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ABSTRACT

Bipedal robots have the potential to free humans from tedious or dangerous tasks.

Compared to robots in other forms, a bipedal robot has similar morphology to humans

and thus can work in almost all spaces where humans work and requires little to no

facility modifications. However, while many other robots are deployed in real life

and are beginning to have an impact, bipedal robots are hardly seen outside of a

lab due to stability issues. Bipeds are inherently unstable due to their morphology.

A bipedal system is nonlinear, high dimensional, hybrid, and underactuated, which

poses significant challenges to controller design. This thesis will therefore focus on

developing control methods for biped locomotion.

First, we discuss a controller for a Cassie-series 3D bipedal robot designed with

gait-library methods. The full 20 degrees of freedom dynamic model of Cassie and

optimization are used to design seven periodic gaits for walking in place, forward,

and backward while meeting key physical constraints. Importantly, we show how to

practically implement these gaits on the robot.

Next, we conduct a more general study of the dynamics of bipedal robots. We

establish connections between various approximate pendulum models that are com-

monly used for heuristic controller design and those that are more common in the

feedback control literature where formal stability guarantees are the norm. We clar-

ify commonalities and differences in the two perspectives for using low-dimensional

models. In the process of doing so, we argue that models based on angular momen-

tum about the contact point provide more faithful representations of robot state than

models based on linear velocity. Specifically, we show that an approximate (pendu-

xii



lum or zero dynamics) model parameterized by angular momentum provides better

predictions for a physical robot (e.g., legs with mass) than does a related approxi-

mate model parameterized in terms of linear velocity. We call the pendulum model

parameterized by angular momentum ALIP.

Finally, we discuss general mechanisms in bipedal balance, explain why foot place-

ment is the most effective method, and select it as our primary method to stabilize a

bipedal gait. We focus on regulating angular momentum about the contact point with

the ALIP model. We implement a one-step-ahead angular-momentum-based walking

controller on Cassie and demonstrate high agility and robustness in experiments. We

also design a running controller with the same methodology and demonstrate the

results in simulation and experiments.
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CHAPTER I

Introduction

1.1 Motivation

Robots are created to help humans work more efficiently or to free humans from

tedious or dangerous tasks (Fig. 1.1). Legged robots have the advantage of being

able to work under certain conditions that other robots with different morphology

find difficult. Compared to a wheeled robot, a legged robot can move agilely in envi-

ronments designed for humans, where stairs or on-ground-obstacles are present, and

can travel outdoors in areas lacking infrastructure, such as a paved road. Compared

to a flying robot, a legged robot consumes less energy per unit weight and thus can

work or standby for a longer interval of time. Within the class of legged robots,

bipeds, quadrupeds, and hexapods have so far attracted the most interest. In envi-

ronments designed for humans, a bipedal robot may be more suitable than robots

with more legs, especially when space is narrow since it can carry more load with the

same occupied area, see Fig. 1.2. Furthermore, methods implemented on a bipedal

robot can be transferred to exoskeletons that strengthen human power or rehabilitate

people with disabilities.

However, despite numerous potential advantages, bipedal robots are rarely seen

in real life. One of the significant challenges preventing them from being utilized is

difficulties in controlling them. A bipedal robot, seen from a control perspective, is

1



Figure 1.1: Cassie walking through burnt ground. Legged Robots have the potential
to replace humans in dangerous situations. 1

nonlinear, high dimensional, hybrid, underactuated, and inherently unstable. This

makes bipedal locomotion a very complex control problem, which cannot be modeled

and stabilized with classical control techniques. This proposal will therefore focus on

developing control methods for biped locomotion.

1.2 Review

1.2.1 Legged Robot Prototypes

Legged locomotion is defined by alternating contact of leg ends with the ground.

Legged locomotion is adopted by most animals living on land because of its versa-

tility: it is fast, energy-efficient, robust to wild terrains, and biologically feasible.

However, unlike wheeled locomotion or flying, legged locomotion has never been uti-

lized as a practical tool or machine in human history because of multiple technical

difficulties. Despite all limitations, the interest in such machines appeared very early

1Photographed by Bruce JK Huang
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Figure 1.2: Quadrupedal robots are often believed to be inherently more stable than
bipedal robots because of their low Height/Support Area Ratio. However, when a
quadrupedal robot is required to carry a load, for example, a chair, the quadruped’s
ratio will become similar to that of a biped while the biped’s ratio is hardly changed
when it carries the same chair. A large quadruped would avoid the dramatic ratio
change when carrying a load, but it would require a large space in which to maneuver.
Therefore, solving balancing problems for robots with high Height/Support Area
Ratio is critical to making legged robots practically useful.

in the modern history of robotics. The first evidence of such machine is no later than

the nineteenth century when Rygg created his mechanical horse[5], which moves with

a fixed gait generated by gears and levers. Since the latter half of the 20th century,

more and more legged robots have been created. The General Electric Walking Truck

was constructed by Mosher [6] in 1965. With four legs, it weighed 1400kg and could

walk at 8km/h. A human operator was required to control the stepping of the robot.

The first legged robot coordinated by computer was Phony Pony created in 1968[7].

With two degrees of freedom on each leg, it can walk in a straight line only. The first

bipedal robot was created by Kato in 1972[8]. In 1980 Raibert created a monopod

hopper that demonstrated dynamic balancing ability[9]. In 2000, Asimo was created

by Honda Corporation[10]. It is able to walk, run, climb stairs, and dance. BigDog,

created by Boston Dynamics in 2005[11], might be the first legged robot that had

practical uses. It could carry 150kg and walk over difficult terrains. In the past

decade, numerous legged robots have been created; famous ones include Atlas, Spot,

ANYMAL, Cheetah, Cassie, Laikago... and the list goes on. Biped or Quadruped,
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all of them demonstrate the ability to move limbs with agility.

1.2.2 Bipedal Robot Control

Compared to quadruped or hexapod robots, bipedal robots pose a more significant

challenge to control because of a smaller or no support polygon. Some bipeds are

created with large feet and, as a result, are inherently more stable. However, this

kind of configuration sacrifices many advantages of bipeds such as walking on stepping

stones or on uneven terrain. Instead of balancing the robot with a pair of large feet, we

focused on bipeds with realistic configurations, i.e., normal size feet. To balance these

kinds of robots, instead of quasi-static stability which balances the robot by moving

slowly and always keeping the Center of Mass (CoM) within the support polygon,

we choose to achieve stability dynamically, which balances the robot through proper

movement. We believe achieving dynamic stability is necessary to realize the full

potential of a biped robot.

The first actively controlled dynamic balancing was achieved by Raibert with his

monopod [9], using a model-free method. The monopod had three links and two

joints: one rotational joint between the torso and upper leg and one prismatic joint

connecting the upper and lower legs. Three intuitive control targets were identified:

torso pitch, leg length, and leg angle. During the stance phase, the torso pitch is

regulated to upright; leg length first retracts then extends so that the monopod can

jump. During the flight phase, the leg first retracts for foot clearance and then

extends to initiate contact with the ground. Leg angle is adjusted based on the

difference between desired velocity and actual velocity: when the speed is too slow,

the leg will pitch backward so that the body can be pushed forward during the stance

phase and vice versa. This method enabled the 2D monopod to jump agilely without

falling; similar methods were implemented later on a 3D monopod[12] and a biped[13].

Although this method is model-free and stability was achieved by parameter tuning,

4



its result is successful and it highlights foot placement as one of the basic mechanisms

of dynamic balancing.

The Linear Inverted Pendulum Model (LIP) was proposed by Kajita, which ini-

tially assumes a point mass with massless leg travel on a horizontal plane[14], and later

allows a weaker assumption where the CoM travels on an inclined plane, and angular

momentum about the CoM is constant[15]. A linear system can be obtained with

this setup and a closed-form solution can be found for this system, which provides a

straightforward way to plan foothold position and step time. Although this simpli-

fied model ignores some important aspects of biped walking, such as varying angular

momentum and CoM height, it captures the basic dynamics of walking and provides

a closed-form solution, and thus is widely used in the biped community[16, 17, 18].

The Spring Loaded Inverted Pendulum(SLIP) was proposed by Blickhan to sim-

ulate human and animal running and hopping[19]. Despite its simplicity, the model

generates motions that are close to data collected from humans and animals.

By designing certain virtual constraints, the stability of a high dimension nonlinear

model could be analyzed in a low dimension space with no simplification necessary.

The dynamics in the low dimensional space is called the Zero Dynamic[20]. Grizzle

et al. proposed a Hybrid Zero Dynamic framework [21] in which 2D robots’ stability

could be analyzed in a two-dimension space. The original holonomic constraints were

extended to non-holonomic constraints by Griffin in [22] and the phase used to define

constraints was extended from mechanical phase to time phase by Da in Generalized

Hybrid Zero Dynamic(GHZD) [23].

The idea of Zero Moment Point was first introduced in 1968 by Miomir Vukobra-

tović[24]. It specifies a point in the support polygon at which the horizontal moment

is zero. ZMP is an important variable indicating the stability of a robot, especially

for bipeds whose support polygons are small. When ZMP is inside the support poly-

gon, the contact between foot and ground is considered solid; when ZMP is at the
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edge of the support polygon, the contact foot will begin to roll. Using this method,

a controller designed for walking generally tries to avoid generating a ZMP outside

of the support polygon unless foot rolling is desired. LIP models are sometimes used

in conjunction with ZMP, where a ZMP path is planned and the corresponding CoM

trajectory of a LIP model will be used as a reference for the real robot[25].

Whole Body Control focuses on how to coordinate multiple tasks in a robot with

redundancy[26]. In [27], Kajita calculates the reference joint velocities for the hu-

manoid HRP-2 to simultaneously obtain desired centroidal linear and angular mo-

mentum. The resulting controller enables HRP-2 to kick a ball and walk with arms

swinging naturally.

A middle ground found between full order dynamics and a simplified model is Cen-

troidal Dynamics. Centroidal Dynamics describes the linear and angular momentum

at the CoM of a robot. The rates of those momenta are decided by the gravita-

tional force and force generated at contact. Dai et al. [28] proposed an optimization

method that has Centroidal Dynamics and full kinematics constraints. The resulting

optimization problem can be solved much faster than one using a full order dynamic

model while still respecting the real robot’s dynamics. However, the motor torque

could not be constrained in this setup.

Reinforcement learning for bipedal locomotion has been studied in simulations[29,

30] and with robots with large feet[29] for about two decades. More recently RL

algorithms have been applied to robots with small feet in experiments. Xie et al

trained a neural network for bipedal robot Cassie in simulation and then successfully

transferred it to a physical robot[31]. Li et al. designed a reinforcement algorithm

that tracks pre-optimized periodic gaits[32]. Siekmann et al. designed a two-layer

network that takes phase command as input and produces reference joint trajectory,

which enables Cassie to perform multiple two-beat gaits, including walking, hopping,

skipping, and switching between those gaits[33].
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1.3 Overall Objective of this Dissertation

The goal of this research is to design a robust controller for a three-dimensional

bipedal robot that allows it to move quickly on mildly varying ground such as a

sidewalk, pass over challenging terrain without falling, and reject large external dis-

turbances.

The specific objectives are to:

• Incorporate real robot model’s dynamics and kinematics into optimization,

which generates feasible gait library for a bipedal robot, enabling it to walk

at different speeds. Develop techniques for standing control and implement

them in experiments. Enable Cassie to ride a Segway.

• Study the relation between pendulum models, real models, and Hybrid Zero

Dynamics. Demonstrate the commonality in the HZD across different robots

when specific zero dynamic states and virtual constraints are chosen.

• Utilize the commonality in HZD, plan motions for a real robot with Pendulum

models, and accurately obtain desired evolution for chosen zero dynamic states.

Demonstrate agile and robust motion in experiments with Cassie.

The structure of this dissertation is as follows: Chapter IIintroduces the robot

models and hardware we use, and reviews several related control methods. Chapter III

describes the work on generating a gait library with optimization on a full order model

of a real robot and corresponding controller design and implementation. Chapter

IV discusses the relation between pendulum models, real biped models, and zero

dynamics. Chapter V describes the implementation of a controller which utilizes the

properties of Angular momentum about contact point, plans foot placement for a

real robot with a pendulum model, and obtains desired states with high accuracy.

Chapter VI introduces a similar but reformed controller that enables the robot to

run. Chapter VII concludes the dissertation and discusses future work.
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CHAPTER II

Background

In this chapter, we introduce the robot testbeds we work on, the mathematical

models we use, and several related control methods.

2.1 Robots

In this section, we introduce the configurations of two robots, on which we will test

our control algorithms. Cassie, a 3D robot with mass concentrated near the robot’s

CoM, imitating birds; and Rabbit, a 2D robot with mass distributed throughout its

legs, more similar to humans.

2.1.1 Cassie

Cassie is a three-dimensional bipedal robot designed and manufactured by Agility

Robotics. It went through several prototypes before the design was finalized in 2017.

It is all electric and can walk for approximately four hours on a single battery charge.

The robot’s morphology and name are inspired by the Cassowary, a flightless bird

similar to an ostrich. It weighs 32 kg and it’s height is about 1 m. There are 7 joints
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(a) Cassie Robot

Hip Yaw

Hip PitchHip Roll

Knee Pitch

Shin Pitch

Tarsus Pitc

Toe Pitch

(b) Left Leg Can Model

Figure 2.1: Cassie Robot

on each leg. The robot’s generalized coordinates are taken as

q :=[qx, qy, qz, qyaw, qpitch, qroll,

qLhip roll, q
L
hip yaw, q

L
hip pitch, q

L
knee, q

L
knee spring, q

L
ankle, q

L
toe,

qRhip roll, q
R
hip yaw, q

R
hip pitch, q

R
knee, q

R
knee spring, q

R
ankle, q

R
toe]

T.

(2.1)

A can model of Cassie is shown in Fig. 2.1. The yellow cans in the figures denote

joints that are not actuated but constrained by two four-bar-linkages, each with one

link being springs(not shown in the can model but can be seen in Cassie’s photo).

The springs have high stiffness and if they are assumed rigid, the coordinates would

have the following relation:


q knee spring = 0

q ankle = −q knee + 13◦

Removing the joints constrained by springs, Cassie still has 5 free joints on each

leg. These free joints enable the foot to move freely in 3D Cartesian space, change the
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Figure 2.2: Cassie’s feet and its constraint. When it is in contact ground, all motions
are constrained except yaw.

direction of the toe with respect to the horizontal plane, and tilt upward or downward.

These degrees of freedom are enough for Cassie to move agilely in a 3D space.

Cassie has blade-shaped feet and is able to stand on two feet but could not stand

on only one foot. The length of its foot is about 17 cm. The foot-body ratio is similar

to human, making it have limited ability to balance itself with ankle torque. This

makes Cassie an underactuated robot, distinct from robots with large feet.

2.1.2 Rabbit

Rabbit, shown in Fig. 2.3, is a planar bipedal walking robot made in 2002 with

joint efforts from several labs and universities in France and United States[34]. The

robot is 1.4m tall and weighs 32kg. It has five links, one for the torso and two for

each leg. On each leg there are two actuated joints located at the hip and knee.

This morphology enables the robot to walk in the longitudinal direction. A radial

bar attached at the hip limits the movement in the lateral direction. The robot is

designed to have no feet, literally, it has point feet, with the goal of demonstrating

actuated ankles are not necessary for many styles of locomotion and inspiring feedback

stabilization methods that can address underactuation.
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(a) Cassie Robot (b) Rabbit Stick Model

Figure 2.3: Rabbit Robot

2.2 Dynamic Models

One characteristic of biped dynamics is that the dynamics model changes as foot

contact changes. The dynamics can be roughly classified into a continuous model

when the foot contact is not changing, and an impact model when a swinging foot

touches the ground, during which there is a sudden change in the states because of

the force impulse on the foot.

2.2.1 Continuous model

Given generalized coordinates q and their time derivative q̇, Lagrangian Equations

of Motion are often used to describe the dynamics of a robot. For a pinned model,

where the stance foot is considered as “pinned” on the ground, we write the EoM as:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (2.2)
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where D is the Inertia Matrix, C is the Centrifugal and Coriolis Matrix, G arises from

gravity, B is the input distribution matrix and u is the input.

For a floating-base model, where the robot is assumed floating in the air and the

ground contact is added as explicit constraints, the EoM can be written as:


D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ J(q)⊤F

J(q)q̈ + J̇(q, q̇)q̇ = 0,

(2.3)

where J is the Jacobian of the constraints, and the second line of the model indicates

that the second time derivative of the constraints is zero. Equation (2.3) can also be

written in matrix formD −J⊤

J 0


 q̈

F

+

Cq̇ +G

J̇q̇

 =

B
0

u (2.4)

where the first matrix is invertible as long as D is invertible and J is full rank.

2.2.2 Impact Model

The transition from single support to double support is captured by the height of

the swing foot from the ground decreasing to zero.

