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ABSTRACT

Deep Convolutional Neural Networks, which are a family of biologically inspired

machine vision algorithms, have become ubiquitous in perception systems for au-

tonomous agents due to their ability to accurately perform complex tasks and learn

internal models of the real visual world. The efficacy of these algorithms to emulate

and even surpass the performance of biological vision systems on certain tasks makes

them particularly unique computational tools. For example, neural network archi-

tectures can achieve higher-than-human performance on image classification tasks,

suggesting that these algorithms extract visual representations of objects (both ge-

ometric and stylistic features) that are potentially better for classification in com-

parison to the ones extracted by their human counterparts. In fact, neural networks

have been used with great success at generative modeling and synthesis of the visual

world. Traditional computer graphics engines can generate photorealistic scenes,

but can generate content that is only as detailed and accurate as their underly-

ing physics/light transport functions. In contrast, generative networks, like GANs

(generative adversarial networks), can create highly detailed scenes with little to

no input information. However, there are so few constraints in the learning pro-

cess of these methods that it is difficult to control which real world scene factors or

physical models (e.g., low level pixel statistics) are incorporated into the generated

objects during the synthesis process; there is no guarantee that these networks are

comprehensive models of the visual manifold. Another consequence of this is that

there is no way to navigate the network-generated scenes in the same kind of way

ix



one can reliably navigate through a 3D game engine. To address this challenge,

this thesis proposes an alternative solution: physically-based object manipulation

and editing. To achieve this, generative frameworks are created by fusing physics-

models, high level attribute-based models, and deep neural networks. The objective

of these frameworks is to inject real world information into both 2D (image) and 3D

(mesh) datasets. To validate that realistic, salient information is being modeled and

transferred by the proposed frameworks, experiments are carried out using a variety

of different perceptual quality and performance metrics as a measure of dataset real-

ism and generalizability. The combination of physically-based constraints and deep

features ultimately leads to hybrid model-based, data-driven solutions that achieve

realistic image and object editing. This thesis ultimately demonstrates that the out-

puts of these proposed hybrid frameworks can be used to improve the performance

of a wide variety of autonomous computer vision and design applications.
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CHAPTER I

Introduction

1.1 Motivation

Society is currently under going a digital and software revolution. Software is

pervasive, and has positively impacted a huge number of fields, particularly those that

require complex solutions for vision-dominant perceptual tasks, like segmentation

and detection, or tracking and modeling. These areas include AR/VR, gaming,

perception systems for autonomous agents, and novel design tools. This revolution

is driven by the recent and impressive advancements in machine learning and AI,

as well as the increased availability of datasets on which to train these algorithms.

The performance and generalizability of these algorithmic tools to the real world

relies almost entirely on the quality of the dataset on which they are trained. The

training dataset needs to capture enough variance in visual information so as to be

a reasonable approximation of the real world, and it specifically needs to capture all

information necessary to complete the desired task. These dataset requirements can

hugely vary based upon the problem space; for example, for tasks like pedestrian

and car detection in images, it is necessary for datasets to capture a large variety of

pedestrians/cars to best represent all possible ways those objects can appear under

different scene conditions, like weather and times of day. In contrast, for design

1
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tools, datasets need to capture more abstracted concepts, like aesthetics, creativity

and varying styles. Accounting for and capturing all different facets required for a

task is highly non trivial. Due to to physical, financial, and time constraints, it is

nearly impossible to create a truly representative dataset that unbiasedly samples

all possible scene or object variation. Thus while in theory, datasets are supposed

to be complete representations of the world, in practice, datasets are only able to

capture a subset of possible real world scenarios, and thus, instead of helping us train

algorithms that work in the real open world, they have become closed worlds unto

themselves [137].

Ultimately, a key component of bridging this knowledge gap within datasets is

to capture more authentic representations of the visual world within the training

datasets for these algorithms. This has spurred a large body of research and devel-

opment into solutions that address the issues of dataset bias and deficiency, which

we discuss below.

1.2 Real Data Generation/Collection

As previously mentioned, real datasets can be inadequate for the training and

testing of neural networks because they are too small to capture all the complexity

of the real world. Naively one might think to simply collect more real data. However,

there are significant acquisition, time, and financial costs that are huge barriers to

this solution. To get a better understanding of these costs, consider the following

example for autonomous vehicle datasets: the Oxford Robot Car dataset [90]. It

took over a year to collect (driving the same 10km loop sometimes multiple times a

day), captured in all weather conditions, including heavy rain, night, direct sunlight

and snow. It amounts to approximately 20 million images. It is an ideal dataset. At
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first glance, the cost to collect this dataset is the time taken to collect the dataset

as well as the cost of acquiring and maintaining the car and sensor rig. However,

there is another cost to factor: labeling the dataset. While the time cost of labeling

depends upon several factors, including the desired quality of the labels and the

particular crowdsourcing protocol used, it takes approximately 1 min per image for

bounding box labels [104]. For more complex labeling, such as pixel level semantic

segmentation, it can take a human 60-90 minutes to label a single image [29]. This

means for labeling Oxford Robot dataset for bounding boxes would take just over

300k man hours (which is roughly 34 years). For semantic segmentation, it would take

anywhere from 20mil to 30mil hours, which is several thousand years of labeling time.

Then there is the monetary cost of labeling; a popular crowdsourcing tool for labeling

is Amazon Turk. For labeling tasks rated ‘tough’, it pays users approximately $5

per hour [104], which yeilds around $1.5 million for bounding box labels and $100

million for segmentation labels. So, due to the cost of acquisition and the cost of

labeling, simply ‘collecting more data’ can present an insurmountable barrier. Thus,

an alternative to real data collection is highly desirable.

1.3 Synthetic Data Generation

An alternative solution is generating synthetic data. With the advancements

in gaming and rendering engines, we have the capabilities of generating incredibly

realistic datasets that capture significantly more visual information that real datasets

with no labeling cost. Another desirable feature of rendering and gaming engines

is that we can control what visual information is represented within the generated

dataset.

In fact, for image-based tasks, a large number of photorealistic, simulated datasets
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have been created in recent years [113, 147, 164, 41, 93, 115, 49, 99, 1, 59], each

varying in quality. An example is the Virtual KITTI [49] and Virtual KITTI2

datasets [18], which are designed to add more variance to the KITTI world. Another

more photorealistic example is the datasets generated from Grand Theft Auto [113],

which capture significantly more complex visual information than the virtual KITTI

datasets. Examples of these datasets are shown in Figure 1.1. However, there are

Figure 1.1: Examples of different synthetically generated datasets. Left hand column shows exam-
ples of Virtual KITTI [49], middle columns shows image examples of CARLA [41], and right hand
row shows examples of GTA [113].

several drawbacks with synthetic datasets. First, these datasets are very expensive

to generate. To resemble the real world, they require artists to carefully model spe-

cific environments and 3D objects in great detail, and two they require significant

rendering/computational power to generate [135, 138]. For example , the hyper pho-

torealistc movie, Jungle Book (released in 2016) took 30 million render hours, 19

hours per frame, and 800 artist-years of effort [45]. This leads to another significant

drawback: the render quality of the output of these rendering engines. Due to the
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computational intractability of highly photorealistic datasets, there is a clear, ob-

servable difference between most synthetic datasets and real data. These differences

can be attributed to discrepancies between physics simulators and the real world,

whether it is in a behavior mismatch from improperly tuned parameters of the simu-

lator’s physics engine, to unmodeled (or hard to model) physical effects, like shading

and lighting, or surface texture. Low-fidelity simulated sensors like image renderers,

or poorly modeled scene and object geometry can also lack the noise, detail and rich-

ness that exists in real world analogs. [135]. These drawbacks negate the primary

selling point of synthetic data, namely, that arbitrarily large amounts of labeled data

are available essentially for free.

1.4 Deep-learning and Neural Data Generation

Deep Convolutional Neural Networks, which are a family of biologically inspired

machine vision algorithms, have become ubiquitous in visual perception systems for

autonomous agents due to their ability to accurately perform complex tasks and

learn internal models of the real visual world. The efficacy of these algorithms to

emulate and even surpass the performance of biological vision systems on certain

tasks makes them particularly unique computational tools. For example, neural

network architectures can achieve higher-than-human performance on image classi-

fication tasks [72], suggesting that these algorithms extract visual representations of

objects (both geometric and stylistic features) that are potentially better for classi-

fication in comparison to the ones extracted by their human counterparts. In fact,

Neural networks have been used with great success at generative modeling and im-

age synthesis because of their ability to extract and model stylistic, geometric, and

semantic properties of the visual world. Generative networks, specifically generative
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adversarial networks (GANs), can create highly detailed objects and scenes, both in

2D and 3D, with little to no input information. GANs are comprised of two neural

networks that are trained adversarially: a generator network generates/renders can-

didate data points, and the discriminator network that evaluates them based upon

real data points. This training regime allows the generator network to learn the un-

derlying distribution of the real world scene elements and physical processes that are

captured in its training dataset without them being explicitly defined, unlike stan-

dard renderers. The unconstrained nature of neural networks, coupled with their

great ability to model high dimensional, complex functions, allows these networks

to potentially learn better ways to model realistic scene components. In fact, these

types of neural networks have been applied almost as learned rendering engines to

transform input image datasets into new seasons, differing times of day, and artistic

styles [61, 68, 82, 87, 9, 22, 169, 24, 50]. They have also been applied to generative,

stylistic modeling in 3D mesh, pointcloud, and voxel datasets [146, 145, 51, 134].

However, their unconstrained nature is a double edged sword. Often what we

see in practice is that there are so few constraints in the learning process of these

methods that it is difficult to control which real world scene factors or physical models

(e.g., low level pixel statistics) are incorporated into the generated objects during

the synthesis process; there is no guarantee that these networks are comprehensive

models of the visual manifold. Furthermore, without more constraints built into

the synthesis process, these networks can negatively transfer features that are not

realistic. An example of this in image datasets is shown in Figure 1.2. The virtual

images from GTA are on the left; on the right are the corresponding images translated

by CycleGAN [169, 50]. Furthermore, while it appears that global visual features like

color cast are modeled by the network, there is no guarantee that realistic, local pixel



7

statistics are modeled. Another consequence of this is that there is no way to navigate

the network-generated scenes the same kind of way you can reliably navigate through

a 3D game engine or renderer. This means that we cannot use these networks to inject

specific visual factors into data; its all and whatever the network has learned that

gets injected. Ultimately, these neural rendering frameworks introduced artifacts

into data that corrupt the realism of the output.

Figure 1.2: The virtual images from GTA are on the left; on the right are the corresponding images
translated by CycleGAN [169] into the ”real world”, specifically the Cityscapes dataset [29]. The
negatively transferred features are highlighted in the red boxes

1.5 Problem Statement

This thesis seeks solutions to the following challenges in intelligently modeling

visual information in datasets:

1. Real world data is prohibitively expensive to collect and label

2. Synthetic/classically-rendered data isn’t realistic enough to capture the detail

of the real world and is also expensive to generate

3. Generative neural networks trained to as renderers introduce unrealistic artifacts

due to their unconstrained nature
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1.6 Contributions

We propose that we can solve the above issues by more efficiently capturing the

salient factors in the distribution of visual information in datasets in a way that will

allow for intelligent and controllable dataset generation. The main objective of this

dissertation is to improve our ability to model and manipulate visual information

captured in data by fusing neural networks with cross-disciplinary knowledge and

physics-based models of environmental conditions in an effort to better capture and

model real world information into both 2D (image) and 3D (mesh) datasets. The

combination of physically and expert knowledge-based constraints and deep neural

networks ultimately leads to hybrid model-based, data-driven solutions that achieve

realistic image and object generation. This thesis ultimately demonstrates that the

outputs of these proposed hybrid frameworks can be used to improve the performance

of a wide variety of computer vision applications.

