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ABSTRACT

Human insights play an essential role in artificial intelligence (AI) systems as it

increases the coherence between the human mind and system decisions by allowing

the systems to be interpretable or aided by human input. However, the use of human

insights in AI systems remains mysterious, despite the fact that their predictive power

has demonstrated high correspondence regarding system output. This missing bridge

between human and AI is caused mainly by the black-box nature of deep learning-

based models. It often presents two challenges in applying these systems to critical

domains such as healthcare, finance, or law practice. First, the low coherence between

humans and AI often leads to systems with high performance yet lack human trust.

Interpreting a system decision demands simple, faithful, and consistent explanations

for humans to understand. Failing to provide such explanations decreases human

trust in the system and results in serious outcomes. The second challenge concerns

the large-scale data annotation that is usually expensive and impractical in the above

critical domains as it requires specially trained domain expertise.

To advance the AI applications in critical domains, in this dissertation, I explore

methods that increase the coherence between humans and AI while maintaining high

system correspondence. I look at AI systems from the “pipeline” (instead of “model-

only”) perspective and focus on designing “grey-box” pipelines that have not only

high system correspondence but also high coherence between humans and the pipeline.

I investigate two directions. The first direction investigates if we could improve

the human-AI coherence by mimicking human behavior with high-correspondence
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black-box models. The second direction investigates if mimicking human insights

could further improve system correspondence.

To investigate the first direction, I evaluate how black-box models could mimic

human insights as explanations in various formats, including natural language, extrac-

tive data snippets, and human heuristics. In Chapter III, I introduce an approach

that generates natural language explanations based on human rationales that improve

the explanation quality. Furthermore, in Chapter IV, I conduct a study in a clinical

scenario where the system predicts the medication use of patients with inflammatory

bowel disease (IBD) based on patients’ medical records. I show that sentence-based

explanations could be well predicted by using heuristics-based weak supervision with

minimal annotation or annotation-based supervised learning with large annotation

budgets. Lastly, in Chapter V, I examine if black-box models could well mimic

human heuristics. Using adverse drug event identification as an example, I show that

while human heuristics could be easily implemented into interpretable rule-based or

white-box systems, they are often over-simplified. To overcome this limitation, I show

that the semantics of heuristics could be well augmented by the black-box model with

a light-loaded annotation effort from human-in-the-loop.

To investigate the second direction, I further evaluate if human insights could

improve system correspondence. In Chapter III, I show that high-quality language

explanations bring system correspondence gain. In Chapter IV, I show that identifying

evidence support from patient notes brings substantial performance gain for the

inference of IBD medication history. In Chapter V, I show that the semantically

augmented human heuristics could be easily applied to support weak supervision and

generate strong correspondence.

This dissertation contributes to the field of explainable AI. More specifically, this

dissertation provides opportunities for designing AI systems that desire explanations

to increase human trust in critical domains by collaborating with human insights.
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CHAPTER I

Introduction

1.1 What is explanation in AI?

Explainability in artificial intelligence traces back to the symbolic systems in the

1980s, where systems made decisions by integrating handcrafted rules, and these

rules served as explanation sources (Haugeland (1989)). However, the definition of

“explainability” (or “explanation”, “interpretability”, and “interpretation”) in the

machine learning or AI community is never clearly defined, and this is because the

purpose of using these terms often varies in different contexts (Biran and Cotton

(2017)).

Miller (2019) defines the explanation from a perspective in social science where

an explanation is an informative product of a social and cognitive process that is

transferred between the explainer and explainee so that it could help the explainee

understand the cause of an event. The produced explanation can usually help answer

what (happened), how (did it happen), and why (did it happen) questions. Lip-

ton (2018) confined the concept of “explanation” into “interpretability” where an

explanation is the result of model interpretability.

More specific perceptions of explanations are vaguely defined based on different

lines of work: explanations could be perceived as generated visualizations from data

that could be used as justifications for model predictions (Simonyan et al. (2013);
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Zeiler and Fergus (2014); Karpathy et al. (2015); Lei et al. (2016); Bahdanau et al.

(2014); Xu et al. (2015)); it could also be defined as the transparent mechanism of

modeling process that allows us to diagnose the “thought process” of the machine

that are often described as interpretable models (Agrawal et al. (1993); Ribeiro et al.

(2016); Letham et al. (2015); Rudin et al. (2013)).

1.2 What is a good explanation?

What is a good explanation, or how to evaluate the interpretability of an inter-

pretable model? Previous studies have argued for different properties that qualify

a good explanation. Thagard (1989); Ranney and Thagard (1988) pointed out that

an explanation should have high coherence as humans are more likely to accept an

explanation if it is consistent with people’s prior beliefs; Cohen et al. (1990) reported

that simplicity is an essential property because humans tend to prefer explanations

that are straightforward to understand over complicated ones, and Cohen et al. (1990)

also argued that explanations should have generality that can fit more events.

Another set of properties for explanations contains the truth and probability, the

probability of the explanation being true. However, they have been challenged in Hilton

(1996); McClure (2002); Charness et al. (2010) as their experiments showed that

humans care more about the pragmatic influences (e.g. reference and completeness).

Koh et al. (2010) also proposed three principles to evaluate an explanation which are

sound, complete, and not Overwhelming.

The above properties of explanations focus on relating the explanation to human

belief. Recently,DeYoung et al. (2019) pointed out that a good explanation should be

informative to model predictions, which is being faithful that is often referred to as

fidelity.
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1.3 How to evaluate an explanation?

Doshi-Velez and Kim (2017) laid out the taxonomy for evaluating explanations,

which includes application-grounded, human-grounded, and functionally-grounded

evaluations. Application-grounded evaluation comes with the highest specificity and

cost. It conducts experiments with domain experts in a real-world task setting to

see if the produced explanation can assist experts in improving the end goal of

the task. Human-grounded evaluation reduces the experiment cost by allowing for

using designed tasks with less complexity that do not require specialized domain

expertise from humans. For example, we can design an experiment to ask a lay human

to take actions that would infer the quality of the explanation. The functionally-

grounded evaluation is the most cost-efficient as it does not involve human efforts.

It only requires the proxy task(s) that automatically demonstrate the quality of the

explanation, and the main challenge, though, is to design appropriate proxy task(s).

Most of explanations in AI systems are evaluated following these three categories

(Zhou et al. (2021)).

Application-grounded evaluation metric The most direct way to evaluate an

explanation method is to see how much performance improvement the generated

explanations could help system users to gain (Ribeiro et al. (2016); Carton (2019)).

There are also metrics implicitly yet objectively evaluating the quality of explanations

by looking at how effective the explanations create psychological indications to users.

For example, Schmidt and Biessmann (2019) defined information transfer rate to

compare the mutual information created between human labelers and model predictions

per time unit when the explanation is presented versus not presented.

Human-grounded evaluation metric Human-ground metrics focus on the sub-

jectivity of human appreciation towards explanations. This kind of evaluation is done
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by conducting user interviews. For example, Hoffman et al. (2018) measured user

curiosity and trust towards explanation by asking users questions such as “why have

you asked for an explanation?” and “do you plan to rely on the explanation?”.

Functionally-grounded evaluation metric A standard evaluation metric in

this category evaluates the faithfulness of explanations. To achieve this, we ask

the model to make predictions based only on produced explanations DeYoung et al.

(2019). This metric is often referred to as sufficiency. Another example metric is

called comprehensiveness. This metric looks at the change of predicted probability

distributions for a class by stripping the explanation from the input. This change

indicates how influential an explanation is for making the original decision.

1.4 Human insights in explainable AI

As argued by Broniatowski et al. (2021), it is human who needs to interpret an

explanation. Therefore it is important to consider human insights in explainable AI

systems. According to Broniatowski et al. (2021), there are three perspectives to

incorporating human insights into the design of AI systems.

Coherence and white-box models The first perspective focuses on coherence

(Hammond (2000)) and white-box models. Because it is human who needs to perceive

and comprehend the explanation, coherence emphasizes the process of how the result

is generated. In this approach, the output results from a set of universally accepted

axioms. The design of early rule-based systems is consistent with this line of work.

The design of white-box models is similar to this approach as they are transparent,

and it is easy for a human to understand how the rules are combined and operated.

Correspondence and black-box models The second perspective is about creating

correspondence and emphasizing the model performance. Black-box models (e.g.,
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neural networks) have shown significant advances in this direction. However, achieving

such high performance is usually at the cost of low explainability. The main human

insights involved here are large-scale annotation efforts.

Grey-box models The third perspective considers the tacit nature of human

expertise (Nonaka (1994); Polanyi (2009); Nonaka et al. (2000)). In this scenario, a

fully transparent explanation mechanism (e.g., white-box models) is unavailable, yet

the system should not be blindly trusted with a black-box model. Therefore, grey-box

models look for communication with human experts so that the “tacit” knowledge

of domain expertise can be incorporated into the system’s decision-making process.

With grey-box models, human experts can increase the interpretability by designing

models that provide the rationale for a given decision relative to a set of functional

requirements (designed by humans).

1.5 Interpretability is more than interpretable models - Hu-

man is key

Applying an explainable AI system is not only about having an interpretable model.

Instead, it is a pipeline that includes but is not limited to problem definition, user

research, data collection and annotation, data process, model design, model training,

model deployment, and even output verification. The decision made at every step

could cause cascading effects on the outcome of the following steps.

Human is the key player throughout the entire pipeline. Broniatowski et al. (2021)

argues that explanations are detailed mental representations that communicate the

implementation mechanisms that led to an output. This argument is supported by

one of the leading theories in human psychology, Fuzzy-Trace Theory (Reyna and

Brainerd (1995)). The experiments of the Fuzzy-Trace Theory showed that humans

tend to make multiple mental representations with different degrees of precision from
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stimuli and rely on the most straightforward representation that can still lead to

a distinction for making a decision (Reyna (2012)). It is the human’s mental

representation that emphasizes the implementation of AI systems and

how they could be applied .

Therefore, even though that high-performance black-box models have low inter-

pretability, it is still possible to create interpretable pipelines for AI applications. Such

pipelines are consistent with the theory of using grey-box models discussed above.

1.6 Research questions and outline

As discussed in Chapter 1.5, the application of AI systems is a pipeline that

goes beyond having interpretable models. The strengths of heuristic rules, white-box

models, and black-box models should not be designed mutually exclusive but should be

working complementarily together. Therefore, in this dissertation, I focus on designing

grey-box pipelines that have both the coherence between human and system output

and the correspondence between model and the output.

Figure 1.1 illustrates the difference between white-box models (or rule-based

systems), black-box models, and the grey-box pipeline. The white-box models (Fig-

ure 1.1a) have high coherence between human and the system decision due to the

transparent decision-making process. However, the model correspondence is sacrificed

because of the simplicity of model complexity. Due to the high model complexity,

the black-box models (Figure 1.1b) yield high correspondence towards accurate deci-

sions at the cost of coherence to human interpretation. In Figure 1.1c, I introduce

a grey-box pipeline framework that relies on highly correspondent models to mimic

human insights and make decisions from the human insights. Therefore, three research

questions need to be studied:

R1. Can black-box models mimic human insights with high correspon-

dence?
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(a) Workflow of rule-based or white-box models with high coherence

(b) Workflow of black box models with high correspondence

(c) Workflow of grey-box pipeline with high coherence and correspondence

Figure 1.1: Illustration of the difference between white-box models, black-box models,
and grey-box pipelines.

R2. Can model-generated human insights lead to accurate decisions?

R3. Do model decisions have high coherence to human interpretation?

To answer these questions, I investigate three types of human insights: natural

language explanation, extractive rationale, and heuristic rules.

In Chapter III, I investigate natural language explanations based on

extractive human rationale.
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Previous studies have reported that large-scale explanation collection creates room

for training a generator that generates fluent language explanations conditioned a

model prediction (Camburu et al. (2018); Kumar and Talukdar (2020)). However, I

found that the previous approaches overlooked the fact that humans could have different

reasoning processes and therefore create alternative explanations. On the other hand,

the approaches are also prone to generate spurious explanations. To address these

two issues, I introduce a framework to generate high-quality explanations that are

highly relevant to human rationale. This contribution is presented in Chapter III.

These explanations further help improve the overall task performance. I also conduct

detailed analysis to evaluate the quality of the generated explanations.

In Chapter IV, I investigate the use of heuristic rules and sentence-based

rationales for document classification.

Despite the promising potential of natural language explanation, one challenge for

training a language generator is the demand for large-scale annotation that is often

unavailable in many specific domains (e.g., healthcare). Therefore, investigating other

reliable methods that require less manual effort is essential. As Miller (2019) claimed,

explanations are selected as a small subset of all possible causes in the human’s

cognitive process. This finding indicates that a small set of possible explanations (not

necessarily complete) could lead to an accurate prediction. Similarly, the prediction

could be explained with a small set of possible causes. This scenario motivates a

possible interpretable solution for document classification tasks and named entity

extraction tasks. Based on this motivation, I investigate the following research

questions for the two tasks.

More specifically, I ask Can we effectively identify evidence support from

documents with human insights, and to what extent can the identified

evidence support a document classification task?

To answer these questions, I study a real-world task in the clinical setting: identify
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medication use history for patients with inflammatory bowel disease. Specifically,

I investigate if the document-level decision could be inferred based on a small set

of identified evidence candidates and if the performance gained from using evidence

support could be generalized to different models. I also investigate if evidence support

could be further enhanced by utilizing the evidence-level polarity without large-scale

human annotation.

In Chatper V, I investigate the possibility of creating language-based

rules by combining natural language and heuristics.

Compared to document classification, extracting entities from text requires a

different type of effort in human insights. This is because entity extraction is usually

performed on a sentence basis, and therefore, the selected explanation should be

bounded within phrases or tokens per the above-mentioned “explanation completeness”

by Miller (2019). The recent success of weak supervision has made it possible that rules

designed by human experts could be utilized to create large-scale weak annotations

without access to the ground truth. One issue, though, is that designing a large

set of high-quality rules that can cover a wide range of language variations is still

challenging.

