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ABSTRACT

Fortin and Reutenauer defined the non-commutative rank for a matrix with entries

that are linear functions. We will generalize this non-commutative rank to both the

representation theory of quivers, and to tensor spaces. In particular, we will relate

non-commutative rank to King’s criterion for σ-stability of quiver representations,

general Hom and Ext spaces studied by Kac and Schofield, and several notions of

tensor rank.
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CHAPTER I

Introduction

One of the earliest things you might learn in a first linear algebra course is row

reduction of matrices. Step by step you clear out entries to solve a system of equations,

or find the rank of a matrix. For instance, we might start with the skew-symmetric

matrix  0 x y
−x 0 z
−y −z 0

 ,
with entries in k[x, y, z] for some field k. Clearing the bottom left corner by adding to

the third row −yx−1 times the second row, we get 0 x y
−x 0 z
0 −z −yx−1z

 ,
and similarly clearing the −z with zx−1 times the first row, gives us: 0 x y

−x 0 z

0 0 zx−1y − yx−1z

 .
Before revisiting the title of this thesis, we might then note the bottom right

entry in the matrix is zero, and state this matrix has rank two. However, we will

be concerned with the “non-commutative” rank of this matrix, the rank when the

variables do not commute. Doing this makes things much harder, because it is difficult
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to determine whether an identity in the free skew field is non-zero. Take for example

the expression from Hua’s identity [Hua49],

(x+ xy−1x)−1 + (x+ y)−1 − x−1.

Although it is not obvious, we can show this expression is zero. In general, as non-

commutative expressions can get more complicated, requiring more and more nested

inverses, it is not easy to prove whether an expression is zero or not. So in order to

definitively show the non-commutative rank of our matrix, we will rely on other tools

from linear algebra, representation theory, and even multilinear algebra, turning to

tensors. In Chapter III, in addition to providing these more tractable definitions of

non-commutative rank, we will show that the non-commutative rank of this matrix

captures the fact that while any 3× 3 skew-symmetric matrix has (commutative) rank

2, they do not collectively take any subspace of k3 to a subspace of smaller dimension.

As we will see, this non-commutative rank problem has rich connections to quiver

representations, invariant theory, and tensors.

The three key results of this thesis are two generalizations and one application

of non-commutative rank. We begin in Chapter II with background on quiver rep-

resentations and geometric invariant theory. In Chapter III, more discussion on

non-commutative rank is provided, and in Section 3.3, we come to the first key result,

generalizing algorithms for non-commutative rank to those measuring semi-stability of

quiver representations. We conclude that there are both polynomial time deterministic

and random algorithms for not only measuring the lack of semi-stability, but providing

a witnessing subrepresentation of this measurement.

In Section 3.4, we have our second key result, a new proof for the limit behavior of

generic ext and hom, coming from applying insights from non-commutative rank. This

new proof leads to a brand new corollary, asserting these limits can be algorithmically
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determined, and can be replaced by a simple maximum.

In Chapter IV, we begin with background on different notions of tensor rank, with

our third key result in Section 4.2, generalizing non-commutative matrix rank to new

definitions for non-commutative tensor rank. Due to the nature of non-commutative

rank, these new definitions are some of the first described for rank of a space of

tensors.
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CHAPTER II

Quivers

2.1 Quivers and Quiver Representations

A quiver is a finite directed graph. We will denote the vertex set by Q0, and the

arrow set by Q1. Each arrow has a head, a vertex denoted by ha, and a tail, a vertex

denoted by ta; we can consider t and h as functions from Q1 to Q0. The term quiver

comes from Gabriel in [Gab72], who decided to call the tuple (Q0, Q1, h, t) a quiver,

as “graph” already had too many different meanings.

Example 2.1.

x y
a

b

c

Here, we have a quiver with Q0 = {x, y} and Q1 = {a, b, c}. Notice that we can

have multiple arrows between vertices, as ha = hb and ta = tb, and loops, as hc = tc.

In Chapter III, one quiver we will be particularly interested in is the Generalized

Kronecker Quiver, a quiver on two vertices with m arrows, shown below.

x y
...
a1

am

Fixing a field k, we will attach finite dimensional k-vector spaces to the vertices,

and linear maps to the arrows so that the dimensions match up. This is a quiver

representation, first described in [Gab72].
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Definition 2.2. A representation V of a quiver Q is given by an assignment of a

k-vector space, V (x), to each vertex x in Q0, and a linear map, V (a) : V (ta)→ V (ha),

to each arrow a in Q1.

Example 2.3.

V : C2 C

[
1 2

]
[
0 −1

] 10

Here, we have a representation of the quiver in Example 2.1. Notice V (x) = C2,

V (y) = C, V (a) =
[
1 2

]
, V (b) =

[
0 −1

]
, and V (c) = 10.

A subrepresentation of a quiver V is a representation W so that for all vertices

x, W (x) is a subspace of V (x), and for all arrows a, W (a) : W (ta)→ W (ha) is the

restriction of V (a) to W (ta).

Example 2.4. A representation V of a quiver Q is called trivial if V (x) = 0 for

all vertices x. The trivial representation of Q is a subrepresentation of all quiver

representations of Q.

A dimension vector α for a quiver is a tuple in NQ0 . We denote the dimension

vector of a quiver representation V by dim(V ), where dim(V )(x) := dim(V (x)).

Example 2.5. In Example 2.3, dim(V ) = (2, 1). The trivial subrepresentation of V

has dimension vector (0, 0).

2.1.1 Categories of Quiver Representations

After fixing a field k and quiver Q, we can look at the category of representations,

RepQ. To do that, we will need to define a morphism of quiver representations.

Definition 2.6. Let V and W be representations of a quiver Q. A morphism ϕ :

V → W is given by a set of linear maps ϕ(x) : V (x)→ W (x) defined for all vertices x

so that for all arrows a, ϕ(ha)V (a) = W (a)ϕ(ta). We denote the set of all morphisms

from V to W by HomQ(V,W ).

5



We may also consider HomQ(V,W ) as the kernel of the map:

fVW :
⊕
x∈Q0

Hom
(
V (x),W (x)

)
→
⊕
a∈Q1

Hom
(
V (ta),W (ha)

)
, (2.1)

where fVW (ϕ) =
(
ϕ(ha)V (a) − W (a)ϕ(ta) : a ∈ Q1

)
. The cokernel of fVW will be

denoted by ExtQ(V,W ), and will be discussed more in Section 2.1.4.

Example 2.7. Let’s find HomQ(V,W ) for the V in Example 2.3 and the following

representation W .

W : C2 C

[
1 0

]
[
0 1

] 10

Let λ : C→ C be the linear map from V (y) to W (y). Now, we need to define a linear

map A from V (x)→ W (x) so that the following diagrams commute.

C2 C

C2 C

[
1 2

]

A λ

[
1 0

]

C2 C

C2 C

[
0 −1

]

A λ

[
0 1

]

This gives the only option for A =
[
λ 2λ
0 −λ

]
, so HomQ(V,W ) is a one-dimensional space

determined completely by λ.

Two quiver representations, V and W , are isomorphic if there is a morphism

ϕ : V → W and a morphism ψ : W → V so that ψ ◦ ϕ and ϕ ◦ ψ are both

identity morphisms, or equivalently, if ϕ(x) is bijective for all x. In order for two

representations to be isomorphic, they must have the same dimension vector. We

may restrict ourselves to quiver representations with a fixed dimension vector α, the

set of quiver representations V on Q with V (x) = kα(x). We call this vector space

RepQ(α), and can identify it with the product of matrix spaces
∏

a∈Q1
Mα(ha),α(ta). On
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this product space, we have an action of

GL(α) :=
∏
x∈Q0

GL(α(x)),

where the action of (Y (x), x ∈ Q0) takes V (a) to Y (ha)V (a)Y (ta)−1 for all arrows a.

As we are acting on the vector space RepQ(α) linearly, we can consider this action a

group representation, which will be discussed in more detail starting in Section 2.2.

Example 2.8. Let’s act on the same V (Example 2.3) by (
[
0 1
2 3

]
,−3). We get the

representation

C2 C

[
−1 −1

]
[
2 0

] 10 .

Theorem 2.9 (See [DW17]). Two quiver representations V and W are isomorphic if

and only if they are in the same GL(α) orbit.

Proof. First, suppose ϕ : V → W is an isomorphism. Then, ϕ(ha)V (a) = W (a)ϕ(ta)

as we have a quiver morphism. But ϕ is invertible, giving us ϕ(ha)V (a)ϕ(ta)−1 = W (a),

and so defining Y := (ϕ(x) | x ∈ Q0) in GL(α) gives Y · V = W . In reverse, we

now suppose Y · V = W for some Y := (Y (x)|x ∈ Q0) in GL(α). This gives

Y (ha)V (a)Y (ta)−1 = W (a), so a map from V to W defined at each vertex by Y (x)

will be an isomorphism (with inverse similary defined by the Y (x)−1).

Part of the discussion in the next sections will be on the different ways one might

care about the orbits of this action. For instance, we might care about the isomorphism

classes of a quiver Q.

Example 2.10. If α = (m,n), the isomorphism classes of the quiver x a−→ y with

dimension vector α are given by the rank of the linear map at a; from 0 to min(m,n).

7



2.1.2 Indecomposable Representations

Given two quiver representations, V and W , we can construct a quiver representa-

tion V ⊕W by defining (V ⊕W )(x) = V (x)⊕W (x) at each vertex x, and

(V ⊕W )(a) = V (a)⊕W (a) =

V (a) 0

0 W (a)


for all arrows a. For this reason, it is useful to try to look at the “smallest” quiver

representations.

Definition 2.11. A non-trivial represenation V of Q is decomposable if V ∼= W1⊕W2

for some non-trivial representations W1 and W2 of Q. A non-trivial representation is

called indecomposable if it is not decomposable.

Theorem 2.12 (Krull-Remak-Schmidt [Kru24, Rem11, Sch29]). Every finite dimen-

sional quiver representation is isomorphic to a direct sum of indecomposable rep-

resentations. This decomposition is unique up to isomorphism and permutation of

factors.

We will now find all indecomposable representations for the two quivers with only

one arrow, following examples in [DW17].

Example 2.13. Let’s find all isomorphism classes of indecomposable representations

for the quiver x a−→ y over C. Let V be an indecomposable representation of our

quiver. We begin by noting that if V (x) = 0 and dimV (y) ≥ 2, we can write

V (y) = W1(y) ⊕ W2(y) for nonzero subspaces W1(y),W2(Y ) of V (y). If we take

W1(x) = W2(x) = 0 then W1 and W2 are nonzero subrepresentations of V with

V = W1 ⊕ W2. Contradiction. So V (y) must be one-dimensional. Similarly, if

V (y) = 0, V (x) must be one-dimensional. Our first two isomorphism classes of

indecomposables are then 0→ C and C→ 0.
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Now, we suppose the dimension at x and y are both positive. If V (a) has kernel

K, with complement K ′, we have V ∼= (K → 0) ⊕ (K ′ → V (a)), so V (a) must

be injective. Similarly, if V (a) has cokernel C, with complement C ′, we have V ∼=

(0 → C) ⊕ (V (x) → C ′), so V (a) must be surjective. Since V (a) must then be an

isomorphism, we can take any subspace W1(x) of V (x), and its complement W2(x),

and define W1(y) = V (a)W1(x) and W2(y) = V (a)W2(x). This gives V = W1 ⊕W2.

So we must have dim(V (x)) = 1 (as is dim(V (y)), as we have an isomorphism), and

our last isomorphism class is C→ C.

In the last example, we saw there were 3 isomorphism classes of indecomposable

representations. Quivers with finitely many isomorphism classes of indecomposable

representations are said to have finite representation type. As we will see in the next

example, this is not always the case.

Example 2.14. Let’s find all isomorphism classes of indecomposable representations

over C for the quiver:

x a

Letting V be an indecomposable representation for this quiver, we see that for some

basis, V (a) will be in Jordan form, with Jordan blocks J1, . . . , Jk, of dimensions

d1, . . . , dk respectively. We can decompose V into

k⊕
i=1

Cdi Ji ,

so k must be 1, V (a) must be a single n × n Jordan block, J , with eigenvalue λ.

If we were able to decompose our quiver further, we would end up with a basis

where J is a Jordan matrix with more than one block. So our isomorphism classes of

indecomposables in this case are determined by n and λ.

9



Though the quiver in this example was not of finite representation type, it was

tame, meaning after fixing the dimension vector (in our case n), the isomorphism

classes are determined by finitely many one-parameter families (in our case, we had a

single one-parameter family, given by λ). Quivers that are not of finite representation

type nor tame are called wild. In [Gab72], Gabriel proved the quivers with finite

representation type are exactly the quivers with underlying undirected graphs the

Dynkin diagrams of type ADE. The extended Dynkin quivers of type ADE, are tame,

work done on the description of their indecomposables was done in [Naz73] and [DF73].

The Dynkin diagrams and their extensions are shown in figure 2.1. For all other

quivers, the representation type is wild, and finding indecomposables is much less

tractable.

Type Dynkin Quiver Extended Dynkin Quiver

A

D

E6

E7

E8

Figure 2.1: Dynkin Diagrams of Type ADE

2.1.3 Projective Representations

We will use a particular kind of indecomposable representation for constructions

later in this thesis, indecomposable projective representations. To define these, we

must first talk about the path algebra. A path in a quiver is a sequence of arrows,

p = a` . . . a1 so that tai+1 = hai for i = 1, . . . , `− 1. The length of the path is `, and
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the head and tail of the path are hp = ha` and tp = ta1 respectively. For each vertex

x, we have a trivial path, ex, a path of length 0 with hex = tex = x. An oriented

cycle in a quiver is a non-trivial path p with tp = hp. A quiver is acylic if it contains

no oriented cycles. For the rest of this thesis, unless otherwise noted, all quivers are

assumed to be acyclic.

Definition 2.15. Given a field k, the path algebra kQ is an k-algebra with basis

labeled by all paths in Q. The multiplication in kQ is determined by concatenation

p · q = pq if hq = tp, and p · q = 0 if not. When concatenating with trivial paths, we

have petp = p and ehpp = p.

Example 2.16. Let’s look at an example using the following quiver on 3 vertices,

Q : x y z.
a

b

c

In this case, kQ will have basis ex, ey, ez, a, b, c, ca, cb. Multiplying the element 3ey + c

on the right by a+ ez gives us 3a+ ca+ c.

Proposition 2.17 (See [DW17], 1.5.4). The category kQ -mod is equivalent to the

category RepQ.