This thesis seeks to build upon existing methods with the following contributions

that propose intelligent, controllable dataset generation frameworks as solutions to

different problems in domain transfer, novel design frameworks, and scene modeling,

respectively:

1. Novel optimization framework that mimics image formation in a camera and

transfers realistic sensor effects from real data to synthetic image datasets in

the effort to overcome the synthetic-reality gap. We demonstrate that this form

of intelligent, physically-based image augmentation is an effective way to boost

performance of models trained in the purely synthetic domain and evaluated in

real world domains (Chapter II)

2. Novel optimization framework that leverages Graph Neural networks to transfer
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the sensibilities and style of a designer onto user-input 3D meshes (Chapter III)

3. A novel neural network that couples multi-sensor outputs (RGB, lidar) to achieve

relighting of complex, outdoor scenes (Chapter IV)



CHAPTER II

Sensor Transfer:

2.1 Introduction

In this chapter, the aim is to present a physically-based image generation opti-

mization framework that offers a viable solution to the problem of the synthetic to

real domain gap. Synthetic datasets are designed to contain numerous spatial and

environmental features that are found in the real domain: images captured during

different times of day, in various weather conditions, and in structured urban envi-

ronments. However, in spite of these shared features and high levels of photorealism,

images from synthetic datasets are noticeably stylistically distinct from real images.

Figure 2.1 shows a side-by-side comparison of two of widely-used real benchmark

vehicle datasets, KITTI [52, 48], Cityscapes [30], and a state-of-the-art synthetic

dataset, GTA Sim10k [114, 66]. These differences can be quantified; a performance

drop is observed between training and testing deep neural networks (DNNs) between

the synthetic and real domains [66]. This suggests that real and synthetic datasets

differ in their global pixel statistics. Domain adaptation methods attempt to min-

imize such dissimilarities between synthetic and real datasets that result from an

uneven representation of visual information in one domain compared to the other.

Recent domain adaptation research has focused on learning salient visual features

10
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Figure 2.1: A comparison of images sampled from the real domain, KITTI Benchmark dataset
(shown in the left hand column), images taken from the Cityscapes dataset (shown in the center
column), and images from GTA Sim10k dataset (shown in the right hand column). Note that each
dataset has a distinct visual style, specifically differing color cast, brightness, and blur.

from real data – specifically scene lighting, scene background, weather, and occlusions

– using generative adversarial frameworks in an effort to better model the representa-

tion of these visual elements in synthetic training sets [162, 141, 118]. However, little

work has focused on modelling realistic, physically-based augmentations of synthetic

data. Carlson et al. [20] demonstrate that randomizing across the sensor domain sig-

nificantly improves performance over standard augmentation techniques. The infor-

mation loss that results from the interaction between the camera model and lighting

in the environment is not generally modelled in rendering engines, despite the fact

that it can greatly influence the pixel-level artifacts, distortions, and dynamic range,

and thus the global visual style induced in each image [53, 31, 47, 7, 128, 38, 39].

In this chapter, we present work from [21] and [20] to work towards closing the gap

between real and synthetic data domains by transferring the style of real images that

results from the presence of various sensor effects to synthetic images. We propose

a novel learning framework that performs sensor transfer on synthetic data. That
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is, the network learns to transfer the real sensor effect domain – blur, exposure,

noise, color cast, and chromatic aberration – to synthetic images via a generative

augmentation network.

Our main contributions include the following:

1. a physically-based image augmentation framework that transfers visual sensor

effects between datasets,

2. we present experiments that demonstrate that augmenting relatively small la-

beled datasets using the proposed sensor transfer generates more robust and

generalizable training datasets that improve the performance of DNNs for ob-

ject detection and semantic segmentation tasks in urban driving scenes for both

real and synthetic visual domains.

The chapter is organized as follows. Section 2.2 describes related work in synthetic

to real domain adaptation as well as data augmentation. Section 2.3 describes our

proposed camera model and sensor transfer learning framework. Section 2.4 presents

experiments and results on benchmark datasets. Section 2.5 concludes this chapter.

2.2 Related Work

The work presented in this chapter focuses on augmenting the training data di-

rectly so that it can be applied to any task or input into any deep neural network

regardless of the architecture. Zhang et al. 2017 [165] demonstrate that the level

of photorealism of the synthetic training data directly impacts the robustness and

performance of the deep learning algorithm when tested on real data across a variety

of computer vision tasks. However, it remains unclear what features of real data

are necessary for this performance gain, or what parts of rendering pipelines should

be modified to bridge the synthetic to real domain gap. Much work in the fields
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of data augmentation and learned rendering pipelines have proposed methods that

shed light on this topic, and are summarized below.

2.2.1 Domain Randomization

Recent work on domain randomization seeks to bridge the sim-to-real domain

gap by generating synthetic data that has sufficient random variation over scene

factors and rendering parameters such that the real data falls into this range of

variation, even if the rendered data does not appear photorealistic. Such scene

factors include such as textures, occlusion levels, scene lighting, camera field of view,

and uniform noise, and have been applied to vision tasks in complex indoor and

outdoor environments [135, 138]. The drawback of these techniques is that they only

work if they sample the visual parameters spaces finely enough, and create a large

enough dataset from a broad enough range of visual distortions to encompass the

variation observed in real data. This can result in intractably large datasets that

require significant training time for a deep learning algorithm. While we also aim to

achieve robustness via an augmentation framework, we can use smaller datasets to

achieve state-of-the-art performance because our method is learning how to augment

synthetic data with salient visual information that exists in real data. Note that,

because our work focuses on image augmentation outside of the rendering pipeline,

it could be used in addition to domain randomization techniques.

2.2.2 Optimizing Augmentation

In contrast to domain randomization, task-dependent techniques have been pro-

posed to achieve more efficient data augmentation by learning the type and number

of image augmentations that are important for algorithm performance. State-of-

the-art methods [108, 32, 76] in this area treat data augmentation as a form of
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network regularization, selecting a subset of augmentations that optimize algorithm

performance for a given dataset and task as the algorithm is being trained. Unlike

these methods, we propose that data augmentation can function as a domain adap-

tation method. Our learning framework is task-independent, and uses physically

based augmentation techniques to investigate the visual degrees of freedom (defined

by physically-based models) necessary for optimizing network performance from the

synthetic to real domain.

2.2.3 Image-to-Image Translation for Domain Adaptation

Impressive advances have been made in both paired and unpaired image-to-image

translation [169, 65, 168, 63, 61, 86] to bridge a variety of domain gaps, including

season-to-season, night-to-day, and sim-to-real. However, image-to-image translation

performed between image sets with complex, varied environments often introduces

unrealistic distortion artifacts into the underlying structure of the scene. This can

yield poor performance for visual tasks such as object detection and semantic segmen-

tation [42]. In contrast, the proposed method does not alter the spatial information

in the scene, and instead translates images from one domain to another constrained

by physically-based image augmentation.

2.2.4 Learned Rendering Pipelines for Domain Adaptation

Several studies have proposed unsupervised, generative learning frameworks that

either take the place of a standard rendering engine [141] or complement the ren-

dering engine via post-processing [127, 124, 60] in order to model relevant visual

information directly from real images with no dependency on a specific task frame-

work. Both [141] and [60] are applied to complex outdoor image datasets, but are

designed to learn distributions over simpler spatial features in real images, specifi-
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cally scene geometry. Other methods, such as [127, 124], attempt to learn low-level

pixel features. However, they are only applied to image sets that are homogeneously

structured and low resolution. This may be due to the sensitivity of training ad-

versarial frameworks. Our work focuses specifically on modeling the camera and

image processing pipeline rather than scene elements or environmental factors that

are specific to a given task. Our method can be applied to high resolution images of

complex scenes.

2.2.5 Impact of Sensor Effects on Deep Learning

Recent work has demonstrated that elements of the image formation and pro-

cessing pipeline can have a large impact upon learned representation for deep neural

networks across a variety of vision tasks [67, 36, 38, 39]. The majority of methods pro-

pose learning techniques that remove these effects from images [36]. As many of these

sensor effects can lead to loss of information, correcting for them is non-trivial, poten-

tially unstable, and may result in the hallucination of visual structure in the restored

image. In contrast, Carlson et al. [20] demonstrate that significant performance

boosts can be achieved by augmenting images using physically-based, sensor effect

domain randomization. However, their method requires hand-tuning/evaluation of

the visual quality of image augmentation. This human-in-the-loop dependence is

inefficient and difficult to scale for large synthetic datasets, and the evaluated visual

image quality is subjective. Rather than removing these effects, randomly adding

them in, or manually adding them in via human-in-the-loop, our method learns the

the style of sensor effects from real data and transfers this sensor style to synthetic

images to bridge the synthetic-to-real domain gap.
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Figure 2.2: The schematic of the proposed sensor transfer network structure. The style loss trains
the sensor effect parameter generators (represented as the yellow boxes) to select parameters that
transform the input synthetic images based upon how the sensor effect augmentation functions alter
the style of the real data domain. This effectively transfers ’sensor style’ of the target dataset to
the source dataset.

2.3 Methods and Proposed Approach

The objective of the sensor transfer network is to learn the the optimal set of

augmentations that transfer sensor effects from a real dataset to a synthetic dataset.

Our complete Sensor Transfer Network is shown in Figure 2.2.

2.3.1 Sensor Effect Augmentation Pipeline

We adopt the sensor effect augmentation pipeline from [20]. This is the back-

bone of the Sensor Transfer Network. Refer to [20] for a detailed discussion of each

function and its relationship to the image formation process in a camera. We briefly

describe each sensor effect augmentation function below for completeness. The sen-

sor effect augmentation pipeline is a composition of chromatic aberration, Gaussian

blur, exposure, pixel-sensor noise, and post-processing color balance augmentation

functions:

Iaug. = fcolor(fnoise(fexposure(fblur(fchrom.ab.(I)))))(2.1)

Chromatic Aberration

To model lateral chromatic aberration, we apply translations (tx, ty) in 2D pixel
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space to each of the color channels of an image. To model longitudinal chromatic

aberration, we scale the green color channel relative to the red and blue channels of

an image by a value S. We combine these parameters into an affine transformation

on each pixel in color channel of the image. The augmentation parameters learned

for this augmentation function are S, the red channel translations Rx and Ry, the

green channel translations Gx and Gy, and the blue channel translations Bx and By.

Blur

We implement out-of-focus blur, which is modeled by convolving the image with a

Gaussian filter [27].We fix the window size of the kernel to 9.0. The augmentation

parameter learned for this augmentation function is the standard deviation σ of the

kernel.

Exposure

We implement the exposure density function developed in [15, 95]:

I = f(S) =
255

1 + e−A×S
(2.2)

where I is image intensity, S models the incoming light intensity, and A is a constant

value that describes image contrast. We set A to 0.85. This model is used to re-

expose an image as follows:

S ′ = f−1(I) + ∆S(2.3)

Iexp = f(S ′)(2.4)

The augmentation parameters learned for this augmentation function are ∆S to

model changing exposure, where a positive ∆S relates to increasing the exposure,
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and a negative value indicates decreasing exposure.

