a vortex wake (light green surface) emanating from the
membrane’s trailing edge. The leading edge of the membrane with position (0, y(−1, t)) is attached
to vertical springs (red coils) of spring constant ks whose other end is fixed at (0,0) for all time.
The membrane’s trailing edge with position (2, y(1, t)) is attached to another vertical spring whose
other end is fixed at (2, 0).

More interesting dynamics occur with springs in an alternative configuration,

in which the springs are attached to massless rings that slide along vertical poles,

shown in figure 4.13. This is the same as the free–free boundary condition except

that the vertical motion is not free but instead resisted by springs. As in the free–

free case, the vertical poles ensure that the membrane does not experience significant

compression, and thus stable long-time oscillatory dynamics can occur. We will show

that this boundary condition is equivalent to that of the inextensible-rod tethers

in the limit of small deflections, so it provides an alternative way to understand

the effect of the rods. Both the rods and vertical springs allow for a difference in

resistance to transverse and in-plane motions, and hence allow for stable oscillatory

large-amplitude flutter.

Here, by balancing the vertical forces on the rings, we obtain the mixed boundary

119



conditions:

(4.16) T−1
∂αy

∂αs

∣∣∣∣
α=−1

− ksy−1 = 0 and − T1
∂αy

∂αs

∣∣∣∣
α=1

− ksy1 = 0.

The free–free case corresponds to ks = 0 (chapter II). The fixed–fixed case (y(−1, t) =

y(1, t) = 0) occurs when ks →∞. The remaining boundary conditions are x±1 = 2,

due to the poles.
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Figure 4.14: (Vertical springs) Snapshots of large-amplitude membrane motions in ks-R3 space
for fixed T0 = 10−2 and R1 = 10−0.5. Colors represent the time-averaged deflection of membranes
defined by (4.11). Oscillatory (ks ≤ 100) and steady single-hump solutions (ks ≥ 100.5) are obtained.
At each (ks, R3) value, the set of snapshots is scaled to fit within a colored rectangle at the (ks, R3)
value and normalized by the maximum deflection of the snapshots to show the motions more clearly.
The framed panel at right shows a finer grid between ks = 100.12 and 100.18, near the transitional ks
value. The red line separates membranes with m = 40 points (above) and m = 80 points (below).

In figure 4.14 we show membrane snapshots in the ks-R3 parameter space for fixed

T0 = 10−2 and R1 = 10−0.5. The shapes are superposed on colors that represent the

time-averaged deflections of the membranes [equation (4.11)]. As for the rod tethers,

the stretching rigidity R3 mainly affects the deflection of the membrane, not its shape.

For R3 = 100.5 and ks ∈ [100.5, 101] the deflections are so large that vortex shedding

might not be confined to the trailing edge in reality, but we include these results
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to illustrate the model’s behavior. The red line separates simulations with m = 80

points (below) and m = 40 (above); the smaller value is needed when R3 ≥ 103

to reach the steady-state regime. When ks ≥ 100.5 the membranes reach the single

hump state, as in the fixed–fixed case, and for the rods with R ≤ 10−1 in figure 4.4.

There is a critical value of ks at which the membrane transitions from the steady

single-hump solutions to oscillatory motions. In the framed panel on the right-hand

side of figure 4.14, we show the dynamics close to the transition. From ks = 100 to

100.12 the membrane shapes become less wavy. At ks = 100.12 and 100.14 they have

only one “neck” in their deflection envelopes, apart from (ks, R3) = (100.12, 100.5) and

(100.14, 103).

4.4 Linearized Membrane Model

In this section we analyze the small-amplitude behavior of the system described

in §4.2. We are able to present the small-amplitude motions of the membranes at

a wide range of parameter values (membrane mass and pretension) by computing

the eigenvalues and eigenmodes in detail, and after further simplifications, obtain

asymptotic scaling laws. The modes resemble the large-amplitude motions qualita-

tively, and quantitatively in some cases. We consider small deflections y(x, t) from

the straight configuration, aligned with the flow. Since the membrane stretching

factor is ∂αs ≈ 1 + ∂xy
2/2, to linear order α ≈ s ≈ x, all α-derivatives in (4.4) are

x-derivatives, and ζ(α, t) ≈ ζ(x, t) = x + iy(x, t). At linear order, the tangent and

normal vectors are:

(4.17) ŝ ≈ (1, ∂xy)>, n̂ ≈ (−∂xy, 1)>.

The linearized version of the membrane equation (4.4) is

(4.18) R1∂tty − T0∂xxy = −[p].
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When considering the linearized problem the term in the tension force T (α, t) =

T0 +R3(∂αs− 1) involving R3 (dimensionless stretching rigidity) is neglected since it

is of quadratic order, and so the linear dynamics are governed by the dimensionless

membrane mass R1 and the dimensionless pretension T0.

The linearized conditions from §§4.2.1 and 4.3.2 are:

Inextensible rods: x(−1, t) = 0, x(1, t) = 2,(4.19)

∂xy(−1, t) =
1

R
y(−1, t), ∂xy(1, t) = − 1

R
y(1, t),

Vertical Hookean springs: T0∂xy(−1, t)− ksy(−1, t) = 0,(4.20)

− T0∂xy(1, t)− ksy(1, t) = 0.

We note that the boundary conditions in (4.19) are equivalent to (4.20) with 1/R =

ks/T0. In chapter II the boundary conditions were (i) fixed–fixed: y(±1, t) = 0, (ii)

fixed–free: y(−1, t) = 0, ∂xy(1, t) = 0, and (iii) free–free: ∂xy(±1, t) = 0.

The dynamics of the membrane are coupled to the fluid flow through the pressure

jump term [p](x, t). The linearized version of the pressure jump equation (4.7) is

(4.21) ∂tγ + ∂xγ = ∂x[p].

The set of equations is closed by relating the vortex sheet strength γ(x, t) back to the

membrane position y(x, t), through the kinematic condition [equation (4.6)], which

in linearized form is:

(4.22) ∂ty(x, t) = −∂xy(x, t) +
1

2π
−
∫ 1

−1

v(x′, t)√
1− x′2(x− x′)

dx′ +
1

2π

∫ `w+1

1

γ(x′, t)

x− x′ dx′,

−1 < x < 1. Here, we use that ∂tζ(x, t) ≈ −i∂ty and from (4.17), the normal velocity

component is Re(n̂∂tζ) ≈ ∂ty. The general solution γ(x, t) has inverse square-root

singularities at x = ±1 and so we define v(x, t), the bounded part of γ(x, t), by
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γ = v/
√

1− x2. The second integral in (4.22) represents the velocity induced by the

vortex sheet wake, which extends downstream from the membrane on the interval

1 < x < `w +1, y = 0. Therefore, the eigenvalue problem assumes a free vortex wake

of a given fixed length `w, which we take to be large, 39 here, as in chapter III. In

that work, we found that the modes are essentially unchanged at larger values of `w.

This long flat wake corresponds to starting with a deflection that is sufficiently small

that we remain in the small-amplitude regime for large times.

The circulation in the wake,

(4.23) Γ(x, t) = −
∫ `w+1

x

γ(x′, t) dx′,

is conserved along material points of the wake by Kelvin’s circulation theorem. At

linear order, the wake moves at the constant speed (unity) of the free stream; self-

interaction is negligible.

At each time t, the total circulation in the wake, Γ(1, t), is set by the Kutta

condition, i.e.,

(4.24) v(1, t) = 0.

Using the system of equations (4.18), (4.21), (4.22), and (4.24) we solve for the

following unknowns: the motion of the membrane and the strength of the vortex

sheets along the membrane and in the wake.

For the linearized system, we may write solutions in the following form:

(4.25)

y(x, t) = Y (x)eiσt, γ(x, t) = g(x)eiσt, v(x, t) = V (x)eiσt, Γ(1, t) = Γ0e
iσt,

where Y , g, V , and Γ0 are components of eigenmodes with complex eigenvalues

σ = σR + iσI ∈ C. The real parts of the eigenvalues are the angular frequencies and
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the imaginary parts are the temporal growth rates. If σI > 0, small perturbations

decay exponentially and the mode is stable, while if σI < 0, small perturbations grow

exponentially and the mode is unstable. If σI = 0 the mode is neutrally stable. We

wish to identify the region of R1-T0 space in which unstable eigenmodes exist, and

when there are multiple unstable modes, identify the fastest growing mode.

Since Γ is conserved at material points of the free vortex sheet as they move

downstream (at speed 1), and the material point at location x ≥ 1 at time t was at

location x = 1 at time t− (x− 1) we can write

Γ(x, t) = Γ0e
iσ(t−(x−1)) = Γ0e

−iσ(x−1)eiσt, 1 < x < `w + 1,(4.26)

γ(x, t) = ∂xΓ(x, t) = −iσΓ0e
−iσ(x−1)eiσt, 1 < x < `w + 1,(4.27)

using Γ(1, t) from (4.25). Inserting the eigenmodes (4.25) into the governing equa-

tions (4.18) and (4.22), yields

(4.28) − σ2R1Y = T0∂xxY − iσ
∫ 1

−1

g dx− g,

and

(4.29)

iσY = −∂xY+
1

2π
−
∫ 1

−1

V (x′)√
1− x′2(x− x′)

dx′− 1

2π
iσΓ0

∫ `w+1

1

e−iσ(x′−1)

x− x′ dx′, −1 < x < 1,

respectively. Because σ appears in the exponential in the second integral in (4.29),

this is a nonlinear eigenvalue problem. We solve the nonlinear eigenvalue problem

iteratively by the same method as in chapter III.

4.4.1 Eigenmode Analysis of Membranes Attached to Vertical Hookean Springs

For the small-amplitude analysis we focus on membranes attached to vertical

Hookean springs, equivalent to rods (shown by equations (4.19) and (4.20) with

1/R = ks/T0).
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Figure 4.15: (Vertical springs) The region in R1-T0 space in which membranes are unstable. The
springs attached at the leading and trailing edges of the membrane have spring constant ks = 10−1.
The red line and red dots indicate the position of the stability boundary computed using linear
interpolation between σI of the smallest T0 that gives a stable membrane and the σI of the largest T0
that gives an unstable membrane (shown in the error bars). The color of the dots below the stability
boundary labels: A) The imaginary part of the eigenvalue (σI) corresponding to the most unstable
modes. It represents the temporal growth rate. B) The real part of the eigenvalues (σR) for the
most unstable mode, representing the angular frequency. The gray dots correspond to modes that
lose stability by divergence and have σR ≤ 10−9.

In figure 4.15 we plot the imaginary (figure 4.15A) and real parts (figure 4.15B)

of the most unstable eigenvalues in the region of instability for membranes attached

to springs with spring constant ks = 10−1 in R1-T0 space. The red line marks the

boundary where the eigenvalues change from all σI > 0 (stable membranes) to at least

one σI < 0 (unstable membranes). The stability boundary moves to larger pretension

(T0) values with increasing membrane mass (R1), starting at R1 = 10−1.25. As R1

decreases below 10−1.75 the critical pretension reaches a lower plateau. Below and to

the right of the red line is the unstable region. The red dots that mark the stability

boundary are computed by linear interpolation of σI between neighboring T0 values

(shown by the horizontal black bars) that bracket the boundary: all σI are positive

at the larger of the T0 values and above, but one σI is negative at the smaller of

the T0 values. The gray dots in figure 4.15B indicate negative σI and nearly zero

σR (σR ≤ 10−9) for the most unstable eigenmode, which corresponds to divergence
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without flutter; they occur at (R1, T0) = (10−0.75, 10−0.85), (101, 100.25), and several

cases with R1 ≥ 101.5 and T0 ≤ 100. The colored dots in figure 4.15B indicate

a nonzero real part (value in color bar at right) for the most unstable eigenmode,

corresponding to flutter and divergence.
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Figure 4.16: (Vertical springs) The shapes Y (x) of the most unstable eigenmode as a function of
R1 and T0 with springs that have a spring stiffness of ks = 10−1. The real part of Y (x) is shown in
green and the imaginary part of Y (x) is shown in blue. Each shape is scaled, both vertically and
horizontally, to fit within the plot. Modes exhibiting a divergence instability have a gray rectangle
outline. The shapes are superposed on the same stability boundary (red line) as in figure 4.15. The
blue dotted line represents the stability boundary for fixed–fixed membranes and the black dotted
line represents the stability boundary for free–free membranes from chapter III. We include them
here for comparison.

In figure 4.16 we examine the variations in the most unstable eigenmodes in the

same (R1, T0) space as figure 4.15, corresponding to the eigenvalues shown there.

We also include our results from chapter III (figures 3.5 and 3.13) for the stability

boundary when both ends of the membrane are fixed (dotted blue line) and when both

ends of the membrane are free (dotted black line). The real part of the eigenmode

Y (x) is shown in green and the imaginary part of Y (x) is shown in blue. We place

gray rectangles around the modes that lose stability by divergence. The shapes do
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not change noticeably for the wavier motions at R1 ∈ [10−3, 10−2]. At these small

R1 values the deflection at the trailing edge is nearly zero. With R1 increased to

(10−1, 10−0.25), however, the maximum deflection occurs at the trailing edge of the

membrane in most cases. Here and at some larger values of R1, the mean slope of

the membrane is nonzero. When R1 ∈ [101.25, 103] and T0 = 100.25 the modes are

nearly alike and their growth rates (σI, figure 4.15A) and angular frequencies (σR,

figure 4.15B) are almost equal.

In the limit R1, T0 � 1, the fluid pressure is negligible and the linearized mem-

brane equation reduces to the homogeneous wave equation

(4.30) R1∂tty − T0∂xxy = 0,

which after substituting the form of y(x, t) from (4.25) becomes

(4.31) − σ2R1Y − T0∂xxY = 0.

The eigenmodes are combinations of cos(kx) and sin(kx), with k = ±σ
√
R1/T0,

satisfying the two boundary conditions in (4.20). We find k by determining where

the determinant of the matrix

(4.32)



−kT0 sin(−k)− ks cos(−k) kT0 cos(−k)− ks sin(−k)

kT0 sin(k)− ks cos(k) −kT0 cos(k)− ks sin(k)




vanishes, which occurs if k sin(k)−(ks/T0) cos(k) = 0 or k cos(k)+(ks/T0) sin(k) = 0.

The numerical solutions of these two nonlinear equations for ks = 10−1 and T0 = 101

are:

(4.33)

k = 0.0998, 1.5771, 3.1448, 4.7145, 6.2848, 7.8553, 9.4258, 10.9965, 12.5672.

The eigenmodes are given by

(4.34) Y (x) = cos(k(x+ 1)) +

(
ks
T0

)
1

k
sin(k(x+ 1)),
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with k from (4.33), for −1 ≤ x ≤ 1. Heavy membranes (R1 > 102) with T0 between

100.25 and T0C(R1) (i.e., the stability boundary) all lose stability with the third mode,

k = 3.1448 in (4.34).
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Figure 4.17: (Vertical springs) Same as figure 4.15 but with ks = 100.

We now consider the analogous results when the Hookean spring constant is in-

creased to ks = 100. The stability boundary is shown as the red dots connected

by red lines in figures 4.17A and 4.17B. As with ks = 10−1, the stability boundary

moves to larger pretension (T0) values with increasing membrane mass (R1), starting

at R1 = 102. Now the critical pretension reaches a lower plateau at R1 = 100 and

below. The gray dots in figure 4.17B again indicate divergence without flutter (neg-

ative σI and nearly zero σR (≤ 10−9) for the most unstable eigenmode). We observe

this for all R1 ≤ 100 and R1 ∈ [100.75, 101.25] close to the stability boundary, as well

as for (R1, T0) = (103, 100) and R1 ∈ [10−3, 10−1] with T0 = 10−0.75. Therefore, an

increase in the spring stiffness not only changes the location and shape of the stabil-

ity boundary but also leads to more instances of the divergence instability at smaller

R1 and fewer at larger R1.
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Figure 4.18: (Vertical springs) Same as figure 4.16 but with ks = 100.

The corresponding eigenmodes are shown in figure 4.18. The critical pretension

for R1 < 100 is larger for ks = 100 than for ks = 10−1 and lies almost midway

between the stability boundary for fixed–fixed membranes (ks → ∞, blue dotted

line) and for free–free membranes (ks = 0, black dotted line). The mode shapes of

light membranes R1 ≤ 100 close to the stability boundary have three extrema and

are mostly symmetric. The shapes do not vary noticeably with R1 at these R1 values.

The eigenvalues in figure 4.17 were also nearly constant in this region for fixed T0.

In general, as T0 decreases the most unstable mode changes to a “wavier” profile at

small R1. However, there are exceptions: the membrane modes at R1 ≥ 101 and

T0 = 100 all have a similar shape (small but nonzero mean slope) but the associated

eigenvalues vary more significantly there, as can be seen from figure 4.17.

Using ks = 100 and T0 = 101 we have that the determinant of (4.32) vanishes

when

(4.35)

k = 0.3111, 1.6320, 3.1731, 4.7335, 6.2991, 7.8667, 9.4354, 11.0047, 12.5743.
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When the mass density is between 100.75 and 102 (especially close to the boundary),

the membranes are similar in shape to those with ks = 10−1. The modes for heavy

membranes (R1 > 102), with T0 between 100.5 and T0C(R1), all lose stability again

with the third mode, k = 3.1731 in (4.34).
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Figure 4.19: (Vertical springs) Same as figure 4.15 but with ks = 101.

Increasing ks further to 101 we approach the small-amplitude dynamics of a mem-

brane whose edges are both fixed at zero deflection. In figure 4.19 the colored dots

give the imaginary (figure 4.19A) and real parts (figure 4.19B) of the most unstable

eigenvalues (with corresponding eigenmodes shown later, in figure 4.20). There are

now many more cases of divergence without flutter (gray dots in figure 4.19B). At

R1 > 102 with T0 > 100, divergence with flutter occurs (colored dots in figure 4.19B).
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Figure 4.20: (Vertical springs) Same as figure 4.16 but with ks = 101.

In figure 4.20 we see that the critical pretension for R1 ≤ 101.5 is almost the same

as the stability boundary for fixed–fixed membranes (ks → ∞, blue dotted line in

figure 4.18). We place gray rectangles around the modes that lose stability by diver-

gence. The shapes are also similar to the ones seen for a fixed–fixed membrane: For

R1 < 102 and T0 just below T0C , the unstable eigenmode is a single-hump shape that

is nearly fore-aft symmetric. As the pretension is decreased further below T0C (at

T0 = 100 and R1 < 102.5) the divergent eigenmode becomes asymmetric, its maxi-

mum deflection point shifting towards the trailing edge. As the membrane mass (R1)

is increased to 102.5, the maximum camber point moves towards the midchord and the

membrane shape becomes almost fore-aft symmetric. At a smaller T0 (10−0.25) the

membranes still lose stability by divergence but there is now an inflection point ap-

proximately at the membrane’s midchord, with the maximum point on the membrane

being closer to the aft part. Even though the membrane mode shapes generally look

very similar to the fixed–fixed membranes in chapter III (figure 3.5) when ks = 101,

131



this is not the case for R1 > 102.5. The critical pretension in figure 4.20 starts to

increase when R1 & 102 as opposed to a smaller mass, i.e., R1 & 101.5 for fixed–fixed

membranes, and the mode shapes there are also very different. As for the other ks

values, here we use ks = 101 and for a fixed value of T0 determine the value of k

such that the determinant of (4.32) is equal to zero. In figure 4.20 the first mem-

brane that becomes unstable just below the stability boundary (at T0 = 101.35) is

approximately the third sinusoidal mode (k = 3.28). At T0 = 101 and 100.5 the most

unstable modes are approximately the fifth and seventh sinusoidal modes (k = 6.44

and 9.74, respectively). The trend of odd-numbered modes does not continue when

T0 < 100.5.

To summarize, we have found that the stability boundary has an upward slope

for large R1, whereas for small-to-moderate R1 values, the critical T0 is smaller. At

small R1 the critical pretension for instability reaches a plateau value that depends

on the spring stiffness. When R1 and T0 are dominant over fluid pressure forces,

the membrane eigenmodes tend to neutrally-stable sinusoidal functions. Increasing

the spring stiffness ks introduces more divergence instabilities, in agreement with the

fixed–fixed case studied in chapter III. In general, the most unstable modes become

more wavy at smaller T0 and small R1. The nonlinear eigenvalue problem for the

linearized membrane model has allowed us to extend results from the large-amplitude

model in §4.3 to a wider range of R1-T0 space. Next, we study a more analytically

tractable model—that of an infinite, periodic array of springs attached to an infinite

membrane. This model allows us to compute solutions for a much wider range of

parameters and obtain asymptotic scaling laws.
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4.5 Periodic Array of Springs on an Infinite Membrane

We have seen that the eigenvalue problem for a membrane tethered with springs

(or rods) interpolates between the fixed–fixed and free–free cases. The vortex sheet

wake results in a nonlinear eigenvalue problem, requiring an iterative solver that

is time-consuming, particularly at small T0. We now consider a simplified model

with spatially periodic solutions that will allow us to derive asymptotic scaling laws.

We assume the membrane extends to infinity upstream and downstream, and is

tethered by an infinite, periodic array of Hookean springs (with stiffness ks). The

horizontal spacing between the springs (unity) is analogous to the length of the

finite membrane in the previous section. This problem is shown schematically in

figure 4.21, where the green surface represents a section of the infinite membrane

at an instant in time and the pairs of red coils on either side of the membrane

span represent the springs. The membrane has period L. By taking L larger than

the distance between the springs, the infinite periodic membrane may have different

deflections at streamwise-adjacent spring locations, as occurs for the tethered finite

membrane. As L increases, the membrane can assume a wider range of shapes,

but the eigenvalue problem becomes more costly to solve. We choose L = 4 as

a compromise between these competing considerations. The flow velocity is again

uniform at infinity (far above and below the membrane). With an infinite membrane

there is no free vortex wake, and the nonlinear eigenvalue problem is reduced to a

quadratic eigenvalue problem, which has analytic solutions for the eigenvalues when

ks = 0. In [128] a related approximate model was considered—an infinite membrane

with two- and three-harmonic truncations that were used to approximate fixed–fixed

boundary conditions.
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Figure 4.21: Schematic diagram of a section of an infinite, flexible membrane (green surface) at an
instant in time. Here L is the x-period of the membrane, y(x, t) is the membrane deflection and
the red springs of stiffness ks are spaced one unit apart. The distance between springs is smaller
than the membrane’s period (L > 1, L ∈ N).

The system of governing equations is:

R1∂tty − T0∂xxy = −[p]− ksy(x, t)δ1(x),(4.36)

∂ty + ∂xy =
1

2π

∫ ∞

−∞

γ(x′, t)

x− x′ dx′,(4.37)

∂tγ + ∂xγ = ∂x[p].(4.38)

In (4.36), δ1(x) is a periodic Dirac delta function with period one, resulting in a

spring force at each integer x, and proportional to y(x, t), the vertical deflection

there. We next write the membrane position, vortex sheet strength, and pressure

jump across the membrane, each as a Fourier series with period L, and the periodic

Dirac delta function as a Fourier series with period one:

y(x, t) =
∞∑

k=−∞

ŷke
i(2πk/L)xeiσt, γ(x, t) =

∞∑

k=−∞

γ̂ke
i(2πk/L)xeiσt,(4.39)

[p](x, t) =
∞∑

k=−∞

[̂p]ke
i(2πk/L)xeiσt, δ1(x) =

∞∑

k=−∞

ei(2πk)x,(4.40)

respectively, where ŷk, γ̂k, [̂p]k are complex Fourier coefficients to be found.

