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ABSTRACT

Many important problems in machine learning and data mining, such as knowledge base reason-
ing, personalized entity recommendation, and scientific hypothesis generation, may be framed as
learning and inference over a graph data structure. Such problems represent exciting opportunities
for advancing graph learning, but also entail significant challenges. Because graphs are typically
sparse and defined by a schema, they often do not fully capture the underlying complex relation-
ships in the data. Models that combine graphs with rich auxiliary textual modalities have higher
potential for expressiveness, but jointly processing such disparate modalities—that is, sparse struc-
tured relations and dense unstructured text—is not straightforward.

In this thesis, we consider the important problem of improving graph learning by combining
structure and text. The first part of the thesis considers relational knowledge representation and
reasoning tasks, demonstrating the great potential of pretrained contextual language models to add
renewed depth and richness to graph-structured knowledge bases. The second part of the thesis
goes beyond knowledge bases, toward improving graph learning tasks that arise in information re-
trieval and recommender systems by jointly modeling document interactions and content. Our pro-
posed methodologies consistently improve accuracy over both single-modality and cross-modality
baselines, suggesting that, with appropriately chosen inductive biases and careful model design,
we can exploit the unique complementary aspects of structure and text to great effect.
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CHAPTER 1

Introduction

Endowing machines with relational learning and reasoning skills over diverse inputs is a longstand-
ing goal in artificial intelligence [Bush, 1945, Koller et al., 2007, Davis and Marcus, 2015, Lake
et al., 2017, Battaglia et al., 2018, Hu et al., 2020]. Within this broad goal, the sub-discipline of
graph learning focuses on relational prediction tasks over data that can be organized naturally into
interconnected networks of nodes and edges. Example tasks commonly framed from a graph learn-
ing perspective include (1) knowledge base reasoning, or predicting novel factual relationships
(edges) between pairs of entities or concepts (nodes) [Nickel et al., 2015]; (2) item recommen-
dation, or inferring unseen affinity relationships (edges) among users and items (nodes) [Cooper
et al., 2014]; and (3) drug repurposing, or connecting drugs and diseases (nodes) by potential
treatment relationships (edges) [Nadkarni et al., 2021].

Learning over graphs is challenging for several reasons. In many cases, the underlying interac-
tions between pairs of nodes cannot be fully observed or recorded. For example, relational knowl-
edge bases (KBs) omit many basic facts about notable entities because KB curation is costly [Galár-
raga et al., 2017, Weikum et al., 2021]. In recommender systems, observed interactions between
users and items—for example clicks, purchases, and ratings—are often sparse, since most users
do not express their full preferences through online behavior [Wang et al., 2019c]. In drug repur-
posing, novel drug treatments must be reviewed and tested extensively before being recorded in
biomedical databases, a lengthy and expensive process [Bonner et al., 2021].

More fundamentally, graphs are data representations intended to model a small, specific set
of interaction phenomena according to a research question or prediction task of interest [Brugere
et al., 2018]. Therefore, the types of meaning conveyed by a graph’s nodes and edges are typically
limited by a schema, which may not fully express the underlying semantics or complex relation-
ships in the data [Davis et al., 1993]. It thus becomes natural to consider incorporating external
features into graph datasets. In particular, we observe that many graphs of interest are partially
derived from the Web and can be linked to online textual sources, which are often available freely
and in abundance. For example, encyclopedic knowledge bases like Freebase [Bollacker et al.,
2008] and Wikidata [Vrandečić and Krötzsch, 2014] link a majority of their entities to Wikipedia
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Table 1.1: Thesis organization. We categorize methodology contributions as joint modeling (i.e.,
one model that takes both structure and text as input) and model fusion (i.e., multiple models
trained over distinct structural and textual views of the data, and combined via ensembling). We
categorize resource contributions as new datasets and new taxonomies. We categorize evaluation
tasks as link prediction (LP) and node classification (NC) in a graph. For Part I, KRR refers to
knowledge representation and reasoning.

Part
Contribution type Task

Technical objective Chapter
Method Resource LP NC

I
- Taxonomy ✓ Organize structure + text KRR strategies 3
Joint model - ✓ Infer negative commonsense knowledge 4
Model fusion Dataset ✓ Infer novel factual knowledge 5

II
Joint model - ✓ Discover activities in personal information collections 6
Model fusion - ✓ Classify documents with cross-modal inputs 7

pages. Products in e-commerce interaction graphs are often associated with descriptions and re-
views [Wan and McAuley, 2018]. Drugs and diseases in drug repurposing graphs can be linked to
textual descriptions from online biomedical databases [Nadkarni et al., 2021].

Motivated by these observations, in this thesis we argue that incorporating auxiliary text can
address the challenge of sparsity in graphs and improve expressiveness in graph learning.
Whereas graphs provide a valuable “high-level” relational view of data, text naturally complements

graphs by providing rich, lower-level unstructured context [Huang et al., 2020]. Of course, because
these two data modalities are highly disparate [Halevy et al., 2003], we face a natural challenge
of cross-modal integration. We thus contribute a suite of tools and techniques for text-augmented
graph learning, including (1) new machine learning methodologies for joint learning, in which we
optimize a single model that takes both relational structure and textual content as input; (2) new
machine learning methodologies for model fusion, in which we optimize multiple machine learn-
ing models over various structural and textual “views” of the data, and develop novel approaches
to combine these models’ outputs; and (3) new resources such as taxonomies and datasets, toward
accelerating research in text-augmented graph learning.

1.1 Organization

This thesis is organized into two parts. In the first part, we consider structure and text learning
toward the goal of machine knowledge representation and reasoning, focusing on using deep con-
textual language models to augment relational world knowledge bases. In the second part, we
go beyond knowledge bases, toward improving diverse information retrieval and recommendation
systems by modeling document interactions and contents. Table 1.1 provides a high-level organi-
zation of the thesis.

2



1.1.1 Relational Knowledge Representation with Language Models

In this first part of the thesis, we consider fundamental problems in machine knowledge represen-
tation and reasoning. We begin by setting the stage in Chapter 3 with the following question:

What are state-of-the-art knowledge representation strategies and reasoning tasks that

combine structure and text?

To answer this question, we turn to pretrained contextual language models (LMs) based on the
Transformer [Vaswani et al., 2017] neural network architecture. Contextual language models like
BERT [Devlin et al., 2019] and GPT-3 [Brown et al., 2020], which model the conditional proba-
bility distributions of tokens in large text corpora derived from the Web, have shown to be capable
of internalizing and expressing a degree of relational “knowledge” about the world, as surfaced
through probing studies [Petroni et al., 2019] and downstream entity- and relation-centric evalu-
ation tasks like question answering [Roberts et al., 2020]. We review these capabilities from a
knowledge base (KB) perspective, proposing a taxonomy that organizes knowledge representation
strategies in LMs by the level of KB supervision provided to the LM, from no KB supervision at
all to entity- and relation-level supervision. For each level of supervision, we showcase exemplary
methodologies and findings. We also discuss how graph learning methodologies may be informed
by advancements in language modeling, leading the way into the next two chapters.

Chapter 4 addresses the following question:

How can we improve machine learning models’ ability to discriminatively reason over

everyday “commonsense” human knowledge?

Our answer to this question builds on recent research in machine knowledge acquisition, which
trains language models to automatically generate semi-structured statements in commonsense KBs,
and ultimately uses these statements as training data for downstream reasoning tasks that require
background world knowledge [Bosselut et al., 2019, Hwang et al., 2021]. While this line of re-
search has proved highly successful, it has so far focused only on generating positive (true) KB
statements, even though negative (false) statements are equally important for training discrimi-
native models of world knowledge [Xiong et al., 2020a]. As a first step toward the latter, we
propose NegatER, a joint learning framework that generates negative examples in commonsense
KBs by mining the implicit knowledge stored in a language model’s parameters. Experiments
demonstrate that training models on NegatER-generated negative examples leads to statistically
significant accuracy improvements in a challenging KB link prediction task compared to compet-
itive data augmentation baselines. A human evaluation task also confirms that NegatER negatives
are more grammatical and coherent than those generated by baselines.

Finally, Chapter 5 addresses the following question:
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How can we efficiently and effectively combine structure and text to augment encyclo-

pedic knowledge bases, which are typically highly incomplete?

We make multiple contributions in answering this question. Our first contribution is CODEX, a
new suite of cross-modal evaluation benchmarks for link prediction in encyclopedic KBs, also
known as KB completion or KBC. To motivate the need for CODEX, we review existing bench-
marks and tasks in KB completion, concluding that no benchmark is suitable for the unique chal-
lenges of KBC across structure and text. To fill this gap, we propose CODEX, a collection of three
structural KBs linked to entity and relation aliases, descriptions, and Wikipedia page extracts. We
analyze the structural and textual components of CODEX extensively, and demonstrate the unique
merits of CODEX in terms of scope and difficulty compared to a widely-used KBC benchmark.

Having thoroughly established the value of CODEX, we next propose CascadER, a new model
fusion approach that combines structure-only KB embeddings with language models for KBC.
CascadER is motivated by the observation that these two types of approach are complementary in
terms of efficiency and effectiveness: KB embeddings are fast but do not benefit from all of the
rich contextual information in text, whereas pretrained language models capture this nuance at the
expense of efficiency [Wang et al., 2021a]. Building on this observation, CascadER orders the two
types of models by efficiency such that language models are used to rerank small sets of outputs
from KB embeddings—thus exploiting the expressiveness of LMs for KBC on promising subsets
of the problem space, while avoiding their inefficiencies. We show that CascadER achieves con-
sistent and appreciable gains over structure-only, text-only, and cross-modal baselines on multiple
link prediction benchmarks, including but not limited to CODEX. We also analyze CascadER em-
pirically to demonstrate how it trades off effectiveness and efficiency, showing that it outperforms
or matches a highly competitive ensembling baseline while improving efficiency by one or more
orders of magnitude. Finally, we confirm a major hypotheses of this thesis, which is that combining
structure and text leads to larger performance improvements on sparser graphs.

1.1.2 Document Interaction and Content Mining

In the second part of the thesis, we go beyond knowledge bases, considering diverse information
retrieval and recommendation settings in which the interplay between structural interactions and
textual content is crucial. In Chapter 6, we consider a unique setting in which we observe the digital
trails and traces of individuals as both interaction (e.g., emails between people, clicks on files) and
content (e.g., email subjects and bodies, file contents). We address the following question:

Can we model activities (projects, hobbies, tasks) in individuals’ heterogeneous per-

sonal information collections (files, emails, contacts, etc) using both interaction struc-

ture and document contents to power personal search and recommendation?
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To answer this, we propose the Personal Web, an interconnected view of personal information
collections that integrates user-document interactions, inter-document interactions, and document
contents that are relevant to people’s activities (e.g., names of projects). We derive fast linear meth-
ods to learn and incrementally update entity representations in this graph view. We demonstrate
the strengths of Personal Webs in two recommendation tasks framed as link prediction over the
Personal Web. First, we formulate a unique personalized entity recommendation task in which we
gather direct judgments from individuals over their own data. Second, we devise a larger-scale
email recipient recommendation task using a public dataset. In both tasks, Personal Webs outper-
form diverse baselines according to standard ranking metrics, suggesting that accurately modeling
the interplay of interaction and content is key to search and recommendation over personal infor-
mation collections.

Finally, Chapter 7 addresses the following question:

How can we improve document classification accuracy by leveraging inter-document

relationships and document contents?

This question is common in information retrieval settings in which the document corpus has a nat-
ural underlying relational structure: For example, textual scientific articles indexed by scholarly
search engines are linked by citations, and products indexed by e-commerce platforms are linked
by co-purchase relationships. To solve this problem, we propose Late-Stage Fusion (LSF), an ef-
fective model fusion approach that combines the class predictions of graph learning models with
non-relational, text-only models via a weighted majority vote. We provide theoretical and empir-
ical analysis to show that LSF successfully models local class distributions patterns in a graph,
surpassing the performance of any single-modality group of models. In extensive experiments, we
confirm the superior and robust performance of LSF, which outperforms or matches 13 competitive
baselines across document interaction graphs with varying degrees of class correlation.

1.2 Contributions

This thesis makes the following contributions:

• Call to action: This thesis invites the graph learning community to renew interest in com-
bining structure and text for improved performance in fundamental graph learning tasks.

• Bridging the gap: This thesis introduces concepts from natural language processing and
information retrieval into graph learning research, an important step toward bringing these
sub-disciplines closer together and accelerating innovation and discovery.
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• Methodological advancements: We develop new cross-modal graph learning methodolo-
gies that incorporate textual content to improve accuracy in the canonical graph learning
tasks of link prediction and node classification. Our proposed approaches belong to two
classes of methodology. The first is joint modeling, in which we optimize a single model
that takes both structural and textual data as input. The second is model fusion, in which we
optimize separate models over structural and textual views of the data, and devise methods
to combine their outputs.

• Evaluation insights: We emphasize well-designed and comprehensive experimentation us-
ing both quantitative (task-based) and qualitative (human judgment-based) evaluation. In all
of our experiments, our proposed approaches achieve consistent and appreciable gains over
structure-only and text-only approaches, demonstrating the unique potential of these two
modalities to complement each other.

• New resources: Toward increasing interest and participation in research at the intersection
of graph and text learning, we introduce two new resources: A comprehensive taxonomy for
structured knowledge representation in contextual language models, and a well-annotated
knowledge base completion dataset spanning structure and text.

1.2.1 Research Impact

The research presented in this thesis has made the following impacts:

• New research directions: In recent years, several research groups across academia and in-
dustry have expressed interest in developing “personal knowledge graphs” to improve users’
personalized digital experiences. The concept of the Personal Web, which we introduce in
Chapter 6, has helped shape this emerging direction. We have presented this research as a
keynote at workshops co-located with the Automatic Knowledge Base Construction (AKBC)
conference and the Knowledge Graphs Conference (KGC), indicating that our work is ac-
tively influencing this research area.1,2

• Industry applications: The research directions discussed in Chapters 5, 6, and 7 were devel-
oped with industry collaborators. The work in Chapter 5 has particular impact in the context
of biomedicine, as we show that our proposed approach CascadER can significantly improve
performance in automated drug repurposing over knowledge bases, toward reducing the cost
and streamlining the pipeline of drug repurposing [Bonner et al., 2021]. Chapters 6 and

1https://pkgs.ws/
2https://phkg.github.io/
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7 have direct applications in commercial information retrieval and recommendation: Both
were motivated by the need for efficient, large-scale graph learning approaches that incorpo-
rate textual content for business-critical goals like query understanding [Larson et al., 2020]
and user modeling [Yang et al., 2021]. The Personal Webs work in Chapter 6 has also been
covered in a highly-disseminated blog post on the Microsoft Research Blog.3

• Widely-used resources: While only recently released, our CODEX benchmark proposed
in Chapter 5 has been integrated into two major open-source libraries for knowledge repre-
sentation: LibKGE [Broscheit, 2019] and PyKEEN [Ali et al., 2021]. Between these two
libraries, CODEX has over 1000 stars on GitHub, indicating a high level of interest from the
community. Moreover, both our CODEX benchmark and our survey presented in Chapter 3
were covered in widely-read “Knowledge Graphs for NLP” newsletter digests, increasing
their visibility and reach across the NLP community.4,5

3https://tinyurl.com/yckwdujk
4https://migalkin.github.io/posts/2020/11/19/post/
5https://migalkin.github.io/posts/2021/11/14/post/
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CHAPTER 2

Preliminaries

In this chapter, we review necessary preliminaries on machine learning over graphs and text.

2.1 Preliminaries on Graphs

2.1.1 Definitions and Notation

A graph or network is a data structure consisting of nodes or vertices and pairwise edges or links
between nodes. A singly-relational graph G = (V , E) is a graph in which edges express only
one semantic relationship type between nodes, consisting of a set of nodes V and a set of edges
(u, v) ∈ E ∈ V × V . A multi-relational graph G = (V ,R, E) is a graph in which edges express
multiple semantic relationship types, consisting of a set of nodes V , a set of relation types or
relations R, and a set of ordered triples (u, r, v) ∈ E ∈ V × R × V expressing typed edges
between pairs of nodes. Notice that a singly-relational graph is a special case of a multi-relational
graph in which |R| = 1 and all triples (u, r, v) contain the same relation type r. Figure 2.1 provides
an example of a multi-relational graph expressing linguistic relationships between words and parts
of speech.

Both singly- and multi-relational graphs may be undirected or directed, as well as unweighted
or weighted. In an undirected graph, the presence of an edge between nodes u and v implies
that the reverse edge of the same type between v and u also exists. By contrast, in a directed
graph, the presence of an edge between u and v does not imply the presence of the reverse edge
between v and u. In an unweighted graph, each edge is binary, expressing the presence or absence
of a relationship between nodes u and v. In a weighted graph, each edge is associated with a
real-valued weight wu,v expressing the strength of the relationship between nodes u and v.

Beyond set notation, a graph’s edges may also be expressed with matrix notation. A singly-
relational unweighted graph’s edges may be encoded in a binary adjacency matrix A ∈
{0, 1}|V|×|V| in which Auv = 1 if there is an edge between nodes u and v, and 0 otherwise. Like-
wise, a multi-relational unweighted graph’s edges may be encoded in a binary adjacency tensor
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Figure 2.1: An example of a multi-relational graph expressing linguistic relationships between
words and parts of speech. Nodes are the circles in the figure, edges are arrows, and relation types
are the labels associated with the edges.

A ∈ {0, 1}|V|×|R|×|V| in which Aurv = 1 if there is an edge of relation type r between nodes
u and v, and 0 otherwise. If the graph is weighted, then its adjacency matrix or tensor contains
real-valued rather than binary entries.

2.1.2 Linking Graphs to Text

In machine learning, graphs are used to represent complex real-world phenomena like social in-
teractions, user-item affinities, and drug-disease treatments. Therefore, the nodes in graphs are
typically linked to side attributes, which may be real-valued or categorical features, or raw data
types like text or images. For example, given a graph expressing professional email interactions
between people, “email” nodes in the graph may be associated with attributes like sent/received
timestamps, subject lines, and bodies, and “person” nodes in the graph may be associated with
profile attributes like name, location, and job title [Jin et al., 2019a].

As the focus of this thesis is text-augmented graph learning, we focus on graphs whose nodes
are linked to textual attributes, for example email bodies in email interaction networks and product
descriptions in user-item affinity graphs. In some cases (e.g., Chapters 6 and 7), we will preprocess
the textual content associated with each node by extracting a d-dimensional textual feature vector
for that node; we defer discussion of text featurization methods to Chapter 2.5. In these cases, we
use the notation X ∈ R|V|×d to represent a node feature matrix in which row xu maps node u to
its textual feature vector. In other cases (e.g., Chapters 4 and 5), we will learn a direct mapping
between each node’s raw textual content and the output classification or regression value of interest,
without preprocessing the data to extract feature vectors first. In these cases, we use the notation
[X1, . . . , XNu ] to refer to a sequence of Nu words associated with node u.
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2.2 Graph Learning Tasks

In this thesis, we consider two fundamental graph learning tasks: Link prediction and node classi-
fication.

2.2.1 Link Prediction

The link prediction task aims to augment a graph with new edges. Examples of tasks framed
as link prediction in this thesis include predicting user-item affinities on digital platforms (e.g.,
recommendation), predicting novel drug treatments for diseases (e.g., hypothesis generation), and
predicting recipients to emails (e.g., recipient suggestion).

In this thesis, we consider both ranking-based link prediction and classification-based link pre-
diction. Ranking-based link prediction trains a machine learning model to score plausible unseen
edges in a graph higher than implausible ones [Liben-Nowell and Kleinberg, 2007]. Evaluation is
conducted as follows: Given a query node u ∈ V and optional query relation r ∈ R in the case of a
multi-relational graph, score all potential answer nodes v ∈ V by the likelihood that they “answer
the query”—that is, form a true edge in the graph. Performance is measured with mean reciprocal
rank (MRR), the average reciprocal of each ground-truth answer entity’s rank over all link predic-
tion queries, and hits@k, the proportion of test queries for which the ground-truth answer entity is
ranked in the top-k predicted answers.

While link prediction is most often framed as a ranking task, it has also been studied from
a classification perspective [Socher et al., 2013, Li et al., 2016]. In classification-based link
prediction, a machine learning model is trained to distinguish true unseen edges in a graph from
false ones. Evaluation is conducted as follows: Given an unseen edge (u, v) in a singly-relational
graph or (u, r, v) in a multi-relational graph, map the input edge to a binary label {0, 1} that
indicates whether the edge exists in the graph.

Link prediction may be studied under the transductive and inductive settings. In transductive
link prediction, all entities and relations presented to a model at test time have been observed by
the model during training. In inductive link prediction, the model may be presented entities and/or
relations at test time that have not been observed during training. In this thesis, we will consider
the transductive link prediction task in Chapters 5 and 6, and inductive link prediction in Chapter 4.

2.2.2 Node Classification

The second graph learning task considered in this thesis is node classification, which is formulated
over the nodes rather than edges of the graph. The node classification task aims to classify nodes
according to a predefined set of classes C. The standard evaluation metric for node classification is
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accuracy. Examples of node classification include categorizing documents in hyperlink graphs by
topic (e.g., for search engine indexing), categorizing products in e-commerce networks by product
type (e.g., for recommendation), and classifying emails in email interaction networks as spam.

Similar to link prediction, node classification has been studied in both transductive and inductive
settings. The transductive node classification task is formulated as follows: Given a training set
consisting of nodes Vtrain ⊂ V and their labels, node features X for all V nodes, and the full V ×V
adjacency matrix A, predict the labels of the remaining nodes Vtest = V \ Vtrain. By contrast,
the inductive node classification task is formulated as follows: Given a training set consisting
of nodes Vtrain ⊂ V and their labels, node features X for the training nodes Vtrain only, and the
adjacency matrix Atrain across the training nodes Vtrain only, predict the labels of the test nodes
Vtest = V\Vtrain using their features and structural connections, which were not observed at training
time. In this thesis, we consider transductive node classification in Chapter 7, and leave inductive
node classification for future work.

2.3 Graphs as Knowledge Representations

The first part of this thesis focuses on using attributed multi-relational graphs as machine knowl-
edge representations. Formally, a knowledge representation is an internal mechanism or model
within an intelligent agent that expresses what the agent knows about the external world. Knowl-
edge representations are fundamentally tied to learning and reasoning [Davis et al., 1993], as they
constrain how the agent can and cannot view the world. A knowledge representation is relational
if it is capable of expressing relationships between the objects captured by the representation. Such
relationships may have a variety of semantics, for example temporal, spatial, social, or causal.

In this thesis, we consider knowledge representations from the perspective of relational knowl-
edge bases (KBs) or equivalently knowledge graphs (KGs). A KB is a graph in which nodes
represent notable real-world entities or concepts (e.g., people, places, things), and edge types rep-
resents factual semantic relationships between entity pairs (e.g., social relationships, geographical
relationships, taxonomic relationships). In this thesis, we will use the (head, relation, tail) ordered
triple notation (h, r, t) ∈ V ×R× V to denote edges in KBs.

We consider two types of KBs under the umbrella of relational world knowledge. Encyclope-
dic or factual KBs store facts about typed, disambiguated entities. A well-known encyclopedic
KB powering search and discovery on the Web is the public collaborative Wikidata knowledge
base [Vrandečić and Krötzsch, 2014], which is a sister project to Wikipedia. By contrast, in com-
monsense KBs, “entities” are typically not disambiguated, and are represented by free-text phrases
referring to, e.g., everyday objects, actions, and concepts. The lack of entity disambiguation means
that commonsense KBs are technically semi-structured rather than fully-structured knowledge rep-
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resentations. Such KBs may also be called “non-canonicalized” or “open” KBs [Broscheit et al.,
2020a]. Examples of commonsense KBs include the crowdsourced ConceptNet [Liu and Singh,
2004, Speer et al., 2017] and ATOMIC [Sap et al., 2019, Hwang et al., 2021] KBs.

Note that knowledge bases are a special class of heterogeneous information network [Sun
and Han, 2012, Shi et al., 2016], the latter of which is defined as a graph consisting of multiple
node and edge types. However, whereas heterogeneous networks are generalized and may express
any complex phenomenon (e.g., interacting agents on an e-commerce platform, treatment relation-
ships between drugs and diseases), knowledge bases exclusively store factual knowledge about the
world. Moreover, heterogeneous networks typically consist of relatively few node and edge types,
on the order of ten or fewer, whereas knowledge bases may contain hundreds or thousands of entity
and relation types. In practice, this means that different methods are required for machine learning
over knowledge bases compared to established heterogeneous network mining approaches: The
latter typically rely on handcrafted “meta-paths” of node and edge types to capture the graph’s
various semantic patterns [Sun and Han, 2012], an approach that is infeasible with a large number
of types.

2.3.1 Knowledge Base Construction and Completion

Constructing a KB requires first defining a schema that specifies the entity types, relation types,
and attribute fields captured by the representation, and the logical connections between these types.
This step is usually led by domain experts [Suchanek et al., 2007, Vrandečić and Krötzsch, 2014,
Ammar et al., 2018, Weikum et al., 2021]. The KB is then populated using manual and/or au-
tomated techniques. There are two fundamental goals in KB construction, which are in constant
tension [Weikum et al., 2021]: Precision (correctness) and recall (coverage). The most pop-
ular KBs (Wikidata, ConceptNet) are curated primarily via humans and are therefore relatively
high-precision. However, they tend to be low-recall for all but the most popular of entities, albeit
continually expanding [Razniewski and Das, 2020].

Due to this incompleteness, there is great interest in automatically constructing and complet-
ing KBs. Automatic KB construction is a broad goal consisting of multiple sub-tasks [Weikum
et al., 2021], many of which belong to the domain of information extraction from text (e.g., entity
recognition, entity linking, relation extraction) [Ji and Grishman, 2011], which is out of scope of
this thesis. However, there is also increasing interest from the graph learning community in de-
veloping models that learn over the KB’s relational structure and attribute content to infer missing
links between entities in the KB [Nickel et al., 2015]. From this perspective, the task of graph-
based link prediction in knowledge bases is often referred to as knowledge base completion, or
KBC [Bordes et al., 2013, Nickel et al., 2015, Ruffinelli et al., 2020].
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Knowledge base completion is most often framed as a ranking task in the graph learning liter-
ature. Ranking-based KBC consists of two settings. In the first, given a tail query (h, r, ?), score
all entities t̂ ∈ V by their likelihood that they answer the query such that the gold tail entity t is
ranked as high as possible. In the second, given a head query (?, r, t), score all entities ĥ ∈ V by
the likelihood that they answer the query. That said, KBC may also be framed as a classification
task, as we do in Chapter 4. Under this framing, we classify novel triples (h, r, t) as true or false
according to the knowledge statements that they convey.

2.4 Graph Representation Learning

The choice of data representation is a fundamental challenge in machine learning, as the data
representation heavily influences how well the model can learn a mapping from input to output.
Therefore, a long-standing question in machine learning is how to best capture the features of a
dataset, most often in vector/matrix form, as most powerful data mining and processing algorithms
expect vectorized data [Wasserman, 2010]. Whereas the early paradigm in machine learning was
to manually select and extract a set of potentially salient features from the data, a common ap-
proach today is to learn the features of the data without manual feature engineering. Toward this
goal, representation learning refers to iteratively optimizing the weights in one or more parameter
vectors in order to minimize an objective or cost function that involves those parameters [Good-
fellow et al., 2016]. After optimization is complete, the parameters are called embeddings, latent
representations, or neural representations.

As graphs are discrete set-theoretic structures that typically cannot be input directly to matrix-
based machine learning algorithms, representation learning is an especially important component
of machine learning on graphs. Graph representation learning approaches map the graph’s com-
ponents (nodes, edges, and/or relation types) to low-dimensional dense vector embeddings using
either unsupervised data reconstruction or task-specific supervision objectives. The function f may
be as simple as a linear model [Yang et al., 2015] or as complex as a nonlinear multilayer neural
network [Kipf and Welling, 2017, Veličković et al., 2018]. Once the representations are learned, it
is assumed that they capture the structure and semantics of the input graph within their parameters.

Several types of graph representation learning approach exist [Hamilton, 2020]. In this thesis,
we will focus on two: Knowledge base embeddings, which are supervised for the link prediction
task, and graph neural networks, which are supervised for the node classification task.
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2.4.1 Knowledge Graph Embeddings

Knowledge base embeddings, more commonly called knowledge graph embeddings (KGEs), are
supervised for the link prediction ranking task. KGEs are typically implemented as shallow de-
coder models that learn embeddings of entities and relations, and compose these embeddings with
additive or multiplicative vector functions to output link prediction scores. KGEs are optimized
such that observed edges in the graph are scored highly compared to negative samples.

KGEs with additive scoring functions treat relationship types as translations or rotations be-
tween entities in latent space. Prominent additive KGEs include TransE [Bordes et al., 2013] and
RotatE [Sun et al., 2019]. As a concrete example of an additive scoring function, TransE assumes
that h+ r ≈ t for d-dimensional head, relation, and tail embeddings h, r, t ∈ Rd, and scores links
with the negative Euclidean distance −∥h+ r− t∥. KGEs with multiplicative scoring functions
use bilinear models to score triples. Prominent multiplicative KGEs include RESCAL [Nickel
et al., 2011], DistMult [Yang et al., 2015], ComplEx [Trouillon et al., 2016], and TuckER [Balaze-
vic et al., 2019a]. ComplEx, one of the most competitive KGEs for link prediction, scores triples
with re

(
h⊤diag(r)t

)
, where t is the complex conjugate of t and re denotes the real part of a com-

plex number. Many other KGEs have been proposed, including variants on the prominent exam-
ples here, nonlinear models [Dettmers et al., 2018], and encoder-decoder models [Vashishth et al.,
2020b]. For further details on these approaches, we refer the reader to relevant surveys [Nickel
et al., 2015, Wang et al., 2017, Ji et al., 2020].

2.4.2 Graph Neural Networks

The second category of graph representation learning approach relevant to this thesis is graph
neural networks. The majority of graph neural networks are based on the graph convolutional
network (GCN) architecture [Kipf and Welling, 2017], which uses message passing to iteratively
update nodes’ representations with “messages” from their neighboring nodes, supervising on the
node classification task [Hamilton, 2020].

Given a node u and its H-dimensional hidden representation h
(k)
u ∈ RH at layer k in a graph

neural network, the message passing rule for computing u’s hidden representation in layer k+1 is
computed recursively, as follows:

h(k+1)
u = UPDATE

(
h(k)
u , AGGREGATE

(
{h(k)

v ,∀v ∈ N (u)}
))

.

AGGREGATE represents a differentiable function that aggregates the hidden representations of u’s
neighbors into a “message,” and UPDATE represents a differentiable function that combines node
u’s current representation with the aggregated message. In the base case k = 0, the node represen-
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tation h0
u is equal to u’s input features xu, which may be preprocessed text features if available or,

if not, a one-hot encoding vector. After ℓ rounds of message passing, the node representations h(ℓ)
u

are used to output class label predictions ŷ = READOUT(H(ℓ)) with a readout layer, which takes
the form of trainable K-dimensional classification layer for K classes.

Prominent examples of graph neural networks include the original GCN [Kipf and Welling,
2017], graph attention network (GAT) [Veličković et al., 2018], GraphSAGE [Hamilton et al.,
2017], and Simple Graph Convolutions (SGC) [Wu et al., 2019]. That said, many graph neural
network architectures exist. For more details on existing models, we refer readers to the relevant
surveys [Wu et al., 2020b, Zhou et al., 2020a, Hamilton, 2020].

2.5 Text Representation Learning

Similar to graph-structured data, raw text is discrete in nature and must also be converted to numer-
ical vector features in order to be processed by machine learning algorithms. There is a long history
of text featurization in natural language processing and information retrieval. One class of text fea-
turization approaches yields sparse representations in which feature vectors are high-dimensional
but mostly zero. Examples of sparse text representations include bag-of-words (BOW), which as-
signs unique IDs to all tokens in a corpus and represents each document by the count of token
occurrences, and term frequency-inverse document frequency (TF-IDF), which normalizes the oc-
currences of terms in documents by the number of documents in which each term appears, in order
to diminish the importance of common terms.

Whereas BOW and TF-IDF features correspond directly to words, neural text representation
learning approaches learn latent syntactical and semantic features in text, similar to how graph
representation learning learns latent structural features in graphs. Word embedding approaches
like word2vec [Mikolov et al., 2013] and GloVe [Pennington et al., 2014] map each word in a
corpus to d-dimensional latent embedding using unsupervised reconstruction objectives. The em-
beddings output by word2vec have shown to preserve various syntactic and semantic features in
text via vector similarity and distance measures [Schnabel et al., 2015].

2.5.1 Contextual Text Representations

Recently, deep contextual language models (LMs) have been proposed to improve upon the lim-
itations of word embeddings. Whereas word embeddings assign a single, static embedding to
each word in a corpus, LMs learn rich contextual embeddings of tokens such that a single token
may have different representations depending on the words that surround it [Peters et al., 2018],
reflecting the phenomenon of polysemy in language.
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Language models are trained with variants of the statistical language modeling objective, which
is a conditional probability estimation task that predicts the likelihood of a token in a sequence
given all previous tokens in that sequence [Bengio et al., 2003]. The probability of a sequence of
tokens (t1, . . . , tN) is computed as the product of the conditional probabilities of individual tokens:

p(t1, . . . , tN) =
N∏
k=1

p(tk|t1, . . . , tk−1).