While the rules carefully designed by human experts are usually highly accurate,

the rule-based human insights suffer from the large language variation in the text. For

example, “patient developed ∗ while on medication” is a valid rule that can identify

mentions of adverse drug events, but using this rule needs to consider a specific context

window. Usually, these context windows are restricted to up to three tokens for it to

be computationally tractable (i.e. the above example has two tokens on the left and

three tokens on the right). This restriction would prevent the proposed method from

finding the rules that have essentially the same semantic meaning yet require a larger

context window to be identified, such as “patient immediately developed serious ∗

while on her medications”.
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Two address this challenge, I explore the possible connection between natural

language and heuristic rules and enrich the semantic matching of a particular rule with

natural language. For example, if a domain expert writes down a template rule with

natural language, “patient developed [MASK] from medications”, then by exploring

the semantic relations between the template and the mentioned two rules (“patient

developed ∗ while on medication” and “patient immediately developed serious ∗ while

on her medications”), both examples could be identified.
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CHAPTER II

Review of Explanation Methods in Neural

Networks

2.1 Post-hoc and intrinsic explanations

One way to look at explanation methods depends on when the explanations

are generated. Is it separated from the modeling process, or is it generated as an

intermediate step between input data and model predictions?

Post-hoc explanations Post-hoc methods generate explanations from existing

(trained) models. These methods aim at understanding model behaviors rather than

affecting the outcome decisions. Therefore, they often appear in cases where system

users or developers want to interpret a model decision or examine how reliable the

model is.

(i) Gradients-based explanations explain a model prediction using the gradients of

the outputs w.r.t a particular input feature. This method was first used by Simonyan

et al. (2013) who created the visualization of the deep image classification model,

ConvNets, by computing a gradient-based class saliency. However, such gradients

could lead to misleading interpretation by giving zero gradients to import input

features due to non-firing activation functions ( Shrikumar et al. (2016)). To tackle
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this issue, further extended approaches are proposed, including DeepLift (Shrikumar

et al. (2017)) and Layer-wise Relevance Propagation (LRP) (Binder et al. (2016)).

Sundararajan et al. (2017) proposed Integrated Gradients and argued that gradient-

based methods should satisfy sensitivity and implementation invariance, the latter of

which is violated by DeepLieft and LRP. Recently, Sanyal and Ren (2021) proposed

a language model-focused Discretialized Integrated Gradients by relaxing the linear

interpolation strategy used by Sundararajan et al. (2017).

(ii) Model-agnostic explanations generate explanations by treating the original

model as a black box. It completely separates the explanation generation from the

original model design and training. One way to do this is by learning an interpretable

model that mimics the predictions of the original model, and then extracting expla-

nations from the interpretable model (Baehrens et al. (2010); Craven and Shavlik

(1995)). However, such methods only focus on a global interpretation and ignore the

local fidelity. Therefore, an alternative is to introduce local perturbations (Krause

et al. (2016); Strumbelj and Kononenko (2010); Ribeiro et al. (2016)). LIME (Ribeiro

et al. (2016)) is the leading interpretation perturbation-based framework that can

locally interpret a black-box model. To explain a data example, LIME first generates

a set of perturbed examples and gets model predictions. Based on the perturbed data

instances and the proximity of each instance to the original example, LIME learns a

new linear model that approximates the target model behavior and uses the learned

weights as explanations. The major advantage of LIME is that (1) this method does

not require access to the architecture of black-box models, and (2) the approximation

performance of the linear model shows how reliable the interpretation is. However,

LIME may be unstable as the approximate is highly related to the perturbation result

and the explanation complexity (i.e., number of features to be learned in the linear

model) that has to be pre-defined.

(iii) Shapley value-based explanations compute the marginal contribution of a
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particular feature to the system output, given all the possible feature groups. More

specifically, for a given feature, its shapley value is computed as a weighted sum over

all possible combinations of other features. Unlike LIME, the shapley value does not

assume that explanations are linearly separable, and since shapley value relies on all

possible coalitions, it gives stable explanation results. Another difference to LIME

is the interpretation of the shapley value. Unlike LIME, which directly estimates

the local fidelity of a feature to the model prediction, shapley value measures the

contribution of a feature to the difference between the actual model prediction and the

mean prediction. Shapley value also has its limitations. Considering all coalitions, it

includes unrealistic data instances, and in the real machine learning setting, calculating

shapley value becomes computationally intractable as the number of features is usually

large. Another branch of work with shapley value is SHAP (Lundberg and Lee (2017)),

which is based on the shapley value, and assumes that each feature is associated

with a shapley value representing the impact of the feature on the model prediction

(which is different to the interpretation of shapley value). The authors proposed a

series of approximation methods to calculate SHAP, including the model-agnostic

KernelSHAP and model-dependent TreeSHAP, DeepSHAP, and MaxSHAP, with

faster implementation and computation. The fast approximation allows for a global

explanation by scanning the entire data set. However, due to the perturbation process

in KernelSHAP, like LIME, SHAP could also lead to misinterpretation (Slack et al.

(2020)).

Intrinsic explanations Intrinsic explanations are generated when the models make

predictions as part of the modeling process. These explanations require models to be

intrinsically interpretable.

(i) Feature weights from linear regression, logistic regression, decision trees, etc.,

are considered as intrinsic explanations. In addition, Naive Bayes gives a different
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type of feature weight, which is the conditional probability of a certain prediction

given a particular feature, P (y|xi). This conditional probability could be treated as

feature importance due to its assumption of conditional independence for features.

(ii) Attention mechanism was designed specifically for neural network models. It

was first introduced by Bahdanau et al. (2014) in machine translation tasks to enable

the model to automatically search snippets in the source sentence to predict target

tokens. Since then, it has been viewed as a way of model interpretation in later studies.

One option for using attention for interpretation is to distribute attention values

over the input tokens (in text) or pixels (in images) via a softmax function. Higher

attention values represent the higher importance of the corresponding tokens. (Xu

et al. (2015); Choi et al. (2016); Martins and Astudillo (2016); Xie et al. (2017);

Mullenbach et al. (2018); Vaswani et al. (2017)). It could also be applied to generate

sentence-based attentions where sentences with higher attention values are more

important in the model rationalization (Yang et al. (2016)).

Although the attention in the above studies could be served as a good way of

visualizing the importance distribution inside a model, it is hard to confidently derive

clear rationales from them because all features would have a non-zero attention value.

In text, the same token could have different attention values simply because of the

length of the text. Lei et al. (2016) argues that rationale should only be a portion

of text which is concise and sufficient. Therefore, the authors proposed a rationale

generator that is jointly trained with the encoder that makes predictions based on

the extracted rationale tokens. A similar idea was further explored by Carton et al.

(2018) for determining text toxicity in social media.

2.2 Global and local explanations

Explanations can be generated using global or local interpretation methods. Global

methods can be considered as ways of summarizing the model parameters and struc-
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tures, while local methods aim to generate explanations based on the local context

given an example.

Global explanations Rule-based models are usually created from a global point

of view, and models such as linear regression, logistic regression, decision trees, etc.,

create global explanations (i.e., the feature weights). In SHAP, due to the fast ap-

proximation of TreeSHAP, it also makes it possible to compute global interpretations.

Ibrahim et al. (2019); Frosst and Hinton (2017); Yang et al. (2018) introduced methods

to extract global explanations from black-box models such as neural networks. The

global explanation provides summaries of the knowledge learned by models, which

helps perform model diagnostics. However, its high-level knowledge distillation pro-

vides limited power in explaining instances with high complexity. Recently, Agarwal

et al. (2021) proposed neural additive models (NAMs) that belong to the family of

Generalized Additive Models (GAMs). It takes as input the global features into a set

of neural networks, and the networks individually model each feature, and then each

network is linearly combined for predictions. NAMs share a similar intuition as the

interpretable linear models.

Local explanations Unlike global explanations, local explanations are generated

based on the context of a particular instance, such as LIME or attentions. It aims to

explain a particular instance by identifying pieces of the instance that faithfully drive

the model prediction. Compared to global interpretations, interpreting an instance

locally is more preferred in the real-world setting (e.g., patient diagnosis) by generating

fine-grained interpretations that are usually hidden from the global view.
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2.3 Supervised and unsupervised explanations

Another way to distinguish explanations methods is to see if the explanations are

generated under supervised or unsupervised settings.

Supervised explanations Supervised explanations require additional human efforts

for annotations. In this setting, ground-truth explanations are annotated in addition

to the task annotation itself. Then the model is either trained to generate explanations

and predict task output in separate steps or jointly trained to make both predictions.

This line of work includes Camburu et al. (2018); Nie et al. (2019); DeYoung et al.

(2020, 2019); Zhang et al. (2016); Arous et al. (2021); Du et al. (2019). While supervised

explanations create better interpretations (Strout et al. (2019)), the main limitation

lies in the high annotation cost, which is usually not practical in a critical domain

such as healthcare.

Unsupervised explanations Unsupervised explanations do not have any anno-

tation cost as they can be naturally generated from either intrinsically interpretable

models or model-agnostic post-hoc methods described above.

2.4 Interpretability and performance-oriented explanations

In addition to the above categorizations of explanation methods, here I provide

another point of view, which is by looking at the purpose of the explanation uses.

Interpretability-oriented Interpretability-oriented methods aim at generating

explanations for model behaviors. For example, the post-hoc methods (e.g., gradients

and LIME) explore existing models and discover important pieces to the predicted

outcome. These methods often follow a “predict-then-explain” workflow (Camburu

et al. (2018)). Therefore, the generated explanations do not affect the model outcome.
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Performance-oriented On the contrary, performance-oriented methods utilize the

explanation created from human rationale to help models make better predictions.

For example, in Zaidan et al. (2007), human-annotated explanations are used to train

the model to be more confident towards the ground-truth label when they are present

than when they are not. Zhang et al. (2016) uses annotated sentence-level rationales

to improve document classification by creating supervised attention training objectives.

Similar work are also explored by Du et al. (2019); Arous et al. (2021).

Apart from using annotated rationales from data instances, another line of this

direction focuses on directly using human explanation to annotate task data with weak

supervision ( Bach et al. (2017); Fries et al. (2017); Ratner et al. (2017); Safranchik

et al. (2020)). This method has been proved effective when we only have a limited

annotation budget but have access to large-scale unlabeled data.

2.5 Formats of explanations

In this section I summarize the formats of explanations that are commonly used

in previous studies.

Extractive explanation As the explanation methods described above, one of

the most common explanation formats comes out as subsets of tokens or sentences

highlighted by models. Under a supervised setting, it requires human efforts to

annotate rationale tokens or sentences that are decision triggers for each data instance.

(Zaidan et al. (2007); Marshall et al. (2016); Zhang et al. (2016); DeYoung et al.

(2020); Arous et al. (2021); Du et al. (2019); Lin et al. (2020)). Additionally, methods

like LIME also highlight important phrases or tokens. These explanations locally

interpret model decisions. Similarly, global explanation methods also generate a subset

of features, which also falls into this category.
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Prototypes Prototypes are a group of representative data instances that are similar

to each other in terms of some features. Therefore, given a new instance, if it could

be classified into a specific prototype group, we can assume that it shares the same

label as other instances in the group. Sometimes the prototypes could be defined as

groups of data instances that are dissimilar to the new instance, also referred to as

counterfactual explanations.

Natural language Recently, Camburu et al. (2018) proposed natural language as

another type of human insight as the explanation method in addition to task-targeted

data annotation. The idea is to pre-train a language generator that generates language

explanations based on the input data. In addition to the final task label, training

such a language generator requires human annotation in natural language to explain

the label decision.

Heuristic rules Early NLP systems started with rule-based methods, the logical

forms of human rationale. These rules offer a direct way of transferring human insight

into the systems without having to train models on a large amount of annotated

data. These logical rules allow system developers and domain experts to make

precise decisions on data that are matched by the rules. For example, in clinical

de-identification systems, the phrases such as “Dr” and “M.D” are strong indicators

to catch “Dr X” and “X M.D” as doctor names. Besides high precision, rule-based

human insights often have good readability as they often follow the semantic and

syntactic structure of the text.

Recently, logical rules have been well demonstrated in weakly supervised systems

(Bach et al. (2017); Fries et al. (2017); Ratner et al. (2017); Wang et al. (2019);

Safranchik et al. (2020); Boecking et al. (2020)). The general idea is to use rule-based

labeling functions to assign labels to data that matched by the rules. Then a generative

model will estimate the noisy label matrix and generate probabilistic labels.
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2.6 Human and model-driven explanations

We can also categorize explanation methods by looking at the explanation sources

- are they generated intrinsically from the model design or human insights?

Model-driven explanation model-driven explanations highlight the operation

mechanism, such as model weights, gradients, attention layers, etc., running inside a

model that leads to a model decision. While these explanations are easy to obtain

and allow us to evaluate the model mechanism, they do not necessarily provide

explanations that are interpretable to humans because they do not guarantee to carry

human belief, making them difficult for humans to comprehend or accept. This is

defined as “confirmation bias” by Nickerson (1998) for scenarios where humans tend

to ignore information that is inconsistent with their prior knowledge, which violates

the soundness that we discussed in Chapter 1.2.

Human-driven explanation human-driven explanations are generated by bringing

in human insights in the process. For example, the rule-based systems are completely

human-driven. Another way to incorporate human insights is by providing human

beliefs as supervision signals to train models. During the model training process, the

embedded human beliefs will affect how the model looks at the training data based

on what human experts emphasize.

The idea of including human insights as a part of the model training in natural

language processing traces back to Zaidan et al. (2007) where it was referred to as

human rationale. The authors proposed a deterministic method to force the model

to provide better predictions when complete rationales are provided. Experiments

showed that the rationales brought significant performance improvement on a sentiment

classification task. Recently, Zhang et al. (2016); DeYoung et al. (2020); Arous et al.

(2021); Du et al. (2019) demonstrated that annotating sentence-based rationales could
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Studies
Explanation

format
Global or

local
Supervised or
unsupervised

Models

Chapter 3 natural language local supervised black-box

Chapter 4
heuristic rules

attention
both

supervised
weakly supervised

black-box
white-box

Chapter 5 language rule global human-in-the-loop
black-box
rule-based

Table 2.1: Summaries of explanation types and methods that are explored in this
dissertation. All methods are intrinsic and proposed for both interpretation and
performance.

significantly improve the prediction accuracy in document classification tasks, and Bao

et al. (2018) showed that human rationale also provides useful supervision signals in

low-resource settings. Strout et al. (2019) showed that explanations generated from

human supervision outperform the machine-generated explanations in helping human

judges make decisions.

