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ABSTRACT

This dissertation treats three topics in number theory. The first topic concerns the

problem of determining the optimal constant in the Montgomery–Vaughan weighted

generalization of Hilbert’s inequality. The second topic presents a further gener-

alization of Bhargava’s generalized factorials in the ring Z. We define invariants

associated to all pairs (S, b) of a nonempty subset S of Z and a nontrivial proper

ideal b in Z and use them to construct generalized factorials. The third topic is

asymptotics of partial factorizations of products of generalized binomial coefficients

constructed using generalized factorials from the second topic.
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CHAPTER 1

Introduction

1.1 Topics covered

This dissertation consists of three topics in number theory.

(1) The Montgomery–Vaughan weighted generalization of Hilbert’s inequality

(2) Generalized factorials and binomial coefficients allowing composite bases

(3) Asymptotics of partial factorizations of products of generalized binomial coeffi-

cients

These three topics are treated in Chapters 2, 3, and 4, respectively. The next

three sections 1.2, 1.3, and 1.4 discuss these chapters.

1.2 The Montgomery–Vaughan weighted generalization of Hilbert’s in-
equality

Chapter 2 concerns the problem of determining the optimal absolute constant in

the Montgomery–Vaughan weighted generalization of Hilbert’s inequality.

1.2.1 Hilbert’s inequality

In a lecture on integral equations held in summer 1907, Hilbert introduced an

example of a bounded linear operator from `2 to `2 whose row and column sums are

1



2

divergent. The linear operator is given by the infinite matrix

1
2

1
3

1
4
· · ·

1
3

1
4

1
5
· · ·

1
4

1
5

1
6
· · ·

...
...

...
. . .


,

where the (m,n)-entry is 1
m+n

. Hilbert demonstrated the boundedness of this oper-

ator by proving the following bound for a real bilinear form:

∞∑
m=1

∞∑
n=1

xmyn
m+ n

≤ π

(
∞∑
m=1

x2m

) 1
2
(
∞∑
n=1

y2n

) 1
2

(1.2.1)

for all vectors [x1, x2, x3, . . . ] and [y1, y2, y3, . . . ] of real numbers. This result is known

as Hilbert’s double series theorem.

Hilbert’s proof was published in Weyl’s dissertation [15]. It is based on the identity

1

2π

∫ π

−π
tf(t)2 dt = S + T,

where

f(t) :=
N∑
n=1

(−1)n (xn sin(nt)− yn cos(nt)) ,

S :=
N∑
m=1

N∑
n=1

xmyn
m+ n

, and T :=
N∑
m=1

N∑
n=1
n 6=m

xmyn
m− n

.

From this identity, Hilbert derived (1.2.1) and a similar bound for the bilinear form

T : ∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

xmyn
m− n

∣∣∣∣∣∣∣ ≤ c0

(
N∑
m=1

x2m

) 1
2
(

N∑
n=1

y2n

) 1
2

(1.2.2)

with the absolute constant c0 = 2π. Schur [12] later determined the optimal value

of c0 to be π.

The coefficient matrix of the bilinear form on the left side of (1.2.2) is skew-

symmetric. The following equivalence is well-known.



3

Proposition 1.2.1. Let A = [amn] be an N × N matrix with complex entries such

that A> = −A. Let c be a nonnegative real number. Then the inequality∣∣∣∣∣
N∑
m=1

N∑
n=1

amnxmyn

∣∣∣∣∣ ≤ c

(
N∑
m=1

x2m

) 1
2
(

N∑
n=1

y2n

) 1
2

(1.2.3)

holds for all vectors [x1, . . . , xN ] and [y1, . . . , yN ] in RN if and only if the inequality∣∣∣∣∣
N∑
m=1

N∑
n=1

amnzmzn

∣∣∣∣∣ ≤ c
N∑
n=1

|zn|2 (1.2.4)

holds for all vectors [z1, . . . , zN ] ∈ CN .

From Proposition 1.2.1, we see that (1.2.2) is equivalent to∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
m− n

∣∣∣∣∣∣∣ ≤ c0

N∑
n=1

|zn|2 . (1.2.5)

Let H be the N ×N matrix with entries given by

(H)mn =


1

m−n if m 6= n,

0 if m = n.

That is,

H =



0 −1 −1
2
· · · − 1

N−1

1 0 −1 · · · − 1
N−2

1
2

1 0 · · · − 1
N−3

...
...

...
. . .

...

1
N−1

1
N−2

1
N−3 · · · 0


.

Let 〈·, ·〉 be the inner product on the complex vector space CN defined by

〈z,w〉 =
N∑
n=1

znwn,

where z = [z1, . . . , zN ]> and w = [w1, . . . , wN ]> are column vectors in CN . In

vector notation, (1.2.5) can be rewritten as the following inequality involving the



4

sesquilinear form (z,w) 7→ 〈z, Hw〉:

|〈z, Hz〉| ≤ C0 〈z, z〉 .

1.2.2 The Montgomery–Vaughan generalization of Hilbert’s inequality

While H. L. Montgomery was visiting the Institute for Advanced Study during

1971–1972, Selberg showed him a proof of the following result.

Theorem 1.2.2. Let δ be a positive real number. Let (λk)
∞
k=−∞ be a sequence of real

numbers such that λk+1−λk ≥ δ for all k. Then for any sequence (z1, . . . , zN) ∈ CN ,∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤
π

δ

N∑
n=1

|zn|2 . (1.2.6)

Theorem 1.2.2 generalizes Hilbert’s inequality (1.2.5) with the optimal constant

c0 = π. If the frequencies λk form an arithmetic progression with a common difference

of δ (i.e., λk = λ0 + kδ for all k), then (1.2.6) yields (1.2.5) with c0 = π.

For frequencies λk that are more irregularly spaced, Selberg had a more compli-

cated proof of a more sensitive inequality.

Theorem 1.2.3. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers. Let

δk := min {λk − λk−1, λk+1 − λk}. Then for any sequence (z1, . . . , zN) ∈ CN ,∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ c1

N∑
n=1

|zn|2

δn
, (1.2.7)

where c1 is the absolute constant 3
2
π.

Theorem 1.2.3 is of particular interest when applied with the frequencies λn =

log n for n ≥ 1. One obtains a mean-value theorem for Dirichlet series: For sequences

(an)∞n=1 of complex numbers such that
∑∞

n=1 n |an|
2 <∞ and T ∈ R,∫ T

0

∣∣∣∣∣
∞∑
n=1

ann
−it

∣∣∣∣∣
2

dt =
∞∑
n=1

|an|2 (T +O(n)). (1.2.8)
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Selberg never published any of his work on Hilbert’s inequality.

Around the same time, it became apparent that the form

N∑
m=1

N∑
n=1
n6=m

zmzn
sin (π (xm − xn))

,

where x1, . . . , xN are distinct real numbers modulo 1, is related to the large sieve.

During 1973–1974, Montgomery and Vaughan [9], [10] used Selberg’s method to

prove

Theorem 1.2.4 (Montgomery and Vaughan [10]). Let x1, . . . , xN be real numbers,

distinct modulo 1. Let dn := minm 6=n ‖xm − xn‖, where ‖x‖ := mink∈Z |x − k|. Let

d := minn dn. Then for any sequence (z1, . . . , zN) ∈ CN ,∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
sin (π (xm − xn))

∣∣∣∣∣∣∣ ≤
1

d

N∑
n=1

|zn|2 (1.2.9)

and ∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n 6=m

zmzn
sin (π (xm − xn))

∣∣∣∣∣∣∣ ≤
3

2

N∑
n=1

|zn|2

dn
. (1.2.10)

They recovered Theorems 1.2.2 and 1.2.3 from Theorem 1.2.4 by a limiting ar-

gument. G. L. Watson pointed out to Vaughan in 1974 that the converse is also

true.

In the paper [9], they applied the weighted form (1.2.10) with the xn’s being the

nonzero Farey fractions of a given order to prove several important applications in

number theory, one of which is an improvement of the Brun–Titchmarsh theorem

without an error term: If q and r are positive integers with gcd(q, r) = 1 and x and

y are positive real numbers with y > q, then

π(x+ y, q, r)− π(x, q, r) <
2y

φ(q) log(y/q)
, (1.2.11)
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where π(t, q, r) is the number of prime numbers p ≤ t with p ≡ r (mod q) and φ(q)

is the number of positive integers s ≤ q with gcd(s, q) = 1.

Denote by c1 the minimum of all absolute constants c1 for which (1.2.7) holds.

Chapter 2 is motivated by the problem of determining c1.

By substituting λk = k in (1.2.7) and comparing with Schur’s result, we obtain

the lower bound c1 ≥ π. If c1 = π, then (1.2.7) would imply (1.2.6), and it is widely

believed to be the case.

The currently known best upper bound for c1 is due to Preissmann [11].

Theorem 1.2.5 (Preissmann [11]). We have c1
π
≤
√

1 + 2
3

√
6
5

= 1.31540 . . . .

According to Montgomery [7, p. 557], Selberg (unpublished) said that he had

shown that c1 ≤ 3.2 (i.e., c1
π
≤ 1.01859 . . . ). However, it seems that no trace remains

of his argument.

1.2.3 Main results of Chapter 2

Chapter 2 studies an auxiliary family of bounds for real quadratic forms parametrized

by 0 ≤ α ≤ 2. For 0 ≤ α ≤ 2, let C(α) be the minimum of all constants C(α) for

which the inequality
N∑
m=1

N∑
n=1
n6=m

δ2−αm δαntmtn

(λm − λn)2
≤ C(α)

N∑
n=1

t2n (1.2.12)

holds for all choices of a positive integer N , real numbers λ1 < · · · < λN ,

δn := min
m6=n
|λm − λn| ,

and nonnegative real numbers t1, . . . , tN . Let C(α) = ∞ if there is no such real

number C(α).

The value C
(
1
2

)
is relevant to the generalized Hilbert inequality (1.2.7). We prove

the following inequality between c1 and C
(
1
2

)
.



7

Theorem 1.2.6. We have c1 ≤
√

π2

3
+ 2C

(
1
2

)
.

The previous approaches to get an upper bound for c1 in [10], [11], and [13] rely

on an upper bound for C
(
1
2

)
and Theorem 1.2.6. Montgomery and Vaughan [10]

first showed that C
(
1
2

)
is finite. Specifically, they proved C

(
1
2

)
≤ 17

2
. The same

bound has been used in [8], but the best known upper bound for C
(
1
2

)
is due to

Preissmann [11].

Theorem 1.2.7 (Preissmann [11]). We have C
(
1
2

)
≤ π2

3
+ π2

3

√
6
5
.

By means of Theorem 1.2.6, Theorem 1.2.7 implies Theorem 1.2.5. Another

immediate consequence of Theorem 1.2.6 is that the lower bound c1 ≥ π implies

C
(
1
2

)
≥ π2

3
. (This lower bound has been pointed out in [8, p. 36].) Moreover, the

conjecture that c1 = π would follow if C
(
1
2

)
= π2

3
.

We prove that the graph of C(α) is symmetric about α = 1 and is log-convex.

The function C(α) is weakly decreasing on 0 ≤ α ≤ 1 (and is weakly incresing on

1 ≤ α ≤ 2) and is finite-valued only for 1
2
≤ α ≤ 3

2
.

Theorem 1.2.8. (1) For real numbers 0 ≤ α ≤ 2, we have C(α) = C(2− α) > 0.

(2) For real numbers 0 ≤ α1 < α2 ≤ 2 and 0 < θ < 1, we have

C (θα1 + (1− θ)α2) ≤ C (α1)
θ C (α2)

1−θ .

(3) For real numbers 0 ≤ α1 < α2 ≤ 1, we have C (α1) ≥ C (α2). Therefore the

minimum of C(α) for 0 ≤ α ≤ 2 is attained at α = 1.

(4) For real numbers 0 ≤ α < 1
2
, we have C(α) =∞.

We determine the minimum value of C(α).
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Theorem 1.2.9. We have C(1) = π2

3
.

A main result of Chapter 2 is a new lower bound for C
(
1
2

)
.

Theorem 1.2.10. We have C
(
1
2

)
≥ 0.35047π2.

From Theorem 1.2.10, we deduce that any upper bound for c1 obtainable by

Theorem 1.2.6 cannot be smaller than 3.19497. It follows that this method of using

Theorem 1.2.6 is incapable of proving c1 = π.

In Chapter 2, we also prove a generalized Hilbert inequality with the constant π.

Theorem 1.2.11. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers.

Denote by δk the minimum between λk−λk−1 and λk+1−λk. Then for any sequence

(z1, . . . , zN) of complex numbers,∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n 6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ π

(
N∑
n=1

|zn|2

δ
3
4
n

) 5
6
(

N∑
n=1

|zn|2

δ
9
4
n

) 1
6

.

1.3 Generalized factorials and binomial coefficients allowing composite
bases

Chapter 3 is about a generalized version of Bhargava’s theory of factorial ideals

based on p-orderings of a set S for all prime ideals p in a Dedekind ring R. We treat

the ring Z and generalize Bhargava’s theory to b-orderings of a nonempty subset S

of Z for all nontrivial proper ideals b in Z. We define generalized factorials [k]!S,T ,

where T ⊆ B := {b ∈ Z : b ≥ 2} which corresponds to the set of all nontrivial proper

ideals of Z. We treat in detail the special case [k]!Z,B and its associated binomial

coefficients
[
k
`

]
Z,B.

1.3.1 Background: generalized factorials and generalized binomial coefficients

There have been many studies of generalized notions of factorials and binomial co-

efficients. Our interest lies in number systems that have three sequences of integers:
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generalized positive integers, generalized factorials, and generalized binomial coeffi-

cients. Our most general setting is in a commutative ring R with some additional

structures, but our attention in this thesis is in the special case R = Z.

Firstly, we consider a generalized notion of positive integers. For n = 1, 2, 3, . . . ,

the nth generalized positive integer (or simply generalized integer) is denoted by [n].

In the case R = Z, we want our generalized positive integers to be positive integers;

so we will always restrict ourself to the condition that [n] ∈ N for all n ∈ N, where

N := {1, 2, 3, . . . } is the set of all positive integers.

Secondly, we consider the generalized factorials corresponding to a sequence of

generalized integers. For k = 0, 1, 2, . . . , the factorial of k corresponding to N :=

([n])∞n=1 is denoted by [k]!N and satisfies the relation

[k]!N =
k∏

n=1

[n].

In the case R = Z, this relation and the condition that [n] ∈ N for all n ∈ N imply

that [k]!N ∈ N for all k ∈ N ∪ {0}.

Thirdly, we consider the generalized binomial coefficients corresponding to a se-

quence of generalized integers. For integers k and ` such that 0 ≤ ` ≤ k, the gen-

eralized k choose ` corresponding to N := ([n])∞n=1 is denoted by
[
k
`

]
N and satisfies

the relation [
k

`

]
N

[`]!N =
∏̀
j=1

[k − j + 1].

In the case R = Z, these generalized binomial coefficients are not necessarily integers

for a general sequence N of positive integers, as illustrated by the following example.

Example 1.3.1. Consider the sequence N1 := ([n])∞n=1 given by [1] = 2 and [n] = 1
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for n ≥ 2. The generalized factorials corresponding to N1 are given by

[k]!N1 =


1 if k = 0,

2 if k ≥ 1,

and the generalized binomial coefficients corresponding to N1 are given by

[
k

`

]
N1

=


1 if ` = 0 or ` = k,

1
2

if 0 < ` < k.

So a problem arises.

Problem. Characterize the sequences N of positive integers such that the general-

ized binomial coefficients corresponding to N are all integers.

In 1989, Knuth and Wilf [5] studied the notion of regularly divisible sequences: a

sequence (Cn)∞n=1 of positive integers is said to be regularly divisible if gcd (Cm, Cn) =

Cgcd(m,n) for all positive integers m and n. In fact, sequences with this property were

already studied by Ward [14] in 1936. They proved

Theorem 1.3.2 (Ward [14], Knuth and Wilf [5]). The generalized binomial coeffi-

cients corresponding to a regularly divisible sequence are all integers.

Example 1.3.3. Let a ∈ N and p ∈ N∪{0}. Then the sequence A := (An)∞n=1 given

by An = anp is regularly divisible, because

gcd (Am, An) = gcd (amp, anp) = a gcd(m,n)p = Agcd(m,n)

for all positive integers m and n. The generalized factorials corresponding to A are

given by

[k]!A = ak(k!)p,
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and the generalized binomial coefficients corresponding to A are given by[
k

`

]
A

=

(
k

`

)p
,

where k! and
(
k
`

)
are the usual factorial of k and k choose ` respectively.

Example 1.3.4. The Fibonacci sequence F := (Fn)∞n=1, defined recursively by

F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3, is regularly divisible. The general-

ized binomial coefficients corresponding to F are integers that satisfy the boundary

conditions [
k

0

]
F

=

[
k

k

]
F

= 1

for all k ≥ 0 and the recurrence[
k

`

]
F

= F`+1

[
k − 1

`

]
F

+ Fk−`−1

[
k − 1

`− 1

]
F

for all 0 < ` < k, where F0 := 0.

Proposition 1.3.5. Let I be a set of indices. For each i ∈ I, let Ci := (Ci,n)∞n=1 be

a sequence of positive integers, and suppose that the generalized binomial coefficients

corresponding to Ci are all integers. Assume that the sequence D :=
(∏

i∈I Ci,n
)∞
n=1

exists. Then for integers 0 ≤ ` ≤ k, we have[
k

`

]
D

=
∏
i∈I

[
k

`

]
Ci
.

Hence the generalized binomial coefficients corresponding to D are all integers.

However, direct products of regularly divisible sequences are not necessarily reg-

ularly divisible.

Example 1.3.6. The sequence (En)∞n=1 given by En = nFn is the direct product of

two regularly divisible sequences, namely (n)∞n=1 and (Fn)∞n=1. However, (En)∞n=1 is

not regularly divisible, because

gcd (E2, E3) = gcd(2, 6) = 2 6= 1 = E1 = Egcd(2,3).
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1.3.2 Previous work: Bhargava’s theory of generalized factorials

Beginning in 1997, Bhargava developed a theory of generalized factorials in a class

of commutative rings R that he called Dedekind-type rings. These rings are quotients

of Dedekind domains and include all Dedekind domains. Bhargava’s generalized

factorials are associated to nonempty sets S of elements of R and to the set of all

prime ideals of R,

Spec (R) = {p : p is a prime ideal in R}. (1.3.1)

Bhargava’s generalized factorials k!S are ideals in R.

For each prime ideal p in R and a nonempty subset S of R, he assigned an associ-

ated p-sequence (νk(S, p))∞k=0 of S in which νk(S, p) is a power of p. He constructed

the associated p-sequence using p-orderings of S. The generalized factorials of S,

denoted k!S, are defined as in [2, Definition 7] by

k!S :=
∏

p∈Spec(R)

νk(S, p).

We can write

νk(S, p) = pαk(S,p), (1.3.2)

where αk(S, p) ∈ N ∪ {∞}, with the conventions p0 = R and p∞ = (0).

Bhargava showed his factorials have many applications to many problems in com-

mutative algebra, to finding rings of integer-valued polynomials on a set S, and to

finding good bases for suitable function spaces, see also [3].

Bhargava originally developed his generalized factorials for the ring of integers Z,

in which case Spec(Z) = {(p) : p is a prime number}, which we may identify with

P := {2, 3, 5, . . . }, the set of all prime numbers. Bhargava [2] gave details for the

case R = Z. In this thesis we treat the case R = Z, and we describe Bhargava’s

theory in this case, following [2].
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Bhargava’s important idea is the construction of p-orderings of S for any fixed

prime ideal p. We describe it for the case R = Z. Let p ∈ P be the prime number

that generates p ∈ Spec(Z). A p-ordering of S is any sequence a = (ai)
∞
i=0 of elements

of S that can be formed recursively as follows:

• a0 ∈ S is chosen arbitrarily;

• Given aj ∈ S, j = 0, . . . , i − 1, the next element ai ∈ S is chosen so that it

minimizes the highest power of p dividing the product
∏i−1

j=0 (ai − aj).

We note that:

(1) This construction does not give a unique p-ordering of S if |S| > 1.

(2) A p-ordering of S does not need to include all the elements of S.

We define νi(S, p, a) to be the highest power of p dividing
∏i−1

j=0 (ai − aj). That

is, we may write

νi(S, p, a) = pαi(S,p,a), (1.3.3)

where

αi(S, p, a) := ordp

(
i−1∏
j=0

(ai − aj)

)
(1.3.4)

and ordp(·) is the additive p-adic valuation given by

ordp(k) := sup {α ∈ N : pα divides k} . (1.3.5)

Bhargava calls the sequence (νi(S, p, a))∞i=0 the associated p-sequence of S corre-

sponding to a. Bhargava [2, Theorem 5] showed

Theorem 1.3.7 (Bhargava [2]). The associated p-sequence of S is independent of

the choice of p-ordering.
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Therefore one may write νi(S, p) = νi(S, p, a) as an invariant of S and p and call

(νi(S, p))
∞
i=0 the associated p-sequence of S.

Bhargava used this invariant to define his generalized factorials. The factorial

function of S, denoted k!S, is defined by

k!S :=
∏
p

νk(S, p). (1.3.6)

Thus Bhargava’s theory produces factorials via their prime factorizations.

In the special case S = Z, Bhargava showed that the generalized factorials agree

with the usual factorials. To do this, Bhargava [2, Proposition 6] showed

Theorem 1.3.8 (Bhargava [2]). The natural ordering 0, 1, 2, . . . of the nonnegative

integers forms a p-ordering of Z for all primes p simultaneously.

From Theorem 1.3.8, Bhargava deduces that

νk(Z, p) = wp

(
k−1∏
j=0

(k − j)

)
= wp(k!),

where wp(a) denotes the highest power of p dividing a (i.e., wp(a) = pordp(a)).

Therefore

k!Z =
∏
p

wp(k!) = k!. (1.3.7)

Bhargava also treated generalized binomial coefficients. Bhargava [2, Theorem 8]

showed

Theorem 1.3.9. For any nonnegative integers k and `, (k + `)!S is a multiple of

k!S`!S.

In other words, the generalized binomial coefficients(
k + `

k

)
S

:=
(k + `)!S
k!S`!S

is always an integer.



15

1.3.3 Main results of Chapter 3: generalized factorials allowing composite bases

We generalize Bhargava’s theory of p-orderings for prime ideals p in the ring R = Z

to treat b-orderings for nontrivial proper ideals b in Z. The set of all nontrivial proper

ideals of Z may be identified with the set

B := {b ∈ Z : b ≥ 2} = N\{0, 1} (1.3.8)

by the positive generators of the ideals. Here N := {0, 1, 2, . . . } is the set of all

nonnegative integers.

Definition 1.3.10. Let S be a nonempty subset of the ring of integers Z. For b ∈ B,

a sequence a = (ai)
∞
i=0 of elements of S is an admissible b-ordering of S if

i−1∑
j=0

ordb (ai − aj) = min
s∈S

i−1∑
j=0

ordb (s− aj) (1.3.9)

for all i = 1, 2, 3, . . . , where ordb(k) is defined for k ∈ Z by

ordb(k) := sup {α ∈ N : bα divides k} . (1.3.10)

We note a conceptual difference in the quantities that are being minimized in

Bhargava’s theory and in Definition 1.3.10. In Bhargava’s theory, the quantity

ordp

(∏i−1
j=0 (ai − aj)

)
is minimized at each step. In Definition 1.3.10, we minimize∑i−1

j=0 ordb (ai − aj). If b is a prime, then

ordb

(
i−1∏
j=0

(ai − aj)

)
=

i−1∑
j=0

ordb (ai − aj) ,

but this equality does not hold in general for composite b.

Given any initial value a0 ∈ S, one can find an admissible b-ordering with that

initial value using the recurrence (1.3.9). So there will be more than one admissible

b-orderings of S, unless S is a singleton.
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Definition 1.3.11. Let b ∈ B. Let S be a nonempty subset of the ring Z. Let

a = (ai)
∞
i=0 be an admissible b-ordering of S. The associated b-sequence of S with

respect to a, denoted (αi(S, b, a))∞i=0, is defined by

αi(S, b, a) :=
i−1∑
j=0

ordb (ai − aj) . (1.3.11)

We note that:

(1) αi(S, b, a) ∈ N ∪ {∞}.

(2) If S is finite, then αi(S, b, a) =∞ for all i ≥ |S|.

A main result of Chapter 3 is that all associated b-sequences of a given set S are

the same.

Theorem 1.3.12 (Well-definedness of the associated b-sequence of S). Let b ∈ B.

Let S be a nonempty subset of the ring Z. Let a1 and a2 be admissible b-orderings

of S. Then αi (S, b, a1) = αi (S, b, a2) for all i = 0, 1, 2, . . . .

This result generalizes Bhargava’s Theorem 1.3.7, in which b is assumed to be

prime. Bhargava’s proofs, as presented in [1] and [2], do not extend to the case of

composite bases b.

Theorem 1.3.12 provides the well-definedness of the associated b-sequence of S.

We write (αi(S, b))
∞
i=0 for the associated b-sequence of S, which is given by αi(S, b) :=

αi(S, b, a) for any admissible b-ordering a of S.

The generalized factorials [k]!S,T associated to a nonempty subset S of the ring

Z and a set of allowed bases (or generalized prime numbers) T ⊆ B := {2, 3, 4, . . . }

are defined for k = 0, 1, 2, . . . by

[k]!S,T :=
∏
b∈T

bαk(S,b). (1.3.12)
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The special case T = P agrees with Bhargava’s generalized factorials [2], which

give the usual factorial function as the case (S, T ) = (Z,P). That is, [k]!Z,P = k!.

Proposition 1.3.13 (Ordering). (1) Let S1 ⊆ S2 be nonempty subsets of the ring

Z. Let T ⊆ B. Then for integers 0 ≤ k < |S1|,

[k]!S2,T divides [k]!S1,T .

(2) Let S be a nonempty subset of the ring Z. Let T1 ⊆ T2 ⊆ B. Then for integers

0 ≤ k < |S|,

[k]!S,T1 divides [k]!S,T2 .

Now, we define generalized positive integers [n]S,T . For positive integers n < |S|,

the nth generalized positive integer associated to S and T is [n]S,T :=
[n]!S,T

[n−1]!S,T
.

Theorem 1.3.14. Let S be a nonempty subset of the ring Z. Let T ⊆ B. Then for

positive integers n < |S|, the generalized positive integer [n]S,T is an integer.

For integers 0 ≤ ` ≤ k < |S|, the generalized binomial coefficient
[
k
`

]
S,T is defined

by [
k

`

]
S,T

:=
[k]!S,T

[`]!S,T [k − `]!S,T
. (1.3.13)

Theorem 1.3.15. Let S be a nonempty subset of the ring Z. Let T ⊆ B. Then for

integers 0 ≤ ` ≤ k < |S|, the generalized binomial coefficient
[
k
`

]
S,T is an integer.

This result generalizes Bhagava’s Theorem 1.3.9.

We treat in detail the important case (S, T ) = (Z,B), in which both S and T are

maximal.

Theorem 1.3.16. The natural ordering 0, 1, 2, . . . of the nonnegative integers forms

an admissible b-ordering of S = Z for all b ∈ B simultaneously.
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Theorem 1.3.16 generalizes Bhargava’s Theorem 1.3.8. We next show

Theorem 1.3.17. For k = 0, 1, 2, . . . , the generalized factorial of k associated to

S = Z and T = B is

[k]!Z,B =
k∏
b=2

bγ(k,b), (1.3.14)

where

γ(k, b) :=
∞∑
i=1

⌊
k

bi

⌋
. (1.3.15)

Theorem 1.3.17 is analogous to de Polignac’s formula for k! (also known as Leg-

endre’s formula), which states that

ordp(k!) =
∞∑
i=1

⌊
k

pi

⌋
(1.3.16)

for all p ∈ P . The right side of (1.3.16) is γ(k, p).

Theorem 1.3.18. For n = 1, 2, 3, . . . , the nth generalized positive integer associated

to S = Z and T = B is

[n]Z,B =
n∏
b=2

bordb(n), (1.3.17)

where ordb(n) is the maximal α ∈ N such that bα divides n.

