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ABSTRACT

In this dissertation thesis, we present novel, rigorously studied and computationally

efficient methods for change-points estimation in different spline models, including

linear spline models, generalized linear spline models and constrained spline models.

In Chapter II, we estimate change-points in linear spline models. In this chapter,

we study influence functions of regular and asymptotically linear estimators using

semiparametric theory. Based on the theoretical development, we propose a novel and

simple method to circumvent the nondifferentiability, the key challenge in linear spline

models, using the modified derivative idea. Consistency and asymptotic normality

are rigorously derived for the proposed estimator. A two-step semismooth Newton-

Raphson algorithm is further developed for the proposed method. Simulation studies

have shown that the proposed method performs well in terms of both statistical

and computational properties and improves over existing methods. For example,

the existing smoothing-based method sometimes only has a 60% convergence rate

and is sensitive to the initial value of the algorithm. And estimates from the highly

cited R package “segmented” sometimes exhibit large outliers and may even have a

bimodal distribution with around 99% of the coverage probability. In comparison,

our proposed method is more stable in terms of almost 100% convergence rates, more

robust to choices of different initial values, and has better coverage probabilities.

In Chapter III, we extend the estimation of change-points from linear spline models to

generalized linear spline models. In this chapter, to overcome the nondifferentiability,

we follow the idea of modified derivative from which we propose a novel method to

xi



estimate change-points as well as other unknown parameters in generalized linear

spline models. Furthermore, we improved the two-step semismooth Newton-Raphson

algorithm so that this algorithm is applicable for the proposed method in generalized

linear spline models. The statistical properties (consistency, asymptotic normality,

and asymptotic efficiency) of the proposed estimator are rigorously studied. Based

on simulation studies, the statistical and computational properties for the proposed

method performs well.

In Chapter IV and Chapter V, we aim to estimate the threshold in constrained spline

models, which assume no effect between the factor of interest and the outcome under

or above the unknown threshold according to clinical knowledge. In Chapter IV,

using a constrained linear spline model, we estimate the threshold of nadir oxygen

delivery level, below which there is an increased risk of postoperative acute kidney

injury, during a cardiac surgery. Our proposed method is built upon Chapter III.

Through simulation studies, we have shown that the proposed method is more robust

and efficient than existing methods. In Chapter V, we extend the constrained linear

spline model to the constrained penalized spline model, which is able to account

for a flexible pattern after the threshold instead of assuming a linear pattern as

in the constrained linear spline model. Using the study of Pregnancy Research on

Inflammation, Nutrition, & City Environment: Systematic Analyses, we explore the

threshold of exposure to air pollution above which there is an adverse effect in terms

of low birth weight for pregnant women.

xii



CHAPTER I

Introduction

The estimation of change-points, also referred to as knots, breakpoints, transition

points and thresholds, has widespread and important applications in many fields. For

example, in cardiac surgery, it is believed that there is a threshold of nadir oxygen

delivery level below which patients are subject to higher risk of postoperative acute

kidney injury. But till now, there is no widely accepted threshold in practice and the

recommended thresholds in literature are based on ad-hoc data analyses (Ranucci

et al., 2005; De Somer et al., 2011). In many applications, estimating and making

inferences on the change-points may be of primary interest. However, due to the

lack of both rigorously studied and computational stable method for change-points

estimation, researchers often have to prespecified change-points based on available

prior subject-matter knowledge or chosen change-points in an ad-hoc manner based

on exploratory data analyses.

Change-points estimation is a challenging statistical problem due to that the un-

derlying spline model is nondifferentiable. Therefore, traditional methods, such as

maximum likelihood estimation, can not be directly applied to estimate change-

points. Current available methods can be classified into three broad categories, which

are search-based methods, smoothing-based methods and ad-hoc algorithms. The

search-based method is intuitive and it is the first solution that has been studied

1



for the change-points estimation problem in spline models. Early contributions to

search-based methods date back to sixty years ago with plenty of studied since then.

Hudson (1966) proposed a method for finding change-points in linear spline models

based on an overall least-squares idea and the consistency and asymptotic proper-

ties of this method was later shown by Feder (1975a,b). Although the search-based

method was proposed around 1960s, existing rigorous studied search-based methods

focus only on linear spline models and thus not suitable for use with general (e.g.,

binary or count) outcomes. Also, in general, search-based methods are computational

inefficient, especially for large sample sizes or when multiple change-points exist.

Smoothing, a nature idea for dealing with the nondifferentiability, is another main

direction to estimate change-points in spline models. The most recent rigorously

studied smoothing-based method in the linear spline model is Das et al. (2016), which

has demonstrated computational and/or statistical advantages over previous search-

based methods. However, due to the involvement of smoothing tuning parameters,

the method of Das et al. (2016) is sensitive to initial values of change-points. And the

extension of smoothing-based methods from linear spline models to generalized linear

spline models has not been successful so far. In general, although smoothing-based

methods are rigorously studied, these methods also focus only on linear spline models

and may fall into computational issues.

A popular ad-hoc algorithm for change-points estimation in generalized linear spline

models was developed by Muggeo (2003) via linearization technique, implemented in

a highly-cited R package (Muggeo, 2008). Other estimation strategies and computa-

tion algorithms are also studied in the literature in recent years, including Bayesian

methods (Chen et al., 2011), algorithms implemented in R packages (Fong et al.,

2017) and semismooth methods studied in optimization literature (Cui et al., 2018).

However, theoretical and asymptotic properties of these methods were not studied.

2



To summarize, existing methods are either (1) computationally intensive and slow, (2)

sensitive to initial values, or (3) based on ad-hoc algorithms without rigorous study

of statistical inferences. A formal and rigorously studied method, equipped with

well-developed and computationally efficient algorithm, for estimating and making

inference on change-points is greatly needed. In Chapter II and Chapter III, we pro-

pose rigorously studied and computationally fast and stable methods for estimation

of change-points in linear spline models and generalized linear spline models, respec-

tively. In Chapter IV, we aim to estimate the threshold in constrained linear spline

models and constrained penalized spline models, respectively. With the method and

theory built upon Chapter III, we estimate the threshold of nadir oxygen delivery

level, below which there is an increased risk of postoperative acute kidney injury,

during a cardiac surgery in Chapter IV. In Chapter V, we explore the threshold of

exposure to air pollution above which there is an adverse effect in terms of low birth

weight using the study of Pregnancy Research on Inflammation, Nutrition, & City

Environment: Systematic Analyses.

3



CHAPTER II

Estimation of Knots in Linear Spline Models

2.1 Introduction

Linear regression is by far the most popular model for modeling the relationship of

a continuous outcome with other factors. Much of the success and popularity is

due to its convenient computation and easy interpretation. In practice, however, the

assumption of linearity is often violated. Various ways can be used to model nonlin-

ear relationships including, for example, polynomial regression, parametric nonlinear

models, and kernel and spline-based nonparametric methods. These methods are

useful for the purpose of prediction or covariate adjustment. However, if the main

purpose is to understand and make inference on the relationship between a factor of

interest and outcome, these methods such as polynomial regression and nonparamet-

ric modeling are often limited by the lack of easy interpretation.

The linear spline model is a piecewise linear model where linear segments are joined at

different knots (Marsh and Cormier , 2001). While accommodating the overall non-

linear trend, it also allows for an easy interpretation as the linear regression within

each segment. That is, within each segment, the strength of association between a

factor of interest and the outcome is quantified by the corresponding slope. In the

literature, linear spline models are also referred to as segmented models and broken-
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line/stick models (Muggeo, 2003). Knots, where the slope of linear trend changes, are

also referred to as change-points, break-points, transition points, thresholds (Rigotti ,

2009). In practice, locations of knots are often prespecified based on available prior

subject-matter knowledge or chosen in an ad hoc manner based on exploratory data

analysis. When locations of knots as known, fitting a linear spline model is essentially

the same as fitting the usual linear regression. However, although researchers may

have an idea on the overall trend, they may lack the knowledge on the exact location

of knots and rely on statisticians to place the knots. Moreover, rather than coeffi-

cients/slopes of linear spline models, the locations of knots are the main quantifies

of interest in many applications. For example, in cardiac surgery, it is believed that

there is a threshold of nadir oxygen delivery level below which patients are subject to

higher risk of postoperative acute kidney injury. But till now, there is no widely ac-

cepted threshold in practice and the recommended thresholds in literature are based

on ad hoc data analyses (Ranucci et al., 2005; De Somer et al., 2011). To summarize,

relying on ad hoc ways to place knots is unsatisfying, particularly when locations of

knots are of main interest. A formal and rigorously studied method for estimating

and making inference on locations of knots is greatly needed.

In a recent article, Das et al. (2016) studied knots estimation and gave a nice review

on previous work in linear spline models. We refer readers to Das et al. (2016)

for a detailed review on relevant previous work. The estimation of knots in linear

spline models was initially introduced by Quandt (1958). Hudson (1966) proposed a

method for finding knots based on an overall least-squares idea and the consistency

and asymptotic properties of this method was later shown by Feder (1975b,a). As the

search-based method of Hudson (1966) was developed during the precomputer era,

the search time increased greatly with growing sample sizes, making it a slow method

even with a moderate sample size (Das et al., 2016). A direct dynamic programming

procedure was developed by Bellman and Roth (1969), but this method was still slow
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and even slower than Hudson (1966). Muggeo (2003) developed an estimating strategy

and a highly-cited software for estimating unknown knots (Muggeo, 2008). However,

the theoretical and asymptotic properties of the method were not studied. Bayesian

methods for knot estimation were also proposed in the literature, including Bacon and

Watts (1971), Carlin et al. (1992), Smith and Cook (1980); see Chen et al. (2011) for

a detailed description and comparison. A main difficulty in the estimation of knots

is that the likelihood function is not differentiable when knots are unknown. Several

methods are developed based on the idea of smoothing. Tishler and Zang (1981)

first proposed to use smoothing to address the nondiffentiability issue and suggested

using a quadratic approximation to provide a smoothed version of the likelihood.

Inspired by quadratic smoothing, Chiu et al. (2002, 2006) proposed the “bent-cable

model”. They used a quadratic smoothing to approximate the linear spline model

in a neighborhood around the knot, with size of the neighborhood treated as an

unknown parameter. The recent work of Das et al. (2016) was also based on the idea

of smoothing and the asymptotic properties of the method was studied rigorously.

Also demonstrated by Das et al. (2016) in their simulations, their method was much

more time-efficient than the early method of Hudson (1966).

Unlike smoothing-based methods, we propose a novel and simple method to circum-

vent the challenge of nondifferentiability. We show that, although not differentiable

everywhere in the usual sense, linear spline models are differentiable in quadratic

mean. For both parametric and semiparametric linear spline models, we study the

influence functions of regular and asymptotically linear estimators in Section 2.3.

We derive the efficient influence function via the geometry of Hilbert spaces. By re-

defining partial derivatives using the concept of differentiable in quadratic mean, we

address the nondifferentiability issue and propose a computationally easy, fast and

stable method for the estimation of knots as well as other unknown parameters in

Section 2.4.1. A two-step estimation algorithm is proposed to facilitate computational
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stability. The asymptotic properties of the proposed method are rigorously studied

using the empirical process theory in Section 2.4.2. In Section 2.5, we evaluate the

proposed method and compare it with the method of Das et al. (2016) and the R

package “segmented” (Muggeo, 2008) through extensive simulation studies. Simula-

tions show that the proposed method performs well in finite samples in both single-

and multiple-knot scenarios and is computational fast and stable, making it suitable

for use in practice.

2.2 Model and Background

Suppose data are collected on n subjects. For subject i, let Yi denote the response, Xi

denote the factor of interest, andZi denote an L-dimensional vector of covariates. The

data is summarized as W i = {Yi, Xi,Zi}, i = 1, . . . , n, independent and identically

distributed across subject i. We consider a linear spline model for Y , where the mean

effect of X on Y is modeled using a linear spline model with K knots. Specifically,

the model is written as

Yi = µ(X∗
i ;θ) + ϵi = β0 + β1Xi +

K∑
k=1

β1k(Xi − τk)
+ + ηTZi + ϵi, (2.1)

where X∗
i = (Xi,Zi), E(ϵi|X∗

i ) = 0, and

(Xi − τk)
+ =


0 if Xi ≤ τk,

Xi − τk if Xi > τk.

The conditional variance is denoted as E(ϵ2i |X∗
i ) = σ2(X∗

i ), where σ
2(X∗

i ) is a func-

tion of Xi and Zi. In model (2.1), K is a prespecified number of knots and τk is the

location of the kth knot (k = 1, . . . , K) that is assumed to be unknown and needs

to be estimated. Without loss of generality, we assume that τk, k = 1, . . . , K, are

7



ordered and distinct to ensure model identifiability. That is, for i < j, τi < τj. We

assume that the factor of interest Xi has a bounded domain, denoted as Xi ∈ [C1, C2],

and all knots should be within this bounded interval as well. According to this model,

the effect of Xi on Yi is piecewise linear where the slopes in different segments are

different. Effects of Zi are also modeled as linear with coefficients η. For convenience,

we define β = (β0, β1, β11, ..., β1K)
T , τ = (τ1, ..., τK)

T and θ = (βT , τ T ,ηT )T , where

θ is assumed to belong to a compact set Θ ∈ Rq where q = 2K + 2 + L. The true

value of θ is denoted as θ0, assumed to be an interior point of the compact set Θ.

The key challenge in fitting model (2.1) when knots are unknown is that (x− τk)
+ is

not differentiable with respect to τk. One nature and well-studied method for handling

such a challenge is smoothing. A smoothing-based method for estimating knots was

rigorously studied byDas et al. (2016), which has demonstrated computational and/or

statistical advantages over previous methods. We briefly describe the method here.

Based on the idea of local smoothing in a shrinking neighborhood (τk − ϱn, τk + ϱn)

around each knot τk (k = 1, . . . , K), they used the bent-cable model (Chiu et al., 2002,

2006) as a smoothing working model to approximate model (2.1), that is, replacing all

(x−τk)+ with qn(x, τk), defined as 0 if x < τk−ϱn, x−τk+ϱn
4ϱn

if τk−ϱn ≤ x ≤ τk+ϱn and

x − τk if x > τk. With increasing sample sizes, ϱn approaches to zero and qn(x, τk)

approaches to (x − τk)
+. Treating the quadratic smoothing model as the working

model, with the working model being smooth, estimators for unknown parameters

can be obtained directly by minimizing the least squares via the Newton-Raphson

algorithm. Das et al. (2016) showed that this method will lead to
√
n-consistent

and asymptotically normal estimators when ϱn = n−α for α > 1
2
. One common

choose for ϱn is 1
n
. Although their estimator has nice statistical properties based on

asymptotic theory and certain computational advantages over other existing methods,

our simulation studies indicate that it is sensitive to the choice of initial values and

not computationally stable, hence not suitable for use in practice.
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While smoothing is a natural idea to handle nondifferentiability, we show that it is

unnecessarily complicated for this particular problem. As a result, it leads to com-

plexity in computation and unsatisfactory performances, as our simulation studies

demonstrate. Alternatively, we propose a novel and simple method to circumvent

this challenge by redefining derivatives. This idea is motivated and justified by dif-

ferentiability in quadratic mean of linear spline models, which we will show later.

We study influence functions of linear spline models and derive the parametric and

semiparametric efficiency bound via the geometry of influence functions in the next

section.

2.3 Influence Functions of Linear Spline Model

2.3.1 Parametric Linear Spline Model

We first consider a parametric linear spline model where the conditional distribution

of ϵ given X∗ is modeled parametrically. The conditional distribution is denoted

as pϵ|X∗(ϵ|x∗;γ1), where γ1 is an r1-dimensional parameter and pϵ|X∗ is a known

function. For example, usually one would assume pϵ|X∗(ϵ|x∗; γ1) is normal with mean

zero and constant variance γ1 = σ2. Because there is a one-to-one transformation

between (y,x∗) and (ϵ,x∗), it is easy to see that the joint distribution of (Y,X∗) can be

written as pY,X∗(y,x∗; ζ) = pϵ|X∗{y−µ(x∗;θ)|x∗;γ1}pX∗(x∗;γ2), where pX∗(x∗;γ2)

denotes the density of X∗, and ζ = (θT ,γT )T with γ = (γT
1 ,γ

T
2 )

T . The dimension

of θ,γ, and ζ are q, r and p, respectively. The truth is denoted as ζ0 = (θ0,γ0). In

Lemma 1 we show that, although the model p(w; ζ) is not differentiable everywhere,

it satisfies the condition of differentiable in quadratic mean (DQM).

Lemma 1. The parametric linear spline model p(w; ζ) is differentiable in quadratic

mean (DQM) with respect to ζ if elements Iζ(W ; ζ) are well-defined, where Iζ(W ; ζ) =

E[Sζ(W ; ζ)ST
ζ (W ; ζ)], Sζ(W ; ζ) = {ST

θ (W ; ζ), ST
γ (W ; ζ)}T , Sγ(W ; ζ) =

∂ log{p(W ;ζ)}
∂γ ,
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and

Sθ(W ; ζ) =
∂ log {p(W ; ζ)}
∂µ(X∗;θ)

HT (X∗;θ) with

H(X∗;θ) = (1, X, (X − τ1)
+, . . . , (X − τK)

+,

−β11I(X > τ1), . . . ,−β1KI(X > τK),Z)1×q.

Proofs for Lemma 1 as well as other lemmas and theorems presented in the Ap-

pendix. According to the definition of DQM in van der Vaart (2000), Sζ(W ; ζ) and

Iζ(W ; ζ) defined in Lemma 1 are the score function and Fisher information matrix

for ζ respectively. Specifically, Sθ(W ; ζ) is the score function of θ. Note in the usual

case when µ(X∗;θ) is differentiable with respect to θ, the score function for θ would

be
∂ log{p(W ;ζ)}

∂µ(X∗
;θ)

times the partial derivative of µ(X∗;θ) with respect to θ. In this

sense, H(X∗;θ) defined in Lemma 1 plays the same role as the partial derivative of

µ(X∗;θ) with respect to θ in the usual differentiable case and can be interpreted as

a modified partial derivative. In particular, the usual derivative of (x − τk)
+ with

respect to τk is −I(x > τk) if τ ̸= x and undefined if τk = x. By the definition of

H(X∗;θ), intuitively it is can be viewed that the derivative of (x− τk)
+ is redefined

as 0 when τk = x, that is, the modified partial derivative for (x− τk)
+ becomes

∂(x− τk)
+

∂τk
= −I(x > τk). (2.2)

Similarly, the modified derivative of I(x > τk) with respect to τk is defined as 0. As

we will see later, this informal interpretation provides a motivation for the proposed

method we present in Section 2.4. As an asymptotically linear estimator has a unique

influence function almost surely, in Lemma 2 below, we describe all influence functions

of regular and asymptotically linear (RAL) estimators for θ.
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Lemma 2. For any parametric model P =
{
p{w;θ,γ} : w = (y, x,z)

}
with a

non-singular Fisher information matrix Iζ(W ; ζ0). Let θ̂n be an asymptotically lin-

ear estimator with influence function φ(W ) ∈ H, where H denotes a p-dimensional

Hilbert space, such that Eζ{φ(W )} and Eζ{φ(W )Tφ(W )} exist and are continuous

in ζ in a neighborhood of ζ0. Then, if θ̂n is regular, this will imply that

E{φ(W )ST
θ (W ; ζ0)} = Iq×q and

E{φ(W )ST
γ (W ; ζ0)} = 0q×r. (2.3)

Furthermore, according to the construction procedure in Chapter 3.3 of Tsiatis (2007),

any element in the Hilbert space H satisfying equation (2.3) is the influence function

of some RAL estimator. One can find the best estimator (i.e. the one with the

smallest asymptotic variance) via the geometry of influence functions. According

to Example 25.15 in van der Vaart (2000), DQM implies that the tangent space

of the parametric model is exactly given by the linear space spanned by the score

function of ζ, denoted as T = {Bq×pSζ(W ; ζ0), for all q × p matrices B}. Then by

Theorem 3.4 of Tsiatis (2007), the set of all influence functions, that is, satisfying

condition (2.3) in Lemma 2, is the linear variety φ∗(W ) + T ⊥, where φ∗(W ) is any

influence function and T ⊥ is the space perpendicular to the tangent space T . It

is straightforward to show that T can be written as the direct sum of Tθ and Λ,

where Λ = {Bq×γSγ(W ; ζ0), for all q× r matrices B} is the nuisance tangent space,

and Tθ = {Bq×qSθ(W ; ζ0), for all q× q matrices B} is the tangent space spanned by

Sθ(W ; ζ0). By Theorem 3.5 and Corollary 2 in Tsiatis (2007), the efficient influence

function φeff (W ) with a non-singular information matrix is

φeff (W ) = ΓI−1
ζ (W ; ζ0)Sθ(W ; ζ0)

=
[
E{Seff (W ; ζ0)ST

eff (W ; ζ0)}
]−1

Seff (W ; ζ0),
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where Γ = (Iq×q, 0q×r), Seff (W ; ζ0) = Sθ(W ; ζ0) − Π[Sθ(W ; ζ0)|Λ] is the effi-

cient score, and Π[h|Λ] = E{hST
γ (W ; ζ0)}[E{Sγ(W ; ζ0)ST

γ (W ; ζ0)}]−1ST
γ (W ; ζ0)

is the projection of h onto space Λ. Therefore, the parametric efficiency bound

is [E{Seff (W ; ζ0)ST
eff (W ; ζ0)}]−1. For example, if pϵ|X∗(ϵ|x∗; γ1) follows a nor-

mal distribution with constant variance γ1 = σ2, the efficient score is Sθ(W ; ζ0) =

1
σ2{Y −µ(X∗;θ0)}HT (X∗;θ0) = Seff (W ; ζ0) and the parametric efficiency bound is

σ2V −1(θ0), where V (θ0) = E[HT (X∗;θ0)H(X∗;θ0)].

2.3.2 Semiparametric Restricted Moment Linear Spline Model

This section considers a semiparametric restricted moment linear spline model where

the conditional distribution of ϵ given X∗ in model (2.1) is unspecified. We denote

the class of all such densities for a single observation W = (Y,X∗) as

P =
{
p(w;θ,γ),w = (y, x,z)

}
,

where θ is the parameter of interest and γ is an infinite-dimensional nuisance param-

eter. Similarly as in the parametric setting, we can express the density as

pY,X∗(y,x∗) = pϵ,x∗{y − µ(x∗;θ),x∗}

= δ1{y − µ(x∗;θ),x∗}δ2(x∗),

where δ1(ϵ,x
∗) = pϵ|X∗(ϵ|x∗) and δ2(x

∗) = pX∗(x∗) are nonnegative functions with

the following constraints, that is, for all x∗,
∫
δ1(ϵ,x

∗)dϵ = 1,
∫
ϵδ1(ϵ,x

∗)dϵ = 0

and
∫
δ2(x

∗)dv(x∗) = 1, where v(x∗) is the dominating measure. The set of functions

δ1(ϵ,x
∗) and δ2(x

∗), satisfying the above constraints, are infinite-dimensional and can

be used to characterize the semiparametric model. According to similar procedures

in Chapter 4 of Tsiatis (2007), we can extend the arguments for parametric models

in Section 2.3.1 to semiparametric models.
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Lemma 3. The nuisance tangent space Λ for the semiparametric restricted moment

linear spline model P is given by

Λ =
{
hq×1(ϵ,X∗), such that E{h(ϵ,X∗)ϵ|X∗} = 0q×1

}
.

And the space orthogonal to the nuisance tangent space Λ⊥ is given by

Λ⊥ =
{
Aq×1(X∗)ϵ, for all q-dimensional functions Aq×1(X∗)

}
.

Moreover, the semiparametric efficiency bound is given by

V =
[
E{Seff (W ; ζ0)ST

eff (W ; ζ0)}
]−1

=
[
E{H

T (X∗;θ0)H(X∗;θ0)

σ2(X∗)
}
]−1

,

where the efficient score is Seff (W ; ζ0) = {σ2(X∗)}−1HT (X∗;θ0)ϵ.

By Lemma 3 above, combined with Theorem 4.2 in Tsiatis (2007), we can con-

struct all influence functions of RAL estimators for the semiparametric linear spline

model P . If start with any q × 1 matrix A(X∗), the influence function can be

constructed as φ(W ) = CA(X∗){Y − µ(X∗;θ0)}, where C =
[
E{A(X∗){Y −

µ(X∗;θ0)}ST
θ (W ; ζ0)}

]−1

is a q × q normalization constant matrix. Furthermore,

the optimal estimator can be obtained by solving the following estimating equation:

n∑
i=1

HT (X∗
i ;θ

0)

σ2(X∗
i )

{Y − µ(X∗
i ;θ)} = 0.

For example, when the conditional variance is a constant, that is, E(ϵ2|X∗) = σ2, the

efficient score is Seff (W ; ζ0) = σ−2HT (X∗;θ0){Y − µ(X∗;θ0)}, the semiparamet-

ric local efficiency bound is V = σ2
[
E{HT (X∗;θ0)H(X∗;θ0)}

]−1

and the optimal
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estimator is the solution to the following estimating equation:

n∑
i=1

HT (X∗
i ;θ

0){Y − µ(X∗
i ;θ)} = 0. (2.4)

2.4 Proposed Method

2.4.1 Estimation Algorithm

In this section, based on theoretical results developed in the previous section, we

propose a conceptually simple and computationally easy method to estimate knots,

as well as other unknown parameters, without using smoothing techniques or tuning

parameters. As we demonstrate in our simulation studies, our method leads to a

substantial improvement in performance relative to smoothing-based methods. We

study and justify asymptotic properties of the proposed estimator rigorously in Sec-

tion 2.4.2. To simplify notations, we use P to denote the marginal law of observations

and Pn to denote the empirical distribution following the notations in van der Vaart

(2000). Specifically, P (f) = Ef(X) =
∫
fdP , Pn(f) =

1
n

∑n
i=1 f(Xi), and Gn(f) is

the empirical process Gn(f) =
√
n{Pn(f)− P (f)} =

√
n{ 1

n

∑n
i=1 f(Xi)−

∫
fdP}.

Suppose locations of knots are known, the ordinary least squares (OLS) method that

minimizes the sum of squared residuals is the standard way to fit a linear spline model.

Specifically, the sum of squared residuals for model (2.1) is Pn(M(θ)) = 1
n

∑n
i=1 {yi−

µ(x∗
i ;θ)}

2, where M(θ) = {y − µ(x∗;θ)}2. Due to the existence of nondifferentiable

terms (x − τk)
+, k = 1, . . . , K, the function M(θ) is not differentiable with respect

to τk when τk = x. As shown in Lemma 1, linear spline models are differentiable

in quadratic mean with respect to θ and the score function is essentially the usual

score function with a modification in the definition of partial derivatives. Motivated

by this, with the modified partial derivative defined in equation (2.2), Pn(M(θ))
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can also be treated as a differentiable function. We then propose to proceed as

usual, that is, estimating the unknown parameters by solving the estimating equation,

Pn(Q(θ)) = 0, where Q(θ) is the modified derivative of M(θ) with respect of θ as in

formula (2.2). Specifically, Q(θ) = −2HT (x∗;θ){y − µ(x∗;θ)}. Then the proposed

estimator is solution to the following estimating equation:

Pn(Q(θ)) = − 2

n

n∑
i=1

HT (X∗
i ;θ){Y − µ(X∗

i ;θ)} = 0, (2.5)

which is equivalent to the estimating equation (2.4) in Section 2.3.2. We denote the

solution as θ̂n = (β̂
T

n , τ̂
T
n , η̂

T
n )

T and we may omit the subscript n when there is no

need to emphasize the dependence on n.

The Newton-Raphson (NR) algorithm is a popular method for solving estimating

equations and it is also used in the smoothing-based method of Das et al. (2016) for

estimation of knots. However, for our proposed estimating equation (2.5), the NR

algorithm is not applicable because the estimating function Pn(Q(θ)) is not differen-

tiable in the usual sense. We note that Pn(Q(θ)) is differentiable everywhere except

at a finite number of points, that is, when x = τk. Following the same modified

derivative idea in formula (2.2) used for showing DQM and for motivating the esti-

mating equation (2.5), we may define a modified derivative for Pn(Q(θ)) as well, that

is, for places where derivatives are not normally defined we redefine it as zero. With

these modifications, NR algorithm can be applied. This modified NR algorithm can

be rigorously justified by showing that the estimating function Pn(Q(θ)) is semis-

mooth and the modified derivative we propose is a generalized Jacobian (Qi and Sun,

1993). Also a semismooth NR method was studied in Cui et al. (2018) for solving

general majorization-minimization problems, with an application in continuous piece-

wise affine regression functions. However, Cui et al. (2018) did not study statistical

properties.
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Our study found that this modified NR algorithm is still not numerically stable.

One reason is that the estimation of τ is entangled with the estimation of other

parameters and this algorithm involves a modified Hessian matrix with a relatively

large dimension. In fact, all challenges in terms of nondifferentiability discussed

previously are only related to estimation of τ . If τ is known, then model (2.1)

becomes a usual linear regression model for which estimators of unknown parameters

can easily be obtained via the analytic solution. In consideration of this, we propose

a two-step algorithm. In each iteration, we separate updates of (β,η) and τ into two

steps and in each step the update is based on the most recent estimate of the other

parameters. In particular the two-step algorithm allows one to take advantage of the

analytic solution of the least-square estimator when τ is known. The extended NR

type procedure is only used for updating the estimate of τ , leading to substantial

improvement in terms of numerical stability and practical performances.

Denoting the initial value of τ by τ̂ (0), the two-step algorithm iterates between up-

dating estimates of other parameters and τ . And the t-th (t ≥ 1) iteration of the

proposed algorithm proceeds as follows.

Step 1. In the tth iteration, update estimates of β and η to obtain β̂
(t−1)

, η̂(t−1). Specif-

ically, treating τ̂ (t−1) as fixed, fit the following linear regression model

E(Y |X,Z) = β0 + β1X +
K∑
k=1

β1k(X − τ̂
(t−1)
k )+ + ηTZ,

by the OLS method to obtain estimates β̂
(t−1)

, η̂(t−1) and the predicted values

µ̂i
(t−1), i = 1, · · · , n, from the fitted model.

Step 2. Update τ̂ (t−1) to obtain τ̂ (t) by an extended NR type procedure as follows.
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Define a K × 1 matrix U (t), where the ℓ-th row of U (t) is

U
(t)
ℓ =

β̂
(t−1)
1ℓ

n

n∑
i=1

(Yi − µ̂i
(t−1))I(Xi > τ̂

(t−1)
ℓ ), ℓ ∈ {1, . . . , K}.

Also define a K ×K matrix J (t), where the (ℓ, h)th element of J (t) is

J
(t)
ℓ,h =

β̂
(t−1)
1ℓ β̂

(t−1)
1h

n

n∑
i=1

I(Xi > τ̂
(t−1)
ℓ )I(Xi > τ̂

(t−1)
h ), ℓ, h ∈ {1, . . . , K}.

Specifically, J (t) and U (t) are proportional to the modified first-order and second-

order derivative (Hessian) of Pn(M(θ)) with respect to τ , respectively, with β

and η fixed at the recent value. Then, based on the NR type procedure, we

update τ̂ (t) = τ̂ (t−1) − {J (t)}−1U (t).

Starting with t = 1, the proposed algorithm iterates between Step 1 and Step 2

until the convergence of τ , that is, ∥τ̂ (t) − τ̂ (t−1)∥< ξ, where ξ is a prespecified

convergence tolerance value. Then, the final estimator of β and η are obtained by

the OLS method, treating the estimate of τ as fixed, as in Step 1 of the algorithm. We

show later that the two-step algorithm converges and it indeed solves the proposed

estimating equation Pn(Q(θ)) = 0.

The Step 2 of the proposed algorithm for updating τ is an NR-type algorithm, which

involves the Hessian matrix. A popular alternative to the NR method is a gradient

descent method, where one replaces {J (t)}−1 by a step size. We expect that, when

converged, this two-step gradient descent type algorithm would lead to an estimator

with the same asymptotic properties studied in Section 2.4.2. This is because by a

similar argument in Appendix, the converged τ would satisfy limt−→∞ U (t) = 0 and

the converged result would solve the proposed estimating equation. Usually, one needs

to use the objective function to be minimized to determine the step size, for example,

using backtracking line search. A reasonable objective function to use in determine
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the step size is the sum of squares Pn(M(θ)), as the soluation of Pn(Q(θ)) = 0 is

(or approximately is) a local minima of Pn(M(θ)). In Appendix, we provide a brief

justification and some preliminary simulation studies, which show that the gradient

descent method leads to estimators with similar statistical properties as those from

the NR-type algorithm. Below, we focus on the NR-type algorithm as it is known to

have faster convergence rates.

2.4.2 Asymptotic Properties

This section studies asymptotic properties of the proposed estimator. The main

results are summarized in the following proposition and two theorems, with proofs

available in the appendix. The proof for Proposition 1 makes use of properties of

locally Lipschitz continuous functions and semismooth functions as studied in Qi and

Sun (1993). The proofs for two theorems make heavy use of the empirical process

theory studied in van der Vaart (2000) and van der Vaart and Wellner (1996).

Proposition 1. The proposed two-step algorithm converges locally and it converges

to θ̂n, which is the solution to the estimating equation (2.5), that is, Pn(Q(θ)) = 0.

