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ABSTRACT

This dissertation treats three topics in number theory. The first topic concerns the
problem of determining the optimal constant in the Montgomery—Vaughan weighted
generalization of Hilbert’s inequality. The second topic presents a further gener-
alization of Bhargava’s generalized factorials in the ring Z. We define invariants
associated to all pairs (S,b) of a nonempty subset S of Z and a nontrivial proper
ideal b in Z and use them to construct generalized factorials. The third topic is
asymptotics of partial factorizations of products of generalized binomial coefficients

constructed using generalized factorials from the second topic.
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CHAPTER 1

Introduction

1.1 Topics covered

This dissertation consists of three topics in number theory.
(1) The Montgomery—Vaughan weighted generalization of Hilbert’s inequality
(2) Generalized factorials and binomial coefficients allowing composite bases

(3) Asymptotics of partial factorizations of products of generalized binomial coeffi-

clents

These three topics are treated in Chapters 2, 3, and 4, respectively. The next

three sections 1.2, 1.3, and 1.4 discuss these chapters.

1.2 The Montgomery—Vaughan weighted generalization of Hilbert’s in-
equality

Chapter 2 concerns the problem of determining the optimal absolute constant in

the Montgomery—Vaughan weighted generalization of Hilbert’s inequality.

1.2.1 Hilbert’s inequality

In a lecture on integral equations held in summer 1907, Hilbert introduced an

example of a bounded linear operator from ¢? to £?> whose row and column sums are



divergent. The linear operator is given by the infinite matrix

11 1
2 3 4
11 1
3 4 5
Y
11 1
4 5 6

where the (m,n)-entry is ——. Hilbert demonstrated the boundedness of this oper-

ator by proving the following bound for a real bilinear form:

1 1
Z Z Tim—i_yf;l <7 (Z_lx?n> (Zl yi) (1.2.1)

m=1 n=1

for all vectors [z, z9, x3,...] and [y1, Yo, Y3, . . . | of real numbers. This result is known
as Hilbert’s double series theorem.

Hilbert’s proof was published in Weyl’s dissertation [15]. It is based on the identity

1,
— =S+T
27T/_7rtf(t) dt =S +T,

where
N
f) = Z(—l)” (x, sin(nt) — y, cos(nt)) ,
-1
NN ey

From this identity, Hilbert derived (1.2.1) and a similar bound for the bilinear form

T:

Z Z ;myn < ¢ (Z:l x%) (2_:1 yi) (1.2.2)

m=1 n=1
with the absolute constant ¢y = 27. Schur [12] later determined the optimal value
of ¢y to be .
The coefficient matrix of the bilinear form on the left side of (1.2.2) is skew-

symmetric. The following equivalence is well-known.



Proposition 1.2.1. Let A = [a,] be an N x N matriz with complezx entries such

that AT = —A. Let ¢ be a nonnegative real number. Then the inequality
1 1
3 /N 3
Z Zamnxmyn <ec (Z T > (Z yi) (1.2.3)
m=1 n=1 n=1
holds for all vectors [xy,...,zN] and [y, ..., yx] in RN if and only if the inequality
N N N
Z Z Qyrn Zm Zm Z |zn|2 (1.2.4)
m=1 n=1 n=1
holds for all vectors [z, ...,zy] € CV.

From Proposition 1.2.1, we see that (1.2.2) is equivalent to

N N
3 Z nimzn < oo Z 2l (1.2.5)

m=1n

7&
Let H be the N x N matrix with entries given by

min if m # n,
(H),, =
0 if m = n.
That is, ] )
1 1
0 -1 =3 ~N-1
1
1 0 -1 s
= 1 1
H s 1 0 ~N-3

1 1 1, 0
| N-1 N-2 N-3

Let (-,-) be the inner product on the complex vector space CV defined by

N

<Z7 W> - Z Zp W,
n=1

T T :
where z = [2,...,2y] and w = [wy,...,wy] are column vectors in CV. In

vector notation, (1.2.5) can be rewritten as the following inequality involving the



sesquilinear form (z, w) — (z, Hw):
|(z,Hz)| < Cy (z,z) .
1.2.2 The Montgomery—Vaughan generalization of Hilbert’s inequality

While H. L. Montgomery was visiting the Institute for Advanced Study during

1971-1972, Selberg showed him a proof of the following result.

Theorem 1.2.2. Let § be a positive real number. Let (\g)re be a sequence of real

k=—00
numbers such that A\gy1 — Ay > 0 for all k. Then for any sequence (zy,...,zy) € CV,
ZmZn T
me<n 2
Z Z | S EZ ESi (1.2.6)
m= 1771175% n=1

Theorem 1.2.2 generalizes Hilbert’s inequality (1.2.5) with the optimal constant
co = m. If the frequencies \; form an arithmetic progression with a common difference
of 6 (i.e., A\ = Ao + ko for all k), then (1.2.6) yields (1.2.5) with ¢y = 7.

For frequencies A\, that are more irregularly spaced, Selberg had a more compli-

cated proof of a more sensitive inequality.

Theorem 1.2.3. Let (\y) o be a strictly increasing sequence of real numbers. Let

Op ;= min{\y — \p_1, \er1 — Ax}- Then for any sequence (zq, ..., zy) € CV,
NN N 2
DP PRSP ol 127)
m=1 n=1 """ n=1
n#m

where ¢; 1s the absolute constant %7?.

Theorem 1.2.3 is of particular interest when applied with the frequencies \, =
logn for n > 1. One obtains a mean-value theorem for Dirichlet series: For sequences
(a,)2, of complex numbers such that 3°°°  na,|> < co and T € R,

i

—it

dt =" |a,* (T + O(n)). (1.2.8)




Selberg never published any of his work on Hilbert’s inequality.

Around the same time, it became apparent that the form

N
=1

N _
DDy
sin (7

m=1 ($m - xn))’
#m

S3

where x1,...,xy are distinct real numbers modulo 1, is related to the large sieve.
During 1973-1974, Montgomery and Vaughan [9], [10] used Selberg’s method to

prove

Theorem 1.2.4 (Montgomery and Vaughan [10]). Let xq,...,zx be real numbers,
distinct modulo 1. Let d,, == min,, 4, || Tm — ||, where ||z|| := mingey |z — k|. Let

d :=min,, d,. Then for any sequence (z1,...,zy) € CV,

by ZmZn <1N 2 1.2.9
Zzsin _C_ZZ|ZH| (1.2.9)

m=1 n=1 n=1
n#m
and
Y& ZmZn 3 & 2|2
. == <= - (1.2.10)
mZ:l g sin (7 (2, — xp)) 2 ; d,

They recovered Theorems 1.2.2 and 1.2.3 from Theorem 1.2.4 by a limiting ar-
gument. G. L. Watson pointed out to Vaughan in 1974 that the converse is also
true.

In the paper [9], they applied the weighted form (1.2.10) with the z,’s being the
nonzero Farey fractions of a given order to prove several important applications in
number theory, one of which is an improvement of the Brun—Titchmarsh theorem
without an error term: If ¢ and r are positive integers with ged(q,7) = 1 and x and

y are positive real numbers with y > ¢, then

2y

(@) 1o8(y/0)’ (1211

m(x+y,q,r)—7(z,q,r) <



where 7(t, q,r) is the number of prime numbers p < ¢t with p = r (mod ¢) and ¢(q)
is the number of positive integers s < g with ged(s,q) = 1.

Denote by ¢ the minimum of all absolute constants ¢; for which (1.2.7) holds.
Chapter 2 is motivated by the problem of determining ¢;.

By substituting Ay = k in (1.2.7) and comparing with Schur’s result, we obtain
the lower bound ¢, > 7. If ¢, = 7, then (1.2.7) would imply (1.2.6), and it is widely
believed to be the case.

The currently known best upper bound for ¢ is due to Preissmann [11].
Theorem 1.2.5 (Preissmann [11]). We have & < (/1 + g\/é = 1.31540....

According to Montgomery [7, p. 557], Selberg (unpublished) said that he had
shown that ¢; < 3.2 (i.e., %1 < 1.01859...). However, it seems that no trace remains

of his argument.

1.2.3 Main results of Chapter 2

Chapter 2 studies an auxiliary family of bounds for real quadratic forms parametrized
by 0 < a <2 For 0 < a <2, let C(a) be the minimum of all constants C(«) for

which the inequality

N N N
62-agot, t
E E m T < Ofa) E 2 (1.2.12)
2 n
m=1 n;l (/\m - )\”) n=1

holds for all choices of a positive integer N, real numbers \; < --- < Ay,
Op i=min [\, — A\,
m#n

and nonnegative real numbers t1,...,ty. Let C(a) = oo if there is no such real
number C(a).
The value C (%) is relevant to the generalized Hilbert inequality (1.2.7). We prove

the following inequality between ¢, and C (%)



Theorem 1.2.6. We have ¢; < \/”—; + 26( )

The previous approaches to get an upper bound for ¢ in [10], [11], and [13] rely

N[ =

on an upper bound for C (%) and Theorem 1.2.6. Montgomery and Vaughan [10]
first showed that C (%) is finite. Specifically, they proved C (%) < g The same
bound has been used in [8], but the best known upper bound for C (%) is due to

Preissmann [11].

Theorem 1.2.7 (Preissmann [11]). We have C (3) < %2 + %2 3.

By means of Theorem 1.2.6, Theorem 1.2.7 implies Theorem 1.2.5. Another
immediate consequence of Theorem 1.2.6 is that the lower bound ¢ > 7 implies

c(3) > 7;)—2 (This lower bound has been pointed out in [8, p. 36].) Moreover, the

w2

conjecture that ¢, = 7 would follow if C' (%) =

We prove that the graph of C(a) is symmetric about o = 1 and is log-convex.

The function C(a) is weakly decreasing on 0 < a < 1 (and is weakly incresing on

1 < a < 2) and is finite-valued only for % <a<

N

Theorem 1.2.8. (1) For real numbers 0 < a < 2, we have C(a) = C(2 — a) > 0.

(2) For real numbers 0 < a; < ap <2 and 0 < 6§ < 1, we have
C (B + (1 — 0)a) < C ()" T ().

(3) For real numbers 0 < a; < ay < 1, we have C (ay) > C (aw). Therefore the

minimum of C(a) for 0 < a < 2 is attained at o = 1.

(4) For real numbers 0 < v < 1, we have C(a) = o0.

We determine the minimum value of C(a).



Theorem 1.2.9. We have C(1) = §

A main result of Chapter 2 is a new lower bound for C (%)

Theorem 1.2.10. We have C (3) > 0.3504772,

From Theorem 1.2.10, we deduce that any upper bound for ¢, obtainable by
Theorem 1.2.6 cannot be smaller than 3.19497. It follows that this method of using
Theorem 1.2.6 is incapable of proving ¢; = .

In Chapter 2, we also prove a generalized Hilbert inequality with the constant .

Theorem 1.2.11. Let (\);— _ be a strictly increasing sequence of real numbers.

Denote by o5 the minimum between N\, — Ap_1 and A\py1 — A\ Then for any sequence
(z1,...,2n) of complex numbers,

N N e N ’anz

2. 2.5 =T (Z o

1
) ) |
m=1 n=1 n=1 n
n#m

1.3 Generalized factorials and binomial coefficients allowing composite
bases

5
6 N 2
(Z 2]
9
4

n=1 5n

Chapter 3 is about a generalized version of Bhargava’s theory of factorial ideals
based on p-orderings of a set S for all prime ideals p in a Dedekind ring R. We treat
the ring Z and generalize Bhargava’s theory to b-orderings of a nonempty subset S
of Z for all nontrivial proper ideals b in Z. We define generalized factorials [k]!s 7,
where T C B :={b € Z : b > 2} which corresponds to the set of all nontrivial proper
ideals of Z. We treat in detail the special case [k]!z 5 and its associated binomial

coefficients [’;] 75"

1.3.1 Background: generalized factorials and generalized binomial coefficients

There have been many studies of generalized notions of factorials and binomial co-

efficients. Our interest lies in number systems that have three sequences of integers:



generalized positive integers, generalized factorials, and generalized binomial coeffi-
cients. Our most general setting is in a commutative ring R with some additional
structures, but our attention in this thesis is in the special case R = Z.

Firstly, we consider a generalized notion of positive integers. For n = 1,2,3,...,
the nth generalized positive integer (or simply generalized integer) is denoted by [n].
In the case R = Z, we want our generalized positive integers to be positive integers;
so we will always restrict ourself to the condition that [n] € N for all n € N, where
N:={1,2,3,...} is the set of all positive integers.

Secondly, we consider the generalized factorials corresponding to a sequence of
generalized integers. For k = 0,1,2,..., the factorial of k corresponding to N :=

([n]);2, is denoted by [k]!yr and satisfies the relation

In the case R = Z, this relation and the condition that [n] € N for all n € N imply
that [k]!y € N for all £ € NU{0}.

Thirdly, we consider the generalized binomial coefficients corresponding to a se-
quence of generalized integers. For integers k and ¢ such that 0 < ¢ < k., the gen-
eralized k choose £ corresponding to N := ([n]),;~, is denoted by m - and satisfies
the relation

¢
{ } Ny = H [k —7+1].
j=1
In the case R = 7Z, these generalized binomial coefficients are not necessarily integers

for a general sequence N of positive integers, as illustrated by the following example.

Example 1.3.1. Consider the sequence N := ([n]);—, given by [1] =2 and [n] =1



10

for n > 2. The generalized factorials corresponding to N; are given by

1 itk =0,
2 itk>1,

and the generalized binomial coefficients corresponding to N are given by

[k:} 1 ifl=0orl=k,
M

Hf0<l<k.

N

So a problem arises.

Problem. Characterize the sequences N of positive integers such that the general-

ized binomial coefficients corresponding to N are all integers.

In 1989, Knuth and Wilf [5] studied the notion of regularly divisible sequences: a
sequence (Cy,),; of positive integers is said to be regularly divisible if ged (C,,, Cy,) =
Cycd(m,n) for all positive integers m and n. In fact, sequences with this property were

already studied by Ward [14] in 1936. They proved

Theorem 1.3.2 (Ward [14], Knuth and Wilf [5]). The generalized binomial coeffi-

cients corresponding to a reqularly divisible sequence are all integers.
Example 1.3.3. Let « € Nand p € NU{0}. Then the sequence A := (A4,),~, given
by A, = an? is regularly divisible, because

ged (A, An) = ged (am?, an?) = aged(m, n)? = Aged(m,n)

for all positive integers m and n. The generalized factorials corresponding to A are
given by

(k] 4 = a™(k")?,



11

and the generalized binomial coefficients corresponding to A are given by

0
0] 4 )’
where k! and (]Lf) are the usual factorial of k and k£ choose ¢ respectively.

Example 1.3.4. The Fibonacci sequence F := (F),) -, defined recursively by
Fy=F,=1and F, = F,_1 + F,_» for n > 3, is regularly divisible. The general-

ized binomial coefficients corresponding to F are integers that satisfy the boundary

conditions

for all £ > 0 and the recurrence

k k—1 k—1
M;‘FM{ ‘ L*F‘”’“{f—ll

for all 0 < ¢ < k, where Fj := 0.

Proposition 1.3.5. Let I be a set of indices. For each i € 1, let C; := (C,)0, be

n=1

a sequence of positive integers, and suppose that the generalized binomial coefficients

Ci,n) -

corresponding to C; are all integers. Assume that the sequence D := (H 1

el

exists. Then for integers 0 < ¢ < k, we have

o), IO

)

Hence the generalized binomial coefficients corresponding to D are all integers.

However, direct products of regularly divisible sequences are not necessarily reg-

ularly divisible.

Example 1.3.6. The sequence (E, )~ | given by E, = nF, is the direct product of
two regularly divisible sequences, namely ()22, and (F},) - ,. However, (E,) " is

n=1

not regularly divisible, because

ng (EQ, E3) = ng(Qv 6) =2 7é l=FE = Egcd(2,3)'
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1.3.2 Previous work: Bhargava’s theory of generalized factorials

Beginning in 1997, Bhargava developed a theory of generalized factorials in a class
of commutative rings R that he called Dedekind-type rings. These rings are quotients
of Dedekind domains and include all Dedekind domains. Bhargava’s generalized
factorials are associated to nonempty sets S of elements of R and to the set of all

prime ideals of R,
Spec (R) = {p : p is a prime ideal in R}. (1.3.1)

Bhargava’s generalized factorials k!g are ideals in R.

For each prime ideal p in R and a nonempty subset S of R, he assigned an associ-
ated p-sequence (v4x(S,p))re, of S in which (S, p) is a power of p. He constructed
the associated p-sequence using p-orderings of S. The generalized factorials of S,

denoted klg, are defined as in [2, Definition 7] by

We can write

vi(S,p) = p P, (1.3.2)

where ay(S,p) € NU {co}, with the conventions p® = R and p> = (0).

Bhargava showed his factorials have many applications to many problems in com-
mutative algebra, to finding rings of integer-valued polynomials on a set S, and to
finding good bases for suitable function spaces, see also [3].

Bhargava originally developed his generalized factorials for the ring of integers 7Z,
in which case Spec(Z) = {(p) : p is a prime number}, which we may identify with
P = {2,3,5,...}, the set of all prime numbers. Bhargava [2] gave details for the
case R = Z. In this thesis we treat the case R = 7Z, and we describe Bhargava’s

theory in this case, following [2].
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Bhargava’s important idea is the construction of p-orderings of S for any fixed
prime ideal p. We describe it for the case R = Z. Let p € P be the prime number
that generates p € Spec(Z). A p-ordering of S is any sequence a = (a;);-, of elements

of S that can be formed recursively as follows:
e ay € S is chosen arbitrarily;

e Given a; € S, 7 = 0,...,7 — 1, the next element a; € S is chosen so that it

minimizes the highest power of p dividing the product Hé;t (a; — aj).
We note that:
(1) This construction does not give a unique p-ordering of S if |S| > 1.
(2) A p-ordering of S does not need to include all the elements of S.

We define v;(S, p,a) to be the highest power of p dividing H;;B (a; — a;). That
is, we may write

vi(S,p, a) = p 5P, (1.3.3)

where

a;(S,p,a) ;= ord, (1:[ (a; — aj)> (1.3.4)

J=0

and ord,(-) is the additive p-adic valuation given by
ord,(k) :=sup {o € N : p® divides k} . (1.3.5)

Bhargava calls the sequence (v;(S,p,a));-, the associated p-sequence of S corre-

sponding to a. Bhargava [2, Theorem 5] showed

Theorem 1.3.7 (Bhargava [2]). The associated p-sequence of S is independent of

the choice of p-ordering.
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Therefore one may write (.S, p) = 14(S, p,a) as an invariant of S and p and call
(vi(S,p));=, the associated p-sequence of S.
Bhargava used this invariant to define his generalized factorials. The factorial

function of S, denoted k!g, is defined by

ks = [ [ v (S.p). (1.3.6)

Thus Bhargava’s theory produces factorials via their prime factorizations.
In the special case S = Z, Bhargava showed that the generalized factorials agree

with the usual factorials. To do this, Bhargava [2, Proposition 6] showed

Theorem 1.3.8 (Bhargava [2]). The natural ordering 0,1,2, ... of the nonnegative

integers forms a p-ordering of Z for all primes p simultaneously.

From Theorem 1.3.8, Bhargava deduces that

k—1
vi(Z,p) = wp (H(k? - j)) = wp(k!),
5=0
where w,(a) denotes the highest power of p dividing a (i.e., w,(a) = p*4(@).
Therefore
kly = [ [w,(k!) = kL. (1.3.7)
P
Bhargava also treated generalized binomial coefficients. Bhargava [2, Theorem §]

showed

Theorem 1.3.9. For any nonnegative integers k and ¢, (k + €)!g is a multiple of

klglls.

In other words, the generalized binomial coefficients

<k+€> (k+0)s
ko )g Klsls

is always an integer.
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1.3.3 Main results of Chapter 3: generalized factorials allowing composite bases

We generalize Bhargava’s theory of p-orderings for prime ideals p in the ring R = Z
to treat b-orderings for nontrivial proper ideals b in Z. The set of all nontrivial proper

ideals of Z may be identified with the set
B:={beZ:b>2} =N\{0,1} (1.3.8)

by the positive generators of the ideals. Here N := {0,1,2,...} is the set of all

nonnegative integers.

Definition 1.3.10. Let S be a nonempty subset of the ring of integers Z. For b € B,

a sequence a = (a;);-, of elements of S is an admissible b-ordering of S if

Z ord, (a; — a;) = min Zordb s —ayj) (1.3.9)

seS

for all : = 1,2,3,..., where ord,(k) is defined for k € Z by
ordy(k) :=sup{a € N : b* divides k}. (1.3.10)

We note a conceptual difference in the quantities that are being minimized in
Bhargava’s theory and in Definition 1.3.10. In Bhargava’s theory, the quantity
ord, (H;;% (a; — aj)> is minimized at each step. In Definition 1.3.10, we minimize
Z;;ﬁ ordy (a; — a;). If bis a prime, then

i1
ordy, (H —a; > Z ordy (a; — a;)
§=0
but this equality does not hold in general for composite b.

Given any initial value ay € S, one can find an admissible b-ordering with that

initial value using the recurrence (1.3.9). So there will be more than one admissible

b-orderings of S, unless S is a singleton.
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Definition 1.3.11. Let b € B. Let S be a nonempty subset of the ring Z. Let
a = (a;);-, be an admissible b-ordering of S. The associated b-sequence of S with

[e.e]

respect to a, denoted (;(S,b,a)).-,, is defined by

i—1
a;(S,b,a) := Zordb (a; — a;). (1.3.11)
=0
We note that:
(1) a;(S,b,a) € NU{oo}.
(2) If S is finite, then «;(S,b,a) = oo for all i > |S].

A main result of Chapter 3 is that all associated b-sequences of a given set S are

the same.

Theorem 1.3.12 (Well-definedness of the associated b-sequence of S). Let b € B.
Let S be a nonempty subset of the ring Z. Let a; and as be admissible b-orderings

of S. Then «; (S,b,a1) = «; (S, b,as) for alli=0,1,2,....

This result generalizes Bhargava’s Theorem 1.3.7, in which b is assumed to be
prime. Bhargava’s proofs, as presented in [1] and [2], do not extend to the case of
composite bases b.

Theorem 1.3.12 provides the well-definedness of the associated b-sequence of S.
We write (a;(S,b));2, for the associated b-sequence of S, which is given by o;(S,b) :=
a;(S,b,a) for any admissible b-ordering a of S.

The generalized factorials [k]!s 7 associated to a nonempty subset S of the ring
Z and a set of allowed bases (or generalized prime numbers) 7 C B := {2,3,4,...}
are defined for k =0,1,2,... by

[K]tsr = [ oo+, (1.3.12)
beT
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The special case T = P agrees with Bhargava’s generalized factorials [2], which

give the usual factorial function as the case (S,7) = (Z,P). That is, [k]lzp = k!.