Although we will not go through the full proof of this equivalence of categories,

we note that if V is a kQ-module, the corresponding quiver under the equivalence is

defined by V (x) = exV and V (a) : etaV → ehaV as the restriction of the map V → V

defined by left multiplication by a.

Definition 2.18. A representation P of V is projective if the functor HomQ(P,_) is

exact.

Proposition 2.19 (See [DW17]). A representation P of V is projective if and only if

it is a direct summand of (kQ)r for some r.

11



Given a vertex x, in our quiver Q, define a representation by Px := kQex, the

quiver with basis at each vertex y given by paths from x to y. We will later see

this representation is both projective and indecomposable. Let’s look at Px for our

previous quiver.

Example 2.20. The representation Px for the quiver

Q : x y z,
a

b

c

has a k-vector space at each vertex: Px(x) is spanned by ex, Px(y) is spanned by a, b,

and Px(z) is spanned by ca, cb. At the arrows, we have Px(a) the linear map sending

ex to a, Px(b) sending ex to b, and Px(c) sending a and b to ca and cb respectively.

Proposition 2.21 (See [DW17]). For all vertices x of a quiver Q, the representation

Px is a projective kQ-module, and kQ =
⊕
x∈Q0

Px.

Proof. Given u in kQ, we can consider it an element of
⊕

Px, as u = u(
∑
x

ex) =∑
x

uex. The sum is direct, as if
∑

x ax = 0, for every vertex y we have 0 = (
∑
ax)ey =

ay. So each ax is 0, and the sum is direct. In particular, each Px is a projective

representation.

Proposition 2.22 (See [DW17]). Given a quiver Q, and a representation V , for all

vertices x,

HomQ(Px, V ) ∼= V (x).

Proof. We see a map in HomQ(Px, V ) is completely determined by where in V (x) we

send ex. So we may define ψ : HomQ(Px, V ) → V (x) by ϕ 7→ ϕ(ex). In the other

direction, define Θ : V (x) → HomQ(Px, V ) by mapping v in V (x) to the map ϕv,

defined by sending v to ex (and therefore taking any path p to V (p)v). our maps ψ

and Θ are inverses, each giving us an isomorphism.

Corollary 2.23 (See [DW17]). The indecomposable projective representations are

exactly all the Px, for x in Q0.

12



Proof. From Proposition 2.22, we have HomQ(Px, Px) ∼= kex, which is one-dimensional.

So all Px must be indecomposable. We must have all indecomposable projective

representations, as from Proposition 2.21, (kQ)r =
⊕

x(Px)
r, of which each projective

representation must be a summand, and from Theorem 2.12, this factorization into

indecomposables must be unique.

2.1.4 Homological Algebra

Given a quiver representation V , a projective resolution is a sequence of projective

representations Pi and maps fi so that

. . .→ P2
f2−→ P1

f1−→ P0
f0−→ V → 0

is exact. We will see construction of such a sequence is always possible in 2.24, so there

are enough projectives. For another quiver representation W , we apply Hom(_,W ),

giving us

0→ Hom(P0,W )
Hom(f1,W )−−−−−−→ Hom(P1,W )

Hom(f2,W )−−−−−−→ Hom(P2,W )→ . . . ,

computing Exti(V,W ) := ker(Hom(fi,W ))/ Im(Hom(fi−1,W )). The isomorphism

class of each Exti(V,W ) does not depend on the choice of projective resolution, see

[Wei95] for background on homotopy equivalence of chain complexes. Note that from

this construction, we get Exti(_,W ), the derived functors of Hom(_,W ).

Proposition 2.24 (See [DW17]). If Q is acyclic, given a quiver representation V , we

have an exact sequence

0→
⊕
a∈Q1

V (ta)⊗ Pha
dV−→

⊕
x∈Q0

V (x)⊗ Px
fV−→ V → 0, (2.2)

where fV (v⊗p) = V (p)v for v in V (x) and p in Px, and dV (v⊗p) = V (a)v⊗p−v⊗pa
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for v in V (ta), and p : ta→ ha.

Proof. First, note that

fV (dV (v ⊗ p)) = fV (V (a)v ⊗ p− v ⊗ pa) = V (p)V (a)v − V (pa)v = 0.

Next, the image of fV is all of V , as for any v in V , fV (v ⊗ ex) = v. For the kernel

of dV , suppose dV
(∑
a∈Q1

va ⊗ pa

)
= 0. As Q is acyclic, we can label vertices in Q0 as

{1, 2, . . . , r} so that h(a) < t(a) for all a. Now, pick the maximal vertex y so that

there’s an arrow ta = y with va ⊗ pa 6= 0, this is only possible (and always possible)

when
∑
va ⊗ pa is non zero. For any arrow a′ with ha′ = y, we have ta′ > ha′ = y,

and so vta′ ⊗ pa′ = 0. The component of dV (
∑
va ⊗ pa) landing in V (y) ⊗ Py is

r∑
i=1

−vai ⊗ paiai for all arrows a1, . . . , ar with tail y. By assumption, this must be 0,

but the piai are all independent, so there was no va ⊗ pa 6= 0, and the kernel of dV is

empty. Last, we have

dim

(⊕
x∈Q0

V (x)⊗ Px

)
− dim

(⊕
a∈Q1

V (ta)⊗ Px

)
=

=
∑
x∈Q0

dim(V (x))

dim(Px)−
∑
a∈Q1
ta=x

dim(Pha)

 ,

and dim(Px)−
∑
a∈Q1
ta=x

dim(Pha) = 1, as if ta = x, for all p in Pha, pa is in Px. Summing over

all arrows a with ta = x, we geth the basis of paths starting at x for Px, except for the

empty path ex. So, dim(Px)−
∑

dim(Pha) = 1, and we get
∑

dim(V (x)) = dim(V ),

our sequence is exact.

Corollary 2.25 (See [DW17]). For an acyclic quiver Q, given any two representations

V and W , Exti(V,W ) = 0 for i ≥ 2, and Ext0(V,W ) = HomQ(V,W ).
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Proof. Apply Hom(_,W ) to the sequence (2.2). We get:

0→ Hom(V,W )→ Hom(
⊕

V (x)⊗ Px,W )
Hom(dV ,W )−−−−−−−→ Hom(

⊕
V (ta)⊗ Pha,W ).

We have an isomorphism

Hom(
⊕

V (x)⊗ Px,W ) ∼=
⊕

Hom(V (x),Hom(Px,W )) ∼=
⊕

Hom(V (x),W (x))

by tensor-hom adjunction and Proposition 2.22, and similarly

Hom(
⊕

V (ta)⊗Pha,W ) ∼=
⊕

Hom(V (ta),Hom(Pha,W )) ∼=
⊕

Hom(V (ta),W (ha)).

With these isomorphisms in mind, Hom(dV ,W ) = dVW from 2.1, which has kernel

Hom(V,W ). The cokernel is Ext1(V,W ), which we denote by Ext(V,W ), as all higher

order Ext are 0.

In the case of quivers with cycles, we may still define ExtQ(V,W ), either by the

cokernel of dVW or by Yoneda extensions [Yon60], defined below.

Definition 2.26. An extension ξ of V by W is an exact sequence

ξ : 0→ W
i−→ E

p−→ V → 0.

Two extensions, ξ as above, and

ξ′ : 0→ W
i′−→ E ′

p′−→ V → 0
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are equivalent if there is an isomorphism f : E → E ′ so that the diagram

0 W E V 0

0 W E ′ V 0

i p

IW f IV

i′ p′

commutes.

Definition 2.27. Define the Yoneda extension group, ExtQ(V,W ), as the set of

equivalence classes of extensions of V by W .

Given [ξ] and [ξ′] in ExtQ(V,W ), with

ξ : 0→ W
i−→ E

p−→ V → 0, and ξ′ : 0→ W
i′−→ E ′

p′−→ V → 0,

we get [ξ] + [ξ′] = [ξ′′], where ξ′′ : 0→ W
i′′−→ E ′′

p′′−→ V → 0 is defined as follows. Let

E ′′ = F/G with F = {(u, u′) ∈ E ⊕ E ′|p(u) = p′(u′)}, and G = {(i(w),−i′(w))|w ∈

W}. Define i′′ : W → F/G by i′′(w) = (i(w), 0) +G, and p′′ the morphism induced by

the map F → V , which contains G in its kernel.

2.2 Geometric Invariant Theory

Let’s say we have a group G and a k-vector space V . We may want to act on

V linearly instead of simply considering it as just a set. To do this, we define a

representation of a group to be a homomorphism ρ : G→ GL(V ). Then, our action of

G is given by the representation, for g in G and v in V we get g · v = ρ(g)v. The group

G is called a linear algebraic group if it is an affine variety and its multiplication and

inversion maps are morphisms of affine varieties. We point to the symmetric group

for our first example.

Example 2.28. We can act on V = C3 by the symmetric group S3 by sending

each permutation to the corresponding permutation matrix in GL(3), giving us a
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representation.

Fix a basis for the vector space V , say e1, . . . , en, and let x1, . . . , xn be the cor-

responding coordinate functions. We define k[V ] := k[x1, . . . , xn], the polynomial

functions on V . We get an action of G on k[V ], given by

(g · f)(a1, . . . , an) = f(g−1(a1, . . . , an))

for g in G, f in k[V ], and (a1, . . . , an) in V . Notice that we need the inverse in order

to remain a left action of G.

Example 2.29. Again looking at S3, we have (123) · (x1x2 + x2x3) = x3x1 + x1x2.

In invariant theory, we are concerned with which polynomials in k[V ] are invariant

under this action. We denote the set of invariant polynomials by k[V ]G. Constant

polynomials and products and sums of invariant polynomials are invariant, so k[V ]G

is a ring. We will sometimes refer to invariant polynomials as simply “invariants”.

The groups we will be concerned with are reductive groups, linear algebraic groups

larger than one element whose largest connected normal unipotent subgroup is trivial

(See [Hum75]). When working over characteristic 0, linearly reductive groups, groups

whose rational representations are all completely reducible, are equivalent to reductive

groups. Last, we have geometrically reductive groups, groups whose action on V is so

that for every non-zero invariant vector v in V , there is an invariant homogeneous

polynomial f of positive degree that does not vanish on v. Nagata and Miyata showed

that all geometrically reductive groups are reductive [NM63]. The reverse was proven

by Haboush, opening up work on Geometric Invariant Theory to all reductive groups.

Theorem 2.30 (Haboush’s Theorem [Hab75]). Geometrically reductive groups are

reductive over any characteristic.

Theorem 2.31 ([Hil90, Hil93]). If G is reductive, the invariant polynomial ring k[V ]G

is finitely generated.
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One of the main problems in invariant theory is finding generating polynomials for

k[V ]G. There’s lots of work done in bounding the degree needed for a homogeneous

set of generators. In characteristic 0, Noether proved for finite G, invariants with

degree up to the order of G suffice to generate [Noe26], and Derksen and Kemper

proved that if there is a uniform bound for a representation that only depends on G,

G must be finite [DK02].

Example 2.32. The polynomial ring C[x1, x2, x3]
S3 is generated by the elementary

symmetric polynomials, x1 + x2 + x3,x1x2 + x1x3 + x2x3, and x1x2x3. Notice that

in this case, we did not need to go all the way to Noether’s bound, which would be

|S3| = 6; the largest degree in our generating set is 3.

Although the symmetric group is a great example, from this point foward, we will

only be concerned with infinite groups. Luckily for us, the torus group (k∗)n along

with GL(α) and SL(n) over C are reductive.

Example 2.33. Now, let’s look at orbits and invariants of the action of the reductive

group G =

{[
t 0
0 t−1

]
t ∈ C∗

}
on C2. Over the reals we will graph several orbits of

this action, distinguished by color in figure 2.2 below.

Orbits:
[
1
1

]
,
[
1
2

]
,
[

1
−1

]
,
[

1
−2.5

]
,
[
1
0

]
,
[
0
1

]
,
[
0
0

]

x

y

Figure 2.2: Orbits for Reductive G
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The invariant polynomials for this action are generated by the polynomial xy.

Notice that our generating invariant polynomial is constant on orbits. However, it can

not distinguish orbits, as we see xy evaluates to 0 on both the x and the y axis orbits,

along with the origin. What we are seeing is that the invariant xy distinguishes orbits

up to Zariski closure; as the closure of the orbit for the x and y axis intersect at the

origin, and no other orbits’ closures intersect.

Example 2.34. Now let’s look at when we do not have a reductive group, say

G =

{[
1 u
0 1

]
u ∈ C

}
,

acting on C2. We can quickly see G is not reductive, as it is not completely reducible

- the first coordinate gives a subrepresentation W , but C2/W is not a representation.

Again over the reals we will graph several orbits of this action, distinguished by color

in figure 2.3.

Orbits:
[
1
1

]
,
[
1
2

]
,
[

1
−2

]
,
[

1
−1

]
,
[

1
2.5

]
,
[

1
−0.5

]
,
[
x
0

]

x

y

Figure 2.3: Orbits for Non-reductive G

Here, the invariant polynomials for this action are generated by the polynomial y.

Notice that again, our generating invariant polynomial is constant on orbits. However,

it can no longer distinguish orbit closures, as we see y evaluates to 0 on each of our

closed orbits on the x-axis.
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We have exemplified that invariant polynomials are constant on orbits, and when

G is reductive, we can distinguish orbits up to Zariski closure, giving us the next

theorem. From this point forward, we will only work with reductive groups G.

Theorem 2.35 (See [New78]). If G is a reductive group, given v, w in V , the inter-

section of orbits G · v ∩G · w is empty if and only if there is an invariant f in k[V ] so

that f(v) 6= f(w).

Proof. Suppose u is in G · v and G · w. For any invariant polynomial f , define

g(x) = f(x)− f(v). Notice g is also an invariant polynomial. We see g vanishes on

G · v and at u. But u is in the Zariski closure of G ·w, so g must also vanish on G ·w.

So, f(w)−f(v) = 0 for all invariant polynomials f . In the other direction, suppose the

intersection of our two orbit closures is empty. We follow [New78, Lemma 3.3], and

start with a polynomial h on V with h(G · v) = 0 and h(G · w) = 1. Now, consider

the subspace of k[V ] spanned by G · h, the orbit of h. This subspace has a basis, say

h1, . . . , hm, where g · hi =
∑
aij(g)hj for all g in G. The assignment g to aij(g) gives

us a rational representation of G. Now, define ψ : V → km by sending the vector x

to (h1(x), . . . , hm(x)). Under ψ, the image of G · v is zero, and of G · w is a single,

non-zero invariant point, w′. Now as G is reductive (and so equivalently, geometrically

reductive), we can find an invariant polynomial f ′ : km → k with f ′(w′) = 1 and

f ′(0) = 0. Now, f ′ · ψ is an invariant polynomial in k[V ] separating the two orbit

closures.

