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ABSTRACT

We generalize the concept of rigid inner forms, defined by Kaletha in [Kal16] and [Kal18], to
the setting of a local or global function field F in order to study endoscopy over F and state
conjectures regarding representations of an arbitrary connected reductive group G over F . To do
this, we define for such G a new cohomology set H1(E , Z → G) ⊂ H1

fpqc(E , G), where E is
an fpqc A-gerbe over F attached to a class in H2

fppf(F,A) for an explicit profinite commutative
group scheme A depending only on F (not on G), and extend the classical Tate-Nakayama duality
theorem (locally), Tate’s global duality (cf. [Tat66]) result for tori, and their reductive analogues
to these new expanded cohomology sets.

We define a relative transfer factor for an endoscopic datum serving a connected reductive group
G over local F , and use rigid inner forms to extend this to an absolute transfer factor, enabling the
statement of endoscopic conjectures relating stable virtual characters and ṡ-stable virtual characters
for a semisimple ṡ associated to a tempered (local) Langlands parameter. Using global rigid inner
forms, a localization map from the local gerbe to its global counterpart allows us to organize sets
of local rigid inner forms into coherent families, allowing for a definition of global L-packets and a
conjectural formula for the multiplicity of an automorphic representation π in the discrete spectrum
of G in terms of these L-packets. We also show that, for a connected reductive group G over a
global function field F , the adelic transfer factor ∆A for the ring of adeles A of global F serving
an endoscopic datum for G decomposes as the product of the normalized local transfer factors.

vi



CHAPTER 1

Introduction

1.1 Motivation

The purpose of this paper is to generalize the theory of rigid inner forms, introduced in [Kal16]
and [Kal18] for local and global fields of characteristic zero, to local function fields. Rigid inner
forms allow one to study the representation theory of a connected reductive group G over a local
field F by working simultaneously with all inner forms of G—in particular, they allow locally
for an unambiguous statement of the endoscopic Langlands conjectures for arbitrary connected
reductive groups over F , and globally for a construction of a pairing involving the L-packet for a
global L-parameter giving a conjectural multiplicity formula for an automorphic representation in
the discrete spectra of such groups.

The idea of studying all the inner forms of G simultaneously for endoscopy was first suggested
by Adams-Barbasch-Vogan in [ABV92]; generally speaking, given a tempered Langlands param-
eter φ : W ′

F → LG, we should have a subset of representations of inner forms of G, denoted by
Πφ, and a bijective map to some set of representations related to Sφ, the centralizer of φ in Ĝ.
A fundamental question encountered when treating all inner forms at the same time is when two
inner forms should be declared “the same". Since we are concerned with representation theory, a
natural requirement of isomorphisms of inner forms is that an automorphism of an inner form G′

of G should preserve the conjugacy classes of G′(F ) as well as the representations of G′(F ).
In order to ensure that automorphisms of inner twists satisfy the above requirements, Vogan in

[Vog93] expanded the data of an inner twist to that of a pure inner twist, which gives the desired
rigidity. A pure inner twist is a triple (G′, ψ, x), where ψ : G → G′ is an inner form of G, and
x ∈ Z1(F,G) is a 1-cocycle such that Ad(x(σ)) = ψ−1 ◦ σψ for all σ in Γ. However, not every
inner twist can be enriched to a pure inner twist, since in general H1(F,G) → H1(F,Gad) need
not be surjective. The question then becomes: How does one rigidify the notion of inner twists in
a way that includes all of them?

The concept of rigid inner forms introduced by Kaletha in [Kal16] answers this question when
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F is of characteristic zero. Again we take tuples (G′, ψ, z), where now z is a 1-cocycle in a new
cohomology set, denoted by H1(u → W,Z → G), where Z is some finite central F -subgroup of
G. The cohomology set H1(u → W,Z → G) carries a canonical surjective map to H1(F,G/Z),
which means that such tuples encompass all inner forms of G. Moreover, rigid inner forms are
rigid enough so that their automorphisms preserve both desired representation-theoretic properties
discussed above. We also have an embedding H1(F,G) ↪→ H1(u → W,Z → G), connecting
rigid inner twists to Vogan’s pure inner twists.

Assume that F is a finite extension of Qp for some p, so that the theory of [Kal16] applies. The
following is a short account of the conjectures enabled by rigid inner forms:

We first record the conjectures coming from Vogan’s pure inner twists. Fix φ : W ′
F → LG

a tempered Langlands parameter with centralizer Sφ ⊂ Ĝ, as well as G∗, a quasi-split pure inner
form ofG. After fixing a Whittaker datum w forG∗, we have a conjectural map ιw and subset Πpure

φ

of the irreducible tempered representations of the pure inner forms of G∗ making the following
diagram commute:

Πpure
φ Irr(π0(Sφ))

H1(F,G∗) π0(Z(Ĝ)
Γ)∗,

ιw

where the left arrow sends a pure inner form representation (G′, ψ, x, π) to the class [x], the lower
arrow is the Kottwitz pairing (see [Kot86]), and the right-hand arrow sends an irreducible represen-
tation to its central character. Moreover, the map ιw provides the correct virtual characters which
are needed for the endoscopic character identities for a choice of semisimple element s ∈ Sφ(C).
However, there need not be a quasi-split pure inner form of our general connected reductive G.

Now we will see the conjectures allowed by replacing the notion of pure inner forms with rigid
inner forms. In addition to the Langlands parameter φ with centralizer Sφ, let Z be a fixed finite
central F -subgroup of G. The isogeny G → G/Z := G dualizes to an isogeny Ĝ → Ĝ; let S+

φ

denote the preimage of Sφ under this isogeny. Then, after fixing a Whittaker datum w for G∗, a
quasi-split rigid inner form of G (which always exists), we conjecture the existence of a subset
Πφ of Πtemp

φ , the tempered representations of the rigid inner forms of G∗, and a bijective map ιw
making the following diagram commute

Πφ Irr(π0(S+
φ ))

H1(u→ W,Z → G∗) π0(Z(Ĝ)
+)∗

ιw

(1.1)

where the left map sends a representation of a rigid inner twist to the corresponding class in
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H1(u→ W,Z → G∗), the right map sends a representation to its central character, and the bottom
map is an extension of the duality isomorphism H1(F,G)

∼−→ π0(Z(Ĝ)
Γ)∗ defined by Kottwitz in

[Kot86]; here Z(Ĝ)+ denotes the preimage of Z(Ĝ)Γ in Z(Ĝ).
We now turn to endoscopy. Choosing a semisimple s ∈ Sφ(C), along with the data of φ, gives

rise to an endoscopic datum e = (H,H, η, s) for G; for simplicity we will assume that H = LH .
Rigid inner forms allow us to define, given a fixed quasi-split rigid inner twist (G∗, ψ, z) ofG, a (w-
normalized) absolute transfer factor ∆′[ė, ψ, z,w] for pairs of related strongly regular semisimple
elements of H(F ) and G(F )—this was only previously possible for quasi-split G. The fact that
we have replaced e by ė corresponds to the necessity of replacing s by a preimage ṡ in S+

φ (C), on
which this factor depends. This absolute transfer factor allows for the formulation of endoscopic
virtual character identities for the images ιw(π̇) of representations π̇ ∈ Πφ of rigid inner twists of
G in the set Irr(π0(S+

φ )).
If we want to generalize these conjectures to connected reductive groups over a local function

field F , a natural question that arises is whether or not an analogue of the theory of rigid inner
forms can be developed in this new situation. There are nontrivial obstacles to a direct translation
of the theory established in [Kal16]. Notably, the cohomology set H1(u→ W,Z → G) is defined
using the cohomology of a group extension

0→ u→ W → Γ→ 0

corresponding to a canonical class in H2(F, u) for a special profinite commutative affine group u
(where Γ denotes the absolute Galois group of F ). The group u will not be smooth in positive
characteristic, and so it is no longer true that H2(F, u) = H2(Γ, u(F s)) (where F s is a separable
closure of F ), and therefore there is no way of choosing a corresponding group extension in this
situation.

We remedy this deficiency by working instead with the fppf cohomology group H2
fppf(F, u),

which may be computed using the Čech cohomology related to the fpqc cover Spec(F ) →
Spec(F ). Classes in the group Ȟ2

fppf(F, u) correspond to isomorphism classes of u-gerbes over
Spec(F ), which means that for a canonical class in H2

fppf(F, u) we get a corresponding u-gerbe
E , whose role will replace that of W in [Kal16]. With the gerbe E in hand, we investigate its
cohomology in a way that parallels the cohomology of the group W in [Kal16], culminating in the
construction of a cohomology set H1(E , Z → G) that is the analogue of H1(u→ W,Z → G) dis-
cussed above. In particular, we will have a Tate-Nakayama type isomorphism for H1(E , Z → G)

that will be used to construct a canonical pairing

H1(E , Z → G)× π0(Z(Ĝ)+)→ C∗
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extending the positive-characteristic analogue (see [Tha11]) of the Kottwitz pairing in characteris-
tic zero alluded to above.

Note that if F is a finite extension of Qp, then u is smooth, and in this case our gerbe E may
be replaced by a group extension of Γ by u(F ) using the comparison isomorphism H2

fppf(F, u)
∼−→

H2
étale(F, u) = H2(Γ, u(F )). This then recovers the group W used in [Kal16], cf. the discussion of

Galois gerbes in [LR87].
The definition of the cohomology set H1(E , Z → G) allows for a completely analogous defini-

tion of rigid inner forms, which, when combined with a construction of the relative local transfer
factor for local functions fields, allows for the definition of an absolute transfer factor for an endo-
scopic datum e associated to an arbitrary connected reductive group over F . The development of
the local theory culminates in a statement of the above conjectures in the setting of local function
fields.

Moving beyond local fields to a global function field F , global rigid inner forms both allow us to
relate the adelic transfer factor ∆A serving an endoscopic datum for G to the normalized transfer
factors serving the localizations of this datum and give precise information about the global L-
packet Πφ for a tempered discrete homomorphism φ : LF → LG, where LF is the conjectural
Langlands dual group of F . Previously, such descriptions were only possible in the case when G
is quasi-split.

In light of the above local discussion, one can ask the natural question: How does one de-
scribe the global L-packet Πφ for a tempered discrete homomorphism φ : LF → LG using the
local L-packets for the localizations φv, and how can one use the two horizontal maps of (1.1)
to obtain information about these L-packets (namely, how they relate to the discrete spectrum of
G)? The key to this problem is organizing families of representations of local rigid inner forms of
GFv into so-called coherent families, which is to say, finding a notion of a global rigid inner form

corresponding to a global gerbe EV̇ which localizes in an appropriate way to such a family. More-
over, in order to show that the family of homomorphisms {H1(Ev, Z → G) → π0(Z(Ĝ)

+,v)∗}v
corresponding to a family of rigid inner forms behaves in a reasonable manner (such as having a
well-defined product over all places), one would like a homomorphism

H1(EV̇ , Z → G)→ [π0(Z(Ĝ)
+)]∗

that equals the product of all of the local homomorphisms (note that if, as in the local case, Z(Ĝ)+

is the preimage of Z(Ĝ)Γ, then we have maps π0(Z(Ĝ)+)→ π0(Z(Ĝ)
+,v) for all v, so this product

statement makes sense).
The combination of our local gerbe construction (now denoted by Ev for a place v) and the

construction of the global Galois gerbe EV̇ for number fields in [Kal18] gives a blueprint for the
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construction of the global gerbe for function fields described in the above paragraph (and thus of
global rigid inner forms). As in the local case, the gerbe EV̇ will be banded by a canonically-
defined profinite group denoted by PV̇ defined in an identical way as for the characteristic-zero
analogue [Kal18]. We will then extract the gerbe via proving the existence of a canonical class in
H2

fppf(F, PV̇ ); unlike in the local case, this existence result requires significant work—in particular,
we must study gerbes over Spec(A) and generalize the notion of complexes of tori, as in [KS99],
to Čech cohomology of the covers F/F and A/A, where A := F ⊗F A.

Once the canonical class is established, we use the geometry of GEV̇ -torsors on EV̇ to define the
cohomology sets H1(EV̇ , Z → G) which provides the global analogue of the sets H1(Ev, Z → G),
and to define a duality result for this cohomology set (analogous to local Tate-Nakayama duality)
which, among other properties, gives the homomorphism H1(EV̇ , Z → G) → [π0(Z(Ĝ)

+)]∗ de-
scribed above. Our constructions also provide us with morphisms of gerbes Ev → EV̇ which allow
us to localize these cohomology sets.

Using the above construction, one can then define a coherent family of rigid inner forms

{(GFv , (Tv, hv))}v

for a fixed inner quasi-split inner twist G∗ ψ−→ G to be one such that each torsor Tv is the localiza-
tion (defined appropriately using the localization functors described above) of a global torsor T

with [T ] ∈ H1(EV̇ , Z → G∗) (for some appropriate choice of Z). Given a such family, we can
then define the global L-packet Πφ for some a fixed φ via

Πφ := {π = ⊗′
vπv | (GFv , ψ, (Tv, h̄v), πv) ∈ Πφv , ιφv((GFv , ψ, (Tv, h̄v), πv)) = 1 for almost all v},

as desired. We show that this consists of irreducible tempered admissible representations of G(A)
in Lemma 9.4.1 using a torsor-theoretic analogue of a result by Taïbi ([Taï18, Proposition 6.1.1]),
and hence is well-defined. Moreover, given such a π, we can then give a conjectural description of
the multiplicity of π in the discrete spectrum of G by defining (for each φ) a pairing

⟨−,−⟩ : Sφ × Πφ → C,

where Sφ is a finite group closely related to the centralizer of φ in Ĝ, which is defined as a product
over all places of two factors involving the local pairings and (conjectural) local bijections ιφv ,wv .
The key to proving that such a product formula is well-defined is precisely the fact that our repre-
sentation π arises from a coherent family of representations of local rigid inner forms. Once we
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know that such a pairing exists, we have for each π and L-packet Πφ containing π an integer

m(φ, π) := |Sφ|−1
∑
x∈Sφ

⟨x, π⟩,

and, furthermore, we conjecture:

Conjecture 1.1.1 (Kottwitz, [Kot84]) The multiplicity of π in the discrete spectrum of G is given

by the sum ∑
φ

m(φ, π),

where the sum is over all φ such that π ∈ Πφ.

Since local rigid inner forms were the vital ingredient for proving the existence of a normalized
local transfer factor ∆v = ∆[wv, ėv, zv, ψ, (Tv, h̄v)] serving a fixed endoscopic datum for GFv

(depending on a quasi-split rigid inner form (ψ, (Tv, h̄v)) of GFv and a Whittaker datum wv for
it), one can use global rigid inner forms to relate the global adelic transfer factor ∆A defined in
[LS87] (for number fields, but which is easily translated to a global function field) serving a global
endoscopic datum to the transfer factors ∆v serving the localizations of that datum. Indeed, using
the relationship between the local and global pairings described above, one obtains (Proposition
9.3.1) a product formula

∆A(γ1, δ) =
∏
v∈V

⟨locv(Tsc), ẏ
′
v⟩ ·∆[wv, ėv, zv, ψ, (Tv, h̄v)](γ1,v, δv)

which expresses the value of ∆A at a pair of adelic elements (γ1, δ) as a product of each ∆v at
the localizations of these elements, along with some auxiliary factors ⟨locv(Tsc), ẏ

′
v⟩ which are

harmless and only necessary for technical reasons. Of course, one must take each ∆v to arise
from the localizations of the same global rigid inner form and the local Whittaker data to be the
localizations of the same global Whittaker datum w, even though such a datum is not used to define
the left-hand side of the above equation.

1.2 Overview

We now summarize the structure of this thesis. The first two chapters should be viewed as estab-
lishing background results. The goal of Chapter 2 is to obtain a concrete interpretation of torsors
on gerbes, beginning by recalling the basic theory of fibered categories, stacks, and gerbes, pro-
gressing to a characterization of torsors on gerbes, and concluding by investigating the analogue
of the inflation-restriction sequence in group cohomology in the setting of gerbes. Following this,
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Chapter 3 discusses fundamental properties of Čech cohomology; one of its main focuses is com-
paring the Čech cohomology of group schemes with respect to fpqc covers to the fppf cohomology
of these groups schemes, with the goal of determining when these two cohomologies coincide. It
also proves certain cohomological vanishing results of certain covers of rings, defines an unbal-
anced cup product, and concludes with some miscellaneous results about adelic Čech cohomology.

Chapter 4 constructs the local gerbe and proves a duality result for the resulting cohomology
setsH1(E , Z → G): We construct the local pro-algebraic group u, investigate its cohomology, and
then define the cohomology set H1(E , Z → S) for an F -torus S, where E is a u-gerbe associated
to a canonical cohomology class in H2(F, u) and discuss basic functoriality properties of the co-
homology group H1(E , Z → S) using our insight from Chapter 2. An analogue of the classical
Tate-Nakayama isomorphism is constructed for H1(E , Z → S) in §4.4. Once the situation for
tori is established, we then define H1(E , Z → G) for a general connected reductive group G and
extend all of the previous results to this new situation. There is not much to do here: the bulk of
the work is just direct translation of the results in [Kal16], §3 and §4 to fppf cohomology, using
basic theorems about the structure theory of connected reductive groups over local function fields
(see [Deb06], [Tha08], [Tha11]).

In order to apply Chapter 4 to the local Langlands conjectures, it is necessary to recall and define
the (relative) local transfer factor corresponding to an endoscopic datum for a reductive group over
a local function field—we do this in Chapter 5. This section is entirely self-contained for expository
purposes, and in many cases is just a direct exposition of the constructions stated in [LS87]; the
only aspects of the arguments loc. cit. that require minor adjustment are those concerning the ∆I

and ∆III1 factors, but we include a discussion of all of the factors for completeness.
The final local chapter is Chapter 6, where we define rigid inner forms for local function fields

and then use them to define an absolute local transfer factor for an endoscopic datum associated
to an arbitrary connected reductive group over F . Once this is done, we give a brief summary
of the conjectures stemming from our constructions. This section closely parallels §5 in [Kal16];
in many cases, we follow the arguments verbatim, substituting Galois-cohomological calculations
with analogous computations in Čech cohomology.

The first section in which we focus on a global function field is F is Chapter 7, where we
begin by proving an analogue of global Tate duality for the groups H2

fppf(F,Z), where Z is a finite
multiplicative F -group scheme. After that, we define a projective system of multiplicative group
schemes {PE,ṠE ,n

} whose limit gives the pro-algebraic group PV̇ that will band our global gerbe.
Once PV̇ is defined, we show that its first fppf cohomology group over F vanishes using local and
global class field theory and that its second fppf cohomology group contains a canonical class.
Constructing such a global class is considerably more difficult than in the local case, and requires
utilizing a Čech-cohomological analogue of complexes of tori.
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Once the global canonical class is defined, we can construct the global gerbe EV̇ , whose coho-
mology is studied in Chapter 8, building towards proving a duality result for the cohomology sets
H1(EV̇ , Z → G), where Z is a finite central subgroup of G. We also prove a result concerning the
localizations of torsor on EV̇ which will be used in Chapter 9 to prove that global L-packets consist
of irreducible, tempered, admissible representations.

Finally, in Chapter 9 we develop endoscopy, defining the adelic transfer factor for function fields
and coherent families of rigid inner forms. We relate our local constructions to global endoscopy,
including the adelic transfer factor and the multiplicity formula. In Appendix A, we establish
complexes of tori in the setting of Čech cohomology and prove several results analogous to those
in the appendices of [KS99] (that used Galois cohomology) which are used in the proof of the
existence of a canonical class in Chapter 7.

1.3 Notation and conventions

In Chapters 4 through 6, we will use F to denote a local field of characteristic p > 0. In Chapters
7 through 9, we will use F to denote a global field of characteristic p > 0, and its completion at a
place v will be denoted by Fv. For an arbitrary algebraic group G over F , G◦ denotes the identity
component. For a connected reductive group G over F , Z(G) denotes the center of G, and for H
a subgroup of G, NG(H), ZG(H) denote the normalizer and centralizer group schemes of H in G,
respectively. We will denote by D(G) the derived subgroup of G, by Gad the quotient G/Z(G),
and if G is semisimple, we denote by Gsc the simply-connected cover of G; if G is not semisimple,
Gsc denotes D(G)sc. If T is a maximal torus of G, denote by Tsc its preimage in Gsc. For local and
global F we fix an algebraic closure F of F , which contains a separable closure of F , denoted by
F s. For E/F a Galois extension, we denote the Galois group of E over F by ΓE/F , and we set
ΓF s/F =: Γ.

For global F , we denote by V the set of all places of F , and for E/F a finite extension and
S ⊆ V , we denote by SE the preimage of S in VE , the set of all places of E. We call a subset of V
full if it equals SF for some subset S of places of Fp(t) (after choosing an embedding Fp(t)→ F ).
For a finite subset S ⊂ V , we set AS :=

∏
v∈S Fv ×

∏
v/∈S OFv , and set AE,S := AE,SE

.
We call an affine, commutative algebraic group over a ring R multiplicative if it is Cartier dual

to an étale R-group scheme. In this paper, whenever we discuss a general group scheme over
R, it will always be assumed to be affine. For Z a multiplicative group over F , we denote by
X∗(Z), X∗(Z)(= X∗(Z

◦)) the character and co-character modules of Z, respectively, viewed as
Γ-modules. For two R-schemes X, Y and R-algebra S, we set X ×Spec(R) Y =: X ×R Y , or by
X × Y if R is understood, and set X ×R Spec(S) =: XS . We also set X(Spec(S)) =: X(S), the
set of R-morphisms {Spec(S)→ X}; when X is a variety over C (for us, this will be a Langlands
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dual group Ĝ for a connected reductive group G over F ), we frequently abuse notation and write
X to mean X(C). For a morphism f : A → B of multiplicative group schemes over R, we use
f ♯ to denote both induced morphisms X∗(A) → X∗(B) and X∗(B) → X∗(A). Also, given a
morphism f : U → V of two objects in a stack C and sheaf F on C, we also use the symbol f ♯

to denote the induced morphism F(V ) → F(U); there will be no danger of confusing these two
notations.
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CHAPTER 2

Gerbe-Theoretic Preliminaries

2.1 Basics of fibered categories and stacks

The purpose of this subsection is to briefly review the theory of fibered categories and stacks that
will be used later in the paper. For a comprehensive treatment, see for example [Ols16], Chapter
3. Let C denote a category which has finite fibered products. In the later sections, this will be the
category Sch/S of schemes over a fixed scheme S, but for now we will allow it to be arbitrary. Let
X

π−→ C be a morphism of categories (i.e., a functor).

Definition 2.1.1 For X, Y ∈ Ob(X ) denote by U, V (respectively) the objects π(X), π(Y ) in C
(i.e., X and Y lie above or lift U and V ); we say that a morphism f : Y → X in X is strongly
cartesian if for every pair of a morphism g : Z → X in X and morphism h : π(Z)→ V in C such

that π(g) = π(f) ◦ h, there is a unique h̃ : Z → Y such that f ◦ h̃ = g and π(h̃) = h. In this case,

we say that h̃ lifts h.

We continue working with a fixed X
π−→ C.

Definition 2.1.2 For a fixed U ∈ Ob(C), we define a category X (U) as follows; its objects will be

given by the set {X ∈ Ob(X ) : π(X) = U} and its morphisms will be those morphisms X
f−→ X ′

such that π(f) = idU . We call this the fiber category over U , or just the fiber over U . We say that

X → C is fibered in groupoids if for all U ∈ Ob(C), X (U) is a groupoid (recall that a category

is a groupoid if all morphisms are isomorphisms). We will denote the group AutX (U)(X) simply

by AutU(X) for ease of notation.

Definition 2.1.3 We say that X
π−→ C is a fibered category over C if for every U ∈ Ob(C),

morphism V
f−→ U in C, and X ∈ X (U), there is an object Y ∈ X (V ) and strongly cartesian

morphism f̃ : Y → X such that π(f̃) = f . One checks that if we have another strongly cartesian

Y ′ f̃ ′−→ X satisfying the above property, then there is a unique isomorphism Y ′ → Y making all

the obvious diagrams commute. We define a morphism of fibered categories from X
π−→ C to

X ′ π′
−→ C to be a functor f : X →X ′ such that π = π′ ◦ f .
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Lemma 2.1.4 If X → C is a fibered category, then X also has finite fibered products.

Proof. Since we assume that C has finite fibered products, this follows from Lemma I.4.33.4 in
[Stacks].

In all that follows, given a fibered category X → C, for every U ∈ Ob(C), X ∈ X (U),
and morphism V

f−→ U in C, we choose some Y → X satisfying the conditions in the above
definition, and will denote this by f ∗X → X . One checks that for any morphism X

φ−→ Y in
X (U), a morphism f : V → U induces a canonical morphism f ∗X → f ∗Y in X (V ), which we
will denote by f ∗φ.

Definition 2.1.5 Given a fibered category X
π−→ C and X, Y ∈ X (U), we may define a presheaf

(of sets), denoted by Hom(X, Y ), on the category C/U (the category of pairs (V, g) where V ∈
Ob(C) and g : V → U , morphisms given in the obvious way) by setting

Hom(X, Y )(V
f−→ U) := HomX (V )(f

∗X, f ∗Y ),

and for a morphism (W
g−→ U)

h−→ (V
f−→ U), we define the restriction map to be

HomX (V )(f
∗X, f ∗Y )

h∗−→ HomX (W )(h
∗(f ∗X), h∗(f ∗Y )) ∼= HomX (W )(g

∗X, g∗Y ),

where the first map above sends φ to h∗φ, and the second map is the canonical isomorphism

induced by the canonical identifications h∗(f ∗X) ∼= g∗X , h∗(f ∗Y ) ∼= g∗Y . For the remainder

of this paper, it will be harmless to make such identifications, and we do so without comment. If

X → C is fibered in groupoids and Y = X , we denote the above presheaf by AutU(X)—this is a

presheaf of groups. It will play an important role in what follows.

We will now assume that we may endow C with the structure of a site, denoted by Cfpqc, so that it
makes sense to talk about sheaves on Cfpqc.

Definition 2.1.6 We say that a fibered category is a prestack (over Cfpqc) if for all U ∈ Ob(C) and

X, Y ∈X (U), the presheaf Hom(X, Y ) is a sheaf on (C/U)fpqc.

Definition 2.1.7 Fix U ∈ Ob(C), a covering {Vi
hi−→ U}i∈I of V (here I denotes the indexing

set), and a subset {Xi ∈ X (Vi)}i∈I of Ob(X ). The fibered product Vij := Vi ×U Vj has two

projections; we will denote the one to Vi by p1 and the one to Vj by p2. We say that this subset,

together with a collection of isomorphisms {fij : p∗1Xi
∼−→ p∗2Xj : fij ∈ Hom(X (Vij))}i,j∈I is a
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descent datum (for this fixed covering of U ) if the following diagram commutes for all i, j, k ∈ I:

p∗12p
∗
1Xi p∗12p

∗
2Xj p∗23p

∗
1Xj

p∗13p
∗
1Xi p∗13p

∗
2Xk p∗23p

∗
2Xk,

p∗12fij

p∗23fjk

p∗13fik

where the equalities denote the canonical isomorphisms discussed above, pij denotes the projection

Vijk := Vi ×U Vj ×U Vk → Vij , and analogously for the other projections. Given another descent

datum {Yi ∈ X (Vi)}i∈I , {gij}i,j∈I , we say that it is isomorphic to our above datum if there are

isomorphisms ϕi : Xi → Yi in X (Vi) which for all i, j satisfy p∗2ϕ
−1
j ◦ gij ◦ p∗1ϕi = fij .

Continuing the notation of the above definition, note that if X ∈ X (U), then we get a descent
datum for free via setting Xi := h∗iX and fij : p

∗
1h

∗
iX → p∗2h

∗
jX the canonical isomorphism

between these two pullbacks to Vij of X . We denote this descent datum by Xcanon.

Definition 2.1.8 We say that a descent datum {Xi}i∈I , {fij}i,j∈I for U with respect to the cover

{Vi → U} is effective if there is an object X ∈ X (U) such that {Xi}i∈I , {fij}i,j∈I is isomorphic

to Xcanon. We say that a prestack X → Cfpqc is a stack if all descent data (for all objects of C and

their covers) are effective. We define a morphisms of stacks over Cfpqc to be a morphism between

their underlying fibered categories.

The following proposition shows that whether or not a morphism between two stacks over Cfpqc

is an equivalence can be checked over a cover of Cfpqc. We will assume that C has a final object
U and that our cover consists of one element U0 → U (this will be our general situation for the
rest of the paper). It is easy to check that if X → Cfpqc is a stack, then restricting X to the full
subcategory of all objects lying above an object in C/U0 is a stack over (C/U0)fpqc. We denote this
stack by XU0 . This may also be viewed as the fibered product of categories X ×C (C/U0), for the
definition of this, see e.g. [Stacks] I.4.31. We set U1 := U0 ×U U0.

Proposition 2.1.9 Let U0 → U be a cover of Cfpqc = (C/U)fpqc, and ϕ : X → X ′ be a mor-

phism of stacks over Cfpqc; we have an induced morphism of stacks over (C/U0)fpqc, denoted by

ϕU0 : XU0 →X ′
U0

. Then ϕ is an equivalence of categories if and only if ϕU0 is.

Proof. One direction is trivial. For the other, ifX ′ is an object of X ′, then we may find an object X̃
of X and f a morphism in X ′(U0) such that ϕ(X̃)

f,∼−−→ X ′
U0

(where we are denoting the pullback
of X ′ to U0 by X ′

U0
). We may also find objects X̃1, X̃2 in X (U1) and morphisms fi in X ′(U1)

with ϕ(X̃i)
fi,∼−−→ p∗i (X

′
U0
) for i = 1, 2, which, since ϕU0 is an equivalence, are such that we have

isomorphisms X̃i
f̃i,∼−−→ p∗i X̃ with p∗i f ◦ ϕU0(f̃i) = fi as well as an isomorphism h : X̃1 → X̃2 such
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that f2 ◦ ϕ(h) ◦ f−1
1 is the canonical identification p∗1X

′
U0
∼= p∗2X

′
U0

. It is straightforward to check
that D := {X̃}, {f̃2 ◦ h ◦ f̃−1

1 , f̃1 ◦ h−1 ◦ f̃−1
2 } is a descent datum on X , and hence (since X is

a stack) there is some X ∈X (U) with Xcanon isomorphic to D as descent data. Then since X ′ is
a prestack, the local isomorphism ϕ(X)U0

∼−→ X ′
U0

induced by f and the isomorphism of descent
data glues to an isomorphism ϕ(X)

∼−→ X ′, as desired. The analogous argument for morphisms is
similar, and left as an exercise.

2.2 Basics of gerbes

Let R be a ring (we will assume all of our rings are commutative with 1), and let A be a fixed
commutativeR-group scheme (recall that all group schemes in this paper are assumed to be affine).
Denote by (Sch/R)fpqc the site of schemes over Spec(R) equipped with the fpqc topology. Recall
that for a site C and G a group sheaf on C, a G -torsor T is a sheaf on C equipped with a right group
(sheaf) action T ×G → T (satisfying the usual group action axioms) such that for every objectX
of C, there is some cover {Yi → X} such that TYi := T ×C (C/Yi) is (G -equivariantly) isomorphic
to the trivial GYi-torsor GYi , that is, the group sheaf GYi equipped with the right translation action.

We begin with a result that says it is harmless to identify G-torsors for a group scheme G over
R with torsors for the associated group sheaf on (Sch/R)fpqc.

Proposition 2.2.1 Let G be an fpqc group scheme over R, with G the associated sheaf on

(Sch/R)fpqc. For every G-torsor P on (Sch/R)fpqc, P is representable (as a torsor) by a G-torsor

T → Spec(R).

Proof. To begin with, let V = {Vi → Spec(R)} be an fpqc cover of Spec(R) trivializing P . Choos-
ing trivializations hi : PVi

∼−→ GVi
(as GVi

-torsors) gives an element x = (xij) ∈
∏

i,j G(Vi ×F Vj)
satisfying the 1-cocycle condition. This furnishes us with an fpqc descent datum of torsors on the
site (Sch/R)fpqc via the cover {Vi → Spec(R)}, objects {GVi} (with trivial right GVi-action), and
isomorphisms mxij : p

∗
1(GVj)

∼−→ p∗2(GVi) of GVij -torsors given by left-translation by xij . Now,
since the morphisms GVi → Vi are quasi-affine (indeed, they are the base change of the affine
morphism G → Spec(R)), by [Stacks], Lemma II.35.35.1, this descent datum is effective, and
hence we get an R-scheme T with a G-action such that T ∼−→ P as fpqc G-sheaves. Now, since
G → Spec(R) is fpqc and T is isomorphic to G after an fpqc base-change, the scheme T is also
fpqc over R, and we have a section T

∆−→ T ×R T given by the diagonal, showing that T is
trivialized over an fpqc cover of Spec(R).

Remark 2.2.2 We will frequently use this proposition without comment in order to identify G-

torsors over R and G-torsors on (Sch/R)fpqc. Because of this, it is harmless to abuse notation and

denote the sheaf G by G.
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We denote by Ȟ1
fpqc(R,G) the pointed set of isomorphism classes of G-torsors over R.

Definition 2.2.3 A stack E π−→ (Sch/R)fpqc fibered in groupoids is called a gerbe if every object U

of (Sch/R)fpqc has a cover {Vi → U} such that every Vi has a lift in E , and for any two objects

X, Y ∈ Ob(E(U)), there is a cover {Vi
fi−→ U} such that f ∗

i X and f ∗
i Y are isomorphic in E(Vi)

for all i.

In the setting of the above definition, we will frequently omit the topology on Sch/R and just
write E π−→ Sch/R to mean that Sch/R has the fpqc topology.

Example 2.2.4 The classifying stack of A over R, denoted by BRA→ Sch/R, has fiber category

BRA(U), for U ∈ Ob(Sch/R) an R-scheme, the category of all AU torsors T with morphisms

being isomorphisms of AU torsors. For V
f−→ U in Sch/R and T, S fixed AU ,AV -torsors (respec-

tively), a morphism (V, S) → (U, T ) lifting f is an isomorphism of AV -torsors S → f ∗T . One

verifies easily that this is a gerbe over Sch/R.

Definition 2.2.5 As we discussed in §2.1, for any X ∈ E(U), the functor on Sch/U given by

sending V
f−→ U to AutU(f ∗X) defines a sheaf of groups on (Sch/U)fpqc, denoted by AutU(X). We

call our gerbe E abelian if this group sheaf is abelian for all X .

Lemma 2.2.6 If E is an abelian gerbe, then the sheaves AutU(X), as X varies through all objects

of E , glue to define an abelian group sheaf on Sch/R, called the band of E and denoted by Band(E).
Moreover, we have for any X ∈ E(U) an isomorphism Band(E)

∣∣
U

hX−→ AutU(X) of sheaves on

(Sch/U)fpqc such that for any X, Y ∈ E(U) and isomorphism φ : X → Y in E(U), the following

diagram commutes

Band(E)
∣∣
U

Band(E)
∣∣
U

AutU(X) AutU(Y )

hX hY

f 7→φ◦f◦φ−1

Proof. This is Lemma I.8.11.8 in [Stacks].

In fact, following the setup of the above lemma, even if X and Y are not isomorphic in E(U),
since they are locally isomorphic (by the definition of a gerbe), we may find a cover {Vi → U}
such that the pullbacks of X and Y to each Vi are isomorphic via some ϕi, so that we get an
isomorphism AutU(X)

∣∣
Vi

∼−→ AutU(Y )
∣∣
Vi

for all i of sheaves on (Sch/Vi)fpqc which is independent
of the choice of ϕi in view of the above lemma, and hence glues to a canonical isomorphism
AutU(X)

∼−→ AutU(Y ) of sheaves on (Sch/U)fpqc (which is the same as hY ◦ h−1
X ). Because of

this observation, it is harmless to identify Band(E)
∣∣
U

with AutU(X) for some X ∈ E(U) via hX ,
which we will do in what follows.
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For the rest of this paper, all gerbes will be assumed to be abelian, and when we refer to a
“gerbe," we always mean an abelian gerbe.

If we fix a ring homomorphism R→ R′ and abelian sheaf F on Sch/R, then Ȟ i(R′/R,F ) =

Ȟ i(Spec(R′)→ Spec(R),F ) denotes the ith cohomology group of the complex

F (R′)→ F (R′ ⊗R R′)→ F (R′ ⊗R R′ ⊗R R′)→ . . . ,

where the differentials are given by the alternating sum of the n+1 natural maps F ((R′)
⊗

R n)→
F ((R′)

⊗
R(n+1)). One can make an identical definition (using fibered products of schemes

instead of tensor products) if the cover of Spec(R) is not affine. To ease notation, we set
Un := Spec((R′)

⊗
R(n+1)) (the ring R′ will always be clear from the context, so we omit it from

this piece of notation).

Convention 2.2.7 A simplifying convention we will use in this paper is that, when discussing

an abelian R-group scheme A and an fpqc cover U0 → Spec(R), we will always assume that

Ȟ1
fpqc(Un,AUn) = 0 for all n ≥ 0. Equivalently, every AW -torsor over W has a W -trivialization

(see Remark 2.2.2) for W = Un. If R = F a field and A is of finite-type, this condition holds for

U0 = Spec(F ), see [Ros19], §2.9.

Definition 2.2.8 We call a pair (E , θ) of a gerbe E and an isomorphism θ : A ∼−→ Band(E) an A-
gerbe. In practice, θ will be a way for us to identify automorphisms of objects in E with elements

of A in a manner that does not depend on isomorphism classes in the fibers; we will frequently

omit explicit mention of the map θ. For X ∈ E(V ), we denote the isomorphism hX ◦ θU from

Lemma 2.2.6 by θX . Any morphism of stacks over (Sch/F )τ between two gerbes E and E ′ induces

a morphism of group schemes over R between the corresponding bands. If both can be given

the structure of A-gerbes, then we say that such a morphism of Sch/F categories between two

A-gerbes is a morphism of A-gerbes if it is the identity on bands (via the identifications of both

bands with A). By [Ols16], Lemma 12.2.4, any morphism of A-gerbes is an equivalence, and so

we will also call such a functor an equivalence of A-gerbes.

Example 2.2.9 The gerbe BRA → Sch/R may be canonically given the structure of an A-gerbe,

since for an abelian group sheaf A and A-torsor T , the automorphism sheaf defined by T is canon-

ically isomorphic to A.

We say that an A-gerbe E is split over the cover V → Spec(R) if EV := E ×Sch/R Sch/V is
equivalent as an AV -gerbe to BV (AV ). The following result is a useful alternative characterization
of an A-gerbe E splitting over a cover V → Spec(R):
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Proposition 2.2.10 The gerbe E → Sch/R is split over V → Spec(R) if and only if there is an

object X ∈ E(V ).

Proof. It is clear that if an A-gerbe E is split over V , we have such an object. For the other
direction, see [Vis15], Remark 2.4.

Fact 2.2.11 Gerbes are closely related to Čech 2-cocycles of A with respect to covers of Sch/R,

and in this sense are natural analogues of the group extensions that arise in the study of 2-

cocycles from Galois cohomology. Indeed, let (E , θ) be an A-gerbe over Sch/R, and take some

U0 → Spec(R) a cover such that we have some X ∈ E(U0) with p∗1X
φ,∼−−→ p∗2X for some φ an

isomorphism in E(U1) (because of Convention 2.2.7, for any X ∈ E(U0), we can always find a φ).

We extract a Čech 2-cocycle c ∈ A(U2) in the following manner: φ defines an automorphism of

q∗1X over U2 via the composition

dφ := (p∗13φ)
−1 ◦ (p∗23φ) ◦ (p∗12φ) ∈ AutU2(q

∗
1X),

and we set c = θq∗1X(c) ∈ A(U2). Then c is a Čech 2-cocycle, whose class in Ȟ2(U0 →
Spec(R),A) is independent of the choice of φ and X (see [Moe02], §3). We denote by [E ] ∈
Ȟ2(U0 → Spec(R),A) the Čech cohomology class obtained from E as above, and call [E ] the

Čech class corresponding to E .

Corollary 2.2.12 We have a well-defined map from the set of A-gerbes split over V to the group

Ȟ2(V → Spec(F ),A) defined by E 7→ [E ]. Moreover, if (E , θ) is equivalent to (E ′, θ′), then

[E ] = [E ′].

Proof. The first statement is immediate. The second statement is a straightforward exercise using
Lemma 2.2.6 and pullbacks in fibered categories.

2.3 Some explicit gerbes

In this subsection we show that the map from Corollary 2.2.12 is surjective and discuss other
fundamental properties of gerbes. We fix an affine fpqc cover U0 → Spec(R) and group A as in
the previous subsection.

Definition 2.3.1 Fix a Čech 2-cocycle a of A taking values in the cover U0 → Spec(R), that is to

say, a ∈ A(U2). Then we may define an A-gerbe as follows: take the fibered category Ea → Sch/R

whose fiber over V is defined to be the category of pairs (T, ψ), where T is a (right) AV×RU0-torsor

on V ×RU0 with A-action m (in the fpqc topology), along with an isomorphism of AV×RU1-torsors
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ψ : p∗2T
∼−→ p∗1T , called a twisted gluing map, satisfying the following “twisted gluing condition"

on the AV×RU2-torsor q∗1T :

(p∗12ψ) ◦ (p∗23ψ) ◦ (p∗13ψ)−1 = ma,

wherema denotes the automorphism of the torsor q∗1T given by right-translation by a. A morphism

(T, ψT ) → (S, ψS) in Ea lifting the morphism of R-schemes V
f−→ V ′ is a morphism of AV×U0-

torsors T h−→ f ∗S satisfying, on V ×R U1, the relation f ∗ψS ◦ p∗2h = p∗1h ◦ ψT . We will call such

a pair (T, ψ) in Ea(V ) an a-twisted torsor over V when A is understood. We call Ea the gerbe
corresponding to a.

When working with the fibered category Ea → Sch/R there is an obvious canonical choice of
pullbacks. Indeed, for (T, ψ) ∈ Ea(U) and f : V → U , we set f ∗(T, ψ) := (f ∗T, f ∗ψ), and the
strongly cartesian morphism f ∗(T, ψ) → (T, ψ) to be the one induced by the identity. We always
work with this choice of pullbacks.

Proposition 2.3.2 The category Ea → Sch/R may be canonically given the structure of an A-

gerbe (Ea, θ), with an object X ∈ Ea(U0) and an isomorphism φ : p∗1X → p∗2X satisfying

θ−1
q∗1X

(dφ) = a ∈ A(U2). In particular, Ea is split over U0 and [Ea] = [a].

Proof. If we prove that there is such an object X ∈ Ea(U0), it will follow immediately that Ea
defines a gerbe. Moreover, we have that Band(Ea) is canonically isomorphic to A, since (for
V = Spec(R), the general case is identical) any automorphism of an a-twisted torsor (T, ψ) is
given by a unique element x ∈ A(U0), and since ψ is a morphism of AU1-torsors commuting with
this chosen automorphism, we in fact have that x ∈ A(R) (using fpqc descent, cf. the proof of
Lemma 2.4.7 below). All that’s left to show is the existence of X and φ. This follows from the
following lemma (which is important in its own right).

Lemma 2.3.3 We have a canonical section x : Sch/U0 → Ea such that the two pullbacks x1 and

x2 to Sch/U1 are isomorphic via φ : x1
∼−→ x2 satisfying dφ := (p∗13φ)

−1◦(p∗23φ)◦(p∗12φ) = ιa as a

natural transformation from q∗1x : Sch/U2 → Ea to itself, where we are using ιa to denote the nat-

ural transformation from the identity functor (Ea)U2 → (Ea)U2 to itself given by the automorphism

θZ(aV ) : Z
∼−→ Z for all Z ∈ EU2(V ).

Proof. Define the a-twisted torsor on (Sch/U0)fpqc to be (as an AU0-torsor) AU0; we will define
the twisted gluing map after a short discussion. The gluing map should be an isomorphism of
AU1-torsors: ψ : p̃2

∗(AU0) → p̃1
∗(AU0), where p̃2 : U0 × U1 → U0 × U0 is idU0 × p2 and

p̃1 : U0 × U1 → U0 × U0 is idU0 × p1. We have that U0 × U1 = U2, and U0 × U0 = U1, and then
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p̃1 equals p12, p̃2 equals p13. So, giving ψ reduces to giving a morphism of AU0×U1 = AU2-torsors
p∗13(AU1) → p∗12(AU1). Both sides are canonically equal to AU2 , because A is a sheaf on Sch/R
so its value on a U1-object only depends on the map to Spec(R), which is the same regardless of
the map from U2 to U1. So we may take ψ to be ma, which makes sense since a ∈ A(U2); this
is A-equivariant since A is commutative. We need to check that ψ satisfies the twisted cocycle
condition.

The above paragraph relied on the equalities U0 × U1 = U2 and U0 × U0 = U1. Continuing
these identifications, p̃12 : U0 × U2 → U0 × U1 is the map U3 → U2 given by q123, and similarly
p̃13 = q124, p̃23 = q134. Whence, p̃13∗(ψ−1)◦p̃12∗(ψ)◦p̃23∗(ψ) = (q∗124m

−1
a )◦(q∗123ma)◦(q∗134ma) =

q∗234ma, since a is a Čech 2-cocycle. Take q̃1∗(AU0), q̃1 = idU0×q1. By construction, after identify-
ing q̃1A with AU3 , we see that the left multiplication map maU2,r2

, where aU2,r2 denotes the image
of a in A(U0×U2) = A(U3) via the map r2 : U0×U2 → U2 which projects onto the second factor,
equals q∗234ma, as desired. This a-twisted A-torsor on (Sch/U0)fpqc induces an aV -twisted A-torsor
on each (Sch/V )fpqc, V → U , via pullback, giving our map x, which one easily checks is a functor.

We now need to define a natural transformation φ : x1
∼−→ x2 between the two pullbacks of x to

U1. It’s enough (by taking pullbacks) to define a morphism of a-twisted torsors

φ : A
(U1

p1−→U0)×U0

→ A
(U1

p2−→U0)×U0

,

which we can take to be translation by a, via the same identifications as above. We will verify
shortly that p∗1φ ◦ ψU1

p1−→U0

= ψ
U1

p2−→U0

◦ p∗2φ. The same argument showing that dψ = ma gives
that dφ = ma, which is ιa, by the definition of the inertial action on Ea.

We now justify our above claim that φ is a morphism of a-twisted torsors. For V
f−→ U0, the

gluing map ψV is

(AV×U0)×id×p2 (V × U1)→ (AV×U0)×id×p1 (V × U1),

given by left translation by a ∈ A(U2)
(f×id)♯−−−−→ A(V ×U1). As such, we first look at ψ

U1

p1−→U0

. This

is the map on AU3 given by left translation by the image of a in A(U1 × U1) via A(U2)
(p1×id)♯−−−−→

A(U3), which is evidently p134(a).
We also have the map

φ : A
(U1

p1−→U0)×U0

→ A
(U1

p2−→U0)×U0

which is also left translation by a ∈ A(U2). Thus, p∗1φ is the map

φ : A
(U1

p1−→U0)×U0

×id×p1 (U1 × U1)→ A
(U1

p2−→U0)×U0

×id×p1 (U1 × U1),
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which is left translation by the image of a in A(U3) via U3
id×p1−−−→ U2, which is p123(a).

On the other hand, the map

p∗2φ = φ : A
(U1

p1−→U0)×U0

×id×p2 (U1 × U1)→ A
(U1

p2−→U0)×U0

×id×p2 (U1 × U1),

corresponds on AU3 to translation by (id× p2)♯(a) = p124(a), and, finally, we have

ψ
U1

p2−→U0

: A
(U1

p2−→U0)×U0

×id×p2 (U1 × U1)→ A
(U1

p2−→U0)×U0

×id×p1 (U1 × U1)

given by (p2 × id)♯(a) = p234(a). The desired equality holds since p234(a) · p124(a) = p134(a) ·
p123(a), since a is a 2-cocycle.

We now give a basic functoriality result:

Construction 2.3.4 Let A f−→ B be an R-morphism of commutative group schemes and a, b ∈
A(U2),B(U2) two Čech 2-cocycles such that [f(a)] = [b] in Ȟ2(U0 → Spec(R),B). Then for any

x ∈ B(U1) satisfying d(x) · b = f(a), we may define a morphism of Sch/R-stacks Ea
ϕa,b,x−−−→ Eb.

For any V ∈ Ob(Sch/R), given a a-twisted torsor (T, ψ) over V , we define a b-twisted torsor

(T ′, ψ′) over V as follows. Define the BV×RU0 torsor T ′ to be T×AV ×U0
,fBV×U0 , and take the gluing

map to be ψ′ := mx−1 ◦ ψ, where mx−1 ◦ ψ denotes the isomorphism of contracted products

p∗2(T×AV ×U0
,fBV×U0) = (p∗2T )×AV ×U1

,fBV×U1 → (p∗1T )×AV ×U1
,fBV×U1 = p∗1(T×AV ×U0

,fBV×U0)

induced by (mx−1 ◦ ψ)× idB (and we are implicitly identifying x with its image in B(V ×R U1)).

We compute that

(p∗12ψ
′) ◦ (p∗23ψ′) ◦ (p∗13ψ′)−1 = mp12(x)−1p23(x)−1p13(x)·f(a) = mb,

so that ϕa,b,x((T, ψ)) := (T ′, ψ′) indeed defines an element of Eb(V ). From here, one checks that

any morphism φ : (S, ψS)→ (T, ψT ) of a-twisted torsors induces a morphism of the corresponding

b-twisted torsors by means of the map on contracted products induced by φ× id, giving the desired

morphism of stacks.

Note that the above morphism does in general depend on the choice of x; indeed, any two such

morphisms differ by post-composing by an automorphism of Eb determined by a Čech 1-cocycle z

with respect to the cover U0 → Spec(R).

Proposition 2.3.5 Suppose that E → Sch/R and E ′ → Sch/R are two A-gerbes split over U0.

Then [E ] = [E ′] in Ȟ2(U0 → Spec(R),A) if and only if E is A-equivalent to E ′.

19



Proof. We already know the “if" direction from Corollary 2.2.12. Let E be a A-gerbe with X ∈
E(U0) and φ : p∗1X

∼−→ p∗2X in E(U1). By Definition 2.2.8, it’s enough to construct a (Sch/R)-
morphism E → E ′ which is the identity on bands. If we show that E is A-equivalent to Ea for a ∈
A(U2) giving dφ, then the result will follow from applying Construction 2.3.4 to cohomologous
cocycles (with f = idA, in the notation of the construction).

At the level of objects, send Y ∈ E(V f−→ Spec(R)) to the sheaf IsomE(V×U0)
(p̃∗2X, p̃

∗
1Y ), on

Sch/(V ×F U0), where p̃i is the ith projection of V × U0. We claim that this sheaf is an a-twisted
torsor over V . First, it is easy to see that the above sheaf is an AV×U0-torsor, by means of the action
of the band of E on either side of the isomorphism (it doesn’t matter which by Lemma 2.2.6). We
need to define an isomorphism of AV×U1-torsors

ψ : p∗2[IsomE(V×U0)
(p̃∗2X, p̃

∗
1Y )]

∼−→ p∗1[IsomE(V×U0)
(p̃∗2X, p̃

∗
1Y )]

satisfying the twisted gluing condition with respect to a. We may take this to be the isomorphism
obtained by pre-composing by p̃∗2,U1

φ (after making appropriate canonical identifications which we
leave to the reader, where p̃i,U1 is the ith projection for V × U1). This defines our equivalence on
the level of objects.

At the level of morphisms, for Y
f̃−→ Z lifting V

f−→ W , we have an induced morphism p̃∗1Y →
p̃∗1Z, and post-composing by this map gives a morphism

(IsomE(V×U0)
(p̃∗2X, p̃

∗
1Y ), ψY )→ (IsomE(V×U0)

(p̃∗2X, p̃
∗
1Z), ψZ),

which is a morphism of a-twisted torsors. The induced morphism of bands is the identity by
definition of the A-action on each IsomE(V×U0)

(p̃∗2X, p̃
∗
1Y ).

For E an A-gerbe as above, we call a choice of equivalence E → Ea for any a such that [a] = [E ]
a (choice of) normalization of E .

Remark 2.3.6 The above equivalence E → Ea sends X to the isomorphism class of the trivial
a-twisted torsor, which we define to be the a-twisted torsor over U0 given by x(U0), where x is the

section constructed in Lemma 2.3.3.

2.4 Torsors on gerbes

We continue with the notation of the previous subsections of this chapter.

Definition 2.4.1 For a stack X
π−→ Sch/R, we give X the structure of a site Xfpqc via the fpqc

topology on X . First, recall that X has finite fibered products, by Lemma 2.1.4; to define this
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topology, for X ∈ Ob(X ) say that a collection of morphisms {Xi
fi−→ X} in X is a cover if and

only if {π(Xi)
π(fi)−−−→ π(X)} is a cover in Sch/R. This endows X with the structure of a site such

that X
π−→ Sch/R is a morphism of sites. We will frequently abbreviate Xfpqc to just X .

We begin this subsection with an important result concerning torsors on gerbes which will be
crucial for our later cohomological constructions. In what follows, we fix a finite type fpqc R-
group scheme G. If E π−→ Sch/R is a gerbe, we denote by GE the corresponding group sheaf on
E with the induced fpqc topology. For F is a sheaf (of sets) on an A-gerbe (E , θ), we have a
morphism of sheaves on E denoted by

ι : AE ×E F → F ,

called the inertial action, which for an object X of E(U) and a ∈ AE(X) = A(U) is defined by

the automorphism F (X)
θX(a)♯−−−−→ F (X). This gives an action of the group sheaf AE on the sheaf

F , see [Shi19], 2.3.

Lemma 2.4.2 Assume thatG is abelian. If T is aGE-torsor on the A-gerbe E π−→ Sch/R split over

U0, then there is a unique map ϕ ∈ HomR(A, G) such that the inertial action ι : AE ×E T → T is

induced by ϕE := π∗ϕ : AE → GE . We denote this homomorphism by Res(T ).

Proof. If such a map exists, uniqueness is clear. For V → Spec(R), X ∈ E(V ), and x ∈ AE(X) =

A(V ), the induced automorphism of sheaves ιx : T
∣∣
E/X → T

∣∣
E/X is GE

∣∣
E/X-equivariant, since

theGE-action T ×EGE → T is a morphism of sheaves on E and ιx is induced by an automorphism
of X (by definition). It follows that ιx must be given by right-translation by a unique element
gx ∈ GE(X) = G(V ), defining a map AE(X) = A(V )

ΦX−−→ G(V ) = GE(X). Moreover, if
X

ν−→ Y is a morphism in E , lifting V
f−→ U , then the square

A(U) G(U)

A(V ) G(V )

ΦX

f♯

ΦY

f♯

commutes because of the commutativity of the squares

AE
∣∣
E/X ×T

∣∣
E/X T

∣∣
E/X T

∣∣
E/X ×GE

∣∣
E/X T

∣∣
E/X

AE
∣∣
E/Y ×T

∣∣
E/Y T

∣∣
E/Y T

∣∣
E/Y ×GE

∣∣
E/Y T

∣∣
E/Y .

ιX

ν♯

ιY

ν♯ ν♯ ν♯
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It follows that the above maps glue across all objects in E to define a homomorphism of group
sheaves ΦE : AE → GE . This defines a homomorphism Φ̄ : AU0 → GU0 via pulling back by a
section s : Sch/U0 → E , and the above argument shows that the two pullbacks to AU1 coincide by
setting ν = φ : p∗1X

∼−→ p∗2X any isomorphism in E(U1) for X := s(U0), showing that Φ̄ descends
to an F -homomorphism Φ, whose pullback by π is ΦE .

We first record a characterization of sheaves on the site BRA→ Sch/R (with the induced fpqc
topology). Consider the category of sheaves on BRA, as well as the category of sheaves on Sch/R
equipped with an A-action, where we require morphisms in this latter category to be A-equivariant.
There is a canonical section s : Sch/R→ BRA sending U → Spec(R) to the trivial AU -torsor AU .
Define the map between the above two categories to be the one which sends a sheaf F on BRA to
the sheaf s∗F on Sch/R with A-action given by

A×R s∗F
s∗ι−→ s∗F ,

and sends the morphism of sheaves F
f−→ F ′ to s∗f , where in the definition of the action we are

making the identification s∗(AE) = A.

Proposition 2.4.3 The above map defines an equivalence of categories.

Proof. See [Shi19], Remark 2.6.

Definition 2.4.4 For our fixed G and E → Sch/R a gerbe, define the fibered category Tors(G, E)
over (Sch/R)fpqc, where the fiber over U ∈ Ob(Sch/R) is the category of GEU -torsors on EU ,

with a morphism from T to S lying above f : V → U given by a morphism of GEV -torsors

T → f ∗S . Here f ∗S denotes the pullback of the GEU -torsor S to EV via the morphism EV :=

E ×Sch/R (Sch/V ) → E ×Sch/R (Sch/U) =: EU induced by the functor Sch/V → Sch/U sending

W → V to W → V
f−→ U .

Proposition 2.4.5 The fibered category Tors(G, E)→ (Sch/R)fpqc is a stack.

Proof. Our above construction is clearly a fibered category, and the remaining conditions, namely
that the isomorphism functor associated to the fiber over U ∈ Ob(Sch/R) is a sheaf and that all
descent data from (Sch/R)fpqc are effective, follow from (respectively) gluing of morphisms of
torsors and gluing of torsors on stacks over (Sch/R)fpqc with the induced fpqc topology, which
follow easily from the discussion in [Stacks], §I.7.26 (with our stack being E → (Sch/R)fpqc).

We now introduce the category of a-twisted G-torsors on the site (Sch/R)fpqc, corresponding to
a Čech 2-cocycle a ∈ A(U2), whose purpose is to give a concrete interpretation of the above stack
in the case where E = Ea. This definition is a generalization of Definition 1.2.1 in [Căl00].
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Definition 2.4.6 An a-twisted G-torsor over R is a quadruple (T, ψ,m, n) consisting of a GU0-

torsor m : T × GU0 → T over U0, an AU0-action n : AU0 ×U0 T → T which commutes with m,

and an A-equivariant isomorphism of GU1-torsors ψ : p∗2T → p∗1T satisfying the twisted cocycle
condition

(p∗12ψ) ◦ (p∗23ψ) ◦ (p∗13ψ)−1 = na

on q∗1T . We occasionally abbreviate the quadruple (T, ψ,m, n) by (T, ψ) (in such cases there

will be no ambiguity regarding the associated actions). A morphism h : (T, ψT ,mT , nT ) →
(S, ψS,mS, nS) of a-twisted G-torsors over R is an A-equivariant morphism of GU0-torsors over

U0, h : T → S, satisfying ψS ◦p∗2h = p∗1h◦ψT . We get an associated fibered category over Sch/R,

denoted by Torsa(G,A, R), by letting the fiber over V be all aV -twisted-torsors over V , where aV
is the image of a in A(V × U2), defined identically as above after replacing U0, U1 by V × U0 and

V × U1 = (V × U0)×V (V × U0).

The following lemma provides a different way to interpret some aspects of the above definition.

Lemma 2.4.7 Assume that G is abelian. For a GU0-torsor T , having a GU0-equivariant AU0-

action on T is equivalent to requiring that the AU0-action be induced by a group homomorphism

AU0 → GU0 , and insisting further that there is a twisted gluing map giving T (along with the two

given actions) the structure of an a-twisted G-torsor implies that this homomorphism is defined

over R.

Proof. For V → U0, if we fix x ∈ A(V ), then nx : TV
∼−→ TV is an automorphism of GV -torsors,

and is thus right-translation mgx by some unique gx ∈ G(V ), and the assignment a 7→ gx is
functorial in V by uniqueness of gx, and hence we get a group homomorphism AU0

f−→ GU0 giving
the A-action.

This homomorphism f descends to a morphism A → G because p∗1f is induced by the AU1-
action on p∗1T and p∗2f by the AU1-action on p∗2T , and we have an AU1-equivariant morphism of
GU1-torsors ψ : p∗2T

∼−→ p∗1T , which means that if x ∈ A(U1) induces the automorphism mgx on
p∗2T , then since the diagram

p∗2T p∗1T

p∗2T p∗1T

ψ

(p∗2n)x (p∗1n)x

ψ

commutes and ψ is GU1-equivariant, the right-hand translation (p∗1n)x equals ψ ◦ (p∗2n)x ◦ ψ−1 =

ψ ◦mgx ◦ ψ−1 = mgx , giving the result (by fpqc descent of morphisms).

Proposition 2.4.8 The fibered category Torsa(G,A, R)→ (Sch/R)fpqc is a stack.
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Proof. The isomorphism functor on V ∈ Ob(Sch/R) associated to the fiber category over V is
evidently a sheaf, by gluing of morphism of sheaves (again, see [Stacks], §I.7.26), and if the
equivariance conditions hold on an fpqc cover, they hold on V . Thus, all that remains to check is
effectivity of descent data. This follows because of gluing of G-torsors on (Sch/U0)fpqc with the
fpqc topology, and the A-action on compatible torsors defined on any cover {Vi → V } extends to
a A-action of the glued torsor on V by gluing of morphisms (using A-equivariance of morphisms
in Torsa(G,A, R)). Again, the commutation relations can be checked locally.

The next fundamental result shows that the above two notions of torsors actually coincide. We
begin with a lemma that addresses the case when E = BRA.

Lemma 2.4.9 There is an equivalence of categories η : Tors(G,BRA)→ TorseA(G,A, R).

Proof. If we start with the data of an object (T, ψ) in TorseA(G,A, R), the map ψ furnishes T with
a descent datum (of torsors, not just sheaves) with respect to the fpqc cover U0 → Spec(R). By
gluing of fpqc sheaves (see [Stacks], §I.7.26) such an object then gives a G-torsor over R with
G-equivariant A-action. By Proposition 2.4.3, this defines a sheaf T on BRA, so all we need to
do is define the GE-action, m̃ : T ×GE → T .

Denote by s : Sch/R → BRA the canonical section. Denote by C the (categorical) image of
this embedding of categories. We may define a morphism of sheaves

T
∣∣
C ×GE

∣∣
C → T

∣∣
C (2.1)

by applying π∗ to the action T ×G→ T .
For an arbitrary A-torsor over V , say X , we may find an fpqc cover {Vi

fi−→ V } such that we
have isomorphisms of AVi-torsors hXi

: Xi := f ∗
i X

∼−→ AVi , and, if sXi
: Sch/Vi → E denotes the

embedding of categories induced by Xi, we can define an action

T
∣∣
sXi

(Sch/Vi)
×GE

∣∣
sXi

(Sch/Vi)
→ T

∣∣
sXi

(Sch/Vi)
(2.2)

by conjugating our above action (2.1) by hXi
: sXi

(Sch/Vi)
∼−→ C/AVi (where we identify hXi

with the induced equivalence between the embedded categories). To check that this glues to give
a morphism of sheaves T × GE → T , it’s enough to check that the action defined in (2.2)
is independent of the choice of hXi

, which is equivalent to showing that the action in (2.1) is
equivariant under the inertial action. This follows because the G-action on T is A-equivariant.

We have thus constructed a map TorseA(G,A, R)→ Tors(G,BRA) which is the inverse of the
map Tors(G,BRA)→ TorseA(G,A, R) obtained by pulling back by the section s.
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Proposition 2.4.10 For E = Ea, there is a canonical equivalence of categories η : Tors(G, E) →
Torsa(G,A, R).

Proof. The argument largely follows that in [Lie04], §2.1.3 (where we replace the action via a
character χ by the inertial action). Let x : Sch/U0 → E be the section constructed in Lemma
2.3.3; let X be the corresponding lift of U0. This same lemma also tells us that the two pullbacks
of x to U1, the maps x1 and x2, are isomorphic via φ; this means that for every V

f−→ U1, we have
an isomorphism φV : (p1 ◦ f)∗X → (p2 ◦ f)∗X in E(V ).

Let T ∈ Tors(G, E)(Spec(R)) (the argument is identical for a GEU -torsor). Then define the
G-torsor over U0 to be T := x∗T (sending V

f−→ U0 to T (f ∗X)). We know that AE acts on T via
the inertial action, denoted by ι : AE ×T → T . As such, we get an A-action on T via taking x∗ι
(using that x∗AE = A). Similarly, we can set ψ to be the U1-sheaf isomorphism p∗2x

∗T → p∗1x
∗T

induced by the natural transformation φ : x ◦ p1
∼−→ x ◦ p2. One sees that ψ satisfies the twisted

cocycle condition, since the map from (q∗1x)(Sch/U2) to itself given by the natural transformation
of q∗1x:

dφ = (p∗13φ)
−1 ◦ (p∗23φ) ◦ (p∗12φ)

equals ιa, so that the induced map q∗1T → q∗1T is exactly translation by a. Note that ψ is A-
equivariant for our A-action, since for z ∈ A(U0), we can identify z with θp∗1X(z), θp∗2X(z) ∈
AutU1(p

∗
1X),AutU1(p

∗
2X), and then φU0◦θp∗2X(z) = θp∗1X(z)◦φU0 , as θp∗1X(z) = φU0◦θp∗2X(z)◦φ

−1
U0

(by Lemma 2.2.6).
We take m : T ×GU0 → T to be the pullback of the GE-action m̃ on T by x. Fixing V

f−→ U ,
since m̃ : T ×GE → T is a morphism of sheaves on E , it commutes with the restriction maps φ♯V ,
giving the G-equivariance of ψ. One checks via an identical argument that m commutes with the
AU0-action (since it acts via the band of E), and that if T → S is a morphism in Tors(G, E)(U0),
the induced maps T (f ∗X) → S (f ∗X) give a morphism in Torsa(G,A, R)(U0) We thus obtain
our functor η (after applying the above construction with U0 replaced by an arbitrary V → U0,
which proceeds identically as above).

Since both Tors(G, E) and Torsa(G,A, R) are stacks over (Sch/R)fpqc, it’s enough to check that
η is locally an equivalence, by Proposition 2.1.9 (where we are using that we are working with the
fpqc sites). By base-changing to U0, we may assume that a is a 1-coboundary; one checks easily
(using an argument similar to the one used in Construction 2.3.4) that if a is cohomologous to b,
then Torsa(G,A, R) and Torsb(G,A, R) are equivalent, and we know from Construction 2.3.4 that
Eb and Ea are isomorphic (not just equivalent). Hence, we may assume that a = eA, and E = BRA,
and now we may apply Lemma 2.4.9.

The following two results follow immediately from the above proof, pulling back functors be-
tween the categories Tors(G, E) (with varying G and/or E) by the section x:
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Corollary 2.4.11 Let G
f−→ H be a morphism of R-group schemes, giving the usual functor

Tors(G, Ea)→ Tors(H, Ea),

which sends T to T ×GE ,fE HE . Then this corresponds via the equivalence η to the functor

Torsa(G,A, R)→ Torsa(H,A, R)

sending (T, ψ,m, n) to the HU0-torsor T ×G,f H , with A-action induced by n × id; when G is

abelian, this is the same as replacing the homomorphism A→ G giving nwith its post-composition

by f . The new gluing map ψ̃ is obtained by applying −×G,f H and taking the morphism induced

by ψ × id.