Proposition 1.3.13 (Ordering). (1) Let S; C Sy be nonempty subsets of the ring

Z. Let T C B. Then for integers 0 < k < |Sy],

[k’] !5277’ divides []C] !5177’.

(2) Let S be a nonempty subset of the ring Z. Let Ty C T C B. Then for integers
0<k<|S|,

[k] !577‘1 divides [k] !577‘2 .

Now, we define generalized positive integers [n]g 7. For positive integers n < |5,

the nth generalized positive integer associated to S and T is [n|g 7 := ﬂ%

Theorem 1.3.14. Let S be a nonempty subset of the ring Z. Let T C B. Then for

positive integers n < |S|, the generalized positive integer [n]s1 is an integer.

For integers 0 < ¢ < k < |S|, the generalized binomial coefficient mST is defined

by

kil _ [k]ls. 7
[61 ST sk =T (1.3.13)

Theorem 1.3.15. Let S be a nonempty subset of the ring Z. Let T C B. Then for

integers 0 < 0 < k < |S|, the generalized binomial coefficient [ﬂs s an integer.

T

This result generalizes Bhagava’s Theorem 1.3.9.
We treat in detail the important case (S,7) = (Z, B), in which both S and T are

maximal.

Theorem 1.3.16. The natural ordering 0,1,2, ... of the nonnegative integers forms

an admissible b-ordering of S = Z for all b € B simultaneously.
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Theorem 1.3.16 generalizes Bhargava’s Theorem 1.3.8. We next show

Theorem 1.3.17. For k = 0,1,2,..., the generalized factorial of k associated to
S=ZandT =B is
k
K]\ = [ 07", (1.3.14)
b=2

where

v(k,b) == i L?J . (1.3.15)

Theorem 1.3.17 is analogous to de Polignac’s formula for k! (also known as Leg-

endre’s formula), which states that

ord, (kl) = i FJ (1.3.16)

%
=1 p

for all p € P. The right side of (1.3.16) is y(k, p).
Theorem 1.3.18. Forn =1,2,3,..., the nth generalized positive integer associated
toS =7 and T =B is

)z = [ o™, (1.3.17)
b=2
where ord,(n) is the mazimal o € N such that b divides n.

Theorem 1.3.18 is analogous to the prime factorization of positive integers:

n = H pordp(n)‘

peEP
We prove formulas for generalized binomial coefficients m LB

Theorem 1.3.19. Let k > { be nonnegative integers. Then:

(1) We have

I k

H g X (1.3.18)
z.,B

Bk, 0,b) := i (EJ - m — Vﬁb_gD . (1.3.19)

where
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(2) Forbe B,

Bk, ,b) — b—% (dy(6) + dy(k — €) — dy(k)), (1.3.20)

where dy(j) is the sum of the base-b digits of j.

Theorem 1.3.19 explicitly shows that these generalized binomial coefficients are
integers, as covered by Theorem 1.3.15. In Subsection 3.7.1, we give tables of values
of the generalized integers [n]z . The tables show that the sequence ([n]z )., of

generalized integers is not regularly divisible. For example,
ged ([4)z.8, [6]z.8) = ged(16,36) =4 but  [ged(4,6)]z8 = [2]z8 = 2.

This example shows that Theorem 1.3.15 is not a special case of Theorem 1.3.2.

Finally we obtain

Corollary 1.3.20. Let En be the product of the generalized binomial coefficients

associated to 7. and B in the nth row of Pascal’s triangle:

G, ::lf[o [ZLB. (1.3.21)

Then form=1,2,3,...,

G, = [, (1.3.22)
b=2
where
2 n—1
7(n,b) - Sp(n) - dy(n) (1.3.23)

and Sy(n) := Z;:ll dy(j).
These numbers ﬁn will be further studied in Chapter 4.

1.4 Asymptotics of partial factorizations of products of generalized bi-
nomial coefficients

Chapter 4 is about partial factorizations of generalized binomial products. To

describe the results in this chapter we first review previous work on this subject.
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1.4.1 Previous work: products of binomial coefficients

The product of binomial coefficients on the nth row of Pascal’s triangle

G, = kljo (Z) (1.4.1)

was studied by Lagarias and Mehta [6]. The number G,, is the reciprocal of the prod-
uct of all the nonzero unreduced Farey fractions of order n. They determined that

log G, = %nZ + O(nlogn) for n > 2. They also determined the prime factorization
En = prp(én)a
p

where v,(G,) = ord,(G,) is the additive p-adic valuation of G,. They expressed

v,(G,) in terms of sums of the base-p digits of positive integers up to n.

Theorem 1.4.1. Let p be a prime number. Then for integers n > 1,

1p(@) = ——Sy(n) + (), (1.42)

They particularly considered x = an for 0 < a < 1 and studied the asymptotic
behavior of log G(n,an) as n — oco. The asymptotic estimates depend on prime
number theory. They gave unconditional results and results depending on the Rie-

mann hypothesis with a better error term.
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Theorem 1.4.2. Let G(n,z) =[], p» @) Then for alln > 2 and all % <a<l,
log G(n,an) = fa(a)n®* + Ra(n,an), (1.4.3)
where fo(a) is a function given for a > 0 by
f()—1+1212+121 1 (1.4.4)
A= Ty 2% |a Yol o
with f(0) =0 and R(n,an) is a remainder term.

(1) Unconditionally there is a positive constant ¢ such that for all n > 4, and all

0 < a <1 the remainder term satisfies

Re(n,an) = O Gn? exp (—c\/@)) . (1.4.5)

The implied constant in the O-notation does not depend on c.

(2) Conditionally on the Riemann hypothesis, for alln >4 and all 0 < a < 1, the

remainder term satisfies
L 74 2
Ra(n,an) = O [ —n'*(logn)” |, (1.4.6)
«

The implied constant in the O-notation does not depend on c.

The limit scaling function fg(«) is pictured below in the (o, 5)-plane, 0 < o < 1.
Here f;(0) =0 and fg(1) = 1.

The Riemann hypothesis is related to the rate of convergence of logc’;&#") to fo(a)
as n — o0; it shows a power-savings remainder term O (n*1/4(10g n)2) The paper
[4] suggested that a converse result may hold, that a power-savings remainder term

would imply a zero-free region for the Riemann zeta function for ¢ > 1 — 9 for some

6> 0.
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Figure 1.1: The graph 8 = fg(a), 0 < a < 1 (solid red) in the («, 5)-plane. The line segment
8= %a, 0 < a <1 is shown in dashed blue.

The analysis of [4] depends on obtaining estimates for the auxiliary functions

A(n,x) = Z p%lsp(n) log p

p<z

and

B(n,z) = Z n: idp(n) log p.

p<z p

In what follows, H,, := Z?Zl % is the nth harmonic number, and

v := lim (H, —logn)=0.57721...

n—o0

is Euler’s constant.

For B(n,z): they showed that for 0 < a <1,
B(n,an) = fp(a)n® + Rp(n,an), (1.4.7)
where fp(«) is a function given for a > 0 by

fela) =1—7+ (HL;J — log é) —a BJ , (1.4.8)



23

with f5(0) = 0, and Rp(n,an) is a remainder term.

For A(n,x): they showed that for 0 < o <1,
A(n,an) = fa(a)n®* + Ra(n, an), (1.4.9)
where f4(a) is a function given for o > 0 by
3 1\ 1,117 1,]1 1
=—— Hi. —log— ) +=a*|= —a? | = = 2a |~ 1.4.1
fala) =5 =+ (Hpy —tos 3 ) #5075 e[| 23] wan)
with f4(0) =0, and R4(n,an) is a remainder term.

The estimates for the remainder terms Rp(n,an) and R4(n,an) are similar to

those of Theorems 1.4.2.

0.4 1

0.3

0.2 1

0.1

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 10

Figure 1.2: The graph 8 = fg(«a), 0 < a < 1 (solid blue) in the («, 3)-plane. The line segment
B=(1—-79)a, 0<a<1isshown in dotted orange.

1.4.2 Main results of Chapter 4: products of generalized binomial coefficients

The new work in Chapter 4 starts from the observation that the formula (1.4.2)

for v,(G,) makes sense when replacing p by any integer base b > 2. For integers

b>2and n>1, let
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1.0
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0.4

0.2 1

004 7

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.3: The graph 8 = fa(a), 0 < a < 1 (solid blue) in the («, 8)-plane. The line segment
8 = (% — 'y) o, 0 < a <1 is shown in dotted orange. Superimposed are the graph
B = fi(a), 0 <« <1 shown in solid green and the line segment 3 = % —v,0<a<1
shown in dotted red.

where dy(7) is the sum of the base-b digits of j and

n—1
Sp(n) =Y dy(j).
j=1
We prove that 7(n, b) is always a nonnegative integer. Moreover, 7(n,b) = 0 infinitely

often, exactly when n + 1 has one nonzero digit in base b.

We define the generalized binomial products 571 by the formula

o =[]0 (1.4.11)

b=2
It is shown in Chapter 3 (specifically Corollary 1.3.20) that the product in (1.4.11)

Qll

can be interpreted as a product of generalized binomial coefficients:

i n
=G

Chapter 4 determines asymptotic estimates for the analogous partial factorization

Qll

of En which includes all bases b up to x:

G(n,z):= [] v"™. (1.4.12)

2<b<z
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The main result of Chapter 4 is as follows.

Theorem 1.4.3. Let E(n,x) = IESQ W) Then for integers n > 2 and real
= [\/iﬁ, 1},

log G(n, an) = J=(@)n*logn + g=(a)n® + O (n**logn) , (1.4.13)
in which:

(a) fz(a) is a function with f=(0) =0 and defined for a >0 by

po=tele [ de 1l

(07 (07 (0%

(b) g=(a) is a function with g=(0) = 0 and defined for a > 0 by
ggla) = (%v - Z) - %(H 1) —log é)
()l )
—;loﬂ EJ E + 1J +a EJ . (1.4.15)

Moreover, for integers n > 2 and real o € [1 \/iﬁ} ,

logﬁ(n, an) =0 (n3/2 logn) . (1.4.16)
We observe three features of this theorem.

1. The first limit scaling function fz(«) in Theorem 1.4.3 is the same as the limit

scaling function fg(«) obtained in Theorem 1.4.2.

2. The formula (1.4.13) has a secondary term with a new limit scaling function
95(04)-
3. The remainder terms in (1.4.13) and (1.4.16) have a power-savings estimate

which is unconditional, while the Riemann hypothesis is needed to obtain a

power-savings remainder term in Theorem 1.4.2.
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.4: The graph = gg(a), 0 < a <1 in the («, 8)-plane.

The analysis depends on obtaining estimates for the auxiliary functions

_ 2
A(n,z) = 2 1Sb(n) log b
2<b<z
and
_ n—1
B(n,x) = 7 dy(n)logb
2<b<z = 1

In what follows, J, := "7 2j and

is the first Stieltjes constant.

Theorem 1.4.4. Let B(n,z) = Zt@z 2=Ldy(n)logb. Then for integers n > 2 and
1
real o € [\/—ﬁ, 1],

B(n,an) = fg(a)n®logn + gg(a)n® + O (n*/*logn) (1.4.17)

in which:
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(a) fg(a) is a function with f5(0) =0 and defined for o > 0 by

fta) = 1=+ (g —to ) —a |2 a

1
a o

(b) gg(a) is a function with g5(0) = 0 and defined for a > 0 by

gpla) = (y+m—-1)— (HL;J —logé> - (‘JL;J - % <1og$)2)
+ <log é) (—1 +a BJ) + BJ . (1.4.19)

Moreover, for integers n > 2 and real o € [1 \/iﬁ} ,

n

B(n,an) =0 (n3/2 logn) . (1.4.20)

0.0 1

0.0 02 0.4 0.6 0.8 10
Figure 1.5: The graph 8 = gz(a), 0 < a <1 in the (o, §)-plane.

Theorem 1.4.5. Let A(n,z) = inJg +2:5(n)logb. Then for integers n > 2 and

real o € [\/Lﬁ, 1] ,

A(n,an) = fx(a)n*logn + gz(a)n* + O (n3/2 logn) , (1.4.21)

in which:
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(a) fx(a) is a function with fz(0) = 0 and defined for o > 0 by
2
- (3 (raosed) i 3 -3 2o )

(b) gx(a) is a function with gz(0) =0 and defined for e > 0 by

gala) = <gv+% - Z) - g (HL;J —log é) - (‘]Lij - % (10?5 $)2>
+oeg) (-3 3] [5+1) o= [a])
_%Og BJ E n 1J 4% BJ , (1.4.23)

Moreover, for integers n > 2 and real o € [1 \/iﬁ} ,

n

A(n,an) = O (n3/2 logn) . (1.4.24)

0.0 1

~1.04

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.6: The graph 8 = gx(a), 0 < a < 1 in the (e, 8)-plane.
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CHAPTER 2

On the Montgomery—Vaughan Weighted Generalization of
Hilbert’s Inequality

2.0 Abstract

This chapter studies the problem of determining the optimal constant in the
Montgomery—Vaughan weighted generalization of Hilbert’s inequality. We consider
an approach pursued by previous authors via a parametric family of inequalities. We
obtain upper and lower bounds for the constants in inequalities in this family. A
lower bound at o = % indicates that the method in its current form cannot achieve
any value below 3.19497, so cannot achieve the conjectured constant 7. The problem

of determining the optimal constant remains open.
2.1 Introduction

In this paper, we study a parametric family of inequalities, given in (2.1.8) below,
that can yield an upper bound on the optimal constant in the Montgomery—-Vaughan

weighted generalization of Hilbert’s inequality (2.1.3). The inequality (2.1.3) is im-

portant in the theory of the large sieve; see [8] and [5].

30
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2.1.1 History of the problem

Let N denote a positive integer, and let zp,...,2y denote complex numbers.

Hilbert’s inequality states that

N N
3 Z T:”Z” < COZ 2a]? (2.1.1)

mln

where ¢q is the absolute constant 27. Hilbert’s proof was published in Weyl’s dis-
sertation [15, § 15]. In 1911, Schur [13] obtained (2.1.1) with ¢y = 7 and demon-
strated that this absolute constant is best possible. Hardy, Littlewood, and Pdlya
3, pp. 235-236] gave an account of Hilbert’s proof. Schur’s proof is also reproduced
in [3, Theorem 294].

In 1974, Montgomery and Vaughan [9] established a generalization: If 6 > 0 and

(/\k)kf + 1s a sequence of real numbers such that Ay — Ay > 0 for all k, then

V& ZmZn T N
21 Z; oS 52 |zl (2.1.2)
mei =

Schur’s bound is included in (2.1.2) as the case Agy1 — Ay = J. In the same paper,

Montgomery and Vaughan also established a weighted form:

N N N E
Z; - <oy 5 (2.1.3)

m=1

where A\p11 > Ay, for all k and 0y, := min {\y — A\p_1, \er1 — Ak} and ¢; is the absolute
constant 2. Denote by ¢; the minimum of all absolute constants ¢; for which (2.1.3)
holds. Montgomery and Vaughan [9] have raised the

Problem. Determine ¢;.

By setting Ay = k in (2.1.3) and comparing with Schur’s result, we see that
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If ¢, =, then (2.1.3) would contain (2.1.2), and it is widely believed to be the case.

In 1984, Preissmann [11] proved that

|2 [6 4
o< 1+§\/;:(1.31540...)7r<§. (2.1.5)

Preissmann’s proof is based on that of Montgomery and Vaughan. Selberg (unpub-
lished) said that he had shown that ¢, < 3.2 (which is (1.01859... )7 < %), but it
seems that no trace remains of his argument; cf. [5, p. 557] and [6, p. 145].

In 1981, Graham and Vaaler [1] constructed extreme majorants and minorants of

the functions

e P if x>0,
E(B,z) =
0 if x <0,

where [ is an arbitrary positive real number, and used them to prove that

N N N
1 2 Zmz_n
. N P< i L2 (2.1.6)
s 2 L T G < eM Z'Z'

The inequality (2.1.6) includes (2.1.2) as the limiting case § — 0%. In 1999, Mont-

gomery and Vaaler [7] established a generalization of (2.1.3):

AL ZmZn al |z 2
- <c 2.1.7
22 it <2 1
where 1, ..., Oy are nonnegative real numbers and ¢, is the absolute constant 84 =

(26.73803 ... ), which is not optimal. Their proof involves the theory of H? functions
in a half-plane and a maximal theorem of Hardy and Littlewood.

In 2005, Li [4] posed a question about the finite Hilbert transformation associated
with a polynomial and proved that if the question always has an affirmative answer,

then ¢; = 7.
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2.1.2 Main results: Parametric family of inequalities

We study the following parametric family of inequalities. For 0 < a < 2, let C'(«)
be the minimum of all constants C'(«) for which the inequality

Z Z O O t Zt2 (2.1.8)

m=1 n=1
n;ém

holds for all choices of a positive integer N, a strictly increasing sequence (Ag)pe

of real numbers,

5k = mln{/\k — )\k—la )\k+1 - )\k} )

and nonnegative real numbers t,...,ty. Let C(a) = oo if there is no such real
number C(q).
The value C (%) is relevant to the generalized Hilbert inequality (2.1.3). In Sec-

tion 2.3, we shall prove the following inequality between ¢ and C (%)

)-

The previous approaches to get an upper bound for ¢ in [9], [11], and [14] rely

Theorem 2.1.1. We have ¢; < /% —i— 26’(

D=

on an upper bound for C (%) and Theorem 2.1.1. Montgomery and Vaughan [9] first
showed that C (%) is finite. Specifically, they proved C (%) < % = (0.86123...)7*
The same bound has been used in [7] to prove (2.1.7), but the currently known best
upper bound for C (3) is due to Preissmann [11].

2

Theorem 2.1.2 (Preissmann). We have C (1) < %2 + %\/g = (0.69848 . .. )m?

By means of Theorem 2.1.1, Theorem 2.1.2 implies (2.1.5). Another immediate

consequence of Theorem 2.1.1 is that (2.1.4) implies C (3) > 73—2

(This lower bound
has been pointed out in [7, p. 36].) Moreover, the conjecture that ¢, = 7 would

follow if C (%) =

3

In Section 2.4, we shall prove the following properties of C(a).
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Theorem 2.1.3. (1) For real numbers 0 < a < 2, we have C(a) = C(2 — a) > 0.

(2) For real numbers 0 < a; < ag <2 and 0 < 0 < 1, we have
6(90&1 + (]_ — 0)0[2) S 6(0&1)96(&2)1_9 .

(3) For real numbers 0 < a; < ay < 1, we have C (ay) > C (aw). Therefore the

minimum of C(a) for 0 < a < 2 is attained at o = 1.

1

L. we have C(a) = oo.

(4) For real numbers 0 < a <

Also in Section 2.4, we determine the minimum value.

2

Theorem 2.1.4. We have C(1) = %-.

In Section 2.5, we shall prove a new lower bound for C' (%)
Theorem 2.1.5. We have C (1) > (0.35047)72.

From Theorem 2.1.5, we deduce that any upper bound for ¢; obtainable by The-
orem 2.1.1 cannot be smaller than 3.19497 = (1.01699...)r. This method of using

Theorem 2.1.1 is incapable of proving ¢; = 7.

2.1.3 Main results: Weighted inequalities
We prove upper bounds on the Hilbert sesquilinear form involving different weights.

Theorem 2.1.6. Let (\),— . be a strictly increasing sequence of real numbers.

Denote by 0 the minimum between Ay — A\_1 and A1 — A\g. Then for any positive

real number D and any sequence (21, ...,zy) of complex numbers,
N N N
ZmZn |z,|> | D 2 /4,
/1< g — o = 2.1.9
;;Am—An =725\, T3V D (2.1.9)
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Theorem 2.1.6 has a multiplicative version.

Theorem 2.1.7. Let (\),— . be a strictly increasing sequence of real numbers.
Denote by 65 the minimum between N\, — \p_1 and A\py1 — M. Then for any sequence

(f1,--., fn) of positive real numbers and any sequence (z1,...,zn) of complex num-

j

bers,

FEANENMAY
n ") (2.1.10)
(L) ()

In Section 2.6, we will prove Theorem 2.1.6 and then deduce Theorem 2.1.7 from

SR o~ foll
ZZ,\m_)\n SW(; On

m=1 n=1
n#m

it. As an immediate consequence of Theorem 2.1.7:

Corollary 2.1.8. Let (\;) o, be a strictly increasing sequence of real numbers.

Denote by o5 the minimum between N\, — Ag_1 and A\py1 — M. Then for any sequence

(z1,...,2n) of complex numbers,
5 1
R )
T < = = | - (2.1.11)
m=1 n=1 )\m - )\n n=1 57% n=1 57%
n#m
Proof. Substitute f,, = 6,1 in Theorem 2.1.7. O

It is clear that the right side of (2.1.11) is less than or equal to that of (2.1.2).

2.2 Preliminaries

2.2.1 Eigenvalues of generalized weighted Hilbert matrices

Let us consider N x N matrices H = [hy,,] with entries given by

m n

[ — (2.2.1)

Wy W :
v if mo# n,

0 if m =n,
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where (\g)-

r—_ o s a strictly increasing sequence of real numbers and wy, ..., wy are

positive real numbers. Since H is skew-Hermitian (i.e., ¢H is Hermitian), all its
eigenvalues are purely imaginary. Let [uy, ... ,uN]T be an eigenvector of H, and let

i1t be its associated eigenvalue. That is,

wmwnun

Am — An

n;ﬁm

= 14U,

foralm=1,..., N.
It is well known (see, e.g., [6, § 7.4]) that the numerical radius of a normal matrix
is the same as its spectral radius (and its operator norm). Thus, if ix has the largest

modulus among all eigenvalues of H, then

Y& Wy W Zm Zn, al
mWn<m#<n 2
PPN P (2.22)
)\m - )\n
m=1 n=1 n=1
for all complex numbers zi,..., zy. On replacing z, by 2=, we see that (2.2.2) is

equivalent to

3 Azm—z < |u |Z ‘Z"| . (2.2.3)

m=1n=1 """
One may obtain the generalized Hilbert inequality (2.1.3) with some constant ¢;
from (2.2.3) by giving an upper bound for the sizes of eigenvalues of H in the case

that w? =4, = min {\, — A\,_1, \ny1 — \n}. A key result to that end is:

Lemma 2.2.1. Let [uq,... ,uN]T be an eigenvector of H, and let iy be its associated

eigenvalue. Then the identity

2 2 i w2 w? |u,|” +2i w? w, R (U uy,) (2.2.4)
um = N N N\2 V4N
LL n;l <)\m - An)Q n;1 ()\m - An)2

holds for allm=1,... N.