Noise

We use the Poisson-Gaussian noise model proposed in [47]:

Inoise(x, y) = I(x, y) + ηpoiss(I(x, y)) + ηgauss(2.5)

where I(x, y) is the ground truth image at pixel location (x, y), ηpoiss is the signal-

dependent poisson noise, and ηgauss is the signal-independent gaussian noise. The

augmentation parameters learned for this augmentation function are the ηpoiss and

ηgauss for each color channel, for a total of six parameters.

Post-processing

We model post-processing techniques done by cameras, such as white balancing or

gamma transformation, by performing linear translations in LAB color space [62,

8]. The augmentation parameters learned for this augmentation function the are

translations in the a (red-green)and b (blue-yellow) channels in normalized LAB

space.

2.3.2 Training the Sensor Transfer Network

A high-level overview of a single training iteration for a single sensor effect is

given in Figure 2.3. Each sensor effect augmentation function has its own parame-

ter generator network. The training objective for each of these networks is to learn

the distribution over its respective augmentation parameter(s) based upon real data.

Each generator network is a two-layer, fully connected neural network. The following

steps are required to perform a single training iteration of the Sensor Transfer Net-

work using a single synthetic image. First, a 200 dimensional uniform noise vector, η,
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Figure 2.3: A detailed schematic of how the training process occurs for a single sensor effect function.
A 200 dimensional uniform noise vector (sampled from the range -1 to 1) is generated for a given
input synthetic image. The uniform noise vector is input into the fully connected neural network
that constitutes the parameter generator, which outputs sampled value(s) for the respective sensor
effect augmentation function. The sampled parameter value(s) and the input synthetic image are
fed into the sensor effect augmentation function, which outputs an augmented synthetic image.
The style loss is calculated between the augmented synthetic image and a real image. This style
loss is then backpropagated through the augmentation functions to train the parameter generator
to select parameters that reduce the style differences between the real and augmented synthetic
images.

is generated and paired with the input synthetic image. The noise vector η is input

into each separate generator network. Each generator network consists of two fully

connected layers that together project η into its respective sensor effect parameter

space. For example, the blur parameter generator will map the η to a value in the σ

parameter space. The output sampled parameters, paired with the input synthetic

image are then input into the augmentation pipeline, which outputs an augmented

synthetic image. This augmented synthetic image is then paired with a real image,

both of which are input to the loss function.

We employ a loss function similar to the one used in Johnson et. al [65]. We as-

sume that the layers of the VGG-16 network [126] trained on ImageNet [34] encode

relevant style information for salient objects We fix the weights of the pretrained

VGG-16 network, and use it to project real and augmented synthetic images into the
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hidden layer feature spaces. We calculate the style loss, given in Eqn. 2.6, and use

this as the training signal for the parameter generators.

Lstyle(y, ŷ) = Σj∥Gθ
j(y)−Gθ

j(ŷ)∥2(2.6)

In the above equation, y is a real image batch, ŷ is an augmented synthetic image

batch, Gθ
j(y) is the Gram matrix of the feature map θ(y) of hidden layer j of the

pretrained VGG-16 network, and Gθ
j(ŷ) is the corresponding quantity for augmented

synthetic images. Through performance-based ablation studies, we found that j =

10 gives the best performance, so the style loss is calculated for the first ten layers of

VGG-16. Once calculated, the style loss is backpropagated through the sensor effect

augmentation functions to train the sensor effect parameter generators. The above

process is repeated with images from the synthetic and real datasets until the style

loss has converged.

We train the sensor effects generators concurrently to learn the joint probability

distribution over the sensor effect parameters. This is done to capture the dependen-

cies that exist between these effects in a real camera. Once training is complete, we

can fix the weights of the parameter generators, and use them to sample learned pa-

rameters to augment synthetic images. Table 2.1 shows the statistics of the learned

distributions for sensor effect parameters of different real datasets. See Section ??

for analysis and discussion of the learned parameters. Note that style loss was chosen

because it is independent of spatial structure of an image. In effect, the augmenta-

tion parameter generators learn to sample the distributions of sensor effects in real

data as constrained by the style of the real image domain.
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Figure 2.4: Qualitative comparison of unaugmented GTASim10k in the first column, Sensor Trans-
fer augmented GTASim10k images in the second column, MUNIT augmented GTASim10k in
the third colum, UNIT-augmented GTASim10k in the fourth column, and CycleGAN-augmented
GTASim10k in the last column. The first two rows are GTASim10k translated to the KITTI
domain, and the second two rows are GTASim10k translated into the Cityscapes domain.
Note that, for the Sensor Transfer augmented images, the primary sensor effect transferred in
GTASim10k→Cityscapes augmentation is decreased exposure, whereas the primary sensor effects
transferred in GTASim10k→KITTI augmentation is a blueish hue and increased exposure. In com-
parison, images augmented using the image-to-image translation networks lose a significant amount
of spatial information. These methods also cannot handle night time images as well as the proposed
method.
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2.4 Experiments

2.4.1 Experimental Setup

To verify that the proposed method can transfer the sensor effects of different

datasets, we train Sensor Transfer Networks using the following synthetic and real

benchmark datasets: GTASim10k [66] is comprised of 10,000 highly photorealistic

synthetic images collected from the Grand Theft Auto (GTA) rendering engine. It

captures different weather conditions and time of day. The Cityscapes [30] training

image set is comprised of 2975 real images collected in over 50 cities across Germany.

The KITTI training set [52] is comprised of 7481 real images collected in Karlshue,

Germany. We train a Sensor Transfer Network to transfer the sensor style of the

KITTI training set to GTASim10k, which is referred to as GTASim10k→KITTI. We

also train a Sensor Transfer Network to transfer the sensor style of the Cityscapes

training set to GTASim10k, which is referred to as GTASim10k→Cityscapes. To

train each Sensor Transfer Network, we use a batch size of 1 and learning rate of 2e−5.

We trained each network for 4 epochs, until the sensor effect parameters converged.

For all experiments, we compare our results to the Sensor Effect Domain Random-

ization [20] of GTASim10k as a baseline measure to ensure that the transfer of effects

is viable over sampling. To generate the Sensor Effect Domain Randomization aug-

mentations, we used the same human-selected parameter ranges as in [20]. To bench-

mark our method against other, image-based domain adaptation methods, we use

the state-of-the-art image-to-image translation methods CycleGAN [169], UNIT [86],

and MUNIT [61] as additional baseline measures. Each of the CycleGAN, UNIT, and

MUNIT image-to-image translation networks were trained to transfer GTASim10k

to Cityscapes, and separately to transfer GTASim10k to KITTI. Each network was

trained using either the default hyperparameters provided in the respective paper(s)
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Table 2.1: Learned sensor effect parameters for GTASim10k→Cityscapes and
GTASim10k→KITTI, and the Sensor Effect Domain Randomization parameters from Carl-
son et al. [20]. Note that for the Sensor transferred parameters in the first two rows, the mean
and standard deviation of each sensor effect parameter value is given in the convention µ ± σ.
For the Carlson et al. [20] Sensor Effect Domain Randomization parameters, given in the final
row, the minimum and maximum of the human selected range is provided. Quantitatively, the
GTASim10k→KITTI increases image exposure, adds chromatic aberration, noise, and adds a blue
color cast. For GTASim10k→Cityscapes, image exposure is decreased, adds chromatic aberration,
a higher level of noise is added, and slight yellow-blue color cast is applied.

Proposed Method GTASim10k→Cityscapes Sensor Effect Parameters
Chrom. Ab. Blur Exposure Noise Post-processing

Gscale: 0.999± 2.398e−5 σ: 0.718± 1.34e−13 ∆S: −0.273± 0.0249 Rgauss.: 1.0e
−6± 1.382e−18 a:−0.002± 5.239e−4

Rtx: 0.004± 6.221e−5 Rpoiss.: 1.0e
−6± 1.382e−18 b: −0.0116± 4.727e−4

Rty: 0.007± 5.511e−5 Ggauss.: 5.41± 4.249e−4
Gtx: 0.005± 1.111e−5 Gpoiss.: 1.15e

−2± 7.913e−5
Gty: 0.006± 4.718e−5 Bgauss.: 1.0e

−6± 1.382e−18
Btx: 0.006± 5.793e−5 Bpoiss.: 6.8e

−4± 4.608e−6
Bty: −5.052± 1.16e−4

Proposed Method GTASim10k→KITTI Sensor Effect Parameters
Chrom. Ab. Blur Exposure Noise Post-processing

Gscale: 1.001± 6.425e−5 σ: 0.941± 5.173e−7 ∆S: 0.0823± 0.003 Rgauss.: 9.5e
−3± 3.713e−4 a:−0.0131± 5.426e−4

Rtx: 1.134e
−4± 9.416e−5 Rpoiss.: 3.07e

−2± 1.295e−3 b: −0.0882± 3.25e−3
Rty: −0.0013± 6.874e−5 Ggauss.: 4.5e

−3± 2.005e−4
Gtx: −4.67e−4± 5.65e−5 Gpoiss.: 2.62e

−2± 1.111e−3
Gty: −0.0014± 7.228e−5 Bgauss.: 2.65e

−2± 1.111e−3
Btx: −0.003± 1.245e−4 Bpoiss.: 4.47e

−2± 1.187e−3
Bty: −5.16e−5± 1.096e−4

Carlson et al. [20] Sensor Effect Domain Randomization Parameters

Gscale: 0.998-1.002 κsize: 3-11 ∆S: -0.6-1.2 Rgauss.: 0.00-0.05 a: -10.0-10.0
Rtx: -0.003-0.003 σ: 0.0-3.0 Ggauss.: 0.00-0.05 b: -10.0-10.0
Rty: -0.003-0.003 Bgauss.: 0.00-0.05
Gtx: -0.003-0.003 Rpoiss.: 0.00-0.05
Gty: -0.003-0.003 Gpoiss.: 0.00-0.05
Btx: -0.003-0.003 Bpoiss.: 0.00-0.05
Bty: -0.003-0.003

or until the networks converged.

2.4.2 Evaluation of Learned Sensor Effect Augmentations

Qualitatively, from observing Figure 2.1, KITTI images feature more pronounced

visual distortions due to blur, over-exposure, and a blue color tone. Cityscapes, on

the other hand, has a more under-exposed, darker visual style.

Figure 2.4 shows examples of unaugmented GTASim10k images in comparison to

those same images augmented by the proposed Sensor Transfer network and baseline

image-to-image translation networks. When compared to Figure 2.1, it does appear

that, for both the sensor transfer of GTASim10k→KITTI and GTASim10k→Cityscapes,
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realistic aspects of exposure, noise, and color cast are transferred to GTASim10k. The

statistics of the learned parameter values are given in Table 2.1. In general the se-

lected parameter values generate augmented synthetic images with style that matches

the real datasets. We hypothesize that the color shift for GTASim10k→Cityscapes

is not as strong as GTASim10k→KITTI because there is a more even distribution

of sky and buildings in Cityscapes, where as KITTI has a significant number of in-

stances of sky. Interestingly, the blur parameter, σ, did not converge and was pushed

towards zero for both GTASim10k→Cityscapes and GTASim10k→KITTI. This sug-

gests that Gaussian blur does not match the blur captured by style of real images.

