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ABSTRACT

Type 2 Diabetes (T2D) is a complex disease characterized by pancreatic β-cell dysfunction and

dysregulation of blood glucose levels. Genome-wide association studies for diabetes and related

traits suggest a complex genetic architecture of the disease and identify >400 independent signals

throughout the genome. However, more than 90 percent of the signals map to the non-protein-

coding regions suggesting a strong regulatory component to the disease. It is hypothesized that

these non-coding variants affect disease susceptibility by modulating the transcription factor (TF)

binding in a tissue- and context-specific manner. As such, understanding the genetic architec-

ture of the disease involves a careful assessment of the complexity across all layers of the genetic

organization. While existing studies have used high-throughput sequencing (’omics) approaches

to dissect the disease at different layers, they have either been limited to a bulk-sample view

or have focused on a specific layer (modality) — thereby limiting our ability to map biological

mechanisms and the consequences of their dysregulation comprehensively. In this work, I utilize

high-throughput molecular profiling data-driven approaches, “multiomics,” in human pancreatic

islets to characterize the tissue heterogeneity (complex interplay of cell types and their organi-

zation) and gene regulatory interactions (linking genetic variation to target genes and functions)

to discover mechanistic insights relevant to the disease pathophysiology.

In chapter 1, I discuss the genetic architecture of T2D and emphasize how multiomic ap-

proaches driven by high-throughput sequencing technologies can help us link variants to genes

and genes to their function. I emphasize the need of understanding the epigenomic landscape

of different constituent cell types within the pancreatic islets, and how we can use that to com-

plement our understanding of gene expression and regulation from transcriptomic and genetic

studies.

xiv



In chapter 2, I use single-cell ATAC-seq to profile chromatin accessibility in pancreatic islets

and identify molecular signatures unique to constituent cell types — one of the first published

studies in this domain with a novel dataset. I show that major cell types can be easily identified

from their epigenomic profiles and can be used to dissect genetic-risk associations across different

cell types. We identify the pancreatic islet β cells to be the most enriched cell type for T2D genetic

risk; and within each cell type, we use co-accessibility approaches to link variants to genes.

In chapter 3, I build upon the findings from the previous chapter, where we identify β cell

chromatin accessibility peaks to be highly enriched for T2D genetic risk and investigate how β

cell function is impacted in early-stage T2D. Using integrative approaches combining data from

RNA-seq, ATAC-seq, secretion assays, imaging, andmRNA knockdown experiments, we discover

Regulatory Factor X 6 (RFX6) as the key transcription factor implicated in dysregulation of insulin

response in β cells.

Finally, in chapter 4, I discuss how my work establishes a framework for investigating com-

plex diseases, where starting from genetic associations, which are non-specific and do not provide

any mechanistic insight, we can integrate information across layers of the genetic organization

using ’omics-driven approaches to build a mechanistic understanding in a stepwise manner. Ap-

plied to T2D, we show the strength of this approach and dissect the genetic heterogeneity to

identify context-specific molecular signatures. Identification of such signatures will provide a

higher-resolution map of our existing knowledge and enable the discovery of novel targets and

approaches to prevent, monitor, and treat T2D.
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CHAPTER 1

Introduction

Diabetes is a global epidemic that is rising at an alarming rate. As of 2021, 1 in 10 adults worldwide

— over 500 million people — now live with the disease that is one of the top 10 causes of global

mortality [115]. In 2021 alone, Diabetes and related health complications were responsible for 6.7

million deaths and nearly $966 billion in health expenditure — a 316% increase over the last 15

years [118]. It is estimated that the total number of cases with diabetes and diabetes-related health

complications will exceed 600 billion by 2030, resulting in devastatingmedical and socioeconomic

strain on the individuals, families, and societies [289].

Of all the cases of diabetes, the most prevalent diagnosis is the “common” non-insulin de-

pendent or type 2 diabetes (T2D) accounting for >90% of all the individuals [236]. Unlike the

monogenic forms of diabetes such as maturity-onset diabetes of the young (MODY) [85] which

are caused by single-gene mutations [209], T2D is caused by a combined combinatorial effect of

the genetic, environmental, and lifestyle factors, therefore making it hard to study, prevent, or

treat (Figure 1.1).

While numerous studies have dissected the multifactorial pathogenesis of T2D at clinical and

basal levels to discover individual risk factors and their contribution to the disease [101], the

molecular and genetic characterization of the disease has been limited.

Family and twin-studies have shown T2D to have a strong genetic component with a positive

family-history conferring a 2.4x increased risk of T2D [118]. Follow up by genome-wide asso-

ciation studies (GWAS) with over a million of people have further identified >400 independent

1



signals [166] associated with the disease highlighting the complex genetic etiology of the disease.

However, despite the compelling evidence of the genetic predisposition, identification of tar-

get genes and gene-product alternations for clinical management of the disease remains limited.

Studies of the more extreme forms of diabetes — including maturity-onset diabetes of the young

(MODY), mitochondrial diabetes with deafness, and neonatal diabetes — have identified single-

gene Mendelian disorders [175]. However, expansion of our mechanistic insight beyond mono-

genic forms of the disease to more common form of diabetes has been difficult. This suggests

that T2D is both polygenic and heterogeneous — i.e., multiple genes are involved across different

tissues, and different combinations of genes play a role in different subsets of individuals. As

a result, the exact role of the genes and their relative contributions to the disease risk remain

uncertain.

The focus of these studies and the results presented in this work underscore the importance

of investigating the cellular and molecular mechanisms that underlie the multifactorial patho-

genesis of T2D and how they orchestrate the disease associated outcomes. Identification of such

mechanisms not only will provide a higher-resolution map of our existing knowledge but also

enable the discovery of novel targets and approaches to prevent, monitor, and treat T2D.

1.1 T2D is a disease of dysregulated glucose homeostasis

1.1.1 Pancreatic islet is a mini-organ critical for blood glucose control

T2D is a complex, heterogeneous disorder involving several key organs such as pancreas, liver,

muscle, and fat [246]. However, central to the dysregulation that leads to hyperglycemia, the

hallmark of T2D, are a cluster of hormone-producing cells called the islets of Langerhans (Fig-

ure 1.2) that are scattered throughout the pancreas. The pancreatic islets, together, comprise

only about 1-2% (by weight) of the pancreas but perform coordinated functions to maintain glu-

cose homeostasis by sensing blood glucose levels and regulating insulin action, production, and

secretion.
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Figure 1.1: Complex Pathogenesis of Type 2 Diabetes. Mechanisms influencing the risk of type 2
diabetes. Reprinted from [72].

Pancreatic islets are a heterogeneous cluster of cells consisting of at least five cell types — α,

β, δ, ε, and PP — that have been identified (See Figure 1.3). Moreover, these cell types are not dis-

tributed uniformly within the islet and their spatial distribution is known to change through age

and development stage [24, 137]. In fact, changes to the islet morphology have been documented

much prior to insulin’s discovery in 1921 [68, 196].

In T2D, there are two interrelated problems at work that contribute uniquely to the clinical

outcome of a patient. First is a secretory defect, where the pancreatic islets — specifically the

β cells within the islet — do not produce enough insulin; and second is that the peripheral and

target tissues that utilize insulin respond poorly to insulin and take up less sugar and develop

resistance to insulin. For an individual, the disease etiology may range from predominantly in-

sulin resistance with relative insulin deficiency to predominantly secretory defect with minimal

insulin resistance.

At onset, as blood sugar levels increase, the insulin-producing β cells in the pancreas increase
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in mass and release more insulin to compensate for insulin insensitivity. At this stage, most

patients do not require insulin to survive. However, as type 2 diabetes manifests within an indi-

vidual with persistent hyperglycemia, the β cells become impaired and may also reduce in mass

resulting in insufficient supply of insulin to meet the body’s demands, necessitating the need of

clinical intervention to achieve optimal glucose control.

Isolated
Islets

Cross-sectional
tissue blocks

Figure 1.2: Pancreas is a mini-organ. Pancreas is the central organ for the glucose metabolism regu-
lation. The islets of Langerhans are a cluster of different cell types scattered throughout the pancreas that
produce hormones for glucose absorption and metabolism.

1.1.2 β cell dysfunction is a critical component in the pathogenesis of

T2D

While insulin resistance is often the initiating defect in type 2 diabetic individuals, most people

who develop the disease have a defect in the pancreatic β cell compensatory mechanism [126,
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Figure 1.3: Human islet of Langerhans. Pancreatic section stained for insulin (red), glucagon (green),
and somatostatin (blue). Reprinted from [34].

169]. Functionally, this defect manifests as reduction in total insulin secretion and maximal in-

sulin response under glucose stimulation. While defects due to loss of β cell mass and its relative

contribution has been debated in the literature [172], Recent studies of metabolically profiled

donors suggested that β cell loss is not prominent in early T2D [50, 276].

Earlier studies that focused on candidate-gene testing or GWAS approaches to identify ge-

nomic loci associated with polygenic type 2 diabetes, found that most of the risk loci are involved

in β cell function and turnover [261]. In fact, examples of single-gene defects discovered in pa-

tients with MODY have all been shown to produce a defect in glucose-induced insulin release.

These results reinforce the critical role of the β cell in controlling blood glucose and its in-

volvement in the pathophysiology of T2D.Therefore, our hypothesis is that the β cell dysfunction

occurs early in T2D and that prevention and/or rapid intervention may be critical to preserve β

cell function and treat T2D.
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Figure 1.4: Diabetes is a culmination of dysregulation across layers of genetic organization. Ge-
netic architecture of a complex disease such as T2D consists of distinct layers of molecular organization.
Information from the bottommost layer, the genome, which is largely invariant within an individual prop-
agates through context-specific regulatory layers to express as the hallmark disease phenotype. Adapted
from [48].

1.2 T2D risk spans layers of genetic organization

1.2.1 Genetic architecture of T2D

Genome-wide association studies (GWAS), where researchers look to see if single-nucleotide

polymorphisms (SNPs) are associated with a phenotype or not, have identified hundreds of loci

associated with T2D and related traits across the genome. A recent such study in populations of

European descent identified >400 distinct T2D association signals at 243 loci that explain ~20%

of the trait variance and ~50% of the heritability of T2D [166]. Additionally, parallel GWAS in

populations of East Asian, South Asian [144], Hispanic/Latino [278], and African ethnicities, and

trans-ethnic meta-analyses [165, 267] have identified >100 additional loci.

While GWAS allow us to scan the genome and identify disease-associated regions without

guessing where to look first, the untargeted nature also poses significant challenges in interpre-
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tation. First, the reported association signals do not implicate the specific DNA sequences that

cause the molecular phenotype (causal variants) and the precise effector transcripts involved in

increasing T2D risk (causal genes). Instead, they merely flag regions of the genome that are over-

represented in cases (people with our desired trait, T2D for example) versus controls (people

without the trait, non-diabetic individuals for example). Second, due to linkage disequilibrium,

the lead variants reported for each association signal — the nucleotide changes associated with

the trait of the interest — may not necessarily be the nucleotides that alter gene function or reg-

ulation in a relevant cell type to induce disease. Finally, most of the reported associations have

small effect sizes on the risk and explain only a small fraction of the expected genetic compo-

nent of risk [168]. As such, identification of causal genetic variants, their effector genes, and the

relevant cell types underlying the observed associations is a significant challenge for T2D.

1.2.2 Regulatory complexity of T2D

While genomic DNA is essentially invariant across cells and tissues within an individual, the

information from genomic DNA propagating through other molecular domains is highly spe-

cific and dynamic. This regulation is at the core of distinct functional identities for all the cells

in our bodies — the mechanism for which are encoded within the genome itself. The genomic

regions that regulate the gene expression are called regulatory elements and consist of specific nu-

cleotide sequences that facilitate downstream action through transcription factors and enzymes.

Approaches to identify and characterize such regulatory elements and their downstream effects

is a growing area of research in functional genomics studies.

Using functional genomics approaches guided by GWAS, recent studies have shown that T2D

associated variants are significantly enriched to overlap chromatin-defined transcriptional regu-

latory elements like stretch enhancers or enhancer clusters that are highly tissue- and context-

specific [114, 201, 264]. For instance, T2D GWAS loci are specifically enriched in pancreatic

islet Regulatory Factor X (RFX) footprints [264], and T2D GWAS variants were shown to overlap

skeletal-muscle-specific regulatory enhancers [235]. Because a majority of the disease associated
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Figure 1.5: Schematic showing likely mechanism of gene regulation. Most variants likely regulate
gene expression rather than directly altering protein function as shown in the schematic.

variants do not disrupt protein function directly, these studies reinforce that the non-protein-

coding variants play a primary role in modulating genetic risk for T2D through gene expres-

sion regulation, many by altering regulatory elements, which also can be tissue- and context-

dependent (Figure 1.5).

However, mapping the effects of non-coding variation is less straightforward than identifica-

tion of coding variants that directly point to an effector transcript. Because of the large number

of such variants, non-coding variants are presumed to have smaller effect sizes, and thus their

consequences are much harder to map and identify.

Nonetheless, while it may be difficult to directly identify causal non-coding variants and their

downstream effector transcripts through GWAS alone, mapping the consequence of this variation

through the molecular layers (Figure 1.4) can inform us of underlying mechanisms that propagate

this information from genotype to the clinical phenotype.

For example, the epigenomic layer which consists of molecular modifications to the DNA

that affect its chromatin structure and DNA accessibility can alter the binding of transcription

factors. This altered binding, when performed in a cell- and context-specific manner provides a

unique mechanism of gene regulation. Histone modifications and methylation are two common

processes used by cells to dynamically alter the expression landscape of a cell and create a unique

epigenomic profile.
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Similarly, profiling gene expression has clarified the impact of non-coding variation through

identification of disease-linked variants that alter RNA-splicing, RNA stability, or interfering with

long non-coding RNA (lncRNA) integrity. Further, studies have combined gene expression and

genotyping data to identify variants that are statistically associated with the expression of a gene

in a population. Such studies have been conducted for many tissues, to discover tissue-specific

quantitative trait loci (QTLs) and acrossmany populations aswell [84, 158, 235, 262, 264], enabling

direct variant to target gene assignment.

Transcriptomic and epigenomic profiling therefore are necessary for dissecting the function

of non-coding variation. Further, integrating these datasets together can provide us concordant

maps of changes in the two layers and help us identify disease causing variants and their molec-

ular mechanisms.

1.3 Single-cell technologies enable high-resolution maps

Bulk profiling assays are unable to capture the cellular heterogeneity of the disease-relevant tis-

sues and are dominated by the most common cell types within the tissue sample. For example,

within pancreas, exocrine cells are the majority and will contribute overwhelmingly to any read-

out masking the changes in low-abundance cell types. While bulk analysis of sorted cell types is

possible, such approaches are necessarily biased due to limitations in our ability to identify cell-

specific markers unique to a cell population, and negatively impact the assay quality [198]. Since

single-cell approaches provide a largely unbiased, data-driven approach to identify cell types and

capture cellular heterogeneity, they have gained huge popularity. While gene-expression mea-

surement continues to be the dominant readout, single-cell resolution versions of many common

molecular assays have been developed — sci-ATAC-seq [55], scATAC-seq [286] for chromatin ac-

cessibility profiling; scRNA-seq for gene expression; sci-Hi-C for chromatin architecture profiling

[187]; and CUT&Tag for protein-DNA interactions [111]. Depending on the assay, a molecular

readout may be obtained from the whole-cell fraction or only nuclei — differentiating single-cell
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and single-nuclear assays. However, systematic comparison of both types of dataset have es-

tablished numerous practical advantages of single-nuclear assays [69, 280] and many assays for

RNA-seq and ATAC-seq have been adapted to work with isolated nuclei. At the same time, paral-

lel efforts to develop computational tools and methods to tackle specific challenges of single-cell

data have also continued to grow [154, 250]. As such, our ability to generate multiomic single-

cell resolution maps of relevant cells and tissues in specific contexts could provide unprecedented

opportunity to study mechanisms underlying disease development.

1.3.1 Single-cell maps of chromatin accessibility for epigenomic profil-

ing

Single-nucleus Assay for Transposase Accessible Chromatin by Sequencing (snATAC-seq) is a

powerful technique to study the chromatin accessibility landscape and gene regulation in sin-

gle cells, highlighting context-specific biology [27, 49, 54]. By mapping chromatin regulatory

landscape at a single-cell resolution, researchers have demonstrated potential to discover com-

plex cell-populations, link regulatory elements to the target genes, and map regulatory dynamics

during complex cellular differentiation processes [26, 56, 97, 231]. The snATAC-seq approach

enables this innovation by first isolating cells at a limiting dilution and then delivering the Tn5-

transposase enzyme with necessary buffers and unique-sequence barcodes to carry out the reac-

tion. The presence of unique barcodes then allows one to uniquely identify each cell or nuclei

at the data processing stage. Currently, the most dominant approach to snATAC-seq profiling

is based on the partitioning of samples and reagents into droplets, each called a Gel Bead in

Emulsion (GEM) [286]. However, alternative approaches such as sci-ATAC-seq [54], as used in

chapter 2, do exist which use combinatorial indexing to uniquely identify each cell or nuclei. Both

approaches have unique advantages and disadvantages, but overall, benefit from the increased

resolution of the data.
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1.3.2 Joint single-cell RNA and ATAC profiling

Most single-cell studies focus on profiling one modality or molecular layer at a time and thus pro-

vide a limited view of the cell state. Jointly profiling the gene regulation traits, principally by the

single-cell RNA and ATAC-seq assays, would provide the first readout of the activity of genetic

variants and their activity in a cell and context-specific manner. Therefore, allowing us to map si-

multaneous changes between the molecular traits and establish the sequence of disease-inducing

changes within the cells. Several studies that have profiled two distinct molecular modalities on

single cells — methylation and chromatin [158], transcriptome and histone modification [288],

and chromatin accessibility and gene expression [37] for example — have demonstrated a power-

ful utility of single-cell co-assays over assays that solely profile a single molecular trait. Recently,

commercial availability of droplet gel-bead based protocol for joint single-nuclei RNA and ATAC

from 10X Genomics has a high-quality approach to generate these single-cell resolution datasets.

In fact, a recent study utilized the joint profiling approach to investigate cellular heterogeneity,

identify causal cell types and regulatory elements in the human and rat skeletal muscle in the con-

text of T2D [198], suggesting the high value of using such an approach to create a high-quality

multi-modal map at a single-cell resolution in the pancreatic islets.

1.4 Multiomic integration to dissect genetic architecture

With different type of molecular profiles available for each layer in the genetic architecture of the

disease (see Figure 1.4), and often at single-cell resolution thanks to new technologies, integration

of the distinct data modalities can yield powerful insights about the mechanisms driving disease

associations and enable biomarker discovery. In a recent report [276], authors performed multi-

omics analysis of transcriptomic and proteomic profiles from bulk pancreatic islets obtained from

metabolically profiled pancreatectomized living human donors along the glycemic continuum of

T2D. Thus, by building an integrative model that allows us to assess the relative importance of

each molecular layer and consequences of its disruption in the disease pathophysiology, we can
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gain a more holistic view of the system and draw conclusions regarding key pathways, targets

and biomarkers, and therapies in metabolic and other diseases.

1.5 Thesis outline

The two main chapters described in this thesis present the body of work published in references

[217] and [268]. Additional work highlighting applications of ATAC-seq to liver, another tissue

central to glucose metabolism and type 2 diabetes, is described in appendix section A.

Broadly, in chapter 2, I discuss the findings from the first single-cell epigenomic profiling

study in pancreatic islets. We show that constituent cell types can be inferred using their unique

epigenomic molecular signatures and can help us partition the disease risk or heritability across

cell types. This increased resolution allows us to build more sophisticated models of disease risk

mechanisms and link variants to genes and genes to function. We also demonstrate the novel

application of a deep-learning based approach to impute data from sparse or low-abundance cell

populations that will be of immense significance in studies where it is difficult to obtain a large

amount or a high quality of data.

In chapter 3, we build on understanding from previous chapter and strive to understand the

differences in the molecular signatures between normal and early-stage type 2 diabetic individ-

uals. We profile function and physiology and tissue architecture of pancreatic islets along with

transcriptomic profiling of sorted α and β cell populations. Using integrative analysis approaches,

we define functional modules within β cell that are associated with disease relevant traits and en-

riched for T2D GWAS genetic variants. We then identify key genes across these modules that are

dysregulated in early-stage T2D and perform knockdown experiment in pseudo-islets to validate

our hypothesis.

Finally, in chapter 4, I conclude our findings and discuss the broader contributions made to

the current scientific understanding of diabetes and howwe can use these approaches in different

disease context. I then discuss strategies and options to build upon this work that could contribute
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further to our understanding of complex disease genetics and improved healthcare outcomes for

patients in the future.
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CHAPTER 2

Single Cell ATAC-seq in Human Pancreatic Islets

and Deep Learning Upscaling of Rare Cells

Reveals Cell-specific Type 2 Diabetes Regulatory

Signatures

2.1 Abstract

Type 2 diabetes (T2D) is a complex disease characterized by pancreatic islet dysfunction, insulin

resistance, and disruption of blood glucose levels. Genome wide association studies (GWAS) have

identified 400 independent signals that encode genetic predisposition. More than 90% of the as-

sociated single nucleotide polymorphisms (SNPs) localize to non-coding regions and are enriched

in chromatin-defined islet enhancer elements, indicating a strong transcriptional regulatory com-

ponent to disease susceptibility. Pancreatic islets are a mixture of cell types that express distinct

hormonal programs, and therefore each cell type may contribute differentially to the underlying

regulatory processes that modulate T2D-associated transcriptional circuits. Existing chromatin

profiling methods such as ATAC-seq and DNase-seq, applied to islets in bulk, produce aggregate

profiles that mask important cellular and regulatory heterogeneity.

We present genome-wide single cell chromatin accessibility profiles in 1,600 cells derived from

a human pancreatic islet sample using single-cell-combinatorial-indexing ATAC-seq (sci-ATAC-
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seq). We also developed a deep learning model based on the U-Net architecture to accurately

predict open chromatin peak calls in rare cell populations.

We show that sci-ATAC-seq profiles allow us to deconvolve α, β, and δ cell populations and

identify cell-type-specific regulatory signatures underlying T2D. Particularly, we find that T2D

GWAS SNPs are significantly enriched in β cell-specific and cross cell-type shared islet open chro-

matin, but not in α or δ cell-specific open chromatin. We also demonstrate, using less abundant δ

cells, that deep-learning models can improve signal recovery and feature reconstruction of rarer

cell populations. Finally, we use co-accessibility measures to nominate the cell-specific target

genes at 104 non-coding T2D GWAS signals.

Collectively, we identify the islet cell type of action across genetic signals of T2D predisposi-

tion and provide higher-resolution mechanistic insights into genetically encoded risk pathways.

2.2 Introduction

Pancreatic islets consist of a cluster of at least five different endocrine cell-types (α, β, δ, γ, and ϵ),

each producing a unique hormone in a distinct but coordinated manner [66]. Collectively, these

clusters of cells work together to maintain insulin production and glucose homeostasis. Disrup-

tion of the complex interplay between the cell types, their organization, and their underlying

regulatory interaction is known to be associated with type-2-diabetes (T2D) pathophysiology

[243]. However, the exact cellular mechanisms through which different risk factors contribute

to the disease risk are not completely understood. Using GWAS and eQTL mapping approaches,

recent studies have discovered >400 independent signals (>240 loci) associated with T2D and

T2D-associated traits [166], although remarkably, more than 90% of them localize to non-protein-

coding regions of the genome [266]. Growing evidence suggests that many of these variants likely

influence the RNA expression and cellular function of human pancreatic islets by altering tran-

scription factor binding, critical components of a cellular regulatory network [31, 201, 202, 257,

264].
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High-throughput epigenomic profiling methods such as ATAC-seq [28] and DNase-seq [112]

have enabled profiling of chromatin accessibility across samples in a tissue-wide manner, provid-

ing the opportunity to identify millions of context-specific regulatory elements. However, these

bulk-measurements of chromatin accessibility limit the precise understanding of how tissue het-

erogeneity and multiple cell-types in the population contribute to overall disease etiology [239].

Recent advances in single-cell transcriptomic and epigenomic profiling methods have enabled

an unbiased identification of cell-type populations and regulatory elements in a heterogeneous

biological sample. By mapping the chromatin-regulatory landscape at a single-cell resolution, re-

cent single-nuclei studies have demonstrated the potential to discover complex cell populations,

link regulatory elements to their target genes, and map regulatory dynamics during complex cel-

lular differentiation processes [54, 56, 210, 231]. The pancreatic islet gene expression landscape

has been investigated at single-cell resolution in existing studies [152, 182], but chromatin ac-

cessibility studies have been limited to fluorescence-activated cell sorting (FACS) methods for

obtaining cell-type populations [2, 8]. FACS based methods will miss identification of unknown

or rarer cell-populations and are unable to produce pure cell-type populations due to reliance on

the specificity of cell-surface markers [74, 190].

Here, we present a genome-wide map of chromatin accessibility in >1,600 nuclei derived

from a human pancreatic islet sample using single-nucleus-combinatorial-indexing ATAC-seq

(sci-ATAC-seq) [55]. sci-ATAC-seq enables us to deconvolve cell populations and identify cell-

type-specific regulatory signatures underlying T2D. Notably, we find that T2D GWAS SNPs are

significantly enriched in β cell-specific and cross cell-type shared islet open chromatin, but not in

α or δ cell-specific open chromatin. We also demonstrate, using the less represented δ cell popu-

lation (< 5% of total islet population), that deep learning can improve signal recovery and feature

reconstruction for less abundant cell-populations using concepts borrowed from image upscaling

methods. We anticipate that our deep learning method will enable analysis of heterogeneous tis-

sues that may be harder to obtain in large numbers or contain rare sub-populations. Collectively,

these results identify the islet cell-type of action across genetic signals of T2D predisposition and
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provide higher-resolution mechanistic insights into genetically encoded pathophysiology.

2.3 Results

2.3.1 sci-ATAC-seq captures tissue relevant characteristics similar to

bulk ATAC-seq

Pancreatic islets represent approximately 1-2% (by mass) of total pancreatic tissue [66] and there-

fore requires specialized approaches to isolate in a manner that maintains viability. We obtained

a highly pure (>95% purity and >92% viability) sample of human pancreatic islet tissue from

one individual (cadaveric donor, female, 43 years old, and non-diabetic) and profiled chromatin-

accessibility using sci-ATAC-seq protocol [55] as described previously (Figure 2.1A). In total, we

obtained 1,690 single-cell ATAC-seq datasets with depth ranging from 17,667 to 415,237 (median:

79,482) reads per nucleus, and TSS enrichment from 0.77 to 9.80 (median: 3.91) after removing

background barcodes (Figure 2.2A). For quality assessment of each single nucleus, we reasoned

that total reads and TSS enrichment values are more suitable metrics for identifying nuclei with

poor signal-to-noise ratio than using fraction of reads in peaks as the latter may bias counts for

under-represented cell-type populations in the analysis (Figure 2.2B-C). Based on these criteria,

we obtained high-quality sci-ATAC-seq data for 1,456 single-nuclei. In addition to sci-ATAC-seq

data, we generated high-quality bulk ATAC-seq data for ten islet samples with >47 M reads and

>4.4 TSS enrichment per sample. Using our approach to identify high-confidence (master) peak

calls across samples (see methods), we obtained 106,460 bulk islet accessible chromatin peaks.

We then compared the aggregate islet sci-ATAC-seq data with bulk ATAC-seq samples from

islets and other tissues. For this, we called 156,311 peaks on the aggregate sci-ATAC-seq. We

found that aggregate sci-ATAC-seq profiles were concordant and clustered together with the

other bulk islet samples indicating that aggregate sci-ATAC-seq can capture chromatin accessi-

bility in a manner equivalent to bulk ATAC-seq assays (Figure 2.1B-C, Figure 2.2D-E). Further,

to understand if the aggregate sci-ATAC-seq peaks capture islet-specific regulatory features, we
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Figure 2.1: Schematic of sci-ATAC-seq study. (A) sci-ATAC-seq protocol for generating single-nuclei
ATAC-seq data from a pancreatic islet sample. The data is then used to identify constituent cell-types
and use deep-learning model to predict peaks on the clusters with fewer nuclei count. (B) ATAC-seq
signal tracks for 10 bulk islet samples and sci-ATAC-seq islet sample. Bottom tracks show the signal
across a random subset of up to 400 single-nuclei. Signal tracks are normalized to one million reads and
scaled between 0-2. (C) Spearman correlation between aggregate sci-ATAC-seq, 13 bulk islets, 3 adipose, 2
muscle, 2 CD4+ T-cells, and 1 GM12878 sample. (D) Distribution of aggregate sci-ATAC-seq TSS proximal
and distal peaks across bulk islet derived ChromHMM segmentations.

18



compared the distribution of peaks across chromHMM chromatin state maps in eight tissues, in-

cluding islets and the EndoC human β cell line [264]. We found that islet sci-ATAC-seq peaks

overlap active TSS and active enhancer segmentations in islet and EndoC (a β cell line) chromatin

state maps to a larger extent compared to other tissues (Figure 2.1D). Because chromHMM en-

hancer states are driven by H3K27ac marks and are known to be associated with tissue-specific

enhancer activity [114, 201], our results indicate that sci-ATAC-seq data capture the underlying

islet-specific chromatin architecture similarly to bulk islet ATAC-seq assays. Overall, these re-

sults indicate that our aggregate islet sci-ATAC-seq data are of high quality and suggests that

the underlying individual nuclei could reveal valuable cell-specific patterns of the constituent

cell-types.

2.3.2 sci-ATAC-seq reveals constituent cell-types in pancreatic islets

The aggregate sci-ATAC-seq profile of the islet is constituted of signal from distinct cell-types.

For identifying these cell-types, we leveraged the observation that TSS distal regions capture cell-

type-specific accessibility patterns and are effective at classifying constituent cell-types [29]. We

adopted a multi-step process to robustly detect and identify islet subpopulations (see methods).

This approach produced four distinct clusters (Figure 2.3A). In order to assign a cell-type identity

to the clusters, we merged nuclei in each cluster to create aggregate chromatin accessibility pro-

files and systematically examined the patterns of accessibility at multiple cell-type marker loci.

We found three clusters to have distinct chromatin-accessibility patterns at GCG, INS-IGF2, and

SST genes corresponding to three major islet cell-types: α, β, and δ cells (Figure 2.3B). The fourth

cluster (95 nuclei, ~7% of all nuclei) showed a “mixed” cell-type appearance as shown by signal at

multiple cell-specific markers. We reasoned that these are likely to be nuclei doublets resulting

from barcode collisions inherent to the combinatorial indexing protocol, and thus should have

skewed ATAC-seq read coverage. Indeed, we observed that nuclei assigned to the mixed cell clus-

ter were significantly (nominal P-value = 7.3e-7, binomial test) enriched in the high sequencing

depth bin relative to nuclei from other clusters (Figure 2.3C). As such, these nuclei were removed
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Figure 2.2: ATAC-seq metrics of nuclei from sci-ATAC-seq. (A) Distribution of reads per barcodes
shown with the threshold chosen for filtering background barcodes. (B) Fraction of reads in peaks ver-
sus TSS Enrichment, and (C) Total autosomal reads versus TSS enrichment for all single-nuclei. Density
units are arbitrary. (D) TSS coverage of aggregate sci-ATAC-seq, and (E) Fragment length distribution
of aggregate sci-ATAC-seq compared with ten bulk islet ATAC-seq samples. (F) Chromatin accessibility
signal in single-cell RNA-seq derived cell-type signature genes (scRSGs; β=83, α=168, δ=53) across three
sci-ATAC-seq identified cell clusters. scRSGS obtained from [237].
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from further analyses yielding a total of 1,361 nuclei with 51%, 47%, and 2% assigned to β, α, and

δ cell-type respectively. These estimates agree with the existing estimates of pancreatic islet cell-

type proportions observed in confocal microscopy or single-cell transcriptomics experiments [24,

34, 151, 237]. As additional validation of our cell-type assignments, we used cell-type signature

genes from a published islet scRNA-seq study [151, 237] and observed cluster-specific chromatin

accessibility consistent with our assigned cell identities (Figure 2.3D-E).

We then analyzed the chromatin accessibility profile for each cell-type cluster. For this, we

aggregated nuclei within each cluster and identified peaks using MACS2. We identified 129,046

sites for α and 120,116 sites for β cells. However, because the δ cluster had only 28 cells (corre-

sponding to ~2 M reads), we reasoned that MACS2 would not perform ideally on data with such

low depth. Indeed, we only identified 49,293 peaks using MACS2 on the δ cell aggregate reads.

2.3.3 Deep learning enables robust peak calls on less abundant δ cells

To solve the challenge of learning cell-type-specific features from the sparse signal in the low-

count δ cell cluster, we developed a novel a deep learning approach based on the U-Net architec-

ture (Figure 2.4A). U-Net was first developed for biomedical image segmentation but has since

been applied to many other problems including audio and super resolution images. Its use in the

super resolution problem served as the main impetus for our choice of model to upscale genomic

signals. We formulated our approach as a classification problem in which we used sparse signal

and corresponding peak calls to predict dense and high-quality peak calls. To avoid overfitting

and create a robust, generalizable model, we adopted a rigorous training scheme. We divided

the chromosomes into training, validation, and testing sets (Figure 2.5A, Figure 2.4B) and tested

the performance of the models within the same cell type as well as across different cell types.