Theorem 1.3.18 is analogous to the prime factorization of positive integers:

n =
∏
p∈P

pordp(n).

We prove formulas for generalized binomial coefficients
[
k
`

]
Z,B.

Theorem 1.3.19. Let k ≥ ` be nonnegative integers. Then:

(1) We have [
k

`

]
Z,B

=
k∏
b=2

bβ(k,`,b), (1.3.18)

where

β(k, `, b) :=
∞∑
i=1

(⌊
k

bi

⌋
−
⌊
`

bi

⌋
−
⌊
k − `
bi

⌋)
. (1.3.19)
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(2) For b ∈ B,

β(k, `, b) =
1

b− 1
(db(`) + db(k − `)− db(k)) , (1.3.20)

where db(j) is the sum of the base-b digits of j.

Theorem 1.3.19 explicitly shows that these generalized binomial coefficients are

integers, as covered by Theorem 1.3.15. In Subsection 3.7.1, we give tables of values

of the generalized integers [n]Z,B. The tables show that the sequence ([n]Z,B)∞n=1 of

generalized integers is not regularly divisible. For example,

gcd ([4]Z,B, [6]Z,B) = gcd(16, 36) = 4 but [gcd(4, 6)]Z,B = [2]Z,B = 2.

This example shows that Theorem 1.3.15 is not a special case of Theorem 1.3.2.

Finally we obtain

Corollary 1.3.20. Let Gn be the product of the generalized binomial coefficients

associated to Z and B in the nth row of Pascal’s triangle:

Gn :=
n∏
k=0

[
n

k

]
Z,B
. (1.3.21)

Then for n = 1, 2, 3, . . . ,

Gn :=
n∏
b=2

bν(n,b), (1.3.22)

where

ν(n, b) :=
2

b− 1
Sb(n)− n− 1

b− 1
db(n) (1.3.23)

and Sb(n) :=
∑n−1

j=1 db(j).

These numbers Gn will be further studied in Chapter 4.

1.4 Asymptotics of partial factorizations of products of generalized bi-
nomial coefficients

Chapter 4 is about partial factorizations of generalized binomial products. To

describe the results in this chapter we first review previous work on this subject.
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1.4.1 Previous work: products of binomial coefficients

The product of binomial coefficients on the nth row of Pascal’s triangle

Gn :=
n∏
k=0

(
n

k

)
(1.4.1)

was studied by Lagarias and Mehta [6]. The number Gn is the reciprocal of the prod-

uct of all the nonzero unreduced Farey fractions of order n. They determined that

logGn = 1
2
n2 +O(n log n) for n ≥ 2. They also determined the prime factorization

Gn =
∏
p

pνp(Gn),

where νp(Gn) = ordp(Gn) is the additive p-adic valuation of Gn. They expressed

νp(Gn) in terms of sums of the base-p digits of positive integers up to n.

Theorem 1.4.1. Let p be a prime number. Then for integers n ≥ 1,

νp(Gn) =
2

p− 1
Sp(n) +

n− 1

p− 1
dp(n), (1.4.2)

where dp(j) is the sum of the base-p digits of j and

Sp(n) :=
n−1∑
j=1

dp(j).

Du and Lagarias [4] studied the partial factorization of Gn with primes up to x:

G(n, x) =
∏
p≤x

pνp(Gn).

They particularly considered x = αn for 0 < α ≤ 1 and studied the asymptotic

behavior of logG(n, αn) as n → ∞. The asymptotic estimates depend on prime

number theory. They gave unconditional results and results depending on the Rie-

mann hypothesis with a better error term.
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Theorem 1.4.2. Let G(n, x) =
∏

p≤x p
νp(Gn). Then for all n ≥ 2 and all 1

n
≤ α ≤ 1,

logG(n, αn) = fG(α)n2 +RG(n, αn), (1.4.3)

where fG(α) is a function given for α > 0 by

fG(α) =
1

2
+

1

2
α2

⌊
1

α

⌋2
+

1

2
α2

⌊
1

α

⌋
− α

⌊
1

α

⌋
, (1.4.4)

with fG(0) = 0 and R(n, αn) is a remainder term.

(1) Unconditionally there is a positive constant c such that for all n ≥ 4, and all

0 < α ≤ 1 the remainder term satisfies

RG(n, αn) = O

(
1

α
n2 exp

(
−c
√

log n
))

. (1.4.5)

The implied constant in the O-notation does not depend on α.

(2) Conditionally on the Riemann hypothesis, for all n ≥ 4 and all 0 < α ≤ 1, the

remainder term satisfies

RG(n, αn) = O

(
1

α
n7/4(log n)2

)
, (1.4.6)

The implied constant in the O-notation does not depend on α.

The limit scaling function fG(α) is pictured below in the (α, β)-plane, 0 ≤ α ≤ 1.

Here fG(0) = 0 and fG(1) = 1
2
.

The Riemann hypothesis is related to the rate of convergence of logG(n,αn)
n2 to fG(α)

as n → ∞; it shows a power-savings remainder term O
(
n−1/4(log n)2

)
. The paper

[4] suggested that a converse result may hold, that a power-savings remainder term

would imply a zero-free region for the Riemann zeta function for σ > 1− δ for some

δ > 0.
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Figure 1.1: The graph β = fG(α), 0 ≤ α ≤ 1 (solid red) in the (α, β)-plane. The line segment
β = 1

2α, 0 ≤ α ≤ 1 is shown in dashed blue.

The analysis of [4] depends on obtaining estimates for the auxiliary functions

A(n, x) :=
∑
p≤x

2

p− 1
Sp(n) log p

and

B(n, x) :=
∑
p≤x

n− 1

p− 1
dp(n) log p.

In what follows, Hn :=
∑n

j=1
1
j

is the nth harmonic number, and

γ := lim
n→∞

(Hn − log n) = 0.57721 . . .

is Euler’s constant.

For B(n, x): they showed that for 0 < α ≤ 1,

B(n, αn) = fB(α)n2 +RB(n, αn), (1.4.7)

where fB(α) is a function given for α > 0 by

fB(α) = 1− γ +

(
Hb 1

α
c − log

1

α

)
− α

⌊
1

α

⌋
, (1.4.8)
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with fB(0) = 0, and RB(n, αn) is a remainder term.

For A(n, x): they showed that for 0 < α ≤ 1,

A(n, αn) = fA(α)n2 +RA(n, αn), (1.4.9)

where fA(α) is a function given for α > 0 by

fA(α) =
3

2
− γ +

(
Hb 1

αc − log
1

α

)
+

1

2
α2

⌊
1

α

⌋2
+

1

2
α2

⌊
1

α

⌋
− 2α

⌊
1

α

⌋
, (1.4.10)

with fA(0) = 0, and RA(n, αn) is a remainder term.

The estimates for the remainder terms RB(n, αn) and RA(n, αn) are similar to

those of Theorems 1.4.2.

Figure 1.2: The graph β = fB(α), 0 ≤ α ≤ 1 (solid blue) in the (α, β)-plane. The line segment
β = (1− γ)α, 0 ≤ α ≤ 1 is shown in dotted orange.

1.4.2 Main results of Chapter 4: products of generalized binomial coefficients

The new work in Chapter 4 starts from the observation that the formula (1.4.2)

for νp(Gn) makes sense when replacing p by any integer base b ≥ 2. For integers

b ≥ 2 and n ≥ 1, let

ν(n, b) :=
2

b− 1
Sb(n) +

n− 1

b− 1
db(n),
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Figure 1.3: The graph β = fA(α), 0 ≤ α ≤ 1 (solid blue) in the (α, β)-plane. The line segment
β =

(
3
2 − γ

)
α, 0 ≤ α ≤ 1 is shown in dotted orange. Superimposed are the graph

β = f ′A(α), 0 ≤ α ≤ 1 shown in solid green and the line segment β = 3
2 − γ, 0 ≤ α ≤ 1

shown in dotted red.

where db(j) is the sum of the base-b digits of j and

Sb(n) :=
n−1∑
j=1

db(j).

We prove that ν(n, b) is always a nonnegative integer. Moreover, ν(n, b) = 0 infinitely

often, exactly when n+ 1 has one nonzero digit in base b.

We define the generalized binomial products Gn by the formula

Gn :=
n∏
b=2

bν(n,b). (1.4.11)

It is shown in Chapter 3 (specifically Corollary 1.3.20) that the product in (1.4.11)

can be interpreted as a product of generalized binomial coefficients:

Gn =
n∏
k=0

[
n

k

]
Z,B
.

Chapter 4 determines asymptotic estimates for the analogous partial factorization

of Gn which includes all bases b up to x:

G(n, x) :=
∏

2≤b≤x

bν(n,b). (1.4.12)
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The main result of Chapter 4 is as follows.

Theorem 1.4.3. Let G(n, x) =
∏bxc

b=2 b
ν(n,b). Then for integers n ≥ 2 and real

α ∈
[

1√
n
, 1
]
,

logG(n, αn) = f
G

(α)n2 log n+ g
G

(α)n2 +O
(
n3/2 log n

)
, (1.4.13)

in which:

(a) f
G

(α) is a function with f
G

(0) = 0 and defined for α > 0 by

f
G

(α) =
1

2
+

1

2
α2

⌊
1

α

⌋2
+

1

2
α2

⌊
1

α

⌋
− α

⌊
1

α

⌋
; (1.4.14)

(b) g
G

(α) is a function with g
G

(0) = 0 and defined for α > 0 by

g
G

(α) =

(
1

2
γ − 3

4

)
− 1

2

(
Hb 1

α
c − log

1

α

)
+

(
log

1

α

)(
− 1

2
− 1

2
α2

⌊
1

α

⌋⌊
1

α
+ 1

⌋
+ α

⌊
1

α

⌋)
−1

4
α2

⌊
1

α

⌋⌊
1

α
+ 1

⌋
+ α

⌊
1

α

⌋
. (1.4.15)

Moreover, for integers n ≥ 2 and real α ∈
[
1
n
, 1√

n

]
,

logG(n, αn) = O
(
n3/2 log n

)
. (1.4.16)

We observe three features of this theorem.

1. The first limit scaling function f
G

(α) in Theorem 1.4.3 is the same as the limit

scaling function fG(α) obtained in Theorem 1.4.2.

2. The formula (1.4.13) has a secondary term with a new limit scaling function

g
G

(α).

3. The remainder terms in (1.4.13) and (1.4.16) have a power-savings estimate

which is unconditional, while the Riemann hypothesis is needed to obtain a

power-savings remainder term in Theorem 1.4.2.
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Figure 1.4: The graph β = g
G

(α), 0 ≤ α ≤ 1 in the (α, β)-plane.

The analysis depends on obtaining estimates for the auxiliary functions

A(n, x) :=
∑

2≤b≤x

2

b− 1
Sb(n) log b

and

B(n, x) :=
∑

2≤b≤x

n− 1

b− 1
db(n) log b.

In what follows, Jn :=
∑n

j=1
log j
j

, and

γ1 := lim
n→∞

(
Jn −

1

2
(log n)2

)
= −0.07281 . . .

is the first Stieltjes constant.

Theorem 1.4.4. Let B(n, x) =
∑bxc

b=2
n−1
b−1 db(n) log b. Then for integers n ≥ 2 and

real α ∈
[

1√
n
, 1
]
,

B(n, αn) = fB(α)n2 log n+ gB(α)n2 +O
(
n3/2 log n

)
, (1.4.17)

in which:



27

(a) fB(α) is a function with fB(0) = 0 and defined for α > 0 by

fB(α) = (1− γ) +

(
Hb 1

α
c − log

1

α

)
− α

⌊
1

α

⌋
; (1.4.18)

(b) gB(α) is a function with gB(0) = 0 and defined for α > 0 by

gB(α) = (γ + γ1 − 1)−
(
Hb 1

α
c − log

1

α

)
−

(
Jb 1

α
c −

1

2

(
log

1

α

)2
)

+

(
log

1

α

)(
−1 + α

⌊
1

α

⌋)
+ α

⌊
1

α

⌋
. (1.4.19)

Moreover, for integers n ≥ 2 and real α ∈
[
1
n
, 1√

n

]
,

B(n, αn) = O
(
n3/2 log n

)
. (1.4.20)

Figure 1.5: The graph β = gB(α), 0 ≤ α ≤ 1 in the (α, β)-plane.

Theorem 1.4.5. Let A(n, x) =
∑bxc

b=2
2
b−1Sb(n) log b. Then for integers n ≥ 2 and

real α ∈
[

1√
n
, 1
]
,

A(n, αn) = fA(α)n2 log n+ gA(α)n2 +O
(
n3/2 log n

)
, (1.4.21)

in which:
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(a) fA(α) is a function with fA(0) = 0 and defined for α > 0 by

fA(α) =

(
3

2
− γ
)

+

(
Hb 1

α
c − log

1

α

)
+

1

2
α2

⌊
1

α

⌋2
+

1

2
α2

⌊
1

α

⌋
− 2α

⌊
1

α

⌋
;

(1.4.22)

(b) gA(α) is a function with gA(0) = 0 and defined for α > 0 by

gA(α) =

(
3

2
γ + γ1 −

7

4

)
− 3

2

(
Hb 1

α
c − log

1

α

)
−

(
Jb 1

α
c −

1

2

(
log

1

α

)2
)

+

(
log

1

α

)(
−3

2
− 1

2
α2

⌊
1

α

⌋⌊
1

α
+ 1

⌋
+ 2α

⌊
1

α

⌋)
−1

4
α2

⌊
1

α

⌋⌊
1

α
+ 1

⌋
+ 2α

⌊
1

α

⌋
. (1.4.23)

Moreover, for integers n ≥ 2 and real α ∈
[
1
n
, 1√

n

]
,

A(n, αn) = O
(
n3/2 log n

)
. (1.4.24)

Figure 1.6: The graph β = gA(α), 0 ≤ α ≤ 1 in the (α, β)-plane.
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CHAPTER 2

On the Montgomery–Vaughan Weighted Generalization of
Hilbert’s Inequality

2.0 Abstract

This chapter studies the problem of determining the optimal constant in the

Montgomery–Vaughan weighted generalization of Hilbert’s inequality. We consider

an approach pursued by previous authors via a parametric family of inequalities. We

obtain upper and lower bounds for the constants in inequalities in this family. A

lower bound at α = 1
2

indicates that the method in its current form cannot achieve

any value below 3.19497, so cannot achieve the conjectured constant π. The problem

of determining the optimal constant remains open.

2.1 Introduction

In this paper, we study a parametric family of inequalities, given in (2.1.8) below,

that can yield an upper bound on the optimal constant in the Montgomery–Vaughan

weighted generalization of Hilbert’s inequality (2.1.3). The inequality (2.1.3) is im-

portant in the theory of the large sieve; see [8] and [5].

30
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2.1.1 History of the problem

Let N denote a positive integer, and let z1, . . . , zN denote complex numbers.

Hilbert’s inequality states that∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
m− n

∣∣∣∣∣∣∣ ≤ c0

N∑
n=1

|zn|2 , (2.1.1)

where c0 is the absolute constant 2π. Hilbert’s proof was published in Weyl’s dis-

sertation [15, § 15]. In 1911, Schur [13] obtained (2.1.1) with c0 = π and demon-

strated that this absolute constant is best possible. Hardy, Littlewood, and Pólya

[3, pp. 235–236] gave an account of Hilbert’s proof. Schur’s proof is also reproduced

in [3, Theorem 294].

In 1974, Montgomery and Vaughan [9] established a generalization: If δ > 0 and

(λk)
∞
k=−∞ is a sequence of real numbers such that λk+1 − λk ≥ δ for all k, then∣∣∣∣∣∣∣

N∑
m=1

N∑
n=1
n6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤
π

δ

N∑
n=1

|zn|2 . (2.1.2)

Schur’s bound is included in (2.1.2) as the case λk+1 − λk = δ. In the same paper,

Montgomery and Vaughan also established a weighted form:∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ c1

N∑
n=1

|zn|2

δn
, (2.1.3)

where λk+1 > λk for all k and δk := min {λk − λk−1, λk+1 − λk} and c1 is the absolute

constant 3π
2

. Denote by c1 the minimum of all absolute constants c1 for which (2.1.3)

holds. Montgomery and Vaughan [9] have raised the

Problem. Determine c1.

By setting λk = k in (2.1.3) and comparing with Schur’s result, we see that

c1 ≥ π. (2.1.4)
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If c1 = π, then (2.1.3) would contain (2.1.2), and it is widely believed to be the case.

In 1984, Preissmann [11] proved that

c1 ≤ π

√
1 +

2

3

√
6

5
= (1.31540 . . . )π <

4π

3
. (2.1.5)

Preissmann’s proof is based on that of Montgomery and Vaughan. Selberg (unpub-

lished) said that he had shown that c1 ≤ 3.2 (which is (1.01859 . . . )π < 54π
53

), but it

seems that no trace remains of his argument; cf. [5, p. 557] and [6, p. 145].

In 1981, Graham and Vaaler [1] constructed extreme majorants and minorants of

the functions

E(β, x) :=


e−βx if x ≥ 0,

0 if x < 0,

where β is an arbitrary positive real number, and used them to prove that

1

δ (eβ/δ − 1)

N∑
n=1

|zn|2 ≤
N∑
m=1

N∑
n=1

zmzn
β + 2πi (λm − λn)

≤ eβ/δ

δ (eβ/δ − 1)

N∑
n=1

|zn|2 . (2.1.6)

The inequality (2.1.6) includes (2.1.2) as the limiting case β → 0+. In 1999, Mont-

gomery and Vaaler [7] established a generalization of (2.1.3):∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
βm + βn + i (λm − λn)

∣∣∣∣∣∣∣ ≤ c2

N∑
n=1

|zn|2

δn
, (2.1.7)

where β1, . . . , βN are nonnegative real numbers and c2 is the absolute constant 84 =

(26.73803 . . . )π, which is not optimal. Their proof involves the theory of H2 functions

in a half-plane and a maximal theorem of Hardy and Littlewood.

In 2005, Li [4] posed a question about the finite Hilbert transformation associated

with a polynomial and proved that if the question always has an affirmative answer,

then c1 = π.
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2.1.2 Main results: Parametric family of inequalities

We study the following parametric family of inequalities. For 0 ≤ α ≤ 2, let C(α)

be the minimum of all constants C(α) for which the inequality

N∑
m=1

N∑
n=1
n6=m

δ2−αm δαntmtn

(λm − λn)2
≤ C(α)

N∑
n=1

t2n (2.1.8)

holds for all choices of a positive integer N , a strictly increasing sequence (λk)
∞
k=−∞

of real numbers,

δk := min {λk − λk−1, λk+1 − λk} ,

and nonnegative real numbers t1, . . . , tN . Let C(α) = ∞ if there is no such real

number C(α).

The value C
(
1
2

)
is relevant to the generalized Hilbert inequality (2.1.3). In Sec-

tion 2.3, we shall prove the following inequality between c1 and C
(
1
2

)
.

Theorem 2.1.1. We have c1 ≤
√

π2

3
+ 2C

(
1
2

)
.

The previous approaches to get an upper bound for c1 in [9], [11], and [14] rely

on an upper bound for C
(
1
2

)
and Theorem 2.1.1. Montgomery and Vaughan [9] first

showed that C
(
1
2

)
is finite. Specifically, they proved C

(
1
2

)
≤ 17

2
= (0.86123 . . . )π2.

The same bound has been used in [7] to prove (2.1.7), but the currently known best

upper bound for C
(
1
2

)
is due to Preissmann [11].

Theorem 2.1.2 (Preissmann). We have C
(
1
2

)
≤ π2

3
+ π2

3

√
6
5

= (0.69848 . . . )π2.

By means of Theorem 2.1.1, Theorem 2.1.2 implies (2.1.5). Another immediate

consequence of Theorem 2.1.1 is that (2.1.4) implies C
(
1
2

)
≥ π2

3
. (This lower bound

has been pointed out in [7, p. 36].) Moreover, the conjecture that c1 = π would

follow if C
(
1
2

)
= π2

3
.

In Section 2.4, we shall prove the following properties of C(α).
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Theorem 2.1.3. (1) For real numbers 0 ≤ α ≤ 2, we have C(α) = C(2− α) > 0.

(2) For real numbers 0 ≤ α1 < α2 ≤ 2 and 0 < θ < 1, we have

C (θα1 + (1− θ)α2) ≤ C (α1)
θ C (α2)

1−θ .

(3) For real numbers 0 ≤ α1 < α2 ≤ 1, we have C (α1) ≥ C (α2). Therefore the

minimum of C(α) for 0 ≤ α ≤ 2 is attained at α = 1.

(4) For real numbers 0 ≤ α < 1
2
, we have C(α) =∞.

Also in Section 2.4, we determine the minimum value.

Theorem 2.1.4. We have C(1) = π2

3
.

In Section 2.5, we shall prove a new lower bound for C
(
1
2

)
.

Theorem 2.1.5. We have C
(
1
2

)
≥ (0.35047)π2.

From Theorem 2.1.5, we deduce that any upper bound for c1 obtainable by The-

orem 2.1.1 cannot be smaller than 3.19497 = (1.01699 . . . )π. This method of using

Theorem 2.1.1 is incapable of proving c1 = π.

2.1.3 Main results: Weighted inequalities

We prove upper bounds on the Hilbert sesquilinear form involving different weights.

Theorem 2.1.6. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers.

Denote by δk the minimum between λk − λk−1 and λk+1 − λk. Then for any positive

real number D and any sequence (z1, . . . , zN) of complex numbers,∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ π
N∑
n=1

|zn|2

δn

√
D

3δn
+

2

3

√
δn
D
. (2.1.9)
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Theorem 2.1.6 has a multiplicative version.

Theorem 2.1.7. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers.

Denote by δk the minimum between λk−λk−1 and λk+1−λk. Then for any sequence

(f1, . . . , fN) of positive real numbers and any sequence (z1, . . . , zN) of complex num-

bers,∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ π

(
N∑
n=1

fn |zn|2

δn

) 1
2
(

N∑
n=1

|zn|2

fn
√
δn

) 1
3
(

N∑
n=1

|zn|2

fnδ2n

) 1
6

. (2.1.10)

In Section 2.6, we will prove Theorem 2.1.6 and then deduce Theorem 2.1.7 from

it. As an immediate consequence of Theorem 2.1.7:

Corollary 2.1.8. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers.

Denote by δk the minimum between λk−λk−1 and λk+1−λk. Then for any sequence

(z1, . . . , zN) of complex numbers,∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n 6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ π

(
N∑
n=1

|zn|2

δ
3
4
n

) 5
6
(

N∑
n=1

|zn|2

δ
9
4
n

) 1
6

. (2.1.11)

Proof. Substitute fn = δ
1
4
n in Theorem 2.1.7.

It is clear that the right side of (2.1.11) is less than or equal to that of (2.1.2).

2.2 Preliminaries

2.2.1 Eigenvalues of generalized weighted Hilbert matrices

Let us consider N ×N matrices H = [hmn] with entries given by

hmn :=


wmwn
λm−λn if m 6= n,

0 if m = n,

(2.2.1)
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where (λk)
∞
k=−∞ is a strictly increasing sequence of real numbers and w1, . . . , wN are

positive real numbers. Since H is skew-Hermitian (i.e., iH is Hermitian), all its

eigenvalues are purely imaginary. Let [u1, . . . , uN ]> be an eigenvector of H, and let

iµ be its associated eigenvalue. That is,

N∑
n=1
n6=m

wmwnun
λm − λn

= iµum

for all m = 1, . . . , N .

It is well known (see, e.g., [6, § 7.4]) that the numerical radius of a normal matrix

is the same as its spectral radius (and its operator norm). Thus, if iµ has the largest

modulus among all eigenvalues of H, then∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

wmwnzmzn
λm − λn

∣∣∣∣∣∣∣ ≤ |µ|
N∑
n=1

|zn|2 (2.2.2)

for all complex numbers z1, . . . , zN . On replacing zn by zn
wn

, we see that (2.2.2) is

equivalent to ∣∣∣∣∣∣∣
N∑
m=1

N∑
n=1
n6=m

zmzn
λm − λn

∣∣∣∣∣∣∣ ≤ |µ|
N∑
n=1

|zn|2

w2
n

. (2.2.3)

One may obtain the generalized Hilbert inequality (2.1.3) with some constant c1

from (2.2.3) by giving an upper bound for the sizes of eigenvalues of H in the case

that w2
n = δn = min {λn − λn−1, λn+1 − λn}. A key result to that end is:

Lemma 2.2.1. Let [u1, . . . , uN ]> be an eigenvector of H, and let iµ be its associated

eigenvalue. Then the identity

µ2 |um|2 =
N∑
n=1
n6=m

w2
mw

2
n |un|

2

(λm − λn)2
+ 2

N∑
n=1
n6=m

w3
mwn< (umun)

(λm − λn)2
(2.2.4)

holds for all m = 1, . . . , N .

Proof. See Preissmann and Lévêque [12, Lemma 5 (b)].
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2.2.2 A weighted spacing lemma and Shan’s method

The goal of this subsection is to prove:

Lemma 2.2.2. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers. De-

note by δk the minimum between λk − λk−1 and λk+1 − λk. Then for real numbers

σ > 1 and integers `, we have

∞∑
k=−∞
k 6=`

δk
|λk − λ`|σ

≤ 2ζ(σ)

δσ−1`

. (2.2.5)

One can show that equality holds in (2.2.5) if and only if the sequence (λk+1 − λk)∞k=−∞

is constant, but we shall not treat it here.

Lemma 2.2.2 is a direct consequence of Lemme 1 of Preissmann [11]. We present

a proof using a method of Shan [14], who independently derived Lemma 2.2.2. The

work of Shan, done at the same time as that of Preissmann, is obscure and hard

to obtain. Peng Gao (private communication) translated Shan’s argument, which

appears in [10, pp. 590–595]. The next three lemmas are an exposition of Shan’s

method.

Let f be a real-valued function, defined on the interval [1,∞). We will assume

that f satisfies some (or all) of the following four conditions:

(a) f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) for all 0 ≤ θ ≤ 1 and 1 ≤ x ≤ y.

(b) f(x) ≥ f(y) for all 1 ≤ x ≤ y.

(c) f(x) ≥ 0 for all x ≥ 1.

(d) The series
∑∞

j=1 f(j) converges.

We note that (c) follows from (b) and (d), since (b) implies f(x) ≥ limk→∞ f(k)

and (d) implies limk→∞ f(k) = 0.
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Lemma 2.2.3. Assume that f : [1,∞)→ R satisfies (a) and (b). Let (an)∞n=1 be a

sequence of real numbers such that an ≥ 1 for all n. Set λn :=
∑n

m=1 am. Then for

positive integers N , we have

N∑
n=1

anf (λn) ≤
bλN c∑
j=1

f(j) + {λN} f (bλNc+ 1) ,

where {x} = x− bxc denotes the fractional part of x.

Proof. By the convexity of f , we have

f (λn) ≤ (1− {λn}) f (bλnc) + {λn} f (bλnc+ 1) . (2.2.6)

Moreover, since an ≥ 1 and f is weakly decreasing, it follows that

(an − 1) f (λn) ≤ (an − 1) f (bλnc) . (2.2.7)

On summing (2.2.6) and (2.2.7), we obtain

anf (λn) ≤ (an − {λn}) f (bλnc) + {λn} f (bλnc+ 1) . (2.2.8)

Now, we consider the first term on the right side of (2.2.8) and note that λn =

λn−1 + an ≥ λn−1 + 1:

(an − {λn}) f (bλnc) = (bλnc − bλn−1c − 1) f (bλnc) + (1− {λn−1}) f (bλnc)

≤
bλnc∑

j=bλn−1c+2

f(j) + (1− {λn−1}) f (bλn−1c+ 1)

=

bλnc∑
j=bλn−1c+1

f(j)− {λn−1} f (bλn−1c+ 1) .

