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ABSTRACT

This dissertation focuses on input estimation, that is, estimation of the input to a linear system
using knowledge of the output measurements and the system model for tall or square systems with
full column rank. First, finite-time input estimation for discrete-time linear time-invariant (LTI)
systems with zero nonzero zeros and unknown initial conditions is considered. Necessary and
sufficient conditions for finite-time input estimation are derived. For systems with zero nonzero
zeros, a specific construction of finite-impulse-response (FIR) delayed left inverse with minimal
delay using the Smith-McMillan form at infinity is given.

Since zeros play a vital role in input estimation, further research on system zeros is considered.
Expressions for the number of transmission zeros and the number of infinite zeros in terms of the
defect of a block-Toeplitz matrix of Markov parameters and the observability matrix are obtained.
For counting zeros, these results serve as duals to the counting of poles using the block-Hankel
matrix. Furthermore, the zero dynamics of input-output models are explored, and their properties
are elucidated. Output zeroing in input-output models is considered and its equivalence to output
zeroing in state space models is discussed.

Next, retrospective cost input estimation (RCIE), which is an adaptive input estimation tech-
nique for discrete-time linear time-varying (LTV) systems that depends on a target model based on
the closed-loop dynamics, is considered. In particular, the decomposition of the retrospective per-
formance variable into the sum of a performance term and a model-matching term, which provides
insight into the achievable performance of RCIE, is presented. Since the system dynamics and tar-
get model are LTV, the construction of LTV state space realizations for LTV input-output models
as well as the construction of LTV input-output models for LTV state space models are given in
this dissertation. Using the same technique used for RCIE, the decomposition of the retrospective
performance variable in retrospective cost adaptive control (RCAC) is also derived.

Finally, as an application of input estimation, causal numerical differentiation is considered.
When the dynamics of the system consist of a cascade of one or more integrators, the estimates
of the input provide estimates of one or more derivatives of the output signal. The performance
of RCIE as a causal differentiator is analyzed through numerical simulations. RCIE as a causal
differentiator is then applied to the position data of a small rover to estimate its velocity and accel-
eration.

viii



CHAPTER 1

Introduction

1.1 System Inversion and Input Estimation

Left inverses and right inverses of functions and systems play an important role in many fields

of engineering. The need to invert dynamical systems arises in many control-system related appli-

cations such as feedforward control, output tracking, and input estimation.

This dissertation focuses on input estimation using left inversion; however, the role of right

inverses is briefly reviewed in order to clarify the distinction. The theory of right inverses for

continuous-time systems was studied in [1–5] and the theory of right inverses for discrete-time

systems were studied in [5–8]. Right inverses are used for feedforward control and output tracking.

For illustration, consider the command yd shown in Figure 1.1, and suppose that the input u to

the transfer function G is given by the output of the delayed right inverse H of G. Letting yd

be the input to H , it follows that y = Gu = GHyd = yd, which implies that the output y

follows the command yd. However, this calculation ignores the effect of pole-zero cancellation

and initial conditions. The construction of right inverses is challenging in the case where G has

a nonminimum-phase transmission zero, which may entail a hidden instability. For this case,

approximate right inverses have been developed for feedforward control and output tracking [9–

24].

Unlike right inverses, left inverses estimate unknown inputs. For example, let u be an unknown

input, as shown in Figure 1.2, and suppose that the output y of the plant G is the input to the

delayed left inverse H . In the case where the initial conditions of G and H are zero and G has
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H G
yd u y

Figure 1.1: Cascade of a right invertible system and a delayed right inverse H .

no zeros, it follows that the output of H is z = Hy = HGu = u. The theory of left inverses for

linear systems was developed in [25–27]. Necessary and sufficient conditions for the existence of

delayed left inverses in terms of the ranks of successive block-Toeplitz matrices were given in [25].

An algorithm for constructing the inverse of an invertible square system was given in [27]. Delayed

left inverses were constructed in [26] for both continuous-time and discrete-time linear systems.

Additional work on the theory of left inverses includes [2–4, 6–8, 28–31].

G H
u y z

Figure 1.2: Cascade of a left invertible system and a delayed left inverse H . Although z = Hy = HGu = u, it
does not necessarily follow that the output z matches a delayed version of u due to initial conditions and zeros.

1.2 Role of Zeros in Input Estimation

The zeros of a dynamical system present an impediment to input estimation. If a system has a

transmission zero, then there exist an initial condition and nonzero input such that the response of

the system is identically zero. For example, consider the discrete-time transfer function G(z) =

z + 1

z + 2
, whose inverse is H(z) =

z + 2

z + 1
. Now consider the minimal realization of G given by

xk+1 = −2xk + uk, (1.1)

yk = −xk + uk. (1.2)

Letting x0 = 1 and uk = (−1)k, it follows that y ≡ 0. On the other hand, letting x0 = 0 and

u ≡ 0, it also follows that y ≡ 0. Hence, it is impossible to estimate the input from the output.

Although G is invertible, the zero at −1 prevents unambiguous estimation of the input. Therefore,
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the study of system zeros is extremely important within the context of input estimation.

1.3 Literature Review on Input Estimation

Within a deterministic, discrete-time setting, finite-time input estimation provides the exact

values of the input. For finite-time input estimation, there are three key issues. The first issue

concerns the delay under which the input can be estimated. The minimal delay was determined

in [25], which showed that the minimal delay is the smallest index for which the difference of

the ranks of two successive block-Toeplitz matrices is equal to the number of inputs. The second

issue concerns the presence of zeros. Since zeros block inputs, the presence of zeros prevents

unambiguous estimation of the system input. The third issue concerns the effect of unknown,

nonzero initial conditions. In particular, the free response of the system contributes to its output,

thus making it difficult to determine the input by inverting the system.

Results on finite-time input estimation, that is, exact input estimation after a finite number of

steps were given in [32–36]. In particular, for systems with no zeros, a state-estimation and input-

estimation algorithm was given in [36] and an alternative input-estimation algorithm based on the

generalized inverse of a partitioned matrix was given in [34].

If a system has at least one zero that is not zero, then finite-time input estimation cannot be

achieved for any delay. However, in this case, input estimation is possible asymptotically; a more

appropriate name for this problem is asymptotic input estimation. Input estimation was considered

for systems with no zeros in [37, 38], for minimum-phase systems in [39] and for nonminimum

phase systems in [11, 40–48].

Input estimation is distinct from the design of unknown input observers [49–58]. In particular,

unknown input observers are constructed to estimate states despite the presence of an unknown

input that is not captured by zero-mean white noise as in the case of the Kalman filter. Unknown

input observers are thus state estimators that are robust to the presence of non-stochastic unknown

inputs. It is important to emphasize, however, that, unlike input estimation, unknown input ob-
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servers do not estimate unknown inputs.

1.4 Applications of Input Estimation

One of the main applications of input estimation is target tracking [59–62]. Target tracking

is the determination of the present and often future position and velocity of a moving target from

noisy measurements of its present states. In order to perform target tracking, the acceleration of the

target is treated as an input and then estimated using input estimation techniques. The estimated

acceleration is then used in conjunction with Kalman filter to estimate the states.

Input estimation is also used in fault detection and diagnosis [63–65]. In sensor fault detection

and diagnosis, a causal, delayed left inverse of a dynamical system that represents the relationship

between two sets of sensors, namely, input sensors, which are suspect, and output sensors, which

are assumed to be healthy, is constructed. Measurements from the healthy sensors are used to drive

the delayed left inverse, whose output provides estimates of the expected measurements from the

suspect input sensors. By comparing the estimates of the measurements of the suspect sensors with

the actual measurements, it is possible to detect and diagnose faults in these sensors.

Additional applications of input estimation include determination of features of disturbances

[40, 66], and automotive control [67–69].

Another application of input estimation is causal numerical differentiation, which has not been

considered previously in the literature and is part of the work in this dissertation. When the dy-

namics of the system consist of a cascade of one or more integrators, the estimates of the input

provide estimates of one or more derivatives of the output signal. Since, like state estimation, input

estimation is an online technique, this approach is suitable for causal numerical differentiation.

1.5 Adaptive Input Estimation

Adaptive input estimation is considered in [70], where the goal is to estimate the velocity and

acceleration of a maneuvering vehicle. In this technique known as retrospective cost input estima-
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tion (RCIE), input estimation is combined with state estimation based on the discrete-time Kalman

filter. Additional prior work on RCIE includes [64, 71–75].

RCIE is applicable to discrete-time linear time-varying (LTV) multi-input, multi-output

(MIMO) systems. In RCIE, the error metric for adaptation is given by the estimation residual,

that is, the innovations. A retrospective performance variable based on the innovations is defined.

The retrospective performance variable depends on a target model that is based on the closed-loop

system dynamics. A cost function involving the retrospective performance variable is minimized

using retrospective cost optimization [76] to update the coefficients of the input estimator. Ret-

rospective cost optimization is based on recursive least squares (RLS). RCIE then replicates the

estimated input in the Kalman filter to estimate the states.

1.6 Contributions

This section summarizes the contributions of the work presented in this dissertation relative to

the prior literature.

Finite-Time Input Estimation

Finite-time input estimation for discrete-time LTI systems is considered in [32–36], where the

input is reconstructed based on a state space approach for systems with no zeros. These works do

not give an explicit construction of left inverses.

The work in this dissertation has three key contributions relative to prior work. First, a specific

construction of a finite-impulse-response (FIR) delayed left inverse with minimal delay for systems

with zero nonzero zeros is presented. Next, it is shown that, in the presence of an arbitrary unknown

initial condition, finite-time input estimation is possible using a delayed left inverse H if and only

if H is FIR. Finally, it is shown that a transfer function with full column normal rank has an FIR

delayed left inverse with the minimal delay if and only if the system has zero nonzero zeros. The

presented works on finite-time input estimation were published in [77, 78].
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System Zeros

The number of poles of a transfer function can be obtained from knowledge of the Markov pa-

rameters since the rank of a block Hankel matrix of Markov parameters is equal to the McMillan

degree [79]. This is useful for estimating the number of poles in the case where the system model

is unknown. The number of transmission zeros of a transfer function can be counted by forming

the Smith-McMillan form, and the number of infinite zeros of a transfer function can be counted

by forming the Smith-McMillan form at infinity [80]. Another approach is to compute the num-

ber of transmission and infinite zeros by using pole and zero modules [81]. However, the above

approaches for counting zeros are not feasible if the system model is unknown.

Within the context of discrete-time LTI systems, the present dissertation describes alternative

characterizations of the number of transmission zeros and the number of infinite zeros. In particu-

lar, the number of zeros is related to the defect of a block-Toeplitz matrix of Markov parameters.

For counting zeros, these results serve as duals to the counting of poles using the block-Hankel

matrix and provide a method to estimate the number of zeros from the Markov parameters when

the system model is unknown.

Next, this dissertation presents several novel results on the zero dynamics of input-output mod-

els. The main motivation for this work is the fact that RCIE uses input-output models whose zeros

directly impact the ability to perform input estimation. Zeros of state space models have been

extensively studied over the years [82–87]. However, zeros of input-output models have not been

studied in the literature.

The presented works on system zeros were published in [88, 89].

Decomposition of the Retrospective Performance Variable

The purpose of the decomposition of retrospective performance variable is to investigate the

underlying mechanism and performance of RCIE. In this direction, this paper provides a detailed

analysis of the decomposition of the retrospective performance variable, which provides insight

into the achievable performance of RCIE. In particular, the retrospective performance variable is
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decomposed into the sum of a performance term and a model-matching term. The performance

term consists of a closed-loop time-domain transfer function, whereas the model-matching term

involves a closed-loop time-domain transfer function and the target model, both driven by the

virtual external input perturbation. This work is motivated by the decomposition of the retrospec-

tive performance variable given in [90] within the context of retrospective cost adaptive control

(RCAC) [76, 91–93]. However, unlike [90], the system dynamics and target model in the present

paper are linear time-varying (LTV), and hence the approach given in [90] is not applicable here.

The main contribution of the present work is thus the development of an alternative approach

to the decomposition of the retrospective performance variable that is applicable to LTV models.

This approach depends on the construction of discrete-time LTV state space realizations for LTV

input-output models as well as the construction of LTV input-output models for LTV state space

models. The existing results on LTV input-output models in [94–99] are presented in terms of

abstract input-output maps and infinite power series, are not directly implementable and thus not

applicable to the problems considered here. Consequently, the present paper gives simple and

easily implementable algebraic results on LTV input-output dynamics needed to derive the decom-

position of the retrospective performance variable in RCIE.

The presented works on the decomposition of retrospective performance variable in RCIE were

published in [100].

This dissertation also presents the decomposition of the retrospective performance variable in

RCAC for the case where the system dynamics and target model are LTV. The same approach that

was used for the decomposition of retrospective performance variable in RCIE is used in RCAC.

Causal Numerical Differentiation

Many applications of estimation and control benefit from the ability to perform causal differen-

tiation, that is, numerical differentiation that provides estimates of the derivative of a signal based

on current and past data [101–105]. Numerous techniques have been developed for numerical dif-

ferentiation, including integration-based methods [106, 107], observer-based methods [108, 109],
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and sliding-mode techniques [110–113]. However, many of these works are either noncausal im-

plementations or they are difficult to tune in practice.

The work presented in this dissertation formulates causal numerical differentiation as an input

estimation problem. The accuracy of retrospective cost input estimation (RCIE) and the high-gain

observer (HGO) given in [108] for causal numerical differentiation in the presence of noisy mea-

surements are compared through numerical simulations. For simplicity and clarity, the numerical

study in this dissertation considers harmonic signals corrupted by Gaussian white noise. For each

input signal, backward-difference numerical differentiation provides a baseline for performance

comparison. The different methods are then applied to the position data of a small rover to esti-

mate its velocity and acceleration.

The work on causal numerical differentiation was done in collaboration with Shashank Verma

and was published in [114].

1.7 Dissertation Outline

This dissertation is organized as follows.

Chapter 2 Summary

Chapter 2 lists all the notations and definitions used in this dissertation.

Chapter 3 Summary

Chapter 3 presents results on finite-time input estimation for discrete-time linear time-invariant

systems using FIR inverses. Numerical examples are provided for illustrating the results.

Chapter 4 Summary

Chapter 4 gives expressions for the number of transmission zeros and he number of infinite

zeros of a MIMO transfer function in terms of the defect of an augmented matrix involving an

8



observability matrix and a block-Toeplitz matrix. These results are illustrated with a numerical

example.

Chapter 5 Summary

Chapter 5 elucidates the properties of the zero dynamics within the context of input-output

models. In addition, output zeroing in input-output models is considered, and its equivalence to

output zeroing in state space models is discussed. Finally, a numerical example is presented to

illustrate the results.

Chapter 6 Summary

Chapter 6 gives a concise description of the RCIE algorithm.

Chapter 7 Summary

Chapter 7 gives the construction of LTV state space realizations for LTV input-output models

as well as the construction of LTV input-output models for LTV state space models.

Chapter 8 Summary

Chapter 8 presents the decomposition of the retrospective performance variable in RCIE into the

sum of a performance term and a model-matching term. A numerical example is used to illustrate

the derived results and observations.

Chapter 9 Summary

Chapter 9 presents and compares causal numerical differentiation using RCIE and HGO. The

velocity and acceleration of a small rover are estimated by numerical differentiation of experimen-

tal position data of the rover.

9



Chapter 10 Summary

Chapter 10 gives a concise description of the RCAC algorithm and presents the decomposition

of the retrospective performance variable in RCAC into the sum of a performance term and a

model-matching term.

Finally, chapter 11 gives the conclusions and future work.
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CHAPTER 2

Preliminaries

This chapter lists all the notations and definitions used in this dissertation.

2.1 Notations

R[z]p×m the set of p×m matrices each of whose entries is a polynomial

with real coefficients

R(z)p×m the set of p × m matrices each of whose entries is a rational

function with real coefficients

R(z)p×m
prop the proper transfer functions in R(z)p×m

min∼ a minimal realization of a transfer function

dimV the dimension of a vector space V

R(A) the range of A

def A the defect of A

indA the index of A

00 1

McDeg G the McMillan degree of G

q the forward shift operator

q−1 the backward shift operator

11



2.2 Definitions

Definition 2.1. Let G ∈ R(z)p×m
prop , and, for each i ≥ 0, let Hi be the ith Markov parameter of G.

Then, for all i ≥ 0, the ith Markov block-Toeplitz matrix associated with G is defined by

Ti
△
=



H0 0 0 · · · 0

H1 H0 0 · · · 0

H2 H1 H0 · · · 0

...
... . . . . . . ...

Hi Hi−1 · · · H1 H0


∈ R(i+1)p×(i+1)m. (2.1)

In the case where i is a negative integer, Ti is an empty matrix.

Definition 2.2. Let G ∈ R(z)m×p
prop , and let d be a nonnegative integer. Then, G is delayed left

invertible with delay d if there exists H ∈ R(z)m×p
prop such that H(z)G(z) = z−dIm. In this case,

H is a delayed left inverse of G with delay d. Furthermore, G is delayed left invertible if there

exists d ≥ 0 such that G is delayed left invertible with delay d, and H is a delayed left inverse of

G if there exists d ≥ 0 such that H is a delayed left inverse of G with delay d. Finally, H is a left

inverse of G if H is a delayed left inverse of G with delay d = 0.

Definition 2.3. Let A ∈ Rn×n. Then, the index of A, denoted by indA, is the smallest nonnegative

integer ν such that rank Aν = rank Aν+1.

Note that, if A is nilpotent, then indA is the smallest positive integer ν such that Aν = 0.

Definition 2.4. Let G ∈ R(z)p×m
prop , where G

min∼
[

A B

C D

]
and A ∈ Rn×n. Then, the index of G,

denoted by indG, is indA.

Definition 2.5. Let U ∈ R[z]n×n. Then U is unimodular if detU is a nonzero constant.

Definition 2.6. Let W ∈ R(z)m×m
prop . Then W is biproper if W∞

△
= lim

z→∞
W (z) is nonsingular.

Definition 2.7. Let G ∈ R(z)p×m
prop and i ≥ 0. Then βi(G)

△
= rankTi − rankTi−1, where Ti is ith

Markov block-Toeplitz matrix associated with G.
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Definition 2.8. Let G ∈ R(z)p×m
prop . The rank of G is the maximum value of rankG(z) taken over

the set of complex numbers z such that, for all i = 1, . . . , p and j = 1, . . . ,m, z is not a pole of the

(i, j) entry of G.

Definition 2.9. Let G ∈ R(z)p×m
prop , and assume that G has full column normal rank. Then ηG

denotes the smallest nonnegative integer d for which there exists a delayed left inverse of G with

delay d.

Definition 2.10. Let G ∈ R(z)p×m
prop . Then the roots of the polynomial p1p2 . . . pρ are the transmis-

sion zeros of G, where the polynomials p1, p2, . . . , pρ are the numerators of the nonzero diagonal

entries of the Smith-McMillan form given by Theorem 3.2.

Definition 2.11. Let A ∈ Rm×n. Then, the defect of A, denoted by def A, is the rank of the

nullspace of A.

Definition 2.12. Let V ⊆ Rn and let

A
C

V ⊆

I
0

V + R


B
D


 . (2.2)

Then V is an output-nulling invariant subspace of (A,B,C,D). The sum of all output-

nulling invariant subspaces of (A,B,C,D) is the maximal output-nulling invariant subspace of

(A,B,C,D).

Definition 2.13. Let G ∈ R(z)p×m
prop , where G∼

[
A B

C D

]
and A ∈ Rn×n. Then, the Rosenbrock

system matrix is defined as

Z(z)
△
=

zI − A −B

C D

 . (2.3)

Furthermore, z ∈ C is an invariant zero of the realization
[

A B

C D

]
if rankZ(z) < rankZ.
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Definition 2.14. Let P ∈ R[z]p×m and R ∈ R[z]p×p. Then R left divides P if there exists P̂ ∈

R[z]p×m such that P = RP̂ .

Definition 2.15. Let P ∈ R[z]p×n and Q ∈ R[z]p×m. Then P and Q are coprime if every R ∈

R[z]p×p that left divides both P and Q is unimodular.

Definition 2.16. Let P ∈ R[z]p×m. Then degP is the maximum degree of the entries of P.

Furthermore, P is monic if p = m and P (z) = zdegP Im + P0(z), where P0 ∈ R[z]m×m and

degP0 < degP.

Definition 2.17. Let D ∈ R[z]p×p, and N ∈ R[z]p×m, assume that D is nonsingular, and assume

that G = D−1N . Then (D,N) is a left polynomial fraction description (LPFD) of G. Furthermore,

if D and N are coprime, then (D,N) is a coprime left polynomial fraction description (CLPFD)

of G. In addition, if D is monic, then (D,N) is a monic left polynomial fraction description

(MLPFD) of G. Finally, if D and N are coprime and D is monic, then (D,N) is a monic coprime

left polynomial fraction description (MCLPFD) of G.

Note that the terms ‘matrix fraction description’ and ‘polynomial matrix fraction description’ are

used as alternatives to the term ‘polynomial fraction description’ in the literature.

Definition 2.18. Let P ∈ R[z]p×n, Q ∈ R[z]p×m and R ∈ R[z]p×p. Then R is a greatest common

left divisor of P and Q if there exists P̂ ∈ R[z]p×n, Q̂ ∈ R[z]p×m such that P = RP̂ , Q = RQ̂ and

P̂ and Q̂ are coprime.

