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2.12 Speaker impedance measurement data. The real (imaginary) parts of the
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2.14 Experimental results for the single NAM unit cell. (a) Transmission coef-
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predicted by the ideal NAM system could be reproduced experimentally
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by setting H+

g = 0.140 V/Pa and f+
lp = 1676 Hz, and down to 460 Hz

(δx ≈ 0.13λ) by setting H−
g = 0.152 V/Pa and f−

lp = 548 Hz. Again, there
is good agreement between the experimental data (circles), expanded 1D
model (solid lines), and FW simulations (x’s). (b) Relationship between flp
and Hg. For a given flp, the value of Hg required to generate a peak above
40 dB is plotted. (c) Relationship between flp and fpk. For a given flp, the
frequency where the peak occurs, fpk, is plotted (solid line). The upper and
lower frequencies (dashed curves) between which I exceeds 10 dB are also
shown. The colored dots in (b) and (c) indicate the values of flp, Hg, and
fpk for their respective colored curves in (a). . . . . . . . . . . . . . . . . . 33

2.16 Controller parameters measurements. The magnitude and phase of MEMS
microphone sensitivity measurements and the gains as measured across the
audio amplifier and each potentiometer (together forming the proportional
gains Hg, H

+
g , H

−
g ) are shown in the first and third columns. The corner

frequencies (flp, f
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lp , f
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lp ), were determined from measurements across each

low-pass filter (shown in the middle column). Experiemental measurements
are shown in thin black lines along with model predictions (thicker red lines)
using parameters determined by our optimization routine to be the best fit
with impedance measurements (Fig. 2.12), controller parameter measure-
ments (Fig. 2.16), and the experimental results shown in this section. The
large deviation in the MEMS measurement magnitudes is due the inability
of the earbud used to drive the system below 400 Hz (see Section 2.4.3.2). . 35

3.1 Ideal NAM system with two unit cells. The first cell applies a gain G1 to
the signal from the probe at xp

1 and the second cell applies a gain G2 to the
signal the probe at xp

2. The probe for the second cell is located at the same
axial position as the source for the first cell, i.e., xs
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2. . . . . . . . . . . 37
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3.2 Transmission and reflection behavior of the two-cell NAM system (darker,

thicker lines) with equal gains for each cell (G̃1 = G̃2 = 0.4π) compared with

a single NAM cell with G̃ = 0.4π (lighter, thinner lines). (a) Directional
transmission coefficients show that both systems are highly nonreciprocal,
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propagating to the right. (b) Both systems feature directionally independent
reflection coefficients, but for the two-cell system, there exists a null at
kδx = π/2. (c) Both systems feature the ability to shift isolation peaks,

which occur at the same frequency for a given G̃. Isolation for the two-cell
system is significantly more broadband. However, due to stability limits,
isolation levels for G̃ = 0.5π cannot be compared, since G̃ = 0.5π is not
stable for the two-cell system. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Scattering parameters of a two-cell ideal NAM system with gains G̃1 = 0.4π
and G̃2 = 0.35π (thicker, darker lines) compared with a two-cell system

with identical gains G̃ = 0.4π (thinner, lighter lines). (a) Directional trans-
mission coefficients show that differing gains can yield an additional null in
transmission to the right with minimal effects on the transmission to the
left as compared with identical gains. (b) While both systems feature di-
rectionally independent reflection coefficients, differing gains result in a loss
of the total transparency seen in the system with matching gains. (c) The
additional null in (a) yields a second peak in isolation for a two-cell system
with differing gains that extends the overall isolation bandwidth. . . . . . . 40

3.4 Stability characteristics of a two-cell ideal NAM system with differing gains
(i.e., G1 ̸= G2). (a) The stability region (shaded) for a two-cell system
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3.5 Scattering parameters of a two-cell ideal NAM system with gains G̃1 = 0.4π
and G̃2 = 0.35π (thinner, lighter lines) compared with a two-cell system

with G̃1 = 0.4π and G̃2 = 0.5π (thicker, darker lines). (a) Directional trans-

mission coefficients show that increasing G̃2 shifts one null in transmission
further to the right with minimal effects on the transmission to the left. (b)
Again, differing gains result in a loss of the total transparency seen in the
system with matching gains. (c) Isolation of a two-cell system with gains

G̃1 = 0.35π and G̃2 = 0.5π features a peak up to kδx = π/2, extending the

bandwidth of the isolation for two-cell ideal system with gains G̃1 = 0.4π
and G̃2 = 0.35π, which would not be possible in a two-cell system with
matching gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Unit cell spacing in a two-cell ideal NAM system. (a) Adjacent unit cells
have a ratio ∆x/δx = 1 (b) Overlapping unit cells have a ratio ∆x/δx < 1
(c) Separated unit cells have a ratio ∆x/δx > 1. . . . . . . . . . . . . . . . 42
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3.7 Effects of Unit cell spacing on system stability. The upper and lower bounds
of G are shown in red. For 0 < ∆x/δx ≤ 1, the maximum stable gain is
invariant with changing ∆x/δx, equal to G = π/2. For ∆x/δx > 1, the
maximum stable gain tapers, yielding narrower stability ranges for G. The
dashed line represents the lower bound of the operating range of the system
(within which large isolation peaks are possible). . . . . . . . . . . . . . . . 43

3.8 The front panel of the guided user interface (GUI) developed to solve the an-
alytical model for a two-cell system with speaker dynamics. The GUI allowed
a user to select all relevant system parameters, including the electromechan-
ical characteristics of each speaker, the gain and corner frequencies of each
controller, as well as δx and ∆x. The system response was also displayed
on the front panel, including the reflection and transmission coefficients, the
isolation factor, and the Nyquist plot of the open-loop transfer function of
the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Using the nonlinear programming solver, fmincon, from the optimization
toolbox in MATLAB®, parameters for the two cell model that yielded the
results shown as thinner lines, were adjusted by the solver, which was per-
mitted to adjust only the proportional gains of each unit cell. In this case,
the solver found parameters that yielded the results shown as thicker lines,
which featured large isolation peaks and bandwidths. . . . . . . . . . . . . 47

3.10 Providing the same initial parameter quantities as in Fig. 3.9, shown again
here as thinner lines, and allowing the solver to again only vary unit cell
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3.12 Near Field Effects as a function of distance. (a) For a two-cell system with
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simulations (x’s), with the exception of the transmission from left to right
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3.14 Experimental results for a two-cell NAM system. One cell in the system
was tuned such that the isolation was centered near 850 Hz, resulting in a
peak isolation of 46 dB and a 10 dB bandwidth of a half octave. The other
cell in the system was tuned such that the isolation was centered just under
800 Hz,resulting in a peak isolation of 34 dB and a 10 dB bandwidth of 0.4
octaves. Running the system with both cells active resulted in an isolation
performance that exceeded each cell on its own in terms of both peak value
and bandwidth. For both cells together, we saw a peak in isolation of 50
dB, and a 10 dB bandwidth of 0.8 octaves. Here, performances for each unit
cell are shown as lighter lines, and the performance of both cells together
are shown as darker lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Schematic of the nonlocal piezoelectric system in a one-dimensional elastic
domain. The right pair of piezoelectric patches are driven by a controller
that applies a transfer function G to voltage outputs from the left pair
of piezoelectric patches, which are used to sense disturbances upstream a
distance δx from the actuating patches. Flexural waves entering the system
(black) are either attenuated (blue) or amplified (red) depending on their
direction of incidence, indicative of a break in reciprocity. . . . . . . . . . . 55

4.2 Layered segment of beam with length, lp, and base, b. The top and bottom
layers consist of the same piezoelectric material with density, elastic compli-
ance, piezoelectric coefficient, permittivity, and height ρp, s11, d31, ε33, and
hp, respectively. The middle layer consists of elastic material with density,
stiffness, and height ρ, E, and h, respectively. . . . . . . . . . . . . . . . . 56

4.3 Layered segments of beams can be used as sensors or actuators. (a) Bending
in the beam causes one patch to bend and contract and the other patch to
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ABSTRACT

Reciprocity is the principle in the study of wave propagation that states that given

a source and a receiver in a linear domain, switching their locations will not affect the

received signal. Systems that break reciprocity have received substantial attention over the

last few decades for their potential applications in noise and vibration control, cloaking,

and diagnostic imaging. Presented here is an investigation of how action at a distance

affects the scattering characteristics of wave-bearing systems. We focus in particular on how

such a nonlocal coupling, imposed by transmitting a disturbance sensed by a probe at one

location through a controller to an actuator at a separate location, can be used to strongly

break reciprocity in linear acoustic and elastodynamic systems. Because their separation

distances are subwavelength, each probe-actuator pair can be treated as a single unit cell of

a larger metamaterial. First, we present results of a single unit cell in an acoustic waveguide,

highlighting its remarkable ability to break reciprocity over large frequency ranges, and

explain how the behavior can be tuned by adjusting only its controlling electronics. We

discuss the mechanisms by which reciprocity is broken and the conditions required for the

system to be stable. We show how conclusions regarding the characteristics of an ideal plane

wave acoustic model of our system must be adapted when accounting for the controlling

electronics and loudspeaker dynamics used in experimental testing. Next, we discuss how the

open loop feedforward control strategy employed by each acoustic unit cell creates a strong

coupling between neighboring unit cells, and the implications that such coupling has on both

system performance and stability. Then, we show how a similar control strategy can be used

to impose nonlocal coupling in an elastodynamic system using an elastic beam outfitted

xviii



with arrays of piezoelectric patches, a commonly studied structure in active metamaterial

research. We show how the coupling of neighboring piezoelectric patches results in the highly

nonreciprocal transmission of flexural waves. We show how a modified Bernoulli–Euler beam

theory effectively models system behavior, providing a powerful design tool for further study.

Finally, we discuss future directions of this work, which includes constructing larger one-

dimensional arrays of unit cells as well as expanding the concept of action at a distance into

higher dimensions.
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CHAPTER I

Introduction

1.1 Background

A metamaterial is any engineered material that exhibits properties not seen in naturally

occurring media. In wave-bearing systems, such novel properties cause waves to propagate

in unique ways. Passive metamaterials typically rely on arrays of subwavelength resonant

structures that behave as materials with novel constitutive parameters, most commonly, neg-

ative or near-zero mass density [2–11], negative or near-zero bulk modulus [12–15], or both

negative or near-zero density and bulk modulus [16–23]. Such characteristics allow for break-

ing the mass-density law, super-resolution imaging, systems with negative refractive indices,

and certain types of three-dimensional metamaterial cloaks [24]. While these engineered

materials may achieve remarkable in-band frequency response design goals, their response is

limited by Kramers-Kronig type of constraints and typically require resonances to produce

the prescribed functionality [25]. Active elements (i.e., sensors and sources) added to the

metamaterial can in principle correct the scattering characteristics of the passive structure

and remove the constraints of passivity by injecting energy into the impinging wave. How-

ever, the complex near-field interactions between the active elements and the geometrical

features of the metamaterial may create conditions such that it is difficult to achieve a stable

system without exquisite control of the geometry and active control parameters. In many

scenarios this may lead to a drastic reduction in useful bandwidth [26]. This work intro-
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duces a metamaterial architecture in which the effective acoustic properties are determined

entirely by active elements and in which geometrical features play no role in setting the

acoustic behavior. We illustrate the concept by studying a nonlocal, active metamaterial

whose critical dimensions are subwavelength, and highlight the ability of action at a distance

to break acoustic reciprocity.

Interest in nonreciprocal wave propagation has grown substantially in recent years due

to their potential applications in the biomedical, noise control, and communication indus-

tries [27–30]. Acoustic reciprocity is a fundamental property of passive linear wave-bearing

media, requiring that a signal transmitted from a source to a receiver will be unaffected by

switching the source and receiver locations [31]. This trait is remarkably robust, holding

in systems with a variety of material properties and configurations (e.g., lossy viscoelas-

tic media [32], the presence of scatterers, or fluid-structure interaction [33–35]). However,

acoustic metamaterials have proven capable of breaking reciprocity using a variety of mech-

anisms through the careful design of subwavelength structural and dynamical properties.

For instance, combinations of nonlinearities, biasing of the background media, and phononic

bandgap materials [26, 36–41] have been used to elicit directionally dependent wave propa-

gation in passive metamaterials. Active metamaterials have been developed with the aim

of achieving exceptional control over wave propagation, particularly in the subwavelength

regime. These strategies include, but are not restricted to, spatio-temporal modulation of

material properties [42–49], Willis coupling [50–53] and real-time boundary impedance con-

trol using a distributed network of sensors and electrodynamical transducers [54].

Most of these methods suffer from one or more of the following limitations: the intro-

duction of unwanted harmonic tones that require subsequent demodulation, narrow-band

functionality (meaning reciprocity is broken over a very limited range of frequencies), or the

disruption of mean flow in fluid systems. The new approach we introduce here overcomes

these limitations and breaks reciprocity by relying on the spatial separation of sensors and

transducers to create a nonlocal active metamaterial (NAM) system. We demonstrate ex-
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perimentally how a NAM system is capable of generating large, broadband, subwavelength

nonreciprocity in both acoustic and elastodynamic systems that outperforms existing tech-

niques, even in systems with a single NAM unit cell. We show how the frequencies at which

this behavior is centered can be selected by appropriate tuning of the controlling electronics,

providing a flexibility in performance design not seen in other acoustic metamaterials.

1.2 The Physics of Metamaterials

Perhaps the simplest system to consider in understanding how engineered effective ma-

terial parameters can be used to manipulate sound is a one-dimensional (1D) air domain,

where the acoustic pressure, p, is assumed to be harmonic in time. If the acoustic pressure is

of the form p(x, t) = P (x)ejωt, the time-invariant pressure, P , at any location, x, is governed

by the Helmholtz equation,

d2P (x)

dx2
+ k2P (x) = 0, (1.1)

with the wavenumber, k = ω/c, where ω is the angular frequency, and c is the speed of sound

in air. The speed of sound depends on the density, ρ, and bulk modulus, B, of air. Solutions

to Eq. 1.1 represent plane waves that propagate in the x-direction, and take the form

P (x) = Ae∓jkx, (1.2)

where A is an arbitrary complex coefficient to be determined by applying boundary con-

ditions to the domain and j =
√
−1. The sign in the exponent indicates the direction of

travel of the wave, negative for waves traveling in the positive-x direction and vice versa.

Both ρ and B are constant and positive in air and hence so is k and thus pressure waves

propagate in a lossless and nondispersive way. Given the ability to select ρ and B such that

they became frequency dependent or negative over a given frequency range, such a material
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would be dispersive and feature band gaps (frequencies over which waves are evanescent and

do not propagate) [27]. Such a level of control is provided by acoustic metamaterials.

Typically, metamaterials are not homogeneous media, but rather consist of networks of

carefully designed subwavelength unit cells which together act like a bulk material with novel

constitutive properties. As an example, the metamaterial shown in Fig. 1.1(a) consists of

an array of Helmholtz resonators, each of which serves as a single unit cell of the structure

[12]. Waves with wavelengths that are large compared to these resonator dimensions and

separation distances propagated through the system in the same way as they would through

a homogeneous fluid with an elastic modulus that followed the profile shown in Fig. 1.1(b),

where it can be seen that near 33 kHz, Re(E) = 0 and Im(E) < 0, leading to a band gap in

the dispersion relation of the system.

Figure 1.1: A negative bulk modulus metamaterial with each unit cell consisting of a
Helmholtz resonator. The array of unit cells (a) effectively created a system with the bulk
modulus profile shown in (b). Near 33 kHz, Re(E) = 0 and Im(E) < 0, leading to a band
gap in the dispersion relation of the system.