An important case is the orbits whose closures contain 0, the nullcone, defined as

N := {v ∈ V | 0 ∈ G · v}.

On the nullcone, all homogeneous invariants of positive degree vanish. We call v in V

semi-stable if v is not in the nullcone.
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2.2.1 Semi-stability of Quiver Representations

Recall we have an action of

GL(α) :=
∏
x∈Q0

GL(α(x))

on RepQ(α). We are interested in finding the nullcone of this action.

Example 2.36. Let’s first look at the quiver x a−→ y, with dimension vector α = (2, 2).

For any representation V , we have V (a) a 2× 2 matrix. Consider

(A,B) :=

([
ε−1 0
0 ε−1

]
,

[
ε 0
0 ε

])

for ε close to 0. No matter what V (a) is, as ε approaches 0, we approach the trivial

representation, so all representations V are in the nullcone, N = RepQ(2, 2).

We can see that we may sometimes take advantage of the fact that GL(α) is dense

in M(α) =
∏

x∈Q0
M(α(x)) to show a representation is in the nullcone. In fact,

Proposition 2.37 (See [DW17], 9.7.5). For all acyclic Q, and all α, all representations

V in RepQ(α) are in the nullcone.

For this reason, we will define a new notion of semi-stability that will enable us

to get more information from acyclic quivers in the next section. Let’s first look at

semi-stability for cyclic quivers.

Example 2.38. Let’s determine which representations of the 1-loop quiver Q (seen in

example 2.14) with dimension vector α = 2 are semi-stable. Let V be a representation

of the quiver over C, with V (a) = X, a 2 × 2 matrix. If we act on our quiver by

B in GL(2), we get a new representation V ′, with V ′(a) = BXB−1. To find the

representations in the nullcone of this action, we can find generating invariants, to see

for which X, they all vanish. Notice that Tr(X) and det(X) are both polynomial in
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the entries of X, and are invariant under conjugation. Similarly, Tr(Xd) for any d is

an invariant polynomial. Traces of powers generate C[End(Cn)]GL(n) (See [KP96] 2.4),

and from the Cayley-Hamilton theorem, all Tr(Xd) for d ≥ 2 are dependent on det(X)

and Tr(X). This gives us our invariant ring C[RepQ(2)]GL(2) = C[Tr(X), det(X)]. We

can now find which representations are in the nullcone by setting all of our invariants

equal to 0. Letting X =

[
x y
z w

]
, we see that w must equal −x, and then −x2−yz = 0.

So our nullcone is made up of the two subsets,

{ x y

x2

y
−x

 ∣∣∣∣∣x, y ∈ C, y 6= 0

}
, and

{[
0 y
0 0

] ∣∣∣∣∣y ∈ C

}
.

In general for cyclic quivers, traces of cyclic paths will always be invariant poly-

nomials. Not only are these traces always invariant, they will also always generate

the entire invariant ring, stated in the following theorem. We introduce the notation

V (p) = V (a`) . . . V (a1), where p is a path a` . . . a1.

Proposition 2.39 (Le Bruyn-Procesi, [LBP90]). For k with characteristic 0, the

invariant ring k[Repα(Q)] is generated by the traces Tr(V (p)), for all cyclic paths p.

Bounds on generator degree for quiver representation invariants over fields including

those of positive characteristic can be found in [DM17a].

2.2.2 σ-semi-stability of Quiver Representations

As we have seen, there are no semi-stable representations in RepQ(α) when Q is

acyclic. As we saw in the previous section, we could take advantage of the density

of GL(α) in M(α) to show any representation is in the nullcone. To combat this, we

will introduce a weight σ, and instead look at what we will call σ-semi-stability. Note

that in this section, we will assume all quivers are acyclic. For a weight σ in ZQ0 , we

define the 1-dimensional representation χσ, a character with action of GL(α) given by
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multiplication by

χσ(Y (x), x ∈ Q0) =
∏
x∈Q0

det(Y (x))σ(x).

Definition 2.40. A representation W is σ-semi-stable if (W, 1) is semi-stable in

Repα(Q)⊕ χσ.

The following theorem is stated in the context of quiver representations, but can

be applied for any affine G-variety.

Proposition 2.41 (Hilbert-Mumford Criterion). Given a represenation V , a in k, and

a closed orbit G · (W, b) in RepQ(α)⊕ χσ with G · (W, b) contained in G · (V, a), there

exists a one-parameter subgroup λ : k∗ → GL(α) so that limt→0 λ(t) · (V, a) = (W, b).

For a dimension vector, α = dimV , we denote by σ(α) the sum
∑

x∈Q0
α(x)σ(x).

In order to have σ-semi-stability, we must have σ(α) = 0.

Lemma 2.42 (See [DW17]). If V in RepQ(α) is σ-semi-stable, then σ(α) = 0.

Proof. Assume σ(α) is non-zero. Define the one parameter subgroup λ by

λ(t) = (t · Iα(x)|x ∈ Q0),

where Iα(x) is the identity map at vertex x. On χσ, λ(t) acts by multiplication by

tσ(α). As σ(α) is non-zero, then either as t gets arbitrarily large or arbitrarily close to

0, tσ(α) = 0. This means that (V, 0) is in the orbit closure of (V, 1). But (V, 0) is in

the nullcone, as V is ayclic, so V is σ-semi-stable.

Theorem 2.43 (King’s Criterion [Kin94]). A representation V in RepQ(α) is σ-semi-

stable if and only if σ(α) = 0 and σ(dimW ) ≤ 0 for all subrepresentations W of

V .

Please note that this theorem is known as King’s Criterion (for quivers), and

should be distinguished from what is known as King’s College Criteria (for livers)
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[OAHW89]. Theorem 2.43 will inform definitions in the next chapter. For now, let’s

return to Example 2.36 now that we have tools to determine σ-semi-stability.

Example 2.44. Let α = (2, 2), σ = (1,−1), and Q = x
a−→ y. Let V be a representa-

tion in RepQ(α). Notice if V (a) does not have full rank, we have a subpresentation

W with W (x) = V (a), and W (y) = Im(V (a)), with dimW (y) < α(y), giving us

dimW (x)− dimW (y) > 0. We can also see representations with V (a) less than full

rank are not σ-semi-stable as follows: For some basis of V (x) and V (y), we have

V (a) =

[
x y
0 0

]
or
[
x 0
w 0

]
. We will treat the former case, and note that the later case

is similar. Let λ(t) be given by the tuple

([
t 0
0 1

]
, I2

)
. We have

lim
t→0

(λ(t)V (a)λ(t)−1, 1) = lim
t→0

([
tx ty
0 0

]
, t2

)
= (0, 0),

so V is in the nullcone.

On the other hand, V is σ-semi-stable if V (a) has full rank, as the only subrepre-

sentations of V are then 0→ C2 and 0→ 0. So the nullcone in this case is made of

matrices that do not have full rank.

In the next section, we will see that σ-semi-stability can characterize matrix spaces.

Before moving on, we mention that in this case, instead of being concerned with

invariants, we would instead look at semi-invariants. The space of semi-invariants of

weight σ is

SI(Q,α)σ =
{
f ∈ k[RepQ(α)]

∣∣∀A ∈ GL(α), A · f = χσ(A) · f
}
.

We can find the σ-semi-stable points by looking at representations V that do not

vanish on all homogeneous non-constant semi-invariants of weight σ.

Example 2.45. Returning to Example 2.44, let α = (2, 2), σ = (1,−1), and Q =

x
a−→ y. Let V be a representation in RepQ(α), with V (a) = X. The action of
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(A,B) in GL(α) takes (V, 1) to (V ′, det(A) det(B)), where V ′(a) = BXA−1. Letting

f(X) = det(X), we see that (A,B) · f = det(A) det(B)f = χσ(A,B)f , and det is

a semi-invariant of weight σ. The representations that vanish on det are exactly

those without V (a) of full rank. From Example 2.44, we already know these are the

representations in the nullcone, so det(X) must generate the semi-invariants of weight

σ.

Though we will not go into more detail on semi-invariants, complexity results in

the next chapter rely on bounds of generators for the semi-invariant ring, proved in

[DM17b].
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CHAPTER III

Non-commutative Rank

3.1 History

Start with an n× n linear matrix A(x), a matrix with each entry a homogeneous

linear polynomial in Z[x1, . . . , xm], where x stands for x1, . . . , xm. In 1967, Edmonds

asked what the rank of such a linear matrix is over Q(x1, . . . , xm) [Edm67]. This

problem is known as Edmonds’ Problem, and the decision version of this question,

namely, asking whether A(x) has full rank or not, is called the symbolic determinant

identity testing problem (SDIT). In this chapter, we consider A(x) = x1A1+. . .+xmAm,

with each Ai an n× n matrix with entries in any large field k with |k| > 2n.

Building on Edmonds’ problem, we would like to determine the rank of A(x) over

the free skew field, first defined by Amitsur [Ami66], and described in more detail in

[CR99]. This rank is called the non-commutative rank of A(x), ncrk(A(x)), defined

by Fortin and Reutenauer [FR04]. The question of finding ncrk(A(x)) is the non-

commutative Edmonds’ problem, and the relaxation in simply deciding whether A(x)

has full non-commutative rank is the non-commutative full rank problem (NCFullRank).

Letting A = span{A1, A2, . . . , Am}, we alternatively denote the non-commutative rank

of A(x) by ncrk(A). Ivanyos, Qiao, and Subrahmanyam give equivalent formulations

and history of NCFullRank in [IQS17]. We will be interested in the c-shrunk subspace,

tensor blow-up, and particularly the nullcone formulations, which are discussed in
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Section 3.2.

Lots of work from different angles has been done on this non-commutative rank.

Cohn and Reutenauer proved NCFullRank was in PSPACE (can be solved using

polynomial space) [CR99]. Fortin and Reutenauer connected non-commutative rank

explicitly to c-shrunk subspaces [FR04]. Coming from studying non-commutative

arithmetic circuits with divisions, Hrubeš and Wigderson proved that non-commutative

rank was equivalent to rank for large enough tensor blow-ups [HW14]. Garg, Gurvitz,

Oliveira, and Wigderson provide a polynomial time algorithm of non-commutative

rank for fields of characteristic zero [GGOW16]. In [IKQS15], for certain matrix spaces,

Karpinski, Ivanyos, Subrahmanyam, and Qiao use Wong sequences to calculate the non-

commutative rank. Building on this using blow-ups, the latter three authors provide an

algorithm for finding the non-commutative rank of any matrix space [IQS17]. Utilizing

results on bounds from [DM17b], in [IQS18], they give a deterministic polynomial time

algorithm. This algorithm returns a c-shrunk subspace certifying the non-commutative

rank and works over any large enough field k. Additional results on the ratio between

commutative rank and non-commutative rank are proved in [DM18b].

In this chapter we generalize this algorithm to one measuring semi-stability of

quiver representations, giving us new results in this broader context. We also apply

non-commutative rank to general ext and hom, studied by Kac, Schofield, and Crawley-

Boevey [Kac82, Sch92, CB96]. Much of this Chapter is based on a paper on arXiv, for

which I’d like to thank Chi-yu Cheng, Calin Chindris, Harm Derksen, Daniel Kline,

and Visu Makam for comments.

3.2 Definitions

We will be concerned with the free skew field, made up of non-commuting polyno-

mials, k〈x1, . . . , xm〉, their inverses, and then enlarged to contain all sums, products,

and inverses. The free skew field was first defined by Amitsur, [Ami66]. In the free
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skew field, there is no standardized way to express elements, and elements may need

to be defined with nested inverses. For example, (x+ yz−1w)−1 can not be written

without a nested inverse [HW14].

Given a linear matrix, A(x), with homogeneous linear polynomials in k〈x1, . . . , xm〉,

the non-commutative analogue of the Edmonds’ problem asks to determine the rank

of A(x) over the free skew field. We denote this rank by ncrk(A). Similarly, the

NCFullRank problem asks whether A(x) has full rank over the free skew field. For

example, we row reduce the following skew symmetric matrix over the free skew field

to get:

T =

 0 x y
−x 0 z
−y −z 0

 ∼
 0 x y
−x 0 z
0 0 zx−1y − yx−1z

 . (3.1)

Unfortunately, by the nature of the free skew field, it is hard to determine polynomial

identities — so it is not immediately clear if this linear matrix has non-commutative

rank 2 or 3. For this reason, we explore additional equivalent formulations of non-

commutative rank. For proof sketches on their equivalence, see [IQS17]. We can

also define the non-commutative row and column rank of A(x) by taking the row

(respectively column) span over the free-skew field, leaving us with a finitely generated

free module, of which we can take the rank.

We note here that many aspects of rank carry over to the non-commutative rank,

for instance, the non-commutative row rank and column rank of A(x) equal the

ncrk(A) and we must have a minor with full non-commutative rank equal to ncrk(A).

We must still be careful, as other aspects do not: naively finding the “determinant” of

A(x), and comparing it to zero will not tell us whether the non-commutative rank is

full. In fact, even how to define a single determinant in this context is unclear [GR91].
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3.2.1 Blow-ups

If A(x) = x1A1 + . . . xmAm, let A = Span {A1, . . . , Am}. The dth tensor blow-up

of A is

A{d} := Md,d ⊗A ⊆Mdn,dn.

The rank of a matrix space, rkA, is the maximal r so that there is a matrix with rank

r in A. When the base field k is large enough, d divides the rank of A{d} [IQS17]. We

have

ncrk(A) = lim
d→∞

rkA{d}

d
.

The value of (rkA{d})/d is increasing as d increases, and is bounded by n. Using

results of Derksen and Makam, if A has maximal non-commutative rank, then taking

d ≥ n − 1 ensures rkA{d} = nd [DM17b]. If ncrk(A) = r < n, then restricting to a

full rank r × r submatrix of A(x), we see that rkA{d} = nd for d ≥ r − 1. So we

always have rkA{d} = nd for d ≥ n− 1.

Example 3.1. For our Example 3.1, take d = 2. We then look for 2 × 2 matrices

D1, D2, D3, so that A1 ⊗D1 + A2 ⊗D2 + A3 ⊗D3 has max rank. Letting

D1 =

[
1 0
0 0

]
, D2 =

[
0 0
0 1

]
, D3 =

[
0 1
1 0

]
,

We find

rk


0 D1 D2

−D1 0 D3

−D2 −D3 0

 = 6,

which must be maximal, and so ncrk(T ) = 3.

