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ABSTRACT

We generalize the concept of rigid inner forms, defined by Kaletha in [Kall6] and [Kall8], to
the setting of a local or global function field F' in order to study endoscopy over F' and state
conjectures regarding representations of an arbitrary connected reductive group GG over F. To do
this, we define for such G' a new cohomology set H'(€,Z — G) C Hy,.(€,G), where € is
an fpqc A-gerbe over F' attached to a class in Hf2ppf
group scheme A depending only on F' (not on (7), and extend the classical Tate-Nakayama duality

(F, A) for an explicit profinite commutative

theorem (locally), Tate’s global duality (cf. [Tat66]) result for tori, and their reductive analogues
to these new expanded cohomology sets.

We define a relative transfer factor for an endoscopic datum serving a connected reductive group
G over local F', and use rigid inner forms to extend this to an absolute transfer factor, enabling the
statement of endoscopic conjectures relating stable virtual characters and s-stable virtual characters
for a semisimple s associated to a tempered (local) Langlands parameter. Using global rigid inner
forms, a localization map from the local gerbe to its global counterpart allows us to organize sets
of local rigid inner forms into coherent families, allowing for a definition of global L-packets and a
conjectural formula for the multiplicity of an automorphic representation 7 in the discrete spectrum
of G in terms of these L-packets. We also show that, for a connected reductive group GG over a
global function field F', the adelic transfer factor A, for the ring of adeles A of global F' serving

an endoscopic datum for GG decomposes as the product of the normalized local transfer factors.

vi



CHAPTER 1

Introduction

1.1 Motivation

The purpose of this paper is to generalize the theory of rigid inner forms, introduced in [Kall6]
and [Kall8] for local and global fields of characteristic zero, to local function fields. Rigid inner
forms allow one to study the representation theory of a connected reductive group G over a local
field F' by working simultaneously with all inner forms of G—in particular, they allow locally
for an unambiguous statement of the endoscopic Langlands conjectures for arbitrary connected
reductive groups over F’, and globally for a construction of a pairing involving the L-packet for a
global L-parameter giving a conjectural multiplicity formula for an automorphic representation in
the discrete spectra of such groups.

The idea of studying all the inner forms of G simultaneously for endoscopy was first suggested
by Adams-Barbasch-Vogan in [ABV92]; generally speaking, given a tempered Langlands param-
eter o: Wp — LG, we should have a subset of representations of inner forms of G, denoted by
II,, and a bijective map to some set of representations related to S, the centralizer of ¢ in G.
A fundamental question encountered when treating all inner forms at the same time is when two
inner forms should be declared “the same". Since we are concerned with representation theory, a
natural requirement of isomorphisms of inner forms is that an automorphism of an inner form G’
of G should preserve the conjugacy classes of G'(F') as well as the representations of G'(F').

In order to ensure that automorphisms of inner twists satisfy the above requirements, Vogan in
[Vog93] expanded the data of an inner twist to that of a pure inner twist, which gives the desired
rigidity. A pure inner twist is a triple (G’, 1, x), where ¢»: G — G’ is an inner form of G, and
r € Z'(F,Q) is a 1-cocycle such that Ad(z(c)) = 1! o “¢ for all o in I'. However, not every
inner twist can be enriched to a pure inner twist, since in general H'(F,G) — H'(F, G,) need
not be surjective. The question then becomes: How does one rigidify the notion of inner twists in
a way that includes all of them?

The concept of rigid inner forms introduced by Kaletha in [Kal16] answers this question when



F is of characteristic zero. Again we take tuples (G', 1), z), where now z is a 1-cocycle in a new
cohomology set, denoted by H'(u — W, Z — G, where Z is some finite central F-subgroup of
G. The cohomology set H'(u — W, Z — G) carries a canonical surjective map to H'(F,G/Z),
which means that such tuples encompass all inner forms of G. Moreover, rigid inner forms are
rigid enough so that their automorphisms preserve both desired representation-theoretic properties
discussed above. We also have an embedding H*(F,G) — H'(u — W,Z — @), connecting
rigid inner twists to Vogan’s pure inner twists.

Assume that F'is a finite extension of Q, for some p, so that the theory of [Kal16] applies. The
following is a short account of the conjectures enabled by rigid inner forms:

We first record the conjectures coming from Vogan’s pure inner twists. Fix ¢: W — Lg
a tempered Langlands parameter with centralizer S, C G, as well as G*, a quasi-split pure inner
form of G. After fixing a Whittaker datum tv for G*, we have a conjectural map ¢,, and subset IIP"™
of the irreducible tempered representations of the pure inner forms of G* making the following
diagram commute:

IIpre ——=— Trr(mo(S,))

! |

H'(F,G*) — mo(Z(G))*,

where the left arrow sends a pure inner form representation (G', ¢, z, 7) to the class [z], the lower
arrow is the Kottwitz pairing (see [Kot86]), and the right-hand arrow sends an irreducible represen-
tation to its central character. Moreover, the map ¢, provides the correct virtual characters which
are needed for the endoscopic character identities for a choice of semisimple element s € S,,(C).
However, there need not be a quasi-split pure inner form of our general connected reductive G.
Now we will see the conjectures allowed by replacing the notion of pure inner forms with rigid
inner forms. In addition to the Langlands parameter ¢ with centralizer S, let Z be a fixed finite
central F-subgroup of G. The isogeny G — G/Z := G dualizes to an isogeny 5 — G, let SF
denote the preimage of S, under this isogeny. Then, after fixing a Whittaker datum t for G*, a
quasi-split rigid inner form of G (which always exists), we conjecture the existence of a subset
IT, of IT;™, the tempered representations of the rigid inner forms of G*, and a bijective map ¢y

making the following diagram commute

1L, y Trr(mo(S)))

l (1.1)

H'(u =W, Z = G*) —— 70(Z(G)H)"

where the left map sends a representation of a rigid inner twist to the corresponding class in



H'(u — W, Z — G*), the right map sends a representation to its central character, and the bottom
map is an extension of the duality isomorphism H'(F, G) =5 mo(Z(G)")* defined by Kottwitz in
[Kot86]; here Z (6>+ denotes the preimage of Z(G)' in Z (@)

We now turn to endoscopy. Choosing a semisimple s € S, (C), along with the data of ¢, gives
rise to an endoscopic datum ¢ = (H,H, n, s) for G; for simplicity we will assume that H = LH.
Rigid inner forms allow us to define, given a fixed quasi-split rigid inner twist (G*, ¢, z) of G, a (1o-
normalized) absolute transfer factor A'[¢, 1), z, to] for pairs of related strongly regular semisimple
elements of H(F') and G(F')—this was only previously possible for quasi-split G. The fact that
we have replaced ¢ by ¢ corresponds to the necessity of replacing s by a preimage s in S;“ (C), on
which this factor depends. This absolute transfer factor allows for the formulation of endoscopic
virtual character identities for the images ¢y, (7) of representations 7 € II, of rigid inner twists of
G in the set Irr(mo (S])).

If we want to generalize these conjectures to connected reductive groups over a local function
field F', a natural question that arises is whether or not an analogue of the theory of rigid inner
forms can be developed in this new situation. There are nontrivial obstacles to a direct translation
of the theory established in [Kal16]. Notably, the cohomology set H'(u — W, Z — G) is defined

using the cohomology of a group extension
O—=u—W-—=I=0

corresponding to a canonical class in H?(F, u) for a special profinite commutative affine group u
(where I' denotes the absolute Galois group of F'). The group u will not be smooth in positive
characteristic, and so it is no longer true that H?(F,u) = H*(T',u(F*)) (where F'* is a separable
closure of F'), and therefore there is no way of choosing a corresponding group extension in this
situation.

We remedy this deficiency by working instead with the fppf cohomology group HfQPPf(F u),
which may be computed using the Cech cohomology related to the fpqc cover Spec(F) —
Spec(F'). Classes in the group Flfzppf
Spec(F’), which means that for a canonical class in Hg, .(F,u) we get a corresponding u-gerbe

(F,u) correspond to isomorphism classes of u-gerbes over

&, whose role will replace that of W in [Kall6]. With the gerbe £ in hand, we investigate its
cohomology in a way that parallels the cohomology of the group W in [Kall6], culminating in the
construction of a cohomology set H'(£, Z — G) that is the analogue of H'(u — W, Z — G) dis-
cussed above. In particular, we will have a Tate-Nakayama type isomorphism for H*(£, 7 — G)

that will be used to construct a canonical pairing

~

HYE, Z — @) x m(Z(G)*) — C*



extending the positive-characteristic analogue (see [Thall]) of the Kottwitz pairing in characteris-

tic zero alluded to above.

Note that if /" is a finite extension of Q,, then w is smooth, and in this case our gerbe £ may
be replaced by a group extension of I' by u(F') using the comparison isomorphism HE i (F,u) =
H2,..(F,u) = H*(T,u(F)). This then recovers the group W used in [Kal16], cf. the discussion of
Galois gerbes in [LR87].

The definition of the cohomology set H(€, Z — G) allows for a completely analogous defini-
tion of rigid inner forms, which, when combined with a construction of the relative local transfer
factor for local functions fields, allows for the definition of an absolute transfer factor for an endo-
scopic datum ¢ associated to an arbitrary connected reductive group over F'. The development of
the local theory culminates in a statement of the above conjectures in the setting of local function
fields.

Moving beyond local fields to a global function field /', global rigid inner forms both allow us to
relate the adelic transfer factor A, serving an endoscopic datum for G to the normalized transfer
factors serving the localizations of this datum and give precise information about the global L-
packet II, for a tempered discrete homomorphism ¢: Ly — L@, where Ly is the conjectural
Langlands dual group of F'. Previously, such descriptions were only possible in the case when GG
is quasi-split.

In light of the above local discussion, one can ask the natural question: How does one de-
scribe the global L-packet II, for a tempered discrete homomorphism ¢: Ly — LG using the
local L-packets for the localizations ¢,, and how can one use the two horizontal maps of (1.1)
to obtain information about these L-packets (namely, how they relate to the discrete spectrum of
()? The key to this problem is organizing families of representations of local rigid inner forms of
G, into so-called coherent families, which is to say, finding a notion of a global rigid inner form
corresponding to a global gerbe £;, which localizes in an appropriate way to such a family. More-
over, in order to show that the family of homomorphisms {H'(&,,Z — G) — m(Z (6)“’)*}0
corresponding to a family of rigid inner forms behaves in a reasonable manner (such as having a

well-defined product over all places), one would like a homomorphism

H'(&y,Z = G) = [mo(Z(G)"))"
that equals the product of all of the local homomorphisms (note that if, as in the local case, Z(G)*
is the preimage of Z(G)", then we have maps o (Z(G) ") — mo(Z(G)*) for all v, so this product
statement makes sense).
The combination of our local gerbe construction (now denoted by &, for a place v) and the

construction of the global Galois gerbe &, for number fields in [Kall8] gives a blueprint for the



construction of the global gerbe for function fields described in the above paragraph (and thus of
global rigid inner forms). As in the local case, the gerbe &, will be banded by a canonically-
defined profinite group denoted by P, defined in an identical way as for the characteristic-zero
analogue [Kal18]. We will then extract the gerbe via proving the existence of a canonical class in
H. fzppf(F, PV); unlike in the local case, this existence result requires significant work—in particular,
we must study gerbes over Spec(A) and generalize the notion of complexes of tori, as in [KS99],
to Cech cohomology of the covers F'/F and A/A, where A := F @ A.

Once the canonical class is established, we use the geometry of G -torsors on &y, to define the
cohomology sets H'(€,, Z — G) which provides the global analogue of the sets H*(&,, Z — G),
and to define a duality result for this cohomology set (analogous to local Tate-Nakayama duality)
which, among other properties, gives the homomorphism H'(E,, Z — G) — [m(Z (6)*)]* de-
scribed above. Our constructions also provide us with morphisms of gerbes £, — &, which allow
us to localize these cohomology sets.

Using the above construction, one can then define a coherent family of rigid inner forms

{(Gr (T h))}o

for a fixed inner quasi-split inner twist G* ¥, G to be one such that each torsor 7, is the localiza-
tion (defined appropriately using the localization functors described above) of a global torsor .7
with [7] € HY (&, Z — G*) (for some appropriate choice of Z). Given a such family, we can
then define the global L-packet 11, for some a fixed ¢ via

H<P = {ﬂ- = ®£}7T’U | (GFNQZ% (L%MBW)?WW) < H@v? qu((GFu7¢7 (%7 }_lv),ﬂ'v)) = 1 for almost all U}’

as desired. We show that this consists of irreducible tempered admissible representations of G(A)
in Lemma 9.4.1 using a torsor-theoretic analogue of a result by Taibi ([Tail8, Proposition 6.1.1]),
and hence is well-defined. Moreover, given such a 7, we can then give a conjectural description of

the multiplicity of 7 in the discrete spectrum of G by defining (for each ) a pairing
(—,—): S, x 11, = C,

where S, is a finite group closely related to the centralizer of ¢ in G, which is defined as a product
over all places of two factors involving the local pairings and (conjectural) local bijections ¢y, v, -
The key to proving that such a product formula is well-defined is precisely the fact that our repre-

sentation 7 arises from a coherent family of representations of local rigid inner forms. Once we



know that such a pairing exists, we have for each m and L-packet II, containing 7 an integer

m(p, T) == |890‘71 Z (x,m),

z€S,
and, furthermore, we conjecture:

Conjecture 1.1.1 (Kottwitz, [Kot84]) The multiplicity of  in the discrete spectrum of G is given

> mlp,m),

where the sum is over all @ such that m € 11,

by the sum

Since local rigid inner forms were the vital ingredient for proving the existence of a normalized
local transfer factor A, = Alt,, ¢, 3, , (Z, hy)] serving a fixed endoscopic datum for G,
(depending on a quasi-split rigid inner form (1, (., h,,)) of G, and a Whittaker datum tv, for
it), one can use global rigid inner forms to relate the global adelic transfer factor A, defined in
[LS87] (for number fields, but which is easily translated to a global function field) serving a global
endoscopic datum to the transfer factors A, serving the localizations of that datum. Indeed, using
the relationship between the local and global pairings described above, one obtains (Proposition

9.3.1) a product formula

AA(717 5) = H<10Cv<%0), yq/j> ' A[mv; év75va % (%7 Bv)](f}/l,va 51))

veV

which expresses the value of A, at a pair of adelic elements (7;,d) as a product of each A, at
the localizations of these elements, along with some auxiliary factors (loc, (%), ¥.) which are
harmless and only necessary for technical reasons. Of course, one must take each A, to arise
from the localizations of the same global rigid inner form and the local Whittaker data to be the
localizations of the same global Whittaker datum tv, even though such a datum is not used to define

the left-hand side of the above equation.

1.2 Overview

We now summarize the structure of this thesis. The first two chapters should be viewed as estab-
lishing background results. The goal of Chapter 2 is to obtain a concrete interpretation of torsors
on gerbes, beginning by recalling the basic theory of fibered categories, stacks, and gerbes, pro-
gressing to a characterization of torsors on gerbes, and concluding by investigating the analogue

of the inflation-restriction sequence in group cohomology in the setting of gerbes. Following this,
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Chapter 3 discusses fundamental properties of Cech cohomology; one of its main focuses is com-
paring the Cech cohomology of group schemes with respect to fpqgc covers to the fppf cohomology
of these groups schemes, with the goal of determining when these two cohomologies coincide. It
also proves certain cohomological vanishing results of certain covers of rings, defines an unbal-
anced cup product, and concludes with some miscellaneous results about adelic Cech cohomology.

Chapter 4 constructs the local gerbe and proves a duality result for the resulting cohomology
sets H'(€, Z — G): We construct the local pro-algebraic group u, investigate its cohomology, and
then define the cohomology set H'(£,Z — S) for an F-torus S, where &€ is a u-gerbe associated
to a canonical cohomology class in H?(F, u) and discuss basic functoriality properties of the co-
homology group H'(£,7Z — S) using our insight from Chapter 2. An analogue of the classical
Tate-Nakayama isomorphism is constructed for H'(£,Z — S) in §4.4. Once the situation for
tori is established, we then define H'(€, Z — G) for a general connected reductive group G and
extend all of the previous results to this new situation. There is not much to do here: the bulk of
the work is just direct translation of the results in [Kal16], §3 and §4 to fppf cohomology, using
basic theorems about the structure theory of connected reductive groups over local function fields
(see [Deb06], [ThaO8], [Thall]).

In order to apply Chapter 4 to the local Langlands conjectures, it is necessary to recall and define
the (relative) local transfer factor corresponding to an endoscopic datum for a reductive group over
alocal function field—we do this in Chapter 5. This section is entirely self-contained for expository
purposes, and in many cases is just a direct exposition of the constructions stated in [L.S87]; the
only aspects of the arguments loc. cit. that require minor adjustment are those concerning the A;
and Ajyy, factors, but we include a discussion of all of the factors for completeness.

The final local chapter is Chapter 6, where we define rigid inner forms for local function fields
and then use them to define an absolute local transfer factor for an endoscopic datum associated
to an arbitrary connected reductive group over F. Once this is done, we give a brief summary
of the conjectures stemming from our constructions. This section closely parallels §5 in [Kal16];
in many cases, we follow the arguments verbatim, substituting Galois-cohomological calculations
with analogous computations in Cech cohomology.

The first section in which we focus on a global function field is F' is Chapter 7, where we
begin by proving an analogue of global Tate duality for the groups Hf2ppf(F, Z), where Z is a finite
multiplicative F'-group scheme. After that, we define a projective system of multiplicative group
schemes {PE’ SE,n} whose limit gives the pro-algebraic group P;, that will band our global gerbe.
Once Py, is defined, we show that its first fppf cohomology group over /' vanishes using local and
global class field theory and that its second fppf cohomology group contains a canonical class.
Constructing such a global class is considerably more difficult than in the local case, and requires

utilizing a Cech-cohomological analogue of complexes of tori.



Once the global canonical class is defined, we can construct the global gerbe £;,, whose coho-
mology is studied in Chapter 8, building towards proving a duality result for the cohomology sets
HY (&, Z — G), where Z is a finite central subgroup of G. We also prove a result concerning the
localizations of torsor on &;, which will be used in Chapter 9 to prove that global L-packets consist
of irreducible, tempered, admissible representations.

Finally, in Chapter 9 we develop endoscopy, defining the adelic transfer factor for function fields
and coherent families of rigid inner forms. We relate our local constructions to global endoscopy,
including the adelic transfer factor and the multiplicity formula. In Appendix A, we establish
complexes of tori in the setting of Cech cohomology and prove several results analogous to those
in the appendices of [KS99] (that used Galois cohomology) which are used in the proof of the

existence of a canonical class in Chapter 7.

1.3 Notation and conventions

In Chapters 4 through 6, we will use ' to denote a local field of characteristic p > 0. In Chapters
7 through 9, we will use F' to denote a global field of characteristic p > 0, and its completion at a
place v will be denoted by F),. For an arbitrary algebraic group G over F', G° denotes the identity
component. For a connected reductive group G over F, Z((G) denotes the center of G, and for H
a subgroup of G, N (H ), Ze(H) denote the normalizer and centralizer group schemes of H in G,
respectively. We will denote by () the derived subgroup of G, by G4 the quotient G/Z(G),
and if GG is semisimple, we denote by G, the simply-connected cover of G; if G is not semisimple,
Gy denotes Z(G).. If T' is a maximal torus of (G, denote by T its preimage in G.. For local and
global F we fix an algebraic closure F of F', which contains a separable closure of F', denoted by
F?. For E/F a Galois extension, we denote the Galois group of £ over F' by I'g/r, and we set
Lps/p=:T.

For global F', we denote by V' the set of all places of F', and for E//F a finite extension and
S C V, we denote by Sg the preimage of S in Vg, the set of all places of £. We call a subset of V/
full if it equals Sy for some subset S of places of I,,(¢) (after choosing an embedding F,(t) — F).
For a finite subset S C V, we set Ag := [ ¢ £\ X vas Op,,andset Ap g := Apg,.

We call an affine, commutative algebraic group over a ring R multiplicative if it is Cartier dual
to an étale R-group scheme. In this paper, whenever we discuss a general group scheme over
R, it will always be assumed to be affine. For Z a multiplicative group over F', we denote by
X*(Z),X.(Z)(= X.(Z°)) the character and co-character modules of Z, respectively, viewed as
I'-modules. For two R-schemes X,Y and R-algebra S, we set X Xgpee(r) ¥ =: X Xp Y, or by
X x Y if R is understood, and set X X Spec(S) =: Xg. We also set X (Spec(S)) =: X (5), the
set of R-morphisms {Spec(S) — X }; when X is a variety over C (for us, this will be a Langlands



dual group G for a connected reductive group GG over F), we frequently abuse notation and write
X to mean X (C). For a morphism f: A — B of multiplicative group schemes over R, we use
f* to denote both induced morphisms X,(A) — X,.(B) and X*(B) — X*(A). Also, given a
morphism f: U — V of two objects in a stack C and sheaf F on C, we also use the symbol f*
to denote the induced morphism F (V') — F(U); there will be no danger of confusing these two

notations.



CHAPTER 2

Gerbe-Theoretic Preliminaries

2.1 Basics of fibered categories and stacks

The purpose of this subsection is to briefly review the theory of fibered categories and stacks that
will be used later in the paper. For a comprehensive treatment, see for example [Ols16], Chapter
3. Let C denote a category which has finite fibered products. In the later sections, this will be the
category Sch/S of schemes over a fixed scheme S, but for now we will allow it to be arbitrary. Let

2 5 C be a morphism of categories (i.e., a functor).

Definition 2.1.1 For X,Y € Ob(Z") denote by U,V (respectively) the objects m(X),n(Y) in C
(i.e., X and Y lie above or lift U and V' ); we say that a morphism f:Y — X in 2 is strongly
cartesian if for every pair of a morphism g: Z — X in 2" and morphism h: 7(Z) — V in C such
that 7(g) = w(f) o h, there is a unique h: Z — 'Y such that f o h = g and w(h) = h. In this case,
we say that h lifts h.

We continue working with a fixed 2~ = C.

Definition 2.1.2 For a fixed U € Ob(C), we define a category 2 (U) as follows; its objects will be
given by the set {X € Ob(Z"): m(X) = U} and its morphisms will be those morphisms X I x
such that w(f) = idy. We call this the fiber category over U, or just the fiber over U. We say that
2 — C is fibered in groupoids if for all U € Ob(C), 2 (U) is a groupoid (recall that a category
is a groupoid if all morphisms are isomorphisms). We will denote the group Auty (X)) simply
by Auty (X) for ease of notation.

Definition 2.1.3 We say that 2~ = C is a fibered category over C if for every U € 0Ob(C),
morphism V LUine and X € 2 (U), there is an object Y € Z (V') and strongly cartesian
morphism f .Y — X such that 7( f ) = f. One checks that if we have another strongly cartesian
Y’ L X satisfying the above property, then there is a unique isomorphism Y' — Y making all

the obvious diagrams commute. We define a morphism of fibered categories from 2 = C to
2" 5 Ctobeafunctor f: X — X' such thatm = 7' o f.

10



Lemma 2.1.4 If 2" — C is a fibered category, then 2 also has finite fibered products.

Proof. Since we assume that C has finite fibered products, this follows from Lemma 1.4.33.4 in
[Stacks]. O

In all that follows, given a fibered category 2~ — C, for every U € Ob(C), X € 2 (U),
and morphism V' 5 Uin C, we choose some ¥ — X satisfying the conditions in the above
definition, and will denote this by f*X — X. One checks that for any morphism X % Y in
2 (U), amorphism f: V' — U induces a canonical morphism f*X — f*Y in 2" (V'), which we
will denote by f*.

Definition 2.1.5 Given a fibered category & = C and X,Y € 2 (U), we may define a presheaf
(of sets), denoted by Hom(X,Y'), on the category C/U (the category of pairs (V, g) where V €
Ob(C) and g: V — U, morphisms given in the obvious way) by setting

Hom(X,Y)(V ER U) := Homy ("X, f*Y),

and for a morphism (W 2 U) LN (V ENYG ), we define the restriction map to be
Homy ) (f*X, *Y) 25 Homy ) (h*(f*X), h*(f*Y)) = Homy (9" X, g°Y),

where the first map above sends p to h*p, and the second map is the canonical isomorphism
induced by the canonical identifications h*(f*X) = ¢*X, h*(f*Y) = ¢*Y. For the remainder
of this paper, it will be harmless to make such identifications, and we do so without comment. If
X — C is fibered in groupoids and Y = X, we denote the above presheaf by Aut,, (X )—this is a

presheaf of groups. It will play an important role in what follows.

We will now assume that we may endow C with the structure of a site, denoted by Cppc, so that it

makes sense to talk about sheaves on Cppqc.

Definition 2.1.6 We say that a fibered category is a prestack (over C,,.) if for all U € Ob(C) and
X, Y € Z'(U), the presheaf Hom(X,Y') is a sheaf on (C/U ) -

Definition 2.1.7 Fix U € Ob(C), a covering {V; AN 3 Yier of V' (here I denotes the indexing
set), and a subset {X; € X (V;)}ier of Ob(XZ). The fibered product V;; := V; xy V; has two
projections; we will denote the one to V; by p, and the one to V; by p>. We say that this subset,
together with a collection of isomorphisms {f;;: piX; = p3X;: fi; € Hom(Z (Vij))}ijer is a

11



descent datum (for this fixed covering of U) if the following diagram commutes for all i, j, k € 1:

Piafij

PLapIXs —> P1aps X ——— pi3pi X
H lpgzsfjk
* Pisfik K ok

PiapI X — PiapsXp —— Da3ps Xr,

where the equalities denote the canonical isomorphisms discussed above, p;; denotes the projection
Vij == Vi Xy V; Xy Vi, — Vij, and analogously for the other projections. Given another descent
datum {Y; € Z (Vi) Yier, {9ij}ijer, we say that it is isomorphic to our above datum if there are
isomorphisms ¢;: X; — Y; in Z°(V;) which for all i, j satisfy p2¢> © gij o Pii = fij.

Continuing the notation of the above definition, note that if X € 27(U), then we get a descent
datum for free via setting X; := h;X and f;;: pjh; X — pih;X the canonical isomorphism
between these two pullbacks to V;; of X. We denote this descent datum by X non.

Definition 2.1.8 We say that a descent datum {X;}icr, {fi;}ijer for U with respect to the cover
{Vi — U} is effective if there is an object X € Z (U) such that {X;}icr, { fi;}ijer is isomorphic
10 Xcanon- We say that a prestack & — Cpy. is a stack if all descent data (for all objects of C and
their covers) are effective. We define a morphisms of stacks over Cgg. to be a morphism between

their underlying fibered categories.

The following proposition shows that whether or not a morphism between two stacks over Ceyqc
is an equivalence can be checked over a cover of Cy.. We will assume that C has a final object
U and that our cover consists of one element U, — U (this will be our general situation for the
rest of the paper). It is easy to check that if 2~ — Cpyqc is a stack, then restricting 2 to the full
subcategory of all objects lying above an object in C /U is a stack over (C/Up)spqc. We denote this
stack by Z7;,. This may also be viewed as the fibered product of categories 2~ x¢ (C/U,), for the
definition of this, see e.g. [Stacks] 1.4.31. We set U; := Uy xy Up.

Proposition 2.1.9 Let Uy — U be a cover of Cpye = (C/U)ppge, and ¢: X — X' be a mor-
phism of stacks over Cp,ye; we have an induced morphism of stacks over (C/Uy)pqe, denoted by

bu, s Zu, — Z,- Then ¢ is an equivalence of categories if and only if ¢y, is.

Proof. One direction is trivial. For the other, if X is an object of .2, then we may find an object X
of 2 and f a morphism in .2”'(Uy) such that ¢(X) I~ x U, (Where we are denoting the pullback
of X" to Uy by X7, ). We may also find objects X1, X, in 2 (Uy) and morphisms f; in 2 (U;)

with ¢(X;) LN pZ i (Xy,) for i = 1,2, which, since ¢y, is an equivalence, are such that we have

isomorphisms X; Jirey piX with pi f o ¢y, (f;) = f; as well as an isomorphism h: X; — X, such
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that f, o ¢(h) o f; ! is the canonical identification p}.X vy = p3X(;,. Itis straightforward to check
that 2 := {X}, {faoho fi!, fio h™' o f; 1} is a descent datum on 2", and hence (since 2" is
a stack) there is some X € 27 (U) with X 00 isomorphic to & as descent data. Then since 2 is
a prestack, the local isomorphism ¢(X )y, — X U, induced by f and the isomorphism of descent
data glues to an isomorphism ¢(X) — X', as desired. The analogous argument for morphisms is

similar, and left as an exercise. ]

2.2 Basics of gerbes

Let R be a ring (we will assume all of our rings are commutative with 1), and let A be a fixed
commutative R-group scheme (recall that all group schemes in this paper are assumed to be affine).
Denote by (Sch/R)yq the site of schemes over Spec(R) equipped with the fpqc topology. Recall
that for a site C and ¢ a group sheaf on C, a 4-torsor 7 is a sheaf on C equipped with a right group
(sheaf) action .7 x ¥ — 7 (satisfying the usual group action axioms) such that for every object X
of C, there is some cover {Y; — X} such that %, := 7 x¢(C/Y;) is (¢4-equivariantly) isomorphic
to the trivial %y, -torsor %y, that is, the group sheaf %y, equipped with the right translation action.
We begin with a result that says it is harmless to identify G-torsors for a group scheme G over

R with torsors for the associated group sheaf on (Sch/R)gpqc.

Proposition 2.2.1 Let G be an fpgc group scheme over R, with G the associated sheaf on
(Sch/R)pqe. For every G-torsor P on (Sch/R)pqe, P is representable (as a torsor) by a G-torsor
T — Spec(R).

Proof. To begin with, let V = {V; — Spec(R)} be an fpqc cover of Spec(R) trivializing P. Choos-
ing trivializations h;: Py, = Gy, (as Gy, -torsors) gives an element © = (z;;) € [L; G(Vi xr Vj)
satisfying the 1-cocycle condition. This furnishes us with an fpqc descent datum of torsors on the
site (Sch/R)pyqc via the cover {V; — Spec(R)}, objects {Gy; } (with trivial right Gy;-action), and
isomorphisms m,,; : pi(Gv,) = p3(Gy,) of Gy,,-torsors given by left-translation by ;. Now,
since the morphisms Gy, — V; are quasi-affine (indeed, they are the base change of the affine
morphism G — Spec(R)), by [Stacks], Lemma I1.35.35.1, this descent datum is effective, and
hence we get an R-scheme 7" with a G-action such that T' =+ P as fpqc G-sheaves. Now, since
G — Spec(R) is fpqc and T is isomorphic to G after an fpqc base-change, the scheme 7" is also
fpqc over R, and we have a section 7 2T x r 1" given by the diagonal, showing that 7' is

trivialized over an fpqc cover of Spec(R). O

Remark 2.2.2 We will frequently use this proposition without comment in order to identify G-
torsors over R and G-torsors on (Sch/R)4c. Because of this, it is harmless to abuse notation and
denote the sheaf G by G.
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We denote by H}

ipqe (2, G) the pointed set of isomorphism classes of G-torsors over R.

Definition 2.2.3 A stack & = (Sch/R),. fibered in groupoids is called a gerbe if every object U
of (Sch/R)jpqe has a cover {V; — U} such that every V; has a lift in £, and for any two objects
X,Y € Ob(E(V)), there is a cover {V; LN U} such that ff X and f}'Y are isomorphic in E(V})
for all 1.

In the setting of the above definition, we will frequently omit the topology on Sch/R and just
write £ = Sch/R to mean that Sch/ R has the fpqc topology.

Example 2.2.4 The classifying stack of A over R, denoted by BRA — Sch/ R, has fiber category
BrA(U), for U € Ob(Sch/R) an R-scheme, the category of all Ay torsors T' with morphisms
being isomorphisms of Ay torsors. For'V I U in Sch/R and T, S fixed Ay, Ay -torsors (respec-
tively), a morphism (V,S) — (U, T) lifting f is an isomorphism of Ay -torsors S — f*T. One
verifies easily that this is a gerbe over Sch/R.

Definition 2.2.5 As we discussed in §2.1, for any X € E(U), the functor on Sch/U given by
sending V' 5 Uto Auty (f*X) defines a sheaf of groups on (Sch/U ) e, denoted by Aut;(X). We
call our gerbe & abelian if this group sheaf is abelian for all X.

Lemma 2.2.6 If £ is an abelian gerbe, then the sheaves Aut;;(X), as X varies through all objects
of &, glue to define an abelian group sheaf on Sch/ R, called the band of £ and denoted by Band(E).
Moreover, we have for any X € E(U) an isomorphism Band(5)|U LEN Aut;(X) of sheaves on
(Sch/U) pge such that for any X,Y € E(U) and isomorphism ¢: X — Y in E(U), the following
diagram commutes

Band(5)|U — Band(é’)’U

b

OJO -1
Aut; (X) foeeloe, Aut; (V)
Proof. This is Lemma 1.8.11.8 in [Stacks]. ]

In fact, following the setup of the above lemma, even if X and Y are not isomorphic in £(U),
since they are locally isomorphic (by the definition of a gerbe), we may find a cover {V; — U}
such that the pullbacks of X and Y to each V; are isomorphic via some ¢;, so that we get an
isomorphism Aut; (X) |V = Aut; (V) ’v for all ¢ of sheaves on (Sch/V;)sq Which is independent
of the choice of ¢; in view of the above lemma, and hence glues to a canonical isomorphism
Aut;(X) 5 Aut;(Y) of sheaves on (Sch/U)gqe (Which is the same as hy o hy'). Because of
this observation, it is harmless to identify Band(E) ]U with Aut,, (X)) for some X € £(U) via hy,

which we will do in what follows.
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For the rest of this paper, all gerbes will be assumed to be abelian, and when we refer to a
“gerbe," we always mean an abelian gerbe.

If we fix a ring homomorphism R — R’ and abelian sheaf .% on Sch/R, then H*(R'/R, ) =
Hi(Spec(R') — Spec(R),.%) denotes the ith cohomology group of the complex

y(R/)—)97<R/®RR/)—>97(R/®RR/®RR/)—>...,

where the differentials are given by the alternating sum of the n + 1 natural maps .% ((R')®r") —
Z((R)®r(+1)) " One can make an identical definition (using fibered products of schemes
instead of tensor products) if the cover of Spec(R) is not affine. To ease notation, we set
U, := Spec((R")®r("*+1) (the ring R’ will always be clear from the context, so we omit it from

this piece of notation).

Convention 2.2.7 A simplifying convention we will use in this paper is that, when discussing

an abelian R-group scheme A and an fpqc cover Uy — Spec(R), we will always assume that
Hipe
(see Remark 2.2.2) for W = U,. If R = F' a field and A is of finite-type, this condition holds for

Uy = Spec(F), see [Ros19], §2.9.

(Un,Ay,) = 0 for all n > 0. Equivalently, every Ay, -torsor over W has a W -trivialization

Definition 2.2.8 We call a pair (€,0) of a gerbe £ and an isomorphism 0: A = Band(E) an A-
gerbe. In practice, 6 will be a way for us to identify automorphisms of objects in € with elements
of A in a manner that does not depend on isomorphism classes in the fibers;, we will frequently
omit explicit mention of the map 0. For X € E(V), we denote the isomorphism hx o 0y from
Lemma 2.2.6 by 0x. Any morphism of stacks over (Sch/F), between two gerbes € and E' induces
a morphism of group schemes over R between the corresponding bands. If both can be given
the structure of A-gerbes, then we say that such a morphism of Sch/F categories between two
A-gerbes is a morphism of A-gerbes if it is the identity on bands (via the identifications of both
bands with A). By [Ols16], Lemma 12.2.4, any morphism of A-gerbes is an equivalence, and so

we will also call such a functor an equivalence of A-gerbes.

Example 2.2.9 The gerbe BRA — Sch/R may be canonically given the structure of an A-gerbe,
since for an abelian group sheaf A and A-torsor T, the automorphism sheaf defined by 'T' is canon-

ically isomorphic to A.

We say that an A-gerbe € is split over the cover V' — Spec(R) if & := £ Xge/r Sch/V is
equivalent as an Ay -gerbe to By (Ay ). The following result is a useful alternative characterization

of an A-gerbe & splitting over a cover V' — Spec(R):
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Proposition 2.2.10 The gerbe £ — Sch/R is split over V. — Spec(R) if and only if there is an
object X € E(V).

Proof. Tt is clear that if an A-gerbe &£ is split over V, we have such an object. For the other
direction, see [Vis15], Remark 2.4. O]

Fact 2.2.11 Gerbes are closely related to Cech 2-cocycles of A with respect to covers of Sch /R,
and in this sense are natural analogues of the group extensions that arise in the study of 2-
cocycles from Galois cohomology. Indeed, let (£,0) be an A-gerbe over Sch/ R, and take some
Uy — Spec(R) a cover such that we have some X € E(Uy) with piX 25 psX for some o an
isomorphism in £(Uy) (because of Convention 2.2.7, for any X € E(Uy), we can always find a o).
We extract a Cech 2-cocycle ¢ € A(Us) in the following manner: ¢ defines an automorphism of

¢ X over Us via the composition

d = (pisp) " o (P3sp) © (Piap) € Auty,(q; X),

and we set ¢ = Ogx(c) € A(Us). Then c is a Cech 2-cocycle, whose class in H*(Uy —
Spec(R),A) is independent of the choice of ¢ and X (see [Moe02], §3). We denote by [E] €
H?(Uy — Spec(R),A) the Cech cohomology class obtained from & as above, and call [£] the
Cech class corresponding to E.

Corollary 2.2.12 We have a well-defined map from the set of A-gerbes split over V to the group
H*(V — Spec(F),A) defined by £ +— [E]. Moreover, if (£,0) is equivalent to (£',0'), then
€] =1&7].

Proof. The first statement is immediate. The second statement is a straightforward exercise using
Lemma 2.2.6 and pullbacks in fibered categories. 0

2.3 Some explicit gerbes

In this subsection we show that the map from Corollary 2.2.12 is surjective and discuss other
fundamental properties of gerbes. We fix an affine fpqc cover Uy — Spec(R) and group A as in
the previous subsection.

Definition 2.3.1 Fix a Cech 2-cocycle a of A taking values in the cover Uy — Spec(R), that is to
say, a € A(Us). Then we may define an A-gerbe as follows: take the fibered category £, — Sch/R
whose fiber over V' is defined to be the category of pairs (T, 1), where T is a (right) Ay« ,u,-torsor

on 'V x p Uy with A-action m (in the fpqc topology), along with an isomorphism of Ay « v, -torsors
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v psT = piT, called a twisted gluing map, satisfying the following “twisted gluing condition”

on the Ay ,u,-torsor ¢iT':

(Plat) o (pasth) o (pi?,@b)_l = My,

where m,, denotes the automorphism of the torsor qi’I' given by right-translation by a. A morphism
(T, 1) — (S,¢s) in &, lifting the morphism of R-schemes V L Viisa morphism of Ay xu,-
torsors T 2 f*S satisfying, on V. x g Uy, the relation f*ig o psh = pih o ¥r. We will call such
a pair (T,%) in E,(V') an a-twisted torsor over V' when A is understood. We call &, the gerbe

corresponding to a.

When working with the fibered category £, — Sch/R there is an obvious canonical choice of
pullbacks. Indeed, for (T',¢) € E,(U) and f: V — U, we set f*(T,¢) := (f*T, f*), and the
strongly cartesian morphism f*(7',1) — (7T',v) to be the one induced by the identity. We always

work with this choice of pullbacks.

Proposition 2.3.2 The category £, — Sch/R may be canonically given the structure of an A-
gerbe (&,,0), with an object X € &,(Uy) and an isomorphism p: piX — psX satisfying
G;flx(dgo) = a € A(Uy). In particular, &, is split over Uy and [E,] = |a].

Proof. If we prove that there is such an object X € &,(Uj), it will follow immediately that &,
defines a gerbe. Moreover, we have that Band(&,) is canonically isomorphic to A, since (for
V' = Spec(R), the general case is identical) any automorphism of an a-twisted torsor (7', 7)) is
given by a unique element x € A(Uj), and since 1) is a morphism of Ay, -torsors commuting with
this chosen automorphism, we in fact have that x € A(R) (using fpqc descent, cf. the proof of
Lemma 2.4.7 below). All that’s left to show is the existence of X and ¢. This follows from the

following lemma (which is important in its own right). U

Lemma 2.3.3 We have a canonical section x : Sch/Uy — &, such that the two pullbacks x; and
Ty to Sch/Uy are isomorphic via ¢ x1 = x5 satisfying dp = (pi3p) ' o (phsp) 0 (Piyp) = teasa
natural transformation from qix : Sch/Uy — &, to itself, where we are using i, to denote the nat-
ural transformation from the identity functor (E,)v, — (&,)u, to itself given by the automorphism
Oz(av): Z = Z forall Z € Ey, (V).

Proof. Define the a-twisted torsor on (Sch/Uj ) to be (as an Ay, -torsor) Ay, ; we will define
the twisted gluing map after a short discussion. The gluing map should be an isomorphism of
Ay, -torsors: ¢ p*(Ay,) — P17 (Ay,), where po @ Uy x Uy — Uy x Uy is idy, X pe and
p1: Uy x Uy — Uy x Uy is idy, x p;. We have that Uy x U; = Us, and U x Uy = Uy, and then
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p1 equals pi2, Po equals py3. So, giving v reduces to giving a morphism of Ay, 1, = Ay,-torsors
Di3(Ay,) — piy(Ay, ). Both sides are canonically equal to Ay, because A is a sheaf on Sch/R
so its value on a U;-object only depends on the map to Spec(R), which is the same regardless of
the map from U, to U;. So we may take ¢ to be m,, which makes sense since a € A(Us); this
is A-equivariant since A is commutative. We need to check that ) satisfies the twisted cocycle
condition.

The above paragraph relied on the equalities Uy x U; = Uy and Uy x Uy = U;. Continuing
these identifications, pis : Uy X Uy — Uy x Uy is the map Us — U, given by gi23, and similarly
P13 = 124, P23 = q134- Whence, pi3™ (¥ opia™(¥) opas™ (1) = (qiaamy ') 0 (1) 0 (qi3ama) =
G534Mq, SINCE @ 1S @ Cech 2-cocycle. Take ¢;*(Ay, ), ¢1 = idy, X ¢1. By construction, after identify-
ing 1A with Ay, we see that the left multiplication map my,, , , where ay, ,, denotes the image
of ain A(Uy x Uy) = A(Us) via the map r5: Uy x Us — U, which projects onto the second factor,
equals ¢35,1m,, as desired. This a-twisted A-torsor on (Sch/Uj)spq induces an ay-twisted A-torsor
on each (Sch/V )gpqe, V' — U, via pullback, giving our map x, which one easily checks is a functor.

We now need to define a natural transformation ¢ : x; — x5 between the two pullbacks of z to
U,. It’s enough (by taking pullbacks) to define a morphism of a-twisted torsors

A — A
v (U1P_1>U0)><U0 (Ulp—2>Uo)><Uo’

which we can take to be translation by a, via the same identifications as above. We will verify

v, ¢U1 N
that dp = m,, which is ¢,, by the definition of the inertial action on &,.

shortly that pjp o 1) o p3p. The same argument showing that dy) = m,, gives
We now justify our above claim that ¢ is a morphism of a-twisted torsors. For V' ER Uy, the

gluing map ¢y is

(Avxty) Xidxp, (V X Ur) = (Avxu,) Xiaxp, (V % Uy),

) (fxid)*

given by left translation by a € A(Us A(V x Uy). As such, we first look at wU IR This
1 0

1 xid)#
is the map on Ay, given by left translation by the image of a in A(U; x Uy) via A(Us) {prady,

A(Us), which is evidently py34(a).
We also have the map

CA — A
v (Ulp—1>Uo)><Uo (U1ﬁ2—>Uo)><U0

which is also left translation by a € A(U;). Thus, p;¢ is the map

@ . A Xidxp1 (U1 X Ul) — A Xidxpy (U1 X Ul),

(U1P—1>U0)><UO (U1P—2>U0)><U0
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which is left translation by the image of a in A(Us;) via U P, 1,, which is P1as(a).
On the other hand, the map

Xidxps (U1 X Up) = A 5y Xidxp, (U1 x Uy),

Py =@ A (U1—=Up)xUg

(U1 £I—>U0)><Uo

corresponds on Ay, to translation by (id x p2)*(a) = p124(a), and, finally, we have

(0 Xidxpo (Ul X Ul) — A Xidxp1 (Ul X Ul)

A
U1P—2>U0 (Ulp—2>Uo)><U0 (U1P—Q>U0)><U0

given by (py x id)*(a) = pass(a). The desired equality holds since paszs(a) - pioa(a) = pisa(a) -

p123(a), since a is a 2-cocycle. O

We now give a basic functoriality result:

Construction 2.3.4 Let A L B be an R-morphism of commutative group schemes and a,b €
A(Us), B(Us) two Cech 2-cocycles such that [f(a)] = [b] in H*(Uy — Spec(R), B). Then for any
x € B(Uy) satisfying d(z) - b = f(a), we may define a morphism of Sch/ R-stacks &, Ga, Ep
For any V. € Ob(Sch/R), given a a-twisted torsor (T, 1)) over V, we define a b-twisted torsor
(T",4") over V as follows. Define the By « v, torsor T" to be T xAV*Vo:I By, 1;,, and take the gluing

map to be 1\ := m,—1 o 1), where m -1 o 1) denotes the isomorphism of contracted products
pZ(TXAVXUomeVXUO) — (p;T) XAVXU17fBV><U1 N (pIT) XAVXUlszVXUl — p{(TXAVXU():fBVXUO)

induced by (m -1 0 1) X idg (and we are implicitly identifying x with its image in B(V x g Uy)).
We compute that

(P12¥) © (D35") © (P13®) ™" = Mipyy(a)1pas(a) 1prs(e)-F(a) = Mo

so that ¢ap..((T, 1)) = (T",v)') indeed defines an element of E,(V'). From here, one checks that
any morphism ¢ (S,1g) — (T, %) of a-twisted torsors induces a morphism of the corresponding
b-twisted torsors by means of the map on contracted products induced by ¢ X id, giving the desired
morphism of stacks.

Note that the above morphism does in general depend on the choice of x; indeed, any two such
morphisms differ by post-composing by an automorphism of & determined by a Cech I-cocycle =

with respect to the cover Uy — Spec(R).

Proposition 2.3.5 Suppose that € — Sch/R and &' — Sch/R are two A-gerbes split over Uj.
Then [£] = [£'] in H*(Uy — Spec(R),A) if and only if £ is A-equivalent to &'.
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Proof. We already know the “if" direction from Corollary 2.2.12. Let £ be a A-gerbe with X €
E(Up) and ¢: piX = psX in £(U;). By Definition 2.2.8, it’s enough to construct a (Sch/R)-
morphism & — &’ which is the identity on bands. If we show that £ is A-equivalent to &, for a €
A(Us,) giving dyp, then the result will follow from applying Construction 2.3.4 to cohomologous
cocycles (with f = id,, in the notation of the construction).

At the level of objects, send Y € E(V EN Spec(R)) to the sheaf Isomg 17, (55X, 1Y), on
Sch/(V x Uy), where p; is the ith projection of V' x Uj. We claim that this sheaf is an a-twisted
torsor over V. First, it is easy to see that the above sheaf is an Ay, -torsor, by means of the action
of the band of £ on either side of the isomorphism (it doesn’t matter which by Lemma 2.2.6). We

need to define an isomorphism of Ay ., -torsors

¥ py[Isomg o) (P5X, PTY)] = prlIsomg vy ) (55X, P1Y)]

satisfying the twisted gluing condition with respect to a. We may take this to be the isomorphism
obtained by pre-composing by p; ;;, ¢ (after making appropriate canonical identifications which we
leave to the reader, where p; 1, is the ith projection for V' x U;). This defines our equivalence on

the level of objects.
At the level of morphisms, for Y ENy/ lifting V EN W, we have an induced morphism pjY —

piZ, and post-composing by this map gives a morphism

(Isomg (yyg70) (B3 X5 P1Y), ¥y ) = (Isomg (v gs) (55X P12), ¥02),

which is a morphism of a-twisted torsors. The induced morphism of bands is the identity by

definition of the A-action on each Isomg i, (P3X, P1Y). O

For £ an A-gerbe as above, we call a choice of equivalence £ — &, for any a such that [a] = [£]

a (choice of) normalization of £.

Remark 2.3.6 The above equivalence £ — &, sends X to the isomorphism class of the trivial
a-twisted torsor, which we define to be the a-twisted torsor over Uy given by x(Uy), where x is the

section constructed in Lemma 2.3.3.

2.4 Torsors on gerbes

We continue with the notation of the previous subsections of this chapter.

Definition 2.4.1 For a stack 2~ = Sch/R, we give 2 the structure of a site Xp,. via the fpqc
topology on 2. First, recall that 2 has finite fibered products, by Lemma 2.1.4; to define this
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topology, for X € Ob(Z") say that a collection of morphisms { X LN }in 2 is a cover if and
only if {m(X;) ISUN 7w(X)} is a cover in Sch/R. This endows 2~ with the structure of a site such
that = Sch/ R is a morphism of sites. We will frequently abbreviate 2}, to just 2.

We begin this subsection with an important result concerning torsors on gerbes which will be
crucial for our later cohomological constructions. In what follows, we fix a finite type fpqc R-
group scheme G. If £ = Sch/R is a gerbe, we denote by G¢ the corresponding group sheaf on
& with the induced fpqc topology. For .Z is a sheaf (of sets) on an A-gerbe (£,0), we have a
morphism of sheaves on £ denoted by

L Ag ng—)y,

called the inertial action, which for an object X of £(U) and a € Ag(X) = A(U) is defined by
a)t
the automorphism .7 (X) Wl g (X). This gives an action of the group sheaf Az on the sheaf

Z, see [Shil9], 2.3.

Lemma 2.4.2 Assume that G is abelian. If 7 is a G¢-torsor on the A-gerbe £ = Sch/ R split over
Uy, then there is a unique map ¢ € Homg(A, G) such that the inertial action v: Ag Xg T — T is
induced by ¢g = 1*¢: Ag — Gg. We denote this homomorphism by Res( 7).

Proof. If such a map exists, uniqueness is clear. For V' — Spec(R), X € £(V),and z € Ag(X) =

A(V), the induced automorphism of sheaves ¢,: 7 ‘ ex T | £/x is Gg -equivariant, since

|
the Gg-action 7 X ¢G¢ — 7 is a morphism of sheaves on £ and ¢, is inducefl/l))(y an automorphism
of X (by definition). It follows that ¢, must be given by right-translation by a unique element
gz € Ge(X) = G(V), defining a map Ag(X) = A(V) 2x, G(V) = Ge¢(X). Moreover, if
X % Y is a morphism in &, lifting V/ Lu , then the square

dx

AU) —— G(U)

4l 4l

A(V) 255 G(V)

commutes because of the commutativity of the squares

Ag‘g/x X y‘g/X — g|5/x ‘7|5/X X Gg‘g/x - ‘7|5/X
| | aql |
A5|5/Y X y‘5/1/ — y‘g/y y‘5/1/ X Gg‘g/y - y|5/Y'
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It follows that the above maps glue across all objects in £ to define a homomorphism of group
sheaves ®¢: As — Gg. This defines a homomorphism @ : Ay, — Gy, via pulling back by a
section s: Sch/Uy — &, and the above argument shows that the two pullbacks to Ay, coincide by
setting v = : p; X = p5X any isomorphism in £(U;) for X := s(Up), showing that ® descends
to an F'-homomorphism ®, whose pullback by 7 is ®¢. [

We first record a characterization of sheaves on the site BgkA — Sch/R (with the induced fpqc
topology). Consider the category of sheaves on BrA, as well as the category of sheaves on Sch/R
equipped with an A-action, where we require morphisms in this latter category to be A-equivariant.
There is a canonical section s: Sch/R — BgrA sending U — Spec(R) to the trivial Ay-torsor Ay .
Define the map between the above two categories to be the one which sends a sheaf .%# on BrA to
the sheaf s*.% on Sch/R with A-action given by

s*t
A Xps*'F — " F,

and sends the morphism of sheaves .7 Iy Z' 0 s f, where in the definition of the action we are

making the identification s*(Ag) = A.
Proposition 2.4.3 The above map defines an equivalence of categories.
Proof. See [Shil9], Remark 2.6. O]

Definition 2.4.4 For our fixed G and £ — Sch/ R a gerbe, define the fibered category Tors(G, E)
over (Sch/R) s, where the fiber over U € Ob(Sch/R) is the category of Gg,-torsors on &y,
with a morphism from 7 to .# lying above f : V. — U given by a morphism of Gg, -torsors
T — [*S. Here f*. denotes the pullback of the G¢,-torsor ./ to Ey via the morphism &y =
E Xsen/r (Sch/V') = € Xgapr (Sch/U) =: Ey induced by the functor Sch/V — Sch/U sending
WoVieWw V5

Proposition 2.4.5 The fibered category Tors(G,E) — (Sch/R)pq is a stack.

Proof. Our above construction is clearly a fibered category, and the remaining conditions, namely
that the isomorphism functor associated to the fiber over U € Ob(Sch/R) is a sheaf and that all
descent data from (Sch/R)gq are effective, follow from (respectively) gluing of morphisms of
torsors and gluing of torsors on stacks over (Sch/R)g With the induced fpqc topology, which
follow easily from the discussion in [Stacks], §1.7.26 (with our stack being & — (Sch/R)fyqc). O

We now introduce the category of a-twisted G-torsors on the site (Sch/ R)gpqc. corresponding to
a Cech 2-cocycle a € A(U,), whose purpose is to give a concrete interpretation of the above stack

in the case where £ = &,. This definition is a generalization of Definition 1.2.1 in [C&al00].
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Definition 2.4.6 An a-twisted G-torsor over R is a quadruple (T, m,n) consisting of a Gy,-
torsorm : T x Gy, — T over Uy, an Ay,-action n : Ay, Xy, T — T which commutes with m,
and an A-equivariant isomorphism of Gy, -torsors 1 : p5 T — piT satisfying the twisted cocycle
condition

(P12¥) o (past)) © (pf?)zﬁ)_l =Nq

on ¢iT. We occasionally abbreviate the quadruple (T,v,m,n) by (T,v) (in such cases there
will be no ambiguity regarding the associated actions). A morphism h : (T, ¢r, mp,ny) —
(S,vs, mg,ng) of a-twisted G-torsors over R is an A-equivariant morphism of Gy, -torsors over
Uo, h : T — S, satisfying 1g o psh = pihor. We get an associated fibered category over Sch/ R,
denoted by Tors,(G,A, R), by letting the fiber over V be all ay-twisted-torsors over V, where ay
is the image of a in A(V x Us), defined identically as above after replacing Uy, Uy by V' x Uy and
Vx Uy = (VxUy) xy (V x Up).

The following lemma provides a different way to interpret some aspects of the above definition.

Lemma 2.4.7 Assume that G is abelian. For a Gy,-torsor T, having a Gy, -equivariant Ay, -
action on T’ is equivalent to requiring that the Ay, -action be induced by a group homomorphism
Ay, — Gu,, and insisting further that there is a twisted gluing map giving T" (along with the two
given actions) the structure of an a-twisted G-torsor implies that this homomorphism is defined

over R.

Proof. For V. — Uy, if we fix z € A(V), then n,: Tyy — Ty is an automorphism of Gy -torsors,
and is thus right-translation mg,, by some unique g, € G(V), and the assignment a — g, is
functorial in V' by uniqueness of g,, and hence we get a group homomorphism Ay, EN Gy, giving
the A-action.

This homomorphism f descends to a morphism A — G because pj f is induced by the Ay, -
action on pj7" and p; f by the Ay, -action on p37T, and we have an Ay, -equivariant morphism of
Gy, -torsors ¢: p5yT = piT, which means that if x € A(U;) induces the automorphism m,, on

5T, then since the diagram

* ¢ *
I —— piT

l(pén)z l(pi‘n)z

* d} *
I —— piT

commutes and ¢ is Gy, -equivariant, the right-hand translation (pin), equals 1 o (pin), o =1 =

Y omy,, o=t =my,,, giving the result (by fpqc descent of morphisms). [l

Proposition 2.4.8 The fibered category Tors,(G,A, R) — (Sch/R) e is a stack.
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Proof. The isomorphism functor on V' € Ob(Sch/R) associated to the fiber category over V' is
evidently a sheaf, by gluing of morphism of sheaves (again, see [Stacks], §1.7.26), and if the
equivariance conditions hold on an fpqc cover, they hold on V. Thus, all that remains to check is
effectivity of descent data. This follows because of gluing of G-torsors on (Sch/Up)fpqe With the
fpqc topology, and the A-action on compatible torsors defined on any cover {V; — V'} extends to
a A-action of the glued torsor on V' by gluing of morphisms (using A-equivariance of morphisms
in Tors, (G, A, R)). Again, the commutation relations can be checked locally. O

The next fundamental result shows that the above two notions of torsors actually coincide. We

begin with a lemma that addresses the case when £ = BrA.
Lemma 2.4.9 There is an equivalence of categories n : Tors(G, BrA) — Tors., (G, A, R).

Proof. 1f we start with the data of an object (7', %) in Tors,, (G, A, R), the map ¢ furnishes 7" with
a descent datum (of torsors, not just sheaves) with respect to the fpqc cover Uy — Spec(R). By
gluing of fpqc sheaves (see [Stacks], §1.7.26) such an object then gives a G-torsor over R with
G-equivariant A-action. By Proposition 2.4.3, this defines a sheaf .7 on BrA, so all we need to
do is define the G¢-action, m : 7 x Gg¢ — 7.