2.7 Bridging to this dissertation

In this section, I reviewed different methods for inducing explanations from models

or incorporating explanations from human insights into models. This dissertation is

most related to the studies that bring human insights in to the models for performance

and interpretability. Table 2.1 summarizes the main categorizations of the studies in

this dissertation.

In this dissertation, I focus on the argument discussed in Chapter 1.5 that in-

terpretability is more than having interpretable models. I design grey-box

pipeline frameworks that use black-box models to achieve high correspondence and

human insights to create high coherence between human belief and model output.

20



CHAPTER III

Improving Explanation Quality with Relevant

Language Rationale

This chapter is based on Zhao and Vydiswaran (2020). I investigate extractive

token rationale and natural language explanations (NLE) for a particular natural

language understanding task, natural language inference (NLI).

In particular, I introduce a framework that generates natural language explanations

that are faithful and highly relevant to human rationale. To evaluate the coherence

of the framework to human annotators, I use both automatic and manual evaluation

metrics to analyze the performance of rationale identification and NLE relevance.

In addition, task accuracy and faithfulness are used to evaluate the explanation

correspondence to task performance, and the rest of used to evaluate the explanation

coherence to human belief.

3.1 Motivation

As described in Chapter II, language-based rationale provides additional human

reasoning in addition to label annotation alone. They have been suggested to poten-

tially improve the performance and interpretability of deep learning-based models –

i.e. either augmenting model performance by incorporating NLEs as additional con-

21



textual features, or explaining model decisions by training an explanation generator.

Researchers have parsed NLEs into structured logical forms (Srivastava et al. (2017);

Hancock et al. (2018); Lee et al. (2020); Qin et al. (2020)) or directly encoded them

into a vector-based semantic representation (Fidler et al. (2017)). Recent success in

language modeling and generation have enabled trained models to explicitly provide

human-readable rationales for classification tasks (Kim et al. (2018); Huk Park et al.

(2018); Camburu et al. (2018); Kumar and Talukdar (2020); Rajani et al. (2019)).

Similarly, studies such as Rajani et al. (2019) have reported significant performance

improvements on commonsense reasoning tasks by including NLEs in training a lan-

guage generation model. However, these trends do not carry over to NLI task in

which a premise-hypothesis pair is expected to be classified into entailment, neutral,

or contradiction. Previous studies on utilizing NLEs for NLI tasks have reported a

drop in overall performance, even with powerful deep learning-based models such as

LSTM (Camburu et al. (2018)), RoBERTa, and GPT2 (Kumar and Talukdar (2020)).

In this chapter, I study this discrepancy in more detail and start first by identifing the

following two primary issues, described below, with how NLEs have been incorporated

for the NLI task so far.

Issue 1: Lack of rationale in NLE Generation Current approaches for ex-

planation generation produce only one specific explanation for each data instance.

However, these approaches ignore the variability in human reasoning and alternative

explanations. Annotators could assign the same label to a data instance by considering

different rationales. For example, given the premise and the hypothesis shown in

Figure 3.1a, it is easy to infer that the label should be contradiction. However, this

label could be explained using two different rationales – indicated by “sitting” or by

“car”. Ignoring this aspect would limit the application of NLE in NLI tasks because

trustworthy explanations should be consistent with the appropriate rationale used by
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(a) Example of different NL explanations using different rationales.

(b) Example of correct and incorrect NL explanations generated for a same premise-hypothesis,
but favoring different labels.

Figure 3.1: Examples of NLEs in NLI task.

humans to interpret the label.

Issue 2: Inclusion of Spurious Explanations NLEs that are inconsistent with

commonsense logic provide little help for model prediction (Camburu et al. (2020)). For

example, given the premise-hypothesis pair in Figure 3.1b, the explanation regarding

the correct label (entailment) aligns with the fact that drums are indeed musical

instruments. However, while tailored explanations could be generated to favor other

labels – neutral and contradiction, such explanations are themselves factually incorrect.

This happens because while deep learning-based text generators are powerful enough

to generate readable sentences, they often lack commonsense reasoning ability (Zhou

et al. (2020). When generating an explanation, such models are prone to output

negating text if conditioned to the contradiction label, or output text with uncertainty

if conditioned to the neutral label, without reasoning about the plausibility of the

generated text.

In the following sections, I will introduce a framework called LIREx to address
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the above two limitations. Then I will investigate the behavior of each component in

LIREx and show that LIREx generates flexible, faithful, and relevant NLEs that allow

the model to be more robust to spurious explanations and better aligned to human

interpretation.

3.2 Related work

NLEs have been studied along two main directions. The first direction focused

on how explanations could be treated as contextual features to improve the model

performance. Studies in this direction include Li et al. (2016); Srivastava et al. (2017);

Wang et al. (2017); Hancock et al. (2018); Qin et al. (2020); Lee et al. (2020), in

which the authors used semantic parsers to convert unstructured NLEs into structured

feature-like logical forms. These logical forms could further benefit low-resource setting

by weakly labeling more unlabeled data. One limitation of such approaches is that the

localized contexts usually have limited ability to represent the semantic meaning of

text and are often difficult to convert to logical forms when they get too complicated.

The second direction focused on training NLE generators to justify model predic-

tions, usually as a post-hoc exercise. Kim et al. (2018) trained textual explanation

generators conditioned on the video frames and commands in self-driving cars to

describe and justify the operated actions. Huk Park et al. (2018) proposed an explana-

tion module for visual question answering and an activity recognition task, in which

they first use encoders to jointly predict labels and infer the rationale regions of an

image, and then generate text explanations by conditioning on the predicted labels

and inferred rationales. Camburu et al. (2018) suggested the inclusion of NLEs for

NLI task by proposing e-SNLI, an expanded dataset that contains NLE annotations.

They also jointly trained the prediction model and the explanation generation model

conditioned on the predicted label. However, jointly training the two models led to a

non-negligible loss in performance (by about 2 points in F1).
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In recent studies, generated NLEs have been combined with original data for label

prediction tasks. Rajani et al. (2019) proposed CAGE for commonsense reasoning

task, where they first trained an explanation generator to predict explanations based

on the question and answer choices, and then expanded the original classifier input by

combining questions and generated explanations. This strategy achieved a significant

improvement over the baseline that only used the original data as input. Kumar and

Talukdar (2020) attempted a similar approach, NILE, for the NLI task on the e-SNLI

dataset but with a modification where, instead of generating one explanation per

training instance, they trained three independent generators conditioned on each label

(entailment, neutral, and contradiction), respectively. Then the final NLI model takes

as input, the premise-hypothesis pair as well as all three generated explanations. They

also evaluated the faithfulness of the explanations to demonstrate that the explanations

are well correlated with model predictions, but reported a drop in performance on the

NLI task.

3.3 Framework

To address the aforementioned issues observed in how NLEs have been incorpo-

rated in NLI models, I propose a framework for Language Inference with Relevant

Explanations (LIREx). LIREx augments the NLI model with relevant, plausible NLEs

produced and selected by a rationale-enabled explanation generator and an instance

selector. In this section, I will describe LIREx in detail.

Overall framework The overall workflow of LIREx is shown in Figure 3.2. Given

a premise-hypothesis (P-H) pair, a label-aware rationalizer predicts rationales by

taking as input a triplet (P, H, x; x ∈ {entail, neutral, contradict}) and outputs a

rationalized P-H pair, (P, Hx). Next, the NLE generator generates explanations (Ex)

for each rationalized P-H pair. Then, the explanations are combined with the original
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Figure 3.2: The overall workflow of LIREx framework

P-H pair as input to the instance selector and inference model to predict the final

label. Each component is described below.

Label-aware Rationalizer - R(·) As described in Camburu et al. (2018), NLEs are

created based on the rationales highlighted by annotators. We simulate this process

by using a rationalizer to provide the relevant rationales for the NLE generator. This

operation models how the explanations are generated for human interpretation.

We formulate this step as a token-level binary classification task where 1 indicates

a rationale token and 0 indicates a background token. The rationale classification

is only performed on the hypothesis because we consider the premise as background

context for the NLI task, where the task is to justify if the hypothesis is an entailment,

contradiction, or neutral statement with respect to the premise. Therefore, we

hypothesize that the rationales in the hypothesis are sufficient to predict the correct

label. We first construct the input sequence as Sp=<s>Label<s>Premise<s> and Sh=

<s>Hypothesis<s>, where <s> is a special token that separates the components.1 We

append the label information to the premise to inform the rationalizer to highlight label-

related rationales. Then we use a RoBERTabase model (Liu et al. (2019)) to extract

hidden representations for Sp and Sh, denoted as Hp = [...,hp
i , ...] and Hh = [...,hh

j , ...],

respectively. Since the rationales in hypothesis depends on the semantic meaning of

1RoBERTa includes two special tokens, <s> and </s>. For simplicity, we use <s> to denote
both of them.
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the premise, we use cross attention to embed premise into hypothesis, defined as

aij =
exp(hhT

i Tanh(WT
1 h

p
j))∑Lp

k=0 exp(hhT
i Tanh(WT

1 h
p
k))

(3.1)

ĥh
i = concat(hh

i ,Pool(Hp),
∑
k

ai,kh
p
j) (3.2)

where aij denotes the attention score of the jth token in Sp to the ith token in Sh,

Lp denotes the sequence length of Sp, and W1 is trainable parameter matrix. Then

the new representation of the ith token in Sh is created by concatenating its original

state representation, maxpooling representation over Hp, and the corresponding sum

of attentional representation from Hp. At last, we use a softmax layer with a linear

transformation to model the probability of the ith token in Sh being a rationale token:

P(yhi |Sp, Sh) = softmax(W2ĥ
h
i ), where W2 is a trainable parameter matrix for linear

transformation on ĥh
i .

NLE Generator - G(·) We model NLE generation as a text generation task, in

which we leverage GPT2 (Radford et al. (2019)), a language model trained on large-

scale language corpus. We choose GPT2medium so that we could have an end-to-end

comparison with the previous study that uses the same architecture.

In the previous study (Kumar and Talukdar (2020)), the authors finetuned GPT2

independently for each label. Specifically, they trained three GPT2 models separately,

which are Gx(P,H,E), x ∈ {entail, neutral, contradict}. Each Gx is trained only with

the P-H pairs annotated as x. As described in the Introduction section, such setup

is (a) insensitive to the variety of human interpretation toward data, and (b) results

in spurious explanations that further harm the label inference task. Additionally,

this generation strategy requires training n GPT2 models for n labels, which is still

expensive even with fine-tuning. To solve the above issues, we train a single GPT2

model, G(P,H∗,E), where H∗ is rationalized hypothesis. For example, for the P-H
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pair in Figure 3.1b, we construct the input sequence, Sg, as:
Premise: P

Hypothesis: A man is [playing] a [musical] [instrument].

Explanation: E

where P and E represent the premise and NLE text in training data. To inform

the generator about the rationales in hypothesis, we highlight rationale tokens by

surrounding them with the square brackets ‘[]’. The generator is fine-tuned by modeling

the text input as a whole. To generate an NLE, we simply remove E from Sg and then

use the rest as a text input prompt for the generator.

Unlike the approach in Kumar and Talukdar (2020) where the label information

is appended to the text, we hide the label from the generator to force the model to

generate rationale-enabled NLEs. This is consistent with our goal to simulate diverse

human interpretation, and prevents the model from generating spurious label-based

explanations.

During training and evaluating the explanation generator, we use the rationale

tokens and NLEs provided by human annotators. After the generator is trained, we

generate three new NLEs for each instance based on the rationales by including each

label in Sp, independently. Now each P-H pair is provided with three explanations

and we remove the original gold explanations in training data. This is to prevent the

instance selector model in the next step from overfitting on the training examples.

Instance Selector and Inference - S(·) and Infer(·) When a P-H pair and the

generated explanations are fed into an inference model, the model benefits from the

addition of the explanations when they are correct (cf. Figure 3.1b). On the other

hand, incorrect explanations lead to large uncertainty during the inference process.

So, we first select a single plausible explanation for the final inference. To achieve this,

we develop a simple strategy assuming that when the labels are correct, the NLEs

generated based on the corresponding enabled rationales are the correct explanations.
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This allows us to only estimate which NLE is generated by the gold label-enabled

rationale. To further simplify this task, if we assume that the gold label-enabled

explanation is more likely to be plausible than the other two explanations, we could

identify the gold label-enabled explanation by accurately predicting the correct label

for the standard NLI task. In other words, a good prediction on the NLE selection

task can be achieved by just training a standard NLI classification model.

Training instance selector model We initialize the selector S(·) with a RoBERTabase

model and use the representation of the first token, h0, as the sequence represen-

tation. On top of this, an output layer of linear transformation and activation,

Tanh(U1h0)U2, is applied for prediction. U1 and U2 are parameter matrices. We

train S(·) as a standard supervised learning task where premise and hypothesis are

concatenated as a single input sequence, and the model is trained to predict label

Y ∈ {entailment, neutral, contradiction}. We pre-train the instance selector and use

the label prediction probability distribution as the estimator to find the most likely

explanation corresponding to the true label. To improve model robustness, during

training, we sample the candidate explanations based on the probability distribution,

instead of picking just the most likely explanation. This allows the inference model to

better tolerate less plausible explanations. During test phase, we select the explanation

with the highest probability.

Training inference model Once the explanation instance is selected, we train

the inference model, Infer(premise, hypothesis, explanation), with the same model

architecture as the selector. Taking insights from the field of weak supervision (Fries

et al. (2017); Bach et al. (2017); Ratner et al. (2020)) where weakly labeled data

is used for training models, we treat the selected explanations as weakly selected

instances. Instead of using the standard cross-entropy loss (that requires gold label) as

training objective, we use a probability-oriented training objective, soft cross-entropy
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loss, to improve the model robustness towards noisy input:

CEsoft(p, p̂) =
∑

l∈{e,n,c}

p̂l logpl (3.3)

where p and p̂ are predicted and the “target” probabilities for each label, respectively.

In our experiments, we use the estimated probabilities from the instance selector as

our “target” probability for training inference model.

