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ABSTRACT

Air travel has had an increasing contribution to global CO2 and non-CO2 emissions, and
climate change. Compelled by the need for a greener aviation industry, aircraft designs are
evolving toward higher aspect ratio wings to improve aerodynamic performance and reduce
fuel consumption. Consequently, these vehicles are becoming increasingly flexible, thus more
vulnerable to structural failure, especially when performing maneuvers or during encounters
with gusts.

In this work, constrained control methods are investigated to design maneuver and gust
load alleviation systems to keep the loads on these very flexible aircraft within safety limits.
Two control architectures based on Model Predictive Control are proposed: one that inte-
grates the automatic pilot and the load alleviation objectives into a single system; and the
other that augments an existing flight control system with a reference governor to enable
load alleviation. Load alleviation is achieved by performing shape control of the flexible
structure by imposing curvature constraints on critical stations on the wing and tail. Linear
and nonlinear Model Predictive Control designs are considered for aircraft with different
levels of flexibility, as well as a formulation based on scenario optimization for handling mul-
tiple mass configurations. For gust load alleviation, feedforward control is applied based on
disturbance preview provided by LIDAR measurements.

Because these vehicles are infinite dimensional systems, the main obstacle to the deploy-
ment of these load alleviation systems is their computational cost. The control design for
these large-scale systems is tackled by using model order reduction techniques and strate-
gies to reduce the constrained control implementation cost. The use of linear and nonlinear
reduced-order aeroservoelastic models for prediction in Model Predictive Control is studied.
Furthermore, methods to reduce the number of constraints are proposed. In particular,
constraint aggregation methods in optimal control are investigated by applying sensitivity
analysis tools. It is shown that these methods can yield significant reductions in the compu-
tational footprint of Model Predictive Control.

The proposed load alleviation system is tested in a wind tunnel experiment. A half-
aircraft model with a very flexible wing and free pitch is used to assess the performance of the
controller in enforcing constraints on the vehicle while performing a longitudinal maneuver.

xviii



Experimental results are presented to showcase the potential of the proposed system in
addressing multiple objectives in load alleviation and its successful implementation in real
time.
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CHAPTER 1

Introduction

1.1 Motivation

Commercial aircraft designs are evolving towards being increasingly lightweight, having high-
aspect ratio and becoming flexible in order to improve aerodynamic performance and meet
increasingly demanding flight mission specifications, such as reduced fuel consumption, heav-
ier payload and greater range and endurance [9]. Modern designs of High-Altitude Long-
Endurance (HALE) aircraft have gained great attention in academia recently, and the need
to develop them has boosted the development of new multidisciplinary analysis methodolo-
gies for these vehicles. The Airbus Zephyr (Fig. 1.1a) is an example of platform that exploit
the capabilities of very flexible aircraft. The next generation of commercial aircraft, such as
the Airbus ZEROe Turbofan (Fig. 1.1b), may benefit from these design concepts in order to
optimize vehicle performance.

(a) Airbus Zephyr [10]
(Airbus S.A.S. 2017 - All rights reserved).

(b) Airbus ZEROe Turbofan [11]
(Airbus S.A.S. 2022 – All rights reserved).

Figure 1.1: Examples of very flexible aircraft.

The design of very flexible vehicles has brought significant challenges to aeronautical engi-
neering since it requires geometrically nonlinear structural models for the primary structures

1



in order to fully capture the large deformations that are likely to appear when the vehicle is
subjected to operational loads [12]. Since natural structural vibration characteristics of these
vehicles are of low frequency, a strong coupling between structural and rigid body modes
is expected, resulting in a significant impact on the aerodynamic properties and the vehicle
stability. From a control design standpoint, the large static and dynamic deformations in
very flexible aircraft introduce state-dependent variations in the aircraft dynamics, and thus
linear time invariant models may no longer be suitable to describe the motion of the air-
craft. A unified aeroelastic model that simultaneously incorporates rigid-body, elastic and
aerodynamic contributions is needed [13].

The high-aspect ratio configuration goes against the intent of designing robust and strong
structures with respect to forces induced by flight maneuvers, wind gusts and turbulence.
The long spans and flexible structures usually result in an increase of the torsion and bending
moment loads on the wing, which can ultimately lead to failure. Such issue is even worse
when the aircraft performs a maneuver or encounters gusts. One way to cope with this
problem is the development of maneuver and gust load alleviation systems (MLA and GLA,
respectively), which reduce the load impact on the structure by deflecting the control surfaces
[14]. MLA systems typically use trailing edge deflection to concentrate lift inboard and
reduce wing bending moment, while GLA techniques also use control surfaces to attenuate
the rigid body and elastic responses to measurable disturbances. Studies have shown that the
combination of MLA and GLA may yield significant aero-structural benefits. For instance,
a MLA system can typically achieve cost and fuel savings of 3.1% and 4.3% for rigid-body
aircraft, respectively, and the addition of a GLA system may double such benefits [1]. Figure
1.2 shows the comparison of weight and cost gains for a rigid-body aircraft with MLA and
GLA systems. Similar results are expected for flexible aircraft.
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Figure 1.2: Optimized aircraft direct operating cost (DOC) and weight parameters as func-
tions of cruise Mach number [1].
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Control and estimation algorithms are necessary to exploit conventional and non-
conventional control effectors for MLA and GLA in flexible aircraft. Existing work addressed
some specific cases with specific solutions (e.g., coordinated control of ailerons/spoilers to re-
duce wing curvature) and several MLA/GLA systems have been implemented in production,
tested in experiments and researched in simulations. A systematic control design framework
that allows the optimal coordination of multiple conventional and non-conventional control
effectors is desirable for effective MLA/GLA in increasingly flexible aircraft and very flexible
aircraft that exhibits larger maneuver and gust load sensitivity.

1.2 Literature Review

In this section, the GLA and MLA control design objectives are presented, as well as control
strategies that have been proposed in the literature or implemented in commercial aircraft.
Control techniques found in the literature span from classical control theory to modern
optimal control methods. A special emphasis is given to constrained control approaches due
to their unique features that will be highlighted in the next sections.

1.2.1 Maneuver Load Alleviation

Airworthiness qualifications mandated by regulatory agencies require the proof that critical
loads in the aircraft do not exceed certain limits in order to ensure safety and structural
integrity. These requirements also apply to loads generated during different maneuver con-
ditions. The objective of limiting wing loads imposes restrictions to the V-n envelope and
thus invariably conflicts with maximizing maneuver performance. However, with the knowl-
edge of how each control surface affects maneuvers and loads, the control system design can
exploit the relative strengths of the various control effectors to minimize conflicts [15].

The fundamental operation of MLA systems calls for automatically deflecting the wing
flight control surfaces, usually in a symmetrical way, proportional to the normal incremental
acceleration of the airplane and directed with proper sensors, such as wing deflection sensors,
load factor sensor, or wing angle of attack sensors [16]. The objective is to concentrate lift
inboard and reduce critical loads such as the wing out-of-plane bending moment, as depicted
in Fig. 1.3, while maintaining the same normal load factor.

Maneuver load alleviation systems can actively control wing loads and therefore allow
lighter structures and high-aspect ratio designs. According to Xu and Kroo [1], aircraft with
MLA systems can typically achieve increases of 10 - 15% in span length and drag reduction
of 8− 13%.
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Figure 1.3: The maneuver lift distribution on a conventional (left) and MLA aircraft (right)
[1].

Yang et al. [17] performed a maneuver load alleviation efficiency analysis of control
surfaces in flexible airplanes. Using a state-space model of a flexible aircraft based on the
modal method and the rational function approximation, and the mode displacement method
to compute dynamic loads, the assessment was carried out by dividing the control surface
into multiple chordwise strips. It was found that the efficient deflections for inner and
outer control surfaces are downward and upward, respectively. Furthermore, using the most
efficient control combination, the analysis also considered a multi control surface and its effect
on final trim variables and wing root bending moment. The conclusion was that multi control
surfaces in MLA schemes can reduce the dynamic loads while reducing the oscillation of trim
variables. As pointed out by the authors, multiple control surfaces increase the potential of
MLA, especially in new flexible aircraft configuration with active control systems.

1.2.1.1 Classical approaches for MLA

Classical approaches for MLA systems use accelerometers to measure the load factor and then
deflect the control surfaces accordingly. In the system described in [2], vertical accelerometers
implanted at the front of the vehicle are used to detect and measure the vertical acceleration
of the aircraft, as shown in Fig. 1.4. If the vertical acceleration exceeds a predetermined
threshold, the ailerons are activated and deflected by an angle proportional to the acceler-
ation beyond the threshold. The definition of a threshold avoids repeated and superfluous
operation of the control surfaces, which should be deflected only when the loads on the wing
root are likely to reach a critical value. To counteract the pitch moment created by the
deflection of ailerons, the elevator is simultaneously deflected for pitch control.

1.2.1.2 Constrained Control for MLA

Model predictive control (MPC) techniques derive from Optimal Control Theory and aim at
overcoming the issues that limit the application of the classical theory. MPC is a structured
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Figure 1.4: MLA system using vertical accelerometer [2]. Ailerons are used for load allevia-
tion and elevators are used for pitch control.

controller design process that allows the explicit incorporation of constraints on both states
and control inputs, and it offers the possibility of on-line optimization of the cost index
[14, 18]. In addition, MPC formulations can account for unmodeled plant dynamics and
nonlinearities, and deal with uncertainties in the outputs in a robust way [13]. MPC has
found interesting applications in MLA control systems, since the MLA design problem aims
at keeping the structural loads within prescribed design limits.

Galoucher et al. [19] exploited the redundancy of control surfaces in airplanes to propose
an MLA system that does not modify the baseline controller responsible for ensuring good
handling qualities. Model predictive control was used to design the MLA system under ac-
tuator amplitude and slew rate constraints to limit the magnitude of structural load outputs
to an admissible interval while keeping the flight behavior close to the nominal one. The
authors also proposed an identification procedure in the frequency domain to synthesize a
mixing unit that can reproduce the optimal strategy obtained through the controller. The
application of such a controller was tested in a linear model of a flexible transport aircraft
with 77 states, with ailerons, elevators, rudder and spoilers as the control effectors. The
structural load considered was the wing bending moment during a roll maneuver. Numer-
ical simulations showed that all load alleviation and tracking objectives were fulfilled with
the mixing unit and model predictive controller. The structural load remained within the
prescribed bounds of ±500.00Nm. Furthermore, the tests showed that even more tightened
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constraints on the loads can be enforced if the spoilers are used in the control design. The
complexity of the mixing strategy was deemed to remain moderate by the authors.

Duan et al. [20] combined MPC and control allocation for MLA in a very flexible air-
craft with redundant control inputs. The control system exploited the properties of input
redundancy in a way that the rigid body responses were kept unchanged while the flexible
states were modified to satisfy given structural bounds. The proposed method exploited the
nonlinear decoupling control theory applied to nonlinear aircraft models to generate time-
varying feedforward control signals during the maneuver. A nonlinear 6-degree-of-freedom
rigid body dynamic model augmented with linear aerodynamics and structural dynamics,
represented by mode shapes, were used for control design. Numerical simulations showed
that the controller is able to keep the amplitude of the dominant mode shape inside the
desired bounds while preserving the rigid body outputs, however, at the cost of increased
transients and magnitudes in the control effectors.

1.2.1.3 Other Control Techniques for MLA

Classical Control: Woods-Vedeler et al. [21] and Andrews [22] presented a classical control
theory approaches for designing digitally implemented active control laws to alleviate wing
loads. In the former, the considered loads were generated during fast rolling maneuvers. The
objective was to design control laws that minimize the peak deviation of the wing loads from
their steady state values prior to the maneuver. The control laws were designed considering
a linear rigid-body model augmented with a pendulum term. Two control laws were designed
that utilized outboard control surface pairs (leading and trailing edges) to counteract the
loads and used trailing-edge control surface pairs to maintain roll performance. The control
architecture comprised low pass filters and a gain-feedback that were iterated to determine
the combination that effectively reduces the targeted dynamic loads. Simulations showed
that there was a substantial decrease in peak incremental outboard and inboard torsion
moments. There was, however, an increase in the peak incremental bending moment, even
though such increase was sometimes smaller than that observed for the baseline controller.

Open-loop optimal control: Optimal control methods seek the calculation of control
inputs that minimize a performance index. In MLA systems, such performance indices
usually reflect the structural loads in the flexible aircraft. Even though feedback control
laws can be obtained for linear systems through the classical optimal control theory, closed
form solutions are not known when state or input constraints are incorporated into the
design. Numerical techniques can be used to obtain open loop solutions in constrained
optimal control problems, i.e., following a trajectory optimization approach. Such methods
have been used to compute the control inputs that fly the vehicle along an optimal path
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during maneuvers that keep the maximum structural load within the desired limits.
In the paper by Maraniello et al. [23], the single shooting method was used to compute

optimal maneuvers in the lateral dynamics of wings with very low stiffness. The idea was
to be able to deal with the nonlinear behavior of the flexible wing during the maneuver as
an opportunity for extra performance, rather than a constraint. The task of designing air-
craft maneuvers was recast as an open-loop optimal control problem and solved numerically
via nonlinear programming techniques. The nonlinear aeroelastic solution was obtained by
loosely coupling a geometrically exact beam model with an unsteady vortex lattice method
for rigid and flexible vehicle aerodynamics. As for control design, the aileron deflection was
the only control input considered, and constraints were imposed on its amplitude and rate
of change. When the wing flexibility was increased, more aggressive actuation caused larger
amplitude oscillations around the final reference side force. Regardless of the level of flexi-
bility of the wing, the single shooting approach managed to capture the system features and
lead to satisfactory results.

Adaptive control: Adaptive control techniques are intended for control of systems with
uncertainties. Indirect adaptive control fuses a real-time control law with an on-line iden-
tification algorithm. Such solutions can incorporate control architectures based on classical
linear control, optimal control, stochastic control, neural networks, etc, which gives the con-
trol engineer flexibility to choose the best strategy that fits the control problem objectives.
The application of adaptive control to flexible aircraft has been studied, for example, in
[24, 25, 26, 27, 28, 29, 30] motivated by extending the operating range of an aircraft which
includes preventing the potential excitation of aeroelastic modes during maneuvers. There-
fore, the design of MLA systems has taken advantage of adaptive structures to develop
control systems that operate properly under variable flight conditions, such as changing
Mach number and dynamic pressure.

Nguyen and Hashemi [31] developed a multi-objective performance-based adaptive opti-
mal control solution for MLA control in flexible transport aircraft. The proposed technique
incorporates a performance optimization objective of the uncertain plant that seeks to mini-
mize both the tracking and predictor error. The method modifies the initial reference model
into a time-varying reference model which satisfies the requirements defined in the optimal
control problem and allows asymptotic tracking. The authors used a linearized reduced-
order longitudinal model with 65 states of a flexible aircraft with matched uncertainty in
the rigid aircraft states, and the control surfaces utilized were the position of the variable
camber continuous trailing edge flap and the elevator. For the maneuver load alleviation,
the performance metric was the wing root bending moment, which was inferred from strain
gauge sensors. Numerical simulations showed that the closed loop system was able to track
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the reference, and the amplitude of the wing root bending moment was reduced by 38.8%.
Li et al. [32] presented an adaptive controller based on recurrent neural networks for

MLA systems based on the identification of the aeroelastic model of a fighter. The linear
mathematical model of the flexible aircraft used in the control design considered the first
seven symmetric elastic modes and a minimum-state approximation for the aerodynamic
force coefficients. To realize system identification and load alleviation, the control system
involved two recurrent neural networks: one identification network, used to identify the open-
loop transient response, and one control network, used to alleviate the wing root bending
moment and trace the open-loop responses of the load factor and angle of attack to match the
desired values. The recurrent control network was then able to perform the load alleviation,
reaching up to 26% of reduction in the maximum wing root bending moment.

Lavretsky and Henderson [33], and McLean [34] also investigated the use of neural net-
works for MLA and structural mode suppression. The authors attested to the efficiency of
neural networks which, according to them, is comparable to linear control designs, but with
the inherent ability of adaptability.

Fuzzy control: Chiu et al. [15] proposed a fuzzy logic-based, multi-input/ multi-output
roll rate and load alleviation controller for a flexible aircraft. According to the authors,
the use of fuzzy controllers was motivated by their ability to capture qualitative control
strategies and implement flexible control architectures, and by its robustness characteristics,
especially when applied to imprecise systems whose behavior is only known in the large.
The controller was tested in a scaled aircraft model. The task of the controller was to
determine the appropriate control surface deflections that would achieve a command roll
rate while satisfying torsion moment constraints. The linearized equations of motion were
used to design the fuzzy controller. The controller was divided into two modules containing
set of rules in the form of a proportional-derivative control for determining the deflection
command during roll maneuvers, and for alleviating the sensed and anticipated excessive
torsion moments. The simulations carried out to evaluate the controller showed that it was
able to follow the roll rate command while enforcing the torsion moment bounds without
any significant degradation in roll rate performance.

1.2.2 Gust Load Alleviation

Atmospheric disturbances are a problem in aircraft operations due to the undesirable dy-
namic loads generated, which may result in reduction of the airframe structural life or catas-
trophic failure. Such issues are even more pronounced in the operation of very flexible aircraft
due to the great deformations that the structure can experience during flight. The mishap
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of NASA’s Helios prototype in 2003 shows the unfavorable effects caused by gusts in very
flexible aircraft. The Helios aircraft broke apart during flight after penetrating turbulence,
which caused a high dihedral deformation that ultimately resulted in instability [35].

To overcome the undesirable effects of turbulence without the need of structural rein-
forcement, GLA systems can be incorporated into the automatic flight control architecture.
The main objective of GLA systems is to attenuate loads caused by encounters with gusts
or turbulence by using active controls. Such active controls can be developed using modern
control theory. As described by McLean [36], GLA systems can reduce loads due to air-
frame flexibility, decrease levels of acceleration at particular aircraft stations and improve
flying qualities. Consequently, fatigue life is increased, lightweight high-aspect ratio designs
are allowed, fuel expenditure is reduced and flight comfort is enhanced. Furthermore, GLA
systems can improve the airworthiness in the aircraft design in order to comply with the
standards specified by regulatory agencies.

In a typical GLA system, when the aircraft penetrates the gust, sensors provide feedback
signals to the control system, which generates inputs to the control surface actuators ac-
cording to some logic, so as to create aerodynamic forces and moments to cancel undesirable
effects of the external perturbations [36]. From a control perspective, GLA is a distur-
bance rejection problem [14], in which gusts can be modeled either as discrete-deterministic
or continuous-stochastic perturbations. Recent work in GLA control applies various mod-
ern control techniques to reduce aircraft loads by minimizing the vertical acceleration, the
wingtip deflection or the span-wise shape of the wing [37].

The first reference to GLA system is from 1914 [38], but this topic only drew attention
of the aeronautical community after the development of mathematical models to represent
turbulence in 1937 [36]. Early designs were concerned with alleviating the effects of gusts on
rigid body dynamics only by symmetrical aileron deflection. The results were unsatisfactory,
since the handling qualities were compromised by the reduction of the stability margins
due to the adverse pitching moment caused by the aileron deflection required by the GLA
system. Furthermore, early designs depended on gust vanes to detect entry to the turbulence
field, which did not account for the gust field normal components with respect to the plane
of symmetry of the aircraft, and secondary aerodynamic effects such as downwash or time
delays. The design approaches have evolved since then. Modern GLA systems use gust angle
measurements at the aircraft nose or feedback local load factor measurements, and some
suggest the use of auxiliary control surfaces to create the appropriate forces and moments
to diminish the loads caused by gusts [14]. Control effectors typically include designated
control surfaces, such as canards or a centerline control surface, or conventional, multipurpose
effectors, such as flaps and ailerons [39]. More recent works propose the use of the airborne
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Light Detection and Ranging (LIDAR) turbulence sensor to provide preview information
about the vertical gust velocity at a considerable distance ahead of the aircraft. Moreover,
modern designs also take into consideration the elastic effects inherent to the vehicle structure
and, due to the advancement of very flexible aircraft configurations, the recent trend is to
incorporate the nonlinear aeroelastic analysis into the GLA system design.

To show how aeroelastic effects are an important factor, Dillsaver et al. [40] have per-
formed a comprehensive study of the gust response sensitivity of a representative baseline of
a very flexible aircraft model. The open loop response of the baseline aircraft to disturbances
of differing amplitudes was found to be nonlinear and the duration of the turbulence can
play an important role, since the response grows larger the longer the aircraft remains in the
gust field, which consequently causes a drop in altitude. In addition, it was found that the
maximum pitch angle decreases with the increase of both the bending and in-plane frequen-
cies, while the trends for maximum curvature were the opposite. The maximum pitch angle
excursion was found to be dependent on the first torsion-to-first in-plane bending frequency,
while the maximum root curvature depends on the first bending frequency. Therefore, the
analysis of the structural elastic effects is crucial in the design of an automatic flight system
with gust load alleviation capabilities.

1.2.2.1 Classical approaches for GLA

Typical approaches found in the aeronautical industry for GLA systems usually rely on pas-
sively deflecting the control surfaces when a disturbance due to wind is encountered during
flight. For instance, in [41] probes are mounted at the nose of the aircraft to provide infor-
mation about incidence, which can be linked to a disturbance if it exceeds a predetermined
value. When such a disturbance is detected, the ailerons are deflected symmetrically so as
to alleviate the structural loads. The deflection remains constant for a predetermined time
after the end of a the disturbance is detected. The implementation of such systems uses
high-pass filtering to retain only the high-frequency part of the wind which represents the
disturbance, thus limiting the activation range of the alleviation function, in order to not
reduce the maneuverability and to not activate it in flight conditions that do not pose any
structural problems.

In [3], a method for GLA is based on the deflection of control surfaces, comprised by inter-
nal and external flaps, when the airplane flies inside the load exceeding envelope (Fig. 1.5),
which is defined by couples of values of altitude and speed gathered during flight, so that
the loads applied to the airplane are equal or greater that the theoretical predefined load
threshold (e.g. 92% of the dimensioning loads of the airplane) [3]. The load exceeding enve-
lope is a function of parameters that vary during the flight, such as the mass, the filling level
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of the tanks, or the centering. Whenever the aircraft flies within such envelope, the ailerons
are deflected symmetrically based on values in a matching table, which associates a given
reference load to a particular aileron deflection angle. The control surfaces are maintained
deflected during a predefined time. This approach claims to preventively deflect the control
surfaces before aerodynamic disturbances possibly occur.
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Figure 1.5: Baseline GLA system: Load exceeding envelope as a function of Mach and
altitude [3].

1.2.2.2 Constrained Control for GLA

As discussed in Section 1.2.1.2, Model Predictive Control allows the handling of state and
inputs constraints in the control design procedure. Similarly to MLA systems, the GLA
design problem aims at keeping the structural loads within prescribed design limits. MPC
is a powerful control method that has found application in GLA systems. In this method,
a dynamic discrete-time representation of the plant is used to propagate the states into the
future and then determine the control actions that minimize a performance index subject to
constraints.

Giesseler et al. [14] presented a GLA strategy using MPC design that accounts for look
ahead measurements of incoming gust disturbances via LIDAR. The benefit of LIDAR
sensors is that the information available about the upcoming turbulence can be integrated
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into the GLA system to compensate for the gust effects and thus proactively reduce the
induced loads. A fully flexible aircraft model was considered. The model captured the
gust effects at five aeropanels along the vehicle body. Based on the available measurement
information, the goal was to minimize the relevant loads via control surface (inner ailerons,
spoilers and elevators) deflections with control constraints. To apply a tailored MPC scheme,
the large scale system was linearized around a trim point and a model order reduction method
was employed, yielding a system with 24 states, 30 outputs and 24 inputs. To achieve GLA,
in the MPC design the authors considered the use of the L2 norm to minimize the integral
of fatigue load. In the simulations, four types of gust were considered: discrete up-down
gusts, discrete down-up gusts, continuous turbulence, and sweep gusts. The simulations also
considered two different gust sensor layouts: sensors at the nose, and LIDAR sensors. Even
though for the first sensor layout the MPC reacted earlier and therefore the spoilers were
used more effectively, the second sensor layout had the largest bending moment reduction
at root and mid wing, except for continuous turbulence. Even though the use of LIDAR
gust measurements could generally improve the load reduction at the wing stations, the
horizontal tail plane root faced increased loads. This work did not focus on nominal and
robust stability of the control scheme proposed. However, the same research group came
up later with a similar MPC strategy with nominal stability guarantees based on terminal
penalties and that requires no terminal constraint [42, 43].

Artola et al. [44] presented the application of nonlinear Model Predictive Control (NMPC)
for a very flexible, high aspect ratio clamped wing in a GLA control problem. Differently from
the linear MPC approach, NMPC utilizes the nonlinear equations of motion for prediction
to potentially achieve increased accuracy and performance. A low-order nonlinear aerolastic
model was built combining geometrically nonlinear intrinsic beam equations in a reduced
modal bases with a linearized Unsteady Vortice Lattice Method projected onto a reduced-
order subspace using the Krylov moment matching technique. The linearized aerodynamics
relied on the assumption of frozen wake geometry and small deformations in the lifting
surfaces geometry. The NMPC controller was coupled with Moving Horizon Estimation for
both state and disturbance estimation. Nonlinear simulations showed that the NMPC-based
GLA system was able to reduce the peak wing root bending moment by 16.6% in addition to
reducing the time the wing was overloaded. In a subsequent work [45], the authors showcased
the feasibility of the combined NMPC and Moving Horizon Estimation control system in a
hardware-in-the-loop simulation, however no load alleviation objectives were considered.

Other investigations of the application of MPC (or variations thereof, such as control allo-
cation with receding horizon control) to design GLA systems include the works of Haghighat
et al. [46], Simpson et al. [13], Wang et al. [47], and Hansen et al. [48]. The general conclu-
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sion was that MPC techniques outperform equivalent linear control schemes in the task of
controlling flexible aircraft in the presence of discrete gusts. Experimentally, the application
of MPC in GLA was demonstrated by Barzgaran et al. [49] in a preliminary wind tunnel
experiment with a flexible half-aircraft model and gust vanes to generate the disturbance.
Using a simplified control formulation with a single input constraint, the real-time feasibility
of the system was achieved.

Another constrained control technique considered for GLA is reference governors, which
are add-on schemes for handling constraints on states and controls by modifying set-point
commands to a closed loop system. Dillsaver et al. [50] proposed a dynamic inversion inner-
loop controller and a PID outer-loop controller with a reference governor to enforce curvature
limits of very flexible aircraft. For the very flexible aircraft, the objective was to reduce the
wing bending moment. The full vehicle model consisted of 531 coupled nonlinear equations
of motion. Since the linearization of the open-loop system was difficult, the authors per-
formed a system identification on the closed-loop dynamics. As for the control architecture,
the stable inner loop consisted of the longitudinal translational and rotational velocities and
errors. It contained a dynamic inversion controller for the elevator deflection serving as the
only control input; the pseudo-control input was obtained applying LQR techniques. The
outer loop contained a PID controller and a nonlinear transformation. It converted the de-
sired flight path angle to state commanded values for the inner loop. To ensure that bending
moment limits were not violated, limits were enforced on the curvature values by a reference
governor (RG) and an Extended Command Governor (ECG). To handle disturbances, the
authors considered that the perturbation remained constant over the prediction horizon.
They also proposed the use of soft constraints to guarantee constraint admissibility and re-
cursive feasibility. Simulations were carried out with both RG and ECG, using a linearized
model to determine if a constraint violation occurred. In still air simulations, the RG suc-
cessfully enforced the curvature limits, but at the cost of modifications to the flight path.
The ECG modified the flight path much less, but did have a slight constraint violation. In
simulations with gust disturbances, it was found that ECG provided no improvement over
the original closed loop system, and that the use of ailerons to counteract curvature would
be a more effective strategy.

1.2.2.3 Other Control Techniques for GLA

Robust Control: In Control Theory, robust control is a typical approach to design con-
trollers for systems subjected to bounded uncertainties or external disturbances. The objec-
tive of such techniques is to design robust control laws, that is, capable of working properly,
within the designed specifications, even when subject to model uncertainties. The robust
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control design usually relies on the worst-case scenario analysis to guarantee the stability
and performance exploiting a linear system model. Such techniques have been successfully
applied in the control of very flexible aircraft, such as in [51, 52, 53, 54].

Robust control has been applied in GLA systems for flexible aircraft. For instance, Aouf
et al.[55] designed H2 and H∞ robust controllers to attenuate loads induced by wind gusts for
the longitudinal dynamics of the B-52 bomber based on a rigid body model augmented with
five flexible modes. The gust signal considered was generated by a deterministic bounded-
energy Dryden model in order to create a more faithful representation of the fact that
the aircraft usually experiences the effect of turbulence for a brief period of time. The
consideration of a bounded set of disturbances allowed the worst-case H∞ design. The goal
of the control design was to reduce the transient peak loads on the airplane by using the
elevator and canard deflection to regulate the vertical acceleration of the vehicle. Three
designs were simulated: regular H2, weighted H2, and H∞ control. The latter outperformed
the H2 designs by dramatically reducing the effect of wind gusts on the vertical acceleration
with small control surface deflection angles. A similar control design approach was used by
Cook and Palacios [56] to reduce loads in a very flexible aircraft.

The integration between robust control techniques and LIDAR measurements for GLA
was demonstrated by Fezans and Joos [57], Khalil and Fezans [58, 59], Cavaliere et al. [60],
and Fournier et al. [61]. For example, in [59] a multi-channel H∞ controller was designed for
reducing loads in a flexible sailplane. The selected performance channels for minimization
were the vertical load factor at the pilot’s location and a vector of load variations on three
wing stations corresponding to the torsional moment, bending moment, and vertical shear
force. The gust preview information provided by the LIDAR sensor was introduced into
the control design by using an explicit buffering of the previewed disturbance, such that the
whole previewed disturbance, as well as some of the previous values, are explicitly passed
to the controller. The resultant system combined both feedback and feedforward control
actions. Simulations results using a full-order and fixed-order controllers obtained from the
H∞ synthesis showed that the LIDAR sensor led to much better load alleviation performance,
compared to either the open-loop system or the feedback-only control.

Unconstrained optimal control: Optimal Control Theory has also been extensively
applied in GLA systems for decades. Even though nonlinear or constrained optimal control
problems usually do not have a closed form solution, the solution to linear problems with
quadratic cost index is well known and is referred to as a linear quadratic regulator (LQR).
The LQR and the Kalman filter can be used together to design a dynamic regulator for
partially observed linear systems disturbed by additive white Gaussian noise, in an approach
referred to as a linear Gaussian quadratic (LQG) regulator. The Kalman filter is based on
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a probabilistic treatment of process and measurement noises, and it is fundamentally a low-
pass filter, thus having good noise rejection capabilities [62].

McLean [36] devised a suitable GLA system based on optimal control by proposing a
performance index that reflected the effectiveness of the control action on the ride quality of
the aircraft. The objective of the LQR control design was to minimize the ride-discomfort
index and the ride-comfort rating, which could be achieved by minimizing the normal and
lateral accelerations. As pointed out by McLean, the implementation of an LQR would
require complete state-feedback, which usually is not possible since not every state variable
of the mathematical model is available for measurement. Therefore, an output feedback
approach is more suitable for GLA in flexible aircraft.

More recent publications exploited the LQG design for GLA system. For example, this
approach is pursued by Dillsaver et al. [37, 40]. In their work, different gust time histories
were generated using the Dryden and Von Kármán models to simulate the encounter of a
very flexible aircraft with the gust. The methodology utilized for the LQG control design
was to alleviate the gust loads by controlling the shape of the wing by minimizing the
curvature along the span. An integrator was added to the control system to track pitch
angle commands and a reference governor was used for modifying the pitch angle reference.
The controller was able to reduce the linear model peak wing curvatures by an average of
47% and RMS curvatures by 83.7%. The control system was also able to track the pitch
angle command and the reference governor was successful in limiting the curvatures. The
same control strategy was used to track lateral commands in presence of wind gusts [63].

Liu and Sun [64] introduced an improved LQG method for GLA, which is robust to
variations of flight and structural parameters, and modeling errors, and which is suitable
for application in structure/ control design optimization. The longitudinal dynamical model
of the flexible aircraft during continuous gust encounters was approximated by a linear
time-invariant model with additive white noise. The controlled outputs included the wing
root bending and torsional moments, and the pitch rate. As for the LQG control design,
the authors proposed a method in which the Kalman filter is redesigned after introducing
fictitious high-frequency colored noise to controller inputs in the design phase, in order to
reduce the high-frequency response of the control actuators, and simulate modeling errors.
In numerical simulations, the improved LQG method was shown to outperform an H∞

controller, and to have performance comparable to a µ synthesis design in the task of reducing
the wing root bending moment and the aircraft pitch rate, with a less troublesome design
procedure.

Adaptive Control: Zeng et al. [65] proposed an adaptive feedforward control framework
to suppress structural vibrations induced by gust perturbations in very flexible aircraft.
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Adaptive control was deemed to be suitable for such an application due to the time-varying
characteristics of the aircraft. The control structure presented had a LIDAR turbulence
sensor for measurements of the vertical gust velocity at a distance ahead of the aircraft,
which were fed into the feedforward controller to calculate the control surface demand for
vibration compensation. The feedforward filter was parameterized using orthonormal basis
expansions along with a recursive least-square algorithm with variable forgetting factor. The
orthonormal basis expansion allowed the incorporation of the prior flexible modes information
into the feedforward controller, resulting in a reduced order filter. The controller was tested
via simulation using a six degree of freedom linear model of a very flexible aircraft. The gust
perturbation considered was a low-pass filter followed by a Dryden vertical velocity shaping
filter. The results showed that the structural vibration could be largely suppressed with the
adaptive feedforward controller.

1.3 Challenges of Load Alleviation

The main challenges of designing a control system with maneuver and gust load alleviation
capabilities for flexible aircraft are:

1. High-order nonlinear models: The discussion presented in the previous sections made it
evident that flexible aircraft are nonlinear systems due to the combination of rigid body
dynamics, structural deformation and unsteady aerodynamics. In addition, mathemat-
ical models of such vehicles usually have hundreds of state variables in order to describe
all degrees of motion of the structure. Even though nonlinear control techniques have
already been used to control flexible aircraft, e.g., dynamic inversion [66, 67, 68, 69, 70],
the vast majority of control methods discussed in Sections 1.2.2 and 1.2.1, and imple-
mented in actual vehicles, are based on linear control theory. Hence, linearization
of the dynamics is necessary, which results in high-order linear time-varying models,
since, in contrast to rigid aircraft, flexible vehicles have geometries that are dependent
on time. Due to the computational cost of synthesizing control laws for these models,
model order reduction methods (e.g., balanced truncation) are usually required to ap-
proximate the complicated model by a simpler one with fewer dynamic states [71]. The
reduced order linear model should capture nonlinearities within a neighborhood of the
design point. Linear parameter varying techniques, such as in [72, 73, 74], can also be
applied to represent the time-variation of the linear models due to deformations and
different flight conditions, such as speed and Mach number.

2. Partial observation and model uncertainty: Even though the dynamical models of

16



flexible aircraft may contain hundreds of state variables, typically only a few of them
are measured due to lack of sensors in the vehicle. Partial observation is also due to
output noise. Additionally, other sources of uncertainty come from unmodeled vehi-
cle dynamics, unknown parameters, or external disturbances not accounted for in the
mathematical model. Therefore, the control design strategy has to ensure good robust-
ness characteristics and usually has to be used in conjunction with a state estimation
algorithm.

3. Anticipation of wind gust disturbances: The majority of the control techniques re-
viewed in Section 1.2.2 only activate the control surfaces to alleviate loads after the
gust disturbance hits the vehicle and is measured by sensors. Consequently, there is
usually a lag between the perturbation and the GLA system response that may degrade
the overall performance of the system in an actual operation, especially after the first
hit by gust, and reduce the life of the aircraft structure. To avoid such issues, feed-
forward control solutions along with the selection of the appropriate set of sensors are
of interest that look ahead, anticipate and compensate for disturbances. For instance,
LIDAR beam airborne wind sensors, such as described in [14, 42, 65], can be used
to accurately measure incoming disturbances and feed the signal into the feedforward
controller.

4. Constraint enforcement: The imposition of constraints to the control design problem
comes inevitably from the main objective of the MLA/GLA systems of maintaining
the aircraft structural loads within specified safety limits. State constraints can be,
for example, the limitation of the wing tip deflection or twist angle due to the bending
and torsion moments generated by gust encounters or maneuvers. Control constraints
arise when the control inputs magnitude and rates are restricted by the specifications
of the actuators. Among the various control design strategies presented in Section 1.2,
only Model Predictive Control and Reference Governors incorporate systematically
the constraints into the control design procedure. Even though classical Optimal,
Robust and Adaptive Control techniques can be based on the minimization of a certain
performance index that takes into account the deviation of states and control variables
from the reference values, these control strategies are not able to enforce the constraint
compliance. Therefore, MPC and RG, possibly in combination with other techniques,
are of interest for MLA/GLA systems design.

5. Loss of control authority, actuator saturation and faults: Due to the flexible charac-
teristics of the aircraft, e.g., insufficient torsional stiffness of the wing structure, the
deflection of control surfaces during flight can twist the wing, resulting in a reduction
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of the control effectiveness as dynamic pressure increases. This aeroelastic behavior
can ultimately lead to control reversal, i.e., the reversal of the expected response due to
structural deformation of the wing. In addition to that, the control surfaces operation
can be impaired by actuator saturation, which physically constrains the control input
magnitude and can lead to nonlinear oscillations that degrade the closed-loop perfor-
mance, and actuator faults, which result in undesired transients, large steady-state
errors and increase of the saturation of actuators. Therefore, a fault-tolerant control
strategy, such as the one presented in [65], would have interesting applications in the
design of control systems for flexible aircraft.

From the discussion above, among the different control strategies presented, it is apparent
that there is no true standout in the task of designing a control system with MLA/GLA
capabilities for very flexible aircraft. Nonetheless, Adaptive Control, MPC and Reference
Governors probably have the most interesting features for this application. The last two take
the lead, due to their capability of enforcing output and input constraints, which aligns well
with the main objective of MLA/GLA systems. One of the drawbacks of these methods is the
high computational cost of running a real-time optimization during the aircraft operation,
especially due to the high-order models [43].

1.4 Scope of this Work

This dissertation attempts to address the challenges described in Section 1.3, with special
focus on constraint enforcement. The formulation of the load alleviation system design as a
constrained control problem is presented, including the translation of certification require-
ments into control design parameters. Furthermore, strategies are investigated to reduce the
computational footprint of these controllers aiming at real-time implementations. Finally,
the verification of the proposed controllers is conducted through numerical simulations and
experimental work.

The remainder of this dissertation is organized as follows:
Chapter 2 presents the mathematical and numerical models used for control design and

simulation of flexible and very flexible aircraft. A review of the aeroelastic equations of
motion that govern the dynamics of these vehicles is presented. Next, different model or-
der reduction techniques utilized in this work for creating more computationally tractable
system representations for control design are shown. Following that, the University of Michi-
gan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) is described, which provided
the main tools used for simulating and analyzing the aircraft models considered in this dis-
sertation. Special emphasis is given to the features developed in UM/NAST to support

18



the control design process shown in this dissertation. Finally, the several models used to
showcase the proposed control systems are introduced.

Chapter 3 presents the theoretical development of the load alleviation systems developed
in this work. The foundations of Model Predictive Control are briefly reviewed, and two
MPC-based architectures for load alleviation are introduced. The state estimation algo-
rithm used alongside the MPC controller is also presented. Next, methods to reduce the
computational footprint of the MPC solutions and increase its robustness against paramet-
ric uncertainty are presented. In particular, it is shown through numerical simulations how
constraint aggregation can be used to reduce the computational cost of MPC solutions for
large-scale aeroelastic systems.

Chapter 4 describes the application of the MPC architectures in MLA. The requirements
of the MLA system design are presented, as well as how these requirements drive the for-
mulation of the MPC problem. In particular, it is shown how to select the optimal control
objective function and constraints. Numerical simulations are then presented to verify the
proposed MPC-based MLA systems for flexible and very flexible aircraft. Furthermore, a
comparison between the different reduced-order models considered in the design is presented.