Proof. See Preissmann and Lévéque [12, Lemma 5 (b)]. O
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2.2.2 A weighted spacing lemma and Shan’s method
The goal of this subsection is to prove:

Lemma 2.2.2. Let (\),—___ be a strictly increasing sequence of real numbers. De-

note by o the minimum between A\ — A\p_1 and A\py1 — A\, Then for real numbers

o > 1 and integers £, we have

- Ok 2((o)

> 5 < = 2.2.5
e |)\k o )\£| 56 1 ( )
k#L

One can show that equality holds in (2.2.5) if and only if the sequence (Ag11 — A)

k=—o0
is constant, but we shall not treat it here.

Lemma 2.2.2 is a direct consequence of Lemme 1 of Preissmann [11]. We present
a proof using a method of Shan [14], who independently derived Lemma 2.2.2. The
work of Shan, done at the same time as that of Preissmann, is obscure and hard
to obtain. Peng Gao (private communication) translated Shan’s argument, which
appears in [10, pp. 590-595]. The next three lemmas are an exposition of Shan’s
method.

Let f be a real-valued function, defined on the interval [1,00). We will assume

that f satisfies some (or all) of the following four conditions:

(a) flz+(1—0)y) <Of(x)+(1—=0)f(y) foral0 <H<land 1<z <y.
(b) f(x) > f(y) forall 1 <z <y.

(¢) f(z) >0 for all x > 1.

(d) The series 2, f(j) converges.

We note that (c) follows from (b) and (d), since (b) implies f(z) > limy_o f(k)

and (d) implies limy_, f(k) = 0.



38

Lemma 2.2.3. Assume that f : [1,00) — R satisfies (a) and (b). Let (a,) ., be a

n=1

sequence of real numbers such that a, > 1 for all n. Set A\, := Y _| a,. Then for

positive integers N, we have

N [An]
D anf (M) < Z fO)+ W (AN] + 1),

where {x} = x — |x| denotes the fractional part of x.

Proof. By the convexity of f, we have
Fw) <@ =D () + {3 f (] + 1) (2.2.6)
Moreover, since a, > 1 and f is weakly decreasing, it follows that
(an = 1) f (M) < (an = 1) f ([Aa]) (2.2.7)
On summing (2.2.6) and (2.2.7), we obtain
anf (M) < (an = {Aa}) £ (Aa]) +{Aa} £ (] + 1) (2.2.8)

Now, we consider the first term on the right side of (2.2.8) and note that A, =

)\nfl + an 2 )\nfl + 1

(an —{A}) f(IAn]) = (L] = [Ana] = D F ([A]) + (= {Ana}) £ ([An])
An]

< D fOHA= D f (e +1)
j:p‘n—lj'f'Q
[An]
= > FO) =P (el +1).
j:LA7L71J+1

On inserting this in (2.2.8), we get

[An)
af )< Y0 O = P (P # D+ QW3 F (] + 1) (2:29)

j:L)‘nfljJFl

The result follows by summing (2.2.9) over n = 1,..., N; the resulting sum on the

right side is a telescoping sum. O
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In what follows, we consider

Frn(x) := Zmin {Tn, i1} f <Z xm> : (2.2.10)

where x = (z,,),-, is a sequence of positive real numbers with z; > 1.

Lemma 2.2.4. Assume that f : [1,00) — R satisfies (a)—(c). Let a = (a,) -

ey be a

sequence of positive real numbers with a; > 1. Suppose that v > 2 is an integer such
that a,—y > a,. Let 0 < e < a,_y — a,. Define b = (b,).~, by

an, forn # v,
b, ==

a, +¢ forn=uw.

Then for positive integers N, we have

Fx(a) < Fy(b). (2.2.11)

Proof. If N < v — 2, then (2.2.11) is an identity. So let us assume that N > v — 1.

Put A\, = an:1 am. 1t follows from the definition of b,, that

;

=¢ ifn=v-1,

min {b,, bpy1} — min{an, an1} § >0 ifn = v,

=0 otherwise,
\

n An forn <v-—1,
> bn=
m=1 A +e forn>w.

By the nonnegativity of f, min{b,,b,11} f (A, +¢) > min{a,,a,+1} f (A, +¢). So

Fn(b) — Fx(a) > ef (A_1) + Zmin {an, a1} (f N\ +2)— f(\)). (2.2.12)
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By the convexity of f, it follows that

fOnte) = fQn) o £ ) = f (i)

€ Qn,

for all n > 2. So (2.2.12) implies that

Fiu(b) — Fx(a) > £f (r,0) + e 3 W0 0tnsid 0y pn, )

Qn

n=v

>ef () +e i (f (An) = f (An-1))
=ef(An) 20
Hence Fy(a) < Fy(b). O
We now prove an upper bound for Fy(a) that depends only on f.

Lemma 2.2.5. Assume that f : [1,00) — R satisfies (a)~(d). Let a = (a,),—, be a

sequence of positive real numbers with a; > 1. Then for positive integers N, we have

<> f0) (2.2.13)
j=1
By taking a,, = 1 for all n and letting N — oo, we see that (2.2.13) is sharp.

Proof. Define a sequence a = (a,).—, by @, := max{a,:m=1,...,n}. Then
Upi1 > @, for all n and @ = a7 > 1. Let N be a positive integer. By applying

Lemma 2.2.4, with € = a,_1 — a,, as many times as we need, we see that

N

Fy(a)< Fy(@)=> a.f(\), (2.2.14)

n=1

where A, == >0 Gp,.

m=1

By Lemma 2.2.3 and the nonnegativity of f, the right side of (2.2.14) is

N LXNJ 0o
> anf () < Z FG)+ DO F (] + <Zf (2.2.15)

The result (2.2.13) follows by combining (2.2.14) and (2.2.15). O
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We are now ready to prove Lemma 2.2.2.

Proof of Lemma 2.2.2. Let £ be an integer. Define sequences a = (a,).., and b =

(bn)zo:1 by
a, = )\Z—I—n - )\E—l-n—l and bn — )\Z—n—l-l - )\Z—n’
(5@ 5@

for all n. Then a and b are sequences of positive real numbers with

A1 — A e — A
a; = % Z 1 and bl — % Z 1.
¢ )i
We have
0 S0
min {ay, @n41} = ‘grn and  min{b,, b, 1} = l;g n
¢ ¢

Z a, = )\Z—i-n >\Z and Zb )\Z n

Let 0 > 1. Applying Lemma 2.2.5 with f(x) = x%, we obtain

{+N N

— 6k — 5€ n 5Z—n
577! =07 < =+ a)
¢ Z Ak — A ¢ ; (Aegn — Ao) (A = Ae—n)

k=(—N
k£

= Fy(a) + Fy(b)
<2 f(j) =
j=1
The result (2.2.5) follows by letting N — oc. O

2.3 Proofs of Theorems 2.1.1 and 2.1.2

2.3.1 Proof of Theorem 2.1.1

Proposition 2.3.1. Let N be a positive integer. Let (Ag)-._ . be a strictly increasing
sequence of real numbers. Denote by dy the minimum between A\y—N\_1 and A1 — .
Assume that c3 is a positive constant such that the inequality

N N 3
> Z Om 5_t; 5 < cgzt2 (2.3.1)
1

m= 1
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holds for all nonnegative real numbers tq,...,ty. Then the inequality (2.1.3) holds
for all complex numbers zy, ..., zx with the constant ¢; = \/%2 + 2c¢3.

Proof. Suppose that (2.3.1) holds. Let [uq,... ,uN]T be a unit eigenvector of H =
[Rnn], where h,,, are given by (2.2.1) with w, = v/9,, and let iy be the eigenvalue
associated with this eigenvector. On applying Lemma 2.2.1 and summing (2.2.4)

over m, we get

N
Z 5 On |“"| Z o 5 R “’"u") < S+2T, (2.3.2)
m=1

n 1

m=1 n=1
n;ém

where S and T are given by

m=1 n=1 m=1 n=1
n;ém n#Em

On one hand, by Lemma 2.2.2, we obtain

Si& |t |? i—‘s’” <i5 |u |2<7T—2>7T—2 (2.3.3)
- n n 2 - n n — . .
n=1 m;l (/\m - )‘n) n=1 3577, 3

On the other hand, substituting t,, = |u,| in (2.3.1) gives
T < ey (2.3.4)
It follows from (2.3.2), (2.3.3), and (2.3.4) that

lu| < VS +2T < ,/—+2c3 (2.3.5)

By the argument preceding (2.2.3), we deduce from (2.2.3) and (2.3.5) that (2.1.3)

holds with ¢; = 4/ %2 + 2c3. O

One weak point in the proof of Proposition 2.3.1 is the bound in (2.3.2), where

we disregard cancellation between terms.

Proof of Theorem 2.1.1. Since (2.3.1) holds with ¢; = C (3), it follows by Proposi-

tion 2.3.1 that (2.1.3) holds with ¢; = %2 +2C (1). Hence the result follows. [



43
2.3.2 Proof of Theorem 2.1.2

Lemma 2.3.2. Let (\)o be a strictly increasing sequence of real numbers. De-

k=—o00

note by 0 the minimum between A\ — A\g_1 and A\py1 — \i.. Then for distinct integers

¢ and m, we have

> 2
Z O < 7 (0¢ + Om) _ 3 (d¢ +(5m4)1‘ (2.3.6)
(A — Ae)® Ak — An) 3600m (Ae — Am) (Ae — Am)
kL
k#m
Proof. See Preissmann [11, Lemme 6]. O

Proof of Theorem 2.1.2. Let

2

N ) N N 57%67%%
< Ztn Z Z(}\m_)\n)2 :V(S_I_T)’

n=1 n=1 m=1
m¥#n
where
N N N N N 3 3
53 6,12 52020,
S:zggm—nmandezggg L monem )
n=1 m;f:él (Am - /\n>4 n=1 57&1 m=1 (/\f - /\n)2 ()‘m - AN)Q

Applying Lemma 2.2.2 with 0 = 4, we obtain

N \ N 5 N i -
S_mZ:lémtm ;—(An_A mZ:m (4553>—EV.

n#m
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Applying Lemma 2.3.2, we obtain

S s, [
T= 62 0ptotm n
P e S An =20 (= An)’

m#L n#l

n#m
< 07 Ot at ( L ) - U
;; ' 3600, e — An)2) 3
m#£L

SoU2<V (Z—SV + %U) Solving this gives U < (%2 + %2 g) V. ]

2.4 Proofs of Theorems 2.1.3 and 2.1.4

2.4.1 Proof of Theorem 2.1.3

For real numbers 0 < a < 2 and positive integers N, let U(a, N) be the minimum

of all constants C'(«, N) for which the inequality

52-a50t,, t N
Z Z <Cla,N)> 12 (2.4.1)
m=1 n=1 n=1

n;ém

holds for all choices of a strictly increasing sequence (A\g),— . of real numbers,
O = min {\y — Ne—1, A1 — Ai )
and nonnegative real numbers ¢, ..., ty.

Proposition 2.4.1. (1) For real numbers 0 < a < 2, we have C(a,1) = 0 and

O(a,2) = 1.

(2) For real numbers 0 < a < 2 and positive integers N, we have C(a, N) <

C(a, N +1).

(3) For real numbers 0 < a < 2 and positive integers N, we have 0 < C(a, N) <

N —1.
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(4) For real numbers 0 < o < 2, we have C(a) = limy_o C(a, N).

Proof. (1) If N = 1, the left side of (2.4.1) is 0. So C(a,1) = 0. If N = 2, the left

side of (2.4.1) is 2t1t5. So C(«,2) = 1.

(2) Let ty,...,ty be nonnegative real numbers, and let 57 = 0. Then
N N+1 N+1 N+1 N
oo 00t t 52 0ot t = =
E E T E E < C(a,N+1 g t2 = C(a, N+1 g t2
m=1 n=1 ()\m m=1 n=1 ( ) n=1 ( ) n=1
N n7zm n;ém N N

(3) We have
o2 oet tn & R R Al
lel R leltmtngzlz; : :(N—l)zlti
m=1n m= g;m m= r?;m n=

So C(a, N) < N — 1. On the other hand, from (2) and (1), we have C(a, N) >
C(a,1) =0.

(4) Since (2.4.1) holds with C'(a, N) = C(a), it follows that C(a, N) < C(«) for all
N. Hence limy_,o, C(a, N) < C(a). On the other hand, by (2), limy_, C(a, N) =
supy C(a, N). So (2.1.8) holds with C(a) = limy_. C(a, N). Hence C(a) <

limy 00 Car, N). n

Proposition 2.4.2. (1) For real numbers 0 < a < 2 and integers N > 2, we have

C(a,N)=C(2—a,N) >1.

(2) For real numbers 0 < a3 < ag < 2 and 0 < 0 < 1, and for positive integers
N, we have

C (B + (1 — 0)ag, N) < C (o, N)? C (ag, N)' ..

(3) For real numbers 0 < oy < ap < 1 and positive integers N, we have C (ay, N) >

C(OéQ,N).



46

(4) For real numbers 0 < a < i and integers N > 2, we have C(a, N) > Nz,

Proof. (1) The left side of (2.4.1) is unchanged on replacing o by 2— . It follows that

(a, N)
C(a,2) =1.

Ql

C(2 — a, N). In addition, by Proposition 2.4.1, we see that C(a, N) >

(2) Let a = fay + (1 — 0)ay. Apply Holder’s inequality:

0 1-0
i i 02 St _ i i g2ongony, t i i §2oagoay t
m=1 n=1 <>‘m o )‘H)Q N m=1 n=1 ()‘m - )‘n)2 m=1 n: ()‘m )‘n)
n#Em n#Em #m
N
< C (a1, N)'C(ag, NN 22
n=1

()Let9—2(f1 X Then 0 < § <1 and ag =fa; + (1 —0) (2 —aq). By (2), we

C(ag, N)=Cfay+(1-0)(2—),N)<C(a,N)’'C(©2—aq,N)"".

The last quantity is equal to C (a1, N) by (1).
(4) We choose A\, = k for k < 1 and Ay p = 2+ % for ¢ > 0. Then 6, = 1 for
k<1 and dypp = % for ¢ > 0. Choose t; = ,/1\27;(,1 and t, ;N for2<n < N. So

SNV 2 =1, and (2.4.1) yields

n=1"n

o<aN>>§:NW>§:w_i VN1
| i (A= )‘n)z oD (M- )\n)z =3 2Natl (1 + nT_2)2

The last quantity is > N2~ for N > 2. Hence C(a, N) > N2~ for N > 2. O

Proof of Theorem 2.1.3. The result follows as we let N — oo in Proposition 2.4.2.

]
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2.4.2 Proof of Theorem 2.1.4

Proposition 2.4.3. Let (\);- be a strictly increasing sequence of real numbers.

k=—00
Denote by o5 the minimum between N\, — Ag_1 and A\py1 — M. Then for any sequence

(t1,...,tn) of nonnegative real numbers,
N N N
OmOntmtn 7r2
§ § S 3 t2. (2.4.2)

Proof. By the inequality of arithmetic and geometric means,

Y& 55tt Al (5m(5n(t2+t2) al

By Lemma 2.2.2, the right side above is < ZN Ont? (% = %2 Zn L2 O]

N———

Proof of Theorem 2.1.4. Proposition 2.4.3 shows C(1) < % Now taking A\, = n and

t, = \/LN in (2.4.1) yields
N-1 N-1 N-1
— 2 N—n 1 2 1
C(a,N) > — =2 S -
eMEN L e Pl vk
Letting N — oo gives C( )Z%Qfor all 0 < a < 2. Hence C(1) %2 O
2.5 Proof of Theorem 2.1.5
Let M denote a positive integer, and let x1, ..., x); denote real numbers, distinct

modulo 1. Put

Ay, = min ||z, — T,
n#m

where ||z|| = mingez|x — k| denotes the distance between x and a nearest integer. In

the case that M =1, we let d; := 1. Let 7y, ..., ) denote nonnegative real numbers.
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Lemma 2.5.1. The inequality (2.3.1) holds (for all N, \,, 6., and t,) if and only

iof the inequality

1 < M d% d%T T, €3
- 22+ mnomn <3 72 2.5.1
s L S G S g
- =1nl -
holds for all positive integer M, distinct real numbers x1, ..., xy modulo 1,
dy, = min {|z, — x, — k| : k € Z} \{0}, (2.5.2)
and nonnegative real numbers Ty, ..., Ty.

Proof. (=) Suppose that (2.3.1) holds. Let zq,...,x be real numbers, distinct
modulo 1. By symmetry in zy,..., x5, we may assume without loss of generality
that 1 < -+ < xy < 21 + 1. Let d,, be given by (2.5.2). Let 7,..., 7y be
nonnegative real numbers. Let K be a positive integer. We apply (2.3.1) with

N = KM. For integers k and m with 1 < m < M, put \gprome = k + 2. Then

Okram = dpm. 0 < k < K, put tgarim = 7. On inserting into (2.3.1), we obtain
M K-1
(K — kd272 k’ddTan
D I S S S - SEI) SENICLE)
m=1 k=1 s e v R R )
n#Em |k|<K
Now, since the series
=1 7r2 2
— -2 and —
kZ:: k? o % (x — sin2(7m)

converge, it follows that they are (C, 1) summable to the same values (see, e.g., [2,

p. 10]), which is to say that

K-1
1 K-k n? 1 K — |k| 72
lim — = — d lim — = .
Koo KK — k2 6 MY BN K % (x — k)2 sin?(mr)
|k|<K

Hence, dividing (2.5.3) by 72K and letting K — oo gives (2.5.1).
(<) Suppose that (2.5.1) holds. Let (A),—___ be a strictly increasing sequence of

real numbers, and let §y, := min { A\, — A\p_1, Aks1 — A\x}. Let ¢4, ..., ty be nonnegative
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real numbers. Let 0 < ¢ < (N— We apply (2.5.1) with M = N. For positive

integers n < N, put =, = ¢\, and 7, = t,,. Then d,, > €6, and (2.5.1) implies

5 20t +Zzsm A))—pztn-
n=1 m=1 n=1 n=1
n#Em
On multiplying by 72 and letting ¢ — 0T, we obtain (2.3.1). O

Lemma 2.5.2. For positive real numbers B < 1 and positive integers L, we have

sin? (%2) ~ 6B? gz 1+ 08 (L) (2.5.4)

§3L+1—£ L3 IL2logL

Proof. From the identity = ez = k)Q, we see that if 0 < 2 < B, then

51n2(71'x
2 1 /1 1
- = < — 4+ —= .
sin?(rx z::(n+x (n—x)2) ;<n2+(n—B)2)
Hence, for 0 < x < B, we have Sm21(m) = WQ—IxQ + Op(1). Applying this estimate to
each term on the left side of (2.5.4), we obtain
L L L
L+1—4 L*(L+1-—
P e =L (Z : )
=1 =1 =1
_L%L+U - L1
- m2B2 €2 7T2B — €

Since Y1, ® = 40 (1) and S 7 =1log L+O(1), the result (2.5.4) follows. [J

6

Proof of Theorem 2.1.5. To prove a lower bound for C (%), we apply (2.5.1) with
particular sets of values. Let K be a positive integer. Let A and B be positive real
numbers such that (K + 1)A+ B = 1. Let L > £ be an integer. We apply (2.5.1)
with M = K+ L+ 1. Choose z, = kA for 1 <k < K and xg o1 = (K+1)A+%B
for 0 < /¢ < L. Thendk:Afor1gkgKanddKMH:%fornggL. Choose

T, = for 1 <k < K and Tgip11 = \/LLTA for 0 < ¢ < L where u is a nonnegative

S~
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real number to be chosen later. Then (2.5.1) implies

K-1 L

A2.+ U2Ep +_2ffzj£: }(‘—kf 2U2Ep jg: L‘+:l—'£
3 32 K sm2(7rkA) L2(L+1) (=B)

(2.5.5)

1S

AB B\ x~v 1 c
il <= 2.
T KL(L+1) A+L)Zzsin2(ﬂ(lﬁl+%))_7T2(1+u)

We observe that

L K da
nggofzzsm ]{;A+@)) :;/0 sin®(7(kA + Bx))

k=1 (=0

I
| -
ks
o
2
=
+
—

|
N
=
+
@]
=
S
o
=

Now we let L — oo in (2.5.5) and use the above estimate and Lemma 2.5.2; obtaining

A2 2422 K-k W 2u [APE 3 )
Tt R i T3 oV BR etk < 5 (1)
k=1 k=1
That is,
2
K0‘+-51U'+'y— C3
g(u) = H—ug?’ < (2.5.6)

where ko and k1 depend on A, B, and K and are given by

Ko = — + and Ky = —\/ 5= (rkA).

A2 2425 Kk 9 [ A3
t(rkA
3 K &= sin’(nkA) -V BE 2

We find that g(u) is maximized on u > 0 at

1 (1 1 2
u:uozzﬁ—l g—lio-f- (5—/{0) +r2].

On inserting u = v in (2.5.6), we get




o1

0.350
0.348
0.346
0.344
0.342
0.340
0.338

0.336

0.334

Figure 2.1: The graphs y = Gg (KL_H), 0<z<1lfor K=1,...,25 in the (z,y)-plane.

Figure 2.1 shows the plot of G (KLH) for K=1,...,25and 0 < x < 1. We find

G5(0.14) > 0.35047.

By Lemma 2.5.1, this gives the lower bound 2§ > 0.35047 for any absolute constant
cs such that (2.3.1) holds. Since (2.3.1) holds with ¢ = C (3), the result follows. [
2.6 Proofs of Theorems 2.1.6 and 2.1.7

Proof of Theorem 2.1.6. Let [uq, ... ,uN]T be an eigenvector of H = [hy,,], where

humn are given by (2.2.1) with



52

and let i be the purely imaginary eigenvalue associated with this eigenvector. We

[um]

apply Lemma 2.2.1. On multiplying (2.2.4) by oo and summing over m, we get

9 N ]um| wmw |um\|un| VX w2 wn ]um|§R(umun)
eyl oy s r2y 3 bl

mlnl m=1 n=1

n#m
IS wmwn|um||un| SN N W wn|um| [
<>y teilinllpl 5y el
=1n n m=1n
n;ﬁm n;é
s W2 [t )
m m n
=330 3
m=1 n=1 n
n#m

Now, let us apply Holder’s inequality with the last quantity:

?i i Wt [t [
2
m=1 n=1 ()\m - >\”>
n+m
1 2
N A I N A [P A
wo |u we |u
1D S renwrd B D OD D
m=1 n=1 57271 <)\m - )\n) m=1 n=1 53 ()\m /\n)2
n#m n#Em
:
3 3\ ° 3 3\ ¢
< (Z wm‘gm‘ ) <Z wn!Zn| ) ’
m=1 m n=1 67%

where we use Lemma 2.2.2. By the AM-GM inequality, the right side above is less

than or equal to

N N N
D w3 [ty | 2 3|u 3 w? 2 )
2 ml=m n 2 m m 3
™ (52 5 +3D;Zn: ”Zg T3\ ) el

m=1 6n m=1

Combining the above, we obtain

N N3 N 3
m 2 Om, 3 2 | U |
. Z_< ik 5)'“’“' oy
m=1 m=1 m=1
Hence p < 7, and (2.1.9) follows. O

Proof of Theorem 2.1.7. Let fi,..., fn be positive real numbers. By Cauchy’s in-



equality, the right side of (2.1.9) is

N N
|z, | D 2 /0, folzn
”; 5, 35, " 3VD =" ; o
N 2

:71'(2]6"1;2“

n=1 n

wiN

>

|Zn|2
JnOn

2

D2 5}
30, 3V D

2

faby,

3vD

n=17"

|20
2T

)5.
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CHAPTER 3

Generalized Factorials allowing Composite Bases

3.0 Abstract

This chapter presents a generalized version of Bhargava’s theory of factorial ideals
based on p-orderings of a nonempty subset S of a Dedekind ring R for all prime ideals
p in R. We treat the ring R = Z and generalize Bhargava’s theory to b-orderings of a
nonempty subset S of Z for all nontrivial proper ideals b in Z. We define generalized
factorials [k]!s 7, where T is a subset of B := {b € Z : b > 2} which corresponds
to the set of all nontrivial proper ideals of Z. We treat in detail the special case

(S,T) = (Z,B) and compute its associated binomial coefficients m LB

3.1 Introduction

3.1.1 Bhargava’s generalized factorials

Beginning in 1997, Bhargava developed a theory of generalized factorials for a class
of commutative rings R that he called Dedekind rings. These rings are quotients
of Dedekind domains and include all Dedekind domains. Bhargava’s generalized
factorials are associated to nonempty sets S of elements of R and to the set of all

prime ideals of R,

Spec (R) = {p : p is a prime ideal in R}. (3.1.1)

95



56

Bhargava’s generalized factorials k!g are ideals in R.