Instantaneous impacts are modeled through a discrete map that results in a dis-

continuity in the velocity of the system q̇− just before impact and the velocity of

the system q̇+ just after impact, while the positions do not change [35]. Moreover,

just after impact, the former swing foot is assumed to satisfy the same constraints as

those imposed on the stance foot. Letting cL(q) denote the corresponding holonomic

constraint, the pre- and post-impact velocities then satisfy

D(q) −JT
L (q)

JL(q) 0


 q̇+

δFL

 =

D(q)q̇−

0

 , (2.5)
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where δFL is the vector of contact impulses. Because the Jacobian JL(q) has full row

rank and D(q) is positive definite, the left hand side of (2.5) is invertible. Projecting

the solution of (2.5) to the velocity components defines the impact map,

q̇+ =: ∆R→L(q̇
−). (2.6)

2.3 Control Approaches Related to this Work

2.3.1 Hybrid Zero Dynamics

For a system with multiple states, after several outputs are driven to zero by

inputs, the remaining dynamics of the system are called zero dynamics[36, 37]. One

theory that has been widely adopted as a framework for designing gaits for bipedal

robots and analyzing their stability is Grizzle et al’s theory of Hybrid Zero Dynamics

(HZD)[35, 21] . We can think of driving those outputs to zero as adding virtual

constraints on a robot. Virtual constraints are imposed by inputs, unlike physical

constraints which are imposed mechanically. In the early stage of HZD theory, virtual

constraints were always holonomic constraints. The constraints were often written in

the following form:

h(q) = 0 (2.7)

Usually, the dimension of h(q) is the same as the dimension of inputs. For a 2D point

contact robot model like Rabbit, such constraints would leave two states free. Here

we denote the two free states [ξ1, ξ2], and the zero dynamics for these two states is:

 ξ̇1

ξ̇2

 = fzero(ξ1, ξ2) (2.8)

The choice of [ξ1, ξ2] is decided by the controller designer. Usually, they are chosen to

be states that are not strongly actuated. This can be CoM position and velocity, or
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the angle of stance leg in the world frame and its angular velocity. ξ2 does not have

to be the time derivative of ξ1. For example, ξ1 can be stance leg angle, while ξ2 is

angular momentum about the contact point. The proof of why (2.8) still holds in the

last case can be found in [22].

The design of virtual constraints h(q) decides the zero dynamics for [ξ1, ξ2], and

once the virtual constraints are decided and imposed, [ξ1, ξ2] evolves independently on

the low dimensional zero dynamics manifold defined by virtual constraints h(q). This

greatly facilitates the analysis of robot stability. Hybrid here refers to the invariant

of the zero dynamics manifold at impact, i.e. h(q) and ḣ(q, q̇) equals to zero before

and after impact. At impact, the zero dynamics is described by:

 ξ̇1

ξ̇2

 = ∆(ξ1, ξ2)

 ξ1

ξ2

 (2.9)

Equations (2.8) and (2.9) define the classic HZD for bipedal robots. By choosing

proper virtual constraints, we could obtain the desired Zero Dynamics, which in return

could make the robot attain desired behavior. It is proved that if the periodic orbit

of [ξ1, ξ2] is stable, the periodic orbit of the full states is stable, as long as h(q) equals

zero, or it converges to zero sufficiently quickly[35]. Proper virtual constraints are

usually found by an optimization program, with the goal of making the robot walk

periodically and minimizing the consumed energy.

Hybrid Zero Dynamics successfully enable robots to walk with robust gaits with

provable stability. However, holonomic constraints limit its potential because the

joints of a robot must follow a fixed trajectory. When rejecting disturbance, the

robot joints can only move on the fixed trajectories faster or slower and cannot modify

the trajectory to tackle the disturbance. This limits the controller’s ability to reject

disturbance. A non-holonomic constraints method was proposed by Griffin et al. [22],

in which angular momentum about the contact point (L) is included in the virtual
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constraints:

h(q, L) = 0 (2.10)

while the form of the zero dynamics still remains the same as when using holonomic

constraints (2.8) (2.9).

This form of virtual constraints gives the controller the choice to modify the

trajectory when needed. Robust optimization is run to obtain a set of virtual con-

straints which not only minimize the cost but also maximize the converging speed

to a periodic orbit when disturbances occur. The nonholonomic constraints-based

controller successfully enables the bipedal robot MARLO to walk through uneven

terrains, specifically, terrain which otherwise would destabilize a controller based on

holonomic constraints.

With only mechanical constraints, walking in place has been a challenge: How can

we make the swing foot move up and down when there is no monotonically increasing

mechanical phase? In an attempt to answer this, Da et al [23] included time in the

virtual constraints:

h(q, q̇, τ) = 0 (2.11)

where τ is the time elapsed since the beginning of the current step. And the corre-

sponding zero dynamics becomes

 ξ̇1

ξ̇2

 = fzero(ξ1, ξ2, τ). (2.12)

Including time in the virtual constraints enabled MARLO to walk in place. Fur-

thermore, transition gaits between different periodic orbits are also generated by

optimization, and a large zero dynamic manifold is formed with machine learning

techniques. Multiple zero dynamic manifolds (virtual constraints) are integrated into

a gait library and are chosen based on the command given by the human opera-
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Figure 2.4: Submanifold defined in G-HZD. x1 = [ξ1, ξ2] is the vector of weakly actu-
ated states, x2 is the vector of strongly actuated states. With a low-level controller
driving the states to this submanifold, the robot is guaranteed to be stable.

tor, which enables Marlo, with one controller, to walk at different speeds and reject

varying disturbances, including uneven ground and strong pushes.

2.3.2 Linear Inverted Pendulum Model

Biped researchers have been studying walking through inverted pendulum models

for a long time because of its simplicity and the widely held belief that walking is

a sequence of repeated actions falling and catching oneself. Kajita et al proposed a

Linear Inverted Pendulum Model, for which a simple linear dynamic can be found[15,

38]. The 2D case of the model is shown in Figure 2.5. It assumes the time derivative

of angular momentum about the Center of Mass (L̇c) is zero, and the Center of Mass

(CoM) travels on a straight line.

We will briefly discuss how to derive LIP dynamics by analyzing ground reaction

force. Assumption L̇c = 0 indicates that Ground Reaction Force F points toward the

CoM. So we have

x

z
=

Fx

Fz

=
ẍ

z̈
(2.13)

Assuming the CoM travels on a straight line means the following relation holds,

z = kx+H. (2.14)
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Figure 2.5: 2D Linear Inverted Pendulum(LIP) model. It assumes angular momentum
about CoM is 0 and CoM travels on a straight line..

Combining (2.13) and (2.14), we obtain the LIP model dynamics,

ẍ =
g

H
x. (2.15)

This LIP model is popular for having a closed-form solution and thus facilitating

fast step planning. However, the assumption L̇c = 0 is too strong for a real robot.

In some controllers[39], Lc has been planned to be close to zero to reduce LIP model

error. Others have used a moving ZMP, or ankle torque to offset the effect of L̇c.[40]
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CHAPTER III

Gait Library with Full order Model

Although the simplified models for bipedal robots found in the literature are easy

to analyze, they do not accurately capture a real robot’s dynamics and thus fail to

plan behavior that is feasible, robust, and energy-efficient on real hardware. Since

real models are high dimensional, nonlinear, and hybrid, they are too complicated to

analyze with traditional control methods. Here we utilize optimization with the full

order model to generate optimal gaits for Cassie. The generated gaits are dynamically

and kinematically feasible, respect multiple real-world constraints such as ground

friction cone and torque limits, and are energy-efficient.

Because the optimization with a full order model is time-consuming, we choose

to run the optimization offline and store the result in a gait library. The gait library

includes gaits at different walking speeds. A controller is designed to implement these

gaits in simulation and in experiments. We also design a standing controller which

enables Cassie to maintain balance on swaying ground and ride a Segway.

3.1 Walking Controller

This section presents the initial walking gait library controller implemented on

Cassie. The control design is based on the method of virtual constraints, a gait

library limited to the sagittal plane, and leg-angle adjustment in the sagittal and
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frontal planes [41].

3.1.1 Virtual Constraints

Virtual constraints are functional relations among the generalized coordinates of

the robot that are asymptotically imposed on the system through feedback control.

In particular, the virtual constraints are expressed as outputs of the model (5.23) in

the form

y = h(q, τ, α) = h0(q)− hd(τ, α), (3.1)

where h0 specifies the quantities being regulated, hd encodes their desired evolution,

and α is a matrix of real coefficients that parameterizes the spline hd. The phasing

variable, τ , satisfies

τ̇ =
1

T
, (q; q̇−) ̸∈ SR→L ∪ SL→R

τ+ = 0, otherwise, (3.2)

where T is the nominal step duration.

A controller is then designed with the objective of zeroing the outputs, i.e., y ≡

0, thereby achieving the virtual constraints. The zeroing of the output value will

be at best accomplished asymptotically, and in practice, on a physical robot, only

approximately.

3.1.2 Choice of What to Control

The most direct choice for the regulated quantities, h0, would be the actuated

joints of Cassie, which are a subset of the body coordinates. On previous planar

robots, such as Rabbit and MABEL [42, 43], this made sense because these robots had

a simple (human-inspired) morphology and the control objectives could be associated

in an intuitive manner with hip and knee angles. On our lab’s first 3D biped, MARLO,
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the legs, and hence the actuated coordinates in the sagittal plane, were associated with

four-bar linkages, which gave rise to synthesizing coordinates that were associated

with a virtual leg connecting the hip to the end of the leg [22]. MARLO also had a

rather tall torso that provided adequate inertia about the roll axis so that adjustments

by the stance leg hip motor to maintain the torso roll angle approximately zero

would not cause oscillations on the swing leg roll angle. For the land-bird-inspired

Cassie, if one is not a biologist, the actuated joints have limited physical meaning

with respect to the walking behavior of the robot. Hence, we choose instead to

regulate torso orientation, stance and swing leg lengths, swing leg orientation, and

swing foot pitch angle. We find these quantities to be rather universal across bipedal

platforms (whether human or bird inspired) and directly relatable to gait outcomes.

For example, leg lengths are directly related to the height of the torso and foot

clearance; swing leg pitch and roll angles at impact are commonly used in bipeds

to regulate walking speed, and the yaw angle of the swing leg sets the direction of

the robot for the next step. Moreover, because Cassie is roughly a basketball-sized

sphere with one meter-long legs attached to it, its (spherical) torso provides little

“mechanical filtering” between the motion of the stance and swing legs.

With this in mind, we define the following nine outputs, with the stance foot pitch
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Figure 3.1: (a) The coordinates on the feet are shown. When a foot is in contact with
the ground, there are five independent constraints leaving only the roll angle of the
foot free. (b) The virtual leg is the dotted line from the hip to the top of the foot;
its length is called Leg Length. The relative leg pitch is the angle of the virtual leg
relative to the hip while absolute leg pitch is the relative angle plus the pitch angle
of the torso.

angle left passive1,

h0(q) =



qroll

q2 st

qpitch

qLL st

qLR sw

q2 sw

qLP sw

qLL sw

qFP sw





torso roll

stance hip yaw

torso pitch

stance leg length

swing leg roll

swing hip yaw

swing leg pitch

swing leg length

swing foot pitch



, (3.3)

1For now, it is simply observed that leaving it passive avoids “foot roll”; when walking on soft
sand, we will come back to this feature.
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where, when the right leg is stance and the left leg is swing,

qLL st =
√

0.5292 cos(q4R + 0.035) + 0.5301

qLR sw =qroll + q1L

qLP sw =− qpitch + q3L (3.4)

− arccos(
0.5(cos(q4L + 0.035) + 0.5292)√
0.5292 cos(q4L + 0.035) + 0.5301

) + 0.1

qLL sw =
√
0.5292 cos(q4L + 0.035) + 0.5301

qFP sw =− qpitch + q7L + 1.1.

The forward kinematics of leg length and leg pitch are calculated based on the config-

uration of the robot as shown in Fig. 3.1b. For clarity, leg pitch refers to the absolute

pitch angle of the virtual leg when torso roll and yaw are zero; leg roll is defined in a

similar manner.

For later use in control implementation, we note that the to-be-regulated quanti-

ties in (3.4) can be expressed in terms of the actuated joints via

q1 =qLR − qroll

q3 =qLP + qpitch

+ arccos

(
0.9448 q2LL − 0.0284

qLL

)
− 0.1

q4 =arccos
(
1.8896 q2LL − 1.0017

)
− 0.035 (3.5)

q7 =qFP + qpitch − 1.1,

where the distinction between stance and swing has been dropped.
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3.1.3 Gait Library Generation

The desired evolution of the virtual constraints is defined by hd in the output equa-

tion (3.1). This function is constructed using linear interpolation of a discrete library

of gaits, each encoding a particular forward walking speed. Here, seven gaits were

generated where the average velocity in the sagittal plane, v̄x, ranged from -0.5 m/s

to +1.0 m/s in 0.25 m/s increments. We assume that the virtual constraints of each

of these “open-loop” gaits have a desired trajectory, hi
d(τ, αi), that is parameterized

by a set of 5th-order Bézier polynomials with the corresponding matrix of coefficients

denoted as αi. The step time for all gaits was chosen to be a constant. Trajectory

optimization is then used to independently solve for each αi.

The nonlinear optimization problems were constructed and solved using FROST

[44], which internally uses the direct-collocation trajectory optimization framework

developed by Hereid et. al. [45]. Each hybrid optimization was performed over

two domains (right stance then left stance), where the following cost function was

minimized:

Domain Cost =

τ=1∫
τ=0

(
||u||2 + c |qpitch|2 + c |qroll|2

+ c |q1L|2 + c |q2L|2 + c |q1R|2 + c |q2R|2
)
dτ.

The addition of the torso pitch/roll and the hip roll/yaw angles into the cost function

(multiplied by a large weight, c = 10, 000) guides the optimizer to find gaits with

minimal roll and yaw movement. Constraints are placed on the optimization problem

to ensure that the optimized gait is periodic over two steps and that the left and right

stances are symmetric2. Torque, joint angle, and joint velocity limits were imposed

to ensure that the gait can be physically-realized on the actual robot. Additional

2Due to the enforced symmetry, it is possible to write this optimization problem using a single
domain. However, the general two-step formulation allows for the future design of non-symmetric
gaits through the removal of this particular constraint.
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constraints are outlined in Table 3.1.

Average sagittal velocity, v̄x = vi m/s
Average lateral velocity, v̄y = 0 m/s
Step time = 0.4 s
Torque for stance foot pitch = 0 Nm
Friction cone, µ ¡ 0.6
Mid-step swing foot clearance ¿ 0.15 m
Absolute swing foot pitch = 0 rad
Distance between feet ¿ 0.2 m
Distance between pelvis and stance foot ∈ (0.5, 1) m
Swing foot velocity on impact (x and y) = 0 m/s
Swing foot velocity on impact (z) ∈ (-1, 0) m/s

Table 3.1: Constraints used in gait optimizations. For each of the seven optimizations,
the average sagittal velocity was constrained to a different value between −0.5 and 1
m/s.

Each of the 7 optimization problems yields a single parameter matrix, αi, and

takes approximately 3 min to solve using IPOPT in MATLAB.

Remark: A C++ implementation of the optimization problem formed by FROST has

been posted on GitHub [46]. It allows parallel computation of the gaits and cloud-based

gait optimization.

3.1.4 Approximately Implementing the Virtual Constraints

If the overall dynamic model and joint angular velocity estimates were sufficiently

accurate, we could implement the virtual constraints via input-output linearization.

Indeed, the outputs (3.1) have relative degree two [47] and the row rank of the de-

coupling matrix is full rank on the control-design model.

On the actual robot, however, the power amplifiers, motor dynamics, network

delays, and walking surface are not adequately characterized to allow model-based

torque control (the mechanical model itself is not the main source of uncertainty).

Consequently, the virtual constraints are approximately imposed through decoupled
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PD controllers, as in [42, 43, 22]. To do this, (3.5) is used to rewrite (3.1) as

ỹ = h̃0(q)− h̃d(τ, qpitch, qroll, α), (3.6)

with (right leg in stance)

h̃0(q)
⊤ = [qroll, q2R, qpitch, q4R,

q1L, q2L, q3L, q4L, q7L]
⊤

(3.7)

and

h̃d(·) =



hd 1(·)

hd 2(·)

hd 3(·)

arccos
(
1.8896 [hd 4(·)]2 − 1.0017

)
− 0.035

hd 5(·)− qroll

hd 6(·)

hd 7(·) + qpitch + 0.1

+arccos
(

0.9448 (hd 8(·))2−0.0284
hd 8(·)

)
arccos

(
1.8896 [hd 8(·)]2 − 1.0017

)
− 0.035

hd 9(·) + qpitch − 1.1



. (3.8)

Remark: Though not proven here, (3.6) implements the same virtual constraints as

(3.1) and (3.4); one is zero if, and only if, the other is zero.

In (3.7) and (3.8), the outputs are ordered so that they correspond to the first four

actuators on the stance leg followed by the five actuators on the swing leg. Recall that

the torque on the stance foot is set to zero. The virtual constraints are approximately
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Figure 3.2: Control Diagram for Walking. The feedback loop implementing the vir-
tual constraints and the gait library (blue box) maintains the robot’s posture and
synchronizes the legs for walking. Moreover, the resulting closed-loop system renders
the dynamics of the center of mass velocity close enough to that of an inverted pen-
dulum that it can be regulated by adjusting the pitch and roll angles of the swing
leg.

zeroed with a classical PD controller,

u = −KP ỹ −KD
˙̃y, (3.9)

where the 9× 9 matrices KP and KD are diagonal.