Denote by s: Sch/R — BgA the canonical section. Denote by C the (categorical) image of
this embedding of categories. We may define a morphism of sheaves

7. x Ge|, > 7|, 2.1)

.

by applying 7* to the action T’ x G — T.
For an arbitrary A-torsor over V, say X, we may find an fpqc cover {V; EIN V'} such that we
have isomorphisms of Ay;-torsors hx,: X; := ffX = Ay, and, if sy, : Sch/V; — &£ denotes the

embedding of categories induced by X;, we can define an action

}sxi (sch/v;) % G‘c"‘sxi(Sch/Vi) - g‘sxi(SCh/Vi) (2.2)

by conjugating our above action (2.1) by hx,: sx,(Sch/V;) = C/Ay, (where we identify hy,
with the induced equivalence between the embedded categories). To check that this glues to give
a morphism of sheaves .7 x G¢ — .7, it’s enough to check that the action defined in (2.2)
is independent of the choice of hy,, which is equivalent to showing that the action in (2.1) is
equivariant under the inertial action. This follows because the GG-action on 7" is A-equivariant.

We have thus constructed a map Tors,, (G, A, R) — Tors(G, BrA) which is the inverse of the
map Tors(G, BRA) — Tors,, (G, A, R) obtained by pulling back by the section s. O
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Proposition 2.4.10 For & = &,, there is a canonical equivalence of categories 1) : Tors(G,E) —
Tors,(G,A, R).

Proof. The argument largely follows that in [Lie0O4], §2.1.3 (where we replace the action via a
character y by the inertial action). Let z : Sch/U, — & be the section constructed in Lemma
2.3.3; let X be the corresponding lift of Uj. This same lemma also tells us that the two pullbacks
of z to Uy, the maps x; and x5, are isomorphic via ¢; this means that for every V' i> Ui, we have
an isomorphism oy : (p1 o f)*X — (pyo f)*X in E(V).

Let .7 € Tors(G, E)(Spec(R)) (the argument is identical for a G¢,-torsor). Then define the
G-torsor over Uy tobe T := x*.7 (sending V' EN Up to 7 (f*X)). We know that A¢ acts on .7 via
the inertial action, denoted by ¢ : Ag x .7 — 7. As such, we get an A-action on 7 via taking x*.
(using that z*A¢ = A). Similarly, we can set ¢ to be the U;-sheaf isomorphism p32*.7 — piz* 7
induced by the natural transformation ¢ : x o p; — x o py. One sees that v satisfies the twisted
cocycle condition, since the map from (g;x)(Sch/Us) to itself given by the natural transformation
of gjx:

de = (pi39) " o (p3sp) © (Pia)

equals ¢,, so that the induced map ¢TI — ¢;7T is exactly translation by a. Note that ¢ is A-
equivariant for our A-action, since for z € A(Up), we can identify z with 0,:x(2), 0psx(2) €
Auty, (piX), Auty, (p5X), and then @y, 00, x (2) = Oy x (2)00u,, a8 Oy x (2) = @uy 0l x (2) 0wy,
(by Lemma 2.2.6).

We take m : T x Gy, — T to be the pullback of the Gi¢-action m on .7 by x. Fixing V' ENNGs ,
since m : J X G¢ — 7 is a morphism of sheaves on £, it commutes with the restriction maps gog/,
giving the G-equivariance of ¢). One checks via an identical argument that m commutes with the
Ay, -action (since it acts via the band of &), and that if .77 — .¥ is a morphism in Tors(G, £)(U)),
the induced maps .7 (f*X) — . (f*X) give a morphism in Tors,(G, A, R)(U,) We thus obtain
our functor 7 (after applying the above construction with Uj replaced by an arbitrary V' — U,
which proceeds identically as above).

Since both Tors(G, £) and Tors, (G, A, R) are stacks over (Sch/ R)fyqc, it’s enough to check that
7 is locally an equivalence, by Proposition 2.1.9 (where we are using that we are working with the
fpqc sites). By base-changing to U,, we may assume that a is a 1-coboundary; one checks easily
(using an argument similar to the one used in Construction 2.3.4) that if a is cohomologous to b,
then Tors, (G, A, R) and Tors, (G, A, R) are equivalent, and we know from Construction 2.3.4 that
&y, and &, are isomorphic (not just equivalent). Hence, we may assume that a = ey, and £ = BgA,

and now we may apply Lemma 2.4.9. [

The following two results follow immediately from the above proof, pulling back functors be-

tween the categories Tors(G, £) (with varying GG and/or £) by the section z:
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Corollary 2.4.11 Let G I Hbea morphism of R-group schemes, giving the usual functor
Tors(G,E,) — Tors(H, E,),
which sends T to T x%¢J¢ He. Then this corresponds via the equivalence 1 to the functor
Tors,(G,A, R) — Tors,(H,A, R)

sending (T, 1, m,n) to the Hy,-torsor T x%/ H, with A-action induced by n x id; when G is
abelian, this is the same as replacing the homomorphism A — G giving n with its post-composition

by f. The new gluing map 1/; is obtained by applying — x%f H and taking the morphism induced
by ¢ X id.

Corollary 2.4.12 Let ¢op,: Eq — & be the morphism of stacks over R defined in Construction
2.3.4 between the A-gerbe &, corresponding to the Cech 2-cocycle a € A(Us,), the B-gerbe &,

corresponding to the Cech 2-cocycle b € B (Uy), induced by a homomorphism A " B such that
[h(a)] = [b] € H*(Uy — Spec(R),B) and x € B(U,) such that d(z) - b = h(a). Then the functor

Tors(G, &) — Tors(G, E,)
induced by pullback by ¢, corresponds via 1) to the functor
Tors,(G,B, R) — Tors,(G,A, R)

sending the object (T',1), m,n) to the a-twisted G-torsor with underlying Gy,-torsor T, A-action
given by mapping to B by h, and gluing map Q/NJ given by translating 1) by x.

2.5 Inverse limits of gerbes

In this section we present a few elementary results concerning inverse limits of gerbes. We keep all
of the previous notation and conventions of this chapter. The new assumptions of this subsection
are as follows: We have a system {u, },en of fpgc commutative groups over R with transition
maps Ppiin: Unt1 — Uy (defined over 1?) which are epimorphisms. We also assume that we have
systems of elements {u, € u,(Us)} and {z, € u,(U;)} such that u, are Cech 2-cocycles and
Up - ATy, = Ppi1n(ansr). This gives rise to a system of gerbes {&, = &,, — Sch/R},en
(abbreviated as just {£,}) with morphisms of Sch/R-categories m,11,: Env1 — &E,, Where

Tntin = QPapirun,zns S€€ Construction 2.3.4. We will make the additional assumption that the
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projection maps u,,1(U,,) — u,(U,,) are surjective for all n, m (this will be the case with every

fpgc cover and system of groups considered in this paper).

Definition 2.5.1 Define the inverse limit of the system {E,}, denoted by m En — Sch/R, to be
the category with fiber over U € Ob(Sch/R) given by the systems (X, )nen with X,, € E,(U)
such that w,11,(Xni1) = X, for all n, and morphisms (X,,) — (Y,,) given by a system of
morphisms {f,: X,, — Y.} such that 7,1 ,fni1 = fo for all n. We call such a system of
morphisms coherent. It is clear that we have a compatible system of canonical morphisms of

Sch/ F-categories T, : @n E, — & forall m.

It will turn out that the category £ := @n E, — (Sch/ R)fpqc 1s canonically a v := @n Uy~
gerbe, split over Uy. Denote the projection map u — u,, by p,. Note that we have maps H Uy —
Spec(R), tyy41) — H(Uy — Spec(R), u,,) induced by p,,; 1., and thus also a map

H'(Uy — Spec(R),u) — @ﬁi(Uo — Spec(R), uy,) (2.3)

for all ©+ > 0. Recall from Proposition 2.3.5 that the fpqc u-gerbe £ corresponds to a class in
H?*(Uy — Spec(R), u). We give one preliminary result to show that our Convention 2.2.7 applies
for the group w if it applies for each w;:

Lemma 2.5.2 Using the notation as above, H ;%;qc

(Up,uy,) =0 foralln > 0.

Proof. Let V denote U,, for n > 1, and let P be an fpqc uy -torsor over V' (cf. Remark 2.2.2).
Then for all n we obtain a w,, -torsor by taking P, := P x“V:P" v, . Moreover, by Convention
2.2.77, we have an isomorphism of wu; y-torsors P; LN up,y. Similarly, we have a trivialization
ho: Py = ug,yv, and the induced isomorphism P, = P, x“2V:P21 v — wy v differs from Ay
by post-composing by an automorphism of the trivial w; y-torsor u; v which must be translation
by some y; € uy(V), which we may lift to §; € uy(V). We may then replace hs by its post-
composition with translation by ¢; to assume that, via p, ;, it induces h;. Proceeding inductively
in this manner, we obtain trivializations h,,: P, — Up,1 such that h,_; is induced by h,, via p, ,,—1,

as above. This allows us to define a morphism of u-torsors h: P — u by applying l&nn to the (u-

idxe
. . . . Un,V hn . . . .
equivariant) composition P ——— P, — u,,y (where e, : V — w, v is the identity section),

which is automatically an isomorphism. 0

The main result of this subsection is:

Proposition 2.5.3 With the setup as above, the category £ = I&nn En — Sch/R can be given
the structure of a u-gerbe, split over Uy. Moreover, the map (2.3) sends the class in H 2(Uy —
Spec(R), u) corresponding to & to the element ([uy,]) € m H?(Uy — Spec(R), uy,).
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Proof. We will construct an object X € &£(Up) and an isomorphism @: p; X — p5X.

We do this inductively; for n = 1, construct the a-twisted u, y,-torsor (771, ,) by setting, as
in the proof of Lemma 2.3.3, 71 = u, y,, ¢, given by translation by a,, and ¢, : pi(T1,v¢1) —
p5(T1,11) given by translation by a;. Repeat this construction for wus; one then checks after
lifting z; to Z; € wus(Up) (viewed as a O-cochain with respect to the fpqc cover Uy n, Uy),
we may translate 1, by di;' = pio(Z1) 'pi3(Z1) € ua(Us) to get a new ao-twisted gluing
map 1, such that 7y (Th, ) = (T1,41); also replace o, with ¢, defined by replacing ay by
p12(Z1) " p13(Z1)pas(@1) 7! - ag, so that @y pi(Th, 1/;2) — pi(Ty, 122) satisfies mo 192 = 1.

Now for n = 3, we again start with (73, 13) and 3 as above. We may then pick lifts 5@, 53
of 71, x5 (respectively) in us(U; ) and replace 13 by 15 := translation by az-(d\”) =1 (d#{¥)~! (the
differential applied to the elements viewed as 0-cochains with respect to the fpqc cover U; 2 U,
as in the previous paragraph), and (3 by translation by

Pra(@) o (B )ps (B7) 7 pra(E57) 1 (357 )paa (@) s,
which we call ¢3. Proceeding inductively in this manner, we get a system X := ((T},, ¢))n of
coherent lifts of Uy and a coherent system of isomorphisms (¢, ), which by definition lift to give
an isomorphism ¢: p; X — p3X. This shows that £ is a gerbe, split over Uj.

The band of £ is canonically isomorphic to u, since for U — Spec(R), any automorphism
of the coherent system (X,,),, X,, € &,(U), is given by a compatible system of automorphisms
X,, = X,,; since for each n we have a canonical identification of the band of &, with u,,, and the
compatibility hypothesis exactly says that we have a coherent system of elements with respect to
the projective system {u,,(U)} for any such system of automorphisms. This finishes the proof of
the first claim.

For the second claim, we may use the lift X and isomorphism ¢: pj X — p5X constructed
above to compute the class [£] € H*(U, — Spec(R),u) (see Fact 2.2.11). It is clear from our
above construction that, via the natural projection map v = Band(£) — Band(&,) = u,, the
differential of ¢ maps to the differential of ¢,,, which one checks gives translation by an element

that is cohomologous to u,,, as desired. O]

We conclude this subsection with a couple of results concerning inverse limits of Cech classes.

To ease notation for Cech cohomology, assume Uy = Spec(.S) for aring S.
Lemma 2.5.4 The natural map H'(S/R,u) — lim H'(S/R, uy,) is surjective for all i.

Proof. For i = 0 this is trivial, so assume ¢ > 1. Let {z,,} be a sequence of Cech i-cochains
representing the classes in H?(S/R, u,,). By assumption, there is some ay; € u;(S®r?) such that

d(ag1)p2i1(z2) = 1. We may lift asj to asy € uy(S®r?) by assumption, and then replacing x; by
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d(as,1 )z gives a cohomologous element in uy (S ®r(+1)) whose projection to u; is ;. Continuing
this procedure inductively gives a i-cocycle in u(S®=(+1) whose image in each H*(S/R,u,,) is
[2,]. O

The following result characterizes when the above surjections are isomorphisms.

Proposition 2.5.5 Fix i > 1, if we have L )H=Y(S/R,u,) = 0 and L )Bi=1(n) = 0,
where B™'(n) € C"'(S/R,u,) is the subgroup of (i — 2)-coboundaries (the group of (—1)-
coboundaries is defined to be trivial), then the natural map H'(S/R,u) — Hm H'(S/R,u,) is

injective.

Proof. We denote the differential u(S®r?) — 1, (S®r+D) (which is a group homomorphism)
by d'®. First, note that since l'gll(:) H*"'(S/R,uy,) = 0, the natural map

limfu (S®#7)/ B (k)] — L[ (u (S®=1)/ B (k) /(1T (S/ R, wy))]

is surjective. Moreover, the natural map u(S®r?) = Jm, up (S®r) — T&nk[uk(S‘g’Ri)/Bi*l(k)]
is surjective, since we assume that L ) B=Y(n) = 0.

Now by left-exactness of the inverse-limit functor, we have the exact sequence

lim d(¥)
- up(S®rRY/BN(R) & (i+1) up (SOR(HD))
1] —— Lk e 1(S/Ruk) s u(SOrRFDY Lk o GBRT TR

uk(s@R(i+1)) . . .
109 (u (S®R Ty 18 ZETO (which is the

hypothesis of the Proposition), then it lies in the image of d := 1&1 d®). But now the diagram

u(S®r?)
| \
lim, [ur(S®rY)/B(k)] —— u(S®r+Y)

| /

up (S®RY) /B! (k)
ko H=Y(S/Rup)

In particular, if + € u(S®=(+1)) is such that its image in Jim,

1&1

commutes, and since the vertical composition is surjective and such an x lies in the image of the

lower-diagonal map, it lies in the image of the upper-diagonal map, giving the desired result. [
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2.6 Twisted cocycles

In this section, we introduce the notion of twisted cocycles, which facilitate computations involving
torsors on gerbes. We continue with the notation and conventions of the previous subsections, but
now we specify that R = F a field and set U; = Spec(F). Fix a Cech 2-cocycle a € A(U,). For
a gerbe £ over F' and finite type group scheme GG over F, denote the pointed set of isomorphism
classes of Gg-torsors on € by H' (€, G).

Let A be the category of monomorphisms Z — G defined over F', where G is either a com-
mutative algebraic group of finite type over F' or a connected reductive group defined over F', and
Z is a finite multiplicative group defined over F' (usually thought of as a subgroup of ) whose
image in G is central. We define the set of morphisms A(Z; — G1, Zy — Gs) to be the set of

commutative diagrams
Z1 — Zs

L]

G1 — GQ,

where the horizontal maps are morphisms of algebraic groups defined over F'. Set 7 C A (resp.
R C \A) to be the subcategory where [Z — G| belongs to 7 (resp. R) if G is a torus (resp. a
connected reductive group).

For G abelian with finite F-subgroup Z we define the set H'(£,Z — @) to be the group
of isomorphism classes of Ge-torsors on £ such that Res(.7) factors through Z. For arbitrary
Z — G] € A, we define H'(£,Z — G) to be the pointed set of all isomorphism classes of
Ge-torsors on &€ such that the inertial action is induced by an F'-homomorphism ¢: A — Z; note
that this agrees with our previous definition if G is abelian, and define the set H., (€, Ge) to be
lién ,H Y(&,7Z — @), where the direct limit is over all finite central subgroups of G (for arbitrary
Q). If 7 is a Gg-torsor whose isomorphism class lies in H*(£,Z — G), we say that 7 is Z-
twisted. The map [Z — G] — H'(E,Z — @) defines a functor from A to the category of pointed

sets (abelian groups if G is abelian).

Definition 2.6.1 An a-twisted Cech I-cocycle valued in G (or just an a-twisted cocycle if G is
understood) is a pair (x, ¢), where ¢: uw — Z(QG) is an F-homomorphism and x € G(U,) satisfies
dx = ¢(a). We say that (z,¢) and (y, ¢') are equivalent if ¢ = ¢’ and there exists z € G(Uy)
such that p1(2)'yps(2) = x (in this case, we say that z realizes the equivalence of (v, ¢) and
(y, @')). This clearly defines an equivalence relation. We denote the set of all a-twisted cocycles by
ZY(&,,Ge,), and the set of all equivalence classes by H'*(E,, Ge,). For some fixed finite central
Z in G, we say that an a-twisted cocycle (x, @) is an a-twisted Z-cocycle if ¢ factors through Z.
We denote the set of all a-twisted Z-cocycles of G for a fixed Z by Z'(E,, Z — G). If (z,9)
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is in ZY(&,,Z — @), then evidently its whole equivalence class is as well. Denote the set of
equivalence classes of a-twisted Z-cocycles by HY*(E,, 7 — G), and the set lim HY“™ (&, 7 —
G)by H 1’*(€a, Ge,), where the direct limit is over all finite central F-subgroups.

bas

We get the following expected result:

Proposition 2.6.2 For G a finite-type F-group and Z a finite central F-subgroup, we have a
canonical bijection from H*(E,,7Z — G) to HY*(E,, Z — G) which is functorial in [Z — G].
Taking direct limits, this induces a canonical bijection H) (€., Ge,) — HY*(E,, Ge,), functorial

bas

in the group G. If G is abelian, we also have a canonical bijection H'(E,,Gg,) — H"(&,, Ge,).

Proof. Let 7 be a Z-twisted G¢-torsor. Set ¢ := Res(.7); it remains to construct the appropriate
r € G(U). Let X := s(Spec(F)), where s denotes the canonical section Sch/F — &, constructed
in Lemma 2.3.3, and let ¢ € &,(U;) be the isomorphism pf X — p3X from the same Lemma.
Setting T' := s*.7 gives a Gx-torsor—choose a F-trivialization h of T. Taking pih o ¢ o psh~!
defines an automorphism Gy, — Gy, which is given by left-translation by a unique element
x € G(Uy), and this z satisfies dv = ¢(a), as desired (we leave the details to the reader, cf. the
proof of Proposition 2.4.10). Note that choosing a different A gives an equivalent twisted cocycle.

Moreover, given any isomorphism V: .7 — %, fixing trivializations h;: T; — G as above
gives the isomorphism h; 0 s*Wo hy*: Gz = G, which is left-translation by a unique y € G(F),
which realizes the equivalence between the twisted cocycles obtained using iy and hs. Thus, we
have a canonical well-defined map H'(&,,Z — G) — H"“*(&,, Z — @). The fact that this is a
bijection is immediate from Proposition 2.4.10. Functoriality in [Z — G| € A is trivial. The proof
of the last statement follows by replacing Z by G in the above argument for abelian G. [l

We thus get a concrete interpretation of H'(&,, Z — G) and H, (€, G, ); in light of the above
results, we denote H"*(&,, Z — G) simply by H*(€,, Z — G) and H"*(E,, Ge,) by H'(E,, Ge,)
(we make this latter identification only for abelian (G)—the above identifications are implicit in this
notation.

To extend this to an arbitrary A-gerbe & split over F', we need the following result:

Proposition 2.6.3 Let (£,0) be an arbitrary A-gerbe and a € A(Us,) such that [a] = [€] in
H*(F/F,A). If H'(F/F,A) = 0, we have a canonical functorial bijection between H'(E,G)
and H'(€,,Ge,).

Proof. We have an equivalence of A-gerbes 7n,: & — &, for a € A(Us) representing [£] €
H?*(F/F,A). This means we have a quasi-inverse v,: £, — &£ of A-gerbes, so that pullback

by v, and 7, induce the claimed bijection; if W is the natural isomorphism v, o 17, — ide, then
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¥ gives an isomorphism from 1’ (v.7) to .7. To check that the above map is independent of the
choice of v,, it’s enough to show that if : £ — & is an auto-equivalence of A-gerbes, then the
induced map H'(E,G¢) — H'(E, G) is the identity. This is the content of the following lemma,

which will be useful later. ]

Lemma 2.6.4 If A is such that H'(F/F,A) = 0, then for any A-gerbe £ split over I and A-
equivalence n: € — &, the induced map n*: H'(E,Gg) — H'(E,Gy¢) is the identity for any
F-group scheme G.

Proof. The first step is to extract a Cech 1-cocycle from 7. Let Y € & (U); note that for any
morphism f: V' — U, we have a unique isomorphism ¢; making the diagram

n(fY) =2 p(y)
~_ |
n(Y)

commute. This means, for an object X € &(Spec(F')), we have canonical identifications
pin(X) = n(ppX), pin(piX) = n(p};piX), and (combining the previous two) p;;pjn(X) =
n(p;‘ijX )forall 1 <i,j < 3,1 <k < 2. We make these identifications without comment in
what follows.

Picking an isomorphism ¢: p;X = p3;X in £(U,), these identifications allow us to view
the isomorphism 7(¢) as an isomorphism from pin(X) to pin(X). Choosing an isomorphism
h: X = n(X) in £(Spec(F)) (possible because of Convention 2.2.7), the map [pih~ o n(p)~t o
p5h] o o lies in Auty, (p;X) and thus (via (‘)p}lx) gives an element z € A(U;). We claim that
is a Cech 1-cocycle. This follows from repeated use of Lemma 2.2.6 and the fact that, on ¢; X,
we may use the above identifications and the fact that 7 is the identity on bands to deduce that
eq_fln( x(dn(p)) = Hq_i}X(dgo) € A(U,). It is important to note that the 1-cocycle x does not depend
on the choice of ¢, since if ¢’ is obtained by precomposing ¢ by an automorphism y of pi X, then
the extra y cancels out, again using Lemma 2.2.6 and the fact that 7 is the identity on bands.

With this in hand, since we assume that H'(F/F,A) = 0, we get that + = dy for some
y € A(F). We will show that any G¢-torsor .7 is isomorphic to 7*.7, which gives the result. It’s
enough to construct a 2-isomorphism y: idg = 7, since then yf will give the desired isomorphism
of G¢-torsors (for any choice of GG). This will just consist of a compatible system of isomorphisms
X 55 n(X) in E(U) for every X € £(U). The argument will be similar to the proof of Lemma
2.4.9; we will first construct such a system of isomorphisms on &, which we will descend to a

system of isomorphisms on £ using the fact that £ — (Sch/F )¢y is a stack.
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We first define this system of isomorphisms on the embedded subcategory C := s(Sch/F) C &,
where s is the section induced by X. For f*X € £(V), usx is given by f*h post-composed
with 0x)(yy,") € Auty (f*n(X)). Itis a straightforward exercise to verify that for any object
7Z € EW % Spec(F)) such that we have a (non-canonical) isomorphism Z Ay g* X in E(W),
the isomorphism Z — n(Z) in (W) given by n(A™!) o pg«x o A is independent of the choice of
A, and so we set f17 := (A1) o pgex o A. By taking common refinements of fpqc covers (since
E — (Sch/F)gpq is a gerbe), this implies that ¢ x induces a natural isomorphism id| . LN n| .

To show that /i descends to £, we need to show (by gluing of morphisms) that pj (i) = p5(i)
on&y,. LetY € E(V EN Uy ); there is an fpqc cover {V; LN V'} such that we have isomorphisms
1Y Eii) frfpiX in £(V;), as well as isomorphisms {¥, »} defined analogously. For each i, we

have the following diagram

£V 2 g X T e pepen (x0) " )

7,2
\ llpi’l 2 l i /
77(‘1]1 2)

Frppsx EEIE pppn(x),

where we have made the canonical identifications mentioned at the beginning of the proof in several
places and ¥, 1, := ¥;5 0 \IIZ_ 11 The diagram does not commute because of the middle square.
Indeed, starting at the top-left corner, going right then down then left yields f; f*p5h=' on(¥, 1) 0
L pih = Opey (zy, ) o U, 15, where zy; denotes the image of z € A(U;) — A(V ELHN Up)
(using that = does not depend on the choice of ¢, see beginning of the proof). But now replacing
[ froph with fips g x for k = 1,2 serves to replace the above composition with gy (p1.v; (y) ") o
Orey (p2,vi(y)) 0 Opry (a7,") 0 Win g = Opey (dyy,) - 2,1) 0 W10 = Wy 1 5, where pyy, for k = 1,2
denotes the map V; proloh, Spec(F), since dy = x by construction. This gives the main result,

since if (p{ji)y and (p5ii)y coincide on an fpgc cover of Y, they coincide on Y as well. O

The above proof also gives a useful blueprint for constructing isomorphisms of G¢-torsors. We
give one application here, using it to explain how to explicitly construct an isomorphism of G¢,-
torsors .77 — 7, given an equivalence between their corresponding (class of) a-twisted cocycles
(21, ), (z2, ¢) coming from trivializations hy, h, realized by the element y € G(F). Namely, we
first define the map .73 ‘c — T ’c on the category C := s(Sch/F) by taking h, ' o Ospec(F) (Y Y ohy,
and then extend this to all of &% by conjugating by fpqc-local isomorphisms to objects in C (as in
the above proof, cf. also the proof of Lemma 2.4.9). The fact that dy € A(U,) is 1-cocycle implies
that this isomorphism descends to an isomorphism of G¢,-torsors 73 — .

The punchline of this entire subsection is the following result:
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Corollary 2.6.5 For any A-gerbe & split over F and a € A(Us) with [a] = [€] € H*(F/F,A),
if H'(F/F,A) = 0, then we have a canonical functorial bijection between H'(E,7Z — G) and
HY(&,,Z — Q) forany [Z — G] in A.

2.7 Inflation-restriction

We continue with the notation of the previous sections; in particular, £ = Sch/F is a fixed A-gerbe
split over F. In this section, we discuss the analogue of the inflation-restriction exact sequence in
the setting of gerbes. Again G will be a fixed finite type F-group scheme. Our goal is to define a

functorial “inflation-restriction" sequence for any [Z — G| € A:
0 — HYF/F,G) ™ HY(E,Z — G) -5 Homp(A,G) —— H*(F/F,G),

where the H2-term is to be ignored if G is non-abelian. In order to define this sequence, we may
assume that & = &, for some a € A(U,), due to Corollary 2.6.5, and take H'(&,, Z — G) to be
equivalence classes of a-twisted Z-cocycles valued in GG. This makes computations significantly
simpler.

We take the first map, called inflation, to be the one induced by sending the 1-cocycle z € G(Uy)
to (z,0) € Z*(&,,Ge,), we take the second map, called restriction, to be the one that sends the
a-twisted cocycle (a, @) to ¢, and we take the third map, called transgression to be the one that
sends ¢ € Homp (A, Z(G)) to [p(a)] € H*(F/F,G). We leave it to the reader to check that these

maps are well-defined.

Proposition 2.7.1 The image of the class | 7] € H (€, Z — G) under the restriction map defined
above equals the unique F-homomorphism A — Z(G) inducing the inertial action on 7 (see
Lemma 2.4.2).

Proof. We leave this as an exercise, using the proof of Proposition 2.4.10 for the case £ = &,. [

Proposition 2.7.2 The above maps define a functorial exact sequence of pointed sets (groups if G

is abelian, where the H? term is to be ignored if G is non-abelian):

Proof. Clearly the image of the first set is contained in the fiber over identity of the second map.
Conversely, if we have some (x, ¢) with ¢ = 0, then the twisted cocycle condition on z € G(U;)
is just the usual cocycle condition, and hence [z] € H'(F/F,G) maps to (x,0). Taking a twisted
cocycle (z, ¢) already gives an element € G(U;) such that dz = ¢(a), so that evidently [¢(a)] =
0 in H*(F/F,G). Finally, if ¢ € Homp(A, Z(G)) is such that ¢(a) = dx for x € G(Uy),
then (z, ¢) defines a twisted cocycle, completing the proof. We leave functoriality in G as an

exercise. O
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For [Z — G]in A, denote by G = G the quotient of G by Z. The following version of the

long exact sequence in fpqc cohomology will be useful later:

Lemma 2.7.3 For [Z — G| € A we have an exact sequence of pointed sets (abelian groups if G
is abelian):

G(F) —— HY(E,Zg) —— HYE,Gg) —— HYE,Ge)

Proof. Again, we may work with a-twisted cocycles. The first map is defined to be the composi-
tion G(F) 5 H YF/F,Z) LNy o4 Y(&,, Zg,) from the short exact sequence of fppf group schemes
associated to Z — (, and the second and third maps come from functoriality. The first map
lands in the kernel of the second because the composition of the first two maps may be factored
as G(F) > HY(F/F,Z) — H'(F/F,G) ™% H(E,,Ge,). Moreover, if (z,¢) € ZY(&,, Z¢,)
has trivial image in H'(&,, Gg,), then ¢ = 0 and hence (z, ¢) lies in the image of the inflation
map H'(F/F,Z) — H"(&,, Ze,), and again the composition H'(F/F, Z) — HY(E,, Zg,) —
H'(E,,Gy,) factors as H'(F/F,Z) — HY(F/F,G) — H'(E,,Gs,), giving the other contain-
ment.

For exactness at the second spot, if (z, ¢) is such that [7(z, ¢)] = 0, then 7 0 ¢ = 0, and so
by basic properties of quotients, this happens if and only if ¢ factors through Z. Given this, the
class maps to the identity if and only if (using centrality) we have that = € G(U;) is such that
there is some z € Z(U;) with z = p1(g) '2pa(g), and this 2 necessarily satisfies dz = dz = ¢(a)
(since it’s cohomologous to ). This holds if and only if [(x, ¢)] = [(z, )] in H'(&,, Gg, ), and

(2,0) € ZY(E,, Z¢,), as desired. O

One checks easily (using Construction 2.3.4) that if £ is an A-gerbe split over F' and £’ is a
B-gerbe split over F, and we have a morphism v: £ — £’ of categories over Sch/F inducing the

map f € Homp(A, B), then the following diagram also commutes for any finite type G:

0 —— HY(F/F,G) —— HY(E,G¢) —— Homp(A, Z(G)) —— H*(F/F,Q)

H dl il H

0 —— HYF/F,G) — H'Y(E',Ger) — Homp(B, Z(G)) —— H*(F/F,G).
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CHAPTER 3

Results on Cech Cohomology

3.1 Derived-to-Cech comparison

Fix a commutative ring R. The category of abelian sheaves on (Sch/R)g,r is an abelian category
with enough injectives, and for an abelian R-group scheme A we may thus define the cohomology
groups H'((Sch/R)ypf, A) for ¢ > 0 by taking the derived functors of the global section functor on
this abelian category, viewing A as a sheaf on (Sch/R),pr. We will denote H*((Sch/R)pt, A) by
H'(R,A), or sometimes by H,
For any abelian fppf group scheme A over R with pro-fppf cover S/R , the Grothendieck

(R, A) when we want to emphasize our use of the fppf topology.

spectral sequence gives us a spectral sequence

EY? = HP(S/R,HY (A)) = HPHI(R, A),

==fppf fppf

where Hf :(A)) denotes the fppf-sheafification of the presheaf on Sch/R sending U to H?(U, Ay)

(see [Stacks, 03AV]). We have the following result:

Proposition 3.1.1 ([Stacks, 03AV]) If H (S Qrm A) = 0foralln,i > 1, then the above spectral
sequence induces a canonical isomorphism H'(S/R, A) = H} (R, A) for all i.

Remark 3.1.2 Strictly speaking, Lemmas 21.10.6 and 21.10.7 in [Stacks], 03AV are stated in the
setting of an fppf cover S/ R, but taking the direct limit of spectral sequences gives us the result for
pro-fppf covers (rings S which are a direct limit of fppf covers, such as F for R = F a field).

The following result states how the above isomorphisms behave with respect to connecting

homomorphisms.

Proposition 3.1.3 Under the comparison isomorphisms of Proposition 3.1.1, we have § = 0,

where ¢ is the usual connecting homomorphism arising from the derived functor formalism.

Proof. This is [Ros19], Proposition E.2.1. OJ
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In light of Proposition 3.1.1, the following result is relevant:

Proposition 3.1.4 For G a finite type commutative group scheme over R = F a field and S = F,
we have H}épf(F®Fn, G) =0foralli > 0andall j > 0.

Proof. This is [Ros19], Lemma 2.9.4. ]

3.2 Cech cohomology over Or g

Fix a global function field F’ of characteristic p > 0, a finite set .S of places of F', and an F'-torus T’
which is unramified outside S. Let Or 5 denote the elements of /' whose valuation is non-negative
at all places outside S, and for a finite Galois extension K /F, denote by O s the elements of K
whose valuation is non-negative at all places outside Sk, the set of all places of K lying above
S. We set Og := hﬂ K/F Ok,s, where K /F ranges over all finite Galois extensions which are
unramified outside of S. Denote by Fs the maximal field extension of F' which is unramified
outside S, and denote its Galois group over I by I's; note that Fis = Frac(Og). Since T is defined
over the subring Op C F), it is also defined over O g for any set of places .S; it thus makes sense
to ease notation by denoting the corresponding Op- or O s-scheme also by 7.

For all ¢ > 0, it is a basic fact of fppf cohomology ([Ces16, Lemma 2.1]) that for a commu-
tative group scheme ¢ on Op g which is locally of finite presentation, we have qul’,pf(OS, g) =
@ K/F Hf‘;pf(O k.5, %), with the transition maps induced by pullback of fppf sheaves (the same is
true if we replace “fppf" by “étale").

We begin with the following commutative-algebraic lemma:

Lemma 3.2.1 For K/F a finite Galois extension unramified outside S and n > 2, the natural

L ®0p 5" . . .
injection Oy ¢°  — [[n-1 Ok s is an isomorphism.
) K/F ’

Proof. By induction, it is enough to prove the result for n = 2. First, note that Ok s/Op g is
finite étale by assumption (since K/ F is unramified outside of S). In particular, Ok s is finitely-
generated and torsion-free as an O g-module, and both rings are Dedekind domains which are
integrally closed in their fields of fractions. By base-change, we get a finite étale extension
Ok.,s ®0r.s Or,s/Ox,s, which is still finitely-generated, locally free, and torsion-free as an Ok s-
module (this last fact follows from using the injection O s ®o,. s Or,s — HFK/F Ok,s, under
which O ¢ maps into the diagonally-embedded copy, which clearly acts on the product without
torsion).

We are thus in the setting of [Con18, Theorem 1.3], which says that the composition

OK,S ®0p.g OK,S — K X0p.s OK,S = HKi’
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where each /; is some finite separable extension of K and the last isomorphism comes from the
fact that K ®o,. 5 Ok,s is finite étale over K a field, maps Ok s ®o,. s Ok,s isomorphically onto
the product of integral closures of Ok g in each K. It is thus enough to show that we have an
isomorphism K ®o,, ; Ok,s — HFK/F K

Choose an element & € O g such that K = F(«a); since Ok g is the integral closure of Op g
inside K, we know that the minimal polynomial of o over F', denoted by f, lies in O g[x], and so

the desired result follows from the series of elementary manipulations

Fla]
()

OF75'[£E]
(f)

K ®ops Ok,s = —o ®0ps Ox.s) = F @0, ( H Ok.s),

Ik/r

®ops Or,s = F @0y (

followed by commuting the tensor product with the (finite) product and applying the canonical
isomorphism F' ®o, Oks = K. We leave it to the reader to check that the isomorphism
Oks ®0ps Ok.s = HFK/F Ok s constructed in the above proof agrees with the injection in

the statement of the Lemma. O]

Corollary 3.2.2 We have a canonical isomorphism H'(Ox s/Orps,G) = H'(U'x/r,G(Oks))
for any commutative O g-group G. Taking the direct limit also gives a canonical isomorphism

H(Og/Ops,G) = H(Ts, G(Og)).

Proof. All that one must check is that the isomorphism of Lemma 3.2.1 preserves cocycles and

coboundaries, which is straightforward. ]

According to §3.1, in order to compare the Cech cohomology groups H “(Os/Ops,T) with
H}ppf(OF’S, T'), we need to prove some cohomological vanishing results. The first result involves

étale cohomology:
Lemma 3.2.3 We have that H.,(Og, Toy) = 0 for all i > 0.

Proof. Since we assume that 7" is unramified outside S, it is enough to prove the result for 7" = G,,,.
For 7 = 1, the result follows from the above paragraph, using the fact that for /' C K C Fj a finite
subextension, we have Hy(Ok s, G,,) = Pic(Spec(Ok.s)) = Cl(Og s) (the first equality comes
from [Mil06, Proposition II.2.1]) and that %ﬂ K/F Cl(Og,s) = 0, where the limit is over all finite
subextensions, by the proof of [NSWO0S, Proposition 8.3.6].

For i = 2, first note that H2(Ox s, G,,) = Br(Ok.s), and then by [Poo17, 6.9.2], we have an
exact sequence

0 — Br OKS @ BI' vav

vESK

= Q/Z,
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where K, denotes the completion of K at v. Taking the direct limit of the first two terms shows
that we have an injective map Br(Og) — @, Spg Br(Fs - F,). Note that the field extension
Fs - F, contains F", the maximal unramified extension of F,, using the fact that Fis/F contains
all finite extensions of the constant field of F'. Moreover, the valuation ring Op,.r, of this field is
Henselian, as it is the direct limit of the Henselian rings O, ([Hoc10, pp. 56]), and the previous
sentence implies that it has algebraically closed residue field. We may then deduce from the proof
of [Mil06, Proposition I.A.1] that Br(F - F},) = 0, giving the desired result.

Finally, for ¢ > 3, we have that for any K/F a finite Galois extension, we have
H!(Ok.s,G,,) = 0, by [Mil06], Remark I1.2.2. Taking the direct limit gives the desired result. []

Corollary 3.2.4 We have canonical isomorphisms H'(T's, T(Os)) = H!(Opgs,T) forall i > 1.

Proof. This follows immediately from combining Lemma 3.2.3 with the spectral sequence
H?(Dg, H4(0s, Toy)) = HY 4 (Ops, T)
from [Pool7, Theorem 6.7.5]. L]

Lemma 3.2.5 We have that

foralln,i > 1.

Proof. 1Tt suffices to prove the result for 7' = (,,, since we assume that 7" is unramified outside S.

Moreover, it is enough to show that

where the limit is over all finite subextensions of F' inside Fs. By Lemma 3.2.1, we have a
canonical identification

[039] n
Spec(Oys" )= [ Spec(Ox.s),

n—1
UEFK/F

as well as a canonical isomorphism Hy, (] ], Spec(Oks), Gn) = [1, H,

fippf(OK,S; Gm) AISO, if

K'/K is finite and contained in Fs, then the natural map

®OF s

Hflppf(OKS G ) — HZ

corresponds  via this isomorphism to diagonally embedding each factor of
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[Lern- L ppf(OKS,(Gm) into some subset of the factors of Ho_el—xnfl ppf(OK/S, G) (by
CAS Y CAS Ui
means of the pullback map fppf(OK $,Gm) = Hip(Oxr.s,Gm)).

Hence, if a € prpf(O K ZF s ,Gm) is any element, then to show that a vanishes in some

02y .
Hi (O OSFS , G, for large K, it is enough to show that @K/F Hi #(Ok.s, Gy) = 0 for all 4,

thus reducing the result to the case n = 1, which follows from combining Lemmas 3.2.3 and 3.2.5
with Corollary 3.2.4. O

Recall from §3.1 that for any abelian fppf group scheme A over Opg and pro-fppf cover
R/Op s, the Grothendieck spectral sequence gives us a spectral sequence

E HP(R/OF57 fppf(A)) Hg;;:fq(OF,Sa A)

Corollary 3.2.6 The above spectral sequence induces a canonical isomorphism

~

Hi(OS/Ogs, T) — H,’%pf(OFy& T)

for all 1.

Proof. Combine Lemma 3.2.5 with Proposition 3.1.1. [

We now move to the realm of possibly non-étale extensions, in order to handle the cohomology
of non-smooth finite F-groups. For R an F,-algebra, let R := hg R, where the direct limit is
over successively higher powers of the Frobenius homomorphism. For R = Op g, the ring Ogg
is obtained by adjoining all p-power roots of elements of O s (in a fixed algebraic closure F/F).
We begin by recalling an elementary lemma on the splitting of primes in rings of integers of purely

inseparable extensions:

Lemma 3.2.7 Let '/ F be a purely inseparable extension and p C Op. Then p - Op = (p/)F"F]

for some prime p' of Op.

Proof. Tt is evidently enough to prove this in the case when [F’ : '] = p, which we now assume.
We claim that Op = ng’), the extension of Op obtained by adjoining all p-power roots. There is
an obvious inclusion of Op-algebras Ops — Og’) because I’ = F®). The morphism of smooth
projective curves X’ — X corresponding to the inclusion F' — F” is purely inseparable of degree
p, so by [Stacks], 0CCV, we obtain an isomorphism of O -algebras O — o, giving the claim.
The claim implies that, at the level of local rings, a uniformizer @ € Op,, has a pth root in O

for any prime p’ above p, giving the desired result. [
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Denote by F}, the field extension of F' obtained by adjoining all p"”-power roots; note that by
the proof of the above lemma, this is a finite, purely inseparable extension. We have the following

characterization of the perfect closure O%™":

Lemma 3.2.8 The canonical map
limy Os,, — O%"

is an isomorphism, where S,, denotes the preimage of S in Spec(OF.,).

Proof. For the inclusion of the right-hand side into the left-hand side, note that if = € F is such
that 27" € Og, s for some finite (Galois) £ C Fg, then v € E' := E - F,,,, which is unramified
over F,,, outside of S,,, and so x € Op 5, C Og,, . For the other inclusion, consider a finite Galois
extension K’ of the finite purely inseparable extension F’ := F,,,/F with S" := S,,,. We may factor
K'/F as atower K'/K/F, where K/ F is the separable (Galois) closure of /" in K’ and K'/K is
purely inseparable. Note that K - F' = K’; one containment is clear, and the other follows from
the fact that K and F” are linearly disjoint and [K' : F'] = [K : F].

We want to show that K/ F is unramified outside S; this follows because for any prime p of
Op, we know from Lemma 3.2.7 that p splits as (p/)[F/:F] in Op, and if p’ is a prime of O ¢/, then
it factors in O as P’ - - - - - P/, which means that p splits in O as (B’ - --- - P)FF1, Since
[F': F| = [K': K], we know that p must not ramify in O, or else the ramification degree would
be too large. Now for any element € Ok &, we have that 27" € K and is integral over O g,

and hence lies in Ok g, showing that Ok g» C O%’;) C Ogeﬁ, giving the other inclusion. O]

With these results in hand, we are ready to prove that passing to the perfection of Og allows us

to compute the Cech cohomology of multiplicative O r,s-group schemes.

Lemma 3.2.9 For A a multiplicative F'-group (which, as for tori, has a canonical model over 7.
so it makes sense to treat it as an Op-scheme) split over Og, the groups H]%pf((Ogerf )®OF,S " A)

vanish for all 1,n > 0.

Proof. 1t is enough to prove the result for A = G,, and A = p,,,. We focus on the former first:

Note that we may use the smoothness of G,,, and [Ros19, Lemma 2.2.9] to replace (OpSerf)®OF,S n

by [(Opserf)@)oﬂs "|rea- We now have [(Ogerf)@)oﬂs "rea = (OF™) OFs", 50 it’s enough to show

that the groups
®

Hi, (05" F5 " G,)
all vanish. By Lemma 3.2.8, we have

® Operf n

() n
(OF™) s = lim O "mm
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and hence it’s enough to show that

®0Fm, n

hﬂHf]fpf(OSm o ’GM) =0

for all j,n > 1. Now the result follows from Lemma 3.2.5, which shows that each term in the
direct limit is zero.

We now prove the y,,-case. For i > 1, we immediately deduce that H; ((Ogerf)(g)oﬂs " i)

fppf
vanishes from the long exact sequence in fppf cohomology and the G,,-case.

For i = 1, since H} ((Ogerf)@)oﬂs ".G,,) = 0, we have from the long exact sequence in fppf

fppf
cohomology that Hépf((Ogerf)(g)onS " 1tm) is the quotient

(05 Bers ™)/ ((OF)Brs ™))™

We know that OF is n’-divisible for n’ coprime to p by [NSWO08, Proposition 8.3.4], and hence

® n erf.x - “ e . P .
so is the group (Og OFs )* (using Lemma 3.2.1). Now O% "* is N-divisible, since it is obtained
from Og by adjoining all p-power roots, and once again this implies that ((Ogeff)@’%s "y =

(9] n
Og 775 ypertx g ag well. O
(O
We immediately obtain:

Corollary 3.2.10 For A as above, we have a canonical isomorphisms

~

H'(0%"/Ors, A) = Hj,,(Ops, A)
for all i. Moreover, for an F-torus T unramified outside S, the natural map
H'(0s/Ops,T) — H(OF"/Ops, T)

induced by the inclusion Og — O%" is an isomorphism.

In the global case, the ring O%™ will have the role that F' plays locally. We conclude with a useful
result concerning the finite-level Cech cohomology of an Op s-torus 1" split over Op g. We first

recall the following result from [Mor72]:

Proposition 3.2.11 ([Mor72, Theorem 3.2]) Let S/R/Op s be two fppf covers of Ops; set

2= [| JR®ors U Js®Pors Ul 5.

K3 K3 7
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If F is a sheaf on (Sch/Op,s )y such that Hy, (A, F) = 0 for all A € %, then we have an exact
sequence

0 — H*(R/Orys, F) — H*(S/Ors, F) — H*(S/R, F).
We now obtain:

Lemma 3.2.12 Let E/F be a finite Galois extension, let E'/E be a finite purely inseparable
extension, and S C V' a finite set of places such that Cl(Og ) is trivial. Then if T is an O g-torus
split over O, the natural map H*(Op.s/Ops,T) — H*(Op s/Ors, T) is an isomorphism.

Proof. We leave it to the reader to check that the X-condition of Proposition 3.2.11 is satis-
fied (since everything in ¥ is an Op g-algebra, we may replace 1" with G,,, for this condition
and use the fact that Op ¢ and Op g are principal ideal domains, along with [Ros19, Lemma
2.2.9]). It thus suffices to show that the group H (O 5/Og.s,G,,) vanishes. Note that, for any

® n ® n ® n n v
n, Gm(OE,ng’S ) = Gm([OE,ng’S Jea)> and now [OE,ng’S Jred = OE,;E"S = Og_s, so our Cech

cohomology computations on this cover reduce to that of the trivial cover Op/ 5/Opr g, giving the

desired vanishing. [

3.3 Cech cohomology over A

In this subsection we prove some basic results that allow us to do Cech cohomology on (covers of)
the adele ring A of our global function field F. Let G' a multiplicative F'-group scheme with fixed
Or.s,-model G for a finite subset of places >y C V. We begin with some basic results about local
fields:

Lemma 3.3.1 Let I’ = F,,/F be a finite, purely inseparable extension. Then F' and F, are

linearly disjoint over F inside F, (recall that we have fixed such an algebraic closure).

Proof. Suppose that we know the result for F” = F}. Then, proceeding by induction, F,, ; and
F, are linearly disjoint, the valuation v extends uniquely to a valuation v’ on F}, 1, and F}, 1 - F,
is the completion of F,, ; with respect to v'. Thus, F},,/F,,_; is of degree p, and we may replace
F, by (F,,—1), and use the m = 1 case to deduce that (F,,,_1),, = F,,_1 - F, and F,,, are linearly
disjoint over F,,,_1, which implies the desired result.

Thus, we may assume that F' = Fj. Note that the extension F’ - F,/F, is either degree 1 or
degree p, since [ - F,,: F| = [F': F, N F] | p, and F’ and F), are linearly disjoint if and only
if this degree equals p. Hence, it’s enough to show that F" N F,, = F. Thus, suppose that x € F,
is such that ¥ € F. If F(x) # F, then F(xz) = [, so that F), contains all pth roots of F’; in
particular, w@!/? € F,, where @w € O F (the localization of Op at v) is a v-adic uniformizer, which

is clearly false. O
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Now let K/F be a finite (not necessarily separable) field extension with completion K, for

w | v. The following result is important for our adelic Cech cohomology:

Fy

® n n
Lemma 3.3.2 For any n, the natural map O Kwo — Kq? " is injective.

Proof. The ring Ok, is finite and torsion-free over the principal ideal domain Op,, and is thus free
as an Op, -module. We may thus pick a basis (which is also an F),-basis for K,,) which allows us

to view the map in question as the natural map
(O™ Per" = (™)@,
which may be rewritten as the obvious inclusion
oDy pO™

giving the result. O

We can now prove our first adelic result. Let K/F be a finite field extension; note that the
equality Ax = K ®p A implies that A?A" = (K®r™) @p A. Let V denote the set of all places
of F, let Ak, denote the F,-algebra K @ F,, and let Ok, denote the O, -algebra Ox ®o,. Op,.

Proposition 3.3.3 For any finite (not necessarily Galois) extension K/F, we have a canonical

identification

Ry n ~ / ®FU n
AK . HUGV AK,U )
.. . . . ®0F n Rp, m .
where the restriction is with respect to the image of the map O, ,** — A .°  (in fact, the proof

will imply that this map is an inclusion).

Proof. ldentifying A?“ with (K®r™) @5 A, we claim that it may be identified further with the

restricted product
!/

[[(&® " @p F,), 3.1)

veV

where the restricted product is with respect to the image of the homomorphisms

0% " g0, O, — K®r" @p I, 32)

via the isomorphism defined on simple tensors by sending = ® (a,), to (z ® a,),, proving the

Proposition. The substance of this claim is that this morphism is well-defined, i.e., that for all but
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finitely many v, the element = ® a, actually lies in the image of O?OF ! ®o, Op,. To this end, it

suffices to show that we have an isomorphism

Ok @0, Or, = [ [ Ok,

wlv

for any v € Vp (the analogous decomposition for K @ F, is clear). In fact, once this is done, the
injectivity of the maps in (3.2) follows (using Lemma 3.3.2), and it is straightforward to verify that
the claimed identification of (K ®#™)®r A with the ring in (3.1) is indeed an isomorphism. Letting
K’ be the maximal Galois subextension of K, we already know that Oy’ ®0,. Op, is isomorphic
t0 [T/, Ox’ . and so we're left with the ring Ox ®o,, [[1./, Ox’ -

We claim that the natural map O ®o,, O K, = Ok, (for w the unique extension of w’ to K) is

an isomorphism. For surjectivity, note that by the proof of Lemma 3.2.7, we have O = Og,/ P m),

where p™ is [K': K']. We know that O spans O, over Og,/ P™) since the ring O K/ : Og,/ 7"

w'|v

finitely-generated over the complete discrete valuation ring O K, , using that O( /P") is finite over
Ok by the finiteness of the relative Frobenius morphism (by [Stacks], OCC6, using that O is
of finite type over I, being the coordinate ring of an affine open subscheme of a smooth curve
over ), and hence is complete as a topological ring, contains O, and thus must be the w-adic
completion O, . Injectivity immediately follows from the linear disjointness given by Lemma
3.3.1. ]

We immediately obtain:

A"

Corollary 3.3.4 For any finite (not necessarily Galois) extension K/F, the ring may be

canonically identified as the direct limit over any cofinal system of finite subsets Y. of V' of products

a2 =TT a2 < J[ 0l

vVED vgs

as follows:

This allows to decompose groups of adelic Cech cochains:

Corollary 3.3.5 For any finite (not necessarily Galois) extension K/ F, we have a canonical iden-

tification
n . ®
G2 = 1 [ @™ x [[g0g"
S0CE pex vES
Proof. This is immediate from the our Corollary 3.3.4 and [Ces16, Lemma 2.4]. O
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. Qo ™ T .
In fact, since the natural map O Kﬂ?F Vo= A?ﬂ” " is injective (and so the same is true for

GO K;)F V)= G (A?f” )), we actually get a restricted product decomposition

n / ®Fv n
GAR") = [T,ey GAZE"),

(039 n —_ —
where the restriction is with respect to the subgroups G(O ij v ) IfA = F®RpA, we immediately

obtain:

Corollary 3.3.6 We have a canonical identification
—Qun ~ . X » T
G(A " ) — hglK/F H;GV G(AK,S )7

where the direct limit is over all finite extensions K/F.
We give one more result which will be useful for Cech-cohomological computations:

Proposition 3.3.7 For K/F a finite extension, the above restricted product decomposition of
G (A?A ") identifies the subgroup of Cech n-cocycles inside G’(A%A ") with elements of the kernel
of the map

/ ®Fv n / ®Fv n+l
HUEV G<AK,’U ) B H G(AK,U )

veV

given by the Cech differentials with respect to the cover A Ko/ Fyonthe G (A?ﬂ” n)—factors and the

X . . . K n
Cech differentials with respect to the cover Oy ,,/Op, on the G(O ;)F v )-factors (note that these

differentials land in the desired restricting subgroups, so this is well-defined).

Proof. 1t’s enough to check that the restricted product identifications are compatible with the three
. . +1 Qo Qo ntl
inclusion maps p; : A%An — A%A L Py A?? [ A?? " and p°: OK;)F” — OKjF”

for 1 <17 < n+ 1, which is straightforward. OJ

We now move on from examining adelic tensor products and look at some cohomological results
concerning covers of A, analogous to the results proved in the previous subsection for covers of

Or.s. Set A, := F ®p F,. For notational convenience, the symbol H* will denote Hfippf.

Lemma 3.3.8 For M a multiplicative F'-group scheme, we have H ”(K?F v k, M) = 0 for all
n, k> 1.
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Proof. For E'/F a finite algebraic extension with Galois and purely inseparable subextensions

E, F' respectively, note that we have a sequence of isomorphisms

(B' @p F)®r* 5 [F @p (B op F)®r " 2 [ B8 > H ®

wlv Wiy, wi|v

where E!, is the completion of £’ with respect to the unique extension w’ of the valuation w on
E to the purely inseparable extension E’, for all w | v in Vg, and in the third term above, F), is

embedded into the direct product diagonally. and so we obtain an identification

H'(E'®p F,)®n* M) S [ HY((E,)®* M).

Moreover, for K'/E' two such extensions, the inductive map (E' ®@p F,)®r* — (K' ®p
Fv)®Fv * gets translated to the map on the corresponding products defined by the product over all

k-tuples (wy, . . ., wy) of the maps
=1,k =1,k
Q- M QK
J J
Fv 11‘117...11)k;1:[}j|wjvj Fv

given in the obvious way. The upshot is that it’s enough to show that each direct limit

lig H”(KéwK)//Fv, M)

K'/F
vanishes, where {w } is a coherent system of places lifting v (equivalent to fixing a place v on
F*P lifting v). But each direct limit of this form is isomorphic to H"(F,, M), which we know
vanishes. [

Fix an embedding F — F,,, which is equivalent to picking a place 0 € Vpw lying above v.
Note that we have a homomorphism of F,-algebras h: F, — A, defined as follows: For any E'/F

a finite algebraic extension, we may define a ring homomorphism
E'-F,— F ®rF,

by writing £/ = E(x'/?™) for z € F, where E/F is a finite Galois extension, and then using linear
disjointness to write £’ = F(z'/?") @5 E. Note that, even more than this, F(z*/?") and E - F,
are linearly disjoint over ' inside F,, so that our desired ring homomorphism may be obtained

from any homomorphism E - F, — E ®p F, by applying the functor F(z'/?") @ —. But such a
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homomorphism may be obtained via the composition

E-F,— [ B> E@rF,

wlv

where the first map is the diagonal embedding induced by the fixed embedding F - F,, — F), and
a choice of section '/ / Flg’} r — I'g/p, where vg = v| 5 and I’%E/  1s the decomposition group
of vg, and the second map is the usual isomorphism from basic number theory. If we pick our
sections to come from a section 'z /T, — T'p, then it is clear that these homomorphisms splice to

give the desired map h.

Corollary 3.3.9 For any k € N and multiplicative F-group M, the map h induces an isomor-

phism, called the “Shapiro isomorphism,"
Sk H*(F,/F,,M) — H*(A,/F,, M).

Proof. Note that for any finite algebraic field extension E’/F, the extension of rings F,, — F, @
E' is fppf. Thus, we get a natural map

H(A,/Fy, M) = lim H*((E' ®p F,)/F,, M) = H*(F,, M)

E'/F

via the natural comparison homomorphism I:[f’;pf(Fv, M) — H*(F,, M) (from [Stacks, Lemma
03AX]). By taking the direct limit of the spectral sequence from [Stacks, Lemma 03AZ], we de-
duce that the above map H*(A,/F,, M) — H*(F,, M) is an isomorphism, since the cohomology
groups H’ (K?F »"™ M) vanish for all j,m > 1 by Lemma 3.3.8. Now the commutative diagram

L K N
H*(F,/F,, M) &l » H*(&,/F,, M)
aE (F,, M)
HY(F,, M)
implies that S* is an isomorphism. [

We conclude this subsection by discussing the independence of S? on the section I'p/T% — I'p

used to construct h.
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Lemma 3.3.10 Let s, and s., be two choices of sections, M a multiplicative F-group, and SUQ, S;Z
the corresponding Shapiro homomorphisms M (E®F v 3) - M (K?F v 3). Then the induced maps
on Cech cohomology from H*(F,/F,, M) to H*(A,/F,, M) are the same.

Proof. Since the Shapiro homomorphisms are constructed via the direct limit over finite algebraic
extensions, it’s enough to prove that, for any fixed 2 € M((E!)®r 3) a 2-cocycle, '/ F a finite
extension of fields, there is a 1-cochain ¢ € M ((E' @5 F,)®r?) such that dc = S2(z) - S2(x) ",
and that if we have a inductive system {x g } g of such 2-cocycles, as £’/ F ranges over an exhaus-
tive tower of finite extensions, then the system {cg }  is also inductive. We will construct each
cgr explicitly using x (it will be useful later to have an explicit cochain to work with).

