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ABSTRACT

Trajectory planning is a key component of the Connected and Automated Vehicle (CAV) auton-
omy stack. It is a challenging task to plan a trajectory for a CAV that ensures safety, mobility,
and comfort, especially in complex urban scenarios. In urban driving scenarios, CAVs need to
interact with different road users and follow traffic rules (e.g. turning at traffic signals, yielding at
a roundabout), which increases the complexity of the trajectory planning.

One potential solution to help address this challenge is to deploy smart infrastructure, which can
enhance microscopic situational awareness to support the trajectory planning of CAVs. An efficient
cooperative scheme between the smart infrastructure and CAVs will not only enhance the safety
and mobility performance of CAVs but also improve the overall system efficiency. Therefore, in
this dissertation, a cooperative planning framework is proposed that given the past trajectories of
the detected vehicles, the smart infrastructure manages to provide guidance or warning to CAVs
with different applications to assist their trajectory planning.

First, an integrated control framework is proposed to optimize the traffic signals in an urban
arterial and provide guidance for the trajectory planning of CAVs in a mixed traffic composition
of CAVs, Connected Vehicles (CVs), and Regular Vehicles (RVs). Existing studies suffer from
limitations such as assuming 100% penetration rate of the CAV, centralized formulation, or limited
at an isolated intersection. Thus, a combination of centralized and decentralized integrated control
framework is proposed that the smart infrastructure only provides centralized trajectory planning
guidance to the CAVs, and then the CAVs will plan their detailed trajectories individually. The
framework is designed for a traffic corridor under mixed traffic conditions.

Second, an anomaly detection model using learning from demonstration is proposed to identify
abnormal trajectories when the localization module of a Connected Vehicle (CV) or AV is under
cyber attacks (e.g. Global Positioning System (GPS) spoofing, sensor attacks). Most cyber defense
methods in the literature targeting GPS spoofing attacks or remote sensor attacks require access to
the physical signal receivers and may not be readily available in the real-world driving environ-
ment. Instead of investigating physical GPS or LiDAR signals, this work proposes a cyber defense
model that leverages domain knowledge of transportation and vehicle engineering.

Lastly, a hierarchical Principle Other Vehicle (POV) behavior prediction framework incorpo-
rating traffic signal information is proposed to predict vehicle behaviors in urban scenarios with

xiii



interactive agents. This framework includes a discrete intention prediction module and a continu-
ous trajectory prediction module, and a mixture of offline learning and online prediction strategies
are adopted to capture the difference among human drivers. Game theory is utilized to model the
interaction between agents explicitly.

In summary, this thesis proposes an infrastructure-based cooperative driving framework to pro-
vide a variety of guidance or warnings to CAVs. The framework is validated in the realistic sim-
ulation or with real-world datasets. It is expected that the cooperative driving framework can be
implemented in the real world to assist the trajectory planning of the CAVs, benefiting their de-
ployment.

xiv



CHAPTER 1

Introduction

1.1 Background

Autonomous driving is an active research area and industry focus for many years. Defense Ad-
vanced Research Projects Agency (DARPA) starts the DARPA Grand Challenge to foster the de-
velopment of autonomous driving via a desert racing challenge in 2004 [101]. In 2007, DARPA
Urban Challenge was organized that requires autonomous vehicles to perform a series of com-
plicated maneuvers in traffic, including merging, passing, parking [20]. In recent years, many
automotive and technology companies attempts to conduct real-world deployment of autonomous
driving. In 2020, Waymo, as one of the leading companies in the autonomous driving industry,
became the first company to offer autonomous public ride-hailing service in the city of Phoenix,
Arizona [8]. Cruise, of which General Motors owns an 80% stake, wins the first California permit
to carry paying riders in AVs [3]. In May 2022, Argo AI, whose largest shareholders are Ford and
Volkswagen, launches their AV testing during daytime business hours in Miami, Austin [1].

However, most real-world deployment of AVs focus on some specific scenarios or specific
regions, and production-level AV still seems a distant future. Most leading companies currently
only test or deploy their AV services in a few cities or even only within the downtown area of a city.
On the other hand, the current deployment of the AVs is not satisfying because of the crashes or
abnormal behaviors. In 2016, a Tesla Model S involves in the first fatality crash of AVs in Florida
[4]. When a truck turned left in front of the Tesla AV, the Tesla vehicle failed to brake enough and
ran into the truck, shown in Figure 1.1. In April 2022, a Cruise self-driving car is pulled over by a
police officer for driving without headlights at night [6]. When the police officer went back to talk
to his partner, the AV started to move without permission from the police officer and was pulled
over again, shown in Figure 1.2.

Given the limited progress of the AV industry, a natural question arises: what are the major chal-
lenges of autonomous driving? Different researchers may have different opinions, but two major
challenges are consensus, the curse of dimensionality and safety-critical scenarios. In autonomous
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Figure 1.1: Tesla fatal crash

Figure 1.2: Cruise AV pulled by police
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driving environments, different road users affect the behavior of the AV. To fully represent the
complexity of the environment, the dimension of variables grows rapidly, which causes the curse
of dimensionality issue [28]. How to model the environment in a computationally efficient way
without losing too much optimality becomes a major concern. Besides, safety performance is cur-
rently the bottleneck of the deployment of the AVs. The crash rate of the state-of-the-art AVs is
still magnitudes away from human-driven vehicle crash rate. There is still a long way to improve
the safety performance of the AVs, especially under complex scenarios.

Difficulties of deployment of AVs also come from the complicated urban traffic scenarios by
nature. Different from highway scenarios or open areas (e.g. parking lots), the traffic rules in urban
scenarios are more complex. The AVs need to follow traffic lights at signalized intersections and
obey traffic rules (e.g. yielding) at unsignalized intersections. It is not trivial to encode such rules
in the autonomy stack of AVs. Besides, the AVs also interact with different road users in urban
scenarios. The decision of an AV affects surrounding vehicles, and surrounding vehicles may have
an influence back on the decision making of the AV. In this case, it is challenging to predict other
road users’ behavior and make decisions for the AVs.

Cybersecurity is another nonnegligible concern for AVs deployment. Since an AV is responsible
for driving itself, it is more hazardous if the autonomous system is under cyber attack. Existing
studies show that autonomous vehicles are vulnerable to cyberattacks [99, 93, 50, 83]. For example,
researchers in [93] manage to adopt GPS spoofing attack to mislead the localization module of the
AV so that the AV hits the road curb or goes to the wrong way. A cyber defense module is critical
in the autonomous driving system to prevent the dangerous behaviors of an AV.

When it comes to cooperative driving, smart infrastructure may be helpful to address such
difficulties in AVs deployment. With bird view sensors installed in the smart infrastructure, a fully
observable environment can be built, and global as well as historical information of all road users
can be collected. Such information can be utilized to generate guidance or security warnings to
AVs to benefit their mobility or safety performance, which is the main purpose of this dissertation.

1.2 Connected and Automated Vehicle

Connected and Automated Vehicle (CAV)s refers to the vehicles that can communicate with other
road users or smart infrastructure with connectivity, and control themselves with advanced algo-
rithms for automation. Notice that in general, a vehicle can just be a CV that is driven by a human
with communication capability or just an AV that is controlled by algorithms rather than humans
without any connectivity. In this dissertation, an infrastructure-based cooperative driving frame-
work is proposed, in which the AVs receive guidance or warnings from the smart infrastructure
via connectivity. Thus, in this dissertation, it is assumed that AVs have connectivity, and AVs and

3



CAVs are interchangeable terminology. In this section, the connectivity and automation technolo-
gies of CAVs are introduced.

1.2.1 Connectivity

With Vehicle to Everything (V2X) technology, vehicles can communicate with different road users
and transportation infrastructure, enhancing the safety and mobility performance of the transporta-
tion system. There are many real-world deployments of the connected vehicle environment. In
2011, the Safety Pilot Model Development project is undertaken by the U.S. Department of Trans-
portation, to support the evaluation of Dedicated Short-Range Communication (DSRC) technology
for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) applications [18]. Built on the
Safety Pilot project, in recent years, Ann Arbor Connected Vehicle Test Environment (AACVTE)
becomes the world’s largest real-world deployment of connected vehicles and connected infrastruc-
ture [106]. In the majority of the current deployment of the connected vehicles, the communication
protocol adopts DSRC technology. The details of the DSRC standard can be found in SAE J2735
Message Set Dictionary [56].

In a CV, an Onboard Unit (OBU) is installed to broadcast Basic Safety Message (BSM)s, which
includes the position, speed, acceleration, and heading information of the vehicle. At the smart
infrastructure, an Roadside Unit (RSU) can be equipped to receive BSMs from CVs. At signalized
intersections, RSUs can broadcast traffic signal information via Signal Phasing and Timing (SPaT)
message. Other information, such as Map message, can also be provided to CVs following the
DSRC standard.

With the deployment of CVs, different applications can be designed to benefit the CVs or the
whole transportation system. Forward collision warning system can be designed on CVs to provide
warnings to drivers when two CVs are too close to each other [47]. CVs’ BSM can be adopted by
the adaptive signal control system at signalized intersections to improve the mobility performance
of the intelligent transportation system [30, 45].

1.2.2 Automation

AVs can perform specific driving tasks with automation technologies. By the definition from Na-
tional Highway Traffic Safety Administration, a fully automated vehicle (i.e. level 5) drives itself,
and humans are only the passengers [2]. Level 0 vehicle denotes a regular human-driven vehi-
cle with no automation. At level 1, the vehicle can perform either longitudinal (i.e. acceleration,
deceleration) or lateral (i.e. steering) driving assist features. Many commercialized vehicles with
Adaptive Cruise Control (ACC) can be considered as level 1 vehicles, like the 2019 Honda Accord.

4



Figure 1.3: Autonomy Stack of an AV

Level 2 vehicles can provide both longitudinal and lateral driving assistance (e.g. Tesla Autopilot
[7]).

Starting from level 3, there is no widely deployed commercialized AVs in the real world. Level
3 AVs can provide conditional automation that the vehicles handle all aspects of driving while the
driver should be available to take over at any time. Mercedes-Benz wins the first approval for level
3 vehicles in the world [5]. Level 4 AVs can perform all driving tasks within specific service areas
without any human takeover requests, and level 5 denotes fully automation in which all the driving
tasks under all conditions can be performed by AVs. Numerous research and industry efforts focus
on the development of level 4 and 5 autonomous driving.

Figure 1.3 illustrates the typical autonomy stack of an AV. There are three major components
in the autonomy stack: perception, prediction and planning, and control.

The perception module utilizes sensors to perceive and monitor the driving environment for
AVs. Common sensors equipped by AVs are cameras, Light Detection And Ranging (LiDAR)s,
and radars. Although given the high price of LiDARs, most commercialized vehicles (Level 1 or
2) are equipped with cameras and radars. The perception module is responsible for a series of
different tasks, in which localization, object detection, and object tracking are the most basic and

5



important components. Localization and mapping can locate the ego AV in global and local maps,
and construct the driving environment from the object detection results [104]. Object detection
can detect surrounding objects of the ego AV, including other vehicles, pedestrians, traffic signs,
and road geometry. Object tracking assign the object ID to the results of the object detection, and
track each object in different frames with assigned ID. More details of the perception system can
be found in the surveys [14, 104, 15]. The output of the perception module is the trajectories of
all agents, and each trajectory usually includes the observed position information of each agent in
the map in a series of time frames, which will serve as the input of the prediction and planning
module.

The prediction and planning module of the AVs is the main focus of this dissertation. With the
detected object information and map information from the perception module, the behavior pre-
diction module can predict the behavior of surrounding vehicles. The behavior prediction includes
discrete intention prediction and continuous trajectory prediction [77]. Discrete intention predic-
tion predicts the discrete intentions or maneuvers, and continuous trajectory prediction predicts a
series of future positions as a predicted trajectory. The accurate behavior prediction of surrounding
objects is a necessity for the safe performance of AVs, especially in complex urban scenarios with
interactive agents and traffic signals. Another critical component is the motion planning module,
which generates the trajectory of the ego AV in space and time in a computational efficient way.
It can also be divided into two stages, discrete decision making (e.g. lane change or not) and
continuous motion planning. Vehicle dynamics are usually considered at the continuous motion
planning stage. The trajectory planning of the ego CAV should achieve good performance in both
mobility and safety. Driving comfort and fuel economy is also important sometimes, which makes
the trajectory planning process a complicated multi-object task. The trajectory planning module
is also vulnerable to cyber attacks [93, 99], which may leads to serious collisions. To relieve the
difficulties in the trajectory prediction and planning module, this dissertation focus on providing
guidance / warnings as information to the AVs to assist their planning module.

Given the ego CAV’s trajectory from the planning module, the control module is responsible for
tracking the planned trajectory. During the tracking process, the role of the controller is to stabilize
the planned path in the presence of tracking error or uncertainty [80]. The output of the control
module is the throttle, brake, and steering of the vehicle. More details of the control techniques
can be found in the surveys [80, 59].

1.3 Smart infrastructure and Cooperative Driving

Smart infrastructure can be defined as an interconnected sensing network that has self-awareness
and self-monitoring, which can provide real-time information about the system [76]. It acquires
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data in the real world and analyzes them in real time. With the sensor data, the smart infrastructure
can make decisions in an autonomous way and near real time [78]. It may also provide digital
information to different road users, such as vehicles, pedestrians, and cyclists. When it comes
to AVs, it is expected that the smart infrastructure can provide useful guidance or warnings to
AVs to assist their autonomy stack. The decision making applications (e.g. traffic signal control)
in the smart infrastructure can also be integrated with autonomous driving to improve the whole
transportation system efficiency.

Instead of relying on single AV intelligence, cooperative driving introduces the mechanism for
multi-vehicle or vehicle-infrastructure collaboration. Connected by communication links, differ-
ent traffic agents (e.g. vehicles, infrastructure) can share information with each other and make the
decision jointly, targeting achieving global optimality instead of local optimality. Researchers and
developers have focused on cooperative driving for a decade. In 2011, Grand Cooperative Driv-
ing Challenge is held in Netherlands to accelerate cooperative driving technology [36]. The event
object is to complete the challenge quickly with V2V and V2I technology. In this dissertation, co-
operative driving mainly refers to vehicle and infrastructure coordination (i.e. infrastructure-based
cooperative driving). Infrastructure-based cooperative driving is the mechanism to incorporate
smart infrastructure and autonomous driving to benefit the autonomy stack of AVs and improve
the whole transportation system performance.

The cooperative scheme between the smart infrastructure and AVs has attracted attention from
both academia and industry. The INFRAMIX project defines five levels of smart road infrastruc-
ture ([22]), from conventional road infrastructure without any information (Level E) to cooperative
driving (Level A), where real-time information on vehicle movements and guidance of AVs’ path
planning are provided. During the upgrade of the levels, more information are provided by the
smart infrastructure, such as static digital information or map support (Level D), dynamic dig-
ital information (Level C), and cooperative perception information (Level B). Federal Highway
Administration deployed the CARMA project to enable further capabilities of cooperative driv-
ing automation users to interact with roadside infrastructure for research and development (R&D)
purposes ([94]). The products of CARMA include CARMA Cloud, CARMA Platform, CARMA
Messenger, and CARMA Street, which provide necessary software for cooperative driving research
and testing.

There are also other real-world examples of cooperative driving. In 2021, BAAI-VANJEE
Roadside Dataset is published, which provides a benchmark dataset for roadside perception system
[119]. With birdview LiDARs and cameras installed at urban intersections and highways, LiDAR
data and RGB images are captured and labeled to benefit the tasks of 2D object detection, 3D object
detection, and sensor fusion in the cooperative driving research society. At a two-lane roundabout
in Ann Arbor, Michigan, USA, cameras and radars are equipped at the smart infrastructure with
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edge computing devices ([125]). All the road users approaching and entering the roundabout are
detected and tracked, and the detected trajectories can be utilized to assist the AVs’ trajectory
planning ([127]).

There are several critical research questions on infrastructure-based cooperative driving. What
information should be provided by the smart infrastructure to assist the CAVs? What is the commu-
nicate protocol for message delivery? How can the smart infrastructure prevent cyber attacks when
delivering the message? What should be the computational structure of the cooperative driving
framework? In this dissertation, the main focus is to figure out appropriate guidance or warnings
that can be provided by the smart infrastructure to assist the trajectory planning of the CAVs.

1.4 Problem Statement

An infrastructure-based cooperative driving framework is illustrated by Figure 1.4. The key con-
cept of this cooperative driving framework is that the smart infrastructure provides guidance or
warnings to assist the CAV’s trajectory planning module. The top pipeline denotes the prediction
and planning module of the CAV with detected object information from on-board sensors, and
the bottom pipeline represents the cooperative planning module with detected object information
from infrastructure sensors. In the bottom pipeline, given the object detection results, the state es-
timation module estimates different road users’ states and tracks their configurations in real time.
The traffic signal optimization takes the object state estimation results as the input and optimizes
the traffic signals. The traffic signal optimization can be integrated with CAV motion planning so
that traffic signals and CAVs’ trajectories can be optimized jointly, and guidance can be provided to
CAV motion planning module to benefit its mobility performance. Besides, the smart infrastructure
can also enhance the microscopic traffic situational awareness for CAVs by leveraging real-time
and historical trajectories from a global view (i.e. bird view). Road users’ behavior prediction
results serve as one of the most important information of the CAV’s trajectory planning module,
especially for its collision avoidance. Different from the onboard sensors of CAVs, the bird view
sensors installed at the smart infrastructure can observe all road users without any occlusion in a
global view to provide better prediction. In addition, historical trajectories that have similar behav-
ior patterns at a specific location (i.e. a complex signalized intersection) can be stored by the smart
infrastructure, and local road users’ behaviors can be better predicted with these historical trajec-
tories. The anomaly detection module identifies abnormal trajectories caused by cyber attacks and
generates warnings to the ego CAV. The collision warning module predicts if a crash or near-crash
event may happen and warns the ego CAV in some high accident zones. As a supervisor, the smart
infrastructure can help identify abnormal behaviors or crash events by comparing the observed
behaviors of the ego CAV and of the surrounding Principle Other Vehicle (POV)s with historical
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vehicle behaviors in real time. In the end, guidance and warnings can be generated from the smart
infrastructure (i.e. the bottom pipeline) to serve the motion planning of CAVs.

Figure 1.4: An infrastructure-based cooperative planning framework

In this dissertation, we focus on three applications (i.e. purple rectangles in Figure 1.4) of this
infrastructure-based cooperative driving framework, including integrated control, anomaly detec-
tion, and POV trajectory prediction. Figure 1.5 illustrates the operating scenario of this thesis. In
the figure, the red vehicle represents Regular Vehicle (RV), and the yellow vehicle represents CV.
The blue vehicle denotes the ego CAV, whose trajectory planning result is shown as the blue dash
line. The yellow bar in the figure denotes that the current traffic signal status is yellow. In this
yellow running scenario, the RV in front of the ego CAV is a POV since its behavior may affect
the trajectory planning of the ego CAV. In the integrated control application, the CAV trajectory
planning (i.e. blue dash line) can be integrated with the traffic signal optimization to improve the
mobility and fuel consumption performance of the whole transportation system. When it comes to
the cyber security issue, a cyber attacker may attack the surrounding vehicles of the ego CAV to
affect the CAV’s behavior, shown as the grey dash line. The anomaly detection module can identify
the abnormal vehicle trajectories and generates warnings. The POV behavior prediction module
predicts the trajectories of the POV as the red dash line, and such prediction results can serve as
important information to the ego CAV’s trajectory planning. More details of these applications are
introduced in the following paragraphs.

First, an integrated control framework is proposed to optimize the traffic signals in an urban
arterial and provide guidance for the trajectory planning of CAVs in a mixed traffic composition
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Figure 1.5: Operating scenario of this thesis

of CAVs, CVs, and RVs. The infrastructure is responsible for collecting traffic information, es-
timating and predicting traffic states, controlling and coordinating traffic signals, and providing
high-level trajectory guidance to CAVs, with the main objective of optimizing traffic flow and
improving mobility. Although great achievements have been made in the area of CAV-based inter-
section management, existing studies suffer from three major limitations, such as assuming 100%
penetration rate of CAVs ([9], [44], [32]), centralized formulation ([68], [121], [41]), or limited at
an isolated intersections ([70], [110]). This study aims to address these limitations by proposing
a hierarchical and implementation-ready integrated control framework. In this work, a bi-level
structure is adopted in which a centralized Corridor Coordinator is combined with decentralized
intersection level controllers. In the Corridor Coordinator, offsets of coordinated phases between
consecutive intersections are optimized based on link performance functions to promote two-way
coordination. At each intersection, CAV trajectory guidance in terms of the time of arrival and sig-
nal parameters (i.e., green split) are jointly optimized, given offset from the Corridor Coordinator
and traffic states estimated from CAVs/CVs and/or loop detector data. Optimized signal timing
plans and CAV time of arrival are broadcast in the form of SPaT messages and roadside safety
messages (RSMs) respectively. On the vehicle level, given the high-level guidance from the smart
infrastructure, each CAV is responsible for forming ad-hoc Cooperative Adaptive Cruise Con-
trol (CACC) platoons, generating detailed vehicle trajectories, and collision avoidance with CVs
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and RVs, with the main objective of ensuring safety and reducing fuel consumption and emissions.
Second, an anomaly detection model using learning from demonstration is proposed to iden-

tify abnormal trajectories when the localization module of a CV or AV is under cyberattacks (e.g.
GPS spoofing, sensor attacks). Although abundant research works on the cyber defense for ve-
hicle localization can be found in the literature ([53], [74], [88]), most defense methods in the
literature targeting GPS spoofing attacks or remote sensor attacks are signal processing methods,
which require access to the physical signal receivers and may not be readily available in the real-
world driving environment. Instead of investigating physical GPS or LiDAR signals, the domain
knowledge of transportation and vehicle engineering can be leveraged to detect the anomalies.
Following this direction, this work proposes a defense model that can detect abnormal vehicle tra-
jectories using transportation and vehicle engineering domain knowledge. The maximum entropy
inverse reinforcement learning is adopted to learn the normal driving behaviors of the CV or AV
from the historical trajectory dataset. To determine whether the observed CV or AV trajectories
are under attack, a statistical method is developed to compare the observed trajectory with the pre-
dicted optimal trajectory based on the learned model, by training an anomaly classifier using the
decision tree.