Chapter 5 describes the application of MPC in GLA. The proposed system builds upon
the MLA system presented in Chapter 4 to create an integrated MLA and GLA system.
The requirements of the GLA systems are presented, as well as the modification in the MPC
formulation to accommodate them. A feedforward system based on the gust preview is also
proposed, and the details of the design is described.

Chapter 6 describes the wind tunnel experiment that was designed and conducted to
validate the proposed MPC-based load alleviation systems. The half-aircraft model design
and analysis is presented, along with the control system, instrumentation, and methodology.
Next, the results of the experimental work is presented and the performance of the load
alleviation system is assessed.

Finally, Chapter 7 provides a summary of the dissertation, of the main conclusions and
of the key benefits of the proposed load alleviation system. Recommendations are given for
future work.
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CHAPTER 2

Very Flexible Aircraft Dynamics and
Simulation

This section presents high and low-order representations of the dynamics of flexible and very
flexible aircraft (FA and VFA, respectively). Additionally, several tools utilized to design,
analyze and simulate these vehicles are also described.

2.1 Equations of Motion

The dynamics of FA and VFA can be represented by coupled aeroleastic and rigid body
equations of motion. A brief review of these equations is presented next based on the work
of Cesnik and coworkers [4, 75, 76, 77], which use a strain-based approach for representing
the structural dynamics of a flexible beam, which is then used to model each member of the
vehicle

In this formulation, the beam is represented by nε elastic elements, for each of which three
nodes positioned along a reference line and a strain vector are associated. The strain vector
for the ith node contains four local strain degrees of freedom, and it is represented by

εi =
[
ϵi κxi

κyi
κzi

]T
∈ R4, (2.1)

where ϵi is the extension, κxi
the twist, κyi

the out-of-plane curvature, and κzi
the in-plane

curvature. The vector that concatenates the strain vector for all structural elements is
denoted by ε:

ε =
[
εT1 εT2 · · · εTnε

]T
∈ R4nε . (2.2)

Several coordinate frames are defined to facilitate the derivation of the dynamic equations.
These frames1, shown in Fig. 2.1, are the ground frame G, which is fixed on the ground; the

1The frames used in here are consistent with Refs. [4, 75, 76, 77], which differ from the typical coordinate
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Figure 2.1: Coordinate frames [4].

body frame B, which describes position and orientation for the vehicle; and the local frame
wi, which is used to describe the orientation and position of the ith node, as well as its strain
vector εi. The local frame is conveniently represented into unit bases wxi

, wyi
, and wzi

, each
of which in R3 and resolved in the body frame.

For node i located at position s along the beam reference line, its position with respect
to the ground frame is given by

hi =
[

(pB + pwi
(s))T wTxi

wTyi
wTzi

]T
∈ R12, (2.3)

where
pB =

[
xB yB zB

]T
∈ R3 (2.4)

is the position of the vehicle in the ground frame, and pwi
(s) ∈ R3 is the position of the ith

node resolved in the body frame.
The position pB and the orientation θB ∈ R3 of the body frame with respect to the ground

frame can be defined as
b =

[
pTB θTB

]T
∈ R6. (2.5)

frames usually found in the literature of flight dynamics and structural dynamics, in which the x and y
directions are aligned with the longitudinal and lateral axis of the aircraft, respectively.
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The time derivative of vector b is then

ḃ = β =
[
vTB ωTB

]T
, (2.6)

where

vB =
[
vB uB wB

]T
∈ R3, (2.7)

ωB =
[
qB pB rB

]T
∈ R3, (2.8)

are, respectively, the linear velocity and the angular velocity2 of the vehicle’s rigid body
motion resolved in the body frame. Together, vectors ε and b form a complete independent
set q of variables of the strain-based formulation.

q =
[
εT bT

]T
∈ R4nε+6. (2.9)

The generalized coordinates q is used to describe the coupled elastic and rigid body equations
of motion, which are derived by following the principle of virtual work. The virtual work
of the aeroelastic beam consists of the contributions of inertia forces, internal strains and
strain rates, and external loads. In Ref. [77], the contribution of each virtual work is derived
separately and then summed at the end to represent the total virtual work of the complete
vehicle.

External loads are comprised by aerodynamic forces and moments on lifting surfaces,
control effectors such as flaps or propulsive forces (usually represented by point forces), gust
disturbances, among others. The aerodynamic loads can be represented by several different
models, including Peters’ 2-D finite state inflow theory [78]. In this model, the unsteady
aerodynamic loads, which include lift, drag and moment, are computed for a thin-airfoil
section undergoing large motions in an incompressible inviscid subsonic flow. The unsteady
wake effects in each lifting surface element are modeled using 6th-order finite inflow states:

λi =
[
λ1i

λ2i
λ3i

λ4i
λ5i

λ6i

]T
∈ R6. (2.10)

Vector λi is defined for each one of the nλ lifting surface elements in the model. These
vectors can be concatenated in one single vector denoted by λ, where:

λ =
[
λT1 λT2 · · · λTnλ

]T
∈ R6nλ , (2.11)

2The nomenclature of the components of the linear and angular velocity vectors is consistent with the
flight dynamics convention in which, for example, uB is the longitudinal velocity and qB is the pitch rate.
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for which an ordinary differential equation describes its evolution in time:

λ̇ = F1(q, q̇)q̈+ F2(q, q̇)q̇+ F3(q, q̇)λ, (2.12)

where F1(·), F2(·), and F3(·) are functions of the generalized coordinates and its derivatives.
The kinematic relations for the structure and rigid body are also defined. For the former,

the position and orientation of a point on the beam reference line can be recovered from the
root node of the mean at position s1 and displacement h1 as follows:

hi(s) = eK(s−s1)h1, (2.13)

where K(s) is a matrix function of the strains, i.e.,

K(s) =


0 ϵxi

(s) 0 0
0 0 κzi

(s) −κyi
(s)

0 −κzi
(s) 0 κxi

(s)
0 κyi

(s) −κxi
(s) 0

 . (2.14)

The orientation of the body frame is given by quaternions ζ:

ζ =
[
q0 q1 q2 q3

]T
, (2.15)

for which an ordinary differential equation describes its evolution in time:

ζ̇ = 1
2Ωζ(β)ζ, (2.16)

where Ωζ(β) is the propagation matrix:

Ωζ(β) =


0 qB pB rB

−qB 0 −rB pB

−pB rB 0 −qB
−rB −pB qB 0

 . (2.17)

Furthermore, the rotation matrix from ground frame G to body frame B can be computed
from ζ as follows:

CBG(ζ) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q2

0 − q2
1 − q2

2 + q2
3

 (2.18)
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For control design applications, the orientation can be conveniently expressed in Euler angles3

ϕB (roll), θB (pitch), and ψB (yaw) as follows:

ϕB = − sin−1 (2(q1q3 − q0q2)) , (2.19)

θB = tan−1
(

2(q2q3 + q0q1)
q2

0 − q2
1 − q2

2 + q2
3

)
, (2.20)

ψB = tan−1
(

2(q1q2 + q0q3)
q2

0 + q2
1 − q2

2 − q2
3

)
. (2.21)

Finally, the coupled aeroelastic and rigid body equations of motion can be expressed as:

M(q)q̈+ C(q, q̇)q̇+ Kq = R(q, q̇, q̈, λ, ζ, u, wg), (2.22)

ζ̇ = −1
2Ωζ(β)ζ, (2.23)

ṗB =
[
CBG(ζ)T 0

]
β, (2.24)

λ̇ = F1(q, q̇)q̈+ F2(q, q̇)q̇+ F3(q, q̇)λ, (2.25)

where M(·), C(·), K(·), and R(·) are the generalized mass, damping, stiffness, and force
matrices, respectively. Vectors u ∈ Rnu and wg ∈ Rnw represent, respectively, the control
effectors in the aircraft and the gust disturbances. The latter is usually composed of the local
gust speed wig ∈ R3 at different stations on the aircraft, which in the B frame is represented
by

wig =
[
wigx

wigy
wigz

]T
. (2.26)

This system of nonlinear continuous-time differential equations can be represented in a
compact form as:

ẋ = f(x, u, wg), (2.27)

where x is the state vector

x =
[
εT ε̇T βT ζT pTB λT

]T
∈ Rnx , (2.28)

with nx = 8nε + 6nλ + 13, and f : Rnx × Rnu → Rnx is a time-invariant, continuously
differentiable function.

3The nomenclature of the Euler angles is consistent with the flight dynamics convention in which, for
example, θB is the pitch angle.
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The outputs y ∈ Rny of model, which are represented by

y = g(x, u), (2.29)

where g : Rnx × Rnu → Rny is a continuously differentiable function, typically include rigid
body related outputs, such as the true airspeed (VT ) and the angles of attack (α), sideslip
(β), and flight path (γ) given by

VT =
√

(uB − wigy
)2 + (vB − wigx

)2 + (wB − wigz
)2, (2.30)

α = − tan−1
(
wB − wigz

uB − wigy

)
, (2.31)

β = sin−1
(
vB − wigx

VT

)
, (2.32)

γ = sin−1
(
żB
VT

)
≈ θB − α, (2.33)

as well as sensor measurements that depend explicitly on the strain states ε, such as ac-
celerometers, gyroscopes, and strain gauges. Pang [79] has presented the derivation of sev-
eral sensor outputs attached to a flexible structure in a strain-based model. Additionally, y
can include the local loads on the structure, which in the local frame are given by:

F i
x

M i
torsion

M i
oop

M i
ip

 = Kiεi (2.34)

F i
y =

∂M i
ip

∂s
(2.35)

F i
z =

∂M i
oop

∂s
(2.36)

where F i
x, F i

y, and F i
z are shear forces; M i

torsion, M i
oop, and M i

ip, are the torsion, out-of-plane
and in-plane bending moments; and Ki ∈ R4×4 is the local stiffness matrix at the ith beam
element.

For a given a triple (x∗, u∗, wg∗) ∈ Rnx × Rnu × Rnw , Eqs. 2.27 and 2.29 can be locally
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approximated by

ẋ = f(x∗, u∗, wg∗) + A(x− x∗) +B(u− u∗) +Bw(wg − wg∗), (2.37)

y = g(x∗, u∗) + C(x− x∗) +D(u− u∗), (2.38)

where

A = ∂f(x, u, wg)
∂x

∣∣∣∣∣
(x∗,u∗,wg∗)

, B = ∂f(x, u, wg)
∂u

∣∣∣∣∣
(x∗,u∗,wg∗)

, Bw = ∂f(x, u, wg)
∂wg

∣∣∣∣∣
(x∗,u∗,wg∗)

(2.39)

C = ∂g(x, u)
∂x

∣∣∣∣∣
(x∗,u∗)

, D = ∂g(x, u)
∂u

∣∣∣∣∣
(x∗,u∗)

. (2.40)

2.2 University of Michigan’s Nonlinear Aeroelastic
Simulation Toolbox (UM/NAST)

The University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) [80]
is a software developed by the Active Aeroelasticity and Structures Research Laboratory
(A2SRL) for design, analysis and simulation of very flexible aircraft. It employs the geo-
metrically nonlinear strain-based finite elements described in Section 2.1, different options
for steady and unsteady aerodynamics, and nonlinear 6-degree of freedom (DOF) rigid body
equations of motion to numerically simulate the dynamics of the aircraft. UM/NAST was
the primary simulation framework utilized in this dissertation.

UM/NAST v4 is organized in a kernel containing several solvers, in which the Structural
Solver and the Coupled Solver are the primary ones. From these two solver classes, other
solvers are derived such as the Static Solver, Trim Solver, Linearization Solver, Dynamic
Solver, among others. These solvers provide several tools to aid the control design for VFA,
such as the matrices (A,B,Bw, C,D) of the linearized system in Eqs. 2.37-2.38 for a given
trim condition, or the time response of the states of the nonlinear system in Eqs. 2.22-
2.25 for a given load condition. A detailed description of the UM/NAST v4 organization is
presented in Ref. [81].

The Coupled Solver also contains interfaces for establishing the connection between the
UM/NAST kernel to its several external modules. These modules extend the functionalities
of the kernel and provide flexibility to the user to implement their own routines while pre-
serving the base solvers. Currently, these modules include user-defined aerodynamic models,
gust models, sensor models, and controllers. The last three of these were extensively used
in the work presented here, and several features were developed or enhanced throughout the
process. The main contributions are highlighted next.
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Figure 2.2: UM/NAST Sensors and Controller modules.

2.2.1 Sensor Module

The UM/NAST-Sensors module connects to the UM/NAST kernel through a generic sensor
interface class (see Fig 2.2), which allows the access to relevant internal variables such as
the state vector and its derivatives, jacobians, model properties, among others. This base
sensor class has attributes common to all the types of sensors along with a prototype for a
sensor output evaluation function. Inside the Sensors module, there is a collection of derived
sensor classes with the specific implementations of different sensor units including, inter alia,
accelerometers, strain gauges, inertial measurement units (IMUs), and inertial navigation
systems (INSs). This architecture allows for independence between the UM/NAST kernel
and the sensor implementations, so that new sensors can be added and used with UM/NAST
without requiring modifications to the UM/NAST kernel.

When setting up a dynamic problem, sensors are defined independently on the UM/NAST
model and solver and they are linked to the solver by means of the LinkSensor function. This
establishes a two-way pointer between the sensor and the solver. Thus, the solver is able to
call the sensor evaluation function for computing sensor outputs, and sensors have access to
the dynamic solver data to obtain information for evaluating such outputs. Currently, the
UM/NAST Dynamic Solver and Linearization Solver are able to call the sensor functions for
time simulations or obtaining the linearized output response. These solvers can use multiple
sensors with different types.
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2.2.2 Controller Module

The UM/NAST-Controller module connects to the UM/NAST kernel through a base con-
troller interface class (see Fig 2.2), which allows the access to internal variables in the dynamic
solver such as the state, output, and input vectors. The Controller module is composed of
several derived classes containing different types of controller implementation, such as PID,
LQR and MPC. In a dynamic simulation, the user can connect one of these types to the
UM/NAST Dynamic Solver using the LinkController function, and then call the controller
function to update the control effectors based on a given control law. The control update is
done at a rate defined by the user, which should be equal or greater than then simulation
integration time step.

To run closed-loop simulations, the user has several options. Firstly, they can leverage
the existing controller implementations shipped with the controller module, which only re-
quire entering the controller data, such as gains or prediction models. The MPC controller
already contains the routines to solve the optimization problems, which is provided by the
UM/NAST-Optimization Solvers package, which is a front-end interface to several uncon-
strained and constrained solvers for linear and nonlinear programming specifically designed
for MPC applications. The second option is to implement their own C++ code with their
controller implementation. Due to the modularity of UM/NAST, such an implementation
can be done by just adding a new derived class to the Controller module with no modifica-
tions to the UM/NAST kernel.

The third option is to implement the controller using the MATLAB interface, also
shipped with the Controller module. The MATLAB interface provides a connection be-
tween UM/NAST and MATLAB (see Fig 2.2) through which information can be mutually
exchanged. This information can include the current simulation time, states, outputs, and
the computed controller action. It facilitates the design and verification of controllers for
VFA since it makes several control-related built-in MATLAB functions available to the user,
therefore integrating the environments used for design and simulation. Additionally, be-
cause MATLAB is an interpreted programming language, any changes in the controller code
do not require the re-compilation of the module, as it would in a C++ implementation.
The connection between the two software is established through the MATLAB Engine API
for C++, which allows calling MATLAB from a C++ program. Compared to an equivalent
C++ implementation, the controller implemented in MATLAB interface has a small increase
in computational time, usually less or equal than 25%.
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2.3 Model Order Reduction

UM/NAST provides finite-element models for representing the coupled aeroelastic and rigid
body dynamics of VFA that are suitable for vehicle design, analysis and simulation. However,
even though being considered low-order among models provided by other fluid-structure
interaction (FSI) solvers, these UM/NAST models are regarded as high-order for control
design. As discussed in Section 2.1, the number of states depend on the number of flexible
structural elements and lifting surfaces in the model. A typical aircraft model will have
above 600 states. A lower order model could be created with a coarser discretization at the
expense of reduced modeling accuracy which is undesirable. Therefore, model order reduction
(MOR) techniques are necessary to create a low-order representation that preserves, within
some tolerance, the relevant characteristics of the full-order model, such as outputs or modal
frequencies.

Being a model-based controller that calls for solving an optimization problem online (see
discussion in 3.1), MPC demands a low-order model for prediction and update to achieve
real-time implementation. This is especially critical for fast dynamical systems, such as
flight control systems (FCS), that have short control cycle times. While a more powerful
computer could tackle the problem, they usually entail additional component mass in the
vehicle, which can potentially clash with the stringent weight restrictions in aeronautical
design. A reduced-order model (ROM) with less than fifty states is desirable.

The next sections present the MOR techniques considered in this work. They are divided
into classical linear methods, which are applicable to systems whose dynamics can be ap-
proximated by linearized systems such as FA; and nonlinear MOR methods that create a
nonlinear representation that are suitable for systems with more pronounced nonlinearities
such as VFA.

2.3.1 Classical Model Order Reduction Methods

The linearized system in Eqs. 2.37-2.38 with zero disturbance is considered here with
(x∗, u∗, 0) being an equilibrium point. The inflow states λ are removed from the model
by assuming that they are constant and equal to zero. This is based on the fact that these
states describe the shed trailing vorticity, which are not controllable states. Henceforth,
vector x will represent the state vector without the inflow states, unless stated otherwise.
Define ∆x = x−x∗, ∆u = u−u∗, and ∆y = y−g(x∗, u∗) such that the non-disturbed linear
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system can be represented as

∆ẋ = A∆x+B∆u, (2.41)

∆y = C∆x+D∆u, (2.42)

The objective of MOR for linear systems is to find Pr ∈ Rnxr×nx associated with subspace
Dr ⊆ Rnxr such that ∆xr ∈ Rnxr is the projection of ∆x onto Dr, i.e.,

∆xr = Pr∆x, (2.43)

for nxr < nx. The definition of the reduced-order subspace Dr depends on the MOR tech-
nique and its ancillary objectives, as it will be exemplified later in this section.

Most linear MOR techniques follow these steps:

1. Change of basis: In this step, the reduced-order states are explicitly represented in
the linear dynamical system. Transformation matrix Q ∈ Rnx×nx can be selected to
express ∆x in a new basis, resulting in a transformed state vector ∆x̄ containing the
states of interest, xr, and the ones to discard, xd ∈ Rnx−nxr , i.e.,

∆x̄ ≜

 ∆xr
∆xd

 = Q∆x, (2.44)

for which the dynamical system can be written as:

∆ ˙̄x = Q−1AQ∆x̄+Q−1B∆u, (2.45)

∆y = CQ∆x̄+D∆u. (2.46)

For ∆xr and ∆xd, the new state, input, and output matrices can be partitioned as
follows:

Q−1AQ =
 Ā11 Ā12

Ā21 Ā22

 , Q−1B =
 B̄1

B̄2

 , CQ =
[
C̄1 C̄2

]
. (2.47)

2. Truncation or residualization: In this step, states xd are removed from the model.
Using the truncation method, xd and its derivative are set equal to zero, thus resulting
in the elimination of rows and columns associated with these variables. The truncated
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model is then:

∆ẋr = Ā11∆xr + B̄1∆u, (2.48)

∆y = C̄1xr +Du. (2.49)

The truncation method preserves the infinite frequency response of the original sys-
tem. Alternatively, the residualization method can be applied to discard ∆xd. In this
method, ∆ẋd is set equal to zero, and then ∆xd can be expressed as function of ∆xr
and ∆u as follows:

∆ẋd = Ā21∆xr + Ā22∆xd + B̄2∆u = 0. (2.50)

Assuming that Ā22 is non-singular, then:

∆xd = −Ā−1
22 (Ā21∆xr + B̄2∆u). (2.51)

Using back substitution, the residualized model is then:

∆ẋr = (Ā11 − Ā12Ā
−1
22 Ā21)∆xr + (B̄1 − Ā12Ā

−1
22 B̄2)∆u (2.52)

∆y = (C̄1 − C̄2Ā
−1
22 Ā21)∆xr + (D − C̄2Ā

−1
22 B̄2)∆u (2.53)

In contrast with truncation, residualization preserves the steady-state (DC gain) of
the original system. Hence, for better accuracy at low frequencies, residualization is
preferred. This is the case for VFA control, in which the low frequency (usually below
100 Hz) rigid body and aeroelastic modes are the ones of interest. Next, two MOR
methods based on residualization are presented.

Modal-based residualization: In this method, the system is firstly put in modal form
by choosing transformation matrix Q = V , where V is the eigenvector matrix from the eigen
decomposition:

A = V −1ΛV, (2.54)

where Λ is a diagonal (or block-diagonal) matrix whose main diagonal contains the nx eigen-
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values of A in increasing order of frequencies.

Λ =



λ̄1 0 0 · · · 0
0 λ̄2 0 · · · 0
0 0 λ̄3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ̄nx


(2.55)

Subspace Dr is then formed by selecting the eigenvectors associated with the first nxr eigen-
values of interest. Hence, the matrix Pr in Eq. 2.43 is equal to

Pr =
[
Inxr 0nxr×(nx−nxr)

]
V. (2.56)

Advantages of the modal-based residualization include the preservation of the physical mean-
ing of the reduced-order states, which correspond to the amplitudes of the retained modes.

Balanced residualization: In this method, it is assumed that the full-order sys-
tem is both controllable and observable, with associated positive-definite controlability
(Wc ∈ Rnx×nx) and observability (Wo ∈ Rnx×nx) Grammian matrices. The former can be
decomposed into its Cholesky form Wc = LTc Lc to form the joint controlability-observability
measure:

Wco = LTcWoLc. (2.57)

Matrix Wco can be expressed in its eigen form as follows

Wco = V −1
co ΛcoVco, (2.58)

where Λco is a diagonal matrix whose main diagonal contains the eigenvalues λcoi , i ∈ Z[1,nx] of
Wco in increasing order of magnitude, and Vco is a matrix whose columns are the correspond-
ing eigenvectors. Define σi =

√
λcoi , i ∈ Z[1,nx], as the Hankel singular values, which provide

a measure of the energy of each state in the system. The balanced residualization method
relies on projecting the system onto the subspace Dr formed by the nxr states with highest
energy. These states are determined by applying transformation matrix Q = LcVcoΣ1/2,
where Σ ∈ Rnx×nx is a diagonal matrix with σi, to to put the system in balanced form.
Residualization is then applied to remove the states below a certain threshold. Hence, the
matrix Pr in Eq. 2.43 is equal to

Pr =
[
Inxr 0nxr×(nx−nxr)

]
LcVcoΣ1/2. (2.59)
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Advantages of the balanced residualization include the preservation of the stability, con-
trollability, and observability characteristics of the original system. On the downside, the
reduced order states lose their physical meaning.

2.3.2 Top-to-Bottom Model

Lanchares et al. [5] introduced a Top-to-bottom (T2B) reduced-order model for creating a
nonlinear ROM. The ROM is obtained by constructing a piecewise-linear surrogate model in
continuous time and then reducing it using local bases computed by balanced truncation. The
resulting ROM is a hybrid system with continuous dynamics corresponding to the evolution
within each individual set of reduced-order bases. The T2B ROM has shown to provide a
good approximation for the dynamics of both FA and VFA.

Consider the model for a VFA in Eqs. 2.27-2.27 with zero disturbance. Given a pair
(xi, ui) ∈ Rnx × Rnu , a first-order local approximation of the nonlinear system in the neigh-
borhood (x, u) ∈ B(xi,ui)(ε), ε ≥ 0, is given by:

ẋ ≈ Ki + Aix+Biu (2.60)

y ≈ Li + Cix+Diu, (2.61)

where

Ai = ∂f(x, u)
∂x

∣∣∣∣∣
(xi,ui)

, Bi = ∂f(x, u)
∂u

∣∣∣∣∣
(xi,ui)

, Ki = f(xi, ui)− Aixi −Biu
i (2.62)

Ci = ∂g(x, u)
∂x

∣∣∣∣∣
(xi,ui)

, Di = ∂g(x, u)
∂u

∣∣∣∣∣
(xi,ui)

, Li = g(xi, ui)− Cixi −Diu
i (2.63)

The linearized system in Eqs. 2.60-2.61 is denoted by Si. Now consider a collection of
M pairs M = {(xi, ui) ∈ Rnx × Rnu , i = 1, . . . ,M} and their associated linearized systems.
Then, the nonlinear system is approximated in the region defined by the convex hull of M,
conv(M), by the convex combination of the linearized models (i.e., Si, i = 1, . . . ,M) as
follows:

ẋ = f(x, u) ≈
M∑
i=1

wi(x, u) (Ki + Aix+Biu) , (2.64)

y = g(x, u) ≈
M∑
i=1

wi(x, u) (Li + Cix+Diu) , (2.65)
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where wi are interpolation weights satisfying

N∑
i=1

wi(x, u) = 1, (2.66)

wi(x, u) ≥ 0, i = 1, . . . ,M. (2.67)

These weights are defined based on the distance defined over a subset of outputs representing
the flight conditions. Define the subsets of the output to be yp. Examples of selected outputs
include altitude, Mach number, or wing deformation. Vector ypi represents the selected
outputs values at the linearization point of linearized system Si. The weights are defined
using distance function di(x, u) as

wi(x, u) = e−βddi(x,u)/m(x,u)∑N
j=1 e

−βddj(x,u)/m(x,u) , (2.68)

where
di(x, u) = ||yp − ypi ||2, m(x, u) = min

i
di(x, u). (2.69)

Note that the conditions specified in Eq. 2.67 are satisfied by the definitions of Eq. 2.68.
For each one of yPi , the corresponding pair (xi, ui) is a trimmed state-input pair, for

which a linearized system can be determined. These linearized systems capture the change
in dynamics within the specified flight envelope. The UM/NAST Trim and Linearization
Solvers can be used to create these linearized systems.

Each linearized model Si generated by UM/NAST will have a large number of states.
This can preclude control applications due to the high computational cost. Therefore, MOR
is performed through balanced truncation. As discussed in 2.3.1, this projection-based tech-
nique relies on the assumption that the state of the Si system in Eqs. 2.60-2.61 evolves within
a reduced-order subspace Di

r ⊂ Rnx of the original system. Let nxr be the dimension of Di
r.

The subset Di
r passing through an arbitrary x0 ∈ Rnx is defined by the triple (x0, Vi,Wi),

where Vi,Wi ∈ Rnx×nxr are projection matrices. Define the reduced-order linearized dynamics
to be Sr,i,j, where the subscript in Sr,i,j means that the reduced-order model was created
by projecting the dynamics of system Si onto the subspace Dj

r generated by the balance
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truncation of system Sj. Accordingly, Sr,i,j is given by:

ẋr = PjKi + PjAi(I − VjPj)x0 + PjAiVjxr + PjBiu (2.70)

= Kr,i,j + Ar,i,jxr +Br,i,ju, (2.71)

y = Li + Ci(I − VjPj)x0 + CiVjxr +Diu (2.72)

= Lr,i,j + Cr,i,jxr +Dr,i,ju, (2.73)

(2.74)

where x0 is the initial condition of the full-order Si model and

Pj = (W T
j V )−1W T

j , (2.75)

Kr,i,j = PjKi + PjAi(I − VjPj)x0, Ar,i,j = PjAiVj, Br,i,j = PjBi, (2.76)

Lr,i,j = Li + Ci(I − VjPj)x0, Cr,i,j = CiVj, Dr,i,j = Di. (2.77)

Therefore, for M linearization points, M2 reduced-order models are created. For models
in the jth subspace, that is, Sr,i,j for i = 1, . . . ,M , an interpolation similar to the one in
Eqs. 2.64 and 2.65 is performed to provide a reduced-order approximation of the original
nonlinear system on such subspace:

ẋr = Pjf(Vjxr + (I − VjPj)x0, u) (2.78)

≈
M∑
i=1

wi(Vjxr + (I − VjPj)x0, u) (Kr,i,j + Ar,i,jxr +Br,i,ju) (2.79)

y = g(Vjxr + (I − VjPj)x0, u) (2.80)

≈
M∑
i=1

wi(Vjxr + (I − VjPj)x0, u) (Lr,i,j + Cr,i,jxr +Dr,i,ju) , (2.81)

As the system evolves in time, the distance between the full-order state x and the different
subspaces Dj

r for j = 1, . . . ,M varies, as shown in Fig. 2.3. The closest the subspace is
from the current state, the better reduced-order approximation it can provide. Therefore,
it is reasonable to switch to the closest subspace, that is, update matrices Vj and Wj in
Eqs. 2.79-2.81 based on the following rule:

j ∈ Z[1,M ] such that m(xr, u) = dj(Vjxr + (I − VjPj)x0, u), (2.82)

where m(·) and d(·) are given in Eq. 2.69. The piecewise-linear reduced-order system in
Eqs. 2.79-2.81 along with the switching rule in Eq. 2.82 are referred to as the T2B ROM.
Figure 2.4 depicts the schematic operation of such a model. Note that the reduced-order
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models and their respective bases are computed off-line, thus making the evaluation of the
T2B ROM cheaper than the original nonlinear system.

Figure 2.3: Graphical illustration of the piecewise-linear ROM [5].

Figure 2.4: Schematic operation of piecewise-linear ROM algorithm [5].

For control design purposes, it is useful to define the T2B ROM as a function of the
variation of xr from the projected initial condition. By applying the following change of
coordinates to each system Si

∆x = x− xi, (2.83)

∆u = u− ui, (2.84)

∆y = y − g(xi, ui), (2.85)
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and then building the reduced-order model following the aforementioned procedure, the
following T2B ROM is obtained:

∆ẋr ≈
M∑
i=1

wi(Vj∆xr + (I + Pj − VjPj)x0, u) (Ar,i,jδxr +Br,i,j∆u) , (2.86)

∆y ≈
M∑
i=1

wi(Vj∆xr + (I + Pj − VjPj)x0, u) (Cr,i,j∆xr +Dr,i,j∆u) , (2.87)

j ∈ Z[1,M ] such that m(xr, u) = dj(Vj∆xr + (I + Pj − VjPj)x0, u), (2.88)

where
∆xr = xr − Pjx0. (2.89)

2.3.3 Bottom-to-Top Model

Duan et al. [6] presented the Bottom-to-top (B2T) modeling framework, a method to incre-
mentally build a low-order aeroservoelastic model combining the conventional 6 DOF rigid
body aircraft model, nonlinear structural dynamics, and data-driven low-order aerodynam-
ics. The B2T model has shown be provide a good approximation of the nonlinear dynamics
of both FA and VFA.

In the B2T model, the elastic displacement field rP can be represented by either a linear
modal discretization truncated up to the first nη nodes:

rP =
nη∑
k=1

Ψkηk = Ψη, (2.90)

where Ψk is the vector describing the mode shape connected with mode amplitude ηk, which
can be arranged, respectively, in matrix Ψ ∈ Rnη×nη and vector η ∈ Rnη ; or by a nonlinear
function representing the nonlinear displacement due to deformation:

rP = rP0 + φ(η), (2.91)

where rP0 is the initial displacement and φ(η) is a function of the reduced-order nonlinear
states η. The linear representation is appropriate for FA whose structural dynamics can
still be represented by linear mode shapes. On the other hand, VFA is better represented
by the nonlinear formulation, especially to capture the geometric nonlinearities. Similarly,
for the aerodynamic loads the B2T accepts either a linear representation along the linear
modal decomposition in Eq. 2.90, or a nonlinear representation depending on the nonlinear
displacement field in Eq. 2.91.
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The B2T low-order coupled nonlinear aeroelastic-flight mechanics equation of motion is
given by:

E


v̇B

ω̇B

η̈

η̇

 = −


mω̃vB +mη̇T ∂

2rC(η)
∂η2 η̇ + 2mω̃B ∂rC(η)

η
η̇ +mω̃2

BrC(η)
mr̃C(η)(ω̃BvB) + η̇THhess(η)η̇ + 2(J0(η)η̇)ωB + ω̃BIB(η)ωB

m
(
∂rC(η)
∂η

)T
(ω̃BV ) + 1

2 η̇
T ∂M
∂η
η̇ + 2(ν(η)η̇ωB)− ωTJ0(η)ωB +Kηη

+ F (η),

(2.92)

where

E =


m −mr̃C(η) m∂rC(η)

∂η
0

mr̃C(η) IB(η) Hjac(η) 0
m
(
∂rC(η)
∂η

)T
HT

jac(η) M(η) 0
0 0 0 In

 , F (η) =


Fg(η) + Faero(η) + Fthrust(η)
Mg(η) +Maero(η) +Mthrust(η)
Qg(η) +Qaero(η) +Qthrust(η)

0

 ,
(2.93)

The detailed derivation is presented in Ref. [6]. In Eq. 2.92, m represents the mass of the
vehicle, IB(η) its inertia matrix, rC(η) the position of the center of mass, M(η) the modal
mass matrix, Kη a stiffness matrix, and vB and ωB are the linear and angular velocities as
defined in Eqs. 2.7-2.8. Variables Hhess(η), Hjac(η), J0(η), and ν(η) are composite function
of φ(η), and their definitions are presented in [6]. Vector F (η) contains forces and moments
due to gravity, aerodynamics, and the propulsion system.

Several properties of the vehicle that are necessary to build the B2T model can be ex-
tracted from higher-order models, such as the ones provided by NASTRAN or UM/NAST.
These properties include, among others, the mass and inertia properties, modal decompo-
sition, and data regarding the several variables in Eq. 2.92 that depend on the aeroelastic
deformation. These variables can be approximated by a constant or linear relation when
the representation in Eq. 2.90 is used, but they will require a nonlinear characterization
when the nonlinear displacement field in Eq. 2.91 is used. Due to the size and complexity of
these models, a nonlinear analytical representation is usually not available, but data-driven
approximations can provide good results as shown in Ref. [6]. In this work, Duan et al.
used UM/NAST as a tool to generate the values of the nonlinear terms for a large number
of random inputs within prescribed bounds, that was then used to train a shallow neural
network. Figure 2.5 shows the schematic of the process of approximating each one of the
terms in Eq. 2.92 by neural networks.
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Figure 2.5: Nonlinear function training in the Bottom-to-top model using UM/NAST data
[6].

2.4 Aircraft Models

Aircraft models with different levels of structural flexibility were studied in this dissertation.
Models for these aircraft were available in the UM/NAST framework. Next, each aircraft
model is introduced in increasing order of flexibility.

• Generic Transport Aircraft (GTA): The GTA aircraft represents a flexible aircraft
(Fig. 2.6). The model has throttle control and three control surfaces, namely, elevators,
rudder, and ailerons. The 22-m long fuselage is rigid, as well as the tail. The 19-m
span wing has varying structural flexibility, and the dominant mode is the out-of-plane
bending at 1.45 Hz.

• XRF1 aircraft: The XRF1 is an Airbus provided industrial standard multi-
disciplinary research testcase representing a typical configuration for a long range wide
body aircraft. The XRF1 research testcase is used by Airbus to engage with external
partners on development and demonstration of relevant capabilities/technologies. A
front view of the aircraft is shown in Fig. 2.7. The fuselage, wing and tail structures
of XRF1 are flexible, but the level of flexibility falls within a range where the flexible
and rigid body dynamics can still be decoupled for control design. Hence this baseline
XRF1 model is representative of a flexible aircraft. The aircraft model has 7 different
mass configurations that vary with respect to the total mass, mass distribution, and
consequently, inertia properties and aeroelastic response.
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Figure 2.6: GTA aircraft.

Figure 2.7: XRF1 and XRF1-HARW aircraft.

XRF1 has eleven control effectors available for control design (Fig. 2.8), namely, flaps,
outer and inner ailerons at each semi-wing, elevators at the left and right horizontal
tail planes, a rudder at the vertical tail plane, and left and right point forces acting as
thrust. For control design purposes, the degrees of freedom of the control effectors are
reduced to eight by imposing the elevators to deflect symmetrically, the inner ailerons
to deflect anti-symmetrically, and symmetric thrust. The flaps and outer ailerons work
independently as flaperons/elevons.

• XRF1-HARW aircraft: To create a model that represents a flexible aircraft with
increased flexibility, the Airbus-Michigan Center for Aero-Servo-Elasticity of Very Flex-
ible Aircraft (CASE-VFA) modified the baseline XRF1 to create XRF1-HARW [82], a
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Figure 2.8: XRF1 aircraft control effectors.

model for a future high-aspect-ratio-wing commercial transport vehicle. XRF1-HARW
has the same geometry and properties as XRF1, but with a wing 20% longer, as shown
in Fig. 2.7. Therefore, the nonlinear effects become more pronounced, and the flexible
and rigid body responses can have frequencies of similar magnitude. In fact, the first
out-of-plane bending moment of XRF1-HARW is 40.26% smaller than the same fre-
quency of the baseline XRF1. The XRF1-HARW model has the same control effectors
as the baseline XRF1 model.

• X-HALE aircraft: The X-HALE is a very flexible, remote-piloted aircraft developed
at the University of Michigan with the primary objective to collect experimental aeroe-
lastic data and to serve as a platform to evaluate control strategies [83]. The X-HALE
aircraft is shown in Fig. 2.9. It is a wing-boom-tail type aircraft with a 6-meter span,
divided into six sections of 1-meter long each, with the tip sections set at a dihedral
angle of 10 deg. The wing has an EMX-07 airfoil profile with 0.2 m chord, while the
tails employ the NACA 0012 airfoil profile with chord length of 0.12 m.

As shown in Fig. 2.10, there are eleven control effectors available: two roll spoilers
located at the dihedral sections, four elevators situated at each outboard tail (repre-
sented by T1-T4), and five motors (represented by P0-P4). The center tail is not used
as a control surface. For control design, six control inputs are considered, namely, the
inner elevator deflection (symmetrical for both surfaces), the outer elevator deflection
on the right wing, the outer elevator deflection on the left wing, the roll spoiler deflec-
tion (given by the difference between the deflection of the right and left spoilers), the
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Figure 2.9: University of Michigan’s X-HALE aircraft.

differential thrust (difference between the revolutions per second of the left motors and
right motors), and the overall thrust (average of revolutions per second of all motors).
Note that the spoiler can only have positive deflection.

Figure 2.10: X-HALE aircraft control effectors.
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CHAPTER 3

Constrained Control of Very Flexible Aircraft

Most practical control systems are subject to operational constraints such as actuator or
safety limits. FA and VFA are examples of such systems. Load alleviation in these vehicles
can be approached as a constrained control problem in which loads at critical stations must be
kept within safety limits by deflecting the control surfaces. Model predictive control (MPC)
and reference governors (RG) are of significant interest for MLA due to their ability to
enforce pointwise-in-time constraints on the loads and actuation of control effectors. Solving
the MPC optimization problem in real-time for these systems still remains a challenge for
being large-scale systems which usually have a high number of states and constraints. This
section presents MPC-based load alleviation systems and investigates methods for efficient
implementation.

3.1 Model predictive control

Model Predictive Control (MPC) is the most widespread approach for systematically in-
corporating constraints into the design process. It has been adopted on a broad scale in
chemical process industry and is becoming popular also for systems with faster dynamics,
especially in the aerospace and automotive fields.

Traditional MPC schemes use the current state information to predict the response over
a specified future horizon. Based on a performance index and the system constraints, a
sequence of control inputs is determined by solving a discrete optimization problem within
a prescribed update time interval.

The prediction step in MPC typically uses a mathematical or numerical model that repre-
sents the dynamics of the system. The MPC formulation can be divided into two categories
depending on the choice of such a prediction model: Nonlinear MPC (NMPC), in which
a nonlinear model is used to represent the system; and linear MPC, in which a linear (or
linearized) model is used for prediction.
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3.1.1 Nonlinear MPC

Consider a system represented by the nonlinear time-invariant discrete-time dynamical equa-
tion

x+ = fs(x, u), (3.1)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input vector, and fs : Rnx × Rnu → Rnx

is a specified function. For a FA or VFA, this function can be, for example, a discrete-time
version of the B2T model presented in Section 2.3.3. The discretization of the B2T model
can be performed by applying methods such as forward Euler or 4th-order Runge Kutta.