On inserting this in (2.2.8), we get

anf (λn) ≤
bλnc∑

j=bλn−1c+1

f(j)− {λn−1} f (bλn−1c+ 1) + {λn} f (bλnc+ 1) . (2.2.9)

The result follows by summing (2.2.9) over n = 1, . . . , N ; the resulting sum on the

right side is a telescoping sum.
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In what follows, we consider

FN(x) :=
N∑
n=1

min {xn, xn+1} f

(
n∑

m=1

xm

)
, (2.2.10)

where x = (xn)∞n=1 is a sequence of positive real numbers with x1 ≥ 1.

Lemma 2.2.4. Assume that f : [1,∞) → R satisfies (a)–(c). Let a = (an)∞n=1 be a

sequence of positive real numbers with a1 ≥ 1. Suppose that ν ≥ 2 is an integer such

that aν−1 > aν. Let 0 < ε ≤ aν−1 − aν. Define b = (bn)∞n=1 by

bn :=


an for n 6= ν,

aν + ε for n = ν.

Then for positive integers N , we have

FN(a) ≤ FN(b). (2.2.11)

Proof. If N ≤ ν − 2, then (2.2.11) is an identity. So let us assume that N ≥ ν − 1.

Put λn :=
∑n

m=1 am. It follows from the definition of bn that

min {bn, bn+1} −min {an, an+1}



= ε if n = ν − 1,

≥ 0 if n = ν,

= 0 otherwise,

n∑
m=1

bm =


λn for n ≤ ν − 1,

λn + ε for n ≥ ν.

By the nonnegativity of f , min {bν , bν+1} f (λν + ε) ≥ min {aν , aν+1} f (λν + ε). So

FN(b)− FN(a) ≥ εf (λν−1) +
N∑
n=ν

min {an, an+1} (f (λn + ε)− f (λn)) . (2.2.12)
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By the convexity of f , it follows that

f (λn + ε)− f (λn)

ε
≥ f (λn)− f (λn−1)

an

for all n ≥ 2. So (2.2.12) implies that

FN(b)− FN(a) ≥ εf (λν−1) + ε

N∑
n=ν

min {an, an+1}
an

(f (λn)− f (λn−1))

≥ εf (λν−1) + ε
N∑
n=ν

(f (λn)− f (λn−1))

= εf (λN) ≥ 0.

Hence FN(a) ≤ FN(b).

We now prove an upper bound for FN(a) that depends only on f .

Lemma 2.2.5. Assume that f : [1,∞)→ R satisfies (a)–(d). Let a = (an)∞n=1 be a

sequence of positive real numbers with a1 ≥ 1. Then for positive integers N , we have

FN(a) ≤
∞∑
j=1

f(j). (2.2.13)

By taking an = 1 for all n and letting N →∞, we see that (2.2.13) is sharp.

Proof. Define a sequence a = (an)∞n=1 by an := max {am : m = 1, . . . , n}. Then

an+1 ≥ an for all n and a1 = a1 ≥ 1. Let N be a positive integer. By applying

Lemma 2.2.4, with ε = aν−1 − aν , as many times as we need, we see that

FN (a) ≤ FN (a) =
N∑
n=1

anf
(
λn
)
, (2.2.14)

where λn :=
∑n

m=1 am.

By Lemma 2.2.3 and the nonnegativity of f , the right side of (2.2.14) is

N∑
n=1

anf
(
λn
)
≤
bλNc∑
j=1

f(j) +
{
λN
}
f
(⌊
λN
⌋

+ 1
)
≤

∞∑
j=1

f(j). (2.2.15)

The result (2.2.13) follows by combining (2.2.14) and (2.2.15).
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We are now ready to prove Lemma 2.2.2.

Proof of Lemma 2.2.2. Let ` be an integer. Define sequences a = (an)∞n=1 and b =

(bn)∞n=1 by

an :=
λ`+n − λ`+n−1

δ`
and bn :=

λ`−n+1 − λ`−n
δ`

,

for all n. Then a and b are sequences of positive real numbers with

a1 =
λ`+1 − λ`

δ`
≥ 1 and b1 =

λ` − λ`−1
δ`

≥ 1.

We have

min {an, an+1} =
δ`+n
δ`

and min {bn, bn+1} =
δ`−n
δ`

,

n∑
m=1

am =
λ`+n − λ`

δ`
and

n∑
m=1

bm =
λ` − λ`−n

δ`
.

Let σ > 1. Applying Lemma 2.2.5 with f(x) = 1
xσ

, we obtain

δσ−1`

`+N∑
k=`−N
k 6=`

δk
|λk − λ`|σ

= δσ−1`

N∑
n=1

(
δ`+n

(λ`+n − λ`)σ
+

δ`−n
(λ` − λ`−n)σ

)

= FN(a) + FN(b)

≤ 2
∞∑
j=1

f(j) = 2ζ(σ).

The result (2.2.5) follows by letting N →∞.

2.3 Proofs of Theorems 2.1.1 and 2.1.2

2.3.1 Proof of Theorem 2.1.1

Proposition 2.3.1. Let N be a positive integer. Let (λk)
∞
k=−∞ be a strictly increasing

sequence of real numbers. Denote by δk the minimum between λk−λk−1 and λk+1−λk.

Assume that c3 is a positive constant such that the inequality

N∑
m=1

N∑
n=1
n6=m

δ
3
2
mδ

1
2
n tmtn

(λm − λn)2
≤ c3

N∑
n=1

t2n (2.3.1)
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holds for all nonnegative real numbers t1, . . . , tN . Then the inequality (2.1.3) holds

for all complex numbers z1, . . . , zN with the constant c1 =
√

π2

3
+ 2c3.

Proof. Suppose that (2.3.1) holds. Let [u1, . . . , uN ]> be a unit eigenvector of H =

[hmn], where hmn are given by (2.2.1) with wn =
√
δn, and let iµ be the eigenvalue

associated with this eigenvector. On applying Lemma 2.2.1 and summing (2.2.4)

over m, we get

µ2 =
N∑
m=1

N∑
n=1
n6=m

δmδn |un|2

(λm − λn)2
+ 2

N∑
m=1

N∑
n=1
n6=m

δ
3
2
mδ

1
2
n< (umun)

(λm − λn)2
≤ S + 2T, (2.3.2)

where S and T are given by

S :=
N∑
m=1

N∑
n=1
n6=m

δmδn |un|2

(λm − λn)2
and T :=

N∑
m=1

N∑
n=1
n6=m

δ
3
2
mδ

1
2
n |um| |un|

(λm − λn)2
.

On one hand, by Lemma 2.2.2, we obtain

S =
N∑
n=1

δn |un|2

 N∑
m=1
m 6=n

δm

(λm − λn)2

 ≤ N∑
n=1

δn |un|2
(
π2

3δn

)
=
π2

3
. (2.3.3)

On the other hand, substituting tn = |un| in (2.3.1) gives

T ≤ c3. (2.3.4)

It follows from (2.3.2), (2.3.3), and (2.3.4) that

|µ| ≤
√
S + 2T ≤

√
π2

3
+ 2c3. (2.3.5)

By the argument preceding (2.2.3), we deduce from (2.2.3) and (2.3.5) that (2.1.3)

holds with c1 =
√

π2

3
+ 2c3.

One weak point in the proof of Proposition 2.3.1 is the bound in (2.3.2), where

we disregard cancellation between terms.

Proof of Theorem 2.1.1. Since (2.3.1) holds with c3 = C
(
1
2

)
, it follows by Proposi-

tion 2.3.1 that (2.1.3) holds with c1 =
√

π2

3
+ 2C

(
1
2

)
. Hence the result follows.
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2.3.2 Proof of Theorem 2.1.2

Lemma 2.3.2. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers. De-

note by δk the minimum between λk−λk−1 and λk+1−λk. Then for distinct integers

` and m, we have

∞∑
k=−∞
k 6=`
k 6=m

δk

(λk − λ`)2 (λk − λm)2
≤ π2 (δ` + δm)

3δ`δm (λ` − λm)2
− 3 (δ` + δm)

(λ` − λm)4
. (2.3.6)

Proof. See Preissmann [11, Lemme 6].

Proof of Theorem 2.1.2. Let

U :=
N∑
m=1

N∑
n=1
n6=m

δ
3
2
mδ

1
2
n tmtn

(λm − λn)2
and V :=

N∑
n=1

t2n.

By Cauchy’s inequality,

U2 =

 N∑
n=1

tn

N∑
m=1
m 6=n

δ
3
2
mδ

1
2
n tm

(λm − λn)2


2

≤

(
N∑
n=1

t2n

) N∑
n=1

 N∑
m=1
m 6=n

δ
3
2
mδ

1
2
n tm

(λm − λn)2


2 = V (S + T ),

where

S :=
N∑
n=1

N∑
m=1
m 6=n

δ3mδnt
2
m

(λm − λn)4
and T :=

N∑
n=1

N∑
`=1
`6=n

N∑
m=1
m 6=n
m6=`

δ
3
2
` δ

3
2
mδnt`tm

(λ` − λn)2 (λm − λn)2
.

Applying Lemma 2.2.2 with σ = 4, we obtain

S =
N∑
m=1

δ3mt
2
m

 N∑
n=1
n6=m

δn

(λn − λm)4

 ≤ N∑
m=1

δ3mt
2
m

(
π4

45δ3m

)
=
π4

45
V.
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Applying Lemma 2.3.2, we obtain

T =
N∑
`=1

N∑
m=1
m 6=`

δ
3
2
` δ

3
2
mt`tm


N∑
n=1
n6=`
n6=m

δn

(λn − λ`)2 (λn − λm)2


≤

N∑
`=1

N∑
m=1
m 6=`

δ
3
2
` δ

3
2
mt`tm

(
π2 (δ` + δm)

3δ`δm (λ` − λm)2

)
=

2π2

3
U.

So U2 ≤ V
(
π4

45
V + 2π2

3
U
)

. Solving this gives U ≤
(
π2

3
+ π2

3

√
6
5

)
V .

2.4 Proofs of Theorems 2.1.3 and 2.1.4

2.4.1 Proof of Theorem 2.1.3

For real numbers 0 ≤ α ≤ 2 and positive integers N , let C(α,N) be the minimum

of all constants C(α,N) for which the inequality

N∑
m=1

N∑
n=1
n6=m

δ2−αm δαntmtn

(λm − λn)2
≤ C(α,N)

N∑
n=1

t2n (2.4.1)

holds for all choices of a strictly increasing sequence (λk)
∞
k=−∞ of real numbers,

δk := min {λk − λk−1, λk+1 − λk} ,

and nonnegative real numbers t1, . . . , tN .

Proposition 2.4.1. (1) For real numbers 0 ≤ α ≤ 2, we have C(α, 1) = 0 and

C(α, 2) = 1.

(2) For real numbers 0 ≤ α ≤ 2 and positive integers N , we have C(α,N) ≤

C(α,N + 1).

(3) For real numbers 0 ≤ α ≤ 2 and positive integers N , we have 0 ≤ C(α,N) ≤

N − 1.
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(4) For real numbers 0 ≤ α ≤ 2, we have C(α) = limN→∞C(α,N).

Proof. (1) If N = 1, the left side of (2.4.1) is 0. So C(α, 1) = 0. If N = 2, the left

side of (2.4.1) is 2t1t2. So C(α, 2) = 1.

(2) Let t1, . . . , tN be nonnegative real numbers, and let tN+1 = 0. Then

N∑
m=1

N∑
n=1
n6=m

δ2−αm δαntmtn

(λm − λn)2
=

N+1∑
m=1

N+1∑
n=1
n 6=m

δ2−αm δαntmtn

(λm − λn)2
≤ C(α,N+1)

N+1∑
n=1

t2n = C(α,N+1)
N∑
n=1

t2n.

So C(α,N) ≤ C(α,N + 1).

(3) We have

N∑
m=1

N∑
n=1
n6=m

δ2−αm δαntmtn

(λm − λn)2
≤

N∑
m=1

N∑
n=1
n6=m

tmtn ≤
N∑
m=1

N∑
n=1
n6=m

t2m + t2n
2

= (N − 1)
N∑
n=1

t2n.

So C(α,N) ≤ N − 1. On the other hand, from (2) and (1), we have C(α,N) ≥

C(α, 1) = 0.

(4) Since (2.4.1) holds with C(α,N) = C(α), it follows that C(α,N) ≤ C(α) for all

N . Hence limN→∞C(α,N) ≤ C(α). On the other hand, by (2), limN→∞C(α,N) =

supN C(α,N). So (2.1.8) holds with C(α) = limN→∞C(α,N). Hence C(α) ≤

limN→∞C(α,N).

Proposition 2.4.2. (1) For real numbers 0 ≤ α ≤ 2 and integers N ≥ 2, we have

C(α,N) = C(2− α,N) ≥ 1.

(2) For real numbers 0 ≤ α1 < α2 ≤ 2 and 0 < θ < 1, and for positive integers

N , we have

C (θα1 + (1− θ)α2, N) ≤ C (α1, N)θ C (α2, N)1−θ .

(3) For real numbers 0 ≤ α1 < α2 ≤ 1 and positive integers N , we have C (α1, N) ≥

C (α2, N).



46

(4) For real numbers 0 ≤ α < 1
2

and integers N ≥ 2, we have C(α,N)� N
1
2
−α.

Proof. (1) The left side of (2.4.1) is unchanged on replacing α by 2−α. It follows that

C(α,N) = C(2 − α,N). In addition, by Proposition 2.4.1, we see that C(α,N) ≥

C(α, 2) = 1.

(2) Let α = θα1 + (1− θ)α2. Apply Hölder’s inequality:

N∑
m=1

N∑
n=1
n6=m

δ2−αm δαntmtn

(λm − λn)2
≤

 N∑
m=1

N∑
n=1
n6=m

δ2−α1
m δα1

n tmtn

(λm − λn)2


θ N∑

m=1

N∑
n=1
n6=m

δ2−α2
m δα2

n tmtn

(λm − λn)2


1−θ

≤ C (α1, N)θ C (α2, N)1−θ
N∑
n=1

t2n.

So C(α,N) ≤ C (α1, N)θ C (α2, N)1−θ.

(3) Let θ = 2−α1−α2

2(1−α1)
. Then 0 < θ < 1 and α2 = θα1 + (1− θ) (2− α1). By (2), we

have

C (α2, N) = C (θα1 + (1− θ) (2− α1) , N) ≤ C (α1, N)θ C (2− α1, N)1−θ .

The last quantity is equal to C (α1, N) by (1).

(4) We choose λk = k for k ≤ 1 and λ2+` = 2 + `
N

for ` ≥ 0. Then δk = 1 for

k ≤ 1 and δ2+` = 1
N

for ` ≥ 0. Choose t1 =
√

N+1
2N

and tn = 1√
2N

for 2 ≤ n ≤ N . So∑N
n=1 t

2
n = 1, and (2.4.1) yields

C(α,N) ≥
N∑
m=1

N∑
n=1
n6=m

δ2−αm δαntmtn

(λm − λn)2
≥

N∑
n=2

δ2−α1 δαnt1tn

(λ1 − λn)2
=

N∑
n=2

√
N + 1

2Nα+1
(
1 + n−2

N

)2 .
The last quantity is � N

1
2
−α for N ≥ 2. Hence C(α,N)� N

1
2
−α for N ≥ 2.

Proof of Theorem 2.1.3. The result follows as we let N → ∞ in Proposition 2.4.2.
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2.4.2 Proof of Theorem 2.1.4

Proposition 2.4.3. Let (λk)
∞
k=−∞ be a strictly increasing sequence of real numbers.

Denote by δk the minimum between λk−λk−1 and λk+1−λk. Then for any sequence

(t1, . . . , tN) of nonnegative real numbers,

N∑
m=1

N∑
n=1
n6=m

δmδntmtn

(λm − λn)2
≤ π2

3

N∑
n=1

t2n. (2.4.2)

Proof. By the inequality of arithmetic and geometric means,

N∑
m=1

N∑
n=1
n 6=m

δmδntmtn

(λm − λn)2
≤

N∑
m=1

N∑
n=1
n6=m

δmδn (t2m + t2n)

2 (λm − λn)2
=

N∑
n=1

δnt
2
n

 N∑
m=1
m 6=n

δm

(λm − λn)2

 .

By Lemma 2.2.2, the right side above is ≤
∑N

n=1 δnt
2
n

(
π2

3δn

)
= π2

3

∑N
n=1 t

2
n.

Proof of Theorem 2.1.4. Proposition 2.4.3 shows C(1) ≤ π2

3
. Now taking λn = n and

tn = 1√
N

in (2.4.1) yields

C(α,N) ≥ 2

N

N−1∑
n=1

N − n
n2

= 2
N−1∑
n=1

1

n2
− 2

N

N−1∑
n=1

1

n
.

Letting N →∞ gives C(α) ≥ π2

3
for all 0 ≤ α ≤ 2. Hence C(1) = π2

3
.

2.5 Proof of Theorem 2.1.5

Let M denote a positive integer, and let x1, . . . , xM denote real numbers, distinct

modulo 1. Put

dm := min
n 6=m
‖xn − xm‖ ,

where ‖x‖ = mink∈Z|x− k| denotes the distance between x and a nearest integer. In

the case that M = 1, we let d1 := 1. Let τ1, . . . , τM denote nonnegative real numbers.



48

Lemma 2.5.1. The inequality (2.3.1) holds (for all N , λn, δn, and tn) if and only

if the inequality

1

3

M∑
m=1

d2mτ
2
m +

M∑
m=1

M∑
n=1
n6=m

d
3
2
md

1
2
nτmτn

sin2 (π (xm − xn))
≤ c3
π2

M∑
m=1

τ 2m (2.5.1)

holds for all positive integer M , distinct real numbers x1, . . . , xM modulo 1,

dm := min {|xn − xm − k| : k ∈ Z} \{0}, (2.5.2)

and nonnegative real numbers τ1, . . . , τM .

Proof. (⇒) Suppose that (2.3.1) holds. Let x1, . . . , xM be real numbers, distinct

modulo 1. By symmetry in x1, . . . , xM , we may assume without loss of generality

that x1 < · · · < xM < x1 + 1. Let dm be given by (2.5.2). Let τ1, . . . , τM be

nonnegative real numbers. Let K be a positive integer. We apply (2.3.1) with

N = KM . For integers k and m with 1 ≤ m ≤ M , put λkM+m = k + xm. Then

δkM+m = dm. If 0 ≤ k < K, put tkM+m = τm. On inserting into (2.3.1), we obtain

2
M∑
m=1

K−1∑
k=1

(K − k)d2mτ
2
m

k2
+

M∑
m=1

M∑
n=1
n 6=m

∑
k∈Z
|k|<K

(K − |k|)d
3
2
md

1
2
nτmτn

(xm − xn − k)2
≤ c3K

M∑
m=1

τ 2m. (2.5.3)

Now, since the series

∞∑
k=1

1

k2
=
π2

6
and

∑
k∈Z

1

(x− k)2
=

π2

sin2(πx)

converge, it follows that they are (C, 1) summable to the same values (see, e.g., [2,

p. 10]), which is to say that

lim
K→∞

1

K

K−1∑
k=1

K − k
k2

=
π2

6
and lim

K→∞

1

K

∑
k∈Z
|k|<K

K − |k|
(x− k)2

=
π2

sin2(πx)
.

Hence, dividing (2.5.3) by π2K and letting K →∞ gives (2.5.1).

(⇐) Suppose that (2.5.1) holds. Let (λk)
∞
k=−∞ be a strictly increasing sequence of

real numbers, and let δk := min {λk − λk−1, λk+1 − λk}. Let t1, . . . , tN be nonnegative
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real numbers. Let 0 < ε < 1
2(λN−λ0)

. We apply (2.5.1) with M = N . For positive

integers n ≤ N , put xn = ελn and τn = tn. Then dn ≥ εδn, and (2.5.1) implies

ε2

3

N∑
n=1

δ2nt
2
n +

N∑
m=1

N∑
n=1
n6=m

ε2δ
3
2
mδ

1
2
n tmtn

sin2 (πε (λm − λn))
≤ c3
π2

N∑
n=1

t2n.

On multiplying by π2 and letting ε→ 0+, we obtain (2.3.1).

Lemma 2.5.2. For positive real numbers B < 1 and positive integers L, we have

L∑
`=1

L+ 1− `
sin2

(
π`B
L

) =
L3

6B2
− L2 logL

π2B2
+OB

(
L2
)
. (2.5.4)

Proof. From the identity π2

sin2(πx)
=
∑

k∈Z
1

(x−k)2 , we see that if 0 < x ≤ B, then

π2

sin2(πx)
− 1

x2
=
∞∑
n=1

(
1

(n+ x)2
+

1

(n− x)2

)
<
∞∑
n=1

(
1

n2
+

1

(n−B)2

)
.

Hence, for 0 < x ≤ B, we have 1
sin2(πx)

= 1
π2x2

+ OB(1). Applying this estimate to

each term on the left side of (2.5.4), we obtain

L∑
`=1

L+ 1− `
sin2

(
π`B
L

) =
L∑
`=1

L2(L+ 1− `)
π2`2B2

+OB

(
L∑
`=1

(L+ 1− `)

)

=
L2(L+ 1)

π2B2

L∑
`=1

1

`2
− L2

π2B2

L∑
`=1

1

`
+OB

(
L2
)
.

Since
∑L

`=1
1
`2

= π2

6
+O

(
1
L

)
and

∑L
`=1

1
`

= logL+O(1), the result (2.5.4) follows.

Proof of Theorem 2.1.5. To prove a lower bound for C
(
1
2

)
, we apply (2.5.1) with

particular sets of values. Let K be a positive integer. Let A and B be positive real

numbers such that (K + 1)A + B = 1. Let L ≥ B
A

be an integer. We apply (2.5.1)

with M = K +L+ 1. Choose xk = kA for 1 ≤ k ≤ K and xK+`+1 = (K + 1)A+ `B
L

for 0 ≤ ` ≤ L. Then dk = A for 1 ≤ k ≤ K and dK+`+1 = B
L

for 0 ≤ ` ≤ L. Choose

τk = 1√
K

for 1 ≤ k ≤ K and τK+`+1 = u√
L+1

for 0 ≤ ` ≤ L where u is a nonnegative
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real number to be chosen later. Then (2.5.1) implies

A2

3
+
u2B2

3L2
+

2A2

K

K−1∑
k=1

K − k
sin2(πkA)

+
2u2B2

L2(L+ 1)

L∑
`=1

L+ 1− `
sin2

(
π`B
L

) (2.5.5)

+ u

√
AB

KL(L+ 1)

(
A+

B

L

) K∑
k=1

L∑
`=0

1

sin2
(
π
(
kA+ `B

L

)) ≤ c3
π2

(
1 + u2

)
.

We observe that

lim
L→∞

1

L

K∑
k=1

L∑
`=0

1

sin2
(
π
(
kA+ `B

L

)) =
K∑
k=1

∫ 1

0

dx

sin2(π(kA+Bx))

=
1

πB

K∑
k=1

(cot(π(K + 1− k)A) + cot(πkA))

=
2

πB

K∑
k=1

cot(πkA).

Now we let L→∞ in (2.5.5) and use the above estimate and Lemma 2.5.2, obtaining

A2

3
+

2A2

K

K−1∑
k=1

K − k
sin2(πkA)

+
u2

3
+

2u

π

√
A3

BK

K∑
k=1

cot(πkA) ≤ c3
π2

(
1 + u2

)
.

That is,

g(u) :=
κ0 + κ1u+ u2

3

1 + u2
≤ c3
π2
, (2.5.6)

where κ0 and κ1 depend on A, B, and K and are given by

κ0 :=
A2

3
+

2A2

K

K−1∑
k=1

K − k
sin2(πkA)

and κ1 :=
2

π

√
A3

BK

K∑
k=1

cot(πkA).

We find that g(u) is maximized on u ≥ 0 at

u = u0 :=
1

κ1

1

3
− κ0 +

√(
1

3
− κ0

)2

+ κ21

 .

On inserting u = u0 in (2.5.6), we get

GK(A) :=
1

2

1

3
+ κ0 +

√(
1

3
− κ0

)2

+ κ21

 ≤ c3
π2
.
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Figure 2.1: The graphs y = GK

(
x

K+1

)
, 0 < x < 1 for K = 1, . . . , 25 in the (x, y)-plane.

Figure 2.1 shows the plot of GK

(
x

K+1

)
for K = 1, . . . , 25 and 0 < x < 1. We find

G5(0.14) > 0.35047.

By Lemma 2.5.1, this gives the lower bound c3
π2 ≥ 0.35047 for any absolute constant

c3 such that (2.3.1) holds. Since (2.3.1) holds with c3 = C
(
1
2

)
, the result follows.

2.6 Proofs of Theorems 2.1.6 and 2.1.7

Proof of Theorem 2.1.6. Let [u1, . . . , uN ]> be an eigenvector of H = [hmn], where

hmn are given by (2.2.1) with

wn =
√
δn

(
D

3δn
+

2

3

√
δn
D

)− 1
4

,
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and let iµ be the purely imaginary eigenvalue associated with this eigenvector. We

apply Lemma 2.2.1. On multiplying (2.2.4) by |um|
wm

and summing over m, we get

µ2

N∑
m=1

|um|3

wm
=

N∑
m=1

N∑
n=1
n6=m

wmw
2
n |um| |un|

2

(λm − λn)2
+ 2

N∑
m=1

N∑
n=1
n6=m

w2
mwn |um| < (umun)

(λm − λn)2

≤
N∑
m=1

N∑
n=1
n6=m

wmw
2
n |um| |un|

2

(λm − λn)2
+ 2

N∑
m=1

N∑
n=1
n6=m

w2
mwn |um|

2 |un|
(λm − λn)2

= 3
N∑
m=1

N∑
n=1
n6=m

wmw
2
n |um| |un|

2

(λm − λn)2
.

Now, let us apply Hölder’s inequality with the last quantity:

3
N∑
m=1

N∑
n=1
n 6=m

wmw
2
n |um| |un|

2

(λm − λn)2

≤ 3

 N∑
m=1

N∑
n=1
n6=m

δnw
3
m |um|

3

δ2m (λm − λn)2


1
3
 N∑
m=1

N∑
n=1
n6=m

δmw
3
n |un|

3

δ
1
2
n (λm − λn)2


2
3

≤ π2

(
N∑
m=1

w3
m|um|3

δ3m

) 1
3
(

N∑
n=1

w3
n|un|3

δ
3
2
n

) 2
3

,

where we use Lemma 2.2.2. By the AM–GM inequality, the right side above is less

than or equal to

π2

(
D

3

N∑
m=1

w3
m|um|3

δ3m
+

2

3D
1
2

N∑
n=1

w3
n|un|3

δ
3
2
n

)
= π2

N∑
m=1

w3
m

δ2m

(
D

3δm
+

2

3

√
δm
D

)
|um|3 .

Combining the above, we obtain

µ2

N∑
m=1

|um|3

wm
≤ π2

N∑
m=1

w3
m

δ2m

(
D

3δm
+

2

3

√
δm
D

)
|um|3 = π2

N∑
m=1

|um|3

wm
.

Hence µ ≤ π, and (2.1.9) follows.

Proof of Theorem 2.1.7. Let f1, . . . , fN be positive real numbers. By Cauchy’s in-
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equality, the right side of (2.1.9) is

π
N∑
n=1

|zn|2

δn

√
D

3δn
+

2

3

√
δn
D
≤ π

(
N∑
n=1

fn |zn|2

δn

) 1
2
(

N∑
n=1

|zn|2

fnδn

(
D

3δn
+

2

3

√
δn
D

)) 1
2

= π

(
N∑
n=1

fn |zn|2

δn

) 1
2
(
D

3

N∑
n=1

|zn|2

fnδ2n
+

2

3
√
D

N∑
n=1

|zn|2

fn
√
δn

) 1
2

.

