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ABSTRACT

Space weather is becoming a topic that has attracted increasing attention during the past

few decades. The increase of human activities in space makes it critical to understand space

weather events better. This dissertation applies a novel first-principle model to investigate

the multi-scale physics in the Earth magnetosphere under strong solar wind driving condi-

tions that have geomagnetic impacts and a machine learning model to perform solar flare

forecasting related to the energy source of the space weather events.

I perform a geomagnetic event simulation using a newly developed magnetohydrodynamic

with adaptively embedded particle-in-cell (MHD-AEPIC) model, the first global geomagnetic

storm simulation containing kinetic physics. I have developed effective criteria for identifying

reconnection sites in the magnetotail and covering them with the PIC model. I compare the

MHD-AEPIC simulation results with Hall MHD and ideal MHD simulations to study the

impacts of kinetic reconnection at multiple physical scales. Three models produce very

similar global scale features such as SYM-H, SuperMag Electrojet (SME) indexes, polar

cap potentials, and field-aligned currents. They also produce good agreements with in-situ

Geotail observations at the mesoscale. At the kinetic scale, the MHD-AEPIC simulation can

produce a crescent shape distribution of the electron velocity space at the electron diffusion

region, which agrees very well with Magnetospheric Multiscale (MMS) satellite observations.

The MHD-AEPIC model compares well with observations at all scales, it works robustly,

and the computational cost is acceptable due to the adaptive adjustment of the PIC domain.

I investigate a kinetic physics mechanism in the magnetotail to induce sawtooth oscil-

lations. The simulation results of our global MHD model with local kinetic physics show

that when the total magnetic flux from the solar wind exceeds a threshold, sawtooth-like
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magnetospheric oscillations can be generated even without time-varying ionospheric outflow.

The period of the oscillations varies from 1.5 to 3 hours, in good agreement with observa-

tions. The amplitude of the oscillations measured in the local BZ field also agrees well with

observations at 8RE distance from the center of Earth. The simulated oscillations cover a

wide range of local times, similar to observations, although the distribution of magnitude

as a function of local time is somewhat different from the observed distribution. This work

suggests that kinetic reconnection physics in the magnetotail can be a major contributing

factor to magnetospheric sawtooth oscillations.

I implemented a deep learning network using Long-Short Term Memory (LSTM) to pre-

dict whether a solar active region (AR) will produce a flare of class Γ in the next 24 hours.

The essence of using LSTM, a recurrent neural network, is its capability to capture temporal

information of the data samples. The input features are time sequences of 20 magnetic pa-

rameters from the Space-weather HMI Active Region Patches (SHARPs). I analyze active

regions from June 2010 to Dec 2018 and their associated flares identified in the GOES X-ray

flare catalogs. The results (i) produce skill scores consistent with recently published results

using LSTMs and are better than the previous results using single time input. (ii) The skill

scores from the model show statistically significant variation when different years of data are

chosen for training and testing. In particular, the years 2015 to 2018 have better True Skill

Statistic (TSS) and Heidke Skill Scores (HSS) for predicting ≥ C medium flares than 2011

to 2014.
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CHAPTER 1

Introduction and Motivation

This chapter starts with an introduction to the solar wind and its interaction with the Earth’s

magnetosphere. Then the concept of space weather and the motivation for studying it will

be explained. In the end, we will present the outline of this dissertation.

1.1 Solar Wind and Earth’s Magnetosphere

The Sun is the only star in our solar system, which is the dominant energy source that drives

the physical phenomena in our space environment. One ”basic” mode of the Sun and Earth

interaction is through the solar wind, which is the extension of the solar corona. This section

will describe how the solar wind originates and how the Earth’s magnetosphere reacts to it.

1.1.1 Solar Wind

When Biermann [1951] was studying the acceleration of the plasma structures in comet tails,

he suggested the existence of a continuous solar wind coming out from the Sun with speed

ranges from 500 km/s to 1500 km/s. Parker [1958] then came up with mathematical theory of

the solar wind. He pointed out that the hydrostatic solution cannot represent an equilibrium

solution of the hot solar corona. The solar wind can be accelerated towards supersonic speed

by the pressure difference between the base of the solar corona and the interstellar medium,

since the pressure in the latter is ten orders of magnitude smaller than the former. He also
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Figure 1.1: A schematic plot of the spiral shape of the interplanetary magnetic field [Gom-
bosi, 1998].

pointed out the existence of the interplanetary magnetic field (IMF), which is the extension

of the solar magnetic field into the interplanetary medium. The rotation of the Sun results

in a spiral structure of the IMF that is called the Parker spiral, see Figure 1.1.

The first continuous observation of the solar wind is reported by Snyder and Neugebauer

[1965] from the Marine-2 mission. Figure 1.2 shows the measurement in a 4-month time

range. The solar wind velocity varies from 300 km/s to 700 km/s, and the proton density

varies from 1 cm−3 to about 100 cm−3. Based on many observations, including the Ulysses

spacecraft, the solar wind can be classified into two categories: the slow wind with a typical

velocity of 300-500km/s and a composition that is similar to the corona, and the fast wind

with a typical velocity of 750km/s and a composition that matches the photosphere. The

origin of the fast solar wind is believed to be the coronal holes on the Sun, where field lines
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Figure 1.2: The Marine-2 Measurement of the solar wind velocity and proton density [Snyder
and Neugebauer, 1965].

are open to the interplanetary space.

The solar wind consists of electrons and ions, as well as the interplanetary magnetic field

(IMF). When the solar wind interacts with the planets that have an intrinsic magnetic field,

it drives the formation and evolution of the planetary magnetospheres. We will introduce

Earth’s magnetosphere specifically in the next subsection, which is studied in this disserta-

tion.

1.1.2 Earth’s Magnetosphere

The Earth’s magnetosphere is formed as a result of the interaction of the superfast, mag-

netized solar wind with the intrinsic magnetic field of the Earth. The magnetosphere is
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the region that is controlled by the Earth’s intrinsic magnetic field, which extends from the

bottom of the ionosphere to more than ten Earth radii (RE) in the sunward direction and

to several hundred RE in the anti-sunward direction.

The Earth’s magnetic field can be approximated very well using a magnetic dipole field.

The dipole field parameters for 1990 are summarized in Table 1.1. In addition to the dipole

field, the dipole axis is tilted around 10.8◦ from the axis of terrestrial rotation. The Earth’s

rotation axis is also inclined 23.5◦ to the ecliptic plane. As a consequence of the Earth’s

daily rotation and its orbit around the Sun, the angle between the Sun-Earth line and the

terrestrial magnetic dipole varies between about 56◦ and 90◦. The variation of this angle has

important consequences for the Earth’s magnetosphere configuration.

Quantity Symbol Value
Dipole moment µ0

4π
ME 7.84× 1015T ·m3

Tilt of dipole axis 10.8◦

Geographic latitude of magnetic north pole λN 79.2◦

Geographic longitude of magnetic north pole ϕN 289◦E

Table 1.1: Terrestrial dipole parameters in 1990 [Gombosi, 1998].

When the magnetized solar wind flow arrives at the Earth, the terrestrial magnetic field

significantly deviates from the dipole field and forms the magnetosphere. Figure 1.3 shows

a schematic representation of the magnetosphere in the noon-midnight meridian. Since the

solar wind is superfast, a bow shock exists before the solar wind reaches the magnetosphere.

The solar wind gets slowed down but compressed and heated across the bow shock. The

location of the bow shock depends on the solar wind condition as well as the shape of the

planet’s body. The Earth’s bow shock is about 3RE away from the edge of the magneto-

sphere. The position where the total pressure of the confined Earth’s dipole field balances the

solar wind after shock is called the magnetopause. The area between the bow shock and the

magnetopause is called the magnetosheath. Different from the dayside magnetic field lines

of the dipole, where they are compressed by the solar wind, the field lines at the nightside

are stretched to form a region called the magnetotail. The magnetotail is divided into two
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parts by the current sheet. The magnetic field lines in the northern lobe are pointing toward

the Earth, while the field lines in the southern lobe are pointing away from the Earth.

Figure 1.3: The schematic plot of the meridional plane of the Earth’s magnetosphere [Va-
syliunas, 1983].

There are several regions inside the magnetosphere populated by magnetosheath-type

plasma. These regions are called magnetospheric boundary layers. As shown in Figure 1.4,

the region where the magnetosheath plasma extends deep into the magnetosphere is the

polar cusp. The low latitude boundary layer (LLBL) is a thin region just inside the mag-

netopause. The plasma population inside the LLBL resembles that in the magnetosheath,

which indicates that the magnetopause is not a perfectly conducting layer that blocks all

the incoming plasma particles. Plasma from the magnetosheath expands into the plasma

mantle, and the field lines are convected towards the magnetotail. In the plasma sheet, there

is hot and dense plasma extending along the center of the magnetotail. Between the plasma

sheet and the plasma mantle are the magnetotail lobes, which have very low plasma densities

and steady and strong magnetic fields (low plasma β). A magnetosphere that contains both
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plasma and magnetic fields can change dynamically, driven by the solar wind.

Figure 1.4: The schematic plot of the magnetospheric boundary layers [Gombosi, 1998].

1.1.3 Dungey Cycle

The magnetosphere is not a still system, and there is a global magnetospheric convection

called the Dungey cycle. First discussed by Dungey [1961], this convection mode exists be-

cause magnetic reconnection, a fundamental plasma process that transports energy from the

magnetic field to the plasma, happens both at the dayside magnetopause and the magne-

totail. Figure 1.5 shows the progression of the Dungey cycle. The closed field lines in the

magnetosphere (red) reconnect with the solar wind magnetic field lines (blue) and result in

”open” field lines that are connected to the planet at one end (purple). Meanwhile, plasma

is transported poleward through the cusps and into the magnetotail. Hence the magnetic

flux is accumulated on open field lines in the magnetotail. Then the magnetic reconnection

across the tail current sheet returns plasma on closed field lines (red) back towards the Earth.

Meanwhile, the magnetic flux returns to the dayside that completes the Dungey cycle. At
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Earth, the Dungey cycle takes about 1 hour.

Figure 1.5: Cartoon showing the progression of the Dungey cycle [Eastwood et al., 2015].

1.2 Space Weather

The term ”Space Weather” refers to the collective, often violent, changes in the space en-

vironment surrounding the Earth. In the past few decades, the usage of space-based assets

for navigation, communication, military reconnaissance, and exploration has increased a lot.

Meanwhile, observations, numerical simulations, and predictive models are helping impor-

tant efforts to study and forecast space weather (National Space Weather Program Strategic

Plan [Williamson et al., 2010]).

The study of space weather is essentially the study of the linked Sun-Earth system. The

Sun is the dominant driver of the space weather effects in near-Earth space. The solar wind

emanating from the Sun – and the embedded interplanetary magnetic field (IMF) – pro-

vides the energy and much of the mass that drives the dynamics of Earth’s magnetosphere.

Earth’s ionosphere and atmosphere respond to solar wind driving in complicated ways. The

ionosphere can supply particles (mass) to populate the terrestrial magnetosphere. The neu-

tral atmosphere responds strongly to solar irradiance as well as to plasma interactions with

the solar wind.
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1.2.1 Solar Flare

Solar activity is the energy source of almost all space weather events that have terrestrial

impacts. Solar flares are a major form of solar activity that we will focus on in this dis-

sertation. A solar flare is a localized explosive release of energy that appears as a sudden,

short-lived brightening of an area in the chromosphere. Solar flares release their energy

mainly in the form of electromagnetic radiation and energetic particles. Figure 1.6 shows

the image of a solar flare that happened in April 2022. The intensity of solar flares is mea-

sured by the X-ray emission, which can be enhanced by several orders of magnitudes. The

most common X-ray index is based on the peak energy flux of the flare in the 1 to 8 Å soft

X-ray band measured by geosynchronous satellites. The first symbol characterizes the order

of magnitude (C = 10−3 ergs cm−2 s−1, M = 10−2 ergs cm−2 s−1, X = 10−1 ergs cm−2 s−1),

followed by the most significant digit of the actual peak flux. For instance, a peak flux of

6.3× 10−2 ergs cm−2 s−1 is reported as an M6 soft X-ray flare.

Although solar flares mostly occur in closed field line regions and their plasma emission

is usually not very significant, solar flares can generate energetic particle events, which

may have interaction with Earth’s space environment and pose a potential threat to human

activities. Moreover, solar flares are closely related to coronal mass ejections (CMEs), which

can cause geomagnetic storms if they hit the Earth. Compagnino et al. [2017] analyzed

solar flares and CMEs from solar cycles 23 and 24. From the CME catalog provided by the

Coordinated Data Analysis Workshops (CDAW), 56.47% of C flares, 69.43% of M flares,

and 89.39% of X flares are associated with CMEs within a 2-hour time window. Hence, it

is significant to have an accurate and reliable prediction of solar flares, especially the strong

ones.

In the past decade, NASA’s Solar Dynamics Observatory (SDO) has provided massive

observational data of the Sun. The Helioseismic and Magnetic Imager (HMI) instrument

onboard provides dopplergrams (maps of solar surface plasma velocity), continuum filter-

grams (broad-wavelength photographs of the solar photosphere), and both line-of-sight and
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vector magnetograms (maps of the photospheric magnetic field). In this dissertation, we will

make use of one data product derived from the HMI magnetograms, the Spaceweather HMI

Active Region Patch (SHARP), to build a machine learning-based solar flare forecasting

model. More details can be found in Chapter 5.

Figure 1.6: NASA’s Solar Dynamics Observatory captured this image of a solar
flare - the bright flash in the upper left portion of the image– on April 20, 2022.
The image shows the intensity at the 171 Å wavelength, which represents the emis-
sion from the upper transition region and quiet solar corona. Credit: SDO/NASA
(https://blogs.nasa.gov/solarcycle25/2022/04/21/moderate-solar-flare-erupts-from-sun)

1.2.2 Magnetic Reconnection

As described in the previous section, an important topic of space weather is how energy

is transported or transformed within the Sun-Earth system. Magnetic reconnection is the

physical process that rearranges the magnetic field topology and converts the magnetic field

energy to kinetic and thermal energy. Figure 1.7 is a schematic diagram of magnetic re-

connection. This physical process is observed in many places in the heliosphere [Masuda

et al., 1994, Tsuneta, 1996], at Earth’s magnetopause [Burch and Phan, 2016] and in the

magnetotail [Nagai et al., 2001].
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Figure 1.7: Simplified two-dimensional schematic diagram of magnetic reconnection. Oppo-
sitely directed magnetic fields (light blue lines) and ambient plasma (light blue circles) move
into the diffusion region (shaded box in the center), where magnetic reconnection occurs.
The plasma is heated and accelerated into jets to the left and right (shaded blue ovals) [Hesse
and Cassak, 2020].

The first theoretical magnetic reconnection model is called the Sweet-Parker model pro-

posed by Parker [1957]. The left panel of Figure 1.8 is a sketch of the Sweet-Parker model.

Suppose two oppositely directed magnetic fields ±B, in a plasma with density ρ and con-

ductivity σ, are carried toward the neutral line at speed vin over a characteristic length 2L.

There is a layer of width 2δ where the field reconnects. The reconnected field and plasma are

expelled at speed vout. Assume the system is in a steady state. According to the conservation

of mass and energy (using CGS units),

Lvin ∼ δvout (1.1)

Lvin
B2

8π
∼ δvout

ρv2out
2

(1.2)

combining these equations, the outflow scales with the upstream Alfvén speed,

vout ∼ vA ≡ B√
4πρ

(1.3)
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considering the electric field outside the layer balances the resistive electric field inside the

layer

vinB

c
∼ ηJ ∼ cη

4π

B

δ
(1.4)

η is the electric resistivity and the current J is acquired from Ampere’s law: J = c
4π
∇×B.

Hence

vin ∼ c2η

4π

1

δ
=

Dη

δ
(1.5)

where the magnetic diffusivity Dη =
c2η
4π

. Hence

v2in = vin · vin ∼ Dη

δ
· δvout

L
= v2out

Dη

Lvout
∼ v2out

Dη

LvA
(1.6)

Here we defined the reconnection rate

R =
vin
vout

=

√
v2in
v2out

∼
√

Dη

LvA
=

1√
S

(1.7)

S is defined as the Lundquist number S = LvA
Dη

. Most astrophysical systems, like a solar

flare or magnetotail current, have a very large Lundquist number from 109 and 1020. Hence

the Sweet-Parker reconnection rate is very low. In order to achieve a higher S, the resistive

layer must be thin because that is the only way to make the current density large enough

to dissipate the incoming magnetic energy. But the resistive layer width is also the width of

the outflow, which means that the mass flux out of the layer is very small, which limits vin.

To achieve a higher reconnection rate, Petschek [1964] proposed an X-point geometry where

the length scale L is replaced by a much smaller length scale L
′
. Hence the reconnection

rate increases by
√

L/L′ . Petschek derived a family of solutions and illustrated that the

reconnection rate in this model R ∼ 1
lnS

, which is higher than the Sweet-Parker reconnec-

tion rate. However, the major limitation of the Petschek model is that spatially-localized

resistivity (anomalous resistivity) is required to get Petschek reconnection in resistive MHD

simulations. The anomalous resistivity requires collisionless effects that fall into a length
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scale where MHD breaks down.

To introduce a more self-consistent mechanism beyond the ideal MHD theory, Hall and

electron pressure terms are introduced into the generalized Ohm’s law and applied into the

MHD equations. In the generalized Ohm’s law,

E+ u×B = ηJ+
1

ne
J×B− ∇ ·Pe

ne
(1.8)

the first and second terms on the right-hand side are the resistive term and Hall term,

respectively. Hall effect, which is a result of electron-ion velocity difference at the sub-ion

gyroradius scales can change the geometry of magnetic reconnection. The third term is the

divergence of the electron pressure tensor, which can potentially break the frozen-in condition

and induce the magnetic reconnection. Simulations also show that the reconnection rate is

higher when the Hall effect is included [Birn et al., 2001b, Ma and Bhattacharjee, 2001,

Murphy et al., 2009b], and the reconnection geometry resembles the Petschek model.