The model is trained to output the conditional probabilities p(tk|t1, . . . , tk−1) by maximizing the
log-likelihood of the sequences seen in the training data. Many variants of this task have been
proposed, for example predicting masked tokens conditioned on both preceding and subsequent
context [Devlin et al., 2019], predicting adjacency relationships between sentences [Devlin et al.,
2019], predicting spans of tokens rather than single words [Joshi et al., 2020, Guu et al., 2020],
detection of missing tokens in text [Lewis et al., 2020], and reconstructing permuted sentences
in a document [Lewis et al., 2020]. These objectives are used to pretrain language models over
very large text corpora derived from the Web, which initializes their parameters for generic text
representation. LMs may be used as-is after pretraining, or else further fine-tuned with supervision
on downstream language understanding task(s) by stacking additional layers at their output.

Most contextual LMs today are based on the Transformer deep learning architecture [Vaswani
et al., 2017]. Transformers capture long-range dependencies and interactions in sequences by
learning self-attention weights between all pairs of positions in a sequence. Because Transformers
are pairwise models, they can be viewed as learning the edge weights of a fully-connected graph in
which each node corresponds to a word in the input sequence. Prominent examples of pretrained
LMs based on the Transformer architecture include BERT [Devlin et al., 2019], RoBERTa [Liu
et al., 2019], GPT [Brown et al., 2020], T5 [Raffel et al., 2020], and BART [Lewis et al., 2020]. In
this thesis, we will focus on BERT and its derivatives. For further details on pretrained language
models, we refer readers to the relevant surveys [Qiu et al., 2020, Rogers et al., 2021].

2.5.2 BERT Language Model

The BERT (Bidirectional Encoder Representations from Transformers) language model consists
of a stack of Transformer encoder layers, each of which computes multi-headed self-attention
between all pairs of positions in a sequence. A single self-attention head computes attention
weights between all pairs of input vectors, which correspond to the representations of tokens in
the sequence, and uses these weights to scale the input embeddings. Letting E ∈ RN×d repre-
sent a matrix of d-dimensional token embeddings input to the Transformer layer, self-attention in
a Transformer encoder is implemented as softmax

(
EET
√
d

)
E. A multi-headed attention layer ex-
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tends this approach by linearly projecting the input embeddings to different latent subspaces and
computing self-attention in parallel in each subspace, then concatenating the outputs and linearly
projecting them back to the final desired output dimension. The goal of multi-headed attention is
to allow the model to capture different relationships between pairs of inputs in different subspaces,
which has empirically shown to improve performance [Vaswani et al., 2017].

In terms of special architectural considerations, BERT treats word inputs by summing three
types of word embedding: Token embeddings, positional embeddings that encode the relative po-
sition of each token, and segment embeddings that encode one of two possible segments than an
input can belong to (i.e., “segment A” or “segment B” in sequence classification tasks). BERT
also has two special tokens in its vocabulary: A special [CLS] token at the beginning of each
input sequence that is treated as an aggregate representation of that sequence, and a special [SEP]
token that is used as a delimiter between segments of an input sequence. With BERT, it is com-
mon to extract the [CLS] token from the last layer as a sequence representation, or else feed it
into an additional fully-connected layer that will be fine-tuned for a downstream task. That said,
other approaches for extracting semantic text embeddings from BERT have also been proposed,
for example averaging the individual token embeddings output by BERT or taking their max per
dimension [Reimers and Gurevych, 2019].

BERT is pretrained over English Wikipedia and BooksCorpus [Zhu et al., 2015], which in com-
bination total over three billion words, with two self-supervised objectives: (1) Masked language
modeling, a reconstruction objective that trains the model to predict randomly masked tokens in
the input corpus; and (2) Next sentence prediction, a contrastive objective that trains the model
to predict whether two sequences are adjacent in the corpus. Note that the masked language mod-
eling objective, by randomly masking tokens in the corpus, allows BERT to condition its token
predictions using both preceding and following textual context, making it a bidirectional language
model. By contrast, unidirectional language models are trained to predict the next word in a given
sequence, meaning that they can only condition their predictions on preceding context [Bengio
et al., 2003, Radford et al., 2018].

From the perspective of text-augmented graph learning, BERT is an attractive choice of lan-
guage representation for several reasons. In terms of expressiveness, BERT’s ability to model
bidirectional context and its powerful masked language modeling objective have demonstrated sig-
nificant advantages over other contextual language models in terms of downstream performance in
language understanding tasks [Devlin et al., 2019]. Indeed, BERT has inspired a host of successors,
including LMs with the same architecture pretrained on different corpora, as well as LMs with
related bidirectional architectures and language reconstruction pretraining objectives [Qiu et al.,
2020, Rogers et al., 2021]. In terms of practical utility, BERT’s encoder-only structure makes it
easy to apply to various downstream tasks by simply stacking an output classification or regression

17



layer corresponding to the task of interest. Moreover, there are well-established open-source im-
plementations of BERT and its derivatives [Wolf et al., 2020]. Therefore, incorporating a powerful
LM like BERT into the domain of graph learning is relatively straightforward for practitioners.
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Part I

Relational Knowledge Representation with
Language Models
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CHAPTER 3

Setting the Stage with a New Taxonomy

The material in this chapter is derived from the paper “Relational World Knowl-

edge Representation in Contextual Language Models: A Review” [Safavi and Koutra,

2021], which appeared in the proceedings of the 2021 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP).

3.1 Introduction

In Chapter 2.3, we introduced relational knowledge bases (KBs) as graph data structures that con-
nect pairs of entities or concepts by semantically meaningful symbolic relations. Decades’ worth of
research have been invested into using KBs as tools for relational world knowledge representation
in machines [Minsky, 1974, Lenat, 1995, Liu and Singh, 2004, Bollacker et al., 2008, Vrandečić
and Krötzsch, 2014, Speer et al., 2017, Sap et al., 2019, Ilievski et al., 2021].

Most large-scale modern KBs are organized according to a manually engineered schema that
specifies which entity and relation types are permitted, and how such types may interact with
one another. This explicit enforcement of relational structure is both an advantage and a draw-
back [Halevy et al., 2003]. On one hand, schemas support complex queries over the data with
accurate, consistent, and interpretable answers. On the other hand, schemas are “ontological com-
mitments” [Davis et al., 1993] that limit flexibility in how knowledge is stored, expressed, and
accessed. Handcrafted schemas also require significant human engineering effort to construct and
maintain, and are therefore often highly incomplete, one of the major limitations of structured
knowledge representations [Weikum et al., 2021].

In response to these drawbacks, various research directions in natural language processing
(NLP) have proposed approaches to reduce the amount of schema design and manual labor neces-
sary for machine knowledge representation [Halevy et al., 2003, Banko and Etzioni, 2008, Mintz
et al., 2009, Fader et al., 2011]. Recently, an especially promising solution has emerged, brought
about by breakthroughs in machine learning software, hardware, and data. Specifically, deep con-
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Figure 3.1: A high-level overview of our taxonomy. We organize knowledge representation strate-
gies in language models (LMs) by level of knowledge base (KB) supervision provided to the LM.

textual language models (LMs) like BERT [Devlin et al., 2019] and GPT-3 [Brown et al., 2020],
which we introduced in Chapters 2.5 and 2.5.2, have shown to be capable of internalizing a degree
of KB-like “knowledge” within their parameters, and expressing this knowledge across various
mediums and tasks—in some cases, without the need for any predefined knowledge representation
schema [Petroni et al., 2019, Roberts et al., 2020]. Consequently, some have begun to wonder
whether LMs will partially or even fully replace KBs, given sufficiently large training budgets and
parameter capacities. To illustrate how LMs may fulfill similar functions to KBs, albeit with very
different representation and knowledge acquisition mechanisms, we provide a qualitative compar-
ison in Table 3.1.

3.1.1 Contributions

In this chapter, we introduce a new resource to guide research at the intersection of knowledge
bases and language models. Specifically, we propose a taxonomy that organizes relational knowl-
edge representation strategies in LMs by the level of KB supervision provided to LMs (Figure 3.1):

• Word-level supervision (Ch. 3.2): At this level, LMs are not explicitly supervised on a KB,
but may be indirectly exposed to KB-like knowledge via word associations in the training
corpus. Here, we cover techniques for probing and utilizing this implicitly acquired knowl-
edge, using KBs as gold-standard evaluation resources.

• Entity-level supervision (Ch. 3.3): At this level, LMs are supervised to acquire knowl-
edge of KB entities. Here, we organize entity supervision strategies from “less symbolic” to
“more symbolic”: Less symbolic approaches train LMs with entity-aware language model-
ing losses, but never explicitly require the LM to link entity mentions to the KB. By contrast,
more symbolic approaches involve entity linking, and may also integrate entity embeddings
into the LM’s parameters.
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Table 3.1: A qualitative comparison of relational knowledge bases and contextual LMs as world
knowledge representations.

Knowledge base (KB) Contextual language model (LM)

Organization Graphical data structure that connects pairs of
symbolic entities via symbolic relations accord-
ing to a predefined schema

Matrices of parameter weights learned (opti-
mized) via pretraining and possibly fine-tuning,
organized according to a neural architecture

Knowledge acquisition Explicit population via manual curation and/or
automatic information extraction

Implicit (self-supervised pretraining); possibly
explicit (supervised fine-tuning)

Knowledge accuracy Human-curated KBs (Wikidata, ConceptNet)
are relatively high-precision but low-recall

Depends on several factors, including num-
ber of parameters, amount of training, training
strategies, etc; empirical and theoretical limits
are not well-understood

Query input Structured, disambiguated queries potentially
mapped from natural language

Arbitrary non-disambiguated sequences, e.g.,
natural language prefixes, prompts, or questions

Query output Symbolic entities, relations, and/or structures Tokens, sequences, and/or labels

• Relation-level supervision (Ch. 3.4): At this level, LMs are supervised to acquire knowl-
edge of KB triples and paths. Again, we organize strategies from less to more symbolic,
where less symbolic approaches treat triples as fully natural language statements, and more
symbolic approaches incorporate dedicated embeddings of KB relation types.

Given the nascence of this research area, our taxonomy is a timely and important contribution to
the field. Indeed, the only topically related survey of which we are aware is comparatively narrow
in scope and discussion [Colon-Hernandez et al., 2021]. Specifically, our contributions are as
follows:

• New taxonomy: We introduce a new taxonomy that organizes strategies for relational
knowledge representation in pretrained LMs. To illustrate different methods of KB-level
input and output in LMs, we order our taxonomy by the level of KB supervision provided to
the LM.

• Technical details and analysis: We highlight notable methodologies and findings, illustrate
concrete technical details via figures, and provide an outlook for future research. Where
applicable, we also highlight connections to key questions and tasks in graph learning, in
particular within the context of link prediction for automatic knowledge base completion.

• Guiding vision: We provide suggestions and outline open questions for future research in
this direction.
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3.2 Word-Level Supervision

As introduced in Chapter 2.5, the standard language modeling task is to predict the n-th word
in a sequence of n words—that is, a conditional probability estimation task [Bengio et al., 2003,
Radford et al., 2019]. While many variants of this task have been proposed to allow LMs to
condition their predictions on different inputs [Devlin et al., 2019, Raffel et al., 2020, Lewis et al.,
2020], a notable feature of all such approaches is that they operate at the word level.

If these supervision techniques do not incorporate KBs at all, how are they relevant when con-
sidering LMs as relational knowledge representations? The answer is simple. Typical language
modeling corpora like Wikipedia are known to contain KB-like assertions about the world [Da and
Kasai, 2019]. LMs trained on enough such data can be expected to acquire some KB-like knowl-
edge, even without targeted entity- or relation-level supervision. Therefore, in order to motivate
the necessity (if at all) of KB supervision, it is crucial to first understand what relational world
“knowledge” LMs acquire from word-level pretraining alone.

In this section, we cover strategies to extract and utilize this knowledge under the cloze prompt-
ing (Ch. 3.2.1) and statement scoring (Ch. 3.2.2) protocols. Table 3.2 provides a taxonomy for this
section, with representative examples and evaluation tasks.

3.2.1 Cloze Prompting

The cloze prompting protocol [Taylor, 1953] is a direct approach for extracting and evaluating KB-
like knowledge in pretrained LMs. Under this protocol (Figure 3.2), KB triples are first converted
to natural language assertions using (e.g.) relation templates. For each assertion, the token(s)
corresponding to the object entity are held out. A frozen pretrained LM then ranks candidate
tokens within its vocabulary by the probability that they fill in the empty slot(s). Accuracy is
typically measured by the proportion of prompts for which the correct answer appears in the LM’s
top-k predictions, with the assumption that better performance implies more pretrained knowledge
within the LM.

Handcrafted prompts in English with single-token answers make up LAMA [Petroni et al., 2019],
one of the earliest and most widely-used LM cloze probes. LAMA, which is mapped primarily
to Wikidata and ConceptNet triples, was initially used to compare pretrained LMs’ knowledge to
off-the-shelf KB question answering systems. Petroni et al. [2019] showed that pretrained BERT
is competitive with a supervised relation extraction model that has been provided an oracle for
entity linking, particularly for 1-1 queries. Subsequent work has experimented with handcrafted
templates for probing the knowledge of both very large (hundred-billion parameter) LMs [Brown
et al., 2020] as well as non-contextual word embeddings, i.e., as a simple control baseline for
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Table 3.2: Taxonomy and representative examples for extracting relational knowledge in word-
level pretrained LMs, with evaluation tasks that have been conducted in the referenced pa-
pers. Glossary of evaluation tasks: KP—knowledge probing; QA—question answering; CR—
compositional reasoning; KBC—knowledge base construction.

Probing strategy Extraction strategy Representative examples Evaluation task(s)
KP QA CR KBC

Cloze prompts

Prompt handcrafting Petroni et al. [2019], Dufter et al. [2021] ✓

Automatic prompt engineering
Jiang et al. [2020b], Shin et al. [2020], Zhong et al.
[2021], Qin and Eisner [2021]

✓

Adversarial prompt modification
Kassner and Schütze [2020], Petroni et al. [2020],
Poerner et al. [2020], Cao et al. [2021]

✓

Varying base prompts
Elazar et al. [2021], Heinzerling and Inui [2021],
Jiang et al. [2020a], Kassner et al. [2021]

✓

Symbolic rule-based prompting Kassner et al. [2020], Talmor et al. [2020a] ✓ ✓

Statement scores
Single-LM scoring Tamborrino et al. [2020], Zhou et al. [2020b] ✓ ✓

Dual-LM scoring Davison et al. [2019], Shwartz et al. [2020] ✓ ✓

Figure 3.2: Probing relational knowledge in pretrained LMs with cloze prompts generated from
KB triples.

LMs [Dufter et al., 2021]. Both studies demonstrate some success, particularly in cases where
the probed model is provided a small amount of extra context in the form of conditioning exam-
ples [Brown et al., 2020] or entity type information [Dufter et al., 2021].

Automatic prompt engineering is a promising alternative to prompt handcrafting for knowledge
extraction in LMs [Liu et al., 2021a], as prompts engineered using discrete [Jiang et al., 2020b,
Shin et al., 2020, Haviv et al., 2021] and continuous [Zhong et al., 2021, Qin and Eisner, 2021, Liu
et al., 2021b] optimization have improved LMs’ lower-bound performance on LAMA’s underlying
queries. Note, however, that optimized prompts are not always grammatical or intelligible [Shin
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et al., 2020]. Prompt optimization methods may also confound knowledge probes by overfitting to
the probes’ answer distributions during training [Zhong et al., 2021, Cao et al., 2021], and often
require large validation sets for tuning, which may not be feasible in practice [Perez et al., 2021].

Adversarial modification of LAMA prompts has uncovered weaknesses in pretrained LMs’ world
“knowledge,” for example that BERT’s accuracy drops precipitously when irrelevant statements or
negation words are added to prompts [Kassner and Schütze, 2020, Lin et al., 2020, Petroni et al.,
2020], and that it can “guess” answers using shallow lexical cues or benchmark artifacts [Poerner
et al., 2020, Cao et al., 2021]. However, the adversarial robustness of LM knowledge improves
greatly with supervision in both the pretraining [Petroni et al., 2020] and fine-tuning [Kassner and
Schütze, 2020] stages, suggesting that explicit KB-level supervision is a viable remedy to input
sensitivity.

Several collections of prompt variations, including paraphrased sets of base prompts [Elazar
et al., 2021, Heinzerling and Inui, 2021] and multilingual sets of base (English) prompts [Jiang
et al., 2020a, Kassner et al., 2021] have been released to expand the original research questions
posed by LAMA. For the former, it has been found that pretrained BERT-based LMs typically
do not output consistent answers for prompt paraphrases, although their consistency can again be
greatly improved by targeted pretraining [Elazar et al., 2021, Heinzerling and Inui, 2021]. For
the latter, initial results on prompts beyond English indicate high variability in pretrained LM
performance across languages and poor performance on prompts with multi-token answers [Jiang
et al., 2020a, Kassner et al., 2021].

Prompts generated with symbolic rules have been used to test pretrained LMs’ abilities to learn,
e.g., equivalence, implication, composition, and conjunction. Existing studies vary the degrees of
experimental control: Talmor et al. [2020a] use BERT-based models with their publicly-available
pretrained weights, whereas Kassner et al. [2020] pretrain BERT from scratch on synthetic KB
triples only. Both studies observe mixed results, concluding that word-level pretraining alone (at
least on BERT) does not lead to strong “reasoning” skills.

3.2.2 Statement Scoring

Beyond probing, pretrained LM “knowledge” can be purposed toward downstream KB-level tasks
in a zero-shot manner via statement scoring. Here, a pretrained LM is fed natural language state-
ments corresponding to KB triples, and its token probabilities across each statement are pooled to
yield statement scores. These scores are then treated as input to a downstream decision, mirror-
ing the way that supervised LMs can be trained to output probabilities for triple-level prediction
tasks (Ch. 3.4). We categorize statement scoring strategies as single- or dual-LM approaches. The
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single-LM approach pools the pretrained LM’s token scores over a candidate set of sequences, then
takes the highest-scoring sequence as the LM’s “prediction” or choice [Tamborrino et al., 2020,
Bouraoui et al., 2020, Zhou et al., 2020b, Brown et al., 2020]. The dual-LM framework first uses
one pretrained LM to generate useful context (e.g., clarification text) for the task, then feeds this
context to another, possibly different pretrained LM to obtain a final score [Davison et al., 2019,
Shwartz et al., 2020]. Notably, the latter approach has shown promise in classification-based link
prediction in commonsense KBs, a task that we introduced in Chapter 2.2.1 and will study further
in Chapter 4.

Both categories have shown promise over comparable unsupervised (and, under some condi-
tions, supervised) methods for tasks like multiple-choice QA [Tamborrino et al., 2020, Shwartz
et al., 2020, Brown et al., 2020] and commonsense KB completion [Davison et al., 2019]. How-
ever, LM scores have also shown to be sensitive to small perturbations in text [Zhou et al., 2020b],
so this approach may be less effective on noisy or long-tail inputs.

3.2.3 Summary and Outlook

There is still broad disagreement over the nature of acquired “knowledge” in pretrained LMs.
Whereas some studies suggest that word-level pretraining may be enough to endow LMs with
KB-like knowledge [Petroni et al., 2019, Tamborrino et al., 2020], in particular given enough
parameters and the right set of prompts [Brown et al., 2020], others conclude that such pretraining
alone does not yield sufficiently precise or robust LM knowledge [Elazar et al., 2021, Cao et al.,
2021]—directly motivating the targeted supervision strategies discussed in the remainder of this
chapter. We observe that different studies independently set objectives for what a pretrained LM
should “know,” and thus naturally reach different conclusions.

We believe that future studies must reach consensus on standardized tasks and benchmarks,
addressing questions like: What degree of overlap between a pretraining corpus and a knowledge
probe is permissible, and how can this be accurately uncovered and quantified? What lexical cues
or correlations should be allowed in knowledge probes? Progress in this direction will not only fur-
ther our understanding of the effects of word-level supervision on LM knowledge acquisition, but
will also provide appropriate yardsticks for measuring the benefits of targeted entity- and relation-
level supervision.

3.3 Entity-Level Supervision

We next review entity-level supervision strategies for LMs, most often toward improving perfor-
mance in knowledge probing benchmarks and canonical NLP tasks like entity typing, entity link-
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ing, and question answering. We roughly categorize approaches from “least symbolic” to “most
symbolic.” On the former end of the spectrum, the LM is exposed to entity mentions in text but
not required to link these mentions to an external entity bank (Ch. 3.3.1). On the latter end, the
LM is trained to link mentions to the KB using late (Ch. 3.3.2) or mid-to-early fusion approaches
(Ch. 3.3.3). Table 3.3 provides a taxonomy of supervision strategies for this section with represen-
tative examples.

3.3.1 Modeling entities without linking

The “least symbolic” entity supervision approaches that we consider input textual contexts con-
taining entity mention-spans to the LM, and incorporate these mention-spans into their losses.
However, they do not require the LM to link these mentions to the KB’s entity set, so the LM is
never directly exposed to the KB. Figures 3.3a and 3.3b provide examples of input and output for
this class of approaches.

Masking tokens in mention-spans and training LMs to predict these tokens may promote knowl-
edge memorization [Sun et al., 2020]. Roberts et al. [2020] investigate this strategy using a simple
masking strategy whereby an LM is trained to predict the tokens comprising named entities and
dates in text (Figure 3.3a, originally proposed by Guu et al., 2020). The authors find that the largest
(11 billion parameter) version of T5 generates exact-match answers on open-domain question an-
swering (QA) benchmarks with higher accuracy than extractive systems—even without access to
external context documents, simulating a “closed-book” exam.

Contrastive learning techniques, which have been used for LM supervision at the word and sen-
tence level [Devlin et al., 2019], have also been devised for supervision on entity mentions [Shen
et al., 2020]. For example, Xiong et al. [2020b] replace a proportion of entity mentions in the pre-
training corpus with the names of negatively-sampled entities of the same type, and train an LM
to predict whether the entity in the span has been replaced (Figure 3.3b). Although the previously
discussed closed-book T5 model [Roberts et al., 2020] outperforms Xiong et al. [2020b]’s open-
book BERT pretrained with contrastive entity replacement on open-domain QA, the latter may
generalize better: T5’s performance degrades considerably for facts not observed during training,
whereas open-book approaches appear more robust [Lewis et al., 2021].

3.3.2 Linking with Late Fusion

The next-strongest level of entity supervision is to train the LM to link entity-centric textual con-
texts to a KB’s entity set E. Here, we cover late fusion approaches, which operate at the word
level in terms of input to the LM and incorporate entities at the LM’s output layer only, as exem-
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Table 3.3: Taxonomy and representative examples of entity-level supervision in LMs, with eval-
uation tasks that have been conducted in the referenced papers. Glossary of evaluation tasks:
KP—knowledge probing; EL—entity linking; ET—entity typing; RC—relation classification;
QA—question answering; GL—the General Language Understanding Evaluation or GLUE bench-
mark [Wang et al., 2019a], which covers multiple subtasks.

Entities as... Supervision strategy Representative examples Evaluation task(s)
KP EL ET RC QA GL

Token mention-spans
Masked token prediction [Roberts et al., 2020, Guu et al., 2020] ✓

Contrastive learning [Xiong et al., 2020b, Shen et al., 2020] ✓ ✓ ✓

KB links, late fusion
Linking w/o external info [Broscheit, 2019, Ling et al., 2020] ✓ ✓

Linking w/ textual metadata [Wu et al., 2020a, De Cao et al., 2021] ✓ ✓ ✓

Linking w/ external embeddings [Zhang et al., 2019b, Chen et al., 2020a] ✓ ✓ ✓ ✓

KB links, mid/early fusion
Entity embedding retrieval [Peters et al., 2019, Févry et al., 2020] ✓ ✓ ✓ ✓ ✓

Treating entities as tokens [Yamada et al., 2020, Poerner et al., 2020] ✓ ✓ ✓ ✓ ✓

plified in Figure 3.3c. The simplest representatives of this category train LMs to match individual
tokens [Broscheit, 2019] or mentions [Ling et al., 2020] in a text corpus to an entity bank, without
any external resources. The minimally “entity-aware” BERT proposed by Broscheit [2019], which
adds a single classification layer on top of a pretrained BERT encoder, achieves competitive results
with a state-of-the-art specialized entity linking architecture [Kolitsas et al., 2018].

Entity meta-information such as names and descriptions are viable external resources for LM-
powered entity linking [Botha et al., 2020]. For example, in zero-shot entity linking [Logeswaran
et al., 2019], textual mentions must be linked to entities unseen during training using only entity
descriptions as additional data. Here, competitive solutions train separate BERT models to select
and rank candidate entities by encoding their descriptions [Logeswaran et al., 2019, Wu et al.,
2020a]. More recently, encoder-decoder LMs have been trained to retrieve entities by generating
their unique names [De Cao et al., 2021], which has the advantage of scaling with the LM’s vocab-
ulary size (usually tens of thousands) instead of the KB entity set size (potentially tens of millions).
De Cao et al. [2021] achieve results competitive to discriminative approaches on entity linking and
QA, suggesting the potential of generative entity-aware LMs.

External entity embeddings pretrained by a separate model have been used as strong sources of
inductive bias for LMs. For example, several variants of BERT further pretrain the base model
by linearly fusing external entity embeddings with contextual word representations at the output
of the BERT encoder [Zhang et al., 2019b, He et al., 2020]. BERT has also been fine-tuned to
match its output token representations to external entity embeddings for the task of end-to-end
entity linking [Chen et al., 2020a]. Such approaches rely heavily on the quality of the externally-
learned embeddings, which is both a strength and a drawback: Such embeddings may contain
useful implicit structural information about the KB, but on the other hand may propagate errors
into the LM [Shen et al., 2020].
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(a) Mention masking (b) Contrastive learning

(c) Linking, late fusion (d) Linking, early fusion

Figure 3.3: Examples of entity-level supervision in LMs, ranging from “less symbolic” to “more
symbolic.”

3.3.3 Linking with Middle or Early Fusion

The last and strongest category of entity supervision techniques that we consider are also linking-
based, but fuse entity information at earlier stages of text encoding. Mid-fusion approaches re-
trieve external entity representations in between hidden layers and re-contextualize them into the
LM, whereas early fusion approaches simply treat entity symbols as tokens in the vocabulary.
Figure 3.3d provides an example of input/output for early fusion.

Retrieving entity embeddings and integrating them into an LM’s hidden word representations is
a middle-fusion technique that has the advantage of modeling flexibility: It allows the practitioner
to choose where (i.e., at which layer) the entity embeddings are integrated, and how the entity
embeddings are learned and re-contextualized into the LM. Peters et al. [2019] integrate exter-
nally pre-trained, frozen entity embeddings into BERT’s final hidden layers using a word-to-entity
attention mechanism. Févry et al. [2020] learn the external entity embeddings jointly during pre-
training, and perform the integration in BERT’s earlier hidden layers using an attention-weighted

29



sum. The latter approach is competitive with a 30× larger T5 LM in closed-book QA (Ch. 3.3.1),
suggesting that LMs and KB embeddings can be trained jointly to enhance and complement each
other.

Treating entities as “tokens” by appending special reserved entity symbols to the LM’s vocab-
ulary is the earliest of entity fusion approaches (Figure 3.3d). For instance, Yamada et al. [2020]
input entity “tokens” alongside textual contexts that mention these entities to RoBERTa, and use
specialized word-to-entity and entity-to-entity attention matrices within its hidden layers. Other
approaches leave the base LM’s internal architecture completely unchanged and focus only on
aligning the LM’s word and entity embedding spaces at the input level [Rosset et al., 2020, Poerner
et al., 2020]. Note, however, that this approach may significantly enlarge the LM’s vocabulary. For
example, plain BERT’s vocabulary is around 30k tokens, whereas English Wikipedia has around 6
million entities. This can make pretraining on a larger vocabulary expensive in terms of both time
and memory usage [Yamada et al., 2020, Dufter et al., 2021].

3.3.4 Summary and Outlook

The literature on entity supervision in LMs is growing rapidly. In line with recent trends in
NLP [Khashabi et al., 2020], a growing number of entity supervision strategies use generative
models [Roberts et al., 2020, De Cao et al., 2021], which are attractive because they allow for a
high level of flexibility in output and circumvent the need for classification over potentially mil-
lions of entities. However, some studies find that generative models currently do not perform well
beyond what they have memorized from the training set [Wang et al., 2021b, Lewis et al., 2021].
These findings suggest that storing some entity knowledge externally (e.g., in a dense memory,
Févry et al., 2020) may be more robust, for example by allowing for efficient updates to the LM’s
knowledge [Verga et al., 2020]. We believe that future work will need to analyze the tradeoffs
between fully-parametric and retrieval-based entity modeling in terms of pure accuracy, parameter
and training efficiency, and ability to generalize beyond the training set.

3.4 Relation-Level Supervision

Finally, we consider methods that utilize KB triples or paths to supervise LMs for complex, often
compositional tasks like relation classification, text generation, and rule-based inference. We again
organize methods in the order of less to more symbolic. In this context, less symbolic approaches
treat triples and paths as fully natural language (Ch. 3.4.1 and 3.4.2). By contrast, more symbolic
approaches learn distinct embeddings for relation types in the KB (Ch. 3.4.3). Table 3.4 provides a
taxonomy of this section with representative examples and evaluation tasks. Note that the methods
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Table 3.4: Taxonomy and representative examples of relation-level supervision in LMs, with eval-
uation tasks conducted in the respective referenced papers. Glossary of evaluation tasks: KP—
knowledge probing; ET—entity typing; RC—relation classification; QA—question answering;
CR—compositional reasoning; KBC—knowledge base construction; TG—text generation; GL—
the GLUE family of language tasks [Wang et al., 2019a].

Relations as... Supervision strategy Representative examples Evaluation task(s)
KP ET RC QA CR KBC TG GL

Templated sentences
Lexicalizing triples [Thorne et al., 2021, Guan et al., 2020] ✓ ✓ ✓

Lexicalizing paths [Clark et al., 2020, Talmor et al., 2020a,b] ✓ ✓

Linearized sequences
Training on triple sequences [Yao et al., 2019, Agarwal et al., 2021] ✓ ✓ ✓ ✓

Injecting triples into text [Liu et al., 2020b] ✓

Dedicated embeddings
Pooling entity representations [Baldini Soares et al., 2019, Qin et al., 2021] ✓ ✓ ✓

Embedding relations externally [Wang et al., 2021d, Daza et al., 2021] ✓ ✓ ✓ ✓

Treating relations as tokens [Bosselut et al., 2019, Hwang et al., 2021] ✓

in this section are the most related to graph learning, as several of the papers we review in Ch. 3.4.2
and Ch. 3.4.3 consider variants of the link prediction task in multi-relational graphs.

3.4.1 Relations as Templated Assertions

Template-based lexicalization is a popular relation supervision strategy that does not directly ex-
pose the LM to the KB. Similar to how KB queries are converted to cloze prompts for knowledge
probing (Ch. 3.2.1), triples are first converted to natural language assertions using relation tem-
plates, usually handcrafted. These assertions are then fed as input to the LM, which is trained with
any number of task-specific losses. Figure 3.4 provides an input/output example for this class of
approach.

Lexicalized triples from Wikidata have been used as LM training data in proof-of-concept stud-
ies demonstrating that LMs can serve as natural language querying interfaces to KBs under con-
trolled conditions [Heinzerling and Inui, 2021]. A promising approach in this direction uses
encoder-decoder LMs to generate answer sets to natural language queries over lexicalized Wiki-
data triples [Thorne et al., 2020, 2021], toward handling multi-answer KB queries with LMs—thus
far an understudied task in the LM knowledge querying literature.

Other approaches convert KB triples to sentences using relation templates in order to construct
task-specific training datasets for improved performance in, e.g., story generation [Guan et al.,
2020], commonsense QA [Ye et al., 2020, Ma et al., 2021a], and relation classification [Bouraoui
et al., 2020]. While most of these approaches rely on template handcrafting, a few automatically
mine templates using distant supervision on Wikipedia, achieving competitive results in tasks like
relation classification [Bouraoui et al., 2020] and commonsense QA [Ye et al., 2020].

Compositional paths spanning multiple atoms of symbolic knowledge may also be lexicalized
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Figure 3.4: Strategies for representing relations as sequences: Templating (Ch. 3.4.1) and lin-
earization (Ch. 3.4.2).

and input to an LM [Lauscher et al., 2020, Talmor et al., 2020a] in order to train LMs for soft
compositional reasoning [Clark et al., 2020, Talmor et al., 2020b]. Notably, when RoBERTa is
fine-tuned on sentences expressing (real or synthetic) facts and rules from a KB, it can answer
entailment queries with high accuracy [Clark et al., 2020, Talmor et al., 2020b]. However, as Clark
et al. [2020] note, these results do not necessarily confirm that LMs can “reason,” but rather that
they can at least emulate soft reasoning—raising an open question about how to develop probes
and metrics to verify whether LMs can actually reason compositionally.