Theorem 1. Under the semiparametric linear spline model (2.1), θ̂n is a consistent

estimator for θ0, as n −→ ∞.

Theorem 2. Under the semiparametric linear spline model (2.1),
√
n(θ̂n − θ0) con-

verges in distribution to a normal distribution N (0, V −1(θ0)I(θ0)V −1(θ0)), where

V (θ0) = P{HT (X∗;θ0)H(X∗;θ0)},

I(θ0) = P{σ2(X∗)HT (X∗;θ0)H(X∗;θ0)}.

The asymptotical variance is of the familiar sandwich variance form, as in the usual
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restricted moment model studied in Tsiatis (2007). Inference on θ based on θ̂n can

be conducted in the usual way based on Theorem 2. As an example, we provide an

explicit variance estimator for the most common setting when E(ϵ2|X∗) = σ2. Then,

it is easy to see that I(θ) = σ2V (θ). For constructing confidence intervals and con-

ducting Wald-based inference, one can estimate the asymptotic variance σ2V −1(θ0)

by σ̂2V̂ −1(θ̂n), where V̂ (θ̂n) = Pn(H
T (θ̂n)H(θ̂n)) and σ̂2 =

∑n
i=1(Yi−µ̂i)

2

n−q
, with q be-

ing the number of total parameters in model (2.1). The variance of θ̂n can then

be consistently estimated by σ̂2V̂ −1(θ̂n)/n. By discussions in Section 2.3.2, when

E(ϵ2|X∗) = σ2, θ̂n achieves the semiparametric local efficiency bound σ2V −1(θ0).

2.5 Simulation Studies

We conducted several Monte Carlo simulation studies to evaluate the proposed method

and compared its performance with the method of Das et al. (2016) and the popular

R package “segmented” (Muggeo, 2008). Data were generated from settings where

the number of knots was one, two, or four. Settings with one or two knots were the

same as Das et al. (2016) except that our settings have a covariate in the model.

To further illustrate performances of the proposed method in the presence of multi-

ple knots, we additionally considered a linear spline model with four knots. In each

setting with K = 1, 2, or 4, outcomes were generated under three different data gen-

erating scenarios according to model (2.1) and methods were evaluated under sample

sizes n = 200, 500, 1000, and 2500. In all scenarios, there was a single covariate Z,

which was generated from a normal distribution with mean 0 and standard deviation

2 and the corresponding coefficient in the outcome model was set as η0 = 0.5. The

factor of interest X was generated as Φ((V + Z)/
√
5), where Φ is the cumulative

distribution function of the standard normal distribution and V is standard normal

and independent of all other variables. As a result, X followed a uniform (0,1) distri-

bution and was correlated with Z, making Z a confounder for the effect of X on Y .
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The error term ϵ was generated from a normal distribution with mean 0 and standard

deviation σ = 0.03. In Table 2.1, we listed the true parameter values, β0 and τ 0, for

each setup, with the first number in each setup indicating the number of knots.

Table 2.1: True values of parameters in data generating models and initial values of
knots.

β0 τ 0 τ̂ (0)

Setup 1.1 (0.2, 1, 1)T 0.6 0.5
Setup 1.2 (0.3, 1.5, 1)T 0.8 0.5
Setup 1.3 (0.3, 1.5, -1)T 0.2 0.5

Setup 2.1 (0.3, 1, 1, 1)T (0.2, 0.8)T (0.1, 0.5)T

Setup 2.2 (0.2, 1, 2, 1)T (0.4, 0.6)T (0.2, 0.8)T

Setup 2.3 (0.3, 1, -1, 1)T (0.2, 0.8)T (0.1, 0.5)T

Setup 4.1 (0.3, 1, -2, 4, -5, 3)T (0.2, 0.4, 0.6, 0.8)T (0.1, 0.3, 0.5, 0.9)T

Setup 4.2 (5, -1, 3, 5, -9, 6)T (0.3, 0.6, 0.8, 0.9)T (0.2, 0.5, 0.85, 0.95)T

Setup 4.3 (9, -5, 6, 7, -8, -3)T (0.1, 0.3, 0.5, 0.7)T (0.05, 0.45, 0.55, 0.8)T

Also listed in Table 2.1, τ̂ (0) is the initial value specified for τ in our proposed al-

gorithm and in the R package “segmented” for all setups, and in the method of Das

et al. (2016) for setups 1.1, 1.2 and 1.3. For reasons that will be explained later,

we also implemented the method of Das et al. (2016) using the true value τ 0 as the

initial value. The method of Das et al. (2016) is denoted as “Das et al” when the

initial value was set as τ̂ (0) and as “Das et al#” when the initial value was τ 0. In the

method of Das et al. (2016), rn was set as 1
n
, consistent with their simulation studies.

In all methods, the tolerance of convergence ξ was set as 10−6 and the largest number

of iterations was 1000. For both the proposed method and the method of Das et al.

(2016), when the number of iterations has reached 1000, we relaxed ξ to 10−3. In

scenarios of one knot, results were based on 10, 000 Monte Carlo replicates. In all

other scenarios, results were based on 1000 Monte Carlo replicates.

Tables 2.2-2.4 contain results for one, two and four-knots scenarios respectively. For
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all scenarios, bias, Monte Carlo standard deviation (MCSD), the average of standard

errors (AVESE), coverage probabilities (CP) of the 95% confidence intervals (CI) and

convergence rates (CR) of the algorithm for estimated knots are reported. For the

method of Das et al. (2016), in Table 2.2 and Table 2.3, we additionally report the

Winsorized bias (WBias), Winsorized standard deviation (WSD) and the Winsorized

average of standard error (WSE), where winsorization applies to the top and bottom

5% of the data.

We note that the method of Das et al. (2016) seems to have a computational issue.

The convergence rate is low even for one-knot scenarios, with convergence rates con-

sistently lower than 50% when the chosen initial values are different from the true

values. Due to the computational problem, the Monte Caro standard deviation of

the estimator is large without winsorization. With winsorization, the performance of

the method of Das et al. (2016) in terms of statistical properties is reasonable. When

setting the initial value of knots as the true value in the method of Das et al. (2016),

which is unrealistic in practice, the convergence rates greatly improve and the algo-

rithm converges more than or appropriately 95% of the time. In terms of statistical

properties (Bias, MCSD, AVESE and CP), “Das et al#” performs quite similar to

the proposed method. The convergence issue of Das et al. (2016) is more severe for

scenarios with multiple knots. Therefore, in Table 2.3 where K = 2, we only report

results of the method of Das et al. (2016) using the true value as the initial value, that

is, “Das et al#”. In Table 2.4 where K = 4, we only report results for the proposed

method and “segmented” method as the method of Das et al. (2016) has failed to

produce reasonable results even using true values of knots as initial values. In Table

2.3, with true values as the initial values, again the performance of Das et al. (2016)

is reasonable, although not ideal. Overall, we found that the method of Das et al.

(2016) is sensitive to choices of initial values, consistent with findings by the origi-

nal authors through personal communications. Regarding the “segmented” method,
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Table 2.2: Simulation results based on 10, 000 Monte Carlo data sets for K = 1,
where “Das et al”, “segmented” and “proposed” denote the method of Das
et al. (2016), the method in the R package “segmented” and the proposed
method respectively, n denotes the sample size, * indicates value ×10−3

and # indicates the initial value of knots is set at the true value.
Methods Bias* MCSD* AVESE* CP% CR% Bias* MCSD* AVESE* CP% CR%

(WBias*) (WSD*) (WSE*) (WBias*) (WSD*) (WSE*)

Setup 1.1
n=200 n=500

Das et al#
-0.10 10.95 14.04 94.2 98.1 -0.02 5.79 5.61 94.0 98.2
(-0.04) (8.31) (8.98) (-0.03) (5.21) (5.61)

Das et al
-0.94 15.26 15.68 93.8 58.0 -0.52 14.39 5.67 93.8 59.3
(-0.79) (8.46) (8.99) (-0.23) (5.28) (5.61)

segmented 0.18 10.36 8.92 90.6 100.0 0.05 5.78 5.60 95.4 100.0
proposed -0.58 9.48 8.98 93.4 100.0 -0.21 5.89 5.61 93.7 100.0

n=1000 n=2500

Das et al#
0.06 5.65 1.09E+04 94.7 98.3 -0.03 2.55 2.49 94.4 98.6
(0.03) (3.59) (3.95) (-0.03) (2.31) (2.49)

Das et al
-1.08 24.52 3.98 94.0 59.3 -1.20 25.87 2.49 94.2 59.7
(-0.10) (3.68) (3.95) (-0.07) (2.32) (2.49)

segmented 0.03 3.97 3.94 95.1 100.0 -0.01 2.51 2.48 93.7 100.0
proposed -0.08 4.05 3.95 94.4 100.0 -0.07 2.56 2.49 94.3 100.0

Setup 1.2
n=200 n=500

Das et al#
-0.45 17.90 11.32 94.3 91.5 -0.24 13.54 8.57 94.5 93.3
(-0.18) (9.76) (11.00) (-0.06) (6.12) (6.83)

Das et al
-83.39 230.73 3.49E+11 84.5 12.8 -31.42 153.34 1.26E+10 89.3 13.4
(-82.66) (227.55) (15.48) (-1.15) (7.56) (6.92)

segmented 0.16 11.95 10.88 92.7 100.0 -1.08 7.68 6.87 93.0 100.0
proposed -1.75 12.97 11.02 91.0 98.4 -0.54 7.32 6.84 93.3 100.0

n=1000 n=2500

Das et al#
-0.40 14.98 4.87 94.3 93.7 -0.01 3.05 3.03 94.4 94.5
(-0.13) (4.38) (4.80) (-0.01) (2.74) (3.03)

Das et al
-18.96 119.51 29.68 90.5 13.9 -22.30 130.86 8.63 90.9 14.1
(-0.91) (5.09) (4.82) (-0.45) (3.05) (3.03)

segmented -0.19 4.88 4.80 93.7 100.0 -0.26 3.16 3.02 94.4 100.0
proposed -0.35 5.06 4.80 93.6 100.0 -0.09 3.12 3.03 94.1 100.0

Setup 1.3
n=200 n=500

Das et al#
0.60 21.26 6.93E+04 94.0 92.7 0.31 13.51 5.99E+04 94.1 94.3
(0.18) (9.90) (11.01) (0.15) (6.20) (6.83)

Das et al
57.76 197.92 1.69E+12 87.4 14.4 24.96 138.38 1.71E+10 91.1 14.1
(56.91) (189.41) (13.57) (0.96) (7.27) (6.89)

segmented 0.10 12.72 10.85 89.0 100.0 0.49 7.35 6.77 90.5 100.0
proposed 1.75 13.11 11.03 90.8 100.0 0.64 7.35 6.83 93.0 100.0

n=1000 n=2500

Das et al#
-0.03 5.31 4.80 94.0 94.4 -0.07 3.66 3.02 94.6 95.6
(-0.02) (4.41) (4.80) (-0.05) (2.76) (3.02)

Das et al
10.89 100.30 1.41E+11 92.9 14.2 7.16 95.67 8.20E+05 91.3 14.3
(0.33) (4.69) (4.82) (0.13) (3.03) (3.03)

segmented 0.19 5.23 4.80 92.2 100.0 0.05 2.89 3.03 95.7 100.0
proposed 0.22 5.08 4.80 93.4 100.0 0.05 3.10 3.03 94.3 100.0

22



Table 2.3: Simulation results based on 1000 Monte Carlo data setsfor K = 2, where
“Das et al#” denotes the method of Das et al. (2016) with the initial value
of knots set at the true value, “segmented” and “proposed” denote the
method in the R package “segmented” and the proposed method respec-
tively, n denotes the sample size and * indicates value ×10−3.

Methods Sample Bias* MCSD* AVESE* CP% Bias* MCSD* AVESE* CP% CR%
Size (Wbias*) (WSD*) (WSE*) (Wbias*) (WSD*) (WSE*)

τ̂1 τ̂2

Setup 2.1

Das et al#

200

-0.59 11.37 2.22E+04 93.8 -0.58 22.31 1.34E+04 94.9 83.6
(-0.65) (9.62) (11.13) (-0.05) (9.94) (11.15)

segmented 0.88 13.16 11.32 90.3 -0.07 12.52 11.21 92.2 100.0
proposed -3.09 14.98 11.46 90.3 -2.75 20.05 11.38 91.3 100.0

Das et al#

500

0.16 15.12 8.26 93.0 -1.23 26.87 7.64 95.2 83.1
(-0.03) (6.75) (7.04) (-0.22) (6.46) (7.04)

segmented -0.07 7.78 6.99 91.6 -0.95 7.99 7.05 91.8 100.0
proposed -0.56 7.99 7.06 91.0 -0.74 7.59 7.04 93.6 100.0

Das et al#
1000

1.32 26.62 41.58 94.6 0.03 8.82 25.17 96.5 83.8
(0.09) (4.42) (4.94) (-0.09) (4.41) (4.95)

segmented -0.31 5.20 4.93 92.5 -0.34 5.17 4.93 94.0 100.0
proposed -0.36 5.12 4.94 93.3 -0.48 5.04 4.96 95.4 100.0

Das et.al#

2500

-0.04 3.3 3.23 96.6 -0.51 18.95 11.31 94.1 87.8
(-0.08) (2.66) (3.11) (0.13) (2.81) (3.11)

segmented -0.99 0.88 2.99 99.9 -2.44 3.08 3.23 99.8 100.0
proposed -0.23 3.03 3.11 95.5 0.01 3.17 3.11 93.5 100.0

Setup 2.2

Das et al#

200

-0.44 7.13 69.04 91.8 0.07 19.96 57.72 94.1 86.7
(-0.60) (5.72) (5.96) (0.27) (10.37) (11.80)

segmented -0.16 6.37 6.05 94.0 0.78 14.21 12.03 90.7 100.0
proposed -1.87 7.49 6.16 89.8 -2.62 15.14 11.93 87.2 91.9

Das et al#

500

0.21 5.42 1.10E+04 93.0 -0.28 18.26 1.75E+10 94.1 88.3
(-0.03) (3.62) (3.72) (-0.06) (6.86) (7.51)

segmented 0.01 3.79 3.74 94.6 -0.04 8.44 7.48 92.4 100.0
proposed -0.38 4.13 3.76 92.2 -0.90 8.3 7.48 92.1 99.0

Das et al#

1000

0.37 4.76 1454.41 96.2 -1.02 13.41 3.50E+04 93.4 89.3
(0.09) (2.32) (2.61) (-0.06) (4.63) (5.24)

segmented -0.01 2.84 2.62 94.0 0.17 5.71 5.23 93.6 100.0
proposed -0.04 2.62 2.62 95.7 -0.27 5.49 5.24 92.6 99.9

Das et al#

2500

0.19 3.98 1655.64 96.4 -0.92 11.60 4.57E+06 95.2 91.1
(-0.07) (1.47) (1.65) (-0.13) (2.94) (3.30)

segmented -1.32 1.05 1.68 99.9 -0.80 0.70 3.23 99.8 100.0
proposed -0.16 1.64 1.66 94.9 -0.29 3.42 3.30 93.7 100.0

Setup 2.3

Das et al#

200

2.98 39.80 252.80 94.8 0.16 12.03 40.87 94.6 81.3
(1.00) (9.51) (11.19) (0.02) (10.25) (11.12)

segmented 0.09 12.16 11.32 93.0 -0.25 13.13 11.22 91.9 100.0
proposed -0.91 12.57 11.46 91.8 1.36 12.53 11.38 91.7 94.4

Das et al#

500

0.26 7.33 2785.05 93.4 -1.86 31.04 2971.20 95.6 83.3
(0.27) (6.42) (7.04) (-0.44) (6.32) (7.02)

segmented 0.10 7.53 6.99 92.7 -0.18 7.87 7.02 91.2 100.0
proposed -0.44 7.94 7.04 91.5 0.34 7.55 7.04 93.5 99.8

Das et al#

1000

1.56 31.12 5.56 94.5 -0.64 22.90 66.09 96.5 85.0
(0.16) (4.39) (4.93) (-0.12) (4.52) (4.96)

segmented 0.25 5.24 4.93 93.1 -0.29 5.04 4.94 94.1 100.0
proposed -0.23 5.09 4.94 94.0 0.05 4.98 4.96 95.0 100.0

Das et al#

2500

0.77 21.64 679.19 96.1 -0.55 21.89 717.50 93.2 88.3
(0.16) (2.63) (3.12) (0.16) (2.83) (3.11)

segmented 0.11 2.97 3.11 95.7 -0.18 3.34 3.11 94.4 100.0
proposed -0.04 2.94 3.11 96.1 0.20 3.17 3.11 93.3 100.0
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Table 2.4: Simulation results based on 1000 Monte Carlo data sets for K = 4, where
“segmented” and “proposed” denote the method in the R package “seg-
mented” and the proposed method respectively, n denotes the sample size
and * indicates value ×10−3.

Methods n Bias* MCSD* AVESE* CP% Bias* MCSD* AVESE* CP% Bias* MCSD* AVESE* CP% Bias* MCSD* AVESE* CP% CR%

Setup 4.1
τ̂1 τ̂2 τ̂3 τ̂4

segmented
200

5.24 41.89 7.70 86.9 4.39 32.83 3.77 89.9 1.88 17.42 3.01 90.6 -0.40 12.41 5.07 88.5 100
proposed -0.50 7.84 7.07 92.0 0.13 3.71 3.52 93.7 -0.28 3.07 2.81 93.2 0.50 5.20 4.69 92.2 98.8

segmented
500

1.96 21.99 4.32 91.1 0.57 26.04 2.22 93.3 0.94 8.30 1.98 94.2 -0.11 4.29 2.99 93.8 100
proposed -0.03 4.56 4.32 93.3 0.06 2.29 2.16 93.0 -0.11 1.85 1.73 92.6 0.19 3.05 2.89 94.3 100

segmented
1000

0.12 3.13 3.03 94.0 0.02 1.57 1.51 94.3 -0.04 1.23 1.21 94.2 -0.10 2.11 2.01 93.3 100
proposed -0.21 3.22 3.03 92.9 0.13 1.52 1.51 95.2 -0.04 1.18 1.21 94.7 -0.02 2.13 2.03 93.4 100

segmented
2500

-0.21 2.58 2.02 94.4 0.76 9.88 0.99 93.3 0.36 5.42 0.77 93.7 -0.03 1.37 1.28 90.3 100
proposed -0.05 1.94 1.91 94.4 -0.01 0.96 0.95 94.3 0.01 0.76 0.76 94.3 0.08 1.27 1.27 95.5 100

Setup 4.2
τ̂1 τ̂2 τ̂3 τ̂4

segmented
200

-0.32 8.95 3.88 96.3 -0.70 15.47 2.62 94.5 -0.71 11.40 2.00 92.5 -0.89 11.50 3.86 92.1 98.4
proposed -0.17 3.88 3.82 94.7 -0.13 2.74 2.55 93.7 0.45 3.15 2.04 90.6 -1.18 5.81 3.51 89.1 99.8

segmented
500

0.05 2.42 2.33 94.5 -0.07 1.59 1.56 94.1 0.02 1.19 1.18 93.8 -0.12 2.16 2.05 92.5 100
proposed 0.08 2.52 2.35 93.4 -0.04 1.65 1.58 93.5 0.07 1.26 1.19 93.8 -0.21 2.16 2.06 92.9 100

segmented
1000

0.05 1.65 1.64 95.7 0.05 1.07 1.10 94.7 0.01 0.82 0.82 95.0 -0.01 1.50 1.43 93.4 100
proposed 0.03 1.74 1.65 93.7 -0.07 1.08 1.10 95.6 0.08 0.80 0.83 95.8 -0.05 1.51 1.44 92.8 100

segmented
2500

-0.14 1.03 1.04 94.4 0.00 0.76 0.69 92.3 0.03 0.55 0.52 93.4 0.05 0.89 0.89 95.8 100
proposed -0.07 1.06 1.04 94.0 -0.05 0.70 0.70 94.9 0.03 0.53 0.52 93.7 -0.06 0.91 0.90 94.3 100

Setup 4.3
τ̂1 τ̂2 τ̂3 τ̂4

segmented
200

1.69 18.05 2.89 90.0 2.15 19.03 2.04 90.9 1.24 15.82 1.82 93.1 1.69 16.00 4.75 94.9 99.2
proposed -0.45 3.46 2.97 92.3 0.00 2.08 2.01 94.7 -0.03 1.75 1.77 95.4 0.14 4.57 4.26 88.6 99.9

segmented
500

0.05 6.05 1.78 88.0 0.25 6.39 1.21 93.2 0.07 6.56 1.07 94.8 0.34 2.80 2.68 94.8 100
proposed -0.25 1.84 1.78 93.9 -0.02 1.27 1.24 93.3 0.04 1.10 1.08 94.5 0.12 2.75 2.63 93.5 100

segmented
1000

3.08 22.65 1.24 94.8 3.42 26.11 0.88 92.0 3.05 24.66 0.86 89.7 3.63 29.54 2.59 93.6 100
proposed -0.11 1.25 1.24 94.9 -0.03 0.91 0.86 94.1 0.04 0.74 0.76 95.5 0.05 1.78 1.85 95.2 100

segmented
2500

-0.02 0.36 0.76 99.2 -0.24 0.29 0.54 99.3 -0.09 0.21 0.47 99.4 0.11 0.47 1.14 99.0 100
proposed -0.08 0.79 0.78 94.2 -0.06 0.57 0.54 94.6 0.03 0.48 0.48 94.6 0.10 1.15 1.16 95.6 100

when there is only one knot, it performs well and similarly to the proposed method.

When there are two or four knots to be estimated, performances of the “segmented”

method seems less stable sometimes. For example, in setups 2.1, 2.2, and 4.3 and

when n = 2500, the coverage probability is close to 1 due to inaccurate standard error

estimates, and sometimes the average standard error is more than three times of the

Monte Carlo standard deviation (setup 2.1, n = 2500 for τ1). Taking a closer look at

the issue through examination of the histograms, we found that estimates from the

“segmented” method sometimes exhibit large outliers and may even have bimodal

distribution with two modes at each side of the truth. These results are likely due to

both computational (e.g., being stuck in local optima) and/or inferential problems.

Other than these occasional issues, overall the “segmented” method performs well.

The proposed method performs well in finite samples in terms of both statistical

properties and convergence rates in all scenarios considered. Specifically, the bias is

close to zero and coverage probabilities are close to the nominal level. Only when
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n = 200, it sometimes has slightly lower coverage probabilities. However, we comment

that this is due to the finite sample effect. These results are as expected, considering

that, for example, in four-knots settings, there are 11 parameters to be estimated.

Sample size n = 200 is a rather extreme setting and we chose to evaluate this setting

to illustrate that the proposed method is computationally stable even when n is

small. With the chosen convergence criterion, the proposed method converges 100%

or almost 100% of the time for all scenarios. In summary, the proposed method is

computationally convenient, with a high convergence rate. It performs reasonably

well empirically for single and multiple-knots scenarios with different sample sizes.

As in all iterative algorithms, being stuck in local optima is a potential problem

requiring special attention. This problem is much alleviated in the proposed method

compared with the smoothing-based method by using a simple estimating equation

without tuning parameters and a two-step algorithm taking advantage of the analytic

OLS solution when τ is fixed. In practice, good initial values that are close to the

truth are still important. We suggest using prior knowledge, scientific inputs or data

visualization/exploratory analysis to guide selection of initial values. In data analysis,

one may also try multiple initial values and choose results based on the likelihood.

2.6 Application

We applied the proposed method to the nefazodone CBASP (Cognitive Behavioral-

Analysis System of Psychotherapy) trial on patients with nonpsychotic chronic major

depressive disorder (Keller et al., 2000). In this 12-week trial, patients were randomly

assigned with equal probability to receive either nefazodone, CBASP, or both treat-

ments. Our outcome of interest is the score on the 24-item Hamilton Rating Scale

for Depression (HRSD) at 12 weeks after treatment.Our aim is to understand the re-

lationship between baseline HAMA Psychic Anxiety Score (HPAS) and HRSD after

treatment. For both HPAS and HRSD, a larger value indicates a worse condition.
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Figure 2.1: The relationship between baseline HAMA Psychic Anxiety Score (HPAS)
and Hamilton Rating Scale for Depression (HRSD) at 12 weeks. The
solid line is the fitted unadjusted linear spline model. The three dotted
vertical lines indicate the estimated knot (middle) and the corresponding
95% confidence interval (left and right).

Our analysis is based on the 577 participants with HRSD score at 12 weeks avail-

able. Figure 2.1 shows a scatterplot of HRSD at 12 weeks versus baseline HPAS. It

is apparent that the relationship between HPAS and HRSD at 12 weeks is not linear.

Instead, HRSD at 12 weeks increases with higher baseline HPAS and then decreases

or levels off afterwards. A one-knot linear spline model seems appropriate to model

this relationship and we are interested in estimating the value of baseline HPAS at

which its effect on HRSD at 12 weeks changes.

The estimated change-point in an unadjusted one-knot linear spline model is 2.17

(95% CI: 1.78, 2.57). When baseline HPAS is less than 2.17, the HRSD score at 12
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weeks increases with HPAS with an estimated slope of 4.86 (p-value < 0.001). When

baseline HPAS is greater than 2.17, the HRSD score at 12 weeks decreases with HPAS

with an estimated slope of -4.59 (p-value=0.156). However, the decreasing trend is

not statistically significant. We comment that hypothesis testing for the difference in

slopes is challenging as the corresponding parameter only exists under the alternative

hypothesis but not under the null (Muggeo, 2016). The p-values reported above are

based on standard errors from an usual fitted linear spline model with a knot fixed

at 2.17, without accounting for the uncertainty in estimating the knot. More results,

including standard errors that account for estimation of the knot using the proposed

method are reported in Table 2.5.

Table 2.5: The CBASP trial: results from the fitted linear spline model for the effect
of baseline HPAS on HRSD at 12 weeks. Coefficients, η1, . . . , η5 correspond
to the effect of age, female (vs. male), white (vs. non-white), single, and
widowed/divorced/separated (vs. married). SE∗ is the standard error
derived from the Theorem 2; SE is the the standard error derived from
the linear regression by treating τ fixed at the estimated value. P-values
are calculated from the two-sided Wald tests while treating τ fixed at the
estimated value.

Unadjusted One-Knot Model Adjusted One-Knot Model

Estimate SE∗ SE P-Value Estimate SE∗ SE P-Value

τ 2.173 0.200 - - 2.138 0.170 - -

β0 5.241 1.908 1.810 0.004 5.749 3.105 2.930 0.050
β1 4.860 1.184 1.097 <0.001 4.805 1.339 1.121 <0.001
β11 -9.454 4.994 3.858 0.015 -8.887 3.886 3.641 0.015
η1 0.036 0.040 0.040 0.365
η2 0.532 0.819 0.819 0.516
η3 -3.504 1.341 1.340 0.009
η4 2.372 1.009 1.006 0.019
η5 0.668 0.929 0.927 0.472

Next, we additionally adjust for age, female (vs. male), white (vs. non-white), and

marital status (single, or widowed/divorced/separated vs. married) in our model.

Results are similar to those based on an unadjusted model. Specifically, the estimated

change-point in effect of HPAS is located at 2.14 (95% CI: 1.81, 2.47). The slopes
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before and after the change-point are significantly different (p-value=0.015). Given

age, sex, race and marital status, when baseline HPAS is below 2.14, HRSD score at 12

weeks increases with baseline HPAS with a slope of 4.81 (p-value < 0.001), indicating

that the outcome at 12 weeks is worse for patients with a severe condition at baseline.

When baseline HPAS is greater than 2.14, the estimated slope is -4.08; however, the

slope is again not significantly different from zero (p-value = 0.173). Again, reported

p-values are bassed on a fitted model with a knot fixed at 2.14 without accounting

for the uncertainty in estimating the knot. See Table 2.5 for additional results on the

adjusted model.

For the type of nonlinear relationship observed in Figure 2.1, one may alternatively

model it using a quadratic model, which is also common and acceptable in practice.

However, it is obvious that a quadratic model will not be able to offer the kind of

easy and intuitive interpretation as the fitted linear spline models as we show here.

In particular, when the interest focuses on where the relationship between HRSD

and baseline HPAS changes, the estimation of the change-point based on a quadratic

model, that is, the vertex, would be heavily dependent on the assumption of symmetry

about the vertex implied by a quadratic model. The assumption does not seem to

hold in this particular example, based on clinical knowledge and visual evidences.

It is a strong and often invalid assumption in general, likely leading to unreliable

estimation of change-points.

2.7 Discussion

Linear spline models are an important class of models that can accommodate non-

linear relationships while still allowing easy and intuitive interpretation. Although

applications of the linear spline model are already widespread, its use in practice is

still hindered by the lack of both rigorously studied and computationally convenient
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methods for estimation of knots. As a result, its full potential and flexibility, par-

ticularly in estimating change-points and studying threshold effects, have not been

completely realized so far.

Most existing rigorously studied methods for knot estimation are based on the nat-

ural idea of smoothing, which involves tuning parameters and is unnecessarily com-

plicated, leading to difficulty in computation. Unlike smoothing-based methods, we

have taken a fresh angle and proposed a novel and conceptually simple approach

to circumvent nondifferentiability based on the idea of modified derivatives, that is,

whenever derivatives are needed but do not exist, we redefine it as zero. This modified

derivative idea allows us to solve the otherwise challenging nondifferentiabiltiy issue

for linear spline models in terms of theory, estimating equation and computation in a

unified way. First, in terms of theory, with the proposed modified derivatives we were

able to show that the linear spline model is DQM and derive its score function. Our

contribution is not limited to a single estimator. We have derived all influence func-

tions of RAL estimators in both parameter and semiparametric settings and studied

the efficient influence function and the efficiency bound. The study on influence func-

tions and the efficiency bound fills in a gap in the literature on estimation of knots

for linear spline models. The class of influence functions we identified contains that

of the smoothing-based method of Das et al. (2016), as their estimator is an RAL

estimator. Although none of previous work in the literature on knots estimation uses

the concept of DQM, DQM as shown in this paper is in fact the underlying reason

for existence of consistent and asymptotic normal estimators.

Second, we have proposed a simple but nontraditional estimating equation approach

to estimate knots as well as other parameters, where the estimating function is a mod-

ified derivative of the squared error loss. It is simpler than smoothing-based methods

as it does not require smoothing or involve tuning parameters to control smooth-
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ness. It is nontraditional because the estimating equation itself is nondifferentiable.

Finally, we have proposed a new two-step computational algorithm to solve this non-

traditional estimating equation, applying the modified derivative idea again to the

nondifferentiable estimating function itself. We have shown that the same modified

derivative idea used for showing DQM, when applied for solving nondifferentiable

equations, is also a generalized Jacobian studied in Qi and Sun (1993) for solving

semismooth equations in applied mathematics and optimization literature. This two-

step algorithm takes advantage of the analytic OLS solution available when knots are

treated as known, greatly enhancing numerical stability. As discussed in Section 2.4,

our algorithm differs from the NR algorithms studied in Qi and Sun (1993) and Cui

et al. (2018), and these two papers study from the perspective of computation with-

out considering statistical properties. It is interesting that the modified derivative

idea we propose in this paper bridges two important concepts in distinct literature,

namely the differentiable in quadratic mean studied in statistical literature and the

generalized Jacobian for semismooth functions in optimization/computation litera-

ture. We expect that this connection can help rigorously study statistical properties

of computational and learning methods studied in Cui et al. (2018).

In terms of empirical performances, simulation studies have shown that the proposed

method greatly improves upon the smoothing-based methods. In terms of compu-

tation, the proposed method is reasonably stable and has high rates of convergence.

In particular, the proposed method is more insensitive to choices of initial values

and able to handle multiple change-points easily. The improvement is due to new

developments in terms of the estimating equation and computation discussed above.

Asymptotic properties have been studied rigorously using the empirical process the-

ory, which leads to accurate statistical inference for the proposed method. We have

demonstrated that the proposed estimator is root-n consistent and asymptotically

normal. Furthermore, the proposed estimator achieves the semiparametric local effi-

30



ciency bound when the conditional variance is constant. Therefore, the computational

advantage is obtained without sacrificing statistical efficiency.

In summary, we have proposed a rigorously studied and computationally stable

method for estimation of knots in linear spline models. With easy interpretation

of the model and convenient implementation of the estimation method, we anticipate

linear spline models with unknown knots play a more important role in practice, es-

pecially in studying change-points and threshold effects. Finally, we comment that

the proposed idea is a generic idea that can be applied to many other settings, for

example, in estimating change-points in longitudinal data, in a time-series framework

and in a multivariable setup where several variables have change-point effects.
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CHAPTER III

Change-Points Estimation in Generalized Linear

Spline Models

3.1 Introduction

In biomedical researches, a factor of interest often exhibits a nonlinear effect that

should be properly modeled in analysis. A well-known example is the Body Mass

Index (BMI), which usually is associated with metabolic and disease outcomes in a

nonlinear way since being too low (underweight) or too high (overweight or obese) in

BMI negatively affects outcomes. Owing to its easy interpretation and flexibility, the

generalized linear spline model is a commonly used approach to model nonlinearity,

where the effect on outcomes on a scale determined by the link function is modeled

using piecewise linear terms joined at knots/change points. That is, the effect changes

at each change point. A practical difficulty in using splines to account for nonlinearity

is how to prespecify the knots or change points. Often times, analysts have to rely

on subject-matter knowledge to choose change points. In the case of BMI, widely

accepted cutoff points are available to categorize a person into underweight, normal

weight, overweight and obesity groups. However, perhaps in the majority of cases, for

example, when studying the effect of some less studied biomarkers, such a standard

way is not available and researchers lack the scientific knowledge to prespecify change
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points. The choice of the change points is often made arbitrarily or in an ad-hoc

manner. Moreover, rather than the magnitude of association between a factor and

the outcome as quantified by the coefficients/slopes, in many applications the change

points themselves are the main research interest that can be used for policy making

and developing guidelines. In these situations, a formal and rigorous data-driven

way to choose the change points becomes critical. Therefore, estimating and making

inferences on change points in the generalized linear spline model is an important

research question requiring rigorous study.