We reasoned that our islet sci-ATAC-seq data were an ideal fit for this problem as all the nuclei

came from the same individual and processing batch and should, therefore, contain no genetic

or technical biases that would influence within or across cell-type predictions. Because we had

high-quality data from two cell types, we trained two models: one model was trained using 28-
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Figure 2.3: Clustering and identification of cell-type clusters in sci-ATAC-seq data. (A) UMAP
projection with clustering of 1,456 single-nuclei islets represented by each single point into four clusters as
identified by density-based clustering. (B) Enrichment of cells from each cluster relative to their expected
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as identified by an islet scRNA-seq study by [152]. (E) Plot of aggregate ATAC-seq signal (normalized
using RPKM) at scRNA-seq derived cell-type signature genes for α, β, and δ cells. Number of signature
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cell and 600-cell data from the α cells (α-trained model), while the second model was trained

similarly on the data from the β cells (β-trained model).

We then compared peak predictions from both models to corresponding MACS2 peaks from

the 600-cell data. We found that the results from across cell-type predictions of both models

outperformed the MACS2 peak results as measured by the mean average precision (Figure 2.5B),

suggesting that the U-Net model was able to reconstruct peak calls from sparse signals indepen-

dent of the specific cell type it was trained on. We highlight several examples in which the model

was able to successfully predict peaks that were absent in the sparse 28-cell data but present in

the 600-cell data of a cell type (Figure 2.5C). Because the training cell type had no signal or peak

at the given locus, these predictions could not have been transferred or “copied over” from the

training data, indicating a possible use across cell types or tissues. Based on these results, we used

the U-Net models to predict peaks for the low-count δ cell cluster. As the U-Net model provides

a posterior probability score for each peak call prediction, we sought to create a high-confidence

set of predicted peak calls for each cell type. We used a threshold of 0.625 to filter the predicted

peaks for each cell type. The choice of threshold was used to control for potential false positives

and the final number of predicted cell-type peaks (Figure 2.4C-D). Further, considering that the

δ peak predictions from both the α and β models were highly concordant (Jaccard index of 0.85),

we used the intersection of the results as the final predicted outcome.

We then validated our peak predictions using an orthogonal strategy, where we computed the

enrichment of scRNA-seq derived signature genes (scRSGs) for the α, β, and δ cells across chro-

matin accessibility peaks. We found that the scRSGs for each cell type consistently had higher

enrichment in the predicted peaks than theMACS2 peaks derived from the same 28-cell data (Fig-

ure 2.6A), indicating that our predicted peaks captured cell-type specificity. In the next step, we

compared them to the bulk islet ATAC-seq master peak calls. We found that master peaks derived

from the bulk islets were highly reproducible across samples, with >70% of the peaks occurring

in five or more of the 10 samples (Figure 2.6B). Predictably, we also observed that the chromatin

states corresponding to “active TSS” and “active enhancer” showed enrichment with increasing
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Figure 2.4: Peak calling using deep learning approach. (A) Schematic of U-Net learning strategy. (B)
The training, testing, and validation scheme used for training the models delineating which chromosomes
were part of what dataset. (C) Number of predicted peaks (from 28-cell trained model) for each cell type
with different output posterior probability thresholds. (D) Number of cell-type specific peaks for α, β, and
δ after partitioning into mutually exclusive sets (see methods) with different output posterior probability
thresholds. (E) Fraction overlap of cell-type peaks (α, β) from our study and sorted cell populations from
[2, 8] with different sets of reproducible bulk islet ATAC-seq peaks obtained from 33 bulk islet ATAC-
seq samples. (F) Average precision in predicting peaks compared for all four models (two training and
two prediction datasets) with different sizes of input training data. (G) Enrichment of T2D GWAS SNPs
(N=378) in predicted beta peak calls (from α-trained model) compared with peaks calls from MACS2 on
the data with varying size of input training data. (H) Precision and recall curves comparing predicted beta
peaks (from α-trained model) for varying size of input training data.

24



0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5

Alpha

Beta

Delta

1 2 3 4 5 6 7 8 9 10
0.20
0.25
0.30
0.35
0.40

−2.50.0 2.5 5.0

ATAC-seq peaks 
log2 fold-enrichment0

10,000

20,000

Overlap with exactly N samples

Bu
lk

 Is
le

t 
AT

AC
-s

eq
 p

ea
ks

Fraction
overlap

A

B C

D

E

F

Bu
lk

 Is
le

t c
hr

om
at

in
 s

ta
te

s

Strong transcription

Weak repressed polycomb

Repressed polycomb

Quiescent/low signal

Weak transcription

Weak enhancer

Flanking TSS

Weak TSS

Active TSS

Bivalent/poised TSS

Active enhancer 2

Active enhancer 1

sc
i-A

TA
C

-s
eq

 c
el

l-t
yp

e 
pe

ak
s

C
om

bi
ne

 d
el

ta
pe

ak
 p

re
di

ct
io

ns

Train: Beta, Validate: Alpha, Predict: Delta
Train: Alpha, Validate: Beta, Predict: Delta

U-Net

Alpha

Beta

Delta

Training Prediction on a cell-type
with low nuclei count

600 cell

28 cell

600 cell

28 cell

Predicted 28 cell

Predicted

S

In
pu

t
O

ut
pu

t

Cross cell-type
validation

P

S

P

Be
ta 28 cell

Predicted

600 cell

Al
ph

a
D

el
ta

28 cell
Predicted

600 cell

28 cell
Predicted

600 cell

GC DRD5GRIA4

[0-2]

RFX6

{

Peaks

2 kb 2 kb 1 kb500 bp

Recall

MACS2 peaks
Predicted peaks

Pr
ec

is
io

n

Alpha

Delta

Alpha

Beta

−1 −.5 0 .5 1

scRSGs
Fold enrichment

(log2)

Beta
28-cell U-Net

Alpha Delta

sc
R

SG
s

G

28-cell U-Net 28-cell U-Net

sci-ATAC-seq peaks

Figure 2.5: Deep learning upscaling from sparse low-count nuclei clusters. (A) Schematic of U-Net
training scheme. Twomodels are depicted in the illustration: one trained on α cells data as input and other
trained on β cells as input. δ cell peak predictions from both models are combined to get final predictions
(see Methods). (B) Precision-recall curve comparing peak calls from MACS2 on downscaled data (α cell-
type) with predicted peak calls from 28 cell U-net model (trained on β, predicted on α). (C) Example loci
illustrating peak upscaling with the model. For each cell-type, four tracks are shown: full signal track,
peak calls on full data, peak calls on subsampled data, and predicted peak calls. The predicted peak calls
are obtained from a model trained on a different cell-type. For δ predicted peak calls, intersection of
prediction from both α and β models are shown. Signal tracks normalized to one million reads and scaled
between 0-2.

25



reproducibility of the master peaks. Like- wise, chromatin states such as “repressed polycomb,”

“weak transcription,” and “quiescent/low signal” showed a depletion with the increasing islet

ATAC-seq peak reproducibility (Figure 2.6C). Similarly, when we compared the cell-type peaks

to the master peaks, we found that the proportion of peaks from each cell type increased with the

increasing reproducibility of the bulk peaks (Figure 2.6D), suggesting that highly reproducible

peaks were driven by all the constituent cell types while the peaks that occurred in fewer sam-

ples might have originated from underlying cell-population variability. For further validation,

we also compared our cell-type peaks and sorted cell-type population peaks [2, 8] with master

peaks derived from 33 independent bulk islet ATAC-seq samples and observed a high degree of

concordance (Figure 2.4E). For example, >90% of the α and β peaks were reproducible across three

or more ATAC-seq samples, which was comparable to the 85-92% peak overlap observed for α

and β cell-type peaks from sorted cell populations in previous studies [2, 8]. While the primary

model of our interest was trained using data from 28 cells to predict 600-cell equivalent peaks, we

asked if the model would perform similarly for a varying resolution of input data. To accomplish

this, we subsampled cells from α and β cell clusters to sets of different cell counts, starting with

as few as five cells to 500 cells. We found that the performance of the model increased with the

increasing number of cells used in the input training data (Figure 2.4F). There was up to a five-

fold gain in the coverage of the T2DGWAS SNPs in the β predicted peaks compared to theMACS2

peaks (Figure 2.4G) even when fewer cells were used as input training data (Figure 2.4H). These

results suggest that the deep learning strategy is applicable to a range of input data typically seen

in single-cell sequencing experiments.

Overall, our results show that deep learning driven feature prediction can help recover tissue

and cell-type relevant chromatin accessibility patterns from sparse and noisy data. Using this

approach can enhance biological discoveries, which is challenging with rare cell populations.
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2.3.4 T2D GWAS enrichment at cell-type-specific chromatin signatures

We computed the overlap enrichment of T2D GWAS loci in cell-type peak annotations from α, β,

and δ cells using a Bayesian hierarchical model, as implemented in fGWAS [207]. fGWAS allows

calculation of marginal enrichment associations for one cell type conditioned on another by using

not only the subset of genome-wide significant loci but also the full genome-wide association

summary statistics. We observed that annotations from all three cell types were highly enriched

for T2D GWAS loci, with β-cell annotations having the highest enrichment values (Figure 2.8A).

However, when we accounted for marginal associations using a joint model, we found that β cells

are the only cell type to remain enriched after adjusting for the other two cell types. This result

suggests that shared or β cell-specific chromatin accessibility peaks drive the association with

T2D GWAS. More broadly, these findings illustrate how single cell chromatin profiling results,

when coupled with conditional statistical enrichment analyses, can dissect specific cell types that

drive enrichment in bulk tissue samples.

We next partitioned the peaks into exclusive sets based on the cell-types shared by each peak.

Because the δ cell cluster has fewer reads compared to α and β cells, we did not utilize read count-

based approaches to determine cell-type-specific peaks. Instead, we used peak level metrics to

identify peaks exclusive to a combination of cell types. We found that a majority of peaks (47,209)

were shared across all cell-types and that each cell type had a set of unique accessible sites (29,884

β, 39,353 α, 31,330 δ) (Figure 2.8B). Consistent with our expectations, TSS-proximal shared peaks

mostly overlapped active TSS chromatin states compared to cell-type-specific peaks which had a

larger proportion of peaks in active enhancer states (Figure 2.7A).

To further understand the regulatory logic, we looked for TF motifs enriched in cell-type-

specific peaks using GAT [110]. We found enrichment of motifs implicated in islet cell-type-

specific functionality consistent with known islet TFs (Figure 2.7B). For example, PDX1 is en-

riched in beta-specific peaks, while GATA6 and FOXA are enriched in alpha-specific peaks. We

also observed enrichment of motifs relevant to endocrine function such as PAX6 and MAF. For

delta cell peaks, we found HHEX to be the only TF signature gene (out of 17 scRNA-seq cell-type
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Figure 2.7: sci-ATAC-seq peaks have unique cell type and shared chromatin accessibility signa-
tures. (A) Distribution of TSS proximal and distal peaks (>5kb from nearest Refseq TSS) in shared peaks
and peaks assigned only to α, β, and δ cells. (B) Transcription factor (TF) motif enrichment (log2) across
cell-type specific and shared peaks. (C) Enrichment of T2D GWAS SNPs (N=378) across all cell-type spe-
cific sets of peaks. (D) Enrichment of T2D GWAS SNPs (N=378) across all cell-type specific sets of peaks
including peaks from acinar cells.
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signature genes) that encodes a transcription factor, but we saw no delta specific enrichment.

We think this could be because HHEX is a member of the homeobox family of TFs, and therefore

has a highly degenerate motif, which could result in less specific enrichment within delta-specific

peaks. Overall, the alpha and beta peakmotif enrichments are consistent with known cell-specific

TFs. We then used a complementary enrichment approach with the GREGOR tool [233] to de-

termine if T2D GWAS loci are enriched in each subclass of peaks. We found that T2D GWAS loci

were highly enriched in shared peaks (P-value=1.64e-16, fold enrichment=2.03) and beta cell-

specific peaks (P-value=6.42e-6, fold enrichment=1.91) (Figure 2.7C). We also observed moderate

enrichment of T2D GWAS SNPs in other sets of cell-type-specific peaks, but strikingly, there was

little enrichment in delta cell-specific peaks (P-value=3.12e-3, fold enrichment=1.55) and no sig-

nificant enrichment in alpha cell-specific peaks (P-value=1.83e-01, fold enrichment=1.16). This

suggests that the role of alpha and delta cells in the mechanisms underlying genetic predispo-

sition to T2D pathophysiology might be limited compared to beta cells. To further tease apart

the role of shared peaks into islet endocrine specific peaks and constitutive peaks shared across

more broad cell types, we added peaks from a sorted acinar cell population. Reassuringly, we

observed that acinar-specific peaks showed no enrichment (P-value=0.31, fold enrichment=1.10)

(Figure 2.7D). These independent enrichment findings from the GREGOR tool are consistent with

the results from the fGWAS analysis (Figure 2.8A), indicating the robust nature of these results.

2.3.5 Linking cell-type-specific chromatin accessibility to target genes

One of the primary challenges in understanding the underlying biological mechanisms at non-

coding T2D GWAS variants is the identification of their target genes. Risk variants occurring in

enhancer regions can often interact with their target genes that are not adjacent. Multiple studies

have examined the regulatory landscape of pancreatic islets and relevant cell lines using chromo-

some conformation capture techniques to nominate target genes [99, 150, 179]. However, most

of these studies were conducted on bulk islet samples, thereby obscuring any cell-specific signa-

tures of chromatin looping. Additionally, chromatin looping studies tend to have noisy signals
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when two regions are close in linear space, which leads to a bias towards detecting longer-range

interactions. In order to mitigate these limitations, we adopted a recently published approach,

Cicero [208], which leverages profiles of chromatin co-accessibility across single cells to infer

pairs of chromatin peaks that are likely to be in close physical proximity. For this analysis, we

focused on α and β cell-types as they were the clusters with the most nuclei. In order to filter the

Cicero co-accessible scores for those peak pairs that are more likely to represent true looping, we

compared our results to experimentally-defined loops from three independent chromatin looping

data sets: islet Hi-C [99], islet promoter capture Hi-C (pcHi-C) [179], and EndoC Pol2 ChIA-PET

[150] loops. We found that Cicero peak-pairs from our sci-ATAC-seq data with score >0.05 were

strongly enriched to be called as loops in each of the three reference data sets (Figure 2.8C, Fig-

ure 2.9A). With this threshold, we found 190,176 β cell and 147,716 α cell co-accessible peak-pairs.

Using our new catalog of Cicero-inferred chromatin loops, we next sought to link TSS-distal

T2D GWAS variants to target gene promoters. We focused on the latest T2D GWAS results and

used SNPs in association signals that were genetically fine-mapped to be in a 99% credible set

and had >0.05 posterior probability of association (PPAg) [166]. For this mapping procedure, we

required that the credible set SNP was not within 1 kb of an annotated TSS and that the other end

of the chromatin loop occurs within 1 kb of an annotated TSS. Using this approach across both

α and β cells, we found that of the 265 independent GWAS signals containing SNPs that met our

criteria, we were able to nominate target genes at 104 of them (Figure 2.8D). Similarly, we checked

if the SNPs within each locus overlapped a cell-type-specific peak. We observed several notable

examples. At the C2CD4A/B locus, we found rs7163757 (PPAg 0.095) to be linked to C2CD4B in

α cells (Figure 2.8E).Using an islet gene expression and genetic integration approach to identify

expression quantitative trait loci (eQTL), we previously showed that rs7163757 is associated with

C2CD4B expression [264], and a subsequent functional study corroborated these findings [146].

At a different locus, we found rs11708067 (PPAg 0.79), located in an islet enhancer within the

ADCY5 gene, to be linked to the TSS of the corresponding gene (Figure 2.8F). The risk allele

of rs11708067 has been reported to be associated with reduced expression of ADCY5 [225] and
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Figure 2.8: Enrichment of T2D GWAS signals in cell-type-specific chromatin and linking them
to target genes. (A) Fold enrichment (log2) of T2D GWAS SNPs in cell-type peaks in single and condi-
tional analysis mode using fGWAS tool. For each cell-type, three enrichment values with 95% confidence
intervals are shown: None (single annotation mode), α (conditioned on β and δ), β (conditioned on α and
δ), and δ (conditioned on α and β). (B) Partitioning of α, β, and predicted δ peaks in mutually exclusive sets
of cell-type-specific peaks. The subplot (on right) shows the total number of peaks for each cell-type. (C)
Distance-matched Fisher odds that β cell co-accessibility links overlap islet Hi-C, islet pcHi-C, and ChIA-
PET chromatin loops across different co-accessibility threshold bins. (D) Overlap of T2D GWAS credible
set SNPs with cell-type-specific peaks. Bin is colored if there’s at least one SNP (PPAg > 0.05) in the 99-
pct genetic credible set of the T2D GWAS signal located within 1 kb of an ATAC-seq peak. Cicero score
columns are colored to indicate the score of the highest scoring link to the target gene. (E) Viewpoint
plot of α Cicero connections centered at rs7163757 for C2CD4A/B locus, (F) α Cicero connections centered
at rs11708067 for ADCY5 locus, (G) β Cicero connections centered at rs13262861 for ANK1 locus, and (H)
Cicero connections for both α and β centered at rs62059712 for ATP1B2 locus. The viewpoint region is +/−
1kb of the region from the variant.
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Figure 2.9: Enrichment of α cell co-accessible peaks in chromatin loop anchors. Fisher odds score
for enrichment of alpha co-accessible sites in loop anchors from three different datasets: Islet Hi-C, Islet
pcHi-C, and EndoC ChIA-PET.

functional validation experiments show association with impaired insulin secretion [31, 265]. As

an example of a β cell-specific connection, we found variant rs13262861 (PPAg 0.97) within the

ANK1 locus to be linked to nearbyNKX6-3 (Figure 2.8G).We have previously used islet eQTL data

to nominate NKX6-3 as an islet target gene at this locus [264, 265]. The extensive support from

previous publications for these three loci serves as positive controls for our results and reinforces

the quality of this sci-ATAC-seq data and analyses. Finally, we highlight rs62059712 (PPAg 0.34)

within theATP1B2 locus as an example of a variant linked to multiple gene promoters across both

β and α cell-types (Figure 2.8H). Notably, of the 104 T2D GWAS signals for which we were able

to nominate target genes in either cell type, 60 (~58%) had more than one nominated target gene.
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2.4 Discussion

Single-nuclei chromatin accessibility profiling provides a unique approach for mapping of cell-

type-specific regulatory signatures. Here, we utilized the sci-ATAC-seq protocol to generate and

study chromatin accessibility profiles for 1,456 high-quality nuclei from a purified pancreatic islet

sample. Our dataset and analyses provide high-quality maps of cell-type accessibility profiles and

regulatory architecture using an unbiased approach compared to prior maps from sorted cell-type

populations. However, it is essential to emphasize that single-cell data present unique challenges,

and that our study, which analyzed only one pancreatic islet sample, may be limited in how it

can address some of them.

First, de-novo identification of cell types from the sparse single-cell chromatin accessibility

data continues to be a challenge. We adopted several strategies to address potential biases in our

analysis. Our logistic regression approach to eliminate read depth as a confounding technical

variable, combined with the binomial counting strategy to infer doublet enrichment in clusters,

enabled us to identify three major cell-type populations corresponding to α, β, and δ cells. In

order to assign these cell identities, we relied not only on classical hormone markers, but we also

leveraged findings from an independent islet single-cell RNA-seq study to validate our results.

While islets have been reported to contain other rarer cell-type populations (<5% of all islet cells)

[34], our ability to observe them was limited due to the size of our dataset.

Second, we faced the challenge of identifying reliable cell-specific accessibility patterns across

all cell types due to the relatively low abundance of δ cells. As such, our U-Net-based deep learn-

ing approach presents a novel strategy for addressing this particular problem. Our model differs

from a related deep learning method, Coda [142], by focusing on single cell ATAC-seq as op-

posed to bulk histone ChIP-seq data and uses a more complex architecture (U-Net) which has

been used before in image processing related tasks [86, 226] but seen little mention in genomics

[80]. We demonstrated, using α and β cells as reciprocal training and testing datasets, that our

model successfully learns to predict high-quality peak calls from low cell count data. We ob-

served, however, that there are diminishing returns from using deep learning models when 200
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or more cells are used as input to the model, an observation consistent with the threshold of ex-

perimental reproducibility highlighted in a recent large-scale single nuclei ATAC-seq study [231].

This consistency with an independent study reinforces the value of our deep learning approach

but also highlights a limitation of our δ peak predictions which derive from a low cell count in-

put dataset. Nonetheless, we envision that our method will be useful in scenarios where it is

challenging or cost-prohibitive to obtain specific cell populations.

Overall, an important implication of our findings comes from our ability to generate cell-

specific chromatin accessibility maps and to infer looping connections from accessible regions

to target genes of T2D GWAS variants. A recent T2D GWAS [166] reported >400 independent

association signals, but the molecular mechanisms underlying these signals is known only for a

subset of the variants. Single nuclei resolution cell-specific regulatory signatures provide a unique

opportunity to infer target gene linkswith non-coding elements. Thus, we integrated cell-type co-

accessibility links with T2D GWAS SNPs that were genetically fine-mapped to 99% credible sets

to create a higher resolution map of the regulatory landscape underlying 104 distinct T2D GWAS

signals. Focusing on the cell-specificity of the chromatin accessibility peaks that anchor these

target gene associations, we observed seven classes, representing: i. peaks that are unique to a

cell type (three classes), ii. peaks that are shared across all three cell types (one class), iii. peaks

that occur in a pair of cell types (three classes). Interestingly, the class of peaks shared across all

three cell types comprised 26 of the 104 (25%) T2D GWAS to target gene links even though this

class is only one of seven. These results paint a complex picture of disease mechanisms where

certain risk variants may mediate target effects through cell-type-specific pathways, while others

might affect multiple target genes shared across cell-type populations.

We noted specific examples at the C2CD4A/B and ANK1 loci, where we were able to nomi-

nate specific variants linked with islet gene expression and their role in T2D pathophysiology

as compelling targets for future mechanistic studies. As this manuscript was under preparation,

another similar study appeared as a preprint (published as of April 1, 2022) [44], and as such an

important future topic will be to combine and meta-analyze multiple islet single-cell ATAC-seq
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datasets. Such an endeavor will increase statistical power to detect chromatin features, including

loops, at GWAS loci, and eventually enable single-cell resolution chromatin QTL studies, which

will help to further narrow in on functional SNPs. Overall, we believe that the data, results, and

methodology from this study will be of value to the broader research community.

2.5 Materials and methods

2.5.1 Bulk Islet ATAC-seq

2.5.1.1 Sample processing

The human pancreatic islet samples were procured and processed as described in [264]. Briefly,

the islets were obtained from the National Disease Research Interchange (NDRI) and processed

according to the NHGRI institutional review board-approved protocols. The islet was shipped

overnight from the distribution center. Upon receipt, we pre-warmed the islet to 37 degree in

shipping media for 1-2h before harvest. ~50-100 islet equivalents (IEQs) were harvested and

transposed in triplicate following the methods in [28]. The ATAC-seq library was barcoded and

sequenced 2 × 125bp on a HiSeq 2000.

2.5.1.2 ATAC-seq analysis

Sequencing adapters were trimmed using cta (v0.1.2) [121] and aligned to hg19 reference genome

using BWA-MEM (v0.7.15-r1140, options: -I 200,200,5000) [156]. PicardMarkDuplicates (v2.18.27)

was used for duplicate removal and samtools [157] was used to filter for autosomal, properly-

paired and mapped read pairs with mapping quality >= 30 (v1.9, options: -f 3 -F 3340 -q 30).

Replicates across each sample were merged into a single file using samtools merge. For peak

calling, each sample was downsampled to 25 million (M) reads and converted to BED file. We

then used MACS2 [285] to call broad peaks (v2.1.1.20160309; options: –nomodel –broad –shift -

100 – extsize 200 –keep-dup all –SPMR) and removed those with FDR >0.05 and overlapping with

ENCODE hg19 blacklists [253]. ATAC-seq coverage tracks were displayed using UCSC Genome
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Browser and Integrative Genomics Viewer (IGV). Summary statistics were calculated using Ataqv

(v1.0) [199] and are available in interactive and downloadable format online. For comparative

purposes, we performed the same read trimming, alignment, filtering, downsampling, and peak

calling steps on publicly available ATAC-seq data. Peaks from each sample were merged to create

a master peak set and Spearman correlation was computed on the RPKM normalized read-count

matrix.

2.5.1.3 Determination of high-confidence peaks

We randomly sampled 2.5 M reads from each sample using samtools view and pooled them into

one file so that each sample is equally represented. Peaks were called on the pooled file as dis-

cussed in the previous paragraph. We then determined the number of samples overlapping with

each master peak using peaks called on individual samples.

2.5.1.4 Overlap of reads with chromHMM states

We tested for enrichment of ATAC-seq peaks across 13 islet-specific chromatin states using Ge-

nomic Association Tester (GAT) [110]. We ran GAT (v1.3.5, options: –number-samples 10,000)

and filtered chromatin states with no significant enrichment (Bonferroni adjusted p-value < 0.05)

of peaks in them. The log2 fold enrichment values across chromatin states were clustered using

hierarchical clustering of the correlation matrix.

2.5.2 sci-ATAC-seq analysis

2.5.2.1 Sample processing

We used the combinatorial cellular indexing method to generate single-nuclei chromatin acces-

sibility data as previously described in [55]. Briefly, a suspension of islet cells were obtained and

pelleted 5 min at 4℃ 500 x g. Themedia was aspirated and the cells were washed once in 1 ml PBS.

The cells were pelleted again for 5 min at 4 ℃ 500 x g and then resuspended in 1 ml of cold lysis

buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630, supplemented
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with 1X protease inhibitors (Sigma P8340)). Nuclei were maintained on ice whenever possible af-

ter this point. 10 μl of 300 μMDAPI stain was added to 1 ml of lysed nuclei for sorting. To prepare

for sorting, 19 μl of Freezing Buffer (50 mM Tris at pH 8.0, 25% glycerol, 5 mM MgOAc2, 0.1 mM

EDTA, supplemented with 5 mMDTT and 1X protease inhibitors (Sigma P8340)) was aliquot into

each well of a 96-well Lo-Bind plate. 2,500 DAPI+ nuclei (single cell sensitivity) were sorted into

each well of the plate containing Freezing Buffer. The plate was sealed with a foil plate sealer and

then snap frozen by placing in liquid nitrogen. The frozen plate was then transferred directly to

a -80 ℃ freezer. Subsequently, the sample was shipped from NIH to UW overnight on dry ice.

The plate was then thawed on ice and supplemented with 19 μl of Illumina TD buffer and 1 μl of

custom indexed Tn5 (each well received a different Tn5 barcode). The nuclei were tagmented by

incubating at 55 ℃ for 30 min. The reaction was then quenched in 20 mM EDTA and 1 mM sper-

midine for 15 min at 37 ℃. The nuclei were then pooled and stained with DAPI again. 25 DAPI+

nuclei were then sorted into each well of a 96-well Lo-bind plate containing 11.5 μl Qiagen EB

buffer, 800 μg/μl BSA, and 0.04% SDS. 2.5 μl of 10 μM P7 primers were added to each sample and

the plate was incubated at 55 ℃ for 15 min. 7.5 μl of NPM was then added to each well. Finally,

2.5 μl of 10 μM P5 primers were added to each well and the samples were PCR amplified with

following cycles: 72 ℃ 3min, 98 ℃ 30s, then 20 cycles of 98 ℃ for 10 s, 63 ℃ for 30 s, 72 ℃ for

1 min. The exact number of cycles was determined by first doing a test run on 8 samples on a

real-time cycler with SYBR green (0.5X final concentration). PCR products were then pooled and

cleaned on Zymo Clean&Concentrator-5 columns (the plate was split across 4 columns) eluting

in 25 μl Qiagen EB buffer and then all 4 fractions were combined and cleaned using a 1X Ampure

bead cleanup before eluting in 25 μl Qiagen EB buffer again. The molar concentration of the li-

brary was then quantified on a Bioanalyzer 7500 chip (including only fragments in the 200-1000

bp range) and sequenced on an Illumina NextSeq at 1.5 pM concentration.
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2.5.2.2 QC and pre-processing

Step 1. Barcode correction and filtering. Each barcode consists of four 8-bp long indexes (i5, i7,

p5, and p7). Reads with barcode combinations containing more than 3 edit distance for any index

were removed. If a barcode was within 3 edits of an expected barcode and the next best matching

barcode was at least 2 edits further away, we corrected the barcode to its best match. Otherwise,

the barcode was classified as ambiguous or unknown.

Step 2. Adapter trimming and alignment. Adapters were removed using Trimmomatic [17] with

NexteraPE adapters as input (ILLUMINACLIP:NexteraPE.fa:2:30:10:1:true TRAILING:3 SLIDING-

WINDOW:4:10 MINLEN:20) and aligned to hg19 reference using BWA-MEM (v0.7.15-r1140, op-

tions: -I 200,200,5000). The final alignment was filtered using samtools to remove unmapped

reads and reads mapping with quality < 10 (-f3 -F3340 -q10) as well as reads that were associated

with ambiguous or unknown barcodes.

Step 3. Deduplication and nuclei detection. Duplicates from the pruned file were removed using

a custom Python script on a per-nucleus basis. Using the distribution of reads per barcode, we

applied bi-culstering, as implemented in the mclust [90] R package, to differentiate between back-

ground barcodes and barcodes that correspond to a nucleus. Using the list of non-background

barcodes, we split the aggregate bam file into constituent bam files corresponding to each barcode

representing a single nucleus using a custom Python script.

Step 4. Quality assessment of each single nucleus. For each single nucleus, we computed ATAC-

seq quality metrics such as fragment length distribution, transcription start site (TSS) enrichment,

short-to-mononucleosomal reads ratio, total autosomal reads, and fraction of reads overlapping

peaks. We removed nuclei with a) total reads outside 5% to 95% range [34578, 226755] of all the

nuclei, and b) TSS enrichment of <2.7 (5%-tile) from further downstream analysis.
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Step 5. Aggregate sci-ATAC-seq peaks. We pooled reads from filtered barcodes from the previous

steps to create an aggregate bam file. Peaks were called and filtered as described previously in

the Bulk Islet ATAC-seq analysis section.

2.5.3 Cluster analysis

2.5.3.1 Feature selection and clustering

We generated a list of TSS distal peaks (>5 kb away from the nearest TSS based on RefSeq genes

[192]) from the aggregate sci-ATAC-seq data. For each nucleus, we counted the number of reads

overlapping the peaks using the Rsubread package [34]. We then adopted a logistic regression

approach to remove peaks where binarized accessibility across nuclei was significantly associ-

ated (Bonferroni corrected p-value < 0.05) with sequencing depth. This approach should help to

reduce the bias associated with sequencing depth, as the remaining peaks are no longer associ-

ated with this technical factor, a strategy that has been successfully implemented in single cell

RNA-seq data analysis [96]. The resulting count matrix was RPKM-normalized and reweighted

using the term-frequency and inverse-document-frequency (TF-IDF) method [54]. To do this, we

first weighted all the sites for individual nuclei by the total number of sites accessible in that cell

(”’term frequency”’). We then multiplied these weighted values by log(1 + the inverse frequency

of each site across all cells), the “inverse document frequency.” The TF-IDF transformed matrix

was then reduced to 30 principal components using Principal Component Analysis (PCA) and

used as input to generate a two-dimensional embedding using the Uniform Manifold Approxi-

mation Method (UMAP, n_neighbors = 20) [176]. We identified clusters in the two-dimensional

embedding in an unsupervisedmanner using a density-based clusteringmethod (hdbscan, minPts

= 20) as implemented in dbscan R package [102].

2.5.3.2 Cell identity assignment and validation

The cell identities were assigned based on de-facto cell-type-specific hormone markers: INS-IGF2

(β),GCG (α), SST (δ) etc. Amarker genewas said to be present in a cell if a readmappedwithin 5 kb
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of the GENCODE (v19) gene body annotation [107]. For additional verification of cell-identity, we

computed RPKM normalized aggregate ATAC-seq signal across cell-type marker genes reported

in two independent islet scRNA-seq studies [151, 237]. Finally, we evaluated the enrichment of

cells from each cell-type cluster relative to their expected population proportion using two-sided

binomial test across ten bins of sequencing depth (~145 cells/bin).

2.5.4 Deep learning signal and peak upscaling

2.5.4.1 Model design, training, and validation strategy

The U-Net model [226] takes input sequences and outputs prediction sequences. The goal of

model training is to reduce the error between the prediction output and a representation of ground

truth. For signal upscaling, the input sequence is base-wise scores of BAM pileups (read-depth)

corresponding to a subsample of n cells (randomly sampled from 600 cells) and the output se-

quence is base-wise scores of BAM pileups using reads from all 600 cells. Peak upscaling not

only uses the subsampled BAM pileup scores as inputs, but it also uses the binary base-wise val-

ues from calling peaks with MACS2 on the subsampled BAM alignments. Output sequences for

peak upscaling are the binary base-wise values from calling peaks with MACS2 on the data. We

created two models, each separately on data from α and β cells. Because both had different num-

ber of constituent single-nuclei, we matched the size of output dataset by randomly sampling 600

cells from each cell-type cluster. The input datasets were created by sampling n cells from the set

of 600 cells such that the total number of reads is similar across both models. We did not set any

explicit constraints on the number of peaks to be called by this approach.

