On Learning How to Program via an Interactive
eBook with Adaptive Parsons Problems

by

Carl Christopher Haynes-Magyar

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Information)
in the University of Michigan
2022

Doctoral Committee:

Assistant Professor Barbara Ericson, Chair
Professor Barry Fishman

Associate Professor Maya Israel

Professor Kevin Miller

Assistant Professor Steve Oney

1992 =1993

NURSERY R
MS RODGERS

Carl Christopher Haynes-Magyar
cchaynes @umich.edu
ORCID iD: 0000-0002-9637-6285

© Carl Christopher Haynes-Magyar 2022

DEDICATION

To my mother, Sharon Dupree Haynes, who said I could do anything I set my mind to.

1

ACKNOWLEDGMENTS

I want to acknowledge the nice and the good advisors, researchers, teachers, and peers that helped

me solved all the problems that led me to this moment.
Bethlehem Academy (1993): Kathy Rogers
The Ethan Allen Public School 306 (1995): Mr. Silvent

Frank D. Paulo Intermediate School 75 (2000): Andrea Obermaier, Arthur Kaufman, Arthur
Siegel, Carolyn Rega, Charles Oliveri, Charlyn Dickey, Denise Korchak, Elizabeth Kotite, Ellen
Chan, Ira Schwartz, Leonard Lichter, Linda Quintavalle, Peter Guinta, Peter Viani, Sandra Hoffer-

man, Steven Martinson, Trinita Hourican, and Linda Kane

Tottenville High School (2006): Clarence J. Jones, Cliff Bloom, Eileen O’ Connell, John P. Tu-
minaro, Mara Bhaerman, Miss Ohlsen, Mr. Lopez, Mr. Tierney, Mrs. Biunno, Mrs. Fernan-
dez, Robert Torres, Sal Annarumma, Stefania Alvaro, Steve Rubinson, Thomas Warren, Vincent

Corvino, and Will Cicoria

College of Staten Island The City University of New York (2010): Cate Marvin, Debra Evans-
Greene, Lee Papa, Matt Brim, Mazen Naous, Peter Keil, Phil Sigler, Sarah Schulman, Terry Row-
den, Timothy Gray, Tyehimba Jess, and Wilma L. Jones

Syrcuse University (2016): Anna Chovanec, Barbara Stripling, Blythe Bennett, Brian Dobreski,
Bryan Semaan, Carsten @sterlund, Chad Harper, Daniel Cohen, David Lankes, Deborah Nosky,
Jason Dedrick, Jill Hurst-Wahl, Katrina Maust, Laura Cooper, Lauren Juiliani, Margaret Craft,
Megan Oakleaf, Michael Kicey, Renee Hill, Robert Heckman, and Sheila Clifford-Bova

University of Michigan (2022): Barbara Ericson, Barry Fishman, Christopher Brooks, Elizabeth
Yakel, Erin Krupka, Kentaro Toyama, Laurie Buis, Libby Hemphill, Lionel Robert, Mark Guzdial,
Mustafa Naseem, Nicole Ellison, Paul Edwards, Paul Resnick, Robin Brewer, Sarita Schoenebeck,
Stephanie Teasley, Soo Young Rieh, Steve Oney, Tawanna Dillahunt, Thomas Finholt, Tiffany
Veinot, Adriene Beltz, Allison Ryan, Aadarsh Padiyath, Allison Sweet, Allura Casanova, Charles

1l

Senteio, Charlotte Beaudoin, Christina Costa, Emma Flores, Evan Hoye, Feranmi Okanlami, Hari
Subramonyam, Thudiya Williams, Ioulia Kovelman, Jasmine Jones, Katie Cunningham, Megh
Marathe, Mez Perez, Olga Panteleeva, Phillip J. Bowman, Richard Gonzalez, Robert Adams,

Veronica Falandino, William Dering, Zihan Wu

International Computing Education Research (ICER) Doctoral Consortium (2020): Colleen

Lewis, Lauren Margulieux
Access Computing - University of Washington: Amy J. Ko, Brianna Blaser, Richard E. Ladner

Google Computer Science Research Mentorship Program (2021): Sau Man (Samantha) Lo

v

TABLE OF CONTENTS

DEDICATION e e e i1

ACKNOWLEDGMENTS e e e e 11

LISTOF FIGURES e e e X

LISTOF TABLES e e e xiii

LIST OF APPENDICES e e e XV

LIST OF ACRONYMS e e e e XVi

ABSTRACT e XVvii
CHAPTER

1 Introduction 1

1.1 Adaptive Parsons Problems for Active Learning 6

1.2 Problem-Solving Efficiency and Cognitive Load of Adaptive Parsons Problems . 7

1.3 (Un)Common Parsons Problems Solutions 8

1.4 Accessible Adaptive Parsons Problems 0., 9

1.5 Contributions L e e 11

1.6 ThesisOutline e e 11

2 Related Work 12

2.1 Parsons Problems 12

2.1.1 DImensions oL e e e e e 13

2.1.2 Feedback 15

2.1.3 Adaptation e e e 15

2.1.4 Distractors i e e e e e e e e e e 17

2.2 ActiveLearning L. e e e e 18

2.3 Efficiency and Time-on-Task 19

2.3.1 Measurement L. e e e 20

24 Cognitive Load e e 22

2.4.1 Short- and Long-Term Memory Capacity 22

242 Categories v i e e e e e e e e e e e e e 24

243 Measurement o e e e e e e e e e e e e e 24

244 Learning Tasks L 25

2.5 Self-Efficacy 26
2.6 Neurodiversity o o i e e e e e e 27
2.6.1 Universal Design for Learning and Students with Disabilitiesin CS . . . 28

2.6.2 Accessibility of Adaptive Parsons Problems 29

3 Parsons Problems as Active Learning Lecture Activities. 30
3.1 Introduction e e 30
32 Methods 32
321 Context e e 32

3.3 Between-Subjects Experiment oL, 33
33.1 Materials 33

332 Results e 36

3.4 Why Less Efficient at Solving Parsons Problem Three? 37
3.5 End-of-Course Student Survey 38
3.5.1 Student Survey Results from Fall 2019 39

3.5.2 Student Survey Results from Winter 2020 40

3.6 DISCUSSION v v v o e e e e e e e e e e e 40
3.7 LIimitations e e e e e e e e e e e e e e e 41
3.8 Conclusion 41
4 Problem-Solving Efficiency and Cognitive Load of Parsons vs. Write-Code Problems 45
4.1 Introduction L e e 45
42 Method e 48
4.2.1 ResearchDesign 48

422 Context o v vt e e e e 48

423 Materials 49

4.3 Within-Subjects Experiment 51
43.1 StudyDesign 51

4.3.2 Participants e e e e 51

433 Analysis 52

434 Results e 52

4.4 Think-Aloud Study L 54
4.4.1 Participants e e e e e e e e 55

442 Analysis e e e 55

4.4.3 A Deeper Dive into ProblemOne 56

4.4.4 Interview QuestionResults 58

4.5 Further Analysis of Problem 1 62
4.5.1 Was the Parsons problem solution unusual? 62

4.5.2 Was there an ordering effect? 62

4.5.3 Results from Problem One Midterm from Fall 2020 62

4.5.4 Use of Intra-Problem Adaptation. 63

4.6 Results from Student Survey o 63
47 DISCUSSION L e e e e e e 64
4.8 Limitations and Future Work 66

vi

4.9 TImplications e 66

4.10Conclusion 68
S Impact of Solving Parsons Problems with (Un)Common Solutions 69
5.1 Introduction 70
5.2 Methods 72
5.2.1 Participants e e e 73

5.22 Materials e 73

5.3 Mixed Within- and Between-Subjects Experiment 75
5.3.1 Experimental Design, 75

5.3.2 Participants e e e e e 78

533 Analysis e e e 78

5.3.4 Resultsand Discussion0 79

5.4 Think-Aloud Observations 90
54.1 Protocol 90

542 Analysis e e e 90

5.4.3 Resultsand Discussion oo 93

5.5 Limitations o e e e e e e e e e e e e e e 100
5.6 Conclusion e e e e 102
6 Neurodiverse Students Learning How to Program Outside of the Classroom 103
6.1 Introduction 103
6.2 Methods e 106
6.2.1 Participants e e e 107

6.2.2 Materials e e 115

6.2.3 Protocol e 116

6.2.4 Analysis e 118

6.3 Multi-Case Study e 118
6.3.1 Amanda. e 118

6.3.2 Claire o e 125

6.3.3 User. o i e e 134

6.3.4 Sophia 146

6.4 Analysis, Discussion, and Future Work 156
6.4.1 Within-Subject Analysis, 156

6.4.2 Cross-Case Synthesis Lo 159

6.4.3 Limitations e e e e e e e e e e 164

6.5 Conclusion L e 165
7 Conclude 166
7.1 Contributions e e e e 167
7.2 Future Work 168
7.2.1 Provide meaningful choices for computer programming practice. 170

7.2.2 Explore human-Al symbiosis and cognition. 171

7.2.3 Increase the representation of underrepresented groups in computing. . . 172

vil

APPENDICES e e 173

A Average Task Completion Times and Standard Deviations 173
A.1 Average Task Completion Times for Parsons to Write 173
A.2 Average Task Completion Times for Write to Parsons 174
B Problem Set with Instructions and Solutions 175
B.1 ProblemOne e 175
B.2 ProblemTwo e 176
B.3 ProblemThree. 178
B.4 ProblemFour 179
B.5 Problem Five 180
CPaasScale e 181
D Prior Programming Experience Survey 182
E Claire’s HandwrittenNotes 183
E.1 Chapter Five: Functions 183
F Sophia’s Handwritten Notes 189
F.1 Chapter Six: Loops and Iterations 189
F2 Chapter Seven: Strings e 199
F3 Chapter Nine: Lists e 220
G Computer Science Attitude Survey oo 230
H Computer Science Cognitive Load Component Survey (CSCLCS) 233
I Self-Efficacy Questionnaire 234
J Roleof Life Survey e 235
K Codespec Prototype e 236
BIBLIOGRAPHY e e e 242

viil

LIST OF FIGURES

FIGURE

1.1

1.2

1.3

1.4

2.1
22

2.3

3.1
32

33
34
3.5

3.6

4.1
4.2
4.3
44
4.5

Example of Pseudocode with Python (left) and Corresponding Pseudocode Written in
English (right), from [268, p. 575]. 2
Example of code tracing with Python Tutor. It depicts the eleventh step of executing a
function, 1istSum (numbers), to unpack the tuple numbers. 2
Example of a code writing problem. It depicts a function to return a string with an
item purchased and its price and reveals four unit tests that it has passed. 3
Example of a mixed-up code (Parsons) problem. It asks the programmer to create a
function called reverse (s) to return a string with the characters reversed. 5

Example of a Faded Parsons Problem. It asks the learner to complete a function. . . . 14
OverCode visualization of solutions for those who solved Problem 2 in Table 5.6 as
write-code problem first. The top-left panel displays the number of clusters (18),
called stacks, and the total number of visualized solutions (64). The panel below
this in the first column shows the largest stack which is comprised of 17 solutions. The
second column displays the remaining stacks. The third column displays the lines of
code occurring in the cleaned solutions of the stacks together with their frequencies

Choi, Van Merriénboer, and Paas’ The construct of cognitive load. E = the physical
learning environment, T = the learning task, L = the learner. Adapted and revised
from Paas and VanMerriénboer (1994a), Educational Psychology Review, 6, p. 3. ©

Plenum Publishing Corporation. [63] 23
Write-Code Problem (Problem One inTable 2). 34
Parsons Problem with Mixed-up Blocks on the Left and the Solution on the Right

(Problem One in Table 2). e e 35
Example Write-Code Problem from the Second Problem Set (Problem Seven in Table 2). 36
Example Parsons Problem from the Third Assignment (Problem Nine in Table 2). . . . 37
Parsons Problem with a Higher Median Time to Solve than the Equivalent Write-Code

Problem (Problem 3 inTable 2). 43
A Student Solution to Problem 3 that used Four Complex Conditionals. 44
First problem in Version A as a Parsons problem (Problem 1 in Table 2). 49
First problem in Version B as a write-code problem (Problem I in Table 2). 50
The Cognitive Load Question. i ii .. 51
Parsons Problem Five in Table 2. 54
First Attempt at a Solution for Problem 1. 57

1X

4.6
4.7
4.8

5.1
5.2
53
54
5.5

5.6
5.7
5.8
59

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

Second Attempt at a Solution for Problem 1. 57
Third Attempt at a Solution for Problem 1 58
An example common student solution from the second midterm for Fall 2020 63

First problem in Version A as an adaptive Parsons problem (Problem 1 in Table 5.4). . 75

Second problem in Version A as a write-code problem (Problem 2 in Table 5.6). 76
Second problem in Version B as an adaptive Parsons problem (Problem 2 in Table 5.4). 17
K-means cluster analysis e e 80

OverCode visualization of solutions for those who solved Problem 2 in Table 5.4 as
Parsons problem first. The top-left panel displays the number of clusters (9), called
stacks, and the total number of visualized solutions (31). The panel below this in the
first column shows the largest stack which comprises 7 solutions. The second column
displays the remaining stacks. The third column displays the lines of code occurring

in the cleaned solutions of the stacks together with their frequencies [127]. 82
Logan’s strategic misconception of problem two. 94
Logan’s (left) and Radhamani’s (right) Alternative Solutions to Problem 2. 99
Runestone’s Toggle Question Feature e, 99
Codespec’s Problem Space Area on the Faded Parsons Problem with Pseudocode . . . 101
Recruitment Flyer 108
Disability Questionnaire 109
Example Problems from Chapters OnetoFour 117
Amanda’s trial-and-error Strategy. Lo 120
Ruenstone’s Toggle Question Feature Before (left) and After (right). 121
Amanda’s Responses to the Attitude Survey L. 122
Amanda’s Responses to the Self-Efficacy Questionnaire 124
Amanda’s Responses to the Computer Science Cognitive Load Component Survey . . 125
Claire Highlights the Instructions. 128
Claire’s Attempts to Solve Problem Two - Second Think-Aloud Session 128
Claire Encounters Distractor Blocks 130
Claire’s Responses to the Attitude Survey 130
Claire’s Responses to the Self-Efficacy Questionnaire 133
Claire’s Responses to the Computer Science Cognitive Load Component Survey . . . 133
User'sTooEasy e 136
User’s Struggled with the Subordinate Clauses in the Instructions 136
User’s Responses to the Attitude Survey 142
User’s Responses to the Self-Efficacy Questionnaire 142
User’s Responses to the Computer Science Cognitive Load Component Survey 145
An example problem for which Sophia used her notes tosolve. 150
Sophia’s Responses to the Attitude Surveyo 151
Sophia’s Responses to the Self-Efficacy Questionnaire 154
Runestone’s Discussion Tab. L o oo 154
Sophia’s Responses to the Computer Science Cognitive Load Component Survey . . . 156
Example Media Computation Problem with Cat Image to Support Emotional Regulation158
Edabit’s Instructions Tab L 160

7.1
7.2

E.l
E.2
E.3
E.4
E.5

F.1

F2

E3

F4

E5

F.6

E7

F.8

F9

F.10
F11
F.12
F.13
F.14
F.15
F.16
F.17
F.18
F.19
F.20
F21
F22
F.23
F.24
F.25
F.26
F.27
F.28
F.29
F.30
F31
F.32
F.33
F.34
F.35
F.36

Faded Parsons Problem with Pseudocode Feature 168
Runestone’s Toggle Question Feature 170
Claire’s Handwritten Notes on Functions - for Chp. Five - PageOne 184
Claire’s Handwritten Notes on Functions - for Chp. Five - Page Two 185
Claire’s Handwritten Notes on Functions - Page Three 186
Claire’s Handwritten Notes on Functions - Page Four 187
Claire’s Handwritten Notes on Functions - Page Five 188
Sophia’s Handwritten Notes on Loops and Iterations - Page One. 190
Sophia’s Handwritten Notes on Loops and Iterations - Page Two. 191
Sophia’s Handwritten Notes on Loops and Iterations - Page Three. 192
Sophia’s Handwritten Notes on Loops and Iterations - Page Four. 193
Sophia’s Handwritten Notes on Loops and Iterations - Page Five. 194
Sophia’s Handwritten Notes on Loops and Iterations - Page Six. 195
Sophia’s Handwritten Notes on Loops and Iterations - Page Seven. 196
Sophia’s Handwritten Notes on Loops and Iterations - Page Eight. 197
Sophia’s Handwritten Notes on Loops and Iterations - Page Nine. 198
Sophia’s Handwritten Notes on Strings - PageOne. 199
Sophia’s Handwritten Notes on Strings - Page Two. 200
Sophia’s Handwritten Notes on Strings - Page Three. 201
Sophia’s Handwritten Notes on Strings - Page Four. 202
Sophia’s Handwritten Notes on Strings - Page Five. 203
Sophia’s Handwritten Notes on Strings - Page Six. 204
Sophia’s Handwritten Notes on Strings - Page Seven. 205
Sophia’s Handwritten Notes on Strings - Page Eight. 206
Sophia’s Handwritten Notes on Strings - Page Nine. 207
Sophia’s Handwritten Notes on Strings - Page Ten. 208
Sophia’s Handwritten Notes on Strings - Page Eleven. 209
Sophia’s Handwritten Notes on Strings - Page Twelve. 210
Sophia’s Handwritten Notes on Strings - Page Thirteen. 211
Sophia’s Handwritten Notes on Strings - Page Fourteen. 212
Sophia’s Handwritten Notes on Strings - Page Fifteen. 213
Sophia’s Handwritten Notes on Strings - Page Sixteen. 214
Sophia’s Handwritten Notes on Strings - Page Seventeen. 215
Sophia’s Handwritten Notes on Strings - Page Eighteen. 216
Sophia’s Handwritten Notes on Strings - Page Nineteen. 217
Sophia’s Handwritten Notes on Strings - Page Twenty. 218
Sophia’s Handwritten Notes on Strings - Page Twenty-One. 219
Sophia’s Handwritten Notes on Lists - PageOne. 220
Sophia’s Handwritten Notes on Lists - Page Two. 221
Sophia’s Handwritten Notes on Lists - Page Three. 222
Sophia’s Handwritten Notes on Lists - Page Four. 223
Sophia’s Handwritten Notes on Lists - Page Five. 224
Sophia’s Handwritten Notes on Lists - Page Six. 225

X1

EF.37
F.38
F.39
F.40

K.1
K.2
K.3
K.4
K.5
K.6
K.7

Sophia’s Handwritten Notes on Lists - Page Seven. 226
Sophia’s Handwritten Notes on Lists - Page Eight. 227
Sophia’s Handwritten Notes on Lists - Page Nine. 228
Sophia’s Handwritten Notes on Lists - Page Ten. 229
Pseudocode Problem with Error Notifications (Left) and Error Window (Right). 236
Write Code Problem with Pseudocode Feature 237
Write Code Problem with Suggest Changes Feature 238
Fix Code Problem with Predict Code Feature 239
Single Column Layout Dark Mode 240
Single Column Layout Light Mode 241
Reveal Distractors Window (Left) and Paas Scale (Right) 241

Xii

LIST OF TABLES

TABLE
3.1 Order and Type of Problem by Version 34
3.2 Time to Complete Parsons Problem vs. Write-Code Problem 38
3.3 Student Responses on an End of Course Survey from Fall 2019 and Winter 2020 . . . 39
4.1 Order and Type of Problem by Version 50
4.2 Time to Complete Parsons Problem vs. Write-Code Problem 53
4.3 Cognitive Load Ratings for Parsons Problems vs. Write-Code Problems 53
4.4 Correlations between Completion Time and Cognitive Load Ratings 55
4.5 Use of Intra-Problem Adaptation 64
5.1 Order of Problem Type by Version 74
5.2 Self-Efficacy Clusters o e 79
5.3 Learning Gains for Parsons — Write 0oL 81
5.4 Task Completion Times for Parsons — Write 82
5.5 Average Task Completion Times for Parsons — Write 83
5.6 Task Completion Times for Write — Parsons 83
5.7 Average Task Completion Times for Write — Parsons 84
5.8 Cognitive Load Ratings for Parsons — Write 85
5.9 Cognitive Load Ratings for Write — Parsons 86
5.10 Correlations between Task Completion Times and Cognitive Load Ratings for Parsons

— Write 87
5.11 Correlations between Task Completion Times and Cognitive Load Ratings for Write

—Parsons L 88
5.12 Correlations between Self-Efficacy Scores and Task Completion Times 88
5.13 Codebook One e 91
6.1 Participant Demographics L L L 110
6.2 Weekly eBook Chapter Assignments v 118
6.3 Amanda’s Responses to the Attitude Survey oL 122
6.4 Amanda’s Responses to the Self-Efficacy Questionnaire 123
6.5 Amanda’s Responses to the Computer Science Cognitive Load Component Survey . . 125
6.6 Claire’s Responses to the Attitude Survey 131
6.7 Claire’s Responses to the Self-Efficacy Questionnaire 132
6.8 Claire’s Responses to the Computer Science Cognitive Load Component Survey . . . 132
6.9 User’s Responses to the Attitude Survey, 141
6.10 User’s Responses to the Self-Efficacy Questionnaire 143

Xiii

6.11 User’s Responses to the Computer Science Cognitive Load Component Survey 144

6.12 Sophia’s Responses to the Attitude Survey oL 151
6.13 Sophia’s Responses to the Self-Efficacy Questionnaire 153
6.14 Sophia’s Responses to the Computer Science Cognitive Load Component Survey . . . 155
A.1 Task Completion Times for Parsons to Write 173
A.2 Average Task Completion Times for Write to Parsons 174

X1V

LIST OF APPENDICES

A Average Task Completion Times and Standard Deviations 173
B Problem Set with Instructions and Solutions, 175
CPaasScale 181
D Prior Programming Experience Survey 000 182
E Claire’s Handwritten Notes 183
F Sophia’s Handwritten Notes 189
G Computer Science Attitude Survey Lo 230
H Computer Science Cognitive Load Component Survey (CSCLCS) 233
I Self-Efficacy Questionnaire L 234
J Roleof Life Survey 235
K Codespec Prototype 236

XV

LIST OF ACRONYMS

ADHD Attention Deficit Hyperactivity Disorders

AI Artificial Intelligence

CER Computing Education Research

CS Computer Science

CS CLCS Computer Science Cognitive Load Component Survey
CSEd Computer Science Education

DSM-V Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
HCI Human-Computer Interaction

IEP Individualized Education Program

LEM Learning Edge Momentum

MSLQ Motivated Strategies for Learning Questionnaire

SDL Self-Directed Learning

SRL Self-Regulated Learning

SSD Office of Services for Students with Disabilities

WAI Web Accessibility Initiative

ZDP Zone of Proximal Development

XVi

ABSTRACT

Novice programmers need well-designed instruction and assessment informed by research and
critical perspectives to conquer the historical challenges associated with completing introductory
computer programming courses successfully. These issues include high dropout and failure rates,
the struggle to acquire and retain basic programming knowledge, and bias and stereotype threat
due to social markers (race, gender, dis/ability, sexuality, etc.).

Unfortunately, traditional programming practice, such as code writing, can be arduous, time-
intensive, and frustrating. Adaptive Parsons problems, which require learners to place mixed-up
code blocks in the correct order and indentation, are designed to support learners’ individual dif-
ferences in knowledge acquisition, reduce extraneous cognitive load, and improve affect while
learning how to program. These problems modify the difficulty of the current or next problem
based on a learner’s prior performance and help-seeking behavior. Adaptive Parsons problems are
a more interactive way to learn while using worked-examples of stereotypical solutions to pro-
gramming problems; learners acquire strategies for arranging and creating these solutions. Hence,
they can help novice programmers build up the kind of mental library of solutions experts have at
their disposal when writing code from scratch to solve any number of critical problems related to
computing.

This multi-manuscript presents studies aimed at the exploring the problem-solving efficiency of
Parsons problems that optimize cognitive load as a substitute for traditional computer programming
practice. Mixed methods are used to understand how learners think, behave, and feel when learning
how to program via an interactive eBook with adaptive Parsons problems and equivalent write-code
problems. First, I conducted field experiments to evaluate the design of these problems for active
learning during lecture. Second, I redesigned these problems and tested hypotheses about cognition
and learning to understand cognitive, behavioral, and affective learning outcomes impacted by
these design changes. And third, I explored access and equity issues for neurodiverse learners.

First, results showed undergraduates are significantly more efficient at solving a Parsons prob-
lem versus an equivalent write-code problem, but not when the solution to the Parsons problem was
uncommon (not the most common student written solution). And, while most students (80.6%)
reported finding Parsons problems useful for learning, some students with prior programming ex-

perience expressed strong negative reactions to them. This led to the development of a feature to

XVil

toggle between a Parsons problem and an equivalent write-code problem. Second, I confirmed the
following hypotheses about Parsons problem solutions. Novice programmers were significantly
more efficient at solving a Parsons problem created with the most common student written solu-
tion versus writing the equivalent code. And, when first presented with a Parsons problem that had
an uncommon solution, learners tended to use that solution to solve an equivalent write-code prob-
lem. Third, I note four observations about accessibility for learners with seizure disorders, ADHD,
mental health disabilities, and memory impairment. Cross-synthesis analysis evidenced that par-
ticipants benefited from readings in the eBook that chunked information into smaller chapters and
sections.

This research has implications for the creators of computer programming practice problems who
are tackling historic issues related to underrepresented populations in computing by engaging in a
critical analysis of how to provide adaptive scaffolding for all learners. Novice programmers with
and without disabilities, who require extended time to retain information, benefit from increasing
the efficiency and quality of knowledge acquisition, positive attitudes about assessments, and the

accessibility of interactive programming practice environments.

XViil

CHAPTER 1

Introduction

Learning how to program can be difficult [90]. It is an interactive process requiring the develop-
ment of several complex skills [311]. Computing education theorists posit these skills include:
code reading and tracing, code writing, pattern comprehension, and pattern application [222, 416].
Learners are often shocked as they encounter systems that ask them to learn all of these skills
simultaneously [90, 200]. But through explicit and incremental instruction, novice programmers
can develop these skills [20, 416].

Elliot Soloway, a pioneer in computer science education (CSEd), suggests new programmers
be taught explicitly about “stereotypical solutions to programming problems as well as strategies
for coordinating and composing them” [356, p. 850]. However, the acquisition and retention of
these skills (i.e., academic growth or improvement and expertise) depend heavily on the quality and
quantity of deliberate practice (i.e. where practice is focused on improving specific tasks) [7, 106]
and the cognitive, metacognitive, affective, behavioral, and cultural factors that may influence
learning how to program [111, 294, 311, 388]. The problem is that current introductory computer
programming instruction and assessment fail to scaffold and/or sequence these skills [416] and fail
to be critical—make visible the links between computing and injustice [194].

Traditional introductory computer programming practice has included writing pseudocode,
code tracing, and code writing [22, 309, 337, 342, 396]. Pseudocode is a plain language description
of the steps in a program (see Figure 1.1) [268]. Creators of introductory computer science assess-
ments have used pseudocode to test students’ understanding of fundamental computing concepts
[379]. Pseudocode can also reduce the cognitive complexity of programming tasks [22]. Students
who solve programming problems with pseudocode or subgoals (i.e., predetermined procedures for
solving problems) perform significantly better than those who do so without pseudocode or sub-
goals [254]. Pseudocode can be helpful because novice programmers don’t need to worry about
the syntactic details of a programming language. Code tracing (see Figure 1.2) involves using pa-
per and pencil or online tools such as PythonTutor [132] to trace the execution of a program [202].
Some learners prefer writing pseudocode or subgoals to code tracing [72, 255]. And although code

writing is an authentic task because it resembles real-world practice [338], it requires learners to

1

write code from scratch. This can be can be time-intensive, frustrating, and can decrease students’
engagement and motivation which is one of the root causes of struggle in early computer science
courses (see Figure 1.3) [23, 187, 327, 344]. Unfortunately, not much has changed in the last
decade [327].

def fizzbuzz(n): # define the function fizzbuzz with an argument n.
if not isinstance(n, int): # if n is not an integer value,
raise TypeError('n is not an integer') # throw a TypeError exception with a message ...
if n % 3 == 0: # if n is divisible by 3,
return 'fizzbuzz' if n % 5 == 0 else 'fizz' # return 'fizzbuzz' if n is divisible by 5, or 'fizz' if not.
elif n %$ 5 == 0: # if not, and n is divisible by 5,
return 'buzz’ # return the string 'buzz'.
else: # otherwise,
return str(n) # return the string representation of n.
N— ~— — N\ ~— g
Source code (Python) Pseudo-code (English)

Figure 1.1: Example of Pseudocode with Python (left) and Corresponding Pseudocode Written in
English (right), from [268, p. 575].

Python 3.6
Frames Objects
def LlistSum(numbers):
if not numbers: Global frame function
listSum(numbers)
return @ listSum
else: myList tuple tuple tuple
(f, rest) = numbers 0 |1 0 |1 o |1
- return f + listSum(rest) iistsun 1| «f”| 2| <F7| 3 | None
myList = (1, (2, (3, None))) numbers
total = ListSum(myList) fl1
rest
Edit this code
line that just executed IS
= next line to execute
_ numbers
- f |2
<Prev | | Next >
rest
Step 11 of 22

Figure 1.2: Example of code tracing with Python Tutor. It depicts the eleventh step of executing a
function, 1istSum (numbers), to unpack the tuple numbers.