Definition 2.19. Let G ∈ R(z)p×m
prop , let (D,N) be an LPFD of G, and, for all k ≥ 0, let uk ∈ Cm

satisfy

N(q)uk = 0. (2.4)

Then, (2.4) is the zero dynamics of (D,N). If, in addition, (D,N) is a CLPFD of G, then (2.4) is

the zero dynamics of G.
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Definition 2.20. Let y−n, y−n+1, . . . , y−1 ∈ Rp. Consider the input-output model of a linear time-

varying system given by, for all k ≥ 0,

yk +D1,kyk−1 + · · ·+Dn,kyk−n = N0,kuk + · · ·+Nn,kuk−n, (2.5)

where, uk ∈ Rm is the input, yk ∈ Rp is the output, D1,k, . . . , Dn,k ∈ Rp×p, and N0,k, . . . , Nn,k ∈

Rp×m. Define

Dk(q
−1)

△
= Ip +D1,kq

−1 + · · ·+Dn,kq
−n, (2.6)

Nk(q
−1)

△
= N0,k +N1,kq

−1 + · · ·+Nn,kq
−n. (2.7)

Then, Gk
△
= D−1

k Nk is the time-domain transfer function at step k of the system represented by

(2.5). In terms of Gk, (2.5) is written as

yk = Gk(q
−1)uk, (2.8)

and in terms of Nk and Dk, (2.5) is written as

Dk(q
−1)yk = Nk(q

−1)uk, (2.9)

Definition 2.21. Consider the LTV state space model

xk+1 = Akxk +Bkuk, (2.10)

yk = Ckxk + Ekuk, (2.11)

where, for all k ≥ 0, xk ∈ Rn is the state, uk ∈ Rm is the input, and yk ∈ Rp is the output. Define
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the observability matrix at step k as

Ok
△
=



Ck

Ck+1Ak

Ck+2Ak+1Ak

...

Ck+n−1Ak+n−2 . . . Ak+1Ak


, (2.12)

and the controllability matrix at step k as

Ck
△
=

[
Bk−1 Ak−1Bk−2 Ak−1Ak−2Bk−3 · · · Ak−1 . . . Ak−n+1Bk−n

]
. (2.13)

If, for all k ≥ 0, rankOk = n, then (A,C) is completely observable. If, for all k ≥ n, rankCk = n,

then (A,B) is completely controllable. Furthermore, if (A,B) is completely controllable and

(A,C) is completely observable, then (A,B,C,E) is minimal.

Definition 2.22. Let D1,k, . . . , Dn,k ∈ Rp×p, let N0,k, . . . , Nn,k ∈ Rp×m, let y−n, . . . , y−1 ∈ Rp

be initial output data, let (θk)∞k=−n ∈ Rr, and, for all k ≥ −n, let uk : Rr → Rm. Then, the FIA

sequence (yk(θk))
∞
k=0 is given by the fixed-input-argument (FIA) filter

yk(θk) +D1,kyk−1(θk−1) + · · ·+Dn,kyk−n(θk−n) = N0,kuk(θk) + · · ·+Nn,kuk−n(θk), (2.14)

where, for all k ∈ [−n,−1], yk(θk)
△
= yk.

Note that, in (2.14), at each step k, the arguments of uk−n, . . . , uk are fixed at the current value

θk. In contrast, the left hand side defines the current output yk(θk) which depends on the past

output values yk−n(θk−n), . . . , yk−1(θk−1). In terms of q−1, (2.14) is written as either

Dk(q
−1)yk(θk) = Nk(q

−1)uk(θk), (2.15)
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or

yk(θk) = Gk(q
−1)uk(θk), (2.16)

where Gk
△
= D−1

k Nk.
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CHAPTER 3

Finite-Time Input Estimation

This chapter considers finite-time input estimation for discrete-time linear time-invariant sys-

tems in the case where the initial condition is unknown. Finite-time input estimation is the exact

reconstruction of input after a finite number of steps. First, two specific constructions of finite-

impulse-response (FIR) delayed left inverse for systems with zero nonzero zeros are presented;

one using the Smith-McMillan form does not necessarily provide the minimal delay possible and

the second using the Smith-McMillan form at infinity gives an FIR delayed left inverse with the

minimal delay. Next, it is shown that, in the presence of an arbitrary unknown initial condition,

finite-time input estimation is possible using a delayed left inverse H if and only if H is FIR.

Finally, it is shown that a transfer function with full column normal rank has an FIR delayed left

inverse with the minimal delay if and only if the system has zero nonzero zeros.

Let G ∈ R(z)p×m
prop . If H is a delayed left inverse of G with delay d, then the output of HG is

equal to the d-step-delayed input of HG. However, HG does not account for the free response

of the state space model formed by cascading state space models of G and H . The missing free

response can be accounted for by specifying initial conditions of realizations of G and H. Let

G
min∼
[

AG BG

CG DG

]
, H

min∼
[

AH BH

CH DH

]
, (3.1)
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and, for all k ≥ 0, consider the state space equations

xG,k+1 = AGxG,k +BGuk, (3.2)

yk = CGxG,k +DGuk, (3.3)

and

xH,k+1 = AHxH,k +BHyk, (3.4)

zk = CHxH,k +DHyk. (3.5)

Then, the state space realization of the cascade HG is given by

xk+1 = Axk +Buk, (3.6)

zk = Cxk +Duk, (3.7)

where

x
△
=

xG

xH

 , A
△
=

 AG 0

BHCG AH

 , B
△
=

 BG

BHDG

 , (3.8)

C
△
=

[
DHCG CH

]
, D

△
= DHDG. (3.9)

Note that the realization (3.6), (3.7) of HG is not necessarily minimal.

3.1 Effect of Zeros on Input Estimation

If the continuous-time system G has a transmission zero, then it follows from [115, p. 398]

that there exist an initial condition and nonzero input such that the response of a minimal state

space realization of G is identically zero. The following result is the discrete-time analogue and is

19



partially given by Lemma 2.7 in [86, p. 25].

Proposition 3.1. Let G ∈ R(z)p×m
prop , where G

min∼
[

A B

C D

]
and A ∈ Rn×n, and, for all k ≥ 0,

consider

xk+1 = Axk +Buk, (3.10)

yk = Cxk +Duk. (3.11)

Assume that z0 ∈ C is a transmission zero of G, and let

x
u

 ∈ N(Z(z0)) have nonzero real part,

where Z is the Rosenbrock system matrix. Define the initial state x0
△
= Re(x), and, for all k ≥ 0,

define the input sequence uk
△
= Re(zk0u). Then, for all k ≥ 0, yk = 0. Furthermore, u ̸= 0.

Proof. By assumption,

z0I − A −B

C D


x
u

 = 0,

and thus

(z0I − A)x = Bu, (3.12)

Cx+Du = 0. (3.13)

Using (3.12) and the fact that z00 = 1, it follows from (3.10) that x1 = ARe(x) + B Re(u) =

ARe(x) + Re(z0x) − ARe(x) = Re(z0x). Proceeding similarly, it follows that, for all k ≥ 0,

xk = Re(zk0x). Thus (3.11) and (3.13) together imply that, for all k ≥ 0, yk = C Re(zk0x) +

DRe(zk0u) = Re(zk0(Cx+Du)) = 0.

Next, suppose that u = 0. Hence (3.13) implies that Cx = 0. Then it follows from (3.10) and
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(3.11) that



y0

y1
...

yn−1


= ORe(x),

where O is the observability matrix obtained from (A,C). Since O has full column rank and, for

all k ≥ 0, yk = 0, it follows that Re(x) = 0, which is a contradiction. Thus u ̸= 0. □

Note that, in the case where z0 ̸= 0, the input u that produces the zero output has the property

that, for all k ≥ 0, uk ̸= 0. Since the zero input also produces the zero output, finite-time input

estimation is impossible. However, in the case where z0 = 0, the input u that produces the zero

output is {Re(u), 0, 0, . . . .}. The fact that uk is nonzero only at the initial time step suggests that

finite-time input estimation may be possible in this case as long as G has zero nonzero zeros. In

fact, delayed left inverses for systems with this property is constructed in the next two sections.

3.2 Smith-McMillan Construction of a Delayed Left Inverse

In this section, we use the Smith-Mcmillan form to construct an FIR delayed left inverse for

systems with zero nonzero zeros. The following result given by Theorem 6.7.5 in [116, p. 514]

presents the Smith-McMillan form.

Theorem 3.2. Let G ∈ R(z)p×m
prop , and let ρ △

= rankG. Then there exist unimodular matrices

S1 ∈ R(z)p×p and S2 ∈ R(z)m×m and unique monic polynomials p1, . . . , pρ, q1, . . . , qρ ∈ R(z)

such that pi and qi are coprime for all i ∈ {1, . . . , ρ}, pi divides pi+1 for all i ∈ {1, . . . , ρ − 1},
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qi+1 divides qi for all i ∈ {1, . . . , ρ− 1}, and G = S1SS2, where

S =



p1/q1 0ρ×(m−ρ)

. . .

pρ/qρ

0(p−ρ)×ρ 0(p−ρ)×(m−ρ)


. (3.14)

S is the Smith-McMillan form of G. The roots of the polynomial q1q2 . . . qρ are the poles of G,

and the roots of the polynomial p1p2 . . . pρ are the transmission zeros of G.

Proposition 3.3. Let G ∈ R(z)p×m
prop , assume that G has full column normal rank, and assume that

G has zero nonzero zeros. Then, Hs
△
= S−1

2 S+S−1
1 has zero nonzero poles, where S, S1, and S2

are defined in Theorem 3.2 and S+ △
= (STS)−1ST.

Proof. Since G has zero nonzero zeros, each polynomial p1, p2, . . . , pρ, defined in Theorem 3.2,

is a power of z. Hence S+ has zero nonzero poles. Note that since S1 and S2 are unimodular

matrices, the entries of S−1
1 and S−1

2 are polynomials. Thus Hs has zero nonzero poles.

Corollary 3.4. Let G and Hs be as defined in Proposition 3.3, and let d0 be the smallest nonnega-

tive integer such that H(z) = z−d0Hs(z) is a proper transfer function. Then, H is an FIR delayed

left inverse of G.

Example 3.5. Let G(z) =


1

z

1

z2

. Then

S(z) =

 1

z2

0

 , S1(z) =

z 1

1 0

 , S2(z) = 1,

such that S is the Smith-Mcmillan form of G and G = S1SS2. Evaluating the expression for H

given in Corollary 3.4 yields H =

[
0 1

]
such that H(z)G(z) = z−2. Hence, H is an FIR delayed
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left inverse of G with delay 2. However, note that H =

[
1 0

]
is a delayed left inverse of G such

that H(z)G(z) = z−1. Hence this method does not necessarily give an FIR delayed left inverse

with the minimal possible delay. ⋄

3.3 Construction of an FIR Delayed Left Inverse with the Min-

imal Delay

In this section, we use the Smith-McMillan form at infinity [80] to construct an FIR delayed left

inverse with the minimal delay for systems with zero nonzero zeros. The main result is Theorem

3.12, which presents the expression for the constructed FIR inverse.

Lemma 3.6. Let U ∈ R[z]n×n, assume that U is unimodular, and, for all z ̸= 0, define V (z)
△
=

U(1/z). Then V is biproper and FIR.

Proof. Since U is a polynomial matrix, each entry of U is of the form αkz
k + · · · + α1z + α0,

where k is a nonnegative integer and α0, . . . , αk are real numbers. Then the corresponding entry

of V has the form αkz
−k + · · ·+α1z

−1+α0, which is proper and FIR. Hence V is proper and FIR.

Next, define the nonzero constant β △
= detU(z), and note that lim

z→∞
detV (z) = lim

z→∞
detU(1/z) =

lim
z→0

detU(z) = β ̸= 0. Hence V is biproper. □

Lemma 3.7. Let G ∈ R(z)p×m
prop and, for all z ̸= 0, define Ĝ(z)

△
= G(1/z). Then the following

statements hold:

i) Ĝ has no poles at zero.

ii) If G has zero nonzero zeros, then Ĝ has zero nonzero zeros.

Proof. To prove i), suppose that Ĝ has at least one pole at zero. Then at least one entry of Ĝ is of

the form
N(z)

zkD(z)
, where k is a positive integer, N and D are polynomials such that N(0) ̸= 0, and
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D(0) ̸= 0. Then the corresponding entry of G is
zkN(1/z)

D(1/z)
. Since N(0) ̸= 0 and D(0) ̸= 0, it

follows that
N(1/z)

D(1/z)
is exactly proper and hence

zkN(1/z)

D(1/z)
is improper, which is a contradiction.

Hence Ĝ has no poles at zero.

To prove ii), define ρ
△
= rankG = rank Ĝ. Suppose that z0 is a nonzero zero of Ĝ. Then

rankG(1/z0) = rank Ĝ(z0) < ρ. Thus 1/z0 is a nonzero zero of G, which is a contradiction.

Hence Ĝ has zero nonzero zeros. □

The following result presents the Smith-McMillan form at infinity S∞ of G. The proof presented

here, which is different from the proof in [80], is constructive; this construction is also used to prove

Theorem 3.12.

Theorem 3.8. Let G ∈ R(z)p×m
prop , define ρ △

= rankG, and define ρ0
△
= ρ− rankG(∞). Then there

exist biproper transfer functions W ∈ R(z)p×p
prop and V ∈ R(z)m×m

prop and integers ι1 ≥ ι2 ≥ · · · ≥

ιρ0 > 0 such that G = WS∞V , where

S∞(z)
△
=



z−ι1 0ρ×(m−ρ)
. . .

z−ιρ0

1
. . .

1

0(p−ρ)×ρ 0(p−ρ)×(m−ρ)


. (3.15)

Proof. For all z ̸= 0, define Ĝ(z)
△
= G(1/z). Note that rank Ĝ = rankG = ρ. Let Ĝ = Ŝ1ŜŜ2,

where Ŝ ∈ R(z)p×m is the Smith-McMillan form of Ĝ, and Ŝ1 ∈ R(z)p×p and Ŝ2 ∈ R(z)m×m are

unimodular matrices. Define S1(z)
△
= Ŝ1(1/z), S(z)

△
= Ŝ(1/z), and S2(z)

△
= Ŝ2(1/z). It follows

from Lemma 3.7 that Ĝ has no poles at zero and thus Ŝ has no poles at zero. Hence Ŝ is of the
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form

Ŝ(z) =



zι1N1(z)

D1(z)
0ρ×(m−ρ)

. . .

zικNκ(z)

Dκ(z)

Nκ+1(z)

Dκ+1(z)
. . .

Nρ(z)

Dρ(z)

0(p−ρ)×ρ 0(p−ρ)×(m−ρ)



,

where ι1 ≥ · · · ≥ ικ > 0 and κ
△
= ρ − rank Ĝ(0). Ni and Di, for i = 1, . . . , ρ, are polynomials

such that Ni(0) ̸= 0, and Di(0) ̸= 0. Then

S(z) =



z−ι1N1(1/z)

D1(1/z)
0ρ×(m−ρ)

. . .

z−ικNκ(1/z)

Dκ(1/z)

Nκ+1(1/z)

Dκ+1(1/z)
. . .

Nρ(1/z)

Dρ(1/z)

0(p−ρ)×ρ 0(p−ρ)×(m−ρ)



.

Since, for all i = 1, . . . , ρ, Ni(0) ̸= 0, and Di(0) ̸= 0, it follows that Ni(1/z) and Di(1/z) are
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exactly proper and hence S is proper. Therefore, S can be factored as S = S0Dv, where

S0(z)
△
=



z−ι1 0ρ×(m−ρ)
. . .

z−ικ

1
. . .

1

0(p−ρ)×ρ 0(p−ρ)×(m−ρ)


.

and

Dv(z)
△
=



N1(1/z)

D1(1/z)
. . .

Nρ(1/z)

Dρ(1/z)

1

. . .

1



. (3.16)

Note that Dv ∈ R(z)m×m
prop is a biproper diagonal matrix. Since Ĝ(0) = G(∞), it follows that

κ = ρ0 and thus S0 = S∞. Now, for all z ̸= 0, G(z) = Ĝ(1/z) = Ŝ1(1/z)Ŝ(1/z)Ŝ2(1/z) =

S1(z)S(z)S2(z). Since Ŝ1 and Ŝ2 are unimodular, it follows from Lemma 3.6 that S1 and S2

are biproper. Defining W
△
= S1 and V

△
= DvS2, it follows that G = S1SS2 = S1S0DvS2 =

S1S∞DvS2 = WS∞V . □

Note that ρ0 is the number of infinite zero directions, for all i = 1, . . . , ρ0, ιi is the number of

infinite zeros in the ith direction, and ι
△
=
∑ρ0

j=1 ιj is the number of infinite zeros of G.

The following result is given by Theorem 1 in [117].

Lemma 3.9. Let G1 ∈ R(z)p×m
prop and G2 ∈ R(z)p×m

prop be such that G2 = WG1V , where W ∈
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R(z)p×p
prop and V ∈ R(z)m×m

prop are biproper. Then, for all i ≥ 0, βi(G1) = βi(G2).

The following result is given by Theorem 4 in [25].

Proposition 3.10. Let G ∈ R(z)p×m
prop and d ≥ 0. Then G is delayed left invertible with delay d if

and only if rankTd − rankTd−1 = m.

The following result is based on the discussion of the pole/zero structure at infinity given in

[117].

Proposition 3.11. Let G ∈ R(z)p×m
prop , assume that G has full column normal rank, and define ι1 as

in Theorem 3.8. Then ηG = ι1.

Proof. Let H∞,i be the ith Markov parameter of S∞ and T∞,i be the ith Markov block-Toeplitz

matrix associated with S∞, where S∞ is the Smith-McMillan form at infinity of G. Define the

multiset F △
= {ι1, . . . , ιρ0 , 0, . . . , 0} with ρ elements, where ι1, . . . , ιρ0 and ρ are defined in Theo-

rem 3.8. For all i ≥ 0, let Fi be the multiset consisting of all elements of F that are less than or

equal to i, and let |Fi| denote the cardinality of Fi.

Note that, for all i ≥ 0, each row of T∞,i is either zero or has exactly one nonzero entry

that is equal to one, and the nonzero rows of T∞,i are linearly independent. It thus follows that

βi(S∞) = rankT∞,i − rankT∞,i−1 = rank

[
H∞,0 · · · H∞,i

]
= |Fi|. Hence, Theorem 3.8 and

Lemma 3.9 imply that, for all i ≥ 0, βi(G) = βi(S∞) = |Fi|.

Note that maxi≥0 βi(S∞) = maxi≥0 |Fi| = |F | = ρ. Since ι1 is the largest element in F ,

it follows that the smallest i such that |Fi| = ρ is ι1. Thus ρ = |Fι1| = βι1(G) = rankTι1 −

rankTι1−1, where Ti is the ith Markov block-Toeplitz matrix associated with G. Since G has full

column rank, it follows that ρ = m, and thus ι1 is the smallest i such that rankTi−rankTi−1 = m.

Hence Proposition 3.10 implies that ηG = ι1. □

The following result constructs an FIR delayed left inverse of G with the minimal delay.

Theorem 3.12. Let G ∈ R(z)p×m
prop , assume that G has full column rank, and assume that G has

zero nonzero zeros. Then there exist biproper transfer functions W ∈ R(z)p×p
prop and V ∈ R(z)m×m

prop
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such that

H∞(z)
△
= z−ηGV −1(z)ST

∞(1/z)W−1(z) (3.17)

is an FIR delayed left inverse of G with delay ηG, where

S∞(z)
△
=



z−ι1

. . .

z−ιρ0

1
. . .

1

0(p−m)×m


(3.18)

is the Smith-McMillan form at infinity of G, ι1 ≥ ι2 ≥ · · · ≥ ιρ0 > 0 are integers, and ρ0
△
=

m− rankG(∞).

Proof. Define, for all z ̸= 0, Ĝ(z)
△
= G(1/z). Note that rank Ĝ = rankG = m. Let Ĝ =

Ŝ1ŜŜ2, where Ŝ is the Smith-McMillan form of Ĝ, and Ŝ1 and Ŝ2 are unimodular matrices. Define

S1(z)
△
= Ŝ1(1/z), S(z)

△
= Ŝ(1/z), and S2(z)

△
= Ŝ2(1/z). Following the same steps given in the

proof of Theorem 3.8 yields G = WS∞V , where W △
= S1, V

△
= DvS2, S∞ is given by (3.18), and

Dv is given by (3.16) with ρ replaced by m. Since Ŝ1 and Ŝ2 are unimodular, it follows that Ŝ−1
1

and Ŝ−1
2 are unimodular and thus Lemma 3.6 implies that W−1 = S−1

1 and S−1
2 are FIR. Since

G has zero nonzero zeros, it follows from Lemma 3.7 that Ĝ has zero nonzero zeros. Hence, Ŝ

has zero nonzero zeros. Hence, for all i = 1, . . . ,m, Ni = 1 in (3.16). Hence D−1
v is FIR. Thus

V −1 = S−1
2 D−1

v is FIR, and hence H∞ is FIR. Next, it follows from Theorem 3.11 that ηG = ι1.