Corollary 2.4.12 Let ϕa,b,x : Ea → Eb be the morphism of stacks over R defined in Construction

2.3.4 between the A-gerbe Ea corresponding to the Čech 2-cocycle a ∈ A(U2), the B-gerbe Eb,
corresponding to the Čech 2-cocycle b ∈ B(U2), induced by a homomorphism A h−→ B such that

[h(a)] = [b] ∈ Ȟ2(U0 → Spec(R),B) and x ∈ B(U1) such that d(x) · b = h(a). Then the functor

Tors(G, Eb)→ Tors(G, Ea)

induced by pullback by ϕa,b,x corresponds via η to the functor

Torsb(G,B, R)→ Torsa(G,A, R)

sending the object (T, ψ,m, n) to the a-twisted G-torsor with underlying GU0-torsor T , A-action

given by mapping to B by h, and gluing map ψ̃ given by translating ψ by x.

2.5 Inverse limits of gerbes

In this section we present a few elementary results concerning inverse limits of gerbes. We keep all
of the previous notation and conventions of this chapter. The new assumptions of this subsection
are as follows: We have a system {un}n∈N of fpqc commutative groups over R with transition
maps pn+1,n : un+1 → un (defined over R) which are epimorphisms. We also assume that we have
systems of elements {un ∈ un(U2)} and {xn ∈ un(U1)} such that un are Čech 2-cocycles and
un · dxn = pn+1,n(an+1). This gives rise to a system of gerbes {En := Eun → Sch/R}n∈N
(abbreviated as just {En}) with morphisms of Sch/R-categories πn+1,n : En+1 → En, where
πn+1,n := ϕan+1,un,xn , see Construction 2.3.4. We will make the additional assumption that the
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projection maps un+1(Um) → un(Um) are surjective for all n,m (this will be the case with every
fpqc cover and system of groups considered in this paper).

Definition 2.5.1 Define the inverse limit of the system {En}, denoted by lim←−n En → Sch/R, to be

the category with fiber over U ∈ Ob(Sch/R) given by the systems (Xn)n∈N with Xn ∈ En(U)
such that πn+1,n(Xn+1) = Xn for all n, and morphisms (Xn) → (Yn) given by a system of

morphisms {fn : Xn → Yn} such that πn+1,nfn+1 = fn for all n. We call such a system of

morphisms coherent. It is clear that we have a compatible system of canonical morphisms of

Sch/F -categories πm : lim←−n En → Em for all m.

It will turn out that the category E := lim←−n En → (Sch/R)fpqc is canonically a u := lim←−n un-
gerbe, split over U0. Denote the projection map u→ un by pn. Note that we have maps Ȟ i(U0 →
Spec(R), un+1)→ Ȟ i(U0 → Spec(R), un) induced by pn+1,n, and thus also a map

Ȟ i(U0 → Spec(R), u)→ lim←−
n

Ȟ i(U0 → Spec(R), un) (2.3)

for all i ≥ 0. Recall from Proposition 2.3.5 that the fpqc u-gerbe E corresponds to a class in
Ȟ2(U0 → Spec(R), u). We give one preliminary result to show that our Convention 2.2.7 applies
for the group u if it applies for each ui:

Lemma 2.5.2 Using the notation as above, Ȟ1
fpqc(Un, uUn) = 0 for all n ≥ 0.

Proof. Let V denote Un for n ≥ 1, and let P be an fpqc uV -torsor over V (cf. Remark 2.2.2).
Then for all n we obtain a un,V -torsor by taking Pn := P ×uV ,pn un,V . Moreover, by Convention
2.2.7, we have an isomorphism of u1,V -torsors P1

h1−→ u1,V . Similarly, we have a trivialization
h2 : P2

∼−→ u2,V , and the induced isomorphism P1 = P2 ×u2,V ,p2,1 u1,V → u1,V differs from h1

by post-composing by an automorphism of the trivial u1,V -torsor u1,V which must be translation
by some y1 ∈ u1(V ), which we may lift to ỹ1 ∈ u2(V ). We may then replace h2 by its post-
composition with translation by ỹ1 to assume that, via p2,1, it induces h1. Proceeding inductively
in this manner, we obtain trivializations hn : Pn

∼−→ un,1 such that hn−1 is induced by hn via pn,n−1,
as above. This allows us to define a morphism of u-torsors h : P → u by applying lim←−n to the (u-

equivariant) composition P
id×eun,V−−−−−→ Pn

hn−→ un,V (where eun,V
: V → un,V is the identity section),

which is automatically an isomorphism.

The main result of this subsection is:

Proposition 2.5.3 With the setup as above, the category E := lim←−n En → Sch/R can be given

the structure of a u-gerbe, split over U0. Moreover, the map (2.3) sends the class in Ȟ2(U0 →
Spec(R), u) corresponding to E to the element ([un]) ∈ lim←−n Ȟ

2(U0 → Spec(R), un).
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Proof. We will construct an object X ∈ E(U0) and an isomorphism φ̃ : p∗1X
∼−→ p∗2X .

We do this inductively; for n = 1, construct the a-twisted u1,U0-torsor (T1, ψ1) by setting, as
in the proof of Lemma 2.3.3, T1 = u1,U1 , ψ1 given by translation by a1, and φ1 : p

∗
1(T1, ψ1) →

p∗2(T1, ψ1) given by translation by a1. Repeat this construction for u2; one then checks after
lifting x1 to x̃1 ∈ u2(U1) (viewed as a 0-cochain with respect to the fpqc cover U1

p1−→ U0),
we may translate ψ2 by dx̃−1

1 = p12(x̃1)
−1p13(x̃1) ∈ u2(U2) to get a new a2-twisted gluing

map ψ̃2 such that π2,1(T2, ψ̃2) = (T1, ψ1); also replace φ2 with φ̃2 defined by replacing a2 by
p12(x̃1)

−1p13(x̃1)p23(x̃1)
−1 · a2, so that φ̃2 : p

∗
1(T2, ψ̃2)→ p∗2(T2, ψ̃2) satisfies π2,1φ̃2 = φ1.

Now for n = 3, we again start with (T3, ψ3) and φ3 as above. We may then pick lifts x̃1(3), x̃2(3)

of x̃1, x2 (respectively) in u3(U1) and replace ψ3 by ψ̃3 := translation by a3·(dx̃(3)1 )−1·(dx̃(3)2 )−1 (the
differential applied to the elements viewed as 0-cochains with respect to the fpqc cover U1

p1−→ U0,
as in the previous paragraph), and φ3 by translation by

p12(x̃
(3)
1 )−1p13(x̃

(3)
1 )p23(x̃

(3)
1 )−1p12(x̃

(3)
2 )−1p13(x̃

(3)
2 )p23(x̃

(3)
2 )−1a3,

which we call φ̃3. Proceeding inductively in this manner, we get a system X := ((Tn, ψ̃n))n of
coherent lifts of U0 and a coherent system of isomorphisms (φ̃n), which by definition lift to give
an isomorphism φ̃ : p∗1X → p∗2X . This shows that E is a gerbe, split over U0.

The band of E is canonically isomorphic to u, since for U → Spec(R), any automorphism
of the coherent system (Xn)n, Xn ∈ En(U), is given by a compatible system of automorphisms
Xn

∼−→ Xn; since for each n we have a canonical identification of the band of En with un, and the
compatibility hypothesis exactly says that we have a coherent system of elements with respect to
the projective system {un(U)} for any such system of automorphisms. This finishes the proof of
the first claim.

For the second claim, we may use the lift X and isomorphism φ̃ : p∗1X → p∗2X constructed
above to compute the class [E ] ∈ Ȟ2(U0 → Spec(R), u) (see Fact 2.2.11). It is clear from our
above construction that, via the natural projection map u = Band(E) → Band(En) = un, the
differential of φ̃ maps to the differential of φ̃n, which one checks gives translation by an element
that is cohomologous to un, as desired.

We conclude this subsection with a couple of results concerning inverse limits of Čech classes.
To ease notation for Čech cohomology, assume U0 = Spec(S) for a ring S.

Lemma 2.5.4 The natural map Ȟ i(S/R, u)→ lim←−n Ȟ
i(S/R, un) is surjective for all i.

Proof. For i = 0 this is trivial, so assume i ≥ 1. Let {xn} be a sequence of Čech i-cochains
representing the classes in Ȟ i(S/R, un). By assumption, there is some a2,1 ∈ u1(S

⊗
R i) such that

d(a2,1)p2,1(x2) = x1. We may lift a2,1 to ã2,1 ∈ u2(S
⊗

R i) by assumption, and then replacing x2 by
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d(ã2,1)x2 gives a cohomologous element in u2(S
⊗

R(i+1)) whose projection to u1 is x1. Continuing
this procedure inductively gives a i-cocycle in u(S

⊗
R(i+1)) whose image in each Ȟ i(S/R, un) is

[xn].

The following result characterizes when the above surjections are isomorphisms.

Proposition 2.5.5 Fix i ≥ 1; if we have lim←−
(1)

n
Ȟ i−1(S/R, un) = 0 and lim←−

(1)

n
Bi−1(n) = 0,

where Bi−1(n) ∈ Ci−1(S/R, un) is the subgroup of (i − 2)-coboundaries (the group of (−1)-
coboundaries is defined to be trivial), then the natural map Ȟ i(S/R, u) → lim←−n Ȟ

i(S/R, un) is

injective.

Proof. We denote the differential uk(S
⊗

R i) → uk(S
⊗

R(i+1)) (which is a group homomorphism)
by d(k). First, note that since lim←−

(1)

k
Ȟ i−1(S/R, uk) = 0, the natural map

lim←−
k

[uk(S
⊗

R i)/Bi−1(k)]→ lim←−
k

[(uk(S
⊗

R i)/Bi−1(k))/(Ȟ i−1(S/R, uk))]

is surjective. Moreover, the natural map u(S
⊗

R i) = lim←−k uk(S
⊗

R i)→ lim←−k[uk(S
⊗

R i)/Bi−1(k)]

is surjective, since we assume that lim←−
(1)

n
Bi−1(n) = 0.

Now by left-exactness of the inverse-limit functor, we have the exact sequence

1 lim←−k
uk(S

⊗
R i)/Bi−1(k)

Ȟi−1(S/R,uk)
u(S

⊗
R(i+1)) lim←−k

uk(S
⊗

R(i+1))

d(k)(uk(S
⊗

R i))
.

lim←− d(k)

In particular, if x ∈ u(S
⊗

R(i+1)) is such that its image in lim←−k
uk(S

⊗
R(i+1))

d(k)(uk(S
⊗

R i))
is zero (which is the

hypothesis of the Proposition), then it lies in the image of d̄ := lim←− d
(k). But now the diagram

u(S
⊗

R i)

lim←−k[uk(S
⊗

R i)/Bi−1(k)] u(S
⊗

R(i+1))

lim←−k
uk(S

⊗
R i)/Bi−1(k)

Ȟi−1(S/R,uk)

d

d̄

commutes, and since the vertical composition is surjective and such an x lies in the image of the
lower-diagonal map, it lies in the image of the upper-diagonal map, giving the desired result.
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2.6 Twisted cocycles

In this section, we introduce the notion of twisted cocycles, which facilitate computations involving
torsors on gerbes. We continue with the notation and conventions of the previous subsections, but
now we specify that R = F a field and set U0 = Spec(F ). Fix a Čech 2-cocycle a ∈ A(U2). For
a gerbe E over F and finite type group scheme G over F , denote the pointed set of isomorphism
classes of GE-torsors on E by H1(E , G).

Let A be the category of monomorphisms Z → G defined over F , where G is either a com-
mutative algebraic group of finite type over F or a connected reductive group defined over F , and
Z is a finite multiplicative group defined over F (usually thought of as a subgroup of G) whose
image in G is central. We define the set of morphisms A(Z1 → G1, Z2 → G2) to be the set of
commutative diagrams

Z1 Z2

G1 G2,

where the horizontal maps are morphisms of algebraic groups defined over F . Set T ⊂ A (resp.
R ⊂ A) to be the subcategory where [Z → G] belongs to T (resp. R) if G is a torus (resp. a
connected reductive group).

For G abelian with finite F -subgroup Z we define the set H1(E , Z → G) to be the group
of isomorphism classes of GE-torsors on E such that Res(T ) factors through Z. For arbitrary
[Z → G] ∈ A, we define H1(E , Z → G) to be the pointed set of all isomorphism classes of
GE-torsors on E such that the inertial action is induced by an F -homomorphism ϕ : A → Z; note
that this agrees with our previous definition if G is abelian, and define the set H1

bas(E , GE) to be
lim−→Z

H1(E , Z → G), where the direct limit is over all finite central subgroups of G (for arbitrary
G). If T is a GE-torsor whose isomorphism class lies in H1(E , Z → G), we say that T is Z-

twisted. The map [Z → G] 7→ H1(E , Z → G) defines a functor from A to the category of pointed
sets (abelian groups if G is abelian).

Definition 2.6.1 An a-twisted Čech 1-cocycle valued in G (or just an a-twisted cocycle if G is

understood) is a pair (x, ϕ), where ϕ : u→ Z(G) is an F -homomorphism and x ∈ G(U1) satisfies

dx = ϕ(a). We say that (x, ϕ) and (y, ϕ′) are equivalent if ϕ = ϕ′ and there exists z ∈ G(U0)

such that p1(z)−1yp2(z) = x (in this case, we say that z realizes the equivalence of (x, ϕ) and

(y, ϕ′)). This clearly defines an equivalence relation. We denote the set of all a-twisted cocycles by

Z1(Ea, GEa), and the set of all equivalence classes by H1,∗(Ea, GEa). For some fixed finite central

Z in G, we say that an a-twisted cocycle (x, ϕ) is an a-twisted Z-cocycle if ϕ factors through Z.

We denote the set of all a-twisted Z-cocycles of G for a fixed Z by Z1(Ea, Z → G). If (x, ϕ)
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is in Z1(Ea, Z → G), then evidently its whole equivalence class is as well. Denote the set of

equivalence classes of a-twisted Z-cocycles by H1,∗(Ea, Z → G), and the set lim−→Z
H1,∗(Ea, Z →

G) by H1,∗
bas(Ea, GEa), where the direct limit is over all finite central F -subgroups.

We get the following expected result:

Proposition 2.6.2 For G a finite-type F -group and Z a finite central F -subgroup, we have a

canonical bijection from H1(Ea, Z → G) to H1,∗(Ea, Z → G) which is functorial in [Z → G].

Taking direct limits, this induces a canonical bijection H1
bas(Ea, GEa) → H1,∗

bas(Ea, GEa), functorial

in the group G. If G is abelian, we also have a canonical bijection H1(Ea, GEa)→ H1,∗(Ea, GEa).

Proof. Let T be a Z-twisted GE-torsor. Set ϕ := Res(T ); it remains to construct the appropriate
x ∈ G(U1). LetX := s(Spec(F )), where s denotes the canonical section Sch/F → Ea constructed
in Lemma 2.3.3, and let φ ∈ Ea(U1) be the isomorphism p∗1X → p∗2X from the same Lemma.
Setting T := s∗T gives a GF -torsor—choose a F -trivialization h of T . Taking p∗1h ◦ φ♯ ◦ p∗2h−1

defines an automorphism GU1 → GU1 which is given by left-translation by a unique element
x ∈ G(U1), and this x satisfies dx = ϕ(a), as desired (we leave the details to the reader, cf. the
proof of Proposition 2.4.10). Note that choosing a different h gives an equivalent twisted cocycle.

Moreover, given any isomorphism Ψ: T1 → T2, fixing trivializations hi : Ti → GF as above
gives the isomorphism h1 ◦s∗Ψ◦h−1

2 : GF
∼−→ GF , which is left-translation by a unique y ∈ G(F ),

which realizes the equivalence between the twisted cocycles obtained using h1 and h2. Thus, we
have a canonical well-defined map H1(Ea, Z → G) → H1,∗(Ea, Z → G). The fact that this is a
bijection is immediate from Proposition 2.4.10. Functoriality in [Z → G] ∈ A is trivial. The proof
of the last statement follows by replacing Z by G in the above argument for abelian G.

We thus get a concrete interpretation ofH1(Ea, Z → G) andH1
bas(Ea, GEa); in light of the above

results, we denoteH1,∗(Ea, Z → G) simply byH1(Ea, Z → G) andH1,∗(Ea, GEa) byH1(Ea, GEa)

(we make this latter identification only for abelianG)—the above identifications are implicit in this
notation.

To extend this to an arbitrary A-gerbe E split over F , we need the following result:

Proposition 2.6.3 Let (E , θ) be an arbitrary A-gerbe and a ∈ A(U2) such that [a] = [E ] in

Ȟ2(F/F,A). If Ȟ1(F/F,A) = 0, we have a canonical functorial bijection between H1(E , GE)

and H1(Ea, GEa).

Proof. We have an equivalence of A-gerbes ηa : E → Ea for a ∈ A(U2) representing [E ] ∈
Ȟ2(F/F,A). This means we have a quasi-inverse νa : Ea → E of A-gerbes, so that pullback
by νa and ηa induce the claimed bijection; if Ψ is the natural isomorphism νa ◦ ηa

∼−→ idE , then
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Ψ♯ gives an isomorphism from η∗a(ν
∗
aT ) to T . To check that the above map is independent of the

choice of νa, it’s enough to show that if η : E → E is an auto-equivalence of A-gerbes, then the
induced map H1(E , GE)→ H1(E , GE) is the identity. This is the content of the following lemma,
which will be useful later.

Lemma 2.6.4 If A is such that Ȟ1(F/F,A) = 0, then for any A-gerbe E split over F and A-

equivalence η : E → E , the induced map η∗ : H1(E , GE) → H1(E , GE) is the identity for any

F -group scheme G.

Proof. The first step is to extract a Čech 1-cocycle from η. Let Y ∈ E(U); note that for any
morphism f : V → U , we have a unique isomorphism ϕf making the diagram

η(f ∗Y ) f ∗η(Y )

η(Y )

ϕf

commute. This means, for an object X ∈ E(Spec(F )), we have canonical identifications
p∗kη(X)

∼−→ η(p∗kX), p∗ijη(p
∗
kX)

∼−→ η(p∗ijp
∗
kX), and (combining the previous two) p∗ijp

∗
kη(X)

∼−→
η(p∗ijp

∗
kX) for all 1 ≤ i, j ≤ 3, 1 ≤ k ≤ 2. We make these identifications without comment in

what follows.
Picking an isomorphism φ : p∗1X

∼−→ p∗2X in E(U1), these identifications allow us to view
the isomorphism η(φ) as an isomorphism from p∗1η(X) to p∗2η(X). Choosing an isomorphism
h : X

∼−→ η(X) in E(Spec(F )) (possible because of Convention 2.2.7), the map [p∗1h
−1 ◦ η(φ)−1 ◦

p∗2h] ◦ φ lies in AutU1(p
∗
1X) and thus (via θ−1

p∗1X
) gives an element x ∈ A(U1). We claim that x

is a Čech 1-cocycle. This follows from repeated use of Lemma 2.2.6 and the fact that, on q∗1X ,
we may use the above identifications and the fact that η is the identity on bands to deduce that
θ−1
q∗1η(X)(dη(φ)) = θ−1

q∗1X
(dφ) ∈ A(U2). It is important to note that the 1-cocycle x does not depend

on the choice of φ, since if φ′ is obtained by precomposing φ by an automorphism y of p∗1X , then
the extra y cancels out, again using Lemma 2.2.6 and the fact that η is the identity on bands.

With this in hand, since we assume that Ȟ1(F/F,A) = 0, we get that x = dy for some
y ∈ A(F ). We will show that any GE-torsor T is isomorphic to η∗T , which gives the result. It’s
enough to construct a 2-isomorphism µ : idE

∼−→ η, since then µ♯ will give the desired isomorphism
of GE-torsors (for any choice of G). This will just consist of a compatible system of isomorphisms
X

µX−−→ η(X) in E(U) for every X ∈ E(U). The argument will be similar to the proof of Lemma
2.4.9; we will first construct such a system of isomorphisms on EF , which we will descend to a
system of isomorphisms on E using the fact that E → (Sch/F )fpqc is a stack.
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We first define this system of isomorphisms on the embedded subcategory C := s(Sch/F ) ⊂ E ,
where s is the section induced by X . For f ∗X ∈ E(V ), µf∗X is given by f ∗h post-composed
with θf∗η(X)(y

−1
V ) ∈ AutV (f ∗η(X)). It is a straightforward exercise to verify that for any object

Z ∈ E(W g−→ Spec(F )) such that we have a (non-canonical) isomorphism Z
λ,∼−−→ g∗X in E(W ),

the isomorphism Z → η(Z) in E(W ) given by η(λ−1) ◦ µg∗X ◦ λ is independent of the choice of
λ, and so we set µZ := η(λ−1) ◦ µg∗X ◦ λ. By taking common refinements of fpqc covers (since
E → (Sch/F )fpqc is a gerbe), this implies that µX induces a natural isomorphism id

∣∣
EF

µ̄−→ η
∣∣
EF

.
To show that µ̄ descends to E , we need to show (by gluing of morphisms) that p∗1(µ̄) = p∗2(µ̄)

on EU1 . Let Y ∈ E(V f−→ U1); there is an fpqc cover {Vi
fi−→ V } such that we have isomorphisms

f ∗
i Y

Ψi,1−−→ f ∗
i f

∗p∗1X in E(Vi), as well as isomorphisms {Ψi,2} defined analogously. For each i, we
have the following diagram

f ∗
i Y f ∗

i f
∗p∗1X f ∗

i f
∗p∗1η(X) f ∗

i η(Y )

f ∗
i f

∗p∗2X f ∗
i f

∗p∗2η(X),

Ψi,1

Ψi,2
Ψi,1,2

f∗i f
∗p∗1h

η(Ψi,1,2)

η(Ψi,1)
−1

f∗i f
∗p∗2h

η(Ψi,2)
−1

where we have made the canonical identifications mentioned at the beginning of the proof in several
places and Ψi,1,2 := Ψi,2 ◦ Ψ−1

i,1 . The diagram does not commute because of the middle square.
Indeed, starting at the top-left corner, going right then down then left yields f ∗

i f
∗p∗2h

−1 ◦η(Ψi,12)◦
f ∗
i f

∗p∗1h = θf∗i Y (x
−1
Vi
) ◦ Ψi,1,2, where xVi denotes the image of x ∈ A(U1) → A(Vi

f◦fi−−→ U1)

(using that x does not depend on the choice of φ, see beginning of the proof). But now replacing
f ∗
i f

∗p∗khwith µ̄f∗i f∗p∗kX for k = 1, 2 serves to replace the above composition with θf∗i Y (p1,Vi(y)
−1)◦

θf∗i Y (p2,Vi(y)) ◦ θf∗i Y (x
−1
Vi
) ◦ Ψi,1,2 = θf∗i Y (d(yVi) · x

−1
Vi
) ◦ Ψi,1,2 = Ψi,1,2, where pk,Vi for k = 1, 2

denotes the map Vi
pk◦f◦fi−−−−→ Spec(F ), since dy = x by construction. This gives the main result,

since if (p∗1µ̄)Y and (p∗2µ̄)Y coincide on an fpqc cover of Y , they coincide on Y as well.

The above proof also gives a useful blueprint for constructing isomorphisms of GE-torsors. We
give one application here, using it to explain how to explicitly construct an isomorphism of GEa-
torsors T1 → T2 given an equivalence between their corresponding (class of) a-twisted cocycles
(x1, ϕ), (x2, ϕ) coming from trivializations h1, h2, realized by the element y ∈ G(F ). Namely, we
first define the map T1

∣∣
C → T2

∣∣
C on the category C := s(Sch/F ) by taking h−1

2 ◦ θSpec(F )(y)
♯ ◦ h1,

and then extend this to all of EF by conjugating by fpqc-local isomorphisms to objects in C (as in
the above proof, cf. also the proof of Lemma 2.4.9). The fact that dy ∈ A(U1) is 1-cocycle implies
that this isomorphism descends to an isomorphism of GEa-torsors T1 → T2.

The punchline of this entire subsection is the following result:
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Corollary 2.6.5 For any A-gerbe E split over F and a ∈ A(U2) with [a] = [E ] ∈ Ȟ2(F/F,A),
if Ȟ1(F/F,A) = 0, then we have a canonical functorial bijection between H1(E , Z → G) and

H1,∗(Ea, Z → G) for any [Z → G] in A.

2.7 Inflation-restriction

We continue with the notation of the previous sections; in particular, E π−→ Sch/F is a fixed A-gerbe
split over F . In this section, we discuss the analogue of the inflation-restriction exact sequence in
the setting of gerbes. Again G will be a fixed finite type F -group scheme. Our goal is to define a
functorial “inflation-restriction" sequence for any [Z → G] ∈ A:

0 Ȟ1(F/F,G) H1(E , Z → G) HomF (A, G) Ȟ2(F/F,G),Inf Res tg

where the H2-term is to be ignored if G is non-abelian. In order to define this sequence, we may
assume that E = Ea for some a ∈ A(U2), due to Corollary 2.6.5, and take H1(Ea, Z → G) to be
equivalence classes of a-twisted Z-cocycles valued in G. This makes computations significantly
simpler.

We take the first map, called inflation, to be the one induced by sending the 1-cocycle x ∈ G(U1)

to (x, 0) ∈ Z1(Ea, GEa), we take the second map, called restriction, to be the one that sends the
a-twisted cocycle (a, ϕ) to ϕ, and we take the third map, called transgression to be the one that
sends ϕ ∈ HomF (A, Z(G)) to [ϕ(a)] ∈ Ȟ2(F/F,G). We leave it to the reader to check that these
maps are well-defined.

Proposition 2.7.1 The image of the class [T ] ∈ H1(E , Z → G) under the restriction map defined

above equals the unique F -homomorphism A → Z(G) inducing the inertial action on T (see

Lemma 2.4.2).

Proof. We leave this as an exercise, using the proof of Proposition 2.4.10 for the case E = Ea.

Proposition 2.7.2 The above maps define a functorial exact sequence of pointed sets (groups if G

is abelian, where the H2 term is to be ignored if G is non-abelian):

Proof. Clearly the image of the first set is contained in the fiber over identity of the second map.
Conversely, if we have some (x, ϕ) with ϕ = 0, then the twisted cocycle condition on x ∈ G(U1)

is just the usual cocycle condition, and hence [x] ∈ Ȟ1(F/F,G) maps to (x, 0). Taking a twisted
cocycle (x, ϕ) already gives an element x ∈ G(U1) such that dx = ϕ(a), so that evidently [ϕ(a)] =

0 in Ȟ2(F/F,G). Finally, if ϕ ∈ HomF (A, Z(G)) is such that ϕ(a) = dx for x ∈ G(U1),
then (x, ϕ) defines a twisted cocycle, completing the proof. We leave functoriality in G as an
exercise.
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For [Z → G] in A, denote by G π−→ G the quotient of G by Z. The following version of the
long exact sequence in fpqc cohomology will be useful later:

Lemma 2.7.3 For [Z → G] ∈ A we have an exact sequence of pointed sets (abelian groups if G

is abelian):

G(F ) H1(E , ZE) H1(E , GE) H1(E , GE)

Proof. Again, we may work with a-twisted cocycles. The first map is defined to be the composi-
tion G(F ) δ−→ H1(F/F, Z)

Inf−→ H1(Ea, ZEa) from the short exact sequence of fppf group schemes
associated to Z → G, and the second and third maps come from functoriality. The first map
lands in the kernel of the second because the composition of the first two maps may be factored
as G(F ) δ−→ Ȟ1(F/F, Z) → Ȟ1(F/F,G)

Inf−→ H1(Ea, GEa). Moreover, if (x, ϕ) ∈ Z1(Ea, ZEa)

has trivial image in H1(Ea, GEa), then ϕ = 0 and hence (x, ϕ) lies in the image of the inflation
map Ȟ1(F/F, Z) → H1(Ea, ZEa), and again the composition Ȟ1(F/F, Z) → H1(Ea, ZEa) →
H1(Ea, GEa) factors as Ȟ1(F/F, Z) → Ȟ1(F/F,G) ↪→ H1(Ea, GEa), giving the other contain-
ment.

For exactness at the second spot, if (x, ϕ) is such that [π(x, ϕ)] = 0, then π ◦ ϕ = 0, and so
by basic properties of quotients, this happens if and only if ϕ factors through Z. Given this, the
class maps to the identity if and only if (using centrality) we have that x ∈ G(U1) is such that
there is some z ∈ Z(U1) with x = p1(g)

−1zp2(g), and this z necessarily satisfies dz = dx = ϕ(a)

(since it’s cohomologous to x). This holds if and only if [(x, ϕ)] = [(z, ϕ)] in H1(Ea, GEa), and
(z, ϕ) ∈ Z1(Ea, ZEa), as desired.

One checks easily (using Construction 2.3.4) that if E is an A-gerbe split over F and E ′ is a
B-gerbe split over F , and we have a morphism ν : E → E ′ of categories over Sch/F inducing the
map f ∈ HomF (A,B), then the following diagram also commutes for any finite type G:

0 Ȟ1(F/F,G) H1(E , GE) HomF (A, Z(G)) Ȟ2(F/F,G)

0 Ȟ1(F/F,G) H1(E ′, GE ′) HomF (B, Z(G)) Ȟ2(F/F,G).

ν∗ f∗
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CHAPTER 3

Results on Čech Cohomology

3.1 Derived-to-Čech comparison

Fix a commutative ring R. The category of abelian sheaves on (Sch/R)fppf is an abelian category
with enough injectives, and for an abelian R-group scheme A we may thus define the cohomology
groups H i((Sch/R)fppf,A) for i ≥ 0 by taking the derived functors of the global section functor on
this abelian category, viewing A as a sheaf on (Sch/R)fppf. We will denote H i((Sch/R)fppf,A) by
H i(R,A), or sometimes by H i

fppf(R,A) when we want to emphasize our use of the fppf topology.
For any abelian fppf group scheme A over R with pro-fppf cover S/R , the Grothendieck

spectral sequence gives us a spectral sequence

Ep,q
2 = Ȟp(S/R,Hq

fppf(A))⇒ Hp+q
fppf (R,A),

whereHq
fppf(A)) denotes the fppf-sheafification of the presheaf on Sch/R sending U toHq(U,AU)

(see [Stacks, 03AV]). We have the following result:

Proposition 3.1.1 ([Stacks, 03AV]) IfH i
fppf(S

⊗
R n, A) = 0 for all n, i ≥ 1, then the above spectral

sequence induces a canonical isomorphism Ȟ i(S/R,A)
∼−→ H i

fppf(R,A) for all i.

Remark 3.1.2 Strictly speaking, Lemmas 21.10.6 and 21.10.7 in [Stacks], 03AV are stated in the

setting of an fppf cover S/R, but taking the direct limit of spectral sequences gives us the result for

pro-fppf covers (rings S which are a direct limit of fppf covers, such as F for R = F a field).

The following result states how the above isomorphisms behave with respect to connecting
homomorphisms.

Proposition 3.1.3 Under the comparison isomorphisms of Proposition 3.1.1, we have δ̌ = δ,

where δ is the usual connecting homomorphism arising from the derived functor formalism.

Proof. This is [Ros19], Proposition E.2.1.

36



In light of Proposition 3.1.1, the following result is relevant:

Proposition 3.1.4 For G a finite type commutative group scheme over R = F a field and S = F ,

we have H i
fppf(F

⊗
F n, G) = 0 for all i > 0 and all j ≥ 0.

Proof. This is [Ros19], Lemma 2.9.4.

3.2 Čech cohomology over OF,S

Fix a global function field F of characteristic p > 0, a finite set S of places of F , and an F -torus T
which is unramified outside S. Let OF,S denote the elements of F whose valuation is non-negative
at all places outside S, and for a finite Galois extension K/F , denote by OK,S the elements of K
whose valuation is non-negative at all places outside SK , the set of all places of K lying above
S. We set OS := lim−→K/F

OK,S , where K/F ranges over all finite Galois extensions which are
unramified outside of S. Denote by FS the maximal field extension of F which is unramified
outside S, and denote its Galois group over F by ΓS; note that FS = Frac(OS). Since T is defined
over the subring OF ⊂ F , it is also defined over OF,S for any set of places S; it thus makes sense
to ease notation by denoting the corresponding OF - or OF,S-scheme also by T .

For all q > 0, it is a basic fact of fppf cohomology ([Čes16, Lemma 2.1]) that for a commu-
tative group scheme G on OF,S which is locally of finite presentation, we have Hq

fppf(OS,G ) =

lim−→K/F
Hq

fppf(OK,S,G ), with the transition maps induced by pullback of fppf sheaves (the same is
true if we replace “fppf" by “étale").

We begin with the following commutative-algebraic lemma:

Lemma 3.2.1 For K/F a finite Galois extension unramified outside S and n ≥ 2, the natural

injection O
⊗

OF,S
n

K,S →
∏

Γn−1
K/F

OK,S is an isomorphism.

Proof. By induction, it is enough to prove the result for n = 2. First, note that OK,S/OF,S is
finite étale by assumption (since K/F is unramified outside of S). In particular, OK,S is finitely-
generated and torsion-free as an OF,S-module, and both rings are Dedekind domains which are
integrally closed in their fields of fractions. By base-change, we get a finite étale extension
OK,S ⊗OF,S

OK,S/OK,S , which is still finitely-generated, locally free, and torsion-free as an OK,S-
module (this last fact follows from using the injection OK,S ⊗OF,S

OK,S ↪→
∏

ΓK/F
OK,S , under

which OK,S maps into the diagonally-embedded copy, which clearly acts on the product without
torsion).

We are thus in the setting of [Con18, Theorem 1.3], which says that the composition

OK,S ⊗OF,S
OK,S ↪→ K ⊗OF,S

OK,S
∼−→

∏
i

Ki,
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where each Ki is some finite separable extension of K and the last isomorphism comes from the
fact that K ⊗OF,S

OK,S is finite étale over K a field, maps OK,S ⊗OF,S
OK,S isomorphically onto

the product of integral closures of OK,S in each Ki. It is thus enough to show that we have an
isomorphism K ⊗OF,S

OK,S
∼−→

∏
ΓK/F

K.
Choose an element α ∈ OK,S such that K = F (α); since OK,S is the integral closure of OF,S

inside K, we know that the minimal polynomial of α over F , denoted by f , lies in OF,S[x], and so
the desired result follows from the series of elementary manipulations

K ⊗OF,S
OK,S

∼−→ F [x]

(f)
⊗OF,S

OK,S
∼−→ F ⊗OF,S

(
OF,S[x]

(f)
⊗OF,S

OK,S)
∼−→ F ⊗OF,S

(
∏
ΓK/F

OK,S),

followed by commuting the tensor product with the (finite) product and applying the canonical
isomorphism F ⊗OF,S

OK,S
∼−→ K. We leave it to the reader to check that the isomorphism

OK,S ⊗OF,S
OK,S

∼−→
∏

ΓK/F
OK,S constructed in the above proof agrees with the injection in

the statement of the Lemma.

Corollary 3.2.2 We have a canonical isomorphism Ȟ i(OK,S/OF,S, G)
∼−→ H i(ΓK/F , G(OK,S))

for any commutative OF,S-group G. Taking the direct limit also gives a canonical isomorphism

Ȟ i(OS/OF,S, G)
∼−→ H i(ΓS, G(OS)).

Proof. All that one must check is that the isomorphism of Lemma 3.2.1 preserves cocycles and
coboundaries, which is straightforward.

According to §3.1, in order to compare the Čech cohomology groups Ȟ i(OS/OF,S, T ) with
H i

fppf(OF,S, T ), we need to prove some cohomological vanishing results. The first result involves
étale cohomology:

Lemma 3.2.3 We have that H i
et(OS, TOS

) = 0 for all i > 0.

Proof. Since we assume that T is unramified outside S, it is enough to prove the result for T = Gm.
For i = 1, the result follows from the above paragraph, using the fact that for F ⊂ K ⊂ FS a finite
subextension, we have H1

et(OK,S,Gm) = Pic(Spec(OK,S)) = Cl(OK,S) (the first equality comes
from [Mil06, Proposition II.2.1]) and that lim−→K/F

Cl(OK,S) = 0, where the limit is over all finite
subextensions, by the proof of [NSW08, Proposition 8.3.6].

For i = 2, first note that H2
et(OK,S,Gm) = Br(OK,S), and then by [Poo17, 6.9.2], we have an

exact sequence
0→ Br(OK,S)→

⊕
v∈SK

Br(Kv)
∑

invv−−−→ Q/Z,
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where Kv denotes the completion of K at v. Taking the direct limit of the first two terms shows
that we have an injective map Br(OS) ↪→

⊕
v∈SFS

Br(FS · Fv). Note that the field extension
FS · Fv contains F nr

v , the maximal unramified extension of Fv, using the fact that FS/F contains
all finite extensions of the constant field of F . Moreover, the valuation ring OFS ·Fv of this field is
Henselian, as it is the direct limit of the Henselian rings OKv ([Hoc10, pp. 56]), and the previous
sentence implies that it has algebraically closed residue field. We may then deduce from the proof
of [Mil06, Proposition I.A.1] that Br(FS · Fv) = 0, giving the desired result.

Finally, for i ≥ 3, we have that for any K/F a finite Galois extension, we have
H i

et(OK,S,Gm) = 0, by [Mil06], Remark II.2.2. Taking the direct limit gives the desired result.

Corollary 3.2.4 We have canonical isomorphisms H i(ΓS, T (OS))
∼−→ H i

et(OF,S, T ) for all i ≥ 1.

Proof. This follows immediately from combining Lemma 3.2.3 with the spectral sequence

Hp(ΓS, H
q
et(OS, TOS

))⇒ Hp+q
et (OF,S, T )

from [Poo17, Theorem 6.7.5].

Lemma 3.2.5 We have that

H i
fppf(O

⊗
OF,S

n

S , T ) = 0

for all n, i ≥ 1.

Proof. It suffices to prove the result for T = Gm since we assume that T is unramified outside S.
Moreover, it is enough to show that

lim−→
K/F

H i
fppf(O

⊗
OF,S

n

K,S ,Gm) = 0,

where the limit is over all finite subextensions of F inside FS . By Lemma 3.2.1, we have a
canonical identification

Spec(O
⊗

OF,S
n

K,S ) =
∐

σ∈Γn−1
K/F

Spec(OK,S),

as well as a canonical isomorphism H i
fppf(

∐
σ Spec(OK,S),Gm)

∼−→
∏

σH
i
fppf(OK,S,Gm). Also, if

K ′/K is finite and contained in FS , then the natural map

H i
fppf(O

⊗
OF,S

n

K,S ,Gm)→ H i
fppf(O

⊗
OF,S

n

K′,S ,Gm)

corresponds via this isomorphism to diagonally embedding each factor of
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∏
σ∈Γn−1

K/F
H i

fppf(OK,S,Gm) into some subset of the factors of
∏

σ∈Γn−1
K′/F

H i
fppf(OK′,S,Gm) (by

means of the pullback map H i
fppf(OK,S,Gm)→ H i

fppf(OK′,S,Gm)).

Hence, if α ∈ H i
fppf(O

⊗
OF,S

n

K,S ,Gm) is any element, then to show that α vanishes in some

H i
fppf(O

⊗
OF,S

n

K′,S ,Gm) for large K ′, it is enough to show that lim−→K/F
H i

fppf(OK,S,Gm) = 0 for all i,
thus reducing the result to the case n = 1, which follows from combining Lemmas 3.2.3 and 3.2.5
with Corollary 3.2.4.

Recall from §3.1 that for any abelian fppf group scheme A over OF,S and pro-fppf cover
R/OF,S , the Grothendieck spectral sequence gives us a spectral sequence

Ep,q
2 = Ȟp(R/OF,S, H

q
fppf(A))⇒ Hp+q

fppf (OF,S, A).

Corollary 3.2.6 The above spectral sequence induces a canonical isomorphism

Ȟ i(OS/OF,S, T )
∼−→ H i

fppf(OF,S, T )

for all i.

Proof. Combine Lemma 3.2.5 with Proposition 3.1.1.

We now move to the realm of possibly non-étale extensions, in order to handle the cohomology
of non-smooth finite F -groups. For R an Fp-algebra, let Rperf := lim−→R, where the direct limit is
over successively higher powers of the Frobenius homomorphism. For R = OF,S , the ring Operf

F,S

is obtained by adjoining all p-power roots of elements of OF,S (in a fixed algebraic closure F/F ).
We begin by recalling an elementary lemma on the splitting of primes in rings of integers of purely
inseparable extensions:

Lemma 3.2.7 Let F ′/F be a purely inseparable extension and p ⊂ OF . Then p · OF ′ = (p′)[F
′:F ]

for some prime p′ of OF ′ .

Proof. It is evidently enough to prove this in the case when [F ′ : F ] = p, which we now assume.
We claim that OF ′ = O

(p)
F , the extension of OF obtained by adjoining all p-power roots. There is

an obvious inclusion of OF -algebras OF ′ ↪→ O
(p)
F because F ′ = F (p). The morphism of smooth

projective curves X ′ → X corresponding to the inclusion F → F ′ is purely inseparable of degree
p, so by [Stacks], 0CCV, we obtain an isomorphism of OF -algebras OF ′

∼−→ O
(p)
F , giving the claim.

The claim implies that, at the level of local rings, a uniformizer ϖ ∈ OF,p has a pth root in OF ′,p′

for any prime p′ above p, giving the desired result.

40



Denote by Fm the field extension of F obtained by adjoining all pm-power roots; note that by
the proof of the above lemma, this is a finite, purely inseparable extension. We have the following
characterization of the perfect closure Operf

S :

Lemma 3.2.8 The canonical map

lim−→
m

OSm → Operf
S

is an isomorphism, where Sm denotes the preimage of S in Spec(OFm).

Proof. For the inclusion of the right-hand side into the left-hand side, note that if x ∈ F is such
that xpm ∈ OE,S for some finite (Galois) E ⊂ FS , then x ∈ E ′ := E · Fm, which is unramified
over Fm outside of Sm, and so x ∈ OE′,Sm ⊂ OSm . For the other inclusion, consider a finite Galois
extensionK ′ of the finite purely inseparable extension F ′ := Fm/F with S ′ := Sm. We may factor
K ′/F as a tower K ′/K/F , where K/F is the separable (Galois) closure of F in K ′ and K ′/K is
purely inseparable. Note that K · F ′ = K ′; one containment is clear, and the other follows from
the fact that K and F ′ are linearly disjoint and [K ′ : F ′] = [K : F ].

We want to show that K/F is unramified outside S; this follows because for any prime p of
OF , we know from Lemma 3.2.7 that p splits as (p′)[F ′:F ] in OF ′ , and if p′ is a prime of OF ′,S′ , then
it factors in OK′ as P′

1 · · · · · P′
r, which means that p splits in OK′ as (P′

1 · · · · · P′
r)

[F ′:F ]. Since
[F ′ : F ] = [K ′ : K], we know that p must not ramify in OK , or else the ramification degree would
be too large. Now for any element x ∈ OK′,S′ , we have that xpm ∈ K and is integral over OF,S ,
and hence lies in OK,S , showing that OK′,S′ ⊆ O

(pm)
K,S ⊂ Operf

S , giving the other inclusion.

With these results in hand, we are ready to prove that passing to the perfection of OS allows us
to compute the Čech cohomology of multiplicative OF,S-group schemes.

Lemma 3.2.9 For A a multiplicative F -group (which, as for tori, has a canonical model over Z
so it makes sense to treat it as an OF -scheme) split over OS , the groups H i

fppf((O
perf
S )

⊗
OF,S

n
, A)

vanish for all i, n ≥ 0.

Proof. It is enough to prove the result for A = Gm and A = µm. We focus on the former first:
Note that we may use the smoothness of Gm and [Ros19, Lemma 2.2.9] to replace (Operf

S )
⊗

OF,S
n

by [(Operf
S )

⊗
OF,S

n
]red. We now have [(Operf

S )
⊗

OF,S
n
]red = (Operf

S )

⊗
O

perf
F,S

n

, so it’s enough to show
that the groups

Hj
fppf((O

perf
S )

⊗
O

perf
F,S

n

,Gm)

all vanish. By Lemma 3.2.8, we have

(Operf
S )

⊗
O

perf
F,S

n

= lim−→
m

O

⊗
OFm,Sm

n

Sm
,
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and hence it’s enough to show that

lim−→
m

Hj
fppf(O

⊗
OFm,Sm

n

Sm
,Gm) = 0

for all j, n ≥ 1. Now the result follows from Lemma 3.2.5, which shows that each term in the
direct limit is zero.

We now prove the µm-case. For i > 1, we immediately deduce that H i
fppf((O

perf
S )

⊗
OF,S

n
, µm)

vanishes from the long exact sequence in fppf cohomology and the Gm-case.
For i = 1, since H1

fppf((O
perf
S )

⊗
OF,S

n
,Gm) = 0, we have from the long exact sequence in fppf

cohomology that H1
fppf((O

perf
S )

⊗
OF,S

n
, µm) is the quotient

((Operf
S )

⊗
OF,S

n
)∗/(((Operf

S )
⊗

OF,S
n
)∗)m.

We know that O∗
S is n′-divisible for n′ coprime to p by [NSW08, Proposition 8.3.4], and hence

so is the group (O

⊗
OF,S

n

S )∗ (using Lemma 3.2.1). Now Operf,∗
S is N-divisible, since it is obtained

from OS by adjoining all p-power roots, and once again this implies that ((Operf
S )

⊗
OF,S

n
)∗ =

(O

⊗
OF,S

n

S )perf,∗ is as well.

We immediately obtain:

Corollary 3.2.10 For A as above, we have a canonical isomorphisms

Ȟ i(Operf
S /OF,S, A)

∼−→ H i
fppf(OF,S, A)

for all i. Moreover, for an F -torus T unramified outside S, the natural map

Ȟ i(OS/OF,S, T )→ Ȟ i(Operf
S /OF,S, T )

induced by the inclusion OS → Operf
S is an isomorphism.

In the global case, the ring Operf
S will have the role that F plays locally. We conclude with a useful

result concerning the finite-level Čech cohomology of an OF,S-torus T split over OE,S . We first
recall the following result from [Mor72]:

Proposition 3.2.11 ([Mor72, Theorem 3.2]) Let S/R/OF,S be two fppf covers of OF,S; set

Σ := [
⋃
i

R
⊗

OF,S
i
] ∪ [

⋃
i

S
⊗

OF,S
i
] ∪ [

⋃
i

S
⊗

R i].
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If F is a sheaf on (Sch/OF,S)fppf such that H1
fppf(A,F ) = 0 for all A ∈ Σ, then we have an exact

sequence

0→ Ȟ2(R/OF,S,F )→ Ȟ2(S/OF,S,F )→ Ȟ2(S/R,F ).

We now obtain:

Lemma 3.2.12 Let E/F be a finite Galois extension, let E ′/E be a finite purely inseparable

extension, and S ⊂ V a finite set of places such that Cl(OE,S) is trivial. Then if T is an OF,S-torus

split over OE,S , the natural map Ȟ2(OE,S/OF,S, T )→ Ȟ2(OE′,S/OF,S, T ) is an isomorphism.

Proof. We leave it to the reader to check that the Σ-condition of Proposition 3.2.11 is satis-
fied (since everything in Σ is an OE,S-algebra, we may replace T with Gm for this condition
and use the fact that OE,S and OE′,S are principal ideal domains, along with [Ros19, Lemma
2.2.9]). It thus suffices to show that the group Ȟ2(OE′,S/OE,S,Gm) vanishes. Note that, for any

n, Gm(O

⊗
OE,S

n

E′,S ) = Gm([O

⊗
OE,S

n

E′,S ]red), and now [O

⊗
OE,S

n

E′,S ]red = O

⊗
OE′,S

n

E′,S = OE,S , so our Čech
cohomology computations on this cover reduce to that of the trivial cover OE′,S/OE′,S , giving the
desired vanishing.

3.3 Čech cohomology over A

In this subsection we prove some basic results that allow us to do Čech cohomology on (covers of)
the adele ring A of our global function field F . Let G a multiplicative F -group scheme with fixed
OF,S0-model G for a finite subset of places Σ0 ⊂ V . We begin with some basic results about local
fields:

Lemma 3.3.1 Let F ′ = Fm/F be a finite, purely inseparable extension. Then F ′ and Fv are

linearly disjoint over F inside Fv (recall that we have fixed such an algebraic closure).

Proof. Suppose that we know the result for F ′ = F1. Then, proceeding by induction, Fm−1 and
Fv are linearly disjoint, the valuation v extends uniquely to a valuation v′ on Fm−1, and Fm−1 · Fv
is the completion of Fm−1 with respect to v′. Thus, Fm/Fm−1 is of degree p, and we may replace
Fv by (Fm−1)v′ and use the m = 1 case to deduce that (Fm−1)v′ = Fm−1 · Fv and Fm are linearly
disjoint over Fm−1, which implies the desired result.

Thus, we may assume that F ′ = F1. Note that the extension F ′ · Fv/Fv is either degree 1 or
degree p, since [F ′ · Fv : Fv] = [F ′ : Fv ∩ F ] | p, and F ′ and Fv are linearly disjoint if and only
if this degree equals p. Hence, it’s enough to show that F ′ ∩ Fv = F . Thus, suppose that x ∈ Fv
is such that xp ∈ F . If F (x) ̸= F , then F (x) = F ′, so that Fv contains all pth roots of F ; in
particular, ϖ1/p ∈ Fv, where ϖ ∈ OF,v (the localization of OF at v) is a v-adic uniformizer, which
is clearly false.
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Now let K/F be a finite (not necessarily separable) field extension with completion Kw for
w | v. The following result is important for our adelic Čech cohomology:

Lemma 3.3.2 For any n, the natural map O
⊗

OFv
n

Kw
→ K

⊗
Fv
n

w is injective.

Proof. The ring OKw is finite and torsion-free over the principal ideal domain OFv , and is thus free
as an OFv -module. We may thus pick a basis (which is also an Fv-basis for Kw) which allows us
to view the map in question as the natural map

(O
⊕
m

Fv
)
⊗

OFv
n → (F

⊕
m

v )
⊗

Fv
n,

which may be rewritten as the obvious inclusion

O
⊕
mn

Fv
↪→ F

⊕mn

v ,

giving the result.

We can now prove our first adelic result. Let K/F be a finite field extension; note that the
equality AK = K ⊗F A implies that A

⊗
A n

K = (K
⊗

F n) ⊗F A. Let V denote the set of all places
of F , let AK,v denote the Fv-algebra K ⊗F Fv, and let OK,v denote the OFv -algebra OK ⊗OF

OFv .

Proposition 3.3.3 For any finite (not necessarily Galois) extension K/F , we have a canonical

identification

A
⊗

A n
K

∏′
v∈V A

⊗
Fv
n

K,v ,∼

where the restriction is with respect to the image of the map O
⊗

OFv
n

K,v → A
⊗

Fv
n

K,v (in fact, the proof

will imply that this map is an inclusion).

Proof. Identifying A
⊗

A n
K with (K

⊗
F n) ⊗F A, we claim that it may be identified further with the

restricted product
′∏

v∈V

(K
⊗

F n ⊗F Fv), (3.1)

where the restricted product is with respect to the image of the homomorphisms

O
⊗

OF
n

K ⊗OF
OFv → K

⊗
F n ⊗F Fv, (3.2)

via the isomorphism defined on simple tensors by sending x ⊗ (av)v to (x ⊗ av)v, proving the
Proposition. The substance of this claim is that this morphism is well-defined, i.e., that for all but
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finitely many v, the element x⊗ av actually lies in the image of O
⊗

OF
n

K ⊗OF
OFv . To this end, it

suffices to show that we have an isomorphism

OK ⊗OF
OFv

∼−→
∏
w|v

OKw

for any v ∈ VF (the analogous decomposition for K ⊗F Fv is clear). In fact, once this is done, the
injectivity of the maps in (3.2) follows (using Lemma 3.3.2), and it is straightforward to verify that
the claimed identification of (K

⊗
F n)⊗FA with the ring in (3.1) is indeed an isomorphism. Letting

K ′ be the maximal Galois subextension of K, we already know that OK′ ⊗OF
OFv is isomorphic

to
∏

w′|v OK′
w′ , and so we’re left with the ring OK ⊗OK′ [

∏
w′|v OK′

w′ ].
We claim that the natural mapOK⊗OK′OK′

w′ → OKw (for w the unique extension of w′ toK) is
an isomorphism. For surjectivity, note that by the proof of Lemma 3.2.7, we have OK = O

(1/pm)
K′ ,

where pm is [K : K ′]. We know that OK′
w′ spans OKw over O(1/pm)

K′ , since the ring OK′
w′ ·O

(1/pm)
K′ is

finitely-generated over the complete discrete valuation ring OK′
w′ , using that O(1/pm)

K′ is finite over
OK′ by the finiteness of the relative Frobenius morphism (by [Stacks], OCC6, using that OK′ is
of finite type over Fq, being the coordinate ring of an affine open subscheme of a smooth curve
over Fq), and hence is complete as a topological ring, contains OK , and thus must be the w-adic
completion OKw . Injectivity immediately follows from the linear disjointness given by Lemma
3.3.1.

We immediately obtain:

Corollary 3.3.4 For any finite (not necessarily Galois) extension K/F , the ring A
⊗

A n
K may be

canonically identified as the direct limit over any cofinal system of finite subsets Σ of V of products

as follows:

A
⊗

A n
K = lim−→

Σ

[
∏
v∈Σ

A
⊗

Fv
n

K,v ×
∏
v/∈Σ

O

⊗
OFv

n

K,v ].

This allows to decompose groups of adelic Čech cochains:

Corollary 3.3.5 For any finite (not necessarily Galois) extension K/F , we have a canonical iden-

tification

G(A
⊗

A n
K ) = lim−→

Σ0⊂Σ

[
∏
v∈Σ

G(A
⊗

Fv
n

K,v )×
∏
v/∈Σ

G(O
⊗

OFv
n

K,v )].

Proof. This is immediate from the our Corollary 3.3.4 and [Čes16, Lemma 2.4].
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In fact, since the natural map O

⊗
OFv

n

K,v → A
⊗

Fv
n

K,v is injective (and so the same is true for

G(O
⊗

OFv
n

K,v )→ G(A
⊗

Fv
n

K,v )), we actually get a restricted product decomposition

G(A
⊗

A n
K ) =

∏′
v∈V G(A

⊗
Fv
n

K,v ),

where the restriction is with respect to the subgroups G(O
⊗

OFv
n

K,v ). If A := F⊗FA, we immediately
obtain:

Corollary 3.3.6 We have a canonical identification

G(A
⊗

A n) lim−→K/F

∏′
v∈V G(A

⊗
Fv
n

K,v ),∼

where the direct limit is over all finite extensions K/F .

We give one more result which will be useful for Čech-cohomological computations:

Proposition 3.3.7 For K/F a finite extension, the above restricted product decomposition of

G(A
⊗

A n
K ) identifies the subgroup of Čech n-cocycles inside G(A

⊗
A n

K ) with elements of the kernel

of the map ∏′
v∈V G(A

⊗
Fv
n

K,v )
∏′

v∈V G(A
⊗

Fv
n+1

K,v )

given by the Čech differentials with respect to the cover AK,v/Fv on theG(A
⊗

Fv
n

K,v )-factors and the

Čech differentials with respect to the cover OK,v/OFv on the G(O
⊗

OFv
n

K,v )-factors (note that these

differentials land in the desired restricting subgroups, so this is well-defined).

Proof. It’s enough to check that the restricted product identifications are compatible with the three

inclusion maps pi : A
⊗

A n
K → A

⊗
A n+1

K , pvi : A
⊗

Fv
n

K,v → A
⊗

Fv
n+1

K,v , and pv,◦i : O

⊗
OFv

n

K,v → O

⊗
OFv

n+1

K,v

for 1 ≤ i ≤ n+ 1, which is straightforward.

We now move on from examining adelic tensor products and look at some cohomological results
concerning covers of A, analogous to the results proved in the previous subsection for covers of
OF,S . Set Av := F ⊗F Fv. For notational convenience, the symbol H i will denote H i

fppf.

Lemma 3.3.8 For M a multiplicative F -group scheme, we have Hn(A
⊗

Fv
k

v ,M) = 0 for all

n, k ≥ 1.
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Proof. For E ′/F a finite algebraic extension with Galois and purely inseparable subextensions
E,F ′ respectively, note that we have a sequence of isomorphisms

(E ′ ⊗F Fv)
⊗

Fv
k ∼−→ [F ′ ⊗F (E ⊗F Fv)]

⊗
Fv
k ∼−→ [

∏
w|v

E ′
w′ ]

⊗
Fv
k ∼−→

∏
w1,...,wk|v

i=1,...,k⊗
Fv

E ′
w′

i
,

where E ′
w′ is the completion of E ′ with respect to the unique extension w′ of the valuation w on

E to the purely inseparable extension E ′, for all w | v in VE , and in the third term above, Fv is
embedded into the direct product diagonally. and so we obtain an identification

Hn((E ′ ⊗F Fv)
⊗

Fv
k,M)

∼−→
∏

w1,...,wn|vF

Hn((E ′
w′

i
)
⊗

Fv
k,M).

Moreover, for K ′/E ′ two such extensions, the inductive map (E ′ ⊗F Fv)
⊗

Fv
k → (K ′ ⊗F

Fv)
⊗

Fv
k gets translated to the map on the corresponding products defined by the product over all

k-tuples (w1, . . . , wk) of the maps

j=1,...,k⊗
Fv

E ′
w′

j
→

∏
w̃1,...w̃k;w̃j |wj∀j

j=1,...,k⊗
Fv

K ′
w̃′

j

given in the obvious way. The upshot is that it’s enough to show that each direct limit

lim−→
K′/F

Hn(K ′
(wK)′/Fv,M)

vanishes, where {wK} is a coherent system of places lifting v (equivalent to fixing a place v̇ on
F sep lifting v). But each direct limit of this form is isomorphic to Hn(Fv,M), which we know
vanishes.

Fix an embedding F → Fv, which is equivalent to picking a place v̇ ∈ VF sep lying above v.
Note that we have a homomorphism of Fv-algebras h : Fv → Av defined as follows: For any E ′/F

a finite algebraic extension, we may define a ring homomorphism

E ′ · Fv → E ′ ⊗F Fv

by writingE ′ = E(x1/p
m
) for x ∈ F , whereE/F is a finite Galois extension, and then using linear

disjointness to write E ′ = F (x1/p
m
) ⊗F E. Note that, even more than this, F (x1/pm) and E · Fv

are linearly disjoint over F inside Fv, so that our desired ring homomorphism may be obtained
from any homomorphism E · Fv → E ⊗F Fv by applying the functor F (x1/pm)⊗F −. But such a
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homomorphism may be obtained via the composition

E · Fv →
∏
w|v

Ew
∼−→ E ⊗F Fv,

where the first map is the diagonal embedding induced by the fixed embedding E · Fv → Fv and
a choice of section ΓE/F/Γ

vE
E/F → ΓE/F , where vE := v̇

∣∣
E

and ΓvEE/F is the decomposition group
of vE , and the second map is the usual isomorphism from basic number theory. If we pick our
sections to come from a section ΓF/Γ

v̇
F → ΓF , then it is clear that these homomorphisms splice to

give the desired map h.

Corollary 3.3.9 For any k ∈ N and multiplicative F -group M , the map h induces an isomor-

phism, called the “Shapiro isomorphism,"

Skv : Ȟ
k(Fv/Fv,M)→ Ȟk(Av/Fv,M).

Proof. Note that for any finite algebraic field extension E ′/F , the extension of rings Fv → Fv ⊗F
E ′ is fppf. Thus, we get a natural map

Ȟk(Av/Fv,M)
∼−→ lim−→

E′/F

Ȟk((E ′ ⊗F Fv)/Fv,M)→ Hk(Fv,M)

via the natural comparison homomorphism Ȟk
fppf(Fv,M) → Hk(Fv,M) (from [Stacks, Lemma

03AX]). By taking the direct limit of the spectral sequence from [Stacks, Lemma 03AZ], we de-
duce that the above map Ȟk(Av/Fv,M)→ Hk(Fv,M) is an isomorphism, since the cohomology
groups Hj(A

⊗
Fv
m

v ,M) vanish for all j,m ≥ 1 by Lemma 3.3.8. Now the commutative diagram

Ȟk(Fv/Fv,M) Ȟk(Av/Fv,M)

Ȟk
fppf(Fv,M)

Hk(Fv,M)

Sk
v

∼
∼

∼

implies that Skv is an isomorphism.

We conclude this subsection by discussing the independence of S2
v on the section ΓF/Γ

v̇
F → ΓF

used to construct h.
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Lemma 3.3.10 Let sv and s′v be two choices of sections, M a multiplicative F -group, and Ṡ2
v , Ṡ

′2
v

the corresponding Shapiro homomorphisms M(Fv

⊗
Fv

3
) → M(A

⊗
Fv

3

v ). Then the induced maps

on Čech cohomology from Ȟ2(Fv/Fv,M) to Ȟ2(Av/Fv,M) are the same.

Proof. Since the Shapiro homomorphisms are constructed via the direct limit over finite algebraic
extensions, it’s enough to prove that, for any fixed x ∈ M((E ′

v)
⊗

Fv
3) a 2-cocycle, E ′/F a finite

extension of fields, there is a 1-cochain c ∈M((E ′ ⊗F Fv)
⊗

Fv
2) such that dc = Ṡ2

v(x) · Ṡ
′2
v (x)

−1,
and that if we have a inductive system {xE′}E′ of such 2-cocycles, as E ′/F ranges over an exhaus-
tive tower of finite extensions, then the system {cE′}E′ is also inductive. We will construct each
cE′ explicitly using x (it will be useful later to have an explicit cochain to work with).

As above, we let E/F (resp. F ′/F ) denote the maximal Galois (resp. purely inseparable)
subextension of E ′/F , set Ev := EvE , and denote the extension of vE to E ′ by v′. For w | v in VE ,
denote by rw, r̄w the corresponding isomorphisms E ′

v′
∼−→ E ′

w′ (induced by applying F ′ ⊗F − to
the isomorphisms Ev

∼−→ Ew defined by our sections). We define

c ∈
∏

wi1
,wi2

|vF

M(E ′
w′

i1

⊗Fv E
′
w′

i2

)

to be given on the (wi1 , wi2)-factor by

(rwi1,1
· r̄wi1,3

⊗ rwi2,2
)(x) · (r̄wi1,2

⊗ rwi2,1
· r̄wi2,3

)(x)−1,

where rwij
,k denotes that the source is the kth tensor factor of (E ′

v′)
⊗

Fv
3, 1 ≤ k ≤ 3. It is clear

that such a system of 1-cochains {cE′} is inductive if the system {xE′} is. We will do an involved
Čech computation. Recall that Ṡ2

v , Ṡ ′2
v are group homomorphisms

M((E ′
v′)

⊗
Fv

3)→
∏

wi1
,wi2

,wi3
|vF

M(E ′
w′

i1

⊗Fv E
′
w′

i2

⊗Fv E
′
w′

i2

).

To show that dc = Ṡ2
v(x) · Ṡ

′2
v (x)

−1, we may focus on a fixed (wi1 , wi2 , wi3)-factor of the
right-hand side. In this factor, the differential of c is given by the six-term product

(1⊗ rwi2,1
· r̄wi2,3

⊗ rwi3,2
)(x) · (rwi1,1

· r̄wi1,3
⊗ 1⊗ rwi3,2

)(x)−1 · (rwi1,1
· r̄wi1,3

⊗ rwi2,2
⊗ 1)(x)

·(1⊗ r̄wi2,2
⊗ rwi3,1

· r̄wi3,3
)(x)−1 · (r̄wi1,2

⊗ 1⊗ rwi3,1
· r̄wi3,3

)(x) · (r̄wi1,2
⊗ rwi2,1

· r̄wi2,3
⊗ 1)(x)−1.

The key fact here is that x ∈ M(E
⊗

Fv
3

v ) is a 2-cocycle, not just a 2-cochain. Thus, we have
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that the factor (1⊗ rwi2,1
· r̄wi2,3

⊗ rwi3,2
)(x) equals

(r̄wi1,1
⊗ rwi2,3

⊗ r̄wi3,2
)(x) · (r̄wi1,2

⊗ rwi2,1
· r̄wi2,3

⊗ 1)(x) · (r̄wi1,2
⊗ r̄wi2,1

⊗ rwi3,3
)(x)−1. (3.3)

To see this, note that

(1⊗id1⊗id2⊗id3)(x)·(id1⊗1⊗id2⊗id3)(x)
−1·(id1⊗id2⊗1⊗id3)(x)·(id1⊗id2⊗id3⊗1)(x)−1 = 1

(inside the group M(E
⊗

Fv
3

v )), and now applying (id2⊗ id1 · id4⊗ id3)◦ (rwi2
⊗ r̄wi1

⊗ rwi3
⊗ r̄wi2

)

to the above expression gives the desired equality. We will leave the checking of similar equalities
to the reader throughout the proof. Note that the second factor in (3.3) cancels with the last factor
in the main equation. Next, we may rewrite the first term of (3.3) as

(1⊗ r̄wi2,2
⊗ rwi3,1

· r̄wi3,3
)(x) · (r̄wi1,1

⊗ r̄wi2,2
⊗ r̄wi3,3

)(x)−1 · (r̄wi1,1
⊗ 1⊗ rwi3,2

· r̄wi3,3
)(x). (3.4)

We may also replace (rwi1,1
· r̄wi1,3

⊗ rwi2,2
⊗ 1)(x) from the main equation by the expression

(r̄wi1,2
⊗ rwi2,1

⊗ rwi3,3
)(x) · (rwi1,1

· r̄wi1,2
⊗ 1⊗ rwi3,3

)(x)−1 · (rwi1,1
⊗ rwi2,2

⊗ rwi3,3
)(x),

reducing us to showing the equality

(r̄wi1,1
⊗ 1⊗ rwi3,2

· r̄wi3,3
)(x) · (rwi1,1

· r̄wi1,2
⊗ 1⊗ rwi3,3

)(x)−1

·(r̄wi1,2
⊗ 1⊗ rwi3,1

· r̄wi3,3
)(x) · (rwi1,1

· r̄wi1,3
⊗ 1⊗ rwi3,2

)(x)−1 = 1.
(3.5)

Replacing the third factor of (3.5) by the expression

(rwi1,1
· r̄wi1,3

⊗ 1⊗ r̄wi3,2
)(x) · (rwi1,1

⊗ 1⊗ rwi3,2
· r̄wi3,3

)(x)−1 · (rwi1,1
· r̄wi1,2

⊗ 1⊗ r̄wi3,3
)(x)

reduces (3.5) to the equality

(r̄wi1,1
⊗ 1⊗ rwi3,2

· r̄wi3,3
)(x) · (rwi1,1

· r̄wi1,2
⊗ 1⊗ rwi3,3

)(x)−1

·(rwi1,1
⊗ 1⊗ rwi3,2

· r̄wi3,3
)(x)−1 · (rwi1,1

· r̄wi1,2
⊗ 1⊗ r̄wi3,3

)(x) = 1,

which follows easily from the fact that x is a 2-cocycle.
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3.4 The unbalanced cup product

For S/R a fixed finite flat extension (not necessarily étale), S ′/R a Galois extension contained in
S, and G a commutative R-group scheme, define the group Cn(S/R,G) to be G(S

⊗
R(n+1)), and

Cn,1(S/R, S ′, G) to be the subgroup G(S
⊗

R n ⊗R S ′). Our goal is to define an unbalanced cup
product

Cn,1(S/R, S ′, G)× C−1
Tate(Γ

′, H(S ′))
⊔

S′/R
−−→ Cn−1(S/R, J)

for two commutative R-group schemes G,H and R-pairing P : G × H → J for J another com-
mutative R-group scheme, where as above C−1

Tate(Γ
′, H(S ′)) = H(S ′) and Γ′ := AutR-alg(S

′).
We have a homomorphism of R-algebras λ : S

⊗
R n ⊗R S ′ →

∏
Γ′ S

⊗
R n defined on simple

tensors by
ai,0 ⊗ · · · ⊗ ai,n 7→ (ai,0 ⊗ · · · ⊗ ai,n−1

σai,n)σ∈Γ′ .