3.4.2 Linearizing KB Triples

The main advantage of templating is that it converts symbolic triples into sequences, which can be
straightforwardly input to LMs. However, handcrafting templates is a manual process, and distant
supervision can be noisy. To maintain the advantage of templates while avoiding the drawbacks,
triples can alternatively be fed to an LM by linearizing them—that is, flattening the subject, rela-
tion, and object into an input sequence (Figure 3.4). With linearization, relation-level supervision
becomes as simple as feeding the linearized sequences to the LM and training again with task-
specific losses [Yao et al., 2019, Kim et al., 2020, Ribeiro et al., 2021, Wang et al., 2021a] or
injecting the sequences into the pretraining corpus [Liu et al., 2020b]. A notable recent ex-
ample of the former approach [Agarwal et al., 2021] trains T5 on linearized Wikidata triples in
order to generate fully natural language versions of those triples. These verbalized triples are used
as retrieval “documents” for improved LM-based QA over traditional document corpora; note,
however, that they can also be used as LM training data for other downstream tasks in place of
handcrafted templates (Ch. 3.4.1).
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3.4.3 Relations as Dedicated Embeddings

The strategies discussed thus far treat KB triples and paths as natural language sequences. A
“more symbolic” approach is to represent KB relation types with dedicated embeddings, and inte-
grate these embeddings into the LM using late, middle, or early fusion approaches. Figures 3.5a
and 3.5b provide input/output examples for late fusion, whereby relation textual contexts are input
to the LM, and relation embeddings are constructed or integrated at the LM’s output. Figure 3.5c
exemplifies early fusion, whereby relations are treated as input tokens.

Contextual representations of entity mention-spans may be pooled at an LM’s output layer to
represent a relation [Wang et al., 2021c, Yu et al., 2020]. For example, Baldini Soares et al. [2019]
concatenate the contextual representations of special entity-start markers inserted adjacent to tex-
tual entity mentions, and fine-tune BERT to output similar relation representations for statements
ranging over the same entity pairs (Figure 3.5a). This approach, which proved highly successful
for relation classification, has been applied to the same task in languages beyond English [Köksal
and Özgür, 2020, Ananthram et al., 2020], and as an additional LM pretraining objective [Qin
et al., 2021].

Non-contextual relation embeddings may be learned by defining a separate relation embedding
matrix with |R| rows and fusing this matrix into the LM. One advantage of this approach, similar to
methods for retrieving external entity embeddings (Ch. 3.3.3), is that it supports fusion at both the
late [Wang et al., 2021d, Daza et al., 2021] and middle [Liu et al., 2021c] stages. As an example of
the former, Wang et al. [2021d] propose an LM pretraining objective whereby textual descriptions
of KB entities are input to and encoded by an LM, then combined with externally-learned relation
embeddings at the output using a link prediction loss (Figure 3.5b). Combined with standard word-
level language modeling objectives, this approach enables generalization across both sentence-
level tasks like relation classification, and graph-level tasks like KB completion.

Treating relations as “tokens,” toward early fusion of relations in LMs, is achieved by appending
the KB’s relation types to the LM’s vocabulary (Figure 3.5c). A notable instantiation of this ap-
proach is the COMET commonsense KB construction framework, which aims to augment a semi-
structured commonsense KB (Chapter 2.3) with novel edges [Bosselut et al., 2019, Hwang et al.,
2021, Jiang et al., 2021]. Specifically, given a subject phrase/relation prompt as input, COMET
fine-tunes an LM to generate object phrases. COMET demonstrates promising improvements over
400× larger LMs not trained for KB construction [Hwang et al., 2021]. However, templating
(Ch. 3.4.1) may yield better results than adding special tokens to the vocabulary when the COMET
framework is trained and tested in a few-shot setting [Da et al., 2021].
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(a) Entity pair pooling (b) Relation embeddings (c) Relations as “tokens”

Figure 3.5: Examples of relation supervision strategies that incorporate dedicated embeddings of
relation types.

3.4.4 Summary and Outlook

Relation-level supervision in LMs is exciting because it enables a wide variety of complex NLP
tasks (Table 3.4). A unifying theme across many of these tasks is that of compositionality, or the
idea that smaller “building blocks” of evidence can be combined to arrive at novel knowledge. As
compositionality is thought to be key to machine generalization [Lake et al., 2017], we believe that
further fundamental research in understanding and improving LMs’ soft “reasoning” skills [Clark
et al., 2020, Talmor et al., 2020b] will be crucial (Ch. 3.4.1).

Finally, while most of the open directions we discuss involve improving LM knowledge with
KBs, we find the direction of generating KBs with LMs equally intriguing. This direction, which
can be formulated as the fundamental graph learning task of link prediction, reflects the fact that
LMs and KBs can complement each other in “both directions”: That is, inasmuch as KBs pro-
vide useful structured training sources for LMs, LMs can also help automate and scale out the
construction of higher-quality KBs. The generative COMET framework [Bosselut et al., 2019]
and its successors has made inroads in commonsense KB construction (Ch. 3.4.3), but the same
progress has not yet been observed for encyclopedic knowledge. The latter entails unique chal-
lenges: Whereas commonsense entities are not disambiguated and triples need only be plausible
rather than always true, encyclopedic entities are usually disambiguated and facts are often binary
true/false. Toward this goal, in Chapter 5 we will discuss novel models and resources for factual
KB completion via text-augmented graph learning. We also look forward to future research that
addresses this challenge from alternative perspectives, for example via generative factual entity
retrieval (Ch. 3.3.2).
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3.5 Conclusion

In this chapter, we proposed a novel taxonomy for relational world knowledge representation in
language models (LMs). We categorized knowledge representation strategies by the level of knowl-
edge base (KB) supervision provided to an LM, from no explicit supervision at all to entity- and
relation-level supervision. Within our taxonomy, we highlighted notable methodologies and find-
ings, illustrated concrete technical details, and made connections where applicable to key tasks in
graph learning.

Our review indicates that while LMs may not be viable replacements for KBs yet, LMs are
significantly expanding the utility of KBs by providing flexible interfaces to structured knowledge
that can be utilized in a host of complex language and reasoning tasks. Our review also highlights
the complementary and synergistic aspects of LMs and KBs. As we have shown, the knowledge
recall and reasoning abilities of LMs can be improved significantly using KB-level supervision. On
the converse, KBs can be automatically generated and augmented with LMs, in order to scale them
out without costly manual curation. In the following chapters we will focus on the latter direction,
that of using LMs to automatically complete KBs, and show that their pretrained “knowledge” and
adaptability to downstream tasks make them ideal for challenging KB completion tasks.
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CHAPTER 4

Inferring Negative Commonsense Knowledge

The material in this chapter is derived from the paper “NegatER: Unsupervised Dis-

covery of Negatives in Commonsense Knowledge Bases” [Safavi et al., 2021], which

appeared in the proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing (EMNLP).

4.1 Introduction

Having introduced language models (LMs) as powerful tools for machine knowledge representa-
tion and reasoning in the previous chapter, we now consider a knowledge acquisition task to which
LMs are well-suited. In particular, endowing machines with “commonsense,” which is knowledge
that members of a culture usually agree upon but do not express explicitly, is a major but elusive
goal of artificial intelligence [Minsky, 1974, Davis et al., 1993, Liu and Singh, 2004, Davis and
Marcus, 2015]. One way to capture such knowledge is with curated commonsense knowledge
bases (KBs), which contain semi-structured statements of “everyday” human knowledge, for ex-
ample pre-conditions of events, properties of objects, and outcomes of actions. As such KBs are
increasingly being used to augment the capabilities of intelligent agents [Hwang et al., 2021], auto-
matically expanding their scope has become crucial [Li et al., 2016, Davison et al., 2019, Bosselut
et al., 2019, Malaviya et al., 2020].

Previous research in this direction focuses primarily on the acquisition of positive knowledge,
or that which is true about the world. However, understanding what is true about the world of-
ten also requires gathering and reasoning over explicitly untrue information. Humans routinely
rely on negative knowledge—that is, what “not to do” or what “not to believe”—in order to in-
crease certainty in decision-making and avoid mistakes and accidents [Minsky, 1994]. Similarly,
discriminative models that operate over structured knowledge from KBs often require explicit neg-
ative examples in order to learn good decision boundaries [Sun et al., 2019, Ahrabian et al., 2020,
Ma et al., 2021a].
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Table 4.1: Out-of-KB statements are less meaningful as negative examples when sampled at ran-
dom versus ranked with our NegatER framework. The random examples are taken from the test
split of the ConceptNet benchmark introduced by Li et al. [2016].

Method Negative statement

Random sampling
(“tickle”, HasSubevent, “supermarket”)
(“lawn mower”, AtLocation, “pantry”)
(“closet”, UsedFor, “play baseball”)

NegatER ranking
(“ride horse”, HasSubevent, “pedal”)
(“zoo keeper”, AtLocation, “jungle”)
(“air ticket”, UsedFor, “get onto trolley”)

The main challenge with machine acquisition of structured negative knowledge, commonsense
or otherwise, is that most KBs do not contain negatives at all [Arnaout et al., 2020]. Therefore,
for KB-related tasks that require both positive and negative statements, negatives must either be
gathered via human annotation, or else generated ad-hoc. Both of these approaches entail distinct
challenges. On one hand, human annotation of negatives can be cost-prohibitive at scale. On the
other, automatic negative generation without good training examples can lead to uninformative,
even nonsensical statements (Table 4.1), because the prevailing approach is to randomly sample
negatives from the large space of all out-of-KB statements [Li et al., 2016].

4.1.1 Contributions

To strike a balance between expert annotation, which is costly but accurate, and random sampling,
which is efficient but inaccurate, in this chapter we propose NegatER, a framework for unsuper-
vised discovery of Negative Commonsense Knowledge in Entity and Relation form. Rather than
randomly sampling from the space of all out-of-KB statements to obtain negatives, NegatER ranks

a selection of these statements such that higher-ranking statements are “more likely” to be nega-
tive. We propose to rank statements using a fine-tuned contextual language model (LM), building
upon our taxonomy in the previous chapter, in which we demonstrated that LMs can be trained
with relation-level supervision strategies to express world knowledge.

Importantly, because we do not assume the presence of gold negative examples for training
the LM, we devise techniques that make use of positive KB statements only. This distinguishes
NegatER from supervised generative commonsense KB construction techniques that require abun-
dant gold examples, usually obtained via human annotation, for fine-tuning [Bosselut et al., 2019,
Hwang et al., 2021, Jiang et al., 2021]. Our realistic assumption means that we do not have any
explicit examples of true negatives and therefore cannot guarantee a minimum true negative rate;
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indeed, obtaining true negatives in KBs is a hard problem in general [Arnaout et al., 2020]. How-
ever, we show in detailed experiments that NegatER strikes a delicate balance between several
factors that contribute to high-quality negative knowledge, including task-specific utility, coher-
ence, and the true negative rate.

Our contributions are as follows:

• New problem definition (Ch. 4.3): We provide the first rigorous definition of negative
knowledge in commonsense KBs, which as far as we are aware has not been studied be-
fore.

• Unified methodology (Ch. 4.4): We introduce NegatER, a new approach for negative com-
monsense knowledge representation and reasoning that combines relational knowledge bases
and language models in a unified framework. NegatER ranks out-of-KB potential negatives
using a contextual LM to discover negatives. As KBs typically do not contain gold neg-
atives, we devise an approach that relies only on the LM’s positive beliefs. Specifically,
NegatER first fine-tunes the LM to acquire high-quality positive knowledge, then ranks po-
tential negatives by how much they “contradict” the LM’s positive knowledge, as measured
by its classification scores or gradients.

• Extensive experiments (Ch. 4.5, 4.6, and 4.7): In keeping with the novelty of the problem,
we conduct multiple experimental evaluations that address the fundamental research ques-
tions of negative commonsense. First, we measure the effectiveness of our LM fine-tuning
approach and the utility of NegatER-generated negatives in KB completion tasks. Next, we
study the intrinsic quality of the generated negatives. When considering all such factors,
NegatER outperforms numerous competitive baselines. Most notably, training KB com-
pletion models with highly-ranked negative examples from NegatER results in statistically
significant accuracy improvements of up to 1.90%.

4.2 Related Work

Commonsense KB completion Existing approaches to automatic commonsense KB comple-
tion include link prediction, both classification-based [Li et al., 2016, Saito et al., 2018, Jastrzebski
et al., 2018, Davison et al., 2019] and ranking-based [Malaviya et al., 2020], as well as genera-
tive approaches that train decoder language models to complete triple prefixes with novel knowl-
edge [Bosselut et al., 2019, Hwang et al., 2021]. Such approaches either focus solely on modeling
positive knowledge, or else generate negatives at random, making our work the first attempt at
automatically generating meaningful negative knowledge.
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Knowledge in language models As discussed in our review of LMs as world knowledge rep-
resentations (Ch. 3), several studies have shown that deep contextual language models acquire a
degree of implicit commonsense “knowledge” during pretraining [Petroni et al., 2019, Davison
et al., 2019, Roberts et al., 2020], although this knowledge has shown to be brittle to, for exam-
ple, linguistic negation [Kassner and Schütze, 2020, Ettinger, 2020]. Note, of course, that we
distinguish negation from negative knowledge, as the latter specifically refers to false statements
that do not necessarily contain negative particles. Beyond pretraining, there is ample evidence
that the accuracy and robustness of LM knowledge can be improved significantly by targeted fine-
tuning [Bosselut et al., 2019, Kassner and Schütze, 2020, Jiang et al., 2021, Hwang et al., 2021].
We take the latter direction in this chapter, but toward the novel goal of generating negative rather
than positive knowledge.

Negative sampling While we are not aware of any existing work on negative sampling for com-
monsense knowledge, several negative samplers for encyclopedic KBs like Freebase and Wikidata
exist, including self-adversarial [Cai and Wang, 2018, Sun et al., 2019], graph-structural [Ahrabian
et al., 2020], and heuristic “interestingness” [Arnaout et al., 2020] approaches. While these meth-
ods share our high-level goal, we show in our experiments that they are less effective on highly
sparse commonsense KBs.

Beyond knowledge bases, the problem of mining or generating hard training negatives is well-
studied [Ying et al., 2018, Cohan et al., 2020, Xiong et al., 2020a, Ma et al., 2021a]. Ying et al.
[2018] proposed a hard negative mining strategy for improving the precision of recommender sys-
tems, as the class distribution of positive and negative items are typically highly imbalanced in
such settings. Xiong et al. [2020a] proposed a self-adversarial negative sampling strategy for im-
proving the discriminative ability of dual encoders for information retrieval, demonstrating large
gains in retrieval accuracy with better negative samples. From the commonsense question answer-
ing community, several studies have addressed the concept of “distractor” negatives as plausible
but incorrect answers to multiple-choice questions [Talmor et al., 2019, Shen et al., 2020, Ma
et al., 2021a]. The latter research direction is the closest to ours, but such studies consider question
answering, whereas we focus on the graph learning task of KB completion.

4.3 Problem Definition

As the problem of negative knowledge has not yet been addressed in the commonsense KB com-
pletion literature, we begin by defining meaningful negatives in commonsense KBs.
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Positive knowledge A commonsense knowledge base (KB) consists of triples {x+} =

{(Xh, r,Xt)
+}, where the superscript denotes that all in-KB triples are assumed to be positive

or true. As discussed in Chapter 2.3, commonsense KBs are semi-structured and do not dis-
ambiguate entities. In each triple, the head and tail entities take the form of free-text phrases
Xh = [w1, . . . , wh] and Xt = [w1, . . . , wt] drawn from a potentially infinite vocabulary. The rela-
tion types r are symbolic and drawn from a finite dictionary R. Figure 4.1 provides examples of
positive statements from the ConceptNet KB [Speer and Havasi, 2012], e.g., (Xh=“horse”, r=IsA,
Xt=“expensive pet”).

Negative knowledge We denote a negative triple as x− ̸∈ {x+}. As the space of negatives is
evidently much larger than the space of positives, we define negative knowledge to exclude trivial
negatives, for example simple negations or nonsensical statements.

Drawing from the literature on procedural negative expertise in humans [Minsky, 1994, Gart-
meier et al., 2008], we define negative knowledge as nonviable or explicitly false knowledge that
is heuristically valuable with respect to a given task, goal, or decision. In the context of KBs, we
devise three requirements that, combined, satisfy this definition:

R1 Negative knowledge must resemble positive knowledge in structure. This means that nega-
tive statements should obey the grammatical rules (parts of speech) of their relation types.

R2 The head and tail phrases must be thematically or topically consistent. For example, given
the head phrase Xh=“make coffee,” a consistent tail phrase is one that is thematically re-
lated but still nonviable with respect to the whole statement, for example (“make coffee”,
HasSubevent, “buy tea”).

R3 Negative knowledge must be informative for a given task, goal, or decision. We consider a
statement as informative if, when taken as true, it is counterproductive or contradictory to
the goal at hand, e.g., (“make coffee”, HasSubevent, “drop mug”).

4.4 Methodology

We propose the NegatER framework to solve the problem of negative knowledge defined in the
previous section.

4.4.1 NegatER Overview

As shown in Figure 4.1, NegatER consists of two steps:

40



Figure 4.1: NegatER consists of two steps: (1) Fine-tuning an LM on the input KB to obtain
strong positive beliefs; and (2) Feeding a set of out-of-KB candidate statements to the fine-tuned
LM and ranking them by the LM’s classification scores or gradients. Here, the KB is a fragment
of ConceptNet [Speer and Havasi, 2012].

1. A pretrained LM is fine-tuned on a given commonsense KB using a contrastive approach to
acquire strong positive beliefs.

2. A set of grammatical (R1) and topically consistent (R2) out-of-KB candidate statements
are fed to the LM and ranked by the degree to which they “contradict” the LM’s fine-tuned
positive beliefs (R3), such that the higher-ranking statements are more likely to be negative.

We emphasize that ground-truth negative examples are not required at any point, which means
that we trade off some accuracy (i.e., the true negative rate) for cost efficiency (i.e., the cost of
gathering ground-truth negative examples for training via expert annotation).

4.4.2 Injecting Positive Knowledge into LMs

The first step of NegatER is to minimally fine-tune a language model on a given commonsense
KB using contrastive learning (step 1, Figure 4.1), such that it acquires strong positive beliefs.
We focus on encoder-only BERT-based models [Devlin et al., 2019, Liu et al., 2019], which we
introduced as powerful contextual text representation tools in Chapter 2.5.2, as we will ultimately
use their fine-tuned encodings to represent triples.

LM input and output We input a KB triple (Xh, r,Xt) to the LM by concatenating BERT’s
special [CLS] token with a linearized version of the triple, delineating the head tokens Xh, the
relation r, and the tail tokens Xt with BERT’s special [SEP] token. At the output of the encoder,
we apply a semantic-level pooling operation (e.g., any of those proposed by Reimers and Gurevych
[2019]) to obtain a single contextual representation of the triple, and pass it through a classification
layer W ∈ RH , where H is the hidden layer dimension.
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Supervision strategy Since the goal of fine-tuning is to endow the LM with strong positive
beliefs, we use a common contrastive data augmentation technique for positive KB triple classi-
fication [Li et al., 2016, Malaviya et al., 2020]. Specifically, for each positive x+, we construct
a contrastive corrupted version where the head, relation, or tail has been replaced by a random
phrase or relation from the KB. We minimize binary cross-entropy loss between the positive train-
ing examples and their corrupted counterparts. We learn a decision threshold θr per relation r on
the validation set to maximize validation accuracy, such that triples of relation r scored above θr

are classified as positive.

4.4.3 Ranking Out-of-KB Statements

Now that we have an LM fine-tuned to a given commonsense KB, we feed a set of out-of-KB
candidate statements to the LM in the same format as was used during fine-tuning, and rank them
by the degree to which they “contradict” the LM’s positive beliefs (step 2, Figure 4.1).

Out-of-KB candidate generation To gather out-of-KB candidate statements, we use a dense
k-nearest-neighbors retrieval approach. The idea here is that the set of all out-of-KB statements
is extremely large and most such statements are not likely to be meaningful, so we narrow the
candidates down to a smaller set that is more likely to be grammatical (R1) and consistent (R2).

For each positive triple x+ = (Xh, r,Xt)
+, we retrieve the k nearest-neighbor phrases to head

phrase Xh using a maximum inner product search [Johnson et al., 2019] over pre-computed em-
beddings of the KB’s entity phrases. While any choice of embedding and distance measure may
be used, we use Euclidean distance between the [CLS] embeddings output by a separate pre-
trained BERT model for its empirical good performance. We then replace Xh in the head slot of
the original positive x+ by each of its neighbors X̃h in turn, yielding a set of candidates

{x̃}ki=1, x̃ = (X̃h, r,Xt).

We discard any candidates that already appear in the KB and repeat this process for the tail phrase
Xt, yielding up to 2k candidates x̃ per positive x+. We also filter the candidates to only those for
which the retrieved head (tail) phrase X̃h (X̃t) appears in the head (tail) slot of relation r in the
KB.

Meeting R1, R2, and R3 Our filtering process discards candidate triples whose head/tail entities
have not been observed to co-occur with relation r, which preserves the grammar (R1) of the
relation. Notice that by retrieving the nearest neighbors of each head and tail phrase by semantic
similarity, we also preserve the topical consistency (R2) of the original positive statements.
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Finally, to meet requirement R3, we rank the remaining out-of-KB candidates by the degree to
which they “contradict” the positive beliefs of the fine-tuned LM. These ranked statements can be
then taken in order of rank descending as input to any discriminative KB reasoning task requiring
negative examples, with the exact number of negatives being determined by the practitioner and
application. We propose two independent ranking strategies:

4.4.3.1 NEGATER-θr: Ranking with Scores

Our first approach, NEGATER-θr, relies on the decision thresholds θr set during the validation
stage of fine-tuning. We feed the candidates x̃ to the LM and take only those that the LM classifies
below the respective decision threshold θr. Per relation r, the candidates are ranked descending by
their scores at the output of the classification layer, such that the higher-ranking candidates look
more plausible—that is, “almost positive”—to the LM.

4.4.3.2 NEGATER-∇: Ranking with Gradients

The premise of our second approach, NEGATER-∇, is that the candidates that most “surprise” the
LM when labeled as true are the most likely to be negative, because they most directly contradict
what the LM has observed during fine-tuning.

We quantify “surprisal” with the LM’s gradients. Let L(x̃; ỹ) be the binary cross-entropy loss
evaluated on candidate x̃ given a corresponding label ỹ ∈ {−1, 1}. We feed each x̃ to the LM
and compute the magnitude of the gradient of L with respect to the LM’s parameters Θ, given a
positive labeling of x̃:

M̃ =

∥∥∥∥∂L(x̃; ỹ = 1)

∂Θ

∥∥∥∥ , (4.1)

and rank candidates in descending order of gradient magnitude M̃ . Here, M̃ signifies the amount
to which the LM’s fine-tuned beliefs would need to be updated to incorporate this candidate as
positive. Therefore, the higher the M̃ , the more directly x̃ contradicts or negates the LM’s positive
beliefs.

Faster computation Because NEGATER-∇ requires a full forward and backward pass for each
candidate x̃, it can be costly for a large number N of candidates. We therefore propose a sim-
ple (optional) trick to speed up computation using a “proxy” for the gradients, as demonstrated
in Figure 4.2. We first compute M̃ for an initial sample of n ≪ N candidates. We then use the
contextual representations of these n candidates and their gradient magnitudes M̃ as training fea-
tures and targets, respectively, to learn a regression function f̃M : RH → R. Finally, we substitute
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Figure 4.2: Improving the efficiency of NEGATER-∇.

the LM’s fine-tuning layer with f̃M , allowing us to skip the backward pass and feed batches of
candidates x̃ to the LM in forward passes. In our experiments, we will show that this approach is
an effective and efficient alternative to full-gradient computation.

Gradients versus losses On the surface, it might seem that NEGATER-∇ could be made more
efficient by ranking examples descending by their losses, instead of gradients. However, notice that
the binary cross-entropy loss L(x̃; ỹ = 1) is low for candidates x̃ that receives high scores from
the LM, and high for candidates that receive low scores. Due to the contrastive approach that we
used for fine-tuning, candidates with the lowest losses are mainly true statements, and candidates
with the highest losses are mainly nonsensical statements. Therefore, the losses do not directly
correlate with how “contradictory” the candidate statements are. By contrast, the gradient-based
approach quantifies how much the LM would need to change its beliefs to incorporate the new
knowledge as positive, which more directly matches requirement R3.

4.5 Fine-Tuning Evaluation

In this section, we evaluate the efficacy of the fine-tuning step of NegatER. In the following sec-
tions, we will evaluate the efficacy of the ranking step of NegatER from quantitative and qualitative
perspectives.

4.5.1 Experimental Setup

Data The goal of this experiment is to evaluate whether our fine-tuning strategy from Ch. 4.4.2
endows LMs with sufficiently accurate positive knowledge. For this, we use the dataset intro-
duced by Li et al. [2016], which is a classification-based link prediction benchmark consists of
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Table 4.2: Our fine-tuned BERT reaches state-of-the-art accuracy on the ConceptNet benchmark
from [Li et al., 2016]. Baseline results are reported directly from the referenced papers.

Accuracy

Bilinear AVG [Li et al., 2016] 91.70
DNN AVG [Li et al., 2016] 92.00
DNN LSTM [Li et al., 2016] 89.20
DNN AVG + CKBG [Saito et al., 2018] 94.70
Factorized [Jastrzebski et al., 2018] 79.40
Prototypical [Jastrzebski et al., 2018] 89.00
Concatenation [Davison et al., 2019] 68.80
Template [Davison et al., 2019] 72.20
Template + Grammar [Davison et al., 2019] 74.40
Coherency Ranking [Davison et al., 2019] 78.80
KG-BERTBERT-BASE [Shen et al., 2020] 93.20
KG-BERTGLM(RoBERTa-LARGE) [Shen et al., 2020] 94.60

Fine-tuned BERT (ours) 95.42
Fine-tuned RoBERTa (ours) 94.37

Human estimate [Li et al., 2016] 95.00

100K/2400/2400 train/validation/test triples across 34 relations and 78,334 unique entity phrases
from the English-language ConceptNet 5 knowledge base [Speer and Havasi, 2012]. This bench-
mark has been used widely in the commonsense KB completion literature [Saito et al., 2018,
Jastrzebski et al., 2018, Davison et al., 2019, Bosselut et al., 2019, Shen et al., 2020].

Task We consider the original evaluation task proposed by Li et al. [2016] on the ConceptNet
dataset, formulated as classification-based KB link prediction (Chapter 2.2.1). The evaluation met-
ric is binary classification accuracy. In the evaluation splits, which are balanced positive/negative
50/50, the negatives were constructed by swapping the head, relation, or tail of each positive x+

with that of another randomly sampled positive from the KB. The task is technically inductive link
prediction, as the head/tail entity phrases in the test set triples are not necessarily contained within
the train set triples.

Note that while the test negatives were generated randomly and are therefore mostly nonsen-
sical (Table 4.1), we use this benchmark because it mainly tests models’ recognition of positive
knowledge, which matches the goals of our fine-tuning procedure. Ultimately, however, a more
difficult dataset will be needed, which we will introduce in the next section.

Baselines As baselines, we consider all published results on the same ConceptNet evaluation
splits of which we are aware. Our baselines include both KB embeddings [Li et al., 2016, Jastrzeb-

45



ski et al., 2018] and contextual LMs [Davison et al., 2019, Shen et al., 2020].

LM variants We fine-tune BERT-BASE [Devlin et al., 2019] and RoBERTa-BASE [Liu et al.,
2019]. To obtain a single contextual representation of a triple from a sequence of triple tokens,
we experiment with three standard pooling approaches [Reimers and Gurevych, 2019]: Taking the
reserved [CLS] token embedding from the output of the encoder, and mean- and max-pooling
over all output token representations. As we do not observe statistically significant differences
in performance among the pooling operations, we use the [CLS] token as the triple embedding,
since this is the established approach for textual embedding with BERT..

Software and hardware We implement our LMs with the Transformers PyTorch library [Wolf
et al., 2020] and run all experiments on a NVIDIA Tesla V100 GPU with 16 GB of RAM. Both
BERT and RoBERTa take around 1.5 hours/epoch to train on the ConceptNet benchmark. We
search manually among the following hyperparameters (best configuration for BERT in bold,
RoBERTa underlined): Batch size in {16, 32}; Learning rate in {10−4, 10−5,2× 10−5, 3×10−5};
Number of epochs in {3, 5, 7, 10,13}; Number of warmup steps in {0,10K, 100K}; Maximum
sequence length in {16,32, 64}. All other hyperparameters are as reported in [Devlin et al., 2019].

4.5.2 Results and Discussion

The results in Table 4.2 confirm the effectiveness of our fine-tuning approach, as our BERT reaches
state-of-the-art accuracy on ConceptNet. It even outperforms KG-BERTGLM(RoBERTa-LARGE) [Shen
et al., 2020], which requires an entity linking step during preprocessing and uses a RoBERTa-
LARGE model pretrained with several extra tasks. In fact, we suspect that our fine-tuned BERT
has saturated this benchmark, as it slightly exceeds the human accuracy estimate provided by Li
et al. [2016]. This motivates us to use a harder evaluation set in our next experiments.

4.6 Task-Based Evaluation

We next evaluate the efficacy of the ranking step in NegatER. Specifically, we next show how the
top-ranking negative examples from NegatER can be informative (R3) for training KB completion
models. Similar to the previous section, we fine-tune pretrained BERT and RoBERTa models for
a commonsense triple classification task. However, here we use a more challenging dataset split,
and vary the ways that negatives are sampled at training time.
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4.6.1 Experimental Setup

Data As discussed previously, the ConceptNet split introduced by Li et al. [2016] is already
saturated by BERT, likely because it contains “easy” negative test examples. We therefore con-
struct a new, more challenging link prediction split by taking the small percentage (3%) of triples
in the benchmark with negated relations (e.g., NotIsA, six total), each of which has a positive
counterpart in the KB (e.g., IsA). We filter the dataset to the positive/negated relation pairs only,
and take the negated triples as true negative instances for testing by removing the Not- rela-
tion prefixes. Our new split, which we call ConceptNet-TN to denote True Negatives, consists of
36,210/3,278/3,278 train/validation/test triples. Again, the classes are balanced positive/negative,
so accuracy is our main performance metric.

Note that because this dataset contains true (hard) negatives, we expect accuracy to be much
lower than what we achieved in Table 4.2.

Baselines As baselines we consider several contrastive data augmentation approaches, all of
which involve corrupting positive in-KB samples. We employ the following negative sampling
baselines designed for commonsense KBs:

• UNIFORM [Li et al., 2016, Saito et al., 2018]: We replace the head phrase Xh or tail phrase
Xt of each positive (Xh, r,Xt)

+ by uniformly sampling another phrase from the KB.

• COMET [Bosselut et al., 2019]: COMET is a version of GPT [Radford et al., 2018] that
was fine-tuned to generate the tail phrase of a commonsense triple, conditioned on a head
phrase and relation. To make COMET generate negatives, we prepend a “not” token to each
positive head phrase X+

h and generate 10 tail phrases XCOMET
t for the modified head/relation

prefix using beam search. Finally, we replace the tail phrase Xt in the positive with each
XCOMET

t in turn, yielding negatives (X+
h , r,X

COMET
t ).

To investigate whether negative samplers tailored to encyclopedic knowledge can transfer to com-
monsense, we employ the following state-of-the-art baselines designed for encyclopedic KBs:

• ROTATE-SA [Sun et al., 2019]: For each positive instance, a pool of candidate negatives
is generated with UNIFORM. The candidates are then scored by the (shallow, but state-
of-the-art) RotatE KB embedding, and a negative is sampled from the candidate pool with
probability proportional to the score distribution. We take the top 50% of self-adversarially
generated statements as negative examples, in order of score descending, from the last epoch
of training.
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Figure 4.3: Lower left corner is best: Wall-clock time versus training loss (MAE) for NEGATER-
∇ gradient magnitude prediction as training set size n increases.

• SANS [Ahrabian et al., 2020] is a graph-structural negative sampler that corrupts head/tail
phrases of positive instances by sampling from the k-hop neighborhood of each KB entity.
We set k = 2.

Finally, we devise two additional baselines:

• SLOTS: We replace the head phrase Xh (tail phrase Xt) of each positive (Xh, r,Xt)
+ by

uniformly sampling from the set of phrases that appear in the head (tail) slot of KB triples
mentioning relation r. We filter out all negative samples that appear in the KB.

• ANTONYMS: We tag each phrase in the KB as either a verb, noun, or adjective phrase using
the SpaCy POS tagger.1 Then, for each verb (noun, adjective) phrase, we replace the first
verb (noun, adjective) token with a randomly selected antonym from either WordNet [Miller,
1998] or the gold lexical contrast dataset from [Nguyen et al., 2016b].

NegatER variants We generate out-of-KB candidates for NegatER with our k-NN approach
using k=10, yielding around 570K candidates. We implement the NegatER candidate ranking
methods as follows:

• NEGATER-θr: We rank candidates using fine-tuned BERT’s classification scores. Since the
scores are scaled differently by relation type, we combine the top-ranking 50% of candidates
per relation and shuffle them.

• NEGATER-∇: We again use BERT to rank the candidates. To choose between the full-
gradient and gradient-prediction approaches (Ch. 4.4.3.2), we train an MLP to predict gradi-
ent magnitudes and plot the mean absolute error training loss after 100 epochs for different
training set sizes n. Figure 4.3 shows that even for n=5K examples, the loss quickly ap-
proaches zero. Therefore, for efficiency, we use an MLP trained on n=20K examples, which

1https://spacy.io/usage/linguistic-features#pos-tagging
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takes around 1 hour to train and rank candidates on a single GPU, compared to an estimated
14 hours for the full-gradient approach. For a random sample of 100 candidates, the Pearson
correlation coefficient between the true/predicted gradient magnitudes is ρ=0.982, indicating
that the approximation is highly accurate.

• No-ranking ablation: Finally, in order to measure the importance of the LM ranking com-
ponent of NegatER, we introduce an ablation which randomly shuffles the out-of-KB candi-
dates rather than ranking them.