Hence, z−ηGST
∞(1/z) is proper. Note that W−1 and V −1 are biproper and thus H∞ is proper. Since

H∞(z)G(z) = z−ηGV −1(z)ST
∞(1/z)W−1(z)W (z)S∞(z)V (z) = z−ηGIm, it follows that H∞ is an

FIR delayed left inverse of G with delay ηG. □
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3.4 Input Estimation using FIR Delayed Left Inverse

The main result in this section shows that, in the presence of an arbitrary unknown initial con-

dition, finite-time input estimation is possible using a delayed left inverse H if and only if H is

FIR. The following lemma will be needed.

Lemma 3.13. Let G ∈ R(z)p×m
prop and H ∈ R(z)m×p

prop , with minimal state space realizations (3.1)-

(3.5). Assume that H is FIR and that H is a delayed left inverse of G with delay d. Define

K(z)
△
= H(z)CG(zI − AG)

−1. Then K is FIR.

Proof. For the state space realization of HG given by (3.6)–(3.9), note that spec(A) = spec(AG)∪

spec(AH). Since H is FIR, it follows that spec(AH) = {0}. Therefore, each nonzero eigenvalue of

A is an eigenvalue of AG. Since HG is FIR, it follows that each nonzero eigenvalue of A (including

multiplicity) is either an uncontrollable eigenvalue of (A,B) or an unobservable eigenvalue of

(A,C). However, since (AG, BG) is controllable, each nonzero eigenvalue of A is contained in

spec(AG), and A is lower triangular, it follows from the PBH test that each nonzero eigenvalue of

A is a controllable eigenvalue of (A,B) and thus an unobservable eigenvalue of (A,C). Defining

B0
△
=

InG

0

 , D0
△
= 0,

where nG
△
= Mcdeg G, note that (A,B0, C,D0) is a state space realization of K. Since each

nonzero eigenvalue of A is an unobservable eigenvalue of (A,C), it follows that none of the

nonzero eigenvalues of A are poles of K. Hence, every pole of K is zero, and thus K is FIR.

□

Theorem 3.14. Let G ∈ R(z)p×m
prop and H ∈ R(z)m×p

prop with minimal state space realizations (3.1)-

(3.5), assume that H is a delayed left inverse of G with delay d, and define K(z)
△
= H(z)CG(zI −

AG)
−1. Then the following statements hold:

i) If there exists a nonnegative integer ν such that, for all k ≥ ν and all initial conditions xG,0
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and xH,0, zk = uk−d, then H is FIR.

ii) If H is FIR, then for all k ≥ ν = max{indH, indK, d} and all initial conditions xG,0 and

xH,0, zk = uk−d. If, in addition, xH,0 = 0, then ν = max{indK, d}.

Proof. Note that, for all k ≥ 0, zk = zfree,k + zforced,k, where zfree and zforced denote the free

response and forced response, respectively, of (3.6)–(3.9). Since H(z)G(z) = z−dIm, it follows

that, for all k ≥ d, zforced,k = uk−d. Next, note that, for all k ≥ 0,

zfree,k = CAkx0

=

[
DHCG CH

] Ak
G 0

k−1∑
i=0

Ai
HBHCGA

k−i−1
G Ak

H



xG,0

xH,0

 (3.19)

= zG,k + zH,k,

where

zG,k
△
=

(
DHCGA

k
G + CH

k−1∑
i=0

Ai
HBHCGA

k−i−1
G

)
xG,0,

zH,k
△
= CHA

k
HxH,0.

To prove i), note that there exists a nonnegative integer ν such that, for all k ≥ ν and all xG,0,

xH,0, zfree,k = 0. Hence it follows from (3.19) that, for all k ≥ ν,

[
DHCG CH

] Ak
G 0

k−1∑
i=0

Ai
HBHCGA

k−i−1
G Ak

H

 = 0,

and thus, for all k ≥ ν, CHA
k
H = 0. Hence H is FIR.

To prove ii), note that since H is FIR and thus AH is nilpotent, it follows that, for all k ≥

indH, zH,k = 0. Noting that zG is the output of (3.6), (3.7) in the case where u ≡ 0 and xH,0 = 0,
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it follows from (3.4) and (3.5) that the Z transform of zG is given by

ẑG(z) = CH x̂H(z) +DH ŷ(z)

=
(
CH(zI − AH)

−1BH +DH

)
ŷ(z)

=
(
CH(zI − AH)

−1BH +DH

)
CGx̂G(z)

= z
(
CH(zI − AH)

−1BH +DH

)
CG(zI − AG)

−1xG,0

= zK(z)xG,0 = zŵG(z),

where ŵG(z)
△
= K(z)xG,0. Note that the inverse Z transform wG of ŵG is a linear combination of

the nG single-channel impulse responses of K. Lemma 3.13 implies that K is FIR and thus, for

all k ≥ indK + 1, wG,k = 0. Since zG,k = wG,k+1, it follows that, for all k ≥ indK, zG,k = 0.

Hence, for all k ≥ ν = max{indH, indK, d}, zk = uk−d.

Finally, consider the case where xH,0 = 0. In this case, it follows that, for all k ≥ 0, zH,k = 0,

and thus, for all k ≥ 0, zk = zfree,k+ zforced,k = zG,k + zH,k + zforced,k = zG,k + zforced,k. Therefore,

for all k ≥ max{indK, d}, zk = uk−d. □

Theorem 3.14 shows that, for all k ≥ max{indH, indK, d}, the output z is equal to

the input u delayed by d steps. However, if max{indH, indK} > d, then, for all k =

0, . . . ,max{indH, indK} − d − 1, the input uk is not reconstructed. Note that Theorem 3.14

does not assume any stability condition, and thus the result holds even in the case where both G

and H are unstable.

3.5 Existence of FIR Delayed Left Inverse

The following result restates part of Theorem 3.12 and provides its converse. In particular,

Theorem 3.12 shows that a transfer function with full column normal rank has an FIR delayed left

inverse with the minimal delay if and only if it has zero nonzero zeros. It follows from this fact

and Theorem 3.14 that finite-time input estimation is possible if and only if the system has zero
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nonzero zeros.

Theorem 3.15. Let G ∈ R(z)p×m
prop , and assume that G has full column normal rank. Then, for all

d ≥ ηG, there exists an FIR H ∈ R(z)m×p
prop such that H is a delayed left inverse of G with delay d

if and only if G has zero nonzero zeros.

Proof. Sufficiency follows from Theorem 3.12. To prove necessity, suppose that z0 is a nonzero

zero of G. Since H is FIR, it follows that z0 is not a pole of H . Note that rankH(z0)G(z0) =

rank z−d
0 Im = m. Since z0 is a nonzero zero of G, it follows that rankG(z0) < m. Hence

rankH(z0)G(z0) ≤ min{rankH(z0), rankG(z0)} < m, which is a contradiction. Hence G has

zero nonzero zeros. □

Consider the case where G has at least one zero zero and zero nonzero zeros. With z0 = 0,

it follows from Proposition 3.1 that, if y ≡ 0, then either u is an impulse or u ≡ 0. Hence, the

initial input u0 cannot be reconstructed. However, the inability to reconstruct the initial input

cannot be inferred from Theorem 3.14. As discussed at the end of this section, the following result

strengthens Theorem 3.14 by implying that u0 cannot be reconstructed in the case where d = 0.

Proposition 3.16. Let G ∈ R(z)p×m
prop and H ∈ R(z)m×p

prop with minimal state space realizations

(3.1)-(3.5). Assume that H is an FIR left inverse of G, define K(z)
△
= H(z)CG(zI − AG)

−1, and

assume that G has at least one zero zero. Then K ̸= 0.

Proof. Since HG = Im, it follows that DHDG = Im and hence rankDH = rankDG = m.

Thus there exists a nonsingular matrix S ∈ Rp×p such that D̂H
△
= DHS =

[
Im 0

]
. Define

nG
△
= Mcdeg G, and define ĈG

△
= S−1CG =

Ĉ1

Ĉ2

, where Ĉ1 ∈ Rm×nG and ĈG ∈ R(p−m)×nG .

Similarly, define D̂G
△
= S−1DG =

D̂1

D̂2

, where D̂1 ∈ Rm×m and D̂2 ∈ R(p−m)×m. Let Ĝ ∈

R(z)p×m, where Ĝ∼
[

AG BG

ĈG D̂G

]
. Let O and Ô denote the observability matrices corresponding
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to (AG, CG) and (AG, ĈG), respectively. Note that

rank Ô = rank



S−1CG

S−1CGAG

...

S−1CGA
nG−1
G


= rank (InG

⊗ S−1)O = rankO = nG.

Thus Ĝ min∼
[

AG BG

ĈG D̂G

]
. Note that

D̂1 =

[
Im 0

]D̂1

D̂2

 = D̂HD̂G = DHSS
−1DG = Im. (3.20)

Now, suppose that K = 0. Since K(z) = H(z)CG(zI − AG)
−1 = 0, it follows that (CH(zI −

AH)
−1BH +DH)CG = H(z)CG = 0. Letting z → ∞ implies that DHCG = 0. Then

Ĉ1 =

[
Im 0

]Ĉ1

Ĉ2

 = D̂HĈG = DHSS
−1CG = 0. (3.21)

Let Z denote the Rosenbrock system matrix of the minimal realization (3.1) of G. Since G has at

least one zero zero, it follows that

nG +m > rankZ(0) = rank

−AG BG

CG −DG


= rank

I 0

0 S−1


−AG BG

CG −DG

 = rank

−AG BG

ĈG −D̂G

 . (3.22)
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It follows from (3.20)-(3.22) that

nG +m > rank

−AG BG

ĈG −D̂G

 = rank


−AG BG

0 −Im

Ĉ2 −D̂2

 = rank


−AG 0

0 Im

Ĉ2 0

 . (3.23)

Since (AG, ĈG) is observable, it follows from the PBH test that rank

−AG

ĈG

 = nG. Hence

rank


−AG 0

0 Im

Ĉ2 0

 = nG +m, which contradicts (3.23). Therefore, K ̸= 0. □

In the case where d = 0 and G has at least one zero zero, Proposition 3.16 implies that indK ≥

1 and thus it follows from Theroem 3.14 that u0 cannot be reconstructed.

3.6 Numerical Examples

Example 3.17. Let

G(z) =


1

z2

1

z + 1

 , H(z) =

[
z

z + 1

1

z2

]
, (3.24)

so that H(z)G(z) = z−2 and thus H is a delayed left inverse of G with delay 2. Figure 3.1 shows

the input and output of (3.6), (3.7) with zero initial conditions and with nonzero initial conditions.

Note that H , which is an IIR transfer function, fails to reconstruct the input in the case where the

initial conditions are nonzero. Now, let

H(z) =

[
0

z + 1

z

]
, (3.25)
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so that H(z)G(z) = z−1, and thus H is a delayed left inverse of G with delay 1. Figure 3.2 shows

the input and output of (3.6), (3.7) with zero and nonzero initial conditions. Note that H , which

is an FIR transfer function, correctly reconstructs the input in the case where the initial conditions

are nonzero. ⋄

0 5 10 15 20 25 30

(a)   Step (sample)

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

(b)   Step (sample)

-2

-1

0

1

2

Figure 3.1: (a) shows the input and output of (3.6), (3.7) with zero initial conditions. (b) shows the
input and output of (3.6), (3.7) with nonzero initial conditions.

Example 3.18. Let G ∈ R(z)3×2
prop, where

G(z) =



z

z + 1

1

z

z

z + 2
0

z

z + 1
1


(3.26)
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(a)   Step (sample)
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0

0.5

1

0 5 10 15 20 25 30

(b)   Step (sample)

-1

0

1

2

3

Figure 3.2: (a) shows the input and output of (3.6), (3.7) with zero initial conditions. (b) shows the
input and output of (3.6), (3.7) with nonzero initial conditions.

Then

S∞(z) =


1 0

0 1

0 0

 ,W (z) =



z + 2

2z

2(z + 1)

z2

2(2z + 1)

z

z + 1

2z

z + 1

z2

2z + 1

z

z + 2

2z

z2 + z + 2

z2

3z + 2

z


, V (z) =

1 −
z2 + 3z + 2

z3

0 1

 ,

(3.27)

where S∞ is the Smith-McMillan form at infinity of G and G = WS∞V . It follows from Propos-

tion 3.10 that ηG = 0. Evaluating the expression for H∞ given in Theorem 3.12 yields

H∞(z) =


−
2z3 + 7z2 + 7z + 2

2z3

4z4 + 11z3 + 3z2 − 8z− 4

2z4

2z3 + 7z2 + 7z + 2

2z4

−
1

2
−
z + 2

2z

2z + 1

2z

 , (3.28)
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which satisfies H∞(z)G(z) = I2. Hence, H∞ is an FIR left inverse of G. Constructing minimal

realizations of H∞ and K shows that indH∞ = indK = 4, where K is defined in Theorem 3.14

with H replaced by H∞. Theorem 3.14 thus implies that ν = max{indH∞, indK, d} = 4 and

hence, for all k ≥ 4, zk = uk, where u and z are defined in (3.6), (3.7). Figure 3.3 shows the input

and output of (3.6), (3.7) with nonzero initial conditions. Note that, in this example, G is unstable

and has a zero at zero. ⋄

0 5 10 15 20 25 30

(a)   Step (sample)

-10

-8

-6

-4

-2

0

Figure 3.3: Input and output of (3.6), (3.7), where u = [u1 u2]
T and z = [z1 z2]

T. Note that, for all
k ≥ 4, z1,k = u1,k, and, for all k ≥ 1, z2,k = u2,k. Hence, for all k ≥ 4, zk = uk.

3.7 An Application of Finite-Time Input Estimation

Many tall systems, that is, systems with number of outputs greater than the number of inputs

have no transmission zeros. Exact input estimation can be done for such systems. Consider the

mass-spring system shown in Figure 3.4. The dynamics of this system are given by
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Figure 3.4: Mass-spring system

m1ÿ1 = −k1y1 − k2(y1 − y2) + u, (3.29)

m2ÿ2 = −k2(y2 − y1), (3.30)

where m1 and m2 are the masses in kilograms, k1 and k2 are spring constants in Newton/meters,

y1 and y2 are position of the masses m1 and m2 in meters, and u is the force in Newtons. Assume

that u is unknown and let m1 = m2 = 1 kg and k1 = k2 = 1 N/m. Assume that the output

measurement is y =

ẏ1
y2

. Then the transfer function from u to y is given by

G(s) =


s3 + s

s4 + 3s2 + 1

1

s4 + 3s2 + 1

 . (3.31)

Discretization of (3.31) using zero-order hold yields the discrete-time transfer function given by

Gd(z) =


0.09967z3 − 0.298z2 + 0.298z− 0.09967

z4 − 3.97z3 + 5.94z2 − 3.97z + 1

4.163× 10−6z3 + 4.571× 10−5z2 + 4.571× 10−5z + 4.163× 10−6

z4 − 3.97z3 + 5.94z2 − 3.97z + 1

 . (3.32)
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Note that Gd has no transmission zeros. The minimal delay for which a delayed left inverse exists

for Gd is ηGd
= 1. Using the construction of FIR delayed inverse given in Section 3.3 yields

H(z) =


8.295z6 − 25.2z5 + 19.26z4 + 10.25z3 − 18.27z2 + 4.964z + 0.6982

z6

4.161× 104z6 − 1.7× 105z5 + 3.079× 105z4 − 3.591× 105z3 + 3.079× 105z2 − 1.7× 105z + 4.161× 104

z6


T

.

(3.33)

Note that HG = 1/z and hence H is a delayed left inverse of G with the minimal delay 1. Figure

3.5 compares the actual input u applied to the system with the output of the cascade of G and H .

The input is exactly reconstructed after a finite number of steps. Figure 3.6 is a zoomed view of

3.5 and shows that the input is estimated with a delay of 1.

0 10 20 30 40 50 60

Step (sample)

-30

-20

-10

0

10

20

30

40

Figure 3.5: Input estimation for the mass-spring system shown in Figure 3.4. u is the actual input
and z is the estimated input.
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Figure 3.6: Zoomed view of Figure 3.5
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CHAPTER 4

Transmission Zeros and Infinite Zeros

Transmission zeros can be counted by using the Smith-McMillan form, pole/zero modules, or

the dimension of the largest output nulling invariant subspace. In this chapter, an alternative ap-

proach is provided by showing that the number of transmission zeros of a MIMO transfer function

is given in terms of the defect of an augmented matrix involving an observability matrix and the

Markov block-Toeplitz matrix. It is also shown that the number of infinite zeros is related to the

defect of the Markov block-Toeplitz matrix. These results are illustrated with a numerical example.

Let G ∈ R(z)p×m
prop , where p ≥ m, G min∼

[
A B

C D

]
, and A ∈ Rn×n. Consider (3.10) and (3.11).

For all l ≥ 0, define the lth Markov parameter

Hl
△
=

 D, l = 0,

CAl−1B, l ≥ 1.

For all l ≥ 0, define

Yl
△
=



y0

y1
...

yl


∈ R(l+1)p, Ul

△
=



u0

u1

...

ul


∈ R(l+1)m, Γl

△
=



C

CA

...

CAl


R(l+1)p×n.
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Γl is the lth observability matrix. It follows from (3.10), (3.11) that, for all l ≥ 0,

Yl = Γlx0 + TlUl = Ψl

x0

Ul

 , (4.1)

where

Ψl
△
=

[
Γl Tl

]
∈ R(l+1)p×[n+(l+1)m],

and Tl is the lth Markov block-Toeplitz matrix associated with G. For all l ≥ 0, define

Ql
△
=



H0

H1

...

Hl


∈ R(l+1)p×m, Pl

△
=

 0

Tl−1

 ∈ R(l+1)p×lm,

so that Tl =

[
Ql Pl

]
. Let ζ denote the number of transmission zeros of G counting multiplicity.

We assume for the rest of the chapter that G has full column normal rank, that is, rankG = m.

This assumption implies that G is square or tall, that is, p ≥ m. However, since G and GT have

the same poles and zeros, the results in this chapter can be used in the case where G has full row

rank, that is, rankG = p. In this case, G is square or wide, that is, m ≥ p.

4.1 Counting Transmission Zeros

In this section, we relate the number of transmission zeros of G to the defect of an augmented

matrix involving an observability matrix and the Markov block-Toeplitz matrix. The concept of

output nulling invariant subspaces [118] acts as a bridge in establishing this relationship. The main

result is Theorem 4.3, which provides an expression for the number of transmission zeros.

The following result is given by Theorem 11 in [119].
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Proposition 4.1. Let V ∗ be the maximal output-nulling invariant subspace of a minimal realization

of G. Then, dim V ∗ = ζ .

Lemma 4.2. Let V ∗ be the maximal output-nulling invariant subspace of (3.10), (3.11), and let

x0 ∈ V ∗. Then there exists an input sequence (uk)k≥0 such that, for all k ≥ 0, yk = 0.

Proof. Since x0 ∈ V ∗, it follows from (2.2) that there exists u0 ∈ Rm such that

x1 = Ax0 +Bu0,

0 = Cx0 +Du0,

where x1 ∈ V ∗. Since x1 ∈ V ∗, it follows from (2.2) that there exists u1 ∈ Rm such that

x2 = Ax1 +Bu1,

0 = Cx1 +Du1,

where x2 ∈ V ∗. By induction, it follows that there exists an input sequence (uk)k≥0 such that, for

all k ≥ 0, yk = 0. □

The following result characterizes the number of transmission zeros in terms of the defect of

the Markov block-Toeplitz matrix given by Definition 2.1 and the defect of a matrix consisting of

an observability matrix and the Markov block-Toeplitz matrix.

Theorem 4.3. For all l ≥ n− 1,

def Ψl − def Tl = dim(R(Γl) ∩ R(Tl)) = ζ. (4.2)

Proof. It follows from Fact 3.14.15 in [116] that, for all l ≥ 0,

def Ψl = def Γl + def Tl + dim(R(Γl) ∩ R(Tl)). (4.3)
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Note that, for all l ≥ n− 1, def Γl = 0. Hence (4.3) implies that, for all l ≥ n− 1,

def Ψl − def Tl = dim(R(Γl) ∩ R(Tl)).

Next, let V ∗ be the maximal output-nulling invariant subspace of (3.10), (3.11). Then Proposi-

tion 4.1 implies that dim V ∗ = ζ . Let x1,0, x2,0, . . . , xζ,0 be a basis for V ∗. It follows from Lemma

4.2 that, for all l ≥ n− 1 and i = 1, . . . , ζ , there exists Ul,i ∈ R(l+1)m such that, when substituted

for Ul in (4.1), yields Yl = 0. Thus, for all l ≥ n− 1 and i = 1, . . . , ζ , it follows that

Γlxi,0 + TlUl,i = 0.

For all l ≥ n−1 and i = 1, . . . , ζ , define zl,i
△
= Γlxi,0 = −TlUl,i. For all l ≥ n−1, let αl,1, . . . , αl,ζ

be real numbers such that
ζ∑

i=1

αl,izl,i = 0. Then, for all l ≥ n− 1,

0 =

ζ∑
i=1

αl,izl,i =

ζ∑
i=1

αl,iΓlxi,0 = Γl

ζ∑
i=1

αl,ixi,0.

Since, for all l ≥ n− 1, Γl has full column rank, it follows that
ζ∑

i=1

αl,ixi,0 = 0 and thus αl,i = 0.