In our motivating study, interest focuses on understanding the relationship between

BMI and glomerular filtration rate (GFR) on in-hospital transfusion or gastrointesti-

nal (GI) bleeding for patients who underwent percutaneous coronary intervention

(PCI) at 33 hospitals in Michigan. For both factors, it is expected that the effect is

not linear and changes at some change points. We aim to identify these change points

empirically from data without relying on prior knowledge. Generalized linear spline

models have widespread applications in many other areas. For example, this type of

model has been studied in species and habitat relationships in ecological researches

(Francesco Ficetola and Denoël , 2009; Eigenbrod et al., 2009), in air pollutants and

preterm birth in environmental researches (Llop et al., 2010), in heavy rainfall changes

in meteorological researches (Villarini et al., 2013), and in heat effects on mortality

in epidemiology researches (Baccini et al., 2008).

Efforts for developing statistical methods for change-points estimation date back to

more than six decades ago (Quandt , 1958), with a lot of research followed since then.

Till today, most of the work has focused on linear spline models with continuous

outcomes. The main difficulty in change points estimation is that the likelihood func-

tion is not differentiable. Search-based and smoothing-based methods are the two

most popular approaches. Search-based methods are intuitive and popular. Early
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contributions to search-based methods include Quandt (1958), Hudson (1966), Feder

(1975b,a) and Knowles et al. (1991). Several more recent methods are proposed to

estimate change points using grid search methods in optimizing objective functions

(Lerman, 1980; Julious , 2001; Hansen, 2000, 2017). A drawback of search-based

methods is that they are not computationally efficient for large sample sizes or multi-

ple change points. Another main direction to deal with nondifferentiability is to use

smoothing. Tishler and Zang (1981) proposed to use a quadratic approximation to

provide a smoothed version of the likelihood function. Later, Chiu et al. (2002, 2006)

proposed the “bent-cable model” as a smoothing version of the linear spline model

and the model” was further studied by Das et al. (2016). Hahn et al. (2017) studied

Nesterov smoothing and extended one dimensional linear spline models into multiple

dimensions. Other than search- and smoothing-based methods, in the CHAPTER II,

we proposed a semi-smooth estimating method by showing the property of differen-

tiable in quadratic mean in linear spline models and developed a two-step semi-smooth

Newton-Raphson algorithm.

In general, methods described above are rigorously studied, but they focus only on

linear spline models with continuous outcomes. Other estimation strategies and com-

putation algorithms are studied in the literature. Muggeo (2003) developed an esti-

mating strategy via linearization technique in generalized linear spline models, imple-

mented in a highly-cited R package (Muggeo, 2008). However, theoretical properties of

the method were not studied. Combining grid-search and smoothing-based methods,

Fong et al. (2017) developed an R package to estimate change points in generalized

linear spline models. Recently, a semismooth Newton-Raphson method was studied in

Cui et al. (2018) for solving general majorization-minimization problems, with appli-

cation in continuous piecewise affine regression functions. However, Cui et al. (2018)

did not study statistical properties. Bayesian methods for change-points estimation

were also proposed in the literature, including Bacon and Watts (1971), Carlin et al.
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(1992), Smith and Cook (1980) and Elliott and Shope (2003) ; see Chen et al. (2011)

for a detailed description and comparison.

In this article, we introduce a formal and rigorous method for estimating and making

inferences on change points for generalized linear spline models with multidimensional

predictors. The model framework and notations are presented in Section 3.2. In Sec-

tion 3.3, we study influence functions of regular and asymptotic linear estimators

and the efficiency bound for parametric and semiparametric generalized linear spline

models. In Section 3.4, we propose a semismooth estimating equation and a com-

putationally convenient algorithm. The convergence of the algorithm and statistical

properties are rigorously studied. The method is evaluated by simulations in Section

3.5 and illustrated by an application in Section 3.6.

3.2 Generalized Linear Spline Models and Notations

Suppose data are collected on n subjects in the form of W i = {Yi,X i,Zi}, i =

1, . . . , n, independent and identically distributed across subject i. For each subject i,

let Yi denote the response, X i = (X1i, . . . , XJi)
T denote the J-dimensional factor of

interest, and Zi denote an L-dimensional vector of covariates to be adjusted for in-

cluding, for example, demographics, clinical measurements, biomarkers in biomedical

research. Interest focuses on understanding the relationship between the response and

the factor of interestX i, adjusting forZi. For convenience, we denoteX
∗
i = (X i,Zi).

We use a generalized linear spline model to model the conditional mean of Yi on X∗
i ,

denoted as µ(X∗
i ;θ), where effects of X i are modeled flexibly with linear splines

within the convenient framework of generalized linear models (Dobson and Barnett ,

2018). Specifically, the model is written as

g{µ(X∗
i ;θ)} = β0 +

J∑
j=1

{
βjXji +

Kj∑
k=1

βjk(Xji − τjk)
+
}
+ ηTZi = ξ(X∗

i ;θ), (3.1)
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where g(.) is a known link function, effects ofX i are modeled using linear spline terms

with (Xji−τjk)+ = Xji−τjk ifXji > τjk and 0 otherwise, and effects of Zi are modeled

as linear with coefficients η as usual. The conditional variance of Yi is denoted as

V (Yi|X∗
i ;θ, ϕ), which is a function of X∗

i and might be related to the parameter of

interest θ and additional parameters ϕ. When change points τjk (j = 1, . . . , J and

k = 1, . . . Kj) are assumed to be known, model (3.1) is the generalized linear model,

where µ(X∗
i ;θ) is related to the linear predictor ξ(X∗

i ;θ) through the link function

g(.). However, in this article, we do not assume change points are known. Instead,

the estimation of change points, as well as the effects of linear spline terms, is the

main research interest.

The generalized linear spline model (3.1) dedescribed above is a restricted moment

model on the first moment and does not assume a specific distribution for Y given

X∗
i . Model (3.1) includes the most common situation that Y |x∗ follows a distribution

in the exponential family. When we additionally assume Y |x∗ follows a distribution

in the exponential family, the distribution can be written as

f(Y = y;ψ, ϕ) = exp
{yψ − b(ψ)

ϕ
+ c(y;ϕ)

}
,

where ψ is the natural parameter and ϕ is the scale parameter. And the conditional

variance can be represented as V (Yi|X∗
i ;θ, ϕ) = ϕv{µ(X∗

i ;θ)}, where v{µ(X∗;θ)} =

∂µ(X∗;θ)/∂ψ. When g(.) is additionally chosen to be the canonical link function,

i.e., ψ = g{µ(X∗;θ)}, g(.) is equivalent to the inverse function of ∂b(ψ)/∂ψ and we

further have g(.) = 1/v(.).

In model (3.1), for each factor of interest Xji (j = 1, . . . , J), Kj is the pre-specified

number of change points. We denote the total number of change-points as K =

K1+. . .+KJ . Without loss of generality, for each j, we assume that τjk (k = 1, . . . , Kj)
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are ordered and distinct to ensure model identifiability. That is, for m < n, then

τjm < τjn for all j = 1, . . . , J . We assume that the factor of interest X i has a

bounded domain, i.e. Xji ∈ [Cj1, Cj2] for all j = 1, . . . , J . As a result, all change-

points are within these bounded intervals as well. We assume the link function g(.)

is monotonically increasing, continuous and first-order differentiable. The truth of

ϕ is denoted as ϕ0. And we denote β = (β0, β1, β11, ..., β1K1 , ..., βJ , βJ1, ..., βJKJ
)T ,

τ = (τ11, ..., τ1K1 , ..., τJ1, ..., τJKJ
)T and θ = (βT , τ T ,ηT )T , where θ is assumed to

belong to a compact set Θ with dimension q = 2K + J + L+ 1. We also denote the

true value of θ as θ0, assumed to be an interior point of the compact set Θ.

3.3 Influence Functions of Generalized Linear Spline Model

In this section, we will describe influence functions of regular and asymptotic linear

(RAL) estimators, derive the efficient score function, and derive the efficiency bound

for both parametric and semiparametric generalized linear spline models. This section

roughly follows the idea and proofs studied in Tsiatis (2007) and Section 2.4.2.

3.3.1 Parametric Generalized Linear Spline Model

We start by considering the parametric generalized linear spline model, where a

parametric model is assumed for the distribution of Y |X∗. The joint distribu-

tion of (Y,X∗) is denoted as pY,X∗(y,x∗; ζ) = pY |X∗(y|x∗;γ1)pX∗(x∗;γ2), where

pY |X∗(y|x∗;γ1) denotes the the conditional distribution of Y |X∗, pX∗(x∗;γ2) de-

notes the density of X∗, and ζ = (θT ,γT )T with γ = (γT
1 ,γ

T
2 )

T . The dimension

of θ,γ, and ζ are q, r and p, respectively. The truth is denoted as ζ0 = (θ0,γ0).

Using similar arguments as in Lemma 1, we can show that the parametric gen-

eralized linear spline model p(w; ζ) also satisfies the condition of differentiable in

quadratic mean (DQM). Then, based on the definition of DQM in van der Vaart

(2000), Iζ(W ; ζ) = E[Sζ(W ; ζ)ST
ζ (W ; ζ)] is the Fisher information matrix of ζ and
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Sζ(W ; ζ) = {ST
θ (W ; ζ), ST

γ (W ; ζ)}T is the score function of ζ, where Sγ(W ; ζ) =

∂ log{p(W ;ζ)}
∂γ , Sθ(W ; ζ) =

∂ log{p(W ;ζ)}
∂ξ(X∗

;θ)
HT (X∗;θ) and

H(X∗;θ) =
{
1, X1, (X1 − τ11)

+, . . . , (X1 − τ1K1)
+, . . . , XJ , (XJ − τJ1)

+, . . . ,

(X1 − τJKJ
)+,−βJ1I(X > τJ1), . . . ,−βJKJ

I(X > τJKJ
),Z

}
. (3.2)

Using the same modified derivative idea in the formula (2.2), H(X∗;θ) function can

be viewed as the modified derivative of ξ(X∗;θ) with respect to θ. The idea of

the modified derivative is to redefine derivatives for places where derivatives do not

exist as zero. Specifically, the modified derivative of (x − τ)+ = −I(x > τ) and

I(x > τ) = 0.

Similar to Lemma 2, under the same regularity conditions (i.e., Eζ{φ(W )} and

Eζ{φ(W )Tφ(W )} exist and are continuous in ζ in a neighborhood of ζ0), the influ-

ence function φ(W ) of any RAL estimators satisfy the following two equations

E{φ(W )ST
θ (W ; ζ0)} = Iq×q and E{φ(W )ST

γ (W ; ζ0)} = 0q×r.

Conversely, any element in the Hilbert space H satisfying the two equations above is

the influence function of some RAL estimator. According to Example 25.15 in van der

Vaart (2000), the tangent space, denoted as T , is given by the linear space spanned by

the score function of ζ, i.e., T = {Bq×pSζ(W ; ζ0), for all q × p matrices B}. And T

can further be expressed as the direct sum of Tθ and Λ, where Λ = {Bq×γSγ(W ; ζ0),

for all q × r matrices B} is the nuisance tangent space, and Tθ = {Bq×qSθ(W ; ζ0),

for all q× q matrices B} is the tangent space spanned by Sθ(W ; ζ0). Next, according

to Theorem 3.5 and Corollary 2 in Tsiatis (2007), the efficient influence function
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φeff (W ) with a non-singular information matrix is

φeff (W ) = ΓI−1
ζ (W ; ζ0)Sθ(W ; ζ0)

=
[
E{Seff (W ; ζ0)ST

eff (W ; ζ0)}
]−1

Seff (W ; ζ0),

where Γ = (Iq×q, 0q×r), Seff (W ; ζ0) = Sθ(W ; ζ0) − Π[Sθ(W ; ζ0)|Λ] is the effi-

cient score, and Π[h|Λ] = E{hST
γ (W ; ζ0)}[E{Sγ(W ; ζ0)ST

γ (W ; ζ0)}]−1ST
γ (W ; ζ0)

is the projection of h onto space Λ. Therefore, the parametric efficiency bound is

[E{Seff (W ; ζ0)ST
eff (W ; ζ0)}]−1. For example, when pY |X∗(y|x∗; γ1) belongs to the

exponential family, the parametric efficiency bound is ϕ0
[
E[ HT (X∗

;θ0
)H(X∗

;θ0
)

v{µ(X∗
;θ0

)}g′{µ(X∗
;θ0

)}2
]
]−1

and the efficient score can be represented as Sθ(W ; ζ0) = {Y−µ(X∗
;θ0

)}HT (X∗
;θ0

)

ϕ0v{µ(X∗
;θ0

)}g′{µ(X∗
;θ0

)}
=

Seff (W ; ζ0). The optimal estimator is the solution of the following estimating equa-

tion

1

n

n∑
i=1

HT (X∗
i ;θ

0){Yi − µ(X∗
i ;θ)}

v{µ(X∗
i ;θ

0)}g′{µ(X∗
i ;θ

0)}
= 0. (3.3)

3.3.2 Semiparametric Generalized Linear Spline Model

Next, according to similar procedures in Chapter 4.5 of Tsiatis (2007), we extend

the arguments to semiparametric generalized linear spline models, i.e., the restricted

moment model. As the nondifferentiability problem only occurs on θ, arguments for

the nuisance tangent space in Tsiatis (2007) can be borrowed. Therefore, the nuisance

tangent space Λ for the semiparametric generalized linear spline model (3.1) is

Λ =
{
hq×1(Y,X∗), such that E{h(Y,X∗){Y − µ(X∗;θ0)}|X∗} = 0q×1

}
.
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The space orthogonal to the nuisance tangent space Λ⊥ is given by

Λ⊥ =
{
Aq×1(X∗){Y − µ(X∗;θ0)}, for all q-dimensional functions Aq×1(X∗)

}
.

And the projection of arbitrary element h(Y,X) ∈ H onto space Λ satisfies

Π[h(Y,X)|Λ⊥] = E[h(Y,X){Y − µ(X∗;θ0)}T |X]V −1(Y |X∗;θ0, ϕ0){Y − µ(X∗;θ0)}.

Following similar proofs of Lemma 3 in Chapter II, we can show that E{Y ST
θ (W ; ζ0)|X∗} =

H(X∗;θ0)/g′{µ(X∗;θ0)}. Thus the efficient score for the semiparametric generalized

linear spline model P is given by

Seff (W ; ζ0) = E[Sθ(W ; ζ0){Y − µ(X∗;θ0)}T |X∗]V −1(Y |X∗;θ0, ϕ0){Y − µ(X∗;θ0)}

=
HT (X∗;θ0){Y − µ(X∗;θ0)}
V (Y |X∗;θ0, ϕ0)g′{µ(X∗;θ0)}

.

The semiparametric efficiency bound is given by

V =
[
E{Seff (W ; ζ0)ST

eff (W ; ζ0)}
]−1

=
[
E{ HT (X∗;θ0)H(X∗;θ0)

V (Y |X∗;θ0, ϕ0)g′{µ(X∗;θ0)}2
}
]−1

.

If the conditional variance is assumed to be V (Y |X∗;θ) = ϕv{µ(X∗;θ)}, the efficient

score Seff (W ; ζ0) and the semiparametric local efficiency bound V is given by

Seff (W ; ζ0) =
HT (X∗;θ0){Y − µ(X∗;θ0)}
ϕ0v{µ(X∗;θ0)}g′{µ(X∗;θ0)}

,

V = ϕ0
[
E[

HT (X∗;θ0)H(X∗;θ0)

v{µ(X∗;θ0)}g′{µ(X∗;θ0)}2
]
]−1

.

Thus, the efficient estimator can be obtained from the following equation equation

1

n

n∑
i=1

HT (X∗
i ;θ

0){Yi − µ(X∗
i ;θ)}

v{µ(X∗
i ;θ

0)}g′{µ(X∗
i ;θ

0)}
= 0, (3.4)
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which is the same as the estimating equation (3.3). If the working model for the

conditional variance is wrong, then the estimating equation above is still unbiased. If

the working model for the conditional variance is wrong, then the estimating equation

above is still unbiased.

3.4 Proposed Method

3.4.1 Estimation Procedure

According to the estimating equations (3.3) and (3.4) that we have derived in Section

3.3, we propose the following estimating equation

1

n

n∑
i=1

Q(W i;θ) ≡
1

n

n∑
i=1

HT (X∗
i ;θ){Y − µ(X∗

i ;θ)}
v{µ(X∗

i ;θ)}g′{µ(X∗
i ;θ)}

= 0, (3.5)

where v(.) is a pre-specified function. Specifically, we assume that the working vari-

ance function of V (Yi|X∗
i ;θ, ϕ) is ϕv{µ(X∗

i ;θ)}, which may or may not contain the

truth. To provide some intuitions for this estimating equation, we note that Q(W ;θ)

in the above estimating function mimics, up to a constant of proportionality, the score

function when Y |x∗ belongs to an exponential family. The solution to the proposed

estimating equation (3.5) is denoted as θ̂n = (β̂
T

n , τ̂
T
n , η̂

T
n )

T , with the subscript n omit-

ted for simplicity sometimes. To justify the validity of θ̂n, we study its asymptotic

properties rigorously in Section 3.4.3.

3.4.2 Estimation Algorithm

Solving the estimating equation (3.5) is still a challenging problem. First, the estimat-

ing function itself in equation (3.5) is not differentiable and non-regular. Therefore,

popular computational algorithms, for example, the Newton-Raphson (NR) method,

do not directly apply to this case. Second, due to the inherent non-differentiability

of the mean function µ(X∗
i ;θ) with respect to τ , numerical algorithms for obtaining
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estimates of τ is prone to the problem of being stuck at local optima and non-

convergence, leading to undesirable performances. To solve the two problems, we

adapt the idea of a two-step semismooth NR algorithm in Section 2.4.1 for linear

spline models with continuous outcomes. In this two-step semismooth NR algorithm,

the estimation of τ is separated from the estimation of other unknown parameters in

each iteration. When τ is fixed, the model is the usual generalized linear model, for

which analytical solution or common computationally stable algorithms are available

in standard software. When other parameters are treated as known, it simplifies the

estimation problem by reducing the dimension of unknown parameters. In this step,

we update estimates of τ using the idea of the modified NR algorithm for solving

semismooth equations, recognizing the estimating equation is semismooth for which

the generalized Jocobian exists (Chaney , 1990; Scholtes , 2012). Specifically, denoting

the initial value of τ by τ̂ (0), the t-th (t ≥ 1) iteration of the two-step semismooth

NR algorithm for generalized linear spline models proceeds as follows.

Step 1. Update estimates of β and η to obtain β̂
(t−1)

, η̂(t−1). That is, treating τ̂ (t−1)

as fixed, fit the generalized linear regression model via MLE or quasi-likelihood

method to obtain β̂
(t−1)

, η̂(t−1) and predicted values µ̂i
(t−1) (i = 1, . . . , n) for

all subjects .

Step 2. Update τ̂ (t−1) to obtain τ̂ (t) by a modified NR procedure. Define a K×1 vector

U (t) = (U
(t)
1 . . . U

(t)
J )T , where U

(t)
j is a Kj × 1 vector and the p-th element of

U
(t)
j , denoted as U

(t)
jp , is defined as

U
(t)
jp =

β̂
(t−1)
jp

n

n∑
i=1

I(Xji > τ̂
(t−1)
jp )

v(µ̂i
(t−1))g′(µ̂i

(t−1))
(Yi − µ̂i

(t−1)), where p = 1, . . . , Kj.
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Also define a K ×K matrix S(t) =


S
(t)
11 . . . S

(t)
1J

...
...

S
(t)
J1 . . . S

(t)
JJ

, where S
(t)
mn is a Km ×Kn

submatrix, m,n ∈ {1, . . . , J}, and the (p, q)-th element of S
(t)
mn, denoted as

S
p,q(t)
mn , is defined as

Sp,q(t)
mn =

β̂
(t−1)
mp β̂

(t−1)
nq

n

n∑
i=1

I(Xmi > τ̂
(t−1)
mp )I(Xni > τ̂

(t−1)
nq )

v(µ̂i
(t−1)){g′(µ̂i

(t−1))}2
, where

p = 1, . . . , Km; q = 1, . . . , Kn. Then update estimate of τ by τ̂ (t) = τ̂ (t−1) −

{S(t)}−1U (t). From the modified derivative perspective, U (t) and S(t) are, re-

spectively, proportional to the modified score function and modified observed

information matrix with respect to τ only, when Y |x∗ is assumed to follow a

distribution in the exponential family.

The above algorithm iterates between steps 1 and 2 until ∥τ̂ (t) − τ̂ (t−1)∥< ζ, where ζ

is a pre-specified tolerance value. Once τ̂ (t) converges, the final estimators of β and η

are obtained via another step 1, treating the final estimate τ̂ (t) as fixed. The validity

of the above algorithm is shown in the following Proposition 1.

Proposition 2. The two-step semismooth NR algorithm converges locally and it con-

verges to the proposed estimating equation 1
n

∑n
i=1Q(W i;θ) = 0, i.e. θ̂n.

According to simulation studies in Section 2.5, this two-step semismooth NR algo-

rithm performs well and stable for continuous outcomes, and our simulation studies

further support that conclusion for count outcomes. However, our simulation studies

show that this two-step semismooth NR algorithm may lead to nonnegligible bias

in logistic linear spline regression in some scenarios when the sample size is small

and the initial value is not close to the truth. The reason for this unsatisfactory

performance is that the two-step semismooth NR algorithm is sensitive to the initial
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value of change points, i.e., τ̂ (0), and the inherent difficulty in fitting a complicated

model for a binary outcome where there is less information. To remedy this issue,

we propose an objective function, which is the L1-norm of
∑n

i=1Q(W i; θ̂
(t)
), where

θ̂
(t)

is the final estimate of θ from the two-step semismooth NR algorithm. Then

one is able to fit the model using multiple initial values and choose the one that

minimizes the objective function. The likelihood function itself might be a natural

objective function to consider and has been used as the selection criteria in the popu-

lar R package “segmented” (Muggeo, 2008). However, our simulation shows that the

maximizer of the likelihood function sometimes is far away from the solution of the

estimating equation, i.e., 1
n

∑n
i=1Q(W i;θ) = 0, and from the truth. As the proposed

estimating function (3.5) is not the derivative of the likelihood function, solving the

proposed estimating equation is not equivalent to maximizing the likelihood function.

Our simulation studies show that using the likelihood function as the objective func-

tion sometimes even introduces more bias and larger variance than just using a fixed

initial value , especially when the sample size is small and the outcome is binary.

3.4.3 Asymptotic Properties

This section studies the asymptotic properties of the proposed estimator. The main

results are summarized in the following two theorems, with detailed proofs available

in the Appendix.

Assumption 1. The link function g(.) is monotonically increasing, continuous and

first-order differentiable, and the working variance function ϕv{µ(X∗
i ;θ)} is a positive

function.

Theorem 3. Under the semiparametric generalized linear spline model (3.1), θ̂n is

a consistent estimator for θ0, as n −→ ∞.

Theorem 4. Under the semiparametric generalized linear spline model (3.1),
√
n(θ̂n−
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θ0) converges in distribution to N
(
0, V −1

1 (θ0)V2(θ
0)V −1

1 (θ0)
)
, where

V1(θ
0) = E

[ HT (X∗;θ0)H(X∗;θ0)

v{µ(X∗;θ0)}g′{µ(X∗;θ0)}2
]
,

V2(θ
0) = E

[HT (X;θ0)V (Y |X∗;θ0, ϕ0)H(X∗;θ0)

v{µ(X∗;θ0)}2g′{µ(X∗;θ0)}2
]
.

If the working variance function ϕv{µ(X∗;θ)} is correctly specified for the con-

ditional variance V (Y |X∗;θ, ϕ), including the situation that Y |x∗ arises from an

exponential family, the asymptotic variance can be simplified as ϕ0V −1
1 (θ0). Ac-

cording to the discussions in Section 3.3.2, the estimator θ̂n achieves the semi-

parametric local efficiency bound. If we additionally assume that Y |x∗ arises from

an exponential family with a canonical link, we can further simply the function

V1(θ
0) = E[v{µ(X∗;θ0)}HT (X∗;θ0)H(X∗;θ0)].

To make statistical inference, the asymptotic variance in Theorem 2 can be consis-

tently estimated by ϕ̂V̂1
−1
(θ̂n)V̂2(θ̂n)V̂

−1
1 (θ̂n), where

V̂1(θ̂n) =
1

n

n∑
i=1

HT (X∗
i ; θ̂n)H(X∗

i ; θ̂n)

v{µ(X∗
i ; θ̂n)}g′{µ(X∗

i ; θ̂n)}2

V̂2(θ̂n) =
1

n

n∑
i=1

HT (X∗
i ; θ̂n)V (Y |X∗; θ̂n, ϕ̂)H(X∗

i ; θ̂n)

v{µ(X∗
i ; θ̂n)}2g′{µ(X∗

i ; θ̂n)}2

The estimation of ϕ can be obtained via the method of moments estimator ϕ̂ =∑n
i=1

(Yi−µ̂i)
2

v(µ̂i)(n−q)
, where q is the number of total parameters in model (3.1) and µ̂i =

µ(X∗
i ; θ̂n). The variance of the proposed estimator θ̂n can then be consistently es-

timated by ϕ̂V̂1
−1
(θ̂n)V̂2(θ̂n)V̂1

−1
(θ̂n)/n. If Y |x∗ arises from an exponential family,

the variance of θ̂n can be consistently estimated by ϕ̂V̂1
−1
(θ̂n)/n. In particular,

we note for Poisson and logistic regression, ϕ is a constant and is equal to 1. For

linear regression with normally distributed outcomes, we can estimate ϕ = σ2 via
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σ̂2 = {
∑n

i=1(Yi − µ̂i)
2}/{n− q}.

3.5 Simulation Studies

This section reports simulation studies conducted to evaluate the proposed method

and to compare it with the method of Muggeo (2003). We considered logistic and

Poisson linear spline regression for binary and count outcomes respectively, with one

or two factors of interest. Data were generated under five models, three for logistic

regression and two for Poisson regression. Outcome models and initial values of

change points used in algorithms are listed in Table 3.1. In all scenarios, the covariate

Z was generated from N (0, 1) with coefficient η = 0.2. The factors of interest X1

and X2 followed uniform (0, 1) and uniform (0, 2) distributions, respectively, and they

both correlated with Z, making Z a confounder for both effects of X1 and X2 on Y .

Specifically, X1 were generated as Φ((V1 + Z)/
√
2) and X2 as 2 × Φ((V2 + Z)/

√
5),

where Φ is the cumulative distribution function of the standard normal distribution

and the intermediate variables V1 and V2, both independent of all other variables, were

from N (0, 1) and N (0, 4) respectively. In all scenarios, methods were evaluated under

1000 Monte Carlo replicates with sample sizes n = 200, 500, 1000 or 2500 for logistic

linear spline models, and n = 500, 1000, 2500 or 5000 for Poisson linear spline models.

The method of Muggeo (2003) was implemented using the R package “segmented”

(Muggeo, 2008). In both methods, the tolerance of convergence was set as ζ = 10−11

and the largest number of iterations was set as 500. We used the same fixed initial

values of change points (different from the truth) for both the proposed and segmented

methods. Fixed initial values of change points are listed in Table 3.1 as “.fix” and

simulation results are summarized in Table 3.2 and Table 3.3 as “.fix”. For logistic

linear spline models where the model fitting is more challenging, we also studied the

performance of both methods by using the truth as the fixed initial values with results

summarized in Table 3.2 as “.true”. Additionally, in the setting of logistic models, we
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Table 3.1: Data generating models and the corresponding true parameter values and
initial values of change points in simulations.

Logistic 1

logit(µ) = β0 + β1X1 + β11(X1 − τ11)
+ + ηZ

(β0, β1, β11, τ11) = (0.1,−5, 9, 0.4)
Initial values of change point:

“.fix” : τ̂11
(0) = 0.45

“.choose”: τ̂11
(0) = (0.35, 0.4, 0.45)

Logistic 2

logit(µ) = β0 + β1X2 + β11(X2 − τ21)
+ + ηZ

(β0, β1, β11, τ11) = (−1, 3,−10, 1.5)
Initial values of change point:

“.fix” : τ̂11
(0) = 1.4

“.choose”: τ̂11
(0) = (1.4, 1.5, 1.6)

Logistic 3

logit(µ) = β0 + β1X1 + β11(X1 − τ11)
+ + β2X2 + β21(X2 − τ21)

+ + ηZ
(β0, β1, β11, β2, β21, τ11, τ21) = (−0.5, 6,−10, 5,−11, 0.45, 1)

Initial values of change point:

“.fix” : τ̂11
(0) = 0.5, τ̂21

(0) = 0.9

“.choose”: τ̂11
(0) = (0.4, 0.45, 0.5), τ̂21

(0) = (0.9, 1, 1.1)

Poisson 1

log(µ) = β0 + β1X1 + β11(X1 − τ11)
+ + β12(X1 − τ12)

+ + β13(X1 − τ13)
+ + β14(X1 − τ14)

+ + ηZ
(β0, β1, β11, β12, β13, β14, τ11, τ12, τ13, τ14) = (4, 3,−5, 4,−3, 4, 0.2, 0.4, 0.6, 0.8)

Initial values of change point:

“.fix” : τ̂11
(0) = 0.15, τ̂12

(0) = 0.35, τ̂13
(0) = 0.55, τ̂14

(0) = 0.75

Poisson 2

log(µ) = β0 + β1X1 + β11(X1 − τ11)
+ + β12(X1 − τ12)

+ + β2X2 + β21(X2 − τ21)
+ + β22(X2 − τ22)

+ + ηZ
(β0, β1, β11, β12, β2, β21, β22, τ11, τ12, τ21, τ22) = (3, 2,−5, 4,−2, 6,−8, 0.4, 0.7, 0.8, 1.4)

Initial values of change point:

“.fix” : τ̂11
(0) = 0.45, τ̂12

(0) = 0.8, τ̂21
(0) = 0.9, τ̂22

(0) = 1.5

studied the performance of the proposed method by choosing results from three initial

values of change points (denoted as “.choose”) via minimizing the objective function,

i.e. L1-norm of the estimated proposed estimating equation
∑n

i=1Q(W i; θ̂
(t)
), where

θ̂
(t)

is the final estimate of θ from the two-step semismooth NR algorithm.

Results for logistics and Poisson linear spline regression are shown in Table 3.2 and Ta-

ble 3.3 respectively. For all scenarios, bias, Monte Carlo standard deviation (MCSD),

the average of standard errors (AVESE), root mean squared errors (RMSE) and cover-

age probabilities (CP) of the 95% confidence intervals are reported. First of all, both

methods have high convergence rates of the algorithm, both with a 100% convergence

rate in all scenarios except for logistic scenario 1 (n = 200) and logistic scenario 3

(n = 200, 500). Even in these scenarios, the convergence rates are reasonably high.

In terms of statistical properties, both methods perform well in terms of biases, with

biases close to zero.
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Table 3.2: Simulation results for logistic linear spline regression models, where “pro-
posed” denotes the proposed method, “segmented” denotes the method of
Muggeo (2003), * indicates value ×10−3, “.fix” represents initial values are
fixed at values different from the truth, “.truth” represents initial values
are fixed at the truth and “.choose” represents initial values are not fixed.
MCSD: Monte Caro standard deviation; RMSE: root mean squared error;
AVESE: average of standard error; %CP: coverage probability of the 95%
confidence intervals.