Assumption 1 fs(x, u) is a twice continuously differentiable function with respect to x and
u.

The state and input at sampling time k ∈ Z++ are denoted by xk and uk, respectively.
The following constraints are imposed:

xk ∈ X ∀ k, (3.2)

uk ∈ U ∀ k, (3.3)

where X and U are compact sets such that 0 ∈ intX and 0 ∈ intU . It is assumed that these
sets can be represented by finitely many constraint functions as follows:

X = {x ∈ Rnx|gi(x) ≤ 0, for i = 1, . . . , ncx}, (3.4)

U = {u ∈ Rnu|hi(u) ≤ 0, for i = 1, . . . , ncu}, (3.5)

where gi(x) : Rnx → R for i = 1, . . . , ncx and hi(u) : Rnu → R for i = 1, . . . , ncu are
twice continuously differentiable functions. The total number of constraints is denoted by
nc = ncx + ncu.

A model predictive control law κN(x) is then designed to stabilize the origin of (3.1). The
control law is obtained online as the solution of an open-loop discrete-time optimal control
problem over a fixed prediction horizon N ∈ Z++ with cost function,

VN(x,x,u) = Vf (xN) +
N−1∑
k=0

l(xk, uk), (3.6)

where x0 = x, i.e., the current state. Define u ≜ [u0(x)T , . . . , uTN−1(x)]T and x ≜

[x1(x)T , . . . , xTN(x)]T , respectively, as the sequence of control actions and resulting state
trajectory of (3.1) up to N steps ahead of the current time. The constrained optimization
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problem that is solved at each sampling time is formulated as follows:

PN(x,Xf ) : V ∗
N(x) = min

u
{VN(x,x,u)|(x,u) ∈ FN , xN ∈ Xf} , (3.7)

where FN is the set of constraints

FN ≜ {(x,u)|xk+1 ∈ X, uk ∈ U, k ∈ Z[0,N−1]}, (3.8)

Vf (x) is the terminal cost, and Xf ⊂ X is the terminal set such that 0 ∈ Xf . The stage
cost l(x, u) is assumed to be a positive definite function in x. The cost function VN(x,u) is
assumed to be twice continuously differentiable. The MPC law is defined as the first move
in the optimal sequence u∗:

κN(x) = u∗
0(x). (3.9)

The next assumption establishes the sufficient ingredients for stability of closed-loop sys-
tem.

Assumption 2 Let Vf (x) be a Control Lyapunov Function and Xf be a set such that Xf =
{x ∈ Rnx|Vf (x) ≤ α}, with α > 0 such that Xf ⊂ X and for all x ∈ Xf the following holds:

α1(||x||) ≤ Vf (x) ≤ α2(||x||) (3.10)

inf
u∈U
{F (f(x, u))− F (x) + l(x, u)} ≤ 0, (3.11)

where α1(·) and α2(·) are class K-functions.
If the terminal cost and terminal set satisfy Assumption 3, then the optimal cost V ∗

N(x)
of PN(x,Xf ) is a Lyapunov function and the MPC control law asymptotically stabilizes the
equilibrium at origin of (3.1) for all initial states for which PN(x,Xf ) is feasible [84].

The calculation of terminal set Xf that satisfies Assumption 2 may be cumbersome for
large-scale systems. Under some additional assumptions, set Xf can be replaced by X.
The next proposition establishes the domain of attraction of the MPC without the terminal
constraint.

Proposition 1 ([85], Theorem 1) Consider Vf (x) and Xf such that Assumption 2 holds.
Let β ∈ R++ such that l(x, u) > β ∀x /∈ Xf and ∀u ∈ U . Then the MPC controller with
N ≥ 1 derived from PN(x,X) asymptotically stabilizes the system (3.1) subject to (3.2) and
(3.3) for any initial state in

ΓN = {x ∈ Rnx|V ∗
N(x) ≤ l(x, κN(x)) + β · (N − 1) + α}. (3.12)
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As discussed in [85], the domain of attraction ΓN can be approximated by ΥN ⊂ ΓN , which
is also a domain of attraction and is defined as:

ΥN ≜ {x ∈ Rnx|V ∗
N(x) ≤ N · β + α}. (3.13)

While recursive feasibility is guaranteed by the ingredients presented in Assumption 2
[84], in practice, model mismatch, external disturbances, and noise can lead the NMPC to
an infeasible condition. To prevent such a situation, the hard constraints in the states and
outputs of the system in Eq. 3.4 can be transformed into soft constraints by the introduction
of slack variables εs,k ≥ 0, k ∈ Z[1,N ], as follows:

X(εs,k) = {x ∈ Rnx|gi(x) ≤ εs,k, for i = 1, . . . , ncx}. (3.14)

To mitigate constraint violations due to the soft constraints, a large weight µ ∈ R++ is then
added to the objective function to penalize the slack variables. The relaxed NMPC problem

Pε
N(x,X) : V ∗

N(x) = min
u,εεεs

{
VN(x,x,u) + µεεεTs εεεs|(x,u) ∈ Fε

N , εεεs ⪰ 0
}
, (3.15)

where εεεs ≜
[
εs,1 · · · εs,N

]T
∈ RN is a vector that concatenates the slack variables, and

Fε
N is the set of relaxed constraints

Fε
N ≜ {(x,u)|xk+1 ∈ X(εs,k+1), uk ∈ U, k ∈ Z[0,N−1]}. (3.16)

Note that the input constraints are usually not relaxed because they are trivially satisfied.
The optimal control problem (OCP) P ε

N(x,X) is a nonconvex nonlinear program (NLP).
The solution of this NLP is obtained through numerical optimization. The selection of the
solver is important for achieving real-time implementation, especially when dealing with
large-scale problems as the control of VFA. Depending on the selected solver, specific strate-
gies can be implemented to reduce the computational footprint. Interior point methods, for
example, can take advantage of the sparse structure of system of equations to speed-up com-
putations. Sequential quadratic programming (Sequential Quadratic Programming (SQP)),
which is an iterative algorithm that consecutively solves quadratic programs (QPs) to ap-
proximate the NLP solution, can benefit from warmstarting whenever coupled with QP
solvers such as active-set methods or Newton-type solvers. Other implementation strategies
for fast solutions include: i) the use of ROMs, such as the B2T model, to reduce the number
of states; ii) the condensed NMPC formulation, especially when using SQP, in which the
equality constraints and the states as decision variables are eliminated (see Appendix B.2
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for details); iii) suboptimal solutions by limiting the number of iterations in the solver (see
Ref [86]); iv) constraint aggregation in which a set of constraints is represented by fewer
functions (see discussion in Section 3.3.1).

3.1.2 Linear MPC

Linear MPC is a subclass of NMPC problems in which the prediction model is linear, i.e.,

fs(x, u) = Ad∆x+Bd∆u, (3.17)

where the superscript d denotes the discrete-time version of matrices A and B in Eq. 2.37.
Therefore the results for stability and recursive stability presented in Section 3.1.1 still apply.

If the constraints in Eqs. 3.4-3.3 are affine functions, then they can be represented as:

E0 + E1xk+1 + E2uk ⪯ 0, for k ∈ Z[0,N−1], (3.18)

or in the relaxed form:

E0 + E1xk+1 + E2uk ⪯ E3εs,k+1, for k ∈ Z[0,N−1], (3.19)

where E0 ∈ Rnc , E1 ∈ Rnc×nx , E2 ∈ Rnc×nu , and E3 ∈ Rnc are constraint matrices. These
affine constraint functions appear, for example, when upper and lower limits are imposed on
state, input and output variables.

A typical choice for the cost function in Eq. 3.6 is a quadratic function, which is related
to the energy of states and inputs in the system. For vectors ∆u ≜ [∆uT0 , . . . ,∆uTN−1]T and
∆x ≜ [∆xT1 , . . . ,∆xTN ]T , such cost function usually has the following form:

VN(∆x,∆x,∆u) = ||∆xN ||2Pf
+

N−1∑
k=0
||∆xk||2Q + ||∆uk||2R, (3.20)

with weighting matrices Q ∈ Rnx×nx , Q ⪰ 0, R ∈ Rnu×nu , R ≻ 0. The terminal weight
Pf ∈ Rnx×nx , Pf ≻ 0, is the solution of the discrete-time algebraic Riccati equation:

Pf = Ad
T
PfA

d −
(
Ad

T
PfB

d
) (
R +BdTPfB

d
)−1 (

BdTPfA
d
)

+Q. (3.21)

The OCP PN(x,X) with prediction model in Eq. 3.17, inequality constraints in Eq. 3.18,
and cost function in 3.20 forms a convex QP. Several commercial solvers are available
for QP problems, including interior-point methods (e.g., CPLEX), active-set methods (e.g.,
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qpOASES [87], qpkwik [88]), and Newton-type methods (e.g., FBstab [89]). In the VFA
control application, active-set methods have shown to provide the best performance.

The implementation strategies for reduced computational cost that were mentioned in
Section 3.1.1 are still applicable to linear MPC. For instance, this QP can be put in the
condensed form as follows (see details in Appendix B.1):

V ∗
N(∆x) = min

∆u
∆uTHc∆u + 2qTc ∆u (3.22)

s.t. ∆x0 = ∆x, (3.23)

Gc∆u +Wc ⪯ 0. (3.24)

To reduce the number of decision variables in the optimization problem even further, a
common practice in linear MPC design is to use move blocking. With move blocking, groups
of adjacent-in-time predicted inputs are constrained to the same value, so that the number
of degrees of freedom of the predicted input actions is reduced. Move blocking results in a
modified QP problem of the form,

V ∗
N,M(∆x) = min

∆ū
∆ūT H̄c∆ū + 2q̄Tc ∆ū (3.25)

s.t. ∆x0 = ∆x, (3.26)

Ḡc∆ū +Wc ⪯ 0, (3.27)

where
H̄c ≜ V T

Mu
HcVMu , q̄ ≜ V T

Mu
qc, Ḡc ≜ GcVMu , (3.28)

VMu =
 Tk ⊗ Inu 0

0 IN

 ∈ RNnu×Munu , (3.29)

∆u = VMu∆ū and the matrix Tk ∈ RN×Mu is the blocking matrix, with Mu ∈ Z(1,N)

designating the number of degrees of freedom given to the predicted inputs (also known as
the control horizon).

The blocking matrix can be designed in a number of different ways [90]. Here the input
blocking method is used, in which inputs are fixed to be constant over t ≥ k+Mu time-steps
within the prediction horizon. Hence, the blocking matrix is given by:

Tk =
 IMu

[0(N−Mu)×(Mu−1) 1N−Mu ]

 . (3.30)
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3.1.3 MPC using LPV models

In Section 2.3.2, the T2B model was presented, which is a reduced-order LPV representation
for FA and VFA. This model can be used for prediction in MPC. To this end, the T2B
ROM in Eqs. 2.86-2.88 can be converted to discrete-time assuming a zero-order hold with a
given sample time so that the control inputs are constant over each sampling period. The
discretization is performed for each model Sr,i,j. The resulting discrete-time T2B ROM has
the following form:

∆xr,k+1 =
M∑
i=1

wi(Vj∆xr,k + (I + Pj − VjPj)x0, uk)
(
Adr,i,j∆xr,k +Bd

r,i,j∆uk
)
, (3.31)

∆yk =
M∑
i=1

wi(Vj∆xr,k + (I + Pj − VjPj)x0, uk)
(
Cd
r,i,j∆xr,k +Dd

r,i,j∆uk
)
, (3.32)

j ∈ Z[1,M ] s.t. m(xr,k, uk) = dj(Vj∆xr,k + (I + Pj − VjPj)x0, uk), (3.33)

where the superscript d denotes the corresponding discrete-time matrices.
An MPC formulation with quadratic cost similar to Eq. 3.20 is considered here. However,

the selection of terminal cost Pf as shown in Section 3.1.2 may not be possible. Ideally,
a single matrix Pf should be computed such that the feedback gain stabilizes all systems
Sr,i,j. This is equivalent to finding Pf and stabilizing gain Kf that solves the discrete-
time Lyapunov inequality for all systems Sr,i,j. This leads to a linear matrix inequality
(LMI) problem, which may be difficult to solve depending on the number of ROMs, and the
existence of a solution is not guaranteed. Therefore, the terminal penalty is not considered
here. To preserve stability of the MPC controller, the prediction horizon can be chosen long
enough to approximate the solution of an LQR [91]. The optimization problem solved at
each MPC step reads as follows:

V ∗
N(x) = min

∆u,∆xr,εεεs

N−1∑
k=0
||∆xr,k||2Qr

+ ||∆uk||2R + µε2
s,k (3.34)

s.t. E0 + E1∆xr,k+1 + E2∆uk ≤ E3εs,k for k ∈ Z[0,N−1], (3.35)

εs,k ≥ 0 for k ∈ Z[1,N ], (3.36)

x0 = x, (3.37)

xr,0 = Pjx
0, (3.38)

∆xr,0 = Pj(x0 − x̄), (3.39)

Eqs. 2.68, 2.69, 3.31, 3.32, 3.33, (3.40)

where E0, E1, E2 and E3 are matrices of appropriate sizes to represent the linear constraints,
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and Qr and R are positive definite weighting matrices. The pair (x̄, ū) represents the initial
full-order state and control input. Note that a relaxed constraints are considered here in
order to avoid feasibility issues due to the use of ROMs for prediction.

Since the weights wi in Eqs. 3.31-3.32 depend on xr,k, they can vary within the prediction
horizon. They are updated according to the nonlinear equations in Eqs. 2.68-2.69, therefore,
this optimization problem is nonconvex. Furthermore, the switching rule in Eq. 3.33 can be
incorporated into the optimization problem as mixed-integer linear inequalities, thus making
this optimization problem a mixed-integer nonlinear programming (MINLP) problem. This
class of problems is NP-complete, making it hard to be solved in real-time in an application
that demands small sampling times such as the control of a VFA.

To circumvent this issue, the MPC problem is reformulated by simplifying the prediction
model. The weights wi are evaluated at the current full-order state and input, and kept
fixed over the prediction horizon. In doing so, the equations used for prediction become
linear time-invariant (LTI) models in solving each optimization problem. In addition, the
switching rule can be dropped from the optimization problem. The resulting optimization
has the following form:

V ∗
N(x, u) = min

∆u,∆xr,εεεs

N−1∑
k=0
||∆xk,r||2Qr

+ ||∆uk||2R + µε2
s,k (3.41)

s.t. ∆xk+1 =
M∑
i=1

wi(x0, u0)
(
Adr,i,jδxr,k +Bd

r,i,jδuk
)
, (3.42)

∆yk =
M∑
i=1

wi(x0, u0)
(
Cd
r,i,j∆xr,k +Dd

r,i,j∆uk
)
, (3.43)

j ∈ Z[1,M ] s.t. m(x0, u0) = dj(x0, u0), (3.44)

E0 + E1∆xr,k+1 + E2∆uk ≤ E3εs,k for k ∈ Z[0,N−1], (3.45)

εs,k+1 ≥ 0 for k ∈ Z[1,N ], (3.46)

x0 = x, (3.47)

u0 = u, (3.48)

xr,0 = Pjx
0, (3.49)

∆xr,0 = Pj(x0 − x̄). (3.50)

The optimization problem now becomes a QP problem, which can be efficiently solved
using commercial solvers. The potential prediction errors due to freezing the model over the
prediction horizon are mitigated by employing the shortest prediction horizon possible, and
because MPC is based on a receding-horizon principle, in which only the first move of the
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optimal sequence is applied to the plant. In the next MPC step, the prediction model is
updated based on the new values of (x0, u0), and the same process is repeated recursively.

Silimlar to the linear MPC formulation presented in Section 3.1.2, the number of decision
variables can be reduced by using the condensed MPC formulation (Appendix B.1). Because
the prediction model is updated at each MPC step, this process has to be repeated whenever
the model changes.

3.2 Control Architectures for Load Alleviation

Two control architectures based on MPC for load alleviation are presented next.

3.2.1 MPC Architecture

The MPC architecture in Fig. 3.1 is conceived as an integrated flight control system, that is,
it is responsible for both command tracking and load alleviation. In this sense, the controller
not only prevents the aircraft from exceeding structural safety limits, but also makes use
of the aircraft flexibility to potentially improve the aircraft performance by computing the
optimal control action based on predictions of both rigid and flexible dynamics.

MPC Aircraft

Observer

y

x̂, ŷ

uFCS

uLA
r

Figure 3.1: MPC architecture.

The available control effectors u in the aircraft are divided into two groups:

u =
[
uTFCS uTLA

]T
, (3.51)

where:

• uFCS : These are the control effectors typically used by a FCS for speed and attitude
control during cruise. This can include the propulsion system throttle (uT ), and the
primary control surfaces (ua): elevator, rudder and ailerons.

• uLA : These are the primary control effectors to perform load alleviation. For instance,
flaperons or elevons on the wing.
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In the MPC architecture, the MPC controller coordinates both uFCS and uLA. The control
objective is to track the reference r while enforcing the load constraints. The vector r ∈ Rnr

of references usually include the desired airspeed rV , sideslip angle rβ, heading angle rψ, and
flight path angle rγ (refer to Section 2.1 for the definition of these outputs):

r ≜
[
rV rβ rψ rγ

]T
. (3.52)

The reference is assumed to be constant in time. Let ytrack
k ∈ Rnr be a subset of the output

vector corresponding to the tacked variables. Let Strack ∈ Rnr,ny be a selection matrix such
that ytrack

k = Strackyk The tracking error is then defined as:

ek = r − ytrack
k = Strackg(xk, uk). (3.53)

To design a tracking MPC controller, the incremental rate-based MPC formulation is con-
sidered, which results in a robust augmentation of the controller with an integral action.
This ensures, under reasonable assumptions, zero steady-state tracking error even when a
mismatch between the model used for the design and the actual plant is present. The OCP
is formulated as follows:

V ∗
N(x̂) = min

δx,δu,εεεs

||eN ||2Pf
+

N−1∑
k=0
||ek||2Qe

+ ||δuk||2R + ||uLA,k||2RLA
+ µε2

s,k, (3.54)

s.t. δxk+1 = fs(xk+1, uk+1)− fs(xk, uk) for k ∈ Z[0,N−1] (3.55)

ek = r − Strackg(xk, uk) for k ∈ Z[0,N ] (3.56)

uk+1 = uk + δuk for k ∈ Z[0,N−1] (3.57)

xk+1 = xk + δxk for k ∈ Z[0,N−1] (3.58)

x0 = x̂, (3.59)

(x,u) ∈ Fε
N (3.60)

εεεs ⪰ 0, (3.61)

where

δuk ≜ uk+1 − uk, (3.62)

δxk ≜ xk+1 − xk, (3.63)

and δu and δx, respectively, are the vectors that concatenate these variables over the pre-
diction horizon. Qe, R, RLA and P are symmetric positive definite weighting matrices, and
µ > 0 is a scalar weight. The definition of constraint set Fε

N for load alleviation problems
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will be presented in Chapter 4. The terminal penalty is computed on δxN and eN , defined
based on the solution of the algebraic Riccati equation (Eq. 3.21) for the subsystem which
represents the linearized dynamics of δxk and ek. The current state x is replaced by its
estimate x̂ provided by a state observer as it will be discussed in Section 3.5.

The prediction model in Eqs. 3.55-3.56 can be either the nonlinear B2T ROM model, the
T2B LPV ROM model, or a linearized ROM model about a given condition, as discussed
in Section 3.1. Differently than the MPC formulations presented in Section 3.1, the MPC
control law of the incremental rate-based formulation returns the relative increment δu∗

0(x̂)
in the control action, rather than its absolute value u∗

0(x̂). Nevertheless, the properties and
implementation strategies presented in Section 3.1 still apply.

The cost function in Eq. 3.54 includes a penalty on uLA in addition to the usual penal-
ization of its rate of change δuLA. The penalty on uLA ensures that the control effectors
used for load alleviation return back to the trim condition after reducing loads. This is
desired to minimize drag and deviation from the nominal trajectory when the MLA system
is deactivated. Note that the control efectors assigned to perform load alleviation are not
dedicated, meaning that, in addition to performing alleviating loads, they can also assist the
effectors uFCS for attitude and speed control. This supplementary behavior can be minimized
by tuning the controller, usually by choosing the weights on uLA greater than the weights
on the remaining control effectors.

3.2.2 Load Alleviation Governor Architecture

In the load alleviation (LA) governor architecture shown in Fig. 3.2, the MPC controller
plays the role of a reference governor for the inner loop, in addition to manipulating the extra
degrees of freedom provided by uLA to alleviate loads. The signal tracking task is assigned
to the inner loop. Appealing features of this architecture include the preservation of the
nominal controller in the inner loop, which can be advantageous from a design perspective,
since the conventional flight control system is augmented rather than replaced. Moreover,
the performance and stability of the vehicle is protected even if the outer loop has to be
deactivated.

A nominal discrete-time controller is designed for output tracking in the inner-loop. This
controller is divided into two linear-quadratic-integral (LQ-I) controllers that independently
manipulate control effectors ua and uT for attitude and speed tracking, respectively. The
control signals, uLA, are assumed to be zero at this design step, i.e., the corresponding
control effectos are assumed to be at the trim values. Figure 3.3 shows a schematic of the
implementation.
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x̂, ŷ

uFCS

uLA
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controller

rc

Inner-loop
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Figure 3.2: Load alleviation governor architecture.

LQ-I

LQ-I

Nominal controller

attitude

velocity

uFCS

ua

uT

rc

x̂, ŷ

rV

rγ, rβ, rψ

Figure 3.3: Inner loop for speed and attitude tracking.

The LQ-I controllers are designed based on the linearized dynamics of the aircraft in Eqs.
2.37-2.38 with respect to a trim condition. The continuous-time linearized model is shown
next, in which subscripts F and R stand for flexible and rigid, respectively: ∆ẋF

∆ẋR

 =
 AFF AFR

ARF ARR

  ∆xF
∆xR

+
 BF

BR

∆u (3.64)

∆y =
[
CF CR

]  ∆xF
∆xR

+D∆u, (3.65)

The rigid body part of the linear model in Eq. 3.64 is used to design the nominal controller.
To obtain the residualized linear model for the rigid-body dynamics with states xR ∈ R12,
the flexible states are assumed to be in steady-state, and then the residualization procedure
in Section 2.3.1 is applied, yielding a ROM described by matrices

(
ĀR, B̄R, C̄R, D̄R

)
. The

model in is then discretized using zero-order hold with the sampling period Tinner to obtain
the discrete-time model with matrices

(
ĀdR, B̄

d
R, C̄

d
R, D̄

d
R

)
. The control law design for tracking

rγ, rβ and rψ is shown next. Similar derivations are performed to obtain the gains for the
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LQ-I controller responsible for tracking velocity set-point, rV , by adjusting uT (the details
are skipped). Let (∆ua)k be the control effectors manipulated by the controller at instant
k. The LQ-I control design for (∆ua)k minimizes the following cost function,

V∞ =
∞∑
k=0

(eTak
Qeeak

+ (δua)TkRz(δua)k) =
∞∑
k=0

(zTkQzzk + (δua)TkRz(δua)k), (3.66)

where (δua)k = (∆ua)k+1 − (∆ua)k, Qe and Rz are symmetric positive definite weighting
matrices, eak

is the attitude tracking error, and

Qz ≜

 0 0
0 Qe

 . (3.67)

The vector zk is the augmented state vector defined as

zk ≜
[
δxTRk

eTak

]T
, (3.68)

where δxRk
= ∆xRk+1 −∆xRk

. Hence, the augmented model is given by

zk+1 =
 ĀdR 0

[C̄d
R]a I

 zk +
 [B̄d

R]a
[D̄d

R]a

 (δua)k = Azzk +Bz(δua)k. (3.69)

The notation [·]a in Eq. 3.69 means the selection of the matrix columns and/or rows that are
connected to the tracked attitude variables and/or the control effectors ∆ua. The solution
of this optimal control problem has the form:

(δua)k = −
(
Rz +BT

z PzBz

)−1
BT
z PzAzzk = K1δxk +K2ek, (3.70)

where Pz = P T
z is the solution of the algebraic Riccati equation,

Pz = ATz PzAz − (ATz PzBz)(Rz +BT
z PzBz)−1(BT

z PzAz) +Qz, (3.71)

and K1, K2 are the resulting control gains.
From Eq. 3.70, the controller update equation has the form,

(∆ua)k+1 = (∆ua)k +K1(∆xk+1 −∆xk) +K2(
[
Strack∆yk

]
a
− rc). (3.72)

Eq. 3.72 shows that the control law includes an integral action, which allows the tracking of
commands with zero steady-state offset.
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Let κLQI(x, y, r) represent the combined control law for attitude and control tracking in
the inner-loop, such that u in Eq. 3.51 is modified to uLQI as follows:

uLQI(x, y, r, uLA) =
[
κLQI(x, y, r)T uTLA

]T
. (3.73)

The closed-loop inner-loop system is then denoted by

x+ = fs(x, uLQI(x, y, r, uLA)). (3.74)

The MPC in the outer-loop of the LA governor uses Eq. 3.74 as the prediction model. It
modifies the references rc ∈ Rnr to be fed into the inner-loop and uLA to avoid constraint
violations. The modifications are kept to a minimum, so that rc = r and uLA = 0 whenever
there is no danger of constraint violation. Denote by ur the vector that concatenates these
variables:

ur =
[
rcT uTLA

]T
. (3.75)

Define δurk ≜ urk+1 − urk, and δur the vector that concatenates these variables over the
prediction horizon. The OCP is then written in the rate-based formulation as follows:

V ∗
N(x̂, ŷ) = min

x,δur,εεεs

N−1∑
k=0
||rck − r||2Qc

+ ||δurk||2R + ||uLA,k||2RLA
+ µε2

s,k, (3.76)

s.t. xk+1 = fs(x, uLQI(x̂, ŷ, r, uLA,k)) for k ∈ Z[0,N−1] (3.77)

urk+1 = urk + δurk for k ∈ Z[0,N−1] (3.78)

x0 = x̂, (3.79)

(x,u) ∈ Fε
N (3.80)

εεεs ⪰ 0, (3.81)

where Qc ⪰ 0 is a weighting matrix. Vectors x̂ and ŷ denote the estimated states and
outputs, respectively. State estimation will be covered in Section 3.5. Differently from the
designs presented previously, the MPC in the LA architecture does not stabilize the system,
since such task is taken over by the inner-loop controller. Therefore, the cost function in
Eq. 3.76 does not need to have a terminal cost.

The prediction model in Eq. 3.77 can be either the B2T ROM model, or a linearized ROM
model for the FA or VFA. However, the T2B model cannot be used by this architecture,
since it is required that the aircraft along with an inner-loop controller to be stable, since
the LA governor alone may not be able enforce stability. The projection of model Si onto
subspace Dj

p only preserves stability if i = j. In the T2B ROM, this projection is done for
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i = 1, . . . ,M and, therefore, stability may be lost, making this ROM not suitable for the LA
governor design.

3.3 MPC with Aggregated Constraints

Solving the MPC optimization problem in real-time can be challenging, especially for large-
scale systems such as VFA that have a high number of states and constraints. Long prediction
horizons, which are desired in some cases to avoid instability or infeasibility issues, can also
engender a large number of constraints. For these problems, the computational cost of
numerical optimization can be high, possibly hindering applications due to time or hardware
limitations.

Several strategies have been proposed to decrease the computational cost of implementing
MPC solutions, inter alia, by reducing the number of decision variables [90], by exploiting
the structure of the optimization problem [92], or by relying on off-line computed control laws
[93]. Likewise, the reduction in the number of constraints has also been investigated by either
approximating convex polytopic feasible sets by ellipsoids [94], or by employing constraint
aggregation methods. In the latter approach, the constraints are lumped into a few composite
functions that approximately represent the feasible set. A classical choice for these composite
functions is the maximum-value function. However, this type of function is not differentiable
and cannot be used with the conventional gradient-based solvers [95]. Motivated by the
need to handle large-scale optimization problems especially in the Multidisciplinary Design
Optimization field, various methods have been proposed for approximating the maximum-
value function in a differentiable manner. Examples include the Kreisselmeier-Steinhauser
(KS) function, p-norm, and induced aggregation functionals [96].

Named after the researchers that firstly proposed it, the KS function was introduced in
robust control to handle non-smooth optimization problems. Subsequent works on open-loop
optimal control confirmed its potential to reduce the computational footprint of numerical
solutions [97, 98, 99]. In MPC design, Richards [100] was able to speed up the computational
performance of the online optimization by reducing the number of decision variables when
adopting the KS function for inclusion of soft constraints.

In the next sections, the use of constraint aggregation for reducing the number of con-
straints in NMPC will be investigated using tools from sensitivity analysis. Appendix C
presents some useful notation and results from sensitivity analysis.
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3.3.1 Constraint Aggregation

Consider a nonlinear program with inequality constraints of the form:

(P0) : p0 = min
z∈Rnz

{f(z)|z ∈ F0} (3.82)

with the feasible set,
F0 ≜

{
z ∈ Rn|gi(z) ≤ 0, for i ∈ Z[1,nc]

}
. (3.83)

Define gmax(z) ≜ maxi=1,...,nc{gi(z)}. The number of constraints in (P0) can be reduced
by replacing the nc constraints with a function that aggregates all gi by creating a smooth
approximation of gmax(z):

c(gi(z), ρ) = gmax(z) + r(gi(z), ρ), (3.84)

where ρ ∈ R is an aggregation parameter that controls the approximation and r(gi(z), ρ) is
a residual term [96]. An example of aggregation of the form (3.84) such that c(gi(z), ρ) is
smooth will be given later in Section 3.3.2.

The optimization problem in (3.82) is reformulated with constraint aggregation as follows:

(Pρ) : pρ = min
z∈Rnz

{f(z)|z ∈ Fρ} (3.85)

with the feasible set,
Fρ ≜ {z ∈ Rn|c(gi(z), ρ) ≤ 0} . (3.86)

Definition 1 The aggregation in Eq. (3.84) is said to be conservative if there exists ρ̄ > 0
such that r(gi(z), ρ) > 0 for all ρ > ρ̄ and all z ∈ Rn, i.e.,

Fρ ⊆ F0. (3.87)

Definition 2 The constraint aggregation function is said to be tight at ρt if r(gi(z), ρ)→ 0
as ρ→ ρt for all z ∈ Rn.

Note that even if SP0 ̸= ∅ and ρ is chosen such that Fρ ̸= ∅, the set of solutions SPρ may
still be empty. For instance, consider the following non-convex minimization problem:

min
x∈R,y∈R

{−(4/3)x3 − 4x2|max(x5, 0)− y ≥ 0, x ≥ −3, y ≥ 0}. (3.88)

The unique local minimizer is (x, y) = (−2, 0). However, for any smooth conservative ag-
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gregation function, the set of local minimizers of the aggregated problem is empty. This
anomaly is due to the minimizer located at a cusp formed by constraint intersections, which
cannot be approximated by a smooth function.

The next theorem establishes the connection between nonlinear programs with aggregated
constraints and the perturbed nonlinear programs in Section C.2 to provide sufficient condi-
tions for the existence of a local minimizer of (Pρ), and a relationship between the optimal
value and solution of (P0).

Theorem 1 Let (z0, λ0) be a strongly regular solution of the GE associated with (P0). As-
sume that there exists ρt ∈ R such that the constraint aggregation function in Eq. (3.84) is
tight. Let ρ ∈ R be such that Fρ ̸= ∅. Then for ρ sufficiently close to ρt:
a) There exists zρ that is a unique local minimizer of (Pρ) with an associated unique Lagrange
multiplier λρ;
b) ||zρ − z0|| = O(t);
c) pρ = p0 + tpPLd

+ 1
2t

2pPQ + o(t2),
with t = |ρ − ρt|, d = sign(ρ − ρt), and pPLd

and pPQ as defined in Eq. (C.7) and (C.15),
respectively.

Proof: Let c(gi(z), ρ) be tight at ρt. Consider the sequence P = ρ1, ρ2, . . . of real numbers
such that limn→∞ ρn = ρt. Define the indicator functions 1F0 : Rnz → {0, 1} and 1Fρ :
Rnz × R→ {0, 1} as follows:

1F0(z) =

 1 if z ∈ F0

0 otherwise
(3.89)

1Fρ(z, ρ) =

 1 if z ∈ Fρ

0 otherwise
(3.90)

with F0 and Fρ as defined in Eqs. (3.83) and (3.86), respectively. Because the aggregation
is tight at ρt then

lim
n→∞

1Fρ(z, ρn) = 1F0(z). (3.91)

Let Fρ1 ,Fρ2 , . . . be a sequence of sets associated with each ρ ∈ P and defined as in (3.86).
Then:

lim inf
n→∞

Fρn = {z ∈ Rnz |lim inf
n→∞

1Fρ(z, ρn) = 1} (3.92)

= {z ∈ Rnz |1F0(z) = 1} (3.93)

= F0 (3.94)
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and

lim sup
n→∞

Fρn = {z ∈ Rnz |lim sup
n→∞

1Fρ(z, ρn) = 1} (3.95)

= {z ∈ Rnz |1F0(z) = 1} (3.96)

= F0 (3.97)

Therefore,
lim
n→∞

Fρn = F0. (3.98)

Hence (Pρt) is equivalent to (P0). Define d = sign(ρ − ρt) and t = |ρ − ρt|, such that
ρ = ρt + td. Then (Pρ) is a perturbed (P0) problem in the feasible direction d. Because
(z0, λ0) is a strongly regular solution of (P0), zρ exists in a neighborhood of z0, it is the unique
local minimizer of (Pρ) with an associated unique Lagrange multiplier λρ, and zρ → z0 as
t ↓ 0. Furthermore, strong regularity implies that z0 is the unique local minimizer of (P0).
Since LICQ along with SSOSC holds, then Λ(z0) = {λ0} (i.e., a singleton), and SOSC and
Gollan’s condition are satisfied in any direction d. Then results of Theorem 3 in Appendix
C apply.

Remark 1 As will be discussed in Section 3.3.4, due to numerical reasons it may be advan-
tageous to split the constraints into separate groups and then perform the aggregation. In
such a case, for each aggregation group there is an associated value of ρ. Theorem 1 still
applies with vectors t and d whose elements are defined as ti = |ρi − ρt|, di = sign(ρi − ρt)
for each group i.

3.3.2 The Kreisselmeier-Steinhauser Aggregation Function

The Kreisselmeier-Steinhauser (KS) function [101] is a smooth constraint aggregation func-
tion that has the following form1:

KS(gi(z), ρ) = ρ ln
[
nc∑
i=1

e
1
ρ

(gi(z))
]
. (3.99)

The KS function provides a conservative approximation of convex or non-convex feasible
sets, and the residual is O(ρ).

1The definition of the KS function in here differs from the usual definition in the literature KS(gi(z), ρ) =
1
ρ ln

[∑nc

i=1 eρ(gi(z))] (cf. [102]).
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Figure 3.4: Approximation of the non-convex feasible region {x ∈ R2|2x1+1−x2 ≤ 0,−(x1+
2)3 + 20− 10x2 ≤ 0, −x2

1 − 20 + 7x2 ≤ 0} for different values of ρ.

An alternative and equivalent formulation of the KS function is given by [102]:

KS(gi(z), ρ) = gmax(z) + ρ ln
[
nc∑
i=1

e
1
ρ

(gi(z)−gmax(z))
]
. (3.100)

Such a formulation is better numerically behaved, e.g., it avoids the overflow in the compu-
tation of exponentials.

Equation (3.100) can be written in a more compact form as:

KS(gi(z), ρ) = gmax(z) + ρ ln
[
E(z)T1nc

]
, (3.101)

where
E(z) =

[
e

1
ρ

(g1(z)−gmax(z)), · · · , e
1
ρ

(gnc (z)−gmax(z))
]T
, (3.102)

and 1nc ∈ Rnc is a vector whose entries are ones.
The KS function is continuously differentiable, and its gradient vector and Hessian matrix

with respect to z are given by, respectively:

∇zKS(gi(z), ρ) = J(z)E(z)
E(z)T1nc

, (3.103)
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∇2
zKS(gi(z), ρ) = 1

(E(z)T1nc)
2

{
1
ρ
J(z)

[(
E(z)T1nc

)
diag(E(z))− E(z)E(z)T

]
JT (z)

+
(
E(z)T1nc

) nc∑
i=1

Hi(z)Ei(z)
}
,

(3.104)

where

J(z) =
[
∇zg1(z) · · · ∇zgnc(z)

]
∈ Rnz×nc , (3.105)

Hi(z) = ∇2
zgi(z) ∈ Rnz×nz , (3.106)

Ei(z) is the ith entry of vector E(z), and diag(E(z)) is a diagonal matrix whose ith entry
in the diagonal is equal to Ei(z).

The following properties of the KS function hold for all z (see [103] for proofs):

1. KS(gi(z), ρ) ≥ gmax(z) for ρ > 0

2. limρ→0 KS(gi(z), ρ) = gmax(z)

3. KS(gi(z), ρ2) ≥ KS(gi(z), ρ1) if ρ1 > ρ2 > 0

4. gmax(z) < KS(gi(z), ρ) < gmax(z) + ρlnnc

5. If all constraints gi(z) are convex, then KS(gi(z), ρ) is convex in z.

Note, in particular, Property 1 shows that the KS aggregation is conservative; Property
2 shows that it is tight at ρ → 0; and Property 4 shows that the upper bound on the
approximation depends of the number of constraints being aggregated and on the aggregation
parameter. Figure 3.4 shows an example of the KS aggregation over a non-convex set of
constraints for different values of ρ.

The aggregation works similarly to a barrier function. The approximation accuracy de-
grades close to non-smooth constraint intersections, which can be mitigated by making ρ

closer to 0. However, numerical difficulties can arise for very small values of ρ. For instance,
at a constraint intersection, it is easy to see from Eq. (3.104) that ||∇2

zKS(gi(z), ρ)||F →∞
when ρ→ 0, where F is the Frobenius norm. Figure 3.5 shows the condition number of the
Hessian of the KS function that aggregates the constraints shown in Fig. 3.4 when evaluated
at a constraint intersection. High condition numbers can degrade the numerical stability of
optimization solvers. To attenuate such problem, Poon and Martins [104] have developed
an adaptive approach by defining a nominal aggregation parameter at the beginning of the
optimization, and increasing it as needed according to the sensitivity of KS function with
respect to the aggregation parameter at the current evaluation point.
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zKS at constraint intersection x = [1 3]T as a function

of ρ.

3.3.3 Nonlinear MPC with Aggregated Constraints

Consider the NMPC problem presented in Section 3.1.1 and the assumptions therein.
The next assumption guarantees that u∗ is the unique local minimizer of PN(x,Xf ) and

the solution map is stable.

Assumption 3 The optimal solution u∗, along with the associated Lagrange multiplier λλλ∗,
are a strongly regular solution of the GE associated with PN(x,Xf ).

In NMPC problems with only convex control constraints [105], or with polyhedral state
and control constraints [106, 86], the optimal solution is strongly regular if SOSC holds.

The next assumption replaces Assumption 2 in Section 3.1.1.

Assumption 4 Let Vf (x) be a Control Lyapunov Function and Xf be a set such that Xf =
{x ∈ Rnx|Vf (x) ≤ α}, with α > 0 such that Xf ⊂ X and for all x ∈ Xf the following holds:

α1(||x||) ≤ Vf (x) ≤ α2(||x||) (3.107)

inf
u∈intU

{Vf (fs(x, u))− Vf (x) + l(x, u)} ≤ 0, (3.108)

where α1(·) and α2(·) are class K-functions.

Remark 2 Note the restriction u ∈ intU in Eq. (3.108) makes this assumption more strin-
gent than, for instance, the one in Assumption 2. This restriction is included in order to
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ensure that there exists an inner approximation of the set U in which the stability ingredients
are satisfied.

Now consider the MPC problem with aggregated constraints. The aggregation is per-
formed using an aggregation function for the constraints in FN . The specifics of how to
aggregate these constraints will be discussed in Section 3.3.4. Let FNρ be the feasible set
obtained from the aggregated constraints and ρ the aggregation parameter. Let Xρ and Uρ

be the corresponding conservative approximations of X and U , respectively, after performing
the constraint aggregation.