Figure 1.8: Sketch of magnetic field geometry in Sweet-Parker and Petschek reconnection
models [Zweibel and Yamada, 2009].

However, the Hall effect is not the whole story. In fact, the MHD assumption is not

valid anymore inside the diffusion regions of the magnetic reconnection where the magnetic

field is weak, and the ions and electrons are unmagnetized. Non-Maxwellian distributions
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of the particles are observed by NASA’s Magnetospheric Multiscale (MMS) mission [Burch

et al., 2016b]. The important divergence of the electron pressure tensor is also better to

be studied directly from the particles. Hence, kinetic models, which directly simulate the

motion of particles and electromagnetic fields, are necessary to understand the kinetic physics

of magnetic reconnection. We will discuss more in Chapter 2 how we incorporate the particle-

in-cell model, which is a kinetic model, into the global magnetospheric simulation.

1.2.3 Magnetospheric Substorms and Storms

As described in 1.1.3, the Dungey cycle plays an important role in the magnetospheric

dynamics. When the dayside reconnection continues for an extended interval with southward

IMF and the open flux accumulates in the magnetotail, the magnetosphere can become highly

dynamic. Magnetospheric substorms and storms are two major types of magnetospheric

activity that have significant space weather impacts.

A magnetospheric substorm is a periodic release of the accumulated energy in the magne-

totail [Rostoker et al., 1980, Baker et al., 1996, Angelopoulos et al., 2008]. As the magnetic

field strength in the lobes increases, the magnetotail current sheet becomes thinner. The

reconnection happens in the closed field line region leading to the formation of a plasmoid,

which is bounded by the magnetic tension of the surrounding closed field lines connected to

the Earth. While there are still debates about the exact trigger of the substorms, the most

accepted theory is that a reconnection X-line forms between 20 ∼ 30RE from the Earth

[Nagai et al., 1998]. Eventually, the open field lines begin to reconnect, at which point the

plasmoid is released and can move downtail [Hones Jr, 1978, Baker et al., 1996, Slavin et al.,

1999, 2002]. The formation of the near-Earth neutral line results in the Earthward injection

of plasma and leads to bright auroral displays and associated disturbances to ground-based

magnetometers—the auroral substorm [Akasofu, 1964]. Since intervals that are less than an

hour of southward IMF occur naturally in the solar wind, substorms occur on a daily basis

[Borovsky et al., 1993b].
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Substorms have a geomagnetic impact, but mostly in the auroral region. A geomagnetic

storm may develop if the solar wind magnetic field sustains southward for a longer period of

time (hours) [Gonzalez et al., 1994, Russell, 2001]. Different from the substorms, geomagnetic

storms have more impact on low-latitude regions. Storms are characterized by energization

of the radiation belts and enhanced ring current, which cause a significant depression in the

equatorial magnetic field, measured by the Dst index, for example. The corresponding solar

wind conditions correspond to events like Coronal Mass Ejections (CMEs) and Corotating

Interaction Regions (CIRs) [Gonzalez et al., 1999], which can both provide long intervals

of southward IMF [Forbes, 2000, Tsurutani et al., 2006]. CMEs are responsible for the

largest geomagnetic disturbances, with the storm size depending on the solar wind speed,

the field strength, and the southward component of the magnetic field [Gosling et al., 1991,

Richardson et al., 2001].

1.2.4 Space Weather Impacts

The impacts of space weather on the near-Earth environment can be divided into three

major categories. First, the high-energy protons and heavy ions arriving at the near-Earth

environment could damage microminiaturized electronics that can disrupt sensitive space

systems, see Figure 1.9(a). The result can be damaging to satellite solar power panels,

confusion to optical tracker systems, and scrambling of spacecraft command and control

software. Solar Energy Particle (SEP) events can also be life-threatening for astronauts in

space [Turner et al., 2000]. Second, relativistic electrons can also be harmful. As shown

in Figure 1.9(b), these high-energy electrons can penetrate the shielding of the spacecraft

and can bury themselves within dielectric materials. When this charge has built up, a

powerful electrical discharge can cause spacecraft failures [Vampola, 1987]. Third, ”surface

charging” as another space weather phenomenon is illustrated by Figure 1.9(c). Electrical

charges coming from 10-100 kV electrons within Earth’s magnetosphere can accumulate on

the surfaces of satellites. If enough charge builds upon a region of surface dielectric material,

14



there can be a powerful, disruptive discharge [Robinson and Behnke, 2001].

Space weather can also have impact on the near-Earth environment, but also it can have

severe effects on the surface of the Earth. Geomagnetic storms can impact the operational

reliability of electric power grids. For example, a major storm in 1989 shut down the Hydro

Quebec power system in Canada for many hours. The power grids are disrupted by the

geomagnetically induced currents (GICs) caused by the geomagnetic storms. The GICs flow

through transformers and power lines, and the accumulative effect applied to the power

grid facilities can cause economic loss [Kappenman, 2001]. Moreover, a major geomagnetic

storm can modify the ionosphere of Earth and therefore can disrupt high frequency radio

communication. This is a problem for the military and airlines that are attempting to

communicate with aircraft flying transpolar routes. Space weather can also cause sudden

heating of Earth’s upper neutral atmosphere. This heating causes an expansion of the upper

atmospheric layer (the thermosphere), which can suddenly increase the drag force on low-

altitude spacecraft [Lanzerotti, 2001, Song et al., 2001]. Recently, SpaceX lost 40 of 49

satellites one day after launch due to a geomagnetic storm on February 3, 2022.

1.3 Motivations and Outline of the Dissertation

1.3.1 Motivations

Space weather closely impacts to human society, and understanding it better would help us

not only gain new knowledge in the solar-terrestrial system but also contribute to mitigating

its negative impacts on human activities. There are several open questions on this topic that

also serve as the major motivation of this dissertation work:

1. Can we incorporate kinetic physics into a global MHD model and use it to simulate

geomagnetic storm events?

2. Does kinetic physics have global-scale effects? If so, how does it affect the global
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Figure 1.9: A diagram illustrating space environment effects due to (a) Ions causing single-
event upsets, (b) deep-dielectric charging, and (c) surface charging [Baker, 1998].
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configuration of the Earth’s magnetosphere?

3. Can we utilize machine learning methods and the massive data coming from the current

generation of space missions to provide a better forecast of solar flares?

1.3.2 Outline of the Dissertation

This dissertation contains my response to the presented open questions. Chapter 2 describes

the models used in the dissertation. Chapter 3 presents the simulation of a geomagnetic

storm event using the newly developed MagnetoHydroDynamics with Adaptively Embed-

ded Particle-In-Cell (MHD-AEPIC) model. The results on kinetic scale, mesoscale and global

scale are discussed. Chapter 4 shows how kinetic reconnection affects the global magneto-

sphere configuration when the solar wind driving is strong and constant. We also conduct

simulations for the same event without the kinetic model to better understand the role of

reconnection physics. In Chapter 5, we present a machine learning based solar flare fore-

casting model using the HMI observational data in the past ten years. The influence of the

solar cycle variation is also discussed in this chapter. At the end, there is a summary and

discussion of future work.
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CHAPTER 2

Model Description

In this chapter, we describe the models used in this dissertation. We start with introduc-

ing the Space Weather Modeling Framework (SWMF) [Tóth et al., 2012], which is

the framework containing multiple components for the geospace modeling. Next we de-

scribe the magnetohydrodynamics (MHD) model BATS-R-US (Block Adaptive Tree

Solar-wind Roe-type Upwind Scheme) that serves as the global magnetosphere (GM)

component in the SWMF. The particle-in-cell model FLexible Exascale Kinetic Simula-

tor (FLKES) is described afterwards, which is the kinetic particle-in-cell (PC) component

in the SWMF. The two models are coupled together with the MHD with adaptively em-

bedded Particle-in-Cell (MHD-AEPIC) algorithm. The machine learning models are

presented in the last section of this chapter.

2.1 Space Weather Modeling Framework

The Space Weather Modeling Framework (SWMF) is a software framework that couples mul-

tiple physics-based numerical models for simulating space weather and space physic processes

on a wide range of spatio-temporal scales. Each physics domain in the SWMF corresponds

to a component. Each component is represented by one or more component versions. A

component version is a physics model plus the appropriate wrappers and couplers. The

components are compiled into libraries, and they are linked to the core of the framework and

the shared libraries to form a single executable. The SWMF distributes the components over
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a parallel machine, and executes and couples them in an efficient manner [Tóth, 2006] using

the Message Passing Interface (MPI) library for communication. Furthermore, the physics

models can also be compiled into individual executables and used as stand-alone codes. See

Figure 2.1 for general structure of the SWMF.

Figure 2.1: Components (boxes) and their couplings (green arrows) in the Space Weather
Modeling Framework. External input is indicated by the orange arrows.

2.2 MHD model: BATS-R-US

The Block-Adaptive-Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) [Powell et al.,

1999a, De Zeeuw et al., 2000] is a multi-physics MHD code that has been continuously de-

veloped at the University of Michigan for over two decades. The BATS-R-US model is the

most important component in the SWMF, which has been applied to simulate multi-scale

space physics systems including, but not limited to, the solar corona, the heliosphere, plan-

etary magnetospheres, moons, comets and the outer heliosphere. The BATS-R-US supports

adaptive mesh refinement (AMR) that enables multi-scale physics simulations. For

the purpose of running efficiently, the code is using a 3-D block-adaptive mesh with MPI
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parallelization [Stout et al., 1997, De Zeeuw et al., 2000]. The original block-adaptive mesh

is replaced with the generalized and redesigned Block Adaptive Tree Library (BATL)

by Tóth et al. [2012]. This library is designed for creating, adapting, load-balancing and

message-passing a 1, 2, or 3 dimensional block-adaptive grid in generalized coordinates. The

size of the adaptive block is an important parameter for the code efficiency. Smaller blocks

allow precise grid adaptation, but a large number blocks introduces more storage and compu-

tation spent on ghost cells. Larger blocks reduce the total number of ghost cells surrounding

the grid blocks, but make the grid adaptivity less efficient. The typical choice of block size

in 3D ranges between 43 to 163 grid cells, with an additional 1-3 layers of ghost cells on each

side depending on the order of the numerical scheme.

In addition to the adaptive block feature, the BATS-R-US has been continuously devel-

oped to include new schemes as well as new physical models. Currently, there are 60 equation

sets from ideal hydrodynamics to the recent six-moment MHD model [Huang et al., 2019].

For simulating space plasma, magnetohydrodynamic (MHD) equations are mostly used, in-

cluding resistive, Hall, semi-relativistic, multi-species and multi-fluid MHD, optionally with

anisotropic pressure, radiative transport and heat conduction. The choices for numerical

schemes vary from the Roe scheme to many others, including Rusanov and HLLE, combined

with a second order total variation diminishing (TVD) scheme or a fifth order accurate con-

servative finite difference scheme of [Chen et al., 2016b]. The time discretization can be

explicit, point- implicit, semi-implicit, or fully implicit.

2.2.1 Hall MHD with Electron Pressure Equations

The equation set of the geospace simulations in this dissertation is the Hall MHD with

electron pressure equations [Tóth et al., 2008]. As an extension to the ideal and resistive

MHD model, the electron and ion motions are decoupled in the Hall MHD equations by
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including the Hall term in the generalized Ohm’s law:

E = −u×B+ ηJ+
1

ne
J×B− ∇pe

ne
(2.1)

where the first term on the right-hand-side is the convection term, the second term is the

resistive term, the third term is the Hall term, and the fourth term is the electron pressure

gradient term. Here we use a scalar electron pressure, that is the simplest approximation for

the electron pressure tensor. The entire set of equations is:

∂ρ

∂t
= −∇ · (ρu) (2.2)

∂(ρu)

∂t
= −∇ ·

[
ρuu+ (p+ pe)Ī +

B2

2µ0

Ī − BB

µ0

]
(2.3)

∂ϵ

∂t
= −∇ ·

[
(ϵh + p)u+ peue + ue ·

(
B2

µ0

Ī − BB

µ0

)]
+ pe∇ · ue (2.4)

∂B

∂t
= −∇×

[
−ue ×B− ∇pe

ne

]
(2.5)

∂pe
∂t

= −∇ · (peue)− (γ − 1)pe∇ · ue (2.6)

where Ī is the identity matrix, ρ is the mass density, u is the plasma bulk velocity, B is the

magnetic field, pe is the electron pressure, p is the ion pressure and j = ∇ × B/µ0 is the

current density. The Hall velocity and electron bulk velocity are defined as

vH = − j

ne
= −Mi

e

j

ρ
(2.7)

ue = u+ vH (2.8)

where n = ρ/Mi is the number density, Mi is the ion mass, and e is the elementary charge.

The total energy density is defined as

ϵ = ϵh +
B2

2µ0

=
1

2
ρu2 +

p

γ − 1
+

B2

2µ0

(2.9)
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where ϵh = ρu2/2 + p/(γ − 1) is the hydrodynamic energy density of the ions and γ = 5/3

is the adiabatic index. The thermal energy density of the electrons is ϵe = pe/(γ − 1). We

note that the e + ϵe is conserved both analytically and numerically as the non-conservative

source terms ±pe∇ · u in equations (2.4) and (2.6) cancel out. Apart from (ρ,u,B, p, pe),

other variables are derived quantities.

2.3 MHD with Adaptively Embedded Particle-In-Cell

(MHD-AEPIC) model

MHD models are efficient in simulating global magnetospheres. However, the underlying

assumption, which is the MHD description of plasma is not valid for phenomena involving

kinetic physics, such as magnetic reconnection. Particle-in-cell (PIC) methods have been

demonstrated as a powerful tool to study kinetic physics. But the PIC codes are so com-

putationally expensive that it is still extremely difficult to do global simulations [Lapenta,

2012]. In this section, we will describe the PIC model we are using in this dissertation and

how we combine the efficiency of the MHD model and the physics capability of the PIC code

[Daldorff et al., 2014].

2.3.1 Particle-in-cell Method

There are two sets of equations in the PIC model. First, the motion of macro-particles

satisfying the Vlasov equation is solved by:

dxp

dt
= vp (2.10)

dvp

dt
=

qp
mp

(Ep + vp ×Bp) (2.11)

where xp is the particle position and vp is the particle velocity, Ep and Bp are the electro-

magnetic field values interpolated at the particle position. Second, the electric field E and
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the magnetic field B is solved from the Maxwell equations:

∇ · E =
ρc
ϵ0

(2.12)

∇ ·B = 0 (2.13)

∇× E = −∂B

∂t
(2.14)

∇×B = µ0ϵ0
∂E

∂t
+ µ0J (2.15)

where the current density J and charge density ρc are interpolated from the particle to the

grid cells. The PIC model is using a 3-D Cartesian grid. The electric field E and the current

density J are stored at the vertices of the grid. Meanwhile, the magnetic field B and charge

density ρ are stored on the cell centers. Figure 2.2 shows the field storage on a single grid

cell.

Figure 2.2: Staggered field storage in the PIC algorithm for cell index (i, j, k). The electric
field E and the current density J are stored at the vertices of the grid. Meanwhile, the
magnetic field B and charge density ρc are stored at the cell centers.

23



2.3.2 Gauss’s Law Satisfying Energy Conserving Semi-Implicit

Method

The Gauss’s Law satisfying Energy Conserving Semi-Implicit Method (GL-ECSIM) is the

numerical scheme used to solve the PIC equations. The original Energy Conserving Semi-

Implicit Method (ECSIM) was published by Lapenta [2017]. Chen and Tóth [2019] improved

the ECSIM with better stability, charge conservation, particle splitting and merging algo-

rithm. The key steps of the method are presented as follows.

The macro particles with position xp and velocity vp are updated explicitly via

xn+1/2
p = xn−1/2

p +∆tvn
p (2.16)

vn+1
p = vn

p +
qp∆t

mp

[
En+θ +

vn
p + vn+1

p

2
×Bn

]
(2.17)

where a leapfrog scheme is used to update the particle’s position and velocity. The electric

field at time step n+ θ and the magnetic field at time step n is used to update the particles

[Lapenta, 2012].

The electromagnetic fields are updated through an implicit scheme:

Bn+1 −Bn

∆t
= −c∇× En+θ (2.18)

En+1 − En

∆t
= −c∇×Bn+θ − 4πJ̄ (2.19)

where J̄ is the predicted current at n + 1
2
time stage that depends on the unknown electric

field En+θ. The values at time step n+θ is defined as weighted linear combinations of values

at time step n and n+ 1:
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En+θ = (1− θ)En + θEn+1 (2.20)

Bn+θ = (1− θ)Bn + θBn+1 (2.21)

expressing Bn+θ from Faraday’s law [2.18] and substituting to Ampere’s law [2.19] results in

an equation that only contains the electric field as unknowns:

En+θ + δ2
[
∇(∇ · En+θ)−∇2En+θ

]
= En + δ

(
∇×Bn − 4π

c
J̄

)
(2.22)

where δ = cθ∆t. The exact energy conservation can be achieved when θ = 0.5. However,

Chen and Tóth [2019] found that it will still create numerical waves, so θ = 0.51 is used in

our simulations. After the field solver, the particles are moved to/towards the positions that

satisfies Gauss’s law. Since the particle displacement will not change the electromagnetic

field and the particle velocities, the energy is still conserved. The new particle locations

modify the mass density that reduces the error in Gauss’s law.

2.3.3 FLexible Exascale Kinetic Simulator (FLEKS)

The described PIC algorithms are implemented in the model FLexible Exascale Kinetic

Simulator (FLEKS) by Chen et al. [2021]. Compared to the existing particle-in-cell model

with GL-ECSIM algorithm, FLEKS introduces the adaptive grid feature that brings much

more flexibility to cover the regions of interest. For example, if a box-shaped PIC domain is

used to cover the dayside magnetopause, the box will cut through the planet and introduce

difficulties to the PIC model. Also, the PIC model will cover a large area where kinetic

effects are not important. A flexible PIC region resembles a paraboloid shape to cover

the magnetopause will solve this problem. The dynamic adaptive PIC grid is also helpful to

improve efficiency. For instance, the magnetotail current sheet may exhibit a flapping motion

during a geomagnetic storm because of the transverse IMF components. If the PIC grid is
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fixed through the entire simulation, a large enough box is required that is not affordable with

current computational resources. However, if the PIC grid can dynamically switch on/off

a portion of its cells so that it only covers the location where magnetic reconnection may

happen, a substantial amount of computational time will be saved.