Moreover, for any R-group scheme J , we have a canonical identification J(
∏

Γ′ S
⊗

R n) →∏
Γ′ J(S

⊗
R n); we then define, for a ∈ G(S

⊗
R n ⊗R S ′) and b ∈ H(S ′),

a ⊔̃
S′/R

b = λ(a ∪ b(0)) ∈
∏
Γ′

J(S
⊗

R n).

In the above formula we are using the fppf cup product as defined in [Sha64], §3, and b(0) denotes
the element b ∈ H(S ′) viewed as a 0-cochain.

We now apply the group homomorphism N :
∏

Γ′ J(S
⊗

R n) → J(S
⊗

R n) obtained by taking
the sum of all elements on the left-hand side, and the resulting pairing

Cn,1(S/R, S ′, G)× C−1
Tate(Γ

′, H(S ′))→ J(S
⊗

R n)

is Z-bilinear. Indeed,

(a+ a′) ⊔̃
S′/R

b = λ[(a+ a′) ∪ b(0)] = λ(a ∪ b(0) + a′ ∪ b(0)) = λ(a ∪ b(0)) + λ(a′ ∪ b(0)).

This will be our desired pairing, denoted by a ⊔
S′/R

b.

We will now prove some basic properties of this pairing. The first order of business is to
show that this agrees with the analogous pairing from [Kal16] in the case that S/R is also finite
Galois, with AutR-alg(S) =: Γ. There is a simple way to compare Čech cohomology and Galois
cohomology in such a case: for any commutativeR-groupG, there is a comparison homomorphism

Cn(S/R,G)→ Cn(Γ, G(S))

51



given as follows: We have a homomorphism of R-algebras

t : S
⊗

F (n+1) →
∏
σ∈Γn

Sσ, (3.6)

induced by the map on simple tensors

a0 ⊗ · · · ⊗ an 7→ (a0
σ1a1

(σ1σ2)a2 . . .
(σ1...σn)an)(σ1,...,σn).

We immediately get a homomorphism c : G(S
⊗

R(n+1)) → G(
∏

σ∈Γn Sσ) = Cn(Γ, G(S)),
where the last equality is the obvious identification. Passing to cohomology, this induces a ho-
momorphism Ȟn(S/R,G) → Hn(Γ, G(S)). Note that all of these maps are isomorphisms if
S/R is a finite Galois extension of fields. This comparison map also respects our special sub-
groups; that is to say, the homomorphism G(S

⊗
R(n+1))→

∏
Γn G(S) maps Cn,1(S/R, S ′, G) into

Cn,1(Γ,Γ′, G(S)), which again is an isomorphism when R and S are fields.

Proposition 3.4.1 When S/R is finite Galois, the unbalanced cup product a ⊔
S′/R

b agrees with the

unbalanced cup-product from [Kal16] after applying the comparison homomorphism (3.6).

Proof. Recall that the pairing from [Kal16] sends a ∈ Cn,1(Γ,Γ′, G(S)) and b ∈ H(S ′) to the
(n− 1)-cochain

(σ1, . . . , σn−1) 7→ P [Σσ∈Γ′a(σ1, . . . , σn−1, σ)⊗ σ1...σn−1σb] ∈ J(S),

where we are abusing notation and using P to denote the map G(S)⊗ZH(S)→ J(S) induced by
the pairing P .

In the Čech setting, the point a ∪ b(0) corresponds to the R-algebra homomorphism R[J ] →
R[G] ⊗F R[H] → S

⊗
R n+1 given by post-composing P ♯ by the map determined by a and 1 ⊗ b

(identifying the points with their ring homomorphisms). Then the map λ sends this point to the map
R[J ]→ R[G]⊗F R[H]→

∏
Γ′ S

⊗
R n given by post-composing P ♯ by the map R[G]⊗F R[H]→∏

σ∈Γ′ S
⊗

R n determined by λ ◦ a and λ ◦ (1 ⊗ b). It is straightforward to verify that via the
composition

∏
Γ′ J(S

⊗
R n) →

∏
Γ′
∏

Γn−1 J(S) →
∏

Γn−1 J(S), we obtain the (n − 1)-cochain
of Γ valued in J(S) sending (σ1, . . . , σn−1) to

∑
σ∈Γ′ P (a(σ1, . . . , σn−1, σ),

σ1...σn−1σb) ∈ J(S), as
desired.

We now prove an elementary result stating how this map behaves with respect to Čech differ-
entials.

Lemma 3.4.2 For a ∈ Cn,1(S/R, S ′, J), we have Nλ(da) = (#Γ′)(−1)n+1a+ d(Nλa).
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Proof. First, note that d maps Cn,1(S/R, S ′, J) into Cn+1,1(S/R, S ′, J), so the statement makes
sense. Start with the S

⊗
R n ⊗R S ′-point a : R[J ]→ S

⊗
R n ⊗R S ′. Applying the differential yields

the sum as i ranges from 0 to n + 1 of (−1)i times the S
⊗

R(n+1) ⊗R S ′-point p̂i ◦ a : R[J ] →
S
⊗

R(n+1)⊗RS ′, where 0 ≤ i ≤ n+1. Note that λ◦ p̂i ◦a equals (λ◦a)i := p̂i ◦λ◦a for i ̸= n+1

and λ ◦ pn̂+1 ◦ a = (a)σ∈Γ′ . We conclude that

Nλ(da) = (#Γ′)(−1)(n+1)a+N [
∑

0≤i≤n

(−1)i(λ ◦ a)i]

which equals (#Γ′)(−1)n+1a+ d(Nλa).

We now reach the key property of our unbalanced cup product.

Proposition 3.4.3 For a ∈ Cn,1(S/R, S ′, G) and b ∈ C−1
Tate(Γ

′, H(S ′)), we have

d(a ⊔
S′/R

b) = (da) ⊔
S′/R

b+ (−1)n(a ∪ db).

Proof. The left-hand side equals d[N(λ(a∪ b(0)))] = (#Γ′)(−1)n(a∪ b(0)) +Nλ(d(a∪ b(0))), by
the above lemma. This in turn equals (#Γ′)(−1)n(a ∪ b(0)) +Nλ[(da) ∪ b(0) + (−1)n(a ∪ db(0))]
(by [Sha64], §3). Thus, the desired equality reduces to

(#Γ′)(a ∪ b(0)) +Nλ(a ∪ db(0)) = a ∪ db.

Now, db(0) = −p1(b)+p2(b) ∈ H(S ′⊗RS ′), so that λ(a∪db(0)) = λ(a∪−p1(b))+λ(a∪p2(b)),
and λ(a ∪ −p1(b)) = (a ∪ −b(0))σ, so all we need to show is Nλ(a ∪ p2(b)) = a ∪ db. Note that
λ(a ∪ p2(b)) = (a ∪ σb(0))σ, so applying N gives the desired result.

The setting we will be concerned with in this paper is the case where G = Gm, H = X∗(J)

is the étale R-group scheme associated to the cocharacter module of an R-torus J , and the pairing
P : Gm×X∗(J)→ J is the canonical one; we switch to multiplicative rather than additive notation
for our abelian groups here. The following two elementary results will be used repeatedly in what
follows, so we record them here:

Lemma 3.4.4 For f ∈ X∗(J) and x ∈ Gm(S
⊗

R n), we have f ∪ x = [p∗1f ](x). Furthermore,

if we take two multiplicative groups M,N , both split over S, and look at the R-pairing M ×
Hom(M,N) → N , then for ϕ ∈ Hom(M,N) defined over R, we have x ∪ ϕ = ϕ ∪ x = ϕ(x) for

all x ∈M(S
⊗

R n).

Proof. This is a straightforward computation.
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Lemma 3.4.5 If g ∈ X∗(J)
Γ, then for f ∈ X∗(Gm) and x ∈ Cn,1(S/R, S,Gm), we have

x ⊔
S/R

(g ◦ f) = (x ⊔
S/R

f) ∪ g.

Proof. We have that x ∪ (g ◦ f) = x ∪ (f ∪ g) = (x ∪ f) ∪ g = g(x ∪ f), where we are
using the fact that f ∪ g = g ◦ f , and that since g ∈ X∗(J)

Γ, we have by Lemma 3.4.4 that
(x ∪ f) ∪ g = g(x ∪ f). Thus, λ[x ∪ (g ◦ f)] = λ[g(x ∪ f)] = (

∏
σ g)[λ(x ∪ f)], where

this last equality follows from the fact that g is defined over R. Finally, applying N gives that
x ⊔
S/R

(g ◦ f) = N(
∏

σ g)[λ(x ∪ f)] = g(x ⊔
S/R

f) = (x ⊔
S/R

f) ∪ g, where this last equality comes

once again from Lemma 3.4.4.
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CHAPTER 4

The Local Gerbe

4.1 The multiplicative pro-algebraic group u

For a finite Galois extension E/F , we consider the algebraic group RE/F [n] := ResE/Fµn, which
is a multiplicative F -group with character groupX∗(RE/F [n]) = Z/nZ[ΓE/F ] with ΓE/F acting by
left-translation. We have the diagonal embedding µn → RE/F [n] induced by the Γ-homomorphism
Z/nZ[ΓE/F ] → Z/nZ defined by [γ] 7→ 1. The kernel of this homomorphism will be denoted by
Z/nZ[ΓE/F ]0, and is the character group of the multiplicative F -group RE/F [n]/µn, which will
denote by uE/F,n. Note that uE/F,n is smooth if and only if n is coprime to the characteristic of F .

If K/F is a finite Galois extension containing E and m is a multiple of n, then the injective
morphism of Γ-modules Z/nZ[ΓE/F ]→ Z/mZ[ΓK/F ] induced by the inclusion Z/nZ ↪→ Z/mZ
and the map

[γ] 7→
∑

σ∈ΓK/F
σ 7→γ

[σ]

induces an epimorphismRK/F [m]→ RE/F [n]. This mapsRK/F [m]0 toRE/F [n]0 and thus induces
an epimorphism uK/F,m → uE/F,n. We define the pro-algebraic multiplicative group u to be the
limit

u := lim←−uE/F,n

taken over the index category I whose objects are tuples (E/F, n) as n ranges through N and
E/F ranges over all finite Galois extensions of F , and where there is at most one morphism
(K/F,m) → (E/F, n) in I and it exists if and only if E ⊂ K and n | m. For every (E/F, n),
the canonical map u → uE/F,n is an epimorphism. Note that u is a commutative affine group
scheme over F ; when taking the cohomology of u, we view it as a commutative fpqc group sheaf
on (Sch/F )fpqc (and thus also a sheaf on (Sch/F )fppf).

For a finite multiplicative algebraic group Z over F , any F -homomorphism u → Z factors
through an F -homomorphism uE/F,n → Z for some (E/F, n) ∈ I. We also have the “evaluation
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at e" map δe : µn → uE/F,n, which is induced by the corresponding morphism of character groups
from Z/nZ[γE/F ]0 to Z/nZ sending

∑
γ∈ΓE/F

cγ[γ] to ce. It’s easy to check that, for E splitting Z,
we have an isomorphism

HomF (uE/F,n, Z)→ Hom(µn, Z)
NE/F , f 7→ f ◦ δe, (4.1)

where the superscript NE/F denotes the kernel of the norm map and for two algebraic F -groups
A,B, Hom(A,B) denotes the abelian group HomF s(AF s , BF s), which carries a natural Γ-action.

Before we analyze the cohomology of u, it’s necessary to recall some facts about the cohomol-
ogy of profinite groups. By [RZ00], 2.2, the left-exact functor lim←− from the abelian category of
inverse systems of abelian profinite groups with continuous transition maps to the abelian category
of abelian profinite groups is exact. As a consequence, its associated first derived functor, lim←−

(1),
sends everything to the trivial group.

Proposition 4.1.1 We have the following results about H1(F, u) and H2(F, u):

1. The projective systems {H1(F, µn)}, {H1(F,RE/F [n])}, {H1(F, uE/F,n)}, {H2(F, µn)} (all

indexed by I) can be given the structure of projective systems of abelian profinite groups

with continuous transition maps, such that, for all n, the associated long exact sequence in

cohomology associated to the short exact sequence of group sheaves

0 µn RE/F [n] uE/F,n 0,

consists entirely of continuous maps, up until the map H2(F, µn) → H2(F,RE/F [n]) (we

have not specified a topology on the right-hand group);

2. We have a canonical isomorphism H1(F, u) = lim←−H
1(F, uE/F,n);

3. We have a canonical isomorphism H2(F, u) = lim←−H
2(F, uE/F,n).

Proof. First we fix (E/F, n) ∈ I. We know from Hilbert’s Theorem 90 that H1(F, µn) =

F ∗/F ∗,n, from Shapiro’s lemma that H1(F,RE/F [n]) = E∗/E∗,n, and from local class field
theory that H2(F, µn) = Z/nZ, all of which carry the natural structure of a profinite group
(we don’t need to identify H2(F, µn) with anything; just give it the discrete topology). Under
these correspondences, the map H1(F, µn) → H1(F,RE/F [n]) corresponds to the obvious map
F ∗/F ∗,n → E∗/E∗,n (which is evidently continuous), and so we have a short exact sequence of
groups

0 E∗/(F ∗ · E∗,n) H1(F, uE/F,n) Cn 0,
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where Cn is the image of H1(F, uE/F,n) → H2(F, µn). The first and third terms in the sequence
have natural profinite topologies, since the image of F ∗/F ∗,n in E∗/E∗,n is a closed subgroup.
Then H1(F, uE/F,n) carries a unique structure of a profinite group realizing Cn as a topological
quotient of H1(F, uE/F,n) by the open (closed) subgroup E∗/(F ∗ · E∗,n) with the subspace topol-
ogy, see [RZ00], 2.2.1. It’s trivial to check that all lower-degree maps in the long exact sequence
are continuous.

Now we look at the transition maps in the corresponding projective systems (so that (E/F, n) is
no longer fixed). The ones for {H1(F, µn)} correspond to the quotient maps F ∗/F ∗,m → F ∗/F ∗,n,
which are clearly continuous, the ones for {H1(F,RE/F [n])} correspond to the (quotient) norm
maps K∗/K∗,m → E∗/E∗,n, which are continuous, and all {H2(F, µn)} are finite. For n | m and
K/E/F , we have the commutative diagram

0 E∗/F ∗E∗,n H1(F, uE/F,n) Cn 0

0 K∗/F ∗K∗,m H1(F, uK/F,m) Cm 0;

NK/E pm,n

it’s a straightforward exercise in profinite abelian groups to show that if the left and right vertical
homomorphisms are continuous, then so is the middle one (where, again, the middle groups are
equipped with the unique profinite topology discussed above). This completes (1).

For (2) and (3), by [Stacks], I.21.22.2, we have the (canonical) short exact sequences

0 lim←−
(1)H0(F, uE/F,n) H1(F, u) lim←−H

1(F, uE/F,n) 0;

0 lim←−
(1)H1(F, uE/F,n) H2(F, u) lim←−H

2(F, uE/F,n) 0,

and in both cases the left-hand terms vanish: the first vanishes because it’s an inverse system of
finite groups, and the second because we proved in (1) that {H1(F, uE/F,n)} is a system of profinite
groups with continuous transition maps.

The following result will be important when discussing the uniqueness of our constructions. When
taking inverse limits of the groups uE/F,n (and computing any cohomology groups) we may replace
the category I with any co-final subcategory {Ek/F, nk} in I, which we do in what follows by
taking a tower F = E0 ⊂ E1 ⊂ E2 ⊂ . . . of finite Galois extensions of F with the property that
∪Ek = F s and a co-final sequence {nk} ⊂ N×. We set Rk := REk/F [nk] and uk := uEk/F,nk

.

Lemma 4.1.2 We have H i(Un, u) = 0 for all i > 0, n ≥ 0.

Proof. First note that H i(Un, uk) = 0 for any i, k > 0, n ≥ 0, by Proposition 3.1.4. Thus, the
result is clear if we can show thatH i(Un, u) = lim←−H

i(Un, uk) for all i > 0, n ≥ 0. Using the same
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short exact sequence for inverse limits and cohomology used in the proof of Proposition 4.1.1, it’s
enough to show that lim←−

(1)Hj(Un, uk) = 0 for all j ≥ 0.
For j ≥ 1 this is immediate, since all the groups in the system are zero, by above. Thus, all that’s

left is showing lim←−
(1)H0(Un, uk) = 0 for all n. For k > l, the transition map Rk(Un)→ Rl(Un) is

identified (via splitting the Rj’s) with the map∏
γ∈ΓEk/F

[µnk
(Un)]γ →

∏
σ∈ΓEl/F

[µnl
(Un)]σ

given by raising all coordinates to the nk/nl-power and then mapping all Galois-preimage coordi-
nates to their image coordinate (and taking their product). This map is clearly surjective, and since
all H1(Un, µnj

) are zero, the long exact sequence in cohomology tells us that H0(Un, Rj) surjects
onto H0(Un, uj) for all j. Finally, since the square

H0(Un, Rl) H0(Un, ul)

H0(Un, Rk) H0(Un, uk)

commutes, the right vertical maps are all surjective, and so the inverse system {H0(Un, uk)}k
satisfies the Mittag-Leffler condition, giving the result.

Corollary 4.1.3 We have canonical isomorphisms Ȟp(F/F, u)→ Hp(F, u) for all p ∈ N.

Proof. This is an immediate consequence of combining Lemma 4.1.2 with Proposition 3.1.1.

Next, we prove the basic result about the cohomology of u.

Theorem 4.1.4 We have H1(F, u) = 0 and a canonical isomorphism H2(F, u) = Ẑ.

Proof. As above, we fix a co-final subcategory {(Ek, nk)} of I. By Proposition 4.1.1, H i(F, u) =

lim←−H
i(F, uEk/F,nk

) for i = 1, 2.
The argument for i = 2 is identical to that in [Kal16], with a few minor adjustments—we have

the functorial isomorphism

H2(F, uk) ∼= H0(F,X∗(uk))
∗ = H0(Γ, X∗(uk))

∗ ∼=
[

nk
(nk, [Ek : F ])

Z/nkZ
]∗
∼= Z/(nk, [Ek : F ])Z,

where for an abelian group M , M∗ denotes the group HomZ(M,Q/Z), X∗(uk) denotes the
étale group scheme associated to the Γ-module X∗(uk), and the first isomorphism is given by
the analogue of Poitou-Tate duality for fppf cohomology of finite group schemes over a local
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field of positive characteristic, see for example [Mil06], III.6.10. For k > l, the transition map
H2(p) : H2(F, uk)→ H2(F, ul) is translated by this isomorphism to the natural projection map

Z/(nk, [Ek : F ])Z→ Z/(nl, [El : F ])Z.

We may then set nk = [Ek : F ] for all k, giving (nk, [Ek : F ]) = nk, settling the case i = 2.
For i = 1, by the long exact sequence in cohomology, we have the exact sequence

H1(F,Rk) H1(F, uk) H2(F, µnk
),

and, by Proposition 4.1.1, these are all profinite groups, and the maps in the above sequence are
continuous; whence, this sequence remains exact after taking the inverse limit, and so it’s enough
to show that lim←−H

1(F,Rk) = 0, lim←−H
2(F, µnk

) = 0. To show that the latter is zero, it’s enough to
find, for every l fixed, some k > l such that the transition map H2(F, µnk

) → H2(F, µnl
) is zero.

For this, note that, at the level of character modules, the map p♯k,l : X
∗(Rl) → X∗(Rk) induces a

map on quotients by the subgroups X∗(Rl)0, X∗(Rk)0 (respectively) that’s identified with the map
Z/nlZ→ Z/nkZ sending [1] to [(nk

nl
)2], and so we may choose k so that nk/nl is a multiple of nl.

It remains to show that lim←−H
1(F,Rk) = 0, which is the same as showing lim←−E

∗
k/E

∗,nk

k = 0.
Consider the short exact sequence induced by the valuation map v:

0 O×
k /(O

×
k )

nk E∗/E∗,nk Z/nkZ 0,v

whereO×
k denotes the units ofOEk

. Note that {O×
k /(O

×
k )

nk} is a projective system with continuous
transition maps induced by NEk/El

since the norm map preserves unit groups and nk-powers (and
nl | nk for l < k by construction).

As in the proof of Proposition 4.1.1, varying k in the above short exact sequence gives three
projective systems of profinite abelian groups, with continuous morphisms between the systems.
Whence, the sequence stays exact after we take the inverse limit of each system. We claim that the
inverse limit of the right-hand terms is zero. Fix l ∈ N: we know from basic number theory that if
πk is a uniformizer of Ek, then vl(NEk/El

(πk)) = fEk/El
, where fEk/El

denotes the degree of the
associated extension of residue fields. Whence, we may choose k >> l so that nl | fEk/El

, and so
the transition map Z/nkZ→ Z/nlZ is zero, giving the claim.

It’s thus enough to show that lim←−O
×
k /(O

×
k )

nk = 0. We get a new short exact sequence of
profinite groups

0 (O×
k )

nk O×
k O×

k /(O
×
k )

nk 0,

where the left-hand term is profinite since it’s a closed subgroup of O×
k , being the image of a

compact group under a continuous homomorphism.
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Taking the inverse limit of each term, we get a surjection lim←−O
×
k ↠ lim←−O

×
k /(O

×
k )

nk , so we
only need to show lim←−O

×
k = 0. This follows from local class field theory because our transition

maps are norms and for k fixed the universal reciprocity map Ψ : E∗
k → ΓEk

is injective for Ek
any local field (see [FV02], IV.6.2).

Combining the above result with Corollary 4.1.3 immediately gives:

Corollary 4.1.5 We have Ȟ1(F/F, u) = 0 and a canonical identification Ȟ2(F/F, u)
∼−→ Ẑ. In

particular, the natural map Ȟp(F/F, u)→ lim←−k Ȟ
p(F/F, uk) is an isomorphism for p = 1, 2.

We denote by α ∈ H2(F, u) the element corresponding to −1 ∈ Z. For any multiplicative
algebraic group Z defined over F , we obtain a map

α∗ : HomF (u, Z)→ H2(F,Z) (4.2)

via taking the image of α under the map H2(F, u)→ H2(F,Z) induced by ϕ ∈ HomF (u, Z).

Proposition 4.1.6 If Z is any finite multiplicative algebraic group defined over F , then α∗ is sur-

jective. If Z is also split, then α∗ is also injective.

The identical proof as in [Kal16], Proposition 3.1 works here, with the only difference being the
replacement of the classical local Poitou-Tate with the version for finite groups schemes over local
fields of positive characteristic, which does not affect the rest of the argument.

4.2 Basic properties of H1(E , Z → G)

Fix a u-gerbe (E , θ) split over F corresponding to the class α ∈ H2(F, u), where by “correspond-
ing" we mean [E ] ∈ Ȟ2(F/F, u)

∼−→ lim←−n Ȟ
2(F/F, un) = Ẑ maps to α (see Corollary 4.1.3, and

Proposition 4.1.1). This subsection closely follows §3 in [Kal16].
Given [Z → G] in A, recall that we have defined the cohomology set H1(E , Z → G) to

be the subset of H1(E , GE) consisting of elements whose image under the map H1(E , GE)
Res−→

HomF (A, G) is an F -homomorphism u → G which factors through Z ↪−→ G, and that this con-
struction is functorial in [Z → G]. For any other choice of A-gerbe E ′ with [E ′] = −1, we know
from Corollary 2.5.5 that [E ] = [E ′] ∈ Ȟ2(F/F, u), and hence by Proposition 2.3.5 we have a u-
equivalence η : E → E ′, which (via pullback) induces a map H1(E ′, GE ′) → H1(E , GE), and it is
straightforward to verify that this map further gives rise to a map H1(E ′, Z → G) → H1(E , Z →
G) for any [Z → G] ∈ A, which by Lemma 2.6.4, is independent of the choice of η.
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Lemma 4.2.1 The transgression map HomF (u, Z) → H2(F,G) can be taken to be the composi-

tion of the map α∗ defined in (4.2) and the natural map H2(F,Z)→ H2(F,G).

Proof. We may work with a-twisted cocycles valued in G for a choice of a ∈ A(U2) with [a] = α.
By the functoriality of our inflation-restriction sequence, we may replace G by Z, and we are
reduced to showing that the transgression map HomF (u, Z) → H2(F,Z) equals the map α∗.
Recall that α∗ is defined by mapping a homomorphism to the image of α under the induced map
H2(F, u) → H2(F,Z). By construction, the image of f ∈ HomF (u, Z) under the transgression
map is the class [f(a)] ∈ H2(F,Z), which is exactly the statement of the lemma, since [a] =

α.

Remark 4.2.2 The above proof does not use anything specific about the group u; the result holds

when u is replaced by any commutative F -group scheme A, a by a Čech 2-cocycle c, and E by Ec.
We will use this in the rest of this chapter without comment.

For [Z → G] in A, recall that G π−→ G := G/Z.

Lemma 4.2.3 There is a group homomorphism b : H1(E , Z → G)→ H1(F,G).

Proof. The inflation-restriction sequence on E for the F -group G identifies H1(F,G) with the
kernel of the restriction map H1(E , (G)E)→ HomF (u,G). Since the square

H1(E , GE) HomF (u,G)

H1(E , (G)E) HomF (u,G)

Res

Res

commutes, it’s clear that since H1(E , Z → G) is killed by the right-down composition, its image
in H1(E , (G)E) lies inside the inflation of H1(F,G). This gives our map.

The following is the most important proposition of the section, and will be used extensively in
the next section.

Proposition 4.2.4 Let [Z → G] ∈ A. PutG = G/Z. Then we have the commutative diagram with
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exact rows and columns (where the right-most H2-terms are to be ignored if G is non-abelian):

G(F ) G(F )

0 H1(F,Z) H1(Ea, Z → Z) HomF (u, Z)

0 H1(F,G) H1(Ea, Z → G) HomF (u, Z) H2(F,G)

H1(F,G) H1(F,G) H2(F,Z) H2(F,G)

0 0.

Inf Res

Inf

b

Res

α∗

tg

Proof. We may work with a-twisted cocycles for an appropriate choice of a. The second and third
rows come from the already-established inflation-restriction result, the fourth row and left column
come from the long exact sequence for fppf cohomology associated to the short exact sequence
0 −→ Z −→ G −→ G −→ 0, and the middle column is from Lemma 2.7.3 and Lemma 4.2.3. It
follows from the same lemmas that the middle column is exact, except for possibly the surjectivity
of b, which we will show later in the proof. The commutativity of all squares is obvious, except
for the bottom right one, which is exactly Lemma 4.2.1, and the bottom middle one, which we will
show now.

The mapH1(Ea, GEa)→ H1(Ea, GEa) sends the class of the a-twisted cocycle (x, ϕ) to the class
of (π(x), π ◦ ϕ). Since we assume that ϕ factors through Z, the class [(π(x), π ◦ ϕ)] is the class of
[π(x), 0], where π(x) ∈ G(U1) is an actual 1-cocycle (because π(ϕ(a)) = eG). We want to look
at the image of the class [π(x)] under the connecting homomorphism δ : H1(F,G) → H2(F,Z)

(computed as in Proposition 3.1.3).
To compute δ([π(x)]), we first lift π(x) to G(U1); the natural element to pick here is x ∈

G(U1). Then δ([π(x)]) is exactly [dx] ∈ H1(F/F, Z), which, by assumption, equals [ϕ(a)], which
gives the desired commutativity, since the class [Res[(x, ϕ)](a)] = [ϕ(a)] is exactly the element of
H2(F,Z) obtained by following the square in the other direction, see the proof of Lemma 4.2.1.

The last thing to show is the surjectivity of b. If G is abelian, this follows immediately from
the surjectivity of α∗, using the commutativity of the bottom right and middle squares and the
four-lemma. We will address the non-abelian case in Proposition 4.5.6 (we will not investigate this
construction for non-abelian G until that section anyway, so there is no danger of circularity).
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4.3 Extending Tate-Nakayama

Let S be an F -torus and E/F a finite Galois extension. As in [Kal16], §4, the goal of this section
is to extend the notion of the classical Tate-Nakayama isomorphism

X∗(S)Γ,tor = H−1
Tate(ΓE/F , X∗(S))

∼−→ H1(Γ, S)

to the setting of our cohomology group H1(E , Z → S). Some new notation: for an affine F -group
scheme G, we will denote by F [G] the coordinate ring of G. Let H1(E) denote the functor from
T to AbGrp which sends [Z → S] to the group H1(E , Z → S).

Following [Kal16], we will first construct a functor Y +,tor : T → AbGrp which extends the
functor S 7→ X∗(S)Γ,tor, as well as a morphism of functors from Y +,tor to the functor [Z → S] 7→
HomF (u, Z). Then we will construct a unique isomorphism of functors

Y +,tor → H1(E)

on T which for objects [1 → S] ∈ T coincides with the Tate-Nakayama isomorphism, and such
that the composition Y +,tor(Z → S) → H1(E , Z → S) → HomF (u, Z) equals the morphism
alluded to above.

We start by defining the functor Y +,tor, which is just a summary of §4.1 in [Kal16].
For [Z → S] ∈ T , we set S := S/Z. Then if Y := X∗(S) and Y := X∗(S), we have an

injective morphism of Γ-modules Y → Y .
We then have an isomorphism of Γ-modules

Y /Y → Hom(µn, Z) λ̄ 7→ [x 7→ (nλ)(x)],

for any n ∈ N such that [Y : Y ] | n, where for λ ∈ Y , we identify nλ with an element of Y . Take
any finite Galois extension E/F which splits S, and take I ⊂ Z[ΓE/F ] to be the augmentation
ideal. Set Y + := Y /IY , and Y

N

+ the quotient of Y
N

by IY , where the superscript N denotes the
kernel of the norm map NE/F .

Then we have Y
N

+ = Y +,tor (see [Kal16], Fact 4.1), and the natural map Y
N

+ → [Y /Y ]N

post-composed with the isomorphisms [Y /Y ]N
∼−→ Hom(µn, Z)

N ∼−→ HomF (uE/F,n, Z) (this
second isomorphism comes from (4.1)) gives a homomorphism Y

N

+ → HomF (u, Z). For vary-
ing E/F and n, these homomorphisms are compatible and splice to a homomorphism Y +,tor →
HomF (u, Z).

Given a morphism [Z1 → S1]→ [Z2 → S2] in T , the induced morphism S1 → S2 induces a Γ-
morphismX∗(S1)+,tor → X∗(S2)+,tor, showing that the assignment [Z → S] 7→ Y +,tor is functorial
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in [Z → S].

4.4 Construction of the isomorphism

We are now ready to construct the isomorphism of functors on T from Y +,tor to H1(E).
Choose an increasing tower Ek of finite Galois extensions of F and cofinal sequence {nk} in

N×, with associated prime-to-p sequence {n′
k}. Choose a sequence of 2-cocycles ck representing

the canonical classes in each H2(ΓEk/F , E
∗
k) as in [Kal16], §4.4, which we will identify with

their corresponding Čech 2-cocycles, and maps lk : (F s)∗ → (F s)∗ satisfying lk(x)n
′
k = x and

lk+1(x)
n′
k+1/n

′
k = lk(x) for all x ∈ (F s)∗. For K/F a finite Galois extension, we may also view

lk as a map on Čech-cochains Cn(K/F,Gm) → Cn(F s/F,Gm) by identifying the left-hand side
with

∏
σ∈Γn

K/F
K∗
σ, applying lk to each coordinate, and then mapping by t−1 to L

⊗
F (n+1), where

L/F is some finite Galois extension containing all the chosen n′
k-roots of the entries of x.

Denote uEk/F,nk
by uk and REk/F [nk] by Rk. Recall the homomorphism δe : µnk

→ Rk induc-
ing a homomorphism δe : µnk

→ uk that is killed by the norm map for the group ΓEk/F acting on
Hom(µnk

, uk).
Following [Kal16], §4.5, we define

ξk = d[(lkck)
(1/pmk )] ⊔

Ek/F
δe ∈ C2(F/F, uk),

where for an n-cochain x ∈ Gm(F
⊗

F (n+1)
), we choose for every p-power pmk := nk/n

′
k a pmk-

root of x, denoted by x(1/p
mk ), satisfying (x(1/p

mk+1 ))p
mk+1/pmk = x(1/p

mk ) and if x ∈ F ⊗F F ⊗F
· · · ⊗F F ⊗F E for E/F a finite Galois extension, then x(1/p

mk ) ∈ F ⊗F F ⊗F · · · ⊗F F ⊗F E as
well (it is a straightforward exercise in purely inseparable extensions of fields to prove that such a
choice of roots exists). For ease of notation, denote (lkck)(1/p

mk ) by l̃kck, which we view as a Čech
2-cochain valued in Gm(U2).

To ensure that the above definition makes sense, we need to verify that lkck ∈
C2,1(F s/F,Ek,Gm) and (lkck)

(1/pmk ) ∈ C2,1(F/F,Ek,Gm). The first inclusion follows from
looking at the corresponding Galois n-cochain, as in [Kal16], and the second inclusion follows
from the first and the construction of the (−)(1/pmk

)-maps.
Define the torus SEk/F to be the quotient of ResEk/F (Gm) by the diagonally-embedded Gm; it’s

clear that uk is the subgroup SEk/F [nk] of nk-torsion points. Define

α′
k = (lkck ⊔

Ek/F
δe,k)

−1 · p′k+1,k(lk+1ck+1 ⊔
Ek+1/F

δe,k+1) ∈ C1(F s/F, SEk/F )
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and
αk = (l̃kck ⊔

Ek/F
δe,k)

−1 · pk+1,k( ˜lk+1ck+1 ⊔
Ek+1/F

δe,k+1) ∈ C1(F/F, SEk/F ),

where by pk+1,k we mean the map from SEk+1/F to SEk/F induced by the homomorphism of Γ-
modules Z[ΓEk/F ]0 → Z[ΓEk+1/F ]0 defined by [γ] 7→ (nk+1/nk)

∑
σ 7→γ[σ], similarly with p′k+1,k.

By δe,k we mean the extension of δe : µnk
→ uk to the map Gm → SEk/F defined on Γ-modules by

Z[ΓEk/F ] → Z the evaluation at [e] map. Note that this is not in general Γ-equivariant, but is still
killed by the norm NEk/F .

Lemma 4.4.1 1. The cochain αk takes values in uk and the equality dαk = pk+1,k(ξk+1)ξ
−1
k

holds in C2(F/F, uk).

2. The element ([ξk]) of lim←−H
2(F, uk) is equal to the canonical class α.

Proof. We start by proving (1). To show that αk ∈ uk(F ⊗F F ) = SEk/F [nk](F ⊗F F ), it’s enough
to show that αp

mk

k ∈ SEk/F [n
′
k](F ⊗F F ). By construction,

αp
mk

k = (lkck ⊔
Ek/F

δe,k)
−1 · pk+1,k([ ˜lk+1ck+1]

pmk ⊔
Ek+1/F

δe,k+1) = α′
k,

since pk+1,k is p′k+1,k pre-composed with the pmk+1/pmk-power map on SEk+1/F . Thus, it’s enough
to show that α′

k ∈ SEk/F [n
′
k](F

s ⊗F F s), which follows from Lemma 4.5 in [Kal16].
To show the second part of (1), we note by Proposition 3.4.3 that

d(l̃kck ⊔
Ek/F

δe,k) = d(l̃kck) ⊔
Ek/F

δe = ξk,

since δe,k is killed by NEk/F . As pk+1,k is defined over F , Lemmas 3.4.4 and 3.4.5 give us the
equality

pk+1,k( ˜lk+1ck+1 ⊔
Ek+1/F

δe,k+1) = ˜lk+1ck+1 ⊔
Ek+1/F

pk+1,k ◦ δe,k+1.

Note that pk+1,k ◦ δe,k+1 : Gm → SEk/F equals (nk+1/nk)δe,k, and so it is killed by NEk/F (and
hence by NEk+1/F ), and so Proposition 3.4.3 and Lemma 3.4.5, together with the above equality,
imply that

d[pk+1,k( ˜lk+1ck+1 ⊔
Ek+1/F

δe,k+1)] = (d ˜lk+1ck+1) ⊔
Ek+1/F

pk+1,k ◦ δe = pk+1,k[(d ˜lk+1ck+1) ⊔
Ek+1/F

δe],

and this last term is exactly pk+1,k(ξk+1).
It remains to prove (2). As in the analogous part of the proof of Lemma 4.5 in [Kal16], it’s

enough to show that under the isomorphism H2(F, uk) → H0(Γ, X∗(uk))
∗ → Z/(nk, [Ek : F ])Z

used in the proof of Theorem 4.1.4, the class of ξk maps to the element −1. Consider the cup
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product of ξk with the element nk

(nk,[Ek:F ])
∈ nk

(nk,[Ek:F ])
Z/nkZ ∼= H0(Γ, X∗(uk)), which we denote

by χ ∈ H0(Γ, X∗(uk)). We have by Lemmas 3.4.4 and 3.4.5 that ξk∪χ = χ(ξk) = dl̃kck ⊔
Ek/F

χ◦δe.

Note that χ ◦ δe : µnk
→ Gm is fixed by ΓE/F , and so by Lemma 3.4.5, we get that

dl̃kck ⊔
Ek/F

χ ◦ δe = (dl̃kck ⊔
Ek/F

idGm) ∪ (χ ◦ δe).

Since the Ek/F -norm of idGm is the [Ek : F ]-power map on Gm, it follows from Proposition 3.4.3
that dl̃kck ⊔

Ek/F
idGm is cohomologous to (l̃kck ∪ [Ek : F ] · idGm)

−1. Thus (by basic properties of

the cup product), we have that ξk ∪ χ is cohomologous to

([Ek : F ] · l̃kck)−1 ∪ (χ ◦ δe),

where χ ◦ δe : Gm → Gm is interpreted as the extension of χ ◦ δe : µnk
→ µnk

to the map induced
by the group homomorphism Z→ Z given by 1 7→ [Ek : F ].

If z ∈ X∗(Rk) is the character generating H0(ΓE/F , X
∗(Rk)), then by construction χ =

nk

(nk,[Ek : F ])
z and z ◦ δe = idµnk

. Viewing z ◦ δe as the map idGm , we can factor δe through Rk,
and get by Z-bilinearity that

([Ek : F ] · l̃kck)−1 ∪ (χ ◦ δe) =
nk

(nk, [Ek : F ])
([Ek : F ] · l̃kck)−1.

Since nk

(nk,[Ek : F ])
· [Ek : F ] = nk · [Ek : F ]

(nk,[Ek : F ])
and by design l̃kck is an nkth root of ck, we get

that [ξ∪χ] is− [Ek : F ]
(nk,[Ek : F ])

times the class [ck], which thus has invariant equal to−1/(nk, [Ek : F ]).
This exactly gives that ξk sends χ to −1/(nk, [Ek : F ]) under the pairing of used in the proof of
Theorem 4.1.4, giving the result.

For fixed k ∈ N, denote by Ek := Eξk the uk-gerbe corresponding to the Čech 2-cocycle ξk.
For any fixed k we have a morphism of F -stacks πk+1,k : Ek+1 → Ek given by ϕξk+1,ξk,αk

, obtained
by combining Lemma 4.4.1 with Construction 2.3.4. In fact, the systems (ξk)k and (αk)k, along
with the groups uk and gerbes Ek, exactly satisfy the assumptions made in §2.5, our subsection on
inverse limits of gerbes. Thus, as a consequence of Proposition 2.5.3, we may take E := lim←−k Ek to
be the gerbe used to define the groups H1(E , Z → S) for [Z → S] in T .

We are now ready to begin describing the Tate-Nakayama isomorphism. For a fixed [Z → S]

in T , let k be large enough so that Ek splits S and |Z| divides nk. Let λ̄ ∈ Y NEk
/F

, and ϕλ̄,k ∈
HomF (uk, Z) be its image under the isomorphism

[Y /Y ]NEk/F → Hom(µnk
, Z)NEk/F → HomF (uk, Z).
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Define a ξk-twisted S-torsor on F as follows. Take the trivial SF -torsor SF , with uk-action

induced by the homomorphism uk
ϕλ̄,k−−→ SF and gluing map SF⊗FF

∼−→ SF⊗FF
given by left-

translation by zk,λ̄ := l̃kck ⊔
Ek/F

nkλ̄ ∈ S(F ⊗F F ), where we view nkλ̄ as an element of X∗(S)

(this makes sense since |Z| divides nk). This gluing map is trivially S- and hence uk-equivariant.

Lemma 4.4.2 The above SF -torsor with the specified uk -action and gluing map defines a ξk-

twisted S-torsor, which we will denote by Zk,λ̄. Moreover, for every k, we have the equality of

ξk+1-twisted S-torsors

π∗
k+1,kZk,λ̄ = Zk+1,λ̄.

Proof. For the first statement, we just need to check that the above SF -torsor is ξk-twisted with
respect to translation by zλ̄,k on SF⊗FF

. Since uk acts via ϕλ̄,k, this is the same as showing that
d(zλ̄,k) = ϕλ̄,k(ξk). Since λ̄ is killed by NEk/F , so is nkλ̄, and hence by Proposition 3.4.3 we have
d(l̃kck ⊔

Ek/F
nkλ̄) = (dl̃kck) ⊔

Ek/F
nkλ̄.

Moreover, ϕλ̄,k is such that ϕλ̄,k ◦ δe = nkλ̄, and so by Lemma 3.4.5, since ϕλ̄,k is defined over
F , we obtain

(dl̃kck) ⊔
Ek/F

nkλ̄ = ϕλ̄,k[(dl̃kck) ⊔
Ek/F

δe] = ϕλ̄,k(ξk),

as desired. We thus get our ξk-twisted S-torsor Zλ̄,k.
We now want to compare the pullback π∗

k+1,kZλ̄,k to Zλ̄,k+1. As SF -torsors, these are both
trivial, so it’s enough to show that the uk+1-actions coincide, and that the difference of the two
gluing maps is the identity in S(F ⊗F F ). By Corollary 2.4.12, the uk+1-action on π∗

k+1,kZλ̄,k is

given by the homomorphism uk+1

ϕλ̄,k◦pk+1,k−−−−−−→ SF and the uk+1-action on Zλ̄,k is given by ϕλ̄,k+1.
One checks easily that ϕλ̄,k+1 = ϕλ̄,k ◦ pk+1,k, so the uk+1-actions coincide.

Corollary 2.4.12 also tells us that the twisted gluing map for π∗
k+1,kZλ̄,k is left-translation on SF

by ϕλ̄,k(αk) · zλ̄,k ∈ S(F ⊗F F ), and for Zλ̄,k+1 is left-translation by zλ̄,k+1. We want to look at

zλ̄,k · ϕλ̄,k(αk) · z−1
λ̄,k+1

= ϕλ̄,k(αk) · ( ˜lk+1ck+1 ⊔
Ek+1/F

nk+1λ̄)
−1 · l̃kck ⊔

Ek/F
nkλ̄.

Recall (since pk+1,k is defined over F ) that

αk = (l̃kck ⊔
Ek/F

δe,k)
−1 · ( ˜lk+1ck+1 ⊔

Ek+1/F
pk+1,k ◦ δe,k+1),

and since the extension of ϕλ̄,k to SEk/F (see [Kal20], page 3), which we will also denote by ϕλ̄,k,
is defined over F , we may pull it inside both cup products to obtain

ϕλ̄,k(αk) = (l̃kck ⊔
Ek/F

ϕλ̄,k ◦ δe,k)−1 · ( ˜lk+1ck+1 ⊔
Ek+1/F

ϕλ̄,k ◦ pk+1,k ◦ δe,k+1).
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Since ϕλ̄,k ◦ pk+1,k = ϕλ̄,k+1, the above is exactly z−1
λ̄,k
· zλ̄,k+1, so we are done.

Again choosing k ∈ N such thatEk splits S and |Z| divides nk, we may define an SE-torsor on E
by pulling back Zk,λ̄ (identifying this ξk-twisted S-torsor with an SEk-torsor on Ek as in Proposition
2.4.10) to E via the projection map πk : E → Ek. By the above lemma, this does not depend on
the choice of k, and so we denote this torsor simply by Zλ̄. We are now in a position to prove the
main result. The statement and proof largely follow the analogous result in [Kal16], which is that
paper’s Theorem 4.8.

Theorem 4.4.3 The assignment λ̄ 7→ Zλ̄ induces an isomorphism

ι : Y +,tor → H1(E)

of functors T → AbGrp. This isomorphism coincides with the Tate-Nakayama isomorphism for

objects [1 → S] in T and lifts the morphism from Y +,tor to HomF (u,−) described earlier in the

subsection. Moreover, ι is the unique isomorphism between these two functors satisfying the above

two properties.

Proof. This assignment is clearly additive in λ̄, and so it defines a group homomorphism from Y
N

to H1(E , Z → S) for any object [Z → S] of T . Moreover, any morphism [Z → S]
h−→ [Z ′ → S ′]

in T induces the morphism H1(E , Z → S) → H1(E , Z ′ → S ′) sending the class of π∗
kZλ̄,k

(for suitable k, as discussed above) to that of π∗
k(Zλ̄,k ×h,S S ′), and so it is enough to show that

Zλ̄,k ×h,S S is isomorphic to Zh♯(λ̄),k as ξk-twisted S ′-torsors. Note that Zλ̄,k ×h,S S ′ is evidently
trivial as an S ′

F
-torsor, and has uk-action given by h ◦ϕλ̄,k, whereas Zh♯(λ̄),k has uk-action given by

ϕh♯λ̄,k = h◦ϕλ̄,k, since if ϕλ̄,k ◦ δe = nkλ̄, then h◦ (ϕλ̄,k ◦ δe) = h◦nkλ̄ = h♯λ̄. Finally, one checks
by a similar argument that h(zλ̄,k) = zh♯λ̄,k, giving the desired equality of torsors, and hence that
the assignment of the theorem gives a morphism of functors from Y

N
to H1(E).

We need to check that for [Z → S] in T fixed, the homomorphism Y
N → H1(E , Z → S)

descends to the quotient Y +,tor = Y
N
/IY . To this end, suppose that λ̄ ∈ Y

N
lies in Y . Then

(choosing k large enough) by §4.3, ϕλ̄,k is trivial, and moreover

zλ̄,k = l̃kck ⊔
Ek/F

nkλ̄ = ck ⊔
Ek/F

λ̄.

Note that ck ∈ Gm(Ek ⊗F Ek), and hence by Proposition 3.4.1, this unbalanced cup product may
be computed using the definition given in [Kal16], working with Galois cohomology. By [Kal16],
§4.3, this coincides with the usual cup product in finite Tate cohomology with respect to the group
ΓEk/F , and thus yields the image of λ̄ induced by the Tate-Nakayama isomorphism X∗(S)

Nk →
[X∗(S)/IX∗(S)]

Nk
∼−→ H1(ΓEk/F , S(Ek)) = H1(F, S). As a consequence, if λ̄ ∈ IY , then
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zλ̄,k = 1, and so Zλ̄,k is given by the trivial SF -torsor with trivial uk-action and gluing map equal
to the identity, thus yielding the trivial ξk-twisted S-torsor on Ek, as desired.

The argument of the above paragraph also shows that if we take [1→ S] ∈ T , then Y +,tor[1→
S] = Y/IY and the homomorphism Y/IY → H1(E , 1 → S) = H1(F, S) is exactly the Tate-
Nakayama isomorphism. For the morphism of functors on T from Y +,tor to HomF (u,−) sending
λ̄ to ϕλ̄,k ◦ pk, we have already discussed that the image of π∗

kZλ̄,k under the restriction morphism
H1(E , Z → S)→ HomF (u, Z) equals ϕλ̄,k ◦ pk, giving the desired compatibility of morphisms of
functors to HomF (u,−).

The final thing to show is that for [Z → S] fixed, the assignment of the theorem yields an
isomorphism from Y +,tor to H1(E , Z → S). As in [Kal16], consider the diagram

0 H1(F, S) H1(E , Z → S) HomF (u, Z) H2(F, S)

0 YΓ,tor Y +,tor lim−→[Y /Y ]Nk lim−→Y Γ/Nk(Y ),

where the top horizontal sequence is just inflation-restriction, the first lower-horizontal map
is induced by the inclusion X∗(S) → X∗(S), the second is induced by the maps Y +,tor =

Y
Nk
/IkY → [Y /Y ]Nk , and the third is induced by the maps [Y /Y ]Nk → Y Γ/Nk(Y ) given

by [λ̄] 7→ [Nk(λ̄)]. It’s a straightforward exercise in group cohomology to check that the bot-
tom horizontal sequence is exact. The first vertical map is the Tate-Nakayama isomorphism, the
second vertical map is the assignment λ̄ 7→ Zλ̄, the third vertical map is induced by the sys-
tem of maps [Y /Y ]Nk → HomF (uk, Z) → HomF (u, Z) discussed in §4.3, and the final verti-
cal map is induced by the system of negative Tate-Nakayama isomorphisms H0

Tate(ΓEk/F , Y )
∼−→

H2(ΓEk/F , S(Ek))
Inf−→ H2(F, S).

We claim that this diagram commutes; the first square commutes by our above discussion of
the compatibility with the Tate-Nakayama isomorphism, and the middle square commutes by
compatibility between the two morphisms of functors to HomF (u,−). Thus, we only need to
show that the right-hand square commutes. It’s enough to do this for a sufficiently large fixed
k and u replaced by uk, because any ϕ : u → Z factors through some ϕk : uk → Z, and then
ϕ(α) = ϕk(pk(α)) = [ϕk(ξk)] in H2(F,Z), since [pk(α)] = [ξk] in Ȟ2(F/F, uk) (by construc-
tion). Fix λ̄ ∈ Y whose norm lies in Y . Then its image in HomF (uk, Z) is ϕλ̄,k, which, by
Lemma 4.2.1, maps under the transgression map to the image of the class [ϕλ̄,k(ξk)] ∈ H2(F,Z)

in H2(F, S), which equals the class of (dl̃kck) ⊔
Ek/F

nkλ̄, since we may pull ϕλ̄,k inside the cup

product defining ξk by Lemma 3.4.5.
On the other hand, if we take Nk(λ̄) ∈ Y Γ = Y ΓEk/F , then its image under the Tate-Nakayama

map Y ΓEk/F → H2(ΓEk/F , S(Ek)) is obtained by taking the cup product with the class [ck] ∈
H2(ΓEk/F , E

∗
k)

Inf−→ H2(F,Gm). I.e., we obtain the class of the cocycle (ck∪Nk(λ̄))
−1 inH2(F, S).
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By Proposition 3.4.3, (dl̃kck) ⊔
Ek/F

nkλ̄ is cohomologous to [l̃kck∪d(nkλ̄)]−1, which, sinceNk(λ̄) ∈

Y , equals (ck ∪Nk(λ̄))
−1, giving the claim.

The first and third vertical maps are isomorphisms, and the last vertical map is injective, and
so by the five-lemma we get that the second vertical map is an isomorphism. The uniqueness of ι
satisfying the two properties of the theorem follows from the argument for the analogous result in
the characteristic zero case in [Kal16], §4.2.

4.5 Extending to reductive groups

In order to apply the above cohomological results to the local Langlands correspondence, it is
necessary to extend the above constructions to connected reductive groups over a local function
field F . We use the same notation as above; E will always be a u-gerbe split over F with [E ] = α.
We start by briefly recalling non-abelian Čech cohomology and some fundamental cohomological
results on reductive algebraic groups over F a local function field.

For a general ring R, we may define Čech cohomology sets Ȟ0(U0 → Spec(R), G) and
Ȟ1(U0 → Spec(R), G) for an arbitrary (possibly non-abelian) R-group scheme G, using the con-
ventions of [Gir71] III.3.6, which agree with our previous Čech cohomology conventions if G is
abelian. Namely, we define differentials from G(U0) to G(U1) and from G(U1) to G(U2), given
(respectively) by

g 7→ p1(g)
−1p2(g), g 7→ p12(g)p23(g)p13(g)

−1. (4.3)

We may then take Ȟ0(U0 → Spec(F ), G) to be the fiber over the identity of the degree-zero
differential, and Ȟ1(U0 → Spec(R), G) to be the pointed set consisting of the fiber over the
identity of the degree-one differential modulo the equivalence relation given by declaring a and b
equivalent if there exists g ∈ G(U0) with a = p1(g)

−1bp2(g). It is clear that Ȟ1(U0 → Spec(R), G)
classifies isomorphism classes of G-torsors over R which are trivialized over U0.

Theorem 4.5.1 For any simply-connected reductive group G over a local field F , H1(F,G) = 0.

This is [Ser95], Theorem 5.

Theorem 4.5.2 Let G be a semisimple group over F a local field, and let C denote the kernel of

the central isogeny Gsc → G. Then the natural map H1(F,G) → H2(F,C) is a bijection, thus

endowing H1(F,G) with the canonical structure of an abelian group.

This is Theorem 2.4 in [Tha08].
The arguments in [Kal16] which extend the Tate-Nakayama isomorphism of §4.4 to reductive

groups rely heavily on the existence of elliptic/fundamental maximal tori (see [Kot86], §10), and
their corresponding cohomological properties.
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Theorem 4.5.3 Every semisimple algebraic group over a local function field F contains a maxi-

mal F -torus T which is anisotropic over F .

This follows from §2.4 in [Deb06]. It follows immediately that every reductive group G contains
a maximal F -torus which is F -anisotropic modulo Z(G)◦; this will be an elliptic maximal torus.

Moreover, we have the following result for G a connected reductive group over F , implied by
the proof of Lemma 10.2 in [Kot86] and Theorem 4.5.2:

Theorem 4.5.4 If T is an elliptic maximal torus of G, then H1(F, T )→ H1(F,G) is surjective.

We also have the following, which is a generalization of Theorem 1.2 in [Kot86]; it concerns
the functor A from the category of connected reductive F -groups to abelian groups, defined by
A(G) = π0(Z(Ĝ)

Γ)∗, where Ĝ denotes a Langlands dual group of G. Recall that Tate-Nakayama
duality gives us an isomorphism H1(F, T )

∼−→ π0(T̂
Γ)∗ for any F -torus T (this will be reviewed in

more detail in §5.1).

Theorem 4.5.5 There is a unique extension of the above isomorphism of functors to an isomor-

phism of functors on the category of reductive F -groups, given by a natural transformation

αG : H
1(F,G)→ A(G).

This is [Tha11], Theorem 2.1.
We are now ready to extend our previous constructions on T to the category R. For the most

part, the arguments from [Kal16] carry over verbatim, since most depend on the structure theory
of reductive groups, in particular the part of the theory that deals with character and cocharacter
modules, which is uniform for local fields of any characteristic. The purpose of the remainder of
this section is to summarize those results and fill in certain arguments which are different in the
case of a local function field.

Proposition 4.5.6 Proposition 4.2.4 holds for [Z → G] inR, ignoring the H2(F,G) terms.

Proof. Everything from the proof of 4.2.4 holds, except for the use of the five-lemma to give the
surjectivity of H1(E , Z → G)→ H1(F,G). Instead, we may use the analogous argument used in
[Kal16], Proposition 3.6, using the existence of an elliptic maximal torus in G and replacing the
use of Lemma 10.2 from [Kot86] with Theorem 4.5.4, its analogue for local function fields.

Proposition 4.5.7 (Analogue of Corollary 3.7 in [Kal16])

1. If G possesses anisotropic maximal tori, then the map H1(E , Z → G) → HomF (u, Z)

defined above is surjective.
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2. If S ⊂ G is an elliptic maximal torus, then the map

H1(E , Z → S)→ H1(E , Z → G)

is surjective.

Proof. The same proof as in [Kal16] works, again replacing the use of Lemma 10.2 from [Kot86]
with Theorem 4.5.4.

Let [Z → G] ∈ R. We need to extend the functor Y +,tor defined in §4.3. Following [Kal16],
Y +,tor[Z → G] is taken to be the limit over all maximal F -tori S of G of the following colimit:

lim−→
[X∗(S/Z)/X∗(Ssc)]

N

I(X∗(S)/X∗(Ssc))
,

where the colimit is taken over the set of Galois extensions E/F splitting S and the superscript
N denotes the kernel of the norm map. We need to explain what the limit maps are between the
above objects for varying S. For two such tori S1, S2, picking g ∈ G(F s) such that Ad(g)(S1)F s =

(S2)F s induces an isomorphism

Ad(g) : X∗(S1/Z)/X∗((S1)sc)→ X∗(S2/Z)/X∗((S2)sc)

which is independent of the choice of g, by Lemma 4.2 in [Kal16], and is thus Γ-equivariant. It
follows that these maps may be used to define the desired limit maps for varying maximal F -tori
in G.

We now extend the isomorphism of functors Y +,tor
∼−→ H1(E) on T given in Theorem 4.4.3 to

the category R. The strategy will be as follows: we will show that Lemmas 4.9 and 4.10 from
[Kal16] hold in our setting, and then the result will follow from the proof of Theorem 4.11 in
[Kal16], using the existence of elliptic maximal tori, as argued above, Proposition 4.5.7, and the
aforementioned lemmas. As in §4.4, we work with the specific choice of E given by lim←−k Eξk for
ξk as in §4.4; by the uniqueness of H1(E , Z → G) up to canonical isomorphism, this will prove
the result for an arbitrary choice of E .

Lemma 4.5.8 (Analogue of Lemma 4.9 in [Kal16]) Let [Z → G] ∈ R and S ⊂ G a maximal

torus. The fibers of the composition

Y +,tor[Z → S]→ H1(E , Z → S)→ H1(E , Z → G)

are torsors under the image of X∗(Ssc)Γ,tor in Y +,tor[Z → S].
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Proof. The argument of [Kal16] works here, replacing Theorem 1.2 of [Kot86] with the analogue
for local function fields, namely Theorem 2.1 from [Tha11].

Lemma 4.5.9 (Analogue of Lemma 4.10 in [Kal16]) Let [Z → G] ∈ R, and let S1, S2 ⊂ G be

maximal tori defined over F . Let g ∈ G(F ) with Ad(g)(S1)F = (S2)F . If λ̄i ∈ Y
N

i are such that

λ̄2 = Ad(g)λ̄1, then the images of ι[Z→S1](λ̄1) and ι[Z→S2](λ̄2) in H1(E , Z → G) coincide.

Proof. This argument will require more substantial adjustments, so we recall some details of the
argument in [Kal16]. If P∨

i := X∗(Si,ad), the isogeny Si/Z → Si/(Z · Z(D(G))) provides an
injection Y i → P∨

i ⊕ X∗(G/Z · D(G)); we write λ̄i = p1 + z according to this decomposition,
and so λ̄2 = p2 + z, with p2 = Ad(g)p1. As in [Kal16], we choose k large enough so that
nkp1 ∈ Q∨

1 := X∗(S1,sc) and nkz ∈ X∗(Z(G)
◦) [via the isogeny Z(G)◦ → G/Z ·D(G)].

Our goal will be to show that zλ̄2,k = p1(x)zλ̄1,kp2(x)
−1 for some x ∈ Gsc(F ) (recall from

§2.6 that this is what it means for two twisted Čech cocycles to be equivalent). We have that
ϕλ̄1,k = ϕλ̄2,k and l̃kck ⊔

Ek/F
nkz ∈ Z(G)◦(U2), and hence by decomposing nkλ̄i = nkpi+nkz we see

that it’s enough to show that a2 = p1(x)a1p2(x)
−1 for some x ∈ Gsc(F ), where ai := l̃kck ⊔

Ek/F
nkpi

(this will show that the classes of ι[Z→S1](λ̄1) and ι[Z→S2](λ̄1) are equal in H1(Eak , Z → G), and
hence have the same pullback to H1(E , Z → G)).

The image of a1 ∈ S1,sc(U1) in S1,ad is equal to ck ∪ p1 (the usual Galois cohomology cup
product), and is thus a Galois 1-cocycle, so we can twist the Γ-structure on Gsc using it, obtaining
the twisted structure G1

sc. By basic descent theory (see, for example, §4.5 in [Poo17]), we have an
F -group isomorphism

ϕ : (Gsc)F
∼−→ (G1

sc)F

satisfying p∗1ϕ
−1 ◦ p∗2ϕ = Ad(a1) on (Gsc)U1 .

We claim now that p∗1ϕ(a2 ·a−1
1 ) is a cocycle inG1

sc(U1). It’s enough to check that the differential
post-composed with the group isomorphism q∗1ϕ

−1 sends this element to the identity in Gsc(U2).
One computes (using the non-abelian Čech differential formulas, see equation (4.3)) that

q∗1ϕ
−1(dp∗1ϕ(a2·a−1

1 )) = q∗1ϕ
−1[p∗12p

∗
1ϕ(p12(a2·a−1

1 ))·p∗23p∗1ϕ(p23(a2·a−1
1 ))·(p∗13p∗1ϕ(p13(a2·a−1

1 )))−1].

Rewriting each composition of pullbacks in the usual way, this may be rewritten as:

q∗1ϕ
−1[q∗1ϕ(p12(a2 · a−1

1 )) · q∗2ϕ(p23(a2 · a−1
1 )) · (q∗1ϕ(p13(a2 · a−1

1 )))−1].

Now distributing q∗1ϕ
−1 to each term (since ϕ is a morphism of group sheaves) gives:

p12(a2 · a−1
1 ) · (q∗1ϕ−1 ◦ q∗2ϕ)(p23(a2 · a−1

1 )) · (p13(a2 · a−1
1 ))−1.
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Since (q∗1ϕ
−1 ◦ q∗2ϕ) = p∗12(p

∗
1ϕ

−1 ◦ p∗2ϕ) = p∗12Ad(a1), the above element becomes

p12(a2)p12(a1)
−1p12(a1)p23(a2)[p23(a1)

−1p12(a1)
−1p13(a1)]p13(a2)

−1.

The bracketed terms all lie in S1,sc(U2) and hence may be rearranged to give da−1
1 ∈ Z(Gsc)(U2).

By centrality, this may then be moved to the front, yielding da2 ∈ Z(Gsc)(U2), giving us da2 ·da−1
1 .

However, we know that

da1 = dl̃kck ⊔
Ek/F

nkp1 = dl̃kck ⊔
Ek/F

nkp2 = da2,

because the images of p1 and p2 under P∨
i → P∨

i /Q
∨
i → Hom(µn, Z(Gsc)) coincide, showing the

cocycle claim.
Since G1

sc is simply-connected, Theorem 4.5.1 tells us that p∗1ϕ(a2 · a−1
1 ) = d(ϕ(x)), some

x ∈ Gsc(F ). One computes easily (using a similar but simpler calculation) as above that

a2 · a−1
1 = p∗1ϕ

−1d(ϕ(x)) = p1(x)
−1a1p2(x)a

−1
1 ,

as desired.

We are now ready to prove the main result of the section.

Theorem 4.5.10 (Theorem 4.11 in [Kal16]) The isomorphism ι of Theorem 4.4.3 extends to an

isomorphism

ι : Y +,tor → H1(E)

of functorsR → Sets which lifts the morphism of functors onR from Y +,tor → HomF (u,−).

Proof. We define the map in this proof for a fixed [Z → G] ∈ R; the fact that this map satisfies the
statement of the theorem follows from the proof of the analogous result in [Kal16] (the arguments
loc. cit. work in our setting because of the above lemmas). Defining this isomorphism of functors
will first require defining, for a fixed elliptic maximal torus S of G defined over F , a bijection

lim−→
[X∗(S/Z)/X∗(Ssc)]

N

I(X∗(S)/X∗(Ssc))

∼−→ H1(E , Z → G).

For E splitting S, we have an exact sequence

X∗(Ssc)N

IX∗(Ssc)
[X∗(S/Z)]N

IX∗(S)
[X∗(S/Z)/X∗(Ssc)]N

I(X∗(S)/X∗(Ssc))
X∗(Ssc)Γ

N(X∗(Ssc))
,
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where the last map sends an element represented by x ∈ X∗(S/Z) to N(x), which gives an iso-
morphism

Y +,tor[Z → S]/(X∗(Ssc)
N/IX∗(Ssc))→ lim−→

[X∗(S/Z)/X∗(Ssc)]
N

I(X∗(S)/X∗(Ssc))
,

since H0
Tate vanishes for an elliptic maximal torus of a simply-connected semisimple group (in any

characteristic).
Note that we also have a bijection

Y +,tor[Z → S]/(X∗(Ssc)
N/IX∗(Ssc))→ H1(E , Z → G)

induced by the composition Y +,tor[Z → S]
∼−→ H1(E , Z → S) ↠ H1(E , Z → G), where the

first map is from Theorem 4.4.3 and the surjectivity of the second map is from Proposition 4.5.7.
The induced bijection is an immediate consequence of Lemma 4.5.8. We thus obtain the desired
bijection.

For this to be well-defined across the inverse limit, we need to check that if S1, S2 are two
elliptic maximal F -tori in G and we take g ∈ G(F s) such that Ad(g)(S1)F s = (S2)F s , then an
element λ̄ ∈ lim−→

[X∗(S1/Z)/X∗((S1)sc)]N

I(X∗(S1)/X∗((S1)sc)
maps to the same element inH1(E , Z → G) as its isomorphic

image (via Ad(g)) in the same direct limit with S2 instead of S1.
This follows because, by what we did above, we may lift λ̄ to λ̇ ∈ [X∗(S1/Z)]N

IX∗(S1)
= Y +,tor[Z → S1]

and then map to H1(E , Z → G) via H1(E , Z → S1), and may analogously lift the image of λ̄ in
lim−→

[X∗(S2/Z)/X∗((S2)sc)]N

I(X∗(S2)/X∗((S2)sc)
to Ad(g)λ̇ ∈ [X∗(S2/Z)]N

IX∗(S2)
and then map to H1(E , Z → G) via H1(E , Z →

S2). Now Lemma 4.5.9 implies that these images coincide.

Corollary 4.5.11 The isomorphism of functors constructed in Theorem 4.5.10 is unique satisfying

the hypotheses.

Proof. This follows from the discussion in [Kal16], §4.2, which relies on the existence of elliptic
maximal tori and Corollary 3.7 loc. cit, both of which we have established in our situation.

We conclude by citing one more result of [Kal16] that holds here, which will be used in Chapter 6.

Proposition 4.5.12 Let G be a connected reductive group defined over F , let Z be the center of

D(G), and set G = G/Z. Then both natural maps

H1(E , Z → G)→ H1(F,G)→ H1(F,Gad)

are surjective. If G is split, then the second map is bijective and the first map has trivial kernel.
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Proof. See the proof of Corollary 3.8 in [Kal16], replacing the use of Theorem 1.2 in [Kot86] with
[Tha11], Theorem 2.1.
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CHAPTER 5

The Relative Local Transfer Factor

In order to apply the concepts we have developed, we need to define the local transfer factor, as
defined in [LS87], for reductive groups over local function fields. For expository purposes, we
make this section entirely self-contained.