For each prime ideal p in R and a nonempty subset S of R, he assigned an associ-
ated p-sequence (vgx(S,p))re, of S in which v (S, p) is a power of p. He constructed
the associated p-sequence using p-orderings of S. The generalized factorials of S,

denoted k!g, are defined as in [3, Definition 7] by

We can write

V(8. p) = por(SP), (3.1.2)

where a;(S,p) € NU {oc}, with the conventions p° = R and p> = (0).

Bhargava showed his factorials have many applications to many problems in com-
mutative algebra, to finding rings of integer-valued polynomials on a set S, and to
finding good bases for suitable function spaces, see also [4].

Bhargava originally developed his generalized factorials for the ring of integers Z,
in which case Spec(Z) = {(p) : p is a prime number}, which we may identify with
P = {2,3,5,...}, the set of all prime numbers. Bhargava [3] gave details for the
case R = Z. In this chapter we treat the case R = Z, and we describe Bhargava’s
theory in this case, following [3].

Bhargava’s key idea is the construction of p-orderings of S for any fixed prime
ideal p. We describe it for the case R = Z. Let p € P be the prime number that
generates p € Spec(Z). A p-ordering of S is any sequence a = (a;);-, of elements of

S that can be formed recursively as follows:
(i) ag € S is chosen arbitrarily;

(i) Given a; € S, j = 0,...,7 — 1, the next element a; € S is chosen so that it

minimizes the highest power of p dividing the product H;;B (a; — aj).



o7

We note that:
(1) This construction does not give a unique p-ordering of S if |S| > 1.
(2) A p-ordering of S does not need to include all the elements of S.

Bhargava defines v;(.S,p,a) to be the highest power of p dividing Hj;é (a; — a;).
That is, we may write

vi(S,p,a) = p*tra), (3.1.3)

where

a;(S,p,a) = ord, (H (a; — aj)> (3.1.4)

Jj=0

and ord,(-) is the additive p-adic valuation given by
ord,(k) := sup {a € N : p® divides k}. (3.1.5)

Bhargava calls the sequence (v;(S,p,a));~, the associated p-sequence of S corre-

sponding to the p-ordering a. Bhargava [3, Theorem 5] showed

Theorem 3.1.1 (Bhargava [3]). The associated p-sequence of S is independent of

the choice of p-ordering.

Therefore one may write (.S, p) = v;(S, p,a) as an invariant under the choice of
p-ordering a and call (v;(S, p));~, the associated p-sequence of S.
Bhargava used this invariant to define his generalized factorials. The factorial

function associated to S, denoted k!g, is defined by

kls o= [ ve(S,p). (3.1.6)

Thus Bhargava’s theory produces factorials via their prime factorizations.
In the special case S = Z, Bhargava showed that the generalized factorials agree

with the usual factorials. To do this, Bhargava [3, Proposition 6] showed
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Theorem 3.1.2 (Bhargava [3]). The natural ordering 0,1,2, ... of the nonnegative

integers forms a p-ordering of Z for all primes p simultaneously.

From Theorem 3.1.2, Bhargava deduces that
k—1
5=0
where w,(a) denotes the highest power of p dividing a (i.e., w,(a) = p**4(@).
Therefore
kly = [ [ w,(k!) = kL. (3.1.7)
P
Bhargava also treated generalized binomial coefficients. Bhargava [3, Theorem §]

showed
Theorem 3.1.3 (Bhargava [3]). For any nonnegative integers k and £, (k + €)!s is
a multiple of k!glls.

In other words, the generalized binomial coefficients

E+0\  (k+0)s
ko) Elslls

are always integers.

3.2 Main results of this chapter

3.2.1 A generalization of Bhargava’s theory in the ring R =7

We generalize Bhargava’s theory of p-orderings for prime ideals p in the ring R = Z
to treat b-orderings for nontrivial proper ideals b in Z. The set of all nontrivial proper

ideals of Z may be identified with the set
B:={beZ:b>2} =N\{0,1} (3.2.1)

by the positive generators of the ideals. Here N := {0,1,2,...} is the set of all

nonnegative integers.
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Definition 3.2.1. Let b € B. Let S be a nonempty subset of the ring of integers Z.
We call a sequence a = (a;);-, of elements of S an admissible b-ordering of S if for
alli =1,2,3,...,

i—1 i—1

jgoordb (a; —a;) = Iglelg jgoordb (s —aj), (3.2.2)
where ord, (k) is defined for k € Z by

ordy(k) :=sup{a € N : b* divides k} . (3.2.3)

Given any initial value ag € S, one can find an admissible b-ordering with that
initial value using the recurrence (3.2.2). There will be more than one admissible

b-ordering of S, unless S is a singleton.

Definition 3.2.2. Let b € B. Let S be a nonempty subset of the ring Z. Let a =
(a;)s, be an admissible b-ordering of S. The associated b-sequence of S corresponding
to a, denoted (a;(S,b,a));-,, is defined by

i—1

a;(S,b,a) = Z ordy (a; — a;j) . (3.2.4)

J=0

We note that:
(1) a;(S,b,a) € NU {o0}.
(2) If S is finite, then «;(S,b,a) = oo for all ¢ > |S].

A main result of this chapter is that all associated b-sequences of a given set S

are the same.

Theorem 3.2.3 (Well-definedness of the associated b-sequence of S). Let b € B. Let
S be a nonempty subset of the ring Z. Let a; and as be admissible b-orderings of S.

Then «; (S,b,a1) = «; (S, b,as) for alli=0,1,2,....
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Bhargava proved Theorem 3.2.3 for all b € P, where P := {2,3,5,...} is the set
of all primes. Bhargava’s proofs, as presented in [2] and [3], do not extend to the
case of composite bases b. We complete the proof of Theorem 3.2.3 in Subsection
3.5.3.

Theorem 3.2.3 provides the well-definedness of the associated b-sequence of S.

Definition 3.2.4. Let b € B. Let S be a nonempty subset of the ring Z. We write

(a;(S,0)):2, for the associated b-sequence of S, which is defined by
O{i(S, b) = O{i(S, b, a) (325)

for any admissible b-ordering a of S.

3.2.2 Generalized factorials and generalized positive integers

We now define generalized factorials associated to a nonempty subset S of the ring
Z and a set of allowed bases (or generalized prime numbers) 7 C B := {2,3,4,...}.

Here B corresponds to the set of all nontrivial proper ideals of the ring Z.

Definition 3.2.5. Let S be a nonempty subset of the ring Z. Let 7 C B. For
k=0,1,2,..., the generalized factorial of k associated to S and T, denoted [k]!s T,

is defined by
[K]ls,r = [ oo+, (3.2.6)
beT
We note that:
(1) If T = @, then the product on the right side of (3.2.6) is empty; so [k]ls s = 1.
(2) If T # @, then [k]!s 7 is a (finite) positive integer if and only if k& < |S)|.

(3) From (3.2.5) and (3.2.4), we see that ao(5,b) =0 for all b € B; so [0]ls7 = 1.

(4) [1]'s,7 = 1 as long as S is not contained in a single congruence class modulo b

forany b e T.
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Example 3.2.6. The special case T = P agrees with Bhargava’s generalized facto-

rials [3]. Tt contains the usual factorial function as the special case (S, T) = (Z,P):
[k|lzp = KL

Proposition 3.2.7 (Ordering). (1) Let Sy C Sy be nonempty subsets of the ring

Z. Let T C B. Then for integers 0 < k < |Sy],

[l{?] !52,7' divides [l{i] !51’7'.

(2) Let S be a nonempty subset of the ring Z. Let Ty C T C B. Then for integers
0<k<]|S|,
[k]!sg‘l divides [k]'S,TQ
We prove Proposition 3.2.7 in Subsection 3.5.3.

Now, we define generalized positive integers [n]s 1.

Definition 3.2.8. Let S be a nonempty subset of the ring Z. Let 7 C B. For
positive integers n < |S|, the nth generalized positive integer associated to S and T,

denoted [n]s 1, is defined by

|l

T (3.2.7)

[n]s =

Theorem 3.2.9. Let S be a nonempty subset of the ring Z. Let T C B. Then for

positive integers n < |S|, the generalized positive integer [n]g is an integer.

We prove Theorem 3.2.9 in Subsection 3.5.3.

3.2.3 Generalized binomial coefficients

Definition 3.2.10. Let S be a nonempty subset of the ring Z. Let T C B. For

integers 0 < ¢ < k < |S|, the generalized binomial coefficient k choose £ associated
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to S and T, denoted m is defined by

kKl k]! T
u ST sk = Ot (3.2.8)

S,T?

Theorem 3.2.11. Let S be a nonempty subset of the ring Z. Let T C B. Then for

integers 0 < 0 < k < |S|, the generalized binomial coefficient m g7 IS an integer.

T
We prove Theorem 3.2.11 in Subsection 3.5.3.

3.2.4 The special case (S,7T) = (Z,B): generalized factorials

We treat in detail the case (S,7) = (Z, B), in which both S and 7 are maximal.

Theorem 3.2.12. The natural ordering 0,1,2, ... of the nonnegative integers forms

an admissible b-ordering of S = 7Z for all b € B simultaneously.
We prove Theorem 3.2.12 in Section 3.6.

Theorem 3.2.13. For k = 0,1,2,..., the generalized factorial of k associated to

S=7ZandT =B is
k

K]\ = [ 07", (3.2.9)

b=2
where

v(k,b) == i EJ . (3.2.10)

i=1

Theorem 3.2.13 is analogous to Legendre’s formula (also known as de Polignac’s

formula), which states that

k
ord,(k!) = \‘—J 3.2.11
-3 |5 2)
for all p € P. The right side of (3.2.11) is y(k,p). We prove Theorem 3.2.13 in

Section 3.6.
Theorem 3.2.14. Forn =1,2,3,..., the nth generalized positive integer associated
toS=7and T =B is

[n)zs = | [ oo™, (3.2.12)
b2
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where ordy(n) is the mazimal o € N such that b* divides n.

Theorem 3.2.14 is analogous to the prime factorization of positive integers:

n = H pordp(n).

peEP

We prove Theorem 3.2.14 in Section 3.6.
Knuth and Wilf [6] considered the notion of generalized binomial coefficients m c

defined by a sequence C = (C,,),—, of positive integers by

Kl 17 G
(], C;

J=1

for integers 0 < ¢ < k. They showed that if C satisfies the condition
ng (Cma Cn) = C'gcd(m,n)

for all positive integers m and n, in which case C is said to be reqularly divisible,
then the generalized binomial coefficients are all integers. Here, the sequence C; =

([n]z,B),—, is not regularly divisible, since
ng ([4]2157 [6]21,8) = ng<16, 36) =4 but [ng(4, 6)]2’3 = [2]2’5 = 2.

However, the generalized binomial coefficients

=L

are all integers by Theorem 3.2.11.

3.2.5 The special case (S,7) = (Z, B): generalized binomial coefficients
Theorem 3.2.15. Let k > { be nonnegative integers. Then:

(1) We have

k
m = [[o"*, (3.2.13)
tzs b=2
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where

Bk, 0,b) := i:: (EJ — %J — Vb_gD . (3.2.14)

=1

(2) Forb e B,
Bk, 0,0) = 1 (do(0) + ol — £) — (k). (3.2.15)
where dy(j) is the sum of the base-b digits of j.
We prove Theorem 3.2.15 in Section 3.6.

Corollary 3.2.16. Let En be the product of the generalized binomial coefficients

associated to S = 7Z and T = B in the nth row of Pascal’s triangle:

= n n
G, = . 2.
-1l
k=0 s
Then forn=1,2,3,...,
G, = [T, (3.2.17)
b=2
where
T(n,b) = ——Sy(n) — L a4y () (3.2.18)
n, b_1 pln b—_1 pn L.

and Sy(n) := Y71 do(j).
We prove Corollary 3.2.16 in Section 3.6.
3.3 Preliminaries
We derive identities for generalized factorials and generalized binomial coefficients
which will be used in Subsection 3.5.3 and Section 3.6.
Proposition 3.3.1. Let S be a nonempty subset of the ring Z. Let T C B. Then

for positive integers n < |5,

)]sz = [ om0, (3.3.1)
beT
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Proof. This follows from Definitions 3.2.8 and 3.2.5. O

Proposition 3.3.2. Let S be a nonempty subset of the ring Z. Let T C B. Then

for integers 0 < ¢ < k < |5],

k
M ) CCERYCUREr) (33.2)
ST beT
Proof. This follows from Definitions 3.2.10 and 3.2.5. [

3.4 Bhargava’s theory in the ring D[[t]]

3.4.1 t-orderings of an arbitrary subset of DI[¢]]

In what follows, we let D be an integral domain. Let U # @ be a subset of
D([t]], the ring of formal power series over D. We define a valuation ord, : D[[t]] —

{0,1,2,...} U {oo} by ord;(0) = oo and for nonzero f(t) = >"°, d;t",
ord;(f(t)) =min{i € N: d; # 0}.

That is,

ord;(f(t)) = sup{o € N : t* divides f(¢)}.

Proposition 3.4.1. The function ord; satisfies

ordy(f(t) £ g(t)) = min {ord(f(t)), ordi(g(t))} , (3.4.1)

ord, (f(£)g(t)) = ordy(£(£)) + ordy(g(1)). (3.4.2)

Proof. If f(t) =0or g(t) = 0, then (3.4.1) and (3.4.2) are clearly true. Now, suppose
that « := ord,(f(t)) and j := ord,(g(t)) are finite. So f(t) = =, d;t" where d; = 0
for all j < a and d, # 0, and g(t) = > .2, e;t" where e, = 0 for all k < § and
eg # 0. The coefficient of t* in f(t) & g(t) is given by [t'] (f(t) £ g(t)) = d; + e;,

which is zero if i < min{«, 8}. So ord:(f(t) £ ¢g(¢)) > min{«, 8}. The coefficient
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of t' in f(t)g(t) is given by [t] (f(t)g(t)) = Ej‘:o dje;_;, which is zero if i < a + f.

Moreover, [t*T%] (f(t)g(t)) = daeg # 0. So ord,(f(t)g(t)) = o + B. O

Definition 3.4.2. A t-ordering of U is a sequence f := (f;(t));, of formal power

series in U that is formed as follows:
e Choose any formal power series fo(t) in U.

e Suppose that f;(t), j = 0,1,2,...,k — 1 are chosen. Choose fi(t) in U that
minimizes
k-1
> ord, (filt) = f5(1)).
=0

In general, a t-ordering of U is not unique. But we will prove

Theorem 3.4.3. The sequence (o (U, f)),—, defined by

k—1

a(U.£) == ord, (fi(t) — f;(t)) (3.4.3)
=0
is independent of the choice of t-ordering f = (f;(t));=, of U.

To prove this, we consider polynomials p(z;t) in z with coefficients in D[[t]].

Definition 3.4.4. We say that a polynomial p(x;t) with coefficients in DI[t]] is

t-primitive if ord; ([%] p(x;t)) = 0 for some i.

Theorem 3.4.5. Let p(x;t) be a t-primitive polynomial in x of degree k. Let £ be a

t-ordering of U. Then
min {ord;(p(f(t);t)) : f(t) € U} < ap(U,f).

In the next Subsection 3.4.2, we prove Theorems 3.4.5 and 3.4.3.
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3.4.2 Proofs of Theorems 3.4.5 and 3.4.3

Lemma 3.4.6. For U C D[[t]] and a t-ordering f = (fi(t));2, of U, the associated

t-sequence (a(U,f))p—, is weakly increasing.

Proof. Let U C DI[t]], and let £ = (fi(t));2, be a t-ordering of U. Let k be a

nonnegative integer. From the definition (3.5.5), we have

= z_:ordt (fk(t) - fj(t))v

k
(U, ) = Y ord (fisa(t) = £5(1))-
§=0
From Definition 3.4.2, we have
Z ordy (fx(t) Z ord; (fes1(t) — f;(t)) .
Hence ax (U, f) < apy1 (U, £) — ordy (frr1(t) — fr(t) < apya (U, £). O

Lemma 3.4.7. Suppose that (fi(t));2, is a t-ordering of U. For j =0,1,2,...,k,

let c;(t) be formal power series in D[[t]], and let

pitot) = 1) [] (= 1), 344
p(a;t) = ij(x;t)- (3.4.5)

Then
min {ord; (p;(f(£);t)) : f(t) € U} = ord, (c;(t +Zordt (f;(t) = fi(t), (3.4.6)

min {ord;(p(f(t);t)) : f(t) € U} < min{ord; (p;(f(¢):t)): f(t) € U} (3.4.7)

forall j =0,1,2,... k.
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Proof. We prove (3.4.6) first. Using Proposition 3.4.1, we see that

ord, (p;(f(£);1)) = ordy (¢;(1)) + Y ordy (f(¢) = filt)).

The right-hand side attains its minimum value over f(t) € S at f(t) = f;(t). Hence

(3.4.6) follows.

We prove (3.4.7) by induction on j. Denote by u the left-hand side of (3.4.7).

Then
p < ordy (p(folt);t)) = ord; (co(t)) = orde (po(f(t);1))
for any f(t) € U. Hence (3.4.7) is true for j = 0. Now, suppose that (3.4.7) is true

for y =0,1,2,...,¢ — 1, where 1 < ¢ < k. By Proposition 3.4.1, we can rewrite

(3.4.6) with j replaced by ¢ as

min {ord; (pe(f(t);t)) : f(t) € U} = ord; (pe (felt); 1)) . (3.4.8)

From the identity

/-1

pe (fot);t) = p (felt);t) = > pj (felt); 1)

J=0

and Proposition 3.4.1, we deduce that

ordy (pe (fe(t);t)) = min {ord; (p (fe(t); 1))} U {ord; (p; (fe(t);t)) : 0 <5 < €—1}

> min {p} U {ord, (p;(f(t);¢)): f(t) e U, 0< 5 <l —1}.

The last quantity is u by the induction hypothesis. From (3.4.8), we conclude that

(3.4.7) is true for j = ¢. This completes the proof. O

Proof of Theorem 3.4.5. Let £ = (f;(t));—, be a t-ordering of U. We show that

min {ord, (p(£(1);£)) : £(t) € U} < (U, £).
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The polynomial p(z;t) can be decomposed into the form (3.4.5), where p;(z;t) are

given by (3.4.4) and ¢;(t) € D[[t]] are uniquely determined by p(z;t) and f. Since

p(x;t) is t-primitive, it follows that there is jo € {0,. .., k} such that ord; (¢;,(t)) = 0.

Applying Lemma 3.4.7 with j = jo, we obtain by (3.4.7) and (3.4.6) respectively
min {ord (p(f(¢);1)) : f(t) € U} < min{ordy (p;, (f(¢);1)) : f(t) € U}

Jo—1

= ord; (¢;, (1)) + Z ordg (fj,(t) — fi(1))

jo—1

=Y ords (fi(t) = fi(1))
=0
= ajo(U7 f)
The last quantity is < (S, f) by Lemma 3.4.6. O

Proposition 3.4.8. Let f = (f;(t));, be a t-ordering of U. Then

ag(U, ) = maxmin {ord;(p(f(¢);t)) : f(t) € U}, (3.4.9)

p(a;t)

where the mazimum runs over all t-primitive polynomials p(x;t) of degree k. More-

over, if
o) = T = £0).
then .
ag(U,f) = min{ord; (¢ (f(t);t)) : f(t) € U}. (3.4.10)

Proof. Taking the maximum over all ¢-primitive polynomials p(z;t) of degree k in

Theorem 3.4.5, we obtain

ag(U, ) > maxmin {ord;(p(f(t);t)) : f(t) e U}.

p(x;t)
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Hence it suffices to prove the second assertion. By the definition of ¢-orderings,

k—1
min {ord, (qx(f(t);1)) : f(t) € U} = frél)ienUzordt (f(t) = f;@))
j=0
k—1
= > _orde (fi(t) — £;(1))
j=0
= Oék(U, f)
This completes the proof. O

Proof of Theorem 3.4.3. From Proposition 3.4.8, since the right side of (3.4.9) does

not depend on the choice of t-ordering f, the result follows. O

Since we have proved that oy (U, f) does not depend on f, we will refer to it as

ag(U) from now on.

Definition 3.4.9. We call (o (U))— = (ax(U, 1)) o, the associated t-sequence of

U.

3.4.3 Properties of the associated f-sequence
Theorem 3.4.10. For nonnegative integers k and ¢, we have
apye(U) 2 ap(U) + au(U).

Proof. Let £ = (f;(t));=, be a t-ordering of U. Applying Proposition 3.4.8, we obtain
a(U) + a(U) = min {ordy (gx(f(£); 1)) : f(t) € U} 4 min {ord, (q.(f(t); 1)) - f(£) € U}

< min {ord; (gx(f(t); 1)) + ord (q:(f(t); 1)) : f(t) € U}

= min {ord; (gx(f(t); £)qe(f(2); 1)) : f(t) € U}

S max min{ord, (p(f(t); 1)) : f(t) € U}

= O‘kz—i-K(U)a

where the maximum runs over all ¢-primitive polynomials p(x;t) of degree k+¢. [
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Theorem 3.4.11. Suppose that Uy C Uy C DI[t]]. Then oy (Uy) > oy (Us) for every
nonnegative integer k.

Proof. Let p(z;t) be a t-primitive polynomial of degree k. Since U; C Us, it follows

that

min {ord;(p(f(¢);t)) : f(t) € Uy} > min{ord,(p(f(t);t)) : f(t) € Us}.

