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ABSTRACT

Applications that run in the cloud must be geo-distributed to achieve high reliability, minimize
delays, and follow data localization laws. However, geo-distributed applications face many chal-
lenges in achieving these goals due to a key bottleneck: the wide-area network (WAN). Without
enough, cheaply-available WAN bandwidth, applications are forced to degrade the service they
provide or shut down altogether. Additionally, the latency between data centers limits how quickly
an application can serve user requests.

My dissertation makes two contributions to better serve providers of geo-distributed applica-
tions. First, I present a new architecture, HEYP, for sharing a private WAN across many tenants.
State-of-the-art WANs maximize efficiency by trying make use of every bit of spare capacity on
the network. However, in doing so, they risk introducing interference between tenants. In contrast,
HEYP offers strong isolation guarantees between tenants, but without sacrificing the efficiency of
existing shared WANs. Next, I characterize the impact that latency has on read and write operations
when manipulating data that is stored in multiple data centers, and how there exists a three-way
tradeoff between optimizing for read latency, write latency, and cost. I study existing approaches
and identify inefficiencies that cause them to require significantly higher cost than necessary to
meet a set of latency targets. I then describe the design of PANDO, a system that I have developed
to offer a near-optimal tradeoff between read latency, write latency, and cost.

Both PANDO and HEYP offer substantially improved tradeoffs between performance and cost
that can benefit geo-distributed applications. More generally, however, my work shows that current
geo-distributed systems offer tradeoffs that are suboptimal in important ways, and that focusing on
the constraints of WANs will be a key part of improving them.
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CHAPTER 1

Introduction

Two trends – the increasingly global reach of the Internet and our growing dependence on online
services – are changing the considerations application providers need to account for when design-
ing their software. First, as Internet access improves in more parts of the world, these applications
(i.e., online services) are serving users that are spread across larger geographic distances from one
another. However, because long-distance data transfers over the Internet can be slow, it is often
challenging for application providers to deliver good performance. Furthermore, applications that
are present in multiple countries must be adapted to comply with the regulations for data local-
ization that are being enacted around the world [51, 61]. These laws restrict where providers of
online services can access and store data. Second, our society’s increasing reliance on these ser-
vices means that providers need ensure that applications remain online. We require online services
to work [74, 73, 157], shop [1, 7], and teach [58, 3], and we take notice when these services are
down [83, 173, 97, 102].

To meet these demands, providers are spreading application data and logic across multiple data
centers that are each located in a different geographic region. Figure 1.1 shows how a hypothetical
video conferencing application might adopt such a geo-distributed architecture. Each user interacts
with a nearby instance of the service. When users call one another, the application relays the video
streams between the instances used by each user.

This architecture offers several benefits.

• By storing each user’s data in nearby data centers, the application can quickly authenticate users
and comply with any data regulations.

• When individual data centers fail, the application can remain online by redirecting traffic to the
remaining healthy instances.

However, in order to adopt a geo-distributed architecture, an application provider must address
a number of challenging problems. These problems include how to share the available resources
across services, how to maintain a consistent view of the data when multiple instances of the
application write in parallel, and where to store data.

1
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Figure 1.1: Architecture of a hypothetical geo-distributed video conferencing application.

These problems are not new – applications that use more than one machine within a data center
must address them as well. Because of efforts made in both academia [178, 87, 140] and indus-
try [16, 4, 149, 2, 125, 21], application providers can leverage widely-available infrastructure to
address many of these challenges when distributing an application across machines that are located
within a single data center.

However, one cannot simply transplant systems that operate within a single data center to run
across data centers and hope that they will perform well. Compared to applications that run within
a single data center, geo-distributed applications face unique constraints.

1.1 WAN is a key bottleneck

The wide-area networks (WANs) that connect data centers to one another have fundamentally
different properties compared to the networks that are used within data centers.

• Latency is high and non-uniform. Within a data center, the round trip time (RTT) between
two machines is limited to a few hundred microseconds [28, 129, 181]. In contrast, WAN RTTs
can be tens to thousands of times longer, depending on the distance between data centers and
the specific routes used to send data. It is therefore important to pay attention to not only the
number of rounds of communication that take place, but also where the communication occurs
(i.e., between which pairs of data centers).

To understand the impact this has on system design, consider a replicated storage system. The
system maintains multiple copies of the data for fault tolerance, but it needs some mechanism to
keep the copies synchronized. This synchronization can be achieved by funneling all requests
through a single leader, and electing a new leader upon failure. Within a data center, the over-

2



head of using a leader may be acceptable since the network RTT may be small compared to
queuing and storage delays (e.g., Microsoft’s CosmosDB targets a latency bound of 10ms for
read requests [125], or about 100× higher than the RTT). However, across data centers, this
approach risks incurring high latency for requests that are sent by data centers that are distant to
the leader.

Over time, this discrepancy between latency for data center networks and WANs will persist.
Any improvements to network RTT are fundamentally limited by the speed of light, and data
center networks span smaller physical distances than WANs.

• Bandwidth is expensive. WANs that are used to connect data centers to one another can cost
hundreds of millions of dollars [89]. It is therefore prudent to minimize the amount of the WAN
(bandwidth) capacity required if one aims to minimize cost or support higher volumes of load
in a given topology [89, 98, 105, 176, 103].

In contrast, typical data center networks offer large volumes of bandwidth between all pairs of
machines [156, 32, 151, 181] – i.e., data center networks have low oversubscription ratios –
which has led some use cases to focus on responsiveness over efficiency [63, 29, 99, 117].

These limitations suggest that distributed systems that support geo-distributed applications
should be designed to make the best use of the WAN. Of course, this must be balanced against
other desirable properties. For example, for a storage workload that has few writes but many reads,
a WAN-optimal strategy may be to replicate all data to all data centers. However, the storage cost
of this approach may be prohibitive, especially if only a small subset of data is being read.

For most problems, a tradeoff will exist between WAN optimization and the other goals at hand.
The question is, how much can these tradeoffs be improved?

1.2 Thesis and Contributions

I have explored this question in the designs of two systems that support most, if not all, geo-
distributed applications: inter-data center WANs and storage systems. Despite the effort that has
been poured into these problem areas, the results of my research, which I present in this disserta-
tion, support the following thesis: it is practical to improve performance versus cost tradeoffs in
geo-distributed applications.

1. Reliable delivery of WAN bandwidth with HEYP. Returning to our example application
in Figure 1.1, consider what happens when less bandwidth is available than needed to transfer
full-quality video streams between data centers: the application will be forced to reduce the video
quality and possibly reject a subset of calls to avoid overloading the network.

To minimize the likelihood of this, the application provider must provide sufficient capacity

3



between data centers to support its expected peak bandwidth. Since the Internet does not offer
performance guarantees, the provider must allocate the bandwidth in a private WAN.

Building a private WAN requires large capital expenses [89], but cloud providers amortize these
costs by sharing a single WAN across a large number of tenants. Although this provides savings
through economies of scale, further savings can be realized. A large portion of WAN capacity is
built to handle atypical circumstances – e.g., link failures – so state-of-the-art WANs continuously
reconfigure the network to utilize this spare capacity to serve excess, opportunistic traffic.

However, the high efficiency of existing WAN architectures comes at the cost of predictability.
Although WAN controllers distinguish between excess traffic and traffic that is within each tenant’s
guarantee, no distinction is made when the traffic is being forwarded between network switches.
The result is that by providing additional bandwidth to admit excess traffic, state-of-the-art WANs
risk delivering less bandwidth to tenants than promised.

I propose a new architecture, HEYP (for Highly Efficient, Yet Predictable), that matches the
efficiency of state-of-the-art WANs while providing substantially improved predictability. The key
to HEYP’s performance is that it explicitly treats the excess traffic of each tenant separately from
the portion of traffic that is within the tenant’s guarantee. This enables HEYP to use more robust,
but wasteful, mechanisms to ensure that bandwidth guarantees are met while leveraging highly
efficient mechanisms to maximize efficiency.

To match the efficiency of state-of-the-art WANs, HEYP needs to partition the flows of each
tenant into separate bins and route each bin over its own set of paths. This presents two main
challenges. First, existing applications assume that each flow’s traffic will be sent over a stable
path. Therefore, HEYP must not only partition each tenant’s flows to maintain a desired traffic
volume in each bin, but it must also maximize the stability of the assignment. Second, many
applications dynamically route requests to avoid bottlenecks in the network. While this improves
application performance, it can interact poorly with HEYP’s partitioning of flows by changing the
volume of traffic in each bin. HEYP mitigates both issues; the goals of these mitigations are to
preserve isolation between tenants and to ensure that applications can make use of the available
bandwidth with few, if any, changes.

My experiments suggest that HEYP offers the highest predictability for satisfying bandwidth
guarantees and matches the efficiency of state-of-the-art WANs. These results hold even under a
sensitivity analysis where I alter the characteristics of both the WAN and the examined workloads.
In a testbed that hosts an application workload with excess traffic, I find that the throughput offered
by HEYP is within 12% of an optimal approach.

2. Near-optimal latency versus cost tradeoffs for storage with PANDO. Having established
how cloud providers can deliver predictable network performance, I can turn my attention to de-
signing systems that use the network without worrying about high performance variability. I focus

4



on the three-way tradeoff between read latency, write latency, and storage cost that affects geo-
distributed storage systems.

Replicating data across data centers enables web services to serve users with low latency and
tolerate the unavailability of any one data center. A web server close to a user can serve the user’s
requests by accessing nearby copies of relevant data.

There are several constraints that limit the read latency, write latency, and storage cost that
can be achieved when one aims to maintain a single logical view of the data. First, writers must
synchronize both with each other and with any readers. This is achieved by ensuring that, under
all possible circumstances, a data center written to by the writer will be accessed by future reads
and writes. By writing to data centers that are closer to readers, one can improve read latency,
at the cost of increased write latency. Second, in order to offer low read latency, readers must be
able to fetch data from a nearby set of data centers. By increasing the number of data centers (and
therefore cost), one can improve read latency.

I study how existing approaches perform in this three-dimensional tradeoff, and find that the
performance they achieve in one dimension (e.g., read latency) given constraints in the other two
(e.g., write latency and storage cost) are suboptimal. Approaches that are optimized for use across
a WAN store a full copy of each object at every site, and can therefore only offer low latency at
high cost. In contrast, approaches that store only a portion of the data at every site (using erasure
coding) offer low cost but at high read and write latency. The slowness is a result of two ineffi-
ciencies: writing data using multiple rounds of communication over the WAN, and contacting a
larger number of sites than an optimal approach. Even when considering a combination of existing
approaches, I find that the resulting latency–cost tradeoffs have significant room for improvement.

I introduce PANDO, our system design that achieves a near-optimal tradeoff between read la-
tency, write latency, and storage cost. PANDO leverages erasure coding to optimize cost, but it
addresses both sources of inefficiency with existing approaches. First, PANDO eliminates most
of the latency cost of two-phase writes by rethinking how to execute them in WAN environment.
Second, PANDO waits for responses from a minimal number of sites when there are no conflicting
operations, and only waits for larger set otherwise.

Using a combination of measurement-driven analysis and a prototype deployment, I compare
PANDO against state-of-the-art approaches. In the latency–cost tradeoff space, I find that PANDO

reduces by 88% the median gap between achievable tradeoffs and the best theoretically feasible
tradeoffs. Depending on the application, these benefits can offer both cost savings and performance
improvements.
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CHAPTER 2

HEYP: Highly Available Bandwidth Guarantees on
Highly Utilized Cloud WANs

The public Internet offers no performance guarantees. Therefore, many large cloud providers have
deployed their own private wide-area networks (WANs) [98, 89, 101, 31], wherein they provision
appropriate network capacity to offer predictable wide-area bandwidth and latency to tenants under
a range of failure scenarios and communication patterns. Additionally, via admission control [105]
and judicious routing [98, 89], the cloud provider can limit bandwidth interference among tenants.

Since services do not always send traffic at their peak rate, statically configuring a WAN to
reserve the bandwidth promised to each tenant and preventing tenants from sending at a higher rate
will result in poor network utilization. Cloud providers instead leverage their centralized control
of their WANs to dynamically reconfigure routes and admission rate limits in reaction to changes
in traffic demands [98, 105, 89]. Based on its global view, a central controller can ensure that any
unused capacity that remains after admitting guaranteed demands for bandwidth is shared among
tenants’ surplus demands as per its business policy. Our simulations using data from Google’s
large global, private WAN show that such an approach can satisfy 50% more of the traffic demands
on average compared to static approaches.

Current WAN architectures for improving network utilization in this manner, however, signifi-
cantly hamper predictability. For example, in the above-mentioned simulations, dynamically allo-
cating bandwidth offers 99% or higher availability to 10× fewer bandwidth guarantees, as com-
pared to static reservation. A key cause for this dramatically lower predictability is that, to use the
bandwidth promised to it, a tenant has to often wait for the central global controller to throttle pre-
viously admitted surplus demands of other tenants and reconfigure routes. This is problematic be-
cause the speed with which a central controller can react to demand changes is fundamentally lim-
ited by two factors: 1) the extremely large scale of global WANs [98, 105, 103, 82, 126], and 2) the
need to sequentially apply routing changes in order to prevent inconsistency in routing configura-
tions across switches in the network [89]. These sources of delay will only worsen over time since
cloud providers are constantly expanding the number of sites in their WAN [152, 90, 127, 104],
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and it often takes multiple rounds of reconfigurations for the global controller to correctly estimate
and accommodate a tenant’s true demand.

To remove this dependence on the global controller for ensuring predictable performance, we
argue that any tenant’s surplus demands should explicitly be treated differently, and admitted at a
lower quality-of-service (QoS) level. When a tenant ramps up its bandwidth usage while staying
within its bandwidth guarantee, we can then rely on switches to prioritize its traffic, instead of
having to reduce the admission for other tenants utilizing spare capacity. Consequently, global
control delays no longer affect the cloud provider’s ability to satisfy bandwidth guarantees. With
this approach, a tenant bears the risk that its excess traffic is more susceptible to congestion. But,
it is, after all, utilizing more bandwidth than was promised to it.

We realize this promise of using QoS downgrade with HEYP (for Highly Efficient, Yet Pre-
dictable), our new control plane architecture for private WANs. Our design addresses three chal-
lenges that are unique to large cloud provider WANs compared to prior work which has used this
approach to offer bandwidth guarantees on the public Internet [57, 56].

First, we show that the use of QoS downgrade calls for a change in how the global controller
computes routes, compared to the status quo [98, 89]. A single tenant’s demand is often large
enough that capacity from multiple routes must be dedicated to its traffic. Spreading a tenant’s
high and low priority traffic in the same proportion among all the routes for this tenant constrains
which routes can be used to carry low priority traffic, consequently limiting network utilization.
Therefore, HEYP installs separate paths for each tenant’s promised and surplus bandwidth: stable
paths for the former on which capacity is guaranteed irrespective of other tenants’ demands, and
periodically recomputed paths for the latter to opportunistically utilize unused capacity.

Second, the consequence of using separate paths for high and low priority traffic is that the sub-
set of a tenant’s flows which are downgraded cannot be independently determined in each control
period. Since latency varies across routes, TCP’s congestion control will degrade the performance
of any flow which keeps flip-flopping between QoS levels. But, pinning each flow to a specific QoS
for a set amount of time limits our ability to respond to demand changes. Instead, we introduce
caterpillar hashing, a flow selection mechanism designed to maximize QoS stability. Whenever we
need to decrease the fraction of a tenant’s traffic that is downgraded, we do so by upgrading the
last-downgraded flow, and vice versa to increase the fraction downgraded.

Lastly, in contrast to when every tenant is capped at the bandwidth promised to it, an application
may respond to QoS downgrade of its surplus traffic by shifting load towards that subset of its tasks
which offer better performance. Since these tasks are more likely to be the ones permitted to send
high priority traffic, the net result will be the application sending more high priority traffic than
allowed. In response, we can change the QoS assignment, but the application will again react to
this change. To converge to a stable QoS assignment for any tenant’s traffic, HEYP attempts to

7



identify that subset of the tenant’s flows which, if admitted at high priority, cannot ramp up any
further due to bottlenecks other than WAN link capacity (e.g., host CPU or NIC).

We evaluate HEYP using testbed experiments and simulations. In our simulations driven by
traces obtained from Google, HEYP matches the efficiency obtainable with dynamic bandwidth
allocation, and it delivers the availability of bandwidth guarantees afforded by static approaches.
We observe similar results when we apply our prototype to an application workload. Tenants
that are within their bandwidth guarantees are unaffected by those who have excess traffic, and
applications which utilize spare capacity achieve throughput that is within 12% of an optimal
approach.

2.1 Setting and Motivation

We focus on settings where a WAN administered by a single organization is shared by many
tenants. In this setting, we aim to satisfy four goals.

1. Provide predictability by satisfying bandwidth approvals. Based on every tenant’s antic-
ipated needs, the provider approves a certain level of bandwidth per tenant between source and
destination data centers; we refer to each (tenant , src, dst) tuple as a flowgroup. An approval

per flowgroup enables more judicious capacity planning compared to guaranteeing every tenant
bandwidth in and out of each data center irrespective of its communication pattern [65].

Every approval comes with an associated SLO for the availability of the approved bandwidth,
and optionally with guarantees on the length of paths used to route it. A higher availability SLO
calls for more redundant bandwidth on the appropriate links to cope with failures; but, in this
dissertation, we consider all approvals as having the same SLO, and we discuss support for multiple
SLO levels in §2.5. We assume approvals are not oversubscribed, so all approvals will be satisfiable
as long as the capacity lost due to failures is within the bounds that the network provider wishes to
tolerate.

While there exists prior work for making bandwidth approvals resilient to failures [118, 41,
161], we focus on the more commonly occurring risk: rapidly-changing traffic demands.

2. Improve network efficiency by accommodating opportunistic transfers. Our secondary
objective is to admit as much of each flowgroup’s demand as feasible; a flowgroup’s demand is the
bandwidth it will consume given infinite WAN capacity. The network should typically be able to
admit some above-approval demands as it must have spare capacity to tolerate failures, and tenants
do not always fully utilize their approvals. Admitting above-approval demands also reduces the
risk associated with under-estimation of desired bandwidth. To prevent tenants from becoming
dependent on work-conserving bandwidth, they can either be charged for its use [130] or every
flowgroup can occasionally be capped at its approval even if there is spare capacity.
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Figure 2.1: Architecture of a software-defined WAN.

3. Support flexible traffic engineering and bandwidth sharing policies. Network policies are
rich [105], vary across providers [107, 98, 89, 78, 118], and evolve over time [90]. For example,
traffic engineering policies face a tension between optimizing for latency or balanced load, and
providers have to choose tradeoffs that are appropriate for their workloads and topology. Rather
than dictating particular traffic engineering or bandwidth sharing policies, we aim to be flexible
outside of the goals set forth in this section.

4. Maintain compatibility with TCP. As it is the most widely-used transport protocol, maintain-
ing compatibility with TCP is necessary to avoid breaking applications. This restriction rules out
certain design choices, e.g., because TCP requires most packets to be delivered in order, we cannot
spray packets that belong to the same connection over multiple paths which differ in end-to-end
latency.