Method n Bias* MCSD* MSE* AVESE* %CP Bias* MCSD* MSE* AVESE* %CP

Logistic 1 Logistic 2

proposed.fix

200

18.60 70.36 72.78 86.09 93.8 -17.10 133.02 134.11 132.77 91.3
segmented.fix 5.12 135.69 135.78 82.90 79.5 -35.50 203.38 206.45 130.18 83.8
proposed.true 1.40 68.24 68.25 84.67 93.9 8.38 123.13 123.41 129.84 91.1
segmented.true 0.16 131.88 131.88 81.91 78.5 -23.39 197.30 198.68 134.69 83.5
proposed.choose 5.57 71.40 71.61 85.46 93.8 1.18 130.61 130.61 214.42 90.7

proposed.fix

500

11.47 51.39 52.65 52.56 93.5 -17.14 81.70 83.47 82.96 94.9
segmented.fix 3.18 70.72 70.79 52.29 87.7 -0.59 93.32 93.32 81.41 89.7
proposed.true 0.15 47.53 47.53 52.25 94.1 -1.46 75.45 75.47 81.69 95.0
segmented.true 2.70 69.97 70.02 52.57 86.8 -11.12 109.85 110.42 82.18 89.4
proposed.choose 3.74 51.39 51.53 52.32 93.8 -9.80 82.01 82.60 82.29 94.6

proposed.fix

1000

6.70 39.45 40.01 37.01 93.5 -7.37 65.42 65.83 57.95 92.8
segmented.fix 2.20 48.81 48.86 36.74 88.1 0.78 65.90 65.91 57.20 90.3
proposed.true -1.27 35.38 35.40 36.87 94.3 1.78 59.57 59.59 57.46 93.2
segmented.true -4.64 44.72 44.97 37.48 89.0 1.57 57.40 57.42 57.02 94.7
proposed.choose 0.08 39.28 39.28 36.86 93.5 -2.20 65.06 65.09 57.65 92.5

proposed.fix

2500

3.73 25.78 26.05 23.48 91.6 -4.64 40.39 40.66 36.38 91.9
segmented.fix -0.84 25.92 25.93 23.36 91.3 1.59 37.07 37.11 36.07 92.6
proposed.true -0.39 22.65 22.65 23.43 94.3 -0.83 37.25 37.26 36.26 93.6
segmented.true 5.72 20.07 20.87 22.75 99.5 -2.49 40.66 40.74 36.35 92.2
proposed.choose 0.48 25.52 25.53 23.43 91.6 -2.18 40.47 40.53 36.29 91.5

Logistic 3
τ11 τ21

proposed.fix

200

17.16 120.23 121.45 137.50 90.4 -29.83 194.84 197.11 194.90 91.2
segmented.fix 11.22 212.88 213.17 188.17 71.2 -9.03 228.32 228.50 191.67 86.7
proposed.true 7.97 117.50 117.77 137.78 91.1 -21.00 195.44 196.56 194.65 91.4
segmented.true -3.87 215.73 215.76 660.63 68.1 -16.48 239.87 240.43 197.28 84.7
proposed.choose 12.28 121.73 122.35 137.83 90.7 -14.48 196.82 197.35 194.57 91.5

proposed.fix

500

4.50 81.21 81.34 87.03 91.9 -5.68 122.46 122.59 122.19 93.7
segmented.fix 1.98 119.19 119.21 84.26 83.9 1.57 129.19 129.20 122.79 92.2
proposed.true 0.83 79.37 79.38 86.77 91.9 -0.16 122.13 122.13 122.11 93.7
segmented.true -18.56 109.62 111.18 81.03 74.3 -30.43 158.55 161.45 120.11 90.3
proposed.choose 0.73 82.43 82.43 86.56 91.2 -0.47 124.51 124.51 122.03 93.7

proposed.fix

1000

1.76 63.90 63.92 60.81 92.8 -5.84 90.88 91.07 86.20 92.7
segmented.fix -5.48 82.90 83.08 58.92 81.6 -2.78 89.86 89.91 86.17 93.5
proposed.true 0.57 61.13 61.13 60.87 93.4 -2.00 89.23 89.26 86.20 93.2
segmented.true -6.74 82.45 82.73 58.94 81.8 -2.00 89.68 89.70 86.11 93.7
proposed.choose 0.75 65.28 65.28 60.80 91.9 -1.56 92.18 92.20 86.15 92.6

proposed.fix

2500

0.43 41.60 41.60 38.54 91.7 -0.60 54.94 54.95 54.87 94.7
segmented.fix 0.99 44.50 44.51 38.04 89.8 -3.42 53.27 53.38 54.82 95.9
proposed.true 3.22 38.57 38.71 38.63 93.5 1.95 53.39 53.42 54.87 95.0
segmented.true 0.81 49.39 49.40 38.34 88.1 -1.00 58.81 58.82 54.84 93.6
proposed.choose 3.29 43.07 43.19 38.58 90.7 1.75 55.29 55.32 54.86 94.4

Differences in performances of the two methods exist. In general, MCSD and RMSE

of the proposed method are smaller than the segmented method and the coverage
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Table 3.3: Simulation results for Poisson linear spline regression models, where “pro-
posed” denotes the proposed method, “segmented” denotes the method of
Muggeo (2003) , * indicates value ×10−3 and “.fix” represents initial values
are fixed at values different from the truth. MCSD: Monte Caro standard
deviation; RMSE: root mean squared error; AVESE: average of standard
error; %CP: coverage probability of the 95% confidence intervals.

Method n Bias* MCSD* RMSE* AVESE* %CP Bias* MCSD* RMSE* AVESE* %CP

Poisson 1
τ11 τ12

proposed.fix
500

-0.84 9.59 9.63 8.83 92.9 1.72 16.52 16.61 14.38 90.4
segmented.fix 0.13 10.61 10.62 8.88 92.0 -0.68 16.46 16.48 14.35 88.3

proposed.fix
1000

-0.36 6.80 6.81 6.20 92.0 0.98 11.22 11.27 10.07 93.1
segmented.fix 0.91 6.50 6.57 6.17 92.1 -1.36 10.77 10.86 10.02 91.1

proposed.fix
2500

-0.10 3.89 3.89 3.88 95.4 0.38 6.65 6.66 6.32 93.9
segmented.fix 0.61 3.81 3.86 3.88 93.2 -0.92 6.63 6.69 6.30 92.7

proposed.fix
5000

-0.13 2.78 2.79 2.74 94.9 0.38 4.48 4.50 4.47 94.6
segmented.fix 0.03 2.92 2.92 2.75 93.4 0.07 4.76 4.76 4.46 93.9

τ13 τ14

proposed.fix
500

0.70 11.66 11.68 11.60 95.2 0.23 4.91 4.92 4.82 94.5
segmented.fix 1.46 10.92 11.02 11.60 95.1 0.20 5.21 5.21 4.83 93.7

proposed.fix
1000

0.12 8.41 8.41 8.17 94.0 0.09 3.43 3.43 3.38 94.1
segmented.fix 0.52 10.07 10.08 8.17 89.3 0.28 3.64 3.65 3.37 90.7

proposed.fix
2500

0.11 5.20 5.20 5.14 94.7 0.04 2.17 2.17 2.12 95.5
segmented.fix -0.81 6.41 6.46 5.14 83.3 -0.21 2.30 2.31 2.12 93.3

proposed.fix
5000

0.08 3.74 3.74 3.64 94.0 -0.01 1.47 1.47 1.49 95.3
segmented.fix -0.14 3.70 3.70 3.64 94.1 0.12 1.59 1.60 1.50 93.1

Poisson 2
τ11 τ12

proposed.fix
500

-1.17 7.17 7.27 6.47 92.8 1.54 9.00 9.13 8.40 91.9
segmented.fix 0.04 7.40 7.40 6.45 90.5 0.31 9.04 9.05 8.43 93.0

proposed.fix
1000

-0.55 4.87 4.90 4.54 92.8 1.01 6.12 6.21 5.92 93.1
segmented.fix 0.05 4.77 4.77 4.55 93.1 -0.31 6.53 6.53 5.93 91.7

proposed.fix
2500

-0.36 3.00 3.02 2.86 93.5 0.75 3.82 3.89 3.72 93.2
segmented.fix 0.02 3.02 3.02 2.88 93.5 -0.41 4.03 4.05 3.74 93.0

proposed.fix
5000

-0.29 2.10 2.12 2.03 93.4 0.49 2.77 2.81 2.64 92.7
segmented.fix 0.13 1.97 1.98 2.02 94.4 0.01 2.76 2.76 2.63 94.5

τ21 τ22

proposed.fix
500

-1.74 10.63 10.77 9.63 91.1 0.03 7.60 7.60 7.02 92.4
segmented.fix -0.13 11.94 11.94 9.70 89.8 -0.05 7.78 7.79 7.03 91.2

proposed.fix
1000

-1.07 7.58 7.66 6.82 90.6 0.32 5.41 5.42 4.95 91.7
segmented.fix 0.35 7.49 7.50 6.81 92.0 -0.22 5.42 5.42 4.95 91.8

proposed.fix
2500

-0.67 4.62 4.67 4.28 92.5 0.23 3.31 3.32 3.12 92.8
segmented.fix 0.25 4.80 4.81 4.32 91.2 0.16 3.51 3.52 3.11 91.0

proposed.fix
5000

-0.33 3.17 3.19 3.03 94.3 0.07 2.31 2.31 2.20 93.4
segmented.fix -0.38 3.32 3.34 3.02 94.3 -0.09 2.22 2.23 2.20 93.9

probabilities of the proposed method are better than those of the segmented method

in most cases, especially in logistic regression. When initial values of change points

were chosen at the truth in logistic regression, the performance of the “proposed.true”

method is good with small bias and RMSE and accurate statistical inference. How-
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ever, “segmented.true” method performs less desirable, especially in terms of MCSD

and coverage probability. When the sample size is small, the MCSD of the “seg-

mented.true” method is much larger than the AVESE, and it is almost twice as large

as the MCSD of the “proposed.true” method in some cases, for example in logistic

scenario 1 with sample size 200. As the sample size increases, the MCSD of the “seg-

mented.true” method becomes more reasonable. Of note, the coverage probability

of the “segmented.true” method may be much smaller or larger than the nominal

level, even with a large sample size. For example, in logistic scenario 3, when the

sample size is n = 200, the coverage probability of the “segmented.true” method for

estimating τ11 is only 68.1%. Even when the sample size is n = 2500, the coverage

probability is still only 88.1%. In contrast, in logistic scenario 1, when the sample size

is n = 2500, the coverage probability of the “segmented.true” method for estimating

is 99.5%, much higher than the nominal level. As expected, for both methods in

logistic models, performances of “.true” are generally similar but better than “.fix”

in terms of smaller bias, smaller MSE and better coverage probability. Performances

of “.true” represent the ideal case and are not realistic in practice. We note that

choosing initial values based on the L-1 norm leads to an improved performance of

the “proposed.choose” relative to the “proposed.fix” in logistic scenarios. Overall,

“proposed.choose” has smaller bias and smaller MSE than “proposed.fix” method,

especially when the sample size is small. For example, in logistic scenario 1, when

the sample size is n = 200, the bias from the “proposed.fix” method is less than one

third of the bias from the “proposed.choose” method. As researchers do not know

the truth for change points in real applications, the “proposed.choose” method is a

more practical than the “proposed.true”.

In settings of Poisson regression, both the proposed and the segmented methods

perform well. The issue of under-coverage for the segmented method is less severe for

Poisson regression but still exists. For example, in Poisson scenario 1, when n = 1000,
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the coverage probability for τ13 is 83.3%. The lower or higher coverage issue of the

segmented method is likely due to finite-sample property, computational issue and/or

failure to account for certain variability in the inferential procedure, as the theory

behind this method is not rigorously studied.

3.6 Application

We applied the proposed method to adult patients who underwent percutaneous coro-

nary intervention (PCI) from 2007 to 2009 at 33 hospitals in Michigan, using data from

the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (Kline-Rogers

et al., 2002). We are interested in understanding the effect of baseline glomerular

filtration rate (GFR) and body mass index (BMI) on in-hospital transfusion or gas-

trointestinal (GI) bleeding after PCI. GFR is a measure of kidney function, with a

larger value indicating a better condition. According to Centers for Disease Control

and Prevention (2020), for adults BMI < 18.5, ≥ 18.5 and < 25, ≥ 25 and < 30, and

≥ 30 indicate underweight, normal weight, overweight and obese respectively. Our

analysis is based on 63,156 patients with the priority of cardiac status (urgent v.s.

nonurgent) available and whose height is between 100 and 250 centimeters. Among

all patients, 2602 (4.12%) experienced either in-hospital transfusion or GI bleeding.

We applied the logistic linear spline model to investigate the associations. After a

series of model fitting and checking, in the final model BMI was modeled with one

change point, τ11, and GFR was modeled with two change points, τ21 and τ22. Patient

characteristics adjusted in the analysis included age, female (vs. male), white (vs.

other race), black (vs. other race), current smoking status, history of hypertension,

diabetes, previous PCI, previous coronary artery bypass grafting (CABG), priority of

cardiac status: emergent (vs. nonurgent) and priority of cardiac status: urgent (vs.

nonurgent). Results on the fitted model are reported in Table 3.4. The concordance
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Table 3.4: The PCI trial: results from the logistic linear spline model for the effect
of BMI and GFR on in-hospital transfusion/GI-bleeding. The p-value is
calculated based on the two-sided Wald test, treating all change-points
fixed at the estimated values. Error represents the standard error of log
odds ratio.

Log Odds Ratio Std. Error P-Value

Intercept -1.100 0.292 <0.001

Slope

BMI≤ 32.3 -0.017 0.006 0.008
BMI>32.3 0.053 0.005 <0.001
GFR≤54.2 -0.031 0.003 <0.001
54.2<GFR≤114.7 -0.014 0.002 <0.001
GFR>114.7 -0.007 0.002 <0.001

statistic for the fitted logistic linear spline model is 0.78, indicating a good model fit.

The estimated change-point for the effect of BMI is located at 32.3 with a 95%

confidence interval (95%CI: 29.1, 35.4). The slopes before and after the change-point

are significantly different (p<0.001). Given all other covariates, when BMI is less

than 32.3, the odds ratio of in-hospital transfusion/GI bleeding per 1 unit increase

in BMI is 0.98 (p=0.008); when BMI is greater than 32.3, the odds ratio is 1.05

(p<0.001). Roughly and intuitively, these results suggest that, for patients who are

not obese, higher BMI is protective in terms of bleeding risk. However, for patients

who are obese, the larger the BMI the higher the risk of bleeding. As for the effect

of GFR, when GFR is lower than 54.2, which corresponds to patients with moderate

or severe loss of kidney function, higher GFR and thus better kidney function are

associated with less bleeding (odds ratio=0.97; p<0.001). When GFR is between

54.2 and 114.7, better kidney function is still associated with lower bleeding (odds

ratio=0.986; p<0.001) but the effect is relatively smaller. When GFR is greater than

114.7, corresponding to patients with normal and high kidney function, the effect of

kidney function is further smaller, but still better kidney function is protective in

terms of bleeding (odds ratio=0.993; p<0.001).
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3.7 Discussion

Generalized linear spline models have important applications in studying threshold

effects and change-points when effects of continuous factors are nonlinear and change

at some change-points. Often times, it is the change-points/knots that are of main

interest. However, due to the lack of rigorously studied and computationally conve-

nient methods, in practice one has to pre-specify change points in order to fit the

generalized linear model and then choose the change points in an ad-hoc manner

through model selections. Other than being nonrigorous, this approach does not al-

low one to quantify the uncertainty in this process or to make inference on change

points. Although there has been a lot of methodology developments, in terms of both

theory and computational algorithms, for estimation of change points in linear spline

models, there is little rigorous study on change-points estimation in generalized linear

spline models. In this article, we attempt to fill in this important gap in literature

and study estimation of change points, as well as other unknown parameters, in gen-

eralized linear spline models with multidimensional predictors, which allows rigorous

estimations and inferences on change points.

The lack of rigorously studied methods for change-points estimation in generalized

linear spline models is likely due to the inherent difficulty in generalized linear spline

models. As discussed in Section 3.1, several smoothing-based methods have been

proposed and rigorously studied in the setting of linear spline models. Smoothing

is a sound and natural idea, and smoothing-based methods have been shown to be

more computational efficient than earlier grid-search type algorithms. However, its

extension to generalized linear spline models has not been successful so far. Our own

study on trying to adapting the smoothing-based algorithms to generalized linear

spline models has shown that it suffers from sensitivity to initial values and difficulty in

convergence. In contrast to smoothing, the proposed method is based on a simple idea
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of modified derivatives, i.e., redefining the derivative whenever it is not well-defined

in the usual sense. The modified derivative idea is first applied to the likelihood

or quasi-likelihood function, leading to a simple estimating equation that does not

involve any smoothing parameters. The modified derivative idea is then applied again

to solve this simple but nonregular and nondifferentiable estimating equation. It is

interesting to note that, in the latter case, the proposed modified derivative is a special

case of generalized Jacobian studied in optimization literature in solving semismooth

equations. As discussed previously, numerical instability has been a major obstacle

in estimation of change points for generalized linear spline models. To overcome this,

a two-step semismooth NR algorithm is proposed to solve the estimating equation.

The algorithm separates updating of change-points and other parameters, greatly

improving computational performances in terms of convergence rates and sensitivity

to initial values. Our simulation studies have shown that the computational algorithm

is fast and convenient, and numerically stable.

The asymptotic properties of the proposed estimator have been rigorously studied

using the empirical process theory. We have shown that the proposed estimator is

root-n consistent and asymptotically normal. When the model belongs to the expo-

nential family, the proposed estimator is also asymptotically efficient. To the best of

our knowledge, there has been no previous work that studied the statistical proper-

ties of estimators of change points rigorously in the setting of generalized linear spline

models. A popular computational algorithm for change-points estimation for gener-

alized linear spline models was studied in Muggeo (2003) and implemented in Muggeo

(2008). However, they did not study the statistical properties rigorously. In terms

of empirical performances, our simulation studies show that the proposed method is

comparable or better than the highly-cited method of Muggeo (2003, 2008). In par-

ticular, the statistical inference of the proposed method is more accurate with better

coverage probabilities, especially in logistic regression models for binary outcomes.
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The improvement in statistical inferences is due to the rigorous study of asymptotic

properties.

In summary, this chapter proposed an estimation method of change-points and all

other parameters in the generalized linear spline model with a computationally effi-

cient and easy-implemented two-step algorithm. We note that our study of influence

functions using the modified derivative idea is generic that can be applied to many

other research topics, such as correlated or clustered data, survival data, longitudinal

data, and even some irregular problems beyond change-point estimation.
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CHAPTER IV

Modeling and Estimating a Threshold Effect: An

Application to Improving Cardiac Surgery

Practices

4.1 Introduction

Coronary artery bypass grafting (CABG) is the most common type of cardiac surgery

in the United States, with more than 400,000 procedures annually (Dasta et al.,

2008). While post-procedural outcomes have improved over time, patients continue

to experience a number of adverse sequelae. One of the most recognized complications

after CABG is post-procedural acute kidney injury (AKI), which is associated with

increased morbidity, mortality and costly long-term treatment (Robert et al., 2010;

Elmistekawy et al., 2014; Shen et al., 2017; Alshaikh et al., 2018). Despite numerous

studies in recent years, development of evidence-based guidelines for cardiopulmonary

bypass (CPB) practice for avoiding post-operative AKI has been limited. In recent

years, the effect of lowest/nadir DO2 during CABG has been studied in relation to

its influence on post-operative AKI in cardiovascular literature (Ranucci et al., 2005;

De Somer et al., 2011; Magruder et al., 2015). Researchers believe that there is a

lower threshold of nadir DO2 below which patients are subject to higher risk of post-
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operative AKI. A plausible mechanism is that when the nadir DO2 during CPB falls

below a critical value, the oxygen supply is insufficient to meet the oxygen demand

and this triggers dysoxia and lactic acidosis, leading to impaired post-operative renal

function. Ranucci et al. (2005) and De Somer et al. (2011), two influential data-

driven studies in cardiac surgery, suggested a critical value of 272 mL/minute/m2

and 262 mL/minute/m2 respectively, in order to reduce post-operative AKI. Their

recommended thresholds have been used as guidelines for later studies on CPB trials

(Ranucci et al., 2015; Mukaida et al., 2019; Ranucci et al., 2018; Wahba et al., 2020).

Results from Ranucci et al. (2005) and De Somer et al. (2011) fill in a gap in the

literature in management of DO2. The analytical method used in these two papers

is a popular approach in practice to identify a threshold. However, from a statistical

methodology point of view, whether the analytic approach is appropriate is subject to

question and we argue that it can potentially lead to biased results. In this approach,

to find the threshold of nadir DO2, one first dichotomizes the continuous variable

of DO2 into a binary variable at a certain value, and fits a logistic regression model

using this binary variable. Then one repeats the process by dichotomizing DO2 at a

series of different values and the threshold of DO2 is identified as the one that leads

to the best model fit based on some criterion. This approach may be subject to bias

because this model assumes the effect of DO2 on AKI changes in a noncontinuous

way (Figure 4.2.1A), which can be unrealistic. That is, it assumes the risk of AKI

jumps suddenly once the DO2 is lower than a threshold and stays constant thereafter.

As estimating the lower threshold of nadir DO2, estimating a threshold has been a

general and important research question arising from many applications. The mod-

eling assumption has important implications on estimation of the threshold, which

deserves a more detailed discussion and careful study.

The ad-hoc method described above is widely used in practice for estimating a thresh-
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old; however, its statistical property has not been well-studied. More rigorous and

general methods that can be adopted for estimating the threshold are studied in

the statistical literature. A threshold is a special case of a change-point, at which

the effect of a factor of interest changes. A (generalized) linear spline model is a

formal statistical model used to model a change-point effect (Marsh and Cormier ,

2001). In this model, linear segments are joined at a change-point. It is also often

referred to as a broken-stick model and a segmented model (Figure 4.2.1B). Esti-

mating change-points in a broken-stick model for a continuous outcome has been

rigorously studied (Quandt , 1958; Hudson, 1966; Feder , 1975b,a; Hansen, 2000; Das

et al., 2016). These methods focus mainly on the theoretical aspects. For general

outcomes including, e.g., count and binary outcomes, several algorithms are avail-

able to estimate change-points (Muggeo, 2003, 2008; Fong et al., 2017). Although

the theoretical properties have not been rigorously studied, these methods are popu-

lar in practice due to the availability of R packages and computational convenience.

Methods described above are based on the broken-stick model, which assumes two

linear segments with different slopes are joined together at the change-point without

imposing other constraints. In toxicity study, for example, one may believe that there

is a minimum tolerance level/threshold below which no one will respond. A family of

threshold models, including the linear-plateau model and the hockey-stick model, are

studied to model the dose-response relationship in environmental biology and toxicol-

ogy (Yanagimoto and Yamamoto, 1979; Cox , 1987; Hayes and Loomis , 1996). Unlike

the general methods based on splines for estimating change-points, these models are

tailored to incorporate the subject-area knowledge. Similarly, in the management of

DO2 for patients undergoing CABG, it is believed that only when the oxygen delivery

is below a critical level, it is associated with an increased risk of AKI. Therefore, it

may be preferable to incorporate this knowledge into modeling to help better estimate

the threshold. Other relevant work on modeling and/or estimating change-points or
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thresholds include, for example, Chen et al. (2011); Elder and Fong (2019); Elliott

and Shope (2003); Fong et al. (2017); Fong (2019); Lee (2021); Pastor-Barriuso et al.

(2003); Tapsoba et al. (2020).

Using the nadir DO2 example as a case study, this paper discusses and compares var-

ious models and methods that can be used to estimate a threshold, and demonstrates

the potential bias of popular existing methods. In Section 4.2, we describe two exist-

ing models, namely, the sudden-jump model and the broken-stick model, and common

estimation methods under each model. Then we introduce a constrained broken-stick

model and propose a computationally convenient two-step algorithm to estimate the

threshold based on the development of Chapter II and Chapter III. Comprehensive

simulation studies are reported in Section 4.3 to compare models and methods. Using

data from University of Michigan Frankel Cardiovascular Center, we aim to estimate

the lower threshold of DO2 during CPB in CABG patients to help develop evidence-

based guidelines for improving cardiac surgery practices.

4.2 Models and Methods

4.2.1 Notation

Consider a study with n subjects. For each subject i, i = 1, ..., n, let Yi be the

outcome, Xi be the factor of interest, for which a threshold effect is believed to exist,

and Zi be all other covariates to be adjusted for. That is, Xi is assumed to have an

effect on the outcome Yi whenXi is above or below a certain threshold τ . The outcome

Yi can be continuous, binary, count, or of other types. To accommodate different types

of outcomes, we assume the outcome Yi|Xi,Zi can be modeled using the generalized

linear regression model (GLM), and that Yi|Xi,Zi follows a distribution from an
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Figure 4.1: Three possible models: sudden-jump model, broken-stick model and con-
strained broken-stick model with logit link.

exponential family as follows

f(Y = y;ψ, ϕ) = exp
{yψ − b(ψ)

ϕ
+ c(y;ϕ)

}
,

where ϕ is the scale parameter and ψ is the natural parameter. The conditional

mean and variance of Yi|Xi,Zi are denoted as µi = E(Yi|Xi,Zi) and V (Yi|Xi,Zi)

respectively. It is a standard result in GLM that when the conditional mean µi is

modeled via a canonical link function g(µi), the conditional variance can be expressed

as V (Yi|Xi,Zi) = ϕv(µi), where v(µi) = 1/g′(µi). For example, g(µi) = log(µi) and

v(µi) = µi in Poisson regression model, g(µi) = log( µi

1−µi
) and v(µi) = µi(1 − µi) in

logistic regression model, and g(µi) = Φ−1(µi) and v(µi) = 1 in normal regression

model.

Interest lies in estimating the threshold τ based on the observed data (Yi, Xi,Zi),

independent and identically distributed across i. In particular, in our motivating

study we are interested in identifying the lower threshold of DO2 below which there

is an increased risk of AKI to provide guidance on good intraoperative practice on

management of DO2 during a cardiac surgery. In our application, Yi (Yi = 0 or 1)

denotes the binary outcome of whether or not subject i develops an AKI post surgery

and Xi is the nadir DO2 level for subject i during the surgery. Below we discuss
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different models to model µi and their implications.

4.2.2 Sudden-jump model

To learn the threshold from the data, due to its simplicity, perhaps the most popular

model used in practice is a regression model including a dichotomous version of Xi

as an independent variable, while adjusting for other covariates. Specifically, the

conditional mean µi is modeled as follows,

g(µi) = β0 + β1I(Xi ≤ τ) + ηTZi =


(β0 + β1) + ηTZi if Xi ≤ τ

β0 + ηTZi otherwise.

(4.1)

We refer to model (4.1) as a sudden-jump model. In model (4.1), for any given τ and

Zi, g(µi) is modeled as a step function of Xi (nadir DO2 level). Specifically, in a

logistic sudden-jump model for a binary outcome Yi (AKI), this model assumes that

for a patient with covariateZi, the risk of developing AKI is a constant when the nadir

DO2 is above the threshold τ and, when nadir DO2 reaches the lower threshold, the

risk of AKI jumps and remains the same with further decreasing nadir DO2. Figure

4.2.1A depicts such an effect on the probability of AKI for a given subject.

The logistic sudden-jump model (4.1) was adopted in Ranucci et al. (2005) and

De Somer et al. (2011), two influential studies in cardiac surgery, to identify the

lower threshold of nadir DO2 using a data-drive approach. As for estimating the

threshold τ , Ranucci et al. (2005) and De Somer et al. (2011) used the receiver op-

erating characteristic (ROC) curve to measure the performance of the fitted model

(4.1) under different values of τ , and estimated τ as the value leading to the best

performance. Specifically, model (4.1) is fitted under a series of values of τ between

(mini(Xi),maxi(Xi)) or a possible range determined by clinicians based upon their

clinical knowledge. The estimated result for τ is then the value that maximizes a
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summary measure of ROC curve. De Somer et al. (2011) used the Youden’s index,

defined as sensitivity value + (specificity - 1), and Ranucci et al. (2005) used the

Area Under the Curve (AUC) as a summary of the ROC curve. Besides the ROC

curve, one may also use the likelihood or equivalently the information-based criteria

(AIC/BIC) to assess model fit and estimate τ . In this approach, the estimated result

for τ is the value that optimizes the likelihood/AIC/BIC.

Although this model (4.1) is easy to interpret and familiar to applied statisticians

and medical researchers, its drawback is also obvious. Clinicians generally believe

that nadir DO2 being too low is harmful in terms of the risk of AKI. However, it

may not be realistic to assume the risk of AKI jumps suddenly once the DO2 is

below the threshold and stays constant thereafter. Clinically, it is more plausible

that once the DO2 drops below the threshold, the risk of AKI increases gradually

and keeps increasing with decreasing DO2. Although simple statistically, the sudden

jump model (4.1) is quite unnatural scientifically.

4.2.3 Broken-stick model

The broken-stick model (i.e., a generalized linear spline model with a single knot) can

also be used to model the threshold effect and estimate τ . That is, the conditional

mean µi is modeled as follows

g(µi) = β0 + β1Xi + β2(Xi − τ)+ + ηTZi (4.2)

=


β0 + β1Xi + ηTZi if Xi ≤ τ

(β0 − β2τ) + (β1 + β2)Xi + ηTZi otherwise,

where (Xi − τ)+ = (Xi − τ) if Xi > τ and 0 otherwise. Comparing model (4.2) with

the sudden-jump model (4.1), g(µi) is modeled as two linear segments with different

slopes above and below the threshold as opposed to a step function for Xi in model
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(4.2). In a logistic broken-stick model (4.2), the relationship between Yi and Xi is

modeled using two linear segments joined at the threshold τ at the log odds scale.

The broken-stick model is scientifically more plausible than the sudden-jump model.

However, this model does not incorporate the scientific knowledge that the adverse

effect of low Xi only appears when it is below (or above) a certain threshold. Figure

4.2.1B depicts such an effect on the probability of AKI for a given subject.

Although it is straightforward to estimate the other unknown parameters in model

(4.2) for a fixed τ , there are not many methods that are rigorously studied or well

accepted for estimating τ . Muggeo (2003) is a well-cited paper which proposes a

method for estimating the change-point τ based on an approximate linearization of

first-order Talyor’s expansion with respect to τ . We note that one may also adopt

this method to estimate the threshold of a factor with a threshold effect. We conduct

simulation studies to evaluate its performance and compare it with the usual method

based on a jump method and methods based on the constrained broken-stick model

studied below. The R package “segmented” (Muggeo, 2008) is used for implementing

the method in our simulations and the application study presented below.

4.2.3.1 Constrained Broken-stick model

To remedy the drawback of the sudden-jump model and to incorporate the clinical

knowledge simultaneously, we propose the constrained broken-stick model to study

the threshold effect of nadir DO2. As model (4.1), the constrained broken-stick

model assumes there is no effect of DO2 on the risk of AKI when DO2 is above the

threshold to reflect the clinical knowledge. However, when nadir DO2 reaches the

lower threshold, the risk of AKI increases with decreasing DO2. Specifically, the
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constrained broken-stick model is as follows

g(µi) = β0 + β1(Xi − τ)− + ηTZi (4.3)

=


(β0 − β1τ) + β1Xi + ηTZi if Xi ≤ τ

β0 + ηTZi otherwise,

where (Xi − τ)− = Xi − τ if Xi ≤ τ and 0 otherwise. It is easy to see that g(µi)

is modeled as a linear spline model with a single knot at the threshold, with the

additional constraint that the slope of nadir DO2 is zero when Xi is greater than τ .

Figure 4.2.1C depicts such an effect on the probability of AKI for a given subject. This

model is scientifically more plausible and strikes a balance between model simplicity

and scientific plausibility. Note that model (4.3) can also be written equivalently as

g(µi) = β∗
0 + β1min(Xi, τ) + ηTZi with β∗

0 = β0 − β1τ . This parameterization is

perhaps easier to interpret and more intuitive to applied biomedical researchers. The

parameterization in model (4.3) and model (4.4) below, however, is more commonly

used for linear spline models and broken-stick models.

The constrained broken-stick model in (4.3) is parameterized in a way such that there

is an effect of Xi on Yi when Xi is below a threshold. If instead one believes there is an

effect of Xi on Yi when Xi is greater than a threshold and there is no effect otherwise,

i.e., one is interested in finding an upper threshold, then we would parameterize the

constrained broken-stick model as follows,

g(µi) = β0 + β1(Xi − τ)+ + ηTZi (4.4)

=


(β0 − β1τ) + β1Xi + ηTZi if Xi ≥ τ

β0 + ηTZi otherwise,

where (Xi − τ)+ = Xi − τ if Xi ≥ τ and 0 otherwise. Again, this model is equivalent
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to g(µi) = β∗
0 + β1max(Xi, τ) + ηTZi with β∗

0 = β0 − β1τ . In our application,

we believe there exists a threshold of lower DO2 and therefore, our analysis would

be based on model (4.3). However, the method we propose below is applicable to

both constrained broken-stick model (4.3) and model (4.4). Below we discuss three

methods to estimate the threshold τ in constrained broken-stick models. The R

package “segmented” (Muggeo, 2008) designed for broken-stick model can also be

used for the constrained broken-stick model through some simple tricks, however we

will not discuss this method in detail.

4.2.3.2 Likelihood Method

Similar to the sudden-jump model, the likelihood or information (AIC/BIC)-based

method can be used to estimate τ in a constrained broken-stick model. That is, for

each fitted constrained broken-stick regression model at a different value of possible τ

in (mini(Xi),maxi(Xi)), we evaluate its fit by the likelihood/AIC/BIC and estimate

τ as the value that leads to the optimal likelihood/AIC/BIC, that is maximizing the

likelihood or minimizing AIC/BIC. Note, all three measures (likelihood, AIC, BIC)

are equivalent and will lead to the same optimal value of τ because the number of

unknown parameters in our model at different value of τ is the same.

4.2.3.3 ROC Curve Method

When Yi is binary as in our motivating study, ROC curve method can also be used

in the constrained broken-stick model for estimating τ . Similar to methods used in

Ranucci et al. (2005) and De Somer et al. (2011), one can estimate τ as the value

that leads to the best ROC curve of the resulting logistic regression model, measured

by AUC or the Youden’s index. That is, fixing τ at a value in (mini(Xi),maxi(Xi)),

fit model (4.3) or model (4.4) as appropriate and evaluate its AUC/Youden’s index.