Further research could consider more accurate models of blur, such as motion blur.

2.4.3 Impact of Learned Sensor Transformation on Object Detection for Benchmark
datasets

Table 2.2: Results of the sensor effects augmentations on Faster R-CNN object detection perfor-
mance. The percent change for CycleGAN [169], UNIT [86], MUNIT [61], the Carlson et al. [20]
and proposed method are calculated relative to the full, unaugmented baseline datasets.

Training Dataset Tested on KITTI
Augmentation Method APCar Gain
Baseline 51.01 —
CycleGAN [169] 48.75 ↓ -2.25
UNIT [86] 51.21 ↑ 0.21
MUNIT [61] 45.50 ↓ -5.51
Carlson et al. [20] 48.94 ↓ -2.07
Proposed Method 52.67 ↑+1.66

Training Dataset Tested on Cityscapes
Augmentation Method APCar Gain
Baseline 30.13 —
CycleGAN [169] 29.30 ↓ -0.83
UNIT [86] 28.05 ↓ -2.08
MUNIT [61] 26.20 ↓ -3.93
Carlson et al. [20] 34.89 ↑+4.76
Proposed Method 35.48 ↑+5.35

To evaluate if the Sensor Transfer Network is adding in salient visual informa-

tion for vision tasks in the real image domain, we train an object detection neural
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network on the unaugmented and augmented synthetic data and evaluate the per-

formance of the object detection network on the real data domains, KITTI and

Cityscapes. We chose to use Faster R-CNN as our base network for 2D object de-

tection [112]. Faster R-CNN achieves relatively high performance on the KITTI

benchmark dataset. Many state-of-the-art object detection networks that improve

upon these results still use Faster R-CNN as their base architecture.

We compare Faster R-CNN networks trained on the proposed method to Faster

R-CNN networks trained on unaugmented GTASim10k, GTASim10k augmented us-

ing the Sensor Transfer Domain Randomization from Carlson et al., GTASim10k

augmented using CycleGAN, GTASim10k augmented using UNIT, and GTASim10k

augmented using MUNIT. To create augmented training datasets, we combine the

unaugmented GTASim10k with varying amounts of augmented GTASim10k data.

For all datasets, both augmented and unaugmented, we trained each Faster R-CNN

network for 10 epochs using two Titan X Pascal GPUs in order to control for po-

tential confounds between performance and training time. We evaluate the Faster

R-CNN networks on either the KITTI training dataset or the Cityscapes training

dataset depending on the Sensor Transfer Network used for training dataset aug-

mentation. Each dataset is converted into Pascal VOC 2012 format to standardize

training and evaluation, and performance values are the VOC AP50 reported for the

car class [44].

Table 2.2 shows the object detection results for the proposed method in com-

parison to the image-to-image translation and domain randomization baselines. In

general, the addition of sensor effect augmentations has a positive boost on Faster

R-CNN performance for training on GTASim10k and testing on Cityscapes. Our pro-

posed method, for both GTASim10k→Cityscapes and GTASim10k→KITTI, achieves
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Figure 2.5: Results of the learned sensor effect augmentations on Faster R-CNN object detec-
tion performance. Note that higher performance can be achieved using smaller synthetic datasets
augmented with the proposed method for both KITTI and Cityscapes.

the best performance over both the baseline and Sensor Effect Domain Randomiza-

tion.

To evaluate the impact of Sensor Transfer on the number of synthetic training im-

ages required for maximal object detection performance, we trained Faster R-CNNs

on datasets comprised of the 10k unagumented GTASim10k images combined with

either 2k augmented images, 5k augmented images, 8k augmented images, or 10k aug-

mented images. Figure 2.5 captures the effect of increasing number of augmentations

on Faster R-CNN performance. We see that, when compared to the Sensor Transfer

domain randomization method, fewer training images are required when using Sensor
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Transfer augmentation for both GTASim10k→KITTI and GTASim10k→Cityscapes.

Our results indicate that learning the augmentation parameters allows us to train

on significantly smaller datasets without compromising performance. This demon-

strates that we are more efficiently modeling salient visual information than domain

randomization. Interestingly, the Sensor Effect Domain Randomization method does

worse than baseline across all levels of augmentation when tested on KITTI. We ex-

pect that this is because human-chosen set of parameter ranges, which are shown in

the bottom row of Table 2.1, do not generalize well when adapting GTA Sim10k to

KITTI even though they may generate visually realistic images. One reason for this

is that the visually realistic parameter ranges selected in [20] where chosen using a

GTA dataset of all daytime images, whereas GTASim10k contains an even represen-

tation of daytime and nighttime images. This further demonstrates the importance

of learning the sensor effect parameter distributions constrained by how they affect

the styles of both the real and synthetic image datasets.

2.5 Conclusion

In this chapter, we presented a novel deep learning framework that transfers sensor

artifacts from one dataset to another in a physically-based way. In general, the results

presented in Section 2.4 show that the proposed Sensor Transfer Network reduces

the synthetic to real domain gap more effectively and more efficiently than domain

randomization. Future work includes increasingly the complexity and realism of the

Sensor Transfer augmentation pipeline by modeling other, different sensor effects, as

well as implementing models that better capture the pixel statistics of real images,

such as motion or defocus blur. Other avenues include investigating the impact of

task performance and problem space on the sensor effect parameter selection, and
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evaluating how the proposed method impacts performance for training synthetic

datasets rendered with various levels of photorealism.



CHAPTER III

Sensibility Transfer:

3.1 Introduction

Architecture can be defined as the organization of spatial components and voids

through the assemblage of matter, which results in objects embedded not only in

the three dimensional space of the physical environment, but also embedded within

a symbolic and artistic culture defined by the designer [33]. The ability to generate

novel and diverse 3D objects is essential to the architectural design process. The

synthesis of a 3D object most often begins in early concept design (sketching on

paper), to building, testing, and refining a 3D mesh model using standard 3D mod-

eling softwares, such as Grasshopper, Maya, or Zbrush. However, this is not an easy

task. 3D modeling softwares are very difficult to master because they require exper-

tise with the software-specific operations that are required to generate the desired

object manually. However, irrespective of the modeling software used, in order for

the design process to be successful, the user must also have reasonable aesthetic and

artistic sensibility. In basic terms, design sensibility can be defined as the ability to

perceive and create the visual and perceptual appeal (beauty) of an object. There

are a variety of different high level, abstracted concepts that together form the notion

of sensibility: aesthetics, style, functionality, and the semantic nature of the object.

29
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Each of these concepts describes different ways in which the geometric and material

components of an object relate and interact with one another. Thus, each of these

elements needs to be accounted for during the model generation process to produce

a desirable outcome. As a result, honing this skill to a point where a user can suc-

cessfully generalize and apply it to all of his/her generated objects can take years of

training in formal art education, as well as years of practice. As a consequence, the

development of intuitive and automatic 3D editing methods that allow users of all

skill levels to explore novel design aesthetics while maintaining real-world physical

properties is highly desirable.

Neural Networks are attractive candidates for high-level design editing frameworks

because of their ability to extract and model stylistic, geometric, as well as attribute

and semantic properties of the visual world. There has been incredible development

in user controlled GAN renderers [13, 122, 155, 14], as well as methods for Style

transfer and Image to Image translation [86, 61, 150, 68, 82, 107, 87, 106, 92, 149, 3],

to name a few. Due to the power of their learned features and feature extraction

capabilities, neural networks have also been applied to analyzing various works of

art [156, 151, 11, 70]. However, an inherent limitation of these frameworks is that

they are restricted to manipulations on an image grid in 2D; while these generative

processes produce very visually stunning and potentially creative/aesthetic results,

they can only get designers so far in the realm of architecture, whose design process

is defined by and embodies the nature of 3D objects and structures. Thanks to

recent advances in 3D deep learning the convolution kernel has been extended to

non-euclidean spaces with graph convolutional neural networks (GCNNs). These

breakthroughs have allowed for significant performance increases on 3D visual tasks,

from classification to the reconstruction and generation of point clouds, voxels, and
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meshes [146, 54, 145, 54, 51, 107, 10, 57].

Thus, the goal of the work presented in this chapter is to leverage the impressive

advances in 3D deep neural networks to learn high level design concepts, specifically

design sensibility, in a data driven manner.

This chapter presents a design technique that is capable of examining the sensibil-

ity and creation of architectural objects. Key to this technique is to train a GCNN

to capture the sensibilities of a specific designer, namely Professor Matias del Campo

of the University of Michigan’s Taubman School of Architecture and Design, based

upon 3D object’s abstract features such as visual style, perceived aesthetic quality,

and perceived functional quality. Through this work, we aim to give an answer to the

question: How can a Neural Network interrogate and model the inherent sensibility

of a specific designer?

The main contributions of this chapter are:

1. a novel dataset comprised of 3D models (meshes) that have been labeled ac-

cording to design sensibility;

2. a novel optimization framework that leverages GraphCNNs to transfer sensibil-

ity features onto input meshes.

This chapter lays out a method that collects 3D models from the hand of one

designer, creating a large database of models in two distinct categories: houses and

columns – in order to train a Neural Network to come up with additional model

solutions that are generated using the learned features of the trained network con-

ditioned on the sensibilities captured within the training dataset. As far as we are

aware, this is the first attempt to use classification graph convolutional neural net-

works to perform focused, artistic manipulations to meshes.
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The chapter is organized as follows. Section 3.2 describes related works in mesh

editing and deformation and 3D deep learning. Section 3.3.1 describes the sensi-

bility dataset we created for this problem, as well as the proposed optimization

framework for sensibility-driven mesh deformation. We present qualitative results

and demonstrations of the optimization framework in Section 3.4 before concluding

in Section 3.5.

3.2 Related Work

In this section we briefly review the related work that served as foundation for

the proposed approach.

3.2.1 3D Data Representation

There are several standard ways of representing 3D data for training neural net-

works to perform 3D computer vision tasks. These representations are categorized

into rasterized forms and geometric forms. Examples of rasterized, gridded forms

include multi view RGB data, RGB-D data, and voxels. Examples of geometric, non-

gridded forms include point clouds and meshes. The most popular rasterized form,

voxels, is an attractive representation for 3D learning because convolutional neural

networks can easily be extended to perform convolutions over 3D pixels. However,

high quality local details and complex structures, both of which are key in defin-

ing a sense of shape, geometry, and thus style in 3D, are not easily achievable with

the voxel representation due to the poor memory efficiency of the representation:

memory and computational requirements of deep learning approaches based on the

voxel grid representation scale cubically with the output size. Furthermore, as the

resolution of voxel representations increases, there is an additional, and significant,

computation cost. This often results in low resolution voxel models that appear
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blocky and unrealistic. On the other hand, meshes are comprised of vertices and

edges that define faces of polygonal shapes. This representation is memory efficient,

compact, and allows for high fidelity representation of complex surface geometry.

For example, realistic voxel models typically require hundreds of times the number

of voxels than a polygonal model would need in vertexes, putting a significantly

larger strain on the memory and CPU. This motivates our choice of using meshes

as our input model as well as our choice of deep learning algorithm. Thus, for the

remainder of this discussion, we focus on works that also perform on meshes.