Considering metamaterials in terms of their effective properties can be computationally

more efficient, simplifying the analysis of large arrays of complex unit cells, and can pro-

vide physical insights that might otherwise be obscured by the structural complexity of the

system. Further, while many metamaterials can be classified in terms of how they affect

properties of air-like fluids, i.e., ρ and B, many metamaterials behave in ways that cannot
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be replicated with any combination of ρ and B. One such system is the subject of this

research, and is introduced in the following section.

1.3 A Nonlocal Active Metamaterial

The conceptual framework for the metamaterial presented is introduced as a variation

of the 1D air domain governed by Eq. 1.1 discussed in the previous section, where now

the pressure at any location x depends upon the pressure at some distance δx away, scaled

by a factor of G (see Fig. 1.2(a)). Such behavior can be modelled by adding a non-local

inhomogeneous term to Eq. 1.1, giving

d2P (x)

dx2
+ k2P (x) = GP (x− δx). (1.3)

Substituting wave solutions of the form P (x) = Aejζx into Eq. 1.3, the relationship between

wavenumber and wave frequency (known as the dispersion relation) can be expressed as

ζ2 + k2 = Ge−jζδx, (1.4)

where ζ is the wavenumber. Due to the exponential term on the right-hand side of Eq. 1.4,

there are an infinite number of complex root loci and the equation is not even in ζ, leading

to unusual dispersion characteristics of the system. The real and imaginary parts of the

first two root loci for two nonzero values of G are plotted in Fig. 1.2(b) and Fig. 1.2(c).

The root loci associated with right-traveling and left-traveling waves are shown in blue and

red, respectively. Plotted for reference in black are the root loci for G = 0, which repre-

sent the nondispersive and purely real wavenumber loci ζ−/+ = ±k = ±ω/c. The arrows

on each plot indicate the direction of increasing G. For both root loci with G ̸= 0, the

allowed waves are purely evanescent at low frequencies and asymmetric about the ordinate,

indicating a directional dependence that violates the fundamental principle of acoustic reci-
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Figure 1.2: Behavior of a nonlocal active metamaterial (NAM) system. (a) Example con-
figuration of the NAM concept applied to an airborne acoustic medium. The pressure at
any location x depends upon the pressure a distance δx away, scaled by a factor of G. (b)
The real part and (c) imaginary part of the first two root loci of the complex wavenum-
ber solutions to Eq. 1.4 indicate that the NAM system is dispersive with band gaps at low
frequencies as well as nonreciprocal, with waves travelling to the right (blue) propagating
differently than waves travelling to the the left (red). Black lines corresponding to the case
where G = 0 are included for reference.

procity. The loci for both choices of nonzero gains exhibit a bifurcation point in frequency

beyond which both root loci exhibit decay in the positive-x direction and growth in the

negative-x direction. Increasing G changes the asymmetry of the evanescent component of

the wavenumber, increases the frequency where the bifurcation point occurs, and eventually

results in instability.

To determine whether the dispersion behavior of the NAM system could be realized in

practice, the structure shown Fig. 1.3 was considered. The structure is composed of an array

of unit cells each consisting of an acoustic source driven by a controller that applied a gain

G to signals from an acoustic probe, with each source separated from its respective probe
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by a distance δx. This discrete system can be modeled with

d2P (x)

dx2
+ k2P (x) =

n∑
i=1

GP (xp
i )δ(x− xs

i ), (1.5)

where n is the number of cells, and xp
i and xs

i are the locations of the probe and source of

the ith unit cell, respectively. In anticipation of fabricating a larger probe-source array, the

Figure 1.3: Physical implementation of nonlocal media using a nonlocal active metamaterial
(NAM) system with n unit cells, where xp

i and xs
i are the locations of the probe and source

of the ith unit cell, respectively.

characteristics of a single unit cell will be first considered in the following chapter.

1.4 Overview and Outline

The work presented in this dissertation serves to bolster action at a distance as a general

concept and as a means of breaking reciprocity in wave-bearing systems. Chapter II intro-

duces the constitutive unit cell for a nonlocal active metamaterial (NAM) system. First, the

behavior of an ideal unit cell is analyzed and discussed. Next, we expand the ideal model

and show how a fully coupled acoustic model can adequately predict the performance and

stability of both full-wave simulations and experimental data.

In Chapter III, the single cell system is expanded to include a second cell. The complex

interactions between adjacent cells and their implications on performance and stability are
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discussed for the ideal case, first with an analysis of the effects of changing the individual

controller gains, then with an analysis of the effects of adjusting the relative cell spacing.

Then, as in the case of a single cell, we show how the ideal system behavior qualitatively

matches that of a system with real acoustic sources and present experimental results showing

the significant improvement in performance in systems with multiple unit cells.

In Chapter IV, we discuss how action at a distance in dispersive systems gives rise to

highly nonreciprocal flexural wave transmission. We show how an elastic beam outfitted

with piezoelectric patches, a commonly studied structure in metamaterial research, can be

employed to impose action at a distance in an elastic domain. We detail the approach used

to model the elastic beam and piezoelectric patches used in experiments and show how the

model predicts real data to a high degree of precision.

Finally, in Chapter V, the work presented is summarized and its key contributions listed,

followed by a brief discussion of possible directions for future work.
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CHAPTER II

The NAM Unit Cell

2.1 Introduction

The NAM unit cell is the fundamental building block of the NAM system introduced

in the previous section. A diagram of an ideal unit cell is shown in Fig. 2.1. The unit cell

consists of an ideal acoustic point source acting at xs, driven by a controller that applies a

gain G to a signal from an acoustic probe measuring pressure p(xp, t) a distance δx away

from the source. For simplicity, here we assume the ideal point source can exactly reproduce

the pressure measured at xp at all frequencies. Later, this model will be expanded to include

the dynamics of more realistic acoustic sources. For pressures in the domain of the form

Figure 2.1: The ideal unit cell of a larger NAM system consisting of an acoustic source
located at xs, driven by a controller that applies a gain G to a signal from an acoustic probe
a distance δx away from the source located at xp.
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p(x, t) = P (x)ejωt, this system can be modeled by the following modified Helmholtz equation,

d2P (x)

dx2
+ k2P (x) = GP (xp)δ(x− xs), (2.1)

where k = ω/c, ω is the radian frequency, and c is the speed of sound in air. Using standard

arguments, a proof that the ideal unit cell governed by Eq. 2.1 is nonreciprocal is presented

in the following section.

2.2 Proof of Nonreciprocity

We consider the ideal unit cell shown again in Fig. 2.2. Reciprocity of this system can

be analyzed using the following standard arguments [31]. By adding a source and a receiver

to the system in the two different configurations shown in Fig. 2.2, we have

d2P I(x)

dx2
+ k2P I(x) = GP I(xp)δ(x− xs) +QIδ(x− x1) (2.2)

d2P II(x)

dx2
+ k2P II(x) = GP II(xp)δ(x− xs) +QIIδ(x− x2), (2.3)

where P i(x) is the pressure field resulting from the source Qi, i = I, II. Multiplication of

Eq. 2.2 by P II(x) and Eq. 2.3 by P I(x) yields

P II(x)
d2P I(x)

dx2
+ k2P II(x)P I(x) = GP II(x)P I(xp)δ(x− xs) + P II(x)QIδ(x− x1), (2.4)

P I(x)
d2P II(x)

dx2
+ k2P I(x)P II(x) = GP I(x)P II(xp)δ(x− xs) + P I(x)QIIδ(x− x2). (2.5)
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Subtracting Eq. 2.5 from Eq. 2.4 and integrating from (−∞,∞) results in

∫ ∞

−∞
P II(x)

d2P I(x)

dx2
dx−

∫ ∞

−∞
P I(x)

d2P II(x)

dx2
dx = G

∫ ∞

−∞
P II(x)P I(xp)δ(x− xs)dx

−G

∫ ∞

−∞
P I(x)P II(xp)δ(x− xs)dx+

∫ ∞

−∞

[
P II(x)QIδ(x− x1)− P I(x)QIIδ(x− x2)

]
dx.

(2.6)

Figure 2.2: One-dimensional acoustic domain with pressure source at location xs equal to
the pressure at location a distance δx away from the source (xp) multiplied by a gain G.
(a) A source QI is placed at x1 and the pressure P I is measured at x2. (b) A source QII is
placed at x2 and the pressure P II is measured at x1. Reciprocity of the system dictates that
the transfer function P I(x2)/Q

I in (a) is equal to the transfer function P II(x1)/Q
II in (b).
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Applying Green’s theorem, Eq. 2.6 can be rewritten as

P II(x)
dP I(x)

dx

∣∣∣∣∞
−∞

−
∫ ∞

−∞

dP II(x)

dx

dP I(x)

dx
dx− P I(x)

dP II(x)

dx

∣∣∣∣∞
−∞

+

∫ ∞

−∞

dP I(x)

dx

dP II(x)

dx
dx =

G
[
P II(xs)P

I(xp)− P I(xs)P
II(xp)

]
+ P II(x1)Q

I − P I(x2)Q
II . (2.7)

The left hand side of Eq. 2.7 vanishes by applying the Sommerfeld radiation boundary

condition [55,56]. Eq. 2.7 simplifies to

−G
[
P II(xs)P

I(xp)− P I(xs)P
II(xp)

]
= P II(x1)Q

I − P I(x2)Q
II . (2.8)

Eq. 2.8 shows that the system is acoustically reciprocal (i.e. P II(x1)Q
I = P I(x2)Q

II) only

when P II(xs)P
I(xp) = P I(xs)P

II(xp), which happens at discrete frequencies discussed in

the next section. At all other frequencies, the system is nonreciprocal.

2.3 Behavior of the Ideal System

2.3.1 Scattering Behavior

To study the behavior of the ideal unit cell, we consider solutions to Eq. 2.1 expressed in

terms of the system’s scattering matrix [57], denoted by S̃, which relates the left-going and

right-going waves before and after the unit cell, and can be expressed as

S̃ =

S11 S12

S21 S22

 =
1

∆̃

 −G̃ ejkδx

2jkδx
1(

1− G̃ sinc kδx
)

−G̃ e−jkδx

2jkδx

 , (2.9)

where

∆̃ = 1 + G̃
e−jkδx

2jkδx
. (2.10)
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Expressions for the scattering matrix are grouped in terms of a dimensionless frequency,

kδx, and dimensionless gain, G̃ = Gδx, where G is the controller gain and δx is the distance

between the source and probe. A detailed derivation of S̃ can be found in Appendix A.1. The

diagonal terms of the scattering matrix, S11 and S22, represent the reflection coefficients for

waves incident from either direction, whereas the off-diagonal terms, S12 and S21 represent

the transmission coefficients. For G̃ set to π/2, the transmission and reflection coefficients for

waves incident in either direction across the unit cell are plotted in Fig. 2.3(a) and Fig. 2.3(b),

respectively, over a dimensionless frequency range from zero to π, which corresponds to

separation distances that are half the incident wavelength, λ, or less. While the reflection

coefficient magnitudes are the same in either direction, the transmission coefficients are

dramatically different over nearly the entire frequency range, converging only at the special

frequencies where the system is reciprocal (i.e., when S21 = S12). These frequencies occur

when kδx = nπ (n ∈ Z+). At these frequencies, δx is an integer multiple of λ/2 and

sinc(kδx) = 0. At high frequencies (kδx >> π), the system largely reverts to a passive

waveguide, where S11 = S22 = 0 and S12 = S21 = 1. The most dramatic difference in

transmission occurs when S21 = 0, where a wave incident from the left is exactly cancelled

by the pressure emitted from the source. We quantify the level of nonreciprocity by defining

an isolation level I as the ratio of the magnitudes |S12| and |S21| in the decibel scale as

I = 20 log10

(∣∣∣∣ 1

1− G̃ sinc kδx

∣∣∣∣). (2.11)

The maximum I occurs when 1 − G̃ sinc kδx = 0 (a relationship solved graphically in

Fig. 2.3(d)) which is the same condition for which S21 = 0 (Eq. 2.9). As shown in the

middle curve in Fig. 2.3(c), when G̃ = 0.5π, the peak I occurs when δx = 0.25λ. The

adjacent curves in Fig. 2.3(c) show how the peak frequency, fpk, for constant G̃ increases

with G̃. When G̃ is increased to 0.7π, fpk increases (δx ≈ 0.3λ), while when G̃ is decreased

to 0.4π, fpk decreases (δx ≈ 0.2λ), a 50% change in frequency. These changes in G̃ can be
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Figure 2.3: Transmission and reflection behavior of the NAM unit cell. (a) Directional

transmission coefficients across the NAM unit cell for G̃ = 0.5π demonstrate the highly
nonreciprocal nature of the system, greatest at the null in left-to-right transmission. (b)

Reflection coefficient magnitudes for G̃ = 0.5π show bidirectional symmetry in the reflection
coefficient (|S11| = |S22|). (c) Isolation factors for G̃ = 0.5π, G̃ = 0.4π, and G̃ = 0.7π
demonstrate the flexibility of the NAM technique in positioning the I peak, i.e., where there
is a null in |S21|. (d) Graphical solutions for the frequencies where peaks in I occur (where

G̃−1 intersects the sinc(kδx) curve), which can be shifted by modulating only the electronics
of the NAM controller.

imposed by either modifying the probe-source separation distance δx, which is fixed once

the NAM unit cell is fabricated, or by varying G, the controller transfer function. The latter
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approach is advantageous because we have the ability to artificially resize our unit cell just

through the controlling electronics of the system. Note that for G̃ ≤ 1, perfect cancellation

cannot be achieved and I becomes far less dramatic, hence defining a lower bound for the

dimensionless gain. The upper bound of G̃ is dictated by system stability.

2.3.2 Stability Conditions

As is typical in active systems, the ideal unit cell has the potential to introduce insta-

bilities into the system. It is therefore necessary to understand the conditions necessary for

system stability. In this section, we discuss two techniques to determine stability conditions

for the ideal unit cell.