Using equations (4.39) and (4.40), the membrane equation (4.36) can be written
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as

∞∑

k=−∞

(
−σ2R1ŷk + T0

(
2πk

L

)2

ŷk

)
ei(2πk/L)x = −

∞∑

k=−∞

[̂p]ke
i(2πk/L)x

−ks
∞∑

k′=−∞

ŷk′e
i(2πk′/L)x

∞∑

k′′=−∞

ei(2πk
′′)x,(4.41)

having divided throughout by the common factor eiσt. Substituting equations (4.39)

into (4.37), we obtain

(4.42)
∞∑

k=−∞

(
iσ + i

2πk

L

)
ŷke

i(2πk/L)xeiσt =
∞∑

k=−∞

− i
2

sgn

(
2πk

L

)
γ̂ke

i(2πk/L)xeiσt,

which implies that

(4.43) i

(
σ +

2πk

L

)
ŷk = − i

2
sgn

(
2πk

L

)
γ̂k.

Similarly, if we substitute equations (4.39) and (4.40) into (4.38), we get

(4.44) i

(
σ +

2πk

L

)
γ̂k = i

2πk

L
[̂p]k.

Using equations (4.43) and (4.44) in (4.37) and in (4.38), we obtain

γ̂k = −2sgn (k)

(
σ +

2πk

L

)
ŷk,(4.45)

[̂p]k = − L

π|k|

(
σ +

2πk

L

)2

ŷk,(4.46)

respectively, where we use that sgn (2πk/L) = sgn(k) and thus write (4.41), in terms

of ŷk only, as

∞∑

k=−∞

(
−σ2R1 + T0

(
2πk

L

)2
)
ŷke

i(2πk/L)x =
∞∑

k=−∞

L

π|k|

(
σ +

2πk

L

)2

ŷke
i(2πk/L)x

−ks
∞∑

k′=−∞

ŷk′

(
∞∑

k′′=−∞

ei(2π(k′′L+k′)/L)x

)
.(4.47)

We match coefficients of ei(2πk/L)x in (4.47) and obtain

(4.48)(
−R1 −

L

π|k|

)
σ2ŷk −

4k

|k|σŷk +

(
2πk

L

)2(
T0 −

L

π|k|

)
ŷk + ks

∑

k′≡k mod L

ŷk′ = 0,
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for k = −N, . . . ,−1, 1, . . . , N . The last sum in (4.48) includes those k′ that are equal

to k plus a multiple of L. If we make the truncation approximation that ŷk = 0 for

|k| > N then (4.48) is a system of 2N + 1 equations in 2N + 1 unknowns ŷk. In the

derivation we assumed k 6= 0. From (4.43) we see that ŷ0 = 0 (Hilbert transform of

a constant is equal to zero). Therefore, we insert 0 for ŷ0 in the system of equations

and remove ŷ0 from the unknowns, resulting in 2N equations in 2N unknowns.

Equation (4.48) is a quadratic eigenvalue problem of the form

(4.49) (A2σ
2 + A1σ + A0)ŷ = 0,

where A2 and A1 are diagonal matrices, A0 is a rank-L matrix, and ŷ is the eigenvec-

tor of Fourier coefficients {ŷk, k = −N, . . . ,−1, 1, . . . , N}. Using polyeig in Mat-

lab we solve for the eigenvalues σ and determine the fastest growing eigenmode, i.e.,

corresponding to the most negative σI.

In figure 4.22 we show the imaginary parts of the most unstable modes for the

periodic membrane problem, over one period 0 ≤ x ≤ 4, and thus with 4 subintervals

between springs shown. In a few examples (at the corners) in panels A–D, we show

the locations of the springs by small red lines. In many (but not all cases), the shapes

seem to repeat 4 times. This is particularly true at larger ks, where the springs are

stronger and impose a period-1 component more strongly in the eigenmode. The

real parts are similar and are omitted. Membranes that lose stability by divergence

without flutter are again outlined with gray rectangles. We compute the relative

error in the eigenvalues when N = 28 and 29:

(4.50) relative error =

∣∣∣∣
σ28 − σ29

σ29

∣∣∣∣ .

The maximum relative error is small for the cases in figure 4.22: 0.0437 when R1 =

10−4 (figure 4.22A), 0.0269 when R1 = 10−1 (figure 4.22B), 0.00267 when R1 = 100
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(figure 4.22C), and 1.31× 10−5 when R1 = 104 (figure 4.22D).
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Figure 4.22: Imaginary part of the most unstable eigenmode [Im(y(x))] in T0-ks parameter space
for A) R1 = 10−4, B) R1 = 10−1, C) R1 = 100, and D) R1 = 104. Modes exhibiting a divergence
instability with σR ≤ 10−9 have a gray rectangle outline. In all the panels, we use N = 29.

The periodic membrane modes do not align precisely with those in the membrane-

vortex-wake model due to the different membrane boundary conditions (periodic

versus finite with a trailing vortex wake). However, there are many qualitative simi-

larities. In both cases, the modes become sharper (or wavier) as we decrease T0. At

large R1 the membranes are more sinusoidal with single bumps between the springs

at large values of T0 (in figure 4.22D for the periodic membrane). At small R1

(figures 4.22A and 4.22B), the membranes are less sinusoidal and less symmetric.

Another similarity at small R1 is that increasing the spring stiffness ks causes the

maximum deflection point of the membrane to move downstream (to the right) with

sharp peaks close to the spring locations (figures 4.22A and 4.22B as well as fig-
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ure 4.16). Also true for both models is that the stability boundary shifts to lower T0

at small R1 and small ks. As a result, at some locations in the lower right of pan-

els A and B, membranes are omitted because all modes are stable, unlike at the

corresponding locations in panels C and D (where R1 is larger).

The membrane deflections at the springs increase when R1 and T0 increase rel-

ative to ks. This can be seen by moving from left to right in some of the rows of

figures 4.22A–C (i.e., increasing T0 at fixed ks), such as ks = 100 in panel C. The

same trend is seen moving from panel A to B to C to D, at the same location in each

panel, i.e., increasing R1 with ks and T0 fixed. A similar phenomenon was seen in

the membrane-vortex-wake model.

In figure 4.23 we plot the imaginary parts of the most unstable eigenvalues as

colored dots in the region of instability for membranes attached to a periodic array

of springs with spring constants ks = 0 (figure 4.23A), ks = 10−1 (figure 4.23B),

ks = 100 (figure 4.23C), and ks = 101 (figure 4.23D). When ks = 0, equations (4.48)

become decoupled scalar quadratic equations which can be solved analytically. The

resulting σI are plotted in figure 4.23A. In figures 4.23B–D, ks 6= 0, and we use

the aforementioned Matlab eigenvalue solver. With 29 modes, the results are re-

solved only in a small portion of figure 4.23A—a subset of the region within the red

rectangle. The axis limits of panels B–D coincide with the red rectangle. Both the

analytical results in panel A and the computed results in panels B–D are much easier

to obtain than in the case of the membrane-vortex-wake model, so the data in all the

panels of figure 4.23 are much more extensive than in figures 4.15, 4.17, and 4.19, a

key advantage of the infinite-membrane model.
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Figure 4.23: (Infinite, periodic membrane) The region in R1-T0 space in which membranes are
unstable. The color of the dots in the instability region labels the imaginary part of the eigenvalues
(σI) corresponding to the most unstable modes. It represents the growth rate. The springs have
stiffness values of: A) ks = 0 (analytical result), B) ks = 10−1, C) ks = 100, and D) ks = 101. The
numerical results shown in panels B–D are with N = 29. The red rectangle in panel A indicates
the region we consider in panels B–D to facilitate comparison. The red outline on some of the
colored dots indicates the cases where convergence with respect to N (as defined by (4.50)) was not
obtained.

For this periodic problem, we see that the stability boundary at large R1 plateaus,

independent of the value of ks, i.e., the critical pretension (T0) is the same for all

R1 & 101 instead of increasing with increasing mass as in the vortex-wake model

(figures 4.15, 4.17, and 4.19). Although the stability boundaries differ at large R1,

here the vortex-wake model’s eigenvalues are only slightly unstable [σI = O(10−5)]

compared to neutrally stable (σI = 0) in the infinite membrane model.

We see that for smaller R1 (< 100), the stability boundary in figure 4.23A is

close to the diagonal line T0 = R1, and we will show this asymptotically in the next
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section. In panels B–D (ks 6= 0), this line is no longer the stability boundary, but

is instead the location of a sharp change in σI, shown by the sharp change in colors

moving across this line, particularly in panel B and less so in C and D.

From the colors of the dots in all the panels we see that if we fix R1 and decrease T0,

the growth rate σI becomes larger in magnitude (value in color bar at right). If we

fix T0 and increase R1 above T0, the growth rate σI becomes smaller in magnitude

which implies slower growth of instabilities.

In figure 4.23B, ks = 10−1 as in figure 4.15A for the membrane-vortex-wake model.

There are two main points of qualitative agreement between the models in this case.

One is that a lower plateau of the stability boundary occurs at small R1; another is

that the growth rates are much lower for R1 < T0. At this ks value (10−1) and at

small R1 and T0 close to the stability boundary (e.g., at T0 = 10−0.5 and 10−0.875,

for R1 . 10−2), there are also a few narrow bands of instability (lines of yellow

dots) between stable regions, which was not observed in the membrane-vortex-wake

model (figure 4.15A). Moving to figure 4.23C, ks is increased to 100, and the stable

regions in panel B surrounding the isolated bands become unstable in panel C, with

larger growth rates than in the bands. Therefore, the stability boundary in panel

C is almost at constant T0 for all R1, with a very small increase when R1 ≥ 101.

An upward shift in the lower plateau is also seen in the vortex-wake model with the

same increase in ks, moving from figure 4.15A to figure 4.17A. Increasing ks further

to 101 (figure 4.23D) in the periodic membrane model these trends continue: the

stability boundary is horizontal at T0C ≈ 10−0.25 (a factor of ≈ 3 smaller than T0C in

the small-to-moderate R1 region of figure 4.19), and the growth rates have increased

further where R1 < T0. In figures 4.23B–D as T0 decreases, N = 29 is eventually

too small to resolve the most unstable eigenmodes. These cases are shown by red
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outlines around the colored dots, and become more prevalent as we move from panel

B to C to D. These cases correspond to an eigenvalue relative error (as defined in

equation (4.50))> 3× 10−2 (chosen somewhat arbitrarily; other values give a similar

classification of nonconvergence).
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Figure 4.24: (Infinite, periodic membrane) The region in R1-T0 space in which membranes are
unstable. The color of the dots in the instability region labels the real part of the eigenvalues (σR)
corresponding to the most unstable modes. It represents the angular frequency. The springs have
stiffness values of: A) ks = 0 (analytical result), B) ks = 10−1, C) ks = 100, and D) ks = 101.
The numerical results shown in panels B–D are with N = 29. The gray dots correspond to modes
that lose stability by divergence and have σR ≤ 10−9. The red rectangle in panel A indicates
the region we consider in panels B–D to facilitate comparison. The red outline on some of the
colored/gray dots indicates the cases where convergence with respect to N (as defined by (4.50))
was not obtained.

In figure 4.24 we plot the corresponding real parts of the eigenvalues for the most

unstable modes. Increasing the spring stiffness ks introduces more divergence modes

(the gray dots, σR ≤ 10−9). Note that this also occurs in the vortex-wake model,

141



figures 4.15, 4.17, and 4.19. σR varies more strongly with R1 than with T0. There

is almost no variation with T0 in figure 4.24A, and little variation in panels B–D—

mainly when T0 > R1. Here, as T0 decreases, σR increases but non-monotonically,

particularly at the isolated bands of dots in panel B that become bands of non-

monotonic change in σR in panels C and D, including changes between divergence

(gray dots) and flutter and divergence (colored dots). Next we discuss more quanti-

tatively how the real and imaginary parts of the eigenvalues depend on R1 and T0,

including asymptotic scaling laws.

4.5.1 Analytical Results and Scaling Laws in the Instability Region

In this section we find analytically the eigenvalues and the corresponding eigen-

modes (sinusoidal functions)—in the special case of ks = 0. From these analytical

solutions we derive asymptotic approximations for how the maximum growth rate,

corresponding angular frequency, and dominant wave number depend on R1 and T0

when these parameters are small and large. We also study how the scaling laws

behave when ks 6= 0, where numerical solutions are required.

With ks = 0 equation (4.48) reduces to

(4.51)

[(
−R1 −

L

π|k|

)
σ2 − 4k

|k|σ +

(
2πk

L

)2(
T0 −

L

π|k|

)]
ŷk = 0,

for k = −∞, . . . ,−1, 1, . . . ,∞. Solving (4.51) for σ, we obtain

(4.52) σ = − 2k

|k| (R1 + L/(π|k|)) ±
√
Dk,

where

(4.53) Dk :=
4

(R1 + L/(π|k|))2

[
1 +

(
R1 +

L

π|k|

)(
πk

L

)2(
T0 −

L

π|k|

)]
.

The term in brackets can be written as (L(−R1 + T0) + πR1T0|k|) multiplied by a

positive factor. Therefore Dk can be negative only for T0 < R1. When R1 is small
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the R1T0 term is negligible, so the stability boundary follows T0 = R1 as shown in

figure 4.23A.

In (4.52) there are two possible eigenvalues for each R1 and T0 combination (due

to the square root) that correspond to a complex-conjugate pair. We can then find

k for the most unstable mode by setting the derivative of (4.53) with respect to k to

zero and solving for k:

(4.54) kmax = ±L(R1 − 5T0) + L
√
R2

1 + 14R1T0 + T 2
0

4πR1T0

.

Since the discriminant in (4.53) is symmetric about k = 0, we have a symmetric

pair of kmax in (4.54). For the periodic membrane, kmax must be an integer, but

equation (4.54) is not necessarily an integer. Restricting kmax to integer values, we

find that it is given by one of the integers nearest to the value in (4.54).

With this model we are able to obtain asymptotic scaling laws in the instability

region for a wide range of R1 and T0 values. Unstable membrane modes are realized

when the argument of the radical in (4.52) is negative, i.e., Dk < 0 in (4.53). We will

now present the asymptotic scaling laws for kmax, σR, and σI in different limits within

the instability region. As we do so, we will refer to the summary in table 4.2. We

study three asymptotic regimes that correspond to moving within the unstable region

of figure 4.23A (or figure 4.24A) in three different directions. Moving rightward off

to infinity, we have R1 →∞ with fixed T0 ≤ T0C , the first row of table 4.2. Moving

diagonally downward and leftward, parallel to the stability boundary, we haveR1 → 0

with T0 = cR1, for a fixed c between 0 and 1, the second row of table 4.2. Moving

vertically downward instead, we have T0 → 0 with fixed R1, the third row of table 4.2.

Moving across each row, we give the asymptotic behavior of the three main quantities

of interest.
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Table 4.2: Summary of asymptotic scalings for the dominant wavenumber (kmax), the real part of
the eigenvalue (σR), and the imaginary part of the eigenvalue (σI) in the small- and large-R1 and
small-T0 regimes, in the instability region.

hhhhhhhhhhhhhhhRegimes
Quantities

kmax σR σI

R1 →∞ (fixed T0 ≤ T0C) max

(
L

2πT0
, 1

)
2

R1
max

(
1√
R1T0

,
2π

L
√
R1

√
L

π
− T0

)

R1 → 0 (T0 = cR1, 0 < c < 1)
LC

4πT0

2C

R1(C + 4c)

√
C3(4− 4c− C)

2R1(C + 4c)
√
c

T0 → 0 (fixed R1)
L

2πT0

2

R1

1√
R1T0

In the first column of table 4.2, we give the asymptotic forms of kmax by taking

the appropriate limits in (4.54). In the first and third rows, we obtain

(4.55) k = kmax →
L

2πT0

.

In the second row, setting T0 = cR1 and taking R1 → 0, we have

(4.56) k = kmax = ± LC

4πcR1

= ± LC

4πT0

where C = (1− 5c) +
√

1 + 14c+ c2.

In figure 4.25 we plot the dominant wavenumber versus T0 for various fixed values

of R1 (one per line) and for four values of spring stiffness: ks = 0 (figure 4.25A),

ks = 10−1 (figure 4.25B), ks = 100 (figure 4.25C), and ks = 101 (figure 4.25D). When

ks = 0, we have the analytical result in (4.54) (actually, the nonzero integer closest

to it, as mentioned previously). We also still assume that the membrane has period

L = 4, as in the ks 6= 0 case discussed previously. In panel A, we find that the

wavenumber does not vary significantly with R1 except when R1 � 1 and we are

close to the stability boundary, i.e., T0 ≈ R1 for small R1. The lines in panel A

with R1 ≤ 10−2 curve downwards towards a vertical asymptote as they approach the

stability boundary, but kmax is bounded below by 1, the endpoint of each line. The
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dotted black line in figure 4.25A shows that the dominant wave number for various

fixed R1 values follows the scaling T−1
0 . Representative mode shapes at various

(R1, T0) pairs are shown for x ∈ [0, L], with the colors of the modes corresponding to

the value of R1. They are sinusoidal modes with wavelength that increases with T0.
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Figure 4.25: (Infinite, periodic membrane) Plots showing the membrane’s dominant wavenumber
versus T0 for various fixed R1 values at four values of spring constants: A) ks = 0 (analytical
results), B) ks = 10−1, C) ks = 100, and D) ks = 101. We show typical examples of the imaginary
part of the eigenmode shapes. The dotted black line shows the scaling T−10 .

In panels B–D, ks 6= 0, and the eigenmodes are found computationally. They are

a superposition of multiple sinusoidal modes. For the most unstable mode we define

the dominant wavenumber to be that of the sinusoidal component with the largest

amplitude (the k for which |ŷk| is largest [see equation (4.39)]). In figures 4.25B–D we

find that at large R1 (& 100), where the spring force is relatively less significant, the
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lines scale as T−1
0 and do not vary significantly with R1, similarly to the case without

springs in panel A. At smaller R1, the lines deviate greatly from this behavior, and

do not seem to follow any specific power law. The data points outlined with black

squares are cases that are not resolved (using the same definition as for the red circles

in figures 4.23 and 4.24—when the eigenvalue relative error [equation (4.50)] > 3×

10−2). These occur mostly at small T0, when the dominant wavenumber kmax is very

large, so good resolution would require a larger N than is feasible computationally.

The deviations at small R1 coincide with changes in the eigenmodes similar to those

seen in figure 4.22 when R1 and T0 are small relative to ks. In particular, the mode

shapes are less sinusoidal and less symmetric than at large R1. For example, as

the spring stiffness ks increases, moving from panel B to C to D, the envelopes

of deflection for the green modes at (R1, T0) = (100, 10−1.5) and the red modes at

(R1, T0) = (102, 10−1.75) are decreased near the springs at x = 0, 1, . . . , L = 4. The

light blue modes at (R1, T0) = (101, 10−0.75) are sinusoidal in panels A–C but change

to a non-sinusoidal shape at largest ks (panel D), and the dominant wavenumber

there is also decreased compared to the sinusoidal cases in panels A–C. The orange

mode (at (R1, T0) = (104, 10−0.375)) has larger R1 and therefore retains a sinusoidal

shape even at the largest ks value. Moving to much smaller R1, such as the purple

mode ((R1, T0) = (10−1, 10−1.375)) we again have a transition from a sinusoidal shape

at ks = 0 to a shape that is less sinusoidal as ks increases (from panels B to D) and

less fore-aft symmetric, with peaks of deflection just upstream of the spring locations,

unlike the more fore-aft symmetric red and green shapes at larger R1.
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Figure 4.26: (Infinite, periodic membrane) Plots showing the real parts of the eigenvalues for spring
constants: A) ks = 0 (analytical result), B) ks = 10−1, C) ks = 100, and D) ks = 101. Panels
B–D share the same legend, and result from computations with N = 29. The dotted black line at
moderate-to-large values of R1 shows the scaling R−11 .

We now present the real parts of the eigenvalues within the instability region, with

three asymptotic behaviors given in the three rows of the second column of table 4.2.

For each row, we find the dominant behaviors of σR by inserting the values of kmax

from the first column of that row into the first term on the right side of (4.52), which

is σR. When we take the appropriate limits for each row (shown on the left side of

table 4.2), we obtain the expressions for σR in the second column of table 4.2.

Figure 4.26 plots the values of the real parts of the eigenvalues (σR) with respect

to the membrane mass (R1) for various fixed T0 (one value per line) and for the same

four spring stiffness constants as in figure 4.25, one per panel. As with figure 4.25A,
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the values in figure 4.26A, with ks = 0, are obtained analytically through (4.52),

and are obtained computationally for the remaining panels. Most of the data lie

nearly on the straight line given by 2/R1, corresponding to the first and third rows

in the second column of table 4.2. For each T0 ≤ 10−1, the corresponding line

curves downward and becomes nearly vertical at the stability boundary. A vertical

asymptote would occur if kmax could decrease to 0 (as in (4.54) when R1 → T0), but

it is bounded below by 1 (as in figure 4.25A), and consequently σR also has a positive

lower bound at the stability boundary.

When ks is increased from 0 to 10−1 we obtain different behaviors, shown in

figure 4.26B. When R1 � 1, the data follow the same 2/R1 behavior as in panel A

for T0 relatively large but below the stability boundary. At other (R1, T0) pairs, the

springs cause different behaviors. Disconnected lines or points are observed (e.g.,

at T0 = 10−1.25, 10−1, 10−0.75) where the membrane switches between being stable

and unstable. These correspond to the isolated bands of unstable modes seen in

figure 4.23B.

In figure 4.26 (panels B, C, and D), some membranes lose stability by divergence,

shown by the sharp drop in some of the graphs to values below 10−6 (for example,

T0 = 10−0.5 in panels B and C and T0 = 10−1.25 and T0 = 10−0.75 in panel D). The

graphs continue to the left or right R1 limits of the plots with values ≈ 10−12 (not

visible), indicating instability by divergence throughout these regions. Divergence

occurs for ranges of small and large R1 that are generally more extensive at larger T0

until the stability boundary is reached. When T0 = 10−0.25 and 10−0.5 in panel D all

membranes lose stability by divergence. Therefore, the lines for these two cases do

not appear in the panel. Another striking effect of ks 6= 0 is the plateaus on the left

sides of panels B–D, at small R1. Here the values of σR drop to a plateau instead of
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a vertical asymptote as in panel A. The values of σR for each plateau decrease with

increasing T0 in most cases in panels B and C.

The small square with the black outline in panel C shows a case with an eigenvalue

that is not converged. More of these cases occur in panel D where divergence occurs

(below the lower limit of the panel, and so not shown).
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Figure 4.27: (Infinite, periodic membrane) Plots showing the imaginary parts of the eigenvalues
for spring constants: A) ks = 0 (analytical result), B) ks = 10−1, C) ks = 100, and D) ks = 101.
Panels B–D share the same legend, and for the numerical results shown we use N = 29. The dotted

black line at moderate-to-large values of R1 shows the scaling R
−1/2
1 .

Finally, we present the imaginary parts of the eigenvalues in the unstable region

and investigate the same three asymptotic regimes as for the other two quantities in

table 4.2. For each regime, we derive the dominant behaviors of σI by substituting

the kmax values shown in the first column of table 4.2 in the second term on the right
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side of (4.52), which is ±iσI if Dk < 0, i.e., the mode is unstable.

In figure 4.27 we plot the imaginary parts of the eigenvalues (σI) versus the mem-

brane mass (R1) for various fixed values of T0 and for the same spring stiffness

constants, one per panel, as in figures 4.25 and 4.26. In figure 4.27A at large R1

for fixed T0, σI follows the R
−1/2
1 scaling shown by the dotted line. The lines are

equispaced at large R1, consistent with the scaling T
−1/2
0 for fixed R1. Both behav-

iors are consistent with the asymptotic scaling law σI ∼ 1/
√
R1T0 at large R1 or at

small T0, the first and third rows, respectively, of the third column of table 4.2. As

in figure 4.26A, each line curves downward to a vertical asymptote as it approaches

the stability boundary at a certain R1 value. The dashed line shows the R−1
1 scaling

of σI when T0 = cR1, 0 < c < 1 and R1 → 0, given analytically in the second row of

the third column of table 4.2.