3.4 Experiments

In this section, I will first introduce the two data sets used, one of which is for

supervised experiment setting and another one is considered as an out-of-domain data

set. Then I perform a series of experiments to investigate the performance of LIREx.

First, I show that LIREx brings performance improvement on both data sets. Then, I

conduct further analysis to show that the rationalizer can correctly identify informative

tokens despite automatic metric evaluation gives low score. Thrid, I examine the

NLE generator to show that the generator can robustly generate NLEs by pertubing

rationale tokens. Furthermore, I show that LIREx is able to generate more plausible

NLEs. Last, I conduct faithfulness and relevance evaluation to show that the NLEs in

LIREx is not only faithful but highly relevant to the human rationale.

Here are the different baseline and model variations that I used throughout the

experiments. I use NILE as the backbone of all baseline models (Kumar and Talukdar

(2020)).

Baseline the baseline models are denoted as NILEbase and LIRExbase, which use

the same RoBERTa model that takes input only with the P-H pair. NILEbase is the

original reported performance and LIRExbase is the reproduced version made for fair

comparison.
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Explanation only These models use only the generated explanation(s) for pre-

diction. The difference is that NILE model, denoted as NILEexpl, uses all three

explanations, while the LIREx model, denoted as LIRExexpl ∗ uses the single expla-

nation selected by the instance selector. The LIREx model has the following two

variations:

• LIRExexpl max selects the explanation with the highest probability.

• LIRExexpl prob samples an explanation candidate based on the probability distri-

bution.

Explanation and data NILE models use the P-H pair as well as all explanations as

input by concatenating them into one input sequence, e.g. “p<s>h<s>e1<s>e2<s>e3”,

where all components are separated by a special token <s>. Two versions are reported

• NILEall is as described above.

• NILEall extra uses extra negative samples that are created for valid (P, H, E)

triplets by sampling from other explanations.

LIREx use the pre-trained instance selector to first select an explanation candidate,

and then concatenate the explanation to the P-H pair for input to the inference model,

which also has two versions:

• LIRExall max selects the explanation with the highest probability.

• LIRExall prob samples an explanation candidate based on the probability distri-

bution.

3.4.1 Data sets

SNLI (Bowman et al. (2015)) is a balanced collection of P-H annotated pairs with

labels from {entailment, neutral, contradiction}. It consists of about 550K, 10K and
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10K examples for train, development, and test set, respectively. Camburu et al. (2018)

recently expanded this data set to e-SNLI in which each data instance is also annotated

with explanations. Based on the gold labels for each P-H pair, annotators were asked

to highlight the rationale tokens, and provide NLEs based on the rationale. Previous

studies (Camburu et al. (2018); Kumar and Talukdar (2020)) removed over 17K

non-informative training examples (where the explanations contain the entire premise

or hypothesis) from their analysis. In our work, to maintain the original training data

with minimal changes, we hold out these non-informative training instances only when

training the explanation generator, but use the full training data for the remaining

steps.

MultiNLI (Williams et al. (2017)) differs from the SNLI data set in that it covers

a range of genres of spoken and written text. It contains 433K P-H pairs annotated

the same way as SNLI. The evaluation set is divided into Dev-match set (10K) and

Dev-mismatch set (10K) – the former is derived from same five domains as the training

data and the latter is derived from five other domains.

3.4.2 Task performance evaluation

In-domain performance The model performance on SNLI data is summarized in

Table 3.1. I re-implemented the NILE baseline (NILEbase) as LIRExbase and achieved

slight improvement (of 0.06) over published results. The rest of the table shows model

improvements compared to the baselines accordingly, with the relative improvements

against the baselines summarized in the “vs.baseline” column.

As shown in the table, the best model (LIRExall prob), is able to achieve an absolute

performance gain of 0.32 accuracy points. In addition, I also provide other variants of

our model, namely, LIRExexpl max, LIRExexpl prob and LIRExall max. All the provided

models show that models that use the instance selector achieve better performance.
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Model Dev Test vs.Baseline +Data

SemBERTlarge 92.0 91.6 - no
SemBERTwwm 92.2 91.9 - no

NILEbase 91.86 91.49 - no
NILEexpl 88.49 88.11 ↓3.38 no
NILEall 91.74 91.12 ↓0.37 no
NILEall extra 91.29 90.73 ↓0.76 yes

LIRExbase 92.15±.05 91.55±.04 - no
LIRExexpl max 89.95±.05 89.73±.04 ↓1.82 no
LIRExexpl prob 90.10±.05 90.03±.05 ↓1.52 no
LIRExall max 92.15±.04 91.73±.03 ↑0.18 no
LIRExall prob 92.22±.03 91.87±.03 ↑0.32* no

Table 3.1: Accuracy performance of LIREx on SNLI data (average of five random
runs). “*” denotes that the best model is statistically significant (at significance
level of 0.05 against baseline and 0.01 against NILE). “+ Data” denotes if additional
training data was created. SemBERT (Zhang et al. (2019)) is included to refer to the
best-reported performance.

Further, the sampling-based selection strategy (as in LIREx∗ prob) performs better

than the greedy selection using highest value (as in LIREx∗ max).

Out-of-domain performance To test how well LIREx can generalize to a different

data set, I directly apply the model trained on SNLI to an out-of-domain data set,

MultiNLI. As shown in Table 3.2, without any fine-tuning, the model achieves signifi-

cantly better performance compared to NILE. When compared to the corresponding

baselines, the model performance dropped by 0.27 on dev-matched and improved

slightly by 0.06 on dev-mismatched. Performance of NILE models, in contrast, dropped

significantly on MultiNLI. In addition, compared to the baseline, LIRExall prob, the

final model performs similarly between dev-matched and dev-mismatched, indicating

that the inclusion of explanations as supervision improves the overall generalizability

of the model.
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Model
Dev-Matched Dev-MisMatched

Acc vs.baseline Acc vs.baseline

NILEbase 79.29 - 79.29 -
NILEexpl 61.33 ↓17.96 61.98 ↓17.31
NILEall 77.07 ↓2.22 77.22 ↓2.07
NILEall extra 72.91 ↓6.38 73.04 ↓6.25
LIRExbase 80.12 - 79.73 -
LIRExexpl max 65.53 ↓17.59 65.19 ↓14.54
LIRExexpl prob 65.57 ↓17.63 65.32 ↓14.68
LIRExall max 79.71 ↓0.41 79.50 ↓0.23
LIRExall prob 79.85 ↓0.27 79.79 ↑0.06

Table 3.2: Transfer performance of LIREx on the out-of-domain MultiNLI data
(average of five random runs) without fine-tuning.

3.4.3 NLE qualitative anlaysis

Rationalizer analysis As described earlier, the explanations are generated based

on rationales in the hypothesis. Heuristically, we could evaluate the rationalizer simply

by looking at the F1 score to see how well the predictions match the true rationales.

However, this evaluation strategy alone is insufficient, because annotators may include

additional neighboring tokens as rationales. For example, for the hypothesis “A man

sitting in a car” in Figure 3.1a, “sitting in a car”, “in a car”, “a car”, and “car” are

all reasonably correct rationales as they all contain the most important rationale

token “car”. If an annotator provides “in a car” as rationale and the rationalizer

predicts only “car”, the automated F1 metric will be low even though the main

rationale was correctly identified. So, in addition to the F1-based evaluation, we also

conducted a manual verification of 100 randomly sampled test examples, and report

the instance-level accuracy in Table 3.3. The manual verification was conducted by

two annotators. The annotators were presented with P-H pairs, predicted rationales,

and gold rationales, and were asked a “Yes/No” question: Do predicted rationales

contain the key information from the gold rationales? Examples annotated as “Yes”
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Model
Dev Test Human

P R F1 P R F1 Eval

Rationale 59.40 65.22 62.17 59.21 64.89 61.92 90.53

Table 3.3: F1-based performance of the rationalizer and instance-level accuracy of
human evaluation from two annotators over 100 randomly sampled test examples with
an inter-rater agreement of 0.89.

were treated as correct predictions. The difference between automated and human

evaluation shows that, although the rationalizer did not identify the exact human-

provided rationales, it did identify the most important rationales (e.g., “car”) with

high accuracy.

An unexpected, yet preferred behavior of the rationalizer is that, when there

are no obvious rationales towards the pre-appended label information, the model

tends to identify rationales that relate to the correct label. For example, for the

hypothesis (a) in Table 3.4, we devised three “alternate” hypotheses to analyze how

the rationale predictions change with different hypotheses. We progressively modified

a specific component in the original hypothesis – e.g. added “on stage” in (b), replaced

“man” with “woman” in (c), and included both these changes and replaced “musical

instrument” with “guitar” in (d). We found that when rationales of a particular

label is absent, the rationalizer is prone to output rationales of the correct label (as

contradiction rationales in hypothesis (a) and neutral rationales in hypothesis (c)).

Furthermore, when rationales of more than one label exist, the model is capable

of identifying at least some correct rationales regarding a label. For example in

Hypothesis (b), “playing musical instrument” is an entailment-related rationale, while

“playing musical instrument on stage” is a neutral-related rationale. For hypothesis

(d), we are able to correctly catch rationales of all labels (“playing” is an entailment,

“stage” is neutral and “guitar” is a contradiction).

Generator analysis
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Premise: A man wearing shirt is playing the drums.

Hypothesis Label Rationales

(a) A man is
playing a musical
instrument

E musical instrument

N musical instrument

C musical instrument

(b) A man is
playing a musical
instrument on stage

E playing, musical instrument

N musical instrument, stage

C playing, musical instrument

(c) A woman is
playing a musical
instrument

E musical instrument

N woman, musical instrument

C woman, musical instrument

(d) A woman is
playing guitar on
stage

E playing

N woman, stage

C woman, guitar

Table 3.4: Examples of the rationalizer behavior. All hypotheses share the given
premise. Rationales are predicted by appending a corresponding label information to
the premise. The true labels of the P-H pairs are highlighted in green.

The plausibility of NLEs I conducted detailed analyses to show (a) why label

information should be removed from generation prompts and (b) robustness of the

generator towards rationale variants.

Removing label information from generation prompts prevents the generator from

producing too many spurious explanations. In Table 3.5, we present an example

to compare the explanations generated when label information is either included or

excluded. For the provided P-H, all three models use GPT2 to generate explanations

for each label. NILE uses the plain premise and hypothesis combined with label

information as generation prompts. LIREx-w-label uses the same information as

NILE, and also includes an indication of rationale tokens in the format described in

the NLE Generator section. Finally, in LIREx-w/o-label, the label information is

removed. As shown in the example, all three models are able to generate reasonable
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explanations. However, when label information in appended to the input data, spurious

explanations are presented (e.g. for E and N labels in NILE, and the E label in LIREx-

w-label). This is because the addition of label serves as a very strong constraint for

the generator, which then leads to an explanation that is constructed using the label

information as guidance. Even with rationales are provided, the issue could only be

slightly alleviated (eg. for N label in LIREx-w-label).

However, the issue is resolved when labels are excluded from the generator because

the generator is not forced to generate a label-aligned explanation, which could be

spurious. Instead, it utilizes only the rationales and the original context to construct

the explanations. As discussed earlier, when the rationale of a specified label does not

exist, the rationalizer tends to provide rationales related to the true label. So we obtain

three reasonable explanations for the E, N, and C labels in LIREx-w/o-label(E,N,C).

Further, this would greatly increase the chance of a plausible explanation being selected

as an explanation candidate by the instance selector.

Robustness of generator towards varied rationales The example in Table 3.6

shows different explanations generated by using one hypothesis token at-a-time as

rationale. Out of the seven generated explanations, only two are invalid. In reality,

however, it is rare to have only non-informative stopwords as rationales. This ob-

servation strengthens our argument that including rationales in the training of the

explanation generator could improve the robustness of the model.

Effect of Spurious Explanation As presented in Tables 3.5 and 3.6, LIREx is

able to consistently generate plausible NLEs with rationale-enabled explanations while

NILE tends to generate spurious NLEs due to the inclusion of label information in

explanation generation. To show how the spurious explanations could affect model

performance, we train our model with the best NLE from the selector for each data

instance, and then use a randomly selected NLE during evaluation. The results are
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Premise: Families waiting in line at an amusement park
for their turn to ride.
Hypothesis: People are waiting to see a movie.

L NILE LIREx-w-label LIREx-w/o-label

Rationales: people, waiting, see, movie

E

People are
waiting to see
a movie at an
amusement park.

Families are
people. If
people are
waiting in line,
it means that
they are waiting
to see a movie.

People waiting
in line are not
waiting to see
a movie.

Rationales: movie

N
Not all rides at
amusement parks
are a movie.

You cannot infer
it’s for a movie.

Amusement
park and movie
are not the same.

Rationales: waiting, see, movie

C

People cannot be
waiting to ride an
amusement park
and a movie
at the same time.

People are either
waiting to ride an
amusement park,
or waiting to see
a movie.

People are either
waiting in line
for a ride or
waiting to see
a movie,
but not both.

Table 3.5: Example of NLEs generated when label information is included and excluded.
For each label, we present the generated explanation from each system. The highlighted
green “C” is the correct label for the P-H pair.
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Premise: Families waiting in line at an amusement park for their
turn to ride.
Hypothesis: People are waiting to see a movie.

Rationale Explanation Valid

People Families implies more than one person
√

are are waiting and waiting are different ×
waiting You can not infer they are waiting ×
to Rides does not imply to see a movie

√

see To ride and to see are different
√

a One cannot ride and see simultaneously.
√

movie Just because families are waiting in line
at amusement park doesn’t mean they are

√

waiting to see a movie

Table 3.6: Example of explanations generated using different rationales – one hypothesis
token at-a-time as rationale.

Model
SNLI-Dev SNLI-Test MNLI-M SNLI-Mis
best rand best rand best rand best rand

LIREx 92.15 91.84 91.80 91.55 79.51 79.51 79.52 79.33
LIRExNILE 91.59 85.97 91.46 85.58 79.48 72.01 79.50 71.97

Table 3.7: Effects of spurious explanations on model performance. LIRExNILE uses
the same LIREx architecture but with the explanations generated from NILE.

presented in Table 3.7. We observe that since LIREx is trained with rationale-enabled

NLEs, it suffers only a small performance drop when presented with a randomly

selected NLE. On the other hand, if we randomly select an NLE generated by NILE,

the performance drops significantly compared to when choosing just the best NLE.