Remark: The torso pitch and roll angles are world frame coordinates. When the

stance foot is firmly on the ground (i.e., not slipping), they can be controlled through

the hip motors. The remaining outputs are directly actuated. With springs ignored,

the output has vector relative degree two.
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3.1.5 Gait Library and Stabilization by Leg Angle Adjustment

The Gait Library is an interpolation of the seven discrete gaits into a continuum

of gaits valid for −0.5 ≤ vx ≤ 1.0 m/s. The interpolation parameter is the robot’s

filtered sagittal velocity. The implementation of the gait library is done exactly as in

[41, Eq. (8)-(10)] and does not introduce any new parameters into the controller.

With the gait library implemented, the closed-loop system is unstable in the sense

that the (ẋ, ẏ) Cartesian coordinates are approximate integrators; see [41, Sect. III-

C] for the explanation. Leg angle adjustment is added to stabilize the closed-loop

system. The implementations for longitudinal and lateral velocity stabilization are

based on [41, Eq. (13) and (17)]. These controllers add four more control parameters.

The overall control strategy is shown in Fig. 3.2.

3.1.6 Parameter Tuning

The right and left legs of the robot are sufficiently symmetric that control pa-

rameters for the left and right legs are the same. The controller was implemented in

Realtime Simulink and the parameters tuned by hand on a SimMech model provided

to us by Agility Robotics. A process for tuning the 18 joint-level PD parameters and

the 4 leg-angle PD parameters on the robot is posted with the code on GitHub.

3.1.7 Experiments

A first version of the walking controller was implemented on Cassie Blue six weeks

after arrival on campus and was demonstrated to the Associated Press (AP) on Octo-

ber 23rd, 2017 [48]. On June 2, 2018, we damaged a leg on Cassie Blue and sent her

back for repairs. While the robot was in the shop, Agility Robotics upgraded the hip

roll and yaw joints to match those on their current production model, significantly

reducing friction in them. At the same time, Agility also modified the MATLAB

environment in which a user’s controller is implemented, breaking our controller. Be-
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(a) (b)

(c) (d)

Figure 3.3: Cassie Blue walking on various (unmodeled) terrains.

cause we would be soon modifying the robot with the addition of a 15 kg torso, we

did not spend much time re-tuning the controller.

The remainder of the section discusses some of the many terrains on which the

robot has been challenged to operate over the past 11 months as documented in [49].

The dates of the experiments are noted below. In each experiment, the robot is being

directed by an operator via an RC Radio with commands “stand quietly” or “walk”.

When walking, the robot is sent desired v̄tgx , v̄
tg
y , and turn rate.
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3.1.7.1 Initial Testing in the Laboratory

After the controller was successfully working in closed-loop with the SimMech

model, it was transferred to the robot and the PD gains tuned over a period of a few

days. During this process, an overhead gantry was used to catch the robot in case of

a fall. The gains were initially tuned for walking in place. Once that milestone was

achieved, walking at various speeds came quickly. A typical limit cycle is shown in

Fig. 3.4.

-1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1

-4

-3

-2

-1

0

1

2

3

4

Figure 3.4: The phase portrait of the left knee when Cassie is walking in place,
starting from a standing position. The units are rad and rad/s.

3.1.7.2 North Campus Grove

Cassie Blue was taken outdoors for the first time and demonstrated to the As-

sociated Press [48] on 23 October 2017. Initially, a safety gantry was used. After

walking on a sidewalk with no difficulty, Cassie was released from the gantry. After

initial walking on a level concrete area, Cassie was steered onto the grass. Due to a

nervous operator hitting the wrong button on the RC-controller, the robot sped up

and had to be stabilized by a researcher. The softer nature of the grass caused no
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difficulties in detecting foot impacts via spring deflection. For the next 11 minutes,

the robot was steered on and off grass and hard surfaces, onto sloped grass surfaces,

turned, and walked in place. When the experiment happened to bring the robot and

researchers near a grassy knoll, the decision was made to see if the robot could handle

it. The robot unexpectedly sped up when heading up the slope, leaped over a bench,

and fell at least 1.5 m onto the concrete. This put a slight dent in the battery, but

caused no other observable damage as the robot was quickly rebooted and walked in

place. This ended the experiment.

3.1.7.3 Waxed Floors and Snow

Cassie Blue was taken to the UM Dental School on 11 December 2017 at the

invitation of Dean Laurie McCauley. The video can be found here [50]. The robot

handled well on surfaces with reduced friction. An unplanned bump into a pillar and

walking in the snow are shown here [49].

3.1.7.4 Controlled Burn for Native Grasses

On 22 April 2018, a controlled burn was conducted on the UM campus to promote

the growth of native grasses. After clearing it with the personnel conducting the burn,

Cassie Blue walked over sloped ground, in heavy smoke, and over short burning grass,

branches, and leaves [51]. The robot never fell. While the exercise demonstrated our

general confidence in the robot’s controller, it was done to drive home the fact that a

battery-powered robot does not suffer from smoke inhalation and can take some heat.

3.1.7.5 Sand Volley Ball Court

On 09 May 2018, the Discovery Channel filmed Cassie Blue. The Segway riding,

reported later, was their main interest. Since we were near the sand volley ball court,

we challenged the robot to walk on it [52]. The narrow feet sunk into the sand,
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with the “heel” digging in the most. Because the stance foot is passive, the robot’s

gait remained quite stable. The robot walked more slowly than on grass (possibly

due to foot slip) and it traversed the entire course, passing under the net. For the

second pass, a pair of tennis shoes were placed on the robot. Cassie then walked no

differently than when on grass or concrete.

3.2 Quiet Standing and Riding a Segway

For standing, all ten actuators are used. Foot actuation is required to prevent

rotation of the robot about the y-axis in the body frame. The standing controller

also allows Cassie to ride a Segway; yes, a robot riding another robot.

3.2.1 Quiet Standing

The standing condition is here assumed to be reached either from a stepping-in-

place gait or by a user booting up the robot with the torso suspended approximately a

half meter off the ground. The feet are assumed to be flat on the ground and beneath

the torso.

Let pCoM = (pCoM
x , pCoM

y , pCoM
z ) be the center of mass of the robot. With the feet

flat on the ground and (pCoM
x , pCoM

y ) within the convex hull of the feet, the robot

can maintain a static pose. To maintain the desired center of mass position, pCoM
x is

regulated with the actuators for the pitch angle of the feet, while pCoM
y is regulated

in an indirect way: the roll angle, instead of pCoM
y , is controlled to be zero. The roll

is controlled by adjusting the leg length difference in the two legs. A zero roll angle

is equivalent to a centered pCoM
y when all other joints are symmetric. One reason we

are using roll angle for feedback is that its value is less noisy than pCoM
y , which is

calculated via a kinematic chain. Another reason is that if the ground is sloped in the

frontal plane, causing the robot to lean to the right3, the right leg will automatically

3This feature is useful even on flat ground. The PD control of leg length should be thought of
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be extended and the left leg compressed, as shown in Fig. 3.5. The height of the

standing pose pCoM
z is set by adjusting the average of the two leg lengths. The hip

roll and yaw joints are regulated to constant values. With this controller, and the

two feet roughly 0.3 m apart, Cassie is able to squat almost flat on the ground and

stand to a height of approximately one meter. Quiet standing, lowering to a squat,

and standing back up are illustrated in the video associated with the paper [49].

3.2.2 Riding a Segway

Figure 3.5 shows Cassie Blue riding a Segway miniPro (robot). The dynamics

of the Segway are unknown and its states are not measured. The acceleration and

direction of the Segway are determined by body lean, that is, by adjusting the target

center of mass position. As elsewhere, the commands are sent by an operator via

radio control.

To accelerate or decelerate the robot-Segway system, pCoM
x is shifted forward or

backward, respectively. To turn, Cassie needs to lean into the center bar with her

legs, which is accomplished by shifting pCoM
y . With the nominal standing controller,

the Segway would oscillate when Cassie was placed on its platform. The feedback

gains on the feet were reduced and the oscillations ceased.

With the crouched posture seen in Fig. 3.5, Cassie Blue was able to ride on

sidewalks and grassed areas at roughly 4 m/s [53]. To be clear, the robot was placed

on the Segway by an operator. Mounting and dismounting of the Segway were not

addressed.

as soft springs. A bit of lean to the right places more weight on the right leg, which causes further
compression of the spring in the right leg, which causes further leaning, etc., until pCoM

y moves to
the right of the foot and the robot falls. With high PD gains, this cascading effect can be avoided,
but regulating pCoM

y solves the problem with lower gains.
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(a) (b)

Figure 3.5: (a) Cassie standing on an uneven surface. (b) A stack of robots. Cassie
is riding a Segway miniPro. The Segway will accelerate forward if the foot platform
leans forward. Turning is controlled by pushing against the central vertical bar.
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CHAPTER IV

Pendulum Models and Zero Dynamics

Models of realistic bipedal robots tend to be high-dimensional, hybrid, nonlinear

systems, thus posing a great challenge to controller design and stability analysis. This

chapter is concerned with two major themes in the literature for “getting around”

the analytical and computational obstructions posed by realistic models of bipeds.

On the one hand are the broadly used, simplified pendulum models [54, 38, 19,

16, 55, 56, 57] that provide a computationally attractive model for the center of mass

dynamics of a robot. When used for control design, the fact that they ignore the

remaining dynamics of the robot generally makes it impossible to prove any stability

properties of the closed-loop system. Despite the lack of analytical backing, the

resulting controllers often work in practice when the center of mass is well regulated

to match the assumptions underlying the model. Within this context, the dominant

low-dimensional pendulum model by far is the so-called linear inverted pendulum

model, or LIP model for short, which captures the center of mass dynamics of a real

robot correctly when, throughout a step, the following conditions hold: (i) the center

of mass (CoM) moves in a straight line; and (ii), the robot’s angular momentum about

the center of mass (Lc) is zero (or constant). This latter condition can be met by

designing a robot to have light legs, such as the Cassie robot by Agility Robotics [58],

or by deliberately regulating Lc to zero [39, 59]. When Lc cannot be regulated to a
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small value, an MPC feedback control law based on the LIP model has been proposed

to minimize zero moment point (ZMP) tracking error and CoM jerk [60, 61, 62]. The

effects of Lc can be compensated with ZMP, making a real robot’s CoM dynamics

the same as those of a LIP [40]. Alternatively, Lc can be approximately predicted

and used for planning [63, 64].

On the other hand, the control-centric approach called the Hybrid Zero Dynamics

provides a mathematically-rigorous gait design and stabilization method for realistic

bipedal models [65, 66, 67, 68, 69, 70, 71, 72, 73, 74] without restrictions on robot

or gait design. In this approach, the links/joints of the robot are synchronized via

the imposition of “virtual constraints”, meaning the constraints are achieved through

the action of a feedback controller instead of contact forces. As opposed to physical

constraints, virtual constraints can be re-programmed on the fly. Like physical con-

straints, imposing a set of virtual constraints results in a reduced-dimensional model.

The term “zero dynamics” for this reduced dynamics comes from the original work of

[36, 75]. The term “hybrid zero dynamics” or HZD comes from the extension of zero

dynamics to (hybrid) robot models in [76]. A downside of this approach, however,

has been that it lacked the “analytical tractability” provided by the pendulum mod-

els1, and it requires non-trivial time to find optimal virtual constraints for a realistic

model.

While CoM velocity is the most widely used variable “to summarize the state” of

a bipedal robot, angular momentum about the contact point has also been valued by

multiple researchers. In [80], angular momentum is chosen to represent a biped’s state

and it is regulated by stance ankle torque. In [21], the relative degree three property

of angular momentum motivated its use as a state variable in the zero dynamics.

In [81, 82], control laws for robots with an unactuated contact point were proposed

to exponentially stabilize them about an equilibrium. In [71], angular momentum is

1The approaches in [77, 78, 79] to build reduced-order models via embeddings is a step toward
attaching physical significance to the zero dynamic models.
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explicitly used for designing nonholonomic virtual constraint. In [83], angular mo-

mentum is combined with the LIP model to yield a controller that stabilizes the

transfer of angular momentum from one leg to the next through continuous-time

(single-support-phase) control coupled with a hybrid model that captures impacts

that occur at foot strike. In [84], the accuracy of the angular-momentum-based LIP

model during the continuous phase is emphasized; as opposed to [83], angular mo-

mentum is allowed to passively evolve according to gravity during each single support

phase, and foot placement is used to regulate the estimated angular momentum at

the end of the ensuing step.

The objectives of this chapter are two-fold. Firstly, we seek to contribute insight

on how pendulum models relate to one another and to the dynamics of a physical

robot. We demonstrate that even when two pendulum models originate from the

same (correct) dynamical principles, the approximations made in different coordinate

representations lead to non-equivalent approximations of the dynamics of a (realistic)

bipedal robot. Secondly, we seek a rapprochement of the most common pendulum

models and the hybrid zero dynamics of a bipedal robot. Both of these objectives

are addressed for planar robot models. The extension to 3D is not attempted here,

primarily to keep the arguments as transparent as possible.

The first point, that approximations made in different coordinate representations

lead to non-equivalent approximations of the dynamics of a real robot, is important

in practice; hence we elaborate a bit more here, with details given in Sect. 4.4. Let’s

only consider trajectories of a robot where the center of mass height is constant, and

therefore, the velocity and acceleration of the center of mass height are both zero. In

a realistic robot, the angular momentum about the center of mass, denoted by Lc,

contributes to the longitudinal evolution of the center of mass, though it is routinely

dropped in the most commonly used pendulum models. Can dropping Lc have a

larger effect in one simplified model than in another?
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In the standard 2D LIP model, the coordinates are taken as the horizontal position

and velocity of the center of mass and the time derivative of Lc is dropped from

the differential equation for the velocity. It follows that the term being dropped is

a high-pass filtered version of Lc, due to the derivative. Moreover, the derivative

of Lc is directly affected by the motor torques, which are typically “noisy” (have

high variance) in a realistic robot. On the other hand, in a less frequently used

representation of a 2D inverted pendulum [71, 22, 83, 84], the coordinates are taken as

angular momentum about the contact point and the horizontal position of the center

of mass, and Lc is dropped from the differential equation for the position. In this

model, Lc (and not L̇c) shows up in the second derivative of the angular momentum

about the contact point. It follows that variations in Lc are low-pass filtered in the

second representation as opposed to high-pass filtered in the first, and thus, speaking

intuitively, neglecting Lc should induce less approximation error in the second model.

More quantitative results are shown in the main body of the chapter.

In this chapter, we focus on the underactuated single support phase dynamics and

assume an instantaneous double support phase. The reader is referred to existing

literature on how pendulum models [25, 85] and Hybrid Zero Dyanmics [86, 87, 88]

handle non-instantaneous double support phases; the topic is not discussed in this

chapter. We provide models for a robot with non-trivial feet. While most of the results

are demonstrated for robots with point feet, we briefly show that the conclusions we

obtained for robots with point feet still apply to robots with non-trivial feet. Further

studies of how pendulum models and Hybrid Zero Dynamics handle non-trivial feet

can be found in [60, 89, 90, 91]

4.1 Swing Phase and Hybrid Model

This section introduces the full-dimensional swing-phase model that describes the

mechanical model when the robot is supported on one leg and a hybrid representation
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used for walking that captures the transition of support legs. The section concludes

with a summary of a few model properties that are ubiquitous when discussing low-

dimensional pendulum models of walking.

4.1.1 Full-dimensional Single Support Model

We assume a planar bipedal robot satisfying the specific assumptions in [65,

Chap. 3.2] and [21], which can be summarized as a revolute point contact with the

ground, no slipping, all other joints are independently actuated, and all links are rigid

and have mass. The gait is assumed to consist of alternating phases of single support

(one “foot” on the ground), separated by instantaneous double support phases (both

feet in contact with the ground), with the impact between the swing leg and the

ground obeying the non-compliant, algebraic contact model in [92, 93] (see also [65,

Chap. 3.2]).

The contact point with the ground, which we refer to as the stance ankle, can

be passive or actuated. Even when actuated, the stance ankle is “weak” in the

sense that only limited torque can be applied before the foot rolls about one of its

extremities. The swing ankle is not weak, however, because it only needs to regulate

the orientation of the swing foot. To accommodate both actuation scenarios, we will

routinely separate the stance ankle actuation from other actuators on the robot so

that it can be either set to zero or appropriately exploited.

We assume a world frame (x, z) with the right-hand rule. We assume the swing-

phase (pinned) Lagrangian model is derived in coordinates q := (q0, q1, . . . , qn) ∈ Q,

where q0 is an absolute angle (referenced to the z-axis of the world frame) and qb :=

(q1, . . . , qn) are body coordinates. Furthermore, we reference the contact point (i.e.,

stance ankle) to the origin of the world frame.