2.1.1 Dynamic control across and in data centers

To meet these goals, current WANs are architected as shown in Figure 2.1. Within each data
center, a DC controller collects bandwidth usage statistics for each flowgroup, aggregating mea-
surements across tasks; we consider each instance of an application (i.e., a container or virtual
machine) as a set of tasks, where each task sends traffic to a specific DC. From these usage statis-
tics, the controllers estimate each flowgroup’s demand, e.g., by taking the maximum usage across
the past 90 seconds and inflating it by 10% [105]. Using these demand estimates along with the
current topology, a global controller periodically adjusts routes to better satisfy demands and de-
termines per-flowgroup admissions [105, 137] (i.e., how much aggregate bandwidth to admit for
each flowgroup); in practice, separate global controllers may be used for routing and admission
control [98, 105]. The DC controllers divide any flowgroup’s admission across its tasks and con-
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Figure 2.2: An example where dynamic control prematurely throttles traffic and static allocation
fails to fully use network capacity. All links have 10 Gbps capacity. Approvals for both A→C
and B→C are 10 Gbps. Initial demands (top) are 20 Gbps for A→C and 5 Gbps for B→C. After
limiting it to send at most 15 Gbps, Dynamic sends 33% of A→C’s traffic through B and the
remaining 67% directly to C. This allows it to fully utilize the network. Later (bottom), when
B→C’s demand rises to 10 Gbps, Static admits the increased within-approval demand but Dynamic
does not. HEYP provides the best of both: it fully utilizes the network with the initial demands
and later accommodates the increased demand for B→C.

tinuously revise this split as demands change. Each task paces its sending rate so as to stay within
the programmed rate limit [105, 89, 153].

A key advantage of this approach, compared to distributed approaches such as RSVP-TE [36],
comes from the central controller’s global visibility. When the network is unable to completely
satisfy all demands, the global controller can easily enforce any bandwidth sharing policy desired
by the network provider. These include, but are not limited to, allocating bandwidth to tenants in
proportion to their payments, max-min fairness, and maximizing throughput.

2.1.2 Global control delays are a key bottleneck

To understand the sensitivity of dynamic control to delay, consider the example in Figure 2.2. For
simplicity, we ignore failures and route each flowgroup’s traffic over the shortest path. If that does
not provide enough capacity, we recursively add the next shortest path to the flowgroup’s routes.

With Dynamic (left), the global controller first satisfies within-approval demands; it allocates
the shortest path for each approval and sets the admissions to 10 Gbps for A→C and 5 Gbps for
B→C. It then allocates leftover capacity to surplus demands; it installs a second route for A→C to
utilize the spare capacity between B and C, and increases A→C’s admission to 15 Gbps.

Although the configuration chosen by Dynamic maximizes demand satisfaction, it risks vio-
lating B→C’s approval if its demand rises above 5 Gbps. Existing systems which use Dynamic’s
approach (such as B4 [98, 105] and SWAN [89]), therefore, project demand to be higher than the
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current usage, e.g., by inflating the usage by 10% [105]. However, this is insufficient to prevent ap-
proval violations when demands rise sharply between global reconfigurations (e.g., when B→C’s
demand increases from 5 to 10 Gbps). Multiple iterations of global reconfiguration are necessary
in such cases, since each one only increases the admission by 10%.

One could mitigate the risk of approval violations by improving the responsiveness of Dy-
namic’s global controller, but achieving this is an uphill battle.

• First, there is the issue of scale. The speed with which a global controller can act is fundamen-
tally limited by the scale of a global WAN [105] and the need to sequence routing updates to
avoid congestion [89], e.g., routing changes may require tens of seconds to minutes to com-
plete [118]. In addition, the input size to the global controller is rapidly growing. Several large
content and cloud providers have added 50–100% more nodes to their WAN over the last 2–6
years [104, 76, 152, 98, 90], and the number of flowgroups grows quadratically in relation to
this.

• Second, when the global controller is unavailable, the remaining network components continue
to use the last known state [68, 98, 105, 89, 101]. Data from production networks suggests that
failures can lead to frequent and long delays. An analysis [75] of over 100 failures in Google’s
networks attributes 9% of failures to unavailability of the WAN control plane. In 2019, an
especially long incident [11] brought down the control plane of Google’s backbone network for
over four hours and caused up to 100% packet loss on certain links.

An alternative approach that eliminates the need for a responsive controller entirely is to use a
static configuration that only aims to satisfy approvals. In our example, Static (Figure 2.2 center)
will satisfy the approvals by setting the admissions for both flowgroups to 10 Gbps and configuring
each to use only their direct path. Although Static does not take into account either flowgroup’s
demand at the global level, the DC controller within each data center must dynamically redistribute
the admission for each flowgroup across its tasks. The DC controller can react more quickly than
the global controller (§2.4.2.4, see also [105, 89]), and is not a significant source of approval
violations. As a result, Static ensures that approvals are satisfied regardless of the demand matrix,
but it does not admit any above-approval demand.

In §2.4.1, we quantify the tradeoff between approval and demand satisfaction using the two ap-
proaches. The results match the intuition presented here. Static achieves high approval satisfaction
and Dynamic provides high demand satisfaction, but each performs poorly in the other metric.
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2.2 Approach and Challenges

To balance the satisfaction of both approvals and demands, the question at hand is: how to retain the
benefits of centralized WAN control (i.e., better network utilization and support for flexible band-
width sharing policies) while addressing its adverse impact on satisfying bandwidth approvals?

Our high level insight is that modifying routes and admissions are not the only measures avail-
able in our toolkit for reacting to congestion. In addition, we can leverage support within the
network data plane to prioritize the delivery of packets marked with a higher QoS value. This
feature can be used to satisfy approvals without involving the global controller, except to handle
failures.

A natural approach for using this capability would work as follows. In the common case,
the global controller will set the admission for every flowgroup to at least be its approval. Any
additional traffic admitted onto the network (to utilize spare capacity) will have its QoS reduced
to a lower priority (LOPRI). Any flowgroup’s ability to increase its within-approval demand will
then not depend on the global controller’s ability to react. Instead, network switches will strictly
prioritize the delivery of its higher-priority (HIPRI) traffic over any competing above-approval,
LOPRI traffic (we discuss other prioritization policies in §2.5). We would rate limit LOPRI traffic
to avoid excessive loss and to ensure that distribution of spare bandwidth is as per business policy.

While this approach shows promise, we need to address three challenges: one on global control
and two on control within each data center.

Sharing routes limits efficiency. Each flowgroup’s traffic is divided across the routes installed
for it in proportion to their weights. When the global controller wants to add an additional path to
support, say one-fourth of the above-approval demand, the new path must also admit a quarter of
the approval. How should we allocate routes so that this restriction does not limit the efficiency of
the network?

QoS churn interacts poorly with congestion control. Each time HEYP migrates a particular
TCP flow from HIPRI to LOPRI (or vice versa), it risks changing the RTT for that connection. Such
changes, if they occur frequently, will hamper TCP’s ability to accurately estimate the bandwidth-
delay product, thereby preventing it from fully utilizing available network bandwidth. Therefore,
in determining what fraction of a flowgroup’s traffic to downgrade, how can the DC controller
minimize QoS churn for individual flows?

Uneven bandwidth distribution can lead to harmful app–DC controller interactions. When
HEYP downgrades the QoS for part of a flowgroup, the application may, due to congestion, ob-
serve worse throughput on its LOPRI flows compared to its HIPRI ones. The application could
react by directing more load to its tasks which provide faster responses. As a result, the flowgroup
might send more HIPRI traffic than its approval allows and potentially interfere with the approvals
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of other flowgroups. The DC controller will react by downgrading a different subset of the flow-
group’s traffic, but of course, the application can again respond by shifting load. To avoid adverse
impact on both the flowgroup in question (unnecessary QoS churn) and other flowgroups (approval
violations), how do we ensure that the DC controller converges quickly to a stable QoS assignment
that admits only the approval at HIPRI?

2.3 Design

In this section, we explain how HEYP addresses each of the above-mentioned concerns. HEYP’s
design is tailored to the needs of large cloud providers. In aiming to satisfy the goals set out in
§2.1, it provides the following key properties.

• Under planned failure scenarios, each flowgroup can ramp up its usage to its approval without
any reaction from the global or DC controllers. Within-approval traffic will use paths that meet
the specified latency SLO.

• Once a flowgroup exceeds its approval, HEYP will downgrade the flowgroup’s excess traffic
to LOPRI and rate limit it. The LOPRI routes and admissions are determined using dynamic
global control to maximize efficiency.

• To avoid degrading the performance of applications that have part of their traffic downgraded to
LOPRI, HEYP maximizes the minimum time each task spends at a particular QoS. Applications
that want to make the best use of the available LOPRI bandwidth should internally divert work
away from bottleneck tasks. Many existing applications – e.g., HTTP proxies [14, 19], bulk data
copies [33], and others [18, 8, 15, 17] – have this capability.

• HEYP’s DC controller is biased to over-admit HIPRI traffic when usage is concentrated across
a small number of tasks. Network operators can account for this by provisioning additional
headroom (§2.3.3). For cloud WANs, we expect that approvals will be large enough for the
required headroom to be low.

2.3.1 Separate HIPRI and LOPRI routes for efficiency

To appreciate why the use of QoS downgrade necessitates a change in the global controller’s rout-
ing strategy, consider the example from Figure 2.2. To accommodate 15 Gbps of A→C’s demand,
existing ‘Dynamic’ controllers would compute and install two routes: one along the direct path
and one along the indirect path via B, with the former set to carry one-third of the flowgroup’s
traffic and the latter two-thirds. If we admit 10 Gbps of A→C’s traffic on HIPRI, since that is its
approval, then 6.6 Gbps of A→C’s HIPRI traffic would go over A-C and 3.3 Gbps over A-B-C.
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Inputs: Approvals and demands per flowgroup
Topology annotated with link capacities

Outputs (per flowgroup):
Set of HIPRI routes and set of LOPRI routes
HIPRI admission and LOPRI admission

1. Compute HIPRI routes and admissions to satisfy approvals
2. Compute unused link capacity by deducting any link

capacity consumed by within-approval demands
3. Compute LOPRI routes and admissions to satisfy

above-approval demands

Algorithm 2.1: Global computation of routes and admissions. Steps 1 and 3 follow provider’s
allocation policy.

When B→C’s within-approval usage increases, we risk violating its approval as it will compete for
capacity with A→C’s HIPRI traffic.

The problem here is that, if both within- and above-approval traffic are split in the same propor-
tion across paths, we cannot simultaneously satisfy the two properties we want: 1) within-approval
demands must be met irrespective of other flowgroups’ demands, e.g., A→C should not route
within-approval traffic over A-B-C, and 2) above-approval traffic should be able to use any link
capacity that is unused by other flowgroups; this constraint is opposite to the previous one: A→C’s
above-approval traffic must go over A-B-C.

To resolve this issue, in HEYP, we compute multiple sets of paths per flowgroup that each
meet one of these objectives. We route each flowgroup’s within-approval traffic in a manner that
statically guarantees no interference with other within-approval traffic. Additionally, we ensure
that the routes for above-approval traffic make use of any spare capacity on the network. In our
example, we send 10 Gbps of A→C’s HIPRI traffic over A-C, and 5 Gbps of A→C’s LOPRI traffic
over A-B-C. When B→C’s demand rises to 10 Gbps, it takes priority over A→C’s LOPRI above-
approval traffic. Since A→C now sends HIPRI traffic only over the direct link to C, both approvals
are satisfied.

Global allocation framework. HEYP determines the sets of paths and admissions for each
flowgroup as follows. To support many traffic engineering bandwidth sharing policies, HEYP
uses existing algorithms as black box functions to provide capacity to within-approval (HIPRI) or
above-approval (LOPRI) traffic. Within a particular QoS level, these functions are free to enforce
their own policies.

In existing systems, the global WAN controller [98, 89] computes routes for a particular traffic
demand matrix in two phases: 1) fit all within-approval demands, and 2) based on the provider’s
bandwidth sharing policy, accommodate as much above-approval demands as feasible given the
capacity that remains. The routes for every flowgroup comprise the union of the routes computed
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in the two phases and the admission is the sum of capacity allocated on each route.
HEYP’s global controller similarly executes in two phases, but both phases differ (Algo-

rithm 2.1) and the outputs of each phase apply separately to either HIPRI (i.e., within-approval) or
LOPRI (i.e., above-approval) traffic.

• Phase 1: Match Static’s approval satisfaction. First, to ensure that flowgroups can burst up to
their approvals, we compute HIPRI routes to fit all approvals, not just within-approval demands,
while ensuring that path lengths are within guaranteed bounds (§2.1). In the unlikely scenario
that more capacity is lost due to failures and maintenance than what the provider planned for,
capacity is shared according to policy (e.g., max-min fairness).

• Phase 2: Match Dynamic’s demand satisfaction. Next, we determine additional routes based
on observed demand. The key is to compute the capacity consumed by Phase 1 based on within-

approval demands, not approvals. With this, HEYP admits the same volume of above-approval
demands as Dynamic. Moreover, when Phase 1 is unable to fit all approvals into the network,
HEYP can admit additional within-approval traffic in this second phase, thereby surpassing
Static with respect to approval satisfaction.

In achieving these desirable properties, we are oversubscribing link capacities: HEYP allocates
routes based on approvals in Phase 1 but computes the capacity consumed by these routes based on
within-approval demands. However, when a link’s capacity is oversubscribed, HIPRI traffic will
be preferentially delivered, thus ensuring that congestion has no impact on approval satisfaction.
HEYP never oversubscribes link capacity in Phase 1 to ensure that an increase in one flowgroup’s
within-approval demand does not impact the ability to satisfy approvals for other flowgroups. Fig-
ure 2.3 illustrates how the HEYP controller separately computes HIPRI and LOPRI admissions.

Mitigating switch limitations. The degree to which HEYP oversubscribes link capacities is
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configurable: in Phase 2, the available capacity on each link can be set such that the sum of HIPRI
and LOPRI admissions do not exceed a configurable multiple of the link’s capacity. For network
switches that share buffers between per-QoS queues, this can be used to reduce HIPRI packet drops
under a flood of LOPRI traffic.

2.3.2 Minimizing QoS churn with caterpillar hashing

Once the global controller has determined the HIPRI and LOPRI admissions for a particular flow-
group, the DC controller must assign a QoS level for each of the flowgroup’s flows, i.e., each (src
IP, src port, dst IP, dst port, protocol) 5-tuple. For this, it first needs to measure the total usage of
the flowgroup, and then identify a subset of flows to downgrade such that the sum usage of the
remaining flows equals the approval.

Need to minimize QoS churn. A straightforward approach for picking flows to downgrade
would be to use a knapsack solver to identify a set of flows whose aggregate usage is closest to
the flowgroup’s current usage minus the HIPRI admission. However, knapsack solvers make no
effort to maintain stable QoS assignments across multiple runs, harming application performance.
Every time the QoS assigned to a flow is changed, its bandwidth and latency characteristics change
as well. If TCP’s congestion control is unable to adapt quickly enough, application performance
suffers.

Figure 2.4 demonstrates the impact of frequently changing QoS between backend servers in
one data center and an HTTP proxy in another (see §2.4.2 for details). Both the latency (90%ile
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of 600 ms vs 95 ms) and throughput (mean 19K req/s vs 21K req/s) seen by the clients suffer,
when compared to scenarios where every flow is pinned to a specific QoS level. The reason for
this degradation is that BBR [50], the congestion control used in the experiment, is not able to send
data at a rate high enough to avoid large queuing delays. BBR actively probes for new round-trip
time (RTT) measurements at most once every 10 seconds (more frequent probes would sacrifice
throughput) [50]. So, when the DC controller changes QoS every 5 seconds, BBR incorrectly
estimates that 99% of LOPRI flows have the RTT of the HIPRI path, and maintains fewer bytes in
flight as a result (average congestion window is over 55% smaller), adding queuing delay. If we
change the control period to be one minute, the difference between “Stable QoS” and “Flip Flop”
disappears.

Challenges in minimizing QoS churn. To maintain QoS stability, one could try to ‘pin’ each flow
to its QoS for some minimum threshold of time. However, doing so would impact the accuracy
with which the DC controller can downgrade the desired fraction of a flowgroup’s traffic, since
only a subset of flows would be eligible for QoS changes.

Alternatively, one could hash every flow’s identifier and downgrade the traffic of those flows
whose hashed identifier falls below a threshold. The DC controller can assign more (less) of a
flowgroup’s traffic to LOPRI by increasing (decreasing) this threshold. The problem, however, is
the order in which flows are downgraded and upgraded. When the threshold rises to downgrade
additional flows, and later drops to upgrade flows, the most recently downgraded flows would be
upgraded; vice-versa when the threshold subsequently is increased again. This behavior maximizes
the worst-case QoS churn for individual flows.

Rethinking hashing-based QoS downgrade. In HEYP, we introduce caterpillar hashing as a
flow selection mechanism that minimizes QoS churn. Caterpillar hashing chooses which flows to
downgrade using a range of the hash space, rather than a threshold. As illustrated by Figure 2.5,
when we need to increase (decrease) the fraction of flows that are downgraded, we grow (shrink)
the range by moving the upper (lower) threshold. This behavior upgrades the flows that were
downgraded earliest, and therefore, maximizes the minimum time each flow spends at a particular
QoS.

Hashing-based approaches randomly select flows for downgrade, and therefore have lower ac-
curacy compared to using a knapsack solver. However, in the following section, we explain how
HEYP’s DC controller leverages feedback control, and this largely mitigates any concerns about
accuracy.
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2.3.3 Mitigating harmful app–controller interactions

Since existing DC controllers configure tasks (§2.1.1), they could be extended to measure what
fraction of usage is above approval, apply caterpillar hashing to select tasks for downgrade, and
then compute rate limits for LOPRI tasks. The controller could use caterpillar hashing to ensure
that the fraction of a flowgroup’s traffic which is downgraded equals 1 - (total usage)/(HIPRI ad-
mission), where HIPRI admission is equal to approval, except under extreme failure scenarios.
However, this approach can lead to harmful interactions between the DC controller and applica-
tions.

Consider the HTTP workload used to generate Figure 2.4. When LOPRI flows experience
congestion, the HTTP proxy would observe longer queues for LOPRI tasks compared to HIPRI
tasks, and shift more of its load to the HIPRI tasks. This would cause the flowgroup to have HIPRI
usage greater than its approval, since the set of HIPRI tasks is now transmitting bandwidth that used
to be spread across a larger set of tasks. However, the DC controller would not react because the
fraction of usage above approval is unchanged; after all, the load has simply shifted between tasks.
Had the DC controller instead used a knapsack solver, it would have seen that the flowgroup’s
HIPRI usage is higher than intended and selected a different subset of tasks to downgrade. But,
the application will again react by shifting its usage around. To prevent this cat-and-mouse game,
which will result in high QoS churn and put approval satisfaction for other flowgroups at risk, let
us first consider two strawman approaches.

Strawman 1: Downgrade jobs as a unit. Most cluster management systems have some notion
of a job that is used to deploy applications [167, 16, 87]. To downgrade a portion of any flowgroup,
if we were to downgrade at the granularity of jobs, the application would be unable to respond in
the above manner. However, some applications are composed of multiple jobs, and since the DC
controller has no knowledge of which jobs are critical for the application, downgrading an entire
job may degrade the user experience.

Strawman 2: Rate limit HIPRI traffic. Alternatively, one could use rate limiting to prevent an
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application from sending more HIPRI traffic than its approval, as we did in Figure 2.4. However,
despite its use in production WANs, distributed rate limiting suffers from inaccuracy and risks
throttling tasks unnecessarily [147] (see also §2.4.2.3). For LOPRI traffic, we believe the costs of
rate limiting are worth the benefit: it enables policy-based sharing and avoids high loss on fully-
loaded links. In contrast, for HIPRI traffic, we seek to prevent problematic interactions between
applications and the DC controller without rate limiting.

Search for application bottleneck. To avoid the downsides of these strawman approaches, we
use the following observation: applications can respond to QoS downgrade by shifting around
load only because their HIPRI tasks are able to handle additional load. Eventually, each task
becomes limited by some resource other than WAN link capacity, e.g., the machine’s network
card. Therefore, if we ensure that all HIPRI tasks are saturated, the application will not shift
additional load to HIPRI tasks.

To search for this operating point – where the HIPRI tasks are saturated enough that the appli-
cation does not shift additional load over from LOPRI tasks – HEYP employs feedback control.
Although the DC controller does not know exactly when tasks become saturated, it can iteratively
increase the fraction of tasks that are downgraded. We assume that no individual task can saturate
an approval, and hence, HIPRI tasks will eventually become saturated.