Other causes of struggle in early computer science courses include personal obligations, a lack
of sense of belonging, and a lack of confidence [256, 327, 363]. These courses often have poor
retention and typically see high dropout rates from students [26, 27, 311]. Learners’ acquisition
and retention of basic programming knowledge are still fragile after these courses [311]. And,
more importantly, the discipline struggles with the recruitment and reflection of society writ large
concerning social markers (i.e., race, gender, dis/ability, sexuality, etc.) [256, 311, 363].

When problem-solving, some novice programmers experience high cognitive load because they
lack the necessary schemata or plans to guide them [311]. Their unfamiliarity with the semantic

and syntactic errors they make may cause them frustration [208, 228, 311]. Learning how to write

2

Write the function, item_purchase(item, price) , to return a string with the item purchased
followed by the price . For example if item is “new book” and price is 12 the function should
return "My new book cost $12".

Show in CodelLens Share Code

def item purchase(item, price):

out = "My " + item + " cost $" + str(price)
return out

Expected

Notes
Value

Result| Actual Value

Pass | 'My ne...t $12'| 'My ne...t $12' | item_purchase("new book", "12")

‘My ma...t

Pass $14'

'My ma...t $14' | item_purchase("makeup", "14")

item_purchase("new bag",

Pass |'My ne...12.31'| 'My ne...12.31 "12.31")

Pass | 'My ba...st $0' | 'My ba...st $0' | item_purchase("backpack", "0")

You passed: 100.0% of the tests

Figure 1.3: Example of a code writing problem. It depicts a function to return a string with an
item purchased and its price and reveals four unit tests that it has passed.

code and recognize these errors can be overwhelming because this process imposes demands on
working memory and affects how information is stored in and retrieved from long-term memory
[311]. Programming practice problems with high element interactivity material “consist of ele-
ments that heavily interact and so cannot be learned in isolation” [368, p. 124]. These problems
require students to have amassed knowledge of various concepts to complete them successfully
[227]. This can create undesirable difficulties [57]. Computing education researchers argue that
highly interrelated (or high element interactivity) programming practice does “not give students
the opportunity to show which concepts they understand and which they do not” [227, p. 286].
Furthermore, programmers from historically underrepresented groups in computing typically
have less prior programming experience, which can lead to underperformance [6, 236, 233]. They
are more vulnerable to being negatively affected by poorly designed learning environments and
difficult programming tasks that are introduced without the appropriate support [175, 183, 220].
In general, computer science undergraduates are vulnerable to negative self-assessments [130].
Repeated failures, especially when first learning, lower self-efficacy for computer programming
[187]. Women, Black, Latinx, Native American, and Pacific Islander (BLN+) students report in-
class confusion on material, assignments, and/or programming bugs significantly interfere with
their performance versus non-BLN+ students [327]. Moreover, for learners with disabilities, in-

adequate support for their cognitive differences may dissuade them from learning how to program

[76, 367]. Computing courses are increasingly being offered online [298] and within some online
programming environments, accessibility barriers and challenges exist for learners with disabili-
ties, such as unclear content, limited interactivity, and difficulty with multistep problem-solving
[172, 197, 211, 247, 257, 1].

Novice programmers need well-curated instruction and assessment informed by equity, diver-
sity, and access initiatives to conquer these and other historical issues associated with enrolling in
and completing introductory computer programming courses successfully. Such instruction and
assessment should scaffold learning to provide support to learners as they develop programming
skills and reduce that support gradually as their ability increases [133, 304]. Robins proposed the
Learning Edge Momentum (LEM) hypothesis to explain how people learn to program and the high
element interactivity of programming concepts [308]; he links this hypothesis to research in educa-
tion on scaffolding, learning transfer, analogy, and the Zone of Proximal Development (ZPD)—the
difference between what learners can do autonomously and what they can do with support [397].
The theoretical foundation of the Learning Edge Momentum (LEM) hypothesis is based on the

following principle:

“We learn ‘at the edges’ of what we already know by adding to existing knowledge.
The more that new information is given a meaningful interpretation (i.e., the richer and
more elaborate the links between new and old knowledge), the more effective learning

appears to be... [311, p. 351]

Mixed-up code (Parsons) problems, also called Parsons Programming Puzzles [283] provide the
kind of scaffolding that can keep learners in the Zone of Proximal Development (ZPD) [89, 100].
Parsons problems are drag-and-drop practice exercises that require learners to place blocks of
code in the correct order and sometimes require the correct indentation as well. They are used
to introduce novice computer programmers to introductory computer programming concepts (see
Figure 1.4). In this dissertation, I compare how learners solve adaptive Parsons problems to writing
the equivalent code from scratch.

Parsons problems, also considered completion problems [102, 387], are an explicit way to help
novice programmers learn about stereotypical solutions to programming problems and strategies
for arranging and creating them [356, 405]. Hence, Parsons problems may help novice program-
mers build up the kind of mental library of solutions experts have at their disposal when writing
code from scratch to solve any number of critical problems in education, energy consumption, gov-
ernment, and healthcare for example [194]. Block-based practice exercises like this help counter
orthodox views of programming as difficult; they are learning tasks designed to challenge but not
frustrate students [98]. These kinds of learning tasks can improve diversity by supporting learners

with a broad range of academic abilities and prior experience [170, 215]. Historically underrep-

4

Create the function, reverse(s) , to return a string with the characters in the string s reversed. For
example, reverse("Hello") would return "olleH" .

Drag from here Drop blocks here
1 return out 5 def reverse(s):
a2 out = out + s[i] 3 out =""
or{
2b |out = s[i] + out sp for i in range(len(s) - 1, -1, -1):
out = "" 2a |out = out + s[i]
12 for i in range(len(s), -1, -1): 1 return out
or{
1p for i in range(len(s) - 1, -1, -1):

def reverse(s):

Figure 1.4: Example of a mixed-up code (Parsons) problem. It asks the programmer to create a
function called reverse (s) to return a string with the characters reversed.

resented minorities and females perform better on problems that are block-based versus writing
code from scratch [407, 406]. Novice programmers often solve them more efficiently than writ-
ing the equivalent code. This saves them time when problem-solving which can empower them
to try solving more problems [102, 100, 425]. Struggling students and students with disabilities,
who often require extended time to retain information, benefit from increasing the efficiency and
quality of knowledge acquisition while problem-solving [161]. Parsons problems can be used as
formative and/or summative assessments in the classroom [79, 102]. They can be used as an active
learning strategy during lecture and outside of the classroom via eBooks. The following studies are
the first to investigate their use in these two contexts (see [21] for a review on research related to
learning how to program outside the classroom). Active learning techniques cause learners to en-
gage in meaningful cognitive learning tasks that engage rather than remain cognitively passive [see
62]. Parsons problems can improve motivation and learning for students from underrepresented
groups [195, 380]. And finally, drag-and-drop programming platforms are increasingly being used
by companies to create programs in the absence of professional developers [415] thereby support-
ing the use of Parsons problems to teach programmers working in low/no-code environments. I

explore the following research questions:

* What is the effect on problem-solving efficiency, affective, and behavioral factors of solving
adaptive Parsons problems versus writing the equivalent code for neurotypical and neurodi-

verse learners?

* What are neurotypical and neurodiverse programmers’ practices, perspectives, and attitudes

regarding an interactive eBook with adaptive Parsons problems?

In summary, mixed-up code (Parsons) problems model good code, manage cognitive load, pro-
vide immediate feedback, maximize engagement, allow students to demonstrate partial knowledge,
and help teachers identify concepts students are struggling with [79, 89, 283]. In this disserta-
tion, I explore, in more depth than previous research, factors that influence how neurotypical and
neurodiverse learners (those with cognitive, learning, and/or neurological disabilities) learn to pro-
gram using a interactive eBook embedded with dynamically adaptive Parsons problems [99, 103].
Dynamically adaptive Parsons problems are Parsons problems that modify the difficulty of the
current or next problem based on a learner’s prior performance (inter-problem adaptation) and
help-seeking behavior (intra-problem adaptation) [100]. By investigating these questions, I aimed

to explore the following thesis statement:

By investigating these questions, I aim to prove my thesis statement:

By exploring the effects of solving adaptive Parsons versus write-code problems,
it may be possible to create adaptive learning environments that are more ef-
fective, efficient, and inclusive of the perceptions of learners with and without
dis/abilities learning in and outside of the classroom.

1.1 Adaptive Parsons Problems for Active Learning

In the current and following subsections, I will briefly describe the main four parts of this
dissertation/multi-manuscript.

To motivate the use of adaptive Parsons problems for active learning in introductory computer
programming courses, we (1) conducted three between-subjects experiments to test the effect on
efficiency (time to correct solution) of solving adaptive Parsons problems with distractors versus
writing the equivalent code and (2) disseminated an end-of-course survey to understand under-
graduate students’ attitudes towards adaptive Parsons problems as lecture assignments. All prior
research studies were either in a controlled environment with volunteers or in a lab (not lecture).

The research questions were:

RQ1: What is the effect on efficiency (time to correct solution) of solving adaptive Parsons prob-

lems with distractors versus writing the equivalent code when used as lecture assignments?

RQ2: What are undergraduate students’ attitudes towards adaptive Parsons problems as lecture

assignments?

The median time to solve each Parsons problem was less than the median time to write the

equivalent code for all but two of the problems, both with complex conditionals. However, that

6

difference was significant for only six of the ten problems. Our hypothesis for why there was
a higher median for the time to solve two of the Parsons problem than writing the equivalent
code was that the problem instructions did not match the Parsons problem solution and/or they
also had a large number of possible correct solutions. Results from student surveys also provided
evidence that most students (78%) find solving adaptive Parsons problems in lecture helpful for
their learning, but that some (36.2%) would rather write the code themselves. These findings have

implications for how to best use Parsons problems.

1.2 Problem-Solving Efficiency and Cognitive Load of Adap-

tive Parsons Problems

Driven by the insights obtained from the study above, we then conducted a within-subjects ex-
periment to compare the efficiency and cognitive load of solving adaptive Parsons problems ver-
sus writing the equivalent code. The prior study showed that solving adaptive Parsons problems
was significantly more efficient than solving isomorphic write-code problems, however, it used a
between-subjects design. This study sought to test the hypothesis that self-reported cognitive load
is less for solving Parsons problems than for isomorphic write-code problems [100, 98]. Hence, we
used a within-subjects design “because the measurement of cognitive load is made independently
of individual differences that would otherwise corrupt a between-subjects design” [408, p. 3]. We
also performed a behavioral analysis using a think-aloud protocol with open-ended interview ques-
tions. The goal was to gain a deeper understanding of what programmers were thinking as they
solved a problem set with both adaptive Parsons and write-code problems, their preferences and

understanding of intra-problem adaptation. The research questions were:

RQ3: What is the effect on efficiency of solving adaptive Parsons problems with distractors

versus writing the equivalent code?

RQ4: What is the effect on cognitive load of solving adaptive Parsons problems with distrac-

tors versus writing the equivalent code?
RQS: How does efficiency relate to cognitive load?

RQ6: What are undergraduate students’ attitudes towards adaptive Parsons problems versus

write-code assessments?

Based on the results from four out of five problems, 69 to 92% of the time, undergraduates were
significantly more efficient at solving Parsons problems versus solving equivalent (isomorphic)

write-code problems. The difference was significant for four of the five problems, but not for the

problem with the highest mean cognitive load rating. The solution to this Parsons problem was
uncommon to students in that it used a while loop; most learners who solved the equivalent
write-code problem first used a for loop. And, interestingly enough, there was an ordering effect.
Seventy-seven percent of the students who solved that problem as a Parsons problem first, used
its solution when solving the equivalent write-code problem. Results varied in significance for
the difference between mean cognitive load ratings of the two problem types and the relationship
between cognitive load ratings and efficiency for the two problem types. Participants also reported
write-code problems to be harder than Parsons problems. However, they felt that they learned more
from write-code problems if they did not get stuck while trying to solve them. These findings have
implications for how to best generate and sequence (order and select) Parsons problems for learning

transfer.

1.3 (Un)Common Parsons Problems Solutions

Novice programmers should be explicitly taught stereotypical solutions to programming problems
[356]. The prior study on problem-solving efficiency and cognitive load revealed that a Parsons
problem with an uncommon solution was not significantly more efficient to solve than writing the
equivalent code. Hence, we hypothesized that changing that Parsons problem to the most common
student written solution would make it significantly more efficient to solve. To test our hypothe-
sis, we conducted a mixed within and between-subjects experiment with ninety-five undergradu-
ates. We also explored the relationship between problem-solving efficiency, cognitive load ratings,
self-efficacy, and clusters of write-code solutions. And finally, previous research also found that
students were confused when pressing the “Help Me” button provided indentation and combined
blocks that were already adjacent (see the section on Parsons Problems in Chapter two). There-
fore, the adaptation process was modified to no longer provide indentation and to combine blocks
that were the furthest apart. To understand how students solve Parsons problems, in particular the
problem with an uncommon solution, and the impact of changing the adaptation process, we report

on three think-aloud observations with undergraduates. The research questions were:

RQ7: What are the effects on efficiency of solving adaptive Parsons problems created from
the most common student written solution or an uncommon solution versus writing the

equivalent code? What are the order effects?
H1: If a Parsons problem with an unusual solution is modified to use the most common
student written solution then students will be more efficient at solving it.

H2: If students are first presented with a Parsons problem that has an uncommon solu-

tion then a high percentage will use that solution to solve an equivalent write-code

problem.

RQ8: What is the effect on self-reported cognitive load ratings of solving adaptive Parsons

problems versus solving equivalent write-code problems?

RQ9: How does problem-solving efficiency relate to self-reported cognitive load ratings and
self-efficacy beliefs?

RQ10: Do students find the modified intra-problem (same problem) adaptation process under-

standable and useful?

RQ11: Why did students struggle to solve the Parsons problem with an uncommon solution?

The results confirmed our hypothesis and its inverse. Students were significantly more efficient
at solving a Parsons problem with a common solution and students used an uncommon Parsons
problem solution to solve an equivalent write-code problem significantly more efficiently which
resulted in higher learning gains. There were also significant positive correlations between effi-
ciency and cognitive load and significant negative correlations between efficiency and self-efficacy.
And finally, results revealed that students who struggled to solve the Parsons problem with an un-
common solution could benefit from help with (1) planning, (2) self-regulated learning, and (3)
more explanation of distractors. Also, students did not report any new problems due to modifica-
tions of the adaptation process. These findings have implications for how to automatically generate

adaptive Parsons problems and improve the adaptation process.

1.4 Accessible Adaptive Parsons Problems

Adaptive programming practice problems can improve problem-solving efficiency, lower cogni-
tive load, and most undergraduate novice programmers find them useful for learning. But these
are results from studies focused on neurotypical individuals learning how to program inside the
classroom [104, 102, 100, 98, 153]. Relatively little research in computing education focuses on
learners with cognitive disabilities [76, 198] and learning how to program outside of the classroom
[21]. Hence, we know little about whether these drag-and-drop/block-based computer program-
ming practice problems are accessible to novice programmers with cognitive, learning, and/or
neurological disabilities when learning is self-paced.

To explore the accessibility of adaptive Parsons problems for neurodiverse learners, how they
learn when using an interactive eBook, and affective factors such as attitudes about computing
and self-efficacy, I conducted an exploratory multiple case study. One of the goals was to observe
participants during think-aloud sessions and generate working hypotheses for future investigation.
This study was based on a proposal I modified after receiving feedback and making changes due
to the pandemic [152]. The research questions were:

9

RQ12: What are the accessibility barriers/challenges and benefits reported when neurodiverse

learners use an interactive eBook to learn how to program?
RQ13: What are their computational practices, perspectives, and attitudes?

RQ14: What are their perceptions of the usability and usefulness of adaptive Parsons problems

versus write-code problems for learning how to program?

RQ15: What are their perceptions about the surveys and/or questionnaires used in the study?

The first research question led to observations for working hypothesis and future research [421]
for each participant about how to improve the accessibility of adaptive Parsons problems and in-
teractive eBooks for learning how to program. First, for learners who experience seizures there
is a positive correlation between solving programming problems with numeric calculations and
seizures. Second, there is a negative correlation between germane cognitive load (i.e., the working
memory resources devoted to learning) and the number of distractor blocks in a Parsons prob-
lem for learners with an attention deficit hyperactivity disorder (ADHD). Third, when presented
with media computation programming problems that involve modifying, editing, and/or creating
pictures of contextualized and culturally relevant content, then learners with an attention deficit
hyperactivity disorder (ADHD) and/or mental health disabilities will experience more positive
emotions. And fourth, active learning strategies such as note-taking will improve problem-solving
performance for learners with memory impairments.

Findings across all the participants led to several design recommendations based on accessi-
bility barriers/challenges and benefits. One barrier/challenge for all of the participants was the
length and structure of some of the reading and practice assignments. Participants also reported a
need for peer-support. Results suggested learners need help developing self-directed learning and
self-regulated learning skills, taking on intellectual challenges, maintaining a growth mindset, and
experiencing a sense of belonging. And nonbinary/genderqueer participants took issue with binary
survey/questionnaire items.

All of the participants reported benefiting from readings in the eBook that chunked information
into smaller chapters and sections. One of the main benefits to learning outside of the classroom
was the interactivity of the eBook and the flexibility to complete the reading and practice assign-
ments at ones own pace. Participants also reported no negative reactions to frequently filling out
self-assessments and concerns about comparison information concerning how much mental effort
peers invest in solving programming problems. And, finally, most participants found the Parsons
problems useful for learning, however two participants had trouble with indentation and one had

trouble with the combine blocks feature.

10

1.5 Contributions

My dissertation contributes to the research on how novice programmers with and without cogni-
tive, learning, and/or neurological disabilities learn to program using adaptive Parsons problems
and equivalent write-code problems in an interactive eBook both in and outside of the classroom.
These studies are the first to (1) study the use of adaptive Parsons problems during lecture, (2)
explore learners’ problem-solving efficiency and cognition in depth as they practice programming,
(3) extend research into learners’ understanding of intra-problem adaptation, (4) explore the use of
common and uncommon Parsons problem solutions for efficiency and learning transfer, (5) inves-
tigate the accessibility of adaptive Parsons problems, and (6) explore the computational practices,

perspectives, and attitudes of neurodiverse learners learning to program outside of the classroom.

1.6 Thesis Outline

Chapter 2 reviews related work. Chapter 3 covers one between-subjects study that uses adaptive
Parsons problems as an active learning pedagogical technique during lecture. Chapter 4 explores
the efficiency and cognitive load of solving adaptive Parsons problems versus equivalent write-
code problems through a within-subjects study. Chapter 5 tests hypotheses about adaptive Parsons
problems with common and uncommon solutions for efficiency and learning transfer. Chapter 6
extends prior research on adaptive Parsons problems to neurodiverse populations to generate work-
ing hypotheses for future research. And, lastly, Chapter 7 concludes this dissertation, summarizes

key takeaways, and discusses future work.

11

CHAPTER 2

Related Work

In this section, I review the literature related to several areas: 1) Parsons problems, 2) active

learning, 3) efficiency and time-on-task, 4) cognitive load, 5) self-efficacy, and 6) neurodiversity.

2.1 Parsons Problems

Parsons Programming Puzzles, also called mixed-up code (Parsons) problems are drag-and-drop
practice exercises that require learners to place blocks of code in the correct order and may also
require indentation. In 2006, Dale Parsons and Patricia Haden developed them for introductory
programming courses to: maximize engagement, help students learn syntax, introduce common er-
rors, model well-written code, and provide instant feedback [283]. These types of problems enable
learners to demonstrate semantic and strategic knowledge without having to generate syntax [254],
although some students use syntactic clues within the blocks to piece together the solution without
necessarily understanding the problem which can lead to a trial-an-error approach to solving—an
important pedagogical design challenge for creators of Parsons problems to solve [79, 425]. These
problems typically only have one correct solution while there are many ways to write code from
scratch [283]. They prompt the kind of explicit learning Soloway advocated for [356]. Explicit
learning is facilitated by direct and unambiguous delivery of procedures and scaffolding to guide
learners through the learning process with clear goals and ways to measure success [9]. Instructors
use Parsons problems as formative and/or summative assessments [79, 102]. Scores on Parsons
problems correlate highly with scores on write-code assignments [60, 79]. In their groundbreak-
ing study, Parsons and Haden asked undergraduates to solve Parsons problems at the start of each
lab for an introductory programming course and results showed that 82% of the students rated the
problems as useful or very useful for learning Pascal [283]. Since that initial study, researchers
have developed a variety of Parsons problems. Parsons problems vary by dimension, feedback,
adaptation, and use of distractors [89, 98, 404].

12

2.1.1 Dimensions

Parsons problems can be one-dimensional or two-dimensional. One-dimensional Parsons problems
require learners to put blocks of mixed-up code in the correct order [283, 79]. Two-dimensional
Parsons problems require learners to put code blocks in both the correct order and also provide
the correct indentation as shown in the solution for Figure 1.4 [165, 182]. Indentation is used
to determine the grouping of code in some programming languages. There is evidence that two-
dimensional Parsons problems are harder than one-dimensional Parsons problems [79]. Studies
show that student opinions about solving two-dimensional Parsons problems ranged from boring
to fun [156] and that students with more prior programming experience do not find them as useful
as students with less experience [155]. However, a log file analysis showed more learners tried to
solve two-dimensional Parsons problems than nearby multiple-choice questions in an interactive
eBook, which is additional evidence that most learners find them useful for learning [101].
Furthermore, an experiment under controlled conditions using a between-subjects design pro-
vided evidence that undergraduate students solve two-dimensional Parsons problems with distrac-
tors significantly more efficiently than fixing code with errors or than writing the equivalent code
with similar learning gains from a pretest to a posttest [102]. And further research provided more
evidence that two-dimensional Parsons problems are more efficient for learning than writing the
equivalent code [100]. Likewise, Zhi et al. found that students solved block-based Parsons prob-
lems in Scratch in about half as much time as students solving write-code problems in the lab with
no negative effect on later work [425], but these experiments were all done in controlled settings

in a lab.

2.1.1.1 Subgoal Labels or Pseudocode

Subgoal labeling is a technique used to help increase learners’ problem-solving skills by having
them break down the solutions into specific goals [53]. It is akin to pseudocode, which program-
mers use to convey the specific steps of an algorithm in plain English so that anyone with basic
programming knowledge can understand. Programmers refer to pseudocode as “informal textual
representations of a program or algorithm” [22, p. 227]. Solving one-dimensional Parsons prob-
lems with provided subgoal labels has led to significantly more learning gains for understanding
how to write a while loop than solving Parsons problems with self-generated or no subgoal labels
[254].

2.1.1.2 Faded Parsons Problems

A recent variation of Parsons problems, called Faded Parsons problems, asks learners to rearrange

and complete blocks of code, with partially blank lines, into a valid program (see Figure 2.1)

13

[404, 405]. They require learners to put code blocks in the correct order, provide the correct
indentation, and fill in blanks with the correct code. The goal is to fade some of the scaffolding
that Parsons problems typically provide by asking learners to partially write code from scratch.
A pilot study provided evidence that students perceived this type of problem as more difficult
than a typical Parsons problem, but less difficult than writing the equivalent code [404]. Faded
Parsons problems are significantly more effective for teaching pattern comprehension and pattern
application over code writing and code tracing exercises and comparably improve students’ ability

to write code from scratch [405].

Problem Statement
Write a function Last_even_adder(1i) that returns a function or a string. If it returns a function, the returned function should take one argurment x
and add it to the right-most even value in 11. if there are no even values in 11, last_gven_adder should return "A11 odd'.

=> last_even_adder{[2,4,6,1,3,5]1){®8) # & is the right-most even.
[

== last_even_adder{[2,4,6,1,3,5]1){3) # 6 + 3 ==9

9

=> last_even_adder{[1,3,5,7])

'ALL odd”
Reading test results: The test cases below will take the result of your last_even_adder function and call it with the second argument « if xisa
number. If » is a string, it will not call the results of 1ast_sven_adder.
Drag from here Canstruct your salution here, including indents
for in range(len|) - def last_even adder(li): 1
)
if % ==

return 'All odd'

return lambda 5 +

print(]
print()

print()

Back to Problem List

Test Cases

Test results will appear here after clicking 'Hun Tests' above,

Figure 2.1: Example of a Faded Parsons Problem. It asks the learner to complete a function.

14

2.1.2 Feedback

Researchers have also studied different ways to provide feedback on Parsons problems: execution-
based or line-based. Execution-based feedback systems run the code in the constructed solution
and indicate correctness, return expected and actual values, and/or return any error messages [155].

Line-based feedback systems highlight a code block to indicate it is in the wrong position or
change the background color to indicate that the solution is correct [182]. A study comparing
the two types of feedback provided evidence that line-based feedback led to quicker solutions
than execution based feedback [155]. Line-based feedback may be easier for novice learners to
understand than compile-time error messages. One weakness of line-based feedback systems is
their ability to facilitate learners’ adoption of a trial-and-error approach [89]. However, researchers
have reported this type of feedback is used sparingly [156]. The Parsons problems in these studies
provided line-based feedback.

2.1.3 Adaptation

Adaptive practice can improve learning, take less time, and increase engagement compared to
non-adaptive learning [68]. Furthermore, adaptive learning strategies, such as help-seeking, can
provide assistance from more knowledgeable individuals or computers when students “recognize
difficulties they cannot overcome on their own” [265, p. 315]. Computing education researchers
have explored help-seeking behavior of novice student programmers and the different reactions
to receiving human-based and/or computer-based help [295]. Help-seeking behavior is impacted
by three categories of factors (1) inputs (i.e., students’ previous experiences, expectations of the
tutor, and independence), (2) student mindset (i.e., trust in a tutor’s ability and recognition that one
needs help), and (3) the attributes of help (i.e., specificity and interpretability) [295]. Price et al.
found computer-based help does not threaten help-seeking behavior in the same way that human
help does and that computer-based help is “efficient, salient, and accessible” [295, p. 133]. They
suggest designers of adaptive learning systems consider the importance of facilitating help-seeking
and of evaluating the quality of computer-based help.

Soloway, Guzdial, and Hay called for a change in Human-Computer Interaction (HCI) from
User-Centered Design to Learner-Centered Design [358]. In particular, they called for more scaf-
folding that supports learners as they try to accomplish a new task [316]. They describe several
types of scaffolding including limiting the starting task so that it is not overwhelming, modeling
behavior, providing hints, encouraging reflection, and encouraging metacognition. To be most
effective, scaffolding should fade as the learner develops expertise. In other words, the system
should adapt to the learner’s performance and provide them with hints and feedback. However, as

the authors say, “Build learner-centered software! Easy to say, hard to do” [358].

15

There have been several efforts to make Parsons problems adaptive and evaluate help-seeking
features. One Parsons problem system uses selection adaptation which means that it selects the next
problem from a pool of Parsons problems based on a learner’s prior performance and randomly

generates distractors [203].

2.1.3.1 Intra- and Inter-Problem Adaptation

Ericson [100] developed two types of adaptation for Parsons problems to keep students in Vygot-
sky’s Zone of Proximal Development (ZPD) [397]. This zone represents the difference between
what learners can do autonomously and what learners can do with support [397]. This means that
the learner is challenged to do more than they could accomplish without help. The adaptability
and adaptivity [see 414] of the system is designed to support learners’ individual differences in
knowledge acquisition, support optimal cognitive load, and improve affect (i.e., emotions and self-
efficacy while learning how to program) [100, 98]. The goal is to maintain desirable difficulties
(a tasks requiring just the right amount of effort) and reduce or eliminate undesirable difficulties
during programming practice [102, 100, 419]. It was built on the premise that adaptation increases
learning efficiency and engagement [68].

Intra-problem (same problem) adaptation is learner-initiated; it occurs when the learner clicks
the “Help Me” button which then removes a distractor, provides indentation, or combines two
blocks into one until only three blocks are left. [98]. This help is only available after learners
submit at least three incorrect solutions.

Inter-problem (between problem) adaptation is system-initiated; it occurs when the system
modifies the difficulty of the next Parsons problem based on the learner’s preceding Parsons prob-
lem performance [98]. It does this by removing distractors and pairing distractors with the correct
code (making it easier) or by adding distractors and jumbling them with correct code blocks (mak-
ing it harder) [98]. If the learner solved the last Parsons problem in just one attempt the next one
is made harder.

Secondary teachers and undergraduate students solving two-dimensional adaptive Parsons
problems reported finding them helpful for learning to fix and write Python; learners are nearly
twice as likely to correctly solve adaptive Parsons problems than non-adaptive Parsons problems
[98].

In contrast to these types of adaptation, intelligent tutoring systems can be described as having
an inner loop and an outer loop [394]. The inner loop executes feedback and hints during a task
while the outer loop uses information from the inner loop (i.e., performance on the task) to select
the next task. This is known as problem-sequencing [201, 394].