2.5.4.2 Model architecture

The network architecture of the U-Net used in this study is illustrated in Figure 2.4A. It con-

sists of a contracting, convolutional path (left side) and an expansive, deconvolutional path (right

side). The contracting path consists of repeated applications of two kernel size 11 convolutions

(unpadded convolutions) with rectified linear unit (ReLU) activation, and a kernel size 2 max
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pooling operation with stride 2 for downsampling. Each downsampling step halves the length

of the activation sequence while doubling the number of feature channels. Every step in the ex-

pansive path consists of a kernel size 2 deconvolution layer with a linear activation function that

halves the number of feature channels, a concatenation with the correspondingly cropped feature

map from the contracting path, and two kernel size 11 convolution layers with ReLU activations.

The cropping is necessary due to the loss of border sequence steps in non-padded convolution.

At the final layer a kernel size 1 convolution with either an ReLU (for signal upscaling) or sig-

moid (for peak upscaling) activation function generates the sequence of predictions. Due to the

use of unpadded convolutions, the prediction sequence is shorter than the input sequence by a

constant border width. Although the U-Net can accept arbitrary length input sequences, we fix

all training samples to be of length 6700, which results in output prediction sequences of length

4820. In total, the network has five steps each in the contracting and expansive paths for a total

of 27 convolutional layers and 8,998,529 training parameters. The model was implemented using

Keras [91] with the Tensorflow [1] backend, and experiments were run using Titan Xp and GTX

1080 Ti GPUs.

To reduce overfitting, we split chromosomes into training, validation, and testing sets. The

model was fit using the ADAM optimizer [139] with a learning rate of 1e-5 and a batch size of

128 for 50 epochs. Separate loss functions, and hence models, were used to solve signal and peak

upscaling. For signal upscaling, we used the mean squared error base-wise loss function. For

peak upscaling, the loss function was the sum of the cross-entropy base-wise loss and the Dice-

coefficient loss, also known as F1 score. We used mean average precision, a common evaluator

for object detection, and Pearson correlation as the output evaluation metrics for peak and signal

upscaling, respectively. This downscaling and model training were repeated for n=5, 10, 28, 50,

100, 200, 300, 400, and 500 cells.
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2.5.4.3 Generating upscaled peaks

In order to select a subset of high-confidence peaks from the predicted model output, we adopted

a post-hoc approach where we compared the number of cell-type-specific peaks for α, β, and δ

cells, and chose a threshold where they had a similar number. For predicted δ cell peaks, we

combined the results from α and β models at the same threshold using bedtools [215] intersect

(v.2.27.1) after filtering for the chosen threshold.

2.5.5 Cell-type-specific peaks analysis

2.5.5.1 Cell-type-specific peaks

Peaks specific to each cell-type were obtained by comparing peaks in one cell-type with all other

cell-types using bedtools.

2.5.5.2 T2D GWAS SNPs enrichment

Enrichment of T2D associated GWAS SNPs from DIAMANTE [166] was tested using GREGOR

(v1.3.1) [233]. Specifically, we used the following parameters: r2 threshold (for inclusion of SNPs

in LD with the diabetes associated GWAS SNPs) = 0.80, LD window size = 1 Mb, and minimum

neighbor number = 500. P-values were adjusted according to Bonferroni threshold for multiple

testing burden.

2.5.5.3 Conditional fGWAS enrichment analysis

We used fGWAS [207] to model shared properties of loci affecting a trait. We ran fGWAS (v0.3.6)

with DIAMANTE T2D GWAS summary data and cell-type ATAC-seq peaks from three cell types

as input annotations. For each individual annotation, the output model provided maximum like-

lihood enrichment parameters and annotations were considered as significantly enriched if the

parameter estimates and 95% confidence interval (CI) did not overlap zero. We then used fGWAS

to run a conditional analysis in a pair-wisemanner where enrichment of onemodel was evaluated
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conditional on the output models from other annotations.

2.5.5.4 Validating cell-type peaks using scRNA-seq signature genes

We evaluated the enrichment of scRNA-seq derived signature genes (scRSGs) in 28-cell MACS2

and upscaled peak calls using GAT [110]. We ran GAT (v1.3.5, options: –number-samples 10,000)

with union of all peaks as workspace and scRSGs as segments.

2.5.5.5 Transcription factor motif enrichment

We used motif PWN scans from [235]. Briefly, we used biallelic SNPs and short indels from

the 1,000 Genomes project (release v5) [252] to generate comprehensive scans with FIMO [49]

using the background nucleotide frequencies from hg19 and a p-value < 1e-4. We only kept

motif instances that intersected mappable regions and did not intersect blacklisted regions. We

then tested for enrichment of motifs across cell-type-specific peaks using GAT (v1.3.5, options:

–number-samples 100,000). We used union of top 100 motifs (by log fold enrichment) for each

annotation and clustered them using hierarchical clustering.

2.5.6 Linking SNPs to target genes

2.5.6.1 Cicero co-accessibility analysis

In order to link TSS distal ATAC-seq peaks with target genes, we used Cicero [208], which iden-

tifies co-accessible pairs of DNA elements using single-cell chromatin accessibility data. We used

these results to infer connections between regulatory elements and their target genes. We ran

Cicero (v1.0.15, default parameters) with cells from the α and β cell clusters separately. To do this,

we first called peaks on each cluster and counted the number of reads per nuclei overlapping the

peaks. The resulting count matrix was used as input to Cicero along with the UMAP projec-

tion for each cluster. Finally, in order to decide a threshold for filtering co-accessible peak pairs,

we computed Fisher odds ratio for enrichment of co-accessible peaks versus distance matched

non co-accessible peaks (co-accessibility < 0) with three different three-dimensional chromatin

44



looping data sets: islet Hi-C [99], islet promoter capture Hi-C (pcHi-C) [179], and EndoC Pol2

ChIA-PET anchors [150]. For overlap, we checked if both the ends of the Cicero loops intersected

with both the anchors from the experimental chromatin looping data. Public epigenome browser

session links have been included in Table S7 of [217].

2.5.6.2 T2D GWAS SNP overlap analysis.

In order to link T2D GWAS SNPs with target genes, we utilized 380 independent GWAS sig-

nals from DIAMANTE that were genetically fine-mapped to 99% credible sets using a Bayesian

approach. In this framework, each SNP has a posterior probability for being causal for the associ-

ation in that region. These posterior probabilities are the ratio of evidence for each variant versus

all others which makes it easy to compare the variants directly. A genetic credible set is then de-

fined as the minimum set of SNPs that contains all SNPs with probability greater than or equal to

0.01. We filtered SNPs within each set to have >0.05 posterior probability of association (PPAg).

We then checked for each GWAS signal whether SNPs passing the criteria mapped within 1 kb

of cell-type-specific ATAC-seq peaks. To obtain Cicero target genes, we checked if an ATAC-seq

peak was a) within 1 kb of a variant, b) outside 1 kb range of a RefSeq TSS, and (c) linked to an

ATAC-seq peaks that was within 1 kb of a RefSeq TSS. The binary overlap matrix was clustered

using hierarchical clustering with binary distance method. Tables containing number of SNPs

within each credible set and specific variants overlapping cell-type-specific ATAC-seq peaks are

available in Table S8 and Table S9 of [217].

2.6 Data availability

Extended data and tables referenced in the chapter are not included in the dissertation and can

be obtained from the online version of the manuscript referenced in [217]. Code for analysis

done in this work is openly available on GitHub at https://github.com/ParkerLab/islet_sci-ATAC-

seq_2019.
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CHAPTER 3

RFX6-mediated Dysregulation Defines Human β

Cell Dysfunction in Early Type 2 Diabetes

3.1 Abstract

A hallmark of type 2 diabetes (T2D), a major cause of world-wide morbidity and mortality, is

dysfunction of insulin-producing pancreatic islet β cells [3, 220, 228]. T2D genome-wide asso-

ciation studies (GWAS) have identified hundreds of signals, mostly in the non-coding genome

and overlapping β cell regulatory elements, but translating these into biological mechanisms has

been challenging [45, 166, 217]. To identify early disease-driving events, we performed single cell

spatial proteomics, sorted cell transcriptomics, and assessed islet physiology on pancreatic tissue

from short-duration T2D and control donors. Here, through integrative analyses of these diverse

modalities, we show that multiple gene regulatory modules are associated with early-stage T2D

β cell-intrinsic defects. One notable example is the transcription factor RFX6, which we show is

a highly connected β cell hub gene that is reduced in T2D and governs a gene regulatory net-

work associated with insulin secretion defects and T2D GWAS variants. We validated the critical

role of RFX6 in β cells through direct perturbation in primary human islets followed by physio-

logical and single nucleus multiome profiling, which showed reduced dynamic insulin secretion

and large-scale changes in the β cell transcriptome and chromatin accessibility landscape. Un-

derstanding the molecular mechanisms of complex, systemic diseases necessitates integration of

signals from multiple molecules, cells, organs, and individuals, and thus we anticipate this ap-
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proach will be a useful template to identify and validate key regulatory networks and master hub

genes for other diseases or traits with GWAS data.

3.2 Introduction

Type 2 diabetes mellitus (T2D), a metabolic disease defined by hyperglycemia, is a major cause of

macro and microvascular morbidity and mortality for more than 460 million individuals world-

wide [228]. Clinically heterogenous, T2D involves genetic, environmental, and physiologic com-

ponents that impact multiple molecular pathways and tissues [3, 220]. Initial management fre-

quently involves diet and lifestyle alterations but often escalates to require multiple oral or in-

jectable medications and ultimately exogenous insulin to lower blood glucose [9, 128]. T2D is

associated with obesity and age, both of which reduce peripheral tissue sensitivity to insulin;

however, most individuals with insulin resistance do not develop T2D. Instead, the key defining

feature of those who develop T2D is impaired insulin secretion [103, 128]. Insulin is secreted

endogenously by the β cell within the pancreatic islet. In addition to β cells, the islet also con-

tains other endocrine cells (α, δ, γ, and ε), vascular structures (endothelial cells and pericytes),

and immune cells, which collectively function as a mini-organ to control glucose homeostasis in

a coordinated fashion [191, 273]. While islet dysfunction is a hallmark of T2D, it remains un-

clear whether this is the result of an intrinsic β cell defect, a reduction in β cell number, systemic

signals from altered levels of fatty acids, glucose, or lipids, or some combination of these.

T2D has a strong genetic component with more than 400 signals identified through genome-

wide association studies (GWAS) [166]. Loci linked to T2D through GWAS are enriched in β cell-

specific open chromatin regions, suggesting impaired β cell processes as a key determinant for

whether T2D develops and how quickly it progresses [43, 217]. Further, 90% of GWAS-identified

single nucleotide polymorphisms (SNPs) are located in non-coding parts of the genome, and they

are enriched in predicted islet enhancer regions where many likely modulate cell-specific gene

expression regulatory networks by altering transcription factor binding [201, 202, 257, 259, 264].
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How personalized genetic variation causes changes in cell-specific gene and protein expression,

tissue architecture, and cellular physiology in T2D islets is not well understood.

Postulated T2D disease processes include β cell loss and/or dedifferentiation, endoplasmic

reticulum (ER) stress, amyloid deposition, oxidative stress, glucotoxicity, lipotoxicity, and islet

inflammation [77, 94, 249, 274]. These processes have been primarily studied in rodent models

of T2D due to difficulty in obtaining and studying human pancreatic tissue and islets. Impor-

tantly, human islets show several key differences frommouse islets, including endocrine and non-

endocrine cell composition and arrangement, basal and stimulated insulin secretion, response to

dyslipidemia and hyperglycemia, and expression of key islet-enriched transcription factors [24,

60, 75, 188], highlighting the need for studies to define initiating and sustaining mechanisms of

islet dysfunction in primary human islets.

Recent advances in cadaveric pancreas procurement and processing have increased availability

of human tissue for histological analysis as well as ex vivo molecular and functional profiling

of islets isolated from individuals with diabetes. However, many studies utilize only tissue or

islets, and further, do not differentiate study outcomes based on T2D duration. Since different

stages of T2D may involve different processes, studies that combine cases with different T2D

duration make it difficult to discern cellular and molecular causes from disease consequences.

The association of physiological measurements with transcriptomic profiles of islet cells have

begun to identify key pathways for β cell function [36, 276], but integration of these studies with

disease stage, tissue-based analyses, and genetic risk remains a challenge.

Here, we used an integrated approach to study the pancreas and isolated islets from donors

with short-duration T2D and nondiabetic controls to identify disease-driving molecular defects

early in the course of T2D. We analyzed islet function both ex vivo and in vivo using a trans-

plant system and performed comprehensive transcriptional analysis by bulk RNA-sequencing

(RNA-seq) of whole islets and purified β cells and α cells, correlating these profiles to functional

parameters and GWAS variants using weighted gene co-expression network analysis (WGCNA).

Concurrently, we described changes in the pancreatic islet microenvironment via traditional and
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multiplexed imaging approaches, including assessing spatial cell relationships. We found that

dysfunction in short-duration T2D is defined primarily by β cell-intrinsic defects, including an

RFX6-governed and GWAS-enriched transcriptional regulatory network.

3.3 Results

3.3.1 Identification, collection, and processing of short-duration T2D

donor pancreata

To identify early, disease-driving mechanisms in islets, we focused on short-duration T2D as

defined by a combination of disease duration and treatment approach (Figure 3.1a). Using a

national network, we identified high-quality organs to ensure minimal ischemic time and consis-

tently applied multiple tissue processing and fixation methods, including simultaneous collection

of isolated islets and tissue from the same pancreas when possible. Twenty pancreata were ob-

tained from individuals with T2D aged 37-66y (mean 52y) with T2D duration of 0-10y (mean

3.5y). Of these donors, 25% were without pharmaceutical treatment (HbA1c range 6.2-9.9; mean

7.6) and 75% were on diabetes medication, mostly oral agents (HbA1c range 6.3-11.2; mean 8.0)

(Figure 3.1a). Pancreata from nondiabetic (ND) donors (n=17) were also collected and processed

for multi-modality study. Partnerships with the Integrated Islet Distribution Program (IIDP) and

the Alberta Diabetes IsletCore provided access to additional islets from ND donors (n=19) to as-

sist with matching of donor characteristics. Detailed information, including sample types and

experimental usage for each case, is available in Extended Data Table 1 of [268]. Application of

multiple modalities allowed for integrative analysis of ex vivo and in vivo islet function, tissue

architecture and microenvironment including spatial relationships, and cell type-specific gene

expression (Figure 3.1b).
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3.3.2 Short-duration T2D islets show reduced stimulated insulin secre-

tion

To investigate islet function, we assessed dynamic hormone secretion in isolated islets from age-

and body mass index (BMI)-matched T2D and ND donors (Figure 3.2a-b) by a standardized per-

ifusion approach that interrogates multiple steps of the insulin secretory pathway and has been

adopted by the Human Islet Phenotyping Program of the IIDP to assess over 400 human islet

preparations [22]. When normalized by islet volume, stimulated insulin secretion was substan-

tially reduced in response to high glucose, cyclic AMP (cAMP)-evoked potentiation, and potas-

sium chloride (KCl)-mediated depolarization (Figure 3.1c-f and Figure 3.2c). Both first and second

phases of insulin secretion were reduced, with the first phase showing a more significant reduc-

tion (Figure 3.2d-e). Inhibition of insulin secretion by low glucose and epinephrine was similar

between ND and T2D islets, as was insulin content (Figure 3.1g and Figure 3.2f); as such, normal-

ization of response by islet insulin content showed similar reductions in stimulated insulin secre-

tion but also showed reduced basal insulin secretion (Figure 3.2g-l). Together, these data suggest

that short-duration T2D islets ex vivo maintain insulin production and storage but have defects

at multiple steps of the insulin secretory pathway, including those distal to glucose metabolism,

which persist after islet isolation from the in vivo environment.

In contrast to insulin secretion, neither basal nor stimulated glucagon secretion was differ-

ent in T2D islets when normalized by islet volume (Figure 3.11h-1k and Figure 3.2m), and both

ND and T2D islets showed glucose-mediated suppression of glucagon secretion (Figure 3.2n).

Glucagon content was similar between islets from ND and T2D individuals and normalization by

glucagon content showed similar secretion dynamics (Figure 3.1l and Figure 3.2o-t). While there

is substantial evidence of dysregulated glucagon secretion in T2D [5, 260], these data suggest that

either α cell dysfunction is not present in the early stages of T2D or defects are present in vivo

but not maintained after islet isolation.

Correlation of donor attributes to functional metrics highlighted a significant negative cor-

relation between donor HbA1c and stimulated insulin secretion (r<-0.40, p<0.05; Figure 3.1m).
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To test whether the systemic environment contributed to β cell dysfunction in T2D islets, we

transplanted T2D or ND islets from a subset of donors into normoglycemic, non-insulin resistant

immunodeficient NOD-scid-IL2rγnull (NSG) mice (Figure 3.1n). After six weeks in this environ-

ment, T2D islets secreted less human insulin than ND islets, especially after stimulation with glu-

cose/arginine (Figure 3.1o, average per donor and Figure 3.2u, individual mice), consistent with ex

vivo findings of impaired stimulated insulin secretion. In sum, these experiments highlight that

β cell dysfunction in early T2D persists in a normoglycemic, non-insulin resistant environment

and suggest that intrinsic β cell dysregulation and/or cellular and molecular alterations within

the islet microenvironment are key features driving reduced insulin secretion.

3.3.3 Broad transcriptional dysregulation revealed through integrated

transcriptome analysis of islets and purified α and β cells

To assess both the β and α cell-specific transcriptional landscapes as well as global islet dysregu-

lation in the short-duration T2D cohort, we purified β and α cells by fluorescence-activated cell

sorting (FACS) using well-characterized cell surface antibodies and hand-picked isolated islets

Figure 3.1 (following page): Integrated analysis of islet function, gene expression, and histology
in a cohort of donors with short-duration type 2 diabetes (T2D) reveals substantially reduced
stimulated insulin secretion ex vivo and in vivo despite similar insulin content and highlights
dysregulated pathways in purified β and α cells as well as whole islets. (a) Schematic of functional
β cell mass during disease progression from nondiabetic (ND) to pre-diabetes (Pre-DM) and T2D, high-
lighting the divergence of insulin supply and demand and escalation of treatment mirroring progressive
loss of functional β cell mass. Shaded blue represents targeted disease stage in this cohort with clinical
profile shown below in table. (b) Schematic of multimodal study of islet function, transcriptome, and tissue
architecture. Coordinated study on islets and tissue from same donor allowed integration between analy-
ses (green arrows). (c-l) Dynamic insulin and glucagon secretory responses measured by islet perifusion.
Panels d-f and i-k: secretagogue response as area under the curve (AUC); g, l: hormone content normalized
to islet volume. (m) Pearson correlation of perifusion metrics to clinical traits. (n) Schematic of human
islet transplantation and in vivo assessment of function. (o) Blood glucose, human insulin levels, and hu-
man insulin:blood glucose ratio measured before and after glucose and arginine stimulation of mice with
human islet grafts. Symbols show donor average. (p) Schematic of RNA sample collection and analysis.
(q) Overlap of differentially expressed (DE) genes in T2D β cell (green) α cell (red), and islet (blue) samples
at the level of genes (purple curves) or ontology terms (grey curves). (r) Metascape network showing a
subset of enriched terms from DE genes. Edges denote similarity and node colors reflect contribution of
sample(s). * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 (d-g, i-l: two-tailed t-test; o: two-way ANOVA).
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for RNA-sequencing (Figure 3.1p and Figure 3.2v). Studying sorted β and α cells together with

whole islets, which has not been done in prior studies, allowed detailed appreciation of both cell

type-specific and islet-wide transcriptional changes in T2D. As collection of these rare tissues

spanned more than 3.5 years, we used a latent variable analysis to discern biological variation

from technical variation and then examined the datasets by both differential gene expression

(Figure 3.1p and Figure 3.2w, Figure 3.3a-f) and gene network analyses. Differential expression

analysis yielded 352, 248, and 564 differentially expressed genes in β cells, α cells, and whole

islets, respectively (Figure 3.3g-i), highlighted by genes involved in stimulated insulin secretion in

β cells (G6PC2, GLP1R) and changes in non-endocrine components in islets (CXCL8, ADAMTS4).

Numerous metabolic and mitochondrial, exocytosis, ion transport and protein secretion path-

ways were enriched in T2D β cells (Figure 3.3j), while α cell gene changes were in amino acid

and steroid signaling pathways and regulation of blood vessel morphology (Figure 3.2k). In T2D

islets, cytokine signaling and immune terms were enriched, as were pathways related to ER pro-

cessing and unfolded proteins (Figure 3.3l). These were less prominent in isolated α or β cells

(Figure 3.3j-k). Despite diverse differentially expressed genes across sample types (Figure 3.1q),

Figure 3.2 (following page): Additional metrics from functional and transcriptional profiling of
islets from donors with short-duration T2D (related to Figure 3.1). (a-b) Matching of ND and T2D
donor BMI (a) and age (b) for perifusion experiments. (c) Basal insulin secretion calculated as the average
of the first three points of perifusion trace. (d-e) Integrated area under the curve (AUC) breaking down the
total 16.7 mM glucose response into the first phase (d; through minute 24) and second phase (e; remainder
of stimulation). (f) Area “under” the curve calculated from trace baseline for inhibition with low glucose
and epinephrine. (g-l) Dynamic insulin secretion and metrics equivalent to Figure 3.1 but normalized by
total insulin content. (m) Basal glucagon secretion calculated as average of first three points of perifusion
trace. (n) Area “under” the curve calculated from trace baseline for inhibition with high glucose. (o-t)
Dynamic glucagon secretion andmetrics equivalent to Figure 3.1 but normalized by total glucagon content.
(u) Blood glucose, human insulin levels, and human insulin:blood glucose ratio measured at 0’ (six-hour
fasted) and 15’ after glucose and arginine stimulation of mice with human islet grafts. Symbols represent
individual mice. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 (two-tailed t-test, panels a-f, h-n, and p-t;
two-way ANOVA, panel u); error bars are SEM. (v) Gating strategy for sorted α and β cells identified by
cell surface markers. Cell debris were excluded by forward scatter (FSC) and side scatter (SSC), single cells
were identified by voltage pulse geometry (FSC-A v. FSC-H), and non-viable cells were excluded using
propidium iodide (PI). Endocrine cell subpopulations were then gated based on positivity for HPi1 (pan-
endocrine marker) and additional positivity for HPa3 (α cells) or NTPDase3 (β cells). (w) Select metrics
used to assess library quality, organized by sample type. Outlier samples are highlighted in yellow and
were excluded from downstream analyses.
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there was considerable overlap at the level of biological pathways in which these genes are in-

volved – among the most enriched across samples were hormone secretion, lipid metabolism, and

cilia organization (Figure 3.1r). In sum, analysis of differential gene expression of sorted β and α

cells and whole islets emphasizes common dysregulated pathways among sample types as well

as cell-specific transcriptomic changes.

3.3.4 Short-duration T2D donors do not show significant changes in en-

docrine cell mass

To understand the context in which these functional and transcriptomic changes occur, we

comprehensively evaluated the islet architecture in pancreatic tissue from T2D donors. High-

throughput traditional immunohistochemistry (IHC) was applied across pancreas head, body,

and tail regions for the entire donor cohort, and in parallel, a subset of samples was analyzed

Figure 3.3 (following page): Transcriptional analysis of islets and sorted α and β cells reveals
dysregulation of metabolic pathways in T2D β cells and immune signaling in T2D islets (related
to Figure 3.1). (a-c) Relative expression of individual libraries post-correction and principal component
(PC) analysis of each sample type. RRIDs (donor labels beginning with ‘8’) are abbreviated; see Extended
Data Table 1 for complete alphanumeric RRIDs. Nondiabetic (ND) samples, grey; T2D samples, colored
according to sample type. (d-f) Pearson correlation between sample covariates and PCs using the DEseq
model. Colored bands next to row/column labels indicate whether variable is a donor trait (yellow), sam-
ple preparation variable (mint green), sequencingmetric (pink), quality assurance/quality control (QA/QC)
metric (blue), or latent variable or PC (purple). Culture time, duration of time (hours) between islet iso-
lation and cell dispersion/sorting; Cell qty, number of sorted cells from which RNA was isolated (β and α
cells only); RIN, RNA integrity number; Batch x, sequencing batch; TIN mean, mean transcript integrity
number; Insert size, median length of sequenced RNA fragments; GBC 5’/3’, ratio of gene body coverage at
5’ and 3’ end, describing reads distribution along a gene; QC’d reads, number of read pairs that pass initial
filters; unique reads, number of read pairs that map to genomic area covering exactly one gene; Introns,
reads mapping to intronic regions of genes; Avg GC, average GC content of all reads; CGD z-score, z-score
quantifying cumulative gene diversity of libraries from median based on Kolmogorov Smirnov test; ChrM,
reads mapping to MT chromosome; ChrY, reads mapping to Y chromosome; PCx, principal components;
Wx, RUV-seq latent variables. (g-i) Volcano plots illustrating differentially expressed genes between ND
and T2D β cells (g), α cells (h), and islets (i). Lines denote cutoffs for fold-change (±1.5) and significance
(<0.01); genes passing both thresholds are colored and select genes are labeled. (j-l) Enriched gene on-
tology terms (FDR<0.05) obtained from RNA Enrich were condensed using the RelSim function of Revigo
(similarity=0.5) and plotted in semantic space to emphasize relatedness. Dot size represents odds ratio and
color represents p-value. Select terms are labeled.
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with a 28-marker panel using co-detection by indexing (CODEX) (Figure 3.4a). This multiplexed

technique for fluorescence-based imaging of large tissue sections without tissue destruction pro-

vided simultaneous visualization of multiple tissue compartments as well as spatially resolved

cellular phenotypes defined by combined expression/exclusion of multiple markers (Figure 3.5a-

b). Images are available in Pancreatlas (https://pancreatlas.org/datasets/904/explore) for reader

exploration.

Because changes in endocrine cell number or ratio could explain the reduced insulin secre-

tion in T2D islets, we first evaluated β, α, and δ cell populations. Multiple analyses across pan-

creas head, body, and tail, including evaluation of islet cell area and islet cell count within entire

cross-sections, revealed that β and α cell mass in short-duration T2D were similar to controls

(Figure 3.4b and Figure 3.5c-h), supporting the similar insulin content in the two groups of islets.

We additionally assessed cell death and found apoptotic and/or necrotic cells to be exceedingly

rare in both ND and T2D islets (data not shown). Donor-to-donor variability in β and α cell ratio

was notable underscoring the challenge in working with heterogeneous human tissues. CODEX

permitted simultaneous assessment of rarer γ and ε cell populations as well as identification of

cells positive for chromogranin A (CHGA) but negative for all hormones, previously suggested

to define “dedifferentiated” β cells [6, 47]. These cells were rare but present in both ND and T2D

Figure 3.4 (following page): Integrated tissue analysis reveals no change to endocrine cell mass
or number, but alteration in intraislet capillaries, T cells, and cellular neighborhoods in short-
duration T2D cohort. (a) Schematic illustrating parallel analysis by traditional andmultiplexed immuno-
histochemistry (IHC). (b) Mass of β, α, and δ cells in ND and T2D donors. (c) Representative images of
islets from co-detection by indexing (CODEX) imaging; insets show γ and ε cells. (d) Cross-sectional area
of endocrine cell types. (e) Relative proportions of islet endocrine, vascular, stromal, and immune cells. (f)
Enrichment of vascular-related ontology terms in T2D transcriptome. (g) Representative images of islet
capillaries, pericytes, and extracellular matrix (ECM). (h) Islet capillary density and area per capillary. (i)
Spatial analysis of endocrine cells and islet capillaries. (j) Enrichment of immune-related ontology terms in
T2D transcriptome. (k-l) Islet immune cell phenotypes and composition. (m-n) Islet macrophage (m) and
T cell (n) abundance. (o) High-dimensional component analysis of islet cell composition per islet (n=255
ND, n=426 T2D). (p-s) Cellular neighborhood assignment (p) and corresponding cell composition and cor-
relation changes in T2D vs. ND islets (q-s). Traditional IHC data: panels b, h, m; CODEX data: panels c-e,
g, i, k-l, n-s. Symbols in bar graphs represent donors; * p<0.05 (two-tailed t-test, ND vs. T2D). RNA data:
panels f, j; * FDR<0.05.
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at similar proportions (Figure 3.4c-d and Figure 3.5i). Evidence of amyloid deposits, the abnormal

buildup of β cell-produced islet amyloid polypeptide (IAPP) that manifests in T2D, was detectable

in 75% of donors in this cohort but with variable prevalence and did not correlate to endocrine cell

abundance or area (Figure 3.6a-b). Thus, tissue analysis suggests that changes in endocrine cell

numbers, including β cell mass, are not a substantial component of short-duration T2D. Instead,

these data point to reduction in β cell function as the predominant feature of this disease stage.

3.3.5 Reduced capillary size, increased T cell populations, and altered

cellular neighborhoods highlight alterations in T2D isletmicroen-

vironment

Adequate islet vascularization and blood flow are critical for sensing and delivery of hormones

to systemic circulation, so we next investigated islet capillary endothelial cells (ECs), the most

abundant non-endocrine islet cell population (Figure 3.4e and Figure 3.5j). Pathway analysis

from RNA-seq highlighted enrichment in T2D samples for processes controlling blood vessel size,

particularly in α cells, as well as regulation of growth factors critical to islet capillarymaintenance

(Figure 3.4f and Figure 3.6c). Morphometric analysis demonstrated that capillary size, but not

density, was reduced in T2D islets (Figure 3.4h-i), resulting in a greater distance of endocrine

cells to the nearest capillary in T2D islets (Figure 3.4i). Interestingly, α and δ cells were closer to

capillaries than β cells in both ND and T2D islets (Figure 3.6d), aligning with α cells expressing

more angiogenic ligands and receptors than β cells (Figure 3.6e). Phenotypic markers CD34, a

cell adhesion molecule that is prevalent in progenitor capillary ECs [87], and HLA-DR, a major

histocompatibility class II (MHCII) receptor, were unchanged in T2D ECs (Figure 3.6f).

In addition to vasculature-related processes, transcriptional profiling also revealed enrichment

in T2D β cells and islets for cytokine signaling and immune cell recruitment pathways (Figure 3.4j

and Figure 3.6g). Macrophages, the largest population of intraislet immune cells, did not differ

between ND and T2D based on either abundance or phenotypic classification by proinflamma-
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tory (HLA-DR+) or anti-inflammatory (CD163 and/or CD206+) markers (Figure 3.4k-m and Fig-

ure 3.6h). T cells were rarer in the islet than macrophages but elevated in T2D islets across CD4+

(helper), CD8+ (cytotoxic), and CD4- CD8- (double negative) phenotypes (Figure 3.4n and Fig-

ure 3.6i). HLA-DR+ T cells, previously observed in T2D islets [281], were not increased, though

they were more abundant in a subset of T2D donors (Figure 3.6j). High dimensional data analysis

using UniformManifold Approximation and Projection (UMAP) of all identified cell types within

individually annotated islets revealed a high degree of overlap between islets from ND and T2D

donors, emphasizing that although there are subtle differences, the overall islet composition is

similar (Figure 3.4o).

Because analyses of islet composition did not consider the spatial organization of islet cells,

we next applied two neighborhood analyses in parallel to annotated islet regions in an effort to

identify differential cell architecture. A community detection algorithm tailored to islet cell fre-

quencies, termed CF-IDF, categorized six different cellular neighborhoods (CNs), clusters of cells

with distinct cell type compositions that were defined by the most enriched cell type (CN0-CN5;

Figure 3.4p). A modified k-means clustering algorithm previously developed for CODEX data

corroborated CN classifications (Figure 3.6k), and both approaches found similar CN distribution

between ND and T2D islets (Figure 3.6l). ECs and pericytes were depleted in β CNs (CN1) of T2D

islets (Figure 3.4q and Figure 3.6m), consistent with our findings of decreased proximity between

β cells and ECs in T2D. In contrast, T2D β CNs had higher β cell enrichment than ND (Figure 3.4q).

Figure 3.5 (following page): Parallel approaches of multiplexed imaging and high-throughput
traditional immunohistochemistry enable profiling of endocrine cells in addition to intraislet
vascular and immune cells (related to Figure 3.4). Markers, cell populations, and specific phenotypes
distinguished by the CODEX antibody panel. (c-h) Cross-sectional area (c-d) and cytonuclear quantifica-
tion (f-h) of β cells (CPEP; green), α cells (GCG; red), and δ cells (SST; blue). Individual donor data shown
in stacked bar graphs (c, f); bar graphs (d-e, g-h) show mean + SEM, one symbol per donor. Stratification
by pancreas region (d, g) includes horizontal lines (solid, ND; dotted, T2D) for mean values from combined
analysis (‘Total’). (e) Pancreas weight measured during organ procurement; used to calculate endocrine
cell mass in Figure 3.4b. (i) Representative images depicting rare cells positive for chromogranin A (CHGA;
red) but negative for all hormones (green). Scale bars, 50 μm; arrowheads denote CHGA+ hormone– cells.
(j) Abundance of endocrine and non-endocrine cells in ND and T2D islets; one vertical bar per islet and
colored by cell type. Islets are grouped by donor and ordered from largest (highest total cell number) to
smallest. See also Figure 3.4e.
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We also asked whether cell type frequencies correlated between CNs, i.e., if there was evidence

for connectivity between spatially distinct regions (Figure 3.4r). Vascular cell frequencies were

correlated between more CNs in T2D compared to ND islets, while T cell frequencies were specif-

ically correlated between EC and α CNs as well as β and macrophage CNs in T2D (Figure 3.4s and

Figure 3.6n), congruent with findings by islet RNA-seq that EC-specific and immune signals were

upregulated in T2D. Together, these results demonstrate modest disruptions of islet organization

by vascular and immune cells in early-stage T2D.