In each control period, HEYP’s DC controller revises the fraction of downgraded tasks in pro-
portion to the relative error in enforcing a flowgroup’s HIPRI admission. Using caterpillar hashing,
the controller increases (or decreases) the fraction that is downgraded in proportion to (HIPRI us-
age - HIPRI admission) / flowgroup’s overall usage. This simple form of control [168] mitigates
the harmful interaction. As an added benefit, it improves the accuracy of the DC controller’s selec-
tion of tasks to downgrade. If the downgraded tasks combined have too much or too little usage,
the feedback controller will observe this error and try to eliminate it.

There remain two concerns that need to be addressed.

• First, when usage is below the HIPRI admission, we do not know what fraction of the usage
should be upgraded to HIPRI. It could be that the flowgroup’s demand is below the HIPRI
admission; in this case, the correct response would be to upgrade all tasks. On the other hand, it
could be that the controller has downgraded too much traffic and should simply upgrade a small
portion of it. HEYP tries to balance its behavior for these different cases by always upgrading
20% of traffic. This provides a slower, but hopefully acceptable response to the first case (five
control periods are needed to upgrade the entire flowgroup) and reduced QoS churn in the second
case.

• Second, HEYP ignores excess HIPRI usage in two cases. The first case is when the HIPRI
usage is within measurement noise of the HIPRI admission. This threshold can be determined
using an online estimator or offline analysis. For simplicity, our prototype uses a static value.
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Config: upgradeInc = 0.2 (fixed frac. to upgrade)
propGain = 0.5 (proportional gain)
errNoise = 0.05 (noise in usage measurement)
kCoarse = 2 (task err multipler)

Output: fraction of usage to downgrade (upgrade if < 0)

if total usage < HIPRI admission then
return upgradeInc

end
err ← (HIPRI usage - HIPRI admission)÷ total usage
coarseness ← kCoarse ×max task usage÷ total usage
if 0 < err < max(errNoise, coarseness) then

return 0
end
return propGain × err

Algorithm 2.2: Feedback control determines what fraction of usage to downgrade. The config-
uration parameters were tuned against a range of simulated workloads (§2.4.3).

The second case is when the HIPRI usage exceeds the HIPRI admission by a small multiple
of the maximum task usage. The intuition is that task usages may be too coarse to achieve the
desired split, and the maximum task usage serves as an overestimate of the coarseness of all
task usages. To prevent the resulting excess HIPRI usage from causing approval violations, the
network provider should provision enough headroom to accommodate both cases. As noted at
the start of §2.3, we expect the required headroom for cloud WANs to be low.

Algorithm 2.2 presents HEYP’s final control logic for revising the fraction of tasks to down-
grade. In §2.4.3, we empirically show that HEYP’s DC controller provides low QoS churn and
quickly converges to an accurate split under a variety of workloads.

2.4 Evaluation

We evaluate HEYP’s performance in three parts. First, using production traces from Google’s
WAN and a discrete-event simulator, we evaluate the benefits of HEYP’s global controller for
satisfying both approvals and demands across data centers. Then, we deploy a prototype of HEYP’s
DC controller on CloudLab [66] and evaluate its ability to enforce HIPRI admissions (using QoS
downgrade) and its utility on an application workload. Finally, we use monte carlo simulation to
evaluate HEYP’s DC controller across a larger set of workloads than we can evaluate in a testbed
setting. The primary takeaways from our evaluation are as follows:

• HEYP offers the best combination of approval and demand satisfaction: 99% availability of ap-
proved bandwidth for 87–99% of flowgroups (better than even static approval-based allocation)
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% of flowgroups with ≥
99.9% approval satisfaction

% of flowgroups with ≥
99% approval satisfaction

Mean demand satisfaction
(%)

Week 1 Week 2 Week 3 Week 1 Week 2 Week 3 Week 1 Week 2 Week 3
Static 37 41 46 81 97 94 55 44 58

RA+Dynamic 34 34 46 80 97 94 70 74 73
Dynamic+JA 3 2 3 9 13 9 81 79 84

Dynamic 3 2 4 7 9 7 86 88 89
HEYP 37 43 51 87 99 97 86 83 90
Legend 0–20 20–40 40–60

60–80 80–100
0–20 20–40 40–60

60–80 80–100
0–60 60–70 70–80

80–90 90–100

Table 2.1: Simulation results for Google network traces across three weeks.

while offering similar demand satisfaction as dynamic allocation, which is able to satisfy only
7–9% of approvals 99% of the time.

• In a sensitivity analysis, we find that dynamic allocation falls short of the approval satisfaction
offered by HEYP even if control plane delays are cut by 5× and demands change slowly. In
addition, HEYP delivers high approval satisfaction even if demands change twice as fast as in
Google’s WAN while the approval satisfaction of dynamic allocation is further reduced.

• When applied to an HTTP workload, HEYP offers the best combination of isolation and perfor-
mance. When competing against a flowgroup with excess traffic, the latency and throughput of
a within-approval flowgroup are unchanged compared to static, approval-based rate limiting. In
addition, the additional bandwidth HEYP provides to the above-approval flowgroup improves
throughput to within 12% of the theoretical max.

2.4.1 Predictability and efficiency across DCs

To evaluate HEYP’s impact on sharing bandwidth between flowgroups spread across many data
centers, we use a custom, discrete-event simulator. Simulation enables us to evaluate designs that
are impossible or difficult to realize (e.g., we consider a hypothetical control plane that acts 5×
faster than the state-of-the-art). We use a custom simulator because existing software has high
overhead for evaluating WAN control planes [85, 9, 10, 62], licensing concerns [12], or focuses
only on traffic engineering [106].

2.4.1.1 Inter-DC network simulator

As in prior work [106], our simulator models the topology at a data center level and applies max-
min fair sharing of link bandwidth across flows. In addition, our simulator captures several features
that govern the behavior of software-defined WANs.
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Figure 2.6: Architecture of our inter-DC simulator.

Network controllers. As in B4 [98, 105], our simulator employs separate global controllers
to select routes and admissions: the Traffic Engineering (TE) Controller and the Global Broker,
respectively. Since we model traffic at the data center level, the simulated DC Controllers can-
not configure individual tasks. Instead, we try to capture the impact that partitioning traffic into
HIPRI and LOPRI has on approval and demand satisfaction. For example, if 30% of demand is
marked LOPRI and usage drops to the approval, 30% of demand will remain LOPRI until the DC
Controller revises the split. Appendix A.1 contains the logic for each controller.

Modeling delays and inconsistency of state. We model the WAN as a set of processes that
share no state. Processes send messages to a each other, scheduling their arrival at a future time.
This model captures both the delays in controller response and any inconsistency of state across
controllers.

Capturing demand uncertainty. An Evaluator process (see Figure 2.6) tracks the network
state and computes metrics (e.g., demand satisfaction). The Evaluator broadcasts changes in any
flowgroup’s usage to all controllers. As a result, controllers may not observe rapid increases in a
flowgroup’s demand until several control periods have passed.

Validation. To confirm that the data output by our simulator is meaningful, we compare the
mean, hourly demand satisfaction reported by Google’s production system against our simulated
adaptation of it (see Dynamic in §2.4.1). Figure 2.7 shows that there is a statistically significant,
positive correlation between the demand satisfaction observed in our simulation and in production.
While the production system contains additional heuristics to improve performance, our simulation
is a reasonably good predictor for the demand satisfaction seen in production: time frames in which
the production system has higher (lower) demand satisfaction are also times in which the simulator
performs well (poorly).
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Figure 2.7: Demand satisfaction (normalized to have the same minimum and maximum values) in
production versus simulation. The correlation coefficient (r) and p-value are noted.

2.4.1.2 Trace data, allocation algorithms, and metrics

We use traces obtained from Google’s WAN containing data for three separate weeks in 2019.
Each trace contains snapshots of the topology and demand between data centers – as estimated
by the production system – measured once a minute. Bandwidth approvals were derived from
production data collected from the Google WAN and adjusted to account for differences between
the simulation and production environments. Google ensures that (given fast controller response)
approvals can be met under appropriate failure scenarios. For each type of control plane delay (e.g.,
time taken to install a new set of routes), our simulations mimic the distribution seen in production.

We implement and compare HEYP against the following approaches in our simulator.

• Static allocation policy is oblivious to demands. When the Global Broker observes a new topol-
ogy or routing (resp., when the Traffic Engineering (TE) Controller observes a new topology),
it computes new admissions (resp., new routes) given the approvals as demand.

• Dynamic policy approximates the behavior of B4 [98, 105] and SWAN [89]. Unlike Static, it
reacts not only to topology changes but also when demands change, in order to allocate above-
approval traffic after satisfying within-approval demands. For any flowgroup, all traffic traverses
one set of paths and uses the same QoS level.

• We also consider two variants of Dynamic which strike intermediate tradeoffs between approval
and demand satisfaction. RA+Dynamic (for Reserve Approval + Dynamic) assumes that de-
mand = max(approval, demand). Hence, it will allocate at least as much capacity as Static but
will attempt to accommodate above-approval traffic when demands change. Dynamic+JA (for
Dynamic + Jump to Approval) assumes that the demand for any flowgroup being throttled is
equal to its approval, thereby preempting the need for multiple iterations of global reconfigura-

23



tion for within-approval demand to ramp up. The throttling signal is propagated together with
the usage information.

Allocation algorithms. In all approaches, the Global Broker and TE Controller first allocate band-
width to satisfy within-approval demands, then use residual capacity to satisfy above-approval de-
mands. In either phase, they enforce max-min fair sharing across flowgroups. To compute routes,
the TE Controller selects the shortest available path for each flowgroup and computes a max-min
fair allocation of bandwidth across these paths. This process loops until either all demands are sat-
isfied or all links are saturated. Traffic for a flowgroup is split across the routes allocated for it in
the ratio of the admission computed for each route. When a link fails, flowgroups may experience
traffic loss until the controller installs new routes. For more details, see Appendix A.2.

Metrics. We examine the approval and demand satisfaction of each approach. We consider
a flowgroup’s approval to be satisfied whenever its usage is ≥ 0.95 × min(approval, demand).
We compute demand satisfaction as the sum of per-flowgroup usages divided by the sum of their
demands. We use this metric – as opposed to link utilization – to measure efficiency because a
higher value directly corresponds to a better use of network resources.

2.4.1.3 Results

Table 2.1 presents the results for each of the three week-long traces; we consider two commonly
studied [90, 41, 184] (99% and 99.9%) availability targets.

Approval satisfaction for HEYP and Static are similar, as expected, since Static’s allocation is
the same as that used in HEYP’s HIPRI allocation. However, Dynamic satisfies up to twice the
demand of Static, a result of it’s allocation being demand aware. In most cases, HEYP achieves
similar demand satisfaction to Dynamic, but HEYP consistently offers significantly higher avail-
ability of approved bandwidth. One reason for Dynamic’s poor availability is the duration of
approval violations: 20% of violations are resolved only after multiple iterations of global control.

Dynamic+JA and RA+Dynamic hit intermediate tradeoffs in between Static and Dynamic. The
reason for this is that Dynamic+JA and RA+Dynamic reserve bandwidth based on approvals, even
when demands are lower than approvals. Since RA+Dynamic does so always, it offers lower
demand satisfaction like Static; whereas, since Dynamic+JA allocates for approval only once a
flowgroup is throttled, it offers low approval satisfaction like Dynamic.

Impact of tail latency. In our traces, the time from when the DC Controller detects a change
in demand until new admissions (routes) are installed is 3× (1.5×) larger at the 99th percentile
than at the median. To investigate whether high tail latency is negatively impacting tail approval
satisfaction, we simulate Week 2 with all control delays limited to the 45–55th percentile range of
the distribution observed in production. We see little increase in Dynamic’s approval satisfaction;
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Legend: 0–20 20–40 40–60 60–80 80–100
Control
Plane
Speed

Rate of Demand Change (larger is faster)
Dynamic Static HEYP

0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0×
5× Faster 59 25 15 88 87 87 96 94 93
Normal 15 9 8 87 87 86 93 91 90

5× Slower 4 4 4 60 60 59 61 59 59

(a) Percent of flowgroups with ≥ 99% approval satisfaction

Legend: 0–20 20–40 40–60 60–80 80–100
Control
Plane
Speed

Rate of Demand Change (larger is faster)
Dynamic Static HEYP

0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0×
5× Faster 12 7 4 76 72 67 91 87 85
Normal 6 5 3 46 45 43 48 46 45

5× Slower 3 2 2 36 34 35 38 36 36

(b) Percent of flowgroups with ≥ 99.9% approval satisfaction

Legend: 0–60 60–70 70–80 80–90 90–100

Control
Plane
Speed

Rate of Demand Change (larger is faster)
Dynamic Static HEYP

0.5× 1.0× 2.0× 0.5× 1.0× 2.0× 0.5× 1.0× 2.0×
5× Faster 95 94 93 55 55 55 88 88 87
Normal 89 86 84 55 55 55 87 86 85

5× Slower 78 75 75 55 55 55 84 83 82

(c) Mean demand satisfaction (%)

Table 2.2: Performance when varying both the speed at which controllers react and the rate at
which demands change.

only 13% (4%) of flowgroups have 99% (99.9%) approval satisfaction. We conclude that even the
median global control delays in such a heavily engineered WAN are too high to accommodate the
churn in demand.

Sensitivity to changes in workload and setting. To evaluate each approach in a broader range of
settings, we vary the inputs from Google along two dimensions: the rate at which demands change
and the control plane’s speed (both in the delays incurred and the frequency with which controllers
run). Table 2.2 compares Dynamic, Static, and HEYP on a 48-hour trace during Week 1. We make
several observations regarding approval satisfaction:

• Dynamic is highly dependent on timely responses to demand changes. Between the easiest
scenario (fast control plane and slow-changing demands) and the hardest (slow control plane
and fast-changing demands), fraction of approvals satisfied with Dynamic drop by over 10×.

• Regardless of the control plane’s speed, approval satisfaction with HEYP and Static is indepen-
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Figure 2.8: Performance under a global controller outage (starts after 1 hour and lasts for 60 min).

dent of the rate of demand change. Whereas, Dynamic significantly suffers when demands ramp
up faster; even with a fast control plane, the fraction of approvals receiving 99% availability
with Dynamic drops by 4× when going from a slow to a fast rate of demand change.

With respect to demand satisfaction, Static is poor across the board since it does not react to
changes in demand or admit above-approval traffic. In contrast, a slower control plane significantly
decreases demand satisfaction with Dynamic but has no impact on HEYP; by allocating HIPRI
routes and admissions based on approvals, not within-approval demands, HEYP allows within-
approval usage to ramp up without any action by the global controller. With a faster control plane,
both Dynamic and HEYP more quickly adapt to accommodate changing above-approval demands.

Performance under a global controller outage. An extreme case of a slow control plane is when
the global controller is down. To evaluate performance under such a scenario, we select a 3-hour
window from Week 1 and simulate a failure of both the Global Broker and the TE Controller. No
data plane failures take place during the outage.

Figure 2.8 shows that HEYP consistently satisfies nearly all approvals during the outage,
whereas approval satisfaction with Dynamic drops shortly after the control plane outage begins.
While both approaches have degraded demand satisfaction during the outage, HEYP satisfies more
demand than Dynamic because it pre-allocates capacity to satisfy any increase in within-approval
demands. At other times, HEYP and Dynamic provide similar demand satisfaction.

2.4.2 Testbed evaluation

Next, we deploy a prototype of HEYP’s DC controller and study its ability to accurately enforce
HIPRI admissions (using QoS downgrade) with low QoS churn. In addition, we examine the
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Figure 2.9: Testbed setup for HTTP workload. We run a separate DC controller for each data
center (not shown).

impact of QoS downgrade on an application workload, both from the perspective of isolating any
within-approval flowgroup and maximizing an above-approval flowgroup’s ability to use spare
capacity.

2.4.2.1 Application workload and setup

Since web services are highly sensitive to latency inflation and bandwidth shortages, we evaluate
HEYP against HTTP workloads and emulate the architecture of production web services. As
shown in Figure 2.9, clients (which use Fortio [20], a load generator) issue requests in an open
loop to EDGE, where one of two Envoy [14] proxies examines which backend the request is for
and directs it to an appropriate backend server. Upon receiving the proxied request, the backend
generates a response that is then forwarded by the proxy back to the client. Each backend task is
registered with the local DC controller, and enforces QoS downgrade and rate limiting policies via
standard Linux facilities.

We deploy backends onto CloudLab’s xl170 machines (10 cores) connected via 10 Gbps links
to a Dell S4048-ON switch. The switch is configured to enforce strict priority queuing between
HIPRI and LOPRI traffic. The Envoy proxies and Fortio clients run on dedicated c6525-25g ma-
chines (16 cores) and are connected to each other via a 25 Gbps network. Each Envoy proxy
reaches the backend servers via its own gateway server (xl170) that is connected to both networks.
Following existing systems [105], we set the DC controller to compute new QoS assignments and
rate limits once every second (we show that this rate is feasible with millions of tasks in §2.4.2.4).

We run two backend services, logically separated into two “data centers”: AA (for above
approval) and WA (for within approval). We simulate latency between them and EDGE using
netem [84]. The approvals for AA→EDGE and WA→EDGE are 2 and 12 Gbps, respectively.
WA’s approval was chosen to exceed half of the bottleneck link’s capacity (20 Gbps, 10 Gbps for
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each EDGE proxy) so that a max-min fair distribution of the capacity would violate the approval.
We compare HEYP to the following approaches:

• NoCongestion. This approach estimates the best throughput and latency that AA can achieve
irrespective of whether QoS downgrade or rate limiting is employed, i.e., when bandwidth is the
only constraint. We obtain this estimate by reducing WA’s sending rate so that the sum of AA
and WA demands are satisfied without overloading any links; empirically, we have determined
that the bottleneck link can sustain up to 90% utilization.

• Static. By rate limiting each flowgroup to its approval, this approach prioritizes providing
isolation for WA at the cost of AA’s demand satisfaction. This serves as a baseline for compar-
ing QoS downgrade and rate limiting as admission control mechanisms. Our implementation
follows BwE’s Job Enforcer [105]; in particular, we have implemented both dynamic over-
subscription (based on workload burstiness) and static oversubscription (scale up capacity by
1.25×).

• KnapDown. To study the utility of feedback control and caterpillar hashing, we downgrade
QoS using a knapsack solver, the initial approach described in §2.3.2.

• NoLimit. To demonstrate that some form of control is needed to satisfy approvals, we consider
the effects of using neither QoS downgrade nor rate limiting.

When studying AA’s performance, we focus on scenarios where the tenant has configured the
application to degrade gracefully under overload, and therefore enable load shedding. To ensure
that any requests that are served maintain reasonable latency [40, 13], Envoy routes requests to the
least-loaded backend server and eagerly rejects requests for WA when the corresponding backend
servers become overloaded. When studying an approach’s ability to isolate WA’s traffic from a
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noisy neighbor, we disable load shedding for AA’s traffic to ensure that we are not measuring the
effects of AA’s load shedding, but the network isolation mechanism.

2.4.2.2 Performance under gradual workload change

We start by examining the performance of a workload that changes gradually, e.g., user traffic
increasing over a day. We set AA’s demand to 12 Gbps and ramp up WA’s demand at a constant
rate from 6 to 12 Gbps over 2 minutes. Figure 2.10 presents the latency and throughput for both
backends.

Performance isolation for WA. Static and HEYP both provide strong isolation for WA; latency
matches both NoCongestion and the case where AA has no above-approval traffic. With NoLimit,
bandwidth is shared based on the behavior of congestion control, not on approvals. As a result,
WA’s performance degrades when AA, which contains 14× as many tasks as WA, captures more
bandwidth than it.