3.2.2 Traditional Mesh Deformation

Significant work exists within the Computer Graphics field that focuses on de-

veloping algorithms that analyze solely the geometry or leverage shape learning to

enact edits on 3D objects, specifically by deforming and fitting a user-specified source

shape to a user-specified target shape. They rely on a sparse set of user-provided con-

trol/guide points (and typically mathematical priors). The transformations of these

points are interpolated/propagated to all vertices in the mesh by casting deforma-

tion as an optimization problem to achieve interactive free-form deformations, while

preserving local details and characteristics of the shape [129]. These methods are not

data-driven, meaning that the only shape information they can access is contained

in the two user input mesh objects or the control points. Some well-known examples

are Laplacian editing [130] and as-rigid-as-possible manipulation [129] that regularize

user-guided deformations to maintain local curvature based on mesh Laplacians and

local rigidity. The biggest drawback of these approaches is that the non convex opti-

mization problem that gives a solution for mesh deformation is highly intricate, and

large deformations can yield implausible results with unnatural volume changes [167].

This necessitates expertise with the tools on the part of the user, which negates the
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purpose of automated deformation. Additionally, these methods cannot capture or

learn the shape variability from the given dataset, and thus cannot verify the seman-

tic or perceptual plausibility of the deformed shapes; this is left up to the user to

select appropriate guide points that will ensure realism of the output deformed ob-

ject. This suggests that data driven approaches, such as the proposed method, could

yield easier to use mesh editing/deformation techniques that can leverage learned

shape distributions to ensure the realism of the output mesh.

3.2.3 2D to 3D Deep Learning of Mesh Deformation

As mentioned in 3.1, Convolutional neural networks have been quite successful

as image generators. There has been significant development of design techniques

that hack these 2D rendering and editing methods to be used in the design process

of 3D models. Examples include 2D to 3D Neural Style Transfer, 2D silhouette-

based vertex optimization, and 3D Deep Dreaming proposed in Neural 3D Mesh

Renderer [?]. Other impressive differentiable renderers that propose image-based

mesh deformation frameworks include Pytorch3D [111], SoftRas [88], and DIB-R [26].

There has also been impressive work in jointly training 2D and 3D networks for

image-guided mesh deformation and reconstruction [146, 54, 145]. However, these

techniques are inherently limited by the loss of rich information that occurs when

compressing the 3D world into a 2D representation. Furthermore, it is difficult

to control the object properties that are transferred in these processes, requiring

significant post-processing on the part of the user to make the output realistic. The

proposed mesh deformation technique builds upon work in 2D neural network feature

transfer methods for images, but instead of using 2D trained networks to transfer

learned features, we transfer features directly learned in 3D.



35

3.2.4 3D Deep Learning of Mesh Deformation

The recent success of deep learning has inspired alternative methods for data-

driven mesh deformation, synthesis, and reconstruction. The focus of these methods

has typically revolved around simultaneously solving two subproblems. First is part

or substructure deformation or transfer, and second, is the preservation of fine ge-

ometric surface detail. These methods typically leverage a generative, Variational

Autoencoder framework to learn a latent space that disentangles varying desired

properties of meshes [50, 139, 51, 97]. Many of these also leverage graph convolu-

tions [139, 51, 97] to construct these frameworks. The objective of these frameworks

are to learn shape variation manifolds that can be used to sample latent representa-

tions that are used to generate 3D shapes. The drawbacks of some of these methods

is that they require large datasets with semantic and part annotations to aid in the

disentangling process, which are time consuming and difficult to collect [51, 97]. A

separate body of works forgo purely generative models and instead use deep neural

networks to learn continuous extensions of traditional deformation methods, most

notably [105, 158]. The proposed method differs from the above deep 3D generative

models because it does not depend upon learning latent, compressed representations

of meshes. Instead, it takes an existing mesh as input and generates a variant by de-

forming it directly in 3D. As a result, the proposed method enables reusing existing

3D shape data with their associated meta-information, e.g., mesh color and texture,

which can be carried along in the deformation. Note also that this work does not

focus on part or substructure transfer, or transforming mesh pose, it focuses on mod-

eling and transferring abstract artistic concepts and qualities that define an artists’

sensibility.
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3.3 Methods and Proposed Approach

The proposed approach can be broken down into several steps: we start first by

generating and labeling a large databases of obj mesh models of specific architectural

classes: houses and columns, described in Section 3.3.1. The next step is to train

a graph convolutional neural network on this dataset to learn a mapping function

between the cartesian coordinate space of 3D models to our defined label space of

sensibility features, described in Section 3.3.2. The final step placing the trained

GCNN into an optimization framework that takes in a user-specified 3d models as

input, and then deforms the vertices of this model to optimize the shape for a user-

specified visual aesthetic or functionality label, described in Section 3.3.3.

3.3.1 Sensibility Dataset Generation

Figure 3.1: This is a rendering of all the models contained within the Sensibility dataset. It is a
mix of abstract column and house models that capture different facets of design sensibility.
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The database of models created for this work is visualized 3.1. They are all genus-

0 meshes, and are comprised of only surfaces/exteriors, i.e., they are hollow volumes.

The dataset has a total of 2178 models: 1552 columns and 626 houses. The resolution

of the meshes ranges from the smallest mesh at 44 vertices to the largest mesh at

92140 vertices. The house models have an average of a 100 vertices, min of 44 max

of 320, where as column models have an average of 3400 vertices, with min of 120

and max of 90000.

The models were generated using a series of the following techniques. The models

started as low poly models generated with the standalone software TopMod - a small

topological mesh modeling software. This allows the generation of lowpoly models

that were designed to become either entire buildings (house) or parts of the architec-

ture (columns). These first generation models were saved as OBJ files and imported

into Autodesk Maya in order to create enough variation to constitute the database.

Imported models were distorted in shape, randomly rotated, and mirror-cut in order

to come to a number of around 1500 models. Using blend shaping in Maya (this

procedure allows the user to select new locations for specific model vertices, and

then the program generates intermediate meshes by interpolating between the old

and new vertex locations), the designer, Matias del Campo, increased the number of

varying models to the current total.

The dataset was manually labeled, by Matias del Campo, using the following pro-

cedure. The label space of the dataset decomposes the definition of a ‘designer’s sen-

sibility’ into the following properties: semantic, style, functionality, and aesthetics.

The semantic property of a given data object defines the object’s concept/meaning.

Within our dataset, it can take on the value of house or column. The style property

of an object refers to the substructures of the object that are distinctive and define
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its appearance; they are determined by the theoretical/artistic principles that influ-

enced the object’s end design. In this Sensibility Dataset, a given object can take

on one of three styles: Style A, which is inspired by structures/features typically

associated with baroque; Style B, which is defined by substructures that exist within

classic architecture; and Style C, which is defined by features associated with cubism.

The functionality property is defined as the practicality of the object and its ability

to serve a purpose well. Within our dataset, an object’s functionality property is

a score of 1-5, where 1 is ‘not functional’ and 5 is ‘fully functional’. The aesthet-

ics property is defined as the non-utilitarian pleasure the object evokes; subjective

and sensori-emotional values, or sometimes called judgments of sentiment and taste.

Within our dataset, an object’s aesthetic property is a score of 1-5, where 1 is ‘not

pleasing’ and 5 is ‘very pleasing’. Note that both ugly, and nonfunctioning models

are intentionally included in order to provide a complete example space that captures

the total differences between functional, non-functional and aesthetically pleasing or

not.

Note that the dataset was not designed with these labels in mind; it was modeled

by Matias del Campo so as to capture his own unique and subjective design ’sensibil-

ity’. He (and he alone), then labeled this dataset based upon his subjective reactions

to the models, specifically to how their low and high level structural patterns that

manifested in style, aesthetics, etc. The dataset statistics are provided in Figure 3.4.

Note that the dataset is biased towards specific a specific style. This is intentional

and reflects the biases in the design sensibility of the author of the models in the

dataset.
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Figure 3.2: The distribution of labels for the Sensibility Dataset.

3.3.2 Sensibility Transfer GCNN Optimization Framework

GCNN Preliminaries and Notations

A 3D mesh is a collection of vertices, edges and faces; it can be defined as

a graph M = (V , E ,F) the where V = {vi}Ni=1 is the set of N vertices in the

mesh, E = {ei}Ei=1 is the set of E edges with each connecting two vertices, and

F = {fi}Ni=1 are the feature vectors attached to the vertices. Graph Convolution

Kipf2017SemiSupervisedCW for a layer l is defined as:

(3.1) f l+1
p = ReLU(w0f

l
p +

∑
q∈N (p)

w1f
l
q)

where f l
p ∈ Rdl , f l+1

p ∈ Rdl+1 are the feature vectors on vertex p before and after the

convolution, and N (p) is the neighboring vertices of p;w0 and w1 are the learnable

parameter matrices of dl×dl+1 that are applied to all vertices. Note that w1 is shared

for all edges, and thus (3.1) works on nodes with different vertex degrees.

Implementation Details

The goal of this neural network is to learn a reasonable approximation of the

function that describes a given architect’s design sensibility, i.e., a function that
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maps from 3D metric space to our semantic, style, aesthetic, and functionality label

spaces. Due to the extreme differences in resolutions for columns and houses, we

split the Sensibility Dataset into these two semantic subsets and trained two separate

semantic networks, one on house models, and one on column models.

For each of these networks, we implemented a multi-task classification GCNN

architecture, shown in Figure 3.3. It has four graph convolution layers, with feature

dimensions of 128, 256, 256, 512. We then implemented a global average pooling

layer that operates on the vertex dimension of the graph convolutional features.

This output was fed into a shared fully connected layer, and this representation

was input into three separate linear branches, one for functionality prediction, one

for aesthetic prediction, and one for style prediction. Each branch is trained using

standard cross entropy loss. The total loss is the sum over the loss from each task

branch. Both networks were trained with a batch size of 32, a learning rate of 2e-4,

with Adam optimization. They were trained until the loss converged. The network

was implemented using the Pytorch3D library [111].

Figure 3.3: Sensibility prediction graphCNN architecture.

3.3.3 Sensibility Transfer Optimization Framework

The trained Sensibility prediction GCNNs will now act as our approximation of

the dataset’s ’designer’, namely, Matias del Campo. They have learned the 3D mesh
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features associated with our sensibility label space. We now can fix the parameters of

these networks and invert them to transfer user input labels (and the corresponding

sensibility features) to input meshes. We set the input mesh vertices as variables,

and specify a set of desired style, aesthetic, and functionality labels. Using gradient-

based optimization, we can iteratively change the locations of the vertices of the input

mesh (i.e., deform the input mesh to produce an output mesh) such that the final

deformed mesh would produce the specified, desired output labels. Note that the

mesh vertices are now being learned, and the network parameters and labels are fixed.

This process is similar to class-level deep dreaming [98]; we are directly manipulating

the vertex locations of the input mesh in order to minimize the differences between

the predicted sensibility labels and the user-input/target sensibility labels.

For each iteration of the optimization, we use one of the fixed GCNNs to project

the current mesh into label space. We compare the mesh label predictions to the

user-specified/desired mesh labels by calculating the cross entropy loss between them.

This error is then backpropagated through the network into 3D space, where we

now have an error value for each vertex, which represents how much each vertex

contributed to the mesh prediction. These values are used to deform the vertex

locations of the mesh in 3D space. We perform iterations until the loss value has

converged.