Taking the maximum over all ¢-primitive polynomials p(z;t) of degree k and applying

Proposition 3.4.8, we obtain oy, (Uy) > oy (Us). O

Theorem 3.4.12. Let g;(t), i =0,1,2,...,n be formal power series in U. Then

i > orde (g:(t) = g;(1)) = D aw(U). (3.4.11)

i=0 j=i+1

Proof. If ¢;(t) = g;(t) for some 0 < i < j < n, then the left side of (3.5.6) is
oo and (3.5.6) is true. Now, assume that ¢;(¢),...,¢,(t) are pairwise distinct.
Without loss of generality, we may assume that (g;(t));_, is a t-ordering of V' :=
{g:(t) :i=0,...,n}. Sofor k=1,...,n,
k-1
(V) = Z ord (gx(t) — g;(¢)) -
=0

On the other hand, since V' C U, Theorem 3.4.11 yields v (V) > v, (U). Thus

k-1
> " ord, (ga(t) — g;(1) = ax(U). (3.4.12)
=0

The result follows by summing (3.4.12) over k= 1,...,n. O

3.5 Property C

3.5.1 Mapping to D|[[t]]

Let R be a commutative ring and b a nonzero proper ideal of R. The crucial
property for our argument will be the existence of an injective map ¢y : R — D][t]]

that has the following property.
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Property C. The map ¢, : R — DI[t]] satisfies Property C(R,b, D) (or simply

Property C) if
©p (a1) = @y (a2)  (mod t*) if and only if a; =ay (mod b¥) (3.5.1)

for all k > 1.
For a € R, denote by ordy(a) the supremum of all nonnegative integers k such
that a € b*; i.e.,

ordy(a) :=sup{k € N:a € b*}.
Here b° = R.

Proposition 3.5.1. Assume that @y : R — DI[t]] satisfies Property C. Then

ord; (pp (a1) — pp (az)) = ordy (a; — asg) . (3.5.2)
Proof. The result readily follows from the definitions of ord; and ords. O

We note that the quantity on the right side of (3.5.2) is independent of the map

p and the integral domain D.
3.5.2 b-orderings of an arbitrary subset of R

As in the previous section, we let R be a commutative ring and let b be a nonzero
proper ideal of R. Let S be an arbitrary subset of R. Given that there exists a map

wp : R — DI[t]] satisfying Property C, we can define b-orderings of S C R analogous

to t-orderings of U C D][[t]].

Definition 3.5.2. A b-ordering of S is a sequence a := (a;);, of elements of S that

is formed as follows:

e Choose any element ag of S.
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e Suppose that a;, 7 =0,1,2,...,k—1 are chosen. Choose a;, in S that minimizes

k—1
Zordb (ar — aj) .
=0

Lemma 3.5.3. Assume that ¢, : R — DI[t]] satisfies Property C. Suppose that
a = (a;);o, is a b-ordering of S. Then (pp (a;));=y i a t-ordering of py (S) =
{¢p (s) : s € S} and .
S)) = iordb (ar — aj) . (3.5.3)
=0

Proof. The first assertion follows from Definitions 3.4.2 and 3.5.2 and Proposition

3.5.1. Hence the associated t-sequence of ¢y (S) is given by

S)) = ZOfdt (oo (ar) — wo (a;)) - (3.5.4)

By Proposition 3.5.1, the right side of (3.5.4) is equal to ZJ o ordy (ar — a;). O

Corollary 3.5.4. Assume that there is a map vy : R — DI[[t]] satisfying Property

C. Then the sequence (ay (S, b,a)),—, defined by

k(S,b,a) Zordb ay — a;) (3.5.5)
is independent of the choice of b-ordering a = (a;);—, of S.
Proof. The left side of (3.5.3) is independent of a. O

Definition 3.5.5. On the assumption that there exists a map ¢, : R — D[[t]]
satisfying Property C, we call (o (S,0));—, = (o (S,b,a)),—, the associated b-

sequence of S.

Lemma 3.5.6. Assume that ¢, : R — D|[t]] satisfies Property C. Then for nonneg-

ative integers k, we have

ag (S,6) = ag (s (9)) .



Ring DI[t]] R

Subset U S

Base tD|[t]] b
Valuation rd; ordy
Orderings | f = (fi(t));2y | a=(ai);—
Invariant | (o (U))pey | (o (S,0))ie

Table 3.1: List of notations

Proof. The result follows from Definition 3.5.5 and Equations (3.5.5) and (3.5.3) [

Corollary 3.5.7. Assume that there is a map vy : R — DI[[t]] satisfying Property

C. Then for nonnegative integers k and ¢, we have
(07’3 W) (S, b) > e (S, b) + oy (S, b) .
Proof. Applying Theorem 3.4.10 with U = ¢ (S), we obtain

ke (06 (5)) 2 o (6 (5)) + e (06 (5)) -
By Lemma 3.5.6, the above is a4 (S,b6) > ay (S, b) 4+ ay (S, b). O

Corollary 3.5.8. Assume that there is a map vy : R — DI[[t]] satisfying Property
C. Let s;, 1=0,1,2,...,n be elements of S. Then
n—1 n n
Z Z ordp (s; — s;) > Z ag (S,0). (3.5.6)
i=0 j=i+1 k=1
Proof. Applying Theorem 3.4.12 with U = ¢, (S) and g¢;(t) = ¢y (s;), we obtain
n—1 n n
D> ords (e (si) — @o (57)) = Y o (96 (9)) -
i=0 j=i+1 k=1

By Proposition 3.5.1 and Lemma 3.5.6, the above is (3.5.6). O

Corollary 3.5.9. Assume that there is a map vy : R — D[[t]] satisfying Property

C. Then the associated b-sequence (o, (S,6)),—, is weakly increasing.
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Proof. Applying Lemma 3.4.6 with U = ¢y (S), we see that the associated t-sequence
(ag (06 (5)))pey is weakly increasing, and this sequence is the associated b-sequence

(ag (S, 0))r—, by Lemma 3.5.6. O

Corollary 3.5.10. Assume that there is a map py : R — DI[t]] satisfying Property
C. Suppose that S1 € Sy C R. Then ay (S1,b) > ay (S2,b) for every nonnegative

integer k.

Proof. Applying Lemma 3.4.11 with U; = ¢ (S1) and Us = ¢y (S2), we obtain

g (pp (S1)) > ax (9s (S2)) -

By Lemma 3.5.6, the above is oy (S1,b) > ax (59, b). O
3.5.3 Thecase R=7Z

Thoughtout this section, we consider the case that R = Z. Since Z is a principal
ideal domain, it follows that the ideal b is principal. Let b € Z be the positive

generator of b. Since b is a proper ideal of 7Z, it follows that b > 2. We choose D = Z

and define ¢y, : Z — ZI[[t]] by

ola) = fap(t Z dit", (3.5.7)

where
dy = dip(a,b) == L;{J —b [#J . (3.5.8)

If a > 0, then the d’s are the digits of a in base b.

Proposition 3.5.11. The map @y : Z — Z[[t]] defined by (3.5.7) and (3.5.8) satisfies

Property C(Z,b,7).
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Proof. (=) Suppose that o (a1) = ¢4 (az) (mod t*). That is, d; (a1,b) = dy (ag,b)

forall £=0,...,k— 1. From the identity

we see that a; — b* \_Z—H = qy — bF LZ—,?J We deduce that a; = ay (mod b*).
(<) Suppose that a; = ay (mod b*). That is, a; — ay = b¥q for some q € Z. So

for ¢ =0,...,k—1,

o= 3] 0|
as + bFq as + bFq
<[5 e
= (L) +ora) - ([ +#7)
3]0l ] -
Hence oy (a1) = @y (az) (mod tF). O

Proposition 3.5.11 implies that all the corollaries in Section 3.5.2 hold for the case

that R=D =Z.

Proof of Theorem 3.2.3. The result follows from Proposition 3.5.11 and Corollary

3.5.4 with b = bZ. U

Proof of Proposition 3.2.7. (1) This is true because

[k's7 = [K]'s7\7: [K]ls,7s -

(2) It follows from Proposition 3.5.11 and Corollary 3.5.10 that a4 (S1,b) >

a (Ss,b) for all b € B. Since

[Els, T _ H Bk (S1,)—a(S2.b)

|
[k]'sz,T beT

the result follows. O
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Proof of Theorem 3.2.9. It follows from Proposition 3.5.11 and Corollary 3.5.9 that

a,(S,b) > a,,—1(5,b) for all b € B. The result follows from (3.3.1). O

Proof of Theorem 3.2.11. It follows from Proposition 3.5.11 and Corollary 3.5.7 that

ag(S,b) > (S, b) + ag_e(S,b) for all b € B. The result follows from (3.3.2). O

3.6 The case (S,T) = (Z,B)

Proof of Theorem 3.2.12. The proof is by induction: if 0,1,2,...,k—11is a b-ordering

for the first £ — 1 steps, then at the kth step we need to pick a; € Z to minimize

k—1
Q = Zordb (ak —]) .

7=0
Write
ordy (z) = » 1. (3.6.1)
i>1
btz
Then
k—1
Q=> > 1
j=0 i>1
ap=j mod b*
k—1
= 1
i>1 =0
j=ar mod b*

and there is equality if a = k. So at the kth step we choose a; = k, and the claim

follows by induction. O]

Proof of Theorem 3.2.13. This follows from the proof of Theorem 3.2.12. Note that

v(k,b) = 0if b > k. O
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Proof of Theorem 3.2.14. The result follows by noting that

_ 1 if b | n,
{bﬁj - rb%’ 1J -

0 otherwise.

So from (3.6.1),

-5 5))

1>1

Proof of Theorem 3.2.15. (1) follows from the definition and Theorem 3.2.13.

(2) follows from (1) and the identity

dy(n) =n—(b—1 i{ J

Proof of Corollary 3.2.16. We have

HH T

— T ok pmin),
b=2

From (3.2.15),

S Bk b) = 3 o (dal) + ol — k) — di(m)

I
<

(n,b).
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3.7 Appendix: tables of values for the special case (S,7) = (Z, B)

3.7.1 Generalized positive integers

[(n ] [n]z.5 [ n ] [nz.5 [ n [ Inlzs
1 1 = 1 21 441 = 32 x 72 41 | 41
2 2 = 2 22 484 = 22 x 112 42 | 27 x 3t x 7%
3 3 = 3 23 23 = 23 43 | 43
4 16 = 24 24 1,327,104 = 21T 5 31 44 | 27 x 113
5 5 = 5 25 625 = 5% 45 | 37 x 53
6 36 = 22 x 32 || 26 676 = 22 x 132 46 | 27 x 232
7 7 = 7 27 6,561 = 38 47 | 47
8 256 = 28 28 43,904 = 27 x 73 48 | 275 x 35
9 81 = 31 29 29 = 29 49 | 7%
10 100 = 22 x 52 || 30 810, 000 = 27 %34 x 5T || 50 | 2% x 57
11 11 = 11 31 31 = 31 51 | 327 x 177
12 3,456 = 27 x 33 || 32 2,097,152 = 22T 52 | 27 x 133
13 13 = 13 33 1,089 = 32 x 112 53 | 53
14 196 = 22 x 72 || 34 1,156 = 22 x 172 54 | 24 x 31
15 225 = 32 x52 || 35 1,225 = 52 x 72 55 | 52 x 112
16 | 32,768 = 215 36 | 362,797,056 = 21T 5 311 56 | 214 x 72
17 17 = 17 37 37 = 37 57 | 37 x 192
18 | 17,496 = 23 x 37 || 38 1,444 = 22 x 192 58 | 22 x 292
19 19 = 19 39 1,521 = 32 x 132 59 | 59
20 | 16,000 = 27 x 53 || 40 10, 240, 000 = 217 57 60 | 213 x 35 x 5%

Table 3.2: [n]z g decimal for 1 < n < 40 and factored for 1 < n < 60
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3.7.2 Generalized factorials

Lk ] [kl'z,5
0 1 = 1
1 1 = 1
2 2 = 2
3 6 = 2x3
4 96 = 25 x 3
5 480 = 25 x3 x5
6 17,280 = 2" x 33 x5
7 120, 960 = 2" x 3 x5x7T
8 30, 965, 760 = 215 % 33 x5 x 7
9 2, 508, 226, 560 = 215 % 37 x5 x 7
10 250, 822, 656, 000 = 217 % 37T x 535 x 7
11 2,759,049, 216, 000 = 217 % 37 x 53 x 7 x 11
12 9, 535,274, 090, 496, 000 = 227 310 53 x 7 x 11
13 123, 958, 563, 176, 448, 000 = 227 5 310 53 x 7 x 11 x 13
14 24,295, 878, 382, 583, 808, 000 = 226 % 310 % 53 x 73 x 11 x 13
15 5,466, 572, 636, 081, 356, 8300, 000 = 226 % 312 % 55 x 73 x 11 x 13
16 179,128,652, 139, 113, 899, 622, 400, 000 = 23T %312 % 55 x 73 x 11 x 13
17 3,045, 187, 086, 364, 936, 293, 580, 800, 000 = 2H 5312 555 x 78 x 11 x 13 x 17
18 53,278,593, 263, 040, 925, 392, 489, 676, 800, 000 = 21 % 319 % 55 x T8 x 11 x 13 x 17
19 | 1,012,293,271,997,777, 582,457, 303, 859, 200, 000 = 2 %319 X B x TP x 11 x 13 x 17 x 19

Table 3.3: [k]lz.5

decimal and factored for 0 < k < 19

|k | [*'zs

20 | 2°T x 319 x 5% x 73 x 11 x 13 x 17 x 19

21 [ 29T x 32T x 58 x 7° x 11 x 13 x 17 x 19

22 | 293 x 32T x B8 x TP x 113 x 13 x 17 x 19

23 [ 293 x 321 x 58 x TP x 113 x 13 x 17 x 19 x 23

24 [ 257 3 x 58 x TP x 113 x 13 x 17 x 19 x 23

25 | 267 x 3% x 512 x 75 x 113 x 13 x 17 x 19 x 23

26 | 259 x 325 x 512 x 7P x 113 x 133 x 17 x 19 x 23

27 | 269 % 333 x 512 x 7° x 113 x 133 x 17 x 19 x 23

28 [ 276 % 333 x 512 x 78 x 113 x 133 x 17 x 19 x 23

29 | 276 % 333 x 512 x 78 x 113 x 133 x 17 x 19 x 23 x 29
30 | 280 % 337 x 516 x 78 x 113 x 133 x 17 x 19 x 23 x 29

Table 3.4: [k]!z 5 factored for 20 < k < 30
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3.7.3 Generalized binomial coefficients

[K\¢]O 1 2 3 4 5 6 7 8 9
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 16 24 16 1
5 1 5 40 40 5 1
6 1 36 90 480 90 36 1
7 1 7 126 210 210 126 7 1
8 1 256 896 10, 752 3,360 10, 752 896 256 1
9 1 81 10,368 24,192 54,432 54,432 24,192 10, 368 81 1
10 1 100 4,050 345,600 151,200 1,088,640 151,200 345,600 4,050 100
Table 3.5: [j], ; decimal for 0 < ¢ <k <10
[K\¢]O0 1 2 3 4 5 6 7
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 27 25.3 2% 1
5 1 5 25.5 25.5 5 1
6 |1 22.37 2.37.5 2°.3.5 2-37.5 27 .32 1
7 107 2.32.7 2.3.5-7 2.3.5.7 2.32.7 7 1
8 1 28 277 29.3.7 25.3.5.7 29.3.7 277 28
9 1 31 27. 34 27.3%.7 25.35.7 25.35.7 27.3%.7 27 .34
10 [ 1 2Z.52 2.3%T.527 29.33.52 2°0.33.52.7 27.35.5.7 25.33.52.7 29.33.52

Table 3.6: [§], , factored for 0 < ¢ <k <10, <7
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3.7.4 Generalized binomial products

[~ | G
0 1T = 1
1 1 = 1
2 2 = 2
3 9 = 3
4 6,144 = 2"x3
5 40,000 = 25x5?
6 5,038,848,000 = 2" x37x53
7 34,306,448,400 = 2Tx3°x57x7°
8 20,436,839, 713,048,300,093,440 = 2@ x3¥x5x7°
9 1,222,959, 700, 798, 803, 745,499, 202, 453,504 = 2¥ x 3% x 7!
10 | 487,579,439, 713,294, 378, 598, 400, 000, 000,000, 000,000 = 27 x 3% x 517 x 7°

Table 3.7: En decimal and factored for 0 < n < 10

L n |G,
11 [ 22 x 318 x 51 % 72 x 1110
12 | 281 % 31 x 511 x 7 x 117
13 | 250 % 33T x 5% x 118 x 1312
14 | 292 x 3% x 5% x 7% x 117 x 13"!
15 | 236 % 3%2 x 530 x 722 x 11° x 1310
16 | 2235 x 330 x 5% x 719 x 11° x 139
17 | 2197 x 318 % 520 x 716 x 117 x 13% x 1716
18 | 2207 x 3125 5 515 % 713 x 113 x 137 x 1715
19 | 2100 5% 3106 5 5I0 % 710 % 117 x 135 x 17M x 198
20 | 2219 % 387 x 502 x 77 x 11 x 13% x 1713 x 1917
21 [ 2198 x 3108 5 55T x 7H % 13T x 1712 x 1976
22 | 2189 5 387 5 576 5 739 x 1111 x 133 x 1711 x 1915
23 [ 298 x 300 % 5% 5 73T x 117 x 137 x 1710 x 191" x 23%?
24 | 2907 5 357 530 x 729 % 11%% x 13 x 177 x 1913 x 232!
25 [ 2338 x 3112 5 BI85 721 5 1172 x 178 x 192 x 237
26 | 2771 x 357 x 5106 5 719 % 1179 x 13%9 x 177 x 191 x 2317
27 [ 2757 x 3770 x 59 x TH % 1170 x 1376 x 175 x 1910 x 2378
28 | 2572 % 377 x 552 x 790 x 1178 x 131 x 17° x 197 x 2317
29 [ 2796 x 3701 x 570 x 782 % 1170 x 1370 x 17% x 19% x 2316 x 297
30 | 2336 % 3287 % BIT 5 77 % 1117 x 1337 x 173 x 197 x 2315 x 2927

Table 3.8: En factored for 11 <n < 30
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CHAPTER 4

Partial Factorizations of Generalized Binomial Products

4.0 Abstract

This chapter studies an integer sequence ﬁn analogous to G, = | 5 (Z), the
product of the elements in the nth row of Pascal’s triangle. It is known that the
exponent v,(G,,) in the prime factorization G,, = Hpgn p»(@) can be expressed in
terms of the base-p digits of the positive integers up to n. These radix statistics
make sense for all bases b > 2. This chapter studies the asymptotics of the binomial
product En = H2§b§n b(b) - arising from Chapter 3, and its partial factorizations
5(n, z) = [lrcpen b4 which are also integers. It shows that logﬁ(n, an) is well
approximated by f=(a)n?logn + g=(a)n® as n — oo for scaling functions f=(a) and
g=(a) defined for 0 < a < 1. The main results are deduced from the asymptotic study
of functions B(n, x) and A(n,z) that are weighted sums of base-b radix statistics of

n (and smaller integers) over b € [2,z]. Unconditional estimates with power-savings

remainder terms are derived for B(n,z) and A(n, ).
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4.1 Introduction

Let G, be the product of the binomial coefficients in the nth row of Pascal’s
triangle,
n n|)n+1
(4.1.1)
=11 = n o
This sequence arises as the reciprocal of the product of all the nonzero unreduced

Farey fractions of order n, see Lagarias and Mehta [20]. Its asymptotic growth is
— 1, 1
log Gy, = Sl §nlogn + O(n), (4.1.2)

by Stirling’s formula. The number G,, is n-smooth (i.e., having no prime factor larger

than n), and we may write its prime factorization as

H p(CGn), (4.1.3)

where v,(a) denotes the additive p-adic valuation of a. The quantities 1,(G,,) are
known to equal an expression 7(n,p) defined purely in terms of the base-p digits of
the positive integers up to n, given by

(@) = —— S (n) — L

- —dy(n), (4.1.4)

where d,(n) is the sum of the base-p digits of n and S,(n) := Z;:ll dy(7). (See [13,
Theorem 5.1].) The left side of (4.1.4) is a nonnegative integer, while examples show
the two terms on the right side are sometimes not integers. Du and Lagarias [13]

studied the sizes of partial factorizations of G,,:

z) = [, (4.1.5)

p<z

where 1 < x < n. They showed for 0 < a < 1 and n > 2 the estimate

log G(n,an) = fa(a)n®+ O (énQ exp <—c\/@>) , (4.1.6)
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where the limit scaling function fg(«) is given by
fola) = % + %az {éJ 2 + %QQ {éJ -« {éJ (4.1.7)
and ¢ > 0 is an absolute constant. The remainder term estimate in (4.1.6) was im-
proved to the power-savings estimate O (1n”/4(logn)?) conditional on the Riemann
hypothesis.
This chapter studies the asymptotics of an integer sequence 5,1 defined in Chap-
ter 3. The sequence En is given as a product of generalized binomial coefficients:

-T1[}.,

i

Qll
3
i

From Corollary 3.2.16, En can be written in generalized prime factorization as

=[], (4.1.8)

b=2

Qll

where the exponent 7(n,b) is defined purely in terms of the base-b digits of the

positive integers up to n, by the formula

2 n—1
RO

7(n,b) = dy(n) (4.1.9)

generalizing the formula (4.1.4) for v,(G,,).

In fact, it follows immediately from the proof of Corollary 3.2.16 that all 7(n,b)
are nonnegative integers. So the integer En is n-smooth.

In this chapter, we characterize all positive integers n for which 7(n,b) = 0; see
Theorem 4.2.2. The quantities 7(n,b) are generally not equal to the maximal power
of b dividing G,,; in fact they can sometimes be larger than, and sometimes be smaller
than, this quantity.

The main purpose of this chapter is to study the asymptotics of the partial fac-

torizations of in, defined by

G(n,z):= [] o7, (4.1.10)

2<b<z
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parallel to those in [13]. Here E(n, x) is an integer sequence in n for fixed x because all

7(n, b) are nonnegative integers. We have G, = E(n, n), and we have the stabilization

E(n, T) = E(n, n) G, for z>n.

The main results of this chapter determine the growth rate of the integer sequence

G, and more generally the growth behavior of log 5(71, x) for all n > 1. The over-
all approach of the proofs have parallels to that in [13] but have some significant
differences, as given in Section 4.1.2.