Panels B–D show the results with three nonzero ks values, and have many similar-

ities with the corresponding results for σR (figures 4.26B–D). For example, the lines

end in panel B where the membrane switches between being stable and unstable.

Another similarity, when ks 6= 0, is that σI plateaus on the left sides of panels B–D,

at small R1. Here, when T0 → R−1 the lines of σI initially curve downward (but not

towards a vertical asymptote as in figure 4.27A) and then tend to a constant value

at small R1 in most cases. These lines curve downward less sharply as ks increases,

and the region of downward curving disappears completely in some cases in panel D.

Another qualitative similarity with figure 4.26 is that the growth rate |σI| decreases

with increasing T0 in most cases. As previously, the small squares with the black

outline in figures 4.27C and 4.27D correspond to (R1, T0) pairs where the eigenvalue

is not converged with respect to N but we still include them here to distinguish them

from stable membranes where a marker is omitted altogether.
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There is no indication in figures 4.27B–D of a switch in behavior corresponding to

the changes from divergence with flutter to divergence without flutter shown by the

sudden drops in σR in figures 4.26B–D. In other words, the imaginary parts of the

eigenvalues change smoothly despite the sharp changes in the real parts. The orange

line with asterisks, T0 = 100, is not present in figures 4.27C and 4.27D because the

critical T0 for instability drops below 100 as ks increases to 100 and 101.

4.6 Conclusions

In this chapter we have studied the flutter instability of thin membranes whose

leading and trailing edges are attached to inextensible rods of length R and Hookean

springs of stiffness constant ks. We looked at different parts of the four-dimensional

parameter spaces (R1, R3, T0, R) and (R1, R3, T0, ks). We found that when mem-

branes are attached to rods with small length R or to springs of moderate-to-large

stiffness ks, they exhibit large (but physically reasonable) deflections that converge

to states of steady deflection with single humps that are almost fore-aft symmetric.

When R is moderate-to-large and ks small, we find a wide range of unsteady dynam-

ics, somewhat similar to those seen in studies of flapping plates or flags (or fixed–free

and free–free membranes in chapter II). In either of the two regimes, deflections scale

as R
−1/2
3 , when the stretching modulus R3 is large. The large-amplitude dynamics

depend most strongly on the membrane mass density R1 and less strongly on the

pretension T0. At the largest R1 studied we find the smallest oscillation frequencies

and largest membrane deflections corresponding to somewhat chaotic and asymmet-

rical membrane motions. Here the dominant time period scales as R
1/2
1 . As R1

decreases, the membrane motions become more periodic and symmetrical, and with

larger spatial frequency components (sharper curvatures and more zero crossings).
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At R1 . 10−1.25 the motions become more chaotic again, with much finer spatial

features that are difficult to resolve numerically and so a finer mesh on the mem-

brane is required there. Our study shows that the boundary conditions (inextensible

rods and vertical Hookean springs) allow for a smooth transition between types of

membrane dynamics that were observed when both membrane ends are fixed at zero

deflection or when one or both ends are free to move in the vertical direction.

To study the onset of membrane instability and small-amplitude membrane mo-

tions, we used a linearized model and a nonlinear eigenvalue solver—similar to the

one in chapter III. In this regime, the nonlinear R3 term in (3.5) is negligible so

we characterized the different types of motions with respect to the other two key

dimensionless parameters—membrane mass and pretension. In the small-amplitude

model we focused on the vertical Hookean springs, equivalent to inextensible rods via

1/R = ks/T0. When membrane inertia and pretension dominate fluid pressure forces,

the eigenmodes tend toward neutrally stable sinusoidal functions. As we increase ks,

we transition from membranes that resemble the free–free case to membranes that

resemble the fixed–fixed case. There are roughly two regimes: small membrane den-

sity, where divergence occurs and the most unstable mode becomes more fore-aft

asymmetric as one moves further into the instability region, and large membrane

density, where flutter and divergence occur with approximately sinusoidal modes. In

both regimes, the most unstable modes become wavier at smaller T0, akin to the

most unstable beam modes at smaller bending rigidity in [3]. The stability bound-

aries with ks = 10−1 and 100 are very similar at large membrane densities, showing

an upward slope for R1. This upward slope for R1 is also seen with ks = 101 but it

starts at a larger R1.

To derive asymptotic scaling laws theoretically, we introduced a simplified model
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with spatially periodic solutions by assuming that the membrane extends to infinity

upstream and downstream and is tethered by an infinite, periodic array of Hookean

springs, all with stiffness ks. This model corresponds to a standard eigenvalue prob-

lem, and is much faster to compute than the nonlinear eigenvalue problem of the

membrane-vortex-wake model. We can thus study much wider ranges of the key

parameters R1, T0, and ks. When ks = 0 we can compute asymptotic scaling laws

for the real and imaginary parts of the eigenvalues, and the dominant wave number

of the most unstable eigenmodes. We find that as R1 increases from small to large,

the dominant wave number scaling varies from R−1
1 to R0

1 for the periodic membrane

within the instability region. In the large amplitude simulations, the time-averaged

number of extrema of deflection also changes from R−1
1 to R0

1 scalings as R1 increases

from small to large. For the periodic membrane, the frequency σR scales as R−1
1 at

both small and large R1, while the large-amplitude dominant frequency transitions

scales as R
−5/6
1 and R

−1/2
1 , respectively. At small R1, the large-amplitude results are

mostly independent of T0 within the instability region, while the periodic membrane

results do depend on T0. For the periodic membrane, we also considered the small-

amplitude growth rate σI. At large R1, it decays as R
−1/2
1 for a fixed T0; at small R1

and T0 = cR1 for 0 < c < 1, it decays as R−1
1 . When ks is increased to a nonzero

value, both σR and σI plateau at small R1.

There are qualitative similarities in the shapes of the stability boundaries for the

periodic membrane and membrane-vortex-wake models. At small R1, the stability

boundaries have a plateau at a certain T0 value, that decreases as ks decreases. At

large R1, the periodic membrane has a flat stability boundary, while that with the

vortex wake is upward sloping, corresponding to unstable modes at larger T0, albeit

with very slow growth rates. At all R1, as ks increases divergence modes become
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more common near the stability boundary in both models.

The membrane modes from the two models also share many features. For example,

the mode shapes become wavier at smaller T0 in both models. Additionally, by

tracking the eigenmodes across the three parameter space of R1, T0, and ks, we

found that at larger R1, the modes are more sinusoidal and fore-aft symmetric in

both models. At small-to-moderate R1, the modes are more asymmetric, with peak

deflections shifted downstream.
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CHAPTER V

Membrane Flutter in Three-dimensional Inviscid Flow

5.1 Introduction

In this chapter, we develop a model and computational method to study the large-

amplitude dynamics of rectangular membranes in a three-dimensional (3D) inviscid

flow. To our knowledge the present chapter is the first 3D study of this problem.

We compute the stability boundary locations and the large-amplitude dynamics

for a range of membrane mass density, pretension, and stretching rigidity values, for

12 combinations of boundary conditions at the membrane edges. With free side edges

we find good agreement with previous 2D results even though different discretization

methods were used. Here we also use a flat-wake approximation [86] and find good

agreement between membranes with large aspect ratio in 3D flow and membranes in

2D flow with wake roll-up. Computing wake roll-up with high precision in 3D is chal-

lenging as the vortex sheet may undergo complex twisting and shearing deformations

that make meshing difficult [46]. Fast algorithms (e.g., tree codes) for the evolution

of vortex sheets in three dimensions have been developed by [47, 85,105,150,201].

We find that the 3D dynamics in the 12 cases naturally fall into four groups that

are determined by only the leading and trailing edge conditions. Within each group

the conditions at the side edges can still have some qualitative effects on the mem-
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brane dynamics. For example, the side-edge conditions can determine the variety

of spanwise curvature distributions and whether membranes are steady versus un-

steady, periodic versus chaotic—depending on the group and the physical parameter

values. The deflection amplitudes and oscillation frequencies have scalings similar to

those in the 2D case.

The structure of this chapter is as follows. §5.2 describes our large-amplitude

membrane-vortex-sheet model. Unlike chapters II–IV, here we consider a membrane

surface held in a 3D inviscid flow with 12 different sets of boundary conditions. We

solve this nonlinear model using Broyden’s method and an unsteady vortex lattice

algorithm. §5.3 describes the numerical method. We apply a small initial pertur-

bation to the membrane in the direction transverse to the flow and compute the

subsequent dynamics, which have large-amplitude deflections if the membrane is un-

stable. In §5.4 we perform convergence studies and validate our model by comparing

the current results with our previous 2D studies of fixed–fixed, fixed–free, and free–

free membranes. §5.5 describes the computed membrane dynamics and how these

vary with key parameters such as the membrane mass, pretension, and stretching

rigidity. We find that the membrane dynamics naturally form four groups based on

the boundary conditions at the leading and trailing edges. §5.6 gives the conclusions.

5.2 Large-amplitude Membrane-vortex-sheet Model

We consider the motion of an extensible membrane held in a 3D fluid flow with

velocity U êx in the far field (see figure 5.1). In the undeformed state the membrane

is flat and parallel to the flow in the plane z = 0. As in [9], the membrane obeys

linear elasticity but undergoes large deflections, so geometrically nonlinear terms

enter the force expression. The membrane has a small thickness h and to leading
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FIG. 1. Schematic diagram (in perspective view) showing a three-dimensional membrane (dark green surface) with

fixed leading and trailing edges and free side edges. Along a free edge, points are fixed to massless rings that slide

without friction along vertical poles. Ubex is the oncoming flow velocity, W is the membrane’s spanwise width (out-

of-plane width), and 2L is the membrane’s chord. There is also a flat vortex wake (light blue surface) that emanates

from the membrane’s trailing edge. In the lower portion of the figure, we also show schematically (in top view) the 12

distinct boundary conditions explored in the current work. The diagonal marks indicate a fixed (F) boundary and other

boundaries are free (R). The arrows indicate the fluid flow direction which is the same for each configuration.

and ↵2 2 [�W/2, W/2] are the material coordinates, the x and y coordinates of each point in the initially flat

state (with a uniform in-plane tension or “pretension” applied by the boundaries).

Each of the four membrane edges is either fixed at zero deflection or free to move in the z direction, perpen-

dicular to the oncoming flow. Then there are 24 = 16 possible boundary conditions but since the problem is

symmetrical with respect to reflection in the x-z plane, we only need to consider 12 distinct boundary condi-

tions, which can be denoted: FFFF, FRFF/FFFR, FRFR, FFRF, FRRF/FFRR, FRRR, RFFF, RRFF/RFFR,

RRFR, RFRF, RRRF/RFRR, and RRRR (with symmetrical pairs identified). Here F stands for a fixed edge

and R stands for a free edge. The first letter in each label is the leading-edge boundary condition type and

the following letters are the boundary conditions moving clockwise around the rectangular membrane looking

down from larger z values (bottom of figure 1), as in [30]. Thus, the second and fourth letters are the side-edge

boundary conditions and the third letter is the trailing-edge boundary condition. We will see in the results

sections that the dynamics in the 12 cases are naturally classified into four groups, based on whether the leading

and trailing edges are fixed or free. Each group is placed in one of the four colored rectangles in the lower portion

of figure 1. We present the results for each group in the four subsections of §V B, numbered with the numbers

listed at the upper left corner of each group’s rectangle in figure 1. We list the equations for three examples

Figure 5.1: Schematic diagram (in perspective view) showing a three-dimensional membrane (dark
green surface) with fixed leading and trailing edges and free side edges. Along a free edge, points
are fixed to massless rings that slide without friction along vertical poles. U êx is the oncoming
flow velocity, W is the membrane’s spanwise width, and 2L is the membrane’s chord. There is
also a flat vortex wake (light blue surface) that emanates from the membrane’s trailing edge. In
the lower portion of the figure, we also show schematically (in top view) the 12 distinct boundary
conditions explored in the current work. The diagonal marks indicate a fixed (F) boundary and
other boundaries are free (R). The arrows indicate the far-field flow direction which is the same for
each configuration.

order the deformations do not vary through the thickness, so they can be described

by the middle surface, midway through the thickness. The middle surface is a ge-

ometric surface, a three-component vector parametrized by two spatial coordinates

and time: r(α1, α2, t) = (x(α1, α2, t), y(α1, α2, t), z(α1, α2, t)) ∈ R3, where the spatial

coordinates α1 ∈ [−L,L] and α2 ∈ [−W/2,W/2] are the material coordinates, the

x and y coordinates of each point in the initially flat state (with a uniform in-plane

tension— a “pretension”—applied by the boundaries).

Each of the four membrane edges is either fixed at zero deflection or free to move in

the z direction, perpendicular to the oncoming flow. Then there are 24 = 16 possible

boundary conditions but since the problem is symmetrical with respect to reflection
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in the x-z plane, we only need to consider 12 distinct boundary conditions, which

can be denoted: FFFF, FRFF/FFFR, FRFR, FFRF, FRRF/FFRR, FRRR, RFFF,

RRFF/RFFR, RRFR, RFRF, RRRF/RFRR, and RRRR (with symmetrical pairs

identified). Here F stands for a fixed edge and R stands for a free edge. The first letter

in each label is the leading-edge boundary condition type and the following letters

are the boundary conditions moving clockwise around the rectangular membrane

looking down from larger z values (bottom of figure 5.1), as in [54]. Thus, the

second and fourth letters are the side-edge boundary conditions and the third letter

is the trailing-edge boundary condition. We will see in the results sections that the

dynamics in the 12 cases are naturally classified into four groups, based on whether

the leading and trailing edges are fixed or free. Each group is placed in one of the

four colored rectangles in the lower portion of figure 5.1. We present the results for

each group in the four subsections of §5.5.2, numbered with the numbers listed at

the upper left corner of each group’s rectangle in figure 5.1. We list the equations for

three examples from the set of 12 boundary conditions (and the others are analogous):

FRFR: z(−L, α2, t) = 0, z(L, α2, t) = 0,(5.1)

∂α2z(α1,−W/2, t) = 0, ∂α2z(α1,W/2, t) = 0,

FRRR: z(−L, α2, t) = 0, ∂α1z(L, α2, t) = 0,(5.2)

∂α2z(α1,−W/2, t) = 0, ∂α2z(α1,W/2, t) = 0,

RRRR: ∂α1z(−L, α2, t) = 0, ∂α1z(L, α2, t) = 0,(5.3)

∂α2z(α1,−W/2, t) = 0, ∂α2z(α1,W/2, t) = 0.

Whether the edge is fixed or free affects only the out-of-plane (z-) component of the

membrane motion at the edge. In all cases, no in-plane motion of the membrane
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edges is allowed, i.e., the x- and y-coordinates of the edges are fixed (see figure 5.1):

Upstream/downstream edges:

(5.4) {x (±L, α2, t) = ±L, y (±L, α2, t) = α2} ,−
W

2
≤ α2 ≤

W

2
,

(5.5) Side edges:

{
x

(
α1,±

W

2
, t

)
= α1, y

(
α1,±

W

2
, t

)
= ±W

2

}
,−L ≤ α1 ≤ L.

We start with the stretching energy per unit undeformed area for a thin sheet

with isotropic elasticity (described in appendix G and [9, 41]):

ws =
h

2

E

1 + ν

(
1

1− ν (ε211 + ε222) +
2ν

1− ν ε11ε22 + 2ε212

)
,(5.6)

where E is Young’s modulus, ν is Poisson’s ratio, h is the membrane’s thickness, and

the strain tensor is

(5.7) εij(α1, α2, t) = eδij +
1

2

(
∂αi

r · ∂αj
r− δij

)
.

Here e denotes a constant prestrain corresponding to the pretension applied at the

boundaries and δij is the identity tensor, with i, j ∈ {1, 2}. We take the variation of

the stretching energy

(5.8) Ws =

∫∫
wsdα1dα2

with respect to the position r to obtain the stretching force per unit material area,

i.e., −δws/δr.

Integrating by parts to move derivatives off of δr terms, we obtain

δWs =
Eh

1 + ν

∮ [(
1

1− ν ε11

(
∂r

∂α1

· δr
)

+
ν

1− ν ε22

(
∂r

∂α1

· δr
)

+ ε12

(
∂r

∂α2

· δr
))

υ1

+

(
1

1− ν ε22

(
∂r

∂α2

· δr
)

+
ν

1− ν ε11

(
∂r

∂α2

· δr
)

+ ε12

(
∂r

∂α1

· δr
))

υ2

]
dσ

− Eh

1 + ν

∫∫ [
∂

∂α1

(
1

1− ν ε11
∂r

∂α1

+
ν

1− ν ε22
∂r

∂α1

+ ε12
∂r

∂α2

)

+
∂

∂α2

(
1

1− ν ε22
∂r

∂α2

+
ν

1− ν ε11
∂r

∂α2

+ ε12
∂r

∂α1

)]
· δr dα1dα2.(5.9)
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The first integral in (5.9) can be used to obtain the free edge boundary conditions.

It is a boundary integral with respect to dσ, arc length along the boundary in the

α1-α2 plane; (υ1, υ2) is the outward normal in this plane. The integrand in the second

integral in (5.9) gives the stretching force per unit material area,

fs = −δws
δr

=
Eh

1 + ν

[
∂

∂α1

(
1

1− ν ε11
∂r

∂α1

+
ν

1− ν ε22
∂r

∂α1

+ ε12
∂r

∂α2

)

+
∂

∂α2

(
1

1− ν ε22
∂r

∂α2

+
ν

1− ν ε11
∂r

∂α2

+ ε12
∂r

∂α1

)]
.(5.10)

The membrane dynamics are governed by the balance of momentum for a small

material element with area ∆α1∆α2:

(5.11) ρsh∆α1∆α2∂ttr = fs∆α1∆α2 − [p](α1, α2, t)n̂
√

det[∂αi
r · ∂αj

r]∆α1∆α2,

where ρs is the mass per unit volume of the membrane, uniform in the undeformed

state; [p](α1, α2, t) is the fluid pressure; n̂ is the unit normal vector,

(5.12) n̂ = (∂α1r× ∂α2r)/‖∂α1r× ∂α2r‖,

and det[∂αi
r·∂αj

r] is the determinant of the metric tensor, so
√

det[∂αi
r · ∂αj

r]∆α1∆α2

is the area of the material element in physical space.

We nondimensionalize the governing equations by the density of the fluid ρf , the

half-chord L, and the imposed fluid flow velocity U . The dimensionless time, space,

and pressure jump variables (denoted by tildes) are:

(5.13) t̃ =
t

L/U
, (r̃, α̃1, α̃2) =

(r, α1, α2)

L
, [̃p] =

[p]

ρfU2
.

The membrane equation (5.11) becomes

ρshU
2

L
∂̃ttr =

Eh

L(1 + ν)

[
∂̃α1

(
1

1− ν ε̃11∂̃α1r +
ν

1− ν ε̃22∂̃α1r + ε̃12∂̃α2r

)

+∂̃α2

(
1

1− ν ε̃22∂̃α2r +
ν

1− ν ε̃11∂̃α2r + ε̃12∂̃α1r

)]

− ρfU2 [̃p]n̂

√
det[∂̃αi

r · ∂̃αj
r].(5.14)
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Dividing (5.14) by ρfU
2 throughout yields

ρsh

ρfL
∂̃ttr =

Eh

ρfU2L(1 + ν)

[
∂̃α1

(
1

1− ν ε̃11∂̃α1r +
ν

1− ν ε̃22∂̃α1r + ε̃12∂̃α2r

)

+∂̃α2

(
1

1− ν ε̃22∂̃α2r +
ν

1− ν ε̃11∂̃α2r + ε̃12∂̃α1r

)]

− [̃p]n̂

√
det[∂̃αi

r · ∂̃αj
r].(5.15)

Thus, the dimensionless membrane equation (dropping tildes) is

R1∂ttr−Ks {∂α1 (ε11∂α1r + νε22∂α1r + (1− ν)ε12∂α2r)

+ ∂α2 (ε22∂α2r + νε11∂α2r + (1− ν)ε12∂α1r)}

= −[p]n̂
√

(∂α1r · ∂α1r)(∂α2r · ∂α2r)− (∂α1r · ∂α2r)2,(5.16)

where R1 = ρsh/(ρfL) is the dimensionless membrane mass density, Ks = R3/(1−ν2)

is a dimensionless stretching stiffness written in terms of R3 = Eh/(ρfU
2L), the di-

mensionless stretching rigidity, and we have written out the determinant under the

square root explicitly in (5.16). The prestrain e in (5.7) is the strain in a mem-

brane under uniform tension T0 = Kse, the “pretension,” one of the main control

parameters here, as in our 2D study (chapter II). We assume that the thickness ratio

h/L is small, but ρs/ρf may be large, so R1 may assume any non-negative value.

As in chapter II, we have neglected bending rigidity, denoted as R2 in [10]. In the

extensible regime studied here, R3 is finite, so R2 = R3h
2/(12L2) → 0 in the limit

h/L → 0. For simplicity and for ease of comparison with the 2D case we set the

Poisson ratio ν (the transverse contraction due to axial stretching) to zero.

We solve for the flow using the vortex lattice method, a type of panel method [88]

that solves for the 3D inviscid flow past a thin body by posing a vortex sheet on

the body to satisfy the no-flow-through or kinematic condition. The vortex sheet is

advected into the fluid at the body’s trailing edge, thus avoiding a flow singularity
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there [88]. The velocity u is a uniform background flow êx plus the flow induced by

a distribution of vorticity ω, via the Biot-Savart law [149]:

(5.17) u(x) = êx +
1

4π

∫∫∫

R3

ω(x′, t)× (x− x′)/‖x− x′‖3dx′.

The vorticity is a vortex sheet on the body and wake. With the body surface

parametrized by α1 and α2, we define a local coordinate basis by {ŝ1, ŝ2, n̂}:

(5.18) ŝ1 =
∂α1r

‖∂α1r‖
; ŝ2 =

∂α2r

‖∂α2r‖
; n̂ from (5.12).

Thus ŝ1 and ŝ2 span the body’s local tangent plane and n̂ is its normal vector. ŝ1

and ŝ2 are also the tangents to the material lines α2 = constant and α1 = constant,

respectively. When the body experiences in-plane shear, ŝ1 and ŝ2 are not orthogonal,

but they do not become parallel except for singular deformations that we do not

consider.

For the vortex sheet on the body, the vorticity takes the form

ω(x, t) = γ(α1, α2, t)δ(n) = γ1(α1, α2, t)δ(n)ŝ1 + γ2(α1, α2, t)δ(n)ŝ2,

with δ(n) the Dirac delta distribution and n the signed distance from the vortex

sheet along the sheet normal. The vorticity is concentrated at the vortex sheet,

n = 0, and γ is the jump in the tangential flow velocity across the vortex sheet [149].