As above, we let E/F (resp. F'/F) denote the maximal Galois (resp. purely inseparable)

subextension of £’/ F, set £, :== F

5> and denote the extension of vg to E' by v'. For w | v in Vg,

denote by r,,, T, the corresponding isomorphisms £/, — E’, (induced by applying F’ ®p — to
the isomorphisms E, = E,, defined by our sections). We define

ce ] M(E,, ®r, B, )

Wiy, Wig |vF

to be given on the (w;, , w;, )-factor by
(Twi1,1 ) f'wil,S ® rwi2,2)('r) ’ (Fwil,Q ® Twiy1 FwiQ,:s)(x)_l?

where T, k denotes that the source is the kth tensor factor of (E;,)®Fv 31 < k < 3. Itisclear
that such a system of 1-cochains {cg} is inductive if the system {x } is. We will do an involved

Cech computation. Recall that Sﬁ, S;z are group homomorphisms

M((E,)®r®) — H M(E,, ®r, By ®p, By ).

Wiy, Wig s Wig [VF

To show that de = S2(z) - S;2(x)~", we may focus on a fixed (w;,,w;,,ws,)-factor of the

right-hand side. In this factor, the differential of c is given by the six-term product
(1 ® Twiz,l . fwzg,s ® Twi3,2)($) : (Twil,l : f'wil,S ®1l® rwig,Q)(l‘)_l . (Twil,l : ,Fwil,?, ® Twi2,2 ® 1)(1’)

(1 ® fwzg,z ® Twiy 1 .Fwig,ii)(g?)il ’ (Fwil,Q ®1® Tw;y 'fw¢3,3)(x) ’ (fwil,z ® Twiy 1 .Fwi2,3 ® 1)(‘7;)71'

The key fact here is that x € M (E;,g) o 3) is a 2-cocycle, not just a 2-cochain. Thus, we have
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that the factor (1 ® Twiy 1 * Twiy s ® rwiS,Q)(x) equals

(Fusy 2 @ Ty s @ Ty o) (@) - Py, o @ Ty 1 Taog s @ 1))+ (Fugy o @ Ty s @ Ty o) (@)1 (3.3)
To see this, note that
(1®id; ®idy®id3) () (id; ®1®idy®ids ) (r) '+ (id; ®ids @ 1®id3) () - (id; ®idy ®idz@1) (v) 7 = 1

(inside the group M (E:,X) fo 3)), and now applying (ids ®id; - ids ®id3) 0 (ry,, ® T, @ Tw,, @ T, )
to the above expression gives the desired equality. We will leave the checking of similar equalities
to the reader throughout the proof. Note that the second factor in (3.3) cancels with the last factor

in the main equation. Next, we may rewrite the first term of (3.3) as
(1@ Tayy s @ Tungy Ty ) () - Py, @ Ty @ Ty ) (@) 1+ (P, s @1 @ Ty~ Ty 5) (). (3.4)
We may also replace (7w, , * Tw; 5 ® Tw,, , ® 1)(z) from the main equation by the expression
(fwil,2 ® Tuyy,, @ Tw¢3,3)(x) . (Twil,l T, ®1® rwig,:ﬂ)(a:)*l . (Twil,l ® Twyyy ® rwisﬁ,d)(a:),
reducing us to showing the equality

(fwil,l ®1l® rwi3,2 . fwzg,s)(x) : (Twil,l : ’sz‘lg ®1® Twi3,3)($>_1

3.5
'(fwilz ®1® rwi3,1 : 7711%3,3)('1') : (rwil,l . fw¢1,3 ®1l® rwi3,2)<x>7l =1L

Replacing the third factor of (3.5) by the expression

(rwil,l ' fwil,s ®1l® ’Fwi3,2)(x> ’ (Twi1,1 ®1l® Twig o fwi:)),g)(x)_l ’ (T'U)il,l ’ ,Fwil,Q ®1l® f’wi3,3)(‘r)
reduces (3.5) to the equality
~1

(fwil,l I Twiy o ° fwi3,3)(x) ) (rwil,l ’ /f'wil,2 R1® rwi3,3)(x)

'(rw¢1,1 ®1® Tw¢3,2 ’ fwig,:s)(x)il ’ (rwi1,1 ’ fwil,Q ®1® fwi3,3)(x) = 17

which follows easily from the fact that x is a 2-cocycle. [
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3.4 The unbalanced cup product

For S/R a fixed finite flat extension (not necessarily étale), S’/ R a Galois extension contained in
S, and G a commutative R-group scheme, define the group C"(S/R, G) to be G(S®r"+1) and
C™Y(S/R,S’,G) to be the subgroup G(S®r™ @5 S’). Our goal is to define an unbalanced cup

product
L

C™N(S/R, S, G) x Cph(T', H(S')) =25 ¢ 1(S/R, J)
for two commutative R-group schemes GG, H and R-pairing P: G x H — J for J another com-
mutative R-group scheme, where as above Cr, (I, H(S")) = H(S') and I” := Autg_u4(S").
We have a homomorphism of R-algebras \: S®r" @p S" — [[p, S®=™ defined on simple
tensors by

g
Ao @ @iy > (A0 ® -+ @ i1 Cin)oer-

Moreover, for any R-group scheme .J, we have a canonical identification J([] S®z") —
[T J(S®r™); we then define, for a € G(S®r" @p S') and b € H(S"),

In the above formula we are using the fppf cup product as defined in [Sha64], §3, and b(*) denotes
the element b € H(S’) viewed as a 0-cochain.
We now apply the group homomorphism N: [], J(S®r") — J(S®r™) obtained by taking

the sum of all elements on the left-hand side, and the resulting pairing
C™(S/R,S',G) x Cro (I, H(S')) — J(S®=™)
is Z-bilinear. Indeed,
(a+d) 0 b=A(a+d)ub? =XaUbd® +d Ub?) = X\aUb®?)+ A UDdD).

This will be our desired pairing, denoted by «a S|’7|R b.

We will now prove some basic properties of this pairing. The first order of business is to
show that this agrees with the analogous pairing from [Kall6] in the case that S/R is also finite
Galois, with Autg (S) =: I'. There is a simple way to compare Cech cohomology and Galois

cohomology in such a case: for any commutative R-group G, there is a comparison homomorphism

C"(S/R,G) — C™(T,G(S))
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given as follows: We have a homomorphism of R-algebras

t: @) 5 TT 5, (3.6)

gern

induced by the map on simple tensors

We immediately get a homomorphism ¢ : G(S®=" ) — G([] n Se) = C™(L, G(9)),
where the last equality is the obvious identification. Passing to cohorglology, this induces a ho-
momorphism H"(S/R,G) — H™(T,G(S)). Note that all of these maps are isomorphisms if
S/R is a finite Galois extension of fields. This comparison map also respects our special sub-
groups; that is to say, the homomorphism G(S®r"+Y) — [, G(S) maps C™(S/R, S, G) into
C™(T,T",G(S)), which again is an isomorphism when R and S are fields.

Proposition 3.4.1 When S/R is finite Galois, the unbalanced cup product a slf_/lR b agrees with the
unbalanced cup-product from [Kall6] after applying the comparison homomorphism (3.6).

Proof. Recall that the pairing from [Kal16] sends a € C™}(T',T",G(S)) and b € H(S’) to the

(n — 1)-cochain
(01, Onr) > P[Soerva(n, ., 00 1,0) @ 77178 € J(S),

where we are abusing notation and using P to denote the map G(S) ®z H(S) — J(S) induced by
the pairing P.

In the Cech setting, the point a U b(®) corresponds to the R-algebra homomorphism R[J] —
R[G] ®F R[H] — S®r™*1 given by post-composing P* by the map determined by a and 1 ® b
(identifying the points with their ring homomorphisms). Then the map A sends this point to the map
R[J] = R|G]®r R[H] — [] S®r™ given by post-composing P* by the map R[G] @ R[H] —
[T,cr S®r™ determined by A o a and A o (1 ® b). It is straightforward to verify that via the
composition [, J(S®=™) — [p [Tpnt J(S) = [Ipa-s J(S), we obtain the (n — 1)-cochain
of I' valued in J(S) sending (o4, ...,0,-1) t0 Y . Pla(oy,...,0n-1,0),777"77b) € J(S), as
desired. ]

We now prove an elementary result stating how this map behaves with respect to Cech differ-

entials.

Lemma 3.4.2 Fora € C™'(S/R,S’, J), we have N\(da) = (#I")(=1)""'a + d(N\a).
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Proof. First, note that d maps C™!(S/R,S’, J) into C"*11(S/R,S’, J), so the statement makes
sense. Start with the S®r" @p S’-point a: R[J] — S®r" @y S’. Applying the differential yields
the sum as 4 ranges from 0 to n + 1 of (—1)" times the S®r"*Y) @p S'-point p; o a: R[J] —
S®r(nt1) @, S’ where 0 < i < n+ 1. Note that Aopzoaequals (Aoa); :=p;oloafori #n+1

and A o p-— o a = (a),crv. We conclude that

NX(da) = (#T")(=1)"Va+ N[ Y (=1)'(Ao a)]

0<i<n
which equals (#I")(—=1)""ta + d(NXa). O

We now reach the key property of our unbalanced cup product.

Proposition 3.4.3 Fora € C™'(S/R,S',G) and b € Cy,}

ate

(I, H(S")), we have

L = U -1 .
d(a o b) = (da) T b+ (—1)"(aUdb)
Proof. The left-hand side equals d[N(A(a Ub))] = (#I")(—=1)"(a Ub®) + NA(d(a U b)), by
the above lemma. This in turn equals (#I")(—1)"(a U b©) + NX[(da) U b©® + (—1)"(a U db)]
(by [Sha64], §3). Thus, the desired equality reduces to

(#T)(a U b)) + NA(a U db'®) = a U db.

Now, db® = —p;(b)+pa(b) € H(S'®@pS"), so that A(aUdb®) = X(aU—py (b)) +A(aUps (b)),
and A\(a U —py (b)) = (a U —b®),, so all we need to show is NA(a U py(b)) = a U db. Note that
Ma Upy(b)) = (aUb®),, so applying N gives the desired result. O

The setting we will be concerned with in this paper is the case where G = G,,,, H = X (J)
is the étale R-group scheme associated to the cocharacter module of an R-torus J, and the pairing
P: G,,xX,(J) — J is the canonical one; we switch to multiplicative rather than additive notation
for our abelian groups here. The following two elementary results will be used repeatedly in what

follows, so we record them here:

Lemma 3.4.4 For f € X.(J) and x € G,,(S®r™), we have f Uz = [pif](x). Furthermore,
if we take two multiplicative groups M, N, both split over S, and look at the R-pairing M x
Hom(M,N) — N, then for € Hom(M, N) defined over R, we have xt U ¢ = ¢ U x = ¢(x) for
all v € M(S®=r™),

Proof. This is a straightforward computation. O
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Lemma 3.4.5 Ifg € X,(J)', then for f € X.(G,,) and x € C™'(S/R, S,G,,), we have

UJ = LJ Ug.

T (gof)=(x S/Rf) 9
Proof. We have that z U (go f) = 2 U (fUg) = (U f)Ug = g(z U f), where we are
using the fact that f U g = g o f, and that since ¢ € X,(J)!, we have by Lemma 3.4.4 that
(xUf)ug = glz U f). Thus, Alz U (go f)] = Aglz U f)] = (I], 9)[A(z U f)], where
this last equality follows from the fact that g is defined over R. Finally, applying N gives that

L =N Mz U f)] = L = (x U f)U g, where this last lit
v U (90 f) = N([La)\wU /)] = gle U f)= (¢ 1} )Ug. where this last equality comes
once again from Lemma 3.4.4. [
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CHAPTER 4

The Local Gerbe

4.1 The multiplicative pro-algebraic group

For a finite Galois extension £/ F', we consider the algebraic group Rg / r[n] := Resg /Flin, Which
is a multiplicative F-group with character group X*(Rg/p([n]) = Z/nZ[I' g p] with I' g, acting by
left-translation. We have the diagonal embedding yi, — Rp/r|n] induced by the I'-homomorphism
Z/nZ[I g p] — Z/nZ defined by [y] — 1. The kernel of this homomorphism will be denoted by
Z/nZ[I'g/rlo, and is the character group of the multiplicative F'-group Rp/r[n]/t,, which will
denote by ug/ . Note that ug /g, is smooth if and only if n is coprime to the characteristic of F'.

If K/F is a finite Galois extension containing F/ and m is a multiple of 7, then the injective
morphism of I'-modules Z/nZ[I" 5, | — Z/mZ[I'k,r] induced by the inclusion Z/nZ — Z/mZ

ble Y lo]

O'EFK/F
oy

and the map

induces an epimorphism Ry r[m| — Rg/r[n]. This maps R r[m]o to Rg/r[n]o and thus induces
an epimorphism ug /g, — ug/r,. We define the pro-algebraic multiplicative group u to be the
limit
U= @ UE/Fn

taken over the index category Z whose objects are tuples (E/F,n) as n ranges through N and
E/F ranges over all finite Galois extensions of F', and where there is at most one morphism
(K/F,m) — (E/F,n) in Z and it exists if and only if £ C K and n | m. For every (E/F,n),
the canonical map v — ug/F, 1s an epimorphism. Note that u is a commutative affine group
scheme over F'; when taking the cohomology of u, we view it as a commutative fpqc group sheaf
on (Sch/F')gqc (and thus also a sheaf on (Sch/F)gyp).

For a finite multiplicative algebraic group Z over F', any F-homomorphism v — Z factors

through an F-homomorphism upp, — Z for some (£/F,n) € Z. We also have the “evaluation
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ate" map 0. : fl, — Up/Fy, Which is induced by the corresponding morphism of character groups
from Z/nZ[vg/r)o to Z/nZ sending Z'yel“E/F c[7] to c.. It’s easy to check that, for £ splitting Z,

we have an isomorphism
Homp (up/pn, Z) = Hom(py, 2)2/2, f = fod, 4.1

where the superscript Vg, denotes the kernel of the norm map and for two algebraic F'-groups
A, B, Hom(A, B) denotes the abelian group Homps (Aps, Bps), which carries a natural I'-action.
Before we analyze the cohomology of u, it’s necessary to recall some facts about the cohomol-
ogy of profinite groups. By [RZ00], 2.2, the left-exact functor @ from the abelian category of
inverse systems of abelian profinite groups with continuous transition maps to the abelian category
of abelian profinite groups is exact. As a consequence, its associated first derived functor, @(1),

sends everything to the trivial group.

Proposition 4.1.1 We have the following results about H'(F,u) and H*(F,u):

1. The projective systems { H*(F p,,) }, {H"(F, Rg/r[n)) }, {H (F up/rn)}, { H*(F, )} (all
indexed by 1) can be given the structure of projective systems of abelian profinite groups
with continuous transition maps, such that, for all n, the associated long exact sequence in

cohomology associated to the short exact sequence of group sheaves

0 > Un > RE/F[n] — > UE/Fpn — 07

consists entirely of continuous maps, up until the map H*(F, p,,) — H?*(F, Rgr[n]) (we
have not specified a topology on the right-hand group);

2. We have a canonical isomorphism H'(F,u) = lim HY(F,up/py);

3. We have a canonical isomorphism H?(F,u) = lim H*(F,up/py)-

Proof. First we fix (E/F,n) € Z. We know from Hilbert’s Theorem 90 that H'(F, j1,)) =
F*/F*" from Shapiro’s lemma that H'(F, Rg/p[n]) = E*/E*", and from local class field
theory that H?(F,u,) = Z/nZ, all of which carry the natural structure of a profinite group
(we don’t need to identify H?(F, ,) with anything; just give it the discrete topology). Under
these correspondences, the map H'(F, ju,) — H'(F, Rg/r[n]) corresponds to the obvious map
F*/F*" — E*/E*" (which is evidently continuous), and so we have a short exact sequence of

groups

0 —— E*/(F* - E*") —— HY(F,up/p,) — Cp

=
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where C,, is the image of H'(F, ug/p,) — H?(F, j1,). The first and third terms in the sequence
have natural profinite topologies, since the image of F*/F*" in E*/E*™ is a closed subgroup.
Then H'(F,up/r,) carries a unique structure of a profinite group realizing C,, as a topological
quotient of H'(F, ug,r,) by the open (closed) subgroup E*/(F* - E*™) with the subspace topol-
ogy, see [RZ00], 2.2.1. It’s trivial to check that all lower-degree maps in the long exact sequence
are continuous.

Now we look at the transition maps in the corresponding projective systems (so that (E/F,n) is
no longer fixed). The ones for { H'(F, y,,)} correspond to the quotient maps F™*/ F*™ — F* | F*™,
which are clearly continuous, the ones for { H'(F, Rg/r[n])} correspond to the (quotient) norm
maps K*/K*™ — E*/E*™, which are continuous, and all { H*(F', j,,)} are finite. For n | m and

K/E/F, we have the commutative diagram

e}

0 —— E*/F*E*’n — HI(F,UE/FJL) > Cn

v o] ]

0 —— K*/F*K*" —— HY(F,uk/rm) s C, > 0;

it’s a straightforward exercise in profinite abelian groups to show that if the left and right vertical
homomorphisms are continuous, then so is the middle one (where, again, the middle groups are
equipped with the unique profinite topology discussed above). This completes (1).

For (2) and (3), by [Stacks], .21.22.2, we have the (canonical) short exact sequences

0 —— Lim"W HO(F up ) —— H'(F,u) — lim H'(F,ugp,) — 0;

0 —— Lim"Y HY(F up/pn) —— H*(F,u) — lim H*(F,ugp,) — 0,

and in both cases the left-hand terms vanish: the first vanishes because it’s an inverse system of
finite groups, and the second because we proved in (1) that { H' (F, ug,r,,)} is a system of profinite

groups with continuous transition maps. [

The following result will be important when discussing the uniqueness of our constructions. When
taking inverse limits of the groups u g/ r,, (and computing any cohomology groups) we may replace
the category Z with any co-final subcategory { ) /F,n;} in Z, which we do in what follows by
taking a tower F' = Ey C E; C Ey C ... of finite Galois extensions of F' with the property that

UE}, = F* and a co-final sequence {n;} C N*. We set Ry, := Rp, /p[n] and uy, == ug, /5y, -
Lemma 4.1.2 We have H (U,,u) = 0 for all i > 0, n > 0.

Proof. First note that H*(U,,,uz) = 0 for any i,k > 0, n > 0, by Proposition 3.1.4. Thus, the
result is clear if we can show that H(U,,, u) = Jim H(U,,uy) foralli > 0,n > 0. Using the same

57



short exact sequence for inverse limits and cohomology used in the proof of Proposition 4.1.1, it’s
enough to show that @(1) HI(U,,u;) = 0 forall j > 0.

For 7 > 1 this is immediate, since all the groups in the system are zero, by above. Thus, all that’s
left is showing l‘gl(l) H°(U,,u;) = 0 for all n. For k > [, the transition map Ry (U,,) — R;(U,) is
identified (via splitting the 2;’s) with the map

I k@l = 11 (Ul

Y€l /F o€lg, /F

given by raising all coordinates to the n;/n;-power and then mapping all Galois-preimage coordi-
nates to their image coordinate (and taking their product). This map is clearly surjective, and since
all H'(U,, jun,) are zero, the long exact sequence in cohomology tells us that H°(U,,, R;) surjects

onto H%(U,,, u;) for all j. Finally, since the square

HO(Un, Rl) e HO(UH, ul)

I I

HO(Un, Rk) E— HO(Un, uk)

commutes, the right vertical maps are all surjective, and so the inverse system {H°(U,, u;)

satisfies the Mittag-Leffler condition, giving the result. 0
Corollary 4.1.3 We have canonical isomorphisms H?(F /F,u) — HP(F,u) for all p € N.

Proof. This is an immediate consequence of combining Lemma 4.1.2 with Proposition 3.1.1. [

Next, we prove the basic result about the cohomology of w.

Theorem 4.1.4 We have H'(F,u) = 0 and a canonical isomorphism H*(F,u) = Z.

Proof. As above, we fix a co-final subcategory {(E},, ny)} of Z. By Proposition 4.1.1, H*(F,u) =
@Hi(F, Up, /Fn,) fori=1,2.

The argument for ¢ = 2 is identical to that in [Kal16], with a few minor adjustments—we have
the functorial isomorphism

*

" 7| =2/ (n, |Er : F))Z,

H(Fuy) 2 HOE X (uy))” = HOD X" ()" 2 | oo s

where for an abelian group M, M* denotes the group Homy (M, Q/Z), X*(uy) denotes the
étale group scheme associated to the I"-module X*(uy), and the first isomorphism is given by

the analogue of Poitou-Tate duality for fppf cohomology of finite group schemes over a local
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field of positive characteristic, see for example [Mil06], I11.6.10. For k£ > [, the transition map
H?(p) : H*(F,uy) — H?(F,u;) is translated by this isomorphism to the natural projection map

We may then set n, = [Fy : F] for all k, giving (ng, [Ex : F|) = ny, settling the case i = 2.

For ¢ = 1, by the long exact sequence in cohomology, we have the exact sequence
HY(F,Ry) —— HY(F,uy) —— H*(F, in,),

and, by Proposition 4.1.1, these are all profinite groups, and the maps in the above sequence are
continuous; whence, this sequence remains exact after taking the inverse limit, and so it’s enough
to show that Jim HY(F,R;) =0, lim H?(F, pi,,.) = 0. To show that the latter is zero, it’s enough to
find, for every [ fixed, some k > [ such that the transition map H?(F, y1,,,) — H?(F, j1,,) is zero.
For this, note that, at the level of character modules, the map pi’l : X*(R;) — X*(Ry) induces a
map on quotients by the subgroups X*(R;)o, X*(Ry)o (respectively) that’s identified with the map
Z)mZ — 7./niZ sending [1] to [(2—’;)2] and so we may choose k so that n; /n; is a multiple of n;.

It remains to show that Jim /7 Y(F, Ry) = 0, which is the same as showing Hm £}/ E;™ = 0.

Consider the short exact sequence induced by the valuation map v:
0 —— O /(O)™ —— E*/E*™ —— Z/nyZ — 0,

where O} denotes the units of O, . Note that {O; /(O,)"* } is a projective system with continuous
transition maps induced by N, /g, since the norm map preserves unit groups and ng-powers (and
n; | ny, for I < k by construction).

As in the proof of Proposition 4.1.1, varying k in the above short exact sequence gives three
projective systems of profinite abelian groups, with continuous morphisms between the systems.
Whence, the sequence stays exact after we take the inverse limit of each system. We claim that the
inverse limit of the right-hand terms is zero. Fix [ € N: we know from basic number theory that if
T, is a uniformizer of E, then vi(Ng, /g, (7)) = fB,/E,» Where fg, /g, denotes the degree of the
associated extension of residue fields. Whence, we may choose k£ >> [ so that n; | fg, /E;» and so
the transition map Z/nyZ — 7./n,Z is zero, giving the claim.

It’s thus enough to show that @O; J(OF)™ = 0. We get a new short exact sequence of
profinite groups

0 —— (O™ > OF > O /(OF)™ —— 0,

where the left-hand term is profinite since it’s a closed subgroup of O, being the image of a

compact group under a continuous homomorphism.
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Taking the inverse limit of each term, we get a surjection lim or — Jim OF /(OF)™, so we
only need to show 1&1 O; = 0. This follows from local class field theory because our transition
maps are norms and for £ fixed the universal reciprocity map ¥ : £y — I'g, is injective for £,
any local field (see [FV02], IV.6.2). ]

Combining the above result with Corollary 4.1.3 immediately gives:

Corollary 4.1.5 We have H'(F/F,u) = 0 and a canonical identification H*(F/F,u) = Z. In
particular, the natural map H?(F | F,u) — Hm, HP(F/F, uy,) is an isomorphism for p = 1, 2.

We denote by o« € H?(F,u) the element corresponding to —1 € Z. For any multiplicative

algebraic group Z defined over F', we obtain a map
o*: Homp(u, Z) — H*(F, Z) 4.2)
via taking the image of « under the map H?(F,u) — H*(F, Z) induced by ¢ € Homp(u, Z).

Proposition 4.1.6 If Z is any finite multiplicative algebraic group defined over F', then o* is sur-

jective. If Z is also split, then o* is also injective.

The identical proof as in [Kall6], Proposition 3.1 works here, with the only difference being the
replacement of the classical local Poitou-Tate with the version for finite groups schemes over local

fields of positive characteristic, which does not affect the rest of the argument.

4.2 Basic properties of (£, 7 — G)

Fix a u-gerbe (€, 6) split over F' corresponding to the class o € H?(F,u), where by “correspond-
ing" we mean [€] € H*(F/F,u) = Jim H*(F/F,u,) = Z maps to « (see Corollary 4.1.3, and
Proposition 4.1.1). This subsection closely follows §3 in [Kal16].

Given [Z — (] in A, recall that we have defined the cohomology set H*(£,Z — G) to
be the subset of H'(E, G¢) consisting of elements whose image under the map H' (€, G¢) Res
Hompg(A, G) is an F-homomorphism u — G which factors through Z — G, and that this con-
struction is functorial in [Z — G]. For any other choice of A-gerbe £’ with [£'] = —1, we know
from Corollary 2.5.5 that [€] = [£] € H*(F/F,u), and hence by Proposition 2.3.5 we have a u-
equivalence : £ — £’, which (via pullback) induces a map H' (&', Ge/) — H'(E, Ge), and it is
straightforward to verify that this map further gives rise to amap H'(§, Z — G) — H (,7 —
G) for any [Z — G] € A, which by Lemma 2.6.4, is independent of the choice of 7.
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Lemma 4.2.1 The transgression map Homp(u, Z) — H?*(F,G) can be taken to be the composi-
tion of the map o* defined in (4.2) and the natural map H*(F,7) — H*(F,G).

Proof. We may work with a-twisted cocycles valued in G for a choice of a € A(Us) with [a] = .
By the functoriality of our inflation-restriction sequence, we may replace G' by Z, and we are
reduced to showing that the transgression map Hompg(u, Z) — H?*(F,Z) equals the map o*.
Recall that o* is defined by mapping a homomorphism to the image of « under the induced map
H?*(F,u) — H?*(F,Z). By construction, the image of f € Homp(u, Z) under the transgression
map is the class [f(a)] € H?(F,Z), which is exactly the statement of the lemma, since [a] =
a. ]

Remark 4.2.2 The above proof does not use anything specific about the group u, the result holds
when u is replaced by any commutative F-group scheme A, a by a Cech 2-cocycle ¢, and £ by &,.

We will use this in the rest of this chapter without comment.
For [Z — G]in A, recall that G & G := G/ Z.
Lemma 4.2.3 There is a group homomorphismb: H* (£, 7 — G) — H'(F,G).

Proof. The inflation-restriction sequence on & for the F-group G identifies H'(F,G) with the
kernel of the restriction map H'(&, (G)¢) — Homp(u, G). Since the square

HY(E,Gg) —2=— Homp(u,G)

! !

HY(E,(G)e) -2 Homp(u, G)

commutes, it’s clear that since H'(£, Z — @) is killed by the right-down composition, its image
in H'(€,(G)¢) lies inside the inflation of H'(F, G). This gives our map. O

The following is the most important proposition of the section, and will be used extensively in

the next section.

Proposition 4.2.4 Let[Z — G] € A. Put G = G/Z. Then we have the commutative diagram with

61



exact rows and columns (where the right-most H?-terms are to be ignored if G is non-abelian):

G(F) ——— G(F)

| !

0 —— HYF, Z) —2 HYE,, Z — Z) 2 Homp(u, 2)

| | |

0 —— HY(F,G) —— HY&,,Z - G) - Homp(u, Z)—>H2FG)

G) ——— HY(F,G) ——— H2(F,Z) —— H*(F,G)

| |

0 0.

Proof. We may work with a-twisted cocycles for an appropriate choice of a. The second and third
rows come from the already-established inflation-restriction result, the fourth row and left column
come from the long exact sequence for fppf cohomology associated to the short exact sequence
0 — Z — G — G — 0, and the middle column is from Lemma 2.7.3 and Lemma 4.2.3. Tt
follows from the same lemmas that the middle column is exact, except for possibly the surjectivity
of b, which we will show later in the proof. The commutativity of all squares is obvious, except
for the bottom right one, which is exactly Lemma 4.2.1, and the bottom middle one, which we will
show now.

The map H'(&,,Ge,) — H'(E,, Gs,) sends the class of the a-twisted cocycle (, ¢) to the class
of (m(z), o ¢). Since we assume that ¢ factors through Z, the class [(7(x), 7 o ¢)] is the class of
[7(z),0], where (x) € G(U,) is an actual 1-cocycle (because 7(¢(a)) = egz). We want to look
at the image of the class [7(z)] under the connecting homomorphism §: H'(F,G) — H*(F, Z)
(computed as in Proposition 3.1.3).

To compute 0([7(z)]), we first lift 7(x) to G(U;); the natural element to pick here is = €
G(U,). Then 6([x(x)]) is exactly [dz] € H'(F/F, Z), which, by assumption, equals [¢(a)], which
gives the desired commutativity, since the class [Res[(z, ¢)](a)] = [¢(a)] is exactly the element of
H?(F, Z) obtained by following the square in the other direction, see the proof of Lemma 4.2.1.

The last thing to show is the surjectivity of b. If GG is abelian, this follows immediately from
the surjectivity of o*, using the commutativity of the bottom right and middle squares and the
four-lemma. We will address the non-abelian case in Proposition 4.5.6 (we will not investigate this

construction for non-abelian G until that section anyway, so there is no danger of circularity). [J
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4.3 Extending Tate-Nakayama

Let S be an F-torus and F/F a finite Galois extension. As in [Kall6], §4, the goal of this section

is to extend the notion of the classical Tate-Nakayama isomorphism
Xo(S)ruor = Hyo (T, Xu(S)) = HY(T, S)

to the setting of our cohomology group H'(€, Z — S). Some new notation: for an affine F-group
scheme G, we will denote by F/[G] the coordinate ring of G. Let H'(€) denote the functor from
T to AbGrp which sends [Z — S| to the group H' (€, Z — S).

Following [Kall6], we will first construct a functor 7+7t0r: T — AbGrp which extends the
functor S +— X,(S)r r» as well as a morphism of functors from Y, to the functor [Z — S] —

Homp(u, Z). Then we will construct a unique isomorphism of functors
Yo — HY(E)

on 7 which for objects [1 — S| € T coincides with the Tate-Nakayama isomorphism, and such
that the composition Y, ,(Z — S) — HYE,Z — S) — Homp(u, Z) equals the morphism
alluded to above.

We start by defining the functor 7+,tor, which is just a summary of §4.1 in [Kall6].

For [Z — S] € T, wesetS := S/Z. Thenif Y := X,(S) and Y := X,(S), we have an
injective morphism of I'-modules Y — Y.

We then have an isomorphism of I'-modules
Y /Y — Hom(pi,, Z) A= [z = (nA)(2)],

for any n € N such that [Y': Y] | n, where for A € Y, we identify n\ with an element of Y. Take
any finite Galois extension £/F which splits S, and take I C Z[I'g/r| to be the augmentation
ideal. Set Y| := Y /IY, and ?f the quotient of v by 1Y, where the superscript N denotes the
kernel of the norm map Ng/p.

Then we have 71 = Y, o (see [Kall6], Fact 4.1), and the natural map Vf — [Y/Y]V
post-composed with the isomorphisms [Y/Y]Y = Hom(u,, Z)¥ = Homp(ug/rn, Z) (this
second isomorphism comes from (4.1)) gives a homomorphism Vf — Homp(u, Z). For vary-
ing E/F and n, these homomorphisms are compatible and splice to a homomorphism Y |, —
Homp(u, Z).

Given a morphism [Z; — S1] — [Z; — S5] in T, the induced morphism S; — S, induces a I'-
morphism X, (1)1 or — X«(S2) + or» sShowing that the assignment [Z — S| — Y, is functorial
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in[Z — S].

4.4 Construction of the isomorphism

We are now ready to construct the isomorphism of functors on 7 from Y, o, to H'(E).

Choose an increasing tower Fj of finite Galois extensions of F' and cofinal sequence {n} in
N*, with associated prime-to-p sequence {n} }. Choose a sequence of 2-cocycles ¢, representing
the canonical classes in each H?(T Ey/F> E}) as in [Kall6], §4.4, which we will identify with
their corresponding Cech 2-cocycles, and maps I;: (F*)* — (F*)* satisfying I,(z)" = x and
Lot (2)"s+1/™ = [, (x) for all z € (F*)*. For K/F a finite Galois extension, we may also view
I as a map on Cech-cochains C"(K/F,G,,) — C™(F*/F,G,,) by identifying the left-hand side
with ngry{ )
L/F is some finite Galois extension containing all the chosen n/j-roots of the entries of x.

K, applying I, to each coordinate, and then mapping by ¢t~ to L®#("*+1) where
P

Denote ug, /py, by ur and Ry, /p[ng] by Ryi. Recall the homomorphism 6, : ji,, — R}, induc-
ing a homomorphism 6, : fi,, — uy that is killed by the norm map for the group ',/ acting on
Hom(fy,, , ug).

Following [Kal16], §4.5, we define

— (1/p™k) 2
fk d[(lkck) ] EHF (56 eC (F/F, uk),

where for an n-cochain x € G,, (F®F("+1))

root of x, denoted by z(1/?"*)  satisfying (z(/P"* )" /™ — p(/P") andif x € F @p F @p
.- ®p F ®p E for E/F afinite Galois extension, then z/?"*) € F@p F @p --- @p F @p E as

well (it is a straightforward exercise in purely inseparable extensions of fields to prove that such a

, we choose for every p-power p™* = ny/n) a p™t-

choice of roots exists). For ease of notation, denote (I kck)(l/ pk) by l/;:c/k, which we view as a Cech
2-cochain valued in G,,,(Uz).

To ensure that the above definition makes sense, we need to verify that ¢, €
C*Y(F*/F, Ey,G,,) and (lxcy) /™) € C*'(F/F, Ey,G,,). The first inclusion follows from
looking at the corresponding Galois n-cochain, as in [Kall6], and the second inclusion follows
from the first and the construction of the (—)(/?7+)-maps.

Define the torus Sg, /r to be the quotient of Resg, /#(G,,) by the diagonally-embedded G, it’s

clear that u, is the subgroup Sg, , r|[nk| of ny-torsion points. Define

=1 L 6ex) "t ph l U o, CYF*/F S
Qy (kaEk/F &) pk+1,k( k+1Ck+1E IF k1) € C°( /7Ek/F)

k+1
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and

ar = (lek EL—'/F e k) Pt (o1 G . |—|/F dest1) € C'(F/F, Sg,r),

k+1
where by py 11 we mean the map from Sg, . /r t0 Sg,/r induced by the homomorphism of I'-
modules Z[I'g, /rlo — Z[I'g,,,/rlo defined by [v] — (ng11/nx) >_,. .. [o], similarly with pj ., ;.
By 0., we mean the extension of 0. : p,,, — uy, to the map G,,, — Sg, /r defined on I'-modules by
Z[I'g, /r] — 7Z the evaluation at [e] map. Note that this is not in general I"-equivariant, but is still

killed by the norm Ng, /.

Lemma4.4.1 1. The cochain «, takes values in uy, and the equality doy, = pk+1,k(§k+1)§k_1
holds in C*(F | F, uy,).

2. The element ([]) of lim H?(F,uy) is equal to the canonical class a.

Proof. We start by proving (1). To show that oy, € uy(F ®p F) = Sg,/r[ni](F ®@F F), it’s enough
to show that of " € Sp, s7[n},)(F ®p F). By construction,

m

o™t = (Iyex E;l:l/F Oese) " Drrrge([hsrcnan ]’ Ek|+—|1/F Oe 1) = O,

since Py 11,k 18 P11, pre-composed with the p™+1 /p™*-power map on S, , /r. Thus, it’s enough
to show that o, € Sg, /r[n}](F° ®p F°), which follows from Lemma 4.5 in [Kal16].
To show the second part of (1), we note by Proposition 3.4.3 that

d(licy, EL—'/F Oek) = d(lxcr) EL—'/F de = &,

since ., is killed by Ng, /p. As pry1 is defined over I, Lemmas 3.4.4 and 3.4.5 give us the
equality

Preate(lerichrr U Oepgr) = ley1Crpr U Prgik © deppst
By /F By /F

Note that pyi 14 0 depr1: Gy — Sk, /r equals (ng11/7%)de k. and so it is killed by Ng, /r (and
hence by Ng, ,,/r), and so Proposition 3.4.3 and Lemma 3.4.5, together with the above equality,
imply that

d lp+1C U o, = (dljs1c L 00, = dli1c L O,
[pk+1,k( k+1Ck+1 Buni/F ,k+1)] ( k+1 k+1)Ek+l/Fpk+1,k pk+1,k:[( k+1 k+1) Bui/F ]

and this last term is exactly pj1 5 (Ext1)-
It remains to prove (2). As in the analogous part of the proof of Lemma 4.5 in [Kall6], it’s
enough to show that under the isomorphism H?(F,uy) — H°(T, X*(ux))* — Z/(n, [Ey, : F))Z

used in the proof of Theorem 4.1.4, the class of £ maps to the element —1. Consider the cup
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product of & with the element By L /niZ = HO(T', X*(uy)), which we denote

G lEcFD € TonlBeif] e
by x € H(T', X*(uy)). We have by Lemmas 3.4.4 and 3.4.5 that Uy = x (&) = dlpcy I_I/ X00e.
By/F

Note that x 0 d: ji,, — Gy, is fixed by g/, and so by Lemma 3.4.5, we get that
dlycr, U 5, = (dlyey U id 5.).
kaEk/FXO e = (dlicy, Ek/Fl Gm) U (X ©0c)

Since the E}/F-norm of idg,, is the [Ey: F]-power map on G,,, it follows from Proposition 3.4.3

that dl/k\c/k EI_IF idg,, is cohomologous to (l/k\c/k U [Ey: F]-idg,,)"". Thus (by basic properties of
k

the cup product), we have that £ U y is cohomologous to

([Ex: F) - leex) ™ U (x 0 d0),

where y 0 d.: G, = G,, is interpreted as the extension of x o d.: ft,,, — i, to the map induced
by the group homomorphism Z — Z given by 1 — [E}: F].

If = € X*(Ry) is the character generating H%(I'g/p, X*(Ry,)), then by construction y =
mz and 2 0§, = idunk. Viewing z o ¢, as the map idg,, , we can factor J, through Ry,
and get by Z-bilinearity that

T\~ ng T\
Ey: F]-1 tu 8e) = ——————([E}: F]-1 L
([Bw: F]-lker)™ U (x 0 6e) (e TEBx F])([ ke F - leey)
Since (nk[g—’;F]) [Ex: F] = ny - % and by design l/,;CT€ is an nyth root of ¢, we get
that [£ U x] is —% times the class [c;], which thus has invariant equal to —1/(ng, [Ex: F)).

This exactly gives that & sends x to —1/(ny, [Ey: F]) under the pairing of used in the proof of
Theorem 4.1.4, giving the result. U

For fixed k € N, denote by &, := &, the u;-gerbe corresponding to the Cech 2-cocycle &.
For any fixed k we have a morphism of F'-stacks 111 Exr1 — & given by @, .| ¢, o, Obtained
by combining Lemma 4.4.1 with Construction 2.3.4. In fact, the systems (&), and (ay)g, along
with the groups uy and gerbes &, exactly satisfy the assumptions made in §2.5, our subsection on
inverse limits of gerbes. Thus, as a consequence of Proposition 2.5.3, we may take £ := @k & to
be the gerbe used to define the groups H'(€, Z — S) for [Z — S]in T.

We are now ready to begin describing the Tate-Nakayama isomorphism. For a fixed [Z — 5]
in T, let k be large enough so that £}, splits S and | Z| divides n;. Let A € yE /F, and ¢y, €

Homp(uy, Z) be its image under the isomorphism

Y/ YNEw/E — Hom(puy, , Z)VEx/F — Homp(uy, Z).
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Define a &-twisted S-torsor on F as follows. Take the trivial Si-torsor Sz, with uy-action
. . @5 . ~ .
induced by the homomorphism w; —-—» S% and gluing map Sgy, 7 — Sfg, 7 given by left-
translation by 2, 5 := LuCr EI_I/F neA € S(F ®@p F), where we view n;\ as an element of X, (S)
k

(this makes sense since |Z| divides 7). This gluing map is trivially S- and hence u;-equivariant.

Lemma 4.4.2 The above Sgi-torsor with the specified vy, -action and gluing map defines a &j-
twisted S-torsor, which we will denote by Zy 5. Moreover, for every k, we have the equality of
Epr1-twisted S-torsors

* [ — —
7Tk+1,ka,>\ = Zk+1,A-

Proof. For the first statement, we just need to check that the above Sg-torsor is & -twisted with
respect to translation by 23, on Sgg 7. Since uy, acts via ¢y i, this is the same as showing that
d(z51) = ¢5.x(&)- Since A is killed by Ng, /5, so is niA, and hence by Proposition 3.4.3 we have
d(lkck L nkj\) = (dlkck) L nkj\
Ey/F Ey/F B
Moreover, ¢j . is such that ¢y , o 4. = nxA, and so by Lemma 3.4.5, since ¢y ; is defined over

F, we obtain
(dlxck) oy A = o5 g [(dlic) e be] = 31 (&r),

k
as desired. We thus get our §;-twisted S-torsor Zy j.
We now want to compare the pullback 7}, ; Z5  to Z5 4. As Sg-torsors, these are both
trivial, so it’s enough to show that the u;, -actions coincide, and that the difference of the two

gluing maps is the identity in S(F ®p F). By Corollary 2.4.12, the u;,,-action on Tht1kZk 18

. ) @5, kOPk+1,k
given by the homomorphism w4

S7 and the ug1-action on Zy , is given by ¢y ;1.
One checks easily that ¢5 ;.1 = @5 1, © Pry1,k SO the uy11-actions coincide.
Corollary 2.4.12 also tells us that the twisted gluing map for 7, , , Z5 . is left-translation on 5%

by s (aw) - 25 € S(F ®p F), and for Zy ., is left-translation by z5 ;. We want to look at

—_—

2 Onklan) - 255 = Onnlan) - (i 5 e M1 A) T D ol A
+

Recall (since pj.1 i 1s defined over F') that

—_——

ap = (leer U 6.1)7" - (s L X ,
k (k kEk/ e,k) (k+1 k+1 kH/Fpk:-&-l,k e,k+1)

and since the extension of ¢y j to Sg, /r (see [Kal20], page 3), which we will also denote by ¢y 4,

is defined over F', we may pull it inside both cup products to obtain

5 = (lyer, U ¢50086x) " - (I L gy So i),
¢,\,k(ak) (lkcx B IF Ok © e.k) (lhr1Crt1 Beni/F O3k © Pr+1k © 1)
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Since ¢5 ;. o 1k = O , the above is exactly 27! - z5 , SO we are done. ]
Nk © Pk+1k k41 PWREOW IS

Again choosing k& € N such that £, splits S and | Z| divides ny, we may define an Sg¢-torsor on £
by pulling back 7, 5 (identifying this & -twisted S-torsor with an Sg, -torsor on & as in Proposition
2.4.10) to &£ via the projection map 7;: & — &. By the above lemma, this does not depend on
the choice of %, and so we denote this torsor simply by Z5. We are now in a position to prove the
main result. The statement and proof largely follow the analogous result in [Kall6], which is that

paper’s Theorem 4.8.

Theorem 4.4.3 The assignment A — Z5 induces an isomorphism
1Y o — HY(E)

of functors T — AbGrp. This isomorphism coincides with the Tate-Nakayama isomorphism for
objects [1 — S] in T and lifts the morphism from'Y | ,, to Homp(u, —) described earlier in the
subsection. Moreover, i is the unique isomorphism between these two functors satisfying the above

two properties.

Proof. This assignment is clearly additive in \, and so it defines a group homomorphism from vV
to H'(E€,Z — S) for any object [Z — S] of T. Moreover, any morphism [Z — 5] LN [Z' — 9
in 7 induces the morphism H'(€,Z — S) — H'(E,Z" — S’) sending the class of m;Z5
(for suitable k, as discussed above) to that of 7} (Z5 , x™* S), and so it is enough to show that
Zs, x5 S is isomorphic to Zpanx as §e-twisted S’-torsors. Note that Z . x5 S is evidently
trivial as an SZ-torsor, and has uj-action given by h o ¢5 ;., whereas Zy; () ;, has ug-action given by
Gpixg = hods . since if @5 5 06 = nyA, then ho (¢35, 08.) = honyA = h*. Finally, one checks
by a similar argument that h(z5 ) = zp:x 5, giving the desired equality of torsors, and hence that
the assignment of the theorem gives a morphism of functors from YV to H? (&).

We need to check that for [Z — S]in T fixed, the homomorphism v - H Y&,z2 - 9)
descends to the quotient 7+,mr =7 /1Y . To this end, suppose that A\ € Y" lies in Y. Then

(choosing k large enough) by §4.3, ¢y , is trivial, and moreover

—_—

Ak kCk B IF T Ck BIF
Note that ¢, € G,,(Er ®F E}), and hence by Proposition 3.4.1, this unbalanced cup product may
be computed using the definition given in [Kall6], working with Galois cohomology. By [Kal16],
§4.3, this coincides with the usual cup product in finite Tate cohomology with respect to the group
I'g, /r, and thus yields the image of )\ induced by the Tate-Nakayama isomorphism X, (S) —

(X (S)/IX.(S)Ne = HYTpg,r, S(Ey)) = H'(F,S). As a consequence, if A\ € IY, then
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Zyr = 1, and so Zy ; is given by the trivial Sp-torsor with trivial ug-action and gluing map equal
to the identity, thus yielding the trivial {,-twisted S-torsor on &, as desired.

The argument of the above paragraph also shows that if we take [1 — S] € T, then Y ;,[1 —
S] = Y/IY and the homomorphism Y/IY — H'(£,1 — S) = H'(F,S) is exactly the Tate-
Nakayama isomorphism. For the morphism of functors on 7 from 7+,mr to Homp(u, —) sending
A to ®x 1 © Pr» We have already discussed that the image of 7 Z5 ;. under the restriction morphism
HYE,7Z — S) — Homp(u, Z) equals @5,k © Pk» giving the desired compatibility of morphisms of
functors to Homp (u, —).

The final thing to show is that for [Z — S] fixed, the assignment of the theorem yields an
isomorphism from 7+,tor to H'(E,Z — S). As in [Kal16], consider the diagram

0 — HYF,S) —— HY(¢,Z — S) —— Homp(u,Z) —— H*(F,S)

I I I I

0 ——— YF,tor E— ?-‘r,tor E— hg[?/y]]vk — LHEYF/NIC(Y>7

where the top horizontal sequence is just inflation-restriction, the first lower-horizontal map
is induced by the inclusion X,.(S) — X.(S), the second is induced by the maps Y, o, =
Y™ /1Y — [Y/Y]™, and the third is induced by the maps [Y/Y]¥ — YT/N,(Y) given
by [A] = [Ni()\)]. It’s a straightforward exercise in group cohomology to check that the bot-
tom horizontal sequence is exact. The first vertical map is the Tate-Nakayama isomorphism, the
second vertical map is the assignment A\ — Zj, the third vertical map is induced by the sys-
tem of maps [Y /Y ]V — Hompg(uy, Z) — Homp(u, Z) discussed in §4.3, and the final verti-

~

cal map is induced by the system of negative Tate-Nakayama isomorphisms HY,.(I'g, /p,Y) —

H2(Tg, /r, S(EL)) 2 H2(F,S).

We claim that this diagram commutes; the first square commutes by our above discussion of
the compatibility with the Tate-Nakayama isomorphism, and the middle square commutes by
compatibility between the two morphisms of functors to Homg(u, —). Thus, we only need to
show that the right-hand square commutes. It’s enough to do this for a sufficiently large fixed
k and u replaced by wy, because any ¢: u — Z factors through some ¢;: uy — Z, and then
0(a) = dnlpe(a) = [6e(&)] in HA(F, Z), since [p(a)] = [ in H2(F/F,uy) (by construc-
tion). Fix A € Y whose norm lies in Y. Then its image in Homp(uy, Z) is ®x > Which, by
Lemma 4.2.1, maps under the transgression map to the image of the class [¢5 ,(&)] € H*(F, Z)
in H?(F,S), which equals the class of (dl/,;c/k) EHF nyA, since we may pull ¢y, inside the cup
product defining &, by Lemma 3.4.5.

On the other hand, if we take Ni()\) € YT = Y'Ew/F then its image under the Tate-Nakayama
map Y'&/F — H?(T'g,/r,S(Ey)) is obtained by taking the cup product with the class [c;] €

Inf

H*(Tg, /r, Ef) — H*(F,G,,). Le., we obtain the class of the cocycle (c,UNy(A)) " in H2(F, S).
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By Proposition 3.4.3, (dlkf\c;) EI_I/Fnkj\ is cohomologous to [l;\c;Ud(nk;\)]_l, which, since Nj,()\) €
k

Y, equals (c; U Nip()\))™}, giving the claim.

The first and third vertical maps are isomorphisms, and the last vertical map is injective, and
so by the five-lemma we get that the second vertical map is an isomorphism. The uniqueness of ¢
satisfying the two properties of the theorem follows from the argument for the analogous result in

the characteristic zero case in [Kall6], §4.2. ]

4.5 Extending to reductive groups

In order to apply the above cohomological results to the local Langlands correspondence, it is
necessary to extend the above constructions to connected reductive groups over a local function
field . We use the same notation as above; £ will always be a u-gerbe split over F' with [£] = a.
We start by briefly recalling non-abelian Cech cohomology and some fundamental cohomological
results on reductive algebraic groups over F' a local function field.

For a general ring R, we may define Cech cohomology sets H°(U; — Spec(R),G) and
H'(Uy — Spec(R), G) for an arbitrary (possibly non-abelian) R-group scheme G, using the con-
ventions of [Gir71] IIL.3.6, which agree with our previous Cech cohomology conventions if G is
abelian. Namely, we define differentials from G(Uj) to G(U;) and from G(U;) to G(Us), given
(respectively) by

g p1(9)"'p2(9), 9+ Pra(9)pas(9)pis(g) " (4.3)

We may then take H°(U; — Spec(F),G) to be the fiber over the identity of the degree-zero
differential, and H'(U, — Spec(R),G) to be the pointed set consisting of the fiber over the
identity of the degree-one differential modulo the equivalence relation given by declaring a and b
equivalent if there exists g € G (Up) with a = py(g)~*bps(g). Itis clear that H'(Uy — Spec(R), G)

classifies isomorphism classes of G-torsors over R which are trivialized over U.
Theorem 4.5.1 For any simply-connected reductive group G over a local field F, H'(F,G) = 0.
This is [Ser95], Theorem 5.

Theorem 4.5.2 Let G be a semisimple group over F' a local field, and let C denote the kernel of
the central isogeny Gy, — G. Then the natural map H*(F,G) — H?*(F,C) is a bijection, thus

endowing H'(F, G) with the canonical structure of an abelian group.

This is Theorem 2.4 in [ThaO8].
The arguments in [Kall6] which extend the Tate-Nakayama isomorphism of §4.4 to reductive
groups rely heavily on the existence of elliptic/fundamental maximal tori (see [Kot86], §10), and

their corresponding cohomological properties.
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Theorem 4.5.3 Every semisimple algebraic group over a local function field F' contains a maxi-

mal F'-torus T" which is anisotropic over F'.

This follows from §2.4 in [Deb06]. It follows immediately that every reductive group GG contains
a maximal F'-torus which is F-anisotropic modulo Z(G)°; this will be an elliptic maximal torus.

Moreover, we have the following result for G a connected reductive group over F', implied by
the proof of Lemma 10.2 in [Kot86] and Theorem 4.5.2:

Theorem 4.5.4 If T is an elliptic maximal torus of G, then H'(F, T) — H'(F,G) is surjective.

We also have the following, which is a generalization of Theorem 1.2 in [Kot86]; it concerns
the functor 4 from the category of connected reductive F'-groups to abelian groups, defined by
A(G) = m(Z(G)F)*, where G denotes a Langlands dual group of G. Recall that Tate-Nakayama
duality gives us an isomorphism H*(F,T) = m, (fr)* for any F'-torus T (this will be reviewed in

more detail in §5.1).

Theorem 4.5.5 There is a unique extension of the above isomorphism of functors to an isomor-

phism of functors on the category of reductive F-groups, given by a natural transformation
ag: HY(F,G) — A(G).

This is [Thall], Theorem 2.1.

We are now ready to extend our previous constructions on 7 to the category R. For the most
part, the arguments from [Kall6] carry over verbatim, since most depend on the structure theory
of reductive groups, in particular the part of the theory that deals with character and cocharacter
modules, which is uniform for local fields of any characteristic. The purpose of the remainder of
this section is to summarize those results and fill in certain arguments which are different in the

case of a local function field.
Proposition 4.5.6 Proposition 4.2.4 holds for [Z — G] in R, ignoring the H*(F, G) terms.

Proof. Everything from the proof of 4.2.4 holds, except for the use of the five-lemma to give the
surjectivity of H'(£,Z — G) — H'(F, Q). Instead, we may use the analogous argument used in
[Kal16], Proposition 3.6, using the existence of an elliptic maximal torus in GG and replacing the

use of Lemma 10.2 from [Kot86] with Theorem 4.5.4, its analogue for local function fields. L]

Proposition 4.5.7 (Analogue of Corollary 3.7 in [Kall6])

1. If G possesses anisotropic maximal tori, then the map H (£,7 — G) — Homp(u,Z)

defined above is surjective.
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2. If S C G is an elliptic maximal torus, then the map
HY(E,Z — S)— HY(E,Z — G)
is surjective.

Proof. The same proof as in [Kall6] works, again replacing the use of Lemma 10.2 from [Kot86]
with Theorem 4.5.4. [

Let [Z — G] € R. We need to extend the functor Y, ,, defined in §4.3. Following [Kal16],
Y. x|Z — G] is taken to be the limit over all maximal F-tori S of G of the following colimit:

[X.(8/2) | X (See)]Y
I(X.(5)/Xu(Se))

ligq

where the colimit is taken over the set of Galois extensions E /[ splitting S and the superscript
N denotes the kernel of the norm map. We need to explain what the limit maps are between the
above objects for varying S. For two such tori S}, Sa, picking g € G(F*) such that Ad(g)(S1)ps =
(S2) ps induces an isomorphism

Ad(g): Xi(51/2)/X((S1)se) = Xi(52/2)/ Xi((S2)se)

which is independent of the choice of g, by Lemma 4.2 in [Kall6], and is thus ['-equivariant. It
follows that these maps may be used to define the desired limit maps for varying maximal F'-tori
in G.

We now extend the isomorphism of functors Y, o, — H'(£) on T given in Theorem 4.4.3 to
the category R. The strategy will be as follows: we will show that Lemmas 4.9 and 4.10 from
[Kall16] hold in our setting, and then the result will follow from the proof of Theorem 4.11 in
[Kall6], using the existence of elliptic maximal tori, as argued above, Proposition 4.5.7, and the
aforementioned lemmas. As in §4.4, we work with the specific choice of £ given by l&nk &, for
& as in §4.4; by the uniqueness of H'(€, Z — G) up to canonical isomorphism, this will prove

the result for an arbitrary choice of £.

Lemma 4.5.8 (Analogue of Lemma 4.9 in [Kall6]) Let [Z — G| € R and S C G a maximal

torus. The fibers of the composition
YiwlZ — S — HYE,Z — S)— HYE, Z — G)

are torsors under the image of X.(Ssc)Tsor iN Y 4 10r|Z — S].
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Proof. The argument of [Kall6] works here, replacing Theorem 1.2 of [Kot86] with the analogue
for local function fields, namely Theorem 2.1 from [Thall]. O

Lemma 4.5.9 (Analogue of Lemma 4.10 in [Kall6]) Let [Z — G| € R, and let S;,Sy C G be
maximal tori defined over F. Let g € G(F) with Ad(g)(S1)5 = (S2)& If \i € ?ﬁv are such that
A2 = Ad(g) 1, then the images of Lz—s,1(M) and Lz—.s,)(A2) in H(E,Z — G) coincide.

Proof. This argument will require more substantial adjustments, so we recall some details of the
argument in [Kall6]. If P := X,(S;.4), the isogeny S;/Z — S;/(Z - Z(Z(G))) provides an
injection Y; — PY @ X,(G/Z - 2(Q)); we write \; = p; + z according to this decomposition,
and so \y = py + z, with py = Ad(g)p;. As in [Kall6], we choose k large enough so that
ngp1 € QY := X.(S1s) and ngz € X,.(Z(G)°) [via the isogeny Z(G)° — G/Z - 2(G)].

Our goal will be to show that 25, , = pi(z)25, xp2(z) ! for some x € Gy (F) (recall from
§2.6 that this is what it means for two twisted Cech cocycles to be equivalent). We have that

¢35 = Ox,. and l/;;c;El_l/Fnkz € Z(G)°(U,), and hence by decomposing n\; = nyp;+niz we see
k
that it’s enough to show that ay = p; (z)a;py(z)~" for some x € G.(F), where a; := lkaEl—'/Fnk:pi
k

(this will show that the classes of ¢z—5,)(A1) and ¢(z_s,/(\1) are equal in H'(&,,,Z — G), and
hence have the same pullback to H'(€,Z — G)).

The image of a1 € S;(U;) in Sy is equal to ¢, U py (the usual Galois cohomology cup
product), and is thus a Galois 1-cocycle, so we can twist the I'-structure on G, using it, obtaining
the twisted structure G'L.. By basic descent theory (see, for example, §4.5 in [Poo17]), we have an
F-group isomorphism

¢: (Gse)F = (Gic)f
satisfying pj¢~"' o p3¢ = Ad(ay) on (G.)y, -

We claim now that p*é(as-a; ') is a cocycle in GL.(Uy). It’s enough to check that the differential
post-composed with the group isomorphism ¢} ¢! sends this element to the identity in Gy.(Us).