3.2.2 c-shrunk Subspaces

Definition 3.2. A subspace U ⊆ kn is a c-shrunk subspace of A if there exists a

subspace W ⊆ kn with dim(W ) ≤ dim(U)− c, and for every A in A, A(U) ⊆ W .
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Example 3.3. Let A =

[
x 0
y 0

]
, and let e1, e2 be a basis for k2. The entire space k2

is 0-shrunk, as its image (under all matrices in A) is all of k2. The span of e1 is not

c-shrunk for any non-negative c, as its image is all of k2, a space of higher dimension.

The span of e2 is in the kernel of any matrix in A, and so it is a 1-shrunk subspace.

The NCFullRank problem is equivalent to determining whether A has no c-shrunk

subspace for c > 0 [Coh95]. More generally we can define the non-commutative rank

using c-shrunk subspaces [FR04].

Proposition 3.4 ([FR04]). Given a matrix space of n × n matrices A, the non-

commutative rank ofA, denoted ncrk(A) is n−max{c | there is a c-shrunk subspace of A}.

Example 3.5. Returning to the previous example, for any non-zero a, b in k, the

span of ae1 + be2 is not c-shrunk (it hits all of k2), and the zero subspace is 0-shrunk.

So we get ncrk(A) = 1, as 1 is the max c so that A has a c-shrunk subspace.

Throughout the rest of this thesis, we let c = n − ncrk(A), i.e. all c-shrunk

subspaces discussed are so that c is maximal.

Lemma 3.6. Let c = n− ncrk(A). If U1, U2 are c-shrunk subspaces of A, then so are

U1 ∩ U2 and U1 + U2.

Proof. By assumption dimUi − dimA(Ui) = c. Let U3 = U1 ∩ U2, and U4 = U1 + U2.

We then have:

c+ c ≥ (dimU3 − dimA(U3)) + (dimU4 − dimA(U4)) =

= (dim(U1 ∩U2) + dim(U1 +U2))− (dim(A(U1)∩A(U2)) + dim(A(U1) +A(U2))) ≥

≥ (dimU1 + dimU2)− (dimA(U1) + dimA(U2)) =

= (dimU1 − dimA(U1)) + (dimU2 − dimA(U2)) = c+ c.

We conclude that dimU3 − dimA(U3) = dimU4 − dimA(U4) = c, as c is maximal.

Therefore, U3 and U4 are c-shrunk subspaces.
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In particular, there is a unique c-shrunk subspace of the lowest dimension, namely,

the intersection of all c-shrunk subspaces. Similarly, there is a unique largest c-shrunk

subspace, the sum of all c-shrunk subspaces. A recent similar discussion can be found

in [IMQ21]. In our skew-symmetric example (3.1), although any matrix in A has rank

2, the image of any subspace U of k3 has an equal or larger dimension than U . In this

case c = n − ncrk(A) = 3 − 3 = 0, and the minimal c-shrunk subspace is the zero

subspace.

3.2.3 Semi-stability of Generalized Kronecker Quiver

As promised, in this subsection we will define non-commutative rank using quivers

and semi-stability. We begin by using quiver representations to determine whether a

linear matrix has full non-commutative rank or not, the NCFullRank problem. For

A(x) = x1A1 + . . . , xmAm, this determination is equivalent to determining whether

the quiver representation W ,

kn kn
...
A1

Am

is σ-semistable for σ = (1,−1). In our skew-symmetric matrix example, (3.1), we

would like to determine whether the above quiver with

A1 =

 0 1 0
−1 0 0
0 0 0

, A2 =

 0 0 1
0 0 0
−1 0 0

, A3 =

0 0 0
0 0 1
0 −1 0


is (1,−1)-semi-stable.

We would also like to be able to relate quiver representations to the non-commutative

rank, rather than just to NCFullRank. To do this, we need a way of measuring how

far a representation V is from being σ-semistable. For this, we use Theorem 2.43. For

a representation W , recall σ(dim(W )) =
∑

dim(W (x))σ(x), summed over all vertices

x.
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Proposition 3.7. Given A = Span {A1, . . . , Am}, and c the maximum σ(dim(W ′))

over all subrepresentationsW ′ of the generalized Kronecker quiver with mapsA1, . . . , Am,

the non-commutative rank of A, ncrk(A), is n− c.

Proof. If W is a representation of the generalized Kronecker quiver with m-arrows,

and σ = (1,−1), let W ′ be a subrepresentation with c := σ(dim(W ′)) maximal. Then,

since A(W ′(x)) is contained in W ′(y), W ′(x) is a c-shrunk subspace. On the other

hand, if instead we start with a c-shrunk subspace U , we can define W ′(x) := U ,

and W ′(y) := A(U) =
∑m

i=1Ai U . This defines a subrepresentation W ′, where

σ(dim(W ′)) = c. So for generalized Kronecker quivers, c-shrunk subspaces give us

subrepresentations W ′ with σ(dim(W ′)) maximal, and vice-versa.

So, the non-commutative rank of A is equal to the maximum of σ(dim(W ′)) over

all subrepresentations W ′ of the generalized Kronecker quiver with maps A1, . . . , An.

3.3 Non-commutative Rank and Semi-stability

In this Section, we will generalize results for the non-commutative rank, related to

generalized Kronecker quivers, to arbitrary acylic quivers. We will let Q be an arbitrary

acyclic quiver. Through Proposition 3.7, if a representation W is not σ-semi-stable,

we can still measure its closeness to σ-semi-stability by finding a subrepresentation

W ′ with σ(dim(W ′)) maximal. In [CK21], this σ(dim(W ′)) is called the discrepancy

of (W,σ). Note that we are now no longer limited to the generalized Kronecker quiver

— we can ask this question for any acyclic quiver representation W , for any σ. We

call a subrepresentation W ′ which maximizes c = σ(dim(W ′)) an optimal σ-witness.

When σ is understood, we call this W ′ an optimal witness. We can generalize Lemma

3.6 for subrepresentations.

Proposition 3.8. If W1,W2 are optimal σ-witnesses of W , then so are W1 ∩W2 and

W1 +W2. In particular, there is a minimal and maximal optimal σ-witness.
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Proof. Let c be the discrepancy of (W,σ). Let σ+(x) = max{0, σ(x)}, and similarly,

σ−(x) = −min{0, σ(x)}. For i = 1, 2, by assumption

σ(dim(Wi)) =
∑
x∈Q0

(
σ+(x)− σ−(x)

)
dimWi(x) = c.

Let W3 = W1 ∩W2, W4 = W1 +W2. We then have:

c+ c ≥
∑(

σ+(x)− σ−(x)
)

dimW3(x) +
(
σ+(x)− σ−(x)

)
dimW4(x) =

=
∑

σ+(x) dimW3(x)− σ−(x) dimW3(x) + σ+(x) dimW4(x)− σ−(x) dimW4(x) =

= σ+(x)
(

dimW1(x) + dimW2(x)
)
− σ−(x)

(
dimW1(x) + dimW2(x)

)
= c+ c.

We conclude that σ(dim(W3)) = σ(dim(W4)) = c, as c is maximal. Therefore, W3 and

W4 are optimal σ-witnesses. We can find a minimal optimal σ-witness by taking the

intersection of all optimal σ-witnesses, and similarly find a maximal optimal σ-witness

by taking the sum of all optimal σ-witnesses.

We would like to extend techniques in [IQS17] which find c-shrunk subspaces of

matrix spaces to find an optimal σ-witness of a quiver representation. To do this, we

reduce any acyclic quiver to the generalized Kronecker quiver. We use the construction

described in [DM18a], but provide an altered set up, using presentations as in [DF15].

Let Px be the indecomposable projective representation of Q with basis given by all

paths starting at vertex x, as defined in Subsection 2.1.3.

Let Px be the indecomposable projective representation corresponding to vertex x.

So, Px(y) = eykQex, with basis given by paths from x to y. Let P1 :=
⊕

x∈Q0
Px

σ−(x),

and P0 :=
⊕

x∈Q0
Px

σ+(x). Consider all possible morphisms ϕ between the quiver

representations

ϕ : P1 → P0.
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To our above set of morphisms, apply HomQ(_,W ) to get

A(ϕ) : HomQ(P0,W )→ HomQ(P1,W ),

where A(ϕ) := Hom(ϕ,W ). We can consider a subspace Hom(Px
σ+(x),W ′) as Z+(x)⊗

W ′(x) for some Z+(x) = k σ+(x). Notice HomQ(P0,W ) is a right End(P0)-module by

precomposition. Let x, y be so that both σ+(x) and σ+(y) are positive. Note End(P0)

contains H =
∏

x∈Q0
GL(σ+(x)), a reductive group, which acts on the Z+(x), leaving

the W (x) alone. So, an H-subrepresentation of
⊕

x∈Q0
Z+(x)⊗W (x) must be of the

form
⊕

x∈Q0
Z+(x)⊗W ′(x) for some subspaces W ′(x) of each W (x). Our set of maps

can also be considered between the spaces

A(ϕ) :
⊕
x∈Q0

W (x) σ+(x) →
⊕
x∈Q0

W (x) σ−(x).

Now, we have a matrix space A consisting of all A(ϕ). This is the space of block

matrices with blocks mapping W (x) to W (y) given by a linear combination of W (p),

where p is a path from x to y. For this new generalized Kronecker Quiver, we may run

the algorithm in [IQS17] to get the minimal c-shrunk subspace of
⊕

x∈Q0
W (x) σ+(x),

U .

Lemma 3.9. The minimal c-shrunk subspace, U ⊆ HomQ(P0,W ), is a right End(P0)

module, and
∑

ϕA(ϕ)U is a right End(P1) module.

Proof. First, we prove that given any c-shrunk subspace, U , and invertible T in

End(P0), U · T is also c-shrunk. We have the image of U · T :

∑
ϕ

A(ϕ)(U · T ) =
∑
ϕ

A(T · ϕ)U =
∑
ϕ

A(ϕ)U.
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Here the sum is taken over all morphisms ϕ as above. It follows that

dim
∑
ϕ

A(ϕ)(U · T ) = dim
∑
ϕ

A(ϕ)U.

As T is an automorphism, we also have dimU · T = dimU , so U · T is c-shrunk. If U

is the minimal c-shrunk subspace, U ·T is also c-shrunk and of the same dimension, so

U ·T = U . As End(P0) is spanned by invertible elements, this shows that the minimal

c-shrunk subspace U is a right End(P0) module. Similarly, given S in End(P1), we

see that ∑
ϕ

A(ϕ)(U) · S =
∑
ϕ

A(ϕ · S)U =
∑
ϕ

A(ϕ)U.

Theorem 3.10. Given the minimal c-shrunk subspace for the set of linear maps

A(ϕ) :
⊕
x∈Q0

W (x) σ+(x) →
⊕
x∈Q0

W (x) σ−(x),

we can construct a subrepresentation of W , W ′, so that σ(dim(W ′)) is maximal.

Furthermore, σ(dim(W ′)) = c.

Proof. Considered as a subspace of
⊕

Z(x)⊗W (x), the minimal c-shrunk U is of the

form
⊕

Z(x)⊗W ′(x), for some subspaces W ′(x) of W (x). For y so that σ+(y) = 0,

defineW ′(y) =
∑
a:x→y

W (a)W ′(x). This ensures we have a subrepresentation. Note that

c ≤
∑

dim(W ′(x)σ+(x))−
∑

dim(W ′(x)σ−(x)), but c is maximal, so σ(dim(W ′)) = c.

We note that the W ′(y) are similarly closed under the action of End(P1).

If there were a subrepresentation W ′′ with σ(dim(W ′′)) less than c, Note that

U ′ =
⊕
x∈Q0

W ′′(x)σ+(x) is a shrunk subspace, with dim(U ′) − dim(A(U ′)) > c, so c

would not be maximal.
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3.3.1 Algorithms

After using this reduction of a quiver representation to a generalized Kronecker

quiver, we can employ any previous algorithms or other techniques for finding a

c-shrunk subspace. If we successfully find a c-shrunk subspace, U , that is not minimal,

we can construct a c-shrunk subspace that is fixed under the action of End(P0) by

taking instead ⋂
T∈Aut(P0)

U · T.

Such a subspace will give a optimal σ witness.

Example 3.11. As we have seen, the space of the skew symmetric 3 × 3 matrices

have non-commutative rank 3. The zero subspace is the minimal 0-shrunk subspace.

However, all of k3 is also 0-shrunk. This example is already reduced to generalized

Kronecker form, with underlying quiver

x y

dimension vector (3, 3) and weight and σ = (1,−1). As σ+ = (1, 0), the representation

P0 is given by simply Px, the indecomposible projective representation with dimension

vector (1, 3). Any invertible morphism from Px to itself is completely determined by

a non-zero constant. So acting on k3 by Aut(P0) is then simply acting by non-zero

constants, which will not change the space. We then see all of k3 is also an acceptable

c-shrunk subspace for building an optimal σ witness.

In [IKQS15], Wong sequences, originally defined by Kai-Tek Wong [Won74], are

used in certain cases to find a c-shrunk subspace.

Algorithm 3.12. Second (generalized) Wong sequence [IKQS15].

Input: Matrix space of n× n matrices A, spanned by A1, . . . , Am, random matrix A

in A.
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Output: Limit of Wong sequence, W ∗

1: W0 = 0;

2: for i = 1 to n do

3: Wi =
∑m

j=1Aj(A
−1(Wi−1));

4: W ∗ = Wn

Note we can end the loop as soon as Wi = Wi−1. The limit of this sequence gives

insights on the existence of c-shrunk subspaces of A.

Proposition 3.13. [IKQS15] There is an (n − rk(A))-shrunk subspace of A if and

only if the limit of the Wong sequence, W∗, is contained in the image of A. In this

case, A−1(W ∗) is an (n − rk(A))-shrunk subspace of A, and the non-commutative

rank of A is A.

However, Algorithm 3.12 alone will not always find the non-commutative rank of

A, in the case W ∗ is not contained in the image of A, we need to search for a higher

rank matrix and try the algorithm again. Even then, as we can see from our own

Example 3.1, where there are no rank 3 matrices in our space of skew-symmetric

matrices, this may be impossible. To combat this, in [IQS17], the algorithm is used in

some blow-up of A, where there must be some A with rank equal to ncrk(A) times

the size of the blowup. When a blow-up must be used, the c-shrunk subspace of A

can still be found by projecting.