3.3.6 Co-expression network analyses identified gene modules related

to donor and islet traits and revealed disrupted metabolism and

cilia homeostasis in T2D

To understand the key gene networks that were contributing to β cell dysfunction in short-

duration T2D, we performed weighted gene co-expression network analysis (WGCNA) on α cell

(Figure 3.8d-f), β cell(Figure 3.8a-c), and islet samples (Figure 3.8g-i). This approach created mod-

Figure 3.6 (following page): Integration of multiplexed imaging and transcriptional profiling
highlight disrupted capillaries and immune cells within T2D islets (related to Figure 3.4). (a)
Amyloid prevalence (% total islets with amyloid, averaged over multiple regions); * p<0.05 (two-tailed
t-test). (b) Correlation of amyloid prevalence with β, α, and δ cell populations as percentage of total
endocrine cell number or cross-sectional area; one symbol per donor with 95% confidence interval of linear
regression (shading). No slopes were significantly nonzero at p<0.01 threshold. (c) Metascape visualization
of select terms enriched for differentially expressed genes in T2D α cells (left) and islets (right). (d) Average
distance of each endocrine cell type to nearest capillary; one symbol per donor (bothND andT2D); asterisks
signify results of one-way ANOVA with Tukey’s multiple comparisons test (** p<0.01; * p<0.05). (e) Gene
expression fold-change of selected vascular and neuronal ligands and their receptors in β cells, α cells,
and islets; • FDR<0.05; * FDR<0.01. (f) Phenotypes of endothelial cells (CD31; red) defined by single or
dual positivity for HLA-DR (green) and CD34 (blue). Examples of each combination (HLA-DR+ CD34–,
CD34+ HLA-DR–, HLA-DR+ CD34+, and HLA-DR– CD34–) are shown to right. (g) Magnification of select
clusters depicted in Figure 3.1r (terms enriched across β, α, and islet samples). (h-i) Macrophages (IBA1+)
and T cells (CD3+) phenotyped by various cell surface markers; insets show additional cells to illustrate
phenotypic variety. Scale bars, 50 μm. (j) Expression of HLA-DR in CD4+ and CD8+ T cell populations.
(k-l) Cellular neighborhood assignment and corresponding cell composition changes in T2D vs. ND islets.
Panels k and m-n show results from the k-means method and panel l compares these results to CF-IDF
method shown in Figure 3.4o-s. Traditional IHC data: panels a-b; CODEX data: panels d, f, h-n. RNA data:
panels c, e, g.
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ules (“eigengenes”) of up to 2,000 genes each, labeled by sample type and numbered consecu-

tively (β cells, modules β00-β48; α cells, α00-α54; islets, i00-i67). Collapsing the expression pat-

terns across >14,000 genes into a smaller number of modules reduced gene-level multiple testing

burden and enabled association of transcriptomic profiles with sample features including donor

traits, islet functional parameters from the same donors defined by dynamic islet perifusion, and

enrichment of open chromatin peaks to overlap GWAS variants (β cells: Figure 3.7a-e; α cells:

Figure 3.9a-e; islets: Figure 3.9f-i). Modules with significant correlations were then queried, based

on their member genes, for ontology terms to determine biological processes related to signifi-

cant associations. Noteworthy observations are highlighted below, and results are available for

further exploration online (https://theparkerlab.shinyapps.io/Islet-RNAseq-WGCNA/).

Several β cell modules were significantly (FDR < 5%) associated with whole-body glucose

homeostasis (HbA1c), and some of these, such as β05 and β07, were also significantly enriched

for genes differentially expressed in T2D β cells (Figure 3.7b). Both β05 and β07 contained genes

related to carbohydrate, lipid, and amino acid metabolism (Figure 3.7a,e), with β07 significantly

correlating with KCl-mediated insulin secretion (r=0.49, p=0.027; Figure 3.7c). Modules signifi-

cantly positively correlated with glucose-stimulated insulin secretion (GSIS) included β01, β03,

and β48, all enriched for metabolism-related processes, while β06 and β08, both enriched for

cilium movement and motility, were significantly negatively correlated to GSIS (Figure 3.7c,e).

Figure 3.7 (following page): Weighted Gene Co-expression Network Analysis (WGCNA) distin-
guishes β cell gene modules associated with donor and islet traits as well as those enriched in
GWAS loci and identifies disruption in cilia processes as a conserved feature across sample types.
(a) Relative enrichment of β cell module eigengenes for curated gene lists, based on genes present in each
module. (b) Module correlation to donor characteristics, enrichment of differentially expressed (DE) genes,
and total number of genes per module. • p<0.05; * p<0.01. Modules of interest highlighted (green). (c)
Module correlation to β cell function described in Figure 3.1; significant associations highlighted (yellow).
G+IBMX, 16.7 mM glucose with 100 μM isobutylmethylxanthine; 16.7G, 16.7 mM glucose; 16.7G 1°, first
phase; 16.7G 2°, second phase; 1.7G+Epi, 1.7 mM glucose and 1 μM epinephrine; KCl, 20 mM potassium
chloride. (d) Module enrichment for GWAS traits. FIns, fasting insulin; FGlu, fasting glucose. * FDR<0.01.
(e) Enrichment of select gene ontology terms in β cell modules with notable correlations and/or enrich-
ment. (f) Cilia-related genes with fold change ≥ |1.5| in both α and β cells in T2D. (g-h) Visualization by
immunohistochemistry of cilia (ARL13B; red) and quantification of abundance, density, and size in ND
and T2D tissue. * p<0.05 (two-tailed t-test).
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Importantly, aligning functional correlations with enrichment for GWAS loci (Figure 3.7d) en-

abled of modules that are more likely to be disease-causing (e.g., β01, β03) as opposed to those

without GWAS enrichment (e.g., β48) that may instead represent disease-induced transcriptional

changes. Thus, this approach allows linking of transcriptional profiles to islet physiological pa-

rameters and facilitates prioritization of signatures based on T2D genetic risk.

Though α cell modules showed weaker correlations to donor and functional traits than did

β cells, several modules were significantly enriched for cilia-related genes and α08 was also en-

riched for α cell genes differentially expressed in T2D α cells (Figure 3.9a-b). Both α08 and α16

significantly inversely correlatedwith epinephrine-mediated glucagon secretion andwere closely

related across functional parameters (Figure 3.9c), with α08 showing significant enrichment for

T2D GWAS variants (Figure 3.9d). In addition to genes enriched for cilia processes, α08 also in-

cluded genes related to cytokine signaling and immune response (Figure 3.9e). Similarly, several

islet modules showed notable enrichment for immune- andmatrisome-related genes (Figure 3.9f);

of these, i25 correlated positively with T2D status and inversely with basal insulin secretion and

GSIS, while i26 correlated inversely with KCl-mediated insulin secretion (Figure 3.9g-h). Genes

in both modules corresponded to cell-cell communication, including response to stimulus (i26)

and leukocyte activation and migration (i25) (Figure 3.9i). Overall, these patterns suggest that β

cell function may be influenced by α and other non-endocrine cells residing within the islet.

Interestingly, cilia-related processes not only defined key functionally correlated modules in

every sample type, but they were also some of the most enriched pathways across all samples

based on differential gene expression (Figure 3.9j). Further β06, β08, and α08 were enriched for

T2D and related trait GWAS loci, suggesting a potential casual role (Figure 3.7d and Figure 3.9d).

We compared fold change of validated cilia-related genes [61] and determined that the majority

were expressed at higher levels in T2D compared to ND for both β and α cells (Figure 3.7f).

Figure 3.8 (following page): Quality assessment ofWeighted Gene Co- Expression Network Anal-
ysis (related to Figure 3.7). Analyses for β cell (a-c), α cell (d-f), and islet (g-i) datasets were conducted
in parallel. Metrics are shown for batch correction and network parameter selection (a, d, g), module size
and assignment (b, e, h), and module relatedness (c, f, i).
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To investigate whether these changes translated to cellular alterations, we stained tissue sections

from the same donors with cilia marker ARL13B (Figure 3.7g). Total cilia area within the islet was

greater in T2D tissue, attributable to a higher cilia density with unchanged cilia size (Figure 3.7h),

consistent with elevations in cilia transcripts. Thus, integration of functional, transcriptional,

genetic, and tissue-based analyses highlights cilia-related processes as playing a key role in early

T2D.

3.3.7 β cell hub gene RFX6 is reduced in T2D and controls glucose-

stimulated insulin secretion

The network approach of WGCNA enables identification of “hub” genes that are highly con-

nected, i.e., whose expression highly correlates with many other genes, both within and across

modules, making it a powerful analysis to understand central transcriptional regulators that may

be driving β cell dysfunction in short-duration T2D (Figure 3.10a). Of the highly connected β

cell genes, RFX6 stood out as a key islet-enriched transcription factor that has been linked to

both monogenic and polygenic forms of diabetes [203, 241, 264] and thus is in prime position to

exert disproportionate influence on the β cell transcriptional state. RFX6 was more highly con-

nected than other islet-enriched transcription factors specifically in β cells (Figure 3.10a-b and

Figure 3.11a-d) and was one of the most reduced islet-enriched transcription factors at the tran-

Figure 3.9 (following page): WGCNA emphasizes α and islet cell gene modules associated with
donor and islet traits as well as those enriched in GWAS loci (related to Figure 3.7). Module
eigengenes for α cells (a-e) and islets (f-i) shown in parallel to β cells (Figure 3.7 a-e). (a, f) Modules clustered
by similarity and showing relative enrichment of curated gene lists. (b, g) Module correlation to donor
characteristics, enrichment of differentially expressed (DE) genes, and total number of genes per module.
• p<0.05; * p<0.01. Modules of interest highlighted (b: red, g: blue). (c, h) Module correlation to α and β cell
function (Figure 3.1); significant associations highlighted (yellow). For islets (g), modules were correlated
to both insulin and glucagon secretion. G+IBMX, 16.7 mM glucose with 100 μM isobutylmethylxanthine;
16.7G, 16.7 mM glucose; 16.7G 1º, first phase; 16.7G 2º, second phase; 1.7G+Epi, 1.7 mM glucose and 1μM
epinephrine; KCl, 20mMpotassium chloride. (d) Module enrichment for GWAS traits. FIns, fasting insulin;
FGlu, fasting glucose. * FDR<0.01. (e, i) Enrichment of select gene ontology terms in β cell modules with
notable correlations and/or enrichment. (j) Magnification of select clusters depicted in Figure 3.1r (terms
enriched across β, α, and islet samples).
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script level in T2D β cells (Figure 3.10c). Importantly, RFX6 is a member of module β01, which had

the strongest positive association with high glucose-stimulated insulin secretion and was among

the most significantly enriched for both GWAS variants and RFX binding motifs (Figure 3.7c-d

and Figure 3.10d). Immunohistochemistry analysis revealed a reduction in number of β cells ex-

pressing RFX6 in T2D (Figure 3.10e-f). Together, these data support RFX6 as a critical hub gene

in β cells that may contribute to the functional deficits observed in short-duration T2D.

To determine the role of RFX6 in adult human β cell function in an islet-like context, we used

shRNA knockdown in a primary human pseudoislet system that allows for functional and tran-

scriptomic assessment (Figure 3.10g). Scramble shRNA (‘control’) and RFX6 shRNA (‘shRFX6’)

pseudoislets exhibited similar size and morphology, and preferential β cell transduction resulted

in β cell RFX6 knockdown that did not change β or α cell proportion (Figure 3.10h-i and Fig-

ure 3.11e-g), suggesting that acute (6-day) reduction of RFX6 expression does not lead to β cell

loss. Following RFX6 knockdown, dynamic insulin secretion in the presence of three secreta-

gogues (high glucose, high glucose + IBMX, and KCl) was significantly blunted, similar to that

seen in T2D islets (Figure 3.10j-k). Normalization to insulin content, which was greater in shRFX6

pseudoislets, made this secretory response evenmore prominent (Figure 3.11h-j). In sum, not only

is RFX6 decreased in T2D β cells, but the results of targeted knockdown are consistent with the

RFX6-containing module β01 association with glucose-stimulated insulin secretion (Figure 3.7d)

and strongly implicate RFX6 as a major regulator of stimulated insulin secretion.

Figure 3.10 (following page): RFX6, a central regulator of transcript changes in short-duration
T2D, is reduced in T2D β cells and controls stimulated insulin secretion. (a-b) Overall connectivity
(a) and cross- and within-module connectivity (b) of individual genes based on β cell WGCNA. Select genes
with high connectivity scores (a) and select transcription factors (b) are labeled. (c) RNA fold change in
T2D β cells of transcription factors highlighted in panel b. Vertical lines denote fold change = |1.5|. (d)
Enrichment of transcription factor motifs in β cell modules. (e-f) Expression of RFX6 in β and α cells of
ND and T2D donors. (g) Schematic of adenoviral shRNA delivery and formation of pseudoislets. (h) Mor-
phology and immunofluorescent staining of transduced pseudoislets. (i) Relative RFX6 mRNA expression
in β cells treated with scramble or RFX6 shRNA. (j) Pseudoislet insulin secretion assessed by perifusion;
n=6 donors per group. (k) Area under the curve (AUC) for secretory response to each of the stimuli shown
in panel j. Panels f, i, k: * p<0.05, ** p<0.01, *** p<0.001 (two-tailed t-test).
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3.3.8 RFX6 knockdown alters the β cell chromatin and transcriptional

landscape and downregulates secretory vesicle components

To determine the molecular mechanism by which RFX6 knockdown impacted insulin secre-

tion, shRFX6 and control pseudoislets (n=7 matched donors) were multiplexed using a blocked

study design and processed for single nucleus multiome profiling (Figure 3.12a). Single nu-

cleus (sn)RNA and snATAC reads were collected and filtered to yield 15,825 (RNA) and 5,706

(ATAC) high-quality nuclei for downstream analysis (Figure 3.13a). Islet cell types were re-

solved by clustering (Figure 3.12b-c and Figure 3.13b) where we found representation of all

major cell types across all donors (Figure 3.13c) and equal distribution between shRFX6 and

control constructs (Figure 3.12d). Consistent with the previously observed preferential aden-

oviral targeting of β relative to α cells, fluorescent reporter expression was much higher in β

cell nuclei than in α cell nuclei (Figure 3.12e). Data are available via the UCSC Cell Browser

at https://theparkerlab.med.umich.edu/data/public/cellbrowser/?ds=Pseudoislet10XMultiome for

further exploration.

Supporting the role of RFX6 as a major β cell regulator, 13% of total detected genes were dif-

ferentially expressed in β cell nuclei compared with <3% in other cell types (Figure 3.12f). Nuclear

RFX6was not among those reduced, consistent with shRNA silencing occurring in the cytoplasm.

Differentially expressed genes included those encoding cytoskeletal and scaffold/adaptor pro-

teins (11% of those classified), membrane traffic proteins (4%), and gene-specific transcriptional

regulator or chromatin/chromatin-binding or -regulatory proteins (13%) (Figure 3.12g). Upreg-

Figure 3.11 (following page): Connectivity of RFX6 by WGCNA is β cell-specific and RFX6 reduc-
tion impairs insulin secretion (related to Figure 3.10). (a-d) Connectivity of genes in α cell (a-b) and
islet (c-d) modules, in parallel to data for β cell modules in Figure 3.10a-b. (a, c) Overall connectivity of
individual genes; select genes with high connectivity scores are labeled. (b, d) Cross- and within-module
connectivity; select transcription factors are labeled. (e-f) Immunofluorescent staining of pseudoislets em-
bedded in type I collagen. (e) Transduced α cells marked by mCherry; see Figure 3.10h for β cells. (f)
Distribution of β cells (CPEP; green) and α cells (GCG; blue). (g)Quantification of % β and % α cells in con-
trol (scramble) and shRFX6 pseudoislets. (h) Insulin content in control and shRFX6 pseudoislets (** p<0.01,
two-tailed t-test). (i-j) Dynamic insulin secretion and metrics equivalent to Figure 3.10j-k but normalized
by total insulin content.
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ulated genes were enriched for actin filament-based movement and synaptic signaling, while

downregulated genes were enriched for membrane trafficking, autophagy, and ciliary pathways

(Figure 3.12h-i). To investigate overlap in differentially expressed genes between shRFX6 β cell

nuclei and sorted T2D β cells, we compared the top 1,000 most significantly differential genes in

each group and observed common pathway enrichment related to microtubule cytoskeleton or-

ganization, ion transport, and regulation of protein secretion (Figure 3.12j). Also of note, shRFX6

β cell nuclei differentially expressed genes were overrepresented in WGCNA module β22 (Fig-

ure 3.13d) that was enriched for T2D GWAS variants and RFX binding motifs. Genes in this

module corresponded to cellular membrane and vesicle components, mirroring pathways dys-

regulated in shRFX6 β cell nuclei (Figure 3.13e) and further implicating exocytosis as a target of

RFX6-mediated dysfunction in T2D β cells.

We next sought to identify the landscape of chromatin alterations in shRFX6 β cells and ob-

served global changes compared to matched controls (Figure 3.13f-g). We took n=2,000-10,000

peaks with smallest p-values in either direction (‘top RFX6-sensitive peaks’) for use in down-

stream analyses. These peaks were significantly enriched for motifs corresponding to the known

chromatin modifier activator protein 1 (AP1), as well as RFX6 and related family member motifs

(Figure 3.12k-l and Figure 3.13h-i). CCCTC-binding factor (CTCF) and RFX motif footprint sig-

Figure 3.12 (following page): RFX6 controls glucose-stimulated insulin secretion in human β
cells through chromatin modifications and vesicle trafficking pathways. (a) Schematic depicting
randomized study design to mitigate batch effects in single nuclear (sn) RNA- and ATAC-sequencing of
scramble shRNA (control) and RFX6 shRNA (shRFX6) pseudoislets. (b) Cell type assignment by clustering
on RNA. (c). Pseudobulk ATAC signal at marker genes. (d) Post-QC nuclei counts from control and shRFX6
pseudoislets. (e) Abundance of fluorescent marker gene expression (mCherry/mKate2) in α and β cell
nuclei. (f) Proportion of differentially expressed (DE) genes per cell type. (g) Classification of protein-
coding DE genes in shRFX6 β cells by PANTHER. (h) Pathway enrichment for DE genes (FDR<0.01); second
two columns separate genes up- or downregulated in shRFX6. (i) DE genes in Reactome pathway R-HSA-
5653656. (j) Overlap of 1,000 most significant DE genes in shRFX6 vs. control β cell nuclei (blue) and
T2D vs. ND sorted β cells (red), analyzed by Metascape. Circos plot illustrates overlap at the level of
genes (purple) or ontology terms (grey). Network displays a subset of enriched terms, where edges denote
term similarity and node colors represent contribution of each gene list. (k-l) Motif enrichment for top
5,000 RFX6-sensitive up-(k) and downregulated (l) ATAC peaks in shRFX6 β cell nuclei. Right panels show
enlarged views of plots on left. (m-n) Odds ratio of T2D GWAS enrichment (m) and model estimate from
conditional analysis (n) of RFX6-sensitive peaks.
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natures like those previously observed in bulk islet ATAC data15 confirmed the high quality of

the snATAC data (Figure 3.13j). Further, top RFX6-sensitive peaks were significantly enriched

to occur near differentially expressed genes (Figure 3.13k), indicating concordance between the

snATAC and snRNA modalities. We and others have shown that β cell ATAC peaks are enriched

for T2D GWAS variants5,6, and indeed, top RFX6-sensitive peaks were also significantly enriched

to overlap with these variants (Figure 3.12m and Figure 3.13l). Importantly, enrichment remained

significant after conditional analysis controlled for remaining (not RFX6-sensitive) peaks (Fig-

ure 3.12n and Figure 3.13m), which emphasizes the importance of β cell RFX6-sensitive peaks

in the genetic predisposition to T2D. Overall, these results show that knockdown of RFX6 in β

cells results in widespread transcriptional and chromatin changes that are associated with down-

regulated vesicle transport and coordinated disruption of regulatory elements that overlap T2D

GWAS variants, consistent with the role of RFX6 as a master regulator of β cell identity.

Figure 3.13 (following page): Application of dual RNA and ATAC-sequencing to single nuclei
from RFX6 shRNA pseudoislets (related to Figure 3.12). (a) Quality control of nuclei for RNA and
ATAC modalities. UMI, unique molecular identifier; TSS, transcription start site. (b) Expression of marker
genes in cell type clusters. (c) Per-donor cell type counts. See also Figure 3.12b-c. (d) Enrichment of
shRFX6 β cell nuclei differentially expressed genes within each β cell module derived from transcriptomes
of sorted ND and T2D β cells (see Figure 3.7a-d). Right panel: cell component (cmpt) terms enriched for
genes in β module 22. Memb., membrane. (e) Membership enrichment for exocytosis (exoc.) and insulin
secretory pathways based on shRFX6 β cell nuclei differentially expressed (p<0.01) genes. All pathways
are GO terms unless otherwise indicated. Neg., negative; pos., reg., regulation. (f) Per-cluster ATAC peaks
(exact number listed in parentheses next to cell type). (g) PCA of pseudobulk β cell ATAC peak signal,
each marker representing nuclei from a single donor/construct combination. (h-i) Motif enrichment for
top 2,000 (h) or 10,000 (i) RFX6-sensitive up- and downregulated ATAC peaks in shRFX6 β cell nuclei.
Motifs with highest significance are labeled in top panels; significant RFX motifs (or the single RFX motif
closest to significance, in the case that no RFX motifs reach significance) are labeled in bottom panels. (j)
ATAC footprints for CTCF_known2 and RFX2_4 motifs in β cell ATAC peaks. Light lines represent per-
donor footprints; bold lines represent the average across donors. (k) Enrichment of top RFX6-sensitive
up- and downregulated ATAC peaks (n=2,000, 5,000, or 10,000) in shRFX6 β cell nuclei near shRFX6 β cell
differentially expressed genes. (l-m) Odds ratio of T2D GWAS enrichment (l) and model estimate from
conditional analysis (m) of top 2,000 or 10,000 RFX6-sensitive peaks.
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3.4 Discussion

The pancreatic β cell, a major focus in diabetes, exists within the multicellular pancreatic islet

mini-organ, where interactions between various cell types are increasingly recognized. In T2D,

like in other chronic, complex, multi-organ diseases, teasing apart the causes, correlates, and con-

sequences of cellular and tissue dysfunction is challenging due to limited availability of primary

tissue, constraints of sample processing at different disease stages, and in many cases, removal

of cells from their native environment. To address these challenges and identify early disease-

driving events, we applied a comprehensive, multimodal, integrated approach to isolated islets

and pancreatic tissue from a unique cohort of short-duration T2D and control donors that in-

cluded analyses of islet physiology, transcriptome, and pancreas tissue cellular architecture. Fur-

thermore, we integrated donor and islet functional traits with gene network analysis and GWAS

to understand central transcriptional regulators driving β cell dysfunction in short-duration T2D.

Co-registration of multimodal data and clinical information yielded several important findings

(Figure 4.1a): (1) impaired β cell function, a hallmark of early-stage T2D, persisted ex vivo and in

nondiabetic environments; in contrast, α cell function was not changed; (2) islet endocrine com-

position was unchanged though there were modest alterations to the islet microenvironment in

endothelial and immune cells; (3) transcriptional network analysis proportioned genetic risk into

gene modules with specific functional properties, and (4) RFX6 emerged as a highly connected

hub transcription factor that was reduced in T2D β cells and associated with reduced glucose-

stimulated insulin secretion. We validated a critical role for RFX6 by performing dynamic func-

tional analyses and integrated snRNA and snATAC-seq on primary human pseudoislets with

knockdown of RFX6 in β cells. Reduction of RFX6 led to reduced insulin secretion defined by

transcriptional dysregulation of vesicle trafficking, exocytosis, and ion transport pathways that

was mediated by chromatin architectural changes overlapping with T2D GWAS variants (Fig-

ure 4.1b). Thus, our integrated, multimodal studies identify β cell dysfunction that results from

cell-intrinsic defects, including an RFX6-mediated, T2DGWAS-enriched transcriptional network,

as a key event in early T2D pathogenesis.
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3.4.1 Dysfunction of β cells, and not β cell loss, is primary defect in

early-stage T2D

This study demonstrates β cell functional defects ex vivo – which persist in culture and following

transplantation into a normoglycemic environment – but no change to insulin content or β cell

mass. The relative contributions of impaired β cell function and/or reduced β cell mass have

long been debated in T2D [18, 127, 178]. Though postmortem studies suggest mild β cell loss

[33, 216, 229, 230], most studies mixed short- and long-term disease duration together and noted

that defects were more severe with longer duration and/or insulin treatment. Recent studies of

metabolically profiled donors suggested that β cell loss is not prominent in early T2D [50, 276].

By integrating studies of both pancreatic tissue and isolated islets from the same donors, our

data indicate that β cell loss is not a major component in disease pathogenesis at early-stage

T2D. Further, the continued dysfunction of islets in a transplant setting also underscores the

persistence of initial β cell defect. In sum, this study illustrates that β cell dysfunction occurs

early in T2D and that prevention and/or rapid intervention may be critical to preserve β cell

function.

3.4.2 Changes to islet microenvironment emphasize additional disease

processes that may becomemore prominent in later disease stages

Our transcriptional analyses in isolated islets identified altered vascular and immune signaling as

features in sorted α and β cells as well as in whole islets. Although isolated islets do not provide

a physiologic context, particularly for endothelial cells without their connection to systemic cir-

culation, similar transcriptional changes were found in laser capture microdissected T2D islets

[276]. Further, our comprehensive tissue analyses of the same donors allowed in situ charac-

terization of non-endocrine islet cell abundance, phenotype, and localization. We demonstrated

that T2D islets had subtle reductions in islet capillary size, increased intraislet T cells, and altered

communication between cellular neighborhoods, but overall the microenvironment was largely
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similar to ND islets. While most donors showed some evidence of amyloid deposits as a unique

feature of the T2D islet microenvironment, only aminority of islets demonstrated detectable amy-

loid at this stage of disease. Together, these observations are unlikely to explain the degree of β

cell dysfunction in this cohort but, given that they are present without any associated changes

in endocrine cell composition, may represent early consequences of β cell dysfunction or may

act to exacerbate initial β cell-intrinsic defects. Indeed, inflammatory signals and other trophic

factors have been shown to influence β cell function, especially in the presence of amyloid, and

may become a more prominent feature of the disease at later stages [77, 171, 181, 275]. Further

study is needed to determine whether changes to the microenvironment are truly an independent

disease process or whether there is bidirectional signaling between dysfunctional β cells, α cells,

and/or other islet cell types.

3.4.3 Integrated co-expression network analysis reveals gene modules

of genetic risk in T2D

The transcriptomic profiles of sorted α and β cells in addition to islets provided new insight into

cell-specific contributions to T2D pathogenesis. Co-expression network analysis and associa-

tion with GWAS variants and physiological parameters, similar to a recent approach [227], al-

lowed us to prioritize processes with physiological relevance that were more likely to be disease-

causing rather than disease-induced. For instance, both β01 (metabolism-enriched) and β06 (cilia-

enriched) modules are associated with T2D GWAS variants, indicating that regulatory circuitry

related to metabolism and cilia function may have causative roles in development of T2D. No-

tably, insulin secretion was positively correlated to β01, whose genes were decreased in T2D β

cells, but negatively correlated to β06, whose genes were increased in T2D β cells. These results

suggest that β01 genes enhance insulin secretion while β06 genes decrease it, thus one expects

that T2D risk alleles likely decrease β01 gene expression and activate β06 genes, both of which

would negatively influence β cell function. Future work directly testing key candidate genes from

this dataset, analogous to the studies of RFX6 described here, will be important to validate these
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processes and how they contribute to T2D pathogenesis.

Genetic risk for complex metabolic diseases such as T2D results from the combined influence

of many small-effect variants, with at-risk individuals likely having multiple parallel processes

affected. This concept has been described as a “palette” model [174], and our work aids in de-

ciphering components of the palette by proportioning genetic risk into cell-specific functional

modules derived from transcriptome signatures across early stages of disease. Thus, this opens

the opportunity to assess downstream consequences of an individual’s innate genetic risk by

identifying specific molecular and functional processes that would be most affected and hope-

fully allowing for precise targeting of those to achieve personalized medicine in diabetes.

3.4.4 RFX6 plays a central role in dysregulation of β cell function early

in T2D

By identifying an RFX6 regulatory network that strongly correlates with insulin secretion and

T2D genetic risk, this study provides new insight into previous work which has linked RFX6 to

both monogenic and polygenic forms of diabetes [203, 241, 264]. Our results suggest that RFX6

exerts a disproportionate transcriptional influence on β cell state and that its dysregulation is

a key molecular event in early T2D pathogenesis. We pursued this finding by directly testing

the role of RFX6 in pseudoislets and demonstrated a clear function for RFX6 in governing stim-

ulated insulin secretion in primary human β cells. Previous studies with direct perturbation of

RFX6 in adult β cells, performed in cell lines and mouse models, highlighted downstream effects

on Ca2+ and KATP channels [41, 205]. Our work confirms defective ion transport processes but

identifies vesicle trafficking and exocytosis pathways as major drivers of defective insulin secre-

tion in primary human β cells with impaired release likely responsible for the buildup of insulin

content. Additionally, we show that these transcriptional changes are mediated by changes in

β cell chromatin regions significantly overlapping with T2D GWAS loci, emphasizing the cen-

tral role of RFX6 in mediating genetic risk to functional defects that define early T2D. Further,

cilia-related genes were also significantly dysregulated following RFX6 reduction, in line with
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evidence that the RFX family of transcription factors control ciliogenesis [46, 204]. Given their

role in environment sensing, cell-to-cell communication, and signal transduction, cilia represent

a potential link between β cell-intrinsic, RFX6-mediated dysregulation and changes within the

islet microenvironment seen in early T2D and warrant future study.

This work raises important questions about what factors or events initially dysregulate RFX6

to start this cascade. Given the coordinating role RFX6 plays in islet cell development35, it may

be that early defects driven by RFX6 dysfunction only become apparent after superimposed en-

vironmental, nutritional, and/or age-related stressors. Alternatively, the strong enrichment of

T2D GWAS variants in β01 (the RFX6-containing module) and position of RFX6 as a hub gene

may point to cumulative genetic effects compounding over time in an irreversible cascade that

disrupts β cell homeostasis. Thus, precisely what underlies the initial dysregulation of RFX6, and

whether it can be targeted to prevent or reverse early molecular defects in the β cell, should be

an active area of investigation.

3.5 Materials and methods

3.5.1 Human subjects

Pancreata from nondiabetic (ND) (n=19) and T2D (n=20) donors were obtained through part-

nerships with the International Institute for Advancement of Medicine (IIAM), National Disease

Research Interchange (NDRI), and local organ procurement organizations. Pancreata were pro-

cessed in Pittsburgh by Dr. Rita Bottino for both islet isolation and histological analysis as pre-

viously described [15, 23, 57]. Additional ND human islet preparations (n=27) were obtained

through partnerships with the Integrated Islet Distribution Program (IIDP) and Alberta Diabetes

Institute (ADI) Isletcore and served as assay-specific controls or were used for pseudoislet stud-

ies. Deidentified medical histories provided both information for T2D staging as well as clinical

characteristics to correlate with generated data. The Vanderbilt University Institutional Review

Board declared that studies on de-identified human pancreatic specimens do not qualify as human
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subject research.

Some human islets used in this research study were provided by the ADI IsletCore at the

University of Alberta in Edmonton (http://www.bcell.org/adi-isletcore.html) with the assistance

of the Human Organ Procurement and Exchange (HOPE) program, Trillium Gift of Life Net-

work (TGLN), and other Canadian organ procurement organizations. Islet isolation was ap-

proved by the Human Research Ethics Board at the University of Alberta (Pro00013094). All

donors’ families gave informed consent for the use of pancreatic tissue in research. This study

also used data from the Organ Procurement and Transplantation Network (OPTN) that was in

part compiled from the Data Hub accessible to IIDP-affiliated investigators through IIDP portal

(https://iidp.coh.org/secure/isletavail). The OPTN data system includes data on all donors, wait-

listed candidates, and transplant recipients in the US, submitted by the members of the OPTN.

The Health Resources and Services Administration (HRSA), U.S. Department of Health and Hu-

man Services provides oversight to the activities of the OPTN contractor. The data reported here

have been supplied by UNOS as the contractor for the Organ Procurement and Transplantation

Network (OPTN). The interpretation and reporting of these data are the responsibility of the au-

thors and in no way should be seen as an official policy of or interpretation by the OPTN or the

U.S. Government.