There are a number of reasons for interest in the study of integer sequences like
i(n, ). The binomial products G,, single out prime bases as special via their prime
factorizations (4.1.3). But the definition (4.1.9) (compare (4.1.4)) makes sense for
all integers b > 2. Heuristically, we may expect that a sum over the primes p in an

interval I (weighted by prime gaps Ap) can be approximated by a smoother sum

over the integers b € I:

Y fmAp=) f(b).

pel bel

This is analogous to the Euler-Maclaurin formula which approximates a sum over
the integers b € I by an integral over [:

S 0= [ s d.

bel 1

The sequence E(n,x) is defined to be a product over all integers b € [2,z]. So
logg(n,x) can be viewed as a “discrete” integral related to log G(n,z) as a sum
(without prime gap weights Ap). The asymptotic study in this chapter gives a
motivating example of the effect of this kind of discrete approximation. Finally, the
sequence 571 arises as a special case of products of generalized binomial coefficients

studied in Chapter 3; see Corollary 3.2.16.
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4.1.1 Main results: Asymptotics of En and E(n,x)

We obtain the following result for the the sequence En

Theorem 4.1.1. Let G, = [T, b"™Y. Then for integers n > 2,

= 1 1 3
log G,, = §n2 logn + (57 — Z_L) n?+ 0 (n3/2 logn) , (4.1.11)

where v is Euler’s constant.

This result is proved in Section 4.4. Although we have shown in Chapter 3 that En
is a product of ratios of generalized factorials, we do not know if En can be written
as a (nice) product of ratios of the usual factorials. Thus we do not have Stirling’s
formula available to directly estimate the size of in, nor do we have combinatorial
identities and recursion formulas available in dealing with binomial coefficients.

We note that compared to [13] there are two main terms in the asymptotics, rather
then one. The leading order term has the same constant 1 as for log G,, in (4.1.2),
while Euler’s constant appears in the second leading order term. This result will be
used as an initial condition to obtain estimates for partial factorizations i(n, ).

The main result of the chapter determines the size of the partial factorization
function 5(n,x) in the range 1 < z < n. It establishes the following limiting

behavior as n — oo, taking x = an where « is a scaling parameter.

Theorem 4.1.2. Let E(n,x) = HLSQ b Then for integers n > 2 and real

o € [\/iﬁ, 1} ,
logi(n, an) = f=(a) n?logn + g=() n? + 0 (n*?log n), (4.1.12)
in which:

(a) f5() is a function with f=(0) = 0 and defined for a >0 by

f5(a) = % + %aQ EJZ + %aQ EJ -« EJ ; (4.1.13)
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(b) g=(a) is a function with g=(0) = 0 and defined for o> 0 by

() (43 L)
el

Moreover, for integers n > 2 and real o € [%, \/iﬁ} ,

logﬁ(n, an) =0 (n3/2 logn) . (4.1.15)

Theorem 4.1.2 follows from Theorem 4.7.1, taking o = . The theorem implies

that fz(a) can be defined as a limit function

j%(a) = nhi& Wlogn logﬁ(n, an).
In fact
f5(a) = fala), (4.1.16)
where

1
fo(a) = lim ﬁlog G(n,an)

is the limit function given in [13, Theorem 1.1].

We note an alternate form for f=(a) given by

falo) = go? (H n {é}) , (4.1.17)

where {x} = x — [z] is the fractional part of z. It is pictured in Figure 4.1.

Some properties of the limit function follow from [13, Lemma 4.2], since fz(a) =
fela).

(i) The function f=(a) is continuous on [0,00). It is differentiable everywhere

except at o = % for j =1,2,3,..., where
1 1 1 1
=7 ‘l’ h - J=\ == +h — J=\=
ORI - E O - I
h—0+ h h—0~ h
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0.5 p
0.4 e

0.3 e

0.2 .

01 2 i

0 0.2 0.4 0.6 0.8 1

Figure 4.1: The graph 8 = f=(a), 0 < o < 1 (solid red) in the (o, 3)-plane. The line segment
8= %a, 0 < a <1 is shown in dashed blue.

At a =0, we have

l ==
ho h 2
(ii) It satisfies
1
fz(a) < 3@ for «a > 0. (4.1.18)

Equality holds if and only if a = % for some positive integer j or ao = 0.

(iii) fz(«@) is strictly increasing and is piecewise quadratic on (0,1]. For integers

jZlandrealae[l 1},

JH1 g
1 (7 +1
fz(a) = 5 ot ‘@oﬂ (4.1.19)
Furthermore, fz(a) = Tfora>1.

The limit function gﬁ(a) is pictured in Figure 4.2. Some properties of this limit

function are:
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0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2: The graph = gg(a), 0 < a <1 in the («, 8)-plane.

(i) The function g=(«) is continuous on [0, 00). It is real-analytic on (0, 00) except

at o = % for j =1,2,3,.... It is differentiable at a = 1 with g’i(l) =0.
(ii) gz(a) is strictly decreasing on [0,1]. Tt has g=(o) = 37 — 3 ~ —0.46139 for
a>1.
4.1.2 Results: Asymptotics of A(n) and B(n)
To obtain Theorem 4.1.2, we determine the asymptotics of similar sums as in [13].

Taking the logarithms of both sides of the product formula (4.1.10) and substituting

7(n,b) using (4.1.9) yields

logﬁ(n, z) = A(n,z) — B(n, z), (4.1.20)
where

— 2

A(n,z) = Z = 1Sb(n) log b (4.1.21)

2<b<a

and

— -1

B(n,z)= Y. Z_ -y (n) log . (4.1.22)
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The functions B(n,x) and A(n,z) are weighted sums of the base-b digits of n (and
smaller positive integers) over b € [2, x].

The determination of the asymptotics for the sums A(n,z) and B(n, z) are given
later in the chapter, from which we obtain the asymptotics for log 5(71, x) via (4.1.20).
On the one hand, the computations in this chapter are more involved than those of
[13] in order to obtain a secondary term and a power-savings remainder term. On
the other hand, many sums over the integers b € [2, z] here are easier to handle than
sums over the primes p € [2,z] in [13], and the Riemann hypothesis is not needed.

The proofs first obtain estimates for the case x = n, setting

A(n) := A(n,n) 5 E . Sp(n) log b, (4.1.23)
b=2
B(n) := B(n,n) = Z: 11db(n) log b. (4.1.24)

We determine the asymptotic for B(n) first. Then we estimate A(n) by applying the

estimates for B(j) for 1 < j < n.
Theorem 4.1.3. Let B(n) :=Y_,_, #=tdy(n)logb. Then for integers n > 2,

B(n) = (1—7)n*logn+(y+v —1)n*+0 (n3/2 logn), (4.1.25)
where v is Euler’s constant and ~, is the first Stieltjes constant.

The result involves the Stieltjes constants 79 = v and v; =~ —0.07282. The Stieltjes

constants 7y, appear in the Laurent expansion of the Riemann zeta function at s = 1:

C(s) = - i -+ > <_n1!)n%(s —1)" (4.1.26)

n=0

Here 79 = v ~ 0.57721 is Euler’s constant (see the survey [19] for more about 7),

and more generally

, . (logk)” (logm)"*+!
=1 E — : 4.1.2
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We prove Theorem 4.1.3 in a similar fashion to [13]. We first show that the main
contribution in the sum B(n) comes from the terms with b > /n. Then we observe
that n has at most two digits in those bases b and that the value of dy(n) follows
some simple pattern. The rest is a straightforward calculation.

We also deduce a corresponding result for A(n).

Theorem 4.1.4. Let A(n) :=>;_, :2:5,(n)logb. Then for integers n > 2,

— 3 3 7
A(n) = (5 - ’7) n’logn + (57 +mn - Z) n®>+ 0 (n3/2 logn), (4.1.28)

where v is Euler’s constant and ~, is the first Stieltjes constant.

In [13], the asymptotic of log G, can be computed directly by Stirling’s formula.
They proved an analogue of Theorem 4.1.4 from the asymptotic of log G,, and an
analogue of Theorem 4.1.3. Here we first prove Theorem 4.1.3 then use it to prove

Theorem 4.1.4 and the asymptotic of log 5,1 (Theorem 4.1.1), via the relation
log G, = A(n) — B(n), (4.1.29)

which is a special case of (4.1.20), taking x = n.

4.1.3 Results: Asymptotics of A(n,z) and B(n,x)

We first determine asymptotics for B(n, an) for 0 < a < 1, by bootstrapping the

m

result for B(n) = B(n,n) decreasing x from z = n. In what follows H,, := > i %

and J,, ;= S el

Jj=1

Theorem 4.1.5. Let B(n,z) = ZIEJ;JQ 2=Ldy(n)logb. Then for integers n > 2 and

n’

real o € [L 1] ,
B(n,an) = fg(a)n®logn + gg(a)n® + O (n*/*logn) (4.1.30)

in which:
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(a) fg(a) is a function with f5(0) =0 and defined for o > 0 by

fela) =1 —7)+ (HL;J — log é) —a EJ ; (4.1.31)

(b) gg(a) is a function with g5(0) = 0 and defined for o > 0 by

g5(0) — <v+%—1>—(HLiJ—log§)—(Jtij—é(logéf)
(o) (o L) a2 i

Moreover, for integers n > 2 and real o € [1 \/iﬁ} ,

no

B(n,an) =0 (n3/2 logn) . (4.1.33)

The functions fz(a) and gz(a) as given in (4.1.31) and (4.1.32) appear to be com-
binations of functions with jump discontinuities at o = %, 7 =1,23,.... However,

it can be shown that fz(a) and gg(«) are continuous on [0, 00).

0.4 1

0.3

0.2 1

0.1

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 10

Figure 4.3: The graph § = fz(a), 0 < o < 1 (solid blue) in the («, 3)-plane. The line segment
B=(1-7)a, 0<a<1is shown in dotted orange.

The limit function fz(«) is pictured in Figure 4.3. It is the same limit function

as fp(a) in Theorem 1.5 in [13]. Some properties of this limit function are:



95

(i) The function fgz(«) is continuous on [0,00). It is differentiable everywhere

exceptata:%forj:1,2,3,...,where
1 1 1 1
=(=+h) — f5(= =(=+h) — f5(=
LG =) S = fp()

=1.
h—0t h h—0~

At a = 0, we have

i (B = 150) _ 1
h—0t h 2

(i) fz(a) is strictly increasing on [0,00). It has fz(1) =1 — v ~ 0.42278.

0.0

—0.2 4

—0.5

T T T T T T
0.0 0.2 0.4 0.6 0.8 10

Figure 4.4: The graph 8 = gz(a), 0 < a < 1 in the (o, §)-plane.

The limit function gg(«) is pictured in Figure 4.4. Some properties of this limit

function are:

(i) The function gg(«) is continuous on [0, 00). It is real-analytic on (0, 00) except

o 1 : . . . _ . .
at a = 3 for j =1,2,3,.... It is differentiable at o = 1 with g-(1) = 0.

(i) gg(a) is strictly decreasing on [0,1] and is strictly increasing on [1,00). Its

minimum on [0, 00) is attained at o = 1 with gg(1) = v+ v — 1 &~ —0.49560.
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Next, we obtain the asymptotics of A(n, z) using a recursion (4.6.5), starting from
A(n,n) and working downward. The recursion involves a function C(n,z) studied
in Subsection 4.2.4. This approach is different from that used in [13], which started
from A(x,z) and worked upward using estimates for B(y, z) for x < y < n.
Theorem 4.1.6. Let A(n,z) = ,EiJQ +2:5y(n)logb. Then for integers n > 2 and
real o € [\/Lﬁ, 1] ,

A(n,an) = f5(a)n®logn + gz(a)n* + O (n3/2 logn), (4.1.34)
wn which.:

(a) fx(c) is a function with fz(0) =0 and defined for o > 0 by
3 1 112 1
- (1) (ra ) B 33 2]

(b) gx(a) is a function with gz(0) =0 and defined for oo > 0 by

gala) = (gv+% - ;l) - % (HL;J —logé) - (JL;J - % (logé)2>
(o) (55 [ [ rea])
_iog EJ E n 1J 4% EJ , (4.1.36)

Moreover, for integers n > 2 and real o € [1 \/iﬁ} ,

A(n,an) = O (n3/2 logn) . (4.1.37)

The functions f7(«) and gz(«) as given in (4.1.35) and (4.1.36) appear to be com-
binations of functions with jump discontinuities at o = %, 7 =123,.... However,
it can be shown that fz(«) and gz(«) are continuous on [0, 00).

The limit function f7(«) is pictured in Figure 4.5. It is the same limit function

as fa(a) in Theorem 1.6 in [13]. Some properties of this limit function are:
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(i) The function f4(«) is continuously differentiable on (0, c0) with

fi(0) = 2 f=(a).

At a =0, we have

lim —fZ(h) — fa(0) =1= lim f4(a).

h—0Tt h a—0+
(i) fx(a) is strictly increasing on [0, 00). It has fz(1) = 3 — v ~ 0.92278.

(iii) It satisfies the relation

1.0

0.8 1

0.6

0.4

0.2 1

004 7

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.5: The graph 8 = fx(a), 0 < a < 1 (solid blue) in the («, 8)-plane. The line segment
8 = (% — 'y) o, 0 < a <1 is shown in dotted orange. Superimposed are the graph
B = fi(a), 0 < a <1 shown in solid green and the line segment 3 = 5-4,0<a<1
shown in dotted red.

The limit function g4(«) is pictured in Figure 4.6. Some properties of this limit

function are:

(i) The function gz(«) is continuously differentiable on (0, c0) with

o) = = (tow 7 ) ol

«
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(i) gx(a) is strictly decreasing on [0, 1] and is strictly increasing on [1,00). Its

minimum on [0, c0) is attained at a = 1 with gz(1) = 2y + 7 — I & —0.95699.

(iii) It satisfies the relation

0.0

—0.2 4

—0.4

—1.01

T T T T T T
0.0 0.2 0.4 0.6 0.8 10

Figure 4.6: The graph 8 = gz(«), 0 < a <1 in the (o, )-plane.

We obtain Theorem 4.1.2 as a corollary of Theorems 4.1.5 and 4.1.6 by substituting

their estimates into the relation (4.1.20).

4.1.4 Discussion

We compare and contrast the main results in this chapter with those for binomial
products in [13].

1. Each of logﬁ(n,x}, A(n,z), and B(n,z) has a main term f(a)n?logn and a

secondary term g(a)n®, where o = £. The main term scaling functions f(«)

match those in [13]. The secondary term scaling functions g(«) are new scaling

functions whose salient feature is that they are strictly decreasing on [0, 1].
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2. There is a power-savings remainder term O(n®/?*¢), which is provable uncondi-
tionally. Parallel results of [13] had power-savings remainder term conditional
on the Riemann hypothesis. They argued (but did not prove rigorously) that
the existence of a power-savings remainder term in their results would imply
the existence of a zero-free region for the Riemann zeta function of the form
R(s) > 1 — 0 for some ¢ € (0,1/2] depending on the amount of power saving.
For 5(7@,1’), the averaging over all integers b € [2,z] led to an unconditional

power saving in the remainder term.

4.1.5 Related work

Lagarias and Mehta [20] studied radix expansion statistics radix expansion statis-
tics of integers which hold the integer n fixed, while varying across different radix
bases up to n e.g. statistics A(n,x) and B(n,z). The work [21] studied analogous
statistics for Farey fractions. Du and Lagarias [13] studied the statistics A(n,x) and
B(n,z) for products of binomial coefficients. The motivation of [13] was study of
prime number distribution from a novel direction.

There has been a great deal of study of the radix statistics dy(n) and S,(n) for a
fixed base b > 2 and letting n vary. Work on d,(n) has mainly been probabilistic,
for random integers in an initial interval [1,n|, which is surveyed by Chen et al [8].

One has for all n > 1,

Eldy(k): 0<k<n-—-1] <

log, n, (4.1.38)

a result which is close to sharp when n = b* for some integer k > 1. We have

dp(n) < (b—1)logy(n + 1, see Lemma 4.2.4. It implies

Bln) < “n—1/[(b—1)log(n+1)
_b:2b—1 log b

) logh = (n —1)*log(n + 1).
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Work on the smoothed function Sy(n) studying asymptotics of the as n — oo
started with Bush [7] in 1940, followed by Bellman and Shapiro [3], and Mirsky [22],

who in 1949 showed that for fixed b > 2, the asymptotic formula

Sy(n) = b_Tlnlogb(n) +0(n).

In 1952 Drazin and Griffith [10] deduced an inequality implying

b—1
Sp(n) < Tnlogb n, (4.1.39)

for all b > 2 and n > 1, see Lemma 4.2.4. This inequality is sharp: equality holds
for n = b* for k > 1, see [20, Theorem 5.8]. Using Drazin and Griffith’s inequality
(4.1.39) for Sy(n) we have

_ . "2 b— 1)nlogn
Am) <A'(n) =) == (( 21())gbg

b=2

) logb =n(n —1)logn. (4.1.40)

A formula of Trollope [26] in 1968 gave an exact formula for Sy(n) for base b = 2.
Notable work of Delange [9] obtained exact formulas for Sy(n) for all b > 2, which
exhibited an oscillating term in the asymptotics. We mention later work of Flajolet
et al [14] and Grabner and Hwang [15]. Recently Drmota and Grabner [11] surveyed
this topic.

We mention other inequalities for the function Sy(n). In 2011, Allaart [1, Equation
(4)] showed an approximate convexity inequality for binary expansions: For integers
¢ and m with 0 < ¢ < m,

So(m + £) + Sa(m — £) — 253(m) < £. (4.1.41)
Allaart [2, Theorem 3] proved a generalization to any base b:
Sy(m + £) + Sy(m — £) — 28,(m) < LHTlJ 0 (4.1.42)

Allaart [2, Theorem 1] also showed a superadditivity inequality:

Sb(g + m) > Sb(g) + Sb(m) + /. (4143)
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4.1.6 Contents of this chapter

Section 4.2 collects facts about digit sums and provides estimates for a wide variety

of sums needed in later estimates. In particular, we estimate the function
Cln,z) = 1;36 L%J log b. (4.1.44)

Section 4.3 estimates B(n), proving Theorem 4.1.3.

Section 4.4 estimates A(n), proving Theorem 4.1.4. Theorem 4.1.1 for ﬁ(n) then
follows.

Section 4.5 estimates B(n, x), proving Theorem 4.5.1. Theorem 4.1.5 for B(n, an)
then follows.

Section 4.6 estimates A(n, ), proving Theorem 4.6.1. Theorem 4.1.6 for A(n, an)
then follows.

Section 4.7 estimates ﬁ(n, x), proving Theorem 4.7.1. Theorem 4.1.2 for ﬁ(n, an)
then follows.

Section 4.8 presents concluding remarks. These include an interpretation of in

as a product of generalized binomial coefficients, treated in Chapter 3.
4.2 Preliminaries
The first subsection establishes properties of radix expansion statistics 7(n,b),

and derives inequalities on the size of dy(n) and Sy(n). The next four subsections

estimate four families of sums for an integer n and a real number x, treated as step

functions: the harmonic numbers H(z) = Lﬁl %, the sums J(z) = lEiJl b the

sums C(n,z) = 1 [%]1logb, and Li(n) = >, , b(log )" for i > 1.
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4.2.1 Radix expansion statistics

Fix an integer b > 2. Let n be a positive integer. Then n can be written uniquely

as
k

n= Z a;(b,n)b", (4.2.1)
=0

where a;(b,n) € {0,1,2,...,b— 1} are the base-b digits of n and the top digit ay is

positive. We say that n has k + 1 digits in base b. One has v* < n < b**1. Hence

logn
1.
Long i

Each base-b digit of n can also be expressed in terms of the floor function:

the number of base-b digits of n is

a;(b,n) = {bﬁj b MH . (4.2.2)

Note that (4.2.2) also defines a;(b,n) to be 0 for all ¢ > ll‘giz The following two

statistics of the base-b digits of numbers will show up frequently in this chapter.

Definition 4.2.1. (1) The sum of digits function dy(n) is given by

L5t ] oo
dy(n) := Z ai(b,n):Zai(b,n), (4.2.3)

where a;(b,n) is given by (4.2.2).

(2) The running digit sum function Sy(n) is given by

Sp(n) ==Y dy(j). (4.2.4)

Theorem 4.2.2. Let b > 2 be an integer, and let the radix expansion statistic 7(n, b)

giwen forn > 1 by

2 n—1

7(n,b) = - 1Sb(n) -

dy(n) (4.2.5)

Then:
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(1) For alln > 1, 7(n,b) is a nonnegative integer.

(2) v(n,b) = 0 if and only if n = ab® + b* — 1 for some a € {1,2,3,...,b— 1} and

integer k > 0.

Proof. To show (1), we substitute (4.2.2) into (4.2.3) and obtain

O Y R S [ e e S -1 R (T

=0 1=0

We then substitute (4.2.6) into (4.2.4) and obtain

=
—_

Sy(n) = 23 - 1)22 EJ - ”<"2_ D _ (b—1) 2 :1 L}iJ (4.2.7)

>3] 1) C =T 1)

-2 (B1-1)- 1))

=1 j=

The last quantity (4.2.8) expresses 7(n, b) as the sum of integers, which are all non-

negative due to the identity valid for all real x and vy,

[z +yl = [z] + [y + {o} +{y}] > [=] + [y],

see Graham et al [16, Section 3.1, page 70]. Hence 7(n,b) is a nonnegative integer.
We show (2). We prove the ‘only if’ part first. Suppose that n is a positive integer
not of the form ab*+b*—1, where 1 < a < b—1and k > 0. Then cb’ < n < (c+1)b*—2
for some ¢ € {1,2,3,...,b — 1} and positive integer £. We show 7(n,b) is positive.
We see that the double sum in (4.2.8), is greater than or equal to the summand with

(i,5) = (£,b* — 1). It follows that

7(n, b) > {%J - V)gb—_elJ - {#J —c—0—(c—1)=1.
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Thus, if 7(n, b) = 0, then n must be of the form ab* +b* — 1 with 1 <a <b—1 and
k> 0.

Conversely, suppose that n is of the form ab® +b* — 1 with 1 < a < b —1 and
k > 0. Suppose that j is an integer with 1 < j < n — 1. For i < k — 1, we have
a;(b,j) <b—1=a;(b,n). Fori >k, we also have a;(b,j) < a;(b,n) because j < n.
Hence

a;(b,n —j) = a;(b,n) — a;(b,7)

for all 7 > 0. Summing over ¢ > 0, we obtain
dy(n = j) = dy(n) — dp(j).
Summing over 1 < 57 <n — 1, we obtain
Sp(n) = (n — 1)dp(n) — Sp(n),

which implies

2 n—1

7(n,b) = - 1Sb(n) —

This completes the proof. n

Remark 4.2.3. In general, 7(n,b) does not equal the largest integer k such that b*
divides G,,, which we denote by 14,(G,). Moreover 7(n,b) can be larger or smaller

than v;(G,,). For example, 7(4,4) = 3 > 2 = 14(Gy), while 7(6,4) = 1 < 2 = 1v4(Gs).
We establish inequalities on the size of dy(n) and Sp(n).