Benefit of above-approval bandwidth for AA. Of the approaches that satisfy WA’s approval,
we see that HEYP offers the best combination of latency and throughput (throughput is 88% of
NoCongestion and 1.8M requests complete within 150 ms) compared to Static (throughput is 9% of
NoCongestion and only 120K requests complete in 150 ms). The 12% gap in throughput between
HEYP and NoCongestion is due to load shedding; once disabled, AA’s throughput with HEYP
matches NoCongestion, albeit at an even higher latency (above 400 ms).

Note that the low latency that NoLimit and NoCongestion offer to AA is an artifact of our
experimental setup. We inject 60 ms of additional propagation delay for LOPRI traffic to emulate
the case where it traverses a longer path than HIPRI traffic. In practice, this should only occur
when the global controller observes high utilization on a bottleneck link for HIPRI traffic. In this
case, NoLimit and NoCongestion would also need to use the longer path for a portion of their
traffic, but our testbed is unable to capture this.

Utility of feedback control on limiting harmful app–controller interactions. For the same
workload as Figure 2.10, Figure 2.11 shows that the gap between the approval and HIPRI usage for
AA is consistently higher when using KnapDown than HEYP. In each instance where KnapDown
is able to eliminate all excess HIPRI, we see that AA quickly returns to using more HIPRI than
its approval. When the DC controller runs again, KnapDown makes no attempt to maintain stable
QoS assignments unlike HEYP, which leverages caterpillar hashing and feedback control. As a
result, KnapDown performs 27× the number of QoS changes as HEYP. Of the three approaches
shown, HEYP provides the lowest mean absolute error: for the top case, it is within 9% of the
approval vs 14% using Static and 45% using KnapDown.
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Figure 2.11: Accuracy of HIPRI admission control. Unlike HEYP and Static, KnapDown admits
excess HIPRI traffic when applications redistribute load.

2.4.2.3 Performance under sudden workload change

Next, we stress test HEYP’s ability to keep HIPRI usage near the approval under sudden workload
changes. We keep WA’s demand static at 12 Gbps and configure AA’s demand to rise sharply
after 20 seconds from 3 to 9 Gbps, then drop after a minute to 3 Gbps, and rise one last time after
another 60 seconds to 9 Gbps.

Figure 2.12 presents the HIPRI error for AA when Envoy sheds load, and when it admits all
requests. Focusing on Figure 2.12(top), we see that Static consistently admits 14% more HIPRI
usage than approval allows. The excess HIPRI usage is due to Static’s oversubscription of band-
width. With better tuning, Static’s accuracy may improve, but if we enable load shedding for AA
(see Figure 2.12(bottom)), we see that Static frequently throttles AA→EDGE below its approval.
This illustrates the difficulty in tuning approaches that leverage rate limiting: if we configure Static
to oversubscribe the network less, than it may perform better in the former case, but it would
throttle even more aggressively in the latter case.

In contrast, HEYP’s controller adapts without tuning to the two workloads. The inaccuracy of
its rate limiting only impacts how much LOPRI capacity HEYP delivers, not its approval satis-
faction. HEYP will satisfy the approval even when it downgrades too much traffic, except when
LOPRI is sufficiently congested or throttled. In Figure 2.12, HEYP satisfies AA→EDGE’s ap-
proval 96% of the time in the bottom case, and Static satisfies the approval only 80% of the time
(both have 100% satisfaction under no load shedding).
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Figure 2.12: The accuracy of HEYP and Static when trying to keep AA→EDGE’s HIPRI usage
near its approval under sudden demand changes (at 20s, 80s, and 140s).

2.4.2.4 Scalability of the DC controller

The faster HEYP’s DC controller can react to changes in demand, the more accurately it can
enforce admissions and avoid throttling. However, in today’s clouds, individual tenants may run
millions of tasks [175]. For this reason, it is important to optimize the reaction time of the DC
controller.

The main scalability bottlenecks of the DC controller are the collection of task-level usage
and the broadcasting of task-level QoS. The partitioning of traffic into HIPRI and LOPRI, done
via caterpillar hashing and feedback control, is constant time, and therefore is not a significant
bottleneck. To optimize the collection of usage data, our prototype estimates each flowgroup’s
usage using threshold sampling [64] – a sampling mechanism that provides accurate estimates
even under skewed workloads. To optimize the time needed to broadcast QoS assignments, our
prototype DC controller only broadcasts QoS assignments that have changed. This result of this
optimization is that the broadcasting work required over a time period is dependent only on the rate
of flowgroup-level demand changes and the number of tasks, not the length of a control period. For
example, if a flowgroup’s usage gradually doubles from the approval over the course of 5 seconds,
then the controller will need to downgrade approximately half of the tasks within that time frame.
A controller with a short control period would simply downgrade a smaller number of tasks each
period compared to one using a longer control period.

Evaluation Setup. We focus on measuring how quickly our prototype DC controller can react
to changes in demand for a single flowgroup, so we feed it usage data for 1 million simulated
tasks (the usage data is transmitted via RPCs to a real DC controller, but no such tasks exist). The
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Figure 2.13: Delay between tasks sending usage to the DC controller and receiving a QoS assign-
ment.

flowgroup’s demand cycles between 50% of its approval to 150% of its approval and back every 10
seconds. Each task carries one one-millionth of the flowgroup’s overall demand, and we configure
the system to sample usage from approximately 1.6% of tasks. The DC controller runs once every
400 ms.

Results. Figure 2.13 shows that HEYP’s DC controller is able to respond to changes within
500 ms. If the DC controller perfectly eliminated over usage (or under usage) of HIPRI every
iteration, this would imply that the DC controller would bound HIPRI usage to within 10% of
the approval (for workloads which grow or shrink their demand by 10% of their approval every
500 ms). However, HEYP’s feedback control requires more than one iteration to obtain perfect
accuracy, as each iteration attempts to eliminate half of the error, and so the error may persist for
several seconds.

The gradually increasing slope is a result of smearing the arrival times of usage data. In our
prototype, each task sleeps for a random period before transmitting their initial usage data to the
DC controller. This prevents sudden spikes in load by spreading the load out over time.

2.4.3 Large-scale simulation of HEYP’s DC controller

In our testbed (§2.4.2) we were only able to study the behavior of HEYP’s DC controller in a
limited set of workloads. In this section, we examine its behavior under a wider range of workloads
using monte carlo simulation.

Setup. In each run, we generate a static set of per-task demands according to a desired distribution
and repeatedly invoke the DC controller against it to either downgrade traffic (if all tasks are HIPRI)
or upgrade traffic (if all tasks are LOPRI). We focus on cases when downgrade is performed and

32



Demand Dist. EM-5% EXP FB15 UNI
Init. % Downgraded 0 100 0 100 0 100 0 100

Convergence Time (#periods) 4.72 8.8 12.38 14.89 7.83 10.07 17.13 14.27
No. of QoS changes undone 3.89 5.2 6.56 7.05 3.98 4.77 9.58 5.39

No. of Oscillations 0.25 0.23 1.88 1.61 0.81 0.66 2.59 1.63
Final Overage (%) 15 11 4 4 6 4 3 3
Final Shortage (%) 0 0 0 0 0 0 0 0

Intermediate Overage (%) 23 2 10 2 14 2 7 2
Intermediate Shortage (%) 1 13 0 7 0 10 0 7

Table 2.3: Performance of HEYP’s DC controller when downgrading part of a flowgroup across
a range of simulated settings. To compute the value of each cell, we take the mean value across
100 monte carlo runs. Convergence time is measured in control periods. Overage and shortage
are measured both once the controller has converged (“Final Overage”) and during the period
before convergence (“Intermediate Overage”). Compare with the number of QoS changes that are
unintended against the number of QoS changes expected for each case (100, since we expect to
downgrade or upgrade roughly half of the tasks in each case).

LOPRI is congested, as these are the most difficult to handle for the controller. To do so, we set
the approval to one-half of the expected demand and set the available LOPRI bandwidth to 25% of
the aggregate demand.

Demand distributions. We simulate 200 tasks and distribute demand across tasks according to
one of the following distributions (all have a mean usage per task of 2 Gbps):

• UNI: The demand of each task is chosen between 0 and 4 Gbps uniformly at random.

• EM-5%: The top 5% of tasks have demand chosen between 30 and 34 Gbps uniformly at ran-
dom. The remaining tasks have demand between 0 and 842 Mbps, also chosen uniformly at
random.

• EXP: The demand of each task is chosen from an exponential distribution and capped to 40
Gbps.

• FB15: We generate demands for the four types of WAN-using applications at Facebook [151],
and scale them so that the distribution mean is the desired 2 Gbps. We assume the fraction of
tasks belonging to each application is proportion to its demand, and evenly spread each applica-
tion’s demand across its tasks with a random value of 5% noise added.

Convergence time and QoS churn. First, we examine the time required for the DC controller
to converge on a stable set of LOPRI tasks (and therefore stop changing the configuration of the
tenant’s tasks). In all of the tested cases, HEYP’s DC controller eventually converges, and 95% of
the time, the controller converges in fewer than 18 control periods.
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Before converging, the DC controller oscillates between downgrading and upgrading tasks an
average of 0.23–2.59 times. During each oscillation, the controller is undoing some of the down-
grade (or upgrade) decisions it previously made. On average, however, the oscillations result in
little churn; the workloads being tested consist of 200 tasks, but less than 10 QoS assignments are
undone by HEYP’s DC controller.

Overage and Shortage. For EXP, FB15, and UNI, overage (excess HIPRI usage) was approx-
imately 5% of the approval and no shortage (volume of demand we failed to admit at HIPRI)
remained once the controller converged. However, intermediate states exhibited higher overage
(mean up to 14%) and shortage (mean up to 19%. The higher amounts of overage compared to
shortage are a consequence of HEYP’s bias to prefer it (§2.3.3). EM-5% exhibits more overage
than workload types – after converging the mean is up to 15% – due to the coarseness of demands.
Each “elephant” task carries approximately 8% of the demand, and so the DC controller stops
reacting once overage is twice this value.

2.5 Discussion

Weighted fair queuing. HEYP’s global allocation can be adapted for networks that share band-
width across QoS levels using weighted fair queuing, rather than strict prioritization. The key is to
account for the reservation of bandwidth to LOPRI traffic. For example, if the ratio of weights for
HIPRI:LOPRI QoS is 8:2, then LOPRI traffic can use 20% of the link’s bandwidth regardless of
the HIPRI usage. In this case, we would scale down the link capacities in Phase 1 (§2.3.1) to 80%
of the original values, so that HIPRI traffic always receives its full admission.

Multiple approval SLOs. In this dissertation, we aim to maximize the satisfaction of a single,
high-priority class of approvals. However, HEYP can support multiple levels of prioritized ap-
provals by iteratively allocating routes and admissions for each class, with lower classes using the
residual capacity left over from higher classes. The relative importance of a high-priority flow-
group’s above-approval traffic compared to a lower-priority flowgroup’s within-approval traffic
depends on the cloud provider’s business policy. For example, if cloud provider wanted to offer
two bandwidth approval SLOs on a network with three QoS levels – HIPRI, MEDPRI, and LOPRI
– the provider could choose to treat above-approval traffic for higher SLO approvals as equivalent
to within-approval traffic for lower SLO approvals, marking both as MEDPRI.
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2.6 Related Work

Software-defined WANs. The rising demand for network bandwidth across data centers has
led to the development of many global private WANs, e.g., by Microsoft [89], Google [98], and
Facebook [101]. These networks use centralized demand monitoring and traffic engineering to
cost-efficiently transfer large volumes of data, though scaling them presents challenges [90, 72, 22].
While HEYP builds on these systems and shares a similar software-defined architecture, it aims to
satisfy bandwidth approvals as a primary objective without sacrificing network utilization.

Bandwidth isolation between cloud tenants. Many prior systems aim to guarantee bandwidth
between virtual machines in the data center, ranging from approaches that simply isolate tenants
from one other [38, 77, 115], to others which provide work conservation [99, 144], to ones that
enforce rich notions of fairness across tenants [143]. Adapting these approaches to the WAN
setting is not straightforward. Providers have less flexibility with regards to application placement,
control plane delays are significantly larger, and bandwidth guarantees are at the granularity of
flowgroups, each of which spans a large number of hosts.

BwE [105] and SWAN [89] provide WAN bandwidth isolation by dynamically controlling the
sending rates of tenants. HEYP differs from these approaches by combining static and dynamic
allocation through the use of QoS downgrade.

Fault-tolerant routing. Many approaches have been proposed to quickly restore network
connectivity following a failure [141, 119, 172, 183], and fault-tolerant traffic engineering ap-
proaches [118, 161, 41, 100] further aim to ensure that the remaining paths after a failure can
support the admitted traffic. These approaches can be used together with HEYP to ensure high ap-
proval satisfaction without relying on the global controller reacting to either demand or topology
changes.

QoS downgrade. Prior work has used QoS downgrade to provide statistical assurances of ca-
pacity to end users of the Internet [57, 56]. Unlike HEYP, these approaches do not scale to the
large flowgroups present in data centers. HEYP accounts for the fact that no individual gateway
can process all of the traffic belonging to a tenant, and it enables individual flowgroups to consume
large quantities of capacity by allowing for any single flowgroup’s traffic to be sent along multiple
routes. Our use of separate routes for HIPRI and LOPRI traffic, however, introduces the need to
maintain QoS stability, which HEYP explicitly aims to provide.

Cargo shipments. There are many similarities between the management of private WANs and
shipping companies. Both perform forecasting [42], routing [98, 89, 171], manage disruptions [44,
118, 52], and overbook capacity [105, 71, 145], so one might wonder whether techniques used in
HEYP might be applicable to shipping, or vice versa. However, there are a couple of factors that
make this unlikely. First, unlike on a private WAN – where senders can always retransmit packets
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– shipping companies cannot simply destroy low priority cargo as it belongs to their customers.
Second, applications that use a WAN will react to changes in the network within hundreds of
milliseconds. This makes them highly sensitive to small changes in delay (see §2.3.2). In contrast,
cargo is shipped over timescales that are orders of magnitude larger; therefore, any disruptions
would have to introduce correspondingly longer delays to be noticed.

Application-layer WAN optimization. Applications often have flexibility in where they can run
tasks, e.g., when planning the execution of analytical jobs [169, 146, 108, 94, 180] or choosing
which copies of data to read when multiple exist [164, 132, 112, 45]. This flexibility enables
applications to reduce latency and avoid bandwidth bottlenecks in the network. However, as these
techniques cannot prevent the network from becoming overloaded, a shared WAN still requires a
separate mechanism to isolate tenants from one another.

2.7 Summary

Existing control plane architectures for global-scale private WANs are unable to offer highly avail-
able bandwidth guarantees at high utilization. A key cause is their dependence on a fundamentally
slow central controller to reconfigure the network in response to changing traffic demands. In
this work, we showed how to remove any reliance on the global controller for satisfying band-
width guarantees by leveraging the data plane’s ability to prioritize traffic based on QoS levels.
Our HEYP WAN architecture uses the central controller only to maximize efficiency and handle
topology changes, and we account for interactions with other layers of the network stack that re-
sult from admitting surplus traffic at a lower QoS along a separate set of routes. We showed that
HEYP is able to simultaneously offer predictability and efficiency across a range of workloads and
settings.
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CHAPTER 3

PANDO: Near-Optimal Latency Versus Cost
Tradeoffs in Geo-Distributed Storage

Replicating data across data centers is important for a web service to tolerate the unavailability of
some data centers [39] and to serve users with low latency [88]. A front-end web server close to a
user can serve the user’s requests by accessing nearby copies of relevant data (see Figure 3.1). Even
in collaborative services such as Google Docs and ShareLaTeX, accessing a majority of replicas
suffices for a front-end to read or update shared data while preserving consistency.

However, it is challenging to keep data spread across the globe strongly consistent as no single
design can simultaneously minimize read latency, write latency, and cost.

• To preserve consistency, any subset of sites which are accessed to serve a read must overlap with
all subsets used for writes. Therefore, allowing a front-end to read from nearby data sites forces
other front-ends to write to distant data sites, thus increasing write latency.

• Similarly, providing low read latency requires having at least one data site near each front-end,
thereby increasing the total number of data sites. This inflates expenses incurred both for storage
and for data transfers to synchronize data sites.

Given these tradeoffs, service providers must determine how to meet their desired latency goals
at minimum cost. Or, correspondingly, how to minimize read and write latencies given a cost
budget? We make the following contributions towards addressing these questions.

1. We show that existing solutions for enabling strongly consistent distributed storage are
far from optimal in trading off latency versus cost. The cost necessary to satisfy bounds on
read and write latencies is often significantly higher than the lowest cost theoretically feasible. For
example, across a range of access patterns and latency bounds, the state-of-the-art geo-replication
protocol EPaxos [132] imposes on average 30% higher storage cost than is optimal (§3.4.1.2). This
sub-optimality also inflates the minimum latency bounds satisfiable within a cost budget.

2. We demonstrate the feasibility of achieving near-optimal latency versus cost tradeoffs in
strongly consistent geo-distributed storage. In other words, we do not merely improve upon
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the status quo, but show that there remains little room for improvement over the tradeoffs enabled
by PANDO, our new approach for consensus across the wide-area network. PANDO exploits the
property that, from any data center’s perspective, some data centers are more proximate than oth-
ers in a geo-distributed deployment. Therefore, beyond reducing the number of round-trips of
wide-area communication when executing reads and writes (as has typically been the goal in prior
work [123, 112, 132]), it is equally important to reduce the magnitude of delay incurred on every

round-trip. We apply this principle in two ways.

2a. We show how to erasure-code objects across data sites without reads incurring higher
wide-area latencies compared to replicated data. By splitting each object’s data and storing
one split (instead of one replica) per data site, a service can use its cost budget to spread each
object’s data across more data centers than is feasible with replication. To leverage this increased
geographic spread for minimizing latencies, PANDO separates out two typically intertwined aspects
of consensus: discovering whether the last write completed, and determining how to resolve any
associated uncertainty. Since writes seldom fail in typical web service deployments, we enable a
client to read an object by first communicating with a small subset of nearby data sites; only in
the rare case when it is uncertain whether the last write completed does the client incur a latency
penalty to discover how to resolve the uncertainty.

2b. In the wide-area setting, we show how to reach consensus in two rounds, yet approximate
a one-round protocol’s latency. Executing writes in two rounds simplifies compatibility with
erasure-coded data, and we ensure that this approach has little impact on latency. First, PANDO

requires clients to contact a smaller, more proximate subset of data sites in the first round than
in the second round. Second, after a client initiates the first round, it delegates initiation of the
second round to a more central data center, which receives all responses from the first round. By
combining these two measures, messaging delays incurred in the first phase of a write help reduce
the latency incurred in the second phase, instead of adding to it.

3. We compare PANDO to state-of-the-art consensus protocols via extensive measurement-
driven analyses and in deployments on Azure. In the latency–cost tradeoff space, we find that
PANDO reduces by 88% the median gap between achievable tradeoffs and the best theoretically
feasible tradeoffs. Moreover, PANDO can cut dollar costs to meet the same latency goals by 46%
and lower 95th percentile read latency by up to 62% at the same storage overhead.

3.1 Setting and Motivation

We begin by describing our target setting, the approach we use for enabling globally consistent
reads and writes, and the shortcomings of existing solutions that use this approach.
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UserData SiteFront-end Other Data Center

Figure 3.1: Users issue requests to their nearest front-end servers which in turn access geo-
distributed storage.

3.1.1 System model, goals, and assumptions

We seek to meet the storage needs of globally deployed applications, such as Google Docs [74] and
ShareLaTeX [6], in which low latency and high availability are critical, yet weak data consistency
(such as eventual or causal) is not an option. In particular, we focus on enabling a geo-distributed
object/key-value store which a service’s front-end servers read from and write to when serving re-
quests from users. We aim to support GETs and conditional-PUTs on any individual key; we defer
support for multi-key transactions to future work. In contrast to PUTs (which blindly overwrite the
value for a key), conditional-PUTs attempt to write to a specific version of a key and can succeed
only if that version does not already have a committed value. This is essential in services such
as Google Docs and ShareLaTeX to ensure that a client cannot overwrite an update that it has not
seen.