To implement this adaptive grid feature, FLEKS uses the parallel data structure provided

by the AMReX library [Zhang et al., 2019]. FLEKS still requires the shape of the full PIC

grid to be a box, as well as an uniform Cartesian grid that is a requirement of the GL-

ECSIM algorithm. However, FLEKS splits the whole computational domain into a number

of patches, each patch contains N (N ≥ 2) cells on each direction. N = 1 is not allowed

because FLEKS requires two layers of ghost cells to couple with the MHD model. If N = 1,

ghost cells from two different patches may overlap with each other that introduces difficulty

in determining the ghost cell values. In the MHD-AEPIC simulation, the MHD model

controls the status of the patches based on the geometric and physics-based criteria. The

MHD model sends a bit-wise patch status array to FLEKS through the Message Passing

Interface (MPI). The bit-wise array reduces the size of this array substantially (proportional

to N−3 in 3D). In this dissertation, we use the word ”active” to describe the PIC patches

that are turned on. Figure 2.3 shows an example of a PIC domain with two active PIC

patches.
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Figure 2.3: The black lines represent the PIC cells. The red dashed lines show the patches,
and one patch contains 4 × 4 cells in this example. The active patches/cells are colored by
dark gray, and light gray area represents the ghost cells of the active PIC regions [Chen
et al., 2021].

In addition to the adaptive grid feature, there are other improvements in the FLEKS,

such as the adaptive time stepping, particle resampling, and the test particle module. More

details can be found in the original paper [Chen et al., 2021].

2.3.4 Two-way Coupling between MHD and PIC Models

Developed by Daldorff et al. [2014], the MHD model and the PIC model can be two-way

coupled together through the SWMF with the Embedded Particle-In-Cell (MHD-EPIC)

algorithm. This model requires the PIC region to be a fixed rectangle box that has been

successfully applied to many planetary magnetospheric simulations, such as Mercury [Chen

et al., 2019b], Earth [Chen et al., 2017, 2020, Tóth et al., 2017], Mars [Ma et al., 2018] and

Ganymede [Tóth et al., 2016, Zhou et al., 2019, 2020a].

Figure 2.4 shows the temporal discretization of the MHD-EPIC coupling algorithm. As

mentioned in 2.3.3, a fixed PIC box can introduce limitations in many applications. In this

dissertation, we improve the MHD-EPIC to MHD with Adaptively Embedded PIC (MHD-

AEPIC) that allows the PIC region to be adaptive, and provide simulation results using this
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new model. The MHD-AEPIC still uses the same temporal discretization as the MHD-EPIC

in the coupling, but now the shape of the PIC region can be arbitrary. More details can be

found in Chapter 3.

Figure 2.4: Temporal discretization of the MHD-EPIC coupling algorithm [Daldorff et al.,
2014].

2.4 Machine Learning Methodology

The development of artificial intelligence (AI) is almost a cyclical repetition of springs and

winters. In the past decade, people gradually believed that we are experiencing a new AI

spring, when the AI has finally entered industrial production. The hype and disillusionment,

though interesting, will not be discussed in this dissertation. Machine learning is a type of

artificial intelligence (AI) that allows the ”trained” models to predict outcomes without

being explicitly programmed to do so. In other words, machine learning algorithms use

historical data as input to predict new output values. In this section, we will describe the

general concepts of machine learning. The details of the specific model we used in solar flare

prediction can be found in Chapter 5.
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2.4.1 Supervised Learning

Supervised learning is a type of machine learning method that is used when both the input

and target values are available. The model is ”supervised” by the observed target values

during the training process. Depending on the type of target values, there are two types of

supervised learning models: supervised regression and supervised classification. In Chapter

5, we use the supervised learning method to forecast solar flare classes.

2.4.1.1 Supervised Regression

The supervised regression is used to find a map between a set of multidimensional input

x = (x1, x2, . . . , xNi
) and its corresponding scalar output y,

y = f(x) + ϵ (2.23)

where f : RNi → R is a mapping function and ϵ is a stochastic error term. The ith ob-

servational data point is noted as {xi
obs, y

i
obs}. No matter what assumptions we make on

the function f and on the error term ϵ, this problem can be understood as an optimiza-

tion problem. In fact, any regression problem can be set up as finding the unknown map

f that minimizes a given cost function. The cost function is computed with the difference

between the observational values yiobs and the predictions ŷi = f(xi
obs) for a certain number

of training data i = 1, 2, . . . , NT . Examples of cost functions are the mean squared error

MSE = 1
NT

∑NT

i=1(ŷ
i − yiobs)

2 and the mean absolute error MAE = 1
NT

∑NT

i=1 |ŷi − yiobs|.

The input x and the output y can be taken as quantities observed at the same time,

in which case the problem is referred to as nowcasting, or with a time lag, which is the

forecasting. In principle a supervised regression task can be successfully applied to any

problem for which there is a (physically motivated) reason to infer some time-lagged causality

between a set of drivers and an output of interest.
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2.4.1.2 Supervised Classification

The supervised classification model answers the question: What class does an input belong

to? In practice, by introducing arbitrary thresholds and dividing the range of predictions

into ”classes”, any regression problem for a continuous variable can be simplified into a

classification task. The forecast of the solar flare classes is a good example for this kind

of task. The classification into A, B, C, M, and X classes is based on the measured peak

flux in (W/m2) arbitrarily divided in a logarithmic scale. The classification is different from

regression in the definition of cost functions and discrete output. For instance, a regression

output z can be interpreted as the probability of the associated event being true or false (in

a binary classification setting), by inputting the real value through a logistic function:

ŷ = σ(z) =
1

1 + e−z
(2.24)

and a simple and effective loss function is the cross-entropy:

C(y, z) = (y − 1) log(1− σ(z))− y log(σ(z)) (2.25)

where y is the ground truth value (0 or 1) and z is the model output. It is easy to verify

that C diverges to ∞ when |y − ŷ| = 1 which refers to the sample is wrongly classified, and

it approaches to 0 when |y − ŷ| = 0, which means that the sample is correctly classified.
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CHAPTER 3

Global Magnetohydrodynamic

Magnetosphere Simulation with an

Adaptively Embedded Particle-in-cell Model

This chapter as well as Appendix are adapted from a manuscript currently under review by

the Journal of Geophysical Research: Space Physics. The introduction to MHD equations

in section 3.2.1 is moved to Chapter 2 in this dissertation.

3.1 Introduction

A geomagnetic storm is a major disturbance of Earth’s magnetosphere that occurs when

a significant amount of energy is deposited into the geospace. The most widely used and

successful simulation tools to study the geomagnetic storms are based on the magnetohy-

drodynamic (MHD) description, which is computationally feasible to solve. The first global

MHD models were developed in the 1980s [LeBoeuf et al., 1981, Wu et al., 1981, Brecht et al.,

1981, 1982]. Later on, models with more advanced numerical algorithms have been devel-

oped, such as the Lyon-Fedder-Mobarry (LFM) [Lyon et al., 1986, 2004], the OpenGGCM

[Raeder et al., 1995, 1996] and the GUMICS (Grand Unified Magnetosphere Ionosphere

Coupling Simulation) model [Janhunen, 1996].

In this paper, we use the University of Michigan’s Space Weather Modeling Framework
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(SWMF [Tóth et al., 2012]) which also includes an MHD model, the Block Adaptive-Tree

Solar-wind Roe-type Upwind Scheme (BATS-R-US) [Powell et al., 1999b] as its global mag-

netosphere (GM) component. The SWMF has been applied to many storm event simulations

[Tóth et al., 2007, Glocer et al., 2009, Haiducek et al., 2017], and it has also been selected as

the physics-based model at the NOAA Space Weather Prediction Center based on a thorough

model comparison [Pulkkinen et al., 2013].

Magnetic reconnection plays a key role in the magnetosphere both at the dayside and

in the tail. Despite all the successful applications MHD models have achieved, magnetic

reconnection in the global MHD models relies on either Hall resistivity, ad hoc anomalous

resistivity, or simply numerical diffusion. The numerical diffusion plays an important role

in both ideal and Hall MHD models because it is required to break the field lines. As we

show in Appendix , the reconnection rate remains finite when the grid resolution becomes

finer. The Hall resistivity, although does not break the field lines that are frozen into the

electron fluid, changes the structure of the reconnection region, which can lead to faster

reconnection rate than ideal MHD [Birn et al., 2001a]. A current dependent anomalous

resistivity has also been applied in MHD simulations [Raeder et al., 2001]. However, none

of these approximations truly describe the physical processes responsible for collisionless

reconnection. It is very important to properly represent kinetic reconnection physics in

a global simulation and check if it plays an important role in contributing to the larger

scale processes that eventually produce geomagnetic disturbances and space weather effects.

Furthermore, the MHD approximation assumes that the distribution functions of the ions

and electrons are Maxwellian. Numerous observations suggest that this condition is violated

especially near the magnetic reconnection sites [Chen et al., 2016a, Burch et al., 2016a,

Hwang et al., 2019, Lotekar et al., 2020].

The MHD with embedded Particle-In-Cell (MHD-EPIC) model [Daldorff et al., 2014]

enables kinetic physics to be introduced into a global MHD model. The MHD-EPIC model

has been successfully used to study the interaction between the Jovian corotating plasma
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and Ganymede’s magnetopshere [Tóth et al., 2016, Zhou et al., 2019, 2020a]; flux transfer

events (FTEs) at the Earth’s dayside magnetopause [Chen et al., 2017]; Mars’ magnetotail

dynamics [Ma et al., 2018] and the dawn-dusk asymmetries discovered at the Mercury’s

magnetotail [Chen et al., 2019b]. However, the iPIC3D [Markidis et al., 2010] code, which

is the PIC model used in the MHD-EPIC simulations, can only run on a fixed Cartesian

grid. The magnetotail (and the associated current sheet that contains the reconnection

sites) typically exhibits a flapping motion [Tsutomu and Teruki, 1976, Volwerk et al., 2013]

during a geomagnetic storms. Covering the whole domain of interest where reconnection can

occur in the magnetotail would require a very large PIC grid and would result in a massive

computational cost. This may be feasible for a short simulation time (up to an hour or so)

but for geomagnetic storms that usually happen and last for days, the computational cost

would become prohibitive.

To tackle this problem, we have developed the MHD with Adaptively Embedded PIC

(MHD-AEPIC) algorithm that allows smaller PIC region than MHD-EPIC, which saves

computational resources. Shou et al. [2021] introduces this idea and verifies that covering

part of the simulation domain with a dynamically moving PIC box gives the same solution as

using alarger fixed PIC domain, while running significantly faster. This justifies our effort to

use an adaptive PIC region in the simulation. In this paper, we further improve this method

and make it more flexible: 1. The size and shape of the active PIC regions can be adapted

during the runtime; 2. The adaptation of the active PIC region is fully automatic. To

realize the first feature, instead of iPIC3D, we use the FLexible Exascale Kinetic Simulator

(FLEKS) [Chen et al., 2021] as the PIC model. FLEKS inherits all numerical algorithms

from MHD-EPIC, and also accommodates an adaptive PIC grid that allows PIC cells to be

turned on and off during the simulation. In addition, FLEKS employs a particle splitting

and merging scheme to improve the simulation efficiency and accuracy. FLEKS is described

in more detail in Section 3.2.2.

We have developed a reliable and efficient algorithm to identify potential reconnection
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sites in the magnetotail using three local criteria. The criteria are easy to compute and

provide the information to the FLEKS code to adapt its grid to cover the reconnection sites.

This newly developed MHD-AEPIC model is applied to simulate a magnetic storm. The

SWMF simulation involves BATSRUS, FLEKS, the ionosphere electrodynamics model RIM

[Ridley et al., 2004] and the inner magnetosphere model RCM [Wolf et al., 1982, Toffoletto

et al., 2003]. This is the first simulation of a real event with kinetic reconnection physics in

the magnetotail scaling from the global scales of the magnetosphere to the electron scales

near the reconnection sites.

In this paper, we employ the new model to simulate the magnetic storm of 2011-08-05.

We cover the tail reconnection sites with the adaptive PIC model. We also perform ideal

MHD and Hall MHD simulations for comparison. All simulations are fully coupled with

the inner magnetosphere and ionospheric electrodynamics models within the Space Weather

Modeling Framework. We focus on the impact of using ideal MHD, Hall MHD and MHD-

AEPIC physics on the dynamical processes in the magnetotail. To make the comparison

straightforward, we use the ideal MHD model at the dayside in all three simulations.

The computational methods are described in Section 3.2, the demonstration of the adap-

tation feature and comparisons between models and observations are shown in Section 3.3

and we summarize in Section 3.4.

3.2 Methods

3.2.1 Global Magnetosphere Model: BATS-R-US

The Block-Adaptive Tree Solar-wind Roe-type Upwind Scheme (BATS-R-US) is used as the

Global Magnetosphere (GM) model in our simulation. In the Hall MHD and MHD-AEPIC

simulations in this paper, the Hall MHD equations [Tóth et al., 2008] are solved. The Hall

term is handled with a semi-implicit scheme. The spatial discretization uses a 2nd order

accurate TVD scheme with the Artificial Wind Riemann solver [Sokolov et al., 1999] and the
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Koren limiter [Koren, 1993] with β = 1.2. The hyperbolic cleaning [Dedner et al., 2003] and

eight-wave scheme [Powell et al., 1999b] are used to keep the magnetic field approximately

divergence-free.

The Hall MHD equations with a separate electron pressure equation are decribed in the

Chapter 2. The continuity equation 2.2, momentum equation 2.3, energy equation 2.4 and

electron pressure equation 2.6 are solved with an explicit time stepping scheme. In the

induction equation 2.5, the convection term u × B and pressure gradient term ∇pe/ne are

solved using an explicit scheme, while the Hall term vH × B is advanced with an implicit

scheme. The Hall MHD equations introduce whistler mode wave, which has a characteristic

wave speed inversely proportional to the wavelength. The shortest wavelength that exists in

a numerical simulation is proportional to the cell size ∆x, so the fastest whistler wave speed

in a simulation is proportional to 1/∆x. The time step in a fully explicit scheme is limited

by the Courant-Friedrichs-Lewy (CFL) condition: ∆t < ∆x/cmax, where cmax is the fastest

wave speed, which leads to a time step proportional to 1/(∆x)2. We use a semi-implicit

scheme [Tóth et al., 2012] to handle the stiff Hall term in the induction equation, so that the

time step of the explicit part is only limited by the fast magnetosonic wave speed instead of

the whistler speed.

A three-dimensional block-adaptive Cartesian grid is used to cover the entire computa-

tional domain −224RE < x < 32RE, −128RE < y, z < 128RE in GSM coordinates. The

Hall effect is restricted to x ∈ [−100RE, 20RE], |y| < 30RE and |z| < 20RE box region ex-

cluding a sphere of radius 3RE centered at the Earth to speed up the simulation. Outside

this region the Hall effect is neglected by setting vH = 0. In the magnetosphere, the small-

est ion inertial length di = c/ωpi is about 1/20RE in the tail lobe region, which is already

extremely difficult for a 3-D global MHD model to resolve, let alone the PIC code. Tóth

et al. [2017] introduced a scaling approach which scales up the kinetic length by artificially

increasing ion mass per charge by a scaling factor. The scaling does not change the fluid

variables, such as density, pressure, velocity, IMF and dipole field, and the global structure
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of the magnetosphere will not change significantly as long as the scaled up ion inertial length

is much smaller than the global scales. In this paper, we use a factor of 16, which satisfies

this condition. On the other hand, with the ion inertial length scaled up by 16 times, we

don’t need an extremely fine grid to resolve it. Wse set the grid cell size in the magnetotail

to ∆x = 1/4RE, which is about 4 times smaller than the scaled up ion inertial length. About

fourteen million cells are used in total.

At the inner boundary r = 2.5RE, the density is calculated by the empirical formula

ρinner = (28 + 0.1CPCP) amu/cm3, where CPCP is the average of the northern and south-

ern cross polar cap potentials measured in keV. This boundary condition has been used

successfully in previous geomagnetic storm simulations [Pulkkinen et al., 2013]. The pres-

sure and magnetic field B1 have zero gradient at the inner boundary, while the radial velocity

is set to zero and the tangential velocity is calculated from the corotation and the E × B

drift, where the electric field E is provided by the Ridley Ionosphere Model (RIM) [Ridley

et al., 2004].

3.2.2 Particle-in-cell Model: FLEKS

The FLexible Exascale Kinetic Simulator (FLEKS) [Chen et al., 2021] is used as the particle-

in-cell (PIC) model (PC component in the SWMF) to resolve kinetic physics. FLEKS uses

the same two-way coupling method as MHD-EPIC [Daldorff et al., 2014] and the Gauss’s law

satisfying energy-conserving semi-implicit method (GL-ECSIM) [Chen and Tóth, 2019] for

the PIC solver. To enable the adaptation in MHD-AEPIC, FLEKS introduces an adaptive

grid that allows changing simulation region dynamically. Figure 3.1 shows a schematic plot of

the adaptive grid. We choose ∆x = 1/4RE to be the PIC grid resolution so that the scaled

di/∆x ∼ 4. The ion inertial length inside the magnetosphere is described in Subsection

3.2.1. The ion-electron mass ratio is set to 100 in this simulation so that the electron skin

depth de = 0.1di. Li et al. [2019] perform 2-D PIC simulations using different ion-electron

mass ratios and conclude that features like reconnection rate and magnetic energy conversion
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are similar in simulations using different ion-electron mass ratios. Although the grid is not

refined to resolve the electron scale, in the PIC model the electron particles can resolve sub-

grid scale physics under the influence of the electromagnetic field that is resolved on the ion

scale. Chen and Tóth [2019] show that the semi-implicit PIC model can reproduce the most

important ion scale features of magnetic reconnection with such grid resolution. The selected

resolution balances between the computational cost and the requirement of resolving kinetic

scales.