3.4 Experiments

To evaluate the proposed method’s ability to transfer Matias del Campo’s ’de-

sign sensibility’, we present the following three qualitative experiments. We first

present extensive examples of the sensibility-optimized meshes using the proposed

framework. We then present qualitative ablation experiments manipulating the dif-
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Figure 3.4: Shown above is a pictoral summary of the Sensibility Transfer Optimization Framework.

ferent sensibility axes of our label space to investigate the quality of the transfer. We

then present an experiment where we use a network interpretability technique, visual

saliency, to elucidate potential mesh sub structures that could uniquely contribute

to aesthetics, functionality, or style. Note that our final two analyses focus on houses

for brevity.

3.4.1 Mesh Sensibility Optimization Results

In Figure 3.5, we show examples of deformations produced by the proposed frame-

work. On the left hand side are examples of various simple geometries deformed to

be columns of various styles using the proposed framework. The first image panel

on the left hand side is a icosahedron deformed to a column with Style B, the sec-

ond/middle image panel on the left hand side is a cube deformed into a column with

Style C, and the bottom image panel on the left hand side is a cylinder deformed to

a column with StyleB . On the right hand side are examples of various input shapes

deformed into houses, with the the top image panel showing a dodecahdron deformed

to a Style C house, the middle image panel showing an octahedron deformed to a

Style A house, and the bottom panel showing an icosahedron deformed to a style C

house. All deformed models used a high aesthetic and medium functionality value.
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Figure 3.5: Examples of deformations produced by the proposed framework. In the left hand
column are examples of various shapes deformed into columns, and in the right hand column are
examples of deforming various shapes into houses.

For the columns, we see that the network has been able to learn to elongate and

thin out the input shapes to capture the global structure that is typically associated

with columns. Similarly, with the houses, we see that they retain volumes similar

to their original shapes, and have surfaces that could be considered ‘floor-like’. In

terms of style, we observe that each shape does have a distinct difference in appear-

ance. Recall that the classification of Style A, B and C in terms of its Style relied
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on a set of specific rules derived from Baroque, Classic and Cubist architecture. For

example, Baroque can be classified through features such as symmetry, curvature

and concave/convex spiel. Classic can be read here as Classicist or Modern, where

Modern relies on the formal and Stylistic qualities of high Modern architecture from

the 1920’s to the 1950’s (proportionality, orthogonal, asymmetrical). Cubist as per-

taining to the triangulation of polygonal bodies, akin to features found in Czech

Cubist architecture. This of course is blatant simplification of each of these styles,

and rather an innate response from the creator of the database - producing a less sci-

entific but rather spontaneous response to visual stimuli. We see that the generated

shapes do captured these features for each of the desired styles.

3.4.2 Ablation Experiments

This ablation experiment investigated the manipulation of each of the different

label spaces while holding the others constant. This was done in an effort to examine

the quality of the internal models learned by the GCNN for each of these feature

axes. For this experiment, we focused on the generation of different houses from an

octahedron mesh. For each of the different labels, style, aesthetics, and functionality,

we fixed all other parameters and varied one. The outputs are presented in Fig.

6. For varying style, which is in the top row of the figure, we set aesthetics and

functionality to have ratings of 4 and held those values constant while altering the

style. We see that the final results have distinctly different forms. For varying

functionality, shown in the middle row of the figure, we set the style to be Style

C, and fixed aesthetics to have a rating of 4 while varying the functionality rating.

For varying aesthetics, which is shown in the bottom row, we set the style to be

Style C, and fixed the functionality to be 3 while varying the aesthetic rating. As

in the previous experiment, we observe that semantic and stylistic shapes are the



45

Figure 3.6: The outputs. Style, functionality and aesthetics do not necessarily follow objective
criteria, but the criteria put into place by Matias del Campo. For example the result of varying
functionality of a rating of 5 produces a volume that can be converted into a low slung house on a
hillside.

dominant features transferred with reasonable fidelity to how they manifest in the

Sensibility Dataset. The fidelity of the aesthetics and functionality transfer is much

more nuanced due to their significantly more subjective nature, particularly with

regards to the qualities that make a different styles of houses more or less functional

or aesthetic to the designer and labeler of the dataset. The gauge of functionality

has to do with the resulting model proportions; if the resulting figure has the wrong
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proportions in terms of designing a house it is ”less functional” (the figure is too low,

too high, too narrow in order to accommodate the program of a house). We can see

this manifest in the models as the functionality increases; the models go from ’too

high’ walls to spread out into flattened roof and ceiling features as the functionality

score is increased. Aesthetics is far more difficult to capture objectively because it

really relies on the labeler’s unique and subjective sensibility. For the shape generated

with high aesthetics (a rating of 5), it has well proportioned length to width to height.

This means that the particular model can be scaled proportionally and could fulfill

various programs, from House to Concert hall. The relationship between concave

and convex parts is also nicely balanced, giving an allover even figure. The model

silhouette is exciting, without being overly aggressive, despite lots of pointy elements.

3.4.3 Visual Saliency of Sensibility

From the previous two results, we have demonstrated that this model has effec-

tively learned ‘architectural taste/aesthetics’ as defined by the architect and labeler

of the dataset. However, what is unclear is if the neural network will learn to as-

sociate the same visual features with ‘pleasing’ as an architect does. To further

our investigation into GCNNs capabilities of Sensibility transfer, we performed the

following network interpretability experiment to shed light upon what features of

the input meshes the neural network learns to associate with the different abstract

concepts of style, aesthetics, and functionality. There has been incredible advances

in interpretability and explainability of learned features for conventional convolu-

tional neural networks [102, 101]. These advancements have led to design/editing

techniques such as Deep Dream [98]. Inspired by this body of work, we extend a par-

ticular interpretability technique, Visual Saliency [125] to GCNNs. This will allow us

to qualitatively/visually examine the structural features that our Sensibility network
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associates with different style, aesthetic, and functionality classes. Visual saliency is

the distinct, task-dependent perceptual quality which makes some items in the world

’more useful’ than their neighbors. In an image, a saliency map shows each pixel’s

unique feature in the context of visual information and visual tasks. For example, in

image classification, a pixel that is part of a specific semantic class, e.g., dog, could

have a high saliency/intensity value. Similarly, in the context of graphs/meshes,

saliency at a vertex can be defined in terms of how much that particular vertex

contributes to specific visual or perceptual features.

We can use gradient-based visual saliency mapping to assign an intensity value

(or color) to each vertex in our input mesh. This intensity will correspond to how

much that given vertex contributes to a particular class prediction. To calculate

the visual saliency for a given input mesh, we first perform a forward pass of the

input mesh using the trained Sensibility prediction network. Then, choosing one

of the task predictions, we calculate the backward pass to get the gradient of that

prediction with respect to the input mesh vertices. The normalized gradients serve

as our vertex colors.

More formally, consider our neural network as a function, f , with three task

branches, fstyle, faesth, and ffunc for the tasks of style classification, aesthetic rat-

ing classification, and functionality rating classification, respectively. For each task

branch, we can solve the following to get the saliency S∗, for all vertices v in our

input mesh M :
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S∗style = max
M

(fstyle(M))

S∗aesth = max
M

(faesth(M))

S∗func = max
M

x(ffunc(M))

Using this technique, we can shed light upon what features of the input meshes

the neural network learns to associate with the different abstract concepts of style,

aesthetics, and functionality. Examples for three house models are shown in Fig-

ure 3.7

We see complex, shape-dependent relationships between the features for style,

aesthetics, and functionality. For example, in the top row, it appears that the Sensi-

bility prediction network is using different and unique vertex features for each task.

However, in the middle row it appears that it leverages very similarly vertex clusters

for predicting style, functionality, and aesthetics. Finally, in the last layer, we see

that the same vertices have positive impact upon the style and aesthetics predic-

tions, but not the functionality. This highlights the difficulty of trying to quantify

and encode highly intertwined design concepts. Further work will be needed to see

if it is possible to disentangle these abstract properties from one another.

3.5 Conclusion

There are two main paths of inquiry to be considered when assessing an algo-

rithm’s ability for design processes: first, the interrogation of the technical expertise

necessary to train neural networks to generate successful solutions for pragmatic

problems. This can be plan optimization, structural optimization and the analysis

of the consumption of material. The second path to be explored is the aspects of
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Figure 3.7: Examples of visual saliency for the three sensibility prediction tasks for three house
models. The high positive values are near-red, the high negative values are near-blue, and the
vertices that have a derivative near zero (thus not making much of an impact on the output class
prediction when the vertex location is changed) are gray/near-white.

architectural design pertaining to studies of morphology, style, mood and creativity.

In this thesis chapter, our goal was to test the capabilities of neural networks to

model and transfer the highly abstract and complex concept of a designer’s sensibil-

ity. Leveraging the powerful ability of neural networks to ingest and learn from large

databases of images that can span cultural and historical dimensions that a human

or humans would take a lifetime to synthesize and learn, we present a solution that

allows for the transfer of aesthetic, style, and functionality features to meshes to
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Figure 3.8: Examples of one of the manipulated, cubist houses as a full building, from different
viewing angles.

generate new objects that capture the design sensibility of our co-author, Matias del

Campo. We show a finalized rendering of one of the Sensibility transferred cubist

houses in Figure 3.8. Future work would be to collect larger, more comprehensive

datasets (possibly from different designers/architects), which would allow for a more

thorough investigation into how neural networks represent these abstract art con-

cepts. Another avenue of future work is to explore the feature spaces of generative

networks on these kinds of datasets.



CHAPTER IV

Illumination Transfer

4.1 Introduction

In this chapter, we propose an image synthesis framework that leverages geometry

and reflectance information from a Lidar scanner to control the illumination in an

output image, which can be applied as a solution to image relighting.

In outdoor road environments, the appearance of a salient object, such as a car

or pedestrian, is highly dependent upon the illumination of the scene. Illumination

effects have a particularly strong impact on a scene’s representation in camera’s RGB

space, which is the most common sensor space for driving datasets. Adjusting the

time of day for this sensor space can induce significant changes to the scene’s appear-

ance despite the fact that its underlying structure and material properties remain

the same. In fact, illumination changes have been shown to significantly decrease

performance of state of the art segmentation, detection, and tracking algorithms in

outdoor driving scenarios [4, 12, 110]. Thus, an important task for a car’s visual

system is to accurately capture a scene’s illumination model from the given sensor

data. This requires separating the visual changes in the image pixel intensity that

are due to variance in the underlying surface material properties from the changes

that are exclusively due to the effects of the scene illumination. Illumination model-

51
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ing techniques can be data-driven methods [160, 84, 116, 22, 28], or purely based on

physics and vision principles, or some combination of the two [79, 100, 64, 89, 83, 77].

The majority of these illumination modeling methods focus on learning or model-

ing illumination exclusively using RGB images. There has been impressive advances

in more data-driven illumination modeling and image relighting using deep learn-

ing [43, 109, 157, 116, 153]. These methods rely on having multiple views of the

scene under varying illumination conditions, which are difficult to obtain for com-

plex, outdoor driving datasets.