In enabling such a geo-distributed key-value store, we are guided by the following objec-
tives:

• Strong consistency: Ensure all reads and writes on any key are linearizable; i.e., all writes are
totally ordered and every read returns the last successful write.

• Low latency: Satisfy service provider’s SLOs1 (service-level objectives) for bounds on read and
write latencies, so as to ensure a minimum quality-of-service for all users. We focus on the wide-
area latency incurred when serving reads or writes, assuming appropriate capacity planning and
load balancing to bound queuing delays.

• Low cost: Minimize cost (sum of dollar costs for storage, data transfers, storage operations,
and compute) necessary to satisfy latency goals. Since cost for storage operations and data

1Unlike SLAs, violations of SLOs are acceptable, but need to be minimized.

39



transfers grows with more copies stored, in parts of the dissertation, we use storage overhead
(i.e., number of copies stored of every data item) as a proxy for cost. This frees us from making
any assumptions about pricing policy or the workload (e.g., read-to-write ratio).

• Fault-tolerance: Serve requests on any key as long as fewer than f data centers are unavailable.

We focus on satisfying input latency bounds in the absence of conflicts and failures—both of
which occur rarely in practice [47, 48, 122, 60]—but seek to minimize performance degradation
when they do occur (§3.2.5 and §3.4.1.2). In addition, we build upon state-of-the-art cloud services
which offer low latency variance between their data centers [81] and within their intra-data center
storage services (e.g., Azure’s CosmosDB provides a 10 ms tail read latency SLA [128]).

Note that, in order to satisfy desired latency SLOs at minimum cost (or to minimize latencies
given a cost budget), a service cannot select the data sites for an object at random. Instead, as we
describe later in Section 3.3, any service must utilize its knowledge of an object’s workload (e.g.,
locations of the users among whom the object is shared) in doing so.

3.1.2 Approach

One can ensure linearizability in distributed storage by serializing all writes through a leader and
rely on it for reads, e.g., primary-backup [30], chain replication [166], and Raft [140]. A single
leader, however, cannot be close to all front-ends across the globe. Front-ends which are distant
from the leader will have to suffer high latencies.

To reduce the need to contact a distant leader, one could use read leases [37, 133] and migrate
the leader based on the current workload, e.g., choose as the leader the replica closest to the front-
end currently issuing reads and writes. However, unless the workload exhibits very high locality,
tail latency will be dominated by the latency overheads incurred during leader migration and lease
acquisition.

To keep read and write latencies within specified bounds irrespective of the level of locality,
we pursue a leaderless approach. Among the leaderless protocols which allow every front-end
to read and write data from a subset of nearby data sites (a read or write quorum), we consider
those based on Paxos because it enables consensus. Other quorum-based approaches [35] which
only enable atomic register semantics (i.e., PUT and GET) are incapable of supporting conditional
updates [86]. While there exist many variants of Paxos, in all cases, we can optimize latencies in
two ways.

First, instead of executing Paxos, a front-end can read an object by simply fetching the object’s
data from a read quorum. To enable this, a successful writer asynchronously marks the version it
wrote as committed at all data sites. In the common case, when there are no failures or conflicts,
a read is complete in one round trip if the highest version seen across a read quorum is marked as
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Figure 3.2: Slices of the three-dimensional tradeoff space where we compare latency estimates for
replication-based EPaxos [132], erasure coding-based RS-Paxos [134], and our solution PANDO

against a lower bound. Front-ends are in Azure’s Australia East, Central India, East Asia, East US,
and Korea South data centers, whereas data sites are chosen from all Azure data centers.

committed [114].
Second, instead of every front-end itself executing reads and writes, we allow for it to relay its

operations through a delegate in another data center. The flexibility of utilizing a delegate can be
leveraged to reduce latency when, compared to the front-end, that delegate is more centrally placed
relative to the data sites of the object being accessed.

3.1.3 Sub-optimality of existing solutions

The state-of-the-art Paxos variant for geo-replicated data is EPaxos [132], as we show in Sec-
tion 3.4. For typical replication factors (i.e., 3 or 5), EPaxos enables any front-end to read/write
with one round of wide-area communication with the nearest majority of replicas. If lower read
latencies than feasible with 2f +1 replicas are desired, then one can use a higher replication factor
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N , set the size R of read quorums to be ≥ f +1 (to ensure overlap with write quorums even in the
face of f failures) and set the size W of write quorums to N − R + 1 (to preserve consistency).

Figure 3.2 shows the tradeoffs enabled by EPaxos for an example access pattern. For each
read latency bound, these graphs respectively plot the minimum storage overhead and write la-
tency bounds that are satisfiable. As we discuss in §3.3, we compute these bounds by solving
protocol-specific mixed integer programs which take as input the expected access pattern and la-
tency measurements between all pairs of data centers (§3.4.1). We show two two-dimensional
slices of the three-dimensional read latency–write latency–storage overhead tradeoff space.

To gauge the optimality of the tradeoffs achievable with EPaxos, we compare it against a lower
bound. Given a bound on read latency, the minimum storage overhead necessary and the minimum
write latency bound that can be satisfied cannot be lower than those determined by our lower bound.
Though the lower bound may be unachievable by any existing consensus protocol, we compute it
by solving a mixed integer program which assumes that reads and writes can be executed in a single
round and enforces the following properties that any quorum-based approach must respect:

• Tolerate unavailability of ≤ f data centers: All data sites in at least one read and one write
quorum must be available in the event that ≤ f data centers fail.

• Prevent data loss: At least one copy of data must remain in any write quorum when any f data
sites are unavailable.

• Serve reads: The data sites in any read quorum must collectively contain at least one copy of
the object.

• Preserve strong consistency: All read–write and write–write quorum pairs must have a non-
empty intersection.

Equally important are constraints that we do not impose: all read quorums (same for write quo-
rums) need not be of the same size, and an arbitrary fraction of an object’s data can be stored at
any data site.

Figure 3.2 shows that EPaxos is sub-optimal in two ways. First, to meet any particular bound
on read latency, EPaxos imposes a significant cost overhead; in Figure 3.2(a), EPaxos requires
at least 9 replicas to satisfy the lowest feasible read latency bound (40 ms), whereas the lower
bound storage overhead is 4x. Recall that, greater the number of copies of data stored, higher
the data transfer costs when reading and writing. Second, given a cost budget, the read latencies
achievable with EPaxos are significantly higher than the lower bound; in Figure 3.2(b), where
storage overhead is capped at 6x, we see that the minimum read latency achievable with EPaxos
(80 ms) is twice the lower bound (40 ms).

Of course, a lower bound is just that; some of the tradeoffs that it deems feasible may potentially
be unachievable. However, for the example in Figure 3.2 and across a wide range of configurations
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in Section 3.4, we show that PANDO comes close to matching the lower bound. We describe how
next.

3.2 Design

The fundamental source of EPaxos’s sub-optimality in trading off cost and latency is its reliance
on replication. Replication-based approaches inflate the cost necessary to meet read latency goals
because spreading an object’s data across more sites entails storing an additional full copy at each
of these sites. To enable latency versus cost tradeoffs that are closer to optimal, the key is to store
a portion of an object’s data at each data site, like in the lower bound.

Therefore, we leverage erasure coding, a data-agnostic approach which enables such flexible
data placement while matching replication’s fault-tolerance at lower cost [174]. For example, to
tolerate f = 1 failures, instead of requiring at least 2f + 1 = 3 replicas, one could use Reed-
Solomon coding [150] to partition an object into k = 2 splits, generate r = 2 parity splits, and
store one split each at k+r = 4 sites; any k splits suffice to reconstruct the object’s data. Compared
to replication, this reduces storage overhead to 2×, thus also reducing the number of copies of data
transferred over the wide-area when reading or writing.

State-of-the-art implementations of erasure coding [96] require only hundreds of nanoseconds
to encode or decode kilobyte-sized objects. This latency is negligible compared to wide-area
latencies, which range from tens to hundreds of milliseconds. Moreover, the computational costs
for encoding and decoding pale in comparison to costs for data transfers and storage operations
(§3.4.1.3).

3.2.1 Impact of erasure coding on wide-area latency

While there exist a number of protocols which preserve linearizability on erasure-coded data [25,
49], they largely focus on supporting PUT/GET semantics. To support conditional updates, we
consider how to enable consensus on erasure-coded data with a leaderless approach such as Paxos.
We have one of two options.

One approach would be to extend one of several one-round variants of Paxos to work on erasure-
coded data. However, most of these protocols require large quorums (e.g., a write would have to
be applied to a super-majority [112] or even all [123] data sites), rendering them significantly
worse than the lower bound. Whereas, extending EPaxos [132], which requires small quorums
despite needing a single round, to be compatible with erasure-coded data is far from trivial given
the complex mechanisms that it employs for failure recovery.

Therefore, we build upon the classic two-phase version of Paxos [110] and address associated
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Figure 3.3: Example execution of RS-Paxos on an erasure-coded object, whose data is partitioned
into k = 2 splits. For all readers and writers to be able to reconstruct the last successful write,
any write quorum must have an overlap of k or more data sites with every read and every write
quorum.

latency overheads. In either phase, a writer (a front-end or its delegate) communicates with all the
data sites of an object and waits for responses from a write quorum. In Phase 1, the writer discovers
whether there already is a value for the version it is attempting to write and attempts to elect itself
leader for this version. In Phase 2, it sends its write to all data sites. A write to a version succeeds
only if, prior to its completion of both phases, no other writer has been elected the leader. If the
leader fails during Phase 2 but the write succeeds at a quorum of data sites, subsequent leaders will
adopt the existing value and use it as part of their Phase 2, ensuring that the value for any specific
version never changes once chosen.

This natural application of Paxos on erasure-coded data, called RS-Paxos [134], is inefficient in
three ways.

• Two rounds of wide-area communication. Any reduction in read latency achieved by enabling
every front-end to read from a more proximate read quorum has twice the adverse effect on
write latency. In Figure 3.2(b), we see that when the read latency bound is stringent (e.g., ≤
100 ms), the minimum write latency bound satisfiable with RS-Paxos is twice that achievable
with EPaxos. When the read latency bound is loose (e.g., ≥ 150 ms), write latency inflation
with RS-Paxos is lower because the data sites are close to each other and front-ends benefit from
delegation.

• Increased impact of conflicts. Executing writes in two rounds makes them more prone to
performance degradation when conflicts arise. When multiple writes to the same key execute
concurrently, none of the writes may succeed within two rounds. Either round of each write
may fail at more than a quorum of data sites if other writes complete one of their rounds at those
sites.

• Larger intersections between quorums. As we see in Figure 3.2(a), at storage overheads of
4x or more, the minimum read latency bound satisfiable with RS-Paxos is significantly higher
than that achievable with EPaxos. This arises because, when an object’s data is partitioned into
k splits, every read quorum must have an overlap of at least k sites with every write quorum (see
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Figure 3.4: PANDO’s techniques for optimizing write latency. (a) Reusing read quorums in Phase
1 of writes enables reduction in read latency without impacting (Phase 1 + Phase 2) latency for
writes. (b) Example deployment with one-way delays between relevant pairs of data centers shown.
Phase 1 quorum size is 2 and Phase 2 quorum size is 3. If same (Phase 2) quorum were used in
both phases of a write, like in RS-Paxos, write latency would be 120 ms. (c) and (d) By directing
Phase 1 responses to a delegate and having it initiate Phase 2, PANDO reduces write latency to 65
ms (20 ms in Phase 1 + 45 ms in Phase 2), close to the 60 ms latency feasible with one-round
writes.

Figure 3.3). Thus, erasure coding’s utility in helping spread an object’s data across more sites
(than feasible with replication for the same storage overhead) is nullified.

3.2.2 Overview of PANDO

What if these inefficiencies did not exist when executing Paxos on erasure-coded data? To identify
the latency versus cost tradeoffs that would be achievable in this case, we consider a hypothetical
ideal execution of Paxos on erasure-coded data: one which requires a single round of communica-
tion and can make do with an overlap of only one site between read–write and write–write quorum
pairs. For the example used in Figure 3.2, this hypothetical ideal (not shown in the figure) comes
close to matching the lower bound.

Encouraged by this promising result, we design PANDO to approximate this ideal execution
of Paxos on erasure-coded data. First, we describe how to execute Paxos in two rounds on geo-
distributed data, yet come close to matching the messaging delays incurred with one-round proto-
cols. Second, leveraging the rarity of conflicts and failures in typical web service workloads, we
describe how to make do with a single data site overlap between quorums in the common case.
Finally, we discuss how to minimize performance degradation when conflicts do arise. In our
description, we assume an object’s data is partitioned into k splits.
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3.2.3 Mitigating write latency

We reduce the latency overhead of executing Paxos in two rounds by revisiting the idea of dele-
gation (§3.1.2): a front-end sends its write request to a stateless delegate, which executes Paxos
and returns the response. When data sites are spread out (to enable low read latencies), two round-
trips to a write quorum incurs comparable delay from the front-end versus from the delegate. The
round-trip from the front-end to the delegate proves to be an overhead.

To mitigate this overhead, what if 1) transmission of the message from the front-end to the
delegate overlaps with Phase 1 of Paxos, and 2) transmission of the response back overlaps with
Phase 2? The latency for a front-end to execute the two-phase version of Paxos would then be
roughly equivalent to one round-trip between the front-end and the delegate, thus matching the
latency feasible with a one-round protocol. We show how to make this feasible in two steps.

3.2.3.1 Shrinking Phase 1 quorums

First, we revisit the property of classic Paxos that a writer needs responses from the same number
of data sites in both phases of Paxos: the size of a write quorum. To ensure that a writer discovers
any previously committed value, Paxos only requires that any Phase 1 quorum intersect with every
Phase 2 quorum; Phase 1 quorums need not overlap [93]. In PANDO, we take advantage of this
freedom to use a smaller quorum in the first phase of Paxos than in the second phase.

We observe that the intersection requirements imposed on Phase 1 and Phase 2 quorums are
precisely the properties required of read and write quorums: any read quorum must intersect with
every write quorum, whereas no overlap between read quorums is required. Therefore, when
executing Phase 1 of Paxos to write to an object, it suffices to get responses from a read quorum,
thus allowing improvements in read latency to also benefit leader election. A writer (a front-end or
its delegate) needs responses from a write quorum only when executing Phase 2.

Figure 3.4(a) illustrates the corresponding improvements in write latency. When a quorum of
the same size is used in both phases of a write, a reduction of δ in the read latency bound results
in a 2δ increase in the minimum satisfiable write latency bound (because of the need for read and
write quorums to overlap). In contrast, our reuse of read quorums in the Phase 1 of writes ensures
that spreading out data sites to enable lower read latencies has (roughly speaking) no impact on
write latency; when read quorums are shrunk to reduce the read latency bound by δ, the increase of
δ in Phase 2 latency (to preserve overlap between quorums) is offset by the decrease of δ in Phase
1 latency.
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3.2.3.2 Partially delegating write logic

While our reuse of read quorums in Phase 1 of a write helps reduce write latency, Phase 2 latency
remains comparable to a one-round write protocol. Therefore, the total write latency remains
significantly higher than that feasible with one-round protocols.

PANDO addresses this problem via partial use of delegation. Rather than having a front-end
executing a write either do all the work of executing Paxos itself or offload all of this work to a
delegate, we offload some of it to a delegate.

Figures 3.4(c–d) show how this works in PANDO. A front-end initiates Phase 1 of Paxos by
sending requests to data sites of the object it is writing to, asking them to send their responses to a
chosen delegate. In parallel, the front-end sends the value it wants to write directly to the delegate.
Once the delegate receives enough responses (i.e., the size of a read quorum), it will either inform
the front-end that Phase 1 failed (the rare case) or initiate Phase 2 (the common case), sending the
value to be written to all data sites for the object. Those data sites in turn send their responses
directly back to the front-end, which considers the write complete once it receives responses from
a write quorum.

Note that partial delegation preserves Paxos’s fault tolerance guarantees. To see why, con-
sider the case where a end-user’s client sends the same request to two front-ends—perhaps due
to suspecting that the first front-end has failed—and both front-ends execute the request. Paxos
guarantees that at most one of these writes will succeed. Similarly, with partial delegation, in the
rare case when the front-end suspects that the delegate is unavailable, it can simply re-execute both
phases on its own. Paxos will resolve any conflicts and at most one of the two writes (one executed
via the delegate and the other executed by the front-end) will succeed.

Thanks to the heterogeneity of latencies across different pairs of data centers, the use of small
Phase 1 quorums combined with the delegation of Phase 2 eliminates most of the latency overhead
of two-phase writes. In Figure 3.4(b-d), the two techniques reduce write latency down from 120
ms with classic Paxos to 65 ms with PANDO, only 5 ms higher than what can be achieved with a
one-round protocol. The remaining overhead results from the fact that there still has to be some
point of convergence between the two phases.

3.2.4 Enabling smaller quorums

The techniques we have described thus far lower the minimum write latency SLO that is satisfiable
given an SLO for read latency. However, as we have seen in Figure 3.2(a), erasure coding inflates
the minimum read latency SLO achievable given a cost budget (e.g., a bound on storage overhead).
As discussed in Section 3.2.1, this is due to the need for larger intersections between quorums
when data is erasure-coded, as compared to when replicated.
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Figure 3.5: For an object partitioned into k = 2 splits, PANDO requires an overlap of only one
site between any Phase 1a and Phase 2 quorum. Responses from the larger Phase 1b quorum are
needed only in the case of failure or conflict.

Recall that the need for an intersection of k data sites between any pair of read and write
quorums exists so that any read on an object will be able to reconstruct the last value written;
at least k splits written during the last successful write will be part of any read quorum. Thus,
linearizability is preserved even in the worst case when a write completes at the minimum number
of data sites necessary to be successful: a write quorum. However, since concurrent writes are
uncommon [122, 60] and data sites are rarely unavailable in typical cloud deployments [47, 48],
most writes will be applied to all data sites. Therefore, in the common case, all data sites in any
read quorum will reflect the latest write.

In PANDO, we leverage this distinction between the common case and the worst case to optimize
read latency (and equivalently any write’s Phase 1 latency, given that PANDO uses the same quorum
size in both cases) as follows.

Read from smaller quorum in the common case. After issuing read requests to all data sites,
a reader initially waits for responses from a subset which is 1) at least of size k and 2) has an
intersection of at least one site with every write quorum; we refer to this as a Phase 1a quorum. In
the common case, all k splits have the same version and at least one of them is marked committed;
the read is complete in this case. An overlap of only one site with every write quorum suffices for
the reader to discover the latest version of the object; at least one of the splits received so far by
the reader will be one written by the last successful write to this object.

Read from larger quorum if failure or conflict. At this juncture, if the last successful write has
not yet been applied to all data sites, the reader may only know the latest version of the object but
not the value of that version. To reconstruct that value, the reader must wait for responses from
more data sites until the subset it has heard from has an overlap of k sites or more with every write
quorum; this is a Phase 1b quorum. As a result, a reader must incur the latency penalty of waiting
for responses from farther data sites only if the last successful write was executed when either
some data sites were unavailable or a conflicting write was in progress.

In the example in Figure 3.5, Front-end 1 can complete reading based on responses from sites
A and B in the common case since two splits suffice to reconstruct the object. If the last write
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was from Front-end 2 and this write completed only at a subset of sites, there are two cases to
consider:

• If Front-end 2’s write has been applied to a write quorum (say A, C , and D), then the response
from site A will help Front-end 1 discover the existence of this write. Front-end 1 needs an
additional response from C in this case to be able to reconstruct the value written by Front-end
2.