The result (2.1.10) follows on taking

D =

(
N∑
n=1

|zn|2

fn
√
δn

) 2
3
(

N∑
n=1

|zn|2

fnδ2n

)− 2
3

.
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CHAPTER 3

Generalized Factorials allowing Composite Bases

3.0 Abstract

This chapter presents a generalized version of Bhargava’s theory of factorial ideals

based on p-orderings of a nonempty subset S of a Dedekind ring R for all prime ideals

p in R. We treat the ring R = Z and generalize Bhargava’s theory to b-orderings of a

nonempty subset S of Z for all nontrivial proper ideals b in Z. We define generalized

factorials [k]!S,T , where T is a subset of B := {b ∈ Z : b ≥ 2} which corresponds

to the set of all nontrivial proper ideals of Z. We treat in detail the special case

(S, T ) = (Z,B) and compute its associated binomial coefficients
[
k
`

]
Z,B.

3.1 Introduction

3.1.1 Bhargava’s generalized factorials

Beginning in 1997, Bhargava developed a theory of generalized factorials for a class

of commutative rings R that he called Dedekind rings. These rings are quotients

of Dedekind domains and include all Dedekind domains. Bhargava’s generalized

factorials are associated to nonempty sets S of elements of R and to the set of all

prime ideals of R,

Spec (R) = {p : p is a prime ideal in R}. (3.1.1)

55
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Bhargava’s generalized factorials k!S are ideals in R.

For each prime ideal p in R and a nonempty subset S of R, he assigned an associ-

ated p-sequence (νk(S, p))∞k=0 of S in which νk(S, p) is a power of p. He constructed

the associated p-sequence using p-orderings of S. The generalized factorials of S,

denoted k!S, are defined as in [3, Definition 7] by

k!S :=
∏

p∈Spec(R)

νk(S, p).

We can write

νk(S, p) = pαk(S,p), (3.1.2)

where αk(S, p) ∈ N ∪ {∞}, with the conventions p0 = R and p∞ = (0).

Bhargava showed his factorials have many applications to many problems in com-

mutative algebra, to finding rings of integer-valued polynomials on a set S, and to

finding good bases for suitable function spaces, see also [4].

Bhargava originally developed his generalized factorials for the ring of integers Z,

in which case Spec(Z) = {(p) : p is a prime number}, which we may identify with

P := {2, 3, 5, . . . }, the set of all prime numbers. Bhargava [3] gave details for the

case R = Z. In this chapter we treat the case R = Z, and we describe Bhargava’s

theory in this case, following [3].

Bhargava’s key idea is the construction of p-orderings of S for any fixed prime

ideal p. We describe it for the case R = Z. Let p ∈ P be the prime number that

generates p ∈ Spec(Z). A p-ordering of S is any sequence a = (ai)
∞
i=0 of elements of

S that can be formed recursively as follows:

(i) a0 ∈ S is chosen arbitrarily;

(ii) Given aj ∈ S, j = 0, . . . , i − 1, the next element ai ∈ S is chosen so that it

minimizes the highest power of p dividing the product
∏i−1

j=0 (ai − aj).
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We note that:

(1) This construction does not give a unique p-ordering of S if |S| > 1.

(2) A p-ordering of S does not need to include all the elements of S.

Bhargava defines νi(S, p, a) to be the highest power of p dividing
∏i−1

j=0 (ai − aj).

That is, we may write

νi(S, p, a) = pαi(S,p,a), (3.1.3)

where

αi(S, p, a) := ordp

(
i−1∏
j=0

(ai − aj)

)
(3.1.4)

and ordp(·) is the additive p-adic valuation given by

ordp(k) := sup {α ∈ N : pα divides k} . (3.1.5)

Bhargava calls the sequence (νi(S, p, a))∞i=0 the associated p-sequence of S corre-

sponding to the p-ordering a. Bhargava [3, Theorem 5] showed

Theorem 3.1.1 (Bhargava [3]). The associated p-sequence of S is independent of

the choice of p-ordering.

Therefore one may write νi(S, p) = νi(S, p, a) as an invariant under the choice of

p-ordering a and call (νi(S, p))
∞
i=0 the associated p-sequence of S.

Bhargava used this invariant to define his generalized factorials. The factorial

function associated to S, denoted k!S, is defined by

k!S :=
∏
p

νk(S, p). (3.1.6)

Thus Bhargava’s theory produces factorials via their prime factorizations.

In the special case S = Z, Bhargava showed that the generalized factorials agree

with the usual factorials. To do this, Bhargava [3, Proposition 6] showed
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Theorem 3.1.2 (Bhargava [3]). The natural ordering 0, 1, 2, . . . of the nonnegative

integers forms a p-ordering of Z for all primes p simultaneously.

From Theorem 3.1.2, Bhargava deduces that

νk(Z, p) = wp

(
k−1∏
j=0

(k − j)

)
= wp(k!),

where wp(a) denotes the highest power of p dividing a (i.e., wp(a) = pordp(a)).

Therefore

k!Z =
∏
p

wp(k!) = k!. (3.1.7)

Bhargava also treated generalized binomial coefficients. Bhargava [3, Theorem 8]

showed

Theorem 3.1.3 (Bhargava [3]). For any nonnegative integers k and `, (k + `)!S is

a multiple of k!S`!S.

In other words, the generalized binomial coefficients(
k + `

k

)
S

:=
(k + `)!S
k!S`!S

are always integers.

3.2 Main results of this chapter

3.2.1 A generalization of Bhargava’s theory in the ring R = Z

We generalize Bhargava’s theory of p-orderings for prime ideals p in the ring R = Z

to treat b-orderings for nontrivial proper ideals b in Z. The set of all nontrivial proper

ideals of Z may be identified with the set

B := {b ∈ Z : b ≥ 2} = N\{0, 1} (3.2.1)

by the positive generators of the ideals. Here N := {0, 1, 2, . . . } is the set of all

nonnegative integers.
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Definition 3.2.1. Let b ∈ B. Let S be a nonempty subset of the ring of integers Z.

We call a sequence a = (ai)
∞
i=0 of elements of S an admissible b-ordering of S if for

all i = 1, 2, 3, . . . ,

i−1∑
j=0

ordb (ai − aj) = min
s∈S

i−1∑
j=0

ordb (s− aj) , (3.2.2)

where ordb(k) is defined for k ∈ Z by

ordb(k) := sup {α ∈ N : bα divides k} . (3.2.3)

Given any initial value a0 ∈ S, one can find an admissible b-ordering with that

initial value using the recurrence (3.2.2). There will be more than one admissible

b-ordering of S, unless S is a singleton.

Definition 3.2.2. Let b ∈ B. Let S be a nonempty subset of the ring Z. Let a =

(ai)
∞
i=0 be an admissible b-ordering of S. The associated b-sequence of S corresponding

to a, denoted (αi(S, b, a))∞i=0, is defined by

αi(S, b, a) :=
i−1∑
j=0

ordb (ai − aj) . (3.2.4)

We note that:

(1) αi(S, b, a) ∈ N ∪ {∞}.

(2) If S is finite, then αi(S, b, a) =∞ for all i ≥ |S|.

A main result of this chapter is that all associated b-sequences of a given set S

are the same.

Theorem 3.2.3 (Well-definedness of the associated b-sequence of S). Let b ∈ B. Let

S be a nonempty subset of the ring Z. Let a1 and a2 be admissible b-orderings of S.

Then αi (S, b, a1) = αi (S, b, a2) for all i = 0, 1, 2, . . . .
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Bhargava proved Theorem 3.2.3 for all b ∈ P , where P := {2, 3, 5, . . . } is the set

of all primes. Bhargava’s proofs, as presented in [2] and [3], do not extend to the

case of composite bases b. We complete the proof of Theorem 3.2.3 in Subsection

3.5.3.

Theorem 3.2.3 provides the well-definedness of the associated b-sequence of S.

Definition 3.2.4. Let b ∈ B. Let S be a nonempty subset of the ring Z. We write

(αi(S, b))
∞
i=0 for the associated b-sequence of S, which is defined by

αi(S, b) := αi(S, b, a) (3.2.5)

for any admissible b-ordering a of S.

3.2.2 Generalized factorials and generalized positive integers

We now define generalized factorials associated to a nonempty subset S of the ring

Z and a set of allowed bases (or generalized prime numbers) T ⊆ B := {2, 3, 4, . . . }.

Here B corresponds to the set of all nontrivial proper ideals of the ring Z.

Definition 3.2.5. Let S be a nonempty subset of the ring Z. Let T ⊆ B. For

k = 0, 1, 2, . . . , the generalized factorial of k associated to S and T , denoted [k]!S,T ,

is defined by

[k]!S,T :=
∏
b∈T

bαk(S,b). (3.2.6)

We note that:

(1) If T = ∅, then the product on the right side of (3.2.6) is empty; so [k]!S,∅ = 1.

(2) If T 6= ∅, then [k]!S,T is a (finite) positive integer if and only if k < |S|.

(3) From (3.2.5) and (3.2.4), we see that α0(S, b) = 0 for all b ∈ B; so [0]!S,T = 1.

(4) [1]!S,T = 1 as long as S is not contained in a single congruence class modulo b

for any b ∈ T .
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Example 3.2.6. The special case T = P agrees with Bhargava’s generalized facto-

rials [3]. It contains the usual factorial function as the special case (S, T ) = (Z,P):

[k]!Z,P = k!.

Proposition 3.2.7 (Ordering). (1) Let S1 ⊆ S2 be nonempty subsets of the ring

Z. Let T ⊆ B. Then for integers 0 ≤ k < |S1|,

[k]!S2,T divides [k]!S1,T .

(2) Let S be a nonempty subset of the ring Z. Let T1 ⊆ T2 ⊆ B. Then for integers

0 ≤ k < |S|,

[k]!S,T1 divides [k]!S,T2 .

We prove Proposition 3.2.7 in Subsection 3.5.3.

Now, we define generalized positive integers [n]S,T .

Definition 3.2.8. Let S be a nonempty subset of the ring Z. Let T ⊆ B. For

positive integers n < |S|, the nth generalized positive integer associated to S and T ,

denoted [n]S,T , is defined by

[n]S,T :=
[n]!S,T

[n− 1]!S,T
. (3.2.7)

Theorem 3.2.9. Let S be a nonempty subset of the ring Z. Let T ⊆ B. Then for

positive integers n < |S|, the generalized positive integer [n]S,T is an integer.

We prove Theorem 3.2.9 in Subsection 3.5.3.

3.2.3 Generalized binomial coefficients

Definition 3.2.10. Let S be a nonempty subset of the ring Z. Let T ⊆ B. For

integers 0 ≤ ` ≤ k < |S|, the generalized binomial coefficient k choose ` associated
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to S and T , denoted
[
k
`

]
S,T , is defined by[

k

`

]
S,T

:=
[k]!S,T

[`]!S,T [k − `]!S,T
. (3.2.8)

Theorem 3.2.11. Let S be a nonempty subset of the ring Z. Let T ⊆ B. Then for

integers 0 ≤ ` ≤ k < |S|, the generalized binomial coefficient
[
k
`

]
S,T is an integer.

We prove Theorem 3.2.11 in Subsection 3.5.3.

3.2.4 The special case (S, T ) = (Z,B): generalized factorials

We treat in detail the case (S, T ) = (Z,B), in which both S and T are maximal.

Theorem 3.2.12. The natural ordering 0, 1, 2, . . . of the nonnegative integers forms

an admissible b-ordering of S = Z for all b ∈ B simultaneously.

We prove Theorem 3.2.12 in Section 3.6.

Theorem 3.2.13. For k = 0, 1, 2, . . . , the generalized factorial of k associated to

S = Z and T = B is

[k]!Z,B =
k∏
b=2

bγ(k,b), (3.2.9)

where

γ(k, b) :=
∞∑
i=1

⌊
k

bi

⌋
. (3.2.10)

Theorem 3.2.13 is analogous to Legendre’s formula (also known as de Polignac’s

formula), which states that

ordp(k!) =
∞∑
i=1

⌊
k

pi

⌋
(3.2.11)

for all p ∈ P . The right side of (3.2.11) is γ(k, p). We prove Theorem 3.2.13 in

Section 3.6.

Theorem 3.2.14. For n = 1, 2, 3, . . . , the nth generalized positive integer associated

to S = Z and T = B is

[n]Z,B =
n∏
b=2

bordb(n), (3.2.12)
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where ordb(n) is the maximal α ∈ N such that bα divides n.

Theorem 3.2.14 is analogous to the prime factorization of positive integers:

n =
∏
p∈P

pordp(n).

We prove Theorem 3.2.14 in Section 3.6.

Knuth and Wilf [6] considered the notion of generalized binomial coefficients
[
k
`

]
C

defined by a sequence C = (Cn)∞n=1 of positive integers by[
k

`

]
C

=
∏̀
j=1

Ck−j+1

Cj

for integers 0 ≤ ` ≤ k. They showed that if C satisfies the condition

gcd (Cm, Cn) = Cgcd(m,n)

for all positive integers m and n, in which case C is said to be regularly divisible,

then the generalized binomial coefficients are all integers. Here, the sequence C1 =

([n]Z,B)∞n=1 is not regularly divisible, since

gcd ([4]Z,B, [6]Z,B) = gcd(16, 36) = 4 but [gcd(4, 6)]Z,B = [2]Z,B = 2.

However, the generalized binomial coefficients[
k

`

]
C1

=

[
k

`

]
Z,B

are all integers by Theorem 3.2.11.

3.2.5 The special case (S, T ) = (Z,B): generalized binomial coefficients

Theorem 3.2.15. Let k ≥ ` be nonnegative integers. Then:

(1) We have [
k

`

]
Z,B

=
k∏
b=2

bβ(k,`,b), (3.2.13)
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where

β(k, `, b) :=
∞∑
i=1

(⌊
k

bi

⌋
−
⌊
`

bi

⌋
−
⌊
k − `
bi

⌋)
. (3.2.14)

(2) For b ∈ B,

β(k, `, b) =
1

b− 1
(db(`) + db(k − `)− db(k)) , (3.2.15)

where db(j) is the sum of the base-b digits of j.

We prove Theorem 3.2.15 in Section 3.6.

Corollary 3.2.16. Let Gn be the product of the generalized binomial coefficients

associated to S = Z and T = B in the nth row of Pascal’s triangle:

Gn :=
n∏
k=0

[
n

k

]
Z,B
. (3.2.16)

Then for n = 1, 2, 3, . . . ,

Gn =
n∏
b=2

bν(n,b), (3.2.17)

where

ν(n, b) :=
2

b− 1
Sb(n)− n− 1

b− 1
db(n) (3.2.18)

and Sb(n) :=
∑n−1

j=1 db(j).

We prove Corollary 3.2.16 in Section 3.6.

3.3 Preliminaries

We derive identities for generalized factorials and generalized binomial coefficients

which will be used in Subsection 3.5.3 and Section 3.6.

Proposition 3.3.1. Let S be a nonempty subset of the ring Z. Let T ⊆ B. Then

for positive integers n < |S|,

[n]S,T =
∏
b∈T

bαn(S,b)−αn−1(S,b). (3.3.1)



65

Proof. This follows from Definitions 3.2.8 and 3.2.5.

Proposition 3.3.2. Let S be a nonempty subset of the ring Z. Let T ⊆ B. Then

for integers 0 ≤ ` ≤ k < |S|,[
k

`

]
S,T

=
∏
b∈T

bαk(S,b)−α`(S,b)−αk−`(S,b). (3.3.2)

Proof. This follows from Definitions 3.2.10 and 3.2.5.

3.4 Bhargava’s theory in the ring D[[t]]

3.4.1 t-orderings of an arbitrary subset of D[[t]]

In what follows, we let D be an integral domain. Let U 6= ∅ be a subset of

D[[t]], the ring of formal power series over D. We define a valuation ordt : D[[t]]→

{0, 1, 2, . . . } ∪ {∞} by ordt(0) =∞ and for nonzero f(t) =
∑∞

i=0 dit
i,

ordt(f(t)) = min {i ∈ N : di 6= 0} .

That is,

ordt(f(t)) = sup {α ∈ N : tα divides f(t)} .

Proposition 3.4.1. The function ordt satisfies

ordt(f(t)± g(t)) ≥ min {ordt(f(t)), ordt(g(t))} , (3.4.1)

ordt(f(t)g(t)) = ordt(f(t)) + ordt(g(t)). (3.4.2)

Proof. If f(t) = 0 or g(t) = 0, then (3.4.1) and (3.4.2) are clearly true. Now, suppose

that α := ordt(f(t)) and β := ordt(g(t)) are finite. So f(t) =
∑∞

i=0 dit
i where dj = 0

for all j < α and dα 6= 0, and g(t) =
∑∞

i=0 eit
i where ek = 0 for all k < β and

eβ 6= 0. The coefficient of ti in f(t) ± g(t) is given by [ti] (f(t) ± g(t)) = di ± ei,

which is zero if i < min {α, β}. So ordt(f(t) ± g(t)) ≥ min {α, β}. The coefficient
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of ti in f(t)g(t) is given by [ti] (f(t)g(t)) =
∑i

j=0 djei−j, which is zero if i < α + β.

Moreover,
[
tα+β

]
(f(t)g(t)) = dαeβ 6= 0. So ordt(f(t)g(t)) = α + β.

Definition 3.4.2. A t-ordering of U is a sequence f := (fi(t))
∞
i=0 of formal power

series in U that is formed as follows:

• Choose any formal power series f0(t) in U .

• Suppose that fj(t), j = 0, 1, 2, . . . , k − 1 are chosen. Choose fk(t) in U that

minimizes
k−1∑
j=0

ordt (fk(t)− fj(t)) .

In general, a t-ordering of U is not unique. But we will prove

Theorem 3.4.3. The sequence (αk(U, f))∞k=0 defined by

αk(U, f) :=
k−1∑
j=0

ordt (fk(t)− fj(t)) (3.4.3)

is independent of the choice of t-ordering f = (fi(t))
∞
i=0 of U .

To prove this, we consider polynomials p(x; t) in x with coefficients in D[[t]].

Definition 3.4.4. We say that a polynomial p(x; t) with coefficients in D[[t]] is

t-primitive if ordt ([xi] p(x; t)) = 0 for some i.

Theorem 3.4.5. Let p(x; t) be a t-primitive polynomial in x of degree k. Let f be a

t-ordering of U . Then

min {ordt(p(f(t); t)) : f(t) ∈ U} ≤ αk(U, f).

In the next Subsection 3.4.2, we prove Theorems 3.4.5 and 3.4.3.
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3.4.2 Proofs of Theorems 3.4.5 and 3.4.3

Lemma 3.4.6. For U ⊆ D[[t]] and a t-ordering f = (fi(t))
∞
i=0 of U , the associated

t-sequence (αk(U, f))∞k=0 is weakly increasing.

Proof. Let U ⊆ D[[t]], and let f = (fi(t))
∞
i=0 be a t-ordering of U . Let k be a

nonnegative integer. From the definition (3.5.5), we have

αk(U, f) =
k−1∑
j=0

ordt (fk(t)− fj(t)) ,

αk+1(U, f) =
k∑
j=0

ordt (fk+1(t)− fj(t)) .

From Definition 3.4.2, we have

k−1∑
j=0

ordt (fk(t)− fj(t)) ≤
k−1∑
j=0

ordt (fk+1(t)− fj(t)) .

Hence αk(U, f) ≤ αk+1(U, f)− ordt (fk+1(t)− fk(t)) ≤ αk+1(U, f).

Lemma 3.4.7. Suppose that (fi(t))
∞
i=0 is a t-ordering of U . For j = 0, 1, 2, . . . , k,

let cj(t) be formal power series in D[[t]], and let

pj(x; t) := cj(t)

j−1∏
i=0

(x− fi(t)) , (3.4.4)

p(x; t) :=
k∑
j=0

pj(x; t). (3.4.5)

Then

min {ordt (pj(f(t); t)) : f(t) ∈ U} = ordt (cj(t)) +

j−1∑
i=0

ordt (fj(t)− fi(t)) , (3.4.6)

min {ordt(p(f(t); t)) : f(t) ∈ U} ≤ min {ordt (pj(f(t); t)) : f(t) ∈ U} (3.4.7)

for all j = 0, 1, 2, . . . , k.
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Proof. We prove (3.4.6) first. Using Proposition 3.4.1, we see that

ordt (pj(f(t); t)) = ordt (cj(t)) +

j−1∑
i=0

ordt (f(t)− fi(t)) .

The right-hand side attains its minimum value over f(t) ∈ S at f(t) = fj(t). Hence

(3.4.6) follows.

We prove (3.4.7) by induction on j. Denote by µ the left-hand side of (3.4.7).

Then

µ ≤ ordt (p (f0(t); t)) = ordt (c0(t)) = ordt (p0(f(t); t))

for any f(t) ∈ U . Hence (3.4.7) is true for j = 0. Now, suppose that (3.4.7) is true

for j = 0, 1, 2, . . . , ` − 1, where 1 ≤ ` ≤ k. By Proposition 3.4.1, we can rewrite

(3.4.6) with j replaced by ` as

min {ordt (p`(f(t); t)) : f(t) ∈ U} = ordt (p` (f`(t); t)) . (3.4.8)

From the identity

p` (f`(t); t) = p (f`(t); t)−
`−1∑
j=0

pj (f`(t); t)

and Proposition 3.4.1, we deduce that

ordt (p` (f`(t); t)) ≥ min {ordt (p (f`(t); t))} ∪ {ordt (pj (f`(t); t)) : 0 ≤ j ≤ `− 1}

≥ min {µ} ∪ {ordt (pj(f(t); t)) : f(t) ∈ U, 0 ≤ j ≤ `− 1} .

The last quantity is µ by the induction hypothesis. From (3.4.8), we conclude that

(3.4.7) is true for j = `. This completes the proof.

Proof of Theorem 3.4.5. Let f = (fi(t))
∞
i=0 be a t-ordering of U . We show that

min {ordt(p(f(t); t)) : f(t) ∈ U} ≤ αk(U, f).
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The polynomial p(x; t) can be decomposed into the form (3.4.5), where pj(x; t) are

given by (3.4.4) and cj(t) ∈ D[[t]] are uniquely determined by p(x; t) and f . Since

p(x; t) is t-primitive, it follows that there is j0 ∈ {0, . . . , k} such that ordt (cj0(t)) = 0.

Applying Lemma 3.4.7 with j = j0, we obtain by (3.4.7) and (3.4.6) respectively

min {ordt(p(f(t); t)) : f(t) ∈ U} ≤ min {ordt (pj0(f(t); t)) : f(t) ∈ U}

= ordt (cj0(t)) +

j0−1∑
i=0

ordt (fj0(t)− fi(t))

=

j0−1∑
i=0

ordt (fj0(t)− fi(t))

= αj0(U, f).

The last quantity is ≤ αk(S, f) by Lemma 3.4.6.

Proposition 3.4.8. Let f = (fi(t))
∞
i=0 be a t-ordering of U . Then

αk(U, f) = max
p(x;t)

min {ordt(p(f(t); t)) : f(t) ∈ U} , (3.4.9)

where the maximum runs over all t-primitive polynomials p(x; t) of degree k. More-

over, if

qk(x; t) :=
k−1∏
j=0

(x− fj(t)) ,

then

αk(U, f) = min {ordt (qk(f(t); t)) : f(t) ∈ U} . (3.4.10)

Proof. Taking the maximum over all t-primitive polynomials p(x; t) of degree k in

Theorem 3.4.5, we obtain

αk(U, f) ≥ max
p(x;t)

min {ordt(p(f(t); t)) : f(t) ∈ U} .
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Hence it suffices to prove the second assertion. By the definition of t-orderings,

min {ordt (qk(f(t); t)) : f(t) ∈ U} = min
f(t)∈U

k−1∑
j=0

ordt (f(t)− fj(t))

=
k−1∑
j=0

ordt (fk(t)− fj(t))

= αk(U, f).

This completes the proof.

Proof of Theorem 3.4.3. From Proposition 3.4.8, since the right side of (3.4.9) does

not depend on the choice of t-ordering f , the result follows.

Since we have proved that αk(U, f) does not depend on f , we will refer to it as

αk(U) from now on.

Definition 3.4.9. We call (αk(U))∞k=0 = (αk(U, f))∞k=0 the associated t-sequence of

U .

3.4.3 Properties of the associated t-sequence

Theorem 3.4.10. For nonnegative integers k and `, we have

αk+`(U) ≥ αk(U) + α`(U).

Proof. Let f = (fi(t))
∞
i=0 be a t-ordering of U . Applying Proposition 3.4.8, we obtain

αk(U) + α`(U) = min {ordt (qk(f(t); t)) : f(t) ∈ U}+ min {ordt (q`(f(t); t)) : f(t) ∈ U}

≤ min {ordt (qk(f(t); t)) + ordt (q`(f(t); t)) : f(t) ∈ U}

= min {ordt (qk(f(t); t)q`(f(t); t)) : f(t) ∈ U}

≤ max
p(x;t)

min{ordt(p(f(t); t)) : f(t) ∈ U}

= αk+`(U),

where the maximum runs over all t-primitive polynomials p(x; t) of degree k+ `.
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Theorem 3.4.11. Suppose that U1 ⊆ U2 ⊆ D[[t]]. Then αk (U1) ≥ αk (U2) for every

nonnegative integer k.

Proof. Let p(x; t) be a t-primitive polynomial of degree k. Since U1 ⊆ U2, it follows

that

min {ordt(p(f(t); t)) : f(t) ∈ U1} ≥ min {ordt(p(f(t); t)) : f(t) ∈ U2} .

Taking the maximum over all t-primitive polynomials p(x; t) of degree k and applying

Proposition 3.4.8, we obtain αk (U1) ≥ αk (U2).

Theorem 3.4.12. Let gi(t), i = 0, 1, 2, . . . , n be formal power series in U . Then

n−1∑
i=0

n∑
j=i+1

ordt (gi(t)− gj(t)) ≥
n∑
k=1

αk(U). (3.4.11)

Proof. If gi(t) = gj(t) for some 0 ≤ i < j ≤ n, then the left side of (3.5.6) is

∞ and (3.5.6) is true. Now, assume that g1(t), . . . , gn(t) are pairwise distinct.

Without loss of generality, we may assume that (gi(t))
n
i=0 is a t-ordering of V :=

{gi(t) : i = 0, . . . , n}. So for k = 1, . . . , n,

αk(V ) =
k−1∑
j=0

ordt (gk(t)− gj(t)) .

On the other hand, since V ⊆ U , Theorem 3.4.11 yields νk(V ) ≥ νk(U). Thus

k−1∑
j=0

ordt (gk(t)− gj(t)) ≥ αk(U). (3.4.12)

The result follows by summing (3.4.12) over k = 1, . . . , n.

3.5 Property C

3.5.1 Mapping to D[[t]]

Let R be a commutative ring and b a nonzero proper ideal of R. The crucial

property for our argument will be the existence of an injective map ϕb : R → D[[t]]

that has the following property.
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Property C. The map ϕb : R → D[[t]] satisfies Property C (R, b, D) (or simply

Property C) if

ϕb (a1) ≡ ϕb (a2) (mod tk) if and only if a1 ≡ a2 (mod bk) (3.5.1)

for all k ≥ 1.

For a ∈ R, denote by ordb(a) the supremum of all nonnegative integers k such

that a ∈ bk; i.e.,

ordb(a) := sup
{
k ∈ N : a ∈ bk

}
.

Here b0 = R.

Proposition 3.5.1. Assume that ϕb : R→ D[[t]] satisfies Property C. Then

ordt (ϕb (a1)− ϕb (a2)) = ordb (a1 − a2) . (3.5.2)

Proof. The result readily follows from the definitions of ordt and ordb.

We note that the quantity on the right side of (3.5.2) is independent of the map

ϕb and the integral domain D.

3.5.2 b-orderings of an arbitrary subset of R

As in the previous section, we let R be a commutative ring and let b be a nonzero

proper ideal of R. Let S be an arbitrary subset of R. Given that there exists a map

ϕb : R→ D[[t]] satisfying Property C, we can define b-orderings of S ⊆ R analogous

to t-orderings of U ⊆ D[[t]].

Definition 3.5.2. A b-ordering of S is a sequence a := (ai)
∞
i=0 of elements of S that

is formed as follows:

• Choose any element a0 of S.
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• Suppose that aj, j = 0, 1, 2, . . . , k−1 are chosen. Choose ak in S that minimizes

k−1∑
j=0

ordb (ak − aj) .