With the above sets of assumptions, the robot in single-support is either fully

actuated or has one degree of underactuation. Moreover, q0 is a cyclic variable (of
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the kinetic energy). It follows that the dynamic model can be expressed in the form

D(qb)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, (4.1)

where the vector of motor torques u ∈ Rn and the torque distribution matrix has full

column rank. The model is written in state space form by defining

ẋ =

 q̇

D−1(qb) [−C(q, q̇)q̇ −G(q) +B(q)u]


=:f(x) + g(x)u

(4.2)

where x := (q; q̇). The state space of the model is X = TQ. For each x ∈ X , g(x) is

a 2(n+1)× (n+1) matrix. In natural coordinates (q; q̇) for TQ, g is independent of

q̇.

4.1.2 Full Dimensional Hybrid Model

In the above, we implicitly assumed left-right symmetry in the robot so that we

could avoid the use of two single-support models—one for each leg playing the role

of the stance leg—by relabeling the robot’s coordinates at impact, thereby swapping

their roles. Immediately after swapping, the former swing leg is in contact with the

ground and is poised to take on the role of the stance leg. The result of the impact

and the relabeling of the states provides an expression

x+ = ∆(x−) (4.3)
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where x+ := (q+; q̇+) (resp. x− := (q−; q̇−)) is the state value just after (resp. just

before) impact and

∆(x−) :=

 ∆q(q
−)

∆q̇(q
−) q̇−

 . (4.4)

A detailed derivation of the impact map is given in [65], showing that it is linear in

the generalized velocities.

A hybrid model of walking is obtained by combining the single support model and

the impact model to form a system with impulse effects [94]. A non-instantaneous

double support phase can be added [86, 88], but we choose not to do so here. Even

though the mechanical model of the robot is time-invariant, we will allow feedback

controllers for (4.2) that are time-varying. So that the hybrid model in closed loop

can be analyzed with tools developed for time-invariant hybrid systems, we do the

standard “trick” of adding time as a state variable via τ̇ = 1. The guard condition

(aka switching set) for terminating a step is

S := {(q, q̇) ∈ TQ | pzsw(q) = 0, ṗzsw(q, q̇) < 0}, (4.5)

where pzsw(q) is the vertical height of the swing foot. It is noted that S is independent

of time. Combining (4.2), (4.3) with the guard set and time gives the hybrid model

Σ :



ẋ = f(x) + g(x)u x− /∈ S

τ̇ = 1

x+ = ∆(x−) x− ∈ S

τ+ = 0.

(4.6)

It is emphasized that the guard condition for re-setting the “hybrid time variable”,

τ , is determined by foot contact.
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4.1.3 Center of Mass Dynamics in Single Support

While (4.2) is typically high dimensional and nonlinear, standard mechanics yields

simpler equations for the evolution of the center of mass. For succinctness, we only

consider the planar case and define the following variables:

• (xc, zc) : CoM position in the frame of the contact point.

• vc : CoM velocity in x-direction. The velocity in z-direction is denoted by żc

• Lc : y-component of Angular momentum about CoM.

• L : y-component of Angular momentum about contact point.

• ua : ankle torque at the contact point.

In addition, we note the following (standard) result

L = Lc +m

xc

zc

 ∧
ẋc

żc

 (4.7)

where ∧ is the 2D version of cross product

xc

zc

 ∧
ẋc

żc

 :=



xc

0

zc

×

ẋc

0

żc


 •


0

1

0

 .

We refer to (4.7) as the angular momentum transfer formula because it relates angular

momentum determined about two different points.

In the following, we provide the CoM dynamics for two sets of coordinates

• (xc, vc)

• (xc, L), and
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• (θc, L),

where

θc := atan(xc/zc) (4.8)

and we assume that zc > 0. We will subsequently dedicate Sect. 4.3 to establishing

connections between pendulum models and zero dynamics, which will allow the zero

dynamics to be intuitively grounded in physics.

Case 1: (xc, vc) Horizontal Position and Velocity Differentiating (4.7) and using

vc = ẋc results in

ẋc = vc

v̇c =
g

zc
xc +

z̈c
zc
xc −

L̇c

mzc
+

ua

mzc
.

(4.9)

In general, zc depends on q, żc and Lc depend on both q and q̇. While L̇c and z̈c

depend on q, q̇, and the motor torques u, it is more typical to replace the motor

torques by the ground reaction forces. In particular, one uses z̈ = g − 1
m
Fz and

L̇c := d
dt
Lc = xcFz − zcFx + ua, where Fx and Fz are the horizontal and vertical

components of the ground reaction forces. In turn, the ground reaction forces can be

expressed as functions of q, q̇, and the motor torques, u.

Case 2: (xc, L) Angular Momentum and Horizontal Position: Manipulating

(4.7) and using L̇ = mgxc + ua results in

ẋc =
L

mzc
+

żc
zc
xc −

Lc

mzc

L̇ = mgxc + ua.

(4.10)

The remarks made above on zc, żc, and Lc apply here as well.

Case 3: (θc, L) Alternative absolute angle (cyclic variable): Differentiating

(4.8) yields

θ̇c =
L− Lc

mr2c (qb)
. (4.11)
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Combining (4.7) and (4.11) yields

θ̇c =
L− Lc

mr2c

L̇ = mgrc sin(θc) + ua.

(4.12)

It is remarked that the derivatives of the generalized coordinates only appear through

Lc. In the following, we will keep the discussion primarily focused on (4.10), but most

of the results apply to (4.12) as well; see Appendix A.2.

4.2 Angular Momentum about the Contact Point

In this chapter, we are focusing on the angular momentum about the contact point,

L, as a replacement for the center of mass velocity, vc, which is used as an indicator

of walking status in many other papers [95, 74, 57, 96]. Specific to this paper, L is

also a state of the zero dynamics. Before we proceed to that, it is beneficial to explain

why L can replace vc, summarize some general properties of L, and highlight some

of its advantages versus vc. More specific advantages of using L in the zero dynamics

and the LIP model will be discussed in later sections.

We first need to answer why L can replace vc as an indicator of walking. The

relationship between angular momentum and linear momentum for a 3D bipedal

robot is

L = Lc + pc ∧mvc, (4.13)

where Lc is the angular momentum about the center of mass, vc is the linear velocity

of the center of mass, m is the total mass of the robot, and pc is the vector emanating

from the contact point to the center of mass.

For a bipedal robot that is walking instead of doing somersaults, it is reasonable to

focus on gaits where the angular momentum about the center of mass oscillate about

zero (e.g., arms are not rotating as in a flywheel). The oscillating property of Lc is
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discussed in [1, 2]. When L oscillates about zero, (4.13) implies that the difference

between L and pc ∧mvc also oscillates about zero, which we will write as

L− pc ∧mvc = Lc oscillates about 0. (4.14)

From (4.14), we see that we approximately obtain a desired linear velocity by regu-

lating L. Hence, in walking robots without a flywheel, one can replace the control of

linear velocity with control of angular momentum about the contact point.

What are there advantages to using L?

(a) The first advantage of controlling L is that it provides a more comprehensive

representation of current walking status because it is the sum of angular mo-

mentum about the center of mass, Lc, and linear momentum, pc ∧mvc. From

(4.9), we see that there exists momentum transfer between these two quanti-

ties. If Lc increases, it must “take” some momentum away from vc, and vice

versa. For normal bipedal walking, Lc oscillates about zero. Lc functions to

store momentum[97], but importantly it can an only store it for a short amount

of time. When designing a foot placement strategy, it is important to take the

“stored” momentum into account.

When balancing on one foot for example, some researchers plan Lc and vc

separately [98], or use Lc as an input to regulate balance by waving the torso,

arms, or swing leg[99, 100] or even a flywheel [18]. Here, instead of moving

limbs to generate a certain value of Lc, we view Lc as a result of the legs

and torso moving to fulfill other tasks. In this paper, we observe Lc and take

it into consideration through L and do not seek to regulate it directly as an

independent quantity.

(b) Secondly, because L̇ = mgxc + ua depends only on the CoM position, it follows

that L has relative degree three with respect to all inputs except the stance
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Figure 4.1: The relation between L, Lc, and vxc . Equation (4.13) shows L is the sum
of Lc and a term that is linear in vc, while the second line of (4.9) shows the transfer
of momentum between Lc and vc. The relation is an analogue of mechanical, kinetic
and potential energy.

ankle torque, where it has relative degree one. Consequently, the evolution L is

only weakly affected by motor torques of the body, that is ub, during a step. In

Fig. 4.2 (a) and (d) and Fig. 4.3 (a) we see that the trajectory of L consistently

has a convex shape when stance ankle torque is zero, irrespective of model or

speed. We’ll see later the same property in experimental data.

(c) The discussion so far has focused on the single support phase of a walking gait.

Bipedal walking is characterized by the transition between left and right legs

as they alternately take on the role of stance leg (aka support leg) and swing

leg (aka non-stance leg). In double support, the transfer of angular momentum

between the two contact points satisfies

L2 = L1 + p2→1 ∧mvc, (4.15)

where p2→1 is the vector from point 2 (the new stance leg position) to point 1 (the

previous stance leg position). Hence, the change of angular momentum between

two contact points depends only on the vector defined by the two contact points

and the center of mass velocity. In particular, angular momentum about a given

contact point is invariant under the impulsive force generated at that contact
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(a) Rabbit L
mH and vxc (b) Rabbit Lc

mH (c) Rabbit L̇c
mH

(d) Cassie L
mH and vc (e) Cassie Lc

mH (f) Cassie L̇c
mH

Figure 4.2: Plots of L, vc, and L̇c for the bipedal robots Rabbit and Cassie walking at
about 2m/s, while zc is carefully regulated to 0.6m. The vertical green lines indicate
the moment of impact. For both robots, the angular momentum about the contact
point, L, has a convex shape (due to L̇ = mgxc + ua, ua = 0 and CoM passes the
contact point only once), similar to the trajectory of a LIP model, while the trajectory
of the longitudinal velocity of the center of mass, vc, has no consistent shape. The
variation of Lc throughout a step, which is caused by the legs of the robot having
mass, is what leads to a difference in the CoM velocity between a real robot and a LIP
model. The patterns of Lc shown above are not specific to certain robot or controller
but match the walking mechanism described in [1, 2].
In this figure, L is continuous at impact, which is based on two conditions: vzc = 0
at impact and the ground is level. Even when these two conditions are not met, the

jump in L at impact can be easily calculated with (4.15).

point. Consequently, we can easily determine the angular momentum about

the new contact point by (4.15) when impact happens without resorting to

approximating assumptions about the impact model. Moreover, if żc is zero

and the ground is level, then p2→1∧mvc = 0, and hence L2 = L1. We note that

pendulum models parameterized with CoM velocity often assume continuity at

impact, which is not generally true for real robots.

Figure 4.2 shows the evolution of L, vc, Lc and L̇c during a step for both Cassie

and Rabbit, when walking speed is about 2 m/s, żc = 0, and no stance ankle torque

is applied. Figure 4.3 shows the evolution of L, vc, Lc for Rabbit walking at a range
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of speeds from -1.8 m/s to 2.0 m/s. Figures 4.2 and 4.3 also show the continuity

property of L at impact.

(a) L
mH and vc in m/s versus time in seconds.

(b) Lc
mH in m/s versus time in seconds.

(c)
•
Lc
mH in m/s2 versus time in seconds.

Figure 4.3: Plots of L, vc, and L̇c for Rabbit walking at different speeds. The green
vertical lines indicate the moment of impact. (a) shows that L always has a convex or
concave shape like the LIP model, while vc has no determinant shape. The shape of
L is a direct consequence of L̇ = mgxc. The quantities L

mH
and vc are close in scale

and oscillate about one another. This shows that directly regulating L does indeed
indirectly regulate vc. (b) and (c) show the scales of Lc and L̇c. It is seen that L̇c
is much larger in scale and thus omitting it in (4.16) can create a larger error than
neglecting Lc in (4.17).

4.3 Comparison of Approximate Models for Center of Mass

Dynamics

Each of the dynamical models(4.9), (4.10), and (4.12) is valid along all trajec-

tories of the full-dimensional model. This section systematically goes through the

models in Sec. 4.1.3 and looks for connections with low-dimensional pendulum mod-

els. Subsequently, Sect. 4.4 makes connections between pendulum models and the

zero dynamics.
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4.3.1 Constant Pendulum Height

If CoM height is constant, i.e., zc = H, żc = 0, and z̈c = 0, then (4.9) and (4.10)

become

ẋc = vc

v̇xc =
g

H
xc −

L̇c

mH
+

ua

mH
,

(4.16)

and

ẋc =
L

mH
− Lc

mH

L̇ = mgxc + ua,

(4.17)

respectively. Equation (4.17) can be rewritten as

ẋc = vp −
Lc

mH

v̇p =
g

H
xc +

ua

mH
,

(4.18)

where vp = L
mH

, which is more directly comparable to (4.16). In this paper we fre-

quently plot L scaled by the coefficient 1
mH

, so that it can be more directly compared

to vc (same units and similar magnitudes).

At this point, no approximations have been made and both models are valid

everywhere that zc(q) ≡ H. Hence, the two models are still equivalent representations

of the center of mass dynamics for all trajectories satisfying zc(q) ≡ H. We’ll next

argue that the models are not equivalent when it comes to approximations.

Dropping the L̇c term in (4.16) results in:

ẋc = vc

v̇c =
g

H
xc +

ua

mH
.

(4.19)

This is the well-known LIP model proposed by [15].
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Dropping Lc in (4.17) results in

ẋc =
L

mH

L̇ = mgxc + ua,

(4.20)

which is used in [83, 84]. In [83], (4.20) is used instead of (4.19) so that the easy

“update” property of L at impact can be used. In this paper, we demonstrate that

during the continuous phase, the states of (4.20) much more accurately capture the

evolution of (xc, L) in a real robot than the states of (4.19) capture the evolution

of (xc, vc). Moreover, we will make use of this improved accuracy in the design of a

feedback controller. To distinguish the model (4.20) from (4.19), we will denote it by

ALIP, where A stands for Angular Momentum.

For a robot with a point mass, the two models (4.19) and (4.20) are equivalent,

because Lc is then identically zero. For a real robot with Lc and L̇c that are nonneg-

ligible, however, we argue that (4.20) is more accurate than (4.19) primarily because

of three properties,

(a) Relative Amplitude. Based on our observations, the ratio of L̇c/mgxc is much

larger than Lc/L over a wide range of walking velocities; thus the simplification

(4.20) introduces relatively less error than (4.19).

(b) Relative degree. L has relative degree two with respect to Lc and three with

respect to L̇c, whereas vc has relative degree one with respect to L̇c. Because

integration is a form of low-pass filtering, the lower relative degree makes vc

more sensitive to the omission of the Lc term.

(c) Lc oscillates about zero. What makes (4.20) even more accurate is that, based

on our own observation and references [1, 2], the sagittal plane component of

Lc oscillates about zero for periodic and non-periodic gaits. The oscillation of

Lc results in the effect of Lc on xc roughly averaging out to zero over a step.
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In Fig. 4.4, we have used the models (4.19) and (4.20) to predict the values of

vc and L at the end of a step. We plot L
mH

instead of L to make the scale and

units comparable. The blue line is the true trajectory of L (resp. vc) during a step.

The red line shows the prediction of L (resp. vc) at the end of each of step, at each

moment throughout a step, based on the instantaneous values of xc and L (vc) at that

moment. The red line would be perfectly flat if (4.20) and (4.19) perfectly captured

the evolution of L (vc), respectively, in the full simulation model, and the flatter the

estimate, the more faithful is the representation.

The prediction errors of (4.19) and (4.20) caused by neglecting Lc and L̇c, respec-

tively, satisfy

ẋe = ve

v̇e =
g

H
xe −

L̇c

mH
,

(4.21)

and

ẋe =
Le

mH
− Lc

mH

L̇e = mgxe,

(4.22)

where (xe, Le) are the differences in the trajectories of (4.19) and (4.18); similarly,

(xe, ve) are the differences in the trajectories of (4.20) and (4.16). Direct solution of

these two sets of differential equations for zero initial conditions leads to

ve(t2, t1) = e1(t2, t1)

= e2(t2, t1) + e3(t2, t1) (4.23)

Le(t2, t1)

mH
= e2(t2, t1), (4.24)
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(a) Rabbit Ly predic-
tion

(b) Rabbit vc predic-
tion

(c) Cassie Ly predic-
tion

(d) Cassie vc predic-
tion

Figure 4.4: Comparison of the ability to predict velocity vs angular momentum at the
end of a step. The instantaneous values are shown in blue and the predicted value
at the end of the step is shown in red, where a perfect prediction would be a flat line
that intercepts the terminal point of the blue line. The most crucial decision in the
control of a bipedal robot is where to place the next footfall. In the standard LIP
controller, the decision is based on predicting the longitudinal velocity of the center
of mass. In Sect. 5.2 we use angular momentum about the contact point. We do this
because on realistic bipeds, a LIP-style model provides a more accurate and reliable
prediction of L than vc. The comparison is more significant on Rabbit, whose leg
center of mass is further away from the overall center of mass.

where

e1(t2, t1) =−
1

mH

t2∫
t1

cosh(ℓ(t2 − τ))L̇c(τ) dτ

e2(t2, t1) =−
1

mH

t2∫
t1

ℓ sinh(ℓ(t2 − τ))Lc(τ) dτ

e3(t2, t1) =−
1

mH

(
Lc(t2)− cosh(ℓ(t2 − t1))Lc(t1)

)
.