• If Front-end 2’s write has been applied to less than a write quorum (say, A and D), then Front-
end 1 may be unable to find k splits for this version even from a Phase 1b quorum (A, B , and C ).
In this case, that value could not have been committed to any Phase 2 quorum. Therefore, the
reader falls back to the previous version. PANDO garbage collects the value for a version only
once a value has been committed for the next version (§3.3). The overhead of storing multiple
versions of a key will be short-lived in our target setting where failures and write conflicts are
rare.

Phase 1a and 1b quorums can also be used as described above during the first round of a write.
The only difference in the case of writes is that responses from data sites can be potentially directed
to a delegate at a different data center than the one which initiates Phase 1.

To preserve correctness of both reads and writes, the minimum size of Phase 1a quorums must
be max(k , f + 1), and Phase 1b and Phase 2 quorums must contain at least f + k data sites. These
quorum sizes are inter-dependent because any Phase 1a quorum must have a non-empty overlap
with every Phase 2 quorum and any Phase 1b or Phase 2 quorum must have an overlap of at least
k sites with every Phase 2 quorum. For each of the three quorum types, all quorums of that type
are of the same size and any subset of data sites of that size represent a valid quorum of that type.

Note that, if further reductions in common-case read latency are desired, one could use timed
read leases as follows [37, 133]. Instead of using the normal read path, a front-end that holds a
lease for a key could cache the value or fetch it from k nearby data sites to avoid the latency of
communicating with a complete Phase 1a quorum. However, this approach would not benefit tail
latency for reads and may increase latency for writes.

3.2.5 Reducing impact of conflicting writes

Lastly, we discuss how PANDO mitigates performance degradation when conflicts arise. As men-
tioned in §3.1, since conflicts rarely occur in practice [122, 60], we allow for violations of input
latency bounds when multiple writes to a key execute concurrently. However, we ensure that the
latency of concurrent writes is not arbitrarily degraded.

Our high-level idea is to select one of every key’s data sites as the leader and to make use of this
leader only when conflicts arise. PANDO’s leaderless approach helps satisfy lower latency bounds
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Figure 3.6: Selecting a deployment plan with ConfigManager.

by eliminating the need for any front-end to contact a potentially distant leader. However, when
a front-end’s attempted write fails and it is uncertain whether a value has already been committed
for this version, the front-end forwards its write to the leader. In contrast to the front-end retrying
the write on its own, relying on the leader can ensure that the write completes within at most two
rounds.

To make this work, we ensure that any write executed by a key’s leader always supersedes writes
to that key being attempted in parallel by front-ends. For this, we exploit the fact that front-ends
always retry writes via the leader, i.e., any front-end will attempt to directly execute a write at most
once. Therefore, when executing Paxos, we permit any front-end to use proposal numbers of the
form (0, front-end’s ID) but only allow the leader to set the first component to values greater than
or equal to 1, so that its writes take precedence at every data site.

Note that, since we consider it okay to violate the write latency bound in the rare cases when
conflicts occur, we do not require the leader to be close to any specific front-end. Therefore, leader
election can happen in the background (using any of a number of approaches [46, 24]) whenever
the current one fails. If conflicting writes are attempted precisely when the leader is unavailable,
these writes will block until a new leader is elected. Like prior work [132, 110], PANDO cannot
bound worst-case write latency when conflicts and data center failures occur simultaneously.

A proof of PANDO’s correctness and a TLA+ specification are in Appendices B and C.

3.3 Implementation

To empirically compare the manner in which different consensus approaches trade off read latency
against write latency and cost, we implemented a key-value store which optimizes the selection of
data sites for an object based on knowledge of how the object will be accessed.

ConfigManager. Central to this key-value store is the ConfigManager, which sits off the data
path (thus not blocking reads and writes) and identifies deployment plans, one per access pattern.

50



As shown in Figure 3.6, a deployment plan determines the number of splits k that the key’s value
is partitioned into, the number of redundant splits r , and the k + r data sites at which these splits
are stored; k = 1 corresponds to replication, and Reed-Solomon coding [150] is used when k > 1.
The deployment plan also specifies the sizes of different quorum types and the choice of delegates
(if any).

To make this determination, in addition to the application’s latency, cost, and fault-tolerance
goals, ConfigManager relies on the application to specify every key’s access set: data centers
from which front-ends are expected to issue requests for the key. An application can determine an
object’s access set based on its knowledge of the set of users who will access that object, e.g., in
Google Docs, the access set for a document is the set of data centers from which the service will
serve users sharing the document. When uncertain (e.g., for a public document), the access set can
be specified as comprising all data centers hosting its front-ends; this uncertainty will translate to
higher latencies and cost.

The ConfigManager selects deployment plans by solving a mixed integer program, which ac-
counts for the particular consensus approach being used. For example, PANDO’s ConfigManager
selects a delegate and preferred quorums per front-end, using RTT measurements to predict la-
tencies incurred. Given bounds on any two dimensions of the tradeoff space, the ConfigManager
can optimize the third (e.g. minimize max read latency across front-ends given write latency and
storage cost SLOs). Given the stability of latencies observed between data centers in the cloud
both in prior work [81] and in our measurements,2 and since our current implementation assumes
an object’s access set is unchanged after it is created, we defer reconfiguration of an object’s data
sites [34] to future work.

Executing reads and writes. Unlike typical applications of Paxos, our use of erasure coding
prevents servers from processing the contents of Paxos logs. Instead of separating application and
Paxos state, we maintain one Paxos log for every key and aggressively prune old log entries. In
order to execute a write request, a Proxy VM initiates Phase 1 of Paxos and waits for the delegate
to run Phase 2. If the operation times out, the Proxy VM assumes the delegate has failed and
executes both phases itself. Once Phase 2 successfully completes, the Proxy VM notifies the
client and asynchronously informs learners so that they may commit their local state and garbage
collect old log entries. The read path is simpler: a Proxy VM fetches the associated Paxos state
and reconstructs the latest value before returning to the client. If the latest state happens to be
uncommitted, then the Proxy VM issues a write-back to guarantee consistency.

2In six months of latency measurements between all pairs of Azure data centers, we observe less than 6% change
in median latency from month to month for any data center pair and less than 10% difference between 90th percentile
and median latency within each month for most pairs.
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3.4 Evaluation

We evaluate PANDO in two parts. First, in a measurement-based analysis, we estimate PANDO’s
benefits over prior solutions for enabling strongly consistent distributed storage. We quantify
these benefits not only with respect to latency and cost separately, but also the extent to which
PANDO helps bridge the gap to the lower bound in the latency–cost tradeoff space (§3.1). Second,
we deploy our prototype key-value store and compare latency and throughput characteristics un-
der microbenchmarks and an application workload. The primary takeaways from our evaluation
are:

• Compared to the union of the best available replication- and erasure coding-based approaches,
PANDO reduces the median gap to the lower bound by 88% in the read latency–write latency–
storage overhead tradeoff space.

• Compared to EPaxos, given bounds on any two of storage overhead, read latency, and write
latency, PANDO can improve read latency by 12–31% and reduce dollar costs (for storage, com-
pute, and data transfers) by 6–46%, while degrading write latency by at most 3%.

• In a geo-distributed deployment on Azure, PANDO offers 18–62% lower read latencies than
EPaxos and can reduce 95th percentile latency for two GitLab operations by 19–60% over
EPaxos and RS-Paxos.

3.4.1 Measurement-based analysis

Setup. Our analysis uses network latencies between all pairs of 25 Microsoft Azure data centers.
We categorize access sets (the subset of data centers from which an object is accessed) into four
types: North America (NA), North America & Europe (NA-EU), North America & Asia (NA-AS),
and Global (GL). For NA and NA-EU, we use 200 access sets chosen randomly. For NA-AS and
GL, we first filter front-end data centers so that they are at least 20 ms apart, and then sample 200
random access sets. In all cases, we consider all 25 Azure data centers as potential data sites.

We compare PANDO to four replication-based approaches (EPaxos [132], Fast Paxos [112],
Mencius [123], and Multi-Paxos [110]) and the only prior approach which can enable conditional
updates on erasure-coded data (RS-Paxos [134]). We refer to the union of EPaxos and RS-Paxos
(i.e., use either approach to satisfy the desired SLOs) as EP ∪ RSP.

Metrics. Our analysis looks at three types of metrics: 1) read and write latency (in either case,
we estimate the max latency seen by any front-end in the access set) and storage overhead (size
of the data stored divided by size of user data); 2) GapVolume, a metric which captures the gap
in the three-dimensional read latency–write latency–storage overhead tradeoff space between the
lower bound (described in §3.1) and the approach in question; and 3) total dollar cost as the sum
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Figure 3.7: For NA-AS access sets, comparison of GapVolume with PANDO to EPaxos and RS-
Paxos individually and their union (EP ∪ RSP). In addition, we evaluate EP ∪ PANDO (the union
of EPaxos and PANDO) and Ideal EC (a hypothetical Paxos variant that supports erasure coding,
one-round writes, and 1-split intersection across quorums).

of compute, storage, data transfer, and operation costs necessary to support reads and writes.

3.4.1.1 Impact on Achievable Tradeoffs

We use GapVolume to evaluate how close each approach is to the lower bound (§3.1.3). For
any access set, we compute GapVolume with a specific consensus approach as the gap in the (read,
write, storage) tradeoff space between the surfaces represented by the lower bound and by tradeoffs
achievable with this consensus approach. We normalize this gap relative to the volume of the entire
theoretically feasible tradeoff space, i.e., the portion of the tradeoff space above the lower bound
surface. For every access set, we cap read and write latencies at values that are achievable with all
approaches, and we limit storage overhead to a maximum of 7 as higher values are unlikely to be
tenable in practice.

Proximity to lower bound. Figure 3.7 shows that PANDO significantly reduces GapVolume
compared to EPaxos and RS-Paxos for access sets of type NA-AS. We do not show results for
other replication-based approaches because they are subsumed by EPaxos, i.e., every combination
of SLOs that is achievable with Mencius, Fast Paxos, and Multi-Paxos is also achievable with
EPaxos. PANDO lowers median GapVolume to 4%, compared to 53% with RS-Paxos and 44%
with EPaxos. Even with EP ∪ RSP (i.e., use two significantly different designs to realize different
tradeoffs), median GapVolume remains at 34%. Table 3.1 shows similar benefits for NA, NA-EU,
and GL access sets.

Moreover, EP ∪ PANDO (i.e., SLO combinations achievable with any of EPaxos or PANDO) is
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Figure 3.8: For access sets of type NA-AS, contributions of each of PANDO’s techniques in reduc-
ing GapVolume. SP1 = small Phase 1, PD = partial delegation, 1s = 1-split overlap.

GapVolume NA NA-EU NA-AS GL
PANDO 0.06 0.07 0.04 0.07
EP ∪ RSP 0.37 0.40 0.34 0.34
EPaxos 0.44 0.48 0.44 0.49
RS-Paxos 0.52 0.59 0.53 0.48

Table 3.1: GapVolume for median access set of various types. Lower values are better; imply
closer to the lower bound.

only marginally closer to the lower bound (i.e., has lower GapVolume) than PANDO, and that too
only for some access sets. The few SLO combinations that EPaxos can achieve but not PANDO all
have low write latency SLOs, in which case no choice of delegate can help PANDO overcome the
overheads of two-round writes.

Utility of individual techniques. Figure 3.8 shows that each of the techniques used in PANDO

contribute to the GapVolume reductions. For the median access set, using small Phase 1 quorums
reduces GapVolume over RS-Paxos by 36%, adding partial delegation reduces GapVolume by a
further 16%, and finally incorporating 1-split intersection reduces GapVolume by an additional
39%. When examining the improvements for each access set, we observe that both small Phase 1
quorums and 1-split intersection help across all access sets by reducing quorum size requirements.
Similarly, we find that partial delegation typically improves GapVolume, indicating that some data
sites are often closer to Phase 1 and Phase 2 quorums than the front-end.

Obstacles to matching the lower bound. From the gap between PANDO and Ideal EC in Fig-
ure 3.7, we surmise that most of the remaining gap between PANDO and the lower bound could
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Figure 3.9: Average performance across different metrics. Lower is better in all plots. For each
metric, we pick SLO combinations for the other two metrics that are achievable with all ap-
proaches. For each such SLO pair, we estimate the minimum value of the metric achievable with
each approach. We then take the geometric mean across all access sets and SLO pairs.
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Figure 3.10: For access sets of type NA-AS, impact of data center failures on read latency for
PANDO and EPaxos (300 ms write SLO, 5× overhead storage SLO).

be closed if one-round writes on erasure-coded data were feasible. Addressing any potential sub-
optimality thereafter likely requires realizing the lower bound’s flexibility with regards to varying
the fraction of an object’s data across sites (e.g., by using a different erasure coding strategy than
Reed-Solomon coding) and varying quorum sizes across front-ends.

3.4.1.2 Latency and Storage Improvements

Figure 3.9 examines improvements in each of read latency, write latency, and storage overhead
independently. To do this for read latency, we first identify all (write, storage) SLO pairs that
are achievable by all candidate approaches. For each such pair, we then estimate the lowest read
latency bound that is satisfiable with each approach. We take the geometric mean [70] across all
feasible (write, storage) SLO pairs for all access sets to compare PANDO’s performance relative to
other approaches. We perform similar computations for write latency and storage overhead.

We find that PANDO achieves 12–31% lower read latency, 0–3% higher write latency, and 22–
32% lower storage overhead than EPaxos across all types of access sets. Although PANDO executes
writes in two phases, the use of small Phase 1 quorums plus partial delegation provides similar
write latency as EPaxos. In all cases, EPaxos outperforms Fast Paxos, Mencius, and Multi-Paxos.
Compared to RS-Paxos, PANDO reduces read latency by 15–40%, write latency by 11–17%, and
storage overhead by 13–22%.

Latency under failures. Figure 3.10 compares the read latency bounds satisfiable with PANDO

and EPaxos when any one data center is unavailable. During failures, a front-end may need to
contact more distant data sites in order to read or write data. In this case, for the median access set,
we observe that PANDO supports a read latency bound which is 110 ms lower than EPaxos. Since
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Figure 3.11: Comparison of cost for a month in NA-AS to store 10 TB of data and execute 600M
requests/month. In all cases, the costs of Proxy VMs (not shown) were negligible, and read and
write latency SLOs were set to 100 ms and 375 ms.

erasure coding spreads data more widely than replication for the same storage overhead, there are
more nearby sites to fall back on when a failure occurs.

However, erasure coding is not universally helpful in failure scenarios. Upon detecting the loss
of its write delegate, a PANDO front-end will locally identify a new one that minimizes latency at
the front-end. Still, across NA-AS access sets, median write latency with PANDO is 10% higher
than EPaxos when any one data site is unavailable, despite the two approaches having similar
latency in the failure-free case. In addition, under permanently data loss, bringing up a replacement
data site requires decoding the data of k separate sites instead of fetching the same volume of data
from one replica.

3.4.1.3 Cost

Beyond storage, public cloud providers also charge users for wide-area data transfers, PUT/GET
requests to storage, and for virtual machines used to execute RPCs and encode/decode data. These
overheads have driven production systems to adopt two key optimizations. First, replication-based
systems execute reads by fetching version numbers from remote sites, not data. Second, Paxos-
based systems issue writes only to a quorum (or for PANDO, a superset of a write quorum that
intersects with all Phase 1a quorums likely to be used). Taking these optimizations into considera-
tion, we now account for these other sources of cost and evaluate PANDO’s utility in reducing total
cost.

We considered 200 access sets of type NA-AS and set latency SLOs that both RS-Paxos and
EPaxos are capable of meeting: 100 ms for read latency and 375 ms for write latency. We derived
the CPU cost of Proxy VMs by measuring the throughput achieved in deployments of our prototype
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system. Using pricing data from Azure CosmosDB [125], we estimated the cost necessary to store
10 TB of data and issue 600M requests, averaged across all access sets; these parameters are based
on a popular web service’s workload [5] and a poll of typical MySQL deployment sizes [179].

Across several values for mean object size and read-to-write ratio, Figure 3.11 shows that
PANDO reduces overall costs by 6–46% over EPaxos and 35–40% over RS-Paxos. When objects
are large, PANDO’s cost savings primarily stem from the reduction in the data transferred over the
wide-area network. Note that even though EPaxos uses replication, it still requires reading remote
data when a copy is not stored at the front-end data center. Whereas, when objects are small,
storage fees dominate and PANDO reduces cost primarily due to the lower storage overhead that
it imposes. Though erasure coding increases the number of requests to storage compared to repli-
cation, ConfigManager opts to erasure-code data only when the corresponding decrease in storage
and data transfer costs help reduce overall cost. Unlike write requests, which have to first write
metadata to storage before transferring and writing the data itself, read requests only issue storage
operations to fetch data. This leads to greater cost reductions for read-dominated workloads.

3.4.2 Prototype deployment

Next, via deployments on Azure, we experimentally compare PANDO versus EPaxos and RS-
Paxos. We use our implementations of PANDO and RS-Paxos and the open-source implementation
of EPaxos [131]. This experimental comparison helps account for factors missing from our analy-
sis, such as latency variance and contention between requests. We consider one access set of each
of our 4 types:

• NA: Central US, East US, North Central US, West US

• NA-EU: Canada East, Central US, North Europe, West Europe

• NA-AS: Central US, Japan West, Korea South

• GL: Australia East, North Europe, SE Asia, West US

Informed by prior studies of production web service workloads [60, 43], we read and write objects
between 1–100 KB in size. Unless stated otherwise, we use A1v2 (1 CPU, 2 GB memory) virtual
machines and issue requests using YCSB [59]—a key-value store benchmark.

3.4.2.1 Microbenchmarks

Tail latency across front-ends. Figure 3.12 shows 95th percentile read and write latencies for
each of the four access sets when running a low contention (zipfian coefficient = 0.1) workload
with 1 KB values and a read:write ratio of 1. In all cases, when using PANDO, we observe that the
slowest front-end performs similarly to the read latency SLO deemed feasible by ConfigManager.

58



GL NA−AS NA−EU NA

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

0

50

100

150

200

9
5

%
ile

 R
e

a
d

 L
a

te
n

c
y
 (

m
s
)

p
e

r 
F

ro
n

t−
e

n
d

(a) Read Latency when Write SLO = 300, 300, 150, and 100 ms for GL, NA-AS, NA-EU, and
NA, respectively
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(b) Write Latency when Read SLO = 200, 150, 125, and 75 ms for GL, NA-AS, NA-EU, and NA,
respectively

Figure 3.12: Latency comparison with a low-contention workload under a storage SLO of 3×
overhead. Red lines represent the lowest latency SLO that ConfigManager identifies as feasible
with PANDO. With every approach, in each access set, we measure 95th %ile latency at every
front-end and plot the min and max of this value across front-ends. Pan = Pando, EP = EPaxos,
and RSP = RS-Paxos.
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Figure 3.13: Write latency comparison under contention using a fully leaderless approach and the
leader-based fallback (§3.2.5). 5th percentile, median, and 95th percentile across 1000 writes are
shown. Note logscale on y-axis.

This confirms the low latency variance in the CosmosDB instance at each data center and on
the network paths between them. While all approaches achieve sub-55 ms read latency in NA,
only PANDO can provide sub-100 ms latency in all regions. In GL, NA-AS, and NA-EU, PANDO

improves read latency for the slowest front-end by 39–62% compared to EPaxos. PANDO falls
short of the write latency offered by EPaxos but comes close.

Latency under high conflict rates. Although our focus is on workloads with few write conflicts,
we seek to bound performance degradation when conflicts occur. To evaluate this, we setup front-
ends in 16 Azure data centers spread across five continents. We mimic conflicts by synchronizing
a subset of front-ends (assuming low clock skew) to issue writes on the same key and version
simultaneously. We show latency for successful conditional writes since other writes will learn the
committed value and terminate shortly afterward.