Lemma 3.5.3. Assume that ϕb : R → D[[t]] satisfies Property C. Suppose that

a := (ai)
∞
i=0 is a b-ordering of S. Then (ϕb (ai))

∞
i=0 is a t-ordering of ϕb (S) :=

{ϕb (s) : s ∈ S} and

αk (ϕb (S)) =
k−1∑
j=0

ordb (ak − aj) . (3.5.3)

Proof. The first assertion follows from Definitions 3.4.2 and 3.5.2 and Proposition

3.5.1. Hence the associated t-sequence of ϕb (S) is given by

αk (ϕb (S)) =
k−1∑
j=0

ordt (ϕb (ak)− ϕb (aj)) . (3.5.4)

By Proposition 3.5.1, the right side of (3.5.4) is equal to
∑k−1

j=0 ordb (ak − aj).

Corollary 3.5.4. Assume that there is a map ϕb : R → D[[t]] satisfying Property

C. Then the sequence (αk (S, b, a))∞k=0 defined by

αk (S, b, a) :=
k−1∑
j=0

ordb (ak − aj) (3.5.5)

is independent of the choice of b-ordering a = (ai)
∞
i=0 of S.

Proof. The left side of (3.5.3) is independent of a.

Definition 3.5.5. On the assumption that there exists a map ϕb : R → D[[t]]

satisfying Property C, we call (αk (S, b))∞k=0 = (αk (S, b, a))∞k=0 the associated b-

sequence of S.

Lemma 3.5.6. Assume that ϕb : R→ D[[t]] satisfies Property C. Then for nonneg-

ative integers k, we have

αk (S, b) = αk (ϕb (S)) .
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Ring D[[t]] R
Subset U S
Base tD[[t]] b

Valuation ordt ordb

Orderings f = (fi(t))
∞
i=0 a = (ai)

∞
i=0

Invariant (αk(U))
∞
k=0 (αk (S, b))

∞
k=0

Table 3.1: List of notations

Proof. The result follows from Definition 3.5.5 and Equations (3.5.5) and (3.5.3)

Corollary 3.5.7. Assume that there is a map ϕb : R → D[[t]] satisfying Property

C. Then for nonnegative integers k and `, we have

αk+` (S, b) ≥ αk (S, b) + α` (S, b) .

Proof. Applying Theorem 3.4.10 with U = ϕb (S), we obtain

αk+` (ϕb (S)) ≥ αk (ϕb (S)) + α` (ϕb (S)) .

By Lemma 3.5.6, the above is αk+` (S, b) ≥ αk (S, b) + α` (S, b).

Corollary 3.5.8. Assume that there is a map ϕb : R → D[[t]] satisfying Property

C. Let si, i = 0, 1, 2, . . . , n be elements of S. Then

n−1∑
i=0

n∑
j=i+1

ordb (si − sj) ≥
n∑
k=1

αk (S, b) . (3.5.6)

Proof. Applying Theorem 3.4.12 with U = ϕb (S) and gi(t) = ϕb (si), we obtain

n−1∑
i=0

n∑
j=i+1

ordt (ϕb (si)− ϕb (sj)) ≥
n∑
k=1

αk (ϕb (S)) .

By Proposition 3.5.1 and Lemma 3.5.6, the above is (3.5.6).

Corollary 3.5.9. Assume that there is a map ϕb : R → D[[t]] satisfying Property

C. Then the associated b-sequence (αk (S, b))∞k=0 is weakly increasing.
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Proof. Applying Lemma 3.4.6 with U = ϕb (S), we see that the associated t-sequence

(αk (ϕb (S)))∞k=0 is weakly increasing, and this sequence is the associated b-sequence

(αk (S, b))∞k=0 by Lemma 3.5.6.

Corollary 3.5.10. Assume that there is a map ϕb : R → D[[t]] satisfying Property

C. Suppose that S1 ⊆ S2 ⊆ R. Then αk (S1, b) ≥ αk (S2, b) for every nonnegative

integer k.

Proof. Applying Lemma 3.4.11 with U1 = ϕb (S1) and U2 = ϕb (S2), we obtain

αk (ϕb (S1)) ≥ αk (ϕb (S2)) .

By Lemma 3.5.6, the above is αk (S1, b) ≥ αk (S2, b).

3.5.3 The case R = Z

Thoughtout this section, we consider the case that R = Z. Since Z is a principal

ideal domain, it follows that the ideal b is principal. Let b ∈ Z be the positive

generator of b. Since b is a proper ideal of Z, it follows that b ≥ 2. We choose D = Z

and define ϕb : Z→ Z[[t]] by

ϕb(a) = fa,b(t) :=
∞∑
k=0

dkt
k, (3.5.7)

where

dk = dk(a, b) :=
⌊ a
bk

⌋
− b
⌊ a

bk+1

⌋
. (3.5.8)

If a ≥ 0, then the dk’s are the digits of a in base b.

Proposition 3.5.11. The map ϕb : Z→ Z[[t]] defined by (3.5.7) and (3.5.8) satisfies

Property C(Z, b,Z).
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Proof. (⇒) Suppose that ϕb (a1) ≡ ϕb (a2) (mod tk). That is, d` (a1, b) = d` (a2, b)

for all ` = 0, . . . , k − 1. From the identity

a− bk
⌊ a
bk

⌋
=

k−1∑
`=0

d`(a, b)b
`,

we see that a1 − bk
⌊
a1
bk

⌋
= a2 − bk

⌊
a2
bk

⌋
. We deduce that a1 ≡ a2 (mod bk).

(⇐) Suppose that a1 ≡ a2 (mod bk). That is, a1 − a2 = bkq for some q ∈ Z. So

for ` = 0, . . . , k − 1,

d` (a1, b) =
⌊a1
b`

⌋
− b
⌊ a1
b`+1

⌋
=

⌊
a2 + bkq

b`

⌋
− b
⌊
a2 + bkq

b`+1

⌋
=
(⌊a2

b`

⌋
+ bk−`q

)
− b
(⌊ a2
b`+1

⌋
+ bk−`−1q

)
=
⌊a2
b`

⌋
− b
⌊ a2
b`+1

⌋
= d` (a2, b) .

Hence ϕb (a1) ≡ ϕb (a2) (mod tk).

Proposition 3.5.11 implies that all the corollaries in Section 3.5.2 hold for the case

that R = D = Z.

Proof of Theorem 3.2.3. The result follows from Proposition 3.5.11 and Corollary

3.5.4 with b = bZ.

Proof of Proposition 3.2.7. (1) This is true because

[k]!S,T2 = [k]!S,T2\T1 [k]!S,T1 .

(2) It follows from Proposition 3.5.11 and Corollary 3.5.10 that αk (S1, b) ≥

α (S2, b) for all b ∈ B. Since

[k]!S1,T

[k]!S2,T
=
∏
b∈T

bαk(S1,b)−α(S2,b),

the result follows.
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Proof of Theorem 3.2.9. It follows from Proposition 3.5.11 and Corollary 3.5.9 that

αn(S, b) ≥ αn−1(S, b) for all b ∈ B. The result follows from (3.3.1).

Proof of Theorem 3.2.11. It follows from Proposition 3.5.11 and Corollary 3.5.7 that

αk(S, b) ≥ α`(S, b) + αk−`(S, b) for all b ∈ B. The result follows from (3.3.2).

3.6 The case (S, T ) = (Z,B)

Proof of Theorem 3.2.12. The proof is by induction: if 0, 1, 2, . . . , k−1 is a b-ordering

for the first k − 1 steps, then at the kth step we need to pick ak ∈ Z to minimize

Q :=
k−1∑
j=0

ordb (ak − j) .

Write

ordb (x) =
∑
i≥1
bi|x

1. (3.6.1)

Then

Q =
k−1∑
j=0

∑
i≥1

ak≡j mod bi

1

=
∑
i≥1

k−1∑
j=0

j≡ak mod bi

1

≥
∑
i≥1

⌊
k

bi

⌋
,

and there is equality if ak = k. So at the kth step we choose ak = k, and the claim

follows by induction.

Proof of Theorem 3.2.13. This follows from the proof of Theorem 3.2.12. Note that

γ(k, b) = 0 if b > k.
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Proof of Theorem 3.2.14. The result follows by noting that

⌊n
bi

⌋
−
⌊
n− 1

bi

⌋
=


1 if bi | n,

0 otherwise.

So from (3.6.1),

ordb (n) =
∑
i≥1

(⌊n
bi

⌋
−
⌊
n− 1

bi

⌋)
.

Proof of Theorem 3.2.15. (1) follows from the definition and Theorem 3.2.13.

(2) follows from (1) and the identity

db(n) = n− (b− 1)
∞∑
i=1

⌊n
bi

⌋
.

Proof of Corollary 3.2.16. We have

Gn =
n∏
k=0

[
n

k

]
Z,B

=
n∏
k=0

n∏
b=2

bβ(n,k,b)

=
n∏
b=2

b
∑n
k=0 β(n,k,b).

From (3.2.15),

n∑
k=0

β(n, k, b) =
n−1∑
k=1

1

b− 1
(db(k) + db(n− k)− db(n))

= ν(n, b).
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3.7 Appendix: tables of values for the special case (S, T ) = (Z,B)

3.7.1 Generalized positive integers

n [n]Z,B

1 1 = 1
2 2 = 2
3 3 = 3
4 16 = 24

5 5 = 5
6 36 = 22 × 32

7 7 = 7
8 256 = 28

9 81 = 34

10 100 = 22 × 52

11 11 = 11
12 3, 456 = 27 × 33

13 13 = 13
14 196 = 22 × 72

15 225 = 32 × 52

16 32, 768 = 215

17 17 = 17
18 17, 496 = 23 × 37

19 19 = 19
20 16, 000 = 27 × 53

n [n]Z,B

21 441 = 32 × 72

22 484 = 22 × 112

23 23 = 23
24 1, 327, 104 = 214 × 34

25 625 = 54

26 676 = 22 × 132

27 6, 561 = 38

28 43, 904 = 27 × 73

29 29 = 29
30 810, 000 = 24 × 34 × 54

31 31 = 31
32 2, 097, 152 = 221

33 1, 089 = 32 × 112

34 1, 156 = 22 × 172

35 1, 225 = 52 × 72

36 362, 797, 056 = 211 × 311

37 37 = 37
38 1, 444 = 22 × 192

39 1, 521 = 32 × 132

40 10, 240, 000 = 214 × 54

n [n]Z,B

41 41
42 24 × 34 × 74

43 43
44 27 × 113

45 37 × 53

46 22 × 232

47 47
48 225 × 35

49 74

50 23 × 57

51 32 × 172

52 27 × 133

53 53
54 24 × 314

55 52 × 112

56 214 × 74

57 32 × 192

58 22 × 292

59 59
60 213 × 36 × 56

Table 3.2: [n]Z,B decimal for 1 ≤ n ≤ 40 and factored for 1 ≤ n ≤ 60
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3.7.2 Generalized factorials

k [k]!Z,B

0 1 = 1
1 1 = 1
2 2 = 2
3 6 = 2× 3
4 96 = 25 × 3
5 480 = 25 × 3× 5
6 17, 280 = 27 × 33 × 5
7 120, 960 = 27 × 33 × 5× 7
8 30, 965, 760 = 215 × 33 × 5× 7
9 2, 508, 226, 560 = 215 × 37 × 5× 7
10 250, 822, 656, 000 = 217 × 37 × 53 × 7
11 2, 759, 049, 216, 000 = 217 × 37 × 53 × 7× 11
12 9, 535, 274, 090, 496, 000 = 224 × 310 × 53 × 7× 11
13 123, 958, 563, 176, 448, 000 = 224 × 310 × 53 × 7× 11× 13
14 24, 295, 878, 382, 583, 808, 000 = 226 × 310 × 53 × 73 × 11× 13
15 5, 466, 572, 636, 081, 356, 800, 000 = 226 × 312 × 55 × 73 × 11× 13
16 179, 128, 652, 139, 113, 899, 622, 400, 000 = 241 × 312 × 55 × 73 × 11× 13
17 3, 045, 187, 086, 364, 936, 293, 580, 800, 000 = 241 × 312 × 55 × 73 × 11× 13× 17
18 53, 278, 593, 263, 040, 925, 392, 489, 676, 800, 000 = 244 × 319 × 55 × 73 × 11× 13× 17
19 1, 012, 293, 271, 997, 777, 582, 457, 303, 859, 200, 000 = 244 × 319 × 55 × 73 × 11× 13× 17× 19

Table 3.3: [k]!Z,B decimal and factored for 0 ≤ k ≤ 19

k [k]!Z,B

20 251 × 319 × 58 × 73 × 11× 13× 17× 19
21 251 × 321 × 58 × 75 × 11× 13× 17× 19
22 253 × 321 × 58 × 75 × 113 × 13× 17× 19
23 253 × 321 × 58 × 75 × 113 × 13× 17× 19× 23
24 267 × 325 × 58 × 75 × 113 × 13× 17× 19× 23
25 267 × 325 × 512 × 75 × 113 × 13× 17× 19× 23
26 269 × 325 × 512 × 75 × 113 × 133 × 17× 19× 23
27 269 × 333 × 512 × 75 × 113 × 133 × 17× 19× 23
28 276 × 333 × 512 × 78 × 113 × 133 × 17× 19× 23
29 276 × 333 × 512 × 78 × 113 × 133 × 17× 19× 23× 29
30 280 × 337 × 516 × 78 × 113 × 133 × 17× 19× 23× 29

Table 3.4: [k]!Z,B factored for 20 ≤ k ≤ 30
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3.7.3 Generalized binomial coefficients

k\` 0 1 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 16 24 16 1

5 1 5 40 40 5 1

6 1 36 90 480 90 36 1

7 1 7 126 210 210 126 7 1

8 1 256 896 10, 752 3, 360 10, 752 896 256 1

9 1 81 10, 368 24, 192 54, 432 54, 432 24, 192 10, 368 81 1

10 1 100 4, 050 345, 600 151, 200 1, 088, 640 151, 200 345, 600 4, 050 100 1

Table 3.5:
[
k
`

]
Z,B decimal for 0 ≤ ` ≤ k ≤ 10

k\` 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 24 23 · 3 24 1
5 1 5 23 · 5 23 · 5 5 1
6 1 22 · 32 2 · 32 · 5 25 · 3 · 5 2 · 32 · 5 22 · 32 1
7 1 7 2 · 32 · 7 2 · 3 · 5 · 7 2 · 3 · 5 · 7 2 · 32 · 7 7 1
8 1 28 27 · 7 29 · 3 · 7 25 · 3 · 5 · 7 29 · 3 · 7 27 · 7 28

9 1 34 27 · 34 27 · 33 · 7 25 · 35 · 7 25 · 35 · 7 27 · 33 · 7 27 · 34
10 1 22 · 52 2 · 34 · 52 29 · 33 · 52 25 · 33 · 52 · 7 27 · 35 · 5 · 7 25 · 33 · 52 · 7 29 · 33 · 52

Table 3.6:
[
k
`

]
Z,B factored for 0 ≤ ` ≤ k ≤ 10, ` ≤ 7
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3.7.4 Generalized binomial products

n Gn

0 1 = 1

1 1 = 1

2 2 = 2

3 9 = 32

4 6, 144 = 211 × 3

5 40, 000 = 26 × 54

6 5, 038, 848, 000 = 211 × 39 × 53

7 34, 306, 448, 400 = 24 × 36 × 52 × 76

8 20, 436, 839, 713, 048, 300, 093, 440 = 253 × 33 × 5× 75

9 1, 222, 959, 700, 798, 803, 745, 499, 202, 453, 504 = 238 × 332 × 74

10 487, 579, 439, 713, 294, 378, 598, 400, 000, 000, 000, 000, 000 = 241 × 325 × 517 × 73

Table 3.7: Gn decimal and factored for 0 ≤ n ≤ 10

n Gn

11 224 × 318 × 514 × 72 × 1110

12 284 × 344 × 511 × 7× 119

13 260 × 334 × 58 × 118 × 1312

14 262 × 324 × 55 × 725 × 117 × 1311

15 236 × 342 × 530 × 722 × 116 × 1310

16 2235 × 330 × 525 × 719 × 115 × 139

17 2194 × 318 × 520 × 716 × 114 × 138 × 1716

18 2204 × 3125 × 515 × 713 × 113 × 137 × 1715

19 2160 × 3106 × 510 × 710 × 112 × 136 × 1714 × 1918

20 2249 × 387 × 562 × 77 × 11× 135 × 1713 × 1917

21 2198 × 3108 × 554 × 744 × 134 × 1712 × 1916

22 2189 × 387 × 546 × 739 × 1141 × 133 × 1711 × 1915

23 2136 × 366 × 538 × 734 × 1138 × 132 × 1710 × 1914 × 2322

24 2405 × 3137 × 530 × 729 × 1135 × 13× 179 × 1913 × 2321

25 2338 × 3112 × 5118 × 724 × 1132 × 178 × 1912 × 2320

26 2321 × 387 × 5106 × 719 × 1129 × 1349 × 177 × 1911 × 2319

27 2252 × 3270 × 594 × 714 × 1126 × 1346 × 176 × 1910 × 2318

28 2372 × 3237 × 582 × 790 × 1123 × 1343 × 175 × 199 × 2317

29 2296 × 3204 × 570 × 782 × 1120 × 1340 × 174 × 198 × 2316 × 2928

30 2336 × 3287 × 5174 × 774 × 1117 × 1337 × 173 × 197 × 2315 × 2927

Table 3.8: Gn factored for 11 ≤ n ≤ 30
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CHAPTER 4

Partial Factorizations of Generalized Binomial Products

4.0 Abstract

This chapter studies an integer sequence Gn analogous to Gn =
∏n

k=0

(
n
k

)
, the

product of the elements in the nth row of Pascal’s triangle. It is known that the

exponent νp(Gn) in the prime factorization Gn =
∏

p≤n p
νp(Gn) can be expressed in

terms of the base-p digits of the positive integers up to n. These radix statistics

make sense for all bases b ≥ 2. This chapter studies the asymptotics of the binomial

product Gn =
∏

2≤b≤n b
ν(n,b), arising from Chapter 3, and its partial factorizations

G(n, x) =
∏

2≤b≤x b
ν(n,b), which are also integers. It shows that logG(n, αn) is well

approximated by f
G

(α)n2 log n+ g
G

(α)n2 as n→∞ for scaling functions f
G

(α) and

g
G

(α) defined for 0 ≤ α ≤ 1. The main results are deduced from the asymptotic study

of functions B(n, x) and A(n, x) that are weighted sums of base-b radix statistics of

n (and smaller integers) over b ∈ [2, x]. Unconditional estimates with power-savings

remainder terms are derived for B(n, x) and A(n, x).

84
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4.1 Introduction

Let Gn be the product of the binomial coefficients in the nth row of Pascal’s

triangle,

Gn :=
n∏
k=0

(
n

k

)
=

(n!)n+1∏n
k=0(k!)2

. (4.1.1)

This sequence arises as the reciprocal of the product of all the nonzero unreduced

Farey fractions of order n, see Lagarias and Mehta [20]. Its asymptotic growth is

logGn =
1

2
n2 − 1

2
n log n+O(n), (4.1.2)

by Stirling’s formula. The number Gn is n-smooth (i.e., having no prime factor larger

than n), and we may write its prime factorization as

Gn =
∏
p≤n

pνp(Gn), (4.1.3)

where νp(a) denotes the additive p-adic valuation of a. The quantities νp(Gn) are

known to equal an expression ν(n, p) defined purely in terms of the base-p digits of

the positive integers up to n, given by

νp(Gn) =
2

p− 1
Sp(n)− n− 1

p− 1
dp(n), (4.1.4)

where dp(n) is the sum of the base-p digits of n and Sp(n) :=
∑n−1

j=1 dp(j). (See [13,

Theorem 5.1].) The left side of (4.1.4) is a nonnegative integer, while examples show

the two terms on the right side are sometimes not integers. Du and Lagarias [13]

studied the sizes of partial factorizations of Gn:

G(n, x) :=
∏
p≤x

pνp(Gn), (4.1.5)

where 1 ≤ x ≤ n. They showed for 0 < α ≤ 1 and n ≥ 2 the estimate

logG(n, αn) = fG(α)n2 +O

(
1

α
n2 exp

(
−c
√

log n
))

, (4.1.6)
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where the limit scaling function fG(α) is given by

fG(α) =
1

2
+

1

2
α2

⌊
1

α

⌋2
+

1

2
α2

⌊
1

α

⌋
− α

⌊
1

α

⌋
(4.1.7)

and c > 0 is an absolute constant. The remainder term estimate in (4.1.6) was im-

proved to the power-savings estimate O
(
1
α
n7/4(log n)2

)
conditional on the Riemann

hypothesis.

This chapter studies the asymptotics of an integer sequence Gn defined in Chap-

ter 3. The sequence Gn is given as a product of generalized binomial coefficients:

Gn :=
n∏
k=0

[
n

k

]
Z,B
.

From Corollary 3.2.16, Gn can be written in generalized prime factorization as

Gn =
n∏
b=2

bν(n,b), (4.1.8)

where the exponent ν(n, b) is defined purely in terms of the base-b digits of the

positive integers up to n, by the formula

ν(n, b) :=
2

b− 1
Sb(n)− n− 1

b− 1
db(n) (4.1.9)

generalizing the formula (4.1.4) for νp(Gn).

In fact, it follows immediately from the proof of Corollary 3.2.16 that all ν(n, b)

are nonnegative integers. So the integer Gn is n-smooth.

In this chapter, we characterize all positive integers n for which ν(n, b) = 0; see

Theorem 4.2.2. The quantities ν(n, b) are generally not equal to the maximal power

of b dividing Gn; in fact they can sometimes be larger than, and sometimes be smaller

than, this quantity.

The main purpose of this chapter is to study the asymptotics of the partial fac-

torizations of Gn, defined by

G(n, x) :=
∏

2≤b≤x

bν(n,b), (4.1.10)
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parallel to those in [13]. HereG(n, x) is an integer sequence in n for fixed x because all

ν(n, b) are nonnegative integers. We haveGn = G(n, n), and we have the stabilization

G(n, x) = G(n, n) = Gn for x ≥ n.

The main results of this chapter determine the growth rate of the integer sequence

Gn and more generally the growth behavior of logG(n, x) for all n ≥ 1. The over-

all approach of the proofs have parallels to that in [13] but have some significant

differences, as given in Section 4.1.2.

There are a number of reasons for interest in the study of integer sequences like

G(n, x). The binomial products Gn single out prime bases as special via their prime

factorizations (4.1.3). But the definition (4.1.9) (compare (4.1.4)) makes sense for

all integers b ≥ 2. Heuristically, we may expect that a sum over the primes p in an

interval I (weighted by prime gaps ∆p) can be approximated by a smoother sum

over the integers b ∈ I: ∑
p∈I

f(p)∆p ≈
∑
b∈I

f(b).

This is analogous to the Euler–Maclaurin formula which approximates a sum over

the integers b ∈ I by an integral over I:

∑
b∈I

f(b) ≈
∫
I

f(x) dx.

The sequence G(n, x) is defined to be a product over all integers b ∈ [2, x]. So

logG(n, x) can be viewed as a “discrete” integral related to logG(n, x) as a sum

(without prime gap weights ∆p). The asymptotic study in this chapter gives a

motivating example of the effect of this kind of discrete approximation. Finally, the

sequence Gn arises as a special case of products of generalized binomial coefficients

studied in Chapter 3; see Corollary 3.2.16.
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4.1.1 Main results: Asymptotics of Gn and G(n, x)

We obtain the following result for the the sequence Gn.

Theorem 4.1.1. Let Gn =
∏n

b=2 b
ν(n,b). Then for integers n ≥ 2,

logGn =
1

2
n2 log n+

(
1

2
γ − 3

4

)
n2 +O

(
n3/2 log n

)
, (4.1.11)

where γ is Euler’s constant.

This result is proved in Section 4.4. Although we have shown in Chapter 3 that Gn

is a product of ratios of generalized factorials, we do not know if Gn can be written

as a (nice) product of ratios of the usual factorials. Thus we do not have Stirling’s

formula available to directly estimate the size of Gn, nor do we have combinatorial

identities and recursion formulas available in dealing with binomial coefficients.

We note that compared to [13] there are two main terms in the asymptotics, rather

then one. The leading order term has the same constant 1
2

as for logGn in (4.1.2),

while Euler’s constant appears in the second leading order term. This result will be

used as an initial condition to obtain estimates for partial factorizations G(n, x).

The main result of the chapter determines the size of the partial factorization

function G(n, x) in the range 1 ≤ x ≤ n. It establishes the following limiting

behavior as n→∞, taking x = αn where α is a scaling parameter.

Theorem 4.1.2. Let G(n, x) =
∏bxc

b=2 b
ν(n,b). Then for integers n ≥ 2 and real

α ∈
[

1√
n
, 1
]
,

logG(n, αn) = f
G

(α)n2 log n+ g
G

(α)n2 +O
(
n3/2 log n

)
, (4.1.12)

in which:

(a) f
G

(α) is a function with f
G

(0) = 0 and defined for α > 0 by

f
G

(α) =
1

2
+

1

2
α2

⌊
1

α

⌋2
+

1

2
α2

⌊
1

α

⌋
− α

⌊
1

α

⌋
; (4.1.13)
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(b) g
G

(α) is a function with g
G

(0) = 0 and defined for α > 0 by

g
G

(α) =

(
1

2
γ − 3

4

)
− 1

2

(
Hb 1

α
c − log

1

α

)
+

(
log

1

α

)(
− 1

2
− 1

2
α2

⌊
1

α

⌋⌊
1

α
+ 1

⌋
+ α

⌊
1

α

⌋)
−1

4
α2

⌊
1

α

⌋⌊
1

α
+ 1

⌋
+ α

⌊
1

α

⌋
. (4.1.14)

Moreover, for integers n ≥ 2 and real α ∈
[
1
n
, 1√

n

]
,

logG(n, αn) = O
(
n3/2 log n

)
. (4.1.15)

Theorem 4.1.2 follows from Theorem 4.7.1, taking α = x
n
. The theorem implies

that f
G

(α) can be defined as a limit function

f
G

(α) := lim
n→∞

1

n2 log n
logG(n, αn).

In fact

f
G

(α) = fG(α), (4.1.16)

where

fG(α) := lim
n→∞

1

n2
logG(n, αn)

is the limit function given in [13, Theorem 1.1].

We note an alternate form for f
G

(α) given by

f
G

(α) =
1

2
α2

(⌊
1

α

⌋
+

{
1

α

}2
)
, (4.1.17)

where {x} = x− bxc is the fractional part of x. It is pictured in Figure 4.1.

Some properties of the limit function follow from [13, Lemma 4.2], since f
G

(α) =

fG(α).

(i) The function f
G

(α) is continuous on [0,∞). It is differentiable everywhere

except at α = 1
j

for j = 1, 2, 3, . . . , where

lim
h→0+

f
G

(1
j

+ h)− f
G

(1
j
)

h
= 0 and lim

h→0−

f
G

(1
j

+ h)− f
G

(1
j
)

h
= 1.
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Figure 4.1: The graph β = f
G

(α), 0 ≤ α ≤ 1 (solid red) in the (α, β)-plane. The line segment

β = 1
2α, 0 ≤ α ≤ 1 is shown in dashed blue.

At α = 0, we have

lim
h→0+

f
G

(h)− f
G

(0)

h
=

1

2
.

(ii) It satisfies

f
G

(α) ≤ 1

2
α for α ≥ 0. (4.1.18)

Equality holds if and only if α = 1
j

for some positive integer j or α = 0.

(iii) f
G

(α) is strictly increasing and is piecewise quadratic on (0, 1]. For integers

j ≥ 1 and real α ∈
[

1
j+1

, 1
j

]
,

f
G

(α) =
1

2
− jα +

j(j + 1)

2
α2. (4.1.19)

Furthermore, f
G

(α) = 1
2

for α ≥ 1.

The limit function g
G

(α) is pictured in Figure 4.2. Some properties of this limit

function are:
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Figure 4.2: The graph β = g
G

(α), 0 ≤ α ≤ 1 in the (α, β)-plane.