This shows that (a) NILE has a tendency to generate more spurious explanations,

and (b) if a spurious explanation is used for training the model, the performance

drops significantly. On the other hand, LIREx does not use labels when training

the generator, and hence, produces fewer spurious explanations, so even a randomly-

selected explanation is still relevant.
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SNLI-Dev SNLI-Test MNLI-M MNLI-Mis

D+E 92.22 91.87 79.85 79.79
D 90.95 91.07 77.10 76.88
E 62.40 62.21 43.35 43.93

Table 3.8: Faithfulness analysis of LIREx on both SNLI and MultiNLI data. “D+E”
uses both P-H pairs and selected explanations as inputs for inference model, “D” uses
only the P-H pair, and “E” uses only the selected explanations.

3.4.4 Faithful and relevance evaluation

Faithfulness It is argued by DeYoung et al. (2019) that a rationale-augmented

classifier may not necessarily rely on the rationales but on the original data. Therefore,

they propose to measure the faithfulness of the rationales by measuring the comprehen-

siveness (removing rationales from input) and sufficiency (using only the rationales

as input). Since the LIREx inference model uses the generated explanations instead

of rationales as input, following Kumar and Talukdar (2020), we probe the model by

removing explanations and using just the explanations to measure comprehensiveness

and sufficiency. As shown in Table 3.8, when compared to the complete input, removal

of explanation from the input reduces the performance on all data sets. Just using

explanations leads to a significantly larger drop in performance, which is expected

because an explanation is more meaningful when combined with the appropriate

context (P-H pair) rather than by itself. These two observations show that the model

depends on both the P-H pairs and explanations to make predictions, and that the

explanations do demonstrate faithfulness. However, it is not clear why the effect on

comprehensiveness is not as significant as that on sufficiency.

Relevance Evaluation Finally, we postulate that trustworthy explanations should

be consistent with the appropriate rationale used to interpret the label. Given a

specific example that contains different rationales leading a same label, the generator

should be able to generate different yet reasonable explanations for each kind of
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SNLI-Dev SNLI-Test MNLI-M MNLI-Mis

NILE 84 84 - -
LIREx 99 97 95 95

Table 3.9: Manual evaluation of the relevance score over 100 randomly sampled data
from each data set by two annotators with the inter-rater agreement of 0.95. NILE
evaluations of MultiNLI corpus are missing because we do not have ground truth
rationales from human annotators.

rationale (cf. Figure 3.1a). We analyze the generated NLEs based on their relevance

to human interpretation. From each data set, we randomly sampled 100 examples

and ask two annotators to judge the relevance of the generated explanations. Each

annotator was provided with context information (premise, hypothesis, rationale, and

explanation), and asked to label them as 1 if they agree that the information about the

rationales is contained in the explanation, or 0 otherwise. Since NILE does not use

rationale to generate explanations, we use human-provided rationales in the dataset

as the reference target. For LIREx, we used predicted rationales as reference targets.

As shown in Table 3.9, LIREx is able to maintain a high relevance score between

explanations and predicted rationales, even when transferred to the out-of-domain

data sets. This shows that the rationale-enabled explanations in LIREx are more

aligned with human interpretation of the rationales.

3.5 Conclusion and open questions

This work demonstrates the possibility of mimicking human insights in the NLE

format and shows that highly relevance NLE explanations improves the correspondence

of the framework. In this chapter, I first identified two flaws in the current strategy

of using NLEs for the NLI task. To overcome these limitations, I propose a novel

framework, LIREx, that incorporates a rationale-enabled explanation generator and

an instance selector to augment NLI models with only relevant, plausible NLEs. The

proposed framework achieves significant improvements over a strong baseline by 0.32
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accuracy points on the SNLI data set. It is comparable to the current state-of-the-art

performance on the task. When evaluated over an out-of-domain MultiNLI data set,

the proposed approach demonstrated significantly better performance than previously

published results without fine-tuning. Furthermore, I conduct extensive qualitative

analysis to evaluate each component of the LIREx framework, which showed that

LIREx generates flexible, faithful, and relevant NLEs that allow the model to be more

robust to spurious explanations and better aligned to human interpretation.

This study also opens new challenges and questions, such as how LIREx could be

generalized into other domains. As a pipeline in the general domain, LIREx requires

large-scale annotations to train a reliable NLE generator, making it difficult to be

transferred into domains where large annotated data sets are unavailable. In the

medical domain, there are large-scale unlabeled patient notes, yet specially trained

expertise is expensive to acquire for annotation. Therefore, domain experts usually

prefer choosing different human insights that require less annotation, such as rationale

tokens or sentences (preserved as potential evidence in patient notes) and heuristic

rules.

Taking the above challenges into consideration, in the next two chapters, I will

focus especially on addressing challenges in the medical domain and discuss how we

could utilize other types of human insights to design grey-box pipelines.
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CHAPTER IV

Improving Document Classification via

Sentence-based Evidence Support

In this chapter, I investigate (1) mimicking human insights with both heuristic

rules and black-box models and (2) improving system performance with sentence

rationale for identifying the medication status of patients with inflammatory bowel

disease in clinical notes.

In particular, I introduce a framework that effectively turns human insights into a

sentence-based evidence identification model from documents. Then I use the identified

evidence to support document-level decisions. The evaluation metrics included in

this study are task-designed performance metrics on both document and sentence

levels. Document-level performance evaluates the correspondence of predicted sentence

explanations and the sentence-label performance evaluates the coherence of predicted

sentence evidence.

4.1 Motivation

Compared to sentence classification, document classification presents a unique

challenge to the state-of-the-art models, which is the length of context. Despite the

recent success of deep learning-based methods, it is often impractical for models to
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take an entire document as input because the document usually exceeds the model’s

memory limit. On the other hand, in critical domains such as the clinical domain,

clinicians need to identify evidence in patient notes to support any clinical decisions,

which requires the model to not only make accurate predictions but also make decisions

based on valid evidence support. Therefore, in this chapter, I conduct a clinical case

study to investigate a pipeline approach that makes document-level predictions by

utilizing sentence-based evidence support.

Medication status is a crucial component of a patient’s medical records. For

example, the “Current Medications” section in a patient note contains medications

that are currently being used for patients; the “Prior Medications” section has

medications that have been stopped for various reasons (e.g., allergies, patients

showing no improvement, and finance changes). Being able to successfully access the

status of these medications is critical because it provides information on the patient’s

medical history and guides future treatment. However, identifying the medication

status is time-consuming and challenging work because inconsistent status cues could

be distributed across the entire note. It is essential that the decision-making is based

on all the cues.

Recent studies (Zhang et al. (2016); DeYoung et al. (2020); Arous et al. (2021);

Du et al. (2019)) demonstrated the possibility of combining the interpretability and

strength of deep learning-based models for making predictions on patient note level.

However, there are two critical questions that have not been answered.

The trade-off between annotation cost and performance gain Identifying

evidence requires additional human efforts. For example, in addition to the document

label, the annotators must also identify the evidence segments that support the

document label. Such identification could be of different granularity, including plain

text identification and evidence-level label annotation, the former of which is considered

to be cheaper than the latter. How much performance gain can each evidence support
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Scenario Supervision Annotation Deep learning

1 weak no optional
2 full yes no
3 full yes yes

Table 4.1: Three scenarios that are investigated in this work.

method bring is to be discussed.

In the scenarios where training deep learning models is impractical, is

evidence support still important for patient note predictions? There are

often cases where supervised annotations and training deep learning models are not

available. In such a case, could we still achieve the same performance gain using

computationally less expensive methods?

In this study, to build a strong evidence-based document classifier that predicts

patients’ medication use history based on the evidence support extracted from their

health records, I investigate different scenarios to create evidence-level support with

different data availability and model complexity, as presented in Table 4.1.

4.2 Related work

The recent success of deep learning models has significantly advanced document

classification tasks. Liu et al. (2017); Chen (2015); Johnson and Zhang (2014) developed

methods with convolutional neural networks and achieved significant progress on long-

text classification tasks. Later, Adhikari et al. (2019b) showed that recurrent neural

networks also yield strong performance. Recently, in the current trend of using pre-

trained language models, state-of-the-art performance in document classification tasks

has been achieved by fine-tuning language models that are pre-trained on large-scale

text corpora, such as BERT (Devlin et al. (2018)), RoBERTa (Liu et al. (2019)), or

XLNet (Yang et al. (2019)), etc. However, despite the powerful semantic representation
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learned from pre-training, one of the main challenges with BERT-like models is that

they cannot handle long text. To tackle this issue, Adhikari et al. (2019a) proposed

DocBERT by distilling BERT into a simpler neural network, and Beltagy et al. (2020)

proposed Longformer by re-designing the attention mechanism in BERT to make it

scale linearly with text sequence.

Another perspective of document classification focuses on modeling the structure

of the documents. Yang et al. (2016) proposed a hierarchical attention network that

distributes attention values over sentences and words in a document. Zhang et al.

(2016) developed a rationale-augmented convolutional network that uses annotated

rationale sentences as additional supervision to train a model to generate attention

values. DeYoung et al. (2020) further showed that document classification often relies

on only a small amount of “evidence”. Therefore, using the evidence along would also

lead to correct predictions. Considering the document structure like these methods,

the attention values could also be viewed as a way to interpret model decisions.

4.3 Framework

In this section, I introduce the pipeline framework to extract evidence and make

predictions on the document level.

Overview The overall workflow of the approach is presented in Figure 4.1. As step

(a), a patient note is first pre-processed with section header extraction and sentence

segmentation. Then in step (b), we extract a set of evidence candidates from the

note and create evidence candidate instances. Each candidate instance consists of

a (h, m, t) triplet, denoting section header, medication mention, and sentence text.

In step (c), each candidate instance is predicted with an evidence-level label by the

evidence classifier. Last, in step (d), the note classifier makes the final prediction by

aggregating the information collected and predicted on the evidence level. Now I will
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Raw 
text

Evidence instances Evidence 
classifier

Note 
classifier(",$, %) Section Medication Text

History of Present Illness
...

She was reluctant to start 
azathioprine and 
eventually did start in 
April 2010 at 100 mg .

...
At visit in July 2011 AZA 
increased to 150 mg .

...
Refill
Azathioprine ( Imuran ) 
50 mg tablet take 3 tablet 
by mouth daily 270 tablet 
1

...

'()
History of 
Present 
Illness

azathioprine
She was reluctant to 
start azathioprine and 
eventually did start in 
April 2010 at 100 mg .

Consider

Active'(*
History of 
Present 
Illness

AZA
At visit in July 2011 
AZA increased to 150 
mg .

Active

'(+ Refill Azathioprine, 
Imuran

Azathioprine ( Imuran 
) 50 mg tablet take 3 
tablet by mouth daily 
270 tablet 1

Active

(a) (b) (c) (d)

Figure 4.1: Overview of the medication classification framework.

introduce each step in detail.

Pre-processing Patient notes are pre-processed with medspaCy library (Eyre et al.

(2021)). Each note is tokenized into sentences, and each sentence is associated with

the section header to which it belongs. The section headers (e.g. History of Present

Illness and Refill in Figure 4.1) are extracted via keyword-matching with SecTag

(Denny et al. (2009, 2008)).

Evidence extraction In this step, we extract evidence candidates containing

mentions of the medications that are related to IBD treatments. Table 4.2 summarizes

the eight medication groups considered in this study, and each medication group is

expanded with a list of common synonyms.

Evidence classifier The evidence classifier performs classification on extracted

evidence. For an evidence instance extracted from a note, the evidence classifier

predicts the corresponding medication status based on the contents of the evidence

itself without using any global information from the note. As described above, each

evidence instance is represented as a (h, m, t) triplet, and the task for the evidence
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Group Medications

IFX Remicade, Infliximab, Inflectra
ADA Humira, Adalimumab
CZP Cimzia, Certolizumab pegol
GOL Simponi, Golimumab
UST Stelara, Ustekinumab
VDZ Entyvio, Vedolizumab, Vedo
Thio Imuran, Azathiprine, AZA, 6-Mercaptopurine, 6-MP
MTX Methotrexate, Trexall
ASA Mesalamine, Pentasa, Lialdia, Apriso, Asacol, Delzico, Canasa, Rowasa

Table 4.2: Summary of IBD medications.

classifier is to predict the medication status of the medication m based on the context

information, namely, section header and evidence text.

As introduced earlier, in this work, I investigate three different scenarios (Table 4.1)

considering different data availability and model complexity. In each scenario, training

data is created based on different human efforts.

In scenario 1, the cost of human annotation is too high to be practical,

and only large-scale unlabeled data instances are available. In such case,

I apply weak supervision (WS) methods to create a weakly annotated data set by

directly utilizing heuristic rule-based domain knowledge (Ratner et al. (2017, 2018)).

First, I design a set of heuristic triggers where each trigger serves as a weak labeler

that votes for a label if the instance is matched by the rule. Two types of trigger rules

are developed, denoted as ContextTriggers = [c1, c2, ..., cn] and SecHeadTrigger = t,

where ci and t are designed contextual patterns and the section header, respectively,

that help indicate specific status for a medication. For example, the context pattern

“currently on Humira” indicates that Humira (ADA group) is currently being actively

used by the patient; similarly, if the evidence appears under the section header Prior

Medication, then we can decide the current status of Humira is prior use. Table 4.3

present some examples of the trigger. In this work, 17, 23, and 17 rules are created

for “Active”, “Prior”, and “Consider” classes, respectively.
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Feature Examples Status

ContextTrigger currently on [m] → Active
had difficulty with [m] → Prior
the option of [m] → Consider

SecHeadTrigger Current Medication → Active
Prior Medication → Prior
Allergy → Prior

Table 4.3: Examples of ContextTrigger and SecHeadTrigger

Once the trigger rules are created, they are applied to a set of unlabeled data

instances to generate a label matrix, Λ, where Λi,j is the vote of the jth trigger on

the ith instance. Then, without knowing the ground-truth labels, a generative model

distribution could be defined as

P(Λi, yi) =
e
∑n

j θjϕj(Λij ,yi)∑
Λ′,y′ e

∑n
j θjϕj(Λ′,y′)

(4.1)

The model θ could be estimated by minimizing the negative log marginal likelihood

of the label matrix (Ratner et al. (2018)).