2.3.2.1 The Lambert W function

Recall that each of the scattering matrix elements in Eq. 2.9 were divided by ∆̃, which,

replacing jω by the Laplace variable, s, can be expressed as

∆̃(s) = 1 + G̃
e−sδx/c

2sδx/c
. (2.12)

The poles of the ideal unit cell, which must lie in the left-hand side of the Laplace domain,

where Re{s} < 0, can be located by finding the roots of Eq. 2.12, which can be expressed in

closed form as

s =
c

δx
W

(
−G̃

2

)
, (2.13)

where W (x) is the Lambert W function [58–60], which yields solutions y to the expression

y = xex. Though W (x) is a multivalued function, limits on G̃ can be determined from the

principal branch of the function, which is plotted in red in Fig. 2.4. For 0 ≤ G̃ < π, the

real part of s is positive, indicating that the poles of the NAM unit cell are located in the

left-hand side of the s-plane, and thus the system is stable. Additional branches are plotted
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Figure 2.4: Branches of the Lambert W function. The principal branch (plotted in red) show

that for 0 ≤ G̃ < π, the real part of s, made dimensionless using δx and c, is less than zero,
indicating that the poles of the NAM unit cell remain in the left-hand side of the s-plane,
resulting in a stable system. Additional branches are plotted as dashed lines for reference.

as dashed lines in Fig. 2.4 for reference. Considering the lower bound G̃ established at the

end of Section 2.3.1, our total operating range for G̃ is

1 ≤ G̃ < π (2.14)

The Lambert W function is a useful tool in evaluating the stability of an ideal NAM unit

cell. However, it will be seen that when we expand our model to predict the behavior of less

ideal and more realistic systems, expressions for their transfer functions are not of the form

in which the Lambert W function is useful. Therefore, in the following section, we show

how the stability bounds found using the Lambert W function can also be found using the

Nyquist Stability Criterion.
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2.3.2.2 Nyquist Stability Criterion

Nelson and Elliot [1] present a concise explanation of how the Nyquist stability criterion

provides a means of determining the stability of a closed loop system through an evaluation

of its open loop transfer function. Their argument is summarized as follows. The poles of a

closed loop system with a transfer function, T (s), of the form

T (s) =
1

1 + L(s)
(2.15)

where s = σ + jω is the Laplace variable, σ and ω are real numbers, and L(s) is the open

loop transfer function of the system, can be located by finding the zeros of its denominator,

F (s) = 1 + L(s). (2.16)

If F (s) is analytic for all but a finite number of points, is single valued, and maps every point

in the s-plane to one and only one point in the F (s) plane (except for singular points), then

a closed contour in the s-plane which does not pass through any singularities of F (s) will

map to a contour in the F (s) plane that encircles the origin N number of times according to

N = Z − P, (2.17)

where Z and P are the numbers of zeros and poles, respectively, of F (s) enclosed by the

the contour in the s-plane. If it is assumed that L(s) is stable in the region enclosed by the

contour, F (s) will have no poles, and P = 0. For the closed loop system to be stable, it must

have no poles in the right half of the s-plane. Therefore, mapping a contour which encloses

the right half of the s-plane, known as the Nyquist contour, to the F (s) plane, generates a

plot, known as the Nyquist plot, which encircles the origin only if the closed loop system is

unstable (again assuming L(s) is stable in the region enclosed by the Nyquist contour). The

Nyquist contour is shown in Fig. 2.5. It can be seen that the Nyquist contour encloses the

17



Figure 2.5: The Nyquist contour [1] encloses the right half of the s-plane as R → ∞ and
r → 0, where r is the radius of semicircles included to avoid singularities of F (s) on the
jω-axis

right half of the s-plane as R → ∞ and r → 0, where r is the radius of semicircles included

to avoid singularities of F (s) on the jω-axis. Usually, the Nyquist plots are generated by

mapping the Nyquist contour onto the L(s) plane, rather than the F (s) plane, and therefore,

since F (s) = 1+L(s), Nyquist plots of the open loop transfer function must not encircle the

point (−1, j0) for the closed loop system to be stable.

To illustrate how the Nyquist stability criterion can be used to evaluate the stability of

NAM systems with transfer functions that cannot be expressed in terms of the Lambert W

function, it is first used to confirm the stability limits of the ideal unit cell, which were found

in the previous section using the Lambert W function. The open loop transfer function for

the ideal NAM cell, L̃(s) can be determined from Eq. 2.12 as

L̃(s) = ∆̃(s)− 1 = G̃
e−sδx/c

2sδx/c
. (2.18)
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Figure 2.6: Nyquist stability criterion applied to the ideal unit cell. (a) The Nyquist contour

used to generate Nyquist plots for L̃(s) with G̃ = 0.999π (b) and G̃ = 1.001π (c). The

Nyquist plot for G̃ = 0.999π does not encircle the point (−1, j0), shown as a red dot,

indicating the system is stable. For G̃ = 1.001π, the Nyquist plot does encircle the point
(−1, j0), indicating an unstable system. These results are consistent with the upper stability
limit found using the Lambert W function.

The Nyquist contour used to generate the Nyquist plot for L̃(s) is shown in Fig. 2.6(a).

Since L̃(s) has a pole at the origin, a semicircle of radius r = 10−4 around s = 0 is included

in the contour. For linear time invariant systems, like the ideal NAM unit cell, the Nyquist

plot of L̃(s) for portions of the contour where s = jω < 0 is a mirror image about the σ-axis

of the contour where s = jω > 0, and is thus omitted. As s = jω → ∞, L̃(s) → 0, and

so the Nyquist contour at s = jω = ∞ maps to the origin, and it was determined that

R = 100 was sufficiently large to generate a useful Nyquist plot. The Nyquist plot for L̃(s)

with G̃ = 0.999π and G̃ = 1.001π are shown in Fig. 2.6(b) and Fig. 2.6(c), respectively.

The Nyquist plot for G̃ = 0.999π does not encircle the point (−1, j0), shown as a red dot,

indicating the system is stable. For G̃ = 1.001π, the Nyquist plot does encircle the point

(−1, j0), indicating an unstable system. These results are consistent with the upper stability

limit found using the Lambert W function, and hence will be relied upon throughout this

work to evaluate system stability.
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2.3.3 Ideal Scattering Behavior: A Physical Interpretation

To understand physically what is happening at the critical frequency where I is maxi-

mized (i.e., where |S21| = 0), it can be helpful to look at the steady state response of the

system shown in Fig. 2.7, which illustrates how incident waves (shown in blue) interact with

waves generated by the source (shown in red) to form the total transmitted and reflected

fields (shown in black). For waves incident in either direction with magnitude 1, the source

generates waves also with magnitude 1, so in either direction, the wave from the source forms

Figure 2.7: Incident waves (blue) interact with waves generated by the source (red) to form
the total transmitted and reflected fields (black). For waves incident in either direction with
magnitude 1, the source generates waves also with magnitude 1, so in either direction, the
wave from the source forms standing waves of magnitude 2 with the incident waves upstream
from the source. Downstream however, for waves incident from the left, pressure from the
source perfectly cancels the incident wave resulting in zero transmission. In the opposite
direction, the downstream waves interfere constructively, resulting in a transmitted wave of
magnitude 2.
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a standing wave of magnitude 2 with the incident waves upstream from the source. Down-

stream however, for waves incident from the left, pressure from the source perfectly cancels

the incident wave resulting in zero transmission. In the opposite direction, the downstream

waves interfere constructively, resulting in a transmitted wave of magnitude 2.

This physical representation also demonstrates nicely why perfect cancellation cannot

occur for waves incident from the right, because if S12 could be zero, this would imply

that the pressure at the probe (P (xp)) would also be zero. Since the source strength is

proportional to P (xp), it is then impossible for the active source with amplitude zero to

cancel the incoming wave from the right.

Though initially we set out to construct a nonlocal metamaterial consisting of large

arrays of cells, the attractive qualities of the ideal unit cell discussed in this section (i.e.,

subwavelength, tunable nonreciprocity) suggested that significant breaks in reciprocity could

be achieved with a single unit cell. Therefore, we sought to build and test a real unit cell.

2.4 Behavior of the Experimental System

2.4.1 Expanded One-Dimensional Model

To determine whether the appealing behavior of the ideal unit cell could be realized

physically, we first expanded our ideal system model, which relied on the assumption of

perfect control of both the controlling electronics and the sound source. To predict and

analyze the behavior of the real unit cell, our ideal mathematical model was expanded to

include the dynamics and fluid-structure interaction associated with a real acoustic source.

Expressions for the scattering matrix, S̄, associated with this expanded model are shown

in Eq. 2.20. A schematic of the expanded coupled electromechanical-acoustic system model

for the real unit cell is shown in Fig. 2.8. The mechanical components of the model are the

speaker cone which is represented as a rigid disk with cross sectional area Sd, centered at

xs, with mass Mm, compliance Cm, damping Rm, and a velocity U . The rigid disk moves
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Figure 2.8: Coupled electromechanical-acoustic system schematic for the simplified one-
dimensional model used to forward predict experimental measurements. The mechanical
components of the model are the speaker cone which is represented as a rigid disk with
cross sectional area Sd, centered at xs, with mass Mm, compliance Cm, damping Rm, and
a velocity U . The rigid disk moves with the voice coil of the loudspeaker, which has an
electrical resistance and inductance, Re and Le, respectively. The electromechanical system
is driven by the voltage Ve, equal to the controller transfer function H(ω) applied to the
signal from the microphone located at xp (Eq. 2.22). Ve induces a current I through the
voice coil, generating a force on the voice coil proportional to the product of its magnetic
field, B, voice coil wire length, l, and the current I. The density of air is given by ρ0 and its
sound speed by c. The cross sectional area of the waveguide is S0

with the voice coil of the loudspeaker, which has an electrical resistance and inductance, Re

and Le, respectively. The electromechanical system is driven by the voltage Ve, equal to the

controller transfer function H(ω) applied to the signal from the microphone located at xp

(Eq. 2.22). Ve induces a current I through the voice coil, generating a force on the voice coil

proportional to the product of its magnetic field, B, voice coil wire length, l, and the current

I. The density of air is given by ρ0 and its sound speed by c. The cross sectional area of the

waveguide is S0. The resulting coupled structural–acoustic equations for the expanded 1D
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model are:

ZeI = −BlU + Ve,

ZmU = BlI − P (xs)Sd,

d2P

dx2
+ k2P =

−jωρ0USd

S0

δ(x− xs),

(2.19)

where the loudspeaker electrical impedance is Ze = jωLe +Re and mechanical impedance is

Zm = jωMm + Rm + 1/jωCm. The electromechanhical parameters of the loudspeaker (Re,

Le, B, l, Sd, Cm, Mm, and Rm) were determined experimentally from loudspeaker impedance

measurements using techniques that will be detailed in Section 2.4.3. Implicit in Eq. 2.19 are

the assumptions that only plane waves propagate in the x-direction, that wavelengths are

sufficiently large compared to the source dimensions (so that the loudspeaker can be modeled

as a rigid disk acting as a point source), and that δx is large enough to neglect near-field

effects from the loudspeaker. To study the validity of these assumptions, we developed com-

parison full-wave (FW) simulations using a three-dimensional finite element model created

in COMSOL Multiphysics®, enabling exploration of the importance of dimensionality and

evanescent wave contributions.

As in the ideal case, the scattering matrix for the expanded 1D structural acoustic model,

S̄, can be determined analytically. Solving Eq. 2.19 we find

S̄ =
1

∆̄

−
(
Ḡ ejkδx

2jkδx
+ κ
)

1(
1− Ḡ sinc kδx

)
−
(
Ḡ e−jkδx

2jkδx
+ κ
)
 , (2.20)

where

Ḡ = −j
ρ0cSdBlH(ω)kδx

S0(ZmZe + (Bl)2)
,

κ =
ρ0cS

2
dZe

2S0(ZmZe + (Bl)2)
,

∆̄ = 1 + κ+ Ḡ
e−jkδx

2jkδx
.

(2.21)
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Comparing the scattering matrix from the ideal case, S̃, from Eq. 2.9, with that from the

coupled system, S̄, from Eq. 2.20, we note a remarkable similarity with two key differences.

The first difference is the appearance of κ in the diagonal elements of S̄ and in ∆̄. The term

κ is associated with the fluid-structure interaction between the speaker cone and air in the

waveguide. For the system we implemented, we found that κ was small and had minimal

contribution to the behavior of the system as predicted by S̄. Second, and more signifi-

cantly, Ḡ is more elaborate than G̃ as Ḡ includes the frequency dependent electromechanical

dynamics of the loudspeaker itself as well as the effects of an analog single-pole low-pass

filter used to mitigate effects from higher order modes not accounted for in our 1D model

(Eq. 2.22). Despite these differences, we will show that the desired features observed in

the ideal model (large, subwavelength, tunable nonreciprocity) are recapitulated in the real

system.

To implement action at a distance, the signal from the microphone is amplified and

filtered so that the output voltage applied to the loudspeaker, Ve, is given by

Ve = H(ω)P (xp) =
Hg

1 + jf/flp︸ ︷︷ ︸
H(ω)

P (xp) , (2.22)

where Hg is the gain supplied by an audio amplifier, flp is the corner frequency of a first

order analog low-pass filter, implemented using discrete circuit components on a breadboard,

and P (xp) is the pressure sensed by the microphone at x = xp. Following the development

and verification of this expanded system model, we proceeded with building and testing an

experimental unit cell.

2.4.2 Experimental Unit Cell and Test Setup

Shown in Fig. 2.9 is an experimental NAM unit cell consisting of a 3D printed section of a

waveguide 15 cm long with an inner cross sectional area of 5 cm x 5 cm, for which the cut-off

frequency is 3376 Hz (Fig. 2.9(a)), which held our probe, an ADMP401 MEMS microphone
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on a SparkFun Electronics breakout board (Fig. 2.9(c)), and our source, a 4 Ohm Dayton

Audio 1-1/4 inch mini speaker, Model CE30P-4 (Fig. 2.9(b)), with a separation distance

of 10 cm. We fabricated two unit cells, one composed of Polylactic Acid (PLA), shown

in Fig. 2.9(a), and one composed of Acrylonitrile Butadiene Styrene (ABS) plastic, which

appears with the full experimental setup in Fig. 2.10(a). The two unit cells were the same

in geometry and in function, except the PLA section contained additional slots to allow for

additional MEMS microphone locations to be used in future testing. These slots were sealed

with un-powered MEMS breakeout boards. The type of material did not have an influence

on system performance, and the unit cells could be used interchangeably.

Experimental testing was performed using the system shown in Fig. 2.10(a). The signal

from the MEMS microphone was sent through an Onkyo audio amplifier (Fig. 2.10(b)),

which centered the signal about 0 V and applied a variable proportional gain. The signal

was also transmitted through one of three single-pole low-pass filters, each with different

corner frequencies (see Table 4.4). For each different filter, a slightly different proportional

Figure 2.9: Experimental Unit Cell. (a) Unit cell fabricated for experimental testing con-
taining a loudspeaker source (b) actuated with signals measured from a MEMS microphone
probe (c) separated by 10 cm from the source. Signals from the probe were filtered and sent
to an audio amplifier to apply the desired gain and phase shift of the signal.
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Figure 2.10: Experimental Setup. (a) The experimental waveguide with NAM unit cell
holding the MEMS microphone probe and mini loudspeaker source between two aluminum
waveguide sections, each with two slots for measurement microphones. The driving loud-
speaker could be placed on either end to create disturbances from either direction. (b) The
Onkyo audio amplifier used to supply the proportional gain to the MEMS microphone sig-
nals. The gain level was fine-tuned by potentiometers on a breadboard since each low-pass
filter required a slightly different proportional gain to achieve the high nonreciprocity seen
in the data (c). This allowed for repeat experiments of different conditions to be conducted
without making any adjustments to the Onkyo amplifier.
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gain was required to achieve the desired large nonreciprocity. 10 kOhm potentiometers were

placed in series with the audio amplifier and low-pass filters to fine-tune the proportional

gain before the signal was transmitted to the loudspeaker source (Fig. 2.10(c)).

Secured on either side of the 3D printed unit cell were two 47 cm long aluminum waveguide

sections with cross sectional areas equal to the NAM unit cell. Each section featured two

holes to position Larson Davis Model 2520 1/4 inch free-field microphones at a total of

four locations. The system was driven by an 8 Ohm Dayton Audio 3 inch loudspeaker

(Model DS90-8). This end speaker could be switched to the other end of the waveguide to

perform tests in either direction, however it was found that reorienting the active section of

our waveguide was simplest. Pressure measurements at four locations along the waveguide

were used to measure the transmission across the NAM unit cell. By employing a standard

technique [61–63], transmission measurements independent of the waveguide end conditions

were obtained.

2.4.3 System Characterization

2.4.3.1 The Loudspeaker Source

Extensive system characterization efforts were needed to obtain the parameters used in

the expanded model discussed in Section 2.4.1 to accurately predict experimental results.

The electrical and mechanical parameters of source loudspeakers [64–67] were determined

through impedance measurements obtained using an Agilent E4980A Precision LCR Meter.

To determine Mm and Cm, impedance measurements were collected with the loudspeaker

in a vacuum jar to remove any acoustic mass loading on the speaker cone (Fig. 2.11(a)).