Figure 4.5 shows the (relative) sizes of these error terms. If we view Lc as a disturbance

and prediction error as an output in (4.21) and (4.22), we obtain the corresponding

Laplace transforms and Bode plots shown in Fig. 4.6.
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Figure 4.5: A plot of the error terms in (4.23) and (4.24) resulting from dropping L̇c

and Lc, respectively, for the Rabbit model walking at 2 m/s. The take-home message
is that of the terms e2(t1, t2) + e3(t1, t2) in (4.23) comprising the velocity error of
the LIP model, the term e3(t1, t2) shown in the yellow line contributes by far the
largest portion of the total error shown by the blue line. The error of the ALIP
model, however, is given only by e2(t1, t2), which results in the significantly reduced
prediction error shown by the red line.

4.3.2 Simulation Comparison

We compare controllers designed on the basis of the ALIP and LIP models in

simulation. The results shown in Fig. 4.7 demonstrate the advantage of using ALIP

over LIP for controller design. The initial hip velocity is set to 0.5 m/s and hip

position is centered over the contact point. The goal of each controller is to regulate

vc (resp., L) to zero, with foot placement as the decision variable and step duration

constant. In the plots, we observe that the ALIP-based controller regulates L closely

to zero and thus has an average vc close to zero, while the LIP-based controller is

unable to regulate vc effectively. The reason is that, at the end of a step, the linear

momentum was transferred to centroidal angular momentum Lc due to the movement

of Rabbit’s heavy legs (see Eqn (4.18)), resulting in a small vc, which misleads the

LIP controller into choosing a small foot displacement. In the ALIP model, L is less

affected by momentum transfer between vc and Lc because L captures their sum, and
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thus the ALIP model suggests better foot placement. Though with a LIP controller it

is possible to regulate velocity through ZMP (ankle torque) during continuous phase,

we argue that with an ALIP controller, the capability of ZMP can be reserved for

better purposes than compensating for model error.

4.3.3 Non-zero Ankle Torque

In previous subsections we have demonstrated the accuracy of pendulum model

parameterized with L when ankle torque is zero. According to Eqn (4.10), the effect

of Lc and ua on the system are independent due to the superposition property. So if

dropping Lc term has little effect on the model accuracy when ua is zero, it should still

has little effect on the model accuracy when ua is non-zero. Though Lc trajectory itself

will be changed when ua is non-zero, its pattern is still similar. Here for completeness

we run a simulation on Rabbit. The results are shown in Fig. 4.8

4.3.4 Accounting for Lc

The trajectory of Lc is determined by the robot’s dynamic model and the move-

ment of its links. In Fig. 4.3-(b), we observe that Lc has a simple shape2. This

motivates us to estimate the trajectory of Lc and plug it into (4.17) to improve our

prediction.

For each of a range of walking speeds, we fit the time-based trajectory of Lc

during a step with a third-order polynomial in τ . For online use, the four polynomial

coefficients in L̂c(τ) were regressed as second-order polynomials in L(0), the value

of L at the beginning of each step. Given the estimate L̂c(τ, L(0)), we can plug it

into (4.17) and view L̂c(τ, L(0)) as a time-varying forcing term. Its contribution to

2The trajectories are the result of a controller described in Sect. 5.3.
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predicted angular momentum is then

T∫
t

eA(T−τ)BL̂c(τ, L(0))dτ, (4.25)

which can be added to an estimate of L. Figure 4.9 shows the resulting improvements

in estimates of scaled angular momentum when Rabbit is walking at various constant

speeds. Figure 4.10 shows that the improvements in estimation persist under transient

operation of the robot.

4.4 Pendulum Models, Zero Dynamics, and Overall System

Stability

This section establishes connections between the pendulum models of Sec. 4.1.3

and the swing phase zero dynamics as developed in [65], or more precisely, approxima-

tions of the zero dynamics. This is accomplished by analyzing how the zero dynamics

are driven by the states of a bipedal robot’s full-order model and its feedback con-

troller when the closed-loop system is evolving off the zero dynamics manifold. As a

main contribution, the analysis will yield conditions under which the driving terms

are small and hence do not adversely affect the stability predictions associated with

the exact zero dynamics. A secondary contribution of the section will be a presenta-

tion of the swing phase zero dynamics for a more general set of “virtual constraints”

than those developed in [65, 101, 71].

4.4.1 Intuitive Background

An initial sense of the meaning and mathematical foundation of the swing phase

zero dynamics can be gained by considering a floating-base model of a bipedal robot,

and then its pinned model, that is, the model with a point or link of the robot, such as
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a leg end or foot, constrained to maintain a constant position respect to the ground.

The given contact constraint is holonomic and constant rank, and thus using Lagrange

multipliers (from the principle of virtual work), a reduced-order model compatible

with the (holonomic) contact constraint is easily computed. When computing the

reduced-order model, no approximations are involved, and solutions of the reduced-

order model are solutions of the original floating-base model, with inputs (ground

reaction forces and moments) determined by the Lagrange multiplier.

Virtual constraints are relations (i.e., constraints) on the state variables of a

robot’s model that are achieved through the action of actuators and feedback control

instead of physical contact forces. They are called virtual because they can be re-

programmed on the fly without modifying any physical connections among the links

of the robot or its environment. We use virtual constraints to synchronize the evo-

lution of a robot’s links, so as to create exponentially stable motions. Like physical

constraints, under certain regularity conditions, they induce an exact low-dimensional

invariant model, called the zero dynamics, due to the highly influential paper [75].

Each virtual constraint imposes a relation between joint variables, and by differ-

entiation with respect to time, a relation between joint velocities. As a consequence,

for the virtual constraints studied in this paper, the dimension of the zero dynamics

is the number of states in the robot’s (pinned) model minus twice the number of

virtual constraints (which can be at most the number of independent actuators). As

explained in [102], the computation of the motor torques to impose virtual constraints

parallels the Jacobian computations for the ground reaction forces in a pinned model.

4.4.2 Allowing Non-holonomic, Time-varying Virtual Constraints

In this section, we choose L as one of the states of the zero dynamics. So that

fully actuated and underactuated biped models can be addressed simultaneously, we
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suppose that the torque distribution matrix B(q) in (4.1) can be split so that

B(q)u =: Ba(q)ua +Bb(q)ub, (4.26)

where ua is the torque affecting the stance ankle as in Sect. 4.1.3 and ub ∈ Rn are

actuators affecting the body coordinates, qb. When the robot is underactuated, Ba(q)

is an empty column vector.

We define n virtual constraints as an output zeroing problem of the form

y = h(q, L, τ) = h0(q)− hd(xc, L, τ), (4.27)

where τ captures time dependence. As in Sect. 4.1.3, we use L instead of other

functions of q̇ because L has relative degree three with respect to all actuators except

stance ankle torque, while q̇ has relative degree one. Hence, the relative degree of y

is determined by q once ua is fixed. Indeed, while ub is used for imposing the virtual

constraints, ua can be used for shaping the evolution of xc and L directly. We assume

a feedback law, ua, of the form

ua = α(xc, L, τ), (4.28)

and note that ua should respect relevant ankle torque limits and ZMP constraints

when y ≡ 0.

Following [75, 36, 65], we make the following specific regularity assumptions for

the virtual constraints:

A1: h is at least twice continuously differentiable and ua is at least once differentiable.

A2: The virtual constraints (4.27) are designed to identically vanish on a desired

nominal solution (gait) (q̄(t), ˙̄q(t), ū(t)) of the dynamical model (4.6) with τ(t) = t,

where the solution meets relevant constraints on motor torque, motor power, ground
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reaction forces, and workspace. To be clear, y vanishing means

h0(q̄)− hd(x̄c, L̄, τ) ≡ 0 (4.29)

for 0 ≤ t ≤ T , where L̄(t) is the angular momentum about the contact point, evalu-

ated along the trajectory.

A3: The decoupling matrix

A(q) :=
∂h(q, L, t)

∂q
D−1(q)Bb(q) (4.30)

is square and invertible along the nominal trajectory, so that, from [36] and [103], by

treating ua as a known signal, there exists a feedback controller of the form

ub =: γ(q, q̇, τ) + γa(q, L, τ)ua (4.31)

resulting in the closed-loop dynamics

ÿ +Kdẏ +Kpy = 0, (4.32)

with Kd > 0 and Kp > 0 positive definite.

A4: The function 

y

ẏ

xc

L


(4.33)

is full rank and injective in an open neighborhood of the nominal solution (q̄(t), ˙̄q(t))

∀t.

From [75, 36, 65], the above assumptions imply that (y, ẏ, xc, L) is a valid set of

coordinates for the full-order swing phase model (4.2). In particular,
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1. there exists an invertible differentiable function Φ such that
q

q̇

τ

 = Φ(y, ẏ, xc, L, τ), and (4.34)

2. the swing phase zero dynamics, that is, the dynamics of the robot compatible

with y ≡ 0, exists and can be parameterized by (xc, L).

4.4.3 Zero Dynamics and Approximate Zero Dynamics

From Assumptions A1-A4, it follows that the swing phase zero dynamics exists

and for ξ = (xc, L, τ) can be expressed as

ξ̇ = fzero(ξ), (4.35)

when y ≡ 0. As with the popular pendulum models, the dimension of (4.35) is

low, it has two states plus time. Different that the pendulum models, (4.35) is exact.

Moreover, tools are known for relating periodic orbits of the hybrid version of (4.35) to

corresponding orbits in the full-order model (4.6), including their stability properties;

see Sect. 4.4.4.

On the basis of (4.10) evaluated at (4.34), the zero dynamics (4.35) can be written

more explicitly as

ẋc =
L

mzc(xc, L, τ)
+

żc(xc, L, τ)

zc(xc, L, τ)
xc −

Lc(xc, L, τ)

mzc(xc, L, τ)

L̇ = mgxc + ua(xc, L, τ)

τ̇ = 1.

(4.36)

The state τ̇ = 1 is included in (4.36) because, at hybrid transitions, τ is reset to

zero, that is, τ+ := 0. As discussed above, this reduced-order model is exact along
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all trajectories of the full-order model for which y ≡ 0.

If one of the virtual constraints in (4.27) is zc − H, that is, the center of mass

height is regulated to a constant, then the zero dynamics (exactly) simplifies to

ẋc =
L

mH
− Lc(xc, L, τ)

mH

L̇ = mgxc + ua(xc, L, τ)

τ̇ = 1.

(4.37)

This model is nonlinear and time-varying through Lc and possibly, the feedback

control policy chosen for the stance ankle torque, ua. We’ve argued in Sec. 4.3 that Lc

can be dropped from the model. Doing so results in the ALIP model, (4.20). Hence,

the ALIP model is an approximate swing phase zero dynamics when the center of

mass height is controlled to a constant.

4.4.4 Consequences for Closed-loop Stability of the Full-order Model

When the foot placement policy (5.9) is applied to (4.37) with the rest map (5.2),

the resulting closed-loop system is a (small) perturbation of a hybrid system that

possesses a family of exponentially stable periodic orbits parameterized by Ldes. If

the virtual constraints in (4.27) are hybrid3 invariant for constant Ldes [65, 106, 107],

then

• (4.37) with impact map (5.2) is the hybrid zero dynamics, and

• an exponentially stable periodic solution of the hybrid zero dynamics is also an

exponentially stable solution of the full order closed-loop system for appropriate

choices of the feedback gains Kp and Kd in (4.32).

Consequently, the closed-loop system would possess a family of exponentially stable

3Hybrid invariance means that if y and ẏ are zero before the impact, they will also be zero
after the impact. References [104, 105] show how to systematically modify a given set of virtual
constraints to achieve hybrid invariance.
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periodic orbits parameterized by Ldes. If the virtual constraints are not hybrid invari-

ant, then (4.37) with (5.2) does not form a hybrid zero dynamics in the sense of [65],

but rather a limit restriction dynamics [108, pp. 102]. Moreover, via the Brouwer

Fixed Point Theorem, reference [108, Theorem 6, pp. 105] shows each exponentially

stable periodic solution of the limit restriction dynamics corresponds to an exponen-

tially stable periodic solution of the full model for appropriate design of the feedback

gains in (4.32).

To illustrate the correspondence between exponentially stable motions of the ALIP

and the full-order model, we turn to the Rabbit model controlled via virtual con-

straints that implement the foot placement control law (5.9), the center of mass at a

constant height, the torso upright, and adequate foot clearance. We then numerically

estimate the Jacobian of the Poincare map for the closed-loop full-order model and

compare its dominant eigenvalues to the dominant eigenvalue of the closed-loop ALIP

model; see (5.12) .

In Table 4.1, for various values of α in the step placement feedback controller,

we show the dominant eigenvalue from the ALIP model and the dominant eigenvalue

from the numerically estimated Poincaré map. We see that the dominant eigenvalue of

the full-order closed-loop system corresponds to the dominant eigenvalue of the ALIP

model for 0 ≤ α ≤ 0.9. The remaining eigenvalues of the full model are (very) small

due to the gains chosen in (4.32). In fact, the zero dynamics captures the “weakly

actuated”, slow part of the full-order model that is evolving under the influence of

gravity.

Remark: We numerically obtained the Jacobian of the Poincaré map for Rabbit

with the foot placement controller by the method symmetric differences; δ deviations

were applied on ten states (Rabbit has 5 degrees of freedom) and we measured the

corresponding responses after two steps. The value of δ was chosen from the set

{±0.05,±0.1,±0.2,±0.3}; see Table 4.2.
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α ALIP Rabbit
0.9 0.81 0.781
0.8 0.64 0.601
0.7 0.49 0.442
0.6 0.36 0.299
0.5 0.25 0.168
0.4 0.16 0.052
0.3 0.09 0.013
0.2 0.04 2e-4
0.1 0.01 2e-4
0.0 0.00 1e-4

Table 4.1: Largest eigenvalues of ALIP and Rabbit under different α, for a two-step
Poincaré map. Because the Poincaré map is computed over two steps, the ALIP’s
largest eigenvalue is α2.

α ALIP δ = ±0.05 δ = ±0.1 δ = ±0.2 δ = ±0.3
0.9 0.81 0.780 0.783 0.781 0.779
0.8 0.64 0.602 0.602 0.601 0.599
0.7 0.49 0.442 0.443 0.441 0.439
0.6 0.36 0.299 0.301 0.300 0.299
0.5 0.25 0.170 0.170 0.168 0.164
0.4 0.16 0.054 0.053 0.052 0.051
0.3 0.09 0.014 0.014 0.012 0.011

Table 4.2: Numerical support for estimating the Jacobian of the two-step Poincaré
map. The dominant eigenvalue of Rabbit model is insensitive to the perturbation
used in estimating the Jacobian.

4.4.5 Non-periodic Walking

The desired angular momentum, Ldes, determines the fixed point of the Poincaré

map and hence the walking speed of the robot. While varying Ldes causes the walking

speed to change, the analysis of the controller has only been presented for a constant

value of Ldes. Reference [109] analyzes gait transitions in the formalism of the hybrid

zero dynamics when Ldes is switched “infrequently”, meaning the closed-loop system is

moving from a neighborhood of one periodic orbit to another. References [110, 111]

generalize tools from Input-to-State Stability (ISS) of ODEs to the case of hybrid

models. These results apply to time-varying Ldes. The experimental work reported in
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Sec. 5.5 includes examples of rapidly varying Ldes, turn direction, and ground height.

4.4.6 Varying Center of Mass Height

We have seen that the difference between the zero dynamics of a real robot and a

pendulum model is the term related to Lc. In previous sections, we have shown that

the Lc term has very little effect on the L dynamics when zc is constant. This obser-

vation can be extended to the case when zc is not constant but virtually constrained

by (xc, L, τ).

In Fig. 4.11, we illustrate that when the zc is a function of time, the pendulum

dynamics can still be used to predict accurately the zero dynamics of Rabbit.
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(a) ALIPM

(b) LIPM

(c) Bode Plot

Figure 4.6: How neglecting Lc and L̇c generates errors in ALIPM and LIPM. Note
the low-pass (ALIPM in red) vs high-pass (LIPM in blue) nature of the respective
transfer functions.
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(a) LIP controller

(b) ALIP controller

Figure 4.7: Simulation results of Rabbit with controllers based on LIP and ALIP,
following an identical design philosophy, based on foot placement. The details of the
controller are described in Sec 5.2 and Sec 5.3. The controller based on the ALIP
model is much more effective in regulating velocity to zero.
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(a) Rabbit L prediction (b) Rabbit vc prediction

Figure 4.8: Comparison of the ability to predict velocity vs angular momentum at the
end of a step in a model with ankle torque ua = 30 sin(2πτ/T ), where τ varies from
0 to T during a step. The instantaneous values are shown in blue and the predicted
value at the end of the step is shown in red. Because ankle torque is an input, we
assume its trajectory is known when making predictions. For comparison purposes
with Fig. 4.4, the ankle torque is chosen to be sufficiently large so that gravity is no
longer dominant in L̇ = mgxc + ua and the trajectory of L is no longer convex.