In the following studies, I use both intra-problem and inter-problem adaptive Parsons problems;

however, only the first Parsons problem would have been affected by the learner’s past performance

16

on Parsons problems since the inter-problem adaptation takes place before the page is loaded and

all of the problems were displayed on the same page.

2.1.4 Distractors

Distractors are code blocks that are not needed in the correct solution. Distractors expose learners
to common misconceptions about syntax or logic [283]. Distractors can be paired or jumbled.
Problems with paired distractors display the correct and incorrect code blocks adjacent to each
other. Jumbled distractors, on the other hand, are randomly mixed in with the correct code blocks.
Parsons problems with as many distractors as the number of correct code blocks have been reported
as overwhelming for learners [79]. Studies have shown that distractors make Parsons problems
more difficult and increase self-reported cognitive load [79, 146].

However, controlled experiments have provided evidence that undergraduate students can solve
Parsons problems with a limited number of distractors significantly more efficiently than writing
the equivalent code [102, 100]. Researchers have hypothesized that distractors can be used to help
beginners learn to recognize and fix common syntax and semantic errors [283]. One qualitative
study provided evidence that secondary teachers felt that solving Parsons problems with distractors
helped them learn to fix and write-code [98]. However, further research is necessary to confirm
these results, determine the self-reported cognitive load of both solving Parsons problems and
write-code problems, and dig deeper into what students are thinking while solving both types of
problems [89].

Parsons problems with and without adaptation impact affective, behavioral, and cognitive
(ABC) learning outcomes [79, 89, 102, 100, 98, 153, 283, 312, 405, 339, 425]. Cognitive learning
outcomes correspond to changes in cognitive abilities and resources (e.g., efficiency or time-on-
task and cognitive load), behavioral learning outcomes correspond to changes in engagement, study
skills, etc., and affective learning outcomes correspond to changes in attitudes and motivation (e.g.,
self-efficacy) [see 315]. With regard to cognitive learning outcomes, studies provide evidence it
is significantly more efficient to solve Parsons problems with adaptation than to solve equiva-
lent write-code problems [339, 425] and equally as effective for pre-posttest learning gains [100].
However, researchers suggest further investigation into the effectiveness of Parsons problems [89]
and their impact on self-reported cognitive load [100, 98]. Previous research has also shown Par-
sons problems increase behavioral learning outcomes such as engagement [82, 101, 283, 339] and
affective learning outcomes such as interest, motivation, and self-efficacy [82, 98, 339].

In summary, there is evidence that Parsons problems can improve problem-solving efficiency,
lower cognitive load, maximize engagement, and help teachers identify where students are strug-

gling [79, 89, 283, 312, 425]. Yet, “Parsons problems can be perceived as difficult because they

17

require students to read code written by others (using syntax and logic that might not be in their
personal comfort zone)” [79, p. 7]. Furthermore, some advanced learners want harder program-
ming problems while novices struggle with the exact same problems [101, 104, 102]. And given
the challenges of developing learning technologies that Human-Computer Interaction researchers
have identified [362] and the fact that learners’ attitudes about assessments influence educational
outcomes [44, 42], it is important to examine student perceptions of Parsons problems.

This dissertation explores the use of adaptive Parsons problem for programming practice and
its impact on problem-solving efficiency, cognitive load, self-efficacy, programming strategy use,
and both learners’ practices, perspectives, and attitudes. It is different in that it explores (1) the
use of adaptive Parsons problems in an uncontrolled setting (a classroom) as an active learning
pedagogical technique, (2) the use of different instruments to measure cognitive load and self-
efficacy, (3) the impact of common and uncommon Parsons problem solutions on efficiency and

transfer, and (4) the practices, perspectives, and attitudes of neurodiverse and neurotypical learners.

2.2 Active Learning

Active learning refers to a variety of learning approaches, such as solving problems or peer in-
struction, where the student is active rather than passive. Several studies have shown that ac-
tive learning results in more learning and a lower failure rate than passive learning, such as
a traditional lecture [118, 138]. Active learning also increases student engagement and moti-
vation [47, 56, 125, 126, 139, 157, 158, 177, 184, 196, 225, 231, 249, 252, 261, 280, 287,
290, 324, 329, 334, 340, 341, 400], improves students’ learning experiences and performance
[47, 56, 64, 125, 126, 131, 139, 143, 157, 158, 177, 196, 206, 212, 231, 252, 261, 269, 287,
324, 329, 333, 334, 340, 341, 400, 429, 428], encourages student interest, involvement, and
engagement [47, 64, 125, 157, 252, 261, 269, 280, 290, 329], promotes the development of
soft skills [64, 139, 157, 177, 225, 252, 333], promotes flexibility and self-paced learning
[56, 64, 184,249, 329, 400], increases students’ confidence [47, 139, 252, 324, 329], helps teachers
optimize classroom time [56, 184, 249, 329], and connects struggling students to high performing
students [249, 333].

The ICAP theory defines student engagement in terms of what can be observed [61, 62]. It
describes four modes: interactive (I), constructive (C), active (A), and passive (P) and theorizes
that I > C > A > P for learning. An example of passive learning is receiving information without
doing anything else, such as in a traditional lecture. For a behavior to be deemed active there must
be some physical motion and focused attention. Constructive behavior occurs when the learner
creates something beyond what is in the learning materials, such as a concept map. Interaction

requires two individuals or a learner and a computer agent engaging in a constructive discussion

18

with turn taking.

Note that if students are taking verbatim notes during a traditional lecture, they are being ac-
tive. If students are writing notes in their own words, they are being constructive. If students are
discussing comprehension questions with a partner, they are being interactive.

Active learning pedagogical techniques used in computer programming courses include [30]:
flipped classrooms [13, 56, 64, 75, 184, 206, 212, 225, 231, 249, 290, 324, 329, 333, 340, 341,
400], project-based learning [107, 139, 157, 261, 334], peer instruction [47, 131, 429, 428],
blended learning [56, 269, 341], collaborative learning [157, 177, 252], problem-based learning
[47, 56, 225], game-based learning [126, 158], pair programming [249, 252], hands-on learning
[139], inquiry-based learning [225], living code [340], peer-teaching with videos [287], POGIL
[417], team-based learning [212], and think-pair-share [196]. Some of the difficulties encoun-
tered when using active learning pedagogical techniques to teach computer programming in-
clude: the significant effort required of teachers to execute active learning pedagogical techniques
[47, 56, 107, 157, 225, 287, 329, 341, 417], the resistance of students to engage in active learn-
ing pedagogical techniques [13, 75], and the significant effort required of students during active
learning [212].

In chapter three, this dissertation explores the use of adaptive Parsons problems as a type of
active learning activity during lecture to add to existing active learning pedagogical techniques.
Adaptive Parsons problems require learners to drag code blocks into the correct order. They re-
quire both physical motion and focused attention so they meet the definition of active learning in
the ICAP framework. While students could also be given write-code problems to work on during
lecture, some of them would likely get stuck and need individual help [23, 187], which is hard
to provide in a typical lecture auditorium when teachers’ time is already limited. Since adaptive
Parsons problems can reduce the difficulty of a problem by removing distractors, providing in-
dentation, or combining blocks, even struggling students can reach a correct solution which can
increase engagement and decrease resistance to active learning. Prior research has shown that stu-
dents are nearly twice as likely to correctly solve an adaptive Parsons problem than a non-adaptive
one [98].

2.3 Efficiency and Time-on-Task

Time is a limited human resource and it can take some students twice as long to learn what other
students learn [35]. Spending more time learning the same material to achieve the same perfor-
mance as one’s peers can also leave learners feeling frustrated and decrease their motivation to
learn [35].

Educational researchers both within and outside of computing education have used the term

19

‘time-on-task’ to describe the amount of time students spend on learning [35, 214, 320, 360]. Both
efficiency and time-on-task measures can be used to build models for adaptive learning technolo-
gies, but the different strategies for computing efficiency and estimating time-on-task affect the
accuracy of how learning is measured [199]—especially for programming tasks [214]. Further-
more, learners often engage in activities that are not related for learning during a learning task and
researchers account for these gaps differently [48, 176, 199, 317].

Efficiency in the context of learning and instruction is defined as “the ability to reach established
learning or instructional goals with a minimal expenditure of time, effort, or cognitive resources”
and is dependent on the learner [161, p. 1]. Empirical studies of efficiency help us understand what
influences the rate, amount, and quality of learning [161, 296, 355]. These studies tell us how much
“time and effort are needed to master academic competencies” such as basic introductory computer
programming concepts when solving different types of computer programming problems [161, p.
1] and how to improve cognitive learning gains. But regardless of the amount of time or effort
spent acquiring new knowledge, researchers posit “improving the amount or quality of knowledge
acquisition may be especially beneficial for school improvement initiatives designed to help low-
achieving students and for students with disabilities who typically require more time to master
important information” [161, p. 2].

With regard to cognitive learning outcomes, studies have provided evidence it is significantly
more efficient to solve Parsons problems with adaptation than to solve equivalent write-code prob-
lems [339, 425] and equally as effective for pre-posttest learning gains [100], but there are several

ways to measure efficiency.

2.3.1 Measurement

Educational psychologists have historically used two popular computational models to measure
efficiency: the deviation model and the likelihood model [161]. The deviation model has been
used to measure the discrepancy (effect size) between standardized scores (z scores) of learners’
performance on a task (P) and the effort they invest in a task (R) to calculate efficiency (E) [272]:

E = (2P — zR)/V2 2.1)

The likelihood model has been used to compute the ratio of output to input, where output is

performance (P) and input is effort (R) or time (7)) [161]:
E=P/Ror P/T (2.2)

Efficiency and problem-solving studies that utilize these models show mixed results and there

20

is confusion about how to conceptualize efficiency [159]. Kalyuga and Sweller [181] calculated
efficiency (via the likelihood model) to monitor student learning and tailor instruction in real-time
based on changes in students’ level of expertise; this proved reliable and resulted in higher knowl-
edge and efficiency gains than instruction that did not adapt to the learner. Yet, in a recent study,
Hoffman [159] compared efficiency on problem-solving tasks computed using both the deviation
and likelihood models and revealed “fundamental differences in both the computational and mea-
surement properties of the deviation and likelihood formulas, suggesting that both what is mea-
sured by each model, and how the constructs are measured, are indeed different” [p. 141]. Within
educational psychology, conceptual confusion [see 41] about efficiency persists and researchers
suggest using multiple measures [159].

Human-Computer Interaction (HCI) researchers define efficiency as “(1) the accuracy and com-
pleteness with which users achieve certain goals and (2) the resources expended in achieving them”
[119]. In contrast to educational psychologist, HCI researchers consider efficiency to be an inde-
pendent aspect of usability along with effectiveness (“the quality of a programming solution and
error rates”) and satisfaction (“positive attitudes towards the use of a system™) [119, p. 345]. Ef-
ficiency, in this context, is measured by computing task completion and/or learning time, but HCI
researchers warn that “for complex tasks [such as computer programming], efficiency measures are
useless as indicators of usability unless effectiveness is controlled” [119, p. 345]. Effectiveness
here is defined as the quality of a solution assessed on a five-point scale from 1 “very low—failure,
a completely wrong answer” to 5 “very high—brilliant answer.”

In this dissertation, efficiency (or time-on-task) for each problem is measured by computing the
time to the first correct solution. The estimation heuristic to calculate ‘spending time’ involved
removing any difference greater than five minutes between the last recorded timestamp and the
current timestamp for a problem and time spent on other problems [51]. Five minutes was cho-
sen because no interaction for more than five minutes likely meant that the student took a break,
especially since the largest median time to solve any of the problems was less than ten minutes. Ef-
fectiveness is controlled for by only including in our analyses task completion times for solutions
that were 100% correct. Adaptive Parsons problems were 100% correct if all the blocks were in the
right order, had the right level of indentation for each block, and did not include distractor blocks.
Write-code problems were 100% correct if they passed all of the unit tests. In these studies the
effectiveness of write-code solutions was not assessed using scales like the five-point scale above
because we used students’ final correct solutions regardless of how many attempts they made.
The commonality of written student solutions was analyzed using OverCode as shown in Figure
2.2. OverCode is a value-free visualization system that clusters similar solutions to programming
problems using both static and dynamic analyses [127].

Researchers recommend continued investigation into the effectiveness of Parsons problems

21

showing stacks representing submissions filtering by filter rewrite legend
18 correct 64 correct

18 total 64 total lines that appear in ai least submissions
@D oo
largest stack (matching filters) remaining stacks (matching filters) ﬂ Bet coun nge(target,start,end,numList):
L7/ 57]
def countInRange(target,start,end,numlist):
count=@
for i in range(start,end+1): for current in numList[start:end+1]:
if numList[i]==target: if current==target:
count+=1
return count

current=numList[i]
if current==target:
count=count+l

Figure 2.2: OverCode visualization of solutions for those who solved Problem 2 in Table 5.6 as
write-code problem first. The top-left panel displays the number of clusters (18), called stacks,
and the total number of visualized solutions (64). The panel below this in the first column shows
the largest stack which is comprised of 17 solutions. The second column displays the remaining
stacks. The third column displays the lines of code occurring in the cleaned solutions of the stacks
together with their frequencies [127].

[89]. In chapters two through five, this dissertation expands the study of problem-solving ef-
ficiency for solving adaptive Parsons problems versus solving equivalent write-code problems to
uncontrolled settings and tests hypothesizes about the commonality of Parsons problems solutions.
It contributes to our understanding of the use of adaptive Parsons problems during lecture and the

generation of Parsons problems to support pattern comprehension and pattern application.

2.4 Cognitive Load

2.4.1 Short- and Long-Term Memory Capacity

Learning is the process of storing new information in memory. Scientists have partitioned memory
into sensory memory, short-term memory, and long-term memory, which range from milliseconds
to years in duration respectively [123]. Short-term memory (or working memory) is the only type
with a limited capacity (7 £ 2 items)—particularly for novel information [123]. Short-term mem-
ory functions to keep information in an active state and retrieve information from long-term mem-
ory during a learning task [332]. Strain is the result of trying to process new information beyond the
capacity of short-term memory. Cognitive Load Theory (CLT) explains the types of strain learners

encounter [373]. It describes the amount of information that working memory can hold and/or

22

manipulate at one time. Cognitive load is a multifaceted construct that impacts complex learning
tasks such as computer programming (see Figure 2.3). Computing education researchers (CEdRs)
and instructional design researchers use knowledge of human cognitive architecture to optimize
cognitive load and design instruction and assessment that aid learners in the efficient formation of
accurate mental models and the development of computational thinking skills [77, 239, 312, 387].
In relation to efficiency and time-on-task, the objective of designing and developing instruction
and assessments with cognitive cost (i.e., cognitive load imposed, cognitive resources invested, or
mental effort spent) in mind is to support a return on investment concerning efficiency—*“learning

faster and without mental stress” [180, p. 388].

Causal Factors Assessment Factors
1 [|
) Mental load
Environment (E) c
0
G
ExT N
Task(T) |—@— | |
T Controlled Automatic
I processing processing
TxL ExTxL \Y) l'
® E
Mental effort
ExL L
Learner (L) |—ji}—— | ©
A
D
Perfarmance —

Two-way interaction between The physical learning environment (E) and task characteristics(T)
Two-way interaction between The physical learning environment (E) and learner characteristics (L)

Two-way interaction between task characteristics (T) and learner characteristics (L)

A N K

Three-way interaction between The physical learning environment (E}, task characteristics(T),
and learner characteristics (L)

Figure 2.3: Choi, Van Merriénboer, and Paas’ The construct of cognitive load. E = the physical
learning environment, T = the learning task, L = the learner. Adapted and revised from Paas
and VanMerriénboer (1994a), Educational Psychology Review, 6, p. 3. © Plenum Publishing
Corporation. [63]

23

2.4.2 Categories

Educational psychologists have divided this construct into intrinsic cognitive load, extraneous cog-
nitive load, and germane cognitive load; however, the latter is up for debate [270].

Intrinsic cognitive load refers to the complexity of the information to be learned [373]. For
example, novice programmers may have a harder time using nested structures versus flat structures
because nested structures have more element interactivity and may require higher levels of abstrac-
tion [3, 4]. Extraneous cognitive load refers to the complexity of how the information to be learned
is presented [373]. This load can be imposed by not adhering to the principles of coherence, re-
dundancy, signaling, temporal contiguity, and spatial contiguity [240]. Extraneous cognitive load
may be increased by ambiguous instructions and cluttered displays. Germane cognitive load refers
to the effort required to learn during the learning task [373]. It can be imposed by tasks such as
identifying subgoals or solving Parsons problems with distractors, but these tasks can lead to better
learning outcomes [237, 254].

Each of these relates to element interactivity in a different way. Element interactivity refers
to the complexity of learning new concepts that rely on having amassed prior knowledge of other
concepts [58]. Intrinsic cognitive load is dependent on element interactivity [270]. Extraneous
cognitive load is caused by nonessential element interactivity [270]. And germane cognitive load
aids in dealing with element interactivity [270].

Other terms used to describe categories of cognitive load include mental load and mental effort.
“Mental load is imposed by the task or environmental demands” and “mental effort refers to the
amount of capacity or resources that is actually allocated to accommodate the task demands” [273,
p. 354].

Regarding task difficulty and cognitive load, researchers posit “A difficult task does not neces-
sarily lead to greater mental effort. Unless the individual is interested in the task and wants to do it
well, task difficulty would lead the individual to give it up instead of trying to invest further effort.
Thus conceptually, a task with high cognitive load should be a task that is perceived to be difficult
and cannot be done well even though the individual likes the task and invests a high level of effort
in it” [420].

2.4.3 Measurement

Empirical evidence of cognitive load can be collected indirectly, directly, subjectively, and through
dual-task performance measures [191, 312]. Scientists have developed scales that are both unitary
(combining categories) and deferential (subscales for each category) [192, 370].

The most valid and reliable measure is the Paas scale [271]. Computing education researchers
have developed a differential scale from the Cognitive Load Component Survey (CLCS) [253], but

24

it has provided mixed results [146, 253, 424]. Other validated measures of cognitive load include:
the NASA Task Load Index (NASA-TLX) [147], the SOS scale [108, 366], and the differentiated
cognitive load measure developed by Klepsch, Schmitz, & Seufert [191].

In this dissertation, the Paas scale is used to (1) address the fact that computing education
researchers have been critiqued for not using validated subjective measures to survey the charac-
teristics and attitudes of learners [281, 423], and (2) because prior research in computing education
shows the Paas scale useful for understanding the mental effort imposed on novice programmers
by the presentation of material [145, 146]. For example, Harms et al. found that when solving
programming puzzles that are difficult novice programmers experience higher mental effort than
working through tutorials for identical problems [145]. The Paas scale is valid, reliable, and easier
to administer at scale than physiological techniques [374]. This last point was important because
the scale itself and the frequency of administration can impose cognitive load.

The Computer Science Cognitive Load Component Survey (CS CLCS)—a three-component
measure—is also used in this dissertation to explore why prior research with this scale has had
mixed results [146, 253, 424].

2.4.4 Learning Tasks

Cognitive Load Theory (CLT) explains how we can design learning tasks to reduce intrinsic and
extraneous cognitive load [392, 368]. This can be done by manipulating the complexity or the ele-
ment interactivity of the information to be learned, clarifying instructional procedures, and design-
ing the learning interface with human factors and cognitive ergonomics in mind [120, 204]—all of
which are mediated by learner characteristics such as prior knowledge and ability [392]. Learning
tasks that have to do with programming “generally involve working with a lot of information relat-
ing to the current state of the data represented and the processes being executed, the overall design
and goals of the program, and also the language and tools being used” [312, p. 263]. Tasks like
programming, which involve high element interactivity, result in high cognitive load for novice
programmers because they lack the schemata necessary to free up working memory [311].

Completion problems provide novice programmers with partial solutions and are one way to
reduce cognitive load. They are recommended for introductory computer programming [391].
Sweller, van Merriénboer, and Paas describe them as “a bridge between worked examples and
conventional problems” [373, p. 268] because learners are forced to mindfully engage with the
partial solutions. Adaptive Parsons problems are a type of completion problem. Similar to worked
examples used to replace conventional forms of practice, adaptive Parsons problems are aimed at
improving efficiency for learning how to program.

This dissertation explores the impact of using an interactive eBook with adaptive Parsons prob-

25

lems on cognitive load, the relationship between problem-solving efficiency and cognitive load,
and order effects (i.e., how the order in which participants’ solve each problem type relates to their

mental effort).

2.5 Self-Efficacy

Robins [311, p. 25] states that “affective factors such as motivation, constructive attitudes to learn-
ing, positive expectations, and high self-efficacy or effort are also usually found to be correlated
with success in programming.”

Self-efficacy is defined as a person’s belief “in their ability to influence events that affect their
lives” [14, p. 1]. Educational researchers study learners’ self-efficacy because it affects career
choice and the development of competencies, values, and interests in selected environments. It
is also correlated with academic achievement and persistence [14, 137, 274]. Inaccurate self-
appraisal negatively affects performance and motivation [331]. Learners with negative self-efficacy
beliefs for complex or difficult tasks in a given domain, such as computer programming, for ex-
ample, are less resilient than learners with high self-efficacy beliefs who persevere [14]. And,
Bandura himself stated that self-efficacy beliefs determine the amount of effort people expend on
an endeavor [14].

Several researchers have studied self-efficacy in introductory computer programming courses
[232, 423]. Ramalingam et al. [299] investigated the relationship between computer programming
self-efficacy and mental models (a person’s cognitive reproduction of real world objects and sys-
tems); they found mental models influence self-efficacy and that both programming self-efficacy
and mental models influence academic achievement. Mental models (or schemas) are defined as
the organization of information about how components of a system work into central concepts
or topics [266]. They play an important role in the study of program comprehension/knowledge
[50, 357]. In contrast, the study of programming strategies is concerned with how programming
knowledge is used and applied (i.e., what are the common and uncommon strategies employed by
novice programmers when solving programming problems and how can we increase knowledge/s-
trategy transfer) [73, 309].

Other computing education researchers have found repeated failures, especially when first
learning how to program, can lower students’ self-efficacy [188]. Peer instruction increases
self-efficacy [427]. Gender mediates self-efficacy beliefs (the relationship between females’ self-
efficacy and programming performance plateaus earlier in a CS1 course) [220], and gender also
mediates the relationship between self-efficacy and a sense of belonging [32]. There is also a pos-
itive relationship between self-efficacy, a fixed mindset for programming, effort, and course grade

[378]. Self-efficacy is significantly impacted by misconceptions about programming functions

26

[179]. And low self-efficacy is related to frequent negative self-assessments [130].

Few studies investigate self-efficacy, cognitive load (mental effort), help-seeking, and cogni-
tive ability concurrently [see 382]. Yet, there is evidence that these relationships exist in related
domains to computer science such as mathematics [160, 395]. Hoffman and Spatariu tested the
motivational efficiency hypothesis and found beliefs about self-efficacy predict problem-solving
efficiency (i.e. the ratio of problems solved correctly to time) and that “self-efficacy was a statis-
tically significant predictor of problem-solving time” [p. 885 162]. And, furthermore, researchers
suggest that in computer science learning, learners’ self-efficacy needs to be accounted for to in-
crease the adaptability of the systems they use [409].

To measure computer programming self-efficacy, researchers have developed the Motivated
Strategies for Learning Questionnaire (MSLQ) [289], the Computer Programming Self-Efficacy
Scale (CPSES) [300], and, most recently, the Introductory Programming Self-Efficacy Scale
(IPSES) [361].

In this dissertation, the Introductory Programming Self-Efficacy Scale (IPSES) and self-efficacy
portion of the Motivated Strategies for Learning Questionnaire (MSLQ) are used to explore the
relationship between the problem-solving efficiency of completing adaptive Parsons problems and
self-efficacy. The IPSES was used because its factorization is reported as more robust [361]. In
chapter five, the scale’s reliability is explored and the scores are used to cluster students into four
groups based on prior research [188, 299]. In chapter six, the MSLQ was used to account for the
frequency of asking learners about their self-efficacy; it consists of five items and learners were
asked to fill it out once per week for eight weeks along with other instruments (see section 5.2.2
Materials).

2.6 Neurodiversity

Neurodiversity refers to individual variation in cognitive function, behavioral traits, affect, and sen-
sory functioning differing from the general or ‘neurotypical’ population [318]. Judy Singer, a soci-
ologist with Asperger syndrome and autistic rights advocate, coined this term in 1999 [349]. Pro-
ponents view autism, attention deficit hyperactivity disorder, Tourettes, dyslexia, hearing voices,
bipolar disorder, down syndrome, dementia, and other neurominority experiences ‘“as components
on a broader continuum of sensory, affectual, and cognitive processing” [318, p. 2]. Neurodiver-
sity 1s a challenge to the deficit (medical) model that portrays neurominorities as “ill, broken, and
in need of fixing” where neurological deficits/disorders are exclusive to the individual [307, p. 1].
In contrast, the social model of disability is concerned with external forces that enforce restrictions
on disabled people [318].

Most research on learning design has focused on neurotypical individuals [226] and there is

27

relatively little research in computing education on learners with cognitive disabilities [198]. De
Aratjo and Andrade’s systematic literature review on teaching programming to learners with cog-
nitive disabilities showed that block-based programming and robotics were the most popular ap-
proaches to (1) teaching basic introductory programming concepts and (2) increasing inclusion and

equity through appealing activities respectively [76].

2.6.1 Universal Design for Learning and Students with Disabilities in CS

eBooks that do not incorporate good instructional design principles run the risk of excluding some
of their users. One pedagogical approach applied to teaching computer science education to learn-
ers with and without disabilities in K-12 and higher education is Universal Design for Learning
(UDL) [5, 170, 171]. This framework was designed by the Center for Applied Special Technol-
ogy (CAST) to increase access and engagement for the widest range of learners. Three broad
principles founded on cognitive neuroscience research contribute to UDL [116]: (a) providing
multiple means of engagement for learners to interact with learning materials (e.g. providing both
Parsons problems and write-code problems), (b) providing multiple means of representation for
comprehension (e.g. embedding the option to download eBook chapters for offline reading), and
(c) providing multiple ways for learners to act out and express their understanding (e.g. creating
discussion forums and facilitating peer instruction) (see https://udlguidelines.cast.org/).

Israel and Lash [171] posit two of the fundamental concepts that underlie UDL help to maximize
students’ strengths and reduce instructional barriers, although accessibility barriers and cognitive
load barriers can pose a challenge. The first principle is that “Learner variability is the norm, not the
exception” [171, p. 219]. We each learn in different ways and, although it is essential to consider
social markers such as race, gender, dis/ability, sexuality, etc. to address learners’ individual needs,
“when we look at students only within categories (e.g., gifted, learning disability), we oversimplify
differences between learners and do not fully acknowledge the diversity among them” [171, p.
219]. The second principle is that “Disability is contextual” [171, p. 219]. Instructional materials
and learning technologies can disable students’ learning at any time due to accessibility barriers
and challenges. For example, if an introductory computer programming course course required
students to use an integrated development environment (IDE) without an onboarding process this
might limit their ability to succeed in the beginning of the course.

UDL can help learners with and without disabilities in postsecondary education overcome chal-
lenges and barriers related to learning and socialization when using computers [5, 330]. It can
help improve equity and access for all learners because it supports the dispersion and neurodiver-
sity that characterizes cognition and learning [5, 12]. Nonetheless, most research has focused on

K-12 learners [302]. In this dissertation, I focus on the design of an eBook with regard to UDL

28

https://udlguidelines.cast.org/

principles for neuordiverse learners in tertiary education. This learning took place outside of the
classroom—informally. The goal was to investigate the accessibility of adaptive Parsons problems

and equivalent write-code problems for programming practice.

2.6.2 Accessibility of Adaptive Parsons Problems

The majority of block-based programming research on accessibility has focused on programmers
with visual or motor impairments [247, 248]. Several challenges exists for learners with visual
impairments including: navigating code, comprehending code, debugging code, and skimming
code [258]. And studies have mainly focused on K-12 learners with visual impairments and block-
based environments that use the Scratch visual programming language [257]. To date, no one has
explored the accessibility of adaptive Parsons Problems. Moreover, most of the studies on adaptive
Parsons problems have focused on what neurotypical individuals prefer (adaptive Parsons problems
or write-code problems) and their computational practices, perspectives, and attitudes (how they
solve adaptive Parsons problems, whether they find them useful, and if they comprehend intra-
and inter-problem adaptation) inside the classroom [104, 102, 100, 98]. Hence, this dissertation
also explores the accessibility of adaptive Parsons Problems for neurodiverse learners and their
computational practices, perspectives, and attitudes while using an interactive eBook to learn how

to program outside of the classroom.