5.1 Notation and preliminaries

We will always take G to be a connected reductive group defined over F , a local field of charac-
teristic p > 0. Let G∗ be a quasi-split group over F such that we have ψ : G ∼−→ G∗ satisfying
ψ−1 ◦ σψ = Ad(uσ) for some uσ ∈ Gad(F

s) for all σ in Γ. That is to say, G∗ is a quasi-split

inner form of G over F . One important difference that emerges here in the positive characteristic
case is that such a uσ need not have a lift in G(F s), due to the potential non-smoothness of Z(G).
Such lifts are useful for computational purposes, and so to combat the smoothness issue we give
an equivalent characterization of inner forms in the fppf language.

Again for G∗ a quasi-split group over F , we say that G∗ is a quasi-split inner form of G if there
is an isomorphism ψ : GF s

∼−→ G∗
F s satisfying p∗1ψ

−1 ◦p∗2ψ = Ad(ū) for some ū ∈ Gad(F
s⊗F F s).

Since H1(F ⊗F F ,Z(G)) = 0 (by Proposition 3.1.4), we may always lift ū to an element u ∈
G(F ⊗F F ). Recall that pi denotes the ith projection map from SpecF ×F SpecF to SpecF . We
will frequently treat inner forms using this approach, as it enables computations using the Čech
cohomology of the fpqc cover Spec(F )→ Spec(F ) (see, for example, §5.3.3).

We fix some dual group Ĝ corresponding to G, in the sense of [Kot84], §1.5, and define LG :=

Ĝ(C) ⋊WF the associated L-group of G, where WF denotes the absolute Weil group of F . This
is a topological group, where Ĝ(C) is given the analytic topology in the usual way. Associated
to Ĝ is a Γ-equivariant bijection Ψ(G)∨ → Ψ(Ĝ) of based root data (see [Kot84], §1.1), and we
define a bijection Ψ(G∗)∨

ψ−→ Ψ(G)∨ → Ψ(Ĝ), which, along with the data of Ĝ with its given Γ-
action, also defines a dual group forG∗—note that this new bijection is still Γ-equivariant precisely
because G and G∗ are inner forms.
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Definition 5.1.1 We call a tuple (H,H, s, η) an endoscopic datum for G if H is a quasi-split

reductive group defined over F with a choice of dual group Ĥ , H is a split extension of WF by

Ĥ(C), and η : H → LG is a map such that:

1. The conjugation action by WF on Ĥ induced by a section WF → H and any Γ-splitting of

Ĥ coincides with the L-group WF -action on Ĥ;

2. The element s lies in Z(Ĥ)(C);

3. The map η is a morphism of WF -extensions which restricts to an isomorphism of algebraic

groups Ĥ ∼−→ ZĜ(η(s))
◦;

4. We have s ∈ Z(Ĥ)Γ · η−1(Z(Ĝ)).

This is formulated slightly differently from the exposition in [LS87], §1.2; it is easily checked
that this definition is equivalent to the one given there. An isomorphism of endoscopic data from
(H,H, s, η) to (H ′,H′, s′, η′) is an element g ∈ Ĝ(C) such that gη(H)g−1 = η′(H′), thus inducing

an isomorphism β : H η′−1◦Ad(g)◦η−−−−−−−→ H′, which we further require to satisfy that β(s) and s′ are
equal modulo Z(Ĥ ′)Γ,◦ · η′−1(Z(Ĝ)). One checks that this agrees with the analogous definition in
[LS87].

Fix an endoscopic datum (H,H, s, η) for G. If we fix two Borel pairs (BG, TG), (BG,TG)

in GF s , Ĝ (respectively), then the bijection of based root data gives an isomorphism T̂G → TG.
The associated isomorphism X∗(TG) → X∗(TG) transports the coroot system R∨ of TG to the
root system of TG mapping the BG-simple coroots to the BG-simple roots, and identifies the Weyl
groupW (GF s , TG) with the Weyl groupW (Ĝ,TG). Moreover, if (TH ,BH) is a pair in Ĥ , then we
may find g ∈ Ĝ(C) such that (Ad(g)◦η)(TH) = TG and Ad(g)◦η maps BH into BG. This means
that if we fix a pair (TH , BH) in HF s , then we have an isomorphism T̂H → TH → TG → T̂G,
inducing an isomorphism TH → TG. This isomorphism transports RH , R

∨
H ,W (HF s , TH) into

R,R∨,W (GF s , TG).
Suppose that we fix such a TH , TG, but now require that they are defined over F . An F -

isomorphism TH → TG is called admissible if it is obtained as in the above paragraph (this is not
unique—we chose four Borel subgroups in the above construction). We sometimes also call this
an admissible embedding of TH in G. Such an embedding is unique up to conjugacy by an element
of the set Ã(TG), defined by

Ã(TG) = {ḡ ∈ Gad(F
s) : Ad(ḡ−1 σ(ḡ))

∣∣
(TG)Fs

= id(TG)Fs ∀σ ∈ Γ}.

Another way of describing this set is those points ḡ ∈ Gad(F
s) such that Ad(ḡ)

∣∣
(TG)Fs

is defined
over F . Note that given such a ḡ, we may always find some g ∈ G(F s) inducing the same
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automorphism of TG. Indeed, if g ∈ G(F ) is such that Ad(g)
∣∣
(TG)F

is defined over F , then we
may find a point g′ ∈ G(F s) such that Ad(g) = Ad(g′) on TG—this follows from the fact that
NG(TG)/TG is étale. Thus, such an embedding is also unique up to conjugacy by an element of
the set

A(TG) = {g ∈ G(F s) : g−1 · σg ∈ TG(F s) ∀σ ∈ Γ}.

Given any g ∈ A(TG), we may also find a point inGsc(F
s) inducing the same map on TG, where

Gsc denotes the simply connected cover of D(G). To see this, first note that there is no harm in
assuming thatG is semisimple. Suppose that Ad(g) sends T to T ′, where T and T ′ are two maximal
F -tori. Then we may take the preimages (Tsc)F , (T

′
sc)F in (Gsc)F , and fix a preimage g̃ ∈ Gsc(F )

of g, so that Ad(g̃) : (Tsc)F
∼−→ (T ′

sc)F . This isomorphism is defined over F s, i.e., we get a descent
to an isomorphism (Tsc)F s

∼−→ (T ′
sc)F s , which is given by Ad(x) for some x ∈ Gsc(F

s), again using
that the Weyl group scheme is étale; then x satisfies Ad(x)

∣∣
TFs

= Ad(g̃)
∣∣
TFs

, as desired.
We call an element γ ∈ G(F ) strongly regular if it is semisimple and its centralizer is a max-

imal torus (there is a notion of strong regularity for non-semisimple elements but we will not
need it here); denote the subset of strongly regular F -points of G by Gsr(F ). We call an element
γH ∈ H(F ) strongly G-regular if it is the preimage of a strongly regular γG ∈ G(F ) under an
admissible isomorphism. In such a case, γH is itself strongly regular in H , and the admissible
isomorphism between centralizers TH

∼−→ TG sending γH to γG is unique; denote this subset of
H(F ) by HG−sr(F ), and call such a pair of elements γH , γG related.

Lemma 5.1.2 Let TH be the centralizer of γH ∈ HG−sr(F ). Then there exists an admissible

embedding TH ↪→ G∗.

Proof. By assumption we already have an admissible isomorphism TH → TG, where TG is a
maximal F -torus of G. It is easy to see that it then suffices to find an admissible embedding of TG
into G∗. We can always do this, since G∗ is quasi-split and F is a non-archimedean local field, see
for example [Kal19], Lemma 3.2.2.

5.1.1 The Tits section

We need to discuss the Tits section, which is a (non-multiplicative) map n : W (GF s , TF s) ↪→
NG(T )(F

s). To do this, we must fix a Borel subgroup B of GF s (corresponding to a root basis ∆)
and a basis {Xα} of the root space gα ⊂ Lie(GF s) for each α ∈ ∆. Let Gα be the Levi subgroup
of D(GF s) corresponding to the root α; then there is a unique embedding ζα : SL2 → Gα which

(on Lie algebras) sends

[
0 1

0 0

]
to Xα and such that the image of ζα(

[
0 1

−1 0

]
) in W (GF s , TF s)
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is the reflection rα defined by α (see [KS12], §2.1). We then map rα to the image of

[
0 1

−1 0

]
under ζα. We may then lift any element of W (GF s , TF s) by considering their reduced expression
in terms of ∆.

5.1.2 Duality results

We recall Langlands’ reinterpretation of Tate-Nakayama duality. Let T be an F -torus; the usual
Tate-Nakayama duality theorem gives a perfect Z-pairing

H1(F, T )×H1(Γ, X∗(T ))→ Q/Z,

see for example [Mil06], I.2.4. Consider the short exact sequence of abelian groups

0 Z C C∗ 1.
exp

Tensoring this sequence over Z with X∗(T̂ ) = X∗(T ) preserves exactness, and thus yields the
exact sequence

0 X∗(T ) Lie(T̂ ) T̂ (C) 1,

which then gives a canonical identification H1(Γ, X∗(T ))
∼−→ π0(T̂

Γ), and hence a perfect pairing

H1(F, T )× π0(T̂ Γ)→ Q/Z. (5.1)

Returning to the setting of a connected reductive group G, note that if T is any maximal F -
torus of G, for any maximal torus T of Ĝ, we have an isomorphism T → T̂ which is unique up
to precomposing with conjugation by an element of NĜ(T )(C), so we get a canonical embedding
Z(Ĝ) ↪→ T̂ , which clearly also does not depend on the choice of T (any two such tori are Ĝ(C)-
conjugate). Denote T̂ /Z(Ĝ) by T̂ad. Assume for the moment that G is semisimple. One checks
using the basic theory of (co)character groups and root systems that (via the above embedding)
X∗(Z(Ĝ)) corresponds to the quotient X∗(T )/ZR(GF s , TF s)∨ of X∗(T̂ ) = X∗(T ). Whence, we
have a canonical identification of X∗(T̂ad) with X∗(Tsc), where Tsc is the preimage of T in Gsc,
giving a Γ-isomorphism T̂sc

∼−→ T̂ad. For general G, one checks easily that a similar argument
yields a canonical isomorphism T̂sc

∼−→ T̂ad, where now Tsc denotes the preimage of the maximal
F -torus T ∩ D(G) ⊂ D(G) in Gsc, the simply connected cover of D(G). We conclude that
Tate-Nakayama then gives a perfect pairing

H1(F, Tsc)× π0(T̂ Γ
ad)→ Q/Z.
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We may replace Q/Z by C∗ by means of the embedding Q/Z exp−→ C∗.
Recall, for an F -torus T split over E/F a finite Galois extension, we have the classical Tate

isomorphism H−1
Tate(ΓE/F , X∗(T ))

∼−→ H1(F, T ) induced by taking the cup product with the canon-
ical class (see [Tat66]). The following useful duality result generalizes this to finite multiplicative
group schemes over F .

Proposition 5.1.3 Let T be an F -torus and S the quotient of T by a finite F -subgroup Z. Choose

E/F a finite Galois extension splitting T and set Γ := ΓE/F . Choose E large enough so that

|Z| and |H1(Γ, X∗(T ))| divide [E : F ] (for finiteness of the latter, see [Mil06], III.6). We have a

canonical isomorphism

H−2
Tate(Γ, X∗(S)/X∗(T ))

∼−→ H1(F,Z)

which is compatible with the Tate isomorphism H−1
Tate(Γ, X∗(T ))

∼−→ H1(F, T ).

Proof. Cohomology in negative degrees will always be Tate cohomology, and we omit the “Tate"
notation in such cases. We have an exact sequence of character groups

0 X∗(S) X∗(T ) X∗(Z) 0

which, by applying the functor Hom(−,Z), yields the short exact sequence (of Γ-modules)

0 X∗(T ) X∗(S) Ext1Z(X
∗(Z),Z) 0.δ

By basic homological algebra, we have a canonical isomorphism (as Γ-modules)

Ext1Z(X
∗(Z),Z) ∼= HomZ(X

∗(Z),Q/Z).

We make these identifications in what follows without comment. For an abelian group M , we set
HomZ(M,Q/Z) =: M∗. We have the obvious identifications H−1(Γ,Q/Z) = Z/[E : F ]Z, and
H0

Tate(Γ,Z) = Z/[E : F ]Z. By Proposition 7.1 and Exercise 3 (respectively) in [Bro82], we have
the following duality pairings of Γ-modules induced by the cup product and these identifications:

H−2(Γ, X∗(Z)∗)×H1(Γ, X∗(Z))→ Z/[E : F ]Z,

H−1(Γ, X∗(T ))×H1(Γ, X∗(T ))→ Z/[E : F ]Z.

Note that the group H1(Γ, X∗(Z)) is |Z|-torsion, so that

H1(Γ, X∗(Z))∗ = HomZ(H
1(Γ, X∗(Z)),Z/[E : F ]Z),
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analogously for H1(Γ, X∗(T )).
As a consequence, we have a canonical isomorphism

H−2(Γ, X∗(S)/X∗(T ))
∼−→ H1(Γ, X∗(Z))∗

∼−→ H1(F,Z),

where the second isomorphism comes from the Poitou-Tate duality pairing for finite commutative
group schemes over arbitrary local fields, see [Mil06], Theorem III.6.10, and is induced by the
cup-product followed by the invariant map. We now get a commutative diagram

H−2(Γ, X∗(Z)∗) H−1(Γ, X∗(T ))

H1(Γ, X∗(Z))∗ H1(Γ, X∗(T ))∗

H1(F,Z) H1(F, T ),

∼ ∼

∼ ∼

where the top square commutes by the functoriality of the cup product in Tate cohomology and the
bottom square commutes by the discussion in [Mil06], §III.6; see in particular the diagram used
in the proof of Lemma 6.11 loc. cit. The right-hand column equals the classical Tate isomorphism
discussed in [Tat66], again by the functoriality of the cup product in Tate cohomology.

Remark 5.1.4 This remark concerns how the above discussion relates to the Tate-Nakayama

pairing involving π0(T̂
Γ) discussed earlier. Identifying H1(Γ, X∗(T )) = H1(Γ, X∗(T̂ )) with

T̂ (C)Γ/(T̂ (C)Γ)◦ as above, we note that there is a natural pairing

H−1(Γ, X∗(T ))×
T̂ (C)Γ

(T̂ (C)Γ)◦
= H−1(Γ, X∗(T̂ ))× T̂ (C)Γ

(T̂ (C)Γ)◦
→ C∗ (5.2)

given by evaluating an element on a character. One checks that the following diagram commutes:

H1(F, T )× π0(T̂ Γ) C∗

H−1(Γ, X∗(T̂ ))× π0(T̂ Γ) C∗,

f×id

where the top pairing is the one from (5.1), the bottom pairing is as in (5.2), and we are using f to

denote the isomorphism H1(F, T )→ H−1(Γ, X∗(T )) constructed above.

We conclude this subsection by recalling Langlands duality for tori, which is the following
result:
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Theorem 5.1.5 For an F -torus T , F a local field, we have a canonical isomorphism

H1
cts(WF , T̂ (C))

∼−→ Homcts(T (F ),C∗).

This isomorphism induces a pairing

H1
cts(WF , T̂ (C))× T (F )→ C∗

which is functorial with respect to F -morphisms of tori and respects restriction of scalars.

For the proof, see [Lan97], Theorem 2.a and [Bor79], §9 and §10.

5.2 Setup

This section completely follows §2 of [LS87] and §2 of [KS12]; its purpose is to explain why the
results proved therein still work in our section.

5.2.1 The splitting invariant

Fix a connected reductive F -group G which we assume to be quasi-split over F , and an F -
splitting (B0, T0, {Xα}), along with an arbitrary maximal F -torus T in G. Assume further that
G is semisimple and simply-connected. For a root α ∈ R := R(GF s , TF s), we take Γα,Γ±α to be
the stabilizers of α and {α,−α}, respectively, with Fα ⊃ F±α the corresponding fixed fields. An a-

data {aα}α∈R for the Γ-action on R is an element aα ∈ F ∗
α for each α ∈ R satisfying σ(aα) = aσα

for all σ ∈ Γ and a−α = −aα. It is easy to check that a-data exist for our Γ action on R above; fix
such a datum {aα}α∈R. Our goal is to define the splitting invariant λ{aα}(T ) ∈ H1(F, T ).

We first choose a Borel subgroup B of GF s containing T , and take some h ∈ G(F s) such that
h conjugates the pair ((B0)F s , (T0)F s) to (BF s , TF s). Denote by σT the action of σ ∈ Γ on TF s

and its transport to (T0)F s via Ad(h)−1. For ease of notation, let Ω denote the absolute Weyl group
of W (GF s , (T0)F s), with Tits section n : Ω → NG(T0)(F

s). We then have (as automorphisms of
the root system R(G, T0))

σT = ωT (σ)⋊ σT0 ∈ Ω⋊ Γ,

where ωT (σ) := n(h · σ(h)−1) ∈ NG(T0)(F
s). We may view our a-data {aα}α∈R as an a-data for

the (transported) action of Γ on R(G, T0), and denote it also by {aα}α.
For any automorphism ζ of R(G, T0), we define the element x(ζ) ∈ T0(F s) by

x(ζ) =
∏

α∈R(ζ)

α∨(aα),

83



where R(ζ) = {α ∈ R(G, T0)|α > 0, ζ−1α < 0} where the ordering on R(G, T0) is from the base
∆ corresponding to the Borel subgroup B0.

Then the function
m(σ) := x(σT )n(ωT (σ))

is a 1-cocycle of Γ in NG(T0)(F
s) and

t(σ) := hm(σ)σ(h)−1

is a 1-cocycle of Γ in T (F s), whose class we take to be the splitting invariant λ{aα}(T ) ∈
H1(F, T )—for a proof, see [LS87] §2.3, which as [KS12] explains, works in any characteristic.
The same references show that λ{aα}(T ) is independent of the choice of h and the Borel subgroup
of GF s containing TF s . However, it does depend on the F -splitting of G.

5.2.2 χ-data and L-embeddings

The following discussion is essentially a summary of §2.4-2.6 in [LS87]. To more closely align
with [LS87],§2.5, we replace F s by a finite Galois extension L and denote ΓL/F by Γ and WL/F ,
the relative Weil group, by W . We will fix an arbitrary Γ-module X which is finitely-generated
and free over Z, along with a finite subset Γ-stable subset R ⊂ X closed under inversion. Any
Γ-set is also a W -set by means of inflation along the surjection W → Γ. Set Γ′ := Γ × Z/2Z,
where Z/2Z acts on X by inversion. As in §5.2.1, for λ ∈ R we define Γ+λ (resp. Γ±λ) to be the
stabilizer of {λ} (resp. {±λ}), with corresponding fixed field Fλ ⊂ L (resp. F±λ). The reason we
want to work in this increased generality is to allow our theory to encompass the actions of Γ on
the character groups of tori in Ĝ, a Langlands dual of the connected reductive F -group G. Define
a gauge on R to be a function p : R → {±1} such that p(−λ) = −p(λ).

Definition 5.2.1 We say that a collection of continuous characters {χλ : F ∗
λ → C∗}λ∈R is a χ-data

if it satisfies χ−λ = χ−1
λ and χλ ◦ σ−1 = χσλ for all σ ∈ Γ, and if [Fλ : F±λ] = 2, χλ extends the

quadratic character F ∗
±λ → {±1} associated to the quadratic extension Fλ that we obtain from

local class field theory.

It is straightforward to check that we can always find a χ-data; fix such a χ-data {χλ}λ∈R .
Assume for the moment that Γ′ acts transitively on R; fix λ ∈ R, set Γ± := Γ±λ, and choose

representatives σ1, . . . σn for Γ± \ Γ. We set W+ := WL/F+ ,W± = WL/F± . We may view the
character χλ as a (continuous) character on W+, by taking χλ ◦ aL/F+ , where aL/F+ : W+ → F ∗

+ is
the Artin reciprocity map.

Define a gauge p on R by p(λ′) = 1 if and only if λ′ = σ−1
i λ for some 1 ≤ i ≤ n. Choose

w1, . . . , wn ∈ W such that wi maps to σi under the surjection W → Γ. If W± (resp. W+) denotes
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the stabilizer of {±λ} (resp. {λ}) under the inflated W -action, then the wi are representatives for
the quotient W± \W . For w ∈ W , define ui(w) ∈ W± by

wiw = wui(w), i = 1, . . . , n.

Choose representatives v0 ∈ W+ and v1 ∈ W± for W+ \W± if [Fλ : F±λ] = 2, and otherwise just
pick some v0 ∈ W+. For u ∈ W± we define v0(u) ∈ W+ by v0 · u = v0(u) · vi′ , where i′ = 0 or 1
depending on if W+ = W± or not. For w ∈ W we set

rp(w) =
∏

i=1,...,n

[χλ(v0(ui(w)))⊗ λi] ∈ C∗ ⊗Z X,

where λi := σ−1
i λ and we view C∗ ⊗Z X as a Γ-module (and thus a W -module) via the trivial

action on the first tensor factor. We view rp as a 1-cochain of W valued in C∗ ⊗Z X. We have the
following result, which will be used when we look at the uniqueness of our L-embeddings:

Lemma 5.2.2 Suppose {ξλ}λ∈R satisfies the conditions of a χ-data, except that for λ with

[Fλ : F±λ] = 2 we require that ξλ is trivial on F ∗
±λ rather than extending the quadratic charac-

ter. Then

c(w) =
∏

i=1,...,n

[ξλ(v0(ui(w)))⊗ λi] ∈ C∗ ⊗Z X

is a 1-cocycle of W in C∗ ⊗Z X whose cohomology class does not depend on any choices.

Proof. This is [LS87] Corollary 2.5.B, which follows from Lemma 2.5.A loc. cit. These results,
along with the auxiliary Lemma 2.4.A, are proved in a purely group-cohomological setting, and
thus the same proofs work verbatim.

If the action of Γ′ is not transitive, then we define rp and c for each of the Γ′-orbits on R and take
the product of these functions over all such orbits; the resulting functions on W are again denoted
by rp and c.

We now take G a connected reductive group defined over F with maximal F -torus T with root
system R := R(GF s , TF s) and a Langlands dual group Ĝ. In addition, we fix a Γ-stable splitting
(B,T , {X}) of Ĝ. We shall attach to a χ-data {χα}α∈R for T a canonical Ĝ-conjugacy class of
admissible embeddings LT → LG; recall that a homomorphism of W -extensions ξ : LT → LG is
called an admissible embedding if the map T̂ → T induced by ξ corresponds to the isomorphism
coming from the pair (B,T ) and a choice of Borel subgroupB ofGF s containing TF s . We replace
F s by a finite Galois extension L/F splitting T ; there is no harm in doing this for the purposes
of constructing such an admissible embedding. The Ĝ-conjugacy class of such an embedding is
independent of the choice of B and splitting of Ĝ.
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Fix a Borel subgroup B of GF s containing TF s as above, giving an isomorphism T̂
ξ−→ T . It is

clear that such an embedding ξ : LT → LG, is determined by its values on W (via the canonical
splitting W → T̂ ⋊W ). As in §5.2.1, we may use ξ to transport the Γ-action on T̂ to T , and for
γ ∈ Γ will denote this automorphism of T by σT . We have that w ∈ W transports via ξ to an
action on T given by

ωT (σ)⋊ w,

where w 7→ σ ∈ Γ and ωT (σ) ∈ W (Ĝ,T ).

Our goal will be to construct a homomorphism ξ : W → LG giving rise to our desired embed-
ding. As explained in [LS87], it’s enough that each Ad(ξ(w)) acts on T as σT , where w 7→ σ ∈ Γ.
First, we note that our χ-data for the action of Γ on R yields a χ-data for the ξ-transported action
of Γ on R(Ĝ,T )∨; we define a gauge p on the Γ-set R(Ĝ,T )∨ by setting p(β∨) = 1 if and only
if β is a root of T in B, and (along with our transported χ-data) get an associated 1-cochain
rp : W → C∗ ⊗Z X∗(T ), which we view as a 1-cochain rp : W → T (C) using the canonical
pairing. Let n : W (Ĝ,T ) → NĜ(T )(C) denote the Tits section associated to our splitting of Ĝ.
Finally, for w ∈ W we set

ξ(w) = [rp(w) · n(ωT (σ))]⋊ w ∈ LG.

We claim that this map satisfies the desired properties.
The verification that this map works comes down to a 2-cocycle arising from the Tits section.

For w ∈ W , set n(w) := n(ωT (σ))⋊ w; we have for w1, w2 ∈ W the equality

n(w1)n(w2)n(w1w2)
−1 = t(σ1, σ2),

where wi 7→ σi and t is a 2-cocycle of Γ valued in T (C). We have the following crucial identity:

Lemma 5.2.3 In our above situation, the differential of r−1
p ∈ C1(W,T (C)) equals Inf(t) ∈

Z2(W,T (C)) (where the above groups are given the ξ-transported W -action).

Proof. After applying Lemma 2.1.A in [LS87], this reduces to a special case of Lemma 2.5.A loc.
cit., which is proved in an purely group-cohomological setting. The proof of Lemma 2.1.A in
[LS87] is root-theoretic, and therefore works in our setting as well.

With the above lemma in hand, it is straightforward to check that our ξ : W → LG defined
above is a homomorphism that induces an admissible embedding ξ : LT → LG. We conclude
this section with a discussion of how the admissible embedding ξ depends on the choices we have
made during its construction.
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Fact 5.2.4 Suppose that we replace our Γ-splitting by the g ∈ ĜΓ-conjugate (Bg,T g, {Xg}) (see

[Kot84], 1.7). If Ad(g)♯ : X∗(T ) → X∗(T g) is the induced isomorphism of cocharacter groups,

then for λ ∈ X∗(T ) the trivial equality σT (Ad(g−1)♯λ) = Ad(g−1)♯(σTλ) gives that for w ∈ W ,

rpg(w) = grp(w)g
−1. One checks that n(w) is also replaced by gn(w)g−1, and so the embedding

ξ is replaced by Ad(g) ◦ ξ, which is in the same ĜΓ-conjugacy class as ξ.

Fact 5.2.5 The conjugacy class of ξ is also independent of our choice of Borel subgroup TF s ⊂
B ⊂ GF s . If B′ is another such subgroup, we may find v ∈ NG(T )(F

s) such that vBv−1 = B,

and denote the corresponding admissible embedding by ξ′. Transporting Ad(v)
∣∣
T

to W (Ĝ,T )

using ξ, we obtain an element µ ∈ W (Ĝ,T ). Then it is proved in [LS87], Lemma 2.6.A (the proof

of which relies on Lemmas 2.1.A and 2.3.B loc. cit.—we have already discussed the former. The

latter depends on torus normalizers, root theory, a-data, and the Tits section, which may be dealt

with over F s, so the proof loc. cit. works verbatim) that we have the equality

Ad(g−1) ◦ ξ = ξ′,

where g ∈ NĜ(T )(C) acts on T as µ, giving the claim.

Fact 5.2.6 For dependence on the χ-data {χα} for the Γ-action on R(GF s , TF s), we fix an-

other χ-data {χ′
α}, and we write χ′

α = ζα · χα, where ζα is a character of Fα. The set

{ζα}α∈R then satisfies the hypotheses of Lemma 5.2.2 (where, in the notation of that lemma,

R = X∗(T ) with ξ-transported Γ-action); we then obtain a 1-cocycle c ∈ Z1(W,T (C))
whose class [c] ∈ H1(W,T (C)) is independent of any choices made in the construction of c

from {ζα}. Then it’s immediate from the construction of c that the embedding ξ is replaced by

t⋊ w 7→ c(w) · ξ(t⋊ w).

Fact 5.2.7 Finally, suppose that we take another F -torus T ′, and take g ∈ G(F s) such that Ad(g)

is an F -isomorphism from T to T ′. Note that Ad(g) identifies a χ-data {χα} for T with χ-data

{χ′
β} for T ′, since the induced map on character groups is Γ-equivariant; take {χ′

β} to be the

χ-data for T ′ used to construct any admissible L-embeddings. The map Ad(g) extends to an iso-

morphism of L-groups λg : LT → LT ′. Let ξ be the embedding LT → LG constructed above,

determined by a choice of Borel subgroup B containing TF s . Then we have the equality of ad-

missible embeddings ξ ◦ λg = ξ′, where ξ′ is the admissible embedding LT ′ → LG constructed

above corresponding to the χ-data {χ′
β} and the Borel subgroup gBg−1 containing (T ′)F s . We

conclude that the Ĝ-conjugacy class of embeddings LT → LG attached to the χ-data {χα} for T

is equivalent to the class of embeddings LT ′ → LG attached to {χ′
β} for T ′ via λg.
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5.3 The local transfer factor

We construct one factor at a time, following [LS87], §3 and [KS12], §3. Recall that G is a fixed
connected reductive group over F a local field of positive characteristic and ψ : GF s → G∗

F s is a
quasi-split inner form of G. We fix an endoscopic datum (H,H, η, s) of G, which may also be
viewed as an endoscopic datum for G∗, since we are taking the dual group of G∗ to be Ĝ with
bijection of based root data given by Ψ(G∗)∨

ψ−→ Ψ(G)∨ → Ψ(Ĝ). Let γH , γ̄H ∈ HG−sr(F )

with corresponding images γG, γ̄G ∈ Gsr(F ). Denote by TH , T̄H the centralizers in H of γH , γ̄H
respectively; these are maximal F -tori. By Lemma 5.1.2, we may fix two admissible embeddings
TH

∼−→ T ↪→ G∗, T̄H
∼−→ T̄ ↪→ G∗. Recall that such embeddings are unique up to conjugation

by elements of A(T ),A(T̄ )—denote by γ, γ̄ ∈ T (F ), T̄ (F ) the images of γH , γ̄H under the above
embeddings.

Set R := R(G∗
F s , TF s), R̄ = R(G∗

F s , T̄F s), similarly with R∨, R̄∨. Fix a- and χ-data for the
standard Γ actions on R and R̄—these may also be viewed as data for the Γ-action on R∨, R̄∨, and
data for the Γ-action on R((G∗

sc)F s , (Tsc)F s), R((G∗
sc)F s , (T̄sc)F s), where G∗

sc denotes the simply-
connected cover of D(G∗), and Tsc denotes the preimage of T ∩D(G∗) in this group (analogously
for T̄ ). If we replace the embedding TH → G∗ by a A(T )-conjugate TH → T ′, then we may view
the a- and χ-data as data for R(G∗

F s , T ′
F s). Our goal will be to define a value

∆(γH , γG; γ̄H , γ̄G) ∈ C

which will be constructed purely from the admissible embeddings, the map ψ, and the a- and χ-
data, but which only depends on the four inputs. As such, we need to examine the following two
things:

1. How ∆ changes when we replace the admissible embeddings TH → G∗, T̄H → G∗ by
A(T ),A(T̄ )-conjugates, and use the translated a- and χ-data;

2. How ∆ changes when we keep the admissible embeddings the same but pick different a-
and χ-data.

In light of these observations, we may fix Γ-splittings (B,T , {X}), (BH ,TH , {XH}) of Ĝ,
Ĥ , respectively, that give rise to our admissible embeddings TH → T , T̄H → T̄ , since choosing
different splittings only serves to conjugate the admissible embeddings by A(T ), A(T̄ ), which is
included in condition (1). Implicit in the construction of the admissible embedding TH → G∗ is
also the choice of g ∈ Ĝ(C) such that Ad(g)[η(TH)] = T and Ad(g)[η(BH)] ⊂ B; thus, if
we replace the endoscopic datum by (H,H,Ad(g) ◦ η, s), then γH , γ̄H ∈ H(F ) are still strongly
G-regular, and so if we carry out the construction of ∆ for this datum, the admissible embeddings
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and a- and χ-data are unaffected, and hence our value of ∆ will be the same. If we choose a
different g ∈ Ĝ(C) satisfying the above properties, it again only serves to replace our admissible
embeddings with A-conjugates. The upshot is that we may assume that η carries TH to T and
BH into B.

Suppose we have a fixed admissible embedding TH
f−→ T , dual to T̂H

f̂−→ T̂ . Recall that we
have our element s ∈ Ĥ(C) from the endoscopic datum. Let BH be a Borel subgroup containing
(TH)F s which is used to induce f (there is no such unique BH in general). Since by assumption
s ∈ Z(Ĥ)(C), it lies in TH(C) and its preimage under the map T̂H

∼−→ TH induced by BH (and
our fixed (BH ,TH)) is independent of choice of BH . We conclude that the image of s in T̂ (C),
denoted by sT , only depends on the choice of admissible embedding TH → T . In the definition
of an endoscopic datum, it is assumed that s ∈ Z(Ĥ)Γ · η−1(Z(Ĝ)), and hence the preimage of
s in T̂H(C) lies in ι(Z(Ĥ))Γ · f̂−1(ι(Z(Ĝ))), where we have pedantically denoted the canonical
embeddings Z(Ĥ) → T̂H , Z(Ĝ) → T̂ by ι, and have also used the fact that Z(Ĥ) → T̂H is
canonical to obtain Γ-equivariance. This implies (since f̂ is Γ-equivariant) that sT lies in T̂ Γ

ad, and
we set sT to be its image in π0(T̂ Γ

ad).
We make the assumption throughout this section that for any endoscopic datum,H = LH with

embedding Ĥ → LH the canonical embedding; this assumption will only be necessary in §5.3.4.
We will discuss how to deal with generalH in §5.4.

5.3.1 The factor ∆I

We set
∆I(γH , γG) := ⟨λ{aα}(Tsc), sT ⟩,

where we view the a-data for T as an a-data for Tsc, the pairing ⟨−,−⟩ is from Tate-Nakayama
duality, and λ{aα}(Tsc) is the splitting invariant associated to the maximal F -torus Tsc ↪→ G∗

sc, a
fixed F -splitting S of G∗

sc, and the a-data {aα}.

Lemma 5.3.1 The value
∆I(γH , γG)

∆I(γ̄H , γ̄G)

is independent of the splitting S .

Proof. Suppose that we replace S = (B, S, {Xα}) by another F -splitting S ′ = (B′, S ′, {X ′
α})

of G∗
sc. It will be necessary to use fppf cohomology here, since these two splittings need not be

G∗(F s)-conjugate. Accordingly, take z ∈ G∗
sc(F ) such that zS ′z−1 = S and p1(z)p2(z)−1 ∈

Zsc(F ⊗F F ) := Z(G∗
sc)(F ⊗F F ). Then if BT is a fixed Borel subgroup containing (Tsc)F s and

h ∈ G∗
sc(F

s) carries (B, S) to (BT , (Tsc)F s), then hz carries (B′, S ′) to (BT , (Tsc)F s), and for all
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σ ∈ Γ, we have nS′(ωT (σ)) = Ad(z−1)nS(ωT (σ)) ∈ NG∗
sc
(S ′)(F s) (notation as in the definition of

the splitting invariant, where nS, nS′ denote the Tits sections corresponding to S ,S ′), similarly
for x(σ). We need to be careful here, since we defined the splitting invariant in terms of a Galois
cocycle and it is not in general true that z ∈ G∗

sc(F
s). However, recall the definition of the splitting

invariant: the cocycle m is still a Galois cocycle for us, since x(σ) ∈ G∗
sc(F

s) and n(ωT (σ)) ∈
NG∗

sc
(F s), and we may view it as a Čech cocycle m ∈ G∗

sc(F ⊗F F ). Then we may set

λ{aα}(T ) := p1(h)mp2(h)
−1 ∈ Tsc(F ⊗F F ),

and get the same definition as in §5.2.1. However, this modified definition allows us to compute
that if c′ ∈ Tsc(F ⊗F F ) is the cocycle used to defined the splitting invariant for S ′, then m′ =

p1(z)
−1mp1(z) ∈ G∗

sc(F ⊗F F ), and so we have:

c′ = p1(h)p1(z)p1(z)
−1mp1(z)p2(z)

−1p2(h)
−1 = p1(z)p2(z)

−1(p1(h)mp1(h)
−1),

and we conclude that λ{aα} computed with respect to S ′ differs from the one computed with
respect to S by left-translation by the class zT in H1(F, T ) represented by p1(z)p2(z)−1. Whence,
to prove the lemma, it’s enough to show that

⟨zT , sT ⟩ = ⟨zT̄ , sT̄ ⟩.

Replace F s with a finite Galois extension L/F splitting Tsc, and set Γ := ΓL/F . By Proposition
5.1.3, we have the following commutative diagram with exact columns

H1(F,Zsc) H−2(Γ, X∗(Tad)/X∗(Tsc))

H1(F, Tsc) H−1(Γ, X∗(Tsc))

H1(F, Tad) H−1(Γ, X∗(Tad)),

∼

∼

∼

with horizontal isomorphisms induced by Tate-Nakayama duality, as discussed in §5.1.2. From
here, one may deduce the result from the argument in the proof of Lemma 3.2.A in [LS87], which
looks at the images of zT , zT̄ in the right-hand column and then uses group-cohomological calcu-
lations, along with the alternative characterization of the Tate-Nakayama pairing that we discussed
in Remark 5.1.4 (replacing the use of duality results loc. cit. with our Proposition 5.1.3).

We now discuss how ∆I changes under conjugation by A(Tsc) and another choice of a-data.
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Lemma 5.3.2 The factor ∆I satisfies:

1. If TH → T is replaced by its conjugate under g ∈ A(Tsc), with corresponding transported

a-data, then ∆I(γH , γG) is multiplied by ⟨gT , sT ⟩−1, where gT is the class of σ 7→ gσ(g)−1

in H1(F, Tsc).

2. Suppose that the a-data {aα} is replaced by {a′α}. Set bα = a′α/aα. Then the term

∆I(γH , γG) is multiplied by the sign∏
α

sgnFα/F±α
(bα),

where the product is taken over a set of representatives for the symmetric Γ-orbits (the or-

bit of α is symmetric if it contains −α, otherwise it is asymmetric) in R that lie outside

R(HF s , (TH)F s).

Proof. Part (1) is the analogue of Lemma 3.2.B in [LS87], and the proof loc. cit. works in our sit-
uation, since all elements of A(Tsc) are separable points, the construction of the splitting invariant
only uses separable points, and the Tate-Nakayama duality pairing for tori works the same way in
positive characteristic.

For (2), we first note that the expression sgnFα/F±α
(bα) makes sense, since bα is fixed by Γ±α,

and thus lies in F±α. Our result is exactly [KS12], Lemma 3.4.1, which is proved without assump-
tions on the characteristic of F .

5.3.2 The factor ∆II

We define
∆II(γH , γG) =

∏
χα

(
α(γ)− 1

aα

)
, (5.3)

where the product is over representatives α for the orbits of Γ in R the lie outside R(HF s , (TH)F s).
This is easily checked to be independent of the representatives chosen.

Lemma 5.3.3 The factor ∆II(γH , γG) is unaffected by replacing the admissible embedding TH →
T by an A(T )-conjugate (and the transporting the χ- and a-data accordingly). Moreover, replac-

ing the a-data {aα} by a different data {a′α} serves to multiply ∆II(γH , γG) by∏
α

sgnFα/F±α
(bα)

−1,

where bα = a′α/aα and the product is over representatives for the symmetric orbits outside

R(HF s , (TH)F s).
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Proof. The arguments in [LS87], Lemmas 3.3.B and 3.3.C are purely root-theoretic and work
verbatim here.

It remains to check the dependency of ∆II on the χ-data. Suppose the χ-data {χα} are replaced
by {χ′

α}, and set ζα := χ′
α/χα. Note that ζα restricts to the trivial character on F ∗

±α. To analyze
this dependency, we will need to introduce some new notation, following [LS87], §3.3. Let O
be a symmetric orbit of Γ on R, with a gauge q, XO the free abelian group on the elements
O+ = {α ∈ O : q(α) = 1} ,with inherited Γ-action, and Xα the Z-submodule generated by some
α ∈ O+, which is preserved by Γ±α, and so XO = IndΓ

Γ±α
(Xα). We obtain a corresponding F±α-

torus Tα which is one-dimensional, anisotropic, and split over Fα, and corresponding F -torus TO

which satisfies TO = ResF±α/FT
α.

We have a natural Γ-homomorphism XO → X∗(T ) which induces a morphism of F -tori T →
TO that maps T (F ) into Tα(F±α); denote by γα the image of γ in Tα(F±α). Note that the norm
map Tα(Fα)→ Tα(F±α) is surjective, since we have the exact sequence of F±α-tori

0 T ′ ResFα/F±α(T
α
Fα
) Tα 0,

Norm

where T ′ is a split F±α-torus, and so taking the long exact sequence in cohomology (along with
Hilbert 90) gives the desired surjectivity. Whence, we may write

γα = δαδα,

where δα ∈ Tα(Fα) and the bar denotes the map from Tα(Fα) to itself induced by the unique
automorphism of Fα/F±α.

If O is an asymmetric Γ-orbit in R, then X±O is defined to be the free abelian group on O
with inherited Γ-action and Xα is the subgroup generated by some α ∈ O, which again carries a
Γ±α = Γα-action. We get a corresponding split 1-dimensional Fα-torus Tα and F -torus T±O, with
TO = ResFα/FT

α. We again obtain a map T → T±O, inducing a map T (F ) → Tα(Fα); denote
the image of γ under this map by γα. We are now ready to state how ∆II changes when we alter
the χ-data.

Lemma 5.3.4 If the χ-data {χα} are replaced by {χ′
α}, with ζα = χ′

α/χα, then ∆II(γH , γG) is

multiplied by ∏
aysmm

ζα(γ
α) ·

∏
symm

ζα(δ
α),

where
∏

asymm denotes the product over representatives α for pairs ±O of asymmetric orbits of R

outside H , and to make sense of ζα(γα), we are using the canonical isomorphism Tα
∼−→ Gm given

on character groups by 1 7→ α, and
∏

symm is the product over representatives α for the symmetric
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orbits of R outside H , and to make sense of ζα(δα) we are using the canonical isomorphism

TαFα

∼−→ Gm given on character groups by 1 7→ α.

Proof. This is Lemma 3.3.D in [LS87], the proof of which (along with the proof of Lemma 3.3.A
loc. cit.) carries over to our setting verbatim.

5.3.3 The factor ∆III1 (or ∆1)

The construction of this factor is the only part of the construction of the relative local transfer
factor that involves fppf cohomology rather than Galois cohomology. For the moment, we will
assume that G is quasi-split over F , with ψ = id; the construction of ∆1 in this case can be done
using Galois cohomology, but in order to match more closely with the general case, we work in
the setting of fppf cohomology. By construction, the admissible embedding TH → G is obtained
by first taking TH

∼−→ TG determined by γH , γG and then conjugating an embedding (TG)F s →
GF s induced by a choice of Borel subgroup containing (TG)F s and (B,T ) by some appropriate
g ∈ Gsc(F ). As a consequence, we see that γG and γ are conjugate by some h ∈ Gsc(F ) such
that p1(h)p2(h)−1 ∈ Tsc(F ⊗F F ). We then set v = p1(h)p2(h)

−1 and denote the class of v in
H1(F, Tsc) by inv(γH , γG); this class is independent of the choice of h, since if we choose any
other h′ ∈ Gsc(F ) with h′γGh′−1 = γ, then h−1h′ ∈ Tsc(F ), since γ is strongly regular. We then
set

∆1(γH , γG) = ⟨inv(γH , γG), sT ⟩−1.

Now we return to the setting of a general connected reductive group G over F with ψ : GF s →
G∗
F s the quasi-split inner form of G over F with the assumptions stated in the beginning of §5.3.

In particular, we have two pairs of elements γH , γG and γ̄H , γ̄G. As in the quasi-split case, we may
find h, h̄ ∈ G∗

sc(F ) such that

hψ(γG)h
−1 = γ, h̄ψ(γ̄G)h̄

−1 = γ̄.

One could take h, h̄ ∈ G∗
sc(F

s), but since we will be using these elements to construct fppf Čech
cocycles, we want to view them as F -points anyway. Further, let u ∈ G∗

sc(F ⊗F F ) be such that
p∗1ψ ◦ p∗2ψ−1 = Ad(u) on G∗

F⊗FF
; the existence of such a u is the reason we need to use fppf

cohomology to define the ∆III1 factor. We then obtain two (Čech) cochains,

v := p1(h)up2(h)
−1 ∈ Tsc(F ⊗F F ), v̄ := p1(h̄)up2(h̄)

−1 ∈ T̄sc(F ⊗F F );

we have that v ∈ Tsc(F ⊗F F ) because (since γ, γG are F -points)

vγv−1 = p1(h)(p
∗
1ψ ◦ p∗2ψ−1(p2(ψ(γG))))p1(h)

−1 = p1(h)p1(ψ(γG))p1(h)
−1 = γ,
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similarly for v̄.
By construction, we have dv = dv̄ = du ∈ Zsc(F ⊗F F ), where recall that Zsc := Z(G∗

sc), and
by d we are denoting the Čech differential. We have an embedding Zsc → Tsc × T̄sc defined by
i−1 × j, where i and j denote the obvious inclusions. Set

U(T, T̄ ) = U :=
Tsc × T̄sc

Zsc
,

which is an F -torus. We have the following easy lemma:

Lemma 5.3.5 The image of (v, v̄) ∈ Tsc(F ⊗F F ) × T̄sc(F ⊗F F ) = (Tsc × T̄sc)(F ⊗F F ) in

U(F ⊗F F ) is a 1-cocycle, whose cohomology class, denoted by

inv
(
γH , γG
γ̄H , γ̄G

)
∈ H1(F,U), (5.4)

is independent of the choices of u, h, h̄.

Proof. The fact the above defines a 1-cocycle is trivial, since

U(F ⊗F F ) =
Tsc(F ⊗F F )× T̄sc(F ⊗F F )

Zsc(F ⊗F F )
,

using the fact that H1(F ⊗F F ,Zsc) = 0, and the construction of v, v̄, and U . Replacing u by u′

satisfies u′ = uz, z ∈ Zsc(F ), and so the new element (v′, v̄′) ∈ Tsc × T̄sc is equivalent to (v, v̄)

modulo Zsc. Replacing h by h′ = ht, where t ∈ Tsc(F ), gives v′ = d(t) · v ∈ Tsc(F ⊗F F ), and so
the image of (v′, v̄) in U differs from the image of (v, v̄) by (d(t), 1), a coboundary, similarly with
the element h̄.

Note that if G is quasi-split and π denotes the quotient map defining U , then(
γH , γG
γ̄H , γ̄G

)
= π[(inv(γH , γG)−1, inv(γ̄H , γ̄G))]. (5.5)

Now let T̂sc denote the torus dual to Tad = T/Z(G), and set Ẑsc := Z(Ĝsc). The homomorphism
X∗(T ) → X∗(Tad) induces a morphism of T̂sc → T̂ ↪→ Ĝ (using an isomorphism T̂ → T

giving our admissible embedding) which factors through D(Ĝ)∩ T̂ by dimension and root system
considerations. From this, one obtains T̂sc → D(Ĝ) which further factors through an embedding
T̂sc → D(Ĝ)sc that identifies T̂sc with a maximal torus of Ĝsc, giving an embedding Ẑsc ↪→ T̂sc

which is canonical (because of centrality, this does not depend on our initial embedding of T̂ in
Ĝ). The same result holds for ˆ̄Tsc.
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With this in hand, we set

Û :=
T̂sc × ˆ̄Tsc

Ẑsc

,

where now Ẑsc is embedded diagonally. The Q-pairing QR∨×QR→ Q gives a pairingX∗(T̂sc)×
X∗(Tsc) → Q which, together with the analogue for T̄ , yields a Q-pairing between X∗(T̄sc ×
ˆ̄Tsc) and X∗(Tsc × T̄sc), which further induces a perfect Z-pairing between X∗(Û) and X∗(U),
identifying Û with the dual of U , see [LS87], §3.4.

Take the projection of η(s) ∈ T (C) in Tad(C), and then pick an arbitrary preimage s̃ of
this projection in Tsc(C). We have isomorphisms T̂sc → Tsc, ˆ̄Tsc → Tsc induced by choices of
isomorphisms T̂ , ̂̄T → T giving our admissible embeddings, and the respective preimages of s̃,
denoted by s̃T , s̃T̄ , only depend on choice of s̃ and the admissible isomorphisms TH → T, T̄H →
T̄ . We then set sU := (s̃T , s̃T̄ ) ∈ Û(C). Note that a different choice of s̃ corresponds to replacing
s̃T , s̃T̄ by s̃T zT , s̃T̄ zT̄ , where z ∈ Ẑsc(C) and zT , zT̄ denote the images of z under the canonical
embeddings of Ẑsc in T̂sc,

ˆ̄Tsc. Thus, sU is independent of the choice of s̃. Then one can show that
sU ∈ ÛΓ, see for example the discussion of the ∆III1 factor in [Kal16], proof of Proposition 5.6.
Hence, it makes sense to define sU to be the image of sU in π0(ÛΓ). We then set

∆III1(γH , γG; γ̄H , γ̄G) := ⟨inv
(
γH , γG
γ̄H , γ̄G

)
, sU⟩. (5.6)

By what we have done, it is clear that if G is quasi-split over F , then

∆III1(γH , γG; γ̄H , γ̄G) = ⟨inv(γH , γG), sT ⟩−1⟨inv(γ̄H , γ̄G), sT̄ ⟩.

Lemma 5.3.6 If TH → T and T̄H → T̄ are replaced by their g- and ḡ-conjugates, g, ḡ ∈
A(Tsc),A(T̄sc), then ∆III1(γH , γG; γ̄H , γ̄G) is multiplied by

⟨gT , sT ⟩⟨gT̄ , sT̄ ⟩−1,

where gT is the class of the 1-cocycle p1(g)p2(g)−1 ∈ Tsc(F ⊗F F ), analogously for gT̄ .

Proof. Denote the g−1, ḡ−1-conjugates of T, T̄ by T ′, T̄ ′. One checks that v as defined above is
replaced by p1(g)−1vp2(g) ∈ T ′

sc(F⊗FF ) and conjugating this element by p1(g) yields the element
v(p1(g)p2(g)

−1)−1, analogously for T̄ and v̄. Similarly, s̃T , s̃T̄ can be taken to be Ad(g)s̃T ′ (by
Ad(g), we mean the induced dual map T̂ ′

sc → T̂sc) and Ad(ḡ)s̃T̄ ′ . The functoriality of the Tate-
Nakayama pairing then gives the result.
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5.3.4 The factor ∆III2

To construct this factor, we will fix Borel subgroups B ⊃ TF s , BH ⊃ (TH)F s which (along with
our fixed (B,T ), (BH ,TH)) determine the admissible isomorphism TH → T ; note that our χ-
and a-data also serve the Γ-action on R(HF s , (TH)F s) ⊂ R. Then, according to §5.2.2, we obtain
from our χ-data {χα} (viewed as a χ-data for T and for TH) admissible embeddings ξT : LT → LG

extending the map T̂ → T and ξTH : LTH → LH extending TH → TH . We then obtain

η ◦ ξTH = a · ξT ,

where we view ξT as a map on LTH by means of the isomorphism LTH → LT induced by the
admissible isomorphism TH → T and a is a 1-cocycle in T (C) for the T̂ -transported WF -action.
Its class a inH1(WF , T̂ (C)) (after applying the fixed isomorphism T → T̂ to a) is independent of
the choice of BH and B, as well as the Γ-splittings (B,T , {X}) and (BH ,TH , {XH}) by Facts
5.2.5 and 5.2.4 from §5.2, respectively.

Suppose now that TH → T (and the corresponding data) is replaced with a g ∈ A(Tsc)-
conjugate T ′ = Ad(g−1)T with admissible embedding ξT ′ . Then Fact 5.2.7 from §5.2 shows that
the induced isomorphism λg :

LT ′ → LT satisfies ξT ◦λg = ξT ′ , and so it follows that the class a is

the image of a′ ∈ H1(WF , T̂ ′(C)) under the isomorphism H1(WF , T̂ ′(C)) Ad(g)−−−→ H1(WF , T̂ (C)).
The dependence on the χ-data will be addressed later.

We then set
∆III2(γH , γG) := ⟨a, γ⟩,

where the above pairing comes from Langlands duality for tori, as in Theorem 5.1.5. By the
functoriality of the pairing (Theorem 5.1.5) and our above remarks on the cocycle a, it is immediate
that this number does not change if the admissible embedding TH → T (and corresponding data)
is changed by a A(Tsc)-conjugate.

Lemma 5.3.7 Suppose that the χ-data {χα} is replaced by {χ′
α}, with ζα := χ′

α/χα. Then

∆III2(γH , γG) is multiplied by ∏
aysmm

ζα(γ
α)−1 ·

∏
symm

ζα(δ
α)−1,

where γα and δα are defined as in 5.3.2.

Proof. This result is Lemma 3.5.A in [LS87]. The proof loc. cit. depends on our Lemma
5.2.2 (which is Corollary 2.5 loc. cit.) as well as the general discussion of our §5.2.2, Galois-
cohomological computations similar to the ones done in our §5.3.2, and the fact that the pairing
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coming from Langlands duality for tori is functorial and respects restriction of scalars. All of these
facts/techniques are unchanged in our setting, and therefore the same argument works.

5.3.5 The factor ∆IV

We denote the (normalized) absolute value on F by | · |. For our γ ∈ T (F ), we set

DG∗(γ) := |
∏
α∈R

(α(γ)− 1)|1/2. (5.7)

Note that this is well-defined because
∏

α∈R(α(γ)− 1) ∈ F . Then we set

∆IV (γH , γG) := DG∗(γ) ·DH(γH)
−1.

This is clearly unchanged if the admissible embedding is replaced by a A(Tsc)-conjugate.

5.3.6 The local transfer factor

We are now ready to define the absolute transfer factor for quasi-split connected reductive groups
G over F a local function field and the relative transfer factor for arbitrary connected reductive
groups over F . Fix two pairs γG, γH , γ̄H , γ̄G as in the beginning of §5.3.

For quasi-split G over F , we set

∆0(γH , γG) = ∆I(γH , γG)∆II(γH , γG)∆1(γH , γG)∆III2(γH , γG)∆IV (γH , γG).

For general G, we set

∆(γH , γG; γ̄H , γ̄G) :=
∆I(γH , γG)

∆I(γ̄H , γ̄G)
·∆II(γH , γG)

∆II(γ̄H , γ̄G)
·∆III2(γH , γG)

∆III2(γ̄H , γ̄G)
·∆IV (γH , γG)

∆IV (γ̄H , γ̄G)
·∆III1(γH , γG; γ̄H , γ̄G).

(5.8)
We have the following results that discuss the dependence of ∆0,∆ on the admissible embed-

dings and χ- and a-data.

Theorem 5.3.8 The factor ∆(γH , γG; γ̄H , γ̄G) is independent of the choice of admissible embed-

dings, a-data, and χ-data.

Proof. If the admissible embeddings are replaced by g−1 ∈ A(Tsc) and ḡ−1 ∈ A(T̄sc)-conjugate
embeddings (with translated a- and χ-data), ∆I(γH , γG) is multiplied by ⟨gT , sT ⟩−1 by Lemma
5.3.2 (similarly for γ̄H , γ̄G), ∆II(γH , γG) is unchanged, ∆III1 is multiplied by ⟨gT , sT ⟩⟨gT̄ , sT̄ ⟩−1

by Lemma 5.3.6, and ∆III2 , ∆IV are unaffected. Thus, ∆ is unaffected.
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If we change the a- and χ-data to {a′α}, {χ′
α} with bα := a′α/aα and ζα := χ′

α/χα, then the
change in ∆I(γH , γG) induced by the new a-data cancels with the change in ∆II(γH , γG) induced
by the new a-data, by Lemmas 5.3.2 and 5.3.3. The change in ∆II(γH , γG) induced by the new
χ-data is cancelled by the change in ∆III2(γH , γG) induced by the new χ-data, by Lemmas 5.3.4
and 5.3.7. All the other factors are unaffected.

Note that by Lemma 5.3.1, ∆(γH , γG; γ̄H , γ̄G) is also independent of the F -splitting chosen forG∗
sc

in the construction of the splitting invariant used to define ∆I .

Corollary 5.3.9 The factor ∆0(γH , γG) only depends on the chosen F -splitting of G∗
sc.

Proof. This is immediate after using the above proof and replacing Lemma 5.3.6 with the obser-
vation that conjugating the admissible embedding TH → T by g−1 ∈ A(Tsc) serves to multiply
∆1(γH , γG) by ⟨gT , sT ⟩, cancelling the corresponding new factor from ∆I(γH , γG).

5.4 Addendum: z-pairs

We continue with the same notation as §5.3. In particular, G is a connected reductive group over
F with quasi-split inner twist G∗ and endoscopic datum e. Our goal in this section is to extend the
definition of the (relative) transfer factor ∆ to the case where Ĥ → H is not necessarily equal to
the canonical embedding Ĥ → LH . To do this, we need to introduce the concept of a z-pair.

Definition 5.4.1 A z-pair z = (Hz, ηz) for the endoscopic datum e is an F -group Hz that is an

extension of H by an induced central torus such that D(Hz) is simply-connected, and a map

ηz : H → LHz that is an L-embedding extending the embedding Ĥ → Ĥz dual to Hz → H . We

call an element ofHz(F ) stronglyG-regular semisimple if its image inH(F ) is stronglyG-regular

and semisimple, as we defined above; this set will be denoted by Hz,G−sr(F ).

The following result explains the usefulness of this concept:

Proposition 5.4.2 A z-pair (Hz, ηz) for e always exists.

Proof. The group Hz without the data of ηz is called a z-extension of H . Such a z-extension exists
in any characteristic, using [MS89], Proposition 3.1; although the proposition loc. cit. is stated for
local fields of characteristic zero, the proof works in the local function field setting as well. Once
we have such an extension, Lemma 2.2.A in [KS99] shows that we can find an ηz satisfying the
desired properties (the proof loc. cit. does not depend on the characteristic of F either).
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We will now discuss how to extend the relative transfer factor to a function

∆: Hz,G−sr(F )×Gsr(F )×Hz,G−sr(F )×Gsr(F )→ C,

satisfying all the desired properties enjoyed by the factor ∆ defined above. This discussion is
taken from the proof of Proposition 5.6 in [Kal16]. Let γz, γ̄z ∈ Hz,G−sr(F ) with images γH , γ̄H in
HG−sr(F ), related to γG, γ̄G ∈ Gsr(F ). The factors ∆I(γz, γG), ∆II(γz, γG), ∆III1(γz, γG; γ̄z, γ̄G),
and ∆IV (γz, γG) are all defined to be the same factors with γz, γ̄z replaced by their images γH , γ̄H .
It remains to define ∆III2(γz, γG). Consider the following diagram:

LHz
LTHz

LTHz

LTH

H LG LT,

ηz

η

LϕγH,γ

where we are denoting the centralizer of γz by THz , the map LT → LG is the one corresponding to a
choice of χ-data for T , as discussed in §5.3.4 and §5.2.2, we are denoting the choice of admissible
embedding TH → T by ϕγH ,γ , and the embedding LTHz ↪→ LHz is obtained by transporting the
χ-data to TH and then to THz via the projection THz → TH (this makes sense because Hz is a
central extension of H , so that TH and THz have the same root systems). The dotted arrow is
the unique L-homomorphism extending the identity on T̂Hz and making the diagram commute;
its restriction to WF gives a 1-cocycle a : WF → T̂Hz(C); for an explanation of why such an L-
homomorphism exists, as well as the fact that this is a cocycle, see [KS99], §4.4. We then set
∆III2(γz, γG) := ⟨a, γz⟩, where as in §5.3.4 the pairing is from Langlands duality for tori.

We then define ∆(γz, γG; γ̄z, γ̄G) identically as in §5.3, except with our new ∆III2 factor. We
may also use this to define an analogous factor ∆0(γz, γG) in the quasi-split case, where we simply
replace the ∆III2 factor in the definition given in §5.3 with the factor we defined above (and take
the image of γz in H(F ) to define the other ∆i-factors).

Proposition 5.4.3 The above factor does not depend on the choice of admissible embeddings, χ-

data, or a-data.

Proof. This is Theorem 4.6.A in [KS99]. In view of the proof of Theorem 5.3.8, it suffices to check
that ∆(γz, γG; γ̄z, γ̄G) is unaffected by changing the χ-data for T . Verifying this comes down to
examining the new ∆III2-factor, which is not affected by the characteristic of F , so the proof loc.
cit. works in our situation as well.
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CHAPTER 6

Applications to the Local Langlands Conjectures

This section applies the theory we have constructed in order to state the local Langlands conjectures
for connected reductive groups over local fields of positive characteristic. Again, in this section F
is a local field of characteristic p > 0, G is a connected reductive group over F , and E is a u-gerbe
split over F with [E ] = α ∈ Ȟ2(F/F, u). Recall that one of our goals is to generalize the notion
of rigid inner forms, introduced in [Kal16], in order to work with the representations of all inner
forms of G simultaneously.

6.1 Rigid inner twists

In order to assign to inner twists of G the “correct" automorphism group (i.e., one such that au-
tomorphisms preserve F -conjugacy classes and F -representations), we need to refine the data of
an inner twist to that of a rigid inner twist. For a GE-torsor T , we denote the (Gad)E-torsor
T ×GE (Gad)E by T .

Definition 6.1.1 1. A rigid inner twist of G is a triple (ξ,T , h̄) of an inner twist ξ : G → G′,

a Z-twisted GE-torsor T for some finite central Z, and an isomorphism of (Gad)E-torsors

h̄ : T F → (Gad)E,F which satisfies p∗1h̄ ◦ p∗2h̄−1 : (Gad)E,U1 → (Gad)E,U1 is left-translation

by x̄ ∈ Gad(U1) such that Ad(x̄) = p∗1ξ
−1 ◦ p∗2ξ. If we demand that T is Z-twisted for some

fixed finite central Z, then we say further that the rigid inner twist is a Z-rigid inner twist.

2. An isomorphism of rigid inner twists (f,Ψ): (ξ1,T1, h̄1)→ (ξ2,T2, h̄2) is a pair consisting

of an isomorphism f : G1 → G2 defined over F and an isomorphism ofGE-torsors Ψ: T1 →
T2; note that such an isomorphism induces an isomorphism h̄2 ◦ Ψ ◦ h̄−1

1 : (Gad)E,F →
(Gad)E,F , giving an element δ̄ ∈ Gad(F ) which we require to satisfy ξ−1

2 ◦ f ◦ ξ1 = Ad(δ̄).

Denote by RI(G, E) (resp. RIZ(G, E)) the category whose objects are rigid inner twists of G
(resp. Z-rigid inner-twists of G) and morphisms are isomorphisms of rigid inner twists. It is clear
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that the natural functor RIZ(G, E) → RI(G, E) is fully faithful and RI(G, E) = lim−→RIZ(G, E),
where the colimit is taken over all finite central Z. Note that for every inner twist ψ : G → G′,
there exists aZ(D(G))-twistedGE-torsor T and trivialization h̄ such that (ψ,T , h̄) is a rigid inner
twist, by Proposition 4.5.12. For computational purposes, we reformulate the above definition in
the case E = Ea for [a] = α ∈ Ȟ2(F/F, u):

Definition 6.1.2 1. For a ∈ u(U2) such that [a] = α ∈ Ȟ2(F/F, u), an a-normalized rigid
inner twist of G is a pair (ξ, (x, ϕ)) of an inner twist ξ : G → G′ and (x, ϕ) ∈ Z1(Ea, Z →
G) for some finite central Z such that the image of (x, ϕ) in Z1(F,Gad), denoted by x̄,

satisfies Ad(x̄) = p∗1ξ
−1 ◦ p∗2ξ. If we demand that ϕ factors through some fixed finite central

Z, then we say further that the a-normalized rigid inner twist is an a-normalized Z-rigid
inner twist.

2. An isomorphism of a-normalized rigid inner twists (f, δ) : (ξ1, (x1, ϕ1))→ (ξ2, (x2, ϕ2)) for

ϕ1 = ϕ2, is a pair consisting of an isomorphism f : G1 → G2 defined over F and δ ∈ G(F )
such that ξ−1

2 ◦ f ◦ ξ1 = Ad(δ) and x1 = p1(δ)
−1x2p2(δ).

Denote by RI(G, a) (resp. RIZ(G, a)) the category whose objects are a-normalized rigid inner
twists of G (resp. a-normalized Z-rigid inner twists of G) and morphisms are isomorphisms of
a-normalized rigid inner twists.

We claim that, for E = Ea, the isomorphism classes of the category RI(G, Ea) are in canonical
bijection with those of RI(G, a). Let s : Sch/F → Ea denote the section constructed in Lemma
2.3.3. Then if (ξ,T , h̄) is a Z-rigid inner twist, by the proof of Proposition 2.6.2, after setting
ϕ := Res(T ), choosing a trivialization h of s∗T lifting h̄, by which we mean is such that the
diagram

s∗T GF

s∗T (Gad)F

h

s∗h̄

commutes (such an h evidently always exists), gives an a-twisted Z-cocycle (x, ϕ) valued in G,
and by construction we also have that Ad(x̄) = p∗1ξ

−1 ◦ p∗2ξ. Thus, we have a way of associating
to a Z-rigid inner twist an a-normalized Z-rigid inner twist.

Moreover, given any isomorphism (f,Ψ) between the Z-rigid inner twists (ξ1,T1, h̄1) and
(ξ2,T2, h̄2), choices hi of F -trivializations lifting s∗h̄i give an automorphism h2◦s∗Ψ◦h−1

1 : GF
∼−→

GF which is left-translation by a unique δ ∈ G(F ). Then we may define an isomorphism
(ξ1, (x1, ϕ1))→ (ξ2, (x2, ϕ2)) between the corresponding twisted cocycles (obtained using h1 and
h2) given by (f, δ).
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By Proposition 2.6.2 (see also Proposition 2.4.10), every a-normalizedZ-rigid inner twist is iso-
morphic to the image of someZ-rigid inner twist under the above map. By the discussion following
the proof of Lemma 2.6.4, if the image of two rigid inner twists are isomorphic as a-normalized
rigid inner twists, then they are isomorphic as rigid inner twists (using that the condition on δ and
δ̄ is the same).

A similar argument using Lemma 2.6.3 shows that for arbitrary E , we have a canonical bijec-
tion between isomorphism classes in RI(G, E) and RI(G, Ea), and hence also between classes
in RI(G, E) and isomorphism classes in RI(G, a). Everything said above applies if we restrict
ourselves to Z-rigid inner forms for some fixed Z as well.

We have the following important fact about automorphisms of rigid inner forms:

Proposition 6.1.3 The automorphism group of a fixed a-normalized rigid inner twist (ξ, (x, ϕ))

for ξ : GF s → (G′)F s is canonically isomorphic to G′(F ) by the map (f, δ) 7→ ξ(δ).

Proof. One computes the 0-differential of ξ(δ) to be p∗1ξ(p1δ
−1) · p∗2ξ(p2δ), and post-composing

with p∗1ξ
−1 yields

p1δ
−1 · x · p2δ · x−1 = e,

giving ξ(δ) ∈ G′(F ), showing that the above map is well-defined. From here it is straightforward
to check that it defines an isomorphism.

Corollary 6.1.4 The automorphism group of a fixed rigid inner twist (ξ,T , h̄) for ξ : GF s →
(G′)F s is canonically isomorphic to G′(F ).

Proof. Fix a section s : (Sch/F ) → E , as well as a trivialization h of s∗T lifting h̄ (terminology
as above). Note that any two choices of h differ by precomposing by an automorphism of s∗T
induced by an automorphism of T given by right-translation by some z ∈ Z(G)(F ). The map
h ◦ s∗Ψ ◦ h−1 is left-translation by an element δ ∈ G(F ), and any different choice of h yields the
same δ, by the GE-equivariance of Ψ. We may thus define our desired isomorphism to send (f,Ψ)

to ξ(δ), which lies in G′(F ), by the proof of Proposition 6.1.3. It is straightforward to verify that
the element δ does not depend on the choice of section s.