Assumption 5 The aggregation function is tight at ρt. Furthermore, the aggregation pa-
rameter ρ is chosen such that the aggregation is conservative, 0 ∈ Xρ, 0 ∈ Uρ, Xf ⊆ Xρ,
and Eq. (3.108) is satisfied when U is replaced by Uρ.

The associated MPC problem is formulated as follows:

PNρ(x,Xf ) : V ∗
Nρ

(x) = min
u
{VN(x,u)|

(x,u) ∈ FNρ , xN ∈ Xf

}
.

(3.109)

Note that the cost function and terminal set in PNρ(x,Xf ) are the same as in PN(x,Xf ). The
next theorem uses the results of Theorem 1 to give a quantitative factor of shrinkage of the
domain of attraction of the MPC controller with aggregated constraints without terminal
set, and bounds on the deviation between the system states generated by PN(x,X) and
PNρ(x,Xρ).

Theorem 2 Consider the MPC problem PN(x,X), for N ≥ 1, with the domain of attraction
ΥN , and the associated control law κN(x). Consider also the MPC problem PNρ(x,Xρ)
created by aggregating the constraints of PN(x,X). Let κNρ be the associated control law and
suppose Assumptions 1,3-5 hold. Then:
a) There exists M > 0 and ε > 0 such that, for all states x ∈ Xρ,

||fs(x, κNρ(x))− fs(x, κN(x))|| ≤Mt, (3.110)

when 0 ≤ t < ε;
b) There is a closed-loop domain of attraction with κNρ which can be expressed as

ΥNρ =
{
x ∈ Rnx |V ∗

N(x) ≤ N · β + α− tpPLd
− 1

2t
2pPQ − o(t2)

}
⊆ ΥN , (3.111)

where t = |ρ − ρt|, d = sign(ρ − ρt), and pPLd
and pPQ as defined in Eq. (C.7) and (C.15),

respectively.
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Proof: Assumptions 1, 3 and 4 are sufficient to satisfy the conditions of Theorem 1, thus
the results therein apply. a) The continuous differentiability property of fs(x, u) implies
Lipchitz continuity, therefore there exists C > 0 such that, for all states x ∈ Xρ,

||fs(x, κNρ(x))− fs(x, κN(x))|| ≤ C||κNρ(x)− κN(x)||

= O(t),

where the last equality is due to Lipschitz stability of the solution of the optimization prob-
lem. Using the usual definition of O(·), and the fact that the aggregation is tight for t = 0,
(a) follows.
b) Assumptions 3 and 4 are sufficient for the assumptions in Proposition 1 to hold, thus the
MPC controller derived from PNρ(x,Xρ) stabilizes asymptotically the system (3.1) subject
to Xρ and Uρ for any initial state x that satisfies

V ∗
Nρ

(x) ≤ N · β + α (3.112)

Based on Theorem 1, (3.112) can be restated as

V ∗
N(x) + tpPLd

+ 1
2t

2pPQ + o(t2) ≤ N · β + α (3.113)

and as
V ∗
N(x) ≤ N · β + α− tpPLd

− 1
2t

2pPQ − o(t2), (3.114)

where t = |ρ − ρt|. Since the aggregation is conservative, FNρ ⊆ FN , therefore V ∗
Nρ

(x) ≥
V ∗
N(x), and hence

tpPLd
+ 1

2t
2pPQ + o(t2) ≥ 0 (3.115)

for all t ≥ 0. Hence, the set

ΥNρ =
{
x ∈ Rnx|V ∗

N(x) ≤ N · β + α− tpPLd
− 1

2t
2pPQ − o(t2)

}
(3.116)

is contained in ΥN .

Remark 3 Since tpPLd
+ 1

2t
2pPQ + o(t2) is finite (Theorem 3), the prediction horizon N can

be increased to a value N̄ such that ΥN̄ρ
= ΥN in order to recover the original domain

of attraction before constraint aggregation. As will be discussed in the next sections, the
constraint aggregation method reduces significantly the computational cost of increasing N ,
in comparison to the original problem. Alternatively, one can also enlarge the domain of
attraction without terminal set by weighting the terminal cost, as suggested in [85].
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Corollary 1 There exists a finite N̄ ∈ Z++ such that

ΥNρ ⊆ ΥN ⊆ ΥN̄ρ
. (3.117)

The smallest N̄ for which this is true is approximately given by:

N̄ ≈ N +
⌈
tpPLd

+ 1
2t

2pPQ

β

⌉
+ 1. (3.118)

3.3.4 Procedure to Aggregate Constraints

The NMPC problem in Eq. (3.7) with constraints (3.2) and (3.3) has a total of Nnc con-
straints. Different strategies for aggregation exist depending on the problem. When exploit-
ing the KS function for aggregation, the following guidelines can be used:

1. Avoid very small values for the parameter ρ. Due to the numerical issues discussed
in Section 3.3.2, the aggregation parameter should not be too small, especially when
using solvers that use information about the Hessian of the KS function. Studies in
the literature (e.g., [104]) recommend starting with ρ = 1/50 and then adjust the
parameter if necessary.

2. Divide the constraints into several groups. KS function’s Property 4 in Section 3.3.2
shows that the upper bound of the aggregation residual depends on the number of
constraints. Therefore, for a problem with a large number of constraints, it is recom-
mended to divide the constraints into groups that are aggregated separately in order
to decrease the aggregation error.

3. Take into consideration the magnitude of constraints (see [107, 108]). In particular,
from Property 4 in Section 3.3.2, a measure of the aggregation conservativeness is given
by comparing the magnitudes of gmax(z) and ρ ln(nc). If the order of magnitude of the
latter is similar or greater than of the former, then the resulting feasible set is too
conservative or even empty. Knowing the magnitude of the constraints is helpful when
defining the aggregation groups and selecting the parameter ρ. It is recommended to
aggregate constraints that have similar magnitude, which can be done by grouping
together constraints on variables that have the same nature, or by scaling the variables
so that they have similar magnitude.

As suggested in [108], the aggregation can be performed in time. For example, consider
the set of state constraints in Eq. (3.4) to be enforced over the prediction horizon. The
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aggregation can be performed as follows:

g1(xk) for k ∈ Z[1,N ] −→ KS1(g1(xk), ρ1)

g2(xk) for k ∈ Z[1,N ] −→ KS2(g2(xk), ρ2) (3.119)
...

...

gncx
(xk) for k ∈ Z[1,N ] −→ KSncx

(gncx
(xk), ρncx

).

This way, the number of constraints in the NMPC problem is reduced by a factor of N .
Further reduction, at the cost of increased conservativeness, can be achieved by aggregating
some of the KS functions in (3.119). The nested aggregation has the following form:

KSj(gj(xk), ρj) for j ∈ J⊆ Z[1,ncx ] −→

KS(KSj(gj(xk), ρj), ρ).
(3.120)

The final number of constraints in the NMPC with aggregated constraints (NMPC-AC)
problem is denoted by nKS, such that nKS << nc.

3.3.5 Implementation

Similarly to the NMPC in Eq. (3.15), the real-time implementation of the NMPC-AC requires
solving a nonlinear optimization problem. Second-order methods, which rely on Newton’s
method in some form, are the usual numerical optimization approaches in MPC due to the
fast convergence rate. In these methods, the bottleneck is solving a system of linear equations
of size n, which depends on the number of decision variables and constraints and that can
have arithmetic complexity of up to O(n3) per iteration. Therefore, the computational
footprint of the NMPC-AC implementation is expected to be smaller than of the original
NMPC problem.

In this work, SQP is considered. In this iterative method, a sequence of QP subproblems
is solved, in which the solution to the previous QP problem informs the next QP problem.
Let z ≜ [uT xT ]T ∈ RN(nx+nu) be the vector of decision variables, f(z) = VNρ(x,x,u) be
the objective function, h(z) : RN(nx+nu) → RNnx be the equality constraint function, and
q(z) : RN(nx+nu) → RnKS be the inequality constraint function after aggregation. Assuming
an iterate zk has been computed, the following QP problem is solved to find ∆zk that
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minimizes the quadratic cost subject to linear constraints:

min
∆zk

1
2∆zTkHk∆zk +∇f(zk−1)T∆zk (3.121)

s.t. ∇h(zk−1)T∆zk + h(zk−1) = 0

∇q(zk−1)T∆zk + q(zk−1) ⪯ 0

where Hk approximates the Hessian of the Lagrangian function of the optimization prob-
lem. SQP requires multiple iterations for convergence, however, these QP subproblems are
computationally cheap due to the reduced number of constraints if aggregation is used. For
instance, the complexity of a QP solver to reach a defined accuracy depends linearly on
the number of constraints when a primal interior point method is used [109]. For active-set
methods, the complexity is also reduced since fewer working set re-computations are required
[110].

In practice, the SQP algorithm converges quickly, especially with warm-starting in MPC,
and sub-optimal solutions that provide good performance can be obtained by limiting the
number of iterations [86, 111]. Other strategies can be implemented to speed up the com-
putations, especially when updating the Hessian and Jacobians in Eq. (3.121). Firstly, one
can take advantage of the analytical expressions for the gradient vector (Eq. 3.103) and
Hessian matrix (Eq. 3.104) of the KS function. This avoids the need for online numerical
differentiation. The modified Newton-Kantorovich [112, 113] method can be considered to
avoid the evaluation of the Hessian at each iteration. In this method, the Hessian at the
first iteration is kept for the following steps. Alternatively, approximations for the Hes-
sian matrix can be used such as the Gauss-Newton approximation [114]. For quadratic
cost functions, this is equivalent to choosing Hk = ∇2f(zk−1). Another option is the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) iterative update. In these two approximations, the
second order derivatives of the constraint functions do not have to be computed. This is
interesting especially when the KS function is used for aggregation, since numerical problems
due to the ill-conditioned Hessian matrices, as discussed in Section 3.3.2, would be avoided.
Note, however, that these Hessian approximations reduce the update phase computations at
the cost of reduced convergence rate.

3.3.6 Examples

Linear MPC: The design of a FCS for X-HALE is shown next [108]. The objective is to
perform a pitch-up maneuver by tracking a flight path angle γ while maintaining the out-
of-plane curvature κx at the wing root within safety limits. UM/NAST was used to create a
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linearized model with respect to a straight level flight trim condition. The linear model has
60 states. Box constraints were imposed on 16 outputs and inputs, namely, the curvature at
each semi-wing root, angle of attack, ailerons and elevators deflection and rate of deflection,
and propellers rotation and rate of change.

A rate-based MPC controller was designed with sampling rate of 50 Hz and prediction
horizon of 100 steps. The full OCP had 700 decision variables and 3300 constraints. Simple
aggregation in time was performed for each constrained variable, and the nested aggregation
was performed for the constraints on aileron and elevator input channels. The total number
of constraints was reduced to 13. QPKWIK (with warm-starting) and IBM ILOG CPLEX
v12.9 were used to solve the QPs in order to compare the performance of, respectively, an
active-set method versus an interior-point method. The maximum number of iterations of
the SQP algorithm was limited to 3.

Figure 3.6 shows the simulation results. In both MPC formulations, the target was
reached with similar response, and the wing curvature constraint was satisfied. However,
when the KS aggregation was used, the constraints were enforced more conservatively. Table
3.1 presents the maximum and average computation time observed during the simulation.
For the simulation with QPKWIK, reductions of 92% and 21% in the maximum and average
computation time, respectively, were obtained when the KS aggregation was used. For
CPLEX, the reduction was 83% for the maximum time, and 87% for the average time. While
the computation time even with KS aggregation exceeds the time step, it should be noted
that the implementation of the optimization is in MATLAB and (except for aggregation)
has not been optimized for computational performance. Nevertheless, these results show the
potential of KS aggregation in linear MPC. While the approach appears to be somewhat
counter-intuitive at a first glance as the QP problem is replaced by a nonlinear optimization
problem, significant reductions in the computational cost can be achieved.

Table 3.1: Maximum and average computation time per time step [s]

Linear constraints KS aggregation
Max. Avg. Max. Avg.

QPKWIK 1.7542 0.1313 0.1399 0.1041
CPLEX 4.5069 1.7265 0.8285 0.2289

Nonlinear MPC: A numerical example of NMPC-AC applied to the control of the GTA
aircraft is presented next, for which a low-order nonlinear model was created using the B2T
modeling framework.
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Figure 3.6: The time histories of the flight path angle and wing root curvature in the closed-
loop simulations of the very flexible aircraft.

The discretization of the aircraft dynamics in time was performed using a fourth-order
Runge-Kutta method. The model contains 20 states corresponding to rigid-body and 4
structural modes. The control inputs are the 4 control effectors for speed, longitudinal and
lateral control. The control objective is to perform a descent while enforcing constraints on
the upper and lower bounds of the angular rates, orientation angles, altitude, and amplitude
of the dominant flexible mode. Box constraints were also imposed on the control inputs
magnitude and rate of change.

The NMPC problem was formulated for various prediction horizons, ranging from 30 to
80 steps. The full optimization problem has 5N decision variables and 31N linear inequality
constraints, where N is the prediction horizon. Constraint aggregation using the KS function
was performed at each constrained channel, lumping together the upper and lower bounds in
time. The resulting NMPC-AC has 5N decision variables which translates into 16 constraints
in the optimization problem. The equality constraints due to the aircraft equations of motion
were eliminated through online condensing.

The control problem was set up in MATLAB using the CasADi toolbox [115]. The
optimization problem was solved using the SQP algorithm, with Hessian approximations
computed via the BFGS method. The maximum number of iterations of the SQP method
was limited to six. The QP subproblems were solved using three different solvers: a dual
active set (AS) method [116], a primal-dual interior point (IP) method [117], and the prox-
imally stabilized Fischer–Burmeister (FBstab) method [89]. The AS and FBstab solvers
were warmstarted using information from previous iterations of the SQP algorithm. All
computations were performed on an Intel i7-8650U, 1.9 GHz, 16 GB RAM laptop.
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Figure 3.7: Closed-loop results of aircraft descent with NMPC and NMPC-AC controllers.

Figure 3.7 shows closed-loop results of the first 20 s of the aircraft descent with the
NMPC and NMPC-AC controllers. In both scenarios, the aircraft is able to reach the target
altitude (z) with very similar trajectories. During the descent, the pitch rate (q), pitch angle
(θ) and first out-of-plane bending mode (η1) were constrained, among other variables. In
both cases, the constraints were satisfied. The conservative constraint enforcement imposed
by the constraint aggregation resulted in a different elevator control input computed by each
controller when the constraints were active. Figure 3.8 shows a magnification on the time
interval that the bending mode constraint becomes active, and how the NMPC-AC response
varies for different values of the aggregation parameter ρ. As ρ is decreased, the η1 response
gets closer to the baseline obtained when applying the conventional NMPC. However, for
very small values of ρ, numerical issues lead to an undesirable controller response, such as
the oscillations seen for ρ = 0.25. Even smaller values of ρ would ultimately cause the
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Figure 3.8: Constraint enforcement in NMPC-AC for different values of aggregation param-
eter ρ.

optimization solver to fail.
Nonetheless, when choosing the appropriate value of ρ, good results are achieved with

a significant smaller computational cost. Figure 3.9 shows the reduction in the maximum
and mean computation time of an MPC step in the NMPC-AC formulation when compared
against NMPC. The reduction is observed for the three different QP solvers tested, and for
different control horizons. By increasing N , the number of constraints in the conventional
NMPC formulation also increases, while for the NMPC-AC formulation it stays the same.
For large-scale problems, e.g., N = 80 with 2480 constraints, the reduction in the maximum
time can reach as high as 70%. In practice, the worst-case execution time drives the selection
of the processor hardware. These results indicate that the proposed method can potentially
facilitate the real-time implementation of NMPC controllers for large-scale systems using
microcontrollers with limited computing capabilities.
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Figure 3.9: Reduction on the mean and maximum computation time of an MPC step when
aggregating constraints.

3.4 Scenario-based MPC

The MPC design presented in Section 3.1 considered that the models used for prediction are
accurate. However, in practical applications, the vehicle is subject to unforeseen exogenous
disturbances, unmodeled nonlinear behavior, and unknown parameters, among other factors
that introduce uncertainty into the system. As a result, the controller performance may
degrade and the load constraints constraints may not be enforced. To cope with these
shortcomings, the load alleviation system has to be robust to noise factors and uncertainties.

Model predictive controllers are inherently robust. As discussed in [118], under some
conditions, the predictive controller obtained from the solution of a nominal MPC problem
confers robustness to the closed-loop system to sufficiently small bounds of uncertainties.
However, to guarantee stability and constraint satisfaction in a wider range of unmeasured
disturbances, the knowledge about uncertainty can be systematically taken into consideration
in the design of MPC controllers. Designs following such an approach are referred to as robust
MPC designs.

Typical approaches for robust MPC include tube-based and scenario-based MPC. The
former consists of a form of feedback MPC in which a policy, i.e., a sequence of control laws,
is obtained online as a solution to the optimal control problem. The controller uses a tube
whose central-path is obtained from the nominal uncertainty-free MPC solution. The tube,
which is used to attenuate the effect of uncertainties, is obtained by adding to its center a
pre-computed invariant set [119, 120, 121]. Tube-based MPC designs often assume that the
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disturbance or uncertainty lies inside a compact convex set that contains the origin.
MPC via scenario optimization (MPCS), on the other hand, assumes only boundedness

of the uncertainty set [122]. In this approach, the information on the statistics of the uncer-
tain parameters and disturbances is exploited to create a randomized algorithm that ensures
constraint enforcement with a probability higher than a user-defined value [123]. The algo-
rithm relies on solving the optimal control problem for a finite number of randomly chosen
instances (i.e., scenarios) of the uncertainty, rather than for all possible outcomes. Appendix
D presents a review on MPCS.

In the context of load alleviation system design for FA and VFA, a single MPC controller
that is capable of robustly enforcing constraints on different configurations of an airliner is
desirable. As mentioned in Section 2.4, the XRF1 model can have different mass configura-
tions which affects its aeroservoelastic response. Chapter 4 will discuss the controller design
in this situation.

The approach presented in the next section builds upon the general idea of scenario-based
optimization to handle the unknown mass-related parameters. Since only a few scenarios
for the mass cases are known, and the convexity of the model with respect to the uncertain
parameters are not guaranteed due to its nonlinearity, the flexibility of MPCS regarding the
uncertainty set seems advantageous.

3.4.1 Time-distributed scenario-based MPC for MLA

Let δ ∈ ∆ represent the uncertain parameters in the aircraft dynamics, such as the unknown
mass properties, and ∆ the bounded set of all possible scenarios. The discrete-time linearized
uncertain aircraft dynamics around a trim condition is represented by

∆xk+1 = Ad(δ)∆xk +Bd(δ)∆uk, (3.122)

∆yk = Cd(δ)∆xk +Dd(δ)∆uk. (3.123)

The objective is to design a linear MPC controller, similar to the one discussed in Section
3.1.2, that stabilizes the system and enforces constraints for all δ ∈ ∆. The constraint sets
are still the ones defined in Eqs. 3.5 and 3.14, but now they depend of δ, i.e., X(εk,s, δ) and
U(δ). It is assumed that Assumption 1-4 in Appendix D hold. In particular, that there exists
terminal gain Kf that renders the origin of the system in Eq. 3.122 stable for all δ ∈ ∆. The
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OCP with quadratic cost is formulated as follows:

min
ννν,∆x,εεεs

max
δ∈∆

{
VN(xk, νk, δ) =

N−1∑
k=0
||∆xk||2Q + ||∆uk||2R + µεs,k

}
(3.124)

s.t. ∆xk+1 = Ad(δ)∆xk +Bd(δ)∆ukk for k ∈ Z[0,N−1].∀δ ∈ ∆ (3.125)

x0 = x (3.126)

uk = Kfxk + νk for k ∈ Z[0,N−1] (3.127)

gc(xk+1, uk, δ)− 1ncεs,k+1 ⪯ 0 for k ∈ Z[0,N−1],∀δ ∈ ∆ (3.128)

εs,k ≥ 0 for k ∈ Z[1,N ], (3.129)

where gc : Rnx × Rnu × ∆ → Rnu is a C2 convex function representing the state, input
and output constraints, νk ∈ Rnu is an incremental control action calculated by the MPC
controller, and ννν ∈ RNnu is the vector that concatenates the values of νk in the prediction
horizon.

Theorem 1 in Appendix D defines the minimum number of samples to reach a desired
reliability level in the design of an MPCS controller for the OCP defined in Eqs. 3.124-3.129.
An explicit bound on the value of M in Eq. D.11 is given by [122]:

M ≥ 2
(1− p)

(
log(β−1) + d− 1

)
. (3.130)

For large-scale problems, such as the control of flexible aircraft, the required amount of
samples may be substantial. For instance, the MPC controller designed in [107] had 400
decision variables. For p = 0.99 and β = 10−9, Eq. 3.130 returns M ≥ 8.4 × 104. The
resulting OCP would be impractical for real-time implementation due to the large number
of constraints.

Furthermore, for the load alleviation application considered here, generating samples, i.e.,
aircraft models, on the fly for different mass cases can be an arduous task in face of the size
and complexity of the finite element models. Therefore, for this application, usually only a
finite number of pre-computed samples are available.

In view of these challenges, the traditional MPCS is modified to handle the different
mass cases in the load alleviation system design. In the present problem reformulation,
the assumptions 1-4 in Appendix D still hold. Let ∆M̄ ⊂ ∆ be a subset of the original
uncertainty set such that |∆M̄ | = M̄ << M , where M̄ ∈ N++, and M is obtained from
Eq. 3.130 for some high reliability level p and some low probability level β. The M̄ samples
in ∆M̄ may be, for example, the most likely conditions to happen among all possible elements
in ∆. For the load alleviation system considered here, these M̄ samples will be the different
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mass cases.
Define ΘM̄ as the set of linear systems associated with each sample in ∆M̄ , i.e.,

ΘM̄ = {(A(δ), B(δ), C(δ), D(δ)) : δ ∈ ∆M̄} . (3.131)

An element in ΘM̄ associated with sample δ(i) is denoted by Θ(i)
M̄

and forms the linear system
in 3.122-3.123. For the application considered here, Θ(i)

M̄
is the linearized aircraft dynamics

with respect to the same trim condition for all i ∈ N[1;M̄ ].
The OCP in 3.124-3.129 is then reformulated with the M̄ samples in ∆M̄ . Note that

resulting OCP does not satisfy Theorem 1, and therefore its solution is not necessarily
feasible for OCP 3.124-3.129. On the other hand, the solution will be feasible for all relevant
realizations of δ selected based on engineering judgment.

Even though the proposed approach reduces significantly the number of constraints in
the OCP in comparison to the traditional approach forMPCS, the simultaneous enforcement
of constraints for all models in ∆M̄ can still be a hard task, especially for flexible aircraft
for which the control computation time is restricted to only a few milliseconds (e.g., 10-30
ms [43]). The constraint aggregation methods discussed in Section 3.3.3 can be employed to
reduce the computational burden, but if M̄ is large, the solution may be too conservative
or numerical issues may arise due to the number of nonlinear constraints. To circumvent
such a problem, the set of constraints can be broken into smaller groups that are enforced
separately at each MPC computation time. This is equivalent to distributing constraints
over time. In this way, the size of the working set of constraints can be capped based on
the computational restrictions. Constraint aggregation can then be applied to each group
separately to reduce even more the computation time.

Let Nm be the number of models extracted from ΘM̄ to form a group of constraints, and
let Rd be the number of groups. Define the following sets:

Ij =
{
i ∈ N++ : Θ(i)

M̄
is in group j

}
where |Ij| = Nm, (3.132)

Xall ≜ {s : gc(xk+1, uk, δ)− 1ncεs,k+1 ⪯ 0, VN(xk, νk, δ)− α ≤ 0,−εs,k+1 ≤ 0,

∀k ∈ N[0;N−1],∀δ ∈ ∆M̄

}
,

(3.133)

Xj ≜
{
s : gc(xk+1, uk, δ

(i))− 1ncεs,k+1 ⪯ 0, VN(xk, νk, δ(i))− α ≤ 0,−εs,k+1 ≤ 0,

∀k ∈ N[0;N−1],∀i ∈ Ij
}
,

(3.134)
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X̄j ≜

{
s : max

{
max

k∈N[0;N−1],i∈Ij

{
gc(xk+1, uk, δ

(i))− 1nc , VN(xk, νk, δ(i))− α,

−εs,k+1}} ⪯ 0} .
(3.135)

where α ∈ R. Note that Xj = X̄j, however, the latter can be described with fewer constraints.
In fact, X̄j is described by either the constraint that has the maximum value for some feasible
point, or by the set of active constraints. One could think of X̄j the set obtained after
applying constraint aggregation to set Xj using the maximum-value function. In the next
developments, the set X̄j will be constructed using information of the future trajectory and
control sequence computed by previous MPC solutions. In this way, constraints associated
with a model Θ(i)

M̄
that was used in a previous iteration, but is not contained in the group

of models considered at the current iteration, can be taken into account by replacing them
with the predicted maximum constraint or set of active constraints. In doing so, constraint
violations for model Θ(i)

M̄
should be avoided. Since the set of maximum or active constraints

changes as new outputs are received and new predicted trajectories are generated, the set X̄j
will be kept for only Rd iterations, referred to as the constraint window, and then replaced
by newer sets. The resulting OCP is written in epigraph form as follows:

min
s

α + µ1TNεεεs
s.t. s ∈ F (3.136)

where

 F= Xall, if 0 ≤ t < Rd − 1
F= Xt ∩

(
∩t−1
j=t−Rd+1X̄j

)
, if t ≥ Rd − 1

(3.137)

where t ∈ N is the current discrete time. Figure 3.10 shows a schematic of the proposed
method. Denote the predicted state value at time k based on information at time t by x(k|t),
and the true state by x(t).Let s∗ =

[
vT∗

0 , . . . , vT∗
N−1, α

∗, εεεT∗
s

]T
be the optimal solution to OCP

3.136 at time t∗. The first element of the control sequence, v∗
0 is then applied to the system,

which evolves to state x(t∗ + 1). Since the following is true

x(t∗ + 1) = x∗(t∗ + 1|t∗) (3.138)

= (A(δ(i)) +Kf )x(t∗|t∗) +B(δ(i))v∗
0 (3.139)

then

v∗
0 ∈ Xt∗ ∩

(
∩t∗−1
j=t∗−Rd+1X̄j

)
= ∩t∗j=t∗−Rd+1Xj (3.140)

=⇒ x∗(t∗ + 1|t∗) ∈ ∩t∗j=t∗−Rd+1

(
∩i∈Ij

X(εk,s, δ(i))
)

(3.141)

=⇒ x(t∗ + 1) ∈ ∩t∗j=t∗−Rd+1

(
∩i∈Ij

X(εk,s, δ(i))
)
. (3.142)
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Figure 3.10: Time-distributed constraints.

Therefore, x(t∗ + 1) satisfies constraints for all δ ∈ ∆M̄ as long as the constraints associated
with model Θ(i)

M̄
were in one of the groups within the constraint window, for all i ∈ N[1,M̄ ].

This is easily enforced by the appropriate construction of the groups. The groups can be
formed such that all models in ΘM̄ appear in the constraint window in the same frequency.
However, one can exploit the underlying probability distribution of the elements in set ∆M̄ to
pick the Nm models Θ(i)

M̄
whose constraints will form a certain group. In this way, constraints

associated with the cases that are more likely to happen will be enforced more often than
constraints for the other cases.

3.4.2 Implementation

A procedure to implement the modified MPCS with time-distributed constraints is given in
Algorithm 1. If the constraints gc(x, ν, δ) are linear, then the OCP in 3.136 is a quadratically
constrained quadratic program (QCQP). Note that if the stage cost does not depend on δ,
i.e., VN(xk, νk, δ) = VN(xk, νk), then the OCP is a QP. This will be the case, for example,
for the LA governor architecture presented in Section 3.2.2. An example of the application
of this approach with the LA governor will be presented in Chapter 4 for designing a MLA
system for XRF1 with different mass configurations.
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Algorithm 1 MPCS with time-distributed constraints
Inputs: x0,Tf ,N ,Rd,Nm,Q,R,ΘM̄ , Kf constraints
Outputs: uk,xk

1: procedure MPCS-TDC
2: while t < Tf do
3: if t < Rd − 1 then
4: F←− Xall
5: else
6: Pick Nm models from ΘM̄

7: Form set of constraints Xt
8: F←− Xt
9: for j = t−Rd + 1, t−R− d, . . . , t− 1 do

10: F←− F∩ X̄j

11: end for
12: end if
13: Solve OCP 3.136 with constraints F to obtain s∗

14: Identify maximum or active constraints at s∗

15: Form set X̄t
16: uk = Kfxk + v∗

0
17: Apply uk to plant to obtain xk+1
18: t←− t+ 1
19: end while
20: end procedure

3.5 State Estimation

The feedback control laws that presented in Section 3.2 depend on the state vector x at a
certain discrete-time k. Such an information, however, is not available in practice because
not all states are measured by the sensors, besides the fact that the dynamics and sensor
measurements are corrupted by noise. A Kalman filter is then designed for real-time state
estimation.

In this work, an observer is designed to estimate the states of a reduced low-order linear
approximation of a high-order nonlinear system. The full order nonlinear system is described
by Eqs. 2.27-2.29. The model used for observer design is obtained through the discretization
of system and subsequent model order reduction. The resultant discrete-time reduced-order
linear model given by:

∆xr,k+1 = Adr∆xr,k +Bd
r∆uk + wk, (3.143)

∆yk = Cd
r∆xr,k +Dd

r∆uk + vk, (3.144)
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where the terms wk ∈ Rnxr and vk ∈ Rny are, respectively, the associated process and
measurement noise representing uncertainties in the model 3.143-3.144. Let the sequences
{wk} and {vk} be realizations of uncorrelated zero mean white Gaussian processes {Wk} and
{Nk}, respectively, such that Wk ∼ (0, Qw) and Nk ∼ (0, Rv), where Qw ∈ Rnxr×nxr and Rv ∈
Rny×ny are known covariance matrices. These matrices can be obtained from experimental
data, sensor specifications provided by manufactures, or simulations. A procedure to tune
these matrices based on UM/NAST data is proposed in Appendix E.

The objective is to design a state observer that minimizes the mean squared error (MSE)

MSE = E[||∆xr,k −∆x̂r,k|k||2], (3.145)

where E[ ] is the expected value and ∆x̂r,k|k ∈ Rnxr represents the estimated state vector
based on outputs. The Kalman filter gives the optimal solution to this problem. In the
recursive formulation, the Kalman filter observer performs a 1-step prediction:

∆x̂r,k|k−1 = Adr∆x̂r,k−1|k−1 +Bd
r∆uk, (3.146)

which is then corrected based on the current sensor measurement yk:

∆x̂r,k|k = ∆x̂r,k|k−1 +Kk

(
∆yk − Cd

r∆x̂r,k|k−1 −Dd
r∆uk

)
. (3.147)

The matrix Kk is the Kalman filter gain at time k, which is calculated as follows:

Kk = Pk|k−1C
T
(
Cd
rPk|k−1C

d
r

T +Rν

)−1
(3.148)

Pk|k−1 = AdrPk−1|k−1A
d
r

T +Qω (3.149)

Pk|k =
(
Inxr −KkC

d
r

)
Pk|k−1. (3.150)

In the equations above, Pk|k represents the a posteriori estimate of the covariance matrix of
the state estimation.

When k →∞, Kk → K∞ where K∞ ∈ Rnxr×ny is given by

K∞ =
(
AdrP∞C

T
) (
Cd
rP∞C

d
r

T +Rv

)−1
, (3.151)

where P is solution to the discrete-time algebraic Riccati equation:

AdrP∞A
d
r

T − P∞ − AdrP∞C
d
r

T
(
Cd
rP∞C

d
r

T +Rv

)−1
Cd
rP∞A

d
r

T +Qw = 0. (3.152)
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The error êk = ∆xr,k −∆x̂r,k|k dynamics for the case when ∆uk = 0 is then given by

êk+1 = (Adr −K∞C
d
r )êk, (3.153)

which is stable provided that the pair (Adr , Cd
r ) is detectable and the pair (Adr , Q1/2

w ) is stabi-
lizable.

Once the estimated states are available, the control action is computed based on the
certainty equivalence property, i.e., it is obtained as the same as would be computed in the
absence of additive noise.

Next, results of numerical simulations to illustrate the application of the proposed state
observer are presented. The simulations are implemented using the XRF1 model built in
UM/NAST.

To design the state observer, one INS and twenty-four IMUs were placed on the aircraft
fuselage, wing, tail and pylons using the UM/NAST Sensors module. The sensors were
evenly distributed on these structures and the number of IMU sensors was selected as the
smallest one that made the reduced-order model fully observable.

The LA governor architecture was designed to track a flight-path angle command sig-
nal while keeping the curvature at critical stations on the wing within safety limits. The
load alleviation is performed by deflecting the outer ailerons and elevators. The complete
description of the MLA system can will be presented in Section 4.

The following sensor channel uncertainties were considered:

1. Load factor sensor uncertainty: ±0.15 g

2. Gyros uncertainty (angular rates): ±1 deg/s

3. Calibrated airspeed uncertainty due to exogenous disturbances: ±8 kt and ±25 kt

4. Mach number uncertainty due to exogenous disturbances: ±0.025 and ±0.05

5. Altitude uncertainty due to exogenous disturbances: ±1500 ft

6. GNSS receiver uncertainty (in local North-East-Down position): ±10 m

To incorporate such uncertainty, a zero-mean Gaussian distribution approximation was used.
The standard deviation was chosen as one fifth of the maximum uncertainty range for each
sensor. For instance, the standard deviation attributed to gyros was 1/5 deg/s. The corre-
sponding distribution is shown in Fig. 3.11a. In this way, more than 99.99 % of realizations
of the assigned Gaussian distribution is within the expected uncertainty range (e.g.: ±1
deg/s for rate-gyros).
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To account for nonlineariries, model order reduction and discretization errors, the proce-
dure presented in Section E was applied. A series of eight closed-loop nonlinear trajectories
were computed in UM/NAST for different flight-path angle references. The recorded state
and output time histories were then used to estimate Q̂w and R̂v by approximating the
estimation error by a Gaussian distribution. Figure 3.11b shows an example obtained for
one of the reduced-order model states. Note that the resulting Gaussian distribution has a
non-zero mean.

The resultant steady-state Kalman filter along with the LA governor were implemented in
UM/NAST. The results of a closed-loop nonlinear simulation are shown in the next results.
The objective was to track a 4-degree flight-path angle reference while keeping the out-of-
plane curvature at the wing root below 3×10−4 1/m. A Monte Carlo analysis was performed
with 100 sample trajectories.
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(a) Gyros uncertainty. (b) Uncertainty in reduced order state #104.

Figure 3.11: Examples of approximation of sensor and process noise by Gaussian distribu-
tions.

Figure 3.12 shows the left wing root curvature and corresponding bending moment. The
gray curves represent individual realizations of the outputs, while the black curves repre-
sent their statistics (solid line is the mean while the dashed line is the standard deviation).
The blue curve is the trajectory obtained when no curvature constraints are enforced, i.e.,
the MLA system is deactivated. For all simulations in which the constraints were enforced,
there was a significant load reduction. The mean result shows that there is a small con-
straint violation, possibly due to the model mismatch between the reduced order linear
model used for prediction and the nonlinear plant not entirely capture by the proposed
procedure. Nevertheless, the overall performance of the MLA system was satisfactory, and
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Figure 3.12: Out-of-plane curvature and bending moment on left wing root.

the constraint violation could be mitigated by constraint tightening. Figure 3.13 shows the
reference command computed by the LA governor, which was fed into the inner loop, and
the corresponding flight-path angle time history. Note that the variation of the computed
reference when the MLA system is active was greatly affected by the measurement noise.
However, such dispersion did not result in a significant deviation from the mean flight-path
angle trajectory. The control inputs to perform such maneuver are shown in Fig. 3.14. The
average outer aileron deflection to perform MLA was below 10 degrees. In all simulations,
the outer aileron returned to the trim condition when there was no danger of violating
constraints.
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Figure 3.13: Flight-path angle reference and time history.

Figure 3.14: Control inputs time histories.
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CHAPTER 4

Maneuver Load Alleviation

The demonstration that critical loads on commercial flexible aircraft do not exceed specified
limits is part of the certification process to ensure structural integrity throughout the oper-
ation of the vehicle. For such purpose, maneuver load alleviation (MLA) can be integrated
into the flight control system (FCS) to coordinate control effectors capable of shifting the
load distribution on the aircraft structure in order to provide both performance and safety.
Constrained control techniques align well with load alleviation objectives due to their ability
to enforce pointwise-in-time constraints on the loads and actuation of control effectors.

4.1 MLA System Requirements

The main requirements of an FCS with MLA capabilities for a large transport flexible aircraft
are:

1. Track defined command signals and meet response specifications while ensuring stabil-
ity during operation.

2. Keep loads at critical stations within pre-defined limits.
Load attenuation between 20% and 33%. Even if attenuation above 33% can be
achieved, it cannot be accounted for in structural design, since the structure itself
should be able to sustain a certain load profile without an MLA system [7].

3. Minimize the effect of the MLA system on the nominal trajectory of the aircraft.
Altitude deviation should be less than 250 ft (76.8 m). FCS should generate a com-
pensatory control input to counteract the pitching moment due to the MLA actuation.

Secondary requirements include:

4. Actuator rates should be limited to 45 deg/s.
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5. Design should take into consideration different mass cases, center of gravity positions,
fuel and payload re-partitions, and flight conditions.

6. Failure mode handling.
MLA system should be robust against actuator and sensor failures.

These requirements apply to the aircraft category CS25 as defined in the European Union
Aviation Safety Agency [7]. Modifications in limits and allowed deviations may change for
other aircraft categories.

As part of the certification campaign, the aircraft is required to show that it is able
to perform certain maneuvers while preserving structural integrity. The maneuver stretched
vertical (MVS) is the one usually considered when evaluating the MLA system. This maneu-
ver consists in, from a leveled flight at 1g condition, applying the following stick trajectory:
(i) push the pilot stick with a sine shape until a load factor (nz) of 2.5g is reached, then
(ii) release to turn back to 1g with a sine-like function [124]. In this work, to simulate the
stick input, an equivalent pitch rate command (Fig. 4.1a) is fed to the tracking controller
described in Section 3.2, such that the resultant vertical load factor at the aircraft nose
follows the desired profile, as shown in Fig. 4.1b.
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(b) Vertical load factor at aircraft nose.

Figure 4.1: MVS maneuver.

Another maneuver considered in this work for assessing the performance of the MLA
system is a step change in the flight path angle from the trim condition (0 deg) to 4-8 deg.
These are typical values commanded during flight by the pilot when changing altitude, and
differently from the MVS maneuver, has a sharp change in the tracked reference value.
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4.2 MLA System Design

The MLA system design to meet the requirements presented in Section 4.1 is based on the
architectures described in Section 3.2. The requirements can be satisfied as follows:

1. Trajectory tracking:
The tracker controller with integral action (the MPC itself in the MPC architecture,
or the nominal (LQ-I) controller in the LA governor architecture) will be responsible
for changing the aircraft attitude and speed to follow the trajectory commanded by
the guidance system.

2. Keep loads within limits:
Load constraints can be directly incorporated into the MPC design and be enforced
pointwise-in-time in order to keep them within the desired bounds. The modeling of
these constraints will be discussed in Section 4.2.1.

3. Minimize trajectory deviation:
This can be achieved by the proper selection of gains in the controllers. The penalty
on the tracking error in the MPC architecture, or in the deviation of the generated
trajectory by the LA governor architecture with respect to the reference value, should
be high to minimize trajectory deviations due the actuation of the MLA system.

4. Actuator rate limits:
A constraint can be added to the MPC problem on the upper and lower bounds on the
control deflection rate.

5. Design for different aircraft configurations:
The scenario-based MPC presented in Section 3.4 can be used to design a single con-
troller that can handle multiple aircraft configurations.

6. Failure mode handling:
Redundancy of actuators and sensors is the standard approach to handle failures. This
can be achieved by the proper selection of these components, as it will be discussed in
Section 4.2.2 and 4.2.3. However, a systematic way to detect failure and design MPC
controllers for failure handling is out of the scope of the work presented in here.