θ = arg min
θ

−
∑
i

log
∑
y

Pθ(Λi, y) (4.2)

In scenario 2, a data annotation budget is available, but complex deep

learning methods is not available. In this case, I investigate two linear yet strong

text classification models for supervised training, namely, Support Vector Machine

(SVM) and Naive Bayes (NB). To train these two models, I first include the output

of the previously designed heuristic rules (in scenario 1) as features. Furthermore, I

also expand the feature set by including N-grams within a window size, w, around the

medication mention.

In scenario 3, the same data annotation budget is available, and deep
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Document instance
History of Present Illness Current Medication ... Assessment and Plan
Active Prior Consider Active Prior Consider ... Active Prior Consider
0.21 0.78 0.01 0.95 0.03 0.02 ... 0.61 0.34 0.05

Figure 4.2: Example of document feature representation for SVM and NB.

learning models are also accessible. In this setting, I choose BERT (Devlin

et al. (2018), a powerful neural network model pre-trained on large text corpora,

as the main backbone of the text classifier. To convert the data into the input

format preferred by BERT, each evidence instance is converted into the follow-

ing format: [CLS]h[SEP ]w1, w2 . . . [MED] . . . wn[SEP ] where h is section header,

w1, w2 . . . [MED] . . . wn is the evidence sentence and [MED] is a special marker de-

noting the mask of the medication mention. I use [MED] instead of the actual

medication name to enforce the model to learn from the evidence context and prevent

the model from over-fitting towards some particular medication names. Following the

classification strategy in BERT, we extract the representation of the token [CLS] and

then apply a fully connected neural network layer to perform classification.

Note classifier The note classifier makes the final prediction by leveraging the

evidence support predicted by the evidence classifier. I consider three different strong

classification models as note classifiers, including SVM, NB, and LSTM (denoted as

BERT-LSTM).

To train SVM and NB models, for each patient note, I accumulate predicted

probability distributions from the evidence classifier on the evidence candidates. Then

the accumulated probabilities are converted into feature vectors grouped by section

headers, as shown in Figure 4.2

BERT-LSTM is built based on the BERT evidence classifier. Specifically, once

the evidence classifier (BERT model) is trained, it is used as the evidence encoder
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Data Train Val Test Unlabeled Total

Note 218 55 924 1000 2197
Evidence instance 1755 381
Note instance 586 137 2324 2535 5582

Table 4.4: Summary of data statistics

to generate sentence representations. Then the LSTM model is fine-tuned for note

classification. This idea is also similarly discussed by Adhikari et al. (2019a). To

investigate the use of the attention mechanism for interpretability, I also create a

variant model, BERT-LSTM-Attention, that includes an attention layer over the

LSTM. The attention mechanism distributes attention values over evidence candidates.

4.4 Experiments

In this section, I first introduce the data set that is used in this study. Then I

show that the use of evidence brings substantial performance gain. I also demonstrate

the effectiveness of the ContextTrigger and SecHeadTrigger via an ablation study.

Lastly, I conduct analysis to showcase the explainability of the framework.

4.4.1 Data set

Note-level annotation The data set is collected from a large tertiary care health

system that includes outpatient gastroenterology consultation notes from 2015-2018,

which contains 2,743 unique medical notes. Each note is separately annotated with

respect to one particular medication group for IBD disease. As presented in Table 4.2,

nine medication groups are considered, namely, IFX, ADA, CZP, GOL, UST, VDZ,

Thio, MTX, and ASA. Three labels are used for annotations: Active (i.e., the

medication is currently being used by the patient), Prior (i.e., the medication was

active but has been stopped), and Consider (i.e., the medication was considered or
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planned for use in the future). 546 notes that do not fall in these three categories

with any medication groups are discarded. 2197 notes are left in total.

Evidence-level annotation 218 ( 10%) and 55 ( 3%) notes are randomly sampled

as training and validation data, and they are manually annotated with the sentence-

based evidence. 1000 notes from the test set are held out as extra unlabeled data

when the evidence classifier is trained with weak supervision. Table 4.4 presents

the detailed statistics of the data set. The evidence instances are used for training

evidence classifiers, and the note instances are used for training note classifiers.

4.4.2 Performance evaluation

The results of the evidence classifier Table 4.5 shows the overall performance

of the evidence classifier on validation data. As described above, I consider different

methods for three scenarios, WS1 for scenario 1, NB2 and SVM3 for scenario 2, and

BERT4 for scenario 3.

As shown in Table 4.5, WS yields the lowest performance among the four models.

However, it is also worth pointing out that this performance is achieved without using

any ground-truth label in training data. The next two models are NB and SVM, which

perform comparably similar. The best performance is reported by finetuning BERT,

which significantly outperforms other methods. Due to the superb performance of

BERT, we use BERT as the evidence classifier for the following note-level classification.

1Weak supervision is trained with Snorkel MeTaL (Ratner et al. (2018))
2NB is trained with grid search over (1) window size, w, used as context span to extract n-gram

features from, (2) number of features used for training, (3) N-gram size, and (4) the smoothing
parameter in computing the probability of a specific feature appearing in a particular class. As a
result, the final NB model extracts unigram and bigram features within the window size 8. The top
4,500 features (ranked by term frequency) are selected, and the best smoothing parameter is set as
0.4

3SVM is trained with the same strategy as NB, which results in the same window size and feature
number, and the regularization parameter is 0.6

4BERT is initialized with the embedding provided by Peng et al. (2019) who trained the BERT
embedding using large-scale clinical corpora including the MIMIC-III data set (Johnson et al. (2016))
and PubMed abstracts (Fiorini et al. (2018)).
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Evidence
classification

Val
Micro F1 Macro F1

WS 0.8609 0.7869
NB 0.8766 0.8381
SVM 0.8740 0.8212
BERT 0.9160 0.8936

Table 4.5: Overall performance result of evidence classifiers on validation data. The
results are the average of five runs with randomly selected seeds. Note that the WS is
trained with sentences extracted from 1000 extra notes (in addition to the training
instances), and all data examples are treated as unlabeled data.

Note
classification

Val Test
Micro F1 Macro F1 Micro F1 Macro F1

NB 0.8613 0.8649 0.8605 0.8508
SVM 0.8713 0.8753 0.8693 0.8604
BERT-LSTM 0.8686 0.8778 0.8906 0.8789
BERT-LSTM-Attention 0.8686 0.8767 0.89 0.8837

Table 4.6: Overall performance result of note classifiers on validation and test data.

The results of the document classifier Table 4.6 presents the result of note

classifiers on validation and test data. According to Table 4.5, BERT yields the best

evidence classification performance. Therefore, both NB and SVM note classifiers use

the prediction of the BERT evidence classifier. 5.

I follow the same training strategy (e.g., 5-fold cross-validation and grid search

for NB and SVM, and an average of 5 random runs for DocBERT) as the evidence

classifier to tune the three models. The best NB uses 0.6 for the smoothing parameter,

and SVM uses 0.25 for the regularization parameter. BERT-LSTM and its variant

with attention use the same random seeds as the BERT evidence classifier.

5Due to the randomness during the training of neural networks, the predicted probability dis-
tributions could vary drastically with different random setups, which makes it questionable to use
BERT evidence prediction for interpretation. To alleviate this issue, I used MC dropout to estimate
the distribution (Gal and Ghahramani (2016))
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Figure 4.3: Performance of different methods with limited annotation budget

4.4.3 Evidence classifier with limited annotation budget

As presented in Table 4.5, supervised methods (i.e., NB, SVM, and BERT) outper-

form weak supervision that does not rely on human annotation. However, large-scale

data annotation in the health domain is often not available. Therefore, it is crucial to

effectively and efficiently utilize human domain knowledge to build the model with

reasonably strong performance.

In Figure 4.3, I present the performance of each method with different annotation

budgets of up to 800 randomly sampled evidence instances. As shown in the figure,

when the budget is extremely small (e.g., < 300), BERT gives the worst performance

due to the lack of training data. As the budget grows, BERT starts showing significant

performance gain due to its superiority in modeling text semantics. This figure also

demonstrates that, when only a limited budget is available for creating annotations,

WS presents a unique advantage as it does not rely on data ground-truth and could

scale well with carefully designed heuristic rules.

4.4.4 Effectiveness of evidence support

To demonstrate the effectiveness of using evidence support in our approach, for

each note classifier, I compare its performance by utilizing different levels of evidence

granularity to train the model: (1) Full note: I use the full note text to train the
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Figure 4.4: Performance comparison with different granularity of evidence support.

models without using any evidence support, (2) Evidence text: I use only the extracted

evidence text to train the models, and the evidence labels are not included in the

input, and (3) Evidence classier: I use the predictions of the evidence classifier to

support the training of the note classifier, which are the model presented in Table 4.6.

As shown in Figure 4.4, across all of the four note classifiers, using evidence text

brings substantial performance gain on both Micro and Macro F1 scores on validation

and test data. Furthermore, with the support of label propensity from the evidence

classifier, the performance is further improved for all models.

4.4.5 Interpretability analysis

While the experiments show that using evidence can provide substantial perfor-

mance improvements, I also want to highlight the importance of interpretability in the

model predictions as explaining model decisions is desired in the clinical domain. In
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Predicted evidence label distribution
Class Medication Evidence

Active Prior Consider
Score

[CLS] hpi [SEP] she was reluctant to start [MED] and
eventually did start in april 2010 at 100 mg . [SEP]

0.2037 0.015 0.7807 0.0784

[CLS] hpi [SEP] at visit in july 2011 [MED] increased
to 150 mg . [SEP]

0.9980 0.0012 0.0008 0.1131Active Thio

[CLS] refill [SEP] [MED] ( [MED] ) 50 mg tablet take
3 tablet by mouth daily 270 tablet 1 [SEP]

0.9968 0.0019 0.0013 0.8085

[CLS] hpi [SEP] she was started on [MED] in 2009 and
around that time , developed a massive pe that required
surgical thrombectomy . [SEP]

0.1773 0.8214 0.0013 0.3346

Prior IFX
[CLS] hpi [SEP] [MED] had to be discontinued because
of infusion reactions , and she was switched to humira
in 2009 . [SEP]

0.0472 0.9521 0.0007 0.6654

[CLS] assessment and plan [SEP] alternatively , could do
nurse injection of [MED] . [SEP]

0.0866 0.0041 0.9093 0.3225

[CLS] assessment and plan [SEP] if he is not eligible ;
however , we may have to do our best to maximize the
benefit of [MED] with nurse injection . [SEP]

0.6828 0.0040 0.3132 0.0840

[CLS] assessment and plan [SEP] if this does not work out ,
i think this seems [MED] is a reasonable secondary choice ,
but only with nurse injection , not with him injecting himself
as this failed with humira . [SEP]

0.0991 0.0032 0.8977 0.2799

Consider CZP
[CLS] assessment and plan [SEP] he could try [MED] as a
nurse injected option since he has great difficulty injecting
himself ; however , i am concerned he may not succeed with
this as he has previously had difficulty with remicade and
this would be his third anti-tnf . [SEP]

0.0163 0.0038 0.9799 0.3136

Table 4.7: Examples of model interpretability.

Table 4.7, I showcase the interpretability of our approach with three examples using

BERT-LSTM-Attention. Each example comes from a particular category. For instance,

the document instance is labeled as Active for the Thio medication. Three pieces of

evidence are extracted from the original document text, listed by the order of their

occurrence. As shown in the table, the last evidence is assigned with a larger attention

value than the other two, indicating its dominance in the prediction. Intuitively, the

last piece of evidence acquires a large score because it occurs under the “refill” section

in the document, which is a strong indicator stating that the medication is currently

active.

Similarly, in the other two examples, our model is also able to find the evidence

that is more supportive (e.g., evidence 2 for the Prior example and evidence 1, 3, and

4 for the Consider example.)
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4.5 Conclusion and open questions

In this chapter, I presented an interpretable approach for identifying medication

status for patients with IBD. By manually annotating the evidence extracted from 200

patient notes and evaluating over 2000 patient notes, the proposed approach yields

substantial performance gain across a set of strong baselines, demonstrating the

effectiveness of using evidence support. On the other hand, I also investigated how

different methods for identifying evidence support would vary based on different

annotation budgets. I showed that heuristic rules could help build a fairly strong

evidence classifier when the budget is limited, but this advantage started diminishing

as more annotations become available for supervised learning. The pipeline also

provides reasonable interpretations in the context using deep learning models that

could help clinicians verify the model decisions based on evidence-label prediction and

note-level attention values. This study showed how to design grey-box pipelines with

limited annotation efforts and that heuristic rules have great potential for transferring

human insights into machine learning models.

Promising aspects aside, one major challenge with using heuristic rules is that they

are often oversimplified and are limited by linguistic variations. Therefore, an open

question coming out of this study is how to design heuristic rules that can handle the

complexity of natural language. In other words, is there a better way to implement

heuristic rules?
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CHAPTER V

Enhancing Heuristic Rules with Language

Representation for Information Extraction

In this chapter, I investigate a new demonstration of rule-based human insights,

namely language-augmented rule or language rule. I investigate if the rule-based

human insights could be better learned by going beyond the oversimplified pattern

matching and enhancing its semantic matching ability.

In particular, I introduce a framework in the setting of adverse drug event (ADE)

detection in which we can effectively train a semantic rule matcher from scratch with

only a small annotation budget via human-in-the-loop. The main evaluation metrics

included in this study are task-deigned performance metrics on both rule level and

task level. The rule-level performance evaluates the coherence of semantically matched

ADEs, and the task-level performance evaluates the correspondence of the trained

rules to system performance.

5.1 Motivation

In previous chapters, I investigated human insights with different formats in

different tasks. In Chapter III, I demonstrated that human insights could be well

preserved in language generation and that the generated language explanations could
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help improve model performance in language understanding tasks. At the end of the

chapter, I also pointed out that, despite the potential of language explanation, it may

suffer from the high annotation cost in domains such as healthcare.