We claim when Algorithm 3.12 returns a c-shrunk subspace, the subspace is

the minimal c-shrunk subspace. Recall the minimal c-shrunk subspace, U , is the

intersection of all c-shrunk subspaces, so U ⊆ A−1(W ∗). The limit of the sequence

W ∗ is the smallest subspace Z so that
m⋃
i=1

A−1i (Z) contains A−1(Z). So by minimality,

U is returned when this sequence terminates with W ∗ contained in Im(A). In the case

where the dth blow-up is invoked to find a c-shrunk subspace, the same sequence is

used in the larger space, finding a cd−shrunk subspace. This by the same reasoning
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must be minimal, so when pulled back to a c-shrunk subspace in the original space, it

must remain minimal.

Let n = min{
∑
σ+(x) dimW (x),

∑
σ−(y) dimW (y)}. For sufficiently large fields,

(|k| > 2n) there is a randomized algorithm to find a c-shrunk subspace [IQS17,

Corollary 1.5]. This randomized algorithm is much simpler and typically must faster

than the deterministic algorithm. In the context of representations, this algorithm

immediately after reduction, blows up by a sufficiently large [IQS18, DM17b] factor,

d ≥ n− 1. In this blow-up, randomly choose a matrix

A :
⊕
x∈Q0

W (x) dσ+(x) →
⊕
x∈Q0

W (y) dσ−(y), (3.2)

where A is in A{d} := Md,d⊗A. Through the Schwartz-Zippel-DeMillo-Lipton Lemma

[Sch80, Zip79, DL78], which we will discuss more thoroughly in Section 3.3.2, if a

field is large enough, evaluating a non-zero polynomial over that field at a randomly

chosen point is likely to give a non-zero result. Taking the determinant of minors of

a matrix in the blow-up, we are likely to have rkA = ncrkA{d}. Thus, running the

Wong sequence on this A will result in the return of a cd−shrunk subspace [IKQS15,

Lemma 9]. From this cd-shrunk subspace in the blow-up, we can find a c-shrunk

subspace of
⊕

x∈Q0
W (x) σ+(x), constructing a subrepresentation as above.

The deterministic Wong sequence algorithm for finding non-commutative rank,

introduced in [IKQS15], uses a sequence of subspaces, testing its limit, W ∗ for evidence

of a c-shrunk subspace. In the quiver representation context, we would like to instead

use a sequence of subrepresentations. In this deterministic setting, we only need

|k| > n.

To do this, we again start with a random matrix A in the blow-up, as above. Next,

find a pseudo-inverse of A, a matrix B so that B’s restriction to Im(A) is the inverse

to A’s restriction to a direct complement of ker(A). Note that B is a block matrix
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as well, with blocks mapping each W (y) for σ(y) < 0 to each W (x) with σ(x) > 0.

Let Ix index the |dσ(x)| copies of W (x). Let πx,i :
⊕

x∈Q0
W (x) dσ+(x) → W (x) be the

projection to the ith copy of W (x). Each projection can be thought of as coming from

the action of End(P0). Similarly, define this for vertices y with σ−(y) > 0.

For each block, take the projection πy,iBπx,j. This gives a linear map from W (x)

to W (y). Construct a new quiver representation, W+, on a new quiver Q+ by adding

arrows p : y → x for each block in the pseudo-inverse, with each W+(p) defined as

πy,iBπx,j.

Define a subspace at vertices x with σ(x) > 0 of W+:

K(x) :=
∑
i∈Ix

πx,i ker(A).

For all other vertices, define K(y) = 0. Let W ′ be the smallest subrepresentation of

W+ containing each K(x). Note that W ′ must also be a subrepresentation of our

original W .

Proposition 3.14. For W ′ as defined above,
⊕

x∈Q0
W ′(x) dσ+(x) is cd-shrunk, with

image (under A[d])
⊕

x∈Q0
W ′(x) dσ−(x). Thus, W ′ is an optimal σ witness.

First, we claim that
⊕

x∈Q0
W ′(x) dσ+(x) is the minimal cd-shrunk subspace of

A{d}. By construction, the Wong sequence algorithm returns the smallest subspace

containing ker(A), and closed under A{d} and our pseudo-inverse B. The K(x) must

remain inside the minimal shrunk subspace, as the projections come from End(P0).

Similarly, the new maps in W+ come from the action of End(P0)
⊕

End(P1), so in

finding the smallest subrepresentation, we must still remain in the minimal shrunk

subspace (at positive vertices). So in finding the minimal representation of W+ that

contains each K(x), W ′, we get the smallest subspace
⊕

x∈Q0
W ′(x) dσ+(x) containing

ker(A) and closed under A{d} and B, i.e. the minimal cd-shrunk subspace.

Proposition 3.15. Given a quiver representation W , a weight vector σ, |k| > n,
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letting nx := dim(W (x)), and N =
∑

x∈Q0
nx, there is an algorithm polynomial time

in the nx to find an optimal σ witness.

Recalling the above discussion, we first construct Q+ and W+. To do this, we

choose a random matrix in the d = min {
∑

(nxσ+(x)) ,
∑

(nyσ−(y))} − 1 blowup, A,

and find its pseudo-inverse, B, which takes polynomial time (≤ (dN)3). We then

construct new linear maps for each of the d2σ+σ− blocks in B by composing B with

projection maps. This composition is matrix multiplication, which can be done in

polynomial time. Next we contruct K(x) at each vertex x, which is the sum over the

dσ(x) projections of ker(A). We can find a basis for ker(A) itself in polynomial time

using row reduction. Last, we use Algorithm 3.16 to loop through all our arrows N

times, to find the optimal σ witness, W ′ from the K(x). This algorithm will stabilize

at the Nth loop or shorter, as each iteration of the outside loop will either raise the

dimension of the current W ′, or will not (in which case, we are done, we have found

the final W ′). We can increase the dimension at most N times, so this must be a

correct bound for the number of times to run the outer loop. Note we may terminate

the outer loop as soon as the updates from the inner loop do not change W ′ at all.

Algorithm 3.16. Algorithm for finding W ′.

Input: Quiver Q, Representation W of Q, subspaces K(x) ⊆ W (x) for all vertices x.

Output: Smallest subrepresentation W ′ so that K(x) ⊆ W ′(x) for all vertices x.

1: N =
∑

x∈Q0
dim(W (x));

2: W ′(x) = K(x) for all x;

3: for i = 1 to N do

4: for a ∈ Q1 do

5: W ′(ha) = W ′(ha) +W (a)W ′(ta);

Summarizing our algorithm, we start with a quiver Q, representation W , and

weight vector σ. Our steps to find an optimal σ witness are as follows:
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1. Take a random matrix A in the blow-up of the generalized Kronecker

reduction (3.2). Here, we get a block matrix with d blocks for each of the

σ+(x) copies of W (x) mapping to each of the σ−(x) copies of W (y). Inside each

block is a random linear combination of W (p), where p is a path from x to y in

the quiver. The size of this matrix is O((dN)2).

2. Get a pseudo-inverse of this matrix. For an i × j or j × i matrix with

i >= j, there’s an algorithm to do this in O(i2j) time. So here we take O(d3N3)

time.

3. Use projections to find maps for new quiver Q+. Here we are doing a

matrix multiplication to project each of the blocks to a new linear map. A direct

algorithm in this case would take O(d5N3) time, though we note there are faster

algorithms for matrix multiplication.

4. Use kernel of A to construct subspaces K(x) at each vertex x. Calculat-

ing the kernel of A using Gaussian elimination, we take O((dN)3)) time. Then,

we construct K(x) for each x, which is a projection of the kernel - the kernel

has max dimension (
∑

x∈Q0
dσ+(x)W (x)), so we take O((dN)3) time.

Now, we have a new quiver, Q+, with new arrows for each of the blocks in the

pseudo-inverse, and a subspace K(x) at each vertex. All that is left is to find

the minimal subrepresentation that contains the K(x)s at each vertex.

5. Build larger and larger representations of Q+ containing K(x) at each

vertex using Algorithm 3.16. This algorithm loops through N times for

each of the O(d2) arrows to find the projection of current W ′(ta) onto W ′(ha)

using W+(a), and accordingly, add it to W ′(ha). This multiplication is at most

order max(dim(W (x))3, and row reducing to find a new basis would also just

be on the order at most max(dim(W (x))3. So our loop overall is in O(d2N4).
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As d is in O(N), overall, our algorithm is in polynomial time in N . If our choice of

|σ| is very large (outside O(n)), the algorithm is polynomial in N and |σ|.

3.3.2 Additional Discussion and Examples

In this section, we will discuss the Schwartz-Zippel-DeMillo-Lipton lemma as

promised, followed by a discussion on general objects, and examples of σ optimal

witnesses.

Lemma 3.17 (Schwartz-Zippel-DeMillo-Lipton [Sch80, Zip79, DL78]). Given a non-

zero polynomial f in k[x1, . . . , xn] of degree d, and a finite subset S of k, with a1, . . . , an

chosen independently and uniformly random from S,

P(f(a1, . . . , an) = 0) ≤ d

|S|
.

Proof. We will prove this by induction on n. When n = 1, we have a degree d one

variable polynomial, f(x), which has at most d roots. So P(f(x) = 0) ≤ d
|S| . Assume

now this holds for polynomials in up to n variables. Let f(x1, . . . , xn, xn+1) be a

non-zero polynomial of degree d, and let a1, . . . , an, an+1 be our randomly chosen

points from S. Factor out all instances of xn+1, writing the polynomial as

f(x1, . . . , xn, xn+1) =
d∑
i=0

xin+1fd−i(x1, . . . , xn).

Each fd−i is a polynomial of degree d− i. Let fk be of smallest degree while remaining

non-zero (there must be at least one such fk, else our original f is zero). Now, we

have two cases, case fk(a1, . . . , an) = 0. The probability of this happening is at most
|k|
|S| by induction. But we are concerned with this happening along with the the entire

polynomial evaluating to 0, which is an even less likely event, so case one happens

with a probability at most |k||S| . If we are in the other case, where fk(a1, . . . , an) 6= 0, we

need the probability of this happening along with the polynomial f(a1, . . . , an, xn+1)
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evaluating to 0 at an+1. By our base case, the latter happens with probability at most

d−k
|S| , and so similarly, the probability in this case overall is still at most d−|k|

|S| . Adding

the probabilities in each disjoint case, we see the probability is bounded above by

d
|S| .

The Schwartz-Zippel-DeMillo-Lipton lemma is useful in polynomial identity testing,

as plugging in a value is much faster than multiplying out factored expressions. For

example, it is much easier to plug in values into a determinant polynomial than it is

to multiply out the polynomial. However, we can only use this lemma when we are

okay with randomized algorithms, and cannot rely on it for deterministic algorithms.

We now slightly switch gears to define the term “general” which we will use in

future examples and sections.

Definition 3.18. Given an algebraic variety X with the Zariski topology, a given

property P is general if it holds on an open dense subset of X. We say a point x in

X is general if it has property P .

Example 3.19. Letting k be an infinite field, A general n×n matrix over k has rank

n. This is because all such matrices lie outside the closed set defined by det(x) = 0,

and are therefore on an open set. As kn×n is irreducible, any non-zero open subset is

dense.

Example 3.20. We will now explicitly run through the algorithm to find an optimal

σ witness for a simple quiver representation. Let Q be the following quiver:

x y z,
a

b

c
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let σ = (1,−1, 0), and let W be

C2 C2 C2.

1 0

0 0


0 1

0 0



0 1

1 0



To find the optimal σ witness, we must first get a random matrix in the blow-up of

the generalized Kronecker reduction. Here, our d = 2 ·σ(x)−1 = 1, so a larger blow-up

is not needed. Next, we construct the set of maps
⊕

W (x)σ+(x) →
⊕

W (y)σ−(y). In

this case, we get the space of maps given by linear combinations of W (a) and W (b).

Choosing a random map A from this , we will take
[
−1 10
0 0

]
, which has pseudo-inverse

P =

[
−0.01 0
0.099 0

]
. Now, for each block in this pseudo-inverse, we add a map to Q,

giving us Q+. In this example, this adds only one arrow, from y to x:

x y z.

a

b

p

c

Our W+ is then defined as W is for all shared vertices and arrows, along with

W+(p) = P . At vertex x, we have K(x) the kernel of A, which is the span of
[
10
1

]
.

As σ is only positive at x, K(y) and K(z) are both defined to be zero. We now want

to find the smallest subrepresentation of W+ that contains K(x), K(y), and K(z).

Denoting the span of a vector by 〈v〉, we go through Algorithm 3.16, starting with

〈
10
1

〉
0 0,

W (a)

W (b)

P

W (c)

and looping through our arrows in the order p, a, b, c. Following P adds nothing to

K(x), following W (a) and W (b) will hit the first coordinate at y, and taking this first

coordinate at y to z will hit the second coordinate, so running the inner loop of the
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algorithm once leaves us with:

〈
10
1

〉 〈
1
0

〉 〈
0
1

〉
.

W (a)

W (b)

P

W (c)

Running through the arrows again, we now see that following P will hit the span

of
〈

0.099
−0.01

〉
, bringing us to the whole space C2 at x. following W (a) and W (b) still

only land us in the first coordinate, and so following W (c) also changes nothing. After

running the inner loop of the algorithm a second time, we have:

C2

〈
1
0

〉 〈
0
1

〉
.

W (a)

W (b)

P

W (c)

At this point, looping through the arrows again will not increase the dimension at

any vertex, and we are done. The quiver representation above without the arrow p is

our optimal σ witness, giving us a discrepancy of 2(1)− 1(1) + 1(0) = 1.

Example 3.21. Consider the quiver:

x1

x2 y x3

a1

a2 a3

With representation V , given by V (xi) = C5, V (y) = C6 and the V (ai) general. Let

σ(xi) = 2, and σ(y) = −5.

In this case, we take d = 29. Constructing our A gives a 30d× 30d block matrix,

computing its kernel gives a 3d dimensional space, which projects onto 3 dimensional

spaces for each V (xi); the image of these projections in V (y) is also 3 dimensional. As

the only path from xi to y is ai, the additional maps in V + are simply pseudo-inverses

of each V (ai), and will not increase the dimension of our subrepresentation. We then
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find c = 2(3) + 2(3) + 2(3)− 5(3) = 3, our quiver representation is not σ-semi-stable,

and has an optimal σ witness of discrepancy 3.