FLEKS provides a particle merging and splitting scheme to maintain the number of

particles per cell within bounds. Merging particles in a cell with high number of particles

can improve load-balancing and speed up simulation, while splitting particles in a cell with

few particles can reduce noise and improve accuracy for the PIC simulation. This feature is

very useful keeping the number of particles per cell about uniform during a long geomagnetic

storm simulation.

Figure 3.1: The schematic plot of the FLEKS adaptive grid. The red line boundary shows
the flexibility of turning on and off the PIC patches during the simulation.
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3.2.3 Selection Criteria of PIC Regions

As described in the previous section, FLEKS allows patches to be turned on and off during the

simulation. To make the active PIC patches only cover the regions of interest, where magnetic

reconnection is happening or will be triggered soon, the MHD model should locate these

regions and pass this information to FLEKS. Finding the locations of magnetic reconnection

sites can be done in various ways including tracing field lines [Glocer et al., 2016]. For sake

of efficiency and generality, here we use local criteria based on the local MHD solution only.

Magnetic reconnection usually happens in current sheets where the current density j is

strong and the magnetic field B is weak. In particular, the field B⊥ that is perpendicular

to the current j should be close to zero, while the guide field parallel to the current can be

non-zero. We define the following non-dimensional relation as our first criterion

J∆x

B⊥ + ε
=

J2∆x

|J×B|+ Jε
> c1 (3.1)

where J = µ0j = ∇×B and ε is a small dimensional constant in units of the magnetic field

introduced to avoid dividing by zero. We use ε = 1nT in our simulations presented here,

which is much smaller than the typical magnetic field intensity in the tail current sheet. ∆x

is the local cell size that is used in calculating the curl of the magnetic field, so that J∆x is

the jump of the transverse magnetic field between neighboring grid cells. We set c1 = 0.8 in

this work to select the cells that are close to the reconnection sites.

While criterion (3.1) works quite well in general, we sometimes find that it selects the axis

of flux ropes, or O-lines, in addition to X-lines, especially if ε is very small. Reconnection

does not occur at O-lines, so we developed a second criterion that distinguishes X- and

O-lines based on the divergence of the magnetic field curvature vector:

[∇ · (b · ∇b)](∆x)2 > c2 (3.2)
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where b = B/|B| is a unit vector along the magnetic field. We use c2 = −0.1 to identify X-

lines where the curvature vectors point away from the X-line, so their divergence is positive.

The above two criteria are identifying potential magnetic reconnection sites through local

plasma properties in a general scenario. However, current sheets in the solar wind can also

satisfy those two criteria. To make the selection more selective, we need to introduce a third

criterion to exclude the volume outside the magnetosphere. Observations show that specific

entropy is two orders of magnitude larger in the magnetosphere than in the magnetosheath

[Ma and Otto, 2014] and our simulations properly reproduce these properties. Here we use

the specific entropy as the third criterion:

p

ργ
> c3 (3.3)

where p is the plasma thermal pressure, ρ is the plasma density, and γ = 5/3 is the ratio of

the specific heats [Birn et al., 2006, 2009]. Different from the c1 and c2 introduced above,

this criterion is dimensional and we use the threshold value c3 = 0.02 nPa/cm−3γ.

The three criteria combined can identify X-lines in the magnetotail well. To make the

active PIC region large enough around the X-lines, we flag all patches where all three criteria

are met, and then activate all patches within a distance Lx, Ly and Lz from these flagged

patches in the x, y and z directions, respectively. The extension in each direction enables

the PIC model to cover a buffer area outside the reconnection sites. This buffer ensures that

the velocity distribution of ions and electrons at the boundary of the PIC region can be well

approximated with a drifting Maxwellian distribution, which results in a consistent coupling

between the MHD model. We use Lx = 4RE and Ly = Lz = 2RE in this work.

Each MPI process of BATS-R-US calculates the above criteria on their respective sub-

domains overlapping with the PIC grid and activate the patches of the PIC grid where all 3

criteria are satisfied. Then the processors collect the information: a PIC patch is activated if

any of the BATS-R-US processes activated it. Since the status of all PIC patches (on/off) is
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stored in each MPI processor of BATS-R-US, using the default logical array would consume

a lot of memory. To reduce the memory use, the status is stored by a single bit, which is

32 times smaller than the size of the default logical variable in Fortran. The information is

conveniently collected with the bitwise ”or” operator MPI BOR used in the MPI ALLREDUCE

call.

3.2.4 Ionospheric Electrodynamics Model: RIM

The Ionospheric Electrodynamics (IE) is simulated by the Ridley Ionosphere Model (RIM)

[Ridley et al., 2004] that solves a Poisson-type equation for the electric potential on a 2-D

spherical grid. In this work, the grid resolution is set to 2◦ in both longitude and latitude

directions. The lower latitude boundary is at 10◦ where the electric potential is set to zero.

The BATS-R-US and RIM models are two-way coupled every 5 seconds. To calculate the

Poisson-type equation, RIM obtains the field-aligned currents (FAC) calculated at 3RE from

the BATS-R-US model and maps them down to its grid. The F10.7 flux is also an input

parameter of RIM that is used together with the FAC to calculate the particle precipitation

and conductances based on an empirical model. The electric field calculated by the RIM

is mapped back to the inner boundary of BATS-R-US to obtain the E×B/B2 velocity for

its inner boundary condition. The cross polar cap potentials (CPCP, (the difference of the

maximum and minimum potentials in the two hemispheres) are also sent to BATS-R-US to

set the density at the inner boundary.

3.2.5 Inner Magnetosphere Model: RCM

The Inner Magnetosphere (IM) is modeled by the Rice Convection Model (RCM) [Wolf et al.,

1982, Toffoletto et al., 2003]. The standard RCM settings are used, including an exponential

decay term with a 10-hour e-folding rate. The decay term makes the Dst index recover

better after strong storms. As a component of the SWMF geospace model, RCM is used in

all simulations presented in this paper.

40



The RCM model is one-way coupled with RIM and two-way coupled with BATS-R-US

every 10 seconds. RIM sends the electric potential to RCM, where it is used to advect

the field lines with the E × B/B2 drift. In the two-way coupling between BATS-R-US

and RCM, BATS-R-US identifies the closed field line regions and calculates field volume

integrals of pressure and density [De Zeeuw et al., 2004]. The integrated pressure and density

are applied to RCM as the outer boundary condition with the assumption of 90% H+ and

10% O+ number density composition. From RCM to BATS-R-US, the GM grid cell centers

are traced to the RCM boundary along the magnetic field lines [De Zeeuw et al., 2004]

and the BATS-R-US pressure and density are pushed towards the RCM values with a 20s

relaxation time.

3.3 3D Global Simulation with Kinetic Physics in the

Magnetotail

3.3.1 Simulation Setup

We apply the MHD-AEPIC method to the geomagnetic storm event of Aug. 6. 2011 with an

observed minimum Dst −126 nT. Previous modeling works show frequent flapping motion

of the megnetotail current sheet during the storm [Tsutomu and Teruki, 1976, Volwerk

et al., 2013], so the adaptive embedding feature is perfect for only covering the current sheet

during the simulation. We start our simulation at 2011-08-05 15:00:00 and end it at 2011-

08-06 07:00:00. This time range covers the main phase and the early recovering phase of the

storm when the largest geomagnetic impact happens. The solar wind inputs are shown in

Figure 3.2. First the BATS-R-US and RIM models are run to reach an quasi-steady state

after 50k iteration steps using local time stepping. Figure 3.3 shows the plasma density along

with the different refinement level boundaries of the AMR grid in the meridional plane for

the steady state solution. Then the SWMF is switched to a time-accurate mode with FLEKS
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and RCM models turned on. Chen et al. [2017] and Zhou et al. [2020a] study the dayside

reconnection at Earth and Ganymede by putting PIC regions at the magnetopause. They

also compare the results with Hall MHD and conclude that the two models generate similar

global features, such as flux rope formation and reconnection rate. In this paper, we only put

PIC regions in the magnetotail, for sake of controlling variants. The dayside reconnection

is modeled by the ideal MHD. The computational domain of FLEKS is determined by the

selection criteria introduced above. For sake of comparison, we also conduct two other

simulations without FLEKS: one with Hall MHD model and the other with ideal MHD

model.
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3.3.2 PIC Region Adaptation

In this subsection, we highlight the utility and efficiency of the adaptive embedding scheme.

Figure 3.4 illustrates how the PIC region is changing over the simulation. Panels (a)-(f) are

snapshots from six different times. The color contours show the jy component of the current

density on the meridional plane to show the magnetospheric current system. Boundaries

of the active PIC region are shown by the gray isosurface. Snapshots 3.4 (a) and (b) are

taken before the sudden commencement of the storm. At this time, the IMF Bz is pointing

northward and the solar wind speed is about 400 km/s. From the isosurface plot, the PIC

region is covering the tail current sheet tilting southward. In Figure 3.4 (b), the tail current

sheet is kinked and the PIC region adjusts its shape to accommodate the tail current sheet.

Snapshots 3.4 (c)-(f) are taken after the sudden commencement of the storm. Here we

observe a much compressed magnetosphere as well as an enhanced current density. In the
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last two snapshots, the tail current sheet is tilting northward and it is well covered by the

PIC region. From the snapshots, we can conclude that the PIC region selection criteria work

well in identifying the tail current sheet, which can make the PIC region accommodate with

the flapping motion of the magnetotail. The translucent red line in Figure 3.4 (g) shows

the volume of the active PIC region recorded every second from the simulation, while the

solid red line is the volume smoothed over every minute. The Dst index is also presented

in the background for reference. The volume of the PIC region increases after the sudden

commencement and starts dropping in the recovering phase. This reflects that the tail

current system intensity is related to the solar wind condition. Notice that the volume is

less than 2000 R3
E for the entire storm simulation, which is only about 1.4% of the large

PIC box extending from −100RE to −10RE in the x direction and −20RE to 20RE in the

y and z directions. This confirms that the MHD-AEPIC method saves substantial amount

of computational resources.

3.3.3 Global Scale: Geomagnetic Indexes and Ionospheric Quan-

tities

To evaluate the models’ performance at the global scale, we use the SYM-H and SME as

evaluation metrics. The SYM-H index approximates the symmetric portion of the northward

component of the magnetic field near the equator based on measurements at six ground

magnetometer stations. This index characterizes the strength of the ring current [Ganushkina

et al., 2017] and it is an indicator of storm activity. The SYM-H data with a 1-minute cadence

is downloaded from NASA OMNIWeb Data Service. The SuperMAG electrojet (SME) index

is an indicator of substorms and auroral power [Newell and Gjerloev, 2011]. SME utilizes

more than 100 ground magnetometer stations at geomagnetic latitudes between +40◦ and

+80◦, which resolves the large and extreme events more effectively than the traditional

Auroral Electrojets (AE) index [Davis and Sugiura, 1966, Bergin et al., 2020].

In our model, the simulated SYM-H is calculated by evaluating the Biot-Savart integral
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(g)

Figure 3.4: (a-f) Demonstration of PIC region adaptation during the simulation. The contour
plot of jy in the meridional plane is showing the general condition of the magnetospheric
current system. The active PIC region boundary is shown by a gray isosurface. (g) Time
evolution of the active PIC region volume. The translucent red line is the output every
second and the solid red is the output smoothed every minute. The Dst index is plotted as a
gray line for reference. The six vertical dashed lines correspond to the times of the snapshots
(a)-(f), respectively.
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at the center of the Earth from all currents in the simulation domain. Calculating SME

is more complicated: the magnetic field disturbances are calculated at the positions of the

100+ ground magnetometer stations and the simulated SME is obtained following the Su-

perMAG procedure. From Figure 3.5, the MHD-AEPIC produces geomagnetic indexes close

to the other two MHD models. The SYM-H plot shows that the initial, main and recovery

phases of the storm event are reproduced by all three models reasonably well. However, the

models cannot reproduce the lowest SYM-H values that correspond to the strongest observed

geomagnetic perturbations. This feature can also be observed in the SME plots: all three

models produce increased auroral electrojets, however the second and third enhancements

are weaker than the observed values.

Apart from the global indexes such as SYM-H and SME, it is also important to compare

the amount of energy that the solar wind and interplanetary magnetic field (IMF) transfer

to Earth’s magnetosphere-ionosphere system through direct driving. The cross polar cap

potential (CPCP) is an indicator of this energy transfer process [Troshichev et al., 1988,

1996]. The CPCP is not directly measured but can be derived from observations using

the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) [Richmond and Kamide,

1988] technique or from the Defense Meteorological Satellite Program (DMSP) measurements

[Hairston et al., 1998]. Another approach based on the Super Dual Auroral Radar Network

(SuperDARN) observations [Ruohoniemi and Greenwald, 1998] usually underestimates the

CPCP significantly. We opt to use the readily available Polar Cap Index (PCI) from the

OMNIWeb website and convert it into CPCP using the empirical relationship derived by

Ridley and Kihn [2004]:

CPCPNorth = 29.28− 3.31 sin (T + 1.49) + 17.81PCI N (3.4)

where T is the month of the year normalized to 2π. The storm event in this paper is

in August, so T = (8 − 1) ∗ 2π/12. Gao [2012] showed that this formula provides good
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agreement with AMIE and DMSP based approaches. For the southern hemisphere, since

there is no published empirical relationship between southern CPCP and PCI, we change the

sign in front of the sin(T + 1.49) term (expressing the seasonal dependence) in the formula:

CPCPSouth = 29.28 + 3.31 sin (T + 1.49) + 17.81PCI S (3.5)

The simulated CPCP is defined as the difference between the maximum and the minimum

of the electric potential obtained from the RIM model for both hemispheres.

Figure 3.6 (a) shows the northern and southern cross polar cap potentials from the three

models together with the CPCP derived from the PCI. In general, the results from the three

models are very close to each other and have good agreements with the PCI derived CPCP

for both hemispheres. Notice that the PCI is derived from a single station for each hemi-

sphere while the model calculates CPCP using the entire electric potential. The differences

between the model output and CPCP could because the PCI is not measuring the iono-

spheric dynamics for the entire polar region. We observe that the three models generate

the most different CPCP results during the main phase of the storm event at around t =

2011-08-05 22:00:00. Figure 3.6 (b) shows the polar cap potential and radial component of

the field aligned currents for both hemispheres. The structure of the electric potentials as

well as the field aligned currents are very similar among the three models.

The geomagnetic indexes and ionospheric quantities demonstrate that introducing kinetic

physics in the magnetotail does not change the global configuration of the simulated mag-

netosphere and ionosphere significantly relative to the ideal and Hall MHD simulations. It

is to be seen if this trend persists for other storms, especially extreme events.

3.3.4 Mesoscale: Magnetotail Dynamics

During the storm event, the Geotail spacecraft was in the magnetotail at x ≈ −29RE crossing

the equatorial plane and approaching to the meridional plane. Figure 3.7 shows the mag-
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Figure 3.6: (a) The northern and southern cross polar cap potentials (CPCP) of the Aug. 6
2011 storm. Colored lines are model outputs, the gray line is the CPCP estimated [Ridley
and Kihn, 2004] from the observed Polar Cap Index . (b) The northern and southern electric
potentials and the radial current from the three models at 2011-08-05 22:00:00 (marked with
a vertical dashed line in panel (a)).
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netic field and ion moments observed by Geotail and compares them with the ideal-MHD,

Hall-MHD and MHD-AEPIC simulations. The MHD-AEPIC model shows a reasonable

agreement with the Geotail number density observation before t = 2011-08-06 00:00, includ-

ing the current sheet crossing event between t = 2011-08-05 22:00 and t = 2011-08-05 23:00

while the Hall-MHD model overestimates the ion number density substantially. However, all

three models generate much higher number density than observed after t = 2011-08-06 00:00.

None of the three models show perfect agreement with the magnetic field observations. The

Bx component gives us information about which side of the current sheet the satellite is. The

comparison plot shows that the virtual satellites in the simulations are all on the opposite

side of the current sheet than Geotail before t = 2011-08-05 22:00. Between t = 2011-08-05

23:00 and t = 2011-08-06 01:00, Geotail is crossing the current sheet from the north side to

the south side, and this is captured by all three models. However, the next current sheet

crossing at around t = 2011-08-06 01:30 is not captured by MHD-AEPIC and ideal-MHD.

The Hall-MHD simulations produces a similar structure but with a 30-minute time shift.

The By and Bz components give information about flux rope structures. All three models

provide good agreement with the observation in terms of overall field magnitude, while it is

difficult to tell which one is better in capturing fine details. Geotail observed a Bz reversal

along with a relatively strong core By at around t = 2011-08-06 05:00, which indicates a

flux rope. A similar structure is produced by MHD-AEPIC with a 30-minute delay, while

there is no similar signal from the ideal-MHD and Hall-MHD simulations. Geotail observed

high ion speed around 1000 km/s at t = 2011-08-06 02:00 and t = 2011-08-06 03:00. The

MHD-AEPIC model only generates around 500 km/s ion speeds. Although the ideal-MHD

and Hall-MHD models can produce maximum ion speeds around 1000 km/s, they also gen-

erate large scale oscillations that are not present in the observations. Overall, introducing

kinetic physics in the magnetotail did not improve plasma and magnetic features compared

to the ideal MHD simulation at the mesoscale. The Hall MHD simulation, on the other

hand, produces significantly more oscillations than observed in multiple time periods.
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Since Geotail only observes along a single trajectory, it cannot provide insight into the

full dynamics of the magnetotail. To compare the different models, we plot results on 2-D

surfaces. Figure 3.8 shows the magnetosphere simulation results from three models at the

same time 2011-08-05 19:40:00. Figure 3.8 (a1), (b1) and (c1) show the x component of the

ion bulk velocity and magnetic field lines in the meridional plane (−80RE < x < −5RE

and −20RE < z < 10RE) from MHD-AEPIC, Hall MHD and ideal MHD simulations,

respectively. The global configurations of the magnetosphere share a lot of similarities but

there are several differences as well. All three models give a southward tilted magnetotail

that is compressed most in the z direction at around x = −40RE as a result of the IMF

structure. In terms of the reconnection feature, all three models generate X-lines in the tail

current sheet at around x = −20RE and z = −5RE Diverging reconnection ion jets are

generated at the major X-line for all three models.