Proof masses composed of LOCTITE® mounting putty were weighed (Fig. 2.11(b)) and

secured to the loudspeaker diaphragm as shown in Fig. 2.11(c). The putty was tacky and

required no additional adhesive to remain secured to the loudspeaker. From the shift in

resonance frequency resulting from the addition of the putty (along with the known putty

mass), Mm and Cm were estimated. the quality factor of the resonance peak and the high
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Figure 2.11: Speaker impedance measurement setup. (a) Impedance measurements were
collected with the loudspeaker in a vacuum jar to remove effects of acoustic mass loading
from the outside air. (b) Proof masses made from mounting putty were weighed before being
attached to the speaker diaphragm (c) to shift the resonant peak down in the impedance
measurements.

and low frequency asymptotic behavior of the real and imaginary parts of the impedance

measurements were used to estimate the remaining parameters.

The real and imaginary parts of one of those measurements are plotted as light dots

in Fig. 2.12. Overlaying the data are predictions (solid lines) from the following analytical

model [68]:
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Ztot
e = Re +

(Bl)2Rm

R2
m + (ωMm − 1/(ωCm))2

+ j

(
ωLe −

(Bl)2(ωMm − 1/(ωCm))

R2
m + (ωMm − 1/(ωCm))2

)
. (2.23)

Figure 2.12: Speaker impedance measurement data. The real (imaginary) parts of the
impedance measurements are plotted as light red (blue) dots, while the model predictions
from Eq. 2.23 overlay the data as solid red (blue) lines. Parameter values used in model
predictions are listed in Table 2.1.
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Figure 2.13: MEMS microphone sensitivity measurement rig. MEMS mic sensitivity values
were determined using a rig that secured the MEMS mic across from a Larson Davis mea-
surement microphone with known sensitivity. Both microphones faced an interior duct with
one port connected to a small earbud used to drive the system and the other connected to
a long copper coil to mitigate reflections downstream from the fixture.

2.4.3.2 The MEMS Microphone Probe

The MEMS microphone sensitivity was measured using the custom-built test rig shown

in Fig. 2.13. The rig positioned our MEMS microphone across from a well calibrated Larson

Davis microphone. The system was driven by an earbud connected to an open port of

the rig and the other port was terminated using a long coil of copper tubing to minimize

reflections. The driving earbud was incapable of driving the microphones below 400 Hz

and the measurements were rejected below this frequency. The MEMS microphone breakout
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Figure 2.14: Experimental results for the single NAM unit cell. (a) Transmission coefficients
measured across our experimental unit cell (dots) show the nonreciprocal nature of the NAM
unit cell, which acts as a gain media for waves incident from the right (red) and as a loss
media for waves incident from the left (blue), effectively opaque near 525 Hz. (b) Measured
reflection coefficients show a bidirectional symmetry in the fully coupled system. (c) The
isolation factor peaked at over 40 dB near 525 Hz (δx ≈ 0.15λ), with isolation above 10
dB over a third of an octave. There is good agreement between the experimental data,
expanded 1D model (solid lines), and FW simulations (x’s) with deviations primarily due
to loudspeaker impedance measurement variations used to determine the electromechanical
characteristics of the loudspeaker source.

board included an inverting amplifier circuit to condition the microphone signal that resulted

in a delay which was accounted for in transfer function H(ω) with a phase shift.

2.4.4 Experimental Results

Experimental results for the NAM unit cell with Hg = 0.143 V/Pa and flp = 830 Hz

are plotted in Fig. 2.14. The measured transmission coefficients (dots) in Fig. 2.14(a) show

a highly nonreciprocal nature similar to that observed in the ideal NAM model (Eq. 2.1).

The coupled electromechanical-acoustic response of the NAM unit cell is well represented by

both the expanded 1D model (solid lines) and FW models (x’s). This demonstrates that the

effects of three-dimensionality and the loading of evanescent modes on the source speaker

are not dominant. Hence, the 1D structural acoustic model of Eq. 2.19 can be used to select

design parameters in a computationally inexpensive way. For waves travelling to the right,

the NAM behaves primarily as a loss medium, effectively opaque near 525 Hz (δx ≈ 0.15λ),

resulting in a remarkable I peak of over 40 dB (Fig. 2.14(c)). The bidirectional symmetry
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of the amplitudes of the reflection coefficients predicted by the ideal NAM model is nearly

preserved by experimental data in Fig. 2.14(b). The nonreciprocity of the experimental

system is broadband, with I magnitudes above 10 dB across a third of an octave (from 470

Hz to 600 Hz). Furthermore, the ability to electronically shift the frequencies at which the

I peaks occur was demonstrated experimentally. Fig. 2.15(a) shows isolation factors for the

experimental setup with H+
g = 0.140 V/Pa and f+

lp = 1676 Hz, shifting fpk up to 586 Hz

(δx ≈ 0.17λ), and with H−
g = 0.152 V/Pa and f−

lp = 548 Hz, shifting fpk down to 460 Hz

(δx ≈ 0.13λ). For both additional peaks, the NAM unit cell remained subwavelength, and

the ≈ 40 dB I magnitudes and relative bandwidths were maintained.

A careful analysis of S̄ reveals that real system behavior is strongly linked to both

the controller characteristics (Hg and flp) and the electromechanical characteristics of the

loudspeaker. Hence, accurate characterization of the real loudspeaker source is required to

select appropriate controller parameters. The relationship between flp and Hg is shown in

Fig. 2.15(b). The value of Hg required to achieve I peaks exceeding 40 dB for a given flp

is plotted. The relationship between flp and fpk is shown in Fig. 2.15(c). The frequency at

which the I peak occurs (fpk) for a given flp is plotted (solid line). Also in Fig. 2.15(c) are

the the upper and lower frequencies (dashed lines) between which the I exceeds 10 dB. For

values of flp bellow 1000 Hz, there is an inverse relationship between Hg and flp, and Hg is

more sensitive to changes in flp than for values of flp above 1000 Hz, where Hg begins to

increase monotonically with flp. For all values of flp shown, the large relative bandwidths are

maintained. While we demonstrated experimentally three different frequencies at which the

NAM system can generate large, broadband, subwavelength nonreciprocity in Fig. 2.15(a),

Fig. 2.15(b) and Fig. 2.15(c) suggest that these frequencies could be chosen arbitrarily over

a range of 100 Hz or more.

The remarkable match between model predictions and experimental data shown in this

section is a direct result of the extensive system characterization efforts detailed in Section

2.4.3. Included in these parameter measurements were estimates of measurement variation.
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Figure 2.15: Electronic tunability of the NAM system. (a) The remarkable tunable nature
predicted by the ideal NAM system could be reproduced experimentally (circles). The peak
isolation frequency was shifted up to 586 Hz (δx ≈ 0.17λ) by setting H+

g = 0.140 V/Pa and
f+
lp = 1676 Hz, and down to 460 Hz (δx ≈ 0.13λ) by setting H−

g = 0.152 V/Pa and f−
lp = 548

Hz. Again, there is good agreement between the experimental data (circles), expanded 1D
model (solid lines), and FW simulations (x’s). (b) Relationship between flp and Hg. For a
given flp, the value of Hg required to generate a peak above 40 dB is plotted. (c) Relationship
between flp and fpk. For a given flp, the frequency where the peak occurs, fpk, is plotted
(solid line). The upper and lower frequencies (dashed curves) between which I exceeds 10
dB are also shown. The colored dots in (b) and (c) indicate the values of flp, Hg, and fpk
for their respective colored curves in (a).

We used optimization tools to vary each parameter within their respective ranges to find

parameter values that minimized the deviations of model predictions with experiments as
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Property Description Value

Mm (g) Diaphragm mass 0.65

Cm (mm/N) Suspension compliance 0.29

Rm (Nm/s) Suspension mechanical resistance 0.32

Le (mH) Voice coil inductance 0.23

Re (Ω) Voice coil DC resistance 3.75

Bl (Tm) Magnetic field x voice coil length 1.70

Sd (cm2) Diaphragm projected area 2.05

Table 2.1: Loudspeaker parameter values. Each parameter in Eq. 2.23 is listed with a de-
scription and a value determined by an optimization routine to be the best fit with impedance
measurements (Fig. 2.12), controller parameter measurements (Fig. 2.16), and the experi-
mental results shown in this section.

Property Description Value

Hg (V/Pa) Gain for peak at 525 Hz 0.142

flp (Hz) Corner freq. for peak at 525 Hz 830

H+
g (V/Pa) Gain for peak at 592 Hz 0.145

f+
lp (Hz) Corner freq. for peak at 592 Hz 1660

H−
g (V/Pa) Gain for peak at 460 Hz 0.147

f−
lp (Hz) Corner freq. for peak at 460 Hz 558

Table 2.2: Controller parameter values. Each parameter is listed with a description and a
value determined by an optimization routine to be the best fit with impedance measurements,
controller parameter measurements, and experimental results. Gains include both the MEMS
mic sensitivity and audio amplifier gain. Plots using these values (red) are compared with
measurement data (black) in Fig. 2.16.

well as deviations of estimated parameter values from measurements obtained from system

characterization testing. The resulting parameter values used in model predictions are listed

in Table 2.1 and Table 2.2.
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Figure 2.16: Controller parameters measurements. The magnitude and phase of MEMS
microphone sensitivity measurements and the gains as measured across the audio amplifier
and each potentiometer (together forming the proportional gains Hg, H

+
g , H

−
g ) are shown

in the first and third columns. The corner frequencies (flp, f
+
lp , f

−
lp ), were determined from

measurements across each low-pass filter (shown in the middle column). Experiemental mea-
surements are shown in thin black lines along with model predictions (thicker red lines) using
parameters determined by our optimization routine to be the best fit with impedance mea-
surements (Fig. 2.12), controller parameter measurements (Fig. 2.16), and the experimental
results shown in this section. The large deviation in the MEMS measurement magnitudes is
due the inability of the earbud used to drive the system below 400 Hz (see Section 2.4.3.2).

2.5 Conclusion

We have experimentally demonstrated large, tunable, broadband nonreciprocity for a

subwavelength device using our NAM strategy. We showed that a simple one-dimensional

coupled acoustic model can adequately predict the performance and stability of both full-

wave simulations and experimental data. In the next chapter, we discuss ways that perfor-

mance can be further improved in systems with multiple unit cells.
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CHAPTER III

Multiple NAM Unit Cells

3.1 Introduction

Following the success in implementing a single NAM unit cell, this chapter discusses

the design and construction of NAM systems composed of multiple NAM unit cells. First,

the ideal model was extended to include two unit cells, which revealed a complex interac-

tion between individual unit cells, with trade-offs in performance enhancements and stabil-

ity limitations dictated by individual controller gains and relative cell spacing. Then, as

in the previous chapter, we extend the ideal model to include real speaker dynamics and

fluid-structure interactions, discussing efforts to optimize the parameters of a real system

and considering the extent to which simplifying assumptions in the model, like excluding

loudspeaker near-field effects, are valid. Finally, we exhibit the attractive characteristics

predicted by our models with experimental data.

3.2 The Two-Cell Ideal System

In moving toward the construction of physical systems with multiple real NAM unit

cells, the single ideal NAM unit cell model was extended to include a second cell as shown

in Fig. 3.1, with probes and sources located at xp
1 and xs

1 for the first cell and xp
2 and xs

2 for

the second cell, respectively. The probe for the second cell is adjacent to the source for the
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Figure 3.1: Ideal NAM system with two unit cells. The first cell applies a gain G1 to the
signal from the probe at xp

1 and the second cell applies a gain G2 to the signal the probe at
xp
2. The probe for the second cell is located at the same axial position as the source for the

first cell, i.e., xs
1 = xp

2.

first cell (i.e., xs
1 = xp

2). The controllers for the first and second cells apply gains G1, and

G2, respectively.

3.2.1 The Two-Cell Ideal System With Matching Gains

Using the same method described in Chapter II, the scattering matrix for a system with

two ideal cells with identical gains, i.e., G̃1 = G̃2 = G̃, G̃i = Giδx, i = 1, 2, denoted by SII ,

is

SII =
1

∆̃

 − G̃
jkδx

cos kδx 1(
G̃ sinc kδx− 1

)2
− G̃

jkδx
cos kδx

 , (3.1)

where

∆̃ = 1 + G̃
e−jkδx

jkδx
, (3.2)

By comparing Eq. 3.2 with Eq. 2.10, it can be seen that the stability limit of adjacent cells

with equal gains is exactly half the limit for a single cell, i.e., 0 ≤ G̃ < π/2. For G̃ =

0.4π, Fig. 3.2 shows the reflection, transmission, and isolation characteristics of a two-cell

system (plotted as darker, thicker lines) compared with a one-cell system (plotted as lighter,
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Figure 3.2: Transmission and reflection behavior of the two-cell NAM system (darker, thicker

lines) with equal gains for each cell (G̃1 = G̃2 = 0.4π) compared with a single NAM cell

with G̃ = 0.4π (lighter, thinner lines). (a) Directional transmission coefficients show that
both systems are highly nonreciprocal, with transmission differences maximized at nulls
in transmission of waves propagating to the right. (b) Both systems feature directionally
independent reflection coefficients, but for the two-cell system, there exists a null at kδx =
π/2. (c) Both systems feature the ability to shift isolation peaks, which occur at the same

frequency for a given G̃. Isolation for the two-cell system is significantly more broadband.
However, due to stability limits, isolation levels for G̃ = 0.5π cannot be compared, since
G̃ = 0.5π is not stable for the two-cell system.

thinner lines). Directional transmission coefficients (Fig. 3.2(a)) show qualitative similarities

between a one-cell and two-cell NAM system, in particular their highly nonreciprocal nature

maximized at the null in transmission of waves propagating to the right. Similar to the

one-cell system, reflection magnitudes for the two-cell system are directionally independent.

However, the reflection coefficients (Fig. 3.2 (b)) for the two-cell system feature a null at

kδx = π/2 that represents a frequency where the system is transparent. The diagonal

elements of the matrix in Eq. 3.1 show clearly that the system is in fact transparent for any

kδx = (2n + 1)π/2 (n ∈ Z+). While peaks in isolation (Fig. 3.2(c)) for each system occur

at the same frequency for a given G̃, it can be seen that isolation for a two-cell system is

significantly more broadband than for a one-cell system, while also preserving the tunable

nature of the one-cell system. Limitations include the fact that, due to stability limits, the

isolation peak for a two-cell system cannot be shifted as far up in frequency as the one-cell

system (Fig. 3.2(c)). Also, the two-cell system is less compact at twice the length of a single

cell. Limitations aside, the results shown in Fig. 3.2 illustrate the significant advantages of
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a two-cell system over a one-cell system. For a given controller gain, the two-cell system

greatly increases the isolation bandwidth while preserving tunability.

3.2.2 The Two-Cell Ideal System With Differing Gains

Further enhancements to the improved performance of a two-cell system with matching

gains can be achieved with a slightly more general two-cell system, one in which the condition

of identical gains is relaxed. The scattering matrix for a two-cell NAM system with differing

gains is

S̄II =
1

∆̄

 −G̃1
ejkδx

2jkδx
− G̃2

e−jkδx

2jkδx
1(

G̃1 sinc kδx− 1
)(

G̃2 sinc kδx− 1
)

−G̃1
e−jkδx

2jkδx
− G̃2

ejkδx

2jkδx

 , (3.3)

where

∆̄ = 1 +
(
G̃1 + G̃2

) e−jkδx

jkδx
. (3.4)

Fig. 3.3 compares a two-cell system with identical gains G̃ = 0.4π (thinner, lighter lines)

with a two-cell system with G̃1 = 0.4π and G̃2 = 0.35π (thicker, darker lines). While the

transmissions of waves propagating to the left, shown in Fig. 3.3(a), are nearly the same for

the two systems, the system with differing gains yields an additional null in the transmission

to the right, resulting in an additional peak in isolation shown in Fig. 3.3(c). Along with this

additional peak comes an even wider isolation bandwidth. Both systems have directionally

independent reflection coefficients as can be seen in Fig. 3.3(b), however the the system with

differing gains is never totally transparent as it features no nulls in its reflection coefficients.