Lemma 4.2.4. For integers b > 2 and n > 1, we have

(b—1)log(n+1)
log b

1 < dy(n) < : (4.2.9)

(b—1)nlogn

< <
0 < Sh(n) < 2logb

(4.2.10)
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Proof. The lower bound in (4.2.9) follows from the observation that dj(n) is greater
than or equal to the top (base-b) digit of n, which is at least 1. The lower bound in
(4.2.10) then follows from the positivity of dy(j).

The upper bound in (4.2.10) is a result of Drazin and Griffith [10, Theorem 1].

To prove the upper bound in (4.2.9), we apply Theorem 4.2.2:

0<(b—1)7v(n,b) =25Mn)— (n—1)dy(n) =2S,(n+1) — (n+ 1)dp(n).

(b—1)(n+1)log(n+1)

On replacing n by n + 1 in (4.2.10), we obtain Sy(n + 1) < STogb . Hence
2 (b—1)log(n+1)
d < S, 1) <
) < S ) < logh
as desired. O

4.2.2 The harmonic numbers H,,

For positive real numbers = > 1, we consider the step function

H(z) := Z %

1<b<z

At integer values n = |x] we write H(x) = H|,| = H,, the n-th harmonic number.

Lemma 4.2.5. For positive integers n, we have

1 1
H,=1 —+0(—= |, 4.2.11
ogn + v+ on + <n2) ( )

where v = 0.57721 s Euler’s constant.

Proof. This standard result appears in Tenenbaum [25, Chapter 1.0, Theorem 5|. [

The restriction to integer n is needed in Lemma 4.2.5 because for positive real

numbers z, one has

H(z) —logz — v = Oy G) .
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Indeed, using the Euler-Maclaurin summation formula [23, Theorem B.5], one can

show that for real numbers x > 1,

H(x)zlogx+fy+%+o<i>.

12

Hence, limsup, _,, z(H(z) —logz—~) = 1 and liminf, o z(H (z) —logz —7) = —1.

4.2.3 Estimates: J(z)

For real numbers x > 1, we consider the step function

Ja)=Y" 1055. (4.2.12)

1<b<lz

At integer values n = [z| we write J(z) = J|z) = J,. The asymptotics of this step

function of x involve the first Stieltjes constant 7, defined in Section 4.1.2.
Lemma 4.2.6. For real numbers x > 1, we have

ﬂ@—%@y¥+%+o(gﬁgﬁ>, (4.2.13)
where v = —0.0728158 s the first Stieltjes constant.

Proof. By partial summation, we obtain

Jo) =% 10?" — (log ) H(z) — /1 CHW G, (4.2.14)

Uu
1<b<lz

It is well-known that H(u) = logu + v + R(u), where the remainder R(u) < =, for

u > 1. (See [23, Corollary 1.15].) On inserting this in (4.2.14) and rearranging, we

get
1 5 .
J(z) = ~(log 2)? + (log ) R(z) — < / R(w) / R(u) du>
2 1 u = U
1 1 1
= —(logz)*+c+ 0O (M) :
2 x
where ¢ := — 100 % du. By taking x — oo, we see that

. 1 2 . IOgb 1 9
c= lim <J(33) - §(logx) ) = lim (; B §(log:c) =71,

the first Stieltjes constant, according to (4.1.27). O
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4.2.4 Estimates: C(n,r)

For real numbers n > 1 and x > 1, let

C(n, ) = Z L%J log b. (4.2.15)

1<b<z

Here, C'(n, z) is a nonnegative step function of the real variable x, viewing n as fixed.

This function stabilizes for x > n:

C(n,xz) =C(n,n) for x>n. (4.2.16)

Proposition 4.2.7. (1) For real numbers n > 2, we have

C(n,n) = %n(log n)?+ (y—1nlogn+ (1 —y)n+ O (v/nlogn) .

(2) For real numbers n > 2 and x such that 1 < x < n, we have

C(n,n) —C(n,x) = /xn {gJ logudu+ O <n10gn) . (4.2.17)

T

In addition,

/xn EJ logudu = (HL%J —% EJ) (nlogn —n) — (JL;LJ _% {gJ lOgg) "
(4.2.18)

To prove Proposition 4.2.7 we use the following identity.

Lemma 4.2.8. For real numbers n > 1 and x > 1, we have
— — — n
C(n,n)+C(n,x) — C (n, —)
x

o 3 [3] - et ([2) v+t + 55 [ Bz

<b<z 1<b<z

Proof. By partial summation, we have the identity

Zlogk—t—l—/ b g

1<k<t



108

for any ¢ > 0. On setting ¢ = 7 in this identity and summing over positive integers

b < x, we obtain
Sy log % = nH(z) - / g (4.2.20)
1<b<z 1<k<FH 1<b<z

The double sum on the left side of (4.2.20) is equal to

Z Z (logn —logb — log k) = (logn) Z {%J —C(n,z) — Z Z log k.

1<b<z 1<k< 1<b<z 1<k<n 1<b<z
b<m

On substituting the right side into (4.2.20) and rearranging, we obtain

Z Z log k = (logn) Z L%J —C(n,z) —nH(z)+ x| + / {U}

1<k<n 1<b<zx 1<b<lz 1<b<zx
b<%

(4.2.21)

The double sum on the left side of (4.2.21) is equal to

Z Z log k + Z Z logk;:(U(n,n)—@(n,%))—l—Lleogqu!).

nf<n 1<b< R 1<k<m 1<b<z
T k T

On inserting the right side into (4.2.21) and rearranging, we get (4.2.19). O

Proof of Proposition 4.2.7. (1) On substituting x = y/n in Lemma 4.2.8, two of the

terms on the left side cancel and we get

C(n.n) = (logn) Y L%J — |V log (|va]!) = nH (vVr) + [vn)
1<b</n
{ud
+ ) (4.2.22)
1<b<\f/

Now, we estimate each term on the right of (4.2.22). For the first term, we use
|t] =t + O(1), obtaining
(logn) Z {%J = (logn)nH| s + O (v/nlogn)
1<b</m

= n(logn) (log [Vn|+7+0 (L—\/lﬁJ» + O (v/nlogn)

1
= §n(log n)* 4+ ynlogn + O (v/nlogn),
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where we used Lemma 4.2.5 to estimate H| g . For the second term, Stirling’s

formula gives

[V log ([va]1) = gnlogn —n+0 (Vitlogn)

For the third term, the harmonic number estimate in Lemma 4.2.5 gives

nH (v/n) = %nlogn—i—fynjLO (vn).

The last two terms are negligible:

Z/ W< vnr 3 /—du_ (v/ilogn)

1<b<v/n 1<b<y/n

Substituting these estimates into the right side of (4.2.22) yields

C(n,n) = %n(log n)?+ (v = nlogn+ (1 = y)n+ O (v/nlogn) .

(2) We will prove that for 2 <x <n

C(n,n) — C(n,z) = (HLQJ - % LEJ> (nlogn —n)

and then deduce (4.2.18).

First, we prove (4.2.23). We replace z by 2 in Lemma 4.2.8, and rearrange a term
to obtain

C(n,n) — C(n,z) =C (n, g) + (logn) Z L%J — {EJ log(|z]!) — nHL%J

1<b<"

( N Z/ ) ) (4.2.24)

1<b<"
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We estimate the terms on the right side of (4.2.24). For the first term, using |t] =

t + O(1), we see that

C(n2) = 5 (2= 0 (203 +1)

Using the bounds

0< logqu!) < LgJ log {EJ < nl(;cgn7

we obtain the estimate

c (n g) —nJjs|+O (”k;gn> . (4.2.25)

For the second term, again using [t| =t + O(1) we obtain

(logn) 3 {%J — n(logn)H .| + O (”log”) . (4.2.26)

x
1<bh<2
==

For the third term we assert

EJ log(|z]!) = n(logn)~ H _nt EJ (1 + log g) ) (”log”> . (4.2.27)

n Ly n €T

This estimate follows using Stirling’s formula with remainder in the form, for x > 2,
log (|z]!) = xlogz — z + O(log ), (4.2.28)

which yields

T

= J10g(l2)) = | 2] (@logz —2) + 0 (”logx) 7

and (4.2.27) follows. For the final term we have, for n > 2 and 2 <z < n,

EJJF 3 /12{—5}du§g+ 3 /ln%du:()(”k;g"). (4.2.29)

1<z 1<bh<2
- —x - —x

On inserting (4.2.25), (4.2.26), (4.2.27), and (4.2.29) into (4.2.24) and rearranging,

we obtain (4.2.23).
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Next, we prove (4.2.18). By the substitution v = 2, we get

/ LEJ logu du = n/l Lv] log%dv. (4.2.30)
T 1

U v2

The integral has a closed form quadrature:

valid on unit intervals b < v < b+ 1 where |v] = b. By partial summation, the right

side of (4.2.30) is then equal to
n|/r x 1 1 n
nlz) (G- 7ose) —n ] (z‘zlogz)
1<p<n

=z(1 —logx) {EJ —i—(nlogn—n)HL%J —nJL |

n
x

We obtain
/: L%J logudu = z(1 — log x) LgJ + (nlogn — n)HL%J — nJL%J
= (2= 7 [5]) mrogn—m = (7)) = 7 [T 106 T) m.
completing the proof. n

Lemma 4.2.9. For real numbers n > 2, we have

C (n, \/ﬁ) = %n(log n)? +yn + O (\/ﬁlog n) )

Proof. By using the estimate |t] =t + O(1), we see that

Cnvn) = 3 |3 ]10gb=nJ (vi) + 0 (1og (|v/n]1)). (4.2.31)

b
1<b<yn
By applying Lemma 4.2.6 with x = y/n, we obtain

J (V) = %(logn)Q 7+ 0 (I‘z/g;> .

Moreover, we have

tog (| ]1) < |v/1] log || < £ vitlogn.

Inserting these estimates back into (4.2.31) yields the lemma. O]
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4.2.5 Estimates: L;(n)

For positive integers i > 1 and n > 2, we set

Li(n) == b(logh)" (4.2.32)
b=2
We give formulas for all ¢ > 1 but will only need the cases i = 1,2 in the sequel.

Lemma 4.2.10. For integers i > 1 and n > 2, we have
Li(n) = / u(logu)’ du + ;(n)n(logn)’, (4.2.33)
1

where 0 < 6;(n) < 1. In particular,

1 1
Li(n) = 5712 logn — ZnQ + O (nlogn), (4.2.34)
1 1 1
Ly(n) = §n2(log n)? — 5712 logn + ZnQ + O (n(logn)?) . (4.2.35)

Proof. The function u(logu)’, 1 < u < n is increasing. We have lower and upper

bounds

/ u(logu)’ du < Z b(logh)' = Li(n),
1 b=2

Thus the assertion (4.2.33) follows.
The assertions (4.2.34) and (4.2.35) follow from the first assertion with the for-

mulas

" 1 1 ,]" 1 1 1
/1 ulogu du = [§u2logu—zu2} :Englogn—zng—kz,

u=1

n

" 1 1 1
/ u(logu)? du = [—u2(10g u)? — ~u*logu + ~u?
) 2 2 4

u=1

1 1 1
= §n2(10g n)? — §n2 logn + ZnQ -

Y

A,

completing the proof. O
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Remark 4.2.11. Tt can be shown by induction on ¢ that

2y~ (EDH o (ZD
(logu du=n Z St (logn) +T' (4.2.36)

1

4.3 Estimates for B(n)

In this section we obtain the estimates for B(n) = Y_;_, %=td,(n)logb given in

Theorem 4.1.3.

4.3.1 Digit sum identity and preliminary reduction

Our estimate for B(n) will be derived using the observation that n has exactly 2

digits in base b when /n < b < n.
Lemma 4.3.1. Let j and n be positive integers. Denote by I(j,n) the interval
<Jﬁ,ﬂ N (v/n,n]. Then

1. 1(j,n) is empty unless j < \/n.

2. If b€ I(j,n) is an integer, then dy(n) =n — j(b—1), in consequence,

n—1

nlogb .
b_ldb(n)logb(n—l)(b_1 —jlogb). (4.3.1)

Proof. (1) Suppose that z € I(j,n). Then y/n <z < %, and hence j < /n.
(2) Since 71 < b < %, it follows that |%] = j. Since b > /n, it follows that

| 7] =0 for all i > 2. From (4.2.6), we have
dy(n) =n—(b—1) ZL J =n—jb-1),
=1
and (4.3.1) follows by multiplying by 7= n_l T logb. This completes the proof. O]

We split the sum B(n) into three parts, the third part being a cutoff term removing
all 2 < b < +/n, and the first two parts using the digit sum identity (4.3.1). applied

to the range \/n < b < n.
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Lemma 4.3.2. (1) For integers n > 2, we have

B(n) = Bi(n) — By(n) + Bgr(n), (4.3.2)

in which B1(n), Ba(n), and Br(n) are defined by

Bi(n) :=n(n—1) Z ;._iﬁ,

Vn<b<n

(4.3.3)

B NG ,
Bsy(n) := (n—l)z j< > logb), (4.3.4)

n n
741 <b=F

where the prime in the inner sum in (4.3.4) means only b > \/n are included, and

Baln) = Y = 11db(n) log b (4.3.5)

2<b<\/n

(2) For integers n > 2 the remainder term Bgr(n) satisfies

3
0 < Bgr(n) < 5713/2 logn. (4.3.6)

Proof. (1) Recall that B(n) = >_;", *=1dy(n)logb. The remainder term Bg(n) first
cuts off the terms with 2 < b < y/n in the sum. The other two terms B, (n) and
Bsy(n) are obtained by applying the decomposition (4.3.1) of Lemma 4.3.1 to each
index b € (y/n,n] term by term.

(2) From (4.2.9), it follows that 0 < 2=d,(n)logb < (n —1)log(n+1). Summing

from b = 2 to [\/n], we obtain

0< Br(n) < (|Va] —1) (n— Dlog(n + 1) < (V1) (n) (g log n) _ ;ns/z log n

as desired. n

The sums B;(n) and By(n) are of comparable sizes, on the order of n?logn. We

estimate them separately.
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4.3.2 Estimate for B(n)

Lemma 4.3.3. Let Bi(n) = n(n — 1) > Jr<b<n b Then for integers n > 2, we

b—1
have
Bi(n) = gn2(log n)*+ O (n3/2 logn) . (4.3.7)
Proof. We rewrite the sum % as
B _Bi(n) log b log b logb
= = 4.3.
( —1) b—1 Z bb—l (438)
Vn<b<n Vn<b<n Vn<b<n

The contribution from the last sum in (4.3.8) is negligible:

logb _ logn _ 2logn
< (1 < : 4.3.9
Z b(b < (logn Z bb—1) |V/n] = Vn ( )

\f<b<n

We use Lemma 4.2.6 to estimate the first sum on the right in (4.3.8) and obtain

Vn<b<n
—1(10 n)Q—E(IO \/ﬁ)z—l—O logn
A aG g |08 NG
1
- g(log n)?+0 ( (\)%L) . (4.3.10)

On inserting (4.3.9) and (4.3.10) into (4.3.8), we obtain

Bi(n) 3 5 logn
—— 7 = O .
n(n —1) 8(0gn) * (\/ﬁ
On multiplying by n(n — 1), we obtain (4.3.7) as desired. O

4.3.3 Estimate for By(n)

Lemma 4.3.4. Let
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where the prime in the inner sum means only b > \/n are included. Then for integers

n>2,

3
2(n) = énQ(logn)2 +(y—=1nlogn+ (1 —v—y)n*+0 (n3/2 logn) , (4.3.11)

where v is Euler’s constant and ~, is the first Stieltjes constant.

Proof. We have

-5 Lvn]
By(n) rmn n — —
2~ Z ( nz n M 1ogb) - ¥ M logh = C(n,n) — C (n,/n).
j=1 m<b§7 V/n<b<n
Applying Proposition 4.2.7 and Lemma 4.2.9 to estimate C(n,n) and C (n,/n), we
obtain
B 1 1
nQ—(nl) = <§n(log n)*+ (v — )nlogn + (1 — ’y)n) - (gn(log n)* + ”yln)
+ O (v/nlogn)
3
= gn(logn)2 +(y=1)nlogn+ (1 =~ —m)n+ O (Vnlogn).
On multiplying by (n — 1), we obtain (4.3.11) as desired. O

4.3.4 Proof of Theorem 4.1.3
We combine the results on B;(n) and By(n) to estimate B(n).

Proof of Theorem 4.1.3. We estimate B(n). We start from the Lemma 4.3.2 de-
composition B(n) = Bi(n) — Ba(n) + Br(n). By Lemma 4.3.2 (2) we have Br(n) =

O(n®?1ogn), which is absorbed in the remainder term estimate in the theorem state-
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ment. Substituting the formulas of Lemma 4.3.3 and Lemma 4.3.4, we obtain

= §n2(10g n)? + O (n**logn)

3
— (gnQ(logn)2 + (v = Dn®logn + (1 — v — y)n? + O (n*? logn))

= (1 —y)n’logn+ (y+y —1n*+0 (n3/210gn),

as asserted. O

4.4 Estimates for A(n) and Go

In this section we derive asymptotics for A(n) = Y ;_, 72 Sy(n)logb given in
Theorem 4.1.4 and deduce the estimate for log ﬁn given in Theorem 4.1.1. In the
case of binomial products G, treated in [13] an asymptotic for A(n) was obtained
from the relation log G, = A(n) — B(n) and the existence of a good estimate for
log G,, coming from its expression as a product of factorials. Here we do not have
a corresponding direct estimate for log En, so we must estimate A(n) directly. The

proof details have some parallel with those for B(n).

4.4.1 Preliminary reduction
Recall that A(n) = 3", 7255(n) log b.

Lemma 4.4.1. For integers n > 2, we have

A(n) = A1(n) 4+ O (n(logn)?), (4.4.1)
where
D) =303 Ha,(j) (1.4.2)
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Proof. We rewrite the sum (4.1.23) that defines A(n) using the identity

(4.4.3)

and obtain
n

— 2 log b 2 log b
A(n) = Z o0 (4.4.4)
b=2

Since Sp(n) = E;L;ll dp(j), the first sum on the right in (4.4.4) is

Z 2logh dy(i) = A, (n) — Z QI‘Zgb (do(n) —1).  (4.4.5)

b=2 b=2 j=1 b=2

n n—1

210gb

By Lemma 4.2.4,

< (b—1)log(n+1) | - blog(n—i—l).

0<d —
< dy(n) - log b log b

So the last sum in (4.4.5) satisfies, for n > 2,

2logb
O<Z og (dp(n) — 1) <2210gn—|—1)<2n10gn

b=2 b=2

Hence

5 2180 6, m) = Ay(m) + Ofmhog). (1.46)

Now, we treat the last sum in (4.4.4). We apply Lemma 4.2.4 to bound Sy(n),

obtaining
210gb " nlogn 9
b — 1 ) < Z < n(logn). (4.4.7)
=2 b=2
On inserting (4.4.6) and (4.4.7) into (4.4.4), we obtain (4.4.1) as desired. O

4.4.2 Estimate for A;(n) reduction

Lemma 4.4.2. (1) For integers n > 2, the sum Ai(n) given by (4.4.2) can be
rewritten as

Ai(n) = Ain(n) + A1a(n) — Ag(n), (4.4.8)
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where
— "2
A = —DB(y 4.4.
11(n) jz:;j_ 1B, (4.4.9)
— ~ — 2jlogh
Aa(n) = J ;)g , (4.4.10)
=2 b=j+1
nj
— 2logb .
Ap(n) = P ), (44.11)
b(b—1)
7j=2 b=2
and B(n) is given by (4.1.24).
(2) For integers n > 2, we have
Agr(n) < 3n(logn)?. (4.4.12)

Proof. (1) We start from (4.4.2) and interchange the order of summation, obtaining

A = Y3 )

b=2 j=2
= )
j=2 b=2
21ogb " 210gb
= ZZ dy(j Z > dy(j (4.4.13)
7J=2 b=2 7=2 b=j+1

Recall that B(j) = >3_, :=1dy(j) logb. We next use the identity (4.4.3) to rewrite

the first sum on the right in (4.4.13):

7=2 b=2 7j=2 b=2 7j=2 b=2

" s 2logh 3
b~ 1y ) = An() = An(n).

Finally, we note that d,(j) = j for j < b; so the second sum on the right in (4.4.13)

18
n

Z Z 210gbdb Z Z 2]logb — Apa(n).

7=2 b=j+1 7J=2 b=j+1

(2) We first bound Ag(n) by

3
3

— 2logb - 210gb
- b(b—l bb—l

Sb TL—|—1)—1)
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Applying Lemma 4.2.4, to bound the last quantity, we obtain for n > 2,

EHD PR LU WS
b2

as asserted. O

4.4.3 Estimates for A;;(n) and Aj3(n)

Lemma 4.4.3. For integers n > 2, we have

— 3 3
Ay(n) = (1 —7)n?logn + (57 +m — 5) n?+ 0O (n3/2 logn) . (4.4.14)

Proof. We start from (4.4.9) and use the identity (4.4.3) to rewrite A, (n):

n n

Auln) =S —B() = S 2B() + 3.~ B()). (4.4.15)

j—1 pr il i1

=2
From Theorem 4.1.3, it follows that B(j) < j(j — 1)logj for j > 2. As a result, the

contribution from the last sum in (4.4.15) is negligible:

n

2 o n n
Zj(j—l)B(j) <<Zlogj§210gn<nlogn. (4.4.16)

7j=2 j=2 j=2

Now, we estimate the first sum on the right of (4.4.15) using Theorem 4.1.3:

n

Z;F(j) =2(1—v>Zjlogj+2(v+m—1)Zj+0(zﬂlogy)

Jj=2

S 2 4 »
=2(1-7)> jlogj+2(y+m—1) (n 5 n—l) +O<Z\/ﬁlogn)
=2 j=2

=2(1—7) ) jlogj+(y+m—1)n’+0 (n*?logn) .

j=2
We use Lemma 4.2.10 to estimate Z?:z jlog 7 and obtain

n

2— 3 3
Z EB(j) = (1 —~)n’logn + <§7 +m — 5) n?+ 0O (n3/2 logn) . (4.4.17)
j=2

On inserting (4.4.16) and (4.4.17) into (4.4.15), we obtain (4.4.14) as desired. O
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Lemma 4.4.4. For integers n > 2, we have

— 1 1
Aqa(n) = 5712 logn — Zn2 + O (n(logn)?) .

Proof. We can rewrite (4.4.10) in terms of J(z) = >3 <, logb a5

b
= Z%(J(n) — J(j)).

For 2 < j < n, it follows from Lemma 4.2.6 that

J(m) = J() = H(logn)? — H(log 1) + 0 (lf”) .

Hence

Z] logn)? Z] log j)? O<Xn:logn)

1 1
= <§n2+§n—1) 1ogn Z] logj O (nlogn).