The MLA objective considered in this work is to keep the loads on the aircraft below the
critical ones. To this end, the reduction of peak loads with respect to the trim condition
when the vehicle performs the maneuver is sought. The minimization of the average loads
during the maneuver to increase fatigue life, similar to what was done in Ref. [14], is not part
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of the MLA objective. The out-of-plane bending moment is the main critical load considered
here. This is because such load is usually connected with the lowest aeroelastic frequency,
which is more likely to couple with the rigid body modes. Even though not shown in here,
the reduction of in-plane and torsion moments would also be possible with the architectures
in Section 3.2.

The reduction of critical loads on both wing and horizontal tail plane (HTP) are desirable
when performing MLA in a transport aircraft. The inclusion of the latter into the controller
design is justified by the increase in bending moment on the tail root due to the actuation
of the MLA system on the wing. Such an increase is due to the higher elevator deflection to
mitigate trajectory deviation due to the reduction of pitch moment caused the deployment
of the flaps or ailerons on the wing while alleviating loads on that structure.

The next section will discuss how to model load constraints in MLA, the selection of
control surfaces to enforce these limits, and the sensors for feedback control.

4.2.1 Modeling Constraints in MLA

In MLA systems, the aircraft loads are alleviated by deflecting the control surfaces pro-
portionally to some monitored parameters (e.g., load factor or wing curvature), which are
obtained from sensor measurements. While the load factor is a usual choice of a monitored
parameter in traditional MLA systems, this parameter only captures the transient behavior
of loads during maneuvers. For instance, pitch-up maneuvers performed at a slow rate may
develop small to moderate accelerations that do not trigger the MLA system. However, the
aerodynamic forces that build up as the angle of attack gradually increases can result in
significant structural loads.

An alternative approach to perform MLA is by monitoring the curvature at critical sta-
tions, since this parameter is directly connected to the magnitude of loads at those stations.
Indeed, considering the wing modeled as an Euler-Bernoulli beam, the axial strain at a
spanwise station located at distance y and deflected by z from its neutral position is given
by

ϵyy = −κxz, (4.1)

where κx is the curvature about the x axis. The resultant bending moment Mx(y) at wing
station y is given by:

Mx(y) = EIxx(y)κx, (4.2)

where EIxx(y) is the out-of-plane bending stiffness at wing station y.
Although it is possible to impose constraints on the function Mx(y) to guarantee that

the bending moment is within the specified limits at all stations on the continuous wing
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model, the resultant problem would be of infinite dimensionality. As a result, conventional,
finite-dimensional optimization methods could not be applied to solve the problem. Finite
element methods are usually used to model the dynamics in this kind of structure. In these
methods, the continuum is represented by a finite number of degrees of freedom by means
of a collection of elements that are connected according to some rule or function. While this
circumvents the infinite dimensionality problem by creating a finite set of elements upon
which constraint can be imposed, the cardinality of the set is usually of high order to give
an accurate representation of the continuous model. Therefore, imposing constraints at each
element of the discrete model would not be practical from a numerical perspective.

The set of constrained stations can be reduced by identifying the critical stations, i.e., the
stations that are subject to the highest loads during maneuvers in comparison to adjacent
stations. For instance, Eq. 4.1 and 4.2 indicate that a uniform wing (i.e., all properties such
as EIxx(y) are constant in the spanwise direction) will develop the highest bending moment
at the root. Therefore, by imposing constraints on the curvature at that station only, one
would guarantee that the moments at all other stations along the wing are within the specified
limits. The same analysis is possible, even tough more involved, for non-uniform wings. For
these, the properties are not constant along the span and therefore the critical stations may
not be located at the root, and there may be multiple critical stations. To identify these
stations, open-loop simulations of longitudinal and/or lateral maneuvers can be performed
and the moments and loads at each station monitored. The following procedure is proposed:

1. Define typical maneuvers, inputs or disturbances that the vehicle is usually subject to
during operation or extreme conditions. For example, step or doublets inputs on the
control surfaces that will generate significant accelerations.

2. Run open-loop simulations for each condition specified in 1. Monitor the loads, such
as bending moment or shear force, at each station of the model.

3. Identify the stations that develop the highest loads for each condition simulated in 2.
These stations will form the set of critical stations.

4. For each critical station, define the maximum and minimum load limits according to
some safety specification or structural analysis.

The procedure above will define a reduced set of stations to impose constraints on their out-
of-plane curvature. Note that the enforcement of constraints on the curvature is equivalent to
performing shape control for achieving load alleviation. Figure 4.2 shows the critical stations
of XRF1 obtained using the procedure described above based on lateral and longitudinal
maneuvers. The same stations are also critical for the XRF1-HARW configuration.
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Figure 4.2: Critical stations in XRF1.

The out-of-plane curvature constraints are usually upper and lower bounds on this vari-
able, which is connected to the maximum magnitude of the allowed loads (e.g., the yielding
load of the member plus a safety factor). This information is usually obtained from an
structural strength analysis that precede the control design stage. Such information was
not available for the aircraft models considered in this work (Section 2.4). Therefore, in the
cases considered in this Chapter, the curvature limits were illustrative numbers selected to
demonstrate the performance of the control system.

4.2.2 Control Effectors for MLA

The selection of the set of control effectors to perform load alleviation will depend on the
aircraft model for which the system is being designed. In general, extra degrees of freedom
are desirable for increasing the authority in controlling the shape of the vehicle and mitigate
the use of effectors uFCS which could cause trajectory deviation. Furthermore, these extra
degrees of freedom also provide redundancy, which helps with failure handling. Note that
while extra degrees of freedom are optional in the MPC architecture in Section 3.2.1, they
are required by the LA governor architecture in Section 3.2.2 because, by design, effectors
uLA and uFCS should be independent.

For controlling the out-of-plane bending moment near the wing root, control surfaces
placed in the mid and outboard section of the wing can provide higher authority due to
the longer moment arm. However, control surfaces close to the wing tip should be avoided
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because of the reduced lift generated at that wing portion due to three-dimensional aerody-
namic effects, and because control surfaces at this location are more likely to suffer control
reversal. While the same rationale applies to the selection of control surfaces for load allevi-
ation on the HTP, conventional aircraft configurations usually do not have multiple control
surfaces on the tail. Therefore, the elevator is usually the only control surface used for
alleviating loads on the HTP.

In the XRF1 and XRF1-HARW aircraft models (see Section 2.4), the main control surfaces
used for load alleviation on the wing are the left and right outer ailerons (δoal and δoar,
respectively) working as elevons, and the flaps (δfl):

uLA =
[
δoal δoar δfl

]T
(4.3)

In X-HALE, the control surfaces used for load alleviation are the left and right outer tail
planes (δT3 and δT4, respectively):

uLA =
[
δT3 δT4

]T
. (4.4)

The other control surfaces available in these vehicles are part of effectors uFCS that are
used for speed and attitude control.

4.2.3 Sensors for MLA

Sensors used in MLA applications include wing deflection sensors, accelerometers, strain
gauges and wing angle of attack sensors [16]. The next sections describe these devices.

4.2.3.1 Strain Gauges

Foil strain gauges can be placed at the critical stations on the aircraft wing and HTP where
the load constraints are enforced. The outputs of these sensor can be used to directly
monitor the loads on these stations during flight. The use of strain gauges for feedback
control, however, is usually avoided in commercial aircraft. These sensors are known for
having reliability issues and difficult calibration [125].

An alternative to foil strain gauges are optical fiber monitoring systems, which provide
greater reliability. However, these systems are considerably more expensive than foil strain
gauges.
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4.2.3.2 Inertial Sensors

Inertial sensors are sensors based on inertia and relevant measuring principles, such as ac-
celerometers and gyroscopes. These sensors can be used to recover the local acceleration
and angular rates during a maneuver at different stations of the flexible wing or HTP. From
angular rates, the local attitude in Euler angles can also be obtained. These measurements
can then be used to estimate the shape of the flexible structure.

Inertial sensors will be the main sensors used for feedback control in the MLA systems
designed in this work. One INS and thirty IMUs were placed on the XRF1 and XRF1-
HARW aircraft fuselage, wing, tail and pylons, as shown in Fig. 4.3. The sensors were
evenly distributed on these structures and the number of IMU sensors was selected to make
the ROM fully observable. This number is slightly bigger than the minimum to render
the system observable, and the extra sensor provide redundancy in case of failure. The
nonlinear kinematics of sensor attached to a flexible structure simulated using UM/NAST-
Sensor module. In this software, each IMU sensor provides linear accelerations, angular
velocities, and Euler angles. The INS sensor provides, in addition to these outputs, linear
velocities and inertial position.

Figure 4.3: Sensor placement in XRF1 and XRF1-HARW.

4.2.3.3 Other Sensors

Shape estimation during flight can be done using cameras. An example of such an estimation
system has been proposed by Lustosa et al. [126], in which gyroscopes and cameras are used

92



together to reconstruct the shape of very flexible wings undergoing large and nonlinear
deflections. The use of cameras in flight, however, is still challenging due to the different
lighting conditions and geometries that the aircraft wing is subject to during flight, which
can preclude the accurate detection of markers. For this reason, camera-based systems are
not considered in this work.

Other sensors used in FCS systems that can also be included in MLA systems are pitot
tubes, alpha vanes, control surfaces encoders, magnetometers, among others.

4.3 Numerical Results

This section presents several numerical simulation results to illustrate and verify the proposed
MLA systems. Furthermore, the MPC implementation strategies discussed in Chapter 3 are
also showcased in the next results.

Five examples are shown in here. Firstly, a comparison between the MPC architecture
and the LA governor architecture for MLA is presented based on results for the X-HALE
aircraft. This aircraft model was chosen to demonstrate these control architectures for having
the highest degree of flexibility among the models in Section 2.4. Next, simulation results
were generated for the XRF1 and XRF1-HARW models, which better represent a flexible
and very flexible airliner. MLA examples using constraint aggregation are shown, as well as
using the scenario-based approach for handling different mass configurations. Results using
the T2B and B2T ROMs for MPC design are also presented.

In all results shown next, UM/NAST was the primary tool used for design and simulation.
This includes the UM/NAST Sensors and Controllers modules presented in Section 2.2.

4.3.1 Comparison between MLA System Architectures

In this section, the results of the numerical simulations of the two control architectures
proposed in Sections 3.2 based on linear MPC are presented [127]. The linearized full-order
model and ROM of X-HALE are used for control design. To obtain the ROM, the MPC
prediction models were reduced from 128 states to 70 states using balanced residualization.

In the simulations, the aircraft flies in closed-loop configuration at the trim condition for
1.0 s and then a pitch up maneuver is commanded. The objective is to reach the flight path
angle of rγ = 8 deg while maintaining the same speed, and keeping the heading and side-slip
angles close to zero.

The constraints imposed on the control problem are shown in Table 4.1. Note that the
constraints on the out-of-plane curvature at the wing root are defined according to the
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method discussed in Section 4.2.1, and their limits are chosen according to the variation
allowed with respect to the trim condition. In addition to these constraints, limits on the
control effector values and rates are imposed, and limits on the angle of attack to prevent
stall.

Table 4.1: X-HALE’s output and input constraints on.

Description Min Max Unit
Out-of-plane curvature (κxright

, κxleft
) at wing root

on very flexible aircraft model
0.096 0.110 [1/m]

Angle of attack (α) −10 10 [deg]
Elevator deflection (δT1, δT2, δT3, δT4 ) −30 30 [deg]
Spoiler deflection (δsp) 0 30 [deg]
Differential thrust (δdT ) 50 −50 [rps]
Average propeller rotation (δT ) 20 120 [rps]
Rate of deflection of elevators and spoilers −90 90 [deg/s]
Rate of variation of propeller rotation −50 50 [rps/s]

For both controllers, the sampling rate is 50 Hz and the prediction horizon is 100 steps.
This means that the MPC controllers looks 2 s ahead of the current time to predict constraint
violations and then determine the optimal control action. Full state feedback was assumed.
The solver qpOASES [87] was used, which is an open source C++ code based on an online
active set optimization algorithm.

Figure 4.4 shows the out-of-plane curvature and the corresponding bending moments
at the right and left wing root, and the wing tip deflection for the very flexible X-HALE
aircraft model performing the pitch up maneuver with both control architectures. There was
no constraint violation. However, the ROM in the LA governor architecture overestimated
the wing curvature, resulting in a greater load alleviation than expected. While the load
alleviation with the full-order model was around 42.7%, it reached 56.5% for the case with
the ROM. When the MPC architecture was used, the load alleviation with either linear
model was approximately 50.7% at each semi-wing. The wing tip deflection was above 10%
in all cases tested, which indicates that the nonlinear effects may not be insignificant, and
consequently the prediction obtained with the linear ROM model may be degraded.

Both control architectures were successful in tracking the commanded references as shown
in Fig. 4.5. For all controllers, the tracking targets were reached within reasonable time, and
with similar performance when either full-order model or ROM was used for prediction.

Figure 4.6 shows control inputs computed by both architectures to perform MLA and track
the references. In both of them, the inner elevators are deflected downwards in order to shift
the lift distribution to the inner portion of the wing, and therefore reduce the root bending
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(a) MPC architecture. (b) LA governor architecture.

Figure 4.4: X-HALE closed-loop simulations for load alleviation using two different control
architectures.

(a) MPC architecture. (b) LA governor architecture.

Figure 4.5: Command tracking performance of the X-HALE.
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moment. In the LA governor architecture designed with the ROM, the overestimation of
the curvature resulted in a larger deflection of the inner elevators to perform MLA. The
outer elevators returned to the trim condition after performing the load alleviation in order
to reduce drag and the impact on the trajectory of the vehicle.

(a) MPC architecture. (b) LA governor architecture.

Figure 4.6: Time histories of control inputs of X-HALE.

Incidentally, the impact of the MLA system on the nominal trajectory was small, below
0.4%, as shown in Fig. 4.7. The impact of the actuation performed by the LA governor
architecture was, in general, greater than the impact in case where the MPC architecture
was used, but still within the acceptable range.

Table 4.2 shows the maximum and average computation time of the optimizer for each
simulation case normalized by the sampling time Ts = 0.02 s. All simulations were performed
on a Dell XPS 15 laptop (Intel i7-7700HQ, 2.8GHZ, 16 GB RAM). The prediction based on
the ROM provided a reduction of the average computation time. The level of reduction was
8.7% and 55.7%, respectively, when the MPC architecture or the LA governor architecture
was used. In general, the MPC architecture had lower computational cost.
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(a) MPC architecture.
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(b) LA governor architecture.

Figure 4.7: Trajectory deviation of the X-HALE.

Table 4.2: Average normalized optimization wall time of MPC for X-HALE

Model MPC LA governor
Full order w/o MLA 0.390 0.380
Full order w/ MLA 1.04 3.34
ROM w/ MLA 0.95 1.48

These simulation results show that both control architectures were successful in achieving
command tracking while enforcing the curvature constraints, resulting in load alleviations
around 42-56% for the VFA. The use of ROMs decreased the average computation time
involved in solving MPC optimization problems, with little impact on the controller’s per-
formance. The MLA systems, when activated, produced negligible changes in the trajectory
of the aircraft, which was the design intent. The MPC architecture showed a slight better
performance in enforcing constraints with the ROM with a smaller computation time. The
LA governor, on the other hand, has the advantage of preserving the nominal FCS as dis-
cussed in Section 3.2.2. Such characteristic may be of interest to airframe manufacturers
that already have a certified FCS for their aircraft.

4.3.2 MLA System for XRF1

Next, simulation results are shown for MLA in XRF1, a representative model of a flexible
airliner. The LA governor architecture with linear MPC is considered here. The controller
design was based on a ROM with 310 states that was obtained from applying balanced
residualization to the 1020-state full-order model. In this simulations, only the outer ailerons
are used for load alleviation on the wing. This simulations also illustrates the use of constraint
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aggregation (Section 3.3)in a MLA system.
The sampling rate used by the LA governor was 50 Hz and the prediction horizon had

100 steps. This means that the MLA governor looks 2 seconds ahead of the current time
to predict constraint violations and then determine the optimal control action. The LQ-I
controllers in the inner-loop system were updated at sampling rate of 200 Hz.

The constraints imposed on the control problem for the MLA governor architecture are
shown in Table 4.3. The constraints on the out-of-plane curvature on the wing and horizontal
tail plane are defined according to the MLA objective discussed in Section 4.2.1. In addition
to these constraints, limits on the angle of attack, and on control effector values and rates
were imposed.

Table 4.3: XRF1 output and input constraints.

Description Min Max Unit
Out-of-plane curvature (κx) at
critical stations on wing

−3.0× 10−4 3.0× 10−4 [1/m]

Out-of-plane curvature (κx)
at critical station on HTP

−5.0× 10−4 5.0× 10−4 [1/m]

Control surfaces deflection
(δoal, δoar, δia, δe, δr)

−30 30 [deg]

Thrust (δT ) 0 60000 [N]
Rate of deflection of
control surfaces

−45 45 [deg/s]

Rate of variation of thrust −1000 1000 [N/s]
Angle of attack (α) −10 10 [deg]

The final QP had 3900 constraints. Following the constraint aggregation procedures (Sec-
tion 3.3), the problem was reformulated with 39 constraints. The SQP was then implemented
to solve the nonlinear program. The solver QPKWIK [88], which is an active set optimiza-
tion algorithm, was used to solve each QP sub-problem. In all simulations, the solver was
warmstarted.

In the simulations presented next, the aircraft starts at the trim condition and then a
pitch up maneuver is commanded. The objective is to reach a flight path angle of rγ = 4
deg while keeping the heading angle, side-slip angle and velocity at the trim values.

Figure 4.8 shows the out-of-plane curvature at the left wing and HTP roots for XRF1.
The results shown correspond to simulations without the MLA system (i.e., with only the
nominal controller to track signals), simulations with the linear MPC-based MLA system,
and simulations with the MPC-based MLA system with constraint aggregation. Note that
both MLA systems were able to enforce the constraints on the curvature of the wing and
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Figure 4.8: Out-of-plane curvature and bending moment at wing and horizontal tail root.

HTP, therefore reducing the bending moment at these stations. Constraints at other critical
stations were not active. Figure 4.9 shows the percentage of maximum load alleviation as a
function of spanwise position. Both MLA systems were able to reduce loads at all stations
on the wing and HTP. Smilar results were obtained for the right wing and HTP. Note that
the MLA system with constraint aggregation had higher percentages of alleviation, since
the constraints were tighter than in the linear MPC case as a result of the conservative
approximation of the feasible region provided by the KS function.

Figure 4.10 shows the control effectors time history. The linear MPC-based MLA system
resulted in higher deflections of the inner ailerons used for lateral control. This explains
the drop in the alleviation percentage on the left wing at stations near this control surface,
as observed in Fig. 4.9. Figure 4.11 shows that both autopilot systems were able to track
the desired flight path angle rγ with similar performance. In the figure, the signal rcγ is the
command computed by the MLA governor to avoid constraint violations.

Additional results for the maneuver simulation can be found in Appendix F, including
the moments at the various stations along the wing and HTP.

Table 4.4 resents the maximum and average computation time observed during the simu-
lation. Reductions of 92% and 57% in the maximum and average computation time, respec-
tively, were obtained when the KS aggregation was used. While the computation time even
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Figure 4.9: Maximum bending moment alleviation at wing and horizontal tail as a function
of span position.

with KS aggregation exceeds the time step of 0.02 s, it should be noted that the implemen-
tation of the optimization was not optimized for computational performance.

Table 4.4: Maximum and average computation time of an MPC step.

Max. Avg.
Linear MPC 2.8890 s 0.4176 s
MPC with KS aggregation 0.2358 s 0.1792 s
Reduction 91.8% 57.1%

In practice, the worst-case execution time drives the selection of the processor hardware.
The results presented here indicate that the proposed method can facilitate the real-time
implementation of MPC controllers for large-scale systems, such as flexible aircraft, using
microcontrollers with limited computing power.

4.3.3 MLA System for Different XRF1 Mass Configurations

In this section, results of numerical simulations to illustrate the application of the proposed
scenario MPC-based MLA system in Section 3.4 are presented [128]. The objective is to
perform MLA in the XRF1 aircraft models with different mass cases. The UM/NAST
XRF1 model associated with each mass case was trimmed and linearized at 10 km, 240 m/s.
The next simulations on a Dell XPS 15 laptop (Intel i7-7700HQ, 2.8GHZ, 16 GB RAM).

100



0 5 10

0

5

10
10

4

0 5 10

-1

0

1

0 5 10

-10

0

10

0 5 10

-5

0

5

0 5 10

-20

-10

0

0 5 10

-1

-0.5

0

Figure 4.10: XRF1 control effectors time history.

The LA governor 4.3.2 was used to track a 4-degree flight path angle (a pitch-up maneuver)
while keeping the out-of-plane curvature within the specified limits. The nominal controller,
composed of a combination of linear quadratic regulators with integral action (LQ-I), was
designed to handle all mass cases. To illustrate the need for a robust MPC design, Fig. 4.13
shows that a nominal MPC design based on just one mass case (e.g., OWE) is unable to
avoid constraint violations when applied to an aircraft model with another mass configuration
(e.g., FT8T), resulting in large control surface deflections that lead to an undesired dynamical
behavior.

Therefore, the scenario-based MPC design described in Section 3.4 is used. Note that
the nominal controller stabilizes the origin and provides the gain matrix Kf described in
Section 3.4. The MPC controller was designed with a prediction horizon of N = 100 steps
and sampling time of 0.02 s. Since the prediction horizon is long, there is no need to specify
a terminal set Xf . The resulting QP optimization problem was solved with QPKWIK [88].
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Figure 4.11: XRF1 flight path angle tracking.

0 2 4 6 8 10

-20

0

20

0 2 4 6 8 10

0

1

2

0 2 4 6 8 10

1

1.01

1.02
10

4

Figure 4.12: XRF1 inertial position.

The constraints applied to the problem are shown in Table 4.5. In Algorithm 1, the
constraints were distributed in Rd = 9 groups of Nm = 3 models.

Figure 4.14 shows the out-of-plane curvature at the right wing root and corresponding
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Figure 4.13: Nominal MPC design based on OWE mass case when applied to mass case
FT8T.

Table 4.5: Output and input constraints for XRF1 models with different mass.

Description Min Max Unit
Out-of-plane curvature (κx)
at critical stations

−5.5× 10−4 5.5× 10−4 [1/m]

Control surfaces deflection −30 30 [deg]
Thrust 0 60000 [N]
Rate of deflection of
control surfaces

−45 45 [deg/s]

Rate of variation of thrust −1000 1000 [N/s]

bending moment for all mass cases. Note that each model has a different trim condition.
The constraints were enforced for all models, although conservatively in some cases (e.g.:
model FT8T). Models OWE and F000 had the smallest initial curvature, which did not reach
the limiting value during the maneuver. Therefore, the MLA system remained inactive for
these models. On the other hand, the MLA governor was able to reduce in 30.5 - 57.6%
the loads on the other models, as shown in Tab. 4.6. The percentages presented in Tab.
4.6 were computed having as reference the simulation results for the maneuver without the
MLA system, which are not shown in here.

Table 4.6: Percentage of load alleviation at right wing root

Model OWE F000 FA2M FA2T FA9M FC8T FT8T
% of load alleviation N/A N/A 30.5 40.4 57.6 43.6 42.3
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Figure 4.14: Right wing root out-of-plane curvature and bending moment of XRF1 mass
cases.

Figure 4.15 shows the time histories of the angle of attack, side-slip angle, and flight
path angle. Note that all models reached the desired 4-degree flight path angle. Figure
4.16 shows the orientation angles and angular rates during the maneuver. To develop these
responses, the control effectors time histories shown in Fig. 4.17 were applied to the vehicles.
Note that the outer ailerons, working as elevons, were used as the main effectors to perform
MLA. The elevators were also used as a result of the change of the reference command
(Fig. 4.18) computed by the MLA governor that was fed into the nominal controller. The
elevons were deflected only when there was a danger of violating the curvature constraints.
After performing the load alleviation, they returned to their trim condition. The maximum
elevon deflection was 14.8 deg for the FT8T model. Since the MLA system was not activated
for the simulations with models OWE and F000, the elevons for these models remained at
the trim condition for the entire maneuver.
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Figure 4.15: Angle of attack, side-slip angle and flight path angle of XRF1 mass cases.

Table 4.7 shows the maximum computation time observed for an MPC optimization step
for the nominal MPC (designed based on only one mass case), the conventional scenario-
based MPC in which the constraints for all models are enforced simultaneously, and the
proposed scenario-based MPC with time-distributed constraints. Due to the larger number
of constraints, there was an increase of 45% in the computation time between the nominal
case and the time-distributed approach. Nevertheless, the latter provided a 67% reduction
when compared to the conventional approach. Constraint aggregation methods, such as
the one presented in Section 3.3, can be applied to potentially decrease even more the
computational footprint of the scenario-based MPC controller.

105



Figure 4.16: Euler angles and angular rates of XRF1 mass cases.

Table 4.7: Maximum computation time for nominal and scenario-based MPC approaches.

Formulation Max. [s]
Nominal MPC 1.10
Scenario-based MPC: conventional approach 4.59
Scenario-based MPC: time-distributed constraints 1.51

4.3.4 MLA System for XRF1-HARW using the T2B Model

In this section, the results of numerical simulations to illustrate the application of the MPC-
based MLA system using the T2B ROM for XRF1-HARW are presented. The objective is to
perform the MVS maneuver while maintaining the out-of-plane bending (prescribed by the
curvatures at the critical stations) within prescribed safety limits. The MPC architecture is
used in these simulations.
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Figure 4.17: Control effectors time history of XRF1 mass cases.

For the XRF1-HARW test case, the linearization points correspond to different values of
altitude (h) and Mach number (M), i.e., ζ = [h M ]T , as shown in Tab. 4.8. Each pair
(hi,Mi) is identified by a number from 1 to 96. For each one of them, the corresponding pair
(xi, ui) is a trimmed state-input pair provided by UM/NAST trim solver. The linearized
systems are then obtained using the complex-step differentiation method in UM/NAST.
These linearized systems capture the change in dynamics within the specified flight envelope.

Each linearized model generated by UM/NAST has 1084 states. Such a high number of
states can preclude MPC applications due to the high computational cost. Therefore, model
order reduction is performed through balanced residualization. For XRF1-HARW, nxr = 100
is selected in this report.

The input and output constraints considered in this example are shown in Tab. 4.9. The
out-of-plane curvature constraints on critical stations on the wing and HTP are defined as
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Figure 4.18: References computed by MLA governor (as variations from the trim values).

an equivalent reduction of approximately 30% from the maximum/minimum peak observed
when the MVS maneuver is performed with the MLA system deactivated. The constraints
on the control surfaces deflection and rate are in accordance with typical values found in
actual large commercial aircraft. The rate of deflection of this control surface are chosen
smaller than the other control surfaces to account for the reduced bandwidth of this type of
actuator.

The next XFR1-HARW nonlinear simulations were performed with two different control
surfaces configurations: Configuration 1 uses only the outer ailerons (working as elevons) for
load alleviation; Configuration 2 uses, in additions to the elevons, the flaps, whcih work as
flaperons. The starts at flight condition 54 (h = 8800 m and M = 0.85). In both cases, the
MPC prediction horizon had 50 steps, corresponding to a 1.0 s look ahead into the future. In
addition to the results using the T2B ROM for prediction, simulations were also performed
using the linear MPC design presented, in which the linearized prediction model is fixed at
the beginning of the simulation. The computations were performed on a Dell XPS 15 laptop
(Intel i7-7700HQ, 2.8GHZ, 16 GB RAM). The QP problem was solved using QPKWIK with
warmstarting.
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Table 4.8: Linearization points of XRF1-HARW and their respective label.

Mach
0.80 0.81 0.82 0.83 0.84 0.85

8000 1 2 3 4 5 6
8100 7 8 9 10 11 12
8200 13 14 15 16 17 18
8300 19 20 21 22 23 24
8400 25 26 27 28 29 30
8500 31 32 33 34 35 36
8600 37 38 39 40 41 42
8700 43 44 45 46 47 48
8800 49 50 51 52 53 54
8900 55 56 57 58 59 60
9000 61 62 63 64 65 66
9100 67 68 69 70 71 72
9200 73 74 75 76 77 78
9300 79 80 81 82 83 84
8400 85 86 87 88 89 90

A
lt

it
ud

e
[m

]

9500 91 92 93 94 95 96

Table 4.9: XRF1-HARW output and input constraints.

Description Min Max Unit
Out-of-plane curvature (κx)
at critical stations on the wing

−13.5× 10−4 4.47× 10−4 [1/m]

Out-of-plane curvature (κx)
at critical stations on the HTP

−1.51× 10−4 2.57× 10−4 [1/m]

Control surfaces deflection −25 25 [deg]
Flaperon deflection −25 25 [deg]
Rate of deflection of
control surfaces

−45 45 [deg/s]

Rate of deflection of flaperon −30 30 [deg/s]

Configuration 1:
In configuration 1, the elevons are used to perform load alleviation while the flaperons are
kept at the trim condition. Figure 4.19 shows the rigid body outputs of XRF1-HARW while
performing the MVS maneuver with and without the MLA system. The latter corresponds
to the case when the curvature constraints are not enforced and served as a baseline. The
structural outputs at selected stations are shown in Fig. 4.20. The different color intervals
shown in the background of each subplot identifies the reduced-order subspace onto which the
dynamics was projected. The color code can be read in Table 4.8. In this example, the sub-
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space was switched ten times in the following order: {54, 53, 60, 59, 58, 64, 63, 69, 68, 74, 73}.

Figure 4.19: Rigid body outputs of XRF1-HARW using configuration 1 of control surfaces.

Even though the out-of-plane curvature constraints on the wing and HTP were satisfied,
the flight control system was not capable of accurately tracking the pitch rate command when
these constraints were enforced. A reduction in the pitch rate, with a consequent reduction in
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the developed pitch angle and load factor, resulted in a deviation from the baseline trajectory,
as can be observed in the altitude plot. Nevertheless, reductions of 31.52% in the bending
moment on the wing root, and of 42.93% on the HTP root were obtained. The other critical
stations on the wing had a similar load reduction, but the constraints did not become active.

Figure 4.20: Structural outputs of XRF1-HARW using configuration 1 of control surfaces.
κx: out-of-plane curvature, Mx: out-of-plane moment, ∆z: vertical deflection.
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The significant trajectory deviation can be explained by the reduction in the elevator
input to enforce the MLA constraints, as shown in Fig. 4.21. For the XRF1-HARW model,
the outer elevons alone have low efficacy in reducing the curvature at the wing root, even
with large deflections such as the ones observed in this example. Furthermore, they cannot
compensate for the loss of pitch rate due to the necessary reduction in elevator input to
enforce the HTP constraints, since there are no dedicated MLA control effectors on the
tail. Consequently, the elevators play the primary role in reducing maneuver loads, while
compromising the tracking performance.
Configuration 2:
The flaperon is added to the set of control effectors dedicated to perform MLA in hopes of
minimizing the trajectory deviation. Figure 4.22 and 4.23 show the rigid body and structural
outputs of XRF1-HARW using configuration 2. In this example, the subspace was switched
ten times in the following order: {54, 53, 59.58, 64, 63, 62, 68, 67, 73, 79, 85}. Now, the pitch
rate is close to the reference command, and therefore the pitch angle and altitude have
smaller deviations from the baseline values. The vertical load factor follows a similar trend
as of the MVS profile, but a peak value of 2.9g is developed instead of the desired 2.5g.

The MLA constraints on both wing and HTP critical stations were satisfied. The resulting
maximum bending moment alleviation was approximately 36.5% at the wing root, and 21.9%
and the HTP root. Similar results were obtained for adjacent critical stations. To achieve
such results, the control inputs in Fig. 4.24 were applied to the vehicle. Note that, despite
the fact that the elevator input was reduced, the aircraft was still able to track the pitch
rate command by deflecting the flaperons. The coordination between flaperons, elevons, and
elevators made possible the achievement of both tracking and load alleviation objectives,
in contrast to the results of configuration 1. However, the demanded flaperon deflection is
somewhat large, even though the elevon deflections are now smaller, which can cause an
increase in drag.

In both configurations, the MPC controller designed with the T2B ROM had a simi-
lar performance as the standard linear MPC design with a fixed prediction model. Some
marginal benefits of the T2B ROM prediction model can be observed in a slightly better
signal tracking performance (Fig. 4.19), a lesser conservative constraint satisfaction (Figs.
4.20 and 4.23), and smaller control inputs (Figs. 4.21 and 4.24). It is worth noting that
in both cases the wing and HTP tip displacements, as shown in Figs. 4.20 and 4.23, were
smaller than 10%, indicating that the MVS maneuver may not sufficiently excite geometric
nonlinear effects that would justify the use of the T2B ROM.

On the downside, the MPC design with the T2B ROM has a considerably higher computa-
tional cost. Table 4.10 shows a comparison between the maximum and average computation
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Figure 4.21: Control inputs applied to XRF1-HARW using configuration 1 of control surfaces.

time of an MPC step for the design with a fixed linear model and the T2B ROM. This
substantial increase is due to the necessity of updating the T2B ROM model at each MPC
iteration, in addition to the condensation process, as discussed in Section 4.2. For the stan-
dard linear MPC design, these computations are done offline, thus making it more attractive
to real-time implementations.
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Figure 4.22: Rigid body outputs of XRF1-HARW using configuration 1 of control surfaces.

Table 4.10: MPC step computation time when using the T2B model.

Max. [s] Avg. [s]
Linear MPC 0.3082 0.0319
T2B-ROM MPC 21.99 7.762
Augmentation factor 74.4 243
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Figure 4.23: Structural outputs of XRF1-HARW using configuration 1 of control surfaces.
κx: out-of-plane curvature, Mx: out-of-plane moment, ∆z: vertical deflection.
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Figure 4.24: Control inputs applied to XRF1-HARW using configuration 1 of control surfaces.
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CHAPTER 5

Gust Load Alleviation

Atmospheric disturbances are a problem in aircraft operation due to, among other things,
the undesirable dynamic loads generated that may result in reduction of the airframe struc-
tural life or even catastrophic failure. To overcome these undesirable effects without the
need of structural reinforcements, gust load alleviation (GLA) systems can be incorporated
into the automatic flight control system (FCS). The main objective of GLA systems is
to attenuate loads caused by encounters with gusts or turbulence by using active controls.
GLA systems can reduce loads due to airframe flexibility, decrease levels of acceleration at
particular aircraft stations, and improve flying qualities. Consequently, fatigue life is in-
creased, lightweight high-aspect-ratio designs are allowed, fuel expenditure is reduced, and
flight comfort is enhanced. Furthermore, GLA systems can improve the airworthiness of the
aircraft design in order comply with the standards specified by regulatory agencies.

5.1 GLA System Requirements

The main requirements of GLA systems for large transport flexible aircraft are:

1. Response time after gust detection at the aircraft nose should be at most 50 ms.
This corresponds to the average time between the initial alpha probe measurements at
the aircraft nose until the gust reaches the wing.

2. Actuator rates should be limited to 45 deg/s.

3. Maximum aileron deflection to perform GLA should not exceed 15 deg.
Aileron deflection combining FCS and GLA system inputs should be at most 45 deg.

4. GLA system should not engage at intended changes in the incidence angle.
GLA system should not interfere with the aircraft maneuverability.
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5. Load attenuation between 20% and 33%.
Even though a reduction above 33% is possible, any attenuation above 33% cannot be
accounted for in structural design, since the structure itself should be able to sustain
a certain load profile without GLA systems.

6. Altitude deviation should be less than 250 ft (76.8 m).
FCS should generate a compensatory control input to counteract the pitching moment
due to the GLA actuation.

7. Dynamic actuation of ailerons should be minimized.
Moving the ailerons up and down excessively can potentially cause fatigue issues and
excite structural modes.

8. GLA system should not be activated at medium or low turbulence.

9. GLA system should not engage if alpha correction is less than 1 deg.

10. Design should take into consideration different mass cases, center of gravity positions,
fuel and payload re-partitions, and flight conditions.

11. Passenger comfort should not be compromised.
Even though the structural integrity is the priority in the design of GLA systems, small
load factor should be enforced in to order to preserve passenger comfort throughout
the flight.

12. Failure mode handling.
GLA system should be robust against actuator and sensor failures.

These requirements apply to the aircraft category CS25 as defined in the European Union
Aviation Safety Agency [7].

Similar to the MLA system design presented in Chapter 4, the objective of the GLA
system is to reduce the magnitude of peak loads on critical station of the aircraft.

5.2 Gust Models

During flight missions, aircraft constantly encounter atmospheric disturbances that affect
their motion, such as gusts or turbulence. In general, when the wind profile is continuous,
the atmospheric disturbance is referred to as turbulence, whereas when it consists of more
or less isolated pulses, the single pulse is referred to as a gust. Gust loads are ordinarily
considered to be the result of a change in angle of attack due to a component of gust velocity
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at right angles to the flight path. The net change in angle of attack of the vehicle depends on
both the wind velocity and the airplane motion induced by the gust as the aircraft proceeds
through the gust profile [129].

Design loads for encounters with gusts are a combination of the steady level 1-g flight
loads, and the gust incremental loads including the dynamic response of the aircraft. The
steady 1-g flight loads can be realistically defined by external parameters such as speed,
altitude, weight and fuel load, using static aeroelastic methods [7]. Figure 5.1 shows the
basic elements taken into consideration when performing a gust response analysis.

Atmospheric
motion

Aerodynamic
system

Control
system

Dynamics and
structure

Static flight
loads model

Dynamic
loads

Limit
gust
loads

Static
1g flight

loads

Figure 5.1: Basic elements of the gust response analysis [7].

The atmospheric disturbance encountered by an aircraft can have different sources. The
first type is convective turbulence, the most common source of severe turbulence, which
occurs in and around clouds, especially thunderstorms and cumulus clouds [37, 129]. The
other main type of turbulence, usually less severe, occurs in clear air and can have several
causes. These include wind shear at altitude due to flight through or near the jet stream,
wind shear close to the ground caused by the Earth’s boundary layer, wind flowing over
mountains, and updrafts caused by heating of the air [129].

Some assumptions considered for gust models for loads include:

• The gust field velocity is only space dependent;
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• Isotropic atmosphere;

• The gust velocity is one-dimensional (cylindrical).

There are two common methods for modeling atmospheric disturbances for aircraft design
and simulation, including the design of GLA systems. These are the discrete method, where
the gust is modeled using a one-minus-cosine profile, and the continuous method, where the
gust is modeled as a stochastic process with a known power spectral density [37].

The gust load requirements are presented in the Certification Specifications for Large
Aeroplanes (CS25) [7] in the following sections:

• CS25.341 (completed by AMC 25.341)

– 25.341 (a): Discrete Gust Design Criteria

– 25.341 (b): Continuous Turbulence Design Criteria

– 25.341 (c): Supplementary Gust Conditions for Wing Mounted Engines

∗ 25.345 c1: Round-the-clock Gust
∗ 25.345 c1: Multi-axis Gust

• CS 25.335 (d): Design speed for maximum gust intensity

• CS 25.343 (b) (1) (iii): Design fuel and oil loads

• CS 25.349 (b) Unsymmetrical gust.

The next Sections describe the discrete and continuous gust models. These models have
been implemented in the UM/NAST Gust module.

5.2.1 Discrete Model

The discrete gust idealization provides a representation of individual turbulence as a single or
repeating disturbance with a one-minus-cosine model. Discrete gusts are generally considered
deterministic, have simple forms, and are typically treated in the time domain [39]. For the
purpose of obtaining static gust loads, CS 25.341 specifies the one-minus-cosine shape, which
is given by the following expression :

Ugust = Uds

2

[
1− cos

(
πS

H

)]
, (5.1)

where Uds is the design gust airspeed amplitude, H is the gust length, and S, 0 ≤ S ≤ 2H
is the gust penetration distance, as shown in Fig 5.2. The maximum velocity for a discrete
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Figure 5.2: One-minus-cosine gust model [7].

gust is calculated using a reference gust velocity, Uref , a flight profile alleviation factor, Fg,
and an expression which modifies the maximum velocity as a function of the gust gradient
distance, H. The description in CS 25.341 [7] for each of these parameters are shown below.