Then we can estimate τ as the one that leads to the optimal AUC/Youden’s index.
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4.2.3.4 Proposed Modified Two-step Newton-Raphson Method

To simply notation, we denote β = (β0, β1)
T and denote all parameters in a con-

strained broken-stick model (4.3) or model (4.4) as θ = (β0, β1, τ,η
T )T , and θ is

assumed to belong to a compact set Θ. The true value of θ is denoted as θ0, assumed

to be an interior point of Θ. We propose to estimate τ by solving the following

estimating equation:

1

n

n∑
i=1

HT
i (θ){Y − µi(θ)}

v{µi(θ)}g′{µi(θ)}
= 0, (4.5)

where Hi(θ) = {1, (Xi − τ)−,−β1I(Xi < τ),Zi} for model (4.3), and Hi(θ) =

{1, (Xi − τ)+,−β1I(Xi > τ),Zi} for model (4.4). The solution of the proposed

estimating equation (4.5) is denoted as θ̂n = (β̂
T

n , τ̂
T
n , η̂

T
n )

T . If we additionally as-

sume that Yi|Xi,Zi arises from an exponential family with a canonical link, we have

v{µi(θ)} = [g′{µi(θ)}]−1. The validity of the proposed estimating equation (4.5)

can be justified through the study of asymptotic properties of θ̂n and results are

summarized below, with proofs available in Appendix Section A.4.

Result 1. θ̂n is a consistent estimator for θ0, as n −→ ∞.

Result 2.
√
n(θ̂n−θ0) converges in distribution to N

(
0, ϕV −1(θ0)

)
, where V (θ0) =

E
[

HT (θ0
)H(θ0

)

v{µ(θ0
)}g′{µ(θ0

)}2

]
.

Estimating a threshold/change-point is computationally challenging due to that the

model is not differentiable. Note the proposed estimating equation (4.5) is also non-

differentiable. Similar to the algorithm proposed in Section 2.4.1, we propose to

use a two-step modified Newton-Raphson (NR) algorithm to solve the the proposed

estimating equation (4.5). In this algorithm, we update the threshold τ and other

unknown parameters separately to improve numerical stability. The motivation for

this is that once τ is known then the model is just the usual generalized linear regres-

sion model which can be fitted using standard algorithms and software. Denoting the
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initial value of τ as τ̂ (0), the t-th (t ≥ 1) iteration of the proposed two-step modified

NR algorithm proceeds as follows.

Step 1. Update estimates of β and η. Specifically, treating τ̂ (t−1) as fixed, fit the gener-

alized constrained linear regression model by MLE or quasi-likelihood method

to obtain estimates β̂
(t−1)

, η̂(t−1) and predicted values µ̂i
(t−1) (i = 1, . . . , n).

Step 2. Update the estimate of τ by an extended NR type procedure. Specifically, the

threshold τ of the model (4.3) is updated by τ̂ (t) = τ̂ (t−1) − U (t)/S(t), where

U (t) =
1

n

n∑
i=1

(Yi − µ̂i
(t−1))I(Xi < τ̂ (t−1))

v{µ̂i
(t−1))}g′{µ̂i

(t−1)}
,

S(t) =
β̂
(t−1)
1

n

n∑
i=1

I(Xi < τ̂ (t−1))

v(µ̂i
(t−1)){g′(µ̂i

(t−1))}2
.

If model (4.4) is of interest, then one needs to replace I(Xi < τ̂ (t−1)) in U (t) and

S(t) by I(Xi > τ̂ (t−1)) accordingly.

The algorithm starts with t = 1 and converges if ∥τ̂ (t) − τ̂ (t−1)∥< ζ, where ζ is a

pre-specified convergence tolerance value. Once the algorithm converges for some t

as determined by step 1, we implement step 2 to obtain the final estimate of β and η.

We show in the Appendix that, when the algorithm converges, the proposed two-step

modified NR algorithm solves the proposed estimating equation (4.5).

4.3 Simulations

We conducted simulation studies to compare the various models and methods de-

scribed above to estimate the threshold in terms of bias, efficiency and robustness.

We considered four data-generating scenarios with the outcome being binary in sce-

narios I and II and being continuous in scenarios III an IV. The data generating

models and true values of parameters are listed in Table 4.1. In scenarios I and III,
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there is no association between the factor of interest Xi and the outcome Yi when

Xi is greater than the threshold, and there is a linear association at the logit scale

(i.e., between Xi and log odds of Yi) in scenario I and at the original scale in scenario

III when Xi is below the threshold. In scenarios II and IV, when Xi is below the

threshold, the relationship of Xi and Yi follows a quadratic form at the logit scale

in scenario II and at the original scale in scenario IV. Figure 4.2 plots the relation-

ship between X and Y for all four scenarios. As shown in Figure 4.2, in scenarios I

and II where the outcome is binary, the relationships are consistent with the clinical

knowledge in our motivating example, i.e., there is no effect of DO2 when it is greater

than a threshold, and the risk of AKI increases with decreasing DO2 once the DO2

is below a certain threshold. We note that scenarios I and III satisfy the specified

constrained broken-stick model. However, for scenarios II and IV, the constrained

broken-stick model, as well as the sudden-jump model and the usual broken-stick

model, is misspecified since the true relationship is nonlinear. Scenarios II and IV

were designed to evaluate the robustness of the proposed method. In all four scenar-

ios, Xi follows a normal distribution with mean 250 and standard deviation 30, and

the covariate Zi follows a normal distribution with mean 50 and standard deviation

10. In scenarios III and IV, the residual term ϵi follows a normal distribution with

mean 0 and standard deviation 50. For each scenario, we varied the sample size and

considered n = 500, 1000, 2500, and 5000. Reported results are based on 1000 Monte

Carlo replicates. The true threshold τ is chosen to be 270 in all scenarios, mimicking

our motivating data.

In scenarios I and II, we estimated the threshold τ using the following six methods: the

AUC method and the Youden’s index method based on the sudden-jump model (4.1),

the “segmented” method (Muggeo, 2008) based on the generalized broken-stick model

(4.2), and the three methods based on the constrained broken-stick model (4.3) using

the likelihood method, AUC method and the proposed modified Newton-Raphson
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Figure 4.2: Data generating functions of simulations in scenarios I, II, III and IV with
Z = 0.

Table 4.1: Data generating models and the corresponding true values of parameters
in simulation studies.

Scenario I logit(µi) = β0 + β1min(Xi, τ) + ηZi

(β0, β1, η, τ) = (4.3,−0.02, 0.05, 270)

Scenario II logit(µi) = β0 + β1min(Xi, τ) + β2min(Xi, τ)
2 + ηZi

(β0, β1, β2, η, τ) = (0.6, 0.02,−0.0001, 0.05, 270)

Scenario III Yi = β0 + β1min(Xi, τ) + ηZi + ϵi
(β0, β1, η, τ) = (−85, 0.7, 8, 270)

Scenario IV Yi = β0 + β1min(Xi, τ) + β2min(Xi, τ)
2 + ηZi + ϵi

(β0, β1, β2, η, τ) = (−170, 1.55,−0.002, 8, 270)

69



method respectively. In scenarios III and IV, we estimated the threshold τ based on

the three different models using the following four methods: the likelihood method

based on the sudden-jump model (4.1), the “segmented” method (Muggeo, 2008)

based on the generalized broken-stick model (4.2), and the two methods based the

constrained broken-stick model (4.3) using the likelihood method and the proposed

modified Newton-Raphson method respectively. For each scenario with a specific

sample size, we report the bias, standard deviation of estimates across 1000 Monte

Carlo replicates (MCSD), mean squared error (MSE) and average of standard error

(AVESE) for each methods. Bootstrapping was used to obtain the AVESE using

the R package “boot” Davison and Hinkley (1997); Canty and Ripley (2020) with

200 bootstrap replicates. The R package “pROC” Robin et al. (2011) was used to

calculate the AUC and the Youden’s index , the R function “logLik” was used to

calculate the log-likelihood of each fitted regression model in all likelihood methods,

and the R function “optimize” was used to optimize the threshold τ in all methods

based on AUC, the Youden’s index and the likelihood (R Core Team, 2020). Results

on scenarios I and II are shown in Table 4.2 and on scenarios III and IV are shown

in Table 4.3.

We note that the two methods based on a sudden-jump model lead to large biases

across all scenarios and the bias persists even when the sample size is very large. In

addition, for all scenarios considered here, the direction of bias is negative, indicat-

ing that it tends to underestimate the threshold. In the setting of cardiac surgery

practices that we consider, a negative bias is worse than a positive bias because the

surgeon and perfusionist who manage a patient’s DO2 may think a nadir DO2 of 255,

say, will not cause harm to a patient but in reality it is causing harm. The bias is

a result of model-misspecification. These results demonstrate the consequence of the

sudden-jump model when it is misspecified.
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Table 4.2: Simulation results based on 1000 Monte Carlo data sets for scenarios I
and II. “Bias” is Monte Carlo bias, “MCSD” is Monte Carlo standard
deviation, “RMSE” is Monte Carlo root mean squared error, and “AVESE”
is average of standard error. “SJ Model” is sudden-jump model, “BS
Model” is broken-stick model, and “CBS model” is constrained broken-
stick model. The minimum and maximum RMSE are highlighted in bold.

Methods Bias MCSD RMSE AVESE Bias MCSD RMSE AVESE

Scenario I
n = 500 n = 1000

SJ Model (AUC) -26.18 18.83 32.25 19.00 -28.28 15.50 32.25 15.89
SJ Model (Youden) -24.40 22.68 33.31 22.14 -25.28 20.22 32.37 20.10
BS Model (segmented) -17.86 41.29 44.99 36.36 -10.92 31.07 32.93 32.51
CBS Model (NR) -9.74 16.99 19.58 15.44 -5.52 13.38 14.47 13.31
CBS Model (AUC) 2.81 26.72 26.87 24.95 4.08 21.68 22.06 20.99
CBS Model (likelihood) 1.51 27.33 27.37 25.75 3.28 21.83 22.08 21.04

n = 2500 n = 5000

SJ Model (AUC) -28.25 10.38 30.09 11.14 -28.19 8.34 29.40 8.61
SJ Model (Youden) -27.16 13.59 30.37 15.20 -26.84 10.70 28.89 11.98
BS Model (segmented) -5.47 23.62 24.25 25.88 -2.77 15.33 15.58 17.69
CBS Model (NR) -2.33 10.15 10.42 10.16 -1.09 8.00 8.07 7.90
CBS Model (AUC) 3.47 15.37 15.75 15.59 1.95 11.28 11.45 11.97
CBS Model (likelihood) 3.11 14.94 15.26 14.79 0.68 8.57 8.60 10.46

Scenario II
n = 500 n = 1000

SJ Model (AUC) -23.43 13.62 27.11 14.25 -23.45 10.77 25.80 11.30
SJ Model (Youden) -21.18 16.22 26.68 17.26 -22.34 13.15 25.92 14.20
BS Model (segmented) -9.40 36.42 37.62 34.51 -2.38 23.48 23.60 29.63
CBS Model (NR) -3.75 13.76 14.26 13.13 0.35 11.03 11.03 10.86
CBS Model (AUC) 7.16 20.94 22.13 19.90 6.27 15.73 16.93 15.68
CBS Model (likelihood) 5.73 20.59 21.37 20.43 5.43 14.32 15.31 15.21

n = 2500 n = 5000

SJ Model (AUC) -23.18 7.31 24.31 7.76 -22.85 5.68 23.55 5.96
SJ Model (Youden) -22.52 8.85 24.20 9.76 -21.96 6.56 22.92 7.30
BS Model (segmented) 1.95 13.40 13.54 21.25 5.91 8.60 10.43 9.33
CBS Model (NR) 1.82 6.74 6.98 7.58 2.41 4.69 5.27 5.11
CBS Model (AUC) 4.21 10.74 11.53 11.21 3.13 6.09 6.85 7.61
CBS Model (likelihood) 3.97 9.22 10.04 9.90 3.13 5.34 6.19 6.30
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Table 4.3: Simulation results based on 1000 Monte Carlo data sets for scenarios III
and IV. True τ = 270. “Bias” is Monte Carlo bias, “MCSD” is Monte Carlo
standard deviation, “RMSE” is Monte Carlo root mean squared error,
and “AVESE” is average of standard error. “SJ Model” is sudden-jump
model, “BS Model” is broken-stick model, and “CBS model” is constrained
broken-stick model. The minimum and maximum RMSE are highlighted
in bold.

Methods Bias MCSD rMSE AVESE Bias MCSD rMSE AVESE

Scenario III
n = 500 n = 1000

SJ Model (likelihood) -33.27 12.66 35.60 13.08 -32.34 9.24 33.63 9.77
BS Model (segmented) -6.96 29.78 30.58 28.42 -1.12 17.76 17.79 21.69
CBS Model (NR) -2.77 11.28 11.61 10.81 -1.07 8.39 8.46 8.59
CBS Model (likelihood) 2.76 15.60 15.84 15.25 1.73 10.49 10.63 11.38

n = 2500 n = 5000

SJ Model (likelihood) -32.04 6.69 32.73 6.83 -31.68 5.38 32.14 5.57
BS Model (segmented) -3.03 5.02 5.86 10.67 -0.23 4.15 4.16 6.05
CBS Model (NR) -0.30 4.94 4.95 5.39 -0.07 3.27 3.27 3.55
CBS Model (likelihood) 0.53 5.41 5.43 6.33 -0.06 3.17 3.17 3.75

Scenario IV
n = 500 n = 1000

SJ Model (likelihood) -38.23 14.39 40.85 14.95 -36.87 10.86 38.44 11.25
BS Model (segmented) -6.75 23.68 24.62 25.58 -7.80 18.89 20.43 21.69
CBS Model (NR) -8.56 12.31 14.99 11.15 -7.09 9.72 12.04 9.16
CBS Model (likelihood) -2.40 18.04 18.20 17.97 -2.84 12.86 13.17 13.60

n = 2500 n = 5000

SJ Model (likelihood) -36.37 7.49 37.13 7.67 -36.35 5.79 36.81 6.03
BS Model (segmented) -13.73 14.42 19.91 13.46 -8.86 8.93 12.58 9.74
CBS Model (NR) -5.70 6.39 8.56 6.46 -5.21 4.40 6.82 4.69
CBS Model (likelihood) -4.30 6.89 8.12 7.93 -4.92 4.16 6.44 4.77
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Figure 4.3: Monte Carlo root mean squared error (RMSE) for all methods in simula-
tion scenario I and scenario II, based on 1000 Monte Carlo data sets.
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Figure 4.4: Monte Carlo root mean squared error (RMSE) for all methods in sim-
ulation scenario III and scenario IV, based on 1000 Monte Carlo data
sets.
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In scenario I and III, the segmented method is slightly biased when the sample size

is small but the bias disappears when the sample size becomes larger (e.g, n ≥ 2500),

suggesting that the bias is a finite sample phenomenon. In general, the biases of the

segmented method are smaller than the two methods based on a sudden-jump model.

This is expected since the broken-stick model is either correct (scenarios I and III) or

less misspecified (scenarios II and IV) than the broken-stick model. Therefore, there

is no or less bias due to model misspecification. However, there is a large variability in

its estimates in all scenarios, except for scenario III when the sample size goes above

2500. In scenarios I and II, considering the root mean squared error which accounts

for both bias and variance, the segmented method performs even worse than the two

methods based on a sudden-jump model due to the much larger variability when the

sample size is small or finite (n ≤ 2500 in scenario I and n = 500 in scenario II).

In scenarios III and IV where the outcomes are continuous, although the root mean

squared error is smaller, the MCSD of the segmented method is sometimes almost

twice as large as the likelihood method based on a sudden-jump model (e.g., n = 2500

in scenario IV).

In all scenarios, all three methods based on a constrained broken-stick model have

better performances in terms of both bias and variance than methods under a sudden-

jump model or a broken-stick model. Compared with the sudden-jump model, the

better performance of the contrained broken-stick model is largely due to the smaller

bias as a result of less model-misspecification. As the broken-stick model, the con-

strained broken-stick model is either correct or mildly misspecified. However, com-

pared with the broken-stick model, the constrained broken-stick model is able to

reduce variability of estimation substantially by imposing the constraint that there is

no effect when the factor of interest is below/above a certain threshold. These results

show that the specified model plays a key role in the performance of estimation of a

threshold.
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In scenarios I and III, where the constrained broken-stick model is correct, the bias

is small for all methods under a constrained broken-stick model. Scenarios II and

IV are designed to evaluate robustness of various methods. In these two scenarios,

all models including the broken-stick model and the constrained broken-stick model

are misspecified. Scenarios II and IV represent situations where there is a threshold

but the effect is not strictly linear once the factor of interest is below or above the

threshold. This is a plausible relationship in practice. In reality and in our moti-

vating example on DO2 in particular, often times scientific knowledge may suggest

there is a monotonic effect below (or above) a threshold but the true relationship

may not be necessarily linear. Consistent with other scenarios, in scenarios II and

IV, methods based on a sudden-jump model lead to very large negative bias, the

segmented method has a large variability when the sample size is small to moderate,

and the methods based on a constrained broken-stick model lead to overall much bet-

ter results in terms of both bias and variance. Although some biases remain due to

model misspecification, by capturing the overall monotonic trend, the approximation

by a constrained broken-stick model leads to considerable reduction in bias and the

remaining bias (e.g., when n = 500 in scenario IV, the bias is smaller than 5) is not

much clinically relevant in our application.

The above discussion focuses on differences among models. Next, we compare the

performance of different methods under a constrained broken-stick model. Under the

same constrained broken-stick model, different estimation methods lead to different

performances. Overall, the proposed modified Newton-Raphson method has the best

performance in terms of small bias and low variability, i.e. smallest root mean squared

error, across almost all scenarios and all sample sizes. The likelihood/information-

based method has the second best performance in scenarios I and II, and has the best

performance when the sample size is large in scenarios III and IV. The AUC method

has the worst performance among the three methods. The difference in performance
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is more evident in scenarios I and II where the outcome is binary. These are more

challenging scenarios for estimation as there is inherently less information contained

in a binary outcome than in a continuous outcome. We note that for scenarios I and

II, the AUC method is not stable and has large variability. This is expected since

the AUC is not a sensitive criterion to evaluate model fit and, as a result, not a good

method to base estimation of τ on. The likelihood method performs comparably

as the proposed two-step NR method when the sample size is large (e.g. n = 5000),

however it has larger variability when the sample size is small. The larger variability is

mainly due to computation and depends on the the optimization method. In principle,

maximizing the likelihood is a sound estimation idea. However, computationally the

optimization may be challenging because the underlying likelihood function is not

differentiable (Das et al., 2016). In Figure 4.3 and Figure 4.4, we plot the root mean

squared error for all methods for scenarios I-IV respectively. It is clear that the

proposed modified Newton-Raphson method and the likelihood based method in the

constrained broken-stick model lead to overall the most satisfactory results.

4.3.1 Application

This section considers the motivating study introduced in Section 4.1. Data were

obtained on 2799 patients undergoing CABG surgery from 07/2007 to 06/2014 at the

University of Michigan. This study was approved by the Institutional Review Board

of the University of Michigan Health System (HUM00207425). We aim to estimate

the low threshold of nadir DO2 that is associated with an increased risk of AKI to

guide operative practice during a cardiac surgery. The factor of interest is nadir DO2

during a surgery. The severity of AKI is quantified by the stage ranging from 1 to 3

using the criterion by the Acute Kidney Injury Network. In our analysis, we consider

two binary outcomes: any AKI with stage 1, 2 or 3, and moderate or severe AKI

defined as AKI with stage 2 or 3. Our analysis adjusts for six covariates determined
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by clinical knowledge. Table 4.4 shows the summary statistics for the factor of interest

(nadir DO2), outcomes and baseline variables to be adjusted for. The total number

of patients used in analyses is 2306, after removing patients with missing nadir DO2

or outcomes.

Table 4.4: Descriptive statistics for the application data set (n = 2, 306).

Variables Mean(SD) or N(%)

Factor of Interest
Nadir DO2 443.94 (164.60)

Covariates
Age 63.64 (13.53)
BMI, kg/m2 29.42 (6.33)
Gender (Male) 1487 (64.48%)
Diabetes 714 (30.96%)
Hypertension 1592 (69.04%)
Smoke 324 (14.05%)

Outcomes
Any AKI (Stage 1, 2 or 3) 671 (29.10%)
Moderate or severe AKI (Stage 2 or 3) 154 ( 6.68%)

We carried out the analysis using the aforementioned methods. Estimates of the

threshold based on the various methods are listed in Table 4.5 and the details of

model fit using each of the methods are shown in Table 4.7. Unlike simulations

studies, since we do not know the truth for a real data application it is difficult to

judge which method gives the most accurate estimate. But we note the following

things. First, the two methods (AUC and Youden’s index) based on the sudden-

jump model lead to very different answer on when the adverse effect of low nadir

DO2 starts to appear. For example, for any AKI, the AUC method based on the

sudden-jump model suggests the adverse effect appears when nadir DO2 is below

417; however, the Youden’s index method suggests a threshold effect of nadir DO2

when it is below 343. For moderate or severe AKI, the estimated thresholds are 322

and 252 respectively using the AUC and Youden’s Index methods in the sudden-jump
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model. Second, consistent with our simulation studies, the sudden-jump model seems

to underestimate the true threshold as estimates from the sudden-jump model are

considerably smaller than estimates from other methods. The sudden-jump model is a

popular model often used in practice to estimate thresholds. However, our simulations

and data applications demonstrate the danger of using this model and the bias is due

to model mispronunciation. Third, for both outcomes, the broken-stick model and the

constrained broken-stick model lead to similar estimated thresholds. There are three

methods based on the constrained broken-stick model. But we notice the estimate

from the AUC method seems different from estimates from the other two methods.

Fourth, the segmented method based on a broken-stick model has large variability as

shown by the large standard error. The standard error is about twice as much as that

from other methods. Methods from the constrained broken-stick lead to much more

precise estimates. Finally, the recommended likelihood/information-based method

and proposed modified Newton-Raphson method in a constrained broken-stick model

lead to seemly reasonable estimates of threshold and results from the two methods

are close. These observations are consistent with results observed in our simulation

studies. The estimates from modified Newton-Raphson method in a constrained

broken-stick model suggest that there is an increased risk of any AKI once nadir DO2

is below 608 and there is an increased risk of moderate or severe AKI if nadir DO2

drops below 494. These results suggest that probably surgeons and perfusionists who

manage patient’s DO2 during a cardiac surgery should be more conservative than

what was recommended in the clinical literature in managing a patient’s nadir DO2

to improve AKI related outcomes.

As explained previously, the constrained broken-stick model incorporates the scientific

knowledge that the adverse effect of DO2 only appears when DO2 drops below a

certain threshold and there is no effect when DO2 is high. To check whether this

assumption holds true in our data, we carried out a post hoc analysis, where we fit a
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Table 4.5: Threshold estimators of the nadir DO2 in three models (sudden-jump;
broken-stick; constrained broken-stick) with two different binary outcomes
(any AKI; moderate or severe AKI) for models with covariates.

Model Method Any AKI Moderate or Severe AKI

Estimate Std Error Estimate Std Error

SJ Model AUC 416.53 88.23 322.15 97.84
Youden 343.13 94.28 251.57 108.08

BS Model segmented 619.05 244.31 522.86 196.11

CBS Model
AUC 616.66 92.13 527.06 100.75
AIC 603.86 96.46 494.14 112.64
NR 608.49 97.61 494.10 84.37

logistic regression model as in broke-stick model (4.2), while fixing τ at the estimated

value from different methods. This is, we let the data to estimate the slopes of nadir

DO2 below and above each estimated threshold. We check whether the slope of

nadir DO2 when nadir DO2 is greater than the threshold is zero or not and whether

the slope of nadir DO2 when nadir DO2 is below the threshold is indeed negative.

Results based on the threshold value estimated using the segmented method and the

three constrained broken-stick model are shown in Table 4.6. Indeed, for all estimates

of the threshold from these methods, the slope is close to zero when nadir DO2 is

above the threshold and the p-value is not significant. When nadir DO2 is below the

threshold, the slope is negative, indicating an increased risk of AKI is associated with

decreasing DO2. These results confirm that our clinical knowledge seems reasonable

and the adverse effect of nadir DO2 indeed only exists once it drops below a threshold.

4.4 Discussion

In this article we focus on the estimation of a threshold, which has important applica-

tions in biomedical research but is relatively less studied. Moreover, popular methods

in practice may lead to biased estimation of a threshold or have large variability in

estimation. Estimation of a threshold differs from the usual problem of coefficient
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Table 4.6: Model fitting results of the broken-stick model with the threshold fitted as
the estimated value in Table 4.5. “BS Model” is broken-stick model and
“CBS model” is constrained broken-stick model. ∗ represents ×10−3.

Method
Any AKI Moderate or Severe AKI

Slope of nadir DO2 Coefficient* SE* P value Slope of nadir DO2 Coefficient* SE* P value

BS Model ≤ 619.05 -1.39 0.39 <0.01 ≤ 522.86 -2.52 0.79 <0.01
(segmented) > 619.05 0.89 1.02 0.39 > 522.86 1.00 1.21 0.41

CBS Model ≤ 616.66 -1.39 0.39 <0.01 ≤ 527.06 -2.50 0.79 <0.01
(AUC) > 616.66 0.86 1.01 0.39 > 527.06 1.04 1.22 0.39

CBS Model ≤ 603.86 -1.41 0.40 <0.01 ≤ 494.14 -2.65 0.84 <0.01
(AIC) > 603.86 0.74 0.96 0.44 > 494.14 0.72 1.11 0.52

CBS Model ≤ 608.49 -1.40 0.40 <0.01 ≤ 494.10 -2.65 0.84 <0.01
(NR) > 608.49 0.78 0.98 0.42 > 494.10 0.72 1.11 0.52

estimation in that the parameter of interest is non-differentiable, which poses chal-

lenges in estimation and computation. We discuss three models that can be adopted

to estimate a threshold. The sudden-jump model is a popular model in practice,

which models the effect of the factor of interest using a step function and assumes

the effect has a noncontinuous jump at the threshold. This model is scientifically

unrealistic and may lead to severe bias of estimation. Instead of a step function, the

broken-stick model models the relationship using piece-wise linear segments joined at

a threshold. In this model, the effect changes continuously and does not have sud-

den jumps. Therefore, it is scientifically more plausible. However, this model does

not incorporate the scientific knowledge that, when a threshold effect exists, there

is no effect when the factor is below (or above) the threshold, leading to large esti-

mation variability especially for binary outcomes. We propose to use a constrained

broken-stick model to estimate the threshold, where a constraint is imposed to model

a threshold effect. This model is able to strike a balance between model simplicity

and scientific plausibility.

Within each model, various methods are studied to estimate the threshold. In par-

ticular, based on a constrained broken-stick model, we have proposed a modified

two-step Newton-Raphson algorithm to estimate the threshold. This algorithm sep-

arately updates the threshold and the rest of the unknown parameters. Hence, it
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Table 4.7: Model fitting results in three models (sudden-jump; broken-stick; con-
strained broken-stick) for two different binary outcomes (any AKI; mod-
erate or severe AKI) with the threshold fitted as the estimated value in
Table 4.5.

Any AKI Moderate or severe AKI

Variable Coefficient SE P value Variable Coefficient SE P value

Sudden-Jump Model (AUC) Sudden-Jump Model (AUC)
intercept -2.18 0.36 <0.01 intercept -3.57 0.61 <0.01
Nadir DO2 < 416.53 0.36 0.10 <0.01 Nadir DO2 <322.15 0.55 0.19 <0.01
Age -2.47E-03 3.83E-03 0.52 Age -4.60E-03 0.01 0.50
Gender (Male) 0.02 0.10 0.85 Gender (Male) -0.20 0.18 0.25
BMI 0.03 0.01 <0.01 BMI 0.04 0.01 <0.01
Diabetes 0.52 0.10 <0.01 Diabetes 0.58 0.18 <0.01
Hypertension 0.30 0.12 0.01 Hypertension -0.11 0.21 0.60
Smoke -0.08 0.14 0.57 Smoke -0.19 0.26 0.46

Sudden-Jump Model (Youden’s Index) Sudden-Jump Model (Youden’s Index)
intercept -2.05 0.35 <0.01 intercept -3.47 0.61 <0.01
Nadir DO2 < 343.13 0.31 0.11 <0.01 Nadir DO2 < 251.57 0.61 0.23 <0.01
Age -1.67E-03 3.81E-03 0.66 Age -3.64E-03 0.01 0.60
Gender (Male) -0.03 0.01 0.73 Gender (Male) -0.25 0.17 0.15
BMI 0.03 0.10 <0.01 BMI 0.03 0.01 0.01
Diabetes 0.53 0.14 <0.01 Diabetes 0.56 0.18 <0.01
Hypertension 0.30 0.10 0.01 Hypertension -0.09 0.21 0.66
Smoke -0.08 0.12 0.58 Smoke -0.19 0.26 0.48

Broken-Stick Model (segmented) Broken-Stick Model (segmented)
intercept -1.43 0.37 <0.01 intercept -2.51 0.64 <0.01
Nadir DO2 -1.39E-03 3.93E-04 <0.01 Nadir DO2 -2.52E-03 7.92E-04 <0.01
(Nadir DO2 - 619.05)+ 2.28E-03 1.21E-03 0.06 (Nadir DO2 - 522.86)+ 3.52E-03 1.67E-03 0.03
Age -2.44E-03 3.84E-03 0.53 Age -4.60E-03 0.01 0.51
Gender (Male) 0.02 0.10 0.87 Gender (Male) -0.17 0.18 0.35
BMI 0.03 0.01 <0.01 BMI 0.04 0.01 <0.01
Diabetes 0.52 0.10 <0.01 Diabetes 0.56 0.18 <0.01
Hypertension 0.30 0.12 0.01 Hypertension -0.10 0.21 0.63
Smoke -0.08 0.14 0.58 Smoke -0.19 0.26 0.48

Constrained Broken-Stick Model (AUC) Constrained Broken-Stick Model (AUC)
intercept -1.48 0.36 <0.01 intercept -2.61 0.63 <0.01
min(Nadir DO2, 616.66) -1.29E-03 3.74E-04 <0.01 min(Nadir DO2, 527.06) -2.27E-03 7.34E-04 <0.01
Age -2.66E-03 3.83E-03 0.49 Age -0.01 0.01 0.44
Gender (Male) 0.02 0.10 0.82 Gender (Male) -0.14 0.18 0.43
BMI 0.03 0.01 <0.01 BMI 0.04 0.01 <0.01
Diabetes 0.52 0.10 <0.01 Diabetes 0.56 0.18 <0.01
Hypertension 0.30 0.12 0.01 Hypertension -0.10 0.21 0.61
Smoke -0.08 0.14 0.57 Smoke -0.19 0.26 0.46

Constrained Broken-Stick Model (AIC) Constrained Broken-Stick Model (AIC)
intercept -1.47 0.36 <0.01 intercept -2.55 0.64 <0.01
min(Nadir DO2, 603.86) -1.31E-03 3.80E-04 <0.01 min(Nadir DO2, 494.14) -2.45E-03 7.83E-04 <0.01
Age -2.62E-03 3.83E-03 0.49 Age -0.01 0.01 0.46
Gender (Male) 0.02 0.10 0.82 Gender (Male) -0.15 0.18 0.40
BMI 0.03 0.01 <0.01 BMI 0.04 0.01 <0.01
Diabetes 0.52 0.10 <0.01 Diabetes 0.56 0.18 <0.01
Hypertension 0.30 0.12 0.01 Hypertension -0.10 0.21 0.62
Smoke -0.08 0.14 0.57 Smoke -0.19 0.26 0.46

Constrained Broken-Stick Model (NR) Constrained Broken-Stick Model (NR)
intercept -1.47 0.36 <0.01 intercept -2.55 0.64 <0.01
min(Nadir DO2, 608.49) -1.30E-03 3.78E-04 <0.01 min(Nadir DO2, 494.10) -2.45E-03 7.83E-04 <0.01
Age -2.63E-03 3.83E-03 0.49 Age -0.01 0.01 0.46
Gender (Male) 0.02 0.10 0.82 Gender (Male) -0.15 0.18 0.40
BMI 0.03 0.01 <0.01 BMI 0.04 0.01 <0.01
Diabetes 0.52 0.10 <0.01 Diabetes 0.56 0.18 <0.01
Hypertension 0.30 0.12 0.01 Hypertension -0.10 0.21 0.62
Smoke -0.08 0.14 0.57 Smoke -0.19 0.26 0.46
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is able to take advantage of existing popular software available to fit a generalized

linear regression model when the threshold is known to stabilize computation. We

have discussed the implications of modeling assumptions on threshold estimation and

compared various methods/models through extensive simulation studies. Our results

show that the popular sudden-jump model leads to large systematic bias. In par-

ticular, when an effect is only present when the factor of interest is below a certain

threshold, our simulation shows that a sudden-jump model systematically underes-

timates the threshold. The segmented method under a broken-stick model is less

biased in general as the model is not or less misspecified, but has large variability in

estimation. In certain cases, for example, when the outcome is binary and the sample

size is small, the segmented method in a broken-stick model may even have larger

root mean squared errors than the broken-stick model due to its large variability in

estimation. Overall, all estimation methods in a constrained broken-stick model have

better performance. Among all methods based on a constrained broken-stick model,

the proposed modified Newton-Raphson method has overall the best performance

in terms of mean squared error, especially for the more challenging case when the

outcome is binary, whereas the AUC method has the worst performance.