The restricted tunability resulting from the narrower stability ranges seen in a two-cell system

with matching gains as compared to a one-cell system can me mitigated in two-cell systems

with differing gains. From Eq. 3.4, the range of stability is 0 ≤ (G̃1 + G̃2) < π, and hence
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Figure 3.3: Scattering parameters of a two-cell ideal NAM system with gains G̃1 = 0.4π
and G̃2 = 0.35π (thicker, darker lines) compared with a two-cell system with identical gains

G̃ = 0.4π (thinner, lighter lines). (a) Directional transmission coefficients show that differing
gains can yield an additional null in transmission to the right with minimal effects on the
transmission to the left as compared with identical gains. (b) While both systems feature
directionally independent reflection coefficients, differing gains result in a loss of the total
transparency seen in the system with matching gains. (c) The additional null in (a) yields
a second peak in isolation for a two-cell system with differing gains that extends the overall
isolation bandwidth.

stability conditions apply to the total sum of the dimensionless gains, rather than on each

gain individually. Therefore, rather than a stability range for each gain, the system featured

an unbounded stability region for G̃1 and G̃2. This region is indicated by the shaded area in

Fig. 3.4(a). Though stable over the entire region, the expression for S21 in Eq. 3.3 requires

G̃1 > 1 and G̃2 > 1 to achieve the two nulls in transmission that yield separate isolation

peaks. So, although the region of stability is unbounded, the design space of interest is

restricted to the shaded triangular region in Fig. 3.4(b).

Considering the behavior of the ideal system with gains G̃1 = 0.4π and G̃2 = 0.35π,

plotted again in Fig. 3.5 as lighter, thinner lines, the stability range shown in Fig. 3.4(b)

indicates the reduction in G̃1 allows for an increase in G̃2. Fig. 3.5 shows the behavior for

an ideal two-cell system with gains G̃2 = 0.5π (an otherwise unstable gain in a two-cell

system with matching gains) and G̃1 = 0.35π, plotted as thicker, darker lines. Note that the

isolation level shown in Fig. 3.5 (c) features a peak up to kδx = π/2 which would not be

possible in a two-cell system with matching gains. The advantages of a two-cell system with

G̃1 ̸= G̃2 will be demonstrated with experimental results discussed later in this chapter.
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Figure 3.4: Stability characteristics of a two-cell ideal NAM system with differing gains
(i.e., G1 ̸= G2). (a) The stability region (shaded) for a two-cell system with differing gains

(0 ≤ (G̃1 + G̃2) < π)(b) Design space of interest where combinations of gains yield multiple
isolation peaks.

Figure 3.5: Scattering parameters of a two-cell ideal NAM system with gains G̃1 = 0.4π
and G̃2 = 0.35π (thinner, lighter lines) compared with a two-cell system with G̃1 = 0.4π

and G̃2 = 0.5π (thicker, darker lines). (a) Directional transmission coefficients show that

increasing G̃2 shifts one null in transmission further to the right with minimal effects on the
transmission to the left. (b) Again, differing gains result in a loss of the total transparency

seen in the system with matching gains. (c) Isolation of a two-cell system with gains G̃1 =

0.35π and G̃2 = 0.5π features a peak up to kδx = π/2, extending the bandwidth of the

isolation for two-cell ideal system with gains G̃1 = 0.4π and G̃2 = 0.35π, which would not
be possible in a two-cell system with matching gains.

3.2.3 Relative Cell Spacing in a Two-Cell Ideal System

In the previous sections, we saw that for ideal unit cells, varying the gains of each

individual cell had significant implications in terms of both system performance and stability.
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Figure 3.6: Unit cell spacing in a two-cell ideal NAM system. (a) Adjacent unit cells have a
ratio ∆x/δx = 1 (b) Overlapping unit cells have a ratio ∆x/δx < 1 (c) Separated unit cells
have a ratio ∆x/δx > 1.

Before moving onto the study of a more realistic 1D model with speaker dynamics, we

examine another important degree of freedom for the two-cell system, which is the relative

spacing between unit cells. As shown in Fig. 3.6, unit cell spacing can be characterized

in terms of the value of the ratio ∆x/δx, where ∆x represents the separation between the

first and second probes or the first and second sources, with ∆x/δx = 1 for adjacent cells

(Fig. 3.6(a)), ∆x/δx < 1 for overlapping cells (Fig. 3.6(b)), and ∆x/δx > 1 for separated

cells. Unfortunately, closed form solutions for the scattering parameters of systems where

∆x/δx ̸= 1 do not simplify into expressions that offer the same level of insight as did the

expressions for ∆x/δx = 1, even for the ideal systems without speaker dynamics, and hence

the effects of relative cell spacing had to be investigated using analytical model solutions.
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Figure 3.7: Effects of Unit cell spacing on system stability. The upper and lower bounds
of G are shown in red. For 0 < ∆x/δx ≤ 1, the maximum stable gain is invariant with
changing ∆x/δx, equal to G = π/2. For ∆x/δx > 1, the maximum stable gain tapers,
yielding narrower stability ranges for G. The dashed line represents the lower bound of the
operating range of the system (within which large isolation peaks are possible).

One particularly interesting finding that arose from varying cell spacing in the ideal

system model was the effect ∆x/δx had on system stability. For a pair of unit cells with equal

gains, G, stability was evaluated using the Nyquist stability criterion (see Section 2.3.2.2).

The upper and lower bounds of G are shown in red in Fig. 3.7. For 0 < ∆x/δx ≤ 1, the

maximum stable gain is invariant with changing ∆x/δx, equal to G = π/2. For ∆x/δx > 1,

the maximum stable gain tapers, yielding narrower stability ranges for G. The dashed line in

Fig. 3.7 represents the lower bound of the operating range (within which large isolation peaks

are possible). Like the stability range, the operating range is also constant for 0 < ∆x/δx ≤ 1

and becomes narrower with increasing ∆x/δx for ∆x/δx > 1.

We showed in this section a number of interesting features for an ideal two-cell system,
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discussing the effects of changes to the gain and separation distances on system performance

and stability. For the single unit cell, we saw that ideal system behavior qualitatively matched

real experimental cells, but that it was necessary to expand the ideal model to account for

speaker dynamics and fluid-structure interactions. These features are included for a two-cell

NAM system in the next section.

3.3 The Two-Cell Systems with Speaker Dynamics

As was shown for the single NAM unit cell, introducing loudspeaker dynamics into the

system model reveals that both performance and stability depend on the complicated re-

lationships of the electrical and mechanical properties of the loudspeaker, not only with

each other, but with all other system parameters. This complexity is further exacerbated

by adding in a second unit cell with a second loudspeaker with its own characteristics. We

found that the unit-to-unit variation of the loudspeakers we were using was significant and

had to be taken into account in our modeling efforts. Hence, to study the two-cell system

with real loudspeakers, we developed a guided user interface (GUI) in MATLAB® to solve

the analytical model based on user inputs. The front panel of the GUI, shown in Fig. 3.8,

allowed the user to select all relevant system parameters, including the electromechanical

characteristics of each speaker, the gain and corner frequencies of each controller, as well

as δx and ∆x. The system response was also displayed on the front panel, including the

reflection and transmission coefficients, the isolation factor (I), and the Nyquist plot of the

open-loop transfer function of the system, used to determine system stability. The GUI

shown in Fig. 3.8 served as a powerful tool in developing an intuition about important sys-

tem parameters and for answering questions normally addressed by large-scale sensitivity

studies in real time. For example, as in the ideal model, the GUI indicated that changing

∆x/δx in the region where cells overlap had no effect on stability, while stability margins for

separated cells (i.e.,∆x/δx < 1), as indicated by the proximity of the Nyquist curve to the

point (−1, 0j) (red dot), decreased with increasing ∆x/δx beyond 1. Most importantly, the
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Figure 3.8: The front panel of the guided user interface (GUI) developed to solve the analyt-
ical model for a two-cell system with speaker dynamics. The GUI allowed a user to select all
relevant system parameters, including the electromechanical characteristics of each speaker,
the gain and corner frequencies of each controller, as well as δx and ∆x. The system response
was also displayed on the front panel, including the reflection and transmission coefficients,
the isolation factor, and the Nyquist plot of the open-loop transfer function of the system.

GUI allowed for quickly finding various sets of parameters that resulted in a stable two-cell

system with multiple isolation peaks. However, with so many degrees of freedom, we turned

to optimization techniques to assist in finding the best system design.

3.3.1 Optimization for Experimental Unit Cell Separation

To determine the optimal design for an experimental two-cell system, we used the non-

linear programming solver, fmincon, from the optimization toolbox in MATLAB®, which

finds the minimum of a user defined objective function, Z, using optimization methods to

vary parameters within a user defined model. An initial verification test is shown in Fig. 3.9.
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Model parameters were initially set such that the system scattering characteristics followed

the thinner lines. Because we were interested in maximizing the level of nonreciprocity of

the system, we were in search of isolation curves with high magnitudes and bandwidths, and

hence, we chose the area under the isolation curve over the frequency shown,
∫
I as our

variable to optimize, yielding the objective function

Z =
1∫
I
. (3.5)

Allowing the solver to only vary the gain of each cell resulted in a solution shown in the

thicker lines in Fig. 3.9. Clearly the solver was successful in determining the appropriate

gains for each unit cell that maximized nonreciprocity. Although the solution shown yielded

a stable system, it was quickly found that this was not always the case, and it was necessary

to determine a way to take stability into account. One requirement of Z is that it must

be smooth and differentiable, and hence a binary component indicating whether or not the

system was stable was not admissible as part of an objective function. However, we noticed

that, in general, the peak level in S12 was well correlated with the stability margin of the

system. An example of this can be seen in Fig. 3.9. Hence, we modified the objective function

to include the peak level in S12 as

Z =
1∫
I
+max |S12|. (3.6)

Providing the same initial parameter quantities as before, shown again as thinner lines in

Fig. 3.10, allowing the solver to again only vary unit cell gains to minimize Eq. 3.6 yielded

the behavior shown in Fig. 3.10 as thicker lines. In this case, the isolation performance was

significantly degraded. It is clear that max |S12| had a greater contribution to Z than did

the area under the isolation curve.

The competing objectives in Eq. 3.6 could be managed by introducing the constants ξ1
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Figure 3.9: Using the nonlinear programming solver, fmincon, from the optimization toolbox
in MATLAB®, parameters for the two cell model that yielded the results shown as thinner
lines, were adjusted by the solver, which was permitted to adjust only the proportional gains
of each unit cell. In this case, the solver found parameters that yielded the results shown as
thicker lines, which featured large isolation peaks and bandwidths.

and ξ2 to scale each term in the objective function, i.e.,

Z = ξ1
1∫
I
+ ξ2max |S12|, (3.7)

which allowed for adjusting the relative influence of each term in the objective function.

While it was possible to find solutions with better isolation performance by adjusting these

scaling factors, ξ1 and ξ2 represent two additional degrees of freedom that must be defined
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Figure 3.10: Providing the same initial parameter quantities as in Fig. 3.9, shown again here
as thinner lines, and allowing the solver to again only vary unit cell gains to minimize Eq. 3.6
yielded the behavior shown in as thicker lines. In this case, the isolation performance was
significantly degraded. It is clear that max |S12| had a greater contribution to Z than did
the area under the isolation curve.

for the solver. Furthermore, we found that solver solutions were sensitive not only to initial

gain values, but also the ranges of values within which the solver could search for gains.

Hence, there was limited confidence in results obtained when the solver was allowed to vary

additional controller parameters and cell spacing.

Despite these limitations, one important finding in optimization efforts was that when

allowed to adjust δx and ∆x, the solver consistently selected values resulting in ∆x/δx ≈ 1.
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Placing the two experimental unit cells presented in Chapter II back to back yielded a

separation distance of ∆x/δx ≈ 1.6, but the proximity of the second microphone to the first

speaker led to the concern of near-field loudspeaker effects that have so far been neglected

in our models. Hence, because optimization efforts invariably suggested ∆x/δx ≈ 1 yielded

the preferred separation distance between unit cells, the degree to which near-field effects

could be neglected in our models is investigated in the next section.

3.3.2 Loudspeaker Near-Field Effects

Since optimization efforts indicated that ∆x/δx ≈ 1 was the ideal cell separation distance,

and since we had the ability to run experiments with two of the experimental unit cells

we already had available to us (where ∆x/δx ≈ 1.6), it became important to determine

the extent to which near-field effects from the speaker in the first cell would impact the

signal measured by the MEMS microphone in the second cell. Fig. 3.11 shows a full-wave

simulation in COMSOL Multiphysics® of the sound pressure level near the speaker for a

single unit cell. It is clear that pressure distributions near the loudspeaker were nonuniform

and ostensibly would significantly influence measurements collected by a microphone in close

proximity. However, as can be seen in Fig. 3.12, near-field effects were minimal. As shown in

Fig. 3.12(a), for a two-cell system with ∆x/δx = 1, transmission and reflection coefficients

predicted by our 1D model with speaker dynamics (solid lines) very precisely match full-

wave simulations (x’s), with the exception of the transmission from left to right (blue), and

consequently the isolation level (black). However, the difference was only a few dB. As

shown in Fig. 3.12(b), extending the cell separation distance slightly (∆x/δx = 1.6) resolved

the mismatch between 1D model predictions and full-wave simulations. Hence, we expected

negligible influence of near-field effects using the experimental setup shown in Fig. 3.13.

49



Figure 3.11: Near Field Effects. Full-wave simulation in COMSOL Multiphysics® of the
sound pressure level near the speaker for a single unit cell. It’s clear that pressure distri-
butions near the loudspeaker were nonuniform and ostensibly would significantly influence
measurements collected by a microphone in close proximity.

Figure 3.12: Near Field Effects as a function of distance. (a) For a two-cell system with
∆x/δx = 1, transmission and reflection coefficients predicted by our 1D model with speaker
dynamics (solid lines) very precisely match full-wave simulations (x’s), with the exception of
the transmission from left to right (blue), and consequently the isolation level (black). How-
ever, the difference was only a few dB. (b) Extending the cell separation distance slightly
(∆x/δx = 1.6) resolved the mismatch between 1D model predictions and full-wave simula-
tions.
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3.4 Experiments with a Real Two-Cell System

3.4.1 Experimental Setup

As stated in the previous section, experiments were conducted in a two-cell system with

a separation distance ∆x/δx = 1.6. This setup is shown in Fig. 3.13.

3.4.2 Experimental Results

The advantages of adding an additional unit cell to the NAM system predicted by both

the ideal and expanded system models also appeared in experimental results. For these

experiments, one cell in the system was tuned such that the isolation was centered near 850

Hz, resulting in a peak isolation of 46 dB and a 10 dB bandwidth of a half octave. The

other cell in the system was tuned such that the isolation was centered just under 800 Hz,

resulting in a peak isolation of 34 dB and a 10 dB bandwidth of 0.4 octaves. Running the

system with both cells active resulted in an isolation performance that exceeded each cell on

its own in terms of both peak value and bandwidth. For both cells together, we saw a peak

in isolation of 50 dB, and a 10 dB bandwidth of 0.8 octaves. These results are shown in

Fig. 3.14, with performances for each unit cell shown as lighter lines, and the performance

of both cells together as darker lines.