• Reference gust velocity, Uref : Derived effective gust velocities representing gusts occur-
ring once in 70,000 flight hours are the basis for design gust velocities. These reference
velocities are specified as a function of altitude in CS 25.341(a)(5) and are given in
terms of feet per second equivalent airspeed for a gust gradient distance, H, of 107 m
(350 ft).

• Flight profile alleviation factor, Fg: The reference gust velocity, Uref , is a measure of
turbulence intensity as a function of altitude. In defining the value of Uref at each
altitude, it is assumed that the aircraft is flown 100% of the time at that altitude. The
factor Fg is then applied to account for the expected service experience in terms of the
probability of the aeroplane flying at any given altitude within its certification altitude
range. Fg is a minimum value at sea level, linearly increasing to 1.0 at the certified
maximum altitude. The expression for Fg is given in CS 25.341(a)(6) by:

Fg = 0.5(Fgz + Fgm), (5.2)
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where

Fgz = 1− Zmo
76200 , (5.3)

Fgm =
√
R2 tan

(
πR1

4

)
, (5.4)

R1 = Maximum landing weight
Maximum take-off weight , (5.5)

R2 = Maximum zero-fuel weight
Maximum take-off weight , (5.6)

Zmo = maximum operating altitude in meters. (5.7)

• Gust gradient distance, H: The gust gradient distance is that distance over which the
gust velocity increases to a maximum value. Its value is specified as ranging from 9.1
to 107 m (30 to 350 ft).

• Design gust airspeed, Uds: Maximum velocities for design gusts are proportional to the
sixth root of the gust gradient distance, H. The maximum gust velocity for a given
gust is then defined as:

Uds = UrefFg

(
H

350

)1/6
. (5.8)

5.2.2 Continuous Model

The turbulence model idealization is a stationary Gaussian random process, i.e., it is con-
sidered to be of infinite duration and its statistical properties have the same Gaussian dis-
tribution wherever it may be sampled. Such idealization is more realistic than discrete-gust
models, especially because of the proper superposition of very short gradient gusts that ex-
cite the various elastic modes with the longer gradient gusts that give the largest rigid-body
airplane loads. The stochastic idealization allows the determination of the statistical charac-
teristics of the airplane response, such as accelerations and loads, directly from the statistical
description of the gust velocity profile using power-spectral analysis [129].

This method of turbulence modeling is based on the notion of power spectral density,
which gives one knowledge of how the mean squared value of a signal is distributed as a
function of frequency [37]. The von Kármán model is prescribed by the CS25.341 [7], with
power spectral density of:

Φ(Ω) = L

π

1 + 8
3(1.339LΩ)2

[1 + (1.339LΩ)2]11/6 (5.9)
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where Ω is the reduced frequency (Ω = ω/V, V =airspeed) and L is the scale of turbulence.
Figure 5.3 shows a plot of the power spectral density for L = 2500 ft. For the von Kármán
spectrum, the desired filter can be approximated by [129]:

Gvk(s) =
√

τ

π

(1 + 2.187τs)(1 + 0.1833τs)(1 + 0.021τs)
(1 + 1.339τs)(1 + 1.118τs)(1 + 0.1277τs)(1 + 0.0146τs) , (5.10)

where τ = L/Ux is a time constant, and Ux is the forward velocity component of the aircraft.
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Figure 5.3: Von Kármán power spectral density for vertical-lateral gust; L = 2500 ft [7].

The design gust velocity, Uσ, applied in the analysis is given by the product of the reference
gust velocity, Uσref , and the profile alleviation factor, Fg, as follows:

Uσ = UσrefFg, (5.11)

where Uσref is specified in CS 25.341(b)(3) as varying linearly with altitude from 27.43 m/s
at sea level to 24.08 m/s at 7315 m (24000 ft) and is then constant at 24.08 m/s up to the
altitude of 18288 m (60000 ft) [7]. Uσ can be interpreted as the root mean square (RMS) value
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of the turbulence at each altitude, factorized by a number fixing the accepted probability of
exceeding the design turbulence in the aircraft lifetime.

Alternatively, the von Kármán spectrum can be defined in two dimensions as follows [130]:

Φ2(Ωx,Ωy) = 4U2
σ(1.339L)4

9π
Ω2
x + Ω2

y[
1 + (1.339L)2(Ω2

x + Ω2
y)
]7/3 , (5.12)

where Ωx and Ωy are, respectively, the reduced frequencies in the longitudinal and lateral
directions. References [131] and [132] present a numerical method to create a realization
of this turbulence based on its power spectral density, which was used in the UM/NAST
implementation.

5.3 GLA System Design

From a control design point of view, MLA is more aligned with signal tracking problems,
whereas GLA is more aligned with disturbance rejection problems. The fundamental differ-
ence is that, in the former, the signal is generated internally, either from pilot or guidance
system input, and can be manipulated before being fed into the closed loop system. On
the other hand, in the latter, the disturbance is originated from external sources and its
magnitude is usually unknown and cannot be changed before hitting the plant.

Nonetheless, MLA and GLA systems share similar objectives, namely, to maintain loads
on the aircraft within the prescribed safety limits. Hence, the same structure of the MLA
system architectures presented in Chapter 4 can be preserved, and some adjustments can
be made to enable them to handle gust disturbances. In doing so, the resulting control
system will combine the MLA and GLA functionalities with the same objective, therefore
potentially simplifying the design and integration processes.

The load constraints can be transformed into curvature constraints for shape control,
similar to what was presented in Section 4.2.1. The procedure described in that Section to
choose the critical stations where the curvature constrains will be enforced is still applicable
to GLA design. Similarly, the selection of control surfaces for load alleviation presented in
Section 4.2.2 can also be used in here.

One of the critical aspects in the GLA design is the response time of the GLA system after
the gust disturbance detection. Conventional GLA systems utilize α-probes mounted on the
aircraft nose to provide measurements of angle of attack during flight. Changes in such
parameter can be used to detect gust disturbances after they have reached the aircraft, but
before reaching the wings. More recent designs have explored the use of LIDAR sensors, also
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mounted on the aircraft nose, to anticipate the gust disturbance before it hits the aircraft,
thus allowing longer time margins to compute and apply the load alleviation control.

The two load alleviation system architectures presented in section 3.2 are modified by the
addition of a LIDAR sensor, as shown in Fig. 5.4 and Fig. 5.5 (LA governor architecture).
In both architectures, the LIDAR sensors, as described in Section 5.3.2, can enable feed-
forward control actions by integrating the gust preview into the prediction model. A gust
reconstruction algorithm can also be integrated into the system to estimate the components
of the wind velocity at different points on the aircraft (see discussion in Section 5.3.3).
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Figure 5.4: MPC architecture with LIDAR.
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Figure 5.5: LA governor architecture with LIDAR.

In terms of wind velocity, the most important component for loads is the vertical compo-
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nent, since this component has the greatest influence on angle of attack, consequently on the
local lift. The lateral component is only secondary for load alleviation purposes and finally
the longitudinal component has an effect on the lift through a change of the airspeed, but
this effect is usually negligible [133].

The following shows how the control architectures considered in here could satisfy the
requirements presented in Section 5.1.

1. Response time after gust detection at the aircraft nose should be at most 50 ms.
The addition of LIDAR sensors to the load alleviation system will potentially provide
sufficient time margins to compute the control action to reduce loads before the gust
disturbance hits the vehicle. In fact, typical lengths of LIDAR measurements reach
up to to 300 m ahead of the aircraft nose, i.e., approximately 1.2s before the gust
encounter at cruise speed. The proposed sampling rate of the MPC controller is 50
Hz, while the maximum actuator deflection can be achieved in 0.33 s.

2. Actuator rates should be limited to 45 deg/s.
A constraint can be added to the MPC problem on the upper and lower bounds on the
control deflection rate.

3. Maximum aileron deflection to perform GLA should not exceed 15 deg
A constraint can be added to MPC problem on the upper and lower bounds on the
control deflection. Since the uLA control effectors are primarily assigned to perform
load alleviation, such restriction should not impact the FCS performance at attitude
control.

4. GLA system should not engage at intended changes in the incidence angle
The LIDAR sensor along with a high-pass filter should avoid the activation of the GLA
system during maneuvers.

5. Load attenuation between 20% and 33%.
Load constraints can be directly incorporated into the MPC design and be enforced
pointwise-in-time in order to keep them within the desired bounds.

6. Altitude deviation should be less than 250 ft (76.8 m).
As discussed in Section 4.2, this can be achieved by the proper selection of gains in the
controllers.

7. Dynamic actuation of ailerons should be minimized.
The rate o deflection of the ailerons, as well as their magnitude, are directly accounted
for in the cost function of the MPC problem on both architectures.
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8. GLA system should not be activated at medium or low turbulence.
The LIDAR along with the high pass filter will wash out small disturbances in order
to avoid excessive and superfluous GLA actuation.

9. GLA system should not engage if alpha correction is less than 1 deg.
A logic could be added into the MPC problem to activate the load constraints only
when the said threshold is surpassed. However, since the MPC controller only performs
GLA if there is a danger of violating constraints, this requirement is directly satisfied
by the control architectures considered in here.

10. Design should take into consideration different mass cases, center of gravity positions,
fuel and payload re-partitions, and flight conditions.
The scenario-based MPC presented in Section 3.4 and illustrated in Section 4.3.3 can
be used to design a single controller that can handle multiple aircraft configurations.

11. Passenger comfort should not be compromised.
Constraints on load factor at different locations on the fuselage can be added to he
MPC problem.

12. Failure mode handling.
As discussed in Section 4.2, redundancy of actuators and sensors is the standard ap-
proach to handle failures, and it is indirectly taken into consideration here by the
selection of these components. A systematic way to incorporate this objective into
MLA design is not addressed in this work.

5.3.1 Feedforward Control

LIDAR sensors can measure turbulence ahead of the aircraft. Hence, these sensors can
provide preview information on future gust disturbances that would allow the GLA system
to compute feedforward control actions to engage the control effectors before the first gust
hit.

To introduce gust preview into MPC design, firstly the prediction model should be
changed to make use of information regarding future gust disturbances w̃g ∈ R(Nw+1)nw

provided by LIDAR sensors over a horizon Nw. Hence, the nonlinear prediction model in
Eq. 3.1 becomes

x+ = fs(x, u, w̃g), (5.13)
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and the linear prediction model in Eq. 3.17 becomes

fs(x, u, w̃) = Ad∆x+Bd∆u+ B̃d
ww̃g. (5.14)

where B̃d
w ∈ Rnx×(Nw+1)nw is defined as

B̃d
w =

[
Bd
w 0 · · · 0

]
(5.15)

and Bd
w is the discrete-time version of gust influence matrix Bw defined in Eq. 2.39.

The OCP formulation for the MPC architecture presented in Section 3.2.1 (Eq. 3.54) now
becomes:

V ∗
N(x̂) = min

δx,δu,εεεs

||eN ||2Pf
+

N−1∑
k=0
||ek||2Qe

+ ||δuk||2R + ||uLA,k||2RLA
+ µε2

s,k, (5.16)

s.t. δxk+1 = fs(xk+1, uk+1, w̃g,k+1)− fs(xk, uk, w̃g,k) for k ∈ Z[0,N−1] (5.17)

ek = r − Strackg(xk, uk) for k ∈ Z[0,N ] (5.18)

w̃g,k+1 = Aww̃g,k for k ∈ Z[0,Nw] (5.19)

uk+1 = uk + δuk for k ∈ Z[0,N−1] (5.20)

xk+1 = xk + δxk for k ∈ Z[0,N−1] (5.21)

x0 = x̂, (5.22)

(x,u) ∈ Fε
N (5.23)

εεεs ⪰ 0. (5.24)

The OCP for the LA governor architecture presented in Section 3.2.2 (Eq. 3.76) is also
modified in a similar fashion:

V ∗
N(x̂, ŷ) = min

x,δur,εεεs

N−1∑
k=0
||rck − r||2Qc

+ ||δurk||2R + ||uLA,k||2RLA
+ µε2

s,k, (5.25)

s.t. xk+1 = fs(x, uLQI(x̂, ŷ, r, uLA,k), w̃g,k) for k ∈ Z[0,N−1] (5.26)

w̃g,k+1 = Aww̃g,k for k ∈ Z[0,Nw] (5.27)

urk+1 = urk + δurk for k ∈ Z[0,N−1] (5.28)

x0 = x̂, (5.29)

(x,u) ∈ Fε
N (5.30)

εεεs ⪰ 0, (5.31)

Note the inclusion of Eqs. 5.19 and 5.27 in these modified formulations. In here, w̃k
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represents the future disturbance wk values over a time window of Nw steps. For k > Nw, we
consider that wk = wNw . To incorporate such a disturbance preview into the MPC design,
the auxiliary model in Eq. 5.19 and 5.27 are added to the optimization problem to work as
a shift register, in which

Aw =



0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

0 0 0 · · · I


∈ R(Nw+1)nw×(Nw+1)nw , (5.32)

generating the preview sequence

w̄0 =



w0

w1
...

wNw−1

wNw


, w̄1 =



w1

w2
...

wNw

wNw


, w̄2 =



w2

w3
...

wNw

wNw


, etc. (5.33)

The LIDAR measurements can also be used to enhance the state estimation in the Kalman
filter when gust disturbances are present.

5.3.2 Sensors for GLA

The section presents the typical sensors used to detect gust disturbances. In addition to the
sensors presented here, the ones described in Section 4.2.3 may also be considered in the
load alleviation system design.

5.3.2.1 Alpha Probes

Alpha probes are usually mounted on the aircraft nose to provide measurements of angle of
attack during flight. Changes in such parameter can be used to detect gust disturbances after
they have reached the aircraft. Classical approaches for GLA systems (e.g., Ref. [41]) utilize
alpha probe measurements to activate the control effectors responsible for load alleviation.
To avoid unnecessary actuation of these effectors, changes in the angle of attack due to
maneuvers or for constant non-turbulent wind should not activate the GLA system.
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5.3.2.2 Inertial Sensors

Inertial sensors can be used to detect local changes in either the attitude or acceleration
at different stations on the flexible aircraft due to external disturbances. These sensors are
reactive, that is, they detect disturbances after they have reached the aircraft and perturbed
its states.

5.3.2.3 LIDAR Sensors

LIDAR sensors use the Doppler effect (wave frequency shift due to the relative motion
between the emitter and receiver) to measure turbulence ahead of the aircraft. Hence, these
sensor can provide preview information on future gust disturbances that would allow the
GLA system to compute feedforward control actions to engage the control effectors before
the first gust hit.

As explained in Ref. [133], the LIDAR sensor emits a short pulse of laser light, which
illuminates a specific area ahead of the aircraft. The pulse of light travels in the laser
direction and at each location a tiny fraction of this pulse is scattered by air or aerosol
molecules. The scattering occurs in a wide range of directions and part of the scattered light
goes back to the LIDAR sensor. The frequency of the light that is scattered back to the
LIDAR sensor is then compared against the one of the light that was emitted. A shift toward
higher frequencies indicates that the sensor and the molecules that scattered the light back
were moving toward each other. Otherwise, if they are moving away from each other, then
the wave will be shifted towards lower frequencies. Figure 5.6 shows a schematic of a LIDAR
sensor.
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Figure 5.6: LIDAR sensor. LT: laser transmitter; F1 and F2: spectral filters; IF: interfer-
ometer; DE: line detector; D1 and D2: detectors [8].
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Figure 5.7: LIDAR measurement.

When using Doppler LIDAR sensors, only the relative wind component in the direction
of the laser beam is measured, usually in directions that are collinear with the flight path.
Therefore, the sensor readings are measuring the basically the true airspeed and not the
vertical and lateral components. A way to estimate or reconstruct the missing information
is to measure the wind at locations with various vertical and lateral offsets with respect
to the airplane flight path. The resulting line-of-sight (LOS) directions are not collinear
anymore and the analysis of the differences between the different sensor readings allows to
estimate the lateral and vertical components of the wind [133].

Based on this idea, a LIDAR sensor was implemented in UM/NAST Sensors module. The
sensor consists of a rotating laser beam that scans the area ahead of the aircraft. The LOS
rotation forms a cone with angle θc, as shown in Fig. 5.7. The typical LOS length (dLOS) of
current LIDAR sensors is between 60 and 300 m [133]. Along the LOS, nL measurements
are taken at distances diLOS, i ∈ Z[1,nL]. For a constant rotation frequency θ̇LOS, the position
of ith measuremnt in the sensor frame is given by:
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pis(t) = CLOS(t)


diLOS

0
0

 , (5.34)

where,

CLOS(t) =


cos(θc) 0 sin(θc)

sin(θc) sin(θLOS(t)) cos(θLOS(t)) − cos(θc) sin(θLOS(t))
− sin(θc) cos(θLOS(t)) sin(θLOS(t)) cos(θc) cos(θLOS(t))

 , (5.35)

θLOS(t) = θ0
LOS + θ̇LOSt, (5.36)

t is the current time and θ0
LOS is the initial LOS angular position. The LIDAR sensor is

attached to a flexible structure, therefore he sensor frame can rotate with respect to the body
frame when the structural member deforms. Therefore, the position of the ith measurement
in the ground frame is given by:

piG(t) = pB(t) + (CBG(t))Tpm(t) + CGS(t)pis(t) (5.37)

where pB is the inertial position of the aircraft in the ground frame, pm is the position of the
sensor in the body frame, CBG is the rotation matrix from the ground to the body frame,
and CGS is the rotation matrix from the sensor to the ground frame. The position pm can
be obtained from the hw vector in Eq, 2.3, while pB is a state of the aircraft. If piG is inside
the gust region of influence, then the LIDAR will measure the gust disturbance. Otherwise,
it returns zero.

The LIDAR measurement returns a scalar with the magnitude of the relative gust velocity
along the LOS. If wig is the gust velocity vector at a given position inside the gust field, then
its projection onto the LOS is given by:

wi,LOS
g (t) =

(
(CGS(t))Twig(t) · p̂s(t)

)
p̂s(t). (5.38)

Similarly, the projection of the aircraft velocity vB onto the LOS is given by:

vLOS
B (t) =

(
(CBS(t))TvB(t) · p̂s(t)

)
p̂s(t), (5.39)

where p̂s is a unit vector in the sensor frame along the LOS:

p̂s(t) = pis(t)
||pis(t)||

. (5.40)

132



The measurement at a given time t is then given by:

mL
i (t) = (wi,LOS

g (t)− vLOS
B (t)) · p̂s(t), for i ∈ Z[1,nL]. (5.41)

5.3.3 Gust Field Reconstruction

As suggested by Fezans et al. [133], it is advantageous to reconstruct the complete wind field
from a set of LOS wind measurements. Otherwise, a set of different measurements without
wind field reconstruction may not account for the fact that these measurements were not
made simultaneously and, therefore, they are not located at the same distance from the
aircraft. In [133], algorithm is proposed to determine the wind field that the best fits the
considered measurements. A free-form model structure is used, in which the gust/turbulence
wind field is represented by a mesh where a velocity vector is set for each node of the mesh.
Any wind field can in principle be represented by such a mesh, as long as enough nodes are
taken.

An implementation of the gust field reconstruction using a free-form model was created
for UM/NAST. In this implementation, the LIDAR measurements mL

i (t) are saved in a
buffer of size nb In addition to these measurements, the following metadata is also saved for
each measurement:

• The aircraft orientation and position in the ground frame;

• The aircraft velocity;

• The position and orientation of the LIDAR with respect to body frame;

• The cone angle, θc;

• The LOS angle, θLOS;

• The position diLOS along the LOS where the LIDAR measurement was taken.

A regression model is then created to estimate the local velocity vector ŵig(t) ∈ R3 that
would likely result in measurement mL

i (t). To this end, a maximum likelihood estimator
(MLE) is used. It is assumed that the inputs (measurement metadata, denoted by xL) and
outputs (LIDAR measurements mL

i (t)) have the following relationship:

mL
i (t) = MMLE(xLi (t), wig(t)) + ξ, (5.42)
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where ξ ∼N(0, σ2) and

MMLE(xLi (t), wig(t)) =
(
(CGS(k))Twig(k)− (CBS(k))TvB(k)

)
· p̂s(k). (5.43)

Let wwwg ∈ R3nLnb be the vector that concatenates the gust velocities wig(k), i ∈ Z[1,nL], k ∈
Z[1,nb]. The likelihood function is then given by:

L(wwwg) =
nb∏
k=1

nL∏
i=1

−
[
mL
i (k)−MMLE(xLi (k), wig(k))

]2
2σ2

 . (5.44)

The MLE solution is then obtained by solving the following optimization problem:

ŵwwg = argmax
wwwg

L(wwwg), (5.45)

In the log-likelihood form, the optimization problem can be reformulated as follows:

ŵwwg = argmin
wwwg

1
σ2

nb∑
k=1

nL∑
i=1

[(
(CGS(k))T ŵig(k)− (CBS(k))TvB(k)

)
· p̂s(k)−mL

i (k)
]2
, (5.46)

which is a nonlinear unconstrained optimization problem, which can be solved by suing,
for instance, the BFGS algorithm. Once a solution is available, the gust disturbance at the
aircraft nodes can be calculated by interpolating their positions with respect to the estimated
disturbance at the known piG positions.

The next examples illustrate the performance of the LIDAR and gust field reconstruction
algorithm implemented in UM/NAST Sensors module. In the simulation, the LOS length
was 60 m and the LIDAR had a cone angle of θc = 40 deg, rotated at θ̇LOS = 8 Hz, and took
nL = 4 measurements along the LOS. The buffer has size nB = 15. The MLE problem was
solved using the BFGS algorithm with σ = 0.01.

Discrete gust: In this example, the vertical gust disturbance was defined by a one-
minus cosine model. Figure 5.8 shows the result of reconstructed vertical gust with θc = 40◦,
θ̇LOS = 30 Hz, nb = 250, nL = 4, and dLOS = 133 m. The algorithm was able to accurately
reconstruct the shape of the disturbance 0.26 s ahead of the first hit on the aircraft.

Continuous gust: In this example, the vertical gust disturbance was generated by the
1D von Kármaán spectrum. Figure 5.9 shows the result of reconstructed vertical gust. The
same parameters used in the discrete gust reconstruction were used in here. The algorithm
was able to anticipate the disturbance in 0.26 s and approximately capture its magnitude.
However, it failed to estimate short and sharp peaks in the gust velocity. This is due to
the finite number of measurements used to estimate a stochastic signal. A better matching
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Figure 5.8: Reconstructed one-minus-cosine gust disturbance with 0.26 s anticipation.

could be possibly obtained by increasing the number of measurement at the expense of
computational cost.
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Figure 5.9: Reconstructed von Kármán gust disturbance with 0.26 s anticipation.
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5.4 Numerical results

This section presents nonlinear simulation results to evaluate the performance of the GLA
system in reducing loads due to gust disturbances. Results are shown for both the XRF1
and XRF1-HARW aircraft flying through a one-minus-cosine (Fig. 5.8) and von Kármán 5.9
gust fields. The LA governor architecture with linear MPC and a LIDAR sensor placed on
the aircraft nose is considered here. The MPC controller was designed with a sampling time
of 0.02 s, a prediction horizon of 100 steps, and gust preview of 13 steps. Results are shown
for the case when the GLA system is deactivated (baseline response), when it active but
with no gust preview, and when it it active with gust preview.

Table 5.1 shows the input and output constraints enforced in XRF1 and XRF1-HARW
models. The curvature constrains were selected such that the load alleviation at the en-
counter with a one-minus-cosine disturbance was reduced by approximately 33% from the
baseline response.

Table 5.1: Output and input constraints for XRF1 and XRF1-HARW GLA simulation.

Description Min Max Unit
Out-of-plane curvature (κx)
at XRF1 wing root

−8.0× 10−4 8.0× 10−4 [1/m]

Out-of-plane curvature (κx)
at XRF1-HARW wing root

−3.1× 10−3 3.31× 10−4 [1/m]

Out-of-plane curvature (κx)
at critical stations on the HTP

−1.51× 10−4 1.51× 10−4 [1/m]

Elevons deflection −15 15 [deg]
Other control surfaces deflection −30 30 [deg]
Rate of deflection of
control surfaces

−45 45 [deg/s]

Rate of deflection of flaperon −30 30 [deg/s]

In all simulations, the following parameters were used for the LIDAR and gust recon-
struction: θc = 40◦, θ̇LOS = 30 Hz, nb = 250, nL = 4, dLOS = 133 m, and σ = 0.01 m/s. The
gust reconstruction returns the preview of gust velocities at all aircraft. To reduce the com-
putational cost of propagating this information in the MPC prediction model, just a small
set of this information is used: the predicted velocities in seven nodes on each semi-wing
equally distributed along the span, and in three nodes on each tail plane. The gust velocities
were considered to be constant in neighboring nodes of the selected ones.
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Figure 5.10: XRF1 out-of-plane curvature, bending moment, and tip deflection when flying
through one-minus-cosine gust field.
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Figure 5.11: XRF1 pitch and pitch rate when flying through one-minus-cosine gust field.

5.4.1 GLA for XRF1

Figure 5.10 shows the out-of-plane curvature and bending moment at the wing and HTP
root while, as well as the tip deflection of XRF1 while flying through a one-minus-cosine
gust field. The gray area in the figure shows the time interval in which the gust disturbance
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was nonzero. The GLA system with the LIDAR measurements kept the curvature withing
the specified limits, resulting a reduction of 33% in the bending moment on the wing root
at the first gust hit in comparison with the baseline response. Note that the GLA system
without the gust preview cannot reduce the loads generated by the encounter with the gust,
which indicates the gain in performance by the addition of the LIDAR sensor. The curvature
constraints on the tail did not become active, therefore load alleviation was not performed
in that member.

Figure 5.12: XRF1 control surfaces histories when flying through one-minus-cosine gust field.

Figure 5.11 shows the longitudinal response of the aircraft, while Fig. 5.12 shows the
control surfaces histories. When the gust preview was used by the GLA system, the control
surfaces were deployed as soon as constraint violation due to the gust was detected (approx-
imately 0.26 s anticipation), which helped in reducing the loads at the first gust hit. Note
that not only the outer elevons and flaperons responded to the gust preview information,
but also the elevator, which caused an early pitch response. The control surfaces used for
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Figure 5.13: XRF1 out-of-plane curvature, bending moment, and tip deflection when flying
through von Kármán gust field.

GLA had magnitude equal or less than 15 deg and rate equal or less than 45 deg/s, there-
fore meeting the requirement. There was a small altitude deviation of 6 m due to the load
alleviation system, which still satisfies the requirements in Section 5.1.

The performance of the GLA system when the XRF1 aircraft flies through a von Kármán
gust field is shown in Fig. 5.13. The LA governor with LIDAR measurements kept the wing
curvature within the limits throughout the simulation, therefore reducing the peak out-of-
plane bending moment at that station. Note that the baseline response and the response of
the GLA system with no gust preview violate the constraints, resulting in higher peak loads.
A 40% load reduction was achieved. Similarly to the encounter with the discrete gust, the
HTP constraints did not become active.

The longitudinal attitude of the aircraft is shown in Figure 5.14, and the control surfaces
histories are shown in Fig. 5.15. The flaperons and elevons were deflected to their maximum
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Figure 5.14: XRF1 pitch and pitch rate when flying through von Kármán gust field.

magnitude to prevent load violations, at the same time that the elevator deflection was
increased to counteract the adverse pitch moment. The altitude deviation was approximately
8 m, which is still much smaller that the maximum allowed in the requirements.

Figure 5.15: XRF1 control surfaces histories when flying through von Kármán gust field.
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Figure 5.16: XRF1-HARW out-of-plane curvature, bending moment, and tip deflection when
flying through one-minus-cosine gust field.
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Figure 5.17: XRF1-HARW pitch and pitch rate when flying through one-minus-cosine gust
field.

5.4.2 GLA for XRF1-HARW

The LA governor was also used to reduce loads in XRF1-HARW. In comparison with the
design used for XRF1, the MPC controller gains were reduced. Figure 5.17 shows the
resulting out-of-plane curvature and bending moment at the wing and HTP root. Similar
to the results seen for XRF1, the performance of the GLA system without gust preview was
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Figure 5.18: XRF1-HARW control surfaces histories when flying through one-minus-cosine
gust field.

comparable to the case when no load constraints are enforced, which led to a large peak in
curvature and bending moment on the wing. When the LIDAR measurement were used for
feedforward control, the GLA system could keep the curvature within the specified bounds,
reducing the peak moment in 35%.

The altitude deviation due to the GLA actuation, even though still within the maximum
allowed, is larger than what was observed for XRF1. As shown in Fig. 5.17, at the end
of the simulation the altitude was approximately 12 m smaller than the baseline response.
The control surfaces histories are shown in Fig. 5.18. While the flaperons were deflected
to negative values (corresponding to an upward deflection) similarly to what was seen in
XRF1, the elevons were deflected to positive values, an opposite behavior as seen in XRF1.
This may indicate a control reversal in XRF1-HARW caused by the longer and more flexible
wing.

The performance of the GLA system in reducing loads in XRF1-HARW while flying
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through a von Kármán gust field is shown in Fig. 5.19. The reduction on the wing root
out-of-plane bending moment was of 33% when the gust preview was used for feedforward
control. The constraints on the HTP did not become active during the simulation.

Figure 5.19: XRF1-HARW out-of-plane curvature, bending moment, and tip deflection when
flying through von Kármán gust field.

As shown in Fig. 5.20, the altitude deviation was approximately 11 m, which is comparable
to the one seen in Fig. 5.17 and larger than the one observed for XRF1. The reverse response
of the elevons is again observed in this case (Fig. 5.21). Note that the control effectors become
active several times during the maneuver, but they eventually return to the trim condition
whenever there is no danger of violating the curvature constraints.
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Figure 5.20: XRF1-HARW pitch and pitch rate when flying through von Kármán gust field.

Figure 5.21: XRF1-HARW control surfaces histories when flying through von Kármán gust
field.
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CHAPTER 6

Experimental Validation

This Chapter presents the experimental work toward the validation of MPC-based MLA
systems for a VFA. To this end, wind tunnel tests were conducted using an enhanced
aeroservoelastic (EASE) model, a new demonstrator of MLA solutions in controlled environ-
ments.

6.1 Experimental Setup

The EASE model is a half airplane configuration that is allowed free pitching motion about its
center of mass. The wing was designed to be the only flexible member of the model, showing
geometrically nonlinear behavior within the operating conditions of the test. The EASE
model was designed and manufactured by the University of Michigan’s Active Aeroelasticity
and Structural Dynamics Laboratory (A2SRL). This Section describes the aircraft model
and the facilities used in the experiment.

6.1.1 Facilities

The University of Michigan’s subsonic wind tunnel was the testing facility used for this work.
This wind tunnel features a 335-ft center-line closed return loop design, a 15:1 contraction
ratio, and a 25-ft long, 5-ft by 7-ft test section (see Fig. 6.1). The airspeed in the test section
can reach speeds up to 76 m/s.

The PaPA, a side-wall mounting device, was used in this work to constrain the model to
the wall of the wind tunnel in the aft portion of the test section (Fig. 6.2). Although the
mounting device allows the pitch and plunge motions, in the designed experiment, the model
was constrained in plunge and only pitch will be allowed. The PaPA setup also features its
own sensors to support the experimental activities, which will be presented in Section 6.1.3.

145



Figure 6.1: University of Michigan’s subsonic wind tunnel.

Figure 6.2: Schematic of PaPA mechanism.
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6.1.2 EASE Model

The EASE model was designed as a half aircraft, and consists of a flexible main swept wing,
a HTP with elevator, and a fuselage that connects the two lifting elements with the PaPA
mechanism located on the wind-tunnel wall, allowing for the free pitch degree of freedom.
The overall dimensions of the EASE model are shown in 6.3.

The wing was designed to be flexible while the tail and fuselage were designed to be rigid.
In order to ensure easy and accurate modeling of the elastic properties of the wing, those were
based on a main spar. To remove the stiffness effect of the rest of the wing construction, it
was designed as a series of airfoil-shaped sections (pods), each fixed to a single spar spanwise
location.

Figure 6.4 shows the finished model manufactured by A2SRL in the wind tunnel. Ap-
pendix G present a summary of the design process and properties of the model. The detailed
description can be found in Ref. [134].

Figure 6.3: EASE model drawing (all dimensions in mm)
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Figure 6.4: EASE model in University of Michigan’s wind tunnel.

6.1.3 Instrumentation

This section describes instrumentation used in the EASE model experiment. It includes both
the instrumentation in the model itself and what is offered by the PaPA and wind tunnel.

Figure 6.5 shows the relative location of various sensors associated with the EASE model.
These sensors can be classified into three groups, i.e.:

1. Critical for feedback control

• IMUs (accelerometers + gyroscopes)

2. Refined response characterization

• Load cells and strain gauges

• Rotary encoders for control surfaces position

• PaPA’s rotary encoder for pitch attitude

• Fiber optics for wing root bending strain

• Fiber optics wing shape sensing

3. Flow condition

• Pitot tube for airflow speed

• Thermometer

Group 1 contains the sensors that were used for state estimation in the EASE model.
Because the MPC controller requires information about all internal states in the model, a
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Figure 6.5: Test instrumentation and control effectors overview.

Kalman filter was be designed to estimate these sates based on the sensors measurements.
These states are the structural strain states, pitch attitude and rate. Figure 6.6 shows a more
detailed schematic of the sensor placement in the wing and HTP. The IMU units on the
wing were the primary sensors used to estimate the strain states in this member. Because
the HTP is treated as a rigid member, there was no need to estimate the strain states on this
structure and, therefore, no IMU units were placed there. Figure 6.6 also shows the servos
placement for each control surface on the model.

Group 2 of sensors included the rotary encoders used to record the rotation of the control
surfaces, that is, the wing flaps and HTP elevator. It also included the load cell and strain
gauges that provided information about the loads. Additionally, the fiber optics system that
provided strain measurements along the spanwise direction on the wing. Such measurement
allowed the recovery of the wing shape and an additional source for loads estimation. Group
3 of sensors included the wind tunnel sensors, such as the pitot tube and thermometer, used
to monitor the airflow condition during the experiment.
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(a) Wing instrumentation. (b) Tail instrumentation.

Figure 6.6: Wing and HTP sensor distribution.

6.2 Numerical Model

A UM/NAST model for the EASE aircraft was created for design and analysis using the
geometry and material properties reported in [134]. The model represents the full symmetric
EASE aircraft with very flexible wing, and rigid fuselage and HTP. The symmetric repre-
sentation was chosen to facilitate the implementation and trim of the model. For control
design purposes, the states representing the left wing aeroelastic dynamics were eliminated
in a post-process, as it will be described later in this Section. Appendix G presents some
EASE model properties.

The spanwise distributions of aerodynamic loads on the wing and tail were adjusted
based on data obtained from AVL [135]. These data were used to define weights on the
aerodynamic kriging model to determine the aerodynamic forces and moments not only
based on the angle of attack and Reynolds number, but also the spanwise position in order
to take into consideration finite wing and 3D effects. In addition to that, AVL was also used
to create a model for the downwash effect created by the wing on the HTP.

To represent the attachment between the EASE model and the PaPA device in the wind
tunnel, a large concentrated mass and inertia are added to the model at the rotation point, in
addition to a vertical force to balance the extra weight. Such mass restraints the translation
of the model and its lateral motion. Only the longitudinal motion around the rotation axis
is preserved.

A model order reduction (MOR) was performed to reduce the number of states in the
linearized model to facilitate the control design and implementation. The MOR is performed
in following three steps:

1. The rigid body states describing the inertial position and lateral motion were removed
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from the model, given the fact that they are constant and equal to zero due to the
rigid attachment between the EASE model and the PaPA device. Furthermore, the
aeroelastic states describing the dynamics of the left wing were eliminated by making
them equal to the right wing states, i.e., imposing symmetric deflections. Similarly,
the control inputs on the left side of the model were eliminated by imposing symmetric
actuation with respect to the right-hand side. Finally, the flaps on the wing were
grouped as follows to reduce the control degrees of freedom (see Fig. 6.5):

• Group 1: the four most inboard flaps (flaps 1-4);

• Group 2: the four midboard flaps (flaps 5-8);

• Group 3: the two most outboard flaps (flaps 9-10).

Therefore, the resulting model had 164 states and 4 control inputs.

2. An eigenvalue decomposition of the state matrix was performed, and then the system
was put in the modal form. This way, the mode shape amplitudes and frequencies are
explicitly represented in the linearized model, and the ones of interest can be selected.
For the planned experiment, those would be frequencies below 20 Hz, which capture
the longitudinal rigid-body modes, in addition to the first three out-of-plane aeroelastic
modes, first in-plane mode, and first torsion mode.

3. A residualization was performed to eliminate modes above 20 Hz.

The final reduced-order model (ROM) has the following form:

∆ẋr = Ar∆xr +Br∆ur (6.1)

∆y = Cr∆xr +Dr∆ur, (6.2)

where ∆xr contains 14 states, ∆ur contains 4 inputs, and ∆y contains 38 outputs (described
in Section 6.3).

The flaps and elevator motion on the EASE model are controlled by the servo MKS
HV6125E. The unloaded servo dynamics was experimentally identified in the frequency do-
main. The following second-order transfer function describes the servo response within the
device’s operating range:

Ur(s)
Us(s)

= 169.6s+ 2875
s2 + 187.2s+ 2887 . (6.3)

The servo transfer functions for each one of the flap groups and elevator in the model in
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Eq. 6.1 were transformed into state-space form and concatenated in the following model

ẋs = Asxs +Bsus (6.4)

ur = Csxs +Dsus. (6.5)

where xs represent the servos internal states and us represents the inputs fed into the servos.
Models in Eqs. 6.1 and 6.4 can be combined into a single linear model that describes the

local dynamics of the EASE aircraft:

ẋ = Ax+Bu (6.6)

y = Cx+Du (6.7)

where

x ≜

 ∆xr
xs

 , u ≜ us, (6.8)

and

A =
 Ar BrCs

0 As

 , B =
 BrDs

Bs

 , C =
[
Cr DrCs

]
, D = DrDs. (6.9)

This augmented linearized model has 22 states, 4 inputs, and 38 outputs.

6.3 Control System Design

The main control objective was to run the MPC controller in real-time to keep the loads
on the airframe within prescribed safety limits while performing a longitudinal maneuver.
The Maneuver Vertical Stretched (MVS) was considered in the experiment. To keep the
loads on the model within safety bounds during the MVS maneuver, the controller should
enforce constraints on the shape of the wing by limiting the curvature at selected stations.
The shape control should be performed by deflecting the available control surfaces on the
model. The experiment focused on limiting the out-of-plane moment at critical wing and
HTP stations.

The LA governor architecture presented in Section 3.2.2 was designed to accomplish these
objectives. The three flap groups are used as control effectors uLA to perform load alleviation
on the wing, while the elevator is used as the control effector uFCS manipulated by the inner-
loop controller to control the aircraft attitude. In here, the discrete-time LQ-I controller is
designed to track a pitch angle reference while regulating the pitch rate. The update rate of
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the inner-loop is 20 ms.
A linear MPC design based on the linear ROM is considered for the outer-loop, with

an update rate of 60 ms. Slack variables are used to avoid feasibility problems, and input
blocking is used to reduce the OCP size. The prediction horizon was chosen to be 30 steps
(corresponding to a 1.8 s look ahead in time), and the control horizon was chosen to be 20
steps.

The reduction in the out-of-plane bending moment on the wing is achieved by imposing
constraints on the minimum and maximum out-of-plane curvatures at the ith wing station:

κmin
x,i ≤ κx,i ≤ κmax

x,i . (6.10)

Since the EASE wing has uniform properties along its span, the maximum curvatures, and
thus the maximum bending moments, are expected to be developed at inboard stations.
Therefore, three stations on the three most inboard wing pods are chosen.