The lowest nadir DO2 that a CABG patient can expose to during CPB but does not

increase the risk of AKI is estimated using the various methods using data obtained

from the University of Michigan. Results are consistent with our simulations stud-

ies. Notably, the popular sudden jump-model leads to estimates that are much lower

than those from other methods. For moderate or severe AKI, our estimates from the

sudden-jump model are close to previous published results, i.e., 272 mL/minute/m2

and 262 mL/minute/m2, using the same model in the clinical literature (Ranucci

et al., 2005; De Somer et al., 2011). Estimates from the sudden-jump model are

much lower than those from other methods (about 500 mL/minute/m2 for moderate

or severe AKI), consistent with observations from our simulation studies that the
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sudden-jump model in this setting systematically underestimates the threshold. This

potential bias has important implications and is worth more attention. Such a nega-

tive bias may mislead the surgeons and perfusionists to expose a patient to a harmfully

low DO2 since they would have thought an adverse event would only appear if the

DO2 is much lower. In fact, for any AKI, based on our estimate from the proposed

modified Newton-Raphson algorithm, a nadir DO2 lower than 608mL/minute/m2

starts to expose patients to a higher risk of AKI. These results suggest that surgeons

and perfusionists need to adopt a more conservative strategy in managing a patient’s

DO2 during a CABG than those recommended in the clinical literature. These re-

sults, combined with findings from our simulation studies, highlight that modeling

assumptions and the estimation method have a significant impact in estimation of a

threshold.
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CHAPTER V

Estimation of Threshold in Constrained

Continuous Threshold Model

5.1 Introduction

In real applications, nonlinear patterns with single or multiple change-points are

consistently observed and should be considered in the analysis. A particular typical

case for the change-point is the threshold, where the association between a risk factor

and the outcome only occurs before or after the threshold. Moreover, the estimation

of the threshold is widely used as a key to answering important research questions

in many scientific areas. For example, in the epidemiological study, an interesting

and meaningful research question is to explore threshold limits of key air pollutants’

exposures for pregnant women that pose adverse health effects in terms of low birth

weight, which will lead to a substantial public health impact on perinatal mortality

and long-term adverse health consequences for surviving infants (Ngoc et al., 2006;

Behrman et al., 2007). Most studies have focused on the threshold effect of air

pollution on the general public. In contrast, fetuses appear to be more susceptible

than others (Šrám et al., 2005), and existing studies reported that increased levels

of air pollutants, such as nitrogen dioxide (NO2) and sulfur dioxide (SO2), would

contribute to a higher risk of low birth weight (Lacasana et al., 2005; Sun et al., 2016;
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Smith et al., 2020).

Approaches to estimating threshold are presented in the literature. In the following,

we discuss several representative existing approaches in detail. First, some litera-

ture selected the threshold based on a quantile perspective, such as 10% or 25%,

directly based on the distribution of their available data (Lin et al., 2004). Although

this approach is easy to implement and adopt by some researchers, it relies on the

researcher’s subjectivity due to the lack of justifiable reasons for choosing the quan-

tile and hence may not provide a reliable threshold. To overcome subjectivity and

keep the easy implementation in estimating the threshold, some researchers used the

sudden-jump model, which assumes the risk of the outcome jumps suddenly once the

factor of interest is lower or higher than a threshold and stays constant after the

threshold (Ranucci et al., 2005; De Somer et al., 2011). However, the assumption of

the sudden jump may not hold in reality and thus can not provide a reliable threshold.

For example, we do not expect that the effect of low birth weight will suddenly jump

to another constant once air pollutants achieve the threshold. Since the threshold is a

particular case of a change-point, the linear spline model, also called the broken-stick

model or the segmented model, has been widely studied in the literature (Marsh and

Cormier , 2001). Estimating change-points in a linear spline model for a continuous

outcome has been rigorously studied (Quandt , 1958; Hudson, 1966; Feder , 1975b,a;

Hansen, 2000; Das et al., 2016), and some well-developed algorithms are also available

(Muggeo, 2003, 2008; Fong et al., 2017). Although the linear spline model considers a

continuous nonlinear effect for the factor of interest and the outcome, the linear spline

model can be improved by adding the constraint for the threshold effect in order to

answer some research questions with the threshold, such as the air pollutant problem

we mentioned early. To reflect the knowledge of the existence of the threshold, the

constrained linear spline model, also called the constrained broken-stick model, is an

option to explore the threshold by imposing the assumption of no effect below or
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above the threshold and a linear effect above or below the threshold. The estimation

method and performances of the constrained linear spline model have been studied

extensively in Chapter IV. Although the increasing or decreasing association between

the factor of interest and the outcome is still captured by the constrained linear spline

model, a linear association assumption is likely to be violated in reality. Higher-order

(e.g., quadratic or cubic) constrained spline models are available options for studying

threshold effects for researchers who do not believe in a linear association. However,

the model assumption for a specific higher-order may still not hold in reality and may

sometimes fall into the trouble of overfitting.

In order to balance the model flexibility and overfitting issue, we introduce a con-

strained penalized spline model and propose a computationally convenient two-step

algorithm to estimate the threshold. The constrained penalized spline model and the

proposed estimation equation and algorithm are summarized in Section 5.2. Simula-

tion studies are reported in Section 5.3. In Section 5.4, we aim to estimate safe-level

thresholds of NO2 and SO2 for pregnant women in preventing the outcome of low

birth weight, using the study of Pregnancy Research on Inflammation, Nutrition, &

City Environment: Systematic Analyses in Mexico City (Osornio-Vargas et al., 2013).

5.2 Method

5.2.1 Constrained Penalized Spline Model and Notations

Consider a study with n subjects in the form of {Yi, Xi,Zi}. For each subject i

(i = 1, ..., n), let Yi be the outcome, Xi be the factor of interest with a a threshold

effect, and Zi be all other covariates to be adjusted for. Specifically, Xi is assumed

to have an effect on the outcome Yi only when Xi is above a certain threshold τ . To

learn the threshold from the data, we consider a constrained penalized spline model
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as follows,

Yi = µ(Xi,Zi;θ) + ϵi (5.1)

= β0 + β1max(Xi, τ) +
K∑
k=1

β1k max(Xi, uk) + ηTZi + ϵi with
K∑
k=1

β2
1k ≤ c,

where ϵi ∼ N(0, σ2), max(Xi, τ) =


Xi if Xi ≥ τk

τ if Xi < τk,

and uk = τ +
max(X)− τ

K + 1
k.

In the model (5.1), K is the prespecified number of knots uk, where uk is the knot

evenly distributed between the threshold τ and the maximum value of Xi, that is

max(X), for k = 1, . . . , K. From the definition above, knots uk are determined

automatically once the data and the threshold τ are given. Effects of Zi are modeled

as linear with coefficients η. We assume that the factor of interest Xi has a bounded

domain and the threshold τ is within this bounded domain. To simplify notations,

we denote V i = (Xi,Zi), β = (β0, β1, β11, ..., β1K)
T and θ = (βT ,ηT , τ)T , where θ

is assumed to belong to a compact set Θ with dimension p = K + L + 3. The true

value of θ is denoted as θ0, assumed to be an interior point of the compact set Θ.

5.2.2 Proposed Method

Motivated by the ridge regression, we want to minimize the following loss function

L(θ) using a Lagrange multiplier argument. Specifically,

min
θ
L(θ) = min

θ

[
1

n

n∑
i=1

{
Yi − µ(V i;θ)

}2

+ λ

K∑
k=1

β2
1k

]
, (5.2)

where λ is the Lagrange multiplier for some λ ≥ 0. The term λ
∑K

k=1 β
2
1k is called

a roughness penalty and the amount of smoothing is controlled by λ, which is also

referred as the smoothing parameter. When λ is chosen as zero, there is no penal-

ization on the β1k (k = 1, . . . , K), which will lead to an overfitting problem. When λ
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is large, the parameter β1k (k = 1, . . . , K) is heavily constrained and the number of

degrees of freedom for model (1) will be effectively lower, tending to be L+ 3.

As the maximum function, that is max(x, τ), is not differentiable with respect to τ ,

we cannot directly solve the unknown parameters θ from the minimization formula

(5.2) by the derivative of θ. To overcome the nondifferentiability problem, we borrow

the modified derivative idea as shown in formula (2.2) for the linear spline model.

Specifically, we modify the derivative of max(x, τ) with the respect of τ as follows,

∂max(x, τ)

∂τ
= I(x < τ). (5.3)

With this modified derivative, the loss function L(θ) can then be treated as a differ-

entiable function with respect to θ in some sense. We then introduced the function

Q(θ) = H(θ){Y − µ(V ;θ)} −Dλ(θ), where

H(θ) =
{
1,max(X, τ),max(X, u1), . . . ,max(X, uK),

Z, β1I(X < τ) +
K∑
k=1

{β1k(1−
k

K + 1
)I(X < uk)}

}T

p×1
,

Dλ(θ) =
{
0, 0, λβ11, . . . , λβ1K , 0, . . . , 0

}T

p×1
.

And the 1
n

∑n
i=1Qi(θ) function is proportional to the modified derivative of L(θ) with

respect to θ as in formula (5.3). We then propose to proceed as usual, i.e., estimating

the unknown parameters θ by solving the following estimating equation,

1

n

n∑
i=1

Qi(θ) =
1

n

n∑
i=1

Hi(θ){Yi − µ(V i;θ)} −Dλ(θ) = 0. (5.4)

The solution of the above estimating equation (5.4) is denoted as θ̂n = (β̂
T

n , τ̂
T
n , η̂

T
n )

T .

Intuitively, H(θ) can be viewed as the modified derivative of µ(X,Z;θ) with respect

to θ. We note that the minimization of the loss function L(θ) is not the equivalent to
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solving the proposed estimating equation (5.4), because the modified derivative idea

is rigorous.

To choose the smoothing parameter λ, one standard technique is the generalized cross-

validation, or short for GCV. According to Chapter 5.3.2 in Ruppert et al. (2003), the

smoothing parameter λ can be chosen based on the following GCV criterion GCV (λ),

where

GCV (λ) =
n∑

i=1

({(I − Sλ)Y }i
1− n−1tr(Sλ)

)2

and Sλ is the smoother matrix associated with the predicted model (1). And we

denote the smoothing parameter that minimizes GCV(λ) as λ̂GCV . Another method

is to use the linear mixed effect model, a special case of the ridge regression, to

penalize the constraint term λ
∑K

k=1 β
2
1k. In the linear mixed effect model, β0 +

β1max(Xi, τ)+ηTZi is treated as the fixed part, and
∑K

k=1 β1kmax(Xi, uk) is treated

as the random part. The standard method to fit a linear mixed effect model is the

best linear unbiased prediction (BLUP) method.

5.2.3 Proposed Algorithm

This section describes the proposed two-step algorithm in detail to solve the threshold

in model (5.1). As the proposed estimating function Q(θ) is also nondifferentiable

with respect to θ, we propose the following two-step algorithm. Before starting the

algorithm, we specify the initial value of τ , denoted as τ̂ (0). The t-th (t ≥ 1) iteration

of the algorithm proceeds as follows.

Step 1. Update estimates of β and η via treating τ is fixed at τ̂ (t−1). When τ is fixed,

knots uk (k = 1, . . . , K) are also fixed, which are denoted as û
(t−1)
k . Specifically,

we fit the following ridge regression with the same constraint
∑K

k=1 β
2
1k ≤ c as
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in model (5.1),

E(Y |X,Z) = β0 + ηTZ + β1max(X, τ̂ (t−1)) +
K−1∑
k=1

β1k max(X, û
(t−1)
k ),

and then obtain estimates β̂
(t)
, η̂(t) and the predicted values µ̂i

(t), i = 1, · · · , n.

Step 2. Update the estimate of τ via treating β and η fixed at β̂
(t)

and η̂(t). Specif-

ically, τ is updated by a modified Newton-Raphson procedure τ̂ (t) = τ̂ (t−1) +

{J (t)}−1U (t), where

U (t) =
n∑

i=1

(Yi − µ̂i
(t))

{
β̂
(t)
1 I(Xi < τ̂ (t−1)) +

K∑
k=1

β̂
(t)
1k I(Xi < ûk

(t−1))(1− k

K + 1
)
}
,

J (t) =
n∑

i=1

{
β̂
(t)
1 I(Xi < τ̂ (t−1)) +

K∑
k=1

β̂
(t)
1k I(Xi < ûk

(t−1))(1− k

K + 1
)
}2

.

From the modified derivative perspective, U (t) and J (t) are proportional to the

modified first-order derivative function and second-order derivative (Hessian)

matrix of L(θ) with respect to τ , with β and η fixed at the recent value.

Starting with t = 1, the proposed algorithm iterates between step 1 and step 2 until

the convergence of τ , i.e. ∥τ̂ (t) − τ̂ (t−1)∥< ξ, where ξ is a pre-specified convergence

tolerance value. And the final estimator of β and η are obtained by another step 1

of the algorithm, fixing the estimate of τ as the final estimate τ̂ (t).

5.2.4 Estimation of Variance

In this section, we discuss the asymptotic properties and variance estimation methods

for the proposed estimator θ̂n. This section roughly follows the idea and proofs studied

in Section 2.4.2 and Yu and Ruppert (2002).
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Assumption 2. 1
n

∑n
i=1{µ(V i;θ) − µ(V i;θ

∗)} converges to some limit function uni-

formly in θ, θ∗ ∈ Θ, and 1
n

∑n
i=1{µ(V i;θ)− µ(V i;θ0)} has a unique minimum θ0.

Result 3. Under assumption 2 and if the smoothing parameter λ = o(1), then θ̂n is

a consistent estimator of θ0.

Proof. It is obvious to see that the mean function µ(V ;θ) is continuous for each fixed

V and θ is assumed to be belonged to the compact set Θ. Therefore, according to

Theorem 1 in Yu and Ruppert (2002), θ̂n is a consistent estimator of θ0.

Result 4. Under assumption 2 and if the smoothing parameter λ = o(n−1/2), then

√
n(θ̂n−θ0) converges in distribution to a Normal distribution N(0, σ2Ω−1(θ0)), where

Ω(θ0) = E[H(θ0)H
T (θ0)].

Proof. AlthoughQ(θ) involves maximum functions that are not differentiable, E(Q(θ))

is first-order differentiable with respect to θ because of the integral of X. By Talyor

expansion of E(Q(θ̂n)) around θ0, we have

E(Q(θ̂n))− E(Q(θ0)) = R(θ∗)(θ̂n − θ0), (5.5)

where R(θ) is the first-order derivative matrix of E(Q(θ)) with respect to θ and θ∗

lies between θ̂n and θ0. With some simple algebra, we can calculate that R(θ) =

−E{HT (θ)H(θ)}−λID, where ID is a diagonal matrix with all non-diagonal elements

as zero and diagonal elements as (0, 0, 1, . . . , 1, 0, . . . , 0)1×p where 1 occurred in the

order of 3 to 2 +K. And we denote Ω(θ) = E{HT (θ)H(θ)}. For simplicity, we use

the same notation Gn(.) in van der Vaart (2000) to denote the empirical process, i.e.,

Gn(f) = n1/2{Pn(f) − P (f)}, where P to denote the marginal law of observations
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and Pn to denote the empirical distribution. Equation (5.5) can be re-organized as

Gn(Q(θ̂n)) = Gn{Q(θ̂n)−Q(θ0)}+Gn{Q(θ0)}

= −
√
n{Ω(θ∗) + λID}(θ̂n − θ0). (5.6)

As θ̂n converges to θ0 in probability and θ∗ lies between θ̂n and θ0, it follows that

θ∗ converges to θ0 in probability when n −→ ∞. As each component in Ω(θ) is

continuous with respect to θ, by continuous mapping theorem, Ω(θ∗) converges to

Ω(θ0) as n −→ ∞. Also because λ = o(n−1/2), we have Ω(θ∗) + λID also con-

verges to Ω(θ0). According to the same proof procedure in Theorem 2 of Section

2.4.2, we can show that Q(θ) belongs to the Donsker class, which implies asymp-

totical equicontinuity, and further we can have Gn{Q(θ̂n) − Q(θ0)} = op(1). Also,

it is easy to check that Gn{Q(θ0)} = Gn{QH(θ0)}, where QH(θ) = H(θ){Y −

µ(V ;θ)}. By central limit theorem, −Gn(Q(θ0)) converges in distribution to a

normal distribution N
(
0, P{QH(θ0)Q

T
H(θ0)}

)
. With some algebra, we can show

that P{QH(θ0)Q
T
H(θ0)} = σ2Ω(θ0). Therefore, by Slutsky’s theorem, it follows that

√
n(θ̂n − θ0) converges in distribution to N(0, σ2Ω−1(θ0)).

To make statistical inference, the asymptotic variance can be consistently estimated

by V̂ = σ̂2Ω̂−1(θ̂n), where Ω̂−1(θ̂n) =
1
n

∑n
i=1H

T
i (θ̂n)Hi(θ̂n). According to Chapter

3.14 in Ruppert et al. (2003), the estimation of σ2 can be obtained via σ̂2 =
∑n

i=1(Yi−

µ̂i)
2/dfres, where dfres = n− 2tr(Sλ) + tr(SλS

T
λ ).

Because λ goes to 0 sufficiently fast as n goes to infinity, the asymptotic variance

σ2Ω−1(θ0) in Result 4 does not involve λ. However, λ may not close enough to zero

in a finite sample situation, and thus it is not appropriate to ignore λ in the vari-

ance estimation from the numerical perspective. Therefore, we further consider the

variance estimation by treating λ as a fixed value. We note that the proposed esti-
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mating equation (5.4), that is 1
n

∑n
i=1Qi(θ) = 0, is an unbiased estimating equation

of E(Q(θ)) = 0, whose solution is denoted as θλ0. Therefore, according to Theorem

1 and Theorem 2, θ̂n is a consistent estimator of θλ0 and
√
n(θ̂n − θλ0) converges

in distribution to N(0, V −1
1 (θλ0)V2(θλ0)V

−1
1 (θλ0)), where V1(θ) is the negative mod-

ified derivative of E(Q(θ)) with respect to θ and V2(θ) = E(Q(θ)QT (θ)). With

some algebra, we can calculate that V1(θ0) = E{HT (θ0)H(θ0)}+ λID and V2(θ0) =

σ2E(H(θ0)H
T (θ0)) − Dλ(θ0)D

T
λ (θ0), where ID is a diagonal matrix with all non-

diagonal elements as zero and diagonal elements as (0, 0, 1, . . . , 1, 0, . . . , 0)1×p where

1 occurred in the order of 3 to 2 +K, and Dλ(θ) is the same function appears in the

proposed estimating equation (5.4). Thus, when λ is treated as fixed, we can provide

a sandwich estimator of the covariance matrix Vsw = V̂ −1
1 (θ̂n)V̂2(θ̂n)V̂

−1
1 (θ̂n), where

V̂1(θ̂n) = 1
n

∑n
i=1H

T
i (θ̂n)Hi(θ̂n) + λID and V̂2(θ̂n) = σ̂2[ 1

n

∑n
i=1H

T
i (θ̂n)Hi(θ̂n)] −

Dλ(θ̂n)D
T
λ (θ̂n). Bootstrapping is also an option for the estimation of the variance

for the proposed estimator θ̂n. And we will compare these three different variance

estimation methods in the simulation section.

5.3 Simulation Studies

We conducted a series of simulation studies with either linear or nonlinear patterns

above the threshold to evaluate our proposed method for the constrained penalized

spline model and compare its performance with the constrained linear spline model.

The true generating models for each setup and the choice of λ for the constrained

penalized spline model were summarized in Table 5.1, and the true generating models

were also visualized in Figure 5.1. In all simulation scenarios, X was assumed to

follow a uniform distribution (0, 50), the error term ϵ was assumed to follow a normal

distribution with mean zero and standard deviation 12, the true value of the threshold

was set at 15, and the initial value of the threshold for the proposed algorithm was set

as 30. For all scenarios of the constrained penalized spline model, the number of knots
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K was set as 20. Both the constrained penalized spline model and the constrained

linear spline model were evaluated under 1000 Monte Carlo replicates with sample

sizes varies from n = 500, 1000, 2500, and 5000 in all simulation scenarios. And the

threshold was estimated through the two-step Newton-Raphson algorithm for both

the constrained penalized spline model and the constrained linear spline model.

Table 5.1: True model generating functions and true model coefficients for four sim-
ulation setups. λ is only for the constrained penalized spline model.

Setup Model λ

1 E(Y |X) = 1
6
(X − 10)2 − 25

6
if x ≥ 15; 0 if x < 15 250

n

2 E(Y |X) = 245− 1
5
(X − 50)2 if x ≥ 15; 0 if x < 15 200

n

3 E(Y |X) = 7X − 105 if x ≥ 15; 0 if x < 15 250
n

4 E(Y |X) = 250 if x ≥ 40; 10X − 150 if x ≥ 15 & x < 40; 0 if x < 15 120
n

For each scenario with a specific sample size, we reported bias, Monte Carlo standard

deviation (MCSD), root mean squared errors (RMSE) and the average of standard

error derived from the bootstrapping (AVESEb) for both the constrained penalized

spline model and the constrained linear spline model. The bootstrapping was imple-

mented using the R package “boot” (Davison and Hinkley , 1997; Canty and Ripley ,

2020) with 200 bootstrap replicates for all scenarios. To better illustrate the perfor-

mance of different variance estimation methods from asymptotic variance as described

in Chapter 5.2.4, we further provided two average of standard errors, i.e., AVESE1

and AVESE2, for the constrained penalized spline model. The AVESE1 was derived

from the asymptotic variance from Result 4, and the AVESE2 was derived from the

sandwich estimation Vsw when treating λ as a fixed value.

Simulation results are summarized in Table 5.2. For both the constrained penalized

spline model and the constrained linear spline model, the proposed two-step NR

algorithm has a 100% convergence rate of the algorithm in all scenarios. For the

constrained penalized spline model, the bias is generally small in all scenarios, with
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Figure 5.1: Figures of four simulation setups of either linear or non-linear patterns
above the threshold.
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Table 5.2: Simulation results based on 1000 Monte Carlo data sets for the constrained
linear spline model and the constrained penalized spline model. MCSD:
Monte Caro standard deviation; RMSE: root mean squared error; AVESEb:
average of standard error derived from the bootstrap; AVESE1: average of
standard error derived from the asymptotic variance in Result 4; AVESE2:
average of standard error derived when λ is treated as fixed.

Model n Bias MCSD RMSE AVESEb AVESE1 AVESE2

Setup 1
Constrained Penalized Spline

500
2.002 0.959 2.220 0.928 1.546 0.729

Constrained Linear Spline 7.938 0.422 7.950 0.439 - -

Constrained Penalized Spline
1000

1.647 0.695 1.787 0.717 1.094 0.583
Constrained Linear Spline 7.930 0.301 7.936 0.309 - -

Constrained Penalized Spline
2500

1.500 0.452 1.567 0.454 0.681 0.408
Constrained Linear Spline 7.952 0.198 7.955 0.195 - -

Constrained Penalized Spline
5000

1.475 0.309 1.507 0.322 0.467 0.303
Constrained Linear Spline 7.962 0.140 7.964 0.139 - -

Setup 2
Constrained Penalized Spline

500
-0.158 0.216 0.267 0.220 0.457 0.207

Constrained Linear Spline -4.373 0.342 4.386 0.342 - -

Constrained Penalized Spline
1000

-0.116 0.163 0.200 0.163 0.311 0.156
Constrained Linear Spline -4.366 0.246 4.372 0.244 - -

Constrained Penalized Spline
2500

-0.074 0.113 0.135 0.113 0.190 0.108
Constrained Linear Spline -4.377 0.152 4.379 0.155 - -

Constrained Penalized Spline
5000

-0.050 0.083 0.097 0.087 0.132 0.082
Constrained Linear Spline -4.379 0.110 4.380 0.109 - -

Setup 3
Constrained Penalized Spline

500
0.035 0.411 0.413 0.423 0.839 0.377

Constrained Linear Spline 0.011 0.236 0.237 0.237 - -

Constrained Penalized Spline
1000

0.021 0.303 0.304 0.315 0.570 0.286
Constrained Linear Spline 0.007 0.167 0.167 0.166 - -

Constrained Penalized Spline
2500

-0.004 0.224 0.224 0.217 0.358 0.202
Constrained Linear Spline 0.003 0.105 0.105 0.104 - -

Constrained Penalized Spline
5000

0.015 0.164 0.164 0.179 0.253 0.155
Constrained Linear Spline 0.004 0.073 0.073 0.074 - -

Setup 4
Constrained Penalized Spline

500
0.055 0.302 0.306 0.310 0.585 0.284

Constrained Linear Spline -2.222 0.276 2.239 0.282 - -

Constrained Penalized Spline
1000

0.032 0.226 0.229 0.234 0.398 0.216
Constrained Linear Spline -2.214 0.196 2.223 0.198 - -

Constrained Penalized Spline
2500

0.019 0.163 0.164 0.166 0.249 0.152
Constrained Linear Spline -2.225 0.123 2.228 0.125 - -

Constrained Penalized Spline
5000

0.015 0.120 0.121 0.128 0.175 0.116
Constrained Linear Spline -2.221 0.087 2.223 0.088 - -
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a decreasing trend approaching zero when the sample size n increases. Biases in

Setup 1 are slightly larger than the rest three setups for the constrained penalized

spline model, which can be explained by a more gentle increasing pattern after the

threshold. When the pattern is non-linear above the threshold as designed in Setup

1, Setup 2, and Setup 4, there are systematic biases across all sample sizes for the

constrained linear spline model. Specifically, the bias is positive for Setup 1, which

assumes an increasing convex curve after the threshold. And the bias is negative for

Setup 2 and Setup 4, which assume an increasing concave curve and an increasing

linear-step pattern after the threshold, respectively. When the true model is the

constrained linear spline model, the bias is small and decreases to zero when the

sample size increases in Setup 3. For the variability, the constrained penalized spline

model has a larger MCSD than the constrained linear spline model in Setup 1, Setup

3, and Setup 4, while less MCSD in Setup 2. When considering the root mean

squared error which accounts for both the bias and the variability, the constrained

penalized spline model has a better performance than the constrained linear spline

model when a non-linear pattern exists above the threshold as in Setup 1, Setup

2, and Setup 4. And the constrained linear spline model only outperforms when

it is the true model. In general, we recommend researchers use the constrained

penalized spline model to estimate the threshold in real applications unless researchers

have the scientific knowledge to support a linear association above the threshold. In

terms of the average of standard error for the constrained penalized spline model,

the AVESE1 is generally larger than the MCSD, and AVESE2 is generally smaller

than the MCSD, which is consistent with the observation in Yu and Ruppert (2002).

Comparing three different approaches to estimate the variance, AVESEb from the

bootstrapping provides the closest estimation of the MCSD. Though bootstrapping

requires intensive computation resources and much more computing time than the

other two approaches, i.e., AVESE1 and AVESE2, based on our simulation studies,
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we recommend using bootstrapping to estimate the variance of the threshold in real

applications, as researchers usually do not need to replicate their analysis thousands

of times as in simulation studies.

5.4 Application

We applied the proposed method to pregnant women residing in Mexico City in

2009 to 2014 participating in the Pregnancy Research on Inflammation, Nutrition, &

City Environment: Systematic Analyses (PRINCESA) cohort (Osornio-Vargas et al.,

2013). The application research aim was to evaluate the threshold for the impact of

sulfur dioxide (SO2) and nitrogen dioxide (NO2) on birth weight. Air pollution data,

i.e. SO2 and NO2, were obtained from the Mexico City Atmospheric Monitoring

System and were summarized as the average value of the pollutant values in all the

days of pregnancy.

Our analysis is based on 757 women participants with available air pollution data

and birth weight data. NO2 and SO2 were reported in parts-per-billion (ppb), and

birth weight was reported in gram (g). Patient characteristics adjusted in the analysis

included maternal age of participant at screening, pre-gestational body mass index

(BMI), highest level of education completed, martial status, parity, and baby’s gen-

der. Descriptive statistics for all variables in the analysis were presented in Table 5.3.

Missing covariates were imputed. Specially, one subject with missing pre-gestational

body mass index (BMI) was imputed with the mean of rest subjects, three subjects

with baby’s gender missing and three subjects with marital status missing were im-

puted with the highest frequent category respectively, and 75 subjects with highest

level of education completed missing and 118 subjects with parity missing were im-

puted by setting the missing value into the unknown category. The number of knots

K was set as 5, and the choice of λn was based on the generalized cross-validation
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method. The standard error (SE) was obtained by bootstrapping with 200 bootstrap

replicates.

Table 5.3: Descriptive statistics for the application data set (n = 757).

Outcome Mean Std

Birth Weight (g) 3025.98 509.60

Factor of Interest Mean Std

Nitrogen Dioxide (ppb) 32.65 2.68
Sulfur Dioxide (ppb) 5.14 0.82

Covariates Mean Std

Pre-gestational Body Mass Index 25.72 5.22
Age of participant at Screening 25.06 5.90

Frequency Percent
Highest Level of Education Completed
Primary school or no school 75 11.00
Secondary school 311 45.60
Vocational/technical school or 2 year college (associate’s degree) 245 35.92
Bachelor’s degree 51 7.48

Baby’s Gender
Female 388 51.46
Male 366 48.54

Marital Status
Single or divorced or widow 196 25.99

Married 164 21.75
Living together but not married 394 52.25

Parity
0 274 42.88
1 201 31.46
2 122 19.09
≥3 42 6.57

The estimated change-point for the effect of SO2 is located at 7.17 (SE=0.09), and

for the effect of NO2 is located at 37.1 (SE=0.89) in the univariate analysis, which

were shown in Figure 5.2. According to Figure 5.2, there were apparently decreasing

pattern of the birth weight after the estimated threshold of both SO2 and NO2. This

observation was consistent with the knowledge that a higher concentration of air

pollutants during the pregnancy would lead to more damage for the fetus, which was

reflected as a lower birth weight in this analysis. After adjusting for covariates listed

in the above paragraph, estimated change-point for the effect of SO2 is located at 7.13
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Figure 5.2: Scatterplots of sulfur dioxide (SO2) and nitrogen dioxide (NO2) versus
birth weights. The solid line is the fitted regression, and three dotted
vertical lines are estimated threshold (middle) and corresponding 95%
confidence intervals (left and right).

101



(SE=0.08), and for the effect of NO2 is located at 37.0 (SE=0.62). According to a

retrospective cohort study by Lin et al. (2004), they suggested an significant increase

in terms of low birth weight risk exceeding 11.4 ppb during pregnancy compared to

low exposure (<7.1 ppb). In the study of Lin et al. (2004), the cutoff of low exposure

of SO2 was chosen as the 25th quantile with the number as 7.1 ppb, which is consistent

with our estimated threshold 7.13 ppb. Another early study of NO2 and preterm birth

by Llop et al. (2010) in Spain during 2003 to 2005 reported a threshold level of NO2

at 46.2 ppb throughout the entire pregnancy, which was about 10 ppb higher than our

estimated threshold. We wanted to point out that our lower NO2 threshold relative to

Llop et al. (2010) was reasonable. The reason was that our estimated NO2 threshold

was the start of decreasing birth weight, which was not the clinical defined low birth

weight (lower than 2,500 grams), while Llop et al. (2010) considered the preterm

birth from the clinical definition as less than 37 weeks. However, we emphasised that

although not lower than the clinical warning of 2,500 grams in birth weight, it was

important to avoid exposing to NO2 higher than 37 ppb during the entire pregnancy.

5.5 Discussion

In this chapter, we introduce and discuss the estimation of threshold in a constrained

penalized spline model, where a constraint is imposed to model the threshold effect,

and the unknown association after the threshold is modeled via the penalized spline

with knots. Specifically, we introduced knots, which evenly distributed between the

threshold and the maximum value of the factor of interest and thus can be determined

by the threshold and data automatically, to account for the flexibility of either linear

or non-linear association.

Due to the nondifferentiability problem at the threshold, estimation of the threshold

in a constrained penalized spline model differs from the usual problem of model fitting
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or prediction in penalized spline models. Motivated by the minimization of the loss

function (5.2), we introduced the proposed estimating equation (5.4) based on the

modified derivative idea. To facilitate computational efficiency, we further extended

the two-step NR algorithm to the constrained penalized spline model, which separates

the updating procedures of the threshold and the penalized spline in different steps.

Specifically, when the threshold is updated, knots are also automatically updated to

model the flexibility above the threshold using the penalized spline in each iteration

of the two-step NR algorithm. Although the extension of the modified derivative idea

looks intuitive, the proposed estimating equation generated from the modified deriva-

tive idea may not guarantee to provide a valid estimator. Therefore, besides studying

the two-step NR algorithm, we further explored the asymptotic properties of the pro-

posed estimator. Assuming a fixed number of knots, we showed that the proposed

estimator is equipped with the property of consistency and asymptotic normality.

Furthermore, we discussed three variance estimation methods of the threshold, in-

cluding (1) estimated from the asymptotic variance, (2) estimated when treating the

smoothing parameter λ as a fixed value, and (3) bootstrapping. According to sim-

ulation studies, the first two methods tend to slightly over- and under-estimate the

variance, which is consistent with the observation from existing literature (Yu and

Ruppert , 2002), and the bootstrapping method provides the closest variance estima-

tion.