Figure 3.13: Experimental unit cells placed back-to-back resulted in a separation distance
∆x/δx = 1.6. This setup allowed us to verify two-cell system performance with existing
components, requiring no additional fabrication.
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Figure 3.14: Experimental results for a two-cell NAM system. One cell in the system was
tuned such that the isolation was centered near 850 Hz, resulting in a peak isolation of 46
dB and a 10 dB bandwidth of a half octave. The other cell in the system was tuned such
that the isolation was centered just under 800 Hz,resulting in a peak isolation of 34 dB and
a 10 dB bandwidth of 0.4 octaves. Running the system with both cells active resulted in
an isolation performance that exceeded each cell on its own in terms of both peak value
and bandwidth. For both cells together, we saw a peak in isolation of 50 dB, and a 10 dB
bandwidth of 0.8 octaves. Here, performances for each unit cell are shown as lighter lines,
and the performance of both cells together are shown as darker lines

As predicted by both the ideal model and models including speaker dynamics, the per-

formance of two experimental cells together significantly outperforms each cell individually.

Isolation levels for the two-cell system featured peak magnitudes that exceeded the peak

magnitudes for single-cell systems and were far more broadband. Unlike for the single ex-

perimental unit cell, we don’t compare experimental data directly to model predictions,
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which requires the lengthy system characterization efforts described in Chapter II. However,

these impressive results show that our models are capable of predicting the behavior of a

real two-cell system, and show great promise for extending systems to include larger arrays

of unit cells.

3.5 Conclusion

We have demonstrated experimentally the advantages of multiple airborne NAM unit

cells. As predicted by both our ideal and enhanced models, isolation levels for a two-cell

system exceeded levels for each of its constituent unit cells individually, both in magnitude

and bandwidth. We presented a guided user interface that allowed for real-time feedback of

the effects of parameter changes on both performance and stability. We showed that while

efforts to find optimal system parameters posed some limitations, optimization efforts were

effective in determining appropriate unit cell spacing. In the next chapter, we show how the

concept of action at a distance used in creating nonreciprocal acoustic systems can be used

to break reciprocity in elastodynamic systems.
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CHAPTER IV

Nonlocality in Dispersive Systems

4.1 Introduction

A commonly studied structure in metamaterial research is an elastic beam outfitted with

piezoelectric patches with circuitry used to modify the local material properties of the beam

[69, 70]. Elastic systems coupled with piezoelectric materials have been used to validate a

variety of conceptual strategies, which include reducing vibrations [71–73], enhancing flexural

wave sensing [74], structural health monitoring [75,76], and energy harvesting [77–79]. Such

system have also been proven capable of breaking reciprocity by way of mechanisms that

include the spatio-temporal modulation of material properties [80, 81], the introduction of

nonlinearities [82], and Willis coupling [53].

Using a similar system, we show how the concept of action at a distance used in creating

nonreciprocal acoustic systems can be used to break reciprocity in elastodynamic systems,

but rather than using large arrays of piezoelectric patches, we have considered a system with

just two sets of patches (see Fig. 4.1), with one set of patches used as a sensor to transmit

a signal through a controller with a transfer function G to a separate set of patches used as

an actuator. As in the acoustic NAM systems, we have shown that such a nonlocal coupling

can successfully break reciprocity.
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Figure 4.1: Schematic of the nonlocal piezoelectric system in a one-dimensional elastic do-
main. The right pair of piezoelectric patches are driven by a controller that applies a transfer
function G to voltage outputs from the left pair of piezoelectric patches, which are used to
sense disturbances upstream a distance δx from the actuating patches. Flexural waves en-
tering the system (black) are either attenuated (blue) or amplified (red) depending on their
direction of incidence, indicative of a break in reciprocity.

4.2 System Model

4.2.1 Modified Bernoulli-Euler Beam Theory

The concept of action at a distance to impose a nonlocal coupling in an elastic system

is demonstrated using the system diagrammed in Fig. 4.1. The system consists of a slender

elastic beam with two pairs of piezoelectric patches, with each pair consisting of a patch

adhered to the upper and lower surfaces of the beam. The left pair of patches were used

as sensors to convert motion in the beam to a voltage that was sent to a controller that

applied a transfer function G to the signal. The signal was then used to drive the second

pair of patches which were used as actuators to impose desired deflections of the beam. To

model this system, we used a modified Bernoulli-Euler (BE) beam theory that included the

piezoelectric properties of the patches attached to the beam [83,84]. We considered a beam

composed of five segments, with each segment alternating between plain segments consisting

of elastic material only and layered segments that accounted for the piezoelectric material on

the top and bottom of the beam. For each of the plain beam segments, we use the standard

BE theory to model the time-harmonic transverse displacements, W , governed by

d4W (x)

dx4
+ β4W (x) = 0, (4.1)
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Figure 4.2: Layered segment of beam with length, lp, and base, b. The top and bottom
layers consist of the same piezoelectric material with density, elastic compliance, piezoelectric
coefficient, permittivity, and height ρp, s11, d31, ε33, and hp, respectively. The middle layer
consists of elastic material with density, stiffness, and height ρ, E, and h, respectively.

with

β4 =
ρA

EI
ω2, (4.2)

where ρ, E, A, I, are the density, stiffness, cross-sectional area, and moment of inertia,

respectively, and ω is the angular frequency. A layered segment of beam is shown in more

detail in Fig. 4.2. Assuming that the piezoelectric material forming the top and bottom

layers are identical,the governing equation is

d4W (x)

dx4
+ β

4
W (x) = 0. (4.3)

Here, β, can be expressed as

β
4
=

ρA

EI
ω2, (4.4)

with

EI =
b
(

h2hp

4
+

hh2
p

2
+

h3
p

3

)
s11

(
1 +

d231
s11ε33

)
+

b
(

h2hp

2
+ hh2

p +
h3
p

2

)
s11

(
1 +

d231
2s11ε33

)
, (4.5)
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Figure 4.3: Layered segments of beams can be used as sensors or actuators. (a) Bending in
the beam causes one patch to bend and contract and the other patch to bend and elongate,
resulting in voltages V1 and V2, respectively, across the patch electrodes. (b) Using the
modified BE theory, the patch segments are replaced with a homogeneous segment of beam
with effective properties EI and ρA and a total sensed voltage Vs = V2 − V1. (c) Layered
segments can also be used to drive the system by applying a positive actuating voltage Va

across the upper patch, causing it to expand axially, and a negative voltage −Va across the
lower patch, causing it to contract axially. If the upper and lower patches are identical, the
axial displacements of each patch will negate one another and result in a pure bending force
which can be accounted for in the modified BE theory as point moments, Ma, about the
neutral axis of the layered segment, as shown in (d).

ρA = b(hρ+ 2hpρp), (4.6)

where the density, elastic compliance, piezoelectric coefficient, permittivity, base, and height

of the piezoelectric material are ρp, s11, d31, ε33, b, and hp, respectively, and ρ and h are the

density and height, respectively, for the elastic material. Full derivations for EI and ρA for

more general systems can be found in Krommer [83] and Littrell and Grosh [84].

4.2.2 Piezoelectric Layers as Sensors and Actuators

The layered segments of beam will be used either as a sensor or an actuator [43,53,85–88].

In the sensing case, when layered segments are bent as shown in Fig. 4.3(a), the lower patch
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bends and contracts axially, inducing a voltage V1 across the patch electrodes. The upper

patch bends and elongates axially, inducing a voltage V2. As shown in Fig. 4.3(b), these

effects are accounted for in the modified BE theory by replacing the layered segment with a

homogeneous segment of material with effective properties EI and ρA, where the bending

of the segment results in a total output voltage Vs, equal to

Vs = V2 − V1 =

 d31hp(h+ hp)

s11lp

(
ε33 − d231

s11

)
(dW (x2)

dx
− dW (x1)

dx

)
. (4.7)

Although V1 and V2 will be a function of both the flexural and longitudinal motion of the

piezoelectric materials, due to the symmetry of the system, the longitudinal components of

V1 and V2 will be out of phase and cancel when summed, and Vs will be a function of the

flexural motion through the beam only.

To use a layered segment to drive the system, a prescribed actuating voltage Va can be

applied such that it is positive across the upper patch and negative across the lower patch

as shown in Fig. 4.3(c). Driving the patches out of phase in this way will cause one patch to

expand axially while the other contracts, yielding longitudinal forces equidistant from the

neutral axis of the beam that are equal and opposite. These forces can be accounted for in

the modified BE theory with point moments, Ma, about the neutral axis of the beam, where

Ma can be expressed as

±Ma = ∓EI
d2W (xi)

dx2
± d31hp(h+ hp)

s11
Va, (4.8)

with i = 1, 2, where i = 1 and i = 2 indicate the upper and lower signs in ± and ∓,

respectively. This is illustrated in Fig. 4.3(d).
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Figure 4.4: Plain (a) and layered (b) segments of beam extending from x1 to x2. The forces
and moments at either end of each segment can be formulated in terms of the displacements
and slopes at their respective ends using the general solutions for the displacements in each
segment. For layered segments, expressions for the charges and voltages in the top and
bottom layers are also determined.

4.2.3 Model Solution Approach

To model the behavior of the system shown in Fig. 4.1, we adapted techniques from finite

element methods (FEM), expanding upon an approach known as the direct stiffness method

[89], but rather than using arbitrary displacement functions (also called shape functions) for

individual elements, we formulate local stiffness matrices in terms of the exact solutions to

Eq. 4.1 and Eq. 4.3 [90–93]. For the plain beam segments, shown in Fig. 4.4(a), the solutions

W (x) to Eq. 4.1 have the form

W (x) = A1e
−jβx + A2e

jβx + A3e
−βx + A4e

βx, (4.9)

which can be interpreted physically as travelling waves that propagate in either direction

through the segment of beam and evanescent waves that grow and decay in either direction,

all with a wavenumber β and arbitrary coefficients Ai, i = 1, 2, 3, 4. The displacements and
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slopes, D and T , and forces and moments, F and M can be expressed in terms of W as

Di = W (xi),

Ti =
dW (xi)

dx
,

Fi = ±EI
d3W (xi)

dx3
,

Mi = ∓EI
d2W (xi)

dx2
,

(4.10)

for i = 1, 2, where i = 1 and i = 2 indicate the upper and lower signs in± and∓, respectively.

Using Eq. 4.9 and Eq. 4.10, forces and moments at either end can be expressed in terms of

displacements and slopes as



F1

M1

F2

M2


=



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44


.



D1

T1

D2

T2


. (4.11)

The matrix elements Pi,j were not expressed explicitly, but rather computed in MATLAB®.

For the layered beam segments, shown in Fig. 4.4(b), the solutions W (x) to Eq. 4.3 have the

form

W (x) = A1e
−jβx + A2e

jβx + A3e
−βx + A4e

βx, (4.12)

where β is the wavenumber and Ai, i = 1, 2, 3, 4, are the arbitrary magnitudes for waves in

the layered segment. In addition to displacements, slopes, forces, and moments, the charges
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and voltages, Q and V , in the layered segment can be expressed in terms of W as

Di = W (xi),

Ti =
dW (xi)

dx
,

Fi = ±EI
d3W (xi)

dx3
,

Mi = ∓EI
d2W (xi)

dx2
+ α(V1 + V2),

Qi = CpVi + α(T1 − T2),

(4.13)

for i = 1, 2, where

α =
d31b(h+ hp)

2s11
(4.14)

and the patch capacitance, Cp, is

Cp =

(
ε33 +

d231
s11

)
blp
hp

. (4.15)

Again, i = 1 and i = 2 indicate the upper and lower signs in ± and ∓, respectively. Using

an approach similar to the approach used to formulate Eq. 4.11, using Eq. 4.12 and Eq. 4.13,

forces and moments at either end of the layered segment and charges for the upper and lower

piezoelectric layers can be expressed in terms of displacements, slopes, and voltages as



F1

M1

Q1

Q2

F2

M2


=



L11 L12 0 0 L15 L16

L21 L22 α α L25 L26

0 α Cp 0 0 −α

0 α 0 Cp 0 −α

L51 L52 0 0 L55 L56

L61 L62 0 0 L65 L65


.



D1

T1

V1

V2

D2

T2


. (4.16)
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Again, the matrix elements Li,j were not expressed explicitly, but rather computed in

MATLAB®. To our knowledge, we are the first to include properties of the piezoelec-

tric material in the direct stiffness matrix for a layered segment. Formulating the problem

in this way allows for a straightforward means of assembling matrices for systems composed

of any number of beam segments, either plain or layered, since continuity conditions must

be satisfied where segments meet. For example, joining the two segments shown in Fig. 4.4

requires that D2, T2, F2, and M2 for the plain segment are equivalent to D1, T1, F1, and M1

for the layered segment, resulting in a matrix of equations that can be formed by combining

Eq. 4.11 and Eq. 4.16, yielding



F1

M1

F2

M2

Q1

Q2

F3

M3



=



P11 P12 P13 P14 0 0 0 0

P21 P22 P23 P24 0 0 0 0

P31 P32 (P33 + L11) (P34 + L12) 0 0 L15 L16

P41 P42 (P43 + L21) (P44 + L22) 0 0 L25 L26

0 0 0 α Cp 0 0 −α

0 0 0 α 0 Cp 0 −α

0 0 L51 L52 0 0 L55 L56

0 0 L61 L62 0 0 L65 L65



.



D1

T1

D2

T2

V1

V2

D3

T3



. (4.17)

Following this same approach, the matrix of equations for a system with five segments takes

the form shown in Fig. 4.5, where superscripts in parentheses indicate the segment associated

with each term, and expressions for α and Cp are shown in Eq. 4.14 and Eq. 4.15, respectively.

To model the action at a distance that gives rise to highly nonreciprocal behavior, we impose

the condition that

(V3 + V4) = G(V1 + V2), (4.18)
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Figure 4.5: Matrix of equations for a beam with five segments. P
(k)
i,j and L

(k)
i,j are the elements

of the matrices in Eq. 4.11 and Eq. 4.16, respectively, for the kth beam segment. Expressions
for α and Cp are shown in Eq. 4.14 and Eq. 4.15, respectively.
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requiring modification to the matrix in Fig. 4.5, which can be seen in red in the ninth and

tenth rows of the matrices in Fig. 4.6 and Fig. 4.7. We also sought to impose non-reflecting

boundary conditions at either end of the beam, since the extent to which reciprocity is broken

is often quantified in 1D systems by computing the ratio of waves transmitted through the

system in either direction, and hence radiation boundary conditions are typically imposed so

that disturbances downstream from a system of interest only depend on waves transmitted

through the system and not on reflected waves from boundary conditions that arise in finite-

dimensional systems. To impose radiation boundary conditions [94–97], two additional semi-

infinite segments of beam can be added at either end of the five segment beam. For the

additional segment on the right end of the beam, the displacement field, W+∞(x) can be

written as

W+∞(x) = A+∞e−jβx +B+∞e−βx, (4.19)

where the first term represents a wave traveling to the right with arbitrary coefficient A+∞

and the second term represents an evanescent wave with arbitrary coefficient B+∞ that

decays to zero as x → +∞. Note that compared with Eq. 4.9, the term with a positive

complex exponent, representing a wave traveling to a left, is omitted since the boundary is

reflectionless. Also omitted is the term with the positive real exponent since the term would

not converge as x → +∞. The same logic can be applied to formulate the displacement

field, W−∞(x) of the semi-infinite plain beam segment added to the left end of the system,

expressed as

W−∞(x) = A−∞ejβx +B−∞eβx (4.20)

where the first term represents a wave traveling to the left with arbitrary coefficient A−∞ and

the second term represents an evanescent wave with arbitrary coefficient B−∞ that decays

to zero as x → −∞. Substituting Eq. 4.19 and Eq. 4.20 into Eq. 4.10, forces and moments
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can be expressed in terms of displacements and slopes at either end of the system as

F1

M1

 = EI

−β3(1− j) −β2

−β2 β(1 + j)

 .