29

CHAPTER 3

Parsons Problems as Active Learning Lecture

Activities

Adaptive Parsons problems could be used to reduce the difficulty of introductory programming
courses and increase the use of active learning in lecture. Parsons problems provide mixed-up code
blocks that must be placed in order. If a learner is struggling to solve an adaptive Parsons problem,
it can dynamically be made easier. This makes it possible for students to correctly solve a problem
in a limited amount of time, even if they are struggling. Previous research on the effectiveness and
efficiency of solving Parsons problems for learning has been conducted in controlled conditions
in lab or during discussion. During lecture, we assigned undergraduates adaptive Parsons and
equivalent write-code problems to solve. We tested the efficiency of solving each problem type
through three between-subjects experiments. The median time to solve each Parsons problem
was less than the median time to write the equivalent code for all but two of the problems—both
requiring knowledge of complex conditionals. However, that difference was significant for only six
of the ten problems. Our hypothesis for why the two problems had a higher median time to solve
as an adaptive Parsons problem than as a write-code problem was that the problem instructions
did not match the Parsons problem solution and/or there were a large number of possible correct
solutions. Results from student surveys also provided evidence that most students (78%) found
solving adaptive Parsons problems in lecture as helpful for their learning, but that some (36.2%)
would rather write the code themselves. These findings have implications for how to best use

Parsons problems.!

3.1 Introduction

Introductory computing classes at the college level had an average failure rate of 28.3% in 2018

which does not seem particularly high compared to college algebra courses in the United States that

"Portions of this chapter were adapted from [97]

30

can reach 50% [27]. But most computing courses use traditional passive lecture and assignments
that require students to write code from scratch [187, 286]. And only 55% of course syllabi ex-
plicitly state that writing programs is one of their learning outcomes/objectives which may impact
students’ ability to gauge how much effort is required to learn—especially first-generation students
[20, 136]. Novice programmers often spend many frustrating hours trying to figure out why their
program does not compile or does not produce the expected output [23]. Furthermore, students that
encounter errors while programming experience negative emotions that impact self-efficacy [187].
High self-efficacy improves persistence in a field, while low self-efficacy increases the odds that
students will fail or change majors [95]. Instead of traditional lecture, active learning techniques
can improve learning and increase retention in computer science courses [47, 118, 138, 243].

Diversity is a persistent problem in computing. There continues to be a “leaky pipeline” for
students from underrepresented groups who tend to have less prior experience [49, 235, 234, 398].
A survey of undergraduate students who had dropped an introductory computing course found that
nearly half thought it was too challenging and 75% of those were female [112]. Negative expe-
riences in courses tend to affect women more than men [93, 235] which may be one reason why
women are more likely to leave the CS than men, even if they have better grades than the men who
stay [183]. In 2020, female students earned only 20.6% of computer science bachelor’s degrees,
16.6% of computer engineering, and 29.4% in information; nonbinary/other students earned 0.1%,
0%, and 0% respectively [430]. Bachelor degrees earned by underrepresented minorities (URMs)
were portioned into 8.4% for Black/African American students, 11% for Hispanic/Latino students,
0.3% for American Indian and/or Alaska Native students, and 0.2% for Pacific Islander students
[169]. Gender-focused efforts have failed to increase the percentage of Black women in comput-
ing [301]. For students with disabilities, enrollment in undergraduate programs “does not translate
into a strong pipeline” [343, p. 1]. And due to low sense of belonging, LGBTQIA+ students often
leave computing degree programs [363]. Active learning techniques can improve motivation and
learning for students from underrepresented groups [195, 380].

In this study, we explore using Parsons problems as active lecture assignments. The cost of
learning can be high for complex tasks and students learn at different rates [35, 51]. Writing a
program from scratch is appealing in that it is seen as authentic but it can be time-intensive [338].
However, while writing a complete program novices may experience high cognitive load, which
can quickly overwhelm them and actually impede learning and decrease motivation [390, 392].
One of the recommended ways to reduce cognitive load during programming is to have students
complete a partial program rather than write a complete program [389]. Parsons problems are
a type of code completion problem where the learner must place mixed-up code blocks in order
[100]. Students from underrepresented groups perform better on these types of block-based prob-
lems [185, 407]. Two controlled experiments have provided evidence that solving Parsons prob-

31

lems (both non-adaptive and adaptive) are more efficient, but just as effective for learning, than
writing the equivalent code [102, 100]. These experiments were conducted in a closed lab with un-
dergraduate volunteers. While lab-based experiments can provide evidence for the effectiveness of
new approaches, it is also important to validate these findings in real educational contexts [16]. In
addition, prior research provided evidence that secondary teachers perceived that solving adaptive
Parsons problems helped them learn to fix and write code [98]. However, it is important to also
determine undergraduate students’ attitudes towards solving adaptive Parsons problems in lecture.
One reason instructors do not adopt new teaching approaches is that they fear students will not like
them [17, 40].

In this study the following research questions were put forth:

RQ1: What is the effect on efficiency (time to correct solution) of solving adaptive Parsons
problems with distractors versus writing the equivalent code when used as lecture as-

signments?

RQ2: What are undergraduate students’ attitudes towards adaptive Parsons problems as lec-

ture assignments?

3.2 Methods

We used both a between-subjects experiment as well as an end-of-course student survey to answer

the research questions.

3.2.1 Context

This research was conducted at a the University of Michigan School of Information. All par-
ticipants were enrolled in Data-Oriented Programming. We received IRB permission to analyze
anonymous clickstream data from the course.

This course is the second required Python course for School of Information majors, although
other majors take it as well. Undergraduates typically take it in their first or second semester. It
requires prior programming experience (variables, loops, conditionals, and functions). The course
focuses on developing intermediate programming skills in Python and covers working with data
from a variety of sources (strings, files, APIs, websites, and databases), object-oriented program-
ming basics, regular expressions, debugging, testing, and SQL.

Lecture was an 80 minute period that met twice a week in an auditorium-style lecture room.
Lecture switched to online during March of 2020 due to Covid. The instructor lectured for 10 to

15 minutes at a time and then asked a peer instruction question [71]. Peer instruction has been

32

known to substantially reduced failure rates [291], improved retention [292], and increased final
exam performance [347].

One of the researchers created practice problems in a free eBook for most lectures. The practice
problems were typical of those used in a first course for computing majors. During lecture the
instructor assigned a set of problems for the students to work on either individually or with a
partner. Most students worked individually. Students were given 20 minutes during lecture to
work on an assignment, but had a week to complete it in order to allow students who were sick
or had more difficulty with the assignment to complete it. Students earned one point for correctly
completing each problem. Each assignment typically had five problems. Students could earn up to
a total of 200 points for doing the lecture assignments and could drop several of the assignments.

Students also attended a 50 minute discussion section once a week in smaller groups of about
20 to 25 students. In discussion, students wrote code in small groups to solve problems that
were similar to those on the homework or projects. Students also had to write code for the nine
homework assignments and three projects. Projects were expected to be about twice as difficult as
homework assignments.

An end-of-course student survey is always administered in the final weeks of the course. The
instructor added three questions to this survey in the fall of 2019 and the winter of 2020. The

instructor also added a couple of open-ended questions during the winter of 2020.

3.3 Between-Subjects Experiment

We conducted three between-subjects experiments in lecture during the Winter of 2020. Forty-nine
percent identified as female and the rest as male (N = 152); the ages ranged from 18 to 36 years
old. Eleven percent identified as Black or Hispanic, 36% as Asian, 42% White, 8% as Multiracial,
and 4% did not indicate their race. The average GPA was 3.433 (SD = 0.419).

3.3.1 Materials

We developed three assignments with five problems in each and each had two versions: A and
B (see 3.1). The first two assignments both had four pairs of Parsons problems and write-code
problems, while the third assignment only had two. In version A, the first problem was a write-
code problem while in version B the same problem was a Parsons problem. See the first problem
as a write-code problem with unit tests in Figure 3.1 and as a Parsons problem in Figure 3.2. The
problem type alternated between write-code and Parsons for the first four problems in the first two

assignments. The last problem was the same fix-code problem.

33

Table 3.1: Order and Type of Problem by Version

Version Problem Type

A
B

Write, Parsons, Write, Parsons, Fix
Parsons, Write, Parsons, Write, Fix

Finish the function below to return ‘too low’ if the guess is less than the passed target, ‘correct’ if they are
equal, and ‘too high' if the guess is greater than the passed target. For example, check_guess(5,7) returns
‘too low’, check_guess(7,7) returns ‘correct’, and check_guess(9,7) returns ‘too high'.

s

1 def check_guess(guess, target):

2 if guess < target:

3 return "too low" I

. Result | Actual Value | Expected Value Notes

4 elif guess == target:

5 return "correct" Pass ‘too low' 'too low' check_guess(5, 7)

6 else: Pass ‘correct’ ‘correct’ check_guess(7, 7)

7 t "too high"

g return “too Mg Pass | 'too high' 'too high' check_guess(9, 7)

9 Pass ‘too low' 'too low' check_guess(3, 9)
Pass ‘correct’ ‘correct’ check_guess(3, 3)
Pass 'too high' ‘too high' check_guess(20, 9)
Pass 'too low' 'too low' check_guess(-5, 7)

You passed: 100.0% of the tests

Figure 3.1: Write-Code Problem (Problem One in Table 2).

month were assigned to version B.

3.3.1.1 Experimental Protocols/Study Design

set (problem seven in Table 2) is shown in Figure 3.3.

34

The first assignment was released in week one. It covered functions, complex conditionals, and

strings. Students with an odd birth month were assigned to version A and those with an even birth

The second assignment was released in week two. It covered functions, conditionals, strings,
lists, and loops. Students who were seated on the left side of the lecture facing the screen completed

version A while those on the right side did version B. An example write-code problem from this

The third problem assignment was administered in week four. It covered creating classes. This
assignment had two problems that we tested as both a Parsons problem and write-code problem.

You can see one of these problems in Figure 3.4. Students were asked to pick a random number

Q-1: Finish the function below to return 'too low' if the guess is less than the passed

target, 'correct’ if they are equal, and 'too high' if the guess is greater than the passed

target. For example, check_guess(5,7) returns 'too low', check_guess(7,7) returns

‘correct’, and check_guess(9,7) returns 'too high'. There are three extra blocks that are not needed in a
correct solution.

Drag from here Drop blocks here
12 def check_guess(guess, target): Solution

or
{ 1 |def check guess(guess, target: 1a def check_guess(guess, target):

2 |else: 5 |1f guess < target:

3 |elif guess == target: o5 | return 'too low!

4a | return 'correct)
Or{ 5 elif guess == target:

4n | return 'correct'

4ap | return 'correct'
if guess < target:

wn

2 |else:
¢ |return 'too high' ‘

7~ | return "too low' 6 return 'too high'

of
75 | return 'too low'

Figure 3.2: Parsons Problem with Mixed-up Blocks on the Left and the Solution on the Right
(Problem One in Table 2).

from 1 to 10 and if the number was even they were to solve one version and if odd the other.

3.3.1.2 Analysis

We calculated the time in seconds to a correct solution. We removed any dead time (no interaction
in the eBook for more than five minutes) and any time spent on solving other problems.

Since this was a between-subjects study and the data violated assumptions of normality and
equal variances we ran Mann-Whitney U tests to analyze the difference in the times to the first
correct solution between the groups [260]. We also report probability-based effect sizes as this

measure is reported to be more robust when parametric assumptions are violated [66, 323].

35

Return the sum of the numbers in the list, returning 0 for an empty list. Except the number 13 is very
unlucky, so it does not count and a number that comes immediately after a 13 also does not count. For
example, sum13([13,1]) returns 0 and sum13([1,13]) returns 1.

1 def suml3(nums):

B sum = @ Result| Actual Value |Expected Value Notes
3 foundl3 = False Pass 0 0 sum13((13,1))
4 for num in nums: P~ g " sum13(1.13)

: u ,
5 if foundl3:
6 f:ound13 — False Pass 6 6 sum13([1,2,2,1])
7 continue Pass 2 2 sum13([1,1])
8 elif num == 13: Pass 4 4 sum13([1,2,13,2,1))
9 foundl3 = True Pass 0 0 sum13([)
S else: Pass 3 3 sum13((1,2,13))
11 sum += num

Pass 0 0 sum13((13,1,13))

12 return sum

You passed: 100.0% of the tests

-
~

Figure 3.3: Example Write-Code Problem from the Second Problem Set (Problem Seven in Table
2).

3.3.2 Results

The median time to correctly complete each problem as a Parsons problem and as a write-code
problem is shown in Table 3.2. Note that the median time to complete each Parsons problem
was less than the median time to complete the equivalent write-code problem for eight of the ten
problems. However, that difference was only significant for six of the problems. This result is
different from prior research which found that Parsons problems were significantly faster to solve
than writing the equivalent code, however that study was conducted in controlled conditions and
all the Parsons problems were about loops, lists, iteration, and simple conditionals. The median
time to complete the alarm clock and speeding problems shown in Figure 3.5 was actually larger
for the Parsons problem than the write-code problem. This was significant for the alarm clock
problem. Both of these problems were about complex conditionals.

The effect size (A) shown in Table 3.2 means that that a student randomly selected from the
write-code group would probably take from 53% to 85% longer to correctly solve the same problem

than a student randomly selected from the Parsons problem group.

36

.

:

o

.
o

op (def __str__(self):

;b | class Person: o def __str___(self):
self.first = first . won
R N, return (self.first + +
self.last)
return(self.first[0] +
self.last[0]) ¢ def initials(self):

Q-1: Put the code in order to define a Person class with a constructor (__init__), a method
to print the object attributes (__str__), and an initials method which returns the first letter of
the first name and the first letter of the last name.

Drag from here Drop blocks here

return (self.first + self.last) Correct Solution

return (self.first + " " +

self.last) class Person:

def __str__():
def __init_ (self, first, last):

s |self.first = first

Class Person: self.last = last

return(self.first[1] +

self.last[1]) 5a |return(self.first[0] +

self.last([0])

def initials(self):
def __init__ (self, first, last):

def __init_ (first, last):

Figure 3.4: Example Parsons Problem from the Third Assignment (Problem Nine in Table 2).

3.4 Why Less Efficient at Solving Parsons Problem Three?

Since problem three (alarm clock) as shown in Figure 3.5 took students significantly longer to
solve as a Parsons problem than as a write-code problem, we investigated it further. We examined
the student written code. Of the 60 students who successfully wrote code to solve this problem,

only 4 (6.7%) used a solution that was equivalent to the provided solution to the Parsons problem.

A few students used just four complex conditionals as shown in Figure 3.6.

Most students solutions used nested conditionals. However, some first tested the day of the
week and then the vacation flag. Some tested if vacation was false first rather than true. There
were also many approaches to testing the day to see if it was a weekend or weekday including
explicit checking of the weekend days, testing if the day was greater than zero and less than six,

37

Table 3.2: Time to Complete Parsons Problem vs. Write-Code Problem

Parsons Problem Write-Code Problem Mann-Whitney U

Problem N Mdn in seconds (SD) N Mdn in seconds (SD) U p-value A

1 Check Guess 83 86.5 (79.15) 68 91 (129.81) 2648.5 0.71 0.53
2 Get Middle 66 319 (245.81) 64 372 (457.81) 1854 0.36 0.57
3 Alarm Clock 73 268 (582.21) 60 208 (214.28) 2570.5 0.04* 0.38
4 Speeding 64 231 (266.69) 65 178.5 (182.69) 2243 0.27 0.46
5 Loop Average 73 99.5 (77.7) 65 375.5 (288.91) 587 0.00%** 0.85
6 Sum Odd 74 72 (96.37) 70 101 (204.03) 1650 0.00%** 0.67
7 Sum 13 70 367 (282.53) 65 596.5 (749.37) 1806 0.07 0.65
8 Filter Words 72 63 (749.37) 69 104 (202.99) 1581 0.00*%** 0.69
9 Person Class 87 69.5 (76) 53 169.5 (213.28) 878 0.00%** (.73
10 Car Class 57 89 (78.23) 77 231.5 (257.92) 662.5 0.00%** (.76

Note. * p < .05, ** p < .01, *** p < .001. A = probability-based effect size measure (nonparametric
generalization of common language effect size statistic).

using a range, checking if the day was in a list, and checking if the day modulo six was zero.
Since line-based feedback Parsons problems can only have one correct solution they may not
be more efficient than writing the equivalent code when there are many possible correct solutions,
such as in this case. In fact, we tested this problem again in a between-subjects study in the fall of
2020 after revising the instructions to try to lead students to the provided Parsons problem answer.
In that study, 77 students solved it as a Parsons problem with a median time to solve of 229 seconds
and 83 solved it as a write-code problem with a median time of 224 seconds. The difference was
not significant using a Mann-Whitney U test. More work needs to be done to test if Parsons
problems are best used with problems that do not have a large variety of possible solutions. Other
research has provided evidence that Parsons problems may not be significantly faster to solve than
writing the equivalent code when the Parsons solution is unusual [154]. It could be that Parsons

problems are best used with problems that have a single most common solution.

3.5 End-of-Course Student Survey

It is important to gather student attitudes and feedback on new types of assignments. One reason
that instructors give for not engaging in active learning during lecture is that they are concerned
that they might receive negative student evaluations [17, 40]. The instructor added statements to
the end of course student survey in both Fall 2019 and Winter 2020. Students answered using a five
point Likert scale where one was “Strongly Disagree” and five was “Strongly Agree”. All students
would have received extra points if the response rate reached a specified level (ten points if 90%
for Fall 2019 and five points if 85% for Winter 2020). However, the response rate did not reach the

38

specified level either semester.

3.5.1 Student Survey Results from Fall 2019

The response rate was 83% (108 out of 130) for Fall 2019, however not every student answered
every question. The first question was, “I found mixed-up code problems in lecture practice helpful
for learning”. As you can see from Table 3.3, 78.3% of the respondents either agreed or strongly
agreed. However, 11% disagreed or strongly disagreed that mixed-up problems in lecture were
helpful for learning. This could be due to expertise reversal effect [371], in which techniques
that help novice students can actually increase the cognitive load of more expert students. Prior
research with Parsons problems has shown that experts can find solving a Parsons problem harder
than writing the equivalent code, especially when the Parsons problem solution does not match the

expert’s solution [165].

Table 3.3: Student Responses on an End of Course Survey from Fall 2019 and Winter 2020

Term Num Question N 1(SD) 2MD) 3(N) 4(A) 5(SA)

Fall 2019 1 I found the mixed-up code problemsin 106 09% 94% 11.3% 50.0% 28.3%
lecture practice helpful for learning.

Fall 2019 2 I would rather write the code myself 105 9.5% 295% 24.8% 21.0% 152%
than solve a mixed-up code problem.

Fall 2019 3 I would like to have the choice of solv- 101 1.0% 89% 34.7% 36.6% 18.8%
ing the mixed-up code problem or writ-
ing the equivalent code.

Winter 2020 1 I would rather write code from scratch 105 9.5% 30.5% 29.5% 152% 152%
than solve a mixed-up code problem.

Winter 2020 2 I found the “Help Me” button on the 103 1.0% 49% 13.6% 44.7% 35.9%
mixed-up code problems useful.

Note. SD = Strongly Disagree, D = Disagree, N = Neutral, A = Agree, and SA = Strongly Agree

The second question was, “I would rather write the code myself than solve a mixed-up code
problem.” While 36.2% of respondents agreed or strongly agreed with this statement 39.0% either
disagreed or strongly disagreed. This provides evidence that while most students find solving
Parsons problems useful, over a third of them would rather write the equivalent code.

The third statement was “I would like to have the choice of solving the mixed-up code problem
or writing the equivalent code.” Of the respondents, 55.4% agreed or strongly agreed with this

statement, while 9.9% disagreed or strongly disagreed.

39

3.5.2 Student Survey Results from Winter 2020

In the Winter of 2020, we added statements about Parsons problems to the end-of-course-student
survey. The survey response rate was 77.5% (107 out of 138), however not every student answered
every question.

The first added statement was “I would rather write code from scratch than solve a mixed-up
code problem.” Of the respondents, 40% disagreed or strongly disagreed with this statement and
30.4% agreed or strongly agreed as seen in Table 3.3. It is interesting to note that the percentage
who agreed or strongly agreed (30.4%) with this statement was less than that for a similar statement
(number two) from Fall 2019 (36.2%), while the percentage that disagreed or strongly disagreed
was very similar (about 40%).

The second statement was, “I found the ‘Help Me’ button on the mixed-up code problems
useful.” The Parsons problems have a “Help Me” button that triggers adaptation. Learners can
click the “Help Me” button to dynamically make the current problem easier if they have submitted
at least three incorrect solutions. Each time the learner clicks on the “Help Me” button it will
remove a distractor block (if there are any), or provide indentation (if needed), or combine two
blocks into one until there are only three blocks left. Of the respondents, 80.6% agreed or strongly
agreed that the “Help Me” button was useful, while 5.9% disagreed. This provides evidence that
most undergraduate students value adaptation.

3.6 Discussion

The median time to solve each Parsons problem was less than the median time to solve the equiva-
lent write-code problem for eight of the ten problems studied, but that difference was only signifi-
cant for five of those problems. This result differs from prior research in a controlled environment
[102]. It may be that students in a controlled environment were more on task than students who
were solving problems as part of lecture and who could complete the problems anytime over the
next week.

Two problems, both with complex conditionals, actually had a higher median time to solve as
Parsons problems than as a write-code problems. Our hypothesis is that the instructions for these
problems did not match the Parsons solution and there are many different ways to correctly solve
these problems. We revised the instructions for one of these problems (alarm clock) and found
that this problem was not significantly faster to solve as a Parsons problem than as a write-code
problem. Further work needs to be done to determine why this is the case, but it may be that
Parsons problems are not significantly faster to solve when a problem has many possible solutions.

The end-of-course student surveys showed that while the majority of students (78.3%) found

40

using Parsons problems in lecture helpful for learning, about a third of them would rather solve
the equivalent write-code problem, and over half of them would like the choice. This is consistent
with expertise reversal effect in which techniques to help novice students can actually increase the
cognitive load for experts [371]. Parsons problems are a type of scaffolding to help students learn
to write code. It is important that scaffolding fades as the learner develops expertise [141]. We
have since added the ability for a student to switch to an equivalent write-code problem with unit
tests when presented with a Parsons problem.

Most students (80.6%) found the intra-problem adaptation (‘“Help Me” button) useful, but about
6% did not. This suggests that more work should be done to make the adaptation process more
understandable to learners. Perhaps we should provide an explanation about why a distractor is

incorrect when it is removed from the solution during adaptation.

3.7 Limitations

This study was conducted in Python in one class at one university. More research should be done
to test the results in other languages, classes, and contexts.

It is possible that there were significant differences between the groups in terms of prior expe-
rience, which could have affected the median completion time. However, students were randomly
assigned to the groups using a different method for each assignment. That should mitigate this
concern.

While the problems were given in lecture and students were given time to complete the problems
in lecture, it is possible that they completed them after lecture since they were not actually due for a
week. Both groups A and B were in this situation which should still make the data comparable. We
took this situation into account when calculating the time to the first correct solution by removing
any time spent solving other problems and any gaps in interaction of more than five minutes.

This study did not compare the learning gains from solving Parsons problems versus writing
the equivalent code. However, prior research has shown no significant difference in learning gains
[102, 100, 425]. Still, more research should test the learning gains from solving adaptive Parsons

problems versus writing the equivalent code as active learning exercises in lecture.

3.8 Conclusion

This research provides evidence that learners can solve adaptive Parsons problems significantly
more efficiently than writing the equivalent code as active learning exercises in lecture, but not

always. The evidence suggests that a Parsons problem may not be more efficient to solve when

41

there are many possible correct solutions, however more work should be done to verify this hy-
pothesis. If this hypothesis is true, it has implications for the types of problems that should be used
as Parsons problems.

This paper also provides evidence that most undergraduate learners find solving adaptive Par-
sons problems as active learning assignments in lecture useful for learning. Since active learning
during lecture can improve student learning, motivation, and retention, we suggest that more com-
puting instructors try adding adaptive Parsons problems assignments during lecture. Adaptation
can help even struggling students successfully complete a Parsons problem, which makes this type
of problem ideal for the lecture environment where it is difficult to provide individual help to

struggling students.

42

Q-1: Put the code blocks below in order to solve the following problem. There are

two extra blocks that are not needed in a correct solution. Given a day of the week

encoded as 0=Sun, 1=Mon, 2=Tue, ...6=Sat, and a boolean indicating if we are on

vacation, return a string of the form “7:00" indicating when the alarm clock should ring. Weekdays, the
alarm should be “7:00" and on the weekend it should be “10:00". Unless we are on vacation -- then on
weekdays it should be "10:00" and weekends it should be “off".

Drag from here Drop blocks here
1 else:
A 2n | def alarm_clock(day, vacation):
2a |if (day == @) || (day = 6): Solution
or{ i - S
o | e —) o e — Gt 4 if vacation:
3 return ‘off' 6 if day == @ or day == 6:

4 return *10:00" 10 |return 'off'

if day == @ or day == 6:

w

9 else:

6 else:
3 return '10:00'
7 return '7:00'

‘ 5 else:
8 return ‘'10:00°

, else: 1 | if day == @ or day == 6:

102 | def alarm_clock(day, vacation): 11 | return '10:00"

i10a
or{
10p | def alarm_clock(day, vacation) e else:

11 | if vacation:
8 return '7:00'

(o JEA] o

Figure 3.5: Parsons Problem with a Higher Median Time to Solve than the Equivalent Write-Code
Problem (Problem 3 in Table 2).

43

1 def alarm_clock(day, vacation):

2

3 if day in (0,6) and vacation == False:

| return "10:00"

5

6 elif day in (@,6) and vacation == True:

7 return "off"

B

9 elif day in (1,2,3,4,5) and vacation == False:
10 return "7:00"

11

12 elif day in (1,2,3,4,5) and vacation == True:
13 return "10:00"

Figure 3.6: A Student Solution to Problem 3 that used Four Complex Conditionals.

44

CHAPTER 4

Problem-Solving Efficiency and Cognitive Load of
Parsons vs. Write-Code Problems

Novice programmers need differentiated assessments (such as adaptive Parsons problems) to max-
imize their ability to learn how to program. Parsons problems require learners to place mixed-up
code blocks in the correct order to solve a problem. A within-subjects experiment was conducted to
compare the efficiency and cognitive load of solving adaptive Parsons problems versus writing the
equivalent (isomorphic) code. Undergraduates were more significantly efficient at solving a Par-
sons problem than writing the equivalent code, but not when the solution to the Parsons problem
was unusual (i.e., it did not match the most common student written solution). This has implica-
tions for problem creators. This chapter also reports on the mean cognitive load ratings of the two
problem types and the relationship between efficiency and cognitive load ratings. Lastly, it reports
on think-aloud observations of 11 students solving both adaptive Parsons problems and write-code

problems and the results from an end-of-course student survey.'

4.1 Introduction

Novice programmers require well-curated instruction and assessment informed by equity, diver-
sity, and access initiatives to conquer historical issues associated with completing introductory
computer programming courses successfully. Some of these issues include high dropout and fail-
ure rates [25, 402, 27], the acquisition and retention of basic programming knowledge (i.e., the
fragility of programmers’ knowledge), and the recruitment and reflection of society writ large con-
cerning social markers (i.e., race, gender, dis/ability, sexuality, etc.) [311].

Learning to program is difficult [90, 312]. Novice programmers experience anxiety and frus-
tration because of their unfamiliarity with syntactic and semantic errors [208, 228, 311]. Deliber-

ate practice improves knowledge acquisition and retention (expertise) [105]. Many programming

"Portions of this chapter were adapted from [153]

45

courses require students to practice mostly by writing code from scratch, but this can take an unex-
pectedly large amount of time [23] and students can get stuck [187]. Repeated failures, especially
when first learning, lower self-efficacy for programming [188]. Women and students from groups
that are underrepresented in computing typically have less prior programming experience, which
makes them more likely to be negatively affected by practice that relies on writing programs from
scratch [183, 220, 175]. To improve diversity, learning tasks should be designed to challenge
but not frustrate students and should help struggling students succeed [215]. Computer science
programming practice imbued with an inclusive pedagogical approach, such as adaptive Parsons
problems, could support learners with a broad range of academic abilities and prior experience
[170].

Several researchers have explored the use of Parsons problems to develop basic programming
knowledge [89, 102, 283]. Parsons problems are a type of code completion problem in which
learners are required to place lines of mixed-up code blocks in the correct order [283]. Some Par-
sons problems also require the learner to properly indent the code blocks [165]. Parsons problems
can also have distractors, which are extra code blocks that are not needed in the correct solution
[283]. Adaptive Parsons problems modify the difficulty of the current or next problem based on
the learner’s performance [203, 100, 98]. Parsons problems may lower cognitive load in compari-
son to writing code from scratch [312]. They can be used as formative or summative assessments
[79, 102], although they may not be perceived as being as authentic as creating a program without
scaffolding [338]. Providing novice programmers with differentiated instruction and assessment
(i.e., both adaptive Parsons problems and equivalent write-code problems) could increase the like-
lihood of success for students across academic abilities [365].