The EASE model has an HTP whose bending moment must also be reduced. As discussed
in Section 4, the deflection of the flaps to reduce the loads on the wing generates an adverse
pitch moment that is then corrected by the elevator, thus resulting in an increase in bending
moment on the HTP. Controlling the shape for load alleviation is not possible in this case,
since the EASE model’s HTP is modeled as a rigid element. Alternatively, the constraints
are imposed directly on the HTP root moment (M root

tail ), which is calculated as:

M root
tail = 3

8Ltailbtail + xcg
tailmtail(qBrtail − g), (6.11)

where Ltail is the total lift on the HTP, mtail is the HTP mass, btail its span, xcg
tail is the

spanwise position of its center of gravity (c.g.), rtail is the distance between the tail root and
the rotation point, qB is the aircraft pitch rate, and g the acceleration of gravity. The HTP
root moment should then be kept within some prescribed bounds:

M root
tail,min ≤M root

tail ≤M root
tail,max. (6.12)

Upper and lower limits on the wing curvature and HTP root moment can be added to the
MPC formulations as linear constraints. Similarly, bounds can be enforced on the control
effectors magnitudes and rate of change.

The input and output constraints considered are shown in Tab. 6.1. The out-of-plane
curvature constraints are enforced in three inboard stations on the wing. The bending
moment constraint is enforced on the HTP root. The constraints on the control surfaces
deflection and rate are in accordance with typical values found in actual large commercial
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aircraft. The final QP problem has 130 decision variables and 750 constraints.

Table 6.1: Output and input constraints.

Variable Description Min Max Unit
κx, wing
station 1

Out-of-plane curvature at
critical station on the wing

−0.35 0.35 [1/m]

κx, wing
station 2

Out-of-plane curvature at
critical station on the wing

−0.30 0.30 [1/m]

κx, wing
station 3

Out-of-plane curvature at
critical station on the wing

−0.22 0.22 [1/m]

M root
tail , HTP Out-of-plane bending moment

at HTP root
−1.6 1.6 [Nm]

uFCS Elevator deflection −30 30 [deg]
uLA Flap deflection −30 30 [deg]
δuFCS Rate of deflection of

elevator
−45 45 [deg/s]

δuLA Rate of deflection of flaps −45 45 [deg/s]

State estimation is performed using the Kalman filter in recursive form as presented in
Section 3.5, with the tuning procedure described in Appendix E. A total of 38 sensor outputs
were used for feedback, namely:

• Triaxial linear accelerations and angular velocities provided by the six IMU units placed
on the wing;

• Pitch angle and pitch rate measured by the IMU unit placed on the fuselage near the
rotation point.

Due to the sensor noise and disturbances, such as turbulence in the wind tunnel, the following
low-pass second-order Butterworth filter

B(z) = 0.1453z2 + 0.2906z + 0.1453
z2 − 0.6710z + 0.2523 , (6.13)

with sampling time of 20 ms and cut-off frequency of 8 Hz was used to filter the sensor
outputs before feedback.

The control design was performed for the model at 25 m/s and initial angle of attack of
2.5 deg.
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6.4 Numerical Verification

Nonlinear closed-loop simulations were run in UM/NAST to verify the control design. Figure
6.7 shows the different pitch angle profiles tracked by the controller and the resulting pitch
rate in two scenarios: i) the curvature and bending moment constraints were deactivated
(MPC off), serving as a baseline; ii) the MLA system was on, therefore the MLA constraints
were added to the MPC controller objective to alleviate loads. In this example, the aircraft
performs three consecutive cycles of the MVS maneuver.
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Figure 6.7: EASE aircraft longitudinal response in simulations.

Figure 6.8 shows the out-of-plane (OOP) curvature at the three inboard wing stations on
which constraints were enforced. Note that the baseline response surpasses the curvature
upper limits. However, When the MLA system is on, the MPC controller is able to keep the
curvature within the prescribed limits. As a result, the OOP bending moment on each of
these stations, also shown in Fig. 6.8, is reduced. The average load reduction on station 1
was 33%.

Similarly, the load on the HTP was reduced. As shown in Figure 6.9, the OOP bending
moment at the HTP root was kept within the desired bounds during the simulations. Appar-
ently this constraint was enforced slightly conservatively, what could possibly be explained
by estimation errors given the fact that the Kalman filter uses a linearized model to estimate
the nonlinear plant. The constraint considered in the simulations was ±1.25 Nm, which
differs from the one in Tab 6.1 used in the actual experiment due to the identified model
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Figure 6.8: Loads on EASE wing in simulations.

mismatch, which will be discussed in Section 6.6.
Figure 6.10 shows the control surfaces deflection during the maneuver. When the MLA

constraints were deactivated, only the elevator was engaged to track the desired pitch angle.
When the MLA constraints were added to the control problem, then the flaps were deflected
to keep the curvature of the wing within the defined limits. Flap group 2 had the largest
deflections. Note that the elevator deflection also changed when the MLA constraints were
active. This is due to the load constraint on the HTP root, and the corrections on the pitch
attitude to counteract the adverse pitch moment created by the flaps on the wing when
performing MLA.

Finally, Fig. 6.11 shows the vertical force at the rotation point when the EASE model
performs the MVS maneuver in the nonlinear simulation. In Fig. 6.7, note that the amplitude
of the maneuver in the negative angles of attack when the MLA system is active is slightly
bigger in order to maintain the same total vertical force in the aircraft. This correction is
necessary due to the change in lift caused by the deployment of the flaps when performing
MLA. This vertical force makes up the most significant part of the total load factor in the
maneuver.
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Figure 6.9: Load on EASE HTP in simulations.

Figure 6.10: EASE aircraft control surfaces in simulations.
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Figure 6.11: Vertical force at rotation point simulations.

6.5 Control System Implementation

The experimental closed-loop setup used in the wind tunnel experiment consisted of a Na-
tional Instruments data acquisition system (DAQ), which samples the sensors mounted on
the EASE model and sends the measurements to a real time server (RT server) running
Linux through a UDP/IP link, at 500Hz. The RT server run the controller, and it is outfit-
ted with a PCI board capable of generating pulse-width modulated (PWM) signals (PWM
generator), which sends a new position command to the servos at a frequency of 100Hz.
Figure 6.12 shows a schematic of the experimental setup.

The DAQ records the readings of a 6-d.o.f. load cell attached to the rotation point, seven
IMU units and one accelerometers on the wing and fuslage, rotary encoders on all control
surfaces and strain gauges at the wing root.

The RT server is a Dell PowerEdge R540 outfitted with a 4-core/8-thread 3.8 GHz Intel
Xeon Gold 5222 CPU, 6×8 GB RAM (3200 MT/s) and a 480 GB SSD. It runs the Debian
operating system with a real time Linux kernel. It is connected to an Applied Dynamics
International (ADI) Systems’ PCI-565-DPGA board, which generates the PWM commands
for the servos.

The RT server also runs ADEPT, a software provided by ADI systems for real-time
applications. ADEPT Was used to implement the controller in C++, create an interface
between the DAQ system and the controller, and an interface between the controller and
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Figure 6.12: Experimental setup.

the PWM generator. The measurements of the load cell on the tail are received directly
by ADEPT. ADEPT was also used to set the controller parameters and record internal
variables, such as the ones related to the frame time, the commanded control action, and
the optimization solver performance.

In the MPC controller implementation, qpOASES [87], an active set method based QP
solver, was used to solve the optimal control problem. Previous solutions of the QP problem
were used to warmstart the next iterations, the maximum number of iterations were set to
80, and the tolerance for convergence was set to 5 × 10−4. The inner and outer-loops were
implemented in a serial fashion. Therefore, the effective controller frame time (e.g., the time
for receiving data from the DAQ, calculating the control action, and generating the PWM
signal) had to be within 20 ms.

6.6 Experimental Results

The EASE model and the controller described in Section 6.3 were tested in a wind tunnel
campaign that spanned six days in a total of 8.5 hours of air time. Table 6.2 presents a
summary of the tests that were conducted. For all of them, the wind tunnel speed was
25± 0.4 m/s, and the temperature varied from -1.1oC to 14.4oC depending on the day and
time of the tests.

The tests were divided into two categories: open-loop and closed-loop tests. The open-
loop tests were performed to verify the UM/NAST model, in particular the aerodynamic
loads generated by the wing and tail. To this end, a sequence of step, impulse, and frequency
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sweeps for each control surface, or groups of control surfaces, was commanded for different
magnitudes between their minimum and maximum excursion. The open-loop tests also
tested the authority of the elevator in changing the pitch attitude of the EASE aircraft.

The closed-loop tests consisted of incrementally testing the inner and outer-loop controller
in the LA governor architecture. A sequence of step commands were given to test the tracking
performance, and a sequence of MVS maneuvers, in groups of 1, 3 or 6 cycles, were performed
to evaluate the load alleviation system. In the latter, it was tested the case when no MLA
constraints were enforced, when only the wing shape constraints were present, and when
both the wing and HTP constraints were enforced.

6.6.1 Open-loop Tests

Figures 6.13, 6.15, and 6.14 show the static loads obtained from open-loop tests at 2.5
deg angle of attack for the deflection of flap 5, elevator, and flap group 2, respectively. In
each one of these figures, the vertical force and out-of-plane (OOP) moment at the rotation
point and HTP root are shown as a function of the normalized control deflection (CS). The
deflection spans the excursion limits for these surfaces, where +1 represents the upper limit
(30 deg), and -1 represents the lower limit (-30 deg). The loads at the rotation point are a
function of both the loads generated by the wing and the HTP, being the former the most
significant one. Both the experimental results and the nonlinear simulation results predicted
by UM/NAST are shown in these figures. Additional open-loop tests results are presented
in Appendix H.

These results show that the UM/NAST model for the EASE aircraft overestimates the
loads generated by the lifting surfaces and their control surfaces. Figures 6.13 and 6.14, in
particular, show that the loads generated by the wing when no flaps are deflected (CS=0)
have a significant error in comparison with the experimental results. This indicates that
the aerodynamic modeling of this member in UM/NAST was not accurate. Similarly, when
the flap deflection is nonzero, either for a single or a group of flaps, the UM/NAST model
predicts a higher authority for these surfaces than what was observed in the experimental
results. This is evident from the different slopes in these figures.

Figure 6.15 shows that the UM/NAST model provided a better matching for the loads
on the HTP when the elevator deflection was zero. However, Similarly to what was seen for
the wing, the control authority predicted by UM/NAST is higher than what was observed in
the wind tunnel. It is interesting to highlight that the UM/NAST model considered a rigid
HTP member, therefore the static loads are constant when the elevator deflection is also
constant. In the experiment, however, the load cell on the HTP root captured variations on
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Table 6.2: Open-loop (OL) and closed-loop (CL) experimental tests.

TestID Type Signal Inner
loop

Outer
loop

MLA
wing

MLA
HTP Notes

100-115 OL Step off off off off
Locked pitch. Control
surface variation between
min and max excursion.

120-135 OL Sweep off off off off

Locked pitch. Control
surface variation between
min and max excursion.
Frequency: 0.5–10Hz.

140-154 OL Impulse off off off off
Locked pitch. Control
surface variation between
min and max excursion.

321 CL Step off off off off
Free pitch. Aero id at
angles of attack from
-7.8 to 9 deg.

331, 540,
560, 580 CL Step on off off off

Sequence of pitch step
commands from
-2.5 to 7.5 deg.

520-523,
541-543,
561-563

CL MVS on off off off

1, 3 and 6 consecutive
cycles of MVS maneuver.
Low, medium, and high
gains for inner loop.

524-526,
544-546,
564-566,
581-583

CL MVS on on off off

1, 3 and 6 consecutive
cycles of MVS maneuver.
Combination of low,
medium, and high gains
for controller loops.

527-529,
547-550,
567-569,
584-587,
601-604

CL MVS on on on off

1, 3 and 6 consecutive
cycles of MVS maneuver.
Combination of low,
medium, and high gains
for controller loops.

530-534,
551-555,
570-572,
588-592,
605-607

CL MVS on on on on

1, 3 and 6 consecutive
cycles of MVS maneuver.
Combination of low,
medium, and high gains
for controller loops.
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Figure 6.13: Static load cell measurements (TestID 104). CS = flap 5.
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Figure 6.14: Static load cell measurements (TestID 112). CS = flap group 2.

both the force and moment on this member. Potential causes are: i) the variation in the
interference of the wing on the tail due to the deflection of the wing flaps; ii) fluctuations in
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speed and/or temperature at different test points; iii) the inherent flexibility of the HTP is
non-negligible.
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Figure 6.15: Static load cell measurements (TestID 111). CS = elevator.
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Figure 6.16: Dynamic load cell measurements (TestID 125). CS = flap 5.

The different loads on the wing generated a different geometry on the flexible structure
than what was predicted by UM/NAST. As a consequence, the dynamical behavior of the
wing was changed. This is demonstrated in Fig. 6.16. In this test, a frequency sweep from
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0.5 to 10 Hz and 20 deg of amplitude was input to flap 5. Fig. 6.16 shows the resulting
control deflection as recorded by the encoder, and the loads at the rotation point. Note
that the amplitude of the flap deflection decreases with the frequency due to the servo
dynamics. The same flap deflection was then used to run an equivalent dynamic simulation
in UM/NAST. From the force and moment amplitudes, it is clear that the sweep excites
different frequencies in the numerical and real models. This, alongside the static results,
show that the UM/NAST model did not capture the dynamics of the system accurately.

A byproduct of the open-loop tests was the realization that the HTP with zero incidence
angle was not providing enough pitch control authority for positive pitch angles. Therefore,
the tail incidence angle was reduced to -5 deg to correct this problem and allow symmetric
maneuvers such as the MVS. The closed-loop results shown in the next section were obtained
with the corrected HTP incidence angle.

6.6.2 Closed-loop Tests

6.6.2.1 Inner-loop Controller

Figure 6.18 shows the inner-loop controller (ILC) performance in tracking a sequence of
pitch angles starting at 2.5 deg and varying between -2.5 deg and 7.5 deg. The elevator was
the only control surfaces used for controlling the pitch attitude, while the flaps on the wing
remained at zero deflection. These results show that the ILC is able to drive the pitch angle
to the desired reference value without saturating the controller. However, oscillations are
seen whenever the controller tracks a constant command. This can be explained by external
factors, such as turbulence in the wind tunnel, or any delay in the control system.
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Figure 6.17: ILC tracking step commands (TestID 331).
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Figure 6.18 shows a comparison between the three different gain levels for the ILC. The
high gain controller had the shortest rise time, followed the medium gain controller and
the low gain controller. Note that each one of the tests had a different initial condition,
which affected the step response of these controllers. The high and medium gain controllers
resulted in slightly larger oscillations on the pitch response, and significantly larger control
effort.
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Figure 6.18: Comparison between different gain levels of ILC (TestID 331, 540, 580).

Table 6.3 shows a comparison between the rise time seen in nonlinear UM/NAST simu-
lations, and the one observed in the wind tunnel experiment for each ILC gain level. It is
apparent that the ILC in the actual vehicle was slower than predicted.

Table 6.3: Inner-loop controller rise time.

Gain level UM/NAST Experiment
Low 1.0 s 2.1 s
Medium 0.5 s 1.6 s
High 0.3 s 1.2 s

6.6.2.2 Baseline MVS Maneuver

Figure 6.19 shows the pitch response of the closed-loop system using medium level gains
when tracking one cycle of the MVS maneuver. In the figure, it is shown the results for the
configuration in which only the ILC is present (MPC off), and the configuration in which the
MPC in the outer-loop (MPC on) is active, but no MLA constraints are imposed. The MPC
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off case serves as a baseline to assess the performance of the outer-loop. For each one of
these configurations, it is shown the reference commanded by the user, the reference received
by the ILC, and the pitch response as measured by the VN100 IMU unit on the fuselage. As
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Figure 6.19: MVS, 1 cycle, No MLA constraints (TestID 544). Commanded pitch angle and
aircraft response.

shown in Fig. 6.19, the outer-loop preserves the reference fed into the inner-loop, which is
expected since no load constraints are present in the problem. Small differences between the
pitch responses is due to the variations in the initial condition of the maneuver or in airflow
condition. In both cases shown in the figure, it is clear that the tracking error is nonzero due
to differences in amplitude and phase, and that the transient after the maneuver is over is
large. Figure 6.20 shows the out-of-plane bending moment at the HTP root, and the strain
along the wing spar at the root station. The strain measurement was obtained from the
strain gauge and it is proportional to the out-of-plane bending moment at that station. No
significant change in these loads were observed between the two responses.

The control surfaces histories to perform the baseline MVS maneuver are shown in
Fig. 6.21. In the cases shown, only the elevator was engaged while the flaps remained
at the trim condition, since no load alleviation was performed.

Figure 6.22 shows the tracking of three consecutive cycles of the MVS maneuver. Similarly
to the case shown in 6.20, no MLA constraints were enforced. This longer maneuver, however,
shows a worse performance of the ILC after the first cycle of the maneuver, with a larger
tracking error. This can be possibly explained by the more pronounced motion of the wing
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Figure 6.20: MVS, 1 cycle, No MLA constraints (TestID 544). Out-of-plane bending moment
on HTP tail root, and strain on wing root.

after the dip, which impacted the performance of the ILC in tracking subsequent cycles.
Figure 6.23 shows the loads on the HTP and wing root, while Fig. 6.23 shows the control

histories to perform the three cycle maneuver. The smaller pitch magnitudes after the first
cycle is connected with smaller elevator deflection and, consequently, to a reduction in the
loads in comparison to the ones observed in the first cycle.

Additional results for the one (TestID 544) and three cycle (TestID 545) MVS maneuver
are shown in Figs. H.3-H.6 and H.21-H.24, respectively, in Appendix H.

6.6.2.3 MVS Maneuver with MLA Constraints on Wing

Figure 6.25 shows the pitch response of the EASE aircraft to one MVS cycle while the MLA
constraints on the three wing stations were enforced. The constraints on the HTP were not
present in this case. This response is compared against the baseline MVS response when the
outer-loop is deactivated as shown in Fig. 6.19. Note that the pitch reference received by the
ILC when the wing MLA constraints were included is the same as the user reference, except
for a short period of time when it deviates to negative values. This behavior usually happens
when the MPC controller cannot find a feasible solution with only the flap deflection to avoid
the load violation. Nevertheless, the pitch response was close to the baseline response.
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Figure 6.21: MVS, 1 cycle, No MLA constraints (TestID 544). Control surfaces histories.

The MPC controller was able to reduce the loads on the wing, as can be seen in Fig. 6.26.
Compared to the baseline response, the strain on the wing root at the first dip was reduced
by 25%, while at the first peak it was reduced by 11%. This shows that the LA governor
architecture could preserve the pitch response while reducing the loads on the wing. The
reduction, however, did not reach the 33% target. The peak loads on the HTP remained the
same.

The control surfaces histories are shown in Fig. 6.27. Differently from the cases seen in
Section 6.6.2.2, now the flaps were deflected to perform load alleviation on the wing. After
the maneuver was finished, the flaps returned to their trim value in order to reduce drag.
The flaps deflection was below its maximum allowed magnitude, however, its rate of change
did hit the limits. The MPC controller was able to find a feasible solution in all updates
throughout the entire test. Figure 6.28 shows the number iteration taken by the QP solver
to find the solution, the feasibility status (status 1 means that a feasible solution was found),
and the computation time. The latter is divided into the time taken by the QP solver to find
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Figure 6.22: MVS, 3 cycles, No MLA constraints (TestID 545). Commanded pitch angle
and aircraft response.
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Figure 6.23: MVS, 3 cycles, No MLA constraints (TestID 545). Out-of-plane bending mo-
ment on HTP tail root, and strain on wing root.

169



0 5 10 15

-30

-20

-10

0

0 5 10 15

-1

-0.5

0

0.5

1

0 5 10 15

-1

-0.5

0

0.5

1

0 5 10 15

-1

-0.5

0

0.5

1

Figure 6.24: MVS, 3 cycles, No MLA constraints (TestID 545). Control surfaces histories.

the solution, and the frame time which included the entire control system update. Similar
results were seen for all wind tunnel tests. This indicates the potential of implementing
MPC-based MLA systems for large scale aircraft models in real-time.

The pitch response of the EASE model when tracking the three-cycle MVS maneuver is
shown in Fig. 6.29. Similarly to the baseline response presented in Fig. 6.25, the tracking
error increases after the first cycle. However, when performing the MLA on the wing,
the pitch response had a magnitude closer to the desired reference, probably due to the
interference of the flap deflection in the pitch motion. The loads developed during the
three cycle maneuver are shown in Fig. 6.30. The load reduction was comparable to the one
seen in Fig. 6.26: 25% reduction at the first dip, and 12% reduction at the first peak. The
loads on the tail after the first cycle increased, probably due to the adverse pitch moment
created by the flap deflections, which had to be corrected by the elevator. This behavior
can be confirmed by analyzing the control surfaces histories in Fig. 6.30. There is a visible
difference between the elevator responses during the maneuvers. The flaps, similarly to
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Figure 6.25: MVS, 1 cycle, MLA constraints on wing only (TestID 547). Commanded pitch
angle and aircraft response.
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Figure 6.26: MVS, 1 cycle, MLA constraints on wing only (TestID 547). Out-of-plane
bending moment on HTP tail root, and strain on wing root.
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Figure 6.27: MVS, 1 cycle, MLA constraints on wing only (TestID 547). Control surfaces
histories.

Fig. 6.27, were deflected only when the load constraints became active, and then returned to
the trim condition. In both Figs. 6.27 and 6.31, the flap group 2 had the largest deflection
to avoid constraint violations, indicating its largest efficiency in performing MLA. This can
be explained by their more outboard position than that of flap group 1, and their larger
contribution to the total lift than that of flap group 3.

Additional results for the one (TestID 547) and three cycle (TestID 548) MVS maneuver
are shown in Figs. H.7-H.9 and H.25-H.28, respectively, in Appendix H. Even though load
alleviation was observed in several attempts to perform the MVS maneuver as shown in the
results presented here, there were some instances in which little or no load reduction was
seen, probably due to variations in the initial conditions of the maneuver. Figures H.10-H.16
(TestID 547-b) in Appendix H illustrate one of these occurrences.
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Figure 6.28: MVS, 1 cycle, MLA constraints on wing only (TestID 547). Computational
time and optimization solver performance.

6.6.2.4 MVS Maneuver with MLA Constraints on Wing and Tail

The HTP root moment constraints were included in the wind tunnel tests shown next, in
addition to the curvature constrains on the wing. Figure 6.32 shows the reference received
by the ILC and the pitch response for a one cycle MVS maneuver. Different from the results
seen in Sections 6.6.2.2 and 6.6.2.3, the reference generated by the outer-loop has substantial
discrepancies from the user-defined signal. This is seen not only during the maneuver, but
also after the maneuver ends. Consequently, a large tracking error is observed, especially
after 1.8 s, which fails to satisfy the MLA system requirement of minimizing trajectory
deviation (Chapter 4).

Figure 6.33 shows the resulting loads on the aircraft during the maneuver. There was
a reduction in the peak loads on both wing and HTP. On the wing root, the strain was
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Figure 6.29: MVS, 3 cycles, MLA constraints on wing only (TestID 548). Commanded pitch
angle and aircraft response.
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Figure 6.30: MVS, 3 cycles, MLA constraints on wing only (TestID 548). Out-of-plane
bending moment on HTP tail root, and strain on wing root.
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Figure 6.31: MVS, 3 cycles, MLA constraints on wing only (TestID 548). Control surfaces
histories.

reduced by 32% at the first dip, and the 23% at the first peak. At the tail root, the moment
was reduced by 43%. Note that the loads on the wing after the maneuver ended are higher
than the baseline result due to the erratic behavior of the pitch response in that segment.
However, these loads were still below the peak loads developed during the maneuver. The
high percentage of reduction in the tail indicate that the MPC controller was over-actuating
to keep the loads within the bounds.

Figure 6.34 shows the control surfaces histories. Similar to the reference generated by the
outer-loop, the flaps presented an unintended behavior after the maneuver was ended. The
deflection reached values close to 12 deg, when they should have been zero. The elevator
deflection had a considerable deviation from the baseline result due to the wrong pitch
reference generated by the LA governor. This erratic behavior is probably due to the wrong
prediction of the MPC controller that would led to constraint violations, while in reality the
aircraft was in a safe condition. As shown in Section 6.6.1, the UM/NAST model used for
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Figure 6.32: MVS, 1 cycle, MLA constraints on wing and HTP (TestID 570). Commanded
pitch angle and aircraft response.

prediction had considerable differences in load output than what was observed in the wind
tunnel, what could explain the wrong MPC prediction and actuation.

The pitch response for an equivalent test for the three-cycle MVS maneuver is shown in
Fig. 6.35. Again, the inclusion of the tail constraint resulted in significant trajectory devi-
ations. Furthermore, the reference generated by the outer-loop had an undesired behavior
after the maneuver ended due to the possible wrong prediction in the MPC controller.
Despite the erratic behavior, the LA governor was able to reduce loads on the wing and tail.
Figure 6.36 shows a 43% reduction in the wing strain at the first dip, a 29% reduction at the
first peak. At the HTP root, the reduction was 59% at the first dip, and 30% at the third
dip. The control surfaces deflections to achieve these results are shown in Fig. 6.21.

Additional results for the one (TestID 570) and three cycle (TestID 554) MVS maneuver
are shown in Figs. H.17-H.20 and H.29-H.32, respectively, in Appendix H.

6.7 Conclusions of Experimental Work

The results presented in Section 6.6 elucidate some important achievements towards the
validation of MPC-based MLA systems:

1. The LQ-I controller in the inner-loop was able to change the pitch attitude of the
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Figure 6.33: MVS, 1 cycle, MLA constraints on wing and HTP (TestID 570). Out-of-plane
bending moment on HTP tail root, and strain on wing root.

aircraft to track the desired reference. Moreover, the outer-loop wrapped around the
inner-loop preserved the nominal response of the LQ-I controller when the MLA con-
straints were inactive. It is important to note that this LQ-I controller is a proxy for
a FCS system in an actual aircraft. As discussed in Section 3.2.2, the LA governor
architecture can preserve the existing control systems in an aircraft and augment it to
enable load alleviation through constrained control.

2. The MPC-based load alleviation system was able to reduce loads on the wing and tail,
either singly or simultaneously. This showcases the ability of this controller technique to
satisfy multiple objectives. As discussed in Section 1, most traditional load alleviation
systems cannot achieve load reduction in multiple stations on the wing and tail.

Furthermore, the LA governor based on a linear MPC design was able to reduce the
peak loads despite the considerable model mismatch and the nonlinear behavior of the
VFA. This showcases the robustness of the controller in enforcing constraints, and
indicates that a linear MPC design may be sufficient for handling the load alleviation
problem in VFA.
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Figure 6.34: MVS, 1 cycle, MLA constraints on wing and HTP (TestID 570). Control
surfaces histories.

3. The MPC controller for a large-scale system was implemented successfully in real-time.
The LA governor operated continuously for several hours in the wind tunnel experiment
and provided feasible solutions at every update. This indicates the potential feasibility
of implementing MPC-based load alleviation systems for FA and VFA.

The experiment also uncovered some shortcomings in both the aircraft model used for
design and the control system design:

4. The open-loop test results showed a considerable discrepancy between the loads pre-
dicted by the UM/NAST model and the actual loads measured by the experiment. The
UM/NAST model overestimates the loads on both wing and tail. This error is likely
to be associated with a poor representation of the aerodynamic model for the EASE
aircraft, and the possible causes include: i) the wing pod gaps were not considered
when modeling the wing member; ii) the interference of the wind tunnel wall on the

178



0 5 10 15

-5

0

5

10

Figure 6.35: MVS, 3 cycles, MLA constraints on wing and HTP (TestID 548). Commanded
pitch angle and aircraft response.
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Figure 6.36: MVS, 3 cycles, MLA constraints on wing and HTP (TestID 554). Out-of-plane
bending moment on HTP tail root, and strain on wing root.
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Figure 6.37: MVS, 3 cycles, MLA constraints on wing and HTP (TestID 554). Control
surfaces histories.

tail and inboard section of the wing. Additionally, it is important to note that the
fuselage flexibility and aerodynamics were neglected in the UM/NAST model. Even
though these factors may not contribute directly to the vertical force and out-of-plane
bending moment errors seen in Section 6.6.1, they can affect the pitch motion of the
aircraft by creating drag and induce vibrations on the wing and tail members.

5. The inner-loop controller was slower than predicted in simulations, and had poor per-
formance in tracking the sinusoidal (MVS) maneuver, especially after the first cycle.
Potential causes for this behavior are: i) the LQ-I controller could not handle the
coupled rigid body pitch motion and flexible wing motion, which may indicate that a
nonlinear controller may be needed; ii) the rate limits on the elevator were too strin-
gent, thus not allowing a faster response of the controller; iii) the latency in the system
due to the DAQ and servos. After the experiment, it was determined that the combined
delay could have been as high as 60 ms.

6. The load alleviation percentage was smaller than predicted in simulations, and incon-
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sistent between different attempts to perform the maneuver. Furthermore the MPC
controller mistakenly predicted constraint violations when the HTP constraints were
included that led to the overuse of flaps and deviation from the nominal pitch trajec-
tory. The model mismatch is probably the main cause for this behavior for two reasons:
i) the authority of the flaps on the wing was overestimated; ii) the loads on the tail
were overestimated, therefore leading the constraints to become active even when the
aircraft was in a safe condition. Moreover, the constraints on the stringent flap rates
could also explain the smaller reduction in loads.

It is apparent that model tuning and controller redesign are needed for improving the
performance of the LA governor architecture. The open-loop test results can be used for
adjusting the aerodynamic model of EASE aircraft in UM/NAST. For the inner-loop con-
troller, the LQ-I controller could be modified to include an echo system representing the
MVS maneuver, or it could be replaced by other linear (e.g., H∞ synthesis with a peak filter
at the MVS maneuver frequency) or nonlinear (e.g., dynamic inversion) control techniques.
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CHAPTER 7

Conclusions and Recommendations

This Chapter provides a summary of this work, including the main conclusions and key
contributions of the constrained control design for load alleviation in flexible and very flexible
aircraft. Recommendations are given for future work.

7.1 Summary and Main Conclusions

This work has investigated constrained control for designing load alleviation systems for
flexible and very flexible aircraft. These control methods, in particular MPC and reference
governor, can provide several advantages to these systems due to their ability to enforce
pointwise-in-time constraints. Two scenarios were investigated: the reduction of loads in-
duced by maneuvers, which is connected to a reference tracking problem, and the reduction
of loads at the encounter of gusts, which is connected to disturbance rejection problems.
The objective was to reduce the peak out-of-plane bending moment while complying with
requirements usually observed by the aeronautical industry.

Two MPC-based architectures for load alleviation were presented: the MPC architecture,
which integrates the flight control system and load alleviation system; and the LA gover-
nor architecture, which is an MPC-based add-on to the conventional FCS to enable load
alleviation. The control design formulation for both architectures was presented and their
performance was evaluated through numerical simulations of a VFA. The results showed
that the MPC architecture may have a smaller computational cost. On the other hand, the
LA governor architecture has salient practical advantages for preserving the existing FCS,
which could be a more cost-effective choice for airframe manufacturers.

Several strategies to reduce the computational cost of designing and implementing these
MPC-based load alleviation systems for VFA were presented. First, the use ROMs, ei-
ther linear (balanced residualization) or nonlinear (B2T and T2B), facilitate the design of
controllers for these large-scale systems by reducing the number of states. Second, the ag-
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gregation of constraints in a smaller set of composite functions can result in up to 90% in the
maximum computational time of an MPC update step. Dividing the constraints in groups
and distributing these groups in time when updating the MPC controller can also contribute
with a reduction in 67% in the maximum computation time. Third, move blocking tech-
niques, such as input blocking, can reduce the number of decision variables in the OCP
and, consequently, the computational cost. Furthermore, several remarks were made about
the proper selection of the optimization solver for this application. In particular, active set
methods with warmstarting provided the best performance among the solvers tested.

Numerical simulations were run to assess the performance of the proposed control systems
in performing MLA in FA and VFA. The strategy to reduce bending moment by constraining
the shape of the flexible wing and tail at critical stations showed to be efficient. Reductions
between 20% and 58% percent were achieved with minimum trajectory deviation. To handle
the different mass configurations that affect the response of the aeroservoelastic system, a
scenario-based MPC was designed based on relevant configuration models. Using such an
approach, a single MPC controller was able to enforce constraints for seven different aircraft
model, which was not possible with the conventional design based on a single model.

To perform GLA, the load alleviation architectures were augmented with LIDAR mea-
surements. The disturbance preview was obtained through the reconstruction of the gust
field from these LIDAR measurements. The preview was incorporated into the MPC design
to enable feedforward control action and avoid load violations at the first gust hit. Numeri-
cal simulations showed that the modified architectures can reduce loads at encounters with
discrete and continuous gust disturbances by 33% in both FA and VFA.

A wind tunnel experiment was conducted to validate the proposed load alleviation sys-
tem. A half-aircraft model with a very flexible wing and free pitch was designed to be a
demonstrator of MLA solutions in a controlled environment. The LA governor architecture
based on linear MPC was successfully implemented in real-time for coordinating multiple
control surfaces to reduce loads on critical stations on both the wing and tail. Closed-loop
tests were run to assess the performance of the control system while commanding the MVS
maneuver. The system was able to reduce the out-of-plane bending moment on the wing
root by 25%-43%, while the moment on the tail root was reduced by 43%-59%. While these
reductions satisfy the design requirements, they were different from what was predicted in
simulations. Furthermore, the control system had a poor performance in controlling the
vehicle pitch and avoiding trajectory deviations from the baseline response, especially when
the constraints on the tail were enforced. Open-loop wind tunnel tests revealed a substantial
difference between the numerical model used for design and the actual aircraft response,
which could explain the defective performance of the control system. Despite of the model
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mismatch, the experiment showcased the capability of constrained control in coordinating
multiple load alleviation objectives.

7.2 Key Contributions

The key contributions of this dissertation can be summarized as follows:

• Two MPC-based FCS with load alleviation capabilities were proposed that can replace
or augment existing flight FCS. The advantages and disadvantages of each architecture
were presented and illustrated in numerical simulations. Furthermore, it was shown
how these architectures can satisfy the requirements of MLA and GLA system design
for very flexible aircraft. In GLA design, it was also demonstrated that the integration
of gust preview into the MPC design can enhance the response of the system to external
disturbances.

• It was shown how constrained control can be used to perform load alleviation through
shape control of flexible and very flexible aircraft. It was demonstrated how shape
control can reduce the out-of-plane bending moment on multiple stations, both on
wing and horizontal tail plane, by imposing curvature constraints in a small set of
critical stations. A procedure to select these stations was also proposed.

• The feasibility of the proposed MLA system was demonstrated experimentally. An
enhanced aeroservoelastic (EASE) model representing a half aircraft model was de-
signed for demonstrating load alleviation solutions in very flexible aircraft. A wind
tunnel experiment was conducted in which an MPC controller coordinated several
control surfaces on the aircraft to alleviate loads on the wing and tail while the vehicle
performed a longitudinal maneuver. The MPC controller for the large-scale systems
was successfully implemented in real-time. The experimental results corroborated the
potential of the proposed MLA system in reducing peak loads in very flexible aircraft.

• MPC with aggregated constraints was introduced. A connection between optimization
problems with aggregated constraints and parametric optimization problems was es-
tablished. Sufficient conditions for the existence and uniqueness of a local minimizer in
the optimization problem with aggregated constraints were provided. A framework for
nonlinear model predictive control with aggregated constraints (NMPC-AC) was estab-
lished, as well as a procedure to perform the aggregation. The reduction of the domain
of attraction as a result of constraint aggregation was characterized. The performance
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of the NMPC-AC and its potential in load alleviation applications were illustrated via
a numerical examples flexible and very flexible aircraft.

• It was shown how scenario-based optimization can be used to design an MPC-based
load alleviation system that can handle multiple aircraft mass configurations. A
method to implement reduce the computational cost of such an approach was proposed
in which the constraints are enforced in separate groups that are distributed in time.
Numerical simulations showed that the methods is able to enforce load constraints for
several aircraft configurations with a reduced computational footprint.

• Several numerical tools were developed or enhanced under the UM/NAST v4 frame-
work for studying load alleviation systems for very flexible aircraft. These include: (i)
the enhancement and additional developments in the UM/NAST-Controller module
for closed-loop simulations, such as the implementation of the MATLAB interface; (ii)
The enhancement of existing sensor models in UM/NAST-Sensors, and the addition of
new sensors such as the LIDAR sensor and the gust reconstruction algorithm; (iii) The
addition of discrete and continuous gust models fixed in space in UM/NAST-Gust;
(iv) The creation of UM/NAST-Optimization Solvers which contains a collection of
solvers for constrained and unconstrained optimization especially designed for control
and estimation applications; (v) The implementation of load calculation in UM/NAST;
among other improvements in the UM/NAST Dynamic and Linearization Solvers.

7.3 Recommendations for Future Work

Over the course of this study, some aspects of the performance of the proposed load allevia-
tion systems revealed areas for needed improvement.

• Despite the experimental work showing the potential of the MPC-based architecture
for MLA, a thorough characterization and assessment of the controller performance
was not possible. Additional wind tunnel testing is needed to improve the simulation
models and re-tune the controller. Additionally, several opportunities to improve on
the controller design were identified as discussed in Section 6.7.

• In addition to experimentally verifying the MLA system, the GLA system could also be
tested in the wind tunnel. To this end, gust vanes would have to installed in the test
section to generate the gust disturbance. Furthermore, the experimental validation
of nonlinear MPC solutions would also be interesting, especially for comparing its
performance against the linear MPC formulation.
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• The computational cost of the MPC solution based on the top-to-bottom or bottom-to-
top reduced-order models is high, what could preclude the deployment of these models
in a real aircraft. The bottleneck appears to reside in the cost to update the models
in consecutive controller updates. Adjustments in either the reduced-order models
implementation or in the MPC formulation are necessary to fully benefit from the
nonlinear approximations provided by these models in real-time applications.

• The robustness of the MLA systems against external disturbances and the plant’s
varying parameters (e.g., the aircraft mass) was addressed by the introduction of dis-
turbance preview and scenario-based optimization into the MPC design. Even though
the MPC controller is inherently robust to other types of uncertainties (e.g., model
mismatch due to model order reduction or unmodeled dynamics, and sensor noise) it
could benefit from a more systematic design framework that incorporates information
about these uncertainties. Robust methods, such as tube-based MPC could be applied.
However, research would have to be conducted to develop an efficient way to design
such controllers for a large-scale system.

• The time-distributed constraint approach for scenario-based MPC has shown to be a
less computationally expensive implementation than conventional methods, but it still
lacks a more theoretical study. It would be interesting to understand the optimal way
to define the constraint groups, and whether constraint tightening would be necessary
to avoid violations, especially when uncertainties are present.

• Failure mode handling, one of the requirements of MLA/GLA systems, was indirectly
addressed by selecting redundant sets of control effectors and sensors in the proposed
load alleviation systems. A more robust system would benefit from a dedicated system
to detect failures and an internal logic in the MPC controller to adapt to these changes
in the plant.

• Even though this work has shed some light on the advantages and disadvantages of us-
ing nonlinear aeroelastic models for control design for very flexible aircraft, the results
presented here were not conclusive. A more though investigation is needed to under-
stand the limits of applicability of linear models in control design and the benefits of
nonlinear representations as a function of the aircraft flexibility.
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APPENDIX A

Aircraft Models Properties

A.1 XRF1

Each control effector of XRF1 has an associated actuator with first-order dynamics given
by:

Elevator : 1
1

20πs+ 1 , (A.1)

Inner ailerons : 1
1

10πs+ 1 , (A.2)

Outer ailerons : 1
1

12πs+ 1 , (A.3)

Rudder : 1
1

6πs+ 1 , (A.4)

Flap : 1
1

4πs+ 1 , (A.5)

Thrust : 1
1
10s+ 1 . (A.6)

Seven different XRF1 mas cases are considered in this work, which vary in terms of total
mass, mass distribution and, consequently, inertia properties. From the smallest to highest
weight, these mass cases are called OWE, F000, FA2M, FA2T, FA9M, FC8T, FT8T, FT8T.