On the other hand, physics-based techniques utilize rigid, hand crafted priors that

prevent them from generalizing to large, complex noisy scenes composed of many

material types. However, one such physics-based method, intrinsic images, is partic-

ularly attractive for outdoor driving scenes. Intrinsic images are the decomposition

of an RGB image into its intrinsic properties (e.g., reflectance, albedo, normals), and

these intermediate representations can be used to manipulate illumination in RGB

space in a deterministic manner [142, 25, 120, 121, 74, 166]. In fact, several research

efforts have explored a variation of intrinsic images called illumination invariant color

spaces [91, 159, 71, 46] that derive a scene representation directly from a single RGB

image that is solely based upon underlying surface reflectance. Unfortunately, the

derivation of illumination invariant color spaces are based only upon RGB cameras,

and as a result can still contain illumination artifacts.

In this chapter, we instead consider how we might model illumination using an al-

ternative sensor space: Lidar. Laser scanner return intensity, which accompanies 3D

point-cloud coordinates, provides information about the power of the backscattered

laser signal and it is dependent upon the surface properties [69]. This information

is useful to determine the reflectance properties of encountered surfaces and is has
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been utilized in a variety of applications, particularly in urban material classifica-

tion [161, 154, 136, 37, 56].

The method proposed in this chapter uses the measured Lidar intensity as an

estimate of the scene surface reflectance, which when combined with the point cloud

geometry information and RGB chromaticity, can be used to light the captured

scene. In an effort to overcome the sparsity of the Lidar signal, we also present two

methods to generate a dense reflectance image. The first uses standard projection and

2d interpolation of Lidar into image space, and the second uses a deep volumetric

learning method based upon Neural Radiance Fields (abbreviated NeRF) [96] to

generate a dense Lidar reflectance and geometric model of the scene.

To our knowledge, this is the first attempt at specifically lighting outdoor driving

datasets by transferring lighting features onto Lidar intensity. We anticipate that

the proposed model, by adding in realistic illumination artifacts into images, is a first

step towards understanding how RGB-Lidar sensor fusion can be used to represent

and learn accurate outdoor scene illumination models.

The chapter is organized as follows. Section 4.2 describes related works in deter-

ministic and learning-based illumination modeling frameworks. Section 4.3 describes

the proposed deterministic lighting framework that fuses Lidar and RGB informa-

tion, as well as the two methods to generate dense reflectance maps. We present

qualitative results and demonstrations of the proposed frameworks in Section 4.4

before concluding in Section 4.5.

4.2 Related Work

In this work, the objective is to transfer realistic lighting effects onto an image

given a point cloud and a single RGB image. This process requires both removing
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and re-synthesizing illumination features within the image. The proposed method

is based upon previous work in illumination invariant color spaces, intrinsic image

decomposition, image relighting, shadow modeling, and neural rendering. We briefly

review the literature in these areas below.

4.2.1 Illumination Invariant Color spaces

Most similar in objective and method to the proposed framework are Illumina-

tion Invariant color spaces. These comprise a family of color representations, com-

puted from RGB, that removes (or minimizes) scene color variations due to varying

scene lighting conditions based upon the sensor model and physical properties of

the scene [91, 119, 71, 46, 6, 143]. The methods all use varying sensor and physics

models as priors, specifically lambertian reflectance, approximately Planckian light-

ing, and fairly narrowband camera sensors, to derive an intrinsic reflectivity image

from a single RGB image. The output of these methods is a grayscale image that

can be interpreted as an intrinsic image that portrays only the inherent reflectance

properties in the scene without harsh illumination effects, specifically cast shadows,

self-shading, and over/under exposure. These color spaces have been applied to a

variety of vision tasks in an attempt to improve accuracy and robustness to illumi-

nation. For example, there has been great success in applying illumination invariant

color spaces to improving visual odometry accuracy [91, 94]. There has also been

some work to indicate that combing illumination invariant representation of an im-

age with its chromaticity channels is an effective preprocessing step for semantic

segmentation [4, 5], but that the performance benefits appear to be dependent on

both the segmentation network architecture and training dataset, which in general

is not useful. This chapter is the first work to explore if these representations can be

used to relight scenes.
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4.2.2 Inverse graphics and Intrinsic Images for Reflectance and Shading Estimation

Intrinsic image decomposition and inverse graphics rendering are methods that

decompose an image into a set of intermediate representations or features that corre-

spond to different physical process in the real world, e.g, normal maps, albedo, shad-

ing, and reflectance [142, 25, 120, 121, 74, 166]. These intermediate representations

can be sampled to synthesize new unseen images, which allows for image relighting.

However, there are drawbacks to these techniques that prevent them from being ap-

plied to large scale outdoor scenes. These methods make simplifying assumptions

about the scene structure to make the reconstruction tractable, and thus are usually

applied to scenes that contain similar spatial information, such as faces [24, 148, 144].

These methods also either require multiple images of the same scene [109] or require

complicated training regimes corresponding to complex synthetic datasets [40, 73],

both of which are difficult to generalize to driving datasets.

4.2.3 Lidar Intensity for estimating intrinsic scene properties

Material characteristics, specifically surface reflectance and roughness have a have

a large impact on the measured intensity values [69]. A number of studies in the

archaeological and aerial image fields have studied Lidar intensity as a strong source

of information for tasks such as material detection and classification [161, 154, 136,

37, 56]. In fact, this work has been extended to model a surface’s BRDF using Lidar

intensity [80, 23, 81, 58]. Despite this work, there are very few instances in which

Lidar intensity has been used in relighting. While there is work in colorizing point

clouds via intensity [85, 19, 123] as well as work in point cloud relighting [117, 152, 55],

these methods mainly use the geometry given by the point cloud, and forgo the Lidar

intensity as a source of reflectance information. In contrast, in this chapter we explore
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the use of Lidar intensity as a direct measure of surface reflectance that can be used

in illumination modeling and relighting frameworks.

4.2.4 Learning reflectance models from images data

The goal of image relighting is to change the existing illumination condition cap-

tured in an image or set of images to a target illumination condition. At their core,

image relighting techniques attempt to model the light transport function, which is

composed of a model of scene lighting and the BRDF (bidirectional reflectance den-

sity function) that describes the material properties throughout the scene and how

they interact with scene illumination [132, 153]. However, to model this function

the majority of deep relighting methods require multiple images (anywhere between

5-1000 depending on the image relighting method) of the same scene under different

lighting conditions to generate an accurate estimate of the lighting function [153, 109],

and/or material labels of objects in the scene [2], neither of which is easy to obtain

for outdoor driving datasets. Recently, in the past year, there has been a deep learn-

ing/graphics revolution thanks to a family of models called Neural radiance Fields,

abbreviated as NeRF [96]. These models pair small multilayer perceptrons with tra-

ditional ray tracing techniques to learn a volumetric, emissive model of the scene.

They have been extended to learn reflectance models of scenes [131, 35, 16, 17, 163].

The majority of these reflectance NeRF models rely on dense, 360 degree capture

multiview datasets of a single scene under varying illumination conditions, which

are not obtainable for driving datasets. However, recent work [133, 103, 78] has

demonstrated the applicability of NeRF to driving data. In this chapter, we present

one of the first attempts to fuse an additional sensor, Lidar, into a NeRF framework

with the goal of using dense reflectances maps for illumination modeling in driving

datasets.
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4.3 Proposed Approach

The objective of our approach is to alter the illumination conditions of a given

input image and its accompanying point cloud such that it appears to have been taken

at a specific time of day. This approach is inspired by Illumination invariant color

spaces. We propose to light images by modeling how illumination effects manifest

in the three channels of CEILAB color space: the L (luminance) channel, the a

chrominance channel (red-green opponent color axis) and the b chrominance channel

(blue-yellow opponent color axis). We use the Lidar intensity as a noisy estimate of

scene surface reflectance that can be used to estimate the luminance channel. We

describe this process in the sections below.

For autonomous vehicle driving datasets, we define the scene lighting conditions

as the light source location in the scene, which for outdoor images would be the

sun position. We choose this parameterization because it is easy to extract from

GPS/timestamp information, and also because altering the light source location in

an image can simultaneously changes the perceived illumination effects in the scene,

specifically shadow distributions, color temperature and brightness. Thus, the pro-

posed approach takes in a single input image from a driving trajectory, its corre-

sponding Lidar scan and a sun position vector derived from the GPS/timestamp

information.

Modeling the Luminance channel using Lidar Intensity

The luminance L of a point lying on an outdoor surface can be defined as [55]:

L = V ∗R ∗ ESun ∗ (N ·D)

where R is the surface reflectance, V is the visibility of the point to the light

source, ESun is the luminance of the sun that hits the point, N is the surface nor-
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mal at the point, and D is the position vector of the light source. For simplicity

and computational tractability, we forgo modeling indirect illumination and skylight

illumination that would normally be present in an outdoor scene, and only consider

the sun as a directional light source. To produce the luminance channel map, we

generate a reflectance map R by aggregating Lidar scans about the chosen RGB

image and project them into the camera view. The visibility V is generated using

standard ray tracing paired with the the sun position, the normals and depth at each

point in the velo scan, and then projected into the 2D image space of the camera.

It can take on a binary value of 0 or 1 indicating if the point is in light or shadow.

We also threshold the L and b channels to capture any shadows that are cast by

geometry not captured in the Lidar scan. These two maps are added together to

create the final visibility/shadow map V . We upsample each of these outputs using

nearest neighbor interpolation on the images to get dense maps.

Modeling Chromasticity

While Lidar intensity can provide information about scene surface properties like

roughness and reflectance, it cannot give us an estimate of the base color of objects

within the scene. Thus, we directly use the a and b CEILAB channels extracted from

the selected RGB image as a source of chromaticity information. This ultimately

allows us to take advantage of the joint nature of the image structure and Lidar

data reflectance properties. However, the CEILAB chromaticity channels still have

illumination artifacts in them that are unique to the source sun position, specifically,

shadows. Areas in shadow tend to be more blue (due to lack of yellow sunlight)

and areas in light tend to be more yellow [75]. We correct these artifacts using

as simple chrominance ratio between the sunlit points and shadowed points in the

chrominance channels. This method was first proposed in [55]. For the b channel, we
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Figure 4.1: Example of removing a hard cast shadow in the chrominance channels. The first column
contains an example of an uncorrected image patch (where the dark pixels indicate the presence of
a hard cast shadow), and the second column contains the corrected image patch. Note that there
are still artifacts that remain in the shadow penumbra, i.e, the shadow edges.

observe that shadows are more blue (lower value), and sunlight regions more yellow

(higher value). In contrast, we observe for the a channel that shadows are more red

(higher value), sunlight regions more green (lower value). We therefore find that

the following simple multiplicative updates for adjusting the chrominance values of

shadow pixels suffices:

a(pShadow) = a(pShadow) ∗
¯a(pSunlit)
¯a(pShadow)

b(pShadow) = b(pShadow) ∗
¯b(pSunlit)
¯b(pShadow)

where pShadow are the pixels in shadow and pSunlit are the pixels lit by the sun (derived

from the shadow map), and ¯a(pSunlit) is the average chrominance value of the sunlit

pixels in the a channel, where as ¯a(pShadow) is the average or the shadow pixels. The

same convention is used for the b channel. An example is shown in Figure 4.1.

4.3.1 Extending NeRF for densifying Lidar reflectance maps

Densifying our lidar reflectance maps using 2D nearest neighbor interpolation

can only get us so far; we cannot use this method to hallucinate the parts of the

image where we have no Lidar measurements. In particular, for driving datasets, this

means we cannot model the upper areas of the scene, including the sky. We propose
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to leap frog off the incredible success of NeRF models to densify our sparse Lidar

reflectance maps. We specifically choose the MINE NeRF model [78] as a starting

point. MINE was designed to perform novel view synthesis and depth estimation

from a single image. The network design fuses Multiplane Images (MPI) [140] with

NeRF to learn a continuous 3D model of a scene captured by a single camera image.