Studies have provided evidence that solving (both non-adaptive and adaptive) Parsons problems
with distractors is more efficient and equally effective as writing the equivalent code for learning
gains from pretest to posttest [102, 100]. However, these studies were conducted in controlled
conditions, not as part of a regular course, and used a between-subjects design. Researchers rec-
ommend that further studies investigate the effectiveness of Parsons problems [89] and suggest
testing the hypothesis that self-reported cognitive load is less for solving Parsons problems than
for the equivalent write-code problems [100, 98]. Since cognitive load is dependent on the learner,
we chose a within-subjects design. Furthermore, Helminen et al. posit that behavioral analyses of
problem-solving strategies are more meaningful than simply examining the outcome and suggest
researchers use think-aloud protocols to understand what programmers are thinking [156]. Stu-
dents’ attitudes about assessments are linked to both negative and positive educational outcomes
[44, 42]. Thus, we also examined student preferences for different features. The research questions

WEre:

46

RQ1: What is the effect on efficiency of solving adaptive Parsons problems with distractors

versus writing the equivalent code?

RQ2: What is the effect on cognitive load of solving adaptive Parsons problems with distrac-

tors versus writing the equivalent code?
RQ3: How does efficiency relate to cognitive load?

RQ4: What are undergraduate students’ attitudes towards adaptive Parsons problems versus

write code assessments?

We found that (1) the median time to solve each adaptive Parsons problem was less than that of
the equivalent write-code problem and the difference was significant for four out of five problems,
(2) the problem that was not significantly faster to solve as a Parsons problem than as a write-code
problem used a solution that was unusual, (3) there was evidence of an ordering effect in that
students who solved the Parsons problem first, with an unusual solution, were much more likely
to use that solution in the write-code problem than those who wrote the code first, (4) students
in the think-aloud study all perceived that solving an adaptive Parsons problem was easier than
writing the equivalent code and evidence from the self-reported cognitive load questions supports
that, but students thought that they learned more from writing code as long as they did not get
stuck, (5) students found the adaptation helpful when it removed distractors or combined blocks
that were not already together, but were confused when it provided indentation or combined blocks
that were already adjacent, and (6) while most students found adaptive Parsons problems helpful
for learning, some students had a strong negative reaction to Parsons problems and would rather
write the equivalent code.

These findings provide evidence that solving an adaptive Parsons problem is significantly more
efficient than writing the equivalent code usually, but not always. This implies that to maximize ef-
ficiency, the solution to a Parsons problem should match a common student solution. The ordering
effect provided evidence that Parsons problems can be used to teach students new ways of solving
problems. Students understood most of the adaptation process, but not all of it, which suggests
ways to improve the process. And, finally, while most students find Parsons problems valuable
for learning, some do not, which implies that students should be given the choice to solve either a

Parsons problem or the equivalent write-code problem with unit tests.

47

4.2 Method

4.2.1 Research Design

We used both a within-subjects experiment and a think-aloud study with questions at the end of

each session in this research.

4.2.2 Context

The studies were conducted at a large public research university in the northern United States.
All participants were enrolled in a data-oriented programming course in Python during the winter
semester of 2020 (N = 152).

This course is the second Python course for School of Information majors, though other majors
take it as well. It requires prior programming experience. The course focuses on developing in-
termediate programming skills in Python and covers working with data from a variety of sources
(strings, files, APIs, websites, and databases), object-oriented programming basics, regular expres-
sions, debugging, testing, and SQL.

Dr. Barbara J Ericson created a set of five practice problems for most lectures to provide more
active learning during lecture. Active learning has better learning gains and is more motivating
than passive learning (traditional lecture) [38, 61, 118]. These problems were typical of those in
introductory programming courses. Some of the problems came from past Advanced Placement
(AP) Computer Science (CS) A exams which secondary students take for college credit and/or
placement and some from the CodingBat website created by Nick Parlante of Stanford University
[282]. The AP CS A course is intended to be equivalent to a first course for computer science
majors at the college level. Most of these problems were adaptive Parsons problems since it would
be hard to individually help students who struggle to solve write-code problems in a large lecture
hall. Students earned a point for solving each problem correctly.

For the course demographics (N = 152), 49% identified as female and 51% as male, the ages
ranged from 18 to 36 years old. Eleven percent identified as Black or Hispanic, 36% as Asian,
42% White, 8% as Multiracial, and 4% did not indicate their race. The average GPA was 3.433
(SD =0.419).

We had IRB permission to analyze anonymous log files from our interactive ebooks. We also
received student consent from 95 (61%) students to use their grade and demographic data for
research. As part of that consent form, students could also agree to be contacted for an observation.
Forty-five percent of the participants who gave consent (n = 95) identified as female and 55% as
male; the ages ranged from 18 to 24 years old (M = 20 years, SD = 1.09). Eight percent identified
as Black or Hispanic, 35% Asian, 45% White, 8% multiracial, and 4% did not indicate their race.

48

Sixteen percent were Computer Science (CS) majors and 84% were non-CS majors. The average
GPA was 3.871 (SD = 0.407).

4.2.3 Materials

We developed an A and B version of a problem set where the only difference between the versions
was the problem type. In version A, the first problem was a Parsons problem, and in version B, the

same problem was presented as a write-code problem as shown in Figures 4.1 and 4.2.

Q-1: Put the blocks in order to define the function has22 to return True if there are at least
two items in the list nums that are adjacent and both equal to 2, otherwise return False.
For example, return True for [1, 2, 2] since there are two adjacent items equal to 2 (at index
1 and 2) and False for [2, 1, 2] since the 2's are not adjacent.

Drag from here Drop blocks here

return true

Correct Solution

2 i=90
) . 6 def has22(nums):
3 1=
i=1
4 i+=1
while i < len(nums):
5 return True

9 if nums[i] == 2 and nums[i-1] ==

6 def has22(nums):
5 return True

7 while i < len(nums):

4 i+=1
8 return False
8 return False
9 if nums[i] == 2 and nums[i-1] ==
10 | if nums[i] == 2 and nums[i+1l] ==

=

Figure 4.1: First problem in Version A as a Parsons problem (Problem 1 in Table 2).

Both versions contained five problems in the order shown in Table 4.2. The problems were
created to be of varying difficulty from easy to hard to vary the expected cognitive load. They
covered strings, lists, ranges, conditionals, loops, dictionaries, and functions. The type of problems

in each set is shown in Table 4.1. After each problem, participants were asked to complete the Paas

49

Finish the function below to return True if there are at least two items in the list nums that are adjacent and
both equal to 2, otherwise return False. For example, return True for [1, 2, 2] since there are two adjacent
items equal to 2 (at index 1 and 2) and False for [2, 1, 2] since the 2's are not adjacent.

Share Code

1 def has22(nums):
index = 1

return True
index += 1
return False

Rt B~ AN ¥ L B S PSR N

while index < len(nums):
if nums[index] == 2 and nums[index - 1] ==

Activity: 1 -- ActiveCode (exp1_q1_write)

Result| Actual Value | Expected Value Notes
Pass True True has22([1, 2, 2))
Pass False False has22([1, 2, 1, 2))
Pass False False has22([2, 1, 2))
Pass True True has22([2, 2, 1))
Pass False False has22([3, 4, 2))
Pass False False has22([2])
Pass False False has22([])

You passed: 100.0% of the tests

Figure 4.2: First problem in Version B as a write-code problem (Problem 1 in Table 2).

cognitive load scale [271]. This questionnaire uses a 9-point Likert scale that asks participants to

rate the investment of mental effort in solving the previous problem from “very, very low mental

effort” to “very, very high mental effort” as shown in Figure 4.3 (see Appendix C).

Table 4.1: Order and Type of Problem by Version

Version

Problem Type

A
B

Parsons, Write, Parsons, Write, Parsons
Write, Parsons, Write, Parsons, Write

50

In solving the preceding problem | invested:

L Very, very low mental effort

L' Very low mental effort

() Low mental effort
' Rather low mental effort
! Neither low nor high mental effort
I Rather high mental effort

() High mental effort

L Very high mental effort

() Very, very high mental effort

Figure 4.3: The Cognitive Load Question.

4.3 Within-Subjects Experiment

4.3.1 Study Design

We conducted a within-subjects field experiment to test the efficiency (time to first correct solution)
and self-reported cognitive load of solving adaptive Parsons problems with distractors that contain
semantic and syntactic errors versus writing the equivalent code.

At the end of the course (week 15), participants were asked to complete both versions (A and
B) of the problem set as an extra credit assignment. If the day they were born was even, they were
asked to start with version A and then complete version B, and if they were born on an odd day
they were asked to start with version B and then version A. They earned one point for completing
each problem and cognitive load question successfully for a total of 20 possible points or 1% of

the grade. Students had to earn 2,000 points or more to receive an A+ in the class.

4.3.2 Participants

This section is reports on data from the students who completed a problem in the problem set as
both a Parsons problem and a write-code problem. We are only reporting the data from students
who permitted us to use their data to for research (n = 95). Since this was extra credit and students

received a point for correctly completing each problem, the number of students who correctly

51

completed both types of a problem ranged from 37 to 46 as shown in Table 4.2.

4.3.3 Analysis

We downloaded a log file for the course and only kept the data from the students who had given
consent to use their data for research.

We calculated the time in seconds to the first correct solution for both the Parsons problems
and write-code problems for each student, using the anonymized id. We compared the medians to
account for those who had no interaction for more than five minutes or who spent time on other
problems before returning to previous ones. In our think-aloud sessions, we found that one student
wanted to take a break from solving a hard problem. She switched to another problem and then
later came back to solving the hard problem.

We ran Mann-Whitney U tests with continuity corrections to analyze the difference in the me-
dian times to the first correct solution within the groups since this was a within-subjects study and
the data violated assumptions of normality and equal variances [260]. We report probability-based
effect sizes for this analysis as this measure is reported to be more robust when parametric as-
sumptions are violated [66, 323]. We computed these using the R package canprot. We ran paired
t-test to analyze the difference between cognitive load ratings within groups because this data met
the assumptions of normality and equal variances [164]. We report Cohen’s d,.,, effect sizes for
this analysis, computed using the R package Isr [264], as this measure is recommended over oth-
ers for repeated measures data [209]. Multiple comparisons were adjusted for using Bonferroni’s
correction [59]. Finally, we ran Spearman correlation coefficient tests to analyze the relationship

between the times to the first correct solution and cognitive load ratings within groups [149].

4.3.4 Results
4.3.4.1 Efficiency

The results are shown in Table 4.2. Notice that the median time to solve each Parsons problem
was always less than the median time to write the equivalent code. For four of the five problems,
the difference was statistically significant. It was not significant on problem one shown in Figure
4.1, which was intended to be one of the more difficult problems. Interestingly, it was significant
for one of the problems that were intended to be easier (problem three). This function returns the
difference between the maximum and minimum values in a list. It was most significant for problem
five as a Parsons problem (see Figure 4.4), which was intended to be one of the harder problems.
The probability-based measure of effect sizes (A) shown in Table 4.2 means that the probability

ranges from 69% to 92% that a randomly selected student will solve one of the problems that had

52

Table 4.2: Time to Complete Parsons Problem vs. Write-Code Problem

Parsons Problem Write-Code Problem Mann-Whitney U
Problem (Diff.) n Mdn in seconds Mdn in seconds 1% p-value A
1 has22 (H) 40 157.5 166.5 274 p=0.343 0.58
2 countlnRange (M) 43 102 187 190 p=0.003%* 0.69
3 diffMaxMin (E) 42 14 34 145.5 p < 0.001*%** 0.78
4 dictTotal (M) 46 25.5 44.5 205.5 p=0.002%* 0.73
5 dictNames (H) 37 66 216 5 p =0.002*%* 0.92

Note: E = Easy, M = Medium, H = Hard; * p < .05, ** p < .01, *** p < .001; A = probability-based effect
size measure (nonparametric generalization of common language effect size statistic).

a significant difference between completion times faster as an adaptive Parsons problem than as a

write-code problem.

4.3.4.2 Cognitive Load Ratings

The mean self-reported rating of mental effort (cognitive load) was lower for each problem as a
Parsons problem than as a write-code problem as shown in Table 4.3. However, the difference
was only statistically significant for two of the problems (four and five). There was a large effect
size on problem five (0.94) shown in Figure 4.4, which was also the problem that had the largest
median time to solve as a write-code problem. This problem was intended to be one of the more

difficult problems.

Table 4.3: Cognitive Load Ratings for Parsons Problems vs. Write-Code Problems

Parsons Problem Write-code Problem Paired 7 test
Problem (Diff.) M (SD) of ratings M (SD) of ratings tvalue df p-value Cohen’sd,,, A
1 has22 (H) 3.20(1.62) 3.65 (1.79) -1.4327 39 p=0.800 0.23 0.51
2 countInRange (M) 3.02 (1.34) 3.49 (1.84) -1.5496 42 p=0.644 0.24 0.50
3 diffMaxMin (E) 1.05 (1.31) 1.45 (1.42) -2.0058 41 p=0.258 0.31 0.45
4 dictTotal (M) 1.52 (1.56) 2.28 (1.86) -2.8044 45 p=0.037* 0.41 0.53
5 dictNames (H) 2.05 (1.43) 3.70 (1.70) -5.7257 36 p < 0.001%*%* 0.94 0.71

Note: E = Easy, M = Medium, H = Hard; * p < .05, ** p < .01, *** p < .001, paired t-test; Likert scale: 1 = Very, very low
mental effort; 2 = Very low mental effort; 3 = Low mental effort; 4 = Rather low mental effort, 5 = Neither low nor high mental
effort; 6 = Rather high mental effort; 7 = High mental effort; 8 = Very high mental effort, 9 = Very very high mental effort

4.3.4.3 Efficiency and Cognitive Load Ratings

Results showed there were weak positive and negative relationships between Parsons problems ef-

ficiency and cognitive load ratings. The write-code problems, one, two, and four, had significantly

53

Q-1: Put the blocks in order to define the function get_names that takes a list of
dictionaries and returns a list of strings with the names from the dictionaries. The key for
the first name is ‘first’ and the key for the last name is ‘last’. Return a list of the full names
(first last) as a string. If the ‘first’ or ‘last’ key is missing in the dictionary use ‘Unknown’.

Drag from here Drop blocks here
1 | name = first + last Solution
2 | name_list.append(name) 9 |def get_names(list_of_dict):
first = p_dict.get('first', g | name_list = []
"Unknown')
oo Lt 6 |for p_dict in list_of_dict:
"Unknown')
name = first + " " + last 3 | first = p_dict.get('first’,
'"Unknown ')
last = p_dict.get('last’,
5 |first = p_dict.get('first', None) 'Unknosz) g
last = p_dict.get('last', None)
s 'name = first + " " + last

¢ |for p_dict in list_of_dict:

> |name_list.append(name)
7 return name_list

) 7 | return name_list
g |name_list = []

g |def get_names(list_of_dict):

Figure 4.4: Parsons Problem Five in Table 2.

moderate positive relationships with efficiency and cognitive load ratings. For every other write-

code problem, there was a weak positive relationship between efficiency and cognitive load ratings
(see Table 4.4).

4.4 Think-Aloud Study

We conducted a think-aloud study to get an in-depth look at what students were thinking as they
solved adaptive Parsons problems and write-code problems and to see where they struggled and
why. We used the same problems that were used in the within-subjects study. At the end of each
session, we asked three open-ended questions to probe student’s perceptions, understanding, and

desire for help while writing code.

54

Table 4.4: Correlations between Completion Time and Cog-
nitive Load Ratings

Parsons Problem Write-code Problem
Problem n p p-value n p p-value
1 has22 61 .12 0.34 41 .34 0.03*
2 countlnRange 53 .07 0.61 52 47 0.00%**
3 diffMaxMin 62 .13 0.30 45 .10 0.50
4 dictTotal 54 -.04 077 56 .28 0.04%
5 dictNames 58 .03 0.80 42 28 0.07

Note. * p < .05, ** p < .01, *** p < .001, p = Spearman rank-
order correlation coefficient

4.4.1 Participants

Sixty-one students from the course consented to be contacted for a think-aloud study. They were
contacted via email in week 12. Eleven students participated. The participants were between 19
and 21 years old. There was one Black student, one multiracial student, three Asian students, and
four White students. Their average GPA was 3.283 out of a 4.0.

Participants were randomly assigned to either version A or B. Our protocol required them to
verbalize their thoughts as they worked through each problem [393]. Five (45%) participants
completed version A and six (55%) completed version B. Each session was conducted on-line via
BlueJeans or Zoom and recorded with verbal consent from the participant. The sessions lasted on
average thirty-one minutes and eleven seconds. One session lasted for one hour, eleven minutes,
and twenty-one seconds.

The three questions that we asked the participants to answer at the end of each session were:
(1) Which do you prefer: writing code or solving mixed up code problems and why? (2) Have you
used the “Help Me” button on the mixed-up code problems? Did you find it helpful? Was there
anything that happened that you didn’t understand? and (3) Would you like to see a “Help Me”
button for write-code problems? The “Help Me” button triggers intra-problem adaptation. It either

removed a distractor from the solution, provided the indentation, or combined two blocks into one.

4.4.2 Analysis

The think-aloud sessions were recorded and transcribed. Two researchers reviewed the videos and
transcripts and provided a summary of each session. The summary was used to identify sessions to
review in more detail. The researchers also tallied the responses to the open-ended questions and

identified candidate quotes for the paper.

55

4.4.3 A Deeper Dive into Problem One

This section explores the difficulties students had with problem one as shown in Figure 4.1, since
that was the only problem without a statistically significant difference in the time to solve it as a
Parsons problem versus as a write-code problem. This problem involved a function has22 that
took a list of numbers, nums, and returned True if it found at least two adjacent 2’s in the list and
False otherwise as shown in Figure 4.1.

The given solution to the Parsons problem can be seen in Figure 4.1. There were three distrac-
tors. The first distractor (block 2) in Figure 4.1 initialized the variable i to zero which would have
been correct if the student also used the second distractor (block 10), however the only loop given
was a while loop (block 7) that looped while i was less than the number of items in the list nums.
Using block 10 would have resulted in an out of bounds error since it would try to check the last
number in the list against a number past the end of the list. The other distractor was block 1 which
simply used the wrong case for the Python keyword True. None of the students in the think-aloud
study used this distractor. This is not surprising, since this was near the end of their course and
they had used these Python keywords many times over the semester.

Two of the distractors, blocks 2 and 10, distracted several of the students. Female subject 1
said, ”So, I'm going to initialize i as zero (using distractor 2), so then when I use my while loop,
because I'm assuming I'm going to index and indexing starts at zero.” She is correct that the first
index is zero in a list, but this solution requires i to be initialized to one. Later she realized her
mistake, "Actually, I need to start this i at one. Since my if statement indexes at i minus one. And
I need that i minus one, to actually be zero.” Male subject 3 also had trouble with these distractors,
but he also had several other problems. He had to stop and look up while loops online because he
was less familiar with them. Most of the problems in the course used for loops rather than while
loops. He took some time to read about while loops on W3Schools. His first solution used two
distractors (blocks 2 and 10) as shown in Figure 4.5. Interestingly, when he talked through what he
was thinking he claimed that block 10 tested if there were 2s that were adjacent, but also said he
assumed that block 9 tested if the 2s were not adjacent, even though block 10 is actually another
way to test if there are adjacent 2s. His solution had several errors. The return statements (blocks
5 and 8) were not correctly indented under the conditionals, even though as he talked through
the code it was clear that he intended them to be. The solution does not include block 4 which
increments i, so it would not loop correctly. Another problem in his logic was an immediate
return if adjacent 2s were not found, rather than looping through the rest of the list to check the
rest of it.

He then replaced block 2 with block 4 and switched blocks 9 and 10 as shown in Figure 4.6.
He did not realize that you can not increment i if you have not initialized it. He also said that he

just assumed that he got blocks 9 and 10 mixed up since they were highlighted as being wrong or

56

] return true 6 def has22(nums):

3 i=1 : i

=0
4 i+4+=1 ' while i < len(nums):
if nums([i] == 2 and nums[i+l] == 2:

return True

if nums[i]l == 2 and nums[i-1] == 2:

return False

Figure 4.5: First Attempt at a Solution for Problem 1.

in the wrong order. He was still assuming that one of those blocks checked for adjacent twos and

the other tested that they were not adjacent.

1 return true |/5 def has22(nums): 1

3 i=1 (o |i4=1 1

2 i=20 while i < len(nums): |
if nums[i] == 2 and nums[i-1] == 2:

return True

if nums[i] == 2 and nums[i+l] == 2:

_)

return False

Figure 4.6: Second Attempt at a Solution for Problem 1.

He then replaced block 4 with block 3 and checked that solution which highlighted block 10 as
being wrong or in the wrong order. He was also told that help was available if he wanted to make
the problem easier.

He was not sure why block 10 was wrong but clicked the “Help Me” button which triggered
the intra-problem adaptation and block 10 (a distractor) moved back to the source on the left and
grayed out. He said, ”Oh, okay.” He checked the current solution and received feedback that

57

return true ¢ def has22(nums):

i=29 i=1
i+=1 while i < len(nums):
if nums[i] == 2 and nums[i-1] == 2:

return True

if nums([i] == 2 and nums[i+1] == 2: 1

return False

Figure 4.7: Third Attempt at a Solution for Problem 1

his solution was too short. It was still missing block 4. He said he didn’t understand why. He
clicked the “Help Me” button again and it provided the indentation, which fixed his problems with
indentation. He checked that solution and it still said the solution was too short. He said, I don’t
quite understand.” He then said, ”So now I am just going to guess in all honesty.” He moved block
4 to the correct location and checked the solution and it was correct. He said, ”So that worked”
and laughed.

He rated the problem as a 5 on the cognitive load scale which means neither low nor high mental
effort. He never tried to simulate the code execution on any of the examples to understand what
was happening and what could be wrong. His focus was on getting the problem correct, but not on
understanding why the solution was correct. He might have benefited from an explanation of why

the distractor was incorrect or from the ability to step through the correct code.

4.4.4 Interview Question Results

In this section, we report on students’ answers to each of the three open-ended interview questions.

4.4.4.1 Preference

Overall, participants found Parsons problems to be easier than the write-code problems. However,
they felt that they learned more from write-code problems unless they got stuck while trying to
solve them. When asked which type of problem do you prefer and why, eight (72.7%) participants
said they preferred write-code problems. They reported that write-code problems help them under-

stand syntax and semantic errors and that solving them leads to a greater sense of accomplishment.

58

They also appreciated that they could solve the write-code problems in a variety of ways. One
participant said “The beauty of the write-code [problems are] that you have to create your own so-
lutions” (Female Subject 1). One of the drawbacks of Parsons problems is that they can only have
one correct solution and that solution may not match the student’s way of solving the problem.
One student said, “I guess the only like difficulty or confusion with [Parsons problems are their]
naming conventions. I guess I wouldn’t name everything the same way that they name it” (Female
Subject 4).
Two (18.2%) participants strongly disliked Parsons problems. One participant said:

“Personally, I hate these block code problems. I think, more so than anything, it’s like
a waste of time. I don’t think very many people, at least the people that I know and
the people that I do work with in class, I don’t think a lot of people like them. I think
people like them because they’re easy, not because they’re actually beneficial in any
way” (Male Subject 9).

Both of the participants who strongly disliked Parsons problems had prior programming expe-

rience. Male Subject 10 said:

“... I came into this class with a little bit more Python experience because I just had an
internship. .. .1 still think that it’s a better exercise to make people write-code in long
form. .. because that’s what you’re going to end up doing when you’re actually solving
problems. You’ll have bits and pieces that may or may not be wrong. I think [solving
Parsons problems is| not constructive to learning. And also, to be honest [about] the
system, you can just kind of drag and guess and then just like click “Help Me”. And
that’s what most people do.”

The “Help Me” button triggers intra-problem adaptation. Each time the “Help Me” button is
clicked it will first remove a distractor if there are any in the solution. If there are no distractors
in the solution, it next provides indentation. If indention has been provided, it next combines two
blocks into one. It combines blocks until three blocks are left in the solution. If the “Help Me”
button is clicked when there are only three blocks in the solution, it tells the student that they should
be able to solve the problem. While this student suggests that many students used the “Help Me”
repeatedly till the problem was correct, a log file analysis showed that an average of only 7.3% of
students who used the “Help Me” button did this.

In contrast, some participants found Parsons problems helpful for learning how to program,
especially when they lacked prior knowledge of the basics. They liked that Parsons problems
provided them with the code so that they could focus on other tasks. One participant said “//

prefer] the [Parsons] problems because they allow me to focus on how certain problems should

59

be structured and offer more help in the process. If I get stuck [on write-code] problems, it is
very hard to see where I am going wrong” (Female Subject 6). Another student said the following
when solving the first problem as a Parsons problem, ”So I really enjoyed these practice problems
(Parsons problems) ... because there’s a lot of room for error. If you really don’t know, you’re able
to really just plug in and see what works and everything. But that’s kind of just like the lazy way
of doing it. The other way would be to certainly just digest it and sometimes it can be kind of hard
cause 1 feel like there’s so many options that you have to really pay attention and understand like
what’s being asked of you when you're trying to solve the problem” (Male Subject 3). One student,
who got stuck on the first write-code problem, but solved the next Parsons problem said that she
would rate the write-code problem an eight and the Parsons problem a one or two: “It’s not the fact
that [the write-code problem is) necessarily hard. But it’s the fact that I’'m missing, something and
since I don’t know what I'm missing it’s going to be hard for me to figure it out” (Female Subject
8).

While solving the problem set, participants also reported that they prefer to take breaks from
solving certain problems and return to them later—a way to self-manage cognitive load. Female
Subject 8 said, “...sometimes you just need to take a break from the code and look at it with
fresh eyes and you can see exactly what you did wrong.” After noting this, we used the median to

compare the time to first correct solution to minimize the effect of this behavior.

4.4.4.2 Parsons Problems and Help-Seeking Features

Participants were also asked if they had ever used the “Help Me” button (intra-problem adaptation)
to solve Parsons problems and, if so, did they find it helpful, or was there anything they did not
understand. During the think-aloud sessions, few participants used the “Help Me” button. Most
participants who had used it during the course found it helpful when it led to distractors being
removed or blocks being combined, but they reported being confused when it provided indenta-
tion. One student said, “/The] indentation was kind of confusing because it gets rid of the actual
indentation. I don’t know, I just think this was kind of weird” (Female Subject 7). Furthermore,
they reported that the help was not useful when it provided something that they already understood
or had correct. One participant said “I use the help button a lot and find it helpful. The only flaw is
when [it helps] with a part of the code that I already have correct” (Female Subject 6). The intra-
problem adaptation process first removed any distractors in the solution, then provided indentation
(even if the indentation was already correct), and then would pick two blocks to combine (even if
the two blocks were already in the correct order) based on the number of lines in each block.

Due to this feedback, we have modified the intra-problem adaptation process to no longer pro-
vide indentation and to pick two blocks to combine that are the furthest apart. We plan to conduct

think-aloud observations again in the future and will look for evidence that students find these

60

changes helpful.
One student reported liking that you could use the “Help Me” button to solve the problem and
then reset the problem to try and solve it again without help. She said:

“...it’s like definitely easier doing it with the blocks. ...I guess when you really don’t
know what’s going on they really like make it, I guess like push you in the right direc-
tion is like super, super helpful and especially being able to like reset it and do it again
yourself without like the “Help Me” function also like it just like ingrains this syntax

into my brain more” (Female Subject 4).

One student reported finding the intra-problem adaptation useful for correctly solving the prob-
lem and then working to try to understand that solution, “So it’s pretty useful for getting the actual
problem [correct], I think, and I think it’s kind of my job to understand okay, well, now I have
to understand why it’s the right solution ...” (Male Subject 5). This was one of the original goals
for Parsons problems, to be an example of an expert’s solution to a problem. Expert solutions to a
problems are also called a worked examples. Research has shown that learning can be improved by

studying worked examples, especially if they are followed by similar practice problems [372, 385].

4.4.4.3 Write-code Problems and Help-Seeking Features

Finally, participants were asked if they would like to see a “Help Me” button for write-code prob-
lems. Eight (72.7%) participants said they would like to see such a feature because it would both
allow them to come up with their own solutions and provide hints as to what to do next. One
participant said, “A “Help Me” button that either highlights the error or provides a hint or feature
to apply to the problem would be very helpful for the code writing problems” (Female Subject 06).
Another said:

“I think it would be very helpful if there was a help me button. . . . Maybe if it gave you a
hint. A piece of code that you’re missing or maybe a hint like use accumulator pattern
or use for loop or that you should be using a for and if [statement]. Maybe that. Use
one for loop and one if or use the accumulator pattern. Give hints on what you should
be using to solve the code or what they think you should be using to solve the code”
(Female Subject 08).

However, some expressed concerns that such a feature would stifle creativity and/or defeat
the purpose of these types of questions. One participant said, “...foo much help would kind of
defeat the purpose of like self-testing or like doing work assignments” (Female Subject 4). The
same participant also reported the “Help Me” button replaced searching for help on sites like
W3Schools.com. Two participants used outside resources (W3Schools and Stack Overflow) to

help them solve Problem 5.

61

4.5 Further Analysis of Problem 1

Since problem 1 (has22) was the only problem without a significant difference between the median
time to solve it as a Parsons problem versus a write-code problem during the within-subjects study,

we investigated it further.