After we obtain each ranked list of candidates, we feed the statements as negative training examples
to BERT/RoBERTa in order of rank descending.

4.6.2 Results and Discussion

For all performance metrics, we report averages over five trials to account for randomness in sam-
pling and parameter initializations.

Accuracy comparison As shown in Table 4.3, training with the top-ranking negative examples
from NegatER always yields the best accuracy for both LMs, up to 1.90% more than the baselines.
Note that this improvement is achieved with changing how only half of the training examples
(the negatives) are sampled. Notice also that our NegatER variants are the only samplers to offer
statistically significant improvements over the UNIFORM baseline at α < 0.01 for BERT and
α < 0.05 for RoBERTa (two-sided t-tests, five trials per model), signifying better-than-chance
improvements.

Notice also that our most competitive baseline is SLOTS, which is a contrastive approach that
samples new head/tail phrases from those appearing in the corresponding slots of the current re-
lation r—that is, preserving the grammar (R1) of the relation. This confirms that grammatical
negative samples are indeed more informative than nonsensical ones.

Encyclopedic versus commonsense? We hypothesize that the encyclopedic KB baselines
ROTATE-SA and SANS underperform because such methods assume that the KB is a dense graph.
While this is usually true for encyclopedic KBs, many commonsense KBs are highly sparse be-
cause entities are not disambiguated, which means that multiple phrases referring to the same
concept may be treated as different entities in the KB. Malaviya et al. [2020] provide an illustrative
example for comparison in their study of ranking-based commonsense KB completion: The pop-
ular encyclopedic KB completion benchmark FB15K-237 [Toutanova and Chen, 2015] is 75×
denser than the ConceptNet benchmark studied in this chapter. Indeed, our SANS baseline as-
sumes that there are plentiful entities within the k-hop neighborhood of a query entity, whereas in
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Table 4.3: Accuracy on ConceptNet-TN using different negative sampling approaches: Our
NegatER variants are the only negative samplers to offer statistically significant improvements
over the popular UNIFORM baseline at α < 0.01 (▲) for BERT and α < 0.05 (△) for RoBERTa
(two-sided t-test, five trials per model). Bold/underline: Best result per LM; Underline only:
Second-best result per LM.

BERT RoBERTa
B

as
el

in
es

UNIFORM 75.60 ± 0.24 75.55 ± 0.43
COMET 76.04 ± 0.63 75.86 ± 0.75
ROTATE-SA 75.30 ± 0.51 75.20 ± 0.37
SANS 75.45 ± 0.38 75.17 ± 0.37
SLOTS 76.46 ± 0.58△ 75.80 ± 0.25
ANTONYMS 76.06 ± 0.30△ 75.58 ± 0.58

N
eg

at
E

R θr ranking 76.95 ± 0.28▲ 76.29 ± 0.59
∇ ranking 76.53 ± 0.22▲ 76.34 ± 0.32△

No ranking 75.61 ± 0.29 75.29 ± 0.19

reality there may be very few, and these entities may not be grammatical in context of the original
positive (R1) nor thematically relevant (R2) to the query entity. Therefore, encyclopedic negative
samplers may not be transferrable to commonsense KBs or other highly sparse KBs.

Ablation study Table 4.3 also indicates that the LM ranking component of NegatER is crucial
for improving accuracy. Our no-ranking ablation leads to lower classification accuracy than both
NEGATER-θr and NEGATER-∇. Empirically, we find that this is because the ranking step helps
filter out false negatives generated by our k-NN candidate construction procedure.

Performance drill-down Finally, Table 4.4 provides precision and recall scores to further “drill
down” into NegatER’s effects. Evidently, the NegatER variants consistently yield the best preci-
sion, whereas there is no consistent winner in terms of recall. To understand why NegatER im-
proves precision, we remind the reader that precision is calculated as P = (TP )/(TP + FP ),
where TP stands for true positives and FP stands for false positives. Because training with
NegatER examples helps the LMs better recognize hard negatives—examples that “look positive”
but are really negative—the LM mislabels fewer negatives, decreasing the false positive rate.

4.7 Human Evaluation

Finally, we collect qualitative human judgments on the examples output by each negative sampler.
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Table 4.4: NegatER consistently yields the highest precision on ConceptNet-TN among negative
samplers because it lowers the false positive rate: Performance drill-down (stdevs omitted for
space). ▲, △: Significant improvement over UNIFORM at α < 0.01 and α < 0.05, respectively.

BERT RoBERTa
Prec. Rec. Prec. Rec.

B
as

el
in

es
UNIFORM 71.29 85.83 73.36 80.28
COMET 73.73 80.99 73.47 81.02
ROTATE-SA 74.83 76.59 73.70 78.48
SANS 72.54 82.11 73.26 79.50
SLOTS 75.21△ 79.34 73.85 80.17
ANTONYMS 72.55 83.98 72.98 81.62

N
eg

at
E

R θr ranking 75.12▲ 80.68 75.92▲ 77.05
∇ ranking 76.60▲ 76.50 75.75▲ 77.57
No ranking 76.81▲ 73.42 75.67△ 74.78

4.7.1 Experimental Setup

Data To cover a diverse set of reasoning scenarios, we consider the HasPrerequisite,
HasProperty, HasSubevent, ReceivesAction, and UsedFor relations from Concept-
Net. For each relation and negative sampler, we take 30 negative statements at random, yield-
ing 1,350 statements judged in total (5 relations × 9 negative samplers × 30 statements per
method/relation).

Task We gather judgments for (R1) grammar on a binary scale (incorrect/correct) and (R2) the-
matic consistency of the head/tail phrases on a 4-point scale (“not consistent at all”, “a little con-
sistent”, “somewhat consistent”, “highly consistent”). To estimate the true negative rate, we also
obtain truthfulness judgments on a 4-point scale (“not truthful at all”, “sometimes true”, “mostly
true”, “always true”). We recruit four annotators who are fluent in English. Among 50 statements
shared across the annotators, we observe an average variance of 0.058 points on the 0/1 scale for
R1, 0.418 points on the 4-point scale for R2, and 0.364 points on the 4-point truthfulness scale.
According to previous work in commonsense KB construction [Romero et al., 2019], these values
indicate high agreement. We provide the annotation instructions in Appendix A.

4.7.2 Results and Discussion

Table 4.5 compares normalized average judgment scores for R1 and R2, as well as the percentage
of statements labeled as “never true” (i.e., the true negative rate). The table suggests two takeaways.
The first is that the requirements of negative knowledge are a tradeoff, as methods with higher true
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Table 4.5: NegatER best trades off grammar (R1), consistency (R2), and the true negative rate,
as measured by the percentage of statements labeled “never true”: Human annotation scores, nor-
malized out of 1. Relative and average ranks are provided because not all raw metrics are directly
comparable—e.g., grammar (R1) is judged as binary, whereas consistency (R2) is graded.

R1 R2 % “never true” Avg rank

B
as

el
in

es

UNIFORM 0.487 (9) 0.408 (7) 0.747 (3) 6.33 (9)
COMET 0.580 (8) 0.703 (1) 0.407 (9) 6.00 (8)
ROTATE-SA 0.733 (7) 0.373 (8) 0.767 (2) 5.67 (7)
SANS 0.760 (6) 0.532 (5) 0.633 (4) 5.00 (4)
SLOTS 0.853 (5) 0.372 (9) 0.773 (1) 5.00 (4)
ANTONYMS 0.860 (4) 0.495 (6) 0.613 (5) 5.00 (4)

N
eg

at
E

R θr ranking 0.880 (3) 0.635 (2) 0.413 (8) 4.33 (3)
∇ ranking 0.927 (1) 0.555 (4) 0.587 (6) 3.67 (1)
No ranking 0.920 (2) 0.592 (3) 0.560 (7) 4.00 (2)

Table 4.6: Our NEGATER-∇ variant best handles the tradeoff between consistency (R2) and truth-
fulness: Representative negative examples from the most competitive methods SLOTS, NEGATER-
θr, and NEGATER-∇.

Method Negative statement Consistent? True?

SLOTS

(“open business”, HasPrerequisite, “hide behind door”) A little Never
(“go somewhere”, HasSubevent, “bruise appears”) Not at all Never
(“mailbox”, UsedFor, “sleeping guests”) Not at all Never

NEGATER-θr
(“play baseball”, HasPrerequisite, “join hockey team”) Somewhat Never
(“comfort someone”, HasSubevent, “talk with them”) Highly Mostly
(“having a bath”, UsedFor, “refreshing yourself”) Highly Sometimes

NEGATER-∇
(“hear news”, HasPrerequisite, “record something”) A little Never
(“drink water”, HasSubevent, “inebriation”) Highly Never
(“luggage trolley”, UsedFor, “moving rocks”) Highly Never
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negative rates (ROTATE-SA, SLOTS) more often output ungrammatical or unconsistent statements,
whereas methods that yield more consistent statements like COMET have a comparatively low true
negative rate. The second is that NEGATER-∇ best manages this tradeoff, as it achieves the best
average rank among all methods over the three criteria.

Finally, Table 4.6 provides examples of statements with consistency (R2) and truthfulness judg-
ments. Again, it is evident that NEGATER-∇ best manages the tradeoffs of negative knowledge.
In fact, it is the only negative sampler for which a majority of examples are rated both as “never
true” (58.67%) and “somewhat consistent” or higher (62%).

4.8 Conclusion

In this chapter, we considered the problem of negative knowledge in commonsense KBs. Given
the lack of research in this direction, we first rigorously defined negative commonsense knowl-
edge. Next, we proposed a language model-based framework, NegatER, to address this problem.
Importantly, NegatER does not require ground-truth negatives at any point, making it an effective
choice when gold training examples are not available. We empirically demonstrated the strength
of NegatER over many competitive baselines in multiple evaluations, including the strength of
our fine-tuning approach, the task-based utility of NegatER statements, and the intrinsic quality of
these statements. In particular, we observed the tradeoffs inherent to generating negative knowl-
edge in terms of cohesiveness, downstream utility, and the true negative rate, and showed that
NegatER uniquely strikes a balance between these competing criteria.
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CHAPTER 5

Generating Novel Factual Knowledge

The material in this chapter is partially derived from the paper “CoDEx: A Compre-

hensive Knowledge Graph Completion Benchmark” [Safavi and Koutra, 2020], which

appeared in the proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP). It is also partially derived from ongoing work with

the Allen Institute for Artificial Intelligence and the University of Washington, planned

for submission in mid-2022 to a premier natural language processing conference.

5.1 Introduction

In this chapter, we continue to study the problem of machine knowledge representation with re-
lational knowledge bases (KBs) and pretrained language models (LMs). However, whereas we
focused on commonsense knowledge in the previous chapter, we now turn to encyclopedia-style
knowledge about notable entities. In particular, we consider the task of automatic knowledge base
completion, or KBC, which we introduced in Chapter 2.3.1. KBC is motivated by the observation
that most large-scale KBs are high-precision but low-recall, missing many basic facts about notable
people like their places of birth and occupation(s) [Galárraga et al., 2017, Weikum et al., 2021].

Our goal in this chapter is to introduce new resources and models for cross-modal KB link
prediction—that is, KBC spanning structured relational and textual knowledge sources. Surpris-
ingly, this direction has received relatively little attention in the literature compared to structure-
only KBC, even though most KBs are linked to plentiful textual features like entity descriptions
and Wikipedia infoboxes. Toward this goal, we identify two key gaps in the literature:

Lack of evaluation benchmarks As progress in artificial intelligence depends heavily on data,
a relevant and high-quality benchmark is imperative to advancing the state of the art in cross-
modal KBC. However, no comprehensive enyclopedic KBC benchmark combining structure and
text exists. Currently, the prevailing approach for cross-modal KBC evaluation is to link subsets of
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Table 5.1: Qualitative comparison of CODEX to existing Freebase benchmarks.

Freebase variants (FB15K, FB15K-237) CODEX datasets

Scope (domains) Multi-domain, with a strong focus on awards,
entertainment, and sports

Multi-domain, with focuses on writing,
entertainment, music, politics, journal-
ism, academics, and science

Scope (auxiliary data) Various decentralized versions with, e.g., en-
tity types [Xie et al., 2016], entity descrip-
tions [Wang et al., 2021a], and randomly sam-
pled negatives [Socher et al., 2013]

Centralized repository of three datasets
with multilingual entity and relation de-
scriptions, entity types, and manually ver-
ified hard negatives

Difficulty FB15K has train/test leakage from inverse re-
lations [Toutanova and Chen, 2015]; FB15K-
237 has a high proportion of frequency-based
relational patterns

Inverse relations removed from all
datasets to avoid train/test leakage; few
trivial patterns for the task of link predic-
tion; manually annotated hard negatives
for the task of triple classification

the deprecated Freebase KB [Bollacker et al., 2008] to textual sources like Wikipedia. However,
we will show in this chapter that such datasets are limited in scope and difficulty, motivating the
need for a new, purposefully designed KBC benchmark.

Lack of effective, efficient models KBC is most often formulated as ranking-based link pre-
diction in a multi-relational graph [Ruffinelli et al., 2020]. Currently, the most effective KBC
approaches in terms of ranking performance are efficient shallow KB embeddings that learn to
rank potential links by modeling structural patterns in the KB [Sun et al., 2019, Ruffinelli et al.,
2020]. However, these approaches do not leverage text. Conversely, pretrained language mod-
els (LMs) have recently shown promise in the link prediction task [Yao et al., 2019, Wang et al.,
2021a]. However, they suffer from impractically slow inference time due to the combinatorial
explosion problem of pairwise ranking with deep Transformer networks. It remains to be seen
whether the efficiency and structural modeling ability of KB embeddings can be combined with
the rich contextual representations from LMs for KBC.

5.1.1 Contributions

In this chapter, we propose to address both challenges. To address the need for cross-modal KBC
evaluation benchmarks, we first present CODEX, a set of knowledge graph Completion Datasets
Extracted from the Wikidata KB [Vrandečić and Krötzsch, 2014] and its sister project Wikipedia.
Inasmuch as Wikidata is considered the successor of Freebase, CODEX improves upon existing
Freebase-based KBC benchmarks in terms of scope and difficulty (Table 5.1). We provide in-depth
analysis of CODEX to demonstrate its unique value as a KBC resource.

Next, we propose CascadER, a multi-stage Cascade pipeline for Entities and Relations. Cas-
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cadER is an integrated approach to link prediction that takes full advantage of both structure and
text in KBs. Motivated by the observation that structure-only KB embeddings are faster but poten-
tially less expressive than deep contextual LMs for link prediction, CascadER uses LMs to rerank

small sets of link prediction outputs from KB embeddings—exploiting their strengths on promising
subsets of the problem space while avoiding their inefficiencies. Extensive experiments demon-
strate that CascadER achieves remarkable and consistent gains of up to 9 points MRR (mean recip-
rocal rank) over strong structure-only baselines on challenging link prediction datasets, including
but not limited to CODEX.

Our contributions are as follows:

• New comprehensive benchmark (Ch. 5.3): To provide a starting point for future research in
cross-modal KBC, we introduce CODEX, a new KBC benchmark comprising structure and
text. We provide extensive qualitative and quantitative analysis of CODEX to demonstrate
its unique merits compared to an existing KBC benchmark extracted from Freebase.

• New model fusion approach (Ch. 5.4): As a first step toward cross-modal ranking-based
link prediction, we propose CascadER. CascadER is a multi-stage cascade ranking pipeline
that uses expressive but computationally intensive LMs to rerank the partial outputs of shal-
low, fast KB embeddings. In order to control the “effectiveness-efficiency” tradeoff in multi-
stage ranking [Wang et al., 2011], we propose a novel adaptive answer selection strategy that,
for each link prediction query, predicts the number of top-ranked candidates to progress to
the following tier.

• Extensive experiments (Ch. 5.5): We evaluate CascadER on five link prediction bench-
marks including but not limited to CODEX. CascadER achieves the highest MRR out of a
suite of competitive baselines, up to 9 points improvement over the strongest structure-only
baseline and 16 points improvement over the strongest text-only baseline. Moreover, Cas-
cadER exceeds the performance of our most competitive cross-modal ensembling baseline,
while being more efficient by one or more orders of magnitude.

5.2 Related Work

In this section, we cover notable evaluation benchmarks and models for cross-modal KBC.

Cross-modal KBC benchmarks The most widely-used KBC benchmarks are extracted from
Freebase [Bollacker et al., 2008]. FB15K was introduced by Bordes et al. [2013], It contains 14K
entities, 1.3K relations, and 592K triples covering several domains, with a strong focus on awards,
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entertainment, and sports. Toutanova and Chen [2015] introduced FB15K-237 to remedy data
leakage in FB15K, which contains many test triples that can be predicted by inverting triples in the
training set. FB15K-237 contains 14K entities, 237 relations, and 310K triples. Multiple studies
have linked FB15K and FB15K-237 to Wikipedia to obtain aliases and textual descriptions of
entities [Yao et al., 2019, Wang et al., 2021a]; we provide a detailed comparison of FB15K-237
to our proposed dataset CODEX in Ch. 5.3.

Beyond Freebase, the NELL-995 dataset [Xiong et al., 2017] was taken from the Never End-
ing Language Learner (NELL) system [Mitchell et al., 2018], which continuously reads textual
documents on the Web to obtain and update its knowledge. NELL-995, a subset of the 995th itera-
tion of NELL, contains 75K entities, 200 relations, and 154K triples. While NELL-995 is general
and covers many domains, its mean average precision was less than 50% around its 1000th itera-
tion [Mitchell et al., 2018]. A higher-precision benchmark is YAGO3-10 [Dettmers et al., 2018],
which is a subset of YAGO3 [Mahdisoltani et al., 2014] covering portions of Wikipedia, Wikidata,
and WordNet. YAGO3-10 has 123K entities, 37 relations, and 1M triples mostly limited to facts
about people and locations. While containing both structure and text, YAGO3-10 was shown to
contain a high proportion of semantically duplicate relations [Akrami et al., 2020, Pezeshkpour
et al., 2020].

To provide a high-level overview of benchmarks for this task, Table 5.2 considers a selection of
papers published between 2014 and 2020 in the main proceedings of conferences where KBC em-
bedding papers are most likely to appear: Artificial intelligence (AAAI, IJCAI), machine learning
(ICML, ICLR, NeurIPS), and natural language processing (ACL, EMNLP, NAACL). The evalua-
tion benchmarks covered in the table are FB15K [Bordes et al., 2013], WN18 [Bordes et al., 2013],
FB15K-237 [Toutanova and Chen, 2015], WN18RR [Dettmers et al., 2018], FB13 [Socher et al.,
2013], WN11 [Socher et al., 2013], NELL-995 [Xiong et al., 2017], YAGO3-10 [Dettmers et al.,
2018], Countries [Bouchard et al., 2015], UMLS [McCray, 2003], Kinship [Kemp et al., 2006],
Families [Hinton, 1986], and other versions of NELL [Mitchell et al., 2018].

Joint modeling on KBs The task of inferring novel links in KBs has been studied widely over
the last decade. The most prevalent approaches are structure-only KB embeddings [Nickel et al.,
2011, Bordes et al., 2013, Trouillon et al., 2016, Sun et al., 2019, Balazevic et al., 2019a, Ji et al.,
2020]. That said, prior to the introduction of pretrained contextual language models, a few cross-
modal structure and text modeling approaches were also proposed [Toutanova et al., 2015, 2016,
Xie et al., 2016]. Such approaches rely on convolutional text representation architectures to obtain
embeddings of entities or relations using, e.g., entity descriptions [Xie et al., 2016] or textual
relation mentions [Toutanova et al., 2015]. These text-based embeddings are then composed using
structural KB embedding scoring functions to rank potential novel links in the KB.
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Table 5.2: A review of KBC benchmarks and evaluation tasks. Ranking refers to ranking-based
link prediction, and classif. refers to classification-based link prediction.

Reference

Datasets Evaluation tasks

FB
15

K

FB
15

K
-2

37

FB
13

W
N

18

W
N

18
R

R

W
N

11

Other R
an

ki
ng

C
la

ss
if

.

Other

A
A

A
I,

IJ
C

A
I

[Wang et al., 2014] ✓ ✓ ✓ ✓ FB5M ✓ ✓
relation extraction

(FB5M)

[Lin et al., 2015b] ✓ ✓ ✓ ✓ FB40K ✓ ✓
relation extraction

(FB40K)
[Wang et al., 2015] NELL (Location, Sports) ✓

[Nickel et al., 2016] ✓ ✓ Countries ✓

[Lin et al., 2016] FB24K ✓

[Wang et al., 2016] ✓ ✓ ✓

[Xiao et al., 2016a] ✓ ✓ ✓ ✓ ✓ ✓

[Jia et al., 2016] ✓ ✓ ✓ ✓ ✓ ✓

[Xie et al., 2016] ✓ FB15K-237+ ✓ ✓

[Shi and Weninger, 2017] ✓ SemMedDB, DBPedia ✓
fact checking (not on

FB15K-237)
[Dettmers et al., 2018] ✓ ✓ ✓ ✓ YAGO3-10, Countries ✓

[Ebisu and Ichise, 2018] ✓ ✓ ✓

[Guo et al., 2018] ✓ YAGO37 ✓

[Zhang et al., 2020] ✓ ✓ ✓ ✓ ✓

[Vashishth et al., 2020a] ✓ ✓ YAGO3-10 ✓

IC
M

L
,I

C
L

R
,N

eu
rI

PS

[Yang et al., 2015] ✓ ✓ FB15K-401 ✓
rule extraction
(FB15K-401)

[Trouillon et al., 2016] ✓ ✓ ✓

[Liu et al., 2017] ✓ ✓ ✓

[Kazemi and Poole, 2018] ✓ ✓ ✓

[Das et al., 2018] ✓ ✓
NELL-995, UMLS, Kinship,

Countries, WikiMovies
✓ QA (WikiMovies)

[Lacroix et al., 2018] ✓ ✓ ✓ ✓ YAGO3-10 ✓

[Guo et al., 2019] ✓ ✓ ✓
DBPedia-YAGO3,
DBPedia-Wikidata

✓
entity alignment

(DBPedia graphs)
[Sun et al., 2019] ✓ ✓ ✓ ✓ ✓

[Zhang et al., 2019a] ✓ ✓ ✓ ✓ ✓

[Balazevic et al., 2019b] ✓ ✓ ✓

[Vashishth et al., 2020b] ✓ ✓ MUTAG, AM, PTC ✓
graph classification

(MUTAG, AM, PTC)

A
C

L
,E

M
N

L
P,

N
A

A
C

L

[Ji et al., 2015] ✓ ✓ ✓ ✓ ✓ ✓

[Guo et al., 2015] NELL (Location, Sports, Freq) ✓ ✓

[Guu et al., 2015] ✓ ✓ ✓ ✓

[García-Durán et al., 2015] ✓ Families ✓

[Lin et al., 2015a] ✓ FB40K ✓
relation extraction

(FB40K)
[Xiao et al., 2016b] ✓ ✓ ✓ ✓ ✓ ✓

[Nguyen et al., 2016a] ✓ ✓ ✓

[Xiong et al., 2017] ✓ NELL-995 ✓ rule mining
[Lin et al., 2018] ✓ ✓ NELL-995, UMLS, Kinship ✓

[Nguyen et al., 2018] ✓ ✓ ✓

[Bansal et al., 2019] ✓ ✓ ✓

[Xu and Li, 2019] ✓ ✓ ✓ ✓ YAGO3-10, Family ✓

[Balazevic et al., 2019a] ✓ ✓ ✓ ✓ ✓

[Nguyen et al., 2019] ✓ ✓ SEARCH17 ✓
personalized search

(SEARCH17)
[Nathani et al., 2019] ✓ ✓ NELL-995, UMLS, Kinship ✓

[Jiang et al., 2019] ✓ ✓ ✓ ✓ ✓
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More recently, motivated by the wide applicability and processing power of Transformer lan-
guage models, pretrained Transformer LMs like BERT [Devlin et al., 2019] have begun to gain
traction for variants of the link prediction task [Yao et al., 2019, Kim et al., 2020, Daza et al., 2021,
Wang et al., 2021a, Nadkarni et al., 2021]. The approaches most related to CascadER are the
ensembles considered by Wang et al. [2021a] and Nadkarni et al. [2021], both of which construct
additive ensembles of structural KB embeddings and contextual LMs. However, neither study con-
siders cascaded multi-stage ranking, which, as we will show subsequently, is key to effective and
efficient cross-modal link prediction.

Cascade models Multi-stage cascade ensembles have been successful in computer vision [Viola
and Jones, 2001, Wang et al., 2022] and text retrieval [Wang et al., 2011, Chen et al., 2017, Gal-
lagher et al., 2019]. Recently, several studies have proposed to use BERT as a late-stage ranker
in multi-stage document retrieval [Nogueira et al., 2019] and passage retrieval [Matsubara et al.,
2020] pipelines. Similar to our work, these studies are motivated by the observation that using
BERT in a multi-stage cascaded setting can significantly boost retrieval accuracy while maintain-
ing efficiency [Lin et al., 2021]. Yet other studies have attempted to balance the effectiveness-
efficiency tradeoff by proposing dual-encoding architectures that are much more efficient (but
usually less effective) than single-encoder BERT models for information retrieval [Reimers and
Gurevych, 2019, Humeau et al., 2020, Karpukhin et al., 2020, Xiong et al., 2020a, Khattab and Za-
haria, 2020]. Our work builds upon all of these important insights, which have been instrumental
in scaling contextual LMs to large-scale ranking tasks in information retrieval and natural language
processing. As far as we are aware, we are the first to bridge these ideas with the traditional graph
learning task of link prediction.

5.3 Dataset Construction

We have already established in Ch. 5.2 that no suitable benchmark for KBC across structure and
text exists. Motivated by this gap in the literature, we define the following desiderata for a new
KBC benchmark:

R1 Covers diverse structural patterns: It has been shown that real-world encyclopedic KBs
tend to bias toward a few “popular” entities [Meij et al., 2020]. However, entity degrees in
many KBs also exhibit a very long tail [Li et al., 2017]. An ideal KBC benchmark should
capture structural variation, and should contain both high-frequency and rare entities.

R2 Covers diverse textual content: To enable text-augmented KBC, new KBC benchmarks
should link all entities and relations to diverse textual contexts. By diverse we mean that
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linked texts should be available at multiple levels of granularity (e.g., entity aliases versus
full entity descriptions) and multiple languages.

R3 Appropriately difficult: Several previous studies have analyzed existing KBC benchmarks
and shown that they contain train/test leakage [Toutanova and Chen, 2015, Akrami et al.,
2020, Pezeshkpour et al., 2020]. A new benchmark should avoid such leakage where possi-
ble, and should not be easily solved with trivial non-learning baselines.

In the remainder of this section, we introduce CODEX, describe how we collected its various
components, and provide qualitative and quantitative analyses to confirm that it fulfills R1, R2,
and R3.

5.3.1 Structural Data Collection

Seeds We began our data collection by querying Wikidata [Vrandečić and Krötzsch, 2014],
which organizes an overlapping subset of information from Wikipedia in relational KB form. First,
we collected an initial set of triples using snowball sampling [Goodman, 1961]. To collect seeds,
we manually defined a broad seed set of entity and relation types common to 13 domains: Busi-
ness, geography, literature, media and entertainment, medicine, music, news, politics, religion,
science, sports, travel, and visual art. We then queried Wikidata for statements of the form (head

entity of seed type, seed relation type, ?), and retrieved an initial set of 380K entities, 75 relations,
and 1.1M triples. Table 5.3 provides all seed entity and relation types used to collect CODEX.
Each type is given first by its natural language label and then by its Wikidata unique ID: Entity IDs
begin with Q, whereas relation (property) IDs begin with P. For the entity types that apply to people

(e.g., actor, musician, journalist), we retrieved seed entities by querying Wikidata using the occu-

pation relation. For the entity types that apply to things (e.g., airline, disease, tourist attraction),
we retrieved seed entities by querying Wikidata using the instance of and subclass of relations.

Data filtering To meet requirement R1 of diverse structural patterns, we filtered the initial triples
to k-cores, which are maximal subgraphs G ′ of a given graph G such that every node in G ′ has a
degree of at least k [Batagelj and Zaveršnik, 2011]. Using this approach we constructed three
CODEX datasets (Table 5.4): CODEX-S (k = 15), CODEX-M (k = 10), and CODEX-L (k = 5).
The datasets have 32K, 185K, and 551K triples, with densities on the order of magnitude of 10−2,
10−3, and 10−4, respectively.

Note that because each CODEX KB has a different level of sparsity, we can expect different
types of method to be more competitive depending on the dataset. In particular, structure-only
KBC approaches should be more competitive on CODEX-S because each entity participates in
at least 15 different relationships. By contrast, on CODEX-M and CODEX-L, we expect textual
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Table 5.3: The entity and relation types (Wikidata IDs in parentheses) we manually defined to seed
our data collection. For the entity types that apply to people (e.g., actor, musician, journalist), we
retrieved seed entities by querying Wikidata using the occupation relation. For the entity types
that apply to things (e.g., airline, disease, tourist attraction), we retrieved seed entities by querying
Wikidata using the instance of and subclass of relations.

Seed types

E
nt

iti
es

actor (Q33999), airline (Q46970), airport (Q1248784), athlete (Q2066131), book (Q571), busi-
nessperson (Q43845), city (Q515), company (Q783794), country (Q6256), disease (Q12136), en-
gineer (Q81096), film (Q11424), government agency (Q327333), journalist (Q1930187), lake
(Q23397), monarch (Q116), mountain (Q8502), musical group (Q215380), musician (Q639669),
newspaper (Q11032), ocean (Q9430), politician (Q82955), record label (Q18127), religion (Q9174),
religious leader (Q15995642), religious text (Q179461), scientist (Q901), sports league (Q623109),
sports team (Q12973014), stadium (Q483110), television program (Q15416), tourist attraction
(Q570116), visual artist (Q3391743), visual artwork (Q4502142), writer (Q36180)

R
el

at
io

ns

airline alliance (P114), airline hub (P113), architect (P84), architectural style (P149), author (P50),
capital (P36), cast member (P161), cause of death (P509), chairperson (P488), chief executive officer
(P169), child (P40), continent (P30), country (P17), country of citizenship (P27), country of origin
(P495), creator (P170), diplomatic relation (P530), director (P57), drug used for treatment (P2176),
educated at (P69), employer (P108), ethnic group (P172), field of work (P101), foundational text
(P457), founded by (P112), genre (P136), head of government (P6), head of state (P35), headquar-
ters location (P159), health specialty (P1995), indigenous to (P2341), industry (P452), influenced by
(P737), instance of (P31), instrument (P1303), language of work or name (P407), languages spoken,
written, or signed (P1412), legal form (P1454), legislative body (P194), located in the administra-
tive terroritorial entity (P131), location of formation (P740), medical condition (P1050), medical
examinations (P923), member of (P463), member of political party (P102), member of sports team
(P54), mountain range (P4552), movement (P135), named after (P138), narrative location (P840), no-
table works (P800), occupant (P466), occupation (P106), official language (P37), parent organization
(P749), part of (P361), place of birth (P19), place of burial (P119), place of death (P20), practiced by
(P3095), product or material produced (P1056), publisher (P123), record label (P264), regulated by
(P3719), religion (P140), residence (P551), shares border with (P47), sibling (P3373), sport (P641),
spouse (P26), studies (P2578), subclass of (P279), symptoms (P780), time period (P2348), tributary
(P974), unmarried partner (P451), use (P366), uses (P2283)
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Table 5.4: Statistics of CODEX. We compute density as the number of edges in the KB across
train, dev, and test, divided by the maximal number of undirected edges (|V| · |V − 1|)/2.

|V| |R| # train # dev # test Density

CODEX-S 2,034 42 32,888 1827 1828 0.01767
CODEX-M 17,050 51 185,584 10,310 10,311 0.00142
CODEX-L 77,951 69 551,193 30,622 30,622 0.00020

Table 5.5: Average number of words for entities in each CODEX dataset. Note that the larger
datasets have shorter Wikipedia extracts on average because these datasets have a larger proportion
of entities with either very short Wikipedia pages or no Wikipedia page at all. All text lengths are
reported for English.

Wikidata aliases Wikidata descriptions Wikipedia extracts

CODEX-S 2.05 5.55 259.24
CODEX-M 2.21 4.60 159.48
CODEX-L 2.24 3.64 96.01

Table 5.6: Multilingual coverage in CODEX. We compute multilingual coverage over all labels,
descriptions, and Wikipedia extracts successfully retrieved for the respective dataset in Arabic (ar),
German (de), English (en), Spanish (es), Russian (ru), and Chinese (zh).

ar de en es ru zh

CODEX-S 77.38 91.87 96.38 91.55 89.17 79.36
CODEX-M 75.80 95.20 96.95 87.91 81.88 69.63
CODEX-L 67.47 90.84 92.40 81.30 71.12 61.06

KBC methods to fill in more “gaps” when structural information is not available. We verify these
hypotheses experimentally in Ch. 5.5.

Train/test splitting To minimize train/test leakage as per requirement R3, we removed inverse
relations from each dataset following Toutanova and Chen [2015]. We computed (head, tail) and
(tail, head) overlap between all pairs of relations, and removed each relation whose entity pair
set overlapped with that of another relation more than 50% of the time. Finally, we split each
dataset into 90/5/5 train/validation/test triples assuming a transductive setting, in which all entities
appearing in the test set also appear at least once in training.
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5.3.2 Textual Data Collection

We next collected the textual component of CODEX. To ensure diversity of texts, following re-
quirement R2, we gathered textual contexts from multiple sources, and across multiple languages.