The vorticity can be written similarly in the wake vortex sheet, but a different

parametrization is used since α1 and α2 are only defined on the body. The nonlinear

kinematic equation states that the normal component of the body velocity equals

that of the flow velocity at the body [149]:

(5.19) n̂ · ∂tr = n̂ ·
(

êx +
1

4π
−−
∫∫

SB+SW

γ(x′, t)× (r− x′)/‖r− x′‖3dSx′

)

where SB and SW are the body and wake surfaces respectively. Since r and x′ lie on

SB, the integral in (5.19) is singular, defined as a principal value integral.
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The pressure jump across the membrane [p](α1, α2, t) can be written in terms

of the vortex sheet strength components γ1 and γ2 using the unsteady Bernoulli

equation written at a fixed material point on the membrane. The formula and its

derivation are lengthy so they are given in appendix H, but the form of the pressure

jump formula is

∂α1 [p] = G(r, γ1, γ2, µ1, µ2, τ1, τ2, νv).(5.20)

Here µ1 and µ2 are the tangential components of the average of the flow velocity

on the two sides of the membrane, i.e., the dot products of ŝ1 and ŝ2 with the term

in parentheses on the right side of (5.19). τ1, τ2, and νv are the components of the

membrane’s velocity in the {ŝ1, ŝ2, n̂} basis:

(5.21) τ1(α1, α2, t) = ∂tr · ŝ1; τ2(α1, α2, t) = ∂tr · ŝ2; νv(α1, α2, t) = ∂tr · n̂.

(5.20) generalizes the 2D formula from appendix A to the case of an extensible body

in a 3D flow. We integrate it from the trailing edge using the Kutta condition

(5.22) [p](α1 = 1, α2, t) = 0,

to obtain [p](α1, α2, t) at all points on the membrane.

In summary, equations (5.16), (5.19), and (5.20) are a coupled system of equations

for r, γ, and [p] that we can solve with suitable initial and boundary conditions to

compute the membrane dynamics.

5.3 Numerical Method

We solve equations (5.16), (5.19), and (5.20) using an implicit iterative time-

stepping approach. At the initial time t = 0 the membrane has a very small uniform

slope ∂α1z/∂α1x of 10−3, or 10−5 if the small-amplitude regime is the focus of interest,
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and the free vortex wake has length zero. The background flow speed is increased

smoothly from 0 to 1 using a saturating exponential function with a time constant 0.2.

8

III. NUMERICAL METHOD

We solve equations (16), (19), and (20) using an implicit iterative time-stepping approach. At the initial

time t = 0 the membrane has a very small uniform slope @↵1
z/@↵1

x of 10�3, or 10�5 if the small-amplitude

regime is the focus of interest, and the free vortex wake has length zero. The background flow speed is increased

smoothly from 0 to 1 using a saturating exponential function with a time constant 0.2.

FIG. 2. Discretization of the membrane surface into panels with vortex rings. On the left, we show an example of an

FRRR deformed membrane (dark green surface) used for computing the inertial and elasticity terms, together with the

flat membrane panels (light blue surface) and flat wake panels (light gray surface) used for the kinematic condition.

On the right, we show a zoomed-in version of the same membrane with a subset of the vortex rings (blue rounded

rectangles) on top of the flat membrane and flat wake panels. The curved arrows illustrate the velocity induced by

positive � according to the right-hand rule.

We discretize the membrane with a uniform rectangular grid of M + 1 and N + 1 points in the ↵1 and ↵2

directions respectively. The membrane grid becomes deformed in physical space; an example is shown by the

black lines on the green membrane surface in figure 2. The vortex sheet is discretized as a lattice of vortex

rings, one per membrane grid cell. Each vortex ring consists of four vortex filaments, one along each side of

the grid cell. This discretization is a type of vortex-lattice method [35, 48]. To speed up the computations, we

approximate the vortex sheet geometries as flat, a common approach in vortex-lattice methods [35, 48]. This

occurs in the kinematic equation (19), which we solve for � on the body assuming the body position and velocity

(i.e. r, @tr, and n̂) and � on the wake are known. The values of r, @tr, and n̂ in (19) are those of the true

membrane except in the vortex sheet integrals, where they and x0 correspond to the body in its undeformed

position in the z = 0 plane and points in the wake are those of the body’s trailing edge, advected at speed 1

in the x-direction. The approximate body and wake vortex sheets lie on the light blue and light gray regions

respectively in figure 2. The vortex sheets are approximated by lattices of rectangular vortex rings that lie on

the boundaries of the rectangular grid cells. Each line segment in the grid is the support of two vortex lines, one

from the vortex ring of each neighboring grid cell. The inset at the right of figure 2 shows a schematic example

of 12 vortex rings in a 3-by-4 portion of the lattice that runs across the membrane’s trailing edge. The vortex

rings are shown as blue rounded rectangles slightly inside each black rectangular boundary, but they actually

run along the black edges. The circular arrows show the velocity induced by a single vortex ring marked �ij .

The net circulation along each lattice line segment is the di↵erence of the circulations in the two neighboring

vortex rings. The net circulation per unit length in the bs1 direction converges to �1 in the limit of small mesh

Figure 5.2: Discretization of the membrane surface into panels with vortex rings. On the left, we
show an example of an FRRR deformed membrane (dark green surface) used for computing the
inertial and elasticity terms, together with the flat membrane panels (light blue surface) and flat
wake panels (light gray surface) used for the kinematic condition. On the right, we show a zoomed-
in version of the same membrane with a subset of the vortex rings (blue rounded rectangles) on
top of the flat membrane and flat wake panels. The curved arrows illustrate the velocity induced
by positive Γ according to the right-hand rule.

We discretize the membrane with a uniform rectangular grid of M + 1 and N +

1 points in the α1 and α2 directions respectively. The membrane grid becomes

deformed in physical space; an example is shown by the black lines on the green

membrane surface in figure 5.2. The vortex sheet is discretized as a lattice of vortex

rings, one per membrane grid cell. Each vortex ring consists of four vortex filaments,

one along each side of the grid cell. This discretization is a type of vortex-lattice

method [66, 88]. To speed up the computations, we approximate the vortex sheet

geometries as flat, a common approach in vortex-lattice methods [66,88]. This occurs

in the kinematic equation (5.19), which we solve for γ on the body assuming the

body position and velocity (i.e., r, ∂tr, and n̂) and γ on the wake are known. The

values of r, ∂tr, and n̂ in (5.19) are those of the true membrane except in the vortex

sheet integrals, where they and x′ correspond to the body in its flat position with

uniform pretension in the z = 0 plane and points in the wake are those of the

body’s trailing edge, advected at speed 1 in the x-direction. The approximate body
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and wake vortex sheets lie on the light blue and light gray regions respectively in

figure 5.2. The vortex sheets are approximated by lattices of rectangular vortex rings

that lie on the boundaries of the rectangular grid cells. Each line segment in the grid

is the support of two vortex lines, one from the vortex ring of each neighboring grid

cell. The inset at the right of figure 5.2 shows a schematic example of 12 vortex

rings in a 3-by-4 portion of the lattice that runs across the membrane’s trailing edge.

The vortex rings are shown as blue rounded rectangles slightly inside each black

rectangular boundary, but they actually run along the black edges. The circular

arrows show the velocity induced by a single vortex ring marked Γij.

The net circulation along each lattice line segment is the difference of the circula-

tions in the two neighboring vortex rings. The net circulation per unit length in the

ŝ1 direction converges to γ1 in the limit of small mesh spacing in that direction, and

similarly for γ2:

γ1|xi+1/2,yj ≈ −
Γ|xi+1/2,yj+1/2

− Γ|xi+1/2,yj−1/2

yj+1/2 − yj−1/2

; γ2|xi,yj+1/2
≈

Γ|xi+1/2,yj+1/2
− Γ|xi−1/2,yj+1/2

xi+1/2 − xi−1/2

(5.23)

using centered difference approximations. We linearly interpolate these expressions

to obtain γ1 and γ2 values at the panel edge midpoints from these expressions to

values at the panel corners {xi, yj} and thus obtain ∂α1 [p] in (5.20).

We solve for the strengths of the vortex rings by imposing (5.19) at a set of r (in

the integral), called the control points or collocation points in vortex-lattice methods,

and here located at the centers of each vortex ring (shown as crosses in the inset at

the right of figure 5.2). [65,205] also placed the control points at the centers of their

vortex rings, quadrilaterals and triangles respectively. Other methods shift the vortex

rings and control points downstream by one-quarter mesh spacing, which reproduces

certain formulas for the lift and moment on a flat plate [66,73,77,88,120]. Such meth-
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ods are considered low-order methods, in contrast to higher-order methods that use

curved body panel geometries and nonconstant polynomial representations for the

distribution of circulation or velocity potential on each panel [29, 200]. We proceed

with the low-order method described here for simplicity and because we find remark-

ably good agreement with 2D results using a different discretization method based

on Chebyshev polynomials and including the non-flat geometries of the body and

wake vortex sheets, including wake roll-up (chapter II). We also find good agreement

among results with different mesh sizes, although they indicate spatial convergence

below first order (see §5.4).

The integral in (5.19) is replaced by a sum that gives the velocity induced by the

four sides of all the vortex rings. From [88], the velocity induced at a point xp by a

straight vortex line segment with circulation Γ that runs from x1 to x2 is

(5.24)

u =
Γ

4π|r1 × r2|2
(

(r2 − r1) · r1

‖r1‖
− (r2 − r1) · r2

‖r2‖

)
·(r1×r2); r1 ≡ xp−x1, r2 ≡ xp−x2.

When discretized, (5.19) becomes a linear system of equations for the vortex ring

strengths. The key advantage of approximating the body and wake vortex sheets

as flat is that we can precompute all the matrix entries in the linear system (the

“influence coefficients,” i.e., sums of the coefficients of Γ in (5.24)), before the time-

stepping iterative solver for the membrane position. For an M -by-N lattice of vortex

rings on the body and an Mw-by-N lattice in the wake (typically Mw � M), the

cost of computing the influence coefficients would beO(MMwN
2) per iteration within

each time step for general membrane and wake shapes, but for flat vortex sheets this

can be reduced to a one-time cost of O(MMwN) (actually less) using repetition in

relative positions of control points and vortex rings in the flat wake to change from

N2 to N . We also avoid an even larger cost to evolve the vortex wake position,
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O(M2
wN

2), though this could be reduced using fast summation methods [105]. The

right-hand-side vector for the linear system consists of the remaining terms in (5.19),

the body velocity and the background flow, using the actual (non-flat) membrane

position, and interpolated to give values at the control points.

The algorithm alternates between computing the membrane position at the cur-

rent time step and updating the vortex wake circulation for the next time step. To

compute the membrane position at the current time step, the distribution of circu-

lation in the vortex wake is assumed to be known from the previous steps of the

algorithm, and is zero initially. We then use a quasi-Newton iterative method (Broy-

den’s method [140]) to solve for the x, y, and z components of the membrane position

on the interior points of the α1-α2 grid, resulting in 3(M − 1)(N − 1) unknowns for

the iterative solver.

Broyden’s method solves a nonlinear system of equations f(x) = 0. In our case x is

a vector whose entries are the x, y, and z components of the membrane position r on

the interior points of the α1-α2 grid. f is a vector given by the three components of the

membrane equation (5.16), discretized at the interior α1-α2 grid points using second-

order finite differences for the temporal and spatial derivatives of the membrane

position. One-sided spatial differentiation formulas are used near boundaries and

backward temporal differentiation formulas are used, with the given initial values for

the membrane position and background flow, and zero initial bound circulation (see

appendix I for details). f requires the membrane position boundary values, which are

either prescribed (for a fixed boundary) or deduced from the guesses for the values at

the interior mesh points (for a free boundary). At each time step Broyden’s method

produces a sequence of iterates that converges to the solution for x starting from

an initial guess, which we choose to be the membrane position at the previous time
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step. Usually convergence is obtained in just a few iterations.

Given the free wake position and circulation and the guess for r, we compute

∂tr and n̂ and then compute the membrane circulation values by solving the linear

system with influence coefficients corresponding to the discretized kinematic equation

(5.19). The membrane circulation (and other quantities derived from it and r) are

used to compute ∂α1 [p] in the membrane equation (5.16), by integrating (5.20) from

the trailing edge using the trapezoidal rule. All quantities on the right hand side of

(5.20) can be evaluated using the guess for r and the circulations of the vortex rings

on the membrane. Some quantities (e.g., γ1 and γ2) are computed on the panel edge

midpoints and others (e.g., µ1 and µ2) on the panel centers; these are extrapolated to

the corner points of each panel, where ∂α1 [p] is evaluated. Before integrating ∂α1 [p],

we decouple it into two parts, as explained at the end of appendix H. We integrate

one part analytically and the other part numerically using the trapezoidal rule, and

apply [p] = 0 at the trailing edge. We use this decoupled approach because it gives

much better agreement with our previous 2D computations.

When Broyden’s method converges, we obtain the membrane position at the cur-

rent time step and the circulation values on the membrane. The next step is to

update the wake circulation values for the next time step. This is done by moving

the vortex rings in the wake and the last row of the vortex rings on the body down-

stream at speed 1. This is a flat-wake approximation of the more general statement

that lines in the wake vortex sheet move at the average of the tangential components

of the flow velocity on the two sides of the wake vortex sheet [149]. This turns out

to be equivalent to the condition that the pressure jump is zero across the wake, and

advecting the last row of vortex rings on the membrane into the wake at the trailing-

edge flow velocity imposes [p] = 0 at the trailing edge, known as the unsteady Kutta
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condition, which makes flow velocity finite at the trailing edge [88, 149]. The time

step is set equal to the streamwise grid spacing, so to move downstream at speed 1

each vortex ring in the wake and along the membrane trailing edge in figure 5.2

simply shift to the next panel downstream.

In the next section we study the convergence of this numerical method as the

membrane grid is refined, and compare the large-span 3D solutions with 2D mem-

brane solutions computed using the method in chapter II.

5.4 Validation of the 3D Model and Algorithm

We now study the effect of spatial grid refinement on membrane dynamics in test

cases using a square membrane at four different combinations of boundary condi-

tions and physical parameters. We then compare 3D results in the quasi-2D limit

(large span, free side edges) with results at same parameters using our previous 2D

algorithm that had several differences: a Chebyshev-Lobatto mesh and Chebyshev

differentiation matrices were used; the kinematic and Kutta conditions were imposed

with a Chebyshev-Galerkin method and non-flat vortex sheets; and the full (non-flat)

dynamics of the vortex sheet wake was computed (chapter II). Three cases are com-

pared: (i) fixed–fixed (2D) and FRFR (3D), (ii) fixed–free (2D) and FRRR (3D),

(iii) free–free (2D) and RRRR (3D).

5.4.1 Spatial Convergence for a Square Membrane

Ours and most other implementations of the vortex-lattice method are considered

low-order methods, as flat rather than curved body panel geometries are used, as

well as vortex rings rather than nonconstant polynomial distributions of circulation

on each panel [29,122,200]. First-order spatial accuracy was found for certain quan-

tities by [62, 111] using similar versions of the vortex-lattice method. We study the
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spatial convergence of our method in four test cases with the following boundary

conditions and (R1, T0, R3) values, one from each of the colored boxes in figure 5.1:

an FFFF membrane with (R1, T0, R3) = (10−0.5, 10−0.5, 100), an FFRF membrane

with (100.5, 10−0.75, 101), an RFFF membrane with (100.5, 10−0.5, 101), and an RFRF

membrane with (100, 10−0.75, 101). All membranes have aspect ratio one (W/2L = 1).

We compute the dynamics of the membrane up to a time tp ∈ [20, 30] at which large-

amplitude oscillatory motion occurs, and record the maximum of |z(α1, α2, t)| over

the membrane surface and time.

In table 5.1 we present the maximum |z| values for four different streamwise mesh

spacings dx together with the change in max |z| between two successive dx values,

and the estimated order of convergence using three successive dx values:

(5.25)

∆ max |z| ≡
∣∣max |z|dx −max |z|dx/2

∣∣ , Order ≡ log2

∣∣max |z|dx −max |z|dx/2
∣∣

∣∣max |z|dx/2 −max |z|dx/4
∣∣ .

We fix the spanwise mesh spacing dy = 2/10 (so ten panels cover the span), and

recall that dt = dx in all cases, so the time step and streamwise mesh spacing are

refined together.

In general RFFF membranes take a long time to reach the large-amplitude regime

(across R1), so the computations with dx = 2/160 and 2/320 were omitted because

they were very expensive to compute (due to the large wake size needed). Although

the order of convergence is below one in many cases, the ∆ max |z| values are quite

small. We guess that ∆ max |z| is a reasonable estimate of the error in each case, the

difference between the computed solution and the solution in the limit dx → 0. As

a compromise between computational effort and accuracy, we use dx = 2/40 (M =

40) in most cases (i.e., throughout §5.5), but we present a few comparisons between

dx = 2/40, 2/80, and 2/160 in the next subsection and find that the results are
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Table 5.1: dx-convergence with fixed dy = 2/10 for four cases with boundary conditions and tp
listed at the top, and (R1, T0, R3) below, for membranes with aspect ratio 1. The change in max |z|
between successive dx values and the estimated order of convergence are defined in (5.25).

FFFF, tp = 30 FFRF, tp = 22

(10−0.5, 10−0.5, 100) (100.5, 10−0.75, 101)

dx max |z| ∆ max |z| Order max |z| ∆ max |z| Order

2/40 0.5596 0.0171 1.89 0.2169 7.71× 10−3 1.55

2/80 0.5425 4.60× 10−3 1.46 0.2092 2.64× 10−3 0.63

2/160 0.5379 1.67× 10−3 . . . 0.2066 1.71× 10−3 . . .

2/320 0.5363 . . . . . . 0.2048 . . . . . .

RFFF, tp = 22 RFRF, tp = 20

(100.5, 10−0.5, 101) (100, 10−0.75, 101)

dx max |z| ∆ max |z| Order max |z| ∆ max |z| Order

2/40 0.2417 4.72× 10−3 — 0.2891 9.85× 10−3 0.57

2/80 0.2369 — — 0.2989 6.64× 10−3 0.38

2/160 — — . . . 0.3056 5.09× 10−3 . . .

2/320 — . . . . . . 0.3107 . . . . . .
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qualitatively similar.

Table 5.2: dy-convergence with fixed dx = 2/40 for a membrane with aspect ratio 1. The error
and order of convergence shown are computed using (5.25) but varying dy instead of dx. The
(R1, T0, R3) values are the same as in table 5.1.

FFFF, tp = 30 FFRF, tp = 22

(10−0.5, 10−0.5, 100) (100.5, 10−0.75, 101)

dy max |z| ∆ max |z| Order max |z| ∆ max |z| Order

2/10 0.5596 0.0119 2.05 0.2169 7.56× 10−3 2.29

2/20 0.5715 2.87× 10−3 6.13 0.2093 1.54× 10−3 8.62

2/40 0.5744 4.11× 10−5 . . . 0.2078 3.93× 10−6 . . .

2/80 0.5744 . . . . . . 0.2078 . . . . . .

RFFF, tp = 22 RFRF, tp = 20

(100.5, 10−0.5, 101) (100, 10−0.75, 101)

dy max |z| ∆ max |z| Order max |z| ∆ max |z| Order

2/10 0.2417 2.14× 10−3 0.08 0.2891 7.59× 10−3 1.70

2/20 0.2438 2.02× 10−3 5.54 0.2815 2.34× 10−3 1.63

2/40 0.2418 4.35× 10−5 . . . 0.2792 7.58× 10−4 . . .

2/80 0.2418 . . . . . . 0.2784 . . . . . .

Table 5.2 shows the max |z| values at four choices of the spanwise mesh spacing

dy, with dx fixed at 2/40 and the other parameters the same as in table 5.1. The

dy convergence is much faster than the dx convergence, presumably because dx sets

the resolution near the membrane trailing edge, a particularly sensitive region due

to the vortex shedding there [4, 5, 66]. ∆ max |z| is uniformly small in table 5.2, at

most 4.4% of the last max |z| value (with dy = 2/80). For computational efficiency

with reasonable accuracy we use dy = 2/10 (N = 10) in most cases (i.e., throughout
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§5.5). Other recent vortex lattice works have also found that a modest number of grid

points in the spanwise direction is sufficient for good accuracy (e.g., [108], [88, p. 429],

and [129, figure 6]).

5.4.2 Comparisons of 2D and 3D Results with Different Mesh Sizes

We now compare 3D results with free side edges with results from our 2D algorithm

(chapter II) in cases with both small- and large-amplitude dynamics. We begin by

comparing the 2D fixed–fixed case with the 3D FRFR case (fixed leading and trailing

edges, free side edges). We simulate both cases by starting with a flat membrane at

t = 0, and for t > 0 we keep the leading edge fixed at z = 0 and move the trailing

edge slightly away from and back to z = 0:

(5.26) z2D(1, t) = z3D(1, α2, t) = 2 sin

(
σ

(
t

η

)3

e−(t/η)3

)
, −W

2L
≤ α2 ≤

W

2L
,

where σ is a small constant, 10−6–10−3, and η = 0.2.

On the left side of figure 5.3, the panels plot the z-deflection of the membrane

center (in 3D) or midpoint (in 2D) versus time at three choices of (R1, T0, R3) (listed

in the caption) in panels (a)–(c). The 2D membrane has a Chebyshev-Lobatto mesh

with 41 points. In 3D, the number of panels in the streamwise direction (M) is 40,

80, or 160, with the aspect ratio W/2L = 4, and the number of panels in the spanwise

direction (N) is 10 in each case. The perturbation size, σ in (5.26), is 10−6. In panels

(a)–(c), the 3D graphs become closer to the 2D graph as M increases.

To the right of each set of time plots, membrane snapshots are shown, equally

spaced in time, for 2D (green lines) and 3D (with the same colors as in the time

plots, for each M), where the line shows the midspan profile. In all three examples,

the membranes tend to a steady single-hump shape at large times, as shown for the

2D case in chapter II. In figure 5.3 there is good qualitative agreement in all the
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FIG. 3. Comparisons of fixed–fixed (2D) and FRFR (3D) computations at three choices of (R1, T0, R3): (a)

(100, 10�0.25, 103), (b) (10�0.5, 10�0.5, 101), and (c) (100.25, 10�0.75, 101.5). The panels at left show plots of log10 |zcenter|
versus time. At right, snapshots of membranes at equally spaced times (labeled at top left) are shown. The plots and

snapshots are green for 2D membranes and light pink (M = 40), dark pink (M = 80), or black (M = 160) for 3D

membranes. Here the aspect ratio W/2L = 4, N = 10, and � = 10�6.

On the left side of figure 3, the panels plot the z-deflection of the membrane center (in 3D) or midpoint (in

2D) versus time at three choices of (R1, T0, R3) (listed in the caption) in panels (a)–(c). The 2D membrane has

a Chebyshev-Lobatto mesh with 41 points. In 3D, the number of panels in the streamwise direction (M) is 40,

80, or 160, with the aspect ratio W/2L = 4, and the number of panels in the spanwise direction N = 10 in

each case. The perturbation size is � = 10�6 in (26). In panels (a)–(c), the 3D graphs become closer to the 2D

graph as M increases.

To the right of each set of time plots, membrane snapshots are shown, equally spaced in time, for 2D (green

lines) and 3D (with the same colors as in the time plots, for each M), where the line shows the midspan

profile. In all three examples, the membranes tend to a steady single-hump shape at large times, as shown for

the 2D case in [65]. In figure 3 there is good qualitative agreement in all the membranes’ motions, and good

quantitative agreement in most cases, particularly between M = 160 (black lines) and 2D (green lines) in the

small-amplitude (growth) regime. At later times, the 3D snapshots tend to converge, while the 2D snapshot is

noticeably displaced from them, particularly in panel (b). The di↵erences between 2D and 3D may be due in

part to algorithmic di↵erences, and to di↵erences in the flows due to the finite span in 3D.