Hence, for all l ≥ n − 1, zl,1, . . . , zl,ζ are linearly independent. Now, for all l ≥ n − 1, define

zl
△
= Γlx0, where x0

△
=

ζ∑
i=1

βixi,0. It follows that, for all l ≥ n− 1,

zl = Γl

ζ∑
i=1

βixi,0 =

ζ∑
i=1

βiΓlxi,0 =

ζ∑
i=1

βizl,i.

Thus, for all l ≥ n− 1, span {zl,1, . . . , zl,ζ} = R(Γl)∩R(Tl), and hence dim(R(Γl)∩R(Tl)) = ζ .

□
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4.2 Counting Infinite Zeros

Infinite zeros extend the notion of relative degree to MIMO systems; in fact, for a SISO system,

the number of infinite zeros is the relative degree of the transfer function. The main result in

this section, Theorem 4.6, establishes a relationship between the number of infinite zeros and the

defect of the Markov block-Toeplitz matrix. All of the definitions and results given below support

the main result.

Proposition 4.4. ηG is finite.

Proof. Note that, since G has full column rank, [G(z)TG(z)]−1G(z)T is a left inverse of G and

thus there exists d ≥ 0 such that H(z) = z−d[G(z)TG(z)]−1G(z)T is a delayed left inverse of G

with delay d. Hence G is delayed left invertible with delay d. Then Proposition 3.10 implies that

rankTd − rankTd−1 = m and hence ηG is finite. □

Lemma 4.5. Let l0 ≥ 0. The following statements are equivalent:

i) rankTl0 − rankTl0−1 = m.

ii) rankQl0 = m and dim(R(Ql0) ∩ R(Pl0)) = 0.

iii) For all l ≥ l0, rankTl − rankTl−1 = m.

Proof. To prove i) =⇒ ii), note that it follows from Fact 3.14.15 in [116, p. 322] that m =

rankTl0 − rankTl0−1 = rankQl0 − dim(R(Ql0) ∩ R(Pl0)). Thus, m+ dim(R(Ql0) ∩ R(Pl0)) =

rankQl0 ≤ m. Hence, rankQl0 = m, and dim(R(Ql0) ∩ R(Pl0)) = 0.

To prove ii) =⇒ iii), note that, for all l ≥ 0,

Ql+1 =

 Ql

Hl+1

 , Pl+1 =

 Pl 0

Hl · · · H1 H0

 .

Furthermore, for all l ≥ l0, rankQl+1 = rankQl0 = m. Since rankQl0 = m and dim(R(Ql0) ∩

R(Pl0)) = 0, it follows from Lemma A in [34] that dim(R(Ql0+1)∩R(Pl0+1)) = 0. By induction,
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it thus follows that, for all l ≥ l0, dim(R(Ql) ∩ R(Pl)) = 0. Thus, for all l ≥ l0, Fact 3.14.15

in [116, p. 322] implies that rankTl − rankTl−1 = rankQl − dim(R(Ql) ∩ R(Pl)) = m.

The proof of iii) =⇒ i) is immediate. □

The following result characterizes the number of infinite zeros in terms of the defect of the

Markov block-Toeplitz matrix.

Theorem 4.6. For all l ≥ ηG − 1, def Tl = ι.

Proof. Note that it follows from Proposition 4.4 that ηG is finite. Next, Fact 3.14.15 in [116, p.

322] implies that, for all l ≥ 0,

def Tl = def Ql + def Pl + dim(R(Ql) ∩ R(Pl)). (4.4)

For all l ≥ ηG, Lemma 4.5 implies that rankQl = m, and dim(R(Ql) ∩ R(Pl)) = 0. Therefore, it

follows from (4.4) that, for all l ≥ ηG, def Tl = def Pl = def

 0

Tl−1

 = def Tl−1. Hence, for all

l ≥ ηG, def Tl = def TηG−1.

Next, let S∞ be the Smith-McMillan form at infinity of G, and let ι1, . . . , ιρ0 be as defined in

Theorem 3.8. Let H∞,j be the jth Markov parameter of S∞. It follows from Proposition 3.11 that

ηG = ι1, and hence

ι =

ρ0∑
j=1

ιj =

ι1∑
j=1

j rankH∞,j =

ηG∑
j=1

j rankH∞,j. (4.5)

Since G has full column normal rank, it follows that

m =

ηG∑
j=0

rankH∞,j. (4.6)

Let T∞,i be the ith Markov block-Toeplitz matrix associated with S∞. Note that, for all i ≥ 0, each

row of T∞,i is either zero or has exactly one nonzero entry that is equal to one, and the nonzero
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rows of T∞,i are linearly independent. It thus follows that, for all i ≥ 0,

rankT∞,i =
i∑

j=0

(i− j + 1) rankH∞,j. (4.7)

Hence (4.5), (4.6), and (4.7) imply that

def T∞,ηG−1 = ηGm−
ηG−1∑
j=0

(ηG − j) rankH∞,j

= ηG(m− rankH∞,0)− ηG

ηG−1∑
j=1

rankH∞,j +

ηG−1∑
j=1

j rankH∞,j

= ηG(m− rankH∞,0)− ηG(m− rankH∞,0 − rankH∞,ηG) +

ηG−1∑
j=1

j rankH∞,j

=

ηG∑
j=1

j rankH∞,j = ι.

Next, since T−1 is an empty matrix, it follows from Lemma 3.9 and Theorem 3.8 that, for all l ≥ 0,

rankTl = rankT∞,l. Hence, def TηG−1 = def T∞,ηG−1 = ι. □

4.3 Numerical Example

Example 4.7. Let

G =



1

z + 1
1

1

z + 3

1

2z

1

2z
1


. (4.8)

Numerical computation using Matlab yields

i) n = 4, ηG = 1.
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ii) def T0 = 1.

iii) def Ψ0 = 3, and def Ψl = 2, for l = 1, 2, 3.

Theorem 4.6 thus implies that, for all l ≥ 0, def Tl = 1, and thus ι = 1. Similarly, Theorem 4.3

implies that, for all l ≥ 3, def Ψl = 2, and thus ζ = 1.

As a check, the numbers of infinite and transmission zeros are calculated from the Smith-

McMillan form at infinity and the Smith-McMillan form, respectively, as follows. Note that

G = WS∞V , where

S∞(z) =


1

z
0

0 1

0 0

 , V (z) =


1− z

z

(z− 1)(5z2 − 6z− 9)

4z3

−
6z

z2 + 4z + 3

6z− 9

2z

 , (4.9)

W (z) =



−
6z + 9

2z

4z4 + 21z3 + 21z2 − 27z− 27

12z4
1

−
2z + 3

2z

7z3 + 7z2 − 9z− 9

12z4

1

3

−
10z2 + 15z + 9

4z2

8z5 + 37z4 + 38z3 − 18z2 − 54z− 27

24z5

z + 1

2z


. (4.10)

It can be seen from S∞ that ι = 1. Next, note that G = S1SS2, where
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S(z) =



1

z(z + 1)(z + 3)
0

0
z− 1

z

0 0


, S2(z) =

1
2z3 + 9z2 + 10z + 3

12

0 1

 , (4.11)

S1(z) =



z(z + 3) −
z(2z + 9)

12
−
z + 6

6

z(z + 1) −
2z2 + 5z + 6

12
−
z + 4

6

z2 + 4z + 3

2

− 2z2 − 11z + 3

24
−
z + 7

12


. (4.12)

It can be seen from S that ζ = 1. ⋄
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CHAPTER 5

Zero Dynamics of Input-Output Models

Zeros are of extreme importance in linear systems theory, especially unstable zeros, which

degrade achievable performance. Furthermore, the presence of a zero in a state space model implies

the existence of an initial condition and a nonzero input signal such that the output is identically

zero; this property is called output zeroing. The purpose of this chapter is to elucidate the properties

of the zero dynamics within the context of input-output models, which, like state space models, are

time-domain models, but, unlike state space models, have no internal state. In particular, the focus

is on the zero dynamics of left polynomial fraction description (LPFD) input-output models whose

denominator polynomial is not necessarily monic. In addition, output zeroing in input-output

models is considered, and its equivalence to output zeroing in state space models is discussed.

Finally, a numerical example is presented to illustrate the results.

5.1 Preliminary Results

In this and all subsequent sections, let G ∈ R(z)p×m
prop . In the notation of Theorem 3.2, define

DS
△
=



q1 0

. . .

qρ

0 Ip−ρ


S−1
1 , NS

△
=



p1 0

. . .

pρ

0 0(p−ρ)×(m−ρ)


S2. (5.1)
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Proposition 5.1. (DS, NS) is a CLPFD of G.

Proof. Note that, for all z ∈ C, rank[DS(z) NS(z)] = p, and hence it follows from Theorem 16.16

in [120, p. 300] that DS and NS are coprime. □

The following result is given by Theorem 16.17 in [120, p. 301].

Proposition 5.2. Let (D,N) be a CLPFD of G and (D̂, N̂) be an LPFD of G. Then (D̂, N̂) is a

CLPFD of G if and only if there exists a unimodular matrix U ∈ R[z]p×p such that D̂ = UD and

N̂ = UN .

Corollary 5.3. Let (D,N) be an LPFD of G. Then (D,N) is a CLPFD of G if and only if there

exists a unimodular matrix U ∈ R[z]p×p such that D = UDS and N = UNS.

Note that it follows from [121, p. 35] that, for all P ∈ R[z]p×n and Q ∈ R[z]p×m, there exists a

greatest common left divisor of P and Q.

Lemma 5.4. Let (D,N) be a CLPFD of G, and let (D̂, N̂) be an LPFD of G. Then there exists a

nonsingular L ∈ R[z]p×p such that D̂ = LD and N̂ = LN .

Proof. Let R ∈ R[z]p×p be a greatest common left divisor of D̂ and N̂ . Then there exist D ∈

R[z]p×p and N ∈ R[z]p×m such that D̂ = RD, N̂ = RN, and D and N are coprime. Next, it

follows from Proposition 5.2 that there exists a unimodular matrix U ∈ R[z]p×p such that D = UD

and N = UN . Hence, D̂ = LD and N̂ = LN , where L △
= RU . Since D̂ is nonsingular, it follows

that R is nonsingular and thus L is nonsingular. □

Proposition 5.5. Let (D,N) be an LPFD of G. Then deg detD = McDegG if and only if (D,N)

is a CLPFD of G.

Proof. To prove sufficiency, note that Corollary 5.3 implies that there exists a unimodular matrix

U ∈ R[z]p×p such that D = UDS. Hence, deg detD = deg detU + deg detDS = deg detDS =

McDeg G. To prove necessity, note that it follows from Lemma 5.4 and Proposition 5.1 that there

exists a nonsingular L ∈ R[z]p×p such that D = LDS and N = LNS. Hence deg detL =

deg detD − deg detDS = McDeg G − McDeg G = 0. Thus, L is unimodular and therefore

Corollary 5.3 implies that (D,N) is a CLPFD of G. □
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5.2 Results on Zero Dynamics of Input-Output Models

This section discusses various aspects of the zero dynamics of input-output models. In partic-

ular, Proposition 5.6 characterizes transmission zeros of G using an LPFD of G and a CLPFD of

G. Next, Proposition 5.7 gives an expression for counting the number of transmission zeros of G

using a CLPFD of G. Necessary and sufficient conditions for the existence of nonzero solutions to

the zero dynamics of G are given in Proposition 5.8, and solutions of the zero dynamics are char-

acterized by Proposition 5.9. Next, Theorem 5.10 relates nonzero solutions of the zero dynamics

to the transmission zeros of G.

Proposition 5.6. Let (D,N) be an LPFD of G, and let z0 be a transmission zero of G. Then

rankN(z0) < rankN. Now assume that (D,N) is a CLPFD of G. Then z0 is a transmission zero

of G if and only if rankN(z0) < rankN.

Proof. To prove the first statement, note that Proposition 5.1 and Lemma 5.4 imply that there

exists a nonsingular L ∈ R[z]p×p such that D = LDS and N = LNS, where DS and NS are defined

in (5.1). Since z0 is a transmission zero of G, it follows from Theorem 3.2 that rankNS(z0) <

rankNS. Hence, rankN(z0) ≤ rankNS(z0) < rankNS = rankN . To prove sufficiency in the

second statement, note that Corollary 5.3 implies that, for all z ∈ C, rankN(z) = rankNS(z).

Hence, rankNS(z0) = rankN(z0) < rankN = rankNS, and thus it follows from Theorem 3.2

that z0 is a transmission zero of G. □

Proposition 5.7. Let (D,N) be a CLPFD of G, let (D̂, N̂) be a CLPFD of GT, and let ζ be the

number of transmission zeros of G counting multiplicity.

i) If rankG = p, then ζ = 1
2
deg detNNT.

ii) If rankG = m, then ζ = 1
2
deg det N̂N̂T.

Proof. To prove i), note that it follows from Corollary 5.3 that NNT = UNSN
T
S U

T, where U ∈

R[z]p×p is a unimodular matrix. Since rankG = p, it follows that NSN
T
S is nonsingular and thus

NNT is nonsingular. Thus deg detNNT = deg detNSN
T
S = 2ζ .
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To prove ii), note that the number of transmission zeros of GT is equal to the number of trans-

mission zeros of G. Since rankGT = rankG = m, applying i) to GT yields ii). □

The zero dynamics of an LPFD of G and the zero dynamics of G are defined in 2.19. The

following result gives necessary and sufficient conditions for the existence of nonzero solutions of

(2.4).

Proposition 5.8. Let N ∈ R[z]p×m. Then (2.4) has a nonzero solution if and only if there exists

z0 ∈ C such that rankN(z0) < m.

Proof. To prove sufficiency, let N(q) = qℓB0 + qℓ−1B1 + · · ·+Bℓ. Then

N(q)zk0 =
(
qℓB0 + qℓ−1B1 + · · ·+Bℓ

)
zk0 = zk+ℓ

0 B0 + zk+ℓ−1
0 B1 + · · ·+ zk0Bℓ

=
(
zℓ0B0 + zℓ−1

0 B1 + · · ·+Bℓ

)
zk0 = N(z0)z

k
0.

Note that there exists u ̸= 0 such that N(z0)u = 0. For all k ≥ 0, define uk
△
= zk0u. Hence, for

all k ≥ 0, N(q)uk = N(q)zk0u = N(z0)z
k
0u = zk0N(z0)u = 0. Since u ̸= 0, it follows that u is a

nonzero solution of (2.4).

To prove necessity, note that, in the case where rankN < m, it follows that, for all z0 ∈ C,

rankN(z0) < m. In the case where rankN = m, there exists a unimodular matrix U ∈ R[q]p×p

such that N △
= UN =

 N0

0(p−m)×m

, where N0 ∈ R[q]m×m is nonsingular. Then (2.4) implies that

N(q)uk = U(q)N(q)uk = 0, and thus N0(q)uk = 0. Now, suppose that N0 is unimodular. Then

N−1
0 (q) is a polynomial matrix, and hence (2.4) is equivalent to N−1

0 (q)N0(q)uk = 0, and thus, for

all k ≥ 0, uk = 0, which is a contradiction. It thus follows that N0 is not unimodular, that is, detN0

is a nonconstant polynomial in q. Let z0 be a root of detN0. Hence, rankN0(z0) < m. Since, for

all z ∈ C, rankN(z) = rankN(z) = rankN0(z), it follows that rankN(z0) = rankN0(z0) < m.

□

The following result characterizes the possibly complex solutions of (2.4).
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Proposition 5.9. Let z0 ∈ C, and let u ∈ Cm. Then, for all k ≥ 0, uk
△
= zk0u satisfies (2.4) if and

only if N(z0)u = 0.

Proof. Let N(q) = qℓB0 + qℓ−1B1 + · · ·+Bℓ. Then

N(q)zk0 =
(
qℓB0 + qℓ−1B1 + · · ·+Bℓ

)
zk0 = zk+ℓ

0 B0 + zk+ℓ−1
0 B1 + · · ·+ zk0Bℓ

=
(
zℓ0B0 + zℓ−1

0 B1 + · · ·+Bℓ

)
zk0 = N(z0)z

k
0.

To prove sufficiency, note that, for all k ≥ 0, N(q)uk = N(q)zk0u = N(z0)z
k
0u = zk0N(z0)u = 0.

To prove necessity, note that, for all k ≥ 0, 0 = N(q)uk = zk0N(z0)u. Letting k = 0 yields

N(z0)u = 0. □

Proposition 5.8 and Proposition 5.9 discuss solutions of (2.4) in relation to an arbitrary complex

number z0. Since the focus of this chapter is on transmission zeros, we now give a result on the

relationship between the solutions of (2.4) and a transmission zero z0 of G.

Theorem 5.10. Let (D,N) be an LPFD of G. The following statements hold:

i) If rankN < m, then, for all z0 ∈ C, there exists a nonzero u ∈ N(N(z0)), and, for all

k ≥ 0, uk
△
= zk0u, is a nonzero solution of (2.4).

ii) If rankN = m, and z0 ∈ C is a transmission zero of G, then there exists a nonzero u ∈

N(N(z0)), and, for all k ≥ 0, uk
△
= zk0u, is a nonzero solution of (2.4).

iii) If rankN = m, (D,N) is a CLPFD of G, and z0 ∈ C, then the following statements are

equivalent.

(a) z0 is a transmission zero of G.

(b) There exists a nonzero u ∈ N(N(z0)).

(c) There exists u ̸= 0 such that, for all k ≥ 0, uk
△
= zk0u is a nonzero solution of (2.4).
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Proof. i) follows from Proposition 5.9, and ii) follows from Proposition 5.6 and Proposition 5.9.

a) =⇒ b) in iii) follows from Proposition 5.6, b) =⇒ c) in iii) follows from Proposition 5.9, and c)

=⇒ a) in iii) follows from Proposition 5.8 and Proposition 5.6. □

5.3 Equivalence of Output Zeroing in Input-Output Models

and State Space Models

If G has a transmission zero, then it follows from [86, p. 25] that there exist an initial condition

and a nonzero input such that the response of a minimal state space realization of G is identically

zero. This is called output zeroing in state space models. Proposition 5.12 and Corollary 5.13

deal with output zeroing in state space models, and Theorem 5.14 relates output zeroing in state

space models to the transmission zeros of G. In contrast, Theorem 5.16 and Corollary 5.17 discuss

output zeroing in input-output models. Next, Theorem 5.18 relates output zeroing in input-output

models to the transmission zeros of G, where it is shown that, if G has a transmission zero, then

there exists a nonzero input such that the response of a time-domain input-output representation

of G is identically zero. Furthermore, this section connects output zeroing in input-output models

to output zeroing in state space models. In particular, Theorem 5.20 and Theorem 5.24 establish

the equivalence between output zeroing in input-output models and output zeroing in state space

models.

The following result is an immediate consequence of the definition of invariant zeros.

Proposition 5.11. Let (A,B,C,E) be a realization of G, where A ∈ Rn×n, and and let Z be the

Rosenbrock system matrix. Then, the following statements hold:

i) Assume that rankZ < n+m. Then, for all z0 ∈ C, there exists nonzero

x
u

 ∈ N(Z(z0)).

ii) Assume that rankZ = n+m. Then, z0 ∈ C is an invariant zero of (A,B,C,E) if and only
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if there exists nonzero

x
u

 ∈ N(Z(z0)).

iii) Assume that rankZ = n +m and (A,B,C,E) is minimal. Then, z0 ∈ C is a transmission

zero of G if and only if there exists nonzero

x
u

 ∈ N(Z(z0)).

The following result on output zeroing in state space models is given by Lemma 2.7 and Lemma

2.9 in [86, p. 25, 31].

Proposition 5.12. Let (A,B,C,E) be a realization of G, where A ∈ Rn×n, and let z0 ∈ C,

x ∈ Cn, and u ∈ Cm. Furthermore, define x0
△
= x, and, for all k ≥ 0, define uk

△
= zk0u and

consider

xk+1 = Axk +Buk, (5.2)

yk = Cxk + Euk. (5.3)

Then, the following statements hold:

i) If

x
u

 ∈ N(Z(z0)), then, for all k ≥ 0, yk = 0.

ii) If (A,C) is observable and, for all k ≥ 0, yk = 0, then

x
u

 ∈ N(Z(z0)).

In Proposition 5.12, the signal u and initial state x0 are not necessarily real. In practice, however,

it is desirable to consider real input signals and real states. For this case, the following result is a

consequence of statement i) of Proposition 5.12.

Corollary 5.13. Let (A,B,C,E) be a realization of G, where A ∈ Rn×n, and let z0 ∈ C andx
u

 ∈ N(Z(z0)). Define x0
△
= Re(x), and, for all k ≥ 0, define uk

△
= Re(zk0u) and consider (5.2),

(5.3). Then, for all k ≥ 0, yk = 0.
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The following result relates output zeroing in state space models to transmission zeros of G.

Theorem 5.14. Let (A,B,C,E) be a realization of G, where A ∈ Rn×n, and let z0 be a transmis-

sion zero of G. Then there exists

x
u

 ∈ N(Z(z0)), where x ̸= 0 and u ̸= 0. Furthermore, there

exist x0 ̸= 0 and u ̸= 0 such that y ≡ 0, where x0, u, and y satisfy (5.2), (5.3), and where x0 and

u are real.