3.5.2 Pancreas procurement and processing

Pancreata from ND and T2D donors were received within 18 hours from cross clamp and main-

tained in cold preservation solution on ice until processing, as described previously [23]. Pancreas

was then cleaned from connective tissue and fat, measured and weighed. Prior to islet isolation,

multiple cross-sectional slices of pancreas with 2-3 mm thickness were obtained from the head,

body and distal tail, further divided into quadrants, and processed into paraformaldehyde-fixed

cryosections as described previously [220]. Islet isolation was performed via ductal collagenase

infusion and purification by density gradient as described previously [15, 23], then shipped to

Vanderbilt for further analysis following shipping protocols developed by the IIDP. Islets were
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cultured in CMRL 1066 media (5.5 mM glucose, 10% FBS, 1% Pen/Strep, and 2 mM L-glutamine)

in 5% CO2 at 37℃ for 24–48 hours prior as reported in previous studies [21, 23, 58]. Pseudoislets

were cultured in Vanderbilt Pseudoislet media [269]. Limitations of tissue availability and pro-

cessing dictated that not all assays could be performed on each donor.

3.5.3 Assessment of native pancreatic islet and pseudoislet function by

macroperifusion

Function of islets from ND and T2D donors and pseudoislets were studied in a dynamic cell

perifusion system at a perifusate flow rate of 1 mL/min [132, 269]. The effluent was collected

at 3-minute intervals using an automatic fraction collector, then islets were retrieved and lysed

with acid-ethanol solution to extract. Insulin and/or glucagon concentrations in each perifusion

fraction, as well as total hormone content, were measured by radioimmunoassay (RIA) (human

insulin, RI-13K, Millipore; glucagon, GL-32K, Millipore), enzyme-linked immunosorbent assay

(ELISA) (Human insulin, 10-1132-01, Mercodia; glucagon, 10-1281-01, Mercodia), or Homoge-

neous Time Resolved Fluorescence (HTRF) assay (glucagon, 62CGLPEH, Cisbio). Area under

the curve (AUC) above baseline hormone release was calculated with the trapezoidal method in

GraphPad Prism 8.0 as previously described [269].

3.5.4 Human islet transplantation

Immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/Sz (NSG) [9] 10-12-week old male mice were main-

tained by Vanderbilt Division of Animal Care in group housing in sterile containers within a

pathogen-free barrier facility housed with a 12 hour light/12 hour dark cycle and access to free

water and standard rodent chow. All animal procedures were approved by the Vanderbilt Institu-

tional Animal Care and Use Committees. Between 1000-2000 islet equivalents per mouse (n=4-8

mice per islet preparation) were transplanted beneath the kidney capsule. After 6 weeks, mice

were fasted for 6 hours and then injected with glucose + arginine (2g/kg body weight) intraperi-
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toneally as previously described [21, 23, 58, 59]. Blood samples were obtained before (0’) and

after (15’) injection and human-specific insulin was analyzed by ELISA (Alpco, 80-ISNHU-E01.1)

or radioimmunoassay (Millipore, RI-13K).

3.5.5 Purification of α and β cells by FACS

Human islets from ND and T2D donors were dispersed and sorted for collection of RNA from α

and β cells as described previously [23, 232]. Briefly, 0.025% trypsin was used to disperse islet

cells by manual pipetting and subsequently quenched with RPMI containing 10% FBS. Cells were

washed in the same medium and counted on a hemocytometer, then transferred to FACS buffer (2

mM EDTA, 2% FBS, 1X PBS). Indirect antibody labeling was completed via two sequential incu-

bation periods at 4C, with one wash in the FACS buffer following each incubation. Primary and

secondary antibodies have been characterized previously and used to isolate high-quality RNA

[23, 73, 74, 232]. Appropriate single color compensation controls were run alongside samples.

For sorting of β cells for use in pseudoislets, quenching step post-dispersion was performed with

100% FBS at 1/3 volume trypsin. Cells then underwent an additional filtration step using a 40 μl

strainer prior to staining. For all preparations, propidium iodide (0.05 ug/100,000 cells; BD Bio-

sciences, San Jose, CA) was added to samples prior to sorting for non-viable cell exclusion. Flow

analysis was performed using an LSRFortessa cell analyzer (BD Biosciences, San Jose, CA), and

a FACSAria III cell sorter (BD Biosciences, San Jose, CA) was used for FACS. Cells for RNA were

collected into FACS buffer, washed once in 1X PBS, and stored in RNA lysis buffer for RNA extrac-

tion. Cells for pseudoislets were washed once in 1X PBS, resuspended in Vanderbilt pseudoislet

media, and processed as described in Pseudoislet section below. Analysis of flow cytometry data

was completed using FlowJo 10.1.5 (Tree Star, Ashland, OR).
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3.5.6 Traditional and multiplexed immunohistochemical imaging and

analysis

3.5.6.1 Traditional Immunohistochemistry

Multiple sections from pancreatic head, body, and tail regions of 20 T2D and 11 age-matched

ND donors were lightly paraformaldehyde (PFA)-fixed and prepared for immunohistochemistry

and stained as described previously [23, 104, 232]. Primary and secondary antibodies and their

dilutions are listed in Extended Data Table 2 of [268]. Amyloid was visualized using a 2-minute

incubation in Thioflavin S (0.5% w/v; #T-1892, Sigma, St. Louis, MO) followed by a brief wash in

70% ethanol as described previously [58, 59, 108]. Images were acquired at 20X with 2X digital

zoom using a FV3000 confocal laser scanning microscope (Olympus) or a ScanScope FL (Aperio)

and processed using cytonuclear algorithms (HighPlex FL v3.2.1) or tissue classifiers via HALO

software (Indica Labs) or morphometric measurement via Metamorph software v7.10 (Molecular

Devices, LLC). Analyses were run on the entire tissue section or manually annotated islets as

indicated in figure legends. Endocrine cell mass was quantified by using pancreas weight and

the ratio of hormone positive cells as identified by cytonuclear algorithm within the entire pan-

creatic section from multiple blocks representing the head, body, and tail regions. To obtain islet

capillary measurements, caveolin-1 channel was isolated and color thresholding was used on a

per-image basis to gather object data using the Integrated Morphometry Analysis (IMA) function

(Metamorph). The following analysis metrics represent mean ± standard error: endocrine cells

(Figure 3.4b, Figure 3.5f-h) 16,151 ± 1,715 islet cells/donor and 570,508 ± 51,866 total cells/donor;

endocrine cell area (Figure 3.5c-d) 2.34 ± 0.24 mm2/donor; capillary morphology (Figure 3.4h) 48

± 4 islets/donor; macrophage area (Figure 3.4m) 0.64 ± 0.07 mm2/donor; amyloid (Figure 3.6a)

108 ± 19 islets/donor; cilia (Figure 3.7h) 0.32 ± 0.05 mm2/donor; RFX6 (Figure 3.10f) 1,863 ± 362

cells/donor; pseudoislets (Figure 3.11g) 2,797 ± 508 cells/sample.
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3.5.6.2 CODEX multiplexed imaging

Antibodieswere purchased preconjugated fromAkoya Biosciences or sourced fromother vendors

and conjugated in-house using the CODEX Conjugation Kit (Akoya Biosciences) or by Leinco

Technologies, Inc. (St. Louis, MO, USA). 10-μm lightly fixed [23] pancreas sections were mounted

onto 22x22 mm glass coverslips (Electron Microscopy Sciences) coated in 0.1% Poly-L-lysine

(Sigma) and stained with the CODEX Staining Kit (Akoya Biosciences) in uncoated 6-well tis-

sue culture plates (VWR) per manufacturer instructions. Fluorescent oligonucleotide-conjugated

reporters were combined with Nuclear Stain and CODEX Assay Reagent (Akoya Biosciences) in

light-protected 96-well plates sealed with foil (Akoya Biosciences) and automated image acqui-

sition and fluidics exchange were performed using the Akoya CODEX instrument and CODEX

Instrument Manager (CIM) v1.29 driver software (Akoya Biosciences) integrated with a BZ-X800

epifluorescent microscope (Keyence). Tissue was hydrated in 1X CODEX buffer (10X CODEX

Buffer diluted in Milli-Q water) and hybridization/stripping of the fluorescent oligonucleotides

was performed using dimethyl sulfoxide (Sigma). After loading of coverslip into stage insert,

tissue was visualized with Nuclear Stain diluted 1:1000 in PBS and imaging area was set by cen-

ter point and tile number using BZ-X800 viewing software (Keyence). All images were acquired

using a CFI plan Apo I 20x/0.75 objective (Nikon) with 30% tile overlap and 5 z-planes (1.5 μm/z).

3.5.6.3 Processing and annotation of CODEX images

A total of 16 tissue regions were captured from 6 ND and 10 T2D donors (mean

50 mm2 tissue/donor). Image alignment, stitching, background subtraction, and decon-

volution were performed using the CODEX Processor v1.7.0.6 (Akoya Biosciences; see

https://help.codex.bio/codex/processor/technical-notes for details). Individual channel images

(TIFF files) were imported into HALO software v3.1 (Indica Labs) for all analyses as described

below. Tissue and islet areas were annotated by hand to exclude out-of-focus regions and poor

tissue quality. Islets (estimated diameter ≥50 μm; mean 42 islets/donor) were annotated based on

DAPI and CHGA channels. Cell segmentation and cell type annotations were performed using
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the HALO HighPlex FL v3.2.1 module with consistent cytonuclear parameters (nuclear contrast

threshold 0.456, maximum cytoplasm radius 0.48). Due to marker intensity variability among

samples, thresholds were manually set for each marker and donor. Unless otherwise noted, cells

were counted positive for a given marker if minimum intensity was reached in 50% of cyto-

plasm area (see Figure 3.5a-b for complete list of markers, abbreviations, and cell types). For

cells with more variable morphology, positivity was also counted for nuclear area (30%: ARG1,

CD11c, CD14, CD163, CD206, CD31, CD34, CD45, HLA-DR, IBA1, KRT, MCAM). Proliferating

cells were counted only if minimum 60% of nuclear area met Ki67 intensity threshold. Vascular

structures (CD31) were also measured by random forest classification algorithm (HALO Tissue

Classifier module). The following analysis metrics represent mean ± standard error: endocrine

cell area (Figure 3.4d) 0.88 ± 0.10 mm2/donor; islet cell composition (Figure 3.4e, Figure 3.5j) 7,322

± 852 cells/donor; immune cells (Figure 3.4l,n) 309 ± 43 cells/donor; endothelial cell phenotypes

(Figure 3.6f) 460 ± 92 cells/donor; macrophage phenotypes (Extended Figure 3.6h) 191 ± 29 cell-

s/donor; T cell phenotypes (Extended Figure 3.6i-j) 40 ± 17 cells/donor.

3.5.6.4 High-dimensional, spatial, and neighborhood analyses

The R implementation of the UMAP algorithm (https://CRAN.R-project.org/package=umap) was

used for dimensionality reduction. Cell marker percentages obtained through HALO were stan-

dardized across islets (n=255ND islets and 426 T2D islets; mean 172 cells/islet), and default param-

eters were used for UMAP reduction (Figure 3.4o) except for nearest neighbors (80) and minimum

distance (0.05). For spatial analyses, CD31 area classifications were converted to an annotation

layer. A nearest neighbor algorithm (HALO Spatial Analysis module) was applied to obtain av-

erage distance of endocrine cells (n=4,830 ± 692 cells/donor) to islet capillaries (CD31+ region)

(Figure 3.4i, Extended Figure 3.6d).

For cell neighborhood (CN) analysis, two methods were applied in parallel to CODEX data

from annotated islets. In the community detectionmethod, termed Dynamic CF-IDF (Figure 3.4p-

q, Figure 3.4s), a weighted undirected heterogeneous graph for each islet was constructed based
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on the cell types and normalized distance between cells. A greedy-based graph community de-

tection method [16] was applied to segment the graph into a set of cell communities, then cell

communities were stratified into 6 CNs (n=5,582 total CNswithmedian 11 cells/CN). Cell type en-

richment was determined by a new proposed scoring function CF-IDF, which is a modification of

the widely used text sequence analysis method term frequency (TF)–inverse document frequency

(IDF) scoring [163]. Our cell frequency (CF)-inverse dataset frequency (IDF) score emphasizes the

cell type that is not only prevailing, but also uniquely representative in a group of target islets.

Therefore, it will deemphasize the most dominant cell types (e.g., α and β) throughout all the islets

while paying more attention to the relative enrichment of less abundant cell types (e.g., vascular

and immune cells) in the local regions. The downstream analysis not only introduces insightful

results on T2D feature analysis but also shows a robust performance across different resolution

levels.

The second CN analysis method, a k-means approach (Extended Figure 3.6k-n), built on a

previously published algorithm used to identify CNs in the tumor microenvironment [234]. For

each cell, we first found its 10 nearest neighbors in the islet and assigned the i-th nearest neighbor

which was an α cell, β cell, macrophage, EC cell, or γ cell, a score cos(iπ/20). Then we calculated

the total score for each cell type, applied L1 normalization to the scores, and standardized them

across all cells. The resulting representations of cells were finally used for k-means clustering to

form 5 CNs (n=5,021 total CNs with median 5 cells/CN). 

3.5.7 Transcriptional analysis of α and β cells and islets from ND and

T2D donors

3.5.7.1 RNA isolation and bulk RNA-sequencing

RNA was extracted from sorted α and β cells (see above, Purification of α and β cells by FACS)

or from pelleted whole islets using the Invitrogen RNAqueous-Micro Total RNA Isolation kit

(Thermo Fisher #AM1931). TURBO DNA-free (Ambion) was used to treat any trace DNA con-
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tamination. RNAwas quantified byQubit Fluorometer 2.0 and RNA integrity was confirmed (RIN

>7) by 2100 Bioanalyzer (Agilent). Amplified cDNA libraries were constructed using SMART-seq

v4 Ultra low Input RNA-kit (Takara) and sequencing was performed on an NovaSeq platform

(Illumina) using paired-end reads (100 bp) and 25 million reads per sample.

We processed the raw RNA-seq reads using FastQC (v0.11.8) for broad quality assessment.

Briefly, we examined the following parameters: (1) base quality score distribution, (2) sequence

quality score distribution, (3) average base content per read, (4) GC distribution in thereads, (5)

PCR amplification issue, (6) overrepresented sequences, (7) adapter content. Based on the quality

report of fastq files, we trimmed sequence reads using fastq-mcf (v1.05) and cutadapt (v2.5) to

only retain high quality sequence for further analysis. The paired-end reads were aligned to the

GRCh37/hg19 human reference with GENCODE v19 gene annotation using STAR splice-aware

aligner (v2.5.4b; –outSAMUnmapped Within KeepPairs) [71].

We counted fragments mapping to features type in GENCODE v19 gene annotation using

featureCounts from Subread package [159]. The gene list was pruned to contain only protein-

coding genes mapping to autosome and chrX, resulting in a total of 20,260 genes. We assessed

libraries using comprehensive quality metrics generated by QoRTs [109] as well as computed de-

rived metrics. Briefly, on the top of QoRTs reported metrics, we computed (1) 5’-3’ gene coverage

bias (as the ratio of coverage values at the 90%-ile and 10%-ile of the coverage distribution), (2)

Kolmogorov-Smirov test statistic between cumulative gene diversity of each library relative to

median distribution of all libraries within each cell type and standardized to a mean of 0 and stan-

dard deviation of 1 to yield a z-score, (3) number of reads mapped mapped to Xist and SRY genes,

(4) average number of reads mapped to chrM, and (5) transcript integrity number (TIN) [270] for

each library. The labeled sex of donors was matched against the gene expression quantified for

sex genes to rule out any sample swaps or mislabeling. We also computed principal components

for TPM normalized count matrix for each cell type in order to detect potential outliers.
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3.5.7.2 Differential gene expression analysis

We performed differential gene expression analysis between T2D and ND samples for each cell

type individually using DESeq2 [162]. In order to minimize potential effects of known and un-

known confounding factors, we included known covariates in the DESeq2 model as well ac-

counted for unknown covariates using RUVseq latent variable approach [222]. Briefly, we used

the following multi-step process: (1) We first removed genes from the raw count matrix which

had less than 10 reads in fewer than 25% of the samples for that cell type. (2) We then ran a

first-pass differential expression analysis using DESeq2 with Age, Sex, BMI, and Batch as known

covariates. The output result was filtered for genes that were non-significant i.e., not differentially

expressed between T2D and ND samples and had p-value > 0.5. These genes were used as “con-

trol” or “empirical” genes for RUVSeq::RUVg function to estimate latent variables accounting for

variation in the data not attributed to disease status. (3) The latent variables estimated from the

RUVseq runwere then used as additional covariates (on the top of Age, Sex, BMI, and Batchwhere

applicable) for the second run of DESeq2. We selected the number of latent variables to provide

the most reasonable separation between T2D and ND samples and minimal deviation from mean

in the relative log expression plots. The output results from DESeq2 were filtered for 1% FDR to

generate the final list of genes differentially expressed between T2D and ND for each cell type.

We performed functional enrichment analysis using RNA-enrich [153] and retained terms with

an FDR threshold of 5%. Terms were condensed using the RelSim function in REVIGO [247] with

similarity parameter set to 0.5 and visualized in semantic space using an.xgmml file imported into

Cytoscape software26 v3.8.2. Combined analysis of differentially expressed genes (fold change

≥1.5 or ≤-1.5; p<0.01) was performed using Metascape [287]. Metascape’s heuristic algorithm

samples the 20 top-score clusters, selects up to the 10 best scoring terms (lowest p-values) within

each cluster, and connects terms pairs with Kappa similarity above 0.3. The resulting network

was exported as a .cys file and visualized using Cytoscape, with the most representative term

name in each cluster selected manually.
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3.5.7.3 Gene network analysis

We adoptedWeighted Gene Co-expression Network Analysis (WGCNA) [148] approach to create

networks from the gene expression data. Briefly, we first filtered genes following the same rule

established in Differential Gene Expression analysis where we only kept genes that had at least

10 reads in at least 25% of the samples for each cell type. We then processed raw counts using the

varianceStabilizedTransformation function in DESeq2 package and used removeBatchEffect from

the limma R package [223] to adjust for effects of age, sex, and BMI while protecting for disease

status in the design matrix. The normalized and batch corrected count matrix was then used as

input to blockwiseModules to create a “signed hybrid” network with “bicor” as the correlation

function. The power (k) parameter was selected such that the scale free topology fit reached at

least 80% fit. To examine cell type modules associated with quantitative traits of interest, we

utilized a linear regression-based framework. We (1) inverse normalized the raw quantitative

trait, (2) adjusted for Age, Sex, and BMI by linear regression, and (3) computed the spearman

rank correlation between residuals and eigengene of all modules. Within each network, we also

computed the module membership score and network connectivity for each gene. Estimated

enrichment of curated gene lists [20, 61, 185] was calculated using Fisher’s exact test. Functional

enrichment of genes in each module was performed using gprofiler2 [143], and the results were

visualized as a dotplot.

3.5.7.4 Integration of network analysis with chromatin accessibility

We integrated chromatin accessibility information with gene network analysis using sci-ATAC-

seq data for α and β cells derived from our previously published study [217]. For each module

within each cell type, we selected (a) accessible sites that were present within a specified distance

of the transcription start site (TSS) of the genes within that module, and (b) the distal chromatin

peaks that were linked to the peaks within this set based on the Cicero peak interaction results

from the same study. This set of TSS proximal and distal peaks for all the genes within each

module and for each cell type were then used for downstream enrichment analyses.
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For variant enrichment analysis in the module linked peaks, we collected the latest published

summary statistics for selected traits [42, 166]. Using a threshold of +- 10kb to define our gene TSS

boundary for linking peaks with modules, we created a set of accessible sites for each module.

The union of peaks across all modules was used as a “bulk” positive enrichment control. We

then tested the enrichment of trait-associated variants frommultiple GWAS across module peaks

using GARFIELD [119] and used a p-value threshold of 5e-08 as input parameter for selecting

trait-associated variants.

Next, we considered whether specific Transcription Factor Binding Motifs (TFBMs) are en-

riched to occur in certain modules. To test this, we defined module linked peaks for each module

as described before but using a threshold of +- 1kb from gene TSS. For each peak within a module,

we then identified the peak summit and extended the summit by 50 bp in each direction. Using

genomic sequence in this region as our “test sequence”, we used Analysis of Motif Enrichment

(AME, v5.3.2) tool from MEME-Suite [14] (using default parameters) to identify enriched TFBMs

represented in cisBP (v 2.0) [271]. The control set of sequence was generated using –shuffle–

parameter in AME which generates a control sequence by shuffling the test sequence but pre-

serving the 2-mer frequency. The enrichment score was computed as scaled log2 transformed

(TP+1)/(FP+1) for each TFBM.

3.5.8 Pseudoislet formation and assessment of RFX6 knockdown

Pseudoislets were formed as previously described [269]. Briefly, nondiabetic human islets were

handpicked to purity and then dispersed with 0.025% HyClone trypsin (Thermo Scientific) for

7 minutes at room temperature before counting with an automated Countess II cell counter or

manually by hemacytometer. Dispersed human islets or purified β cells (see above, Purification

of α and β cells by FACS) were incubated in adenovirus at a multiplicity of infection of 500 for

2 hours in Vanderbilt pseudoislet media before being spun and washed. Adenovirus containing

U6 driven scramble or RFX6 targeted shRNA as well as CMV driven mCherry or mKate2 red flu-

orescent tag were prepared, amplified and purified by Welgen, Inc (Worcester, MA). Cells were

95



then resuspended in appropriate volume of Vanderbilt pseudoislet media to allow for seeding into

wells at 2000 cells per 200 µL each well of CellCarrier Spheroid Ultra-low attachment microplates

(PerkinElmer). Pseudoislets were allowed to reaggregate for 6 days before being harvested and

studied. To assess knockdown, RNAwas extracted from pseudoislets containing only β cells using

an RNAqueous RNA isolation kit (Ambion). cDNA synthesis and quantitative reverse transcrip-

tase PCR were performed as previously described [57]; briefly, cDNA was synthesized using a

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems #4368814) according to the

manufacturer’s instructions. Quantitative PCR (qPCR) was performed using TaqMan probes for

ACTB (Hs99999903_m1) as endogenous control and RFX6 (Hs00941591_m1). Relative changes in

mRNA expression were calculated by the comparative ΔCt method.

3.5.9 Multiome single nuclear RNA/ATAC-sequencing

3.5.9.1 Nuclear isolation

Pseudoislet samples treated with RFX6 shRNA or scramble RNA were pooled together using

a randomized study design, so the targeting and scramble conditions were not confounded

by batch (Figure 3.12a). To accomplish this, samples were allocated into six groups (batches)

of n=490-494 pseudoislets for nuclei isolation. A customized protocol was developed based

on recommendations by 10x Genomics (https://www.10xgenomics.com/resources/demonstrated-

protocols/) which included optimization steps described below. Briefly, the samples were sus-

pended in 1X PBS and pelleted at 2000 x g for 3 minutes at 4℃. The pellet was resuspended

in lysis buffer (10mM Tris-HCl 7.4 pH, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1% NP40,

0.01% Digitonin, 1% BSA, 1mM DTT, and 2U/µl RNase Inhibitor) and rocked in an Eppendorf

thermomixer C (EP #5382000015) at 300 x g for 5 minutes at 4℃. Keeping the samples on ice as

much as possible, tubes were then transferred to a prechilled 2 mL glass dounce homogenizer

and homogenized with 15 strokes of tight pestle B before being transferred to a 1.5 mL tube and

centrifuged at 500 x g for 5 minutes at 4℃. The resulting pellet was then resuspended in 1 mL of

wash buffer (10mM Tris-HCL 7.4 pH, 10mM NaCl, 3mM MgCl2, 1% BSA, 0.1% Tween-20, 1Mm
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DTT, and 2U/µl RNase Inhibitor) and centrifuged at 100 x g for 1 minute at 4℃. The supernatant

was collected, filtered through a pre-wetted 30 µm filter, and centrifuged at 500 x g for 5 min-

utes at 4℃. Nuclei were resuspended in 300 µl of wash buffer, then 300 µl of sucrose cushion

(0.88M sucrose, 1mM DTT, 1mM RNAse Inhibitor, and 10% wash buffer) was added to the bot-

tom of the tube and the resulting layered solution was centrifuged at 1000 x g for 10 minutes

at 4℃. Both layers of supernatant were removed, and pellet was resuspended in 1 mL of wash

buffer and centrifuged at 500 x g for 5 minutes at 4℃. Nuclei were then resuspended in 30 µl of

nuclei resuspension buffer before counting and quality assessment. The desired concentration

of nuclei was achieved by resuspending the appropriate number of nuclei in 1X diluted nuclei

buffer for joint (on the same nucleus) snATAC-seq and snRNA-seq multiome profiling. Nuclei

were processed by the University of Michigan Advanced Genomics Core using the 10x Genomics

Chromium platform at 20K nuclei per well.

3.5.9.2 Multiome sample genotyping and imputation

Samples were genotyped with the Infinium Multi-Ethnic Global-8 v1.0 kit using 50 ng/uL DNA

samples in two batches. Probes were mapped to Build 37. We merged the .ped files for the two

batches along with samples from other projects that were genotyped on the same chip (result-

ing in a combined 68 samples). We removed variants with multi mapping probes and updated

the variant rsIDs using Illumina support files “Multi-EthnicGlobal_D1_MappingComment.txt

and Multi-EthnicGlobal_D1.annotated.txt”1. We performed pre-imputation QC using the “HRC-

1000G-check-bim.pl” script (version 4.2.9) obtained from the Mark McCarthy lab website2 to

check for strand, alleles, position, Ref/Alt assignments and update the same based on the 1000G

reference3. We did not conduct allele frequency checks at this step (i.e. used the “–noexclude”

flag) since we had 68 samples from mixed ancestries. These filters resulted in 958,427 variants.

We performed pre-phasing and imputation using the Michigan Imputation Server [63]. The stan-
1https://support.illumina.com/downloads/infinium-multi-ethnic-global-8-v1-support-files.html
2https://www.well.ox.ac.uk/w̃rayner/tools/
3https://www.well.ox.ac.uk/w̃rayner/tools/1000GP_Phase3_combined.legend.gz
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dard pipeline4 included pre-phasing using Eagle2 [160] and genotype dosage imputation using

Minimac4 (https://github.com/statgen/Minimac4) and the 1000g phase 3 v5 (build GRCh37/hg19)

reference panel [10]. Post-imputation, we selected biallelic variants with estimated imputation

accuracy (r2>0.3), variants not significantly deviating from Hardy Weinberg Equilibrium (P>1e-

6), MAF in 1000G European individuals > 0.05 and minor allele count (MAC) >1 in our 12 samples,

resulting in 6,665,607 variants.

3.5.9.3 Data processing (RNA component)

The RNA component of the multiome data was processed using starSOLO (STAR v. 2.7.3a, with

GENCODE v19 annotation; options –soloUMIfiltering MultiGeneUMI –soloCBmatchWLtype

1MM_multi_pseudocounts –soloCellFilter None), which outputs the count matrices needed for

most of the analyses [71]. Quality control metrics were gathered on a per-nucleus basis using a

custom Python script on the corrected gene counts and aligned BAM file.

Following processing with STAR, we constructed a custom count matrix by combining in-

formation from the GeneFull and Gene matrices output by STAR. The GeneFull matrix contains

per-gene counts based on intronic and exonic reads, while the Gene matrix contains per-gene

counts based on exonic reads only. As nuclear RNA may contain introns, the GeneFull matrix

should be preferred. However, due to overlapping transcript annotations that render some read

gene assignments ambiguous, some genes may receive fewer counts in the GeneFull matrix than

in the Gene matrix. The INS gene was an extreme example of this, receiving very low counts in

the GeneFull matrix but high counts in the Gene matrix. To salvage counts for such genes, our

custom matrix utilized the GeneFull counts for most genes but utilized the Gene counts for the

subset of genes that had greater counts in the Gene matrix than in the GeneFull matrix.
4https://imputationserver.readthedocs.io/en/latest/pipeline/
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3.5.9.4 Data processing (ATAC component)

Adapters were trimmed using cta (https://github.com/ParkerLab/cta). We used a custom Python

script, available in the Parker lab Github repository, for barcode correction. Barcodes were cor-

rected in a similar manner as in the 10x Genomics Cell Ranger ATAC v. 1.0 software. In brief,

barcodes were checked against the 10x Genomics whitelist. If a barcode was not on the whitelist,

then we found all whitelisted barcodes within a hamming distance of two from the bad barcode.

For each of these whitelisted barcodes, we calculated the probability that the bad barcode should

be assigned to the whitelisted barcode using the Phred scores of the mismatched base(s) and the

prior probability of a read coming from the whitelisted barcode (based on the whitelisted bar-

code’s abundance in the rest of the data). If there was at least a 97.5% probability that the bad

barcode was derived from one specific whitelisted barcode, it was corrected to the whitelisted

barcode.

Reads were mapped using BWA-MEM [155] with flags ‘-I 200,200,5000 -M’ (v. 0.7.15-r1140).

We used Picard MarkDuplicates (v. 2.25.1; https://broadinstitute.github.io/picard/) to mark du-

plicates, and filtered to high-quality, non-duplicate autosomal read pairs using SAMtools view44

with flags ‘-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30’ (v. 1.10). Quality control metrics were

gathered on a per-nucleus basis using ataqv45 (v. 1.2.1) on the BAM file with duplicates marked.

3.5.9.5 Selection of quality nuclei (barcodes) for downstream analysis

We performed rigorous QC of all RNA nuclei and only included those deemed as high-quality

based on the following four definitions: 1) nUMI > 1000, 2) mitochondrial fraction < 0.2, 3) nuclei

where the RNA profile was statistically different from the background/ambient RNA signal, and

4) nuclei identifiable as a singlet and assignable to a sample using genotypes. We considered

droplets with UMIs < 10 to be “empty” and therefore representative of the background/ambient

RNA profile. Top genes in the ambient RNA included highly expressed genes across prominent

islet cell types such as INS, GCG, and SST, along with several mitochondrial genes. We used

the testEmptyDrops function from DropletUtils (v 1.6.1) [164], specifying the ‘lower’ parame-
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ter as 10 and selecting droplets with P<0.05 as droplets significantly different from the ambient

RNA profile. To identify singlets and assign to samples, we ran Demuxlet [130] using using the

BAM files and the genotype VCF file considering all post-QC variants in gene bodies with mi-

nor allele count (MAC) >1. We used the command demuxlet --sam $bam --tag-group

CB --tag-UMI UB --vcf $vcf --alpha 0 --alpha 0.5 --field GT, and selected

singlets. To account for ambient RNA contamination while identifying singlets, we also masked

the top 1% genes expressed in the ambient RNA and re-ran Demuxlet with the same parameters;

nuclei were considered singlets and kept for downstream analysis if they were called as singlets

in either Demuxlet run.

We also performed QC of the ATAC component of the multiome data. For ATAC, we required

nuclei to have a minimum TSS enrichment (as calculated by ataqv) of 2, minimum filtered read

count of 1000 (ataqv ‘HQAA’ metric), and maximum mitochondrial fraction of 0.5. We also ran

Demuxlet on the ATAC component (command: demuxlet --sam $bam --tag-group CB

--vcf $vcf --field GT) and required that a prospective nucleus be called as a singlet. The

ATAC component of nuclei in two wells showed low TSS enrichment and all nuclei from these

two wells were therefore excluded from analysis.

If the RNA and the ATAC component of a barcode both passed QC and the Demuxlet sample

assignment was the same, both modalities were utilized for downstream analysis. If only the

RNA component passed QC, only the RNA component was used in downstream analysis. As we

performed clustering on the RNA component, we excluded the few (twelve) barcodes that passed

ATAC QC and failed RNA QC.

3.5.9.6 Removal of ambient RNA counts from single nucleus gene expression UMIma-

trices

Prior to clustering and downstream analysis, we usedDecontX [282] (celda v. 1.8.1, in R v. 4.1.1) to

adjust the nucleus x gene expression count matrices for ambient RNA. DecontX was run on a per-

batch basis, as the amount of ambient contamination may vary across batches. Decontaminated
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counts were generated via the decontX() function, passing barcodes with total UMI count <=

10 to the background argument. Rounded decontaminated counts were used for clustering and

all downstream analyses. Nuclei with estimated contamination level > 0.2 were excluded from

downstream analysis.

3.5.10 Clustering of multiome data

Nuclei were clustered on the RNA component using Seurat [32, 106, 245] (v. 3.9.9.9010, in R v.

3.6.3). After normalizing counts with the NormalizeData function, we identified the top 2000

variable features (FindVariableFeatures function, with selection.method=’vst’) and scaled with

the ScaleData function. We identified neighbors using the top 20 PCs and k.param = 20, and

called clusters using resolution = 0.1 with n.start = 100. We used the top 20 PCs for generating

the UMAP.

This clustering protocol identified 10 clusters. One of the smaller clusters shows expression of

both INS and GCG, suggesting it may consist of doublets that were not caught by demuxlet. To

verify this was a doublet cluster, we ran a different, genotype-independent, ATAC-based doublet

detection method (AMULET; v. 1.0-beta, run with default parameters separately on data from

each multiome well) [256] on the ATAC nuclei that otherwise passed QC. This method tagged

~40% of the nuclei in the suspected doublet cluster as doublets, while only ~5% of nuclei in any

other cluster were tagged as doublets. We therefore removed the small doublet cluster from

the clustering and downstream analysis. Data are available via the UCSC Cell Browser [242]

at https://theparkerlab.med.umich.edu/data/public/cellbrowser/?ds=Pseudoislet10XMultiome for

further exploration.