Next we compare the 2D fixed–free case with the 3D FRRR case. Now the trailing edge is free, and a small

Figure 5.3: Comparisons of fixed–fixed (2D) and FRFR (3D) computations at three choices of
(R1, T0, R3): (a) (100, 10−0.25, 103), (b) (10−0.5, 10−0.5, 101), and (c) (100.25, 10−0.75, 101.5). Recall
that R1 is the dimensionless membrane mass, T0 is the dimensionless pretension, and R3 is the
dimensionless stretching rigidity. The panels at left show plots of log10 |zcenter| versus time. At
right, snapshots of membranes at equally spaced times (labeled at top left) are shown. The plots
and snapshots are green for 2D membranes and light pink (M = 40), dark pink (M = 80), or black
(M = 160) for 3D membranes. Here the aspect ratio W/2L = 4, N = 10, and σ = 10−6 in (5.26).
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transient perturbation is applied at the leading edge:

z2D(�1, t) = z3D(�1, ↵2, t) = sin

 
�

✓
t

⌘

◆3

e�(t/⌘)3

!
, �W

2L
 ↵2  W

2L
. (27)

Figure 4 compares the membranes’ center-point deflections and snapshots similarly to figure 3 but at three

di↵erent choices of (R1, T0, R3), given in the figure 4 caption. In the fixed–free case, oscillatory motions are

generic at large amplitude [65], and they tend to be periodic rather than chaotic at the O(1) values of R1 used in

figure 4. Again, there is good qualitative agreement in all cases, and good quantitative agreement particularly

in the linear growth regime. At large times in panels (a) and (c), the three 3D cases are clustered together

and somewhat separate from the 2D case. In panel (b), the M = 160 and 2D case are relatively close, even at

large times. Within each panel, the graphs have somewhat di↵erent periods of oscillation at large amplitude,

including some abrupt changes in the period, e.g. the 2D graph near the final time in panel (c). However, if we

compare the snapshots at qualitatively similar times, i.e. at nearby peaks and troughs of the log10 |zcenter(t)|
plots, instead of at the same times, then we find better agreement. Comparisons of the 2D case and the 3D
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FIG. 4. Comparisons of fixed–free (2D) and FRRR (3D) computations at three choices of (R1, T0, R3): (a) (R1, T0, R3) =

(100, 10�1, 102), (b) (10�0.5, 10�1, 102), and (c) (100.5, 10�0.5, 102). The panels at left show plots of log10 |zcenter| versus

time. At right, snapshots of membranes at equally spaced times (labeled at top left) are shown. The plots and snapshots

are green for 2D membranes and light pink (M = 40), dark pink (M = 80), or black (M = 160) for 3D membranes.

Here the aspect ratio W/2L = 4, N = 10, and � = 10�6 in (27).

Figure 5.4: Comparisons of fixed–free (2D) and FRRR (3D) computations at three choices of
(R1, T0, R3): (a) (100, 10−1, 102), (b) (10−0.5, 10−1, 102), and (c) (100.5, 10−0.5, 102). The panels at
left show plots of log10 |zcenter| versus time. At right, snapshots of membranes at equally spaced
times (labeled at top left) are shown. The plots and snapshots are green for 2D membranes and
light pink (M = 40), dark pink (M = 80), or black (M = 160) for 3D membranes. Here the aspect
ratio W/2L = 4, N = 10, and σ = 10−6 in (5.27).

membranes’ motions, and good quantitative agreement in most cases, particularly

between M = 160 (black lines) and 2D (green lines) in the small-amplitude (growth)

regime. At later times, the 3D snapshots tend to converge, while the 2D snapshot is

noticeably displaced from them, particularly in panel (b). The differences between

2D and 3D may be due in part to algorithmic differences, and to differences in the

flows due to the finite span in 3D.

Next we compare the 2D fixed–free case with the 3D FRRR case. Now the trailing

edge is free, and a small transient perturbation is applied at the leading edge:

(5.27) z2D(−1, t) = z3D(−1, α2, t) = sin

(
σ

(
t

η

)3

e−(t/η)3

)
, −W

2L
≤ α2 ≤

W

2L
.
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Figure 5.4 compares the membranes’ center-point deflections and snapshots similarly

to figure 5.3 but at three different choices of (R1, T0, R3), given in the figure 5.4 cap-

tion. In the fixed–free case, oscillatory motions occur at large amplitude (chapter II),

and they tend to be periodic rather than chaotic at the O(1) values of R1 used in

figure 5.4. Again, there is good qualitative agreement in all cases, and good quanti-

tative agreement particularly in the linear growth regime. At large times in panels

(a) and (c) the three 3D cases are clustered together and are somewhat separate

from the 2D case. In panel (b) the M = 160 and 2D case are relatively close, even

at large times. Within each panel the graphs have somewhat different periods of

oscillation at large amplitude, including some abrupt changes in the period, e.g., the

2D graph near the final time in panel (c). However, if we compare the snapshots at

qualitatively similar times, i.e., at nearby peaks and troughs of the log10 |zcenter(t)|

plots, instead of at the same times, then we find better agreement. Comparisons of

the 2D case and the 3D case with M = 160 at nearby peaks and troughs are shown

below the time plots, and show better agreement than in the late-time comparisons

on the right side of the figure.

Finally, we compare the free–free 2D case with 3D RRRR cases. Now the mem-

brane starts with a small nonzero slope:

(5.28) z2D(α1, 0) = z3D(α1, α2, 0) = σα1 , −W
2L
≤ α2 ≤

W

2L
,

for σ = 10−3. In figure 5.5 we again compare the membranes’ deflections and

snapshots for three different (R1, T0, R3) combinations (in the figure caption) with

R1 = O(1) that have qualitatively different dynamics. With all edges free, the mem-

brane can move uniformly upward or downward yet keep the same shape, so there is

a translational z motion to consider along with the evolution of the membrane shape.

Therefore, on the left side we plot the membrane deflection versus time, defined here
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case with M = 160 at nearby peaks and troughs are shown below the time plots, and show better agreement

than in the late-time comparisons on the right side of the figure.

Finally, we compare the free–free 2D case with 3D RRRR cases. Now the membrane starts with a small

nonzero slope:

z2D(↵1, 0) = z3D(↵1, ↵2, 0) = �↵1 , �W

2L
 ↵2  W

2L
, (28)

for � = 10�3. In figure 5 we again compare the membranes’ deflections and snapshots for three di↵erent

(R1, T0, R3) combinations (in the figure caption) with R1 = O(1) that have qualitatively di↵erent dynamics.

With all edges free, the membrane can move uniformly upward or downward yet keep the same shape, so there

is a translational z motion to consider along with the evolution of the membrane shape. Therefore, on the left

side we plot separately versus time the membrane deflection, defined here as | max(z)�min(z)|, with max and

min taken over ↵1 (and ↵2 for 3D), and zcenter(t), which shows the net translation motion. Panel (a) shows an

oscillatory motion of zcenter, (b) shows a steady translation, and (c) shows a combination of the two. As in the

fixed–fixed and fixed–free cases, in each panel the agreement in the deflection | max(z) � min(z)| is generally

best at early times, and at later times there is a more noticeable di↵erence, particularly between the 2D and

3D plots and panels (b) and (c). The snapshots at the right show that in many cases the shapes agree well

but there is a translational shift, particularly at t = 8 in (a) (where the shift is small, ⇡ 10�3) and at larger

times in (c). As in the fixed–free case, there are noticeable phase shifts among the motions at later times for

the oscillatory case in panel (a).

In summary, the comparisons of 3D motions at M = 40, 80, and 160 and the 2D motion have shown good
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FIG. 5. Comparisons of free–free (2D) and RRRR (3D) computations at three choices of (R1, T0, R3): (a)

(R1, T0, R3) = (10�0.5, 10�0.75, 101), (b) (100.5, 10�0.5, 102), and (c) (10�0.25, 10�0.8, 102). The panels at left show plots

of log10 | max(z)�min(z)| and zcenter versus time. At right, snapshots of membranes at equally spaced times (labeled at

top left) are shown. The plots and snapshots are green for 2D membranes and light pink (M = 40), dark pink (M = 80),

or black (M = 160) for 3D membranes. Here the aspect ratio W/2L = 4, N = 10, and � = 10�3 in (28).

Figure 5.5: Comparisons of free–free (2D) and RRRR (3D) computations at three choices of
(R1, T0, R3): (a) (10−0.5, 10−0.75, 101), (b) (100.5, 10−0.5, 102), and (c) (10−0.25, 10−0.8, 102). The
panels at left show plots of log10 |max(z)−min(z)| and zcenter versus time. At right, snapshots of
membranes at equally spaced times (labeled at top left) are shown. The plots and snapshots are
green for 2D membranes and light pink (M = 40), dark pink (M = 80), or black (M = 160) for 3D
membranes. Here the aspect ratio W/2L = 4, N = 10, and σ = 10−3 in (5.28).

as |max(z)−min(z)|, with max and min taken over α1 (and α2 for 3D), and we also

plot zcenter(t), which shows the net translational motion. Panel (a) shows an oscilla-

tory motion of zcenter, (b) shows a steady translation, and (c) shows a combination

of the two. As in the fixed–fixed and fixed–free cases, in each panel the agreement in

the deflection |max(z)−min(z)| is generally best at early times, and at later times

there is a more noticeable difference, particularly between the 2D and 3D plots in

panels (b) and (c). The snapshots at the right show that in many cases the shapes

agree well but there is a translational shift, particularly at t = 8 in (a) (where the

shift is small, ≈ 10−3) and at larger times in (c). As in the fixed–free case, there are

noticeable phase shifts among the motions at later times for the oscillatory case in

panel (a).

In summary, the comparisons of 3D motions at M = 40, 80, and 160 and the 2D

motion have shown good qualitative agreement in the types of dynamics—steady or
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FIG. 6. Two examples of how the pressure distribution changes with increasing numbers of streamwise panels. Panels

(a)–(c) show plots of log10 |zcenter| versus time and z(↵1, 0, tp) and [p](↵1, 0, tp) versus x(↵1, 0, tp), respectively, for an

FRRR membrane with R1 = 10�0.25, T0 = 10�0.75, and R3 = 101 at times tp where |zcenter(t)| has a peak that is closest

to 14.5 (enclosed in the orange square) , for each M . Panels (d)–(f) show the same quantities for an FRRR membrane

with R1 = 100, T0 = 10�0.75, and R3 = 101, for the troughs in |zcenter(t)| nearest to tp ⇡ 12.6. The plots are black for

M = 40, blue for M = 80, red for M = 160, and green for M = 320. Here the aspect ratio W/2L = 4, N = 10, and

� = 10�4 in (27).

qualitative agreement in the types of dynamics—steady, oscillatory, with or without translation, and good

quantitative agreement as well in the magnitudes of the deflections, the frequencies of oscillations, and many

detailed aspects of the dynamics.

Inviscid simulations of airfoils and flapping plates in 2D and 3D have shown that the largest computational

errors tend to occur in flow quantities near the trailing edge [2, 4, 36, 49]. The Kutta condition makes the

flow velocity and pressure jump finite there, but the spatial derivatives of these quantities remain infinite

there in general [4], and the numerical solution is sensitive to the mesh near the trailing edge [4, 36]. For the

present simulations, this sensitivity can be seen in the pressure jump distribution near the trailing edge. In

figure 6 we plot the pressure jump versus streamwise location along the membrane midspan, y = 0, for two

di↵erent examples of FRRR membranes in the large-amplitude regime, at R1, T0, and R3 given in the figure

caption, and for various M listed at the top. Both cases reach oscillatory large-amplitude states, shown by the

center deflection versus time in panels (a) and (d) respectively. In panels (b) and (e) we compare the midspan

deflections that occur at |zcenter| peaks near t = 14.5 and troughs near 12.6, respectively—the peaks and troughs

that occur in the orange boxes of panels (a) and (d). For each M the times of the peaks/troughs are slightly

di↵erent to account for phase shifts, as in the snapshot comparisons in the left panels of figure 4. Panels (c)

and (f) show the midspan pressure jump distributions at these times. The pressure jump distributions are

more oscillatory and have larger deviations at these M than the deflections ((b) and (e)), perhaps because in

the membrane equation (16) [p] is balanced by second derivatives of deflection, so z is smoother than [p]. The

pressure jump distributions in (c) and (f) only approximately reach zero at the trailing edge, more closely for

larger M , which also resemble the generic square-root behavior there, as well as the generic inverse-square-root

Figure 5.6: Two examples of how the pressure distribution changes with increasing numbers of
streamwise panels. Panels (a)–(c) show plots of log10 |zcenter| versus time and z(α1, 0, tp) and
[p](α1, 0, tp) versus x(α1, 0, tp), respectively, for an FRRR membrane with R1 = 10−0.25, T0 =
10−0.75, and R3 = 101 at times tp where |zcenter(t)| has a peak that is closest to 14.5 (enclosed in
the orange square), for each M . Panels (d)–(f) show the same quantities for an FRRR membrane
with R1 = 100, T0 = 10−0.75, and R3 = 101, for the troughs in |zcenter(t)| nearest to tp ≈ 12.6. The
plots are black for M = 40, blue for M = 80, red for M = 160, and green for M = 320. Here the
aspect ratio W/2L = 4, N = 10, and σ = 10−4 in (5.27).

oscillatory, with or without translation—and good quantitative agreement as well in

the magnitudes of the deflections, the frequencies of oscillations, and many detailed

aspects of the dynamics.

Inviscid simulations of airfoils and flapping plates in 2D and 3D have shown that

the largest computational errors tend to occur in flow quantities near the trailing edge

[2, 5, 66, 88]. The Kutta condition makes the flow velocity and pressure jump finite

there, but their spatial derivatives across the edge are infinite there in general [5], and

the numerical solution is sensitive to the mesh near the trailing edge [5,66]. For the

present simulations, this sensitivity can be seen in the pressure jump distribution near

the trailing edge. In figure 5.6 we plot the pressure jump versus streamwise location

along the membrane midspan, y = 0, for two different examples of FRRR membranes

in the large-amplitude regime, at R1, T0, and R3 given in the figure caption, and for

various M listed at the top. Both cases reach oscillatory large-amplitude states,
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shown by the center deflection versus time in panels (a) and (d) respectively. In

panels (b) and (e) we compare the midspan deflections that occur at |zcenter| peaks

near t = 14.5 and troughs near 12.6, respectively—the peaks and troughs that occur

in the orange boxes of panels (a) and (d). For each M the times of the peaks/troughs

are slightly different due to phase shifts, as in the snapshot comparisons in the left

panels of figure 5.4. Panels (c) and (f) show the midspan pressure jump distributions

at these times. The pressure jump distributions are more oscillatory and have larger

deviations at these M than the deflections ((b) and (e)), perhaps because in the

membrane equation (5.16) [p] is balanced by terms that include second derivatives

of deflection, so z is smoother than [p]. The pressure jump distributions in (c) and

(f) only approximately reach zero at the trailing edge, more closely for larger M ,

which also resemble the generic square-root behavior there, as well as the generic

inverse-square-root behaviors at the leading edge [4, 5, 55]. Although the deviations

from M = 40 to 320 are significant, the overall form of the [p] and z distributions at

M = 40 are reasonable approximations to those at M = 320.

Now we briefly present a comparison of dynamics in 2D and 3D using different

numbers of panels across the span for 3D: N = 10, 20, and 40. Figure 5.7 shows

comparisons of (a) fixed–fixed, (b) fixed–free, and (c) free–free 2D cases with the

corresponding 3D cases at M = 40 and aspect ratio 4. The 3D plots converge

more rapidly here with increasing N than with increasing M in the previous figures,

similarly to tables 5.1 and 5.2. In the remainder of this work we use N = 10.
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behaviors at the leading edge [3, 4, 31]. Although the deviations from M = 40 to 320 are significant, the overall

form of the [p] and z distributions at M = 40 are reasonable approximations to those at M = 320.

Now we briefly present a comparison of dynamics in 2D with 3D using di↵erent numbers of panels across the

span, N = 10, 20, and 40. Figure 7 shows comparisons of (a) fixed–fixed, (b) fixed–free, and (c) free–free 2D

cases with the corresponding 3D cases at M = 40 and aspect ratio 4. The 3D plots converge more rapidly here

with increasing N than with increasing M in the previous figures, similarly to tables I and II. In the remainder

of this work we use N = 10.
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FIG. 7. Comparisons of 2D and 3D membrane deflections at three boundary conditions and (R1, T0, R3) values: (a)

fixed–fixed versus FRFR at (100, 10�0.25, 103); (b) fixed–free versus FRRR at (100, 10�1, 102) and (c) free–free versus

RRRR at (10�0.25, 10�0.8, 102), where both log10 | max(z)�min(z)| and zcenter are plotted, at left and right respectively.

The plots are green for 2D membranes and light pink (N = 10), dark pink (N = 20), or black (N = 40) for 3D

membranes. Here 41 Chebyshev-Lobatto points are used in 2D and for the 3D cases W/2L = 4, M = 40, and � = 10�6,

10�6, and 10�3 respectively in (a)–(c).

We have compared the small and large amplitude dynamics in 2D and 3D at several (R1, T0, R3) values, and

shown the e↵ect of varying the numbers of streamwise and spanwise panels in 3D, M and N , at aspect ratio 4.

Next, we compare the dynamics across a much larger set of R1 and T0 values, but restricted to the small-

amplitude regime (where R3 has a negligible e↵ect). We also show the e↵ect of increasing the 3D membrane

aspect ratio from 1 to 8, approaching the 2D limit.

C. Comparison of stability boundaries and mode shapes in 2D and 3D

The small-amplitude membrane dynamics can be organized in terms of the stability boundary in R1-T0 space.

We again apply the small perturbations (26)–(28) to the FRFR, FRRR, and RRRR membranes, across a grid

of values in R1-T0 space. At each R1 we find exponential decay in membrane deflection above a critical T0 and

exponential growth below this T0 (followed by large-amplitude, nonlinear dynamics). The stability boundary

is the curve of critical T0 versus R1, and can be found by interpolating between neighboring T0 points with

positive and negative growth rates.

Figure 5.7: Comparisons of 2D and 3D membrane deflections at three boundary conditions
and (R1, T0, R3) values: (a) fixed–fixed versus FRFR at (100, 10−0.25, 103); (b) fixed–free ver-
sus FRRR at (100, 10−1, 102) and (c) free–free versus RRRR at (10−0.25, 10−0.8, 102), where both
log10 |max(z)−min(z)| and zcenter are plotted, at left and right respectively. The plots are green for
2D membranes and light pink (N = 10), dark pink (N = 20), or black (N = 40) for 3D membranes.
Here 41 Chebyshev-Lobatto points are used in 2D and for the 3D cases W/2L = 4, M = 40, and σ
= 10−6, 10−6, and 10−3 respectively in (a)–(c).

We have compared the small- and large-amplitude dynamics in 2D and 3D at

several (R1, T0, R3) values, and shown the effect of varying the numbers of streamwise

and spanwise panels in 3D, M and N , at aspect ratio 4. Next, we compare the

dynamics across a much larger set of R1 and T0 values, but restricted to the small-

amplitude regime (where R3 has a negligible effect). We also show the effect of

increasing the 3D membrane aspect ratio from 1 to 8, approaching the 2D limit.

5.4.3 Comparison of Stability Boundaries and Mode Shapes in 2D and 3D

The small-amplitude membrane dynamics can be organized in terms of the stabil-

ity boundary in R1-T0 space. We again apply the small perturbations (5.26)–(5.28)

to the FRFR, FRRR, and RRRR membranes, across a grid of values in R1-T0 space.

At each R1 we find exponential decay in membrane deflections above a critical T0

and exponential growth below this T0 (followed by large-amplitude, nonlinear dy-

namics). The stability boundary is the curve of critical T0 versus R1, and is found

by interpolating between neighboring T0 points with positive and negative growth
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FIG. 8. Comparisons of stability boundaries in 2D (orange from [66]; red from [68]) and 3D with aspect ratios 1, 2, 4,

and 8 (ranging from light blue to dark blue) for (a) fixed–fixed and FRFR, (b) fixed–free and FRRR, and (c) free–free

and RRRR cases. Below the stability boundary, 3D midspan profiles with aspect ratio 8 (black) are compared with 2D

profiles (green) during the linear growth regime. Here R3 = 101, N = 10, M = 40 (for FRFR and FRRR membranes)

and M = 80 (for RRRR membranes) for all aspect ratios.

In figure 8 we compare the stability boundaries in the 2D fixed–fixed (a), fixed–free (b) and free–free (c) cases

with the 3D FRFR, FRRR, and RRRR cases respectively, with 3D aspect ratios 1, 2, 4, and 8. Two stability

boundaries are shown for the 2D case. The orange lines, from [66], are calculated from the growth rates in

time-stepping simulations starting from small perturbations, as in the 3D cases here. The red lines, from [68],

are calculated by linearizing the 2D equations and solving the nonlinear eigenvalue problem; the imaginary parts

of the eigenvalues are the growth rates. The eigenvalue method was able to identify very small positive growth

rates at R1 � 102, too small to be distinguishable from no growth or very slow decay in the time-stepping

method. Here the red line has a sharply upward slope (similar to [97]), unlike the orange line. The stability

boundaries for the 3D cases with aspect ratios 1, 2, 4, and 8 range from light blue to dark blue. In (a) and at

large R1 in (b) and (c) the boundaries tend towards the 2D boundaries as aspect ratio increases. As in studies

of 3D flexible plates [11, 20, 21], more bodies are unstable at high aspect ratio, i.e. the stability boundary moves

up as the aspect ratio increases. In the region of instability for aspect ratio 8, we compare the aspect-ratio-8

midspan snapshots at small amplitude (black lines) with the 2D snapshots (green lines) over a range of R1

and T0. In (a), all the membranes lose stability by divergence without flutter, so the membranes’ deflections

grow exponentially without change of shape. The snapshots show the eigenmode shapes, which become more

fore-aft asymmetric as T0 decreases, although at large amplitude the membranes tend to single-hump shapes

that are nearly fore-aft symmetric as in figure 3. The agreement is uniformly very good between 2D and 3D in

panel (a).

Panel (b) shows the same comparison for the 2D fixed–free and 3D FRRR cases. The modes are somewhat

Figure 5.8: Comparisons of stability boundaries in 2D (orange from chapter II; red from chapter III)
and 3D with aspect ratios 1, 2, 4, and 8 (ranging from light blue to dark blue) for (a) fixed–fixed and
FRFR, (b) fixed–free and FRRR, and (c) free–free and RRRR cases. Below the stability boundary,
3D midspan profiles with aspect ratio 8 (black) are compared with 2D profiles (green) during the
linear growth regime. Here R3 = 101, N = 10, M = 40 (for FRFR and FRRR membranes) and
M = 80 (for RRRR membranes) for all aspect ratios.

In figure 5.8 we compare the stability boundaries in the 2D fixed–fixed (a), fixed–

free (b) and free–free (c) cases with the 3D FRFR, FRRR, and RRRR cases respec-

tively, with 3D aspect ratios 1, 2, 4, and 8. Two stability boundaries are shown for

the 2D case. The orange lines, from chapter II, are calculated from the growth rates

in time-stepping simulations starting from small perturbations, as in the 3D cases

here. The red lines, from chapter III, are calculated by linearizing the 2D equations

and solving the nonlinear eigenvalue problem; the imaginary parts of the eigenvalues

are the growth rates. The eigenvalue method was able to identify very small positive

growth rates at R1 ≥ 102, too small to be distinguishable from no growth or very

slow decay in the time-stepping method. Here the red line has a sharply upward

slope (similar to [184]), unlike the orange line. The stability boundaries for the 3D
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cases with aspect ratios 1, 2, 4, and 8 range from light blue to dark blue. In (a)

and at large R1 in (b) and (c) the boundaries tend towards the 2D boundaries as

aspect ratio increases. As in studies of 3D flexible plates [18, 42, 43], more bodies

are unstable at high aspect ratio, i.e., the stability boundary moves up as the aspect

ratio increases. In the region of instability for aspect ratio 8, we compare the aspect-

ratio-8 midspan snapshots at small amplitude (black lines) with the 2D snapshots

(green lines) over a range of R1 and T0. In (a), all the membranes lose stability by di-

vergence without flutter, so the membranes’ deflections grow exponentially without

change of shape. The snapshots show the eigenmode shapes, which become more

fore-aft asymmetric as T0 decreases, although at large amplitude the membranes

tend to single-hump shapes that are nearly fore-aft symmetric as in figure 5.3. The

agreement is uniformly very good between 2D and 3D in panel (a).