Next, I started investigating methods that require less annotation efforts to mimic

human insights. In Chapter IV, I examined if evidence support could be effectively

identified from documents and be used to support models for document-level predic-

tions. Via a real-world task in the clinical domain (i.e., identifying medication use

history for IBD patients), I showed that (1) keyword matching-based evidence support

that requires minimal human annotation efforts leads to substantial performance

gains compared to using the full note text, (2) with the extra human effort that only

requires annotation over 1,800 evidence candidates extracted from 200 patient notes,

a strong evidence classifier could be trained to yield accurate evidence-level label

propensity that further improves the document-level performance, and (3) with limited

annotation budget, human-designed heuristic rules could help build a strong model

for evidence support without having to access to the ground-truth.

It has been shown that heuristic rules derived from human insights could result

in high-precision annotations. However, despite the findings from previous chapters,

there are two major limitations: (1) Natural language generation requires large-scale

training data, which is expensive and impractical in many domains. (2) Human

heuristics are usually precise and could scale well; however, the main disadvantage is

that they are not good at matching context with high complexity caused by language

variations.

As the last study of this dissertation, I explore a way to combine the merits of both

natural language and the logical development of heuristic rules, which are referred as

language-augmented rules. I describe the difference between standard heuristic rules

and language-augmented rules in the following scenario.

Suppose we need to extract adverse drug events (ADE) from patient notes. ADE
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Sentence isADE?

Patient developed rashes from Linezolid. Yes
Patient developed medication-induced rashes. Yes
Patient developed rashes. No
Patient developed rashes after eating penuts. No
There is no sign of drug rash No

Table 5.1: Examples of ADEs

refers to any unwanted, uncomfortable, or dangerous effects that patients may experi-

ence from taking particular medication(s). Table 5.1 presents some examples of valid

and invalid ADEs. All of the four examples use “rash(es)” as candidates.

Standard heuristic rules According to Chapter IV, the following rules could be

designed to create annotations. Alternatively, Zhao et al. (2021) also demonstrated

the possibility that these rules are semantically related. Therefore, each rule could be

automatically learned from propagation by defining only a few seeding rules.

• developed ∗ from → ADE

• medication− induced ∗ → ADE

• developed ∗ → None

• developed ∗ after eating → None

• no sign of ∗ → None

However, these rules suffer from two major drawbacks. The first drawback is that

they do not scale well for the ADEs that appear in context with higher complexity

because the complexities of the rules are pre-defined (i.e. context window size).

Therefore, this method will not perform well on the following examples:

• After taking Linezolid, patient developed serious rashes

• Patient developed rashes, which is like induced by her medication

• there is no significant sign indicating drug rash
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Language rule

Patient developed 
[ADE] from [MED]

Patient developed rashes from Linezolid

Patient developed rashes from eating peanut

Patient developed rashes

Sentence #1

Sentence #3

Sentence #4

After taking Linezolid, patient developed  rashes

Sentence #2

Figure 5.1: Example of language-based rule

The second drawback is that these rules do not align very well with the definition

of ADEs. Taking “developed ∗ after taking → ADE” as an example, there is no

restriction about the text span (e.g., in the sentence “developed difficulty of breathing

from his pneumonia”, “difficulty of breathing” would be matched, which is not ADE.)

Language-augmented heuristic rules Instead of matching text span using the

rules described above, an alternative is taking advantage of the language representation

by semantically embedding the rules into language, such as the following examples:

• patient developed [ADE] from [MED].

• patient developed [MED] − induced [ADE]

• no sign of [ADE] is observed.

In the above examples, [ADE] and [MED] are special tokens denoting adverse drug

effects and medications, respectively. Assuming that we could acquire similar token

representations on [ADE], entities that appear in context with higher complexity could

also be semantically matched, as illustrated in Figure 5.1.
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def ruleB(tokens):
    for i in range(1, n-1):
        If tokens[i]==”developed” and tokens[i-1] in [“he”, “she”, “patient”]:
            labels[i+1] = 1

def ruleC(tokens):
    for i in range(1, n-1):
        If tokens[i]==”developed” and tokens[i-1] in [“he”, “she”, “patient”]:

start, end = get_noun_phrase(tokens[i+1:])
                labels[start:end] = 1

def ruleD(tokens):
    for i in range(1, n-1):
        If tokens[i]==”developed” and tokens[i-1] in [“he”, “she”, “patient”]:

start, end = get_noun_phrase(tokens[i+1:])
                If tokens[start:end] in ADE_dictionary:
                    labels[start:end] = 1

def ruleA(tokens):
    for i in range(1, n-1):
        If tokens[i]==”developed”:
            labels[i+1] = 1

��More constraints 
Less complexity

Standard heuristic rules

POS

Patient developed [MASK] from [MED]

He developed [MASK] and [MASK] due to 
[MED] toxicity

She then developed [MASK] thought to be 
secondary to [MED]

NEG

Patient developed [MASK]

She developed [MASK] thought to be from 
[Disease]

He developed [MASK] which was improved 
with [MED]

Less constraints
More complexity��

Language rules

Figure 5.2: Illustration of the difference between standard heuristic rules and language-
augmented rules

Figure 5.2 also illustrates the difference between the standard heuristic rules and

language-augmented rules using the example patient developed ∗. Four standard

rules are implemented into programming, and “ruleA” has the least constraints for

language variations while being the most fuzzy one among the four. The “ruleD” is

the most accurate one by including more language constraints. Yet, it handles the

least language complexity. Unlike the standard implementations, the language rules

allow for handling high language complexity with less implementation constraints,

and it is easier to define a rule with language than the programming-based style.

5.2 Related work

The use of heuristic rules for information extraction has a long history, especially

in the pre-deep learning era. Domain dictionaries and pattern-matching are two

types of widely used heuristics in rule-based systems or machine learning models

that rely on feature engineering (Nadeau and Sekine (2007); Leaman and Gonzalez

(2008)). Recently, most studies focus on deep learning-based methods that have
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minimal reliance on heuristic rules (Collobert et al. (2011); Huang et al. (2015)) and

introduce domain-specific knowledge into the models via the pre-training process of

language models (Peng et al. (2019); Beltagy et al. (2019); Chiu et al. (2016); Peters

et al. (2017); Chen et al. (2019); Alsentzer et al. (2019)). However, recent studies also

show that in critical domains (e.g., healthcare, social media, etc.), creating large-scale

annotations to train deep learning models with reliable performance is not always

available (Shang et al. (2018); Lin et al. (2020); Bach et al. (2017); Fries et al. (2017);

Ratner et al. (2020); Safranchik et al. (2020)).

To address the issue with limited data annotation, many weak supervision ap-

proaches have been proposed to efficiently create weakly labeled data sets with labeling

functions that are developed from human heuristics (Bach et al. (2017); Fries et al.

(2017); Ratner et al. (2020); Safranchik et al. (2020)). These methods allow domain

experts to quickly create annotations with their domain knowledge. One limitation is

that while these labeling functions are often highly accurate, they suffer from the low

coverage due to language variations. Therefore, Zhao et al. (2021); Li et al. (2021)

proposed to automatically learn new rules by exploring the lexical and contextual

cues in unlabeled data sources. To further improve the quality of the automatically

learned rules, Zhang et al. (2022) proposed an interactive framework to manually

select reliable rules by creating additional selection criteria with language prompt and

human-in-the-loop.

Another line of work shares a similar mindset to the studies described in Chapter III,

which utilizes annotated explanations. Lin et al. (2020) created large-scale explanation

patterns that serve as annotation triggers and found that these triggers could help

improve model performance when training data is limited. However, explanation

annotation in this way is also expensive, as described in Chapter III and often requires

separate annotation efforts when the task changes.
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5.3 Framework

To achieve the goals of language-augmented heuristic rules, I propose a framework,

ActiveRuleMatcher, to convert the traditional static pattern-matching in standard

heuristic rules into an interactive training paradigm with human-in-the-loop.

Overview The overall framework of ActiveRuleMatcher is presented is presented

in Figure 5.3. First, the domain expert starts with a target standard heuristic rule.

However, instead of directly applying the standard rule, the expert writes down a few

positive and negative example templates with richer context for the rule. Second, the

target rule is used to retrieve actual instances from the data set, and these instances

are expected to contain positive patterns. Then, to further improve the performance of

the retrieval model, the domain expert manually annotates the top-ranked instances,

and these annotated instances, along with the rule extensions, are used to retrain

the retrieval model. Once the domain expert is satisfied with the retrieval model or

there are no more instances to be retrieved, we move to the last step to train the rule

matcher that extracts entities matched by the target rule. Now I will introduce each

step in detail.

Target rule extension The framework aims at improving the semantic matching

ability of standard heuristic rules. Therefore, we start with a specific rule in the stan-

dard form, such as patient developed ∗ → ADE, which would match any following

tokens (or noun phrases with more grammatical restrictions) as an ADE candidate.

On one hand, obviously, this oversimplified rule is highly error-prone despite the fact

that it would catch the correct ADE mentions from data (per Figure 5.1) because

the phrase “patient developed” are not semantically related to any symptoms and

medications; on the other hand, it will also miss (1) the ADE mentions that start with

he developed ∗, she developed ∗, and patient then developed ∗, etc., or (2) the

64



Figure 5.3: Overview of the ActiveRuleMatcher framework

cases where multiple ADE entities are mentioned with conjunctions such as “she then

developed rashes and back pain from Linezolid”. To overcome these limitations, we

simply ask the domain expert to write down a few very simple positive and negative

example templates with richer context using some special markers. For example,

”patient developed [MASK] from [MED]” specifies that the rule is looking for the

phrases (i.e. [MASK]) that semantically come from the use of a medication (i.e.

[MED]). These templates will help the models to learn semantic representations of

the rules that are semantically closer to ADE mentions. They will also serve as a way

of data augmentations to enhance the model with limited training data. Table 5.2

presents some example extension rules that we used for patient then developed ∗.

Instance retrieval and annotation In this step, we use the target rule to retrieve

from an unlabeled data set the instances with patterns that semantically match the

positive rule extensions created by the domain expert in the previous step. Once

the retrieval model returns the instances, we ask the domain expert to annotate the

top-ranked k retrieval results with 1 being a valid result and 0 being invalid. These
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Extensions

POS
patient developed [MASK] from [MED]
he developed [MASK] and [MASK] due to [MED] toxicity
she then developed [MASK] thought to be secondary to [MED]

NEG
patient developed [MASK]
she developed [MASK] thought to be from [Disease]
he developed [MASK] which was improved with [MED]

Table 5.2: Examples of extension rules for patient developed ∗

annotations have three use purposes: (1) they serve as the training data to retrain and

improve the retrieval model in the next iteration; (2) they will also be the training

examples for the rule matcher in the step 4; (3) the annotation process would expand

the vocabulary size of the dictionaries for ADE, medications, and disease names, which

could be used to create data augmentations from the rule extension templates.

Instance retrieval model training To train the retrieval model R(·), we formulate

the retrieval problem as a binary classification task to predict if the current data

contains the pattern that match the target rule. We use BERT Devlin et al. (2018)

with a fully connected classification layer as our model and the use the format “[CLS]

target rule [SEP] instance sentence [SEP]” as the model input. For example, “[CLS]

patient developed [SEP] she developed rashes from asa and pain from other meds

[SEP]” should predicted as 1 and “[CLS] patient developed [SEP] he developed allergic

rashes from drinking [SEP]” should be predicted as 0.

Rule matcher training In this step, we ask the model to identify entities that

match the provided language rule for a particular data example. Motivated by Li

et al. (2019), we formulate this task as a question answering (QA) problem where the

question is the provided language rule and the answer is the entities that the rule

should match in the text. The training data comprises the annotations from Step 2
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Figure 5.4: Unified retrieval and rule matching model

and the data augmentations created from the human-created rule extension templates.

For each rule template, we create an augmentation by randomly sampling entities

from the dictionaries that are expanded during human-in-the-loop.

Unified retrieval and rule matching model The retrieval task (Step 3) and the

rule matching task (Step 4) share a great deal of similarity since the retrieval task

looks at the semantic pattern similarity between the target rule and text, and the rule

matcher extracts the entities that match the target rule. Therefore, in this framework,

we merge the two tasks into a unified model architecture as presented in Figure 5.4.

The classifier for retrieval looks at the global semantic representation of the special

token “[CLS]” from BERT, while the rule matcher looks at the local representations

of each text token.
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5.4 Experiments

5.4.1 Data set

N2C2 2018 data set has been made available as part of the Adverse Drug Event

identification task of the national NLP Clinical Challenge (n2c2), 2018 ?. The goal is

to identify nine medical categories of medication-related entities from patient notes.

In this study, I focus on the ADE detection as it is the most challenging category

due to low volume annotation and the need of domain knowledge. The original data

set contains 303 clinical notes as the training set and 202 notes as the test set. In

this study, I randomly sample 100 notes (20%) from the original training data as the

validation set and the rest (80%) as unlabeled data. Out of the 80% unlabeled data

(243 notes), 100 notes were randomly sampled as the unlabeled source for training

rule retrieval and matcher. The 202 test set remains unchanged.

Annotation for rule evaluation In addition to the original annotation provided in

the N2C2 dataset, for each rule, we individually created annotations which is a subset

of the original annotation. For example, in the sentence “patient became hypotensive

in the setting of likely beta - blocker toxicity”, both hypotensive and toxicity are ADE

mentions related to “beta - blocker”. However, only “hypotensive” semantically fits the

rule “patient became” and “toxicity” should be matched separately by another rule

“medication toxicity” that matches the tokens such as “toxicity” or “intoxication”

that are caused by medications.

5.4.2 Instance retrieval evaluation

The purpose of the instance retrieval is to efficiently fetch data instances that

contain the pattern represented by the target rule so that the human annotator can

annotate the ADE mentions that the target rule should match. We use the well-known

Normalized Discounted Cumulative Gain (NDCG) metric to evaluate the retrieval
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Rules
Retrieved instance
Pos Neg

medication - induced 30 10
patient developed 34 114
medication toxicity 9 1
in setting of medication 16 76
patient became 5 46
secondary to 25 71
medication was held due to 32 12

Table 5.3: Total number of retrieved instances from unlabeled data for each rule.

performance. For each rule, we iteratively retrieve instances up to three iterations with

human-in-the-loop, and in each iteration, up to 50 returned instances are annotated.

Table 5.3 summarizes the total number of positive and negative instances that are

retrieved from the unlabeled data. These instances are used for training the rule

matcher, which I will talk more about in detail later.