3.5.10.1 Differential gene expression analysis

Differential gene expression was performed within each cluster using DESeq2 (v. 1.28.0) [162] on

pseudobulk counts. UMI counts were summed across nuclei within a donor + construct + cluster.

Only donors with paired data (RFX6-2896 and scrambled-mCherry constructs) were used, and
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the analysis was performed in a paired fashion (DESeq2 model: ~donor + construct). We used an

FDR threshold of 5% for considering genes differentially expressed.

3.5.10.2 Per-cluster processing of ATAC component

All ATAC reads from pass-QC, clustered nuclei were merged within each cluster. To generate

per-cluster peaks, these BAM files were converted to single-ended BED format using bedtools

bamtobed [214] before calling ATAC-seq peak summits with MACS2 [285] (flags -g hs –nomodel

–shift -37 –extsize 73 -B –keep-dup all –call-summits). We removed summits in blacklist regions,

filtered to FDR 0.1% summits, and then generated a peak list from the summits by extending the

ATAC-seq peak summits for each cluster +/- 150 bps to get 300bp peaks (within each cluster, if

two 300bp peaks overlapped the one with the greater MACS2 score was kept). We then removed

peaks in blacklist regions. To get the ATAC peak counts used in the ATAC PCA and differential

chromatin accessibility analyses, we determined the number of ATAC fragments overlapping

each of these peaks in each of the per-cluster, per-donor, per-construct pseudobulk samples.

For visualization of ATAC signal, we generated a normalized bedGraph file using MACS2

on the single-end BED file (macs2 callpeak command, with options –SPMR –nomodel –shift -

100 –extsize 200 -B –broad –keep-dup all) and then converted to bigWig format using the UCSC

bedGraphToBigWig [133]. For PCA on the pseudobulk ATAC counts, we first removed any peaks

on the mCherry or mKate2 contigs. We then converted peak counts to counts per million and

removed the bottom 10% of features with the lowest average CPM across samples. For each peak,

we filled any 0s with a value equal to half of the minimum non-zero CPM for that peak across

samples. We then log transformed prior to performing the PCA.

3.5.10.3 Differential chromatin accessibility analysis

Differential chromatin accessibility was performed within each cluster using DESeq2 (v. 1.28.0)

on pseudobulk ATAC peak counts. Only donors with paired ATAC data (RFX6-2896 and

scrambled-mCherry constructs) were used, and we additionally excluded donor 17277513 due
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to very low read counts. The DESeq2 analysis was performed in a paired fashion, with model:

“ donor + tss_enrichment + construct”. To compute TSS enrichment for each pseudobulk sample,

wemerged all ATAC nuclei (regardless of cluster) from each donor and computed TSS enrichment

with ataqv.

3.5.11 Testing for enrichment of peak subsets near differential genes

Weused a permutation test to determinewhether themost significant peaks (‘top peaks’) from the

beta cell differential peak analysis were enriched near beta cell differentially expressed (DE) genes.

First, we assigned each peak to the gene with the nearest TSS (if multiple TSS were equally close,

we took the TSS with the smallest chromosomal coordinate). We then calculated the fraction of

top peaks whose nearest gene was DE. To get the null expectation for this value, we permuted the

‘DE/not DE’ gene labels, such that the same number of genes were always labeled as ‘DE’ but the

identity of these DE genes changed in each permutation. While permuting, we split genes into

deciles based on the expression of each gene and permuted the labels only within each decile (this

controls for the fact that highly expressed genes are more likely to be DE than lowly expressed

genes due to statistical power in the DE analysis). We performed 10,000 permutations, in each

permutation re-calculating the fraction of top peaks whose nearest gene was DE to build up the

null distribution. We then calculated an empirical p-value based on our observed value and the

null distribution, adding a pseudocount to avoid a p-value of 0 (p = [1 + # of permutations where

the test statistic was greater than or equal to our observed value] / 10,001).

3.5.11.1 Motif scanning for multiome motif enrichment analyses

The motif scans were performed using FIMO (v. 5.0.4) [98] with a background model calculated

from the hg19 reference genome and otherwise default parameters. We used the motifs from

[134], excluding “*_disc” motifs; motifs from cisBP (v. 2.0); motifs from [122]; and custom RFX6

motifs generated using mouse RFX6 ChIP-seq data from [206].

The custom RFX6 motifs were generated during a previous project [264]. Sequencing reads
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from [206] were mapped to the mouse mm9 genome63 using bwa (v. 0.7.12-r1039) and peaks were

called usingMACS2 (flags: “-t MIN6_Rfx6-HA_IP.bam -c MIN6_Control-HA.bam -B –nomodel -g

mm –keep-dup 1 -q 1.00e-4”). The MEME (v. 4.11.0) [12] and DREME (v. 4.9.1) [11] tools from the

MEME suite [13] were used to discover novel motifs in the resulting peaks. One non-repetitive

motif from the MEME tool and two motifs from the DREME tool, bearing similarity to known

RFX family motifs, were selected for use in downstream analysis.

3.5.11.2 Motif enrichment in most significant peaks

We used logistic regression to measure enrichment of motifs in subsets of ATAC-seq peaks. We

ran one model per peak category and motif. For testing for enrichment in the peaks that had the

smallest p-values and leaned towards higher signal in shRFX6 samples, we modeled:

peak_ l eans_h ighe r_ in_ shRFX6 ~ peak_gc_con t en t + p e ak_ s i z e +

n_mo t i f _ h i t s _ i n _p e ak

Where “peak_leans_higher_in_shRFX6” is 1 if the peak was one of the most significant

peaks in the “up in RFX6 KD condition” direction and 0 otherwise; “peak_gc_content” was the

GC content of the sequence within the peak; “peak_size” was the mean DESeq2-normalized

count for the peak across the samples in the DESeq2 analysis; and “n_motif_hits_in_peak”

was the number of motif hits in the peak as determined by the FIMO motif scans. The co-

efficient of the “n_motif_hits_in_peak” term was taken as the measure of motif enrichment.

For testing for enrichment in the peaks that had the smallest p-values and leaned towards

lower signal in shRFX6 samples, we used the same model except the outcome variable was

“peak_leans_lower_in_shRFX6.”

3.5.11.3 Generation of ATAC footprint plots

To generate the ATAC footprint plots, we first separated the motif occurrences into those within

the beta cells ATAC peaks and those outside of peaks. For each of these two groups, we com-

puted an aggregate Tn5 cut matrix for the 500 bps on either side of the motifs, using beta cell
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ATAC reads from each individual donor+construct (using the “make_cut_matrix” script within

the atactk package (https://github.com/ParkerLab/atactk); options: -a -r 500). The cut

matrices were generated separately for each donor+construct, utilizing only donors with paired

ATAC data (RFX6-2896 and scrambled-mCherry constructs) and additionally excluding donor

17277513 due to very low ATAC read counts. To reduce the impact of Tn5 insertion sequence

bias, we normalized the Tn5 cut frequency at each position for the motifs in peaks by the corre-

sponding frequencies for the motifs outside of peaks. To adjust for technical differences (e.g., TSS

enrichment) between the donors+constructs, we then divided these normalized cut frequencies

by the average normalized cut frequency between the -500 and -400 bp positions.

3.5.11.4 GWAS enrichment in most significant peaks

We considered if β cell ATAC-seq peaks that score highly for differential accessibility, as mea-

sured by p-value, are specifically enriched to overlap T2D-GWAS variants. We compared the

enrichment of T2D (adj. BMI) GWAS variants to overlap top 5000 ATAC-seq differential peaks

leaning up and down with the remaining peaks for β cell using GARFIELD [119]. Using a p-

value threshold of 1e-05, we also performed a conditional analysis where GARFIELD evaluates if

both annotations are conditionally independent of each other in the enrichment model. The co-

efficients corresponding to each annotation from the conditional enrichment model were shown

along with the 95%-CI. To ensure robustness of our results, we repeated the analysis for top 2000

(up and down each) and top 10000 (up and down each) differential peaks.

3.6 Data availability

Extended data and tables referenced in the chapter are not included in the dissertation and can be

obtained from the online version of the manuscript referenced in [268]. Code for analysis done

in this work is openly available on GitHub at https://github.com/ParkerLab/2021_islet-rfx6, and a

summary web-page of the project is available at http://theparkerlab.org/manuscripts/2021_islet-
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rfx6/ with link to all resources.
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the final published version may differ.

107



CHAPTER 4

Conclusion

In this thesis, I have sought to understand and dissect the genetic complexity of T2D by profiling

molecular characteristics from healthy and diabetic individuals across different layers of organi-

zation. By focusing on different data modalities, such as epigenome and transcriptome, and their

integration within the pancreatic islets, I have identified mechanisms of gene regulation that un-

derlie the associations between genetic variation and disease traits such as T2D. In section 4.1, I

summarize the broader themes emerging from this thesis, and in section 4.2 I highlight the spe-

cific contributions made by this thesis to the current field of research. Finally, in section 4.3, I

conclude by providing current and future directions to build upon this body of work in the extant

literature.

4.1 Summary

4.1.1 High-resolution chromatin accessibility map of pancreatic islets

In chapter 2, I present our work on profiling chromatin accessibility in pancreatic islets from a

single donor using sci-ATAC-seq protocol. While our ability to collect multiple replicates was

limited, our work clearly demonstrates the utility of single-cell resolution epigenomic profiling

for study of cell-type specific regulatory elements and their role in disease pathophysiology. The

results and data generated from our study contributed significantly to our existing understanding

of islet heterogeneity in several ways. First, while many earlier studies had focused on profiling
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heterogeneity through cell-surface markers and fluorescence-activated cell-sorting to obtain dis-

tinct cell populations, we employed an unbiased data driven approach that allowed us to discover

low abundance cell types with as few as 28 cells in the sample. Second, earlier single-cell stud-

ies have focused mainly on profiling the gene expression of the islets and constituent cell types.

However, transcriptomic state of a cell is more dynamic than the epigenetic state and is generally

a consequence of the regulatory processes within the cell. As a result, creating a map of chro-

matin accessibility provides us a unique opportunity to identify and characterize mechanisms of

regulation that may contribute to the functional changes relevant to the disease. Here, we col-

lected single-cell chromatin accessibility data on ~1500 cells from the islets and identified three

major cell types — α, β, and δ cells. Surprisingly, even though delta cells constitute only 2-3% of

the cells in the islet, we were able to identify 28 cells (out of ~1500 cells) cluster as δ using their

accessibility profile at the SSTmarker gene. However, because we only had few δ cells and much

lower read coverage, conventional approach for identifying chromatin accessibility peakswas not

successful. We then developed a novel deep-learning based approach, inspired from image up-

scaling algorithms in the field of computer vision, to impute the sparse and noisy signal from low

abundance δ cell cluster to an “upscaled” signal equivalent to a high abundance cluster. Using the

high-abundance data for the α and β cell types and their downsampled versions, we trained the

model to predict chromatin accessibility (or regulatory) peaks from the sparse data. This allowed

us to identify thousands of new δ cell peaks that were enriched for cell-type specific signatures

genes previously defined by single-cell RNA-seq studies. Our comparison to ATAC-seq peak data

derived from bulk islet samples further reinforced the high-quality of upscaled peaks.

In fact, since our publication of the deep-learning approach, another study [147] developed

a toolkit based on similar principles to denoise and upscale sequencing coverage data from low

abundance, low coverage cell types. Based on our work and subsequent findings by AtacWorks

[147], we establish that novel deep-learning based methods can enhance the sensitivity of single-

cell experiments by “upscaling” or denoising data from low-abundance and low coverage cell

types. Further, these approaches can be generalized to different modalities such as ChIP-seq for
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inference of protein-DNA interaction, critical for identifying regulatory regions and mechanisms

of regulation.

Once we had cell-type chromatin accessibility maps, we asked if T2D GWAS variants are dif-

ferentially enriched in chromatin maps of a particular cell type. β cells due to their critical role in

insulin synthesis and secretion are known to harbor mutations for monogenic diabetes (MODY).

Here, we find that while all three cell types are enriched for T2D GWAS variants, only β cells are

enriched to overlap the variants after conditional analysis reinforcing the idea that majority of

disease genetic risk burden is carried by the β cells. With this information, we sought to identify

and nominate putative target genes for associated T2D GWAS variants. Using co-accessibility

approach implemented in Cicero, we identified distinct examples of regulatory interactions in

α and β cells. We highlighted specific examples at the C2CD4A/B, ADCY5, ANK1 and NKX6-3

GWAS loci where specific variants were linked to target gene promoters in a cell-type specific

manner.

Overall, we contributed the first single-cell resolution chromatin accessibility data for pancre-

atic islets resolved for three major constituent cell types.

4.1.2 Multiomic integration for variant prioritization and target discov-

ery

Joint profiling of molecular domains across layers of the genetic organization is essential for a

holistic understanding of development and disease. Our understanding of how genetic variation

constitutes a cascading effect through the layers before culminating in the disease can be com-

bined with the clinical knowledge of the phenotype to identify precise therapeutic targets [19,

36, 43]. In chapter 3, I expanded our study to focus on concerted changes across these layers in

type 2 diabetic individuals. However, a significant challenge of integrative multiomic analyses

is the differences between data types and their properties. For example, ATAC-seq is performed

genome-wide and generates a continuous measure of signal across, RNA-seq assays yield discrete

transcript counts, whereas secretion assays or physiological profiles may provide a time-series
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measure or a single quantitative summary. Our integrative analysis approach focused not only on

molecular signatures associated with the disease in each data modality but also used innovative

approaches to link them together and follow the cascade of functional consequences from genome

to physiology. Using the gene-network approach for RNA-seq data from sorted cell types, I cre-

ated functional modules that could be correlated with donor traits and linked to ATAC-seq data

to proportion disease risk across cell-specific modules. Our identification of insulin secretion,

ion signaling, and cilia-associated modules that are dysregulated in β cells corroborate previous

findings on signature pathways attributed to islet dysfunction and early-stage T2D. Overall, these

results are a natural consequence of our funnel-like investigation scheme where we begin from

broader, bulk molecular profiles, and trait-GWAS, to cell-specific signatures, and eventually to

specific groups of genes and variants within those cell types. Prioritization of these functional

modules and disease-associated variants for downstream experimental validation can be an effec-

tive starting point for effector transcript discovery and opportunities for targeted intervention.

4.1.3 Identification of RFX6 as critical for β cell function

Efforts to identify regulators of β cell function in type 2 diabetes have been underway for a long

time — initially through candidate gene testing approaches and later through GWAS — with lim-

ited success. For example, studies of monogenic disorders (MODY) of type 2 diabetes that are

characterized by single-gene defects and early onset, have identified many genes controlling β

cell function and formation and relevant to the disease onset and progression. However, such

disorders are driven by rare mutations in the coding sequences of the genes, resulting in direct

change in the activity of corresponding transcription factor or enzyme. For example, MODY 2

results from an abnormal glucokinase enzyme encoded by theGCK gene on chromosome 7, while

MODY 1, MODY 3-7 are caused by mutations in the transcription factor genes such as HNF4α,

HNF1α, PDX1, HNF1β, and NEUROD1. Mutations in many of these genes, and thus their dysregu-

lation, can cause diabetes, highlighting the pathway’s importance in human β-cell formation and

insulin production.
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However, in non-monogenic forms of diabetes, which constitutes the majority of diabetes

cases or individuals at the risk of developing diabetes, most disease pre-disposing variants are

common and non-coding, as evidenced by recent large scale GWAS for type 2 diabetes and related

traits, and make very small contribution to the disease risk (see subsection 1.2.1). Combined with

our understanding of the severe forms of the disease, non-coding mutations are hypothesized to

contribute to the disease risk through context-specific modulation of β-cell gene expression (see

subsection 1.2.2).

In chapter 3, my work integrating multiomic data from islet function, transcriptome, and tis-

sue architecture identified the dysregulation of RFX6 and its regulatory network as a key molec-

ular event in early T2D pathogenesis. RFX6 encodes for a transcription factor that functions

downstream of NEUROG3 and upstream of PDX1 in β cell development, and coding-defects in

the gene are known to cause neonatal and potentially fatal form of diabetes called Mitchell-Riley

syndrome.

Here I show that broad transcriptional changes in β cell implicated pathways related to ion-

transport, vesicle trafficking, exocytosis, and insulin secretion. Further, co-expression network

analysis and association with GWAS variants and physiological parameters allowed us to prior-

itize processes with physiological relevance that were more likely to be disease-causing rather

than disease-induced. I identified RFX6-containing β01 module to be (a) significantly associated

with insulin secretion, (b) enriched for dysregulated genes, and (c) enriched to overlap T2DGWAS

risk variants, emphasizing the central role of RFX6 in β-cell defect driven disease development. In

fact, a previous study which looked at bulk chromatin accessibility in pancreatic islets found that

T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X-binding

(RFX) footprints and uniformly disrupt the RFX motifs at high-information content positions.

Overall, this integrative work identifies RFX6 as critical for β-cell function in early-stage T2D

and show that common genetic variation linked to the type 2 diabetes, unlike monogenic defects,

disrupts the regulatory context of RFX6 gene resulting in a cascading effect leading to irreversible

changes in β-cell homeostasis.
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a b

Extended Data Figure 9 (related to Figure 5)

Figure 4.1: RFX6-mediated chromatin, transcriptome, and insulin secretion dysregulation in
human β cells. (a) Major β cell-intrinsic and islet microenvironment alterations that define islet dysfunc-
tion in early-stage T2D. Observations from transcriptomic and histologic studies revealed no change to
endocrine cell composition but evidence of dysregulated β cell processes and modest changes to intraislet
vascular and immune cell populations. Insulin secretion was reduced and persisted in a nondiabetic en-
vironment. (b) RFX6 knockdown using a primary human pseudoislet system resulted in dysregulated
vesicle trafficking and ion transport pathways, mediated by chromatin architectural changes overlapping
with T2D GWAS variants. This led to reduced insulin secretion, confirming the critical role of RFX6 in
human β cell function. Figure created by Diane C. Saunders for [268].
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4.2 Contributions

In summary, the contributions of my thesis are as follows:

1. The first to be published single-cell resolution chromatin accessibility map of human pan-

creatic islets, followed closely by a similar study from a different group [44]. We identified

constituent cell types within the islets based on their unique epigenomic signatures and

using those cell-type-specific signatures, we showed that:

(a) β cell chromatin accessibility peaks are enriched to overlap T2D GWAS signals and

are conditionally independent of α and δ cell chromatin peaks;

(b) A deep-learning based approach can be a valuable tool in the single-cell data analysis

where the sparse and noisy signal from low abundance cell types, δ cells for example,

can be imputed (“upscaled”) to fill the gaps using data from high-abundance cell types

such as α and β cells; and

(c) Co-accessibility between chromatin accessibility peaks using single-cell resolution

data can be used to link genetic signals to target genes can provide a higher resolution

variant-to-gene interaction map than and help us precisely identify targets that are

otherwise not identified by GWAS.

2. A multimodal, integrative analysis framework to investigate pancreatic islet cell types (α,

β, and whole islets) between early-stage T2D and healthy individuals for identification

of central transcriptional regulators driving β cell dysfunction in short-duration T2D. We

found that:

(a) Impaired β cell function, a hallmark of early-stage T2D, persisted ex vivo and in non-

diabetic environments; in contrast, α cell function was not changed;

(b) Islet endocrine composition was unchanged though there were modest alterations to

the islet microenvironment in endothelial and immune cells;
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(c) Transcriptional network analysis proportioned T2D genetic risk (disease predisposi-

tion) into cell- and context-specific gene modules with specific functional properties,

and

(d) RFX6 emerged as a highly connected hub transcription factor that was reduced in

T2D β cells and associated with reduced glucose-stimulated insulin secretion.

4.3 Limitations and future work

There are many new directions that emerge from our findings with exciting new questions to

pursue. In this section, I consider several possibilities, including addressing limitations of many

approaches considered, that would further improve our understanding of T2D and also allow us

to extend it to other complex, polygenic diseases.

4.3.1 Mapping islet heterogeneity across disease and donor develop-

ment stages

In chapter 2, I presented results from pancreatic islet tissue obtained from a single healthy donor.

However, since then, a similar study containing >15,000 nuclei from three donors has been pub-

lished [43], and many more are underway. For example, the recently published Tabula Sapiens

study analyzed single-cell transcriptomic data across multiple human organs including pancreas

[255]. The increased number of donors and nuclei provides a unique opportunity to combine and

meta-analyze multiple islet single-cell RNA and ATAC-seq datasets. This will allow us to study

donor variation, heterogeneity in cell populations such as distinct cell-states, and an increased

statistical power to detect chromatin features, including loops, at GWAS loci [81]. Finally, with

enough donors and nuclei, one may also do single-cell resolution QTL studies using the joint gene

expression and chromatin accessibility data collected from the same cell. This will help with vari-

ant prioritization and identification of functional SNPs. Finally, while our analysis was limited

to early-stage T2D and healthy individuals, T2D is a progressive disease, and future studies can

115



benefit from analyses that aim to discover multiomic dynamic changes across diverse conditions

and across different stages of development and disease state.

4.3.2 Integrating population data to explore genotype-phenotype land-

scape

Determining the phenotypic consequences of genetic variation affecting a gene and its regulatory

network is further made difficult by the heterogeneity of the trait. In chapter 3, our integrative

analysis identified RFX6 gene and its extended regulatory networks as critical for β cell function

— a finding validated through knockdown experiments in pancreatic pseudoislets. Although

we showed that T2D GWAS variants are enriched to overlap β cell regulatory regions for the

genes linked to the RFX6-containing module, we did not show a causal relationship between

the genetic variation affecting RFX6 expression and the risk of T2D and related phenotypes. A

future approach to establish such a causal relationship can use islet eQTL results for RFX6 and

population genetics data from biobanks in a mendelian randomization (MR) framework [78]. MR

methods are increasingly being used to account for unobserved confounding in observational

studies and have been successfully deployed for studying many cardiovascular diseases [83] as

well as T2D [248]. Further discussion on using MR approach can be found in previous work [7,

83].

4.3.3 Network approaches to discover higher order interactions

Networks provide a powerful way of visualizing interactions in a complex system and infer rela-

tionships. For example, within a cell, interactions between different proteins or proteins with the

DNA can be assayed to create protein-protein interaction or protein-DNA interaction networks.

In this dissertation, we utilized networks to model two types of interaction. In the first instance in

chapter 2, we used Cicero to model interaction between genomic elements using co-accessibility

and estimate enhancer-gene interactions for gene regulation. This allowed us to link genetic
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variation in the regulatory regions to putative target genes. In chapter 3, we used weighted gene

co-expression networks to identify genes that perform in a coordinated manner in islet cell types

across disease conditions. This allowed us to identify module level drivers of islet function and

predict function of genes and the consequence of their disruption in the disease condition. Using

these approaches in unison with other data modalities, we were able to derive insights into key

disease-driving cellular mechanisms. However, biological networks and their topological anal-

ysis constitute a complex sub-field in itself and our approaches present a limited scope of what

is possible. Below I highlight a few limitations of the approaches considered, and how we can

address them in a future study.

First, these network approaches we considered rely on the guilt-by-association, a heuristic

that has been broadly applied in genomics to characterize gene function [279]. However, the

input data to these approaches is typically processed through several steps that may influence

the final topology of the network. For example, coverage and quality of the data, normalization

method used, the biological and experimental context in which the data was collected, confound-

ing variables, the number of genes or features used to create the network, and finally how many

samples we have. While WGCNA is quite robust to the choice of data normalization scheme and

has been shown to work well for the sample sizes considered in our study, a future study may

benefit from additional number of samples and potentially using alternative network creation

approach discussed later in this section.

Second, creating networks or inferring biological insights from the network relationships of-

ten requires selecting arbitrary cut-off thresholds based on an a-priori requirement, but these

assumptions might not be correct. For example, Cicero, used in chapter 2, generates a list of

pairwise co-accessible genomic regions but which correlations are significant for further explo-

ration requires selecting a cutoff. In our work, we selected cutoff using orthogonal validation of

co-accessible peak pairs using experimental chromatin looping data. Clearly, such a validation

approach will not be possible in absence of such data and would limit the usability of the ap-

proach. In chapter 3, we used WGCNA which constructs a scale-free network topology of genes.
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Figure 4.2: Future approaches to create and study networks frommultiomics data. Using cell type
or condition specific multiomic data such as gene expression (from RNA-seq) and chromatin accessibility
(from ATAC-seq) can be used with robust partial correlation approaches to create variety of networks
and infer hub genes and transcription factors, their interactions, and compare differences in the network
wiring between the two conditions.

Although it tries to reduce the influence of arbitrary cut-off thresholds, a key parameter β (R2 fit)

must be chosen to meet the requirement of the scale-free topology — an assumption that has been

shown to be applicable only to a small fraction of biological networks [189]. Further, one may

choose different parameters that influence the size of the modules and how genes are clustered.

In the absence of a statistical measure, designing experiments for sample size or evaluating the

robustness and stability of modules becomes challenging.

Third, the networks created in our work primarily relied on pairwise correlation to compute

similarity between different genes or genomic elements. Causal relationships, however, may

not be directly related in a one-to-one fashion (first-order interaction) and may instead operate

through a cascade of interactions. Because correlation networks represent correlation coeffi-

cients in a pairwise manner, they do not capture the higher-order interactions. For example, a
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genetic variant in a regulatory element may influence the expression of a transcription factor

which in turn modulates the expression of a target gene. One way to address this limitation is to

use partial correlation networks [79, 221]. Partial correlation coefficients that form the basis of

these networks are calculated for pairs of genes or genomic elements when all other variables are

considered [195]. Consequently, partial correlations represent direct associations, whereas corre-

lation analyses do not distinguish between indirect and direct associations. The partial correlation

approach has been successfully applied to transcriptome data from yeast, cell lines, tumors, and

case-control human disease tissues [120] and can be extended to our study as well.

Finally, creating networks for different cell types or disease conditions provides a unique op-

portunity to compare the networks and identify differences between the two conditions from a

network biology perspective. For example, the WGCNA approach implements a module presev-

tation metric that compares the gene modules between two different networks allowing one to

discover modules that capture the unique properties of the cellular state in a condition [100, 200].

Further, comparing networks can reveal context-specificity of genes and their gene regulatory

pathways. Using data from our work, differential network approaches can be applied to tran-

scriptome data from T2D and ND β and α cells to infer gene functions and pathways that might

have been rewired.

In summary, network analysis approaches, including a few discussed in this work, present

many possibilities for discovering biological insights. Inferring the regulatory network of RFX6

and its interacting partners, changes in the RFX6 network across cell types and disease conditions,

as well as identification of other hub genes and module drivers of islet function are exciting

questions to pursue.

4.3.4 Translating our findings into clinical knowledge and practice

The ultimate goal of any research finding is to translate it into practice and policy for better

patient and healthcare outcomes. Complex diseases, such as T2D, present significant challenge

to the translation pipeline due to the combination of risk factors that are difficult to study and
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quantify and hence develop therapies for. For T2D, the first line of treatment involves environ-

ment control and lifestyle changes such as diet and exercise, followed by use of fasting-glucose

lowering drugs as a metformin [224]. However, achieving a good metabolic control of T2D over

long term requires a holistic understanding of the multifactorial pathogenesis of the disease and

development of personalized medicine to deliver unique care and treatment options to each pa-

tient. Therefore, identifying biomarkers to quickly assay and establish the risk of the disease at

early-stage or pre-diabetic stage and determine effective treatment options are critical goals for

current and future studies focusing on T2D.

In this work, we identified RFX6 transcription factor as an important regulator (“biomarker”)

for β cell function and showed that disruption of RFX6 gene expression leads to reduced insulin

secretion in β cells. However, a future study might wish to build upon this finding and try to

identify the exact genetic cause of RFX6 dysregulation and the cascade of pathways that are af-

fected due to its disruption. Having this knowledge will allow one to develop specific therapeutic

interventions or drug targets or screen patients to determine the best course of treatment.

Overall, moving forward in answering these questions would enable precision therapeutics

and develop pharmacological therapies for T2D as we better understand how genetic variants

affect islet cell functions in orchestrating disease mechanisms.
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APPENDIX A

Genetic Effects on Liver Chromatin Accessibility

Identify Disease Regulatory Variants

A.1 Foreword

This appendix is included to showcase applications of ATAC-seq to tissue from human liver –

an example of a non-pancreatic organ that is critical to glucose homeostasis and other metabolic

disorders. As a middle-author on this publication, I contributed to the project discussion, ATAC-

seq data analysis (QC and processing), allelic bias mapping, figure design (Figure A.1A, and Fig-

ure A.3A), and manuscript methods writing and reviewing.

The full list of acknowledgements with the declaration of interest, funding agencies, and data

and code availability can be found in online version of the manuscript referenced in [53]. The

supplementary data and figures referenced in this chapter are not included in the dissertation but

can be obtained online.

A.2 Abstract

Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci in-

fluence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help

identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs

have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver
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tissue in 20 liver samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver

tissue promoter and enhancer states and frequently disrupt bindingmotifs of transcription factors

expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chromatin in-

teractions, correlation with promoter accessibility or gene expression, and colocalization with ex-

pression QTLs. Using GWAS signals for 19 liver function and/or cardiometabolic traits, we iden-

tified 110 colocalized caQTLs and GWAS signals, 56 of which contained a predicted caPeak target

gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed al-

lelic differences in protein binding and transcriptional activity. These caQTLs contribute to the

epigenomic characterization of human liver and help identify molecular mechanisms and genes

at GWAS loci.

A.3 Introduction

Genome-wide association studies (GWASs) have identified thousands of loci associatedwith com-

plex traits, but the vast majority of variants fall outside the coding region. As a consequence, the

causal variants, molecular mechanisms, target genes, and tissues of action for most loci have

not been characterized. Studies of gene expression quantitative trait loci (eQTLs) have been

instrumental in identifying plausible target genes and tissues for GWAS loci [93]. Chromatin

conformation capture techniques, such as Hi-C, have identified variants at GWAS loci that phys-

ically interact with gene promoters [125]. However, additional approaches are needed to further

pinpoint functional variants and to identify how these variants alter gene expression.

Variants at GWAS loci are enriched in transcriptional regulatory elements, which are typically

marked by chromatin accessibility, in trait-relevant tissues [52]. Recent studies have identified

chromatin accessibility QTLs (caQTLs), many of which overlap transcription factor (TF) binding

sites and motifs [4, 25, 67, 92, 135, 145]. A subset of caQTLs are colocalized with eQTLs and

GWAS loci, suggesting that variants at these loci influence gene expression and GWAS traits by

altering chromatin accessibility [4, 25, 67, 92, 135, 145]. However, caQTLs have been mapped in
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a limited set of human tissues. Mapping caQTLs in additional tissues and cell types is valuable

to characterize the transcriptional regulatory mechanisms for a larger set of GWAS loci.

Liver is involved in numerous processes, including lipid metabolism, glucose storage, drug

metabolism, and immune response [258]. Several studies have mapped eQTLs in liver tissue, and

liver eQTLs are colocalized with GWAS loci for lipid, drug response, and other traits [35, 82, 244].

Lipid GWAS loci are enriched in regulatory chromatin states, including enhancers and promoters,

in HepG2 hepatocytes [277]. QTLs for the active regulatory element histone marks H3K27ac and

H3K4me3 have been identified in liver tissue, including a subset colocalized with liver eQTLs and

GWAS loci [35]. Chromatin accessibilitymarks active regions containingH3K4me3 andH3K27ac,

as well as poised promoters and enhancers that often do not display these histone marks [51, 141].

Consequently, mapping caQTLs in liver tissue can help functionally characterize GWAS loci that

act by altering gene expression in liver.

In this study, we jointly mapped genotypes, gene expression, and chromatin accessibility in

liver tissue from 20 organ donors and identified caQTLs in liver tissue. We predicted the impact of

caQTL variants on TF binding and predicted caQTL target genes using four approaches. Finally,

we used caQTLs, TF binding motifs, and target gene links to predict mechanisms at GWAS loci

for multiple traits.

A.4 Results

A.4.1 Joint profiling of gene expression and chromatin accessibility in

human liver tissue

We obtained liver tissue from 20 deceased donors from the St. Jude liver bank and profiled gene

expression using RNA-seq and chromatin accessibility using ATAC-seq [28] (Figure A.1A). All

RNA libraries had RNA integrity number (RIN) of at least 6.5, and the median RIN value was 8,

indicating that we extracted high-quality RNA. We identified 13,782 expressed genes, 13,317 of

which are on autosomal chromosomes. By generating triplicate ATAC-seq libraries, we obtained
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an average of 204 million high-quality autosomal ATAC-seq alignments (HQAAs) per sample and

all libraries had >13% of HQAAs within peaks and TSS enrichment > 4, indicating that we gen-

erated libraries from tissue with high signal-to-noise. We identified 223,265 consensus accessible

chromatin regions (peaks) with median peak width of 617 base pairs (Figure A.1B).