Figure 4.9: Prediction of angular momentum about the contact point at the end of a
step, when Rabbit is walking at different speed. The blue line is the actual evolution
of L in the simulation. The red line is the predicted value of L at step end when
assuming Lc = 0. The yellow line utilizes a predicted trajectory for Lc. The x-axis
is time in seconds. The yellow prediction is not perfectly flat because of fitting error
in Lc(t) and slight variation of CoM height in the simulation.
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Figure 4.10: Though we make the bold assumption that the evolution of Lc(t) over a
step depends only on L(0), the value of L at the beginning of a step, the improvement
in the one-step-ahead prediction of L persists as walking speed decreases over three
seconds from approximately 1.6 m/s to 0.6 m/s. The blue line is L/(mH), the red
line is the estimated value of L/(mH) a the end of the current step when Lc is ignored,
and the yellow line is the estimated value of L/(mH) at the end of the current step
when Lc is estimated each step from L(0). The x-axis is time in seconds.
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Figure 4.11: Trajectory of L and its prediction in a simulation of Rabbit. The
instantaneous values are shown in blue and the predicted value at the end of the step
is shown in red. In the prediction of L, the virtual constraint on center of mass height
for the model model and for Rabbit are set to zc = 0.6 + 0.05 sin( T

2π
τ − π

2
) + 0.05,

where T is the step time. Large zc oscillations often occur in running. Here, we
modify the ground model to pin the stance foot to the ground, so that we can impose
a non-trivial zc oscillation in periodic walking.
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CHAPTER V

Angular Momentum Based Walking Controller

In Chapter IV we explained that the angular momentum about the contact point(L)

can represent the walking status of a bipedal robot. We demonstrated that the evo-

lution of L resembled that of a pendulum model and thus we could predict this state

quickly and accurately with the closed form solution of ALIP. In this chapter, we

design a controller that utilizes this prediction and calculates the foot placement to

achieve a desired L at the end of the next step. Detailed experimental implementation

for a 3D Cassie Robot is also discussed, including reference trajectory generation,

state estimation for angular momentum, inverse kinematics, and a passivity-based

controller. We demonstrate the robustness and agility of Cassie in both simulation

and experiments. The controller code can be found at [112].

5.1 General Biped Balancing Mechanism

A bipedal robot is a hybrid under-actuated system. It is hybrid because the

dynamics change when the model switches between left and right single support

phases. The single support phase is under-actuated because of the limited foot size

and unilateral ground constraint. Thus, the ground reaction force a bipedal robot

can exert is limited, making it different from a fully-actuated robot arm whose based

in pinned on the ground. As a result, the ability to keep balance during the single
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support phase is weak. However, humans have good balancing abilities when walking.

This is because in the hybrid system we can set initial conditions when we switch

between two phases. Though there isn’t much we can do during the single support

phase, we can decide how the phase starts. The initial condition for the single support

phase has a dominant effect in balancing and we are allowed to set it only once

per step. So it is important to set a proper initial condition. Setting an initial

condition can be an easy task if we have a map associating the initial condition and

its consequence.

Figure 5.1: Bipedal Walking is a hybrid system composed of two weakly actuated
continuous single support phases. Though during each single support phase the bal-
ancing ability is weak, the switching between these two phases provides a good balance
ability in the hybrid system.

In the previous chapter, we argued that Angular Momentum about Contact Point

(L) is a good indicator of robot status. L has relative degree three and is hardly

affected by motor torque during a step, faithfully reflecting the underactuated nature

of the single support phase. What’s more, we proposed the ALIP model, a simplified

model with good accuracy which provides the map associating the initial condition

and the consequential L evolution.
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In the following section, we will discuss how to use foot placement to obtain desired

L. Here we briefly discuss general methods to regulate L, or “maintain balance”.

First, notice that during the single support phase, the dynamics of the robot (sagittal

plane) can be written as: 
ẋ =

L

mz
+

ż

z
x− Lc

mz

L̇ = mgx+ uA.

(5.1)

• Single Support Phase. L can be regulated during the single support phase

through Lc and z. L has a relative degree of three to related input. When on

a tightrope, this is the only method we could use to keep balance. The effect

of Lc is so small for a biped with normal morphology that even expert acrobats

need to hold a long pole when they are walking on the tightrope. L can be also

regulated by ankle torque uA with a relative degree of one. The effect of uA is

stronger but still weak because of the unilateral constraint on the limited-size

feet.

• Hybrid System. We can regulate L more effectively by exploiting the hybrid

property of bipedal walking. We can set the x(0) with foot placement, which

we will discuss in detail in the following section. We can also set L(0) with foot

placement and step end vertical CoM velocity, using the angular momentum

transfer formula: L2 = L1 + p2→1×mv. We can also plan step time to regulate

L, which is critical when foothold positions are fixed, such as stairs or stepping

stones.

5.2 Stabilizing the ALIP Model

In this section, we provide a means to regulate angular momentum about the

contact point to approximately achieve a desired walking speed. Specifically, the

ALIP model (4.20) is used to form a one-step ahead prediction of angular momentum,
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L. In combination with the angular momentum transfer formula (4.15), a feedback

law results for where to place the swing foot at the end of the current step so as to

achieve a desired angular momentum at the end of the ensuing step. In legged robot

locomotion, this is typically called “foot placement control” [113, 114, 41, 57].

5.2.1 Gait assumptions

When designing the foot placement controller, we assume the gait of the robot is

controlled such that:

(a) the height of the center of mass is constant, that is zc ≡ H > 0;

(b) each step has constant duration T > 0; and

(c) a desired swing leg horizontal position, px des
sw→CoM, can be achieved at the end of

the step.

We’ll explain how to accomplish these objectives via the method of virtual constraints

in Sections 4.4 and 5.3.

5.2.2 Notation

We distinguish among the following time instances when specifying the control

variables.

• T is the step time.

• Tk is the time of the kth impact and thus equals kT .

• T−
k is the end time of step k, so that

• T+
k is the beginning time of step k + 1 and T−

k+1 is the end time of step k + 1.

• (T−
k − t) = (T − τ(t)) is the time until the end of step k.
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Figure 5.2: For a given time, Tk, the notation T−
k means that we are evaluating a

function as a limit from the left of Tk, while T+
k means we are taking a limit from

the right. This is compatible with how trajectories are defined for the hybrid model
(4.6).

The superscripts + and − on Tk are necessary because of the (potential) jump in a

trajectory’s values from the impact map; see [35]. As shown in Fig. 5.2, x(T−
K ) is

the limit from the left of the model’s solution at the time of impact, in other words

it’s value “just before” impact, while x(T+
K ) is the limit from the right of the model’s

solution at the time of impact, in other words it’s value “just after” impact.

With this notation, the reset map for the ALIP becomes

xc(T
+
k ) = pxsw→CoM(T

−
k )

L(T+
k ) = L(T−

k ),

(5.2)

after noting that (4.15) simplifies to L being constant across impacts when the ground

is level and the vertical velocity of the center of mass is zero.

We remind the reader that

• pst→CoM, psw→CoM are the vectors emanating from stance/swing foot to the

robot’s center of mass. The stance foot defines the current contact point, while

the swing foot is defining the point of contact for the next impact and is there-

fore a control variable.

• Also, for the implementation of the control law on the 3D biped Cassie in

Sect. 5.3, we need to distinguish between Ly and Lx, the y and x components

of the angular momentum (sagittal and frontal planes), respectively.
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5.2.3 Foot placement in longitudinal direction

The control objective will be to place the swing foot at the end of the current

step so as to achieve a desired value of angular momentum at the end of the ensuing

step. The need to regulate the angular momentum one-step ahead of the current

step, instead of during the current step, is because in (4.20) L is passive without

ankle torque, in other words, it is not affected by the control actions of the current

step. The only way to act on its states is through the transition events.

The closed-form solution of (4.20) at time T and initial time t0 isxc(T )

Ly(T )

 = A(T − t0)

xc(t0)

Ly(t0)

 , (5.3)

where

A(t) =

 cosh(ℓt) sinh(ℓt)/(mHℓ)

mHℓ sinh(ℓt) cosh(ℓt)


and ℓ =

√
g
H
.

In the following, we breakdown the evolution of Ly from t to T−
k+1, for three

key time intervals or instances with the aim of forming a one-step-ahead estimate of

angular momentum about the contact point.

5.2.3.1 From t to T−
k

From the second row of (5.3), an estimate for the angular momentum about the

contact point at the end of current step, L̂y(T−
k , t), can be continuously updated by

L̂y(T−
k , t) =mHℓ sinh(ℓ(T−

k − t))xc(t)

+ cosh(ℓ(T−
k − t))Ly(t). (5.4)
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Forming the running estimate in (5.4), versus a fixed estimate based on the values of

xc and Ly at the beginning of the step, allows disturbances to be taken into account.

5.2.3.2 From T−
k to T+

k

This involves applying the reset map (5.2), yielding

xc(T
+
k ) = pxsw→CoM(T

−
k ) (5.5)

L̂y(T+
k , t) = L̂y(T−

k , t). (5.6)

5.2.3.3 From T+
k to T−

k+1

Similar to (5.4), the angular momentum at the end of the next step is estimated

by

L̂y(T−
k+1, t) = mHℓ sinh(ℓT )xc(T

+
k , t) + cosh(ℓT )L̂y(T+

k , t). (5.7)

Solving (5.4)-(5.7) so that

L̂y(T−
k+1, t) = Ly des,

a desired value of angular momentum at the end of a step, (which can be obtained

by Ly des = mHvx des), yields a formula for the desired swing foot position at the end

of the current step, given the value of desired angular momentum at the end of the

next step,

px des
sw→CoM(T−

k , t) :=
Ly des − cosh(ℓT )L̂y(T−

k , t)

mHℓ sinh(ℓT )
. (5.8)

Remark: Instead of the deadbeat control (5.8), it is possible to asymptotically ap-

proach a desired value of Ldes with the control law

px des
sw→CoM(T−

k , t) :=
1− α

mHℓ sinh(ℓT )
Ly des

+
α− cosh(ℓT )

mHℓ sinh(ℓT )
L̂y(T−

k , t),

(5.9)
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which achieves

(Ly des − L̂y(T−
k+1, t)) = α(Ly des − L̂y(T−

k , t)) (5.10)

for α ∈ [0, 1). Hence, for α = 0, (5.9) reduces to (5.8).

5.2.4 Stability Analysis of the ALIP for Ldes

Consider the ALIP model (4.20) with zero ankle torque and rest map (5.2). To

compute the Poincaré map, we take the Poincaré section as S := {(xc, L, τ) | τ = 0+},

which is the set of states just after impact. Computing (4.20) over one step and using

swing foot position with respect to the center of mass, ufp, as an input, yields,xc(T
+)

L(T+)

 =

 0 0

mHℓ sinh(ℓT ) cosh(ℓT )

xc(0
+)

L(0+)

+

1
0

ufp(T
−). (5.11)

Next, applying the feedback law (5.9) with Ldes a constant results in the Poincaré

map being xc(T
+)

L(T+)

 =

 α− cosh(ℓT ) (α−cosh(ℓT )) cosh(ℓT )
mHℓ sinh(ℓT )

mHℓ sinh(ℓT ) cosh(ℓT )

xc(0
+)

L(0+)


+

 1−α
mHℓ sinh(ℓT )

0

Ldes.

(5.12)

The Poincaré map has fixed point

x∗
c

L∗

 =

 1−cosh(ℓT )
mHℓ sinh(ℓT )

Ldes

Ldes

 (5.13)

independent of α and the eigenvalues of the Poincaré map are (α, 0). Hence, for all

0 ≤ α < 1, the fixed point is exponentially stable and moreover, (5.12) is bounded-

input bounded-state stable with respect to the command, Ldes.
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5.2.5 Lateral Control and Turning

From (4.17), the time evolution of the angular momentum about the contact point

is decoupled about the x- and y-axes. Therefore, once a desired angular momentum

at the end of next step is given, Lateral Control is essentially identical to Longitudinal

Control and (5.8) can be applied equally well in the lateral direction.1 The question

becomes how to decide on Lx des(T−
k+1), since it cannot be simply set to zero for

walking with a non-zero stance width.

For walking in place or walking with zero average lateral velocity, it is sufficient

to obtain Lx des from a periodically oscillating LIP model,

Lx des(T−
k+1) = ±

1

2
mHW

ℓ sinh(ℓT )

1 + cosh(ℓT )
, (5.14)

where W is the desired step width. The sign is positive if next stance is left stance

and negative if next stance is right stance. Lateral walking can be achieved by adding

an offset to Lx des.

To enable turning, we assume a target direction is commanded and associate a

frame to it by aligning the x-axis with the target direction while keeping the z-axis

vertical. To achieve turning, we then define the desired angular momentum Ly des

and Lx des in the new frame and use the hip yaw-motors to align the robot in that

direction.

5.3 Integrating Virtual Constraints and Angular-Momentum-

based Foot Placement

In this section we generate virtual constraints for a 3D robot such as Cassie. As

in [115], we leave the stance toe passive. Consequently, there are nine (9) control

1With a slight difference in the sign due to Lx = −mgyc.
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variables, listed below from the top of the robot to the end of the swing leg,

h0 =



torso pitch

torso roll

stance hip yaw

swing hip yaw

pzst→CoM

pxsw→CoM

pysw→CoM

pzsw→CoM

swing toe absolute pitch



. (5.15)

For later use, we denote the value of h0 at the beginning of the current step by

h0(T
+
k−1). When referring to individual components, we’ll use h03(T

+
k−1), for example.

We first discuss variables that are constant. The reference values for torso pitch,

torso roll, and swing toe absolute pitch are constant and zero, while the reference for

pzst→CoM, which sets the height of the CoM with respect to the ground, is constant

and equal to H.

We next introduce a phase variable

s :=
t− T+

k−1

T
(5.16)

that will be used to define quantities that vary throughout the step to create “leg

pumping” and “leg swinging”. The reference trajectories of pxsw→CoM and pysw→CoM

are defined such that:

• at the beginning of a step, their reference value is their actual position;

• the reference value at the end of the step implements the foot placement strategy

in (5.8); and

• in between a half-period cosine curve is used to connect them, which is similar
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to the trajectory of an ordinary (non-inverted) pendulum.

The reference trajectory of pzsw→CoM assumes the ground is flat and the control is

perfect:

• at mid stance, the height of the foot above the ground is given by zCL, for the

desired vertical clearance.

The reference trajectories for the stance hip and swing hip yaw angles are simple

straight lines connecting their initial actual position and their desired final positions.

For walking in a straight line, the desired final position is zero. To include turning,

the final value has to be adjusted. Suppose that a turn angle of ∆Ddes
k radians is

desired. One half of this value is given to each yaw joint:

• +1
2
∆Ddes

k → swing hip yaw; and

• −1
2
∆Ddes

k → stance hip yaw

The signs may vary with the convention used on other robots.

The final result for Cassie Blue is

hd(s) :=

0

0

(1− s)h03(T
+
k−1) + s(−1

2(∆Dk))

(1− s)h04(T
+
k−1) + s(12(∆Dk))

H

1
2

[
(1 + cos(πs))h06(T

+
k−1) + (1− cos(πs))px des

sw→CoM(T−
k )

]
1
2

[
(1 + cos(πs))h07(T

+
k−1) + (1− cos(πs))py des

sw→CoM(T−
k )

]
4zcl(s− 0.5)2 + (H − zCL);

0



. (5.17)

When implemented with an Input-Output Linearizing Controller2 so that h0 tracks

hd, the above control policy allows Cassie to move in 3D in simulation.

2The required kinematic and dynamics functions are generated with FROST [116].
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Figure 5.3: Block diagram of the implemented controller.

5.4 Practical Implementation on Cassie

This section resolves several issues that prevent the basic controller from being

implemented on Cassie Blue.

5.4.1 IMU and EKF

In a real robot, an IMU and an EKF are needed to estimate the linear position and

rotation matrix at a fixed point on the robot, along with their derivatives. Cassie uses

a VectorNav IMU. We used the Contact-aided Invariant EKF developed in [117, 118]

to estimate the torso velocity. With these signals in hand, we could estimate angular

momentum about the contact point.

5.4.2 Filter for Angular Momentum

Angular Momentum about the contact toe could be computed directly from esti-

mated [q, q̇], but it is noisy. We used a Kalman Filter to improve the estimation. The

models we used are

Prediction: Ly(k) = ALy(k − 1) +Bu(k) + δ

Correction: Ly
obs(k) = CLy(k) + ϵ

(5.18)
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where A = B = C = 1, u(k) = (mgxc(k) + ua(k))∆T .

The update formula for angular momentum is

Ly(k) = (I −K(k)C)(ALy(k − 1) +Bu(k)) +K(k)Ly
obs(k) (5.19)

The Kalman Gain K(k) is obtained following the algorithm described in [119, Sec

3.2].