One computes (using the non-abelian Cech differential formulas, see equation (4.3)) that
10~ (dpig(az-ar’)) = ¢1¢ ™ [Plapid(prz(az-ar ) paspid(pas(az-ar ') (pispid(pis(az-ar™))) ).
Rewriting each composition of pullbacks in the usual way, this may be rewritten as:
107 [ard(prz(az - ar')) - 30 (pas(az - a7")) - (g1 d(prs(az - a7 ') 7).
Now distributing ¢} ¢! to each term (since ¢ is a morphism of group sheaves) gives:

pizlaz - a7') - (qi¢ " 0 ¢50)(ps(az - arh)) - (pis(az - ay )~
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Since (gi¢ ™! o ¢3¢) = piy(piedt o pio) = pi,Ad(ay), the above element becomes

p12(az)pia(ar) " piz(a1)pas(as)[pas(ar) "piz(ar) 'pis(ar)pis(az)

The bracketed terms all lie in .S (.(Us) and hence may be rearranged to give da;' € Z(Gy.)(Us).
By centrality, this may then be moved to the front, yielding day € Z(Gy.)(Us), giving us day-da; .

However, we know that

day = diycy U ngpy = digc,, U ngpy = das,
B/ F By/F

because the images of p; and p, under P — P /QY — Hom(u,, Z(G)) coincide, showing the
cocycle claim.
Since G, is simply-connected, Theorem 4.5.1 tells us that pi¢(as - a;') = d(¢(z)), some

r € G (F). One computes easily (using a similar but simpler calculation) as above that

az - a;t = pio d(¢(x)) = pi(z) " arpa(z)ar
as desired. L]

We are now ready to prove the main result of the section.

Theorem 4.5.10 (Theorem 4.11 in [Kall6]) The isomorphism . of Theorem 4.4.3 extends to an
isomorphism
L 7-ﬁ-,lar — Hl(g)

of functors R — Sets which lifts the morphism of functors on 'R from 7+7,0, — Homp(u, —).

Proof. We define the map in this proof for a fixed [Z — G| € R; the fact that this map satisfies the
statement of the theorem follows from the proof of the analogous result in [Kal16] (the arguments
loc. cit. work in our setting because of the above lemmas). Defining this isomorphism of functors

will first require defining, for a fixed elliptic maximal torus S of G defined over F, a bijection

[X.(8/2) ) X (See)]Y

M 70X, (5) /X (Sw))

= HYE Z — Q).

For FE splitting S, we have an exact sequence

X (Sie)™ XS/ o [X(8/2) ) X (S . X (8"
TX.(Ss) T IX.(S) T I(XA(9)/ X () T N(Xu(Sw)
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where the last map sends an element represented by = € X, (S/Z) to N(x), which gives an iso-

morphism

[X.(8/2) /X (Se)™
I(X.(8)/X.(S))

VilZ = S1/(Xu(Sie)™ /TX(Si)) — limy

since HY,. vanishes for an elliptic maximal torus of a simply-connected semisimple group (in any
characteristic).

Note that we also have a bijection
YiwlZ = S1/(Xu(Se)V/IX(Se)) = HY(E,Z = G)

induced by the composition Y| ,[Z — S] = HY(E,Z — S) — HY(E,Z — @), where the
first map is from Theorem 4.4.3 and the surjectivity of the second map is from Proposition 4.5.7.
The induced bijection is an immediate consequence of Lemma 4.5.8. We thus obtain the desired
bijection.

For this to be well-defined across the inverse limit, we need to check that if S}, Sy are two

elliptic maximal F'-tori in G and we take g € G(F*) such that Ad(¢)(S1)rs = (S2)ps, then an

(X (51/2) /X ((S1)s)]™
I(X*(Sl)/X*((Sl)sc)

image (via Ad(g)) in the same direct limit with S, instead of 5.

This follows because, by what we did above, we may lift Ao\ € % = 7+7t0r[Z — 5]

and then map to H'(€,Z — @) via H' (£, Z — S1), and may analogously lift the image of \ in

ling PG 16 Ad(g) A € B and then map to HY(E, Z — G) via HY(E, Z —

Ss). Now Lemma 4.5.9 implies that these images coincide. 0

maps to the same element in H' (€, Z — G) as its isomorphic

element A € lim

Corollary 4.5.11 The isomorphism of functors constructed in Theorem 4.5.10 is unique satisfying
the hypotheses.

Proof. This follows from the discussion in [Kal16], §4.2, which relies on the existence of elliptic

maximal tori and Corollary 3.7 loc. cit, both of which we have established in our situation. O]

We conclude by citing one more result of [Kall6] that holds here, which will be used in Chapter 6.

Proposition 4.5.12 Let G be a connected reductive group defined over F, let Z be the center of
9(G), and set G = G /Z. Then both natural maps

HYE,7Z = G) — H(F,G) = H'(F,Gu)

are surjective. If G is split, then the second map is bijective and the first map has trivial kernel.
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Proof. See the proof of Corollary 3.8 in [Kal16], replacing the use of Theorem 1.2 in [Kot86] with
[Thall], Theorem 2.1. [
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CHAPTER 5

The Relative Local Transfer Factor

In order to apply the concepts we have developed, we need to define the local transfer factor, as
defined in [LS87], for reductive groups over local function fields. For expository purposes, we

make this section entirely self-contained.

5.1 Notation and preliminaries

We will always take G to be a connected reductive group defined over F, a local field of charac-
teristic p > 0. Let G* be a quasi-split group over F' such that we have 1): G = G* satisfying
™t o % = Ad(u,) for some u, € Gy(F*) for all o in I'. That is to say, G* is a quasi-split
inner form of GG over F'. One important difference that emerges here in the positive characteristic
case is that such a u, need not have a lift in G(F*), due to the potential non-smoothness of Z(G).
Such lifts are useful for computational purposes, and so to combat the smoothness issue we give
an equivalent characterization of inner forms in the fppf language.

Again for G* a quasi-split group over F', we say that G* is a quasi-split inner form of G if there
is an isomorphism 1) : Gps — G, satisfying pi¢p~' o p31p = Ad(u) for some 4 € Gog(F* @p F*).
Since H'(F @ F, Z(G)) = 0 (by Proposition 3.1.4), we may always lift @ to an element u €
G(F ®p F). Recall that p; denotes the ith projection map from SpecF' x - SpecF to SpecF. We
will frequently treat inner forms using this approach, as it enables computations using the Cech
cohomology of the fpqc cover Spec(F') — Spec(F) (see, for example, §5.3.3).

We fix some dual group G corresponding to G, in the sense of [Kot84], §1.5, and define G :=
G (C) x Wp the associated L-group of GG, where W denotes the absolute Weil group of F'. This
is a topological group, where G (C) is given the analytic topology in the usual way. Associated
to G is a D-equivariant bijection ¥(G)Y — W(G) of based root data (see [Kot84], §1.1), and we
define a bijection (G*)¥ % W(G)Y — W(G), which, along with the data of G with its given -
action, also defines a dual group for G*—note that this new bijection is still ['-equivariant precisely

because GG and G* are inner forms.
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Definition 5.1.1 We call a tuple (H,H,s,n) an endoscopic datum for G if H is a quasi-split
reductive group defined over F' with a choice of dual group H , H is a split extension of Wr by
PAI((C) andn: H — "G is a map such that:

1. The conjugation action by Wy on H induced by a section Wy — H and any I'-splitting of
H coincides with the L-group W g-action on H;

~

2. The element s lies in Z(H)(C);

3. The map 1 is a morphism of W-extensions which restricts to an isomorphism of algebraic

groups H Za(n(s))°;
4. We have s € Z(H)" - =Y (Z(G)).

This is formulated slightly differently from the exposition in [LS87], §1.2; it is easily checked
that this definition is equivalent to the one given there. An isomorphism of endoscopic data from
(H,H,s,n)to(H',H' s ) isan element g € G(C) such that gn(H)g~" = 1/(#’). thus inducing
an isomorphism 3: H M)
equal modulo Z (I/-I\’ ey =1(Z (CAJ )). One checks that this agrees with the analogous definition in
[LS87].

Fix an endoscopic datum (H,#H,s,n) for G. If we fix two Borel pairs (Bg, 1), (Ba, Ta)

‘H', which we further require to satisfy that 3(s) and s are

in Gps, G (respectively), then the bijection of based root data gives an isomorphism 7/}\; — ;.
The associated isomorphism X, (7g) — X*() transports the coroot system RY of T to the
root system of .7; mapping the Bg-simple coroots to the Z-simple roots, and identifies the Weyl
group W (G s, T¢;) with the Weyl group W (G, 7). Moreover, if (T, PBy;) is a pair in H, then we
may find g € G(C) such that (Ad(g)on)(J4) = i and Ad(g) on maps %y, into Bg. This means
that if we fix a pair (T, By) in Hps, then we have an isomorphism TI\{ — Iy — J5 — TAg,
inducing an isomorphism Ty — 7. This isomorphism transports Ry, R}, W (Hps,Ty) into
R, RV, W(Gps,Tg).

Suppose that we fix such a Ty, T, but now require that they are defined over F'. An F-
isomorphism T — Ti; is called admissible if it is obtained as in the above paragraph (this is not
unique—we chose four Borel subgroups in the above construction). We sometimes also call this
an admissible embedding of Ty in G. Such an embedding is unique up to conjugacy by an element
of the set 2A(T¢;), defined by

A(Te) = {7 € Gua(F?): Ad(777(g = id(ry),. Yo € T}

))’(TG)FS

Another way of describing this set is those points § € Goa(F*) such that Ad(g)| (7). 18 defined

over F. Note that given such a g, we may always find some g € G(F*) inducing the same
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automorphism of T¢. Indeed, if ¢ € G(F) is such that Ad(g)| (Te)= is defined over F, then we
F

may find a point ¢’ € G(F*) such that Ad(g) = Ad(g’) on Tz—this follows from the fact that

N¢(Te) /T is étale. Thus, such an embedding is also unique up to conjugacy by an element of

the set

WUTe)={g€ GF*): gt g Tg(F*) Vo €T}

Given any g € (T¢), we may also find a point in G.(F**) inducing the same map on 7, where
G denotes the simply connected cover of Z(G). To see this, first note that there is no harm in
assuming that G is semisimple. Suppose that Ad(g) sends 7" to 7", where T"and 7" are two maximal
F-tori. Then we may take the preimages (7. )z, (T7.)F in (G )7, and fix a preimage § € Gy (F)
of g, so that Ad(g): (Ty)7 — (TL.)%. This isomorphism is defined over F*, i.e., we get a descent
to an isomorphism (T3 ) s — (T7.) s, which is given by Ad(z) for some z € G (F*), again using
that the Weyl group scheme is étale; then x satisfies Ad(x) ‘TFS = Ad(g) ‘TFS , as desired.

We call an element v € G(F') strongly regular if it is semisimple and its centralizer is a max-
imal torus (there is a notion of strong regularity for non-semisimple elements but we will not
need it here); denote the subset of strongly regular F-points of G by G (F'). We call an element
vu € H(F') strongly G-regular if it is the preimage of a strongly regular 75 € G(F') under an
admissible isomorphism. In such a case, ~yy is itself strongly regular in H, and the admissible
isomorphism between centralizers Ty — T sending 7 to ¢ is unique; denote this subset of

H(F) by Hg_(F'), and call such a pair of elements vy, 7 related.

Lemma 5.1.2 Let Ty be the centralizer of vy € Hg_s(F). Then there exists an admissible
embedding Ty — G*.

Proof. By assumption we already have an admissible isomorphism 7y — T, where T is a
maximal F'-torus of G. It is easy to see that it then suffices to find an admissible embedding of T¢;
into G*. We can always do this, since G* is quasi-split and F' is a non-archimedean local field, see
for example [Kal19], Lemma 3.2.2. ]

5.1.1 The Tits section

We need to discuss the Tits section, which is a (non-multiplicative) map n: W(Gps, Tps) —
Ne(T)(F?). To do this, we must fix a Borel subgroup B of G - (corresponding to a root basis A)
and a basis { X, } of the root space g, C Lie(Gps) for each a € A. Let G, be the Levi subgroup

of 2(Gps) corresponding to the root «; then there is a unique embedding (,: SLs — G, which

01 0 1
(on Lie algebras) sends [0 0] to X, and such that the image of (,( [ . 0] )in W(Gps, Tps)
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0 1
is the reflection r,, defined by « (see [KS12], §2.1). We then map r, to the image of [ . 0]

under (,. We may then lift any element of W (G ps, Trs) by considering their reduced expression

in terms of A.

5.1.2 Duality results

We recall Langlands’ reinterpretation of Tate-Nakayama duality. Let 7' be an F'-torus; the usual

Tate-Nakayama duality theorem gives a perfect Z-pairing
HY(F,T) x H\(T, X*(T)) = Q/Z.

see for example [Mil06], 1.2.4. Consider the short exact sequence of abelian groups

exp

0 > 7 > C > C* > 1.

-~

Tensoring this sequence over Z with X, (T) = X*(T) preserves exactness, and thus yields the

exact sequence

~ ~

0 — X*(T) —— Lie(T) —— T(C) —— 1,
which then gives a canonical identification H'(I', X*(T')) = mo(T"), and hence a perfect pairing
HY(F,T) x 7o(T") = Q/Z. (5.1)

Returning to the setting of a connected reductive group G, note that if 7" is any maximal F'-
torus of G, for any maximal torus .7 of CAJ, we have an isomorphism .7 — T which is unique up
to precomposing with conjugation by an element of N4 (.7)(C), so we get a canonical embedding
Z(G) < T, which clearly also does not depend on the choice of .7 (any two such tori are G(C)-
conjugate). Denote 7' /Z (@) by Th. Assume for the moment that G is semisimple. One checks
using the basic theory of (co)character groups and root systems that (via the above embedding)
X*(Z(G)) corresponds to the quotient X, (T)/ZR(G s, Tr=)" of X*(T) = X,(T). Whence, we
have a canonical identification of X *(fad) with X, (7T.), where T, is the preimage of 7" in G,
giving a ['-isomorphism i\c = fad. For general GG, one checks easily that a similar argument
yields a canonical isomorphism 7/}\0 = ﬁd, where now 7. denotes the preimage of the maximal
F-torus TN 2(G) C 2(G) in Gy, the simply connected cover of Z(G). We conclude that

Tate-Nakayama then gives a perfect pairing
HY(F,T) x mo(Th) — Q/Z.
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We may replace Q/Z by C* by means of the embedding Q/Z =5 C*.

Recall, for an F'-torus T split over FE/F a finite Galois extension, we have the classical Tate
isomorphism Hr.(T'g/p, X.(T)) = H'(F, T) induced by taking the cup product with the canon-
ical class (see [Tat66]). The following useful duality result generalizes this to finite multiplicative

group schemes over F'.

Proposition 5.1.3 Let T be an F-torus and S the quotient of T' by a finite F-subgroup Z. Choose
E/F a finite Galois extension splitting T' and set I' := T'g/p. Choose E large enough so that
|Z| and |H' (T, X*(T))| divide [E: F] (for finiteness of the latter, see [Mil06], IIL.6). We have a
canonical isomorphism

H72 (D, X.(S)/X.(T)) = H'Y(F, Z)

Tate

which is compatible with the Tate isomorphism H, (I, X, (T)) = H*(F,T).

Proof. Cohomology in negative degrees will always be Tate cohomology, and we omit the “Tate"

notation in such cases. We have an exact sequence of character groups
0 —— X*(S) — X*(T) — X*(Z) —— 0
which, by applying the functor Hom(—, Z), yields the short exact sequence (of I'-modules)
0 —— X.(T) —— X.(S) —2— BExty(X*(Z),Z) —— 0.
By basic homological algebra, we have a canonical isomorphism (as I'-modules)
Ext,(X*(Z),7) = Homy(X*(Z),Q/7Z).

We make these identifications in what follows without comment. For an abelian group M, we set
Homgz (M, Q/Z) =: M*. We have the obvious identifications H '(I",Q/Z) = Z/|E: F]Z, and
HY . .(T,Z) = Z/|E: F]Z. By Proposition 7.1 and Exercise 3 (respectively) in [Bro82], we have

the following duality pairings of I'-modules induced by the cup product and these identifications:
H 2T, X*(2)) x H\(I',X*(Z)) = Z/[E: F)Z,

H™NT, X,(T)) x H'(T, X*(T)) — Z/|E: F|Z.

Note that the group H*(T', X*(Z)) is | Z|-torsion, so that

HYT,X*(Z))" = Homy(H (I, X*(Z)),Z/[E: F|Z),
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analogously for H' (T, X*(T)).

As a consequence, we have a canonical isomorphism
H*(T, X.(8)/X(T)) = H'(T,X"(2))" = H'(F, Z),

where the second isomorphism comes from the Poitou-Tate duality pairing for finite commutative
group schemes over arbitrary local fields, see [Mil06], Theorem II1.6.10, and is induced by the

cup-product followed by the invariant map. We now get a commutative diagram

H(T, X*(Z)*) —— H (T, X.(T))
| I

HY(, X*(Z))* —— H(, X*(T))*
- [

H\(F,Z) ———— HY(F,T),

where the top square commutes by the functoriality of the cup product in Tate cohomology and the
bottom square commutes by the discussion in [Mil06], §II1.6; see in particular the diagram used
in the proof of Lemma 6.11 loc. cit. The right-hand column equals the classical Tate isomorphism

discussed in [Tat66], again by the functoriality of the cup product in Tate cohomology. 0

Remark 5.1.4 This remark concerns how the above discussion relates to the Tate-Nakayama
pairing involving wo(T") discussed earlier. Identifying H(T', X*(T)) = HY(T, X.(T)) with
f(C)F/(f(C)F)O as above, we note that there is a natural pairing

5 T(C)" s ey L T(O)F .
H Y, X (T)) x ———=H 'Y, X*(T)) x —— = C (5.2)
(0, X.(T)) % For (D, X*(T)) x Forr

given by evaluating an element on a character. One checks that the following diagram commutes:

HY(F,T) x my(T") —— C*

where the top pairing is the one from (5.1), the bottom pairing is as in (5.2), and we are using f to
denote the isomorphism H'(F,T) — H YT, X.(T)) constructed above.

We conclude this subsection by recalling Langlands duality for tori, which is the following

result:
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Theorem 5.1.5 For an F-torus T, F' a local field, we have a canonical isomorphism

Hl

cts

(W, T(C)) = Hom(T(F),C*).
This isomorphism induces a pairing

Hl

cts

(Wp, T(C)) x T(F) — C*

which is functorial with respect to F'-morphisms of tori and respects restriction of scalars.

For the proof, see [Lan97], Theorem 2.a and [Bor79], §9 and §10.

5.2 Setup

This section completely follows §2 of [LS87] and §2 of [KS12]; its purpose is to explain why the

results proved therein still work in our section.

5.2.1 The splitting invariant

Fix a connected reductive F'-group G which we assume to be quasi-split over F', and an F-
splitting (By, To,{X.}), along with an arbitrary maximal F-torus 7" in G. Assume further that
G is semisimple and simply-connected. For aroot a € R := R(Gps, Tps), we take I'y,, '+, to be
the stabilizers of o and {«, —a}, respectively, with F,, D F., the corresponding fixed fields. An a-
data {a, }acr for the I'-action on R is an element a,, € F for each a € R satisfying o(a,) = tpa
forallc € I'and a_, = —a,. It is easy to check that a-data exist for our I action on R above; fix
such a datum {a, }oep. Our goal is to define the splitting invariant A, (T) € H'(F,T).

We first choose a Borel subgroup B of G- containing 7', and take some h € G(F*) such that
h conjugates the pair ((By)ps, (1y)rs) to (Bps, Trs). Denote by op the action of o € ' on Tps
and its transport to (7p) s via Ad(h) ™. For ease of notation, let {2 denote the absolute Weyl group
of W(Gps, (Ty) rs), with Tits section n: Q2 — Ng(Tp)(F*). We then have (as automorphisms of
the root system R(G, 1j))

or =wr(o) Xor, € AT,

where wr (o) :=n(h-o(h)™!) € Ng(Ty)(F*). We may view our a-data {a, }.cr as an a-data for
the (transported) action of I on R(G, Tp), and denote it also by {a, }a-
For any automorphism ¢ of R(G, Tj), we define the element x(¢) € Ty (F®) by

2= [I (e

a€R(C)
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where R(() = {a € R(G, Ty)|a > 0, ' < 0} where the ordering on R(G, Tp) is from the base
A corresponding to the Borel subgroup Bj.
Then the function

m(o) := z(or)n(wr(o))

is a 1-cocycle of I in Ng(7p)(F*) and
t(o) := hm(o)o(h)™!

is a 1-cocycle of I' in T'(F*), whose class we take to be the splitting invariant A, y(T) €
H'(F, T)—for a proof, see [LS87] §2.3, which as [KS12] explains, works in any characteristic.
The same references show that A, }(7’) is independent of the choice of / and the Borel subgroup

of G'ps containing Ts. However, it does depend on the F-splitting of G.

5.2.2 y-data and L-embeddings

The following discussion is essentially a summary of §2.4-2.6 in [LS87]. To more closely align
with [LS87],§2.5, we replace ['* by a finite Galois extension L and denote I'y ;- by I and W,
the relative Weil group, by W. We will fix an arbitrary I'-module X which is finitely-generated
and free over Z, along with a finite subset I'-stable subset % C X closed under inversion. Any
[-set is also a WW-set by means of inflation along the surjection W — T'. Set I := I x Z/2Z,
where Z /27 acts on X by inversion. As in §5.2.1, for A € #Z we define ', (resp. I'1,) to be the
stabilizer of {\} (resp. {£A}), with corresponding fixed field F\ C L (resp. F4,). The reason we
want to work in this increased generality is to allow our theory to encompass the actions of I" on
the character groups of tori in G, a Langlands dual of the connected reductive F'-group GG. Define
a gauge on Z to be a function p: % — {£1} such that p(—\) = —p(\).

Definition 5.2.1 We say that a collection of continuous characters {xx: Fy — C*} cx is a x-data
if it satisfies x_x = x5 and xp 00"t = X forall o € T, and if [F\: Fyy\] = 2, x» extends the
quadratic character F7, — {£1} associated to the quadratic extension F) that we obtain from

local class field theory.

It is straightforward to check that we can always find a x-data; fix such a y-data {x )} c%-
Assume for the moment that I acts transitively on Z; fix A € Z, set 'y := I'1,, and choose
representatives o1, ...0, for 'y \ I'. We set W, := Wip ,We = Wi p,. We may view the
character x as a (continuous) character on W, by taking x» oar/r, , where ar,p : W, — F7 is
the Artin reciprocity map.
Define a gauge p on Z by p(\') = 1 if and only if X' = o; '\ for some 1 < i < n. Choose
wy, ..., w, € W such that w; maps to o; under the surjection W — I'. If W (resp. W) denotes
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the stabilizer of {£+\} (resp. {\}) under the inflated W -action, then the w; are representatives for
the quotient W \ W. For w € W, define u;(w) € W by

ww = wu;(w), i=1,...,n.

Choose representatives vy € W, and v; € Wy for W \ W4 if [F\: F1,] = 2, and otherwise just
pick some vy € W,.. For u € W, we define vo(u) € W, by vy - u = vo(u) - vy, where ¢/ = 0 or 1

depending on if W, = W or not. For w € W we set

where \; == o, 1)\ and we view C* ®; X as a I'-module (and thus a 1/-module) via the trivial
action on the first tensor factor. We view 7, as a 1-cochain of W valued in C* ®7 X. We have the

following result, which will be used when we look at the uniqueness of our L-embeddings:

Lemma 5.2.2 Suppose {{\} cw satisfies the conditions of a x-data, except that for \ with
[F\: Fy)\] = 2 we require that &, is trivial on FY, rather than extending the quadratic charac-

ter. Then
c(w) = | H [Ex(vo(us(w))) @ Ni] € C" @z X

is a I-cocycle of W in C* ®z X whose cohomology class does not depend on any choices.

Proof. This i1s [LS87] Corollary 2.5.B, which follows from Lemma 2.5.A loc. cit. These results,
along with the auxiliary Lemma 2.4.A, are proved in a purely group-cohomological setting, and

thus the same proofs work verbatim. 0

If the action of I' is not transitive, then we define 7, and c for each of the I"-orbits on & and take
the product of these functions over all such orbits; the resulting functions on 1/ are again denoted
by 7, and c.

We now take GG a connected reductive group defined over F' with maximal F'-torus T’ with root
system R := R(Gps,Tps) and a Langlands dual group G. In addition, we fix a I-stable splitting
(8, 7, {X}) of G. We shall attach to a y-data {xa }acr for T a canonical G-conjugacy class of
admissible embeddings “T — *G; recall that a homomorphism of W-extensions ¢: “T" — G is
called an admissible embedding if the map T — 7 induced by £ corresponds to the isomorphism
coming from the pair (%, .7) and a choice of Borel subgroup B of GG s containing Trs. We replace
F* by a finite Galois extension L/F splitting T'; there is no harm in doing this for the purposes
of constructing such an admissible embedding. The @-conjugaoy class of such an embedding is

independent of the choice of B and splitting of G.
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Fix a Borel subgroup B of G'ps containing 7= as above, giving an isomorphism T5 7. 1tis
clear that such an embedding ¢: “T — LG, is determined by its values on T (via the canonical
splitting W' — T x W). Asin §5.2.1, we may use £ to transport the I'-action on T to 7, and for
~ € T will denote this automorphism of .7 by o7. We have that w € W transports via £ to an
action on .7 given by

wr(o) X w,

where w — o € I'and wy(0) € W(@, T).

Our goal will be to construct a homomorphism ¢: W — “G giving rise to our desired embed-
ding. As explained in [LS87], it’s enough that each Ad({(w)) acts on .7 as o, where w +— o € T'.
First, we note that our y-data for the action of [ on R yields a x-data for the {-transported action
of I on R(G, 7)Y; we define a gauge p on the -set R(G, .7)" by setting p(3*) = 1 if and only
if 5 is a root of 7 in 4, and (along with our transported y-data) get an associated 1-cochain
rp: W — C* ®z X.(.7), which we view as a 1-cochain 7,: W — .7(C) using the canonical
pairing. Let n: W(@ ,7) — Ng(7)(C) denote the Tits section associated to our splitting of G.
Finally, for w € W we set

E(w) = [rp(w) - n(wr(e))] x w e “G.

We claim that this map satisfies the desired properties.
The verification that this map works comes down to a 2-cocycle arising from the Tits section.

For w € W, set n(w) := n(wr(o)) x w; we have for wy, wy € W the equality
n(wl)n(wz)n(wlwg)*l = t(O’l, 0'2),
where w; — o; and ¢ is a 2-cocycle of I" valued in .7 (C). We have the following crucial identity:

Lemma 5.2.3 In our above situation, the differential of ;' € C'(W, .7 (C)) equals Inf(t) €
Z2(W, 7 (C)) (where the above groups are given the &-transported W -action).

Proof. After applying Lemma 2.1.A in [LS87], this reduces to a special case of Lemma 2.5.A loc.
cit., which is proved in an purely group-cohomological setting. The proof of Lemma 2.1.A in

[LS87] is root-theoretic, and therefore works in our setting as well. ]

With the above lemma in hand, it is straightforward to check that our £: W — G defined
above is a homomorphism that induces an admissible embedding ¢: *T° — “G. We conclude
this section with a discussion of how the admissible embedding & depends on the choices we have

made during its construction.
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Fact 5.2.4 Suppose that we replace our I'-splitting by the g € ér—conjugate (B9, T9,{X9}) (see
[Kot84], 1.7). If Ad(g)*: X.(T) — X.(T9) is the induced isomorphism of cocharacter groups,
then for \ € X, () the trivial equality °" (Ad(g~')*\) = Ad(g~1)*(°" \) gives that for w € W,
s (w) = gry(w)g~'. One checks that n(w) is also replaced by gn(w)g~!, and so the embedding
€ is replaced by Ad(g) o &, which is in the same ép—conjugacy class as &.

Fact 5.2.5 The conjugacy class of £ is also independent of our choice of Borel subgroup Trs C
B C Gps. If B' is another such subgroup, we may find v € Ng(T)(F*®) such that vBv™' = B,
and denote the corresponding admissible embedding by &'. Transporting Ad(v)‘ 5o W(a, T)
using &, we obtain an element n € W (G, 7). Then it is proved in [LS87], Lemma 2.6.A (the proof
of which relies on Lemmas 2.1.A and 2.3.B loc. cit.—we have already discussed the former. The
latter depends on torus normalizers, root theory, a-data, and the Tits section, which may be dealt

with over F*, so the proof loc. cit. works verbatim) that we have the equality
Ad(gh) et =¢,
where g € Ng(.7)(C) acts on T as p, giving the claim.

Fact 5.2.6 For dependence on the x-data {x.} for the I'-action on R(Gps,Tr:), we fix an-
other x-data {x.}, and we write X!, = (. + Xa» Wwhere (, is a character of F,. The set
{Ca}acr then satisfies the hypotheses of Lemma 5.2.2 (where, in the notation of that lemma,
% = X.(T) with &-transported T-action); we then obtain a I-cocycle ¢ € Z'Y(W, 7 (C))
whose class [c] € HY (W, 7(C)) is independent of any choices made in the construction of ¢
from {(,}. Then it’s immediate from the construction of c that the embedding & is replaced by
txw— c(w)-&(txw).

Fact 5.2.7 Finally, suppose that we take another F-torus T', and take g € G(F*) such that Ad(g)
is an F-isomorphism from T to T'. Note that Ad(g) identifies a x-data {x.} for T with x-data
{X3} for T', since the induced map on character groups is I'-equivariant; take {3} to be the
x-data for T' used to construct any admissible L-embeddings. The map Ad(g) extends to an iso-
morphism of L-groups \: LT — LT’ Let € be the embedding “T — "G constructed above,
determined by a choice of Borel subgroup B containing T'rs. Then we have the equality of ad-
missible embeddings & o \, = &', where &' is the admissible embedding “T" — “G constructed
above corresponding to the x-data {X3} and the Borel subgroup gB g~ ! containing (T")ps. We
conclude that the é—conjugacy class of embeddings T — "G attached to the x-data {xa} forT
is equivalent to the class of embeddings “T' — "G attached to {X5} for T' via ).
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5.3 The local transfer factor

We construct one factor at a time, following [L.S87], §3 and [KS12], §3. Recall that G is a fixed
connected reductive group over I a local field of positive characteristic and ¢: Gps — G7s 1S @
quasi-split inner form of G. We fix an endoscopic datum (H,H,n, s) of G, which may also be
viewed as an endoscopic datum for G, since we are taking the dual group of G* to be G with
bijection of based root data given by ¥(G*)¥ LN U(G)Y — U(G). Let v, yu € Heo(F)
with corresponding images g, 7o € Gy (F). Denote by Ty, Ty the centralizers in H of vy, ¥y
respectively; these are maximal F'-tori. By Lemma 5.1.2, we may fix two admissible embeddings
Ty = T « G*, Ty = T < G*. Recall that such embeddings are unique up to conjugation
by elements of A(T'), A(T)—denote by v, 5 € T(F), T(F) the images of g, ¥z under the above
embeddings.

Set R := R(G%.,Trs), R = R(G%s, Tps), similarly with RV, R¥. Fix a- and y-data for the
standard T actions on R and R—these may also be viewed as data for the I'-action on R", RY, and
data for the I'-action on R((G%,)ps, (Tee)rs), R((GE) ps, (Tie) ps ), where G*. denotes the simply-
connected cover of Z(G*), and T, denotes the preimage of T'N Z(G*) in this group (analogously
for T'). If we replace the embedding Ty — G* by a A(T)-conjugate Ty — T”, then we may view
the a- and x-data as data for R(G%.., Tj..). Our goal will be to define a value

A(’YHa G, ﬁHa ’70) S C

which will be constructed purely from the admissible embeddings, the map v, and the a- and x-
data, but which only depends on the four inputs. As such, we need to examine the following two
things:

1. How A changes when we replace the admissible embeddings Ty — G*, Ty — G* by

2A(T),A(T)-conjugates, and use the translated a- and y-data;

2. How A changes when we keep the admissible embeddings the same but pick different a-

and y-data.

In light of these observations, we may fix ['-splittings (%, 7 ,{X}), (Bu, Tu, {X}) of G,
H, respectively, that give rise to our admissible embeddings Ty — T, Ty — T, since choosing
different splittings only serves to conjugate the admissible embeddings by 2A(T'), 2((T'), which is
included in condition (1). Implicit in the construction of the admissible embedding Ty — G* is
also the choice of g € G(C) such that Ad(¢)[n(Zy)] = 7 and Ad(g)[n(By)] C B; thus, if
we replace the endoscopic datum by (H,H,Ad(g) o, s), then vy, 7y € H(F) are still strongly

G-regular, and so if we carry out the construction of A for this datum, the admissible embeddings
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and a- and y-data are unaffected, and hence our value of A will be the same. If we choose a
different g € G (C) satisfying the above properties, it again only serves to replace our admissible
embeddings with 2A-conjugates. The upshot is that we may assume that 7 carries .7y to .7 and
B into AB. )

Suppose we have a fixed admissible embedding 7 EN T, dual to 7/}\{ Iy 7. Recall that we
have our element s € H (C) from the endoscopic datum. Let By be a Borel subgroup containing
(T ) ps which is used to induce f (there is no such unique By in general). Since by assumption
s € Z(H)(C), it lies in 73 (C) and its preimage under the map Ty —» . induced by By (and
our fixed (By, Ty )) is independent of choice of By. We conclude that the image of s in f((C),
denoted by sy, only depends on the choice of admissible embedding 7 — 7. In the definition
of an endoscopic datum, it is assumed that s € Z (Ef wen Yz (CA}’)), and hence the preimage of
s in TI\{((C) lies in «(Z(H))" - f_l(a(Z (G))), where we have pedantically denoted the canonical
embeddings Z(H) — Ta, Z(G) — T by 1, and have also used the fact that Z(H) — Ty is
canonical to obtain ['-equivariance. This implies (since fis ['-equivariant) that s7 lies in ﬁﬂ, and
we set sy to be its image in 7o (7)5).

We make the assumption throughout this section that for any endoscopic datum, H = “H with
embedding H — “H the canonical embedding; this assumption will only be necessary in §5.3.4.

We will discuss how to deal with general H in §5.4.

5.3.1 The factor A\;

We set
AI(PYHfYG) = <)‘{aa}(TSC>7ST>7

where we view the a-data for 7" as an a-data for T, the pairing (—, —) is from Tate-Nakayama
duality, and )\{aa}(TSC) is the splitting invariant associated to the maximal F-torus 7, — G7,, a
fixed F-splitting .7 of G, and the a-data {a,}.

sc?

Lemma 5.3.1 The value
AI (f}/Ha ’VG)

AI (f_yHa ”_VG)
is independent of the splitting ..

Proof. Suppose that we replace .7 = (B, S,{X,}) by another F-splitting ."" = (B’, 5", {X.})
of G.. It will be necessary to use fppf cohomology here, since these two splittings need not be
G*(F*)-conjugate. Accordingly, take z € G (F) such that 2271 = . and p,(2)p2(2)~" €
Z(F @p F) := Z(G-)(F ®@p F). Then if By is a fixed Borel subgroup containing (7}.) s and
h € G*.(F?) carries (B, S) to (Br, (Ty)rs), then hz carries (B’,S") to (Br, (T ) s ), and for all
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o €I, we have ng (wr(0)) = Ad(z)ng(wr(o)) € Nes (S")(F*) (notation as in the definition of
the splitting invariant, where ng, ng denote the Tits sections corresponding to ., .%"), similarly
for z(o). We need to be careful here, since we defined the splitting invariant in terms of a Galois
cocycle and it is not in general true that z € G, (F*). However, recall the definition of the splitting
invariant: the cocycle m is still a Galois cocycle for us, since z(c) € G (F*®) and n(wr(0)) €

*

Ng= (F*), and we may view it as a Cech cocycle m € G%(F @ F). Then we may set

Mao}(T) := pr(h)mpa(h) ' € To(F @5 F),

and get the same definition as in §5.2.1. However, this modified definition allows us to compute
that if ¢ € Ty.(F ®p F) is the cocycle used to defined the splitting invariant for ., then m/ =
p1(2)'mp1(2) € GE(F ®p F), and so we have:

d = pl(h)Pl(Z)Pl(Z)flmpl(Z)pz(z)flpz(h)fl = Pl(Z)P2(2>71(pl(h)mpl(h)fl)a

and we conclude that A} computed with respect to ./’ differs from the one computed with
respect to . by left-translation by the class z7 in H'(F, T') represented by p; (z)p2(z)~!. Whence,

to prove the lemma, it’s enough to show that

(zr,s7) = (27,S7)-

Replace F* with a finite Galois extension L /[ splitting T, and set I' := ', /. By Proposition

5.1.3, we have the following commutative diagram with exact columns

HYF, Z.) —— H (T, X.(Tw)/X.(T\))

| !

Hl(FyTsc) % Hﬁl(ryX*(Tsc))

! |

HY(F,T,y) ———— H YT, X.(Tw)),

with horizontal isomorphisms induced by Tate-Nakayama duality, as discussed in §5.1.2. From
here, one may deduce the result from the argument in the proof of Lemma 3.2.A in [LS87], which
looks at the images of zy, z7 in the right-hand column and then uses group-cohomological calcu-
lations, along with the alternative characterization of the Tate-Nakayama pairing that we discussed

in Remark 5.1.4 (replacing the use of duality results loc. cit. with our Proposition 5.1.3). [

We now discuss how A; changes under conjugation by 2((7.) and another choice of a-data.
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Lemma 5.3.2 The factor Aj satisfies:

1. If Ty — T is replaced by its conjugate under g € UA(T.), with corresponding transported
a-data, then A;(vg, V) is multiplied by (g1, s7)~", where g is the class of 0 — go(g)™*

in H'(F, T,.).

2. Suppose that the a-data {a,} is replaced by {al}. Set b, = a/a,. Then the term
Ar(vm,ve) is multiplied by the sign

H SENF, /Fiq (ba),

«

where the product is taken over a set of representatives for the symmetric I'-orbits (the or-
bit of « is symmetric if it contains —«, otherwise it is asymmetric) in R that lie outside

R(Hps, (Ty)ps)-

Proof. Part (1) is the analogue of Lemma 3.2.B in [LS87], and the proof loc. cit. works in our sit-
uation, since all elements of A (7;.) are separable points, the construction of the splitting invariant
only uses separable points, and the Tate-Nakayama duality pairing for tori works the same way in
positive characteristic.

For (2), we first note that the expression sgn Fo/Fio (b,) makes sense, since b, is fixed by I'L,,
and thus lies in F.,. Our result is exactly [KS12], Lemma 3.4.1, which is proved without assump-

tions on the characteristic of F'. O]

5.3.2 The factor A\;;

We define () — 1
AII(VH?PYG) = HXa (%) ) (53)

«

where the product is over representatives « for the orbits of I' in R the lie outside R(Hps, (T )ps).

This is easily checked to be independent of the representatives chosen.

Lemma 5.3.3 The factor A;;(vu,ve) is unaffected by replacing the admissible embedding Ty —
T by an A(T)-conjugate (and the transporting the x- and a-data accordingly). Moreover, replac-
ing the a-data {a,} by a different data {a.,} serves to multiply Arr(vm,va) by

HsgnFa/Fia(ba)_lv

«

where b, = al /a, and the product is over representatives for the symmetric orbits outside
R(Hps, (Ty)Fs).

91



Proof. The arguments in [LS87], Lemmas 3.3.B and 3.3.C are purely root-theoretic and work

verbatim here. O]

It remains to check the dependency of A;; on the y-data. Suppose the y-data {x,, } are replaced
by {x.}, and set {, := X/,/xa. Note that (, restricts to the trivial character on F} . To analyze
this dependency, we will need to introduce some new notation, following [LS87], §3.3. Let O
be a symmetric orbit of I' on R, with a gauge ¢, X© the free abelian group on the elements
Oy = {a € O: q(a) = 1} ,with inherited I'-action, and X the Z-submodule generated by some
o € O, which is preserved by '+, and so X© = Ind}. .. (X%). We obtain a corresponding F-
torus T which is one-dimensional, anisotropic, and split over F,,, and corresponding F-torus 7
which satisfies 7€ = Resp, . /rT.

We have a natural I'-homomorphism X — X*(T) which induces a morphism of F-tori 7' —
T© that maps T'(F) into T%(FL,); denote by v* the image of v in T(FL,). Note that the norm

map T%(F,) — T*(FL,) is surjective, since we have the exact sequence of F,-tori

0 A > Resp, jp,, (T8) -2 T > 0,

where 7" is a split Fy,-torus, and so taking the long exact sequence in cohomology (along with

Hilbert 90) gives the desired surjectivity. Whence, we may write

Yo = 5950,

where 0% € T°(F,) and the bar denotes the map from 7(F,) to itself induced by the unique
automorphism of F,/F.,.

If O is an asymmetric [-orbit in R, then X*© is defined to be the free abelian group on O
with inherited I"-action and X is the subgroup generated by some o € O, which again carries a
I'y, = I',-action. We get a corresponding split 1-dimensional F,,-torus 7% and F-torus 7+, with
T° = Resp, ,#T*. We again obtain a map 7' — T+, inducing a map T'(F') — T“(F,); denote
the image of  under this map by v*. We are now ready to state how A;; changes when we alter
the y-data.

Lemma 5.3.4 [f the x-data {x.} are replaced by {x_,}, with (., = X.,/Xa> then Ar;(vm,vq) is

multiplied by
H Ca(7*) - H Ca(0%),
aysmm symm
where [ | denotes the product over representatives « for pairs £0O of asymmetric orbits of R

asymm

outside H, and to make sense of (,(v*), we are using the canonical isomorphism T = G, given

on character groups by 1 — «, and [ | is the product over representatives « for the symmetric

symm
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orbits of R outside H, and to make sense of (,(0%) we are using the canonical isomorphism

Tz, = G,, given on character groups by 1 +— a.

Proof. This is Lemma 3.3.D in [LLS87], the proof of which (along with the proof of Lemma 3.3.A

loc. cit.) carries over to our setting verbatim. [

5.3.3 The factor A7, (or Ay)

The construction of this factor is the only part of the construction of the relative local transfer
factor that involves fppf cohomology rather than Galois cohomology. For the moment, we will
assume that GG is quasi-split over F', with ¢ = id; the construction of A; in this case can be done
using Galois cohomology, but in order to match more closely with the general case, we work in
the setting of fppf cohomology. By construction, the admissible embedding 7; — G is obtained
by first taking Ty — T determined by g, v¢ and then conjugating an embedding (Tg)ps —
G ps induced by a choice of Borel subgroup containing (7¢;)rs and (%, 7)) by some appropriate
g € G«(F). As a consequence, we see that 7 and ~y are conjugate by some h € Gy.(F) such
that py(h)pa(h) ™! € Too(F ®p F). We then set v = p;(h)p2(h)~! and denote the class of v in
HY(F,T) by inv(yg,7¢); this class is independent of the choice of h, since if we choose any
other i’ € G.(F) with h'ygh’~! = ~, then h=*h’ € T,.(F), since 7 is strongly regular. We then
set

Av(ve,ve) = (inv(ya, va), sty

Now we return to the setting of a general connected reductive group G over F' with ¢: Gps —
G- the quasi-split inner form of G over F' with the assumptions stated in the beginning of §5.3.
In particular, we have two pairs of elements vy, 7o and g, V5. As in the quasi-split case, we may
find b, h € G%(F) such that

hp(va)h ™ =7, Mp(Fg)h ™ = 7.

One could take h, h € G* (F*), but since we will be using these elements to construct fppf Cech
cocycles, we want to view them as F-points anyway. Further, let u € G%,(F ®5 F) be such that

pi o pip~t = Ad(u) on G*f@)pf; the existence of such a u is the reason we need to use fppf

cohomology to define the A/, factor. We then obtain two (Cech) cochains,

v :=p1(h)upa(h) ™ € Toe(F @p F), ©:= py(h)ups(h) ™ € Too(F ®p F);
we have that v € Ti.(F ®p F) because (since 7, v¢ are F-points)

vyt = pa(h) (i 0 3t (P2 (v (76))))pa ()~ = pa(R)pr (¥ (76))pa(h) ™ =7,
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similarly for .
By construction, we have dv = dv = du € Z.(F ®p F), where recall that Z. := Z(G?,), and
by d we are denoting the Cech differential. We have an embedding Z,. — Ty X T,. defined by

i~ x j, where i and j denote the obvious inclusions. Set

'R 7-'50 ﬁc
U(T,T) = U = ZL

which is an F'-torus. We have the following easy lemma:

Lemma 5.3.5 The image of (v,7) € Tye(F @p F) x Ty(F ®@p F) = (T} x Ty)(F ®p F) in
U(F ®p F) is a 1-cocycle, whose cohomology class, denoted by

inv <M> c H'(F,U), (5.4)
VH, VG
is independent of the choices of u, h, h.

Proof. The fact the above defines a 1-cocycle is trivial, since

using the fact that H 1(F Rp F, Zs.) = 0, and the construction of v, o, and U. Replacing u by «’
satisfies u' = uz, z € Z,(F), and so the new element (v',¢') € Ti. x T, is equivalent to (v, v)
modulo Z.. Replacing h by h/ = ht, where t € Ti.(F'), gives v/ = d(t) -v € Ty.(F ®@p F'), and so
the image of (v/, ) in U differs from the image of (v, v) by (d(t), 1), a coboundary, similarly with
the element h. O

Note that if GG is quasi-split and 7 denotes the quotient map defining U, then

(;ﬁ;g) = 7[(inv(va, v6) L inv(Ta, 7). (5.5)
Now let 7}, denote the torus dual to T,y = T/Z(G), and set ZC =7 (@SC). The homomorphism
X.(T) — X,(Ty) induces a morphism of Ty, — T < G (using an isomorphism 7 — 7
giving our admissible embedding) which factors through .@(é )N T by dimension and root system
considerations. From this, one obtains T}, — 2 (@) which further factors through an embedding
T. — 9 (@)SC that identifies 7. with a maximal torus of @SC, giving an embedding Zc s To.

which is canonical (because of centrality, this does not depend on our initial embedding of T in
@). The same result holds for 7.
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With this in hand, we set

7—‘SC X TSC
ZSC

U:= ,
where now ZC is embedded diagonally. The Q-pairing QRY x QR — Q gives a pairing X * (TSC) X
X*(Ty.) — Q which, together with the analogue for T, yields a Q-pairing between X*(T}. x
ic) and X*(T. x T..), which further induces a perfect Z-pairing between X *((7 ) and X*(U),
identifying U with the dual of U , see [LS87], §3.4.

Take the projection of 7(s) € 7 (C) in Z4(C), and then pick an arbitrary preimage 5 of
this projection in 7(C). We have isomorphisms T — T, ﬁc — 7, induced by choices of
isomorphisms f, T — 7 giving our admissible embeddings, and the respective preimages of s,
denoted by 37, 57, only depend on choice of 5 and the admissible isomorphisms Ty — T, Ty —
T. We then set sy := (57, 57) € U(C). Note that a different choice of 3 corresponds to replacing
St, 8¢ by Spzr, Spzp, where z € ZC(C) and zp, zy denote the images of z under the canonical
embeddings of ch in TSC, ic. Thus, sy 1s independent of the choice of 5. Then one can show that
Sy € U I see for example the discussion of the A;; 1, factor in [Kal16], proof of Proposition 5.6.

Hence, it makes sense to define s;; to be the image of s;; in 7T0([7 1“). We then set

Arin (Ve Y6 Va, Ya) = (inv (VH’VG) ,SU)- (5.6)
YH, VG

By what we have done, it is clear that if G is quasi-split over F’, then
Arin (Ve Y63 Ym, Aa) = (v (v, va), 1) 7 Hinv(Ye, Aa), S1)-

Lemma5.3.6 If Ty — T and Ty — T are replaced by their g- and G-conjugates, q,§ €
W(Tie), W(Tie), then Apr, (e, Yas Vi, Ya) is multiplied by

<gT7 ST> <gT7 ST>717
where g is the class of the 1-cocycle py(g)p2(9)~" € Ty(F ®p F), analogously for g+.

Proof. Denote the g~ ', g~ '-conjugates of 7,7 by T", T'. One checks that v as defined above is
replaced by p1(g) tvpa(g) € T..(F®rF) and conjugating this element by p; (g) yields the element
v(p1(g)p2(g)~') ™!, analogously for T and ©. Similarly, 57, 7 can be taken to be Ad(g)37 (by
Ad(g), we mean the induced dual map T — Ty) and Ad(g)57. The functoriality of the Tate-

Nakayama pairing then gives the result. [
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5.3.4 The factor A;jy,

To construct this factor, we will fix Borel subgroups B D Tgs, By D (Tg)ps which (along with
our fixed (A, .7 ), (Bu, Tn)) determine the admissible isomorphism 7 — T'; note that our x-
and a-data also serve the I'-action on R(Hps, (Ty)ps) C R. Then, according to §5.2.2, we obtain
from our x-data { .} (viewed as a x-data for T and for T;) admissible embeddings &7: “T — G
extending the map T = 7 and &y Lpy = tH extending Ty — Jy. We then obtain

UofTH:a'fTa

where we view &7 as a map on “T'y by means of the isomorphism “T'; — T induced by the
admissible isomorphism Ty — T and a is a 1-cocycle in .7 (C) for the T -transported W p-action.
Its class a in H' (W, T(C)) (after applying the fixed isomorphism .7 — T to a) is independent of
the choice of By and B, as well as the T-splittings (%, 7,{X}) and (B, Tu, {X}) by Facts
5.2.5 and 5.2.4 from §5.2, respectively.

Suppose now that Ty — T (and the corresponding data) is replaced with a ¢ € A(Ty.)-
conjugate 7" = Ad(g~')T with admissible embedding &7. Then Fact 5.2.7 from §5.2 shows that
the induced isomorphism A, : Lr s LT qatisfies §ro)g = &7, and so it follows that the class a is
the image of a' € H' (W, T'(C)) under the isomorphism H' (W, T(C)) iON HY(Wp, T(C)).
The dependence on the y-data will be addressed later.

We then set

A (Ve ve) = (a,7),
where the above pairing comes from Langlands duality for tori, as in Theorem 5.1.5. By the
functoriality of the pairing (Theorem 5.1.5) and our above remarks on the cocycle a, it is immediate

that this number does not change if the admissible embedding 7y — 7' (and corresponding data)
is changed by a (7. )-conjugate.

Lemma 5.3.7 Suppose that the x-data {x.} is replaced by {x.}, with (, = X./Xa- Then
Arrn, (YE, Ya) is multiplied by

H Ca(ﬁya)_l ’ H Ca((sa)_:l»

aysmm symm

where v and §“ are defined as in 5.3.2.

Proof. This result is Lemma 3.5.A in [LS87]. The proof loc. cit. depends on our Lemma
5.2.2 (which is Corollary 2.5 loc. cit.) as well as the general discussion of our §5.2.2, Galois-

cohomological computations similar to the ones done in our §5.3.2, and the fact that the pairing
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coming from Langlands duality for tori is functorial and respects restriction of scalars. All of these

facts/techniques are unchanged in our setting, and therefore the same argument works. [

5.3.5 The factor Ay

We denote the (normalized) absolute value on F' by | - |. For our v € T'(F'), we set

De-(7) = | [ ] (a(v) = D). (5.7)

aER

Note that this is well-defined because [ [, ,(a(y) — 1) € F. Then we set

Arv (i, va) == Da-(7) - Dy (ve) ™t

This is clearly unchanged if the admissible embedding is replaced by a (7. )-conjugate.

5.3.6 The local transfer factor

We are now ready to define the absolute transfer factor for quasi-split connected reductive groups
G over F' a local function field and the relative transfer factor for arbitrary connected reductive
groups over F'. Fix two pairs va, Yu, Vi, Vo as in the beginning of §5.3.

For quasi-split G over F', we set

ANo(Yesve) = Ar(vas ve) A (v, va ) A1 (Ve ve ) A v (Ve va) Arv (e, Ya)-
For general Gz, we set

AV, Ya; Vi, Ya) = AI(VH?WG)'AH(VHWG)'AIHQ(VH’VG)'AW(VH’WG)'AIU (Y, Y3 s Va)
T A (e, ve) Ar(asYa) Ann(asYe) Arv (Y, de) B ’(5 8’) '

We have the following results that discuss the dependence of Ay, A on the admissible embed-

dings and - and a-data.

Theorem 5.3.8 The factor A(vu,Ve; Y, ) is independent of the choice of admissible embed-
dings, a-data, and x-data.

Proof. If the admissible embeddings are replaced by g=! € 2A(T%.) and g~! € (T,.)-conjugate
embeddings (with translated a- and y-data), A;(vg,7¢) is multiplied by (g, s7)~' by Lemma
5.3.2 (similarly for ¥z, ¥¢), Arr(vm,Vq) is unchanged, Ay, is multiplied by (gr,s7) (g7, s7) "

by Lemma 5.3.6, and Ajyy,, Ay are unaffected. Thus, A is unaffected.
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If we change the a- and x-data to {a. }, {x,} with b, := a,/a, and {, := X/ /Xa, then the
change in A;(yy, v¢) induced by the new a-data cancels with the change in A/ (vy,7¢) induced
by the new a-data, by Lemmas 5.3.2 and 5.3.3. The change in A;;(vg,7¢) induced by the new
x-data is cancelled by the change in A7, (7w, 7¢) induced by the new x-data, by Lemmas 5.3.4
and 5.3.7. All the other factors are unaffected. [

Note that by Lemma 5.3.1, A(vy, va; 7, Ve ) is also independent of the F-splitting chosen for G,
in the construction of the splitting invariant used to define A;.

Corollary 5.3.9 The factor Ao(vm,ya) only depends on the chosen F-splitting of G=..

Proof. This is immediate after using the above proof and replacing Lemma 5.3.6 with the obser-
vation that conjugating the admissible embedding Ty — T by g~! € 2A(T,.) serves to multiply
A1 (vH,vq) by (g, s7), cancelling the corresponding new factor from A;(vg, va)- O

5.4 Addendum: z-pairs

We continue with the same notation as §5.3. In particular, GG is a connected reductive group over
F with quasi-split inner twist G* and endoscopic datum e. Our goal in this section is to extend the
definition of the (relative) transfer factor A to the case where H — H is not necessarily equal to

the canonical embedding H — “H. To do this, we need to introduce the concept of a z-pair.

Definition 5.4.1 A z-pair 3 = (H,,n,) for the endoscopic datum ¢ is an F-group H, that is an
extension of H by an induced central torus such that 9(H,) is simply-connected, and a map
Ny H — LHZ, that is an L-embedding extending the embedding H — PA[Z, dual to H; — H. We
call an element of H,(F) strongly G-regular semisimple if its image in H (F) is strongly G-regular
and semisimple, as we defined above; this set will be denoted by H; ;_,(F").

The following result explains the usefulness of this concept:
Proposition 5.4.2 A z-pair (H;, ;) for ¢ always exists.

Proof. The group H, without the data of 7, is called a z-extension of H. Such a z-extension exists
in any characteristic, using [MS89], Proposition 3.1; although the proposition loc. cit. is stated for
local fields of characteristic zero, the proof works in the local function field setting as well. Once
we have such an extension, Lemma 2.2.A in [KS99] shows that we can find an 7, satisfying the

desired properties (the proof loc. cit. does not depend on the characteristic of F' either). [
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We will now discuss how to extend the relative transfer factor to a function
A: Hy ¢ (F) X Go(F) X Hy g_o(F) x G(F) — C,

satisfying all the desired properties enjoyed by the factor A defined above. This discussion is
taken from the proof of Proposition 5.6 in [Kall6]. Let v;,7; € H; ¢_«(F') with images vy, 7y in
He_u(F), related to v, ¢ € Gu(F). The factors Ar(v;,76), Ar1(75:76), Arrn (%, Y6: 75 76)s
and Ay (7, 7¢) are all defined to be the same factors with +;, 4; replaced by their images vu, Yu.

It remains to define A/, (7;, 7). Consider the following diagram:

LHz — LTH‘, A Th, ¢ "Tu
I e
3

H n N LG y) LT

where we are denoting the centralizer of 7, by T%,, the map LT — L@ is the one corresponding to a
choice of y-data for 7', as discussed in §5.3.4 and §5.2.2, we are denoting the choice of admissible
embedding Ty — T by ¢,,, ,, and the embedding LTH3 — L[, is obtained by transporting the
x-data to Ty and then to Ty, via the projection T, — Ty (this makes sense because H; is a
central extension of H, so that Ty and T, have the same root systems). The dotted arrow is
the unique L-homomorphism extending the identity on sz and making the diagram commute;
its restriction to W gives a 1-cocycle a: Wr — fH\a((C); for an explanation of why such an L-
homomorphism exists, as well as the fact that this is a cocycle, see [KS99], §4.4. We then set
A1, (7, 76) = (a,7;), where as in §5.3.4 the pairing is from Langlands duality for tori.

We then define A(v;, v¢;7;, J¢) identically as in §5.3, except with our new A;;;, factor. We
may also use this to define an analogous factor Ag(7;, 7¢) in the quasi-split case, where we simply
replace the A;;;, factor in the definition given in §5.3 with the factor we defined above (and take
the image of ~, in H (F) to define the other A;-factors).

Proposition 5.4.3 The above factor does not depend on the choice of admissible embeddings, -

data, or a-data.

Proof. This is Theorem 4.6.A in [KS99]. In view of the proof of Theorem 5.3.8, it suffices to check
that A(7;,v¢; %, V¢) is unaffected by changing the y-data for T'. Verifying this comes down to
examining the new Ay, -factor, which is not affected by the characteristic of F, so the proof loc.

cit. works in our situation as well. O]
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CHAPTER 6
Applications to the Local Langlands Conjectures

This section applies the theory we have constructed in order to state the local Langlands conjectures
for connected reductive groups over local fields of positive characteristic. Again, in this section /'
is a local field of characteristic p > 0, G is a connected reductive group over F', and £ is a u-gerbe
split over F with [£] = o € H*(F/F,u). Recall that one of our goals is to generalize the notion
of rigid inner forms, introduced in [Kall6], in order to work with the representations of all inner

forms of GG simultaneously.

6.1 Rigid inner twists

In order to assign to inner twists of GG the “correct” automorphism group (i.e., one such that au-
tomorphisms preserve F'-conjugacy classes and F'-representations), we need to refine the data of

an inner twist to that of a rigid inner twist. For a Gg-torsor .7, we denote the (G,q)e-torsor

T xGe (Gad>g by 7.