We use Lemma 4.2.10 to estimate ", j(log j)* and obtain
T L, L, 2
Aia(n) = on logn — vt O (n(logn)?),

as desired. O

4.4.4 Proofs of Theorems 4.1.4 and 4.1.1

We derive the estimate for A(n) in Theorem 4.1.4 and that for G, in Theorem

4.1.1.
Proof of Theorem 4.1.4. By Lemma 4.4.1 and Lemma 4.4.2,
A(n) = A1(n) 4+ O (n(logn)?) = Ay (n) + Aiz(n) + O (n(logn)?) .
Inserting the estimates of Lemma 4.4.3 for A;;(n) and Lemma 4.4.4 for Aj5(n) yields
A(n) = (; - ’7) n?logn + (;W +v - Z_Z) n?+ 0 (n3/2 logn),

as required. O
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Proof of Theorem 4.1.1. The estimate for En follows from the relation logﬁn =

A(n) — B(n) using the estimates of Theorem 4.1.3 for B(n) and Theorem 4.1.4

for A(n). O

4.5 Estimates for the generalized partial factorization sums B(n, )

We derive estimates for B(n,z) in the interval 1 < z < n starting from the

asymptotic estimates for B(n) = B(n,n). Let H, = Y ., 1 denote the m-th

harmonic number.

Theorem 4.5.1. Let B(n,z) = FJQ 2=Ldy(n)logb. Then for integers n > 2 and

real © € [/n,n],

B(n,x) = Bo(n,z)n*logn + Bi(n,z)n® + O (n3/2 logn), (4.5.1)
where the functions Bo(n, ) and By(n,z) only depend on £ and are given by

Bo(n,z) == (1 — ) + (HtgJ ~log g) - % H (4.5.2)

X

and

Bl(n,x):=(7+’n—1)—<Hu 10gz> (JU_%QOg )2)

log + (log ) 7:2 {gJ +

Moreover, for integers n > 2 and real x € [1,+/n],

n

{—J . (4.5.3)

T

B(n,x) =0 (n3/2 logn) . (4.5.4)

Remark 4.5.2. The functions By(n, ) and B;(n,z) above are functions of a single
variable a := £ having 0 < o < 1. That is, the answer displays a scale invariance,
in terms of the variables x and n. However various intermediate parts of the proof

involve terms in n and x that are not scale invariant.
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4.5.1 Preliminary reduction

We write

B(n,z) = B(n) — B (n, ), (4.5.5)

where B°(n, z) is the complement sum

B(n,z):= Y Z:lldb(n)logb. (4.5.6)

r<b<n
The sum B(n) can be estimated by Theorem 4.1.3. To estimate B°(n, z), we break

it into two parts.

Lemma 4.5.3. For integers n > 2 and real numbers x such that \/n < x < n, we

have

—c J— S

B (n,z) = Bil(n, x)—(n—1) (C(n,n) — C(n, x)) , (4.5.7)
where C(n,x) is given by (4.2.15) and

—c log b
Bi,(n,z) :==n(n—1) T

z<b<n

(4.5.8)
Proof. Recall from (4.2.6) that dy(n) = n — (b—1)>7 [#]. Since z > /n, if
b > x, then v > 22 > n, and hence || = 0 for all i > 2. In this circumstance,

dy(n) =n — (b—1) | %] for b > x. Inserting this formula into the definition (4.5.6),

we obtain

as required. O
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4.5.2 Estimate for Bj,(n,z)

Lemma 4.5.4. For real numbers n > 2 and x such that 1 <z <n, we have

—c 1 1 2]
Bii(n,x) = §n2(logn)2 - §n2(logx)2 +0 (n ;)gn) : (4.5.10)

Proof. We start from (4.5.8) and use the identity (4.4.3) to rewrite ﬁgil(n, x):

1 = log b log b
——Bj(n,x) = — + . (4.5.11)
n(n—1) " ;n b ;n b(b—1)
The contribution from the last sum in (4.5.11) is negligible:
log b 1 logn  2logn
0< < (1 = < . 4.5.12
3 b(b— 1) (Ogn)zb(b—l) 2] - (45.12)
z<b<n b>x
The first sum on the right in (4.5.11) can be estimated using Lemma 4.2.6:
log b 1 1 1
3 2= Jn) - J(x) = S (logn)® — 5(logx)* + O ( Og”> . (45.13)
b 2 2 x
z<b<n
On inserting (4.5.12) and (4.5.13) into (4.5.11), we obtain
1 = 1 1 logn
mBH(n,I) = §(logn)2 — 5(10g$>2 + (@) <T> .
On multiplying by n(n — 1), we obtain
—c 1 1 1 1 2]
Bi,(n,r) = =n*(logn)? — =n*(log z)* — [ =n(logn)? — =n(logx)* | + O nosny
2 2 2 2 T
Since e! = 1+t+§+--- >t for t > 0, it follows that log > < 2 and
1 1 1 n 1 /n n%logn
< Zn(logn)? — ~n(logz)? = = (1 —>1 - <—> 21og 1) = .
0< 2n( ogn) 2n( ogx) 5" (log — og(nz) < 55 (2logn) "
Hence (4.5.10) follows. O

4.5.3 Estimate for B (n,z)

We obtain an asymptotic estimate for B°(n, z).
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Proposition 4.5.5. For integers n > 2 and real numbers x such that /n < x < n,

we have
—=c 9 E . 1 E 2 (2 _n2 _ 2
B (n,x) =n <J (:c) 5 (loga) > (n“logn —n”) <HL;J logx)
2 (1|22 2 A R 3/2
+n (1 L/EJ n)logm + (n*logn — n®) LcJ " +O(n logn).
(4.5.14)
Proof. We have
Bf(n,z) = B}, (n,z) — (n— 1) (C(n,n) — C(n,x)) . (4.5.15)
We suppose v/n < z < n. From Lemma 4.5.4 we obtain
— 1
Bii(n,x) = §n2 ((logn)? — (logz)?) + O (n3/2 logn) . (4.5.16)

Now Proposition 4.2.7(2) gives for 2 < x < n,

Clnm) = Cln,) = (Hpay = [5]) wlogn = m) = (Ja) = 1 [ |1og )

x n Ll
L0 (nlogn) ‘
x

Substituting these estimates into (4.5.15), and assuming x > /n yields

B(n,x) = %n2 ((logn)? — (log z)*) + n (HL%J - % {gJ) (nlogn —n)
-n (JL%J — g LgJ log g) +0 (n3/2(log n)?). (4.5.17)

In this formula we also replaced a factor (n — 1) by n, introducing an error of
O (n(logn)?) absorbed in the remainder term. Our goal is to simplify this expression

to obtain (4.5.14). We rewrite (4.5.17) as

—-C

B (n,z) =n? <JL2J - % (log g>2> + (n*logn — n?) (HL%J —log g) + By, (n, z)

+0 (n3/2(log n)?), (4.5.18)
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where we define

Buns) = (3 ()"~ o) () 45 ()
—|—%n2 ((logn)* — (logz)?)
22 (e = (5[ 2]) . s

Expanding log 2 = logn — log x in the first two terms in (4.5.19) gives
1 2 1 1
3 (log g) —n?*(logn) (log g) = —§n2(10g n)® + §n2(log )2,

which cancels the next two terms appearing in (4.5.19). Rearranging the remaining

uncancelled terms results in
—c T|n Tn n
B (n,a) = = {—J 2logn — n? (1 i L-J) 21og 2, 4.5.20
91 (1, ) ol s (n ogn n)+ el s n ogx ( )

which when substituted in (4.5.18) yields (4.5.14). O

4.5.4 Proof of Theorem 4.5.1
We obtain an estimate of B(n, z).

Proof of Theorem 4.5.1. For n > x > 1 we have the decomposition
B(n,z) = B(n) — B'(n, z). (4.5.21)
By Theorem 4.1.3 we have for n > 2,
B(n) = (1 —y)n*logn+ (v +m — 1)n* + O (n**logn) .
By Proposition 4.5.5 we have for n > 2 and v/n < x < n,
B (n,x) = n JLnJ—§ log — —(n logn—n)(HL@J—log—>
@ x e x

+n? (1 — {EJ z) logg + (nQIOgn—n2) {gJ%—l—O (n3/210gn).

r|n
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We obtain for n > 2 and v/n <z < n,

B(n,z) = By(n,r)n*logn + Bi(n,z)n*+ O (n3/2 logn),  (4.5.22)

with

n
Xz

and

which is (4.5.1).

Finally, for integers n > 2 and real = € [1,+/n], we have

— n—1
B(n,z) = Z - 1db(n) logb

2<b<zx

< Z (n—1)log(n+1)

2<b<x
<x(n—1)log(n+1)

3/2

< 2n°“logn,

where the bound of Lemma 4.2.4 for dy(n) was used in the first inequality. We have

obtained (4.5.4). O

4.5.5 Proof of Theorem 4.1.5

Proof of Theorem 4.1.5. We estimate B(n,an). The theorem follows on choosing
x = an in Theorem 4.5.1 and simplifying. Now By(n,r) = fz(a) is a function of
a = %, with

fple) = (1 -7+ (HL;J ~log é) e EJ
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Similarly B;(n,z) = gg(a) is a function of o with

gola) = (v4m—1)— (HLiJ —log$> - (JL;J - %<logé)2>
-t

We allow \/Lﬁ < a < 1, and for n > 2 the remainder term in the estimate is
O (n3/2 log n), independent of « in this range. For the range z € [1,1/n] we use

the final estimate (4.5.4). O

Remark 4.5.6. The function fz(«) has fg(1) = 1 — ~, and has lim, o+ fg(a) =0
since H| 1= logé — v as a — 0", Various individual terms in the formulas for
f5(a) and gg(a) are discontinuous at points a = § for k > 1. The function fz(«)
was shown to be continuous on [0,1] in [13]; the function gz(«) can be checked to

be continuous.

4.6 Estimates for the generalized partial factorization sums A(n, r)

The main goal of this section is to prove the following theorem.

Theorem 4.6.1. Let A(n,z) = ,EiJQ +2:5y(n)logb. Then for integers n > 2 and
real © € [/n,n],
A(n,x) = Ag(n, z)n*logn + A;(n,x)n* + O (n3/2 logn), (4.6.1)

where the functions Ag(n,x) and Ay(n,z) only depend on 2 and are given by

st = (3 ) (e 2) 3 ()22 1) 2(2) 2] o
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and

Ai(n,x) = (;7 +n - Z) - ; (HL%J — log g) - (JLZJ - % (10g g>2)
~goss =5 (e ) ) (5] 15 1] w2 (e ) £ 51
1 2
GG =
Moreover, for integers n > 2 and real x € [1,+/n],

A(n,z) =0 (n3/2 logn) . (4.6.4)

We derive estimates for A(n, z) starting from A(n,n) and working downward, via

a recursion in Lemma 4.6.2 below.

4.6.1 Estimates for the complement sum A(n,n) — A(n, )

First, we show that A(n,n)— A(n,z) can be written in terms of known quantities,

namely BY,(n,z) and C(j, j) — C(j, ).

Lemma 4.6.2. For integers n > 2 and real numbers x such that vn —1 < x < n,
we have

A(n,n) — A(n,z) = -2 Z - C(j,2)), (4.6.5)

z<j<n

where C(n,z) and By, (n,x) are given by (4.2.15) and (4.5.8), respectively.

Proof. From (4.1.21), we have

Aln,n) = Am, )+ 3 — 5 (n) o (4.6.6)

Observe that for positive integers b > x and j <n—1, we have b > 22 >n—1 > j,

and hence |£] =0 for all i > 2. From (4.2.7), if b > z, then

Sb(n)z@—(b—l)i{ﬂ'
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On inserting this into (4.6.6), we obtain

A(n,n) — A(n,z) = n(n —1) Z ;Of;li -2 L%J log b
) b<n

From (4.2.16), if 1 < j < n, then C(j,n) = U(j,j). Hence

A(n,n) — A(n,r) = —2 Z —~C(j,2)).

1<j<n

From (4.2.16), if 1 < j < @, then C(j,2) = C(4,7). Hence (4.6.5) follows. O
The next lemma gives an estimate for the sum of values of a dilated floor function.

We will use this estimate to prove the main Lemma 4.6.4 below.

Lemma 4.6.3. For real numbers t and u such that 1 < u <t, we have

S =o 2 - mlef w2 o (2)

Proof. We write L%J = 1< <a 1 and interchange the order of summation, obtaining

LRz (z -2 (2

8 I=.

uk<j<t
The inner sum on the right counts the number of integers from [uk]| to [t|. Hence

the above is
§H= (LtJ—fukHl):(LtHl)H— Fuk].

By using the estimate [v] = v+ O(1), we obtain

RUINEE B0

RN

as desired. O
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The following lemma gives an estimate for the complement sum A(n,n) — A(n, z).

Lemma 4.6.4. For integers n > 2 and real numbers x such that vn —1 < x < n,

we have

A(n,n) — Aln, z) = /n (EJ + {%}2) wlogudu + O (”2 lsg") . (467)

Proof. We start from (4.6.5) and apply Proposition 4.2.7 to estimate each term

(C(,) = CGx):

A(n,n) — A(n,z) = -2 Z —C(j,2))

z<j<n
Igm
11nx )—2 ; / { Jlogudu+0(lejlogj).
z<j<n J=

(4.6.8)

Now, we estimate each term on the right of (4.6.6). To simplify the error term, by

Lemma 4.2.10, we have

—Zjlogj = (n logn). (4.6.9)

The first term can be estimated by Lemma 4.5.4:

—e 1 1 n?logn
Bi(n,z) = énz(log n)? — EnQ(log z)?+ O ( :vg )

n 21 21
:/ D 98Y w0 (n Og”). (4.6.10)

u i

For the second term, we observe that \_Z—J =0 for 0 < 7 < u. Hence

9 Z/ { Jlogudu——Q Z/ { Jlogudu

z<j<n r<j<n

— _2/;< Z L%J)logudu. (4.6.11)

z<j<n
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The inner sum on the right of (4.6.11) can be estimated using Lemma 4.6.3. If

1<j<zand u > x, then 0 < j < u, and then L%J = 0. Hence Zl§j<m HJ =0

u

and

S ;[ZJ%UH%%JW(Z)
o8] ) e 3] o )

On inserting this into (4.6.11), we obtain

23 [[2] o= [ (<2n 2]+ [2) ] 2] )togud

2
+0 (n log”) . (4.6.12)

X

On inserting (4.6.9), (4.6.10), and (4.6.12) into (4.6.8), we obtain

A(n,n) —A(n,z) = /: (%2 —2n EJ +u EJ2+u ED logudu+ O (nzl;)gn)
uJ>2+ LgJ)UIOgudquO(an;)gn)
:/:( J+{% 2>U1Ogudu+0(”21;’g”)

as desired. O

The next lemma shows that the main term in (4.6.7) can be written in the form
f (%) n*logn + g (%) n*

Lemma 4.6.5. For real numbers n and x such that 0 < x < n, we have

[ (2] 28 ot i) [0

_nZ/Z [v] + {v}?

2 log v dv. (4.6.13)
v
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Proof. By the substitution v = =, we see that

(] ) woman= [ 1o+ 01 % (%) (~35) o

= 2
:n2/ Mlogﬁdv.
1 v v

Since log 2 = logn — log v, we obtain (4.6.13) as desired. O
To evaluate the integrals on the right of (4.6.13), we use the following lemma.

Lemma 4.6.6. Suppose that f is a twice differentiable function with continuous

second derivative on the interval [1,00). Then for real numbers > 1,

L8]

B B
%/I (lv] + {0}2) () dv:/I Fw)do = £(0)
—{BH(B) + 5 (18] + 1Y) F'(9) — 57/1).

(4.6.14)

Proof. By the Euler-Maclaurin summation formula (cf. [23, Theorem B.5]),
1B

X::f(b) = [Ciwa- (13- 3) 19 - g0+ 5 (192 - 91+ 1) 7109

= 1—12f’(1) - %/16 ({v}2 —{v}+ é) f"(v) dv.

Rearranging the terms, we obtain

%/15 <{U}2 —{v} + é) 1" (v) dv —/16 f(v)dv — éf(b) - ({5} - %) f(8)

w5 (62 -r+5) 1o
1
2

ey - 1—12]”’(1). (4.6.15)
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On the other hand, we use integration by parts to see that
1 [? 1 1 1 S B
s [ (v-5)roa=g (-] -3 [ row
1 1y ,, 1 5,
=5 1®) 45 (5 5) ror+ 310 - S,

(4.6.16)

1
2

Adding (4.6.15) and (4.6.16), we obtain (4.6.14). O
We apply Lemma 4.6.6 to evaluate the integrals on the right of (4.6.13).

Lemma 4.6.7. For real numbers a such that 0 < o < 1, we have

[P = G (g weg) o ({3 3)
o2 (% {é}Q _ % {é}) (4.6.17)

}) (4.6.18)
/ Mt_y}?dv:bgé-(mij_1)_a{é}_%ag<w+{$}2)+%.

Replacing EJ + {5}2 by é — {é} + {é}Q and rearranging the terms, we obtain

Q=

(4.6.17).
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For (4.6.18), apply Lemma 4.6.6 with f(v) = & + 10% and 3 = 1:

2v

o ) + {v)? 3.1 1 1\° 3 1\ 3
Y jogudv=|Slog—+= (log— ] | = (2H,. -)-:
/1 3 ogvdv QOga+2 g — 5 LgJ+J - 5

o)
() Gl o

Replacing EJ + {5}2 by i — {é} + {é}Q and rearranging the terms, we obtain

(4.6.18).

4.6.2 Proof of Theorem 4.6.1

We combine results in the previous subsection to obtain an estimate for

as stated in Theorem 4.6.1.

]

A(n, )

Proof of Theorem 4.6.1. Combining Theorem 4.1.4 and Lemma 4.6.4, which estimate

A(n,n) and A(n,n) — A(n, x) respectively, we obtain an estimate for A(n, z):

— 3 3 7 n 2
A(n,x) = <§ —7) n?logn + (57—1—71 _Z) n2—/ <{5J + {%} )ulogudu

+0 (n3/2 log n) .

The integral on the right can be evaluated using Lemma 4.6.5:

A(n,x) = (g —fy) n*logn + (g’y—i—”yl — Z) n’

—n2(logn)/1z M‘Z—?){U}de_i_nz/lz M—Z—g{v}zlogvdv

+0 (n3/2 log n)

= Ag(n, 2)n*logn + Ay (n, z)n* + O (n3/2 logn) ,

where the functions Ay(n,z) and A;(n, ) are given by

To(n, z) = (; —’y) —/1: o)+ ol

V3

(4.6.19)
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_ 3 7 z 2
Ai(n,z) = <§7+71 — Z) +/ %logvdv. (4.6.20)
1

It remains to show that (4.6.19) is equivalent to (4.6.2) and that (4.6.20) is equivalent

to (4.6.3). To that end, we apply Lemma 4.6.7 with o = £ to evaluate the integrals

in (4.6.19) and (4.6.20). We obtain
= (- =) 2 ({8 01) - () Y -3 (30),
T = (- =) - (1 (2) - (2 )
-G () s) - G
() ) (U -2 (5 - (O U =38
Replacing {2} by 2 — | 2| and rearranging the terms, we obtain the formulas (4.6.2)

and (4.6.3).

Finally, for integers n > 2 and real = € [1, y/n], we have

An,z) = Z bi 1Sb(n) logb

2<b<z

< Z nlogn < xnlogn

2<b<lz

< n*?logn,
where the bound of Lemma 4.2.4 for Sy(n) was used in the first inequality. We have
obtained (4.6.4). O

4.6.3 Proof of Theorem 4.1.6

Proof of Theorem 4.1.6. The result for the range = € [\/n,n] follows from Theorem
4.6.1 on choosing x = an and simplifying. For the range x € [1,/n] we use the final

estimate (4.6.4). O
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Remark 4.6.8. The function fz(«) has fz(1) = 2 — v, and has lim,_,o+ fx(a) = 0

since H|1) — logl — v asa— 0"
4.7 Estimates for partial factorizations ﬁ(n, x)

We deduce asymptotics of E(n, x).

Theorem 4.7.1. Let E(n,x) = Hz@g Wb Then for integers n > 2 and real

S [\/57 n];

logﬁ(n, x) = Go(n,z)n*logn + ﬁl(n, z)n® + O (n3/2 logn) , (4.7.1)

where the functions 50(71, x) and 51(71, x) only depend on % and are given by

Goln, z) = % + % (5)2 H [9 + 1J _ 7 H (4.7.2)

n T T n Ly

and

= 1 3 1 n
Gi(n, z) == (§V - Z) D) (HLgJ — log —>

e ) ) 221+ () 2
S ONHIES e s

Moreover, for integers n > 2 and real x € [1,+/n],
log 5(71, z) = O (n**logn) . (4.7.4)
Proof. Recall from (4.1.20) the identity
logﬁ(n, r) = A(n,z) — B(n, ).

The result (4.7.1) follows for the range x € [y/n,n] by inserting the formulas (4.6.1)
in Theorem 4.6.1 and (4.5.1) in Theorem 4.5.1. The formula (4.7.4) in the range

z € [1,4/n] follows from the corresponding range bounds in Theorems 4.6.1 and

4.5.1. O
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4.7.1 Proof of Theorem 4.1.2

Proof of Theorem 4.1.2. The theorem follows from Theorem 4.7.1 on choosing x =
an and simplifying. The O-constant in the remainder term is absolute for the range

L <a<1. Here 2 =1, O
x (0%

4.8 Concluding remarks

Viewing the general definition of generalized binomial products (4.1.8) as a kind
of integration operation (over b > 2) the smoothing aspect of the integration oper-
ation is evident in the existence of unconditional estimates giving a power-savings
remainder term; the Riemann hypothesis is not needed.

A large class of limit functions may occur in problems of this sort, generalizing
the limit function fo(«) in [13] given by (4.1.7). This chapter exhibited a new limit
scaling functions gg(a). It may be of interest to determine the class of of such scaling
functions obtained by iterated integral constructions of this kind.

This definition (4.1.8) did not provide any hint whether the product possesses
a sub-factorization into analogues of binomial coefficients. In Chapter 3 of this
thesis we showed that the sequence En can alternatively be defined as a product of

generalized binomial coefficients (Z’) which are integers, which themselves can be

N

written in terms of generalized factorials of a new kind

(1), = wn o

These new factorials can themselves be factorized into a product of generalized in-

tegers
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These generalized integers [n]y are not monotonically increasing but have an internal
structure driven by the prime factorization of n.

The factorials [n]ly above also have many of the properties of the generalized
factorials of Bhargava ([4], [5], [6]). They seem to not be included in Bhargava’s
theory of P-orderings, but we showed in Chapter 3 that they can be covered by a
generalization of this theory.

These generalized factorials also fit in the general framework of Knuth and Wilf
[18] treating generalized factorials and binomial coefficients as products of general-
ized integers (denoted C), in their paper). The sequence of generalized integers [n]y
is not a regularly divisible sequence as defined in [18]; see the remark at the end of

Subsection 3.2.4.
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