We now define rational and stable conjugacy of elements of rigid inner forms. Let (ξ1,T1, h̄1)

and (ξ2,T2, h̄2) be two Z-rigid inner twists for some fixed Z corresponding to the groups G1, G2,
and let δi ∈ Gi,sr(F ) for i = 1, 2. We say that (G1, ξ1,T1, h̄1, δ1) and (G2, ξ2,T2, h̄2, δ2) are
rationally conjugate if there exists an isomorphism (f,Ψ): (ξ1,T1, h̄1) → (ξ2,T2, h̄2) such that
f(δ1) = δ2. We say that they are stably conjugate if ξ−1

1 (δ1) is G(F )-conjugate to ξ−1
2 (δ2). The ar-

guments used in §5.1 show that the latter condition is equivalent to ξ−1
1 (δ1) beingG(F s)-conjugate

to ξ−1
2 (δ2) (this centers on the fact that the Weyl group scheme of a maximal torus in an algebraic
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group is étale). Define rational and stable conjugacy identically for elements of a-normalized rigid
inner twists.

We need the following lemma:

Lemma 6.1.5 Assume that G is quasi-split. For any (G1, ξ1,T1, h̄1, δ1) (resp.

(G1, ξ1, (x1, ϕ1), δ1)) as above, there exists δ ∈ Gsr(F ) such that (G1, ξ1,T1, h̄1, δ1) (resp.

(G1, ξ1, (x1, ϕ1), δ1)) is stably conjugate to (G, idG, GE , idF , δ) (resp. (G, idG, (e, 0), δ)).

It is evidently enough to generalize Corollary 2.2 of [Kot82] to our setting, which says:

Lemma 6.1.6 Let G be a quasi-split reductive group over F and i : TF s → GF s be an embedding

over F s of an F -torus T into G such that i(TF s) is a maximal torus of GF s and such that σi is

conjugate under G(F s) to i for all σ ∈ Γ. Then some G(F s)-conjugate of i is defined over F .

Proof. The proof of this result in [Kot82] depends on first proving the following result (Lemma
2.1 loc. cit.): Let w : Γ→ W (GF s , TF s) be a 1-cocycle of Γ in the absolute Weyl group of T , and
choose an arbitrary lift nσ ∈ NG(T )(F

s) of w(σ) for all σ ∈ Γ. Then we may use it to twist T ,
obtaining an F -torus ∗T which is an F s-form of T , and to twist the F -variety G/T , obtaining the
F -variety ∗(G/T ) which is an F s-form of G/T . The claim is then that ∗(G/T )(F ) ̸= ∅. As in
[Kot82], this will follow if we can find some t ∈ Tsr(F

s) and g ∈ G(F s) such that gtg−1 ∈ G(F ).
We will view (∗T )F s as a subtorus of GF s via the isomorphism (∗T )F s

ϕ−→ TF s coming from its
construction as an F s-form of T .

To this end, we know by unirationality that ∗T (F ) is Zariski-dense in (∗T )F , and also that the
locus of strongly regular elements in T (F ) forms a Zariski-open subset of TF , by [Ste65], Theorem
1.3.a, and hence there is some element t ∈ (∗T )(F ) that lies in Tsr(F ); such a point necessarily
lies in T (F s), since ϕ maps ∗T (F s) into T (F s). Then [BS68], 8.6 (which is a generalization of
Theorem 1.7 in [Ste65] to imperfect fields) shows that we may find a point in Gsr(F ) which is
G(F )-conjugate to t, which we know is equivalent to G(F s)-conjugacy. This gives the claim; with
this in hand, the argument in [Kot82], Lemma 2.1, carries over verbatim to show that ∗(G/T )(F ) ̸=
∅.

Now we prove the main lemma, following [Kot82]. We may assume that i(TF s) is defined over
F , with F -descent denoted by T ′, by conjugating by an appropriate element of G(F s). Choose
nσ ∈ NG(T )(F

s) such that Ad(nσ) ◦ i = σi with image w(σ) ∈ W (GF s , T ′
F s) independent

of choice of nσ. Now apply the above claim to the F -torus T ′ and the cocycle σ 7→ w(σ),
thus obtaining ḡ ∈ ∗(G/T ′)(F ) ⊂ (G/T ′)(F s) = G(F s)/T (F s) (containment via the defin-
ing isomorphism of the twisted form). This last equality comes from the fact that for every
t ∈ (G/T ′)(F s), if π : GF s → (G/T )F s denotes the canonical quotient map, the (scheme-
theoretic) fiber π−1(t) ↪→ GF s is a TF s-torsor, which is split over F s and thus contains an F s-point.
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The upshot is that we have some g ∈ G(F s) which satisfies g−1 σgnσ ∈ i(TFs)(F
s) for all σ ∈ Γ,

which means that Ad(g) ◦ i is defined over F .

We continue to assume thatG is quasi-split. For any (G1, ξ1,T1, h̄1, δ1), there exists δ ∈ Gsr(F )

such that (G1, ξ1,T1, h̄1, δ1) is stably conjugate to (G, idG, GE , idF , δ), by the above lemma. As
in [Kal16], we now fix δ ∈ Gsr(F ) and consider the category CZ(δ, E) whose objects are points
(G1, ξ1,T1, h̄1, δ1) which are stably conjugate to (G, idG, GE , idF , δ) such that (ξ1,T1, h̄1) is a Z-
rigid inner twist and whose morphisms (G1, ξ1,T1, h̄1, δ1)→ (G2, ξ2,T2, h̄2, δ2) are isomorphisms
of rigid inner twists (f,Ψ) such that f(δ1) = δ2. We interpret this category as the stable conjugacy
class of (G, idG, GE , idF , δ), and it is clear that the isomorphism classes within CZ(δ, E) give the
rational conjugacy classes within this stable conjugacy class. We define the category CZ(δ, a) using
a-normalized Z-rigid inner twists completely analogously. By our previous discussion, it is clear
that the isomorphism classes of CZ(δ, Ea) are in canonical bijection with those of CZ(δ, a), as are
the isomorphism classes of CZ(δ, E).

Set S := ZG(δ), a maximal torus. We will now define a map from the isomorphism classes
of CZ(δ, E) to H1(E , Z → S), denoted by inv(−, δ). The simplest way to do this for general E
is to first define it for isomorphism classes in CZ(δ, a) for a representing [E ], invoke the canonical
bijection between the isomorphism classes in CZ(δ, E) and those of CZ(δ, a) and then check that
for a cohomologous to a′, the diagram

Isom[CZ(δ, a)] H1(Ea, Z → S)

Isom[CZ(δ, a′)] H1(Ea′ , Z → S)

(6.1)

commutes, where Isom[CZ(δ, a)] denotes the set of isomorphism classes in CZ(δ, a), and the verti-
cal arrows are the canonical bijections induced by any choice of y ∈ u(U1) such that dy · a = a′

(cf. Construction 2.3.4). This last condition ensures that the map we define is canonical.
Fix (G1, ξ1, (x1, ϕ1), δ1) ∈ CZ(δ, a), and choose g ∈ G(F s) such that ξ1(gδg−1) = δ1. The

map sending this element to the a-twisted cocycle (p1(g)
−1x1p2(g), ϕ1) gives a map CZ(δ, a) →

Z1(Ea, Z → S), since translating by g does not affect the differential of x1. This induces a map
inv(−, δ) : CZ(δ, a)→ H1(Ea, Z → S), which does not depend on the choice of g, by construction
of the equivalence relation defined on a-twisted cocycles. The following result shows that the
cohomology set H1(Ea, Z → S) parametrizes the rational classes within the stable class of δ.

Proposition 6.1.7 The map inv(−, δ) induces a bijection from the isomorphisms classes of CZ(δ, a)
to H1(Ea, Z → S) .
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Proof. First note that if (G1, ξ1, (x1, ϕ1), δ1) ∈ CZ(δ, a) and (G2, ξ2, (x2, ϕ2), δ2) ∈ CZ(δ, a) are
isomorphic via (f, g) then if we take gi satisfying ξ1(giδ1g−1

i ) = δi, we have ϕ1 = ϕ2 (by definition)
and g−1

1 g−1g2 ∈ S(F ), since

Ad(g−1
1 g−1g2)δ = Ad(g−1

1 )(ξ−1
1 ◦ f−1 ◦ ξ2)(Ad(g2)(δ)) = Ad(g−1

1 )(ξ−1
1 (δ1)) = δ,

giving that [(p1(g1)−1x1p2(g1), φ1)] = [(p1(g2)
−1x2p2(g2), φ1)] in H1(Ea, Z → S). This shows

that the invariant map is constant on isomorphism classes.
For injectivity, we note that if [(p1(g1)−1x1p2(g1), ϕ)] = [(p1(g2)

−1x2p2(g2), ϕ)] inH1(Ea, Z →
S), then if we take g ∈ S(F ) realizing this equivalence of cocycles, the (fppf descent of the) map
G1 → G2 defined by ξ2 ◦ Ad(g2gg−1

1 ) ◦ ξ−1
1 defines an isomorphism from (G1, ξ1, (x1, ϕ1), δ1) to

(G2, ξ2, (x2, ϕ2), δ2) in CZ(δ).
For surjectivity, if we fix [(x, ϕ)] ∈ H1(Ea, Z → S), then since dx ∈ Z(G), we may twist G

by x to obtain Gx, with the usual isomorphism ξ : G
∼−→ Gx satisfying p∗1ξ

−1 ◦ p∗2ξ = Ad(x), and
then (since x commutes with δ) the tuple (Gx, ξ, (x, ϕ), ξ(δ)) lies in CZ(δ, a) and trivially maps to
(x, ϕ) ∈ Z1(Ea, Z → S).

Lemma 6.1.8 The diagram (6.1) commutes.

Proof. If y ∈ u(U1) is such that dy · a = a′, then the map CZ(δ, a) → CZ(δ, a′) may be de-
fined by sending (G1, ξ1, (x1, ϕ1), δ1) to (G1, ξ1, (x1 · ϕ1(y), ϕ1), δ1). This maps to the equivalence
class of the a′-twisted cocycle (p1(g)

−1ϕ1(y)xp2(g), ϕ1) in H1,∗(Ea′ , Z → G). Going the other
direction, the class of (G1, ξ1, (x1, ϕ1), δ1) maps to the equivalence class of the a-twisted cocycle
(p1(g)

−1xp2(g), ϕ1), which then maps to the class of (p1(g)−1ϕ1(y)xp2(g), ϕ1), by the centrality
of Z.

Because of the above result, in the context of the invariant map it will be harmless to denote
CZ(δ, E) for a choice of E simply by CZ(δ), and for computational purposes to identify CZ(δ) with
CZ(δ, a) for a choice of a. Note that if Z → S factors through another finite central Z ′ → S,
then we have a canonical functor ιZ,Z′ : CZ(δ)→ CZ′(δ) which is fully faithful. Moreover, the two
invariant maps to H1(E , Z → S), H1(E , Z ′ → S) commute with the natural inclusion H1(E , Z →
S)→ H1(E , Z ′ → S); thus, the invariant map does not depend on the choice of Z.

The last thing we do in this subsection is define a representation of a rigid inner form.

Definition 6.1.9 A representation of a rigid inner twist of G is a tuple (G1, ξ1,T1, h̄1, π1), where

(ξ1,T1, h̄1) is a rigid inner twist of G and π1 is an admissible representation of G1(F ). An iso-
morphism of representations of rigid inner twists (G1, ξ1,T1, h̄1, π1) → (G2, ξ2,T2, h̄2, π2) is

an isomorphism of rigid inner twists (f,Ψ): (ξ1,T1, h̄1) → (ξ2,T2, h̄2) such that the G1(F )-

representations π1 and π2 ◦ f are isomorphic.
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One verifies easily that two representations (G1, ξ1,T1, h̄1, π1) and (G1, ξ1,T1, h̄1, π2) are iso-
morphic in the above sense if and only if π1 and π2 are isomorphic as G1(F )-representations.

6.2 Local transfer factors and endoscopy

Let [Z → G] ∈ R and let Ĝ be a complex Langlands dual group forG. We have an isogenyG→ G

which dualizes to an isogeny Ĝ → Ĝ, inducing a homomorphism Z(Ĝ) → Z(Ĝ). Identifying
these complex varieties with their C-points, we define Z(Ĝ)+ ⊂ Z(Ĝ) to be the preimage of
Z(Ĝ)Γ under this isogeny. We thus obtain a functorR → FinAbGrp by sendingG to π0(Z(Ĝ)+)∗;
this can be seen as an analogue of functor introduced in Theorem 1.2 in [Kot86].

Proposition 6.2.1 We have a functorial isomorphism

Y+,tor(Z → G)
∼−→ π0(Z(Ĝ)

+)∗.

Proof. We describe what the construction of this map is; the proof that this construction indeed is
a functorial isomorphism is identical to the one given in [Kal16], Proposition 5.3.

Recall that for [Z → G] ∈ R, the group Y+,tor(Z → G) is an inverse limit as S ranges over all
maximal F -tori of G of groups of the form

lim−→
(X∗(S̄)/X∗(Ssc))

N

I(X∗(S)/X∗(Ssc))
,

where each direct limit is over all finite Galois extensions of F splitting S. For a fixed S, we
have a commutative square of multiplicative groups corresponding to the commutative square of
character groups:

Z(Ĝ) Z(Ĝ) X∗(S̄)
X∗(Ssc)

X∗(S)
X∗(Ssc)

̂̄S Ŝ X∗(S̄) X∗(S).

Under the canonical embedding Z(Ĝ) → Ŝ, the subgroup inclusion Z(Ĝ)Γ ⊂ Z(Ĝ) corre-
sponds at the level of character groups to the quotient map

X∗(S)/X∗(Ssc)→ [X∗(S)/X∗(Ssc)]/I[X∗(S)/X∗(Ssc)],
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and it follows that the subgroup Z(Ĝ)+ ⊂ Z(Ĝ) has character group

X∗(Z(Ĝ)+) = [X∗(S̄)]/[IX∗(S) +X∗(Ssc)].

Finally, passing to the component group corresponds to taking the torsion subgroup, which (for a
Galois extension splitting S) contains [X∗(S̄)/X∗(Ssc)]

N/I[X∗(S)/X∗(Ssc)]. This gives a natural
inclusion

(X∗(S̄)/X∗(Ssc))
N

I(X∗(S)/X∗(Ssc))
↪→ π0(Z(Ĝ)

+)∗,

since we have the obvious identification X∗(π0(Z(Ĝ)
+)) = π0(Z(Ĝ)

+)∗. These maps glue for
varying Galois extensions of F , and then induce an isomorphism on the direct limit over all exten-
sions E (see [Kal16], Proposition 5.3).

The analogue of Corollary 5.4 in [Kal16] makes precise our earlier statement comparing this
new functor to the one defined in [Kot86], Theorem 1.2:

Corollary 6.2.2 There is a perfect pairing

H1(E , Z → G)× π0(Z(Ĝ)+)→ Q/Z,

which is functorial in [Z → G] ∈ R. Moreover, if Z is trivial then this pairing coincides with the

one stated in Theorem 4.5.5.

We now recall the notion of a refined endoscopic datum, introduced in [Kal16], §5. As before,
assume that we have some fixed finite central Z → G, and denoteG/Z byG. First, let (H,H, s, η)
be an endoscopic datum for G. We may always replace this datum with an equivalent Ĝ(C)-
conjugate datum (H,H, s′, η′) such that s′ ∈ Z(Ĥ)Γ without affecting the value of the transfer
factors ∆,∆0 involving (H,H, s, η) (see the beginning §5.3). We will always assume that our
endoscopic datum has this form.

Choices of maximal tori in Ĥ , Ĝ, H , and G give embeddings ZF s → Z(H)F s which differ by
pre- and post-composing with inner automorphisms induced by G(F s), H(F s), and hence are all
the same, meaning that we have a canonical F -embedding Z ↪→ H (the Γ-equivariance follows
from the fact that the maps T̂ → T for T maximal in G, T maximal in Ĝ, are Γ-equivariant up
to the action of the Weyl group—analogously for H). It thus makes sense to define H := H/Z,
which gives rise to the isogeny Ĥ → Ĥ .

As above, we defineZ(Ĥ)+ to be the preimage ofZ(Ĥ)Γ inZ(Ĥ), and declare that (H,H, ṡ, η)
is a refined endoscopic datum if H,H, and η are defined as for an endoscopic datum, and ṡ ∈
Z(Ĥ)+ is such that (H,H, s, η) is an endoscopic datum, where s is the image of ṡ under the map
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Z(Ĥ)+ → Z(Ĥ)Γ. An isomorphism of two refined endoscopic data (H,H, ṡ, η), (H ′,H′, ṡ′, η′)

is an element ġ ∈ ̂̄G(C) such that its image g in Ĝ(C) satisfies gη(H)g−1 = η′(H′), inducing
β : H → H′ and the restriction β : Ĥ → Ĥ ′, which (by basic properties of central isogenies)
lifts uniquely to a map β̄ : Ĥ → Ĥ ′, and such that the images of β̄(ṡ) and ṡ′ in π0(Z(Ĥ ′)+)

coincide. It is clear that every endoscopic datum lifts to a refined endoscopic datum, and that every
isomorphism of refined endoscopic data induces an isomorphism of the associated endoscopic data.

Let ė = (H, H, η, ṡ) be a refined endoscopic datum for G with associated endoscopic datum
e = (H, H, η, s), which is also an endoscopic datum for G∗. Let z = (Hz, ηz) be a z-pair for e. As
discussed in Chapter 5, have two functions

∆[e, z] : Hz,G−sr(F )×G∗
sr(F )×Hz,G−sr(F )×G∗

sr(F )→ C,

∆[e, z, ψ] : Hz,G−sr(F )×Gsr(F )×Hz,G−sr(F )×Gsr(F )→ C,

where the first equation makes sense because strongly G-regular elements of H(F ) are strongly
G∗-regular via choices of admissible embeddings TH

∼−→ T , TH̄
∼−→ T̄ , as in our discussion of

the local transfer factor. As in [Kal16], we have added terms in the brackets to show what each
factor depends on. We set the above function to zero if either of the pairs of inputs consist of two
elements which are not related.

For our arbitrary G, we say that an absolute transfer factor is a function

∆[e, z]abs : Hz,G−sr ×Gsr(F )→ C,

which is nonzero for any pair (γz, δ) of related elements and satisfies the relation

∆[e, z]abs(γz,1, δ1) ·∆[e, z]abs(γz,2, δ2)
−1 = ∆[e, z](γz,1, δ1; γz,2, δ2).

By Chapter 5, if G is quasi-split, setting ∆[e, z] = ∆0 (and zero if the pair is unrelated) satisfies
these properties. As we noted in Corollary 5.3.9, this function is not unique, depending on a
choice of F -splitting of Gsc. Our next goal will be to use the notions of refined endoscopic data
and Z-rigid inner forms to construct an absolute transfer factor in the non quasi-split case which is
associated to some splitting of the quasi-split inner form G∗, extending the absolute transfer factor
in the quasi-split case. This follows the corresponding construction in [Kal16], §5.3.

We return to the setting of arbitrary G connected reductive over F with quasi-split inner form
ψ : GF s → G∗

F s and fixed Z-rigid inner form (ξ,T , h̄), ξ := ψ−1, for some fixed finite central Z
defined over F . Let δ′ ∈ G(F ) and γz ∈ Hz,G−sr(F ) be related elements, and let γH be the image
of γz in H(F ). Then, by Lemma 6.1.5, we may find δ ∈ G∗(F ) such that δ̇′ := (G, ξ,T , h̄, δ′)
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lies in CZ(δ); note that by strong regularity, the induced isomorphism of centralizers Ad(g) ◦
ψ : ZG(δ

′)F s → ZG∗(δ)F s , some g ∈ G∗(F s), is defined over F .
Let SH denote the centralizer of γH in H , and S denote the centralizer of δ in G∗. Since γH

and δ′ are related, we have an admissible isomorphism SH → ZG(δ
′) sending γH to δ′. Post-

composing this map with the F -isomorphism ZG(δ
′) → S gives an admissible isomorphism

ϕγH ,δ : SH → S which sends γH to δ, and is unique with these properties. This isomorphism
identifies the canonically embedded copies of Z in both of the tori, and therefore induces an iso-
morphism ϕ̄γH ,δ : SH → S. If [ŜH ]+ denotes the preimage of ŜH

Γ
under the isogeny ŜH → ŜH ,

then the canonical (Γ-equivariant) embeddingsZ(Ĥ) ↪→ ŜH , Z(Ĥ) ↪→ ŜH induce a canonical em-
bedding Z(Ĥ)+ ↪→ [ŜH ]

+. If the group [Ŝ]+ is defined analogously, we have that ϕ̄−1
γH ,δ

dualizes

to a map [ŜH ]
+ → [Ŝ]+ (since ϕ̄γH ,δ is defined over F ) which further induces an embedding

Z(Ĥ)+ ↪→ [Ŝ]+.

We thus obtain from ṡ ∈ Z(Ĥ)+ associated to our refined endoscopic datum an element ṡγH ,δ ∈
[Ŝ]+. Then we set

∆[ė, z, ψ, (T , h̄)]abs(γz, δ
′) := ∆[e, z]abs(γz, δ) · ⟨inv(δ, δ̇′), ṡγH ,δ⟩−1, (6.2)

where the pairing ⟨−,−⟩ is as in Corollary 6.2.2 with G = S.
It is clear that we could have replaced (ξ,T , h̄) with any a-normalized Z-rigid inner twist

(ξ, (y, ϕ∗)) in its isomorphism class from the start, and defined the transfer factor using the invariant
of the corresponding class of (G, ξ, (y, ϕ∗)), δ′) in CZ(δ, a). The last main goal of this paper will
be to prove that (6.2) defines an absolute transfer factor on G. In light of the above discussion, it is
enough to work entirely with a-normalized Z-rigid inner twists for some fixed choice of a ∈ u(U2)

with [a] = α. In this context, δ̇′ will denote the element (G, ξ, (y, ϕ∗), δ′) ∈ CZ(δ, a), and we denote
the function from (6.2) by ∆[ė, z, ψ, (y, ϕ∗)].

Before we prove this, we discuss the dependency of this factor on Z. Let Z ′ be another finite
central F -subgroup of G which contains F , viewed also as a finite central F -subgroup of G∗. We
denote by (y, (ϕ′)∗) ∈ Z1(F,Z ′ → G) the image of (y, ϕ∗) under the natural inclusion map, so
that (ϕ∗)′ is ϕ∗ : u → Z post-composed with the inclusion map, defining a Z ′-rigid inner twist
(ξ, (y, (ϕ′)∗)). As with Z, we have a canonical F -embedding Z ′ ↪→ H which commutes with our
embedding of Z and the inclusion map, and we setH

′
:= H/Z ′. Now we have an isogenyH → H

′

which dualizes to an isogeny Ĥ
′ → Ĥ , inducing a canonical surjection Z(Ĥ

′
)+ → Z(Ĥ)+.

Choose a preimage s̈ in Z(Ĥ
′
)+ of ṡ, giving a refined endoscopic datum ë := (H,H, s̈, η). Note

that the point δ̈′ := (G, ξ, (y, (ϕ′)∗), δ′) equals ιZ,Z′(δ̇′) ∈ CZ′(δ). As we discussed in §6.1, we then
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have that
inv(δ, ιZ,Z′(δ̇′)) = i(inv(δ, δ̇′))

in H1(Ea, Z ′ → S), where i is the natural map H1(Ea, Z → S) → H1(Ea, Z ′ → S). One checks

easily that s̈γH ,δ maps to ṡγH ,δ under the dual surjection Ŝ
′ → Ŝ. The functoriality of the pairing

from Corollary 6.2.2 then gives us that

⟨i(inv(δ, δ̇)), s̈γH ,δ⟩ = ⟨inv(δ, δ̇), ṡγH ,δ⟩.

Since this factor is the only part of ∆[̈e, z, ψ, (y, (ϕ′)∗)]abs that depends on Z, we see that

∆[ė, z, ψ, (y, ϕ∗)]abs(γz, δ
′) = ∆[̈e, z, ψ, (y, (ϕ′)∗))]abs(γz, δ

′). (6.3)

Proposition 6.2.3 The value of ∆[ė, z, ψ, (y, ϕ∗)]abs(γz, δ
′) does not depend on the choice of δ, and

the function ∆[ė, z, ψ, (y, ϕ∗)]abs is an absolute transfer factor. Moreover, this function does not

change if we replace ė by an equivalent refined endoscopic datum, or if we replace (G, ξ, (y, ϕ∗))

by an isomorphic (a-normalized) Z-rigid inner twist of G∗.

Proof. We follow the proof of [Kal16], Proposition 5.6. For the independence of the choice of δ
let δ0 ∈ G∗

sr(F ) be another element such that (G, ξ, (y, ϕ∗), δ′) ∈ CZ(δ0) and Ad(g′) ◦ ψ, for some
g′ ∈ G∗(F s), induces an F -isomorphism ZG(δ

′)→ ZG∗(δ0). By taking the composition (Ad(g′) ◦
ψ) ◦ (ψ−1 ◦ Ad(g−1)), we see that δ and δ0 are conjugate by an element c ∈ A(S) ⊂ G∗(F s),
notation as in Chapter 5. Similarly, the element realizing the stable conjugacy of δ and δ′ may be
chosen to lie in G∗(F s). From here, the same argument used in [Kal16] for the corresponding part
of the proof of Proposition 5.6 works in our setting—we can still use Galois cohomology and our
analysis of the local transfer factor in Chapter 5 lines up exactly with that of [LS87], §3.

As is remarked in [Kal16], invariance under isomorphisms of rigid inner twists is immediate
from the fact that inv(δ, δ̇′) depends only on the isomorphism class of δ̇′ in CZ(δ). Similar to our
justification of the fact that our function is independent of choice of δ, our discussion in Chapter 5
can be substituted for §3 of [LS87] and then the corresponding argument in [Kal16], Proposition
5.6 carries over verbatim to show that our function is invariant under isomorphisms of refined
endoscopic data.

The only work we need to do here is to show that ∆[ė, z, ψ, (y, ϕ∗)]abs is indeed an absolute
transfer factor. This means that we need to show that

∆[ė, z, ψ, (y, ϕ∗)]abs(γz,1, δ
′
1) ·∆[ė, z, ψ, (y, ϕ∗)]abs(γz,2, δ

′
2)

−1 = ∆[e, z, ψ](γz,1, δ
′
1; γz,2, δ

′
2).

We emphasize that we still follow the corresponding argument in [Kal16], Proposition 5.6, closely.
Replacing ė by an appropriate refined endoscopic datum as in our construction of ë above, we may
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assume, using the identity (6.3), that Z contains Z(D(G)). Choose δ1, δ2 ∈ G∗(F ) which are
stably conjugate to δ′1, δ

′
2. It’s enough to show that

⟨inv(δ1, δ̇1
′
), ṡγ1,δ1⟩−1

⟨inv(δ2, δ̇2
′
), ṡγ2,δ2⟩−1

=
∆[e, z, ψ](γz,1, δ

′
1; γz,2, δ

′
2)

∆[e, z](γz,1, δ1; γz,2, δ2)
,

where we are using γi to denote the image of γz,i inHG−sr(F ). To simplify the right-hand side, note
that in the definition of the bottom factor, we may choose our admissible embeddings ZH(γi) ↪→
G∗ to be the unique ones from ZH(γi) to G∗ that map γi to δi. Then, as in the definition of the
factor ∆1 in the quasi-split case (see §5.3.3), we have that γG∗ = γ, and hence we can take h = id
and so inv(γi, δi) = 0 ∈ H1(F,ZG∗(δi)), giving ∆1(γ1, δ1; γ2, δ2) = 1. All of the ∆I ,∆II ,∆III2 ,
and ∆IV factors of the numerator and denominator of the right-hand side coincide, and so all we’re
left with is

∆III1(γ1, δ
′
1; γ2, δ

′
2) := ⟨inv

(
γ1, δ

′
1

γ2, δ′2

)
, sU⟩, (6.4)

where all the notation is as defined in §5.3.3.
Set ZH(γi) := SHi , ZG(δ′i) := S ′

i, and ZG∗(δi) := Si; these are all maximal F -tori. Set

V :=
S1 × S2

Z(G∗)
,

where Z(G∗) ↪→ S1 × S2 via i−1 × j . The homomorphism S1 × S2 → V defines a morphism
[Z × Z → S1 × S2] → [(Z × Z)/Z → V ] in the category T . We claim that the image in
H1(Ea, (Z × Z)/Z → V ) of the element

(inv(δ1, δ̇1
′
)−1, inv(δ2, δ̇2

′
)) ∈ H1(Ea, Z × Z → S1 × S2),

where inv(δi, δ̇i
′
) is defined as in §6.1, lies insideH1(F, V ) (embedded inH1(Ea, (Z×Z)/Z → V )

via the “inflation" map).
It is clear that the restriction maps H1(Ea, Z → Si) → HomF (u, Z) factor as a com-

position of the maps H1(Ea, Z → Si) → H1(Ea, Z → G∗) and H1(Ea, Z → G∗)
Res−→

HomF (u, Z). Moreover, the image of inv(δi, δ′i) in H1(Ea, Z → G∗) is the class of the twisted
a-cocycle (p1(gi)yp2(gi)

−1, ϕ∗), where gi ∈ G∗(F ) is such that Ad(gi)ψ(δ′i) = δi, which is
just the class of the twisted cocycle (y, ϕ∗) ∈ Z1(Ea, Z → G). This means that the im-
age of (inv(δ1, δ̇1

′
)−1, inv(δ2, δ̇2

′
)) in HomF (u, Z × Z) = HomF (u, Z) × HomF (u, Z) equals

(Res((y, ϕ∗))−1,Res((y, ϕ∗))) = (−ϕ∗, ϕ∗) which is zero in HomF (u, (Z × Z)/Z). Whence,
the exact sequence

H1(F, V )→ H1(Ea, (Z × Z)/Z → V )→ HomF (u, Z)
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gives the claim.
Recall from §5.3.3 that U := ((S1)sc × (S2)sc)/Zsc where Zsc embeds via i−1 × j (here we are

taking our admissible embeddings SHi → G∗ to be the unique ones that send γi to δi); there is an
obvious homomorphism U → V . We now claim that the image of inv(γ1, δ′1/γ2, δ

′
2) ∈ H1(F,U)

inH1(F, V ) coincides with the image of (inv(δ1, δ̇1
′
)−1, inv(δ2, δ̇2

′
)). From the rigidifying element

(y, ϕ∗) ∈ Z1(Ea, Z → G∗), y ∈ G∗(F ⊗F F ), ψ−1 : Z → G∗, we extract the Čech 1-cochain y,
which we will factor as ū · z with ū ∈ D(G∗)(F ⊗F F ) and z ∈ Z(G∗)(F ⊗F F ); we can do
this because the central isogeny decomposition for G∗ is surjective on F ⊗F F -points, owing to
the fact that H1(F ⊗F F ,Z(D(G∗))) = 0. Let u ∈ G∗

sc(F ⊗F F ) be a lift of ū. By construction
(see §5.3.3, using the fact that Ad(u) = Ad(ū) = Ad(y) = p∗1ψ ◦ p∗2ψ−1 on G∗

F⊗FF
), we have the

equality

inv
(
γ1, δ

′
1

γ2, δ′2

)
= ([p1(g1)up2(g1)

−1]−1, p1(g2)up2(g2)
−1) ∈ U(F ⊗F F ), (6.5)

whose image in V (F ⊗F F ) coincides with the image of ([p1(g1)yp2(g1)−1]−1, p1(g2)yp2(g2)
−1),

because, by design, y = ū · z for z ∈ Z(G∗)(F ⊗F F ). This gives the claim.
Since the pairing from Corollary 6.2.2 is functorial and extends the Tate-Nakayama pairing for

tori, our desired equality

⟨inv(δ1, δ̇1
′
), ṡγ1,δ1⟩−1

⟨inv(δ2, δ̇2
′
), ṡγ2,δ2⟩−1

= ⟨inv
(
γ1, δ

′
1

γ2, δ′2

)
, sU⟩, (6.6)

will follow from our above calculations if we produce an element of [V̂ ]+ whose image in [Ŝ1]
+×

[Ŝ2]
+ via the map V̂ → Ŝ1× Ŝ2 dual to the projection map S1× S2 → V , where V := V

(Z×Z)/Z , is

equal to (ṡγ1,δ1 , ṡγ2,δ2) and whose image in [Û ]+ maps to sU under the isogeny [Û ]+ → ÛΓ, where
U is formed from the object [Z(G∗

sc) → U ] ∈ T . Indeed, if we find such an element v, then we
have the diagram

inv
(
γ1,δ′1
γ2,δ′2

)
∈ H1(F,U) sU ∈ ÛΓ

π((inv(δ1, δ̇′1)
−1, inv(δ2, δ̇2))) ∈ H1(F, V ) v ∈ [V̂ ]+

(inv(δ1, δ̇1
′
)−1, inv(δ2, δ̇2

′
)) ∈ H1(Ea, Z × Z → S1 × S2) (ṡγ1,δ1 , ṡγ2,δ2) ∈ [Ŝ1]

+ × [Ŝ2]
+,

π

where the top pair of elements are the inputs of the pairing in the right-hand side of our main
desired equality, the bottom pair of elements are the inputs of the pairing in the left-hand side of
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that equality, and by functoriality their pairings both equal the pairing of the two elements in the
middle line.

The argument for the fact that we can find such an element of [V̂ ]+ is identical to the corre-
sponding argument in [Kal16], proof of Proposition 5.6.

6.3 The local Langlands conjectures

We now use our constructions to discuss the Langlands correspondence for an arbitrary connected
reductive group defined over a local function field F . This section is a summary of §5.4 in [Kal16].

Let G∗ be a connected, reductive, and quasi-split group over F with finite central F -subgroup
Z which is an inner form of our fixed arbitrary connected reductive group G. Fix a Whittaker

datum w for G∗, which recall is a G∗(F )-conjugacy class of pairs (B, ζB) consisting of an F -
Borel subgroup B ⊂ G∗ and a non-degenerate character ζB : Bu(F )→ C∗, where the subscript u
denotes the unipotent radical. We may view the group Z as a finite central F -subgroup of G, also
denoted by Z, with G := G/Z as before.

Definition 6.3.1 Given a quasi-split connected reductive group G∗ over F , we write Πrig(G∗) for

the set of isomorphism classes of irreducible admissible representations of rigid inner twists of G∗

(see Definition 6.1.9). Define the subsets Πrig
unit(G

∗),Πrig
temp(G

∗),Πrig
2 (G∗) to be those representations

which are unitary, tempered, and essentially square-integrable.

Let φ : W ′
F → LG be a tempered Langlands parameter, which means that it’s a homomor-

phism of WF -extensions that is continuous on WF , restricts to a morphism of algebraic groups on
SL2(C), and sends WF to a set of semisimple elements of LG that project onto a bounded subset
of Ĝ(C). Setting Sφ = ZĜ(φ), and S+

φ its preimage in Ĝ, we have an inclusion Z(Ĝ)+ ⊂ S+
φ

which induces a map π0(Z(Ĝ)+)→ π0(S
+
φ ) with central image. Denote by Irr(π0(S+

φ )) the set of
irreducible representations of the finite group π0(S+

φ ).

Conjecture 6.3.2 There is a finite subset Πφ ⊂ Πrig
temp(G

∗) and a commutative diagram

Πφ Irr(π0(S+
φ ))

H1(E , Z → G∗) π0(Z(Ĝ)
+)∗

ιw

in which the top map is a bijection, the bottom map is given by the pairing of Corollary 6.2.2,

the right map assigns to each irreducible representation the restriction of its central character to

π0(Z(Ĝ))
+ , and the left map sends a representation (G1, ξ1,T1, h̄, π) to the class of T1. We also

113



expect that there is a unique element (G, idG, GE , idF , π) of Πφ such that π is w-generic and the

map ιw identifies this element with the trivial irreducible representation, see [Sh90], §9.

For π̇ := (G1, ξ1,T1, h̄1, π1) ∈ Πφ, denote by ⟨−, π̇⟩ the conjugation-invariant function on
π0(S

+
φ ) given by the trace of the irreducible representation ιw(π̇). We let Θπ̇ denote the distri-

bution on G2(F ) for any isomorphic rigid inner twist (G2, ξ2,T2, h̄2) given by transporting the
Harish-Chandra character Θπ1 associated to π1 to G2(F ) via any choice of isomorphism of rigid
inner twists—note that by Corollary 6.1.4 this distribution does not depend on the choice of iso-
morphism, justifying the notation. For a fixed rigid inner twist (ξ,T , h̄) : G∗ → G enriching our
inner twist ψ−1 : G∗

F s

∼−→ GF s , we define the virtual character

SΘφ,ξ,(T ,h̄) = e(G)
∑

π̇∈Πφ,π̇ 7→[T ]

⟨1, π̇⟩Θπ̇ (6.7)

and for semisimple ṡ ∈ S+
φ (C) we set

Θṡ
φ,w,ξ,(T ,h̄) = e(G)

∑
π̇∈Πφ,π̇ 7→[T ]

⟨ṡ, π̇⟩Θπ̇. (6.8)

Here e(G) denotes the sign defined in [Kot83]; we expect SΘφ,ξ,(T ,h̄) to be a stable distribution on
G(F ), as defined in [Lan83], I.4.

The element ṡ also defines a refined endoscopic datum ė as follows: Let s ∈ Sφ(C) be the image
of ṡ, set Ĥ = ZĜ(s)

◦, set H = Ĥ(C) · φ(WF ), and take η : H → LG to be the natural inclusion,
and define ė = (H,H, η, ṡ). Take also a z-pair (Hz, ηz) corresponding to the endoscopic datum e

associated to the refined datum ė, which induces a tempered Langlands parameter φz := ηz ◦ φ.
According to §5.5 in [KS12], we may define a Whittaker normalization of the absolute transfer

factor for quasi-split groups, denoted by ∆
′
[e, z,w] : Hz,G−sr(F ) × G∗

sr(F ) → C associated to our
Whittaker datum w. We briefly describe this normalization: using the notation of Chapter 5, we
set

∆
′
[e, z,w] := ϵL(V, ψF )(∆I∆1)

−1∆II∆IV ,

where ϵL(V, ψF ) is a 4th root of unity associated to a specific virtual representation V of Γ (and
thus of WF ) coming from e and w, together with a choice of additive character ψF : F → C∗; for
details, see [KS99], §5.3. The important takeaway is that the construction of the normalization
factor ϵL(V, ψF ) can be done uniformly for all non-archimedean local fields. One deduces from
the arguments in [KS99] §5.3 that this still defines an absolute transfer factor for related strongly
regular elements of Hz and G∗ which depends only on w.

As a consequence, we may combine this normalization with our new absolute transfer factor
(6.2) to obtain a normalized absolute transfer factor for general connected reductive groups over
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F ; we use the same notation as in our transfer factor formula (6.2). We then set

∆
′
[ė, z,w, ψ, (T , h̄)](γz, δ

′) = ∆
′
[e, z,w](γz, δ)⟨inv(δ, δ̇′), ṡγ,δ⟩. (6.9)

Note that we have switched the sign of ⟨inv(δ, δ̇′), ṡγ,δ⟩ so that our formula agrees with the sign
changes in the factors defining ∆

′
[e, z,w].

Then if f ė and f are smooth compactly supported functions on Hz(F ) and G(F ) respectively,
whose orbital integrals are ∆

′
[ė, z,w, ψ, (T , h̄)]-matching (as in [KS99], 5.5), we then expect to

have the equality
SΘφz,id,(GE ,id)(f

ė) = Θṡ
φ,w,ξ,(T ,h̄)(f).

115



CHAPTER 7

The Global Canonical Class

This chapter concerns the construction of the pro-algebraic group PV̇ , which will be a global
analogue of the local group u, as well as an analogue of the local canonical class. For a fixed a
finite Galois extension E/F of a global function field F and S ⊂ V a finite set of places of F , we
have two common conditions that we want S to satisfy:

Conditions 7.0.1 1. S contains all of the places that ramify in E

2. Every ideal class ofE contains an ideal with support in SE , ie., the group Cl(OE,S) is trivial.

As in the previous section, we use H i as a short-hand for H i
fppf.

7.1 Tate duality for finite multiplicative Z

The goal of this subsection is to construct an analogue of the global Tate duality isomorphism from
[Tat66] for the cohomology group H2

fppf(F,Z) = Ȟ2(F/F, Z), where Z is a finite multiplicative
group over F . Temporarily fix a finite set of places S ⊂ V a multiplicative group M over OF,S

split over E; denote X∗(M) by X , and X∗(M)(= X∗(M
◦)) by Y .

For v ∈ S a fixed place, we denote by ResE,v(M) the multiplicative OF,S-group split over the
finite étale extensionOE,S determined by the ΓE/F -moduleX⊗ZZ[{v}E] =: X[{v}E] (via the cor-
respondence between finitely-generated AutOF,S

(OE,S) = ΓE/F -modules over Z and multiplicative
OF,S-groups split over OE,S given by [Gil21, §17]). We set ResE,S(M) :=

∏
v∈S ResE,v(M), an-

other multiplicative OF,S-group split over OE,S , with character group X[SE]. Note that we have
an embedding M ↪→ ResE/S(M) via the augmentation map on characters X[SE] → X; denote
the character module of the cokernel of this embedding by X[SE]0 (the kernel of the augmentation
map).

Global Tate duality for tori (as in [Tat66]) shows that there exists a class

α3(E, S) ∈ H2(ΓE/F ,
ResE,S(Gm)

Gm

(OE,S))
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such that cup product with this class induces for all i ∈ Z an isomorphism

Ĥ i−2(ΓE/F , Y [SE]0)
∼−→ Ĥ i(ΓE/F , T (OE,S)),

where to make sense of the relevant cup product pairing, we are making the identifications

Y ⊗Z Z[SE]0 = HomZ(X,Z[SE]0) = HomOE,S -gp(
ResE,S(Gm)

Gm

, T ).

We no longer fix T and S as above. Let Z be a finite multiplicative group defined over F , set
A = X∗(Z) and A∨ = Hom(A,Q/Z). As mentioned above, our temporary goal is to construct a
functorial isomorphism

Θ: lim−→
E′,S′

Ĥ−1(ΓE′/F , A
∨[S ′

E′ ]0)
∼−→ H2(F,Z),

where the limit is over all finite subsets S ′ ⊂ V and finite Galois extensions E ′/F . Choose a finite
Galois extension E/F splitting Z and a finite full subset S ⊂ V such that S satisfies Conditions
7.0.1 with respect to E and the following additional condition:

Conditions 7.1.1 For each w ∈ VE , there exists w′ ∈ SE such that Stab(w,ΓE/F ) =

Stab(w′,ΓE/F ).

It is straightforward to check that such a pair (E, S) always exists, and that if S ⊆ S ′ is finite and
full, then it also satisfies Conditions 7.0.1 and 7.1.1 (with respect to E).

Note that for n a multiple of exp(Z), we have a functorial isomorphism

ΦE,S,n : A
∨[SE]0

∼−→ HomOE,S
(
ResE,S(µn)

µn
, Z) = HomOS

(
ResE,S(µn)

µn
, Z), (7.1)

which sends the map g ∈ A∨[SE]0 to the homomorphism induced by the map A → (Z/nZ)[SE]0
defined by

a 7→
∑
w∈SE

ng(w)(a) · [w], (7.2)

where g(w) denotes the A∨-coefficient of [w] in g.
Fix a cofinal sequence {ni} in N× and denote the associated cofinal prime-to-p sequence by

n′
i := ni/p

mi . Identifying ResE/S(Gm)(OS) with Maps(SE, O×
S ) in the obvious way, we may pick

functions
k′i : Maps(SE, O×

S )→ Maps(SE, O×
S )

such that k′i(x)
n′
i = x and k′i+1(x)

n′
i+1/n

′
i = k′i(x). Under the bijection between Čech cochains in
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ResE/S(Gm)(O

⊗
OF,S

n

S ) and Cn−1(ΓS,ResE/S(Gm)(OS)) (via Lemma 3.2.1) this also defines an
analogous map

k′i : ResE/S(Gm)(O

⊗
OF,S

n

S )→ ResE/S(Gm)(O

⊗
OF,S

n

S )

for all n. In the above we are using the fact that O×
S is n-divisible for n coprime to p (see [NSW08,

Proposition 8.3.4]).
As in the local case, we want to extend this to p-power roots. First note that the map

ResE,S(Gm)(O

⊗
OF,S

n

E,S )→ ResE,S(Gm)

Gm

(O

⊗
OF,S

n

E,S )

is surjective, since H1(O

⊗
OF,S

n

E,S ,Gm) = 0, by combining the proof of Lemma 3.2.1 with
the fact that H1(OE,S,Gm) = 0, since OE,S is a principal ideal domain. It follows that we
may lift a cocycle representing α3(E, S) ∈ Ȟ2(OE,S/OF,S,

ResE,S(Gm)

Gm
) to an element cE,S ∈

ResE/S(Gm)(O

⊗
OF,S

3

E,S ). We may then take

k′i(cE,S) ∈ C2,2(OS/OF,S, OE,S,ResE/S(Gm)) := ResE/S(Gm)(OS ⊗OF,S
OE,S ⊗OF,S

OE,S),

and the right-hand side may be interpreted explicitly as∏
w∈SE

(OS ⊗OF,S
OE,S ⊗OF,S

OE,S)
∗
w.

As in the local case, it is straightforward to check that for every x ∈ OS ⊗OF,S
OE,S ⊗OF,S

OE,S

and power pmi , we may find a pmith root x(1/pm) ∈ Operf
S ⊗OF,S

OE,S ⊗OF,S
OE,S such that the

resulting system of roots satisfies (x(1/p
mi+1 ))p

mi+1/pmi = x(1/p
mi ). Applying this across all w ∈

SE , we may define an analogous map

(−)(1/pmi ) : ResE/S(Gm)(OS⊗OF,S
OE,S⊗OF,S

OE,S)→ ResE/S(Gm)(O
perf
S ⊗OF,S

OE,S⊗OF,S
OE,S).

We then set αp,i(E, S) to be the image of (k′i(cE,S))
(1/pmi ) in [ResE,S(Gm)/Gm]((O

perf
S )

⊗
OF,S

3
).

We then obtain
dαp,i(E, S) ∈ Z3,2(Operf

S /OF,S, OE,S,
ResE,S(µni

)

µni

),

and define the map

ΘE,S : Ĥ
−1(ΓE/F , A

∨[SE]0)→ Ȟ2(Operf
S /OF,S, Z),

g 7→ dαi(E, S) ⊔
OE,S/OF,S

g,

118



the pairing

A∨[SE]0 × [
ResE,S(µni

)

µni

]Operf
S
→ ZOperf

S

is given by (7.1) and we choose ni so that it is divisible by exp(Z). One checks that this map does
not depend on the choice of ni.

As in [Kal18], we have the following important lemma which connects the above map to the
global Tate duality pairing for tori discussed above (whose corresponding isomorphisms for various
tori and Tate cohomology groups will all be denoted by “TN", for Tate-Nakayama):

Lemma 7.1.2 Let T be a torus defined over F and split overE, and letZ → T be an injection with

cokernel T̄ , all viewed as OF,S groups in the usual way. We write Y = X∗(T ) and Ȳ = X∗(T̄ ).

Then the following diagram commutes, and its columns are exact.

Ĥ−1(ΓE/F , Y [SE]0) Ȟ1(OE,S/OF,S, T ) Ȟ1(Operf
S /OF,S, T )

Ĥ−1(ΓE/F , Ȳ [SE]0) Ȟ1(OE,S/OF,S, T̄ ) Ȟ1(Operf
S /OF,S, T̄ )

Ĥ−1(ΓE/F , A
∨[SE]0) Ȟ2(Operf

S /OF,S, Z)

Ĥ0(ΓE/F , Y [SE]0) Ȟ2(OE,S/OF,S, T ) Ȟ2(Operf
S /OF,S, T )

Ĥ0(ΓE/F , Ȳ [SE]0) Ȟ2(OE,S/OF,S, T̄ ) Ȟ2(Operf
S /OF,S, T̄ )

TN ∼

TN ∼

ΘE,S

−TN

−TN

Proof. The right-hand isomorphisms on the first two lines follow from the fact that all T -torsors
over OF,S are trivial over OE,S . The right-hand column is exact because, applying the iso-
morphisms Ȟ i(Operf

S /OF,S,M)
∼−→ H i(OF,S,M) for i = 1, 2 and M = T, T̄ , Z, the resulting

two-column diagram commutes, by functoriality of the Čech-to-derived comparison maps and in
[Ros19, Proposition E.2.1]. From here, the identical argument as in [Kal18] gives the result, us-
ing the fundamental properties of the unbalanced cup product on fppf cohomology discussed in
§3.4.

Corollary 7.1.3 The map ΘE,S is a functorial injection which is independent of the choices of

cE,S , ki, and (−)(1/pmi ).

Proof. As in the proof of [Kal18, Proposition 3.2.4], we may choose Ȳ to be a free Z[ΓE/F ]-
module, which implies that the connecting homomorphism of the left-hand column is injective,
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and ΘE,S is the restriction of “−TN", which is an isomorphism that does not depend on the choices
of cE,S , ki, or (−)(1/pmi ).

Recall the local analogue of ΘE,S which, if v̇ ∈ SFS
with restriction to F (and to E, by abuse

of notation) denoted by v and cv ∈ Gm(E
⊗

Fv
3

v ) represents the canonical class of H2(ΓEv/Fv , E
∗
v),

is defined by
ΘEv ,ni

: Ĥ−1(ΓEv/Fv , A
∨)→ Ȟ2(Fv/Fv, ZFv),

g 7→ dαv ⊔
Ev/Fv

Φni
(g),

where αv ∈ Fv ⊗Fv Fv ⊗Fv Ev is an nith-root of cv, chosen in an analogous way to cE,S above.
This is also a functorial injection, independent of the choices of i, cv, and αv.

To compare this local construction to the above global analogue, first note that we have a ho-
momorphism of ΓEv/Fv -modules A∨[SE]0 → A∨ given by mapping onto the v-factor, as well as
an OF,S-algebra homomorphism (Operf

S )
⊗

OF,S
3 → Fv

⊗
Fv

3
determined by v̇, giving a group homo-

morphism Z((Operf
S )

⊗
OF,S

3
)→ Z(Fv

⊗
Fv

3
). Then [Kal18, Lemma 3.2.6] shows that the resulting

square

Ĥ−1(ΓE/F , A
∨[SE]0) Ȟ2(Operf

S /OF,S, Z)

Ĥ−1(ΓEv/Fv , A
∨) Ȟ2(Fv/Fv, ZFv)

−TN

−TN

commutes, where to obtain the right-hand vertical map we are using the fact that the homomor-
phism Z((Operf

S )
⊗

OF,S
3
) → Z(Fv

⊗
Fv

3
) preserves Čech cocycles and cochains, which is straight-

forward to check.
Following [Kal18, §3.2], we now collect some basic functoriality properties of the map ΘE,S .

The proofs are identical to the proofs loc. cit, so we state the results and refer to [Kal18].

Lemma 7.1.4 The natural map Ȟ2(Operf
S /OS, Z)→ Ȟ2(F/F, Z) is injective.

Proof. The proof of [Kal18, Lemma 3.2.7] works verbatim here, replacing H i(ΓS,M(OS)) with
Ȟ i(Operf

S /OF,S,M) for M = T, T̄ , Z and i = 1, 2.

Let K/F be a finite Galois extension containing E, and let S ′ be a finite set of places of F
satisfying Conditions 7.0.1 and 7.1.1 with respect toK/F . Then [Kal18] defines two maps on Tate
cohomology, the first from Ĥ−1(ΓE/F , A

∨[SE]0) to Ĥ−1(ΓE/F , A
∨[S ′

E]0) induced by the inclusion
S ⊆ S ′, and the second map, denoted by !, from Ĥ−1(ΓE/F , A

∨[S ′
E]0) to Ĥ−1(ΓK/F , A

∨[S ′
K ]0)

given by choosing a section s : S ′
E → S ′

K of the natural projection S ′
K → S ′

E and then defining
s! : Z[S ′

E]0 → Z[S ′
K ]0 by sending [w] to [s(w)]; it is shown in [Kal18, Lemma 3.1.7] that passing
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to −1-degree Tate cohomology (and tensoring with A∨) gives the claimed well-defined homomor-
phism. Now we have the analogue of [Kal18, Lemma 3.2.8]:

Lemma 7.1.5 Let K and S ′ be as above. Then both of the above maps are injective, and fit into

the commutative diagrams:

Ĥ−1(ΓE/F , A
∨[SE]0) Ȟ2(Operf

S /OF,S, Z) Ĥ−1(ΓE/F , A
∨[S ′

E]0) Ȟ2(Operf
S′ /OF,S′ , Z)

Ĥ−1(ΓE/F , A
∨[S ′

E]0) Ȟ2(Operf
S′ /OF,S′ , Z) Ĥ−1(ΓK/F , A

∨[S ′
K ]0) Ȟ2(Operf

S′ /OF,S′ , Z).

ΘE,S

Inf

ΘE,S′

!

ΘE,S′ ΘK,S′

Proof. The proof of [Kal18, Lemma 3.2.8] works verbatim here, replacing the diagram of Lemma
3.2.5 loc. cit. with the diagram from our Lemma 7.1.2.

We then get the main result of this subsection, which characterizes the cohomology group
H2(F,Z):

Proposition 7.1.6 The maps ΘE,S splice to a functorial isomorphism

Θ: lim−→
E

Ĥ−1(ΓE/F , A
∨[S

(E)
E ]0)→ H2(F,Z),

where the limit is over all finite Galois extensions E/F splitting Z and S(E) denotes an arbitrary

choice of places of V satisfying Conditions 7.0.1 and 7.1.1 for E/F such that if K/E/F , we have

S(E) ⊂ S(K) (by Lemma 7.1.5, the above map does not depend on the choices of the S(E)’s).

Proof. This proof closely follows the proof of [Kal18, Corollary 3.2.9]. It is enough to prove the
result with H2(F,Z) replaced by Ȟ2(F/F, Z). By Corollary 7.1.3 and Lemmas 7.1.4 and 7.1.5,
we obtain a functorial injective homomorphism Θ as claimed, which is independent of the choices
of (appropriately chosen) S(E), so all that remains to prove is surjectivity.

For any h ∈ Ȟ2(F/F, Z), we may find E ′/F finite such that h ∈ Ȟ2(E ′/F, Z); denote the
Galois closure of F in E ′ by E, so that E ′ = E · Fm for some unique m ∈ N. Moreover,

since E ′
⊗

F 3 = lim−→S(E)
O

⊗
O
F,S(E)

3

E′,S(E) , where the direct limit is over all finite S(E) ⊂ V satisfy-
ing the required conditions with respect to E/F , there is some finite S(E) satisfying the required

conditions with respect to E/F such that we can find hE′,S(E) ∈ Z(O

⊗
O
F,S(E)

3

E′,S(E) ) with image
in Z(E ′

⊗
F 3) → Ȟ2(E ′/F, Z) equal to h. We may enlarge S(E) even further to assume that

hE′,S(E) ∈ Z2(OE′,S(E)/OF,S(E) , Z), since the Čech differential on Z(O

⊗
O
F,S(E)

3

E′,S(E) ) is the same as
that of Z(E ′

⊗
F 3), and we may use finitely many elements of F and E ′ to encode the fact that

dhE′,S(E) = 1 in Z(E ′
⊗

F 4). Denote by h̄E′,S(E) the image of hE′,S(E) in Ȟ2(OE′,S(E)/OF,S(E) , Z).
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Once we have such an h̄E′,S(E) , choose an OF,S-torus Z ↪→ T with T̄ := T/Z such that
Ȳ = X∗(T̄ ) is free over ΓE/F , and denote the image of h̄E′,S(E) in Ȟ2(OE′,S(E)/OF,S(E) , T ) by
h̄E′,S(E),T . Note that we have a commutative diagram of isomorphisms from Lemma 3.2.12:

Ȟ2(OE,S(E)/OF,S(E) , T ) Ȟ2(OE′,S(E)/OF,S(E) , T )

Ȟ2(OE,S(E)/OF,S(E) , T̄ ) Ȟ2(OE′,S(E)/OF,S(E) , T̄ ),

∼

∼

and so we may pick a (unique) preimage, denoted by h̄E,S(E),T , of h̄E′,S(E),T in Ȟ2(OE,S/OF,S, T ),
and by the commutativity of the diagram, the image of h̄E,S(E),T in Ȟ2(OE,S(E)/OF,S(E) , T̄ ) is zero.
We may thus lift -TN−1(h̄E,S(E),T ) ∈ Ĥ0(ΓE/F , Y [S

(E)
E ]0) to some g ∈ Ĥ−1(ΓE/F , A

∨[S
(E)
E ]0), and

then the same argument as in [Kal18, Corollary 3.2.9] shows that

ΘE,S(E)(g) ∈ Ȟ2(Operf
S(E)/OF,S(E) , Z)

has image in Ȟ2(F/F, Z) equal to h, as desired (even though we need to take the image of
h̄E′,S(E),T in Ȟ2(OE,S/OF,S, T ), the argument of [Kal18] uses that the image of their ΘE,S(E)(g) in
Ȟ2(F/F, T ) is the same as that of h, which is still true for our g obtained via the above adjustment
for non-separability).

7.2 The groups PE,ṠE ,n
Let E/F be a finite Galois extension, S ⊂ V a finite full set of places, and ṠE ⊆ SE a set of lifts
for the places in S. When working with a multiplicative OF,S-group M , we will frequently work
with Ȟ2(Operf

S /OF,S,M) rather than H2
fppf(OF,S, Z); these two groups are canonically isomorphic

by Corollary 3.2.10. We assume that the pair (S, ṠE) satisfies the following:

Conditions 7.2.1 1. S contains all places that ramify in E.

2. Every ideal class of E contains an ideal with support in SE (i.e., Cl(OE,S) = 0).

3. For every w ∈ VE , there exists w′ ∈ SE with Stab(w,ΓE/F ) = Stab(w′,ΓE/F ).

4. For every σ ∈ ΓE/F , there exists v̇ ∈ ṠE such that σv̇ = v̇.

Pairs (S, ṠE) satisfying these conditions always exist, and if (S ′, Ṡ ′
E) contains (S, ṠE) (in the

obvious sense) and the latter satisfies these conditions, then so does the former. For notational ease,
denote the group ResE,S(µn)

µn
introduced in the previous subsection by R̄E,S[n]. For a fixed n ∈ N,
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we first set PE,S,n to be the multiplicative OF,S-group split over OE,S given by character ΓE/F -
module consisting of elements of Z/nZ[ΓE/F × SE] killed by both augmentation maps, denoted
by Z/nZ[ΓE/F × SE]0,0.

We then define the multiplicative group PE,ṠE ,n
to correspond to the ΓE/F -submodule of el-

ements x ∈ Z/nZ[ΓE/F × SE]0,0 such that x[(σ,w)] = 0 if w /∈ σ(ṠE). As another piece of
notation, we set X∗(PE,S,n) =: ME,S,n and X∗(PE,ṠE ,n

) =: ME,ṠE ,n
. We have the following

purely character-theoretic lemma from [Kal18]:

Lemma 7.2.2 Let A be a Z[ΓE/F ]-module which is finite as an abelian group.

1. If exp(A) divides n, then we may define a homomorphism

ΨE,S,n : Hom(A,ME,S,n)
Γ → Ẑ−1(ΓE/F , A

∨[SE]0), H 7→ h,

where h :=
∑

w∈SE
hw[w], with hw : A → Q/Z defined by hw(a) = H(a)[(e, w)] (identify-

ing 1
n
Z/Z with Z/nZ via multiplying the left-hand side by n and taking the residue modulo

n). Furthermore the above map is an isomorphism of finite abelian groups, functorial in A,

which restricts to an isomorphism

Hom(A,ME,ṠE ,n
)Γ → A∨[ṠE]0 ∩ Ẑ−1(ΓE/F , A

∨[SE]0).

2. For n | m, the isomorphisms ΨE,S,n and ΨE,S,m are compatible with the natural inclusion

ME,ṠE ,n
→ME,ṠE ,m

. Setting ME,S := lim−→n
ME,S,n, we thus obtain an isomorphism

ΨE,S : Hom(A,ME,S)
Γ → Ẑ−1(ΓE/F , A

∨[SE]0).

3. The map

A∨[ṠE]0 ∩ Ẑ−1(ΓE/F , A
∨[SE]0)→ Ĥ−1(ΓE/F , A

∨[SE]0)

is surjective.

Proof. See [Kal18, Lemma 3.3.2.].

Now for fixed n ∈ N and A a Z[ΓE/F ]-module which is finite as an abelian group with corre-
sponding OF,S-group Z such that exp(A) divides n, we obtain a map

ΘP
E,ṠE ,n

: Hom(PE,ṠE ,n
, Z)Γ

ΘE,S◦ΨE,S,n−−−−−−−→ Ȟ2(Operf
S /OF,S, Z), (7.3)
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note that this map is functorial in the group Z. Now for A = ME,ṠE ,n
, we have the canonical

element id of the left-hand side of (7.3), and we define ξE,ṠE ,n
∈ Ȟ2(Operf

S /OF,S, PE,ṠE ,n
) to be its

image.
Note that for n dividing m, the natural inclusion of character modules ME,ṠE ,n

→ ME,ṠE ,m

induces a surjection of OF,S-groups PE,ṠE ,m
→ PE,ṠE ,n

. We have the following result about how
the elements ξE,ṠE ,n

change as one varies n:

Lemma 7.2.3 For n | m, the induced map Ȟ2(Operf
S /OF,S, PE,ṠE ,m

) → Ȟ2(Operf
S /OF,S, PE,ṠE ,n

)

maps ξE,ṠE ,m
to ξE,ṠE ,n

.

Proof. After invoking the functoriality of ΘE,S , the argument is purely character-theoretic, and
thus the proof of the analogous result (Lemma 3.3.3) in [Kal18] carries over verbatim to this
setting.

We will now see how the groups PE,ṠE ,n
behave when we vary the field extension E/F . For

(S ′, Ṡ ′
K) satisfying Conditions 7.2.1 with respect to the finite Galois extension K/F and m ∈ N,

we write
(E, ṠE, n) < (K, Ṡ ′

K ,m)

when K contains E, S ⊆ S ′, and ṠE ⊆ (Ṡ ′
K)E . Note that given E, (S, ṠE), and K, one can

always find such a pair (S ′, Ṡ ′
K). For (E, ṠE, n) < (K, Ṡ ′

K ,m), we may define a homomorphism
of ΓK/F -modules from ME,ṠE ,n

to MK,Ṡ′
K ,m

(with inflated action on the left-hand side) given by

∑
(σ,w)∈ΓE/F×SE

aσ,w[(σ,w)] 7→
∑
(γ,u)

aγ̄,uE [(γ, u)],

where the right-hand sum is over all pairs (γ, u) in ΓK/F × S ′
K such that γ−1u ∈ Ṡ ′

K ∩ SK , and γ̄
denotes the image of γ in ΓE/F . Again, we get the following result from [Kal18] (Lemma 3.3.4):

Lemma 7.2.4 For any ΓE/F -module A which is a finite abelian group with exp(A) | n, the follow-

ing diagram commutes

Hom(A,ME,ṠE ,n
)Γ Ȟ2(Operf

S /OF,S, Z)

Hom(A,MK,Ṡ′
K ,n

)Γ Ȟ2(Operf
S′ /OF,S′ , ZOF,S′ ),

ΘP
E,ṠE,n

Inf

ΘP
K,Ṡ′

K
,n

where the left-hand vertical homomorphism is induced by the map from ME,ṠE ,n
to MK,Ṡ′

K ,n
dis-

cussed in the above paragraph.
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According to [Kal18, Lemma 3.3.5], we get the hoped-for coherence between the canonical
classes ξE,ṠE ,n

discussed above:

Lemma 7.2.5 The homomorphism Ȟ2(Operf
S′ /OF,S′ , PK,Ṡ′

K ,n
) → Ȟ2(Operf

S′ /OF,S′ , (PE,ṠE ,n
)OF,S′ )

maps ξK,Ṡ′
K ,n

to the image of ξE,ṠE ,n
under the inflation map

Ȟ2(Operf
S /OS, PE,ṠE ,n

)→ Ȟ2(Operf
S′ /OS′ , (PE,ṠE,n

)OF,S′ ).

Moreover, it is straightforward to check that for n | m, the following square commutes:

ME,ṠE ,n
ME,ṠE ,m

MK,Ṡ′
K ,n

MK,Ṡ′
K ,m

.

Fix a system of quadruples (Ei, Si, ṠEi
, ni)i∈N such that (Si, Ṡi) satisfies Conditions 7.2.1 with

respect to the finite Galois extension Ei/F , the Ei form an exhaustive tower of finite Galois ex-
tensions of F , the Si form an exhaustive tower of finite subsets of V , the ni form a cofinal system
in N×, we have the containment Ṡi ⊆ (Ṡi+1)Ei

for all i, and ni | ni+1 for all i. Such a system
evidently exists. Note that V̇ := lim←−i Ṡi is a subset of VF sep of lifts of V , and the group

PV̇ := lim←−
i

PEi,Ṡi,ni

is a profinite algebraic group independent of the choice of system (ni)i∈N which carries the natural
structure of a lim−→i

OF,Si
= F -scheme. Note that for any finite F -group Z, we obtain from the

maps ΘP
Ei,Ṡi,ni

(and Lemma 7.2.4) a homomorphism

ΘP
V̇
: Hom(PV̇ , Z)

Γ → Ȟ2(F/F, Z)(= H2(F,Z)),

which factors through the homomorphisms

Hom(PEi,Ṡi,ni
, Z)Γ

ΘP
Ei,Ṡi,ni−−−−−→ Ȟ2(Operf

Si
/OF,Si

, Z)→ Ȟ2(F/F, Z) (7.4)

for all sufficiently large i, and hence is surjective, since we may choose i with exp(Z) | ni and
invoke Lemma 7.2.2 and Proposition 7.1.6 to deduce the surjectivity of the map (7.4) for all suffi-
ciently large j > i.

From [Kal18, Lemma 3.3.6], we have the following alternative characterization of
HomF (PV̇ , Z) for Z a finite multiplicative F -group:
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Lemma 7.2.6 Let Z be a finite multiplicative F -group and A = X∗(Z). Let A∨[V̇ ]0 denote the

kernel of the augmentation map A∨[V̇ ]→ A∨. Then we have a natural isomorphism

HomF (PV̇ , Z)
∼−→ A∨[V̇ ]0.

We conclude this subsection by discussing some local-global compatibility regarding PV̇ and
its local analogues uv. For a fixed place v ∈ V̇ , recall the multiplicative Fv-groups

uEv/Fv ,n :=
ResEv/Fv(µn)

µn
, uv := lim←−

Ev/Fv ,n

uEv/Fv ,n,

where the former groups are finite and the latter group is profinite, see §4.1. For Z a finite multi-
plicative Fv-group with exp(Z) | n, denote the isomorphism

HomFv(uEv/Fv ,n, Z)→ Ẑ−1(ΓEv/Fv , A
∨)

by ΨEv ,n—these are the local analogues of our maps ΨE,S,n.
We now define a localization map

locPv : uv → (PV̇ )Fv

for a fixed v ∈ V̇ . Fix E/F a finite Galois extension along with a triple (S, ṠE, n) such that
(S, ṠE) satisfies Conditions 7.2.1 with respect to E/F . Then if IEv/Fv ,n denotes the character
group of uEv/Fv ,n (which is just Z/nZ[ΓEv/Fv ]0), we may define a map

loc
ME,ṠE,n
v : ME,ṠE ,n

→ IEv/Fv ,n,

given by
H =

∑
(σ,w)∈ΓE/F×SE

cσ,w[(σ,w)] 7→
∑

(σ,v),σ∈ΓEv/Fv

cσ,v[σ] := Hv.