Third, a hierarchical POV behavior prediction framework incorporating traffic signal informa-
tion is proposed to predict vehicle behaviors in urban scenarios with interactive agents. The urban
traffic scenarios are divided into two categories, independent scenarios and interactive scenarios.
A yellow light running scenario is taken as an example of the independent scenario, and a right
turn scenario at the roundabout is taken as an example of the interactive scenario. The behavior
prediction framework includes a discrete intention prediction module and a continuous trajectory
prediction module. A Bayesian Network (BN) is adopted for the discrete intention prediction
to predict the intention of the POV at each time step and the associated probability distribution.
According to the results of the discrete intention prediction, continuous trajectory prediction is
conducted with maximum entropy Inverse Reinforcement Learning (IRL) to produce a precisely
predicted trajectory. In the interactive scenario, a potential game framework is proposed to explic-
itly model the interaction between vehicles. Some existing literature also adopts IRL to conduct
trajectory prediction, but they only manage to learn an average driving model to make the pre-
diction, neglecting the difference among human drivers (e.g. aggressive/mild) ([62], [98]). In
this work, an average human driving model is learned by IRL offline, and during the online pre-
diction, a driver characteristic is applied to update the model to capture the individual difference
between drivers. The contribution of this work is to propose a novel hierarchical behavior predic-
tion framework with consideration of traffic signal information and interactive agents, in which
the interaction is explicitly modeled by a potential game framework. Besides, a mixture of offline
learning and online prediction strategies are adopted to capture the different driving preferences
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among different human drivers so that the predictor can vary to accommodate aggressive drivers
or mild drivers.

1.5 Thesis Overview

This thesis introduces a cooperative driving framework, in which the smart infrastructure provides
guidance / warnings to CAVs to assist their trajectory planning. It focuses on three applications:
integrated control, anomaly detection, and POV behavior prediction. The rest of this thesis is
organized as follows.

Chapter 2 introduces an integrated control framework. The smart infrastructure optimizes the
traffic signals and provides high-level guidance to CAVs in a traffic corridor under mixed traffic
conditions, and the CAVs plan their detailed trajectories given the guidance. The vehicle level
model of the CAVs, the intersection level model of traffic signal and guidance optimization, and
the corridor level traffic signal coordinator are introduced consecutively. Simulation experiments
are conducted to evaluate the performance of the integrated control.

In Chapter 3, an anomaly detection method is proposed to identify abnormal trajectories when
the cyberattacks of the localization module affect the trajectory planning of the CAVs. Learning
from demonstration with IRL is adopted to learn the driving model of the normal driving behaviors.
Then, the anomaly classifier is introduced in which a statistical method is developed to compare the
observed trajectory with the predicted optimal trajectory based on the learned model. The anomaly
detection method is validated on two real-world data sets for CV experiments and AV experiments,
respectively.

Chapter 4 focuses on the POV behavior prediction application to predict the behaviors of the
vehicles that may affect the trajectory planning of the CAVs. Both discrete intention prediction
and continuous trajectory prediction of POVs are conducted, in an independent driving scenario
(yellow light running scenario) and an interactive driving scenario (roundabout right turn scenario).
The behavior prediction framework is evaluated in two real-world data sets collected by infrastruc-
ture sensors at urban scenarios.

Finally, the conclusions and future research directions are provided in Chapter 5.
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CHAPTER 2

Integrated Control of Traffic Signals and CAV
Trajectories

2.1 Introduction

2.1.1 Background and Related Work

Enabling technologies of CAVs bring new opportunities to the urban transportation system, espe-
cially at signalized intersections, which are considered as the bottlenecks of the traffic network.
CAVs not only provide a new source of data for traffic management but also can be controlled as
actuators to improve traffic flow.

Leveraging proactively broadcast data (e.g., location and speed) from CAVs as a new data
source, existing studies investigate how to improve the signal control system at different scales.
Different methods are developed to adjust signal timing plans dynamically based on traffic states
measured from CAV data to optimize predefined performance measures (e.g., total delay, and
throughput). For example, at the single intersection level, a two-level optimization problem is
solved to minimize the total delay or queue length [31]. At the corridor level, a simulation-based
method is introduced to predict vehicle delay with trajectory data to optimize the signals, and
results show the method outperforms coordinated actuated signal control [38]. At the network
level, a distributed optimization approach is proposed to control traffic signals, assuming each
intersection can receive CV data and exchange information with its neighboring intersections [9].

On the other hand, as actuators, CAVs can be controlled to form compact platoons such as
CACC to improve mobility [29, 27, 64]. At signalized intersections, CAVs can plan vehicle tra-
jectories in an energy-efficient way, with the traffic signal and traffic state information (i.e., eco-
driving). In [44], to obtain the optimal vehicle trajectory, a multi-stage optimal control formulation
is proposed with the consideration of vehicle queue and traffic signal status, for a single CAV.
[108, 112, 11] focus on eco-CACC which optimizes the trajectories of CAV platoons. Not only is
the trajectory of the platoon leading CAV optimized, the platoon splitting and merging behaviors
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are also considered. A field test is conducted in [11] that shows the benefits of eco-CACC.
In the past few years, researchers have proposed a new concept that integrates CAV-based signal

optimization and CAV trajectory planning together, to further improve the intersection operation
and reduce energy consumption. Li et al. are among the first to propose the idea of integrated
optimization. In this work, CAVs follow the path optimized by signal controllers [68]. In [110],
Xu et al. propose a two-level method, in which the upper level optimizes the signals and vehi-
cle arrival time, and the lower level optimizes engine power and brake force. Yu et al. propose
a comprehensive framework for the cooperative driving problem, which considers detailed signal
parameters and vehicle trajectories with lane changing behavior at isolated intersections [120]. In
[32], a two-stage optimization problem is formulated, in which traffic signal is optimized with dy-
namic programming, and vehicle trajectory is controlled based on the optimal control theory. Yu
et al. [121] extend the integrated control to a corridor level. A coordinated control mechanism
of CAV trajectories is developed in a centralized formulation. A Mixed Integer Linear Program-
ming (MILP) problem is formulated to plan the complete trajectory including both longitudinal
and lateral behaviors of all the CAVs through the entire corridor given origins and destinations.
However, all the abovementioned studies require a 100% CAV environment. Recently, integrated
optimization in mixed traffic conditions is proposed by a few researchers. [41] considers the mixed
traffic of CAVs and RVs and develop a two-step control framework, in which step one optimizes
the signal timing plan with consideration of vehicle trajectories, and step two designs optimal
trajectories with the optimal signal plan. The study from [70] prioritizes CACC platoons at inter-
sections to improve the overall intersection performance. The objective of signal optimization is
to maximize the throughput of the intersection. Information on RVs is estimated by the location
and speed of CACC vehicles, which either cruise to pass the intersection or stop at the intersection
with constant deceleration.

2.1.2 Contribution and Organization of the Chapter

Although great achievements have been made in the area of CAV-based intersection management,
existing studies suffer from three major limitations. The first limitation lies in the problem setup
that in most of the studies a 100% CAV environment is assumed (e.g., [9, 44, 108, 112, 11, 68,
110, 120, 32, 121]), which requires all vehicles to be connected and highly automated (i.e., SAE
Level 4 or higher). Second, usually a centralized problem is formulated (e.g., [68, 121, 41]).
This requires heavily instrumented infrastructure with advanced sensors for infrastructure-based
perception and high-performance computing devices for real-time computation. Neither of these
can be achieved shortly. A transition period from manually driven vehicles to CAV will exist for a
long time and current infrastructure with legacy sensors (e.g., loop-detectors) may even have longer
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lifecycles before being replaced. Finally, most of the studies are limited at isolated intersections or
simply adding up single intersections without considering coordination (e.g., [9, 70]). However,
an extensive literature has shown the importance of coordination at signalized corridors.

Figure 2.1: Overview of the Integrated Control Framework

This study aims to address these limitations by proposing a hierarchical and implementation-
ready cooperative driving framework with a mixed traffic composition of CAVs, CVs, and RVs.
In our study, CAVs refer to vehicles that proactively broadcast information and can be controlled
to generate specified trajectories. CVs and RVs are driven by human drivers, which are not con-
trollable. However, CVs proactively broadcast information to other vehicles and the infrastruc-
ture, while RVs can only be observed by infrastructure detectors at fixed locations. A conceptual
overview of the proposed cooperative driving framework is shown in Figure 2.1. The infrastructure
is responsible for collecting traffic information, estimating and predicting traffic states, controlling
and coordinating traffic signals, and providing high-level trajectory guidance to CAVs, with the
main objective of optimizing traffic flow and improving mobility. A bi-level structure is adopted
in which a centralized Corridor Coordinator is combined with decentralized intersection level con-
trollers. In the Corridor Coordinator, offsets of coordinated phases between consecutive intersec-
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Table 2.1: Comparison between the proposed model and existing studies

Literature
Traffic
Signal
Opt.

Vehicle
Trajectory
Opt.

CACC
Platoon-
ing

Isolated
Intersec-
tion

Corridor /
Network
Level

100%
CAV
PR

Mixed
Traffic
Condition

[31] X X X
[38] X X X
[9] X X X
[44] X X X
[108, 112, 11] X X X X
[68, 110]
[120, 32] X X X X

[41, 69, 54] X X X X
[121] X X X X
[70] X X X X X
Our Study [115] X X X X X

tions are optimized based on link performance functions to promote two-way coordination. At
each intersection, CAV trajectory guidance in terms of the time of arrival and signal parameters
(i.e., green split) are jointly optimized, given offset from the Corridor Coordinator and traffic states
estimated from CAVs/CVs and/or loop detector data. Optimized signal timing plans and CAV time
of arrival are broadcast in the form of SPaT messages and roadside safety messages (RSMs) re-
spectively. On the vehicle level, each CAV is responsible for forming ad-hoc CACC platoons,
generating detailed vehicle trajectories, and collision avoidance with CVs and RVs, with the main
objective of ensuring safety and reducing fuel consumption and emissions. Meanwhile, CAVs and
CVs broadcast BSMs.

The main features of the proposed framework include 1) It is designed for mixed traffic con-
ditions, where CAVs, CVs, and RVs co-exist on the roadway. 2) It applies to the corridor level
with multiple intersections. Coordination between intersections is explicitly modeled. 3) It is
implementation-ready and does not require highly automated vehicles nor heavily instrumented
infrastructure. Current commercial vehicles with advanced driving assistance systems (ADAS)
such as GM Super Cruise and current infrastructure with loop detectors are sufficient to deploy
the proposed cooperative driving function. Other than that, only a wireless communication sys-
tem (e.g., Dedicated Short Range Communication, cellular network, or hybrid) is required at both
vehicle and infrastructure sides. The V2X communication network has been implemented and
tested extensively in the past few years. 4) The proposed framework combines centralized and
distributed control concepts, where the infrastructure provides high-level trajectory guidance to
the CAVs while detailed trajectories are generated by each vehicle. This design can distribute the
computational burden to achieve real-time performance, without expensive investments such as
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high performance computing. The major differences between the proposed framework and some
existing studies are summarized in Table 2.1.

In the following, we will first introduce the overall system structure, and data flow of the pro-
posed framework (Section 2.2), followed by detailed modeling approaches of the three levels:
vehicle-level (Sections 2.3), intersection-level (Sections 2.4), and corridor-level (Sections 2.5).
Then we will show simulation experiment results and comparison to the state-of-practice inter-
section management method to demonstrate the improvements and benefits (Section 2.6). Finally,
Section 2.7 concludes the chapter and lays out further research directions. While notations are
introduced in each section, a list of complete notations is provided here for readers’ convenience.

Table 2.2: Variables and Notations of Integrated Control

Variables Meaning Unit

General Notations

i Intersection index.

j Lane index.

ϕ

Signal phase index. A lane-to-phase mapping ϕ = f(j) maps a
lane to its corresponding phase. In the ring-barrier diagram,
ϕβγσ is used to indicate that the phase belongs to ring β,
barrier γ. When σ = 1, the phase is the lead phase, and when
σ = 0, the phase is the lag phase.

k
Vehicle group index within a lane. A CAV platoon, a single
CV or a single RV is considered as a vehicle group.

s
Vehicle position index within a vehicle group. For a single
CV or RV, s = 1.

Vehicle level model Parameters

v Vehicle current speed m/s

∆d
Distance to the front vehicle. The front vehicle is defined as
the immediate downstream vehicle.

m

ṽ Speed of the front vehicle. m/s

ã Acceleration of the front vehicle. m/s2

a+max Maximum acceleration m/s2

a−comfort Comfortable deceleration m/s2

v̄
Average speed during the trigonometric trajectory
planning period

m/s
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v0
Initial vehicle speed of the trigonometric eco-trajectory
planning period

m/s

a0
Initial acceleration of the trigonometric
eco-trajectory planning period

m/s2

dstop Distance to the stop bar m

tarr Time of arrival at the stop bar. s

m, n Model parameters. Detailed explanation can be found in [16]

jerkmax Maximum allowed jerk m/s3

vmax Speed limit. m/s

Γ
′ Green window during which a vehicle can pass

the intersection
s

tleave
Time interval from the start of the green to the time
when the front vehicle leaves the intersection.

s

tqueue Time when the vehicle arrives at the end of the queue s

te Earliest time the vehicle can arrive at the stop bar s

Intersection level model parameters

Decision Variables

Djks Delay of the sth vehicle in vehicle group k in lane j s

Njk Number of CAVs in vehicle group k in lane j

θϕ Green split of phase ϕ. s

gremϕ Remaining green time of phase ϕ. s

rremϕ Remaining red time of phase ϕ. s

ugjks

Binary variable that indicates whether the sth vehicle in
vehicle group k in lane j can pass the intersection or not
when the approaching phase ϕ = f(j) is green

urjks

Binary variable that indicates whether the sth vehicle in
vehicle group k in lane j can pass the intersection or not
when the approaching phase ϕ = f(j) is red

Parameters

hCACC Headway between two CAVs (i.e., CACC headway) s

hRV

Headway between two regular vehicles
(i.e., car-following headway)

s

ddetectj Distance from the loop-detector to the stop bar in lane j m
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∆tdetectjks

Elapsed time after the sth vehicle in vehicle group k in lane j
passes the loop detector

s

C A common cycle length s

gelpsϕ

Green elapsed time of phase ϕ if it is green and 0 if the phase
is red

s

relpsϕ Red elapsed time of phase ϕ if it is red and 0 if the phase is green s

tlostϕ Lost time of phase ϕ. s

Igϕ Binary parameter. 1 if phase ϕ is green, and 0 otherwise.

ICACC
jk

Binary parameter. 1 if vehicle group k in lane j consists of
CAVs and 0 otherwise

tgeiϕ End of green time of the phase ϕ at intersection i s

Nveh Number of vehicles at the intersection

Nphase Number of phases at the intersection

Nplatoon Number of platoons at the intersection

Corridor level model parameters

Decision Variables

ξi,i+1

Offset of the coordinated phase from intersection i to intersection
i+ 1.

s

αiϕ∗
Arrival time of the first vehicle in the primary platoon of
coordinated phase ϕ∗ of intersection i.

s

Dw Link performance function of scenario w. s

Parameters

ḡiϕ∗
Average green split of coordinated phase ϕ∗ of intersection i.
(i.e., ϕ∗ = 2 for phase 2 and ϕ∗ = 6 for phase 6)

s

r̄iϕ∗ Average red duration of coordinated phase ϕ∗ of intersection i. s

tstartiϕ∗ Start time of coordinated phase ϕ∗ of intersection i. s

δiϕ∗
Upper bound of offset adjustment of coordinated phase ϕ∗ of
intersection i.

s

ttraveli,i+1 Free flow travel time from intersection i to intersection i+ 1. s

qiϕ∗ Current queue length of coordinated phase ϕ∗ of intersection i. m

q′iϕ∗
Queue length at the start of the green of coordinated phase ϕ∗ of
intersection i.

m

Viϕ∗ Average volume of coordinated phase ϕ∗ of intersection i. vph
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Ψiϕ∗
Number of vehicles in the primary platoon of coordinated phase
ϕ∗ of intersection i.

eiϕ∗
Time point when the secondary platoon of coordinated phase ϕ∗

of intersection i is fully discharged.
s

piϕ∗
Platoon length in time (s) of coordinated phase ϕ∗ of
intersection i.

s

yiϕ∗ V/C ratio of coordinated phase ϕ∗ of intersection i. %

ζiϕ∗
Right turning ratio of the approach containing the coordinated
phase ϕ∗ of intersection i.

%

ξiϕ∗
Left turning ratio of the approach containing the coordinated
phase ϕ∗ of intersection i

%

Ninter Number of intersections in the system

2.2 Framework Overview

In this section, the proposed system component diagram is described in detail. The system consists
of three main components: roadway, intersection, and corridor as shown in Figure 2.2, which
correspond to the three conceptual levels in Figure 2.1.

Figure 2.2: System Component Diagram

On the roadway, there are three types of vehicles: CAV, CV, and RV. All vehicles generate
detector calls when they pass the loop-detectors, which are assumed to be installed at the entrance
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of each link. CAVs and CVs also broadcast BSMs to enable V2V and V2I communication. The
longitudinal controls of the CAV are generated by the trajectory planning models, which include
eco trajectory planning, CACC platooning behaviors, and ACC. These models are introduced in
section 2.3. The trajectory planning models are not responsible for lateral maneuvers. If necessary
lateral maneuvers are required (e.g., turning at intersections), the system would have to give vehicle
control back to the driver.

At the intersection, after the RSU receives the data (i.e., BSM and detector data), the Vehicle
Localization algorithm maps the BSM and detector data on the intersection map to identify lane,
approach, and approaching signal phase [30]. The Queuing Profile Prediction algorithm takes SPaT
and approaching vehicle information from BSM and detectors to predict the queuing dynamics.
The predicted queuing dynamics, SPaT data, and offset information from the corridor level are
used to optimize the signal timing plan and the time of arrivals of CAVs, which are sent to the
signal controllers to control the traffic signals and to CAV to generate speed profiles, respectively.
We consider that the RSU has computation capabilities to execute the optimization model. The
details of the integrated optimization at the intersection level are introduced in section 2.4. The
green splits of the coordinated phases of each intersection are sent to the corridor level for offset
optimization, introduced in section 2.5. The offset optimization algorithm can either reside in one
of the intersections (e.g., the master intersection) or at the traffic management center (TMC). The
signal controllers at the intersection broadcast SPaT data and generate loop detector data.

2.3 Vehicle Level Models

In this section, vehicle level models are introduced. The vehicle level models are responsible for
eco-trajectory planning, ad-hoc CACC platoon formation, and collision avoidance under uncer-
tainties. Given the time of arrival from the infrastructure side (i.e., through V2I communication),
each CAV plans its own trajectory. Ad-hoc CACC platoons can be formed, and split dynamically
depending on the assigned time of arrival, vehicle position in the platoon, and behaviors of uncon-
trolled vehicles (i.e., CVs and RVs). For the leading vehicle in a CACC platoon, a trigonometric
speed profile family is adopted and one of four eco scenarios (i.e., speed up, cruise, slow down,
and stop) is chosen to generate an eco speed profile. To address the uncertainties in trajectory pre-
diction, an ACC model is applied to each CAV as a safeguard to avoid collisions. To consolidate
different behaviors of a CAV, a state transition diagram is designed to represent different operating
modes and their transition relations.
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2.3.1 CAV States and Transitions

Five states are defined for each CAV: free flow, intelligent follow, optimized control, stop, and
launch. When a CAV platoon is approaching a signalized intersection, according to different traffic
and signal conditions, it may experience different operating scenarios. A CAV platoon can be
formed in two ways. First, when a group of CAVs enter the network in the same lane consecutively,
a platoon will be naturally formed. Second, if the distance from a CAV to its leading CAV platoon
becomes small, the CAV will merge into the leading platoon. This usually happens when the
leading platoon slows down for the red light, or when an RV between the CAV and the platoon
makes a lane change.

Different operating scenarios lead the CAVs to different states or transit from one state to an-
other. The description of state transitions and corresponding triggers are shown in Figure 2.3a. The
states are switched dynamically based on different criteria including vehicle speed, whether within
communication range, car following distance, and traffic signal timing. To better illustrate the tran-
sitions, Figure 2.3b shows a CAV platoon of three vehicles passing the intersection as an example,
which describes the most common operating scenario. Before the CAVs enter the communication
range, they are in the free-flow state. When the platoon enters the communication range, the lead-
ing vehicle (blue car) switches to the optimized control state, and the following vehicles (red cars)
switch to the intelligent follow state. In the optimized control state, the leading CAV can choose
one of four scenarios: accelerate (green dash line), cruise (cyan dash line), decelerate (orange dash
line), and plan to stop (red line). In the figure, the platoon needs to stop after an RV (i.e., black
car). When a CAV stops (e.g., v < 5mph), it switches to the stop state. After the signal turns
to green, the CAVs switch to the launch state and pass the intersection. Once the vehicle passes
the intersection, it switches back to the free flow state. If a CAV doesn’t need to stop, it switches
directly from either optimized control or intelligent follow state to free-flow state after passing the
intersection. In addition, in the intelligent follow state, if a CAV determines that its front vehicle
can pass the intersection but it cannot, it switches to the optimized control state to plan a stop speed
profile. Consequently, the original platoon is split into two smaller platoons. In the optimized con-
trol state or launch state, if a CAV is approaching a leading CAV platoon, it will merge into the
leading platoon and switch to the intelligent follow state if the distance is smaller than a threshold
(e.g., 30m).