4.5.1 Was the Parsons problem solution unusual?

We hypothesized that the provided solution to the Parsons problem was unusual in that it used
a while loop and started looping at index one as shown in Figure 4.1 and the think-aloud study
supported that hypothesis. The students had more experience with for loops than while loops and
with starting a loop at index zero rather than index one. Since we did not need any personal data
for this analysis, we used the anonymous data from all of the students from the within-subjects
study who wrote code for this problem, rather than just the data from the students who permitted
us to use their data for research. Forty-eight of the students (84 %) solved this problem first as a
Parsons problem while only nine (16%) wrote the code first. Even though we asked students to
start with version A if they were born on an even day and B if they were born on an odd day, it
seems that many just solved A first and then B. This may have been due to the assignments being
visible in the eBook before the announcement was made about how to do the assignment. Of the
nine students who wrote the code first, seven (78%) used a for loop and only two (22%) used a

while loop.

4.5.2 Was there an ordering effect?

Students who solved the Parsons problem first were much more likely to use the Parsons problem
solution when writing the code. Of the 48 students who solved the problem first as a Parsons
problem, 39 (81.3%) used a while loop and 8 (16.7%) used a for loop. In addition, 37 (77.1%)
used a solution that was equivalent to the Parsons problem solution. This suggests that solving the
Parsons problem first had a substantial effect on how students solved the problem when they wrote
the code. This implies that Parsons problems can also be used to teach students new approaches to

solving problems, however, more experiments should be done to test this hypothesis.

4.5.3 Results from Problem One Midterm from Fall 2020

Since only nine students wrote the code first before solving the Parsons problem, we also included
this problem as a write-code problem on the second midterm for the same course during the fall of

2020. We used an anonymous log file for this analysis and found that none of the 113 submitted

62

answers used a while loop to solve this problem. In addition, only 13 (11.5%) of the answers started
the loop at index one. Most answers that used a for loop started that loop at index zero as seen in
Figure 4.8. This provides strong evidence that the given Parsons problem solution was unusual,
which could well be why it was not significantly more efficient to solve as a Parson problem than

a write-code problem. However, more work should be done to verify this hypothesis.

1 def hasZZ2(nums):

2 for 1 in range(len(nums) - 1):

Lf nums[i] == 2 and nums[i1 + 1] == 2:
return True

i

return False

Figure 4.8: An example common student solution from the second midterm for Fall 2020

4.5.4 Use of Intra-Problem Adaptation

We also examined how many students attempted each problem, solved it, and used the intra-
problem adaptation (triggered by the “Help Me” button) as well as the type of adaptation for each
of the Parsons problems as shown in Table 4.5. As you can see from Table 4.5, over half of the
students who attempted the first problem used the “Help Me” button (intra-problem adaptation)
at least once. This is further evidence that students found this problem difficult, especially when
contrasted with problem three, where no students used the “Help Me” button. Also note that even
though the problems were of varying difficulty, from easy to hard, the percentage of students who
solved it remained high (96% to 100%). This meshes with prior research that showed that users
were nearly twice as likely to get adaptive Parsons problems correct than non-adaptive problems.
[98]. Indeed, the goal of intra-problem adaptation is to help users solve the Parsons problem when

they are struggling.

4.6 Results from Student Survey

The think-aloud study found that some students liked Parsons problems and found them useful

while others hated them and would rather write the code themselves. It also provided evidence that

63

Table 4.5: Use of Intra-Problem Adaptation

Intra-Problem Adaptation

Problem (Diff.) Attempted Solved (%) Used Help Me (%) Rem. Dist. Indented Combined blocks
1 has22 (H) 103 99 (96%) 54 (52%) 39 41 24
2 countInRange (M) 83 80 (96%) 18 (22%) 15 14 6
3 diffMaxMin (E) 96 96 (100%) 0 (0%) 0 0 0
4 dictTotal (M) 83 82 (99%) 2 (2%) 2 1 0
5 dictNames (H) 94 90 (96%) 15 (16%) 9 13 9

Note: E = Easy, M = Medium, H = Hard; Rem. Dist = Removed Distractor.

some students did not understand what happened during the intra-problem adaptation process. To
determine how common each of these perceptions/issues were, we added a few questions to the
end of course student survey which was administered in the last few weeks of the course. Students
answered using a five-point Likert scale where one is strongly disagree and five is strongly agree.
All students would have received extra points if the response rate reached a specified level (5 points
if 85%). However, the response rate was 77.5% (107 out of 138).

Of the respondents, 80.6% agreed or strongly agreed that the “Help Me” button (intra-problem
adaptation) was useful for learning, while 5.9% disagreed. In addition, 17.5% of students agreed or
strongly agreed that they did not understand what happened when they clicked on the “Help Me”
button which triggered the intra-problem adaptation. Less than a third of respondents (30.4%)
agreed or strongly agreed that they would rather write-code than solve a mixed-up code problem,
while 40% disagreed or strongly disagreed.

Some of the students found Parsons problems valuable. One student wrote in response to an
open-ended question about the aspects of the course that they liked best, ”...solving mixed-up code
was surprisingly helpful when it came to helping me understand how to write-code.” Some students
preferred to write-code their own way rather than solve a mixed-up code problem, ”Mixed-up code
was easier once you got the hang of it, but my style is a bit different than the style in those problems,

so I would prefer to write-code from scratch instead.”

4.7 Discussion

Prior research under controlled conditions using between-subjects studies provided evidence that
solving adaptive Parsons problems is more efficient than writing the equivalent code and just as
effective for learning gains from pretest to posttest [100, 98]. In this study we tested the efficiency
of solving adaptive Parsons problems versus writing the equivalent code using a within-subjects
design where participants solved the same problem as a Parsons problem and as a write-code

problem. The median time to solve each Parsons problem was less than the median time to solve

64

each write-code problem. The difference was significant for four of the five problems. It was not
significant for problem 1 in Table 4.2 and shown in Figure 4.1. It is interesting to note that this is
the Parsons problem with the highest mean cognitive load rating as seen in Table 4.3. The solution
to this Parsons problem used a while loop that started at index one. Further investigation provided
strong evidence that this was an unusual approach. One of the students in the think-aloud study
even had to look up while loops on W3Schools before solving this problem. Most of the students
in the think-aloud study used the distractor that initialized i to zero rather than one, since they
were more familiar with starting a loop at index zero. One of the drawbacks to Parsons problems
is that they can only have one correct solution, yet there are many ways to solve a programming
problem.

One interesting finding was an ordering effect. Most of the students (77.1%) who solved prob-
lem one as a Parsons problem first, used the Parsons problem solution when writing the code. Only
22% of students who wrote the code first used a while loop, while 77% used a for loop. To further
determine the most common student written solution, we added this problem to a midterm in the
fall of 2020 and none of the 113 students used a while loop to solve this problem. In addition, only
11.5% of the solutions started looping at index one.

We also wanted to determine if the cognitive load for Parsons problems was less than that of
writing the equivalent code. We used a within-subjects design to test this since cognitive load is
very subjective. The mean self-reported cognitive load rating for each Parsons problem was less
than that of the equivalent write-code problem, but the difference was statistically significant for
only two of the five problems.

There was no significant correlation between the completion time and self-reported cognitive
load rating for adaptive Parsons problems, but there was for three of the five write-code problems.
This indicates that we can not use time on task to determine the cognitive load of adaptive Parsons
problem:s.

The questions at the end of the think-aloud observations showed that all students felt that Par-
sons problems were easier than writing the equivalent code. However, some students did not value
solving Parsons problems and two had strong negative reactions to them. These were students
with more prior programming experience. This is both consistent with expertise reversal effect
from cognitive load theory in which techniques that are used to help novice students can increase
the cognitive load for experts [371] and the difficulty learners have with self-reported perceptions
of learning [80].

Observations of teachers solving intra-problem adaptive Parsons problems had provided evi-
dence that some teachers found the adaptation that provided the indentation confusing [98]. The
undergraduate students in this study also reported finding that adaptation confusing. In addition,

they did not value the adaptation when it combined blocks that were already adjacent.

65

Some students reported overusing the “Help Me” button (intra-problem adaptation) to get to a
correct solution. However, a log file analysis found that only an average of 7.3% of the students
who used the “Help Me” button did this. One student reported that they would reset the problem
after using the “Help Me” button to try the problem again without help. Our goal with adaptive
Parsons problems was to help struggling students reach a correct solution, even when they could
not get help from others. We hoped that these students might use the reset button to try to solve

the problem again without help.

4.8 Limitations and Future Work

This study was conducted in an undergraduate Python programming course at one institution.
These results may not generalize to other languages or populations. For example, students
with dis/abilities can experience difficulty working in drag-and-drop programming environments
[197, 247]. More research should be done to test these results in other languages and with other
populations, especially those with special needs.

It is possible that there was an ordering effect—a lack of independence between the completion
times for each problem type because of participants’ ability to recall the corresponding problem.
We mitigated this concern by randomly assigning participants to start with either version A or
B. This design supports a comparison between problem type with subjects serving as their own
control for a direct comparison [186]. However, few students started with version B, perhaps since
the assignment was visible before they received instructions and they naturally started with A.

Efficiency is a multifaceted theoretical construct that can be explained by measuring completion
time as well as learning gains [161]. We did not compare the learning gains from solving Parsons
problems versus writing the equivalent code in this study. However, prior research has shown
equivalent learning gains for undergraduate students from solving Parsons problems versus writing
the equivalent code in controlled experiments [102, 100, 425].

Finally, we measured cognitive load using the Paas scale, but objective measures such as eye-
tracking should be collected and compared to subjective measures [245, 422]. There is a growing
body of research on eye-tracking in computing education research that has led to a better under-

standing of how people learn to program [267].

4.9 Implications

If our hypothesis is correct that Parsons problems are not significantly more efficient to solve if the
provided solution is unusual, it implies that the best way to generate good Parsons problems is to

first gather student solutions to write-code problems and use the most common student solution.

66

We are currently investigating doing this using Abstract Syntax Trees (ASTs) to cluster the student-
written code [306]. It would also be useful to gather the most common errors and use those as
distractors. Another alternative is to cluster the write-code approaches and use probing questions
to determine the approach that a student intends to use and then select a Parsons problem for that
student that matches their approach.

The fact that 77% of the students who solved the Parsons problem first used an equivalent
solution to the write code problem, even though that solution was unusual, implies that Parsons
problems can be used to teach students new ways to solve problems. However, more work should
be done to verify that hypothesis.

The mean self-reported cognitive load rating for each Parsons problem was lower than that
of each equivalent write-code problem, yet the difference was significant on only two problems.
However, students in the think-aloud observation perceived that solving an adaptive Parsons prob-
lem is easier than solving the equivalent write-code problem. We plan to test other approaches for
measuring cognitive load, such as eye-tracking, and to explore the relationship between cognitive
load and other self-theories that may help explain these differences [94]. If we can reliably deter-
mine the cognitive load of a problem for a subject, it might be possible to modify the difficulty of
the problem dynamically to keep each student in the zone of proximal development. Eye tracking
would be less intrusive than asking the students what their mental effort was after each question.

While most students in this course (80.6%) reported finding adaptive Parsons problems useful
for learning on the end of course survey, some students with more prior programming experience
had strong negative reactions to them. This implies that we should fade the scaffolding that Par-
sons problems provide by allowing students to choose to solve the equivalent write-code problem
instead when they are presented with a Parsons problem. We are currently adding that ability to
the open-source ebook platform, Runestone [103].

Students valued the intra-problem adaptation triggered by the “Help Me” button when it re-
moved distractors or combined blocks that were not already in the correct order. Students were
confused by the adaptation that provided indentation. We have modified the adaptation process to
no longer provide indentation. We also modified it to select blocks to combine that are the furthest
apart. We will test the effect of these changes on efficiency, learning, and student attitudes.

One of the students in the think-aloud observation used the intra-problem adaptation (“Help
Me” button) to solve the first problem, but it was clear that he did not understand why a block was
a distractor. This implies that we should provide a mechanism to explain what is wrong with a
distractor block.

Some students reported overusing the “Help Me” button to just solve the problem to earn a
point. However, a log file analysis showed that only 7.3% of the students did this. We could
modify the system to not allow the “Help Me” button to be used repeatedly or perhaps not give the

67

student credit unless they reset the problem and solve it again without help. Allowing students to
choose to solve the write-code problem instead should also reduce this behavior since it was the
students who said that they did not value solving Parsons problems who reported engaging in this

behavior.

4.10 Conclusion

Writing code from scratch, while authentic, can overwhelm novice programmers and take an un-
predictable amount of time. Students can also become stuck and unable to solve the problem with-
out help. Adaptive Parsons problems can scaffold struggling learners and help them correctly solve
problems and are usually significantly faster to solve than writing the equivalent code. However,
this research suggests that if the Parsons problem solution is unusual, it may not be significantly
faster to solve. Parsons problems can also be used in situations where it is hard to individually help
struggling students, such as during a large lecture. However, scaffolding needs to fade as expertise
develops. We plan to modify Parsons problems to truly scaffold the entire code writing process.
One way that we plan to do that is to modify Parsons problems to allow students to choose to solve
the equivalent write-code problem instead. In addition, we plan to try helping students who are
struggling to solve a write-code problem by popping up a similar Parsons problem. Our goal is to

increase the use of active learning in programming courses and to scaffold struggling students.

68

CHAPTER 5

Impact of Solving Parsons Problems with

(Un)Common Solutions

To become proficient at computer programming, it is critical for novice programmers to be explic-
itly taught how to recognize and apply programming patterns/solutions. But how do we help them
to acquire this knowledge efficiently and effectively? Chapter four revealed that an adaptive Par-
sons problem with an uncommon solution was not significantly more efficient to solve than writing
the equivalent code. Interestingly, 77% of the students used the unusual Parsons problem solution
to later solve an equivalent write-code problem. Hence, I hypothesized that changing the unusual
Parsons problem solution to the most common student written solution would make that problem
significantly more efficient to solve. To test the hypothesis, I conducted a mixed within/between-
subjects experiment with 95 undergraduates. The results confirmed the hypothesis and its inverse.
Students were significantly more efficient at solving that Parsons problem with a common solu-
tion than writing the equivalent code. Students were not significantly more efficient at solving a
different Parsons problem with an uncommon solution. However, students who used the uncom-
mon Parsons problem solution to solve an equivalent write-code problem were significantly more
efficient and this resulted in higher learning gains. I also explored relationships between problem-
solving efficiency, cognitive load ratings, self-efficacy, and clusters of write-code solutions. There
were significant positive correlations between efficiency and cognitive load, and significant neg-
ative correlations between efficiency and self-efficacy. Previous research also found that students
were confused when pressing the ‘Help Me’ button provided indentation and combined blocks
that were already adjacent. The process was modified to no longer provide indentation and to
combine blocks that were the furthest apart. To understand how students solve Parsons problems
and the impact of changing the adaptation process, we report on three think-aloud observations
with undergraduates. Results revealed that some students could benefit from help with planning,
self-regulated learning, more explanation of distractors, and that there were no new problems due

to the modifications of the adaptation process. These findings have implications for how to auto-

69

matically generate and sequence adaptive Parsons problems.!

5.1 Introduction

Computing education theorists hypothesize that novice programmers need explicit and incremen-
tal instruction to develop at least four basic skills: code reading and tracing, code writing, pattern
comprehension, and pattern application [222, 416]. Novice programmers should be taught explic-
itly about “stereotypical [or common] solutions to programming problems as well as strategies
for coordinating and composing them”—Elliot Soloway [356, p. 850]. However, the acquisition
and retention of these skills (i.e., academic growth or improvement and expertise) depends on the
quality and quantity of deliberate practice [8, 106]. Time imposes limits on what can be learned
and the goal is to maintain desirable difficulties while practicing programming [419].

Traditional introductory computer programming practice such as code-tracing, in which stu-
dents use paper and pencil to hand trace the execution of a program [202], and code-writing, which
requires students to write-code from scratch, are time-intensive, frustrating, and can decrease stu-
dents’ engagement and motivation [23, 344]. Instead, drag-and-drop block-based coding exercises
such as Parsons problems, also called Parsons Programming Puzzles, are increasingly being used
to introduce novice computer programmers to introductory computer programming concepts more
efficiently [89, 339]. Historically underrepresented minorities and females also perform better
on block-based versus text-based problems [185, 407, 406]. And drag-and-drop programming
platforms (also known as No-code development platforms) are also increasingly being used by
companies to create programs in the absence of professional developers [415], thereby supporting
the use of Parsons problems to teach novice programmers how to code.

My prior research revealed that an adaptive Parsons problem with an uncommon solution was
not significantly more efficient to solve than writing the equivalent code [153]. However students
who solved the Parsons problem first were more likely to use the uncommon solution when they
later wrote the equivalent code [153]. Teachers and students also found parts of the original adapta-
tion process confusing [98, 153]. In this study, we tested hypotheses based on the commonality of
Parsons problems solutions and the order in which they were solved. We also explored the impact
of changing the adaptation process to no longer provide indentation and to combine blocks that
are the furthest apart. This has implications for how Parsons problems are generated and how we
can best support adaptive learning strategies such as help-seeking via intra-problem (same prob-
lem) adaptation. It also contributes to the study of programming strategies (i.e., the common and
uncommon strategies employed by novice programmers when solving programming problems and

how can we increase knowledge/strategy transfer) [73, 309].

'Portions of this chapter have been submitted for publication.

70

My prior research also revealed self-reported cognitive load ratings were lower for Parsons
problems than the equivalent write-code problems and that problem-solving efficiency correlated
with cognitive load positively for some write-code problems [153]. Prior research shows Parsons
problems not only impact cognitive but behavioral [82, 101, 283, 339] and affective [82, 98, 339]
learning outcomes as well. There is evidence that self-efficacy can predict problem-solving ef-
ficiency [162]. To our knowledge, no one has explored how students’ self-efficacy beliefs re-
late to their problem-solving efficiency during programming practice. In this study, we explored
the relationship between problem-solving efficiency, cognitive load ratings, self-efficacy, and pro-
gramming strategy use (i.e., commonality of solution). We can improve how adaptive Parsons
problems are sequenced by analyzing the relationships between these different types of data
[52, 96, 285, 382, 409]. Currently, inter-problem (between problem) adaptation only changes
the difficulty of the succeeding Parsons problem based on the learners prior performance. The

research questions and hypotheses were:

RQ1: What are the effects on efficiency of solving adaptive Parsons problems created from
the most common student written solution or an uncommon solution versus writing the

equivalent code? What are the order effects?
H1: If a Parsons problem with an unusual solution is modified to use the most common
student written solution then students will be more efficient at solving it.

H2: If students are first presented with a Parsons problem that has an uncommon so-
lution than a high percent will use that solution to solve an equivalent write-code

problem.

RQ2: What is the effect on self-reported cognitive load ratings of solving adaptive Parsons

problems versus solving equivalent write-code problems?

RQ3: How does problem-solving efficiency relate to self-reported cognitive load ratings and

self-efficacy beliefs?

RQ4: Do students find the modified intra-problem (same problem) adaptation process under-

standable and useful?

RQS: Why did students struggle to solve the Parsons problem with an uncommon solution?

To answer the research questions we conducted a mixed within and between-subjects experiment.
We wanted to (1) investigate how common and uncommon Parsons problem solutions mediated

problem-solving efficiency and (2) explore any order effects (i.e., how the order of the conditions

71

affected students’ pattern/solution acquisition). We chose a within-subjects design since problem-
solving efficiency and cognitive load are dependent on the learner and thus subject to intraindi-
vidual variation [250]. We used OverCode, a system for visualising and clustering programming
solutions, to determine commonality [127]. We also conducted six concurrent think-aloud obser-
vations to explore students’ problem-solving behavior. We report on semi-structured interviews at
the end of those observations and an end-of-course student survey to understand the impact of the
changes made to the adaptation process.

This study resulted in several findings. First, students were significantly more efficient at solv-
ing Parsons problems with a common solution versus an uncommon solution. This was true of
the problem we modified from our previous study [153] and every Parsons problem for which the
largest cluster of students’ write-code solutions matched the Parsons problem solution we used.
There was a significant difference in cognitive load ratings for students who solved the modified
Parsons problem first versus those who wrote the equivalent code first. Students were also signifi-
cantly less efficient at solving a Parsons problem with an uncommon solution. A high percentage
of students who solved the adaptive Parsons version of a problem with an uncommon solution
used that solution to solve the equivalent write-code problem. This resulted in the highest learning
gains. Most students who solved the write-code version of problem two first, used a different so-
lution than the adaptive Parsons problem. There were two clusters of the same size, but with very
different solutions for this problem. Self-efficacy beliefs correlated negatively with efficiency when
solving Parsons problems with both a common or uncommon solution. Overall, students were sig-
nificantly more efficient at solving write-code problems after they solved an equivalent Parsons
problem regardless of whether or not the solution was common. The highest learning gains for
solving a write-code problem after solving an equivalent Parsons problem with a common solution
was for the second attempt at the hardest write-code problem.

Second, the think-aloud observations revealed students may struggle to solve Parsons problems
with uncommon solutions because they need help with planning, self-regulated learning, and dis-
tractor blocks. Semi-structured interviews did not uncover any problems with the changes we made
to the Parsons problem adaptation process. The end-of-course student survey provided evidence

that more students found the adaptation useful and more understood the process.

5.2 Methods

To answer the research questions we conducted a (1) mixed within and between-subjects experi-
ment (2) a concurrent think-aloud study with open-ended questions at the end of each session, and
(3) and an end-of-course student survey. This study can be categorize as a constructive replication

which “refers to the effort to test prior findings using different experimental designs, measure-

72

ments, and data analysis techniques that are more robust than prior studies” [see 144, p. 42:3].

5.2.1 Participants

We received institutional review board (IRB) approval to recruit participants from a post-secondary
research institution in the northern Midwest in the United States. The participants were all enrolled
in a data-oriented programming course in Python during the winter semester (between January and
April) of 2021 (N = 144). This course is the second Python course for School of Information
majors, though other majors take it as well. It requires prior programming experience. The course
focuses on developing intermediate programming skills in Python and covers working with data
from a variety of sources (strings, files, APIs, websites, and databases), object-oriented program-
ming basics, regular expressions, debugging, testing, and SQL. Fifty-three percent of the students
identified as female and 47% identified as male; 33% percent identified as Asian, 2% as Black, 6%
as Hispanic, 46% as White, 4% as Multiracial, and 9% did not indicate their race. The ages ranged
from 18 to 33 years old (M = 20 years old, SD = 1.49). Eleven percent were Computer Science
(CS) majors, 3% were Data Science (DS) majors, 3% were Information Science (IS) majors, and
83% were majors in other disciplines. The average maximum American College Test (ACT) math
score was 31 (SD = 3.42) on a scale ranging from 1 (low) to 36 (high). The average GPA was 3.721
(SD =0.448).

5.2.2 Materials

We used the Introductory Programming Self-Efficacy Scale (IPSES) 2 [361] to measure students’
beliefs about introductory computer programming concepts and competences. The scale has 20
items that comprise four factors: tracing program flow (Factor 1); controlling program flow (Factor
2); using structures and patterns for problem-solving (Factor 3); and persistence, debugging, and
problem-solving competences (Factor 4). It asks respondents to rate their confidence in doing
tasks related to these four factors using a 7-point Likert scale from “strongly disagree” to “strongly
agree” and “no answer” if a specific term or task is totally unfamiliar to the respondent. We
administered the scale at the beginning of the semester (January 27", week 2) and at the end of the
semester (April 19", week 14). We obtained a total of 143 responses (a 99% response rate) at the
beginning and 110 responses (a 76% response rate) at the end (107 were repeat respondents). We
calculated reliability using R’s psych package [305] and report both Cronbach’s o« and McDonald’s
w for the both administrations of the scale given methodological disputes [see 151, 426]. We
decided to present this because the scale is new and our results add to its validity. Cronbach’s «
for the scale was 0.95 and 0.96 respectively; this indicates high test-retest reliability. McDonald’s

Zhttps://go.wwu.de/qpuoe

73

https://go.wwu.de/qpuoe

w for the scale was 0.72 and 0.73 respectively. The alpha reliabilities of the scores on the four
factors were... tracing program flow (Factor 1) = 0.93, controlling program flow (Factor 2) = 0.92,
using structures and patterns for problem-solving (Factor 3) = 0.90, and persistence, debugging,
and problem-solving competences (Factor 4) = 0.90. These high reliabilities are consistent with
Steinhorst et al.’s [361] with the exception that Factor 4 was lower than 0.95 as recommended
[376].

We used two versions of a problem set from our previous study [153] with the exception of
changing one of the Parsons problem solutions which was unusual to match the most common
student written solution; this change is shown in Figure 5.1. The only difference between version
A and B was the problem type. The second problem in version A was a write-code problem as
shown in Figure 5.2. In version B, the same problem was presented as a Parsons problem as
shown in Figure 5.3. Each version included five problems in the order shown in Table 5.1. To
alter the amount of expected cognitive load needed to solve each problem, the problems ranged
in difficulty from easy to hard. The concepts covered include: strings, lists, ranges, conditionals,
loops, dictionaries, and functions. Some of the problems came from past Advanced Placement
(AP) Computer Science (CS) A exams and some from the CodingBat website created by Nick
Parlante of Stanford University [282]; they exemplify problems covered in introductory computer

programming courses. The problems are available as requested.

Table 5.1: Order of Problem Type by Version

Version Problem Type

A Parsons®*, Write, Parsons, Write, Parsons
B Write, Parsons, Write, Parsons, Write

Note: Asterisks indicate a change in the solution. Each
percentage represents those who got it correct out of the n
for each problem in Table 5.4.

The Pass scale was administered after each problem in both versions [271]. This question uses
a 9-point Likert scale that asks respondents to rate how much mental effort they invested in solving
the previous problem from “very, very low mental effort” to “very, very high mental effort” as
shown in Additional Material 1.2.

74

https://www.overleaf.com/read/swbjfysmkrbm

Put the blocks in order to define the function has22 toreturn True if there are at least two Comment: autograded
items in the ist nums that are adjacent and both equal to 2, otherwise return False . For

example, return True for has22([1, 2, 2]) since there are two adjacent items equal to 2 (at index 1 and

2) and False for has22([2, 1, 2]) since the 2's are not adjacent.

Drag from here Drop biocks here
return true def has22(nums):
for 1 in range(len(nums)): for 1 in range({len{nums)-1):
if nums[i] 2 and num[i-1] 2: 6a |[1f nums[i] 2 and num[i+1] 2:

return True

return False

Lo [oo L e

Figure 5.1: First problem in Version A as an adaptive Parsons problem (Problem 1 in Table 5.4).

5.3 Mixed Within- and Between-Subjects Experiment

5.3.1 Experimental Design

We conducted a mixed within and between-subjects experiment [55] to (1) test the hypothesis
that students would be more efficient at solving adaptive Parsons problems with common solu-
tions than writing the equivalent code, (2) explore how the order of completing each problem type
affected students’ subsequent problem-solving behavior (i.e., efficiency and the acquisition of a
pattern/solution), and (3) explore the relationships between efficiency and self-reported cognitive
load ratings and efficiency and self-efficacy beliefs.

The first part of the experiment was started on Feb 16th; students were randomly assigned to one
version of the problem set (A or B). The second part was due March 10th; students completed the
opposite version of the problem set (A or B). Students could earned 10 extra lecture participation
points for completing each version of the problem set and were asked to work individually. At the
end of the course (week 15), participants were asked to complete both versions (A and B) of the
problem set as an extra credit assignment. Students needed to earn 2,000 points or more in during

the course to receive an A+.

75

Finish the function to define countInRange that returns a count of the number of times that a
target value appears in a list between the start and end indices (inclusive). For example,
countInRange(1,2,4,[1, 2, 1, 1, 1, 1]) should return 3 since there are three 1’s between
index 2 and 4 inclusive.

Show in Codelens Share Code

1
2
3
4
5
6
7

def countInRange(target, start, end, numList):

count = 0
for index in range(start, end+l):
current = numList[index]
if current == target:
count = count + 1

Expected Value

Notes

2

countinRange(2, 0, 2, [1, 2, 2))

countinRange(1, 2, 4, 1,2, 1,1, 1, 1))

countlnRange(1, 0, 4, [1,2, 1,1, 1, 1))

countinRange(2, 1, 2, [1, 2, 2])

3
4
2
0

countinRange(3, 1, 2, [1, 2, 2))

return count Result|Actual Value
Pass 2
Pass 3
Pass 4
Pass 2
Pass 0
Pass 2

2

countlinRange(3, 1, 2, [3, 3, 3, 3]

You passed: 100.0% of the tests

Figure 5.2: Second problem in Version A as a write-code problem (Problem 2 in Table 5.6).

76

Put the cade in order to define countInRange that returns a count of the number of times that a target
value appears in a list between the start and end indices (inclusive). For example,
countInRange(1,2,4,[1, 2, 1, 1, 1, 1]) should retum 3 since there are three 1's between index 2
and 4 inclusive.