5.4.3 Inverse Kinematics

Input-Output Linearization does not work well in experiments[115, 120, 42]. To

use a passivity-based controller for tracking that is inspired by [103], we need to

convert the reference trajectories for the variables in (5.15) to reference trajectories

for Cassie’s actuated joints,

qa =



torso pitch

torso roll

stance hip yaw

swing hip yaw

stance knee pitch

swing hip roll

swing hip pitch

swing knee pitch

swing toe pitch



. (5.20)

Iterative inverse kinematics is used to convert the controlled variables in (5.15) to

the actuated joints. Denote the un-actuated joint as qu, then there exist a relation
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between the control variable h0, q
a
0 and qu0

h0 = f(qa0, q
u
0 )

ḣ0 = Ja(qa0, q
u
0 )q̇

a
0 + Ju(qa0, q

u
0 )q̇

u
0

(5.21)

We have discussed how to generate hd and ḣd in Sect. 5.3; here we want to find

the corresponding qad and q̇ad, such that

hd = f(qad, q
u
0 )

ḣd = Ja(qad, q
u
0 )q̇

a
d + Ju(qad, q

u
0 )q̇

u
0

(5.22)

qad and qad are obtained iteratively with the following algorithm, the initial guess can be

qa0 or q
a
d from the previous iteration. The update at each loop is capped by max update

to avoid large linearization error.

Algorithm 1 Iterative Inverse Kinematics

qad ← Initial Guess
while ||hd − f(qad, q

u
0 )|| >threshold do

update ← Ja(qad, q
u
0 )

−1(hd − f(qad, q
u
0 ))

qad ← median(update, max update, - max update)
end while
q̇ad ← Ja(qad, q

u
0 )

−1(ḣd − Ju(qad, q
u
0 )q̇

u
0 )

5.4.4 Passivity-based Controller

In this subsection, we discuss how to implement a Passivity-based Controller for

joint-level tracking on Cassie.

Passivity-based control seeks feedback that renders the closed-loop system passive

and thus stabilizes the equilibrium point or periodic orbit. Sadeghian et al[103]

applied this technique to a planar robot in simulation and demonstrated that it can

make the trajectories asymptotically converge to reference trajectories defined by

holonomic virtual constraint. We adopt this method in our controller, and adapt it

81



so that it can work with a floating-base model and a time-varying reference trajectory.

We first formulate the dynamics of Cassie as:

D(q)q̈ +H(q, q̇) = Bu+ J⊤
s τs + Jg(q)

⊤τg, (5.23)

with u the vector of motor torques, τs the spring torques, and τg the contact wrench.

During the single-support phase, the blade-shaped foot on Cassie provides five holo-

nomic constraints, leaving only the foot roll free. To simplify the problem, we also

assume the springs are rigid, adding two constraints on each leg. These constraints

leave the original 20-degree-of-freedom floating base model with 11 degrees of freedom.

The constraints mentioned above can be written, as


Jsq̈ = 0

Jg(q)q̈ + J̇g(q)q̇ = 0.

(5.24)

Combining (5.23) and (5.24) yields the full model for Cassie in single support,


D −J⊤

s −J⊤
g

Js 0 0

Jg 0 0


︸ ︷︷ ︸

D̃


q̈

τs

τg


︸ ︷︷ ︸

f

+


H

0

J̇gq̇


︸ ︷︷ ︸

H̃

=


B

0

0


︸ ︷︷ ︸

B̃

u. (5.25)

For simplicity, we assume that the components of q have already been ordered such

that q = [qc, qu]
T , where qc are the coordinates chosen to be controlled and qu are the

free coordinates. Define λ = [qu, τs, τg]
T and partition (5.25) as


D̃11q̈c + D̃12λ+ H̃1 = B̃1u

D̃21q̈c + D̃22λ+ H̃2 = B̃2u,

(5.26)
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where D̃11 is square. The vector λ can be eliminated from these equations, resulting

in

D̄q̈c + H̄ = B̄u, (5.27)

where

D̄ = D̃11 − D̃12D̃
−1
22 D̃21

H̄ = H̃1 − D̃12D̃
−1
22 H̃2

B̄ = B̃1 − D̃12D̃
−1
22 B̃2.

Equation (5.27) is what we will focus on from here forward.

For the Passivity-based Controller, the error dynamics for y := qc− qr is designed

to be [121]

D̄ÿ + (C̄ + kd)ẏ + kpy = 0, (5.28)

where C̄ is the Coriolis/centrifugal matrix in H̄ and it is chosen such that ˙̄D = C̄+C̄⊤.

From (5.27) and (5.28), we have

u = B̄−1(D̄q̈r + H̄)− B̄−1(kpy + (C̄ + kd)ẏ). (5.29)

Compared with a standard Input-Output Linearization controller, whose error

dynamics and command torque are

ÿ + kdẏ + kpy = 0, and (5.30)

u = B̄−1(D̄q̈r + H̄)− B̄−1D̄(kpy + kdẏ), (5.31)
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the passivity-based controller induces less cancellation of the robot’s dynamics, and

if kp and kd are chosen to be diagonal matrices, the tracking errors are approximately

decoupled because, for Cassie, B̄−1 is close to diagonal. This controller provides

improved tracking performance over the straight-up PD implementation in [115].

5.4.5 Springs

On the swing leg, the spring deflection is small and thus we are able to assume

the leg to be rigid. On the stance leg, the spring deflection is non-negligible and

hence requires compensation. While there are encoders on both sides of the spring

to measure its deflection, direct use of this leads to oscillations. The deflection of the

spring is instead estimated through a simplified model.

We assume the robot’s links are massless and all the mass is concentrated at the

CoM. During walking, the controller will try to keep the CoM height constant. With

these assumptions, the Ground Reaction Force will point toward the CoM with a

vertical component equal to gravity:

F = mg


xc

zc

yc
zc

1

 . (5.32)

Assuming the robot is static, with the principle of virtual work:

τ = −JTF (5.33)

where τ is the general force acting on the coordinates q and J = ∂pstance foot

∂q
.

With this roughly estimated load on the coordinates, we obtain the compression

of the springs on the stance leg. The effect of the springs on the Leg Length (See

Fig.3.1b) is then offset by modifying the stance knee reference position.
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5.4.6 COM Velocity in the Vertical Direction

When Cassie’s walking speed exceeds one meter per second, the assumption that

vzCoM ≈ 0 breaks down due to spring deflection and imperfect low-level control, and

thus (5.6) is no longer valid. Hence, we use

Ly(T+
k ) = Ly(T−

k ) +mvzc (T
−
k )(pxsw→CoM(T−

k )− pxst→CoM(T−
k )). (5.34)

From this, the foot placement is updated to

px des
sw→CoM(T

−
k ) =

Ly des(T−
k+1)

m(Hℓ sinh(ℓT )− vzCoM) cosh(ℓT )
−

(Ly(T−
k ) +mvzCoM(T

−
k )pxst→CoM(T

−
k )) cosh(ℓT )

m(Hℓ sinh(ℓT )− vzCoM) cosh(ℓT )
. (5.35)

Remark: In our experiments, vzCoM becomes negative at the end of a step when the

robot is walking fast. If we still use (5.8) to decide foot placement, which is based

on the reset map (5.6), in the lateral direction Lx(T+
k ) will be overestimated. This

in turn leads to the lateral foot placement being commanded further from the body

than it should be. At the end of the next step, the magnitude of Lx will be larger

than expected, requiring even further lateral foot placement from the body. The final

phenomenon is abnormally large step width.

5.5 Experimental Results

The controller was implemented on Cassie Blue. The closed-loop system consisting

of robot and controller was evaluated in a number of situations that are itemized

below.

• Walking in a straight line on flat ground. Cassie could walk in place and

walk stably for speeds ranging from zero to 2.1 m/s.

85



• Diagonal Walking. Cassie is able to walk simultaneously forward and side-

ways on grass, at roughly 1 m/s in each direction.

• Sharp turn. While walking at roughly 1 m/s, Cassie Blue effected a 90o turn

in six steps, without slowing down.

• Rejecting the classical kick to the base of the hips. Cassie was able

to remain upright under “moderate” kicks in the longitudinal direction. The

disturbance rejection in the lateral direction is not as robust as the longitudinal,

which is mainly caused by Cassie’s physical design: small hip roll motor position

limits.

• Finally we address walking on rough ground. Cassie Blue was tested on

the iconic Wave Field of the University of Michigan North Campus. The foot

clearance was increased from 10 cm to 20 cm to handle the highly undulating

terrain. Cassie is able to walk through the“valley” between the large humps

with ease at a walking pace of roughly 0.75 m/s, without falling in all tests.

The row of ridges running east to west in the Wave Field are roughly 60 cm

high, with a sinusoidal structure. We estimate the maximum slope to be 40

degrees. Cassie is able to cross several of the large humps in a row, but also fell

multiple times. On a more gentle, straight grassy slope of roughly 22 degrees

near the laboratory, Cassie can walk up it with no difficulty with 20cm foot

clearance.

The experimental data is analyzed in Figs. 5.4 and 5.5. The figures support the

advantages of using L to indicate robot status and the accuracy of ALIP model, as

discussed in Sec 4.2 and 4.3.
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(a) L and vc

(b) Lc

(c) Spring deflection rates for stance and swing legs

Figure 5.4: Experimental data from Cassie walking forward at about 2m/s. To ensure
a fair comparison, L is not smoothed by Kalman Filter described in Sect. 5.4.2. L, vc
and Lc are computed from the same states [q, q̇]. vxc and Lc oscillates at the beginning
of a step because of their relative degree one nature, in particular, they are heavily
affected by the spring oscillation just after impact. L is mostly smooth because it
has relative degree three, except near impact when the robot is in double support
phase and L has relative degree one. The sudden jump in L at impact is caused by
nonzero vzc , The smoothness difference shows another advantage of L: it can be used
in feedback control without being heavily filtered.

87



Figure 5.5: Prediction made in experiment from Cassie walking forward at about
2m/s. The instantaneous values are shown in blue and the predicted value at the
end of the step is shown in red. The Kalman Filter described in Sect. 5.4.2 has been
applied.
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(a) Fast Walking (b) Rough Terrain

(c) Disturbance Rejection

(d) A Fast 90 Degree Turn with a Long Stride

Figure 5.6: Images from several closed-loop experiments conducted with Cassie Blue
and the controller developed in this paper. A short video compilation of these exper-
iments is available in [3]. Longer versions can be found in [4].

89



CHAPTER VI

Angular Momentum Based Running Controller

Running is a more dynamic behavior than walking. The first running behavior on

a legged robot was obtained with the heuristic Three-Part-Control method, dating

back to 1984[9]. In [122, 123], running gaits are planned and stabilized with the

simple inverted pendulum model. Running behaviors also emerged with the method

of virtual constraints and Hybrid Zero Dynamics[124, 125]. In [33], a reinforcement

learning method is applied to obtain a controller that generates many common bipedal

gaits, including running, hopping, and skipping.

In this Chapter, we will design an angular momentum-based running controller,

with the advantage of fast planning and good accuracy. The controller still assumes

the L-dynamics of a pendulum model and a real robot are very similar. As shown in

Sec. 4.4.6, the difference is that the CoM height will vary during the single support

phase, and a flight phase will be included. We will discuss how to deal with these two

new elements and demonstrate simulation and experimental results in the following

sections.

6.1 Flight Phase Dynamics

Running is characterized by alternating single support phases and flight phases.

The goal of the controller is still to regulate L, but during the flight phase there
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is no contact point and the dynamics of angular momentum about either foot are

complicated: we no longer have the simple relation L̇ = mgxc + uA. Instead of

predicting L during flight phase, we decompose L into linear CoM velocity [ẋc, żc]

and angular momentum about CoM Lc, and then predict those variables separately.

At the end of the flight phase, we can compose these variables to obtain L. By doing

so, we are able to find a relation between the angular momentum at the beginning

and end of the flight phase.

According to the angular momentum transfer formula,

L = ẋczc − żcxc + Lc. (6.1)

During the flight phase,

ẍc = 0

z̈c = g

L̇c = 0.

(6.2)

Note that gravity is the only external force during the flight phase.

We define the following notation:

• a, the contact point before the flight phase.

• b, the new contact after the flight phase.

• T0, the time when the previous stance foot leaves the ground. T−
0 denotes the

end of the previous stance phase and T+
0 denotes the beginning of the flight

phase.

• Tf , the time when the new stance foot touches the ground. T−
f denotes the end

of the flight phase and T+
f denotes the beginning of the new stance phase.

Our goal is to find the relation between La(T
−
0 ) and Lb(T

+
f ). Since there is no
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impact at T0,

La(T
−
0 ) = La(T

+
0 ). (6.3)

Angular momentum about the contact point is invariant to the impact at contact,

and thus

Lb(T
+
f ) = Lb(T

−
f ). (6.4)

Decompose La(T
+
0 ) and Lb(T

−
f ) by

La(T
+
0 ) = ẋc(T

+
0 )zc(T

+
0 )− żc(T

+
0 )xc(T

+
0 ) + Lc(T

+
0 )

Lb(T
−
f ) = ẋc(T

−
f )zc(T

−
f )− żc(T

−
f )xc(T

−
f ) + Lc(T

−
f ).

(6.5)

We have slightly abused notation here, because xc(T
+
0 ) is the CoM position defined

in the frame a and xc(T
−
f ) is defined in frame b. The velocity ẋc is always defined in

the world frame. Combining (6.3), (6.4), and (6.5) yields

Lb(T
−
f ) =La(T

+
0 ) +mẋc(T

+
0 )(zc(T

−
f )− zc(T

+
0 ))

+mxc(T
+
0 )żc(T

+
0 )−mxc(T

−
f )żc(T

−
f ),

(6.6)

where xc(T
−
f ) is the foot placement we must select to stabilize the running gait of the

robot.

In (6.6), while La(T
+
0 ) and xc(T

+
0 ) can be predicted during the previous stance

phase and zc(T
−
f ) zc(T

+
0 ) are chosen control variables, the quantity ẋc(T

+
0 ) is neither

easy to predict nor one of the control variables. The term ẋc(T
+
0 ) disappears if we

design the gait such that the robot enters and leaves the flight phase with the same

CoM height, i.e., zc(T
−
f ) = zc(T

+
0 ). If we further assume żc(T

−
f ) = −żc(T+

0 ), then

Lb(T
−
f ) =La(T

+
0 ) +m(xc(T

+
0 )− xc(T

−
f ))żc(T

+
0 ). (6.7)
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Plugging (6.3) and (6.4) into (6.7) yields

Lb(T
+
f ) =La(T

−
0 ) +m(xc(T

−
0 )− xc(T

+
f ))żc(T

−
0 ). (6.8)

Equation (6.8) is the equation we need to describe how L evolves during flight phase

6.2 Single Support Phase with Varying Height

To obtain a flight phase in periodic running, the CoM height (zc) has to vary

during the single support phase, which differs from the constant height assumption

we used in Chapters IV and V. In this Section, we will discuss how to obtain a feasible

CoM height reference trajectory that enables running and meets contact constraints.

We represent the CoM height trajectory using a Bezier Curve with degree m,

zrc (s) =
m∑
i=0

αiBm,i(s), (6.9)

where Bm,i(s) = n!
i!(n−i)!

si(1 − s)i, and s is the temporal phase variable defined as

s = t
Tstance

, which evolves from zero to one during the single support phase.

At the end and the beginning of the curve, the reference trajectory needs to

satisfy certain constraints to enable running. If we make the same assumptions as

the previous section that the robot enters and leaves the flight phase with the same
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CoM height and velocity of the opposite sign, then the constraints will be:

zrc (0) = z0

zrc (1) = z0

d

dt
zrc (0) =

g

2 Tflight

d

dt
zrc (1) = −

g

2 Tflight

d2

dt2
zrc (0) = 0

d2

dt
zrc (1) = 0,

(6.10)

where z0 is the height when the robot enters or leaves the flight/stance phase and Tflight

is the duration of the flight phase. These two parameters can either be determined

by a higher-level planner or manually assigned by the control designer.

The CoM height trajectory also needs to satisfy the ground unilateral contact

constraints. The vertical acceleration should be greater than -9.8 m/s2 to avoid

generating a negative vertical ground reaction force. We define N evenly spaced

samples on the CoM height trajectory and impose the following constraint,

d2

dt2
zrc (s) > −g for s =

1

N
,
2

N
, ...

N − 1

N
. (6.11)

Finally, we seek to reduce the variation in acceleration to smooth the trajectory.

The Bezier curve for the second derivative of zrc (s) can be written as

d2

ds2
zrc (s) =

m−2∑
i=0

βiBm,i(s), (6.12)

where

βi = n(n− 1)(αi+2 − 2αi+1 + αi) (6.13)

We formulate a Quadratic Program (QP) to obtain the vector of Bezier coefficients
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β, namely

α∗ := min
α

V ar(β)

subject to

Boundary Condition (6.10)

Unilateral Contact Constraint (6.11)

β depends on α per (6.13),

(6.14)

where V ar(β) is the variance of the values {β0, . . . , βm−2}.

6.3 Determining Foot Placement

In Section 5.2, foot placement is obtained with a closed-form solution. However,

when the CoM height is time-varying, there is no general closed-form solution. In-

stead, we use the same method as [126] which partitions a phase into multiple small

intervals and assumes the system is time-invariant within each interval. Then we

construct an MPC problem and cast it in the form of a QP. We solve the QP to find

a foot placement that will achieve the desired L at the end of the next single support

phase.

The dynamics of a pendulum model with a varying CoM height can be written

as, 
ẋc =

L

mzc(t)
+

żc(t)

zc(t)
xc

L̇ = mgxc + uA.