Figure A.1 shows the labels used to identify different stations on XRF1’s wing and tail.
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APPENDIX B

Condensed MPC Formulation

B.1 Condensed Linear MPC

Consider the linear time-invariant system

xk+1 = Axk +Buk, (B.1)

yk = Cxk +Duk, (B.2)

with xk ∈ Rnx , uk ∈ Rnu , and yk ∈ Rny . Let x be the current state. The control objective
is to design an MPC controller that minimizes the following cost function over a prediction
horizon N :

VN(x) = min
x,u

xTNPfxN +
N−1∑
k=0

xTkQxk + uTkRuk, (B.3)

subject to:

x0 = x, (B.4)

xk+1 = Axk +Buk, for k ∈ Z[0,N−1], (B.5)

E0 + E1xk+1 + E2uk ⪯ 0, for k ∈ Z[0,N−1], (B.6)

with Q ∈ Rnx×nx , Q ⪰ 0, R ∈ Rnu×nu , R ≻ 0, Pf ∈ Rnx×nx , Pf ≻ 0, E0 ∈ Rnc , E1 ∈ Rnc×nx ,
and E2 ∈ Rnc×nu . Equation B.6 contains nc linear inequalities representing state, input and
output constraints. Vectors x ∈ RNnx and u ∈ RNnu denote the concatenation of the state
and input vectors, respectively, over the prediction horizon:

x =
[
xT1 xT2 · · · xTN

]T
, (B.7)

u =
[
uT0 uT1 · · · uTN−1

]T
. (B.8)
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Equality constraints in Eq. B.5 can be written in matrix form as follows:

x = Scu +Mcx0 (B.9)

Sc =


B 0 · · · 0
AB B · · · 0
...

...
. . . · · ·

AN−1B AN−2B · · · B

 , Mc =


A

A2

...

AN

 . (B.10)

Define matrices Qc ∈ RNnx×Nnx and Rc ∈ RNnu×Nnu as follows:

Qc

 IN−1 ⊗Q 0
0 Pf

 , Rc = IN ⊗R. (B.11)

Then, cost function in Eq. B.3 can be written in matrix form as follows:

VN(x) = uTHcu + 2qTc u + cc, (B.12)

where

Hc = STc QcSc +Rc, (B.13)

qc = STc QcMcx0, (B.14)

cc = xT0 (Q+MT
c QcMc)x0. (B.15)

Similarly, by defining

Gc = (IN ⊗ E1)Sc + IN ⊗ E2, (B.16)

Wc = (IN ⊗ E1)Mcx0 + 1N ⊗ E0, (B.17)

inequalities in B.6 can be written in matrix form as follows

Gcu +Wc ⪯ 0. (B.18)

Therefore, the OCP in Eqs. B.3-B.6 can be written in a more compact form as follows

VN(x) = min
u

uTHcu + 2qTc u (B.19)

s.t. x0 = x, (B.20)

Gcu +Wc ⪯ 0. (B.21)
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Note that cc was removed from the cost function in Eq. B.19 for being a constant with
respect to the decision variables. By construction Hc ≻ 0, thus the optimization problem in
Eqs. B.19-B.21 is a convex QP. This QP is equivalent to the optimization problem in Eqs.
B.3-B.6, however with a smaller number of decision variables and no equality constrains.
This reduction was possible to the elimination of decision variables u by back substitution
of the dynamic equation in B.9 into the original OCP. This procedure is referred to as
condesing, and the OCP in Eqs. B.19-B.21 is called condensed MPC.

B.2 Condensed Nonlinear MPC

Consider the nonlinear time-invariant system

xk+1 = fs(xk, uk), (B.22)

yk = g(xk, uk), (B.23)

with xk ∈ Rnx , uk ∈ Rnu , and yk ∈ Rny . Functions fs : Rnx×Rnu → Rnx and g : Rnx×Rnu →
Rny are assumed to be C2 with respect to their arguments. Let x be the current state. The
control objective is to design an MPC controller that minimizes the quadratic cost function
in Eq. B.3 over a prediction horizon N subject to the following constraints:

x0 = x, (B.24)

xk+1 = fs(xk, uk), for k ∈ Z[0,N−1], (B.25)

h(xk, uk) ⪯ 0, for k ∈ Z[1,N ], (B.26)

where g : Rnx × Rnu → Rnc is assumed to be a C2 function representing, state, input and
output constraints.

Let x and u be defined as in B.7 and B.8, respectively. Functions f̄ and h̄ are defined as
follows:

f̄(x,u) ≜


x1 − fs(x0, u0)
x2 − fs(x1, u1)

...

xN − fs(xN−1, uN−1)

 , (B.27)
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h̄(x,u) ≜


h(x0, u0)
h(x1, u1)

...

h(xN−1, uN−1)

 . (B.28)

The Lagrangian function associated with this problem is

L(x,u, λeq, λineq) = VN(x) + λTeqf̄(x,u) + λTineqh̄(x,u), (B.29)

where λeq ∈ RNnx and λeq ∈ RNnc
++ are Lagrange multipliers.

If SQP is chosen as the numerical method to solve this OCP, the following QP problems
are solved at each subiteration of the algorithm:

min
∆x,∆u

1
2

 ∆x
∆u

T  Hxx Hxu

HT
xu Huu

 ∆x
∆u

+
 dx

du

T  ∆x
∆u

 (B.30)

s.t. Ā∆x + B̄∆u + f̄(x̄, ū) = 0, (B.31)

Ē1∆x + Ē2∆u + h̄(x̄, ū) ⪯ 0, (B.32)

where vectors x̄ and ū denote the evaluation of x and u at the current iteration point, and
∆x ≜ x− x̄ and ∆u ≜ u− ū. Furthermore,

Ā = ∂f̄(x,u)
∂x

∣∣∣∣∣
(x̄,ū)

, B̄ = ∂f̄(x,u)
∂u

∣∣∣∣∣
(x̄,ū)

, (B.33)

Ē1 = ∂h̄(x,u)
∂x

∣∣∣∣∣
(x̄,ū)

, Ē2 = ∂h̄(x,u)
∂u

∣∣∣∣∣
(x̄,ū)

, (B.34)

dx = ∂VN(x)
∂x

∣∣∣∣∣
(x̄,ū)

, du = ∂VN(x)
∂u

∣∣∣∣∣
(x̄,ū)

, (B.35)

Hxx = ∂2VN(x)
∂x2

∣∣∣∣∣
(x̄,ū)

, Huu = ∂2VN(x)
∂u2

∣∣∣∣∣
(x̄,ū)

, Hxu = ∂2VN(x)
∂x∂u

∣∣∣∣∣
(x̄,ū)

. (B.36)

Equation B.31 can be used to eliminate x from the decision variables by defining the following
relation:

∆x = −Ā−1
(
B̄∆u + f̄(x̄, ū)

)
= Sc∆u +Mc. (B.37)

Note that Ā is always non-singular because it is a lower diagonal matrix with ones in its main
diagonal. Using back substitution of Eq. B.37 into Eqs, B.30-B.32, the following condensed
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QP is obtained:

min
∆u

1
2∆uTHc∆u + qTc ∆u (B.38)

s.t. Gc∆u +Wc ⪯ 0, (B.39)

where:

Hc = Huu + STc HxxScH
T
xuSc + STc Hxu (B.40)

qc = du +HT
xu (HxxMc + dx) +HT

xuMc (B.41)

Gc = Ē1Sc + Ē2, (B.42)

Wc = Ē1Mc + h̄(x̄, ū). (B.43)

The solution of this QP subproblem will return ∆u∗ and λ∗
ineq. Equation B.37 can be used

to recover ∆x∗, while the Lagrangian function can be used to recover λ∗
eq given the fact that

∇xL should be zero at the optimal solution:

λ∗
eq = −Ā−T

(
dx + ĒT

1 λ
∗
ineq

)
. (B.44)
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APPENDIX C

Review on Sensitivity Analysis

C.1 Notation

Given a nonlinear program (Pα), its feasible set is denoted by Fα. The set of Lagrange
multipliers at a feasible point z is denoted by Λ(z), while the set of local optimizers is
denoted by SPα .

The symbols Z and R represent the set of integer and real numbers, respectively. R+

represents the set of nonnegative real numbers, while R++ represents the set of positive real
numbers. R[a,b] or [a, b] denote a closed interval of real numbers, while R(a,b) or (a, b) denote
an open interval. Similar definitions Z[a,b] and Z(a,b) apply to subsets of Z. The interior of a
set S is denoted by intS.

Let x ∈ Rn be a vector. Then ||x|| represents its Euclidean norm. An element of x is
represented by xi. The segment between elements a and b in vector x is represented by
[xi]bi=a. Let A ∈ Rm×n be a matrix. Then ||A||F is its Frobenius norm.

Let f(x, y) : X × Y → R be a function. The partial derivative of f(x, y) with
respect to x at (x, y) is represented by ∇xf(x, y). The form ∇f(x, y)(h, d) represents
∇xf(x, y)h + ∇yf(x, y)d. The second partial derivative of f(x, y) with respect to x at
(x, y) is represented by ∇2

xxf(x, y). The form ∇2f(x, y)(h, d) denotes hT∇2
xxf(x, y)h +

2hT∇2
xyf(x, y)d+ dT∇2

yyf(x, y)d.
Let x ∈ X and g(x) : X → R. Then g(x) = o(x) means that g(x)/||x|| → 0 as x → 0.

Furthermore, g(x) = O(x) means that g(x)/||x|| is bounded for all x in the neighborhood of
0 ∈ X.

A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0.
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C.2 Sensitivity analysis

Consider the perturbed nonlinear program of the form:

(Pv) : p(v) = min
z∈Rnz

{f(z, v)|z ∈ Fv} (C.1)

with feasible set

Fv ≜
{
z ∈ Rn|gi(z, v) ≤ 0, for i ∈ Z[1,nc],

and gi(z, v) = 0, for i ∈ Z[1+nc,np]
}
,

(C.2)

where v ∈ V ⊆ Rnv is the vector of perturbation parameters, and z ∈ Rnz is the vector of
decision variables. The functions f(z, v) : Rnz × V → R, and gi(z, v) : Rnz × V → R for
all i ∈ Z[1,nc] are assumed to be twice continuously differentiable. An optimal solution of
(Pv), assumed to exist, is denoted by z̄. For v = v0, the program (Pv0) is referred to as the
unperturbed problem. For such a problem, an optimal solution is z0. Denote by I(z, v) the
set of inequality constraints active at z for a given v:

I(z, v) ≜
{
i|gi(z, v) = 0, for i ∈ Z[1,nc]

}
, (C.3)

and C(z, v) the critical cone associated with a feasible point z of (Pv) [136]:

C(z, v) ≜ {h ∈ Rnz |∇xf(z, v)h ≤ 0,

∇xgi(z, v)h ≤ 0, for i ∈ I(z, v), and

∇xgi(z, v)h = 0, for i ∈ Z[1+nc,np]
}
.

(C.4)

The Lagrangian function associated with (Pv) is

L(z, v, λ) = f(z, v) +
np∑
i=1

λigi(z, v), (C.5)

where λ ∈ Rnp is the vector of Lagrange multipliers. The set of Lagrange multipliers at a
feasible point z is denoted by Λ(z, v).

For sensitivity analysis, a method based on estimates of the objective function value in
the direction d along the path parameterized as

v(t) = v0 + td+ 1
2t

2r + o(t2) (C.6)

is employed. Consider the following linearization of (Pv) at a point (z0, v0) in a direction
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d ∈ V :

(PLd) : pPLd
= min

h∈Rnz
{∇f(z0, v0)(h, d) | h ∈ Fd} , (C.7)

where

Fd = {h ∈ Rnz |∇gi(z0, v0)(h, d) ≤ 0, for

i ∈ I(z0, v0), and ∇gi(z0, v0)(h, d) = 0,

for i ∈ Z[1+nc,np]
}
.

(C.8)

The problem (PLd) is a linear program with its dual given by:

(DLd) : dPLd
= max

λ∈Λ(z0,v0)
∇vL(z0, v0, λ)d. (C.9)

Suppose that Λ(z0, v0) ̸= ∅ and let λ̄ ∈ Λ(z0, v0). Then, λ̄ ∈ SDLd
(i.e., the set of local

optimizers of (DLd)) if and only if [136]

λ̄i∇gi(z0, v0)(h, d) = 0 (C.10)

for i ∈ Z[1+nc,np] ∪ I(z0, v0), and for any λ̄ ∈ SDLd
,

SPLd
= {h ∈ Rnz |∇gi(z0, v0)(h, d) = 0 for

i ∈ Z[1+nc,np] ∪ I+(z0, v0, λ̄) and

∇gi(z0, v0)(h, d) ≤ 0 for i ∈ I0(z0, v0, λ̄)
}
,

(C.11)

where

I+(z0, v0, λ̄) = {i ∈ I(z0, v0)|λ̄i > 0}, (C.12)

I0(z0, v0, λ̄) = {i ∈ I(z0, v0)|λ̄i = 0}. (C.13)

Consider also the following problem associated with the dual problem of the second-order
expansion of (Pv):

(PQ) pPQ = (C.14)

min
h∈SPLd

{
max
λ∈SDLd

∇2L(z0, x0, λ)((h, d), (h, d))
}
.
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Definition 3 (Gollan’s condition):The directional regularity condition is said to hold at z0

in a direction d ∈ V if
∇xgi(z0, v0), i ∈ Z[1+nc,np] are linearly independent

∃h ∈ Rnz ,

 ∇gi(z0, v0)(h, d) = 0, for i ∈ Z[1+nc,np]

∇gi(z0, v0)(h, d) < 0, for i ∈ I(z0, v0)
(C.15)

Proposition 2 ([136], Theorem 5.50) Suppose that Gollan’s condition holds in a direc-
tion d. Then dPLd

= pPLd
<∞, and dPLd

is finite if and only if the set Λ(z, v) is nonempty.

Definition 4 The second-order sufficient optimality condition (SOSC) in a direction d ∈ V
is said to hold at a point z0 if

sup
λ∈SDLd

∇2
zzL(z0, v0, λ)(h, h) > 0, (C.16)

∀h ∈ C(z0, v0) \ {0}.
The next theorem presents one of the main results on the directional stability of the

perturbed local minimum and correspondent optimal value function.

Theorem 3 ([136], Theorem 5.53) Suppose that:
(i) the unperturped problem has a unique optimal solution z0,

(ii) Gollan’s condition holds in the direction d,
(iii) the set Λ(z0, v0) is nonempty,
(iv) the second-order sufficient condition holds
(v) z̄(t)→ z0 as t ↓ 0.
Then for any o(t2)-optimal solution z̄(t) of (Pv), where v = v0 + td and t ≥ 0, the following
holds:
a) z̄(t) is Lipschitz stable at z0, i.e., ||z̄(t)− z0|| = O(t),
b) the problem (PQ) has a finite optimal value, and the following expansion for the optimal
value function holds:

p(v0 + td) = p(v0) + tpPLd
+ 1

2t
2pPQ + o(t2) (C.17)

Remark 4 In the case of isolated local minimizers, a dummy constraint ||z − z0||2 ≤ r2 for
a sufficiently small r can be added to reduce the analysis of these local solutions to the case
of a unique minimizer. Since this constraint is not active at z0, the results in Theorem 3
apply.
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C.3 Strong regularity

Consider a generalized equation (GE) of the form:

F (z, v) +NK(z) ∋ 0, (C.18)

where F (z, v) : Z×V → Z ′ is a function, K is a nonempty closed convex set, and NK : Z ⇒

Z ′ is the normal cone operator:

NK(z) ≜

 {y ∈ Z
′|yT (k − z) ≤ 0, ∀k ∈ K} if z ∈ K,

∅ if z /∈ K.
(C.19)

Definition 5 (Strong regularity, [137]): It is said that z0 is a strongly regular solution of
the GE in (C.18), for some v0, if there exist neighborhoods VZ and VZ′ of z0 ∈ Z and 0 ∈ Z ′,
respectively, such that for every δ ∈ VZ′, the linearized generalized equation (LGE)

F (z0) +∇F (z0)(z − z0) +NK(z) ∋ δ (C.20)

has a unique solution in VZ, denoted by ζ(δ), and the mapping ζ : V′
Z → VZ is Lipschitz

continuous with constant c.
The necessary optimality conditions given by the KKT system of (Pv), equipped with

some type of constraint qualification, can be written as a GE as follows:
∇xL(z, v, λ)
−[gi(z)]nc

i=1

−[gi(z)]np

i=1+nc

+NRnz ×Rnc
+ ×Rnp−nc


z

[λi]nc
i=1

[λi]np

i=1+nc

 ∋ 0. (C.21)

Proposition 3 ([137]) A pair (z, λ) for some v ∈ V is a KKT point of (Pv) if and only if
it is a solution of the GE in (C.21) .

Definition 6 The strong second-order sufficient optimality condition (SSOSC) is said to
hold at a point z0 if

∇2
zzL(z0, v0, λ)(h, h) > 0 (C.22)

for any λ ∈ Λ(z0, v0) and h ̸= 0 such that ∇zgi(z0, v0)h = 0, i ∈ Z[1+nc,np] ∪ I+(z0, v0, λ).

Proposition 4 ([137], Theorem 4.1; [136], Proposition 5.38) Let z0 be a locally opti-
mal solution and λ0 a corresponding Lagrange multiplier vector of (Pv0). The critical point
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(z0, λ0) is strongly regular if and only if the linear independence constraint qualification
(LICQ) and the SSOSC hold.

Remark 5 Strong regularity implies regularity, i.e., the Mangasarian-Fromovitz condition
holds. The latter, in turn, implies Gollan’s condition [138, 139].

Proposition 5 ([138], Theorem 4.6; [139], Proposition 5.2) Let z0 be a local solution
of (Pv0) and λ0 its unique Lagrange multiplier. If (z0, λ0) is a strongly regular solution of
Eq. (C.18), then there exists a neighborhood V of z0 such that, for all v sufficiently close to
v0, the perturbed problem (Pv) has a unique local minimizer z̄ ∈ V and an associated unique
Lagrange multiplier λ̄, such that (z̄, λ̄) is the unique solution of Eq. (C.18) in V.
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APPENDIX D

Review on Scenario-based MPC

This section presents a brief review of MPCS based on references [122, 123, 140].
Consider the following uncertain discrete-time system:

xk+1 = A(δ)xk +B(δ)uk, (D.1)

yk = C(δ)xk +D(δ)uk, (D.2)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the control input, yk ∈ Rny is the output
vector, and δ ∈ ∆ ⊆ Rnδ is the vector of uncertain parameters.
Assumption 1: The set Σ ≜ {A(δ), B(δ), C(δ), D(δ) : δ ∈ ∆} is bounded. The parameters
δ have a stochastic nature, and the probability measure on ∆ is denoted by Pδ.
Assumption 2: The pair (A(δ), B(δ)) is stabilizable for any δ ∈ ∆.

The objective is to design an MPC controller that will steer the system states and/or
outputs to desired values while enforcing state, output and input constraints, i.e., xk ∈
X(δ), yk ∈ Y (δ), uk ∈ U(δ) ∀k, respectively. Without loss of generality, we consider only the
regulation problem.
Assumption 3: For any δ ∈ ∆, the sets X(δ) ⊆ Rnx , Y (δ) ⊆ Rny , U(δ) ⊆ Rnu are convex
and contain the origin in their interiors. These sets can be represented by:

X(δ) = {x ∈ Rnx : fX(x, δ) ⪯ 0}, (D.3)

Y (δ) = {y ∈ Rny : fY (y, δ) ⪯ 0}, (D.4)

U(δ) = {u ∈ Rnu : fU(u, δ) ⪯ 0}, (D.5)

where fX : Rnx×∆→ Rngx , fY : Rny×∆→ Rngy , fU : Rnu×∆→ Rngu are convex functions
in x, y and u, respectively.
Assumption 4: A convex terminal set Xf ≜

{
x ∈ Rnx : fXf

(x) ⪯ 0
}
, fXf

: Rnx → Rngxf

convex, and a linear terminal control law u = Kfx, Kf ∈ Rnu×nx exist such that Xf is a
robustly invariant set, that is, ∀xk ∈ Xf ,∀δ ∈ ∆, (A(δ) +B(δ)Kf )xk ∈ Xf . Furthermore,
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∀xk ∈ Xf and ∀δ ∈ ∆, the terminal control law renders the origin of system D.1-D.2 robustly
asymptotically stable.

Let uk = Kfx + vk be the control law applied to the plant at time k, and define the
closed-loop system

xk+1 = Acl(δ)xk +B(δ)vk, (D.6)

where Acl(δ) ≜ A(δ) +B(δ)Kf , and vk is the control correction computed as the solution to
the min-max optimal control problem (OCP) defined as follows:

minimize
{vk∈Rnu }N−1

k=0

max
δ∈∆

{
J(xk, δ, vk) =

N−1∑
k=0

xTkQxk + uTkRuk

}
(D.7)

s.t. xk+1 ∈ X(δ), yk+1 ∈ Y (δ), uk ∈ U(δ), xN ∈ Xf , ∀δ ∈ ∆, for k ∈ N[0;N−1],

where N ∈ N∗ is the prediction horizon, and QT = Q ≻ 0, RT = R ≻ 0 are weighting
matrices of appropriate size. The OCP in D.7 is usually too hard to solve, especially because
∆ is often of high cardinality or even infinite.

Consider a finite number M ∈ N of randomly extracted scenarios of δ, which are collected
in the multisample ωM = {δ(1), . . . , δ(M)} whose probability measure is denoted by PM

δ . The
OCP is then reformulated in epigraph form as follows:

minimize
s

α + µε

s.t. J(xk, δ(i), vk) ≤ α, for i ∈ N[1;M ]

fX(xk, δ(i))− 1ngx
ε ⪯ 0, for i ∈ N[1;M ], k ∈ N[1;N ] (D.8)

fY (yk, δ(i))− 1ngy
ε ⪯ 0, for i ∈ N[1;M ], k ∈ N[1;N ]

fU(uk, δ(i))− 1ngu
ε ⪯ 0, for i ∈ N[1;M ], k ∈ N[0;N−1]

fXf
(xN)− 1ngxf

ε ⪯ 0,

ε ≥ 0,

where s ≜
[
vT0 , . . . , v

T
N−1, α, ε

]T
is the vector of decision variables, and ε is a slack variable

used to guarantee feasibility of the optimization problem by transforming the hard con-
straints into soft ones, and 1n is a n-dimensional vector whose entries are ones. Note that
the OCP in D.8 is a convex program.
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Define the following function of the constraints in OCP D.8:

h(s, δ(i)) ≜ max
{

max
k∈N[0;N−1]

{
fX(xk+1, δ

(i))− 1ngx
ε, fY (yk+1, δ

(i))− 1ngy
ε, fU(uk, δ(i))− 1ngu

ε
}
,

J(xk, δ(i), vk)− α, fXf
(xN)− 1ngxf

ε,−ε
}
.

(D.9)

The reliability of the scenario optimization, which depends of the random multisample ωM
in D.8 is defined as:

R(ωM) ≜ Pδ
{
δ : h(s∗, δ(i)) ≤ 0

}
, (D.10)

where s∗ denotes the optimal solution to D.8. Theorem 1 [123] defines the conditions in
which a feasible solution of D.8 will also be feasible for D.7 for some user-defined reliability
level.
Theorem 1 [123]: Let d be the number of decision variables in OCP D.8, let p ∈ R(0;1) be
a given desired reliability level, let β ∈ R(0;1) be a given small probability level, and let M
be an integer such that:

Φ(p, d,M) =
d−1∑
j=0

(
M

j

)
(1− p)jpM−j ≤ β. (D.11)

Then, it holds that:
PM
δ {ωM : R(ωM) ≥ p} ≥ 1− β. (D.12)
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APPENDIX E

Noise Matrices Inflation in Kalman Filtering

The uncertainties wk in the uncertain linear system in Eqs. 3.122-3.123 include nonlinear-
ities, model reduction errors, and discretization errors, while vk is commonly employed to
account for sensor imperfections. However, vk can also encompass model reduction errors
and linearization errors.

The conventional approach for tuning wk statistics is by trial-and-error. While this solu-
tion may be effective for small-scale projects, a large-order system precludes its use due to
the large number of independent parameters to tune. Therefore, a systematic approach to
tuning a large-scale Kalman filter is required. Furthermore, the analytic description of the
differential equations in Eqs. 2.27-2.29 is often not available in high-order FSI simulations.
Therefore, the tuning process must only use time series x(t), u(t), y(t) from a finite number
of M simulated trajectories. The next procedure was proposed by Dr. Leandro Lustosa.

To determine wk statistics, its mean is set to zero (i.e., E[wk] = 0) and its covariance
is defined by FSI-based time series x(t), u(t), and y(t) (e.g., solutions of the UM/NAST
Dynamic Solver). For this purpose, wk is written as

wk = xr,k − Adrxr,k−1 −Bd
ruk (E.1)

and thus
wk = Prxk − APrxk−1 −Buk, (E.2)

where Pr is the linear transformation between the full order state to the reduced order state
as defined in Eq. 2.43.

For each ith trajectory, i ∈ Z[1,M ], Eq. E.2 results in a time series for w(i). These trajecto-
ries are chosen to represent likely flight conditions and disturbances. Additionally, w(i) can
be thought as the error between the approximated and full models for the ith trajectory. If
M trajectories are available, each with Ns(i) data points in time, then the sample unbiased
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estimate of
Qw = E[wwT ] (E.3)

is

Q̂w =

∑M
i=1

∑Ns(i)
k=1 w

(i)
k

(
w

(i)
k

)T
∑M
i=1 Ns(i)− 1

(E.4)

A similar approach to estimate
Rv = E[vvT ] (E.5)

yields

R̂v =

∑M
i=1

∑Ns(i)
k=1 v

(i)
k

(
v

(i)
k

)T
∑M
i=1 Ns(i)− 1

(E.6)

Given the above offline estimates of R̂v and Q̂w, the gains for the Kalman filter can be
computed and applied online in practical applications.
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APPENDIX F

Additional Simulation Results

The next figures show results of the closed-loop simulation of XRF1 with the LA governor
for MLA presented in Section 4.3.2. Figure F.4 shows the loads on different stations on the
wing and tail, which are identified by the names shown in Fig. A.1
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Figure F.1: Angle of attack, side-slip and flight path angles.
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Figure F.2: Velocity.
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Figure F.3: Reference commands generated by the MLA governor.
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APPENDIX G

EASE Model Properties

The EASE model was designed and manufactured by the following A2SRL team: Prof. Car-
los Cesnik, Prof. Ilya Kolmanovsky, Bernardo Monteiro, Dr. Cristina Riso, Dr. Guilherme
Barbosa, Mateus Pereira, Mauricio Pajon, Dr. Rafael Bertolin, and Dr. Thiago Versiani.
The detailed design description is presented in Ref. [134]. This appendix presents a summary
of the design process and decisions, as well as sample analysis results.

G.1 Model Requirements

The following key requirements guided the EASE model design:

• EASE model should be tested in the University of Michigan’s 5-ft by 7-ft wind tunnel
with the inclusion of the HTP for combined load alleviation.

• Wall-mounted, half-airplane model with free rigid pitch DOF in the University of
Michigan’s Pitch-and-Plunge Apparatus (PaPA).

• Flexibility restricted to wing only.

• Level of wing flexibility in the range of VFA wing deformation (10% to 25% tip wing
deflection with respect to semi-span)

The derived model requirements were as follows

• Testing speed between 15 and 30 m/s.

• Wing tip displacement at trim should be higher than 10% of wing semi-span.

• The EASE wing should be free of flutter within the testing speed range.
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G.2 EASE Model Description

The next sections present a description of the main components of the EASE aircraft model.

G.2.1 Wing

The wing has a uniform rectangular planform with a backsweep of 30◦. It has a span of
1500 mm and chord of 278 mm. The constant airfoil section is based on the Selig S2027
airfoil. The choice was based on its good low-Reynolds performance and sufficient thickness
to accommodate the control-surface’s servo and rotary encoder mounted directly at the
hinge line. In addition to this, a non-symmetric airfoil was preferred to facilitate reaching
the desired 15% tip deflection at the operating condition. In order to capture the tip effects
for the wing, the 2D airfoil coefficients were corrected by lift, drag and moment coefficient
distributions obtained from AVL [135].

The wing structure consists of a main spar and 10 airfoil-shaped segments of equal length,
so-called pods attached to it. The spar is a 7075-T6 Aluminum stock bar, with rectangular
cross section of 1 1/2” by 1/4” (38.1 mm by 6.4 mm). Each one of the pods has an inde-
pendently actuated trailing edge control surface spanning 30% of its chord. The pods are
attached to the spar using three bolts aligned in the sparwise direction, centered at the 25%
chord, mid-span point.

G.2.2 Horizontal Tail

The 37-cm span tail has constant chord of 17 cm and a 30-deg sweep angle. The tail contains
an elevator whose chord corresponds to 30% of the HTP chord, similar to what is found in
the XRF1’s HTP. This control surface provides primary pitch control of the EASE model.

A constant symmetric airfoil section corresponding to the NACA 0018 airfoil is used along
the HTP span. The NACA 0018 was selected due to its thickness (18% at 30% chord) which
creates adequate volume to fit the servo actuator and rotary encoder inside it. Moreover,
this airfoil presents a desirable moment coefficient as a function of angle of attack in the
range between −5 and 5 deg. In order to capture the tip effects for the tail, the 2D airfoil
coefficients were corrected by lift, drag, and pitch moment coefficient distributions obtained
from AVL like it is done for the main wing.

3D printed parts in PLA material give the external shape of the member. The carbon
fiber HTP spar has a square cross section and dimensions 10×10×8.5 mm. The HTP load
cell is attached to an aluminum plate adapter which then attaches to the root part and spar.
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G.2.3 Fuselage

The EASE model fuselage is a collection of members that connect the main wing to the tail,
and also attaches the model to the PaPA mechanism. It is divided into three main parts:
front, middle, and tail sections. The load cell attachment point is also the attachment point
between the model and the PaPA load cell, and the rotation point for the pitch attitude of
the half-aircraft model. By design, such point is co-located with the center of mass of the
model. The main fuselage metallic structure is wrapped around with foam, which serves as
a fairing to reduce drag.

The Aluminum 6061 tubes have cross-sectional dimensions of 7.62×2.54×0.16 cm
(3×1×0.065). The connectors for the wing and the PaPA are all machined 7075-T6 parts.
The fairing is made of ROHACELL 31 IGF foam with density of 0.032 g/cm3 or equivalent.

G.2.4 Sensors and Actuators

A description of the selected sensors for the EASE model is presented next.

• Main model load cell:
The HBM MCS10 multicomponent sensor, size BG2, type 050 (see Fig. G.1(a)) was
selected as the main load cell to provide force and moment measurements on the three
axes. This load cell was placed at the rotation point, where the fuselage attaches to
the PaPA mechanism (see Fig. 6.5).

• HTP load cell:
The ATI Mini45 SI-290-10 (see Fig. G.1(b)) was selected as the HTP load cell to provide
force and moment measurements on the three axes. This device has a diameter of 45
mm, height of 15.7 mm, and mass of 91.7 g, making it small enough to be placed at
the root and inside the HTP pod (see Fig. 6.6(b)).

• Rotary encoder:
The US Digital MA3 12-bit PWM (see Fig. G.1(c)) rotary encoder was selected to
measure the control surfaces’ deflection. This sensor was associated with each flap on
the wing, and with the HTP elevator, for a total of 11 units (see Fig. 6.6).

• IMU:
The Vectornav VN-100 (see Fig. G.1(d)) IMU sensor was selected for attitude and
acceleration measurements. The VN-100 is a miniature, high-performance IMU and
Attitude Heading Reference System (AHRS). Combining 3-axis accelerometers, gyros,
and magnetometer, a barometric pressure sensor and a 32-bit processor, the VN-100
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(a) HBM MCS10 load cell (b) ATI Mini45 load cell

(c) MA3 rotary encoder (d) VN-100 IMU

(e) Sensuron’s RTS125 FOS interrogator

Figure G.1: Various sensors and sensor system used in support to the EASE model experi-
mentation.

provides high-rate, calibrated IMU data and a real-time 3D attitude solution that is
continuous over the complete 360 degrees of motion. Six VN-100 devices were placed
along the wing spar and one device was placed on the fuselage close to the rotation
point (see Fig. 6.6(a)).

• Fiber optic system (FOS):
The Sensuron’s RTS125 FOS interrogator (see Fig. G.1(e)) was selected for fiber-optics
based shape measurement. This device monitors continuous strain distributions along
up to eight optical fibers simultaneously. Each optical fiber can span up to 40 ft and
contain over 2,000 sensors. The fibers were placed along the leading and trailing edges
of the main spar (Fig. 6.6(a)).

• The EASE model was actuated with 10 servos in the wing and one servo in the tail. The
MKS HV93i servos were selected for both wing and HTP for their size and performance.
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G.3 EASE Model Properties

These are properties obtained for the UM/NAST model for the EASE aircraft.

G.4 Static Stability

The longitudinal static stability of an aircraft is related to the distance of its neutral point
from its center of mass. The neutral point is the longitudinal position at which the variation
of the aircraft coefficient of moment with angle of attack is zero. In a typical 6 d.o.f. aircraft,
if the neutral point is located behind the center of mass, then the aircraft is statically stable,
i.e., the pitching moment that acts on the aircraft when its angle of attack is changed from
the trim condition acts in such a way as to restore the aircraft to its original angle of attack.
However, in a wind tunnel model with only the pitch d.o.f. such as the EASE model, the
stability is actually related to the position of the neutral point with respect to the rotation
point. In the EASE model, the rotation point is where the model attaches to the PaPA
mechanism. To replicate the stability definition of a 6 d.o.f. aircraft, the EASE model was
designed such that the center of mass is co-located with its rotation point. As for the
aerodynamic center (a.c.) of the wing, as typically seen in commercial aircraft, such point
is found between the aircraft center of mass and the neutral point. Table G.1 shows the
position of these points of interest for the EASE model with respect to the rotation point.
Negative number mean that the point is behind the rotation point.

Table G.1: EASE model’s wing aerodynamic center, neutral point and static margin.

AoA [deg] 0 2.5 5 7.5 10
Wing a.c. [m] −0.061 −0.037 −0.025 −0.019 −0.018
Neutral point [m] −0.191 −0.195 −0.197 −0.202 −0.187
Static margin [%] 68.7 70.2 71.0 73.3 68.5

G.5 Wing Modal Characteristics

The structural modes of the clamped EASE wing are shown in G.2 and classified in G.2.
The dominant mode is the out-of-plane bending.

G.6 Wing Deformation

Figure G.3 shows the static wing deformation for different angles of attack at 25 m/s.
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Figure G.2: Structural modes the unloaded clamped EASE wing.

Table G.2: Modal frequencies of the unloaded clamped EASE wing.

Type Frequency [Hz]
First out-of-plane bending (OOP1) 1.05

First in-plane bending (IP1) 6.29
Second out-of-plane bending (OOP2) 6.44

First torsion (T1) 14.39
Third out-of-plane bending (OOP3) 17.81
Fourth out-of-plane bending (OOP4) 34.27

Second in-plane bending (IP2) 37.64
Second torsion (T2) 42.23

G.7 Model Mass

Table G.3 shows the mass properties of the actual EASE model’s wing, fuselage and tail as
measured experimentally.
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Figure G.3: EASE wing deformation at different angles of attack.

Table G.3: EASE model mass breakdown.

Component Mass [g]
Wing 3392
Fuselage 2887
Tail 575
Total 6854
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APPENDIX H

Additional Experimental Results

H.1 Open-loop Tests
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Figure H.1: Static load cell measurements (TestID 111). CS = flap group 1.
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Figure H.2: Static load cell measurements (TestID 113). CS = flap group 3.

H.2 Closed-loop Tests

MVS, 1 cycle, No MLA constraints (TestID 544)
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Figure H.3: MVS, 1 cycle, No MLA constraints (TestID 544). Forces and moments at
rotation point.

MVS, 1 cycle, MLA constraints on wing only (TestID 544)
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Figure H.4: MVS, 1 cycle, No MLA constraints (TestID 544). Forces and moments at HTP.

MVS, 1 cycle, MLA constraints on wing only (TestID 544-b)
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Figure H.5: MVS, 1 cycle, No MLA constraints (TestID 544). Pitch angle, pitch rate, and
vertical acceleration at nose.

MVS, 1 cycle, MLA constraints on wing and HTP (TestID 570)
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Figure H.6: MVS, 1 cycle, No MLA constraints (TestID 544). Computational time and
optimization solver performance.

MVS, 3 cycles, No MLA constraints (TestID 545)

220



0 5 10

0

5

10

15

0 5 10

-30

-20

-10

0 5 10

-100

-50

0

0 5 10

-40

-20

0

20

0 5 10

-1

0

1

0 5 10

-6

-4

-2

0

Figure H.7: MVS, 1 cycle, MLA constraints on wing only (TestID 547). Forces and moments
at rotation point.

MVS, 3 cycles, MLA constraints on wing only (TestID 548)
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Figure H.8: MVS, 1 cycle, MLA constraints on wing only (TestID 547). Forces and moments
at HTP.

MVS, 3 cycles, MLA constraints on wing and HTP (TestID 554)
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Figure H.9: MVS, 1 cycle, MLA constraints on wing only (TestID 547). Pitch angle, pitch
rate, and vertical acceleration at nose.
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Figure H.10: MVS, 1 cycle, MLA constraints on wing only (TestID 547-b).Commanded pitch
and aircraft response.
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Figure H.11: MVS, 1 cycle, MLA constraints on wing only (TestID 547-b). Out-of-plane
bending moment on HTP tail root, and strain on wing root.
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Figure H.12: MVS, 1 cycle, MLA constraints on wing only (TestID 547-b). Control surfaces
histories.
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Figure H.13: MVS, 1 cycle, MLA constraints on wing only (TestID 547-b). Forces and
moments at rotation point.
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Figure H.14: MVS, 1 cycle, MLA constraints on wing only (TestID 547-b). Forces and
moments at HTP.
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Figure H.15: MVS, 1 cycle, MLA constraints on wing only (TestID 547-b). Pitch angle,
pitch rate, and vertical acceleration at nose.
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Figure H.16: MVS, 1 cycle, MLA constraints on wing only (TestID 547-b). Computational
time and optimization solver performance.
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Figure H.17: MVS, 1 cycle, MLA constraints on wing and HTP (TestID 570). Forces and
moments at rotation point.
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Figure H.18: MVS, 1 cycle, MLA constraints on wing and HTP (TestID 570). Forces and
moments at HTP.
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Figure H.19: MVS, 1 cycle, MLA constraints on wing and HTP (TestID 570). Pitch angle,
pitch rate, and vertical acceleration at nose.
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Figure H.20: MVS, 1 cycle, MLA constraints on wing and HTP (TestID 570). Computational
time and optimization solver performance.
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Figure H.21: MVS, 3 cycles, No MLA constraints (TestID 545). Forces and moments at
rotation point.
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Figure H.22: MVS, 3 cycles, No MLA constraints (TestID 545). Forces and moments at
HTP.
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Figure H.23: MVS, 3 cycles, No MLA constraints (TestID 545). Pitch angle, pitch rate, and
vertical acceleration at nose.
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Figure H.24: MVS, 3 cycles, No MLA constraints (TestID 545). Computational time and
optimization solver performance.
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Figure H.25: MVS, 3 cycles, MLA constraints on wing only (TestID 548). Forces and
moments at rotation point.
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Figure H.26: MVS, 3 cycles, MLA constraints on wing only (TestID 548). Forces and
moments at HTP.
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Figure H.27: MVS, 3 cycles, MLA constraints on wing only (TestID 548). Pitch angle, pitch
rate, and vertical acceleration at nose.
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Figure H.28: MVS, 3 cycles, MLA constraints on wing only (TestID 548). Computational
time and optimization solver performance.
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Figure H.29: MVS, 3 cycles, MLA constraints on wing and HTP (TestID 554). Forces and
moments at rotation point.
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Figure H.30: MVS, 3 cycles, MLA constraints on wing and HTP (TestID 554). Forces and
moments at HTP.
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Figure H.31: MVS, 3 cycles, MLA constraints on wing and HTP (TestID 554). Pitch angle,
pitch rate, and vertical acceleration at nose.
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Figure H.32: MVS, 3 cycles, MLA constraints on wing and HTP (TestID 554). Computa-
tional time and optimization solver performance.
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