To analyze physical quantities in the current sheet better, we extract the quantities along

a surface where Bx = 0 and project this surface to the x− y plane for plotting. The bottom

row in Figure 3.8 shows the z coordinate of the center of the current sheet. The structure

is similar as in the meridional plane plots: the current sheets are at z ≈ 0 near Earth and

at z ≈ −15RE at far tail for MHD-AEPIC and Hall MHD models, while z ≈ −12RE

for ideal MHD. Figure 3.8 (a2)-(c2) show the ion bulk flow speed on the current sheet

surface. There are significant differences among the three models in the earthward ion flow

structures. For ideal MHD, the earthward ion flow is distributed roughly symmetrically at

−3RE < y < 3RE. The earthward ion jet generated by Hall MHD can only be observed

on the dawn side at −5RE < y < 0. The MHD-AEPIC simulation produces earthward ion

jet both on the dawn and dusk sides. However, the ion jet on the dawn side is further away

from the earth than the jets on the dusk side. Also, the earthward ion jets can be observed

from −5RE to 7RE in the y direction, which agrees with the observations that earthward

flows are observed at a wide range of y values [Angelopoulos et al., 1994].

Although the earthward ion flow from MHD-AEPIC is different from pure MHD models,
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the similar magnetic field structure and current sheet position indicate that these snapshots

from different models represent the same physical state of the magnetosphere. Hence, it is

valid to examine the flux rope features based on these results. As first proposed to be formed

in the Earth’s magnetotail [Schindler, 1974], magnetic flux ropes are reported to be closely

related to magnetic reconnection by various observations and simulations [Hones Jr et al.,

1984, Slavin et al., 1989, Daughton et al., 2006, Markidis et al., 2013]. The observational

characteristics of the flux ropes are a pair of positive and negative Bz signatures with a

core magnetic field By in between. Hence, we plot the Bz and |By| components on the

current sheet surface in Figure 3.8(a-c)(2-3). Panels (c3) and (c4) show only one flux rope

at −40RE and there is no evidence indicating flux rope exists at the near earth plasma

sheet from −40RE to the Earth based on the ideal MHD model results. The Hall MHD

and MHD-AEPIC give very different flux rope occurrence (Figure 3.8 (a-b)(3-4)) from ideal

MHD. In addition to the moving directions of the flux ropes, the diameter of the flux ropes

also varies: the earthward flux ropes are observed as smaller ones. This difference has been

reported in a thorough analysis of Geotail observations [Slavin et al., 2003]. By examining

the flux ropes as a mesoscale feature, we can conclude that by modeling the reconnection

physics better, the MHD-AEPIC and Hall MHD simulations produce more flux ropes in the

magnetotail than ideal MHD as well as distinguish two types of the flux ropes. However,

there is no evidence supporting that MHD-AEPIC can produce better mesoscale features

than Hall MHD. This could be the case because the spatial scale of the flux ropes is much

larger than the kinetic scale which PIC model is resolving.

Figure 3.9 shows different physical quantities near the reconnection X-line at the same

time as Figure 3.8. Panel (a) shows the current density of the current sheet jy, the out-

of-plane magnetic field By and the ion bulk velocity Uix from the ideal MHD model. The

current sheet is smooth and narrow around the X-line. The simullation produces diverging

ion outflow as expected. There is no significant By near the reconnection site due to the lack

of Hall physics in the ideal MHD model. Panel (b) shows the same quantities as Panel (a)
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Figure 3.8: (a1) The x component of the ion bulk velocity ui,x and magnetic field lines on the
meridional plane from the MHD-AEPIC simulation. The black line shows the boundary of
the active PIC region. (a2) ui,x on the current sheet surface projected on the x-y plane. (a3)
The contour plot of the Bz on the current sheet surface, color saturated at ±30 nT. (a4) The
absolute value of By on the current sheet surface. A pair of positive and negative Bz along
with a core By indicates a flux rope structure. (a5) The z coordinate of the current sheet
surface in the unit of RE. (b1)-(b5) are same quantities from the Hall MHD and (c1)-(c5)
are from the ideal MHD simulation. All snapshots are taken at the same time 2011-08-05
19:40:00.
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for the Hall MHD model. In addition, the bottom plot shows the electron velocity in the x

direction calculated from the ion bulk velocity and the Hall velocity as uex = uix − jx/(ne).

Different from the current sheet in the ideal MHD model, the current sheet in the Hall MHD

simulation breaks up at multiple locations. There are strong By signatures in the Hall MHD

simulation as expected from Hall physics, although the presence of the non-uniform guide

field somewhat distorts the classical quadrupolar structure. The diverging ion bulk flow is

very similar to the diverging electron flow, because the jx component of the current is weak.

Panel (c) shows the same quantities as Panel (b) from the MHD-AEPIC model with an extra

ion nongyrotropy measureDng,i. The current sheet in the MHD-AEPIC simulation also forms

multiple flux ropes similar to the Hall MHD results. The MHD-AEPIC model also generates

the Hall magnetic field By. The ion and electron velocities from the MHD-AEPIC show very

clear inflow and outflow features that are quite different from the Hall MHD solution. While

both ideal and Hall MHD assume isotropic pressures, the PIC simulation allows a general

pressure tensor with anisotropy and even nongyrotropy (non-zero off-diagonal terms). Aunai

et al. [2013] defines the nongyrotropy measure as

Dng = 2

√
P 2
12 + P 2

23 + P 2
13

P11 + P22 + P33

(3.6)

Here Pij are the pressure tensor components in the local magnetic field aligned coordinate

system. The Dng quantity produced by the MHD-AEPIC model shows that the ion nongy-

rotropy increases near the X-line. In conclusion, both Hall MHD and MHD-AEPIC generate

more features than the ideal MHD model. The MHD-AEPIC and the Hall MHD models

generate similar Hall magnetic field structures and current sheet features. The MHD-AEPIC

model generates distinct ion and electron bulk flows, as well as the nongyrotropic pressure

distribution near the X-line.
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Figure 3.9: (a) The current density jy, out-of-plane magnetic field By and ion bulk velocity
in the x direction Uix from the ideal MHD model near the reconnection X-line. (b) Same
physical quantities as panel (a) from the Hall MHD model with an extra electron bulk
velocity in the x direction Uex calculated from the current. (c) Same physical quantities
as panel (b) from the MHD-AEPIC model with an extra ion nongyrotropy measure Dng,i

defined by Aunai et al. [2013]. The area covered by the magnetic field lines is the active PIC
region.
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3.3.5 Kinetic Scale: Electron Velocity Distribution Function

In this subsection, we will demonstrate that the kinetic physics at the reconnection site is also

properly captured by the MHD-AEPIC model. The magnetic reconnection is regarded as one

of the most fundamental physical processes to transfer energy from magnetic field to plasma.

Since the launch of the Magnetospheric Multiscale (MMS) mission [Burch et al., 2016a], mag-

netic reconnection has been observed at the electron scale during multiple satellite crossings

of the electron diffusion region (EDR) [Webster et al., 2018]. The EDR encounters exhibit

electron nongyrotropy, which can be recognized by a crescent-shaped electron distributions

[Torbert et al., 2018].

Figure 3.10 compares the MHD-AEPIC simulation with MMS observations [Hwang et al.,

2019]. Panel (a) is a contour plot of ion bulk velocity in the meridional plane at t = 2011-

08-05 23:20:00. The ion jets, a clear signature of magnetic reconnection, are shown by the

blue and red colors. The dashed white line near the X-line, which is rotated about 13.3◦,

is the L direction of the local reconnetion coordinate system. We also found that the M

axis is aligned with the y axis in GSM. So the LMN coordinate vectors for this reconnection

event are L = (0.972, 0, 0.233),M = (0, 1, 0) and N = (−0.233, 0, 0.972). The electron

velocities are shown in the LMN coordinate system to allow a direct comparison with the

MMS observations. Panels (b) and (d) show the electron velocity distribution functions

(VDF) from the model and the MMS observation. The simulation VDF of the electrons

is collected inside an ellipsoid region centered at (−30.6, 0.5,−0.9) RE with principle semi-

axes (0.3, 2.5, 0.3) RE in the (x, y, z) directions, respectively. The red circle in panel (a)

labeled by B is the cross section of the ellipsoid with the meridional plane. The choice of the

ellipsoid shape is based on panel (c) that shows where the MMS observations were taken with

respect to the reconnection site according to Figure 2 by Hwang et al. [2019]. The MMS3

observations of the electron VDF [Hwang et al., 2019] at the location (−18.1, 7.30, 0.66) RE

are shown in panel (d). Although the simulation and observation are not from the same event

and the EDR is not at the same position in GSM coordinates, the electron data is collected
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at a similar location relative to the X-line and the velocity components are all projected to

the LMN coordinates (see panels (a) and (c)).

This suggests that we can directly compare the two VDF plots in panels (b) and (d),

and they indeed agree very well. The agreement is not only qualitative, but in fact

quantitative. Since the ion-electron mass ratio is 100, the simulated electron velocity is

multiplied by
√

mi,real

me,real
/
mi,simulation

me,simulation
≈

√
18.36 ≈ 4.28 to be comparable with the observa-

tions. In both panels the velocity distribution extends to ±40, 000 km/s in the N direc-

tion and (−40, 000,+20, 000) km/s in the M direction. A non-Maxwellian core distribution

can also be clearly identified in both panels at −20, 000 km/s < vy < 10, 000 km/s) and

|vz| < 10, 000 km/s. In addition to the electron diffusion region, we also collected elec-

trons inside two other ellipsoids at the inflow (labeled by A) and outflow (labeled by C)

regions. The semi-axes of these two ellipsoids are the same as before while the centers of

the ellipsoids are (−28.5, 1.5, 0.5) RE and (−33.0, 1.5,−1.0) RE in the (x, y, z) directions,

respectively. Panels (e) and (f) shows the electron VDF in L−N and L−M coordinates, the

distribution can be characterized as a bidirectional beam distribution [Asano et al., 2008].

The distribution functions at outflow region in panels (g) and (h) are almost circles with

shifted centers indicating the direction of the bulk velocities. The distribution functions

from the inflow and outflow also agree very well with the existing theories [Pritchett, 2006,

Egedal et al., 2010]. Hence, we can conclude that an MHD-AEPIC global simulation can

generate electron phase space distributions that are very close to the MMS observations, and

reproduces the main features of reconnection physics even at the electron scales.

3.4 Conclusions and Discussions

In this paper, we introduced a newly developed magnetohydrodynamic with adaptively em-

bedded particle-in-cell (MHD-AEPIC) model. The MHD-AEPIC allows PIC grid cells to be

turned on and off during the simulation based on the physical criteria provided. Different
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Figure 3.10: (a) The contour plot of the ion bulk velocity overplotted with magnetic field
lines. The 2D cut is taken on the meridional plane. The three red circles are the position
where the electrons for the VDF are collected. A: Inflow region, B: Electron Diffusion
Region, C: Outflow region. The white dashed line with a Notice that some area at upper left
is not covered by PIC which illustrates the AEPIC feature. (b) The electron VDF from the
simulation, colored in electron mass density in log scale. (c) A sketch (Figure 1 (b) in Hwang
et al. [2019]) demonstrating possible magnetic field geometries. The white curve represents
a possible MMS3 trajectory. The electron VDF in (d) is taken at the position b pointed by a
red arrow. (d) MMS3 observation (Figure 2 (c) in Hwang et al. [2019]). (e)-(f) The electron
VDF taken at the inflow region. (g)-(h) The electron VDF taken at the outflow region.
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from the previous MHD-EPIC model, which requires a fixed Cartesian box to cover the

PIC region, the MHD-AEPIC model enables PIC regions moving with the reconnection sites

to save computational resources substantially. During the main phase of the storm, from

t = 2011-08-06 00:05:00 to t = 2011-08-06 02:54:00, when the volume of the PIC domain

is about 1500R 3
E . The relative timings are the following: 72.72% of CPU time is used on

FLEKS, 13.26% is for BATS-R-US and 10.35% is taken by the coupling between FLEKS

and BATS-R-US. The rest 3.67% of CPU time is consumed by RIM, RCM and the overhead

of the SWMF. For the entire 16-hour geomagnetic storm simulation, the total wall time is

256.29 hours on 5600 CPU cores.

We also introduced three physics based criteria to identify the reconnection regions in the

magnetotail. To demonstrate the feasibility of the MHD-AEPIC model, we have performed

a geomagnetic storm event simulation with kinetic physics embedded for the first time. The

flapping motion of the magnetotail current sheet during the geomagnetic storm highlights

the advantage of the adaptation feature of the MHD-AEPIC model.

We have also simulated the same event using Hall MHD and ideal MHD models and

compared the three models at multiple physical scales. We examined the global scale features

by comparing the SYM-H and SME indexes which reflect the equatorial and auroral region

disturbances, respectively. All three models properly capture the global scale disturbances

such as the main phase of the storm or the increase of the auroral electrojet. However, all

three models fail to produce the strongest intensity for the geoindices. Hence no significant

difference is found among the three different models at the global scale for this event. This

indicates that the global magnetosphere configuration from the three models are very close,

the kinetic model embedded in the magnetotail does not improve the global scale feature for

this geomagnetic storm. If this trend persists for other storms, especially extreme events, is

still to be investigated.

We analyze the mesoscale features by comparing the magnetic field components and ion

profiles between the Geotail observation and the simulations. All three models show fairly
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good agreement with the Geotail observations, however, none of the three models can match

all features such as all the current sheet crossing or flux rope signatures. The Hall MHD

simulation shows more oscillations than observed during a few time periods. In this storm

event, MHD-AEPIC and ideal MHD models produce similar agreement with the in-situ

observations of Geotail.

In addition to comparing with the Geotail observations, we also compare the three models

with respect to flux rope structures in the current sheet. Only one major flux rope can be

observed from the ideal MHD simulation at the selected time, while Hall MHD and MHD-

AEPIC can produce flux ropes at a wider range in the dawn-dusk direction. The difference

of two types of the flux ropes: earth-ward with smaller spatial scale and tail-ward with a

lager spatial scale is also illustrated by the MHD-AEPIC simulations, in agreement with

several observations [Slavin et al., 2003].

The electron scale kinetic physics is well reproduced by the MHD-AEPIC model. We

collect electron macro-particle velocities at the same side of the electron diffusion region as

the MMS3 satellite did [Hwang et al., 2019]. The velocity distribution functions show excel-

lent agreement between the simulation and the MMS3 observation. This demonstrates that

MHD-AEPIC can properly produce the electron scale features within a single self-consistent

global model while simulating a complete geomagnetic storm event. In this particular simu-

lation, including the kinetic reconnection physics does not improve agreement with observa-

tions at meso- and global scales. This suggests that in this storm event, the magnetosphere

is mostly driven by the external solar wind and interplanetary magnetic field and not by the

internal reconnection dynamics.

It is to be investigated if the kinetic physics can have a more pronounced influence on the

physical condition of the magnetosphere when the external drivers are relatively constant.

Another important question is to compare the impact of kinetic versus numerical reconnec-

tion during extreme events. In addition to studying the Earth’s magnetosphere, we also

expect the novel MHD-AEPIC model will find its applications in various collisionless plasma
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systems that form small regions where kinetic effects are important inside a large spatial

domain.
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CHAPTER 4

Simulation of Magnetospheric Sawtooth

Oscillations: the Role of Kinetic

Reconnection in the Magnetotail

This chapter is adapted from a manuscript to be submitted.

4.1 Introduction

More than two decades ago, Borovsky et al. [1993a] observed that the time variation of

electron fluxes at geosynchronous orbit resemble a tooth of a saw blade: a slow decrease

followed by a rapid increase. Moreover, this feature is observed in a wide range of magnetic

local time (MLT), which distinguishes it from isolated substorms. These periodic injections

also have impacts on other geospace features like magnetic field variations at geosynchronous

orbit, the auroral electrojet index, and the polar cap index [Cai et al., 2006, Henderson et al.,

2006, Huang et al., 2003]. Although there is still no definitive answer to the mechanisms

producing the sawtooth oscillations, numerical simulations for the coupled magnetosphere-

ionosphere system have demonstrated a possible explanation related to the O+ outflow from

the ionosphere [Brambles et al., 2011]. The basic idea of this theory is that the periodic

mass loading and unloading from the ionospheric outflow alters the reconnection rate in the

magnetotail current sheet. The different reconnection rate results in different magnetic field
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configuration in the tail, which modulates the ionospheric outflow rate. This feed back loop

produces the periodic oscillations.

There are a number of studies establishing this theory over the past decade. Wiltberger

et al. [2010] uses the Multi-Fluid Lyon Fedder Mobarry (MFLFM) model to demonstrate

that the out-flowing cusp ions transported to the tail can have an effect on the magnetic

configuration. and trigger substorm dipolarizations. Yu and Ridley [2013] also shows that

cusp O+ outflow can influence the development of isolated substorms. Brambles et al. [2011]

applies an empirical power-law relationship between the the Alfvénic Poynting flux and the

resulting ionospheric outflow flux at the simulation inner boundary and shows that this

outflow can induce quasi-periodic substorms resembling observed sawtooth oscillations. In

a follow-up study, Ouellette et al. [2013] studies how the ion composition of the plasma

sheet and magnetotail affects the tail reconnection rate. They hypothesized that the mas-

sive outflow inflates the magnetosphere and enables the development of the next sawtooth

oscillation. Later on, Brambles et al. [2013] used the same model on two different types of

sawtooth events induced by different external driving conditions: the SIR-driven 24 October

2002 event and the CME-driven 18 April 2002 event. They find that quasi-periodic sub-

storms occurred in the SIR event without outflow while no periodic substorm occurs in the

CME event without outflow. Presumably, the quasi-periodic substorms in the SIR event are

triggered by the variations in the external driving condition while in the CME event, they

are more related to the internal mechanism of the magnetosphere. More recently, Lund et al.

[2018] uses mass composition data from the Cluster satellites and discovers the role iono-

spheric outflow plays in inducing sawtooth oscillations. They find during the CME events,

the O+ in the mid-tail plasma sheet is mostly from the cusp/dayside while the nightside

outflow preconditions the plasma sheet to enable the sawtooth oscillations. The recent work

by Zhang et al. [2020] illustrates that magnetospheric sawtooth oscillations can be solely

induced by cusp O+ outflows in the global simulation conducted by the LFM model.