Proof. It follows from the Kalman decomposition (see Proposition 16.9.12 in [116, p. 1273] or

Chapters 2 and 6 in [122]) that there exists a nonsingular matrix S ∈ Rn×n such that

Ad
△
= SAocfS

−1 =



A1 0 A13 0

A21 A2 A23 A24

0 0 A3 0

0 0 A43 A4


,

Bd
△
= SBocf =



B1

B2

0

0


,

Cd
△
= CocfS

−1 =

[
C1 0 C3 0

]
,

where, for all i = 1, . . . , 4, Ai ∈ Rni×ni , and (A1, B1, C1, E) is a minimal realization of G. Let

Z1 be the Rosenbrock system matrix of the realization (A1, B1, C1, E). Since z0 is a transmission

zero of G, it follows that rankZ1(z0) < rankZ1. Let z1 ∈ C be such that rankZ1(z1) = rankZ1.
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Hence rankZ1(z0) < rankZ1(z1), and thus Fact 3.14.15 in [116, p. 322] implies that

rank

z0I − A1

C1

+ rank

B1

E

− dim

R


z0I − A1

C1


 ∩ R


B1

E





< rank

z1I − A1

C1

+ rank

B1

E

− dim

R


z1I − A1

C1


 ∩ R


B1

E



 .

Since (A1, C1) is observable, it follows that rank

z0I − A1

C1

 = rank

z1I − A1

C1

 = n1. Hence,

dim

R


z0I − A1

C1


 ∩ R


B1

E



 > dim

R


z1I − A1

C1


 ∩ R


B1

E



 ≥ 0.

Thus, there exists

x1

u1

 ∈ N(Z1(z0)), where x1 ̸= 0 and u1 ̸= 0. Define x
△
=

x1

0

 ∈ Cn and

u
△
= u1. Then, x ̸= 0, u ̸= 0, and

x
u

 ∈ N(Z(z0)).

Without loss of generality, let

x
u

 ∈ N(Z(z0)), where Re(x) ̸= 0 and u ̸= 0. Define x0
△
=

Re(x) and, for all k ≥ 0, uk
△
= Re(zk0u). In the case where Re(u) ̸= 0, note that u0 = Re(u) ̸= 0,

and thus u ̸= 0. In the case where Re(u) = 0, suppose that Im(z0) = 0. Then, it follows from

Re

Z(z0)

x
u


 = 0 that

z0I − A

C

Re(x) = 0, and thus Re(x) = 0, which is a contradiction.

Hence, Im(z0) ̸= 0, which implies that u1 = Re(z0u) = Im(z0)Im(u) ̸= 0, and thus u ̸= 0.

Finally, Corollary 5.13 implies that, for all k ≥ 0, yk = 0. □

Theorem 5.16 concerns output zeroing in input-output models. The proof of this result takes

advantage of the following lemma.
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Lemma 5.15. Let D0, D1, . . . , Dℓ ∈ Rp×p, assume that Dℓ ̸= 0, and, for all k ≥ 0, consider the

difference equation

Dℓyk+ℓ + · · ·+D1yk+1 +D0yk = 0, (5.4)

with the initial condition y0 = y1 = · · · = yℓ−1 = 0. If det(zℓDℓ + · · ·+ zD1 +D0) ̸= 0, then, for

all k ≥ ℓ, yk = 0.

Proof. For all i < 0, define Di
△
= 0, and, for all k ≥ 0, define

Tk
△
=



Dℓ 0 · · · 0

Dℓ−1 Dℓ · · · 0

... . . . . . . ...

Dℓ−k Dℓ−k+1 · · · Dℓ


=

[
Qk Pk

]
,

where

Qk
△
=



Dℓ

Dℓ−1

...

Dℓ−k


, Pk

△
=

 0

Tk−1

 ,

and T−1 is the empty matrix. Next, define D(z)
△
= zℓDℓ+· · ·+zD1+D0 and G(z)

△
= D(1/z). Note

that G is a proper finite-impulse-response (FIR) transfer function, and Dℓ, . . . , D0 are the Markov

parameters of G. Since D is nonsingular, it follows that G is invertible, and hence it follows from

Proposition 2 in [34] that there exists d ≥ 0 such that rankTd − rankTd−1 = p. Next, it follows

from Fact 3.14.15 in [116, p. 322] that p = rankTd−rankTd−1 = rankQd−dim(R(Qd)∩R(Pd)).

Thus, p+dim(R(Qd)∩R(Pd)) = rankQd ≤ p. Hence, rankQd = p, and dim(R(Qd)∩R(Pd)) =

0.
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Next, (5.4) implies that

Td



yℓ

yℓ+1

...

yℓ+d+1


= Qdyℓ + Pd



yℓ+1

yℓ+2

...

yℓ+d+1


= 0.

Since dim(R(Qd) ∩ R(Pd)) = 0, it follows that

Qdyℓ = Pd



yℓ+1

yℓ+2

...

yℓ+d+1


= 0.

Since rankQd = p, it follows that yℓ = 0. Since y1 = · · · = yℓ = 0, repeating the previous

argument with ℓ replaced by ℓ + 1 implies that yℓ+1 = 0. By induction, it follows that, for all

k ≥ ℓ, yk = 0. □

Theorem 5.16. Let (D,N) be an LPFD of G, let z0 ∈ C, and let u ∈ Cm. Let y0 = · · · = yℓ−1 = 0,

where ℓ
△
= degD, and, for all k ≥ 0, define uk

△
= zk0u and consider

D(q)yk = N(q)uk. (5.5)

Then, for all k ≥ ℓ, yk = 0 if and only if N(z0)u = 0.

Proof. To prove sufficiency, note that Proposition 5.9 implies that, for all k ≥ 0, N(q)uk = 0.

Hence, for all k ≥ 0, D(q)yk = 0. Since D is nonsingular, Lemma 5.15 implies that, for all

k ≥ ℓ, yk = 0. To prove necessity, note that, for all k ≥ 0, N(q)uk = D(q)yk = 0. Therefore,

Proposition 5.9 implies that N(z0)u = 0. □

For the case of real input signals, the following result is a consequence of the sufficiency part

of Theorem 5.16.
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Corollary 5.17. Let (D,N) be an LPFD of G, let z0 ∈ C, and let u ∈ N(N(z0)). Let y0 = · · · =

yℓ−1 = 0, where ℓ
△
= degD, and, for all k ≥ 0, define uk

△
= Re(zk0u) and consider (5.5). Then, for

all k ≥ ℓ, yk = 0.

The following result relates output zeroing in input-output models to transmission zeros of G.

Theorem 5.18. Let (D,N) be an LPFD of G, and let z0 be a transmission zero of G. Then

N(N(z0)) ̸= {0}. Furthermore, let y0 = · · · = yℓ−1 = 0, where ℓ
△
= degD. Then there exists real

u ̸= 0 such that u and y ≡ 0 satisfy (5.5).

Proof. It follows from Proposition 5.6 that N(N(z0)) ̸= {0}. Let u be a nonzero vector in

N(N(z0)) such that Re(u) ̸= 0, and define, for all k ≥ 0, uk
△
= Re(zk0u). Note that

u0 = Re(u) ̸= 0, and thus u ̸= 0. Then it follows from Corollary 5.17 that, for all k ≥ ℓ,

yk = 0 in (5.5). □

Next, we consider the equivalence between output zeroing in input-output models and output

zeroing in state space models. In particular, Theorem 5.20 shows the equivalence between output

zeroing using an MLPFD of G and output zeroing using the observable canonical form realization

of G corresponding to the MLPFD of G. The observable canonical form realization of G obtained

from an MLPFD of G is given in Proposition 5.19.

The following result provides a MIMO extension of the observable canonical form realization

given in [123].

Proposition 5.19. Let (DM, NM) be an MLPFD of G, and let

DM(z) = zℓI + zℓ−1A1 + · · ·+ Aℓ, (5.6)

NM(z) = zℓB0 + zℓ−1B1 + · · ·+Bℓ, (5.7)
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where, for all i = 1, . . . , ℓ, Ai ∈ Rp×p, and, for all i = 0, . . . , ℓ, Bi ∈ Rp×m. Then, for all k ≥ 0,

x̂k+1 = Aocf x̂k +Bocfuk, (5.8)

yk = Cocf x̂k + Euk, (5.9)

where

Aocf
△
=



0 · · · 0 −Aℓ

I · · · 0 −Aℓ−1

... · · · ...
...

0 · · · I −A1


, (5.10)

Bocf
△
=



Bℓ − AℓB0

Bℓ−1 − Aℓ−1B0

...

B1 − A1B0


, (5.11)

Cocf
△
=

[
0 · · · 0 I

]
, E

△
= B0, (5.12)

x̂k
△
=

[
x̂1,k · · · x̂l,k

]T
, and, for all i = 0, 1, . . . , ℓ− 1,

x̂ℓ−i,k
△
= yk+i +

i∑
j=1

Ajyk+i−j −
i∑

j=0

Bjuk+i−j, (5.13)

is an observable state space model of G.

(Aocf , Bocf , Cocf , E) is the observable canonical form state space realization of G corresponding

to (DM, NM).

Theorem 5.20. Let (DM, NM) be an MLPFD of G, let DM and NM be given by (5.6), (5.7),

and let Zocf be the Rosenbrock system matrix of the realization (Aocf , Bocf , Cocf , E), where

(Aocf , Bocf , Cocf , E) is the observable canonical form realization of G corresponding to (DM, NM)
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given by (5.10)–(5.12). Furthermore, let u ∈ Cm and z0 ∈ C. Then, there exists x ∈ Cpℓ such thatx
u

 ∈ N(Zocf(z0)) if and only if NM(z0)u = 0. If these conditions hold, then

x = −



ℓ−1∑
i=0

zℓ−i−1
0 Biu

ℓ−2∑
i=0

zℓ−i−2
0 Biu

...

B0u


. (5.14)

Proof. To prove sufficiency, let

x = −



ℓ−1∑
i=0

zℓ−i−1
0 Biu

ℓ−2∑
i=0

zℓ−i−2
0 Biu

...

B0u


.

Then,

Cocfx+ Eu = −B0u+B0u = 0. (5.15)
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Next, note that

(z0I − Aocf)x = −



z0I 0 · · · 0 Aℓ

−I z0I · · · 0 Aℓ−1

...
... · · · ...

...

0 0 · · · −I z0I + A1





ℓ−1∑
i=0

zℓ−i−1
0 Biu

ℓ−2∑
i=0

zℓ−i−2
0 Biu

...

B0u



=



−z0

ℓ−1∑
i=0

zℓ−i−1
0 Biu− AℓB0u

ℓ−1∑
i=0

zℓ−i−1
0 Biu− z0

ℓ−2∑
i=0

zℓ−i−2
0 Biu− Aℓ−1B0u

...
1∑

i=0

z1−i
0 Biu− z0B0u− A1B0u


, (5.16)

and

Bocfu =



Bℓ − AℓB0

Bℓ−1 − Aℓ−1B0

...

B1 − A1B0


u =



Bℓu− AℓB0u

Bℓ−1u− Aℓ−1B0u

...

B1u− A1B0u


. (5.17)
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Subtracting (5.17) from (5.16) yields

(z0I − Aocf)x−Bocfu =



−
ℓ−1∑
i=0

zℓ−i
0 Biu−Bℓu

ℓ−1∑
i=0

zℓ−i−1
0 Biu−

ℓ−2∑
i=0

zℓ−i−1
0 Biu−Bℓ−1u

...
1∑

i=0

z1−i
0 Biu− z0B0u−B1u



=



ℓ∑
i=0

zℓ−i
0 Biu

ℓ−1∑
i=0

zℓ−i−1
0 Biu−

ℓ−1∑
i=0

zℓ−i−1
0 Biu

...

z0B0u+B1u− z0B0u−B1u


=



ℓ∑
i=0

zℓ−i
0 Biu

0

...

0


. (5.18)

Since 0 = NM(z0)u =
ℓ∑

i=0

zℓ−i
0 Biu, (5.18) implies that

(z0I − Aocf)x−Bocfu = 0. (5.19)

It thus follows from (5.15) and (5.19) that

x
u

 ∈ N(Zocf(z0)).

To prove necessity, let x =

[
xT
1 · · · xT

ℓ

]T
, where x1, . . . , xℓ ∈ Cp. Then,

0 = (z0I − Aocf)x−Bocfu

=



z0I 0 · · · 0 Aℓ

−I z0I · · · 0 Aℓ−1

...
... · · · ...

...

0 0 · · · −I z0I + A1





x1

x2

...

xl


−



Bℓ − AℓB0

Bℓ−1 − Aℓ−1B0

...

B1 − A1B0


u. (5.20)
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Note that 0 = Cx+ Eu = xℓ +B0u implies that

xℓ = −B0u. (5.21)

Hence, (5.20) and (5.21) imply that

xℓ−1 = (z0I + A1)xℓ −B1u+ A1B0u = −(z0I + A1)B0u−B1u+ A1B0u

= −z0B0u−B1u. (5.22)

Next, (5.20)-(5.22) imply that

xℓ−2 = z0xℓ−1 + A2xℓ −B2u+ A2B0u = −z20B0u− z0B1u− A2B0u−B2u+ A2B0u

= −z20B0u− z0B1u−B2u. (5.23)

Proceeding similarly, it follows that, for all j = 1, . . . , ℓ, xj = −
ℓ−j∑
i=0

zℓ−i−j
0 Biu, and thus (5.14)

holds. Finally, it follows from (5.14) and (5.20) that

0 = z0x1 + Aℓxℓ −Bℓu+ AℓB0u = −
ℓ−1∑
i=0

zℓ−i
0 Biu− AℓB0u−Bℓu+ AℓB0u

= −
ℓ∑

i=0

zℓ−i
0 Biu = −N(z0)u. □

Note that Theorem 5.20 relates output zeroing using an MLPFD of G to output zeroing using a

specific realization of G, which is obtained from the given MLPFD and is not necessarily minimal.

In order to obtain a more general result, we next consider the equivalence between output zeroing

using an arbitrary CLPFD of G and output zeroing using an arbitrary minimal realization of G.

Given an arbitrary CLPFD of a continuous-time transfer function G, [124] describes an algorithm

for obtaining a minimal realization of G. Since the algorithm in [124] is algebraic, the result holds

true for discrete-time transfer functions by replacing the differentiation operator with the forward-
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shift operator. For illustration, the example given in [124] is reworked in terms of q as Example

5.21 below. Proposition 5.22 and Proposition 5.23 are consequences of the application of the

algorithm in [124] to discrete-time transfer functions. Using Proposition 5.23, the equivalence

between output zeroing using an arbitrary CLPFD of G and output zeroing using an arbitrary

minimal realization of G is proved in Theorem 5.24.

Example 5.21. Let

G(z) =


z2 − 2z + 3

z4 + 3z3 + 7z2 + 18z + 6

− (2z + 3)(z + 3)

z4 + 3z3 + 7z2 + 18z + 6

1

z2 + 6

z + 3

z2 + 6

 , (5.24)

D̂(z) =

 z2 + 3z + 1 2z + 3

z3 + 3z2 + z 3z2 + 3z + 6

 , N̂(z) =

 1 0

z + 1 z + 3

 . (5.25)

Note that G = D̂−1N̂ , and deg det D̂ = McDegG = 4. Hence Proposition 5.5 implies that (D̂, N̂)

is a CLPFD of G. Let U(z) =

 1 0

−z 1

. Since U is unimodular, it follows from Proposition 5.2

that (D,N) is a CLPFD of G, where

D(z)
△
= U(z)D̂(z) =

z2 + 3z + 1 2z + 3

0 z2 + 6

 , N(z)
△
= U(z)N̂(z) =

1 0

1 z + 3

 . (5.26)

In terms of the forward-shift operator, (5.26) has the form

D(q) =

q2 + 3q+ 1 2q+ 3

0 q2 + 6

 , N(q) =

1 0

1 q+ 3

 . (5.27)

Now, for all k ≥ 0, let uk and yk satisfy (5.5), let uk =

[
u1,k u2,k

]T
, and let yk =

[
y1,k y2,k

]T
.
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Define xk
△
=

[
x1,k x2,k x3,k x4,k

]T
, where

x1,k
△
= y1,k, x2,k

△
= y1,k+1 + 3y1,k, (5.28)

x3,k
△
= y2,k, x4,k

△
= y2,k+1 − u2,k. (5.29)

Then, for all k ≥ 0, uk, yk, and xk satisfy (5.2) and (5.3) with

A
△
=



−3 1 0 0

−1 0 −3 −2

0 0 0 1

0 0 −6 0


, B

△
=



0 0

1 −2

0 1

1 3


, C

△
=

1 0 0 0

0 0 1 0

 , E
△
= 0. (5.30)

It can be verified numerically that (A,B,C) is a minimal realization of G. ⋄
The following result is a consequence of the application of the algorithm in [124] to discrete-

time transfer functions.

Proposition 5.22. Let (D,N) be a CLPFD of G and, for all k ≥ 0, let uk and yk satisfy (5.5).

Then there exist Lu ∈ R[q]n×m, Ly ∈ R[q]n×p, and a minimal realization (A,B,C,E) of G such

that, for all k ≥ 0, (5.2) and (5.3) hold with xk
△
= Lu(q)uk + Ly(q)yk, where n is the McMillan

degree of G.

The following result is needed in the proof of Theorem 5.24.

Proposition 5.23. Let (A,B,C,E) be a minimal realization of G, let (D,N) be a CLPFD of G

and, for all k ≥ 0, let uk and yk satisfy (5.5). Then, for all k ≥ 0, there exist Lu ∈ R[q]n×m,

Ly ∈ R[q]n×p such that, for all k ≥ 0, (5.2) and (5.3) hold with xk
△
= Lu(q)uk + Ly(q)yk, where

n is the McMillan degree of G.

Proof. Note that Proposition 5.22 implies that there exist Lu ∈ R[q]n×m, Ly ∈ R[q]n×p, and a min-

imal realization (A,B,C,E) of G such that, for all k ≥ 0, (5.2) and (5.3) hold with A,B,C,E,
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and xk replaced with A,B,C,E, and xk respectively, and xk
△
= Lu(q)uk +Ly(q)yk. Next, Propo-

sition 16.9.8 in [116, p. 1272] implies that there exists a unique nonsingular S ∈ Rn×n such that

A = SAS−1, B = SB, and C = CS−1. Define Lu
△
= SLu, and Ly

△
= SLy. Hence, for all k ≥ 0,

(5.2) and (5.3) hold with xk
△
= Lu(q)uk + Ly(q)yk. □

The following result establishes the equivalence between output zeroing using an arbitrary

CLPFD of G and output zeroing using an arbitrary minimal realization of G. Note that, unlike

Theorem 5.20, the LPFD in the following is coprime but not necessarily monic.

Theorem 5.24. Let (D,N) be a CLPFD of G, let (A,B,C,E) be an nth-order minimal realization

of G, let z0 ∈ C, and let u ∈ Cm. Then, there exists x ∈ Cn such that

x
u

 ∈ N(Z(z0)) if and only

if N(z0)u = 0.

Proof. Suppose that, for all k ≥ 0, uk and yk satisfy (5.5). Then Proposition 5.23 implies that,

for all k ≥ 0, there exist Lu ∈ R[q]n×m and Ly ∈ R[q]n×p such that, for all k ≥ 0, (5.2) and

(5.3) hold with xk
△
= Lu(q)uk + Ly(q)yk. For all k ≥ 0, define uk

△
= zk0u. To prove necessity,

define x0
△
= x. Then, statement i) in Proposition 5.12 implies that, for all k ≥ 0, yk = 0. Hence

it follows from Theorem 5.16 that N(z0)u = 0. To prove sufficiency, define x
△
= Lu(z0)u, write

Ly(q) = qrPr+ · · ·+qP1+P0, define ℓ △
= degD, and suppose that y0 = y1 = · · · = yc = 0, where

c
△
= max{r, ℓ − 1}. Note that xk = Lu(q)uk + Ly(q)yk = Lu(q)z

k
0u + Ly(q)yk = Lu(z0)z

k
0u +

Ly(q)yk. Hence x0 = Lu(z0)u + Pryr + · · · + P1y1 + P0y0 = Lu(z0)u = x. Next, it follows

from Theorem 5.16 that, for all k ≥ 0, yk = 0. Hence statement ii) in Proposition 5.12 implies thatx
u

 ∈ N(Z(z0)). □

In the case where z0 is a transmission zero of G, Theorem 5.14 implies that there exists nonzerox
u

 ∈ N(Z(z0)), where x ̸= 0 and u ̸= 0, and thus Theorem 5.24 implies that N(z0)u = 0.

Therefore, there exist x ̸= 0 and u ̸= 0 such that

x
u

 ∈ N(Z(z0)) and N(z0)u = 0.
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The following example illustrates the equivalence between output zeroing in input-output mod-

els and output zeroing in state space models due to transmission zeros.