In biomedical research, the estimation of threshold has important applications. Al-

though researchers may have prior knowledge of the threshold effect, they may only

have a general idea about the pattern above the threshold, such as an increasing or

decreasing pattern. The constrained linear spline model is one option to estimate

the threshold and has been discussed thoroughly in Chapter IV. However, the con-

strained linear spline model assumes a linear pattern above the threshold, which is

likely to be violated in reality. In this chapter, we compared the performance of
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the proposed constrained penalized spline model with the constrained linear spline

model through extensive simulation studies. For either linear or nonlinear patterns,

the constrained penalized spline model shows effectiveness and robustness with small

biases. However, when the pattern is nonlinear, the constrained linear spline model

will lead to systematic biases even with large sample sizes and thus performs worse

than the constrained penalized spline model. And the constrained linear spline model

only performs better in terms of both bias and variability when the true pattern is

linear. Furthermore, the constrained linear spline model performs well in the air

pollution application, where the association above the threshold is modeled approxi-

mately linear. In real applications, we recommend researchers choose the constrained

penalized spline model, as it allows to capture of linear and nonlinear patterns above

the threshold.

In summary, we proposed a threshold estimation method in the constrained penalized

spline model, which takes advantage of both posing a threshold effect and allows an

unknown pattern above the threshold. Although the constrained penalized spline

model we studied in this chapter focused on continuous outcomes with one factor of

interest of the threshold effect, this idea can be generalized to broader research areas

in future studies, such as considering the factor of interest has an interaction threshold

effect, general outcomes including binary and count data, correlated or multivariate

data, and survival data.
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APPENDIX A

Proofs

A.1 Chapter II: Proofs

A.1.1 Proof of Lemma 1

Proof. Because the map ζ 7→
√
p(w; ζ) is continuous differentiable except at fi-

nite single points when τk = xk, for k = 1, . . . , K. At all other points the deriva-

tive exits and equals to R(w; ζ) = 1
2
Sζ(w; ζ)

√
p(w; ζ). Therefore, the difference of√

p(w; ζ + h) −
√
p(w; ζ) could still be written as the integral of its derivative, i.e.√

p(w; ζ + h) −
√
p(w; ζ) =

∫ 1

0
hTR(w; ζ + uh)du. By Jensen’s inequality, we can

conclude that

{∫ √
p(w; ζ + tht)−

√
p(w; ζ)

t
dv(w)

}2

≤
∫ ∫ 1

0

{hT
t R(w; ζ + utht)}2dudv(w)

=
1

4

∫
hT

t I(w; ζ + utht)htdu.

The last equation follows by Fubini’s theorem and the definition of the Fisher informa-

tion matrix, that is, I(W ; ζ) = E[Sζ(W ; ζ)ST
ζ (W ; ζ)] = 4

∫
R(w; ζ)RT (w; ζ)dv(w).

And because Sζ(W ; ζ) is a continuous function of ζ, thus Iζ(W ; ζ) is also a contin-
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uous function of ζ. Then by the continuous mapping theorem,

1

4

∫
hT

t I(w; ζ + utht)htdu −→ 1

4
hT I(w; ζ)h =

∫
{hTR(w; ζ)}2dv(w), as ht −→ h.

And because the map ζ 7→
√
p(w; ζ) is differentiable almost everywhere in v-measure,

√
p(w; ζ + tht)−

√
p(w; ζ)

t
−→ hTR(w; ζ) v-almost everywhere.

And thus, the integrand in

∫ [√p(w; ζ + tht)−
√
p(w; ζ)

t
− hTR(w; ζ)

]2
dv(w)

converges pointwise to zero in v-measure. Then by Proposition 2.29 in van der Vaart

(2000), the above integral converges to 0, that is,

∫ [√p(w; ζ + tht)−
√
p(w; ζ)

t
− hTR(w; ζ)

]2
dv(w) = o(1).

Denote h̃ = tht. Because ht −→ h, the above equation becomes

∫ [√
p(w; ζ + h̃)−

√
p(w; ζ)− h̃

T
R(w; ζ)

]2
dv(w) = o(t2) = o(||h̃||2).

as t −→ 0, which is equivalent to h̃ −→ 0. By definition, p(w; ζ) is DQM at ζ.

A.1.2 Proof of Lemma 2

Proof. Denote ζn = ζ0 + h/
√
n with ζn = (θT

n ,γ
T
n )

T . Following same definitions in

Tsiatis (2007), we denote V n = (W 1n, . . . ,W nn), where W 1n, . . . ,W nn are indepen-

dent and identical distributed random vectors. Also, we denote P0n and P1n be se-

quences of probability measures with density pon(vn) =
∏n

i=1 p(win; ζ
0), p1n(vn) =∏n

i=1 p(win; ζn). By definition, the sequence p1n(vn) is the local data generating pro-
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cess (LDGP) with n1/2(ζn − ζ0) −→ c, where c is a constant. From Lemma 1, we

obtain the property of DQM at ζ0. Then from Theorem 7.2 in van der Vaart (2000),

DQM implies local asymptotic normality, which implies

log
{p1n(V n)

pon(V n)

}
D(P0n)−−−−→ N

(
− 1

2
hT Iζ0h,hT Iζ0h

)
.

Thus, by Lemma 3.1 in Tsiatis (2007), the sequence P1n is contiguous to the se-

quence P0n, that is oP0n(1) implies oP1n(1). Then as θ̂n is a RAL estimator with

influence function φ(W ) and the contiguity property, we have n1/2(θ̂n − θ0) =

n−1/2
∑n

i=1 φ(win) + oP1n(1). With some simple algebra, this equation turns into

n
1
2 (θ̂n − θn) = n− 1

2

n∑
i=1

[φ(win)− Eζn
{φ(W )}]

+n
1
2Eζn

{φ(W )} − n
1
2{θ̂n − θ0}+ oP1n(1). (A.1)

As θ̂n is regular, that is,

n1/2{θ̂n − θn}
D(P1n)−−−−→ N (0p×p, Eζ0{φ(W )φT (W )}). (A.2)

Under the probability measure P1n, [φ(win) − Eζn
{φ(W )}], i = 1, . . . , n are in-

dependent and identical distributed mean-zero random vectors with variance ma-

trix Eζn
{φ(W )φT (W )} − Eζn

{φ(W )}Eζn
{φT (W )}. Also because Eζ{φ(W )} and

Eζ{φ(W )φT (W )} are continuous in ζ in a neighborhood of ζ0, by continuous map-

ping theorem, we haveEζn
{φ(W )φT (W )} −→ Eζ0{φ(W )φT (W )} and Eζn

{φ(W )} −→

Eζ0{φ(W )} = 0. Hence, by central limit theorem,

n−1/2

n∑
i=1

[
φ(win)− Eζn

{φ(W )}
]

D(P1n)−−−−→ N
(
0q×1, Eζ0{φ(W )φT (W )}

)
. (A.3)
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Denote Γ = (Iq×q, 0q×r1), which is a q×p matrix. Hence, θn−θ0 = Γ(ζn−ζ0). Then,

n1/2(θn − θ0) = Γ{n1/2(ζn − ζ0)} −→ Γc, as n −→ ∞. (A.4)

Because φ(W ) is a real-valued statistic with variance Eζ0{φ(W )φT (W )} exists in

a neighborhood of ζ0, and the model is DQM at ζ0 with score function Sζ(W ; ζ0)

and non-singular Fisher information Iζ(W ; ζ0), according to Chapter 6.3 in Pollard

(2000), we have

∂

∂ζ
Eζ0{φ(W )} = Eζ0{φ(W )Sζ(W ; ζ0)}.

Therefore, by Taylor expansion, we obtain

Eζn
{φ(W )} = Eζ0{φ(W )}+ (ζn − ζ0)

∂

∂ζT
Eζ0{φ(W )}+ o(||ζn − ζ0||)

= (ζn − ζ0)Eζ0{φ(W )ST
ζ (W ; ζ0)}+ o(||ζn − ζ0||). (A.5)

Then, from the equation (A.5), we have

n1/2Eζn
{φ(W )} −→ cEζ0{φ(W )ST

ζ (W ; ζ0)}. (A.6)

By equation (A.2), (A.3), (A.4) and (A.6), the limit of equation (A.1) implies that

[
Eζ0{φ(W )ST

ζ (W ; ζ0)} − Γ
]
c = 0q×1.

Since c is arbitrary, the above equation implies Eζ0{φ(W )ST
ζ (W ; ζ0)} = Γ, that is,

E{φ(W )ST
θ (W ; ζ0)} = Iq×q and E{φ(W )ST

γ (W ; ζ0)} = 0q×r.
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A.1.3 Proof of Lemma 3

Proof. According to Lemma 1 and Lemma 2, the semiparametric theory can be de-

rived with similar procedures in Chapter 4 in Tsiatis (2007). According to Lemma

4.5 in Tsiatis (2007), the nuisance tangent space is given by Λ =
{
hq×1(ϵ,X∗), such

that E{h(ϵ,X∗)ϵ|X∗} = 0q×1
}
. According to Theorem 4.8 in Tsiatis (2007), the

space orthogonal to nuisance tangent space is given by Λ⊥ =
{
Aq×1(X∗)ϵ, for all

q-dimensional functions Aq×1(X∗)
}
.

Next, we will show the equation E{Sθ(W ; ζ0)ϵ|X∗} = H(X∗;θ0). Because the

projection of any arbitrary element hq×1(X∗) ∈ H onto Λ⊥ satisfies Π[h(ϵ,X∗)|Λ⊥] =

E{h(ϵ,X∗)ϵ|X∗}{E(ϵ2|X∗)}−1ϵ. Therefore, the efficient score, that is, the residual

after projecting the score vector with respect to θ on to the nuisance tangent space,

is given by Seff (W , ζ0) = Π{Sθ(W ; ζ0)|Λ⊥} = σ−2(X∗)HT (X∗;θ0)ϵ.

Denote δ10(ϵ,x
∗) and δ20(x

∗) as the nuisance parameter fixed at the truth. Because

only δ10{y−µ(x∗,θ),x∗} contains µ(x∗,θ), we can represent the Sθ(W ; ζ0) as follows,

Sθ(W ; ζ0) =
∂log{δ10(y − µ(x∗,θ),x∗)}

∂µ(X∗,θ)
HT (X∗;θ)

∣∣∣
θ=θ0

=
∂δ10(ϵ,x

∗)/∂µ(X∗,θ)

δ10(ϵ,x∗)
HT (X∗;θ)

∣∣∣
θ=θ0

. (A.7)

Due to the model restriction, the following equation holds for all x∗ and θ,

0 = E(ϵ|X∗) =

∫ ∞

−∞
{y − µ(X∗,θ)}δ10(y − µ(X∗,θ),x∗)dy.

Thus, by taking derivative of µ(X∗,θ) to both sides of above equation, we obtain

∂

∂µ

∫ ∞

−∞
{y − µ(X∗,θ)}δ10(y − µ(X∗,θ),x∗)dy

∣∣∣
µ=µ0

= 0,
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where µ = µ(X∗,θ) and µ0 = µ(X∗,θ0). By taking the derivative inside the integral,

∫ ∞

−∞
−δ10(ϵ,x∗) + ϵ

∂δ10(ϵ,x
∗)

∂µ(X∗,θ)
dϵ = 0

for all x∗. Next by multiplying H(X∗;θ0) to both sides of above equation and

applying the equation (A.7) for Sθ(W ; ζ0), we get

0 =

∫ ∞

−∞
−δ10(ϵ,x∗)H(X∗;θ0) +

∫ ∞

−∞
ϵST

θ (ϵ,x
∗; ζ0)δ10(ϵ,x

∗)dϵ

= −H(X∗;θ0) +

∫ ∞

−∞
ϵST

θ (ϵ,x
∗; ζ0)δ10(ϵ,x

∗)dϵ

for all x∗. This is equivalent to −H(X∗;θ0) + E{ϵST
θ (ϵ,x

∗; ζ0)|X∗} = 0. There-

fore, we obtain the result E{Sθ(W ; ζ0)ϵ|X∗} = H(X∗;θ0). Then according to

Theorem 4.1 in Tsiatis (2007), semiparametric efficiency bound is given by V =[
E{Seff (W , ζ0)ST

eff (W , ζ0)}
]−1

=
[
E{HT (X∗

;θ0
)H(X∗

;θ0
)

σ2(X∗
)

}
]−1

.

A.1.4 Proof of Proposition 1

In all following proofs (Proposition 1, Theorem 1 and Theorem 2), for convenience and

without loss of generality, we assume the domain of X is positive. Also, for brevity,

we denote Xτ = (X − τ)+ and Iτ = I(X > τ). Similarly, we denote Xτ̃ = (X − τ̃)+,

Xτ̃ (t) = (X − τ̃ (t))+ , Iτ̃ = I(X > τ̃) and Iτ̃ (t) = I(X > τ̃ (t)).

We only give the detailed proof for a simple case E(Y |X) = β1X + β11(X − τ)+ for

Proposition 1. The proof for the multiple knots case is similar but more involved in

terms of algebras. First, we will show the local convergence of the proposed algorithm.

Next, we will show that when the proposed algorithm converges, it converges to the

solution to Pn(Q(θ)) = 0, i.e. θ̂n = (β̂1, β̂11, τ̂)
T
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A.1.4.1 Local Convergence

Proof. Denote τ̂ (0) as the initial value for τ and β̂
(0)
1 and β̂

(0)
11 as the OLS estimates

of β1 and β11 respectively from step 1 in the proposed algorithm, when treating knot

τ fixed at τ̂ (0). We further denote θ̂
(0)

= (β̂
(0)
1 , β̂

(0)
11 , τ̂

(0))T . For brevity, we use F (θ)

to denote Pn(Q(θ)), thus the estimating equation Pn(Q(θ)) = 0 is equivalent to

F (θ) = 0. We denote each row of F (θ) as Fℓ(θ), where ℓ = 1, 2, 3. Also, we denote

a symmetric matrix G(θ) as follows

G(θ) =


G11(θ) G12(θ) G13(θ)

G21(θ) G22(θ) G23(θ)

G31(θ) G32(θ) G33(θ)

 =


Pn(X

2) Pn(XXτ ) −β11Pn(XIτ )

Pn(XXτ ) Pn(X
2
τ ) −β11Pn(Xτ )

−β11Pn(XIτ ) −β11Pn(Xτ ) β2
11Pn(Iτ )

 .

Because θ belongs to a compact set Θ and X has a bounded domain, all components

in matrix G(θ) can be bounded by a finite constant. By Theorem 3 in Chaney (1990),

every piecewise differentiable function is locally Lipschitz continuous. And by Corol-

lary 4.1.1 in Scholtes (2012), every piecewise differentiable function is semismooth.

As each row of F (θ) is obviously a piecewise differentiable function, F (θ) is locally

Lipschitz continuous and semismooth. As it is easy to check that G(θ) belongs to

∂F (θ), i.e. the generalized Jacobian, according to Theorem 2.3 in Qi and Sun (1993),

when θ̂
(0)

−→ θ̂n, we have

∥∥∥∥F (θ̂n)− F (θ̂
(0)
)−G(θ̂

(0)
)(θ̂n − θ̂

(0)
)

∥∥∥∥ = o(||θ̂n − θ̂
(0)
||). (A.8)

By definition, F (θ̂n) = 0. According to the Step 1 in the proposed algorithm from

Chapter II, the OLS method guarantees that F1(θ̂
(0)
) = 0 and F2(θ̂

(0)
) = 0. There-
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fore, by the first two rows of equation (A.8), we have the following two results:

G11(θ̂
(0)
)(β̂1 − β̂

(0)
1 ) +G12(θ̂

(0)
)(β̂11 − β̂

(0)
11 ) +G13(θ̂

(0)
)(τ̂ − τ̂ (0)) = o(||θ̂n − θ̂

(0)
||),

G21(θ̂
(0)
)(β̂1 − β̂

(0)
1 ) +G22(θ̂

(0)
)(β̂11 − β̂

(0)
11 ) +G23(θ̂

(0)
)(τ̂ − τ̂ (0)) = o(||θ̂n − θ̂

(0)
||).

Re-arranging above two equations, we have

β̂1 − β̂
(0)
1 =

G12(θ̂
(0)
G23(θ̂

(0)
)−G13(θ̂

(0)
)G22(θ̂

(0)
)

G11(θ̂
(0)
)G22(θ̂

(0)
)−G2

12(θ̂
(0)
)

(τ̂ − τ̂ (0))

+ o(||θ̂n − θ̂
(0)
||), (A.9)

β̂11 − β̂
(0)
11 =

G12(θ̂
(0)
)G13(θ̂

(0)
)−G11(θ̂

(0)
)G23(θ̂

(0)
)

G11(θ̂
(0)
)G22(θ̂

(0)
)−G2

12(θ̂
(0)
)

(τ̂ − τ̂ (0))

+ o(||θ̂n − θ̂
(0)
||). (A.10)

According to the last rows of equation (A.8), we have the following equation

F3(θ̂
(0)
) + G31(θ̂

(0)
)(β̂1 − β̂

(0)
1 ) +G32(θ̂

(0)
)(β̂11 − β̂

(0)
11 )

+ G33(θ̂
(0)
)(τ̂ − τ̂ (0)) = o(||θ̂n − θ̂

(0)
||).

Applying formulas (A.9) and (A.10) into the above equation, we have

F3(θ̂n)− F3(θ̂
(0)
)−G33(θ̂

(0)
)(τ̂ − τ̂ (0)) (A.11)

= D(θ̂
(0)
)(τ̂ − τ̂ (0)) + o(||θ̂n − θ̂

(0)
||),

where D(θ) =
2G12(θ)G13(θ)G23(θ)−G2

13(θ)G22(θ)−G11(θ)G
2
23(θ)

G11(θ)G22(θ)−G2
12(θ)

.

According to Step 2 in the proposed algorithm from Chapter II, the estimate of knot

τ is updated via formula τ̂ (1) = τ̂ (0) − G33(θ̂
(0)
)F3(θ̂

(0)
). Combing equation (A.11),
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we have the following equation

τ̂ (1) − τ̂ = τ̂ (0) − τ̂ −G33(θ̂
(0)
)F3(θ̂

(0)
)

= G−1
33 (θ̂

(0)
){F3(θ̂n)− F3(θ̂

(0)
)−G33(θ̂

(0)
)(τ̂ − τ̂ (0))}

= G∗(θ̂
(0)
)(τ̂ (0) − τ̂) + o(||θ̂n − θ̂

(0)
||), (A.12)

where G∗(θ) = −D(θ)/G33(θ). We denote the upper left 2×2 matrix of G(θ) as

Gβ(θ), i.e.

Gβ(θ) =

G11(θ) G12(θ)

G21(θ) G22(θ)

 .

Then, we can simplify G∗(θ) by determinant of matrices G(θ) and Gβ(θ). Specifically,

G∗(θ) = 1− det{G(θ)}
det{Gβ(θ)}G33(θ)

.

Because G(θ), Gβ(θ) are positive-definite matrices and G33(θ) is positive, according

to Fischer’s inequality, we have det{G(θ)} < det{Gβ(θ)}G33(θ). Therefore, 0 <

G∗(θ) < 1. According to formulas (A.9) and (A.10), it is obvious that o(||θ̂n − θ̂
(0)
||)

implies o(||τ̂ − τ̂ (0)||). Thus, equation (A.12) implies

||τ̂ (1) − τ̂ ||= G∗(θ̂
(0)
)||τ̂ (0) − τ̂ ||+o(||τ̂ (0) − τ̂ ||).

Therefore, when choosing an arbitrary small constant 0 < m < 1 − G∗(θ̂
(0)
), there

exists an r1 > 0 such that when τ̂ (0) ∈ B(τ̂ , r1), we have o(||τ̂ (0) − τ̂ ||) < m||τ̂ (0) − τ̂ ||

and thus ||τ̂ (1) − τ̂ ||< ||τ̂ (0) − τ̂ ||. The induction for any step t (t ≥ 1) is similar.

Therefore, the proposed two-step NR algorithm converges.
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A.1.4.2 When the proposed algorithm converges, it converges to the so-

lution to Pn(Q(θ)) = 0

We denote θ̃n as the converged result from the proposed algorithm, where θ̃n =

(β̃1, β̃11, τ̃)
T . At the tth (t ≥ 1) iteration, the algorithm proceeds as follows.

1. Treating τ̃ (t−1) as fixed, β̃
(t−1)
1 and β̃

(t−1)
11 are the OLS estimates of β1 and β11.

Namely, β̃
(t−1)
1 and β̃

(t−1)
11 are the solution of the following equation

U(t)
1 = Pn

 X{Y − β1X − β11(X − τ̃ (t−1))+}

(X − τ̃ (t−1))+{Y − β1X − β11(X − τ̃ (t−1))+}

 = 0.

2. Updating τ̃ (t−1) into τ̃ (t) via τ̃ (t) = τ̃ (t−1)−(J (t))
−1
U (t), where U (t) = β̃

(t−1)
11 Pn{(Y−

β̃
(t−1)
1 X − β̃

(t)
11Xτ̃ (t−1))Iτ̃ (t−1)} and J (t) = {β̃(t−1)

11 }2Pn(Iτ̃ (t−1)).

When τ̃ (t) converges, we denote limt→∞ τ̃ (t) = τ̃ . By taking limits to the updating

procedure of τ above, we have limt→∞ τ̃ (t) = limt→∞ τ̃ (t−1)−limt→∞ (J (t))
−1
U (t), which

implies

lim
t→∞

(J (t))
−1
U (t) = lim

t→∞

Pn{(Y − β̃
(t−1)
1 X − β̃

(t−1)
11 Xτ̃ (t−1))Iτ̃ (t−1)}

β̃
(t−1)
11 Pn(Iτ̃ (t−1))

= 0. (A.13)

According to Step 1, it is clear that when τ̃ (t) converges, β̃
(t)
1 and β̃

(t)
11 also converges

to β̃1 and β̃11 respectively, as t goes to infinity. And β̃1 and β̃11 should be the solution

of limt→∞ U(t)
1 = 0, that is,

lim
t→∞

U(t)
1 = Pn

 X{Y − β1X − β11(X − τ̃)+}

(X − τ̃)+{Y − β1X − β11(X − τ̃)+}

 = 0. (A.14)
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Combining equations (A.13) and (A.14), β̃1, β̃11 and τ̃ are the solution of

Q1 = Pn

[
HT

1 {Y − β̃1X − β̃11(X − τ̃)+}
]
= 0, where H1 =

(
X, (X − τ̃)+, I(X > τ̃)

)
.

From the definition, θ̂n = (β̂1, β̂11, τ̂)
T is the solution of the proposed estimating

equation Pn(Q(θ̂n)) = Pn

[
HT{Y − β̂1X − β̂11(X − τ̂)+}

]
= 0, where H =

(
X, (X −

τ)+,−β̂11I(X > τ̂)
)
. It is obvious to see that the solution ofQ1 = 0 and Pn(Q(θ)) = 0

are exactly the same. Hence, when proposed algorithm converges, the converged result

is the solution of Pn(Q(θ)) = 0.

A.1.5 Proof of Theorem 1

In the proofs of Theorem 1 and Theorem 2, we consider the simple model E(Y |X) =

β0 + β1X + β11(X − τ)+. The proof for the multiple knots case is similar but more

involved in terms of algebras. First, we will prove that θ0 is the unique solution to

P (Q(θ)) = 0. As P (Q(θ)) is a continuous function of θ in the compact set Θ, and

θ0 is the unique zero of P (Q(θ)) = 0, then this unique solution θ0 is well-separated

(van der Vaart , 2000). Next, we will show supθ∈Θ|Pn(Q(θ))− P (Q(θ))| a.s−→ 0. Then

by Theorem 5.9 in van der Vaart (2000), θ̂n converges in probability to θ0, where θ̂n

is the solution to Pn(Q(θ)) = 0.

A.1.5.1 θ0 is the unique solution of P (Q(θ)) = 0

Proof. We consider a simpler model E(Y |X) = β1X + β11(X − τ)+ by absorbing the

intercept into Y . By definition of Q(θ) in Section 2.4.1, P (Q(θ)) = 0 is written as

P (Q(θ)) =


−2P (XY − β1X

2 − β11XXτ )

−2P (XτY − β1XXτ − β11X
2
τ )

2β11P (IτY − β1XIτ − β11XτIτ )

 = 0. (A.15)
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Solving β1 from the first equation in (A.15) we obtain β1 =
P (XY )−β11P (XXτ )

P (X2)
. Substi-

tuting it into the second and third equations respectively leads to

β11 =
P (XτY )P (X2)− P (XY )P (XXτ )

P (X2
τ )P (X

2)− {P (XXτ )}2
, β11 =

P (IτY )P (X2)− P (XY )P (XIτ )

P (IτXτ )P (X2)− P (XXτ )P (XIτ )
.

(A.16)

It then follows that

P (IτY )P (X2)− P (XY )P (XIτ )

P (IτXτ )P (X2)− P (XXτ )P (XIτ )
=
P (XτY )P (X2)− P (XY )P (XXτ )

P (X2
τ )P (X

2)− {P (XXτ )}2
.

Replacing Y by β0
1X+β0

11Xτ0 + ϵ and simplifying terms, the above equation becomes

P (IτXτ0)P (X
2
τ )P (X

2)− P (XXτ0)P (XIτ )P (X
2
τ )

−P (IτXτ0){P (XXτ )}2 − P (XτXτ0)P (X
2)P (IτXτ )

+P (IτXτ )P (XXτ0)P (XXτ ) + P (XXτ )P (XIτ )P (XτXτ0) = 0. (A.17)

For brevity, we denote a1 = P (IτXτ0)P (X
2
τ )P (X

2), a2 = P (XXτ0)P (XIτ )P (X
2
τ ), a3 =

P (IτXτ0){P (XXτ )}2, b1 = P (XτXτ0)P (X
2)P (IτXτ ), b2 = P (IτXτ )P (XXτ0)P (XXτ )

and b3 = P (XXτ )P (XIτ )P (XτXτ0). Then equation (A.17) = a1−a2−a3− b1+ b2+

b3 = (a1 − b1) + (b2 − a2) + (b3 − a3) = 0.

Suppose τ ̸= τ 0 and without loss of generality, we assume τ > τ 0. It is clear that

Iτ = I(X > τ) follows a Bernoulli distribution with pτ ≡ Pr(Iτ = 1) = Pr(X >

τ). By the law of total expectation, we have P (IτXτ0) = E{E(Iτ (X − τ 0)|Iτ )} =

E{IτE(X − τ 0|Iτ )} = E{Iτ (E(X|Iτ )− τ 0)} = pτ{E(X|X > τ)− τ 0}. Applying the
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same idea to each component of (a1, a2, a3, b1, b2, b3), we obtain that

a1 − b1 = (τ − τ 0)V ar(X|X > τ)p2τP (X
2),

b2 − a2 = −τV ar(X|X > τ)p2τP (XXτ0),

b3 − a3 = τ 0V ar(X|X > τ)p2τP (XXτ ).

Substituting with the above results, we further simplify equation (A.17) into

{(τ − τ 0)P (X2)− τP (XXτ0) + τ 0P (XXτ )}V ar(X|X > τ)p2τ = 0.

As V ar(X|X > τ) > 0 and p2τ > 0, the above equation becomes

A ≡ (τ − τ 0)P (X2)− τP (XXτ0) + τ 0P (XXτ ) = 0. (A.18)

Next, we will show that when τ > τ 0, A > B > 0, where B = (τ − τ 0){P (X2) −

P (XXτ0) − τ 0P (XIτ0)}. It is easy to see that A − B = τ 0{P (XXτ ) − P (XXτ0) +

(τ − τ 0)P (XIτ0)} = τ 0P{X(τ − X)I(τ 0 < X ≤ τ)} > 0. Regarding B, we have

B = (τ−τ 0)[P (X2)−P{X2I(X > τ 0)}] = (τ−τ 0)P{X2I(X ≤ τ 0)} > 0. Therefore,

when τ > τ 0, A = (τ − τ 0)P (X2) − τP (XXτ0) + τ 0P (XXτ ) > 0, which contradicts

with equation (A.18). Similarly, τ < τ 0 will lead to the contradiction. Therefore,

τ = τ 0. Substituting Y = β0
1X + β0

11Xτ0 + ϵ to the first equation in (A.16) leads to

β0
11

β11
=

P (X2
τ )P (X

2)− {P (XXτ )}2

P (XτX0
τ )P (X

2)− {P (XXτ )}2
,

which implies that β11 = β0
11. Moreover, we have

β1 =
P (XY )− β11P (XXτ )

P (X2)
= β0

1 +
β0
11P (XXτ0)− β11P (XXτ )

P (X2)
= β0

1 .

Therefore, θ0 is the unique solution to P (Q(θ)) = 0.
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A.1.5.2 supθ∈Θ|Pn(Q(θ))− P (Q(θ))| a.s−→ 0

Proof. According to the definition, Q(θ) is as follows

Q(θ) =



−2{Y − β0 − β1X − β11(X − τ)+}

−2{X(Y − β0 − β1X − β11(X − τ)+)}

−2{(X − τ)+(Y − β0 − β1X − β11(X − τ)+)}

2β11{I(X > τ)(Y − β0 − β1X − β11(X − τ)+)}


. (A.19)

Denote each row of Q(θ) as Qℓ(θ), where ℓ = 1, 2, 3, 4. As Θ is compact, it is

clear that β0, β1X, β11(X − τ)+, X, (X − τ)+ and β11I(X > τ) are all uniformly

bounded monotone functions of θ on the real line. Define classes of measurable

functions F1 = {β0 : θ ∈ Θ}, F2 = {β1X : θ ∈ Θ}, F3 = {β11(X − τ)+ : θ ∈ Θ},

F4 = {X : θ ∈ Θ}, F5 = {(X − τ)+ : θ ∈ Θ} and F6 = {β11I(X > τ) : θ ∈

Θ}. According to Theorem 2.7.5 in van der Vaart and Wellner (1996), bounded

monotone functions have a bracketing number of order (1/ϵ), with respect to the

L1(P ) norm. Thus, their entropy bracketing number logN[](ϵ,Fi, L1(P )) < ∞ for

all ϵ > 0 (i = 1, . . . , 6). As Θ is compact, we can assume |βj|≤ wj (j = 0, 1) and

|β11|≤ w2 ,where wj are finite constant. Denote C = |max(C1, C2)|. Thus F1 = w0,

F2 = w1C, F3 = 2w2C, F4 = C, F5 = 2C, and F6 = w2 are an envelope function for

F1,. . . , F6 respectively. As PFi, i = 1, . . . , 6, are finite, according to Theorem 2.4.3 in

van der Vaart and Wellner (1996), Fi belongs to the Glivenko-Cantelli class for i =

1, . . . , 6. Define Hℓ ≡ ϕℓ(F1, . . . ,F6) = {Qℓ(θ) : θ ∈ Θ} for ℓ = 1, 2, 3, 4, and define

H ≡ ϕ(F1, . . . ,F6) = {Q(θ) : θ ∈ Θ}. We also define H1 = 2WY , H2 = 2CWY , H3 =

4CWY and H4 = 2w2WY , where WY = |Y |+w0 +w1C + 2w2C. It is easy to see that

Hℓ is an envelope function for Hℓ and PHℓ <∞ for ℓ = 1, 2, 3, 4. As ϕℓ is continuous,

then according to Theorem 3 in van der Vaart and Wellner (2000), Hℓ belongs to

a Glivenko-Cantelli class. This implies that supθ∈Θ|Pn(Qℓ(θ)) − P (Qℓ(θ))|
a.s−→ 0.

This further implies that H belongs to a Glivenko-Cantelli class and, as a result,
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supθ∈Θ|Pn(Q(θ))− P (Q(θ))| a.s−→ 0.

A.1.6 Proof of Theorem 2

Proof. In the following proof, we still consider Q(θ), defined in formula (A.19). Al-

though Q(θ) involves functions that are not differentiable, P (Q(θ)) is first-order

differentiable with respect to θ because of the integral of X. By Talyor expansion of

P (Q(θ̂n)) around θ0,

P (Q(θ̂n))− P (Q(θ0)) = 2V (θ∗)(θ̂n − θ0), (A.20)

where V (θ∗) is a 4× 4 matrix and defined as

1

2

{ ∂

∂β0
P (Q(θ∗(1))),

∂

∂β1
P (Q(θ∗(2))),

∂

∂β11
P (Q(θ∗(3))),

∂

∂τ
P (Q(θ∗(4)))

}
.

It is easy to see that V (θ∗) =
(
V1(θ

∗(1)), V2(θ
∗(2)), V3(θ

∗(3)), V4(θ
∗(4))

)
, where θ∗(ℓ) =

(β∗
0
(ℓ), β∗

1
(ℓ), β∗

11
(ℓ), τ ∗(ℓ))T lies between θ̂n and θ0 for ℓ = 1, 2, 3, 4.

With some simple algebra, we have V (θ) = P{HT (X;θ)H(X;θ)}, where H(X;θ) =

{1, X, (X − τ)+,−β11I(X > τ1)}. We can define V (θ0) accordingly. Because θ̂n

converges to θ0 in probability when n −→ ∞, and θ∗(l) lies between θ̂n and θ0, it

follows that θ∗(l) converges to θ0 in probability when n −→ ∞, for ℓ = 1, 2, 3, 4.

Also, as each component in matrix V (θ) is a continuous function of θ, by continuous

mapping theorem, V (θ∗) converges to V (θ0) as n −→ ∞. And for any vector a =

(a1, a2, a3, a4) ̸= (0, 0, 0, 0), aV (θ0)aT = P{(a1 + a2X + a3Xτ0 − a4β
0
11Iτ0)

2} > 0.