The previous publications all show that the magnetotail reconnection is the key factor in
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inducing the sawtooth oscillations and the ionospheric outflow is affecting the reconnection

rate. In this paper, we use the University of Michigan’s Space Weather Modeling Frame-

work (SWMF) [Tóth et al., 2012] to investigate how kinetic reconnection affects the sawtooth

oscillations under constant solar wind driving conditions. In addition to the global MHD

model simulating Earth’s magnetosphere, we are using the FLexible Exascale Kinetic Sim-

ulator (FLEKS) [Chen et al., 2021] in the magnetotail to model the tail reconnection with

full kinetic physics. For comparison, we also present results by pure ideal MHD and Hall

MHD models to emphasize the significance of the kinetic effects. Different from the previous

work discussed above, we are not varying the plasma outflow from the ionosphere, hence the

periodic oscillations observed are caused by the kinetic reconnection process embedded into

the global MHD model.

The model description and simulation setup are described in section 4.2, the simulation

results are presented in section 4.3 and we conclude in section 4.4.

4.2 Model Description and Simulation Setup

The simulations presented in this paper are conducted with the magnetohydrodynamics with

embedded particle-in-cell (MHD-EPIC) model [Daldorff et al., 2014, Chen and Tóth, 2019].

The MHD-EPIC model two-way couples the BATS-R-US MHD code [Powell et al., 1999b,

Tóth et al., 2008] and the implicit particle-in-cell code FLEKS [Chen et al., 2021] through the

Space Weather Modeling Framework [Tóth et al., 2012]. The global magnetosphere structure

is simulated by an ideal MHD model, with an embedded PIC region in the magnetotail to

simulate the kinetic physics in the magnetic reconnection. The ionospheric electrodynamics

is simulated by the Ridley Ionosphere Model (RIM) [Ridley et al., 2004] that solves a Poisson-

type equation for the electric potential on a 2-D spherical grid, which is used to set the E×B

velocity at the inner boundary of BATS-R-US. The MHD-EPIC model has been applied in

studying multiple planetary and moon magnetospheres, such as the Earth [Chen et al., 2017],
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Mars [Ma et al., 2018], Mercury [Chen et al., 2019b] and Ganymede [Tóth et al., 2016, Zhou

et al., 2019, 2020b].

A three-dimensional block-adaptive Cartesian grid of BATS-R-US is used to cover the

entire computational domain: −224RE < x < 32RE and −128RE < y, z < 128RE in GSM

coordinates. The grid resolution is 1/4RE between −60RE < x < 20RE, −20RE < y <

20RE and−16RE < z < 16RE. A shell region near the Earth from 2.5RE to 3.5RE is covered

with 1/8RE grid resolution. The PIC box, the computational domain of FLEKS, is in the

magnetotail between −80RE < x < −4RE, −20RE < y < 20RE and −10RE < z < 10RE

with grid resolution 1/4RE. Figure 4.1 shows a 3-D overview of the simulation domain at

t = 3600 s from the simulation presented in this paper. The color contour is the mass density

on the equatorial plane, and the magnetic field lines of two flux ropes are also plotted in the

magnetotail. The black box is the PIC domain, which covers the tail region where magnetic

reconnection could happen.

To reduce the computational cost and make the simulation feasible, the speed of light c is

reduced to 15,000 km/s to speed up the implicit solver, and the ion-electron mass ratiomi/me

is decreased to 100 to increase the electron skin depth. These modification have no significant

impact on the results at the ion and global scales. In addition to these numerical adjustments,

we also scale up the ion and electron mass per charge by a factor of 16 to increase the ion

inertial length so that it can be resolved with an affordable grid resolution. Tóth et al. [2017]

presents theoretical arguments and numerical experiments and concludes that (1) the solution

of the equations is not sensitive to the scaling at global scales and (2) the solution at the

kinetic scale is proportional to the scaling factor but will look the same. The dipole tilt angle

is set to 0◦ to form an idealized case. The solar wind condition applied at the inflow boundary

of BATS-R-US is set to constant to study the magnetosphere’s response to an idealized

ICME solar wind driving. We have two solar wind conditions: a) Vx = −600 km/s, IMF

Bz = −15 nT for strong driving and b) Vx = −400 km/s, IMF Bz = −5 nT for weak driving.

The plasma number density and the temperature of the solar wind are fixed to 5 cm−3 and
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105K respectively. The solar wind velocity components Vy, Vz and IMF components Bx, By

are all set to 0. Both strong and weak driving conditions are applied to the MHD-EPIC

model to demonstrate that exceeding a threshold of the transported magnetic flux from

the solar wind is necessary for triggering the sawtooth oscillation. We also run Hall MHD

and ideal MHD models under strong driving to emphasize the importance of the kinetic

reconnection.

We first run BATS-R-US and RIM for 15,000 steps using local time stepping with ideal

MHD until the system reaches a quasi-steady state. Then the time accurate mode is turned

on for 12 hours of physical time. The FLEKS model and/or the Hall MHD solver are switched

on in the time accurate section.

4.3 Results

4.3.1 Occurrence of sawtooth-like oscillations

A characteristic signature of saw-tooth oscillations is the temporal variation of the magnetic

inclination angle, which is defined as the angle α = arcsin(|Bz|/B) between the magnetic field

vector and the equatorial plane. Here Bz and B are the local magnetic field Z component

and magnitude, respectively. The change of the magnetic inclination angle results from

the field line stretching and dipolarization processes. At the geostationary orbit, the average

minimum inclination angle of an observed sawtooth is 26◦ as compared to 43◦ for the isolated

substorms [Cai et al., 2006]. Figure 4.2(a) shows the magnetic inclination angles observed at

r = 8RE radial distance from the center of Earth, 9◦ latitude and 2 am magnetic local time

(MLT). The corresponding GSM coordinates are [x, y, z] = [−6.93,−4, 1.25]RE. Compared

to the geostationary orbit, we are observing further toward the magnetotail because the

variations detected at 6.6RE are small. Due to the ±Z symmetry, the inclination angle

is 90◦ in the equatorial plane, so we extract values slightly above that plane. As we will

see later, the largest variation of the inclination angle occurs slightly off from the midnight
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direction, this is why we chose 2 am MLT.

The dashed gray line is the result of the ideal MHD model with strong solar wind driving,

and the simulated magnetosphere takes about 2 hours to converge to a steady solution. There

is no perturbation of the inclination angle, which stays at about 50◦ for the entire simulation.

The solid gray line shows the result from the Hall MHD model with strong solar wind driving,

which takes about 1.5 hours to reach a quasi-steady state. However, unlike the ideal MHD

model, the inclination angle oscillates around 60◦ with a ±5◦ range. The difference in the

average inclination angles between the ideal MHD and Hall MHD models can be explained

by the different reconnection modes resulting from the two models. Simulations show that

the ideal MHD gives a Sweet-Parker type solution while the Hall MHD model gives a solution

closer to the Petschek type [Murphy et al., 2009a]. Though they are different in the values

of inclination angles, it is clear that there are no sawtooth-like oscillations in the ideal and

Hall MHD simulation results.

The MHD-EPIC result with strong solar wind driving is shown by the solid red line, while

the result of weak solar wind driving is plotted in green. The MHD-EPIC run with weak

solar wind driving shows similar oscillation to the Hall MHD run, although with a smaller

average inclination angle around 55◦. The MHD-EPIC run with strong solar wind driving

shows different inclination angle variations from the other three runs. After about four hours

of the simulation, the inclination angle drops to about 30◦ from 55◦ with a recovering phase

afterward. There are three sawteeth shown in Figure 4.2 (a) and their starting times are

marked by dashed vertical lines at t = 4.15h, 5.38h and 7.15h. The third sawtooth shows

a small dipolarization during the stretching phase. Partial dipolarizations are consistent

with observations as shown in the bottom panel of the figure. Panels (b) and (c) of Figure

4.2 compare the time variation of Bz from the MHD-EPIC simulation with strong solar

wind driving and the observation from the POLAR satellite of the sawtooth event reported

by Pulkkinen et al. [2006]. The POLAR satellite locations is around x = −8.0RE and

y = 3.5RE and moves from −2RE to 2RE on z direction in GSM coordinate. The absolute
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values of Bz are different between the simulation and the observation because they are

acquired at different positions, but the differences between the maximum and the minimum

Bz for each sawtooth are around 40 nT in both. Furthermore, a partial dipolarization was

observed by POLAR between 17 : 00 and 18 : 00 UT that is reminiscent of the simulation

results between 9 and 10 hours.

From the four simulations with different setups presented in this section, we can conclude

that two essential factors need to be satisfied for a global model to generate sawtooth-like

oscillations without the time varying ionospheric outflow. First, the magnetic flux from the

solar wind needs to exceed a certain threshold, which is also reported by [Cai et al., 2006]

based on observations of many sawtooth events. Second, the tail reconnection needs to be

simulated by the kinetic model.

4.3.2 Kinetic reconnection and sawtooth-like oscillations

In this subsection, we will investigate the connection between the sawtooth-like oscillations

shown in Figure 4.2 and the kinetic reconnection process in the magnetotail. Panel (a) of

Figure 4.3 shows the magnetic field, particle energy, and half of the total energy inside the

PIC box normalized by the total energy at t = 2h. The electric field energy oscillates around

0.06% percent of the total energy, which is negligible compared to the energy of the magnetic

field and the particles. The magnetic field and particles have a periodic energy gain/loss

accompanied with the sawtooth oscillations.

Before t = 4.4 h, there is no substantial energy transferred between the magnetic field and

the particles. At t ≈ 4.4 h, the Emagnetic starts increasing while the Eparticle starts decreasing.

This stretching phase (S1) ends at t ≈ 5 h when the difference reaches about 10%. In the

next dipolarization phase (D1) the energy is transferred back from the magnetic field to the

particles. The two parts of energy recover to the initial state at t ≈ 5.4h, which ends the first

sawtooth period, and a similar oscillation starts at t ≈ 6 h and ends at t ≈ 7.5 h (S2 and D2).

Panels (b)-(e) of Figure 4.3 depict the electron kinetic energy multiplied by the sign of the X
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Figure 4.1: The global structure of Earth’s magnetosphere at simulation time t = 1h from the
MHD-EPIC simulation with the strong solar wind driving condition. The color contour shows
the mass density in the equatorial plane. The white spherical surface is the inner boundary
at 2.5RE. The gray rods are magnetic field lines of two flux ropes in the magnetotail. The
black box is the domain of the PIC model that covers potential magnetic reconnection sites
in the tail.
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Figure 4.2: (a) Magnetic inclination angle plots from multiple simulations. MHD-EPIC with
strong and weak solar wind driving conditions are shown in red and green. The ideal and
Hall MHD results under strong solar wind driving are also plotted in gray for comparison.
All inclination angles are taken at the same position: x = −6.93RE, y = −4RE and
z = 1.25RE. (b) Time variation of Bz at the same position from the MHD-EPIC simulation
with strong driving. (c) Sawtooth event observations of Bz by the POLAR satellite from
(−8.0, 3.5,−2)RE to (−8.0, 3.5, 2)RE in GSM coordinate. (Figure 3 from Pulkkinen et al.
[2006]).
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component of the electron velocity that is defined as Ke =
1
2
ρeu

2
esgn(ue,x). The Ke values are

plotted on the Bx = 0 isosurface, which is the middle of the tail current sheet. We choose the

electron kinetic energy because the electron features are well localized, and the sign change

of Ke accurately indicates the position of the reconnection X line. The two blue vertical lines

labeled S1 and S2 in panel (a) are marked at t = 4h 48min and t = 6h 30min when Emagnetic

reaches the maximum in each period and their corresponding Ek contour plots are shown in

panels (b) and (d). In these panels, the magnetosphere is in a ”stretching phase”, when the

X lines move towards the distant tail at x ≈ −40RE. Another two red vertical lines labeled

D1 and D2 in panel (a) are marked at t = 5h 14min and t = 7h 01min. Those two lines

mark when Eparticle (or Emagnetic) is increasing (or decreasing) most rapidly. Panels (c) and

(e) show the corresponding Ek contour plots, when the magnetosphere is in a ”dipolarization

phase.” In this phase, the X line is observed at x ≈ −15RE and the Ek near the X line is

much larger. The ”dipolarization phase” is also matching the recovery from the minimum

inclination angle observed in Figure 4.2. The third sawtooth oscillation in the simulation

is more complicated than the previous two. The dipolarization phase is interrupted by a

secondary stretching from t ≈ 8h 36min to t ≈ 9h 24min. The third oscillation fully recovers

to the initial state at t ≈ 10 h. The period of the oscillations varies from 1.5 h to 3 h, which

is very comparable with the observed periodicity.

4.3.3 Spatial distribution of the magnetic inclination angle

The wide extension of the variations of magnetic inclination angles in magnetic local time

(MLT) is a critical signature of the sawtooth oscillations. Figure 4.4 shows the magnetic

inclination contour plot from the MHD-EPIC simulation with strong solar wind driving

conditions. The inclination angle is calculated along the circle
√

x2 + y2 = 7.9RE in the

plane z = 1.26RE (the inclination angle is 90◦ in the z = 0 plane due to the symmetry of

this idealized setup). The location we are looking at is further from the center of Earth than

the observations at the geosynchronous orbit reported by Cai et al. [2006]. Our MHD-EPIC
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Figure 4.3: (a) The integrated magnetic field energy (blue) and particle energy (red) inside
the PIC region normalized by the total energy at t=2h. The black line shows half of the
normalized total energy. The four dashed vertical lines correspond to the the times depicted
by panels (b)-(e), respectively, during the stretching (S1 and S2) and dipolarization (D1 and
D2) phases. These plots show the color contours of the electron kinetic energy multiplied by
the sign of the X component of the electron velocity: Ke =

1
2
ρeu

2
esgn(ue,x). The color contour

is plotted on the Bx = 0 isosurface that identifies the middle of the magnetotail current sheet.
Sharp jumps from dark blue to dark red color indicate reconnection jets emanating from the
X-lines. The black shadows show that the current sheet surface is rippled.
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simulation does not produce strong magnetic field perturbations at geosynchronous orbit.

Despite the difference in the locations, the simulated inclination angle distribution over MLT

exhibits several similarities compared to the observations. The minimum inclination angle

from dawn to dusk is about 17◦. The minimum inclination angle is close to observed sawtooth

oscillations, indicating much stronger dipolarization happens in the MHD-EPIC simulation.

The difference between the MHD-EPIC simulation and the observed sawteeth is caused by

the location we are taking the samples: The closed field lines of the dipole field is stretched

more further towards the tail. We can also observe that the 30◦ contour line spans from

dawn to dusk. This broad span on MLT agrees with the observation. Moreover, the periodic

stretching and dipolarization are demonstrated well from the two sawteeth shown in Figure

4.4. In addition to that, we can also identify that the inclination angle is smaller in the pre-

midnight sector. The observations also demonstrate more prominent features on the dusk

side. However, we honestly acknowledge that there are indeed three major discrepancies

between the sawtooth oscillations from the MHD-EPIC simulation and observed sawteeth

[Cai et al., 2006]. First, the signatures at the geosynchronous orbit are not strong enough

to be observed. Second, the dipolarization at midnight is much weaker. The observed

sawtooth oscillations exhibit the lowest inclination angle near midnight and expand towards

dawn and dusk. Third, the duration of each sawtooth from the MHD-EPIC simulation is

slightly less than 2 hours, which is shorter than a typically observed sawtooth that lasts

from 2-4 hours. Hence, the magnetic reconnection rate simulated by the kinetic model can

accumulate the magnetic open flux towards a higher threshold than the MHD models. This

force imbalance between the dayside and the nightside is the major process that happens

during the ”stretching phase.” One possible reason for the weaker oscillations at midnight

the ”critical level” of the accumulated magnetic flux simulated by the MHD-EPIC model is

lower than reality at dawn and dusk. The reconnection that happens there first causes a

much stronger dipolarization, which also dissipates the magnetic flux, which disables strong

dipolarization at midnight.

75



Figure 4.4: The contour plot of the magnetic inclination angle of the first two sawteeth
from the MHD-EPIC simulation with strong solar wind driving. The inclination angle is
evaluated on the circle

√
x2 + y2 = 7.9RE in the plane z = 1.26RE, which is outside the

geosynchronous orbit.
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4.4 Conclusion and Discussion

In this paper, we use the MHD with Embedded Particle-In-Cell (MHD-EPIC) model to

study the role kinetic reconnection plays in generating magnetospheric sawtooth events. The

PIC region covers a box region in the magnetotail where the reconnection could potentially

happen. Different from prior MHD simulations of sawtooth events, there is no time varying

ionospheric outflow transporting plasma to the magnetotail. We apply both strong and

weak solar wind driving conditions in the MHD-EPIC simulations to demonstrate that the

occurrence of the sawtooth oscillations depends on the incoming rate of the magnetic flux

from the solar wind. To emphasize the significance of the kinetic model, we also perform

the simulation using ideal MHD and Hall MHD models with the strong solar wind driving

conditions for comparison.

We examine the temporal variation of the magnetic inclination angle in the near tail at

(x, y, z) = (−6.93,−4, 1.25)RE from different simulations. We find that only the MHD-

EPIC model with strong solar wind driving condition produces periodic oscillations of the

magnetic inclination angle that has a minimum value below 30◦, which demonstrates that

both the kinetic magnetic reconnection and the incoming rate of the magnetic flux from the

solar wind are essential to induce the sawtooth oscillations. We investigate the variations

of magnetic and particle energy from the MHD-EPIC simulation. The energy is transferred

from the particles to the magnetic field during the stretching phase. When the dipolarization

starts, the energy transfers in the opposite direction. We also plot the electron kinetic energy

contour on the current sheet surface, and we observe that the dipolarization phase of the

sawtooth oscillation is related to the formation of a reconnection X-line close to the Earth.