D1

T1

 , (4.21)

F6

M6

 = EI

−β3(1− j) β2

β2 β(1 + j)

 .

D6

T6

 . (4.22)

The modifications to the matrix in Fig. 4.5 using Eq. 4.21 and Eq. 4.22 can be seen in red in

the upper left and lower right four elements of the matrices in Fig. 4.6 and Fig. 4.7, where

P̃ (1)
11 P̃

(1)
12

P̃
(1)
21 P̃

(1)
22

 = EI

−β3(1− j) −β2

−β2 β(1 + j)

+

P (1)
11 P

(1)
12

P
(1)
21 P

(1)
22

 , (4.23)

P̃ (5)
33 P̃

(5)
34

P̃
(5)
43 P̃

(5)
44

 = EI

−β3(1− j) β2

β2 β(1 + j)

+

P (5)
33 P

(5)
34

P
(5)
43 P

(5)
44

 . (4.24)

We seek to drive the system with incident travelling flexural waves in either the positive-x or

negative-x directions to determine transmission levels through the system, which will consist

of the ratio of displacement magnitudes downstream from the system with respect to the

incident magnitude. To impose this condition, an incident wave traveling to the right with

a known magnitude A+ can be added to Eq. 4.20, yielding

W−∞(x) = A−∞ejβx +B−∞eβx + A+e
−jβx. (4.25)

Substituting Eq. 4.25 into Eq. 4.10, the forcing effects of the incident wave can be accounted

for in terms of an effective force and moment at the left end of the beam, expressed as

 F̃1

M̃1

 = EI

−β3(1− j) −β2

−β2 β(1 + j)

 .

 A+e
−jβx1

−jβA+e
−jβx1

+ EI

jβ3A+e
−jβx1

β2A+e
−jβx1

 (4.26)
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Figure 4.6: Modifications to the matrix of equations shown in Fig. 4.5, including action
at a distance as defined in Eq. 4.18, shown in red in the ninth and tenth rows, radiation
boundary conditions as defined in Eq. 4.23 and Eq. 4.24, seen in red in the upper-left four
and bottom-right four elements, and the effects of a left-traveling incident flexural wave of
known magnitude A+ as defined in Eq. 4.26, shown as F̃1 and M̃1 in red.
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Figure 4.7: Modifications to the matrix of equations shown in Fig. 4.5, including action
at a distance as defined in Eq. 4.18, shown in red in the ninth and tenth rows, radiation
boundary conditions as defined in Eq. 4.23 and Eq. 4.24, seen in red in the upper-left four
and bottom-right four elements, and the effects of a right-traveling incident flexural wave of
known magnitude A− as defined in Eq. 4.27, shown as F̃6 and M̃6 in red.
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The forcing terms F̃1 and M̃1 can be seen in Fig. 4.6. Similarly, for left-traveling incident

waves with a known magnitude A−, F̃6 and M̃6 can be expressed as

 F̃6

M̃6

 = EI

−β3(1− j) β2

β2 β(1 + j)

 .

 A−e
jβx6

jβA−e
jβx6

+ EI

jβ3A−e
−jβx6

β2A−e
−jβx6

 (4.27)

as shown in Fig. 4.7. Formulating the problem as shown in Fig. 4.6 and Fig. 4.7 allows

for determining the transmission through the system in either direction. We define the

transmission of right-traveling incident waves as

T(+) =
A+∞

A+

, (4.28)

and the transmission of left-traveling incident waves as

T(−) =
A−∞

A−
. (4.29)

We quantify the level of nonreciprocity by defining the isolation, I, as the ratio of the

magnitudes |T(−)| and |T(+)| in the decibel scale as

I = 20 log10

(∣∣∣∣T(−)

T(+)

∣∣∣∣). (4.30)

4.2.4 Controller Design

So far, the transfer function of the controller shown in Fig. 4.1 has been represented by

the singular quantity G. To use our modelling approach to predict experimental data, we

anticipated needing a controller that could accommodate the characteristics of the real PZT-

4 patches we intended to function as the piezoelectric layers in the model. Due to the high

capacitance values of the PZT-4 patches, we needed to first send the signals from the sensing

patches through a buffer circuit before being conditioned further. We also planned to use a

high voltage amplifier specifically designed for piezoelectric materials to drive the actuating
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Figure 4.8: Controller diagram. The signal from the left set of patches was first sent through
a buffer circuit designed for the high capacitance of the piezoelectric patches. The signal from
the buffer circuit was sent through a potentiometer used to set a proportional gain. Next, the
signal was passed through a digital low-pass filter implemented on a microcontroller which
allowed us to filter out displacement behavior at frequencies beyond our band of interest. By
modifying the corner frequency of this filter, we were able to produce the shifts in isolation
peaks predicted by the model. Finally, the signal was sent through a high voltage amplifier
before being sent to the right set of patches.

patches. A digital low-pass filter allowed us to filter out displacement behavior at frequencies

beyond our band of interest. Finally, a potentiometer was included to fine tune desired

proportional gains. A diagram of the controller is shown in Fig. 4.8. The potentiometer and

amplifier were modeled as having flat frequency responses with proportional gains Hp and

Ha, respectively. The buffer circuit and digital filter contributed both gain and phase shifts

of the signal through the controller with transfer functions of Hb(ω) and Hf (ω), respectively,

which are plotted in Fig. 4.9. The low-pass filter was of the elliptic type with a corner

frequency flp. Altogether, the total controller gain, G, can be expressed as

G = Hb(ω)HpHf (ω)Ha. (4.31)
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Figure 4.9: Frequency dependent components of controller transfer functions. (a) Magnitude
and phase components of Hb(ω), the transfer function of the buffer circuit in the controller.
(b) Magnitude and phase components of Hf (ω), the transfer function of the elliptic low-pass
filter with corner frequency flp = 900 Hz used in the controller.

4.2.5 Model Predictions

We ran experiments using a beam with an elastic layer composed of 6061 aluminum and

for piezoelectric layers composed of PZT-4. Nominal values for these materials are listed in

Table 4.1. Using these nominal values in the model, the directional transmission coefficients

T(+) and T(−) and the resulting isolation factors I were predicted for the controller parameter

values shown in Table 4.2. Plotted in Fig. 4.10(a) are T(+) and T(−) for a low-pass filter with

corner frequency, flp = 900 Hz. It can be seen in Fig. 4.10(a) that T(+) and T(−) differ

significantly over a frequency range from 500 Hz to 1100 Hz, most apparent between 800 Hz

and 900 Hz, where there is a large null in transmission from left to right. This null drives the

large peak of nearly 35 dB in isolation as seen in the middle curve (I2) in Fig. 4.10(b). By

adjusting flp higher or lower, the frequency where this large peak in isolation occurs can be

increased or decreased, respectively, with slight adjustments in the total proportional gain

imposed by the controller. These peak shifts are illustrated by the two additional curves in

Fig. 4.10(b), where flp is either increased to 1000 Hz (I3) or decreased to 800 Hz (I1). These

compelling model predictions prompted efforts to replicate model behavior experimentally,
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6061 Aluminum PZT-4

ρ (kg m−3) 2700 7900

1/E = s11 (Pa−1) 1/68.9×10−9 11.6×10−12

b (mm) 20 20

h (mm) 3 0.7

l (mm) − 26

d31 (CN−1) − -140×10−12

ϵ33 (Fm−1) − 12.4×10−9

Table 4.1: Nominal values for the characteristics of 6061 aluminum and PZT-4 patches.

I1 I2 I3

flp (Hz) 800 900 1000

Hp 0.422 0.399 0.380

Table 4.2: Controller values required to generate the large isolation peaks shown in Fig. 4.10.

efforts which are detailed in the following section.

4.3 Experimental Methods

4.3.1 Experimental Setup

The physical setup used to verify model predictions experimentally is shown in Fig. 4.11.

As shown in Fig. 4.11(a), we used a piece of 6061 aluminum that was 3 mm thick, 20 mm

wide, and approximately a meter long. Insulating layers of Kapton film were epoxied to the

beam at locations where we desired patches. Strips of copper were then epoxied on top of

the Kapton to provide a connection to the negative electrode of the piezoelectric patches.

Then, using a conductive epoxy, we secured patches composed of PZT-4 that were 0.7 mm

thick, 16 mm wide, and 26 mm long. Smaller strips of copper (not shown) were secured to
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Figure 4.10: Transmission behavior of the nonlocal piezoelectric system. (a) Directional
transmission coefficients across the system shown in Fig. 4.1 for a controller with low-pass
filter corner frequency flp = 900 Hz (b) Isolation for low-pass filter corner frequencies 800
Hz (I1), 900 Hz (I2), and 1000 Hz (I3) demonstrate the tunable nature of the nonlocal
elastodynamic system.

the upper surface of the patch to provide a connection to its positive electrode.

As shown in Fig. 4.11(b), the system was driven with a shaker at one end of the beam

and secured with a clamp at the opposite end. Pieces of foam were inserted between the

end connections and the beam to provide some dissipation to help stabilize the system

(Fig. 4.11(c) and (d)). Beam displacements were computed using measurements from a laser

doppler velocimeter (LDV) secured above the beam.

4.3.2 Physical Controller Components

The controller modeled in the previous section was implemented using the components

shown in Fig. 4.12. The buffer circuit used to condition the signal from the left set of patches

was implemented on the printed circuit board shown in Fig. 4.12 (a). The proportional gain

Hp was controlled using the ten-turn potentiometer shown in Fig. 4.12 (b). The low-pass

filtering was applied using a Teensy 3.6 Development Board, shown in Fig. 4.12 (c). The

right set of patches were driven with a TREK Model 2220 high voltage amplifier imposing
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Figure 4.11: Experimental setup for the elastodynamic beam with piezoelectric patches. (a)
Experiments were conducted using a piece of 6061 aluminum 3 mm thick, 20 mm wide, and
approximately a meter long. Insulating layers of Kapton film were epoxied to the beam
at locations where we desired patches. Strips of copper were then epoxied on top of the
Kapton to provide a connection to the negative electrode of the piezoelectric patches. Then,
using a conductive epoxy, we secured patches composed of PZT-4 that were 0.7 mm thick,
16 mm wide, and 26 mm long. Smaller strips of copper (not shown) were secured to the
upper surface of the patch to provide a connection to its positive electrode. (b) The system
was driven with a shaker at one end of the beam and secured with a clamp at the opposite
end. (c) and (d) Pieces of foam were inserted between the end connections and the beam to
provide some dissipation to help stabilize the system

the gain Ha, shown in Fig. 4.12 (d).

4.3.3 Model Parameter Adjustments

As experiments were conducted, it was found that to match experimental data to model

predictions, some adjustments to model parameters were required. Parameter adjustments

included the beam and patch geometries, measured with calipers, beam density and stiffness,

determined using weight measurements and cantilevered resonant frequencies, respectively,

of three additional plain aluminum beams, which provided reasonable ranges within which

beam parameters could be adjusted, as well as the piezoelectric properties of the patches.

Patches were characterized using capacitance measurements to adjust the permittivity, ε33,
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Figure 4.12: Experimental controller components. (a) Printed circuit board with the buffer
circuit used to condition the signal from the sensing piezoelectric patches. (b) Ten-turn
potentiometer with a dial indicator used to set Hp. (c) Microcontroller used to implement
the digital low-pass filtering. (d) High voltage amplifier designed specifically for driving
piezoelectric patches.

6061 Aluminum Patch 1 Patch 2 Patch 3 Patch 4

ρ (kg m−3) 2620 7900 7900 7900 7900

1/E = s11 (Pa−1) 1/65×10−9 11.6×10−12 11.6×10−12 11.6×10−12 11.6×10−12

b (mm) 19.8 16.1 16.1 16.1 16.1

h (mm) 2.9 0.67 0.67 0.67 0.67

l (mm) − 26.1 26.1 26.1 26.1

d31 (CN−1) − -140×10−12 -140×10−12 -140×10−12 -140×10−12

ϵ33 (Fm−1) − 11.7×10−9 12.0×10−9 11.5×10−9 11.4×10−9

Table 4.3: Beam parameter values adjusted to improve model predictions of experimental
data.

calculated by rearranging Eq. 4.15 to form

ε33 =

(
Cphp

blp
− d231

s11

)
. (4.32)

The adjusted parameter values are shown in Table 4.3. It was also necessary to account
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Figure 4.13: Comparison of the predicted and measured transfer functions of the digital
low-pass filter with corner frequency flp = 900 Hz used in the controller. The predicted
transfer function, depicted as lighter, thicker curves, matched the measured transfer function,
depicted as darker, thinner curves, very well in terms of magnitude, but differed significantly
in terms of phase.

for the difference in the predicted and measured transfer functions of the digital low-pass

filters used in the controller, which is shown in Fig. 4.13 for a filter with corner frequency

flp = 900 Hz. Comparing the predicted values (lighter, thicker curves) to the measured

values (darker, thinner curves) indicated that while there was an excellent agreement in

magnitude, the phase differed significantly. The source of this deviation remains unknown,

but the difference was accounted for in the model by using the measured filter transfer

functions. Using the measured transfer functions of the digital filters and the parameters in

Table 4.3 in the model, the predicted values for Hp needed to be adjusted to maintain the

high isolation peaks we desired. Those adjusted values are shown in Table 4.3.
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I1 I2 I3

flp (Hz) 800 900 1000

Hp 0.433 0.403 0.362

Table 4.4: Adjusted controller values required to generate the large isolation peaks shown
in Fig. 4.10

4.3.4 Measurement Procedure

In collecting data during these experiments, we discovered that if we measured the dis-

placement W1 at a location xm along the beam downstream from the right-most segment

with patches (Fig. 4.14(a)), and, rather than moving the clamp and shaker to the opposite

ends, we switched the leads on the patches and measured the displacement W2 at the same

location xm (Fig. 4.14(b)), the ratio of the two displacements was equivalent to the ratio of

transmission coefficients in either direction, i.e.,

W2

W1

=
T(−)

T(+)

, (4.33)

which again is what we have defined as the isolation level, I. We found that for Eq. 4.33

to hold, a number of conditions must be met. Firstly, for the frequency band of interest,

xm should be at least 10 cm away from the patch segments and from the clamped boundary

so that evanescent waves have decayed sufficiently to have a negligible contribution to the

displacement fields. This requirement was determined using our analytical model as shown

in Fig. 4.15. For radiation boundary conditions and incident wave forcing, transmission

coefficients and isolation levels were compared with displacements and their ratios computed

downstream from the patch segments at a distance of 1 cm (Fig. 4.15(a)and(b)) and 10 cm

(Fig. 4.15(c)and(d)). It’s clear from the plots that at 1 cm downstream from the patch

segment, there is still a significant evanescent wave contribution to the displacement fields,

yielding a poor match between transmissions and isolation levels with displacements and
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Figure 4.14: Experimental measurement diagram. (a) Displacement W1 is measured at a
location xm downstream from the patch segment (b) Displacement W2 is measured at a
location xm downstream from the patch segment with the controller direction switched.

their ratios. However, at 10 cm, evanescent waves have sufficiently decayed to have negligible

influence on the displacement fields. Hence, experimentally, our patches were adhered to the

midpoint of an aluminum beam nearly a meter long (see Fig. 4.11(b)), allowing us to collect

LDV measurement that were at least 10 cm away from the patches and boundaries.