Next, we introduce the vehicle models in each state.
In the free flow state and launch states, the vehicle is controlled by an ACC algorithm, which

applies the Intelligent Driving Model (IDM) [57], shown in equation 2.1-2.2. The reference accel-
eration is determined by the distance to the front vehicle and the current speed of the CAV. In the
equations, ∆d is the distance to the front vehicle and dmin represents the minimum safety distance.
v∗ is the desired speed and aref is the desired acceleration. δ is a model parameter that usually is
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(a) State transition diagram

(b) CAV operation scenarios

Figure 2.3: CAV Transition Diagram and Operating Scenarios
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set to 4.

aref = a+max (1− (
v

v∗
)δ − (

d∗

∆d
)2) (2.1)

d∗ = dmin + vhref +
v(v − ṽ)

2
√
a+maxa

−
comfort

(2.2)

In the intelligent follow state, the CAV is a following member of a CACC platoon. The accel-
eration of the CAV aref is calculated by a CACC model in ([103]), shown in equation 2.3, where
arefv is the reference acceleration based on the speed difference and arefd is the reference accel-
eration based on the distance difference, calculated in equation 2.4 and equation 2.5 respectively.
dCACC is the reference distance between two CACC vehicles. Note that in this model, “perfect
following” is assumed, which ignores communication delay and string instability. The simplifica-
tion is made for simulation of a large network. Readers can refer to [29, 27, 64] for more detailed
CACC models.

aref = min(arefv , arefd) (2.3)

arefv = k(v∗ − v) (2.4)

arefd = kaã+ kv(ṽ − v) + kd(∆d− dCACC) (2.5)

2.3.2 CACC leading vehicle trajectory planning

In the optimized control state, a trigonometric eco speed profile is generated for CACC leading
vehicles. Note that a CACC platoon can consist of only one CAV. Based on the received time
of arrival from the intersection controller, one of the four scenarios, shown in Figure 2.3b will be
chosen. More details on how to choose the scenarios can be found in [114]. Given the terminal
time tarr (i.e. time of arrival at the intersection), speed profiles of the other three scenarios follow
the trigonometric form to reduce fuel consumption and emissions, from which analytical solutions
can be derived. Collision avoidance is added to the optimized control state that when the front
vehicle of a CAV is an RV or CV and the car-following distance is small (e.g. an RV makes a cut-
in in front of the subject CAV), the planned eco-trajectory is interrupted, and the CAV applies the
IDM, to plan its trajectory to avoid collisions. That means the CAV chooses a more conservative
acceleration between the planned eco-trajectory and the IDM.

The original trigonometric eco-trajectory planning model is proposed by [16], which generates
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a smooth vehicle trajectory giving terminal time (i.e., time of arrival at the intersection) to reduce
fuel consumption and emissions. The terminal time (tarr) is bounded by a green window, which
defines the earliest and latest time the vehicle can arrive at the intersection, based on signal status
and queue discharge time [114]. In this chapter, initial acceleration is considered, which is always
assumed to be zero in the original algorithm. This original algorithm works when the CAV is
cruising towards an intersection at a constant speed. However, if the trajectory planning is executed
when the CAV is accelerating or decelerating or the trajectory needs to be re-planned because of
an updated green window, the zero initial acceleration setting will lead to a discontinuity in the
acceleration profile. To address this issue, a new segment of the trigonometric profile v1(t) is
added to first bring the acceleration back to 0. Then the eco planning algorithm is applied, as
shown in Eqs. 2.6-2.12.

v1(t) =
a20

jerkmax

sin(
jerkmax

a0
t) + vinit, t ∈ [0, to) (2.6)

v2(t) =


vp − vrcos(m(t− to)) t ∈ [to, tp)

vp − vr
m
n
cos[n(t− to +

π
2n

− tp)] t ∈ [tp, tq)

vp + vr
m
n

t ∈ [tq, tarr)

(2.7)

vp =
dstop − ( πa0vinit

2jerkmax
+

a30
jerk2max

)

tarr − to
(2.8)

vr = vp − (vinit +
a20

jerkmax

) (2.9)

to =
πa0

2jerkmax

(2.10)

tp = to +
π

2m
(2.11)

tq = to +
π

2m
+

π

2n
(2.12)

2.4 Intersection Level Models

The intersection controller is responsible for estimating and predicting traffic states, optimizing
traffic signal parameters, and the time of arrival of CAVs. The methodology of traffic state estima-
tion and prediction can be found in our previous work [114], which predicts the queuing dynamics
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with CV and/or loop-detector data, and estimates total vehicle delay using the shockwave profile
model [109] and input and output model [92]. Each vehicle is first mapped at the lane level and
sorted according to its estimated distance to the stop bar. The location and speed of each vehicle
are obtained directly from the BSM if it is a CV or CAV, or estimated if it is an RV, which is in-
troduced later in equation 2.14. After the localization, the traffic state estimation algorithm utilizes
shockwave models to calculate current queue length and estimate the maximum queue length and
discharge time of the queue based on signal information. The prediction results not only affect the
number of vehicles that will be served during green interval for each approach, but also provide
a green window to the CAVs, which serves as the lower and upper boundaries of the time arrival
assignments. The beginning of the green window for a CAV is defined as the time point when the
CAV’s front vehicle passes the intersection after the green start. The end of the green window is
the same as the green end. With the estimated traffic state, a MILP problem is formulated in this
section to jointly optimize traffic signal parameters and time of arrivals of CAVs.

The objective of the joint optimization is to minimize total delay and improve the efficiency of
the intersection operation as shown in 2.13. λδϕ∗ in the objective is used as a soft constraint for
dynamic offset allocation, which will be explained in the signal constraints. The decision variables
include signal parameters and time of arrivals of each CAV at the intersection.

minimize
∑

j

∑
k

∑
sDijk + λδϕ∗

s.t. Djks = tarrjks −
dstopjk1 +(s−1)hCACCvjk1

vmax
j

Signal constraints
Time of arrival constraints
CACC platoon split constraints

(2.13)

Where j is the lane index, and k is the vehicle group index in the lane. A vehicle group can
be either a platoon of CAVs, an RV, a CV, or a single CAV not in a platoon. s denotes the order
of a vehicle in the vehicle group, and for a single-vehicle group, s = 1. hCACC is the CACC
headway. The first constraint shows that the delay of each vehicle is equal to the total travel time
minus free-flow travel time to the intersection. Notice that for the following vehicles in a CAV
platoon, their free-flow travel time can be calculated based on the free-flow travel time of the
leading vehicle plus the CACC headway. Other constraints include traffic signal constraints for the
dual-ring barrier controller structure, time of arrival constraints that determine whether a vehicle
can pass the intersection during the current cycle or next cycle, and CACC platoon split constraints
that determine whether a CAV platoon should split or not. Before we introduce the details of the
constraints, the estimation of dstopjks and vjks is presented.

CVs and CAVs broadcast BSMs, which include accurate location and speed information (i.e.
dstopjks and vjks) at each time step. For RVs, their locations and speeds are recorded by the entrance
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loop detector when they enter the link. After RVs pass the loop detector, equation 2.14 is used to
estimate the locations and speeds at each time step, assuming that the RVs are traveling with the
speed limit vmax

jks . Where, ddetectj denotes the distance from the detector to the stop bar of lane j.

dstopjks = max[(ddetectj − vmax
jks ∆tdetectjks , 0)] (2.14)

2.4.1 Signal Constraints

Signal constraints mainly represent the standard NEMA dual-ring barrier structure, as shown in
Figure 2.4.

Figure 2.4: NEMA Ring Barrier Structure of Signal Timing

Equations 2.15-2.19 show the signal constraints, in which θϕ is the green split of phase ϕ and
C is a common cycle length. The intersections in the corridor are divided into a master intersec-
tion and other intersections. The master intersection applies equations 2.15-2.18, where the cycle
length is fixed and the reference point (i.e. start of the coordinated phase) does not change. Other
intersections adopt equations 2.16-2.19, in which their reference points are adjusted based on the
optimized offset from the corridor coordinator. In this way, the cycle lengths of such intersections
are dynamically adjusted as well, according to the assigned offsets. To better illustrate the idea,
an example of the signal timing of the coordinated phase is shown in Figure 2.5. The cycle length
of the master intersection is 100 seconds in this example. The coordinated phase of intersection 2
starts 3 seconds later than the coordinated phase of the master intersection, so initially, the offset
is 3 seconds. After the optimization of the offset, the new optimized offset becomes 5 seconds,
so the reference point of intersection 2 is adjusted accordingly. In this way, the cycle length of
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intersection 2 extends to 102 seconds. Note that since the offset adjustment is small, the transition
between different offsets is done within one cycle by adjusting the green split of other phases. By
varying the offset and cycle length accordingly, different platoon sizes and platoon arrival times
are accommodated.

Figure 2.5: Signal Timing of the Coordinated Phase

A lane-to-phase mapping function ϕ = f(j) maps the lane index to 8 phases in the dual-ring
structure. gelpsϕ denotes the elapsed green time of phase ϕ, and if phase ϕ is red, gelpsϕ = 0. tlostϕ

denotes the lost time of all phases, including the duration of the yellow interval and all-red interval.
Igϕ is a binary variable, which equals to 1 if phase ϕ is green, and 0 otherwise. Equation 2.15 shows
that the summation of the green splits in each ring should be equal to the cycle length C. For each
barrier, the summation of the green splits of ring 1 should be equal to the summation of the green
splits of ring 2 (Eq. 2.16). Equation 2.17 shows that when phase ϕ is green, the summation of
the remaining green time gremϕ , the elapsed time gelpsϕ , and the lost time tlostϕ should be equal to the
green split θϕ. In addition, the remaining red time of phase ϕ, rremϕ is 0. When phase ϕ is red, the
remaining green time gremϕ is equal to 0, and the remaining red time rremϕ should be equal to the
summation of the remaining green time grem

ϕ̃
of the current green phase ϕ̃, the lost time tlost

ϕ̃
, and

the summation of the green split
∑

ϕ̄ θϕ̄ of phases after ϕ̃ and before ϕ (Eq. 2.18). ϕ̄ denotes the
phase(s) that turns to green before phase ϕ in the same cycle.

To accommodate varying traffic demands from the side street and upstream intersection, the
offset is not fixed. With the offset received from the corridor-level coordinator, equation 2.19
determines the start time of the coordinated phase, which is the reference point. Taking intersection
i as an example, the green start of one coordinated phase of the next cycle should be equal to the
offset between intersection i-1 to intersection i (i.e. ξi−1,i) plus the green start of the coordinated
phase of intersection i − 1 (i.e. tstart(i−1)ϕ∗).

∑
ϕ̄∗ θiϕ̄∗ is the summation of the green split from the
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next phase until the coordinated phase. An adjustment bound δ is added in the objective function
as a soft constraint (i.e., λδixϕ∗). As a result, the start of the coordinated phase can vary within the
bound to guarantee the feasibility.

∑
γ

∑
σ

θϕ1γσ =
∑
γ

∑
σ

θϕ2γσ = C (2.15)

∑
σ

θϕ1γσ =
∑
σ

θϕ2γσ , γ = 1, 2 (2.16)

gremϕ =

θϕ − (gelpsϕ + tlostϕ ) Igϕ = 1

0 otherwise
(2.17)

rremϕ =

gremϕ̃
+ tlost

ϕ̃
+
∑

ϕ̄ θϕ̄ Igϕ = 0

0 otherwise
(2.18)

ξi−1, i + tstart(i−1)ϕ∗ − δiϕ∗ ≤ grem
iϕ̃

+ tlost
iϕ̃

+
∑
ϕ̄∗

θiϕ̄∗ ≤ ξi−1, i + tstart(i−1)ϕ∗ + δiϕ∗ , Igϕ∗ = 0. (2.19)

2.4.2 Time of Arrival Constraints

The time of arrival constraints are mainly used to determine whether a vehicle can pass the inter-
section during the current cycle or the next cycle, assuming the intersection is not oversaturated.
The details of the constraints are shown in equations 2.20-2.27. Two binary variables, ugjks and
urjks, are introduced for different phase states. ugjks = 1, when the current phase of lane j is green,
and the vehicle can pass the intersection during the cycle, and 0 otherwise. urjks = 1, when the
current phase of lane j is red, and the vehicle can pass the intersection during the upcoming green
phase, and 0 otherwise. Notice that the constraints with ugjks (Eqs. 2.20-2.21) are only valid when
the phase of lane j is green (i.e. Igf(j) = 1), and the constraints with urjks (Eqs. 2.22-2.23) are only
valid when the phase of lane j is red (i.e. Igf(j) = 0).

When the signal is green, if the time of arrival of the vehicle tarrjks is less than the remaining
time of the current green phase, the vehicle can pass the intersection during the current green
phase (equation 2.20). Otherwise, the time of arrival should be greater than the summation of
the remaining green time gremf(j) , the red duration of other phases, and the discharge time of the
queue tleavejks (equation 2.21). Similarly, when the signal is red if the time of arrival tarrjks is less than
rremf(j) + θf(j), the vehicle can pass the intersection during the next green phase (equation 2.23), and
the arrival time should be greater than rremf(j) + tleavejks (equation 2.24). Otherwise, the vehicle has to
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wait for another cycle (equation 2.22). It is assumed that the traffic demand is under-saturated and
no vehicle has to stop twice at an intersection (i.e., the arrival time should be less than rremf(j) +C)).
Equation 2.25 shows that the arrival time of a group leading vehicle (either CACC platoon leading
vehicle or, RV/CV) should be greater than the free-flow travel time, and equation 2.26 shows that
the arrival time of the group leading vehicle should be greater than the arrival time of its front
vehicle tarrj(k−1)Nj(k−1)

plus the RV headway hRV . Equation 2.27 shows that the discharge time of
the queue tleavejks should be equal to the number of vehicles in the queue times the headway (hRV or
hCACC).

M(1− ugjks) ≥ Igf(j)(t
arr
jks − gremf(j)) ≥ −Mugjks (2.20)

Mugjks ≥ Igf(j)(g
rem
f(j) +

(
C − θf(j)

)
+ tleavejks − tarrjks) ≥ −M

(
1− ugjks

)
(2.21)

M
(
1− urjks

)
≥

(
1− Igf(j)

) (
tarrjks − rremf(j) − C

)
≥ −Murjks (2.22)

Murjks ≥
(
1− Igf(j)

)
( rremf(j) + θf(j) − tarrjks) ≥ −M

(
1− urjks

)
(2.23)

tarrjks ≥ ( rremf(j) + tleavejks )(1− Igf(j)) (2.24)

tarrjk1 ≥
dstopjk1

vmax
ij

(2.25)

tarrjk1 ≥ tarrj(k−1)Nj(k−1)
+ hRV ,∀k > 1 (2.26)

tleavejks =
(
1− Igf(j)

)(
khRV u

r
jkNjk

+
∑

k′≤k

∑
s<Njk

hCACCu
r
jk′s

)
+Igf(j)

(
khRV (1− ugjkNjk

) +
∑

k′≤k

∑
s<Njk

hCACC(1− ugjk′s)
) (2.27)

2.4.3 CACC platoon split constraints

CACC platoon split constraints determine whether a CACC platoon needs to split or not based on
the remaining green time, shown in equation 2.28 - 2.29. When the signal is green (Igf(j) = 1)
and all CAVs in the platoon can pass the intersection during the current green phase (ugjks = 1),
the platoon does not split and tarrjks = tarrjk(s−1) + hCACC . Otherwise, the string splits and based
on equation 2.21, the new platoon’s arrival time should fulfill tarrjks ≥ gremf(j) +

(
C − θf(j)

)
+ tleavejks .
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Similarly, when the signal is red (Igf(j) = 0), if all the CAVs in the platoon can pass the intersection
during the upcoming green phase (urjks = 1), then the platoon does not split, and tarrjks = tarrjk(s−1) +

hCACC . Otherwise, the platoon splits and based on equation 2.24, the new platoon’s arrival time
should fulfill tarrjks ≥ rremf(j) + tleavejks . Equation 2.29 shows that for the platoon leading CAV, the
arrival time should be greater than the earliest arrival time given the acceleration/deceleration, and
jerk limits in the trigonometric eco-trajectory planning.

tarrjk(s−1) + hCACC + Igf(j)M
(
1− ugjks

)
+
(
1− Igf(j)

)
M

(
1− urjks

)
≥

tarrjks ≥ tarrjk(s−1) + hCACC − Igf(j)M
(
1− ugjks

)
−
(
1− Igf(j)

)
M

(
1− urjks

)
, s > 1

(2.28)

tejk1 −
(
1− ICACC

jk

)
M ≤ tarrjk1 (2.29)

After the optimization is executed, the arrival time of each platoon leading CAV and whether
the platoon needs to split are sent to the vehicle level. If the platoon does not split, the leading
vehicle follows the optimized arrival time to generate its speed profile (Section 2.3.2), and the
following vehicles stay in the intelligent follow state with the desired CACC headway. If the
platoon needs to split, the vehicle at the split position receives its new time of arrival from the
intersection controller. This vehicle serves as the leading CAV of a new platoon and switches the
state to optimized control. It then generates a new speed profile based on the assigned arrival time.

2.5 Corridor Level Models

The corridor coordinator determines the offsets for the coordinated phases of each intersection,
promoting two-way coordination. To reduce the computational burden, all vehicles in the coordi-
nated phase are considered as one platoon and a link performance function is proposed to calculate
the total delay of the vehicles in the platoon. The link performance function was first introduced
in [35], but was utilized offline, without the consideration of vehicle arriving from the side street.
In [17], Beak et al. implemented the link performance function in a real-time fashion. However,
only one-way coordination was considered, which makes the problem much easier. In this chapter,
two-way real-time coordination is proposed using the link performance function.

Figure 2.6 illustrates a three-intersection corridor with two-way coordination, and we take the
eastbound through movement of intersection i as an example to introduce two types of platoons for
the coordinated phase. The secondary platoon, denoted by a yellow rectangle, consists of vehicles
from the side streets of the upstream intersection i − 1. The number of vehicles in the secondary
platoon is calculated by the turning ratio and volume from the side street of intersection i − 1.
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Figure 2.6: Platoons for the Coordinated Phase

The primary platoon (the blue rectangle) consists of the vehicles from the coordinated phase of
the upstream intersection i − 1. When the signal of the coordinated phase at intersection i − 1

is red (i.e. Igϕ∗ = 0), the number of vehicles in the primary platoon Ψiϕ∗ of intersection i can be
estimated by the first case of equation 2.30, which is the summation of the current queue length
(q(i−1)ϕ∗) and the estimated arriving vehicles based on the average historical demand (V(i−1)ϕ∗)
of the coordinated phase. When the signal of intersection i-1 is green, the primary platoon is
estimated by the second case in equation 2.30, in which h′ is the estimated saturation headway.
When the penetration rate of the CAV is low (i.e. < 75%), we consider h′ = hRV . Otherwise, we
consider h′ = hCACC since CACC platoons are more likely to be generated. The primary platoon
is estimated by the summation of the queue length at the start of the green q′(i−1)ϕ∗ and the demand
V(i−1)ϕ∗ times the remaining green time after the queue (i.e. q′(i−1)ϕ∗) discharges. As a result, the
link performance function of intersection i is the total delay of the primary and secondary platoons
from intersection i−1. Note that right turning vehicles at intersection i−1 and left turning vehicles
at intersection i are subtracted from the total number of vehicles when calculating Ψiϕ∗ in equations
2.30. Fixed turning ratios (i.e. right turning ratio ζ(i−1)ϕ∗ and left turning ratio ξiϕ∗ , calibrated from
the historical data, are assumed when estimating the lengths of primary and secondary platoons.

Ψiϕ∗ =

(q(i−1)ϕ∗ +
(
C − relps(i−1)ϕ∗

)
V(i−1)ϕ∗)(1− ζ(i−1)ϕ∗)(1− ξiϕ∗) Igϕ∗ = 0(

q′(i−1)ϕ∗ +
(
ḡ(i−1)ϕ∗ − q′(i−1)ϕ∗h′

)
V(i−1)ϕ∗

)(
1− ζ(i−1)ϕ∗

) (
1− ξiϕ∗

)
otherwise

(2.30)
After the estimation of the platoon lengths, the link performance function is calculated as the

total delays of the primary platoon. Notice that only delay from the primary platoon is considered
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because the main purpose of coordination is to enhance the progression of coordinated phases.
Figure 2.7 shows six different scenarios of link performance function calculation. In the figure, the
notations are simplified, and the coordinated phase ϕ∗ of the intersection i is used for illustration.
Take the second case as an example, the x-axis represents time, and the y-axis denotes the number
of vehicles arrived at the intersection. The zero point of the x-axis is moved to be the start of green
for better illustration. Then −r is the red start and g is the green end, which represent a whole cycle.
e is the time point when the secondary platoon is fully discharged after the signal turns to green.
The length of the primary platoon (black dashed rectangle) is represented in time, and its duration p
is assumed to equal to the green time of the coordinated phase of the upstream intersection. Based
on the calculation of the number of vehicles in the primary platoon (equation 2.30), the average
headway h (height of the dashed rectangle) in the figure can be calculated as h = Ψ/p. After the
first vehicle of the primary platoon arrives at the intersection at time point α, the primary platoon
starts to accumulate delays. After the secondary platoon is fully discharged, the primary platoon
starts to discharge from the intersection with the saturation flow rate. At t0 = e+p×h/s, the entire
queue at the intersection is fully discharged, so the vehicles in the primary platoon that arrives later
than t0 do not experience any delay. The total delay of the primary platoon in the coordinated
phase can be represented by the shaded area, which is the link performance function.

In subfigures 1, 2 and 3, the arrival time of the primary platoon α is earlier than e. In subfigure
1, the last vehicle in the primary platoon arrives at the intersection earlier than the time point when
the queue is fully discharged (i.e. p + α ≤ t0). Notice that although the shape of the shaded area
in the two cases (i.e. p + α ≤ e, p + α > e) of subfigure 1 looks different, the link performance
function is the same (LPF1). In subfigure 2, the last vehicle arrives at the intersection later than
t0 but earlier than the end of the green, while in subfigure 3, part of the platoon arrives at the
intersection after the end of the green (i.e. p + α > g), which causes extra delay in the next cycle
(i.e., delay starts to accumulate at −r). In subfigures 4, 5 and 6, the arrival time of the primary
platoon is later than e. In subfigure 4, the last vehicle arrives at the intersection earlier than the
end of the green (i.e. p + α < g), so no vehicle in the primary platoon experiences any delay.
In subfigure 5 and 6, part of the platoon arrives at the intersection later than the end of the green,
which causes extra delay, similar to subfigure 3. In subfigure 5, the first vehicle in the primary
platoon arrives later than t0, and in subfigure 6, the first vehicle arrives earlier than t0. Based on
the different situations, the link performance functions LPF1 - LPF6 under different scenarios are
shown in equation 2.31 - 2.36.