Figure 3.13 shows that PANDO is effective at bounding latency for writes in the presence of
conflicts. Without a leader-based fallback, writes in PANDO may need to be tried many times
before succeeding, resulting in unbounded latency growth, e.g., with four concurrent writers, we
observe more than 15 proposals for particular (key, version) pairs. In contrast, falling back to a
leader ensures that a write succeeds within two write attempts.

Read and write throughput. While erasure coding can decrease bandwidth usage compared
to replication, it requires additional computation in the form of coding/decoding and messaging
overhead. We quantify the inflection point at which CPU overheads dominate by deploying PANDO

in a single data center and measuring the achievable throughput with all data in memory. Each
server, which stored 1 split or 1 replica, had two Xeon Silver 4114 processors and 192 GB of
memory. All servers were connected over a 10 Gbps network with full bisection bandwidth. Across
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Figure 3.14: Per-machine throughput of different erasure coding configurations compared to using
3 replicas.

multiple value sizes, we measured the per-server throughput of filling the system with over 20 GB
of data and reading it back.

Figure 3.14 compares the per-machine throughput achieved with 3 replicas to two erasure cod-
ing configurations, one with the same storage overhead and another with lower storage overhead.
When objects are 10 KB or larger, we find that bandwidth is the primary bottleneck. Because it has
identical bandwidth demands as replication, the (k = 2, r = 4) configuration achieves similar read
throughput and 0.9–1× the write throughput of replication for objects larger than 10 KB. Whereas,
due to its lower bandwidth consumption, the (k = 2, r = 3) configuration offers 1.1-1.2× the
throughput of replication for 10 KB–100 KB sized objects. All configurations are CPU-bound
with value sizes of 1 KB or smaller. Since replication requires exchanging fewer messages per
request than erasure coding, it has lower CPU overhead and can thus achieve higher throughput.

3.4.2.2 Application Workload

Lastly, we evaluate the utility of PANDO on a geo-distributed deployment of GitLab [73], a software
development application that provides source code management, issue tracking, and continuous
integration.

Operations and setup. We evaluate the performance of two GitLab operations: listing issues tar-
geting a development milestone (GetIssues) and (un-)protecting a branch from changes (Protect-
Branch). GetIssues fetches a list of issues for the requested milestone and then fetches 20 issues
in parallel to display on a page. ProtectBranch reads the current branch metadata then updates its
protection status.

We deployed front-ends and storage backends in the NA-AS access set on A2v2 (2 CPU, 4 GB
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Figure 3.15: Latencies for GitLab requests in Central US.

memory) virtual machines, and preloaded the system with 100 projects, each with 20 branches, 10
milestones, and 100 issues. We used a 3× bound on storage overhead and set the write latency
SLO to 175 ms. Every front-end executed 1000 GetIssues and ProtectBranch requests in an open
loop and selected items using a uniform key distribution.

Performance. Figure 3.15 shows the latency distribution observed for both operations by the
front-end in Central US. PANDO reduces 95th percentile GetIssues latency by over 59% compared
to both EPaxos and RS-Paxos. Because ProtectBranch consists of a write in addition to a read
operation, it incurs higher latency compared to GetIssues, which consists solely of read operations.
Despite this, PANDO is able to lower 95th percentile ProtectBranch latency by 19% over EPaxos
and 28% over RS-Paxos.

3.5 Related work

Geo-distributed storage. While some prior geo-distributed storage systems [120, 116, 121, 163]
weaken consistency semantics to minimize latencies and unavailability, PANDO follows others [60,
159, 182, 37] in serving the needs of applications that cannot make do with weak consistency.
Compared to efforts focused solely on minimizing latency with any specific replication factor [132,
123, 112, 45], PANDO aims to also minimize the cost necessary to meet latency goals. Unlike
systems [23, 176, 170, 139] which focus only on judiciously placing data to minimize cost, we
also leverage erasure coding and rethink how to enable consensus on erasure-coded data.

Partial delegation in PANDO is akin to the chaining of RPCs [158] to eliminate wide-area delays.
We show that combining this technique with the use of smaller quorums in Phase 1 of Paxos helps
a two-round execution approximate the latencies achievable with one-round protocols in a geo-
distributed setting.
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Erasure-coded storage. Erasure coding has been widely used for protecting data from fail-
ures [174], most notably in RAID [142]. While PANDO leverages Reed–Solomon codes [150] for
storage across data centers, other codes have been used to correct errors in DRAM [80], trans-
mit data over networks [155], and efficiently reconstruct data in cloud storage [165, 95, 154].
New codes [124] can reduce cost over Reed–Solomon for operations that go beyond a basic
GET/PUT interface. In contrast to the typical use of erasure coding for immutable and/or cold
data [135, 79, 148, 136, 55], PANDO supports the storage of hot, mutable objects.

Previous protocols [25, 49] that support strong consistency with erasure-coded data provide
only atomic register semantics or require two rounds of communication [134]. We show how
to enable consensus on geo-distributed erasure-coded data without sacrificing latency. Some sys-
tems [54, 55] support strong consistency by erasure coding data but replicating metadata. We chose
to not pursue this route to avoid the complexity of keeping the two in sync, as well as to minimize
latency and metadata overhead.

Paxos variants. Many variants of Paxos [110] have been proposed over the years [134, 93,
113, 111], including several [132, 112, 123, 67] which enable low latency geo-distributed storage.
Compared to Paxos variants that reduce the number of wide-area round trips [132, 123, 112, 67],
PANDO lowers latency by reducing the magnitude of delay in each round trip.

Flexible Paxos [93] was the first to observe that Paxos only requires overlap between every
Phase 1–Phase 2 quorum pair, and others [26, 138, 92] have leveraged this observation since. All
of these approaches make Phase 2 quorums smaller, so as to improve throughput and common
case latency in settings with high spatial locality. In PANDO, we instead reduce the size of Phase

1 quorums and reuse these quorums for reads, thereby enabling previously unachievable tradeoffs
between read and write latency bounds in a workload-agnostic manner.

Compression. Data compression is often used to lower the cost of storing data [91, 160, 53] or
transferring it over a network [69]. In contrast to erasure coding, the effectiveness of compression
depends on both the choice of compression algorithm used as well as the input data [27]. Com-
pression and erasure coding are complementary as data can be compressed and then erasure-coded
or vice-versa.

3.6 Summary

Today, not only do minimizing cost and minimizing latency call for radically different designs of
geo-distributed storage, but many latency versus cost tradeoffs are unachievable in practice. Our
approach for enabling consensus, PANDO, addresses these shortcomings with a single configurable
design. PANDO adapts the use of the Paxos consensus protocol in the wide-area to (1) allow readers
to fetch data from a smaller set of data sites when erasure coding data and (2) mitigate the latency
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of executing writes in two phases. We evaluated PANDO across a wide range of scenarios and
showed that the latency versus cost tradeoffs achievable with PANDO are close to optimal.
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CHAPTER 4

Conclusions

Every type of system faces bottlenecks that govern its performance. This dissertation shows how to
offer significantly improved tradeoffs in both geo-distributed networking and storage, and supports
my thesis that there is still room to improve over state-of-the-art designs.

In WAN networks, I show the importance of control delays on the predictability of the WAN
and develop a WAN architecture that offers desirable predictability properties when controllers are
slow or down. My main insight is to have the network treat opportunistic traffic differently from
traffic that is within a tenant’s guarantee. I then mitigate the negative performance impacts this
behavior can introduce to existing applications.

I also show that no combination of geo-distributed storage systems today can always achieve
an optimal read–write latency tradeoff given a constraint on storage cost, and I show how one
can offer a near-optimal tradeoff. The key is to leverage erasure coding, rather than replication, to
distribute data across data centers. By carefully adapting how to apply existing consensus protocols
to erasure coded storage, I mitigate the performance issues with existing approaches and unlock
near-optimal performance.

4.1 Future Work

A backwards-compatibility layer for HEYP. HEYP marks the portion of traffic that is above a
tenant’s approval with a lower QoS level than it intended. When a tenant’s demand exceeds the
available HIPRI and LOPRI capacity, the flows marked as LOPRI will experience more congestion
than the HIPRI flows. Although many applications should perform reasonably under this behavior
(see §2.3), some may respond poorly since it is different to what existing WANs provide. For
these applications, it would be useful to have a DC controller that could provide fairness across
all of a tenant’s flows (both HIPRI and LOPRI) by rate limiting the HIPRI traffic and balancing
the volume of traffic marked HIPRI and LOPRI. The main challenge would be in identifying the
available LOPRI capacity – recall that LOPRI capacity can be ‘stolen’ by a flowgroup that is within
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its approval. We did not pursue this approach for HEYP because rate limiting HIPRI can introduce
unnecessary throttling that may introduce approval violations (see §2.4.2 and [147]). However, it
may be useful as a compatibility mechanism for older applications.

Sharing WAN bandwidth according to policy without demand estimation. A WAN that
uses HEYP must still employ BwE [105], or similar, to control how LOPRI capacity is shared
between flowgroups. One limitation of BwE is its reliance on accurate demand estimations. If
BwE substantially overestimates demand, it wastes network capacity. On the other hand, when
BwE underestimates demand, it can take multiple global control periods before BwE converges to a
fair allocation of bandwidth across flowgroups. Eliminating this dependence on demand estimation
could potentially reduce the amount of wasted bandwidth. More importantly, it may be enough to
ensure that BwE always restores fairness within one global control period.

Supporting richer manipulation of erasure-coded data. PANDO supports a simple key-value
store interface – the bare minimum API that is useful to users. The reason for this is that PANDO

erasure-codes individual objects, so only clients, not data sites, can see the entire object.
One step towards providing a richer interface would be efficient support for updates. Currently,

updating part of a value in PANDO requires updating the data at all data sites. However, by leverag-
ing a code that supports efficient updates [124], it should be possible to support more fine-grained
operations, and perhaps, change the granularity at which data is erasure coded.

Failure domains in geo-distributed storage systems. Geo-distributed storage systems can
choose to have their failure domain be that of a single machine [60, 162] or an entire data cen-
ter [121, 177, 55]. The former approach requires lower overhead since there is no redundancy
within the data center. However, the latter offers faster failure recovery, since health checks can
identify failures more quickly within a data center than across data centers. A study that com-
pares high-quality implementations of both approaches would be useful to identify under what
conditions each is appropriate.

4.2 Final Remarks

The infrastructure available to help build geo-distributed applications is still in its infancy. Most
of the services that are currently offered by cloud providers focus on large, single data center
applications. Naively deploying these services across data centers is unlikely to provide optimal
tradeoffs to users, especially when we consider the improvements my work has shown over existing
WAN-optimized systems. Instead, geo-distributed applications need systems that are optimized
specifically for the WAN, and that offer a variety of tradeoffs to support different use cases. This
dissertation shows how to do this for problems in both networking and storage systems, and I hope
the results inform future system designs.
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APPENDIX A

Details of simulation environment used to evaluate
HEYP

A.1 Discrete-event simulation control logic

Our simulation in §2.4.1 diverges from the design described in §2.3 in two ways. First, route
and admission computation are performed by two separate controllers (Algorithms A.1 and A.2)
similar to B4 [98, 105]). Second, because the the network traces lack per-task data, the simulated
DC controller can only partition traffic based on usage (Algorithm A.3).

Inputs:
Approvals and demands per flowgroup
Topology annotated with link capacities
Route allocation function (see Algorithm A.4)

Outputs (per flowgroup): HIPRI and LOPRI routes
1. HIPRI routes, HIPRI admissions← AllocateRoutes(approvals, approvals, link capacities)
2. Compute unused link capacity by deducting any link capacity consumed by the volume of each

flowgroup’s demand that is under the HIPRI admission
3. HIPRI routes, ← AllocateRoutes(demands - HIPRI admissions, approvals - HIPRI

admissions, link capacities from Step 2)

Algorithm A.1: Allocating routes separately from admissions while accounting for any over-
subscription caused by failures.

A.2 Route allocation algorithm used in §2.4.1

Algorithm A.4 provides a detailed description of the routing algorithm used by all approaches in
§2.4.1. It is similar to the greedy algorithm used by B4 [98] and prioritizes satisfying any within-
approval demands before above-approval ones.
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Inputs:
Approvals and demands per flowgroup
HIPRI and LOPRI routes per flowgroup
Topology annotated with link capacities

Outputs (per flowgroup): HIPRI and LOPRI admissions
1. Set the HIPRI admissions to a max-min fair allocation of bandwidth to satisfy approvals using

the HIPRI routes
2. Compute unused link capacity by deducting any link capacity consumed by the volume of each

flowgroup’s demand that is under the HIPRI admission
3. Set the LOPRI admissions to a max-min fair allocation of bandwidth to satisfy any residual

demand using the LOPRI routes

Algorithm A.2: Allocating admissions separately from routes while accounting for any over-
subscription caused by failures.

Inputs:
Usage and admission per (flowgroup, QoS)
Demand per flowgroup
Current fraction of demand marked as HIPRI per flowgroup

Outputs (per flowgroup):
New fraction of demand to mark as HIPRI

foreach flowgroup do
t ← min(demand,HIPRI + LOPRI admissions)
Set new HIPRI fraction to min (1,HIPRI limit/t)

end

Algorithm A.3: Splitting traffic into QoS levels.
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Configuration parameters:
Maximum number of paths (i.e. path budget) per flowgroup

Inputs: Approvals and demands per flowgroup

Topology annotated with link capacities

Outputs (per flowgroup): Routes and admissions

// Initialization

1 PathAdmissions ← {}
// Start by satisfying within-approval demands

2 For all flowgroups f , Df ← min(demandf , approvalsf )

// Main path allocation loop

3 while some flowgroup has positive demand and some link has positive capacity do
4 CurPaths ← {}
5 foreach flowgroup f with Df > 0 do
6 p ← next shortest path that avoids links with no capacity

7 if no such p exists or if adding p to Routesf exceeds the path budget then
8 Df ← 0

9 else
10 CurPathsf ← p

11 end
12 Compute a max-min fair allocation of link capacity to satisfy D using CurPaths

13 Add allocations to admissions and subtract from Df

14 PathAdmissionsf ,p ← PathAdmissionsf ,p + admission

15 end
// We have satisfied any within-approval demands (if possible), try to satisfy above-approval

demands

16 Set Df ← demandf −
∑

p PathAdmissionsf ,p

17 Repeat loop on Lines 3–15

18 foreach flowgroup f do
19 if demandf = 0 then
20 Use the shortest route and set admission to 0

21 else
22 Use routes in PathAdmissionsf with each getting a share of traffic proportionate to the

path admission

23 Set admission to
∑

p PathAdmissionsf ,p

24 end

Algorithm A.4: Route computation algorithm.
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APPENDIX B

The Pando write protocol: specification and proof of
correctness

In this section, we focus on how PANDO achieves consensus on a single value and prove that it
matches the guarantees provided by Paxos. Other functionality is layered on top of this base as
follows:

• Mutating values. As with Multi-Paxos, we build a distributed log of values and run PANDO

on each entry of the log. We only ever attempt a write for version i if we know that i − 1

has already been chosen. This invariant ensures that the log is contiguous, and that all but
possibly the latest version have been decided.

• Partial delegation of writes. One of the key optimizations used in PANDO is to execute
Phase 1 and Phase 2 on different nodes (§3.2.3.2). We achieve this without sacrificing fault
tolerance as follows. Each proposer is assigned an id (used for Lamport clocks), but we
additionally assign a proposer id to each (proposer, delegate) pair. When executing a write
using partial delegation, we simply direct responses accordingly, and have the proposer in-
form the delegate about which value to propose (unless one was recovered, in which case the
delegate has to inform the proposer about the change). In case the delegate fails, a proposer
can always choose to execute a write operation normally, and because it uses a different pro-
poser id in this case, it will look as though the write from the proposer and the write from
the (proposer, delegate) pair are writes from two separate nodes. We already prove (§B.1)
that PANDO maintains consistency in this case.

• One round reads. As with other consensus protocols, we support (common-case) one-
round reads by adding a third, asynchronous phase to writes that broadcasts which value was
chosen and caches this information at each acceptor. Upon executing a read at a Phase 1a
quorum, we check to see if any acceptor knows whether a value has already been chosen. If
we find such a value, we try to reconstruct it and fall back on the larger Phase 1b quorum
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A.ppn Promised proposal no. stored at acceptor A
A.apn Accepted proposal no. stored at acceptor A
A.vid Accepted value id stored at acceptor A
A.vlen Accepted value length stored at acceptor A

A.vsplit Accepted value split stored at acceptor A
vidv Unique id for v , typically a hash or random

number
vlenv Length of v (to remove padding)

Split(v ,A) (Computed on proposers) The erasure-
coded split associated with acceptor A

Figure B.1: Summary of notation.

in case there are not enough splits present in the Phase 1a quorum. Otherwise, we follow
the write path, but propose a value only if we were able to recover one (else none have
been chosen). We maintain linearizability with this approach because the task of resolving
uncertainty is done via the write path.

• Fallback to leader. In PANDO, front-ends directly execute writes unless a conflict is ob-
served, in which case they defer the request to a leader (§3.2.5). From the perspective of
the consensus protocol, the leader is just another proposer, so no consistency issues may
arise even if multiple leaders exist. However, PANDO prevents non-leader front-ends from
attempting writes more than once which can lead to unavailability if the leader fails. It is up
to the leader election mechanism to quickly elect a new leader when the the current one fails.

PANDO’s consistency and liveness properties rely on certain quorum constraints being met. We
describe the constraints below under the assumption that data is partitioned into k splits (Con-
straint 3 needed only if Phase 1a quorums are used for reads):

1. The intersection of any Phase 1a and Phase 2 quorums contains at least 1 split.

2. The intersection of any Phase 1b and Phase 2 quorums contains at least k splits.

3. A Phase 1a quorum must contain at least k splits.

4. After f nodes fail, at least one Phase 1b and Phase 2 quorum must consist of nodes that are
available.

Below is pseudocode for the PANDO write protocol.

Phase 1 (Prepare-Promise)
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Proposer P initiates a write for value v :
1. Select a unique proposal number p (typically done using Lamport clocks).
2. Broadcast Prepare(p) messages to all acceptors.

Acceptor A, upon receiving Prepare(p) message from Proposer P :
3. If p > A.ppn then set A.ppn ← p and reply Promise(A.apn,A.vid ,A.vlen,A.vsplit).
4. Else reply NACK.

Proposer P , upon receiving Promise messages from a Phase 1a quorum:
5. If the values in all Promise responses are NULL, then skip to Phase 2 with v ′ ← v .

Proposer P , upon receiving Promise messages from a Phase 1b quorum:
6. Iterate over all Promise responses sorted in decreasing order of their apn.

(a) If there are at least k splits for value w associated with apn, recover the value w (using
the associated vlen and vsplits) and continue to Phase 2 with v ′ ← w .

7. If no value was recovered, continue to Phase 2 with v ′ ← v .

Phase 2 (Propose-Accept)

Proposer P , initiating Phase 2 to write value v ′ with proposal number p:
8. If no value was recovered in Phase 1, set vidv ′ = hash(v) (or some other unique number,

see Figure B.1). If a value was recovered, use the existing vidv ′ .
9. Broadcast Propose(p, vidv ′ , vlenv ′ , Split(v ′,A)) messages to all acceptors.

Acceptor A, upon receiving Propose(p, vid , vlen, vsplit) from a Proposer P :
10. If p < A.ppn reply NACK
11. A.ppn ← p

12. A.apn ← p

13. A.vid ← vid

14. A.vlen ← vlen

15. A.vsplit ← vsplit

16. Reply Accept(p)

Proposer P , upon receiving Accept(p) messages from a Phase 2 quorum:
17. P now knows that v ′ was chosen, and can check whether the chosen value v ′ differs from

the initial value v or not.