This is a well-defined homomorphism of ΓEv/Fv -modules, and hence induces a morphism of

Fv-group schemes loc
PE,ṠE,n
v : uEv/Fv ,n → (PE,ṠE ,n

)Fv . It is clear that these morphism glue as
we range over all 4-tuples (Ei, Si, Ṡi, ni), so that we get an induced homomorphism of profinite
Fv-groups locPv : uv → (PV̇ )Fv , as desired.

For a finite F -groupZ, there is a local analogue of the map ΘP
V̇
: HomF (PV̇ , Z)→ Ȟ2(F/F, Z)

constructed above, which we denote by

Θv : HomFv(uv, Z)→ Ȟ2(Fv/Fv, Z)
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and is defined by lim←−i(Θ(Ei)v ,ni
◦Ψ(Ei)v ,ni

) (see our §7.1 for the definition of the ΘEv ,n-maps). The
following result, once again from [Kal18], shows that these local maps agree with the global map
ΘP
V̇

after localization:

Lemma 7.2.7 For E/F finite Galois splitting Z, (S, ṠE) satisfying Conditions 7.2.1 with respect

to E, n ∈ N a multiple of exp(Z), and v̇ ∈ V̇ (with v̇F , v̇E =: v, by abuse of notation), the

following diagram commutes

HomF (PE,ṠE ,n
, Z) Ȟ2(F/F, Z)

HomFv(uEv/Fv ,n, ZFv) Ȟ2(Fv/Fv, ZFv),

loc
P
E,ṠE,n

v

ΘP
E,ṠE,n

Θu
Ev,n

where the right vertical map is induced by the inclusion F → Fv determined by v̇.

Recall from Lemma 7.2.3 that elements ξi := ξEi,Ṡi,ni
form a coherent system in the projective

system of groups {Ȟ2(Operf
Si
/OF,Si

, PEi,Ṡi,ni
)}i. We also have (by Lemma 7.1.4), for all i, injective

homomorphisms
Ȟ2(Operf

Si
/OF,Si

, PEi,Ṡi,ni
)→ Ȟ2(F/F, PEi,Ṡi,ni

),

and hence the element (ξi)i may be viewed as an element of lim←−i Ȟ
2(F/F, PEi,Ṡi,ni

). Let ξv ∈
Ȟ2(Fv/Fv, uv)

∼−→ Ẑ denote the canonical class obtained by taking the preimage of −1 ∈ Ẑ. We
may now deduce the final result of this subsection:

Corollary 7.2.8 For v̇ ∈ V̇ , consider the maps

Ȟ2(F/F, PV̇ )→ Ȟ2(Fv/Fv, (PV̇ )Fv)← Ȟ2(Fv/Fv, uv),

where the left map is induced by the inclusion F → Fv determined by v̇ and the right map is locPv .

If ξ̃ ∈ H2(F/F, PV̇ ) is any preimage of (ξi) (which exists by Lemma 2.5.4) then the images of ξ̃

and ξv in the middle term are equal.

Proof. We claim first that the natural homomorphism

Ȟ2(Fv/Fv, (PV̇ )Fv)→ lim←−
i

Ȟ2(Fv/Fv, PEi,Ṡi,ni
)

is an isomorphism. To simplify notation, set Pi := (PEi,Ṡi,ni
)Fv ; by Lemma 2.5.5, it suffices to

show that lim←−
(1)

i
Ȟ1(Fv/Fv, Pi) = 0 and lim←−

(1)

i
B1(i) = 0 (using the notation of the previously
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cited lemma). By [RZ00], 2.2, this vanishing would follow if we knew that these systems con-
sisted of profinite groups with continuous transition maps. For B1(i) := d(Pi(Fv)), this trivially
follows because each Pi is finite over Fv, and so this is a system of finite groups. Moreover, the
system {H1(Fv, Pi)} has this property as well, since by [Mil06], Theorem 6.10, each H1(Fv, Pi)

is Pontryagin dual to a discrete torsion group (and therefore profinite), and the transition maps are
continuous, since they come from dualizing morphisms of discrete torsion groups.

The isomorphism we just proved implies that the map Ȟ2(F/F, PV̇ ) → Ȟ2(Fv/Fv, (PV̇ )Fv)

factors as the composition

Ȟ2(F/F, PV̇ )→ lim←−
i

Ȟ2(F/F, PEi,Ṡi,ni
)→ lim←−

i

Ȟ2(Fv/Fv, (PEi,Ṡi,ni
)Fv),

where the second map is the inverse limit of the obvious maps for each i. It is thus enough to
show that, for each i, the map loc

PEi,Ṡi,ni
v sends ξ(Ei)v ,ni

∈ Ȟ2(Fv/Fv, u(Ei)v/Fv ,ni
) to the image of

ξEi,Ṡi,ni
under the map

Ȟ2(F/F, PEi,Ṡi,ni
)→ Ȟ2(Fv/Fv, (PEi,Ṡi,ni

)Fv).

Once we have reached this step, we get the desired result from the proof of [Kal18, Corollary 3.8],
which may be followed verbatim here.

7.3 The vanishing of H1(F, PV̇ ) and H1(Fv, (PV̇ )Fv)

In the local case, an instrumental property of the groups uv was that H1(F, uv) = 0; our goal in
this subsection is to prove the analogue for PV̇ and its localizations.

The following alternative characterization of ME,ṠE ,n
will be useful: As a ΓE/F -module,

ME,ṠE ,n
is canonically isomorphic to the subgroup of elements

x =
∑

(σ,v)∈ΓE/F×S

aσ,v[(σ, v)] ∈ Z/nZ[ΓE/F × S]

such that
∑

σ∈Γv̇
E/F

aθσ,v = 0 for all θ ∈ ΓE/F , v ∈ S (where v̇ ∈ ṠE denotes the unique lift of v to

ṠE) and
∑

v∈S aθ,v = 0 for all θ ∈ ΓE/F , with ΓE/F -action given by

γ · (
∑

(σ,v)∈ΓE/F×S

aσ,v[(σ, v)]) :=
∑

(σ,v)∈ΓE/F×S

aσ,v[(τσ, v)].
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The proposed identification is given by∑
(σ,w)∈ΓE/F×SE

aσ,w[(σ,w)] 7→
∑

(σ,v)∈ΓE/F×S

aσ,σv̇[(σ, v)].

As a consequence, we get the exact sequence of ΓE/F -modules

0→ME,ṠE ,n
→ 1

n
Z/Z[ΓE/F × S]0 →

1

n
Z/Z[SE]0 → 0,

where we identify Z/nZ with 1
n
Z/Z via 1̄ 7→ 1/n (as above), the middle term denotes the kernel

of the augmentation map 1
n
Z/Z[ΓE/F , S]→ 1

n
Z/Z[S], and the second map is defined by∑

(σ,v)∈ΓE/F×S

aσ,v[(σ, v)] 7→
∑

(θ,v)∈ΓE/F×S

(
∑

τ∈Γv̇
E/F

aθτ,v)[θv̇];

for a proof of exactness, see [Kal18, Lemma 3.4.2].
Set µSn :=

∏
v∈S µn. At the level of OF,S-groups, the above exact sequences identifies PE,ṠE ,n

with the quotient
ResE/F (µSn)/µ

S
n

ResE,S(µn)/µn
,

where the embedding ResE,S(µn)/µn ↪→ ResE/F (µSn)/µ
S
n is induced by the embedding

ResE,S(µn)→ ResE/F (µSn)

given on the direct factor ResE,v(µn) = ResEd,v̇/F (µn) by taking inclusion into the vth factor µn →
µSn , applying ResEd,v̇/F (−), and then applying the natural map ResEd,v̇/F (µ

S
n) ↪→ ResE/F (µSn).

Under these identifications, the transition maps PK,Ṡ′
K ,m
→ PE,ṠE ,n

become (after making the
above identification), at the level of character groups, the maps

ME,ṠE ,n
→MK,Ṡ′

K ,m
,

∑
(σ,v)∈ΓE/F×S

aσ,v[(σ, v)] 7→
∑

(γ,v)∈ΓK/F×S

aγ̄,v[(γ, v)],

which is well-defined because S ⊆ S ′. At the level of F -groups, this is the map

ResK/F (µS
′

m)/µ
S′
m

ResK,S′(µm)/µm
→

ResE/F (µSn)/µ
S
n

ResE,S(µn)/µn

induced by the homomorphism ResK/F (µS
′

m)→ ResE/F (µSn) defined by composing the norm map
ResK/F (µS

′
m) → ResE/F (µS

′
m) with ResE/F (−) applied to the composite map µS′

m → µSn given by
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the projection map µS′
m → µSm and (on each component) the m/n-power map µm → µn. Note the

similarity to the local transition maps uKv/Fv ,m → uEv/Fv ,n defined in §4.1. The transition maps fit
into a commutative diagram of ΓK/F -modules

0 ME,ṠE ,n
1
n
Z/Z[ΓE/F × S]0 1

n
Z/Z[SE]0 0

0 MK,Ṡ′
K ,m

1
m
Z/Z[ΓK/F × S ′]0

1
m
Z/Z[S ′

K ]0 0,

where the middle map is induced by the map ResK/F (µS
′

m)→ ResE/F (µSn) as described above, and
the right-most map is defined by∑

(σ,w)∈ΓE/F×SE

aσ,w[(σ,w)] 7→
∑

(γ,u)∈ΓK/F×SK

(#ΓuK/E)aγ̄,uE [(γ, u)].

The following result is a key first step in the argument for the desired cohomological vanishing;
it is a simpler version of [Kal18, Lemma 3.4.3]:

Lemma 7.3.1 Given (E, ṠE, n), there exists (K, Ṡ ′
K ,m) > (E, ṠE, n) such that for all subgroups

∆ ⊆ ΓK/F , the transition map

1

n
Z/Z[SE]0 →

1

m
Z/Z[S ′

K ]0

is zero.

Proof. In our situation we can strengthen the result by insisting thatm = n; chooseK/F such that
#ΓuK/E is a multiple of n for all places u ∈ SK and take S ′

K and Ṡ ′
K ⊂ S ′

K satisfying Conditions
7.2.1 with respect to K/F such that S ⊂ S ′ and (Ṡ ′

K)E ⊆ Ṡ. Then any ξ ∈ 1
n
Z/Z[SE]0 has trivial

image in 1
n
Z/Z[S ′

K ]0, because for all u ∈ SK we have (#ΓK/E,u) · 1nZ/Z = 0.

We may now deduce some preliminary cohomological vanishing:

Lemma 7.3.2 The following colimits over (E, ṠE, n) vanish.

1. lim−→H1(Γ, 1
n
Z/Z[ΓE/F × S]0) = 0;

2. lim−→H1(Γv,
1
n
Z/Z[ΓE/F × S]0) = 0 for all v ∈ V .

Proof. The beginning of this argument follows the proof of [Kal18, Lemma 3.4.4]. Since the
inclusion 1

n
Z/Z[ΓE/F × S]0 ↪→ 1

n
Z/Z[ΓE/F × S] has a ΓE/F -equivariant splitting given by
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choosing an arbitrary place of S, the inclusion also induces an inclusion at the level of coho-
mology groups, so we may prove the result for the modules 1

n
Z/Z[ΓE/F × S] instead. Now, as

a Γ-module, 1
n
Z/Z[ΓE/F × S] is isomorphic to

∏
S

1
n
Z/Z[ΓE/F ], and under this identification

the transition map
∏

S
1
n
Z/Z[ΓE/F ] →

∏
S′

1
m
Z/Z[ΓK/F ] which is obtained by taking the maps

1
n
Z/Z[ΓE/F ] → 1

m
Z/Z[ΓK/F ] and then including S into S ′ to determine the direct factors. Thus,

we may further replace the system of modules { 1
n
Z/Z[ΓE/F × S]} by { 1

n
Z/Z[ΓE/F ]}.

After making this reduction (which is identical to the one done in the proof of [Kal18, Lemma
3.4.4]), we may use the same argument as that in [Kal18, Lemma 3.4.4] to deduce that the first
system has vanishing colimit. We now turn to the system lim−→H1(Γv,

1
n
Z/Z[ΓE/F ]). The Mackey

formula and Shapiro’s lemma tell us that

H1(Γv,
1

n
Z/Z[ΓE/F ]) =

⊕
w|v

H1(ΓEw ,
1

n
Z/Z),

where the sum runs over all places w ∈ VE lying above v. Identifying each H1(ΓEw ,
1
n
Z/Z) with

Hom(ΓEw ,
1
n
Z/Z), the transition map

⊕
w|v

Hom(ΓEw ,
1

n
Z/Z)→

⊕
u|v

Hom(ΓKu ,
1

m
Z/Z)

is given by the maps

Hom(ΓEw ,
1

n
Z/Z)→

⊕
u|w

Hom(ΓKu ,
1

m
Z/Z)

induced by the inclusions ΓKu ↪→ ΓEw (and 1
n
Z/Z ↪→ 1

m
Z/Z). For a fixed homomorphism

fw ∈ Hom(ΓEw ,
1
n
Z/Z), the kernel Hfw of fw is an open normal subgroup of ΓEw , and so if K/E

is a large enough finite Galois extension, we have ΓKu ⊆ Hfw for all u | w places of K. Note
that, given such a K as in the previous sentence, this property also holds for any K ′/K/F finite
Galois and ũ | w a place of K ′. Thus, given (fw) ∈

⊕
w|v Hom(ΓEw ,

1
n
Z/Z), we may look at all

fw as w ranges over {v}E ⊆ VE to find a finite Galois extension K/F such that for any w ∈ VE
with fw ̸= 0 and u ∈ VK with u | w, we have ΓKu ⊆ Hfw . This means that the image of
(fw)w in

⊕
u|v Hom(ΓKu ,

1
n
Z/Z) is trivial, showing that the second colimit in the statement of the

proposition vanishes.

Proposition 7.3.3 For any v ∈ V̇ , we have H1(Fv, (PV̇ )Fv) = 0.

Proof. The first thing to note is thatH1(Fv, (PV̇ )Fv) = lim←−iH
1(Fv, (PEi,Ṡi,ni

)Fv), since the derived
inverse limit lim←−

(1)

i
H0(Fv, (PEi,Ṡi,ni

)Fv) = 0, because the system H0(Fv, (PEi,Ṡi,ni
)Fv) consists of
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finite groups. Thus, local Poitou-Tate duality gives

H1(Fv, (PV̇ )Fv) = lim←−
i

(H1(Γv,MEi,Ṡi,ni
)∗) = (lim−→

i

H1(Γv,MEi,Ṡi,ni
))∗,

where the second equality holds by the universal property of colimits. Now we have the exact
sequence

0→ Ci → H1(Γv,MEi,Ṡi,ni
)→ H1(Γv,

1

ni
Z/Z[ΓEi/F × Si]0),

where Ci is a subquotient of 1
ni
Z/Z[(Si)Ei

]0, and the colimits of the outer two terms are zero, by
Lemmas 7.3.1 and 7.3.2, giving the result.

For the next result, we need to recall a result from global class field theory. Let C denote the
inverse limit lim←−K/F CK , where CK is the profinite completion of the idéle class group of the finite
Galois extension K/F , and the limit is over all such extensions. For fixed K/F finite Galois and
n ∈ N, note that we have C[n]ΓK = CK [n].

Corollary 7.3.4 The completed universal norm group

N := lim←−
K/F

NK/F (CK)

is trivial (viewed as a subgroup of CF ).

Proof. For any such K/F , we have the exact sequence

0→ NK/F (CK)→ CF
(−,K/F )−−−−−→ Γab

K/F → 0.

Since the group NK/F (CK) is open of finite index in CF , the inverse limit over all open subgroups
of CF of finite index may be taken over all open subgroups of finite index which lie in NK/F (CK),
and for any such subgroup U , we get the exact sequence

0→
NK/F (CK)

U
→ CF

U
→ Γab

K/F → 0,

which after applying the (left-exact) functor lim←−(−) yields the exact sequence

0→ NK/F (CK)
∧ → CF → Γab

K/F → 0;

note that surjectivity is preserved because the kernels are all finite groups. Now since CK is dense
in CK , we have thatNK/F (CK) = NK/F (CK)

∧ inside CF , by continuity of the norm map, yielding
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the short exact sequence
0→ NK/F (CK)→ CF → Γab

K/F → 0,

which, after applying the inverse limit over all finite Galois K/F , yields the exact sequence

0→ N → CF → Γab

so it’s enough to show that the completed universal residue map CF → Γab is injective, which is a
basic fact of global class field theory (see e.g. [NSW08, Proposition 8.1.26]).

We move on to a slightly more involved vanishing result:

Lemma 7.3.5 The following colimit over (E, ṠE, n) vanishes:

lim−→H2(Γ,
1

n
Z/Z[ΓE/F × S]0) = 0.

Proof. As in the proof of Lemma 7.3.2, it is enough to show that the colimit lim−→H2(ΓE,
1
n
Z/Z)

vanishes, with the transition maps given by the restriction homomorphism. For (E, n) fixed, by
[NSW08, Theorem 8.4.4] (with S = VE), we have an isomorphism

H2(ΓE,
1

n
Z/Z) ∼−→ (Ĥ0(ΓE, C[n]))

∨,

where recall that Ĥ0(ΓE, C[n]) := lim←−K/E Ĥ
0(ΓK/E, C[n]

ΓK ), with transition maps given by the
projections

CE[n]

NK′/E(CK′ [n])
→ CE[n]

NK/E(CK [n])
;

recall that for M a locally-compact Hausdorff topological group, M∨ denotes Homcts(M,R/Z).
We claim that the natural map

CE[n]→ Ĥ0(ΓE, C[n])

is an isomorphism. To see this, note that it suffices to show that

lim←−
K/E

NK/E(CK [n]) =
(1)

lim←−NK/E(CK [n]) = 0.

For the first vanishing, note that we have a natural inclusion NK/E(CK [n]) ↪→ NK/E(CK)[n], and
so we also get an inclusion

lim←−NK/E(CK [n]) ↪→ (lim←−NK/E(CK)))[n] = 0,
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where the last term equals zero by Corollary 7.3.4. Thus, to prove the claim it suffices to show
that lim←−

(1)NK/E(CK [n]) = 0, which follows from the fact that the system {NK/E(CK [n])}may be
given the structure of a system of profinite groups with continuous transition maps. In conclusion,
we obtain an isomorphism

H2(ΓE,
1

n
Z/Z) ∼−→ CE[n]

∨.

From here, we have reduced the proposition to showing that the direct limit lim−→CE[n]
∨ van-

ishes, where the transition maps are induced by the maps CK [m] → CE[n] given by NK/E com-
posed with the m/n-power map. If (f) ∈ lim−→CE[n]

∨, then choosing a representative f ∈ CE[n]∨,
we have for any (K,m) > (E, n) a factorization

CK [m] 1
n
Z/Z

CE[n]
1
n
Z/Z,

·(m/n)◦NK/E

f ′

f

where f ′ ∈ CK [m]∨ also represents (f). But now since f is continuous and 1
n
Z/Z is finite, the

kernel of f is an open subgroup of CE[n], and since the norm groups NK/E(CK) ⊆ CE shrink to
the identity, there is some large enough (K,m) > (E, n) such that NK/E(CK) ⊆ ker(f) (using the
finite intersection property). This shows that the image of f in CK [m]∨ is zero, giving the desired
result.

Before we prove the main vanishing result, we need a result about the Čech cohomology of PV̇ ,
which is the analogue of Corollary 4.1.3:

Lemma 7.3.6 For all p, the natural map Ȟp(?/?, PV̇ ) → Hp(?, PV̇ ) is an isomorphism for ? =

F, Fv.

Proof. By [Stacks], 03F7, It’s enough to show that the groups Hj(?
⊗

? n, PV̇ ) vanish for all j, n ≥
1. Since this is true for PV̇ replaced by any Pi, the short exact sequence

0→
(1)

lim←−H
j−1(?

⊗
? n, Pi)→ Hj(?

⊗
? n, PV̇ )→ lim←−H

j(?
⊗

? n, Pi)→ 0

reduces the lemma to showing that the derived inverse limit lim←−
(1)H0(?

⊗
? n, Pi) vanishes for all

n. This is immediate from the fact that the transition maps Pi+1(?
⊗

? n) → Pi(?
⊗

? n) are all
surjective.

Proposition 7.3.7 We have H1(F, PV̇ ) = 0.

134



Proof. Since we have a natural localization map Ȟ1(F/F, PV̇ ) → Ȟ1(Fv/Fv, PV̇ ) for all v ∈ V̇ ,
the isomorphisms from Lemma 7.3.6 give a localization map H1(F, PV̇ ) → H1(Fv, PV̇ ) for all
v ∈ V̇ . We get an exact sequence

0→ ker1(F, PV̇ )→ H1(F, PV̇ )→
∏
v̇∈V̇

H1(Fv̇, PV̇ ),

and so Lemma 7.3.2 implies that it’s enough to show that ker1(F, PV̇ ) = 0. Since the natural map
H1(F, PV̇ )→ lim←−iH

1(F, PEi,Ṡi,ni
) is an isomorphism, we have a natural isomorphism

ker1(F, PV̇ )
∼−→ lim←−

i

ker1(F, PEi,Ṡi,ni
),

so it’s enough to show that the right-hand side vanishes.
For i fixed, [Čes16, Lemma 4.4] tells us that we have a perfect pairing of finite abelian groups

ker1(F, PEi,Ṡi,ni
)× ker2(F,MEi,Ṡi,ni

)→ Q/Z,

where MEi,Ṡi,ni
is the étale F -group scheme associated to the Γ-module MEi,Ṡi,ni

(and is Cartier
dual to the finite flat F -group scheme PEi,Ṡi,ni

). Thus, it’s enough to show that

lim←−
i

(ker2(Γ,MEi,Ṡi,ni
))∗ = (lim−→

i

ker2(Γ,MEi,Ṡi,ni
))∗ = 0,

which we will do by showing that the direct limit lim−→i
ker2(Γ,MEi,Ṡi,ni

) vanishes, for which we
will use an easier version of the analogous argument in [Kal18], proof of Proposition 3.4.6.

For any (E, S, n), the long exact sequence in cohomology gives the exact sequence

H1(Γ,
1

n
Z/Z[ΓE/F×S]0)→ H1(Γ,

1

n
Z/Z[SE]0)→ H2(Γ,ME,ṠE ,n

)→ H2(Γ,
1

n
Z/Z[ΓE/F×S]0),

and so applying the (exact) functor lim−→(−) and Lemmas 7.3.2, 7.3.5, we get an isomorphism

lim−→
i

H1(Γ,
1

ni
Z/Z[(Si)Ei

]0)
∼−→ lim−→

i

H2(Γ,MEi,Ṡi,ni
).

We have the inductive system of short exact sequence

0→ 1

ni
Z/Z[(Si)Ei

]0 →
1

ni
Z/Z[(Si)Ei

]→ 1

ni
Z/Z→ 0,

where the induced transition map from 1
ni
Z/Z to 1

ni+1
Z/Z is the natural inclusion followed by
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multiplication by [Ei+1 : Ei]. It follows that after taking direct limits, the right-hand term in the
short exact sequence vanishes and we get an isomorphism

lim−→
i

H1(Γ,
1

ni
Z/Z[(Si)Ei

]0)
∼−→ lim−→

i

H1(Γ,
1

ni
Z/Z[(Si)Ei

]).

For i fixed, we have an isomorphism

H1(Γ,
1

ni
Z/Z[(Si)Ei

])
∼−→

⊕
v∈Si

H1(ΓEi
· Γv̇F sep/F ,

1

ni
Z/Z)

by Shapiro’s Lemma, and for v ∈ Si, this isomorphism translates the transition map to the map
given on the v-factor by

H1(ΓEi
· Γv̇F sep/F ,

1

ni
Z/Z)

·(#Γ
v̇Ei+1
Ei+1/Ei

)◦Res
−−−−−−−−−−→ H1(ΓEi+1

· Γv̇F sep/F ,
1

ni+1

Z/Z).

Thus, if (x) ∈ lim−→i
H1(Γ, 1

ni
Z/Z[(Si)Ei

]) is fixed with representative x ∈
H1(Γ, 1

ni
Z/Z[(Si)Ei

]), some i fixed, we may choose k > i large enough so that

#Γ
v̇Ei+1

Ek/Ei
= #Γ(Ek)v̇/(Ei)v̇ is divisible by ni for all v̇ ∈ Ṡi, guaranteeing that the image of

x in H1(Γ, 1
nk
Z/Z[(Sk)Ek

]) is zero, which shows that

lim−→
i

H2(Γ,MEi,Ṡi,ni
)

∼−→ lim−→
i

H1(Γ,
1

ni
Z/Z[(Si)Ei

]0)
∼−→ lim−→

i

H1(Γ,
1

ni
Z/Z[(Si)Ei

]) = 0.

This gives the desired result, since lim−→i
ker2(Γ,MEi,Ṡi,ni

) injects into lim−→i
H2(Γ,MEi,Ṡi,ni

).

7.4 The canonical class

The purpose of this final subsection is to show that there is a canonical element ξ ∈ Ȟ2(F/F, PV̇ )

lifting the element (ξi) ∈ lim←−i Ȟ
2(F/F, PEi,Ṡi,ni

) constructed above. For notational convenience,
set P := PV̇ , Pi := PEi,Ṡi,ni

and Mi := MEi,Ṡi,ni
, and denote the projection P → Pi by pi.

Whenever we work with an embedding F → Fv for v ∈ V , we assume it is the one induced
by v̇ ∈ V̇ unless otherwise specified. We begin by proving some basic results about some Čech
cohomology groups that associated to PV̇ .

Lemma 7.4.1 The natural maps

Ȟk(Av/Fv, P )→ lim←−
i

Ȟk(Av/Fv, Pi)
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are isomorphisms for k = 0, 1, 2.

Proof. The case k = 0 is trivial, so we only need to focus on k = 1, 2. By Lemma 2.5.5, it’s
enough to show that lim←−

(1)

i
Ȟk(Av/Fv, Pi) = 0 for k = 0, 1 and that lim←−

(1)

i
B1(i) = 0. The

vanishing of lim←−
(1)

i
Ȟ0(Av/Fv, Pi) follows from the fact that Ȟ0(Av/Fv, Pi) = Pi(Fv), and the

system {Pi(Fv)} consists of finite groups. The vanishing of lim←−
(1)

i
B1(i) comes from the fact

that the system {B1(i)} has surjective transition maps: On Čech 0-cochains the transition maps
Pi+1(Av) → Pi(Av) are all surjective by Lemma 3.3.8, and since the Čech differentials are com-
patible with F -homomorphisms (in our case, the transition maps Pi+1 → Pi), this surjectivity
carries over to the group of 1-coboundaries.

It remains to show that the derived inverse limit lim←−
(1)

i
Ȟ1(Av/Fv, Pi) vanishes. The proof of

Corollary 3.3.9 shows that the groups Ȟ1(Av/Fv, Pi) are (compatibly) isomorphic to H1(Fv, Pi),
and so it’s enough to show that lim←−

(1)

i
H1(Fv, Pi) = 0, which follows from the fact that the system

{H1(Fv, Pi)}i may be given the structure of a system of profinite groups with continuous transition
maps, as we showed in the proof of Corollary 7.2.7.

Combining Lemma 7.4.1 with the proof of Corollary 3.3.9 gives an isomorphism

Ȟ1(Av/Fv, P )
∼−→ lim←−

i

Ȟ1(Av/Fv, Pi)
∼−→ lim←−

i

Ȟ1(Fv/Fv, Pi)
∼−→ Ȟ1(Fv/Fv, P ),

and so Lemma 7.3.6 lets us identify Ȟ1(Av/Fv, P ) with H1(Fv, P ) as well. The local canonical
class ξv ∈ Ȟ2(Fv/Fv, uv) = H2(Fv, uv) maps via S2

v ◦ locv to a class in Ȟ2(Av/Fv, P ) (notation
as in §3.3).

The goal is to construct a canonical class x ∈ Ȟ2(A/A, P ) such that for each v̇ ∈ V̇ and
v := v̇F , its image in Ȟ2(Av/Fv, P ) (via the ring homomorphism F ⊗F A ι⊗πv−−−→ Fv⊗F Fv , where
ι : F → Fv is our fixed inclusion, and πv is projection onto the vth-factor) equals S2

v(locv(ξv)).
We will proceed by constructing a Čech-theoretic analogue of the construction in [Kal18, §3.5].
Fix ξ̇v ∈ uv(Fv

⊗
Fv

3
) a Čech 2-cocycle representing ξv, and let Γv̇ ⊆ Γ denote the decomposition

group of v̇ ∈ V̇ ; choose a (set-theoretic) section Γ/Γv̇ → Γ—recall from §3.3 that this is equivalent
to fixing a compatible system of diagonal embeddings

E · Fv →
∏

w∈VE ,w|v

Ew

as we range over all finite Galois extensions E/F (which are the identity E ·Fv → Ev̇E on the v̇E-
factor), and thus (as explained in §3.3) an explicit realization of the Shapiro map h : G(Fv

⊗
Fv

3
)→

G(Av

⊗
Fv

3
) at the level of Čech 2-cochains for any multiplicative F -group scheme G, which is
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functorial in G (with respect to F -homomorphisms) and compatible with the Čech differentials on
both sides.

As we range through all i, these maps S2
v,i : Pi(Fv

⊗
Fv

3
) → Pi(Av

⊗
Fv

3
) splice to give a group

homomorphism
Ṡ2
v : P (Fv

⊗
Fv

3
)→ P (Av

⊗
Fv

3
),

and we set ẋv := Ṡ2
v(locv(ξ̇v)) ∈ Z2(Av/Fv, P ).

Note that for fixed i, we have pi(ẋv) = 1 ∈ Pi(Av

⊗
Fv

3
) for all v̇ ∈ V̇ such that v /∈ Si. Indeed,

the functoriality of the Shapiro maps implies that pi ◦ Ṡ2
v ◦ locv = S2

v,i ◦ pi ◦ locv on Pi(Fv
⊗

Fv
3
),

and now pi ◦ locv : uv → PFv → (Pi)Fv is trivial for v /∈ Si, since it is induced by the direct limit
over j ∈ N (with v̇Ej

∈ Ṡj) of Γv̇-module homomorphisms

1

ni
Z/Z[ΓEi/F × (Si)Ei

]0,0 →
1

nj
Z/Z[ΓEj/F × (Sj)Ej

]0,0 → X∗(unj ,Ej/Fv),

where the kernel of the second map contains all elements whose (σ, v̇Ej
)-coefficients cσ,v̇Ej

are
zero for all σ ∈ ΓEj/F , and the image of the first map lands in the subgroup of elements whose
coefficients cσ,w are zero for all w ∈ (Sj)Ej

which do not lie above an element of (Si)Ei
, which is

the case for v̇Ej
, since v̇Ei

∈ (Si)Ei
means that v ∈ Si, which is not the case, giving our desired

triviality.
The above paragraph implies that the element

∏
v∈V pi(ẋv) ∈

∏
v∈V Pi(A

⊗
Fv

3

v ) is trivial in all
but finitely-many v-coordinates, so we may view

∏
v∈V pi(ẋv) as an element of⊕

v∈Si

Z2(Av/Fv, Pi).

By viewing
∏

v∈V pi(ẋv) as an element of the restricted product
∏′

v Pi(A
⊗

Fv
3

L,v ) for some suf-
ficiently large finite extension L/F (possible because Av = lim−→AK,v over all finite extensions
K/F and each Pi/F is of finite type), where this product is restricted with respect to the sub-

groups Pi(O
⊗

OFv
3

L,v ), cf. §3.3), we obtain by Proposition 3.3.7 an element of Z2(A/A, Pi). It is
straightforward to check that as we vary across all i ∈ N, these elements describe an element of
the projective system {Z2(A/A, Pi)}i, giving an element ẋ ∈ Z2(A/A, P ).

Following [Kal18], we will now show that the class of ẋ in Ȟ2(A/A, P ) is independent of the
choice of local canonical class representatives ξ̇v and section Γ/Γv̇ → Γ. Showing independence
on the choices of ξ̇v follows easily from the analogous argument in [Kal18, §3.5, pp. 318] after
replacing the group cohomological differentials loc. cit. with Čech differentials.

As a consequence of Lemma 3.3.10 , for any v ∈ V we may find cv ∈ P (Av ⊗Fv Av) such that
dcv = Ṡv(locv(ξ̇v)) · Ṡ ′

v(locv(ξ̇v))−1. Moreover, we claim that we may choose cv such that for i
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fixed and v /∈ Si, we have pi(cv) = 1 in Pi(Av ⊗Fv Av). Indeed, by the construction in the proof
of Lemma 3.3.10, we may take

cv = (r1 · r̄3 ⊗ r2)(locv(ξ̇v)) · (r̄2 ⊗ r1 · r̄3)(locv(ξ̇v))−1,

where r : Fv → Av is the direct limit of the maps E ′
(v̇E)′ →

∏
w|v E

′
w′ defined on the w-coordinate

by the isomorphism rw : E
′
(v̇E)′

∼−→ E ′
w′ determined by the section s, similarly with r̄, where as

in the proof of Lemma 3.3.10, the subscript i in ri denotes that its source is the ith tensor factor
of (E ′

v′)
⊗

Fv
3. Since the maps r, r̄ are Fv-homomorphisms, they commute with the projections pi,

and hence
pi(cv) = (r1 · r̄3 ⊗ r2)(pilocv(ξ̇v)) · (r̄2 ⊗ r1 · r̄3)(pilocv(ξ̇v))−1,

giving the existence of such a cv.
As a result, the element c̃ :=

∏
v cv ∈

∏
v∈V P (Av ⊗Fv Av) has projection pi(c̃) with all but

finitely-many trivial coordinates, and hence has well-defined image in Pi(A⊗AA) (using Corollary
3.3.6), and setting c := lim←−i pi(c̃) gives an element of P (A ⊗A A) which satisfies Ṡ2

v(locv(ξ̇v)) ·
Ṡ

′2
v (locv(ξ̇v))−1 = dc, concluding the argument for why the class [ẋ] ∈ Ȟ2(A/A, P ) is canonical.

The final key step in constructing a canonical class in Ȟ2(F/F, P ) is showing that there is a
unique element of Ȟ2(F/F, P ) whose image in Ȟ2(A/A, P ) is the class x := [ẋ], and whose
image in lim←−i Ȟ

2(F/F, Pi) is (ξi), which we turn to now. The argument will use complexes of
tori, following the analogous one in [Kal18, §3.5]. The first result that makes this possible can be
taken directly from [Kal18] (Lemma 3.5.1 loc. cit.).

Lemma 7.4.2 For each i, there exists an isogeny of tori fi : Ti → Ui defined over F with kernel

equal to Pi. Moreover, we have the commutative diagram

1 1

Ki K ′
i

1 Pi+1 Ti+1 Ui+1 1

1 Pi Ti Ui 1

1 1 1,

where Ki and K ′
i are tori.
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For any i, consider the double complex of abelian groups Kp,q =

Ti(A) Ti(A⊗A A) Ti(A⊗A A⊗A A) . . .

Ui(A) Ui(A⊗A A) Ui(A⊗A A⊗A A) . . . .

Note that the complex with jth term Cj := H0(Kj,•) (j ≥ 0) is exactly the Čech complex of Pi
with respect to the fpqc cover A/A, and so the low-degree exact sequence for the spectral sequence
associated to a double complex gives an injective map

Ȟ1(A/A, Pi) ↪→ H1(A/A, Ti → Ui).

Moreover, lemma A.3.1 tells us that we may canonically identify H1(A/A, Ti → Ui) with the
group H1(Asep/A, Ti → Ui), and the majority of the results we will be using in this section, devel-
oped in Appendix A, are stated for the latter group. This identification, along with the analogous
one for the groups H̄ i(A/A, Ti → Ui) (Lemma A.3.2) will be implicit in what follows, in order to
apply our results from Appendix A.

Since the kernels of Ti+1 → Ti and Ui+1 → Ui are tori, combining Corollary 3.3.6 with Lemma
3.3.8 tells us that the maps Ti+1(A

⊗
A n) → Ti(A

⊗
A n) and Ui+1(A

⊗
A n) → Ui(A

⊗
A n) are surjec-

tive for all n (this is also the case when A is replaced by Asep, by smoothness). It follows that the
induced map

Cj(A/A, Ti+1 → Ui+1)→ Cj(A/A, Ti → Ui)

(where Cj(A/A, T → U) is the group of j-cochains for the corresponding total complex) is sur-
jective for any j, and so the system {Cj(A/A, Ti → Ui)}i≥0 satisfies the Mittag-Lefler condition.
Replacing A by Asep in order to use group cohomology (Lemma A.3.3), it follows from [NSW08,
Theorem 3.5.8] that we obtain the exact sequence

1→
(1)

lim←−H
1(A/A, Ti → Ui)→ H2(A/A, T → U)→ lim←−H

2(A/A, Ti → Ui)→ 1, (7.5)

where the middle term denotes the cohomology of the complex with jth term

Cj(A/A, T → U) := lim←−C
j(A/A, Ti → Ui) = Cj(A/A, T )⊕ Cj−1(A/A, U),

where T = lim←−i Ti and U := lim←−i Ui are pro-tori over F (note that, using left-exactness of inverse
limits, the kernel of T → U is our group P ). Once again, the low-degree exact sequence for double
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complexes gives us a map

Ȟ2(A/A, P )→ H2(A/A, T → U),

which need not be injective. We also have the natural map Ȟ2(F/F, P )→ Ȟ2(A/A, P ).
We have the following analogue of [Kal18, Proposition 3.5.2]:

Proposition 7.4.3 There exists a unique element of Ȟ2(F/F, P ) whose image in lim←− Ȟ
2(F/F, Pi)

equals the canonical system (ξi), and whose image in H2(A/A, T → U) coincides with the image

of the class x ∈ Ȟ2(A/A, P ) there.

Proof. If ξ̃ ∈ Ȟ2(F/F, P ) is any preimage of (ξi) ∈ lim←− Ȟ
2(F/F, Pi) and ξ̃A denotes its image in

Ȟ2(A/A, P ), the images of x and ξ̃A in lim←−H
2(A/A, Ti → Ui) via the composition

Ȟ2(A/A, P )→ H2(A/A, T → U)→ lim←−H
2(A/A, Ti → Ui)

coincide by the identical argument in [Kal18, Proposition 3.5.2], replacing the use of [KS99, The-
orem C.1.B] loc. cit. with our Proposition A.3.6 and the use of Corollary 3.3.8 loc. cit. with our
Corollary 7.2.8. To finish the proof of the Proposition, we need the following analogue of [Kal18,
Lemma 3.5.3]:

Lemma 7.4.4 The natural map

(1)

lim←− Ȟ
1(F/F, Pi)→

(1)

lim←−H
1(A/A, Ti → Ui)

is an isomorphism.

Proof. We have the tautological short exact sequence of topological groups (see §A.3 for the def-
inition of the topologies, replacing F sep and Asep in that section with F and A via the canonical
identifications)

1→ H1(F/F, Ti → Ui)/ker1(F/F, Ti → Ui)→ H1(A/A, Ti → Ui)→ cok1(F/F, Ti → Ui)→ 1,

(7.6)
and by Corollary A.4.7, the group cok1(F/F, Ti → Ui) is compact as a topological group. Since
the projective system {cok1(F/F, Ti → Ui)}i≥0 consists of compact, locally profinite groups, it is
a system of profinite groups, and we thus get that lim←−

(1) cok1(F/F, Ti → Ui) = 0.
As in [Kal18], the next step is to show that lim←− cok1(F/F, Ti → Ui) also vanishes. By Propo-

sition A.4.8, the compact group cok1(F/F, Ti → Ui) is Pontryagin dual to the discrete group
H1(WF , Ûi → T̂i)red/ker1(WF , Ûi → T̂i)red, which by Proposition A.4.2 and Lemma A.4.10 is
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canonically isomorphic to H1(Γ, Ûi → T̂i)red/ker1(Γ, Ûi → T̂i)red. Using Lemma A.4.10, we may
further identify the group H1(Γ, Ûi → T̂i)red with H2(Γ, X∗(Ui) → X∗(Ti)) = H1(Γ,Mi) (this
last identification comes from the five-lemma), and compatibly (with respect to the first identifi-
cation) identify the group ker1(Γ, Ûi → T̂i)red with ker2(Γ, X∗(U)

f∗−→ X∗(T )) = ker1(Γ,Mi).
Thus,

lim←− cok1(F/F, Ti → Ui) = lim←−(H
1(Γ,Mi)/ker1(Γ,Mi)])

∨ = (lim−→[H1(Γ,Mi)/ker1(Γ,Mi)])
∨,

so the claim will follow from showing that lim−→H1(Γ,Mi) vanishes, which is an immediate conse-
quence of Lemma 7.3.1 and Lemma 7.3.2 part (1).

Applying the functor lim←−(−) to the short exact sequence (7.6), the vanishing results we just
proved tell us that the map

(1)

lim←−[H
1(F/F, Ti → Ui)/ker1(F/F, Ti → Ui)]→

(1)

lim←−H
1(A/A, Ti → Ui)

is an isomorphism. But now since the system {ker1(F/F, Ti → Ui)}i≥0 consists of finite groups
(by Lemma A.4.8), it has vanishing lim←−

(1), and hence the natural map

(1)

lim←−H
1(F/F, Ti → Ui)→

(1)

lim←−[H
1(F/F, Ti → Ui)/ker1(F/F, Ti → Ui)]

is also an isomorphism. The claim of the lemma then follows from the fact that the natural inclusion
Ȟ1(F/F, Pi)→ H1(F/F, Ti → Ui) is an isomorphism, by the five-lemma.

The short exact sequence (7.5) and the above lemma imply that we may modify ξ̃ by an element
of lim←−

(1) Ȟ1(F/F, Pi) to ensure that the images of ξ̃A and x in H2(A/A, T → U) are equal, prov-
ing the existence claim of the proposition. Uniqueness follows from the fact that the composition

(1)

lim←− Ȟ
1(F/F, Pi)→

(1)

lim←−H
1(A/A, Ti → Ui)→ H2(A/A, T → U)

is injective (any two such ξ differ by an element of lim←−
(1) Ȟ1(F/F, Pi) which has trivial image in

H2(A/A, T → U)).

We may now define our canonical class of Ȟ2(F/F, P ):

Definition 7.4.5 The canonical class ξ ∈ Ȟ2(F/F, P ) is the element whose existence and unique-

ness is asserted in Proposition 7.4.3.

As explained in [Kal18] in the remarks following Definition 3.5.4, the class ξ is independent of
the choice of tower of isogenies {fi : Ti → Ui}.

142



CHAPTER 8

Cohomology of the Global Gerbe

8.1 Basic definitions

As in previous sections, we write H i for H i
fppf. Let ξ ∈ Ȟ2(F/F, PV̇ ) be the canonical class of

Definition 7.4.5. By Propositions 2.3.2 and 2.3.5, ξ corresponds to an isomorphism class of (fpqc)
PV̇ -gerbes split over F . Let EV̇ → (Sch/F )fpqc be such a gerbe. We equip EV̇ with the structure of
a site by giving it the fpqc topology inherited from (Sch/F )fpqc.

Recall for a finite central Z ↪→ G the subset H1(EV̇ , Z → G) ⊆ H1(EV̇ , GEV̇ ) of isomorphism
classes Z-twisted G-torsors on EV̇ . Note that since the target of a homomorphism PV̇ → Z is
finite, it always factors through the projection PV̇ → PEi,Ṡi,ni

for some i. For any other choice
of PV̇ -gerbe E ′

V̇
split over F representing ξ, we have an isomorphism of PV̇ -gerbes h : EV̇ → E ′V̇ ,

inducing an isomorphism H1(EV̇ , GEV̇ ) → H1(EV̇ , GE ′
V̇
) which, since Ȟ1(F/F, PV̇ ) vanishes by

Proposition 7.3.7, is independent of the choice of h, by Lemma 2.6.4.
The inflation-restriction sequence gives us the commutative diagram

H1(F,G) H1(EV̇ , Z → G) HomF (PV̇ , Z) H2(F,G)

H1(F,G) H1(F,G/Z) H2(F,Z) H2(F,G),

ΘP
V̇

where the second vertical map comes from defining the (G/Z)EV̇ -torsor T ×GE
V̇ (G/Z)EV̇ , which,

by construction, has trivial PV̇ -action, and thus is the pullback of a G/Z-torsor T over F , whose
class we take to be the image of [T ]. We have the following two direct translations of results from
[Kal18]:

Lemma 8.1.1 If G is either abelian or connected and reductive, then the map

H1(EV̇ , Z → G)→ H1(F,G/Z)
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defined above is surjective.

Proof. The identical argument as in [Kal18, Lemma 3.6.1] works here, replacing the use of Lemma
A.1 loc. cit. with [Tha19, Corollary 1.10] for connected reductive G.

We get an analogue of [Kal18, Lemma 3.6.2]:

Lemma 8.1.2 If G is connected and reductive, then for each x ∈ H1(EV̇ , Z → G), there exists a

maximal torus T ⊂ G such that x is in the image of H1(EV̇ , Z → T ).

Proof. One can use the same proof as for the corresponding result in [Kal18], once again replacing
the use of Lemma A.1 loc. cit. with [Tha19, Corollary 1.10].

The next goal is to construct a localization map locv : H1(EV̇ , Z → G)→ H1(Ev, Z → G) for
any v ∈ V , where Ev denotes the local gerbe defined in Chapter 3, such that the diagram

H1(F,G) H1(EV̇ , Z → G) HomF (PV̇ , Z)

H1(Fv, G) H1(Ev, Z → G) HomFv(uv, Z)

(8.1)

commutes, where (using Čech cohomology) the left-hand vertical map is induced by the inclusion
F → Fv and the right-hand map is induced by the F -homomorphism locPv : uv → (PV̇ )Fv defined
in §??.

We have the category (EV̇ )Fv := E ×Sch/F (Sch/Fv), which is an fpqc (PV̇ )Fv -gerbe split over
Fv; recall that the objects of (EV̇ )Fv are pairs (X, f), where f : U → Spec(Fv) is an F -morphism
and X lies in EV̇ (U) and morphisms are defined in the obvious way.

Fixing an isomorphism of PV̇ -gerbes (EV̇ )Fv

∼−→ Exv , where xv denotes a Čech 2-cocycle rep-
resenting the image of ξ ∈ Ȟ2(F/F, PV̇ ) in Ȟ2(Fv/Fv, PV̇ ), and an isomorphism of uv-gerbes
Ev

∼−→ Eξv , where ξv is a Čech 2-cocycle representing the local canonical class [ξv], the fact that
locPv ([ξv]) = [xv] (by Corollary 7.2.8) implies, by the functoriality of gerbes given by Construction
2.3.4, that we have a (non-canonical) morphism of fibered categories over Fv from Eξv to Exv which
is the morphism locPv on bands, and, via the composition

Ev
∼−→ Eξv → Exv

∼−→ (EV̇ )Fv → EV̇ ,

we obtain a functor Ev → EV̇ .
The functor Ev → EV̇ defined above is highly non-canonical. However, the morphism Eξv →

Exv is unique up to post-composing by an automorphism of Exv determined by a Čech 1-cocycle
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of PV̇ valued in Fv (see §2.3), and since, by Proposition 7.3.3, the group Ȟ1(Fv/Fv, PV̇ ) is trivial,
such a 1-cocycle is in fact a 1-coboundary. The same is true for the normalizing isomorphisms
Ev → Eξv and (EV̇ )Fv → Exv , using Proposition 7.3.3 and Corollary 7.3.7. We are now ready to
define our main localization map.

We can use the functor Ev → EV̇ to pull back any Z-twisted GEV̇ -torsor to a ZFv -twisted GEv -
torsor, giving a map

locv : H1(EV̇ , Z → G)→ H1(Ev, Z → G)

which, by combining the above paragraph with Proposition 2.6.3, is canonical. Note that this map
is canonical up to finer equivalence classes of GEv -torsors, where we replace isomorphism classes
with classes whose elements are related via isomorphisms T

∼−→ η∗T of GEv -torsors induced by
translation by z−1 ∈ Z(Fv) , where η : Ev → Ev is the automorphism of gerbes induced by the
1-coboundary d(z). It is straightforward to check that this localization map makes the diagram
(8.1) commute.

8.2 Tate-Nakayama duality for tori

We are now ready to discuss duality for tori. As in [Kal18], we define T ⊂ A to be the full
subcategory consisting of objects [Z → G] for which G is a torus, and for v ∈ V̇ , the category Tv
the category of pairs [Z → T ] where T is an Fv-torus and Z is finite (and defined over Fv), with
morphisms given as in A. Recall from §4.3 that associated to such a pair [Z → T ] ∈ Tv we have
the group

Y +v,tor[Z → T ] := (X∗(T/Z)/[IvX∗(T )])tor = (X∗(T/Z)/[IvX∗(T )])
NE/Fv ,

where Iv ⊂ Z[Γv] denotes the augmentation ideal, E/Fv denotes a finite Galois extension splitting
T , and the superscript NE/Fv denotes the kernel of the norm map. Moreover, by Theorem 4.4.3,
we have a canonical functorial isomorphism

ιv : Y +v,tor[Z → T ]
∼−→ H1(Ev, Z → T )

which commutes with the maps of both groups to HomFv(uv, Z).
Following [Kal18], the first step is to construct the global analogue of the groups Y +v,tor[Z →

T ], which is unchanged in the function field setting. For fixed [Z → T ] ∈ T we set Y := X∗(T ),
Y := X∗(T/Z), and A∨ := HomZ(X

∗(Z),Q/Z). We have a short exact sequence

0→ Y → Y → A∨ → 0,

145



due to the vanishing of the Ext1Z-functor for free abelian groups. For any i, the ΓEi/F -module
Z[(Si)Ei

]0 is a free abelian group, and thus we may tensor it with the above exact sequence, giving
a new short exact sequence

0→ Y [(Si)Ei
]0 → Y [(Si)Ei

]0 → A∨[(Si)Ei
]0 → 0,

and denote by Y [(Si)Ei
, Ṡi]0 ⊆ Y [(Si)Ei

]0 the preimage of the subgroup A∨[Ṡi] under the above
surjection; note that, by construction Y [(Si)Ei

, Ṡi]0 contains the image of Y [(Si)Ei
]0.

Choosing any section s : (Si)Ei
→ (Si+1)Ei+1

such that s(Ṡi) ⊂ Ṡi+1, we may define a map

s! : Y [(Si)Ei
, Ṡi]0 → Y [(Si+1)Ei+1

, Ṡi+1]0

by
s!(

∑
w∈(Si)Ei

cw[w]) =
∑

w′∈(Si+1)Ei+1
,s((w′)Ei

)=w′

c(w′)Ei
[w′].

The following result of [Kal18] (Lemma 3.7.1 loc. cit.) carries over verbatim to our situation:

Lemma 8.2.1 The assignment f 7→ s!f induces a well-defined homomorphism

! :
Y [(Si)Ei

, Ṡi]0
IEi/FY [(Si)Ei

]0
→

Y [(Si+1)Ei+1
, Ṡi+1]0

IEi+1/FY [(Si+1)Ei+1
]0

which is independent of the choice of s.

Definition 8.2.2 We define

Y [VF , V̇ ]0,+,tor := lim−→
i

Y [(Si)Ei
, Ṡi]0

IEi/FY [(Si)Ei
]0
[tor],

with transition maps given by !. We also define

Y [VF ]0,Γ,tor := lim−→
i

Y [(Si)Ei
]0

IEi/FY [(Si)Ei
]0
[tor],

with transition maps induced by !.

The above two groups fit into the short exact sequence

0→ Y [VF ]0,Γ,tor → Y [VF , V̇ ]0,+,tor → A∨[V̇ ]0 → 0,

where the last term is as defined in Lemma 7.2.6.

146



For any v ∈ V we can define a localization morphism

lv : Y [VF , V̇ ]0,+,tor → Y +v,tor

as follows. For a fixed index i, choose a representative τ̇ ∈ ΓEi/F for each right coset
τ ∈ Γv̇Ei/F

\ΓEi/F such that τ̇ = 1 for the trivial coset, and then for f =
∑

w∈(Si)Ei
cw[w] ∈

Y [(Si)Ei
, Ṡi]0, set

liv(f) =
∑

τ∈Γv̇
Ei/F

\ΓEi/F

τ̇cτ−1
(v̇)
∈ Y .

With the construction of liv in hand, the following result of [Kal18] (which is unchanged in our
setting) shows that it provides the desired localization map:

Lemma 8.2.3 The assignment f 7→ liv(f) descends to a group homomorphism

liv :
Y [(Si)Ei

, Ṡi]0
IEi/FY [(Si)Ei

]0
→ Y

IvY

that is independent of the choices of representatives τ̇ and is compatible with the transition maps !

defined above.

Proof. See the proof of [Kal18, Lemma 3.7.2].

We may thus define the localization map lv as the direct limit of the maps liv. We can now give
the statement of the global Tate-Nakayama isomorphism, following [Kal18, Theorem 3.7.3] in the
number field case:

Theorem 8.2.4 There exists a unique isomorphism

ιV̇ : Y [VF , V̇ ]0,+,tor → H1(EV̇ , Z → T )

of functors T → AbGrp that fits into the commutative diagram

Y [VF ]0,Γ,tor Y [VF , V̇ ]0,+,tor A∨[V̇ ]0

H1(F, T ) H1(EV̇ , Z → T ) HomF (PV̇ , Z),

TN ιV̇

where TN denotes the colimit over i of the finite global Tate-Nakayama isomorphisms

H−1(ΓEi/F , Y [(Si)Ei
]0)→ H1(ΓEi/F , T (OEi,Si

))
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first mentioned in Lemma 7.1.2 (these splice to give a well-defined map, by Lemma 3.1.2 and

Corollary 3.1.8 from [Kal18]), and the right vertical arrow is the one from Lemma 7.2.6.

Moreover, for each v ∈ V̇ , the following diagram commutes

Y [VF , V̇ ]0,+,tor Y +v,tor

H1(EV̇ , Z → T ) H1(Ev, Z → T ).

ιV̇

lv

ιv

locv

As in [Kal18], this theorem takes some work to prove. We start with some linear algebraic
results which can be taken directly from [Kal18]. Although Y [(Si)Ei

, Ṡi]0 is not ΓEi/F -stable,
it still makes sense to define the group Y [(Si)Ei

, Ṡi]
NEi/F

0 as the intersection Y [(Si)Ei
, Ṡi]0 ∩

Y [(Si)Ei
]
NEi/F

0 .

Lemma 8.2.5 We have the equality

Y [(Si)Ei
, Ṡi]

NEi/F

0

IEi/FY [(Si)Ei
]0

=
Y [(Si)Ei

, Ṡi]0
IEi/FY [(Si)Ei

]0
[tor].

Proof. This is [Kal18, Lemma 3.7.6].

Lemma 8.2.6 Every element of Y [(Si)Ei
, Ṡi]0/IEi/FY [(Si)Ei

]0 has a representative supported on

Ṡi.

Proof. This is [Kal18, Lemma 3.7.7].

Following the outline of [Kal18, §3.7], the first step is proving an analogous Tate-Nakayama
isomorphism involving not PV̇ , but the groups PEi,Ṡi

, which are defined as lim←−n∈N PEi,Ṡi,n
; note

that an alternative description of PV̇ is as the limit lim←−i PEi,Ṡi
; for more details, see [Kal18, §3.3].

Fix a triple (E, S, ṠE) satisfying Conditions 7.2.1, since we will be focusing on only one fixed
index i at first. Denote by TE the full subcategory of objects [Z → T ] of T such that T splits over
E.

Note that Ȟ2(Operf
S /OS, PE,ṠE

) = H2(OF,S, PE,ṠE
) = lim←−nH

2(OF,S, PE,ṠE ,n
); the first equal-

ity is a straightforward exercise, and the second one follows from the vanishing of the derived limit
lim←−

(1)H1(OF,S, PE,ṠE ,n
) due to:

Lemma 8.2.7 The groups H1(OF,S, PE,ṠE ,n
) are finite for all finite n.

Proof. Set P = PE,ṠE ,n
. By [Čes16, Proposition 4.12] (and its proof), the natural map

H1(OF,S, P )→ H1(AF,S, P ) =
∏
v∈S

H1(Fv, P )×
∏
v/∈S

H1(Ov, P )
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has closed, discrete image and finite kernel, so it suffices to show that the image is finite. We claim
that the right-hand side is compact—for this claim, it’s enough by Tychonoff’s theorem to prove
that each H1(Fv, P ) and H1(Ov, P ) is compact. We showed this result for the former groups
in Corollary 7.2.8; for the latter, note that [Čes16] (3.1.1) says that each subset H1(Ov, P ) ⊆
H1(Fv, P ) may be canonically topologized so that this inclusion is open, and since H1(Fv, P ) is
profinite (and hence totally disconnected), it is also closed, and therefore compact. Now the result
follows, since closed, discrete subspaces of compact spaces are finite.

We thus have a canonical class ξE,ṠE
∈ Ȟ2(Operf

S /OS, PE,ṠE
) = lim←−n Ȟ

2(Operf
S /OF,S, PE,ṠE ,n

)

given by the inverse limit of the classes ξE,ṠE ,n
defined just before our Lemma 7.2.3, which form

a coherent system by that same lemma. By §2.3, the group Ȟ2(Operf
S /OS, PE,ṠE

) is in bijective
correspondence with isomorphism classes of PE,ṠE

-gerbes (over Sch/OF,S) split over Operf
S ; fix

such a gerbe EE,ṠE
. For any [Z → T ] ∈ TE , the group H1(EE,ṠE

, Z → T ) is defined identically as
above. We have the usual inflation-restriction exact sequence

1→ H1(OS, T )→ H1(EE,ṠE
, Z → T )→ HomOF,S

(PEi,Ṡi
, Z)→ H2(OS, T ),

where the last map is the composition of the direct limit of the maps ΘP
E,ṠE ,n

defined by equation
(7.3) with the natural map H2(OF,S, Z)→ H2(OF,S, T ).

Pick any 2-cochain cE,S ∈ [ResE/S(Gm)](O

⊗
OF,S

3

E,S ) lifting a choice of 2-cocycle

cE,S ∈ [ResE/S(Gm)/Gm](O

⊗
OF,S

3

E,S )

representing the Tate class discussed in §7.1, a cofinal system {ni}i∈N in N×, as well as a system
of compatible ni-root maps

ki : ResE/S(Gm)(OS ⊗OF,S
OS ⊗OF,S

OE,S)→ ResE/S(Gm)(O
perf
S ⊗OF,S

Operf
S ⊗OF,S

OE,S),

as constructed in §7.1 (by “compatible," we mean in the sense discussed in §7.1). Recall that for
id ∈ End(ME,ṠE ,ni

)Γ, we get that ΨE,S,ni
(id) := βi ∈ Maps(SE,M∨

E,ṠE ,ni
)0 which is a−1-cocycle

given by

βi(w)(
∑

(γ,w)∈ΓE/F×SE

c(γ,w)[(γ, w)]) = c(1,w) ∈
1

ni
Z/Z.

Finally, we showed in §7.1 that the class ξE,ṠE ,ni
was represented by the explicit 2-cocycle

ξ̇E,ṠE ,ni
:= d(ki(cE,S)) ⊔

OE,S/OF,S

βi,
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where for x ∈ [ResE/S(Gm)](R), x̄ denotes its image in [ResE/S(Gm)/Gm](R).
Fact 3.2.3 from [Kal18] shows that for any finite Z, A∨

Z := Hom(X∗(Z),Q/Z), and n | m
multiples of exp(Z), the map

ΦE,S,n : Maps(SE, A∨
Z)0 → Hom(

ResE/S(µn)
µn

, Z)

constructed in §?? (and used to provide the pairing used in the above cup product) satisfies
ΦE,S,m(g) = ΦE,S,n(g) ◦ (−)

m
n , so that if pi+1,i : PE,ṠE ,ni+1

→ PE,ṠE ,ni
denotes the transition

map (defined over OF,S), we compute—using Lemmas 3.4.4 and 3.4.5 for Čech cup product
computations—that

pi+1,i(d(ki+1(cE,S)) ⊔
OE,S/OF,S

βi+1) = pi+1,i[d(ki+1(cE,S)) ⊔
OE,S/OF,S

ΦE,S,ni+1
(βi+1)] =

d(ki+1(cE,S)) ⊔
OE,S/OF,S

(pi+1,i◦ΦE,S,ni+1
(βi+1)) = d(ki+1(cE,S)) ⊔

OE,S/OF,S

(pi+1,i◦ΦE,S,ni
(βi+1)◦(−)

ni+1
ni ),

and by functoriality in the argument Z this last expression can be rewritten as

d(ki+1(cE,S)) ⊔
OE,S/OF,S

(ΦE,S,ni
(p∨i+1,i(βi+1))◦(−)

ni+1
ni ) = d(ki+1(cE,S)) ⊔

OE,S/OF,S

(ΦE,S,ni
(βi)◦(−)

ni+1
ni ).

Since the map (−)
ni+1
ni is clearly defined over F , basic Čech cup product calculations (cf. §3.4)

show that the above expression may be rewritten as

((−)
ni+1
ni [d(ki+1(cE,S))]) ⊔

OE,S/OF,S

(ΦE,S,ni
(βi)) = d(ki(cE,S)) ⊔

OE,S/OF,S

(ΦE,S,ni
(βi)) = ξ̇E,ṠE ,ni

,

showing that the system {ξ̇E,ṠE ,ni
}i is a well-defined 2-cocycle valued in PE,ṠE

((Operf
S )

⊗
OF,S

3
),

which we will denote by ξ̇E,ṠE
. Note that the corresponding PE,ṠE

-gerbe Eξ̇E,ṠE

is split over Operf
S

and represents the canonical class in Ȟ2(Operf
S /OS, PE,ṠE

) discussed above (in the above notation,
we can take EE,ṠE

, which is not explicit, to be Eξ̇E,ṠE

, which is explicit). It is straightforward
to check that Eξ̇E,ṠE

with morphisms Eξ̇E,ṠE

→ Eξ̇E,ṠE,ni

induced by the projection maps PE,ṠE
→

PE,ṠE ,ni
may be canonically identified with the inverse limit lim←−i Eξ̇E,ṠE,ni

of the explicit finite-level
gerbes (cf. §2.5).

Lemma 8.2.8 The pullback maps

H1(Eξ̇E,ṠE,ni

, TEξ̇
E,ṠE,ni

)→ H1(Eξ̇E,ṠE

, TEξ̇
E,ṠE

)
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induce an isomorphism

lim−→
i

H1(Eξ̇E,ṠE,ni

, Z → T )
∼−→ H1(Eξ̇E,ṠE

, Z → T ).

Proof. Using the equivalence of categories between TEξ̇
E,ṠE

-torsors and ξ̇E,ṠE
-twisted T -torsors

given by Proposition 2.4.10, it’s enough to prove the corresponding statement for twisted torsors.
Picking an Operf

S -trivialization of any such torsor (X,ψ) (where, recall that X is a T -torsor over
Operf
S and ψ is the twisted gluing isomorphism ψ : p∗2X → p∗1X), we may assume that X = TOperf

S

is the trivial torsor. The PE,ṠE
-action on X is defined by an OF,S-homomorphism φ : PE,ṠE

→ Z,
which factors through a homomorphism φi : PE,ṠE ,ni

→ Z for some i, and our twisted gluing map
ψ is equivalent to giving an element x ∈ T (Operf

S ⊗OF,S
Operf
S ) whose differential is φ(ξ̇E,ṠE

) =

φi(ξ̇E,ṠE ,ni
). The data of φi and x thus defines a ξ̇E,ṠE ,ni

-twisted T -torsor whose pullback is
isomorphic to (X,ψ), as desired.

For a fixed [Z → T ] in TE , we set T̄ := T/Z, and recall our usual notation with cocharacter
groups. Applying the (exact) functor −⊗Z Z[SE]0 to the exact sequence

0→ Y → Y → A∨ → 0

gives the short exact sequence

0→ Y [SE]0 → Y [SE]0 → A∨[SE]0 → 0. (8.2)

There is an obvious pairing of OF,S-group schemes

ResE/S(Gm)

Gm

× Y [SE]0 → T, (8.3)

where we are making the canonical identification of ΓE/F -modules

Y [SE]0 = Hom(
ResE/S(Gm)

Gm

, T ).

Note that for i large enough so that exp(Z) divides ni, for g ∈ Y [SE]0, we have ni · g ∈ Y [SE]0

and the restriction of ni · g to the subgroup ResE/S(µni
)/µni

factors through the subgroup Z, and
in fact gives the map

ResE/S(µni
)

µni

→ Z

given by [g]×− → Z, via the pairing A∨[SE]0 × ResE/S(µni
)/µni

→ Z induced by (7.1), where
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[g] denotes the image of g in A∨[SE]0 in the short exact sequence (8.2).
Define A∨[ṠE]

NE/F to be A∨[SE]
NE/F

0 ∩ A∨[ṠE]0, which is in bijection with Hom(PE,ṠE
, Z)Γ

via the map ΨE,S defined in Lemma 7.2.2. Following the linear algebraic situation for the
group PV̇ , define Y [SE, ṠE]0 as the preimage of A∨[ṠE]0 in Y [SE]0, and set Y [SE, ṠE]

NE/F

0 :=

Y [SE, ṠE]0∩Y [SE]
NE/F

0 . We are now ready to give the first version of the extended Tate-Nakayama
isomorphism, which is the analogue of in [Kal18, Proposition 3.7.8]:

Proposition 8.2.9 1. Given Λ̄ ∈ Y [SE, ṠE]
NE/F

0 and i large enough so that exp(Z) divides ni,

we may define a ξ̇E,ṠE ,ni
-twisted Čech 2-cocycle valued in T by the pair

zΛ̄,i := (ki(cE,S) ⊔
OE,S/OF,S

niΛ̄,Ψ
−1
E,S,ni

([Λ̄])),

where the unbalanced cup product is with respect to the pairing (8.3).

2. The pullback p∗i+1,i(zΛ̄,i) coincides with the ξ̇E,ṠE ,ni+1
-twisted cocycle zΛ̄,i+1. Thus, pulling

back any zΛ,i to Eξ̇E,ṠE

defines the same ξ̇E,ṠE
-twisted cocycle, denoted by zΛ̄.

3. The assignment Λ̄ 7→ zλ̄ defines an isomorphism

ι̇E,ṠE
:
Y [SE, ṠE]

NE/F

0

IE/FY [SE]0
→ H1(Eξ̇E,ṠE

, Z → T )

which is functorial in [Z → T ] ∈ TE and makes the following diagram commute:

1 1

Ĥ−1(ΓE/F , Y [SE]0) H1(OF,S, T )

Y [SE ,ṠE ]
NE/F
0

IE/FY [SE ]0
H1(Eξ̇E,ṠE

, Z → T )

A∨[ṠE]
NE/F Hom(PE,ṠE

, Z)Γ

Ĥ0(ΓE/F , Y [SE]0) H2(OF,S, T ).