Drag from here Drop blocks here

1a |for index in range(start, end):

n,{ Solution
1o | for index in rangelstart, end+1):

5 def countInRange(target, start, end, numList):
2a |if current == target:

or{ =
25 |if index == target: ib | count = @

{ 3a |count = 1 1b | for index in range(start, end+1):
or

15 |count = @
4b current = numList[index]

current = numList[start]

or{ 2a if current == target:
4b |current = numList[index]

5 | return count 7n | count = count + 1
g |def countInRange{target, start, end, numList): . return count

count++

orf
b |COURt = count + 1

Figure 5.3: Second problem in Version B as an adaptive Parsons problem (Problem 2 in Table
5.4).

77

5.3.2 Participants

In this section, we report on data from the participants (n = 95) who completed both the adaptive
Parsons version and equivalent code writing version for some or all of the problems correctly; this
ranged from 26 to 62 as shown in Tables 5.4 and 5.6.

5.3.3 Analysis

Task completion times were calculated for each problem using a Python script for adaptive Par-
sons problems (timeCorrectParsons.py) and a separate one for equivalent write-code problems
(timeCorrectWriteCode.py). These Python scripts can be used and modified by other researchers
who run experiments using Runestone’sANON’s free interactive computing education eBooks [10]
to study and improve time-on-task metrics for programming practice such as [214].

Learning gains researchers posit one of the limitations to using pre-post test is using the same
test for both stages and express learning as a “transitional experience” that should involve more
authentic ways of assessment [314, p. 22]. Hence, solving adaptive Parsons problems followed by
equivalent/isomorphic write-code problems is one way to transition to the authentic task of writing
code from scratch. In addition, the fragile nature of learning in introductory computer program-
ming courses [310] is yet another reason to consider using both novice-friendly (Parsons problems)
and more authentic forms of assessment such as write-code problems to measure learning gains.
Computing education researchers who’ve performed multi-national studies interpret students’ per-
formance on tasks designed to assess basic programming skills as suggesting that many “students
have a fragile grasp of skills that are a prerequisite for problem-solving” upon completing CS1
courses [221]. Furthermore, prior research in computers and physics education has shown that
paired isomorphic multiple-choice questions can be used to study learning gains [251]. Paired
problems are isomorphic if they require learners to solve them using the same principle [351].

We used the percentage of correct solutions for up to three attempts of solving a Parsons prob-
lems and then the equivalent write-code problem to compute raw and normalized learning gains.
This is based on prior work using isomorphic problems and calculating normalized learning gains
to account for ceiling effects [190]. Here are the equations:

Raw Learning Gain = (%Correct WriteCode Problem) — (%Correct Parsons Problem) (5.1)

(%Correct WriteCode Problem) — (%Correct Parsons Problem)
(100% — (%Correct Parsons Problem)

Normalized Learning Gain =

(5.2)

78

https://www.pythonanywhere.com/user/icer2022/shares/8e3714c89f84486abd515c062ad6f714/
https://www.pythonanywhere.com/user/icer2022/shares/1ac50f5393f048888224354cbff72a5f/

Statistical analysis was performed using RStudio [377]. We ran Wilcoxon Matched-Pairs Signed-
Ranks test to analyze the difference in the median times to the first correct solution within the
groups since this was a within-subjects study and the data violated assumptions of normality and
equal variances [260]. We also report the mean and standard deviation for these differences based
on [229]. To do this, we used the ‘wilcox.test’ function from of the stats R package. We also
ran Mann—Whitney U tests between groups to explore order effects for certain problems. Finally,
we (1) ran paired 7-test on cognitive load ratings to analyze the difference between problem types
[164], (2) computed probability-based effect sizes [66, 323] using the canprot R package [83] and
Cohen’s d,,, using the R package Isr [264], (3) adjusted for any multiple comparisons were using
Bonferroni’s correction [59], and (4) ran Spearman correlation coefficient tests [149] to analyze
the relationships between efficiency and self-reported cognitive load ratings and efficiency and
self-efficacy.

To analyze the Introductory Programming Self-Efficacy Scale (IPSES), we used the alpha and
omega function from the psych R package to calculate reliability and the cluster, factoextra, and
fpc packages to perform k-means cluster analysis. We chose the elbow method [31] to determine
clusters and arrived at four groups (see Figure 5.4 and Table 5.2). Computing education researchers
investigating computer programming self-efficacy have arrived at four distinct groups as far back
as [299] and as recent as [188].

Table 5.2: Self-Efficacy Clusters

Cluster n Factor1 Factor2 Factor3 Factor4

1 Low 39 5.709 6.060 2.651 4.855
2 Low Average 26 4.019 4.051 2915 3.410
3 Average High 43 5.674 6.101 4.600 5.333
4 High 35 6.738 6.829 6.200 6.233

Notes: Factor 1 = Tracing program flow; Factor 2 = Controlling program
flow; Factor 3 = Using structures and patterns for problem-solving; Fac-
tor 4 = Persistence, debugging, and problem-solving competences.

5.3.4 Results and Discussion

First we present both the within and between-subject study results to answer RQ1. Then we discuss
implications and future work related to this question. Second, we explain how the within-subject
study results answer RQ2 and RQ3. Then we discuss implications and future work related to these
questions.

The task completion times for students who solved the adaptive Parsons problem version of a

79

Cluster plot

cluster
1

(4] 2
CIE

4

5 5.0 7.5

-25 0.0 2
Dim1 (73.7%)

Figure 5.4: K-means cluster analysis

problem before solving the equivalent write-code version are shown in Table 5.4; the self-reported
cognitive load ratings are shown in Table 5.8. The task completion times for students who solved
the write-code version of a problem before solving the equivalent adaptive Parsons problem ver-
sion are shown in Table 5.6; the self-reported cognitive load ratings are shown in Table 5.9. We
used OverCode to confirm whether or not the solutions to the Parsons problems matched the most
common student written solutions; this is denoted by the equivalent symbol (). Problem one
(has22), which we changed based on our previous study to represent the most common student
written solution, remained the most common. OverCode also confirmed that all of the Parsons
problem solutions we presented to students matched the most common student written solutions
except for problem two (countlnRange). Students who solved the write-code version of problem
two (see Figure 2.2) before solving the equivalent Parsons problem used solutions that were differ-
ent from the provided Parsons problem solution (see Figure 5.3). This problem asked students to
finish creating a function that returned the number of times a specific number appeared in a list be-
tween the start and end indices (see Figure 5.2 and Appendix B for details about the commonality
of student written solutions).

Learning gains are shown in Table 5.3. Using the equations in the section above, we provide an

example. Of the 29 students who did problem two (see table 5.4), 23% got the Parsons problem

80

correct in one attempt and then of the 29 students, 61% solved the write-code problem correct in
one attempt. This problem, which presented students with an uncommon Parsons problem solution,
resulted in the highest raw learning gain of 38% and normalized learning gain of 49%. The highest
learning gains for solving a write-code problem after solving an equivalent Parsons problem with

a common solution was for the second attempt at the hardest write-code problem five.

Table 5.3: Learning Gains for Parsons — Write

Learning gain Normalized learning gain
Attempts Attempts
Problem 1 2 3 1 2 3
1 has22 (H) 5% 0% 2% -8% 0 -2%

2 countlnRange (M) 38% -16% 10% 49% -23% 10%
3 diffMaxMin (E) -18% 5% 5% -225% 5% 5%
4 dictTotal (M) -12% 6% 0% 55% 7% 0%
5 dictNames (H) 24% 11% 5% 42% 14% 5%

Notes: Attempts represent submissions before correctly solving the problem.

5.3.4.1 RQI1: What are the effects on efficiency of solving an adaptive Parsons problems made
with the most common or uncommon student written solution versus writing the equiv-

alent code?

The results supported H1: Students were significantly more efficient at solving a Parsons prob-
lem we modified to use the most common student written solution instead of the uncommon
solution we used in our previous study versus solving the equivalent write-code problem. The
median time to solve each Parsons problem was significantly less than the median time to write
the equivalent code for all of the problems and both versions except for problem two of version
B (see Figure 5.3). It was intended to be of average difficulty. It took students significantly more
time to solve problem two as a Parsons problem before solving it as a write-code problem (see
Table 5.4). The Parsons problem solution used in problem two was uncommon. This supports the
inverse hypothesis that: Students were significantly less efficient at solving a Parsons problem
with an uncommon solution than solving the equivalent write-code problem.

The results also supported H2: Students first presented with a Parsons problem that had an
uncommon solution tended to use that solution to solve the equivalent write-code problem.
The largest OverCode cluster of solutions for which students solved problem two as an equivalent
write-code problem after the Parsons problem showed that these students used the Parsons problem

solution to solve the write code problem (see Figure 5.5). They did this with the exception of

81

showing siacks representing submissions filtering by filter rewrite legend
9 correct 31 correct
9 total 31 total lines that appear in atleast| 50 |submissions

largest stack (matching filters remaining stacks (matching filters
L5]

def countInRange(target,start,end,numlist):
count=@
for i in range(start,end+1):
current=numlist[i] if numList[i]-=target:
if current==target:
count+=1
return count

Figure 5.5: OverCode visualization of solutions for those who solved Problem 2 in Table 5.4 as
Parsons problem first. The top-left panel displays the number of clusters (9), called stacks, and
the total number of visualized solutions (31). The panel below this in the first column shows the
largest stack which comprises 7 solutions. The second column displays the remaining stacks. The
third column displays the lines of code occurring in the cleaned solutions of the stacks together
with their frequencies [127].

writing count += 1linstead of count = count + 1. Whether the Parsons problem solution
was common or uncommon, the largest cluster of students who solved the Parsons version first used

that solution to solve the equivalent write-code problem.

Table 5.4: Task Completion Times for Parsons — Write

Parsons Problem Write-Code Problem Wilcoxon Matched-Pairs Signed-Ranks Test

Problem (Diff.) n Mdn in seconds Mdn in seconds Vv p-value A

1 has22 (H)= 57 50.0 96.0 279.0 p < 0.001%*%** 0.65
2 countInRange (M)= 29 125.0 68.0 325.5 p=0.020*% 0.33
3 diffMaxMin (E)= 59 11.0 37.0 87.5 p < 0.001%** 0.65
4 dictTotal (M)= 30 24.0 30.0 89.5 p=0.006%* 0.69
5 dictNames (H)= 50 82.0 186.0 174.5 p < 0.001%** 0.68

Notes: E = Easy, M = Medium, H = Hard; The equivalent symbol = indicates that students who solved the adaptive Parsons
problem first used the same solution to solve the equivalent write-code problem; * p < .05, ** p < .01, *** p < .001; A =
probability-based effect size measure (nonparametric generalization of common language effect size statistic).

We conducted Mann—Whitney U tests to determine whether there was a significant difference
in efficiency between the order in which the two groups solved problem one (has22) and problem
two (countInRange). Results showed a significant difference between the adaptive Parsons prob-
lems for problem one (has22) (W = 1140, p-value = 0.01105) and problem two (countInRange)
(W = 623.5, p-value = 0.02448) due to order effects. Students were significantly more efficient

82

Table 5.5: Average Task Completion Times for Parsons — Write

Parsons Problem Write-Code Problem
Problem (Diff.) n M (SD) in seconds M (SD) in seconds
1 has22 (H)= 57 73.51 (72.95) 194.14 (297.57)
2 countlnRange (M)= 29 137.14 (72.02) 93.31 (72.34)
3 diffMaxMin (E)= 59 14.58 (12.53) 76.61 (158.41)
4 dictTotal (M)= 30 23.50 (6.50) 49.50 (50.88)
5 dictNames (H)= 50 117.32(119.67) 350.18 (481.65)

Notes: E = Easy, M = Medium, H = Hard; The equivalent symbol = indicates that
students who solved the adaptive Parsons problem first used the same solution to
solve the equivalent write-code problem.

Table 5.6: Task Completion Times for Write — Parsons

Parsons Problem Write-Code Problem Wilcoxon Matched-Pairs Signed-Ranks Test

Problem (Diff.) n Mdn in seconds Mdn in seconds \% p-value A

1 has22 (H)= 30 39.5 205.0 5.0 p<0.001%** 0.77
2 countlnRange (M) 61 89.0 123.0 501.5 p=0.002%* 0.65
3 diffMaxMin (E)= 30 10.0 128.5 0 p < 0.001%%* 0.84
4 dictTotal (M)~ 62 25.0 56.5 163.0 p < 0.001%*%* 0.66
5 dictNames (H)= 26 54.5 388.0 14.0 p <0.001%** 0.82

Notes: E = Easy, M = Medium, H = Hard; The equivalent symbol = indicates that students who solved the write the code
problem first used the same solution as the adaptvie Parsons problem; * p < .05, ** p < .01, *** p < .001; A = probability-
based effect size measure (nonparametric generalization of common language effect size statistic).

at solving a Parsons problem with either a common (has22) or uncommon (countInRange)
solution when they solved an equivalent write-code problem first than students who did the
opposite. Results also showed a significant difference between the write-code problems for prob-
lem one (has22) (W = 581.5, p-value = 0.01477) and problem two (countInRange) (W = 1239.5,
p-value = 0.002207) due to order effects. Students were significantly more efficient at solving
a write-code problem when they solved a Parsons problem with either a common (has22) or
uncommon (countInRange) solution first than students who did the opposite.

In summary, the results show that if you solved the write-code version of problem one (common
solution) and two (uncommon solution) and then solved the Parsons version, you were significantly
more efficient at solving the Parsons version. In addition, if you solved the Parsons problem version
of problem one (common solution) and two (uncommon solution) and then solved the write-code
version you were significantly more efficient at solving the write-code version.

The probability-based measure of effect sizes (A) shown in Table 5.4 mean that the probability

ranges from 33% to 69% that a randomly selected student will be significantly more efficient at

83

Table 5.7: Average Task Completion Times for Write — Parsons

Parsons Problem Write-Code Problem
Problem (Diff.) n M (SD) in seconds M (SD) in seconds
1 has22 (H)= 30 40.47 (18.93) 379.47 (465.11)
2 countlnRange (M)= 61 110.46 (71.80) 257.20 (383.89)
3 diffMaxMin (E)= 30 11.40 (7.75) 215.07 (203.98)
4 dictTotal (M)= 62 29.11 (24.79) 97.44 (166.43)
5 dictNames (H)= 26 58.69 (25.89) 476.77 (455.31)

Notes: E = Easy, M = Medium, H = Hard; The equivalent symbol = indicates that
students who solved the adaptive Parsons problem first used the same solution to
solve the equivalent write-code problem.

solving a Parsons problem with a common solution than writing the equivalent code when they
complete the Parsons problem first. The probability-based measure of effect sizes (A) shown in
Table 5.6 mean that the probability ranges from 65% to 84% that a randomly selected student will
be significantly more efficient at solving a Parsons problem with a common or uncommon solution
than writing the equivalent code when they complete the latter first.

To be more efficient than writing the equivalent code, Parsons problems should be generated
from the most common student written code. We plan to mine the huge amount of student written
code from free and interactive eBooks on the Runestone eBook platform to automatically gen-
erate Parsons problems by using OverCode to determine the most common student solution to
write-code problems. The notion of common (stereotypical) solutions/plans has also been used to
create grading schemes for write-code assignments and researchers suggest this kind of evaluation
can be used to increase instructors’ awareness of students’ difficulties with programming tasks
[69]. We plan to explore how uncommon solutions relate to difficulties with programming prac-
tice and learning gains. Students also recall and use Parsons problem solutions to solve equivalent
write-code problems. If students are more efficient at solving a write-code problem after solving
a Parsons problem with a common solution, there may be no learning gains because they have ad-
vanced beyond novice for the concepts that problem addresses or have acquired that schema. This
type of information can help with placement and providing students with challenges. In contrast,
if students are more efficient at solving a write-code problem after solving a Parsons problem with
an uncommon solution, there may be more learning gains because they had not advanced beyond
novice for the concepts that problem addressed and had not yet acquired that schema. Furthermore,
the between-subjects analysis of problem one and problem two provided evidence that whether or
not the Parsons problem solution is common or uncommon, students are significantly more effi-

cient at solving the adaptive Parsons version after solving the equivalent write-code problem. What

84

is the relationship between common and uncommon solutions and desirable difficulties? Desirable
ifficulties “slow down the acquisition rate of learning, but facilitate long-term retention and trans-
fer [57, p. 1]. And, what about problem order (interleaved or blocked)? This also affects learning
transfer [see 217]. Learners may benefit form interleaved problem order when learning to apply
a skill and from blocked problem order when learning how to apply a skill [217]. We plan to ex-
plore how uncommon solutions can be used to alert instructors too potential knowledge gaps and
opportunities for learning transfer. Future research should also experiment with different measures

of efficiency as mentioned in the related work section (see Efficiency and Time-on-Task).

5.3.4.2 RQ2: What is the effect on self-reported cognitive load ratings of solving adaptive
Parsons problems versus solving equivalent write-code problems?

The results are shown in Table 5.8 and Table 5.9. Students reported investing significantly less
mental effort in solving problem one as a Parsons problem than the equivalent write-code
problem. This was the problem for which we changed the solution from our previous study. Even
though insignificant, students invested more mental effort in solving a Parsons problem with an
uncommon solution (problem two) then the equivalent write-code problem when they solved the
Parsons problem first. But when they solved the write-code version of problem two first, they
reported investing lower mental effort in solving the equivalent Parsons problem even though the
solution was uncommon. Solving a Parsons problem with an uncommon solution before solving an
equivalent write-code problem resulted in slightly lower self-reported cognitive load ratings. Stu-
dents also reported investing significantly less mental effort in solving problem three—the easiest

problem—as a Parsons problem regardless of the order in which they completed it.

Table 5.8: Cognitive Load Ratings for Parsons — Write

Parsons Problem Write-code Problem Paired 7 test
Problem (Diff.) M (SD) of ratings M (SD) of ratings tvalue df p-value Cohen’s d,., A
1 has22 (H) 2.60 (1.73) 3.28 (2.19) -2.5926 56 p=0.012% 0.34 0.60
2 countlnRange (M) 3.86 (1.71) 3.34 (1.99) 14648 28 p=0.154 -0.27 0.42
3 diffMaxMin (E) 1.17 (1.52) 2.42 (1.83) -5.3916 58 p < 0.001%** 0.73 0.70
4 dictTotal (M) 1.93 (1.39) 2.43 (1.93) -1.4936 29 p=0.146 0.28 0.58
5 dictNames (H) 3.42(1.72) 3.34 (2.36) 0.20216 49 p=0.841 -0.04 0.49

Notes: E = Easy, M = Medium, H = Hard; * p < .05, ** p < .01, *** p < .001, paired t-test; Likert scale: 1 = Very, very low
mental effort; 1 = Very low mental effort; 3 = Low mental effort; 4 = Rather low mental effort, 5 = Neither low nor high mental
effort; 6 = Rather high mental effort; 7 = High mental effort; 8 = Very high mental effort, 9 = Very, very high mental effort

There was a significant difference in cognitive load ratings for students who solved the mod-
ified Parsons problem first versus those who wrote the equivalent code first. Prior work showed
that students self-reported investing less mental effort in solving Parsons problems than isomor-

phic write-code problems without looking at order effects [153]. We analyzed the data to draw

85

Table 5.9: Cognitive Load Ratings for Write — Parsons

Parsons Problem Write-code Problem Paired ¢ test
Problem (Diff.) M (SD) of ratings M (SD) of ratings t value df p-value Cohen’sd,,, A
1 has22 (H) 2.57 (1.74) 3.30 (2.28) -1.8422 29 p=0.076 0.35 0.60
2 countInRange (M) 3.11 (2.03) 3.39 (2.24) -1.2159 60 p=0.229 0.13 0.54
3 diffMaxMin (E) 1.00 (1.17) 2.77 (1.85) -5.7071 29 p < 0.001%** 1.07 0.79
4 dictTotal (M) 2.15 (1.64) 2.56 (1.90) -1.7266 61 p=0.089 0.23 0.57
5 dictNames (H) 3.04 (1.80) 3.00 (2.90) 0.058921 25 p=0.954 -0.02 0.50

Notes: E = Easy, M = Medium, H = Hard; * p < .05, ** p < .01, *** p < .001, paired t-test; Likert scale: 1 = Very, very low
mental effort; 1 = Very low mental effort; 3 = Low mental effort; 4 = Rather low mental effort, 5 = Neither low nor high mental
effort; 6 = Rather high mental effort; 7 = High mental effort; 8 = Very high mental effort, 9 = Very, very high mental effort

out order effects and found that, in general, students self-reported investing more mental effort in
solving write-code problems versus Parsons problems except for problem two (medium) and five
(hard) across both versions of the problem set. This provides evidence that at least some students
perceive these two problems as more difficult tasks that require more mental effort, but the dif-
ference was not significant. This may be because cognitive load and task difficulty/complexity
are also related to interest. Researchers posit that “conceptually, a task with high cognitive load
should be a task that is perceived to be difficult and cannot be done well even though the indi-
vidual likes the task and invests a high level of effort in it” [420, p. 3]. Learners who are not
interested or do not want to well on a difficult task may give up instead of investing more effort.
This would lead to longer completion times that effect the results of statistical tests. In contrast,
the difference in self-reported cognitive load was significant across both versions of the problem
set for problem three, which was the easiest. Is it easier to self-assess the mental effort involved
in solving easy tasks? Patently low complexity tasks improve our ability to track variations in a
learner’s response to task complexity [117]. These results provide evidence that an easy problem
requires significantly more mental effort to solve as a write-code problem than a Parsons problem
independent of the order in which you solve it. Task cognitive load and task difficulty can also
be use in conjunction with other programming task variables for problem sequencing and student
modeling; perhaps we need to measure interest given its relationship to task difficulty [96]. Future
research should investigate other hypothesis related to modifying the type and amount of informa-
tion for programming problems such as the Trade-off Hypothesis [353] and Cognition Hypothesis
[313]. These stem from research on second language learning which parallels learning a program-
ming language [277, 312]. Future research should also investigate creating more interest-driven

programming practice assignments [11, 173].

86

5.3.4.3 RQ3: How does problem-solving efficiency relate to self-reported cognitive load ratings
and self-efficacy beliefs?

The results for the relationship between problem-solving efficiency and self-reported cognitive
load ratings are shown in Table 5.10 and 5.11. The strongest significant positive correlation was
for problem five when solved as a Parsons problem first. This was indeed the hardest problem:;
it had the second most blocks after problem two, but its solution was common. There was a
significant positive correlation for problem two when solved as a Parsons problem second. This
was the only problem with an uncommon solution. Students’ problem-solving efficiency sig-
nificantly positively correlated with their self-reported cognitive load ratings when solving
a Parsons problem with a common solution before an equivalent write-code problem. Stu-
dents’ problem-solving efficiency significantly positively correlated with their self-reported
cognitive load ratings when solving a Parsons problem with an uncommon solution after
solving the equivalent write-code problem. The strongest significant positive correlations for

write-code problems were for problem three and four when solved as a write-code problem first.

Table 5.10: Correlations between Task Completion Times and Cogni-
tive Load Ratings for Parsons — Write

Parsons Problem Write-code Problem

Problem n p p-value p p-value
1 has22 (H) 57 .13 0.325 01 0.925
2 countlnRange (M) 29 .17 0.372 .03 0.866
3 diffMaxMin (E) 59 .09 0.488 20 0.130
4 dictTotal (M) 30 .22 0.239 .03 0.870
5 dictNames (H) 50 .40 0.004%* -.16 0.270

Notes: * p < .05, ** p < .01, *** p < .001, p = Spearman rank-order
correlation coefficient; Likert scale: 1 = Very, very low mental effort; 1 =
Very low mental effort; 3 = Low mental effort; 4 = Rather low mental effort,
5 = Neither low nor high mental effort; 6 = Rather high mental effort; 7 =
High mental effort; 8 = Very high mental effort, 9 = Very, very high mental
effort

The results for relationships between problem-solving efficiency and self-efficacy beliefs are
shown in Table 5.12. There was a significant negative relationship for two Parsons problems (one
and two) and one write code problem (four). None of the problems showed a significant relation-
ship across problem type even though they were isomorphic. Students’ problem-solving effi-
ciency significantly positively correlated with their self-efficacy beliefs when solving Parsons
problems with either a common or uncommon solution.

87

Table 5.11: Correlations between Task Completion Times and Cogni-
tive Load Ratings for Write — Parsons

Parsons Problem Write-code Problem

Problem n p p-value p p-value

1 has22 (H) 30 -.15 0.436 -06 0.754

2 countlnRange (M) 61 .35 0.006** -05 0.720

3 difftMaxMin (E) 30 .24 0.200 S8 0.001%**
4 dictTotal (M) 62 .09 0487 30 0.017*

5 dictNames (H) 26 -.03 0.898 -.33 0.099

Notes: * p < .05, ** p < .01, *** p < .001, p = Spearman rank-order
correlation coefficient; Likert scale: 1 = Very, very low mental effort; 1 =
Very low mental effort; 3 = Low mental effort; 4 = Rather low mental effort,
5 = Neither low nor high mental effort; 6 = Rather high mental effort; 7 =
High mental effort; 8 = Very high mental effort, 9 = Very, very high mental
effort

There were two significant relationships between problem-solving efficiency and cognitive load
for Parsons problems. Prior work showed a strong significant positive relationship for problem
one and two as write-code problems without looking at order effects [153]. Our results revealed a
significant positive relationship for problem two (with an uncommon solution) when solved as a
Parsons problem second and an insignificant, yet negative relationship for the write-code problem
when solved first. There was also a significant positive relationship between problem-solving
efficiency and cognitive load for problem five when solved as a Parsons problem first. Yet, an
insignificant and negative relationship for the write-code problem (five) when solved second. Did

we have achieve a desirable difficulty in the design of problem two and five as Parsons problems

Table 5.12: Correlations between Self-Efficacy Scores and Task Com-
pletion Times

Parsons Problem Write-code Problem

Problem n p p-value p p-value
1 has22 (H) 81 -26 0.021%* -.02 0.873
2 countlnRange M) 84 -23 0.032%* -21 0.053
3 diffMaxMin (E) 83 .09 0.440 -0.21 0.052
4 dictTotal (M) 87 -0.15 0.160 -0.28 0.009%**
5 dictNames (H) 71 -14 0.251 0.19 0.111

Notes: * p < .05, ** p < .01, *** p < .001, p = Spearman rank-order
correlation coefficient

88

when presented to students in a certian order? The element interactivity of problem five was the
second highest, problem two was first; problem five had seven correct blocks and two distractor
blocks and the topic covered dictionaries. Researchers posit that a combination of varied conditions
of practice and worked examples results in effective learning [57]. Code completion effects, which
are most related to Parsons problems, are a part of cognitive load theory effects that include worked
examples [373]. Thus, we suspect that the intra- and inter-adaptation processes varied the level of
difficulty for each individual who solved this problem and that in combination with being a code
completion, this led to an optimal zone of development for learning and desirable difficulties.
Students may experience less cognitive load and be more efficient at solving Parsons problems
with uncommon solutions after solving equivalent write-code problems. Future research should
expand on the notion of common/stereotypical to account for different stages of learning. Novices
might easily acquire common solutions based on clusters of their peers’ write-code solutions but
these solutions may not be the expert solutions we are working towards teaching them.

There were a few significant relationships between self-efficacy and problem-solving efficiency
for both Parsons problems and write-code problems. Higher self-efficacy scores were correlated
with being more efficient at solving problem one (common solution) and problem two (uncom-
mon solution) as Parsons problems and problem four as a write-code problem. This implies that
we can use self-reported self-efficacy scores and problem-solving efficiency to improve how the
system adapts and scaffolds student learning. Researchers suggest “collecting and combining data
from multiple sources can help provide insights that have implications for areas such as learning,
instruction, retention, and curriculum design” [328, p. 2]. None of the problems showed a signif-
icant relationship between self-efficacy and problem-solving efficiency across problem type even
though they were isomorphic. Future research should explore using other measures to capture real

time self-efficacy beliefs such as microanalysis and trace data [81].

5.3.4.4 RQ4: Do students find the modified intra-problem adaptation process understandable

and useful?

We added several questions to an end of course student survey in the winter semester of 2020
and again in 2021 to determine student reactions to the intra-problem adaptation process that was
initiated when the student clicked the “Help Me” button on a Parsons problem. In 2020 the adap-
tation process first removed any distractors from the solution, then provided the indentation if it
was needed by adding spaces to the left of each line, and then combined two blocks into one. It
selected the blocks to combine based on the number of lines in each block. Students reported
that they were confused when the system provided the indentation and did not find it useful when
the system combined blocks that were already adjacent. Due to this feedback we modified the

intra-problem adaptation process to no longer provide indentation and to combine blocks that were

89

the furthest apart. In the winter of 2020, 17% of the students who answered the end of course
survey agreed or strongly agreed that, “I did not understand what happened after I clicked the
‘Help Me’ button on the mixed-up code problems”. In the winter of 2021 we asked the question
in a slightly different way, “I understood what happened when I clicked on the “Help Me” button
on a mixed-up code problem” and this time 7% disagreed or strongly disagreed. This appears to
be an improvement, however the wording was different and the response rate was much lower for
winter 2021. In the winter of 2021 only 75 of 143 students responded for a response rate of 52.4%
whereas 107 of 138 responded in 2020 for a response rate of 77.5%. The difference in response
rate is likely due to the course being offered fully remote in the winter of 2021. However, the
percentage of students who found the “Help Me” button useful increased from the winter of 2020
to the winter of 2021. In the winter of 2020 79% of the students agreed or strongly agreed with
“I found the “Help Me” button on the mixed up code problems useful”, while in the winter of
2021, 85.9% agreed or strongly agreed that “I found the ‘Help Me’ button on the mixed-up code
problems helpful”. This provides evidence that the changes improved the students’ perception of

the usefulness of adaptive Parsons problems.