We find that the oscillations from the MHD-EPIC simulation exhibit a wide span over

the magnetic local time that is a signature of observed sawtooth events. However, there

are three major discrepancies between the MHD-EPIC generated sawtooth oscillations and

the observations: 1. the signature at the geosynchronous orbit is relatively weak. 2. the

simulated period of each sawtooth is slightly less than 2 hours compared to the observation,
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which is 2-4 hours, 3. the minimum inclination angle in the simulation is found at the dawn

and dusk regions rather than at midnight.

We suggest that the kinetic reconnection in the magnetotail can solely reproduce the

periodic loading and unloading process of the magnetic flux in the magnetosphere. The

reconnection rate in the magnetotail is not high enough to dissipate the incoming magnetic

flux from the solar wind. Thus the imbalance between the dayside and nightside causes

the magnetic flux to accumulate towards a critical level on the nightside and triggers dipo-

larization. This process is recognized as the direct causing mechanism of the sawtooth

oscillations [Zhang et al., 2020]. Hence we conclude that in addition to the ionospheric out-

flow, the sawtooth oscillations might be an intrinsic feature of the kinetic reconnection in

the magnetotail when the incoming magnetic flux from the solar wind exceeds a threshold.

However, the discrepancies between the observation and the MHD-EPIC simulation suggest

that ionospheric outflow is also an important factor. For example, the O+ transported into

the magnetotail will change the plasma components and potentially change the reconnection

rate, which may extend the stretching phase. Also, the ”preconditioning” by the nightside

outflow mentioned by Zhang et al. [2020] might reduce the discrepancy at the midnight sec-

tor between the MHD-EPIC simulation and observations. In future work, we believe it is

important to include both ionospheric outflow and kinetic magnetic reconnection physics in

the magnetotail to fully understand sawtooth oscillations.
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CHAPTER 5

Predicting Solar Flares with Machine

Learning: Investigating Solar Cycle

Dependence

This chapter was published in the Astrophysical Journal by Wang et al. [2020].

5.1 Introduction

Solar flares are energetic eruptions of electromagnetic radiation from the Sun lasting from

minutes to hours. The terrestrial impact of small flares is limited, but strong flares have a

significant on the upper atmosphere. Increased ionization affects the total electron content,

which in turn affects radio wave propagation and global positioning system (GPS) accuracy.

Ionospheric heating causes the atmosphere to expand, increasing the mass density and in-

creasing drag on satellites altering their orbits. Strong flare are also often accompanied with

coronal mass ejections (CMEs) that can cause substantial impact on the Earth environment.

Therefore, it is very worthwhile to improve the prediction of solar flares, especially larger

ones. During solar cycle 24, nearly 800 M or X flares were observed. While posing a signifi-

cant threat, the rareness of extreme events and the complexity of the flares makes solar flare

time and intensity predictions a very challenging task.

Although the triggering mechanism of solar flares and the factors determining the solar
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flare strength are far from being well understood, it is shown by multiple studies that solar

flares are caused by the sudden release of free energy brought by magnetic reconnection in

the coronal field. What has come to be know as the standard model for flares and CMEs

[Carmichael, 1964, Sturrock, 1966, Hirayama, 1974, Kopp and Pneuman, 1976] (also called

the CSHKP model), involves the rise of sheared core or flux rope that results in magnetic

reconnection in the surrounding arcade structure. Several variations of this model have

been developed, which incorporate different initiation mechanisms [Masuda et al., 1994,

Forbes and Acton, 1996, Manchester, 2003, Török et al., 2004]. A number of review papers

summarize these works and many others [Green et al., 2018].

Since the photospheric magnetic field drives the coronal field, it is possible that the

evolution patterns of the photospheric magnetic field may serve as indicators of the triggering

process of flares and CMEs. Those features include the size of the active regions (AR),

the integrated magnetic flux, the integrated current helicity, the magnetic field gradient

measurements, the shear angle of the magnetic field structure and so on. The Helioseismic

and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite, launched

a decade ago, has been providing high-cadence high-resolution photospheric vector magnetic

field observations starting from 2010. The Space-weather HMI Active Region Patches, a.k.a.

SHARPs [Bobra et al., 2014], contain time series data localized to individual active regions

(ARs) with many pre-calculated quantities based on the AR magnetic field. We will use

these SHARP quantities to train our machine learning model.

Machine learning, a sub-field of artificial intelligence, utilizes past data as a ”learning con-

text” for the computer program that allow it to make predictions of the future state of the

system. The advent of the Solar Heliophysics Observatory (SOHO)/Michelson Doppler Im-

ager (MDI) and SDO/HMI missions provided sufficient data for machine learning algorithms

to predict solar activities. At first, the line-of-sight (LOS) component of the photospheric

magnetic field measured by the MDI instrument was used by several groups to forecast solar

flares using machine learning algorithms (Ahmed et al. [2013], Huang et al. [2018], Song
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et al. [2009], Yu et al. [2009], Yuan et al. [2010]). The support vector machine (SVM) al-

gorithm was used by Boucheron et al. [2015] for a classification task on time series of MDI

data from 2000 to 2010. However, the LOS magnetic field component does not include all

the magnetic field information, so later studies used the vector magnetic field data once

it became available from the HMI instrument. Bobra and Couvidat [2015] used the SVM

trained with SHARP parameters for active region classification tasks. Nishizuka et al. [2018]

built a residual deep neural network using not only the parameterized photospheric mag-

netograms but also using chromospheric images. Jonas et al. [2018] used observations from

photosphere, chromosphere, transition region, and corona as input of the machine learning

algorithm, which gave a comparable result to the works done by Bobra and Couvidat [2015]

and Nishizuka et al. [2018].

The machine learning algorithms in these studies mentioned so far do not fully utilize

the time dependence of the input. Among various kinds of machine learning algorithms,

recurrent neural networks (RNNs) are suitable to analyze time series input. Long-short

term memory networks (LSTMs) [Hochreiter and Schmidhuber, 1997, Gers et al., 2000],

a particular kind of RNNs, have succeeded in many sequence classification and prediction

tasks, including speech recognition, time-series forecasting, handwriting recognition and so

on [Franklin, 2005, Graves et al., 2013]. Most recently, Liu et al. [2019], Chen et al. [2019a]

and Jiao et al. [2019] used LSTMs on SHARP parameters, which achieved better performance

for predicting solar flares compared to previous works. Sun et al. [2019] identifies key signals

for strong flares from SHARP parameters using time-series clustering on LSTMs predictions.

In this paper, we apply the LSTM algorithm on the SHARP parameters from SDO/HMI

vector magnetic field to predict the maximum solar flare class produced by an active region

in the next 24 hours. The inputs are 24-hour time series of SHARP parameters with 12-

minute cadence. The observations of ARs are time sequences, hence LSTMs are suitable for

this kind of input. First, our results show consistency with recently published work by Liu

et al. [2019] that also uses the LSTM algorithm. Second, we also find that the skill scores
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vary substantially when using different years of ARs in the training and testing set. This

indicates that data samples should be carefully chosen for the model evaluation. It is also of

interest to understand in what respect these years differ in the solar cycle from each other

that may make the solar flare prediction less or more successful.

The rest of this paper is organized as follows. Section 5.2 describes how we collect data

and build the training and testing sets. Section 5.3 describes the LSTM architecture we are

using in this work. Section 5.4 explains the metrics used to evaluate the model performance.

Section 5.5 shows the results of this study and compares them with previous work. The

solar cycle dependence of the prediction skills are also presented in this section. Section 5.6

describes our conclusions.

5.2 Details of the Data Preparation

5.2.1 Dataset

We use SHARP summary parameters as the input data of the prediction model. The Space-

weather HMI Active Region Patches (SHARPs) is a data product derived from vector mag-

netograms taken from the Helioseismic and Magnetic Imager (HMI) onboard the Solar

Dynamics Observatory (SDO) [Bobra et al., 2014]. The summary parameters are calculated

based on the HMI Active Region Patches (HARPs), which are rectangular boxes surrounding

the active regions that are moving with the solar rotation and the evolution of the active

regions. Table 5.1 lists the 20 key parameters used in this work. The SHARP summary

parameters are downloaded for all active regions from the Joint Science Operations Cen-

ter (jsoc.stanford.edu) from 2011 to 2018. The solar flare events are identified from the

NOAA Geostationary Operational Environmental Satellites (GOES) flare list [Garcia, 1994].

In the GOES flare list, flare events are listed with class, start, end, and peak intensity times

of each event. The peak time of the flare events are assigned as the ”event time” when con-

structing the data samples. The number of active regions and flare events in different years
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are summarized in Table 5.2. Note that C flares outnumber the A and B flares suggesting

that most of the A and B flares are missed when their relatively weak signal falls below the

X-ray background.

The input of our model are the 24-hour long time series (that we call sequences) extracted

from the full time series of SHARP summary parameters of active regions. To guarantee the

quality of the data, some time sequences are dropped, especially when the active regions are

at the limb. The criteria for dropping unqualified time sequences are as follows:

1. In order to avoid projection effects, the longitude of the HARP region center is within

the range of ±68◦ from the central meridian,

2. The fraction of missing frames in a time sequence has to be less than 5%,

3. The starting time of two time sequences are separated by one hour.

The target value (or label) of each sequence is the maximum flare class produced by the

active region in the next 24h after the end time of the sequence. The NOAA active region

number is used to match the HARP and AR numbers in the GOES flare list. However,

while GOES flares are identified strictly with NOAA ARs, we note that a single AR may

be split among multiple HARPs or that a HARP may contain multiple ARs. Consequently,

we find that 20% of HARPs have this mismatch issue, which may lead to a potential error

when we assign the maximum flare classes to the time sequences for flares may be missed or

improperly attributed to the HARP.

Because the various SHARP features have different scales and units, the original data

samples are normalized before input into the machine learning model: let zni denote the

normalized value of the ith feature in the nth data sample, then

zni =
vni − µi

σi

, (5.1)

where vni is the original value of feature i in data sample n, while µi and σi are the mean

and standard deviation of the feature i calculated from the entire dataset, respectively.
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Parameter Description
USFLUX Total unsigned flux in Maxwells
MEANGAM Mean inclination angle, gamma, in degrees
MEANGBT Mean value of the total field gradient, in Gauss/Mm
MEANGBZ Mean value of the vertical field gradient, in Gauss/Mm
MEANGBH Mean value of the horizontal field gradient, in Gauss/Mm
MEANJZD Mean vertical current density, in mA/m2

TOTUSJZ Total unsigned vertical current, in Amperes
MEANALP Total twist parameter, alpha, in 1/Mm
MEANJZH Mean current helicity in G2/m
TOTUSJH Total unsigned current helicity in G2/m
ABSNJZH Absolute value of the net current helicity in G2/m
SAVNCPP Sum of the Absolute Value of the Net Currents Per Polarity in Amperes
MEANPOT Mean photospheric excess magnetic energy density in ergs per cubic centimeter
TOTPOT Total photospheric magnetic energy density in ergs per cubic centimeter
MEANSHR Mean shear angle (measured using Btotal) in degrees
SHRGT45 Percentage of pixels with a mean shear angle greater than 45 degrees in percent
SIZE Projected area of patch on image in micro-hemisphere
SIZE ACR Projected area of active pixels on image in micro-hemisphere
NACR Number of active pixels in patch
NPIX Number of pixels within the patch

Table 5.1: List of SHARP parameters and brief descriptions

Year ARs A B C M X
2011 168 1 665 1002 106 9
2012 168 0 475 1115 124 7
2013 183 0 469 1197 97 12
2014 194 0 184 1627 194 16
2015 143 0 446 1274 128 2
2016 109 0 757 294 15 0
2017 52 0 620 229 37 4
2018 21 5 255 12 0 0

Table 5.2: Number of active regions and flares of different classes observed each year.
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5.2.2 Training/Testing splitting

In order to assess the performance of the machine learning algorithms properly, we need

to split the samples (time sequences of SHARP summary parameters and corresponding

maximum flare classes) into a training set and a testing set. The training set is used for

training the machine learning model while the testing set is for assessing the prediction

capability of the model. In the training process, the model learns from the input data

and adjusts its parameters to fit the ground truth. Both variable selection and parameter

estimation are included in this process. The samples in the testing set should be totally

separated from the training set, otherwise there will be an artificial gain of performance

since the information in the training set is leaked to the testing set [Kaufman et al., 2012,

Schutt and O’Neil, 2013]. Hence, separating the samples based on active regions is necessary

to guarantee that sequences from one active region will not occur in both training and testing

sets simultaneously. All the training/testing splitting in this paper are conducted based on

HARPs.

5.3 Architecture of Machine Learning Model

The Recurrent Neural Network (RNN) is a category of neural networks which can make use

of sequential information [Pearlmutter, 1989]. This architecture is naturally used in solar

flare prediction since the active regions evolve with time and the occurrence of the solar

flares is most likely related to the time-dependent evolution of active regions. RNNs are

called recurrent because they perform the same task for every input from the sequence, but

the output depends on the previous computations. Among various RNN structures, the

Long Short Term Memory (LSTM) network is one of the most commonly used type of RNNs

[Hochreiter and Schmidhuber, 1997]. LSTM networks are explicitly designed to avoid the

long-term dependency problem, which is a major shortcoming for simpler RNNs. The key to

LSTMs is a new cell state variable in the network, which is passed through the whole chain
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with only minor linear interactions. This allows the information at a much earlier time to

effect the results, which mimics a ‘long-term’ memory.
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Figure 5.1: The detailed structure of the LSTM cell (left) and the LSTM network (right).

The structure of the LSTM unit and the LSTM network used in this work is shown in

Figure 5.1. The left panel shows a single LSTM unit. Each unit takes an input vector x<t>

consisting of the input features at a certain time point t, the hidden state h<t−1> and the cell

state c<t−1> are from the previous LSTM unit. The right panel shows the structure of the

two-layer LSTM network. The LSTM units in the second layer are the same as in the first

layer, but their input vectors x<t>
2 are the output vectors o<t>

1 from the first layer LSTM

units. The relationships between the unit input, output and internal states are given by the

following equations:
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i<t> = σ(Wiix
<t> + bii +Whih

<t−1> + bhi) (5.2a)

f<t> = σ(Wifx
<t> + bif +Whfh

<t−1> + bhf ) (5.2b)

g<t> = tanh(Wigx
<t> + big +Whgh

<t−1> + bhg) (5.2c)

o<t> = σ(Wiox
<t> + bio +Whoh

<t−1> + bho) (5.2d)

c<t> = f<t> ∗ c<t−1> + i<t> ∗ g<t> (5.2e)

h<t> = o<t> ∗ tanh(c<t>) (5.2f)

Here x<t> ∈ Rd is the input vector to the LSTM unit and d is the number of features.

i<t>, f<t> and o<t> ∈ Rh are the activation vectors of the input gates, forget gates and

output gates, respectively. g<t> ∈ Rh is an activation vector from the tanh function. h is the

hidden dimension of the LSTM unit, which is a hyperparameter in the model that reflects

the model complexity and we use 16 in this work. c<t> ∈ Rh is the cell state vector and there

is only linear relationship between the output and input cell states in a single LSTM unit.

The cell state and hidden state vectors are passed to the next LSTM unit in the same layer.

The output vectors in the first layer are taken as input in the second layer. The output

vector of the last LSTM unit in the second layer is multiplied by a h vector and passed to a

sigmoid function to generate the final prediction value. The tanh and the sigmoid function

σ(x) =
1

1 + e−x
(5.3)

introduce the non-linearity into the neural network. The Wi ∈ Rh×d weight matrices are

applied to the input vectors and Wh ∈ Rh×h are applied to the gate activation vectors.

b ∈ Rh in the equation are the bias vectors. The weight matrices and bias vectors are

trainable parameters, which are determined during the training process. Our LSTM model

is different from the model of Liu et al. [2019]. We use two layers of LSTM and the output
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comes from the last LSTM cell of the second layer. Liu et al. [2019] use one layer of LSTM

cells and the output is fed into a fully connected network.

The ”training” in the machine learning is essentially an optimization process for an ob-

jective function, also known as the loss function. The loss function measures the difference

between the model prediction and the ground truth. An optimization algorithm is used to

minimize the loss function so that the trainable parameters in the model can ”encode” some

knowledge from the data samples. The prediction can finally be reduced to a binary classifi-

cation task: according to the given input, will this AR produce a flare of class Γ in the next

24 hours. The model will generate a prediction score in the last layer in the network and if

this score is larger than a threshold, then the model will make a positive prediction. In our

work, the last layer is a sigmoid function and the output from a sigmoid function is either

close to 0 or 1, so the threshold for binary classification is set to be 0.5. The ”Binary Cross

Entropy” is typically used as the loss function for binary classification problems. However,

this loss function can fail if one category of samples is dominating the entire data set. Con-

stantly predicting the dominant category in the testing set can result in a small value of the

loss function but the model has no predictive skill in this case. Large energetic solar flares

are extremely rare events so that the dataset we are using is highly unbalanced. To solve

this issue, we used ”Binary Cross Entropy with Logits Loss” in this work which is defined

as:

L =
1

N

N∑

n=1

−[pcyn log σ(ŷn) + (1− yn) log(1− σ(ŷn))] (5.4)

Here N is the number of samples in the training or testing set, yn is the target value and

ŷn is the model output. The coefficient pc and the use of the sigmoid function distinguish

this loss function relative to the simple binary cross entropy loss function. The sigmoid

function improves the numerical stability in the optimization process, while pc is set to the

ratio of negative and positive samples from the training set to balance the contributions of

the two terms in the sum. This approach is the same as what is used by Liu et al. [2019]
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2011 2012 2013 2014 2015 15-18
≥ C 3.91 4.08 4.27 4.46 4.35 4.35
≥ M 29.41 30.30 31.25 34.48 34.48 34.48

Table 5.3: The ratio of negative and positive sample pc in the loss function for different
training sets.

and Nishizuka et al. [2018] in their cost functions. The values of pc for different training sets

in this paper are presented in Table 5.3.