Definition 6.1.1 1. A rigid inner twist of G is a triple (¢, 7, h) of an inner twist £: G — G,
a Z-twisted Ge-torsor T for some finite central Z, and an isomorphism of (Guq)g-torsors
h: T — (Gad)e 7 which satisfies pih o p3h™": (Gad)ew, — (Gaa)eu, is left-translation
by T € G.q(Uy) such that Ad(z) = pi&" o p3€. If we demand that T is Z-twisted for some

fixed finite central Z, then we say further that the rigid inner twist is a Z-rigid inner twist.

2. Anisomorphism of rigid inner twists (f,V): (&1, T4, hy) — (&, Do, hy) is a pair consisting
of an isomorphism f: G1 — G5 defined over F and an isomorphism of Gg-torsors V: 77 —
T5; note that such an isomorphism induces an isomorphism hy o W o hi': (Guq) cF

Gud)e 7 giving an element § € G oq(F) which we require to satisfy &5 o f o & = Ad(6).
&F 2

Denote by RI(G, &) (resp. RIz(G,E)) the category whose objects are rigid inner twists of G

(resp. Z-rigid inner-twists of G) and morphisms are isomorphisms of rigid inner twists. It is clear
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that the natural functor RI;(G,&) — RI(G,€) is fully faithful and RI(G,€E) = limy RIZ(G, &),
where the colimit is taken over all finite central Z. Note that for every inner twist ¢: G — G,
there exists a Z(2(G))-twisted Gg-torsor .7 and trivialization h such that (1, 7, h) is a rigid inner
twist, by Proposition 4.5.12. For computational purposes, we reformulate the above definition in
the case £ = &, for [a] = o € H*(F/F,u):

Definition 6.1.2 1. For a € u(U,) such that [a] = o € H*(F/F,u), an a-normalized rigid
inner twist of G is a pair (&, (x, ¢)) of an inner twist §: G — G’ and (x,¢) € Z1(E,,Z —
Q) for some finite central Z such that the image of (x,®) in Z*(F,G.), denoted by £,
satisfies Ad(T) = pi& "t o pi&. If we demand that ¢ factors through some fixed finite central
Z, then we say further that the a-normalized rigid inner twist is an a-normalized Z-rigid

inner twist.

2. Anisomorphism of a-normalized rigid inner twists (f,6): (&1, (21, 01)) = (&2, (22, 02)) for
b1 = ¢, is a pair consisting of an isomorphism f: G — Gy defined over F and § € G(F)
such that €5 o f o &, = Ad(0) and 1, = p1(8)  wapa(9).

Denote by RI(G, a) (resp. RIz(G, a)) the category whose objects are a-normalized rigid inner
twists of G (resp. a-normalized Z-rigid inner twists of G) and morphisms are isomorphisms of
a-normalized rigid inner twists.

We claim that, for £ = &,, the isomorphism classes of the category RI(G, £,) are in canonical
bijection with those of RI(G,a). Let s: Sch/F — &, denote the section constructed in Lemma
2.3.3. Then if (¢,.7,h) is a Z-rigid inner twist, by the proof of Proposition 2.6.2, after setting
¢ := Res(.7), choosing a trivialization h of s*.7 lifting h, by which we mean is such that the
diagram

s7 —— G&

L

S*? LB> (Gad)f

commutes (such an h evidently always exists), gives an a-twisted Z-cocycle (z, ¢) valued in G,
and by construction we also have that Ad(Z) = p;&~! o p3¢. Thus, we have a way of associating
to a Z-rigid inner twist an a-normalized Z-rigid inner twist.

Moreover, given any isomorphism (f, ¥) between the Z-rigid inner twists (&1,.71, h;) and
(&5, T, hy), choices h; of F-trivializations lifting s*h; give an automorphism hoos*Woh;': Gz =
G+ which is left-translation by a unique § € G(F). Then we may define an isomorphism
(&1, (1, 01)) — (&2, (22, ¢2)) between the corresponding twisted cocycles (obtained using h; and

hs) given by (f, ).
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By Proposition 2.6.2 (see also Proposition 2.4.10), every a-normalized Z-rigid inner twist is iso-
morphic to the image of some Z-rigid inner twist under the above map. By the discussion following
the proof of Lemma 2.6.4, if the image of two rigid inner twists are isomorphic as a-normalized
rigid inner twists, then they are isomorphic as rigid inner twists (using that the condition on ¢ and
J is the same).

A similar argument using Lemma 2.6.3 shows that for arbitrary £, we have a canonical bijec-
tion between isomorphism classes in RI(G,€) and RI(G,&,), and hence also between classes
in RI(G, ) and isomorphism classes in RI(G, a). Everything said above applies if we restrict
ourselves to Z-rigid inner forms for some fixed Z as well.

We have the following important fact about automorphisms of rigid inner forms:

Proposition 6.1.3 The automorphism group of a fixed a-normalized rigid inner twist (&, (z, ¢))
for&: Gps — (G')ps is canonically isomorphic to G'(F) by the map (f,6) — &£(0).

Proof. One computes the 0-differential of £(6) to be pi&(p1d~!) - p3é(p2d), and post-composing
with p;¢~! yields
po " wpdoaT =e,

giving £(J) € G'(F'), showing that the above map is well-defined. From here it is straightforward

to check that it defines an isomorphism. 0

Corollary 6.1.4 The automorphism group of a fixed rigid inner twist (¢, 7, h) for £: Gps —

(G")ps is canonically isomorphic to G'(F).

Proof. Fix a section s: (Sch/F) — &, as well as a trivialization h of s*.7 lifting h (terminology
as above). Note that any two choices of h differ by precomposing by an automorphism of s*.7
induced by an automorphism of .7 given by right-translation by some z € Z(G)(F). The map
h o s*W o h~! is left-translation by an element § € G(F), and any different choice of h yields the
same J, by the G¢-equivariance of ¥. We may thus define our desired isomorphism to send (f, V)
to £(9), which lies in G'(F), by the proof of Proposition 6.1.3. It is straightforward to verify that

the element ¢ does not depend on the choice of section s. [

We now define rational and stable conjugacy of elements of rigid inner forms. Let (£1, 77, hy)
and (&, %, hy) be two Z-rigid inner twists for some fixed Z corresponding to the groups G, G,
and let 6; € G (F) for i = 1,2. We say that (G1,&1, 71, hi,01) and (G, &, Ta, ha, 0y) are
rationally conjugate if there exists an isomorphism (f, ¥): (£, 71, h1) — (&2, %, ha) such that
f(61) = ;. We say that they are stably conjugate if £, *(6,) is G(F)-conjugate to &, ' (d,). The ar-
guments used in §5.1 show that the latter condition is equivalent to &; ' (6, ) being G/(F*)-conjugate

to &, ' (9,) (this centers on the fact that the Weyl group scheme of a maximal torus in an algebraic
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group is étale). Define rational and stable conjugacy identically for elements of a-normalized rigid
inner twists.

We need the following lemma:

Lemma 6.1.5 Assume that G is quasi-split. For any (Gy,&,%,h1,61) (resp.
(G1,&1, (x1,01),01)) as above, there exists 6 € Gy (F) such that (Gl,ﬁl,%,ﬁl,él) (resp.
(G1,&1, (21, ¢1),01)) is stably conjugate to (G, idg, Ge, id,0) (resp. (G, idg, (e,0),0)).

It is evidently enough to generalize Corollary 2.2 of [Kot82] to our setting, which says:

Lemma 6.1.6 Let G be a quasi-split reductive group over F and i : Tps — Gps be an embedding
over F* of an F-torus T into G such that i(Tps) is a maximal torus of Ggs and such that °i is

conjugate under G(F?) to i for all o € T'. Then some G(F*)-conjugate of i is defined over F.

Proof. The proof of this result in [Kot82] depends on first proving the following result (Lemma
2.11oc. cit.): Letw: I' — W(Gps, Tps) be a 1-cocycle of I in the absolute Weyl group of 7', and
choose an arbitrary lift n, € Ng(T)(F*) of w(o) for all o € T". Then we may use it to twist 7,
obtaining an F-torus *7T" which is an F*-form of 7', and to twist the F’-variety G /T, obtaining the
F-variety *(G/T) which is an F*-form of G/T. The claim is then that *(G/T)(F) # 0. Asin
[Kot82], this will follow if we can find some ¢ € Ti,(F*) and g € G(F*) such that gtg~' € G(F).
We will view (*T")ps as a subtorus of G- via the isomorphism (*7") ps 2, Trs coming from its
construction as an F'*-form of 7.

To this end, we know by unirationality that *T'(F") is Zariski-dense in (*1")z, and also that the
locus of strongly regular elements in 7'( F) forms a Zariski-open subset of T, by [Ste65], Theorem
1.3.a, and hence there is some element ¢ € (*T')(F) that lies in 73 (F); such a point necessarily
lies in T'(F'*), since ¢ maps *T'(F*) into T'(F*). Then [BS68], 8.6 (which is a generalization of
Theorem 1.7 in [Ste65] to imperfect fields) shows that we may find a point in G (F') which is
G/(F)-conjugate to ¢, which we know is equivalent to G(F*)-conjugacy. This gives the claim; with
this in hand, the argument in [Kot82], Lemma 2.1, carries over verbatim to show that * (G /T')(F') #
0.

Now we prove the main lemma, following [Kot82]. We may assume that i(7 ) is defined over
F, with F-descent denoted by 7", by conjugating by an appropriate element of G(F*®). Choose
ne € Ng(T)(F*) such that Ad(n,) o ¢ = %4 with image w(o) € W(Gps,T).) independent
of choice of n,. Now apply the above claim to the F-torus 7" and the cocycle o +— w(o),
thus obtaining g € “(G/T")(F) C (G/T")(F*) = G(F*)/T(F*) (containment via the defin-
ing isomorphism of the twisted form). This last equality comes from the fact that for every
t € (G/T"(F?®), if m: Gps — (G/T)ps denotes the canonical quotient map, the (scheme-

theoretic) fiber 7! (t) < G- is a Tps-torsor, which is split over F'* and thus contains an F**-point.
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The upshot is that we have some g € G(F*) which satisfies g™ “gn,, € i(Tr,)(F*) forall o € T,
which means that Ad(g) o i is defined over F. [

We continue to assume that G is quasi-split. For any (G4, &1, 74, hy, 61), there exists § € G (F)
such that (G, &1, 71, hy, 01) is stably conjugate to (G,idg, G, idz, 6), by the above lemma. As
in [Kall6], we now fix § € G (F') and consider the category Cz(9,£) whose objects are points
(G1,&1, T, h1, 61) which are stably conjugate to (G, idg, Ge,idz, §) such that (£1, 73, hy) is a Z-
rigid inner twist and whose morphisms (G'1, &1, 71, hi, 01) — (Ga, &, T, ho, 65) are isomorphisms
of rigid inner twists (f, ¥) such that f(d;) = . We interpret this category as the stable conjugacy
class of (G,idg, Ge,idg, 0), and it is clear that the isomorphism classes within Cz(0, £) give the
rational conjugacy classes within this stable conjugacy class. We define the category Cz (4, a) using
a-normalized Z-rigid inner twists completely analogously. By our previous discussion, it is clear
that the isomorphism classes of Cz(d, &,) are in canonical bijection with those of C#(d, a), as are
the isomorphism classes of Cz (9, £).

Set S := Zg(6), a maximal torus. We will now define a map from the isomorphism classes
of Cz(6,€) to HY(E,Z — S), denoted by inv(—, ). The simplest way to do this for general £
is to first define it for isomorphism classes in C#(d, a) for a representing [£], invoke the canonical
bijection between the isomorphism classes in Cz (4, E) and those of C(d, a) and then check that

for a cohomologous to a’, the diagram

Isom|[Cz (5, a)] —— HY(E,, Z — S)

l l (6.1)

Isom|[Cz(8,a")] —— HY(Ey, Z — 9)

commutes, where Isom|C (0, a)] denotes the set of isomorphism classes in Cz(, a), and the verti-
cal arrows are the canonical bijections induced by any choice of y € u(U;) such that dy - a = o
(cf. Construction 2.3.4). This last condition ensures that the map we define is canonical.

Fix (G1, &1, (21, 61),01) € Cz(d,a), and choose g € G(F*) such that £ (gég~") = ;. The
map sending this element to the a-twisted cocycle (p1(g) 'z1p2(g), ¢1) gives a map Cz(d,a) —
ZY&,,Z — S), since translating by g does not affect the differential of z;. This induces a map
inv(—,0): Cz(6,a) — H(E,,Z — S), which does not depend on the choice of g, by construction
of the equivalence relation defined on a-twisted cocycles. The following result shows that the

cohomology set H'(&,, Z — S) parametrizes the rational classes within the stable class of 4.

Proposition 6.1.7 The map inv(—, ) induces a bijection from the isomorphisms classes of Cz (6, a)
to H (E,,Z — S).
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Proof. First note that if (G1, &1, (21, ¢1),01) € Cz(0,a) and (Ga, &2, (22, ¢2),02) € Cz(d,a) are
isomorphic via (f, g) then if we take g; satisfying £, (g;01g; ') = d;, we have ¢, = ¢, (by definition)
and g; 'g~'g, € S(F), since

Ad(g; g 92)0 = Ad(g; ") (& o f71 0 &)(Ad(g2)(6)) = Ad(g; M) (&1 (61)) = 0,

giving that [(p1(g1) " 21p2(g1), ©1)] = [(p1(g2) *wap2(g2), v1)] in HY(E,, Z — S). This shows
that the invariant map is constant on isomorphism classes.

For injectivity, we note that if [(p;(g1) " 'z1p2(g1), ¢)] = [(p1(g2) 'zapa(ge), @) in H (E,, Z —
S), then if we take g € S(F) realizing this equivalence of cocycles, the (fppf descent of the) map
G — Gy defined by & o Ad(gagg; ') o €* defines an isomorphism from (G, &1, (21, ¢1),61) to
(Ga, &2, (T2, 92),02) in Cz(0).

For surjectivity, if we fix [(z,¢)] € H'(E,,Z — S), then since dr € Z(G), we may twist G
by z to obtain G, with the usual isomorphism £: G = G? satisfying p;¢~! o p3¢ = Ad(x), and
then (since = commutes with ) the tuple (G7, &, (z, ¢),£(9)) lies in Cz (9, a) and trivially maps to
(r,0) € ZY (€4, Z — 9). O

Lemma 6.1.8 The diagram (6.1) commutes.

Proof. If y € w(Uy) is such that dy - a = «’, then the map Cz(d,a) — Cz(9,a’) may be de-
fined by sending (G4, &1, (21, ¢1), 1) to (G1, &1, (21 - ¢1(y), é1), 01). This maps to the equivalence
class of the a'-twisted cocycle (p1(g) " ¢1(y)xp2(g), ¢1) in HY*(Ew, Z — G). Going the other
direction, the class of (G4, &1, (21, ¢1), 61) maps to the equivalence class of the a-twisted cocycle

(p1(g)~txp2(g), @1), which then maps to the class of (p1(g) '¢1(y)xp2(g), ¢1), by the centrality
of Z. O]

Because of the above result, in the context of the invariant map it will be harmless to denote
Cz(6,&) for a choice of £ simply by Cz(d), and for computational purposes to identify Cz(J) with
Cz(6,a) for a choice of a. Note that if 7 — S factors through another finite central 2/ — S,
then we have a canonical functor vz 5 : Cz(0) — Cz/(d) which is fully faithful. Moreover, the two
invariant maps to H'(€, 7 — S), H' (€, 7' — S) commute with the natural inclusion H'(€,Z —
S) — HY(E,Z' — S); thus, the invariant map does not depend on the choice of Z.

The last thing we do in this subsection is define a representation of a rigid inner form.

Definition 6.1.9 A representation of a rigid inner twist of G is a tuple (G1,&1, 71, hy, 71), where
(&1, 71, hy) is a rigid inner twist of G and T, is an admissible representation of G(F). An iso-
morphism of representations of rigid inner twists (G1,&1, T4, hy,m1) — (Ga, &, T, hy, m2) is
an isomorphism of rigid inner twists (f,V): (&1, 71, h1) — (&, T, ha) such that the G (F)-

representations m, and m o f are isomorphic.
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One verifies easily that two representations (G4, &1, .71, hy, m) and (G, &1, 74, by, ) are iso-

morphic in the above sense if and only if 7; and 75 are isomorphic as G (F’)-representations.

6.2 Local transfer factors and endoscopy

Let[Z — G| € R and let Gbea complex Langlands dual group for . We have an isogeny G — G
which dualizes to an isogeny G- G, inducing a homomorphism Z (é) — Z(G). Identifying
these complex varieties with their C-points, we define Z (é)Jr C Z (6) to be the preimage of
Z(G)" under this isogeny. We thus obtain a functor R — FinAbGrp by sending G to 7o (Z (é)*)*

this can be seen as an analogue of functor introduced in Theorem 1.2 in [Kot86].

Proposition 6.2.1 We have a functorial isomorphism

~

YiiwlZ = G) = mo(Z(G)1)*.

Proof. We describe what the construction of this map is; the proof that this construction indeed is
a functorial isomorphism is identical to the one given in [Kall6], Proposition 5.3.
Recall that for [Z — G| € R, the group Y, \x(Z — G) is an inverse limit as S ranges over all

maximal F'-tori of GG of groups of the form

(X.(5)/ X, (See))™
1(X.(9)/ X (Ss))”

hﬂ

where each direct limit is over all finite Galois extensions of F' splitting S. For a fixed S, we
have a commutative square of multiplicative groups corresponding to the commutative square of

character groups:

Under the canonical embedding Z(G) — S, the subgroup inclusion Z(G)" ¢ Z(G) corre-

sponds at the level of character groups to the quotient map

Xo(9)/ X (Sse) = [Xu(S)/ Xu(Si)l/T[X(5)/ X (Ssc)],
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and it follows that the subgroup Z(G)* C Z(G) has character group

o~

XN(Z(G)T) = [X.(S)]/ X (S) + X.(S)]-

Finally, passing to the component group corresponds to taking the torsion subgroup, which (for a
Galois extension splitting S) contains [ X, (S)/X.(S«)]" /I[X.(S)/X.(Ss)]. This gives a natural

inclusion

(X.(S)/Xo(Sie))™
[(X.(5)/X.(5))

— m(Z(G)")",

since we have the obvious identification X*(mo(Z(G)*)) = m(Z(G)*)*. These maps glue for
varying Galois extensions of ', and then induce an isomorphism on the direct limit over all exten-
sions E' (see [Kall6], Proposition 5.3). [

The analogue of Corollary 5.4 in [Kall6] makes precise our earlier statement comparing this

new functor to the one defined in [Kot86], Theorem 1.2:

Corollary 6.2.2 There is a perfect pairing
HY(E,Z = @) x m(Z2(G)) — Q/Z,

which is functorial in [Z — G] € R. Moreover, if Z is trivial then this pairing coincides with the

one stated in Theorem 4.5.5.

We now recall the notion of a refined endoscopic datum, introduced in [Kal16], §5. As before,
assume that we have some fixed finite central Z — (G, and denote G/Z by G. First, let (H, H, s,7)
be an endoscopic datum for G. We may always replace this datum with an equivalent G (C)-
conjugate datum (H,H,s’,n) such that ' € Z (fl )I' without affecting the value of the transfer
factors A, Aq involving (H,H,s,n) (see the beginning §5.3). We will always assume that our
endoscopic datum has this form.

Choices of maximal tori in , @, H, and G give embeddings Zrs — Z(H)ps which differ by
pre- and post-composing with inner automorphisms induced by G(F*®), H(F*), and hence are all
the same, meaning that we have a canonical F-embedding Z — H (the I'-equivariance follows
from the fact that the maps T — 7 for T maximal in G, 7 maximal in @, are ['-equivariant up
to the action of the Weyl group—analogously for H). It thus makes sense to define H := H/Z,
which gives rise to the isogfny ﬁ — H.

As above, we define Z(H)™ to be the preimage of Z(H )" in Z(H), and declare that (H,H, $,7)

is a refined endoscopic datum if H,H, and n are defined as for an endoscopic datum, and s €

~

Z(H)* is such that (H, M, s,n) is an endoscopic datum, where s is the image of $ under the map
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~

Z(H)* — Z(H)'. An isomorphism of two refined endoscopic data (H, M, $,n), (H', ', &', 1)
is an element ¢ € (A_}((C) such that its image ¢ in G(C) satisfies gn(H)g~* = 1/(#), inducing
f:H — H' and the restriction [ o H — H’, which (by basic properties of central isogenies)
lifts uniquely to a map 3: H - H’, and such that the images of 3(35) and 3 in 7o(Z(H')")
coincide. It is clear that every endoscopic datum lifts to a refined endoscopic datum, and that every
isomorphism of refined endoscopic data induces an isomorphism of the associated endoscopic data.

Let ¢ = (H, H,n,$) be a refined endoscopic datum for G with associated endoscopic datum
¢ = (M, H,n, s), which is also an endoscopic datum for G*. Let 3 = (H,, ;) be a z-pair for e. As
discussed in Chapter 5, have two functions

Ale,3]: Hyo-u(F) x GL(F) X Hyg-u(F) x GL(F) = C,

Ale,3,0): Hyg—o(F) X Gx(F) x Hy g_«(F) x Go(F) = C,

where the first equation makes sense because strongly G-regular elements of H(F') are strongly
G*-regular via choices of admissible embeddings Ty = T, Ty — T, as in our discussion of
the local transfer factor. As in [Kall6], we have added terms in the brackets to show what each
factor depends on. We set the above function to zero if either of the pairs of inputs consist of two
elements which are not related.

For our arbitrary (G, we say that an absolute transfer factor is a function
Ale, 3labs 1 Hyo—se X G(F) — C,
which is nonzero for any pair (v, §) of related elements and satisfies the relation

A[eaé}abs(%,,la 51) : A[eaﬁ]abs(%’u% 52)71 = A[eaﬁ](%,h 51?’73,27 52)-

By Chapter 5, if G is quasi-split, setting Ale, 3] = Aq (and zero if the pair is unrelated) satisfies
these properties. As we noted in Corollary 5.3.9, this function is not unique, depending on a
choice of F-splitting of Gi.. Our next goal will be to use the notions of refined endoscopic data
and Z-rigid inner forms to construct an absolute transfer factor in the non quasi-split case which is
associated to some splitting of the quasi-split inner form G*, extending the absolute transfer factor
in the quasi-split case. This follows the corresponding construction in [Kal16], §5.3.

We return to the setting of arbitrary GG connected reductive over F’ with quasi-split inner form
V: Gps — G, and fixed Z-rigid inner form (&,.7, h), € := ¢~ for some fixed finite central Z
defined over F'. Let ' € G(F') and v, € H, ¢_«(F') be related elements, and let 5 be the image
of ~, in H(F). Then, by Lemma 6.1.5, we may find § € G*(F) such that &' := (G, ¢, 7, h,d)
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lies in Cz(d); note that by strong regularity, the induced isomorphism of centralizers Ad(g) o
V: Za(8 ) ps — Zg+(0)ps, some g € G*(F*), is defined over F.

Let Sy denote the centralizer of vy in H, and S denote the centralizer of 6 in G*. Since vy
and ¢’ are related, we have an admissible isomorphism Sy — Z;(d') sending vy to ¢’. Post-
composing this map with the F-isomorphism Z5(d’') — S gives an admissible isomorphism
G50 Su — S which sends g to d, and is unique with these properties. This isomorphism
identifies the canonically embedded copies of Z in both of the torl and therefore induces an iso-
morphism ¢.,,, 5: Sy — S. If [S g]t denotes the prelmage of Sp H under the isogeny S H — Sy Hs
then the canonical T- equivariant) embeddlngs 7 (H ) — Sy . (H ) — S g induce a canonical em-

bedding Z ( )t [S u]*. If the group [S]™ is defined analogously, we have that d;; s dualizes
to a map [S ol — [ S|t (since ¢.,, s is defined over F') which further induces an embedding
Z(H)" — [S]".

We thus obtain from § € Z(H )" associated to our refined endoscopic datum an element $.,, 5 €
[S]*. Then we set

A[éa57 wa (9) B)]abs(%, 5/> = A[e73]abs('73a 5) . <iHV(5, 5/>a é’yH,5>_17 (62)

where the pairing (—, —) is as in Corollary 6.2.2 with G = S.

It is clear that we could have replaced (¢, .7, h) with any a-normalized Z-rigid inner twist
(&, (y, ¢*)) inits isomorphism class from the start, and defined the transfer factor using the invariant
of the corresponding class of (G, &, (y,¢*)),d’) in Cz(4, a). The last main goal of this paper will
be to prove that (6.2) defines an absolute transfer factor on . In light of the above discussion, it is
enough to work entirely with a-normalized Z-rigid inner twists for some fixed choice of a € u(Us)
with [a] = o In this context, & will denote the element (G, £, (y, ¢*), 8") € C4(6, a), and we denote
the function from (6.2) by Ale, 3,9, (v, ¢*)].

Before we prove this, we discuss the dependency of this factor on Z. Let Z’ be another finite
central F'-subgroup of G which contains F', viewed also as a finite central F'-subgroup of G*. We
denote by (y, (¢/)*) € ZY(F,Z" — @) the image of (y, ¢*) under the natural inclusion map, so
that (¢*) is ¢*: u — Z post-composed with the inclusion map, defining a Z’-rigid inner twist
(&, (y, (¢')*)). As with Z, we have a canonical F'- embedding 7' — H which commutes with our
embedding of Z and the inclusion on map, and weset H = H /Z'. Now we have an 1sogeny H-H
which dualizes to an isogeny H — H inducing a canonical surjection Z(H)* — Z (H )T

Choose a preimage 5 in Z (H )™ of , giving a refined endoscopic datum ¢ := (H,H, §,n). Note
that the point &' := (G, £, (y, (¢')*), &) equals ¢z z/(0') € C4(5). As we discussed in §6.1, we then
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have that
inv (8, 17.2(6") = i(inv(8,8"))

in HY(&,,Z" — S), where i is the natural map H'(&,,Z — S) — H'(,,Z" — S). One checks
easily that s, 5 maps to S, 5 under the dual surjection S — 5. The functoriality of the pairing
from Corollary 6.2.2 then gives us that

(V5. 6)). 51,08) = (inV(8,6), 8,10).

Since this factor is the only part of A[¢, 3, %, (y, (¢')*)]ans that depends on Z, we see that

Ale, 3,9, (Y @) ans (73, 9") = A&, 3,9, (9, (8)))]abs (73, 0')- (6.3)
Proposition 6.2.3 The value of Al¢, 3,1, (y, 0*)]aps(7;, 0") does not depend on the choice of 6, and

the function Al¢, 3,1, (y, &*)|ws is an absolute transfer factor. Moreover, this function does not
change if we replace ¢ by an equivalent refined endoscopic datum, or if we replace (G, &, (y, ¢*))

by an isomorphic (a-normalized) Z-rigid inner twist of G*.

Proof. We follow the proof of [Kall6], Proposition 5.6. For the independence of the choice of §
let g € G%.(F') be another element such that (G, £, (y, ¢*),d") € Cz(dy) and Ad(g’) o ¢, for some
¢ € G*(F?), induces an F'-isomorphism Z¢(8') — Zg+(do). By taking the composition (Ad(¢g') o
) o (=t o Ad(gt)), we see that § and &, are conjugate by an element ¢ € A(S) C G*(F*),
notation as in Chapter 5. Similarly, the element realizing the stable conjugacy of d and ¢’ may be
chosen to lie in G*(F*). From here, the same argument used in [Kal16] for the corresponding part
of the proof of Proposition 5.6 works in our setting—we can still use Galois cohomology and our
analysis of the local transfer factor in Chapter 5 lines up exactly with that of [LS87], §3.

As is remarked in [Kall6], invariance under isomorphisms of rigid inner twists is immediate
from the fact that inv(d, ') depends only on the isomorphism class of ¢’ in Cz (). Similar to our
justification of the fact that our function is independent of choice of 9, our discussion in Chapter 5
can be substituted for §3 of [LS87] and then the corresponding argument in [Kall6], Proposition
5.6 carries over verbatim to show that our function is invariant under isomorphisms of refined
endoscopic data.

The only work we need to do here is to show that Al¢, 3,1, (v, ®*)]as is indeed an absolute
transfer factor. This means that we need to show that

A[Q, 57 ¢7 (y’ gb*)]abs(/y;,,la 53) : A[e737 wa (y7 ¢*)]abs<73,27 6;)_1 - A[e7 d @Z}] (73,17 6/17 73,27 6;)

We emphasize that we still follow the corresponding argument in [Kal16], Proposition 5.6, closely.

Replacing ¢ by an appropriate refined endoscopic datum as in our construction of ¢ above, we may
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assume, using the identity (6.3), that Z contains Z(Z(G)). Choose 01,02 € G*(F') which are
stably conjugate to §7, 5. It’s enough to show that

<inV(51, 51,)7 S"/1,51>_1 - A[ea 3 w] (73,17 5&7 V3,25 5&)
7

(inv(82, 02 ), Syp.5,) L Ale, 3](v5.1, 015752, 02)

where we are using ; to denote the image of v, ; in He_(F'). To simplify the right-hand side, note
that in the definition of the bottom factor, we may choose our admissible embeddings Z(~;) <
G* to be the unique ones from Zy(7;) to G* that map ~; to ¢;. Then, as in the definition of the
factor A in the quasi-split case (see §5.3.3), we have that 75+ = , and hence we can take h = id
and so inv(v;, 8;) = 0 € HY(F, Zg+(6;)), giving Ay (71, 01572, 02) = 1. All of the Ay, Arr, Argr,,
and Ay factors of the numerator and denominator of the right-hand side coincide, and so all we’re
left with is

! ! . 76/
Arrr (71, 01572, 05) := (inv (% }) ,SU), (6.4)

where all the notation is as defined in §5.3.3.
Set Zy(vi) := SH, Zg(8)) := SI, and Zg+(5;) := S;; these are all maximal F-tori. Set

_SlXSQ

V: 206

where Z(G*) < S} x Sy viai~! x j . The homomorphism S; x S, — V defines a morphism
[Z xZ — 51 xS = [(Z x Z)/Z — V] in the category 7. We claim that the image in
HY(&,,(Z x Z))Z — V) of the element

(inv(51,51/)_1,inv(52,52/)) S Hl(ng X 4 — 51 X 52),

where inv(5;, 6; ) is defined as in §6.1, lies inside H'(F, V) (embedded in H'(E,, (Zx 2)/Z — V)
via the “inflation" map).

It is clear that the restriction maps H'(,,Z — S;) — Hompg(u,Z) factor as a com-
position of the maps H'(E,,Z — S;) — HY&,.,Z — G*) and HY(E,,Z — G*) =%
Homp(u, Z). Moreover, the image of inv(d;,d!) in H'(E,, Z — G*) is the class of the twisted
a-cocycle (p1(g:)yp2(g:)~", ¢*), where g; € G*(F) is such that Ad(g;)(8)) = &;, which is
just the class of the twisted cocycle (y,¢*) € Z'(&,Z — G). This means that the im-
age of (inv(él,51,)_1,inv(52,52/)) in Homp(u, Z x Z) = Homp(u,Z) x Homp(u, Z) equals
(Res((y, ¢*)) "1, Res((y, ¢%))) = (—9¢*, ¢*) which is zero in Hompg(u, (Z x Z)/Z). Whence,

the exact sequence
HYF, V) — HY(&,,(Zx Z)/Z — V) — Homp(u, Z)
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gives the claim.

Recall from §5.3.3 that U := ((S})s X (S2)sc)/Zs. where Zy. embeds viai~! x j (here we are
taking our admissible embeddings S — G* to be the unique ones that send ~; to &;); there is an
obvious homomorphism U — V. We now claim that the image of inv(vy, 0] /72, 8) € H'(F,U)
in H(F, V) coincides with the image of (inv(d;, 51/)_1, inv(ds, 52/)). From the rigidifying element
(y,¢*) € ZYE4, Z — G*),y € G*(F @p F), v~": Z — G*, we extract the Cech 1-cochain v,
which we will factor as @ - z with & € 2(G*)(F @ F) and z € Z(G*)(F ®p F); we can do
this because the central isogeny decomposition for G* is surjective on ' ®p F-points, owing to
the fact that H'(F @ F, Z(2(G*))) = 0. Letu € G%,(F ® F) be alift of 4. By construction

(see §5.3.3, using the fact that Ad(u) = Ad(z) = Ad(y) = pi¢ o piv~" on G%

= ®Ff)’ we have the

equality

ine (2580} — (ouma(o0) 1 (ol ) € UF 06 F), (69)
» Y2

whose image in V (F ®p F) coincides with the image of ([p1(g1)yp2(g1) 17", p1(92)yp2(g2) ™),
because, by design, y = @ - z for € Z(G*)(F ®@p F). This gives the claim.

Since the pairing from Corollary 6.2.2 is functorial and extends the Tate-Nakayama pairing for
tori, our desired equality

) A 1 !
<11’1V(517 (5'1/), 8717(51> — <1nV (’717 (5} ) , SU), (6.6)
(inv(d2, 02 ), $,.5,) 7205

will follow from our above calculations if we produce an element of [§]+ whose image in [Sgl]Jr X
[Slg]Jr via the map V- Sgl X SLQ dual to the projection map S; x Sy — V, where V := m, is
equal to (5., 5,, $1,,5,) and whose image in [ﬁ]Jr maps to sy under the isogeny [ﬁ]Jr — UT, where
U is formed from the object [Z(G%,) — U] € T. Indeed, if we find such an element v, then we

have the diagram

inv (71’53> € H'(F,U) sy eUT

V2,05

7((inv(61,8,)7, inv (0, 6,))) € HY(F,V) ve [V

™
~

(inv(dl, 51,)_1,inv(52,52,)) € Hl(ga, XL — Sl X SQ) (571,517 372752) € [Sl]+ X [SQ]+,

A

~ ~

where the top pair of elements are the inputs of the pairing in the right-hand side of our main

desired equality, the bottom pair of elements are the inputs of the pairing in the left-hand side of
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that equality, and by functoriality their pairings both equal the pairing of the two elements in the
middle line.

The argument for the fact that we can find such an element of [V]" is identical to the corre-
sponding argument in [Kal16], proof of Proposition 5.6. U

6.3 The local Langlands conjectures

We now use our constructions to discuss the Langlands correspondence for an arbitrary connected
reductive group defined over a local function field F'. This section is a summary of §5.4 in [Kall16].

Let G* be a connected, reductive, and quasi-split group over F’ with finite central F'-subgroup
Z which is an inner form of our fixed arbitrary connected reductive group G. Fix a Whittaker
datum vo for G*, which recall is a G*(F')-conjugacy class of pairs (B, (p) consisting of an F'-
Borel subgroup B C G* and a non-degenerate character (5 : B, (F) — C*, where the subscript u
denotes the unipotent radical. We may view the group Z as a finite central F-subgroup of G, also
denoted by Z, with G := G'/Z as before.

Definition 6.3.1 Given a quasi-split connected reductive group G* over F, we write I1"8(G*) for
the set of isomorphism classes of irreducible admissible representations of rigid inner twists of G*
(see Definition 6.1.9). Define the subsets T1%,(G*), Tl (G*), TT;¥(G*) to be those representations

unit

which are unitary, tempered, and essentially square-integrable.

Let ¢: Wi — "G be a tempered Langlands parameter, which means that it’s a homomor-
phism of W-extensions that is continuous on W, restricts to a morphism of algebraic groups on
SLy(C), and sends Wy to a set of semisimple elements of “G' that project onto a bounded subset
of G(C). Setting S, = Zg(p), and ST its preimage in a we have an inclusion Z <§)+ c S
which induces a map 7 (Z (é)*) — mo(S) with central image. Denote by Irr(mo (S )) the set of

irreducible representations of the finite group 7TO(S;r ).

Conjecture 6.3.2 There is a finite subset 11, C Hgﬁw(G*) and a commutative diagram

|

HY(E, 7 — G*) —— 70(Z(G)H)

in which the top map is a bijection, the bottom map is given by the pairing of Corollary 6.2.2,
the right map assigns to each irreducible representation the restriction of its central character to
70(Z(G))*t, and the left map sends a representation (G1, &1, 7, h, ) to the class of F,. We also
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expect that there is a unique element (G, idg, Gg,idp, ™) of 11, such that  is vo-generic and the

map Ly, identifies this element with the trivial irreducible representation, see [Sh90], §9.

For 7 := (Gy,&1, 7, hi,m) € II,,, denote by (—, ) the conjugation-invariant function on
To(S}) given by the trace of the irreducible representation ¢, (7). We let ©; denote the distri-
bution on G5(F') for any isomorphic rigid inner twist (G2, &2, %, he) given by transporting the
Harish-Chandra character ©,, associated to m; to G(F’) via any choice of isomorphism of rigid
inner twists—note that by Corollary 6.1.4 this distribution does not depend on the choice of iso-
morphism, justifying the notation. For a fixed rigid inner twist (¢, .7, h): G* — G enriching our
inner twist ¢y~ : G, — Gs, we define the virtual character

SO, =eG) > (1,70 6.7)

#€ll,, i [T]

and for semisimple $ € S7(C) we set

@i,m,g,(ﬂ,ﬁ) = e(G) Z (8,7)O%. (6.8)

el [T

Here e(() denotes the sign defined in [Kot83]; we expect SO, ¢ (7 ) to be a stable distribution on
G(F), as defined in [Lan83], L.4.

The element s also defines a refined endoscopic datum ¢ as follows: Let s € S,,(C) be the image
of §, set H = Zg(s)°, set H = H(C) - (W), and take n: H — “G to be the natural inclusion,
and define ¢ = (H,H,n, $). Take also a z-pair (Hj, ;) corresponding to the endoscopic datum e
associated to the refined datum ¢, which induces a tempered Langlands parameter ¢, := 7, o ¢.

According to §5.5 in [KS12], we may define a Whittaker normalization of the absolute transfer
factor for quasi-split groups, denoted by A'[e, 3,1]: H, ¢ _o(F) x G5(F) — C associated to our
Whittaker datum tv. We briefly describe this normalization: using the notation of Chapter 5, we

set
A/[eazv ] = e (V,¥r) (A1A) ' AApy,

where e (V,1r) is a 4th root of unity associated to a specific virtual representation V' of I" (and
thus of Wy) coming from ¢ and tv, together with a choice of additive character ¥p: F' — C*; for
details, see [KS99], §5.3. The important takeaway is that the construction of the normalization
factor €1, (V. 1r) can be done uniformly for all non-archimedean local fields. One deduces from
the arguments in [KS99] §5.3 that this still defines an absolute transfer factor for related strongly
regular elements of /; and G* which depends only on tv.

As a consequence, we may combine this normalization with our new absolute transfer factor

(6.2) to obtain a normalized absolute transfer factor for general connected reductive groups over
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F’; we use the same notation as in our transfer factor formula (6.2). We then set
A/[é,;,, w, Y, (7, B)](fyé, &) = A e, 3, 10](;,0)(inv (6, 5’), $n5)- (6.9)

Note that we have switched the sign of (inv(d, 0’), §, 5) so that our formula agrees with the sign
changes in the factors defining A'[e, 3, 1v].

Then if f¢ and f are smooth compactly supported functions on H,(F) and G(F') respectively,
whose orbital integrals are A'[¢, 3,1, 1), (.7, h)]-matching (as in [KS99], 5.5), we then expect to
have the equality

SO, id (Geia) (f) = @i,mf,(y,ﬁ) (f)-
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CHAPTER 7

The Global Canonical Class

This chapter concerns the construction of the pro-algebraic group Py, which will be a global
analogue of the local group u, as well as an analogue of the local canonical class. For a fixed a
finite Galois extension £/ F of a global function field /' and S C V a finite set of places of F', we

have two common conditions that we want .S to satisfy:

Conditions 7.0.1 1. S contains all of the places that ramify in £

2. Everyideal class of E contains an ideal with support in Sg, ie., the group Cl(Og g) is trivial.

As in the previous section, we use H* as a short-hand for H? ..
fppf

7.1 Tate duality for finite multiplicative /

The goal of this subsection is to construct an analogue of the global Tate duality isomorphism from
[Tat66] for the cohomology group HE, «(F, Z) = H?*(F/F,Z), where Z is a finite multiplicative
group over F'. Temporarily fix a finite set of places S C V a multiplicative group M over Opg
split over E'; denote X*(M) by X, and X, (M)(= X.(M°)) by Y.

For v € S a fixed place, we denote by Resg (/) the multiplicative O g-group split over the
finite étale extension O g determined by the I';/p-module X ®zZ[{v} 5| =: X[{v}g] (via the cor-
respondence between finitely-generated Auto,, (Ops)=Tg ,r-modules over Z and multiplicative
Op,s-groups split over Op g given by [Gil21, §17]). We set Resg s(M) = [],.sResg (M), an-
other multiplicative O g-group split over O g, with character group X[Sg]. Note that we have
an embedding M — Resg/g(M) via the augmentation map on characters X[Sg| — X; denote
the character module of the cokernel of this embedding by X [Sg]o (the kernel of the augmentation
map).

Global Tate duality for tori (as in [Tat66]) shows that there exists a class

Resg 5(G,y)

as(E, S) € H*(Cyr, G

(On.s))
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such that cup product with this class induces for all 7 € Z an isomorphism
[/—\[i72(rE/F7 Y[Sklo) = ﬁi(FE/Fa T(Og,s)),

where to make sense of the relevant cup product pairing, we are making the identifications

Resg s(Gy)

Y XKz Z[SE]O = H0m2<X, Z[SE]O) = HomoEVS_gp( G

,T).
We no longer fix 7" and S as above. Let Z be a finite multiplicative group defined over F’, set
A= X*(Z)and AY = Hom(A, Q/Z). As mentioned above, our temporary goal is to construct a

functorial isomorphism

O: %ﬂ ﬁil(rE’/FwAV[S/E’]O) = H2<F7 Z>7
E'S
where the limit is over all finite subsets S’ C V' and finite Galois extensions £’/ F. Choose a finite

Galois extension £/ F splitting Z and a finite full subset S C V such that S satisfies Conditions

7.0.1 with respect to £ and the following additional condition:

Conditions 7.1.1 For each w € Vg, there exists w' € Sg such that Stab(w,T'g/p) =
Stab(w’,FE/F).

It is straightforward to check that such a pair (F, S) always exists, and that if S C S’ is finite and
full, then it also satisfies Conditions 7.0.1 and 7.1.1 (with respect to E).

Note that for n a multiple of exp(Z), we have a functorial isomorphism

R R
( CSE,S(ﬂn)’Z) _ Homos( CSE,S(Mn)

(I)E,S,n: AV [SE]O :> HomOE,S Lin Lin

), (7.1)
which sends the map g € AY[Sg|o to the homomorphism induced by the map A — (Z/nZ)[Sklo
defined by

a > ng(w)(a) - w), (7.2)

weSp
where g(w) denotes the AY-coefficient of [w] in g.
Fix a cofinal sequence {n;} in N* and denote the associated cofinal prime-to-p sequence by
n; := n;/p™. Identifying Resg/5(G,)(Og) with Maps(Sg, Og ) in the obvious way, we may pick
functions
k;: Maps(Sg, Of) — Maps(Sg, OF)

such that k{(z)" = x and k., (z)"+/™ = k!(z). Under the bijection between Cech cochains in

117



(039 n
Resg/s(Gn)(Og ™5 ) and C"1(T's, Resg s(G,p ) (Os)) (via Lemma 3.2.1) this also defines an

analogous map

®0F,S” ®oF’S"
S S

k;: Resps(Gyy,) (O ) = Resgs(Gyy,) (O )

for all n. In the above we are using the fact that Og is n-divisible for n coprime to p (see [NSWOS,
Proposition 8.3.4]).

As in the local case, we want to extend this to p-power roots. First note that the map

®OF,S "

R n
Resp,s(Gm)(Op,s )%M ®op s

Gm (OE,S )

[o39] n
is surjective, since H 1(OEEF " G,,) = 0, by combining the proof of Lemma 3.2.1 with
the fact that H*(Og 5,G,,) = 0, since Og s is a principal ideal domain. It follows that we

may lift a cocycle representing a3(E,S) € IEIQ(OE,S/OF,S, M%"EGT")
Qo .3
ResE/g(Gm)(OEgF’S ). We may then take

) to an element cp g €

ki(cps) € C**(0s/Ops,Op,s,Resp/s(Gy)) :=Resgs(Gm)(Os @0, Op,s ®o,.s Op,s),

and the right-hand side may be interpreted explicitly as

H (Os ®@0p.5 O,s @05 OF,5) -

wESE

As in the local case, it is straightforward to check that for every x € Og ®0p.5 Og,s ®op.s OF,s
and power p™, we may find a p™ith root z(/?™) ¢ O%" ®ops Or,s ®ops Op,s such that the

pitL /pmi

resulting system of roots satisfies (z(1/P""1)) = (/™) Applying this across all w €

Sk, we may define an analogous map
(—)(1/”7%) : Resg)s(Gm)(05®0,.s08,5®0,,5s0E,5) — ReSE/S(Gm>(Og‘elf@Op,sOE,S@OF,SOE,S)‘

We then set oy, ;(E, S) to be the image of (k;z((cEjs))(l/pmi) in [Resp 5(Gm) /Gl ((Ogerf)tg)oﬂs 3).
‘We then obtain .
doy,i(E, S) € Z**(05"/Ops, Op.s, M);

ng

and define the map
Ops: H ' (Cpp, AV[Splo) = HX(OF"/Ops, Z),

— doy b, S U ,
g ( ) Og,s/OF,s g
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the pairing r
Ay x [

is given by (7.1) and we choose n; so that it is divisible by exp(Z). One checks that this map does

¢ —> 7 pert
oy" ox"

not depend on the choice of n;.
As in [Kal18], we have the following important lemma which connects the above map to the
global Tate duality pairing for tori discussed above (whose corresponding isomorphisms for various

tori and Tate cohomology groups will all be denoted by “TN", for Tate-Nakayama):

Lemma 7.1.2 Let T be a torus defined over I and split over E, and let Z — T be an injection with
cokernel T, all viewed as O g groups in the usual way. We write Y = X, (T) and Y = X.(T).

Then the following diagram commutes, and its columns are exact.

ﬁf—l(rE/F,Y[SE]O) —N s AYOps/Ops, T) — H (O%"/Ops,T)

v l ~

H ' (Tgp, Y[Sglo) —2= H'(Ops/Ops, T) —— H'(O%¥7/Ops,T)

~ ~

7 Og, g er]
H Y (Tg/p, AY[SEo) > »y H2(O%"/Ors, Z)

2 ~

—TN

HO(Cpyp, Y [SElo) —2 H2(Op.5/Ops, T) — H2(O%7/Ops, T)

~ l ~

H(Tpyp, Y[Sklo) —= H*(Ops/Ops, T) —— HX(OX7/Ops,T)

Proof. The right-hand isomorphisms on the first two lines follow from the fact that all 7-torsors
over Opg are trivial over Opg. The right-hand column is exact because, applying the iso-
morphisms H*(OX"/Opg, M) = H'(Opg, M) fori = 1,2 and M = T, T, Z, the resulting
two-column diagram commutes, by functoriality of the Cech-to-derived comparison maps and in
[Ros19, Proposition E.2.1]. From here, the identical argument as in [Kall8] gives the result, us-
ing the fundamental properties of the unbalanced cup product on fppf cohomology discussed in
§3.4. O

Corollary 7.1.3 The map Og,s is a functorial injection which is independent of the choices of
cr.s ki, and (—)1/P"),

Proof. As in the proof of [Kall8, Proposition 3.2.4], we may choose Y to be a free Z[I's,r|-

module, which implies that the connecting homomorphism of the left-hand column is injective,
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and O g is the restriction of “—~TN", which is an isomorphism that does not depend on the choices
of e g, Ky, or (—)1/P™), O

Recall the local analogue of ©p ¢ which, if © € Sp, with restriction to F' (and to E, by abuse

E? o 3) represents the canonical class of H*(I'g, /5, , EY),

of notation) denoted by v and ¢, € G,,(
is defined by
Opym: H ' (Tiyp,, AY) = H(Fy/Fy, Zr,),

—da, U P, (9),
g daw U .(9)

where o, € F, ® F, F,® r, Iy 1s an n;th-root of c,, chosen in an analogous way to cg g above.
This is also a functorial injection, independent of the choices of 7, c,, and «,.

To compare this local construction to the above global analogue, first note that we have a ho-
momorphism of I'g, /p, -modules AY[Sp]o — AY given by mapping onto the v-factor, as well as
an O g-algebra homomorphism (Ogerf)@)oﬂs i E®F +? determined by v, giving a group homo-
morphism Z ((Ogerf)@’oﬂs oz (E@)F v 3). Then [Kal18, Lemma 3.2.6] shows that the resulting

square
f‘jila_jE/F, AV[SE](]) _—TN> HZ(OpSerf/OF’S, Z)

! J

ﬁ_1<FEv/Fu7Av) _—TN> HZ(E/F;HZF'U)

commutes, where to obtain the right-hand vertical map we are using the fact that the homomor-
phism Z ((O‘S’,elf)®oﬂs 3) — 7 (E®F v 3) preserves Cech cocycles and cochains, which is straight-
forward to check.

Following [Kal18, §3.2], we now collect some basic functoriality properties of the map O s.

The proofs are identical to the proofs loc. cit, so we state the results and refer to [Kal18].
Lemma 7.1.4 The natural map H*(O%"/Og, Z) — H*(F/F, Z) is injective.

Proof. The proof of [Kall8, Lemma 3.2.7] works verbatim here, replacing H*(I's, M (Og)) with
H{(O%"/Opg, M) for M =T,T,Z and i = 1,2. O

Let K/F be a finite Galois extension containing F, and let S be a finite set of places of F
satisfying Conditions 7.0.1 and 7.1.1 with respect to K/ F'. Then [Kal18] defines two maps on Tate
cohomology, the first from ]Tlfl(FE/F, AV[Sge) to H! (I'g/r, AY[SE]o) induced by the inclusion
S C &', and the second map, denoted by !, from H~'(T'/p, AV[Sg]o) to H™(Txc/p, AV[Sk]o)
given by choosing a section s: S, — S of the natural projection Sj — S and then defining
s1: Z[S%lo — Z[S%|o by sending [w] to [s(w)]; it is shown in [Kall8, Lemma 3.1.7] that passing
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to —1-degree Tate cohomology (and tensoring with AY) gives the claimed well-defined homomor-

phism. Now we have the analogue of [Kall8, Lemma 3.2.8]:

Lemma 7.1.5 Let K and S’ be as above. Then both of the above maps are injective, and fit into
the commutative diagrams:

Op, s

77 Ops ~ er 77— ’ V e
H YT g/r, AV[Sglo) — H*(O%"/Ors, Z) H ' (Tgp, AV[Sylo) =3 H2(O%" |Ops, Z)

l i ! |

Ty Ops erf r— / Ok er,
H ' (Tgyr, AY[Sy]o) —5 H*(O%" /O, Z) H ' (Cg/p, AV[Silo) —5 H*(O%7 |Op.s1, Z).

Proof. The proof of [Kall8, Lemma 3.2.8] works verbatim here, replacing the diagram of Lemma
3.2.5 loc. cit. with the diagram from our Lemma 7.1.2. [

We then get the main result of this subsection, which characterizes the cohomology group
H?*(F, Z):

Proposition 7.1.6 The maps O g splice to a functorial isomorphism

O: lim H (T, AY[S)o) — H*(F, 2),
E

where the limit is over all finite Galois extensions E | F splitting Z and S'¥) denotes an arbitrary

choice of places of V satisfying Conditions 7.0.1 and 7.1.1 for E | F such that if K/E/F, we have
SE) < SE) (by Lemma 7.1.5, the above map does not depend on the choices of the SF)’s).

Proof. This proof closely follows the proof of [Kall8, Corollary 3.2.9]. It is enough to prove the
result with H2(F, Z) replaced by H?(F/F, Z). By Corollary 7.1.3 and Lemmas 7.1.4 and 7.1.5,
we obtain a functorial injective homomorphism O as claimed, which is independent of the choices
of (appropriately chosen) S#), so all that remains to prove is surjectivity.

For any h € H*(F/F,Z), we may find E’/F finite such that h € H?(E'/F, Z); denote the

Galois closure of F' in E' by E, so that £/ = E - F,, for some unique m € N. Moreover,

3
@]
since F'®r3 = hg <) O, ST‘ES;E) , where the direct limit is over all finite S) C V satisfy-

ing the required conditions with respect to £/ F, there is some finite S(*) satisfying the required

3
o
conditions with respect to E/F such that we can find hg g € Z (OE,7 S’?;)(E)

in Z(E'®r3) — H*(E'/F,7) equal to h. We may enlarge S¥) even further to assume that

) with image

Y Ro 3
hg s € Z*(Op s /Op s, Z), since the Cech differential on Z(O,, ng)“f) ) is the same as
that of Z(E'®x?), and we may use finitely many elements of /' and £’ to encode the fact that

dhy g = 1in Z(E'®r*). Denote by hy, g the image of hy g in H2(Opy gw) /Op s, Z).
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Once we have such an l_-LE/’S(E), choose an Opg-torus Z — T with T = T/Z such that
Y = X,(T) is free over I'gr, and denote the image of hy gz in H*(Op gr)/Op g, T) by
h g5 r. Note that we have a commutative diagram of isomorphisms from Lemma 3.2.12:

HZ(OE,S@)/OF,S(EMT) — FIQ(OE/,S<E>/OF,S(E%T)

! !

H*(Op ) /Op g, T) —— H*(Op g /Op s, T),

and so we may pick a (unique) preimage, denoted by hy, gx) 1, of b g 1 in H*(Op,s/Ops, T),
and by the commutativity of the diagram, the image of iy gz 1 in H2(Op gz /Op.gim, T) is zero.
We may thus lift TN~ (hy gm) 1) € HO(Tgp, Y[S$)g) to some g € H- (T, AV[SS7)5), and
then the same argument as in [Kal18, Corollary 3.2.9] shows that

Op s (g) € H* (O, /Op g, Z)

has image in H?(F/F,Z) equal to h, as desired (even though we need to take the image of
hg s 1 in H*(Op,s/Or,s, T), the argument of [Kal18] uses that the image of their © ; g (g) in
H?*(F/F,T) is the same as that of h, which is still true for our g obtained via the above adjustment
for non-separability). ]

7.2 The groups Py, Spm

Let E/F be a finite Galois extension, S C V a finite full set of places, and S £ C Sg a set of lifts

for the places in S. When working with a multiplicative O s-group M, we will frequently work

with H2(O%" /Op.g, M) rather than HE ¢

by Corollary 3.2.10. We assume that the pair (.5, S ) satisfies the following:

(Op.s, Z); these two groups are canonically isomorphic

Conditions 7.2.1 1. S contains all places that ramify in E.
2. Every ideal class of E contains an ideal with support in Sg (i.e., Cl(Og.s) = 0).
3. For every w € Vg, there exists w' € Sg with Stab(w,I' g p) = Stab(w',I'g/p).
4. Forevery o € I'g,p, there exists U € SE such that o0 = 0.

Pairs (S, S) satisfying these conditions always exist, and if (S, S%,) contains (S, Sg) (in the

obvious sense) and the latter satisfies these conditions, then so does the former. For notational ease,

Resp, s (pn)
Hn

denote the group introduced in the previous subsection by Ry s[n]. For a fixed n € N,
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we first set Pg 5, to be the multiplicative OF,s-group split over O g given by character I'; /-
module consisting of elements of Z/nZ[I"'g,r x Sg| killed by both augmentation maps, denoted
by Z/nZ[I'g/r % Sgloo-

We then define the multiplicative group P ¢, to correspond to the I'p,p-submodule of el-
ements v € Z/nZl'g/p x Sglop such that z[(o,w)] = 0if w ¢ o(Sg). As another piece of

notation, we set X*(Pgsn) =@ Mgps, and X*(Ppg¢ ) = My We have the following

7SE n’
purely character-theoretic lemma from [Kall8]:

Lemma 7.2.2 Let A be a Z[I" g/ p|-module which is finite as an abelian group.

1. If exp(A) divides n, then we may define a homomorphism
\I/Eﬁ’nt I‘IOI’I’I(A7 ME,S,n>F — Zil(FE/F, AV[SE]()), H— h,

where h 1= ) hy [w], with hy,: A — Q/Z defined by h,,(a) = H(a)|(e, w)] (identify-

weSE 'YW

ing %Z /Z with Z/nZ via multiplying the left-hand side by n and taking the residue modulo
n). Furthermore the above map is an isomorphism of finite abelian groups, functorial in A,

which restricts to an isomorphism

Hom(A, My s )" — AY[SploN Z7 (T gyr, A”[SE]o).

2. For n | m, the isomorphisms Vg g, and Vg g, are compatible with the natural inclusion

Mp g, 0 = Mp g, m- Setting Mp,s = lim Mp,s,,, we thus obtain an isomorphism

\I’Eﬁi Hom(A, ME75)F — Z\_l(FE/F,Av[SE]Q).
3. The map
AV[SE]O N Z_l(FE/F, AV[SE]O) — H_I(FE/F, AV[SE]())
is surjective.
Proof. See [Kall8, Lemma 3.3.2.]. L]

Now for fixed n € N and A a Z[I" 5, p|-module which is finite as an abelian group with corre-

sponding O s-group Z such that exp(A) divides n, we obtain a map

Of ;. . Hom(Pyg, . 2)" 222550 (00 O, 7), (7.3)

SE,n’
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note that this map is functorial in the group Z. Now for A = My ¢ ., we have the canonical
element id of the left-hand side of (7.3), and we define &5, 5, € H*(O%"/Ops, Py g, ,,) to beits
image.

Note that for n dividing m, the natural inclusion of character modules My ¢, — Mp¢ .,
induces a surjection of Opg-groups Py ¢ .. — Pp ¢ .. We have the following result about how

the elements £y, ¢, change as one varies n:

Lemma 7.2.3 For n | m, the induced map H*(O%" /O3, Py gom) = H*(O%" | Ops, Py g n)

maps SE,SE,m to §E,S~E,n.