(i) The function g
G

(α) is continuous on [0,∞). It is real-analytic on (0,∞) except

at α = 1
j

for j = 1, 2, 3, . . . . It is differentiable at α = 1 with g′
G

(1) = 0.

(ii) g
G

(α) is strictly decreasing on [0, 1]. It has g
G

(α) = 1
2
γ − 3

4
≈ −0.46139 for

α ≥ 1.

4.1.2 Results: Asymptotics of A(n) and B(n)

To obtain Theorem 4.1.2, we determine the asymptotics of similar sums as in [13].

Taking the logarithms of both sides of the product formula (4.1.10) and substituting

ν(n, b) using (4.1.9) yields

logG(n, x) = A(n, x)−B(n, x), (4.1.20)

where

A(n, x) =
∑

2≤b≤x

2

b− 1
Sb(n) log b (4.1.21)

and

B(n, x) =
∑

2≤b≤x

n− 1

b− 1
db(n) log b. (4.1.22)
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The functions B(n, x) and A(n, x) are weighted sums of the base-b digits of n (and

smaller positive integers) over b ∈ [2, x].

The determination of the asymptotics for the sums A(n, x) and B(n, x) are given

later in the chapter, from which we obtain the asymptotics for logG(n, x) via (4.1.20).

On the one hand, the computations in this chapter are more involved than those of

[13] in order to obtain a secondary term and a power-savings remainder term. On

the other hand, many sums over the integers b ∈ [2, x] here are easier to handle than

sums over the primes p ∈ [2, x] in [13], and the Riemann hypothesis is not needed.

The proofs first obtain estimates for the case x = n, setting

A(n) := A(n, n) =
n∑
b=2

2

b− 1
Sb(n) log b, (4.1.23)

B(n) := B(n, n) =
n∑
b=2

n− 1

b− 1
db(n) log b. (4.1.24)

We determine the asymptotic for B(n) first. Then we estimate A(n) by applying the

estimates for B(j) for 1 ≤ j ≤ n.

Theorem 4.1.3. Let B(n) :=
∑n

b=2
n−1
b−1 db(n) log b. Then for integers n ≥ 2,

B(n) = (1− γ)n2 log n+ (γ + γ1 − 1)n2 +O
(
n3/2 log n

)
, (4.1.25)

where γ is Euler’s constant and γ1 is the first Stieltjes constant.

The result involves the Stieltjes constants γ0 = γ and γ1 ≈ −0.07282. The Stieltjes

constants γn appear in the Laurent expansion of the Riemann zeta function at s = 1:

ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)n

n!
γn(s− 1)n. (4.1.26)

Here γ0 = γ ≈ 0.57721 is Euler’s constant (see the survey [19] for more about γ),

and more generally

γn := lim
m→∞

( m∑
k=1

(log k)n

k
− (logm)n+1

n+ 1

)
. (4.1.27)
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We prove Theorem 4.1.3 in a similar fashion to [13]. We first show that the main

contribution in the sum B(n) comes from the terms with b >
√
n. Then we observe

that n has at most two digits in those bases b and that the value of db(n) follows

some simple pattern. The rest is a straightforward calculation.

We also deduce a corresponding result for A(n).

Theorem 4.1.4. Let A(n) :=
∑n

b=2
2
b−1Sb(n) log b. Then for integers n ≥ 2,

A(n) =

(
3

2
− γ
)
n2 log n+

(
3

2
γ + γ1 −

7

4

)
n2 +O

(
n3/2 log n

)
, (4.1.28)

where γ is Euler’s constant and γ1 is the first Stieltjes constant.

In [13], the asymptotic of logGn can be computed directly by Stirling’s formula.

They proved an analogue of Theorem 4.1.4 from the asymptotic of logGn and an

analogue of Theorem 4.1.3. Here we first prove Theorem 4.1.3 then use it to prove

Theorem 4.1.4 and the asymptotic of logGn (Theorem 4.1.1), via the relation

logGn = A(n)−B(n), (4.1.29)

which is a special case of (4.1.20), taking x = n.

4.1.3 Results: Asymptotics of A(n, x) and B(n, x)

We first determine asymptotics for B(n, αn) for 0 ≤ α ≤ 1, by bootstrapping the

result for B(n) = B(n, n) decreasing x from x = n. In what follows Hm :=
∑m

j=1
1
j

and Jm :=
∑m

j=1
log j
j

.

Theorem 4.1.5. Let B(n, x) =
∑bxc

b=2
n−1
b−1 db(n) log b. Then for integers n ≥ 2 and

real α ∈
[

1√
n
, 1
]
,

B(n, αn) = fB(α)n2 log n+ gB(α)n2 +O
(
n3/2 log n

)
, (4.1.30)

in which:
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(a) fB(α) is a function with fB(0) = 0 and defined for α > 0 by

fB(α) = (1− γ) +

(
Hb 1

α
c − log

1

α

)
− α

⌊
1

α

⌋
; (4.1.31)

(b) gB(α) is a function with gB(0) = 0 and defined for α > 0 by

gB(α) = (γ + γ1 − 1)−
(
Hb 1

α
c − log

1

α

)
−

(
Jb 1

α
c −

1

2

(
log

1

α

)2
)

+

(
log

1

α

)(
−1 + α

⌊
1

α

⌋)
+ α

⌊
1

α

⌋
. (4.1.32)

Moreover, for integers n ≥ 2 and real α ∈
[
1
n
, 1√

n

]
,

B(n, αn) = O
(
n3/2 log n

)
. (4.1.33)

The functions fB(α) and gB(α) as given in (4.1.31) and (4.1.32) appear to be com-

binations of functions with jump discontinuities at α = 1
j
, j = 1, 2, 3, . . . . However,

it can be shown that fB(α) and gB(α) are continuous on [0,∞).

Figure 4.3: The graph β = fB(α), 0 ≤ α ≤ 1 (solid blue) in the (α, β)-plane. The line segment
β = (1− γ)α, 0 ≤ α ≤ 1 is shown in dotted orange.

The limit function fB(α) is pictured in Figure 4.3. It is the same limit function

as fB(α) in Theorem 1.5 in [13]. Some properties of this limit function are:
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(i) The function fB(α) is continuous on [0,∞). It is differentiable everywhere

except at α = 1
j

for j = 1, 2, 3, . . . , where

lim
h→0+

fB(1
j

+ h)− fB(1
j
)

h
= 0 and lim

h→0−

fB(1
j

+ h)− fB(1
j
)

h
= 1.

At α = 0, we have

lim
h→0+

fB(h)− fB(0)

h
=

1

2
.

(ii) fB(α) is strictly increasing on [0,∞). It has fB(1) = 1− γ ≈ 0.42278.

Figure 4.4: The graph β = gB(α), 0 ≤ α ≤ 1 in the (α, β)-plane.

The limit function gB(α) is pictured in Figure 4.4. Some properties of this limit

function are:

(i) The function gB(α) is continuous on [0,∞). It is real-analytic on (0,∞) except

at α = 1
j

for j = 1, 2, 3, . . . . It is differentiable at α = 1 with g′
B

(1) = 0.

(ii) gB(α) is strictly decreasing on [0, 1] and is strictly increasing on [1,∞). Its

minimum on [0,∞) is attained at α = 1 with gB(1) = γ + γ1 − 1 ≈ −0.49560.
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Next, we obtain the asymptotics of A(n, x) using a recursion (4.6.5), starting from

A(n, n) and working downward. The recursion involves a function C(n, x) studied

in Subsection 4.2.4. This approach is different from that used in [13], which started

from A(x, x) and worked upward using estimates for B(y, x) for x < y < n.

Theorem 4.1.6. Let A(n, x) =
∑bxc

b=2
2
b−1Sb(n) log b. Then for integers n ≥ 2 and

real α ∈
[

1√
n
, 1
]
,

A(n, αn) = fA(α)n2 log n+ gA(α)n2 +O
(
n3/2 log n

)
, (4.1.34)

in which:

(a) fA(α) is a function with fA(0) = 0 and defined for α > 0 by

fA(α) =

(
3

2
− γ
)

+

(
Hb 1

α
c − log

1

α

)
+

1

2
α2

⌊
1

α

⌋2
+

1

2
α2

⌊
1

α

⌋
− 2α

⌊
1

α

⌋
;

(4.1.35)

(b) gA(α) is a function with gA(0) = 0 and defined for α > 0 by

gA(α) =

(
3

2
γ + γ1 −

7

4

)
− 3

2

(
Hb 1

α
c − log

1

α

)
−

(
Jb 1

α
c −

1

2

(
log

1

α

)2
)

+

(
log

1

α

)(
−3

2
− 1

2
α2

⌊
1

α

⌋⌊
1

α
+ 1

⌋
+ 2α

⌊
1

α

⌋)
−1

4
α2

⌊
1

α

⌋⌊
1

α
+ 1

⌋
+ 2α

⌊
1

α

⌋
. (4.1.36)

Moreover, for integers n ≥ 2 and real α ∈
[
1
n
, 1√

n

]
,

A(n, αn) = O
(
n3/2 log n

)
. (4.1.37)

The functions fA(α) and gA(α) as given in (4.1.35) and (4.1.36) appear to be com-

binations of functions with jump discontinuities at α = 1
j
, j = 1, 2, 3, . . . . However,

it can be shown that fA(α) and gA(α) are continuous on [0,∞).

The limit function fA(α) is pictured in Figure 4.5. It is the same limit function

as fA(α) in Theorem 1.6 in [13]. Some properties of this limit function are:
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(i) The function fA(α) is continuously differentiable on (0,∞) with

f ′
A

(α) =
2

α
f
G

(α).

At α = 0, we have

lim
h→0+

fA(h)− fA(0)

h
= 1 = lim

α→0+
f ′
A

(α).

(ii) fA(α) is strictly increasing on [0,∞). It has fA(1) = 3
2
− γ ≈ 0.92278.

(iii) It satisfies the relation

f
G

(α) = fA(α)− fB(α).

Figure 4.5: The graph β = fA(α), 0 ≤ α ≤ 1 (solid blue) in the (α, β)-plane. The line segment
β =

(
3
2 − γ

)
α, 0 ≤ α ≤ 1 is shown in dotted orange. Superimposed are the graph

β = f ′
A

(α), 0 ≤ α ≤ 1 shown in solid green and the line segment β = 3
2 − γ, 0 ≤ α ≤ 1

shown in dotted red.

The limit function gA(α) is pictured in Figure 4.6. Some properties of this limit

function are:

(i) The function gA(α) is continuously differentiable on (0,∞) with

g′
A

(α) = − 2

α

(
log

1

α

)
f
G

(α).
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(ii) gA(α) is strictly decreasing on [0, 1] and is strictly increasing on [1,∞). Its

minimum on [0,∞) is attained at α = 1 with gA(1) = 3
2
γ + γ1 − 7

4
≈ −0.95699.

(iii) It satisfies the relation

g
G

(α) = gA(α)− gB(α).

Figure 4.6: The graph β = gA(α), 0 ≤ α ≤ 1 in the (α, β)-plane.

We obtain Theorem 4.1.2 as a corollary of Theorems 4.1.5 and 4.1.6 by substituting

their estimates into the relation (4.1.20).

4.1.4 Discussion

We compare and contrast the main results in this chapter with those for binomial

products in [13].

1. Each of logG(n, x), A(n, x), and B(n, x) has a main term f(α)n2 log n and a

secondary term g(α)n2, where α = x
n
. The main term scaling functions f(α)

match those in [13]. The secondary term scaling functions g(α) are new scaling

functions whose salient feature is that they are strictly decreasing on [0, 1].
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2. There is a power-savings remainder term O(n3/2+ε), which is provable uncondi-

tionally. Parallel results of [13] had power-savings remainder term conditional

on the Riemann hypothesis. They argued (but did not prove rigorously) that

the existence of a power-savings remainder term in their results would imply

the existence of a zero-free region for the Riemann zeta function of the form

<(s) > 1 − δ for some δ ∈ (0, 1/2] depending on the amount of power saving.

For G(n, x), the averaging over all integers b ∈ [2, x] led to an unconditional

power saving in the remainder term.

4.1.5 Related work

Lagarias and Mehta [20] studied radix expansion statistics radix expansion statis-

tics of integers which hold the integer n fixed, while varying across different radix

bases up to n e.g. statistics A(n, x) and B(n, x). The work [21] studied analogous

statistics for Farey fractions. Du and Lagarias [13] studied the statistics A(n, x) and

B(n, x) for products of binomial coefficients. The motivation of [13] was study of

prime number distribution from a novel direction.

There has been a great deal of study of the radix statistics db(n) and Sb(n) for a

fixed base b ≥ 2 and letting n vary. Work on db(n) has mainly been probabilistic,

for random integers in an initial interval [1, n], which is surveyed by Chen et al [8].

One has for all n ≥ 1,

E[db(k) : 0 ≤ k ≤ n− 1] ≤ b− 1

2
logb n, (4.1.38)

a result which is close to sharp when n = bk for some integer k ≥ 1. We have

db(n) ≤ (b− 1) logb(n+ 1, see Lemma 4.2.4. It implies

B(n) ≤
n∑
b=2

n− 1

b− 1

(
(b− 1) log(n+ 1)

log b

)
log b = (n− 1)2 log(n+ 1).



100

Work on the smoothed function Sb(n) studying asymptotics of the as n → ∞

started with Bush [7] in 1940, followed by Bellman and Shapiro [3], and Mirsky [22],

who in 1949 showed that for fixed b ≥ 2, the asymptotic formula

Sb(n) =
b− 1

2
n logb(n) +O(n).

In 1952 Drazin and Griffith [10] deduced an inequality implying

Sb(n) ≤ b− 1

2
n logb n, (4.1.39)

for all b ≥ 2 and n ≥ 1, see Lemma 4.2.4. This inequality is sharp: equality holds

for n = bk for k ≥ 1, see [20, Theorem 5.8]. Using Drazin and Griffith’s inequality

(4.1.39) for Sb(n) we have

A(n) ≤ A
∗
(n) :=

n∑
b=2

2

b− 1

(
(b− 1)n log n

2 log b

)
log b = n(n− 1) log n. (4.1.40)

A formula of Trollope [26] in 1968 gave an exact formula for Sb(n) for base b = 2.

Notable work of Delange [9] obtained exact formulas for Sb(n) for all b ≥ 2, which

exhibited an oscillating term in the asymptotics. We mention later work of Flajolet

et al [14] and Grabner and Hwang [15]. Recently Drmota and Grabner [11] surveyed

this topic.

We mention other inequalities for the function Sb(n). In 2011, Allaart [1, Equation

(4)] showed an approximate convexity inequality for binary expansions: For integers

` and m with 0 ≤ ` ≤ m,

S2(m+ `) + S2(m− `)− 2S2(m) ≤ `. (4.1.41)

Allaart [2, Theorem 3] proved a generalization to any base b:

Sb(m+ `) + Sb(m− `)− 2Sb(m) ≤
⌊
b+ 1

2

⌋
`. (4.1.42)

Allaart [2, Theorem 1] also showed a superadditivity inequality:

Sb(`+m) ≥ Sb(`) + Sb(m) + `. (4.1.43)
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4.1.6 Contents of this chapter

Section 4.2 collects facts about digit sums and provides estimates for a wide variety

of sums needed in later estimates. In particular, we estimate the function

C(n, x) :=
∑

1≤b≤x

⌊n
b

⌋
log b. (4.1.44)

Section 4.3 estimates B(n), proving Theorem 4.1.3.

Section 4.4 estimates A(n), proving Theorem 4.1.4. Theorem 4.1.1 for G(n) then

follows.

Section 4.5 estimates B(n, x), proving Theorem 4.5.1. Theorem 4.1.5 for B(n, αn)

then follows.

Section 4.6 estimates A(n, x), proving Theorem 4.6.1. Theorem 4.1.6 for A(n, αn)

then follows.

Section 4.7 estimates G(n, x), proving Theorem 4.7.1. Theorem 4.1.2 for G(n, αn)

then follows.

Section 4.8 presents concluding remarks. These include an interpretation of Gn

as a product of generalized binomial coefficients, treated in Chapter 3.

4.2 Preliminaries

The first subsection establishes properties of radix expansion statistics ν(n, b),

and derives inequalities on the size of db(n) and Sb(n). The next four subsections

estimate four families of sums for an integer n and a real number x, treated as step

functions: the harmonic numbers H(x) =
∑bxc

b=1
1
b
, the sums J(x) =

∑bxc
b=1

log b
b

, the

sums C(n, x) =
∑bxc

b=1bnb c log b, and Li(n) =
∑n

b=2 b(log b)i for i ≥ 1.
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4.2.1 Radix expansion statistics

Fix an integer b ≥ 2. Let n be a positive integer. Then n can be written uniquely

as

n =
k∑
i=0

ai(b, n)bi, (4.2.1)

where ai(b, n) ∈ {0, 1, 2, . . . , b − 1} are the base-b digits of n and the top digit ak is

positive. We say that n has k + 1 digits in base b. One has bk ≤ n < bk+1. Hence

the number of base-b digits of n is ⌊
log n

log b

⌋
+ 1.

Each base-b digit of n can also be expressed in terms of the floor function:

ai(b, n) =
⌊n
bi

⌋
− b
⌊ n

bi+1

⌋
. (4.2.2)

Note that (4.2.2) also defines ai(b, n) to be 0 for all i > logn
log b

. The following two

statistics of the base-b digits of numbers will show up frequently in this chapter.

Definition 4.2.1. (1) The sum of digits function db(n) is given by

db(n) :=

b lognlog b c∑
i=0

ai(b, n) =
∞∑
i=0

ai(b, n), (4.2.3)

where ai(b, n) is given by (4.2.2).

(2) The running digit sum function Sb(n) is given by

Sb(n) :=
n−1∑
j=1

db(j). (4.2.4)

Theorem 4.2.2. Let b ≥ 2 be an integer, and let the radix expansion statistic ν(n, b)

given for n ≥ 1 by

ν(n, b) =
2

b− 1
Sb(n)− n− 1

b− 1
db(n) (4.2.5)

Then:
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(1) For all n ≥ 1, ν(n, b) is a nonnegative integer.

(2) ν(n, b) = 0 if and only if n = abk + bk − 1 for some a ∈ {1, 2, 3, . . . , b− 1} and

integer k ≥ 0.

Proof. To show (1), we substitute (4.2.2) into (4.2.3) and obtain

db(n) =
∞∑
i=0

⌊n
bi

⌋
− b

∞∑
i=0

⌊ n

bi+1

⌋
= n− (b− 1)

∞∑
i=1

⌊n
bi

⌋
. (4.2.6)

We then substitute (4.2.6) into (4.2.4) and obtain

Sb(n) =
n−1∑
j=1

j − (b− 1)
n−1∑
j=1

∞∑
i=1

⌊
j

bi

⌋
=
n(n− 1)

2
− (b− 1)

∞∑
i=1

n−1∑
j=1

⌊
j

bi

⌋
. (4.2.7)

Now, we substitute (4.2.6) and (4.2.7) into (4.2.5) and obtain

ν(n, b) =

(
n(n− 1)

b− 1
− 2

∞∑
i=1

n−1∑
j=1

⌊
j

bi

⌋)
−
(
n(n− 1)

b− 1
− (n− 1)

∞∑
i=1

⌊n
bi

⌋)

=
∞∑
i=1

(
(n− 1)

⌊n
bi

⌋
− 2

n−1∑
j=1

⌊
j

bi

⌋)

=
∞∑
i=1

n−1∑
j=1

(⌊n
bi

⌋
−
⌊
j

bi

⌋
−
⌊
n− j
bi

⌋)
. (4.2.8)

The last quantity (4.2.8) expresses ν(n, b) as the sum of integers, which are all non-

negative due to the identity valid for all real x and y,

bx+ yc = bxc+ byc+ b{x}+ {y}c ≥ bxc+ byc,

see Graham et al [16, Section 3.1, page 70]. Hence ν(n, b) is a nonnegative integer.

We show (2). We prove the ‘only if’ part first. Suppose that n is a positive integer

not of the form abk+bk−1, where 1 ≤ a ≤ b−1 and k ≥ 0. Then cb` ≤ n ≤ (c+1)b`−2

for some c ∈ {1, 2, 3, . . . , b − 1} and positive integer `. We show ν(n, b) is positive.

We see that the double sum in (4.2.8), is greater than or equal to the summand with

(i, j) =
(
`, b` − 1

)
. It follows that

ν(n, b) ≥
⌊ n
b`

⌋
−
⌊
b` − 1

b`

⌋
−
⌊
n− b` + 1

b`

⌋
= c− 0− (c− 1) = 1.
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Thus, if ν(n, b) = 0, then n must be of the form abk + bk − 1 with 1 ≤ a ≤ b− 1 and

k ≥ 0.

Conversely, suppose that n is of the form abk + bk − 1 with 1 ≤ a ≤ b − 1 and

k ≥ 0. Suppose that j is an integer with 1 ≤ j ≤ n − 1. For i ≤ k − 1, we have

ai(b, j) ≤ b− 1 = ai(b, n). For i ≥ k, we also have ai(b, j) ≤ ai(b, n) because j < n.

Hence

ai(b, n− j) = ai(b, n)− ai(b, j)

for all i ≥ 0. Summing over i ≥ 0, we obtain

db(n− j) = db(n)− db(j).

Summing over 1 ≤ j ≤ n− 1, we obtain

Sb(n) = (n− 1)db(n)− Sb(n),

which implies

ν(n, b) =
2

b− 1
Sb(n)− n− 1

b− 1
db(n) = 0.

This completes the proof.

Remark 4.2.3. In general, ν(n, b) does not equal the largest integer k such that bk

divides Gn, which we denote by νb(Gn). Moreover ν(n, b) can be larger or smaller

than νb(Gn). For example, ν(4, 4) = 3 > 2 = ν4(G4), while ν(6, 4) = 1 < 2 = ν4(G6).

We establish inequalities on the size of db(n) and Sb(n).

Lemma 4.2.4. For integers b ≥ 2 and n ≥ 1, we have

1 ≤ db(n) ≤ (b− 1) log(n+ 1)

log b
, (4.2.9)

0 ≤ Sb(n) ≤ (b− 1)n log n

2 log b
. (4.2.10)
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Proof. The lower bound in (4.2.9) follows from the observation that db(n) is greater

than or equal to the top (base-b) digit of n, which is at least 1. The lower bound in

(4.2.10) then follows from the positivity of db(j).

The upper bound in (4.2.10) is a result of Drazin and Griffith [10, Theorem 1].

To prove the upper bound in (4.2.9), we apply Theorem 4.2.2:

0 ≤ (b− 1)ν(n, b) = 2Sb(n)− (n− 1)db(n) = 2Sb(n+ 1)− (n+ 1)db(n).

On replacing n by n+ 1 in (4.2.10), we obtain Sb(n+ 1) ≤ (b−1)(n+1) log(n+1)
2 log b

. Hence

db(n) ≤ 2

n+ 1
Sb(n+ 1) ≤ (b− 1) log(n+ 1)

log b
,

as desired.

4.2.2 The harmonic numbers Hn

For positive real numbers x ≥ 1, we consider the step function

H(x) :=
∑

1≤b≤x

1

b
.

At integer values n = bxc we write H(x) = Hbxc = Hn, the n-th harmonic number.

Lemma 4.2.5. For positive integers n, we have

Hn = log n+ γ +
1

2n
+O

(
1

n2

)
, (4.2.11)

where γ ≈ 0.57721 is Euler’s constant.

Proof. This standard result appears in Tenenbaum [25, Chapter I.0, Theorem 5].

The restriction to integer n is needed in Lemma 4.2.5 because for positive real

numbers x, one has

H(x)− log x− γ = Ω±

(
1

x

)
.
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Indeed, using the Euler–Maclaurin summation formula [23, Theorem B.5], one can

show that for real numbers x ≥ 1,

H(x) = log x+ γ +
1− 2{x}

2x
+O

(
1

x2

)
.

Hence, lim supx→∞ x(H(x)− log x−γ) = 1
2

and lim infx→∞ x(H(x)− log x−γ) = −1
2
.

4.2.3 Estimates: J(x)

For real numbers x ≥ 1, we consider the step function

J(x) :=
∑

1≤b≤x

log b

b
. (4.2.12)

At integer values n = bxc we write J(x) = Jbxc = Jn. The asymptotics of this step

function of x involve the first Stieltjes constant γ1, defined in Section 4.1.2.

Lemma 4.2.6. For real numbers x ≥ 1, we have

J(x) =
1

2
(log x)2 + γ1 +O

(
log(x+ 1)

x

)
, (4.2.13)

where γ1 ≈ −0.0728158 is the first Stieltjes constant.

Proof. By partial summation, we obtain

J(x) =
∑

1≤b≤x

log b

b
= (log x)H(x)−

∫ x

1

H(u)

u
du. (4.2.14)

It is well-known that H(u) = log u + γ + R(u), where the remainder R(u) � 1
u
, for

u ≥ 1. (See [23, Corollary 1.15].) On inserting this in (4.2.14) and rearranging, we

get

J(x) =
1

2
(log x)2 + (log x)R(x)−

(∫ ∞
1

R(u)

u
du−

∫ ∞
x

R(u)

u
du

)
=

1

2
(log x)2 + c+O

(
log(x+ 1)

x

)
,

where c := −
∫∞
1

R(u)
u
du. By taking x→∞, we see that

c = lim
x→∞

(
J(x)− 1

2
(log x)2

)
= lim

x→∞

(∑
b≤x

log b

b
− 1

2
(log x)2

)
= γ1,

the first Stieltjes constant, according to (4.1.27).



107

4.2.4 Estimates: C(n, x)

For real numbers n ≥ 1 and x ≥ 1, let

C(n, x) :=
∑

1≤b≤x

⌊n
b

⌋
log b. (4.2.15)

Here, C(n, x) is a nonnegative step function of the real variable x, viewing n as fixed.

This function stabilizes for x ≥ n:

C(n, x) = C(n, n) for x ≥ n. (4.2.16)

Proposition 4.2.7. (1) For real numbers n ≥ 2, we have

C(n, n) =
1

2
n(log n)2 + (γ − 1)n log n+ (1− γ)n+O

(√
n log n

)
.

(2) For real numbers n ≥ 2 and x such that 1 ≤ x ≤ n, we have

C(n, n)− C(n, x) =

∫ n

x

⌊n
u

⌋
log u du+O

(
n log n

x

)
. (4.2.17)

In addition,∫ n

x

⌊n
u

⌋
log u du =

(
Hbnxc −

x

n

⌊n
x

⌋)
(n log n− n)−

(
Jbnxc −

x

n

⌊n
x

⌋
log

n

x

)
n.

(4.2.18)

To prove Proposition 4.2.7 we use the following identity.

Lemma 4.2.8. For real numbers n ≥ 1 and x ≥ 1, we have

C(n, n) + C(n, x)− C
(
n,
n

x

)
= (log n)

∑
1≤b≤x

⌊n
b

⌋
− bxc log

(⌊n
x

⌋
!
)
− nH(x) + bxc+

∑
1≤b≤x

∫ n
b

1

{u}
u

du. (4.2.19)

Proof. By partial summation, we have the identity

∑
1≤k≤t

log
t

k
= t− 1−

∫ t

1

{u}
u

du,
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for any t > 0. On setting t = n
b

in this identity and summing over positive integers

b ≤ x, we obtain∑
1≤b≤x

∑
1≤k≤n

b

log
n

bk
= nH(x)− bxc −

∑
1≤b≤x

∫ n
b

1

{u}
u

du. (4.2.20)

The double sum on the left side of (4.2.20) is equal to∑
1≤b≤x

∑
1≤k≤n

b

(log n− log b− log k) = (log n)
∑

1≤b≤x

⌊n
b

⌋
− C(n, x)−

∑
1≤k≤n

∑
1≤b≤x
b≤n

k

log k.

On substituting the right side into (4.2.20) and rearranging, we obtain∑
1≤k≤n

∑
1≤b≤x
b≤n

k

log k = (log n)
∑

1≤b≤x

⌊n
b

⌋
− C(n, x)− nH(x) + bxc+

∑
1≤b≤x

∫ n
b

1

{u}
u

du.