TN

ι̇E,ṠE

Ψ−1
E,S

−TN

Proof. The proof will follow the same outline as the analogous one in [Kal18]. Proving the first
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claim just means showing, for fixed large enough i, the equality

d(ki(cE,S) ⊔
OE,S/OF,S

niΛ̄) = Ψ−1
E,S,ni

([Λ̄])(ξ̇E,ṠE ,ni
).

Viewing niΛ̄ as a −1-cochain, we see that d(niΛ̄) = 0, since by construction Λ̄ is killed by
NE/F . Hence, it follows from Proposition 3.4.3 that

d(ki(cE,S) ⊔
OE,S/OF,S

niΛ̄) = d[ki(cE,S)] ⊔
OE,S/OF,S

niΛ̄, (8.4)

and now since d[ki(cE,S)] lies in the subgroup [ResE/S(µni
)/µni

]((Operf
S )

⊗
OF,S

3
) and we know

that the restriction of niΛ̄ to ResE/S(µni
)/µni

is equal to ΦE,S,ni
([Λ̄]), we can rewrite the right-

hand term of (8.4) as d[ki(cE,S)] ⊔
OE,S/OF,S

ΦE,S,ni
([Λ̄]). By functoriality, this term can be rewritten

as d[ki(cE,S)] ⊔
OE,S/OF,S

ΦE,S,ni
(Ψ−1

E,S,ni
([Λ̄])∨(βi)), which again by functoriality may further be

expressed as

d[ki(cE,S)] ⊔
OE,S/OF,S

Ψ−1
E,S,ni

([Λ̄]) ◦ ΦE,S,ni
(βi) = Ψ−1

E,S,ni
([Λ̄])(d[ki(cE,S)] ⊔

OE,S/OF,S

ΦE,S,ni
(βi)),

where to obtain the above equality we are using the fact Ψ−1
E,S,ni

([Λ̄]) is ΓE/F -fixed to apply Lemma
3.4.5. But now by definition this last term equals Ψ−1

E,S,ni
([Λ̄])(ξ̇E,ṠE ,ni

), as desired.
We now move to the second claim of the proposition. The first step is noting that pi+1,i ◦

Ψ−1
E,S,ni+1

([Λ̄]) = Ψ−1
E,S,ni

([Λ̄]), since, as discussed in Lemma 7.2.2, the maps ΨE,S,n are compatible
with the projection maps for the system {PE,ṠE ,ni

}i. Moreover, we have by the Z-bilinearity of the
unbalanced cup product and coherence of the system of maps {ki}i that

ki+1(cE,S) ⊔
OE,S/OF,S

ni+1Λ̄ = ki+1(cE,S) ⊔
OE,S/OF,S

(
ni+1

ni
)[niΛ̄] = ki(cE,S) ⊔

OE,S/OF,S

niΛ̄,

concluding the proof of the second claim.
It is clear that the map Λ̄ 7→ zΛ̄ defines a functorial homomorphism from Y [SE, ṠE]

NE/F

0 to
H1(Eξ̇E,ṠE

, Z → T ). Moreover, if Λ̄ lies in the subgroup Y [SE]0, then we have, first of all, that

[Λ̄] vanishes in A∨[SE]0, so that the homomorphism associated to zΛ̄ is trivial. By Z-bilinearity
and the fact that already Λ̄ ∈ Y [SE]0, the associated twisted cocycle (which is, by the previous
line, an actual cocycle) is given by cE,S ⊔

OE,S/OF,S

Λ̄, which, since cE,S is valued in the finite étale

(Galois) extension OE,S/OF,S , Proposition 3.4.1 and [Kal16, §4.3] tell us that (after applying the
appropriate comparison isomorphisms) this cup product may be computed as the usual Galois-
cohomological cup product cE,S ∪ Λ̄, which sends all of IE/FY [SE]0 to 1-coboundaries, showing
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that the above map induces a functorial homomorphism

Y [SE, ṠE]
NE/F

0

IE/FY [SE]0
→ H1(Eξ̇E,ṠE

, Z → T ),

as asserted. This argument also shows that the top square in the diagram of the proposition com-
mutes. The commutativity of the middle square is by construction, and the final square commutes
by the diagram in Lemma 7.1.2. Since all horizontal maps in the diagram apart from ι̇E,ṠE

are
isomorphisms, it is an isomorphism as well by the five-lemma.

The issue now is that, given our non-canonical explicit gerbe Eξ̇E,ṠE

, it is not clear that such
an isomorphism will be canonical, or even that the groups H1(EE,ṠE

, Z → T ) are canonical. The
following result addresses these concerns:

Proposition 8.2.10 The group H1(EE,ṠE
, Z → T ) is independent of the choice of gerbe EE,ṠE

up to unique isomorphism, and is equipped with a canonical functorial isomorphism ιE,ṠE
to the

group
Y [SE, ṠE]

NE/F

0

IE/FY [SE]0

that fits into the commutative diagram of Proposition 8.2.9.

Proof. The map ιE,ṠE
is obtained by composing an isomorphism (which the proposition asserts is

unique) H1(EE,ṠE
, Z → T )→ H1(Eξ̇E,ṠE

, Z → T ) induced by any isomorphism of PE,ṠE
-gerbes

EE,ṠE

∼−→ Eξ̇E,ṠE

and then applying ι̇E,ṠE
from Proposition 8.2.9.

This proposition requires work to show, but all the necessary arguments are done in [Kal18,
§3.7]. The main ingredient is Lemma 3.7.10 loc. cit., which is purely group-theoretic and carries
over to our setting unchanged (in the statement of that Lemma, eliminate the use of S and replace
NS by N). Once this result is known, [Kal18, Corollary 3.7.11] proves the proposition. The proof
of this corollary relies on Lemma 3.7.9 loc. cit., which holds in our setting with NS replaced by
N, Proposition 3.7.8 loc. cit., which is our Proposition 8.2.9, and the finiteness of H1(OF,S, T ),
which is true in our setting as well.

Note that, in particular, the isomorphism ιE,ṠE
does not depend on the choice of cochain cE,S

lifting a representative of the canonical Tate class in H2(OF,S,ResE,S(Gm)/Gm) which was used
to construct the explicit gerbes Eξ̇E,ṠE,ni

and the isomorphism ι̇E,ṠE
in Proposition 8.2.9.

In order to extend the isomorphism of Proposition 8.2.9 to EV̇ , we need to investigate what
happens as we vary the extension E/F . As such, let K/F be a finite Galois extension con-
taining E, and (S ′Ṡ ′

K) be a pair satisfying Conditions 7.2.1. We may assume that S ⊂ S ′

and ṠE ⊂ (Ṡ ′
K)E . Let EK,Ṡ′

K
and EE,ṠE

be gerbes corresponding to the canonical classes
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ξK,Ṡ′
K
∈ Ȟ2(Operf

S′ /OF,S′ , PK,Ṡ′
K
) and ξE,ṠE

∈ Ȟ2(Operf
S /OF,S, PE,ṠE

), respectively. The first step
is to construct an inflation map

Inf : H1(EE,ṠE
, Z → T )→ H1(EK,Ṡ′

K
, Z → T ).

We begin by pulling back EE,ṠE
, which we recall is a PE,ṠE

-gerbe over OF,S that is split over
Operf
S , to the (PE,ṠE

)OF,S′ -gerbe EE,ṠE
×Sch/OF,S

(Sch/OF,S′) =: (EE,ṠE
)OF,S′ , which is split over

OF,S′ · Operf
S (taken inside F ), contained in Operf

S′ . It is straightforward to check that the Čech
cohomology class in Ȟ2(Operf

S′ /OF,S′ , (PE,ṠE
)OF,S′ ) corresponding to (EE,ṠE

)OF,S′ is the image
of ξE,ṠE

under the obvious morphism of Čech cohomology groups. We have a projection map
PK,Ṡ′

K
→ (PE,ṠE

)OF,S′ given by the inverse limit of the finite-level projection maps, which on
degree-2 Čech cohomology groups, by Lemma 7.2.5, sends ξK,Ṡ′

K
to the image of ξE,ṠE

. Using
this equality of cocycles, picking normalizations of EE,ṠE

and EK,Ṡ′
K

and using Construction 2.3.4
allows us to construct a (non-canonical) morphism of stacks overOF,S′ from EK,Ṡ′

K
to (EE,ṠE

)OF,S′ .
By pulling back torsors via the composition of functors

EK,Ṡ′
K
→ (EE,ṠE

)OF,S′ → EE,ṠE
,

we get the desired inflation map.
The map we just constructed from H1(EE,ṠE

, Z → T ) to H1(EK,Ṡ′
K
, Z → T ) is evidently

functorial in [Z → T ] ∈ TE , but (since we had to choose normalizations of gerbes as well as a
1-coboundary) it is not a priori clear that it is canonical. The following result addresses this issue,
and is taken directly from [Kal18]:

Proposition 8.2.11 The inflation map constructed above is independent of the choice of functor

EK,Ṡ′
K
→ EE,ṠE

, injective, functorial in [Z → T ] ∈ TE , and fits into the two commutative diagrams

below:
H1(EE,ṠE

, Z → T ) H1(EK,Ṡ′
K
, Z → T )

Y [SE ,ṠE ]
NE/F
0

IE/FY [SE ]0

Y [S′
K ,Ṡ

′
K ]

NK/F
0

IK/FY [S′
K ]0

,

Inf

ιE,ṠE

!

ιK,Ṡ′
K
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and
1 1

H1(OF,S, T ) H1(OF,S′ , T )

H1(EE,ṠE
, Z → T ) H1(EK,Ṡ′

K
, Z → T )

Hom(PE,ṠE
, Z)Γ Hom(PK,Ṡ′

K
, Z)Γ.

Inf

Inf

Proof. The commutativity of the second diagram is by construction. For injectivity, note that the
homomorphism Hom(PE,ṠE

, Z)Γ → Hom(PK,Ṡ′
K
, Z)Γ is injective, since it’s given by the homo-

morphism Hom(A,ME,ṠE
)Γ → Hom(A,MK,Ṡ′

K
)Γ induced by the ME,ṠE

→ MK,Ṡ′
K

which is
given as the direct limit of injective maps, and is thus itself injective. Moreover, the inflation map
H1(OF,S, T ) → H1(OF,S′ , T ) is injective by [Kal18, Lemma 3.1.10], which works in our setting
via étale-to-group cohomology comparison discussed in §3.2. Now the desired injectivity follows
from the second diagram and basic diagram-chasing. The rest of the proposition follows from the
argument given in [Kal18] for the proof of Proposition 3.7.12 loc. cit.

Recall the exhaustive tower of finite Galois extensions Ei/F and pairs (Si, Ṡi) satisfying Con-
ditions 7.2.1 and the inclusions Si ⊂ Si+1 and Ṡi ⊂ (Ṡi+1)Ei

. For any PEi,Ṡi
-gerbe Ei over OF,Si

,
split over Operf

Si
, representing the Čech 2-cocycle ξEi,Ṡi

, we first get the (PEi,Ṡi
)F -gerbe (Ei)F → Ei

over F , split over F ; note that the gerbe (Ei)F corresponds to the Čech cohomology class given
by the image of ξEi,Ṡi

in Ȟ2(F/F, (PEi,Ṡi
)F ). By construction of the canonical class ξ, the im-

age of ξ in Ȟ2(F/F, (PEi,Ṡi
)F ) equals this image of ξEi,Ṡi

. Thus, after normalizing the gerbes
EV̇ and Ei and choosing a coboundary, we get a functor EV̇ → Ei, and thus by pullback a group
homomorphism

Inf : H1(Ei, Z → T )→ H1(EV̇ , Z → T ).

Proposition 8.2.12 The above inflation maps splice together to give a canonical isomorphism of

functors T → AbGrp:

lim−→
i

H1(Ei, Z → T )→ H1(EV̇ , Z → T ).

Proof. Following the structure of the proof of [Kal18, Proposition 3.7.13], the first step is showing
that each inflation map is injective. This follows from an identical argument as in Proposition
8.2.11, replacing OF,S′ with F and EK,Ṡ′

K
with EV̇ , using that PV̇ → PEi,Ṡi

is surjective and,
again from [Kal18, Lemma 3.1.10], that the inflation map H1(OF,Si

, T )→ H1(F, T ) is injective.
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Then the argument in the proof of [Kal18, Proposition 3.7.13] shows that each inflation map is
independent of gerbe normalizations and choice of coboundary (and is thus canonical). From
here, the rest of the argument in [Kal18] carries over verbatim to our situation (this argument uses
Lemmas 3.7.10 and 3.1.10 loc. cit, which, as we have argued, are true in the global function field
setting)

We are now in a position to prove Theorem 8.2.4. We obtain the functorial isomor-
phism ιV̇ by first (using Lemma 8.2.5) applying the functorial isomorphism Y [VF , V̇ ]0,+,tor

∼−→

lim−→i

Y [(Si)Ei
,Ṡi]

NEi/F
0

IEi/F
Y [(Si)E ]0

, then taking the functorial isomorphism

lim−→
i

ιEi,Ṡi
: lim−→

i

Y [(Si)Ei
, Ṡi]

NEi/F

0

IEi/FY [(Si)E]0
→ lim−→

i

H1(Ei, Z → T ),

which is canonical and well-defined by Proposition 8.2.11, and then finally applying the canonical
identification lim−→i

H1(Ei, Z → T ) → H1(EV̇ , Z → T ) of Proposition 8.2.12. Applying the
direct limit functor to the diagram of Proposition 8.2.9 (and using Proposition 8.2.10) gives the
commutativity of the first diagram in Theorem 8.2.4—the fact that we can apply the direct limit
functor to this diagram is a consequence of Proposition 8.2.11. Now the uniqueness of ιV̇ making
the first diagram commute, as well as the commutativity of the second diagram, both follow from
the abstract framework of [Kal18, Lemma 3.7.10], as explained in the proof of Theorem 3.7.3 loc.
cit.

We conclude this subsection by collecting some local-to-global consequences of Theorem 8.2.4.

Corollary 8.2.13 We have the following commutative diagram with exact bottom row

H1(EV̇ , Z → T )
⊕

v∈V̇ H
1(Ev, Z → T )

Y [VF , V̇ ]0,+,tor
⊕

v∈V̇ Y +v,tor
Y
IY

[tor].

(locv)v

ιV̇

(lv)v

(ιv)v

Σ

Proof. This follows from the proof of [Kal18, Corollary 3.7.4] (the argument loc. cit. relies on
that paper’s analogue of Theorem 8.2.4 and arguments involving the bottom-row, which are purely
Galois-cohomological and thus are unchanged in our setting).

Corollary 8.2.14 Let [Z → G] ∈ A with connected reductive G and x ∈ H1(EV̇ , Z → G). Then

locv(x) is the neutral element in H1(Ev, Z → G) for almost all v ∈ V̇ .

Proof. As explained in [Kal18], this is a consequence of finding an element in H1(EV̇ , Z → T )

for some maximal torus T which maps to x (possible by Lemma 8.1.2), deducing the result for
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this element of H1(EV̇ , Z → T ) using the previous corollary, and then invoking the functoriality
of our localization maps.

8.3 Extending to reductive groups

Let R denote the full subcategory of A consisting of objects [Z → G] where G is a connected
reductive group over F . In the corresponding section (§3.8) of [Kal18], it is necessary for duality
theorems to replace the sets H1(EV̇ , Z → G) with a quotient, denoted by H1

ab(EV̇ , Z → G).
However, in our case, due to the vanishing of H1(F,G) for all simply-connected (semi-simple)
connected groups G over F (which is is an immediate consequence of [Tha08, Theorem 2.4]), this
replacement will not be necessary for us.

The first step in extending Theorem 8.2.4 to R is defining an analogue of the linear algebraic
data Y [VF , V̇ ]0,+,tor([Z → T ]) for [Z → T ] ∈ T . For a maximal F -torus T ofG, define the abelian
group

lim−→
(E,SE ,ṠE)

[X∗(T/Z)/X∗(Tsc)][SE, ṠE]
NE/F

0

IE/F ([X∗(T )/X∗(Tsc)][SE]0)
,

where the colimit is over any cofinal system of triples (E, SE, ṠE), where E/F is a finite Ga-
lois extension splitting T and the pair (SE, ṠE) satisfies Conditions 7.2.1; the transition maps
are given by the map ! defined in the previous section. The only term appearing in this colimit
that we need to define is [X∗(T/Z)/X∗(Tsc)][SE, ṠE]0, which we take to be those elements of
[X∗(T/Z)/X∗(Tsc)][SE]0 such that if w /∈ ṠE , then cw ∈ X∗(T )/X∗(Tsc) (as usual, the superscript
NE/F denotes those elements which are killed by the E/F -norm).

Now for two such tori T1, T2, we can define a map

lim−→
[X∗(T1/Z)/X∗(T1,sc)][SE, ṠE]

NE/F

0

IE/F ([X∗(T1)/X∗(T1,sc)][SE]0)
→ lim−→

[X∗(T2/Z)/X∗(T2,sc)][SE, ṠE]
NE/F

0

IE/F ([X∗(T2)/X∗(T2,sc)][SE]0)
(8.5)

as follows. By [Kal16, Lemma 4.2], for any g ∈ G(F sep) such that Ad(g)(T1) = T2, we get an
isomorphism X∗(T1/Z)/X∗(T1,sc) → X∗(T2/Z)/X∗(T2,sc) which is independent of the choice of
g, and is thus Γ-equivariant. It follows that Ad(g) also induces the desired homomorphism (8.5)
on direct limits. We then define a functorR → AbGrp given by

Y [VF , V̇ ]0,+,tor([Z → G]) := lim−→[ lim−→
(E,SE ,ṠE)

[X∗(T/Z)/X∗(Tsc)][SE, ṠE]
NE/F

0

IE/F ([X∗(T )/X∗(Tsc)][SE]0)
],

where the outer colimit is over all maximal F -tori T of G via the maps constructed above. It is
clear that this extends the functor Y [VF , V̇ ]0,+,tor constructed in the previous section for T ⊂ R,
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so our notation is justified. In what follows, we will always take our colimits over the fixed cofinal
system (Ei, Si, Ṡi) constructed above (such a system eventually splits any F -torus T ).

We can now prove an extended duality theorem:

Theorem 8.3.1 The isomorphism of functors ιV̇ from Theorem 8.2.4 extends to a unique iso-

morphism of functors (valued in pointed sets) on R, also denoted by ιV̇ , from Y [VF , V̇ ]0,+,tor to

H1(EV̇ ,−).

Proof. Fix [Z → G] in R and T a maximal F -torus of T . We claim that the fibers of the compo-
sition

Y [VF , V̇ ]0,+,tor([Z → T ])
ιV̇−→ H1(EV̇ , Z → T )→ H1(EV̇ , Z → G)

are torsors under the image of

Y [VF ]0,Γ,tor(Tsc)→ Y [VF , V̇ ]0,+,tor([Z → T ]).

By twisting, it’s enough to prove this for the fiber over the class of the trivial torsor in the pointed
set H1(EV̇ , Z → G). That the image of an element x lands in this class means that it lies in the
subset H1(F,G) of the right-most term, and hence its image in the middle term lies in H1(F, T );
this already means that x ∈ Y [VF ]0,Γ,tor(T ). Moreover, the image of x in H1(F, T ) lies in the fiber
over the neutral class for the map H1(F, T ) → H1(F,G). We have the commutative diagram of
pointed sets with exact rows

(G/T )(F ) H1(F, T ) H1(F,G)

(Gsc/Tsc)(F ) H1(F, Tsc) H1(F,Gsc),

and since the natural map Gsc/Tsc → G/T is an isomorphism (of F -schemes, not groups), we may
lift the image of x in H1(F, T ) to an element xsc ∈ H1(F, Tsc). Now the claim is clear by the
functoriality of Tate-Nakayama duality for tori.

The above claim immediately implies that we have an injective map

Y [VF , V̇ ]0,+,tor([Z → T ])

Im[Y [VF ]0,Γ,tor(Tsc)]
→ H1(EV̇ , Z → G).

Arguments involving cocharacter modules (see [Kal18], proof of Theorem 3.8.1) show that the
image Im[Y [VF ]0,Γ,tor(Tsc)] is exactly the kernel of the natural map

Y [VF , V̇ ]0,+,tor([Z → T ])→ Y [VF , V̇ ]0,+,tor([Z → G]),
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and so, putting the above two observations together, we have a natural inclusion

Im(Y [VF , V̇ ]0,+,tor([Z → T ]) ↠ Y [VF , V̇ ]0,+,tor([Z → G])) ↪→ H1(EV̇ , Z → G).

Now note that any two elements of Y [VF , V̇ ]0,+,tor([Z → G]) lie in the image of the group
Y [VF , V̇ ]0,+,tor([Z → T ]) for some maximal F -torus T ⊂ G. The analogous argument using
elliptic maximal tori (over the local fields Fv) in the proof of [Kal18, Theorem 3.8.1] works for
us, once we replace [PR94, Corollary 7.3] with [Tha13, Lemma 3.6.1], using that H2(Fv, T

′
sc)

vanishes for any Fv-anisotropic maximal torus T ′
sc (by Tate-Nakayama duality), and the fact that

the map H2(F, T ′
sc) →

∏
v∈VF H

2(Fv, T
′
sc) is injective whenever there exists a place v ∈ S such

that (T ′
sc)Fv is an Fv-anisotropic maximal torus in a connected semisimple group Gsc (see [PR94,

Proposition 6.12], the proof of which works for function fields).
We now claim that if xi ∈ Y [VF , V̇ ]0,+,tor([Z → Ti]) for i = 1, 2 map to the same element

in Y [VF , V̇ ]0,+,tor([Z → G]), then their images ιV̇ (xi) ∈ H1(EV̇ , Z → Ti) map to the same
element of H1(EV̇ , Z → G). We show this explicitly: Choose j large enough so that Ej splits Ti,
and such that exp(Z) | nj , xi comes from Λ̄i ∈ Y i[(Sj)Ej

, Ṡj]
NEj/F

0 ; choose also a lift cEj ,Sj
∈

[ResEj ,Sj
(Gm)/Gm](O

⊗
OF,S

3

Ej ,S
) of a 2-cocycle representative of the global Tate class (and nj-root

maps kj as constructed in §7.1). Denote by Ėj the explicit gerbe EξEj,Ṡj
defined in §8.2, similarly

with Ėj,n for n ∈ N. We know that ι̇V̇ (xi) is represented in H1(Ėj, Z → Ti) by the pullback of
the twisted 2-cocycles zΛ̄i,nj

(defined in §8.2 — to get an element of H1(EV̇ , Z → Ti), use the
canonical inflation map from H1(Ėj, Z → Ti)), denoted by zΛ̄i

. We want to show that the twisted
2-cocycles zΛ̄i

give the same class of torsor in H1(EV̇ , Z → G); since any choice of functor
EV̇ → Ėj factors through (Ėj)F (by construction), it is enough to show that zΛ̄i

are equivalent as
twisted 2-cocycles in H1((Ėj)F , Z → G); due to the fact that by construction both zΛ̄i

are pulled
back from H1((Ėj,nj

)F , Z → G), it’s enough to show the equality of zΛ̄1,nj
and zΛ̄2,nj

in the latter
cohomology set. The next part of the argument is essentially the proof of Lemma 4.5.9.

It is clear that the images [Λ̄i] ∈ Hom(A,MEj ,Sj ,nj
)Γ = A∨[(Sj)Ej

]
NEj/F

0 are equal, which is the
first step to showing equality of twisted cocycles. Choose g ∈ G(F sep) such that Ad(g)Λ̄1 = Λ̄2 +

M for M ∈ X∗(T2,sc/Z)[(Sj)Ej
]0 (which exists by assumption). We have the ΓEj/F -equivariant

injection X∗(Ti/Z) → X∗(Ti,ad) ⊕ X∗(G/(Z · DG)) induced by the isogeny Ti/Z → Ti/(Z ·
Z(DG)), and we write Λ̄1 = q1+r according to this decomposition. Now since Λ̄2 = Ad(g)(Λ̄1)+

M , we get that the corresponding decomposition for Λ̄2 is given by (Ad(g)q1 + M) + r, since
M ∈ X∗(T2,sc/Z)[(Sj)Ej

]0, and the image of X∗(T2,sc/Z) in X∗(G/(Z ·DG)) is trivial, since the
projection of T2,sc to G factors through DG. We may replace nj with nj′ for a sufficiently large
j′ ∈ N to assume that njq1 ∈ X∗(T1,sc)[(Sj)Ej

]
NEj/F

0 (possible because T1,sc → T1,ad is an isogeny),
and that njr ∈ X∗(Z(G)

◦)[(Sj)Ej
]0 (possible because Z(G)◦ → G/(Z ·DG) is an isogeny).
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We are now ready to demonstrate the equality of the twisted cocycles zΛ̄1,nj
and zΛ̄2,nj

(or
rather, their images in H1((Ėj,nj

)F , Z → G)). Recall (since we’ve already shown equality of the
associated homomorphisms) that this means finding some x ∈ G(F ) such that

kj(cEj ,Sj
) ⊔
OE,S/OF,S

njΛ̄2 = p1(x) · [kj(cEj ,Sj
) ⊔
OE,S/OF,S

njΛ̄1] · p2(x)−1

inside the group G(F ⊗F F ). Decomposing Λ̄i as above and noting that kj(cEj ,Sj
) ⊔
OE,S/OF,S

njr ∈

Z(G)(F ⊗F F ), this reduces to the same equality with Λ̄1 replaced by q1 and Λ̄2 replaced by
q2 := Ad(g)q1 +M . Following [Kal18], we set

ci := kj(cEj ,Sj
) ⊔
OE,S/OF,S

njqi ∈ Ti,sc(F ⊗F F );

note that, by construction, njqi ∈ X∗(Ti,sc)[(Sj)Ej
]
NEj/F

0 .
The image of ci in Ti,ad(F⊗F F ) is equal (by Z-bilinearity of the unbalanced cup product, using

that qi ∈ X∗(T1,ad)[(Sj)Ej
]0) to cEj ,Sj

⊔
E/F

qi—here, since we are working with Čech cohomology

with respect to F , we have switched the unbalanced cup product notation. But now cEj ,Sj
⊔
E/F

qi =

cEj ,Sj
∪ qi is a Čech 1-cocycle of Ti,ad(F ⊗F F ), so we may twist Gsc by c1 to obtain the twisted

F -form G1
sc with isomorphism

ϕ : (Gsc)F → (G1
sc)F

such that p∗1ϕ ◦ p∗2ϕ−1 = Ad(c1) on (Gsc)F⊗FF
.

We claim that p∗1ϕ(c2 · c−1
1 ) is a 1-cocycle in G1

sc(F ⊗F F ); an identical computation as in
the proof of Lemma 4.5.9 shows that the differential of p∗1ϕ(c2 · c−1

1 ) post-composed with the
isomorphism q∗1ϕ

−1 (where q1 : F → F
⊗

F 3
is inclusion into the first factor) gives dc2 · dc−1

1 ,
where, by our unbalanced cup product formulas,

dci = d[kj(cEj ,Sj
)] ⊔
E/F

njqi,

using that the Ej/F -norm of njqi vanishes. The cocycle claim is proven after we observe that, as
explained in [Kal18], the inclusions Z(Gsc)→ Ti,sc give maps

X∗(Ti,ad)[(Sj)Ej
]0 →

X∗(Ti,ad)

X∗(Ti,sc)
[(Sj)Ej

]0 → Hom(
ResEj ,Sj

(µnj
)

µnj

, Z(Gsc)),

under which the images of q1 and q2 coincide.
By the vanishing of H1(F,G1

sc) = Ȟ1(F/F,G1
sc) (since G1

sc is simply-connected and con-
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nected), there is some x ∈ Gsc(F ) such that

c2 · c−1
1 = p1(x)

−1c1p2(x)c
−1
1 ,

and hence the image of x in G(F ) realizes the desired equivalence of twisted cocycles.
We may finally deduce the claim of the theorem. We showed above that for a maximal F -torus

T of G, there is a natural inclusion

Im(Y [VF , V̇ ]0,+,tor([Z → T ])→ Y [VF , V̇ ]0,+,tor([Z → G])) ↪→ H1(EV̇ , Z → G),

and, as we have shown, these images capture all elements of Y [VF , V̇ ]0,+,tor([Z → G]). Thus, for
x ∈ Y [VF , V̇ ]0,+,tor([Z → G])), we define ιV̇ (x) to be the image of ιV̇ (y) ∈ H1(EV̇ , Z → T )

in H1(EV̇ , Z → G), where y ∈ Y [VF , V̇ ]0,+,tor([Z → T ]) maps to x. By our above argument,
the induced map Y [VF , V̇ ]0,+,tor([Z → G]) → H1(EV̇ , Z → G) does not depend on the choice
of preimage y. This map is evidently surjective, by Lemma 8.1.2, and is injective because of the
above natural inclusion and the fact that any two elements of Y [VF , V̇ ]0,+,tor([Z → G]) both lie in
the image of Y [VF , V̇ ]0,+,tor([Z → T ]) for some T . By construction, these isomorphisms extend
the isomorphism of functors ιV̇ defined on the full subcategory T , and are functorial with respect
to morphisms [Z → T ] → [Z → G] in R given by inclusions of maximal tori defined over F .
Since every x ∈ H1(EV̇ , Z → G) lies in the image of some H1(EV̇ , Z → T ), it follows that the
extension of ιV̇ toR also defines an isomorphism of functors onR.

To conclude this subsection, we state some local-global compatibilities that arise from Theorem
8.3.1. Note that the morphism of functors from T to AbGrp defined in the previous section, given
by, for a fixed v ∈ V and [Z → T ] ∈ T , the map lv : Y [VF , V̇ ]0,+,tor([Z → T ]) → Y +v,tor([Z →
T ]), may be extended to a morphism of functors on R induced by (after picking a set of coset
representatives for Γv̇Ei/F

\ΓEi/F ) mapping f ∈ [X∗(T/Z)/X∗(Tsc)][SE, ṠE]0 to an element of
X∗(T/Z)/X∗(Tsc) via the same formula as in the tori case. We recall the functor Y +,tor : R →
AbGrp from §4.5.

Corollary 8.3.2 We have a commutative diagram with exact bottom row:

H1(EV̇ , Z → G)
⊔
v∈V H

1(Ev, Z → G)

Y [VF , V̇ ]0,+,tor([Z → G])
⊕

v∈V Y +v,tor([Z → G]) Y +,tor([Z → G]),

(locv)v

(lv)v

ιV̇

Σ

(ιv)v

where the symbol
⊔

denotes the subset of the direct product of pointed sets in which all but finitely

162



many coordinates equal the neutral element, and the map Σ makes sense since any maximal Fv-

torus of GFv is G(Fv)-conjugate to the base-change TFv of a maximal F -torus T in G.

Proof. The commutativity is an immediate consequence of Corollary 8.2.13, the functoriality of
ιV̇ , and the fact that every x ∈ H1(EV̇ , Z → G) lies in the image of some H1(EV̇ , Z → T ). The
exactness of the bottom row is a straightforward character-theoretic argument.

We also have the following analogue of [Kal18, Corollary 3.8.2]:

Corollary 8.3.3 The image of

H1(EV̇ , Z → G)
(locv)v−−−→

⊔
v∈V

H1(Ev, Z → G)

consists precisely of those elements which map trivially under the composition⊔
v∈V̇

H1(Ev, Z → G)→
⊕
v∈V

Y +v,tor([Z → G])→ Y +,tor([Z → G]).

Proof. Unlike in [Kal18], where some work is needed, this is a trivial consequence of Corollary
8.3.2.

8.4 Unramified localizations

Let G be a connected reductive group over F with finite central F -subgroup Z. Note that for any
Z-twisted GEV̇ -torsor T (denote the set of such torsors by Z1(EV̇ , Z → G)), we can pull T back
to the GEV̇ ,Fv

-torsor TFv
, and then via picking gerbe normalizations and a 1-coboundary, we get

a functor Φ: Ev → EV̇ , and then locv(T ) := Φ∗(TFv
) is a Z-twisted GEv -torsor, which depends

on our choice of normalizations and coboundary up to replacing locv(T ) by the canonically-
isomorphic (via translation by a−1) torsor η∗(locv(T )), where η : Ev → Ev is the automorphism
induced by a 1-coboundary d(a), for a ∈ uv(Fv).

Note that since Res[T ] ∈ HomF (PV̇ , Z) factors through PEi,Si,ni
for some i, for all v /∈ Si

we have that Res[locv(T )] is trivial, and hence locv(T ) is the pullback of some G-torsor over Fv
via the projection Ev

π−→ Sch/Fv. The canonical inclusion Z(OF nr
v
) → Z(Fv) is an equality for all

but finitely many v (because Z is split over F nr
v for all but finitely many v, and OF nr

v
contains all

roots of unity in Fv). Choose an OF,S-model G of G for a some finite subset S ⊂ V ; note that, for
almost all v, the subgroups G(OF nr

v
) and G(Operf

F nr
v
) inside G(F sep

v ) and G(Fv) (respectively) do not
depend on the choice of model G. Our goal in this subsection is to prove the following function
field analogue of [Taï18, Proposition 6.1.1]:
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Proposition 8.4.1 Let T ∈ Z1(EV̇ , Z → G). For all but finitely many v ∈ V , the torsor

locv(T ) ∈ Z1(Ev, Z → G)/d(Z) is inflated from a G-torsor Tv over OFv . Here, we are using

Z1(Ev, Z → G)/d(Z) to denote equivalence classes of GEv -torsors with the equivalence relation

given by T ∼ η∗T for η : Ev → Ev induced by d(a) for a ∈ uv(Fv) 7→ z ∈ Z(Fv) (we can always

assume that z ∈ Z(Onr
Fv
),by the above discussion).

Moreover, choosing normalizations Eξ̇ and Eξv of the gerbes EV̇ and Ev and viewing T as a

torsor on Eξ̇ (the choice of normalization and class ξ̇ does not affect the class of T in Z1(Eξ̇, Z →
G)/d(Z)), we may canonically identify T with a ξ̇-twisted G-torsor (S ′,Res(T ), ψ′), where S ′ is

a G-torsor over F . Fix a Z(F )-orbit of trivializations O = {S ′ h′−→ G}; then for all but finitely

many v, for any h ∈ O, we may choose the G-torsors Tv over OFv such that the trivializations hFv

on SFv
are induced by the pullback of a trivialization hv : Tv → G over the ring Operf

F nr
v

.

Proof. This proof is essentially a summary of [Taï18, §6.2] with some minor adjustments to ac-
commodate the positive-characteristic situation. Let ξv denote a representative in uv(Fv

⊗
Fv

3
) of

the local canonical class, ξ̇ ∈ PV̇ (F
⊗

F 3
) a representative of the global canonical class given

in Definition 7.4.5. Pick a tower of resolutions by tori (Pk → Tk → Uk)k as in §7.4, and set
T := lim←−k Tk, U := lim←−k Uk, which are pro-tori.

By construction of the global canonical class [ξ̇], the image of [ξ̇] in H2(A/A, T → U) co-
incides with the image of the adelic canonical class [x] ∈ Ȟ2(A/A, P ), which, unpacking the
construction of [x], is to say (by the definition of the differentials arising from the double complex
associated to T → U ) that there is some a ∈ T (A⊗A A) and b ∈ U(A) such that

ξ = [
∏
v∈V

Ṡ2
v(locv(ξv))] · d(a) (8.6)

inside T (A
⊗

A 3
) and a = db inside U(A ⊗A A), where recall that Ṡ2

v(locv(ξv)) denotes the image
of locv(ξv) ∈ P (Fv

⊗
Fv

3
) in P (A

⊗
Fv

3

v ) under a choice of Shapiro map (defined in §3.3—note that
such a map is not canonical until one passes to cohomology). To make sense of the above product
expression, we remind the reader that P (A

⊗
A 3
) = lim←−i Pi(A

⊗
A 3
), and for a fixed i, all but finitely-

many projections pi[Ṡ2
v(locv(ξv))] are trivial, and hence it makes sense to take this product in each

Pi(A
⊗

A 3
) = lim−→K/F

∏′
v Pi(A

⊗
Fv

3

K,v ) (by Corollary 3.3.6) and then take the inverse limit.

Recall that v̇ ∈ VF sep determines a ring homomorphism prv̇ : A → Fv defined by the direct
limit of the the projection maps AK =

∏′
w∈VK Kw → Kv̇K over all finite extensions K/F , where

by v̇K we mean the unique extension of v̇K′ , where K ′ is the maximal Galois subextension of
K/F , to a valuation on K. Restricting this ring homomorphism to the subring Av ⊂ A gives
a homomorphism of Fv-algebras. It is straightforward to check that we may choose our section
Γ/Γv → Γ (cf. the construction of the Shapiro maps in §3.3) such that, on k-cochains, we have
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prv̇
∣∣
Av
◦ Ṡkv = idFv

. We also have the projection map A prv−→ Av defined the same way except using
the direct limit of the project maps

∏′
w∈VK Kw →

∏
w|vKw.

Applying prv̇
∣∣
Av
◦ prv to the equality (8.6), we see that, for a fixed v ∈ V , the image of ξ̇ in

T (Fv

⊗
Fv

3
), denoted by resv(ξ̇) is given by locv(ξv) · d(av), where av := prv̇(a) ∈ T (Fv ⊗Fv Fv).

Although this equality is a priori taking place in T (Fv
⊗

Fv
3
), since the image of ξ̇ and locv(ξv)

both lie in the subgroup P (Fv
⊗

Fv
3
), we see that in fact d(av) ∈ P (Fv

⊗
Fv

3
) and thus this equality

takes place in P . Set bv := prv̇(b) ∈ U(Fv), and choose a lift b̃v ∈ T (Fv) of bv, which is possible
since the derived inverse limit lim←−

1

i
Pi(Fv) vanishes, since it consists of surjective maps and thus

satisfies the Mittag-Leffler condition. Define a′v := av/d(b̃v), which lies in P (Fv
⊗

Fv
2
) since its

image under T → U equals prv̇(a)/prv̇(db) (using that the isogenies Tk → Uk are defined over F ,
so they commute with Čech differentials), which is trivial by construction. We may replace av by
a′v and retain the equality

resv(ξ̇) = locv(ξv) · d(a′v).

Continuing to follow [Taï18], for k ≥ 0 and v ∈ V , we denote by av,k (resp. bv,k, b̃v,k, a′v,k) the

image of av (resp. bv, b̃v, a′v) in Tk(Fv
⊗

Fv
2
) (resp. Uk(Fv), Tk(Fv), Pk(Fv

⊗
Fv

2
)). We claim that

there is a finite set of places S ′ of F such that for all v /∈ S, the element a′v,k lies in the subgroup
Pk([O

perf
F nr
v
]
⊗

OFv
2
). Recall that

ak ∈ Tk(A⊗A A) = lim−→
E/F

Tk(AE ⊗A AE) = lim−→
E/F

(lim−→
S

Tk(AE,S ⊗AS
AE,S)),

where the outside limit is over all finite extensions E/F and the inside limit is over all finite sets
of places of F . It follows that we may find K/F finite containing Ek and finite S ′ ⊂ V containing
Sk such that the maximal Galois subextension K ′/F of K is unramified outside S ′, such that Tk is
split over K ′, ak ∈ Tk(AK,S′ ⊗AS′ AK,S), and bk ∈ Uk(AK,S′). It follows that, for v /∈ S ′, we have
ak,v ∈ Tk(OKv̇

⊗OFv
OKv̇

), and moreover, K ′
v̇/Fv is unramified, so that ak,v ∈ Tk(Operf

F nr
v
⊗OFv

Operf
F nr
v
).

Since the group Pk is killed by the nk-power map, there is a unique morphism Uk → Tk such that
the composition Uk → Tk → Uk is the nk-power map. Since bk,v ∈ Uk(OKv̇

) for all v /∈ S ′ and Tk
andUk are split overK, any preimage of bk,v lies in Tk([O

(n′
k)

Kv̇
](1/p

mk )), where [O(n′
k)

Kv̇
](1/p

mk ) denotes
the fppf extension of OKv̇

given by the composition of two extensions defined as follows. If n′
k is

the prime-to-p part of nk with nk/n′
k = pmk , then we first take the extension O(n′

k)

Kv̇
/OKv̇

obtained
by adjoining all n′

k-roots of elements of O×
Kv̇

, which is finite étale, followed by the extension
[O

(n′
k)

Kv̇
](1/p

mk ) defined by adjoining all pmk-power roots to O(n′
k)

Kv̇
, which is finite flat.

We claim that the extension [O
(n′

k)

Kv̇
](1/p

mk )/OFv lies in Operf
F nr
v

. Indeed, since Operf
Knr

v̇
= Operf

F nr
v

, it’s

enough to check that [O(n′
k)

Kv̇
](1/p

mk ) lies in Operf
Knr

v̇
, which is clear since, as explained above, it factors

as a finite étale extension of OKv̇
followed by the extension obtained by adjoining all pmk-power
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roots. Thus, for any v /∈ S ′, we have a′v,k ∈ Pk([O
(n′

k)

Kv̇
](1/p

mk ) ⊗OFv
[O

(n′
k)

Kv̇
](1/p

mk )), and hence,
since we showed in §7.4 that the image of locv(ξv) is trivial in Pk for all v /∈ Sk ⊆ S ′, we get the
equality

resv(ξk) = d(a′v,k) ∈ Pk(Fv
⊗

Fv
3
),

where ξk denotes the image of ξ̇ in P (Fv
⊗

Fv
3
).

Let T ∈ Z1(EV̇ , Z → G), and choose normalizations of Ev and EV̇ , so that we may identify
them with the explicit gerbes Eξv and Eξ̇, respectively. Recall that, after passing from Eξ̇ to Eresv(ξ̇)

(which we have explicitly identified with (Eξ̇)Fv
), choosing different normalizations has the effect

of twisting locv(T ) by d(z) for z ∈ Z(OF nr
v
) with z = Res([T ])(x) for some x ∈ uv(Fv), and

thus does not affect the statement of the proposition. Changing the representatives ξ̇ and ξv for the
canonical classes has the same effect.

Having chosen normalizations, we may canonically identify GE?-torsors on the gerbes E? with
?-twisted G-torsors, for ? = resv(ξ̇), ξv, ξ̇, by Proposition 2.4.10; write T = (S ′,Res(T ), ψ′)

under this identification. Choose k sufficiently large so that Res(T ) ∈ HomF (P,Z) fac-
tors through Pk via φk ∈ HomF (Pk, Z), S ′ equals j∗S ′′ for a G-torsor S ′′ over Operf

Sk
, for

j : Spec(F ) → Spec(Operf
Sk

), such that h equals j∗hSk
for an Operf

Sk
-trivialization hSk

of S ′′, and
such that the “twisted gluing isomorphism" ψ′ : p∗2S ′ → p∗1S ′ is given by j∗ψ for an isomorphism
of G-torsors

ψ : p∗2S ′′ → p∗1S ′′;

choose S ′ ⊇ Sk corresponding to k as in the above paragraphs. We have a morphism of gerbes
Eξv → Eresv(ξ̇) given at the level of objects by sending the ξv-twisted torsor (T ′, ψ) to the resv(ξ̇)-
twisted torsor

(T ′ ×uv ,locv PV̇ ,m(a′v)
−1 ◦ ψ),

cf. Construction 2.3.4. Under this identification, pulling back by the morphism we just constructed
sends the resv(ξ̇)-twisted G-torsor (S ′

Fv
,Res(T ), ψ′) to the ξv-twisted G-torsor (S ′

Fv
,Res(T ) ◦

locv,ma′v ◦ ψ′). Note that, by construction, for any v /∈ S ′, the homomorphism Res(T ) ◦ locv on
uv is trivial, and hence (S ′

Fv
,ma′v ◦ ψ′) gives a descent datum for a G-torsor S over Fv; we claim

that the pair of S and the Fv-trivialization induced by hFv
descends further to a G-torsor over OFv

with an Operf
F nr
v

-trivialization.
Define this new G-torsor T as follows: we take the descent data with respect to the fpqc cover

Operf
F nr
v
/OFv given by the torsor S ′′

O
perf
F nr
v

, where this is well-defined since for v /∈ S ′, the ring Operf
F nr
v

is an Operf
Sk

-algebra, and the gluing isomorphism given by mRes(T )(a′v) ◦ ψ, which is well-defined
since Res(T )(a′v) = φk(a

′
v,k), the morphism φk is defined over OF,S′ , and a′v,k ∈ Pk(O

perf
F nr
v
⊗OFv

Operf
F nr
v
); this gives a well-defined gluing map by construction, and finishes the construction of T—
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by design, hv := (hSk
)Operf

F nr
v

trivializes T over Operf
F nr
v

. The pullback of T is evidently equal to S,

since the descent datum giving T pulls back via the morphisms Spec(Fv) → Spec(OFv) and
Spec(Fv) → Spec(Operf

F nr
v
) to the descent datum giving S; similarly, hv pulls back to hFv

. This
proves the result.
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CHAPTER 9

Applications to Global Langlands

In this section, we use the above constructions to analyze an adelic transfer factor for a global func-
tion field F and state conjectures regarding the multiplicity of discrete automorphic representations
in the discrete spectrum. In what follows, G will be a connected reductive group over F .

9.1 Adelic transfer factors for function fields

In this subsection, we follow [LS87, §6.3] to construct adelic transfer factors for connected reduc-
tive groups over a global function field F . Let ψ : GFs → G∗

Fs
be a quasi-split inner form of G,

with Langlands dual group Ĝ∗ and Weil-form LG∗ := Ĝ∗ ⋊WF .

Definition 9.1.1 A global endoscopic datum for G is a tuple (H,H, s, ξ) where H is a quasi-split

connected reductive group over F , H is a split extension of WF by Ĥ , s ∈ Z(Ĥ) is any element,

and ξ : H → LG∗ is an L-embedding such that:

1. The homomorphism WF → Out(Ĥ) = Out(H) determined by H is the same as the homo-

morphism WF → Γ→ Out(H) induced by the usual Γ-action on H .

2. The map ξ restricts to an isomorphism of algebraic groups over C from Ĥ to ZĜ∗(t)◦, where

t := ξ(s).

3. The first two conditions imply that we have a Γ-equivariant embedding Z(Ĝ∗)→ Z(Ĥ). We

require that the image of s in Z(Ĥ)/Z(Ĝ∗), denoted by s̄, is fixed by WF and maps under

the connecting homomorphism H0(WF , Z(Ĥ)/Z(Ĝ∗)) → H1(WF , Z(Ĝ
∗)) to an element

which is killed by the homomorphism H1(WF , Z(Ĝ
∗)) → H1(WFv , Z(Ĝ

∗)) for all v ∈ VF
(such an an element is called locally trivial).

Note that any global endoscopic datum e = (H,H, s, ξ) induces, for any place v of F , a local
endoscopic datum given by (HFv ,Hv, sv, ξv), whereHv is the pullback of the two mapsH → WF
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and WFv → WF (which carries a natural splitting), ξv : Hv → L(G∗
Fv
) is induced by ξ and the

natural map Hv → H, which one checks is an L-embedding, and sv = s ∈ Z(Ĥ). Following
[Kal18], we will denote such a local endoscopic datum by ev = (H,H, sv, ξ). Fix a global endo-
scopic datum (H,H, s, ξ); we will temporarily assume that H = LH . Up to equivalence, a global
endoscopic datum only depends on the image of s in π0([Z(Ĥ)/Z(Ĝ∗)]Γ). Recall that a strongly-
regular semisimple element γH ∈ H(F ) with centralizer TH (a maximal torus of H defined over
F ) is called G-regular if it is the preimage of a strongly-regular semisimple element γG ∈ G(F )
under an admissible isomorphism TH → TG := ZG(γG). We’ll need the following basic lemma:

Lemma 9.1.2 There is an admissible embedding of TG into G∗.

Proof. This follows from Lemma 6.1.6, which is a generalization of [Kot82, Corollary 2.2]. Note
that the Lemma loc. cit. is stated for a local function field F , but the proof holds verbatim for
global function fields.

It immediately follows that for any G-regular strongly-regular semisimple γH ∈ H(F ), we
have an admissible embedding of TH in G∗ (which is not unique). We say that γH is a related to

γG ∈ G(A) if for all v ∈ V , the image of γH inH(Fv) is an image (under an admissible embedding
(TH)Fv → ĜFv ) of the element γG,v ∈ G(Fv). If we fix an admissible embedding of TH in G∗,
with image a maximal F -torus denoted by T and image of γH denoted by γ ∈ G∗(F ), then the
above condition means requiring that there exist xv ∈ G∗(F sep

v ) such that Ad(xv) ◦ ψ maps the
maximal torus TG,v in GFv containing γG,v to TFv (over Fv) and sends γG,v to (the restriction of) γ.

Then for elements γH , γ̄H related to γG, γ̄G (respectively), we define

µv = inv
(
γH , γG,v
γ̄H , γ̄G,v

)
, (9.1)

which lies in the group H1(Fv, U), where U = (Tsc × T̄sc)/Zsc, where everything is as defined in
§5.3.3.

We need the following analogue of [LS87, Lemma 6.3.A], whose proof we follow:

Lemma 9.1.3 µv = 1 for all but finitely many v ∈ V .

Proof. Suppose that L/F is a finite Galois extension splitting T such that the map ψ is defined
over L. Note that for all but finitely many v, the map ψ is defined over Fv, and that that since L
splits TH , for any v ∈ V , the completion Lv splits the maximal Fv-tori (TH)Fv , TG,v, and TFv . It is
straightforward to verify that, in this case, we have

µv =
inv(γH , γG,v)
inv(γ̄H , γ̄G,v)

,
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where inv(γH , γG,v) is defined by choosing some h ∈ G∗(Lv) such that Ad(h)ψ(γG,v) = γ and
then setting inv(γH , γG,v) := [p1(h)p2(h)

−1] ∈ Ȟ1(Lv/Fv, Tsc), similarly with γH and γG,v re-
placed by γ̄H and γ̄G,v, where the above quotient takes place in the group H1(Fv, U) via the maps
H1(Fv, Tsc)→ H1(Fv, U), similarly for T̄sc, induced by the canonical maps Tsc, T̄sc → U .

Note that for all but finitely many places v, the extension L/F is unramified at v, the image of γ
in T (Fv) lies in T (OFv), the map ψ is defined over Fv, the element γG,v lies in TG(OFv) ⊂ G(OFv)

for some fixed integral model G of G, and for each root α ∈ Φ(G∗
L′ , TL′), we have α(γ) ∈ O×

Lv
.

Then Lemme 8.3 from [Lan83] (which is stated for p-adic local fields, but whose proof relies
results from Bruhat-Tits theory that are stated for an arbitrary nonarchimedean local field, see
[Tit79]) shows that γG,v and γ are in fact conjugate under G(OFv) for all but finitely-many v.
From here, the same argument as in the proof of [LS87, Lemma 6.3.A] shows that the class
inv(γH , γG,v) ∈ Ȟ1(Lv/Fv, Tsc) = H1(Fv, Tsc) (which is well-defined because GFv is quasi-
split, see §5.3.3), vanishes. Of course, the same argument can be applied to show that the class
inv(γ̄H , γ̄G,v) vanishes, giving the result by the above paragraph.

Note that a strongly G-regular γH ∈ H(F ) is related to γG ∈ G(A) if and only if there exists
h ∈ G∗

sc(A) such that hψ(γG)h−1 = γ. Now for any u ∈ G∗
sc(F ⊗F F ) such that Ad(u) =

p∗1ψ ◦ p∗2ψ−1, we define µT ∈ H̄1(A/A, Tsc) as the the image of p1(h)up2(h)−1 ∈ T (A ⊗A A) in
T (A ⊗A A)/T (F ⊗F F ). Identifying H̄1(A/A, Tsc) with H̄1(Asep/A, Tsc) (notation as in §A.3),
we get from our discussion in §A.3 a pairing H̄1(A/A, Tsc)×H1(Γ, X∗(T ))→ Q/Z. Identifying
X∗(T ) with X∗(T̂ ), this determines a pairing

H̄1(A/A, Tsc)× π0(T̂ Γ
ad)→ C∗,

as explained in §5.1. Our element s ∈ π0([Z(Ĥ)/Z(Ĝ∗)]Γ) determines an element sT ∈ π0(T̂ Γ
ad)

via the canonical (Γ-equivariant) map Z(Ĥ) → T̂ , and we thus obtain a value ⟨µT , sT ⟩ ∈ C∗,
which we denote by d(γH , γG); it is clear that d(γH , γG) is independent of the admissible embed-
ding of TH into G∗.

On the other hand, it follows from the above lemma and the isomorphism

H2(A, U) ∼−→
⊕
v∈V

H2(Fv, U)

that the classes µv determine a well-defined element of H2(A, U) ∼−→ Ȟ2(A/A, U); denote by µU
the image of this class in H̄2(A/A, U). As explained in [LS87, §3.4], the global endoscopic datum
determines an element sU,v ∈ π0(ÛΓFv ) for all v, as well as sU ∈ π0(ÛΓ). Then via the pairing of
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the above paragraph, we obtain a value

⟨µU , sU⟩ =
∏
v

⟨µv, sU,v⟩, (9.2)

where the equality comes from the local-global compatibility of the Tate-Nakayama pairing for
tori, see [Mil06, §4] for more details. We also have the equality

⟨µU , sU⟩ =
d(γ̄H , γ̄G)

d(γH , γG)
.

Lemma 6.3.B in [LS87] discusses how the values d(γH , γG) change as one varies the inputs—its
proof also holds in our setting, and we record the result here:

Lemma 9.1.4 1. d(γH , γG) = d(γ′H , γG) if γ′H is stably-conjugate to γH in H(F ).

2. d(γH , γG) = d(γH , γ
′
G) if γ′G is G(A)-conjugate to γG.

3. d(γH , γG) = d(γ̄H , γ̄G) if γG, γ̄G ∈ G(F ).

Fix a strongly G-regular γ̄H ∈ H(F ) which is related to γ̄G ∈ G(F ). If there are no such
elements, we define ∆A(γH , γG) to be 0 for all γH ∈ H(F ), γG ∈ G(A). Otherwise, we then
define the adelic transfer for a strongly G-regular γH ∈ H(F ) and γG ∈ G(A) by the quotient

∆A(γH , γG) :=
d(γ̄H , γ̄G)

d(γH , γG)
(9.3)

if γH is related to γG, and zero otherwise. It follows immediately from Lemma 9.1.4 that this factor
is independent of the choice of the elements γ̄H and γ̄G, the choice of γH up to stable conjugacy,
the choice of γG up to G(A)-conjugacy, and thus equals 0 if γH is related to γG such that the
G(A)-conjugacy class contains an element of G(F ).

We conclude this subsection by discussing local-global compatibility. Note that, if γH ∈ H(F )

is a strongly G-regular semisimple element which is related to γG ∈ G(A), then for all v ∈ V , we
have that the image of γH in H(Fv), denoted by resv(γH), is strongly GFv -regular and is related to
the element γG,v ∈ G(Fv). We have the following result concerning the local transfer factor (see
§5.3 for the definitions of the various component factors), where the local transfer factors are taken
with respect to the local endoscopic data (H,H, sv, ξ) coming from the fixed global endoscopic
datum (H,H, s, ξ) as explained above:

Proposition 9.1.5 ([LS87, Theorem 6.4.A])

1. For almost all v, the values ∆i(resv(γH), γG,v) equal 1 for i = I, II, III2, IV .
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2.
∏

v∆i(resv(γH), γG,v) = 1 for i = I, II, III2, IV .

Proof. We closely follow the analogous proof in [LS87]. As in §5.2.1, we may define, for the
quasi-split simply-connected reductive group G∗

sc with maximal torus Tsc, a global splitting in-

variant λ{aα}(Tsc) ∈ H1(F, Tsc) which depends on an F -pinning of G∗
sc and a choice of a-data

{aα} for T . By the construction of the local splitting invariant, it is clear that λ{aα}(Tsc) maps
to the local splitting invariant λ{aα}(TFv ,sc) (where we are viewing the a-data {aα} as an a-
data for TFv ) under the canonical map H1(F, Tsc) → H1(Fv, TFv ,sc). Since for all but finitely
many v the image of λ{aα}(Tsc) lands in the subgroup H1(OFv , TFv ,sc) = 0, it follows that
⟨λ{aα}(TFv ,sc), sT,v⟩ = ∆1(resv(γH), γG,v) = 1 for all but finitely many v.

Our above observation and the exact sequence

H1(F, Tsc)→ H1(A, Tsc) = Ȟ1(A/A, Tsc)→ H̄1(A/A, Tsc)

(see [KS99, §D.1]) imply that the image λ̄ of the element (⟨λ{aα}(TFv ,sc), sT,v⟩)v ∈ H1(A, Tsc) =⊕
vH

1(Fv, TFv ,sc) is trivial in H̄1(A/A, Tsc), and so it follows by local-global compatibility of the
Tate-Nakayama pairing that ∏

v

⟨λ{aα}(TFv ,sc), sT,v⟩ = ⟨λ̄, sT ⟩ = 1,

as desired for the case i = I . The arguments for the remaining cases of i = II , III2, and IV may
be taken verbatim from the proof of [LS87, Theorem 6.4.A].

It follows from Lemma 9.1.3 that the value ∆III1(resv(γH), γG,v, resv(γ̄H), γ̄G,v) = ⟨µv, sU,v⟩,
the remaining component of the local transfer factors, equals 1 for all but finitely v, and from the
equality (9.2) the identity

∆A(γH , γG) =
∏
v

∆III1(resv(γH), γG,v, resv(γ̄H), γ̄G,v).

We now use the above constructions to define a transfer factor for adelic elements of H . We
call an element γ ∈ H(A) semisimple if γv ∈ H(Fv) is semisimple for all v, and we call it strongly

G-regular if γ ∈ HG−sr(AF ), where HG−sr ⊂ HF is the F -scheme characterized by the Zariski
open subset of strongly G-regular semisimple elements of the variety H(F ). Similarly, we call a
semisimple element δ ∈ G(A) strongly regular if it lies in Gsr(AF ), where Gsr ⊂ GF is the Zariski
open subscheme characterized by the strongly regular elements of G(F ).

Definition 9.1.6 For γ ∈ HG−sr(A) and δ ∈ Gsr(A), we set ∆A(γ, δ) = 0 if there is no strongly

G-regular element of H(F ) which is related to an element of G(F ), and otherwise fix such a pair
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γ̄H , γ̄G and define

∆A(γ, δ) :=
∏
v

∆(γv, δv, γ̄H,v, γ̄G,v). (9.4)

This product is well-defined due to the following result:

Lemma 9.1.7 In the notation of the above definition, the local transfer factor ∆(γv, δv, γ̄H,v, γ̄G,v)

equals one for all but finitely many v.

Proof. For all but finitely many v, the group GFv is quasi-split, in which case we may write

∆(γv, δv, γ̄H,v, γ̄G,v) =
∆(γv, δv)

∆(γ̄H,v, γ̄G,v)
.

For a quasi-split connected reductive group over a local field, the (absolute) local transfer factor
may be defined purely using Galois cohomology (cf. §5.3, 5.2.1). In such cases, the claim of the
Lemma follows from the analogous fact in the characteristic-zero case, which is stated in [KS99,
§7.3, pp. 109].

Remark 9.1.8 It follows from Proposition 9.1.5 that the two formulas (9.3) and (9.4) given above

for ∆A coincide when γH ∈ H(F ), so there is no notational ambiguity.

Remark 9.1.9 In the case that H ̸= LH in our global endoscopic datum, the formula for ∆A

is slightly more complicated. To begin, we fix a z-pair (H1, ξH1) for the endoscopic datum e =

(H,H, s, ξ), which always exist over fields of arbitrary characteristic. For any place v of F ,

this z-pair gives rise to a z-pair (H1,v, ξH1,v) for the local endoscopic datum ev. We may then

define the adelic transfer factor for pairs of elements γ1 ∈ H1,G−sr(A) and δv ∈ Gsr(A), where

γ1 ∈ H1,G−sr(A) means that its image in H(A) is G-strongly regular, using the relative local

transfer factors for z-pairs as in §5.4:

∆A(γ1, δ) :=
∏
v

∆(γ1,v, δv, γ̄H,v, γ̄G,v).

9.2 Endoscopic setup

This subsection is an analogue of [Kal18, §4.2, §4.3], which explain how to pass from global to
local refined endoscopic data and discuss coherent families of local rigid inner twists; recall the
notion of a refined endoscopic datum (H,H, ṡ, ξ) over a local function field F (defined in §6.2). A
fixed global endoscopic datum e = (H,H, s, ξ) induces a canonical embedding Z(G) → Z(H),
and we set H̄ := H/Zder, where Zder := Z(D(G∗)), Zsc := Z(G∗

sc), and Ḡ∗ := G∗/Zder. Note that
Ḡ∗ = G∗

ad × Z(G∗)/Zder and ̂̄G∗ = Ĝ∗
sc × Z(Ĝ∗)◦. We also set Z := Z(G).
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The L-embedding ξ induces an embedding ̂̄H → ̂̄G∗ with image equal to Ẑ̄G∗(t)
◦, where recall

that t := ξ(s) (this is well-defined because ̂̄G∗ maps to Ĝ∗, which contains t). Then for ssc ∈ Ĝ∗
sc

a fixed preimage of the image sad of s in Ĝ∗
ad and a place v ∈ V , the third condition in the

definition of a global endoscopic datum implies that we may find an element yv ∈ Z(Ĝ∗) such that
sder · yv ∈ Z(Ĥ)Γv , where sder ∈ D(Ĝ∗) denotes the image of ssc. We can then write yv = y′v · y′′v
for y′v ∈ Z(D(Ĝ∗)) and y′′v ∈ Z(Ĝ∗)◦, and we choose a lift ẏ′v ∈ Ẑsc of y′v. Then the element
(ssc · ẏ′v, y′′v ) =: ṡv lies in ̂̄G∗ = Ĝ∗

sc × Z(Ĝ∗)◦, which, via the above L-embedding, belongs to
the group Z( ̂̄H)+v, and ėv := (H,H, ṡv, ξ) defines a local refined endoscopic datum at the place
v. As noted [Kal18], we will show that the global objects coming from this collection (ėv)v do
not depend on the choices of ssc, ẏ′v, or y′′v , only on the equivalence class of the global endoscopic
datum e.

We now discuss coherent families of local rigid inner twists. For an equivalence class Ψ of
inner twists G∗

F sep → GF sep (where two isomorphisms ψ, ψ′ from G∗ to G are equivalent if they
differ by pre-composing with Ad(g) for g ∈ G∗

ad(F
sep)), base-changing to Fv for any v ∈ V gives

an equivalence class of Ψv of rigid inner twists G∗
F

sep
v
→ GF

sep
v

. The class Ψ gives an element of
H1(F,G∗

ad) which by Lemma 8.1.1 has a preimage in the set H1(EV̇ , Zsc → G∗
sc).

It follows that for every ψ ∈ Ψ, we can find a Zsc-twisted G∗
sc,EV̇

-torsor Tsc along with an

isomorphism of (G∗
ad)EV̇ -torsors h̄ : (Tsc)F

∼−→ ((G∗
ad)EV̇ )F , where Tsc := Tsc ×

G∗
sc,E

V̇ (G∗
ad)EV̇ and

(G∗
ad)EV̇ denotes the trivial (G∗

ad)EV̇ -torsor, such that p∗1h̄◦p∗2h̄−1 is translation by x̄ ∈ G∗
ad(F ⊗F F )

which satisfies Ad(x̄) = p∗1ψ
−1 ◦ p∗2ψ.

For each v ∈ V , we set Tv to be the Z-twisted G∗
Ev -torsor given by locv(T ), where T :=

Tsc ×
G∗

sc,E
V̇ G∗

EV̇
, and locv is as defined at the beginning of §8.4; the F -trivialization h̄ evidently

induces a Fv-trivialization of Tv (noting that Tsc = T ), denoted by h̄v. Note that, by construction,
the triple (ψ,Tv, h̄v) is a rigid inner twist over Fv; we thus get a collection (ψ,Tv, h̄v)v of local
rigid inner twists which depends on the definition of the localization maps locv (see §8.4), but only
up to twisting torsors by d(z) for an element z ∈ Zsc(Fv), which does not affect any associated
cohomology sets. However, this family will in general depend on the choice of torsor Tsc. Note
that, in fact, since T is induced by the Zsc-twisted G∗

sc-torsor Tsc, it is actually Zder-twisted, not
just Z-twisted; that is, we may view Tv as an element of the set H1(Ev, Zder → G∗).

9.3 Product decomposition of the adelic transfer factor

As in the previous section, Z denotes Z(G). We will use the above results to show that the adelic
transfer factor that we defined in §9.1 admits a decomposition in terms of the normalized local
transfer factors constructed in §6.2, following [Kal18, §4.4]. We fix an equivalence class Ψ of
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inner twists G∗
F sep → GF sep , endoscopic datum e = (H,H, s, ξ) for G∗, and a z-pair z = (H1, ξ1)

for e. We assume that there exist strongly G-regular γ1,0 ∈ H1(F ) and δ0 ∈ G(F ) such that γ1,0 is
related to δ0 (so that, in particular, the image of γ1,0 in H(F ), denoted by γ0, is related to δ0). As
explained in §9.2, we can associate to e the collection of refined local endoscopic data (ėv)v∈V to
the global z-pair z a collection of local z-pairs (zv)v∈V , to the class Ψ a coherent family of local
rigid inner twists (ψ,Tv, h̄v)v∈V , and to a fixed global Whittaker datum w for G∗, a collection of
local Whittaker data (wv)v∈V .

For any v, we can use the local Whittaker datum and z-pair to obtain from §6.2 the wv-
normalized local transfer factor

∆[wv, ėv, zv, ψ, (Tv, h̄v)] : H1,G−sr(Fv)×Gsr(Fv)→ C.

This relates to the adelic transfer factor defined in §9.1 as follows:

Proposition 9.3.1 For any γ1 ∈ H1,G−sr(A) and δ ∈ Gsr(A), we have

∆A(γ1, δ) =
∏
v∈V

⟨locv(Tsc), ẏ
′
v⟩ ·∆[wv, ėv, zv, ψ, (Tv, h̄v)](γ1,v, δv).

In the above formula, ẏ′v ∈ Ẑsc as in §9.2 and the pairing ⟨−,−⟩ : H1(Ev, Zsc → G∗
sc)×Ẑsc → C is

from Corollary 6.2.2, which is well-defined since ẏ′v ∈ Ẑsc = Z(Ĝ∗
sc/Zsc)

+

. For almost all v ∈ V ,

the corresponding factor in the product equals 1. For all v, the corresponding factor is independent

of the choices of ẏ′v and y′′v made in §9.2.

Proof. The argument closely follows [Kal18, Proposition 4.4.1]; as in the proof of the result loc.
cit., it follows from [LS87, Corollary 6.4.B] that the above product identity follows if we can show
that the normalized factors ⟨locv(Tsc), ẏ

′
v⟩ ·∆[wv, ėv, zv, ψ, (Tv, h̄v)](γ1,v, δv) satisfy the following

properties: First, that they are absolute transfer factors, and second, that their values at the F -
rational pair (γ1,0,v, δ0,v) equal 1 for all but finitely many v and have a product over all v that
equals 1. The first property automatically holds for the above factors by Proposition 6.2.3 (the
extra ⟨locv(Tsc), ẏ

′
v⟩-factor cancels out and thus makes no difference for this verification).