(6.15)

We partition the single support phase into N intervals, with ti =
i
N
Tstance denoting

the start time of each interval, for i ∈ {0, 1, 2, ..., N}. Then we can approximate the
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dynamics of each interval by


ẋc =

L

mzc(ti)
+

żc(ti)

zc(ti)
xc when t ∈ [ti, ti+1)

L̇ = mgxc + uA.

(6.16)

On the basis of (6.16), we can discretize the stance phase,

Xi+1 = AiXi +BuAi, (6.17)

where Xi = [xc(ti), L(ti)].

To obtain a desired L at the end of the next stance phase, the optimization
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problem is formulated as

min
ufp, us1

A , us2
A

||Xs2
N (2)− Ldes||2

subject to

First stance Dynamics

Xs1
i+1 = As1

i Xs1
i +Bus1

Ai

Second stance Dynamics

Xs2
i+1 = As2

i Xs2
i +Bus2

Ai

Flight Phase Transition (from Eqn (6.8))

Xs2
0 (2) = Xs1

N (2) +m(Xs1
N (1)−Xs2

0 (1))żs1cN

Foot Placement

ufp = Xs2
0 (1)

Current Measurement

Xs1
0 = [xc(t), L(t)]

Kinematics Constraint

xlb
c < Xi(1) < xub

c ,

(6.18)

where the superscripts s1 and s2 denote the first stance phase and the second stance

phase, respectively, ufp is the foot placement we seek to achieve at the end of the flight

phase. While Xs2
i is discretized over [0, Tstance], X

s1
i is discretized over [t, Tstance].

In the optimization problem, ankle torque uA is an optional decision variable. In

our implementation, we set uA to zero.

6.4 Simulation Result

After obtaining the reference CoM height trajectory and foot placement, the im-

plementation of the controller is basically the same as Sec. 5.3, with an added flight
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phase. The controller is evaluated on simulations of Rabbit and Cassie. Figures 6.1

and 6.2 show plots of L and vxc when Rabbit and Cassie are running forward and

hopping in place. A sequence of stick figures is shown in Fig. 6.3.

For running, the target L at the end of stance is set to 4 m/s (normalized by

mHnominal, where the constantHnominal is a rough estimate of the average CoM height).

Cassie is able to reach this target speed with little error while Rabbit reaches steady-

state speed with a tracking error of 0.3 m/s. The difference in behavior is because

Cassie’s leg mass is concentrated near the robot’s CoM and generates small Lc when

swinging, while Rabbit’s leg mass is more evenly distributed along the leg and thus

generates a larger Lc, resulting in a larger ALIP prediction error. Because of the

tracking error, the L trajectories of Rabbit and Cassie are slightly different: Cassie

has already reached its target L and thus the controller places the foot in front the

CoM at the end of the flight phase, which results in a first-decreasing-then-increasing

pattern in the ensuing stance phase. Rabbit, on the other hand, is always below the

target L and thus the controller places the foot behind the CoM, trying to accelerate

from the very beginning of the stance phase. Rabbit still fails to achieve the target L

at the end because of the large Lc “disturbance”. Though the patterns in the angular

momentum are not exactly the same, they are both governed by L̇ = mgxc and thus

convex, in contrast with the amorphous pattern seen in the linear velocity, vxc . The

0.3 m/s tracking error is not significant compared to the massive Lc generated by

Rabbit’s heavy leg swinging all the way from back to front in 0.15 seconds. The

tracking error caused by omitting Lc can be alleviated by the method discussed in

Sect. 4.3.4, which takes a nominal trajectory of Lc into consideration in the foot

placement planning.

For hopping in place, both robots are able to hop high and obtain a long 0.5s flight

phase. The leg still moves forward or backward when the robots are hopping in place

(See Fig 6.3 (a) (c) ) because the reference of the torso pitch is always upright and the
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controller has to swing the leg to maintain it. (The controller uses the non-landing

leg to regulate torso pitch, the landing leg still focuses on achieving the planned foot

placement to maintain balance.) To get a more natural or energy-efficient gait, the

references for the controlled variables during the stance phase and the swing phase

should be obtained by full-order model optimization rather than from simple hand-

designed trajectories (5.17). However, being “natural” or “energy-efficient” is out of

the scope of balancing and thus we do not discuss them further here.

The simulations confirm that with a known rigid model and good joint level track-

ing, we can plan versatile and stable running gaits online in real-time using the ALIP

model. However, the controller designed here ignores the motor torque and power

constraints: the hopping with a 0.5s flight phase requires a very large motor torque

that exceeds the torque limit we typically have on real robots.

6.5 Experimental Result

The controller is implemented on Cassie. The optimization problems (6.14) and

(6.18) are formulated in Matlab using Casadi [127, 128]. An execution file compiled

from autogenerated c-code is used to provide solutions. The QPs are solved at 1000

Hz in real-time.

In the experiment, we set the stance phase to 0.3s and the flight phase to 0.1s,

which we found ensures that the motor torque will not exceed its limit. Cassie is

able to hop in place, with an estimated flight phase of 0.05s. The actual flight time

is shorter than desired because of the spring compliance on Cassie’s leg. Figure 6.4

shows a sequence of outtakes of Cassie while hopping.

We gave a running forward command to Cassie in the experiment. An asymmetric

gait emerged. Cassie ran with alternating large and small strides. Moreover, the gap

in the stride length became larger as the speed increased and finally resulted in Cassie

losing balance.
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(a)

(b)

(c)

(d)

Figure 6.1: Trajectories of L and vx when Rabbit is running. In (a) and (b), the
single support and the flight duration are set to 0.15 s and 0.2s, respectively. The
target Ldes

mHnominal
at the end of a step is set to 4 m/s. In the plot, L is reported as being

zero during the flight phase because there is no contact point. In (c) and (d), the
single support and flight duration are set to 0.2 s and 0.5s, respectively. The target

Ldes

mHnominal
at the end of a step is set to zero.
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(a)

(b)

(c)

(d)

Figure 6.2: Trajectories of L and vx when Cassie is running. In (a) and (b), the
single support and flight duration are set to 0.15 s and 0.2s, respectively. The target

Ldes

mHnominal
at the end of a step is set to 4 m/s. In the plot, L is reported as being

zero during the flight phase because there is no contact point. In (c) and (d), the
single support and flight duration are set to 0.2 s and 0.5s, respectively. The target

Ldes

mHnominal
at the end of a step is set to zero.
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(a) Rabbit hopping in place

(b) Rabbit running forward

(c) Cassie hopping in place

(d) Cassie Running foward

Figure 6.3: Outtakes of Rabbit and Cassie hopping and running. When hopping,
Rabbit’s leg swings in the air to keep the torso upright. The robot is not moving
forward with a large stride.

Figure 6.4: Cassie hopping in experiment.
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A similar phenomenon used to occur in our walking experiments, caused by an

unexpected vertical CoM velocity at the end of a step. As we have discussed in

Sect. 5.1, besides the foot placement, the CoM velocity at the end of a step has

an effect on the initial L of the next phase and thus affects balancing. In walking,

though we set the reference for the CoM height to a constant and the reference vertical

velocity to zero, the actual CoM height is always oscillating because of the springs

on Cassie’s leg. The springs are asymmetric, which leads to different CoM vertical

velocities at the end of the left and the right stance phases (the differences get larger

as the walking speed increases), thus causing different speeds in the ensuing stance

phase, resulting in an asymmetric gait. The issue in walking was later avoided by

measuring and estimating the CoM vertical velocity and adjusting foot placement

correspondingly to offset this effect, as discussed in Sect. 5.4.6.

The same mitigation is not used for running at the present time because we don’t

have a good measurement of CoM vertical velocity during the flight phase. The

foot placement is determined with the planned vertical velocity instead of the actual

velocity. And thus we have an asymmetric gait caused by asymmetric CoM vertical

velocities when Cassie was running forward.

We could not get a good measurement of CoM vertical velocity during the flight

phase because the springs on the previous stance leg vibrantly oscillate when the

stance foot leaves the ground, making the estimated CoM vertical velocity noisy.

The noise in the CoM velocity estimation comes from the fusion of the slightly asyn-

chronous measurement from IMU and encoders, which is amplified when the joints are

moving fast. One mitigation is to use IMU vertical velocity instead of CoM vertical

velocity. This approximation on Cassie generates little error (see Fig. 6.5), because

Cassie’s mass is concentrated near the torso, where the IMU is installed.
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Figure 6.5: A simulation comparison of Cassie’s IMU and CoM vertical velocity when
Cassie is running forward. The measurement is noise-free.
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CHAPTER VII

Conclusions and Future Work

7.1 Conclusions

In Chapter III, we discussed a controller designed with a gait library. The full

20 DoF dynamic model of Cassie and optimization was used to design seven gaits

for walking in place, forward, and backward while meeting key physical constraints.

The complicated morphology of the robot was translated into “universal,” physically

meaningful control objectives involving torso orientation, leg orientation, and leg

length. Moreover, it was shown how to practically implement these control objectives

via decoupled PD controllers on the robot. The final controller was demonstrated

both in and out of the laboratory, including walking on sidewalks, grass, sand, waxed

floors, snow, and a hill with short brush.

In Chapter IV, we established connections between various approximate pendu-

lum models that are commonly used for heuristic controller design and those that are

more common in the feedback control literature where formal stability guarantees are

the norm. We clarified commonalities and differences in the two perspectives for using

low-dimensional models. In the process of doing so, we argued that models based on

angular momentum about the contact point provide more accurate representations

of robot state than models based on linear velocity. Specifically, we showed that an

approximate (pendulum or zero dynamics) model parameterized by angular momen-
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tum provides better predictions for foot placement on a physical robot (e.g., legs

with mass) than does a related approximate model parameterized in terms of linear

velocity. We use ALIP to denote the linear inverted pendulum model parameterized

by angular momentum.

In Chapter V, we discussed the general mechanisms of bipedal balance and selected

foot placement as our major method to stabilize the robot. We focused on regulating

angular momentum about the contact point with the ALIP model. We implemented

a one-step-ahead angular-momentum-based controller on Cassie, a 3D robot, and

demonstrated high agility and robustness in experiments. Using our new controller,

Cassie was able to accomplish a wide range of tasks with nothing more than common

sense task-based tuning: a higher step frequency to walk at 2.1 m/s and extra foot

clearance to walk over slopes exceeding 22 degrees.

In Chapter VI, we proposed a running controller for a bipedal robot. We discussed

the dynamics of the flight phase and the design of CoM vertical trajectory for the

stance phase. Finally, we formulated a QP problem based on the angular momentum

pendulum model dynamics to determine foot placements that would stabilize a run-

ning gait. We demonstrated the result in simulation for both Rabbit and Cassie. The

robots are able to hop and stay in the air for 0.5s and run at a speed above 3.5m/s.

In experiments, the Cassie robot is able to hop in place and has a 0.05s flight phase.

7.2 Future Work

There are many interesting directions that still need to be pursued. In most of

our discussions, the ankle torque is omitted and simply set to zero. We omitted it

because though ankle torque can affect balancing during a step, the limitations of foot

roll prevent ankle torque from achieving large changes. The effect of ankle torque is

dwarfed compared to foot placement. However, for more agile maneuvering in narrow

spaces where foot placement is limited, such as stepping stones and stairs, the ankle
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torque can be critical. Planning of the ankle torque with the ALIP model can be

done by combining the MPC formulation described in [126] and (4.20) to obtain a

QP problem similar to (6.18).

Another powerful balance mechanism we have not exploited is changing the step

time. In a scenario where foot placements are limited, step time plays a more impor-

tant role than ankle torque. While for gaits designed with mechanical phases the step

time is exploited naturally for stabilization, it is less straightforward when we design

gaits with a time phase. To see why, we can look at the solution of (4.20) (ignoring

ankle torque),

xc(t+∆T )

Ly(t+∆T )

 =

 cosh(ℓ∆T ) sinh(ℓ∆T )/(mHℓ)

mHℓ sinh(ℓ∆T ) cosh(ℓ∆T )


xc(t)

Ly(t)

 (7.1)

We observe that the state [xc(t + ∆T ), Ly(t + ∆T )] has a linear relation with the

previous state [xc(t), L
y(t)], making the states suitable decision variables for a QP due

to the linear constraint between them. But the state always has a nonlinear relation

with respect to the transition time ∆T , and as a result, ∆T is a fixed parameter

instead of a decision variable in the QP problem described in [126] and (6.18).

To construct a linear relationship between the states and the transition time,

we can first transform the states into a Convergent Component and a Divergent

Component[129] (a.k.a Capture Point[130]) with the following transformation matrix,

a1
a2

 =

1 −1
ℓ

1 1
ℓ


xc

Ly

 , (7.2)

where a1 is the Convergent Component and a2 is the Divergent Component. The
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dynamics of [a1, a2] is

a1(t+∆T )

a2(t+∆T )

 =

e−ℓ∆T 0

0 eℓ∆T


a1(t)
a2(t)

 . (7.3)

When we apply the logarithm function to the vector a, defining

b1 = log(a1)

b2 = log(a2),

(7.4)

the dynamics of b is then

b1(t+∆T )

b2(t+∆T )

 =

 ℓ∆T + b1(t)

−ℓ∆T + b2(t)

 . (7.5)

Now the states b have a linear relation with respect to its previous states and time,

both of which are suitable decision variables of a QP problem.
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APPENDIX A

A.1 A One-step Ahead Deadbeat Controller Based on Total

Energy for the ALIP

We rewrite (5.3) as xc(T )

L(T )

 = A(T )

xc(0)

L(0)


and seek “fixed points”, that is, conditions for periodicity when the impact map is

included. With żc = 0, we have L(T ) = L(0), and a straightforward calculation with

(5.3) shows that

L(T ) = L(0) =⇒ xc(T ) = −xc(0)

and hence periodic gaits are symmetric. Another straightforward calculation shows

that if x∗
c

L∗

 = A(T )

−x∗
c

L∗

 ,

then

x∗
c

L∗ = − 1

mHℓ

sinh(ℓT )

1 + cosh(ℓT )
= − 1

mHℓ

cosh(ℓT )− 1

sinh(ℓT )
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and one easily shows that

sinh(t)

1 + cosh(t)
=

cosh(t)− 1

sinh(t)
=

1− e−t

1 + e−t
.

For a symmetric gait with constant step duration T the average speed is vx,avgc =

2xc(T )
T

. It follows that for a prescribed average walking speed, vx,avgc , the fixed points

satisfy

x∗
c =

T

2
vx,avgc

L∗ = −mHℓ

(
1 + e−ℓT

1− e−ℓT

)
T

2
vx,avgc .

After a bit of algebra, the (pseudo) energy associated with a fixed point can then be

written as

E∗(vx,avgc ) =
1

2
mg

(
T

2
vx,avgc

)2
[(

1 + e−ℓT

1− e−ℓT

)2

− 1

]

= 2mg

(
T

2
vx,avgc

)2
e−ℓT

(1− e−ℓT )2
.

We take the control objective to be E(T+
k ) = E∗, which of course, would need to

be achieved subject to workspace limitations. If we assume that

L(T+
k ) = L̂(T−

k ),

our control law results from solving

−1

2
mg

(
px des
sw→CoM(T

−
k )

)2
+

1

2

1

mH

(
L̂(T−

k )
)2

= E∗(vx, desc )

for the desired swing foot position, to achieve a desired energy for step k + 1. This

is a one-step-ahead control law where we only need to run the angular momentum
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estimator for the end of the current step.

A.2 Constant Pendulum Length

Suppose that one component of the virtual constraints in (4.27) is rc(q)−R, where

R is a constant. Then y ≡ 0 yields rc = R, simplifying (4.12) to

θ̇c =
L− Lc

mR2

L̇ = mgR sin(θc) + ua.

(A.1)

At this point, no approximations have been made and the models is valid everywhere

that rc(q) ≡ R. An interesting aspect of this pendulum model is that it does not

depend on Ṙ, and thus imperfections in a achieving the virtual constraint rc = R

have a smaller effect here than in (4.17), where ż would appear when zc ̸= H, or in

(4.16), where both żc and z̈c would appear.

As with (4.17), the model (A.1) is driven by the strongly actuated states qb, q̇b

through Lc and the same discussion applies. Dropping Lc in (4.10) results in

θ̇c =
L

mR2

L̇ = mgR sin(θc) + ua,

(A.2)

which is nonlinear in θc. However, for R = 1 and a step length of 60 cm, max θc ≈ π/6,

and for 70 cm, max θc ≈ π/4, giving simple bounds on the approximation error,

1

π/6

π/6∫
0

(θ − sin(θ))dθ < 0.006

1

π/4

π/4∫
0

(θ − sin(θ))dθ < 0.02.
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Moreover, if desired, one can chose K to set

1

θmax

∣∣∣∣∣∣
θmax∫
0

(Kθ − sin(θ))dθ

∣∣∣∣∣∣ = 0.

For θmax = π/4, the value is K ≈ 0.95. While a linear approximation is useful for

having a closed-form solution, numerically integrating the nonlinear model (A.2) in

real time is certainly feasible.

The discussion on the approximate zero dynamics can be repeated here. The

associated impact map is nonlinear and can be linearized about a nominal solution.
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