(4.2.21)

The double sum on the left side of (4.2.21) is equal to∑
n
x
<k≤n

∑
1≤b≤n

k

log k +
∑

1≤k≤n
x

∑
1≤b≤x

log k =
(
C(n, n)− C

(
n,
n

x

))
+ bxc log

(⌊n
x

⌋
!
)
.

On inserting the right side into (4.2.21) and rearranging, we get (4.2.19).

Proof of Proposition 4.2.7. (1) On substituting x =
√
n in Lemma 4.2.8, two of the

terms on the left side cancel and we get

C(n, n) = (log n)
∑

1≤b≤
√
n

⌊n
b

⌋
−
⌊√

n
⌋

log
(⌊√

n
⌋
!
)
− nH

(√
n
)

+
⌊√

n
⌋

+
∑

1≤b≤
√
n

∫ n
b

1

{u}
u

du. (4.2.22)

Now, we estimate each term on the right of (4.2.22). For the first term, we use

btc = t+O(1), obtaining

(log n)
∑

1≤b≤
√
n

⌊n
b

⌋
= (log n)nHb√nc +O

(√
n log n

)
= n(log n)

(
log
⌊√

n
⌋

+ γ +O

(
1

b
√
nc

))
+O

(√
n log n

)
=

1

2
n(log n)2 + γn log n+O

(√
n log n

)
,
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where we used Lemma 4.2.5 to estimate Hb√nc. For the second term, Stirling’s

formula gives

⌊√
n
⌋

log
(⌊√

n
⌋
!
)

=
1

2
n log n− n+O

(√
n log n

)
.

For the third term, the harmonic number estimate in Lemma 4.2.5 gives

nH
(√

n
)

=
1

2
n log n+ γn+O

(√
n
)
.

The last two terms are negligible:

⌊√
n
⌋

+
∑

1≤b≤
√
n

∫ n
b

1

{u}
u

du ≤
√
n+

∑
1≤b≤

√
n

∫ n

1

1

u
du = O

(√
n log n

)
.

Substituting these estimates into the right side of (4.2.22) yields

C(n, n) =
1

2
n(log n)2 + (γ − 1)n log n+ (1− γ)n+O

(√
n log n

)
.

(2) We will prove that for 2 ≤ x ≤ n

C(n, n)− C(n, x) =
(
Hbnxc −

x

n

⌊n
x

⌋)
(n log n− n)

−
(
Jbnxc −

x

n

⌊n
x

⌋
log

n

x

)
n+O

(
n log n

x

)
. (4.2.23)

and then deduce (4.2.18).

First, we prove (4.2.23). We replace x by n
x

in Lemma 4.2.8, and rearrange a term

to obtain

C(n, n)− C(n, x) =C
(
n,
n

x

)
+ (log n)

∑
1≤b≤n

x

⌊n
b

⌋
−
⌊n
x

⌋
log(bxc!)− nHbnxc

+

(⌊n
x

⌋
+
∑

1≤b≤n
x

∫ n
b

1

{u}
u

du

)
. (4.2.24)
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We estimate the terms on the right side of (4.2.24). For the first term, using btc =

t+O(1), we see that

C
(
n,
n

x

)
=
∑

1≤b≤n
x

⌊n
b

⌋
log b = nJbnxc +O

(
log
(⌊n
x

⌋
!
)

+ 1
)
.

Using the bounds

0 ≤ log
(⌊n
x

⌋
!
)
≤
⌊n
x

⌋
log
⌊n
x

⌋
≤ n log n

x
,

we obtain the estimate

C
(
n,
n

x

)
= nJbnxc +O

(
n log n

x

)
. (4.2.25)

For the second term, again using btc = t+O(1) we obtain

(log n)
∑

1≤b≤n
x

⌊n
b

⌋
= n(log n)Hbnxc +O

(
n log n

x

)
. (4.2.26)

For the third term we assert⌊n
x

⌋
log(bxc!) = n(log n)

x

n

⌊n
x

⌋
− nx

n

⌊n
x

⌋(
1 + log

n

x

)
+O

(
n log n

x

)
. (4.2.27)

This estimate follows using Stirling’s formula with remainder in the form, for x ≥ 2,

log (bxc!) = x log x− x+O(log x), (4.2.28)

which yields ⌊n
x

⌋
log(bxc!) =

⌊n
x

⌋
(x log x− x) +O

(
n log x

x

)
,

and (4.2.27) follows. For the final term we have, for n ≥ 2 and 2 ≤ x ≤ n,⌊n
x

⌋
+
∑

1≤b≤n
x

∫ n
b

1

{u}
u

du ≤ n

x
+
∑

1≤b≤n
x

∫ n

1

1

u
du = O

(
n log n

x

)
. (4.2.29)

On inserting (4.2.25), (4.2.26), (4.2.27), and (4.2.29) into (4.2.24) and rearranging,

we obtain (4.2.23).
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Next, we prove (4.2.18). By the substitution v = n
u
, we get∫ n

x

⌊n
u

⌋
log u du = n

∫ n
x

1

bvc
v2

log
n

v
dv. (4.2.30)

The integral has a closed form quadrature:

d

dv

(
1

v
− 1

v
log

n

v

)
=

1

v2
log

n

v

valid on unit intervals b ≤ v < b+ 1 where bvc = b. By partial summation, the right

side of (4.2.30) is then equal to

n
⌊n
x

⌋(x
n
− x

n
log x

)
− n

∑
1≤b≤n

x

(
1

b
− 1

b
log

n

b

)

=x(1− log x)
⌊n
x

⌋
+ (n log n− n)Hbnxc − nJbnxc.

We obtain∫ n

x

⌊n
u

⌋
log u du = x(1− log x)

⌊n
x

⌋
+ (n log n− n)Hbnxc − nJbnxc

=
(
Hbnxc −

x

n

⌊n
x

⌋)
(n log n− n)−

(
Jbnxc −

x

n

⌊n
x

⌋
log

n

x

)
n,

completing the proof.

Lemma 4.2.9. For real numbers n ≥ 2, we have

C
(
n,
√
n
)

=
1

8
n(log n)2 + γ1n+O

(√
n log n

)
.

Proof. By using the estimate btc = t+O(1), we see that

C
(
n,
√
n
)

=
∑

1≤b≤
√
n

⌊n
b

⌋
log b = nJ

(√
n
)

+O
(
log
(⌊√

n
⌋
!
))
. (4.2.31)

By applying Lemma 4.2.6 with x =
√
n, we obtain

J
(√

n
)

=
1

8
(log n)2 + γ1 +O

(
log n√
n

)
.

Moreover, we have

log
(⌊√

n
⌋
!
)
≤
⌊√

n
⌋

log
⌊√

n
⌋
≤ 1

2

√
n log n.

Inserting these estimates back into (4.2.31) yields the lemma.
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4.2.5 Estimates: Li(n)

For positive integers i ≥ 1 and n ≥ 2, we set

Li(n) :=
n∑
b=2

b(log b)i. (4.2.32)

We give formulas for all i ≥ 1 but will only need the cases i = 1, 2 in the sequel.

Lemma 4.2.10. For integers i ≥ 1 and n ≥ 2, we have

Li(n) =

∫ n

1

u(log u)i du+ θi(n)n(log n)i, (4.2.33)

where 0 ≤ θi(n) ≤ 1. In particular,

L1(n) =
1

2
n2 log n− 1

4
n2 +O (n log n) , (4.2.34)

L2(n) =
1

2
n2(log n)2 − 1

2
n2 log n+

1

4
n2 +O

(
n(log n)2

)
. (4.2.35)

Proof. The function u(log u)i, 1 ≤ u ≤ n is increasing. We have lower and upper

bounds ∫ n

1

u(log u)i du ≤
n∑
b=2

b(log b)i = Li(n),

∫ n

1

u(log u)i du ≥
n−1∑
b=1

b(log b)i = Li(n)− n(log n)i.

Thus the assertion (4.2.33) follows.

The assertions (4.2.34) and (4.2.35) follow from the first assertion with the for-

mulas ∫ n

1

u log u du =

[
1

2
u2 log u− 1

4
u2
]n
u=1

=
1

2
n2 log n− 1

4
n2 +

1

4
,

∫ n

1

u(log u)2 du =

[
1

2
u2(log u)2 − 1

2
u2 log u+

1

4
u2
]n
u=1

=
1

2
n2(log n)2 − 1

2
n2 log n+

1

4
n2 − 1

4
,

completing the proof.
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Remark 4.2.11. It can be shown by induction on i that∫ n

1

u(log u)i du = n2

i∑
k=0

(−1)kk!

2k+1

(
i

k

)
(log n)i−k +

(−1)i+1i!

2i+1
. (4.2.36)

4.3 Estimates for B(n)

In this section we obtain the estimates for B(n) =
∑n

b=2
n−1
b−1 db(n) log b given in

Theorem 4.1.3.

4.3.1 Digit sum identity and preliminary reduction

Our estimate for B(n) will be derived using the observation that n has exactly 2

digits in base b when
√
n < b ≤ n.

Lemma 4.3.1. Let j and n be positive integers. Denote by I(j, n) the interval(
n
j+1

, n
j

]
∩ (
√
n, n]. Then

1. I(j, n) is empty unless j <
√
n.

2. If b ∈ I(j, n) is an integer, then db(n) = n− j(b− 1), in consequence,

n− 1

b− 1
db(n) log b = (n− 1)

(
n log b

b− 1
− j log b

)
. (4.3.1)

Proof. (1) Suppose that x ∈ I(j, n). Then
√
n < x ≤ n

j
, and hence j <

√
n.

(2) Since n
j+1

< b ≤ n
j
, it follows that

⌊
n
b

⌋
= j. Since b >

√
n, it follows that⌊

n
bi

⌋
= 0 for all i ≥ 2. From (4.2.6), we have

db(n) = n− (b− 1)
∞∑
i=1

⌊n
bi

⌋
= n− j(b− 1),

and (4.3.1) follows by multiplying by n−1
b−1 log b. This completes the proof.

We split the sum B(n) into three parts, the third part being a cutoff term removing

all 2 ≤ b ≤
√
n, and the first two parts using the digit sum identity (4.3.1). applied

to the range
√
n < b ≤ n.
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Lemma 4.3.2. (1) For integers n ≥ 2, we have

B(n) = B1(n)−B2(n) +BR(n), (4.3.2)

in which B1(n), B2(n), and BR(n) are defined by

B1(n) := n(n− 1)
∑
√
n<b≤n

log b

b− 1
, (4.3.3)

B2(n) := (n− 1)

b
√
n c∑

j=1

j

( ∑′

n
j+1

<b≤n
j

log b

)
, (4.3.4)

where the prime in the inner sum in (4.3.4) means only b >
√
n are included, and

BR(n) :=
∑

2≤b≤
√
n

n− 1

b− 1
db(n) log b. (4.3.5)

(2) For integers n ≥ 2 the remainder term BR(n) satisfies

0 ≤ BR(n) ≤ 3

2
n3/2 log n. (4.3.6)

Proof. (1) Recall that B(n) =
∑n

b=2
n−1
b−1 db(n) log b. The remainder term BR(n) first

cuts off the terms with 2 ≤ b ≤
√
n in the sum. The other two terms B1(n) and

B2(n) are obtained by applying the decomposition (4.3.1) of Lemma 4.3.1 to each

index b ∈ (
√
n, n] term by term.

(2) From (4.2.9), it follows that 0 ≤ n−1
b−1 db(n) log b ≤ (n− 1) log(n+ 1). Summing

from b = 2 to b
√
nc, we obtain

0 ≤ BR(n) ≤
(⌊√

n
⌋
− 1
)

(n− 1) log(n+ 1) ≤
(√

n
)

(n)

(
3

2
log n

)
=

3

2
n3/2 log n

as desired.

The sums B1(n) and B2(n) are of comparable sizes, on the order of n2 log n. We

estimate them separately.
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4.3.2 Estimate for B1(n)

Lemma 4.3.3. Let B1(n) = n(n − 1)
∑
√
n<b≤n

log b
b−1 . Then for integers n ≥ 2, we

have

B1(n) =
3

8
n2(log n)2 +O

(
n3/2 log n

)
. (4.3.7)

Proof. We rewrite the sum B1(n)
n(n−1) as

B1(n)

n(n− 1)
=

∑
√
n<b≤n

log b

b− 1
=

∑
√
n<b≤n

log b

b
+

∑
√
n<b≤n

log b

b(b− 1)
. (4.3.8)

The contribution from the last sum in (4.3.8) is negligible:

0 ≤
∑
√
n<b≤n

log b

b(b− 1)
≤ (log n)

∑
b>
√
n

1

b(b− 1)
=

log n

b
√
nc
≤ 2 log n√

n
. (4.3.9)

We use Lemma 4.2.6 to estimate the first sum on the right in (4.3.8) and obtain

∑
√
n<b≤n

log b

b
= J(n)− J

(√
n
)

=
1

2
(log n)2 − 1

2

(
log
√
n
)2

+O

(
log n√
n

)
=

3

8
(log n)2 +O

(
log n√
n

)
. (4.3.10)

On inserting (4.3.9) and (4.3.10) into (4.3.8), we obtain

B1(n)

n(n− 1)
=

3

8
(log n)2 +O

(
log n√
n

)
.

On multiplying by n(n− 1), we obtain (4.3.7) as desired.

4.3.3 Estimate for B2(n)

Lemma 4.3.4. Let

B2(n) := (n− 1)

b
√
nc∑

j=1

j

( ∑′

n
j+1

<b≤n
j

log b

)
,
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where the prime in the inner sum means only b >
√
n are included. Then for integers

n ≥ 2,

B2(n) =
3

8
n2(log n)2 + (γ − 1)n2 log n+ (1− γ − γ1)n2 +O

(
n3/2 log n

)
, (4.3.11)

where γ is Euler’s constant and γ1 is the first Stieltjes constant.

Proof. We have

B2(n)

n− 1
=

b
√
nc∑

j=1

( ∑′

n
j+1

<b≤n
j

⌊n
b

⌋
log b

)
=

∑
√
n<b≤n

⌊n
b

⌋
log b = C(n, n)− C

(
n,
√
n
)
.

Applying Proposition 4.2.7 and Lemma 4.2.9 to estimate C(n, n) and C (n,
√
n), we

obtain

B2(n)

n− 1
=

(
1

2
n(log n)2 + (γ − 1)n log n+ (1− γ)n

)
−
(

1

8
n(log n)2 + γ1n

)
+O

(√
n log n

)
=

3

8
n(log n)2 + (γ − 1)n log n+ (1− γ − γ1)n+O

(√
n log n

)
.

On multiplying by (n− 1), we obtain (4.3.11) as desired.

4.3.4 Proof of Theorem 4.1.3

We combine the results on B1(n) and B2(n) to estimate B(n).

Proof of Theorem 4.1.3. We estimate B(n). We start from the Lemma 4.3.2 de-

composition B(n) = B1(n)−B2(n) +BR(n). By Lemma 4.3.2 (2) we have BR(n) =

O(n3/2 log n), which is absorbed in the remainder term estimate in the theorem state-
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ment. Substituting the formulas of Lemma 4.3.3 and Lemma 4.3.4, we obtain

B(n) = B1(n)−B2(n) +BR(n)

=
3

8
n2(log n)2 +O

(
n3/2 log n

)
−
(

3

8
n2(log n)2 + (γ − 1)n2 log n+ (1− γ − γ1)n2 +O

(
n3/2 log n

))
= (1− γ)n2 log n+ (γ + γ1 − 1)n2 +O

(
n3/2 log n

)
,

as asserted.

4.4 Estimates for A(n) and Gn

In this section we derive asymptotics for A(n) =
∑n

b=2
2
b−1Sb(n) log b given in

Theorem 4.1.4 and deduce the estimate for logGn given in Theorem 4.1.1. In the

case of binomial products Gn treated in [13] an asymptotic for A(n) was obtained

from the relation logGn = A(n) − B(n) and the existence of a good estimate for

logGn coming from its expression as a product of factorials. Here we do not have

a corresponding direct estimate for logGn, so we must estimate A(n) directly. The

proof details have some parallel with those for B(n).

4.4.1 Preliminary reduction

Recall that A(n) =
∑n

b=2
2
b−1Sb(n) log b.

Lemma 4.4.1. For integers n ≥ 2, we have

A(n) = A1(n) +O
(
n(log n)2

)
, (4.4.1)

where

A1(n) :=
n∑
b=2

n∑
j=2

2 log b

b
db(j). (4.4.2)
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Proof. We rewrite the sum (4.1.23) that defines A(n) using the identity

1

b− 1
=

1

b
+

1

b(b− 1)
(4.4.3)

and obtain

A(n) =
n∑
b=2

2 log b

b
Sb(n) +

n∑
b=2

2 log b

b(b− 1)
Sb(n). (4.4.4)

Since Sb(n) =
∑n−1

j=1 db(j), the first sum on the right in (4.4.4) is

n∑
b=2

2 log b

b
Sb(n) =

n∑
b=2

n−1∑
j=1

2 log b

b
db(j) = A1(n)−

n∑
b=2

2 log b

b
(db(n)− 1) . (4.4.5)

By Lemma 4.2.4,

0 ≤ db(n)− 1 ≤ (b− 1) log(n+ 1)

log b
− 1 <

b log(n+ 1)

log b
.

So the last sum in (4.4.5) satisfies, for n ≥ 2,

0 ≤
n∑
b=2

2 log b

b
(db(n)− 1) <

n∑
b=2

2 log(n+ 1) ≤ 2n log n.

Hence
n∑
b=2

2 log b

b
Sb(n) = A1(n) +O(n log n). (4.4.6)

Now, we treat the last sum in (4.4.4). We apply Lemma 4.2.4 to bound Sb(n),

obtaining
n∑
b=2

2 log b

b(b− 1)
Sb(n) ≤

n∑
b=2

n log n

b
� n(log n)2. (4.4.7)

On inserting (4.4.6) and (4.4.7) into (4.4.4), we obtain (4.4.1) as desired.

4.4.2 Estimate for A1(n) reduction

Lemma 4.4.2. (1) For integers n ≥ 2, the sum A1(n) given by (4.4.2) can be

rewritten as

A1(n) = A11(n) + A12(n)− AR(n), (4.4.8)
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where

A11(n) :=
n∑
j=2

2

j − 1
B(j), (4.4.9)

A12(n) :=
n∑
j=2

n∑
b=j+1

2j log b

b
, (4.4.10)

AR(n) :=
n∑
j=2

j∑
b=2

2 log b

b(b− 1)
db(j), (4.4.11)

and B(n) is given by (4.1.24).

(2) For integers n ≥ 2, we have

AR(n) ≤ 3n(log n)2. (4.4.12)

Proof. (1) We start from (4.4.2) and interchange the order of summation, obtaining

A1(n) =
n∑
b=2

n∑
j=2

2 log b

b
db(j)

=
n∑
j=2

n∑
b=2

2 log b

b
db(j)

=
n∑
j=2

j∑
b=2

2 log b

b
db(j) +

n∑
j=2

n∑
b=j+1

2 log b

b
db(j). (4.4.13)

Recall that B(j) =
∑j

b=2
j−1
b−1db(j) log b. We next use the identity (4.4.3) to rewrite

the first sum on the right in (4.4.13):

n∑
j=2

j∑
b=2

2 log b

b
db(j) =

n∑
j=2

j∑
b=2

2 log b

b− 1
db(j)−

n∑
j=2

j∑
b=2

2 log b

b(b− 1)
db(j) = A11(n)− AR(n).

Finally, we note that db(j) = j for j < b; so the second sum on the right in (4.4.13)

is
n∑
j=2

n∑
b=j+1

2 log b

b
db(j) =

n∑
j=2

n∑
b=j+1

2j log b

b
= A12(n).

(2) We first bound AR(n) by

0 ≤ AR(n) ≤
n∑
j=2

n∑
b=2

2 log b

b(b− 1)
db(j) =

n∑
b=2

2 log b

b(b− 1)
(Sb(n+ 1)− 1)
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Applying Lemma 4.2.4, to bound the last quantity, we obtain for n ≥ 2,

AR(n) <
n∑
b=2

(n+ 1) log(n+ 1)

b
≤ 3n(log n)2,

as asserted.

4.4.3 Estimates for A11(n) and A12(n)

Lemma 4.4.3. For integers n ≥ 2, we have

A11(n) = (1− γ)n2 log n+

(
3

2
γ + γ1 −

3

2

)
n2 +O

(
n3/2 log n

)
. (4.4.14)

Proof. We start from (4.4.9) and use the identity (4.4.3) to rewrite A11(n):

A11(n) =
n∑
j=2

2

j − 1
B(j) =

n∑
j=2

2

j
B(j) +

n∑
j=2

2

j(j − 1)
B(j). (4.4.15)

From Theorem 4.1.3, it follows that B(j)� j(j − 1) log j for j ≥ 2. As a result, the

contribution from the last sum in (4.4.15) is negligible:

n∑
j=2

2

j(j − 1)
B(j)�

n∑
j=2

log j ≤
n∑
j=2

log n < n log n. (4.4.16)

Now, we estimate the first sum on the right of (4.4.15) using Theorem 4.1.3:

n∑
j=2

2

j
B(j) = 2(1− γ)

n∑
j=2

j log j + 2 (γ + γ1 − 1)
n∑
j=2

j +O

( n∑
j=2

√
j log j

)

= 2(1− γ)
n∑
j=2

j log j + 2 (γ + γ1 − 1)

(
n2 + n

2
− 1

)
+O

( n∑
j=2

√
n log n

)

= 2(1− γ)
n∑
j=2

j log j + (γ + γ1 − 1)n2 +O
(
n3/2 log n

)
.

We use Lemma 4.2.10 to estimate
∑n

j=2 j log j and obtain

n∑
j=2

2

j
B(j) = (1− γ)n2 log n+

(
3

2
γ + γ1 −

3

2

)
n2 +O

(
n3/2 log n

)
. (4.4.17)

On inserting (4.4.16) and (4.4.17) into (4.4.15), we obtain (4.4.14) as desired.
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Lemma 4.4.4. For integers n ≥ 2, we have

A12(n) =
1

2
n2 log n− 1

4
n2 +O

(
n(log n)2

)
.

Proof. We can rewrite (4.4.10) in terms of J(x) =
∑

1≤b≤x
log b
b

as

A12(n) =
n∑
j=2

2j(J(n)− J(j)).

For 2 ≤ j ≤ n, it follows from Lemma 4.2.6 that

J(n)− J(j) =
1

2
(log n)2 − 1

2
(log j)2 +O

(
log n

j

)
.

Hence

A12(n) =
n∑
j=2

j(log n)2 −
n∑
j=2

j(log j)2 +O

( n∑
b=2

log n

)

=

(
1

2
n2 +

1

2
n− 1

)
(log n)2 −

n∑
j=2

j(log j)2 +O (n log n) .

We use Lemma 4.2.10 to estimate
∑n

j=2 j(log j)2 and obtain

A12(n) =
1

2
n2 log n− 1

4
n2 +O

(
n(log n)2

)
,

as desired.

4.4.4 Proofs of Theorems 4.1.4 and 4.1.1

We derive the estimate for A(n) in Theorem 4.1.4 and that for Gn in Theorem

4.1.1.

Proof of Theorem 4.1.4. By Lemma 4.4.1 and Lemma 4.4.2,

A(n) = A1(n) +O
(
n(log n)2

)
= A11(n) + A12(n) +O

(
n(log n)2

)
.

Inserting the estimates of Lemma 4.4.3 for A11(n) and Lemma 4.4.4 for A12(n) yields

A(n) =

(
3

2
− γ
)
n2 log n+

(
3

2
γ + γ1 −

7

4

)
n2 +O

(
n3/2 log n

)
,

as required.
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Proof of Theorem 4.1.1. The estimate for Gn follows from the relation logGn =

A(n) − B(n) using the estimates of Theorem 4.1.3 for B(n) and Theorem 4.1.4

for A(n).

4.5 Estimates for the generalized partial factorization sums B(n, x)

We derive estimates for B(n, x) in the interval 1 ≤ x ≤ n starting from the

asymptotic estimates for B(n) = B(n, n). Let Hm =
∑m

k=1
1
k

denote the m-th

harmonic number.

Theorem 4.5.1. Let B(n, x) =
∑bxc

b=2
n−1
b−1 db(n) log b. Then for integers n ≥ 2 and

real x ∈ [
√
n, n],

B(n, x) = B0(n, x)n2 log n+B1(n, x)n2 +O
(
n3/2 log n

)
, (4.5.1)

where the functions B0(n, x) and B1(n, x) only depend on x
n

and are given by

B0(n, x) := (1− γ) +
(
Hbn

x
c − log

n

x

)
− x

n

⌊n
x

⌋
(4.5.2)

and

B1(n, x) := (γ + γ1 − 1)−
(
Hbn

x
c − log

n

x

)
−
(
Jbn

x
c −

1

2

(
log

n

x

)2)
− log

n

x
+
(

log
n

x

) x
n

⌊n
x

⌋
+
x

n

⌊n
x

⌋
. (4.5.3)

Moreover, for integers n ≥ 2 and real x ∈ [1,
√
n],

B(n, x) = O
(
n3/2 log n

)
. (4.5.4)

Remark 4.5.2. The functions B0(n, x) and B1(n, x) above are functions of a single

variable α := x
n

having 0 ≤ α ≤ 1. That is, the answer displays a scale invariance,

in terms of the variables x and n. However various intermediate parts of the proof

involve terms in n and x that are not scale invariant.
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4.5.1 Preliminary reduction

We write

B(n, x) = B(n)−Bc
(n, x), (4.5.5)

where B
c
(n, x) is the complement sum

B
c
(n, x) :=

∑
x<b≤n

n− 1

b− 1
db(n) log b. (4.5.6)

The sum B(n) can be estimated by Theorem 4.1.3. To estimate B
c
(n, x), we break

it into two parts.

Lemma 4.5.3. For integers n ≥ 2 and real numbers x such that
√
n ≤ x ≤ n, we

have

B
c
(n, x) = B

c

11(n, x)− (n− 1)
(
C(n, n)− C(n, x)

)
, (4.5.7)

where C(n, x) is given by (4.2.15) and

B
c

11(n, x) := n(n− 1)
∑
x<b≤n

log b

b− 1
. (4.5.8)

Proof. Recall from (4.2.6) that db(n) = n − (b − 1)
∑∞

i=1

⌊
n
bi

⌋
. Since x >

√
n, if

b > x, then b2 > x2 ≥ n, and hence
⌊
n
bi

⌋
= 0 for all i ≥ 2. In this circumstance,

db(n) = n − (b − 1)
⌊
n
b

⌋
for b > x. Inserting this formula into the definition (4.5.6),

we obtain

B
c
(n, x) = n(n− 1)

∑
x<b≤n

log b

b− 1
− (n− 1)

∑
x<b≤n

⌊n
b

⌋
log b

= B
c

11(n, x)− (n− 1)
(
C(n, n)− C(n, x)

)
(4.5.9)

as required.
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4.5.2 Estimate for B
c

11(n, x)

Lemma 4.5.4. For real numbers n ≥ 2 and x such that 1 ≤ x ≤ n, we have

B
c

11(n, x) =
1

2
n2(log n)2 − 1

2
n2(log x)2 +O

(
n2 log n

x

)
. (4.5.10)

Proof. We start from (4.5.8) and use the identity (4.4.3) to rewrite 1
n(n−1)B

c

11(n, x):

1

n(n− 1)
B
c

11(n, x) =
∑
x<b≤n

log b

b
+
∑
x<b≤n

log b

b(b− 1)
. (4.5.11)

The contribution from the last sum in (4.5.11) is negligible:

0 ≤
∑
x<b≤n

log b

b(b− 1)
< (log n)

∑
b>x

1

b(b− 1)
=

log n

bxc
<

2 log n

x
. (4.5.12)

The first sum on the right in (4.5.11) can be estimated using Lemma 4.2.6:

∑
x<b≤n

log b

b
= J(n)− J(x) =

1

2
(log n)2 − 1

2
(log x)2 +O

(
log n

x

)
. (4.5.13)

On inserting (4.5.12) and (4.5.13) into (4.5.11), we obtain

1

n(n− 1)
B
c

11(n, x) =
1

2
(log n)2 − 1

2
(log x)2 +O

(
log n

x

)
.