The performance of the instance retrieval is presented in Table 5.4. For most

of the rules, the retrieval model is able to return positive instances with very good

performance, such as “patient developed” and “secondary to”. For the rules“medication

- induced” and “medication was held due to”, the evaluation scores are more likely to

be biased by the higher number of positive instances. However, if we look at the top

ranking positions, the model is still able to find valid examples.

I also want to argue that having negative data returned is not an entirely undesired

model behavior as we also expect to have negative samples for the rule matcher

training in the next step.

5.4.3 Rule matcher evaluation

To show that the rule matcher performs significantly better than designing stan-

dard heuristic rules, I evaluate seven individual rules, each of them focusing on a
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Rules
NDCG #Eval instance

@3 @5 @10 @15 @20 Pos Neg

medication - induced 1.0 0.869 0.915 0.934 0.880 17 3
patient developed 1.0 0.854 0.766 0.640 0.532 10 58
medication toxicity 1.0 0.854 - - - 4 1
in setting of medication 0.704 0.655 0.573 0.444 0.370 5 44
patient became 1.0 0.723 0.470 0.364 0.303 3 21
secondary to 1.0 1.0 1.0 1.0 0.931 26 29
medication was held due to 1.0 0.869 0.915 0.891 0.802 14 5

Table 5.4: Evaluation of instance retrieval

different pattern. I considered four strategies of standard heuristic rules, namely,

“standard.first”, “standard.np”, “standard.or”, and “standard.key”. “standard.first”

matches only the first token that follows the rule (e.g. “patient developed rashes”)

or the first token on the left (e.g. “hypotension in the setting of metoprolol use”);

“standard.np” matches the noun phrase that follows the rule (e.g. “drug - induced

eosinophilic lung disease”) or precedes the rule (e.g. “acute renal failure secondary

to use of nsaid”); “standard.or” is the logical operation that considers the union of

the previous two; and “standard.key” does keyword matching with “toxicity” and

“intoxication”. Evaluating these different strategies, it is not hard to see the challenge

of designing well-performing heuristic rules for extracting ADEs due to the high

complexity of language variance in clinical notes.

The performance of the language rule is highlighted in Table 5.5. The experiments

show that the rule-matcher brings substantial performance gain compared to the

standard rules, which mainly benefited from the training process where the model

learned to semantically match ADE mentions and reduced the impact of language

complexity.
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Rules Type
Token-wise Span-wise

Precision Recall F1 Precision Recall F1

medication - induced

standard.first 0.586 0.654 0.618 0.517 0.714 0.6
standard.np 0.667 0.539 0.596 0.563 0.429 0.487
standard.or 0.588 0.769 0.667 0.517 0.714 0.6
language 0.955 0.808 0.875 0.947 0.857 0.9

patient developed

standard.first 0.167 0.279 0.209 0.088 0.25 0.130
standard.np 0.262 0.361 0.303 0.127 0.194 0.154
standard.or 0.191 0.410 0.260 0.088 0.25 0.130
language 0.717 0.623 0.667 0.645 0.556 0.597

medication toxicity
standard.key 0.833 1.0 0.909 0.833 1.0 0.909
language 0.909 1.0 0.952 0.909 1.0 0.952

in setting of medication

standard.first 0.148 0.351 0.208 0.057 0.294 0.095
standard.np 0.196 0.270 0.227 0.034 0.176 0.057
standard.or 0.146 0.378 0.211 0.036 0.294 0.063
language 0.737 0.378 0.500 0.583 0.412 0.483

patient became

standard.first 0.192 0.250 0.217 0.115 0.333 0.171
standard.np 0.214 0.300 0.250 0.143 0.444 0.216
standard.or 0.184 0.350 0.241 0.105 0.444 0.170
language 0.750 0.150 0.250 0.5 0.222 0.308

secondary to

standard.first 0.071 0.171 0.101 0.041 0.167 0.066
standard.np 0.161 0.122 0.139 0.031 0.125 0.049
standard.or 0.069 0.171 0.099 0.023 0.167 0.041
language 0.800 0.878 0.837 0.679 0.792 0.731

medication was held due to

standard.first 0.533 0.205 0.296 0.267 0.182 0.261
standard.np 0.692 0.231 0.346 0.400 0.182 0.250
standard.or 0.556 0.256 0.351 0.267 0.182 0.261
language 0.786 0.846 0.815 0.630 0.773 0.694

Table 5.5: Evaluation of rule matcher
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Figure 5.5: Instance retrieval performance for the rule patient developed for three
iterations

5.4.4 Effects of data augmentation and incremental training for instance

retrieval

The data augmentation created from the rule extensions is used for training

both instance retrieval and rule matcher. First, I examine the effect of using data

augmentation in instance retrieval.

Using the rule patient developed as an example (as shown in Figure 5.5), having

the extra augmented training examples significantly improve the retrieval performance.

As shown in the figure, I compare the performance of the retrieval model using

annotated dataset only versus extra data augmentations. In the augmentation strategy,

we randomly create 100 augmented examples for each rule extension by sampling from

the vocabularies maintained during the human-in-the-loop process. As a result, the

experiments show that the augmentation can significantly alleviate the effect caused

by having limited training data.

Furthermore, I found that the retrieval performance of the model could be fur-

ther improved when additional rules are jointly trained. Targeting with the rule

patient developed, to show that how jointly training the retrieval for other rule could

affect the retrieval performance, I incrementally add five more rules to train following

the order medication − induced, in setting of medication, patient became,

secondary to, and medicatoin was held due to. As shown the Figure 5.6, once

more rules are added to the training, the performance for the target rule could be

significantly improved with better robustness. This effect implies that the retrieval of
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Figure 5.6: Instance retrieval performance for the rule patient developed with
additional rules being jointly trained

a new rule would start with better performance as the number of previously trained

rules increases.

5.4.5 Effects of data augmentation for rule matcher

I also observed a similar effect that the data augmentation brings to the performance

of the rule matcher, as presented in Figure 5.7. For each of the seven rules, I evaluated

the matching performance when there were 0, 10, 20, and 30 randomly sampled

augmented examples created for each rule extension. For all of the seven rules,
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Figure 5.7: Rule matcher performance with seven rules being jointly trained

with additional augmented training examples, the performance was greatly improved,

demonstrating that using this efficient data augmentation strategy could significantly

reduce the limitation of insufficient training data from the annotation process.

5.4.6 Rule matcher in weak supervision

As introduced in Chapter I and Chapter IV, rules are commonly used in rule-based

and weak supervision-based systems that can create high coherence between human

insights and system output. However, limited by their oversimplicity, they often

suffer from creating low correspondence to the system performance. Therefore, to
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Methods Precision Recall F1

Supervised model A 0.6830 0.3349 0.4495
Supervised model B 0.8 0.0769 0.1404

Standard rule

Majority vote 0.1227 0.5048 0.1974
Weak supervision 0.1637 0.4923 0.2457

Rule matcher

Majority vote 0.5438 0.4679 0.503
Weak supervise 0.5508 0.4921 0.5198

Standard rule + supervised model A

Majority vote 0.5074 0.4375 0.4699
Weak supervision 0.4923 0.5128 0.5023

Rule matcher + supervised model A

Majority vote 0.7027 0.375 0.489
Weak supervision 0.5594 0.5657 0.5625

Table 5.6: Evaluation of ADE identification (span level)

evaluate how much performance gain using the rule matcher could yield, I evaluate

the rule matcher in both rule-based and weak supervision-based settings as presented

in Table 5.6.

To make comprehensive comparisons, I first create two baseline models using

fully supervised training, model A and model B. Model A and B share the same

BERT-based encoder for named entity recognition Devlin et al. (2018). The difference

is that model A uses all the sentences in the 100 notes (15, 276 sentences) that are

used in the human-in-the-loop of rule matcher. In contrast, model B uses only the

75



sentences that are annotated during instance retrieval (419 sentences). Different from

training the rule matcher, both models are trained with fully annotated sentences in

which each token is annotated with either being an ADE token or a background token.

Additionally, to compare the standard rule and the rule matcher, I evaluate

them in both a rule-based system with a majority vote and a weak supervision

system Safranchik et al. (2020) trained on 143 unlabeled notes. By using the rule

matcher trained with annotations created from 419 sentences, the system is able to

obtain 0.3056 and 0.2741 absolute F1 points on span-level identification via majority

vote and weak supervision respectively. Furthermore, taking the trained model A as

an additional rule, both majority voting and weak supervision are further improved,

and the best performance (0.5625) is reported by the weak supervision system that

uses the rule matcher and the model A as weak labelers.

It is worth pointing out that, in these experiments, the fully supervised model

is outperformed by the rule matcher-based methods that use significantly less data

annotation. The main reason for this promising performance is that the rule-matcher

not only contains the high coherence between human insights but also that the training

process significantly improves its ability to handle higher orders of language complexity.

5.5 Conclusion and open questions

In this chapter, I presented a framework for increasing the semantic awareness of

standard heuristic rules. Via a human-in-the-loop paradigm, I showed that the rule

matching could be significantly improved by individually annotating a small group

of data for each rule. The effect of creating such enhanced rule matchers is well

demonstrated in both rule-based and weak supervision-based systems with substantial

performance gain. The framework not only improves the final system performance

but also increases the interpretability by following the design principle of “grey-box”

pipelines, where each component maintains the coherence to human insights and
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correspondence to system performance.

This study opens new questions such as how to incorporate more human insights

from the stage of data annotation and at what training paradigm would human insights

be most helpful.
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CHAPTER VI

Conclusions and Open Questions

In this dissertation, I focus on designing approaches to build grey-box pipelines

with high correspondence while maintaining the coherence to human insights. I

investigated two directions that are in line with the explainability and interpretability

of AI systems: interpretation via human-mimicking and performance improvement

via human insights. These two directions focus on two main principles for designing

the grey-box pipeline, which is coherence and correspondence, respectively.

Coherence To explore the possibility of creating coherence between human and

AI systems, I focus on the area of natural language processing and investigated three

formats of human insights that are common used as explanation source for interpreting

AI decisions: natural language, extractive data snippet (tokens or sentences), and

heuristic rules. In addition, due to the issue of over-simplicity of standard heuristic

rules, I proposed a novel paradigm for enhancing the semantic matching ability of

human heuristics via a language-based rule matching framework. To summarize the

results:

I first pointed out that natural language explanations tend to be spurious and lack

rationale without human involvement. Such explanations would not only harm system

explainability but also jeopardize the system’s decision. To overcome these issues, I

showed that having a rationalizer component to identify rationale tokens from data and
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then generating language explanation based on these tokens can significantly improve

the quality of the explanation in terms of plausibility, faithfulness, and relevance to

human insights.

Second, I explored using human heuristics and extractive sentence-based rationales

in a document classification system. This study was conducted in a real-world clinical

setting with the challenge of limited annotation budgets. I showed that having a

component (i.e., evidence classifier) to mimic human behavior in extracting evidence

support and generating decision propensities can significantly improve the system

performance on patient notes. Experiments showed that the heuristic rules could well

correspond to the expected human behavior in predicting evidence propensities via

the weak supervision paradigm, especially when the annotation availability is minimal.

The evidence classifier could be further improved when it is trained with more complex

neural network models with larger data annotation.

Third, I explored the possibility of improving the standard heuristic rules by

providing a more complex semantic matching ability. Using the challenging task, ADE

identification, as a demonstration, I showed that the proposed language rule matcher

is significantly stronger at semantically identifying ADEs than the standard heuristics

that rely on simple pattern matching. Also, the annotation expense for creating such

a rule matcher is well considered by training a highly correspondent instance retrieval

module that is effectively created via human-in-the-loop.

Correspondence Besides human-AI coherence, another important aspect of this

dissertation is correspondence since it directly relates to the performance of the final

system output. Therefore, in each study, after the explanations were generated and

demonstrated with high coherence, I evaluated how well they corresponded to the

expected output.

For the natural language explanation, I showed that it brings additional perfor-

mance gain in both in-domain and out-of-domain data sets when incorporated as part
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of the input for the decision system. The sentence-based explanation identified by the

evidence classifier resulted in tremendous performance across four different document

classification models, including two white-box models and two black-box models. The

language rule matcher also significantly surpassed the standard heuristic rules in both

rule-based and weakly supervised systems and even outperformed the fully supervised

model with considerably less data annotation.

The experiments in this dissertation pave the way for incorporating a human-

focused module to increase the human-AI coherence while maintaining the high

correspondence to system performance.

However, there are also concerns and new questions raised from this dissertation.

For example, what kind of human insights or explanations should we prefer? As shown

in this dissertation, different human insights present different strengths and limitations

and require different human attention. The natural language contains richer semantics,

but it requires large-scale annotation to train a robust language generator; heuristic

rules are easy to apply and do not require any annotation, which makes it scale very

well, yet it is limited by its over-simplified pattern matching. To alleviate this issue,

I proposed the rule matching paradigm to create semantic matching for the rules.

However, further work should be done to investigate the different use of each human

insight type and how they can support each other.

Another question that is to be further explored in the future work regards to

the evaluation of the explanations. In this dissertation, I focused on evaluating

the coherence and correspondence performance of the explanations. The coherence

evaluation contains the relevance score in between rationale token and generated

language explanation, the performance of the evidence classifier, and the rule matching

performance. These evaluations are task-specific and are assumed implicitly related to

human insights based on the design logic of the systems. In the future, more studies

should be conducted to provide a task-agnostic paradigm in addition to the task
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specific ones.

The third question I believe is important to the field is what are other alternatives

for incorporating human insights into AI systems. In this dissertation, human insights

are incorporated during either the stage of data annotation (e.g., NLE annotation,

sentence evidence annotation, rule-matching annotation) or rule implementation (e.g.,

heuristic rules in weak supervision). Other directions to be explored include creating

and learning from explanations during human-AI interactions or pre-learning the

commonsense knowledge and reasoning from free text.

More generally, to continue researching this field and exploring answers, I encourage

the future work diving deep into the connection between AI systems and human

perceptions. As claimed in Chapter I, human is the key in AI applications. How the

system output is perceived by humans is important for us to understand why (do we

need explanations in AI systems), what (explanations should we use), how (do we

design interpretable AI systems), and where (should the interpretable AI systems be

applied) questions. I look forward to diving into the future!
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