The objective of MINE is to model the 3D scene within the camera viewing frustrum.

Given a single image and target disparity as input, MINE uses an encoder-decoder

network to predict a 4-channel plane/image (RGB and volume density, or sigma)

at the injected depth within the frustrum. This is done at many sampled depth

values to reconstruct the 3D space within the camera frustum. The reconstructed

frustum can then be easily rendered into novel views using differentiable rendering.

See Figure 4.2 for a pictorial overview of the network. To train MINE on a driving

dataset, each scene is defined as a stereo image pair. Thus, one ’source’ stereo view is

injected into the MINE framework and its goal is to reconstruct the other, held-out

stereo image.

The MINE model is attractive for our problem because it allows us to learn across

scenes, and thus across sparse lidar signals. This is in contrast to original NeRF

models, which can only be trained on single scenes, which we found in practice

struggles to learn a dense model from a sparse reflectance signal. To generate dense

Lidar reflectance maps, we modify the MINE decoding network to output a Lidar

reflectance value in addition to an RGB and sigma value. The predicted Lidar

intensity is alpha-composited to generate a final, dense reflectance map. To train the

network, we use the extrinsic and intrinsic camera models to project the sparse lidar

measurements into the camera view frustrum, and apply a mean absolute error loss

between these ground truth points and the predicted lidar intensity values.
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Figure 4.2: Pictorial overview of the MINE NeRF framework. Figure is taken from the original
paper [78]. To generate dense Lidar reflectance maps, we modify the decoding network to output
Lidar reflectance value in addition to an RGB and sigma value. The predicted Lidar intensity is
alpha-composited to generate a final, dense reflectance map.

4.4 Results and Experiments

All experiments are performed with the KITTI driving dataset [48]. To generate

a lit RGB image, we take an RGB frame at some chosen time t. To produce an

accompanying point cloud, we aggregate the velo scans at time t− 1, t, and t+ 1.

4.4.1 Comparison to Illumination Invariant color spaces for relighting

We first present results that compare the predicted Lidar-based luminance channel

from the proposed method against the estimated reflectance/intensity maps gener-

ated from other methods. We specifically evaluate against those generated by illumi-

nation invariant color spaces. We use each of these estimated reflectance channels in

the proposed relighting framework, and evaluate the visual quality of the produced

RGB image. Because we only have access to a single RGB image taken at a single

light source, in order to quantitatively evaluate the proposed relighting framework

we use the proposed relighting method by reconstructing KITTI images using the

ground truth/source sun position. Qualitative results of this on single images are



62

Figure 4.3: Examples of KITTI images lit to their ground truth lighting

provided in Figure 4.3. We see that the proposed method produces lit images that

significantly more consistent, specifically in terms of color temperature, brightness,

and specular effects. To quantitatively verify that the proposed lighting method is

more accurate across images, we randomly sampled 1000 images from the KITTI raw

dataset and calculated the average PSNR and SSIM for the proposed method vs. the

illumination invariant image baselines. The results are given in Table 4.1. Note that

these metrics are calculated only for pixels where we have Lidar reflectance data.

We see that the proposed method produces lit RGB values that have significantly

higher quality than the baselines.

An interesting behavior that was uncovered during this experiment is that the

number of Lidar scans that are aggregated over for generating a reflectance image

for a particular RGB is a tunable hyperparameter. Aggregating over too many velo

scans corrupts the local geometry due to Lidar sensor noise and the dynamic nature

of the data collection. This noise will overwhelm the metrics relying on absolute
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Table 4.1: Average PSNR and SSIM for 1000 lit images sampled randomly from the KITTI drive.

Reflectance Est. Method Reconstructed KITTI RGB
PSNR↑ SSIM↑

Maddern et al 2014 [91] 17.98 0.69
Ying et al 2016 [159] 17.94 0.73
Kim et al 2017 [71] 14.39 0.50
Finlayson et al 2009 [46] 19.72 0.61
Proposed Method 21.40 0.75
Proposed Method + dense intensity 9.2 0.28

error and small local areas of the output image. This observation further motivates

the need to generate smooth lidar reflectance maps.

However, the proposed method has several failure modes. In the first panel in

Figure 4.4, we observe that one of the failure modes of the proposed method is

that it cannot accurately model illumination effects that result from the imaging

sensor, specifically saturation/overexposure. This is reasonable considering that the

proposed image formation pipeline does not include a model of the camera sensor.

Future work could investigate modeling a camera sensor to capture these effects

as well. In the second column of Figure 4.4, we see another failure mode: Lidar

beam artifacts. The Lidar sensor sweeps are replicated in the predicted RGB image,

which is highly undesirable. We also see that a lot of high frequency detail in the

bush/leaves are lost also as a result of the Lidar sampling. Furthermore, we cannot

light or reconstruct the parts of the scene that have no Lidar returns, which is also

highlighted in the first column of Figure 4.4 (red square bottom image). This means

that we cannot model the upper parts of KITTI, including the sky, which carries a

significant impact upon the perceived illumination and time of day in the scene. This

motivates our exploration in the next section into modeling a dense Lidar reflectance

signal, which will allow us to apply the proposed method over the entire scene.
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Figure 4.4: Examples of Failure modes for the proposed method. Top row are ground truth RGB
images, bottom row are the corresponding lit images using the proposed method. Red squares are
used to highlight specific failure modes of the proposed method. In the first column, the proposed
method is unable to replicate the overexposed road in the target RGB image (highlighted by the
red square in the top image; this saturation effect is absent in the predicted image below). We also
see that there are artifacts introduced by the scanning geometry of the Lidar sensor. For example,
we cannot light/reconstruct the parts of the scene that have no Lidar data, which is also highlighted
in the first column (red square bottom image). In the second column, the beam artifacts of the
Lidar scan are highlighted in the lit image.

Figure 4.5: Examples of KITTI images lit to their ground truth lighting (second image column)
using the proposed densified Lidar model.

4.4.2 Evaluation of Relighting via densified Lidar reflectance

Figure 4.5 shows several examples of lit images using the proposed relighting

method and dense reflectance maps output from the modified MINE framework.

We see that, while global structures are present in the dense liar intensity maps,

the model has learned significant Lidar beam artifacts. It also has learned that the

sky is a surface in the scene that has reflectance properties, which is not physically

correct. Furthermore, we see that the quality of the generated dense reflectance maps

performs the worse when used for relighting in comparison to both the reflectance

maps from original proposed method as well as those from illumination invariant

color spaces, see final row of Table 4.1.
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Figure 4.6: Examples of KITTI images lit to their ground truth lighting (second image column)
using the proposed densified Lidar model, and examples of NeRFactor relighting the same KITTI
scene are shown in the final column. Note that NeRFactor struggles to disentangle scene properties,
ultimately yielding images with no clear geometry or lighting.

In general, it appears that NeRF models struggle learning dense information from

sparse ground truth, and future work will need to investigate how to better model

Lidar information within a ray tracing framework.

However, in comparison to the state-of-the-art NeRF relighting methods, model-

ing lighting changes using the proposed dense reflectance maps produces significantly

better lit images. We compare relighting KITTI scenes to their ground truth light-

ing conditions using the proposed dense method and NeRFactor [163]. Qualitative

results are shown in Figure 4.6. We see that our proposed method using modified

MINE to create a dense scene reflectance map significantly outperforms NeRFactor,

which cannot even learn accurate scene geometry for the outdoor scenes, let alone

disambiguate the intrinsic scene factors needed to successfully model light transport.

4.5 Discussion and Conclusion

In this chapter, we propose a deterministic, single image relighting framework that

leverages 3D information from point clouds to transfer illumination effects for real

scenes. Our results indicate that Lidar intensity can be a significantly useful repre-

sentation for modeling/capturing the underlying reflectance of a scene, and that this
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information can be used in simple image formation models to relight images. Other

avenues and potential extensions of this work would be to incorporate a weather

and imaging pipeline models into this framework to better capture all of the myriad

influences of illumination that impact image appearance.
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[109] Julien Philip, Michaël Gharbi, Tinghui Zhou, Alexei A Efros, and George Drettakis. Multi-
view relighting using a geometry-aware network. ACM Transactions on Graphics (TOG),
38(4):78, 2019.

[110] Manikandasriram Srinivasan Ramanagopal, Cyrus Anderson, Ram Vasudevan, and Matthew
Johnson-Roberson. Failing to learn: Autonomously identifying perception failures for self-
driving cars. CoRR, abs/1707.00051, 2017.

[111] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin John-
son, and Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv preprint
arXiv:2007.08501, 2020.

[112] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[113] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data:
Ground truth from computer games. In Proc. Eur. Conf. Comput. Vis., pages 102–118.
Springer, 2016.

[114] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data:
Ground truth from computer games. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, European Conference on Computer Vision (ECCV), volume 9906 of LNCS,
pages 102–118. Springer International Publishing, 2016.

[115] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M Lopez. The
synthia dataset: A large collection of synthetic images for semantic segmentation of urban
scenes. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3234–3243, 2016.

[116] Viktor Rudnev, Mohamed Elgharib, William Smith, Lingjie Liu, Vladislav Golyanik, and
Christian Theobalt. Neural radiance fields for outdoor scene relighting. arXiv preprint
arXiv:2112.05140, 2021.

[117] Manuele Sabbadin, Gianpaolo Palma, Francesco Banterle, Tamy Boubekeur, and Paolo
Cignoni. High dynamic range point clouds for real-time relighting. In Computer Graphics
Forum, volume 38, pages 513–525. Wiley Online Library, 2019.

[118] Christos Sakaridis, Dengxin Dai, Simon Hecker, and Luc Van Gool. Model adaptation with
synthetic and real data for semantic dense foggy scene understanding. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 687–704, 2018.

[119] Moein Shakeri and Hong Zhang. Illumination invariant representation of natural images for
visual place recognition. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 466–472. IEEE, 2016.

[120] Li Shen, Ping Tan, and Stephen Lin. Intrinsic image decomposition with non-local texture
cues. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–7.
IEEE, 2008.

[121] Li Shen, Chuohao Yeo, and Binh-Son Hua. Intrinsic image decomposition using a sparse
representation of reflectance. IEEE transactions on pattern analysis and machine intelligence,
35(12):2904–2915, 2013.



76

[122] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans
for semantic face editing. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9243–9252, 2020.

[123] Takayuki Shinohara, Haoyi Xiu, and Masashi Matsuoka. Point2color: 3d point cloud coloriza-
tion using a conditional generative network and differentiable rendering for airborne lidar.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1062–1071, 2021.

[124] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell
Webb. Learning from simulated and unsupervised images through adversarial training. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2107–2116, 2017.

[125] K. Simonyan, A. Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visu-
alising image classification models and saliency maps. CoRR, abs/1312.6034, 2014.

[126] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[127] Leon Sixt, Benjamin Wild, and Tim Landgraf. Rendergan: Generating realistic labeled data.
Frontiers in Robotics and AI, 5:66, 2018.

[128] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene under-
standing benchmark suite. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 567–576, 2015.

[129] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Symposium on
Geometry processing, volume 4, pages 109–116, 2007.

[130] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and H-P Sei-
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