LPF 1 =
p2h(y − 1)

2
− ph (α− e) , α ≤ e and p+ α ≤ t0 (2.31)
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Figure 2.7: Link Performance Function of Different Scenarios
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LPF 2 =
h (α− e)2

2(1− y)
, α ≤ e and t0 < p+ α ≤ g (2.32)

LPF 3 = (g + r − p) (p− g + α)h+
h (p− g + e)2

2(1− y)
, α ≤ e and g < p+ α (2.33)

LPF 4 = 0, α > e and p+ α ≤ g (2.34)

LPF 5 =
h (p− g + α)2 (y − 1)

2
+ (p− g + α)h (r + α) , α ≥ t0 and p+ α > g (2.35)

LPF 6 = (g + r − p) (p− g + α)h+
h (p− g + e)2

2(1− y)
, e < α < t0 and p+ α > g (2.36)

Notice that all the link performance functions are either linear or quadratic, it is easy to prove
the convexity of the whole function. By aggregating the pieces of each link performance function
(equation 2.31 - 2.36), we get a complete link performance function in terms of the arrival time
of the first vehicle of the primary platoon (i.e. α), as shown in Figure 2.8. In the left subfigure,
the platoon length plus the discharge time of the secondary platoon e is less than the green split g.
When α is between e and −p , the vehicles in the primary platoon do not experience any delay. In
the right subfigure, when p+ e > g, the vehicles must experience some delays regardless of arrival
time.

Figure 2.8: Link Performance Function in terms of the Arrival Time of the First Vehicle

By replacing the quadratic function with its linear approximation, the whole link performance
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function can be expressed as a piecewise linear function. The mathematical optimization problem
for the corridor-level coordinator is shown in 2.37. ḡiϕ∗ and r̄iϕ∗ denotes the average green duration
and average red duration of coordinated phase ϕ∗ of intersection i, based on the optimized green
durations and red durations of all previous cycles from the intersection level. ttraveli−1,i is the free
flow travel time from intersection i − 1 to intersection i, which can be offline calibrated from the
historical data. αiϕ∗ and ξi−1,i are decision variables that denote the arrival time of the first vehicle
in the primary platoon and the offset of the coordinated phase from intersection i−1 to intersection
i, respectively. The objective is to minimize the delay of all the coordinated phases, which is
estimated by the link performance functions. To formulate a convex optimization problem, the
piecewise linear function can be represented by the constraints D̃iϕ∗ ≥ LPFw for each scenario
w equivalently. The offset between intersection i − 1 and intersection i is equal to the travel time
on the link minus the arrival time. The arrival time should be between the start of the red and
the end of green in each cycle. For two-way coordination, ξi−1,i = −ξi,i−1. Thus, the problem is
formulated as a linear programming problem as shown in Eq. 2.37.

minimize
∑

i

∑
ϕ∗ D̃iϕ∗

s.t. D̃iϕ∗ ≥ LPFw, ∀w
ξi−1,i = ttraveli−1,i − αiϕ∗ , ∀i
−r̄iϕ∗ ≤ αiϕ∗ ≤ ḡiϕ∗ , ∀i
ξi−1,i = −ξi,i−1.i = 2 . . . N

(2.37)

2.6 Numerical Studies

2.6.1 Implementation Procedure

Simulation experiments are conducted on a desktop with an Intel 3.4 GHz CPU with 4 cores and
16 GB memory. VISSIM [84] is used as the simulation environment, which replaces the roadway
component in Figure 2. DriverModel.dll API is used to implement the CAV trajectory planning
models. The API is also used to generate BSMs for CAVs and RVs. When CAVs have to make a
lane change to realize their predefined routes, VISSIM’s internal lane-changing model is executed.
In addition, virtual controllers in VISSIM are used to replace the real controllers in the intersection
component. The overall simulation structure remains the same.

A flow chart of the simulation implementation is shown in Figure 2.9. The purple blocks denote
the CAV trajectory planning models, which generates CAV speed profiles and control the vehicles
every 0.1 seconds. The green blocks denote the algorithms in the Intersection Controller module,
which are executed every 3 seconds. A rolling horizon scheme is applied where the signal timing
is generated for one cycle but only the first 3 seconds are implemented. The algorithms are written
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in C++ and Gurobi 8.1.0 [79] is applied to solve both the MILP and Linear Programming (LP)
problems. We use Nveh to denote the number of vehicles, Nphase to denote the number of phases,
and Nplatoon to denote the number of platoons. In the MILP, the number of continuous variables is
2Nveh+3Nphase+2, and the number of binary variables is 2Nveh. The number of integer variables
is 2Nplatoon. The number of constraints is upper bounded by 9Nveh+3Nplatoon+3Nphase+4, includ-
ing 3Nphase+4 signal constraints, 7Nveh+2Nplatoon time of arrival constraints and 2Nveh+Nplatoon

CACC platooning constraints. Notice that Nplatoon = o(Nveh), and the size of the problem is deter-
mined by traffic volume (i.e., Nveh) and CAV penetration rate (i.e., Nplatoon). The MILP problem
of the intersection level model can be solved within 0.1 seconds with 0.1% gap to the optimal
solution under 100% CAV penetration rate. The yellow blocks denote the Corridor Coordinator
model, which optimizes the offset every cycle. In the corridor level LP problem, there are 5Ninter

continuous variables, where Ninter denotes the number of intersections in the system. The number
of constraints is upper bounded by 8Ninter. The problem can be solved within 0.01 seconds with
0.1% gap to the optimal solution.

Figure 2.9: Implementation Flow Chart
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2.6.2 Simulation Experiments

A simulation model of the Plymouth Rd corridor, in Ann Arbor, Michigan is built in VISSIM
(Figure 2.10). The Plymouth corridor consists of six intersections, from Barton Dr. on the west
to the Green Rd. on the east, which are indexed by 1-6. The stretch of the Plymouth Rd is about
2.2 miles and has two lanes for each direction which is one of the busiest commuting routes, serv-
ing US23 to the North campus of the University of Michigan and downtown Ann Arbor. Some
crossing roadways are major arterials that carry a large volume of traffic and others are side streets
with less traffic demand. The volumes and turning ratios at each intersection in the simulation are
calibrated with the real-world traffic data collected from afternoon peak hour (4:00pm-5:00pm).
Coordinated actuated signal control is considered as the baseline for comparison, which is opti-
mized by VISTRO [13]. Figure 11 shows the coordination diagram of the baseline signal control.
The green shaded area denotes the green waves, which indicates good coordination patterns in
both westbound (Figure 2.11 (a)) and eastbound (Figure 2.11 (b)). The index of each intersection
is shown at both sides of the figure for westbound and eastbound respectively. Notice that at least
one stop is unavoidable due to two-way coordination.

Figure 2.10: Plymouth Corridor VISSIM Simulation Model

Other critical parameters used in the simulation experiments are summarized in Table 2.3.

Table 2.3: Critical Parameters in Simulation Setup

Parameter Name Value
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Speed Limit 35 mph (west of Huron Rd); 45 mph (east of Huron Rd)

Minimum Green Time 5s

Maximum Green Time 100s

Yellow Interval 4s

All-red Clearance Interval 2s

Gap out Time (in actuated control) 3 s

CACC headway (hCACC) 0.9 s

RV/CV headway (hRV ) 1.8 s

Two series of simulation experiments are conducted under different combinations of mixed
traffic conditions. In the first series of experiments, there are only CV and CAV, with varying pen-
etration rates of CAVs: 0%, 5%, 25%, 50%, 75%, and 100%. In the second series of experiments,
all the CVs are replaced with RVs and the same set of CAVs penetration rates are considered.
Notice that the first series has 100% connectivity, the main objective is to analyze the system per-
formance under different levels of controllability by varying the penetration rate of the CAVs. In
the second series, the connectivity is not 100% and the states of the RVs need to be estimated
by loop detectors. Changing the penetration rate of the CAVs leads to the variations of both the
controllability and the connectivity. The duration of each experiment is 2100 (sec) with 300 (sec)
warm-up time, and each experiment is repeated with 5 random seeds. After each simulation run,
all vehicle trajectories are recorded and sent to the post-analysis to calculate the fuel consumption
and emissions by the MOVES model [58]. The experiment results are presented below.

Figure 2.12 shows the simulation results at the network level, in which all vehicles in the simu-
lation are taken into consideration. The left three subfigures ((a) – (c)) show the results of the first
series of experiments (CAV + CV), while the right three subfigures ((d) – (f)) show the results of
the second series of experiments (CAV + RV). For both series of experiments, with the increas-
ing penetration rates of CAVs, the benefits from eco-trajectory planning are more significant. The
average vehicle speed increases when there are more CAVs, because the eco-trajectory planning
helps more CAVs pass the intersection without stop, also leading to the reduction of the number of
stops. In terms of fuel consumption, since the speed profiles of the CAV are smoother and unnec-
essary acceleration and deceleration are avoided, the fuel consumption and emissions decrease as
the penetration rate of CAV increases.

More detailed data can be found in Table 2.4. Note that the comparison between the base-
line and 0% CAV shows the benefits of the corridor-level adaptive signal control, where no CAV
time of arrival and trajectory are optimized. For the series with CVs, the total delay decreases by
14% (from 74.84s to 64.40s) and the fuel consumption decreases by 6.8% (from 4131KJ/mile to
3867KJ/mile). The results indicate that the performance can be improved greatly by CV based
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Figure 2.11: Coordination Diagram of the Coordinated Actuated Signal Control (Baseline)

coordinated adaptive control. If the CVs are replaced by the RVs (series II), the total delay de-
creases by 0.6% (from 74.84s to 74.39s) and the number of stops decreases by 1.9%. The fuel
consumption decreases by 3.8% (from 4131KJ/mile to 3972KJ/mile). The results indicate that
even loop-detector based coordinated adaptive control outperforms the coordinated actuated con-
trol (baseline), but the improvement is not as significant as CV based coordinated adaptive control.
When the penetration rate of the CAV is 100%, the delay further decreases by 33.0% (to 49.99s)
and fuel consumption decreases by 7.4% (to 3824KM/mile) by comparing to the baseline because
the CACC platoon has much shorter headways.

Comparing the second series of experiments with the first series, the high penetration rate of
CAV leads to lower benefits in the second series in all performance indexes. The reason for this
phenomenon is that the states of RVs are estimated from loop-detector data, which is not as accu-
rate as the BSMs broadcast from the CVs. Therefore, the errors in traffic state estimation lead to
suboptimal solutions in the signal optimization. Meanwhile, the inaccurate estimation of queuing
dynamics also causes inaccurate time of arrivals for the CAVs and further influences the eco-
trajectory planning. If the generated time of arrival is later than the optimal time of arrival, the
green time is not fully utilized. On the other hand, the CAV’s planned trajectory may be inter-
rupted by its leading vehicle, which results in more fuel consumption and emissions.

Figure 2.13 shows the simulation results of the mobility performance of two intersections. Most
intersections have similar performances as the intersection of Green Rd. (subfigure c and d). When
the penetration rate of CAV increases, the mobility improves in terms of the total vehicle delay,
total stop delay, and the number of stops. At the intersection of Traverwood Dr. (subfigure a and
b), mobility is getting worse when the penetration rate of CAV is low. However, since this is a
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Figure 2.12: Simulation Results of Network Level
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Table 2.4: Mobility and Fuel Measurements in Network Level

Penetration rate baseline 0 0.05 0.25 0.5 0.75 1

Delay (s)
CAV+CV 74.84 64.40 64.65 60.66 54.67 52.14 49.99
CAV+RV 74.84 74.39 73.18 67.51 61.92 56.90 49.99

Number of stops
CAV+CV 1.56 1.42 1.39 1.37 1.26 1.14 1.05
CAV+RV 1.56 1.53 1.55 1.48 1.37 1.20 1.05

Fuel consumption
(KJ/mile)

CAV+CV 4131 3867 3868 3860 3852 3837 3824
CAV+RV 4131 3972 3969 3951 3950 3898 3824

T-intersection, and the demand for this intersection is not high, the total delay and the number of
stops is much less than other intersections, so the performance doesn’t impact the entire network a
lot.

Figure 2.13: Mobility Results of Intersection Level
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2.6.3 Sensitivity Analysis

One advantage of the proposed framework is that at the corridor level, the offset of each intersection
is optimized each cycle to accommodate volume fluctuations. A series of sensitivity analysis is
performed to further analyze the impact of dynamic offset optimization.

In the sensitivity analysis, the simulation period is divided into three intervals (300 - 900s, 900
- 1500s, 1500 - 2100s), plus the warm-up time. In the second interval (900 – 1500s), the traffic
volume of the whole network is increased by 0%, 5%, or 10%. The traffic volumes of the first and
third intervals remain unchanged. To analyze the benefits from the dynamic offset optimization,
the baseline experiments use a fixed offset optimized by VISTRO in the corridor level model, and
the intersection level model remains the same. All the vehicles in the sensitivity analysis are CVs,
so that vehicle trajectories are not optimized.

Figure 2.14 shows the improvement of dynamic offset optimization in terms of mobility and
fuel economy, comparing to the baseline. The x-axis denotes the volume fluctuation percentage
described above, and the y-axis denotes the percentage of improvement. It can be seen from the
figure that the benefits of dynamic offset optimization increase with higher volume fluctuations.
When the volume fluctuation is 10%, the dynamic offset optimization further reduces 5.3%, 5.0%
and 1.1% of the number of stops, delays and fuel consumption respectively, comparing to the
baseline with fixed offsets.

Figure 2.14: Improvement with Offset Optimization

Figure 2.15 shows the offset variations of each intersection cycle by cycle. The dashed lines de-
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note the baseline fixed offsets, and the solid lines with circles are the optimized offsets. Comparing
to intersection 5 and 6, the offset of the first four intersections does not change a lot. In other words,
for these four intersections, the coordination is always good. This can also be validated from the
coordination diagram as shown in Figure 2.11. Notice that the coordination between the fourth and
the fifth intersection is sacrificed, for accommodating the coordination between other intersections.
Thus, the variation of intersection 5 does not affect intersection 4 much. For intersections 5 and 6,
when the volume does not fluctuate during the first interval (cycles 1 - 6), the offsets decrease and
increase in the same trend. Although the volume starts fluctuating at cycle 7, the whole network
has not been influenced by the volume fluctuation a lot and the offset between intersection 5 and 6
remains 45s. The offset starts changing after several cycles, which keeps increasing to 49s because
the travel time becomes longer due to the larger volume. The additional mobility and fuel benefits
through offset optimization in Figure 2.15 mainly come from intersections 5 and 6, since they are
the major intersections in the corridor and carry large volumes.

Figure 2.15: Offset Variations at Different Intersections
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2.7 Conclusions and Further Research

This chapter proposes a cooperative driving framework for arterial corridors in a mixed traffic con-
dition of RV, CV, and CAV. In the vehicle level models, a state transition diagram is designed
to accommodate different CAV maneuvers under different operating scenarios. A trigonometric
speed profile is applied for eco-trajectory planning with consideration of non-zero initial acceler-
ations. In the intersection level models, a MILP problem is formulated to optimize traffic signals
and CAV time of arrivals with the objective of minimizing total delay, given the offset from the
corridor coordinator. In the corridor level models, the link performance function is adopted to
calculate the total delay of the coordinated phases. Link performance functions are derived under
different arrival patterns to estimate the vehicle delay. With the approximation to piecewise linear
link performance functions, the offset optimization problem can be formulated as an LP problem,
which is easy to solve. Simulation experiments of an arterial corridor have been performed, using
real-world traffic data. Results show that the total delay decreases by 14% and the fuel consump-
tion decreases by 6.8% due to CV-based coordinated adaptive control with dynamic offsets. When
the CAV comes into play, the total delay and fuel consumption further decrease as the penetra-
tion rates of the CAV increase. When the penetration rate of CAVs is 100%, the total delay and
fuel consumption reduction raises to 33% and 7.4% respectively. A sensitivity analysis of volume
fluctuation has been conducted, which shows the benefits of the dynamic offset optimization at the
corridor level.

In future work, the lateral behavior of CAVs needs to be explicitly modeled for the cooperation
between CAVs on different lanes in the vehicle level model. The optimization at the intersection
level not only provides the time of arrival of the CAVs as the guidance but may also provide lane
change guidance (e.g., lane change location and time). This cooperative driving framework can
also be extended to a larger transportation network, where the route choice decisions are inte-
grated.
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CHAPTER 3

Anomaly Detection for the Localization of Connected
and Automated Vehicles

3.1 Introduction

3.1.1 Background and Related Work

CVs and AVs benefit the transportation system from multiple aspects including reducing crashes,
improving mobility and sustainability. In both types of vehicles, the localization module, from
which the vehicle knows its global and local positions in the driving environment, plays a criti-
cal role in information sharing and vehicle navigation. For example, the BSM broadcast by CVs
contain vehicle location and motion data for a wide range of applications [73, 111, 114], and AVs
utilize the localization results for trajectory planning[86]. Among all sensors that participate in
localization, the GPS receiver is the most important one that obtains global positions. Commer-
cial level GPS receivers can achieve the accuracy of 1 meter, and with dual-frequency GPS units,
survey-grade GPS has the accuracy of a few centimeters[21]. Besides GPS, LiDAR locators and
Inertial Measurement Unit (IMU) are also implemented and tested on AVs [34, 95, 55] for local-
ization purposes. It is critical to ensure that the localization module is accurate, reliable, and highly
secure since inaccurate localization results will significantly jeopardize AV trajectory planning and
CV safety applications and may cause catastrophic consequences such as crashes.

Unfortunately, existing studies show that vehicle localization module is vulnerable to various
types of cyberattacks. GPS spoofing attack is an emerging issue in modern GPS applications.
The GPS spoofing attack generates fabricated GPS signals and interferes with the GPS receivers,
which can degrade the performance of the localization system. The fake GPS signal usually has
a higher strength to mislead the GPS receiver [99]. The practicality of the GPS spoofing attack
has been proved in both research [102, 93] and real-world applications [49, 50]. In addition to the
GPS spoofing attack, attacks targeting other sensors can also impact the vehicle localization. For
example, Petit et al. attacked the LiDAR by injecting false reflected light, and the LiDAR falsely
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detected a fake wall [83]. Although such LiDAR sensor attacks do not directly target the localiza-
tion module, misinterpretation of the surrounding environment will degrade the performance of the
LiDAR locator, which is one input source to the localization module. Usually, MSF algorithms are
considered as one defense method against sensor attacks since it is highly unlikely that all sensors
are compromised at the same time. However, a recent study from Shen et al. managed to construct
an MSF attack method, which misleads the sensor fusion algorithms by only spoofing the GPS
channel [93].

In general, anomaly detection can be applied to defend GPS spoofing attacks, which can be
divided into two categories, node centric detection and data centric detection [105]. In the node
centric detection, it examines the patterns in the behavior of specific nodes at a protocol level,
which usually does not consider data semantics. Signatures are adopted to identify if the sender of
the messages is malicious. The node centric detection can be further classified as behavioral or trust
based. The behavioral mechanism checks the packet header and meta message information to de-
tect the anomaly. Common behavioral mechanisms include watchdog [46] and flooding detection
[43]. Trust-based mechanisms aggregate the trust of a node and distribute the trust among nodes
to filter the malicious nodes. Trust-based mechanisms are usually vulnerable to Sybil attacks.

Different from node centric mechanisms, data centric detection mainly focus on data seman-
tics, which can also be categorized into two groups, consistency-based and plausibility-based
[105]. The consistency-based method examines the relations between packets to identify the
anomaly of the newly received data. A cooperative approach can be adopted to analyze the in-
formation from multiple agents to identify conflicting messages [123, 40].

Plausibility-based methods filter out the packets according to the numerical plausibility value
contained by the data received, which can be utilized to detect attacks with Sybil nodes. A majority
of the plausibility-based detection focus on signal-based method [53, 88, 74]. The main shortage
of the signal-based methods is generalizability. For example, the method proposed for the anomaly
detection of a GPS-only localization system may not be suitable for an MSF localization system.
Another plausibility-based detection method is prediction-based. The prediction-based methods
focus on predicting the behavior of vehicles and compare the prediction with the observations.
Kalman filter based approach is the most common method in this direction [97, 96, 51], in which
the future trajectory of the vehicle is predicted with a Kalman filter. Other than only predicting
the positions of vehicles, vehicle dynamics can be also integrated into the prediction-based mech-
anisms. For example, in [117], vehicle dynamics are considered to predict the bounding box of the
vehicles. The prediction-based methods can be viewed as driving model-based methods that make
predictions of the vehicles to detect the anomaly. Such driving model-based methods may not be
generalized to different driving scenarios (e.g. highway / urban).
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3.1.2 Contribution and Organization of the Chapter

Contributions of this chapter are three-fold:
1. We propose a generic detection framework to detect anomalies in the localization mod-

ule of CV/AV using learning from demonstration. The proposed detection framework directly
examines the results of the localization module, regardless of the mechanism of the localization
module and different attack types. Thus, it is generic and can be applied to detect various types
of attacks. The learning from demonstration framework can also be applied in different driving
scenarios as long as the corresponding demonstrated trajectories are available.

2. The proposed method integrates domain knowledge in detecting cyber attacks at the
application level. The methodology adopted for learning from demonstration leverages transporta-
tion and vehicle domain knowledge to learn the driving policy through real-world demonstrations.
Compared with other learning based approaches, our proposed framework requires much fewer
data in the training stage. To our knowledge, this is the first work that utilizes learning from
demonstration with domain specific knowledge for abnormal trajectory detection.

3. The proposed detection method has low requirements for implementation. For AV
deployment, the anomaly detection requires onboard sensors and digital map information. Such
onboard sensors and digital map information are standard for all the AV configurations [15, 99].
For infrastructure side deployment, no other infrastructure sensors are needed. The required con-
nected vehicle environment has been implemented and tested extensively in the past few years
[18, 39].