3.4 Non-commutative General Ext and Hom

Recall we have defined HomQ(V,W ) and ExtQ(V,W ) as the kernel and cokernel

respectively of the map:

fVW :
⊕
x∈Q0

Hom
(
V (x),W (x)

)
→
⊕
a∈Q1

Hom
(
V (ta),W (ha)

)
,

where fVW (ϕ) =
(
ϕ(ha)V (a)−W (a)ϕ(ta) : a ∈ Q1

)
.

Definition 3.22. Given dimension vectors α and β respectively, the Euler form or

Ringel form on RQ0 is

〈α, β〉 =
∑
x∈Q0

α(x)β(x)−
∑
a∈Q1

α(ta)β(ha).

Proposition 3.23 (See [DW17]). Given quiver representations V and W with dimen-

sion vectors α and β respectively,

〈α, β〉 = dim HomQ(V,W )− dim ExtQ(V,W ).

Proof. Extending fVW to an exact sequence by adding inclusion of HomQ(V,W ) and

projection of ExtQ(V,W ), the alternating sum of the dimension of spaces must be 0,

and thus the difference in dimension between Hom and Ext is the same as the difference

in dimension between
⊕

x∈Q0
Hom

(
V (x),W (x)

)
and

⊕
a∈Q1

Hom
(
V (ta),W (ha)

)
.

In [Kac82], Kac studied the minimal dimension of HomQ(V,W ) for representations
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V and W of dimension vectors α and β. Define

Zt(α, β) := {(V,W ) ∈ Repα(Q)× Repβ(Q)| dim HomQ(V,W ) ≥ t}.

Each of these subsets of Repα(Q)× Repβ(Q) are closed. Take t the minimal positive

value of dim HomQ(V,W ). Then, Zt+1(α, β) is a proper closed subset. We call the pair

(V,W ) (α, β)-general if they are in the (open and dense) complement of Zt+1(α, β).

On this complement, dim HomQ(V,W ) is constant, as is dim ExtQ(V,W ). In [Sch92],

Schofield called these general hom and ext respectively:

hom(α, β) = dim(HomQ(V,W )), and

ext(α, β) = dim(ExtQ(V,W )).

To calculate these, we may use the following theorem.

Theorem 3.24 (see [Sch92]). Let α and β dimension vectors. We have

ext(α, β) = max
α′
{−〈α′, β〉} = max

β′
{−〈α, β′〉},

where α′ and β′′ are so that for any (α, β)-general pair of representations (V,W ), V has

a subrepresentation of dimension α′ and W has a factor representation of dimension

β′.

Example 3.25. Let α = (1, 2), β = (3, 3), and our quiver be

• •
c
b
a

.

For any V , let V (a) = [x x′], V (b) = [y y′], and V (c) = [z z′]. The set of maps
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dVW are then of the form 
−W (a) xI x′I

−W (b) yI y′I

−W (c) zI zI ′

 ,
giving us hom(α, β) = ext(α, β) = 0, as these matrices have full rank in general. Using

Theorem 3.24, we could see this by noting that in general, a representation W with

dimension vector α only has subrepresentations with W (x) = 0 along with the entire

representation itself. This means the only factor representation dimension vectors β′

we need to go through are (3, n) (for n between 0 and 3) and (0, 0). Summarized by

the following table, we see that the minimum negative Euler form also gives us 0.

β′ −〈α, β′〉
(3, 0) -3
(3, 1) -2
(3, 2) -1
(3, 3) 0
(0, 0) 0

So we also see ext(α, β) is 0 using the theorem, and get hom(α, β) = 0 by sub-

tracting from 〈α, β〉, which is also 0.

We can also look at the minimal dimension of the space of morphisms when one of

the representations is fixed. Crawley-Boevey generalized the general hom in this way

in [CB96], which we show along with the generalization of general ext. To do this, fix

a representation W of Q, with dimension vector β. Define now

Zt(α,W ) := {V ∈ Repα(Q)| dim HomQ(V,W ) ≥ t}.

Again, each of these subsets are closed, and we take t minimal so that dim HomQ(V,W )

is positive. We call V (α,W )-general if it is in the complement of Zt+1(α,W ).

Definition 3.26. Let V be an (α,W )-general representation. We define the (α,W )-
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general hom and ext as

hom(α,W ) = dim(HomQ(V,W )), and

ext(α,W ) = dim(ExtQ(V,W )).

Example 3.27. Returning to Example 3.25, let α = (1, 2), but now fix W to have

W (a),W (b),W (c) given by

A1 =

 0 1 0
−1 0 0
0 0 0

, A2 =

 0 0 1
0 0 0
−1 0 0

, A3 =

0 0 0
0 0 1
0 −1 0


respectively. For any V , again let V (a) = [x x′], V (b) = [y y′], and V (c) =

[z z′]. The set of maps dVW for our fixed W are of the form


−A1 xI x′I

−A2 yI yI ′

−A3 zI zI ′

 ,

giving us hom(α,W ) = ext(α,W ) = 1, as these matrices now have rank 8 in general.

By fixingW to be the skew-symmetric matrices, we’ve increased the minimal dimension

of HomQ(V,W ), and ext(α,W ) is larger as well.

Lemma 3.28. We have

ext(α,W ) ≥ max{−〈α, dimW ′〉 | W ′ factor representation of W}.

Proof. If V is a general representation of dimension α, then applying HomQ(V,_) to

0→ W ′′ → W → W ′ → 0
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gives an exact sequence

· · · → ExtQ(V,W )→ ExtQ(V,W ′)→ 0,

so dim ExtQ(V,W ′) ≤ dim ExtQ(V,W ) and ext(α,W ′) ≤ ext(α,W ). We get

−〈α, dimW ′〉 = ext(α,W ′)− hom(α,W ′) ≤ ext(α,W ′) ≤ ext(α,W ).

Definition 3.29. The non-commutative ext and hom are defined by the following

limits of ext and hom:

ncext(α,W ) = lim
d→∞

ext(dα,W )

d

nchom(α,W ) = lim
d→∞

hom(dα,W )

d
.

Note that for every representation W of dimension β, we have nchom(α,W ) −

ncext(α,W ) equal to 〈α, β〉. These limits were originally studied in [CB96], though

we give them a name to highlight their connection to non-commutative rank, as seen

in the next discussion and proposition.

We have a map

fαW : RepQ(α) −→ Hom
(⊕
x∈Q0

Hom
(
kα(x),W (x)

)
,
⊕
a∈Q1

Hom
(
kα(ta),W (ha)

))

given by sending a representation V to the map fαW (V ), which takes the set of ϕ(x)

from Hom(kα(x),W (x)) over all vertices x to the set of maps ϕ(ha)V (a)−W (a)ϕ(ta)

over all arrows a. Note that the kernel of each fαW (V ) is HomQ(V,W ), and and the

cokernel is ExtQ(V,W ). From this point forward, we will refer to the image of fαW

(the set of fαW (V ) over all V ), as simply fαW itself.
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Next, we note that we can consider RepQ(dα) as the blow-up of RepQ(α) as follows.

Each Z in RepQ(dα) is so that Z(x) ∼= kα(x) ⊗U(x) for U(x) ∼= kd. At the arrows, we

have Z(a) ∼=
∑
Vi(a)⊗ Ui(a), a finite sum where each Ui(a) is a d× d matrix over k,

and each Vi is from RepQ(α). Now, given a V in Repdα, we get a map:

Hom
(⊕
x∈Q0

Hom
(
kdα(x),W (x)

) fdαW (V )
−−−−→

⊕
a∈Q1

Hom
(
kdα(ta),W (ha)

))
.

Notice that we can find ncrk (fαW ) using ncrk (fdαW ) and dividing by d since fdαW is the

dth blow-up of fαW .

Proposition 3.30. The rank and non-commutative rank of fdαW are equal if and only

if nchom(α,W ) =
hom(dα,W )

d
.

For a (dα,W )-general V in Repdα, the kernel of fdαW (V ) is of minimal dimension.

So, rk(fdαW ) =
∑
dα(x)β(x)− hom(dα,W ). We get

rk fdαW
d

=
∑

α(x)β(x)− hom(dα,W )

d
,

showing that the d which maximizes the left-side (giving us the non-commutative

rank), maximizes the right side (minimizing hom(dα,W )
d

, giving us the non-commutative

hom).

Corollary 3.31. Given dimension vector α, and a representation W of dimension β,

the d in the limit of definition 3.29 can be chosen to be

min
{ ∑
x∈Q0

α(x)β(x)− 1,
∑
a∈Q1

α(ta)β(ha)− 1
}
.

Proof. Recall the bound for non-commutative rank blow-ups from [DM17b] is n− 1,

where n is the dimension of both the domain and co-domain. We may not have a

space of square matrices, so a large enough d will be found when we first reach either
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∑
x∈Q0

α(x)β(x)− 1 or
∑

a∈Q1
α(ta)β(ha)− 1.

Theorem 3.32. We have

ncext(α,W ) = max{−〈α, dimW ′′〉 | W ′′ factor representation of W}.

Proof. Choose d so that ncext(dα,W ) equals ext(dα,W )
d

. Look at the set of maps:

Hom
(⊕
x∈Q0

Hom
(
kα(x),W (x)

) fdαW (V )
−−−−→

⊕
a∈Q1

Hom
(
kα(ta),W (ha)

))
,

for all representations V in Repdα. By Proposition 3.30, this set of maps has non-

commutative rank equal to its rank. So we can find the minimal c-shrunk subspace,

which:

1. has the form
⊕

x∈Q0
Hom

(
kdα(x),W ′(x)

)
, for some subrepresentation W ′ of W

(from discussion in section 3.3), and

2. has image of the form
⊕

a∈Q1
Hom

(
kdα(ta),W ′(ha)

)
.

So we get c = d
∑
α(x) dim(W ′(x))− d

∑
α(ta) dim(W ′(ha)) = 〈dα, dim(W ′)〉, but c

gives us the non-commutative rank, so also can be found by
∑
dα(x)β(x)− rk(fdαW ) =

hom(dα,W ). This leaves us with hom(dα,W )
d

= 〈α, dim(W ′)〉 after dividing by d. As

for non-commutative ext, we then get ncext(α,W ) = nchom(α,W )− 〈α, β〉, finally

leaving us with ncext(α,W ) = −〈α, dimW ′′〉, for W ′′ = W/W ′.

Example 3.33. Returning to Example 3.27, we saw ext(α,W ) = 1. However, just as

in Example 3.25, the only subrepresentations of W are with W (x) = 0 along with W

itself. Looping through −〈α, dimW ′′〉 for these subrepresentations, we get a maximum

value of 0. So although the general hom and ext for fixed W was larger than for

general V and W , the non-commuative ext and hom are still 0.
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We note that we can dually fix a representation V , and look at hom(V, β) and

ext(V, β) to define nchom(V, β) and ncext(V, β).

Definition 3.34. The non-commutative ext and hom are defined by the following

limits of ext and hom:

ncext(V, β) = lim
d→∞

ext(V, dβ)

d

nchom(V, β) = lim
d→∞

hom(V, dβ)

d

Theorem 3.35. We have

ncext(V, β) = max{−〈dimV ′, β〉 | V ′ subrepresentation of V }.

Proof. The proof follows from duality of Theorem 3.32. We note that this can also be

seen by using Corollary 1 from [CB96], by subtracting 〈dimV, β〉.

Corollary 3.36. For large enough |k|, there are both deterministic and randomized

algorithms for calculating ncext(α,W ), nchom(α,W ), ncext(V, β), and nchom(V, β).

Proof. We can apply any of the algorithms used to find c-shrunk subspaces to the

set of maps fαW (V ) or fVβ (W ) respectively, and use the dimension of the c-shrunk

subspace to calculate the non-commutative ext and hom.
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CHAPTER IV

Tensors

4.1 Definitions

4.1.1 Rank

We now move onto tensors, a multilinear analog of matrices. Finding the rank

of tensors is much more difficult than for matrices. Finding or bounding this rank,

and approximating a tensor by low rank tensors has applications in signal processing,

algebraic statistics, and more. For a nice overview, see [Lan12].

Let V,W be k-vector spaces. There is a pair (U, β) with U a k-vector space, β a

bilinear map β : V ×W → U , so that for every k-vector space Z and bilinear map

γ : V ×W → Z, there is a unique map γ̃ : U → Z so that the following diagram

commutes:

V ×W U

Z

β

γ
γ̃

The pair (U, β) exists, as any bilinear map from V ×W can be factored through
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the free vector space on V ×W with the relations:

(av + v′, w) = a(v, w) + a(v′, w)

(v, aw + w′) = a(v, w) + a(v, w′)

for any v, v′ in V , w,w′ in W , and a in k, and this factorization will be unique. If we

were to have another pair, (U ′, β′) with this property, we get the diagram:

V ×W U

U ′

β

β′

γ̃

γ̃′

We have γ̃ ◦ β = β′, so γ̃′ ◦ γ̃ ◦ β = γ̃′ ◦ β′ = β. We also have and IU ◦ β = β, so by

uniqueness, γ̃′ ◦ γ̃ = IU . Similarly, γ̃ ◦ γ̃′ = I ′U , and we have an isomorphism.

As pair (U, β) is unique up to isomorphism, we denote U by V ⊗W , and call it

the tensor product of V and W . Elements of V ⊗W are called tensors. Given a basis

for V and W , e1, . . . , en and e′1, . . . , e′n′ respectively, {ei ⊗ e′j|1 ≤ i ≤ n, 1 ≤ j ≤ n′} is

a basis for their tensor product. We can define a tensor product of d vector spaces

V1, V2, . . . , Vd by induction, getting V = V1 ⊗ V2 ⊗ . . .⊗ Vd; tensoring is associative,

and the order does not matter up to isomorphism. We will call d the order of a tensor

in this space. The dimension of V is the product
∏d

i=1 dim(Vi).

Proposition 4.1. There is an isomorphism φ : V ∗ ⊗W → Hom(V,W ).

Proof. Let φ(f ⊗w)(v) = f(v)w. Let vi be a basis for V with dual basis v∗i , and let wi

be a basis for W . The image of v∗i ⊗wj is the linear map sending vi to wj , and vk to 0

for k 6= i. As these maps span Hom(V,W ), φ must be surjective. As the dimensions of

V ∗⊗W and Hom(V,W ) are both dim(W ) dim(V ), this must be an isomorphism.

Definition 4.2. A simple tensor in V = V1 ⊗ V2 ⊗ . . . ⊗ Vd is a tensor of the form

v1⊗ v2⊗ . . .⊗ vd (where each vj is a vector in Vj). The Rank of a tensor T in V is the

55



minimum r so that T can be written as the sum of r simple tensors, i.e. the minimum

r so that we may write

T =
r∑
i=1

v
(i)
1 ⊗ v

(i)
2 ⊗ . . .⊗ v

(i)
d ,

with v(i)j in Vj. We may also call a simple tensor a Rank one tensor.