5.4 Think-Aloud Observations

5.4.1 Protocol

We conducted each session on-line via Zoom and began by asking participants for consent and
a pseudonym. Participants received a $25.00 incentive for completing the study. First, we asked
participants to fill out the prior programming experience survey for context (see Appendix D)
[163, 345]. Then, we read them a description of what a think-aloud study is, randomly assigned
them to either version A or B of the problem set, and asked them to verbalize their thoughts as
they worked through each problem [393]. Three participants did version A and three did version
B. The average session lasted forty-two minutes and thirty-seven seconds. Following the session,
we conducted a semi-structured interview to understand students satisfaction with the system’s
learner-initiated help-seeking button. In particular, to understand their reactions to the modified

adaptation process.

5.4.2 Analysis

The qualitative analysis was performed using NVivo. Each of the think-aloud observations was
transcribed by Rev. We developed a codebook using a hybrid approach [326] of deductive (a

priori) and inductive (new) codes listed in Table 5.4.2 [326]. We derived and refined our codes

90

based on previous research [223, 297]. One of the researchers trained with a doctoral student to

independently code 50% of the transcripts and identify examples. We calculated Cohen’s kappa

for inter-rater reliability; it was between 0.70 and 1.00. The remaining transcripts were coded

single-handedly. In this paper, we chose to report on the students who solve problem two as a

Parsons problem first only.

Table 5.13: Codebook One

Code Freq. Definition Example
Help-seeking 14 Using search engines to get help with a “Okay, I got another
problem or clicking on the “Help Me” but- error that I don’t re-
ton. ally understand. Let
me Google this.”
Misconceptions:
Conceptual knowledge 33 Knowledge of specific facts about a pro- “I don’t know
gramming language and rules for its use. what the last er-
ror—Ilist index out of
range—means.”
Strategic knowledge 10 The ability to design, code, and test a pro- Failure to correctly
gram to solve a novel problem. Knowl- initialize a variable or
edge of syntactic facts related to a particu- merge blocks of code
lar language. Ability to apply rules of syn- that should be ap-
tax when programming. plied together.
Syntactic knowledge 17 Mismatched parentheses, brackets, or quo- “Maybe its a
tation marks; irresolvable symbols, miss- comma, I don’t know
ing semicolons, and using illegal start of to be honest.”
expressions.
Problem-Solving Processes:
Reinterpret problem 28 Questioning details of the problem prompt “Where is it counting
or problem requirements. range start and end
indices inclusive?”
Analogous problem search 2 Identifying similarities between the current “I’m going to go with

problem and other problems or solutions.

the key strategy that 1

learned before.”

91

Continued on next page

Table 5.13 — Continued from previous page

Code

Freq. Definition

Example

Adapt solution

1 Identifying how a current or prior solution

can help solve a current or past problem.

“It looks like this is
the syntax I probably
should have used for
[the previous prob-

lem].”

Evaluate solution 8 Judging the correctness of code. “No. First, I have to
iterate through [the
list].”

Self-Regulation Processes:

Planning 32 Expressing intent to perform some task, or ~ “First, I'm going to

Process Monitoring

Comprehension monitoring

Management of cognition

Reflection on cognition

Self-explanation

description of a task participants is doing.

5 Declaring that a programming sub-goal is
complete.
36 Reflection about the understanding of code

or problem prompts.

2 Decisions about how mental resources are
allocated—when to leave a problem for

later or stop trying to solve it.

31 Judgments about mental processes, mis-

takes, assumptions, or biases.

6 An account of why a decision was correct.

define the function.”
“I'm going to slice
the list into another
list....There we go.”
“There’s no value
called index yet.
Okay, I have to go
inside of loop.”

“I just don’t know ex-
actly, so I'm just go-
ing to leave it as it
is.”

“I'm pretty bad at
this. I mean, assess-
ing how much effort 1
actually put in.”

“I figure it’s [block
2b] because there’s

an index.”

92

5.4.3 Results and Discussion

5.4.3.1 RQ5: Why did students struggle to solve the Parsons problem with an uncommon

solution?

In this section, we used our qualitative coding scheme to explore how three out of the six non-
computer science students solved problem two (countInRange) as a Parsons problem (see Figure
5.3). The solution for this problem was not the most common student written solution. We sought
to understand why students struggled to solve this problem and if they used the Parsons problem

solution to solve the equivalent write-code problem.

5.4.3.2 Solved Parsons then Write-Code Problem
5.4.3.3 Logan

Logan was a 20-year-old who identified as male and chose not to indicate his race. He was a
senior theatre performance major who was specializing in acting and he had 5 months of prior
programming experience which he gained from a semester taking a non-computer science college
course. On the university’s math placement test, he scored a 22 out of 25 and his overall GPA was
3.7. Based on his self-efficacy scale ratings, he was grouped into the low average cluster (see Table
5.2). Of the six participants, Logan had the lowest score (2.8) for “persistence, debugging, and
problem-solving competences” (Factor 3) on the self-efficacy scale (see IPSES for the complete
scale). Students were asked questions such as, “Given the design of a solution and an incorrect
program, can you identify the source of the error?” Logan solved problem two in three hundred
and twelve seconds, approximately three minutes slower than the median (Table 2).

When he began to solve problem two, Logan had trouble understanding the prompt. He high-
lighted countInRange (1, 2, 4, [1, 2, 1, 1, 1, 1]) with his mouse and said,
”I’m trying to understand this whole countInRange thing. [The function] should return three since
there are three ones between index two and four. Where is it counting range start and end indices
inclusive? Are they saying these are the indices? 1 don’t really understand why it’s three ones
since there are four here. Are you able to explain exactly which ones are the indexes and which
ones are the list that they’re referring to?” Logan tried to reinterpret the problem, experienced a
conceptual misconception, and also engaged in help-seeking; he was confused about the parameter
values being passed to the function. He then said, “Oh, start and end indices inclusive. Okay. Zero,
one, two, three, four. Yeah, so it’d be three [ones].” He realized the list index started with zero and
said, “Wow, that’s just over-complicating things—in my opinion.”

Logan moved on to select blocks 6 and 3b correctly. But when choosing between blocks la

and 1b (the two for loops), he grabbed the wrong block 1a, for index in range (start,

93

https://go.wwu.de/qpuoe

end) :, indented it incorrectly, and said, “Let’s try this.” He’d forgotten that to be inclusive of the
end he needed to choose the for loop with the default argument end+1. This was both a conceptual
and strategic misconception. Logan then read over blocks 4a current = numList [start]
and 4b current = numList [index], and said, “What the heck is that?” When prompted by
the researcher to explain what he was thinking, Logan said, “[Block 4b is the right one] because
we’re starting at the index and it’s going to iterate through. Actually, it looks like this is the syntax
I probably should have used for [the previous problem], which I might go fix later.”” He engaged
in self-explanation when prompted and realized something about the previous write-code problem
(has22). To manage his cognition, he had left problem one (has22) incomplete and moved on to
this problem. He planned to adapt the current solution for this Parsons problem two to write-code
problem one (has22). Logan then reread blocks 1b and 4b before he chose between blocks 2a and
2b. Without prompting, he engaged in self-explanation and planning. He said, “I figure it’s [block
2b] because there’s an index. I’'m going to make it easy for myself and assign it to current. And
if current == target,lcando count = count + 1. Wait, wait, wait...I can’t indent
anymore.” When Logan realized he could not indent block 7b, he reformatted his solution (see
5.6). This led to a strategic misconception; at first, Logan initialized the count variable correctly,
but then he placed block 3b into the for loop underneath block 1a.

def countInRange(target, start, end, numList):| & |def countInRange(target, start, end, numList):
i | count = @ lz |for index in range(start, end):
lz | for index in range(start, end): 3k |count = @
4b | current = numList[index] 4k | current = numList[index]
2b | if index == target: 2k | if index == target:
count = count + 1 7o | count = count + 1

Figure 5.6: Logan’s strategic misconception of problem two.

Next, Logan reread blocks 1a and 1b. He then said, in reference to block 1a, “I’m not even sure
about this range. I don’t know if that’s right.” This confirmed that he did experience a conceptual
misconception when choosing between the correct for loop block 1b and the distractor block 1a.
Logan then chose block 5 return and clicked “Check”. He received an error message that said,
“Highlighted blocks in your program are wrong or are in the wrong order. This can be fixed by
moving, removing, or replacing highlighted blocks.” Block la was highlighted. He said, “It’s

94

probably this one then”—in reference to block 1b. Then he clicked “Check™ again and received
the same error for block 1a; this error was a conceptual and strategic misconception in that he did
not understand that the order of statements would result in assigning the count variable to zero
each time. His solution would not keep track of how many times the target appeared between the
start and end because count would be reset to zero after looping through the list.

Finally, Logan moved block 1b to the correct position before checking his solution again. This
time he experienced a syntactic misconception; Logan had placed the return count (block
5) in the correct order but did not know how it was supposed to be indented. A popup window
appeared that said, “Click on the Help Me button if you want to make the problem easier.” He
clicked the “OK” button but did not click the “Help Me” button; he chose not to seek help. Block
5 return count was then highlighted to suggest that it be indented. Logan indented block 35,
clicked “Check,” and rated investing “neither low nor high effort” in solving the problem.

Logan engaged in help-seeking as soon as he had trouble interpreting the problem prompt but
asked the researcher instead of searching the web and declined help from the system toward the
end; he also engaged in trial-and-error at the start without much planning or comprehension moni-
toring. This led Logan to experience several misconceptions; he was misled by the distractor block.
This block was meant to teach students that the loop must change if you want the end of the range
to be inclusive. Prior research confirms that novice students who struggle with computer program-
ming go to tutors instead of trying to understand problems on their own by searching the web as
more advanced students do [218]. And, furthermore, students with significantly low self-efficacy
have misconceptions about computer programming functions [179]. Students like Logan may ben-
efit from guidance in the form of subgoals to help them plan better and from an explanation of why
distractor blocks are incorrect.

When asked about his preferences for adaptive Parsons Problems vs. write-code problems?
Logan said, “I prefer adaptive Parsons problems. They give you what you need syntactically....but
when you get to writing portions, it’s that much harder if you’re constantly given these jumbled
up problems....I wish there was a way that not only did you have to [drag-and-drop]...but that you
also had to type it. I think the energy to type it as you put it into the box may help in the long run
for [write code problems]. It’s like a transition to the [write-code problems].”

When asked about the adaptation process? Logan said, “Yeah, I thought [the help-seeking fea-
tures] were helpful...sometimes it’s annoying....I’m not a huge fan of combining blocks...I would
love to see the contrast....I wish there was a load history for [adaptive Parsons problems] too.” The
write code problems have a “load history” button which loads all versions of the code that were

submitted to be executed and the student can use a slider to review these versions.

95

5.4.3.4 Radhamani

Radhamani was a 19-year-old Asian who identified as female. She was a junior business admin-
istration major who had three months of prior programming experience in non-computer science
college courses. She scored a 25 on the university’s math placement test; her GPA was 3.8. Like
Logan, Radhamani was sorted into the low average cluster based on her self-reported self-efficacy
scores; her score was 3.2 for “persistence, debugging, and problem-solving competences”. It took
her two hundred seconds to solve problem two, one minute and fifteen seconds slower than the
median (Table 2).

Radhamani engaged in planning right after reading the prompt. She said, “First, I'm going to
define the function.” Then she selected blocks 6 and engaged in self-explanation and comprehen-
sion monitoring. Radhamani said, “This [block 6] is the only block with the definition, and I see
the first thing you feed in is the target, then the start index, and the end index, and then the list
itself.” Then, she initialized the count variable—block 3b—and engaged in more planning and
comprehension monitoring which prevented her from experiencing a strategic misconception but
not a conceptual misconception. She said, “I’m just looking through the options. Okay, so I want
to set current to equal the item in the list [block 4b]. Oh wait. There’s no value called index
yet. Okay, that [block 4b] would have to go inside a loop, so for index in range start end...I’'m
debating between these two options [blocks 1a and 1b] right now. I think it’s start end, so this is
saying, for any index in this range, I think the end is inclusive but if that’s wrong, I’'ll switch it
out.” Radhamani mistakenly selected block 1a just as Logan did. She understood that the end must
be inclusive, but did not understand the range method ends with the end minus one index (i.e., it is
not inclusive).

Finally, Radhamani engaged in some more planning and selected block 4b, then block
2a—which she initially indented incorrectly but caught it on her own—block 7b, and block 5.
She then checked her solution, received an error and replaced block 1a with the correct for loop
block 1b. When prompted to rate how much mental effort she invested in solving the problem,
she reflected on her cognition and said, “This took me a lot less effort than that first [problem] just
cause I didn’t get stuck on something.” She rated investing “low mental effort” in solving it.

Radhamani engaged in planning, comprehension monitoring, and self-explanation from the
start. These processes helped her avoid some pitfalls. She didn’t get as stuck although she was still
distracted by the same for loop [block 1a] as Logan. Prior research on self-regulated learning in
programming shows there is a significant positive correlation between students’ use of metacogni-
tive and resource management strategies and programming performance [29]. The more students
plan, the better they do. Furthermore, researchers posit there is a need for “consistent, disciplined
self-regulation during problem-solving” such as asking students to self-report cognitive load [223,
p- 90].

96

When asked about her preferences for adaptive Parsons Problems vs. write-code problems?
Radhamani said, “I think the drag and drop ones (Parsons problems) are easier. It’s more helpful
as a starting point. It’s helps with not having to remember how to actually define the stuff, but
I think actually writing it out helps me learn more because it forces me to Google it and then I
actually learn the syntax myself. I prefer typing it out.”

She valued the solution to Parsons problem two and used it to solve problem one. Radhamani
said, “This [problem two’s for num in range (len (nums) - 1) :]kind of taught me that
this value is excluded and this one is included. And that helped me do what I just did here with
problem one (has22)....excluding the negative one.

When asked about the adaptation process? Radhamani said, “I guess the distractors are more to
check your understanding, but first you have to actually understand it...so removing those blocks
is helpful....If I'm really struggling, I might choose to have that distractors removed, but if I feel
like I’'m on the verge of solving it, I might prefer to keep them in there and maybe just get a more

general hint.”

5.4.3.5 Izaan

Izaan was a 19-year-old Asian sophomore who identified as male. He hadn’t declared his major
yet. Izaan had one year of prior programming experience that he gained through two semesters
of college courses in computer science. He scored an 18 on the university’s math placement test
and his GPA was 4.0. Izaan had the highest self-reported self-efficacy score (4.4) for belief in ones
“persistence, debugging, and problem-solving competences” (Factor 3). His other scores were:
5.833 (Factor 1), 6 (Factor 2), and 4.833 (Factor 4). This put Izaan in the average high cluster.
He completed the problem in three minutes and forty seconds, one minute and thirty-five seconds
slower than the median (see Table 5.4).

When Izaan began to solve problem two, he started monitoring his comprehension immediately.
He said, “The first parameter is the number that’s the target value. The second one is the first index
to look at and four is the last index.” Then he engaged in planning and self-explanation. Izaan
said, “First, what I'm going to do is define [the function] and there’s only one [block] to define it.”
He correctly chose block 6. Next, he engaged in reinterpreting the problem and comprehension
monitoring while choosing between blocks 3a and 3b; he questioned, “so you probably have to
initialize count to zero?...returns a count of the number of times that the target value appears. Let’s
try initializing that first”; he chose block 3b correctly.

Izaan then chose to assign the variable current = numList [start]—the distractor
block 4a. He caught this conceptual and strategic misconception because he stopped to evaluate
his solution while planning his next move. He said, “Oh shoot. No. First, I have to iterate through

[the list].” He removed block 4a, and unlike Logan and Radhamani, Izaan chose the correct for

97

loop (block 1b) while engaging in self-explanation. He said, “For index in range from start to end
plus one...end plus one, so you have to add one for the index.” Yet, Izaan still chose block 4a
next, which showed he was still experiencing a conceptual misconception. This block incorrectly
passed the start index parameter from the range method to numList. Izaan continued to engage
in planning and comprehension monitoring and caught this conceptual misconception. He said,
“Current is equal to numList at start...if current == target (block 2a). if index ==
target (block 2b). Current is equal to numList...For index in range...Oh shoot so that should be
current == numList[index].

He chose block 2a and indented it correctly. Then he engaged in more planning and experienced
a misconception about how the interface worked regarding distractor blocks. Izaan said “And then
if the current is equal to target [block 2a], indent, then we’re going to do count. count++ (block
7a) or count = count + 1 (block 7b), should be the same thing—I’m just more comfortable
with count = count + 1. And then at the end, we’re going to want to return count
[block 5], which would go outside of [the loop].” He did not realize that the ‘or’ connecting blocks
7a and 7b meant that one of them was a distractor block; he thought they were both correct. Finally,
Izaan rated investing “neither low nor high mental effort” in solving the problem when reflecting
on cognition.

When asked about his preferences for adaptive Parsons Problems vs. write-code problems?
Izaan said, “Obviously, from a lazy point of view, I always prefer [adaptive Parsons problems], but
in terms of when I’'m actually trying to learn a concept, I found that those don’t actually help you
very much, because it’s like a process of elimination at the end of the day and the ones where you
actually have to write the code [are] a lot more challenging and it makes you think a lot harder.
Usually, that’s the way I try to...If ’'m trying to learn something, I’ll usually do those problems.”

When asked about the adaptation process? Izaan said, “Usually, it takes a couple blocks out if
you have the wrong blocks inside of it or it’ll combine blocks, which is really helpful....I think if
there weren’t distractors in the mix-up code problems they wouldn’t be very helpful at all because
it’s more a test of how many extra things you can put [in order].”

Radhamani and Logan both completed version A of the problem set for extra credit after their
think-aloud observation; Izaan didn’t. In that version, problem two (countInRange) was presented
to them as a write-code problem. They both solved it using a different solution than the Parsons
problem solution (see Figure 5.7). Each of them had trouble understanding which of the two for
loop blocks was inclusive. This could explain why the students who wrote the code first were
more efficient at solving the Parsons problem than the students who solved the Parsons problem
first. Distractors can slow the problem-solving process [145].

Since some students, like Radhamani and Izzan, find more value in writing code than in solving

a Parsons problem, we have added the ability to switch from a Parsons problem to an equivalent

98

Finish the function to defineé countInRange that returns a count of the number of times that
a target value appears in a list between the start and end indices (inclusive). For
example, countInRange(1,2,4,[1, 2, 1, 1, 1, 1]) should retun 3 since there are three
1's between index 2 and 4 inclusive

m 2/16/2021, 1111527 PM -2 0of 2

def countInRange(target, start, end, numList):
count = @

Finish the function to define countInRange that retums a count of the number of times that
a target value appears in a list between the start and end indices (inclusive). For
example, countInRange(1,2,4,[1, 2, 1, should return 3 since there are three
1’s between index 2 and 4 inclusive:

1, 1, 1)

m 2/22/2021, 5:24.05PM -2 0f 2

def countInRange(target, start, end, numList):
end2 = end + 1

for i in range(len(numList)):
if 1 >= start and i <= end:
if numList[i] == target:
count = count + 1
return CDU"I4

count = @
for x in numList[start:end2]:
if x == target:
count += 1

return count

Figure 5.7: Logan’s (left) and Radhamani’s (right) Alternative Solutions to Problem 2.

write-code problem with unit tests (see Figure 7.2). We are currently testing the effect of this
type of problem. Students can get credit for solving either type of problem. This will allow us to

challenge the high end students while still supporting struggling students.

Toggle Question: ., parsons Mixed-Up Code - itr_countup_str_muc
Active Write Code - itr_countup_str_ac

Write the function, countup_str(start) , to return a string with the numbers from 1 to
end . For example, countup_str(5) would return "12345" .

m Load History Show Codelens Share Code

Create the function, countup_str(start) , to return a string with {
example, countup_str(5) would return "12345" .

Drag from here

1 jout ="

2 def countup_str(end):

3 return out

42 for i in range(1, end):

or{ ,
4n for i in range(1, end + 1):

Problem: 1 -- Activity: 2 ActiveCode (itr_countup_str_ac)
Ol‘{

5a out = out + str(i)

5p out = out + i

3 £

Figure 5.8: Runestone’s Toggle Question Feature

Students like Logan value Parsons problems but want opportunities to write some of the code
and could benefit from Parsons problems designed to support planning [121]. One of the authors is
developing a computer programming practice environment, called Codespec, that offers multiple
means of engagement to optimize choice between problem types (see Figure 7.1). Its problem
space area offers learners the option to switch between solving a problem as either a pseudocode

problem (also described as subgoals or programming plans) [254, 72], Parsons problem [283, 98],

99

Faded Parsons problem [405], fix code problem [102], or write code problem. Preliminary results
show the average System Usability Scale (SUS) score was above average (M = 77.14 out of 100,
SD = 6.03) [15]. We plan to explore questions like when selected response (i.e., solving a Parsons
problem with only one solution or a selected problem type) is and is not ‘cognitively equivalent’ to
open response (i.e., solving a problem with many solutions or choosing between problem types).

To help students who are struggling while writing code from scratch we are also testing allowing
them to view or solve a Parsons problem as a type of hint. They would still be required to solve
the write code problem. They can solve the Parsons problem, but they can not just copy and paste
the Parsons solution to the write code problem. They would at least have to retype the Parsons
problem solution in the write code problem. This is in line with the recommendation from the
student identified as Logan.

The think-aloud observations with semi-structured interviews also raised some possible areas
to explore. We could investigate adding a slider to the Parsons problems to allow the learner to
review how the solution changed over time. We have already added the ability to explain why a
distractor block is incorrect, but have not tested this change. We could explore forcing the learner

to do more before providing additional help.

5.5 Limitations

This study was conducted in one course at a research intensive university in North America us-
ing Python. The study should be replicated in other contexts and languages. This study provides
evidence that Parsons problems are not more efficient than writing the equivalent code when the
Parsons problem solution is uncommon, but are when the solution matches the most common stu-
dent written solution. Yet when students solved the Parsons problem with an uncommon solution
first, it led to the largest learning gains. One of the most persistent ways to capture learning gains
is by using pre-post test, but its computation is heavily debated [314]. One of the limitations to
measuring learning gains in this uncontrolled environment is that students could have just copied
the solution from the Parsons problem. Future research should explore other ways to compute
learning gain scores [314] in controlled settings. Furthermore, we only tested one problem with
both an uncommon solution and the most common solution. Additional studies should be done
with both common and uncommon solutions. Researchers should also explore fine-grained time-
on-task metrics [214] and other ways to compute efficiency [159], measure cognitive load [92],
and capture self-efficacy beliefs [81].

While a lower percentage of students reported not understanding the Parsons problem adapta-
tion process and a higher percentage found the adaptation useful in the most recent end of course

student survey, the response rate was much lower in the winter of 2021 than in the winter of 2020.

100

{m}codespec

Check Guess

Conditionals

Finish the function, check_guessiguess, target), below to return 'too low' if the guess is less than the passed target, 'comrect’ if they are equal, and 'too high' if the guess is greater than the passed target.
For example, check_guess|5,7) returns 'too low', check_guess(7,7) returns "correct’, and check_guess(9,7) returns 'too high'.

Language

Python 3.x

PSEUDOCODE PARSONS FADED PARSONS FIX CODE WRITE CODE

Dafine the function

ey By Ser def check_ (guess, target):

fot 1 1 t # Check 1f guess is less than target
strictly equal to t

if guess target:

rint 'too low'

"too low"

. 3¢ 8 ck 1f guess is egual to ta
urn ‘egual .

if au = s
return 'equal’ elif guess = target:

return 'correct’

LAYOUT

HIDE PSEUDOCODE

OTHER SOLUTIONS

Qops. Correct blocks: Expected 7, found 2
Qops. Comrect indentation: Expected 7, found 2
Oops. Comrect order: Expected 7, found 2

Oops, Carriet text: Expected 4, found 0

File "script.py”, line 3
print 'too low'

SyntaxError: Missing parentheses in call to 'print’. Did you mean print('too low')?

Figure 5.9: Codespec’s Problem Space Area on the Faded Parsons Problem with Pseudocode

This was likely due to the pandemic. The survey should be run again in future semesters.

5.6 Conclusion

Parsons problems were created to provide engaging practice for novice programmers that was eas-
ier than writing the equivalent code from scratch [283]. Our think-aloud observations show that
students do perceive them as easier but some preferred write-code problems for learning. Parsons
problems have been used to help students learn syntax, common algorithms, common errors, and
new approaches to solving problems [89]. They can have significantly lower cognitive load than
writing the equivalent code, but not always. Prior research has shown that most students find adap-
tive Parsons problems helpful for learning though some students would rather write the equivalent
code. This research has provided evidence that Parsons problems with uncommon solutions are
not significantly more efficient to solve than writing the equivalent code, but led to larger learning
gains. It also provided evidence that Parsons problems with the most common student written solu-
tion are significantly more efficient to solve than writing the equivalent code. This implies that the
best way to generate Parsons problems is to cluster student written code and use the most common
student solution. This is one way to assess students current competencies efficiently, without frus-
trating them and possibly boosting their self-efficacy beliefs, before we present them with Parsons
problem solutions that are uncommon which might naturally lead to learning gains. “We learn ‘at
the edges’ of what we already know by adding to existing knowledge” [311, p. 351]. It is possible
that the most common student solution changes over time; problem two was significantly efficient
to solve in a prior study, but was not in this study. This implies that we may need to account for
context and other types of data to dynamically generate Parsons problems with respect to desirable
difficulties. We plan to add the ability to dynamically generate Parsons problems from student
written code and use Parsons problems to provide more efficient practice than writing the equiva-
lent code as well as to scaffold students who struggle while writing code. We also plan to explore
multiple means of engagement with programming practice that include a range of researched based

problem types.

102

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Acronyms
	Abstract
	Introduction
	Adaptive Parsons Problems for Active Learning
	Problem-Solving Efficiency and Cognitive Load of Adaptive Parsons Problems
	(Un)Common Parsons Problems Solutions
	Accessible Adaptive Parsons Problems
	Contributions
	Thesis Outline

	Related Work
	Parsons Problems
	Dimensions
	Subgoal Labels or Pseudocode
	Faded Parsons Problems

	Feedback
	Adaptation
	Intra- and Inter-Problem Adaptation

	Distractors

	Active Learning
	Efficiency and Time-on-Task
	Measurement

	Cognitive Load
	Short- and Long-Term Memory Capacity
	Categories
	Measurement
	Learning Tasks

	Self-Efficacy
	Neurodiversity
	Universal Design for Learning and Students with Disabilities in CS
	Accessibility of Adaptive Parsons Problems

	Parsons Problems as Active Learning Lecture Activities
	Introduction
	Methods
	Context

	Between-Subjects Experiment
	Materials
	Experimental Protocols/Study Design
	Analysis

	Results

	Why Less Efficient at Solving Parsons Problem Three?
	End-of-Course Student Survey
	Student Survey Results from Fall 2019
	Student Survey Results from Winter 2020

	Discussion
	Limitations
	Conclusion

	Problem-Solving Efficiency and Cognitive Load of Parsons vs. Write-Code Problems
	Introduction
	Method
	Research Design
	Context
	Materials

	Within-Subjects Experiment
	Study Design
	Participants
	Analysis
	Results
	Efficiency
	Cognitive Load Ratings
	Efficiency and Cognitive Load Ratings

	Think-Aloud Study
	Participants
	Analysis
	A Deeper Dive into Problem One
	Interview Question Results
	Preference
	Parsons Problems and Help-Seeking Features
	Write-code Problems and Help-Seeking Features

	Further Analysis of Problem 1
	Was the Parsons problem solution unusual?
	Was there an ordering effect?
	Results from Problem One Midterm from Fall 2020
	Use of Intra-Problem Adaptation

	Results from Student Survey
	Discussion
	Limitations and Future Work
	Implications
	Conclusion

	Impact of Solving Parsons Problems with (Un)Common Solutions
	Introduction
	Methods
	Participants
	Materials

	Mixed Within- and Between-Subjects Experiment
	Experimental Design
	Participants
	Analysis
	Results and Discussion
	RQ1: What are the effects on efficiency of solving an adaptive Parsons problems made with the most common or uncommon student written solution versus writing the equivalent code?
	RQ2: What is the effect on self-reported cognitive load ratings of solving adaptive Parsons problems versus solving equivalent write-code problems?
	RQ3: How does problem-solving efficiency relate to self-reported cognitive load ratings and self-efficacy beliefs?
	RQ4: Do students find the modified intra-problem adaptation process understandable and useful?

	Think-Aloud Observations
	Protocol
	Analysis
	Results and Discussion
	RQ5: Why did students struggle to solve the Parsons problem with an uncommon solution?
	Solved Parsons then Write-Code Problem
	Logan
	Radhamani
	Izaan

	Limitations
	Conclusion