The rest of the chapter is organized as follows: we first present the framework overview (Section
3.2). In Section 3.3, the threat models are presented, and the methodology of the anomaly detection
model is introduced in Section 3.4. In section 3.5 and 3.6, the proposed model is validated on the
AV threat model and CV threat model, respectively. Section 3.7 extends the experiments on the AV
threat model to adaptive attacks. Section 3.8 concludes this chapter and lays out future research
directions.

3.2 Framework Overview

In this chapter, a new prediction based method is proposed, which combines model-driven and
data-driven approaches for GPS spoofing attack detection, and is proved to have better general-
izability in the experiments. The central hypothesis is that if the data in the GPS signal is com-
promised, the resultant information sharing from CVs or trajectory planning from AVs will be
impacted, which generates abnormal driving behaviors (i.e., abnormal vehicle trajectories). Fol-
lowing this direction, transportation and vehicle domain knowledge is applied with the learning

48



from demonstration framework. This method can be deployed in both AVs and at transportation
infrastructure.

Figure 3.1 illustrates the concept of the proposed anomaly detection method. For the AV de-
ployment, illustrated by the yellow block, the anomaly detection module is located before the
trajectory planning module. Three types of information are used as the input to the detection mod-
ule. First, information of the AV’s POVs captured by onboard sensors. The POVs are defined as
nearby vehicles that may influence the behaviors of the AV (e.g., a leading vehicle in the same
lane). Second, a digital map that contains roadway geometry information. Third, the localization
results provided by the localization module. In the anomaly detection module, the normal driving
behavior of the AV is represented by a computational-efficient driving model, which can be learned
from the historical trajectories of the AV. The normal driving behavior is then compared with the
trajectories from the localization module to detect the anomaly.

Figure 3.1: Concept of abnormal trajectory detection

For infrastructure deployment, a CV environment is assumed. In figure 3.1, the traffic scenario
below the yellow block illustrates the anomaly detection concept at the infrastructure side. CVs
broadcast their localization results in the form of BSMs. The infrastructure is equipped with RSU
to collect BSMs from the CVs and learns normal driving behaviors. When a CV is under GPS
spoofing attack, it broadcasts BSMs with falsified data elements such as location and speed. The
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infrastructure compares the learned normal driving behavior and the received CV trajectory to
detect the anomaly and send warnings to the victim CV and nearby vehicles. Notice that in this
case, we assume that the infrastructure does not have other sensors (e.g., cameras) to cross validate
the integrity of the communication messages.

The most important component in the proposed anomaly detection framework is learning nor-
mal driving behaviors. Toward this end, we apply the learning from demonstration framework,
in which an agent can learn expert behaviors with demonstrations (i.e., examples). The demon-
strations are state-action pairs collected from a teacher when he/she performs certain tasks. In
this work, learning from demonstration is implemented to learn a computational-efficient CV/AV
driving model in different driving scenarios. After collecting a sufficient number of historical tra-
jectories as the demonstrations, maximum entropy inverse reinforcement learning is adopted to
derive the optimal driving policy (i.e., reward function). The learned driving policy is used to
generate a predicted optimal trajectory, which is then compared with the observed trajectory to
identify whether the observed trajectory is under attack or not. A statistical method is developed to
measure the dissimilarities between the observed trajectory with the predicted optimal trajectory.
With appropriate features that captures such dissimilarities, a decision-tree classifier is adopted to
differentiate normal trajectories and trajectories under attack.

The proposed detection method is evaluated with two threat models. The first threat model
aims at attacking the MSF based localization model of an AV. The goal of the attack is to generate
lateral deviations to the original trajectory to make the subject AV hit the road curb or drive in
the wrong direction. The second threat model aims at attacking the Forward Collision Warning
(FCW) application on CVs, which utilizes localization results from GPS to trigger the warnings.
Experiments are conducted on two real-world datasets, KAIST [52] and NGSIM [10]. Experiment
results show that the proposed model has a good performance in both offline detection and online
detection with low false positive and false negative rates. Further adaptive attack study confirms
the robustness of the model in detecting more stealthy attacks with reduced magnitude.

3.3 Threat model

3.3.1 Autonomous Vehicle Threat Model

A real-world MSF attack conducted on the Baidu Apollo system is applied as the threat model
for the AV anomaly detection [93]. In this study, a GPS spoofing attack towards the MSF-based
localization system of AVs is designed, shown in Figure 3.2. At the top, the original MSF algo-
rithm takes the input from GPS, IMU, and LiDAR to generate localization results. In the attack
scenario, the GPS channel is spoofed by the FusionRipper algorithm proposed in [93], which can
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successfully mislead the MSF localization algorithm. The FusionRipper algorithm consists of two
phases: vulnerability profiling and aggressive spoofing. In the vulnerability profiling phase, the
attacker performs a constant GPS spoofing attack and observes the localization results from the
MSF system to profile when the vulnerable periods appear (i.e., lateral deviation ≥ 0.295 m on ur-
ban roads). After the vulnerable period is identified, the aggressive spoofing phase starts in which
the attacker performs exponentially aggressive spoofing to quickly induce large lateral deviations.
Two attack goals that cause safety hazards are considered, off-road (i.e., hitting road curbs) attack
and wrong-way (i.e., driving to the opposite direction of the road) attack, and both attack goals are
achieved by large lateral deviations. The off-road attack requires less lateral deviation (0.895m for
urban roads) in the localization results to succeed than the wrong-way attack (1.945m for urban
roads).

Figure 3.2: Threat model on the AV MSF System

3.3.2 Connected vehicle threat model

For anomaly detection in the CV environment, we choose a specific threat model towards the
FCW system, which is an important CV safety application. The FCW application intends to warn
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the driver of the CV in case of a potential rear-end collision with its leading vehicle in the same
lane. The application uses data (i.e., BSMs) received from other vehicles to determine if a forward
collision is imminent [113]. In this work, it is assumed that the FCW system only relies on the CV
messages (BSM) received from its OBU to trigger the warning. The vehicle is not equipped with
other sensors such as radar or camera. This setting has been introduced and validated in a lot of
works [47, 113, 63]. The main reason for such a setting is that it is more vulnerable than vehicles
equipped with other sensors (e.g., radar), and thus becoming favorable targets for attackers.

The goal of the attack is to generate falsified BSMs through GPS spoofing to trigger the FCW
or even automatic brake of a CV. Figure 3.3 illustrates the concept of the attack, in which the blue
rectangles denote the normal CV trajectory from BSMs. The red rectangles represent the BSM
trajectory under attack, and the yellow rectangles denote the trajectory of the victim CV. The
values within the rectangles denote timestamps, where at time t0, the attack starts. At time t2, the
falsified BSM trajectory triggers the FCW or automatic brake of the yellow CV. Since the CV
under attack is driven by a human driver, the falsified BSMs can’t be detected by the vehicle (or
driver) itself. This is the reason why the anomaly detection module needs to be deployed at the
infrastructure side, where trajectories of all CVs can be investigated.

Figure 3.3: Threat model on forward collision warning system

To generate feasible attack trajectories, the attack model is formulated as an optimization prob-
lem similar as in [48, 118]. The objective function contains two parts 1) trigger the FCW of the
victim vehicle; and 2) generate a smooth vehicle trajectory that is close to the real driving behavior.
To achieve the first goal, future trajectory of the victim vehicle needs to be predicted. A constant

52



speed model is applied to predict the location of the victim vehicle at t2. Based on the predicted
location, the first part of the objective function tries to minimize both longitudinal distance and
lateral distance between the generated falsified trajectory and the victim vehicle while keeping the
two vehicles from overlapping with each other. The second part of the objective function contains
driving features such as minimizing acceleration, minimizing heading change rate, and minimizing
lateral speed.

The attack starts when the longitudinal distance between the attacking vehicle and the victim
vehicle is less than 20m, as shown in 3.3. A rolling horizon scheme is applied, where the prediction
is repeated every 0.3 seconds to minimize the prediction error. Based on the updated victim vehicle
state, the attack model generates falsified trajectories for the planning horizon. The attack success
criterion is based on the Honda FCW logic [60]. The Honda logic includes a warning algorithm and
an avoidance algorithm. The attack succeeds when the longitudinal distance between the falsified
trajectory and the victim vehicle is small enough to trigger the warning (Equation 3.1) or braking
(Equation 3.2 2). In the equations, vF is the speed of the following vehicle. vL is the speed of
the leading vehicle. Ṙ is the speed difference between the leading and following vehicle. τ1 is
the reaction time. τ2 is the time to reach the safety gap when both leading and following vehicles
engaging emergency brakes. α1 and α2 are the deceleration for braking. The suggested values are
τ1 = 0.5s, τ2 = 1.5s, α1 = 7.8m/s2, α2 = 7.8m/s2.

Rwarning = f(Ṙ) = −2.2Ṙ + 6.2 (3.1)

Rbraking = −τ2Ṙ + τ1τ2α1 − 0.5α1τ
2
1 , vF ≥ 11.67(m/s)

τ2vF − 0.5α1(τ2 − τ1)
2 − v2L

2α2
, vF < 11.67(m/s)

(3.2)

3.4 Defense Methodology

This section presents the anomaly detection method to identify the AV/CV attacks introduced in
the previous section. There are two major challenges. Challenge 1: real-time detection. The
operation of AV/CV is highly safety-critical. Therefore, it is vital to detect abnormal or hazardous
driving behaviors in time. However, some GPS spoofing attacks can be stealthy (e.g., the first phase
of the AV threat model in Section 3.3.1) while some can achieve the attack goal in a few seconds
(e.g., the CV threat model in Section 3.3.2), which all pose great challenges in the detection model
design. Challenge 2: validity on different threat models. Different threat models may cause
different abnormal driving behaviors and a generic detection method is needed. It would be more
meaningful if the anomaly detection method is effective under different types of cyberattacks.
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3.4.1 Defense framework

Figure 3.4 illustrates the anomaly detection framework consisting of two steps. On the left side
(i.e., offline learning), learning from demonstration is adopted to learn the driving model via maxi-
mum entropy inverse reinforcement learning, using historical trajectories. Besides, a decision tree
is trained with both historical trajectories and known attack trajectories by three features (objective
ratio, normality score, and trajectory displacement). The trained models are applied in the online
detection step as shown on the right side of the figure. When observing a trajectory from the lo-
calization module or from the CV, its initial state and environment state are utilized in the learned
driving model to generate a predicted optimal trajectory, which is then compared with the observed
trajectory in terms of the three features. The results are fed into the trained decision tree classifier,
which will finally decide whether the vehicle is under attack or not.

Figure 3.4: Anomaly detection framework
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3.4.2 Learning from demonstration

A general trajectory generation problem can be formulated as an optimization problem, shown
in Equation 3.3. The objective of the optimization problem is the utility function of the driving
behavior, in which θ is the weight vector associated with different driving utilities. s is the decision
variable of the optimization problem, which denotes the trajectory, a vector of trajectory points
si. Each trajectory point si at time step i can be represented by (xi,yi,vi,ai,ψi ), in which xi

and yi is the longitudinal and lateral coordinate, respectively, and ψi is the heading angle of the
vehicle, between the longitudinal axis of the vehicle and the longitudinal direction of the road. vi
denotes the speed of the vehicle, and ai denotes the acceleration. u represents the initial condition
and environment states, which serve as the input parameters for the optimization problem. The
initial condition includes the initial position (x0,y0), initial speed v0, initial acceleration a0, and
initial heading angle ψ0. The environment states include the longitudinal coordinate and the lateral
coordinate of the leading vehicle. f(s,u) is a mapping function that maps the trajectory to a feature
vector, which can be different under different maneuvers. The details of the features and vehicle
dynamic constraints are introduced next.

min
s

θTf(s,u)

s.t. vehicle dynamic constraints
(3.3)

Vehicle dynamic constraints

The vehicle dynamic constraints represent the kinematics of vehicle motion, shown in Equa-
tions 3.4,3.5,3.6,3.7, where τ is the step size. Equation 3.4 reflects the relationship between the
longitudinal coordinate change and the heading angle, and similarly, Equation 3.5 reflects the re-
lationship between the lateral coordinate change and the heading angle. Equation 3.6 shows the
relationship between the heading angle rate ψ and the heading angle. Equation 3.7 shows the
vehicle dynamics between the velocity and the acceleration.

x(i+ 1) = x(i) + v(i)cos(ψ(i) + ψr(i))τ (3.4)

y(i+ 1) = y(i) + v(i)sin(ψ(i) + ψr(i))τ (3.5)

ψ̇(i) =
(ψ(i+ 1)− ψ(i))

τ
(3.6)

a(i) =
v(i+ 1)− v(i)

τ
(3.7)

Feature vector The feature vector represents a desired driving policy, which is a linear combina-
tion of multiple driving features. In our proposed model, seven features are designed to describe the
driving policy including both longitudinal and lateral behaviors. The following provides detailed
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descriptions of the features, where N represents the total number of data points in a trajectory.
(1) Speed limit: f1 = 1

N

∑
i (vi − vlim)

2. This feature measures the difference between the
speed at each time step vi and the speed limit vlim, which models the driving incentive of ap-
proaching the desired speed (i.e., speed limit).

(2) Acceleration: f2 = 1
N

∑
i a

2
i . It is the summation of the square of the acceleration at each

time step, which represents the smoothness of driving behaviors.
(3) Car following: f3 = 1

N

∑
i

1
min (di,di/vi)2

. di is the distance to the leading vehicle at time step
i. min(di, divi ) chooses the smaller value between the distance and time headway. When the vehicle
moves in free flow, the time headway makes an impact. When the vehicle is about to stop, the
distance to the leading vehicle makes an impact. This feature models the car-following behavior
of the vehicles.

(4) Lateral acceleration: f5 = 1
N
(ai sin (ψi))

2. It is the summation of the square of the lateral
acceleration at each time step, which measures the smoothness of lateral driving behaviors.

(5) Heading angle: f5 = 1
N

∑
i ψ

2
i (1 − I lanechange). ψi is the heading angle at time step i.

I lanechange is the indicator of lane change, which is 1 if the heading angle between the longitudinal
axis of the vehicle and the longitudinal direction of the road is larger than a threshold.

(6) Heading rate: f6 = 1
N

∑
i(ψ̇i)

2. ψi is the heading angle change rate at time step i.
(7) Heading rate rate: f7 = 1

N−1

∑
i(ψ̇i+1 − ψ̇i)

2. This feature measures the change rate of the
heading angle rate. Features 5-7 represent the smoothness of the heading angle to measure the
smoothness of lateral driving behaviors of the vehicle.

Maximum Entropy Inverse Reinforcement Learning

Before solving the optimization problem, the weight vector θ needs to be determined, which
balances the driving features in the feature vector. It is usually difficult to specify proper weights,
which represents the desired driving policy. In this study, we apply maximum entropy inverse re-
inforcement learning to determine the weight vector θ. Considering the vehicle trajectory planning
as a Markov Decision Process (MDP) with a discounted cost as Equation 3.8, in which γ is the
discounted factor and r is a reward function. If the discounted factor is taken as 1, then the total
return is θTf(s, u), for each trajectory s. The goal of the inverse reinforcement learning is to find
the weight vector θ that maximizes the log-likelihood function L(θ), shown in Equation 3.9. D is
the demonstration trajectory dataset collected, including m trajectories. P (sj|θ, uj) is the proba-
bility of trajectory sj given parameter θ and the initial condition as well as the environment state
of trajectory sj (i.e., uj), so when maximizing L(θ), the likelihood of using weight θ to generate
all trajectories in the dataset is maximized. When the policy of the MDP is the maximum entropy
policy [126], P (sj|θ, uj) can be written as Equation 3.10.
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discountedcost =
N−1∑
i=0

γir(si) ≈ θTf(s, u) (3.8)

L(θ) =
1

m

∑
sj∈D

lnP (sj|θ, uj) (3.9)

p(sj|θ, uj) =
e−θT f(sj ,uj)∑

sk∈Cj
e−θT f(sk,uj)

(3.10)

In this way, the gradient of L(θ) can be calculated as Equation 3.11, in which f̃ =
1
m

∑
sj∈D f(sj, uj)denotes the empirical feature vector. Thus, the gradient of L(θ) is the differ-

ence between the expected feature vector with respect to weight θ and the empirical feature vector
calculated from the dataset (i.e., observations). Furthermore, the expected feature vector can be
approximated by the feature vector of the most likely trajectory.

▽θL(θ) =
1

m

∑
sj∈D

Ep(sj |θ,uj)[f(sj, uj)]− f̃

≈ 1

m

∑
sj∈D

f(argminsjθ
Tf(sj, uj))− f̃

(3.11)

With the gradient of the log-likelihood function, the pseudo-code of the maximum entropy
inverse reinforcement learning algorithm can be summarized in the algorithm below, given a set of
demonstration trajectories D = {s1, . . . , sm}.

Algorithm 1 Maximum Entropy Inverse Reinforcement Learning

1: Compute the empirical feature vector over all demonstrations f̃0 = 1
m

∑
sj∈D f(sj, uj) . Nor-

malize the feature vector. The normalized feature vector is denoted as f̃
2: Initialize every entry of the weight vector θ.
3: while 1

m

∑
j=1 f(s

θ
j , uj)− f̃ > threshold do

4: for For each demonstrated trajectory in the dataset do
5: Fix the initial condition and the environment states and optimize the trajectory using

equation 3.3. The optimized trajectories are denoted as sθ1, ..., s
θ
m.

6: end for
7: The gradient can be calculated as ▽θL(θ) =

1
m

∑
j=1 f(s

θ
j , uj)− f̃ .

8: Update the parameter vector: θ(k+1) = θ(k)+γ▽θ L(θ), in which γ is the learning rate.
9: end while
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3.4.3 Anomaly Classifier

To differentiate normal trajectories from abnormal ones, the difference between the observed tra-
jectory and predicted optimal trajectory should be measured quantitatively by some statistics. In
this work, three statistical features are adopted. The first statistical feature is the maximum value
of the objective ratio ORt of all the trajectory points until time step t, calculated by Equation 3.12.
ORt represents the ratio between the summation of the objective value of the observed trajectory
(i.e.,

∑t
τ=1 observed objectiveτ ) and the summation of the objective value of the predicted opti-

mal trajectory via the learned model (i.e.,
∑t

τ=1 optimal objectiveτ ) at time step t. It measures
how different the observed trajectory is from the optimal trajectory.

OR = max
1...t

ORt =

∑t
τ=1 observed objectiveτ∑t
τ=1 optimal objectiveτ

(3.12)

The second statistical feature adopted is the max value of the normality score NSt of all the
observed trajectory points until time step t, calculated by Equation 3.13. NSt measures the vari-
ation of the objective value of the observed trajectory. objectivet denotes the objective value of
the observed trajectory at time step t. objective mean1...t is the mean objective value of all the
observed time steps until t, objective std1...t is the standard deviation of the objective value of all
the observed time steps until t.

NS = max
1...t

NSt =
objectivet − objective mean1...t

objective std1...t
(3.13)

The last statistical feature is the maximum value of the average displacement error EDt with
the prediction horizon of T between the observed trajectory and optimized trajectory at time step
t, calculated by Equation 3.14. The average displacement error at time step t (i.e. EDt) can be
calculated by measuring the average point-wise Euclidean distance between the observed trajec-
tory (xobs, yobs) and the predicted trajectory (xpred, ypred) within the prediction horizon T . This
feature captures the difference between the observation and the optimization results in terms of the
Euclidean distance in the 2-D space.

ED = max1...tEDt

= 1
T

∑t+T
i=t

√
(xobsi − xpredi )2 + (yobsi − ypredi )2

(3.14)

With three statistical features defined as the input, a decision tree classifier is applied to differ-
entiate the abnormal trajectories from normal trajectories. More information of the decision tree
classifier can be found in [87].

Figure 3.5 illustrates an example of the decision tree classifier. The internal nodes, denoted by
white rectangles, represent tests on attributes in the dataset at these nodes. A test splits the dataset
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at the parent node into two datasets as the child nodes, and the test is determined by maximizing
the information gain from the parent node to the child nodes. If the entropy is chosen to calculate
the information gain, the information gain is the reduction in entropy before and after the test. The
calculation of entropy is shown in Equation 3.15, in which K is the total number of class labels
and pi is the frequency of label i in the dataset. In this way, the entropy at each node reflects the
uncertainty of the dataset. For example, if all the data within a dataset have the same label, then
the entropy of this dataset is zero and there is no uncertainty. By maximizing the information gain
from a parent node to child nodes, the reduction of the entropy is maximized and the datasets for
the children nodes become less uncertain (i.e., more data have the same label), which is the goal of
classification. Each leaf node, denoted by a colored ellipse, represents a classification result that
all the data in such a leaf node are classified with the majority label. In the example, the first test
checks if the statistical feature of OR is larger than a, and the dataset is split into two datasets. If
the condition is true, the second test of normality score will be applied to the dataset in the left
branch, and differentiate the abnormal trajectories from the normal trajectories. Similarly, in the
right branch, the test of ED is applied for the classification.

Figure 3.5: Decision tree classifier

Entropy =
K∑
i=1

pi log
1

pi
(3.15)
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3.5 Detection Model Evaluation on AV Threat Model

The AV threat model (i.e., FusionRipper [93]) is implemented on the KAIST Complex Urban
dataset [52], which is an AV driving dataset in both urban and highway driving scenarios based on
the Apollo system. Figure 3.6 illustrates a sample trajectory (in red) that consists of both urban
and highway driving scenarios in the KAIST dataset. The dataset provides raw data from LiDAR,
stereo camera, GPS, and IMU. The FusionRipper algorithm takes them as the input and applies
the MSF module in Apollo to obtain the compromised localization results. Specifically, lateral
deviations are added to the original trajectory data. In this study, the deviated trajectory generated
by FusionRipper is considered as the trajectory under attack. Meanwhile, we extract the original
AV trajectories in the data as ground truth.