To predict the regulatory function of ATAC-seq peaks, we assigned peaks to liver tissue chro-

matin states from the Roadmap Epigenomics Project [52] and tested for enrichment of transcrip-

tion factor (TF) binding sites and motifs in peaks. Among all 223,265 peaks, 34% were located in

enhancers and 10% in promoters, and among the 50,000 most accessible peaks, ranked by median

DESeq2 normalized count across individuals, 54%were located in enhancers and 38% in promoters

(Figure A.1C). These results indicate that the strongest peaks were mostly located in promoters

and enhancers, as expected, but that weaker peaks observed in at least three individuals were

located in less well-characterized regions. We found 90 TF motifs enriched in peaks (E-value <

1 × 10−100), including motifs for HNF4G (MIM: 605966), FOXA family members (HNF3), CEBPB

[186] (MIM: 189965), the multifaceted protein CTCF [138] (MIM: 604167), and KLF family mem-

bers, which regulate numerous processes in liver [193]. Of 17 TFs with ChIP-seq data in liver

tissue [218], binding sites for all TFs were significantly enriched (permutation p < 1 × 10−3) in

ATAC peaks, and 11 TFs had over 90% of their binding sites within ATAC peaks, similar to pre-

vious findings [51]. Taken together, ATAC peaks marked previously annotated transcriptional

regulatory elements and TF binding sites in liver tissue.

We tested whether liver ATAC peaks were enriched for heritability of liver-relevant traits us-

Figure A.1 (following page): Joint profiling of gene expression and chromatin accessibility in
human liver tissue. (A) RNA-seq and ATAC-seq was performed in liver samples from 20 donors. (B)
Distribution of consensus ATAC peak widths in base pairs. (C) Percent of consensus ATAC peaks by chro-
matin state in liver tissue from the Roadmap Epigenomics Project. All peaks, gray; 50,000 most accessible
consensus peaks, black; quiescent represents unannotated regions. (D) Heritability enrichment of GWAS
variants for multiple traits in all 223,265 liver ATAC peaks using stratified LD score regression. Points rep-
resent fold enrichment (proportion of heritability divided by proportion of SNPs within ATAC peaks) and
error bars represent standard error. Significant enrichment (enrichment_p < 0.05), black; non-significant
enrichment (enrichment_p > 0.05), gray. (E) Comparison of the distribution of expression between genes
with and without an ATAC peak overlapping the transcription start site (TSS).
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ing stratified LD score regression [88]. We observed significant heritability enrichment (p < 0.05)

for 11 of 13 tested traits (Figure A.1D), and total cholesterol displayed the strongest enrichment

(enrichment = 14.2, p = 7.2 × 10−5). We also observed strong enrichments (fold enrichment > 10)

for LDL cholesterol and the liver enzymes. Heritability enrichment for cholesterol traits in liver

regulatory elements marked by H3K4me1 has been previously identified [88], consistent with

our results. As expected, we did not observe significant enrichment for rheumatoid arthritis and

body mass index. These results indicate that liver ATAC peaks are enriched for genetic variants

associated with liver-relevant traits.

We next determined whether genes with ATAC peaks at their transcription start site (TSS)

were more likely to be expressed compared to genes without TSS peaks. A larger proportion of

expressed genes had an ATAC peak directly overlapping the TSS (9,904 of 13,317, 74%) compared

to non-expressed genes (9,975 of 41,532, 24%). Similarly, genes with a peak at the TSS tended to

have higher expression than genes without a peak at the TSS (Figure A.1E; Kolmogorov-Smirnov

test, p < 2.2 × 10−16). Together, the data provide high-quality gene expression and chromatin

accessibility profiles in human liver tissue.

A.4.2 Identification of genetic variants associated with liver chromatin

accessibility

We identified chromatin accessibility quantitative trait loci (caQTLs) using RASQUAL [145] and

two distance thresholds: variants within 100 kilobases (kb) and within 1 kb of peak centers (Fig-

ure A.2A). Testing variants within 100 kb of peak centers, we identified significant caQTLs for

1,770 peaks (caPeaks), corresponding to 1,740 unique lead caQTL variants (Figure A.2A). For a

substantial portion of caPeaks, the lead caQTL variant was within 1 kb of the caPeak center (n

= 692, 39%, Figures S4B and S4C), and 654 of these 692 variants were within the caPeak. Test-

ing variants within 1 kb of peak centers, we identified a significant caQTL for 3,123 peaks (Fig-

ure A.2A). We likely identified more caQTLs using a smaller window size because of a reduced

multiple testing burden. We used this set of 3,123 caQTLs for all subsequent analyses unless noted
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otherwise.

We next tested whether any caQTLs were strongly influenced by a single sample. Of the 3,123

caQTLs, 355 were no longer significant when one specific sample was removed, but remained

significant when any other sample was removed. However, all but 6 remained nominally signif-

icant (p < 0.05). The most common influential sample (sample 459) accounted for only 48 of the

355 caQTLs (14%) and had the highest percent of HQAAwithin peaks, indicating that this sample

has high quality. Taken together, the vast majority of the caQTLs are not strongly influenced by

one sample.

To compare the RASQUAL model to another method that accounts for allelic mapping bias,

we used WASP to remove reads exhibiting allelic mapping bias [262] and then calculated allelic

imbalance (AI). 1,912 (81%) caQTLs identified by RASQUAL exhibited nominal (beta-binomial p <

0.05) and 1,112 (47%) exhibited genome-wide AI (FDR < 5%), all with the same direction of effect

as the caQTL. Lead caQTL variants and representative AI variants exhibiting nominal AI showed

strongly correlated effect sizes (Pearson’s R = 0.75, Figure A.2B). AI effect sizes tended to be

larger than caQTL effect sizes (Figure A.2B), possibly because AI was calculated using individual

variants whereas caQTLs were identified using entire peaks. Therefore, we conclude that allelic

mapping bias has no systematic effect on the caQTL results.

To determine the extent of shared genetic effects across different markers of transcriptional

regulatory elements, we compared the 3,123 caQTLs to 921 H3K27ac QTLs from a recent report

[35]. Of the 921 H3K27ac QTL peaks, 77 (8%) overlap a caPeak and have a lead variant in strong

LD (r2 > 0.8) with the caQTL lead. The 77 colocalized caQTL-H3K27ac QTL signals all showed

Figure A.2 (following page): Identification and characterization of caQTLs. (A) caQTLs identified
using variants within 100 kb or 1 kb of peak centers. (B) Comparison of effect sizes between caQTLs and
simple allelic imbalance (Pearson’s R = 0.75). The red line is the one-to-one line for caQTL effect sizes.
(C) Comparison of effect sizes between caQTLs and H3K27ac QTLs (Pearson’s R = 0.40). The red line is
the one-to-one line for caQTL effect sizes. (D) Comparison of the number of caPeaks and non-caPeaks
assigned to each chromatin state in liver tissue from the Roadmap Epigenomics Project. caPeaks, purple;
non-caPeaks, gray; quiescent represents unannotated regions. (E) Enrichment of caQTL variants in liver
chromatin states. Error bars represent 95% confidence intervals. ∗ indicates significant enrichment (p <
0.0071).
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the same direction of effect, and their effect sizes were moderately correlated (Pearson’s R = 0.40,

FigureA.2C).The largely distinct resultsmay be due to the small sample sizes, analysis differences,

and different genetic effects on the two epigenetic marks.

To predict the regulatory function of caPeaks, we compared caPeaks to liver tissue chromatin

states from the Roadmap Epigenomics Consortium [52]. Relative to non-caPeaks (eigenMT-

adjusted p > 0.5), caPeaks were more frequently located in enhancers (48.6% versus 33.0%) and

promoters (11.7% versus 9.3%) (Figure A.2D). caQTL variants were significantly enriched in en-

hancers (OR = 2.9), promoters (OR = 2.0), and transcribed regions (OR = 1.8) and depleted in

polycomb (OR = 0.5) and heterochromatin (OR = 0.6) states, which are associated with gene re-

pression and presumably inaccessible chromatin (Figure A.2E). Taken together, caQTLs showed

strong overlap with active transcriptional regulatory elements, with particularly strong enrich-

ment in enhancers.

To identify liver caQTLs that would not be identified in blood, we counted liver caPeaks that

overlapped macrophage ATAC peaks [4], using all macrophage ATAC peaks, not just caPeaks,

due to limited sample sizes. Of the liver caPeaks, 1,268 (41%) overlapped a macrophage ATAC

peak, suggesting that 59% of liver caQTLs mark regulatory elements not present in macrophages.

This estimate is likely conservative because we included macrophage ATAC peaks that do not

have caQTLs and demonstrates the importance of mapping caQTLs in a diverse set of tissues.

A.4.3 Disruption of transcription factor binding motifs by caQTLs

One way genetic variants may alter chromatin accessibility is by disrupting TF binding sites [67,

135, 145]. Among 4,585 variants within a caPeak and in strong LD with the caQTL lead, 3,132

(68%) variants altered the binding affinity of a TF motif (Figure A.3A). Of the 2,793 caPeaks con-

taining a variant, 2,249 (81%) contained at least one variant predicted to disrupt a motif, and

602 of these contained 2 or more predicted motif-disrupting variants. Motifs for many TFs were

disrupted by multiple caQTL variants, with 109 TF motifs disrupted by 20 or more variants. Dis-

ruption of motifs for 29 of these 109 TFs was significantly associated with caQTL status (logn
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OR > 0, p < 4.6 × 10−4) (Figure A.3B), including TFs from the HNF, FOXA, and CEBP families

[186], CTCF, and ATF2 (MIM: 123811). FOXA and CEBP factors can act as pioneer factors by

binding to inaccessible chromatin and initiating the establishment of accessible chromatin [173]

and ATF2 can alter chromatin structure to activate or repress transcription [149], suggesting that

this approach identifies TFs that may influence chromatin accessibility.

To investigate how often TFs bind the more accessible allele, we compared alleles associated

with higher chromatin accessibility to the motifs. Among 7,629 motifs for all TFs, the more

accessible allele matched the motif better for 4,770 motifs (63%, binomial p < 4.1 × 10−107). Simi-

larly, among 3,132 motifs for the highest expressed TF at each variant, the more accessible allele

matched themotif better for 1,953motifs (62%, binomial p < 8.0 × 10−44). When restricting analysis

to 993 observations of the 29 TFs for which motif disruption is associated with caQTL status, the

more accessible allele matched the motif better for 834 motifs (84%, binomial p < 5.1 × 10−111). TFs

exhibited variation in the percent of motifs that matched better to the more accessible allele (Fig-

ure A.3C). For 11 TFs, including HNF4A (MIM: 600281), ATF4 (MIM: 604064), ERF (MIM: 611888),

and FOXA2 (MIM: 600288), more than 90% of stronger motif matches corresponded to the more

accessible allele, while for SPI1 (MIM: 165170) only 56% of stronger motif matches corresponded

to the more accessible allele. These results suggest that TFs typically, but not always, bind to the

more accessible allele.

A.4.4 Identifying putative target genes for caPeaks

Connecting caPeaks to their target genes is challenging, particularly when the caPeaks are distal

to transcription start sites (TSSs). Individual approaches for identifying target genes have limita-

tions and may not always show a direct regulatory relationship between a caPeak and gene. To

address these challenges, we used four approaches to connect caPeaks to genes (Figure A.4A).

First, we identified caPeaks proximal (−2 kb/+1 kb) to TSSs of genes expressed in liver. Of 3,123

total caPeaks, 114 (4%) were proximal to the TSS of at least 1 gene. Among these 114 caPeaks, 15

were proximal to the TSS of two or three genes. This approach identified 131 unique caPeak-gene
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Figure A.3: Disruption of TF binding motifs by caQTL variants. (A) Allele affinities for TF binding
and chromatin accessibility for variants within caPeaks and in strong LD with the caQTL lead variant (r2 >
0.8). (B) Association of caQTL status with motif disruption status. Only the 109 TFs with at least 20 motifs
disrupted by caQTL variants were included in the analysis, and only the 29 significant associations (p < 4.6
× 10−4) are shown. Error bars indicate 95% confidence intervals. (C) Percent of disrupted motifs for which
the allele with higher chromatin accessibility matched the motif better. Percents are shown for the 29 TFs
that had at least 20 motifs disrupted by caQTL variants. Black line, percent for all disrupted motifs across
all tested TFs; red line, average percent across the 29 TFs.
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connections (Figure A.4A).

Second, we used liver tissue promoter capture Hi-C2 to identify caPeaks that physically inter-

act with gene promoters. We identified 329 distal caPeaks (>15 kb from any promoter as defined

in the Hi-C analysis) that interact with promoters for 451 genes, including a caPeak that interacts

with the promoter of SNX10 (MIM: 614780; Figure A.4B and S6A). The caPeak near SNX10 was

identified even though only two genotypes were observed in these samples, demonstrating that

caQTL effect sizes can be large. Among caPeaks that overlapped the promoter of one gene and

interact with the promoter of another gene, we identified an additional 104 caPeaks that interact

with promoters of 190 genes. Combining promoter-distal and promoter-promoter interactions,

we identified 697 caPeak-gene connections (Figure A.4A).

Third, we identified caPeak sizes that either correlated with expression level of nearby genes

or with the size of ATAC peaks at promoters. More caPeaks were correlated with promoter ATAC

peaks than with gene expression level; 120 caPeaks were significantly correlated (FDR < 5%) with

promoter ATAC peaks while only 2 caPeaks were correlated with gene expression (FDR < 5%),

resulting in 121 unique caPeaks because gene RP11-101E14.2 had both types of correlations (Fig-

ure A.4A). When using the same p value threshold for both analyses (p < 2.9 × 10−4), 5 additional

caPeaks were correlated with gene expression. As an example at a regulatory element previ-

Figure A.4 (following page): Prediction of target genes for caPeaks using four approaches. (A)
Illustrations of four approaches to predict caPeak target genes. (B) Hi-C chromatin contact shown as an
arc between caPeak191932 and the SNX10 promoter. Selected ATAC-seq signal tracks are shown for each
caQTL genotype of rs12534816. More accessible homozygotes, purple; heterozygotes, black. (C) Genome
browser image showing the correlation across rs12740374 genotypes of caPeak9372 and a peak at a SORT1
promoter. The purple arrow indicates the caPeak and the gray arrow indicates the promoter peak. (D)
The same peak correlation with points representing normalized peak counts of individual samples colored
by rs12740374 genotype. (E and F) SORT1 eQTL associations at the signal colocalized with the caQTL for
caPeak9372 (E) and caQTL associations with caPeak9372 (F). In both plots, the caQTL lead variant within
1 kb of the peak center is indicated by a purple diamond and LD is based on 1000G phase 3 Europeans. (G)
Comparison of directions of effect among all colocalized caQTL and eQTL signals. The A allele represents
the more accessible allele than C, and more red marks indicate higher gene expression. (H) UpSet plot
comparing the number of shared and unique caPeak-gene links identified by the four approaches. It is not
possible for a caPeak-gene pair to be predicted using all four methods because if a caPeak is TSS proximal,
it cannot form aHi-C loopwith the same gene and it cannot be a distal caPeak correlated with the promoter
peak for the same gene.
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ously shown to regulate SORT177 (MIM: 602458), caPeak9372 is positively correlated with a peak

proximal to a SORT1 TSS (peak9400, Spearman rho = 0.76, p < 1.6 × 10−4; Figure A.4C-D) and nom-

inally correlated with SORT1 expression (Spearman rho = 0.69, p < 1.2 × 10−3). The vast majority

of peak-peak correlations (167 of 173, 97%) are positive, suggesting that higher caPeak accessi-

bility is usually associated with higher accessibility of connected promoter peaks. Using either

caPeak-promoter peak or caPeak-gene correlations, we identified 196 caPeak-gene connections

(Figure A.4A).

Finally, we identified caQTLs for which the lead variant exhibited high LD (r2 > 0.8) with an

eQTL lead variant for 15,418 autosomal genes from a liver tissue eQTL meta-analysis of 1,183

individuals [82]. Of 3,119 unique caQTL lead variants, 414 (13%) were in strong LD with at least

1 eQTL lead variant, which is similar to the percentage reported in a previous caQTL study [67].

Among caQTL lead variants, 71 were in strong LD with more than one eQTL lead variant, sug-

gesting that some caPeaks may affect expression of multiple genes. In total, we identified 463

target genes for 415 caPeaks, representing 506 unique caPeak-gene connections (Figure A.4A).

For example, we identified a caQTL signal with the same variants as an eQTL signal for SORT1

(Figure A.4E-F). At connected loci, the allele associated with higher chromatin accessibility was

usually associated with higher gene expression (390 of 506 loci, 77%; Figure A.4G), suggesting

caPeaks frequently act as promoters or enhancers to gene expression. We obtained a similar re-

sult when restricting to caQTL variants associated with only one peak and colocalized with eQTL

variants associatedwith only one gene (273 of 337 loci, 81%). Of the 506 caQTL-eQTL signals colo-

calized based on LD, 28 showed strong evidence of colocalization using coloc (PP4 > 0.8) [95], and

an additional 48 showed suggestive evidence of colocalization (PP4 > 0.5 but < 0.8). Of the 430

signals that did not show suggestive evidence of colocalization, 409 (95%) did not have sufficient

power to detect colocalization (PP0+PP1+PP2 > 0.5) and no signals showed evidence of separate,

but not colocalized signals (PP3 > 0.5). Therefore, we conclude that the study is underpowered to

detect colocalizations using coloc.

Together the four methods identified a total of 1,461 caPeak-gene connections, although the
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approaches showed low overlap. Only 69 caPeak-gene connections were predicted by two meth-

ods, and no connections by three methods, likely due to the low power of many of the approaches

(Figure A.4H).The 69 caPeak-gene associations consist of 67 unique caPeaks and 67 unique genes;

two caPeaks had two target genes. It is not possible for a caPeak-gene pair to be predicted using

all four methods because if a caPeak is TSS proximal, it cannot be found within the distal end

of a Hi-C loop >15 kb from the same TSS and it cannot be a distal caPeak correlated with the

promoter peak for the same gene. Thus, the only method that can corroborate TSS proximity

is caQTL-eQTL colocalization. Of the 131 caPeak-gene connections identified by TSS proxim-

ity, 32 (24%) were supported by caQTL-eQTL colocalization. In addition, when considering peak

correlations for which the distal caPeak was tested by other approaches, 98 of 307 (32%) caQTL-

eQTL colocalizations and 108 of 436 (25%) Hi-C loops showed at least nominal (p < 0.05) evidence.

These methods are limited by power and technical factors, suggesting that the 69 caPeak-gene

connections identified by two methods may be a conservative estimate. This integrated approach

predicted a target gene for 861 of 3,123 caPeaks (28%), suggesting that caPeaks frequently interact

with genes.

A.4.5 Prediction of regulatory mechanisms at GWAS loci

To identify genetic variants that may influence disease by altering chromatin accessibility, we

identified colocalized caQTL and GWAS signals, based on strong LD (r2 > 0.8) between lead

caQTLs and lead GWAS variants. Using GWAS variants for 19 traits relevant to liver function

and cardiometabolic traits from the NHGRI-EBI GWAS catalog [30], we identified 110 potentially

colocalized caQTL and GWAS signals, corresponding to 111 caPeaks, because one caQTL signal

was associated with two caPeaks. We identified at least one colocalized caQTL for 15 of the 19

traits, and of the GWAS signals for these traits, liver enzymes showed the highest percentage

of potentially colocalized caQTLs (14 signals, 18%) (Table A.1). For traits with at least 5 GWAS-

caQTL signals, we identified a relatively high percentage of colocalized signals (>5%) for total

cholesterol and LDL cholesterol, consistent with the involvement of liver in lipid metabolism
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[258]. As a negative control, we observed a relatively low percentage (<2%) of GWAS signals

colocalized with liver caQTLs for height and rheumatoid arthritis.

Table A.1: Colocalized GWAS-caQTL signals by trait

Trait Number of GWAS
signals a

Number of colocal-
ized caQTL-GWAS
signals b

Percent of colocal-
ized caQTL-GWAS
signals c

Liver enzymes 77 14 18.2
Total cholesterol 292 18 6.2
Glucose 54 3 5.6
Insulin 18 1 5.6
LDL cholesterol 240 13 5.4
Bilirubin 20 1 5.0
HDL cholesterol 314 12 3.8
C-reactive protein 81 3 3.7
Triglycerides 279 10 3.6
Cardiovascular disease 454 14 3.1
Body mass index 986 29 2.9
Blood pressure 1,540 38 2.5
Type 2 diabetes 268 5 1.9
HbA1c 66 1 1.5
WHRadjBMI 209 3 1.4
Glycated albumin 2 0 0.0
Liver injury 17 0 0.0
NAFLD 9 0 0.0
Serum albumin 15 0 0.0
LDL, low-density lipoprotein; HDL, high-density lipoprotein; WHRadjBMI, waist-hip ratio adjusted for BMI;
NAFLD, non-alcoholic fatty liver disease.

aCounted as lead GWAS variants not in high LD (r2 < 0.8) with another.
bColocalized if the caQTL lead variant was in strong LD (r2 > 0.8) with the GWAS lead.
cPercent of all GWAS signals that are colocalized with a caQTL.

Only 26 of the 143 (18%) liver caQTL-GWAS colocalizations were observed using blood caQTL

datasets. For liver enzymes, total cholesterol, and LDL cholesterol, respectively, only 3 of 14, 3 of

18, and 2 of 13 liver caQTL-GWAS colocalizations were observed in blood. GWAS signals for liver

enzymes were colocalized with a higher percentage of liver caQTLs (0.51%) than each of the blood

cell type caQTLs (0.06%–0.12%), whereas GWAS signals for rheumatoid arthritis were colocalized

with a higher percentage of blood caQTLs (0.09%–0.21%) than liver caQTLs (0.06%). However,

many of these colocalization differences between liver and blood may be due to limited caQTL
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sample sizes. Larger studies using identical caQTL pipelines are needed to robustly identify cell

type-specific caQTL-GWAS colocalizations.

To identify plausible regulatory mechanisms at GWAS loci, we integrated our GWAS-

colocalized caQTLs with TF motif-disrupting variants and predicted caPeak target genes. Of the

111 caPeaks at potentially colocalized caQTL-GWAS signals for liver function or cardiometabolic

traits, 85 harbored a TF motif-disrupting variant, 56 had a predicted target gene, and 45 of these

overlapped with both types of data. The gene with a TSS closest to the GWAS lead variant was

predicted to be a target gene for 25 of 56 caPeaks (45%).

We identified seven liver function or cardiometabolic GWAS-caQTL colocalized signals with

strong evidence of regulatory mechanisms. At these GWAS loci, the caPeak had a target gene

identified by two approaches and harbored TF motif-disrupting variants (Table A.2). We iden-

tified colocalized caQTL, eQTL, and GWAS signals and a correlated caPeak-promoter peak pair

(Table A.2; Figure A.4C–F) at the SORT1 locus associated with LDL cholesterol for which the al-

ternate allele (rs12740374-T) has been shown to create a CEBP binding site and increase hepatic

SORT1 expression [183]. At a less well-characterized locus, the caQTL signal with lead variant

rs13395911 associated with caPeak119621 is colocalized with GWAS signals for plasma liver en-

zyme levels in European [40] and Asian [129] individuals and an eQTL for EFHD111 (MIM: 611617;

Figure A.5A-C and S7). Increased accessibility corresponds to higher EFHD1 expression level and

higher liver enzyme levels. caPeak119621 physically interacts with the promoter of EFHD1 in liver

tissue promoter capture Hi-C data [125] (Figure A.5D), further suggesting that caPeak119621 may

Figure A.5 (following page): A plausible regulatory mechanism at the EFHD1 locus for plasma
liver enzyme levels. (A–C) GWAS association with plasma levels of the liver enzyme alanine transami-
nase in Japanese individuals (A), eQTL association for EFHD1 (B), and caQTL associations for caPeak119621
(C). For all three plots, the caQTL lead variant within 1 kb of the peak center is indicated by a purple dia-
mond and LD is based on 1000G phase 3 East Asians (A) or Europeans (B and C). Additional plots are shown
in Figure S7. (D) Hi-C chromatin contact shown as an arc between caPeak119621 and the EFHD1 promoter.
Selected ATAC-seq signal tracks are shown for each rs13395911 genotype. More accessible homozygotes,
purple; heterozygotes, black; less accessible homozygote, gray. (E) Transcription factor ChIP-seq peaks
in liver tissue from ENCODE that overlap caPeak119621. (F) Sequence logo plot for the FOXA2 motif s
disrupted by caQTL variant rs13395911 (arrow). The motif match is shown on the negative strand, and
variant alleles in (D) and (E) are shown on the positive strand.
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affect EFHD1 expression. CaPeak119621 does not overlap an ATAC peak in macrophages [4]. The

peak overlaps ChIP-seq peaks for 12 TFs in liver (Figure A.5E), and rs13395911 disrupts motifs

for eight TFs expressed in liver. The motif with the largest difference between rs13395911 alleles

is for FOXA2, and the allele with higher chromatin accessibility matches the motif better (Fig-

ure A.5F).These and other connections provide potential regulatory mechanisms linking variants

to regulatory element, transcription factors and genes that may influence the GWAS traits.

A.4.6 Identification of a putative functional variant at the LITAF locus

Near LITAF (MIM: 603795), which encodes lipopolysaccharide (LPS)-induced TNF factor, we iden-

tified a caQTL signal for caPeak75869 and tested variants for allelic differences in transcriptional

activity and protein binding. This caQTL signal is potentially colocalized with a GWAS signal for

LDL cholesterol [140] and an eQTL signal for LITAF [82] (Figure A.6A-B and S8). caPeak75869

loops to the promoter of LITAF in liver tissue promoter capture Hi-C [125] (Figure A.6C). ca-

Peak75869 contains the lead caQTL variant rs57792815 (caQTL p < 5.0 × 10−17) and two addi-

tional variants in strong LD with the caQTL lead, rs3784924 (r2 = 0.95) and rs11644920 (r2 =

0.98). The haplotype associated with higher accessibility consists of the rs57792815-T, rs3784924-

A, and rs11644920-A alleles. We tested a 666-bp DNA construct spanning the three variants

for haplotype differences in transcriptional activity using luciferase reporter assays, testing the

construct in two orientations relative to a minimal promoter. Given that LITAF is involved in

lipopolysaccharide (LPS)-stimulated immune response [184], we tested transcriptional activity in

four cell types: HepG2 hepatocytes, THP-1 monocytes, THP-1 differentiated macrophages, and

LPS-stimulated THP-1 macrophages. In all four cell types, the forward orientation construct con-

taining the alleles associated with higher accessibility showed significantly higher transcriptional

activity than the construct containing the other alleles, with the strongest differences observed

in hepatocytes (fold change = 2.49, p = 2 × 10−4) and LPS-stimulated macrophages (fold change =

1.39, p = 7 × 10−4; Figure A.6D). The same haplotype showed significantly higher transcriptional

activity in the reverse orientation for hepatocytes (p = 1 × 10−4) and unstimulated macrophages
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(p = 0.02) and a trend toward higher transcriptional activity in the other cell types (Figure S8G).

Although allelic differences were observed in all four cell types, caPeak75869 does not overlap

an ATAC peak in macrophages4. We next tested each of the three haplotype variants for allelic

differences in protein binding using nuclear extract from HepG2 cells. Only rs11644920 showed

allele-specific binding, with the T allele showing increased binding (Figure A.6E). caPeak75869

contained liver ChIP-seq binding sites for numerous TFs and all three variantswithin the peak dis-

rupted motifs (Figure A.6F). We focused on the motif disrupted by rs11644920 because it was the

only variant that showed allelic differences in binding in the EMSA results. Variant rs11644920

disrupted a motif for ATF2, and the A allele matched the motif better, which is also the allele asso-

ciated with higher chromatin accessibility. This result contrasts the EMSA results, which showed

greater binding for the T allele. Together, these results suggest that altered transcription factor

binding at rs11644920 and increased chromatin accessibility of the regulatory element marked by

caPeak75869 may lead to increased transcriptional activity and higher LITAF expression.

Figure A.6 (following page): Identification of a putative functional variant at the LITAF locus
for LDL cholesterol. (A and B) eQTL association for LITAF (A) and caQTL associations for caPeak75869
(B) at an LDL cholesterol GWAS signal. In both plots, the caQTL lead variant within 1 kb of the peak
center is indicated by a purple diamond, and LD is based on 1000G phase 3 Europeans. Additional plots
are shown in Figure S8. (C) Hi-C chromatin contact between caPeak75869 and the LITAF promoter. Se-
lected ATAC signal tracks are shown for each rs57792815 genotype. More accessible homozygotes, purple;
heterozygotes, black; less accessible homozygotes, gray. (D) Transcriptional activity of a 666-bp DNA ele-
ment spanning caPeak75869 and containing rs3784924, rs11644920, and rs57792815 in HepG2 hepatocytes,
THP-1 monocytes, THP-1 differentiated macrophages, and LPS-stimulated THP-1 macrophages. The DNA
element was tested in the forward orientation relative to the genome (reverse orientation in Figure S8G).
V, empty vector; H1, haplotype 1 of more accessible alleles rs3784924-A, rs11644920-A, and rs57792815-T;
H2, haplotype 2 of less accessible alleles rs3784924-G, rs11644920-T, and rs57792815-C. Symbols represent
4–5 independent clones for each haplotype tested in duplicate wells; bars indicate mean ± standard devia-
tion; p values from t tests of allelic differences. (E) EMSA using HepG2 nuclear extract (NE) shows allelic
differences in protein binding for rs11644920. rs3784924 and rs57792815 are shown in Figure S8H. Green
arrow, band represents T-allele-specific binding; black arrows, T-allele-preferential binding; white arrow,
non-specific binding. Competition probes were unlabeled and included in 10-fold excess. (F) TF ChIP-seq
peaks in liver tissue from ENCODE that overlap caPeak75869.
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A.5 Discussion

We profiled chromatin accessibility in 20 individuals and identified caQTLs in human liver tissue.

caQTL variants frequently disrupt TF binding motifs, and alleles that better match a motif often

have higher chromatin accessibility, consistent with TFs stabilizing chromatin in an accessible

state. We identified 1,461 putative caPeak-gene links using four approaches, suggesting that ca-

Peaks frequently regulate gene expression. We identified 110 caQTLs at GWAS signals, including

56 with a predicted caPeak target gene, identifying regulatory mechanisms that may be responsi-

ble for trait variation. Among variants at a colocalized caQTL, eQTL, and LDL cholesterol GWAS

signal near LITAF, one variant showed allelic differences in transcriptional activity and in vitro

TF binding. This study contributes to the epigenomic characterization of human liver tissue and

will aid in functional characterization of GWAS loci that act in liver.

Combining caQTLs, caPeak-gene links, and disrupted TF motifs helps identify mechanisms

at GWAS loci. At the well-characterized SORT1 GWAS locus for lipid and cardiovascular traits

[183], we showed that the previously described functional variant rs12740374 is associated with

chromatin accessibility and that the caPeak containing this variant is correlated with a peak at the

SORT1 promoter. We also identified plausible regulatory mechanisms at less well-characterized

loci. At a GWAS signal for BMI [136] and LDL cholesterol [140], we identified a caQTL potentially

colocalized with a PRMT6 (MIM: 608274) eQTL signal and observed that the caPeak overlapped

the PRMT6 TSS. PRMT6 has been shown to regulate hepatic glucose metabolism in mice [105].

Our data suggest that a variant at this locus may increase chromatin accessibility and alter TF

binding at the PRMT6 TSS, leading to higher PPRMT6 expression and decreased LDL cholesterol.

At a GWAS locus for plasma liver enzyme levels [40, 129], we predicted EFHD1 as a target gene

based on both caQTL-eQTL colocalization and a promoter capture Hi-C link. While EFHD1 is

expressed in liver tissue, the GTEx portal shows that expression is much higher in other tissues

[93], and the gene’s roles in liver have not been characterized [76]. The caPeak at this locus does

not overlap an ATAC peak in macrophages [4], but additional experiments, such as single nucleus

ATAC-seq, are needed to determine the relevant cell type within liver tissue. Our data suggest
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that EFHD1 may be a target gene at this locus and act through one or more of the cell types in

liver tissue. These and other results highlight the utility of caQTLs to identify mechanisms at

GWAS loci.

At the LITAF locus, we provided direct evidence that variant rs11644920 can alter transcrip-

tional regulation. Here, the caQTL, liver eQTL, and LDL cholesterol GWAS signals are colocal-

ized, and the variant, mechanism, and cell type responsible for these associations were unknown.

LITAF encodes a transcription factor that can mediate effects on inflammation [184], suggest-

ing a potential role in hepatocytes and/or macrophages in an inflammatory environment. We

showed that variants in the caPeak alter transcriptional reporter activity in hepatocytes, mono-

cytes, macrophages, and lipopolysaccharide-stimulatedmacrophages. In all cell types, the caPeak

showed a similar magnitude of enhancer activity and alleles showed differences in transcriptional

activity, suggesting that the variant may act in any or all of these cell types. The caPeak at this

locus does not overlap an ATAC peak in macrophages [4], but additional experiments, such as

single nucleus ATAC-seq, are needed to determine the relevant cell type within liver tissue. We

further provided evidence that rs11644920 alters protein binding, at least in vitro. Further study

is needed to provide direct evidence that these variants alter transcription of LITAF and how

altered levels of LITAF may affect cholesterol levels.