Therefore, V (θ0) is positive definite and hence non-singular. Because P (Q(θ0)) =

0 = Pn(Q(θ̂n)), equation (A.20) becomes

Pn(Q(θ̂n))− P (Q(θ̂n)) = −2V (θ∗)(θ̂n − θ0).
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Denote Gn =
√
n(Pn − P ), and the above equation can be written as

Gn(Q(θ̂n)) = Gn{Q(θ̂n)−Q(θ0)}+Gn{Q(θ0)} = −2
√
nV (θ∗)(θ̂n − θ0). (A.21)

Next, we will prove Gn{Q(θ̂n) − Q(θ0)} = op(1). Because Θ is compact, β0, β1X,

β11(X − τ)+, X, (X − τ)+ and β11I(X > τ) are all uniformly, bounded monotones

functions of θ on the real line. According to Theorem 2.7.5 in van der Vaart and Well-

ner (1996), the class of all uniformly bounded, monotone functions on the real line

is Donsker. By Theorem 2.10.6 in van der Vaart and Wellner (1996), addition and

multiplication of uniformly bounded, monotone functions preserve the Donsker prop-

erty. Therefore, Qℓ(θ) (ℓ = 1, 2, 3, 4) is a Donsker class, which implies asymptotical

equicontinuity. Because θ̂n converges in probability to θ0, and Qℓ(θ) is a continuous

function of θ, by continuous mapping theorem Qℓ(θ̂n) converges in probability to

Qℓ(θ
0). That is, Qℓ(θ̂n)−Qℓ(θ

0) = op(1), and {Qℓ(θ̂n)−Qℓ(θ
0)}2 = op(1). Because

Θ is compact and the domain of X is bounded, {Qℓ(θ̂n) − Qℓ(θ
0)}2 is bounded.

Then, by the dominated convergence theorem, P{Qℓ(θ̂n) − Qℓ(θ
0)}2 = op(1). Ac-

cording to Lemma 19.24 in van der Vaart (2000), Gn{Qℓ(θ̂n) − Qℓ(θ
0)} = op(1) for

all ℓ = 1, 2, 3, 4. That is Gn{Q(θ̂n)−Q(θ0)} = op(1). By equation (A.20), we have

2
√
nV (θ∗)(θ̂n − θ0) = −Gn(Q(θ

0)) + op(1).

By central limit theorem, −Gn(Q(θ
0)) converges in distribution to a normal distri-

bution N
(
0, P{Q(θ0)QT (θ0)}

)
. With some algebra, we can show that

P{Q(θ0)QT (θ0)} = 4I(θ0), where I(θ0) = P{σ2(X)HT (X;θ0)H(X;θ0)}.

As −Gn(Q(θ
0)) converges in distribution to N (0, 4I(θ0)), V (θ∗) converges to V (θ0)

in probability and V (θ0) is a non-singular matrix, by Slutsky’s theorem, it follows
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that
√
n(θ̂n − θ0) converges in distribution to N (0, V −1(θ0)I(θ0)V −1(θ0)).

A.2 Chapter II: Algorithm

A.2.1 Proposed Algorithm For Single Knot Situation

In this section, we provide detailed steps for the proposed algorithm when there is a

single knot to be estimated. Specifically, the model is written as Yi = µ(X∗
i ;θ)+ ϵi =

β0+β1Xi+β11(Xi− τ)++ηTZi+ ϵi. Denoting the initial value of τ by τ̂ (0), and the

t-th (t ≥ 1) iteration of the proposed algorithm is as follows

Step 1. Update estimates of β and η to obtain β̂
(t−1)

, η̂(t−1). Specifically, treating

τ̂ (t−1) as fixed, fit the linear regression model E(Y |X,Z) = β0+β1X+β11(X−

τ̂ (t−1))+ + ηTZ by the OLS method to obtain estimates β̂
(t−1)

, η̂(t−1) and the

predicted values µ̂i
(t−1), i = 1, · · · , n, from the fitted model.

Step 2. Update τ̂ (t−1) to obtain τ̂ (t) by the extended NR type procedure τ̂ (t) = τ̂ (t−1) −

{J (t)}−1U (t), where U (t) and J (t) are defined as follows

U (t) =
β̂
(t−1)
11

n

n∑
i=1

(Yi − µ̂i
(t−1))I(Xi > τ̂ (t−1)),

J (t) =
{β̂(t−1)

11 }2

n

n∑
i=1

I(Xi > τ̂ (t−1)).

A.2.2 Brief Justification of the Gradient Descent Type Algorithm

In this section, we provide a brief justification for using the sum of squares Pn(M(θ)) =

1
n

∑n
i=1 {Yi−µ(X i;θ)}2 as the objective function to be minimized in determining the

step size in the gradient descent type algorithm. For simplicity, we consider a simple

model E(Y |X) = β0 + β1X + β11(X − τ)+. The solution of Pn(Q(θ)) = 0 is denoted

as θ̂n = (β̂0, β̂1, β̂11, τ̂)
T .
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When τ̂ ̸= Xi for all i = 1, . . . , n, the first and second order derivatives of M(θ)

exist at θ̂n, since the derivative of (Xi − τ)+ with respect to τ does not exist only

when τ = Xi. In this case, a usual argument can show that θ̂n is a local minima of

Pn(M(θ)) because the first order derivative of Pn(M(θ)) at θ̂n is zero and the second

order derivative (Hessian) is positive definite.

Next, we consider τ̂ = Xj for some j ∈ {1, . . . , n}. Then we have

1

n

n∑
i=1

Mi(θ) =
1

n

n∑
i=1,i ̸=j

Mi(θ) +
1

n
Mj(θ)

=
1

n
[

n∑
i=1,i ̸=j

Mi(θ) + {Yj − β0 − β1Xj}2] +
1

n
[Mj(θ)− {Yj − β0 − β1Xj}2]

∆
= M̃1(θ) + M̃2(θ)

It is easy to check that θ̂n is a local minima of M̃1(θ), i.e., the first order derivative

is zero as θ̂n is the solution to Pn(Q(θ)) = 0 and τ̂ = Xj, and the Hessian matrix

is positive definite. The second term M̃2(θ) is a small term relative to the first

term and converges to zero when n goes to infinity for any θ. Therefore, θ̂n is also

approximately a local minima in this case. The discussion above can be extended to

the situation where there exists multiple j ∈ (1, . . . , n) such that Xj = τ̂ .

We conducted some preliminary simulation studie for the two-knots setups using the

gradient descent method, with the step size chosen by the exact line search method

based on the sum of squares as the objective function. Results are shown in Table

A.1 below. Based on our simulations, the gradient descent type algorithm leads to

estimators with similar statistical performances as the proposed Newton-Raphson

type algorithm.
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Table A.1: Simulation results based on 1000 Monte Carlo data sets for K = 2.
Methods n Bias* MCSD* AVESE* CP% Bias* MCSD* AVESE* CP% CR%

τ̂1 τ̂2

Setup 2.1
proposed

200
-3.09 14.98 11.46 90.3 -2.75 20.05 11.38 91.3 100.0

descent -4.92 14.62 11.41 88.5 -6.33 38.44 11.72 89.8 100.0

proposed
500

-0.56 7.99 7.06 91.0 -0.74 7.59 7.04 93.6 100.0
descent -1.40 7.81 7.00 90.7 -0.87 7.42 7.05 94.4 100.0

proposed
1000

-0.36 5.12 4.94 93.3 -0.48 5.04 4.96 95.4 100.0
descent -0.71 5.34 4.92 92.6 -0.74 5.11 4.96 95.1 100.0

proposed
2500

-0.23 3.03 3.11 95.5 0.01 3.17 3.11 93.5 100.0
descent -0.69 3.14 3.11 95.2 -0.10 3.14 3.11 93.8 100.0

Setup 2.2
proposed

200
-1.87 7.49 6.16 89.8 -2.62 15.14 11.93 87.2 91.9

descent 1.54 7.05 5.90 89.0 8.66 16.87 12.47 86.1 100.0

proposed
500

-0.38 4.13 3.76 92.2 -0.90 8.30 7.48 92.1 99.0
descent 1.08 4.00 3.68 91.2 4.36 8.17 7.63 89.7 100.0

proposed
1000

-0.04 2.62 2.62 95.7 -0.27 5.49 5.24 92.6 99.9
descent 0.68 2.71 2.59 93.5 2.96 5.53 5.29 90.2 100.0

proposed
2500

-0.16 1.64 1.66 94.9 -0.29 3.42 3.30 93.7 100.0
descent 0.42 1.67 1.64 93.5 2.16 3.51 3.33 90.4 100.0

Setup 2.3
proposed

200
-0.91 12.57 11.46 91.8 1.36 12.53 11.38 91.7 94.4

descent 4.99 14.47 11.60 89.9 -3.55 21.79 11.50 89.8 100.0

proposed
500

-0.44 7.94 7.04 91.5 0.34 7.55 7.04 93.5 99.8
descent 1.76 8.33 7.05 90.3 -0.97 7.52 7.05 93.5 100.0

proposed
1000

-0.23 5.09 4.94 94.0 0.05 4.98 4.96 95.0 100.0
descent 0.78 5.34 4.94 92.9 -0.81 5.12 4.96 94.3 100.0

proposed
2500

-0.04 2.94 3.11 96.1 0.20 3.17 3.11 93.3 100.0
descent 0.68 3.11 3.12 94.1 -0.13 3.17 3.11 93.6 100.0

Note: “proposed” denotes the proposed Newton-Raphson type algorithm and “descent” denotes

the gradient descent type algorithm, n denotes the sample size and * indicates value ×10−3.
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A.3 Chapter III: Proofs

We only give detailed proofs for the proposition and two theorems in Chapter III

based on the case of g{µ(X;θ)} = β0 + β1X + β11(X − τ)+. The proof for the case

of multiple change-points is similar. For convenience and without loss of generality,

we assume the domain of X is positive. The estimating function Q(W ;θ) is

Q(W ;θ) =
HT (X;θ){Y − µ(X;θ)}
v{µ(X;θ)}g′{µ(X;θ)}

, where

H(X;θ) = (1, X, (X − τ)+,−β11I(X > τ))T . (A.22)

And we denote each row of Q(W ;θ) as Qℓ(W ;θ), for ℓ = 1, 2, 3, 4.

A.3.1 Proof of Proposition 2

Proof. Denote τ̂ (0) as the chosen initial value for τ . Denote β̂
(0)
0 , β̂

(0)
1 and β̂

(0)
11

as the corresponding estimates from Step 1, when τ is fixed as τ̂ (0), and θ̂
(0)

=

(β̂
(0)
0 , β̂

(0)
1 , β̂

(0)
11 , τ̂

(0))T . For brevity, we define F (θ) ≡ −Pn(Q(θ)), with each row

of F (θ) denoted as Fℓ(θ). Thus the estimating equation Pn(Q(θ)) = 0 becomes

F (θ) = 0. We denote a 4× 4 symmetric matrix G(θ) = Pn

[
HT (X;θ)H(X;θ)

v{µ(X;θ)}g′{µ(X;θ)}2

]
. We

also define two sub-matrices of matrices G, Gβ and Gβτ , as follows

Gβ(θ) =


G11(θ) G12(θ) G13(θ)

G12(θ) G22(θ) G23(θ)

G13(θ) G23(θ) G33(θ)

 and Gβτ (θ) =


G14(θ)

G24(θ)

G34(θ)

 .

Because θ belongs to a compact set Θ and X has a bounded domain, all components

in matrix G(θ) can be bounded by a finite constant. By Theorem 3 in Chaney (1990),

every piecewise differentiable function is locally Lipschitz continuous. And by Corol-

lary 4.1.1 in Scholtes (2012), every piecewise differentiable function is semismooth.
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As each row of F (θ) is a piecewise differentiable function, F (θ) is locally Lipschitz

continuous and semismooth. It is easy to check that G(θ) belongs to ∂F (θ), i.e.

the generalized gradient. Therefore by Theorem 2.3 in Qi and Sun (1993), when the

initial value θ̂
(0)

is chosen close enough to the θ̂n, i.e., ||θ̂
(0)

− θ̂n||= o(1), we have

∥∥∥∥F (θ̂n)− F (θ̂
(0)
)−G(θ̂

(0)
)(θ̂n − θ̂

(0)
)

∥∥∥∥ = o(||θ̂n − θ̂
(0)
||), (A.23)

By definition, F (θ̂n) = 0, and according to the Step 1, we have F1(θ̂
(0)
) = F2(θ̂

(0)
) =

F3(θ̂
(0)
) = 0. Therefore, by the first three rows of equation (A.23), we have

B = −{Gβ(θ̂
(0)
)}−1Gβτ (θ̂

(0)
)(τ̂ − τ̂ (0)) + o(||θ̂n − θ̂

(0)
||), (A.24)

where B = (β̂0− β̂(0)
0 , β̂1− β̂(0)

1 , β̂11− β̂(0)
11 )

T . According to the last row of the equation

(A.23), we have

F4(θ̂)− F4(θ̂
(0)
)−G44(θ̂

(0)
)(τ̂ − τ̂ (0)) = GT

βτ (θ̂
(0)
)B + o(||θ̂n − θ̂

(0)
||).

Applying formula (A.24) to the above equation, we have

F4(θ̂)− F4(θ̂
(0)
)−G44(θ̂

(0)
)(τ̂ − τ̂ (0))

= −GT
βτ (θ̂

(0)
){Gβ(θ̂

(0)
)}−1Gβτ (θ̂

(0)
)(τ̂ − τ̂ (0)) + o(||θ̂n − θ̂

(0)
||). (A.25)

According to Step 2 in the proposed algorithm, the estimate of the change-point τ is

updated via τ̂ (1) = τ̂ (0) −G−1
44 (θ̂

(0)
)F4(θ̂

(0)
). Then by the equation (A.25), we have

τ̂ (1) − τ̂ = τ̂ (0) − τ̂ −G−1
44 (θ̂

(0)
)F3(θ̂

(0)
)

= G−1
44 (θ̂

(0)
){F3(θ̂n)− F3(θ̂

(0)
)−G44(θ̂

(0)
)(τ̂ − τ̂ (0))}

= G∗(θ̂
(0)
)(τ̂ (0) − τ̂) + o(||θ̂n − θ̂

(0)
||), (A.26)
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where G∗(θ) = G−1
44 (θ)G

T
βτ (θ){Gβ(θ)}−1Gβτ (θ). With some algebra, we can simplify

G∗(θ) by determinant of matrices G(θ) and Gβ(θ), i.e. G
∗(θ) = 1− det{G(θ)}

det{Gβ(θ)}G44(θ)
.

Because G(θ), Gβ(θ) are positive-definite matrices and G44(θ) is positive, according

to Fischer’s inequality, we have det{G(θ)} < det{Gβ(θ)}G44(θ). Therefore, 0 <

G∗(θ) < 1. According to formula (A.24), we can see that o(||θ̂n − θ̂
(0)
||) implies

o(||τ̂ − τ̂ (0)||). Thus, equation (A.26) implies

||τ̂ (1) − τ̂ ||= G∗(θ̂
(0)
)||τ̂ (0) − τ̂ ||+o(||τ̂ (0) − τ̂ ||).

Therefore, when choosing an arbitrary small constant 0 < m < 1 − G∗(θ̂
(0)
), there

exists an r1 > 0 such that when τ̂ (0) ∈ B(τ̂ , r1), we have o(||τ̂ (0) − τ̂ ||) < m||τ̂ (0) − τ̂ ||

and thus ||τ̂ (1) − τ̂ ||< ||τ̂ (0) − τ̂ ||. The induction for any step t (t ≥ 1) is similar.

Therefore, τ̂ (t) converges to τ̂ when iteration t −→ ∞.

Next, we will show that θ̂
(t)

converges to θ̂n when t goes to infinity. By similar steps

leading to the formula (A.24), for any iteration t, we have

B(t) = −{Gβ(θ̂
(t)
)}−1Gβτ (θ̂

(t)
)(τ̂ − τ̂ (t)) + o(||θ̂n − θ̂

(t)
||), (A.27)

where B(t) = (β̂0 − β̂
(t)
0 , β̂1 − β̂

(t)
1 , β̂11 − β̂

(t)
11 )

T . As it is clear that each element of

Gβ(θ̂
(t)
) and Gβτ (θ̂

(t)
) is finite, all elements of |{Gβ(θ̂

(t)
)}−1Gβτ (θ̂

(t)
)| can be bounded

by some positive constant K. Because limt−→∞ τ̂ (t) = τ̂ , for any ϵ > 0, there exists

a positive constant T1, when t > T1, we have |τ̂ − τ̂ (t)|< ϵ/(2K). And there exists

a positive constant T2, when t > T2, we have |o(||θ̂n − θ̂
(t)
||)|< ϵ/2. Hence, when

t > max(T1, T2), according to the first row of the equation (A.27), we have |β̂0− β̂(t)
0 |<

K|τ̂ − τ̂ (t)|+ϵ/2 < ϵ, which implies that β̂
(t)
0 converges to β̂0 when t −→ ∞. Similarly,

from the second and third row of equation (A.27), we can prove that β̂
(t)
1 converges

to β̂1 and β̂
(t)
11 converges to β̂11 when t −→ ∞. Thus, the proposed algorithm converges
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locally and the converged result is the solution to Pn(Q(θ)) = 0.

A.3.2 Proof of Theorem 3

Proof. First, we will prove that θ0 is a unique solution of P (Q(W ;θ)) = 0. As

P (Q(W ;θ)) is a continuous function of θ in the compact set and θ0 is the unique

zero of P (Q(W ;θ)) = 0, then this unique solution θ0 is well-separated. Next, we

will show supθ∈Θ|Pn(Q(W ;θ)) − P (Q(W ;θ))| a.s−→ 0. According to Theorem 5.9 in

van der Vaart (2000), θ̂n converges in probability to θ0.

According to the law of total expectation, we have

P (Q(W ;θ)) = EX [E{Q(W ;θ)|X}] = EX

[HT (X;θ){µ(X;θ0)− µ(X;θ)}
v{µ(X;θ)}g′{µ(X;θ)}

]
.

Thus, it is straightforward to see that θ0 is the solution to P (Q(W ;θ)) = 0. Next, we

will show the uniqueness of θ0. AlthoughQ(W ;θ) is not first-order differentiable with

respect to θ, P (Q(W ;θ)) is first-order differentiable with respect to θ because of the

integral over X. And it is easy to calculate the first-order derivative of P (Q(W ;θ))

with respect to θ, denoted as R(W ;θ), i.e.,

R(W ;θ) ≡ ∂P (Q(W ;θ))

∂θT
= −P

[ HT (X;θ)H(X;θ)

v{µ(X;θ)}g′{µ(X;θ)}2
]
, (A.28)

where H(X;θ) is defined as the same in the formula (A.22). For any vector a =

(a1, a2, a3, a4) ̸= (0, 0, 0, 0), we can obtain

aR(W ;θ)aT = −P
[{a1 + a2X + a3(X − τ)+ − a4β11I(X > τ)}2

v{µ(X;θ)}g′{µ(X;θ)}2
]
< 0,

which indicates R(W ;θ) is negative definite. Therefore, P (Q(W ;θ)) = 0 has a

unique solution at θ0.
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Next, we will show that supθ∈Θ|Pn(Q(W ;θ))−P (Q(W ;θ))| a.s−→ 0. Define measurable

class of measurable functions F = {Q(θ) : θ ∈ Θ}, and Fℓ = {Qℓ(θ) : θ ∈ Θ}, for

ℓ = 1, 2, 3, 4. As Θ is compact, we can assume |β0|≤ w0, |β1|≤ w1 and |β11|≤ w2,

where wj are finite constants (j = 0, 1, 2). Then, |ξ|≤ w0+(w1+w2)C2. Because the

link function is continuous, then the inverse of the link function is also continuous.

Therefore |µ(X;θ)|= |g−1(ξ)| is bounded by some finite constant, and we denote this

finite constant as W1. Also, as v(.) and g
′(.) are assumed to be continuous functions,

|v{µ(X;θ)}| and |g′{µ(X;θ)}| are also bounded by some finite constants, which are

denoted as W2 and W3. Then, we can define integrable envelope functions Fℓ for

Fℓ (l = ℓ, 2, 3, 4),

F1 =
|Y |+W1

W2 +W3

;F2 =
C2(|Y |+W )1
W2 +W3

;F3 =
C2(|Y |+W1)

W2 +W3

;F4 =
w2(|Y |+W1)

W2 +W3

.

For each Qℓ(θ) (ℓ = 1, 2, 3, 4), it is obvious that the map θ 7→ Qℓ(θ) is continuous for

every x. Thus, by Example 19.8 in van der Vaart (2000), the L1-bracketing numbers

of Fℓ are finite and hence Fℓ is Glivenko-Cantelli for ℓ = 1, 2, 3, 4. This implies that

supθ∈Θ|Pn(Qℓ(θ))−P (Qℓ(θ))|
a.s−→ 0. And then F belongs to a Glivenko-Cantelli class,

and supθ∈Θ|Pn(Q(θ))− P (Q(θ))| a.s−→ 0.

A.3.3 Proof of Theorem 4

Proof. Because P (Q(θ)) is first-order differentiable with respect to θ, by Talyor ex-

pansion of P (Q(θ̂n)) around θ0, we have the following equation

P (Q(θ̂n))− P (Q(θ0)) = R(θ∗)(θ̂n − θ0), (A.29)

where R(θ) is a negative definite and non-singular matrix defined in (A.28), θ∗ =

(θ∗(1), . . . ,θ∗(4)) and θ∗(ℓ) = (β∗
0
(ℓ), β∗

1
(ℓ), β∗

11
(ℓ), τ ∗(ℓ))T lies between θ̂n and θ0 for ℓ =

1, 2, 3, 4. As θ̂n converges to θ0 in probability and θ∗(ℓ) lies between θ̂n and θ0, θ∗(ℓ)
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converges to θ0 in probability, for ℓ = 1, 2, 3, 4. Also, as each component in the matrix

R(θ) is a continuous function of θ, by continuous mapping theorem, R(θ∗) converges

to R(θ0) in probability. As P (Q(θ0)) = 0 = Pn(Q(θ̂n)), replacing P (Q(θ
0)) in the

equation (A.29) by Pn(Q(θ̂n)), we have Pn(Q(θ̂n)) − P (Q(θ̂n)) = −R(θ∗)(θ̂n − θ0),

which can be reorganized into the following equation

Gn(Q(θ̂n)) = Gn{Q(θ̂n)−Q(θ0)}+Gn{Q(θ0)} = −
√
nR(θ∗)(θ̂n − θ0). (A.30)

Next, we will prove Gn{Q(θ̂n) − Q(θ0)} = op(1). Because Θ is compact, β0, β1X,

β11(X − τ)+, X, (X − τ)+ and β11I(X > τ) are all uniformly bounded monotones

functions of θ on the real line. According to Theorem 2.7.5 in van der Vaart and

Wellner (1996), the class of all uniformly bounded, monotone functions on the real

line is Donsker. By Theorem 2.10.6 in van der Vaart and Wellner (1996), addi-

tion/multiplication of uniformly bounded monotone functions preserves the property

of Donsker. Then, H = {ξ = ξ(X;θ) = β0 + β1X + β11(X − τ)+ : θ ∈ Θ} is

a Donsker class. Because Θ is compact, we can assume |β0|≤ w0, |β1|≤ w1 and

|β11|≤ w2, where wj are finite constant (j = 0, 1, 2). Then, |ξ|≤ w0 + (w1 + w2)C2.

Thus H = w0 + (w1 + w2)C2 is an integrable envelop function of H. Because the

link function g(.) is a continuous first-order differentiable function and ξ is bounded,

g−1(ξ) is also a first-order differentiable function. As g−1(ξ) is a first-order differ-

entiable function with compact domain, g−1(ξ) is a Lipschitz function. According

to Example 19.20 in van der Vaart (2000), µ(X;θ) = g−1(ξ) belongs to a Donsker

class. Because Y is free of θ, S = {Y − µ(X;θ) : θ ∈ Θ} is also a Donsker class.

And it is easy to check that Y − µ(X;θ) is uniformly bounded. Also, because v(.)

and g′(.) are first-order differentiable functions with compact domain, v(µ) and g′(µ)

are also Lipschitz functions and hence belong to a Donsker class. Because v(µ) and

g′(µ) are uniformly bounded away from 0, 1/v(µ) and 1/g′(µ) belong to a Donsker
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class from Example 19.20 in van der Vaart (2000). Also, it is simple to show that X,

(X − τ)+ and β11I(X > τ) are all uniformly bounded and belong to a Donsker class.

According to Example 19.20 in van der Vaart (2000), product of uniformly bounded

Donsker classes preserve to be Donsker. Therefore, for ℓ = 1, 2, 3, 4, Qℓ(θ) belongs to

a Donsker class, which implies asymptotical equicontinuity. Because θ̂n converges in

probability to θ0, and Qℓ(θ) is a continuous function of θ, by continous mapping theo-

rem Qℓ(θ̂n) converges in probability to Qℓ(θ
0). That is, Qℓ(θ̂n)−Qℓ(θ

0) = op(1), and

thus {Qℓ(θ̂n)−Qℓ(θ
0)}2 = op(1). Because each row of Qℓ(θ

0) is uniformly bounded,

by dominated convergence theorem, P{Qℓ(θ̂n)−Qℓ(θ
0)}2 = op(1), for ℓ = 1, 2, 3, 4 .

According to Lemma 19.24 in van der Vaart (2000), Gn{Qℓ(θ̂n) − Qℓ(θ
0)} = op(1)

for all ℓ = 1, 2, 3, 4, which implies Gn{Q(θ̂n)−Q(θ0)} = op(1).

According to central limit theorem, Gn(Q(θ
0)) converges in distribution toN(0, V2(θ

0)),

where V2(θ
0) = P{Q(θ0)QT (θ0)} = P

[
V (Y |X;θ0

)HT (X;θ0
)H(X;θ0

)

v{µ(X∗
i ;θ̂n)}2g′{µ(X;θ0

)}2

]
. The last equation

can be derived through some algebra. Also, we denote V1(θ) = −R(θ). Then, ac-

cording to the equation (A.30), we have
√
nV1(θ

∗)(θ̂n − θ0) = Gn(Q(θ
0)) + op(1).

As Gn(Q(θ
0)) converges in distribution to N (0, IV (θ

0)), R(θ∗) converges to R(θ0) in

probability and R(θ0) is a non-singular matrix, by Slutsky’s theorem
√
n(θ̂n − θ0)

converges to N
(
0, ϕV −1

1 (θ0)V2(θ
0)V −1

1 (θ0)
)
in distribution.

A.4 Chapter IV: Proofs

We sketch the proofs of the main results below. For simplicity in notations, we only

consider a simple case of the constrained broken-stick model (4.3), i.e. g{µ(θ)} =

β0 + β1(X − τ)−. For the more general model (4.4), the proof is similar but more

involved in terms of algebras. We denote W = (Y,X) and Q(W ;θ) = HT (θ){Y−µ(θ)}
v{µ(θ)}g′{µ(θ)}

,

where H(θ) = {1, (X − τ)−,−β1I(X < τ)}. Thus, the proposed estimating equation

(4.5) can be reorganized as 1
n

∑n
i=1Q(W i;θ) = 0. We denote each row of Q(W ;θ)
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as Qℓ(W ;θ), for ℓ = 1, 2, 3.

A.4.1 Proof of Result 1

As θ̂n is the root of the proposed estimating equation 1
n

∑n
i=1Q(W i;θ) = 0, θ̂n is a Z-

estimator. Therefore, under regularity conditions, θ̂n converges to the unique solution

of EW (Q(W ;θ)) = 0, which is the limit of the estimating equation 1
n

∑n
i=1Q(W i;θ) =

0 when n goes to infinity. To prove consistency, i.e. θ̂n converges in probability to

the true value θ0, we will first show that θ0 is the unique, well-separated solution

to EW (Q(W ;θ)) = 0. To guarantee that θ̂n will be close enough to θ0 with in-

creasing n, we will next show that Q(θ) belongs to a Glivenko-Cantelli class, i.e.

supθ∈Θ

∣∣∣ 1n ∑n
i=1Q(W i;θ)− EW (Q(W ;θ))

∣∣∣ a.s−→ 0.

According to the law of total expectation, EW (Q(W ;θ)) = EX [E{Q(W ;θ)|X}]

= EX

[
HT (θ){µ(θ0

)−µ(θ)}
v{µ(θ)}g′{µ(θ)}

]
. Therefore, θ0 is a solution of EW (Q(W ;θ)) = 0. To show

uniqueness, we consider the first-order derivative of EW (Q(W ;θ)) with respect to θ,

denoted as R(θ). Specially, we have

R(θ) ≡ ∂EW (Q(W ;θ))/∂θT = −EW

[ HT (θ)H(θ)

v{µ(θ)}g′{µ(θ)}2
]
. (A.31)

We can check that R(θ) is negative definite because, for any vector a = (a1, a2, a3) ̸=

(0, 0, 0),

aR(θ)aT = −E
[{a1 + a2(X − τ)− − a3β1I(X < τ)}2

v{µ(θ)}g′{µ(θ)}2
]
< 0.

Thus, EW (Q(W ;θ)) = 0 has a unique solution. As EW (Q(W ;θ)) is a continuous

function of θ in the compact setΘ and θ0 is the unique solution of EW (Q(W ;θ)) = 0,

this unique solution θ0 is well-separated van der Vaart (2000). Following similar steps

in Appendix A.3.2, we can check that Q(W ;θ) belongs to a Glivenko-Cantelli class.
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We have shown the solution to the proposed estimating equation is consistent. Next

we show that when the proposed two-step modified NR algorithm converges, the

converged result is the solution to 1
n

∑n
i=1Q(W i;θ) = 0. We denote the converged

value of the proposed two-step modified NR algorithm as θ̃n = (β̃0, β̃1, τ̃)
T . Con-

sider the t-th (t ≥ 1) iteration of the algorithm, and denote the updated result

of the t-th iteration as θ̃
(t)

= (β̃
(t)
0 , β̃

(t)
1 , τ̃ (t))T . In Step 1, as β̃

(t−1)
1 and β̃

(t−1)
11

are the MLE or quasi-likelihood estimates, β̃
(t−1)
1 and β̃

(t−1)
11 are the solution of 1

n

∑n
i=1Q1(W i; β1, β11|τ̃ (t−1))

1
n

∑n
i=1Q2(W i; β1, β11|τ̃ (t−1))

 =

0

0

. And from Step 2, U (t) is proportional

to 1
n

∑n
i=1Q3,i(θ̃

(t)
). When the proposed two-step NR algorithm converges, we have

limt→∞ θ̃
(t)

= θ̃n, which implies limt→∞{U (t)/S(t)} = 0 from Step 2. As a result, we

can show that

 1
n

∑n
i=1Q1(W i; θ̃n)

1
n

∑n
i=1Q2(W i; θ̃n)

 =

0

0

 from Step 1 and 1
n

∑n
i=1Q3(W i; θ̃n) =

0 from Step 2. Therefore, θ̃n is the solution of the proposed estimating equation

1
n

∑n
i=1Q(W i;θ) = 0.

A.4.2 Proof of Result 2

According to the Taylor expansion of EW (Q(W ; θ̂n)) around θ0, we have

EW (Q(W ; θ̂n))− EW (Q(W ;θ0)) = R(θ∗)(θ̂n − θ0), (A.32)

where θ∗ = (θ∗(1),θ∗(2),θ∗(3)), θ∗(ℓ) = (β∗
0
(ℓ), β∗

1
(ℓ), τ ∗(ℓ))T lies between θ̂n and θ0 for

ℓ = 1, 2, 3, and R(θ) is a negative definite matrix defined in the equation (A.31).
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After some simple algebra, the equation (A.32) can be reorganized as

R(θ∗)
√
n(θ̂n − θ0) =

1√
n

n∑
i=1

Q(W i;θ
0)−

√
nEW (Q(W ;θ0)) (A.33)

−
[ 1√

n

n∑
i=1

{Q(W i; θ̂n)−Q(W i;θ
0)} −

√
n{EW (Q(W ; θ̂n))−Q(W ;θ0))}

]
≜

1√
n

n∑
i=1

Q(W i;θ
0)−

√
nEW (Q(W ;θ0))− δ,

where δ denotes the formula in (A.33).

By continuous mapping theorem, we have that R(θ∗) converges to R(θ0) as n −→ ∞.

According to central limit theorem, 1√
n

∑n
i=1Q(W i;θ

0) −
√
nEW (Q(W ;θ0)) con-

verges in distribution to N(0, ϕV −1(θ0)), where V (θ0) = EW {Q(W ;θ0)QT (W ;θ0)}.

Following similar steps in Appendix Section A.3.3 , we can check that Q(W ;θ) be-

longs to a Donsker class, which further implies that δ = op(1). To satisfy the reg-

ularity conditions of Q(W ;θ) belonging to a Donsker class, we additionally need

that g(.) is a continuous and first-order differentiable link function. This holds for

distributions in the exponential family. Then by Slutsky’s theorem,
√
n(θ̂n − θ0)

converges to N (0, ϕV −1(θ0)) in distribution and V (θ0) can be calculated as V (θ0) =

E
[

HT (θ0
)H(θ0

)

v{µ(θ0
)}g′{µ(θ0

)}2

]
.
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