Textual sources We gathered Wikidata aliases and descriptions for all entities and relations,
alongside Wikipedia page extracts, introduction section only, for all entities. As shown in Ta-
ble 5.5, the English Wikidata aliases and descriptions are relatively short, comprising around 2
words per alias and 3 to 5 words per description. By contrast, the English Wikipedia extracts are
relatively long, comprising around 100 or more words on average.

Languages considered We collected all textual information where available in Arabic, German,
English, Spanish, Russian, and Chinese. We chose these languages because they are all relatively
well-represented on Wikidata [Kaffee et al., 2017]. Table 5.6 provides the coverage by language
for each CODEX dataset.

5.3.3 Structure Analysis

In this section, we analyze the structure of CODEX to verify that we have met requirements R1
and R3. Toward R1, we analyze various types of logical relation patterns in each CODEX dataset.
Toward R3, we conduct a comparative case study between CODEX-M and FB15K-237, an ex-
isting and widely-used link prediction benchmark of comparable size and content. We show that
while the two datasets have similar structure on a shallow level, CODEX is a more challenging
link prediction benchmark because it contains fewer trivial frequency patterns. This difficulty of
CODEX as a structure-only benchmark also implies that the textual content in CODEX may be
more useful for the prediction task than for FB15K-237; we will show empirically in Chapter 5.5
that this is true.

5.3.3.1 Logical Relation Patterns

To elucidate the types of relational reasoning necessary for models to perform well on CODEX,
we analyze the presence of learnable binary relation patterns within CODEX. The three main types
of such patterns in knowledge bases are symmetry, inversion, and compositionality [Trouillon
et al., 2019, Sun et al., 2019]. We address symmetry and compositionality here, and omit inversion
because we specifically removed inverse relations to avoid train/test leakage.

Symmetry Symmetric relations are relations r for which (h, r, t) ∈ G implies (t, r, h) ∈ G.
For each relation, we compute the number of its (head, tail) pairs that overlap with its (tail, head)
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Table 5.7: Relational patterns in CODEX. For symmetry, we give the proportion of triples con-
taining a symmetric relation. For composition, we give the proportion of triples participating in a
rule of length two or three.

CODEX-S CODEX-M CODEX-L

Symmetry 17.46% 4.01% 3.29%
Composition 10.09% 16.55% 31.84%

pairs, divided by the total number of pairs, and take those with 50% overlap or higher as symmetric.
CODEX datasets have five such relations: diplomatic relation, shares border with, sibling, spouse,
and unmarried partner. Table 5.7 gives the proportion of triples containing symmetric relations
per dataset. Symmetric patterns are more prevalent in CODEX-S, whereas the larger datasets are
mostly antisymmetric, i.e., (h, r, t) ∈ G implies (t, r, h) ̸∈ G.

Composition Compositionality captures path rules of the form (h, r1, x1), . . . , (xn, rn, t) →
(h, r, t). To identify compositional paths, we use the AMIE3 system [Lajus et al., 2020], which
outputs rules with confidence scores that capture how many times those rules are seen versus
violated, to identify paths of lengths two and three; we omit longer paths as they are relatively
costly to compute. We identify 26, 44, and 93 rules in CODEX-S, CODEX-M, and CODEX-L,
respectively, with average confidence (out of 1) of 0.630, 0.556, and 0.459.

Table 5.7 gives the percentage of triples per dataset participating in a discovered rule. Evidently,
composition is especially prevalent in CODEX-L. An example rule in CODEX-L is “if X was
founded by Y, and Y’s country of citizenship is Z, then X’s country of origin is Z” (confidence
0.709).

5.3.3.2 Difficulty Comparison

Next, to analyze CODEX from a “difficulty” perspective, we conduct a brief comparison between
CODEX-M and FB15K-237, a similarly-sized encyclopedic knowledge benchmark for link pre-
diction. We show that CODEX is a more challenging link prediction benchmark because fewer of
its test queries can be solved by a simple frequency baseline, meeting requirement R3 for a new
KBC benchmark.

Baseline We devise a simple link prediction baseline. Let (h, r, ?) be a test query. Our baseline
scores candidate tail entities by their relative frequency in the tail slot of all training triples men-
tioning r, filtering out tail entities t for which (h, r, t) is already observed in the training set. If
all tail entities t are filtered out, we score entities by frequency before filtering. The logic of our
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Table 5.8: Overall performance (MRR) of our frequency baseline versus the best structure-only
KGE model per benchmark. “Improvement” refers to the improvement of the KGE over the base-
line.

Baseline Embedding Improvement

FB15K-237 0.236 0.356 +0.120
CODEX-M 0.135 0.337 +0.202

Figure 5.1: Improvement in MRR of the embedding over our baseline per relation type. Negative
means that our baseline outperforms the embedding.

approach works in reverse for (?, r, t) queries. In evaluating our baseline, we follow LibKGE’s
protocol for breaking ties in ranking (i.e., for entities that appear with equal frequency) by taking
the mean rank of all entities with the same score.

Task and metrics Since our baseline only uses entity and relation frequency information and
does not leverage text, we compare our baseline to a highly competitive structure-only KGE on
each dataset: RESCAL for FB15K-237 [Ruffinelli et al., 2020] and ComplEx for CODEX-M.
We evaluate performance with MRR and Hits@10. Beyond overall performance, we also compute
per-relation improvement of the respective embedding over our baseline in percentage points MRR
and Hits@10. This measures the benefit of learning each relation over using a simple frequency
rule.

Results and discussion Table 5.8 compares the overall performance of our baseline versus the
best embedding per dataset, and Figure 5.1 shows the improvement of the respective embedding
over our baseline per relation type on each dataset.

Evidently, the improvement of the embedding is much smaller on FB15K-237 than CODEX-
M. In fact, our baseline performs on par with or even outperforms the embedding on FB15K-237
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Figure 5.2: Empirical cumulative distribution function of embedding improvement over the base-
line.

for some relation types. To further explore these cases, Figure 5.2 gives the empirical cumulative
distribution function of improvement, which shows the percentage of test triples for which the
level of improvement is less than or equal to a given value on each dataset. Surprisingly, the
improvement is less than five percentage points for nearly 40% of FB15K-237’s test set, and
is zero or negative 15% of the time. By contrast, our baseline is significantly weaker than the
embedding on CODEX-M.

The disparity in improvement is because FB15K-237 has more relations that are highly skewed
toward a few entities. For example, our baseline achieves perfect performance over all (h, r, ?)
queries for the /common/topic/webpage./common/webpage/category relation be-
cause this relation has only one unique tail entity. In total, 11 relations in FB15K-237 have
one unique tail entity, and these relations account for 3.22% of all tail queries in FB15K-237;
15.98% of test triples in FB15K-237 contain relations that are skewed 50% or more toward a
single head or tail entity, whereas only 1.26% of test triples in CODEX-M contain skewed re-
lations of this type. Furthermore, around 12.7% of test queries in FB15K-237 contain relation
types that connect entities to small fixed sets of literal values. For example, each head entity
that participates in the FB15K-237 relation /travel/travel\_destination/climate.
/travel/travel\_destination\_monthly\_climate/month is connected to the
same 12 tail entities (months) throughout train, validation, and test. This makes prediction trivial
with our baseline: By filtering out the tail entities already seen in train, only a few (or even one)
candidate tail(s) are left in test, and the answer is guaranteed to be within these candidates.

We conclude that while FB15K-237 is a valuable dataset, CODEX is more appropriately dif-
ficult for link prediction. Additionally, we note that in FB15K-237, all validation and test triples
containing entity pairs directly linked in the training set were deleted [Toutanova and Chen, 2015],
meaning that symmetry cannot be tested for in FB15K-237. Given that CODEX datasets contain
both symmetry and compositionality, CODEX is more suitable for assessing how well models can
learn relation patterns that go beyond frequency.
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Figure 5.3: Top-30 most frequent entities in CODEX-M and FB15K-237.

Figure 5.4: Top-15 most frequent entity types in CODEX-M and FB15K-237.

5.3.4 Content Analysis

Finally, we briefly analyze the content in CODEX-M, again by comparing it to FB15K-237, to
confirm that it meets our stated goal of textual diversity (R2).

Entities As shown in Figure 5.3 and Figure 5.4, both CODEX-M and FB15K-237 are biased
toward developed Western countries and cultures. However, CODEX-M is more diverse in domain.
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Figure 5.5: Top-15 most frequent relations in CODEX-M and FB15K-237.

It covers academia, entertainment, journalism, politics, science, and writing, whereas FB15K-237
covers mostly entertaiment and sports. FB15K-237 is also much more biased toward the United
States in particular, as five of its top-30 entities are specific to the US: United States of America,
United States dollar, New York City, Los Angeles, and United States Department of Housing and

Urban Development.

Relations Figure 5.5 compares the top-15 relations by mention count in the two datasets. The
most common relation in the former is occupation, which is because most people on Wikidata have
multiple occupations listed. By contrast, the frequent relations in FB15K-237 are mostly related
to awards. In fact, over 25% of all triples in FB15K-237 belong to the /award domain.

It is also worth noting that the Freebase-style relations are arguably less interpretable than those
in Wikidata. Whereas Wikidata relations have concise natural language labels, the Freebase re-
lation labels are hierarchical, often at five or six levels of hierarchy (Figure 5.5). Moreover, all
relations in Wikidata are binary, whereas some Freebase relations are n-nary. Specifically, Free-
base used a special type of entity called Compound Value Type (CVT) to express n-ary relation-
ships consisting of multiple fields like literal values, temporal occurrences, etc [Tanon et al., 2016].
Many relation types in FB15K-237 were created by traversing through CVTs to yield compound
binary relation types, which are arguably difficult to reason about.

5.4 Methodology

Having introduced our new dataset CODEX for cross-modal KBC and thoroughly established its
merits as a link prediction benchmark, we now consider the important next step: Effective and
efficient modeling for link prediction over structure and text. As introduced in Chapter 2.2.1, we
consider the task of knowledge base completion (KBC) formulated as ranking-based link predic-
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tion in a multi-relational graph G consisting of entities V , relations R, and factual (head, relation,
tail) triples (h, r, t) ∈ V × R× V . Recall that the link prediction task consists of two settings. In
the first, given a tail query (h, r, ?), score all entities t̂ ∈ V by their likelihood that they answer the
query such that the true tail entity t is ranked as high as possible. In the second, given a head query
(?, r, t), score all entities ĥ ∈ V by the likelihood that they answer the query.

In this section, we first cover the key differences in structure- versus text-based approaches to
link prediction, and subsequently introduce CascadER, a novel cross-modal sequential reranking
architecture, to bridge the gap.

5.4.1 Existing Approaches

We define a link prediction model as a scoring function f : V ×R× V → R that takes as input a
triple from G and outputs a real value indicating the plausibility of that triple. At inference time,
assume that we have Ntest link prediction queries of interest, half of type (h, r, ?) and half of type
(?, r, t). For each query we have |V| potential answers, which are the entities in the KB. We define
a link prediction query-answer score matrix S ∈ RNtest×|V|, in which Sij denotes the predicted
probability that entity j answers link prediction query i.

5.4.1.1 Single-Modality Approaches

Structure-based models The most competitive structure-based approaches to link prediction
are shallow knowledge graph embeddings (KGEs), which are decoder models that train entity and
relation embeddings to directly optimize for the link prediction ranking task. For more details on
KGEs, we refer the reader to Chapter 2.4.1.

Text-based models As discussed in our review in Ch. 3.4, contextual language models may be
adapted to various knowledge representation tasks, including knowledge base construction and
completion. Assuming that the input KB is linked to text, let Xh = [w1, . . . , wh] denote the tokens
comprising the description of head entity h. Likewise, let Xt = [w1, . . . , wt] the description of
tail entity t. Cross-encoding language model approaches for link prediction feed each full triple
sequence to a single encoder as [[CLS], Xh, [SEP], Xt, [SEP]], where [CLS] and [SEP]

refer to the LM’s special classification and delimiter tokens. At the output of the encoder, these
approaches stack a binary triple classification layer [Yao et al., 2019], optionally with other layers
for related KB completion tasks like relation disambiguation [Kim et al., 2020].

By contrast, dual-encoding approaches assume two encoder language models instead of one,
potentially with shared weights [Reimers and Gurevych, 2019, Humeau et al., 2020, Wang et al.,
2021a]. One encoder takes as input the head tokens [[CLS], Xh, [SEP]], and the other takes
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Figure 5.6: CascadER maintains effectiveness (validation MRR) while improving efficiency (in-
ference wall-clock time) by one or more orders of magnitude compared to our most competitive
ensemble baseline on CODEX-M. Dual-enc. refers to a dual-encoder LM, and cross-enc. refers to
a cross-encoder LM; we discuss the differences in these architectures in § 5.4.1. For CascadER,
we consider a three-tier structure with dynamic answer pruning at quantiles q = 0.5 and q = 0.9
(§ 5.4.4).

as input the tail tokens [[CLS], Xt, [SEP]]. Both encoders output embeddings of their input
sequences, and these output embeddings are trained to maximize similarity for observed (head,
tail) pairs in the KB, again optionally with an additional relation disambiguation loss.

5.4.1.2 Cross-Modal Approaches

Recently, it has been proposed to integrate structure and text into link prediction by ensembling
KGEs and LMs with additive reweighting [Wang et al., 2021a, Nadkarni et al., 2021]. Given a
query i and candidate answer j, additive reweighting outputs a new link prediction score as the
convex combination of the base models’ scores:

Sens
ij = α · SKGE

ij + (1− α) · SLM
ij ,

where the weight α ∈ [0, 1] is a hyperparameter tuned on a held-out set.
As shown in Figure 5.6, additive ensembling can significantly improve link prediction per-

formance, especially with cross-encoder LMs. However, ensembling comes at the expense of
computational efficiency. Figure 5.6 also shows that ensembling with an LM increases inference
complexity over the KGE by several orders of magnitude. This added expense is due to several
factors. First, pretrained Transformer LMs encode entity descriptions using multiple layers (typ-
ically 12 or more) prior to scoring, and the complexity of encoding scales quadratically with the
input length. Second, while dual-encoders can pre-compute the embeddings of all entity descrip-
tions [Karpukhin et al., 2020] and score new links via relatively fast dot products between entity
embedding pairs, cross-encoders must jointly encode and score each query/answer pair separately,
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Figure 5.7: CascadER sequential reranking architecture.

which makes them impractically slow for large-scale text ranking [Reimers and Gurevych, 2019].

5.4.2 CascadER Overview

Assuming that we are willing to pay some computational cost to improve link prediction per-
formance, how can we achieve the effectiveness of the cross-encoder ensemble while maintain-
ing efficiency closer to that of the dual-encoder ensemble, as shown in Figure 5.6? Our answer
is CascadER, a cross-modal progressive refinement architecture that combines the best of both
worlds. As illustrated in Figure 5.7, CascadERis a tiered architecture that treats one or more LMs
as rerankers to a base KGE. The key idea of CascadER is that we can selectively invoke LMs to
reweight the base KGE’s most promising candidate predictions, which cuts down on the computa-
tional cost of language modeing while still benefiting from the performance gains of ensembling.

More formally, assume we have a set of n ≥ 2 trained link prediction models {f (i), i = 1 . . . n}
consisting of one KGE and one or more LMs. We sort the models by computational complexity,
leading to an ordered sequence (f (1), . . . , f (n)) in which f (1) is the KGE and the subsequent models
are LMs in ascending order of complexity (i.e., dual-encoders before cross-encoders). We use the
KGE to score all query/answer pairs in the inference set, leading to a score matrix S ∈ RNtest×|V| in
which Sij denotes the KGE probability of entity j answering the i-th link prediction query. Then,
at each tier t = 1, . . . , n − 1, we apply a pruning function that, for each query i, selects a subset
of candidate answer entities V(t)

i ⊆ V to be reranked by the next-tier LM f (t+1); we postpone the
discussion of pruning strategies to Chapters 5.4.3 and 5.4.4.

For query i and candidate answer j, we define the additive reranking function between tiers t

and t+ 1 as follows:

I
j∈V(t)

i

[
α(t) · S(t)

ij +
(
1− α(t)

)
· S(t+1)

ij

]
+ I

j ̸∈V(t)
i

[
S
(t)
ij

]
,

where I denotes the set indicator function, S(t)
ij denotes the query-answer plausibility score output

by the model at tier t, and α(t) ∈ [0, 1] is a hyperparameter that controls the additive influence of
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Figure 5.8: Ranks of the gold answer entities on the validation set of CODEX-M.

model f (t) in reranking the candidates in V(t)
i .

5.4.3 Static Candidate Pruning

Following the effectiveness-efficiency tradeoff, we have two goals for candidate pruning with Cas-
cadER: (1) For each link prediction query (h, r, ?) or (?, r, t), progress as many candidate entities
to the following tier as possible to ensure coverage of all promising candidates; and (2) Progress
as few candidates as possible to maintain efficiency and avoid invoking the next-tier rerankers on
less-promising candidates.

A straightforward pruning approach used in information retrieval to balance these two goals is
to progress only the top-k candidates from tier to tier given a global value of k [Wang et al., 2011,
Matsubara et al., 2020]. Formally, given query i and a selected value of k, we define static pruning
as selecting the subset of candidates V(t)

i such that

V(t)
i = argmax

V(t)
i ⊂V and |V(t)

i |=K

|V|∑
j=1

S
(t)
ij .

Of course, the challenge with this pruning approach is selecting the correct value of k. One solution
is to set k ad-hoc, e.g., k = 100 or k = 1000 [Matsubara et al., 2020]. However, setting the wrong
value of k may result in suboptimal performance from the effectiveness or efficiency perspectives.

To address this challenge, we propose a more principled strategy that searches for the best value
of k per dataset in terms of MRR on a held-out set. Given tier t and hold-out query i, we obtain
the cascade’s rank R

(t)
i of the gold answer entity. We construct a distribution of ranks R(t)

i over all
hold-out queries, and use quantiles of this distribution to choose the grid of k over which to search.
For example, quantiles of 0.5, 0.75, and 0.9 means that we search over k equal to the median, 75th
percentile, and 90th percentile of ranks R(t)

i , which helps ensure that our choice of k is data-driven.
We use quantiles because the distributions of gold answer ranks are non-normally distributed, as
shown in Figure 5.8.
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5.4.4 Dynamic Candidate Pruning

We propose to extend our static pruning strategy to handle more nuanced differences between
queries. The motivation for this approach is that, depending on the structural and textual informa-
tion available in the dataset, some queries may be more difficult than others. We hypothesize that if
we can assess the difficulty of each query, we can more accurately determine the amount of rerank-
ing necessary for each query at each tier of the cascade, in order to better balance effectiveness and
efficiency.

We formulate this selection strategy as a dynamic pruning approach in which, for tier t and
query i, we predict an integer k̂(t)

i that represents the number of candidates to pass to tier t+1. For
each query, we predict the rank of the gold answer entity using quantile regression [Koenker and
Hallock, 2001], again on a hold-out set. Given a chosen quantile q and the rank of the gold answer
entity R

(t)
i at tier t, we train a regressor to predict k̂(t)

i by minimizing

Lq(k̂
(t)
i , R

(t)
i ) = max

[
q(R

(t)
i − k̂

(t)
i ), (q − 1)(R

(t)
i − k̂

(t)
i )
]
.

As input features to our quantile regressor, we represent the i-th query by its sorted |V|-dimensional
score distribution Si1, . . . Si|V| from tier t of the cascade, hypothesizing that these score distribu-
tions encode uncertainty information correlated to the difficulty of queries. In practice, we im-
plement our regressor as a single-layer MLP trained on half of the dev set, and validated on the
remaining dev examples. We will show in our experiments that this approach boosts CascadER’s
ability to balance effectiveness and efficiency compared to static pruning.

5.5 Evaluation

In this section, we evaluate CascadER on our proposed CODEX benchmark alongside existing
datasets for link prediction. As introduced in Chapter 2.2.1, the evaluation task we consider is
ranking-based link prediction. Our evaluation metrics are MRR and hits@k for k ∈ {1, 3, 10}.
Following the standard in the literature [Bordes et al., 2013, Ruffinelli et al., 2020], we report
metrics in the filtered setting, masking out all known answers to test queries other than the gold
answer entity in question, in order to avoid false negatives.

5.5.1 Experimental Setup

Data We consider five link prediction benchmarks: Our new datasets CODEX-S and CODEX-
M, the FB15K-237 encyclopedic knowledge benchmark [Toutanova and Chen, 2015], the
WN18RR linguistic KB extracted from WordNet [Dettmers et al., 2018], and the REPODB KB of
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Table 5.9: Statistics of the existing KG link prediction datasets considered in our experiments. We
also use CODEX-S and CODEX-M, statistics of which are given in Tables 5.4 and 5.5.

Structure
Avg. text length|V| |R| # train # dev # test Density

REPODB 2,748 1 5,342 667 668 0.00176 55.46
FB15K-237 14,541 237 272,115 17,535 20,466 0.00293 138.95
WN18RR 40943 11 86835 3034 3134 0.00011 13.91

drug-disease treatment relationships [Brown and Patel, 2017, Nadkarni et al., 2021]. For FB15K-
237 and WN18RR, we use the linked entity descriptions provided by Wang et al. [2021a]; for
REPODB we use the linked drug and disease descriptions provided by Nadkarni et al. [2021]; for
the CODEX datasets, we use the Wikipedia page extracts as entity descriptions.

Table 5.9 provides structural and textual statistics for REPODB, FB15K-237, and WN18RR.
For all datasets, we use the publicly available standard splits.

Baselines We group our baselines by methodology class:

• KGE baselines: We consider the following KGEs, all of which have achieved competitive or
state-of-the-art performance on one or more of the datasets we consider: RESCAL [Nickel
et al., 2011], TransE [Bordes et al., 2013], ComplEx [Trouillon et al., 2016], and Ro-
tatE [Sun et al., 2019].

• LM baselines: We consider the StAR dual-encoder architecture [Wang et al., 2021a] and
the KG-BERT cross-encoder architecture [Yao et al., 2019], both trained in a multi-task
setting with triple classification, margin ranking, and relation classification losses following
the literature [Kim et al., 2020]. Note that due to the inference cost of KG-BERT on the larger
datasets FB15K-237 and WN18RR (e.g., around one month for FB15K-237 [Kocijan and
Lukasiewicz, 2021]), we report results for these datasets from [Kim et al., 2020].

• Ensemble baselines: We consider the following full additive ensembling baselines, as de-
fined in § 5.4.1, controlled by a weighting hyperparameter α tuned on the dev set: KGE +
KGE ensembles the two strongest KGE baselines in terms of MRR on the validation set;
KGE + StAR [Wang et al., 2021a] ensembles the best KGE with StAR; and KGE + KG-
BERT [Nadkarni et al., 2021] ensembles the best KGE with KG-BERT.

CascadER variants Our first-tier KGE in CascadER is the best-performing baseline KGE in
terms of validation MRR. We set an inference time limit of 2 hours for CODEX-S and REPODB,
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Table 5.10: CascadER outperforms state-of-the-art single-modality and cross-modality link predic-
tion approaches on FB15K-237 and WN18RR. Bold + underline: Best performance. Underline:
Second-best performance. OOT refers to out-of-time using our inference time limit of 24 hours for
FB15K-237 and 6 hours WN18RR.

FB15K-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RESCAL 0.3559 0.2629 0.3926 0.5406 0.4666 0.4387 0.4797 0.5172
TransE 0.3128 0.2206 0.3473 0.4973 0.2278 0.0531 0.3682 0.5201
ComplEx 0.3477 0.2533 0.3836 0.5359 0.4749 0.4381 0.4898 0.5474
RotatE 0.3333 0.2396 0.3676 0.5218 0.4781 0.4395 0.4941 0.5527

StAR 0.296 0.205 0.322 0.482 0.401 0.243 0.491 0.709
KG-BERT 0.267 0.172 0.298 0.458 0.331 0.203 0.383 0.597

KGE + KGE 0.3630 0.2672 0.4016 0.5535 0.4900 0.4521 0.5016 0.5617
KGE + StAR 0.3643 0.2709 0.3989 0.5522 0.5385 0.4716 0.5645 0.6651
KGE + KG-BERT OOT OOT OOT OOT OOT OOT OOT OOT

CascadER 0.3860 0.2903 0.4231 0.5782 0.5651 0.4756 0.6126 0.7379

6 hours for WN18RR, and 24 hours for CODEX-M and FB15K-237, and search for the op-
timal cascade on the validation set among the following hyperparameters: The choice of LMs
in the cascade (StAR dual-encoder, KG-BERT cross-encoder, or both); candidate pruning strat-
egy (static versus dynamic); quantile q ∈ {0.5, 0.75, 0.9, 0.95}; and weighting hyperparameter
α(t) ∈ [0.05, 0.95] at each tier.

Software and hardware We implement all KG embeddings using the open-source LibKGE
PyTorch library [Broscheit et al., 2020b]. We use the pretrained KGE checkpoints provided by
LibKGE for FB15K-237 and WN18RR. For the other datasets, we follow a similar hyperparam-
eter tuning strategy to that proposed by by Ruffinelli et al. [2020] for tuning our KGE baselines.

We implement all LMs with the Huggingface transformers PyTorch library [Wolf et al., 2020]
using the same base language model, which is BERT-BASE [Devlin et al., 2019] for all bench-
marks except REPODB, and PUBMEDBERT [Gu et al., 2021] for REPODB. We use the following
hyperparameters: Batch size of 16, learning rate of 10−5, and 10 epochs. We use a maximum
sequence length of 32, 64, and 256 respectively for WN18RR, REPODB, and all other datasets.

For all of the ensemble baselines and CascadER, we tune the weighting hyperparameter α ∈
[0.05, 0.95]. For all experiments, we use a single NVIDIA Quadro RTX 8000 GPU with 48 GB of
RAM.
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Table 5.11: CascadER achieves appreciable accuracy gains over single-modality and
cross-modality approaches on our newly proposed datasets CODEX-S and CODEX-M.
Bold + underline: Best performance. Underline: Second-best performance. OOM refers to out-
of-memory during training. OOT refers to out-of-time using our inference time limit of 2 hours for
CODEX-S and 24 hours for CODEX-M.

CODEX-S CODEX-M
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RESCAL 0.4040 0.2935 0.4494 0.6225 0.3173 0.2444 0.3477 0.4557
TransE 0.3540 0.2185 0.4218 0.6335 0.3026 0.2232 0.3363 0.4535
ComplEx 0.4646 0.3714 0.5038 0.6455 0.3365 0.2624 0.3701 0.4758
RotatE 0.2587 0.1586 0.2916 0.4609 OOM OOM OOM OOM

StAR 0.3540 0.2306 0.4051 0.6007 0.2726 0.1888 0.3042 0.4342
KG-BERT 0.2849 0.1472 0.3310 0.5848 OOT OOT OOT OOT

KGE + KGE 0.4665 0.3712 0.5082 0.6518 0.3466 0.2695 0.3808 0.4925
KGE + StAR 0.4751 0.3717 0.5249 0.6712 0.3554 0.2767 0.3901 0.5064
KGE + KG-BERT 0.4812 0.3764 0.5290 0.6898 OOT OOT OOT OOT

CascadER 0.4839 0.3764 0.5383 0.6871 0.3830 0.2998 0.4221 0.5423

Table 5.12: CascadER achieves state-of-the-art performance on the drug repurposing benchmark
REPODB.

MRR H@1 H@3 H@10

RESCAL 0.4351 0.3144 0.4903 0.6767
TransE 0.3472 0.2043 0.3728 0.6400
ComplEx 0.4620 0.3406 0.5225 0.7043
RotatE 0.2971 0.1811 0.4903 0.5314

StAR 0.3472 0.2043 0.4102 0.6400
KG-BERT 0.2991 0.1602 0.3428 0.5996

KGE + KGE 0.4637 0.3398 0.5262 0.7081
KGE + StAR 0.4774 0.3496 0.5434 0.7208
KGE + KG-BERT 0.5101 0.3713 0.5771 0.7799

CascadER 0.5156 0.3817 0.5831 0.7814

5.5.2 Results and discussion

Table 5.10, 5.11, and 5.12 provide link prediction performance results for FB15K-237 and
WN18RR, the CODEX datasets, and REPODB, respectively. We observe the following take-
aways:

CascadER achieves robust and appreciable gains over baselines across datasets. It outper-
forms the best KGE by up to 8.70 points MRR (WN18RR) and the best LM by up to 16.84
points MRR (REPODB), demonstrating that cross-modal ensembling can significantly improve
upon single-modality approaches. In fact, we suspect that our reported performance numbers are
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(a) Dynamic pruning balances effectiveness
and efficiency better than static pruning. We
consider a three-tier cascade with pruning
only between tiers two and three.

(b) CascadER is effective at any level of cost
constraint compared to the base KGE. For
the three-tier cascade, we use dynamic prun-
ing only between tiers two and three.

Figure 5.9: Top-left corner is best: Pareto curve analysis on the dev set of FB15K-237. We
use quantiles q ∈ {0.5, 0.75, 0.9, 0.95, 1} in our analyses and exclude any quantiles that lead to
CascadER exceeding our inference time limit of 24 hours.

lower bounds, as more advanced base KGEs and LMs will likely improve CascadER’s performance
further.

Full additive ensembling is not necessary to maximize effectiveness. Our KGE + KG-BERT
additive ensemble baseline is competitive on CODEX-S and REPODB, but it encounters out-of-
time errors on FB15K-237, WN18RR, and CODEX-M. By contrast, CascadER outperforms all
baselines across datasets while staying within our cost budgets. This suggests that full additive
ensembling is not necessary to achieve the majority of accuracy gains in link prediction, and that
cascaded reranking is sufficient.

5.5.2.1 Pareto curve analysis

Next, to drill down into the effectiveness-efficiency tradeoff of CascadER, we provide a Pareto
curve analysis. In Figure 5.9, we plot the effectiveness (validation MRR) and efficiency (inference
cost in wall-clock time) against CascadER’s key hyperparameters, the candidate pruning strategy
and the number of tiers. We observe the following:

Dynamic pruning balances effectiveness and efficiency better than static pruning. As shown
in Figure 5.9a, dynamic pruning leads to steeper MRR improvements than its static counterpart
with comparable inference times.

CascadER is effective at every level of budget constraint. Figure 5.9b compares effectiveness-
efficiency curves of two-tiered and three-tiered CascadER structures against the performance of its
base KGE. Even the least performant variant of CascadER achieves higher MRR than the KGE
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Figure 5.10: The cross-encoder’s score distributions are highly skewed left, whereas the score
distributions of the KGE and dual-encoder are more normal.

with nearly equivalent inference times.

With a more relaxed budget, cross-encoding is more beneficial than dual-encoding. Fig-
ure 5.9b confirms that two-tiered CascadER with a cross-encoder is much more effective than
two-tiered CascadER with a dual-encoder. At an inference time of around 1000 seconds, our two-
tiered dual-encoder and cross-encoder architectures achieve 0.3683 and 0.3738 MRR respectively.
These results suggest that very little reranking with a cross-encoder is often more beneficial than
a large amount of reranking with a dual-encoder. Our findings are consistent with the information
retrieval literature, which have consistently shown that cross-encoders are strong rerankers [Mat-
subara et al., 2020, Xiong et al., 2020a, Luan et al., 2021].

5.5.2.2 Qualitative analysis

Finally, to illuminate the benefits of cross-modal reranking, we provide a brief qualitative analysis
of how cross-modal ensembling exploits the complementary behaviors of structure and text mod-
els. Figure 5.10 plots the empirical answer score distributions to two link prediction queries from
CODEX-M. We observe that the score distributions of the KGE and the dual-encoder are more nor-
mally shaped, whereas the cross-encoder’s score distribution is highly skewed left. This suggests
that cross-encoders more aggressively filter out irrelevant candidate answers to queries, perhaps
due to their ability to capture term overlap (or lack thereof) between text pairs with relatively high
precision compared to vector matching models that do not use cross-attention [Luan et al., 2021].
Additive reranking between a KGE and a cross-encoder appears to have a highly beneficial effect
due to these distributional differences: Additive re-weighting with a cross-encoder helps widen the
margins or score gaps the most between the scores of gold answers and those of negative candi-
dates, as shown in Figure 5.11.

Beyond complementary scoring behavior, we observe another aspect of complementarity in our
results, which is that we achieve the largest gains over the base KGE on the sparsest graphs. As
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Figure 5.11: Additive LM reranking over a base KGE helps widen the score gaps between gold
answers and negative candidates the most. We show the average score gap between the gold answer
to each query and all negative candidates for the three datasets on which full cross-encoding was
computationally feasible. For each dataset, the base ranker is the best KGE in terms of validation
MRR, and the second-tier KGE reranker is the second-best KGE in terms of validation MRR.

Table 5.13: CascadER provides larger gains on sparser graphs: MRR comparison between the best
KGE baseline and CascadER on each dataset.

CODEX-S FB15K-237 CODEX-M REPODB WN18RR
Density 1× 10−2 2× 10−3 1× 10−3 1× 10−3 1× 10−4

Base KGE 0.4646 0.3559 0.3365 0.4620 0.4781
CascadER 0.4839 0.3860 0.3830 0.5156 0.5651

CascadER improvement +1.93 +3.01 +4.65 +5.36 +8.70

illustrated in Table 5.13, CascadER improves MRR by 2-3 points over the best KGE on CODEX-S
and FB15K-237, our two densest KGs. By contrast, on CODEX-M, WN18RR, and REPODB,
CascadER improves MRR by 5-9 points over the best KGE baseline. The gain is the largest
on WN18RR, which, at a density on the order of 10−4, is the sparsest graph considered in our
experiments. These results confirm that text provides an especially useful source of auxiliary
information when the relational structure of the data is highly sparse.