Panel (b) shows the same comparison for the 2D fixed–free and 3D FRRR cases.

The modes are somewhat underresolved for T0 < 10−1 and the growth rates in 2D

and 3D do not agree well, so we omit the membrane snapshots in this region of the

parameter space. Even with a much finer mesh, the fastest growing 2D modes are

difficult to resolve in this region using an eigenvalue solver (chapter III). This under-

resolution may affect the apparent lack of convergence of the 3D stability boundaries

with increasing aspect ratio to the 2D boundaries at small R1. At moderate R1

(∈ [10−0.5, 100.5]), interestingly, the stability boundaries approximately coincide at

all aspect ratios, while at larger R1 the stability boundaries shift upward with in-

creasing aspect ratio similarly to panel (a). Unlike in panel (a), here the snapshots

oscillate and change shape in the small-amplitude growth regime. In panel (d) we

show sets of six snapshots for the 2D (green) and 3D (black) cases during time in-

tervals between two consecutive peaks or troughs in the graph of zcenter(t). The
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snapshots are normalized to have uniform maximum deflections. The agreement be-

tween 2D and 3D is very good in all cases. The third snapshots in each sequence are

overlaid in the instability region in panel (b). In (b) and (d) the values of log10R1

and log10 T0 for each set of snapshots are the multiples of 0.5 and 0.25 respectively

that intercept each set.

Panels (c) and (e) show the same comparison for the 2D free–free and 3D RRRR

cases. The stability boundaries and resolution issues are similar to those in panel (b),

but here adequate resolution is obtained down to smaller T0. At small R1 values, the

3D stability boundaries actually move away from the 2D boundaries as the aspect

ratio increases. This is due to special cases with very small but positive growth

rates over a large range of T0 at small R1. Cases with aspect ratio 8 and growth

rates < 0.04 are marked in panel (c) by gray boxes. Such cases only occur close to

the stability boundary at large R1, as expected, but occur over a large range of T0

from the dark blue line to the orange (2D) line at small R1. Below the orange line,

the 3D growth rates abruptly become much larger, so setting aside the cases with

very slow growth, we have better agreement in the stability boundary for 2D and 3D

with aspect ratio 8. There is nothing obviously wrong with these slow-growth cases

(such as very jagged shapes or nonphysical motions); unlike most of the results in

this section, they may be a case where the 3D large-span dynamics are qualitatively

different from the 2D dynamics.

The agreement between the snapshots in 2D (green) and 3D (black) in panels (c)

and (e) is generally very good, though not quite as good as in (b) and (d), particularly

in some cases at T0 = 10−1 and 10−1.25 that are clearly underresolved. In (c) and

(e) higher resolution is used: M = 80 for RRRR and 81 Chebyshev-Lobatto points

are used in 2D, versus 40 and 41 respectively in (a), (b), and (d). In four cases

183



at the upper right of (c) and (e) |zcenter| grows without oscillating, similarly to a

divergence instability, so the six snapshots are equally spaced over a large portion of

the small-amplitude regime.

We have presented a broad range of evidence of good qualitative agreement be-

tween 2D and 3D dynamics, even with fairly modest 3D mesh sizes (M = 40 and

N = 10 in most cases) and other significant computational differences. In 2D we used

a Chebyshev-Lobatto mesh, computed wake roll-up, and used a Galerkin method for

the kinematic equation and Kutta condition, with a non-flat body and wake in the

kinematic condition. In 3D we used a uniform mesh, flat approximate vortex sheets

on the body and wake, and a collocation method for the kinematic condition. We

now proceed to study and classify the dynamics of 3D membranes with square aspect

ratio at all 12 of the boundary conditions in figure 5.1.

5.5 Membrane Dynamics Across Parameter Space for 12 Boundary Con-
ditions

We now broadly classify membrane dynamics with respect to R1, T0, and R3 at

all 12 combinations of fixed and free boundary conditions at the edges. In a few

cases the large-amplitude dynamics do not seem to depend very strongly on aspect

ratio, so we set it to 1 here, but it would be good to explore this parameter in future

work.

To find where the membranes are unstable, we apply the perturbation (5.28) with

σ = 10−5 for all 12 boundary conditions at a large number of R1 and T0 values, and

as before we find the critical T0 at each R1 by interpolation of growth rates.
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Figure 5.9: Stability boundaries for the 12 boundary conditions, listed at right, and placed in four
groups that depend on only the leading and trailing edge conditions, as in figure 5.1.

Figure 5.9 shows the stability boundaries for the 12 boundary conditions, listed

at right. Based on the locations of the boundaries and the qualitative features of

membranes’ large-amplitude dynamics (presented later), the 12 boundary conditions

naturally fall into four groups, listed at right in figure 5.9 and shown in figure 5.1,

and determined by only the leading and trailing edge conditions. The conditions at

these edges seem to determine the qualitative behaviors of the membranes’ dynamics

more strongly than the side-edge conditions. However, the side edges can still have

important effects, particularly for the large-amplitude results we will present.

In the 2D versus 3D comparisons, we have already shown one stability boundary

from three of the four groups: FRFR from group 1, FRRR from group 2, and RRRR

from group 4. The other stability boundaries within these groups are similar—

nearly flat in group 1, upward sloping in group 2, and either flat or upward sloping

in group 4, though the flatness at small R1 for RRRR is affected by the slow-growth
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cases in figure 5.8(c). Perhaps due to these cases, there is more variability in the

boundaries of group 4 at small R1, while the boundaries are more uniform across

groups 1 and 2. The data for group 3, with the leading edge free and trailing edge

fixed, are completely new, and stand out from the other groups in two respects.

The group 3 stability boundaries are orders of magnitude higher in T0 than the

other groups’. There is also about an order-of-magnitude variation of the critical

T0 within group 3, higher (less stable) with more side edges free. At large R1 it is

difficult to distinguish slow growth and slow decay, particularly for RRFR, so the

stability boundary is dashed to indicate this lack of certainty.

5.5.1 Large-amplitude Scaling Laws

We now study how key quantities—the typical magnitudes of deflections, and for

unsteady cases, frequencies of oscillations—depend on R1, T0, and R3. In our 2D

work (chapters II–IV) we also studied the typical spatial wave numbers of membrane

deformations, but these are somewhat difficult to quantify precisely without higher

spatial resolution, which is more feasible computationally in 2D. However, there is

sometimes a correlation between wave numbers and frequencies, which are computed

here.

In figure 5.10 we show how the time-averaged deflection depends on R3 at several

fixed values of R1 (listed in the legends of the top panels) and T0 for all 12 boundary

conditions. We define the time-averaged deflection of the membrane as the maximum

membrane deflection minus the minimum deflection, averaged over time:

(5.29) 〈zdefl〉 ≡
1

t2

t1+t2∫

t1

(
max

−1<α1,α2<1
z(α1, α2, t)− min

−1<α1,α2<1
z(α1, α2, t)

)
dt

where t1 and t2 are sufficiently large that 〈zdefl〉 changes by less than 1% with further

increases in these values. As in the 2D studies (chapters II and IV), deflection scales
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FIG. 10. Time-averaged deflections of the membranes (defined by (29)) versus R3 for various R1 and fixed T0 for all 12

boundary conditions. Columns 1–4 correspond to groups 1–4 in figures 1 and 9. The dotted black line in each subpanel

indicates the scaling R
�1/2
3 .

of the critical T0 within the group, higher (less stable) with more side edges free. At large R1 it is somewhat

di�cult to distinguish slow growth and slow decay, particularly for RRFR, so the stability boundary is dashed

to indicate this lack of certainty.

A. Large-amplitude scaling laws

We now study how key quantities—the typical magnitudes of deflections, and for unsteady cases, frequencies

of oscillations—depend on R1, T0, and R3. In our 2D work [66–68] we also studied the typical spatial wave

numbers of membrane deformations, but these are somewhat di�cult to quantify precisely without higher spatial

resolution, which is more feasible computationally in 2D. However, there is generally a strong correlation between

wave number and frequencies, which is computed here.

In figure 10 we show how the time-averaged deflection quantitatively depends on R3 at several fixed values of

R1 (listed in the legends of the top panels) and T0 for all 12 boundary conditions. We define the time-averaged

deflection of the membrane as the maximum membrane deflection minus the minimum deflection, averaged over

Figure 5.10: Time-averaged deflections of the membranes (defined by (5.29)) versus R3 for various
R1 (listed in the top panel of each column except column 2 which uses the same values as column 1)
and fixed T0 for all 12 boundary conditions. Recall that R1 is the dimensionless membrane mass,
T0 is the dimensionless pretension, and R3 is the dimensionless stretching rigidity. Columns 1–4
correspond to groups 1–4 in figures 5.1 and 5.9. The dotted black line in each subpanel indicates

the scaling R
−1/2
3 .
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as 1/
√
R3 at moderate and large R3 in all 3D cases. The scaling begins at larger

R3 for the third column, so the R3 range there is a factor of 102 higher than in the

other columns. At R3 = 102, the deflection magnitudes are generally much higher in

column 3 than in the other columns. Selected T0 values are shown in figure 5.10 but

the same scaling holds at other T0 values, two of which are shown in appendix J. We

briefly explain the 1/
√
R3 scaling similarly to chapter II. We expand terms in the

z component of the membrane equation (5.16) in the limit of small deflections, by

inserting Taylor series for z and its derivatives. T0 and R3 enter through the e and

Ks terms respectively. T0 multiplies (∂2
α1

+ ∂2
α2

)z and R3 multiplies a term that is

cubic in derivatives of z. Using the kinematic and pressure jump equations, (5.19)

and (5.20), we find that γ2 is linear in z and therefore so is [p] and the [p] term in

(5.16). At steady state, the amplitude is set by a balance of the destabilizing [p] term

and the stabilizing R3 term; the T0 term is similar in magnitude to these terms near

the stability boundary, and becomes insignificant at smaller T0. Balancing R3O(|z|3)

and the O(|z|) pressure term, we have |z| ∼ R
−1/2
3 .

In the third column, smaller R1 values (listed in the top panel) are used compared

to the other columns, because the third-column cases did not reach large amplitude

within 350 times units at the larger R1. In a few cases data are omitted because

membranes were stable (FFRF with R1 = 10−0.5) or did not attain steady-state

motions by t = 350 (RRFF and RRFR with R1 = 100.5).

The other main quantity we measure is the membranes’ frequency of oscillation.

This is calculated as the reciprocal of the period of oscillation, the time between

successive peaks in zcenter(t) near the end of the computation (typically t = 350).

We plot the frequency data in figure 5.11, similarly to the amplitude data in the

previous figure, but now versus R1, the most important parameter for frequency,
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FIG. 11. Plots of mean frequency log10 f versus mass density log10 R1 with various R3 and fixed T0 values for all 12

boundary conditions. Columns 1–4 correspond to groups 1–4 in figures 1 and 9. The dotted black line in each subpanel

indicates the scaling R
�1/2
1 .

problem, e.g. if the membrane shape does not change much in the limit R1 ! 0, as seems to occur in the first

and third columns. However, if the membrane becomes ever wavier as R1 decreases, the frequency may also

diverge, consistent with the 2D tethered membrane data in [67] and the closely related problem of a fixed–free

flag with bending rigidity [7]. The fourth and second columns respectively are similar to these cases.

The highest frequencies occur in the third column, and these are much higher than in the first column at the

same R1. The third-column frequencies are less easily compared to those in the second and fourth columns, as

the data there are mainly given at larger R1.

One interesting di↵erence with 2D that we will discuss further in the next section is that in 3D we find many

cases of oscillatory membranes with leading and trailing edges fixed, corresponding to the frequencies in the

first column. In 2D, all physically-reasonable fixed–fixed cases assumed steady single-hump shapes. In the first

column data is only presented at R3 = 102 in the lower two panels, because the membranes did not oscillate at

R3 = 100 and 101.

B. Large-amplitude dynamics

We have presented basic scaling relationships for the amplitudes and frequencies of large-amplitude mem-

brane motions. In this section we characterize the types of motions—e.g. steady, or with periodic or chaotic

Figure 5.11: Plots of mean frequency log10 f versus mass density log10R1 with various R3 and
fixed T0 values for all 12 boundary conditions. Columns 1–4 correspond to groups 1–4 in figures 5.1

and 5.9. The dotted black line in each subpanel indicates the scaling R
−1/2
1 .

at various fixed values of T0 and R3 (listed in the titles and in the legends in the

first two columns, respectively). Unlike the amplitude, the membranes’ shapes and

frequencies do not vary much with R3. In most cases with large R1 (∈ [101, 102]) and

some cases with moderate R1 (∈ [100, 101]), the frequency approximately scales as

1/
√
R1, as in the large-amplitude 2D studies (chapters II and IV). The scaling can

be explained in 2D or 3D by balancing the R1∂ttz term in the membrane equation

with the other terms, which are independent of R1. Assuming a period of oscillation

T , we have R1∂ttz ∼ R1z/T
2 ∼ O(z) for the remaining terms (i.e., the [p] term), so

at large R1 the frequency = 1/T ∼ 1/
√
R1.

There is more variability in the frequency dependence on R1 than in the amplitude

dependence on R3, for a few main reasons. At large R1, the oscillation period is

longer, so longer times are needed to reach a steady state, and the estimates of period
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and frequency are based on smaller and perhaps noisier data sets. The oscillations

are periodic in some cases but chaotic in others, and in the latter cases the frequency

is only a rough estimate of the long-time average. Finally, the oscillatory motion

may change qualitatively (e.g., the membrane shapes may change) as R1 increases

in the ranges considered here, which may cause deviations from the simple 1/
√
R1

scaling law.

At small R1 the frequency typically plateaus here (in the first and third columns).

A different behavior was seen in 2D simulations of tethered membranes in chapter IV

which were similar to the 2D free–free case. There the frequencies scaled as R
−5/6
1

at small R1 and the shapes had very sharp spatial features that required hundreds

of points in the streamwise direction to resolve, much higher resolution than we use

here in 3D. In the corresponding case here, the fourth column of figure 5.11, we have

a limited set of data at small R1 (at different T0 than in the fourth column) that show

increasing frequencies as R1 decreases, but it is difficult to characterize the scaling

behavior. At small R1 one might expect a plateau if the limit R1 → 0 is a regular

perturbation problem, e.g., if the membrane shape does not change much in the limit

R1 → 0, as seems to occur in the first and third columns. However, if the membrane

becomes ever wavier as R1 decreases, the frequency may also diverge, consistent with

the 2D tethered membrane data in chapter IV and the closely related problem of a

fixed–free flag with bending rigidity [8]. The fourth and second columns respectively

are similar to these cases.

The highest frequencies occur in the third column, and these are much higher

than in the first column at the same R1. The third-column frequencies are only

moderately higher than those in the second column at the R1 where both are given,

100.5.
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One interesting difference with 2D that we will discuss further in the next section

is that in 3D we find many cases of oscillatory membranes with leading and trailing

edges fixed, corresponding to the frequencies in the first column. In 2D, all physically-

reasonable fixed–fixed cases assumed steady single-hump shapes. In the first column

data are only presented at R3 = 102 in the lower two panels, because the membranes

did not oscillate at R3 = 100 and 101 across the full range of R1 shown at these T0.

5.5.2 Large-amplitude Dynamics

We have presented basic scaling relationships for the amplitudes and frequencies

of steady-state large-amplitude membrane motions. In this section we character-

ize the types of motions—e.g., a shape that is steady, or with periodic or chaotic

oscillations—across all 12 boundary conditions. We consider in turn each of the

four groups in figure 5.1, determined by the conditions at the leading and trailing

edges. We use three values of the stretching rigidity parameter R3: 100, 101, and

102. Somewhat below 100, deflections become unrealistically large in some cases. At

R3 = 102, the motions generally approximate the large-R3 asymptotic regime.

We consider values of T0 that are relatively close to the stability boundary, within

1–1.5 orders of magnitude of it. At much smaller T0, the iterative method in our

computational method tends to stagnate without converging at an early time step.

In some cases, the stagnation occurs after a sharp angular feature appears in the

membrane shape. Presumably larger T0 inhibits the formation of such features. By

contrast, our 2D algorithm from chapters II and IV was able to compute at arbitrarily

small T0, where the T0 term became insignificant compared to the R3 term in the

total stretching force. There we found only modest changes in the dynamics as T0

increased from zero to the stability boundary, so possibly the 3D results here indicate

what would happen at very small T0, but we defer this question to future work.
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In each case we consider a wide range of membrane mass R1, from small to large.

1. Leading and Trailing Edges Fixed (FFFF, FRFF, FRFR)

We begin with membranes whose leading and trailing edges are fixed at zero de-

flection (group 1 in figures 5.1 and 5.9). Figure 5.12 shows typical motions and where

they occur in parameter space. Each row of the top 3-by-3 array of panels corresponds

to different side-edge conditions (FFFF, FRFF, or FRFR), and each column to a dif-

ferent R3 value (100, 101, or 102). The different colors in each panel indicate where

different types of motions occur in R1-T0 space, with representative examples below.

Purple is used for steady single-hump shapes, green for small oscillations (periodic

or not) about single-hump shapes, and yellow for up-down symmetric oscillations,

usually periodic. Small black dots indicate periodic cases. Blue is used for cases that

had slowly decaying oscillations at t = 350, and could approach the green or purple

states at later times. Such cases occur at large R1 and the oscillations tend to be less

periodic than at smaller R1. A few white regions in the upper corners of the FFFF

panels indicate motions that were still in the exponential growth regime at t = 350,

while cases in the white region in the FRFR panel at R3 = 100 failed to converge

at an early time. The three rows at the bottom of figure 5.12 show representative

examples of the membrane motions in the purple, green, and yellow regions. Just to

the right of small rectangles with these colors, the motions are shown by sequences of

11 midspan snapshots (overlaid), and then further to the right, smaller sequences of

four 3D snapshots, arrayed horizontally. All these sequences are for FFFF cases, but

single 3D snapshots from the same type of motion with other side-edge conditions

are shown at the far left in each row.

As noted previously, only steady single-hump shapes (purple) occur in 2D with

fixed leading and trailing edges (chapter II), whereas steady-state oscillations are
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FIG. 12. Typical membrane dynamics with fixed leading and trailing edges. The color plots classify the di↵erent

membrane dynamics across a grid of (R1, T0) values for three values of R3 (100, 101, 102) with black dots indicating

periodic motions. Representative examples of motions in the purple, green, and yellow regions are shown in the bottom

three rows, identified by small colored rectangles. To the right of the rectangles are overlaid sequences of 11 midspan

snapshots in black, for FFFF boundary conditions. To the right of the midspan snapshots are a smaller representative

sequence of four 3D snapshots, from left to right with increasing time. To the left of the midspan snapshots are single

3D snapshots representing similar cases with other side-edge conditions (FRFF and FRFR).

yellow motion includes a traveling wave of deflection that moves upstream, unlike in the 2D fixed–free and

free–free cases [64]. Compared to the steady purple shape, the green motion has more variability not just in

time but also in the spanwise direction, exemplified by the snapshot to the left of the small green rectangle

in the second row from the bottom. In experiments, oscillatory cases with fixed leading and trailing edges

have been reported mainly at nonzero angle of attack, where leading edge vortex shedding seems particularly

significant [78, figure 4].

Figure 5.12: Typical membrane dynamics with fixed leading and trailing edges. The color plots
classify the different membrane dynamics across a grid of (R1, T0) values for three values of R3

(100, 101, 102) with black dots indicating periodic motions. Recall that R1 is the dimensionless
membrane mass, T0 is the dimensionless pretension, and R3 is the dimensionless stretching rigidity.
Representative examples of motions in the purple, green, and yellow regions are shown in the
bottom three rows, identified by small colored rectangles. To the right of the rectangles are overlaid
sequences of 11 midspan snapshots in black, for FFFF boundary conditions. To the right of the
midspan snapshots are a smaller representative sequence of four 3D snapshots, from left to right
with increasing time. To the left of the midspan snapshots are single 3D snapshots representing
similar cases with other side-edge conditions (FRFF and FRFR).
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surprisingly common in 3D, particularly with all four edges fixed. Here up-down

symmetric periodic motions (yellow) are much more common than with the other

side-edge conditions, which typically have moderately small or no oscillations about

a single-hump shape. The yellow motion includes a traveling wave of deflection

that moves upstream, unlike in the 2D fixed–free and free–free cases (chapter II).

Compared to the steady purple shape, the green motion has more variability not

just in time but also in the spanwise direction, exemplified by the snapshot to the

left of the small green rectangle in the second row from the bottom. In experiments,

oscillatory cases with fixed leading and trailing edges have been reported mainly

at nonzero angle of attack, where leading edge vortex shedding seems particularly

significant [146, figure 4].

2. Leading Edge Fixed and Trailing Edge Free (FFRF, FRRF, FRRR)

The typical motions are qualitatively different in the second group (group 2 in

figures 5.1 and 5.9), with the leading edge fixed and the trailing edge free. Hence

we classify the motions somewhat differently in figure 5.13, with colors denoting the

number of times the midspan profile crosses z = 0 (not including the leading edge),

time-averaged. This classifies the spatial waviness of the profiles. Here R3 is fixed at

101; at other R3 the deflection amplitude varies but the numbers of zero crossings are

almost unchanged. The numbers of zero crossings decrease almost monotonically as

R1 increases, and chaotic states (without black dots) with larger amplitudes and more

up-down asymmetry become more common, similarly to the 2D results in chapter II.

In the white regions at the upper left of each panel, membranes are stable. In

the white regions at the lower right, the computations did not converge when the

membranes reached large amplitude but before they attained a steady-state motion,

so results are not reported.
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FIG. 13. Typical membrane dynamics with fixed leading edges and free trailing edges. The color plots in the top

row show the time-averaged number of zero-crossings of the membranes’ midspan profiles at various (R1,T0) values for

R3 = 101. The black dots indicate periodic motions. Representative examples of motions at a sequence of R1 values

from 10�1 to 101.5 are shown in the bottom six rows. Overlaid sequences of 11 midspan snapshots are shown in black,

for FRRF boundary conditions. To the right of the midspan snapshots are a smaller representative sequence of four

3D snapshots, from left to right with increasing time. To the left of the midspan snapshots are single 3D snapshots

representing similar cases with other side-edge conditions (FFRF and FRRR).

2. Leading edge fixed and trailing edge free (FFRF, FRRF, FRRR)

The typical motions are qualitatively di↵erent in the second group (group 2 in figures 1 and 9), with the

leading edge fixed and the trailing edge free. Hence we classify the motions somewhat di↵erently in figure 13,

with colors denoting the number of times the midspan profile crosses z = 0 (not including the leading edge),

time-averaged. This classifies the spatial waviness of the profiles. Here R3 is fixed at 101; at other R3 the

deflection amplitude varies but the numbers of zero crossings are almost unchanged. The numbers of zero

Figure 5.13: Typical membrane dynamics with fixed leading edges and free trailing edges. The
color plots in the top row show the time-averaged number of zero-crossings of the membranes’
midspan profiles at various (R1,T0) values for R3 = 101. The black dots indicate periodic motions.
Representative examples of motions at a sequence of R1 values from 10−1 to 101.5 are shown in
the bottom six rows. Overlaid sequences of 11 midspan snapshots are shown in black, for FRRF
boundary conditions. To the right of the midspan snapshots are a smaller representative sequence of
four 3D snapshots, from left to right with increasing time. To the left of the midspan snapshots are
single 3D snapshots representing similar cases with other side-edge conditions (FFRF and FRRR).
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Typical membrane motions are shown in the rows at the bottom, one for each R1

in a sequence from 10−1 to 101.5. Here the motions resemble different modes of a

flapping flag [3,8,31], with traveling waves that pass downstream, unlike for group 1.