Figure 3.6: A sample trajectory in KAIST dataset

3.5.1 Data processing

Before applying the proposed detection method, the original KAIST trajectory data set needs to be
processed to calculate two additional data elements (road orientation and car-following distance)
that are needed for the proposed learning from demonstration model. The heading angle of the
trajectory is the relative angle between the longitudinal axis of the vehicle and the longitudinal di-
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rection of the road, but the road orientation is not included in the raw data. To calculate the relative
heading angle, vehicle trajectories are allocated to the closest road segment on the OpenStreetMap
[42], and then the road orientation is extracted from the waypoints of the OpenStreetMap. In the
feature vector, the distance to the leading vehicle is also required to calculate the car-following
distance, which is extracted from the raw images from the forward-facing stereo cameras installed
on the vehicle, using the YOLO (You only look once) algorithm [85]. The disparity of the detected
vehicle between the left and right stereo camera is obtained from the images to calculate the dis-
tance to the leading vehicle using triangulation. Interpolation is applied when the front vehicle is
missing. Figure 3.7 presents an example of the detected leading vehicle denoted by the yellow rect-
angle, and distance measurement in meters denoted by the red number. With the road orientation
and distance to the leading vehicle processed, all the features in the learning from demonstration
model can be calculated.

Figure 3.7: Vehicle detection and distance measurement result

3.5.2 Experiment setting

In total, 78 ground truth trajectories are obtained from the KAIST dataset. The ground truth tra-
jectories include both in-lane driving and lane changing cases. We deliberately include the lane
changing cases in the training dataset because the FusionRipper attack aims to create abnormal
lateral deviations of a trajectory to achieve the off-road or wrong-way attack goal. It is critical to
differentiate between a normal lane changing process, which also includes lateral deviations, and
the lateral deviations caused by the attack. 88 attacked trajectories from the FusionRipper attack
and all ground truth trajectories are utilized in the experiments for detection.

In the experiments, we mainly evaluate the proposed detection method against the off-road
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attack, which requires less lateral deviation and thus is more difficult for the detection model. Two
types of detection mechanisms, namely offline detection and online detection, are designed and
evaluated. In the offline detection, the detection is performed after the full trajectory of the vehicle
is observed. In the online detection mode, the anomaly classifier checks the trajectory every 0.5
seconds until classified as abnormal or reaching the end of the attack. The online detection mode
is designed to detect the abnormal trajectories in real-time as soon as possible, which is critical to
the safety performance of the AVs, but also more challenging.

3.5.3 Experiment results

Figure 3.8 illustrates the performance of the learning from demonstration model, by comparing
a ground truth trajectory (i.e., green curve) with its corresponding predicted optimal trajectory
from the learned model (i.e., blue curve). Subfigure (a) shows the position profile and subfigure
(b) shows the speed profile. The prediction horizon is 2 seconds, indicating that the learned model
takes an accurate position (i.e., the same as the ground truth position profile) and the corresponding
speed as the input every 2 seconds. The generated trajectory is very close to the ground truth
trajectory. To quantitatively measure the difference between the learned model and the ground
truth trajectory, the average Displacement Error (ADE) between the ground truth trajectory and
the predicted optimal trajectory is calculated as 0.76m. The calculation of the ADE is based on
the of EDt in Equation 3.14. The ADE is less than 1m, which indicates that the predicted optimal
trajectory fits the ground truth very well.

Based on the learned model, the value of the objective function of both observed trajectories and
predicted optimal trajectories (by solving Equation 3.3) can be calculated by evaluating θTf (s, u),
in which θ is optimized by the maximal entropy inverse reinforcement learning model. Intuitively,
if the vehicle is not under attack, the value of the objective function calculated from the observed
trajectory should be close to the value calculated from the predicted optimal trajectory. If the
vehicle is under attack, then the two values should deviate from each other. Figure 3.9 illustrates a
comparison of the objective values of the attacked trajectory, ground truth trajectory, and predicted
optimal trajectory. The red curve is the objective of the attacked trajectory, and the green curve
denotes the objective of the ground truth trajectory. The blue curves in both subfigures denote the
objective value of the predicted optimal trajectory. In subfigure (a), when the attack is about to
succeed (i.e., time ≥ 14 s), the objective value of the attacked trajectory deviates from the optimal
value significantly. By comparing subfigures (a) and (b), the objective of the ground truth trajectory
is much closer to its corresponding optimal objective value than the attacked trajectory.

Figure 3.10 shows the 3D (subfigure (a)) and 2D (subfigure (b)) scatter plots of the decision
tree classification result. The red dots represent the attacked trajectories, and the black dots rep-
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Figure 3.8: Comparison between a ground truth trajectory and a predicted optimal trajectory ((a):
trajectory profile in 2-D space. (b): speed profile)

63



Figure 3.9: Objective value comparison of the attacked trajectory and the ground truth trajectory
((a): objective value comparison of an attacked trajectory (b): objective value comparison of a
ground truth trajectory)

resent the ground truth trajectories. In the 3D scatter plot, three axis represent the three statistical
features introduced in section 3.4.3, which are objective ratio, normality score, and average dis-
placement error. With three features, the normal trajectories in the ground truth can be separated
from the attacked trajectories, as shown in the 3D scatter plot. Subfigure (b) shows the distribu-
tion of trajectories if the average displacement error feature is removed. The classifier is difficult
to differentiate since the normal trajectories and the attacked trajectories are mixed together. The
scatter plots illustrate that the choice of these three statistical features is appropriate.

Next, we show the results of the offline and online detection respectively. In the offline detec-
tion, false positive (Type I error) indicates that a ground truth trajectory is classified as an attacked
trajectory. On the contrary, false negative (Type II error) means that an attacked trajectory is not
identified correctly. The false positive rate of offline detection is 8.7% (2/23), and the false nega-
tive rate is 3.7% (1/27). Figure 3.11 illustrates a false positive case and a false negative case. In
subfigure (a) and (b), green curves represent the ground truth trajectories in the dataset, and the
blue curves denote the optimized trajectories, respectively. Subfigure (a) shows the false positive
case in the 2-D space, in which the optimized trajectory does not fit the ground truth very well,
compared to a true positive case in subfigure (b) where the optimized trajectories almost overlap
with the ground truth trajectory. The reason for the unsatisfying fitting in the false positive case is
that the road orientation at this road segment calculated from the map data is not accurate. Thus,
the optimized trajectory tries to follow the road direction within the prediction horizon and devi-
ates from the ground truth trajectory. Such an issue may be resolved by applying an HD map for
road orientation calculation, rather than utilizing the OpenStreetMap as in our study. Subfigure (c)
shows the heading rate profile of the false negative case that an attacked trajectory is misclassi-
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Figure 3.10: Scatter plot of the classification problem ((a): scatter plot with three features. (b):
scatter plot with two features.)
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fied. The red curve denotes the heading rate profile of the attacked trajectory, and the blue curve
denotes the heading rate profile from a ground truth trajectory. The heading rate is a key feature in
the learned driving model, and in this case, the heading rate of the attacked trajectory is similar to
the heading rate of the ground truth trajectory, which makes the attacked trajectory difficult to be
identified.

Figure 3.11: Misclassification examples of the KAIST experiments ((a): trajectory profile of the
FP case. (b): baseline trajectory profile for the FP case. (c) heading rate profile of the FN case)

Figure 3.12 further shows the heading rate profile comparison, which reveals the reason why the
attacked trajectories can be differentiated from the ground truth trajectories. The red curve denotes
the heading rate profile of the attacked trajectory, and the green curve denotes the heading rate
profile of the ground truth trajectory. The blue curves in both subfigures denote the heading rate
profiles of the corresponding predicted optimal trajectories. Notice that the heading rate profiles
of the predicted optimal trajectories fluctuate every 2 seconds since the prediction horizon is 2
seconds. In subfigure (a), the heading rate profile of the attacked trajectory has larger fluctuations
compared to the predicted optimal trajectory. The ground truth trajectory, on the contrary, has
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Table 3.1: Performance of online detection

FP FN

Mean
attack
success
time (s)

Mean
detection
time (s)

Mean
time to
attack
success (s)

2/23 1/23 28.7 12.7 16.0

smaller values and small fluctuations. Such differences are reflected in the objective function
value, which is one feature in the classification model.

Figure 3.12: Heading rate profiles of the attacked trajectory and the ground truth trajectory ((a):
attacked trajectory. (b): ground truth trajectory)

In the online detection, the anomaly classifier checks the trajectory every 0.5 seconds. The
performance of the online detection is shown in Table 3.1. The false positive rate is 8.7% (2/23),
and the false negative rate is 3.7% (1/27), which is the same as the offline detection results. For
online detection, it is important to identify the attacked trajectory as early as possible, but at least
before the attack succeeds. Therefore, we further calculate the mean detection time to compare
it with the mean attack success time. The mean success time of the off-road attack is 28.7 s, and
the mean detection time is 12.7 s. The time to attack success is defined as the time duration from
the success time of the detection to the success time of the attack, which measures how early the
attack can be detected before attack success. In the online detection, the attacked trajectories can
be identified 16.0 s before the attack success time in average.

Figure 3.13 further illustrates the detection time (i.e., blue bars) in the online detection, com-
pared to the duration of attack phases one and two. The green bars denote the duration of phase
one (i.e., vulnerability profiling), and the red bars denote the attack success time, which is the end
of phase two (i.e., aggressive spoofing). In general, except for the false negative case 7109, the
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detection time of all other test cases is not longer than the attack success time, which indicates that
the anomaly classifier can successfully detect the spoofing attack before it achieves the attack goal.
For most of the test cases, the detection time is even less than the duration of the vulnerability
profiling phase, which leaves sufficient time for applying further mitigation strategies.

Figure 3.13: Detection time in online anomaly detection for KAIST experiments

3.6 Detection Model Evaluation on CV Threat Model

In the previous section, the proposed anomaly detection model is evaluated against the AV threat
model. In order to further demonstrate the scalability of the model, another experiment is con-
ducted using the Next Generation Simulation (NGSIM) Lankershim Blvd. dataset. The dataset
includes vehicle trajectory data at 10 Hz on a bidirectional urban signalized arterial, captured by
cameras mounted on the roof of surrounding buildings [10]. Different from the KAIST dataset in
which all trajectories are generated from a single AV, the NGSIM dataset includes vehicle trajec-
tories from different human drivers with a variety of driving behaviors. Validation of the proposed
anomaly detection on the NGSIM dataset is necessary to show the effectiveness of the algorithm
in a CV environment with human driven vehicles.
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In this experiment, 166 ground truth trajectories from the NGSIM trajectory dataset are ex-
tracted, including 114 trajectories with no lane change behavior, and 52 trajectories with lane
change behavior. For 114 trajectories without lane change behavior, the attack model illustrated in
Section 3.3.2 is executed to generate the attacked trajectories. Overall, there are 280 trajectories
(166 ground truth trajectories + 114 attacked trajectories) in the experiments, and 2/3 of them are
used as the training data, 1/3 of them are used as the testing data. Compared to the threat model
for AV, the CV threat model is much more aggressive with a much short attack duration, which
greatly increases the difficulty for both offline and online detection.

Figure 3.14: Detection time in online anomaly detection for NGSIM experiments

Similar to the KAIST experiments, both offline and online detection is conducted. In the offline
detection, the false positive rate is 0% (0 out of 49), and the false negative rate is 0% (0 out of 35).
Overall, the anomaly detection model shows a very good performance in the offline detection. In
the online detection, the anomaly classifier checks the trajectory every 0.5 seconds until classified
as abnormal or reaching the end of the attack. Overall, the false positive rate is 4.1% (2 out of
49), and the false negative rate is 2.9% (1 out of 35). Figure 3.14 shows the relationship between
the detection time (blue bar) and the attack success time (orange bar) case by case. Other than
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case 110, all the cases can be detected before the attack success time, and the average detection
time is 2.6 seconds after the attack starts. The average attack success time is 4.7 seconds, and the
average time to attack success is 2.1 seconds. Thus, even with a relatively short attack duration,
the proposed anomaly detection still manages to identify the attacked trajectories.

Figure 3.15 shows two misclassification examples of a false positive (FP) case (subfigure (a))
and a false negative (FN) case (subfigure (b)) in the online detection. Subfigure (c) shows a normal
lane change trajectory compared with the false negative case in subfigure (b). The number in the
figure denotes the timestamp in second. For the FP case, the yellow trajectory is a normal trajectory
in the NGSIM dataset, and for the FN case, the yellow trajectory is the attacked trajectory generated
by the proposed attack method. The blue trajectories denote the optimized trajectories generated
by the learned driving model. The red trajectories in the figure represent the trajectory of the victim
vehicle. In the FP case, the ground truth trajectory performs a lane change, and the distance is very
close to the victim vehicle at timestamp 5.0. In the real world, some vehicles may perform very
aggressive lane changes and affect surrounding vehicles, which confuses the detection model as an
FP case. In the FN case, the attacked trajectory successfully triggers the victim vehicle’s warning
in just 2 seconds, and the attacked trajectory is similar to a normal lane change with a smooth
lateral trajectory profile shown in subfigure (c). Thus, it is difficult to identify such an attacked
trajectory.

To further evaluate the generalizability of the proposed anomaly detection framework, a gener-
alization experiment is conducted to cross-validate the effectiveness of the anomaly detector with
both KAIST and NGSIM datasets. The driving model learned from the KAIST dataset is adopted
in the anomaly detection of the NGSIM experiment, and all the other anomaly detection settings
are the same as the original experiments in this section. In this case, the false positive rate is 8.2%
(4/49), and the false negative rate is 2.9 % (1/35). The performance does not degrade too much,
which proves the generalizability of the framework.

3.7 Detection on Adaptive Attack

To further evaluate the capability of the proposed anomaly detection model, an adaptive attack
method is designed and implemented. In the AV/CV threat model, the key idea is to add lateral
deviations to the original trajectory, which either causes the subject AV hit the roadside, or leads
to the emergency behavior of the victim vehicle. To make the attack more stealthy and difficult
to be detected, the adaptive attack reduces the magnitude of the lateral deviations added to the
ground truth trajectory, and we use the adaptive ratio to represent the significance of the magnitude
reduction, ranging from 0 to 1. Figure 3.16 shows an example of the adaptive attack implemented
on the KAIST dataset. The green curve denotes the ground truth trajectory that is not attacked (i.e.,
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Figure 3.15: Misclassification examples of the NGSIM experiments ((a): FP case. (b): FN case.
(c) baseline for the FN case)

71



adaptive ratio = 0). The blue curve denotes the original attack trajectory that is evaluated in section
3.5 (i.e., adaptive ratio = 1). The orange curve denotes the trajectory under adaptive attack, with
the adaptive ratio of 0.5. Notice that the lateral deviations of the orange trajectory are half of the
lateral deviations of the original attack trajectory, w.r.t. the ground truth trajectory. In this way, as
the adaptive ratio decreases, the adaptive attack trajectories become more and more similar to the
ground truth trajectory. The adaptive attack trajectories with a very small adaptive ratio (e.g., 0.1)
can be very close to the ground truth trajectories, which are very difficult to identify.

Figure 3.16: Adaptive attack example on the KAIST dataset

The adaptive attack is implemented on the KAIST dataset with the adaptive ratios of 0.8, 0.5,
and 0.2. The experiment setting is the same as in section 3.5, and the driving models and the
decision tree classifier are also the same. Table 3.2 shows the anomaly detection performance
on the adaptive attack. When the adaptive ratio is 0.8, the performance of the anomaly detection
degrades a little, with a false negative rate of 2/27. Nonetheless, the detection results are still
satisfying, and most of the attacked trajectories can be identified correctly. When the adaptive ratio
is 0.5, the performance of the anomaly detection is the same as the performance with the adaptive
ratio of 0.8. When the adaptive ratio is 0.2, the false negative rate become 10/27. However, in this
case, the adaptive attack trajectories are very close to the ground truth trajectories. In the urban
scenario, the success criterion of the off-road attack is 0.895 m [93]. With the adaptive ratio of
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Table 3.2: Detection performance on the adaptive attack

Adaptive ratio False positive False negative
0.8 2/23 2/27
0.5 2/23 2/27
0.2 2/23 10/27

0.2, the final lateral deviation w.r.t. the ground truth trajectory is only 0.179 m. In such cases, the
subject AV is still driving within the original lane. Although the proposed model fails to detect
some attack trajectories, the consequence is not hazardous.

3.8 Discussion and Conclusion

In this chapter, an anomaly detection model using learning from demonstration is proposed to de-
tect GPS spoofing attacks towards the localization system of the CAVs. Maximum entropy inverse
reinforcement learning is applied to learn the normal driving model. The learned driving model is
then utilized to generate optimal vehicle trajectories which are compared with the observed vehicle
trajectories using a decision tree classifier to determine whether the observed trajectories are under
attack. The proposed detection method is evaluated in two realistic GPS spoofing attacks on AV
and CV, respectively.

In both AV and CV experiments, the proposed anomaly detection method can identify most of
the abnormal trajectories before the attacks succeed. Such experiment results validate the gener-
ality of the proposed anomaly detection model. Notice that although in this chapter, the anomaly
detection model is only validated by GPS spoofing attack experiments, we do not utilize any spe-
cific feature of GPS signals in the anomaly detection model. In other words, the proposed model
has the potentials to detect a variety of sensor attacks on the localization system as well. The rea-
son is that the key concept of the proposed model is to compare normal versus abnormal driving
behaviors. Thus, it is not sensitive to the input types or states of the localization system. As long
as the driving behaviors are affected by certain cyber attacks, the proposed method can be applied
to detect the anomaly.

One limitation of the proposed method is that it can be only applied to detect known attacks,
because the decision tree classifier requires attacked trajectories as training data. To extend the
proposed method to detect unknown attacks and to be more generic, we will explore one-class
classification methods [82] where only the ground truth trajectories are needed for training a single
classifier. Another limitation of this chapter is that it mainly focuses on the detection of GPS spoof-
ing attacks without proposing defense solutions. In future work, we will investigate corresponding
mitigation strategies. For example, when a trajectory is identified as abnormal, its autonomous
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driving functions can be temporarily suspended until the vendor has upgraded the security sys-
tem. In the online detection, a warning can be sent to the trajectory planning module of the AV to
choose safe maneuvers (e.g., stop) or directly ask the driver to takeover. In a CV environment, the
certificate of the attacked vehicle could be revoked so that the messages sent from this particular
CV will be discarded by other vehicles.
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CHAPTER 4

Priciple Other Vehicle Behavior Prediction

4.1 Introduction

4.1.1 Background

In the area of AVs, road users’ behavior prediction is one of the most critical and complicated
tasks. Considering the safety and efficiency performance, AVs not only have to acquire an accurate
estimation of the current state of surrounding vehicles but also need to predict their future behaviors
[77]. POVs, i.e., those vehicles whose behavior directly affects the ego AV’s trajectory planning
need to be predicted with high accuracy. An inaccurate behavior prediction of a POV may lead to
severe outcomes.

Signalized intersections are common yet complicated urban scenarios in which traffic signals
heavily affect POVs’ behavior. Behavior prediction in such scenarios is a particularly challenging
task, as it needs to incorporate the Signal Phase and Timing (SPaT) information to perform an
accurate prediction. Only a few research efforts can be found in the literature that incorporate
traffic signal information into behavior prediction models [23, 26, 116].

Another difficulty associated with POV behavior prediction in complex urban scenarios is the
presence of interactive agents. A typical example is when a POV traverses a roundabout and inter-
acts with other surrounding vehicles, it is difficult to consider the behavior prediction of the POV
independently in a distributed fashion. Therefore, modeling the interaction between vehicles in an
explicit and interpretable way should be emphasized in POV behavior prediction. Additionally,
in many scenarios the behavior prediction problem should be solved jointly for multiple agents,
leading to computational tractability issues that need to be further addressed.

Heterogeneity of driving behavior of different human drivers is another critical issue that needs
to be addressed. Some drivers tend to drive more ’aggressive’ while others may be more cautious.
Thus, a single predictive model that predicts drivers’ behavior in a uniform way might do well in
the simulation yet not perform well in the real world. A well-designed behavior prediction model
should be capable to adapt itself in real-time to capture the driving attitude of the driver.

75



Our POV behavior prediction model includes two stages: discrete intention prediction and con-
tinuous trajectory prediction. Discrete intention prediction involves the task of predicting the dis-
crete maneuvers (e.g., pass / yield) that a POV intends to conduct. Continuous trajectory prediction
aims at predicting a series of future positions of the POV given its predicted intention. Note that
both discrete intention prediction and continuous trajectory prediction of POVs contribute to the
trajectory planning of AVs. Discrete intention prediction of POVs could affect the discrete decision
making of AVs. For example, when an AV decides whether it should change lanes, the pass or yield
intention prediction of the POV in the AV’s target lane becomes relevant. Similarly, continuous
trajectory prediction of POVs affects trajectory planning of AVs to avoid collisions between AVs
and POVs.

In this work, a hierarchical POV behavior prediction framework is proposed that incorporates
traffic signal information and considers interactive agents in complex urban scenarios. Two urban
scenarios, yellow light running scenarios at signalized intersections and right turn scenarios at
a roundabout, are chosen as two example use cases that best represent the importance of traffic
signal information and interactions in POV behavior prediction. The framework can be applied at
the roadside smart infrastructure using roadside sensors (e.g., bird-view cameras). It can also be
used by CAVs by detecting surrounding vehicles using their onboard sensors and receiving SPaT
information from the smart infrastructure. A BN approach is adopted for the discrete intention
prediction. The continuous trajectory prediction is conducted using maximum entropy IRL. More
specifically, an average prediction model is learned offline by IRL. During the online prediction,
a driver characteristic parameter is applied to update the average model and capture the individual
differences between drivers. The potential game is adopted to explicitly formulate the interaction
among vehicles in the online prediction process.

4.1.2 Contribution and Organization of the Chapter

The contributions of this work are three-fold:
Proposing a novel hierarchical behavior prediction framework with consideration of traf-

fic signal information and interactive agents: This work presents a POV behavior prediction
framework that combines both discrete intention prediction and continuous trajectory prediction
by incorporating traffic signal information and considering interactive agents, in complex urban
scenarios.

Adopting a mixture of offline learning and online prediction strategies: Learning an average
human driving model from a static data set cannot represent the different driving preferences and
attitudes across drivers, which is essential for accurate trajectory prediction. To address this issue,
we combine offline learning of the average driving behavior with IRL and online updating of driver
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characteristics with sampling methods to better predict the behaviors of different drivers.
Explicitly modeling the interactions between vehicles: The interactions between agents are

modeled in a game theoretical approach using a potential game. The Nash Equilibrium of the
potential game is guaranteed.