5.6 Conclusion

In this chapter, we considered the task of automatically completing factual KBs, formulated as a
link prediction ranking problem in a multi-relational graph. While there is a large body of related
literature on structure-only link prediction, we noted the relative lack of joint structure and text ap-
proaches for this task, even though many KBs are linked to rich side textual attributes. To provide a
foundation for future work in this direction, we made two key contributions. The first, CODEX, is a
new cross-modal KBC benchmark derived from Wikidata and Wikipedia. We demonstrated the ad-
vantages of CODEX over a comparable existing benchmark from both quantitative and qualitative
perspectives, emphasizing its difficulty for the link prediction task using structure-only approaches

79



and the interpretability of its content.
Next, we introduced CascadER, a cross-modal multi-stage cascade approach that combines

structure-only KB embeddings with language models for link prediction in a sequential reranking
architecture. We showed that CascadER achieves state-of-the-art performance on multiple link pre-
diction benchmarks, including CODEX, by effectively combining structure and text models while
maintaining efficiency. We provided analysis to understand the advantages that our cross-modal
approach provides over single-modality approaches. CascadER’s promise in this task suggests
its versatility across many different datasets and problem settings, making it an ideal model for
combining structure and text to discover novel relationships between entities.
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Part II

Document Interaction and Content Mining
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CHAPTER 6

Discovering Activities in Personal Information
Collections

The material in this chapter is derived from the paper “Toward Activity Discovery in

the Personal Web” [Safavi et al., 2020], which appeared in the proceedings of the 13th

ACM Conference on Web Search and Data Mining (WSDM) in 2020.

6.1 Introduction

Having considered text-augmented graph learning for world knowledge representation, we now
consider more diverse information retrieval settings that require modeling structured interactions
and textual content attributes. This central research question addressed by this chapter is motivated
by the vision that scientist Vannevar Bush set out in his influential 1945 essay As We May Think.
Bush described a device called a “memex,” in which “an individual stores all his books, records,
and communications, and...may be consulted with exceeding speed and flexibility,” and motivated
his memex by the associative nature of the human mind: “With one item in its grasp, it snaps
instantly to the next that is suggested by the association of thoughts...[it] is awe-inspiring beyond
all else in nature” [Bush, 1945]. Our goal is to expand on the idea of associating individuals’

personal information items—what Bush called books, records, and communications, and what
today might be files, emails, and messages—according to their higher-level purposes and usages.
Specifically, our central research question is: Can we model activities (projects, hobbies, tasks)
in individuals’ heterogeneous personal information collections (files, emails, contacts, etc) using
both interaction structure and document contents to power personal search and recommendation?

The goal of activity discovery is to help people better organize, retrieve, and utilize their per-
sonal information. For example, modern email clients support tagging and foldering, but individ-
uals struggle to maintain these efforts because manual curation is costly [Whittaker and Sidner,
1996, González and Mark, 2004, Whittaker et al., 2011, Grevet et al., 2014]. We envision next-
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Figure 6.1: A Personal Web consisting of two activities.

generation email clients that automatically learn users’ ongoing activities to organize or even pri-
oritize emails and meetings based on those activities. Semantic and conversational search systems
can also benefit from inferring users’ activities. For example, such systems could allow users to
directly search by concept or activity (e.g., “Show me all receipts related to my home remodel”),
without requiring users to explicitly specify their activities. Even helping people understand how
they spend their time by activity can be useful for productivity-related reflection and planning.

However, this direction comes with unique challenges. For one, people’s activities are complex
and fluid. They can exist on varying time scales and evolve over time. Some activities overlap
with, or subsume, one another. Ideally, automated approaches to personal activity discovery should
capture such complexity. Another challenge is that of evaluation, which is difficult due to (well-
founded) privacy concerns, a lack of standardized methodology, and the high cost of obtaining
explicit feedback [Zamani et al., 2017].

6.1.1 Contributions

Guided by the concept of “associations between items,” we learn representations of personal in-
formation collections such that objects related by activity have similar representations and can be
directly compared regardless of type. We leverage the inherent graph structure of personal in-
formation collections, augmenting items with interaction- and structure-based links to form what
we call a Personal Web. We propose a fast linear representation learning method over the Per-
sonal Web to obtain and incrementally update object representations. In extensive experiments
across multiple evaluation tasks, we observe the gains of Personal Webs over various competitive
baselines in terms of retrieval metrics over personal information collections.

Our contributions are as follows:

• Problem definition (Ch. 6.3): We propose the problem of activity discovery in heteroge-
neous personal information collections, toward helping people better manage and search
over their personal information.
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• Interaction and content model (Ch. 6.4): We propose to model individuals’ personal infor-
mation collections as Personal Webs. We propose to learn unsupervised representations of
entities in Personal Webs, devising an objective that incorporates both interaction and con-
tent in Personal Webs. We derive efficient, exact techniques to update representations as new
data arrive, up to 470× faster than learning from scratch.

• Extensive evaluation (Ch. 6.5, 6.6, and 6.7): We conduct a range of experiments. We
first gather human judgments for activity-specific relationships surfaced by our model in
a unique, small-scale user study. We next devise an extrinsic email recipient recommen-
dation task to test the versatility of our representations. In both tasks, our representations
outperform competitive baselines across a variety of information retrieval metrics. We also
evaluate our model’s offline and online scalability on a large real email dataset and demon-
strate that learning our model is hundreds of times faster than baselines in the offline and
online settings.

6.2 Related Work

Personal information management Personal information management (PIM) addresses how
people organize and retrieve items from their personal information collections [Teevan et al., 2006];
for brevity, we refer the reader to [Jones et al., 2017] for a comprehensive overview of the literature.
A representative, highly influential example is Stuff I’ve Seen (SIS) [Dumais et al., 2003], a unified
search index aggregating heterogeneous personal information objects from users’ desktops. SIS
was followed by Implicit Query [Dumais et al., 2004], an email plug-in that automatically displays
desktop items related to the user’s current email of focus. These early works motivate our goal
of unifying heterogeneous personal information objects, as they provide empirical evidence that
people prefer such unified systems [Dumais et al., 2003].

Recent studies develop privacy-preserving machine learning approaches for PIM, most often
for email [Bendersky et al., 2017, Zamani et al., 2017, Zhao et al., 2018]. Such studies share our
high-level goal of helping individual manage their personal information in a private and efficient
manner. However, as far as we are aware, we are the first to specifically consider representation
learning over heterogeneous personal information collections, and moreover the first to address the
problem by proposing a unified interaction and content model.

Activity inference The literature on inferring individuals’ activities over personal information
items focuses mostly on email [Dredze et al., 2006, Dredze and Wallach, 2008, Qadir et al., 2016].
Dredze et al. [2006] devise a supervised method to classify emails into activities by calculating
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overlap statistics among email messages and known activities. More recently, Qadir et al. [2016]
learn activities from workplace email with an unsupervised generative model that considers con-
texts like subject line, recipients, and linguistic features of emails. A major difference between
these works and our own is that we wish to discover activities that span multiple types of ob-
jects, including but not limited to email. From a problem setting perspective, the TaskTracer

system [Shen et al., 2006] for activity management over heterogeneous desktop items is more re-
lated. However, TaskTracer is supervised and requires users to enforce a hierarchy over their data,
whereas we take an unsupervised approach.

Graph similarity search Because we model personal information collections as graphs, our
task can be cast as a similarity search problem among representations of nodes in a graph [Perozzi
et al., 2014, Tang et al., 2015, Grover and Leskovec, 2016, Hamilton et al., 2017, Hamilton, 2020].
The most topically-related approach of which we are aware learns node representations in a graph
representing professional email communications between people [Jin et al., 2019b]. However, the
node embeddings proposed by Jin et al. [2019b] are tailored to the task of inferring people’s roles
in professional hierarchies, whereas we consider diverse personal information management tasks.
We also formulate our problem and propose a model that handles arbitrary heterogeneous objects
rather than solely emails or people. While vector representations of heterogeneous multi-relational
graphs have been previously proposed [Dong et al., 2017, Wang et al., 2019d], these approaches
require the heuristic construction of various semantic paths in the graph (“metapaths” [Sun et al.,
2011]), which we do not require in our approach.

6.3 Problem Definition

According to Dredze et al. [2006], activities are collaborative practices that have state and a goal
(e.g., organizing a conference). Using this definition, we state the following desiderata for activity
discovery over heterogeneous personal information collections:

• Privacy-preserving: Personal information collections contain sensitive private informa-
tion [Zhao et al., 2018]. To avoid data leakage, our model should operate on a per-person
basis, directly on personal devices, without leveraging collective patterns across users.

• Requires no supervision: Manually organizing personal data into, e.g., social circles or
email folders, requires a nontrivial amount of effort [Whittaker et al., 2011, Mcauley and
Leskovec, 2014]. Accordingly, we do not assume the presence of labeled data, although an
ideal model should be able to incorporate activity labels if available.
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• Online updates: Individuals’ activities naturally change over time. To handle this evolution,
we should be able to incrementally and efficiently update our model as new data arrive.

We state our research problem as follows: Given an entity e from an individual’s heterogeneous
personal information collection C, find entities e′ that are “related” or “associated” to e in the
context of u’s activities in a manner that (1) preserves privacy by being learned on an individual,
on-device basis, (2) is unsupervised, and (3) can operate in an online setting.

6.4 Methodology

We now introduce our joint interaction and content learning approach over heterogeneous personal
information collections.

6.4.1 Personal Webs Overview

As our problem statement is open-ended, several classes of methodology could be employed. For
example, a retrieval approach would rank the most related entities e′ to a query entity e in terms
of activities, whereas a clustering approach would directly group entities into activities. To han-
dle this open-endedness we propose to learn versatile representations of heterogeneous personal
information items that can be used in numerous settings like retrieval, clustering, and classification.

Our approach naturally combines interaction and content, relying on two ideas. The first is
that personal information objects have inherent graph structure (Figure 6.1). The second is that
closely-connected objects in the graph sharing textual content indicative of activities should have
similar representations.

Personal Webs Given an individual’s personal information collection P , we construct a graph
G = (V , E) from P . In this chapter we focus on unweighted and undirected graphs, but our
model can be straightforwardly extended to handle edge weights and directionality. We call G the
Personal Web associated with that individual.

Each entity (node) in V has an associated type, such as Email, Calendar Appointment, or Con-

tact. Each node may be also associated with textual content, for example email subject lines,
bodies, etc. That said, because we consider arbitrarily heterogeneous objects, not all nodes are
documents (e.g., Contacts, Photos, etc). We do not include the individual who owns the data in the
Personal Web, since they are implicitly “connected” to all other nodes in the graph.

Each edge in E encodes a semantically meaningful relationship between entities. For example,
an edge connecting a Calendar Appointment to a Contact might signify that the appointment was
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Figure 6.2: Joint learning over interaction and content in the Personal Web.

organized or attended by that person. In practice, a Personal Web can be instantiated in many
different ways, the effects of which we illustrate in Ch. 6.4.2.

6.4.2 Entity Representation Learning

We learn entity representations with a propagation process over G that yields similar representa-
tions for entities that are closely-connected in G and/or share similar features. The propagation
starts from a set of seed entities in G that are associated with “activity-specific” textual content
features. In the following sections, we will provide concrete examples of such features.

Objective Let X ∈ Rn×p be a matrix in which nonnegative entry Xij corresponds to entity i’s
membership strength in activity-indicating textual attribute j. We propagate the seeds’ attribute
membership strengths Xij across the graph to learn X̂ ∈ Rn×p, the entity-attribute membership
matrix for all entities in G, by minimizing the loss function

L(X̂) =
∥∥∥X̂−X

∥∥∥2
F
+ λ tr

(
X̂⊤LX̂

)
, (6.1)

where the graph’s Laplacian is given as L = D−A for diagonal degree matrix D and symmetric
adjacency matrix A.

The first term in (6.1) constrains the learned attribute values for seed entities to be close
to their initial values. The second term enforces graph smoothness and yields similar learned
attribute-value distributions for linked entities, controlled by regularization hyperparameter λ.
Note that (6.1) recalls label propagation and convolutions over graphs [Zhu, 2005, Kipf and
Welling, 2017], but such techniques are typically used to predict node classes, which is not our
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(a) Log-log cumulative degree distribution in the
Personal Web, stratified by type.

(b) Average representation density, using noun
phrases as textual attributes, stratified by type.

Figure 6.3: Capturing semantic differences in entity types through representation density for a
random Medium inbox from the Avocado dataset (Table 6.3). On average, Contact nodes have the
highest degrees and thus the densest representations, reflecting that people usually participate in
more activities than other types of entities.

goal. Rather, we use propagation to obtain entity representations: The i-th entity’s final represen-
tation is given as x̂i, the i-th row of X̂.

Note that we learn a separate model per person without sharing any information across peo-
ple. All textual attributes in a Personal Web therefore come directly from the owning individual’s
personal information objects.

Entity attributes The propagation seed matrix X maps select entities to textual content features
that directly or indirectly indicate activities. In the unsupervised case, which is the focus of this
work, we consider noun phrase frequencies and latent topic memberships (LSA [Deerwester et al.,
1990] and LDA [Blei et al., 2003]) as attributes and their associated strengths. The motivation is
that noun phrases often directly correspond to project, task, or goal names [Benetka et al., 2019],
whereas latent topics capture semantic relatedness among groups of documents. Importantly, when
noun phrases are used, our approach can produce fully human-interpretable representations, since
the columns in X correspond to natural language. It also naturally handles semi-supervision: We
can consider activity labels as attributes if available, although we leave this direction for future
work. although we focus on the (arguably more realistic) unsupervised setting in this chapter. That
said, it has been shown that users struggle to impose hierarchy over their personal data and settle
on a single meaning of a given label [Whittaker and Sidner, 1996, Kulesza et al., 2014]. Therefore,
we let users’ activities “bubble up” without supervision rather than requiring labels.

Entity type semantics Our representation approach implicitly captures entity type semantics via
representation density. Figure 6.3 illustrates this effect with a graph from the Avocado dataset
(Ch. 6.6) consisting of the following relations: Contact-Email, signifying who sent or received a

88



specific email; Email-Email, signifying direct replies on email threads; and File-Email, signifying
files attached to emails. Figure 6.3a demonstrates that a node’s degree corresponds strongly with
its type: The degrees of Contact entities are up to orders of magnitude larger than those of Emails
and Files.

Figure 6.3b demonstrates that Contact entity representations are on average twice as dense as
Email and File entity representations, due to their having higher degree. In this case, the higher
density of Contact entities reflects the idea that people usually participate in more activities than
do single emails or files. This effect is an advantage of our approach: We allow entities’ represen-
tation densities to vary according to their type semantics, while still representing all heterogeneous
objects in a shared vector space.

6.4.2.1 Offline Learning

We are given a graph G and its corresponding Laplacian matrix L. To find the entity-attribute
membership matrix X̂, we first take the derivative of (6.1) with respect to X̂:

∂L
∂X̂

= 2
(
X̂+ λLX̂−X

)
.

Setting the derivative to 0 and solving for X̂, we obtain

X̂ = (I+ λL)−1X, (6.2)

where I is the identity matrix. In practice, to avoid a computationally prohibitive matrix inversion,
we solve for each column of X̂ with Jacobi iteration, which is guaranteed to converge because the
matrix inverted in (6.2) is diagonally dominant:

x̂
(j+1)
i = (I+ λD)−1

(
xi + λAx̂

(j)
i

)
, (6.3)

where xi is the i-th column of X, and x̂
(j)
i is the i-th column of X̂ in the j-th iteration.

6.4.2.2 Online Learning

In a more realistic setting, we wish to incrementally update entity representations X̂ as new data
arrive over time. We make the mild assumption that as new data arrive, entities’ textual attributes
and their strengths can be obtained on-the-fly rather than requiring a full pass over the data. In
practice, this assumption holds when we take noun-phrases as attributes, but not when we require
a decomposition of the full document-term matrix (e.g., LSA, LDA).

The online setting consists of two cases:

89



• Case 1: Only the graph structure changes, meaning a new personal information object arrives
(e.g., an email) and/or a new link between objects arrives (e.g., an email is forwarded to a
colleague), without observing new textual attributes.

• Case 2: Both the graph structure and the graph’s textual attributes change, meaning in ad-
dition to structural changes in G we observe new textual information, like an unseen noun
phrase.

We begin with Case 1. Given newly observed edge (i, j), let ∆D and ∆A represent rank-one
updates to D and A, respectively, such that the updated degree matrix is Dnew = D + ∆D, the
updated adjacency matrix is Anew = A+∆A, and the updated Laplacian is

Lnew = Dnew −Anew = (D−A) + (∆D−∆A) = L+∆L. (6.4)

Because only the graph structure changes, the online objective matches (6.1), except that Lnew

replaces L. Therefore, following (6.2), the closed-form solution of the online objective is

X̂new = (I+ λLnew)
−1X = (I+ λL+ λ∆L)−1X. (6.5)

Equation (6.5) can be naively solved with Jacobi iteration as in Ch. 6.4.2.1, but we devise a faster
approach that reuses previous computation and arrives at the same solution as our offline model.
The key to efficiency is that both ∆D and ∆A are rank one and can be expressed as outer products.
Letting ei ∈ Rn be an indicator vector with its i-th entry equal to one, and zero elsewhere, we can
express ∆D = eie

⊤
i + eje

⊤
j and ∆A = eie

⊤
j + eje

⊤
i . It then follows that

∆L = ∆D−∆A → From (6.4)

= (ei − ej)(ei − ej)
⊤ (6.6)

is also rank one. Using the Sherman-Morrison formula for rank-one updates to a matrix in-
verse [Sherman and Morrison, 1950], it follows that

X̂new = (I+ λL+ λ∆L)−1X → From (6.5)

=
(
I+ λL+ λ(ei − ej)(ei − ej)

⊤)−1
X → From (6.6)

=

(
(I+ λL)−1 − (I+ λL)−1λ(ei − ej)(ei − ej)

⊤(I+ λL)−1

1 + (ei − ej)⊤(I+ λL)−1λ(ei − ej)

)
X

= X̂− (I+ λL)−1λ(ei − ej)(ei − ej)
⊤X̂

1 + (ei − ej)⊤(I+ λL)−1λ(ei − ej)
,
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where on the last line we substitute (I+λL)−1X = X̂ as per the closed form in (6.2). Now, letting

u = (I+ λL)−1λ(ei − ej) (6.7)

and

v⊤ =
(ei − ej)

⊤X̂

1 + (ei − ej)⊤u
, (6.8)

we can write the rank-one update to X̂ as

∆X̂ = X̂new − X̂ = −uv⊤, (6.9)

meaning that per newly observed edge, we only need to update X̂ with the outer product in (6.9).
In Case 2, where the new edge (i, j) contains at least one entity with previously unobserved

textual attributes, we propagate these new attributes across the graph using (6.3) and add the result,
along with the result of (6.9), to X̂. In the following sections, we demonstrate both theoretically
and empirically that this outer product formulation results in orders of magnitude performance
improvement.

6.4.3 Complexity Analysis

To conclude the discussion of our representation learning approach, we discuss computational
complexity. Recall that we define a Personal Web as a graph G consisting of nodes V and edges E .
Here, we use p to refer to the number of textual attributes in the graph.

Offline setting In the offline setting, solving for each column of X̂ requires O(|E|) time for
a fixed number of Jacobi iterations, since the matrix to be inverted in (6.2) has O(|E|) nonzero
entries. Thus, the total complexity is O(p|E|).

Online setting In the online setting, solving for u takes O(|E|) time, again using the Jacobi
method. Computing v takes O(p|V|) time for X̂ ∈ Rn×p, and taking the outer product uv⊤ is
also O(p|V|) for u ∈ R|V| and v ∈ Rp. Therefore, the total complexity of evaluating (6.9) without
observing a new entity is O(|E|+ p|V|).

If a new entity e is observed, according to our offline analysis the complexity is O(pe|E|) where
pe is the number of textual attributes for entity e, usually small in practice. Note that we must
add new rows and columns to L and X as necessary, but this operation scales with the number of
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nonzero matrix elements when implemented with sparse matrices. Therefore, the total complexity
is O(|E|+ p|V|+ pe|E|) = O(pe|E|+ p|V|).

6.5 Human Evaluation

Our first mode of evaluation is intrinsic: We obtain activity relatedness judgments from people
on their own data, which is crucial because such judgments are nuanced and depend on knowing
context and lived experience [Dumais et al., 2003]. Though limited to a small set of individuals,
our intrinsic evaluation allows us to directly characterize our approach. We will complement it
with a large-scale extrinsic evaluation in the following section by measuring downstream task
performance on a public dataset in lieu of direct judgments on private data.

6.5.1 Data

Collection and preprocessing We developed an on-device logging application that all task par-
ticipants installed on their primary work computers at least two days prior to the rating task. The
application indexes all emails and calendar appointments previously downloaded to the partici-
pant’s machine, and further records the participant’s interactions with these and other personal
information items on her desktop. Metadata of these items include, e.g., the people associated
with an email, the textual content of a file, when an individual clicked on a meeting, how long
she focused on a web page, etc. Importantly, all logs are stored locally, the logging tool does not
upload any information to the cloud, and all evaluation scripts using these logs were run locally on
participants’ computers from a USB drive. We collected only aggregate task performance metrics
from each participant.

For preprocessing, we discard placeholder emails and appointments (e.g., “automatic reply”),
emails and appointments from senders that the participant never personally contacted, emails with-
out the participant on the To, From, or CC lines, emails that the participant only sent to herself,
and, following [Qadir et al., 2016], emails and appointments with over 10 recipients (i.e., email
blasts). In total, we filtered out 30-70 percent of emails in each raw Personal Web graph with
these preprocessing steps. To capture a rough notion of “importance”, we retain only web docu-
ments/files that the participant dwelled on for at least 10 consecutive seconds. As textual attributes,
we extract noun phrases from email/appointment subject lines and document/file titles. We remove
general and domain-specific stopwords (e.g., filename extensions like “pdf”, email abbreviations
like “fwd”) and phrases that often appear in search results (“Google Search”).
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Figure 6.4: Mockup of fictitious entity cards for the human judgment task. Each entity pair is
associated with two questions.

Personal Web construction Each Personal Web consists of Email, Calendar Appointment, Web

Document, File, and Contact entities. We define the following semantic relationship types:
(1) Contact-Email, connecting people to emails that they sent, received, or were CC’ed on;
(2) Contact-Calendar Appointment, connecting people to calendar appointments that they orga-
nized or attended; (3-4) Email-Web Document and Calendar Appointment-Web Document, con-
necting emails and appointments to web documents if the participant accessed the document im-
mediately after reading the email or appointment (e.g. when clicking a link in the email body);
(5-6) Email-File and Calendar Appointment-File, connecting emails and appointments to desktop
files if the participant accessed the document immediately after reading the email or appointment;
(7) Email-Email, connecting pairs of emails that appeared consecutively in a thread (i.e., replies).
We construct each Personal Web from the participant’s two most recent months of data for ease of
contextualization.

6.5.2 Experimental Setup

Participants We recruited n = 10 participants (5 female, 5 male, ages 18-54) from a large en-
terprise technology company. Participants P1-P4 were interns, participants P5-P8 were software
engineers, and participants P9 and P10 were senior researchers or research managers. Each par-
ticipant was paid $25 upon completion of the task, which took about 30 minutes on average. The
number of entities in each participant’s Personal Web is given in Table 6.2.

Task We devise a transductive link prediction task (Chapter 2.2.1) for which our participants
provide us relevance labels. We present participants with pairs of their own personal information
objects (nodes) and ask them to relate those pairs of objects in the context of their activities (se-
mantic links). Per system to be evaluated, we identify pairs of related objects by following an
information retrieval approach: Given a randomly sampled entity e (the “query”), the system con-
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structs an ordered list of k ≤ 5 candidate entities e′ ̸= e it predicts are “related” or linked in terms
of the participant’s activities.

Participants performed the task through a locally hosted web application, the interface of which
is demonstrated in Figure 6.4. To fit the allotted time of the task, as each pair took 30-45 seconds to
rate, we limited the number of ranking systems and query entities such that each participant rated
up to 60 pairs: 3 query entities e× up to 5 candidate related entities e′ × 4 ranking systems, which
we discuss later in this section.

Questionnaire Each pair of entities displayed to the participant is associated with two questions:

• Question 1 asks how the pair of items are related (“Why do you think the system related
this pair of entities?”). The answer choices are: (1) Low-level, “These entities correspond
to the same short-term task, appointment, or goal (e.g., a meeting, a TODO)”; (2) Mid-

level, “These entities correspond to the same long-term project or activity (e.g., a research
project, a home remodel)”; (3) High-level, “These entities correspond to the same general
life category, not necessarily with defined start or end dates (e.g., Personal, Professional,
School)”; (4) Other, “These entities are related for reasons not listed above”; (5) Not related,
“The system is wrong. I cannot find any relationship between these entities”; and (6) Unsure,
“The system may have its reasons, but I don’t recognize one or more of these entities”.

• Question 2 asks the participant to assess the degree of activity-specific “relatedness” of the
displayed pair (“In your opinion, how related is this pair of entities?”). The choices form
a graded scale, scored as follows: Strongly related (4 points), related (3 points), somewhat

related (2 points), a little related (1 points), and not related at all or unsure (0 points).

Performance metrics Per participant we collect only aggregate system performance metrics
from the judgment task. Given a threshold of relatedness from the participant’s answers to Ques-
tion 2 (e.g., a little related up to strongly related), we compute recall and precision@k. When
computing recall, we form the gold set of related entities by pooling judgments across methods
and baselines.

Baselines Due to the allotted time and cost of the task, and the fact that all scripts ran locally
on personal machines, we restricted the task to two variants of our approach and two promising
baselines. We select our baselines out of a number of approaches from retrieval, clustering, and
embedding based on their performance in an independent pilot study involving six participants:

• People Overlap [Dredze et al., 2006]: For each query entity e, we compute the Jaccard
similarity between the people involved in e and all other entities e′ excluding the participant,
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then rank the entities e′ by similarity score and return the top k.

• node2vec [Grover and Leskovec, 2016]: We choose node2vec, which is based on the
word2vec architecture [Mikolov et al., 2013], among other graph embeddings for its
widespread usage and lightweight time and space complexity, which made it feasible to
run in a short time on participants’ personal devices. For this baseline we first augment each
participant’s Personal Web by including nodes representing noun phrases and edges connect-
ing entities to the noun phrases that they contain, similar to [Tang et al., 2015, Bendersky
et al., 2017]. We then apply node2vec on the augmented graph using its default parameter
settings [Grover and Leskovec, 2016]. For each query entity e, we find its k nearest neighbor
entities e′ in embedding space.

Personal Webs variants The variants of our Personal Webs approach rely on different activity-
related textual attributes:

• NP: Seed entities’ attributes are the noun phrases they contain, and their respective strengths
are their frequencies. Note that we do not differentiate between the offline and online ver-
sions of our representations for this variant, since they yield the same results.

• LSA [Deerwester et al., 1990]: As attributes we take the rank-32 SVD of the document-
phrase frequency matrix, treating each dimension of the decomposed matrix as a topic. We
set the decomposition rank to 32 based on the results of our independent pilot study, in which
we observed that this value led to the best tradeoff of effectiveness and efficiency among a
choice of {10, 32, 64}.

We set λ = 102 for both variants to emphasize the graph structure. After learning representations
X̂, we return query entity e’s k nearest neighbors e′ in vector space, ranked in increasing order of
Euclidean distance to the query entity e’s vector representation.

6.5.3 Results and Discussion

Table 6.1 gives performance metrics averaged across all study participants. The first group of rows
in Table 6.1 uses a permissive binarization of the “relatedness” scale (Question 2), considering
pairs to be related unless the participant responded unsure or not related at all. The second group
of rows uses a stricter binarization of relatedness, considering pairs to be related only if the par-
ticipant chose strongly related. It is evident from Table 6.1 that all systems are able to identify
related entities when the definition of “relatedness” is relatively loose. Our LSA representations
mostly perform best here except for lower ranks of precision, where People Overlap performs best.
However, with a stricter definition of relatedness, our NP representations mostly perform best.
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Table 6.1: Average performance metrics per system averaged across all participants. Highest
score among systems per metric shaded. Top group of rows: Averages across all pairs rated by
participants as a little related or above. Bottom group of rows: Averages for pairs rated as strongly
related only.

A little related, somewhat related, related, and strongly related pairs
Recall Prec@1 Prec@2 Prec@3 Prec@4 Prec@5

People Overlap 0.450± 0.11 0.933± 0.13 0.933± 0.11 0.922± 0.11 0.933± 0.10 0.933± 0.11
node2vec 0.440± 0.10 0.900± 0.21 0.867± 0.16 0.844± 0.17 0.858± 0.14 0.867± 0.14

Personal Webs-NP 0.444± 0.07 0.967± 0.10 0.933± 0.11 0.911± 0.12 0.900± 0.11 0.867± 0.13
Personal Webs-LSA 0.478± 0.07 1.000± 0.00 0.983± 0.05 0.944± 0.10 0.925± 0.10 0.907± 0.12

Strongly related pairs only
Recall Prec@1 Prec@2 Prec@3 Prec@4 Prec@5

People Overlap 0.319± 0.11 0.370± 0.25 0.370± 0.20 0.290± 0.17 0.265± 0.14 0.247± 0.15
node2vec 0.447± 0.25 0.333± 0.31 0.352± 0.32 0.333± 0.27 0.306± 0.19 0.274± 0.16

Personal Webs-NP 0.507± 0.24 0.519± 0.28 0.481± 0.21 0.420± 0.21 0.398± 0.21 0.356± 0.20
Personal Webs-LSA 0.522± 0.23 0.407± 0.26 0.407± 0.19 0.383± 0.20 0.380± 0.21 0.356± 0.18

Figure 6.5: Question 1 answers by system across all participants.

Impact of professional roles It should be noted that the standard deviations in Table 6.1 are rel-
atively high. We hypothesize that the variance can be partially explained by participants’ varying
roles in the workplace, which we found to be correlated with interpretations of the term “activ-
ity”. For example, our representations performed well for the senior-level participants with many
ongoing activities, whereas the People Overlap baseline worked well for junior-level employees
with fewer ongoing professional activities. We found that senior-level participants (e.g., principal
researchers, managers) tended to have many ongoing activities involving the same group of people,
so more fine-grained textual cues were needed to distinguish these activities. By contrast, partic-
ipants with fewer ongoing professional activities (e.g., interns, individual contributors) tended to
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Table 6.2: Average relatedness grade (Question 2) out of 4 across participants P1-P10. Parentheses:
Each system’s rank per participant; lower is better. Top: All entity pairs; Bottom: Email-Email
pairs only. Last column: Grades and ranks averaged across all participants.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg. grade (rank)# entities in G 157 258 320 303 256 291 203 232 1468 1637

All pairs of entities
People Overlap 2.00 (4) 2.47 (1) 2.67 (4) 1.87 (4) 2.77 (1) 2.00 (1) 2.00 (2) 2.00 (3) 2.43 (3) 2.13 (3) 2.22± 1.23 (2.60)

node2vec 2.33 (1) 2.40 (2) 3.07 (3) 1.93 (3) 2.33 (2) 1.87 (2) 1.80 (3) 1.93 (4) 2.20 (4) 1.73 (4) 2.16± 1.38 (2.80)
Personal Webs-NP 2.27 (2) 1.93 (4) 3.53 (1) 2.13 (1) 2.27 (3) 1.87 (2) 1.80 (3) 2.53 (1) 2.73 (1) 2.60 (2) 2.37± 1.43 (2.00)

Personal Webs-LSA 2.13 (3) 2.13 (3) 3.27 (2) 2.07 (2) 2.27 (3) 1.87 (2) 2.27 (1) 2.47 (2) 2.53 (2) 2.80 (1) 2.38± 1.38 (2.10)

Email-Email pairs only
People Overlap 2.60 (2) 2.67 (1) 2.44 (4) 1.75 (3) 2.55 (4) 1.69 (4) 2.20 (1) 2.33 (3) 2.46 (2) 2.13 (3) 2.26± 1.30 (2.70)

node2vec 2.60 (2) 1.88 (3) 2.78 (3) 1.80 (2) 3.71 (1) 2.00 (1) 1.00 (3) 1.62 (4) 2.14 (4) 1.73 (4) 2.07± 1.39 (2.70)
Personal Webs-NP 2.40 (4) 1.83 (4) 3.29 (1) 1.67 (4) 3.62 (2) 2.00 (1) 1.00 (3) 2.57 (1) 2.50 (1) 2.33 (2) 2.40± 1.40 (2.30)

Personal Webs-LSA 2.80 (1) 2.29 (2) 2.88 (2) 2.00 (1) 3.62 (2) 1.89 (3) 2.11 (2) 2.43 (2) 2.42 (3) 2.79 (1) 2.54± 1.30 (1.90)

Figure 6.6: Question 2 answer averages stratified by answers to Question 1.

view their activities as shaped primarily by the people involved.