72



B.1 Proof of correctness

Definitions. We let A refer to the set of all acceptors and use Qa , Qb , and Q2 refer to the sets of
Phase 1a, Phase 1b, and Phase 2 quorums, respectively. Using this notation, we restate our quorum
assumptions:

Q ⊆ A ∀Q ∈ Qa ∪Qb ∪Q2 (1)

|Qa ∩Q2| ≥ 1 ∀Qa ∈ Qa ,Q2 ∈ Q2 (2)

|Qb ∩Q2| ≥ k ∀Qb ∈ Qb ,Q2 ∈ Q2 (3)

Definition 1. A value is chosen if there exists a Phase 2 quorum of acceptors that all agree on the

identity of the value and store splits corresponding to that value.

We now show that the PANDO write protocol provides the same guarantees as Paxos:

• Nontriviality. Any chosen value must have been proposed by a proposer.

• Liveness. A value will eventually be chosen provided that RPCs complete before timing out
and all acceptors in at least one Phase 1b and Phase 2 quorum are available.

• Consistency. At most one value can be chosen.

• Stability. Once a value is chosen, no other value may be chosen.

Theorem 1. (Nontriviality) PANDO will only choose values that have been proposed.

Proof. By definition, a value can only be chosen if it is present at a Phase 2 quorum of acceptors.
Values are only stored at acceptors in response to Propose messages initiated by proposers.

Theorem 2. (Liveness) PANDO will choose a a value provided that RPCs complete before timing

out and all acceptors in at least one Phase 1b and Phase 2 quorum are available.

Proof. Let t refer to the (maximum) network and execution latency for an RPC. Since PANDO has
two rounds of execution, a write can complete within 2t as long as a requested is uncontended.
If all proposers retry RPCs using randomized exponential backoff, a time window of length ≥ 2t

will eventually open where only a Proposer P is executing. Since no other proposer is sending any
RPCs during this time, both Phase 1 and Phase 2 will succeed for Proposer P .

Following the precedence of [93], we will show that PANDO provides both consistency and
stability by proving that it provides a stronger guarantee.
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Lemma 1. If a value v is chosen with proposal number p, then for any proposal with proposal

number p ′ > p and value v ′, v ′ = v .

Proof. Recall that PANDO proposers use globally unique proposal numbers (Line 1); this makes it
impossible for two different proposals to share a proposal number p. Therefore, if two proposals
are both chosen, they must have different proposal numbers. If v ′ = v then we trivially have the
desired property. Therefore, assume v ′ 6= v .

Without loss of generality, we will consider the smallest p ′ such that p ′ > p and v ′ 6= v

(minimality assumption). We will show that this case always results in a contradiction: either the
Prepare messages for p ′ will fail (and thus no Propose messages will ever be sent) or the proposer
will adopt and re-propose value v .

Let Q2,p be the Phase 2 quorum used for proposal number p, and Qa,p′ be the Phase 1a quorum
used for p ′. By Quorum Property 2, we know that |Q2,p ∩ Qa,p′| is non-empty. We will now look
at the possible ordering of events at each acceptor A in the intersection of these two quorums (Q2,p

and Qa,p′):

• Case 1: A receives Prepare(p ′) before Propose(p, . . .).

The highest proposal number at A would be p ′ > p by the time Propose(p, . . .) was pro-
cessed, and so A would reject Propose(p, . . .). However, we know that this is not the case
since A ∈ Q2,p , so this is a contradiction.

• Case 2: A receives Propose(p, . . .) before Prepare(p ′).

The last promised proposal number at A is q such that p ≤ q < p ′ (q > p ′ would be a
contradiction since Prepare(p ′) would fail even though A ∈ Qa,p′). By our minimality as-
sumption, we know that all proposals z such that p ≤ z < p ′ fail or re-propose v . Therefore,
the acceptor A responds with Promise(q , vidv , . . .).

At this point, the proposer has received at least one Promise message with a non-empty value.
Therefore, it does not take the Phase 1 fast path and waits until it has heard from a Phase 1b quorum
(denoted Qb,p′). Using the same logic as above, the proposer for p ′ will receive a minimum of k
Promise messages each referencing value v since there are k acceptors in Qb,p′ ∩ Q2,p (Quorum
Property 3). Since the proposer has a minimum of k responses for v , it can reconstruct value v .
Let q denote the highest proposal number among all k responses.

Besides those in Qb,p′ ∩Q2,p , other acceptors in Qb,p′ may return values that differ from v . We
consider the proposal number q ′ for each of these accepted values:

• Case 1: q ′ < q . The proposer for p ′ will ignore the value for q ′ since it uses the highest
proposal number for which it has k splits.
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• Case 2: p ′ < q ′. Not possible since Prepare(p ′) would have failed.

• Case 3: p < q ′ < p ′. This implies that a Propose(q ′, v ′′) was issued where v ′′ 6= v . This
violates our minimality assumption.

Therefore, the proposer will adopt value v since it can reconstruct it (the proposer has k splits from
the acceptors in Qb,p′ ∩ Q2,p alone) and the highest returned proposal number references it. This
contradicts our assumption that v ′ 6= v .

Theorem 3. (Consistency) PANDO will choose at most one value.

Proof. Assume that two different proposals with proposal numbers p and q are chosen. Since
proposers use globally unique proposal numbers, p 6= q . This implies that one of the proposal
numbers is greater than the other, assume that q > p. By Lemma 1, the two proposals write the
same value.

Theorem 4. (Stability) Once a value is chosen by PANDO, no other value may be chosen.

Proof. The proposal numbers used for any two chosen proposals will not be equal. Thus, with the
additional assumption that acceptors store their state in durable storage, this follows immediately
from Lemma 1.
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APPENDIX C

TLA+ specification for Pando reads and writes

In addition to our proof of correctness for PANDO’s write path, we have model checked PANDO’s
correctness using TLA+ [109]. The purpose of this exercise was to mechanically verify PANDO’s
safety guarantees under a number of scenarios.

We checked the following invariants: consistency and stability for writes, that any value marked
chosen at an acceptor was indeed chosen, and that successful reads only ever returned chosen
values. The configurations modeled used 2–3 proposers (and readers) that could write (read) 2–3
values to (from) 4–6 acceptors when splitting the data into 2–4 splits. We set up 2–3 quorums of
each type (Phase 1a, Phase 1b, and Phase 2).

The TLA+ model checker considers all possible histories including those with message re-
ordering and arbitrary (or infinite) delay in delivering messages. When run on the specification for
PANDO (below) and the configurations listed earlier, no invariant violations were found.

MODULE Pando

EXTENDS Integers , TLC , FiniteSets

CONSTANTS Acceptors , Ballots , Values ,

Quorum1a, Quorum1b, Quorum2, K

ASSUME QuorumAssumption
∆
=

∧Quorum1a ⊆ SUBSET Acceptors

∧Quorum1b ⊆ SUBSET Acceptors

∧Quorum2 ⊆ SUBSET Acceptors

Overlap of 1

∧ ∀QA ∈ Quorum1a :

∀Q2 ∈ Quorum2 :

Cardinality(QA ∩Q2) ≥ 1

Overlap of K

∧ ∀QB ∈ Quorum1b :
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∀Q2 ∈ Quorum2 :

Cardinality(QB ∩Q2) ≥ K

VARIABLES msgs , The set of messages that have been sent

maxPBal , maxPBal [a] is the highest promised ballot (proposal number) at acceptor a

maxABal , maxABal [a] is the highest accepted ballot (proposal number) at acceptor a

maxVal , maxVal [a] is the value for maxABal [a] at acceptor a

chosen, chosen[a] is the value that acceptor a heard was chosen (or else is None)

readLog readLog [b] is the value that was read during ballot b

vars
∆
= 〈msgs , maxPBal , maxABal , maxVal , chosen, readLog〉

None
∆
= CHOOSE v : v /∈ Values

Type invariants.

Messages
∆
=

[type : {“prepare”}, bal : Ballots ]
∪ [type : {“promise”}, bal : Ballots , maxABal : Ballots ∪ { − 1},

maxVal : Values ∪ {None}, acc : Acceptors ,

chosen : Values ∪ {None}]
∪ [type : {“propose”}, bal : Ballots , val : Values ∪ {None},

op : {“R”, “W”}]
∪ [type : {“accept”}, bal : Ballots , val : Values , acc : Acceptors ,

op : {“R”, “W”}]
∪ [type : {“learn”}, bal : Ballots , val : Values ]

TypeOK
∆
= ∧msgs ∈ SUBSET Messages

∧maxABal ∈ [Acceptors → Ballots ∪ { − 1}]
∧maxPBal ∈ [Acceptors → Ballots ∪ { − 1}]
∧maxVal ∈ [Acceptors → Values ∪ {None}]
∧ chosen ∈ [Acceptors → Values ∪ {None}]
∧ readLog ∈ [Ballots → Values ∪ {None}]
∧ ∀ a ∈ Acceptors : maxPBal [a] ≥ maxABal [a]

Initial state.

Init
∆
= ∧msgs = {}
∧maxPBal = [a ∈ Acceptors 7→ − 1]

∧maxABal = [a ∈ Acceptors 7→ − 1]

∧maxVal = [a ∈ Acceptors 7→ None]

∧ chosen = [a ∈ Acceptors 7→ None]
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∧ readLog = [b ∈ Ballots 7→ None]

Send message m .

Send(m)
∆
= msgs ′ = msgs ∪ {m}

Prepare: The proposer chooses a ballot id and broadcasts prepare requests to all acceptors.
All writes start here.

Prepare(b)
∆
= ∧ ¬∃m ∈ msgs : (m.type = “prepare”) ∧ (m.bal = b)

∧ Send([type 7→ “prepare”, bal 7→ b])

∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Promise: If an acceptor receives a prepare request with ballot id greater than that of any prepare request which it has
already responded to, then it responds to the request with a promise. The promise reply contains the proposal (if any)
with the highest ballot id that it has accepted.

Promise(a)
∆
=

∃m ∈ msgs :

∧m.type = “prepare”
∧m.bal > maxPBal [a]

∧ Send([type 7→ “promise”, acc 7→ a, bal 7→ m.bal ,

maxABal 7→ maxABal [a], maxVal 7→ maxVal [a],

chosen 7→ chosen[a]])

∧maxPBal ′ = [maxPBal EXCEPT ! [a] = m.bal ]

∧ UNCHANGED 〈maxABal , maxVal , chosen, readLog〉

Propose (fast path): The proposer waits until it collects promises from a Phase 1a quorum of acceptors. If no previous
value is found, then the proposer can skip to Phase 2 with its own value.

ProposeA(b)
∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)

∧ ∃ v ∈ Values :

∧ ∃Q ∈ Quorum1a :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b

∧m.acc ∈ Q}
IN

Check for promises from all acceptors in Q

∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a

Make sure no previous vals have been returned in promises

∧ ∀m ∈ Q1Msgs : m.maxABal = − 1

∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v , op 7→ “W”])
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∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Propose (slow path): The proposer waits for promises from a Phase 1b quorum of acceptors. If no value is found
accepted, then the proposer can pick its own value for the next phase. If any accepted coded split is found in one of
the promises, the proposer detects whether there are at least K splits (for the particular value) in these promises. Next,
the proposer picks up the recoverable value with the highest ballot, and uses it for next phase.

ProposeB(b)
∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)

∧ ∃Q ∈ Quorum1b :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b

∧m.acc ∈ Q}
Q1Vals

∆
= [v ∈ Values ∪ {None} 7→
{m ∈ Q1Msgs : m.maxVal = v}]

IN

Check that all acceptors from Q responded

∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a

∧ ∃ v ∈ Values :

∧ No recoverable value, use anything

∨ ∀ vv ∈ Values : Cardinality(Q1Vals [vv ]) < K

Check if v is recoverable and of highest ballot

∨ Use previous value if K splits exist

∧ Cardinality(Q1Vals [v ]) ≥ K

∧ ∃m ∈ Q1Vals [v ] :

Ensure no other recoverable value has a higher ballot

∧ ∀mm ∈ Q1Msgs :

∨m.bal ≥ mm.bal

∨ Cardinality(Q1Vals [mm.maxVal ]) < K

∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v , op 7→ “W”])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Phase 2: If an acceptor receives an accept request with ballot i, it accepts the proposal unless it has already responded
to a prepare request having a ballot greater than it does.

Accept(a)
∆
=

∧ ∃m ∈ msgs :

∧m.type = “propose”
∧m.bal ≥ maxPBal [a]

∧maxABal ′ = [maxABal EXCEPT ! [a] = m.bal ]
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∧maxPBal ′ = [maxPBal EXCEPT ! [a] = m.bal ]

∧maxVal ′ = [maxVal EXCEPT ! [a] = m.val ]

∧ Send([type 7→ “accept”, bal 7→ m.bal , acc 7→ a, val 7→ m.val ,

op 7→ m.op])

∧ UNCHANGED 〈chosen, readLog〉

ProposerEnd: If the proposer receives acknowledgements from a Phase 2 quorum, then it knows that the value was
chosen and broadcasts this.

ProposerEnd(b)
∆
=

∧ ∃ v ∈ Values :

∧ ∃Q ∈ Quorum2 :

LET Q2msgs
∆
= {m ∈ msgs : ∧m.type = “accept”

∧m.bal = b

∧m.val = v

∧m.acc ∈ Q}
IN

Check for accept messages from all members of Q

∧ ∀ a ∈ Q : ∃m ∈ Q2msgs : m.acc = a

If this was in response to a read, log the result

∧ Read: log the result

∨ ∧ ∃m ∈ Q2msgs : m.op = “R”
∧ readLog ′ = [readLog EXCEPT ! [b] = v ]

Write: don’t log the result

∨ (∀m ∈ Q2msgs : m.op = “W” ∧ UNCHANGED 〈readLog〉)
∧ Send([type 7→ “learn”, bal 7→ b, val 7→ v ])

∧ UNCHANGED 〈maxABal , maxPBal , maxVal , chosen〉

Learn: A proposer has announced that value v is chosen.

Learn(a)
∆
=

∧ ∃m ∈ msgs :

∧m.type = “learn”
Process accept before learn, needed for ReadInv, not the protocol

∧maxABal [a] ≥ m.bal

∧ chosen ′ = [chosen EXCEPT ! [a] = m.val ]

∧ UNCHANGED 〈msgs , maxPBal , maxABal , maxVal , readLog〉

Count how many splits of v we have received.

CountSplitsOf (resps , v)
∆
= Cardinality({m ∈ resps : m.maxVal = v})
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FastRead: Check if any value returned from a Phase 1a quorum was chosen. If we have enough splits to reconstruct
that value, then return immediately. If not, wait for Phase 1b quorum. If we have a value that was marked chosen,
return. Otherwise, perform a write-back.

FastRead(b)
∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)

∧
Fastest path: Phase 1a quorum has k splits and the value is chosen

∨ ∧ ∃Q ∈ Quorum1a :

LET RMsgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b

∧m.acc ∈ Q}
IN Check that all acceptors from Q responded

∧ ∀ a ∈ Q : ∃m ∈ RMsgs : m.acc = a

Check that we have k splits of a chosen value

∧ ∃m ∈ RMsgs :

∧m.chosen 6= None

∧ CountSplitsOf (RMsgs , m.chosen) ≥ K

∧ readLog ′ = [readLog EXCEPT ! [b] = m.chosen]

∧ UNCHANGED 〈msgs , maxPBal , maxABal , maxVal , chosen〉
Fast path: Phase 1b quorum has k splits and the value is chosen

∨ ∧ ∃Q ∈ Quorum1b :

LET RMsgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b

∧m.acc ∈ Q}
IN Check that all acceptors from Q responded

∧ ∀ a ∈ Q : ∃m ∈ RMsgs : m.acc = a

Check that we have k splits of a chosen value

∧ ∃m ∈ RMsgs :

∧m.chosen 6= None

∧ CountSplitsOf (RMsgs , m.chosen) ≥ K

∧ readLog ′ = [readLog EXCEPT ! [b] = m.chosen]

∧ UNCHANGED 〈msgs , maxPBal , maxABal , maxVal , chosen〉
Slow path: Phase 1b recovery and write back

∨ ∧ ∃Q ∈ Quorum1b :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
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∧m.acc ∈ Q}
Q1Vals

∆
= [v ∈ Values ∪ {None} 7→
{m ∈ Q1Msgs : m.maxVal = v}]

IN

Check that all acceptors from Q responded

∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a

∧ ∃ v ∈ Values :

Check if v is recoverable and of highest ballot

Use previous value if K splits exist

∧ Cardinality(Q1Vals [v ]) ≥ K

∧ ∃m ∈ Q1Vals [v ] :

Ensure no other recoverable value has a higher ballot

∧ ∀mm ∈ Q1Msgs :

∨m.bal ≥ mm.bal

∨ Cardinality(Q1Vals [mm.maxVal ]) < K

readLog will be updated in ProposerEnd

∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v ,

op 7→ “R”])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

No value recovered: Return None

∨ ∧ readLog ′ = [readLog EXCEPT ! [b] = None]

∧ UNCHANGED 〈msgs , maxPBal , maxABal , maxVal , chosen〉

Next state.

Next
∆
= ∨ ∃ b ∈ Ballots : ∨ Prepare(b)

∨ ProposeA(b)

∨ ProposeB(b)

∨ ProposerEnd(b)

∨ FastRead(b)

∨ ∃ a ∈ Acceptors : Promise(a) ∨ Accept(a) ∨ Learn(a)

Spec
∆
= Init ∧2[Next ]vars

Invariant helpers.

AllChosenWereAcceptedByPhase2
∆
=

∀ a ∈ Acceptors :

∨ chosen[a] = None
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∨ ∃Q ∈ Quorum2 :

∀ a2 ∈ Q :

∃m ∈ msgs : ∧m.type = “accept”
∧m.acc = a2

∧m.val = chosen[a]

OnlyOneChosen
∆
=

∀ a, aa ∈ Acceptors :

(chosen[a] 6= None ∧ chosen[aa] 6= None) =⇒ (chosen[a] = chosen[aa])

VotedForIn(a, v , b)
∆
= ∃m ∈ msgs : ∧m.type = “accept”

∧m.val = v

∧m.bal = b

∧m.acc = a

ProposedValue(v , b)
∆
= ∃m ∈ msgs : ∧m.type = “propose”

∧m.val = v

∧m.bal = b

∧m.op = “W”

NoOtherFutureProposal(v , b)
∆
=

∀ vv ∈ Values :

∀ bb ∈ Ballots :

(bb > b ∧ ProposedValue(vv , bb)) =⇒ v = vv

ChosenIn(v , b)
∆
= ∃Q ∈ Quorum2 : ∀ a ∈ Q : VotedForIn(a, v , b)

ChosenBy(v , b)
∆
= ∃ b2 ∈ Ballots : (b2 ≤ b ∧ ChosenIn(v , b2))

Chosen(v)
∆
= ∃ b ∈ Ballots : ChosenIn(v , b)

Invariants.

LearnInv
∆
= AllChosenWereAcceptedByPhase2 ∧OnlyOneChosen

ReadInv
∆
= ∀ b ∈ Ballots : readLog [b] = None ∨ ChosenBy(readLog [b], b)

ConsistencyInv
∆
= ∀ v1, v2 ∈ Values : Chosen(v1) ∧ Chosen(v2) =⇒ (v1 = v2)

StabilityInv
∆
=

∀ v ∈ Values : ∀ b ∈ Ballots : ChosenIn(v , b) =⇒ NoOtherFutureProposal(v , b)

AcceptorInv
∆
=

∀ a ∈ Acceptors :

∧ (maxVal [a] = None) ≡ (maxABal [a] = − 1)
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∧maxABal [a] ≤ maxPBal [a]

∧ (maxABal [a] ≥ 0) =⇒ VotedForIn(a, maxVal [a], maxABal [a])

∧ ∀ c ∈ Ballots :

c > maxABal [a] =⇒ ¬∃ v ∈ Values : VotedForIn(a, v , c)
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Yates: Rapid prototyping for traffic engineering systems. In SOSR, 2018.

[107] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr Lapukhov,
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