The rest of the chapter is organized as follows: we first present the related work in Section
II, followed by the scenario overview (Section III). The methodologies for the discrete intention
prediction and continuous trajectory prediction are introduced in Section IV and Section V, re-
spectively. Next, the numerical experiments of the yellow light running scenario and the right turn
scenario are presented in Section VI and Section VII, respectively. Finally, Section VIII concludes
the chapter and lays out further research directions.

4.2 Literature review

BN is a widely adopted methodology in the existing literature for discrete intention prediction.
Schulz et al. apply a dynamic BN to predict whether a vehicle will go straight, turn left or turn
right at an intersection [90]. Schreier et al. build a comprehensive BN to perform discrete intention
prediction and identify irrational driving behaviors in urban scenarios [89]. However, traffic signal
information is neglected in these studies. Chen et al. use BN to predict red-light-running behaviors,
utilizing the trajectory information during the yellow light [23]. Since the intention prediction is
conducted only once, after the yellow light elapses 3 seconds, the discrete intention prediction
results cannot be utilized for trajectory prediction during the yellow light.

For continuous trajectory prediction, IRL has attracted much attention since it is explainable
and interpretable. Ziebart et al. propose the idea of maximum entropy inverse reinforcement
learning [126], and Levine and Koltun are among the first to apply the IRL to predict human
driving behaviors [62]. Sun et al. propose a hierarchical IRL formalism for probabilistic trajectory
prediction in lane changing scenarios [98]. Schwarting et al. define Social Value Orientation (SVO)
when applying IRL to quantify human driving social preferences and to capture the difference
between human drivers [91], which is validated in a highway merging scenario. However, to the
best of our knowledge, no research works on adopting IRL in complex urban scenarios exists in
the literature, and this chapter aims to fill in this research gap.

Game theory is commonly utilized to explicitly model the interaction between vehicles
[65, 33, 91, 122, 124, 72]. Zhang et al. adopt a Stackelberg game framework to predict the
surrounding vehicle’s behavior and plan the ego vehicle’s behavior [124]. Stackelberg game is a
leader-follower game that can be applied to a two-player scenario by nature, and the bi-level opti-
mization formulation creates computational complexity. In [91], a multi-agent Stackelberg game is
formulated, and the multi-level optimization problem is formulated as a joint optimization problem
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to address the computational complexity. However, they do not present mathematical proof to es-
tablish the equivalency of the joint optimization problem and the multi-level optimization problem.
Additionally, in some interactive scenarios, it is difficult to find the leader and the follower in the
game. In [72], a potential game framework is applied in the trajectory planning problem, in which
all vehicles are treated similarly without specifying leaders and followers. This framework can be
generalized to multi-agent scenarios. There are a number of existing studies that have adopted the
potential game for trajectory planning[72, 25]. However, to the best of our knowledge, no existing

study has adopted the potential game for the trajectory prediction problem.

Deep learning is another widely adopted methodology for behavior prediction in autonomous
driving applications [77]. A variety of deep learning methodologies have been adopted for vehi-
cle behavior prediction. In [12, 128, 81], researchers adopt Long Short Term Memory (LSTM)
network to conduct sequence to sequence learning [100] for the trajectory prediction tasks. The
key idea of applying the sequence to sequence learning in trajectory prediction tasks is to encode
the traffic information of historical observations and decode the future trajectories sequentially. To
better explore and represent the observed trajectory information, convolutional neural networks
(CNN) ([24, 61]) and graph neural networks (GNN) ([67, 66, 75]) are utilized and integrated with
LSTM. Transformer, as a fast developing sequence to sequence learning technique, has also been
applied in the trajectory prediction with good performance [127, 19]. A major drawback of apply-
ing the deep learning methodologies is that historical observations of each trajectory are required.
For example, to predict the vehicle trajectory in 3 seconds, the historical observations of two sec-
onds for such a vehicle may need to be provided to the deep learning neural networks. However,
sometimes the ego autonomous vehicle may only interact with a surrounding vehicle for a short
period of time, which limits the usage of the deep learning techniques. Different from the deep
learning techniques, the method proposed in this chapter does not require historical observations
of surrounding vehicles of the autonomous vehicle.

A few studies in the literature address the behavioral differences between human drivers when
conducting trajectory prediction. In [91], a Social Value Orientation (SVO) is defined to capture
the difference between human drivers. However, in the SVO map defined in this literature, human
drivers may be completely selfless and aim to maximize other drivers’ utilities to their own detri-
ment, which may not be realistic in the real world. In [107], driver types are clustered to better
model the driver behaviors in order to predict and compensate for the tracking error in Advanced
Driver-Assistance Systems (ADAS) systems. This method is validated in a highway merging sce-
nario. Despite the existing work in the literature, more research efforts are required to investigate
the value of developing customized trajectory prediction methods that can capture the behavioral
differences between human drivers, especially in complex urban scenarios.
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4.3 Scenario overview

In general, the real-world driving scenarios can be categorized into two categories, independent
scenarios and interactive scenarios. Consider a POV whose behavior may be affected by its
Surrounding Vehicle (SV)s. Here, the POV refers to the principle other vehicle that may affect
the behavior of the ego autonomous vehicle, and the SV refers to the surrounding vehicle that
may affect the behavior of the POV. In the independent scenarios, the POV does not affect the
behaviors of SVs, and therefore the SVs’ behaviors can be considered as a set of environmental
constraints for POV behavior prediction. In the interactive scenarios, the POV also affects the be-
havior of the SVs, and consequently the behavior prediction of the POV and the SVs should be
conducted jointly. In this work, two driving scenarios are taken as example use cases to showcase
both independent scenarios and interactive scenarios.

4.3.1 independent scenario - yellow light running

The independent scenario example in this work is the yellow light running scenario, which illus-
trates that the traffic signal plays an important role in POV behavior prediction. Figure 4.1 shows
the yellow light running scenario, in which the yellow vehicle is the ego AV. The red vehicle
denotes the POV whose behavior needs to be predicted, and is influenced by the blue SV and the
traffic signal information. To predict the behavior of the POV, first the discrete intention prediction
model is utilized to predict whether the POV chooses to pass or stop. According to the prediction
of the POV’s intention, the continuous trajectory prediction model is implemented to predict the
detailed trajectory of the POV (red curve).

Figure 4.1: Yellow light running scenario
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4.3.2 Interactive scenario - right turn

The interactive scenario example in this work is the right turn scenario at a roundabout, in which
a POV and an SV are interacting with each other. Figure 4.2 illustrates the right turn scenario at
a roundabout, where the yellow vehicle denotes the ego AV. In this scenario, the red right-turn
POV’s behavior needs to be predicted, accounting for the fact that it interacts with the SV within
the roundabout. Similarly, the discrete intention prediction here predicts whether the POV yields
to the SV, and the continuous trajectory prediction is conducted jointly for the POV and SV using
a potential game to predict their detailed trajectories. Notice that although a right turn scenario
is taken as an example of the interactive scenario, the methodology proposed in this work can be
generalized to other pair-wise interactive scenarios (e.g., highway merging, unprotected left turn)
and multi-agent interactive scenarios.

Figure 4.2: Right turn scenario

4.4 Discrete intention prediction

The discrete intention prediction focuses on predicting maneuver-level decisions. For example,
in the yellow light running scenario mentioned in section 4.3.1, the goal is to predict whether the
POV chooses to pass or stop at each time step during the yellow light. Such a task can be treated
as a classification problem, in this work, a BN is adopted as the classifier.
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A BN can represent the dependencies between different random variables. Figure 4.3 illustrates
the BN adopted for the yellow light running scenario mentioned in section 4.3.1 and the right turn
scenario mentioned in section 4.3.2. Although the attributes of different scenarios are different,
the networks share the same structure. The BN includes three layers: the causal evidence layer,
the intention layer, and the diagnostic evidence layer. The intention layer is the middle layer,
which includes the intention random variable whose probability distribution will be predicted with
the BN. Causal evidence and diagnostic evidence are both observations. The causal evidence is
related to the cause of the intention, usually observed from the environment, and the diagnostic
evidence concern the outcome of the intention as observed from the POV. The goal of discrete
intention prediction is to calculate the probability of intention (INT ) given all causal evidence
(CE = {CE1, · · · , CEN}) and diagnostic evidence (DE = {DE1, · · · , DEM}) as observations
P (INT |CE1, ..., CEN , DE1, ..., DEM). With the BN, the joint distribution of all the random vari-
ables (i.e. P (INT,CE1, ..., CEN , DE1, ..., DEM)) can be represented using a number of condi-
tional distributions, shown in equation (4.1). The learning process of the BN is to calibrate the
conditional distribution of P (INT |CE1, ..., CEN) and P (DEσ|INT ) from the dataset.

P (INT |CE1, ..., CEN , DE1, ..., DEM)

= P (INT,CE1,...,CEN ,DE1,...,DEM )∑
INT P (INT,CE1,...,CEN ,DE1,...,DEM )

=
P (INT |CE1,...,CEN )ΠM

σ=1P (DEσ |INT )∑
INT P (INT |CE1,...,CEN )ΠM

σ=1P (DEσ |INT )

(4.1)

In the yellow light running scenario mentioned in section 4.3.1, the causal evidence includes
elapsed yellow time, time to intersection (TTI), and relative speed to the SV. The elapsed yellow
time reflects the traffic signal information. The diagnostic evidence includes longitudinal speed
and longitudinal acceleration. In the right turn scenario mentioned in section 4.3.2, the causal
evidence includes ∆ time to conflict, which represents the absolute difference between the time
to the conflict point (i.e. the purple circle in Figure 4.2) of the POV and the SV. The time to
the conflict point is calculated by assuming a constant speed of the vehicle. The speed of the
SV and the POV headway are also considered as the causal evidence. In the diagnostic evidence
layer, during the right turn process, both the longitudinal and lateral action of the POV need to be
considered. Thus, the POV speed, acceleration, and heading change rate are included as diagnostic
evidence.

4.5 Continuous trajectory prediction

In the continuous trajectory prediction module, a generic vehicle trajectory optimization problem
is formulated to model the trajectory planning process, as shown in equation (4.2). In this opti-
mization problem s is the decision variable, which denotes the trajectory as a sequence of points st.
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Figure 4.3: Bayesian network for discrete intention prediction ((a) yellow light running; (b) right
turn)
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Each trajectory point st at time step t can be represented by (xt, yt, vt, at, ψt, wt), in which xt and
yt are longitudinal and lateral coordinates, respectively. ψt is the heading angle of the vehicle, and
wt is the heading change rate. vt denotes the speed of the vehicle, and at denotes the acceleration.
τ denotes the step size between two trajectory points. Here, p represents the initial condition and
environment states, which serve as input parameters to the optimization problem. For example,
p may include the surrounding vehicles states s−i, where i denotes the index of the vehicle. The
objective function is a weighted sum of a series of driving features (i.e. driving objectives) f(s,p).
Each driving feature is a mapping function that maps the trajectory to a feature vector, which can
be different in different scenarios. The constraints in the optimization problem represent vehicle
dynamics. The details of the driving feature vector will be introduced in the appendix. The goal of
the IRL is to learn the weight vector θ associated with the feature vector f(s,p).

mins θ
Tf(s,p)

s.t. xt+1 = xt + vtτ cosψt

yt+1 = yt + vtτ sinψt

vt+1 = vt + atτ

ψt+1 = ψt + wtτ

x0, y0, v0, ψ0 = xstart, ystart, vstart, ψstart

(4.2)

Similar to Section 3.4.2, maximum entropy inverse reinforcement learning is adopted to learn
the driving model represented by the weight vector in equation 4.2. The details of the derivation
and the algorithm can be found in Section 3.4.2.

During the offline learning process, the trajectory data set is divided into subsets, where each
subset includes trajectories with the same discrete intention. For example, in the roundabout right-
turn scenario, vehicle trajectories are divided into three subsets, including the trajectory subset of
the through movement vehicles within the roundabout (i.e., the SV in Figure 4.2), the trajectory
subset of the right turn vehicles with the intention of yielding, and the trajectory subset of the right
turn vehicles with the intention of passing. Note that the through movement vehicles have the right
of the way, so in normal driving scenarios they do not need to yield to the POV. Thus, we only
consider one intention for the through movement SVs. After dividing the trajectories into subsets,
the offline learning process with IRL is conducted for each subset separately to learn different
weight sets θ for each subset.

4.5.1 Potential game

Potential game is a special class of game, in which the Nash Equilibrium can be guaranteed. In a
multi-agent environment, assume that each agent i has a utility function Ui(si, s−i) = θT

i fi(s,p).
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In the potential game, a potential function F for all agents can be found such that the change of the
utility function of agent i caused by the deviation of an action of agent i (i.e. si −→ s′i) is equal to
the same amount of change in the total potential function F for all agents. The mathematical form
of the definition is shown in equation (4.3).

Ui(si, s−i)− Ui(s
′
i, s−i) = F (si, s−i)− F (s′i, s−i).∀si, s′i, s−i (4.3)

To construct a potential function for the trajectory prediction problem, the utility functions
should be designed wisely and careful attention needs to be paid to the learning process. Notice
that the utility function is a linear combination of different driving features, and to construct the
potential function, the driving features are divided into two categories. We define the driving
features that only involve the states of the agent itself as the independent features, which can
be denoted as f q

i (si). For example, the driving feature of approaching the desired speed is an
independent feature, because the value of such a driving feature only depends on the speed profile
of the agent itself. The driving features that involve both the state of the agent itself and other
agents’ states can be denoted as f r

i (si, s−i), which are defined as interactive features. For example,
the collision avoidance feature is an interactive feature because it involves both the state of the
agent itself and other surrounding agents’ states.

Lemma 4.5.1. When the utility function of each agent i only consists of independent driving
features f q

i (si). The potential function can be constructed as the summation of the utility functions
of all agents.

Proof. Ui(si, s−i) =
∑

q θ
q
i f

q
i (si),∀i

F (si, s−i) =
∑

i Ui(si, s−i) =
∑

i

∑
q θ

q
i f

q
i (si)

Then, Ui(si, s−i)− Ui(s
′
i, s−i) =

∑
q θ

q
i (f

q
i (si)− f q

i (s
′
i)),∀si, s′i, s−i

Since all features are independent features, the deviation of si only affects f q
i (si). F (si, s−i) −

F (s′i, s−i) =
∑

q θ
q
i (f

q
i (si)− f q

i (s
′
i)) = Ui(si, s−i)− Ui(s

′
i, s−i),∀si, s′i, s−i

Lemma 4.5.2. When the utility function of each agent i only consists of interactive driving fea-
tures f r

i (si, s−i), i.e. Ui(si, s−i) =
∑

r θ
r
i f

r
i (si, s−i). The potential function can be constructed

with f r
i (si, s−i) under following conditions.

(i) The interactive driving features satisfy the symmetric property: f r
i (si, s−i) = f r

−i(si, s−i),∀− i
involved in f r. Thus, we can denote f r(si, s−i) = f r

i (si, s−i) = f r
−i(si, s−i)

(ii) The weight associated with f r
i (si, s−i) and f r

−i(si, s−i) should be equal for agent i and agent
−i. The weight can be denoted as θr

If the conditions are satisfied, the potential function can be constructed as F (si, s−i) =
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∑
r θ

rf r(si, s−i). Notice that in this case, the interactive features f r(si, s−i) only appear once
in the potential function.

Proof. F (si, s−i) =
∑

r θ
rf r(si, s−i)

According to condition (i)(ii), Ui(si, s−i) − Ui(s
′
i, s−i) =

∑
r θ

r
i (f

r
i (si, s−i) − f r

i (s
′
i, s−i)) =∑

r θ
r(f r(si, s−i)− f r(s′i, s−i)),∀si, s′i, s−i

F (si, s−i)−F (s′i, s−i) =
∑

r θ
r(f r(si, s−i)−f r(s′i, s−i)) = Ui(si, s−i)−Ui(s

′
i, s−i),∀si, s′i, s−i

Lemma 4.5.3. In the general cases, the utility function of each agent i consists of both inde-
pendent features f q

i (si) and interactive features f r
i (si, s−i), i.e. Ui(si, s−i) =

∑
q θ

q
i f

q
i (si) +∑

r θ
rf r(si, s−i). The potential function should be constructed as F (si, s−i) =

∑
i

∑
q θ

q
i f

q
i (si)+∑

r θ
rf r(si, s−i).

The proof of Lemma V.3 is the combination of the proof of Lemma V.1 and V.2. Notice that
the difficult design in the potential game formulation is condition (ii) in Lemma V.2, because
the weight vector is actually learned by maximum entropy inverse reinforcement learning. In
this work, the only interactive driving feature is the collision avoidance feature. In this case, the
learning process for each agent can be conducted separately. In the end, the weights of the collision
avoidance feature for different agent i can be adjusted to the same value by applying αiθ as the
actual weight. Here, αi is a zoom factor to regulate the weight vector, which does not change the
optimization problem for each agent.

With the potential game formulation, some good properties can be achieved:
(a) The Nash Equilibrium can be guaranteed by directly optimizing the potential function F .

The definition of the Nash Equilibrium is:

Definition 4.5.1 (Nash equilibrium). In the n agents game, for a utility maximization problem,
the strategies (s∗1, ..., s

∗
n) are a Nash Equilibrium if for each agent i, s∗i is the best response to the

strategies of all other agents −i, (s∗1, ..., s∗i−1, s
∗
i+1, ..., s

∗
n): Ui(s

∗
i , s

∗
−i) ≥ Ui(s

′
i, s

∗
−i),∀si [37]

(b) It is appropriate and computational tractable to directly optimize the potential function F
rather than solve the best response dynamics. The best response dynamics is a typical method to
solve the multi-agent game, in which each agent solves its own utility maximization problem given
other agents’ actions. The best response dynamics usually take a long time to converge, which
does not satisfy the efficiency requirements of the behavior prediction problem. When solving the
optimization problem of the potential function F just once, the computational efficiency can be
improved significantly. More importantly, different from the multi-agent trajectory planning
problem, the behavior prediction problem for multiple agents is a centralized problem by
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nature. No matter whether the behavior prediction framework is implemented at the smart infras-
tructure or the AV, the centralized predictor needs to predict the behavior of all the surrounding
POVs. It is more appropriate to adopt the potential game framework for the behavior prediction
problem.

4.5.2 Online prediction with driver characteristic

In the offline learning process with IRL described in Section 3.4.2, the trajectories are divided into
subsets according to the vehicle movement and the discrete intention. Within each subset, it still
includes vehicle trajectories from different human drivers. In this way, after the offline learning
process, the learned weight θ for each subset can only represent an average human driving model.

However, drivers may have different driving preferences in the real world. Some human drivers
are aggressive and prefer the mobility driving features, while others are cautious and consider the
safety and smoothness driving features more. It is unreasonable to utilize an average driving model
to predict different human drivers’ driving behaviors. To address this issue, a driver characteristic λ
is designed in the online prediction framework. The online prediction model is shown in equation
(4.4), in which we categorize the driving features into two categories, the mobility features and the
safety / smoothness features. The driver characteristic λ is adopted to balance the weight of the
mobility features and the safety / smoothness features. The λ is initialized as 0.5 at time t0 when
a trajectory is observed at the beginning. During the online prediction process, assume that the
trajectory has been observed from time t0 to the current time tc. Different values of λ are sampled
and the optimization problem in equation (4.4) is solved from t0 to tc to get optimized trajectories
corresponding to each λ. The optimized trajectories from t0 to tc are compared with the observed
trajectory to find the λc whose corresponding optimized trajectory fits the observation best. Then,
such λc will be adopted for the trajectory prediction in the next prediction window.

minsλθ
T
mobfmob(s,p) + (1− λ)θT

safefsafe(s,p)

s.t.C(s,u) ≤ 0
(4.4)

Overall, during the online prediction process, a potential game is formulated by constructing
a potential function described in Section 4.5.1. The potential function is optimized to predict the
future trajectories for each agent (i.e. SV and POV). Given the prediction results of SV and POV,
for each vehicle separately, the driver characteristic is sampled to capture the driving preferences
of each human-driven vehicle. The new driver characteristic λi for each agent i will be adopted in
the potential function to make future predictions.
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4.5.3 Features in the continuous trajectory prediction

The driving features adopted in the continuous trajectory prediction are introduced here. Notice
that in section 4.5.1, the driving features are categorized as independent features and interactive
features. In section 4.5.2, the driving features are categorized as mobility features and safety /
smoothness features. When introducing each feature in this section, the category of each feature is
also introduced.

1. Desire speed: 1
N

∑
t(vt − vdes)2. At each time step t, the vehicle tries to approach the desire

speed. [Independent][Mobility].
2. Acceleration smoothness: 1

N

∑
t a

2
t . Vehicle usually minimizing the control input of acceler-

ation. [Independent][Safety/Smoothness].
3. Collision avoidance: 1

N

∑
t

1
(xit−x−it)2+(yit−y−it)2

. Vehicle tends to avoid the collision
from other vehicles. Notice that this feature is symmetric to agent i and agent −i. [Interac-
tive][Safety/Smoothness].

4. Heading smoothness: 1
N

∑
t(ψt − ρt)

2. Here, the heading ψt denotes the relative vehicle
heading w.r.t. the road orientation ρt. This feature indicates the vehicle follows the road geometry.
[Independent][Safety/Smoothness].

5. Lateral acceleration: 1
N

∑
t(at sin(ψt))

2. Similar to acceleration smoothness feature, vehicle
usually minimizes the control input.[Independent][Safety/Smoothness].

6. Stop: 1
N

∑
t((xt − xstop)

2 + (yt − ystop)
2). If the vehicle chooses to stop, the vehicle try to

approach the stopping position. [Independent][Mobility].

4.6 Experiments of yellow light running scenario

The Next Generation Simulation (NGSIM) dataset of Lankershim Boulevard [10] is adopted to
validate the behavior prediction framework in the yellow light running scenario mentioned in sec-
tion 4.3.1. In the NGSIM dataset, vehicle trajectories in a traffic corridor are captured by cameras
mounted on the roof of surrounding buildings. The road geometry of Lankershim Boulevard is
shown in Fig. 4.4. A total of 30 minutes of trajectory data are included in the full dataset, and
traffic signal data associated with vehicle trajectory data are also available in the dataset. The
trajectory collecting frequency is 10 Hz.