Per-participant performance We explore this effect further in Table 6.2, where we demonstrate
each system’s performance per participant along with the size of each participant’s Personal Web
G as measured by the number of entities in the graph. In Table 6.2, the first group of rows gives
average grades for Question 2 (out of 4) and average system ranks (lower is better) for all pairs of
rated pairs. We find that our NP and LSA representations perform the best overall, whereas the
performance of node2vec is middling and People Overlap is more polarized. The second group
of rows gives the same information for Email-Email pairs only. Here our LSA representations
perform by far the best, likely because taking the SVD of the document-term matrix better groups
entities into high-level “topics” [Deerwester et al., 1990].
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Correlation between Q1 and Q2 Figure 6.5 shows what kinds of related items each system
found according to participants’ responses to Question 1 (“Why do you think the system related this
pair of items?”), with answers aggregated across all participants. All methods found a plurality of
mid-level related pairs (e.g., participating in the same long-term project or activity), but NP found
the most pairs with low-level (e.g., short term task) relationships. By contrast, People Overlap
found the fewest not related pairs, which is intuitive as it is a high-precision baseline (Table 6.1,
top). We also find that participants’ responses to Question 1 correlate with their responses to
Question 2 (“In your opinion, how related is this pair of items?”), as demonstrated by Figure 6.6.
In particular, across all participants, there appeared to be a strong consensus that short-term tasks
corresponded to the strongest relations between entities, with low-level related pairs of entities
receiving 3.579± 0.82 points (out of 4) for Question 2, on average. This correlation suggests that
while individuals may have interpreted the notion of “activity” in different ways, their ratings for
Questions 1 and 2 were consistent.

Overall, our results demonstrate the strengths of our graph-based representations over several
strong baselines. In particular, while there may not be a “one-size-fits-all“ approach to activity
discovery, we find that our representations perform well for people with many ongoing activities,
e.g., senior-level employees. Future work could further investigate how professional roles correlate
with individuals’ perceptions of, and participation in, activities.

6.6 Task-Based Evaluation

To complement our small-scale rating task, we conduct additional experiments on a large public
email dataset to demonstrate the versatility of our unsupervised representations.

6.6.1 Experimental Setup

Data We use the Avocado email dataset, which comprises the inboxes of several hundred em-
ployees of a now-defunct technology company referred to as Avocado.1 We filter each inbox
following the processing described in Ch. 6.5.1. From each filtered inbox we extract a graph
consisting of Email, Contact, and File entities. We define the Contact-Email and Email-Email

relations the same way as in the previous section, and define an Email-File relation that connects
emails to their attachments.

Table 6.3 provides aggregate statistics of all Personal Webs. Following our findings in Ch. 6.5.3
on role-based differences of individuals’ activities, we stratify our dataset by size, roughly along
classes of professional roles (e.g., worker, middle management, officer) [Jin et al., 2019b]: Small

1https://catalog.ldc.upenn.edu/LDC2015T03
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Table 6.3: Aggregates from the Avocado inboxes, stratified by size, after filtering and preprocess-
ing following Ch. 6.5.1. All Personal Web statistics are medians.

Personal web Entity types
# nodes # edges # emails # contacts # files

Small (n = 45) 501 1024 373 39 71
Medium (n = 76) 2862 6160 2 414 135 335

Large (n = 7) 12 759 37 119 10 755 303 1 457

inboxes have 200–1 000 nodes in their respective graphs, Medium have 1 000–10 000, and Large

have ≥10 000.

Task Following prior work in activity modeling [Qadir et al., 2016], we use an email recipient
recommendation task, i.e., link prediction among Email and Contact nodes in the Personal Web, to
evaluate the downstream utility of our graph-based representations. Per employee in the Avocado
dataset, we construct a test set consisting of the last 8 months of emails from his or her inbox.
We retain only the first email per email thread. For each test email, we remove the last recipient
on the To line, following the setup in [Qadir et al., 2016]. We discard emails with fewer than
two recipients and emails whose last recipient was never seen in the training set, meaning that
we evaluate under a transductive assumption (Chapter 2.2.1). For the graph-based methods, we
construct a graph given the missing edges between emails and contacts, and learn the respective
model over the partial graph.

At test time, given an email with the last recipient missing, each approach creates a ranked
list of candidate recipients r′, excluding the test email’s sender s and observed recipients r. For
the methods that represent entities as vectors, we return the candidate recipients r′ in order of
increasing Euclidean distance from the test email’s vector representation. Following [Qadir et al.,
2016], our metrics of choice are hits@k for k ∈ {1, 2}, which quantifies the fraction of predictions
where the correct recipient is ranked in the top k results, and mean reciprocal rank (MRR).

Baselines We compare to the following baselines:

• Random: We rank the recipients r′ in random order.

• Frequent Recipients: We rank recipients r′ by P (r′ = u′) for all people u′ observed in the
inbox.

• Conditioned On Sender: Similar to Frequent Recipients, but conditioned on sender s, e.g.
P (r′ = u′|s).
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Table 6.4: Performance in the recipient recommendation task averaged across all Avocado inboxes.
Top performer(s) per metric shaded. ▲: Significant over all methods not marked with † for a two-
sided t-test at p < 0.01.

Hits@1 Hits@2 MRR
Random 0.019± 0.023 0.038± 0.040 0.081± 0.060

Freq. Recipients 0.107± 0.106 0.184± 0.136 0.229± 0.105
Cond. On Sender 0.143± 0.094† 0.247± 0.113▲ 0.282± 0.090†

Average NP 0.128± 0.088 0.209± 0.119 0.259± 0.102
node2vec 0.062± 0.072 0.092± 0.108 0.126± 0.114

Personal Webs-NP, λ = 10−1 0.111± 0.059 0.182± 0.096 0.225± 0.082
Personal Webs-NP, λ = 100 0.158± 0.084▲ 0.247± 0.105▲ 0.290± 0.089▲

Personal Webs-NP, λ = 102 0.143± 0.085† 0.225± 0.112† 0.267± 0.093†

Personal Webs-LSA 0.110± 0.093 0.180± 0.126 0.224± 0.111
Personal Webs-LDA 0.082± 0.080 0.141± 0.123 0.189± 0.111

• Average NP: We represent each email as a noun-phrase frequency vector and each candidate
recipient u′ as the average of all vectors representing emails she has sent or received.

• node2vec: We report the best node2vec performer on a grid search over the walk length
l ∈ {10, 80}, in-out parameter q ∈ {1, 2}, and embedding dimension d ∈ {32, 128}. All
other parameters are set to their defaults.

Personal Webs variants We learn our graph-based representations with the following variants:

• NP: We vary λ ∈ {10−1, 100, 102}.

• LSA: We set λ = 102.

• LDA: We decompose the document-term matrix with Latent Dirichlet Allocation
(LDA [Blei et al., 2003]) before propagation. We set λ = 102 and the number of latent
topics to 10.

6.6.2 Results and Discussion

As shown by Table 6.4, our graph-based representations outperform or tie all baselines, suggesting
their versatility in activity-centric tasks for which they are not directly optimized. Specifically,
our NP representations with λ = 100 perform best on average across all Avocado inboxes, tied
with the Conditioned On Sender baseline for Hits@1 but otherwise around 1 percentage point or
higher than the best baseline. Our NP representations outperform our LSA representations by a
significant margin in the recipient recommendation task. As demonstrated in Ch. 6.5.3, our NP
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representations are best at identifying strongly-related pairs of entities (Table 6.1, bottom), which
we hypothesize may be most useful for email recipient recommendation.

These results also offer insight into the effects of constructing interaction graphs from personal
information collections, which is a key design choice of this work. For example, a larger value
of the regularization hyperparameter λ translates into more similar entity representations for en-
tities that are closely connected in the graph. In the context of recipient recommendation, this
corresponds to people who co-occur often on emails, leading to better prediction performance.

Cross-modal versus single-modality approaches The Personal Web is inherently a cross-modal
representation of personal information collections, capturing both interaction structure and text.
Our node2vec baseline is also cross-modal, as we learn node representations over a graph con-
necting people, documents, and noun phrases in those documents. By contrast, our Average NP
baseline, which represents each person as an average noun phrase frequency vector, can be seen
as a content-only version of our NP representation. Likewise, our Frequent Recipients and Con-
ditioned on Sender baselines can be seen as interaction structure-only, as they do not consider
textual content.

The fact that our representations outperform all baselines suggests that joint modeling of in-
teraction and content is key to improving search and recommendation in personal information
collections. However, it should also be noted that the correct inductive biases and model design
are required to achieve this good performance: Our node2vec baseline performs worse than our
text- and structure-only baselines even though it is cross-modal, suggesting that it is ill-suited to
small personal information collections. We hypothesize that its use of random walks may introduce
spurious relations between objects and terms in the Personal Web.

6.7 Scalability Evaluation

Finally, we examine how model training scales in both offline and online settings. All experiments
were run on a single personal laptop with an Intel i7 1.90GHz processor and 16GB RAM.

6.7.1 Offline Setting

We compare the efficiency of offline inference with our NP and LSA variants versus node2vec. We
randomly sample one Avocado inbox of each size (Table 6.3) and train NP, LSA, and node2vec five
times over each inbox, reporting the average training time in seconds in Figure 6.7. We find that
learning our NP representations is consistently faster than training node2vec (between 3× to 8×)
since the latter requires computing expensive random walks across the graph in order to generate
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Figure 6.7: Average time in seconds to train our NP and LSA representations offline versus offline
node2vec as the graph size increases, measured by the number of edges.

context for each node. Our LSA variant is even more efficient, up to 102× faster than NP, and
up to 295× faster than node2vec, running in only a few seconds on a graph of 70k edges. This
is because taking the rank-r SVD, which is O(r2n) for n nodes in the graph [Halko et al., 2011],
results in a constant number of (latent) textual attributes r being propagated across the graph. For
a graph of m edges, the overall complexity of the LSA variant is O(r2n + rm) = O(m) for a
constant r ≪ n < m.

6.7.2 Online Setting

We next measure the difference between online and offline model inference. Recall from
Ch. 6.4.2.2 that our LSA variant is not eligible for incremental training because the SVD of the
document-term matrix must be recomputed from scratch each time new data arrive, so we only
experiment with the NP representations here. Figure 6.8 reports the average number of seconds
per edge processed, and the average efficiency gain, on all Avocado corpora stratified by size (as
detailed earlier in Table 6.3), for our offline- and online-learned NP representations. Online NP,
which updates representations incrementally per new edge, is up to 470× faster than offline NP,
taking on average less than 1 second per edge on the Large corpora.

Figure 6.9 demonstrates how the error of a single, offline-learned set of NP representations
increases as new edges arrive over time for a randomly sampled Medium Avocado inbox. Here
we measure the difference between the batch-learned offline representations and the most current,
online-learned version with mean squared error. Evidently the error increases approximately lin-
early as edges arrive, suggesting that for individuals with a high volume of incoming data (e.g.,
upper-level roles like managers, executives), updating the representations of their personal infor-
mation objects in an online manner becomes more important.
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Figure 6.8: Log-scale training time for online and offline NP in seconds per edge, averaged across
all inboxes of each size. Average efficiency gain in parentheses.

Figure 6.9: Mean square error of a set of static NP representations learned once and not updated
as new edges arrive over the course of a year for a Medium Avocado graph.

6.8 Conclusion

In this chapter, we studied the task of learning higher-level activity structure over interactions and
content in personal information collections, in order to help people manage their information more
effectively. We introduced the concept of the Personal Web, an integrated structure and content
view of personal information collections, and proposed an efficient joint graph propagation-based
approach to learn and update entity representations in the Personal Web. In keeping with the gen-
erality of our goal and the versatility of our unsupervised representations, we conducted multiple
evaluation tasks. In this first, we uniquely collected direct relevance feedback from a small set
of participants by running our own model, eyes-off, over participants’ personal information. In
the second, we devised a downstream email recipient recommendation task over a public email
dataset. In all experiments, we demonstrated that our representations capture personal notions of
activity-based relatedness while maintaining efficiency in an online setting.
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CHAPTER 7

Classifying Documents with Cross-Modal Inputs

The material in this chapter is derived from the paper “Late-Stage Fusion: Revisiting

Node Classification with a Practical and Effective Baseline”, which is under submis-

sion at the Thirty-ninth International Conference on Machine Learning (ICML), 2022.

7.1 Introduction

The previous chapters of this thesis considered the fundamental graph learning task of link predic-
tion, or inferring unseen edges between pairs of nodes in a graph. In this chapter, we turn to another
central graph learning task, that of node classification, which we introduced in Chapter 2.2.2. Node
classification refers to the task of classifying examples in a dataset for which interactions or rela-
tionships between examples are known [Neville and Jensen, 2007]. For example, in text mining
and analysis, it is often of interest to classify documents by topic or category. When relationships
between documents are available, for example hyperlinks between Web pages or citations between
scientific articles, the task becomes that of node classification: Given a graph consisting of a set of
nodes with textual features and classes, as well as graph links or edges between the nodes, classify
the nodes with unknown labels [Kipf and Welling, 2017, Hu et al., 2020].

In recent years, successful approaches to node classification have been dominated by deep graph
convolutional networks or GCNs [Kipf and Welling, 2017, Veličković et al., 2018], which, as de-
scribed in Chapter 2.4, use neural “message passing” (MP) to jointly encode the graph’s interaction
structure and content features in an end-to-end trainable architecture [Hamilton, 2020]. Under MP,
each node’s hidden representation is computed as a combination of its own representation and the
aggregated representations of its neighbors in the graph. For all of its successes, however, neural
MP has a strong inductive bias toward homophilous graphs in which connected pairs of nodes
in the graph are likely to belong to the same class. It therefore underperforms on heterophilous
graphs in which nodes of different classes are more likely to be connected than nodes of the same
class, mostly due to its tendency to oversmooth [Chen et al., 2020b, Klicpera et al., 2019, Pei et al.,
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Table 7.1: Feature-only models outperform GCNs under heterophily, whereas GCNs outperform
feature-only models under homophily. Our simple ensembling approach called Late-Stage Fusion
(LSF) achieves robust performance independent of the homophily level.

Cornell Arxiv
(Heterophilous) (Homophilous)

Best feature-only model 84.86 69.93
Best GCN model 77.84 71.74

LSF 86.22 74.57

2020, Oono and Suzuki, 2020, Yan et al., 2021]. In heterophilous settings, simple non-relational
models like MLP that ignore the graph structure and use only the node features are known to be
competitive, often outperforming GCNs [Zhu et al., 2020]. Table 7.1 shows how performance of
feature-only and GCN-based models can vary with different homophily levels. Even the best GCN
model still has a 7% absolute drop in accuracy on the heterophilous Cornell graph when compared
to simple feature-only models.

While recent work has proposed to adjust GCNs for heterophilous settings [Zhu et al., 2020,
2021, Chien et al., 2021, Suresh et al., 2021], such methods typically focus on heuristic transfor-
mations of the data or GCN architecture to better match the inductive bias of neural MP. Moreover,
while homophily is typically reported as a global statistic, homophily has been found to vary lo-

cally in most network datasets, as shown in Figure 7.1 [Suresh et al., 2021, Lim et al., 2021, Yan
et al., 2021]. This motivates the need for practical, robust methods that are flexible enough to
account for varying degrees of homophily, both within and across graphs.

7.1.1 Contributions

Toward this goal, in this work we investigate a simple, yet surprisingly effective ensembling base-
line for node classification called Late-Stage Fusion (LSF). Focusing on graphs with textual fea-
tures, our ensembling approach combines the predictions of base GCN models with the predictions
of base text-only models (e.g., MLP for vector features, deep language models for raw textual con-
tent) via a weighted majority vote. Departing from classical ensembling, which combines the same
type of model trained on different views of the data to reduce variance [Breiman, 1996, Bartlett
et al., 1998, Kuncheva and Whitaker, 2003], LSF leverages the key insight that feature-only and re-
lational models perform differently, and often complementarily, at varying levels of homophily. We
provide a theoretical analysis of LSF that shows how it can provably improve the ensembling error
of the weaker of the two model groups, leading to robust performance regardless of homophily
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levels. In our extensive empirical evaluation, we compare to 13 competitive GCN baselines across
8 diverse graph datasets and show that LSF achieves equivalent or better performance in all sce-
narios. Given the simplicity and effectiveness of LSF, we believe that it should serve as a baseline
and starting point for future model development in node classification.

Our contributions are as follows:

• New model fusion approach (Ch. 7.4): We propose Late-Stage Fusion (LSF), a simple
but powerful cross-modal model fusion approach for node classification. LSF combines the
classification outputs of graph learning models with those of text learning models.

• Theoretical characterization (Ch. 7.4.2): We provide a theoretical characterization that im-
plies LSF’s strong performance regardless of the homophily level of the graph. Considering
one group of graph learning models and one group of text learning models, we prove that
LSF improves the ensembling error of the weaker of the two model groups, leading to robust
performance regardless of homophily levels.

• Extensive evaluation (Ch. 7.5): We compare LSF to 13 competitive GCNs across eight
diverse graph datasets with varying homophily patteerns. LSF meets or exceeds state-of-
the-art performance on all datasets. Despite its simplicity, LSF on average reduces error by
4.9% compared to the best-performing baseline on each dataset. In contrast, GraphSAGE,
the baseline with most robust performance as homophily varies, on average increases error
by 11.8%. In further analysis, we demonstrate how the superior performance of LSF mainly
comes from its successful modeling of local homophily patterns in a graph, allowing the
feature information to dominate in low-homophily regions, and leveraging the feature and
relation correlations in higher-homophily regions.

7.2 Related Work

Variants of the graph convolutional network or GCN [Kipf and Welling, 2017] have enjoyed im-
mense success across a variety of graph-based machine learning tasks and application domains [Wu
et al., 2020b], the most common of which is node classification [Hamilton et al., 2017, Veličković
et al., 2018, Wu et al., 2019, Hamilton, 2020]. However, the strong relational inductive bias of
neural message passing (MP) is known to lead to lower performance on heterophilous graphs [Xu
et al., 2019, Zhu et al., 2020, 2021], and also has strong connections to the oversmoothing prob-
lem [Oono and Suzuki, 2020, Liu et al., 2020a, Yan et al., 2021]. In this section, we discuss various
directions toward addressing these drawbacks.
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Notions of homophily Similar to our goal of modeling local homophily, various studies in net-
work science have proposed to measure homophily patterns in graphs with group-level [Currarini
et al., 2009] and node-level [Interian and Ribeiro, 2018] statistics. More recently in the graph
neural networks community, recent work has argued that graph-level homophily statistics may not
fully characterize how the class labels correlate with the edges. Suresh et al. [2021] analyze how
homophily patterns can be distributed unequally across two graphs with the same global level of
homophily. Lim et al. [2021] argue that global summary statistics for homophily may be mislead-
ing because they do not account for number of classes and imbalance in class distributions.

Handling heterophily Several heuristics for connecting distant or non-neighboring nodes in a
graph have been proposed to improve MP under heterophily. One strategy introduces skip connec-
tions among different layers, such that hidden features from earlier layers, which are less influenced
by the graph structure, can provide input into the final class predictions [Hamilton et al., 2017, Xu
et al., 2018, Chen et al., 2020b, Zhu et al., 2020]. Other approaches modify the input graph’s
topology in order to introduce new dependencies between nodes and relax the relational inductive
bias imposed by the original graph [Pei et al., 2020, Suresh et al., 2021, Yan et al., 2021]. Note,
however, that all of these methods are all still MP architectures at their core, and make class pre-
dictions according to (some) graph structure, whereas LSF is more generalized because it allows
feature-only learners to override the predictions of relational learners.

Disentangling features and relations A related direction of research seeks to disentangle the
node feature information from the graph’s relational structure. Variants of the “predict-then-
propagate” framework originally introduced by Klicpera et al. [2019] have been proposed, both
end-to-end trainable [Liu et al., 2020a] and modular two-step [Huang et al., 2021]. While these
methods were not originally designed to handle heterophily, more recent approaches tailored
toward separating features and relations have been proposed specifically in the context of het-
erophilous graphs [Chien et al., 2021, Ma et al., 2021b, Lim et al., 2021]. As these are the closest
to LSF, we compare to several competitive variants in our experiments.

7.3 Preliminary Analysis

We consider the transductive node classification task as introduced in Chapter 2.2.2 over a singly-
relational graph G = (V , E): Given a training set consisting of nodes Vtrain ⊂ V and their labels,
all node features X, and the adjacency matrix A, predict the labels of the remaining nodes Vtest =

V\Vtrain. In practice, we only consider textual node features in this chapter. However, for generality
we will not limit our discussion in this section to text, since nodes may be associated with real-
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Figure 7.1: 1-hop homophily (Equation 7.2) characterizes each graph’s class distribution on a local
level: For example, even though PubMed has a higher global homophily score h (Equation 7.1)
than Books, PubMed has a different distribution of local 1-hop homophily scores.

valued or categorical features beyond text, and our proposed approach LSF can handle nodes of
any feaure type.

7.3.1 Global and Local Homophily

The homophily of a network measures the degree to which similar nodes tend to interact [McPher-
son et al., 2001]. In the context of node classification, we consider similarity purely from the
perspective of node classes, with higher-homophily graphs connecting more pairs of nodes of the
same class than across different classes. This can be quantified at various levels of granularity in a
graph, from a per-node level [Interian and Ribeiro, 2018] to a per-group [Currarini et al., 2009] or
whole-graph level [Zhu et al., 2020].

In this chapter, we will primarily consider whole-graph global homophily and per-node local
homophily. Toward the former, Zhu et al. [2020] propose to measure a graph’s global homophily
as the fraction of edges connecting nodes of the same class, divided by the total number of edges
in the graph:

h =
{(u, v) ∀(u, v) ∈ E | yu = yv}

|E|
. (7.1)

While this statistic is useful for succinctly summarizing a graph, it may not capture finer-grained
variations in the graph’s class distribution. Toward analyzing homophily on a local level, we
consider a simple node-level statistic which we call 1-hop homophily Given a node u with graph
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neighbors Nu, we define u’s 1-hop homophily score hu as

hu =
|{yv = yu | ∀v ∈ Nu}|

|Nu|
, (7.2)

that is, the proportion of u’s neighbors belonging to the same class as u.
The 1-hop homophily statistic has been explored previously in the network science literature for

measuring network polarization [Interian and Ribeiro, 2018]. However, in the context of analyzing
the performance of graph neural networks, it has primarily been considered at a global level [Pei
et al., 2020] by taking the average hu across all nodes u ∈ V , whereas we use it as a tool for
analysis on a local, per-node level.

Figure 7.1 provides examples of graphs in terms of both global homophily h (Equation 7.1)
and the distribution of their local homophily scores hu in bins. We observe that two graphs of
similar global homophily score (Arxiv, Books) may have very different distributions of local ho-
mophily. Moreover, the graphs with low global homophily (Actor, Cornell) still have a relatively
large proportion of nodes with high 1-hop homophily scores, and vice-versa.

7.4 Methodology

7.4.1 Late-Stage Fusion Overview

Our preliminary analysis motivates us to develop an approach flexible enough to account for vary-
ing degrees of homophily both within and across graphs. Toward this goal, we investigate a simple
node classification baseline that we call Late-Stage Fusion (LSF). For a given node u, we define
the LSF classification rule for u as follows:

ŷu = argmax
c∈C

{
N∑
i=1

wiI[ŷ
TEXT
i,u = c] +

M∑
j=1

wjI[ŷ
REL
j,u = c]

}
.

The first term refers to a weighted sum over the predictions of N ≥ 1 feature-only base models
fTEXT
i (e.g., MLP), where each ŷTEXT

i,u is defined as follows:

ŷTEXT
i,u = fTEXT

i (xu; yu), i = 1 . . . N.

Likewise, the second term refers to a weighted sum over M ≥ 1 relational base models fREL
j

(e.g., GCN), where each ŷREL
j,u is defined as follows:

ŷREL
j,u = fREL

j (A,xu; yu), j = 1 . . .M.
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The weights wi and wj are used to weight each base classifier’s predictions. These weights may
be uniform, treated as hyperparameters, or even learned on a separate hold-out set. In practice, for
simplicity, we search over a single ratio hyperparameter α ∈ [0, 1] on the validation set such that
wi =

α
N

and wj =
1−α
M

.

7.4.2 Theoretical Characterization

In this section, we characterize properties of LSF theoretically. We show that, for an established
definition of voting ensemble error from the classical ensembling literature [Bartlett et al., 1998],
ensembling across feature-only and relational models is guaranteed to improve upon the error of
the weaker group of models (whose performance differs under varying homophily) for any given
node.

Assume we are given a data point u with label yu = c and an ensemble of L base learners fi(u).
The margin [Bartlett et al., 1998] of the ensemble is defined as the weighted proportion of base
learners fi(u) that classify u correctly (i.e., predict class c), less the maximum weighted proportion
of base learners that vote for the same incorrect class c′ ̸= c.

Formally, the margin, assuming equal weights on all L base learners fi(u), is written as

Marginu =
1

L

(
L∑
i=1

I[fi(u) = c]−max
c′ ̸=c

L∑
i=1

I[fi(u) = c′]

)
∈ [−1, 1]. (7.3)

The goal of the voting ensemble is to maximize this quantity. In particular,

accuracyu =

1, if Marginu > 0

0, otherwise
.

Thus, the margin may be intuited as a measure of confidence for the voting ensemble, with a greater
absolute value indicating a more confident ensemble.

7.4.2.1 Uniform Weights

We start with a simplified version of LSF in which all weights wi and wj are uniform. Given the
definition of margin in Equation 7.3, we have the following:

Lemma 7.4.1. Assume N base learners fTEXT
i and M base learners fREL

j . For a given node u, if
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we weight each base learner with a uniform ratio of wi = wj =
1

N+M
, then

MarginLSF
u > min(MarginTEXT

u ,MarginREL
u ),

⇐⇒ (MarginLSF
u > MarginTEXT

u ) ∨ (MarginLSF
u > MarginREL

u ),

where MarginLSF
u refers to the margin of LSF over the ensemble of N + M base learners,

MarginTEXT
u refers to the margin of the N feature-only learners, and MarginREL

u refers to the margin

of the M relational learners.

Proof. Given node u with label yu, let us assume that MarginTEXT
u > MarginREL

u , i.e.,

1

N

(
N∑
i=1

1ŷTEXT
i,u = c−max

c′1 ̸=c

N∑
i=1

1ŷTEXT
i,u = c′1

)

>
1

M

(
M∑
j=1

1ŷREL
j,u = c−max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)
. (7.4)

Note that we use c′1 and c′2 to indicate that the maximally weighted incorrect class prediction may
differ between the feature-only learners and the relational learners.

First, notice that

MarginLSF
u =

1

N +M

[
N∑
i=1

1ŷTEXT
i,u = c+

M∑
j=1

1ŷREL
j,u = c

−max
c′ ̸=c

(
N∑
i=1

1ŷTEXT
i,u = c′ +

M∑
j=1

1ŷREL
j,u = c′

)]

≥ 1

N +M

(
N∑
i=1

1ŷTEXT
i,u = c+

M∑
j=1

1ŷREL
j,u = c

−max
c′1 ̸=c

N∑
i=1

1ŷTEXT
i,u = c′1 −max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)

because for any two functions f and g, max(f + g) ≤ max(f) + max(g); in this case,

max
c′ ̸=c

(
N∑
i=1

1ŷTEXT
i,u = c′ +

M∑
j=1

1ŷREL
j,u = c′

)
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is equal to

max
c′1 ̸=c

N∑
i=1

1ŷTEXT
i,u = c′1 +max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

only when c′1 = c′2, and is otherwise less.
Next, we show that

1

N +M

(
N∑
i=1

1ŷTEXT
i,u = c+

M∑
j=1

1ŷREL
j,u = c

−max
c′1 ̸=c

N∑
i=1

1ŷTEXT
i,u = c′1 −max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)
> MarginREL

u .

We cross-multiply the inequality in Equation 7.4 by the leading scalars and add

M

(
M∑
j=1

1ŷREL
j,u = c−max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)

to both sides of the inequality, yielding

M

(
N∑
i=1

1ŷTEXT
i,u = c−max

c′1 ̸=c

N∑
i=1

1ŷTEXT
i,u = c′1

+
M∑
j=1

1ŷREL
j,u = c−max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)

> N

(
M∑
j=1

1ŷREL
j,u = c−max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)

+M

(
M∑
j=1

1ŷREL
j,u = c−max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)
,
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which can be rewritten as

1

N +M

(
N∑
i=1

1ŷTEXT
i,u = c+

M∑
j=1

1ŷREL
j,u = c

− max
c′1 ̸=c

N∑
i=1

1ŷTEXT
i,u = c′1 −max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)

>
1

M

(
M∑
j=1

1ŷREL
j,u = c−max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)
= MarginREL

u .

Thus, we have that

MarginLSF
u ≥ 1

N +M

(
N∑
i=1

1ŷTEXT
i,u = c+

M∑
j=1

1ŷREL
j,u = c

−max
c′1 ̸=c

N∑
i=1

1ŷTEXT
i,u = c′1 −max

c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

)
> MarginREL

u

= min(MarginTEXT
u ,MarginREL

u ).

The same reasoning can be used to show that when MarginREL
u > MarginTEXT

u , then MarginLSF
u >

MarginTEXT
u = min(MarginTEXT

u ,MarginREL
u ), which completes the proof.

Since Lemma 7.4.1 holds for every u, on a global level it means that the accuracy score of LSF
will be no worse than the accuracy score of the weaker of the two model groups.

Lemma 7.4.2. Let M↑ refer to the stronger of the two base learner sets {fTEXT
i } and {fREL

j }, and

let M↓ refer to the weaker of the two base learner sets, such that

MarginM↑

u > MarginM↓

u .

If M↑ and M↓ make different predictions for node u (i.e., ŷM
↑

u ̸= ŷM
↓

u ), and MarginM↑

u >

|MarginM↓

u |, then LSF will make the same prediction for node u as M↑, i.e.,

ŷLSF
u = ŷM

↑

u .

Proof. If MarginM↑

u > 0 and MarginM↓

u < 0, then the prediction of the weaker base learner set
will be incorrect, but the prediction of the stronger base learner set will be correct. We know from
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Lemma 7.4.1 that MarginLSF
u will be no less than that of the weaker base learner set. If in addition,

MarginM↑

u > |MarginM↓

u |, then

MarginLSF
u > MarginM↑

u + MarginM↓

u > 0.

Then LSF will also make the same prediction as the stronger base learner set.

Whereas Lemma 7.4.1 says LSF will do no worse than the weaker model group, Lemma 7.4.2
shows how in practice LSF can be as accurate as the stronger model group. If the two types
of models (TEXT and REL) are confident on the examples they classify correctly, which often
corresponds to heterophily and homophily respectively, and less confident on the examples they
classify incorrectly, then in practice the assumption of Lemma 7.4.2 will hold. This means that
the accuracy of LSF will be closer to that of the stronger base learners, in both homophilous and

heterophilous regions of the graph.

7.4.2.2 Non-Uniform Weights

We next extend Lemma 7.4.1 to the case where the feature-only learners are weighted as wi =
α
N

and the relational learners are weighted as wj =
1−α
M

, as per our practical implementation of LSF:

Lemma 7.4.3. Assume N base learners fTEXT
i and M base learners fREL

j with weighting wi =
α
N

and wj =
1−α
M

, respectively, and 0 < α < 1. For any given node u, if at least one of the two groups

of base learners makes the correct majority vote, i.e.,

MarginTEXT
u > 0 ∨ MarginREL

u > 0,

then

MarginLSF
u > min

(
α · MarginTEXT

u , (1− α) · MarginREL
u

)
⇐⇒ (MarginLSF

u > α · MarginTEXT
u )

∨ (MarginLSF
u > (1− α) · MarginREL

u ).
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Proof. We have that

MarginLSF
u =

α

N

N∑
i=1

1ŷTEXT
i,u = c+

1− α

M

M∑
j=1

1ŷREL
j,u = c

−max
c′ ̸=c

(
α

N

N∑
i=1

1ŷTEXT
i,u = c′ +

1− α

M

M∑
j=1

1ŷREL
j,u = c′

)

≥ α

N

N∑
i=1

1ŷTEXT
i,u = c+

1− α

M

M∑
j=1

1ŷREL
j,u = c− α

N
max
c′1 ̸=c

N∑
i=1

1ŷTEXT
i,u = c′1

− 1− α

M
max
c′2 ̸=c

M∑
j=1

1ŷREL
j,u = c′2

= α · MarginTEXT
u + (1− α) · MarginREL

u .

In the case that α ·MarginTEXT
u > (1−α) ·MarginREL

u and MarginTEXT
u > 0, then using the above

inequality we have

MarginLSF
u ≥ α · MarginTEXT

u + (1− α) · MarginREL
u

> (1− α) · MarginREL
u

= min(α · MarginTEXT
u , (1− α) · MarginREL

u ).

The same reasoning can be used to show that when MarginREL
u > MarginTEXT

u and MarginREL
u > 0,

then MarginuLSF > min(α · MarginTEXT
u , (1− α) · MarginREL

u ), which completes the proof.

Lemma 7.4.3 shows that, for all nodes that at least one of our base model groups correctly
classifies, the accuracy of LSF will be no worse than the accuracy of the weaker model group.

Lemma 7.4.4. Let M↑ refer to the stronger of the two base learner sets {fTEXT
i } and {fREL

j }, and

let M↓ refer to the weaker of the two base learner sets, such that

MarginM↑

u > MarginM↓

u .

Let w↑ ∈ {α, 1 − α} refer to the weight of M↑, and w↓ ∈ {α, 1 − α} refer to the weight of M↓.

If MarginM↑

u > 0 and w↑ · MarginM↑

u > |w↓ · MarginM↓

u |, then LSF will make the same prediction

for node u as M↑, i.e.,

ŷLSF
u = ŷM

↑

u .

Proof. If w↑ · MarginM↑

u > 0 and w↓ · MarginM↓

u < 0, then the prediction of the weaker base
learner set will be incorrect, but the prediction of the stronger base learner set will be correct. We
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Table 7.2: Datasets used in our experiments. The variable h refers to the global homophily score
(Equation 7.1).