The same argument as in the proof of [Kal18, Proposition 4.4.1] (replacing the use of [LS87,
Theorem 6.4.A] in the proof loc. cit. with our Proposition 9.1.5 and noting that the discussion of
local and global ϵ-factors in [KS99], which in turn uses the construction of such factors in [Tat79],
§3, works for local and global fields of arbitrary characteristic) reduces the second property above
to showing that the terms

⟨locv(Tsc), ẏ
′
v⟩−1⟨inv((GFv , ψ, (Tv, h̄v), δ0,v), δ

∗
0,v), ṡv,γ0,δ∗0 ⟩ (9.5)
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are equal to 1 for almost all v and have product over all v equal to 1, where δ∗0 ∈ G∗(F ) is
the image of γ0 under a choice of admissible embedding of T0,H into G∗ and T0 := ZG∗(δ∗0),
the map inv(−, δ∗0,v) : CZder(δ

∗
0,v)→ H1(Ev, Zder → T0) is as defined in §6.1, the element ṡv,γ0,δ∗0 ∈

π0(
̂̄T0+,v) is the image of ṡv ∈ π0(Z( ̂̄H)+,v) under the composition φ̂ : Z( ̂̄H)→ T̂0,H → ̂̄T0 (recall

that the bar indicates that we are quotienting out by Zder) induced by our choice of admissible
embedding of T0,H into G∗, and the right-hand pairing is from Corollary 6.2.2.

In order to work explicitly with the invariant at a place v, it will be convenient to fix an explicit
Čech 2-cocycle ξv representing the canonical class in Ȟ2(Fv/Fv, uv) and replace the notion ofZder-
twisted torsors on the gerbe Eξv with ξv-twisted 1-cocycles; we know by §6.2 that the invariant map
and corresponding local transfer factor do not depend on such a choice, and hence we may do so
without loss of generality.

By construction, the elements δ∗0 and δ0 are stably conjugate, so that there exists g ∈ G∗(F )

such that ψ(gδ∗0g
−1) = δ0, and then inv((GFv , ψ, (Tv, h̄v), δ0,v), δ

∗
0,v) ∈ H1(Ev, Zder → T0) =

H1(Eξv , Zder → T0) is represented by the ξv-twisted (Čech) 1-cocycle

xv := (p1(g)
−1zvp2(g), ϕv),

where (zv, ϕv) is a choice of ξv-twisted 1-cocycle corresponding to the Zder-twisted G∗
Ev -torsor Tv,

as explained in §6.1. We may choose g so that it is the image of some gsc ∈ G∗
sc(F ), and then

we may lift the twisted cocycle xv to the ξv-twisted cocycle xv,sc := (p1(gsc)
−1zsc,vp2(gsc), ϕsc,v),

where (zsc,v, ϕsc,v) ∈ Z1(Eξv , Zsc → G∗
sc) is a choice of ξv-twisted cocycle corresponding to the

Zsc-twisted G∗
sc-torsor locv(Tsc) on Ev.

Using the decomposition ̂̄T0 = (T̂0)sc × Z(Ĝ∗)◦, we may use the notation of §9.2 to write
ṡv,γ0,δ∗0 = (ẏ′vφ̂(ssc), y

′′
v ). The functoriality of the pairing from Corollary 6.2.2 with respect to the

morphism [Zsc → T0,sc]→ [Zder → T0], then implies that

⟨inv((GFv , ψ, (Tv, h̄v), δ0,v), δ
∗
0,v), ṡv,γ0,δ∗0 ⟩ = ⟨xv,sc, ẏ

′
vφ̂(ssc)⟩.

By construction, the restriction of the character ⟨xv,sc,−⟩ on π0(T̂0,sc

+v

) to Z(Ĝ∗
sc)

+v equals the
character ⟨(zsc,v, ϕsc,v)−⟩ by the functoriality of the pairing with respect to the morphism [Zsc →
T0,sc]→ [Zsc → G∗

sc]. It then follows by bilinearity that the expression (9.5) reduces to

⟨xv,sc, φ̂(ssc)⟩. (9.6)

We have already fixed normalizations Eξv of the gerbes Ev for all v—we now also fix a normal-
ization Eξ̇ of the gerbe EV̇ . Such a normalization identifies Tsc with a ξ̇-twisted (Čech) 1-cocycle
(zsc, ϕsc), where zsc ∈ G∗

sc(F ⊗F F ), which by construction has image in Z1(Eξv , Zsc → G∗
sc) equal
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to (zsc,v, ϕsc,v). We may thus define a global twisted 1-cocycle by the formula

xsc := (p1(gsc)
−1zscp2(gsc), ϕsc) ∈ Z1(Eξ̇, Zsc → T0,sc),

which satisfies locv(xsc) = xv,sc, where locv on twisted 1-cocycles is induced by the maps uv →
(PV̇ )Fv and G∗

sc(F ⊗F F ) → G∗
sc(Fv ⊗Fv Fv) for a fixed v. It then follows from Corollary 8.2.14

that the class [xsc] ∈ H1(Eξ̇, Zsc → T0,sc) is such that [locv(xsc)] = [xv,sc] ∈ H1(Eξv , Zsc →
T0,sc) is trivial for all but finitely-many v, which shows that the expression (9.6), and thus also the
expression (9.5), is 1 for all but finitely many v, as desired.

To finish proving the product identity, we first recall the functor Y +,tor : R → AbGrp. It follows
from the proof of [Kal16, Proposition 5.3], (the proof of which is purely character-theoretic) that
we have a functorial embedding

Y +,tor([Z → G]) ↪→ π0([Z(Ĝ)
+])∗, (9.7)

and it is straightforward to check that for any [Z → G] ∈ R, the diagram

⊕
v Y +v,tor([Z → G]) Y+,tor([Z → G])

⊕
v π0([Z(Ĝ)

+v])∗ π0([Z(Ĝ)
+])∗

Σ

commutes, where the left-hand vertical map is the sum of the local embeddings

Y +v,tor([Z → G]) ↪→ π0([Z(Ĝ)]
+v)∗

and the lower horizontal map is induced by restricting characters on the groups π0([Z(Ĝ)]+v) to
π0([Z(Ĝ)]

+).
If for each v we restrict the character ⟨locv([xsc]),−⟩ on π0([T̂0,sc]

+v) to π0([T̂0,sc]
+) and then

take the product over all v (these characters are trivial for all but finitely-many v due to the above
discussion and Corollary 8.3.2), we obtain the trivial character on π0([T̂0,sc]

+) via combining the
above discussion with Corollary 8.3.3. By construction, we have that the image of φ̂(ssc) ∈ ̂̄T0 in
T̂0,sc/([T̂0,sc]

+,◦) lies in π0([T̂0,sc]
+), which combines with the first part of this paragraph to give the

equality ⟨xsc, φ̂(ssc)⟩ = 1, where the pairing is induced by the embedding (9.7) and Theorem 8.3.1,
proving that the above product over all places equals 1, as desired. Finally, as in the number field
case, the absence of ẏ′v and ẏ′′v in the expression (9.5) implies that the product does not depend on
the choice of such elements. Moreover, since ⟨xv,sc, φ̂(ssc)⟩ only depends on the cohomology class
of xsc,v, the product also does not depend on the choice of gerbe normalizations used to construct
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the torsors locv(Tsc).

9.4 The multiplicity formula for discrete automorphic repre-
sentations

We use the same notation as in the previous subsection; in particular, Ḡ denotes G/Zder. As in
[Kal18, §4.5], fix an L-homomorphism φ : LF → LG∗ with bounded image, where LF is the
hypothetical Langlands group of F . At each place v ∈ V , the parameter φ has a localization,
which is a parameter φv : LFv → LG∗. The local conjecture ensures that there exists an L-packet
Πφv of tempered representations of rigid inner twists of G∗ together with a bijection

ιφv ,wv : Πφv → Irr(S+
φv
).

In the above setting, the set Πφv consists of equivalence classes of tuples (G′
v, ψ

′
v, (T

′
v , h̄

′
v), π

′
v),

where (ψ′
v,T

′
v , h̄

′
v) : G

∗
Fv
→ G′

v is a rigid inner twist over Fv and π′
v is an irreducible tempered

representation of G′(Fv). The group S+
φv

is the preimage in ̂̄G∗ of Sφv := ZĜ∗(φv) and wv is a
local Whittaker datum on which the bijection depends. As explained in [Kal18, §4.4], we may
choose a global Whittaker datum w for G∗ and let wv be its localization at each place v.

Recall that we have fixed a quasi-split inner twist ψ : G∗
F sep → GF sep of G; choose a coherent

family of local rigid inner twists (ψ,Tv, h̄v)v as in §9.2, and consider the subset Πφv(G) ⊆ Πφv

consisting of (isomorphism classes of) tuples (GFv , ψ, (Tv, h̄v), πv). We then define the L-packet

Πφ := {π = ⊗′
vπv | (GFv , ψ,Tv, h̄v, πv) ∈ Πφv(G), ιφv((GFv , ψ, (Tv, h̄v), πv)) = 1 for almost all v}.

The following result is of crucial importance:

Lemma 9.4.1 The set Πφ consists of irreducible admissible tempered representations of G(A).

Proof. We may assume without loss of generality that we have picked a normalization of the gerbe
EV̇ , which recall is a choice of representative ξ̇ of the canonical class, as well as an isomorphism
of PV̇ -gerbes EV̇ → Eξ̇; we will nevertheless continuing using the notation EV̇ for the explicit
gerbe Eξ̇. As in the proof of [Kal18, Lemma 4.5.1], everything is clear except for the fact that
the representation πv is unramified for almost all v. As explained in [Kal18], we may find a finite
set S of places of F such that G∗ and G have OF,S-models G∗, G (respectively), the inner twist
isomorphism ψ is defined over OS ⊂ F sep, the Whittaker datum wv is unramified for every v /∈ S,
the local parameter φv is unramified. We have the G∗

EV̇
-torsor T with fixed F -trivialization h

of T ; note that if s : Sch/F → EV̇ is the canonical embedding of categories given by Lemma
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2.3.2, we obtain a G∗-torsor s∗T over F , and we may pick a trivialization of this torsor over
F which is compatible with the trivialization h̄ (see §6.1). Such a compatible trivialization is
equivalent to picking a trivialization h of S over F , where (S,Res(T ), ψS) is the twisted G∗

F
-

torsor corresponding to T , such that the induced trivialization of the G∗
ad,F

-torsor S ×G∗
G∗

ad over
F associated to the twisted torsor (S ×G∗

G∗
ad, 0, ψ̄S) equals the trivialization induced by h̄.

We know from Proposition 8.4.1 that we may enlarge S to ensure that, for all v /∈ S, the pair
of each localization Tv and Fv-trivialization hv (induced by h) is the pullback of a G∗OFv

-torsor Tv
over OFv with trivialization hOFv

over Operf
F nr
v

. Note that a priori each Tv is a torsor on Ev, not on
Sch/Fv, but we may enlarge S to ensure that Tv is the pullback of a unique G∗-torsor over Fv,
which we identify with Tv (see §8.4), so that this latter statement makes sense.

The cohomology set Ȟ1(Operf
F nr
v
/OFv ,G∗) classifies isomorphism classes of G∗-torsors over OFv

which have a trivialization over the fpqc extension Operf
F nr
v

. We have a natural injective map

Ȟ1(Operf
F nr
v
/OFv ,G∗)→ Ȟ1

fppf(OFv ,G∗),

where the latter set classifies isomorphism classes of G∗-torsors over OFv . Moreover, the set
Ȟ1

fppf(OFv ,G∗) is trivial, by [Čes16, Corollary 2.9] (and Lang’s theorem), giving the triviality of
Ȟ1(Operf

F nr
v
/OFv ,G∗). It follows that we may find an element g ∈ G∗(Operf

F nr
v
) = G∗(Operf

F nr
v
) whose

Čech differential coincides with the element of G∗(Operf
F nr
v
⊗OFv

Operf
F nr
v
) whose left-translation gives

p∗1hOFv
◦ p∗2h−1

OFv
on G∗

O
perf
F nr
v
⊗OFv

O
perf
F nr
v

. As a consequence, we get by fpqc descent that the morphism

f ′ := ψOperf
F nr
v

◦ Ad(g−1) descends to an OFv -morphism f : G∗ → G.

The element g ∈ G∗(Fv) defines an Fv-trivialization of Tv by means of (the descent of) the
composition

Ψ := ℓg ◦ hv : (Tv)Fv
→ (G∗

Ev)Fv
,

where ℓg denotes left-translation by g; by construction, this map descends to Fv. As a conse-
quence, (f,Ψ) defines an isomorphism of rigid inner twists from (ψ,Tv, h̄v) to the trivial rigid
inner twist (idG∗ , G∗

Ev , id). Choosing S large enough, the construction of Πφ then implies that
ιφv((G

∗, idG∗ , G∗
Ev , id, πv ◦ f)) = 1, which means that the representation πv ◦ f of G∗(Fv) is wv-

generic. This latter fact implies, by [CS80], that the representation πv◦f is unramified with respect
to the hyperspecial subgroup G∗(OFv) of G∗(Fv). The fact that the isomorphism f is defined over
OFv then implies that πv is unramified with respect to the subgroup G(OFv), as desired.

As is conjectured in the number field case, we expect that every tempered discrete automorphic
representation of G(A) belongs to a set Πφ for some discrete parameter φ. Moreover, for any such
representation π, our framework allows for a conjectural description of the multiplicity of π in the
discrete spectrum of G; to begin this description, we need some setup. First, note that we have a
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short-exact sequence of LF -modules

1→ Z(Ĝ∗)→ Ĝ∗ → (Ĝ∗)ad → 1,

where the LF -action is defined via ad ◦ φ, which gives a connecting homomorphism

Z(Ĝ∗)ad
(φ)→ H1(LF , Z(Ĝ∗)).

We then define Sad
φ to be the kernel of the composition

Z(Ĝ∗)ad
(φ)→ H1(LF , Z(Ĝ∗))→

∏
v

H1(LFv , Z(Ĝ
∗))

and set Sφ := π0(S
ad
φ ). We will construct a pairing

⟨−,−⟩ : Sφ × Πφ → C

which yields an integer
m(φ, π) := |Sφ|−1

∑
x∈Sφ

⟨x, π⟩.

We then expect (from [Kot84]) the multiplicity of π in the discrete spectrum of G to be given
by ∑

φ

m(φ, π),

where the sum is over all equivalence classes (as in [Kot84, §10.4]) of φ such that π ∈ Πφ.

The construction of the above pairing is identical to the number field in analogue in [Kal18], but
we review it here for completeness. For some sad ∈ Sad

φ , we choose a lift ssc ∈ Ssc
φ (the preimage

of Sad
φ in (Ĝ∗)sc). Then, as explained in [Kal18, §4.5], we obtain from ssc an element ṡv ∈ S+

φv

for each v ∈ V̇ , which we write as (ssc · ẏ′v, y′′v ) for y′v ∈ Z((Ĝ∗)der) and y′′v ∈ Z(Ĝ∗)◦ via the
decomposition ̂̄G∗ = (̂̄G∗)sc × Z(Ĝ∗)◦. Following [Kal18], we denote by

⟨(ssc · ẏ′v, y′′v ), (GFv , ψ, (Tv, h̄v), πv)⟩

the character of the representation ιφv((GFv , ψ, (Tv, h̄v), πv)) of π0(S+
φv
) evaluated at ṡv. These

values behave well after taking the product over all v in the following sense:

Proposition 9.4.2 ([Kal18, Proposition 4.5.2]) The value

⟨locv(Tsc), ẏ
′
v⟩−1 · ⟨(ssc · ẏ′v, y′′v ), (GFv , ψ, (Tv, h̄v), πv)⟩
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equals 1 for all but finitely many v, where Tsc is as in §9.2, and the product

⟨sad, π⟩ :=
∏
v∈V

⟨locv(Tsc), ẏ
′
v⟩−1 · ⟨(ssc · ẏ′v, y′′v ), (GFv , ψ, (Tv, h̄v), πv)⟩

is independent of the choices of ssc, ẏ
′
v, y

′′
v , the torsor Tsc, and the global Whittaker datum w.

Moreover, the function sad 7→ ⟨sad, π⟩ is the character of a finite-dimensional representation of Sφ.

Proof. This proof is identical to the proof of the analogous result in [Kal18], replacing the use
of Corollary 3.7.5 loc. cit. with our Corollary 8.2.14 and the (conjectural) endoscopic character
identities from [Kal16, §3.4], with the analogous identities from §6.3.
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Appendix A

(Complexes of Tori and Čech Cohomology)

This appendix gives an extension of the theory of complexes of tori developed in the appendices of
[KS99] to the setting of local and global function fields.

A.1 Complexes of tori over local function fields—basic results

Suppose that we have a complex of commutativeR-groups, which is concentrated in degrees 0 and
1, denoted by G

f−→ H (or, when both groups are R-tori, by T
f−→ U ). For any fpqc ring homomor-

phism R → S, we obtain a double complex K•,• by taking the Čech complexes associated to G
and H; that is, the double complex

G(S) G(S ⊗R S) G(S ⊗R S ⊗R S) . . .

H(S) H(S ⊗R S) H(S ⊗R S ⊗R S) . . . ;

for our applications, it will always be the case that the Čech cohomology groups Ȟ i(S/R,G)

compute the fppf cohomology H i(R,G) (although S/R itself need not be an fppf cover). As
usual, we can associate to this double complex a new complex L•, whose degree-r term is given
by

Lr(T •) =
⊕

m+n=r

Km,n = G(S
⊗

R r)⊕H(S
⊗

R r−1),

with differentials defined by (dG⊕ f − dH). Following [KS99], we call the elements of Lr (Čech)

r-hypercochains, and the elements of the kernel of the rth differential (Čech) r-hypercocycles.
Denote by Hr(S/R,G

f−→ H) the rth cohomology group of the complex L•. Note that, by fpqc
descent, H0(S/R,G

f−→ H) = ker(G(R) → H(R)) = ker(f)(R), which will be useful when
ker(f) is a finite-type F -group scheme whose cohomology we want to investigate.
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The spectral sequences associated to a double complex give us the long exact sequence

· · · → Hr(S/R,G
f−→ H)→ Ȟr(S/R,G)→ Ȟr(S/R,H)→ Hr+1(S/R,G

f−→ H)→ . . . ,

(A.1)
where the first map sends [(x, y)] to [x], the last map sends [x] to [(0, x)], and the middle map is
induced by f . They also give the long exact sequence

· · · → Ȟr(S/R, ker(f))→ Hr(S/R,G
f−→ H)→ Hr−1(cok(f

⊗
•))→ Ȟr+1(S/R, ker(f))→ . . . ,

(A.2)
where cok(f

⊗
•) denotes the complex with degree-r term given by H(S

⊗
R r)

f(G(S
⊗

R r))
.

In the long exact sequence (A.2), the first map is given by [x] 7→ [(x, 0)], the middle map by
[(x, y)] 7→ [ȳ], and the last map by the composition of the mapHr−1(cok(f

⊗
•))→ Hr(im(f

⊗
•))

defined by picking a preimage x ∈ H(S
⊗

R r) of an r-cocycle x̄ ∈ H(S
⊗

R r)

f(G(S
⊗

R r))
and then applying the

Čech differential, and the map Hr(im(f
⊗

•))→ Ȟr+1(S/R, ker(f)) given by picking a preimage
in G(S

⊗
R(r+1)) of x ∈ f(G(S

⊗
R(r+1))) and then differentiating.

We now make the situation more concrete by setting R = F a field; the following result is an
immediate extension of the fact that, for a smooth finite type commutative F -group scheme G, the
comparison map Ȟ i(F sep/F,G)→ Ȟ i(F/F,G) is always an isomorphism:

Lemma A.1.1 For all i ≥ 1, the natural map H i(F sep/F, T
f−→ U) → H i(F/F, T

f−→ U) is an

isomorphism.

Proof. This follows immediately from the five-lemma, applied to the commutative diagram with
exact rows induced by (A.1)

Ȟ i−1(F sep/F, T ) Ȟ i−1(F sep/F, U) H i(F sep/F, T
f−→ U) Ȟ i(F sep/F, T ) Ȟ i(F sep/F, T )

Ȟ i−1(F/F, T ) Ȟ i−1(F/F, U) H i(F/F, T
f−→ U) Ȟ i(F/F, T ) Ȟ i(F/F, T ),

where all vertical maps other than the one in consideration are isomorphisms, since T and U are
tori (in particular, are smooth).

We also have the following relation between Čech hypercohomology with respect to F sep/F

and Galois cohomology:

Lemma A.1.2 For all i, we have a canonical isomorphism

H i(F sep/F, T
f−→ U)

∼−→ H i(Γ, T (F sep)→ U(F sep)),
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where the latter group is as defined in [KS99], Appendix A.

Proof. This is immediate from applying the comparison isomorphisms discussed in §3.1.

We now discuss a local Tate-Nakayama pairing in this context; there is not much work to do
here, as we may simply follow [KS99]. We will now assume that R = F is a local function field,
S = F a fixed algebraic closure, G

f−→ H is a complex of F -tori, denoted by T • := T
f−→ U , with

dual complex of character modules (over Γ) X∗,• := X∗(U)
−f∗−−→ X∗(T ), concentrated in degrees

−1 and 0. The character groups are just Γ-modules, so the theory of [KS99], appendix A applies,
giving us a double complex K•,•

∗ equal to

X∗(U) C1(Γ, X∗(U)) C2(Γ, X∗(U)) . . .

X∗(T ) C1(Γ, X∗(T )) C2(Γ, X∗(T )) . . . ,

where all vertical arrows are induced by f ∗; the associated complex is Lr∗(X
∗,•) = Cr(Γ, X∗(T ))⊕

Cr+1(Γ, X∗(U)).
We have a pairing of abelian groups

∪ : Lr(T •)× Ls∗(X∗,•)→ Gm(F
⊗

F r+s)

defined by taking the sum of the pairing T (F
⊗

F r)×Cs(Γ, X∗(T ))→ Gm(F
⊗

F r+s) and (−1)r−1

times the pairing U(F
⊗

F r−1
)× Cs+1(Γ, X∗(U))→ Gm(F

⊗
F r+s). It is straightforward to check

that this cup product satisfies the identity d(a ∪ b) = (da) ∪ b+ (−1)r(a ∪ db) for all x ∈ Lr(T •),
and thus induces a pairing

Hr(F/F, T
f−→ U)×Hs(L•

∗(X
∗,•))→ Ȟr+s(F/F,Gm) = Hr+s(F,Gm).

Note that, via degree-shifting, there is a canonical isomorphism

Hs(L•
∗(X

∗,•))
∼−→ Hs+1(Γ, X∗(U)

f∗−→ X∗(T )),

where, as the notation indicates, we are now viewing the complex X∗(U)
f∗−→ X∗(T ) as concen-

trated in degrees 0 and 1 and taking the cohomology of the corresponding total complex.

Remark A.1.3 There is an apparent discrepancy between our use of cohomology with respect to

the fqpc cover Spec(F ) → Spec(F ) when dealing with the tori T, U , and our use of cohomol-

ogy with respect to the fpqc cover Spec(F sep) → Spec(F ) implicit in our use of Γ-cohomology
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to treat the Cartier dual group schemes X∗(T ), X∗(U). However, we remind the reader that

since for any F -torus S the Cartier dual group scheme X∗(S) is étale, the natural inclusion

X∗(S)((F sep)
⊗

F n) → X∗(S)(F
⊗

F n) is an isomorphism, which means that we may canonically

identify all groups of Čech cochains (and hence the cocycles and coboundaries) with respect to

these two different covers.

As such, for any r ∈ Z, we may apply this identification and the invariant map H2(F,Gm) →
Q/Z to obtain the Tate-Nakayama pairing

Hr(F/F, T
f−→ U)×H3−r(F,X∗(U)

f∗−→ X∗(T ))→ Q/Z.

Note that for any F -torus S, we have H i(F, S) = 0 for all i ≥ 3, since H i(F, S) =

H i(Γ, S(F sep)), and the cohomological dimension of F is 2. This same reasoning also implies
that H i(Γ, X∗(S)) = 0 for all i ≥ 3. Using the long exact sequence (A.1), we deduce that both of
the groups in the above pairing are zero for r ≥ 4 and negative r.

We now reach the analogue of [KS99, Lemma A.2.A]:

Lemma A.1.4 The above pairing induces an isomorphism

Hr(F/F, T
f−→ U)→ H3−r(F,X∗(U)

f∗−→ X∗(T ))∗

for r = 2, 3. For r = 2, 3, the group Hr(F/F, T
f−→ U) is finitely-generated, and is free for r = 3.

Proof. The identical proof of [KS99, Lemma A.2.A] works in our situation, using our long exact
sequence (A.1).

A.2 Pairing for r = 1

This section is primarily a summary of [KS99, §A.3]; when necessary, we explain why the argu-
ments loc. cit. carry over to our double complex of Čech cochains valued in F rather than Galois
cochains. The usual exponential exact sequences give a diagram of Γ-modules

0 X∗(U) Lie(Û) Û 1

0 X∗(T ) Lie(T̂ ) T̂ 1,

f̂

185



which gives a boundary map on hypercohomology

Hr(Γ, Û
f̂−→ T̂ )→ Hr+1(Γ, X∗(U)

f∗−→ X∗(T )),

giving a pairing Hr(Γ, T
f−→ U) × H2−r(Γ, Û

f̂−→ T̂ ) → C× (embedding Q/Z into C× via the
exponential map). As noted in [KS99], this pairing is insufficient for our purposes; we instead

want to define a pairing involving the hypercohomology groups Hr(WF , Û
f̂−→ T̂ ), where WF

denotes the Weil group of F .

Recall that the hypercohomology groups Hr(WF , Û
f̂−→ T̂ ) are defined as follows: For any F -

torus S, we set C0(WF , Ŝ) = Ŝ(C) (with inflatedWF -action), C1(WF , Ŝ) the group of continuous
1-cocycles ofWF in T̂ (C), and all other cochain groups to be zero. We then define r-hypercochains

with respect to the complex Û
f̂−→ T̂ to be elements of

Cr(WF , Û
f̂−→ T̂ ) = Cr(WF , Û)⊕ Cr−1(WF , T̂ ),

with the same differentials as in our previous total complexes, and corresponding cohomology

groups Hr(WF , Û
f̂−→ T̂ ).

To construct the desired pairing, we need to introduce one more homological construction. For
K/F a finite Galois extension and WK/F the relative Weil group of K/F , we define the group
H0(WK/F , X∗(T )

f∗−→ X∗(U)) to be the kernel of X∗(T )⊕C1(X∗(U))
f∗⊕−∂−−−−→ X∗(U) modulo the

image of
C1(X∗(T ))⊕ C2(X∗(U))

(∂⊕0,f∗⊕−∂)−−−−−−−→ X∗(T )⊕ C1(X∗(U)),

where Ci(−) denotes the group of i-chains and ∂ is the usual differential from group homology.
(with respect to the abstract group WK/F ). We then define H0(WK/F , X∗(T )

f∗−→ X∗(U))0 as the
subgroup of elements whose X∗(T )- coordinates are killed by the K/F -norm. We then have maps

ϕ : C1(X∗(T ))→ T (K),

ψ : X∗(T )0 → Ž1(K/F, T ) = Z1(ΓK/F , T (K))

which together induce, via (ψ, ϕ), a canonical isomorphism

H0(WK/F , X∗(T )
f∗−→ X∗(U))0

∼−→ H1(ΓK/F , T (K)
f−→ U(K)) = H1(K/F, T

f−→ U). (A.3)

For the explicit construction of ϕ and ψ and the proof that they induce such an isomorphism,
see [KS99, §A.3], (the constructions of the two maps are involved, and we omit summarizing them
here). Note that since K/F is a finite Galois extension, we may work with group cohomology, so
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the arguments of [KS99] are unchanged in our new setting. Now since C× is divisible, we have an
isomorphism

HomZ(H0(WK/F , X∗(T )
f∗−→ X∗(U)),C×)

∼−→ H1
abs(WK/F , Û

f̂−→ T̂ ),

where the subscript “abs" means that we are viewing WK/F as an abstract group, and then restrict-
ing to subgroups, an isomorphism

HomZ(H0(WK/F , X∗(T )
f∗−→ X∗(U))0,C×)

∼−→ H1(WK/F , Û
f̂−→ T̂ ),

(for details on these isomorphisms, see [KS99, §A.3]) which, combined with the isomorphism
(A.3), gives a pairing

H1(K/F, T
f−→ U)×H1(WK/F , Û

f̂−→ T̂ )→ C×.

Passing to direct limits gives a pairing

H1(F sep/F, T
f−→ U)×H1(WF , Û

f̂−→ T̂ )→ C×, (A.4)

and then applying our isomorphism from Lemma A.1.1 finally gives our desired pairing

H1(F/F, T
f−→ U)×H1(WF , Û

f̂−→ T̂ )→ C×. (A.5)

We now discuss some basic properties of this pairing. To match more closely with [KS99], we
work with H1(F sep/F, T

f−→ U) = H1(ΓF , T (F
sep)

f−→ U(F sep)), but we could just as well replace
the left-hand group with H1(F/F, T

f−→ U) (cf. Lemma A.1.1). We have two exact sequences

· · · → H0(F,U)
j−→ H1(F sep/F, T

f−→ U)
i−→ H1(F, T )→ . . . ,

· · · → H0(WF , T̂ )
ĵ−→ H1(WF , Û

f̂−→ T̂ )
î−→ H1(WF , Û)→ . . . ,

from which we derive two compatibilities of pairings. First, we have ⟨j(u), ẑ⟩ = ⟨u, î(ẑ)⟩−1,
where the left-hand pairing is (A.4) and the right-hand pairing U(F )×H1(WF , Û)→ C× is given
by Langlands duality for tori. Second, we have ⟨z, ĵ(t̂)⟩ = ⟨i(z), t̂⟩, where the left-hand pairing is
again from (A.4) and the right-hand pairing H1(F, T ) × T̂ ΓF → C× comes from Tate-Nakayama
duality.

We may endow H1(F/F, T
f−→ U) with a natural locally-profinite topology as follows. To see

this, we first claim that the image f(T (F )) ⊆ U(F ) is closed. The scheme-theoretic image f(T )
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is a closed subscheme of U by the closed orbit lemma, so that f(T )(F ) is closed in U(F ), which
means that we can replace U by f(T ) to reduce to the case where f is (scheme-theoretically)
surjective. We then may find an F -torus T ′ such that f factors as a composition T

f ′−→ U ′ f ′′−→ U

where the kernel of f ′ is a torus and f ′′ is an isogeny. Note that f ′′ is finite, and hence proper,
which means that, at the F -rational level, the continuous map U ′(F )→ U(F ) is proper (as a map
of topological spaces), which means it’s closed (since U(F ) is locally compact and Hausdorff),
and so we can reduce further to the case where the kernel of T → U is a torus.

Note that, in this final case, the morphism T
f−→ U is smooth—indeed, quotient maps are always

flat and surjective, and the smoothness of the kernel implies that we get a short-exact sequence at
the level of tangent spaces at the identity. It then follows from the inverse function theorem for
analytic manifolds ([Ser92, Theorem III.9.2], which again, is proved for all analytic manifolds
over complete nonarchimedean fields) that f is open, and hence closed (since we are working
with totally-disconnected Hausdorff topological spaces). In fact, the above argument shows that
f : T (F )→ U(F ) is closed.

The closedness of f(T (F )) in U(F ) implies that the quotient U(F )/f(T (F )) has the canonical
structure of a topological group. We then give H1(F/F, T

f−→ U) the unique locally-profinite
topology such that the map

U(F )/[f(T (F ))]→ H1(F/F, T
f−→ U)

is an open immersion (note that H1(F, T ) is always finite).

Proposition A.2.1 Using the above topology, the pairing (A.5) induces a surjective homomor-

phism

H1(WF , Û
f̂−→ T̂ )→ Homcts(H

1(F/F, T
f−→ U),C×)

with kernel equal to the image of (T̂ ΓF )◦ under the natural map

ĵ : T̂ ΓF → H1(WF , Û
f̂−→ T̂ ).

Proof. The proof proceeds identically as in the proof of [KS99, Lemma A.3.B], using our above
compatibilities of pairings and the fact that Langlands duality for tori and Tate-Nakayama duality
are unchanged in the local function field setting.

We set H1(WF , Û
f−→ T̂ )red to be the quotient H1(WF , Û

f−→ T̂ )/ĵ[(T̂ ΓF )◦]. Note that the group

H1(WF , Û
f̂−→ T̂ ) is redundant when f is an isogeny, by the following result:
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Proposition A.2.2 The canonical inclusion

H1(Γ, Û
f̂−→ T̂ )→ H1(WF , Û

f̂−→ T̂ )

is an isomorphism.

Proof. First note that for any finite extension K/F splitting U and T , we have an “inflation-
restriction" sequence, given by the exact sequence

0→ H1(ΓK/F , Û
f̂−→ T̂ )→ H1(WK/F , Û

f̂−→ T̂ )→ H1(K∗, Û
f̂−→ T̂ ),

where in the last term we are viewing K∗ as a topological group. Indeed, suppose that we have
a 1-hypercocycle (u, t) ∈ C1(WF , Û) ⊕ T̂ (C) such that its restriction to K∗ is a 1-coboundary;
that is, we have x ∈ Û(C) such that (u, t) = (dx, f(x)−1). This means that for all z ∈ F ∗, we
have u(z) = zx · x−1 = 1, so that u is trivial on K∗, and is therefore inflated from any 1-cocycle ũ
of ΓK/F determined by picking a set-theoretic section ΓK/F → WK/F . Since the WK/F -action is
inflated from ΓK/F , the element (ũ, t) is a 1-hypercocycle of ΓK/F mapping to (u, t), as desired.

For a fixed K/F as above, fix x ∈ H1(WK/F , Û
f̂−→ T̂ ); to show that, for large enough L/F

containing K, it lies in the image of the inflation map, it’s enough to show that its image in

H1(L∗, Û
f̂−→ T̂ ) = Homcts(L

∗, ker(f̂)) is zero for large enough L. This is possible, since any
continuous homomorphism χ : K∗ → ker(f̂) has finite-index open kernel and the images of the
norm maps NL/K(L

∗) shrink to the identity as L/K varies over all finite Galois extensions of F
containing K.

A.3 Complexes of tori over global function fields—basic results

The last two subsections extend the content of [KS99], Appendix C, to a global function field F .
We fix a 2-term complex of F -tori T

f−→ U . Let Asep := F sep ⊗F A. We first define H̄ i(A/A, T f−→
U) to be the hypercohomology of the double complex

T (A)
T (F )

T (A⊗AA)
T (F⊗FF )

T (A⊗AA⊗AA)
T (F⊗FF⊗FF )

. . .

U(A)
U(F )

U(A⊗AA)
U(F⊗FF )

U(A⊗AA⊗AA)
U(F⊗FF⊗FF )

. . . ,
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giving us a long exact sequence

· · · → H i(F/F, T
f−→ U)→ H i(A/A, T f−→ U)→ H̄ i(A/A, T f−→ U)→ H i+1(F/F, T

f−→ U)→ . . .

(A.6)
Let S be a finite set of places of F containing all places at which T and U are ramified. For

every place v of F , we fix an algebraic closure Fv as well as an embedding F ↪→ Fv. The following
two results let us work in the group-cohomological setting:

Lemma A.3.1 For all i ≥ 0, the natural map H i(Asep/A, T f−→ U) → H i(A/A, T f−→ U) is an

isomorphism, and the same is true with A replaced by F .

Proof. Combining the proof of Lemma 3.3.8 with our results on adelic tensor products in §3.3
shows that Hj((Asep)

⊗
A n,M) vanishes for any F -torus M , j, n ≥ 1, and hence the natural map

Ȟ i(Asep/A,M) → H i(A,M) is an isomorphism. Since this is also true with Asep replaced by
A, the same argument in the proof of Lemma A.1.1 gives the result. The argument for F is the
same.

Corollary A.3.2 For all i ≥ 0, the natural map H̄ i(Asep/A, T f−→ U) → H̄ i(A/A, T f−→ U) is an

isomorphism.

Proof. This is an immediate consequence of combining Lemma A.3.1 with the long exact sequence
(A.6) and applying the five-lemma.

The next two results are left as straightforward exercises:

Lemma A.3.3 For all i, we have a canonical isomorphism

H i(Asep/A, T f−→ U)→ H i(ΓF , T (Asep)
f−→ U(Asep)).

Corollary A.3.4 For all i, we have a canonical isomorphism

H̄ i(Asep/A, T f−→ U)→ H̄ i(ΓF , T (Asep)/T (F sep)
f−→ U(Asep)/U(F sep)).

We now give an analogue of [KS99, Lemma C.1.A], which we need in order to work with
restricted products. Note that the complex T

f−→ U is defined over the ring OF,S . Let Ov denote the
completion ofOF at a place v, andOnr

v the ring of integers inside the maximal unramified extension
F nr
v /Fv.
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Lemma A.3.5 For any place v /∈ S, the group H i(Onr
v /Ov, T

f−→ U) is equal to the kernel of

T (Ov)
f−→ U(Ov) if i = 0, to the cokernel of the same map if i = 1, and is trivial if i ≥ 2.

Moreover, the natural map

H i(Onr
v /Ov, T

f−→ U)→ H i(Fv/Fv, T
f−→ U)

is injective for all i.

Proof. To prove the first statement, using the long exact sequence (A.1), it’s enough to show that
Ȟ i(Onr

v /Ov,M) = 0 for any F -torus M which is unramified at v for i ≥ 1 (applying this result
to T and U ). We first claim that these groups may be identified with H i(Ov,M) under the natural
Čech-to-fppf comparison map. As usual, it’s enough to show that the fppf cohomology groups
Hj((Onr

v )
⊗

Ov
n,M) vanish for all j, n ≥ 1 . Since Ov is the ring of integers in a nonarchimedean

local field, for a fixed finite unramified extension Ew/Fv, we have the chain of identifications

Ow ⊗Ov Ow
∼−→ Ow ⊗Ov Ov[ϖ]

∼−→ Ow ⊗Ov Ov[x]/(f)
∼−→

∏
ΓEw/Fv

Ow,

where ϖ ∈ Ow and f ∈ Ov[x]. In the usual way, we are thus reduced to the case when n = 1; i.e.,
showing that the groups H i(Onr

v ,M) vanish for all i ≥ 1. This follows immediately from the fact
that they are the direct limit of the groups H i(OEw ,M), where Ew is as above, which all vanish
by [Čes16, Corollary 2.9], using that OEw is a Henselian local ring with finite residue field kw, and
Mkw is connected, being a kw-torus. With the claim in hand, the result is immediate from the same
Corollary, since Ov is a Henselian local ring with finite residue field kv such that Mkv is connected.

We now move on to the second statement. Using the first statement, we only need to show
this for i = 1. As in the proof of [KS99, Lemma C.1.A], it’s enough to show that any element
u ∈ U(Ov) ∩ f(T (Fv)) lies in f(T (Ov)). To this end, we may assume that f is surjective, and we
may again factor f as the composition T

f ′−→ U ′ f ′′−→ U , where f ′ has a torus as its kernel and f ′′ is
an isogeny. The argument of the proof of [KS99, Lemma C.1.A ] proves the result for f ′, so that
U ′(Ov) ∩ f ′(T (Fv)) = f ′(T (Ov)).

Note that f ′′ is proper as a morphism of Fv-schemes, so the map U ′(Fv)→ U(Fv) is proper as
a morphism of topological spaces; this implies that the preimage of the compact subgroup U(Ov)

under f ′′ is a compact subgroup of U ′(Fv), and so lies in U ′(Ov), the maximal compact subgroup.
Thus, if t ∈ T (Fv) is such that f(t) ∈ U(Ov), then f ′(t) ∈ U ′(Ov), so that f ′(t) = f ′(x) for some
x ∈ T (Ov), and now f(t) = f(x), as desired.

We now give a restricted product structure to the groups H i(A/A, T f−→ U) with respect to the
subgroups of the above lemma:
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Proposition A.3.6 We have a canonical isomorphism

H i(A/A, T f−→ U)
∼−→

′∏
v∈VF

H i(Fv/Fv, T
f−→ U),

where the product is restricted with respect to the subgroups H i(Onr
v /Ov, T

f−→ U) for v /∈ S

(which are indeed subgroups by Lemma A.3.5). When i ≥ 2, this restricted product is a direct sum.

Proof. The first step is to use Lemma A.3.1 to replace H i(A/F, T f−→ U) by H i(Asep/A, T f−→ U),
and Lemma A.1.1 to replace H i(Fv/Fv, T

f−→ U) by H i(F sep
v /Fv, T

f−→ U). Consider a finite
Galois extension K/F , and let S(K) denote a large finite set of places containing S such that
K is unramified outside S(K). For any place w ∈ VK lying over v /∈ S(K), the natural map
H i(Ow/Ov, T

f−→ U) → H i(Onr
v /Ov, T

f−→ U) is an isomorphism (replace Onr
v by Ow in the proof

of Lemma A.3.5). From here, we may work with group cohomology and use the identical argument
of [KS99, Lemma C.1.B] to deduce the result.

Continuing to follow [KS99, §C], we topologize our adelic cohomology groups. We work with
the Galois versions H i(F sep/F, T

f−→ U), H i(Asep/A, T f−→ U), and H̄ i(Asep/A, T f−→ U). We give
H i(F sep/F, T

f−→ U) the discrete topology for all i. We give H0(Asep/A, T f−→ U) the topology
it inherits as a closed subgroup of T (A), and H1(Asep/A, T f−→ U) the topology determined by
declaring that the map U(A)/f [T (A)] → H1(Asep/A, T f−→ U) is an open immersion; note that
f [T (A)] is closed in U(A), since f(T (Fv)) ∩ U(Ov) = f(T (Ov)) for v /∈ S and

∏
v/∈S f(T (Ov))

is compact, and f(T (Fv)) is closed in U(Fv) for v ∈ S (by an argument that we made earlier in
this subsection). In the above discussion, we are using [Čes16, Theorem 2.20] to decompose T (A)
and U(A) as restricted products. We give the groups H i(Asep/A, T f−→ U) the discrete topology
for i ≥ 2.

We now turn to topologizing the groups H̄ i(Asep/A, T f−→ U), which is the most complicated of
the three cases. Note that for any F -torus S, the group S(Asep) carries a natural topology, given by
the direct limit topology of the topological groups S(AK), whereK/F ranges over all finite Galois
extensions. These topologies coincide with the topologies induced by giving Asep the structure of a
topological ring via the direct limit topology. Note that the ring Asep is Hausdorff; to see, this, note
that each AK is a metrizable topological space (by [KS20, Proposition 1.1]), and is thus normal;
now the direct limit of normal spaces with transition maps that are closed immersions (as is the
case with AK → AL) is a normal topological space, and hence a fortiori Hausdorff.

It follows that S(Asep) is Hausdorff (by [Con11, Proposition 2.1]). Since S(K) is closed in
S(AK) for all K, it follows that S(F sep) is a closed subgroup of S(Asep) (using that S(F sep) ∩
S(AK) = S(K)), so the topological group S(Asep)/S(F sep) makes sense. Moreover, the subgroup
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[S(Asep)/S(F sep)]Γ is closed, since it’s the intersection over all elements σ ∈ Γ of the subsets
[S(Asep)/S(F sep)]σ, which are the preimages of the (closed) diagonal ∆(S(Asep)/S(F sep)) under
the continuous map

id× (−)σ : S(Asep)/S(F sep)→ S(Asep)/S(F sep)× S(Asep)/S(F sep).

Moreover, using these topologies, the natural map

[T (Asep)/T (F sep)]Γ → [U(Asep)/U(F sep)]Γ

is continuous, and hence the closed kernel (our group H̄0(Asep/A, T f−→ U)) has the natural struc-
ture of a topological group, settling the i = 0 case.

We claim that the image of the map

[T (Asep)/T (F sep)]Γ → [U(Asep)/U(F sep)]Γ

is in fact a closed subgroup (with topologies given as above). First, observe that for K/F finite,
the map T (AK)

f−→ U(AK) is closed; this follows from the closedness of f as a map from T (Kv)

to U(Kv) for all v, the observation that f(T (Kv)) ∩ U(OKv) = f(T (OKv)), and the structure of
the adelic topology on U(AK) (using the restricted-product decomposition of U(AK) from [Čes16,
Theorem 2.20]). Now note that the image of the map in question is the direct limit of the images
of the maps of topological groups [T (AK)/T (K)]ΓK/F → [U(AK)/U(K)]ΓK/F , and so it’s enough
to show that all of these images are closed. This follows immediately from the closedness of
T (AK)

f−→ U(AK) and the fact that [T (AK)/T (K)]ΓK/F is closed in T (AK)/T (K) (implied by
our above arguments).

We give H̄1(Asep/A, T f−→ U) the topology determined by declaring that the map

cok([T (Asep)/T (F sep)]Γ → [U(Asep)/U(F sep)]Γ)→ H̄1(Asep/A, T f−→ U)

is an open immersion (where the left-hand side has the natural quotient topology). For any i ≥ 2,
we give H̄ i(Asep/A, T f−→ U) the discrete topology.

A.4 Complexes of tori over global function fields—duality

We now discuss duality for the groups H̄ i(A/A, T f−→ U); it will be more convenient to replace
these groups by (the canonically-isomorphic) H̄ i(Asep/A, T f−→ U). As in the local case, we have
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a Tate-Nakayama pairing

H̄r(Asep/F, T
f−→ U)×H3−r(Γ, X∗(U)

f∗−→ X∗(T ))→ Q/Z, (A.7)

where the Q/Z comes from identifying the 2nd cohomology group of the complex with degree-n
(≥ 0) term

Gm((Asep)
⊗

A(n+1))/Gm((F
sep)

⊗
F (n+1))

with H2(Γ, C) (where C = lim−→K/F
CK is the universal idéle class group) and then identifying this

last group with Q/Z via the global invariant map. For an F -torus S, denote by H̄ i(Asep/A, S) the
ith cohomology of the complex with degree-n term

S((Asep)
⊗

A(n+1))/S((F sep)
⊗

F (n+1))

(we can define an analogue for A, but we won’t use that here).
According to [KS99, Lemma D.2.A],(which relies on the results of [Mil06, §4], which are

stated for arbitrary nonarchimedean local fields) the groups H̄r(Asep/A, T ) vanish for r ≥ 3, and
for r = 1, 2 we having a pairing

H̄r(Asep/A, T )×H2−r(Γ, X∗(T ))→ Q/Z

which induces isomorphisms H̄r(Asep/A, T ) ∼−→ HomZ(H
2−r(Γ, X∗(T )),Q/Z), and the group

H̄1(Asep/A, T ) is finite.
We now extend this to our complexes:

Lemma A.4.1 For r ≥ 4, the groups H̄r(Asep/A, T f−→ U) vanish. For r = 2, 3, the pairing (A.7)
induces an isomorphism

H̄r(Asep/A, T f−→ U)
∼−→ HomZ(H

3−r(Γ, X∗(U)
f∗−→ X∗(T )),Q/Z).

For r = 2, 3, the group H̄r(Asep/A, T f−→ U) is finitely-generated, and for r = 3 it is free.

Proof. See the explanation following [KS99, Lemma C.2.A].

We now give a duality theorem for r = 1, which will use the absolute Weil group WF of F
(corresponding to the inverse limit of extensions of AK/K

∗ by ΓK/F corresponding to the canon-
ical H2-class, as K/F ranges over all finite Galois extensions) as in the local case. We define the
cochain groups Cm(WF , T̂ ) and cohomology groups Hm(WF , T̂ ) in the same way as in the local
case. Note that Hm(WF , T̂ ) vanishes for m ≥ 2, and H1(WF , T̂ ) is canonically isomorphic to
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Homcts(H̄
0(Asep/A, T ),C×), by [Lan97]. We define the hypercochain groups Cm(WF , Û

f̂−→ T̂ )

the same way as in the local case, and take Hm(WF , Û
f̂−→ T̂ ) to be the cohomology of the corre-

sponding complex. Note that Hm(WF , Û
f̂−→ T̂ ) = 0 for m ≥ 3. We have the following global

analogue of Proposition A.2.2:

Proposition A.4.2 When T
f−→ U is an isogeny, the canonical inclusion H1(Γ, Û

f̂−→ T̂ ) →
H1(WF , Û

f̂−→ T̂ ) is an isomorphism.

Proof. As in the proof of Proposition A.2.2, the inflation-restriction sequence shows that it’s
enough to show that the image of any element in Homcts(AK/K

∗, ker(f̂)) is zero in some large
finite Galois extension L/F containing K, which follows from the fact that the kernel of any such
homomorphism is open and finite-index and the universal norm group of (the idele class groups
of) a global function field is trivial (see [NSW08, Proposition 8.1.26]).

We may define a pairing

H̄1(Asep/A, T f−→ U)×H1(WF , Û
f̂−→ T̂ )→ C× (A.8)

exactly as in the local case, and, like in the local case, it induces a surjective homomorphism

H1(WF , Û
f̂−→ T̂ )→ Homcts(H̄

1(Asep/A, T f−→ U),C×)

with kernel the image of (T Γ)◦ ⊆ H0(WF , T̂ ) in H1(WF , Û
f̂−→ T̂ ), the quotient by which we will

denote by H1(WF , Û
f̂−→ T̂ )red.

We now define a compact subgroup H̄ i(Asep/A, T f−→ U)1 of H̄ i(Asep/A, T f−→ U) for i = 0, 1.
We first set H̄0(Asep/A, T )1 to be the kernel of the group homomorphism

H : [T (Asep)/T (F sep)]Γ → X∗(T )
Γ

determined by, for all λ ∈ X∗(T )Γ, the equality

⟨λ,H(t̄)⟩ = deg(λ(t̄)),

where we are using the fact that [(Asep)×/(F sep)×]Γ = A×/F×, and deg : A×/F× → Z is the
homomorphism defined by deg(ᾱ) =

∑
v∈V v(αv)[kv : k], where k denotes the constant field of

the global function field F .

Lemma A.4.3 The kernel of the above homomorphism is a compact subgroup of

[T (Asep)/T (F sep)]Γ (topologized as in the previous subsection).
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Proof. This follows from elementary results concerning the structure of tori over global fields. We
have a canonical isogeny T → Ta × Ts, where Ta is the maximal F -anisotropic subtorus of T and
Ts is the maximal F -split subtorus of T . Note that this induces an injective group homomorphism
X∗(T )

Γ → X∗(Ta × Ts)Γ = X∗(Ts). Then we have a commutative diagram

(T (Asep)/T (F sep))Γ ((Ta × Ts)(Asep)/(Ta × Ts)(F sep))Γ

X∗(T )
Γ X∗(Ts),

and since the lower horizontal map is injective, the kernel of the left-hand vertical map (the group
we’re analyzing) is the kernel of the right-down composition, i.e, the preimage of the kernel of the
right-hand vertical map. Since the top horizontal map is induced by the isogeny T → Ta × Ts

(which is proper), if we can show that the kernel of the right-hand vertical map is compact, then
its preimage in [T (Asep)/T (F sep)]Γ is also compact (since the properness of f implies that the map
of topological groups T (Asep)

fK−→ U(Asep) is proper, by [Con11, Proposition 5.8]). Rewriting the
group [(Ta × Ts)(Asep)/(Ta × Ts)(F sep)]Γ as

[Ta(Asep)/Ta(F
sep)]Γ × [Ts(Asep)/Ts(F

sep)]Γ,

it’s clear that the kernel in question equals [Ta(Asep)/Ta(F
sep)]Γ×Ks, whereKs denotes the kernel

of the map Hs : [Ts(Asep)/Ts(F
sep)]Γ → X∗(Ts). First, note that the group [Ta(Asep)/Ta(F

sep)]Γ

is already compact; this follows from the fact that it contains Ta(A)/Ta(F ) as a finite-index
closed subgroup, and this latter group is compact (by [Con20, Theorem 8.1.3], using that Ta is
F -anisotropic).

We have thus reduced the lemma to the case in which T = Ts is F -split. Pick a Z-basis
λ1, . . . λn of X∗(T ) = X∗(T )Γ. Then t̄ lies in the kernel of H if and only if deg[λi(t̄)] = 0 for all
i. In fact, we have an F -isomorphism

T
(λi)−−→ Gn

m,

and now the kernel of H is the preimage under the above isomorphism of the kernel of the map
(A×/F×)n

degn−−→ Zn, which is the n-fold product of the compact subgroups C0
F of A×/F× (by

[NSW08, Proposition 8.1.25]).

We then define H̄0(Asep/A, T f−→ U)1 to be the intersection of the group H̄0(Asep/A, T f−→
U) ⊆ [T (Asep)/T (F sep)]Γ with the above kernel. It is easy to check that when f is an isogeny this
intersection is all of H̄0(Asep/A, T f−→ U). We now proceed to the i = 1 construction.
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For any λ ∈ X∗(U)Γ, we have a map of complexes from [T
f−→ U ] to [1→ Gm] given by

T U

1 Gm,

f

λ

which induces a map H̄1(Asep/A, T f−→ U) → H̄1(Asep/A, 1 → Gm) = H̄0(Asep/A,Gm) =

A×/F×, which we may then map to Z via deg, as above. This determines a homomorphism
H̄1(Asep/A, T f−→ U) → X∗(U)

Γ, and we declare H̄1(Asep/A, T f−→ U)1 to be the kernel of the
composition

H(1) : H̄1(Asep/A, T f−→ U)→ X∗(U)
Γ → X∗(U)

Γ

f∗(X∗(T )Γ)
.

Note that we have a commutative diagram with exact rows

1 H̄0(Asep/A, T f−→ U) H̄0(Asep/A, T ) H̄0(Asep/A, U) H̄1(Asep/A, T f−→ U)

0 Ker(f∗
∣∣
X∗(T )Γ

) X∗(T )
Γ X∗(U)

Γ X∗(U)
Γ/f∗(X∗(T )

Γ).

f

HT HU

δ

H(1)

f∗

(A.9)
We claim now that the map HT : H̄

0(Asep/A, T )→ X∗(T )
Γ is split; indeed, this time using the

isogeny Ta × Ts → T , we get the commutative diagram

((Ta × Ts)(Asep)/(Ta × Ts)(F sep))Γ (T (Asep)/T (F sep))Γ

X∗(Ts) X∗(T )
Γ,

HTa×Ts HT

∼

where, as we have indicated, the bottom horizontal map is an isomorphism. As in the proof of the
Lemma A.4.3, to splitHTa×Ts , it’s enough to splitHTs . As before, we have characters λi ∈ X∗(Ts)

such that Ts
(λi)−−→ Gn

m is an isomorphism, and so it’s enough to split the map (A×/F×)n
degn−−→ Zn,

which is clearly possible. Our splitting of HTa×Ts gives a splitting of HT by applying the inverse
isomorphism X∗(T )

Γ → X∗(Ts), giving the main claim. Of course the same argument works
with T replaced by U . Along with the obvious product decompositions of H̄0(Asep/A, T ) and
H̄0(Asep/A, U), we get an induced splittingX∗(U)

Γ/f∗(X∗(T )
Γ)→ H̄1(Asep/A, T f−→ U) ofH(1),

realizing H̄1(Asep/A, T f−→ U) as the product H̄1(Asep/A, T f−→ U)1 × [X∗(U)
Γ/f∗(X∗(T )

Γ)].

Lemma A.4.4 The group H̄1(Asep/A, T f−→ U)1 is compact (as a subgroup of the topological

group H̄1(Asep/A, T f−→ U)).
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Proof. We have a natural injection H̄0(Asep/A, U)1/f(H̄0(Asep/A, T )1) ↪→ H̄1(Asep/A, T f−→
U)1, which, by the definition of our topologies, is a closed immersion. We claim that, in fact,
this is a subgroup of a finite index in the target. By the commutative diagram (A.9), we have

δ−1[H̄1(Asep/A, T f−→ U)1] = H̄0(Asep/A, U)1 · f [H̄0(Asep/A, T )] ⊆ H̄0(Asep/A, U),

and hence the image of the above natural injection equals

δ[H̄0(Asep/A, U)] ∩ H̄1(Asep/A, T f−→ U)1,

and hence is of finite index, since δ[H̄0(Asep/A, U)] is of finite index in H̄1(Asep/A, T f−→ U), by
the finiteness of H̄1(Asep/A, T ). Since H̄0(Asep/A, U)1/f(H̄0(Asep/A, T )1) is itself compact (by
Lemma A.4.3), the result follows.

Corollary A.4.5 When f is an isogeny, the group H̄1(Asep/A, T f−→ U) is compact.

Proof. This follows immediately from the above lemma and the fact thatX∗(U)
Γ/X∗(T )

Γ is finite,
due to the fact that X∗(T ) ⊆ X∗(U) is finite-index and X∗(U)

Γ ∩X∗(T ) = X∗(T )
Γ.

We conclude this section by giving new global duality results that involve the above cohomol-
ogy groups. We have a natural map

H i(F sep/F, T
f−→ U)→ H i(Asep/A, T f−→ U),

and we will denote its kernel by keri(F sep/F, T
f−→ U) and its cokernel by coki(F sep/F, T

f−→ U);
our primary case of interest in this paper is when i = 1; Using Proposition A.3.6, we may also
describe keri(F sep/F, T

f−→ U) as the kernel of the map

H i(F sep/F, T
f−→ U)→

∏
v∈V

H i(F sep
v /Fv, T

f−→ U).

We have, from the long exact sequence (A.6), the short exact sequences

1→ coki(F sep/F, T
f−→ U)→ H̄ i(Asep/A, T f−→ U)→ keri+1(F sep/F, T

f−→ U)→ 1. (A.10)

The following is an analogue of [KS99, Lemma C.3.A]:

Lemma A.4.6 For all i, the image of H i(F sep/F, T
f−→ U) is discrete in H i(Asep/A, T f−→ U).

Moreover, the map

coki(F sep/F, T
f−→ U)→ H̄ i(Asep/A, T f−→ U)
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induces an isomorphism of topological groups from coki(F sep/F, T
f−→ U) to an open subgroup of

H̄ i(Asep/A, T f−→ U) for i = 0, 1.

Proof. The first statement is clear for i ̸= 1 (cf. the analogous argument in [KS99]), so we only
need to prove both statements for i = 1. For the first statement, it’s enough to show that the
intersection of f [H1(F sep/F, T

f−→ U)] with the open subgroup U(A)/f(T (A)) is discrete. Since
the image of U(F )/f(T (F )) is of finite index in [U(A)/f(T (A))] ∩ f [H1(F sep/F, T

f−→ U)]

(because the kernel of H1(F, T )→
∏′

vH
1(Fv, T ) is finite), it’s enough to show that the image of

U(F )/f(T (F )) is discrete in U(A)/f(T (A)).
Similarly to what we’ve done before, we have a split surjective homomorphism T (A) →

X∗(T )
Γ with closed (not necessarily compact) kernel T (A)1, similarly for U , and the induced

product structures are compatible with the homomorphism f , allowing us to rewrite f as

T (A)1 ×X∗(T )
Γ f×f∗−−−→ U(A)1 ×X∗(U)

Γ,

leading to a decomposition

U(A)/f(T (A)) = U(A)1/f(T (A)1)×X∗(U)
Γ/f∗(X∗(T )

Γ),

and image of U(F )/f(T (F )) in U(A)/f(T (A)) lands in the factor U(A)1/f(T (A)1).
The subgroup f(T (F )) is evidently discrete in U(A)1, since the subgroup U(F ) is discrete in

U(A) (by [Con11], Example 2.2, using that F is discrete in A). Thus, U(A)1/f(T (F )) contains
the discrete subgroup U(F )/f(T (F )) and the compact subgroup f(T (A)1)/f(T (F )) (the com-
pactness follows from Lemma A.4.3). The desired discreteness then follows by the analogous
argument in the proof of [KS99, Lemma C.3.A].

As in [KS99], to prove the second statement for i = 1 it suffices to show that the map

U(A)→ [U(Asep)/U(F sep)]Γ/f [T (Asep)/T (F sep)]Γ

is open. Note that the image U(A)/U(F ) ↪→ [U(Asep)/U(F sep)]Γ is closed (a straightforward
exercise in the topology of adelic points), and is also finite index (by the finiteness of the kernel of
H1(F,U)→ H1(A, U)), and is hence open. Since quotient maps are open, the composition

U(A)→ U(A)/U(F )→ [U(Asep)/U(F sep)]Γ → [U(Asep)/U(F sep)]Γ/f [T (Asep)/T (F sep)]Γ

is open, as desired.
It remains to show that the injection cok0(F sep/F, T

f−→ U) → H̄0(Asep/A, T f−→ U) has open
image. As in [KS99], it’s enough to show that the mapH0(Asep/A, T f−→ U)→ ker[T (A)/T (F )→
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U(A)/U(F )] is open (because, as in [KS99], T (A)/T (F ) is open in [T (Asep)/T (F sep)]Γ). Define
the closed subgroup B := {t ∈ T (A) | f(t) ∈ U(F )} of T (A). Note that H0(Asep/A, T f−→ U)

is a closed subgroup of B, and we thus have a closed immersion B/[H0(Asep/A, T f−→ U)] ↪→
U(F ) ↪→ U(A), where the last closed immersion has discrete image. It follows that, since
H0(Asep/A, T f−→ U) is a closed subgroup of B with discrete quotient, it’s open, and then the
result follows from the fact that B/T (F ) = ker[T (A)/T (F )→ U(A)/T (F )].

We immediately obtain:

Corollary A.4.7 The group

cok1(F sep/F, T
f−→ U)1 := cok1(F sep/F, T

f−→ U) ∩ H̄1(Asep/A, T f−→ U)1

is compact. Moreover, when f is an isogeny, the group cok1(F sep/F, T
f−→ U) is compact.

Define the group

ker1(WF , Û
f̂−→ T̂ )red := ker[H1(WF , Û

f̂−→ T̂ )red →
∏
v∈V

H1(WFv , Û
f̂−→ T̂ )red].

We have the following useful result:

Proposition A.4.8 We have a duality isomorphism

Homcts(cok1(F sep/F, T
f−→ U),C×)

∼−→ H1(WF , Û
f̂−→ T̂ )red/ker1(WF , Û

f̂−→ T̂ )red.

Moreover, the group ker1(F sep/F, T
f−→ U) is finite.

Proof. Using that cok1(F sep/F, T
f−→ U) is an open subgroup of H̄1(Asep/A, T f−→ U), applying

the functor Homcts(−,C×) to the short exact sequence (A.10) with i = 1 gives that the group
Homcts(cok1(F sep/F, T

f−→ U),C×) is canonically isomorphic to the quotient

Homcts(H̄
1(Asep/A, T f−→ U),C×)/Homcts(ker2(F sep/F, T

f−→ U),C×).

Moreover, the same short exact sequence tells us that Homcts(ker2(F sep/F, T
f−→ U),C×) is

canonically isomorphic to the subgroup

ker[Homcts(H̄
1(Asep/A, T f−→ U),C×)→ Homcts(H

1(Asep/A, T f−→ U),C×)].

But now we know that Homcts(H̄
1(Asep/A, T f−→ U),C×) is canonically isomorphic to the group

H1(WF , Û
f̂−→ T̂ )red via the pairing (A.8), that H1(Asep/A, T f−→ U) is canonically isomorphic

200



to
∏′

vH
1(F sep

v /Fv, T
f−→ U) (by Proposition A.3.6), and that each H1(F sep

v /Fv, T
f−→ U) has

continuous dual canonically isomorphic to H1(WFv , Û
f̂−→ T̂ )red, which gives the result.

For the finiteness of ker1(F sep/F, T
f−→ U), one checks that the map

H̄0(Asep/A, T f−→ U)→ Ker(f∗
∣∣
X∗(T )Γ

)

from the diagram (A.9) remains surjective when restricted to the subgroup cok0(F sep/F, T
f−→ U),

which means that H̄0(Asep/A, T f−→ U)1 surjects onto ker1(F sep/F, T
f−→ U) with open kernel (this

openness follows from Lemma A.4.6). Since H̄0(Asep/A, T f−→ U)1 is compact, its quotient by an
open subgroup is finite.

In fact, we have the following exact analogue of [KS99, Lemma C.3.B], whose adaptation we
leave here (for completeness) as an exercise (Proposition A.4.8 is the only part of this result used
in the above paper):

Proposition A.4.9 The groups keri(F sep/F, T
f−→ U) are finite for all i and vanish unless i =

1, 2, 3. For i = 1, 2, 3, we have dual finite abelian groups

Hom(ker1(F sep/F, T
f−→ U),C×) = ker2(WF , Û

f̂−→ T̂ ),

Hom(ker1(F sep/F, T
f−→ U),C×) = ker1(WF , Û

f̂−→ T̂ )red,

Hom(ker3(F sep/F, T
f−→ U),Q/Z) = ker1(Γ, X∗(U)

f∗−→ X∗(T )).

The groups coki(F sep/F, T
f−→ U) vanish for i ≥ 4, and for i ≤ 3 we have duality isomorphisms

Homcts(cok0(F sep/F, T
f−→ U),C×) = H2(WF , Û

f̂−→ T̂ )/ker2(WF , Û
f̂−→ T̂ ),

Homcts(cok1(F sep/F, T
f−→ U),C×) = H1(WF , Û

f̂−→ T̂ )red/ker1(WF , Û
f̂−→ T̂ )red,

cok2(F sep/F, T
f−→ U) = Hom(H1(Γ, X∗(U)

f∗−→ X∗(T ))/ker1(Γ, X∗(U)
f∗−→ X∗(T )),Q/Z),

cok3(F sep/F, T
f−→ U) = H̄3(Asep/A, T f−→ U) = Hom(H0(Γ, X∗(U)

f∗−→ X∗(T )),Q/Z),

where all groups not already defined above are defined in analogy to the corresponding objects in

[KS99].

We conclude this section with a few results involving the group H1(Γ, Û
f̂−→ T̂ ). First, we

define H1(Γ, Û
f̂−→ T̂ )red to be the quotient of H1(Γ, Û

f̂−→ T̂ ) by the image of (T̂ Γ)◦ ⊆ H0(Γ, T̂ ).

For any v ∈ V , we define the quotient H1(Γv, Û
f̂−→ T̂ )red of H1(Γv, Û

f̂−→ T̂ ) analogously, with Γ
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replaced by Γv. Finally, we set

ker1(Γ, Û
f̂−→ T̂ )red := ker[H1(Γ, Û

f̂−→ T̂ )red →
∏
v∈V

H1(Γv, Û
f̂−→ T̂ )red].

We have the following analogue of [KS99, Lemma C.3.C]:

Lemma A.4.10 The natural map from H1(Γ, Û
f̂−→ T̂ )red to H1(WF , Û

f̂−→ T̂ )red maps the group

ker1(Γ, Û
f̂−→ T̂ )red isomorphically onto ker1(WF , Û

f̂−→ T̂ )red. Moreover, we have natural isomor-

phisms

H1(Γ, Û
f̂−→ T̂ )red

∼−→ H2(Γ, X∗(U)
f∗−→ X∗(T ))

and

ker1(Γ, Û
f̂−→ T̂ )red

∼−→ ker2(Γ, X∗(U)
f∗−→ X∗(T )).

Proof. These second two maps are induced by the boundary map coming from the commutative
diagram of short exact sequences of Γ-modules

0 X∗(U) Lie(Û) Û 1

0 X∗(T ) Lie(T̂ ) T̂ 1,

f̂

viewed as a short exact sequence of length-2 complexes. The proof of this result is identical to that
of [KS99, Lemma C.3.C].
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