Example 5.25. Consider the discrete-time transfer function

G(z) =



z− 3

z + 2
0

1

z + 1

z

z + 1

1
9

z


, (5.31)

and consider the minimal realization of G given by

A =


−2 0 0

0 −1 0

0 0 0

 , B =


1 0

1 −1

0 1

 , C =


−5 0 0

0 1 0

0 0 9

 , E =


1 0

0 1

1 0

 . (5.32)

Since rankZ(3) = 4 < 5 = rankZ, it follows that z = 3 is a transmission zero of G. For all

k ≥ 0, let uk, yk, and xk satisfy (5.2) and (5.3). Then, it follows from Proposition 5.12 that, if

x0

u0

 ∈ N(Z(3)), (5.33)

and, for all k ≥ 1, uk = 3ku0, then y ≡ 0. For example, noting



3/5

1

−1/3

3

−1


∈ N(Z(3)), (5.34)
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it follows that y ≡ 0 with x0 =


3/5

1

−1/3

 and, for all k ≥ 0, uk = 3k

 3

−1

 .

Next, taking the z-transform of (5.2), (5.3) yields

ŷ(z) = G(z)û(z) + zC(zI − A)−1x0, (5.35)

where û and ŷ denote the z-transforms of u and y, respectively. Note that (5.35) includes separate

terms for the free response and the forced response of (5.2), (5.3). An alternative time-domain

representation of (5.2), (5.3) can be obtained by replacing z by the forward-shift operator q. To do

this, we first factor G(z) = D(z)−1N(z), where

D(z) = zI3 +


2 0 0

0 1 0

0 0 0

 , N(z) = z


1 0

0 1

1 0

+


−3 0

1 0

0 9

 . (5.36)

Note that (D,N) is an MLPFD of G. Then, for all k ≥ 0, (5.2), (5.3) has the equivalent time-

domain input-output model (5.5), where

D(q) =


q+ 2 0 0

0 q+ 1 0

0 0 q

 , N(q) =


q− 3 0

1 q

q 9

 . (5.37)

Note that the free response zC(zI − A)−1x0 in (5.35) has no counterpart in (5.5). In fact, the

response of (5.5) includes both the free response and the forced response [125]. Now, in (5.5),

letting y0 = 0 and, for all k ≥ 0, uk = 3k

 3

−1

 yields y ≡ 0. Furthermore, note that u0 ∈

N(N(3)). Hence, the input that produces identically zero output is obtained from the Rosenbrock

matrix Z for a state space model as well as the numerator polynomial matrix N for an input-output
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model.

To further illustrate the connection between output zeroing in input-output models and

output zeroing in state space models, we consider the observable canonical form realization

(Aocf , Bocf , Cocf , E) of G corresponding to (D,N), where

Aocf =


−2 0 0

0 −1 0

0 0 0

 , Bocf =


−5 0

1 −1

0 −9

 , Cocf = I3. (5.38)

By using (5.13), the state of the observable canonical form realization (5.8), (5.9) can be con-

structed in terms of input and output data. For this example, the initial condition obtained from

(5.13) is given by

x̂0 = y0 −


1 0

0 1

1 0

u0. (5.39)

Now, setting y0 = 0 and u0 =

 3

−1

 in (5.39) yields x̂0 =


−3

1

−3

, which is the initial condition

that, along with the output-zeroing input, produces the identically zero output. It can be verified

numerically that

x̂0

u0

 ∈ N(Zocf(3)), where Zocf is the Rosenbrock system matrix of the realiza-

tion (Aocf , Bocf , Cocf , E). Hence, the vector consisting of this initial condition and the initial input

lies in the null space of the Rosenbrock system matrix. ⋄
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CHAPTER 6

Retrospective Cost Input Estimation

This chapter introduces retrospective cost input estimation [70] which is based on retrospective

cost optimization [76]. In RCIE, input estimation is combined with state estimation based on

the discrete-time Kalman filter. RCIE can be applied to any multi-input multi-output (MIMO)

discrete-time linear-time varying system.

Consider the linear time-varying (LTV) discrete-time system

xk+1 = Akxk +Bkuk +Gkdk +D1,kwk, (6.1)

yk = Ckxk + vk, (6.2)

where xk ∈ Rlx is the unknown state, uk ∈ Rlu is the known input, dk ∈ Rld is the unknown

deterministic input, wk ∈ Rlw is is unknown white process noise with zero mean and unit variance,

yk ∈ Rly is the the measured output, and vk ∈ Rly is unknown white measurement noise with

zero mean and variance V2,k. This model may represent a sampled-data version of a continuous-

time plant with sample time Ts, in which case xk denotes the state at time t = kTs. The matrices

Ak ∈ Rlx×lx , Bk ∈ Rlx×lu , Gk ∈ Rlx×ld , D1,k ∈ Rlx×lw , Ck ∈ Rly×lx , and V2,k ∈ Rly×ly are

assumed to be known. Define V1,k
△
= D1,kD

T
1,k ∈ Rlx×lx . The goal is to estimate the unknown

input dk and the unknown state xk.
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6.1 Input Estimation

Consider the Kalman filter forecast step

xfc,k+1 = Akxda,k +Bkuk +Gkd̂k, (6.3)

yfc,k = Ckxfc,k, (6.4)

zk = yfc,k − yk, (6.5)

where d̂k ∈ Rld is the input estimate, xda,k ∈ Rlx is the data-assimilation state, xfc,k ∈ Rlx is the

forecast state, zk ∈ Rly is the innovations. The input estimate d̂k is obtained as the output of the

input-estimation subsystem of order nc given by

d̂k =
nc∑
i=1

Pi,kd̂k−i +
nc∑
i=0

Qi,kzk−i, (6.6)

where Pi,k ∈ Rld×ld and Qi,k ∈ Rld×ly . RCIE minimizes zk+1 by updating Pi,k and Qi,k. The

subsystem (6.6) can be reformulated as

d̂k = Φkθk, (6.7)

where the regressor matrix Φk is defined by

Φk
△
=



d̂k−1

...

d̂k−nc

zk
...

zk−nc



T

⊗ Ild ∈ Rld×lθ (6.8)
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and the coefficient vector θk is defined by

θk
△
= vec

[
P1,k · · · Pnc,k Q0,k · · · Qnc,k

]
∈ Rlθ , (6.9)

where lθ
△
= l2dnc + ldly(nc+1), “⊗” is the Kronecker product, and “vec” is the column-stacking

operator. The order nc of the input-estimation subsystem must be chosen large enough to accom-

modate an internal model of the unknown input. In terms of the backward shift operator q−1, (6.6)

can be written as

d̂k = Gd̂z,k(q
−1)zk, (6.10)

where

Gd̂z,k

△
= D−1

d̂z,k
Nd̂z ,k , (6.11)

Dd̂z,k(q
−1)

△
= Ild − P1,kq

−1 − · · · − Pnc,kq
−nc , (6.12)

Nd̂z,k(q
−1)

△
= Q0,k +Q1,kq

−1 + · · ·+Qnc,kq
−nc . (6.13)

Next, define the filtered signals

Φf,k
△
= Gf,k(q

−1)Φk, (6.14)

d̂f,k
△
= Gf,k(q

−1)d̂k, (6.15)

where Gf,k is an ly × ld filter of window length nf ≥ 1. Define the retrospective performance

variable

zrc,k(θ̂)
△
= zk −

(
d̂f,k − Φf,kθ̂

)
, (6.16)

where the coefficient vector θ̂ ∈ Rlθ denotes a variable for optimization. The retrospective perfor-
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mance variable zrc,k(θ̂) is used to determine the updated coefficient vector θk+1 by minimizing a

function of zrc,k(θ̂). The optimized value of zrc,k is thus given by

zrc,k(θk+1) = zk −
(
d̂f,k − Φf,kθk+1

)
, (6.17)

which shows that the updated coefficient vector θk+1 is “applied” retrospectively with the filtered

regressor Φf,k. Furthermore, note that the filter Gf,k is used to obtain Φf,k from Φk by means of

(6.14) but ignores past changes in the coefficient vector, as can be seen by the product Φf,kθk+1 in

(6.17). Consequently, the filtering used to construct (6.17) ignores changes in the coefficient vector

over the window [k − nf , k].

Next, define the retrospective cost function

Jk(θ̂)
△
=

k∑
i=0

λk−i
(
zTrc,i(θ̂)Rzzrc,i(θ̂) + θ̂TΦT

i RdΦiθ̂
)
+ λk+1(θ̂ − θ0)

TRθ(θ̂ − θ0), (6.18)

where Rz ∈ Rly×ly , Rd ∈ Rld×ld , and Rθ ∈ Rlθ×lθ are positive definite and λ ∈ (0, 1] is the

forgetting factor. Define P0
△
= R−1

θ , and define

Γk
△
= (λR̃−1 + Φ̃kPkΦ̃

T
k )

−1, Φ̃k
△
=

Φf,k

Φk

 ∈ R(ly+ld)×lθ , (6.19)

R̃
△
=

Rz 0

0 Rd

 ∈ R(ly+ld)×(ly+ld), z̃k
△
=

zk − d̂f,k

0

 ∈ Rly+ld . (6.20)

Furthermore, for all k ≥ 0, denote the minimizer of the function given by (6.18) as

θk+1
△
= argmin

θ̂

Jk(θ̂). (6.21)
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Substituting (6.16) in (6.18) yields

Jk(θ̂) =
k∑

i=0

λk−i
(
z̃i + Φ̃iθ̂

)T
R̃
(
z̃i + Φ̃iθ̂

)
+ λk+1(θ̂ − θ0)

TP−1
0 (θ̂ − θ0)

=
k∑

i=0

λk−i
(
R̃1/2z̃i + R̃1/2Φ̃iθ̂

)T (
R̃1/2z̃i + R̃1/2Φ̃iθ̂

)
+ λk+1(θ̂ − θ0)

TP−1
0 (θ̂ − θ0).

Then, it follows from Theorem 2 in [126] that, for all k ≥ 0,

Pk+1 =
1

λ
Pk −

1

λ
PkΦ̃

T
k R̃

1/2(λI + R̃1/2Φ̃kPkΦ̃
T
k R̃

1/2)−1R̃1/2Φ̃kPk,

θk+1 = θk − PkΦ̃
T
k R̃

1/2(λI + R̃1/2Φ̃kPkΦ̃
T
k R̃

1/2)−1R̃1/2(z̃k + Φ̃kθk),

which imply that

Pk+1 =
1

λ
(Pk − PkΦ̃

T
k ΓkΦ̃kPk), (6.22)

θk+1 = θk − PkΦ̃
T
k Γk(z̃k + Φ̃kθk). (6.23)

The RLS update equations (6.22) and (6.23) give the unique global minimizer θk+1 of (6.18). Using

the updated coefficient vector given by (6.23), the estimated input at step k+1 is given by replacing

k by k + 1 in (6.7). We choose θ0 = 0, and thus, d̂0 = 0.

6.2 State Estimation

In order to estimate the state xk, xfc,k given by (6.3) is used to obtain the estimate xda,k of xk

given by the Kalman filter data-assimilation step

xda,k = xfc,k +Kda,kzk, (6.24)

Kda,k ∈ Rlx×ly is the state estimator gain or the Kalman gain. The expression for the optimal state

estimator gain that produces the minimum mean square error is derived in section 6.4.
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6.3 Error Systems

Define the data-assimilation error eda,k
△
= xk − xda,k, the forecast error efc,k

△
= xk − xfc,k, and

the input-estimation error ed,k
△
= dk − d̂k. Furthermore, define

K̃k
△
= I +Kda,kCk, Ak

△
= Ak(I +Kda,kCk), Bk

△
= −AkKda,k. (6.25)

Note that it follows from (6.1)–(6.5) and (6.24) that

efc,k+1 = xk+1 − xfc,k+1

= Akxk +D1,kwk +Gkdk − Akxda,k −Gkd̂k

= Akxk +Gked,k +D1,kwk − Ak(xfc,k +Kda,kzk)

= Ak(xk − xfc,k) +Gked,k +D1,kwk − AkKda,k(Ckxfc,k − Ckxk − vk)

= Akefc,k +Gked,k +D1,kwk −Bkvk, (6.26)

and

eda,k = xk − xda,k = xk − xfc,k −Kda,k(Ckxfc,k − Ckxk − vk)

= (I +Kda,kCk)efc,k +Kda,kvk. (6.27)

Replacing k by k + 1 in (6.27), and using (6.1) and (6.3) yields

eda,k+1 = K̃k+1(Akxk +D1,kwk +Gkdk − Akxda,k −Gkd̂k) +Kda,k+1vk+1

= K̃k+1Akeda,k + K̃k+1Gked,k + K̃k+1D1,kwk +Kda,k+1vk+1. (6.28)
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6.4 Kalman Gain

The following result gives the expression for the Kalman gain which is the optimal state esti-

mator gain that produces the minimal mean-square error.

Theorem 6.1. Consider the system given by (6.1) and (6.2), and the Kalman filter given by (6.3)–

(6.5), and (6.24). Let Pda,k ∈ Rlx×lx be the variance of eda,k and let Pfc,k ∈ Rlx×lx be the variance

of efc,k. Assume that, for all k ≥ 0, CkPfc,kC
T
k + V2,k is nonsingular. Then, for all k ≥ 0, the

optimal state estimator gain that gives the minimal mean-square data-assimilation error is given by

Kda,k = −Pfc,kC
T
k (CkPfc,kC

T
k + V2,k)

−1, (6.29)

and the variance update equations are given by

Pfc,k+1 = AkPda,kA
T
k + V1,k + Ṽda,k, (6.30)

Pda,k = (I +Kda,kCk)Pfc,k, (6.31)

where

Ṽda,k
△
= Gkvar(ed,k)G

T
k + Akcov(eda,k, ed,k)G

T
k +Gkcov(ed,k, eda,k)A

T
k . (6.32)

Proof. Note that (6.1) and (6.3) imply

Pfc,k+1 = var(efc,k+1) = var(Ak(xk − xda,k) +D1,kwk +Gked,k)

= Akvar(eda,k)A
T
k +D1,kvar(wk)D

T
1,k +Gkvar(ed,k)G

T
k + Akcov(eda,k, wk)D

T
1,k

+D1,kcov(wk, eda,k)A
T
k +Gkcov(ed,k, wk)D

T
1,k +D1,kcov(wk, ed,k)G

T
k

+ Akcov(eda,k, ed,k)G
T
k +Gkcov(ed,k, eda,k)A

T
k

= AkPda,kA
T
k + V1,k + Ṽda,k.
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Similarly, (6.2), (6.4), (6.5), and (6.24) imply that

Pda,k = var(xk − xfc,k −Kda,kCkxfc,k +Kda,k(Ckxk + vk))

= var((I +Kda,kCk)(xk − xfc,k) +Kda,kvk)

= (I +Kda,kCk)var(efc,k)(I +Kda,kCk)
T +Kda,kvar(vk)K

T
da,k

+ (I +Kda,kCk)cov(efc,k, vk)K
T
da,k +Kda,kcov(vk, efc,k)(I +Kda,kCk)

T

= (I +Kda,kCk)Pfc,k(I +Kda,kCk)
T +Kda,kV2,kK

T
da,k

= Pfc,k +Kda,kCkPfc,k + Pfc,kC
T
k K

T
da,k +Kda,k(CkPfc,kC

T
k + V2,k)K

T
da,k. (6.33)

Next, note that

argmin
Kda,k

E (eTda,keda,k) = argmin
Kda,k

tr(Pda,k).

Since the derivative of Pda,k with respect to Kda,k is zero at the minimum value of tr(Pda,k) and

since Pda,k is a quadratic function of Kda,k, it follows that the the optimal state estimator gain that

gives the minimal mean square error between the state xk and estimate xda,k is given by

0 =
∂Pda,k

∂Kda,k

= 2(CkPfc,k)
T + 2Kda,k(CkPfc,kC

T
k + V2,k),

which implies (6.29). Multiplying both sides of (6.29) by (CkPfc,kC
T
k + V2,k)K

T
da,k on the right

yields

Kda,k(CkPfc,kC
T
k + V2,k)K

T
da,k = −Pf,kC

T
k K

T
da,k,

which along with (6.33) implies (6.31). □
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Note that (6.26) implies that

Pfc,k+1 = cov(efc,k+1) = cov(Akefc,k +Gked,k +D1,kwk −Bkvk)

= AkPfc,kA
T

k +BkV2,kB
T

k + V1,k + Ṽfc,k, (6.34)

where

Ṽfc,k
△
= Gkvar(ed,k)G

T
k + Akcov(efc,k, ed,k)G

T
k +Gkcov(ed,k, efc,k)A

T

k . (6.35)

Similarly, (6.28) implies that

Pda,k+1 = cov(eda,k+1) = cov(K̃k+1Akeda,k + K̃k+1Gked,k + K̃k+1D1,kwk +Kda,k+1vk+1)

= K̃k+1AkPda,kA
T
k K̃

T
k+1 + K̃k+1V1,kK̃

T
k+1 +Kda,k+1V2,k+1K

T
da,k+1 + K̃k+1Ṽda,kK̃

T
k+1.

(6.36)

Here (6.34) and (6.36) are alternative update equations for Pfc,k and Pda,k.

6.5 The Filter Gf,k

We choose Gf,k to be the FIR filter

Gf,k(q
−1) =

nf∑
i=1

q−iHi,k, (6.37)

where,

Hi,k
△
=



CkGk−1, k ≥ i = 1,

Ck

(
i−1∏
j=1

Ak−j

)
Gk−i, k ≥ i ≥ 2,

0, i > k.

(6.38)
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This particular choice for the filter was given in [70] and is observed to be effective in the successful

implementation of the RCIE algorithm.
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CHAPTER 7

Conversion Between LTV State Space Models and

LTV Input-Output Models

This chapter gives the construction of LTV state space realizations for LTV input-output models

as well as the construction of LTV input-output models for LTV state space models. The decom-

position of retrospective performance variable presented in the next chapter use the results in this

chapter.

Consider the LTV state space model given by (2.10) and (2.11). Assume that, for all k ≤ 0,

Ak = 0, Bk = 0, Ck = 0, and Ek = 0. The solution to (2.10) and (2.11), for all k ≥ 0, is

yk = Ck

(
k∏

i=1

Ak−i

)
x0 + Ck

k−2∑
i=0

(
k−i−1∏
j=1

Ak−j

)
Biui + CkBk−1uk−1 + Ekuk, (7.1)

where
r∏

i=0

Xi
△
= X0X1 . . . Xr.

In this and all subsequent sections, let G ∈ R(q−1)p×m
prop denote the time-domain transfer func-

tion of an LTV system, and let Gk denote the transfer function at step k. Define, for all k ≥ 0,

n
△
= McDeg Gk, and thus it is assumed that the order of a minimal state space model of G is

constant. Let, for all k ≥ 0, Gk = D−1
k Nk, where Dk and Nk are defined in (2.6) and (2.7). Note

that, for all k < 0, D1,k = · · · = Dn,k = N0,k = · · · = Nn,k = 0. The Markov parameters of G,
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for all k ≥ 0, are defined as

Hi,k
△
=



Ek, i = 0,

CkBk−1, k ≥ i = 1,

Ck

i−1∏
j=1

Ak−jBk−i, k ≥ i ≥ 2,

0, i > k.

(7.2)

Proposition 7.1. Assume that (A,C) is completely observable. Then, for all k ≥ n, an input-

output model corresponding to (2.10) and (2.11) is given by (2.5) where, for all k ≥ n,

Ni,k =


H0,k, i = 0,

Hi,k +
i∑

j=1

Dj,kHi−j,k−j, 1 ≤ i ≤ n,
(7.3)

[
Dn,k · · · D1,k

]
= −Ck

(
n∏

i=1

Ak−i

)
OL

k−n, (7.4)

and OL
k is a left inverse of Ok.

Proof. Assume that (7.3) and (7.4) hold. Post-multiplying (7.4) by Ok−n yields

0 =

[
Dn,k · · · D1,k

]
Ok−n + Ck

(
n∏

i=1

Ak−i

)

= Ck

(
n∏

i=1

Ak−i

)
+D1,kCk−1

(
n∏

i=2

Ak−i

)
+ · · ·+Dn−1,kCk−n+1Ak−n +Dn,kCk−n. (7.5)

Next, it follows from (2.10) and (2.11) that

yk = Ck

(
n∏

i=1

Ak−i

)
xk−n + Ck

n−2∑
i=0

(
n−i−1∏
j=1

Ak−j

)
Bk−n+iuk−n+i + CkBk−1uk−1 + Ekuk.
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Hence

yk +D1,kyk−1 + · · ·+Dn−1,kyk−n+1 +Dn,kyk−n

= Ck

(
n∏

i=1

Ak−i

)
xk−n + Ck

n−2∑
i=0

(
n−i−1∏
j=1

Ak−j

)
Bk−n+iuk−n+i + CkBk−1uk−1 + Ekuk

+D1,k

(
Ck−1

(
n∏

i=2

Ak−i

)
xk−n + Ck−1

n−3∑
i=0

(
n−i−1∏
j=2

Ak−j

)
Bk−n+iuk−n+i + Ck−1Bk−2uk−2

+ Ek−1uk−1

)
+ · · ·+Dn−1,k(Ck−n+1Ak−nxk−n + Ck−n+1Bk−nuk−n + Ek−n+1uk−n+1)

+Dn,k(Ck−nxk−n + Ek−nuk−n). (7.6)

Regrouping the terms in (7.6) and using (7.2) yields

yk +D1,kyk−1 + · · ·+Dn−1,kyk−n+1 +Dn,kyk−n

=

(
Ck

(
n∏

i=1

Ak−i

)
+D1,kCk−1

(
n∏

i=2

Ak−i

)
+ · · ·+Dn−1,kCk−n+1Ak−n +Dn,kCk−n

)
xk−n

+

(
Hn,k +

n∑
j=1

Dj,kHn−j,k−j

)
uk−n +

(
Hn−1,k +

n−1∑
j=1

Dj,kHn−1−j,k−j

)
uk−n+1 + . . . . . .