As we will introduce several different notions of rank for tensors, we will capitalize

Rank when we are using this definition to further distinguish it. From Proposition 4.1,

we can see that the notion of rank for matrices is equivalent to the Rank for order 2

tensors.

Proposition 4.3. Given φ : V ∗ ⊗W → hom(V,W ) from 4.1, and a rank one map, f

in Hom(V,W ), φ−1(f) is a Rank one tensor.

Proof. A rank one matrix A : V → W can be decomposed as v∗w, for some non-zero

vectors w in W , and v∗ in V ∗. However, notice this is exactly the image of v∗ ⊗ w, a

Rank one tensor in V ∗ ⊗W .

Decomposing a tensor into a form explicitly demonstrating its Rank is known by

several names: Canonical Polyadic (CP) Decomposition [Hit27]; Canonical Decompo-

sition (CANDECOMP) [CC70], and Parallel Factorization (PARAFAC) [Har70]. We

caution the reader in that although one of these names is “canonical decomposition”,

this decomposition is not unique.

Example 4.4. The Rank 2 tensor([
0
1

]
⊗
[
0
1

])
+

([
1
0

]
⊗
[
1
0

])
=

([
t
1

]
⊗
[
0
1

])
+

([
1
0

]
⊗
[

0
−t

])
,

does not have a unique decomposition. As matrices, this is equivalent to:[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 t
0 0

]
+

[
0 −t
0 1

]
,

both sums of Rank one tensors give us the identity matrix.
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The decomposition in some cases can be essentially unique - unique up to permu-

tation of the simple tensors in the decomposition.

Definition 4.5. Given v1, v2, . . . , vr in V , the Kruskal rank, KV , of S = {v1, . . . , vr}

is the largest k so that any k elements of S are linearly independent.

Theorem 4.6 (Kruskal’s Theorem [Kru77]). Suppose u1, u2, . . . , ur in U , v1, v2, . . . , vr

in V , and w1, w2, . . . , wr in W have Kruskal ranks KU , KV , and KW respectively, with

KU , KV , KW ≥ 1 and KU +KV +KW ≥ 2r + 2. Then,

T =
r∑
i=1

ui ⊗ vi ⊗ wi

has Rank r, and if

T =
r∑
i=1

ai ⊗ bi ⊗ ci,

then {ui ⊗ vi ⊗ wi} = {ai ⊗ bi ⊗ ci}, i.e. the decomposition is essentially unique.

Example 4.7. Let V = C4 with basis e1, e2, e3, e4. Let vi = ei for 1 ≤ i ≤ 4, and let

v5 = e1 + e2 + e3 + e4. The Kruskal rank of the vi is 4, and so the tensor

T =
5∑
i=1

vi ⊗ vi ⊗ vi

satisfies the hypothesis of Kruskal’s theorem, and has Rank 5.

Kruskal’s theorem gives us one way of proving the tensor Rank for certain order 3

tensors, another theorem that allows us to do this follows.

Proposition 4.8 (See [Lan12]). Given a tensor T in U⊗V ⊗W , Rk(T ) is the smallest

r so that the image of TU , defined by the isomorphism in Propositon 4.1 as the map

U∗ → V ⊗W , is contained in the span of r Rank one tensors.
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Example 4.9. Consider the tensor

T = e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2,

in U⊗V⊗W , with U ∼= V ∼= W ∼= C2. The isomorphism U⊗V⊗W ∼= Hom(U∗, V⊗W )

sends T to TU , the linear map taking e1 and e2 in U to e1 ⊗ e2 + e2 ⊗ e1 and e1 ⊗ e1

in V ⊗W respectively. As matrices, the image of TU is the span of[
0 1
1 0

]
and

[
1 0
0 0

]
,

which requires the span of 3 rank 1 matrices to contain. Therefore T has tensor Rank

3, we can not write it as a sum of fewer Rank 1 tensors. We will return to this Rank 3

tensor several more times.

Although the rank of a matrix A over k does not change if we view A over a field

extension of k, this is not the case for tensor Rank.

Example 4.10. Consider the tensor

T = e1 ⊗ e1 ⊗ e1 − e1 ⊗ e2 ⊗ e2 − e2 ⊗ e1 ⊗ e2 − e2 ⊗ e2 ⊗ e1.

Using Proposition 4.8 over R, we get the image of TU is contained in the span of[
1 0
0 −1

]
and

[
0 −1
−1 0

]
.

This subspace contains no rank 1 matrices, as
[
a b
b −a

]
will have rank 2 for all a and

b not both non-zero. So Im(TU) requires at least 3 rank 1 matrices to span. Three

matrices that work for this are[
1 1
1 1

]
,

[
0 0
0 1

]
, and

[
1 0
0 0

]
,

therefore T over R has Rank 3.
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Instead now, consider this tensor over C. Again using Proposition 4.8, we now can

find the image of TU is contained in the span of only 2 rank 1 matrices,[
1 i
i −1

]
and

[
1 −i
−i 1

]
.

So Rk(T ) is larger over R than over C.

4.1.2 Border Rank

We will now define another notion of rank that is useful for algebraic geometric

methods. As the set of tensors of Rank at most r is not a closed subset, there cannot

be polynomial equations cutting out the tensors of Rank at most r. We instead define

the border rank of a tensor, which allows for the existence of polynomial equations

cutting out the tensors with border rank at most r. Border rank was first used in

[BCRL79], and was first denoted as border rank in [BLR80].

Definition 4.11. The border rank of a tensor T , rk(T ), is the smallest r so that T is

the limit of tensors of Rank at most r.

By definition, the border rank of a tensor is less than or equal to its Rank. Finding

the equations for the tensors of border rank at most r in general remains an open

problem. A summary of what is known on these equations can be found in [Lan12,

Chapter 7].

Example 4.12. Let

T = e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2.

We have seen that this tensor has Rank 3, in Example 4.9. Define Tε so that

εTε = (e1 ⊗ εe2)⊗ (e1 ⊗ εe2)⊗ (e1 ⊗ εe2)− e1 ⊗ e1 ⊗ e1.
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Notice that Tε is at most Rank 2. Taking the limit of Tε as ε→ 0 gives us T , so the

border rank of T is at most 2, though T has Rank 3.

Note that for matrices, border rank is always equal to rank, as rank r matrices are

a Zariski closed subset cut out by the r × r matrix minors.

4.1.3 Slice Rank

First introduced by Tao in [Tao16], the slice rank of a tensor is yet another notion

of rank for tensors. Similar to tensor Rank, we will define slice rank by first defining

slice rank one tensors.

Definition 4.13. A tensor in V1⊗V2⊗ . . .⊗Vd has slice rank one if it is contained in

V1 ⊗ . . .⊗ Vk−1 ⊗ w ⊗ Vk+1 ⊗ . . . Vd

for some index k and w in Vk. A tensor T has slice rank slrkT = r if r is the smallest

integer so that T can be written as the sum of r slice rank one tensors.

Example 4.14. Choosing the same tensor in C2 ⊗ C2 ⊗ C2 from Example 4.9, let

T = e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2.

The tensor T is contained in

e2 ⊗ C2 ⊗ C2 + e1 ⊗ C2 ⊗ C2,

and has slice rank 2.

The slice rank was first denoted as such in [BCC+17], and notes on it can be found

in [ST16]. This notion of rank was introduced to tackle the cap set problem, which

asks: What is the largest set in Fn3 containing no lines? It is conjectured that the

60



maximum is cn for some c < 3. Work on bounding this maximum from both above and

below is an active area of research. A nice summary of the history and applications of

this problem can be found in [Gro19]. We note now that slice rank does not have a

“border” version.

Lemma 4.15 (See [Tao16]). The set of tensors T of slice rank less than or equal to r

is Zariski closed.

Proposition 4.16. Given a tensor T , slrk(T ) ≤ rk(T ).

Proof. By way of contradiction, suppose s = slrk(T ) > rk(T ) = b. The slice rank of

a tensor is less than or equal to its Rank. Note this means that if we can approach

T by rank b tensors, we can approach it by slice rank less than or equal to b tensors.

But by the previous lemma, the set of tensors with slice rank less than or equal to

s− 1 is Zariski closed, this is impossible.

For tensors in V1⊗ . . .⊗ Vd, where the Vi are not all of the same dimension, it may

be more interesting and useful to use a weighted version of the slice rank. Call a slice

rank one tensor contained in V1⊗ . . .⊗ Vk−1⊗w⊗ Vk+1⊗ . . . Vd for some index k and

w in Vk a slice rank one tensor of slice k.

Definition 4.17. Given a tensor T in V1 ⊗ . . . ⊗ Vd, and a d dimensional weight

vector α of positive reals, the α-weighted slice rank of T , slrkα(T ) is the minimum

r =
∑d

k=1 α(k) dim(Wk) so T is contained in

d∑
k=1

V1 ⊗ . . .⊗ Vk−1 ⊗Wk ⊗ Vk+1 ⊗ . . . Vd

where each Wk is a subspace of Vk.

The α-weighted slice rank With α = (1, 1, . . . , 1) is equivalent to the slice rank.

With the α-weighted slice rank, we can now give preference to slicing along certain
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vector spaces. In fact, we can even let the weights be infinity to exclude using certain

orders for the slices (as long as at least one weight is still finite). If one is opposed to

using infinite weights, the same result can be achieved using sufficiently large weights.

A good choice of α is one so that all α(i) dim(Vi) are equal.

Example 4.18. We now look a the tensor T from Example 4.9, but instead consider

it in C2 ⊗ C2 ⊗ C3, and let α = (3, 3, 2). In Example 4.14 we saw T was contained in

e2 ⊗ C2 ⊗ C3 + e1 ⊗ C2 ⊗ C3,

which would give us
∑
α(k) dim(Wk) = 6. However, slicing instead along the third

factor, we also have T contained in

C2 ⊗ C2 ⊗ e1 + C2 ⊗ C2 ⊗ e2,

showing the α-weighted slice rank of T is at most 4.

4.1.4 G-stable Rank

A tensor product is a vector space, so we still have tools from representation and

invariant theory.

Example 4.19. We have an action of G =
∏d

i=1 GL(Vi) on V1 ⊗ . . .⊗ Vd, given by:

(A1, . . . , An) · v1 ⊗ . . .⊗ vd = A1v1 ⊗ . . .⊗ Advd.

Also introduced with the cap set problem in mind, Derksen defined G-stable rank

in [Der20], using the Hilbert-Mumford Criterion (see Proposition 2.41). Before defining

the G-stable rank, we will first define some other tools we will need. The ith flattening

of a tensor T in V1 ⊗ . . .⊗ Vd, is the map

Φi(T ) : (V1 ⊗ . . .⊗ V̂i ⊗ . . .⊗ Vd)∗ → Vd,

62



given by the isomorphism in Proposition 4.1. Two norms we will be working with are

the Euclidean (or `2 norm), || · ||, defined on the tensors, and the spectral norm, || · ||σ,

defined on linear maps. Although defined over any field, we will give the definition of

G-stable rank when working over C.

Definition 4.20. Let G =
∏d

i=1 GL(Vi), and α, a d dimensional weight vector of

positive reals. The G-stable rank of a tensor T in V1 ⊗ · · · ⊗ Vd is

rkGα (T ) := sup
g∈G

min
i

α(i)||g · T ||2

||Φi(g · T )||σ2
.

When α = (1, 1, . . . , 1), we denote the G-stable rank with rkG. Similar to weighted

slice rank, we may exclude the use of certain flattenings by setting weights equal to

infinity (or sufficiently large). Unlike our other notions of rank, the G-stable rank

does not have to be an integer.

Example 4.21. Let α = (1, 1, 1). Again returning to our tensor

T = e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2,

from Example 4.9, by symmetry, each flattening of T is

Φi(T ) =

[
0 1
1 0

∣∣∣∣ 1 0
0 0

]
,

which has largest singular value
√

2. This gives us

rkG(T ) ≥ min
1≤i≤3

||T ||2

||Φi(T )||σ2
=

3

2
.

It can also be shown that rkG(T ) ≤ 3
2
using a more general definition for G-stable

rank (see [Der20] Example 1.4). We have now seen that this tensor has Rank 3, slice

rank 2, border rank 2, and G-stable rank 3
2
.

We will compare the slice rank and G-stable rank following [Der20].
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Lemma 4.22. Given T in V1 ⊗ . . .⊗ Vd and a weight vector α in Rd
>0,

rkGα (T ) ≥ min
1≤i≤d

α(i).

Proof. The Euclidean norm of a tensor T is equivalent to the Euclidean form for any

of its flattenings. For a linear map, the spectral norm is equal to its largest singular

value, σ1 and the Euclidean norm is equal to
√
σ2
1 + . . .+ σ2

n. This gives us

α(i)||T ||2

||Φi(T )||σ2
=
α(i)||Φi(T )||2

||Φi(T )||σ2

=
α(i)

√
σ2
1 + . . .+ σ2

n

σ12

≥ α(i).

So the G-stable rank is bounded below by the minimum component of the weight

vector α.

Lemma 4.23. A tensor of slice rank 1 has G-stable rank 1 for α = (1, 1, . . . , 1).

Proof. Suppose T in V1 ⊗ . . . Vd has slice rank 1. Without loss of generality, let

T = v ⊗ w, with v in V1 and w in V2 ⊗ . . .⊗ Vd. Note that g · T is also slice rank one

with concentration in the first order for all g. For any g, choose a basis of V so that

e1 = gv, the first flattening of g ·T is the rank one map sending e1 to gw, and all other

ei to zero. The only non-zero singular value for this map is ||gw||, which is also the

Euclidean norm for this map, giving us rkG(T ) ≤ 1, so rkG(T ) must be equal to 1.

Lemma 4.24 (See [Der20]). For tensors T and S, rkGα (T + S) ≤ rkGα (T ) + rkGα (S).

Proposition 4.25. Given a tensor T , rkGα (T ) ≤ slrk(T ).

Proof. Suppose T has slice rank r, so we can write T as the sum of r slice rank 1
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tensors, T = T1 + . . .+ Tr. By Lemma 4.24,

rkG(T1 + . . .+ Tr) ≤
r∑
i=1

rkG(Ti).

By Lemma 4.23, rkG(Ti) is 1 for all i, so rkG(T ) ≤ r.

In general, we have now shown:

rkG(T ) ≤ slrk(T ) ≤ rk(T ) ≤ Rk(T ).