On multiplying by n(n− 1), we obtain

B
c

11(n, x) =
1

2
n2(log n)2− 1

2
n2(log x)2−

(
1

2
n(log n)2 − 1

2
n(log x)2

)
+O

(
n2 log n

x

)
.

Since et = 1 + t+ t2

2
+ · · · > t for t > 0, it follows that log n

x
< n

x
and

0 ≤ 1

2
n(log n)2 − 1

2
n(log x)2 =

1

2
n
(

log
n

x

)
log(nx) <

1

2
n
(n
x

)
(2 log n) =

n2 log n

x
.

Hence (4.5.10) follows.

4.5.3 Estimate for B
c
(n, x)

We obtain an asymptotic estimate for B
c
(n, x).
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Proposition 4.5.5. For integers n ≥ 2 and real numbers x such that
√
n ≤ x ≤ n,

we have

B
c
(n, x) =n2

(
J
(n
x

)
− 1

2

(
log

n

x

)2)
− (n2 log n− n2)

(
Hbn

x
c − log

n

x

)
+ n2

(
1−

⌊n
x

⌋ x
n

)
log

n

x
+ (n2 log n− n2)

⌊n
x

⌋ x
n

+O
(
n3/2 log n

)
.

(4.5.14)

Proof. We have

B
c
(n, x) = B

c

11(n, x)− (n− 1)
(
C(n, n)− C(n, x)

)
. (4.5.15)

We suppose
√
n ≤ x ≤ n. From Lemma 4.5.4 we obtain

B
c

11(n, x) =
1

2
n2
(
(log n)2 − (log x)2

)
+O

(
n3/2 log n

)
. (4.5.16)

Now Proposition 4.2.7(2) gives for 2 ≤ x ≤ n,

C(n, n)− C(n, x) =
(
Hbnxc −

x

n

⌊n
x

⌋)
(n log n− n)−

(
Jbnxc −

x

n

⌊n
x

⌋
log

n

x

)
n

+O

(
n log n

x

)
.

Substituting these estimates into (4.5.15), and assuming x ≥
√
n yields

B
c
(n, x) =

1

2
n2
(
(log n)2 − (log x)2

)
+ n

(
Hbnxc −

x

n

⌊n
x

⌋)
(n log n− n)

−n
(
Jbnxc −

x

n

⌊n
x

⌋
log

n

x

)
+O

(
n3/2(log n)2

)
. (4.5.17)

In this formula we also replaced a factor (n − 1) by n, introducing an error of

O (n(log n)2) absorbed in the remainder term. Our goal is to simplify this expression

to obtain (4.5.14). We rewrite (4.5.17) as

B
c
(n, x) =n2

(
Jbnxc −

1

2

(
log

n

x

)2)
+ (n2 log n− n2)

(
Hbnxc − log

n

x

)
+B

c

21(n, x)

+O
(
n3/2(log n)2

)
, (4.5.18)
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where we define

B
c

21(n, x) :=

(
1

2
n2
(

log
n

x

)2
− n2(log n)

(
log

n

x

)
+ n2

(
log

n

x

))
+

1

2
n2
(
(log n)2 − (log x)2

)
−x
n

⌊n
x

⌋ (
n2 log n− n2

)
−
(x
n

⌊n
x

⌋)
n2 log

n

x
. (4.5.19)

Expanding log n
x

= log n− log x in the first two terms in (4.5.19) gives

1

2

(
log

n

x

)2
− n2(log n)

(
log

n

x

)
= −1

2
n2(log n)2 +

1

2
n2(log x)2,

which cancels the next two terms appearing in (4.5.19). Rearranging the remaining

uncancelled terms results in

B
c

21(n, x) =
x

n

⌊n
x

⌋ (
n2 log n− n2

)
+
(

1− x

n

⌊n
x

⌋)
n2 log

n

x
, (4.5.20)

which when substituted in (4.5.18) yields (4.5.14).

4.5.4 Proof of Theorem 4.5.1

We obtain an estimate of B(n, x).

Proof of Theorem 4.5.1. For n ≥ x ≥ 1 we have the decomposition

B(n, x) = B(n)−Bc
(n, x). (4.5.21)

By Theorem 4.1.3 we have for n ≥ 2,

B(n) = (1− γ)n2 log n+ (γ + γ1 − 1)n2 +O
(
n3/2 log n

)
.

By Proposition 4.5.5 we have for n ≥ 2 and
√
n ≤ x ≤ n,

B
c
(n, x) := n2

(
Jbn

x
c −

1

2

(
log

n

x

)2
)
−
(
n2 log n− n2

) (
Hbn

x
c − log

n

x

)
+n2

(
1−

⌊
n

x

⌋
x

n

)
log

n

x
+
(
n2 log n− n2

) ⌊n
x

⌋
x

n
+O

(
n3/2 log n

)
.
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We obtain for n ≥ 2 and
√
n ≤ x ≤ n,

B(n, x) = B0(n, x)n2 log n+B1(n, x)n2 +O
(
n3/2 log n

)
, (4.5.22)

with

B0(n, x) = (1− γ) +
(
Hbn

x
c − log

n

x

)
−
⌊
n

x

⌋
x

n

and

B1(n, x) = (γ + γ1 − 1)−
(
Hbn

x
c − log

n

x

)
−

(
Jbn

x
c −

1

2

(
log

n

x

)2
)

−
(

1−
⌊
n

x

⌋
x

n

)
log

n

x
+

⌊
n

x

⌋
x

n
,

which is (4.5.1).

Finally, for integers n ≥ 2 and real x ∈ [1,
√
n], we have

B(n, x) =
∑

2≤b≤x

n− 1

b− 1
db(n) log b

≤
∑

2≤b≤x

(n− 1) log(n+ 1)

< x(n− 1) log(n+ 1)

< 2n3/2 log n,

where the bound of Lemma 4.2.4 for db(n) was used in the first inequality. We have

obtained (4.5.4).

4.5.5 Proof of Theorem 4.1.5

Proof of Theorem 4.1.5. We estimate B(n, αn). The theorem follows on choosing

x = αn in Theorem 4.5.1 and simplifying. Now B0(n, x) = fB(α) is a function of

α = x
n
, with

fB(α) = (1− γ) +

(
Hb 1

α
c − log

1

α

)
− α

⌊
1

α

⌋
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Similarly B1(n, x) = gB(α) is a function of α with

gB(α) = (γ + γ1 − 1)−
(
Hb 1

α
c − log

1

α

)
−

(
Jb 1

α
c −

1

2

(
log

1

α

)2
)

+

(
α

⌊
1

α

⌋
− 1

)
log

1

α
+

⌊
1

α

⌋
α.

We allow 1√
n
≤ α ≤ 1, and for n ≥ 2 the remainder term in the estimate is

O
(
n3/2 log n

)
, independent of α in this range. For the range x ∈ [1,

√
n] we use

the final estimate (4.5.4).

Remark 4.5.6. The function fB(α) has fB(1) = 1 − γ, and has limα→0+ fB(α) = 0

since Hb 1
α
c − log 1

α
→ γ as α → 0+. Various individual terms in the formulas for

fB(α) and gB(α) are discontinuous at points α = 1
k

for k ≥ 1. The function fB(α)

was shown to be continuous on [0, 1] in [13]; the function gB(α) can be checked to

be continuous.

4.6 Estimates for the generalized partial factorization sums A(n, x)

The main goal of this section is to prove the following theorem.

Theorem 4.6.1. Let A(n, x) =
∑bxc

b=2
2
b−1Sb(n) log b. Then for integers n ≥ 2 and

real x ∈ [
√
n, n],

A(n, x) = A0(n, x)n2 log n+ A1(n, x)n2 +O
(
n3/2 log n

)
, (4.6.1)

where the functions A0(n, x) and A1(n, x) only depend on x
n

and are given by

A0(n, x) :=

(
3

2
− γ
)

+
(
Hbn

x
c − log

n

x

)
+

1

2

(x
n

)2 ⌊n
x

⌋ ⌊n
x

+ 1
⌋
−2
(x
n

)⌊n
x

⌋
(4.6.2)
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and

A1(n, x) :=

(
3

2
γ + γ1 −

7

4

)
− 3

2

(
Hbn

x
c − log

n

x

)
−
(
Jbn

x
c −

1

2

(
log

n

x

)2)
− 3

2
log

n

x
− 1

2

(
log

n

x

)(x
n

)2 ⌊n
x

⌋ ⌊n
x

+ 1
⌋

+ 2
(

log
n

x

) x
n

⌊n
x

⌋
− 1

4

(x
n

)2 ⌊n
x

⌋ ⌊n
x

+ 1
⌋

+ 2
(x
n

)⌊n
x

⌋
. (4.6.3)

Moreover, for integers n ≥ 2 and real x ∈ [1,
√
n],

A(n, x) = O
(
n3/2 log n

)
. (4.6.4)

We derive estimates for A(n, x) starting from A(n, n) and working downward, via

a recursion in Lemma 4.6.2 below.

4.6.1 Estimates for the complement sum A(n, n)−A(n, x)

First, we show that A(n, n)−A(n, x) can be written in terms of known quantities,

namely B
c

11(n, x) and C(j, j)− C(j, x).

Lemma 4.6.2. For integers n ≥ 2 and real numbers x such that
√
n− 1 ≤ x ≤ n,

we have

A(n, n)− A(n, x) = B
c

11(n, x)− 2
∑
x≤j<n

(
C(j, j)− C(j, x)

)
, (4.6.5)

where C(n, x) and B
c

11(n, x) are given by (4.2.15) and (4.5.8), respectively.

Proof. From (4.1.21), we have

A(n, n) = A(n, x) +
∑
x<b≤n

2

b− 1
Sb(n) log b (4.6.6)

Observe that for positive integers b > x and j ≤ n− 1, we have b2 > x2 ≥ n− 1 ≥ j,

and hence
⌊
j
bi

⌋
= 0 for all i ≥ 2. From (4.2.7), if b > x, then

Sb(n) =
n(n− 1)

2
− (b− 1)

n−1∑
j=1

⌊
j

b

⌋
.
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On inserting this into (4.6.6), we obtain

A(n, n)− A(n, x) = n(n− 1)
∑
x<b≤n

log b

b− 1
− 2

n−1∑
j=1

∑
x<b≤n

⌊
j

b

⌋
log b

= B
c

11(n, x)− 2
n−1∑
j=1

(
C(j, n)− C(j, x)

)
.

From (4.2.16), if 1 ≤ j < n, then C(j, n) = C(j, j). Hence

A(n, n)− A(n, x) = B
c

11(n, x)− 2
∑

1≤j<n

(
C(j, j)− C(j, x)

)
.

From (4.2.16), if 1 ≤ j < x, then C(j, x) = C(j, j). Hence (4.6.5) follows.

The next lemma gives an estimate for the sum of values of a dilated floor function.

We will use this estimate to prove the main Lemma 4.6.4 below.

Lemma 4.6.3. For real numbers t and u such that 1 ≤ u ≤ t, we have

btc∑
j=1

⌊
j

u

⌋
= t

⌊
t

u

⌋
− 1

2
u

⌊
t

u

⌋2
− 1

2
u

⌊
t

u

⌋
+O

(
t

u

)
.

Proof. We write
⌊
j
u

⌋
=
∑

1≤k≤ j
u

1 and interchange the order of summation, obtaining

btc∑
j=1

⌊
j

u

⌋
=
∑
1≤j≤t

( ∑
1≤k≤ j

u

1

)
=
∑

1≤k≤ t
u

( ∑
uk≤j≤t

1

)
.

The inner sum on the right counts the number of integers from duke to btc. Hence

the above is

btc∑
j=1

⌊
j

u

⌋
=
∑

1≤k≤ t
u

(btc − duke+ 1) = (btc+ 1)

⌊
t

u

⌋
−
b tuc∑
k=1

duke.

By using the estimate dve = v +O(1), we obtain

btc∑
j=1

⌊
j

u

⌋
= (btc+ 1)

⌊
t

u

⌋
−
b tuc∑
k=1

uk +O

(
t

u

)

= t

⌊
t

u

⌋
− 1

2
u

⌊
t

u

⌋2
− 1

2
u

⌊
t

u

⌋
+O

(
t

u

)
as desired.
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The following lemma gives an estimate for the complement sum A(n, n)−A(n, x).

Lemma 4.6.4. For integers n ≥ 2 and real numbers x such that
√
n− 1 ≤ x ≤ n,

we have

A(n, n)− A(n, x) =

∫ n

x

(⌊n
u

⌋
+
{n
u

}2
)
u log u du+O

(
n2 log n

x

)
. (4.6.7)

Proof. We start from (4.6.5) and apply Proposition 4.2.7 to estimate each term(
C(j, j)− C(j, x)

)
:

A(n, n)− A(n, x) = B
c

11(n, x)− 2
∑
x≤j<n

(
C(j, j)− C(j, x)

)
= B

c

11(n, x)− 2
∑
x≤j<n

∫ j

x

⌊
j

u

⌋
log u du+O

(
1

x

n∑
j=1

j log j

)
.

(4.6.8)

Now, we estimate each term on the right of (4.6.6). To simplify the error term, by

Lemma 4.2.10, we have

1

x

n∑
j=1

j log j = O

(
n2 log n

x

)
. (4.6.9)

The first term can be estimated by Lemma 4.5.4:

B
c

11(n, x) =
1

2
n2(log n)2 − 1

2
n2(log x)2 +O

(
n2 log n

x

)
=

∫ n

x

n2 log u

u
du+ +O

(
n2 log n

x

)
. (4.6.10)

For the second term, we observe that
⌊
j
u

⌋
= 0 for 0 < j < u. Hence

−2
∑
x≤j<n

∫ j

x

⌊
j

u

⌋
log u du = −2

∑
x≤j<n

∫ n

x

⌊
j

u

⌋
log u du

= −2

∫ n

x

( ∑
x≤j<n

⌊
j

u

⌋)
log u du. (4.6.11)
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The inner sum on the right of (4.6.11) can be estimated using Lemma 4.6.3. If

1 ≤ j < x and u ≥ x, then 0 < j < u, and then
⌊
j
u

⌋
= 0. Hence

∑
1≤j<x

⌊
j
u

⌋
= 0

and

∑
x≤j<n

⌊
j

u

⌋
=

n∑
j=1

⌊
j

u

⌋
−
⌊n
u

⌋
= n

⌊n
u

⌋
− 1

2
u
⌊n
u

⌋2
− 1

2
u
⌊n
u

⌋
+O

(n
u

)
= n

⌊n
u

⌋
− 1

2
u
⌊n
u

⌋2
− 1

2
u
⌊n
u

⌋
+O

(n
x

)
.

On inserting this into (4.6.11), we obtain

−2
∑
x≤j<n

∫ j

x

⌊
j

u

⌋
log u du =

∫ n

x

(
−2n

⌊n
u

⌋
+ u

⌊n
u

⌋2
+ u

⌊n
u

⌋)
log u du

+O

(
n2 log n

x

)
. (4.6.12)

On inserting (4.6.9), (4.6.10), and (4.6.12) into (4.6.8), we obtain

A(n, n)− A(n, x) =

∫ n

x

(
n2

u
− 2n

⌊n
u

⌋
+ u

⌊n
u

⌋2
+ u

⌊n
u

⌋)
log u du+O

(
n2 log n

x

)
=

∫ n

x

((n
u
−
⌊n
u

⌋)2
+
⌊n
u

⌋)
u log u du+O

(
n2 log n

x

)
=

∫ n

x

(⌊n
u

⌋
+
{n
u

}2
)
u log u du+O

(
n2 log n

x

)
as desired.

The next lemma shows that the main term in (4.6.7) can be written in the form

f
(
x
n

)
n2 log n+ g

(
x
n

)
n2.

Lemma 4.6.5. For real numbers n and x such that 0 < x ≤ n, we have∫ n

x

(⌊n
u

⌋
+
{n
u

}2
)
u log u du =n2(log n)

∫ n
x

1

bvc+ {v}2

v3
dv

− n2

∫ n
x

1

bvc+ {v}2

v3
log v dv. (4.6.13)
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Proof. By the substitution v = n
u
, we see that∫ n

x

(⌊n
u

⌋
+
{n
u

}2
)
u log u du =

∫ 1

n
x

(
bvc+ {v}2

) n
v

(
log

n

v

)(
− n
v2

)
dv

= n2

∫ n
x

1

bvc+ {v}2

v3
log

n

v
dv.

Since log n
v

= log n− log v, we obtain (4.6.13) as desired.

To evaluate the integrals on the right of (4.6.13), we use the following lemma.

Lemma 4.6.6. Suppose that f is a twice differentiable function with continuous

second derivative on the interval [1,∞). Then for real numbers β ≥ 1,

1

2

∫ β

1

(
bvc+ {v}2

)
f ′′(v) dv =

∫ β

1

f(v) dv −
bβc∑
b=2

f(b)

− {β}f(β) +
1

2

(
bβc+ {β}2

)
f ′(β)− 1

2
f ′(1).

(4.6.14)

Proof. By the Euler–Maclaurin summation formula (cf. [23, Theorem B.5]),

bβc∑
b=2

f(b) =

∫ β

1

f(v) dv −
(
{β} − 1

2

)
f(β)− 1

2
f(1) +

1

2

(
{β}2 − {β}+

1

6

)
f ′(β)

− 1

12
f ′(1)− 1

2

∫ β

1

(
{v}2 − {v}+

1

6

)
f ′′(v) dv.

Rearranging the terms, we obtain

1

2

∫ β

1

(
{v}2 − {v}+

1

6

)
f ′′(v) dv =

∫ β

1

f(v) dv −
bβc∑
b=2

f(b)−
(
{β} − 1

2

)
f(β)

+
1

2

(
{β}2 − {β}+

1

6

)
f ′(β)

− 1

2
f(1)− 1

12
f ′(1). (4.6.15)
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On the other hand, we use integration by parts to see that

1

2

∫ β

1

(
v − 1

6

)
f ′′(v) dv =

1

2

(
v − 1

6

)
f ′(v)

∣∣∣∣β
v=1

− 1

2

∫ β

1

f ′(v) dv

= −1

2
f(β) +

1

2

(
β − 1

6

)
f ′(β) +

1

2
f(1)− 5

12
f ′(1).

(4.6.16)

Adding (4.6.15) and (4.6.16), we obtain (4.6.14).

We apply Lemma 4.6.6 to evaluate the integrals on the right of (4.6.13).

Lemma 4.6.7. For real numbers α such that 0 < α ≤ 1, we have∫ 1
α

1

bvc+ {v}2

v3
dv =

3

2
−
(
Hb 1

α
c − log

1

α

)
− α

({
1

α

}
+

1

2

)
−α2

(
1

2

{
1

α

}2

− 1

2

{
1

α

})
(4.6.17)

and∫ 1
α

1

bvc+ {v}2

v3
log v dv =

7

4
− 3

2

(
Hb 1

α
c − log

1

α

)
−

(
J

(
1

α

)
− 1

2

(
log

1

α

)2
)

−
(
α log

1

α

)({
1

α

}
+

1

2

)
− α

(
3

2

{
1

α

}
+

1

4

)
−
(
α2 log

1

α

)(
1

2

{
1

α

}2

− 1

2

{
1

α

})

−α2

(
1

4

{
1

α

}2

− 1

4

{
1

α

})
. (4.6.18)

Proof. For (4.6.17), apply Lemma 4.6.6 with f(v) = 1
v

and β = 1
α

:∫ 1
α

1

bvc+ {v}2

v3
dv = log

1

α
−
(
Hb 1

α
c − 1

)
− α

{
1

α

}
− 1

2
α2

(⌊
1

α

⌋
+

{
1

α

}2
)

+
1

2
.

Replacing
⌊
1
α

⌋
+
{

1
α

}2
by 1

α
−
{

1
α

}
+
{

1
α

}2
and rearranging the terms, we obtain

(4.6.17).
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For (4.6.18), apply Lemma 4.6.6 with f(v) = 3
2v

+ log v
v

and β = 1
α

:∫ 1
α

1

bvc+ {v}2

v3
log v dv =

(
3

2
log

1

α
+

1

2

(
log

1

α

)2
)
−
(

3

2
Hb 1

α
c + J

(
1

α

)
− 3

2

)
− α

{
1

α

}(
3

2
+ log

1

α

)
− α2

(⌊
1

α

⌋
+

{
1

α

}2
)(

1

4
+

1

2
log

1

α

)
+

1

4
.

Replacing
⌊
1
α

⌋
+
{

1
α

}2
by 1

α
−
{

1
α

}
+
{

1
α

}2
and rearranging the terms, we obtain

(4.6.18).

4.6.2 Proof of Theorem 4.6.1

We combine results in the previous subsection to obtain an estimate for A(n, x)

as stated in Theorem 4.6.1.

Proof of Theorem 4.6.1. Combining Theorem 4.1.4 and Lemma 4.6.4, which estimate

A(n, n) and A(n, n)− A(n, x) respectively, we obtain an estimate for A(n, x):

A(n, x) =

(
3

2
− γ
)
n2 log n+

(
3

2
γ + γ1 −

7

4

)
n2 −

∫ n

x

(⌊n
u

⌋
+
{n
u

}2
)
u log u du

+O
(
n3/2 log n

)
.

The integral on the right can be evaluated using Lemma 4.6.5:

A(n, x) =

(
3

2
− γ
)
n2 log n+

(
3

2
γ + γ1 −

7

4

)
n2

− n2(log n)

∫ n
x

1

bvc+ {v}2

v3
dv + n2

∫ n
x

1

bvc+ {v}2

v3
log v dv

+O
(
n3/2 log n

)
=A0(n, x)n2 log n+ A1(n, x)n2 +O

(
n3/2 log n

)
,

where the functions A0(n, x) and A1(n, x) are given by

A0(n, x) :=

(
3

2
− γ
)
−
∫ n

x

1

bvc+ {v}2

v3
dv, (4.6.19)
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A1(n, x) :=

(
3

2
γ + γ1 −

7

4

)
+

∫ n
x

1

bvc+ {v}2

v3
log v dv. (4.6.20)

It remains to show that (4.6.19) is equivalent to (4.6.2) and that (4.6.20) is equivalent

to (4.6.3). To that end, we apply Lemma 4.6.7 with α = x
n

to evaluate the integrals

in (4.6.19) and (4.6.20). We obtain

A0(n, x) =
(
Hbn

x
c − log

n

x
− γ
)

+
x

n

({n
x

}
+

1

2

)
−
(x
n

)2(1

2

{n
x

}2

− 1

2

{n
x

})
,

A1(n, x) = −3

2

(
Hbn

x
c − log

n

x
− γ
)
−
(
J
(n
x

)
− 1

2

(
log

n

x

)2
− γ1

)
−
(x
n

log
n

x

)({n
x

}
+

1

2

)
− x

n

(
3

2

{n
x

}
+

1

4

)
−
(x
n

)2 (
log

n

x

)(1

2

{n
x

}2

− 1

2

{n
x

})
−
(x
n

)2(1

4

{n
x

}2

− 1

4

{n
x

})
.

Replacing
{
n
x

}
by n

x
−
⌊
n
x

⌋
and rearranging the terms, we obtain the formulas (4.6.2)

and (4.6.3).

Finally, for integers n ≥ 2 and real x ∈ [1,
√
n], we have

A(n, x) =
∑

2≤b≤x

2

b− 1
Sb(n) log b

≤
∑

2≤b≤x

n log n < xn log n

≤ n3/2 log n,

where the bound of Lemma 4.2.4 for Sb(n) was used in the first inequality. We have

obtained (4.6.4).

4.6.3 Proof of Theorem 4.1.6

Proof of Theorem 4.1.6. The result for the range x ∈ [
√
n, n] follows from Theorem

4.6.1 on choosing x = αn and simplifying. For the range x ∈ [1,
√
n] we use the final

estimate (4.6.4).
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Remark 4.6.8. The function fA(α) has fA(1) = 3
2
− γ, and has limα→0+ fA(α) = 0

since Hb 1
α
c − log 1

α
→ γ as α→ 0+.

4.7 Estimates for partial factorizations G(n, x)

We deduce asymptotics of G(n, x).

Theorem 4.7.1. Let G(n, x) =
∏bxc

b=2 b
ν(n,b). Then for integers n ≥ 2 and real

x ∈ [
√
n, n],

logG(n, x) = G0(n, x)n2 log n+G1(n, x)n2 +O
(
n3/2 log n

)
, (4.7.1)

where the functions G0(n, x) and G1(n, x) only depend on x
n

and are given by

G0(n, x) :=
1

2
+

1

2

(x
n

)2 ⌊n
x

⌋ ⌊n
x

+ 1
⌋
− x

n

⌊n
x

⌋
(4.7.2)

and

G1(n, x) :=

(
1

2
γ − 3

4

)
− 1

2

(
Hbn

x
c − log

n

x

)
− 1

2
log

n

x
− 1

2

(
log

n

x

)(x
n

)2 ⌊n
x

⌋ ⌊n
x

+ 1
⌋

+
(

log
n

x

) x
n

⌊n
x

⌋
− 1

4

(x
n

)2 ⌊n
x

⌋ ⌊n
x

+ 1
⌋

+
x

n

⌊n
x

⌋
. (4.7.3)

Moreover, for integers n ≥ 2 and real x ∈ [1,
√
n],

logG(n, x) = O
(
n3/2 log n

)
. (4.7.4)

Proof. Recall from (4.1.20) the identity

logG(n, x) = A(n, x)−B(n, x).

The result (4.7.1) follows for the range x ∈ [
√
n, n] by inserting the formulas (4.6.1)

in Theorem 4.6.1 and (4.5.1) in Theorem 4.5.1. The formula (4.7.4) in the range

x ∈ [1,
√
n] follows from the corresponding range bounds in Theorems 4.6.1 and

4.5.1.
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4.7.1 Proof of Theorem 4.1.2

Proof of Theorem 4.1.2. The theorem follows from Theorem 4.7.1 on choosing x =

αn and simplifying. The O-constant in the remainder term is absolute for the range

1√
n
≤ α ≤ 1. Here n

x
= 1

α
.

4.8 Concluding remarks

Viewing the general definition of generalized binomial products (4.1.8) as a kind

of integration operation (over b ≥ 2) the smoothing aspect of the integration oper-

ation is evident in the existence of unconditional estimates giving a power-savings

remainder term; the Riemann hypothesis is not needed.

A large class of limit functions may occur in problems of this sort, generalizing

the limit function fG(α) in [13] given by (4.1.7). This chapter exhibited a new limit

scaling functions g
G

(α). It may be of interest to determine the class of of such scaling

functions obtained by iterated integral constructions of this kind.

This definition (4.1.8) did not provide any hint whether the product possesses

a sub-factorization into analogues of binomial coefficients. In Chapter 3 of this

thesis we showed that the sequence Gn can alternatively be defined as a product of

generalized binomial coefficients
(
n
k

)
N which are integers, which themselves can be

written in terms of generalized factorials of a new kind(
n

k

)
N

=
[n]!N

[k]!N[n− k]!N
.

These new factorials can themselves be factorized into a product of generalized in-

tegers

[n]N =
n∏
k=1

[k]N.
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These generalized integers [n]N are not monotonically increasing but have an internal

structure driven by the prime factorization of n.

The factorials [n]!N above also have many of the properties of the generalized

factorials of Bhargava ([4], [5], [6]). They seem to not be included in Bhargava’s

theory of P -orderings, but we showed in Chapter 3 that they can be covered by a

generalization of this theory.

These generalized factorials also fit in the general framework of Knuth and Wilf

[18] treating generalized factorials and binomial coefficients as products of general-

ized integers (denoted Cn in their paper). The sequence of generalized integers [n]N

is not a regularly divisible sequence as defined in [18]; see the remark at the end of

Subsection 3.2.4.
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