+ (H1,k +D1,kH0,k−1)uk−1 +H0,kuk. (7.7)

Then, substituting (7.5) and (7.3) in (7.7) gives (2.5). □

Proposition 7.2. A completely observable state space model corresponding to the input-output
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model in (2.5) is given by (2.10) and (2.11), where, for all k ≥ 0,

Ak =



0 · · · 0 −Dn,k+n

I · · · 0 −Dn−1,k+n−1

... · · · ...
...

0 · · · I −D1,k+1


, Bk =



Nn,k+n −Dn,k+nN0,k

Nn−1,k+n−1 −Dn−1,k+n−1N0,k

...

N1,k+1 −D1,k+1N0,k


, (7.8)

Ck =

[
0p×p(n−1) Ip

]
, Ek = N0,k. (7.9)

Furthermore, xk =

[
xT
1,k xT

2,k · · · xT
n,k

]T
, where, for all i = 0, . . . , n− 1,

xn−i,k =
n∑

j=i+1

Nj,k+iuk−j+i −
n∑

j=i+1

Dj,k+iyk−j+i. (7.10)

Proof. Assume that (7.8), (7.9), and (7.10) hold. Rearranging terms in (2.5) yields

yk =
n∑

j=1

Nj,kuk−j −
n∑

j=1

Dj,kyk−j +N0,kuk. (7.11)

Substituting i = 0 in (7.10) yields

xn,k =
n∑

j=1

Nj,kuk−j −
n∑

j=1

Dj,kyk−j,

which along with (7.11) implies that

xn,k = yk −N0,kuk. (7.12)

Next, substituting i = n− 1 in (7.10) yields

x1,k = Nn,k+n−1uk−1 −Dn,k+n−1yk−1. (7.13)

86



Hence it follows from (7.12) and (7.13) that

x1,k+1 = Nn,k+nuk −Dn,k+nyk = −Dn,k+n(yk −N0,kuk) + (Nn,k+n −Dn,k+nN0,k)uk

= −Dn,k+nxn,k + (Nn,k+n −Dn,k+nN0,k)uk. (7.14)

Furthermore, for all i = 0, . . . , n− 2, (7.10) and (7.12) imply that

xn−i,k+1 =
n∑

j=i+1

Nj,k+i+1uk−j+i+1 −
n∑

j=i+1

Dj,k+i+1yk−j+i+1

=
n∑

j=i+2

Nj,k+i+1uk−j+i+1 −
n∑

j=i+2

Dj,k+i+1yk−j+i+1 +Ni+1,k+i+1uk −Di+1,k+i+1yk

= xn−i−1,k +Ni+1,k+i+1uk −Di+1,k+i+1yk

= xn−i−1,k −Di+1,k+i+1(yk −N0,kuk) + (Ni+1,k+i+1 −Di+1,k+i+1N0,k)uk

= xn−i−1,k −Di+1,k+i+1xn,k + (Ni+1,k+i+1 −Di+1,k+i+1N0,k)uk. (7.15)

Hence, it follows from (7.8), (7.14) and (7.15) that

Akxk +Bkuk

=



−Dn,k+nxn,k

x1,k −Dn−1,k+n−1xn,k

...

xn−1,k −D1,k+1xn,k


+



Nn,k+n −Dn,k+nN0,k

Nn−1,k+n−1 −Dn−1,k+n−1N0,k

...

N1,k+1 −D1,k+1N0,k


uk =



x1,k+1

x2,k+1

...

xn,k+1


= xk+1.

Finally, it follows from (7.9) and (7.12) that

Ckxk + Ekuk = xn,k +N0,kuk = yk. (7.16)

Since, for all k ≥ 0, rankOk = n for Ak and Ck as defined in (7.8) and (7.9), it follows that (A,C)

is completely observable. □
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CHAPTER 8

Decomposition of Retrospective Performance

Variable in RCIE

In this chapter, in order to obtain a better understanding of the underlying mechanism and the

performance of RCIE, a decomposition of the retrospective performance variable into the sum of

a performance term and a model-matching term is presented. Since this decomposition involves

time-varying input-output models, the results on conversion between LTV state space models and

LTV input-output models given in the previous chapter are used here. Analysis of the decom-

position shows how RCIE avoids convergence to an estimator that is destabilizing or has poor

performance. A numerical example is used to illustrate the derived results and observations.

Define the virtual external input perturbation for RCIE as

d̃k(θk+1)
△
= d̂k − Φkθk+1. (8.1)

Let d̃f,k(θk+1) be given by the FIA filter

d̃f,k(θk+1) = Gf,k(q
−1)d̃k(θk+1). (8.2)

Note that d̃f,k(θk+1) ignores the changes in the argument θk+1 of d̃k over the interval [k − nf , k] in
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accordance with retrospective optimization. Using (8.2), (6.17) can be written as

zrc,k(θk+1) = zk − d̃f,k(θk+1). (8.3)

The following matrices are used in Theorem 3.1.

Âk
△
=



0 · · · 0 Pnc,k+nc+1

I · · · 0 Pnc−1,k+nc

... · · · ...
...

0 · · · I P1,k+2


, Ĝ

△
=



I

0

...

0


∈ Rldnc×ld , (8.4)

B̂k
△
=



Qnc,k+nc+1 + Pnc,k+nc+1Q0,k+1

Qnc−1,k+nc + Pnc−1,k+ncQ0,k+1

...

Q1,k+2 + P1,k+2Q0,k+1


, (8.5)

Ĉ
△
=

[
0 · · · 0 I

]
∈ Rld×ldnc , D̂k

△
= Q0,k+1, (8.6)

Ba,k
△
=

[
Gk D1,k −Bk

]
, Da

△
=

[
0ly×ld 0ly×lw −Ily

]
, (8.7)

Ãk
△
=

 Âk B̂kCk

−GkĈ Ak −GkD̂kCk

 , B̃k
△
=

Ĝ B̂kDa

0 Ba,k −GkD̂kDa

 , (8.8)

C̃k
△
=

[
0 Ck

]
, D̃

△
=

[
0 Da

]
. (8.9)

The following result presents the retrospective performance variable decomposition, which

shows that the retrospective performance variable is a combination of the closed-loop performance

and the extent to which the updated closed-loop transfer function from d̃k(θk+1) to zk matches the

filter Gf,k. Henceforth, Gf,k is called the target model since it serves as the target for the closed-

loop transfer function from d̃k(θk+1) to zk.
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Theorem 8.1. For all k ≥ 0,

zrc,k(θk+1) = zpp,k(θk+1) + zmm,k(θk+1), (8.10)

where the performance term zpp,k(θk+1) and the model-matching term zmm,k(θk+1) are defined as

zpp,k(θk+1)
△
= Gzu,k(q

−1)uk, (8.11)

zmm,k(θk+1)
△
= Gzd̃,k(q

−1)d̃k(θk+1)−Gf,k(q
−1)d̃k(θk+1), (8.12)

and uk
△
=

[
dTk wT

k vTk

]T
. The time-domain transfer functions Gzd̃,k ∈ R(q−1)

ly×ld
prop and Gzu,k ∈

R(q−1)
ly×(ld+lw+ly)
prop are given by

[
Gzd̃,k Gzu,k

]
△
= Gzũ,k, (8.13)

where Gzũ,k is the time-domain transfer function of the system represented by the state space model

x̃k+1 = Ãkx̃k + B̃kũk, (8.14)

zk = C̃kx̃k + D̃ũk, (8.15)

ũk
△
=

[
d̃Tk (θk+1) uT

k

]T
, x̃0

△
=

[
01×ldnc (x0 − xfc,0)

T

]T
, and Ãk, B̃k, C̃k, and D̃ are defined in

(8.8) and (8.9).

Proof. Note that (6.2), (6.4), and (6.5) imply that

zk = Ckefc,k − vk. (8.16)
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Then, (6.26) and (8.16) can be written as

efc,k+1 = Akefc,k +Ba,kuk −Gkd̂k, (8.17)

zk = Ckefc,k +Dauk, (8.18)

where Ba,k and Da are defined in (8.7). Next, it follows from (6.6) that

Φkθk+1 =
nc∑
i=1

Pi,k+1d̂k−i +
nc∑
i=0

Qi,k+1zk−i. (8.19)

Substituting (8.19) in (8.1) yields

d̂k = d̃k(θk+1) +
nc∑
i=1

Pi,k+1d̂k−i +
nc∑
i=0

Qi,k+1zk−i. (8.20)

Using (6.12) and (6.13), it follows from (8.20) that

d̂k = d̃k(θk+1) + d̂k −Dd̂z,k+1(q
−1)d̂k +Nd̂z,k+1(q

−1)zk,

which, using (6.11), can be rewritten as

d̂k = D−1

d̂z,k+1
(q−1)d̃k(θk+1) +Gd̂z,k+1(q

−1)zk. (8.21)

Note that (6.12), (6.13), and Proposition 7.2 imply that a state space model corresponding to (8.21)

is given by

x̂k+1 = Âkx̂k + Ĝd̃k(θk+1) + B̂kzk, (8.22)

d̂k = Ĉx̂k + D̂kzk, (8.23)

where Âk, Ĝ, B̂k, Ĉ, and D̂k are defined in (8.4), (8.5), and (8.6), and x̂0
△
= 0ldnc×1. Substituting
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(8.23) and (8.18) in (8.17) yields

efc,k+1 = (Ak −GkD̂kCk)efc,k −GkĈx̂k + (Ba,k −GkD̂kDa)uk, (8.24)

Similarly, substituting (8.18) in (8.22) yields

x̂k+1 = Âkx̂k + B̂kCkefc,k + Ĝd̃k(θk+1) + B̂kDauk. (8.25)

Define x̃k
△
=

[
x̂T
k eTfc,k

]T
. Thus, (8.14) and (8.15) follow from (8.24), (8.25), and (8.18). Since

Gzũ,k is the time-domain transfer function of the system represented by (8.14) and (8.15), it follows

from (8.13) that

zk = Gzu,k(q
−1)uk +Gzd̃,k(q

−1)d̃k(θk+1). (8.26)

Finally, substituting (8.26) in (8.3) yields (8.10). □

Note that the expression for Gzũ,k is obtained using (8.8) and (8.9) in accordance with Definition

2.20 and Proposition 7.1. In order to use Proposition 7.1, (8.14) and (8.15) must be converted to

a completely observable state space model. The time-varying Eigensystem Realization Algorithm

explained in Section IV of [127] provides a method to reduce any given LTV state space model to

a minimal state space model.

Proposition 8.2. Assume that lim
k→∞

θk exists and Φk is bounded. Then lim
k→∞

d̃k(θk+1) = 0.

Proof. Equations (6.7) and (8.1) imply that

d̃k(θk+1) = d̂k − Φkθk+1 = Φk(θk − θk+1).
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Defining α
△
= supk≥0 σmax(Φk), where σmax denotes the maximum singular value, it follows that

∥d̃k(θk+1)∥ ≤ σmax(Φk)∥θk − θk+1∥ = α∥θk − θk+1∥.

Hence,

lim
k→∞

∥d̃k(θk+1)∥ ≤ α lim
k→∞

∥θk − θk+1∥ = 0,

and thus limk→∞ d̃k(θk+1) = 0. □

In order to analyze the retrospective performance variable decomposition, assume that Rz = I ,

and λ = 1. Then, it follows from (6.18) and (8.10) that

Jk(θk+1) =
k∑

i=0

(
zTpp,i(θi+1)zpp,i(θi+1) + zTmm,i(θi+1)zmm,i(θi+1) + 2zTpp,i(θi+1)zmm,i(θi+1)

+ θTi+1Φ
T
i RdΦiθi+1

)
+ (θk+1 − θ0)

TRθ(θk+1 − θ0). (8.27)

Note that the first two terms in the sum are nonnegative, whereas the third term can have arbitrary

sign. This suggests that RLS can minimize Jk(θk+1) by making the third term negative while the

nonnegative terms remain large. In the case where Rθ and Rd are small, using RLS to minimize

(8.27) yields, for k ≥ k0 ∈ R,

zrc,k(θk+1) ≈ 0, (8.28)

which, using (8.10), implies that

zpp,k(θk+1) ≈ −zmm,k(θk+1). (8.29)
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Example 8.3. Consider the state space model given by (6.1), (6.2), where, for all k ≥ 0,

Ak
△
=

 0 1

(0.9)k+1 (0.5)k+1

 , Gk = G
△
=

0
1

 , (8.30)

Ck = C
△
=

[
1 1.1

]
, D2,k = D2

△
= 0.01, (8.31)

uk = wk = 0, vk is standard Gaussian white noise, and x0 =

[
0.2 0.2

]T
. Let nc = 6, nf =

2, λ = 1, Rθ = 10−4I13, Rd = 10−6, Rz = 1, Ṽ = 10−2I2, and let the unknown input be dk =

1 + sin(0.3k).

Plots (a) and (b) in Figure 8.1 show that, after an initial finite number of steps, (8.28) and (8.29)

hold true. Plot (c) in Figure 8.1 shows that the difference between zrc and zpp + zmm is negligible,

and thus confirms (8.10). The convergence of d̂, θ, and d̃ is depicted in Figure 8.2. Note that,

in these plots, the time step at which the RCIE algorithm is started is assumed as the 0-th step.

In order to observe the steady-state behavior of the time-domain transfer functions Gzu and Gzd̃

after the estimator coefficient θ converges, the magnitude plots of Gzd,200, Gzw,200, and Gzv,200 are

shown in Figure 8.3, where
[
Gzd,200 Gzw,200 Gzv,200

]
= Gzu,200, and the extent to which the

frequency response of Gzd̃,200 matches with that of Gf,200 is shown in Figure 8.4.
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Figure 8.1: (a) For all k ≥ 21, zrc,k ≈ 0, which confirms (8.28). (b) For all k ≥ 21, zpp,k ≈ zmm,k,
which confirms (8.29). Furthermore, for all k ≥ 35, zpp,k ≈ zmm,k ≈ 0. (c) For all k ≥ 0,
|zrc,k − (zpp,k + zmm,k)| ≤ 3× 10−14, which confirms (8.10).
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Figure 8.2: (a) After the initial transient period of about 25 steps, d̂ follows d. (b) The estimator
coefficients θ converges after about 25 steps. (c) The virtual external input perturbation d̃ converges
to zero after about 25 steps, in accordance with Proposition 8.2.
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Figure 8.3: The magnitudes of Gzw,200 and Gzv,200 are close to zero at all frequencies. The mag-
nitude of Gzd,200 at the frequencies 0 and 0.3 rad/step contained in the spectrum of the unknown
input signal d is close to zero. These observations confirm that, for large values of k, zpp,k ≈ 0.
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Figure 8.4: Comparison of the frequency response of Gzd̃,200 with that of Gf,200. The magnitude
plots and the phase plots match approximately.
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CHAPTER 9

Causal Numerical Differentiation

The ability to control a system is often enhanced by feeding back the derivatives of sensor

signals, such as estimates of velocity and acceleration when only position is measured. Within this

context, signal differentiation must be performed causally, that is, using only current and past data

and with minimal computational latency. This chapter formulates causal1 numerical differentiation

as a sampled-data input-estimation problem, where the plant is a cascade of integrators. Using

backward-difference differentiation (BDD) as a baseline comparison, high-gain observers (HGO)

with bilinear discretization and retrospective cost input estimation are applied to harmonic signals

under various noise levels for single and double differentiation. These methods are then applied

to experimental position data of a small rover for estimating its velocity and acceleration. Neither

method uses information about the noise statistics, and no analog or digital filtering is used for

noise suppression.

9.1 Differentiation using RCIE

Since the objective is to use RCIE as a differentiator, the system given by (6.1) and (6.2) is

modeled as the discrete-time equivalent of an integrator. Thus, the measured output y(t) is an

integral of the unknown input d(t) or, in other words, the unknown input d(t) is the derivative of

the measured output y(t). Hence, by applying RCIE and reconstructing d̂ from the estimates d̂k,
1The estimation of the derivative of yk uses the data yk and hence the estimation of the derivative of yk starts at

step k. This implies that the estimate of derivative of yk is available only at step k + 1 and thus there is a delay of one
step in the estimation.
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we are estimating the derivative of the measured output y. Note that the concept of process noise

is not applicable when the system is modeled as an integrator. Hence, for the rest of this chapter, it

is assumed that w = 0, and thus D1 = 0.

Consider the n-th order integrator dynamics

ẋ = AIx+BIy
(n), y = CIx, (9.1)

AI
△
=

0(n−1)×1 In−1

0 01×(n−1)

 , BI
△
=

0(n−1)×1

1

 , (9.2)

CI
△
=

[
1 01×(n−1)

]
, (9.3)

where x, y ∈ R, and y(n) is the n-th derivative of y. The discretization of (9.1) using zero-hold

results in the discrete-time state space model given by

xk+1 = Adxk +Bdy
(n)
k , yk = CIxk, (9.4)

Ad
△
= eAITs , Bd

△
=

∫ Ts

0

eAI(t−τ)BIdτ, (9.5)

where xk
△
= x(kTs), yk

△
= y(kTs), y

(n)
k

△
= y(n)(kTs), and Ts is the sampling time. Setting A = Ad,

B = Bd, and C = CI in (6.1) and (6.2), and applying RCIE gives an estimate (ŷ(n) = d̂) of y(n).

Note that Ad = 1, Bd = Ts, and CI = 1 in the case of single differentiation, and

Ad =

1 Ts

0 1

 , Bd =

1
2
T 2
s

Ts

 , CI =

[
1 0

]
(9.6)

in the case of double differentiation.
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9.2 Differentiation using HGO

The discrete-time implementation of casual differentiation using HGO was done in [108] and

the same is explained here. A state space model for a high-gain observer designed for the system

represented by (9.1) is given by

˙̂x = Acox̂+Bcoy, ŷ = Cox̂, (9.7)

Aco
△
= AI −HCI, Co

△
=

[
0(n−1)×1 In−1

]
, (9.8)

Bco = H
△
=

[
α1

ε

α2

ε2
· · ·

αn

εn

]T
, (9.9)

where ε is a small positive parameter, and α1, α2, . . . , αn are constants chosen such that the poly-

nomial

p(s)
△
= sn + α1s

n−1 + · · ·+ αn−1s+ αn (9.10)

is Hurwitz. The transfer function from y to ŷ is given by

G(s) = Co(sI − AI +HCI)
−1H = D−1

G (s)NG(s), (9.11)

where

DG(s)
△
= εnsn + α1ε

n−1sn−1 + · · ·+ αn−1εs+ αn, (9.12)
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NG(s)
△
=



α2ε
n−2sn−1 + · · ·+ αn−1εs

2 + αns

α3ε
n−3sn−1 + · · ·+ αn−1εs

3 + αns
2

...

αn−1εs
n−1 + αns

n−2

αns
n−1


. (9.13)

Let

x̂ =

[
x̂1 x̂2 . . . x̂n

]T
, (9.14)

ŷ =

[
ŷ(1) ŷ(2) . . . ŷ(n−1)

]T
. (9.15)

Since

lim
ε→0

G(s) =

[
s · · · sn−2 sn−1

]T
, (9.16)

it follows that, for all i = 1, . . . , n − 1, ŷ(i) is an approximation of y(i). Let the discrete-time

observer state space model obtained by using bilinear transformation on (9.7) be

x̂k+1 = Adox̂k +Bdoyk, ŷk = Cox̂k. (9.17)

Thus, the implementation of (9.17) gives the estimates (ŷ(1), ŷ(2), . . . , ŷ(n−1)) of

y(1), y(2), . . . , y(n−1).

9.3 Differentiation using BDD

The single derivative backward-difference differentiator is given by

Gsd(z)
△
=

z− 1

Tsz
. (9.18)
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The double derivative backward-difference differentiator is given by

Gdd(z)
△
=

(z− 1)2

(Tsz)2
. (9.19)

9.4 Numerical Examples

In this section, numerical examples are given to illustrate the accuracy of RCIE and HGO as

differentiators. BDD will be used as a baseline for comparison. Note that the examples will deal

with discrete-time signals only.

Example 9.1. Differentiation in the Absence of Noise.

In this example, it is assumed that there is no output noise, and hence v ≡ 0. Let the measured

output be yk = sin(0.2k).

Single Differentiation (SD)

In the case of RCIE, let nc = 1, nf = 6, Rθ = 10−3I3, Rd = 10−5, Rz = 1, Ṽ = 10−4. In

the case of HGO, let n = 3 in (9.1), (9.2), and (9.3), let α1 = 3, α2 = 3, α3 = 1. Note that

choosing n = 3 gave slightly better estimate of the first derivative as compared to choosing n = 2.

The parameter ε is chosen as the value between 0.01 and 2 that gives the lowest root mean square

error (RMSE) between the estimated values and the true values. Figure 9.1 compares the signals

estimated by SD/RCIE, SD/HGO, and SD/BDD with the true first derivative.