Similarly to slice rank, the G-stable rank has no border version.

Proposition 4.26 (See [Der20]). The set of tensors T with rkGα (T ) ≤ r is Zariski

Closed for all r.

We note that the role of α is similar to that of σ when we talk of σ-semi-stability

for quivers. A good choice of α is one that makes all α(i) dim(Vi) equal for tensors in

V1 ⊗ · · · ⊗ Vd.

4.2 Non-commutative Tensor Rank

We have now seen four different notions of tensors, (tensor) Rank, border rank, slice

rank, and G-stable rank. Many of these generalize matrix rank to higher order tensors.

However, we have also seen a notion of rank for spaces of matrices - non-commutative

rank. Although there has been lots of work on the rank of a single tensor, there is not

much (if any) discussion or work on rank of a space of tensors. With this in mind, in

this section, we explore how we can generalize rank to spaces of tensors, by providing

completely new definitions and discussion in this section. We will bring our notions of

tensors from the previous section to define rank on a space of tensors, analogous to

non-commutative rank. Recall we define the rank (or commutative rank) of a linear
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span of matrices A = Span{A1, . . . , Am} as rk(A) = max{r|A ∈ A, rk(A) = r}. In

Section 3.2, we saw four ways of defining non-commutative rank, by using either:

1. rank over the free skew field,

2. c-shrunk subspaces,

3. tensor blow-ups, or

4. semi-stability.

Can we generalize these definitions to instead, a linear subspace of tensors T in

V = V1 ⊗ . . .⊗ Vd? For the case of (commutative) rank of a tensor space T , we can

define it by the maximum rank among all tensors in T . For non-commutative rank,

we will explore generalizing each of these four definitions in the context of tensors.

4.2.1 Over the Free Skew Field: Failure to generalize

Given a matrix, A(x), with homogeneous linear polynomials in k〈x1, . . . , xm〉, the

non-commutative rank of A(x), ncrk(A(x)) is the rank of A(x) over the free skew field.

Notice that for this definition, we do not think of our matrix space as a space, but

instead as a matrix with homogeneous linear entries, e.g. A = x1A1 + . . .+ xmAm.

Example 4.27. Recall the 3× 3 skew-symmetric matrices. We may row reduce to

try to determine the rank:

T =


0 x y

−x 0 z

−y −z 0

 ∼


0 x y

−x 0 z

0 0 zx−1y − yx−1z

 ,

giving us non-commutative rank 3. As we’d like to generalize this to tensors, we

will look at this example as a tensor. Following the notation that the tensor of two
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standard basis vector ei ⊗ ej is [i, j] We have

x
(
[2, 1]− [1, 2]

)
+ y
(
[3, 1]− [1, 3]

)
+ z
(
[3, 2]− [2, 3]

)
.

We can see this is a tensor of (commutative) Rank at least 2, as when x is non-zero,

it’s equivalent to:

[
0 x y

]
⊗


1

0

−z
x

+

[
−x 0 z

]
⊗


1

0

y
x


In the case x is zero, we can similarly show this is (commutative) Rank 2.

In any case, we question what it would mean to manipulate this, or any tensor

over the free skew field. Here, valid operations are unclear, so using this definition to

generalize non-commutative rank is likely not worthwhile.

4.2.2 Generalizing c-shrunk Subspaces

Given a matrix space A, recall a subspace U ⊆ kn is a c-shrunk subspace if

there exists a subspace W ⊆ kn with dim(W ) ≤ dim(U) − c, and for every A in A,

A(U) ⊆ W . The non-commutative rank is n − c where c is maximal so there is a

c-shrunk subspace of A.

To generalize this definition, we will look to slice rank, as there is not a canonical

way to view an order d tensor as a linear map between two spaces.

Recall a non-zero tensor has slice rank 1 if it is contained in V1 ⊗ . . . ⊗ Vi−1 ⊗

w ⊗ Vi+1 ⊗ . . .⊗ Vm, for some index i and some w in Vi. The slice rank of any tensor

T is the smallest r so that T is the sum of r slice rank 1 tensors. Now, we define

non-commutative slice rank for a space of tensors T .
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Definition 4.28. A tensor space T has non-commutative slice rank r if r is the

minimum so that T is contained in the span of r slice rank 1 tensors. Equivalently,

nc-slrk(T ) = min
{ m∑
k=1

dim(Wi)
∣∣∣T ⊆ d∑

k=1

V1 ⊗ . . .⊗ Vk−1 ⊗Wk ⊗ Vk+1 ⊗ . . .⊗ Vm
}
,

where each Wk is a subspace of Vk.

Note we may also define a weighted version of the non-commutative slice rank

building off of our Definition 4.17.

Definition 4.29. Given a tensor space T in V1⊗ . . .⊗Vd, and a d dimensional weight

vector α of positive reals, the α-weighted non-commutative slice rank of T , nc-slrkα(T )

is the minimum r =
∑d

k=1 α(k) dim(Wk) so T is contained in

d∑
k=1

V1 ⊗ . . .⊗ Vk−1 ⊗Wk ⊗ Vk+1 ⊗ . . . Vd

where each Wk is a subspace of Vk.

Equivalently, if T is spanned by T1, . . . , Tm, letting α′ = (α(1), α(2), . . . , α(d),∞),

and {ei} a basis for km,

nc-slrkα(T ) = slrkα′

(
m∑
j=1

Tj ⊗ ej

)
,

i.e. we can bump the order up by one, and look at the slice rank of a single tensor

defined by the spanning set of our original tensor space, simply excluding slicing in

the newly used order (d+ 1).

The non-commutative slice rank can be thought of as a generalization of non-

commutative rank, as in the case of order two tensors (matrices) they are equivalent.

Proposition 4.30. GivenA, a matrix space in Hom(Cn,Cn) ∼= (Cn)∗⊗Cn, ncrk(A) =

nc-slrk(A).
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Proof. Let A be a matrix space, with U a c-shrunk subspace with c maximal. Let

A(U) be the image of U under A, i.e. the span of A(U) for all A in A, which must

have dimension dim(U)− c. Pick a basis so that e1, . . . , ek span U . Then, all matrices

in A are of the form:

 0

| |

a1 . . . ak

| |

∣∣∣∣∣
∣∣∣∣∣

bk+1 . . . bn∣∣∣∣∣
∣∣∣∣∣


,

where the submatrix made of the ai is a (k − c)× k matrix. As tensors, each matrix

in A can be written in the form

k∑
i=1

e∗i ⊗


ai

−

0

+
n∑

i=k+1

e∗i ⊗ bi.

We see our tensor space A is contained in (Cn)∗ ⊗A(U) + e∗k+1 ⊗ Cn + . . .+ e∗n ⊗ Cn,

and so ncslrk(A) ≤ dim(A(U)) + n− k = n− c = ncrk(A). On the other hand, now

suppose nc-slrk(A) = p + q, where A is contained in V ∗ ⊗ Cn + (Cn)∗ ⊗W , with

dim(V ) = p, dim(W ) = q. Change basis so that V ∗ is spanned by e∗1, . . . , e∗p, and W

is spanned by e1, . . . , eq. Then, as a matrix space, A is contained in


0

∗
∗

 ,
where the leftmost block is n × p, and the top right block is size q × (n − p). We

have span{ep+1, . . . , en} shrinks by (n− p)− q under this space, so ncrk(A) is at most

n − ((n− p)− q) = p + q, the slice rank we started with. So in the order 2 tensor

case, nc-slrk(A) = ncrk(A).

Example 4.31. Again returning to the skew symmetric example, most recently
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encountered in Example 4.27, consider the tensor

x
(
[2, 1]− [1, 2]

)
+ y
(
[3, 1]− [1, 3]

)
+ z
(
[3, 2]− [2, 3]

)
.

We’ve already seen when x is non-zero, it’s equivalent to:

[
0 x y

]
⊗


1

0

−z
x

+

[
−x 0 z

]
⊗


1

0

y
x

 ,
and when x is 0, it is equivalent to

[
0 0 1

]
⊗

yz
0

− [y z 0
]
⊗

0
0
1

 .
We see that although each tensor given a fixed x, y, and z has slice rank at most 2,

we will need the span of 3 slice rank one tensors to contain the subspace of tensors

obtained by varying x, y and z.

Slice rank is not unique in that there are other tensor ranks defined in terms of a

rank 1 tensor. For example, our standard tensor Rank: A tensor has Rank 1 if it is of

the form v1 ⊗ . . .⊗ vm, and a tensor has Rank r if it can be minimally written as the

sum of r Rank 1 tensors. Take any notion of rank (your “favorite rank”), which we will

denote in formulas with the placeholder frk to distinguish from the standard Rank,

which we have further distinguished with capitalization. For any notion of rank, we

can now similarly define what it means for a space of tensors to have non-commutative

rank r by using the definition of rank 1 tensors.

Definition 4.32. Given a tensor space T , and a tensor rank frk, the non-commutative

rank of T , nccs-frk(T ), is the minimum r so that T is contained in the span of subspaces

W1, . . . ,Wr of V , where each Wi only contains tensors with frk=1.
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If frk is slice rank, this is equivalent to Definition 4.28. As we will later define

another non-commutative tensor rank, we distinguish this definition with cs, a nod to

it being a generalization of the c-shrunk definition for non-commutative matrix rank.

4.2.3 Generalizing Blow-ups

Recalling the blow-up definition of non-commutative matrix rank, we start with a

matrix space A = Span {A1, . . . , Am}. The dth tensor blow-up of A is

A{d} := M(d)⊗A ⊆M(dn).

The rank of a matrix space, rkA, is the max r so that there is a matrix with rank r

in A. We define the non-commutative rank of A as

ncrk(A) = max
d∈N

rkA{d}

d
.

We can immediately define non-commutative versions of any notion of tensor rank

by extending this definition. First, we will define the vertical tensor product, as

defined in [Der16].

Definition 4.33. Given tensors T = v1⊗ v2⊗ . . .⊗ vm, and S = w1⊗w2⊗ . . .⊗wm,

with T in V = V1⊗ . . .⊗ Vm and S in W = W1⊗ . . .⊗Wd, the vertical tensor product

of T and S is

T � S := (v1 ⊗ w1)⊗ (v2 ⊗ w2)⊗ . . .⊗ (vm ⊗ wm),

a tensor in V �W , the vertical tensor product of tensor spaces, similarly defined as

V �W := (V1 ⊗W1)⊗ (V2 ⊗W2)⊗ . . .⊗ (Vm ⊗Wm).
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Note that although V �W is isomorphic to V ⊗W , we are considering V �W as

an order d tensor space, rather than an order 2d tensor space. We can now move on to

define non-commutative rank for tensors by generalizing our definition using blow-ups.

Definition 4.34. Let T be a tensor space in V1 ⊗ V2 ⊗ . . .⊗ Vm, and frk any notion

of tensor rank. We define the non-commutative rank as

ncbu-frk(T ) = max
d∈N

frk
(
T �

⊗m
i=1 k

d
)

frk (
⊗m

i=1 k
d)

.

In the case of matrix rank, the generic rank is equal to the max rank of the whole

space. That’s not always true in the case of tensor ranks, so we have a choice in

the denominator of this definition, to either choose the max rank among tensors in

the whole space, or to choose the generic rank of tensors in the whole space. To get

around this, we consider notions of rank that are semi-continuous, where these choices

become equivalent. One way of doing this for non-semi-continuous ranks is to replace

them with the border version of that rank.

4.2.4 Generalizing Semi-stability

Our last definition of non-commutative matrix rank utilized semi-stability. In

[Der20], Derksen defines theG-stable rank, taking nods from Hilbert-Mumford criterion

and semi-stability. To generalize the definition to tensor spaces, we will go up an order

to build a single tensor.

Definition 4.35. Let T be a tensor space spanned by T1, . . . , Tm in V1⊗V2⊗ . . .⊗Vd,

G =
∏d

i=1 GL(Vi), and α, a d dimensional weight vector of positive reals. Letting

α′ = (α(1), . . . , α(d),∞), and e1, . . . , em a basis for km, the non-commutative G-stable

rank of T is

nc-rkGα (T ) := sup
g∈G

min
i

α′(i)||g ·
∑m

j=1 Tj ⊗ ej||2

||Φi(g ·
∑m

j=1 Tj ⊗ ej)||σ
2 .
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We similarly defined non-commutative slice rank of a tensor space in this way,

looking at the minimum slice rank 1 tensors needed to give us
∑m

j=1 Tj⊗ ej , restricting

the slices to not be in the (d+ 1)st order. For this reason, the inequalities between

slice rank and G-stable rank for tensors will hold for their non-commutative definitions

for tensor spaces.

Example 4.36. Let α = (1, 1) and T be the skew-symmetric matrices (as a tensor

space), which are spanned by the three tensors: [2, 1] − [1, 2], [3, 1] − [1, 3], and

[3, 2]− [2, 3]. Bumping up to the next order to calculate the non-commutative G-stable

rank, we get

T = [2, 1, 1]− [1, 2, 1] + [3, 1, 2]− [1, 3, 2] + [3, 2, 3]− [2, 3, 3],

a tensor with Euclidean norm
√

6. The first flattening of T is

Φ1(T ) =

 0 0 0
−1 0 0
0 −1 0

∣∣∣∣∣∣
1 0 0
0 0 0
0 0 −1

∣∣∣∣∣∣
0 1 0
0 0 1
0 0 0

 ,
with largest singular value

√
2. Similarly, the second flattening has singular value

√
2, and so rkG(T ) ≥ 3. However, as we saw in Example 4.31, T has non-commutative

slice rank 3, and so this must be the non-commutative G-stable rank.

4.2.5 Inequalities

We’ve now defined non-commutative rank in two distinct ways, in terms of spanning

subspaces (Definition 4.32) and blow-ups (Definition 4.34).

Proposition 4.37. Let T be a tensor space in V1⊗V2⊗ . . .⊗Vm. Then, nccs-frk(T ) ≤

ncbu-frk(T ), where frk is chosen to be slice rank.

Proof. Let nccs-frk(T ) = r, where r =
∑

dim(Wi), and T is contained in the span of

all V1⊗ . . .⊗Vi−1⊗Wi⊗Vi+1⊗ . . .⊗Vm. Then, every tensor in T �
⊗m

i=1 k
d has slice
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rank at most d ·
∑

dim(Wi). This can also be seen via the inequality in [BCC+17,

Proposition 4.2]. The max slice rank of a tensor in
⊗m

i=1 k
d is d, so the denominator

of ncbu-frk(T ) = d, and ncbu-frk(T ) ≤ nccs-frk(T ).
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