Proof. After invoking the functoriality of O g, the argument is purely character-theoretic, and
thus the proof of the analogous result (Lemma 3.3.3) in [Kall8] carries over verbatim to this

setting. O

We will now see how the groups Pj ¢, behave when we vary the field extension £ /F. For
(S, S7) satisfying Conditions 7.2.1 with respect to the finite Galois extension K/F and m € N,
we write

(E,Sp,n) < (K, Sk, m)

when K contains F, S C 9, and S C (S}()E Note that given £, (.5, SE), and K, one can
always find such a pair (S, S%.). For (E, Sg,n) < (K, S}, m), we may define a homomorphism

of I'g/p-modules from My g, ., to My ¢ ., (with inflated action on the left-hand side) given by

Z amw[(gv w)] = Z a77uE[(77 u)]>

(o, w)El'E, P XSE (77,u)

where the right-hand sum is over all pairs (v, u) in I p X S such that v 'u € Sh N Sk, and 5
denotes the image of y in '/ . Again, we get the following result from [Kall8] (Lemma 3.3.4):

Lemma 7.2.4 For any I' g p-module A which is a finite abelian group with exp(A) | n, the follow-

ing diagram commutes

P .
E,Sg,n

HOWL(A, ME,S‘E,n)F HQ(O‘I;EUP/OE& Z)

[ J

K,S’ ,n

HOm(A, MK,S}{,TL)F % H2<OI;€/" /OF,S/a ZOF,S’>’

where the left-hand vertical homomorphism is induced by the map from My, ¢ to M $rem dis-

cussed in the above paragraph.
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According to [Kall8, Lemma 3.3.5], we get the hoped-for coherence between the canonical

classes { ¢, ,, discussed above:

Lemma 7.2.5 The homomorphism FIQ(O’;,’ orxs PK,S}{,n) — P[Z(ng /OF.s, (PE,SE,n)OF,s/)

maps . g1 10 the image of {p, ¢, under the inflation map
72 ( OHperf 72 ( OHperf
H*(OY /OS7PE,SE,n) — H*(0%"/Os, (PE,SE77L>OF,S/)'
Moreover, it is straightforward to check that for n | m, the following square commutes:

MEst7n ME7SE’m

| |

MK,S}(,n MK,S}(,m‘

Fix a system of quadruples (E;, S;, S ;M )ien such that (S;, Sl) satisfies Conditions 7.2.1 with
respect to the finite Galois extension F;/F, the F; form an exhaustive tower of finite Galois ex-
tensions of F', the S; form an exhaustive tower of finite subsets of V/, the n; form a cofinal system
in N*, we have the containment S; C (Siﬂ) g, for all 4, and n; | n;4, for all . Such a system

evidently exists. Note that V= lglz S; is a subset of Vi of lifts of V, and the group
Py :=lm Py, ¢ .

is a profinite algebraic group independent of the choice of system (n;);cy Which carries the natural

structure of a hﬂz Ors, = F-scheme. Note that for any finite /'-group Z, we obtain from the

P .
E;,Sin;

maps © (and Lemma 7.2.4) a homomorphism

Or: Hom(Py, Z)" — H*(F/F, Z)(= H*(F., 2)),

which factors through the homomorphisms

P

Hom(P,, 4 ,., Z)" —% (0% /O, Z) — HA(F/F, Z) (7.4)

INCIRE
for all sufficiently large i, and hence is surjective, since we may choose i with exp(Z) | n; and
invoke Lemma 7.2.2 and Proposition 7.1.6 to deduce the surjectivity of the map (7.4) for all suffi-
ciently large 7 > 1.

From [Kall8, Lemma 3.3.6], we have the following alternative characterization of

Homp(Py,, Z) for Z a finite multiplicative ['-group:
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Lemma 7.2.6 Let Z be a finite multiplicative F-group and A = X*(Z). Let AV[V]y denote the

kernel of the augmentation map AY|V| — AY. Then we have a natural isomorphism
HOI’I’lF(PV, Z) :> AV[V]O

We conclude this subsection by discussing some local-global compatibility regarding P, and

its local analogues w,. For a fixed place v € V/, recall the multiplicative F,-groups

Resp, /r, (1in) .
uEv/Fv»n = —7uv = w uEu/Fvv'r“
Hn Ey/Fyn
where the former groups are finite and the latter group is profinite, see §4.1. For Z a finite multi-

plicative F,-group with exp(Z) | n, denote the isomorphism
Hova (uEu/Fv7n7 Z) — 2_1 (FE'U/F'U7 Av)

by ¥, ,—these are the local analogues of our maps ¥, g ..

We now define a localization map

locf: uy, = (Py)p,
for a fixed v € V. Fix E/F a finite Galois extension along with a triple (S, Sg,n) such that
(S, Sg) satisfies Conditions 7.2.1 with respect to E/F. Then if Ip, /F,n denotes the character

group of ug, /p, , (Which is just Z/nZ[I'g, /r,]o), we may define a map

locy BSBm Af I
0Cy : E.Sg.n - Ey/Fyns
given by

H= Y  cullow]— > o] =H,.

(o, w)El R/ P XSE (o), 0€TE, /1,

This is a well-defined homomorphism of I'g, ,r,-modules, and hence induces a morphism of
F,-group schemes lochE’SE’": ug, /o — (Pggp.)F,- Itis clear that these morphism glue as
we range over all 4-tuples (E;, S;, S;, n;), so that we get an induced homomorphism of profinite
F,-groups loc’: u, — (Py)F,, as desired.

For a finite F'-group Z, there is a local analogue of the map @‘1; : Homp (P, Z) — H*(F/F, Z)

constructed above, which we denote by

0, : Homg, (u,, Z) — H*(F,/F,, Z)
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and is defined by @i(@( E)om: © Y (), m,) (see our §7.1 for the definition of the © , ,-maps). The
following result, once again from [Kal18], shows that these local maps agree with the global map

@5 after localization:

Lemma 7.2.7 For E/F finite Galois splitting Z, (S, Sg) satisfying Conditions 7.2.1 with respect
to E, n € N a multiple of exp(Z), and v € V (with Op, 0 =: v, by abuse of notation), the

following diagram commutes

P .
E,Sg,n

Homp(Py ¢ .. 7Z) H*(F/F,7)

P .
E.Sp,
llocv Bon l

u

(S} o
Hova<uE1)/Fv7n7 ZF’L}) ﬂ) HQ(F’U/FU7ZF»U)7

where the right vertical map is induced by the inclusion F — F,, determined by 0.

Recall from Lemma 7.2.3 that elements &; := &, ¢, ,, form a coherent system in the projective
system of groups { A 2(Og‘:nc/ Or,s,, Pg, g ) }i- We also have (by Lemma 7.1.4), for all 4, injective
homomorphisms

ﬁQ(Ogirf/OF,Sm PEi,Si,ni) — Eﬂ(F/F, PE,-,Si,n)a

and hence the element (;); may be viewed as an element of Jm, H*(F/F, Py g,n,) Let&, €
H*(F,/F,,u,) = Z denote the canonical class obtained by taking the preimage of —1 € Z. We

may now deduce the final result of this subsection:
Corollary 7.2.8 Forv € V, consider the maps
H*(F/F,Py) = H*(F,[F,, (Py)r,) < H*(F,/F,, u,),

where the left map is induced by the inclusion F — F,, determined by © and the right map is locf .
Ifé € H*(F/F, Py) is any preimage of (£;) (which exists by Lemma 2.5.4) then the images of &

and &, in the middle term are equal.

Proof. We claim first that the natural homomorphism

H*(F/Fy, (Py)r,) = Yim HP(F,/Fy, Py, 5,.,,)

is an isomorphism. To simplify notation, set P, := (Pp )r,; by Lemma 2.5.5, it suffices to

990, MG

show that @51) H'(F,/F,,P;) = 0 and l'glgl) B'(i) = 0 (using the notation of the previously
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cited lemma). By [RZ00], 2.2, this vanishing would follow if we knew that these systems con-
sisted of profinite groups with continuous transition maps. For B (i) := d(P;(F},)), this trivially
follows because each P; is finite over F},, and so this is a system of finite groups. Moreover, the
system { H'(F,, P;)} has this property as well, since by [Mil06], Theorem 6.10, each H'(F,, P;)
is Pontryagin dual to a discrete torsion group (and therefore profinite), and the transition maps are
continuous, since they come from dualizing morphisms of discrete torsion groups.

The isomorphism we just proved implies that the map H?(F/F, P;) — H?*(F,/F,,(Py)r,)

factors as the composition
[:]—Q(F/F7 PV) - 1&1 [:[2 (F/F7 PEZ,SZ,TLZ) — l&n [:[2(E/FU7 (PEi,Si,ni)Fv)7

where the second map is the inverse limit of the obvious maps for each 7. It is thus enough to

P . ~ _
show that, for each 4, the map loc, """ sends &(g,), n, € H*(F,/Fy, u(g,),/F,n;) to the image of

K3

€, 4, n, under the map
‘H2 (F/F7 PEI,SZ,wq) — ‘[:I2 (E/F'l” (PE17SZ,7ZZ)FU)

Once we have reached this step, we get the desired result from the proof of [Kal18, Corollary 3.8],

which may be followed verbatim here. 0

7.3 The vanishing of H'(F, P;;) and H'(F,, (P;)r,)

In the local case, an instrumental property of the groups u,, was that H'(F,u,) = 0; our goal in
this subsection is to prove the analogue for /7, and its localizations.
The following alternative characterization of My ¢, will be useful: As a I'g/p-module,

Mp, g, ,, 1s canonically isomorphic to the subgroup of elements

T = Z aopl(0,v)] € Z/nZ T g/r x S|

(U,U)EFE/FXS

such that >
Sp)and Y, _gag, = 0 forall § € T'/p, with I'/ p-action given by

oery, . Wow = Oforalld € I'g/p, v € S (Where v € Sg denotes the unique lift of v to

O Y @)= Y a(rov)l.

(U,U)GFE/FXS (O’,’U)GFE/FXS
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The proposed identification is given by

Y. aullew]= Y anwsl(o,0)).

(U,w)EFE/FXSE (O',U)EFE/FXS

As a consequence, we get the exact sequence of I'/p-modules
1 1
0— ME $pon — —Z/Z[FE/F X S]o — —Z/Z[SE]O — O,
b b n n

where we identify Z /nZ with %Z /7 via 1 — 1/n (as above), the middle term denotes the kernel
of the augmentation map ~Z/Z(T'gp, S] — +7Z/7Z[S], and the second map is defined by

Z aoﬂ)[(‘j:v)] = Z ( Z a977v)[01>]5

(U,’U)EFE/FXS (Q,U)EFE/FXS TGF%/F

for a proof of exactness, see [Kall8, Lemma 3.4.2].
Set p? = [I,cs tn- At the level of O g-groups, the above exact sequences identifies Ppson

with the quotient
Respr(tn)/
Resg s(tn)/pn

where the embedding Resp s (41, )/ ptn — Resp (i) /s is induced by the embedding

Resp s(tin) — Resp/r (i)

given on the direct factor Res g, (f1n) = Resga.s p(11n) by taking inclusion into the vth factor j,, —
pi5;, applying Resa.o ) (—), and then applying the natural map Respa.i r(s15)) < Resg/p(f)).
Under these identifications, the transition maps Py & ., — Pp g, ,, become (after making the

above identification), at the level of character groups, the maps

ME,SE,n — MK,S}(,TW Z aUﬂJ[(0-7 U)] = Z aﬁ:”[(’% ’U)],

(U,U)GFE/FXS (’Y,'U)EFK/FXS

which is well-defined because S C S’. At the level of F-groups, this is the map

Resic/r(pm)/ 1, Reswym() /1
Resk s (,um)/,um Resg s (,Un)/ﬂn

induced by the homomorphism Resg/r(1i5, ) — Resg, () defined by composing the norm map
Resg r(p5,) — Resp/p(us ) with Resp/r(—) applied to the composite map p5, — 45 given by
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the projection map 15 — 15 and (on each component) the 1 /n-power map j,,, — fi,,. Note the
similarity to the local transition maps ug,/r, m — Ug,/F, » defined in §4.1. The transition maps fit

into a commutative diagram of I'/p-modules

0 —— Mpg, , — +Z/Zgr x Slo —— +Z/Z[Sgly —— 0

! I |

0 —— MK,S}(,m — %Z/Z[FK/F X S/]() — %Z/Z[S}{]O — 0,

where the middle map is induced by the map Resg/r(u5;) — Resg/r(5) as described above, and

the right-most map is defined by

Y.l Y (#Hlgp)agusl(r W)

(o,w)eT g/ p xSk ()€l K/ F X SK

The following result is a key first step in the argument for the desired cohomological vanishing;

it is a simpler version of [Kal18, Lemma 3.4.3]:

Lemma 7.3.1 Given (E, Sg, n), there exists (K, S}o m) > (E, Sk, n) such that for all subgroups

A C 'k, the transition map
1 1 ,
EZ/Z[SE]O — EZ/Z[SK]O
is zero.

Proof. In our situation we can strengthen the result by insisting that m = n; choose K/ F such that
#1'%/p is a multiple of n for all places u € Sk and take Sh and S C S4 satisfying Conditions
7.2.1 with respect to K /F such that S C S’ and (S}.)z C S. Then any £ € 17./Z[SE]o has trivial
image in 27 /Z[S)]o, because for all u € Sk we have (#'k/p.,) - ~Z/Z = 0. O

We may now deduce some preliminary cohomological vanishing:

Lemma 7.3.2 The following colimits over (E, Sg,n) vanish.
1. lig H'(T, 3Z/Z[Tgyp x S)o) = 0;
2. ling H'(Ty, LZ/Z[T gy x S)y) = O forall v € V.

Proof. The beginning of this argument follows the proof of [Kall8, Lemma 3.4.4]. Since the
inclusion +Z/Z[Cg/p x Slg < ~Z/Z[Tg/r x S] has a T'g/p-equivariant splitting given by
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choosing an arbitrary place of S, the inclusion also induces an inclusion at the level of coho-
mology groups, so we may prove the result for the modules lZ JZ|I'g/r x S] instead. Now, as
a I-module, +Z/Z[T'g/p x S] is isomorphic to [ 1Z/Z[I“E/F] and under this identification
the transition map [[4 2Z/Z['g/r] — [l ~Z/Z[T k;r] which is obtained by taking the maps
1Z)Z[Vgr] — LZ/Z[T k,r] and then including S into S’ to determine the direct factors. Thus,
we may further replace the system of modules {+Z/Z[T'g/p x S|} by {2Z/Z[T gF|}.

After making this reduction (which is identical to the one done in the proof of [Kall18, Lemma
3.4.4]), we may use the same argument as that in [Kall8, Lemma 3.4.4] to deduce that the first
system has vanishing colimit. We now turn to the system lim YTy, £Z/Z[T /r]). The Mackey
formula and Shapiro’s lemma tell us that

H\(T,, Z/Z L)) = P H'( FEU,,—Z/Z)

wlv

where the sum runs over all places w € Vg lying above v. Identifying each H'(I'p,, %Z /Z) with
Hom(T'g,, +7/7), the transition map

&5 Hom(T'g,, %Z /Z) — 5 Hom(T,, %Z /Z)

wlv ulv

is given by the maps
Hom(I's,, ~Z,/2) — (B Hom(T'x,,, 7,2
n o m

induced by the inclusions I', < I'g, (and 1Z/Z — L7/7). For a fixed homomorphism
fw € Hom(T'g, , 2Z/Z), the kernel Hy, of f, is an open normal subgroup of I'g, , and so if K/E
is a large enough finite Galois extension, we have I'x, C Hy, for all u | w places of K. Note
that, given such a K as in the previous sentence, this property also holds for any K'/K/F finite
Galois and @ | w a place of K. Thus, given (f,) € @,,, Hom(I'g,, 17,/7), we may look at all
fw as w ranges over {v}g C Vg to find a finite Galois extension /K /F' such that for any w € Vg
with f, # 0 and u € Vi with u | w, we have I',, C Hy,. This means that the image of
(fuw)w in D,,, Hom(I'k,, 17,)7Z) is trivial, showing that the second colimit in the statement of the

proposition vanishes. 0
Proposition 7.3.3 For any v € V, we have H*(F,, (P;)r,) = 0.

Proof. The first thing to note is that H'(F, = lim H'( Y(Fy, (Pg, g, ,)F, ), since the derived
inverse limit 1#1‘1) HO(F,, (Pg, ¢, 0 )F,) = 0, because the system H (Fyo, (Pg, 4, n,)F,) consists of
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finite groups. Thus, local Poitou-Tate duality gives

HY(Fy (Py)r) = Yim(H (D, M, g,,,)") = (i H' (Do, My g.,,))"
where the second equality holds by the universal property of colimits. Now we have the exact

sequence
1
0—Ci— H(Ty,Mp ¢, )— H(Ty,—Z/Z]Tg,/r x Silo),
19 19 3 nz

where C; is a subquotient of -7 /Z((.S;) g, o, and the colimits of the outer two terms are zero, by

7

Lemmas 7.3.1 and 7.3.2, giving the result. [

For the next result, we need to recall a result from global class field theory. Let C' denote the
inverse limit I&n K/F C, where C is the profinite completion of the idéle class group of the finite
Galois extension K/ F', and the limit is over all such extensions. For fixed K/ F finite Galois and
n € N, note that we have C[n]'* = Ck|n).

Corollary 7.3.4 The completed universal norm group

K/F
is trivial (viewed as a subgroup of Cp).

Proof. For any such K/F, we have the exact sequence

(=, K/F)

O%NK/F(CK)—)CF F;?/F%O

Since the group N/ r(Cf) is open of finite index in C'r, the inverse limit over all open subgroups
of Cp of finite index may be taken over all open subgroups of finite index which lie in N /p(Ck),

and for any such subgroup U, we get the exact sequence

Ng/r(Ck) Cr a
O%/TAF—M}?/F—W,

which after applying the (left-exact) functor I&n(—) yields the exact sequence
0 — Ng/r(Cx)" = Cr = T%)p = 0;

note that surjectivity is preserved because the kernels are all finite groups. Now since C is dense

in C, we have that Ny, (Cx) = N, r(Ci)" inside C, by continuity of the norm map, yielding
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the short exact sequence

0 — Ng/p(Cx) — Cr — FK/F — 0,
which, after applying the inverse limit over all finite Galois K/ F, yields the exact sequence
0—>N—-Cp—TI®
50 it’s enough to show that the completed universal residue map C» — I'®® is injective, which is a

basic fact of global class field theory (see e.g. [NSWO08, Proposition 8.1.26]). [

We move on to a slightly more involved vanishing result:

Lemma 7.3.5 The following colimit over (E, Sg,n) vanishes:
n

Proof. As in the proof of Lemma 7.3.2, it is enough to show that the colimit hﬂ H?*(Tg, %Z/Z)
vanishes, with the transition maps given by the restriction homomorphism. For (F,n) fixed, by
[NSWO0S, Theorem 8.4.4] (with S = Vg), we have an isomorphism

(T, 22/2) 2 (B8 Cla)),

where recall that HO(I', C[n]) := LK/E O(Tf/p, C[n]"x), with transition maps given by the

projections

Celn) ., Call
NK//E(CK/[TL]) NK/E(CK[H])’

recall that for M a locally-compact Hausdorff topological group, M denotes Hom (M, R/Z).

We claim that the natural map
Crln] — H(T,Cln))

is an isomorphism. To see this, note that it suffices to show that

_ (1 _
Wm Ni/p(Ck[n]) = l&1]\7K/13(0 [n]) = 0.

K/E

For the first vanishing, note that we have a natural inclusion Ny, 5(Ck[n]) = Nx/p(Ck)[n], and

so we also get an inclusion
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where the last term equals zero by Corollary 7.3.4. Thus, to prove the claim it suffices to show
that 1&1(1) Nk/5(Ck[n]) = 0, which follows from the fact that the system { N, 5(C[n])} may be
given the structure of a system of profinite groups with continuous transition maps. In conclusion,
we obtain an isomorphism

H(Tp, %Z/Z) ~ Calnl.

From here, we have reduced the proposition to showing that the direct limit hgnC_E[n]V van-
ishes, where the transition maps are induced by the maps Cx[m] — Cg[n] given by N,z com-
posed with the m /n-power map. If (f) € th’_E[n]V, then choosing a representative f € Cg[n]Y,
we have for any (K, m) > (F,n) a factorization

Crlm —2 1z/z
l(m/n)oNK/E H

Crln] —— 177,

where f' € Ci[m]" also represents (f). But now since f is continuous and 17Z/Z is finite, the
kernel of f is an open subgroup of C_E[n] and since the norm groups Ng /g (C’_K) C (g shrink to
the identity, there is some large enough (K, m) > (F,n) such that N, p(Cr) C ker(f) (using the
finite intersection property). This shows that the image of f in Cx[m]" is zero, giving the desired
result. 0

Before we prove the main vanishing result, we need a result about the Cech cohomology of P,

which is the analogue of Corollary 4.1.3:

Lemma 7.3.6 For all p, the natural map H?(?/?, P;) — HP(?, Py) is an isomorphism for 7 =
FF,.

Proof. By [Stacks], 03F7, It’s enough to show that the groups H’ (7®? " Py,) vanish for all j,n >

1. Since this is true for P, replaced by any I, the short exact sequence
O o ®un 5@ n
0= lm B3 (757, B) — H (777, Py) — Jm H7(727 7, F) — 0

reduces the lemma to showing that the derived inverse limit 1&1(1) H° (7®7 " P,) vanishes for all

n. This is immediate from the fact that the transition maps Pi+1(7®?n) — Pi(7®?n) are all

surjective. 0

Proposition 7.3.7 We have H'(F, P;;) = 0.
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Proof. Since we have a natural localization map H'(F/F, P;,) — H(F,/F,, P;) forallv € V,
the isomorphisms from Lemma 7.3.6 give a localization map H'(F, P;;) — H'(F,, P;,) for all
v € V. We get an exact sequence

0 — ker'(F, Py) — H'(F, Py) — [[ H'(Fo, Py),

VeV

and so Lemma 7.3.2 implies that it’s enough to show that ker' (F, P,,) = 0. Since the natural map

HY(F, Py) — lim, H '(F, Pg, &, ,) is an isomorphism, we have a natural isomorphism
ker!(F, Py) ™ limker' (. Py 5., ).

so it’s enough to show that the right-hand side vanishes.

For i fixed, [Ces16, Lemma 4.4] tells us that we have a perfect pairing of finite abelian groups
ker'(F, Py g, ) x ker®(F, My ¢ . ) — Q/Z,

where My, ¢ . 18 the étale F'-group scheme associated to the I'-module My ¢ = (and is Cartier

dual to the finite flat F'-group scheme Pp, ¢ ). Thus, it’s enough to show that

7

which we will do by showing that the direct limit @z ker?(T, M £, 4.n;) vanishes, for which we
will use an easier version of the analogous argument in [Kal18], proof of Proposition 3.4.6.

For any (E, S, n), the long exact sequence in cohomology gives the exact sequence
1 1 1
H(T, EZ/Z[FE/FXS]O) — H'(T, EZ/Z[SE}O) — H*(T, Mg, n) — H*(T, EZ/Z[FE/FXS]O),
and so applying the (exact) functor hg(—) and Lemmas 7.3.2, 7.3.5, we get an isomorphism
: 1 ~ s
h@gﬂl(n e ZIZU(S:)Edo) = hngz(F, Mp, $;n,):
We have the inductive system of short exact sequence

0 —Z/Z[(S)elo — ~Z/Z{(S)s] = —Z/Z -0,

)

where the induced transition map from %Z /Z to ﬁZ /Z is the natural inclusion followed by
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multiplication by [F;,1: E;]. It follows that after taking direct limits, the right-hand term in the

short exact sequence vanishes and we get an isomorphism
ling H(D, ~2,/Z((S:).Jo) > limy (T, ~Z,/Z[(S5) ).
i T ' i M '
For 7 fixed, we have an isomorphism

1
Hl(F,n—iZ/Z[( Del) = €D H (T, - T iZ/Z)

vES;

by Shapiro’s Lemma, and for v € S;, this isomorphism translates the transition map to the map

given on the v-factor by

Vg,
(#T P YoRes

Eir1/E;
H (FE PFsep/F7 Z/Z) + / Hl(FEZ+1 FFsep/F7 Z/Z)

Thus, if (x) € li_n%Hl(F, niZ/Z[(SZ)E]) is fixed with representative x €
Hl( niZ/Z[(Sl)E]), some ¢ fixed, we may choose k > ¢ large enough so that
#FEk‘/*bl #1' (), (B, 18 divisible by n; for all v € S5, guaranteeing that the image of
zin HY(T, éZ/Z[(Sk)EkD is zero, which shows that

i (T mnwﬂyﬂrﬁmuum%@mw%wmwm:o

This gives the desired result, since limy, ker®(I', My, ¢ ,,.) injects into lim H T, Mg, g,,)- O

7.4 The canonical class

The purpose of this final subsection is to show that there is a canonical element & € H*(F/F, Py)
lifting the element (¢;) € lim, H*(F/F, Pp, 4, n,) constructed above. For notational convenience,
set P = Py, P = PEi,Si,ni and M, = MEhS‘i,ni’ and denote the projection P — F; by p;.
Whenever we work with an embedding F — F, forv € V, we assume it is the one induced
by 0 € V unless otherwise specified. We begin by proving some basic results about some Cech
cohomology groups that associated to ;.

Lemma 7.4.1 The natural maps

H*(A,/F,, P) = lim H*(A,/F,, P))
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are isomorphisms for k = 0,1, 2.

Proof. The case k = 0 is trivial, so we only need to focus on £ = 1,2. By Lemma 2.5.5, it’s
enough to show that lgngl) H*(A,/F,,P;) = 0for k = 0,1 and that 1&1&1) B'(i) = 0. The
vanishing of 1&151) H°(A,/F,, P, follows from the fact that H°(A,/F,, P;) = P,(F,), and the
system {P;(F,)} consists of finite groups. The vanishing of 1&1@(1) B'(i) comes from the fact
that the system {B'(i)} has surjective transition maps: On Cech 0-cochains the transition maps
Pii1(A,) — Pi(A,) are all surjective by Lemma 3.3.8, and since the Cech differentials are com-
patible with F-homomorphisms (in our case, the transition maps F,;; — F;), this surjectivity
carries over to the group of 1-coboundaries.

It remains to show that the derived inverse limit 1&151) H'(A,/F,, P;) vanishes. The proof of
Corollary 3.3.9 shows that the groups H'(A,/F,, P,) are (compatibly) isomorphic to H'(F,, P,),
and so it’s enough to show that @gl) HY(F,, P;) = 0, which follows from the fact that the system
{H'(F,, P,)}; may be given the structure of a system of profinite groups with continuous transition
maps, as we showed in the proof of Corollary 7.2.7. U

Combining Lemma 7.4.1 with the proof of Corollary 3.3.9 gives an isomorphism

HY(A,/F,, P) = lim H'(A,/F,, P)) = lim H'(F,/F,, ) = H'(F,/F,, P),

and so Lemma 7.3.6 lets us identify H'(A,/F,, P) with H'(F,, P) as well. The local canonical
class &, € H*(F,/F,,u,) = H*(F,,u,) maps via S2 o loc, to a class in H>(A,/F,, P) (notation
as in §3.3).

The goal is to construct a canonical class 2 € H?(A/A, P) such that for each © € V and
v := Up, its image in H? (A,/F,, P) (via the ring homomorphism F @5 A BT B @p F, , where
1: F — F, is our fixed inclusion, and 7, is projection onto the vth-factor) equals S?(loc,(&,)).
We will proceed by constructing a Cech-theoretic analogue of the construction in [Kall8, §3.5].
Fix &, € u, (E®F v 3) a Cech 2-cocycle representing &,, and let I'; C T denote the decomposition
group of 0 € V; choose a (set-theoretic) section I /Ty — I'—recall from §3.3 that this is equivalent

to fixing a compatible system of diagonal embeddings

E-F, — H E,

weVg,wlv

as we range over all finite Galois extensions £/ F (which are the identity E - F;, — E;, on the 0p-
factor), and thus (as explained in §3.3) an explicit realization of the Shapiro map h: G (E®F v 3) —
G (ATU®F v 3) at the level of Cech 2-cochains for any multiplicative F-group scheme G, which is
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functorial in G' (with respect to F-homomorphisms) and compatible with the Cech differentials on
both sides.
As we range through all 7, these maps S, : Pi(E@F v 3) — Pi(A_U®F v 3) splice to give a group
homomorphism
§2: P(RE™) = P(A,S™),

and we set &, := S2(loc,(&,)) € Z%(A,/F,, P).

Note that for fixed 7, we have p;(1,) =1 € Pz-(ATv@F v 3) for all o € V such that v ¢ S;. Indeed,
the functoriality of the Shapiro maps implies that p; o Sf oloc, = Sg,i o p; o loc, on PZ-(E@)F v 3),
and now p; oloc,: u, — Pr, — (F;)p, is trivial for v ¢ S;, since it is induced by the direct limit

over j € N (with vg, € Sj) of I';-module homomorphisms
1 1 .
—L/Zlgyr X (Si)Eloo = —L/ZVg;/r % (Sj)E;lo0 = X7 (tnyp;/p.),
1 J

where the kernel of the second map contains all elements whose (o, v, )-coefficients Coyip, ATe
zero for all 0 € I'g,/p, and the image of the first map lands in the subgroup of elements whose
coefficients c,.,, are zero for all w € (S;)g, which do not lie above an element of (.5;)g,, which is
the case for vg;, since vp, € (S;)E, means that v € S;, which is not the case, giving our desired
triviality.

A7)

The above paragraph implies that the element [ [, pi(@y) € [ [,y Bi( is trivial in all

but finitely-many v-coordinates, so we may view [[, ., pi(&,) as an element of

P z*@A./F.. P).

VES;

By viewing ], ., pi(i,) as an element of the restricted product []) PZ-(A?;T v 3) for some suf-
ficiently large finite extension L/F (possible because A, = @AKW over all finite extensions
K/F and each P;/F is of finite type), where this product is restricted with respect to the sub-
groups Pi(O?j:F” 3), cf. §3.3), we obtain by Proposition 3.3.7 an element of Z2(A/A, P)). Tt is
straightforward to check that as we vary across all ¢ € N, these elements describe an element of
the projective system { Z2(A/A, P;)};, giving an element & € Z2(A/A, P).

Following [Kal18], we will now show that the class of & in //2(A/A, P) is independent of the
choice of local canonical class representatives év and section I'/T"; — T". Showing independence
on the choices of EU follows easily from the analogous argument in [Kall8, §3.5, pp. 318] after
replacing the group cohomological differentials loc. cit. with Cech differentials.

As a consequence of Lemma 3.3.10 , for any v € V we may find ¢, € P(A, ®p, A,) such that

de, = S,(loc,(£,)) - S (loc,(£,)) L. Moreover, we claim that we may choose ¢, such that for i
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fixed and v ¢ S;, we have p;(c,) = 1 in Pi(A, ®, A,). Indeed, by the construction in the proof

of Lemma 3.3.10, we may take

o =(r1-T3® rg)(locv(fv)) (Fa @1 -fg)(locv(fv))_l,

where r: F, — A, is the direct limit of the maps E&.]E), — lev E! , defined on the w-coordinate
by the isomorphism 7, : EEvi)’ = E!, determined by the section s, similarly with 7, where as
in the proof of Lemma 3.3.10, the subscript ¢ in r; denotes that its source is the ith tensor factor
of (E;/)®Fv 3. Since the maps r, 7 are F,-homomorphisms, they commute with the projections p;,

and hence
picy) = (173 @ 1) (piloc, (&) - (P2 @ 11 - 73) (piloc, (€,))

giving the existence of such a c,.

As a result, the element ¢ := [] ¢, € [[,c, P(A, ®F, A,) has projection p;(¢) with all but
finitely-many trivial coordinates, and hence has well-defined image in P;(A®4 A) (using Corollary
3.3.6), and setting ¢ := lim, p;(C) gives an element of P(A ®, A) which satisfies S2(loc,(&,)) -
S2(loc,(&,)) ™" = de, concluding the argument for why the class [#] € H2(A/A, P) is canonical.

The final key step in constructing a canonical class in H?(F/F, P) is showing that there is a
unique element of /2(F/F, P) whose image in H?(A/A, P) is the class 2 := [i], and whose
image in Jim, H*(F/F, P) is (&), which we turn to now. The argument will use complexes of
tori, following the analogous one in [Kall8, §3.5]. The first result that makes this possible can be
taken directly from [Kal18] (Lemma 3.5.1 loc. cit.).

Lemma 7.4.2 For each i, there exists an isogeny of tori f;: T; — U, defined over F' with kernel

equal to P;. Moreover, we have the commutative diagram

=3
+
=
.
+
=
[a—

~

~
~

~
~
—_

H(—:U<—T:U
R

where K; and K are tori.
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For any i, consider the double complex of abelian groups K¢ =

Note that the complex with jth term C7 := HO(K7*) (j > 0) is exactly the Cech complex of P,
with respect to the fpqc cover A /A, and so the low-degree exact sequence for the spectral sequence

associated to a double complex gives an injective map
HY(A/A, P) — H'(A/A, T, — Uy).

Moreover, lemma A.3.1 tells us that we may canonically identify H'(A/A,T; — U;) with the
group H' (A% /A T; — U;), and the majority of the results we will be using in this section, devel-
oped in Appendix A, are stated for the latter group. This identification, along with the analogous
one for the groups H'(A/A, T; — U;) (Lemma A.3.2) will be implicit in what follows, in order to
apply our results from Appendix A.

Since the kernels of 7,y — T; and U, ; — U, are tori, combining Corollary 3.3.6 with Lemma
3.3.8 tells us that the maps TZ-H(K&“L) — TZ-(K&W) and UZ-H(K@M) — Ui(K&*n) are surjec-
tive for all n (this is also the case when A is replaced by A*P, by smoothness). It follows that the

induced map
C](K/A, E+1 — Ui+1) — OJ(K/A,T; — Uz)

(where C7(A/A, T — U) is the group of j-cochains for the corresponding total complex) is sur-
jective for any 7, and so the system {C7(A/A, T; — U;)}i>o satisfies the Mittag-Lefler condition.
Replacing A by AP in order to use group cohomology (Lemma A.3.3), it follows from [NSWO0S,

Theorem 3.5.8] that we obtain the exact sequence

(1) _ _ _
1= Um H (A/A T, = U;) — H*(A/AT = U) > Iim H*(A/A T, - U;) = 1, (1.5
where the middle term denotes the cohomology of the complex with jth term
CUA/AT = U) = 1m C'(A/A, T, —» U;) = C7(A/A,T) @ O~ (A/A, V),

where T' = anl T;and U := @nl U, are pro-tori over F' (note that, using left-exactness of inverse

limits, the kernel of 7" — U 1is our group P). Once again, the low-degree exact sequence for double
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complexes gives us a map
H*(A/A, P) — H*(A/A, T — U),

which need not be injective. We also have the natural map H*(F/F, P) — H*(A/A, P).
We have the following analogue of [Kall8, Proposition 3.5.2]:

Proposition 7.4.3 There exists a unique element of H>(F | F, P) whose image in Jim H*(F/F, P)
equals the canonical system (£;), and whose image in H*(A/A, T — U) coincides with the image
of the class x € H*(A/A, P) there.

Proof. 1f ¢ € H*(F/F, P) is any preimage of (&;) € lim H?(F/F, P,) and &, denotes its image in
H?(A/A, P), the images of z and &, in Jim H?(A/A, T, — U;) via the composition

H*(A/A, P) = H*(A/A,T — U) — lim H*(A/A, T, = U;)

coincide by the identical argument in [Kall8, Proposition 3.5.2], replacing the use of [KS99, The-
orem C.1.B] loc. cit. with our Proposition A.3.6 and the use of Corollary 3.3.8 loc. cit. with our
Corollary 7.2.8. To finish the proof of the Proposition, we need the following analogue of [Kall8,
Lemma 3.5.3]:

Lemma 7.4.4 The natural map
n . (1) _
lim H'(F/F, P;) — im H'(A/A,T; - U))

is an isomorphism.

Proof. We have the tautological short exact sequence of topological groups (see §A.3 for the def-
inition of the topologies, replacing F* and A’? in that section with F’ and A via the canonical

identifications)

1 — HY(F/F,T; — U;) /ker*(F/F, T; — U;) — H*(A/A, T; — U;) — cok'(F/F,T; — U;) — 1,
(7.6)
and by Corollary A.4.7, the group cok' (F/F,T; — Uj;) is compact as a topological group. Since
the projective system {cok'(F'/F,T; — U;)}i>o consists of compact, locally profinite groups, it is
a system of profinite groups, and we thus get that l.ﬂl(l) cok!(F/F,T; — U;) = 0.
As in [Kall8], the next step is to show that @ cok!(F/F, T; — Uj;) also vanishes. By Propo-
sition A.4.8, the compact group cok'(F/F,T; — U;) is Pontryagin dual to the discrete group
HY (W, ﬁl — ﬁ-)md/kerl(Wp, ﬁl — ﬁ»)red, which by Proposition A.4.2 and Lemma A.4.10 is
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canonically isomorphic to H*(T, ﬁz — ﬁ)red/kerl(l“, f]\z — ﬁ)red. Using Lemma A.4.10, we may
further identify the group HY(T', U; — T})wq with H2(T, X*(U;) — X*(T;)) = HY(T', M;) (this
last identification comes from the five-lemma), and compatibly (with respect to the first identifi-
cation) identify the group ker' (T, U, — ﬁ)red with ker?(T', X*(U) EAN X*(T)) = ker' (T, M;).
Thus,

lim cok' (F/F, T; — U;) = Jm(H' (T, M;) /ker' (T, M;)])" = (lig[H (T, M;) /ker' (T, M;)])”,

so the claim will follow from showing that hgl HY(T', M;) vanishes, which is an immediate conse-
quence of Lemma 7.3.1 and Lemma 7.3.2 part (1).

Applying the functor M(—) to the short exact sequence (7.6), the vanishing results we just
proved tell us that the map

o _ n
W[ (F/F,T; — U;) /ker'(F/F,T; = U;)] — @H%A/A,Ti — U))

is an isomorphism. But now since the system {ker' (F//F,T; — U;)}i>o consists of finite groups

(by Lemma A.4.8), it has vanishing 1&1(1), and hence the natural map

(1) — (1) — —

@Hl(F/F, T, — U;) — @[H%F/F,Ti — U;)/ker' (F/F, T; — Uy))]
is also an isomorphism. The claim of the lemma then follows from the fact that the natural inclusion
HY(F/F,P) — H*(F/F,T; — Uj;) is an isomorphism, by the five-lemma. O

The short exact sequence (7.5) and the above lemma imply that we may modify é by an element
of @(1) H'(F/F, P)) to ensure that the images of £, and « in H2(A/A, T — U) are equal, prov-

ing the existence claim of the proposition. Uniqueness follows from the fact that the composition
(0 (1) _ _
lim ' (F/F, P) — lm H'(A/A T, — U;) — H*(A/A,T = U)
is injective (any two such ¢ differ by an element of lé'r_n(l) H'(F/F, P;) which has trivial image in
H*(A/A, T — U)). O
We may now define our canonical class of H?(F/F, P):

Definition 7.4.5 The canonical class ¢ € H?*(F/F, P) is the element whose existence and unique-

ness is asserted in Proposition 7.4.3.

As explained in [Kal18] in the remarks following Definition 3.5.4, the class ¢ is independent of
the choice of tower of isogenies { f;: T; — U;}.
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CHAPTER 8

Cohomology of the Global Gerbe

8.1 Basic definitions

fopt- LELE € H?(F/F, P;) be the canonical class of
Definition 7.4.5. By Propositions 2.3.2 and 2.3.5, £ corresponds to an isomorphism class of (fpqc)

As in previous sections, we write H* for H

Py-gerbes split over F. Let &, — (Sch/F)gqc be such a gerbe. We equip &;, with the structure of
a site by giving it the fpqc topology inherited from (Sch/F)fpqc.

Recall for a finite central Z — G the subset H'(£y,, Z — G) € H'(&y;, Ge,, ) of isomorphism
classes Z-twisted G-torsors on &;,. Note that since the target of a homomorphism P, — Z is
finite, it always factors through the projection P, — Pp ¢, for some i. For any other choice
of P-gerbe 5{-/ split over I representing ¢, we have an isomorphism of P;,-gerbes h: &, — &',
inducing an isomorphism H* (&, Ge, ) — H'(Ey, Gg(,/) which, since H'(F/F, P;;) vanishes by
Proposition 7.3.7, is independent of the choice of i, by Lemma 2.6.4.

The inflation-restriction sequence gives us the commutative diagram

HYF,G) —— HY(&y,Z - G) —— Homp(Py,Z) —— H*(F,G)

N | Jo¢ H

YF,G) —— HYF,G/Z) ———— HX(F,Z) —— H*(F,G),

where the second vertical map comes from defining the (G//Z)¢, -torsor 7 x “ev Gz )e,,» which,
by construction, has trivial Py -action, and thus is the pullback of a G /Z-torsor 1" over F', whose
class we take to be the image of [.77]. We have the following two direct translations of results from
[Kal18]:

Lemma 8.1.1 If G is either abelian or connected and reductive, then the map

HY(&,,Z — G) — HY(F,G/Z)
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defined above is surjective.

Proof. The identical argument as in [Kal18, Lemma 3.6.1] works here, replacing the use of Lemma
A.1 loc. cit. with [Thal9, Corollary 1.10] for connected reductive G. O

We get an analogue of [Kall8, Lemma 3.6.2]:

Lemma 8.1.2 If G is connected and reductive, then for each x € H'(E;,, Z — G), there exists a
maximal torus T C G such that x is in the image of H* (Ey,, Z — T).

Proof. One can use the same proof as for the corresponding result in [Kal18], once again replacing
the use of Lemma A.1 loc. cit. with [Thal9, Corollary 1.10]. ]

The next goal is to construct a localization map loc,: H'(&y,, Z — G) — H*(&,,Z — G) for
any v € V, where &, denotes the local gerbe defined in Chapter 3, such that the diagram

HYF,G) — HY(y, Z — G) —— Homp(Py, Z)

| l |

H\(F,,G) —— HY&,,Z — G) —— Homp, (u,, Z)

commutes, where (using Cech cohomology) the left-hand vertical map is induced by the inclusion
I — F, and the right-hand map is induced by the F-homomorphism loc’’: u, — (Py)F, defined
in §??.

We have the category (&), == € Xsen/p (Sch/F,), which is an fpqc (P ) g, -gerbe split over
F,; recall that the objects of (€;,)r, are pairs (X, f), where f: U — Spec(F,) is an F-morphism
and X lies in £, (U) and morphisms are defined in the obvious way.

Fixing an isomorphism of P;-gerbes (;)r, — &,,, where z,, denotes a Cech 2-cocycle rep-
resenting the image of ¢ € H*(F/F, Py) in H*(F,/F,, P;), and an isomorphism of u,-gerbes
&y = &, where &, is a Cech 2-cocycle representing the local canonical class [€,], the fact that
loc”([¢,]) = [z.] (by Corollary 7.2.8) implies, by the functoriality of gerbes given by Construction
2.3.4, that we have a (non-canonical) morphism of fibered categories over F;, from &, to £, which

is the morphism locf on bands, and, via the composition
gv 1) ggv — va l) (SV)Fv — g"/,

we obtain a functor &, — &, .
The functor £, — &, defined above is highly non-canonical. However, the morphism &, —

&, 1s unique up to post-composing by an automorphism of £, determined by a Cech 1-cocycle
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of P, valued in F, (see §2.3), and since, by Proposition 7.3.3, the group H'(F,/F,, Py,) is trivial,
such a I-cocycle is in fact a 1-coboundary. The same is true for the normalizing isomorphisms
E — &, and (§y)p, — &.,, using Proposition 7.3.3 and Corollary 7.3.7. We are now ready to
define our main localization map.
We can use the functor £, — &y, to pull back any Z-twisted G, -torsor to a Zp, -twisted Geg, -
torsor, giving a map
loc,: HY (&, Z — G) — HY(E,,Z — @)

which, by combining the above paragraph with Proposition 2.6.3, is canonical. Note that this map
is canonical up to finer equivalence classes of G'¢, -torsors, where we replace isomorphism classes
with classes whose elements are related via isomorphisms .7 = *.7 of Gg, -torsors induced by
translation by z=! € Z(F,) , where : £, — &, is the automorphism of gerbes induced by the
1-coboundary d(z). It is straightforward to check that this localization map makes the diagram

(8.1) commute.

8.2 Tate-Nakayama duality for tori

We are now ready to discuss duality for tori. As in [Kall8], we define 7 C A to be the full
subcategory consisting of objects [Z — G| for which G is a torus, and for v € V, the category 7T,
the category of pairs [Z — T'| where T is an F,-torus and Z is finite (and defined over F},), with
morphisms given as in A. Recall from §4.3 that associated to such a pair [Z — T] € T, we have

the group
Y posanlZ = T) i= (X (T/2) 11X (T r = (X (T/2) /(LX) Vo0,

where [, C Z[I',] denotes the augmentation ideal, £// F), denotes a finite Galois extension splitting
T, and the superscript Ng,r, denotes the kernel of the norm map. Moreover, by Theorem 4.4.3,

we have a canonical functorial isomorphism
b: Y il Z = T) = HY (&, Z = T)

which commutes with the maps of both groups to Hompg, (u,, Z).

Following [Kal18], the first step is to construct the global analogue of the groups Y |, o/[Z —
T, which is unchanged in the function field setting. For fixed [Z — T] € T we set Y := X, (T),
Y := X,(T/Z),and AV := Homy(X*(Z), Q/Z). We have a short exact sequence

0=-Y =Y =AY =0,
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due to the vanishing of the Extj-functor for free abelian groups. For any 4, the ', sr-module
Z[(S;) g, ]o is a free abelian group, and thus we may tensor it with the above exact sequence, giving

a new Short exact Sequence
0= Y[(S)E]o = Y[(Si)eJo = AY[(Si)Eo — 0,

and denote by Y[(S;)g,, SiJo € Y[(S;)g,]o the preimage of the subgroup AV[S;] under the above
surjection; note that, by construction Y'[(S;) g, , S;]o contains the image of Y'[(S;)g,]o.

Choosing any section s: (S;)g, — (Si+1)g,., such that S(SZ) C S;+1, we may define a map

141

s1: Y[(S))m;, Silo = Y[(Six1)Eisr» Sivilo

by

s( Y, cuw]) = > Clur, (W]

wE(S:) B, we(Siy1) B, (W) EB,)=w’

The following result of [Kal18] (Lemma 3.7.1 loc. cit.) carries over verbatim to our situation:

Lemma 8.2.1 The assignment f — s\ f induces a well-defined homomorphism

l. ?[(SZ>E17SZ]0 s 7[(Si-i-l)EiHvSi-‘rl]o
Ig, pY[(S)Elo  Igy Y [(Sie1)Enio

which is independent of the choice of s.
Definition 8.2.2 We define

o g 1S, Silo
YV, Vo sor = li Z
[ F ]07"‘7[ ?I]’l [El/FY[(Sl)El]O

[tor],

with transition maps given by |. We also define

e Y[(Si)E]o
Y[VF]O,F,I()F Ca 1% IE,L/FY[(Sz)EZ]O [IOF],

with transition maps induced by |.
The above two groups fit into the short exact sequence
0= Y[Vilorwor — Y [Ve Viptior = AY[V]o — 0,
where the last term is as defined in Lemma 7.2.6.
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For any v € V' we can define a localization morphism
lv : ?[VF7 V]O,+,tor — ?+v,t0r

as follows. For a fixed index 4, choose a representative 7 € I'g,,p for each right coset
T ey /7 \'5,/r such that 7 = 1 for the trivial coset, and then for f = >~
?[(SZ)E17 Si][)’ set

we(Si)m, v [w] €

L= > T'c,l(@)ef

TEF%Z/F\rEz/F

With the construction of I’ in hand, the following result of [Kal18] (which is unchanged in our

setting) shows that it provides the desired localization map:

Lemma 8.2.3 The assignment f — [\ (f) descends to a group homomorphism

7

i Y[(S)g,, Silo R Y
g pY((S)ele LY

that is independent of the choices of representatives T and is compatible with the transition maps

defined above.

Proof. See the proof of [Kall8, Lemma 3.7.2]. ]

We may thus define the localization map [, as the direct limit of the maps I’. We can now give
the statement of the global Tate-Nakayama isomorphism, following [Kal18, Theorem 3.7.3] in the

number field case:

Theorem 8.2.4 There exists a unique isomorphism
v YV, Vs ior = H' (Ey, Z — T)
of functors T — AbGrp that fits into the commutative diagram

Y[VF]O,F,mr —_— ?[ny V]O,—i—,mr — AV[V]O

b I |

HYF,T) —— HY(&y,Z = T) —— Homp(Py, Z),
where TN denotes the colimit over i of the finite global Tate-Nakayama isomorphisms
H™ ' (Cpyr, Y[(Si)pJo) = H' (Tryp, T(Op, s,))
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first mentioned in Lemma 7.1.2 (these splice to give a well-defined map, by Lemma 3.1.2 and
Corollary 3.1.8 from [Kall8]), and the right vertical arrow is the one from Lemma 7.2.6.

Moreover, for each v € V, the following diagram commutes

ly B3
Y[va V]OH-JOV 1 7 Y—I—v,t()r

HY (&, Z — T) —%s HY(E,, Z — T).

As in [Kall8], this theorem takes some work to prove. We start with some linear algebraic
results which can be taken directly from [Kall8]. Although Y[(S;)z,, Si]o is not I'g, /p-stable,
it still makes sense to define the group Y[(Si)r,, $ilo ™" as the intersection Y[(S;)s,, Silo N
A Ng,/r
Y[(Si)elo ™

Lemma 8.2.5 We have the equality

Y[(S)E., Si](])VEi/F V(). Silo

IoyeY[(S)mlo 1mrY [(S)mo

[tor].

Proof. This is [Kall8, Lemma 3.7.6]. O

Lemma 8.2.6 Every element of Y [(S:)g,, Silo/ I, rY [(Si)&:)o has a representative supported on

Proof. This is [Kall8, Lemma 3.7.7]. ]

Following the outline of [Kall8, §3.7], the first step is proving an analogous Tate-Nakayama
isomorphism involving not Py, but the groups Pp, ¢, which are defined as @neN Py, 4., note
that an alternative description of Py, is as the limit @Z PEi, o for more details, see [Kall8, §3.3].
Fix a triple (F, S, Sg) satisfying Conditions 7.2.1, since we will be focusing on only one fixed
index i at first. Denote by 7 the full subcategory of objects [Z — T of T such that T splits over
E.

Note that [12(O%" /Os, Py ¢,) = H*(Ors, Ppg,) = lim H?*(OFs, Ppgg,.,); the first equal-
ity is a straightforward exercise, and the second one follows from the vanishing of the derived limit

l'&n(l) H'(Ops, Py g, ) due to:
Lemma 8.2.7 The groups H* (O, Py 4,.) are finite for all finite n.

Proof. Set P = Py ¢ .. By [Ces16, Proposition 4.12] (and its proof), the natural map

H'(Ops,P) = H'(Aps, P) = [ [ H'(F,, P) x [[ H'(O.. P)
veS v¢S
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has closed, discrete image and finite kernel, so it suffices to show that the image is finite. We claim
that the right-hand side is compact—for this claim, it’s enough by Tychonoff’s theorem to prove
that each H'(F,, P) and H'(O,, P) is compact. We showed this result for the former groups
in Corollary 7.2.8; for the latter, note that [éesl6] (3.1.1) says that each subset H'(O,, P) C
H'(F,, P) may be canonically topologized so that this inclusion is open, and since H(F,, P) is
profinite (and hence totally disconnected), it is also closed, and therefore compact. Now the result

follows, since closed, discrete subspaces of compact spaces are finite. 0

We thus have a canonical class £ ¢, € H*(O%"/Og, Ppg,) = lim H*(O%" /O3, Py g, )
given by the inverse limit of the classes { ¢, ,, defined just before our Lemma 7.2.3, which form
a coherent system by that same lemma. By §2.3, the group H2(O%" /Oy, Py 5. ) is in bijective
correspondence with isomorphism classes of P, ¢ -gerbes (over Sch/Op,s) split over Og“f; fix
such a gerbe &, ¢ . For any (Z — T] € Tg, the group H(& 1.5y, Z — T) is defined identically as

above. We have the usual inflation-restriction exact sequence
1— H'(0s,T) = H'(Eg4,,Z — T) = Homo, (P, ¢, Z) — H*(Os,7T),

where the last map is the composition of the direct limit of the maps @g Spm defined by equation
(7.3) with the natural map H*(Ors, Z) — H*(Ors,T).

F,S

Pick any 2-cochain cg g € [Resg/s(G,,)](O Eg ) lifting a choice of 2-cocycle

Qo g3
Cps € [ReSE/S(Gm)/Gm](OE,g a )

representing the Tate class discussed in §7.1, a cofinal system {n; };cn in N*, as well as a system

of compatible n;-root maps
k;: ReSE/S(Gm)(OS R0p.s Og Qop.s OE,S) — ReSE/S(Gm)(OgeIJf ®0ps Ogerf ®0p.s OE,S)7

as constructed in §7.1 (by “compatible,” we mean in the sense discussed in §7.1). Recall that for
id € End(My ¢_,,.)", we getthat U 5, (id) := ; € Maps(Sg, M} ‘0 ,.Jo whichis a —1-cocycle
given by

B X ol w)) = caw € 7 2/Z

(v w)El'g/pXSE

Finally, we showed in §7.1 that the class { ¢, .. Was represented by the explicit 2-cocycle

. . = d kfz |_| Z"
§E,SE,m (ki(ce,s)) Op.5/0r 5 B
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where for z € [Resp/s(Gn,)](R), T denotes its image in [Resg;s(Gr,) /Gy (R).
Fact 3.2.3 from [Kall8] shows that for any finite Z, A}, := Hom(X*(Z),Q/Z), and n | m
multiples of exp(Z), the map

Resp/s(ftn)

®p 5,1 Maps(Sg, Ay)o — Hom(
[

,Z)

constructed in §?? (and used to provide the pairing used in the above cup product) satisfies
Qpsm(9) = Prsnlg) o (—)%, so that if p; 41 ,: PE,SE,nm — PE,S'E,m denotes the transition
map (defined over Ofg), we compute—using Lemmas 3.4.4 and 3.4.5 for Cech cup product

computations—that

Pi+1,i(d(ki+1(CE,S)) U @'H) = pi+1,i[d<ki+1(0E,S)) L ¢E,S,ni+1<6i+1>] =
Og,s/OrF,s Og.s/OF,s

nit1

d(kivi(ces)) U (0i41:0PE sni (Biv1) = d(kiza(ces)) U (Di1,:0PE,sm, (Bis1)o(—=) ™ ),
Og,s/OF,s Og,5/OF,s

and by functoriality in the argument Z this last expression can be rewritten as

N1 _— i+l

d(kisa(ces)) U (Pegn (i (Bi))o(=) ) = d(kin(ces)) U (Ppsa (Bi)o(=) ™).

Og,s/Or,s Og,s/OF,s

Since the map (—)”7“ is clearly defined over F, basic Cech cup product calculations (cf. §3.4)

show that the above expression may be rewritten as

ni+1

() llensh) ) U (@rs(8) = dRlens) ) U (@rs(B) = g

showing that the system {5 o Smni}i is a well-defined 2-cocycle valued in Pp, SE((Ogerf)@OFvs 3),

which we will denote by &, $,- Note that the corresponding Py, ¢ -gerbe & is split over o
’ ’ SE

and represents the canonical class in [ 2(0135erf /Os, Py ¢ ) discussed above (in the above notation,
WE
we can take £ B.Sp which is not explicit, to be ng i which is explicit). It is straightforward

E
to check that & ~ with morphisms £&; = — &;
8p.s N

£E SE.n;
B ’ W EHT
Py ¢, », may be canonically identified with the inverse limit lér_nZ géE,s

gerbes (cf. §2.5).

induced by the projection maps PE7 $p

of the explicit finite-level
E "

Lemma 8.2.8 The pullback maps

H' (& Tk, ) — H'(&; )

. 9 . Lo L E:
E,5g.mn; $B,Sp.n; EE’SE ‘B5p
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induce an isomorphism

. 1/¢. ~ lre.
th (ng,sE,ni’Z —T)—H (SﬁE,s‘E’Z —T).
Proof. Using the equivalence of categories between T,  -torsors and & 5.5, twisted T'-torsors

E,Sp
given by Proposition 2.4.10, it’s enough to prove the corresponding statement for twisted torsors.

Picking an O%"-trivialization of any such torsor (X,1) (where, recall that X is a T-torsor over
O%™ and 1) is the twisted gluing isomorphism ¢: p;X — piX), we may assume that X = Tigger
is the trivial torsor. The Py, ¢ -action on X is defined by an Op,s-homomorphism ¢: Pp ¢ — Z,
which factors through a homomorphism ¢;: P ¢, — Z for some ¢, and our twisted glging map
¢ is equivalent to giving an element 2 € T(O%" ®o,., O%") whose differential is ¢(¢ ¢, ) =
gpz(ﬁ £ SEm) The data of ¢; and x thus defines a 3 B.5p.n,-tWisted T-torsor whose pullback is
isomorphic to (X, ¢), as desired. O

For a fixed [Z — T] in Tg, we set T' := T'/Z, and recall our usual notation with cocharacter

groups. Applying the (exact) functor — ®y Z[Sg]o to the exact sequence
0—=Y =Y =AY =0
gives the short exact sequence
0 — Y[Sglo — Y[Sg]o — AY[SE]o — 0. (8.2)

There is an obvious pairing of O g-group schemes

Resg/s(Gy)

L X Y [Selo = T, (8.3)

where we are making the canonical identification of I' g, p-modules

Resg/s(Gm)

Y[SEg]o = Hom( G

,T).
Note that for i large enough so that exp(Z) divides n;, for g € Y'[Sg]o, we have n; - g € Y[Sg]o
and the restriction of n; - g to the subgroup Resg,s(fin, )/ tn, factors through the subgroup Z, and

in fact gives the map
ReSE /S (Mm)
Hon,;

given by [g] X — — Z, via the pairing AV [Sglo x Resg/s(tin, )/ i, — Z induced by (7.1), where

— Z
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[g] denotes the image of g in AY[Sg]y in the short exact sequence (8.2).