Another difference here is that the side-edge conditions do not change the type of

motion. As in chapter II, at small R1 the deflection envelope has small amplitude

near the trailing edge. At large R1 (e.g., 101.5) the traveling waves become more like

standing waves, with fixed nodes and antinodes.

3. Leading Edge Free and Trailing Edge Fixed (RFFF, RRFF, RRFR)

Next, we consider membranes whose leading edge is free and trailing edge is fixed

(group 3 in figures 5.1 and 5.9). We showed in figure 5.9 that here the critical

pretensions for instability are much larger than in the other cases. The space of

motions is qualitatively different than for groups 1 and 2. We identify just three

types of motions, with approximately periodic, up-down symmetric oscillations in

most cases, characterized by three typical midspan profiles shown in the bottom

three rows: a low-mode shape with at most a single interior z extremum (light

purple), a higher mode shape with one or two interior z extrema (yellow), and a

low-mode shape with a multi-valued z profile near the trailing edge at certain times

(dark purple). This last motion is more common at smaller R1 and does not appear

with both side edges fixed or at the largest R3 (right column), where the first motion

dominates. White regions are again cases in which the computations did not converge

when the membranes reached large amplitude but before they attained a steady-state

motion. Another special feature of group 3 is that the small-amplitude growth rates

are generally much less than in the other groups, so data are omitted for R1 > 100

because the amplitudes were growing and had not yet reached a steady state at

t = 350. In some cases at R1 = 101.5 and 102 (not shown) the amplitude neither
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grows nor decays noticeably after the initial perturbations, as also occurred in some

2D cases at large R1 in chapter II.

The motions of group 3 seem more likely to violate the physical assumptions of

the model than the other groups. The oscillation amplitude is highest at the leading

edge, so leading-edge vortex shedding is probably important unless the oscillation

amplitudes are very small (i.e., at R3 = 103 and 104, where the motions are similar

to those in the R3 = 102 column, light purple generally). Vortex shedding would

probably occur in multiple locations upstream of the trailing edge for the dark purple

motions, due to large deflection amplitudes and slopes.

4. Leading and Trailing Edges Free (RFRF, RRRF, RRRR)

Group 4 consists of membranes with the leading and trailing edges free (figures 5.1

and 5.9). With fewer of the edges fixed, we find a wider variety of dynamics. In fig-

ure 5.15 we use seven categories to classify the motions, with representative examples

in the seven rows at the bottom, each labeled using a small rectangle with a certain

color and symbol that is repeated at data points in this category in the 3-by-3 array

of color plots above. The first three rows represent categories of steady shapes with

one, two, or three internal inflection points, respectively. The fourth row represents

a category of motions with small oscillations about one of the steady shapes. To

identify these cases, we decompose the midspan deflection z(α1, 0, t) as the sum of

its time-average and the remainder, the unsteady part. Motions are in the fourth

category if the maximum minus the minimum of the unsteady deflection is nonzero

but much less than the maximum minus the minimum of the time-averaged deflec-

tion. The fifth row represents unsteady motions whose unsteady part is comparable

to or larger than the steady part (in the same sense as for the fourth category). The

sixth row is for a special type of unsteady motion with all edges free (RRRR) that is
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remaining nine boundary conditions, which implies that stable RFFF, RRFF, and RRFR membranes exist

for fewer values of T0. Other di↵erences between this group and the rest, is that it takes much longer to get

to the large-amplitude regime (even for T0 su�ciently smaller than the critical pretension), and that almost

all membranes are periodic at large amplitude. In the R1–T0–R3 parameter space considered, we find just

three types of motion. These are: unsteady, up-down symmetric with a sharp edge at the trailing edge and one

bump (light purple region), unsteady, up-down symmetric with two bumps (yellow region), and finally unsteady,

up-down symmetric membranes with occasional extensions beyond the trailing edge (dark purple region).
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FIG. 14. Color plots classifying the di↵erent membrane dynamics across a grid of (R1, T0) values for three values of R3

(100, 101, 102) with black solid circles indicating periodic membranes. Examples of representative motions in each of

these regions are shown as a sequence of snapshots in the lower portion of the figure. Snapshots of RRFR and RRFF

membranes are shown to the left of the RFFF midspan snapshots and to the right four 3D snapshots of RFFF membranes

within a period.

We find that membranes whose leading edge is free and trailing edge is fixed, are generally less wavy than

membranes with their leading edge fixed and trailing edge free (§V B2), and their dynamics also depend less

Figure 5.14: Typical membrane dynamics with free leading edges and fixed trailing edges. The color
plots classify the different membrane dynamics across a grid of (R1, T0) values for three values of R3

(100, 101, 102) with black dots indicating periodic motions. Representative examples of motions in
the light purple, yellow, and dark purple regions are shown in the bottom three rows, identified
by small colored rectangles. To the right of the rectangles are overlaid sequences of 11 midspan
snapshots in black, for RFFF boundary conditions (top two rows) and RRFF boundary conditions
(bottom row). To the right of the midspan snapshots are a smaller representative sequence of four
3D snapshots, from left to right with increasing time. To the left of the midspan snapshots are
single 3D snapshots representing similar cases with other side-edge conditions (RRFR and RRFF).
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FIG. 15. Typical membrane dynamics with free leading and trailing edges. The color plots classify the di↵erent

membrane dynamics across a grid of (R1, T0) values for three values of R3 (100, 101, 102) with black dots indicating

periodic motions. Representative examples of motions in all the colored regions are shown in the bottom seven rows,

identified by small colored rectangles. To the right of the rectangles are overlaid sequences of 11 midspan snapshots in

black, for RFRF (rows 1, 3, 4, and 5), RRRF (row 2), and RRRR boundary conditions (rows 6 and 7). To the right of

the midspan snapshots are a smaller representative sequence of four 3D snapshots, from left to right with increasing time.

To the left of the midspan snapshots are single 3D snapshots representing similar cases with other side-edge conditions

(RRRF and RRRR).

Figure 5.15: Typical membrane dynamics with free leading and trailing edges. The color plots
classify the different membrane dynamics across a grid of (R1, T0) values for three values of R3

(100, 101, 102) with black dots indicating periodic motions. Representative examples of motions in
all the colored regions are shown in the bottom seven rows, identified by small colored rectangles
with symbols. To the right of the rectangles are overlaid sequences of 11 midspan snapshots in
black, for RFRF (rows 1, 3, 4, and 5), RRRF (row 2), and RRRR boundary conditions (rows 6
and 7). To the right of the midspan snapshots are a smaller representative sequence of four 3D
snapshots, from left to right with increasing time. To the left of the midspan snapshots are single
3D snapshots representing similar cases with other side-edge conditions (RRRF and RRRR).
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time-periodic. These motions have translational and deformational dynamics with

O(1) frequencies, and their translational motions are more precisely time-periodic

than those at large R1. The seventh row is for another special type of unsteady

RRRR motion that has both large spanwise and large chordwise curvatures.

The sixth and seventh categories occur only for the RRRR case, which seems to

have a wider variety of motions because it is free to translate in z. As in the 2D

case (chapter II), the translational motion is distinct from but coupled to the shape

deformation dynamics, and the combination of the two results in more types of

dynamics. Other categories of motions that occur only with certain edge conditions

are the second and third, the steady states with two or three interior inflection points

respectively. The second occurs for RRRF and RRRR and the third for RFRF, both

mainly at small R1. The fourth category, small oscillations about a steady shape,

occurs only with one or both side edges fixed (RFRF and RRRF). The first category,

a steady shape with a single inflection point, occurs with all side edge conditions, but

in the RRRR case it translates either up or down in z at almost constant speed, with

occasional reversals in direction (as in figure 2.20 in chapter II). The fifth category,

of general unsteady motions, occurs with all side edge conditions at large R1. Here

motions tend to be more asymmetrical and irregular and have larger oscillation

amplitudes. The large body mass may allow the body to maintain its momentum

against resisting fluid forces for longer times.

5.6 Conclusions

We have developed a model and numerical method to compute small- and large-

amplitude dynamics of thin membranes in 3D inviscid flows. We provided numerical

evidence that indicates convergence of our method with respect to spatial grid re-
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finement. The 3D solutions agree remarkably well with those computed in 2D flows

with different discretization techniques, particularly when the aspect ratio in 3D is

large.

With fixed or free boundary conditions at each of the four edges, we have 16 com-

binations of boundary conditions for rectangular membranes, reduced to 12 when

symmetric cases are accounted for. We computed the dynamics in all 12 cases with

various values of the three key physical parameters: membrane mass (R1), pretension

(T0), and stretching rigidity (R3). The 12 cases fit naturally into four groups that

are determined by the leading- and trailing-edge boundary conditions. Within each

group there are strong similarities in the shapes and locations of the stability bound-

aries, the typical magnitudes of membranes’ deflections and their oscillation frequen-

cies in unsteady cases, and the typical shapes of the membranes at the midspan

location. The side-edge boundary conditions can cause small or large qualitative

differences in the dynamics within each group. The differences are relatively small

for the fixed-free case (group 2); the midspan shape is almost unchanged at a free

side edge or gradually scaled to flat at a fixed side edge. The differences are larger for

the fixed-fixed and free-fixed cases (groups 1 and 3); changes in side-edge conditions

lead to the appearance or disappearance of certain types of oscillation modes. In

group 4 (free-free) the side edges have an even larger effect, for example by allowing

or preventing translational motions that lead to a wider variety of dynamics.

As in 2D, the deflection magnitudes scale as R
−1/2
3 and the oscillation frequencies

scale as R
−1/2
1 at large values of R3 and R1 respectively. The stability boundaries

and dynamics in groups 1, 2, and 4 have many resemblances to the 2D cases with

same leading and trailing edge conditions studied in chapter II. The fixed-free case

in 3D is very similar to the 2D case in terms of increasing waviness with decreasing
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R1, a more limited effect of T0 on the shapes, and R3 mainly setting the amplitudes

of oscillation but not the shapes. The free-free case in 3D has some of the same types

of states as in 2D: periodic oscillatory states and vertical translational states that

may be nearly steady with a non-zero mean slope, or undergo periodic or chaotic

oscillations.

However, there are important qualitative differences in 3D. Unlike the 2D fixed-

fixed case where all membranes converge to steady single-hump shapes, the 3D ver-

sion (group 1) has cases with small and large unsteady oscillations, particularly when

both side edges are fixed. The 3D results contradicted our intuition from the 2D study

that more fixed edges leads to fewer unsteady states. The 3D free-free case (group 4)

has complicated spanwise curvature distributions, particularly with one or both side

edges free. There are more types of motions here than in the 2D free-free case. We

did not study the 2D analog of group 3, free-fixed, but the variations with side-edge

conditions here show that 3D effects can be significant. Taken together these results

validate the use of 2D models for a good qualitative understanding of membrane mo-

tions and scaling with parameters, but also show that certain important phenomena

can only be seen with the 3D model.

Future work could investigate several topics, for example: the effect of aspect

ratio; a nonzero Poisson ratio; including non-flat vortex sheets in the kinematic

condition and computing wake roll-up (e.g., using a treecode [105]) and consequences

on membrane dynamics, especially at large mass density ratio and small stretching

rigidity (figures 2.17 and 2.23 in chapter II); the types of motions at smaller T0, which

would require altering the algorithm to be able to compute steady state motions in

this regime; mixed fixed and free boundary conditions on a single edge; and different

membrane shapes.
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APPENDIX A

Pressure Jump Equation in 2D Flows

In this appendix we derive the equation for the pressure jump [p](α, t) across the

membrane, given by (2.19), as in [6] but for an extensible body. We use vector

notation instead of complex notation.

The Euler momentum equation given by

(A.1) ∂tu(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t),

determines the velocity of the fluid flow u(x, t) at a point x in the fluid. We want

to calculate the fluid pressure at a point in the fluid that is adjacent to and follows

a material point X(α, t) on the membrane. The rate of change of fluid velocity at

such a point is

(A.2)
d

dt
u(X(α, t), t) = ∂tu(x, t)|x=X(α,t) + (∂tX(α, t) · ∇)u(x, t)|x=X(α,t).

We replace the first term in (A.1) using the same term in (A.2) (the first term on

the right hand side). This yields the pressure gradient at a point that moves with

X(α, t). Since the fluid velocity is discontinuous across the membrane, we actually

need to do this separately for points that tend toward X(α, t) from each side of the

membrane. We obtain

(A.3)

d

dt
u(X(α, t), t)±+

(
(u(x, t)− ∂tX) · ∇u(x, t)

∣∣∣∣
x=X(α,t)

)±
= −(∇p(x, t)|x=X(α,t))

±,
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using + for the side toward which the membrane normal n̂ is directed and − for the

other side.

Next, we decompose the fluid velocity into components tangential and normal to

the membrane. The normal component matches that of the membrane, ν in (2.21).

The tangential component of the fluid velocity may be written in terms of its jump

across the membrane, the same as the vortex sheet strength γ [149],

(A.4)
(
u+ − u−

)
· ŝ = −γ,

and the average of the tangential components of the fluid velocity on the two sides

of the membrane, denoted µ. Combining the tangential and normal components we

have

(A.5) u± =
(
µ∓ γ

2

)
ŝ + νn̂.

We take the difference of (A.3) on the + and − sides:

d

dt

(
u+(X(α, t), t)− u−(X(α, t), t)

)
+

(
(u+(x, t)− ∂tX) · ∇u+(x, t)

∣∣∣∣
x=X(α,t)

)

−
(

(u−(x, t)− ∂tX) · ∇u−(x, t)

∣∣∣∣
x=X(α,t)

)
= −(∇p(x, t)+ −∇p(x, t)−)|x=X(α,t).

(A.6)

We then take the tangential component of (A.6), term by term. Using (A.5),

ŝ · d

dt
(u+(X(α, t), t)− u−(X(α, t), t)) = ŝ · ∂t(−γ(α, t)ŝ(α, t)) = −∂tγ(α, t).(A.7)

Using

(A.8) ∂tX = τ ŝ + νn̂,

and (A.5),

ŝ ·
[
(u±(x, t)− ∂tX) · ∇u±(x, t)

] ∣∣∣∣
x=X(α,t)

=
(
µ∓ γ

2
− τ
) [
∂s

(
µ∓ γ

2

)
− νκ

]
.

(A.9)
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The difference of the + and − terms on the right hand side of (A.9) is

−(µ− τ)∂sγ − γ(∂sµ− νκ).(A.10)

The tangential component of the right hand side of (A.6) is

−∂s[p]+−(x, t)|x=X(α,t).(A.11)

Combining (A.7), (A.10), and (A.11), the tangential component of (A.6) is

(A.12) ∂tγ + (µ− τ)∂sγ + γ(∂sµ− νκ) = ∂s[p]
+
−,

or using α-derivatives,

(A.13) ∂αs∂tγ + (µ− τ)∂αγ + γ(∂αµ− ∂αsνκ) = ∂α[p]+−.
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APPENDIX B

Numerical Approximations

Vortex sheet computations can become expensive for long-time simulations. For a

membrane in an oncoming flow (unidirectional and steady far upstream), the vortex

wake is advected away from the membrane and it is possible to decrease resolution

of the far-field wake (similarly to [4]) with only a small effect on the membrane and

near-membrane wake dynamics.

We briefly describe the numerical approximations used to compute the wake dy-

namics in this work. For computational efficiency we use a higher resolution near

the membrane’s trailing edge, and we prune the vortex wake in the far-field. Once

the free vortex sheet gets longer than one thousand points, we retain only the points

of the free vortex sheet at local extrema of the circulation, to approximately main-

tain the zeroth and and first moments of vorticity but using a small number of

points. Because this portion of the sheet is far from the membrane, this approxi-

mation has a negligible effect on the dynamics. Examples are shown in figures 2.17

and 2.23, where the prescribed membrane parameters are (R1, R3) = (100.5, 101) and

(R1, R3) = (100, 100.5), respectively.

We also use a point insertion/deletion scheme, but only sufficiently far from the

membrane’s trailing edge (e.g., implemented only more than 80 wake points from the

trailing edge). As the free wake evolves, the distance between two consecutive points
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can increase beyond a given parameter d1 (a fixed fraction of the wake smoothing

parameter δ), and if this occurs, we insert new points using cubic interpolation to

maintain wake resolution [4, 95, 131]. Similarly, at each time step, we check the

distance between three consecutive points and if the distance between the first and

third point is less than a specified threshold value d2, then we delete the point

in between the two to reduce the computational cost. During both processes, we

always ensure that the total circulation is conserved for all times to satisfy Kelvin’s

circulation theorem.
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APPENDIX C

Membrane Frequencies in the Free–free Case

Since we have determined where in the parameter space the membrane is unstable,

we can characterize the large-amplitude dynamics using the mean frequency and

study how it depends on R1 and R3. We focus on the region where reliable frequency

data can be obtained. As we have done previously, we compute the power spectrum

from a plot of the circulation versus time, when the membrane has reached large-

amplitude dynamics. In figure C.1, we see that in general the frequency decreases

with increasing R1. For R1 = 100.5 and R3 ranging from 102 to 104, the membranes

translate steadily (see figure 2.19) and the wake circulation tends to zero at large

times. Therefore the power spectra for those cases are zero and we omit them.
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Figure C.1: (Free–free.) Surface plot of the mean frequency computed from the time series of the
circulation, once the membranes have entered the large-amplitude regime, with T0 = 10−2. The
corresponding power spectra for each of the membranes are also shown on the surface plot. The
data in the right bottom corner are obtained for a shorter time and so, we neglect the computational
results for those values of R1 and R3.
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APPENDIX D

Convergence with Respect to Number of Chebyshev Nodes

In this work we have computed the membrane eigenmodes and eigenvalues using

m = 120 (121 Chebyshev points on the membrane) and a free vortex wake of length

`w = 39. We consider here the effect of varying the former. The effect of varying

the vortex wake length was explored in [3, Sec. V], and here we find that the results

in the unstable regime are basically unchanged when `w is as large as 39, given the

exponential decay of circulation in the wake (except right on the stability boundary,

but there is still algebraic decay of the induced velocity by an alternating-sign wake).

To compare the eigenmodes obtained when using m = 80 versus 120, we remove

the arbitrary phase shift from the eigenmode solver by finding φ ∈ [0, 2π] that solves

(D.1) min
φ

∫ 1

−1

|Y80(x)− Y120(x)eiφ| dx.

To perform the subtraction in (D.1) we interpolate Y80 using shape-preserving piece-

wise cubic interpolation onto the 120-point grid. In figure D.1 we compare the real

(panel A) and imaginary parts (panel B) of the fixed–free eigenmodes when using

m = 80 and 120 across an array of (R1, T0) pairs. The eigenmodes agree well except

in some cases at the smallest values of T0 for each R1, where the modes are also more

wavy and difficult to resolve numerically.
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Figure D.1: Comparison between the A) real and B) imaginary parts of the eigenmodes with
fixed–free boundary conditions, using grids with m = 80 and m = 120. Each shape is scaled in
both vertical and horizontal directions to fit within the plot. The red dots indicate the position of
the stability boundary (same as in figure 3.9).

In figure D.2 we present the relative error in the eigenvalues when m = 80 and

120. This quantity is computed as

(D.2) relative error =

∣∣∣∣
σ80 − σ120

σ120

∣∣∣∣ .
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The errors are typically 10−2–10−5 near the stability boundary, and gradually increase

to 10−1–100 as we decrease T0, eventually reaching a point where the solutions are

underresolved (as in figure D.1).
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Figure D.2: At each (R1, T0) in the instability region (below red line), the relative error (D.2) in
the eigenvalues when using m = 80 and m = 120 Chebyshev points on the fixed–free membrane is
plotted as a colored dot.

Figure D.3 shows three examples of the computed eigenvalues using grids of initial

guesses with m = 80 (green diamonds), 120 (red circles), and 240 (blue crosses).

Panel A corresponds to a fixed–free membrane at a moderate value of R1 (100.5) and

T0 = 10−0.25. The eigenvalues agree well except for an additional stable eigenmode

found when m = 240 (small blue cross located at (σR, σI) ≈ (0.29, 0.13)). Panel B

corresponds to a fixed–free membrane with a larger value of R1 (103), and T0 = 100.8.

The eigenvalues agree well at the three values of m when σR . 2.5, approximately the

15 lowest modes. As σR increases, the modes are eventually underresolved and the

eigenvalues deviate significantly, beginning with m = 80 (green diamonds). Panel C

corresponds to a free–free membrane at R1 = 100.5 as in panel A, but with T0 slightly
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smaller, 10−0.5. As in panel A, there are extra stable eigenvalues (with σR < 2 and

σI > 0.1) most with m = 240 (blue crosses) and one with m = 80 (green diamond).

These eigenvalues are similar to those in the irregular bands of stable eigenvalues

in figures 3.6, 3.10, and 3.14 when R1 = 10. We have good agreement among

the eigenvalues that are unstable or close to neutrally stable. In each case, the

most unstable modes (i.e. the modes associated with smallest—or most negative—

σI) change little when m increases from 120 to 240, and they are the focus of this

paper.
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Figure D.3: Spectrum of eigenvalues for m = 80 (green diamonds), 120 (red circles), and 240 (blue
crosses) for a fixed–free membrane at A) (R1, T0) = (100.5, 10−0.25), B) (R1, T0) = (103, 100.8), and
a free–free membrane at C) (R1, T0) = (100.5, 10−0.5).
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APPENDIX E

Method for Comparing the Eigenvalue Analysis Results to
Time-stepping Simulations

Here we outline the method for comparing mode shapes obtained using the eigenvalue

analysis developed in the current paper and mode shapes obtained from the time-

stepping simulations in [113].

We first determine the regime of exponential growth in the nonlinear simulations

by plotting the trailing edge deflection as a function of time, i.e., y(1, t). The time it

takes to reach the large-amplitude steady state regime depends on the magnitude of

the initial perturbation. To extend the time spent in the small-amplitude regime, we

start with a very small perturbation, O(10−12). This is important particularly when

the growth rate is large, i.e. for unstable membranes that are far from the stability

boundary in parameter space.

During this exponential growth (with flutter) regime, we approximate the com-

puted y(α, t) as

(E.1) y(α, t) ≈ Re
(
[Re(ynonlin(α)) + iIm(ynonlin(α))]eiσt

)
.

To obtain σ and ynonlin(α), we first obtain σI as the negative of the slope of ln(|y|)

versus time (figure E.1A) and subsequently compute y(α, t)eσIt. For each grid point

1, . . . ,m+ 1 in α ∈ [−1, 1], this is a function that oscillates sinusoidally in time but
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does not grow (figure E.1B). We estimate the frequency f of these functions as the

reciprocal of the time between the peaks of the sinusoidal function. The frequency

should be the same for all α ∈ [−1, 1] according to our Ansatz, and the computed

values vary only slightly due to numerical errors. We use the average over α as our

estimate of the single, global frequency. We then define σR := 2πf and denote the

amplitudes of these sinusoidal functions R(α). We denote by tpeak(α) the times at

which they reach their peaks and define the phase as φ(α) := −σR · tpeak(α). Thus,

we have:

Re(ynonlin(α)) = R(α) cos(φ(α)),(E.2)

Im(ynonlin(α)) = R(α) sin(φ(α)).(E.3)

We show in figure E.1C the reconstructed data Re ([Re(ynonlin(α)) + iIm(ynonlin(α))]eiσt)

(black dashed line) compared to y(α, t) (cyan solid lines) at three times.
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Figure E.1: Example of the comparison method using fixed–free membrane data with (R1, T0) =
(10−0.5, 10−0.7). A) ln(|y|) versus time for the 10th (blue), 30th (red), and 100th (yellow) grid
points on the membrane. B) A portion of the time series of yeσIt at the 10th (blue), 30th (red),
and 100th (yellow) grid points. This corresponds to part of the small-amplitude regime but with
the growth removed. The black dashed lines represent the constructed R(α) cos(σRt + φ(α)) at
the same grid points. C) The reconstructed data Re

(
[Re(ynonlin(α)) + iIm(ynonlin(α))]eiσt

)
(black

dashed lines) compared against the data y(α, t) (cyan solid lines) at the times t = 20, 100, 160. The
initial perturbation here is ζ(α, 0) = η sin(πα) where η is chosen as 0.0001. Note that the axes are
not to scale.