4.6.1 Experiments for discrete intention prediction

In the experiments of the discrete intention prediction of the yellow light running scenario, 361
trajectories are extracted from the NGSIM dataset, which experiences the yellow light. 2/3 of the
trajectories are in the training set, and 1/3 of the trajectories are in the test set. The trajectory
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Figure 4.4: Road geometry of Lankershim Boulevard

points are manually labeled that if at the end of the yellow light, the distance to the stop bar of the
vehicle is larger than a threshold, all the trajectory points of such a trajectory are labeled as stop.
Otherwise, the trajectory points are labeled as pass.

To evaluate the performance of the BN, a naive predictor is developed that if the maximum
travel distance within the remaining yellow time is larger than the distance to stop bar, then the
prediction is pass [71]. In other words, if the vehicle is able to pass the intersection during the
yellow light, the naive predictor thinks that it should pass.

The accuracy of the Bayesian network is 91.2%, while the accuracy of the naive predictor
is 83.2%. It indicates that in the real world, although some vehicles can pass the intersection
during the yellow light, the drivers still choose to stop for safety concerns. Notice that the discrete
intention prediction is conducted trajectory-point-wise, which means that the prediction is made
for each trajectory point (every 0.1 s) during the yellow phases. For some cases, the discrete
intention prediction is not correct at the beginning of the yellow phase, but it gets corrected as time
elapses.

Fig. 4.5 shows two specific cases that are representative (subfigure (a)-(c) and subfigure (d)-(f))
in the yellow light scenarios. The top two subfigures (i.e. (a) and (d)) are the probability-time
diagrams, in which the red curves denote the probability variation of stop and the green curves
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Figure 4.5: Case study of discrete intention prediction of yellow light running scenario
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denote the probability variation of pass. At each time step, the summation of the probability of
stop and probability of pass should always equal 1. To analyze the probability variation in these
two specific cases, the profile of some key features such as remaining time, time to intersection, and
longitudinal acceleration are shown in subfigures (b), (c), (e), and (f). The middle two subfigures
(i.e. (b) and (e)) show the relationship between the remaining yellow time (yellow line) and time
to intersection (blue curve). When the time to intersection is larger than the remaining yellow
time, the vehicle is far away from the intersection and is less likely to have the intention of pass.
The bottom two subfigures (i.e. (c) and (f)) are acceleration profiles. In the first case (subfigure
(a)-(c)), the probability of stop is larger than the probability of pass. The reason for that is the
acceleration at the beginning of the yellow is negative, which indicates the driver may want to stop
when the yellow just starts. However, since the time to intersection is quite close to the remaining
yellow time, the vehicle can actually pass the intersection. Thus, the vehicle starts to accelerate,
and the prediction result changes to pass. In the second case (subfigure (d)-(f)), the prediction
results fluctuate in the middle of the yellow time. Subfigure (e) shows that at the beginning, the
vehicle is far away from the intersection (i.e. time to intersection is much larger than the remaining
yellow time). However, the driver thinks the vehicle can pass the intersection and accelerates, so
the time to intersection is getting closer and closer to the remaining yellow time. Because of that,
the probability of stop goes down at the beginning. Later on, the driver realizes that it is impossible
to pass the intersection without violating the red light because the distance to the intersection is
still too far, then the vehicle starts to decelerate and the probability of stop rises back.

Table 4.1 shows the transferability performance of the BN. Cross validation experiments are
conducted in which the trajectories at three intersections are utilized. For each experiment in the
table, the trajectories at two intersections will be utilized to train the BN, and the trajectories at the
remaining intersection are in the test set. In the table, the performance of the BN is compared with
the Naive predictor. In all cross validation experiments, the performance of the BN outperforms
the naive predictor, which is consistent with the overall performance.

Table 4.1: Cross validate of the Bayesian Network

Accuracy Expriment 1 Experiment 2 Experiment 3
BN 92.2% 90.7% 88.2%
Naive 77.3% 85.0% 81.6%

4.6.2 Experiments for continuous trajectory prediction

In the continuous trajectory prediction section, 60 training trajectories and 60 testing trajectories
are extracted from the NGSIM dataset. In the training set, half of the trajectories pass the intersec-
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tion during the yellow light, while the others choose to stop. All the testing trajectories experience
the yellow light, whose intentions are unknown.

The continuous trajectory prediction is conducted for 3-second prediction windows and updated
every 0.5 seconds. The Average Displacement Error (ADE) is chosen as the error measurement.
The calculation of the ADE is shown in (4.5), which measures the average Euclidean distance
between the observed trajectory and the predicted trajectory in the prediction window. A naive
predictor is designed that assumes constant speed and heading in the prediction window. The pre-
diction accuracy of our framework is 0.5 m on average for all testing trajectories and the prediction
accuracy of the naive predictor is 1.75 m.

ADE =
1

N

T∑
i=0

√
(xobsi − xpredi )2 + (yobsi − ypredi )2 (4.5)

Figure 4.6: Case study of continuous trajectory prediction of yellow light running scenario

Fig. 4.6 shows the continuous trajectory prediction of two cases. In all four subfigures, black
curves with crosses denote the actual trajectory, and the red curves denote the prediction conducted
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every 0.5 seconds with a 3-second prediction horizon. Subfigure (a) and (b) shows the position
profile and speed profile respectively of the pass sub-scenario, and subfigure (c) and (d) show the
position profile and speed profile respectively of the stop subscenario. In both sub-scenarios, the
prediction is quite close to the ground truth, in terms of the position profile and speed profile.

Different from other literature that only evaluates the average performance among all testing
trajectories, we also evaluate the overall accuracy distribution for all testing trajectories. Figure 4.7
shows the error distribution of the predictor proposed in this work, In all test cases, the prediction
error in a 3-second horizon is less than 1 meter.

Notice that in the experiments of continuous trajectory prediction, it is not assumed that the
upper-level discrete intention prediction is perfectly accurate. The impact of the discrete intention
prediction is analyzed for each testing trajectory. When the intention prediction is accurate, the
average ADE is 0.49 m. With wrong intention prediction, the average ADE is 0.58 m. Such results
are consistent with the accuracy of discrete intention prediction since over 90% of the time the
discrete intention prediction is correct.

Figure 4.7: Prediction error distribution of the yellow light running scenario

4.7 Experiments of right turn scenario

To validate the behavior prediction framework in the right turn scenario mentioned in section
4.3.2, a trajectory dataset from a two-lane roundabout in Ann Arbor, Michigan is adopted in the
experiment [125]. The roundabout is at the intersection of the State St. and Ellsworth Rd., where
infrastructure sensors (i.e. cameras, radars) are installed at the four corners. In this way, all the
vehicle trajectories approaching and entering this roundabout can be detected and collected in a
24/7 manner [127]. The frequency of recording the trajectories is 2.5 Hz. Figure 4.2 shows the
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geometry of this roundabout, and the right turn vehicle trajectories and through movement vehicle
trajectories at the outer lane of the roundabout are extracted from one day at the northeast corner
for this experiment, as illustrated by the figure. Figure 4.8 shows the overview of the trajectory
data at the two-lane roundabout, in which the x-axis denotes the longitude, and the y-axis denotes
the latitude.

Figure 4.8: Trajectory overview at the two-lane roundabout

4.7.1 Experiments for discrete intention prediction

Before applying the BN on the trajectory dataset, the intention of each trajectory point at each
timestamp is manually labeled. Figure 4.9 shows the labeling criteria. For a trajectory, if at some
moment its speed is lower than a threshold (vstop), then before its speed reaches the threshold
(t < t1), the trajectory points are labeled as yield, illustrated by trajectory 1 in the figure. After it
accelerates and its speed exceeds vstop, the intention of those trajectory points are labeled as pass.
For a trajectory that always has a speed that is larger than the stop speed vstop (e.g. trajectory 2 in
the figure), all its trajectory points are labeled as pass.

A naive predictor is designed as the baseline. It assumes that if ∆ time to conflict is smaller
than a threshold, the right turn POV chooses to yield. As is discussed in the discrete intention
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Figure 4.9: Intention labeling criteria

prediction section, if the right-turn vehicle follows the right of the way, it should yield the through
movement vehicle when the time difference to the conflict point is small.

Overall, 191 vehicle trajectories that have more than 2 seconds of interaction (i.e. more than 5
trajectory points) with the through movement vehicle are adopted in the experiment. 2/3 of them
are utilized for training, and 1/3 are utilized for testing. The detection rate of the BN is 87.7%,
while the naive predictor has the prediction accuracy of 80.9%.

Figure 4.10 shows two case studies (i.e. subfigure (a)-(c), subfigure (d)-(f)) of the discrete
intention prediction. In the figure, the blue trajectories denote the through movement vehicles
within the roundabout. The green and red trajectories denote the entrance vehicles, and the green
represents the intention of pass, while the red denotes the intention of yield. The first column shows
the ground truth intention of the right-turn vehicles, and the second column shows the prediction
results of the right-turn vehicles. The last column shows the probability variation w.r.t. time. In the
first case study, the prediction of the initial three trajectory points is pass, while the ground truth is
yield. The reason is that the initial speed is large (i.e. the distance between two trajectory points
is large), and the prediction result is pass. Later, as the vehicle decelerates, the prediction goes
to yield, and after that the prediction results are accurate. In the second case, two POVs, denoted
by circle and rectangle respectively, interact with the through movement vehicle. Both right-turn
vehicles have the intention of pass. The prediction results of the first vehicle are accurate, but for
the second vehicle, the initial prediction of the vehicle is yield. The reason is that the initial speed
of the second vehicle is low. In other words, the second vehicle decelerates when approaching the
roundabout, and its speed is close to the stop speed. In such a corner case, the prediction results
predict wrongly at the beginning, but it becomes accurate after a few time steps.
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Figure 4.10: Case study of intention prediction at the roundabout

4.7.2 Experiments for continuous trajectory prediction

In the experiments for continuous trajectory prediction, 2224 right-turn trajectories are extracted
from the trajectory dataset collected at the two-lane roundabout. Each right-turn vehicle (i.e. POV)
has at least two seconds of interaction with the through movement vehicle (i.e. SV) in the round-
about. 1605 trajectories are in the training set and 619 trajectories are in the testing set. The
testing set includes trajectories of different days under different operating scenarios (e.g. different
weather, weekday / weekend). The prediction is conducted every 0.4 seconds, and the prediction
horizon in this experiment is 2 seconds.

The ADE is adopted as the prediction accuracy measurement, the same as in the experiment
for the right turn scenario mentioned in section 4.3.2. The average ADE of POVs is 0.51 m, and
the average ADE of SVs is 0.93 m. To further analyze the performance, the prediction accuracy is
evaluated for the pass or yield right turn vehicles separately. When the right turn vehicles choose
to pass, the prediction accuracy is 0.76 m, and the ADE of the corresponding interactive SV is 0.87
m on average. When the right turn vehicles choose to yield, the prediction accuracy is 0.44 m,
and the ADE of the corresponding interactive SV is 0.94 m on average. Notice that when the right
turn vehicles choose to yield, they usually have relatively low speed profiles, and the prediction
accuracy when the vehicles travel at low speed is higher.

Figure 4.11 illustrates the trajectory prediction results for a pass scenario and a yield scenario
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Figure 4.11: Case study of trajectory prediction at the roundabout
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in subfigure (a) and (b) respectively. In the figure, the x-axis and the y-axis denote the local x
coordinate and local y coordinate, respectively. The blue dots denote the ground truth trajectory
of the SV, and the black dots denote the trajectory of the POV. The yellow crosses represent the
trajectory prediction results of SV. In both cases, the trajectory prediction of the SV fits the ground
truth well. The cyan crosses denote the trajectory prediction of the POV when the discrete intention
prediction is pass, and the red crosses denote the trajectory prediction of the POV when the discrete
intention prediction is yield. In these two cases, the discrete intention prediction is correct, and the
continuous trajectory prediction of the POV is very similar to the ground truth POV trajectories.

Notice that in the continuous trajectory prediction, it is not assumed that the discrete intention
prediction is perfectly accurate. An intuitive question would be: how much does the wrong discrete
intention prediction affect the continuous trajectory prediction? Figure 4.12 illustrates two corner
cases when the discrete intention prediction is not accurate at some moment. In subfigure (a), the
actual intention of the right turn vehicle is pass as the ground truth. However, the initial discrete
intention prediction is yield, which leads to the continuous trajectory prediction results as the red
crosses. Although such continuous trajectory prediction results follow the trend of the ground truth
trajectory, the speed prediction of the POV deviates from the ground truth and predicts the vehicle
to slow down. Later, the discrete intention prediction changes to pass at the second time step and
the continuous trajectory prediction fits the ground truth well. In subfigure (b), the actual intention
of the right turn vehicle is yield, but the initial discrete intention prediction is pass. In this case, it
is even better than case (a) because the vehicle already has a low speed. The error induced by the
wrong discrete intention prediction is smaller in the continuous trajectory prediction.

In subfigure (b) of Figure 4.11 and subfigure (a) of Figure 4.12, there are frame missing issues in
the SV trajectories. The blue dot trajectories miss one frame in each case. However, the predictor
proposed in this work still manages to predict the SV trajectory accurately after the missing frame.
It illustrates the robustness of the predictor in this work.

4.8 Conclusion

In this chapter, a hierarchical behavior prediction framework is proposed that incorporates traffic
signal information and considers interactive agents in urban scenarios. The framework has two
stages: discrete intention prediction and continuous trajectory prediction. The discrete intention
prediction is conducted with BN. Given the discrete intention prediction results, the continuous
trajectory prediction is conducted by applying the maximum entropy inverse reinforcement learn-
ing and the potential game theory. In the offline learning process, IRL is adopted to learn the
average driving model and the base predictor. In the online prediction process, a driver character-
istic is designed to capture the difference among different human drivers, and the potential game
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Figure 4.12: Corner cases of trajectory prediction at the roundabout
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is formulated to explicitly model the interaction among vehicles.
The behavior prediction framework is validated with two experiments: the yellow light running

scenario and the right-turn scenario, which best represents the importance of the traffic signal
information and the interactions among the vehicles. In the yellow light running scenario, the
ADE as the error measurement is 0.5 m on average for the three-second prediction horizon. In
the right turn scenario, the ADE of the POV trajectory prediction is 0.51 m on average for the
two-second prediction horizon. In both experiments, the connection between the discrete intention
prediction and the continuous trajectory prediction is analyzed in detail.

In future work, a crash / near-crash event predictor may be developed following the framework
of this work. In this work, the normal POV driving behaviors are predicted, which are the majority
in the real-world trajectories. However, the corner rare events are also very important because they
significantly affect the safety performance of autonomous vehicles. A crash or near-crash event
prediction framework may be developed by comparing the observed trajectory with the predicted
trajectory using the prediction framework in this work, to identify the abnormal crash or near-crash
trajectories.
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CHAPTER 5

Summary and Future Directions

5.1 Summary of the thesis

With high expectation of AV from academia and industry, the actual progress of AV deployment
is not satisfying because of a variety of challenges, especially in complex urban scenarios. To
address the challenges in AV’s autonomy stack, smart infrastructure can play an important role
in a cooperative driving approach. In this thesis, a cooperative driving framework is proposed to
provide guidance or warnings to support the trajectory planning of the AVs.

First, an integrated control framework is proposed that optimizes the traffic signals and provide
high-level guidance for CAV’s trajectory planning. Although existing studies make good achieve-
ments in CAV based intersection management, they are constrained by three drawbacks: assump-
tion of 100 % penetration rate of CAVs, centralized formulation, and isolated intersection. In this
study, we overcome these drawbacks by proposing a decentralized approach for integrated control
in a traffic corridor under mixed traffic conditions. Instead of controlling the CAVs by a centralized
controller, our framework provides high-level guidance to CAVs to assist their trajectory planning,
and the detailed trajectories are generated by the CAVs themselves. The integrated control frame-
work is validated in microscopic traffic simulation with realistic settings from a real-world traffic
corridor. The simulation shows the mobility and fuel economy performance improvement of the
integrated control framework, and more benefits are achieved with higher penetration rate of CAVs.

Second, an anomaly detection module using learning from demonstration is designed to iden-
tify abnormal trajectories caused by cyber attacks on the localization module of CVs and AVs.
Most existing defense methods for the localization module are signal processing methods, which
requires physical access to the signal receivers in the localization module. In this work, instead
of investigating the signal receivers, the vehicle and transportation domain knowledge is adopted
to identify the anomalies. A learning from demonstration method is utilized to learn the normal
driving model from the historical trajectory datasets of CVs or AVs. To determine whether the
observed trajectory is abnormal or not, a statisitical method is developed to quantify the difference
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between the observed trajectory and optimized trajectory generated by the learned driving model,
by training an anomaly classifier of a decision tree. The anomaly detection method is evaluated
by two real-world datasets, for AV and CV experiments separately. In both experiments, the false
positive rate and false negative rate are quite satisfying, and most of the attacks can be identified
before the attack success time. To further explore the capability of the anomaly detection, an adap-
tive attack is designed to reduce the influence of the attack, making it more stealthy. Under the
adaptive attack with more challenging conditions, the anomaly detection method proposed still has
a reasonable performance.

Third, a novel hierarchical POV behavior prediction framework is developed, incorporating
traffic signal information in complex urban scenarios with interactive agents. POV refers to the
vehicles that may affect the behavior of the ego AV. The behavior prediction is divided into two
stages, discrete intention prediction and continuous trajectory prediction. At the discrete inten-
tion prediction stage, the discrete maneuvers or intentions of the POV is predicted with Bayesian
networks. Given the discrete intention prediction results, the continuous trajectory prediction fo-
cuses on predicting a series of future positions of the POV. The continuous trajectory prediction
is conducted with maximum entropy inverse reinforcement learning. To explicitly model the in-
teractions between vehicles, a potential game framework is adopted in this work. Different from
other literature that develops one predictor for different human-driven vehicle behavior prediction,
in this work a mixture of offline learning and online prediction strategies are designed, and driver
characteristics are utilized in online prediction to capture the difference among human drivers (e.g.
aggressiveness). The behavior prediction framework is validated in an independent scenario (i.e.
yellow light running scenario) and an interactive scenario (i.e. roundabout right turn scenario).
Two real-world datasets are adopted to evaluate the performance of the proposed predictor, and
average displacement error of the prediction is low in both experiments.

In summary, this thesis presents a series of applications of the smart infrastructure to assist the
trajectory planning of CAVs by providing guidance or warnings. The proposed methods address
the challenges of CAVs’ autonomy stack, which pave the way for the development and deployment
of CAVs in the near future.

5.2 Future directions

This thesis not only develops several critical applications in an infrastructure-based cooperative
driving framework, but also points out several future research directions.

Safety critical prediction. In Chapter 3, an anomaly detection framework is proposed to iden-
tify abnormal trajectories caused by cyber attacks. Notice that the framework proposed is gener-
alizable to different cyber attacks since the key idea is to learn the normal driving model and to
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compare the observed trajectory to the normal driving behaviors. An intuitive question is whether
this method can be adopted to identify other misbehavior, like crash or near-miss events. In a crash
or near-miss event, some human-driven vehicles behave abnormally, which should be detected in
advance so that the nearby CAVs will not be affected. In the safety critical prediction, smart in-
frastructure can also serve an important role to monitor the microscopic traffic situation. It may
predict the crash events in advance and provide warnings to CAVs. However, it is a more difficult
question that anomaly detection for cyber attacks since in a crash scenario, the vehicle may only
have one or two seconds of misbehavior. It is a critical yet challenging task to predict the crash in
advance, which worth more research efforts.

Prediction and planning integration In Chapter 4, a hierarchical behavior prediction is pro-
posed to predict POVs’ behavior for CAVs. In the current autonomy stack of autonomous driving
industry, the prediction and planning are separate modules. The behavior prediction serves as the
upstream component of trajectory planning. However, in recent years, more and more researchers
realize the impact of the trajectory planning on the trajectory prediction. In an interactive scenario,
the trajectory planning of the ego CAV affects the trajectory prediction of surrounding POVs, and
the prediction results of POVs affect CAV trajectory planning back. Research efforts start to focus
on jointly solving the trajectory prediction and planning problem. In this case, how to jointly inte-
grate the trajectory prediction at the smart infrastructure with bird view cameras and the trajectory
planning at the CAVs become a new research question. It is easier to model the interactions at a
global view from the smart infrastructure during the trajectory prediction process, but some wise
designs are required to integrate prediction and planning at the CAV.

Decision fusion In this thesis, a series of applications of cooperative driving are proposed, in
which guidance or warnings are provided by the smart infrastructure to assist CAVs’ trajectory
planning. In Chapter 2, the guidance of time of arrival is integrated into CAV’s trajectory planning
as an example. However, for other guidance or warnings derived from Chapter 3 and 4, the integra-
tion between the guidance or warning and the CAVs’ trajectory planning is not modeled explicitly
in this thesis. The integration between the guidance and CAVs’ decision making process can be
considered as a decision fusion problem. Several research questions are critical in the decision fu-
sion area. When should a CAV take the guidance or warnings from the smart infrastructure? How
can the guidance and warnings participate in CAVs’ trajectory planning algorithm? Real world
testing and evaluation are required for the decision fusion of CAVs before the deployment.

Large scale cooperative driving This thesis introduces a cooperative driving framework focus-
ing on isolated intersections or a traffic corridor. When it comes to large-scale smart infrastructure
deployment at city level, many research questions are worthy of exploration. The learning from
demonstration method (i.e. data-driven) methods proposed in this work should be generalized to
large scale transportation network via transfer learning. City-level cooperative driving may also
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provide planning guidance at higher level, like route choice guidance for CAVs. Similar to Chapter
2, the computational tasks should be distributed between the traffic management center at the city
and the edge computing system at each intersection appropriately to balance the computational
efficiency and the optimality of the whole system. It is expected to have more research, industry,
and government efforts on the large scale cooperative driving for CAVs.
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