Define AY[Sg]Ve/7 to be AY[Sg]y ™" N AY[Sg]o, which is in bijection with Hom(Py ¢ , Z)"
via the map Wy ¢ defined in Lemma 7.2.2. Following the linear algebraic situation for the
group Py, define Y[Sg, Sg]o as the preimage of AY[Sg] in Y[Sg]o, and set Y[Sg, SE]éVE/F =
Y [Sg, SeloNY[Sk] éVE/ . We are now ready to give the first version of the extended Tate-Nakayama

isomorphism, which is the analogue of in [Kal18, Proposition 3.7.8]:

Proposition 8.2.9 1. Given A € Y[Sg, Spl™'" and i large enough so that exp(Z) divides n;,
we may define a 5 B.$p.n; IWisted Cech 2-cocycle valued in T by the pair

R = (ki<CE,S) On S|7|OFS ni‘/_\a \DE‘}S,nl([A]))a

where the unbalanced cup product is with respect to the pairing (8.3).

2. The pullback p;f‘H’i(z;\’i) coincides with the SESE’ml—Misted cocycle z5 ;1. Thus, pulling

back any zy ; to ng,sE defines the same f g5, wisted cocycle, denoted by zj.

3. The assignment \ — z defines an isomorphism

. Y[SE, Saly F"
BSe" InpY [Selo

o Hl(EéE,SE, Z —T)

which is functorial in [Z — T| € Tg and makes the following diagram commute:

1 1

! l

ﬁil(FE/Fa Y[Sgle) —2— HY(Opg,T)

|

Visp.Sply /" B H'(&; VZ—>T)
Ig/rY[SElo €5y’

L J

. '
A\/[SE]NE/F I N Hom(PE’S'E,Z)F

! !

]/‘.\IO(FE/F, Y[SE]O) i) HQ(OF’S, T)

g

Proof. The proof will follow the same outline as the analogous one in [Kall18]. Proving the first
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claim just means showing, for fixed large enough 7, the equality

Akiens) , U mid) = Wik, (W) s, )

Viewing n; A as a —1-cochain, we see that d(n;A) = 0, since by construction A is killed by

Ng/r. Hence, it follows from Proposition 3.4.3 that

d(k; L A) = d[k; L A 4
( Z(CE,S) Op.5/0p.s ni\\) [ Z(CE,S)] Op.5/0ps n; .\, (8.4)

3
Bors ) and we know

and now since d[k;(cp.s)] lies in the subgroup [Resg/s(fin,)/ tin,]((O%™)
that the restriction of n;A to Resg /5(tn; )/ tn, is equal to @ £.5.n;([A]), we can rewrite the right-

hand term of (8.4) as d[k;(cg.s)] o |7|o O g s.n; ([A]). By functoriality, this term can be rewritten
E,S F,S
as dlki(cps)) U @ E7S7ni(\I/E}Sm([/_\])v(ﬁi)), which again by functoriality may further be
E,S F,S
expressed as

dlki(cp,s)] on 5'7'0” Uilsn ([A]) 0 @psn, (i) = Uils,, ([A]) (dlki(cp,s)] on s|7|0Fs Pp.5n.(5i)),

where to obtain the above equality we are using the fact \II;J}SM ([A]) is I p-fixed to apply Lemma
3.4.5. But now by definition this last term equals W'y ([A])(£5.4, ,..)- as desired.

We now move to the second claim of the proposition. The first step is noting that p; ;; o
\I/ESMH ([A]) = W3, ([A]), since, as discussed in Lemma 7.2.2, the maps ¥ 5, are compatible

with the projection maps for the system { P, }i. Moreover, we have by the Z-bilinearity of the

Sgni
unbalanced cup product and coherence of the system of maps {%;}; that

_ e —— Ty n A
D U ngoh =k N ") [niA] = ki U il
w(ers) Ops0rs ! w+1ees) oE,s/oF,s( n; il = kilers) OrsiOrs

concluding the proof of the second claim.
It is clear that the map A ~ zj defines a functorial homomorphism from Y[Sg, S E]éVE/ " to

H I(SE'E . ,Z — T). Moreover, if A lies in the subgroup Y'[Sg]o, then we have, first of all, that
_ SE

[A] vanishes in AY[Sg]o, so that the homomorphism associated to zj is trivial. By Z-bilinearity

and the fact that already A € Y[Sg]o, the associated twisted cocycle (which is, by the previous

line, an actual cocycle) is given by ¢ g o |7|o A, which, since Cp.s 1s valued in the finite étale
E,S F,S

(Galois) extension Og s/OpF s, Proposition 3.4.1 and [Kall6, §4.3] tell us that (after applying the
appropriate comparison isomorphisms) this cup product may be computed as the usual Galois-

cohomological cup product cg g U A, which sends all of Iz / Y [SEg|o to 1-coboundaries, showing
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that the above map induces a functorial homomorphism

Y[SE, SE]éVE/F
IgpY [SElo

— H'(&

EE,S’E

2 —=T),

as asserted. This argument also shows that the top square in the diagram of the proposition com-
mutes. The commutativity of the middle square is by construction, and the final square commutes
by the diagram in Lemma 7.1.2. Since all horizontal maps in the diagram apart from iy ¢ are

isomorphisms, it is an isomorphism as well by the five-lemma. 0

The issue now is that, given our non-canonical explicit gerbe Sg-E i it is not clear that such
SE
an isomorphism will be canonical, or even that the groups H'(€ i L T) are canonical. The

following result addresses these concerns:

Proposition 8.2.10 The group H' (£ ¢, ,Z — T) is independent of the choice of gerbe £ ¢

up to unique isomorphism, and is equipped with a canonical functorial isomorphism vp, ¢  to the

group B .

Ig/rY [SElo

that fits into the commutative diagram of Proposition 8.2.9.

Proof. The map ¢y, ¢, is obtained by composing an isomorphism (which the proposition asserts is
unique) HI(SE,SE7 Z-T)— Hl(ng,sE ,Z — T') induced by any isomorphism of Py, ¢ _-gerbes
Ep s, = ng,s'E and then applying i ¢, from Proposition 8.2.9.

This proposition requires work to show, but all the necessary arguments are done in [Kall8,
§3.7]. The main ingredient is Lemma 3.7.10 loc. cit., which is purely group-theoretic and carries
over to our setting unchanged (in the statement of that Lemma, eliminate the use of .S and replace
Ng by N). Once this result is known, [Kal18, Corollary 3.7.11] proves the proposition. The proof
of this corollary relies on Lemma 3.7.9 loc. cit., which holds in our setting with Ng replaced by
N, Proposition 3.7.8 loc. cit., which is our Proposition 8.2.9, and the finiteness of H 1(OF,5, T),

which is true in our setting as well. [

Note that, in particular, the isomorphism ¢, ¢~ does not depend on the choice of cochain cg s
lifting a representative of the canonical Tate class in H*(Or s, Resg s(G,,)/G,,) which was used

to construct the explicit gerbes ng and the isomorphism i, ¢ in Proposition 8.2.9.

SEang
In order to extend the isomorphism of Proposition 8.2.9 to &;,, we need to investigate what

happens as we vary the extension £/F. As such, let K/F be a finite Galois extension con-
taining F, and (S'S)) be a pair satisfying Conditions 7.2.1. We may assume that S C S’

and Sp C (S}<) g. Let SKS;( and & ¢ be gerbes corresponding to the canonical classes
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k.o € (0% /OF.s1, Pyrg )and g, € H*(O%" /Ops, Py ¢, ), respectively. The first step

is to construct an inflation map
Inf: H'(Epg,, 2 = T) = H'(Eg g . Z = T).

We begin by pulling back &£ ¢, which we recall is a Py, ¢ _-gerbe over O, that is split over
O™, to the (Pp.g,)0 s -getbe Ex & Xsenjop s (Sch/Ops) =t (€ 4,)0,. 5> Which is split over
Org - Ogerf (taken inside F'), contained in ngrf. It is straightforward to check that the Cech
cohomology class in H2(O%"/Opg, ( Py s,.)0,. ) corresponding to (€5 5. )0, is the image
of {5 ¢, under the obvious morphism of Cech cohomology groups. We have a projection map
PK,S}{ — (PE,SE)OF, - given by the inverse limit of the finite-level projection maps, which on
degree-2 Cech cohomology groups, by Lemma 7.2.5, sends & g to the image of {5 ¢ . Using
this equality of cocycles, picking normalizations of £y ¢ and & g1 and using Construction 2.3.4
allows us to construct a (non-canonical) morphism of stacks over Op,sr from £ ¢, to (E5.6,)05 g -
By pulling back torsors via the composition of functors

Exgr. = (Epgy)ons = € 5u

we get the desired inflation map.

The map we just constructed from H'(Ep 5, Z — T) to H'(Ex g ,Z — T) is evidently
functorial in [Z — T] € T, but (since we had to choose normalizations of gerbes as well as a
I-coboundary) it is not a priori clear that it is canonical. The following result addresses this issue,
and is taken directly from [Kall8]:

Proposition 8.2.11 The inflation map constructed above is independent of the choice of functor
5K,S;{ — &g g, Injective, functorial in [Z — T) € Tg, and fits into the two commutative diagrams

below:

H'Egg,, Z = T) —" H'(Exg . Z —T)

LE,S‘ET LK,S'}(T

— . N — . N
Y[SE,SE]y E/F ! . Y[Sk.Sklo e
Ig/rY[SElo " IxrY[Sklo
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and

Hom(PESE,Z)F E— Hom(PKS}(,Z)F.
Proof. The commutativity of the second diagram is by construction. For injectivity, note that the
homomorphism Hom(Pp g, , Z)" — Hom(Py g , Z)" is injective, since it’s given by the homo-
morphism Hom(A, My ¢ )" — Hom(A, My ¢ )" induced by the My ¢, — M 5 which is
given as the direct limit of injective maps, and is thus itself injective. Moreover, the inflation map
HY(OFps,T) — H'(Orgs/,T) is injective by [Kal18, Lemma 3.1.10], which works in our setting
via étale-to-group cohomology comparison discussed in §3.2. Now the desired injectivity follows
from the second diagram and basic diagram-chasing. The rest of the proposition follows from the

argument given in [Kal18] for the proof of Proposition 3.7.12 loc. cit. [

Recall the exhaustive tower of finite Galois extensions F;/F' and pairs (.5;, Sl) satisfying Con-
ditions 7.2.1 and the inclusions S; C Sy, and S; C (S'iﬂ) g;- For any Py, ¢ -gerbe &; over Opg,,
split over Opirf, representing the Cech 2-cocycle & 5,.5,» We first get the (P, ¢ ) r-gerbe (Ei)p — &;
over F, split over F; note that the gerbe (£;)r corresponds to the Cech cohomology class given
by the image of {, ¢ in H*(F/F, (Pg,.4,)r)- By construction of the canonical class £, the im-
age of ¢ in H*(F/F, (Pg, 4,)F) equals this image of £ ¢ . Thus, after normalizing the gerbes
&y, and &; and choosing a coboundary, we get a functor £;; — &;, and thus by pullback a group
homomorphism

Inf: H'Y(&,Z - T) — H (&, Z = T).

Proposition 8.2.12 The above inflation maps splice together to give a canonical isomorphism of
functors T — AbGrp:
lim (&, Z - T) = H'(Ey, Z = T).

Proof. Following the structure of the proof of [Kall8, Proposition 3.7.13], the first step is showing
that each inflation map is injective. This follows from an identical argument as in Proposition
8.2.11, replacing Opsr with I and & g1 with &y, using that Py, — Pp. ¢ is surjective and,
again from [Kal18, Lemma 3.1.10], that the inflation map H'(OFs,, T) — H*(F,T) is injective.
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Then the argument in the proof of [Kall8, Proposition 3.7.13] shows that each inflation map is
independent of gerbe normalizations and choice of coboundary (and is thus canonical). From
here, the rest of the argument in [Kall8] carries over verbatim to our situation (this argument uses
Lemmas 3.7.10 and 3.1.10 loc. cit, which, as we have argued, are true in the global function field
setting) [

We are now in a position to prove Theorem 8.2.4. We obtain the functorial isomor-

phism ¢y, by first (using Lemma 8.2.5) applying the functorial isomorphism Y [V, Vo 4 or —

li YI(5:)5, 50 /" then taking the functorial i hi
ﬂi W, en taking the runctorial 1Isomorpnism

_ - Ng./p
Y[(S)g,, Silo ™

7

li . i
%HLEuSi % ]Ei/FY[(Si)E]O

— @Hl(&, Z—T),

which is canonical and well-defined by Proposition 8.2.11, and then finally applying the canonical
identification hﬂz HY&,Z — T) — HYEy,Z — T) of Proposition 8.2.12. Applying the
direct limit functor to the diagram of Proposition 8.2.9 (and using Proposition 8.2.10) gives the
commutativity of the first diagram in Theorem 8.2.4—the fact that we can apply the direct limit
functor to this diagram is a consequence of Proposition 8.2.11. Now the uniqueness of ¢;, making
the first diagram commute, as well as the commutativity of the second diagram, both follow from
the abstract framework of [Kall8, Lemma 3.7.10], as explained in the proof of Theorem 3.7.3 loc.
cit.

We conclude this subsection by collecting some local-to-global consequences of Theorem 8.2.4.

Corollary 8.2.13 We have the following commutative diagram with exact bottom row

HY(E, Z - T) 2 @ HY(E, Z - T)

[’V]\ (LU)UT

__ . (Io)o
Y[Vfa V]O,Jr,tor -

Do Y toior ———— L[tor].

Proof. This follows from the proof of [Kall8, Corollary 3.7.4] (the argument loc. cit. relies on
that paper’s analogue of Theorem 8.2.4 and arguments involving the bottom-row, which are purely

Galois-cohomological and thus are unchanged in our setting). [

Corollary 8.2.14 Let [Z — G] € A with connected reductive G and x € H*(E,, Z — G). Then
loc,(x) is the neutral element in H'(E,, Z — G) for almost allv € V.

Proof. As explained in [Kall8], this is a consequence of finding an element in H*(Ey,, Z — T)

for some maximal torus 7" which maps to x (possible by Lemma 8.1.2), deducing the result for
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this element of H'(€;;, Z — T') using the previous corollary, and then invoking the functoriality

of our localization maps. [

8.3 Extending to reductive groups

Let R denote the full subcategory of A consisting of objects [Z — G| where G is a connected
reductive group over F'. In the corresponding section (§3.8) of [Kall8], it is necessary for duality
theorems to replace the sets H'(&y,, Z — G) with a quotient, denoted by H,, (&y, Z — G).
However, in our case, due to the vanishing of H'(F, &) for all simply-connected (semi-simple)
connected groups G over F' (which is is an immediate consequence of [Tha0O8, Theorem 2.4]), this
replacement will not be necessary for us.

The first step in extending Theorem 8.2.4 to R is defining an analogue of the linear algebraic
data Y[V, V]o4.oe([Z — T)) for [Z — T) € T. For a maximal F-torus T of G, define the abelian
group

iy P/ scmsE,sE]NE/F’
s Tor(X (D)X (TSED)

where the colimit is over any cofinal system of triples (F, Sg, Sg), where E/F is a finite Ga-
lois extension splitting 7" and the pair (Sg, S ) satisfies Conditions 7.2.1; the transition maps
are given by the map ! defined in the previous section. The only term appearing in this colimit
that we need to define is [X,(7/Z)/X.(Ty)|[Sk, S]o, which we take to be those elements of
(X.(T/Z)]X,(T..)][SEo such that if w ¢ Sg, then ¢,, € X, (T)/X,(Ts) (as usual, the superscript
NEg/r denotes those elements which are killed by the £ / F-norm).

Now for two such tori 77, T5, we can define a map

X/ 2)/ X (T[S Sely ™" [Xo(T5/2)/ X, (Toue))[S, Selo ™"

i I p([Xa(T1) / X (Th50)] [SElo) T Ty (X (1) /X (T20)][Slo)

(8.5)

as follows. By [Kall6, Lemma 4.2], for any g € G(F*%) such that Ad(g)(77) = 15, we get an
isomorphism X, (71/7)/ X.(T1s) = X«(12/Z)/X.(T2s) which is independent of the choice of
g, and is thus I'-equivariant. It follows that Ad(g) also induces the desired homomorphism (8.5)

on direct limits. We then define a functor R — AbGrp given by

s T =i [ (T/Z)/X( SC)HSEaSE](J)VE/F
Y[VF,V]0,+,tor([Z — G]) " @[(E%s IE/F([ ( )/X ( sc)][sE}O) ’

where the outer colimit is over all maximal F'-tori 7" of GG via the maps constructed above. It is

clear that this extends the functor Y[VF, V]O,Jﬁtor constructed in the previous section for 7 C R,
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so our notation is justified. In what follows, we will always take our colimits over the fixed cofinal
system (E;, S;, Sl) constructed above (such a system eventually splits any F'-torus 7).

We can now prove an extended duality theorem:

Theorem 8.3.1 The isomorphism of functors vy, from Theorem 8.2.4 extends to a unique iso-

morphism of functors (valued in pointed sets) on R, also denoted by vy, from ?[VF, V]0,+,zor to
H ! (8V7 _)'

Proof. Fix [Z — G]in R and T a maximal F'-torus of 7. We claim that the fibers of the compo-
sition

YV, Vipswor(|Z = T) = HY(Ey, Z = T) = H'(Ey, Z — G)

are torsors under the image of
Y [Viloror(Tie) = Y[V, Vot or([Z — T)).

By twisting, it’s enough to prove this for the fiber over the class of the trivial torsor in the pointed
set H'(&;,, Z — G). That the image of an element x lands in this class means that it lies in the
subset H'(F, G) of the right-most term, and hence its image in the middle term lies in H'(F,T);
this already means that z € Y [Vi=o 10 (T'). Moreover, the image of z in H'(F, T') lies in the fiber
over the neutral class for the map H'(F,T) — H'(F,G). We have the commutative diagram of

pointed sets with exact rows

(G/T)(F) —— HYF,T) —— HY(F,QG)

I I I

(Gse/Ts)(F) —— HYF,T,,) —— H'(F,Gy),

and since the natural map Gy. /Ty, — G/T is an isomorphism (of F'-schemes, not groups), we may
lift the image of z in H*(F,T) to an element xy. € H'(F,T,.). Now the claim is clear by the
functoriality of Tate-Nakayama duality for tori.

The above claim immediately implies that we have an injective map

?[Vfa V]O,Jr,tor([Z — T])

— HY &, 7 — Q).
T (Y (Vo ror (7o) (&v )

Arguments involving cocharacter modules (see [Kall8], proof of Theorem 3.8.1) show that the

image Im[Y [Vz]o r.or( 75 )] is exactly the kernel of the natural map

?[VF’ V]O,—htor([z — T]) — Y[VF7 V]0,+,tor([Z - G])a
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and so, putting the above two observations together, we have a natural inclusion
(?[VFv V]O +tor([Z — T]) - ?[Vfa V]O,Jr,tor([Z — G])) — Hl(ng Z — G)

Now note that any two elements of Y [V, Vo 4 or([Z — G]) lie in the image of the group
Y[V, Vlotwor([Z — T]) for some maximal F-torus 7 C G. The analogous argument using
elliptic maximal tori (over the local fields F},) in the proof of [Kall8, Theorem 3.8.1] works for
us, once we replace [PR94, Corollary 7.3] with [Thal3, Lemma 3.6.1], using that H*(F,, T_.)
vanishes for any F,-anisotropic maximal torus 77, (by Tate-Nakayama duality), and the fact that
the map H*(F,Ty,) — [l,ey, H*(F,, T.) is injective whenever there exists a place v € S such
that (77,) g, is an F,-anisotropic maximal torus in a connected semisimple group G, (see [PR94,
Proposition 6.12], the proof of which works for function fields).

We now claim that if 2; € Y[V, Vg4 or([Z — T]) for i = 1,2 map to the same element
in Y[V, V]osia([Z — G]), then their images ¢y (z;) € HY(Ey,Z — T;) map to the same
element of H'(&y,, Z — G). We show this explicitly: Choose j large enough so that F; splits 77,

E F

and such that exp(Z) | n;, z; comes from A; € Y;[(S))g,, Slo """ ; choose also a lift Ccp,s; €

Resg,.s,(Gm) /Gl (O E]-,OSF s 3) of a 2-cocycle representative of the global Tate class (and n,-root
maps k; as constructed in §7.1). Denote by é’j the explicit gerbe E’EE,,s‘- defined in §8.2, similarly
with £;,, for n € N. We know that iy, (z;) is represented in H'(E; ,JZ] — T;) by the pullback of
the twisted 2-cocycles zj, ,,, (defined in §8.2 — to get an element of H Y&y, Z — T;), use the
canonical inflation map from H' (gj, Z — T)), denoted by z5.. We want to show that the twisted
2-cocycles zj, give the same class of torsor in H'(y,Z — G); since any choice of functor
&y — 5 factors through ( ;)7 (by construction), it is enough to show that 3. are equivalent as
twisted 2-cocycles in H 1((5}-)7, Z — G); due to the fact that by construction both 23, are pulled
back from H'((€

;)7 £ — G), it’s enough to show the equality of 23, ,,. and 23, ,,, in the latter
cohomology set. The next part of the argument is essentially the proof of Lemma 4.5.9.

It is clear that the images [A;] € Hom(A4, Mg, 5, )" = AY [(Sj)Ej]éVEj/F are equal, which is the
first step to showing equality of twisted cocycles. Choose g € G (F*P) such that Ad(g)A; = A, +
M for M € X.(Ts,c/Z)[(S))E,]o (Which exists by assumption). We have the I'g,/p-equivariant
injection X,(7;/7Z) — X.(T;a) © Xu(G/(Z - 2G)) induced by the isogeny 1;/2Z2 — T;/(Z
Z(2@)), and we write A; = ¢, +r according to this decomposition. Now since A, = Ad(g) (Al) +
M, we get that the corresponding decomposition for A, is given by (Ad(g)q, + M) + r, since
M € X.(Tzsc/2)[(S})E,)o. and the image of X, (Ths/Z) in X.(G/(Z - ZG)) is trivial, since the
projection of T3 s to G factors through ZG. We may replace n; with n; for a sufficiently large
j' € Ntoassume that n;q; € X, (TLSC)[(S]-)Ej]éVEj/F (possible because 7' i« — 71 44 is an isogeny),
and that n;r € X.(Z(G)°)[(S))g,]o (possible because Z(G)° — G/(Z - ZG) is an isogeny).
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We are now ready to demonstrate the equality of the twisted cocycles zz, ,,. and zj, ,,, (or
rather, their images in H 1((5}7”].)?, Z — @)). Recall (since we’ve already shown equality of the
associated homomorphisms) that this means finding some = € G(F) such that

. _ - _ 1
kj(CEj’Sj> OE,SI7IOF,S njA2 —h (:L‘) ' [kj (CEj’Sj) OE,S|7|OF,S njAl] P2 (ZL’)

inside the group G(F @ F'). Decomposing A; as above and noting that k;(cg, s, ) o U nre

E,5/OF,s

Z(G)(F ®p F), this reduces to the same equality with A; replaced by ¢; and A, replaced by
¢ := Ad(g)q1 + M. Following [Kal18], we set

ci = kj(cg,.s,) on SL/]OFS n;q; € T;so(F ®@p F);

Ng,
note that, by construction, n;q; € X.(Ti)[(5))g,]o it
The image of ¢; in T} .q(F @ F) is equal (by Z-bilinearity of the unbalanced cup product, using

that ¢; € X, (T1,44)[(S))E,]0) to CE; 5, EI7IF gi—here, since we are working with Cech cohomology
with respect to F, we have switched the unbalanced cup product notation. But now CE;.S; EI7IF ¢ =

CE,5, Ugiisa Cech 1-cocycle of de(ﬁ RF F), so we may twist Gs. by ¢; to obtain the twisted
F-form G, with isomorphism
¢: (Gie)r = (Go)F

such that pj¢ o p5¢~" = Ad(cy) on (G) g, 7-
We claim that pi¢(cy - ¢;!) is a 1-cocycle in GL(F ® F); an identical computation as in
the proof of Lemma 4.5.9 shows that the differential of pi¢(c, - ¢; ') post-composed with the

F@F 3

isomorphism ¢;¢~! (where q;: F — is inclusion into the first factor) gives dc, - dc; !,

where, by our unbalanced cup product formulas,

de; = d[kj<CEj,Sj)] E|7|F n;q;,
using that the E;/F-norm of n;q; vanishes. The cocycle claim is proven after we observe that, as

explained in [Kal18], the inclusions Z(G.) — T; s give maps

( ,d) [(Sj)Ej]O N HOI’Il( eSEJ7SJ (/L J)

X, (Tz‘,ad)[(sj)Ej]O - m Hn

, Z(Gse)),

under which the images of ¢; and ¢ coincide.
By the vanishing of H'(F,GL) = H'(F/F,GL) (since G, is simply-connected and con-
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nected), there is some = € GSC( ) such that

¢t =pi(x) tepa(x)e

and hence the image of x in G(F') realizes the desired equivalence of twisted cocycles.
We may finally deduce the claim of the theorem. We showed above that for a maximal F'-torus

T of GG, there is a natural inclusion
(Y[VFa V]O,—i-,tor([Z - T]) - ?[va V]O,—i—,tor([Z — G])) — H1(5V7 Z = G>’

and, as we have shown, these images capture all elements of Y[V, V1o 4 or([Z — G]). Thus, for
z € Y[Ve Vipr([Z — G])), we define ¢, (z) to be the image of v, (y) € H'(Ey, Z — T)
in H'(&,, Z — @), where y € Y[V, V]o1uor([Z — T]) maps to z. By our above argument,
the induced map Y [Vs, Vo +.e([Z — G]) — H'(Ey,Z — G) does not depend on the choice
of preimage y. This map is evidently surjective, by Lemma 8.1.2, and is injective because of the
above natural inclusion and the fact that any two elements of Y [V, Vo 1 or([Z — G]) both lie in
the image of Y[V, Vo 4.or([Z — T) for some T. By construction, these isomorphisms extend
the isomorphism of functors ¢, defined on the full subcategory 7, and are functorial with respect
to morphisms [Z — T| — [Z — G] in R given by inclusions of maximal tori defined over F'.
Since every x € H' (&, Z — @) lies in the image of some H' (&, Z — T), it follows that the
extension of ¢y, to R also defines an isomorphism of functors on R. [

To conclude this subsection, we state some local-global compatibilities that arise from Theorem
8.3.1. Note that the morphism of functors from 7to AbGrp defined in the previous section, given
by, forafixedv € Vand [Z — T] € T, themap l,: Y[V, V]psioe([Z = T)) = Vivior([Z —
T)), may be extended to a morphism of functors on R induced by (after picking a set of coset
representatives for Ty, /p\I'e,yp) mapping f € [X.(T/2)/ X (Ti)][SE, Sglo to an element of

X.(T/Z)]X.(T) via the same formula as in the tori case. We recall the functor Y, or: R —
AbGrp from §4.5.

Corollary 8.3.2 We have a commutative diagram with exact bottom row:

(locy)w

HY (&, Z — G) U,ev H' (&0, Z — G)

LVT (Lv )UT

Y[VF’V]U+tor([Z - G]) @vev Y+v tOV([Z - G]) L) ?Jr,tor([Z — G])v

where the symbol | | denotes the subset of the direct product of pointed sets in which all but finitely
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many coordinates equal the neutral element, and the map >, makes sense since any maximal F,-

torus of G, is G(F,)-conjugate to the base-change Tk, of a maximal F-torus T in G.

Proof. The commutativity is an immediate consequence of Corollary 8.2.13, the functoriality of
1y, and the fact that every x € H'(&;,, Z — G) lies in the image of some H' (&, Z — T). The

exactness of the bottom row is a straightforward character-theoretic argument. [

We also have the following analogue of [Kall8, Corollary 3.8.2]:

Corollary 8.3.3 The image of

H' &y, 2 — Q) X2 | | HY (6, Z - @)

veV

consists precisely of those elements which map trivially under the composition

| | H' (&0 Z = G) = PV 10i0rllZ = Gl) = YV 4ia([Z — G)).

’UGV veV

Proof. Unlike in [Kall8], where some work is needed, this is a trivial consequence of Corollary
8.3.2. O

8.4 Unramified localizations

Let GG be a connected reductive group over F' with finite central F-subgroup Z. Note that for any
Z-twisted G, -torsor 7 (denote the set of such torsors by Z Y&y, Z — @), we can pull 7 back
to the vaﬂ—torsor T and then via picking gerbe normalizations and a 1-coboundary, we get
a functor ®: £, — &y, and then loc,(.7) := ®*(.7) is a Z-twisted G¢, -torsor, which depends
on our choice of normalizations and coboundary up to replacing loc,(.7) by the canonically-
isomorphic (via translation by a~') torsor 1*(loc, (7)), where n: £, — &, is the automorphism
induced by a 1-coboundary d(a), for a € u,(F},).

Note that since Res[.7] € Homp(P;,, Z) factors through P, g, ,, for some i, for all v ¢ S;
we have that Res[loc,(.77)] is trivial, and hence loc,(.7) is the pullback of some G-torsor over F,
via the projection £, = Sch/F,. The canonical inclusion Z(Opx) — Z(F,) is an equality for all
but finitely many v (because Z is split over F" for all but finitely many v, and Op» contains all
roots of unity in F,). Choose an O r.s-model G of GG for a some finite subset S C V'; note that, for
almost all v, the subgroups G(Opw) and G (O%Z,‘;f) inside G(FP) and G(F,) (respectively) do not
depend on the choice of model G. Our goal in this subsection is to prove the following function

field analogue of [Tail8, Proposition 6.1.1]:
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Proposition 8.4.1 Let 7 € Z'(&y,Z — G). For all but finitely many v € V, the torsor
loc,(7) € ZNE,,Z — G)/d(Z) is inflated from a G-torsor T, over O,. Here, we are using
ZYNE,, Z — GQ)/d(Z) to denote equivalence classes of Ge,-torsors with the equivalence relation
given by 7 ~n* T forn: &, — &, induced by d(a) for a € u,(F,) — z € Z(F,) (we can always
assume that z € Z(OY. ),by the above discussion,).

Moreover, choosing normalizations & and E, of the gerbes &, and £, and viewing T as a
torsor on 55- (the choice of normalization and class & does not affect the class of 7 in Z 1(55-, Z —
G)/d(Z)), we may canonically identify 7 with a {-twisted G-torsor (S', Res(7 ), '), where S’ is
a G-torsor over F. Fix a Z(F)-orbit of trivializations O = {S' LN G}, then for all but finitely
many v, for any h € O, we may choose the G-torsors T, over O, such that the trivializations hz

on Sz are induced by the pullback of a trivialization h,: T, — G over the ring O‘;f,ff .

Proof. This proof is essentially a summary of [Tail8, §6.2] with some minor adjustments to ac-
commodate the positive-characteristic situation. Let &, denote a representative in u, (E®F v 3) of
the local canonical class, £ € PV(F@)F 3) a representative of the global canonical class given
in Definition 7.4.5. Pick a tower of resolutions by tori (P, — T} — Uy)x as in §7.4, and set
T .= I&Hk T, U .= @k Uy, which are pro-tori.

By construction of the global canonical class [¢], the image of [¢] in H?(A/A, T — U) co-
incides with the image of the adelic canonical class [x] € H?(A/A, P), which, unpacking the
construction of [z], is to say (by the definition of the differentials arising from the double complex

associated to 7' — U) that there is some a € T(A ®, A) and b € U(A) such that

¢ = ([ $2oc,(&))] - d(a) (8.6)

veV

inside T(K®A3) and @ = db inside U (A ®, A), where recall that S2(loc,(£,)) denotes the image
of loc,(&,) € P (E®F v 3) in P (K?F v 3) under a choice of Shapiro map (defined in §3.3—note that
such a map is not canonical until one passes to cohomology). To make sense of the above product
expression, we remind the reader that P(K@A 3) = lim. P, (K&* 3), and for a fixed i, all but finitely-
many projections p;[S2(loc,(&,))] are trivial, and hence it makes sense to take this product in each
PZ-(KQ% 3) = lim - T, H(A?? 3) (by Corollary 3.3.6) and then take the inverse limit.

Recall that © € Vi determines a ring homomorphism pr,: A — F, defined by the direct

/

limit of the the projection maps Ax = HweVK

K, — K, over all finite extensions K /F, where
by Uk we mean the unique extension of U/, where K’ is the maximal Galois subextension of
K/F, to a valuation on K. Restricting this ring homomorphism to the subring A, C A gives
a homomorphism of F}-algebras. It is straightforward to check that we may choose our section

['/T, — T (cf. the construction of the Shapiro maps in §3.3) such that, on k-cochains, we have
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pr, ‘K o Sfj = idz;. We also have the projection map A X A, defined the same way except using
the direct limit of the project maps [’ Ky = [ Ly Ko

weV;

Applying pri)|& o pr, to the equality I((8.6), we see that, for a fixed v € V, the image of 5 in
T(E(X)F” 3), denoted by res, (£) is given by loc,(&,) - d(a,), where a, := pr,(a) € T(F, @, F,).
Although this equality is a priori taking place in T'(F,
both lie in the subgroup P (E®F v 3), we see that in fact d(a,) € P (E®F v 3) and thus this equality
takes place in P. Set b, := pr,(b) € U(F,), and choose a lift b, € T(F,) of b,, which is possible

since the derived inverse limit I&n: P,(F,) vanishes, since it consists of surjective maps and thus

fo 3), since the image of £ and loc,(&,)

satisfies the Mittag-Leffler condition. Define a/, := a,/d(b,), which lies in P(E@)F v 2) since its
image under 7" — U equals pr,(a)/pr,(db) (using that the isogenies 7}, — U} are defined over F,
so they commute with Cech differentials), which is trivial by construction. We may replace a,, by

a! and retain the equality

resv(f) = 100@(51}) : d(a;)-

Continuing to follow [Tail8], for £ > 0 and v € V, we denote by a, j, (resp. by k, by k. a;k) the
image of a,, (resp. by, by, a,)in Tk(E®F” 2) (resp. Up(F,), Ti(F,), Pk(E®F“ 2)). We claim that
there is a finite set of places S’ of F' such that for all v ¢ S, the element a;,, lies in the subgroup

Pk([OE’fgf ]®0Fv ?). Recall that

ar, € Tp(A @y A) = lim Tu(Ap ®a Ap) = Lﬂg(hg T(Aps ®as Apg)),
BJF BJ)F S

where the outside limit is over all finite extensions £/ F' and the inside limit is over all finite sets
of places of F. It follows that we may find K’/ F finite containing F, and finite S’ C V containing
Sy such that the maximal Galois subextension K’/ F' of K is unramified outside S’, such that T}, is
split over K', aj, € Ti(Ak,s» ®a,, Ak,s), and by € Up(Ag s ). It follows that, for v ¢ S’, we have
arw € T1(Ok, ®oy, Ok,), and moreover, K,/ F, is unramified, so that aj,, € Tk(OpFevnllf ®0p, O‘;fgrf ).
Since the group Fj is killed by the ni-power map, there is a unique morphism U, — T}, such that
the composition Uy, — T, — Uy, is the ng-power map. Since by, € Up(Ok,) forall v ¢ S” and T},
and Uy, are split over /{, any preimage of by, lies in Tk([O%“)] (1/P™%)), where [Ogj“)] (1/P™*) denotes
the fppf extension of Ok, given by the composition of two extensions defined as follows. If n}_ is
the prime-to-p part of nj, with n;/nj = p™*, then we first take the extension Og?j“) /Og, obtained
by adjoining all nj-roots of elements of Oy , which is finite étale, followed by the extension
[O%’“)](l/ P"*) defined by adjoining all p™*-power roots to OE?;’“), which is finite flat.

We claim that the extension [O;?f)](l/ P"™) /Op, lies in O%zf. Indeed, since O?ﬁ,}f = O%}rf , it’s
enough to check that [O%’“)](l/ P") lies in O%fgf, which is clear since, as explained above, it factors

as a finite étale extension of O, followed by the extension obtained by adjoining all p™*-power
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roots. Thus, for any v ¢ S’, we have a),, € Pk([O%“)](l/pm’“) ®0p, [Oﬁ?f)](l/pm’“)), and hence,
since we showed in §7.4 that the image of loc,(&,) is trivial in Py, for all v ¢ S, C S’, we get the
equality
. / _®Fv 3
res, (&) = d(ay, ;) € Py(F, )

where &, denotes the image of ¢ in P (E®F v 3).

Let 7 € ZY(&,,Z — @), and choose normalizations of &, and &, so that we may identify
them with the explicit gerbes &, and &, respectively. Recall that, after passing from & to &
(which we have explicitly identified with (Eé)FT), choosing different normalizations has the effect
of twisting loc,(:7) by d(z) for 2 € Z(Opw) with z = Res([.7])(x) for some = € u,(F,), and
thus does not affect the statement of the proposition. Changing the representatives ¢ and &, for the
canonical classes has the same effect.

Having chosen normalizations, we may canonically identify G¢,-torsors on the gerbes &£; with
?-twisted G-torsors, for 7 = resv(é),fv,é’, by Proposition 2.4.10; write .7 = (S’,Res(.7),v)
under this identification. Choose & sufficiently large so that Res(.7) € Hompg(P,Z) fac-
tors through Py via ¢, € Homp(Py, Z), 8" equals j*S” for a G-torsor S” over Ogirf, for
j: Spec(F) — SpeC(Ogirf), such that h equals j*hg, for an Ogirf-trivialization hs, of 8", and
such that the “twisted gluing isomorphism" ¢': p5S’ — piS’ is given by j*¢ for an isomorphism
of G-torsors

Vi pyS" = piS”;
choose 5" O Sy corresponding to k as in the above paragraphs. We have a morphism of gerbes

&, = e, () given at the level of objects by sending the &, -twisted torsor (17, ¢) to the res, (§)-
twisted torsor
(T7 5% Py mgag)-1 0 9),

cf. Construction 2.3.4. Under this identification, pulling back by the morphism we just constructed
sends the res, (£)-twisted G-torsor (87 Res(7), 1)) to the &, -twisted G-torsor (S, Res(7) o
loc,, My, ©4'). Note that, by construction, for any v ¢ S’, the homomorphism Res(.7) o loc, on
1, is trivial, and hence (S}—v, mg:, o ') gives a descent datum for a G-torsor S over F,; we claim
that the pair of S and the F)-trivialization induced by hz- descends further to a G-torsor over O,
with an O%If-trivialization.

Define this new G-torsor 7 as follows: we take the descent data with respect to the fpqc cover

Opr.}rrf/ Op, given by the torsor Sgperf, where this is well-defined since for v ¢ S’, the ring O]p;f,}rrf

nr
Fy

is an ngrf—algebra, and the gluing isomorphism given by mges(7)(a) © ¥, Which is well-defined

v

since Res(7)(a;) = wx(ay, ), the morphism ¢y, is defined over Or s/, and a;,, € Pk(O%f ®0p,
Oﬁ’%rrf); this gives a well-defined gluing map by construction, and finishes the construction of 7—
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by design, h, := (hg,) ot trivializes 7 over O?%rrf. The pullback of 7 is evidently equal to S,
since the descent datum giving 7 pulls back via the morphisms Spec(F,) — Spec(Op,) and

Spec(F,) — Spec(OE%rf) to the descent datum giving S; similarly, A, pulls back to hz-. This
proves the result. O
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CHAPTER 9
Applications to Global Langlands

In this section, we use the above constructions to analyze an adelic transfer factor for a global func-
tion field F' and state conjectures regarding the multiplicity of discrete automorphic representations

in the discrete spectrum. In what follows, G will be a connected reductive group over F'.

9.1 Adelic transfer factors for function fields

In this subsection, we follow [LS87, §6.3] to construct adelic transfer factors for connected reduc-
tive groups over a global function field F. Let ¢: Gr, — GF, be a quasi-split inner form of G,
with Langlands dual group G* and Weil-form L G* := G* x Wp.

Definition 9.1.1 A global endoscopic datum for G is a tuple (H,H, s,§) where H is a quasi-split
connected reductive group over F', H is a split extension of Wr by H seZ (PA[ ) is any element,
and ¢ : H — “G* is an L-embedding such that:

~

1. The homomorphism Wy — Out(H) = Out(H) determined by H is the same as the homo-
morphism Wgr — I' — Out(H) induced by the usual I'-action on H.

2. The map & restricts to an isomorphism of algebraic groups over C from Hto 7. (t)°, where

t:=&(s).

3. The first two conditions imply that we have a I'-equivariant embedding Z(@*) — Z(ﬁ[) We
require that the image of s in Z (ﬁ )/ Z (CA;*), denoted by 8, is fixed by Wy and maps under
the connecting homomorphism H*(Wp, Z(H)/Z(G*)) — H (W, Z(G*)) to an element
which is killed by the homomorphism H*(Wg, Z(G*)) — H (W, Z(G*)) for all v € Vi

(such an an element is called locally trivial).

Note that any global endoscopic datum ¢ = (H, H, s, &) induces, for any place v of F, a local
endoscopic datum given by (Hg,, H.,, Sy, &, ), Where H,, is the pullback of the two maps H — W
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and Wr, — Wp (which carries a natural splitting), §,: H, — L(G}}U) is induced by £ and the
natural map H, — H, which one checks is an L-embedding, and s, = s € Z (ﬁ ). Following
[Kall8], we will denote such a local endoscopic datum by ¢, = (H,H, s,,&). Fix a global endo-
scopic datum (H,H, s, £); we will temporarily assume that H = “H. Up to equivalence, a global
endoscopic datum only depends on the image of s in mo([Z(H)/Z(G*)]"). Recall that a strongly-
regular semisimple element vy € H(F') with centralizer T (a maximal torus of H defined over
F) is called G-regular if it is the preimage of a strongly-regular semisimple element 75 € G(F)

under an admissible isomorphism Ty — T := Zg(7yg). We'll need the following basic lemma:
Lemma 9.1.2 There is an admissible embedding of 'l into G*.

Proof. This follows from Lemma 6.1.6, which is a generalization of [Kot82, Corollary 2.2]. Note
that the Lemma loc. cit. is stated for a local function field F', but the proof holds verbatim for
global function fields. O

It immediately follows that for any G-regular strongly-regular semisimple vy € H(F'), we
have an admissible embedding of T in G* (which is not unique). We say that vy is a related to
ve € G(A) ifforall v € V, the image of vy in H (F,,) is an image (under an admissible embedding
(Ty)p, — 5; ) of the element v, € G(F,). If we fix an admissible embedding of 7% in G*,
with image a maximal F'-torus denoted by 7" and image of vy denoted by v € G*(F), then the
above condition means requiring that there exist x, € G*(F3?) such that Ad(x,) o ¢ maps the
maximal torus 7¢; , in G, containing ¢, to T, (over F},) and sends ¢, to (the restriction of) .

Then for elements vy, g related to v¢, Yo (respectively), we define

1y = iV (—gx) , ©.1)

which lies in the group H'(F,,U), where U = (T x Ti.)/Z., where everything is as defined in
§5.3.3.
We need the following analogue of [LS87, Lemma 6.3.A], whose proof we follow:

Lemma 9.1.3 1, = 1 for all but finitely many v € V.

Proof. Suppose that L/F is a finite Galois extension splitting 7" such that the map v is defined
over L. Note that for all but finitely many v, the map ) is defined over F),, and that that since L
splits 7', for any v € V, the completion L, splits the maximal F-tori (1%)p,, Tc,», and T, . Itis

straightforward to verify that, in this case, we have

. inv(rYHa ’YG,U)

/“Lv - . — — I
inv(y, Yew)
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where inv(vyy,v¢,») is defined by choosing some h € G*(L,) such that Ad(h)Y(vq,) = 7 and
then setting inv(vm, va.0) := [p1(h)p2(h)™Y] € H'(L,/F,, Ty), similarly with vg and 7¢,, re-
placed by 75 and 7, where the above quotient takes place in the group H'(F,, U) via the maps
H'\(F,,T,.) = H'(F,,U), similarly for T}, induced by the canonical maps Ty, Ty, — U.

Note that for all but finitely many places v, the extension L/F is unramified at v, the image of
in T'(F,) lies in T'(Op, ), the map ¢ is defined over F,, the element ¢, lies in T (Op,) C G(Op,)
for some fixed integral model G of G, and for each root o« € ®(G7,,T1/), we have a(y) € OF .
Then Lemme 8.3 from [Lan83] (which is stated for p-adic local fields, but whose proof relies
results from Bruhat-Tits theory that are stated for an arbitrary nonarchimedean local field, see
[Tit79]) shows that y¢, and 7 are in fact conjugate under G(Op,) for all but finitely-many v.
From here, the same argument as in the proof of [LS87, Lemma 6.3.A] shows that the class
inv(vg, vaw) € HY(L,/F,,T..) = H'(F,,Ty) (which is well-defined because G'p, is quasi-
split, see §5.3.3), vanishes. Of course, the same argument can be applied to show that the class

inv(¥y, J¢,») vanishes, giving the result by the above paragraph. 0

Note that a strongly G-regular vy € H(F) is related to 7 € G(A) if and only if there exists
h € G*(A) such that hi)(yg)h™" = ~. Now for any u € G%(F ®p F) such that Ad(u) =
pip o pip~!, we define up € HY(A/A, T,.) as the the image of py(h)upy(h)™' € T(A ®4 A) in
T(A ®4 A)/T(F @p F). Identifying H'(A/A,T,.) with H'(A*P/A T..) (notation as in §A.3),
we get from our discussion in §A.3 a pairing H'(A/A, T,.) x H'(I', X*(T)) — Q/Z. Identifying

A~

X*(T) with X, (T), this determines a pairing
H'(B/A, Tye) x mo(Th) — C*,

as explained in §5.1. Our element s € 7o([Z(H)/Z(G*)]") determines an element sy € mo(715)
via the canonical (I-equivariant) map Z(H) — T, and we thus obtain a value (u7,s7) € C*,
which we denote by d(vx, v¢); it is clear that d(y, v¢) is independent of the admissible embed-
ding of T into G*.

On the other hand, it follows from the above lemma and the isomorphism

H*(A,U) = @ H*(F,,U)

veV

that the classes i, determine a well-defined element of H?(A,U) = H?(A/A,U); denote by pys
the image of this class in H2(A/A, U). As explained in [LS87, §3.4], the global endoscopic datum

determines an element sy, € mo(U %) for all v, as well as sy € mo(U"). Then via the pairing of
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the above paragraph, we obtain a value

(s su) = ] [ s00), 9.2)
where the equality comes from the local-global compatibility of the Tate-Nakayama pairing for

tori, see [Mil06, §4] for more details. We also have the equality

d(ﬁH? :)/G)

(b, SU> = (v, 7G)-

Lemma 6.3.B in [LS87] discusses how the values d(yy, 75) change as one varies the inputs—its

proof also holds in our setting, and we record the result here:

Lemma 9.14 1. d(vu,ve) = d(Vy,Ye) if vy is stably-conjugate to vy in H(F).
2. d(vu,ve) = d(vm, Vg) if 76 is G(A)-conjugate to ve.
3. d(vu,v6) = d(vu,3c) if 16,7 € G(F).

Fix a strongly G-regular 75 € H(F') which is related to 75 € G(F). If there are no such
elements, we define Ay (ym,v¢) to be 0 for all vy € H(F), v¢ € G(A). Otherwise, we then
define the adelic transfer for a strongly G-regular vy € H(F') and 75 € G(A) by the quotient

d(’_}/Ha f_yG)

9.3
A ve) ©3)

Ax(vm,76) =
if vy is related to 7, and zero otherwise. It follows immediately from Lemma 9.1.4 that this factor
is independent of the choice of the elements vy and 7, the choice of 4 up to stable conjugacy,
the choice of v¢ up to G(A)-conjugacy, and thus equals 0 if vy is related to 75 such that the
G(A)-conjugacy class contains an element of G(F).

We conclude this subsection by discussing local-global compatibility. Note that, if vy € H(F)
is a strongly G-regular semisimple element which is related to 7o € G(A), then for all v € V, we
have that the image of vy in H(F,), denoted by res, (Vg ), is strongly G g, -regular and is related to
the element v, € G(F,). We have the following result concerning the local transfer factor (see
§5.3 for the definitions of the various component factors), where the local transfer factors are taken
with respect to the local endoscopic data (H,H, s,,£) coming from the fixed global endoscopic

datum (H, H, s, &) as explained above:
Proposition 9.1.5 ([LS87, Theorem 6.4.A])
1. For almost all v, the values A;(res,(vn), Vo) equal 1 fori = 1,11, 1115, 1V.
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2. 11, Ai(reso(vu ), Yaw) = Lfori=1,11,111,,IV.

Proof. We closely follow the analogous proof in [LS87]. As in §5.2.1, we may define, for the
quasi-split simply-connected reductive group G?, with maximal torus Ty, a global splitting in-
variant Ao} (Ti.) € H'(F,T) which depends on an F-pinning of G, and a choice of a-data
{aq} for T'. By the construction of the local splitting invariant, it is clear that A,y (7y) maps
to the local splitting invariant A, y(7F, ) (Where we are viewing the a-data {a.} as an a-
data for Tr,) under the canonical map H'(F,T.) — H'(F,, T, ). Since for all but finitely
many v the image of A(,,}(7i) lands in the subgroup H'(Op,,TF,«) = 0, it follows that
(Maat (T, 5¢): S7,0) = A1(resy (v ), Ya0) = 1 for all but finitely many v.
Our above observation and the exact sequence

H'(F,Ty) » H' (A, Ty.) = H'(A/A, Ti.) - H' (A/A, Ty.)

(see [KS99, §D.1]) imply that the image \ of the element (Maa}(Trys0),ST0))0 € HY A, Tye) =
@D, H'(F,, T, s) is trivial in H'(A/A, T,.), and so it follows by local-global compatibility of the
Tate-Nakayama pairing that

H<>\{aa}(TFv,sc),ST,v> = (\,s7) =1,

v

as desired for the case ¢ = I. The arguments for the remaining cases of ¢ = [1, [1],, and IV may
be taken verbatim from the proof of [LS87, Theorem 6.4.A]. ]

It follows from Lemma 9.1.3 that the value Ay, (res, (Vi ), Va0, 1€80(Vr ), Yaw) = (v, SUw)
the remaining component of the local transfer factors, equals 1 for all but finitely v, and from the

equality (9.2) the identity

An(vm,v6) = H Aprr (resy (), Y60, 1680 (V)5 Y6 ,0)-

We now use the above constructions to define a transfer factor for adelic elements of H. We
call an element v € H(A) semisimple if v, € H(F,) is semisimple for all v, and we call it strongly
G-regular if v € Hg_o(Ag), where Hg_ C Hyp is the F-scheme characterized by the Zariski
open subset of strongly G-regular semisimple elements of the variety H (F). Similarly, we call a
semisimple element § € G(A) strongly regular if it lies in G (Ax), where Gy, C G is the Zariski

open subscheme characterized by the strongly regular elements of G(F).

Definition 9.1.6 For v € Hg_,(A) and § € Gy, (A), we set Ay(7y,0) = 0 if there is no strongly
G-regular element of H(F') which is related to an element of G(F’), and otherwise fix such a pair
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Yu, Vo and define
Au(7,6) = [ AGw: 6v, V1.0 V) 9.4)

This product is well-defined due to the following result:

Lemma 9.1.7 In the notation of the above definition, the local transfer factor A(7,, 0y, VH vs YG.0)

equals one for all but finitely many v.

Proof. For all but finitely many v, the group G, is quasi-split, in which case we may write

A(%aév)

A(’y’vadvai/H,’Uai/G,v) = A(’?H ’7G )

For a quasi-split connected reductive group over a local field, the (absolute) local transfer factor
may be defined purely using Galois cohomology (cf. §5.3, 5.2.1). In such cases, the claim of the
Lemma follows from the analogous fact in the characteristic-zero case, which is stated in [KS99,
§7.3, pp. 109]. [

Remark 9.1.8 It follows from Proposition 9.1.5 that the two formulas (9.3) and (9.4) given above

for Ay coincide when vy € H(F), so there is no notational ambiguity.

Remark 9.1.9 In the case that H # “H in our global endoscopic datum, the formula for Ay
is slightly more complicated. To begin, we fix a z-pair (Hy,&y,) for the endoscopic datum ¢ =
(H,H,s,£), which always exist over fields of arbitrary characteristic. For any place v of F,
this z-pair gives rise to a z-pair (Hi,,&m, ) for the local endoscopic datum e,. We may then
define the adelic transfer factor for pairs of elements v, € Hi g, (A) and 0, € Gy (A), where
71 € Hyig_o(A) means that its image in H(A) is G-strongly regular, using the relative local

transfer factors for z-pairs as in §5.4:

Ap(71,9) == H A(V1,05 60, Ve 05 Vaw)-

9.2 Endoscopic setup

This subsection is an analogue of [Kall8, §4.2, §4.3], which explain how to pass from global to
local refined endoscopic data and discuss coherent families of local rigid inner twists; recall the
notion of a refined endoscopic datum (H, H, s, £) over a local function field F' (defined in §6.2). A
fixed global endoscopic datum ¢ = (H,H, s, &) induces a canonical embedding Z(G) — Z(H),
and we set i := H/Zy.:, where Zyor := Z(2(G)), Zy := Z(G?.), and G* := G*/Zy... Note that
G* = Gy x Z(G*)/Zger and G =Gy x Z(G*)°. We also set Z := Z(G).
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The L-embedding £ induces an embedding ]?I — é\* with image equal to Z; (t)°, where recall
that ¢ := £(s) (this is well-defined because @ maps to é\*, which contains ¢). Then for s, € é\*sc
a fixed preimage of the image s,q of s in é\*ad and a place v € V/, the third condition in the
definition of a global endoscopic datum implies that we may find an element y, € Z (@) such that
Sqer " Yo € Z ([9’ )T, where s4er € 2 (é\* ) denotes the image of s,.. We can then write v, = v/, - y./
for y,, € Z(.@(@)) and y) € Z(é\*)o, and we choose a lift 7/, € Zy of 3. Then the element

—

(5 - U0, ) =: §, lies in G* = G*y X Z(@)O, which, via the above L-embedding, belongs to
the group Z (f[ )Y, and ¢, := (H,H, $,,&) defines a local refined endoscopic datum at the place
v. As noted [Kall8], we will show that the global objects coming from this collection (¢, ), do
not depend on the choices of s, 9., or ¥/, only on the equivalence class of the global endoscopic
datum e.

We now discuss coherent families of local rigid inner twists. For an equivalence class ¥ of
inner twists Gy — G (Where two isomorphisms v, ¢’ from G* to G are equivalent if they
differ by pre-composing with Ad(g) for g € GZ,(F*%?)), base-changing to F,, for any v € V gives
an equivalence class of W, of rigid inner twists G’I‘,iep — Gpxe. The class W gives an element of
H'(F,G?,;) which by Lemma 8.1.1 has a preimage in the set H*(&y,, Zye — GL.).

It follows that for every v € W, we can find a Z-twisted G:qgv—torsor . along with an

isomorphism of (G}y)e, -torsors h: (Z)7 — ((Gra)e,, )7> where Too 1= T x oty (Gi)e,, and
(Gyy)e, denotes the trivial (G}, ), -torsor, such that pjhopsh ™" is translation by z € Giy(F Q¢ F)
which satisfies Ad(z) = pip~1 o piip.

For each v € V, we set .7, to be the Z-twisted G’ -torsor given by loc,(7), where 7 =

Tee XG:“‘EV G;V, and loc, is as defined at the beginning of §8.4; the F-trivialization h evidently
induces a F,-trivialization of .7, (noting that .7, = .7), denoted by h,. Note that, by construction,
the triple (v, 7, h,) is a rigid inner twist over F,; we thus get a collection (¢, ., h,,), of local
rigid inner twists which depends on the definition of the localization maps loc, (see §8.4), but only
up to twisting torsors by d(z) for an element z € Z(F,), which does not affect any associated
cohomology sets. However, this family will in general depend on the choice of torsor 7. Note
that, in fact, since .7 is induced by the Z, -twisted G -torsor Z, it is actually Zg,-twisted, not

just Z-twisted; that is, we may view .7, as an element of the set H*(&,, Zger — G*).

9.3 Product decomposition of the adelic transfer factor

As in the previous section, Z denotes Z(G). We will use the above results to show that the adelic
transfer factor that we defined in §9.1 admits a decomposition in terms of the normalized local

transfer factors constructed in §6.2, following [Kall8, §4.4]. We fix an equivalence class ¥ of
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inner twists Gy — G s, endoscopic datum e = (H,H, s,£) for G*, and a z-pair 3 = (Hy,&)
for e. We assume that there exist strongly G-regular v, o € H,(F') and 0y € G(F) such that v,  is
related to dy (so that, in particular, the image of v, o in H (F"), denoted by o, is related to dg). As
explained in §9.2, we can associate to ¢ the collection of refined local endoscopic data (¢, ),cy to
the global z-pair 3 a collection of local z-pairs (3,).cv, to the class W a coherent family of local
rigid inner twists (1, .7, hy)vev, and to a fixed global Whittaker datum tv for G*, a collection of
local Whittaker data (tv,,),cy .

For any v, we can use the local Whittaker datum and z-pair to obtain from §6.2 the -

normalized local transfer factor
Ay, ey, 30,0, (Ty, hy)]: Hi q_«(F,) x Gy(F,) — C.
This relates to the adelic transfer factor defined in §9.1 as follows:

Proposition 9.3.1 For any v, € Hy ¢ (A) and § € G, (A), we have

AA(’Yla 5) - H(lOCU(ch y;> : A[mw é’tn dvs 1/}7 (%; B’U)](’yl,va 61))

veV

In the above formula, 7., € ZC as in §9.2 and the pairing (—, —): H'(&,, Z,. — G%) X ZC — Cis
~ — +

from Corollary 6.2.2, which is well-defined since |, € Z,. = Z(G%./Z.) . For almostallv € V,

the corresponding factor in the product equals 1. For all v, the corresponding factor is independent

of the choices of v, and vy, made in §9.2.