Finally, we choose a phase φ that gives the best match between Y (x) from the
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eigenvalue analysis described in §3.3 and ynonlin(α) from the nonlinear simulations.

We do this by solving the following optimization problem:

(E.4) min
φ

∫ 1

−1

∣∣∣∣
[Re(ynonlin(x)) + iIm(ynonlin(x))]

max(|[Re(ynonlin(x)) + iIm(ynonlin(x))]|) −
Y (x)eiφ

max(|Y (x)eiφ|)

∣∣∣∣ dx

for φ ∈ [0, 2π].
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APPENDIX F

Comparison of Eigenmodes and Time-stepping Simulations
with Free–free Boundary Conditions

In figure F.1, we compare the eigenmodes to the time-stepping simulations for two

cases of free–free membranes: (R1, T0) = (101, 100.1) (panels A, C, and E) and

(101.5, 100.2) (panels B, D, and F) at R3 = 101.5 in both cases. The comparison

methods for fixed–free membranes (see appendix E) are used again here. In A and B

we see close agreement between the real and imaginary parts of the eigenmodes ob-

tained from the two methods. In panels C and D a point of inflection occurs close to

the midpoint of the membrane, and migrates closer to the leading edge at large am-

plitude (panels E and F). The small- and large-amplitude shapes are similar in terms

of the number of local maxima and minima of deflection (typically one of each).
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Figure F.1: Free–free membranes at (R1, T0) = (101, 100.1) for A, C, E and at (R1, T0) =
(101.5, 100.2) for B, D, and F, with R3 = 101.5 in both cases. These membranes lose stability
by flutter and divergence. In panels A and B the solid red lines are Re(yynonlin(α)) estimated
from the time-stepping simulation, which are close to Re(Y (x)) from the eigenvalue problem (dot-
ted black lines). The solid green lines are Im(yynonlin(α)), close to Im(Y (x)) from the eigenvalue
problem (dotted blue lines). The gray lines are a subset of snapshots in the linear growth regime.
In panels C and D we show the snapshots during the small-amplitude (growth) regime, but with
the exponential growth removed. Panels E and F show snapshots during the steady-state large-
amplitude motions. Shades of gray (and blue) increase from light to dark as 20 membrane positions
cycle through a period.
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APPENDIX G

Thin-membrane Elasticity

We compute the stretching energy of the membrane using the position r(α1, α2, t).

The membrane has thickness h � L,W , the lateral dimensions. We assume the

stretching strain is constant through the thickness, accurate to leading order in h [41].

We denote the flat prestrained configuration of the membrane central surface by

α ≡ (α1, α2, 0) = r(α1, α2, 0). A small line of material connecting two material

points α and α̃ in the flat prestrained configuration is dα = α− α̃. We assume that

the prestrained state is obtained from the zero-energy state by applying a uniform

prestrain e. Thus in the zero-energy state the small line of material is dα/(1 + e),

the prestrain having been removed by dividing by (1 + e).

One of the most common measures of deformation in nonlinear elasticity is the

difference between the squared length of a material line in the deformed and zero-

energy configurations [97,170]:

(G.1) ‖dr‖2 − 1

(1 + e)2
‖dα‖2 = 2εij dαidαj , εij =

1

2

(
aij −

1

(1 + e)2
δij

)

where dr = r(α1, α2, 0) − r(α̃1, α̃2, 0) and εij is the (Green-Lagrange) strain tensor,

written in terms of the metric tensor

(G.2) aij = ∂αi
r · ∂αj

r =
∂rk
∂αi

∂rk
∂αj

, i, j = 1, 2.
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and the identity tensor δij.

For an isotropic membrane with Young’s modulus E, Poisson ratio ν, and thick-

ness h, the elastic energy per unit midsurface area [9] is

(G.3) ws =
h

2
Āmnopεmnεop , Āmnop =

E

1 + ν

(
ν

1− ν δmnδop + δmoδnp

)

where Āmnop is the elasticity tensor for an isotropic material [97]. For small-to-

moderate prestrains, the focus of this work, the strain tensor in (G.1) is approxi-

mately

(G.4) εij(α1, α2, t) = eδij +
1

2

(
∂αi

r · ∂αj
r− δij

)
, i, j = 1, 2.

221



APPENDIX H

Derivation of Pressure Jump Equation in 3D Flow

In this appendix we derive an expression for the pressure jump [p](α1, α2, t) across

the membrane in terms of the membrane vortex sheet strength and other quantities,

as a generalization of appendix A.

The Euler momentum equation given by

(H.1) ∂tu(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t)

couples the fluid velocity u(x, t) and the pressure p(x, t). We calculate the fluid

pressure at a point that is adjacent to and follows a material point r(α1, α2, t) on

the membrane. The rate of change of fluid velocity at such a point is

(H.2)

d

dt
u(r(α1, α2, t), t) = ∂tu(x, t)|x=r(α1,α2,t) + (∂tr(α1, α2, t) · ∇)u(x, t)|x=r(α1,α2,t).

We use (H.2) to replace the first term in (H.1) and write the pressure gradient at a

point that moves with r(α1, α2, t). To obtain the jump in fluid pressure at a material

point on the membrane, we write (H.1) (modified by (H.2)) separately at points in

the fluid that approach the membrane from either side:

d

dt
u(r(α1, α2, t), t)

± +

(
(u(x, t)− ∂tr) · ∇u(x, t)

∣∣∣∣
x=r(α1,α2,t)

)±

= −(∇p(x, t)|x=r(α1,α2,t))
±,(H.3)

222



using + for the side toward which the membrane normal n̂ is directed and − for the

other side.

Next, we decompose the fluid velocity into components tangential and normal to

the membrane. The normal component matches that of the membrane, νv. The

tangential component of the fluid velocity may be written in terms of its jump across

the membrane, using the vortex sheet strength components γ1, γ2 [149], and the

average of the tangential components of the fluid velocity on the two sides of the

membrane, denoted µ1 and µ2. The subscripts {1, 2} denote the components in the

ŝ1 and ŝ2 directions, respectively. The fluid velocity can be written

(H.4) u± =
(
µ1 ±

γ2

2

)
ŝ1 +

(
µ2 ∓

γ1

2

)
ŝ2 + νvn̂.

We take the difference of (H.3) on the + and − sides:

d

dt

(
u+(r(α1, α2, t), t)− u−(r(α1, α2, t), t)

)

+

(
(u+(x, t)− ∂tr) · ∇u+(x, t)

∣∣∣∣
x=r(α1,α2,t)

)

−
(

(u−(x, t)− ∂tr) · ∇u−(x, t)

∣∣∣∣
x=r(α1,α2,t)

)

= −(∇p(x, t)+ −∇p(x, t)−)|x=r(α1,α2,t).(H.5)

We then take the ŝ1 components of (H.5), term by term. The ŝ1 component of the

right hand side of (H.5) is −∂s1 [p]+− which we will ultimately integrate to obtain [p]+−.

−∂s1 [p]+− is equal to the ŝ1 components of the terms on the left hand side of (H.5),

which we now compute. Using (H.4), the ŝ1 component of the first term on the

left-hand side of (H.5) is

ŝ1 ·
d

dt
(u+(r(α1, α2, t), t)− u−(r(α1, α2, t), t)) = ŝ1 · ∂t(−γ1ŝ2 + γ2ŝ1)

= ∂tγ2 − ∂tγ1(ŝ1 · ŝ2)− γ1(ŝ1 · ∂tŝ2),(H.6)
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where we use ŝi · ŝi = 1 and ŝi · ∂tŝi = 0 for i = 1, 2.

For ŝi · [(u±(x, t) − ∂tr) · ∇u±(x, t)] where i = 1, 2, we first write u± − ∂tr as

Aŝ1 + Bŝ2. Then we compute the dot product between that and ∇u± and obtain

A∂s1u
±+B∂s2u

±. If we substitute u±, we get an expression of the form C ŝ1 +Dŝ2,

which we can finally dot with ŝ1 and ŝ2.

Using

(H.7) ∂tr = τ1ŝ1 + τ2ŝ2 + νvn̂,

and (H.4), we find that the ŝ1 components of the second and third terms on the

left-hand side of (H.5) are

ŝ1 ·
[
(u±(x, t)− ∂tr) · ∇u±(x, t)

] ∣∣∣∣
x=r(α1,α2,t)

=
(
µ1 ±

γ2

2
− τ1

) [
∂s1

(
µ1 ±

γ2

2

)
+
(
∂s1

(
µ2 ∓

γ1

2

))
ŝ1 · ŝ2

+
(
µ2 ∓

γ1

2

)
ŝ1 · ∂s1 ŝ2 + νvŝ1 · ∂s1n̂

]

+
(
µ2 ∓

γ1

2
− τ2

) [
∂s2

(
µ1 ±

γ2

2

)
+
(
∂s2

(
µ2 ∓

γ1

2

))
ŝ1 · ŝ2

+
(
µ2 ∓

γ1

2

)
ŝ1 · ∂s2 ŝ2 + νvŝ1 · ∂s2n̂ +

(
µ1 ±

γ2

2

)
ŝ1 · ∂s2 ŝ1

]
.(H.8)

The difference of the + and − terms on the right-hand side of (H.8) is

(ŝ1 · ŝ2)(−µ1∂s1γ1 + γ2∂s1µ2 + τ1∂s1γ1 − µ2∂s2γ1 − γ1∂s2µ2 + τ2∂s2γ1)

+(ŝ1 · ∂s1 ŝ2)(−µ1γ1 + γ2µ2 + τ1γ1) + (ŝ1 · ∂s2 ŝ1)(µ2γ2 − γ1µ1 − τ2γ2)

+(µ1∂s1γ2 + γ2∂s1µ1 − τ1∂s1γ2 + µ2∂s2γ2 − γ1∂s2µ1 − τ2∂s2γ2)

+(ŝ1 · ∂s2 ŝ2)(−2µ2γ1 + τ2γ1) + (ŝ1 · ∂s1n̂)γ2νv − (ŝ1 · ∂s2n̂)γ1νv,(H.9)

using ŝi · ∂si ŝi = 0 and n̂ · ŝi = 0 for i = 1, 2.
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Combining (H.6) and (H.9), the ŝ1 component of (H.5) is

∂tγ2 − ∂tγ1(ŝ1 · ŝ2)− γ1(ŝ1 · ∂tŝ2)

+(ŝ1 · ŝ2)(−µ1∂s1γ1 + γ2∂s1µ2 + τ1∂s1γ1 − µ2∂s2γ1 − γ1∂s2µ2 + τ2∂s2γ1)

+(ŝ1 · ∂s1 ŝ2)(−µ1γ1 + γ2µ2 + τ1γ1) + (ŝ1 · ∂s2 ŝ1)(µ2γ2 − γ1µ1 − τ2γ2)

+(µ1∂s1γ2 + γ2∂s1µ1 − τ1∂s1γ2 + µ2∂s2γ2 − γ1∂s2µ1 − τ2∂s2γ2)

+(ŝ1 · ∂s2 ŝ2)(−2µ2γ1 + τ2γ1) + (ŝ1 · ∂s1n̂)γ2νv − (ŝ1 · ∂s2n̂)γ1νv

= −∂s1 [p]+−.(H.10)

We multiply (H.10) through by ∂α1s1 which converts ∂s1 [p]
+
− to ∂α1 [p]

+
−. We in-

tegrate with respect to α1 from the trailing edge, applying [p]+− = 0 at the trailing

edge, to obtain [p]+− at all points on the membrane.

If we directly integrate ∂α1 [p]
+
− numerically (e.g. using the trapezoidal rule), the

results disagree significantly with our 2D benchmark results [113]. Using a different

formulation that agrees with the 2D results in the small-amplitude regime, we have

found empirically that the following method agrees well with the 2D results in both

the small- and large-amplitude regimes. We first write ∂α1 [p]
+
− as a sum of two terms:

(H.11) ∂α1 [p]
+
− = (∂α1 [p]

+
− + ∂α1s1∂tγ2 + ∂α1γ2) + (−∂α1s1∂tγ2 − ∂α1γ2).

We have added and subtracted ∂α1s1∂tγ2 + ∂α1γ2. Its integral with respect to α1

can be written ∂tΓ + ∂s1Γ, where Γ is the integrated vortex sheet strength [149].

It is conserved at points of a free vortex sheet that move at the average of the

tangential flow velocities on the two sides of the sheet, equal to 1 in this case.

Hence ∂tΓ + ∂s1Γ = 0 at the trailing edge, as does [p]+− by the unsteady Kutta

condition [88,149].

Therefore we integrate the first term in (H.11) (in parentheses) with respect to α1

using the trapezoidal rule, with the boundary condition that its integral is 0 at the
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trailing edge. The integral of the remaining terms in (H.11) is −∂tΓ−∂s1Γ evaluated

at α1 minus its value at the trailing edge, which is zero as we have just discussed.

To evaluate −∂tΓ− ∂s1Γ on the (α1,α2) grid, we approximate Γ at the center point

of a membrane vortex panel by the circulation of the vortex ring at that panel.

Derivatives of Γ with respect to t and α1 are obtained by the usual finite-difference

formulas and extrapolation to the (α1,α2) grid points—i.e. the corner points of the

panels.
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APPENDIX I

Residual Membrane Equations in Broyden’s Method

In this appendix we write down the discretized system of nonlinear membrane

equations that we solve using Broyden’s method. Having computed each of the

quantities in the membrane equation (5.16) we keep iterating until f(x) drops below

a certain tolerance that we set to 10−5. Here f(x) is given by:

fj(x) = R1∂ttx
k
j −Ks

{
(D2

α1
rkj ·D1

α1
rkj )D

1
α1
xkj + ε11D

2
α1
xkj

(I.1)

+ ν
(
(D2

α1α2
rkj ·D1

α2
rkj )D

1
α1
xkj + ε22D

2
α1
xkj
)

+ (1− ν)
[
((D2

α1
rkj ·D1

α2
rkj +D1
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α1α2
rkj )/2)D1

α2
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2
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xkj
]

+ (D2
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rkj )D
1
α2
xkj + ε22D

2
α2
xkj + ν((D2

α1α2
rkj ·D1

α1
rkj )D

1
α2
xkj + ε11D

2
α2
xkj )

+ (1− ν)
[
((D2

α1α2
rkj ·D1

α2
rkj +D1

α1
rkj ·D2

α2
rkj )/2)D1

α1
xkj + ε12D

2
α1α2

xkj
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+ [p]kj n̂
k
x,j

√
(D1

α1
rkj ·D1

α1
rkj )(D

1
α2

rkj ·D1
α2

rkj )− (D1
α1

rkj ·D1
α2

rkj )
2,
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fj+(M−1)(N−1)(x) = R1∂tty
k
j −Ks

{
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α1
rkj ·D1

α1
rkj )D

1
α1
ykj + ε11D

2
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where j = 1, . . . , (M−1)(N−1) and [p] is the result of integrating (H.11). Here D1
αi
≈

∂αi
, D2

αi
≈ ∂αiαi

for i = 1, 2 and D2
α1α2

≈ ∂α1α2 are second-order accurate finite-

difference matrix approximations to first and second-order derivatives (order listed

in the superscript) on uniform grid nodes, one-sided at boundaries. ∂tt{xkj , ykj , zkj }

are the second-order accurate finite difference formulas (backward differentiation

formulas) at time step k based on the values of {xj, yj, zj} at times steps k−3, . . . , k.
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APPENDIX J

Membrane Deflections Versus Stretching Rigidity at
Different Pretension Values

39
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R1@ttz
k
j � Ks

�
(D2

↵1
rk

j · D1
↵1

rk
j )D1

↵1
zk
j + ✏11D

2
↵1

zk
j + ⌫

�
(D2

↵1↵2
rk

j · D1
↵2

rk
j )D1

↵1
zk
j + ✏22D

2
↵1

zk
j

�

+(1 � ⌫)
⇥
((D2

↵1
rk

j · D1
↵2

rk
j + D1

↵1
rk

j · D2
↵1↵2

rk
j )/2)D1

↵2
zk
j + ✏12D

2
↵1↵2

zk
j

⇤

+(D2
↵2

rk
j · D1

↵2
rk

j )D1
↵2

zk
j + ✏22D

2
↵2

zk
j + ⌫((D2

↵1↵2
rk

j · D1
↵1

rk
j )D1

↵2
zk
j + ✏11D

2
↵2

zk
j )

+ (1 � ⌫)
⇥
((D2

↵1↵2
rk

j · D1
↵2

rk
j + D1

↵1
rk

j · D2
↵2

rk
j )/2)D1

↵1
zk
j + ✏12D

2
↵1↵2

zk
j

⇤ 

+[p]kj n̂
k
z,j

q
(D1

↵1
rk

j · D1
↵1

rk
j )(D1

↵2
rk

j · D1
↵2

rk
j ) � (D1

↵1
rk

j · D1
↵2

rk
j )2, (D3)

where j = 1, . . . , (M � 1)(N � 1) and [p] is the result of integrating (C12). Here D1
↵i

= @↵i
, D2

↵i
= @↵i↵i

for

i = 1, 2 and D2
↵1↵2

= @↵1↵2
are the discrete di↵erentiation matrices of first and second-order on uniform grid

nodes.

Appendix E: Membrane deflections versus stretching rigidity at di↵erent pretension values
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FIG. 17. Time-averaged deflections of FRFR and FRFF membranes (defined by (29)) versus R3 for various R1 and fixed

T0 (10�0.25 and 10�0.75). The dotted black line indicates the scaling R
�1/2
3 .

For two of the 12 boundary conditions (FRFF and FRFR) we plot in figure 17 the average membrane deflection

at T0 = 10�0.25 and 10�0.75, instead of 10�0.5 in figure 10, and see that the deflection values increase at smaller

T0 (similarly to [66, 96]) but the same 1/
p

R3 scaling holds in all cases.
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Figure J.1: Time-averaged deflections of FRFR and FRFF membranes (defined by (5.29)) versus R3

for various R1 and fixed T0 (10−0.25 and 10−0.75). The dotted black line indicates the scaling R
−1/2
3 .

For two of the 12 boundary conditions (FRFF and FRFR) we plot in figure

J.1 the average membrane deflection at T0 = 10−0.25 and 10−0.75, instead of 10−0.5

in figure 5.10, and see that the deflection values increase at smaller T0 (similarly

to [113,183]) but the same 1/
√
R3 scaling holds in all cases.
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[36] O. Doaré and S. Michelin. Piezoelectric coupling in energy-harvesting fluttering
flexible plates: linear stability analysis and conversion efficiency. Journal of
Fluids and Structures, 27(8):1357–1375, 2011.

[37] D. Dong, W. Chen, and S. Shi. Coupling motion and energy harvesting of two
side-by-side flexible plates in a 3D uniform flow. Applied Sciences, 6(5):141,
2016.

[38] E. H. Dowell. Aeroelasticity of plates and shells, volume 1. Springer Science &
Business Media, 1974.

[39] E. H. Dowell and C. S. Ventres. Flutter of low aspect ratio plates. AIAA
Journal, 8(6):1162–1164, 1970.

[40] A. Drachinsky and D. E. Raveh. Limit-cycle oscillations of a pre-tensed mem-
brane strip. Journal of Fluids and Structures, 60:1–22, 2016.

[41] E. Efrati, E. Sharon, and R. Kupferman. Elastic theory of unconstrained non-
Euclidean plates. Journal of the Mechanics and Physics of Solids, 57(4):762–
775, 2009.

[42] C. Eloy, R. Lagrange, C. Souilliez, and L. Schouveiler. Aeroelastic instability of
cantilevered flexible plates in uniform flow. J. Fluid Mech., 611:97–106, 2008.

[43] C. Eloy, C. Souilliez, and L. Schouveiler. Flutter of a rectangular plate. J.
Fluids and Struct., 23(6):904–919, 2007.

[44] A. Erturk, W. G. R. Vieira, C. De Marqui Jr, and D. J. Inman. On the en-
ergy harvesting potential of piezoaeroelastic systems. Applied Physics Letters,
96(18):184103, 2010.

[45] S. J. Farlow. Partial differential equations for scientists and engineers. Courier
Corporation, 1993.

233



[46] H. Feng. Vortex Sheet Simulations of 3D Flows Using an Adaptive Triangular
Panel/Particle Method. PhD thesis, University of Michigan, 2007.

[47] H. Feng, L. Kaganovskiy, and R. Krasny. Azimuthal instability of a vortex
ring computed by a vortex sheet panel method. Fluid dynamics research,
41(5):051405, 2009.

[48] F. E. Fish, C. M. Schreiber, K. W. Moored, G. Liu, H. Dong, and H. Bart-
Smith. Hydrodynamic performance of aquatic flapping: efficiency of underwa-
ter flight in the manta. Aerospace, 3(3):20, 2016.

[49] M. Gazzola, M. Argentina, and L. Mahadevan. Scaling macroscopic aquatic
locomotion. Nature Physics, 10(10):758–761, 2014.

[50] R. Ghias, R. Mittal, and H. Dong. A sharp interface immersed boundary
method for compressible viscous flows. Journal of Computational Physics,
225(1):528–553, 2007.

[51] A. Giacomello and M. Porfiri. Underwater energy harvesting from a heavy
flag hosting ionic polymer metal composites. Journal of Applied Physics,
109(8):084903, 2011.

[52] S. C. Gibbs, I. Wang, and E. Dowell. Theory and experiment for flutter of
a rectangular plate with a fixed leading edge in three-dimensional axial flow.
Journal of Fluids and Structures, 34:68–83, 2012.

[53] S. C. Gibbs IV and E. H. Dowell. Membrane paradox for solar sails. AIAA
journal, 52(12):2904–2907, 2014.

[54] S. C. Gibbs IV, I. Wang, and E. H. Dowell. Stability of rectangular plates in
subsonic flow with various boundary conditions. Journal of Aircraft, 52(2):439–
451, 2015.

[55] M. A. Golberg. Numerical Solution of Integral Equations. Plenum Press, 1990.

[56] R. E. Gordnier. High fidelity computational simulation of a membrane wing
airfoil. Journal of Fluids and Structures, 25(5):897–917, 2009.

[57] R. E. Gordnier and P. J. Attar. Impact of flexibility on the aerodynamics of
an aspect ratio two membrane wing. J. Fluids and Struct., 45:138–152, 2014.

[58] A. Goza, T. Colonius, and J. E. Sader. Global modes and nonlinear analysis
of inverted-flag flapping. J. Fluid Mech., 857:312–344, 2018.

[59] K. F. Graff. Wave motion in elastic solids. Oxford University Press, 1975.

[60] B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin. An adaptive,
formally second order accurate version of the immersed boundary method.
Journal of Computational Physics, 223(1):10–49, 2007.

[61] B. E. Griffith and C. S. Peskin. On the order of accuracy of the immersed
boundary method: Higher order convergence rates for sufficiently smooth prob-
lems. J. Comp. Phys., 208(1):75–105, 2005.

234



[62] A. Grozdanov. Transonic Static Aeroelasticity Using the 2.5D Nonlinear Vortex
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