# nodes # edges # classes h

Cornell 183 280 5 0.296
Texas 183 295 5 0.061
Wisconsin 251 466 5 0.178
Actor 7,600 26,752 5 0.217
Wiki-CS 11,701 216,123 10 0.654
PubMed 19,717 44,327 3 0.802
Arxiv 169,343 1,157,799 40 0.654
Books 383,583 4,856,894 10 0.681

know from Lemma 7.4.3 that the margin of LSF will be greater than the weighted margin of the
weaker base learner set. If in addition, w↑ · MarginM↑

u > |w↓ · MarginM↓

u |, then:

MarginLSF
u > w↑ · MarginM↑

u + w↓ · MarginM↓

u > 0.

Then LSF will also make the same prediction as the stronger base learner set.

Similar to Lemma 7.4.2, this shows that the weighted ensemble can make predictions in practice
that are as accurate as the stronger of the two base learner sets. In the following sections, we will
provide empirical analysis, demonstrating that these implications yield substantial performance
improvements in practice.

7.5 Evaluation

In our experiments, we consider a large range of graph datasets across the spectrum of homophily,
and compare LSF to a variety of graph learning architectures. We demonstrate LSF’s consistent
improvements regardless of the homophily level of the graph, and provide empirical analyses to
further characterize LSF on a local level.

7.5.1 Experimental Setup

Data We consider eight diverse graph datasets. Table 7.2 provides the dataset statistics. From
the literature on graph neural networks for heterophily, we use the Cornell, Texas, Wisconsin, and
Actor graphs from Pei et al. [2020]. The first three graphs represent hyperlinks between webpages;
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the latter represents co-occurrence of mentions of actors on Wikipedia. For all graphs, we use the
bag-of-words textual node features and random splits provided by the authors.

From the higher-homophily graph datasets more common in the GCN literature, we use the
Wiki-CS graph of hyperlinks between Wikipedia pages of computer science fields [Mernyei and
Cangea, 2020], and the PubMed [Namata et al., 2012] and Arxiv [Hu et al., 2020] citation networks
of scientific articles. We also consider Books, a large homophilous graph constructed from the
GoodReads dump provided by [Wan and McAuley, 2018, Wan et al., 2019], where nodes are
books, edges represent pairs of books that are commonly liked by the same users, and class labels
correspond to book genres.

For Wiki-CS and Arxiv, we use the splits and dense text representation node features provided
by the authors. For PubMed, we started with the original graph of PubMed articles, citation links,
and article classes introduced by Namata et al. [2012]. We retrieved the abstracts of all nodes us-
ing their PubMed ID from the PubMed 2021 annual baseline.1 We then split the data into training,
validation, and testing nodes. Note that the original GCN paper uses the random splits introduced
by Yang et al. [2016] on PubMed. However, we could not use these splits they do not disambiguate
the training/test nodes with the original PubMed IDs, and therefore we could not link them to our
retrieved textual abstracts. We therefore split the data according to each article’s year of publi-
cation, which we also retrieved from the PubMed database. Our design choice was motivated by
recent guidance from the Open Graph Benchmark [Hu et al., 2020], which suggests that time-based
splits test generalization better than random splits. We train up to 2004, validate up to 2007, and
test on the remaining data, yielding a 72/19/9 split ratio.

The Books graph is constructed from the raw dump of GoodReads provided by Wan and
McAuley [2018], Wan et al. [2019]. As far as we are aware, even though the dump provides a
rich and well-annotated graph from the recommender systems domain, it has not been used in
the context of node classification before. In our constructed graph, each node is a book from
GoodReads, each edge connects books that are frequently liked by the same users, and each class
is one of ten book genres. To construct feature vectors for each node as input to MLPs and GCNs,
we extract 1024-dimension bag-of-words feature vectors for each node. We also split the nodes by
time, which in this context corresponds to each book’s year of publication. We train up to 2013,
validate up to 2015, and test on the remaining data, yielding a 70/19/11 split ratio.

Baselines We consider the following baselines, grouped by type: (1) Feature-only: We use
MLP as a feature-only baseline. We also consider the BERT language model [Devlin et al., 2019],
the basics of which we covered in Chapter 2.5.2, on the PubMed, Arxiv, and Books graphs only,
as we were able to retrieve the raw textual snippets associated with the nodes in these graphs;

1https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
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(2) Relations-only: We consider the classic label propagation algorithm [Zhu and Ghahramani,
2002]; and (3) Standard GCNs: GCN [Kipf and Welling, 2017], GAT [Veličković et al., 2018],
GraphSAGE [Hamilton et al., 2017], and SGC [Wu et al., 2019].

We also consider two separate sets of “specialized” GCNs, one for the heterophilous graphs and
one for the homophilous graphs: (1) GCNs for heterophily: On the heterophilous graphs only, we
consider Geom-GCN [Pei et al., 2020], GCNII [Chen et al., 2020b], H2-GCN [Zhu et al., 2020],
WRGAT [Suresh et al., 2021], GPR-GNN [Chien et al., 2021], MLP+GCN feature pooling [Ma
et al., 2021b], and LINKX [Lim et al., 2021]; and (2) GCNs that separate features and relations:
On the homophilous graphs only, we consider APPNP [Klicpera et al., 2019], DAGNN [Liu et al.,
2020a], and C&S [Huang et al., 2021].

LSF variants We implement LSF with a simple approach that reuses our baseline models. As
the feature-only learners, we take the top-10 best feature-only baseline models for a given dataset
in terms of validation accuracy, and treat N ∈ 1 . . . 10 as a hyperparameter to be selected in tuning
LSF. We do the same with the relational learners using our standard GCN baselines in order to set
M . We also tune α ∈ [0.1, 0.9] on the validation set. Section 7.5.2 provides more insight into
hyperparameter selection for LSF.

Software For a fair comparison, we implement all models ourselves unless otherwise noted, and
select hyperparameters with the Ax model selection framework.2 We perform model selection over
10 trials, selecting the hyperparameters for the first 5 trials by randomly sampling from a grid, and
selecting hyperparameters for the remaining 5 trials using Ax’s built-in Bayesian model selection
API. Software is written in PyTorch and all relational baselines are implemented with the Deep
Graph Library [Wang et al., 2019b]. We train for a maximum of 200 epochs for all datasets except
for Arxiv and Books, for which we train for a maximum of 1000 epochs. We use an early stopping
patience of 100 and optimize with Adam.

We tune the following model-specific hyperparameters:

• MLP: Learning rate, weight decay, number of hidden layers, hidden layer dimension,
dropout rate.

• Label propagation: Weighting hyperparameter, graph normalization technique, and number
of propagation iterations (max 50).

• BERT: Learning rate, number of epochs (max 9), number of warmup steps.

2https://ax.dev/
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Table 7.3: LSF consistently achieves state-of-the-art node classification accuracy, regardless of the
graph’s level of homophily.

Heterophilous graphs Homophilous graphs
Cornell Texas Wisc. Actor Wiki-CS PubMed Arxiv Books

MLP 84.86 84.59 85.69 36.35 74.44 82.41 54.20 70.00
BERT - - - - - 87.74 69.93 75.83
Label propagation 58.92 58.11 45.10 25.35 73.58 85.90 68.11 77.25

GCN 58.11 68.65 66.47 30.12 78.90 87.34 71.74 79.75
GAT 54.32 68.11 65.49 29.26 79.81 88.10 70.04 80.13
GraphSAGE 77.84 82.70 84.31 36.34 80.05 89.42 71.49 80.07
SGC 55.68 69.19 66.27 28.61 77.71 87.15 68.16 77.84

LSF 86.22 86.22 87.25 36.87 80.73 90.37 74.57 81.56

• Standard GCNs: Learning rate, weight decay, number of hidden layers, hidden layer di-
mension, dropout rate, graph normalization technique, use of self-loops, number of attention
heads (GAT only), type of aggregator (GraphSAGE only), number of hops (SGC only).

7.5.2 Results and Discussion

We first compare LSF against standard GCNs, then consider more specialized architectures in the
heterophily and homophily cases separately.

Comparison to standard GCNs As shown in Table 7.3, LSF achieves state-of-the-art perfor-
mance on all graphs considered, providing substantial improvements over all standard GCNs and
the less expressive feature-only or relation-only baselines. We observe often substantial improve-
ments that are independent of both the graph’s homophily and its size: For example, on the Arxiv
graph of over one million edges, our strongest baseline (GCN) achieves 71.74% accuracy, whereas
LSF achieves 74.57% accuracy, an improvement of almost 3 percentage points.

Comparison to specialized GCNs Next, we consider the more specialized baselines, which
have design goals similar to LSF. In Table 7.4, we compare LSF to seven recent GCN architectures
designed to handle heterophily. Remarkably, we observe that LSF outperforms all seven baselines.
In Table 7.5, we compare LSF to three competitive GCN-like architectures that are designed to
separate feature learning from relational learning. Again, LSF outperforms or matches these archi-
tectures. On three of the four homophilous graphs, LSF improves accuracy by one to two points
over the best respective baseline. On the Books dataset, LSF comes second to DAGNN [Liu et al.,
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Table 7.4: LSF consistently achieves state-of-the-art node classification accuracy on the het-
erophilous graphs, even when compared to competitive GCN architectures designed to handle
heterophily. ♢: Numbers reported by the original paper over the same splits. ♡: Numbers reported
by Lim et al. [2021]. Note that the original GCNII paper did not use the Actor graph, so we reprint
the number reported by Lim et al. [2021].

Cornell Texas Wisc. Actor

Geom-GCN♢ 60.81 67.57 64.12 31.63
GCNII♢ 76.49 77.84 81.57 34.36
H2-GCN♢ 82.16 84.86 86.67 35.86
WRGAT♢ 81.62 83.62 86.98 36.53
GPR-GNN♡ 68.65 76.22 75.69 33.12
MLP+GCN♢ 84.82 83.60 86.43 36.24
LINKX♢ 77.84 74.60 75.49 36.10

LSF 86.22 86.22 87.25 36.87

Table 7.5: LSF outperforms or matches competitive baselines designed to separate feature and
relational learning on the homophilous graphs. ♢: Numbers reported from the original paper over
the same splits. Note that the original C&S paper used different splits for PubMed and did not use
Books, so we report its performance using DGL’s C&S implementation.

Wiki-CS PubMed Arxiv Books

APPNP 78.67 87.35 66.02 78.40
DAGNN 71.03 88.01 72.35 81.67
C&S♢ 79.57 86.84 72.62 77.68

LSF 80.70 90.37 74.57 81.56

2020a] by a small difference of 0.11 points. However, DAGNN is not a competitive baseline on
the other homophilous graphs, whereas LSF is consistently robust independent of the homophily
level.

Error reduction Finally, to provide further evidence as to LSF’s robustness across the spectrum
of heterophily, we compute its error reduction relative to the best baseline per dataset in Table 7.6.
We also include GraphSAGE, which is our strongest GCN competitor in terms of robustness across
homophily, for comparison. On average, LSF reduces error as compared to the best baseline by
4.94%, whereas GraphSAGE increases error by 11.79%.
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Table 7.6: LSF reduces error by 4.94%, on average, from the best baseline per dataset, whereas
our most robust baseline GraphSAGE increases error on average by 11.79%. First three columns:
Accuracy of the best baseline, GraphSAGE, and LSF per dataset. Last two columns: Error reduc-
tion of GraphSAGE and LSF, as compared to the best baseline’s accuracy, per dataset.

Accuracy Error reduction
Baseline SAGE LSF SAGE LSF

Cornell 84.86 77.84 86.22 -46.37% 8.98%
Texas 84.86 82.70 86.22 -14.27% 8.98%
Wisconsin 86.98 84.31 87.25 -20.51% 2.07%
Actor 36.53 36.34 36.87 -0.30% 0.54%
Wiki-CS 80.05 80.05 80.73 0.00% 3.41%
PubMed 89.42 89.42 90.37 0.00% 8.98%
Arxiv 72.62 71.49 74.57 -4.13% 7.12%
Books 81.67 80.07 81.56 -8.73% -0.60%

7.5.2.1 Empirical Analysis

Now that we have established the good performance of LSF, we provide further empirical charac-
terizations of its performance. We formulate three questions:

Q1 How does LSF’s ability to model homophily at a local level yield improvements in practice?

Q2 How does LSF compare to ensembles that use feature-only models or relational learning
models, but not both?

Q3 How robust is LSF to hyperparameters?

In the remainder of this section, we answer each question in turn.

Q1: How does LSF leverage local homophily patterns? Recall from Section 7.3 that we de-
fined the 1-hop homophily score (Equation 7.2), a node-level statistic that allows us to characterize
a graph’s homophily on a local level. To understand how LSF’s performance is related to local
homophily patterns in a graph, we plot the accuracy of LSF compared to its feature-only and re-
lational base learners, binning nodes by 1-hop homophily score and computing accuracy of each
method per bin.

Figure 7.2 shows that, as expected, the feature-only learner (MLP or BERT) consistently out-
performs the relational learner (GCN) for nodes with lower 1-hop homophily, whereas the reverse
is true in the higher-homophily bins. More importantly, the figures suggest that LSF interpolates
between the performance of the feature-only and relational learners; this observation is consistent
with the analysis of Section 7.4.2, where we showed how LSF leverages the stronger base learners
to improve upon the weaker base learners.
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Figure 7.2: LSF discards most of the relational information in graph regions where the 1-hop
homophily score is lower, and exploits the feature and relation correlations in graph regions where
the 1-hop homophily score is higher. Nodes are binned by 1-hop homophily score (Equation 7.2)
across 10 bins, and each method’s accuracy is computed per bin at a 95 percent confidence interval.

Table 7.7: LSF flips the incorrect votes of relational ensembles under heterophily, and flips the
incorrect votes of feature-only ensembles under homophily. For each direction, we provide the
fraction of test nodes for which LSF flips the incorrect votes from each group of base learners, as
well as the mean 1-hop homophily score (Equation 7.2) for those test nodes.

Flip fREL
j incorrect → correct Flip fTEXT

i incorrect → correct
% test nodes Mean 1HH % test nodes Mean 1HH

Cornell 29.73% 0.326 0.0% -
Texas 10.81% 0.000 0.0% -
Wisconsin 23.53% 0.250 0.0% -
Actor 15.39% 0.184 1.58% 0.295

Wiki-CS 3.03% 0.350 6.15% 0.694
PubMed 5.04% 0.392 2.14% 0.898
Arxiv 6.93% 0.339 5.70% 0.654
Books 2.81% 0.306 10.99% 0.688

Table 7.7 provides further insight into how LSF flips the incorrect majority votes made by its
feature-only and relational base learners for each graph dataset we consider. As shown in Table 7.7,
on the heterophilous graphs, LSF primarily corrects the votes of its relational base learners on
nodes with low 1-hop homophily, whereas it corrects the votes of its feature-only base learners
relatively infrequently. By contrast, on the higher-homophily graphs, LSF makes corrections to
both groups of base models. The ability of LSF to correct the incorrect votes of its base models
follows directly from Lemma 7.4.4, providing further empirical justification for the design of LSF.

Q2: How does LSF compare to single-modality ensembles? Since LSF is an ensembling ap-
proach, it is natural to wonder its improvements simply come from the fact that it is an ensemble—
which, theoretically, could improve the performance of any model—versus the fact that it is specif-
ically an ensemble of feature-only and relational learners. Although we justified ensembling across

122



Table 7.8: Ensembling a single type of base learner, either feature or relational, does not consis-
tently improve accuracy across graphs and sometimes even decreases accuracy. By contrast, LSF,
which ensembles feature and relational learners, always leads to improvement. The numbers for
the best single feature and relational learners are reprinted from Table 7.3.

Cornell Texas Wisc. Actor Wiki-CS PubMed Arxiv Books

Best feature-only learner 84.86 84.59 85.69 36.35 74.44 87.74 69.93 75.83
Best feature-only ensemble 84.32 85.41 86.67 36.45 74.24 88.98 71.44 76.39

Best relational learner 77.84 82.70 84.31 36.34 80.13 89.42 70.22 80.07
Best relational learner ensemble 70.81 77.03 80.98 35.15 80.07 88.48 71.01 79.98

LSF 86.22 86.22 87.25 36.87 80.73 90.37 74.57 81.56

feature-only and relational models in Section 7.4.2, here we provide additional empirical evidence
for the necessity of our design choice.

Table 7.8 compares the performances of feature-only or relational ensembles to LSF, using the
same model selection approach that we used to construct the LSF ensemble. In most cases, we find
that ensembling a single type of model either does not help accuracy or only improves it marginally.
None of the feature-only or relational ensembles approaches performance comparable to LSF. In
fact, in some cases ensembling a single type of model even hurts performance significantly: For
example, the best single relational learning model on the heterophilous Cornell achieves 77.84%
accuracy, whereas the best ensemble of relational learners that we constructed achieves 70.81%
accuracy, an absolute decrease in 7.03% percentage points. By contrast, because LSF is designed
with the knowledge that ensembling feature-only and relational models covers both heterophilous
and homophilous structures, it consistently achieves superior performance across every graph.

7.5.2.2 Q3: How robust is LSF to hyperparameters?

Finally, to provide a brief characterization of LSF’s robustness to hyperparameters, we vary each
of α, N , and M in turn while keeping the other two constant. As shown in Figure 7.3, the optimal
value of α is directly informed by the homophily level of the graph. For the heterophilous Actor
graph, peak performance is reached with α ≥ 0.7, whereas for the homophilous Arxiv graph, peak
performance is reached with α ∈ [0.4, 0.5].

Figure 7.3 also demonstrates that the number of feature-only learners does not significantly im-
pact LSF performance, but more than three relational learners consistently hurts performance. This
is likely because the predictions of the relational models are highly correlated due to their use of
the graph structure, which is disadvantageous from an ensembling diversity perspective [Kuncheva
and Whitaker, 2003]. We therefore recommend values of N ∈ {3, 5} and M ∈ {2, 3} for practical

123



Figure 7.3: LSF’s robustness to hyperparameters depends on two factors: (1) The weighting pa-
rameter α that controls the influence of the feature-only models, which yields better performance
when inversely correlated with homophily level; and (2) The number of relational base models M ,
which should be low. For each hyperparameter being varied, we hold the other two constant.

applications of LSF.

7.6 Conclusion

In this chapter, we studied the graph learning task of node classification across the spectrum of
homophily and heterophily. Motivated by the idea that an ideal approach should automatically
balance the influence of structure and text depending on the homophily patterns in the graph, we
presented LSF, a simple but surprisingly effective baseline for node classification that uses cross-
modal ensembling. LSF models homophily on a local instead of global level for best performance
in node classification by building an ensemble across graph learning and text learning models,
which we demonstrate both theoretically and empirically to lead to node-level adapation depending
on the graph’s class distribution patterns. In experiments, we demonstrated LSF’s excellent and
robust performance across eight graph datasets against a host of highly competitive baselines, and
provided in-depth empirical analysis to support our findings.
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Part III

Conclusion
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CHAPTER 8

Conclusion and Future Work

8.1 Summary

In this thesis, we proposed new methodologies and resources for text-augmented graph learning
toward (1) knowledge representation and reasoning; and (2) interaction and content mining.

Knowledge representation with language models In the first part of the thesis, we focused
on relational knowledge representation and reasoning with pretrained contextual language mod-
els (LMs). We set the stage for this topic in Chapter 3 by proposing a novel taxonomy for
knowledge representation in LMs using different levels of knowledge base (KB) supervision:
No KB supervision (i.e., probing the knowledge of LMs pretrained at the word level only), entity-
level pretraining and fine-tuning, and relation-level pretraining and fine-tuning. For each level, we
highlighted notable methodologies and findings, and made connections between NLP and graph
learning, leading the way into the next two chapters.

We next introduced two novel modeling frameworks for automatic KB completion (KBC). In
Chapter 4 we proposed NegatER, which addresses the problem of generating negative examples
in commonsense knowledge bases (KBs), toward better training of discriminative commonsense
KBC models. NegatER “contradicts” the commonsense knowledge patterns stored in a language
model’s parameters, generating new out-of-KB samples that are likely to be hard negatives. We
demonstrated in our experiments that training with negative samples generated by NegatER im-
proves the accuracy of commonsense KBC models significantly over those generated by compet-
itive baselines. We also confirmed that NegatER-generated negative samples are deemed higher-
quality than those generated by baselines in a human judgment evaluation.

We next focused on encyclopedic KBC in Chapter 5. To address the need for an encyclope-
dic KBC benchmark spanning structure and text, we introduced CODEX, and showed its myriad
advantages over existing KBC benchmarks in terms of scope and difficulty. We then proposed
CascadER, a multi-stage ranking approach that cascades structure-only embedding models and
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LMs for KBC, in order to exploit the complementary behaviors of each type of model for KBC
while avoiding the inefficiencies of LMs for text ranking. We showed that CascadER achieves con-
sistent and appreciable gains over structure-only, text-only, and cross-modal baselines on multiple
link prediction benchmarks, including but not limited to CODEX. We also analyzed CascadER
empirically to demonstrate how it trades off effectiveness and efficiency, showing that it outper-
forms a highly competitive ensembling baseline while improving inference efficiency by one or
more orders of magnitude.

Interaction and content mining In the second part of the thesis, we considered information
retrieval and recommendation tasks that involve mining document interactions and content. In
Chapter 6, we introduced the concept of the Personal Web as a graph of personal information ob-
jects like emails, files, and contacts. To support various downstream personal information retrieval
and recommendation tasks, we proposed to efficiently learn representations of objects in the Per-
sonal Web using an integrated structure and content objective that can be updated incrementally as
new data are observed. We demonstrated the strengths of Personal Webs in two recommendation
tasks framed as link prediction in a graph. We first formulated a personal entity recommendation
task in which we collected judgments from a small set of participants over their own data. We next
devised a downstream email recipient recommendation task over a larger public dataset. In both
tasks, Personal Webs outperformed diverse baselines according to various ranking metrics, sug-
gesting that accurately modeling the unique interplay of interaction and content is key to search
and recommendation over personal information collections.

Finally, in Chapter 7 we considered the task of text classification, framed as a node classifica-
tion problem in a document interaction graph containing both inter-document links and document
contents. We proposed Late-Stage Fusion or LSF, a new cross-modal ensembling approach that
combines the outputs of graph- and text-based classification models. We showed in a theoretical
analysis that LSF yields consistent performance regardless of the label distribution of documents
in the graph. We demonstrated this theory in practice, achieving remarkably robust and excel-
lent performance on eight diverse document interaction graph datasets, in all cases matching or
outperforming state-of-the-art node classification architectures.

8.2 Vision and Future Work

There are many exciting avenues for future development in text-augmented graph learning. We
conclude this thesis by outlining five concrete directions for future work.
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Inductive learning With the exception of Chapter 4, in this thesis we only considered evaluation
under the transductive setting, in which we assumed that the model being evaluated has seen all test
entities and relationships at training time. However, an arguably more realistic evaluation setting
that reflects real-world data distributional shifts is inductive, in which entities and relationships
not observed during training are present at test time. Inductive learning is gaining interest in the
graph learning community. For example, a new inductive link prediction benchmark based on
our proposed CODEX dataset (Chapter 5) has recently been introduced for inductive knowledge
graph completion [Galkin et al., 2022]. Similarly, inductive node classification has been identified
as an important direction for graph neural networks research, as most graph neural networks are
transductive [Hamilton et al., 2017]. We expect that text-augmented graph learning in the inductive
setting will rely heavily on contextual language models, as language models can encode and reason
over novel sequences at test time; indeed, this is the approach we took in Chapter 4 with NegatER,
as NegatER represents entities in commonsense KBs via their textual contents and encodes them
with LMs. The next step is to extend similar approaches to disambiguated KBs, for example
by mapping unseen entities to their closest counterparts in the training set using textual content
similarity [Daza et al., 2021, Nadkarni et al., 2021].

Dense text-augmented graph representations Graph learning architectures that rely on graph
propagation typically assume a set of input features for each node. When nodes correspond to
documents, as in Chapters 6 and 7, such features are extracted from document contents. In this
thesis we primarily considered sparse bag-of-words text features for nodes, as sparse represen-
tations are traditionally strong features for information retrieval [Luan et al., 2021] and are also
efficient to process in the case of incremental model updating (Chapter 6). However, an emerging
direction in information retrieval and natural language processing is to encode document contents
with language models like BERT to obtain dense latent document representations, and conduct
document matching and retrieval in this latent space [Karpukhin et al., 2020, Luan et al., 2021]. It
has been shown that, given an appropriate training regime, such dense representations can outper-
form sparse representations in various text retrieval tasks [Xiong et al., 2020a]. A promising future
direction in text-augmented graph learning is to develop graph-based retrieval and recommenda-
tion methods that are tailored to dense rather than sparse text representations. Such approaches
will require novel training objectives that encourage representational similarity at both textual and
structural levels, and will also require new techniques for efficient representation updating as the
data evolve, similar to our incremental approach in Chapter 6. Toward the latter, a viable approach
from transfer learning is adapters [Houlsby et al., 2019], which, given a set of learned parameters
from a deep model, tune only a small fraction of these parameters as new data arrive to maintain
efficiency.
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Theory of cross-modal modeling We have already provided abundant empirical evidence that
combining structure and text yields improvements over single-modality graph learning approaches.
However, there is still ample room for further theoretical characterization of these gains. For ex-
ample, we provided a theoretical justification for the superior performance of our cross-modal
ensembling approach LSF over single-modality ensembles for node classification in Chapter 7. A
natural next step is to develop similar theoretical foundations for the improvements achieved by
CascadER in Chapter 5, as we observed similarly large gains over single-modality approaches with
CascadER in the context of link prediction. We believe that future work in combining structure
and content will require establishing the conditions under which cross-modal modeling can prov-
ably boost accuracy over single-modality graph learning approaches, in order to unify theory and
practice.

Multi-objective learning In this thesis, we focused primarily on improving accuracy in graph
learning tasks. However, given the prevalence of the problems we consider, we envision future
work in text-augmented graph learning incorporating complex objectives beyond accuracy, toward
robust performance in practical real-world settings. In tasks involving large-scale data, an impor-
tant future direction is to incorporate explicit resource cost penalties or latency constraints, for
example within the multi-stage CascadER framework proposed in Chapter 5, in order to better
control the tradeoff between effectiveness and efficiency. In tasks involving user interactions, for
example the personal search and recommendation settings considered in Chapter 6, future direc-
tions include defining and optimizing objectives for user satisfaction, privacy, and exposure to
diverse content, while still developing novel and effective interaction and content models.

Fairness and ethics As demonstrated throughout Part I, pretrained contextual language models
have contributed to enormous progress in knowledge representation and reasoning. However, at
their core, they are conditional probability estimators of words in a corpus, not necessarily factu-
ally faithful or grounded knowledge representations [Bender and Koller, 2020, Bisk et al., 2020].
Inasmuch as they are able to express factual content in text, they can also express harmful content
like offensive language and social stereotypes [Bender et al., 2021]. While there is intense interest
within NLP in defining, understanding, and improving fairness and ethics in LMs [Blodgett et al.,
2020], such work is relatively separate from the goals and methodologies considered within this
thesis, even though goals like commonsense acquisition (Chapter 4) are fundamentally tied to cul-
tural biases, social stereotypes, and human values. Given that LMs are now a major component of
language processing systems, an important future direction is to understand and mitigate potential
biases in LMs as they apply to text-augmented graph learning, toward more socially-aware and
human-aligned machine learning systems.
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APPENDIX A

NegatER annotation instructions

In this section we provide the annotation instructions for Ch. 4.7.

A.1 Task definition

In this task you will judge a set of statements based on how grammatical, truthful, and consistent
they are. Each statement is given in [head phrase, relation, tail phrase] form. The criteria are as
follows:

• Grammar: Our definition of grammar refers to whether each statement follows the grammar
rules we provide for its relation type. We do not include proper use of punctuation (e.g.,
commas, apostrophes) or articles (e.g., “the”, “a”, “this”) in our definition of grammar. The
choices are “correct”, “partially correct or unsure”, and “incorrect”. (Note: in our analyses

we binarize these choices, considering “partially correct” and “incorrect” as the same.)

• Truthfulness: Our definition of truthfulness refers to how often you believe the whole state-
ment holds true. The choices are: “always true”, “mostly true”, “sometimes true”, and “never
true”.

• Consistency: We define “consistency” as the degree to which the head and tail phrases
are consistent in terms of the topic, theme, or goal that they refer to. For example, the
phrases “football” and “baseball” are highly consistent because they both refer to team
sports, whereas the phrases “football” and “cactus” are not consistent. The choices are:
“highly consistent”, “somewhat consistent”, “a little consistent”, and “not consistent at all”.

You may fill your answers in any order. For example, you might find it helpful to judge the
grammar of all statements first, then the truthfulness, then the consistency. Some of the statements
are subjective and there is not always a “right” answer, especially for the consistency criterion. If
you are unsure of a word or reference, you may use Google or other search engines. You may also
explain your reasoning/interpretation in the optional Notes box.
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A.2 Examples and explanations

HasPrerequisite The HasPrerequisite relation describes prerequisites or pre-conditions
for actions or states of being. It requires a verb phrase (an action or a state of being) in the head
slot and a verb phrase or noun phrase in the tail slots. Examples:

• (“pay bill”, HasPrerequisite, “have money”)

– Grammar: correct

– Truthfulness: always true

– Consistency: highly consistent

• (“purchase a cellular phone”, HasPrerequisite, “study”)

– Grammar: correct

– Truthfulness: never true

– Consistency: not consistent at all

• (“paint your house”, HasPrerequisite, “purple”)

– Grammar: incorrect

– Truthfulness: never true

– Consistency: a little consistent (Our interpretation: Painting your house involves

choosing a color, so the statement could be construed as a little consistent, even though

it’s grammatically incorrect.)

• (“eat”, HasPrerequisite, “send them to their room”)

– Grammar: correct

– Truthfulness: never true

– Consistency: not consistent at all

HasProperty The HasProperty relation describes properties of actions or objects. It requires
a verb phrase or noun phrase in the head slot and a description in the tail slot. Examples:

• (“school bus”, HasProperty, “yellow”)

– Grammar: correct
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– Truthfulness: mostly true (Our interpretation: Yellow school buses are very common

in the USA and Canada, but not all school buses are yellow.)

– Consistency: highly consistent

• (“basketball”, HasProperty, “round”)

– Grammar: correct

– Truthfulness: always true

– Consistency: highly consistent

• (“pilot”, HasProperty, “land airplane”)

– Grammar: incorrect

– Truthfulness: never true

– Consistency: highly consistent (Our interpretation: While pilots do land airplanes, the

HasProperty relation requires a description in the tail slot, so it’s not grammatically

correct or truthful.)

• (“gross domestic product”, HasProperty, “abbreviated to CTBT”)

– Grammar: correct

– Truthfulness: never true

– Consistency: a little consistent (Our interpretation: The gross domestic product does

have a well-known abbreviation (“GDP”), so this statement could be construed as a

little consistent.)

HasSubevent The HasSubevent relation describes sub-events or components of larger events.
It requires an event (verb phrase or noun phrase) in the head slot and an event in the tail slot.
Examples:

• (“lying”, HasSubevent, “you feel guilty”)

– Grammar: correct

– Truthfulness: mostly true (Our interpretation: Lying often causes guilt in people, al-

though the amount of guilt depends on the person.)

– Consistency: highly consistent

• (“relax”, HasSubevent, “vegetable”)
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– Grammar: incorrect

– Truthfulness: never true

– Consistency: not consistent at all

• (“drink coffee”, HasSubevent, “water may get into your nose”)

– Grammar: correct

– Truthfulness: never true

– Consistency: a little consistent (Our interpretation: Drinking coffee doesn’t cause wa-

ter to get into your nose, but coffee and water are both drinkable liquids, so we think

this statement is a little consistent.)

ReceivesAction The ReceivesAction relation describes actions that apply to objects or
other actions. It requires a verb phrase or noun phrase in the head slot and an action in the tail
slot. Examples:

• (“book”, ReceivesAction, “write by person”)

– Grammar: correct

– Truthfulness: always true

– Consistency: highly consistent

• (“most watches”, ReceivesAction, “rhyme with piano”)

– Grammar: correct

– Truthfulness: never true

– Consistency: not consistent at all

• (“oil”, ReceivesAction, “grow in field”)

– Grammar: correct

– Truthfulness: never true

– Consistency: a little consistent (Our interpretation: Since oil is a natural resource

similar to other things that are grown in fields, we could see this statement being a

little consistent (it’s a stretch though).)

• (“violin”, ReceivesAction, “play with a puck”)
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– Grammar: correct

– Truthfulness: never true

– Consistency: somewhat consistent (Our interpretation: Violins are indeed played, but

with a bow, not a puck.)

UsedFor The UsedFor relation describes the uses of objects or actions. It requires a verb
phrase or noun phrase in the head and tail slots. Examples:

• (“shoes”, UsedFor, “protecting feet”)

– Grammar: correct

– Truthfulness: always true

– Consistency: highly consistent

• (“tying your shoelace”, UsedFor, “smart”)

– Grammar: incorrect

– Truthfulness: never true

– Consistency: not consistent at all

• (“swimming”, UsedFor, “traveling on land”)

– Grammar: correct

– Truthfulness: never true

– Consistency: somewhat consistent (Our interpretation: This statement is somewhat

consistent because swimming and traveling on land are both means of movement.)

• (“bush”, UsedFor, “wrestling on”)

– Grammar: correct

– Truthfulness: never true

– Consistency: not consistent at all
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