Another requirement for Eq. 4.33 to hold is that while forcing and boundary conditions

need to be identical for both displacement measurements, it appears that the form those

conditions take is inconsequential. This is demonstrated analytically in Fig. 4.16 for various

combinations of the classic Bernouli-Euler beam forcing (prescribed force, prescribed mo-

ment, prescribed displacement, and prescribed slope) and boundary conditions (free, fixed,

hinged, and sliding). It’s clear from the plots that Eq. 4.33 holds for any combination of

these forcing and boundary condition, and we hypothesized that Eq. 4.33 would also hold

for the nonstandard boundary conditions present in our experimental setup, i.e., clamps

with dissipating foam (Fig 4.11 (c) and (d)). It is also worth noting that the deviations of

displacement ratios from the isolation levels, indicated by the arrows in Fig. 4.16, occur at

frequencies where nulls exist in each displacement, and thus the displacement ratio at those

frequencies is a ratio of two values very near zero. Hence, these deviations are numerical
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Figure 4.15: Analytical comparisons of displacements to transmission coefficients and dis-
placement ratios to isolation levels for a beam with incident wave forcing and radiation
boundary conditions. (a) Comparisons of displacements computed a distance of 1 cm down-
stream from the patch segment with transmission coefficients show a poor match due to
evanescent wave contributions to the displacement fields. (b) Hence, there is also a poor
match between displacement ratios and isolation levels. (c) Comparisons of displacements
computed a distance of 10 cm downstream from the patch segment with transmission coef-
ficients show an excellent match as evanescent wave contributions to the displacement fields
are negligible at this distance. (d) Hence, there is also an excellent match between displace-
ment ratios and isolation levels.

artifacts, and can be mitigated by avoiding displacement spectra that include nulls, whether

computed analytically or measured experimentally.

Hence, though this measurement approach doesn’t allow for comparing experimental
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Figure 4.16: Isolation level comparisons with the ratio of displacements W1 and W2 for all
combinations of the classic BE beam forcing and boundary conditions. The plots show an
excellent agreement between isolation levels and displacement ratios for all combinations.
The deviations indicated by the arrows represent numerical artifacts from the analytical
model and can be mitigated by avoiding displacement spectra with nulls.

data directly with individual transmission coefficients, we do have the ability to efficiently

compare data with isolation levels predicted by our model. Those results are presented in

the following section.

79



Figure 4.17: Experimental results show an excellent match between the isolation levels I1,
I2, I3 determined experimentally (red) with model predictions (black). The results indicate
that a highly nonreciprocal, subwavelength, and tunable dispersive system can be realized
physically, and that its behavior can be accurately predicted with our analytical model.

4.4 Results

Experimental results are shown in Fig. 4.17, and reveal an excellent match with model

predictions, which were determined using the adjusted model and controller parameters listed

in Table 4.3 and Table 4.4. The isolation levels I1, I2, I3 determined experimentally are

shown in green, blue, and red, respectively. In each case, experimental measurements closely

followed its respective predicted isolation level, including peak levels and frequencies, as well

as the overall curve shape in general. These results show that a real dispersive system that

is highly nonreciprocal, subwavelength, and tunable can be realized.

There were slight differences in the predicted values of Hp compared with the values set

on the real potentiometer, denoted as Hp. Values for Hp and Hp are listed in Table 4.5.

Despite their differences, predicted values were close enough to be of great practical use in

conducting experiments. The peaks in isolation are highly sensitive to changes in Hp, with
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I1 I2 I3

flp (Hz) 800 900 1000

Hp 0.433 0.403 0.362

Hp 0.422 0.320 0.319

Table 4.5: Experimentally determined potentiometer gains Hp compared with potentiometer
gains predicted by the analytical model Hp

slight variations in Hp resulting in peaks substantially lower in magnitude. Because Hp and

Hp were close in value, only slight adjustments to the potentiometer set to Hp were required

to find Hp. Due to system sensitivity, it’s very unlikely Hp could have been found through

trial and error alone.

4.5 Conclusion

We have successfully demonstrated experimentally a highly nonreciprocal, subwavelength,

and tunable real dispersive system. We showed that the analytical model developed accu-

rately predicted the behavior of the physical system. We discussed how the analytical model

was of great practical use in selecting controller parameters required to generate large non-

reciprocity. While the results are impressive on their own, because of the accuracy of the

analytical model, future design of more elaborate systems can be studied in a computation-

ally efficient way.
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CHAPTER V

Conclusions, Contributions, and Future Work

5.1 Conclusions

In this work, we have demonstrated how the general concept of action at a distance

affects the scattering behavior in wave-bearing systems, focusing primarily on its ability to

break reciprocity. In Chapter II, We experimentally demonstrated large, tunable, broadband

nonreciprocity for a subwavelength device using the NAM strategy. We showed that a simple

one-dimensional coupled acoustic model can adequately predict the performance and stability

of both full-wave simulations and experimental data.

In Chapter III, We demonstrated experimentally the advantages of multiple airborne

NAM unit cells, which were predicted by both our ideal and enhanced models. Isolation

levels for a two-cell system exceeded levels for each of its constituent unit cells individually,

both in magnitude and bandwidth. We presented a guided user interface that allowed for

real-time feedback of the effects of parameter changes on both performance and stability.

We showed that while efforts to find optimal system parameters posed some limitations,

optimization efforts were effective in determining appropriate unit cell spacing.

In Chapter IV, We demonstrated experimentally a highly nonreciprocal, subwavelength,

and tunable real dispersive system. We showed that the analytical model developed accu-

rately predicted the behavior of the physical system. We discussed how the analytical model

was of great practical use in selecting controller parameters required to generate large non-
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reciprocity, and will allow for the future design of more elaborate systems to be studied in a

computationally efficient way.

5.2 Contributions

The following is a list of the contributions provided by this work to date. These contri-

butions are the subjects of publications in New Journal of Physics [34] and Physical Review

B [35], and conference presentations at the Acoustical Society of America [98,99].

• We have developed a theoretical framework for generating linear broadband nonre-

ciprocity by introducing nonlocal effects into an acoustic system. This framework

provides practical insights in guiding the development of nonlocal systems as well as a

physical insights regarding system behavior [34].

• We have demonstrated how this theoretical framework could be used in designing

stable, nonlocal active metamaterials (NAM systems). These NAM systems provide

a means of physically realizing the attractive features of nonlocal acoustic systems,

namely their ability to significantly break reciprocity [34].

• We have designed and fabricated a constitutive unit cell of a NAM system, generating

peaks in I of over 40 dB with I magnitudes above 10 dB across a third of an octave,

demonstrating experimentally its ability to outperform current metamaterials which

seek to break reciprocity. These results showed that the simplifying approximations in

the models used for designing experimental systems were valid and suggest that current

modelling strategies can be relied upon in future NAM system design work [35].

• We have shown experimentally how multiple NAM cells greatly enhances the perfor-

mance of a single cell [98].

• We have demonstrated how spatial nonlocality can be used to break reciprocity in an

elastodynamic system [99], with experimental values of I of nearly 30 dB generated
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by a tunable, subwavelength system.

• Most generally, we have uncovered a vast design space in the field of metamaterials

that represents a significant contribution to the metamaterial community.

5.3 Future Work

The work presented in Chapter III showed the significant advantages of adding just a

second unit cell to the NAM system. One direction for future work is to consider systems

with larger arrays of unit cells as shown in Fig. 5.1, for both acoustic (Fig. 5.1(a)) and

elastic (Fig. 5.1(b)) systems. The outstanding matches between the system models and

experimental data presented in this work suggest that larger arrays can be studied and

designed analytically.

Another direction for future work is illustrated in Fig. 5.2. It occurred to us during this

work that unit cells could be cascaded as shown in Fig. 5.2(a), and analyzed as an array

of ideal NAM unit cells cascaded in the y-direction as shown in Fig. 5.2(b). Such a system

Figure 5.1: Schematics of larger arrays of both acoustic (a) and elastic (b) unit cells represent
one promising direction for future work.
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Figure 5.2: Two-dimensional NAM system. (a) NAM unit cells placed side-by-side could
allow for the study of nonlocality in two-dimensional (2D) waveguides. (b) The system could
be analyzed as an array of ideal NAM unit cells cascaded in the y-direction.

would provide a means for studying action at a distance in higher dimensions. Finally, all of

this work was accomplished with a fairly simple controller consisting of a proportional gain

and low-pass filtering, so considering more sophisticated controller designs would be another

direction for future work.
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APPENDIX A

A.1 Scattering Matrix Derivation

The scattering matrix for the ideal NAM unit cell is determined from solutions to Eq. 2.1,

which can be determined in the following manner. First, due to the delta function on the

right-hand side of Eq. 2.1, for x ̸= xs, the system is governed by the homogeneous Helmholtz

equation (i.e. Eq. 1.1), which has solutions of the form,

P (x) = Ae−jkx +Bejkx, (A.1)

where A and B are the complex coefficients to be determined by boundary conditions of plane

waves traveling in the positive-x and negative-x directions, respectively. Hence, solutions

to Eq. 2.1 can be expressed in terms of pressure upstream from the source (x < xs) and

downstream from the source (x > xs) as

Pu(x) = Aue
−jkx +Bue

jkx, (A.2)

Pd(x) = Ade
−jkx +Bde

jkx. (A.3)
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These pressure fields are illustrated in Fig. A.1 To match the solutions Pu and Pd at x = xs,

Figure A.1: One-dimensional acoustic domain showing pressure fields composed of positive-
traveling and negative-traveling plane waves with complex magnitudes Au,Bu,Ad, and Bd to
be determined by applying boundary conditions and jump conditions.

two conditions are required. One condition is continuity of pressure, i.e., Pu(xs) = Pd(xs).

The second condition is established by integrating Eq. 2.1 across xs,

∫ xs+ϵ

xs−ϵ

d2P (x)

dx2
dx+ k2

∫ xs+ϵ

xs−ϵ

P (x)dx = GP (xp)

∫ xs+ϵ

xs−ϵ

δ(x− xs)dx, (A.4)

and taking the limit as ϵ → 0, giving

dPd(xs)

dx
− dPu(xs)

dx
= GPu(xp). (A.5)

Finally, Pu and Pd can be solved for by applying Sommerfeld radiation conditions at the

boundaries, which express pressure in the system as a transmitted and reflected wave in

terms of some known incident wave in either direction.

A.2 Effective Material Properties

While the NAM unit cell response is most directly described by its scattering parameters,

one can also describe the observed behavior in terms of effective material properties, as is

often done in the analysis of metamaterials. Such analysis facilitates deeper understanding
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and more effective design approaches when considering systems composed of arrays of unit

cells. The NAM unit cell cannot be characterized by any of the traditional effective material

properties evoked by metameterials, i.e., negative or near-zero mass density, negative or near-

zero bulk modulus, or both negative or near-zero mass density and bulk modulus [27]. One

must turn to more exotic material properties to fully characterize the NAM unit cell. Zhai, et

al. in 2019 demonstrated that large nonreciprocity could be generated through manipulating

properties of so called Willis materials [50]. In one-dimensional Willis materials, the pressure

p and linear momentum µ can be expressed as

−p = B
du

dx
+ jωSu,

µ = D
du

dx
+ jωρu,

(A.6)

where u is the particle displacement, ρ and B are the material density and modulus, respec-

tively, S and D are the Willis coupling terms, and ω is the forcing frequency [100]. Using the

linearized Euler relationship between pressure and momentum, i.e., −dp/dx = jωµ, Eq. A.6,

can be used to derive the following wave equation:

d2u

dx2
+ jω

S −D

B

du

dx
+ ω2ρu = 0. (A.7)

Assuming particle displacement of the form u = Ue−jkx, the right-going and left-going

wavenumbers (k+ and k−, respectively) and impedances (Z+ and Z−, respectively) can be

expressed as

k+/− = ω
S −D

2B
± ω

√(
S −D

2B

)2

+
ρ

B
,

Z+/− = −S +D

2
±

√(
S −D

2

)2

+ ρB.

(A.8)

Solving Eq. A.8 in terms of the Willis material parameters yields two sets of solutions, how-

ever when substituting the wavenumbers and impedances for those of air, only the following
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solution recovers the correct density and bulk modulus of air:

ρ = − 1

ω

k−k+(Z− − Z+)

k− − k+
, B = −ω

Z+ − Z−

k− − k+
, S =

k+Z− − k−Z+

k− − k+
, D =

−k−Z− + k+Z+

k− − k+
.

(A.9)

Considering the general Willis material flanked on either side by domains of air, the scattering

matrix in terms of the wavenumbers and impedances can be expressed as

S11 =
(ejk−δx − ejk+δx)(1− z−)(1− z+)

ejk−δx(1 + z−)(1− z+)− ejk+δx(1− z−)(1 + z+)
,

S21 =
2(z− − z+)

ejk−δx(1 + z−)(1− z+)− ejk+δx(1− z−)(1 + z+)
,

S12 =
2ej(k−+k+)δx(z− − z+)

ejk−δx(1 + z−)(1− z+)− ejk+δx(1− z−)(1 + z+)
,

S22 =
(ejk−δx − ejk+δx)(1 + z−)(1 + z+)

ejk−δx(1 + z−)(1− z+)− ejk+δx(1− z−)(1 + z+)
,

(A.10)

where z+/− = Z+/−/ρ0c0, and ρ0 and c0 are the density and speed of sound in air, respectively

[101]. Inverting Eq. A.10, wavenumbers and relative impedances are found to be

k+/− = ±

[
2mπ

δx
− j

δx
ln

(
1 + S12S21 − S11S22 ±

√
−4S12S21 + (1 + S12S21 − S11S22)2

2S21

)]
,

z+/− = −
S11 − S22 ±

√
−4S12S21 + (1 + S12S21 − S11S22)2

−1 + S11 + S12S21 + S22 − S11S22

, (A.11)

where m ∈ Z. The appropriate signs and branch numbers were chosen such that at high

frequencies, the wavenumbers and impedances were consistent with air since the NAM unit

cell effects become negligible at high frequencies. Combining Eq. A.9 and Eq. A.11, the Willis

parameters with respect to the properties of air (density ρ0 and bulk modulus B0) can be

determined for the ideal NAM model. Plots of the dimensionless Willis parameters are shown

in Fig. A.2. Although these effective material properties are plotted over the same range of

frequencies over which transmission and reflection coefficients were plotted for the ideal NAM
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Figure A.2: Dimensionless effective Willis parameters. The real and imaginary parts of the
effective Willis parameters for the NAM unit cell provide some insight into the unit cell
behavior (e.g., nonreciprocity is illustrated by S ̸= D). Plots for frequencies higher than
kδx = π/2 are grayed out as such frequencies are generally considered too high to consider
effective material properties.

unit cell in Chapter II, frequencies higher than kδx = π/2 would generally be deemed too

high for effective material properties to be considered. At these frequencies, wavelengths of

sound become comparable to the length of the NAM unit cell and violate the long wavelength

assumption required for deriving effective material properties in metamaterials. There is no

definitive limit for which wavelengths cease to be long enough with respect to unit cell

lengths within the metamaterials community, however, unit cell lengths of λ/10 are usually

considered acceptable while recent works have considered less conservative lengths of up to

λ/4 [52]. Hence, in Fig. A.2, frequencies above kδx = π/2 (corresponding to a wavelength

of λ/4) are grayed out. While these effective material properties lend some insight into the

behavior of the NAM unit cell (e.g., nonreciprocity is illustrated by S ̸= D), we determined

the closed form expressions for the reflection and transmission coefficients more directly

described the NAM unit cell behavior and were more illustrative of the impacts that design

parameter changes had on that behavior. Therefore, effective material properties for the

NAM unit cell were not considered in the main part of this dissertation, although they may
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become beneficial in future design of arrays of unit cells in more complex NAM systems.
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