Double Differentiation (DD)

In the case of RCIE, let nc = 18, nf = 4, Rθ = 10−1I37, Rd = 10−6, Rz = 1, Ṽ = 10−5. In the

case of HGO, let n = 4 in (9.1), (9.2), and (9.3), let α1 = 8, α2 = 24, α3 = 32, α4 = 16. Note that

choosing n = 4 gave slightly better estimate for the second derivative as compared to choosing

n = 3. The parameter ε is chosen in the same way as chosen for single differentiation. Figure
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Figure 9.1: Example 9.1 Single Differentiation. (a) The signals estimated by SD/RCIE and
SD/HGO follow the true first derivative y(1) after about 20 steps, whereas the signal estimated
by SD/BDD follows y(1) without a transient period. (b) A zoomed view of plot (a). At steady state,
SD/HGO is more accurate than SD/RCIE and SD/BDD.

9.2 compares the signals estimated by DD/RCIE, DD/HGO, and DD/BDD with the true second

derivative.

Example 9.2. Differentiation in the Presence of Noise.

This example considers differentiation in the presence of output noise. Let the measured output

be yk = sin(0.2k) +D2vk, where v is standard Gaussian white noise.

Single Differentiation

In the case of RCIE, let nc = 1, nf = 6, Rθ = 10−6I3, Rd = 10−5, Rz = 1, Ṽ = 10−2. In the

case of HGO, the parameters values are the same as they are for single differentiation in Example

9.1. For a signal-to-noise ratio (SNR) of 40 dB (D2 = 0.00699945), Figure 9.3 compares the

signals estimated by SD/RCIE, SD/HGO, and SD/BDD with the true first derivative.
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Figure 9.2: Example 9.1 Double Differentiation. (a) The signal estimated by DD/HGO follows the
true second derivative y(2) after about 20 steps, the signal estimated by DD/RCIE follows y(2) after
about 50 steps, and the signal estimated by DD/BDD follows y(2) without a transient period. The
signal estimated by DD/HGO has large oscillations in the transient period. (b) A zoomed view of
plot (a). At steady state, DD/HGO is more accurate than DD/RCIE and DD/BDD.

Double Differentiation

In the case of RCIE, let nc = 18, nf = 4, Rθ = 10−1I37, Rd = 10−6, Rz = 1, Ṽ = 10−5. In the

case of HGO, the parameters values are the same as they are for double differentiation in Example

9.1. For an SNR of 40 dB, Figure 9.4 compares the signals estimated by DD/RCIE, DD/HGO, and

DD/BDD with the true second derivative.

In order to do quantitative comparison among the different methods, the normalized RMSE in

the estimation of the single derivative and the double derivative is plotted in Figures 9.5 and 9.6,

respectively, for SNRs in the range of 40 dB to 60 dB.

Inference

Both HGO and RCIE give better estimates of the derivative than BDD. Though the performance

of HGO is better than that of RCIE in the case of double differentiation, it is difficult to tune
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Figure 9.3: Example 9.2 Single Differentiation. (a) The signals estimated by SD/RCIE, SD/HGO,
and SD/BDD follow the true first derivative y(1) after an initial transient period. SD/HGO exhibits
a longer transient period as compared to SD/RCIE. (b) A zoomed view of plot (a). At steady state,
SD/HGO is more accurate than SD/RCIE and SD/BDD.

the parameters of HGO and hence it is more practical to use RCIE for both single and double

differentiation.

9.5 Differentiation of Experimental Data

RCIE, HGO, and BDD are applied to experimental position data of a small rover for estimating

its velocity and acceleration. An OptiTrack camera sensor is used to collect the position data of

the rover at a sample rate of 50 Hz. Figure 9.7 depicts the trajectory of the rover on the x-y plane

and the position data along the x-axis. Differentiation of the position data along the x-axis is done

to obtain the velocity and the acceleration along the x-axis. Since the true velocity and the true

acceleration of the rover are not known, it is not possible to evaluate the accuracy of the estimated

signals.
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Figure 9.4: Example 9.2 Double Differentiation. (a) The signal estimated by DD/RCIE follows
the true second derivative y(2) after an initial transient period. Though the signals estimated by
DD/HGO and DD/BDD follow the general trend of y(2), they are noisy. (b) A zoomed view of plot
(a). At steady state, DD/RCIE is more accurate than DD/HGO and DD/BDD.
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Figure 9.5: Example 9.2. Normalized RMSE in the estimation of the first derivative. SD/HGO
performs better than SD/RCIE and SD/BDD.
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Figure 9.6: Example 9.2. Normalized RMSE in the estimation of the second derivative. DD/RCIE
performs better than DD/HGO and DD/BDD.
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Figure 9.7: Experimental Data. (a) The trajectory of the rover on the x-y plane. (b) Position of the
rover along x-axis versus time.

Single Differentiation

In the case of RCIE, let nc = 1, nf = 6, Rθ = 10−3I3, Rd = 10−5, Rz = 1, Ṽ = 10−4. In the

case of HGO, let n = 3 in (9.1), (9.2), and (9.3), let α1 = 3, α2 = 3, α3 = 1. The parameter ε is

given an optimum value that renders the estimated signal smooth and follow the general trend of

the signals estimated by RCIE and BDD. Figure 9.8 compares the signals estimated by SD/RCIE,

SD/HGO, and SD/BDD.
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Figure 9.8: Single Differentiation of Experimental Data. (a) shows the signals estimated by
SD/RCIE, SD/HGO, and SD/BDD. (b) A zoomed view of plot (a). The signal estimated by
SD/BDD is noisy, whereas the signals estimated by SD/RCIE and SD/HGO are reasonably smooth.

Double Differentiation

In the case of RCIE, let nc = 18, nf = 4, Rθ = 10−1I37, Rd = 10−6, Rz = 1, Ṽ = 10−5. In

the case of HGO, let n = 4 in (9.1), (9.2), and (9.3), let α1 = 8, α2 = 24, α3 = 32, α4 = 16. The

parameter ε is chosen in the same way as chosen for single differentiation. Figure 9.9 compares

the signals estimated by DD/RCIE, DD/HGO, and DD/BDD.
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Figure 9.9: Double Differentiation of Experimental Data. (a) shows the signals estimated by
DD/RCIE, DD/HGO, and DD/BDD. (b) A zoomed view of plot (a). The signal estimated by
DD/BDD is noisy, whereas the signals estimated by DD/RCIE and DD/HGO are reasonably
smooth.
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CHAPTER 10

Decomposition of Retrospective Performance

Variable in RCAC

This chapter presents the decomposition of retrospective performance variable within the con-

text of RCAC. The same approach that was used for the decomposition of retrospective perfor-

mance variable in RCIE in chapter 8 is used here.

10.1 Retrospective Cost Adaptive Control

Retrospective Cost Adaptive Control (RCAC) [76] is a direct, discrete-time adaptive control

technique for stabilization, command following, and disturbance rejection. As a discrete-time

approach, RCAC is motivated by the desire to implement control algorithms that operate at a

fixed measurement sampling rate without the need for controller discretization. This discretization

also means that the required modeling information can be estimated based on data sampled at the

same rate as the control update. RCAC was motivated by the concept of retrospectively optimized

control, where past controller coefficients used to generate past control inputs are reoptimized in

the sense that, if the reoptimized coefficients had been used over a previous window of operation,

then the performance would have been better. However, unlike signal processing applications

such as estimation and identification, it is impossible to change past control inputs, and thus the

reoptimized controller coefficients are used only to generate the next control input.
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Consider the LTV discrete-time system

xk+1 = Akxk +Bkuk +Bw,kwk, (10.1)

yk = Ckxk + vk, (10.2)

where xk ∈ Rn is the state, uk ∈ Rm is the control, wk ∈ Rl is the disturbance, yk ∈ Rp is the

measured output, and vk ∈ Rp is the sensor noise. Define the command-following error

zk
△
= rk − yk, (10.3)

where rk ∈ Rp is the command signal. Consider the strictly proper, discrete-time dynamic com-

pensator

uk =
nc∑
i=1

Pi,kuk−i +
nc∑
i=1

Qi,kzk−i, (10.4)

where k ≥ 0, uk ∈ Rm is the requested control, nc is the controller window length, and

Q1,k, . . . , Qnc,k ∈ Rm×p and P1,k, . . . , Pnc,k ∈ Rm×m are the numerator and denominator con-

troller coefficient matrices, respectively. For convenience, a “cold” startup is assumed, where

Q1,0, . . . , Qnc,0, P1,0, . . . , Pnc,0, u−nc , . . . , u−1, and z−nc , . . . , z−1 are defined to be zero, and thus

u0 = 0. The controller (10.4) can be written as

uk = ϕc,kθc,k, (10.5)
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where

ϕc,k
△
=



uk−1

...

uk−nc

zk−1

...

zk−nc



T

⊗ Im ∈ Rm×lθc , (10.6)

is the controller regressor, lθc
△
= ncm(m+ p), and the controller coefficient vector is defined by

θc,k
△
= vec

[
P1,k · · · Pnc,k Q1,k · · · Qnc,k

]
∈ Rlθc . (10.7)

In terms of q−1, the controller (10.4) can be expressed as

uk = Gc,k(q
−1)zk, (10.8)

where

Gc,k
△
= D−1

c,kNc,k, (10.9)

Nc,k(q
−1)

△
= Q1,kq

−1 + · · ·+Qnc,kq
−nc , (10.10)

Dc,k(q
−1)

△
= Im − P1,kq

−1 − · · · − Pnc,kq
−nc . (10.11)

Next, define the filtered signals

uf,k
△
= Gf,k(q

−1)uk, (10.12)

ϕf,k
△
= Gf,k(q

−1)ϕc,k, (10.13)
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where, for startup, uf,k and ϕf,k are initialized at zero. The p×m filter Gf,k has the form

Gf,k
△
= D−1

f,kNf,k, (10.14)

where

Nf,k(q
−1)

△
= N0,k +N1,kq

−1 + · · ·+Nnf ,kq
−nf , (10.15)

Df,k(q
−1)

△
= Iq +D1,kq

−1 + · · ·+Dnf ,kq
−nf , (10.16)

nf is the filter window length, and N0,k, . . . , Nnf ,k ∈ Rp×m and D1,k, . . . , Dnf ,k ∈ Rp×p are the

numerator and denominator coefficients of Gf,k, respectively.

Next, in order to update the controller coefficient vector (10.7), define the retrospective perfor-

mance variable

zrp,k(θc)
△
= zk − (uf,k − ϕf,kθc), (10.17)

where θc is a generic variable for optimization. Note that uf,k depends on uk and thus on the

current controller coefficient vector θc,k. The retrospective performance variable zrp,k(θc) is used

to determine the updated controller coefficient vector θc,k+1 by minimizing a function of zrp,k. The

optimized value of zrp,k is thus given by

zrp,k(θc,k+1) = zk − (uf,k − ϕf,kθc,k+1), (10.18)

which shows that the updated controller coefficient vector θc,k+1 is “applied” retrospectively with

the filtered controller regressor ϕf,k. Furthermore, note that the filter Gf,k is used to obtain ϕf,k from

ϕk by means of (10.13) but ignores past changes in the controller coefficient vector, as can be seen

by the product ϕf,kθc,k+1 in (10.18). Consequently, the filtering used to construct (10.18) ignores

changes in the controller coefficient vector over the window [k − nf , k].
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Define the retrospective cost function

Jk(θc)
△
=

k∑
i=0

zrp,i(θc)
Tzrp,i(θc) + (θc − θc,0)

TP−1
c,0 (θc − θc,0), (10.19)

where Pc,0 ∈ Rlθc×lθc is positive definite. For all k ≥ 0, the minimizer θc,k+1 of (10.19) is given by

the recursive least squares (RLS) solution [126]

Pc,k+1 = Pc,k − Pc,kϕ
T
f,k(Ip + ϕf,kPc,kϕ

T
f,k)

−1ϕf,kPc,k, (10.20)

θc,k+1 = θc,k + Pc,k+1ϕ
T
f,k(zk − uf,k − ϕf,kθc,k). (10.21)

Using the updated controller coefficient vector given by (10.21), the requested control at step k+1

is given by replacing k by k + 1 in (10.5). Although θc,0 can be chosen arbitrarily, we chose

θc,0 = 0 in order to reflect the absence of additional modeling information. Note that Pc,0 is a

tuning parameter.

10.2 Decomposition of the Retrospective Performance Variable

Define the virtual external input perturbation for RCAC as

ũk(θc)
△
= uk − ϕc,kθc. (10.22)

Let ũf,k(θc,k+1) be given by the FIA filter

ũf,k(θc,k+1)
△
= Gf,k(q

−1)ũk(θc,k+1) (10.23)
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Note that ũf,k(θc,k+1) ignores the change in the argument θc,k+1 of ũk over the interval [k − nf , k]

in accordance with retrospective optimization. Using (10.23), (10.18) can be written as

ẑrp,k(θc,k+1)
△
= zk − ũf,k(θc,k+1). (10.24)

The following matrices are used in Theorem 10.1.

Ãk
△
=



0 · · · 0 Pnc,k+nc+1

I · · · 0 Pnc−1,k+nc

... · · · ...
...

0 · · · I P1,k+2


, Bũ

△
=



Im

0

...

0


∈ Rmnc×m, (10.25)

B̃k
△
=



Qnc,k+nc+1

Qnc−1,k+nc

...

Q1,k+2


, C̃

△
=

[
0 · · · 0 Inc

]
∈ Rm×mnc , (10.26)

Âk
△
=

 Ak BkC̃

−B̃kCk Ãk

 , B̂k
△
=

 0 Bw,k 0

Bũ 0 B̃k

 , (10.27)

Ĉk
△
=

[
−Ck 0p×mnc

]
, D̂

△
=

[
0 0 Ily

]
. (10.28)

The following result presents the retrospective performance variable decomposition, which

shows that the retrospective performance variable is a combination of the closed-loop performance

and the extent to which the updated closed-loop transfer function from ũk(θk+1) to zk matches the

filter Gf,k. Henceforth, Gf,k is called the target model since it serves as the target for the closed-

loop transfer function from ũk(θk+1) to zk.

Theorem 10.1. For all k ≥ 0,

zrp,k(θc,k+1) = zpp,k(θc,k+1) + zmm,k(θc,k+1), (10.29)
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where the performance term zpp,k(θc,k+1) and the model-matching term zmm,k(θc,k+1) are defined

as

zpp,k(θc,k+1)
△
= Gzu,k(q

−1)uk, (10.30)

zmm,k(θc,k+1)
△
= Gzũ,k(q

−1)ũk(θc,k+1)−Gf,k(q
−1)ũk(θc,k+1), (10.31)

and uk
△
=

[
wT

k (rk − vk)
T

]T
. The time-domain transfer functions Gzu,k ∈ Rp×(l+p) and Gzũ,k ∈

Rp×m are given by

[
Gzũ,k Gzu,k

]
△
= Gzû,k, (10.32)

where Gzû,k is the time-domain transfer function of the system represented by the state space model

x̂k+1 = Âkx̂k + B̂kûk, (10.33)

zk = Ĉkx̂k + D̂ûk, (10.34)

ûk
△
=

[
ũT
k (θc,k+1) uT

k

]T
, x̂0

△
=

[
xT
0 01×ncm

]T
, and Âk, B̂k, Ĉk, and D̂ are defined in (10.27) and

(10.28).

Proof. Note that (10.4) implies that

ϕkθc,k+1 =
nc∑
i=1

Pi,k+1uk−i +
nc∑
i=1

Qi,k+1zk−i. (10.35)

Substituting θc = θc,k+1 and (10.35) in (10.22) yields

uk = ũk(θc,k+1) +
nc∑
i=1

Pi,k+1uk−i +
nc∑
i=1

Qi,k+1zk−i. (10.36)
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Using (10.10) and (10.11), it follows from (10.36) that

uk = ũk(θc,k+1) + uk −Dc,k+1(q
−1)uk +Nc,k+1(q

−1)zk,

which, using (10.9), can be rewritten as

uk = D−1
c,k+1(q

−1)ũk(θc,k+1) +Gc,k+1(q
−1)zk. (10.37)

Note that (10.10), (10.11), and Proposition 7.2 imply that a state space model corresponding to

(10.37) is given by

x̃k+1 = Ãkx̃k +Bũũk(θc,k+1) + B̃kzk, (10.38)

uk = C̃x̃k, (10.39)

where Ãk, Bũ, B̃k, and C̃ are defined in (10.25) and (10.26), and x̃0
△
= 0ncm×1. Next, substituting

(10.2) in (10.3) yields

zk = −Ckxk − vk + rk = −Ckxk +

[
0 Ily

]
uk. (10.40)

Furthermore, substituting (10.39) in (10.1) yields

xk+1 = Akxk +BkC̃x̃k +Bw,kwk = Akxk +BkC̃x̃k +

[
Bw,k 0

]
uk. (10.41)

and substituting (10.40) in (10.38) yields

x̃k+1 = −B̃kCkxk + Ãkx̃k +Bũũk(θc,k+1)− B̃kvk + B̃krk

= −B̃kCkxk + Ãkx̃k +Bũũk(θc,k+1) +

[
0 B̃k

]
uk. (10.42)
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Define x̂k
△
=

[
xT
k x̃T

k

]T
. Then, (10.33) and (10.34) follow from (10.40), (10.41), and (10.42).

Since Gzũ,k is the time-domain transfer function of the system represented by (10.33) and (10.34),

it follows from (10.32) that

zk = Gzu,k(q
−1)uk +Gzũ,k(q

−1)ũk(θc,k+1). (10.43)

Finally, substituting (10.43) in (10.24) yields (10.29).

Note that the expression for Gzû,k is obtained using (10.27) and (10.28) in accordance with

Definition 2.20 and Proposition 7.1. In order to apply Proposition 7.1, (10.33) and (10.34) must be

converted to a completely observable state space model. The time-varying Eigensystem Realiza-

tion Algorithm explained in Section IV of [127] provides a method to reduce any given LTV state

space model to a minimal state space model.

Proposition 10.2. Assume that lim
k→∞

θc,k exists and ϕc,k is bounded. Then lim
k→∞

ũk(θc,k+1) = 0.

Proof. Equations (6.6) and (10.22) imply that

ũk(θc,k+1) = uk − ϕc,kθc,k+1 = ϕc,k(θc,k − θc,k+1).

Defining α
△
= supk≥0 σmax(ϕc,k), where σmax denotes the maximum singular value, it follows that

∥ũk(θk+1)∥ ≤ σmax(ϕc,k)∥θc,k − θc,k+1∥ = α∥θc,k − θc,k+1∥.

Hence,

lim
k→∞

∥ũk(θc,k+1)∥ ≤ α lim
k→∞

∥θc,k − θc,k+1∥ = 0,

and thus lim
k→∞

ũk(θc,k+1) = 0.
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CHAPTER 11

Conclusions and Future Work

11.1 Conclusions

Finite-time input estimation for discrete-time linear time-invariant (LTI) systems with zero

nonzero zeros and unknown initial conditions was considered. Necessary and sufficient condi-

tions for finite-time input estimation were derived. For systems with zero nonzero zeros, a specific

construction of a finite-impulse-response (FIR) delayed left inverse with minimal delay using the

Smith-McMillan form at infinity was given. Expressions for the number of transmission zeros and

the number of infinite zeros in terms of the defect of a block-Toeplitz matrix of Markov parameters

and the observability matrix were obtained. Furthermore, several results on the zero dynamics of

input-output models were derived. Output zeroing in input-output models was considered, and its

equivalence to output zeroing in state space models was established.

The decomposition of the retrospective performance variable in RCIE into the sum of a perfor-

mance term and a model-matching term was presented. Construction of LTV state space realiza-

tions for LTV input-output models as well as the construction of LTV input-output models for LTV

state space models were given and used to derive a decomposition of the retrospective performance

variable. Similarly, the decomposition of the retrospective performance variable in RCAC was also

presented.

Finally RCIE was applied to causal numerical differentiation. The performance of RCIE and

HGO as causal differentiators was analyzed through numerical simulations. Both methods were
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then applied to the position data of a small rover to estimate its velocity and acceleration.

11.2 Future Work

Finite-time input estimation

Future work includes analysis of the robustness of the finite-time input estimation results to

parameter uncertainties and noise. Furthermore, the work on zero dynamics of input-output models

might help extend FIR delayed left inverses to nonlinear systems.

System Zeros

Future research will focus on numerically estimating the numbers of infinite zeros and transmis-

sion zeros in the presence of noisy data. In particular, by applying the singular value decomposition

and nuclear norm minimization [128,129] to the matrices Ψ and T obtained from subspace identi-

fication [130], it may be possible to estimate the number of zeros. The application of these results

to improving the accuracy of the computation of zeros using standard methods [131] is another

promising topic for future work.

Decomposition of the Retrospective Performance Variable

Observations from the analysis of the decomposition of the retrospective performance variable

suggest that the closed-loop performance and model-matching terms might be helpful in determin-

ing the convergence of RCIE. A complete convergence analysis of RCIE, both deterministic and

stochastic, is an interesting future research work.

Causal Numerical Differentiation

Future research will focus on the development of metrics that can be used to determine the

relative accuracy of the RCIE estimates. Extension to include adaptation of bias and variance
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of sensor noise to address the situation where the sensor noise is unknown and possibly time-

dependent is another research direction to be considered.
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