Proof. The argument closely follows [Kall8, Proposition 4.4.1]; as in the proof of the result loc.
cit., it follows from [LLS87, Corollary 6.4.B] that the above product identity follows if we can show
that the normalized factors (loc, (%), 7)) - A0y, €v, 30, ¥, (T, hy)] (Y10, 6,) satisfy the following
properties: First, that they are absolute transfer factors, and second, that their values at the F'-
rational pair (71,0.,00,) equal 1 for all but finitely many v and have a product over all v that
equals 1. The first property automatically holds for the above factors by Proposition 6.2.3 (the
extra (loc, (7% ), ¥, )-factor cancels out and thus makes no difference for this verification).

The same argument as in the proof of [Kall8, Proposition 4.4.1] (replacing the use of [LS87,
Theorem 6.4.A] in the proof loc. cit. with our Proposition 9.1.5 and noting that the discussion of
local and global e-factors in [KS99], which in turn uses the construction of such factors in [Tat79],
§3, works for local and global fields of arbitrary characteristic) reduces the second property above

to showing that the terms
<100v<=%c)7 ?);>_1<inV((GFU, wa (Zy Bv)a 50,1})’ 5(3‘(,1))7 'év7’y0,§8> (95)

175



are equal to 1 for almost all v and have product over all v equal to 1, where §; € G*(F) is
the image of 7, under a choice of admissible embedding of Tp i into G* and Ty := Zg«(4f),
the map inv(—, (537v) : CZder((S&u) — HY(&,, Zger — Tp) is as defined in §6.1, the element Sun0.8; €
wo(ﬁ)Jr’v) is the image of 5, € FO(Z(I:’:I)—'—’U) under the composition ¢: Z(ff) — JfU\_H — ﬁ (recall
that the bar indicates that we are quotienting out by Z.,) induced by our choice of admissible
embedding of T}, i into G*, and the right-hand pairing is from Corollary 6.2.2.

In order to work explicitly with the invariant at a place v, it will be convenient to fix an explicit
Cech 2-cocycle &, representing the canonical class in H? (E/ F,,u,) and replace the notion of Zge,-
twisted torsors on the gerbe &, with §,-twisted 1-cocycles; we know by §6.2 that the invariant map
and corresponding local transfer factor do not depend on such a choice, and hence we may do so
without loss of generality.

By construction, the elements 0% and &, are stably conjugate, so that there exists g € G*(F)
such that 1 (g63g™") = do, and then inv((Gp,, ¥, (T, hy), 00,0),65,) € HY (Ev, Zaw — Tp) =
H 1(8&], Zger — 1) is represented by the &,-twisted (éech) 1-cocycle

Ty = (p1(9) " 2up2(9), do),

where (z,, ¢, ) is a choice of {,-twisted 1-cocycle corresponding to the Zg-twisted G -torsor .7,
as explained in §6.1. We may choose g so that it is the image of some g, € G (F), and then
we may lift the twisted cocycle z, to the &,-twisted cocycle z, s := (p1(gse) ' 2zscoP2(Gse), Pscw)s
where (g0, Psen) € ZY(E,, Zse — G%,) is a choice of &,-twisted cocycle corresponding to the
Zs-twisted G -torsor loc, (75 ) on &,.

Using the decomposition ﬁ) = (fo)sc X Z (é\*)o we may use the notation of §9.2 to write
Svr0.0; = (U@ (8se), yy). The functoriality of the pairing from Corollary 6.2.2 with respect to the
morphism [Zs — T 5] = [Zaer — To), then implies that

<inV((GFv7 1/}7 (2}7 Bv)7 50,1))7 55,1;): év,70,6§> = <xv,sc, y;@(ssc»

v =
By construction, the restriction of the character (x, s, —) on mo(Tps ) to Z(G%,)™ equals the
character (s, ¢scv)—) by the functoriality of the pairing with respect to the morphism [Z,, —

Tose] = [Zse = GZ]. It then follows by bilinearity that the expression (9.5) reduces to

(Tose, P(Ssc))- (9.6)

We have already fixed normalizations &, of the gerbes &, for all v—we now also fix a normal-
ization & of the gerbe &,. Such a normalization identifies Ty with a é—twisted (Cech) 1-cocycle
(2se; Psc), Where z. € G%(F ®p F), which by construction has image in Z'(&,, Z,. — G7.) equal

176



t0 (Zse v, Pscv). We may thus define a global twisted 1-cocycle by the formula

Lge = (pl(gsc)ilzsCPZ(gscx ¢sc) € Zl(gga Zsc — TO,sc)a

which satisfies loc,(zs) = ,, Where loc, on twisted 1-cocycles is induced by the maps u, —
(Py)r, and G%(F ®p F) — G%(F, ®p, F,) for a fixed v. It then follows from Corollary 8.2.14
that the class [v.] € H'(E; Ze — Tos) is such that [loc,(zs)] = [vos] € H'(E,, Ze —
T sc) is trivial for all but finitely-many v, which shows that the expression (9.6), and thus also the
expression (9.5), 1s 1 for all but finitely many v, as desired.

To finish proving the product identity, we first recall the functor Y, ,,: R — AbGrp. It follows
from the proof of [Kall6, Proposition 5.3], (the proof of which is purely character-theoretic) that

we have a functorial embedding
Yiw([Z = G)) = mo([Z(G)1]), 9.7)
and it is straightforward to check that for any [Z — G] € R, the diagram

@v ?+v,tor([z - G]) i) Y+,t0r([Z - G])
D, m((Z(G)]) —— m([Z(G)*])
commutes, where the left-hand vertical map is the sum of the local embeddings

Y o2 = G)) = mol([Z(G)] )"

and the lower horizontal map is induced by restricting characters on the groups 7o ([Z(G)]*) to
m([Z(G)]").

If for each v we restrict the character (loc,([xs]), —) on mo([To.s]) to mo([To|T) and then

— —_—

take the product over all v (these characters are trivial for all but finitely-many v due to the above

discussion and Corollary 8.3.2), we obtain the trivial character on 7o([7]") via combining the

above discussion with Corollary 8.3.3. By construction, we have that the image of ¢(sy.) € Tp in

—_—

ﬁ/ ([Tosc]™°) lies in mo([Th «c|T), which combines with the first part of this paragraph to give the
equality (., 9(Ssc)) = 1, where the pairing is induced by the embedding (9.7) and Theorem 8.3.1,
proving that the above product over all places equals 1, as desired. Finally, as in the number field
case, the absence of ¢/, and ¢!/ in the expression (9.5) implies that the product does not depend on
the choice of such elements. Moreover, since (., s, ¢(ss)) only depends on the cohomology class

of xy ,, the product also does not depend on the choice of gerbe normalizations used to construct
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the torsors loc, (7). O

9.4 The multiplicity formula for discrete automorphic repre-

sentations

We use the same notation as in the previous subsection; in particular, G denotes G /Zger- As in
[Kall8, §4.5], fix an L-homomorphism ¢: Lp — L@* with bounded image, where Ly is the
hypothetical Langlands group of F'. At each place v € V, the parameter ¢ has a localization,
which is a parameter ¢, : Ly — “G*. The local conjecture ensures that there exists an L-packet

II,, of tempered representations of rigid inner twists of G* together with a bijection
Loy Uy, = Trr(S7).

In the above setting, the set IT,,, consists of equivalence classes of tuples (G, !, (7! h.), 7).

vy v

T, h,): Gy — G is a rigid inner twist over F, and 7, is an irreducible tempered

/
v v v

where (
representation of G'(F,). The group S is the preimage in G+ of Se, = Zg(py) and 1, is a
local Whittaker datum on which the bijection depends. As explained in [Kall8, §4.4], we may
choose a global Whittaker datum to for G* and let tv,, be its localization at each place v.

Recall that we have fixed a quasi-split inner twist ¢: G} — G 0f G choose a coherent
family of local rigid inner twists (¢, ,, h,), as in §9.2, and consider the subset I, (G) C II,,
consisting of (isomorphism classes of) tuples (G, , 1, (,, hy), 7,). We then define the L-packet

I, := {7 =&\m, | (Gr,, ¥, Ty, hy, ) € 1, (G), 1o, (G, ¥, (T, hy), m,)) = 1 for almost all v}
The following result is of crucial importance:

Lemma 9.4.1 The set 11, consists of irreducible admissible tempered representations of G(A).

Proof. We may assume without loss of generality that we have picked a normalization of the gerbe
&, which recall is a choice of representative & of the canonical class, as well as an isomorphism
of Py -gerbes &, — & we will nevertheless continuing using the notation &y, for the explicit
gerbe &. As in the proof of [Kall8, Lemma 4.5.1], everything is clear except for the fact that
the representation 7, is unramified for almost all v. As explained in [Kall8], we may find a finite
set S of places of F' such that G* and G have Opg-models G*, G (respectively), the inner twist
isomorphism ¢ is defined over Og C F*P, the Whittaker datum tv, is unramified for every v ¢ S,
the local parameter , is unramified. We have the G;V -torsor .7 with fixed F-trivialization h

of 7; note that if s: Sch/F — &, is the canonical embedding of categories given by Lemma
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2.3.2, we obtain a G*-torsor s*.7 over F, and we may pick a trivialization of this torsor over
F which is compatible with the trivialization h (see §6.1). Such a compatible trivialization is
equivalent to picking a trivialization h of S over F, where (S,Res(.7),1s) is the twisted G-

torsor corresponding to .7, such that the induced trivialization of the G* _-torsor S x¢" Gz, over

F associated to the twisted torsor (S x%" G%,;,0,1s) equals the tr1v1allzda§0n induced by .

We know from Proposition 8.4.1 that we may enlarge S to ensure that, for all v ¢ S, the pair
of each localization .7, and F,-trivialization h, (induced by h) is the pullback of a Qz‘)Fv -torsor 7,
over O, with trivialization ho,, over O%f. Note that a priori each .7, is a torsor on &,, not on
Sch/F,,, but we may enlarge S to ensure that .7, is the pullback of a unique G*-torsor over F,,
which we identify with .7, (see §8.4), so that this latter statement makes sense.

The cohomology set [ 1(0%‘?/ Opr,,G*) classifies isomorphism classes of G*-torsors over Op,

which have a trivialization over the fpqc extension OP. We have a natural injective map

( %‘e‘fff/OFva ) fppf(OFvv g )7

where the latter set classifies isomorphism classes of G*-torsors over Op,. Moreover, the set

1:ppf(O r,,G*) is trivial, by [Ces16, Corollary 2.9] (and Lang’s theorem), giving the triviality of
H 1(0";;/ Or,,G*). It follows that we may find an element g € G*(Oﬁfgf ) = Q*(O?%ﬂf) whose
Cech differential coincides with the element of g*(OPF}f X0op, Olpfqgff) whose left-translation gives

pihoy, © p;h5; on ggw 90 OPT As a consequence, we get by fpqc descent that the morphism
nr F Fnr

f= woperr oAd(g™) descends to an Op,-morphism f: G* — G.
The element g € G*(F,) defines an F,-trivialization of .7, by means of (the descent of) the

composition
v = Eg ¢} hv5 (%)E — (G_ZU)FT’

where /, denotes left-translation by g; by construction, this map descends to F,. As a conse-
quence, (f, ¥) defines an isomorphism of rigid inner twists from (¢, .7, h,) to the trivial rigid
inner twist (idg-, G¢, ,id). Choosing S large enough, the construction of II, then implies that
Ly, (G, idg, GZUETFU o f)) = 1, which means that the representation 7, o f of G*(F,) is to,-
generic. This latter fact implies, by [CS80], that the representation 7, o f is unramified with respect
to the hyperspecial subgroup G*(Op,) of G*(F,). The fact that the isomorphism f is defined over
Op, then implies that 7, is unramified with respect to the subgroup G(Ogp, ), as desired. [

As is conjectured in the number field case, we expect that every tempered discrete automorphic
representation of GG(A) belongs to a set I, for some discrete parameter . Moreover, for any such
representation 7, our framework allows for a conjectural description of the multiplicity of 7 in the

discrete spectrum of (G to begin this description, we need some setup. First, note that we have a
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short-exact sequence of Lz-modules
1— Z(@) G o (@\*)ad — 1,
where the L p-action is defined via ad o ¢, which gives a connecting homomorphism
Zi, (@) = H'(Lr, Z(G7).
We then define S ;d to be the kernel of the composition

Zig,(0) = H'(Lp, Z(G") = [ [ H(Lr,, Z(G))

and set S, := mo(S4'). We will construct a pairing
(= —): S, xII, - C
which yields an integer

m(p,m) = |Sso|_1 Z (x,m).

€S,

We then expect (from [Kot84]) the multiplicity of 7 in the discrete spectrum of G to be given

by
> mlp,m),

where the sum is over all equivalence classes (as in [Kot84, §10.4]) of ¢ such that 7 € II,.

The construction of the above pairing is identical to the number field in analogue in [Kal18], but
we review it here for completeness. For some s,q € Sj;d, we choose a lift s, € S;C (the preimage
of Sj;d in (@)SC). Then, as explained in [Kall8, §4.5], we obtain from s, an element s, € S;Q ,
for each v € V, which we write as (ss - 9., y2) for y, € Z((G*)4er) and vy, € Z(G*)° via the
decomposition G = ((/_}’\*)SC X 7 (@)O Following [Kal18], we denote by

<(SSC : y;, yf/u/)v (GFU777Z}7 (‘%); BU)? WU)>

the character of the representation v, ((Gr,, ¥, (Z,, hy), 7)) of mo(S] ) evaluated at $,. These

values behave well after taking the product over all v in the following sense:

Proposition 9.4.2 ([KallS8, Proposition 4.5.2]) The value
<locv(gs6)7 y"f}>_1 : <(SSC : y.’,[)7 y’:}’)? (GFU7 w? (%7 BU)? 7TU)>
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equals 1 for all but finitely many v, where J is as in §9.2, and the product

(saas ™) = [ [{oco( o), 40) ™ - A(s0c - 6 00), (G ¥, (o ) )

veV
is independent of the choices of sy, 1., Y., the torsor T, and the global Whittaker datum vv.

Moreover, the function Saq «— (Saa, T) is the character of a finite-dimensional representation of S,,.

Proof. This proof is identical to the proof of the analogous result in [Kall8], replacing the use
of Corollary 3.7.5 loc. cit. with our Corollary 8.2.14 and the (conjectural) endoscopic character
identities from [Kall6, §3.4], with the analogous identities from §6.3. O]
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Appendix A

(Complexes of Tori and Cech Cohomology)

This appendix gives an extension of the theory of complexes of tori developed in the appendices of
[KS99] to the setting of local and global function fields.

A.1 Complexes of tori over local function fields—basic results

Suppose that we have a complex of commutative R-groups, which is concentrated in degrees 0 and
1, denoted by GG ENy ) (or, when both groups are R-tori, by T’ ENNG ). For any fpqc ring homomor-
phism R — S, we obtain a double complex /** by taking the Cech complexes associated to G
and H; that is, the double complex

G(S) E— G(S@RS) E— G(S@RS@)RS) _— ...

| | !

H(S) —— H(S®rS) —— H(S®rS®rS) —— ...;

for our applications, it will always be the case that the Cech cohomology groups H “(S/R,Q)
compute the fppf cohomology H'(R,G) (although S/R itself need not be an fppf cover). As
usual, we can associate to this double complex a new complex L®, whose degree-r term is given
by
(T = @ K™ =G(S®") @ H(S®"),
m+n=r

with differentials defined by (dg ® f — dy). Following [KS99], we call the elements of L" (Cech)
r-hypercochains, and the elements of the kernel of the rth differential (Cech) r-hypercocycles.
Denote by H"(S/R, G ENY1 ) the rth cohomology group of the complex L*. Note that, by fpqc
descent, H°(S/R,G ER H) = ker(G(R) — H(R)) = ker(f)(R), which will be useful when

ker(f) is a finite-type F’-group scheme whose cohomology we want to investigate.
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The spectral sequences associated to a double complex give us the long exact sequence

.- H'(S/R,G L H) - H"(S/R,G) — H"(S/R, H) = H""(S/R.G L H) — ...,
(A.1)
where the first map sends [(z,y)] to [z], the last map sends [z] to [(0,x)], and the middle map is
induced by f. They also give the long exact sequence

oo = H™(S/R,ker(f)) — H"(S/R,G L H) — H™(cok(f®*)) — H™(S/R, ker(f)) — ...,
(A.2)
where cok(f®*) denotes the complex with degree-r term given by %.

In the long exact sequence (A.2), the first map is given by [z] — [(x,0)], the middle map by
[(x,)] — [g], and the last map by the composition of the map H" ! (cok(f®*)) — H"(im(f®*))
defined by picking a preimage x € H(S®=&") of an r-cocycle Z € % and then applying the
Cech differential, and the map H” (im(f®*)) — H"*'(S/R,ker(f)) given by picking a preimage
in G(S®rU+) of x € f(G(S®r(*1))) and then differentiating.

We now make the situation more concrete by setting R = F' a field; the following result is an
immediate extension of the fact that, for a smooth finite type commutative F'-group scheme G, the

comparison map H*(F*?/F,G) — H'(F/F,G) is always an isomorphism:

Lemma A.1.1 For all i > 1, the natural map H\(F*?|F, T L U) — H(F/F, T L U) is an

isomorphism.

Proof. This follows immediately from the five-lemma, applied to the commutative diagram with

exact rows induced by (A.1)

Hi-Y(F*?/F,T) — Hi-Y(F*/F,U) — H/(F<*/F,T % U) — H(F*/F,T) — H(F*/F,T)

l | l l |

F[i_l(F/F,T) N ﬁi_l(F/F,U) — HZ(F/F,TL U) — Hi(F/F,T) B Hi(F/RT)a

where all vertical maps other than the one in consideration are isomorphisms, since 7" and U are

tori (in particular, are smooth). ]

We also have the following relation between Cech hypercohomology with respect to [P /F

and Galois cohomology:
Lemma A.1.2 For all i, we have a canonical isomorphism
HI(F/F,T L U) 2 H(U,T(F*) — U(F*)),
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where the latter group is as defined in [KS99], Appendix A.

Proof. This is immediate from applying the comparison isomorphisms discussed in §3.1. [

We now discuss a local Tate-Nakayama pairing in this context; there is not much work to do
here, as we may simply follow [KS99]. We will now assume that & = F'is a local function field,
S = F a fixed algebraic closure, G L Hisa complex of ['-tori, denoted by 7" :=T' ENYG , with
dual complex of character modules (over I') X** := X*(U) i x *(T'), concentrated in degrees
—1 and 0. The character groups are just ['-modules, so the theory of [KS99], appendix A applies,
giving us a double complex K $* equal to

X*(U) —— CYT, X*(U)) —— CXT, X*(U)) — ...

| | l

X*(T) —— CNT, X*(T)) —— C*(T, X*(T)) ——> ...,

where all vertical arrows are induced by f*; the associated complex is L7 (X**) = C"(I', X*(T))®
CriIr, X (V)

We have a pairing of abelian groups
R o 0e al) s *,0 Qg rts
U: L™(T*) x Ly (X™*) — G (F )

defined by taking the sum of the pairing T(F®F Yx O, X*(T)) = Gy (F®F HS) and (—1)"!
times the pairing U(F®F "Hx O, XH(U)) = G (F®F "), It is straightforward to check
that this cup product satisfies the identity d(a Ub) = (da) Ub+ (—1)"(a U db) forall z € L"(T*),

and thus induces a pairing
H'(F/F,T L U) x H (L (X**)) = H(F/F,Gy,) = H(F, Gy,).
Note that, via degree-shifting, there is a canonical isomorphism
(LX) 5 HHHD, XM (U) = XF(T),

where, as the notation indicates, we are now viewing the complex X*(U) LN *(T) as concen-

trated in degrees 0 and 1 and taking the cohomology of the corresponding total complex.

Remark A.1.3 There is an apparent discrepancy between our use of cohomology with respect to

the fqpc cover Spec(F') — Spec(F') when dealing with the tori T, U, and our use of cohomol-
ogy with respect to the fpqc cover Spec(F*") — Spec(F) implicit in our use of T'-cohomology
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to treat the Cartier dual group schemes X*(T),X*(U). However, we remind the reader that
since for any F-torus S the Cartier dual group scheme X*(S) is étale, the natural inclusion
X*(S)((Fsr)®rm) — X*(S) (7®F ") is an isomorphism, which means that we may canonically
identify all groups of Cech cochains (and hence the cocycles and coboundaries) with respect to

these two different covers.

As such, for any r € Z, we may apply this identification and the invariant map H?(F,G,,) —
Q/Z to obtain the Tate-Nakayama pairing

H'(F/F,T L Uy x B3 (F, x*(U) & X*(T)) = Q/Z.

Note that for any F-torus S, we have H'(F,S) = 0 for all i« > 3, since H(F,S) =
H'(T', S(F*P)), and the cohomological dimension of F' is 2. This same reasoning also implies
that H*(T", X*(S)) = 0 for all 7 > 3. Using the long exact sequence (A.1), we deduce that both of
the groups in the above pairing are zero for 7 > 4 and negative r.

We now reach the analogue of [KS99, Lemma A.2.A]:

Lemma A.1.4 The above pairing induces an isomorphism
H"(F/F,T L U) - B3 (F, X" U) L x*(1))*
forr =2,3. Forr = 2,3, the group H"(F /F, T EN U) is finitely-generated, and is free for r = 3.

Proof. The identical proof of [KS99, Lemma A.2.A] works in our situation, using our long exact

sequence (A.1). ]

A.2 Pairing for r =1

This section is primarily a summary of [KS99, §A.3]; when necessary, we explain why the argu-
ments loc. cit. carry over to our double complex of Cech cochains valued in F rather than Galois

cochains. The usual exponential exact sequences give a diagram of ['-modules

0 —— X*(U) —— Lie(U) y U > 1
| | L
0 —— X*(T) — Lie(T) s T > 1,
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which gives a boundary map on hypercohomology

H(T, UL T) - oy, x ) L x (1)),
giving a pairing H" ([, T % U) x H*"(I,U % T) — C* (embedding Q/Z into C* via the
exponential map). As noted in [KS99], this pairing is insufficient for our purposes; we instead

want to define a pairing involving the hypercohomology groups H" (W, oL 7 ), where Wp
denotes the Weil group of F'.

Recall that the hypercohomology groups H" (W, EN T\) are defined as follows: For any F'-
torus S, we set C*(Wp, §) = S(C) (with inflated W-action), C* (W, S) the group of continuous
1-cocycles of W in f((C) , and all other cochain groups to be zero. We then define r-hypercochains

with respect to the complex U L T to be elements of
Cr(Wp,U L T) =" (We,U) ® C" (W, T),

with the same differentials as in our previous total complexes, and corresponding cohomology
groups H" (Wg, U EN T).

To construct the desired pairing, we need to introduce one more homological construction. For
K/F a finite Galois extension and Wi/ the relative Weil group of K/F, we define the group
Hy(Wi/p, X.(T) £ X,(U)) to be the kernel of X, (T) & Cy (X, (U)) 2222 X,(U7) modulo the
image of

(090, f«®—0)
—_—

C1(X.(T)) ® Co(X.(U)) X.(T) & C1(X.(U)),

where C;(—) denotes the group of i-chains and 0 is the usual differential from group homology.
(with respect to the abstract group Wi/r). We then define Ho(Wi,p, X.(T) LN X.(U))o as the
subgroup of elements whose X, (7)- coordinates are killed by the K/ F'-norm. We then have maps

¢: CL(X(T)) = T(K),
V: Xo(T)o — ZHK/F,T) = Z'(Lr/r, T(K))
which together induce, via (¢, ¢), a canonical isomorphism
Hy(Wie/p, X.(T) 25 X,(U))g = H' (T, T(K) L U(K)) = HY(K/F, T 5 U). (A3)

For the explicit construction of ¢ and v and the proof that they induce such an isomorphism,
see [KS99, §A.3], (the constructions of the two maps are involved, and we omit summarizing them

here). Note that since K/ F is a finite Galois extension, we may work with group cohomology, so
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the arguments of [KS99] are unchanged in our new setting. Now since C* is divisible, we have an

isomorphism
Homy, (Ho(Wic/r, X.(T) £ X.(U)), €)= Hy, (Wieyw, U 5 1),

where the subscript “abs" means that we are viewing W r as an abstract group, and then restrict-

ing to subgroups, an isomorphism

~

Homy,(Ho(Wic/p, X.(T) L5 X, (U)o, C*) & H (Wi, U 5 T),

(for details on these isomorphisms, see [KS99, §A.3]) which, combined with the isomorphism

(A.3), gives a pairing
HYK/F,T % U) x H'(Wyp, 0 5 T) - C*.
Passing to direct limits gives a pairing
HY(F/F,T % U) x B\ (Wi, T L F) = ©, (A4)
and then applying our isomorphism from Lemma A.1.1 finally gives our desired pairing
HY(F/F,T 5 U) x H(We, T L F) = C~. (A.5)

We now discuss some basic properties of this pairing. To match more closely with [KS99], we
work with H'(F?/F,T ER U) = H(Tp, T(F®) ER U(F*P)), but we could just as well replace
the left-hand group with H'(F/F, T Lu ) (cf. Lemma A.1.1). We have two exact sequences

s HYE D) S HY(P/ET L Uy S HY(ET) - ...

S H(We, T) L B (We, U LT & BN (We,U) ...,

from which we derive two compatibilities of pairings. First, we have (j(u),2) = (u,7(2))"",
where the left-hand pairing is (A.4) and the right-hand pairing U(F) x H'(Wp, U ) — C* is given
by Langlands duality for tori. Second, we have (z, j(f)) = (i(z), ), where the left-hand pairing is
again from (A.4) and the right-hand pairing H'(F,T) x T'r — C* comes from Tate-Nakayama
duality.

We may endow H'(F/F,T Lu ) with a natural locally-profinite topology as follows. To see

this, we first claim that the image f(7'(F')) C U(F) is closed. The scheme-theoretic image f(7")

187



is a closed subscheme of U by the closed orbit lemma, so that f(7")(F') is closed in U(F'), which
means that we can replace U by f(T) to reduce to the case where f is (scheme-theoretically)
surjective. We then may find an F'-torus 7" such that f factors as a composition 7’ f—l> U’ f—”> U
where the kernel of f’ is a torus and f” is an isogeny. Note that f” is finite, and hence proper,
which means that, at the F'-rational level, the continuous map U’ (F') — U(F) is proper (as a map
of topological spaces), which means it’s closed (since U(F') is locally compact and Hausdorff),
and so we can reduce further to the case where the kernel of 7" — U is a torus.

Note that, in this final case, the morphism 7' Luis smooth—indeed, quotient maps are always
flat and surjective, and the smoothness of the kernel implies that we get a short-exact sequence at
the level of tangent spaces at the identity. It then follows from the inverse function theorem for
analytic manifolds ([Ser92, Theorem III.9.2], which again, is proved for all analytic manifolds
over complete nonarchimedean fields) that f is open, and hence closed (since we are working
with totally-disconnected Hausdorff topological spaces). In fact, the above argument shows that
f:T(F)— U(F) is closed.

The closedness of f(T'(F)) in U(F') implies that the quotient U (F')/ f(T'(F’)) has the canonical
structure of a topological group. We then give H'(F/F,T ENNS ) the unique locally-profinite
topology such that the map

U(F)/If(T(F)) = H'(F/F.T % U)
is an open immersion (note that H'(F, T') is always finite).

Proposition A.2.1 Using the above topology, the pairing (A.S) induces a surjective homomor-
phism
H'\Wp, U L T) = Homeo(H'(F/F,T L U),C¥)

with kernel equal to the image of (fFF )° under the natural map
J: T r HI(WF,ﬁ ER f)

Proof. The proof proceeds identically as in the proof of [KS99, Lemma A.3.B], using our above
compatibilities of pairings and the fact that Langlands duality for tori and Tate-Nakayama duality
are unchanged in the local function field setting. [

We set H' (W, U L T'),eq to be the quotient H' (W, U L T)/3[(TT*)°]. Note that the group
HY (W, R f) is redundant when f is an isogeny, by the following result:
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Proposition A.2.2 The canonical inclusion
H'C, UL T) - H'(We, UL T)
is an isomorphism.

Proof. First note that for any finite extension K /F splitting U and 7', we have an “inflation-

restriction” sequence, given by the exact sequence
0— H' Txp, U 5 T) = H' (Wip, U 5 T) - H(K*,T L T),

where in the last term we are viewing /K* as a topological group. Indeed, suppose that we have
a l-hypercocycle (u,t) € C*(Wp, U ) & T (C) such that its restriction to K* is a 1-coboundary;
that is, we have z € U(C) such that (u,t) = (dz, f(z)~'). This means that for all z € F*, we

have u(z) = *x - 27!

= 1, so that w is trivial on K*, and is therefore inflated from any 1-cocycle @
of I'k/r determined by picking a set-theoretic section '/ — Wi . Since the Wi, p-action is

inflated from I'x/r, the element (@, t) is a 1-hypercocycle of I'x/ mapping to (u, t), as desired.

For a fixed K/F as above, fix + € H'(Wx/r, IER f), to show that, for large enough L/F

containing K, it lies in the image of the inflation map, it’s enough to show that its image in

HY(L*, U EN T) = Hom(L*, ker(f)) is zero for large enough L. This is possible, since any
continuous homomorphism x: K* — ker( f ) has finite-index open kernel and the images of the
norm maps Ny, i (L*) shrink to the identity as L/K varies over all finite Galois extensions of F

containing K. 0

A.3 Complexes of tori over global function fields—basic results

The last two subsections extend the content of [KS99], Appendix C, to a global function field F'.
We fix a 2-term complex of F-tori T’ Iy U. Let A% .= F*° @ A. We first define H’ (A/A,T EN
U) to be the hypercohomology of the double complex

T(A) . T(A®,A) . T(AR,A®4A) N
T(F) " T(F®pF) " T(FRpFQpF) ’
U(A) . UR@ah) . UA®sA®,A) R
U(F) " UF@pF) " UF@rF®rF) R
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giving us a long exact sequence

s H(F/FTLU) - HGB/ATLU) - BHA//ATLU) - BN F/ETLU) - ..
(A.6)

Let S be a finite set of places of /' containing all places at which 7" and U are ramified. For
every place v of I, we fix an algebraic closure F), as well as an embedding F' < F,,. The following

two results let us work in the group-cohomological setting:

Lemma A.3.1 For all i > 0, the natural map H'(A*? /A, T EN U) — H'(A/A,T ERN U) is an

isomorphism, and the same is true with A replaced by F'.

Proof. Combining the proof of Lemma 3.3.8 with our results on adelic tensor products in §3.3
shows that H7((A*P)®." M) vanishes for any F-torus M, j,n > 1, and hence the natural map
HY(A* /A, M) — H'(A, M) is an isomorphism. Since this is also true with AP replaced by
A, the same argument in the proof of Lemma A.1.1 gives the result. The argument for F' is the

same. ]

Corollary A.3.2 For all i > 0, the natural map H'(A*? /A, T EN U)— H'(A/A,T EN U) is an

isomorphism.

Proof. This is an immediate consequence of combining Lemma A.3.1 with the long exact sequence

(A.6) and applying the five-lemma. 0

The next two results are left as straightforward exercises:
Lemma A.3.3 For all i, we have a canonical isomorphism
Hi(A /AT L U) = H(Tp, T(A) L UA)).
Corollary A.3.4 For all i, we have a canonical isomorphism
Hi(A AT L U) — H (Cp, T(A™) ) T(F) L UA) JU(F)).

We now give an analogue of [KS99, Lemma C.1.A], which we need in order to work with
restricted products. Note that the complex T’ i) U is defined over the ring Of 5. Let O, denote the

completion of O at a place v, and O} the ring of integers inside the maximal unramified extension
F/F,.
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Lemma A.3.5 For any place v & S, the group H'(O"/O,, T ENN ) is equal to the kernel of
T(0,) ER U(Oy) if i = 0, to the cokernel of the same map if i = 1, and is trivial if i > 2.

Moreover, the natural map
Hi(0"/0,, T L U) - HI(F,/F,, T 5 U)
is injective for all 1.

Proof. To prove the first statement, using the long exact sequence (A.1), it’s enough to show that
H ‘(O™/0,, M) = 0 for any F-torus M which is unramified at v for 7 > 1 (applying this result
to T"and U). We first claim that these groups may be identified with H*(O,,, M) under the natural
Cech-to-fppf comparison map. As usual, it’s enough to show that the fppf cohomology groups
HI((O™)®o0u™ M) vanish for all j,n > 1. Since O, is the ring of integers in a nonarchimedean

local field, for a fixed finite unramified extension F,,/F,,, we have the chain of identifications

Ow @0, O = Oy R0, Oyw] = Oy @0, O )= ] Ow

FEw/Fv

where @w € O, and f € O,[x]. In the usual way, we are thus reduced to the case when n = 1; i.e.,
showing that the groups H*(O™, M) vanish for all 7 > 1. This follows immediately from the fact
that they are the direct limit of the groups H(Og,,, M), where E,, is as above, which all vanish
by [Ces16, Corollary 2.9], using that O i, 1S @ Henselian local ring with finite residue field £,,, and
Mj,, is connected, being a k,,-torus. With the claim in hand, the result is immediate from the same
Corollary, since O, is a Henselian local ring with finite residue field &, such that M, is connected.

We now move on to the second statement. Using the first statement, we only need to show
this for © = 1. As in the proof of [KS99, Lemma C.1.A], it’s enough to show that any element
u € U(O,) N f(T(F,)) liesin f(T(O,)). To thls end we may assume that f is surjective, and we
may again factor f as the composition 7’ LNy AN U, where f’ has a torus as its kernel and f” is
an isogeny. The argument of the proof of [KS99, Lemma C.1.A ] proves the result for f’, so that

U'(0n) N (T (F)) = [(T(0)).

Note that f” is proper as a morphism of F),-schemes, so the map U’(F,) — U(F,) is proper as
a morphism of topological spaces; this implies that the preimage of the compact subgroup U(O,)
under f” is a compact subgroup of U’(F,,), and so lies in U’(O, ), the maximal compact subgroup.
Thus, if ¢t € T'(F,) is such that f(t) € U(O,), then f'(t) € U'(O,), so that f'(t) = f'(x) for some
x € T(0,), and now f(t) = f(x), as desired. O

We now give a restricted product structure to the groups H*(A/A, T N ) with respect to the

subgroups of the above lemma:
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Proposition A.3.6 We have a canonical isomorphism

!/
H'(@a/AT LUy S [ H(E/R.T L U),

veVR

where the product is restricted with respect to the subgroups H'(O"/O,, T ENNGS ) forv ¢ S
(which are indeed subgroups by Lemma A.3.5). When 1 > 2, this restricted product is a direct sum.

Proof. The first step is to use Lemma A.3.1 to replace Hi(A/F,T L U) by Hi(A% /A, T L5 1),
and Lemma A.1.1 to replace H'(F,/F,, T EN U) by H(F**/F,, T ERN U). Consider a finite
Galois extension //F, and let S(x) denote a large finite set of places containing S such that
K is unramified outside S(x). For any place w € Vi lying over v ¢ Sk, the natural map
H(0,/0,,T EN U) — H(O™/O,,T EN U) is an isomorphism (replace O™ by O,, in the proof
of Lemma A.3.5). From here, we may work with group cohomology and use the identical argument
of [KS99, Lemma C.1.B] to deduce the result. ]

Continuing to follow [KS99, §C], we topologize our adelic cohomology groups. We work with
the Galois versions Hi(F*?/F, T L U), Hi(A** /A, T L U), and Hi(A?/A, T L U). We give
Hi{(F*?/F, T EN U) the discrete topology for all i. We give H°(AP /A, T ER U) the topology
it inherits as a closed subgroup of T'(A), and H'(A*P/A T ENN ) the topology determined by
declaring that the map U(A)/f[T(A)] — H'(A*?/A, T Lu ) is an open immersion; note that
fIT'(A)]is closed in U(A), since f(T'(F,)) NU(Oy) = f(T(O,)) forv ¢ Sand [[,45 f(T(0,))
is compact, and f(T'(F},)) is closed in U(F,) for v € S (by an argument that we made earlier in
this subsection). In the above discussion, we are using [Cesl6, Theorem 2.20] to decompose 7'(A)
and U(A) as restricted products. We give the groups H* (AP /A, T ENNs ) the discrete topology
for: > 2.

We now turn to topologizing the groups H* (AP /A, T e ), which is the most complicated of
the three cases. Note that for any F'-torus S, the group S(AP) carries a natural topology, given by
the direct limit topology of the topological groups S(Af ), where K/ F ranges over all finite Galois
extensions. These topologies coincide with the topologies induced by giving A*P the structure of a
topological ring via the direct limit topology. Note that the ring A*P is Hausdorff; to see, this, note
that each A is a metrizable topological space (by [KS20, Proposition 1.1]), and is thus normal;
now the direct limit of normal spaces with transition maps that are closed immersions (as is the
case with Ax — A) is a normal topological space, and hence a fortiori Hausdorff.

It follows that S(AP) is Hausdorff (by [Conl1, Proposition 2.1]). Since S(K) is closed in
S(Ak) for all K, it follows that S(F*P) is a closed subgroup of S(A*P) (using that S(F*P) N
S(Ak) = S(K)), so the topological group S(A*P)/S(F*P) makes sense. Moreover, the subgroup
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[S(AP)/S(F*)|'" is closed, since it’s the intersection over all elements o € I' of the subsets
[S(A™*P)/S(F*P)]?, which are the preimages of the (closed) diagonal A(S(AP)/S(F*P)) under

the continuous map
id x (—=)7: S(ASP)/S(F*P) — S(A*P) /S(F*P) x S(A*P)/S(F*P).
Moreover, using these topologies, the natural map
[T(A)/T(F)]" — [U(A?)/U(F*P)]"

is continuous, and hence the closed kernel (our group H°(AS? /A, T EN )) has the natural struc-
ture of a topological group, settling the 7 = 0 case.

We claim that the image of the map
([T(AP)/T(F*P)]" — [U(A™)/U(F*)]"

is in fact a closed subgroup (with topologies given as above). First, observe that for K /F finite,
the map T'(Ag) NN (Ag) is closed; this follows from the closedness of f as a map from T'(K,)
to U(K,) for all v, the observation that f(7'(K,)) NU(Ok,) = f(T(Ok,)), and the structure of
the adelic topology on U (A ) (using the restricted-product decomposition of U (A k) from [Ces16,
Theorem 2.20]). Now note that the image of the map in question is the direct limit of the images
of the maps of topological groups [T'(Ag)/T(K)]"x/F — [U(Ag)/U(K)]"%/F, and so it’s enough
to show that all of these images are closed. This follows immediately from the closedness of
T(Ak) EN U(Ag) and the fact that [T'(Ag)/T(K)]"%/ is closed in T(Ag)/T(K) (implied by
our above arguments).
We give H' (AP /A, T ENYG) ) the topology determined by declaring that the map

cok([T(A%P)/T(F*P)]" — [U(A*P) /U(F*N)]") — B' (A /A, T % U)
is an open immersion (where the left-hand side has the natural quotient topology). For any ¢ > 2,

we give H' (AP /A, T ENG) ) the discrete topology.

A.4 Complexes of tori over global function fields—duality

We now discuss duality for the groups H*(A/A, T 5u ); it will be more convenient to replace
these groups by (the canonically-isomorphic) H'(AP/A, T Ny ). As in the local case, we have
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a Tate-Nakayama pairing
arae/FT L Uy < B3, X1(U) L x1(T) - )z, (A7)

where the Q/Z comes from identifying the 2nd cohomology group of the complex with degree-n
(> 0) term
G ((A%P) B [Gy (£7)Br (L)

with H?(T', C') (where C = hg K/F Ck is the universal idéle class group) and then identifying this
last group with Q/Z via the global invariant map. For an F-torus .S, denote by H* (AP /A, S) the

1th cohomology of the complex with degree-n term
S(<Asep)®A(n+l))/S<<Fsep>®F(n+1))

(we can define an analogue for A, but we won’t use that here).
According to [KS99, Lemma D.2.A],(which relies on the results of [Mil06, §4], which are
stated for arbitrary nonarchimedean local fields) the groups H"(A*P/A, T) vanish for r > 3, and

for r = 1,2 we having a pairing
H"(A*P/A,T) x H*"(I', X*(T)) — Q/Z

which induces isomorphisms H"(A? /A, T) = Homg(H* (I, X*(T)),Q/Z), and the group
HY(A*P /A, T) is finite.
We now extend this to our complexes:

Lemma A.4.1 Forr > 4, the groups H" (A" /A, T ER U) vanish. Forr = 2,3, the pairing (A.7)

induces an isomorphism
B (A /A, T L U) 2 Homy (H* (T, X*(U) L5 X*(T)),Q/2).
Forr = 2,3, the group H"(A*? /A, T ER U) is finitely-generated, and for r = 3 it is free.

Proof. See the explanation following [KS99, Lemma C.2.A]. [

We now give a duality theorem for » = 1, which will use the absolute Weil group Wy of F
(corresponding to the inverse limit of extensions of Ax /K™ by Ik corresponding to the canon-
ical H?-class, as K / F ranges over all finite Galois extensions) as in the local case. We define the
cochain groups C" (W, T\) and cohomology groups H™ (W, f) in the same way as in the local

A~ ~

case. Note that H™(Wp,T) vanishes for m > 2, and H!'(Wg, T) is canonically isomorphic to
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Hom(H°(A%P /A, T),C*), by [Lan97]. We define the hypercochain groups C™ (W, ER T)
the same way as in the local case, and take H™ (W, N f) to be the cohomology of the corre-

sponding complex. Note that H™ (W, ER f) = 0 for m > 3. We have the following global

analogue of Proposition A.2.2:

Proposition A.4.2 When T 5 Uisan isogeny, the canonical inclusion H 1(F,ﬁ ER f) —
H'(Wp,U L T) is an isomorphism.

Proof. As in the proof of Proposition A.2.2, the inflation-restriction sequence shows that it’s

A

enough to show that the image of any element in Hom (A /K*, ker(f)) is zero in some large
finite Galois extension L/F containing K, which follows from the fact that the kernel of any such
homomorphism is open and finite-index and the universal norm group of (the idele class groups
of) a global function field is trivial (see [NSWO0S8, Proposition 8.1.26]). ]

We may define a pairing
YA /AT L U) x B (Wp, T L F) = (A8)
exactly as in the local case, and, like in the local case, it induces a surjective homomorphism
H (Wi, T L5 T) = Home(H (A% /A, T L5 17),C%)

with kernel the image of (T7)° C HO (W, T) in H (W, U L T), the quotient by which we will
denote by H' (W, R f)red.

We now define a compact subgroup H* (AP /A T ERN U)y of HY(A? /A, T ERN U)fori=0,1.
We first set HY(A*P /A, T); to be the kernel of the group homomorphism

H: [T(A?)/T(FP)]" — X.(T)"
determined by, for all A € X*(T')", the equality

(A H(t)) = deg(A(?)),

where we are using the fact that [(ASP)* /(F*P)*]' = A*/F*, and deg: A*/F* — 7Z is the
homomorphism defined by deg(a@) = >, ., v(aw)[k,: k], where k denotes the constant field of
the global function field F'.

Lemma A.4.3 The kernel of the above homomorphism is a compact subgroup of
[T'(Asr) /T (FseP)]* (topologized as in the previous subsection).
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Proof. This follows from elementary results concerning the structure of tori over global fields. We
have a canonical isogeny 1" — T, x T, where T, is the maximal F'-anisotropic subtorus of 7" and
Ty is the maximal F'-split subtorus of 7. Note that this induces an injective group homomorphism
X.(T)' = X.(T, x T,)" = X,(T,). Then we have a commutative diagram

(T(A) /T (F))" —— ((To x To)(AP) /(T x Ty) (FP))"

|

X*(T)F ” X*(TS)7

and since the lower horizontal map is injective, the kernel of the left-hand vertical map (the group
we’re analyzing) is the kernel of the right-down composition, i.e, the preimage of the kernel of the
right-hand vertical map. Since the top horizontal map is induced by the isogeny 7' — T, x T
(which is proper), if we can show that the kernel of the right-hand vertical map is compact, then
its preimage in [T'(A*P) /T'(F*°)]" is also compact (since the properness of f implies that the map
of topological groups T'(A%P) ELiNy g (A%P) is proper, by [Conl1, Proposition 5.8]). Rewriting the
group [(T, x Ty)(AP)/(T, x Ty)(F*®)]" as

[Ta(A™P) Ty ()" x [Ty () /Ty (F*)]",

it’s clear that the kernel in question equals [T}, (A*P) /T, (F*P)]' x K, where K, denotes the kernel
of the map H: [T(A%P)/T,(F*P)|" — X.(T). First, note that the group [T, (A%P) /T, (F5P)]"
is already compact; this follows from the fact that it contains 7;,(A)/7,(F) as a finite-index
closed subgroup, and this latter group is compact (by [Con20, Theorem 8.1.3], using that 7}, is
F'-anisotropic).

We have thus reduced the lemma to the case in which 7' = 7T is F-split. Pick a Z-basis
A1, ... Ay of X*(T) = X*(T)". Then ¢ lies in the kernel of H if and only if deg[\;(#)] = 0 for all
1. In fact, we have an F'-isomorphism

RN
and now the kernel of H is the preimage under the above isomorphism of the kernel of the map
(A*/F>)n deg”, Z", which is the n-fold product of the compact subgroups C% of A*/F* (by
[NSWO8, Proposition 8.1.25]). L]

We then define HO(AP/A, T L )1 to be the intersection of the group H®(AP/A, T ERN
U) C [T(A*P)/T(F*P)]" with the above kernel. It is easy to check that when f is an isogeny this
intersection is all of HO(ASP /A, T Lo ). We now proceed to the ¢ = 1 construction.
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For any A\ € X*(U)", we have a map of complexes from [T’ N ] to [1 — G,,] given by

L}U
A
E—

—<— N

Gm7

which induces a map H'(A%P/A, T L U) — HY(A¥/A,1 — G,,) = HO(A/A,G,,) =
A*/F*, which we may then map to Z via deg, as above. This determines a homomorphism
H' (A /A, T L U) = X, (U)T, and we declare H'(A*?/A, T L U); to be the kernel of the

composition

HY: g A /AT L U) - X, (U)F =

Note that we have a commutative diagram with exact rows

1 — HOAS /AT L U) — BO(A/A,T) L BO(A* /A, U) -5 H'(A%/A,T L U)
l lHT lHU lH(l)
f«
D) — X (1) ——— X.(U)F —— X.(U)"/f(XAT)).
(A9)
We claim now that the map Hy: H°(A*P/A,T) — X, (T)! is split; indeed, this time using the

isogeny 1, x Ty — T', we get the commutative diagram

0 —— Ker(f*|X*(T)

((T, x T,)(A) /(T, x T,)(F*®))' —— (T(A*?)/T(F*))’

X.(T,) ~ s X.(T)T,

where, as we have indicated, the bottom horizontal map is an isomorphism. As in the proof of the
Lemma A.4.3, to split Hr, 1., it’s enough to split Hr,. As before, we have characters \; € X*(7T5)
such that 7 LSOR G, is an isomorphism, and so it’s enough to split the map (A /F>)" e 7,
which is clearly possible. Our splitting of Hyp, .7, gives a splitting of Hp by applying the inverse
isomorphism X, (T)'' — X,(T,), giving the main claim. Of course the same argument works
with T replaced by U. Along with the obvious product decompositions of H°(A% /A, T) and
HO(A* /A, U), we get an induced splitting X, (U)T/£.(X,(T)F) — HY (A% /A, T L U) of HD),
realizing H'(A%?/A, T L5 U) as the product AL (A** /A, T L 1), x [X,(U)F/ £ (X.(T)D)].

Lemma A.4.4 The group H'(A*? /A, T ENN )1 is compact (as a subgroup of the topological
group H*(AS? /A, T ER U)).
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Proof. We have a natural injection HO(A*P /A, U),/f(HO(A¥P/A,T);) — HY(A%P/A,T L
U)1, which, by the definition of our topologies, is a closed immersion. We claim that, in fact,

this is a subgroup of a finite index in the target. By the commutative diagram (A.9), we have
SV E (A0 /A, T L U)y] = HOAS/A,U), - fIHY(AP/A,T)] € HO(AS/A,U),
and hence the image of the above natural injection equals
SIHO(A™ /A, U) N H (A /A, T L 1)y,

and hence is of finite index, since §[H°(A*P/A, U)] is of finite index in H'(A*P /A, T e ), by
the finiteness of H'(A*P /A, T). Since H°(A*P /A, U),/f(H°(A*P/A T),) is itself compact (by
Lemma A.4.3), the result follows. [

Corollary A.4.5 When f is an isogeny, the group H' (A’ /A, T LU ) is compact.

Proof. This follows immediately from the above lemma and the fact that X, (U)"/X,(T)" is finite,
due to the fact that X, (7T") C X, (U) is finite-index and X, (U)' N X, (T) = X, (T)". O

We conclude this section by giving new global duality results that involve the above cohomol-

ogy groups. We have a natural map
Hi(F* /P, T LUy = H (A /AT L U),

and we will denote its kernel by ker’(F*?/F, T Lu ) and its cokernel by cok’(F*?/F, T L );
our primary case of interest in this paper is when ¢« = 1; Using Proposition A.3.6, we may also
describe ker'(F*? /F, T N ) as the kernel of the map

wi(F* /T LUy [[H(E2/F.T L U).

veV

We have, from the long exact sequence (A.6), the short exact sequences
1 — cok!(F**/F, T L U) = HI(A /AT L U) = ker T(F**/F,T L U) > 1. (A.10)
The following is an analogue of [KS99, Lemma C.3.A]:

Lemma A.4.6 For all i, the image of H'(F*" /F,T ER U) is discrete in H'(A? /A, T ERN U).
Moreover, the map
coki (F*? /P, T L U) — H (A /A, T L5 U)
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induces an isomorphism of topological groups from cok'(F*? | F, T ENYG ) to an open subgroup of
Hi(A /A, T L U) fori =0, 1.

Proof. The first statement is clear for ¢ # 1 (cf. the analogous argument in [KS99]), so we only
need to prove both statements for ¢ = 1. For the first statement, it’s enough to show that the
intersection of f[H'(F*/F,T L )] with the open subgroup U(A)/f(T(A)) is discrete. Since
the image of U(F)/f(T(F)) is of finite index in [U(A)/f(T(A))] N f[H (F**/F,T EN U)]
(because the kernel of H*(F,T) — [, H*(F,,T) is finite), it’s enough to show that the image of
U(F)/f(T(F))isdiscrete in U(A)/f(T(A)).

Similarly to what we’ve done before, we have a split surjective homomorphism 7'(A) —
X.(T)" with closed (not necessarily compact) kernel T'(A);, similarly for U, and the induced

product structures are compatible with the homomorphism f, allowing us to rewrite f as
T(A); x X (T)" L85 U(a), x X, (U),
leading to a decomposition
U(A)/(T(A)) = U(A)/F(T(A)) x X (U)"/ f(X(T)"),

and image of U(F)/f(T(F)) in U(A)/f(T(A)) lands in the factor U(A),/f(T(A),).

The subgroup f(7'(F)) is evidently discrete in U(A);, since the subgroup U (F)) is discrete in
U(A) (by [Conl1], Example 2.2, using that F' is discrete in A). Thus, U(A),/f(T(F')) contains
the discrete subgroup U(F)/f(T(F)) and the compact subgroup f(7'(A);)/f(T(F)) (the com-
pactness follows from Lemma A.4.3). The desired discreteness then follows by the analogous
argument in the proof of [KS99, Lemma C.3.A].

As in [KS99], to prove the second statement for ¢ = 1 it suffices to show that the map

U(A) — [UA™) JUF)" f[T(A*) /T (F<)]"

is open. Note that the image U(A)/U(F) < [U(A*P)/U(F*P)]" is closed (a straightforward
exercise in the topology of adelic points), and is also finite index (by the finiteness of the kernel of

HY(F,U) — H'(A,U)), and is hence open. Since quotient maps are open, the composition
U(A) = U(A)/UF) — [UA)/U(F*)]" — [U(A) /U(F*)]") f[T(A) /T (F)]"

is open, as desired.
It remains to show that the injection cok’(F*/F, T L ) — HO(AP /AT L ) has open
image. As in [KS99], it’s enough to show that the map H°(AP /A, T EN U) — ker[T(A)/T(F) —
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U(A)/U(F)] is open (because, as in [KS99], T'(A)/T(F) is open in [T'(A*P) /T (F*®)]"). Define
the closed subgroup B := {t € T'(A) | f(t) € U(F)} of T(A). Note that H°(A*P /A, T ER U)
is a closed subgroup of B, and we thus have a closed immersion B/[H°(A*P /A, T ENN )] —
U(F) — U(A), where the last closed immersion has discrete image. It follows that, since
HO(AP /AT ENNGS ) is a closed subgroup of B with discrete quotient, it’s open, and then the
result follows from the fact that B/T'(F') = ker[T'(A)/T(F) — U(A)/T(F)]. O

We immediately obtain:

Corollary A.4.7 The group
cok (F*? /P, T L U), := cok(F*?/F,T L Uyn B (A /A, T L U),

is compact. Moreover, when f is an isogeny, the group cok* (F* | F,T ENNG, ) is compact.

Define the group

kert"(Wp, U L T)yeq = ket[H' (Wi, U 5 T)a — [[ H* Wi, U L T,

veV

We have the following useful result:

Proposition A.4.8 We have a duality isomorphism

~

Homg(cok (F*? JF, T 5 U),C) = H* Wi, U L T)yeafker* (We, U L T) e

Moreover, the group ker' (F* | F, T ER U) is finite.

Proof. Using that cok' (F*?/F, T ENNGS ) is an open subgroup of H'(A*P/A, T L ), applying
the functor Hom(—, C*) to the short exact sequence (A.10) with i = 1 gives that the group
Hom(cok' (F*?/F, T Lo ), C*) is canonically isomorphic to the quotient

Home (H (A% /A, T L5 U), C*) /Homs (ker?(F*? /F, T %> U), ).

Moreover, the same short exact sequence tells us that Hom,(ker? (F*/F, T ENN ),C*) is
canonically isomorphic to the subgroup

ker[Homes(H (AP /A, T 5 U),C*) — Home (H (AP /A, T 5 U), C¥))].

But now we know that Hom (H* (AP /A, T ENY ), C*) is canonically isomorphic to the group
HY(Wp, U N )red Via the pairing (A.8), that H'(A*P /AT ENN ) is canonically isomorphic
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to [[, H(F**/F,, T %+ U) (by Proposition A.3.6), and that each H'(F**/F,, T L U) has
continuous dual canonically isomorphic to H!(Wp,, IER T')rea, which gives the resul.
For the finiteness of ker' (F*/F, T Lu ), one checks that the map

HO(A /A, T L U) = Ker( (fil . )

from the diagram (A.9) remains surjective when restricted to the subgroup cok’(F*®/F, T N )s
which means that H°(AP /A, T Lu )1 surjects onto ker (F* /F, T Lu ) with open kernel (this
openness follows from Lemma A.4.6). Since H°(A*P /A, T NN )1 is compact, its quotient by an

open subgroup is finite. [

In fact, we have the following exact analogue of [KS99, Lemma C.3.B], whose adaptation we
leave here (for completeness) as an exercise (Proposition A.4.8 is the only part of this result used

in the above paper):

Proposition A.4.9 The groups ker' (F**?/F, T ENNGS ) are finite for all i and vanish unless i =
1,2,3. Fori =1,2,3, we have dual finite abelian groups

~

Hom(ker (F*? |F,T %5 U),C*) = keP?(Wp, U 5 ),

Hom(ker'(F*? |F, T L U),C*) = ker' (Wi, U L T)yea,
Hom(ker®(F*? |F,T L U),Q/Z) = ker' (T, X*(U) L5 X*(T)).

The groups cok'(F*® |F, T ENYG ) vanish for i > 4, and for i < 3 we have duality isomorphisms
Homes(cok’(F*? /P, T L U),C*) = H2(Wp,U L T) Jker*(Wp, U L T),

Homes(cok (F* |F,T L5 U),C%) = H'(We, U L P pafker Wi, U L5 T)eas
cok2(F*? /P, T L U) = Hom(H(T, X*(U) L5 X*(T)) Jker (T, X*(U) L5 X*(T)),Q/Z),
ol (F*? /P, T L U) = H¥ (A /A, T L U) = Hom(H*(T, X*(U) L5 X*(T)),Q/2),

where all groups not already defined above are defined in analogy to the corresponding objects in

[KS99].

We conclude thls section with a few results 1nV01V1ng the group H'(T, RN T) First, we
define H'(T', U £ T4 to be the quotient of Hl(r U L T) by the i 1mage of (TT)° C HO(I, T).
For any v € V, we define the quotient (T, GER T)red of HY(T,, GER T) analogously, with '
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replaced by I',,. Finally, we set

ker'(0, U &5 T 1= ket HY(T, U 5 T)ea — [ H'(T0. U 5 Tredl.

We have the following analogue of [KS99, Lemma C.3.C]:

Lemma A.4.10 The natural map from H* (T,
ker' (T, oL T\)md isomorphically onto ker' (Wi,

phisms

ER f)red to H' (W, U f),ed maps the group
U

f.o A .
= T')ea- Moreover, we have natural isomor-

H'T,U L T)e = HAT, X*(U) L5 X*(T))

and

ker'(D,U L T)g = ker*(T, X*(U) L5 X*(T)).

Proof. These second two maps are induced by the boundary map coming from the commutative

diagram of short exact sequences of I'-modules

)
—_

0 —— X*(U) — Lie(D) >

| !

0 —— X*(T) — Lie(T)

—
~

=)
—_

viewed as a short exact sequence of length-2 complexes. The proof of this result is identical to that
of [KS99, Lemma C.3.C]. 0
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