The maximum distance threshold between peaks and tested variants had a substantial impact

on caQTL detection. Analyzing variants within a narrow region around a peak reduced the mul-

tiple testing burden for nearby variants, whereas testing variants in a broader region allowed

identification of variants within one peak that may also influence another peak. A wide range of

distance thresholds have been applied to caQTL discovery, including variants within 1 kb and 20

kb of peak centers [67], 50 kb from peak ends [4], and 1 Mb from peak ends [92]. We found many

more significant results when using variants within 1 kb of peak centers compared to variants

within 100 kb of peak centers, potentially due to reduced multiple testing burden and low power

to detect long-range caQTL effects due to small sample size. Future caQTL studies with larger

sample sizes will be more powered to detect longer-range caQTLs.
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Due to the modest sample size of this study, we only tested for caQTLs using common vari-

ants (MAF ≥ 0.1) and did not predict regulatory variants at low-frequency GWAS signals. Based

on three large GWASs for height [284], body mass index [284], and blood lipids [140] (see web

resources), 77%–91% of signals had lead variant MAF ≥ 0.1, suggesting that we could test the

majority of GWAS signals for caQTLs. However, allele frequencies in small sample sizes may dif-

fer from population allele frequencies, and larger caQTL studies will have more power to detect

caQTLs at low frequency variants.

We used four approaches to suggest genes that may be regulated by caPeaks. However, sev-

eral factors limit how many caPeak-gene connections can be identified and howmany are shared

by two or more approaches. TSS proximity is useful to detect variation in promoter accessibil-

ity, although our results showed that only 4% of caPeaks are TSS proximal, and caQTL-eQTL

colocalization is the only method we tested that can corroborate TSS proximity. Promoter cap-

ture Hi-C data [125] identifies distal regions that physically interact with promoters, although

additional Hi-C loops may be identified in additional samples and with higher sequencing depth.

Hi-C loops < 15 kb were removed [125], indicating that the Hi-C data cannot corroborate caQTL-

eQTL colocalizations or caPeak-promoter peak/gene expression correlations located < 15 kb from

the promoter. The identification of caPeaks correlated with promoter peaks [238] or with gene

expression is limited by sample size, and gene expression is affected by many other factors. The

LD-based method we used to predict colocalized caQTL and eQTL signals helps identify peaks

and genes with a shared genetic basis, although this method is influenced by low-resolution fine-

mapping of the lead caQTL variant, use of an LD threshold, and choice of LD reference panel. Due

to the modest sample size of this study, we were underpowered to detect colocalizations using

coloc [95], and we recommend that future caQTL studies consider larger sample sizes for more

robust colocalizations. Identification of conditional liver eQTLs, which tend to be further from

gene TSSs compared to primary eQTLs [70, 219], could lead to additional caQTL-eQTL colocal-

izations. While each of these approaches was useful to predict links between caPeaks and genes,

additional experiments are needed to identify causal relationships.
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The caQTLs presented here are a resource for studying liver regulatory elements and will

help identify mechanisms at GWAS loci for multiple traits that act through liver. The 56 caQTLs

at GWAS loci with predicted target genes are strong candidates for future functional studies.

While caQTLs can pinpoint functional regulatory variants, the modest sample size and analy-

ses restricted to common variants limit fine-mapping potential and highlight the importance of

considering LD proxies. The promising regulatory mechanisms identified here motivate identifi-

cation of liver caQTLs in larger sample sizes.

A.6 Materials and Methods

A.6.1 Liver tissue samples

Healthy human liver tissue was collected from 20 deceased organ donors through the National

Institutes of Health Liver Tissue Cell Distribution System (LTCDS). Tissue was obtained from

LTCDS and approved for use in this study as non-human subjects research by the Institutional

Review Boards (IRBs) at St Jude Children’s Research Hospital (Memphis, TN) and the University

of North Carolina (Chapel Hill, NC).

A.6.2 Genotyping and imputation

We genotyped more than 2.5 million variants using the Infinium Omni2.5Exome-8 BeadChip ar-

ray v1.3 (Illumina) at the NHGRI Genomics Core facility. Overall genotyping call rates ranged

from 99.0%–99.6%. We mapped the Illumina array probe sequences to the hg19 genome assem-

bly17 using novoalign (see web resources), excluding variants with ambiguous probe alignments

and variants with 1000 Genomes (1000G) phase 3 minor allele frequency (MAF) > .01 within 7 bp

of the 3′ end of probes. No individuals were related at a 3rd-degree relationship threshold using

KING v.1.4 [167]. Prior to performing genotype principal component analysis (PCA), we removed

variants with minor allele count < 4 and that were found within regions of unusually high linkage

disequilibrium (LD, see web resources) using VCFtools v.0.1 [62] and selected distinct (r2 < 0.2)
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variants using PLINK v.1.9 [213] We performed PCA of 59,674 genotypes using PLINK v.1.920

and found that each principal component (PC) explained essentially the same amount of varia-

tion (5%), and no PC explained a disproportionate amount of variation. Therefore, we did not

include any genotype PCs as covariates when identifying caQTLs.

Prior to genotype imputation, we combined the genotypes of the samples in this study with

genotypes from 177 samples from a separate study genotyped on similar chips and removed

variants that met the following criteria: allele frequency difference > 20% with 1000G phase 3

Europeans, palindromic variants with MAF > .2, genotype missingness > 2.5%, and deviation

from Hardy-Weinberg equilibrium (p < 1 × 10−4). Using the Michigan Imputation Server [63],

we phased 1,789,889 autosomal variants using Eagle v.2.3 [161] and imputed missing genotypes

using minimac3 [63] with the Haplotype Reference Consortium (hrc.r1.1.2016) panel [254]. We

retained variants with imputation r2 > .3 for downstream analyses.

A.6.3 RNA-seq library preparation, read alignment, and selection of ex-

pressed genes

We extracted and purified total RNA from 20 frozen liver tissue samples using Trizol as previously

described [264]. Paired-end, strand-specific, poly(A) RNA sequencing (RNA-seq) was performed

on an Illumina NovaSeq 6000 with 2× 151 bp cycles. RNA-seq reads were trimmed using Trim-

momatic25 and aligned to the hg19 genome assembly using STAR v.2.53 with default parameters

[71]. Using verifyBamID v.1.1.1 [124], we found no evidence of library contamination or sample

swaps. Expression levels of GENCODE v.19 genes were quantified using QoRTs v.1.2.42 [109] We

classified genes as expressed if the median transcripts per million (TPM) across the 20 individuals

was at least 1. We performed principal component analysis on gene counts normalized by library

size and variance-stabilized using DESeq2 [162]. Principal components (PCs) were correlated

against technical factors to identify covariates in downstream analyses (see section A.6.17).
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A.6.4 ATAC-seq library preparation

Nuclei were isolated as previously described [235] with the following modifications. We pul-

verized 50-mg pieces of frozen human liver tissue in liquid nitrogen using a Cell Crusher (Cell-

Crusher), homogenized the tissue powder in ice-cold nuclei isolation buffer (NIB: 20mMTris-HCl,

50mMEDTA, 5mM spermidine, 0.15 mM spermine, 0.1%mercaptoethanol, 40% glycerol [pH 7.5])

using a 1-mL dounce for 40 strokes, and rotated for 5 min at 4℃. We filtered the solution through

aMiracloth (Calbiochem), centrifuged at 1,100 × g for 10 min at 4℃, washed the pellet with 250 μL

NIB containing 0.5% Triton-X, centrifuged at 500 × g for 5 min at 4℃, and resuspended the pellet

in 250 μL of resuspension buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2 [pH 7.4]). After

counting isolated nuclei, we pelleted 50,000 nuclei at 500 × g for 5 min at 4℃ for each of three

replicate ATAC-seq libraries per sample. Libraries were prepared using Nextera kits (Illumina)

as previously described [28].

A.6.5 ATAC-seq read alignment and identification of consensus peaks

We trimmed ATAC-seq reads to a uniform length of 126 bp using cutadapt [170] and aligned

reads as previously described [217]. Briefly, we trimmed sequencing adapters using CTA (see web

resources) and aligned reads to the hg19 human genome17 using BWA-MEM (see web resources).

We selected properly paired autosomal alignments with high mapping quality (mapq > 30) with

samtools35 and removed duplicate alignments using Picard (see web resources). We used ataqv

[197] to generate ATAC-seq quality metrics and confirmed ATAC-seq libraries corresponded to

the correct genotypes using verifyBamID.

To assess reproducibility of libraries from the same individual, we called narrow peaks sep-

arately for each library using MACS2 [285] with parameters –nomodel –shift -100 –extsize 200,

then merged peaks across all individuals and replicates using BEDTools merge [215], and selected

peaks present in at least 3 libraries. We counted the number of reads overlapping each peak

using featureCounts [159] and performed library size normalization and variance-stabilization

using DESeq2 [162]. We computed pairwise Pearson correlations of normalized counts for all
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peaks and for the 10,000 most variable peaks between libraries and visualized the results using

the heatmap.2 function in the gplots R package [251] (see web resources). Libraries from the

same individual were highly correlated, so we merged the alignment .bam files across libraries

for each individual using SAMtools [157].

To identify consensus peaks, we converted the merged .bam files for each individual to .bed

files using BEDTools, called narrow peaks for each individual using MACS2 with parameters

–nomodel –shift -100 –extsize 200 –keep-dup all, and removed peaks overlapping blacklisted

regions [131]. We then merged peaks across individuals using BEDTools and defined consensus

peaks as merged peaks that shared at least 1 base with a peak present in samples from at least 3

individuals.

A.6.6 Overlap of consensus peaks with roadmap chromatin states

We computed overlap of ATAC-seq consensus peaks with chromatin states in adult liver tis-

sue from the Roadmap Epigenomics Consortium [52]. We defined the following states: pro-

moter (1_TssA, 2_TssFlnk, 3_TssFlnkU, 4_TssFlnkD, 14_TssBiv), transcribed (5_Tx, 6_TxWk),

enhancer (7_EnhG1, 8_EnhG2, 9_EnhA1, 10_EnhA2, 11_EnhWk, 15_EnhBiv), polycomb

(16_ReprPC, 17_ReprPCWk), heterochromatin (13_Het), ZNF repeats (12_ZNF/Rpts), and qui-

escent (18_Quies). For each consensus ATAC peak, we computed the fraction of bases that over-

lapped each chromatin state in liver tissue (Roadmap epigenome ID E066) using BEDTools cov-

erage [214]. We assigned each peak to the chromatin state with which it shared the most bases,

except for the quiescent state; we only assigned a peak to a quiescent state if all bases of a peak

were foundwithin a quiescent state. If a peak sharedmost, but not all, of its bases with a quiescent

state, we assigned the peak to the state with the second highest coverage.

A.6.7 Selection of transcription factor motifs

We obtained transcription factor (TF) binding motifs from Cis-BP v.1.02 [272], selected all directly

determined motifs per TF or the best inferred motif when a TF did not have a directly determined
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motif (TF_Information.txt dataset from Cis-BP), and restricted to motifs for TFs expressed in liver

tissue from GTEx v.8 (median transcripts per million ≥ 1). We performed clustering to remove

redundant motifs using RSAT matrix-clustering [39] with parameters -hclust_method average

-calc sum -metric_build_tree Ncor -lth w 5 -lth cor 0.8 -lth Ncor 0.8 -quick, resulting in 516 mo-

tif clusters. For each motif cluster, we defined the representative TF as the TF with the highest

expression in liver tissue from GTEx v.8 (measured in median TPM) and the representative motif

as the motif assigned to the representative TF. If multiple motifs existed for the representative

TF in a given cluster, we selected the motif with the highest information content. Although we

often use the representative TF name to refer to motif clusters for convenience, any TF in the

cluster may bind at a given locus. Therefore, we listed all expressed TFs in the cluster in supple-

mental tables. Some TFs were assigned as the representative TF for multiple clusters, potentially

representing distinct binding profiles for the same TF. We retained all of these clusters unless

otherwise noted.

A.6.8 Enrichment of TF motifs and ChIP-seq binding sites in ATAC

peaks

We tested for enrichment of 286 non-redundant transcription factor (TF) motifs in consensus

ATAC peaks using Analysis of Motif Enrichment (AME) [177] with parameters –control –shuffle–

–kmer 2 –scoring max –hit-lo-fraction 0.75. We classified motifs with E-value < 1 × 10−100 as

significantly enriched. We derived the 286 motifs from the set of 516 non-redundant motifs (see

“Selection of transcription factor motifs”) by selecting the motif with the highest information

content per TF.

We downloaded liver tissue ChIP-seq peaks for 17 TFs [218] from the ENCODE portal [123]

(sample accession ENCDO882MMZ) and defined binding sites as the summit of the ChIP-seq

peaks. We computed the number of binding sites overlapping consensus ATAC-seq peaks for

each TF using BEDTools intersect. To determine whether the number of binding sites overlap-

ping ATAC peaks was more than expected given their genomic frequency, we permuted binding
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sites across the genome 1,000 times excluding blacklisted regions using BEDTools shuffle and

computed the number of overlaps for each permutation. We calculated an enrichment p value by

determining the fraction of permuted overlaps that were equal to or greater than the observed

number of overlaps.

A.6.9 Enrichment of heritability in ATAC peaks

Using stratified LD score regression as implemented in LDSC v.1.0.1 [88], we tested whether liver

ATAC peaks were enriched for heritability of 13 GWAS traits: liver enzymes traits alanine amino-

transferase (ALT) [40], alkaline phosphatase (ALP) [40], and gamma-glutamyl transferase (GGT)

[40]; cardiometabolic traits body mass index [212], high-density lipoprotein cholesterol (HDL)

[277], low-density lipoprotein cholesterol (LDL) [277], triglycerides [277], total cholesterol [277],

coronary artery disease [263], waist-hip ratio adjusted for body mass index (WHRadjBMI),49 and

type 2 diabetes [166]; and two negative control traits likely less relevant to liver, height [284] and

rheumatoid arthritis [194] (see web resources). We computed LD scores for liver ATAC peaks

using LDSC with 1000G phase 3 European LD and restricting to HapMap3 SNPs. We computed

partitioned heritability of the ATAC peaks using LDSC correcting for the baseline v.1.2 model,

which consists of 53 annotations [88]. We report heritability enrichment as the proportion of her-

itability explained by SNPs within ATAC peaks divided by the proportion of SNPs within ATAC

peaks and classify enrichments with enrichment p value (enrichment_p) <0.05 as significant.

A.6.10 Chromatin accessibility QTL identification

We identified caQTLs using RASQUAL,5 which jointly tests for association of genotype with

peak accessibility across individuals and allelic imbalance in read counts at heterozygous vari-

ants within the same individual. We selected 4 million genetic variants with MAF > 0.1 in the 20

individuals and within 100 kb of consensus peak centers and then restricted to variants present

in 1000G phase 3 Europeans. To quantify peak accessibility across samples, we extended align-

ments 100 bp from either end of the 5′-most base using BEDTools and counted the number of
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alignments overlapping each peak using featureCounts. We did not use WASP54 to remove reads

exhibiting allelic mapping bias because RASQUALmodels and accounts for allelic mapping bias.5

We used DESeq2 size factors [162] to adjust for library size and the gcCor.R script provided with

RASQUAL [145] to adjust for GC bias. To identify global variation between samples that may con-

found caQTL detection, we performed PCA on peak counts adjusted for library size and variance-

stabilized by DESeq2. We ran RASQUAL using differing numbers of PCs as covariates ranging

from 0 to 10 in increments of 1 and selected 2 PCs to maximize the number of peaks with a caQTL

at false discovery rate (FDR) of 5%. We performed multiple testing correction using the two-step

eigenMT-BH procedure [117]. First, we used eigenMT [64] with the 1000G phase 3 European

reference panel to adjust for the differing variant density around each peak, taking into account

the LD between variants. Second, we selected the most significant eigenMT-adjusted p value for

each peak and calculated FDR using the Benjamini-Hochberg (BH) procedure. We selected sig-

nificant caQTLs with FDR < 5% and correlation r2 between prior and posterior genotypes > 0.8.

We refer to peaks with a significant caQTL as caPeaks. We repeated the caQTL analysis using 0.6

million variants within 1 kb of peak centers. Unless otherwise noted, all downstream analyses

were performed using caQTLs identified using variants within 1 kb of peak centers.

A.6.11 Identification of caQTLs strongly influenced by one sample

To identify caQTLs strongly influenced by one sample, we separately removed each sample from

the analysis and re-identified caQTLs in the 20 sets of 19 samples. We used the same caQTL

parameters as for all 20 samples, except that we reduced the minimum MAF threshold to 0.05

to retain variants with MAF of 0.1 in the 20 samples. We restricted analyses to the lead variant-

peak pairs detected in the 20-sample analysis. Given our small sample size, we would expect

some caQTLs to no longer be significant when one sample is removed due to power even if no

influential samples are present. Therefore, we defined caQTLs that are strongly influenced by

one specific sample as caQTLs that no longer meet the FDR < 5% threshold (eigenMT-adjusted p

< 8.4 × 10−4) only when one specific sample is removed, but remain significant when any other
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sample is removed.

A.6.12 ATAC-seq allelic imbalance and comparison to caQTL effect sizes

Instead of removing reads that exhibit allelic mapping bias, RASQUAL estimates and accounts

for allelic mapping bias during QTL mapping.5 To compare the RASQUAL results to another

strategy, we used an alternative method to remove reads exhibiting allelic mapping bias and

calculate allelic imbalance (AI).We removedATAC-seq reads exhibiting allelicmapping bias using

the WASP mapping pipeline [262] and counted the number of ATAC-seq reads mapping to each

allele at heterozygous variants using ASEReadCounter [38] with the option –min-base-quality 30.

We removed variants that had aligned bases other than the two genotyped alleles and included

variants with >10 total reads, >3 reads per allele, and that were heterozygous in >3 individuals.

After pooling reads across individuals, each variant had a minimum of 30 total reads and 9 reads

per allele. The average reference allele fraction across all heterozygous sites for each sample

ranged from 0.502 to 0.505, and the average reference allele fraction after combining samples was

0.503, indicating that little to no systematic allelic mapping bias remains. We fit allele counts to

a beta-binomial distribution using the VGAM R package [283], tested for AI using a two-tailed

beta-binomial test, and adjusted for multiple testing using the BH procedure.

To compare effect sizes of AI variants and caQTL signals, we selected caQTLs that had at least

one AI variant in strong LD (r2 > 0.8, 1000G phase 3 Europeans) with the caQTL lead variant

and that resided within the caPeak; LD was calculated using PLINK v.1.9. For each caQTL with a

linked AI variant, we selected the AI variant with the strongest evidence of imbalance (smallest

beta-binomial p value). For both methods, we calculated an effect size by subtracting 0.5 from the

estimated fraction of reads containing the alternate allele, which is the RASQUAL PI value for

caQTLs. An alternate allele fraction of 0.5 corresponds to an equal number of reads for each allele,

which is an effect size of 0. We then computed the Pearson correlation between the absolute value

of effect sizes between the caQTLs and AI variants.
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A.6.13 Colocalization of caQTL and H3K27ac QTL signals

We retrieved QTLs for 921 histone 3 lysine 27 acetylation (H3K27ac) peaks (termed H3K27ac

QTLs, FDR < 5%, n = 18) from a recent report [35]. We only tested for colocalization between QTL

signals where the caPeak and H3K27ac peak overlapped (defined as sharing at least one base). We

calculated LD and haplotype phase between H3K27ac QTL and caQTL lead variants using PLINK

v.1.9 and classified signals as colocalized if these lead variants exhibited strong pairwise LD (r2

> 0.8, 1000G phase 3 Europeans). We calculated effect sizes for caQTLs and H3K27ac QTLs by

subtracting 0.5 from the RASQUAL PI values. We then computed the Pearson correlation between

the absolute value of caQTL and H3K27ac QTL effect sizes.

A.6.14 caQTL enrichment in chromatin states

To identify which regulatory elements preferentially contain caPeaks, we compared the number

of caPeaks (FDR < 5%) and non-caPeaks (eigenMT-adjusted p > 0.5) assigned to various liver tis-

sue chromatin states from Roadmap [52]. We tested whether caQTL variants were enriched in

specific liver tissue chromatin states relative to variants matched for MAF, number of LD prox-

ies, and distance to nearest gene using the logistic regression model implemented in GARFIELD

[119]. We defined caQTL variants as significantly enriched in a chromatin state if the p value for

the logistic regression beta was less than the Bonferroni-corrected threshold (alpha of 0.05 for 7

chromatin states) of 7.1 × 10−3 and the odds ratio was greater than 1. We defined caQTL variants

as significantly depleted in a chromatin state if p < 7.1 × 10−3 and odds ratio < 1.

A.6.15 Overlap of caPeaks with macrophage ATAC peaks

We retrieved a set of 296,220 ATAC peaks mapped across macrophages exposed to four exper-

imental conditions: naive, IFNγ stimulation, Salmonella infection, and both exposures [4] (see

web resources). To compare peak positions, we used liftOver61 with the option -minMatch =

0.75 to convert the 3,123 liver caPeaks from GRCh37 (hg19) to GRCh38 coordinates. We identi-
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fied liver caPeaks that overlapped (defined as sharing at least 1 base) with a macrophage peak

using BEDTools intersect. We also applied liftOver to the macrophage peaks and obtained the

same results.

A.6.16 Transcription factor motif disruption by caQTL variants

We selected 5,378 caQTL variants that resided within a caPeak using BEDTools intersect and

that were in strong LD (r2 > 0.8, calculated with PLINK) with the caQTL lead variant. To ensure

that each motif occurrence was disrupted by only one variant, we removed 793 variants located

within 30 bp of another caQTL variant, resulting in 4,585 variants. For both alleles of each caQTL

variant, we extracted the nucleotide sequence for the region containing the variant and the 30

nucleotides on either side of the variant using the BEDTools slop and getfasta tools [215]. We

scanned these sequences for occurrences of 516 non-redundant TF motifs using Find Individual

Motif Occurrences (FIMO) [98] with parameters –thresh 0.01–max-stored-scores 1000000–no-

qvalue–skip-matched-sequence –text and only retainedmotif occurrences that overlapped caQTL

variant positions. For each motif-variant pair, we selected the strongest motif match (smallest p

value) per allele and only retained motif occurrences that matched strongly to at least one allele

(p < 1 × 10−4). If different motifs for the same representative TF overlapped the same variant, we

selected the motif with the strongest match.

Similar to a recent study [180], we quantified the difference in motif match between alleles of

a variant using the log ratio of FIMO p values. The FIMO p value for a given motif occurrence is

the probability of observing a motif occurrence with the same or greater score, which inherently

accounts for differences in score distributions between different motifs. For a given variant-motif

pair, we definemotif disruption as log10(paw) – log10(pas), where paw and pas are the FIMO p values

for the alleles with the weaker and stronger motif match, respectively. As motif disruption is

always positive, we classified a motif as disrupted if motif disruption was > 1, corresponding to

a 10-fold difference in the FIMO p values between alleles.

We identified motifs whose disruption was associated with caQTL status using logistic regres-
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sion. To generate a set of non-caQTL variants, we first selected peaks with no evidence of genetic

regulation (caQTL eigenMT-adjusted p > 0.5), that overlapped at least one variant tested in the

caQTL analysis and that were similar to caPeaks in GC content (±5%), peak width (±20%), and dis-

tance to nearest transcription start site (TSS) of a protein-coding gene in GENCODE (±20%). We

identified 10 non-caPeaks for >99% of the caPeaks used in the motif disruption analysis and de-

fined non-caQTL variants as the 50,054 variants that were within non-caPeaks and were located

more than 30 bp from the nearest variant. We tested these non-caQTL variants for TF motif dis-

ruption using the same procedure as for caQTL variants and restricted analysis to the 109 motifs

with at least 20 disruptions by caQTL variants. For each representative TF, we selected the motif

with the most disruptions by caQTL variants to ensure that we used only one motif per represen-

tative TF. We then regressed caQTL status (1 = caQTL, 0 = non-caQTL) against motif disruption

status (1 = disrupted, 0 = not disrupted) for each motif-variant pair using logistic regression. We

classifiedmotif disruption as associated with caQTL status if the p value for the logistic regression

beta was less than the Bonferroni-corrected threshold (alpha of 0.05 for 109 motifs) of 4.6 × 10−4.

Because residual differences may exist in peak GC content, width, and distance to nearest protein

coding TSS, we performed logistic regression with and without these features as covariates and

obtained the same set of significantly enriched motifs.

A.6.17 caPeak target gene identification

We used four methods to identify target genes for caPeaks: proximity to a gene’s TSS, overlap of

caPeaks with promoter-centered chromatin contacts, correlation of caPeaks with peaks at gene

promoters or with gene expression, and colocalization of caQTLs and eQTLs. We excluded genes

from the analysis if their Entrez ID did not map to exactly one Ensembl ID (eQTL data only) or

if their symbol (common name) didn’t map to exactly one Ensembl ID. When combining results

across the four methods, we matched genes based on Ensembl ID.
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TSS proximity

Weclassified a caPeak as TSS proximal if it was locatedwithin 2 kb upstream and 1 kb downstream

of the TSS of any of the 13,782 expressed genes (median TPM > 1) in our 20 liver samples using

BEDTools closest.

Promoter-centered chromatin contacts

We obtained promoter-distal and promoter-promoter contacts mapped in liver tissue using pro-

moter capture Hi-C from a recent study [125] (see web resources). Using described filtering cri-

teria [125], we selected contacts with p value < 0.01 and interaction frequency ≥ 5. We identified

caPeaks overlapping distal ends of promoter-distal contacts or either end of promoter-promoter

contacts using BEDTools intersect.

Correlation of caPeaks with promoter peaks and gene expression

We classified an ATAC-seq peak as the promoter peak for an expressed gene if it was the closest

peak to the TSS of the gene and it was within 2 kb upstream and 1 kb downstream of the TSS

[65]. A promoter peak may or may not be a caPeak. We identified promoter peaks for 10,074

of 13,782 expressed genes. For each gene with a promoter peak, we identified caPeaks for cor-

relation that were within 1 Mb of the gene’s TSS but that were not TSS proximal. For peak and

gene counts, we performed library size normalization and variance-stabilization using DESeq2

and GC bias-correction using RASQUAL [145]. We additionally adjusted peak counts by the

percent of high-quality autosomal alignments (HQAA) in peaks (a measure of ATAC signal-to-

noise), which was strongly correlated with the first ATAC-seq PC, and gene counts by the per-

cent of reads mapping to the most expressed gene and the percent of reads mapping to the top 10

most expressed genes (geneDiversityProfile_top1pct and geneDiversityProfile_top10pct metrics

from QoRTs), which were strongly correlated with RNA-seq PCs 1 and 2, respectively, using the

limma removeBatchEffects [223]. We then computed the Spearman correlation between (1) gene

expression and caPeaks and (2) promoter peaks and caPeaks using the cor.test function in R. We

157



adjusted for multiple testing using the BH procedure and classified correlations with FDR < 5%

as significant.

Colocalization of caQTLs and eQTLs

We obtained liver tissue expression quantitative trait loci (eQTLs) for 15,668 genes (FDR < 5%)

from a meta-analysis of 1,183 individuals [82] and restricted to the 15,418 eQTLs on autosomes.

We calculated LD and haplotype phase between eQTL and caQTL lead variants using PLINK v.1.9

and classified signals as colocalized if these lead variants exhibited strong pairwise LD (r2 > 0.8,

1000G phase 3 Europeans). To compare the direction of effect for colocalized caQTLs and eQTLs,

we compared the sign of the caQTL effect size (RASQUAL pi statistic - 0.5) and the eQTL effect

size (meta T statistic).

For the caQTL-eQTL colocalizations identified based on LD, we also assessed colocalization

using the Bayesian approach implemented in coloc [95]. We ran coloc using p values and mi-

nor allele frequencies because regression coefficients and variances are not available from the

RASQUAL model. coloc estimates five posterior probabilities (PP): no variant in the tested region

affects either trait (PP0), a variant affects one trait but not the other (PP1 for caQTL and PP2 for

eQTL), different variants affect each trait (PP3, no colocalization), and the same variant affects

both traits (PP4, colocalization). We considered signals to show strong evidence of colocalization

if PP4 > 0.8, suggestive evidence of colocalization if PP4 > 0.5, and evidence against colocaliza-

tion if PP3 > 0.5. If the sum of PP0, PP1, and PP2 was > 0.5, we concluded that power was too

low to assess colocalization. We note that coloc was designed to operate on results from linear

regression or logistic regression [95] and may not be appropriate for the caQTL results generated

from RASQUAL, which combines results from a negative binomial generalized linear model and

tests of allelic imbalance [145].
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A.6.18 Colocalization of caQTL and GWAS signals

We downloaded the NHGRI-EBI GWAS catalog [30] on October 28, 2019, extracted only sin-

gle variant associations, and converted variant genomic coordinates from GRCh38 to GRCh37

(hg19) using liftOver. We extracted variants associated with 19 trait groups (p < 5 × 10−8) rel-

evant to liver function and cardiometabolic diseases: liver enzymes, high-density lipoprotein

cholesterol (HDL), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), triglycerides

(TG), cardiovascular disease (CVD), hypertension/blood pressure (HTBP), type 2 diabetes (T2D),

insulin, glucose, glycated albumin, serum albumin, glycated hemoglobin (HbA1c), C-reactive pro-

tein (CRP), bilirubin, body mass index (BMI), waist-hip ratio adjusted for BMI (WHRadjBMI),

liver injury, and non-alcoholic fatty liver disease (NAFLD). We also included two negative con-

trol traits, height and rheumatoid arthritis, which presumably have less relevance to the liver. We

extracted alleles for each variant from the dbSNP [240] build 151 common variant set (see web

resources), restricting to bi-allelic variants. To select one variant per association signal, we per-

formed LD clumping separately for each trait using swiss (see web resources); variants in strong

LD (r2 > 0.8, 1000G phase 3 Europeans) and within 1 Mb of a variant with a more significant p

value were removed. We calculated LD between lead caQTL and GWAS variants using PLINK

v.1.9 and classified signals in high LD (r2 > 0.8) as colocalized. We made LocusZoom plots for

specific loci using LocusZoom v.1.4 [211].

To identify liver caQTL-GWAS colocalizations also observed in blood, we retrieved caQTLs

mapped in macrophages exposed to four experimental conditions [4] and activated T cells [92]

(see web resources). For macrophages, we downloaded the caQTL lead variant summary statistics

and selected significant caQTLs at FDR < 10% using the same procedure described in the previous

report [4], and we converted the genomic coordinates from GRCh38 to hg19 using liftOver [113].

T cells, we used the set of publicly available caQTLs at FDR < 5% mapped to hg19 coordinates

[92]. For both datasets, we identified caQTL signals colocalized with GWAS signals using the

procedure described above. We considered a liver caQTL-GWAS colocalization to be present in

a blood cell type if the liver and blood caPeaks shared at least one base and if the lead variant
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of the blood caQTL was in strong LD (r2 > 0.8) with the same GWAS variant as the liver caQTL.

Blood caQTL lead variants were not tested for colocalization if variants were not in the 1000G

LD reference panel.

A.6.19 Transcriptional activity reporter assays

HepG2 hepatocyte cells were cultured in MEM-alpha supplemented with 10% FBS and 1 mM

sodium pyruvate, THP-1 monocyte cells were cultured in RPMI-1640 supplemented with 10%

FBS, and both cell types were maintained at 37℃ with 5% CO2. To test haplotypic differences in

transcriptional activity, we designed PCR primers (5′-TATGTTGCACAGGCTGGTCT-3′ and 5′-

GGCAATAACGCCCACCTC-3′) to amplify a 666-bp DNA element (chr16:11,644,551–11,645,216)

spanning the ATAC-seq peak and containing variants rs3784924, rs11644920, and rs57792815,

and we generated PCR products using DNA from individuals homozygous for both haplotypes.

We cloned the derived PCR products into luciferase reporter vector pGL4.23 (Promega) as de-

scribed previously [89]. The day before transfection, we plated 120,000 HepG2 cells, and on the

day of transfection, we plated 300,000 THP-1 cells. We transfected duplicate wells with four

to five sequence-verified independent constructs for each haplotype. We co-transfected wells

with phRL-TK Renilla reporter vector using lipofectamine 3000 (Life Technologies) following the

manufacturer’s protocol. To induce differentiation into macrophages [116], we added 100 nM

1α,25-Dihydroxyvitamin D3 (Sigma) to the THP-1 cells at the time of transfection. To obtain

activated macrophages, we added 100 ng/mL lipopolysaccharides (Sigma) to vitamin D3-treated

cells 24 h after transfection and incubated cells for an additional 24 h. Firefly luciferase activity

was measured 48 h post-transfection and normalized to Renilla activity to adjust for differences

in transfection efficiency. Fold-changes in luciferase activity were calculated relative to an empty

pGL4.23 vector, and statistical differences in activity were determined using two-tailed Student’s

t tests. We repeated transcriptional activity experiments on a separate day and obtained equiva-

lent results.
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A.6.20 Electrophoretic mobility shift assays (EMSAs)

We designed and annealed 3 biotin-labeled and unlabeled 17-bp complementary oligonucleotide

probes centered on each of variants rs3784924, rs11644920, and rs57792815. We conducted EM-

SAs using the LightShift Chemiluminescent EMSA kit (Thermo Scientific) following the manu-

facturer’s protocol. The binding reactions consisted of 6 μg HepG2 nuclear extract (NE-PER Kit,

Thermo Fisher Scientific), 1 μg poly(dI-dC), 1x binding buffer, and 400 fmol biotinylated oligonu-

cleotide as described previously [89]. To test the specificity of the protein complexes to each

allele, we added 10-fold excess unlabeled probes. Protein-DNA complexes were resolved by gel

electrophoresis and transferred and detected by chemiluminescence as described previously [89].

We repeated EMSA experiments on a separate day and obtained equivalent results.
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