5.4 Model Evaluation

The four quantities TN, TP, FN, and FP refer to the number of True Negative, True Positive,

False Negative and False Positive predictions, respectively. These four numbers can be

combined to calculate the Precision, the Recall (also known as Probability of Detection,

POD), the False Alarm Rate (FAR, also known as Probability of False Detection or False

Alarm, PFD or PFA), the True Skill Statistic (TSS), the Heidke Skill Score (HSS), and the

Accuracy (ACC) defined as

Precision =
TP

TP + FP
(5.5a)

POD = Recall =
TP

TP + FN
(5.5b)

FAR = PFA =
FP

FP + TN
(5.5c)

TSS =
TP

TP + FN
− FP

FP + TN
= POD− FAR (5.5d)

HSS =
2(TP · TN− FP · FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
(5.5e)

ACC =
TP + TN

TP + FP + FN + TN
(5.5f)

(5.5g)
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We will use these quantities to evaluate the model performance. The Precision and POD

evaluate the model’s ability to identify positive events (1 being perfect, 0 being worst), while

FAR tests the model for correctly identifying negative events (0 being perfect, 1 being worst).

The Accuracy, TSS and HSS evaluate the overall skill with the maximum value 1 being the

perfect score. As we will see, the various skill scores have very different dependence on the

fraction of positive and negative events in the training and testing sets. For an imbalanced

dataset, the Accuracy becomes less meaningful because the model’s output will be dominated

by the majority of the dataset. Artificial inflation will be caused to the POD (or the FAR)

if the model is assigning all testing samples to be positive (or negative). However, in both

cases, the model will not have any useful prediction skills. TSS approaches the POD when

the forecasting is dominated by correct forecasts of non-occurrence which is the case for solar

flare events. Notice that TSS is defined by two terms TSS = TP/(TP+FN) - FP/(FP+TN).

Thus, if the model overpredicts the flare occurrence, both terms increases but the second

term only changes slightly because the TN is very large. A high TSS value therefore may not

really mean that the prediction is reliable, as there can be many false alarms relative to the

number of true predictions. HSS is superior to the TSS in this situation, because it produces

0 value for a model that predicts a random number with the correct occurrence rate, and

positive HSS means that the model is better than that. However, HSS is sensitive to the

ratio of positive versus negative events, which means that the same model can produce very

different HSS values depending on the selected data set (for example solar maximum versus

solar minimum). In other words, HSS can be scaled up if there are more positive samples in

the testing set [Doswell III et al., 1990].

The goal of a predictive model is to minimize some cost function. A simple cost function

can be constructed in the following way. Suppose the amount of (financial or other quan-

tifiable) loss saved by taking action thanks to a positive prediction is S, while the cost of

taking action due to a false alarm is C. Then the expectation value of the cost function can

be expressed as
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E = N · FAR · C − P · POD · S (5.6)

where P and N are the total number of positive and negative events. Dividing the equation

by P · C results in a normalized expectation value

e = FAR · N
P

− POD · S
C

(5.7)

If the ratios S/C and N/P are equal, then equation (7) is proportional (with a negative

sign) to the TSS, so in this special case TSS is optimal to evaluate and compare the usefulness

of models with respect to minimizing the cost function. However, if N/P is much larger than

S/C, then a low FAR score is more important than maximizing POD. We don’t have good

values for estimating S and C and in general they vary with event types. Hence there is no

single skill score that can properly evaluate the forecasting performance, and one needs to

be careful when models are compared. There are only four independent values (TN, TP, FN,

and FP) and only their three ratios truly matter. This means that any three independent

values defined above can be used. In practice, we concentrate on the POD, FAR and HSS

values, as these provide complete and intuitive information about the model’s performance.

The TSS, while useful, is not an independent skill score, as it is simply the difference of POD

and FAR.

5.5 Results

5.5.1 Training Process

The LSTM network is implemented in Python with the PyTorch package. PyTorch is origi-

nally a tensor calculation package for GPU and the auto-gradient feature [Paszke et al., 2017]

makes it suitable for machine learning tasks. A minibatch strategy [Li et al., 2014, Bottou

et al., 2018] is used for faster convergence during back-propagation. The Adam optimizer
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[Kingma and Ba, 2014]is used with the learning rate set to 0.001 and the other parameters

are β1 = 0.9 and β2 = 0.999. The batch size is 1000. The model is trained for multiple epochs

on the training set. In each epoch, the model goes through the training samples once. The

model is trained for 6 epochs to generate the results presented in Table 5.5, Figure 5.3 and

Figure 5.4. We found no statistically significant improvement in the performance after six

epochs. To account for the randomness due to the order of training samples and the initial

values of the trainable parameters, we perform 20 independent runs with different random

seeds to get robust results.

5.5.2 Skill scores for solar flare prediction

The prediction results from the models in this work are summarized in Table 5.4. The

contingency table shows the number of TP, TN, FP and FN events. Notice that the mean

values of 20 runs are reported here, so the results are not integers. TN is large because of

the imbalanced dataset. TP for predicting ≥ C flares is much larger than predicting ≥ M

flares. This is the result of more ≥ C flares. FP is also large which indicates that the model

overpredicts the occurrence of the flare.

The mean values of the skill scores for the 20 runs are reported in Table 5.5 together

with results obtained by earlier work for comparison. From Table 5.5, the skill scores POD,

TSS and FAR are better for predicting ≥ M flares than ≥ C flares while the Precision and

HSS show the opposite trend. The higher HSS is partially explained by the larger fraction

of positive samples for ≥ C flares [Doswell III et al., 1990]. However, essentially all skill

scores for predicting any flares (≥ A) are worse than predicting ≥ C flares. The reason for

this reduced performance is that A and B flares are not properly observed. The number of

flares in different energy classes roughly obey a power-law distribution (see Lu and Hamilton

[1991] and Figure 5.8), thus a large number of class B flares are missing in the GOES flare

records (see Figure 5.2). The X-ray emission of many B flares can fall below the background

emission level once an active region heats up, which causes those B flares to be unrecorded.
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LSTM-2015 P N LSTM-15 18 P N
≥ M P’ 396.55 889.6 ≥ M P’ 513.20 1343.45

N’ 182.45 13531.4 N’ 189.80 25953.55
≥ C P’ 2043 995.65 ≥ C P’ 2762.35 1605.60

N’ 1135 10826.35 N’ 1683.65 21948.40

Table 5.4: Contingency table of LSTM model in this work. The mean values of 20 runs are
presented. P and N means the real observed positive and negative samples, P’ and N’ refers
to the prediction results.

Therefore, we are training and testing the model with mislabeled data samples for predicting

any class of flares, hence many weak flares that the model predicts probably are classified as

false positives, which lowers the skill scores.
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Figure 5.2: The distribution of number of recorded flares for classes B,C,M,X from 2011
to 2018 in the GOES data set. Note that the number of B flares is much smaller than the
number of C flares.

5.5.3 Comparison with previous results

In this subsection, we will compare the results of this paper to previously published works. In

the past decade, there have been several works that applied machine learning based models

to predict solar flares. Those models including MLP (Multilayer perceptrons) [Florios et al.,
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2018], SVM (Support Vector Machine) [Qahwaji and Colak, 2007, Yuan et al., 2010, Bobra

and Couvidat, 2015, Boucheron et al., 2015, Muranushi et al., 2015, Florios et al., 2018],

DeFN (Deep Flare Net) [Nishizuka et al., 2018] and a recently published work [Liu et al.,

2019] which also used LSTM network.

The skill scores for different models are shown in Table 5.5. Even though the input and

the testing samples may be different in those works using MLP, SVM and DeFN models,

the results are representative of the best performance those models can achieve on the solar

flare prediction task. The results from the LSTM models outperform the MLP, SVM and

DeFN models substantially on HSS and FAR. The TSS from the DeFN is higher than what

from the LSTM model, this is because of the high POD produced by the DeFN. Meanwhile,

DeFN produces much higher FAR which reduces the reliability of the positive predictions

from the DeFN. The difference of the skill scores indicates that taking time series data into

account can improve solar flare forecasting. As discussed in subsection 5.5.4, we should

use similar testing sets when citing the various models since different train/test splitting

can produce different skill scores. The notations for LSTM models are defined as follows:

LSTM-15 18 and LSTM-2015 are the models used in this paper. LSTM-15 18 uses ARs

from year 2015 to year 2018 for testing and LSTM-2015 uses ARs in year 2015 for testing.

LSTM-Liu uses the model reported in Liu et al. [2019] which uses ARs in year 2015 for

testing. Among those evaluation metrics, [1] Accuracy (ACC) is the least useful since the

data set is highly biased (flare events are rare so the majority samples in the testing set

are negative), predicting those negative samples correctly leads to a high accuracy, however

not much predictability for strong flare events may actually be achieved. [2] Precision and

POD reflect the model’s ability of making positive predictions: Precision is the fraction of

correctly predicted samples among all predicted positive samples. POD is the fraction of

correctly predicted positives among the actual positive samples in the testing set. Therefore

Precision provides more useful information about predictability of rare events, while POD

by itself is not representative of the predictive skills. From Table 5.5, our model produces
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Precision scores within the same range as Liu et al. [2019], and is better than the previous

works listed. [3] HSS and TSS are often considered as good metrics for evaluating model

predictability in binary classification tasks. However, TSS benefits from the large number of

correctly predicted negative samples (TN) so that it is much higher than the HSS in all tests.

HSS lessens the importance of true negatives (TN) but it is more sensitive to the fraction

of positive samples in the testing set: the value of HSS will be higher if there are more

positive samples in the testing set (which can be artificially achieved by creating a testing

set that contains larger fraction of positive samples than the actual data). Our model gives

better HSS than previous models (MLP, SVM and DeFN) that do not use time sequences

and also has similar performance as the recently published results [Liu et al., 2019] using

LSTM, which validates the correctness of this work. [4] The FAR for predicting ≥ C and

≥ M flares are all less than 0.1, which means that more than 90% negative predictions from

our model are correct. This contributes greatly to the high HSS values. Notice that both the

POD and FAR in our results are lower than those from LSTM-Liu, and our model produces

fewer false alarms.

The details of our and the Liu et al. [2019] LSTM models are different but they obtain

similar skill scores according to Table 5.5. This suggests that both LSTM models extract

most of the useful information from the SHARP parameters and further improvement will

require using more information from the observation.

5.5.4 Choosing different testing years

As described before in section 5.2.2, it is important to totally separate the training and testing

samples. However, whether choosing different years of flares for testing can have different

skill scores is still unclear since the previous works all used data before 2015 for training

and after 2015 for testing. In this subsection, we conduct the training-testing process on

different combinations of training and testing years. In Figure 5.3, we present the box plots

of skill scores for twenty independent runs with the testing samples being one of the years
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Metric Model ≥ M class ≥ C class Any Class
POD MLP 0.812 0.637 -

SVM 0.692 0.746 -
DeFN 0.947 0.809 -

LSTM-Liu 0.881 0.762 -
* LSTM-2015 0.685 0.643 0.625
* LSTM-15 18 0.730 0.621 0.530

Precision MLP 0.143 0.451 -
SVM 0.106 0.497 -
DeFN 0.180 0.529 -

LSTM-Liu 0.222 0.544 -
* LSTM-2015 0.311 0.677 0.670
* LSTM-15 18 0.282 0.635 0.702

ACC MLP 0.855 0.778 -
SVM 0.824 0.803 -
DeFN 0.858 0.822 -

LSTM-Liu 0.909 0.829 -
* LSTM-2015 0.929 0.858 0.814
* LSTM-15 18 0.945 0.883 0.800

HSS MLP 0.204 0.389 -
SVM 0.141 0.472 -
DeFN 0.263 0.528 -

LSTM-Liu 0.347 0.539 -
* LSTM-2015 0.394 0.567 0.519
* LSTM-15 18 0.382 0.557 0.473

TSS MLP 0.669 0.449 -
SVM 0.520 0.562 -
DeFN 0.802 0.634 -

LSTM-Liu 0.790 0.607 -
* LSTM-2015 0.623 0.559 0.509
* LSTM-15 18 0.681 0.553 0.439

FAR MLP 0.143 0.188 -
SVM 0.172 0.184 -
DeFN 0.145 0.175 -

LSTM-Liu 0.091 0.155 -
* LSTM-2015 0.062 0.084 0.116
* LSTM-15 18 0.049 0.068 0.092

P/N DeFN 0.034 0.244 -
LSTM-Liu 0.029 0.243 -

* LSTM-2015 0.040 0.269 0.371
* LSTM-15 18 0.026 0.189 0.403

Table 5.5: Comparison of skill scores for different models. Lines with * are results from this
work. LSTM-2015 uses the same time period ase DeFN while LSTM-15 18 uses the same
time period as LSTM-Liu for the testing data set. The number ratio of positive and negative
samples are also reported in this table.
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from 2011 to 2015, and the other four years are used for training. (As shown by Table 5.2,

there were very few large flares from 2016 to 2018, so those years are not suitable for testing

and would not contribute much to training either.)

Figure 5.3 shows that training on 2011 to 2014 and testing on 2015 gives the best HSS

and FAR scores for predicting both ≥ C and ≥ M flares. The trend is different for the TSS

for predicting ≥ M flares, because TSS is dominated by the POD values, but this does not

mean truly good prediction for rare events, such as ≥ M flares. Good prediction of rare

events requires very few false alarms and this will produce high HSS. Apparently, the model

is quite ”restrained” on making positive predictions for the year 2015 data, which improves

its FAR and HSS scores. It is clear from Figure 5.3 that evaluating the model performance

on different years will introduce significant differences in the results.
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Figure 5.3: The box plots of four skill scores for different training and testing year choices
in the 2011−2015 data set. Note that smaller FAR means better performance. The left and
right columns show results for predicting flares of class ≥M and ≥ C flares, respectively. The
yellow line is the median and the green triangle is the mean of the 20 independent training
runs. The lower and upper bounds of the boxes correspond to the first and third quartiles
Q1 and Q3. The upper and lower error bars are at Q3+1.5(Q3−Q1) and Q1−1.5(Q3−Q1),
respectively. The red stars show the data points outside the error bars (outliers). The mean
value and median are calculated including the outliers.

To investigate why the model produces fewer false alarms on year 2015 than other years,

we set up two linear regression models (LRM) as the baseline. These two baseline models use
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the same training and testing samples as the LSTM model. The time sequences of SHARP

parameters are reshaped to one-dimensional vectors as the input of the first linear regression

model, denoted by LRM-A. The elements of the reshaped one dimensional vector is in the

following order: [f 1
1 , . . . , f

1
T , . . . , f

N
1 , . . . , fN

T ], fn
t is the value of nth feature at time t. For the

second linear regression model, denoted by LRM-B, the mean values of the time sequences

are taken as input. Twenty independent runs are conducted and the mean values of the

skill scores from the LSTM model and two baseline models are shown in Figure 5.4. The

difference between the LSTM model and the LRM-A is the non-linearity introduced by the

LSTM network. The LRM-B eliminates the time sequence information and only inputs the

average level of activity into the model. From Figure 5.4: [1] For predicting ≥ M flares, the

LSTM gives the best HSS, followed by LRM-A and LRM-B. For predicting ≥ C flares, the

LSTM model has similar HSS as the LRM-A model and both are better than the LRM-B

model. This illustrates the importance of the time sequence information. [2] The linear

regression models give larger POD and FAR than the LSTM. Therefore, the LSTM model

has less tendency to make positive predictions, which results in better HSS. The optimal

case is when the model produces high POD while also keeping a low FAR, which is not the

case for an LSTM. This is the reason why an LSTM cannot provide a high TSS compared

to linear regression models.

The entire time sequence data taken by LRM-A results in better HSS, TSS and FAR

scores than LRM-B that uses the average parameter values of the input sequence. This

shows that even for simple linear models, time sequence information helps the model to

make better predictions. Notice that the LSTM model gives better HSS and FAR than the

linear regression models, while the TSS and POD are similar or even smaller than LRM-

A. This means that the non-linearity introduced by LSTM networks is effective to improve

HSS and FAR but not for TSS and POD. All three models give the lowest FAR when the

model is tested on year 2015. All three models give the lowest FAR when the model is

tested on year 2015. This indicates that, regardless of the different algorithms, the temporal
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averaged SHARP parameters are relevant to the result of FAR, as well as the time sequence

parameters. In conclusion, the LSTM model produces more reliable positive predictions than

the simple linear regression models although it will miss more positive events. The model

gives different results when being tested/trained on different years of data, apparently due

to differences in the average SHARP parameters.

Figure 5.4: The comparison between LSTM model and two baseline linear regression models.
Four skill scores are presented. Left column is the prediction for ≥ M flare and right column
is for ≥ C flares. The Linear Regression A takes the whole time sequence as input (same
as LSTM) and the Linear Regression B takes the mean value of the time sequence for each
SHARP parameter.
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5.5.5 Training/Testing on different solar cycle phases

According to subsection 5.5.4, training and testing on different years leads to very different

results. One possible reason for the difference could be the changes in the data processing

procedure. However, from Hoeksema et al. [2018], although the data processing techniques

were modified in January, 2015, those changes will not have major effects on the data prod-

ucts used in this work.

To investigate if there are any intrinsic differences of the active regions from each year

in the solar cycle, we first do the training and testing separately on each year. Since the

number of active regions and flares is very small in years 2016 to 2018, those three years are

grouped together. Four skill scores are collected to evaluate the model performance: HSS,

TSS, POD and FAR. The process for selecting data samples is:

1. For active regions in each year, randomly select 25% for testing and rest of them for

training.

2. Extract 24h time series of SHARP parameters for training and testing from active

regions selected in step 1 and label the time series with the maximum flare class in the

next 24 hours from the GOES flare record.

3. Randomly drop negative samples in the training and testing sets to fix the ratio of

positive samples and negative samples to be 0.05 for predicting ≥ M flares and 0.3 for

predicting ≥ C flares.

Notice that in step 3, we fix the ratio of positive to negative samples to make the HSS directly

comparable across different years. In addition, having a fixed positive/negative sample ratio

makes the HSS and TSS behave similarly. We perform multiple runs with randomly dropping

negative samples, so in fact the runs use different data sets. For each run, the skill scores

are the mean values of the model outputs from the third to the tenth epochs. This range

of epochs is chosen based on the typical evolution of skill with epochs: there is an initial

rapid improvement, followed by a plateau with random oscillations, and finally worsening
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trends due to overfitting. The averaging over multiple epochs reduces the random variation

due to the relatively small data sets. In addition, the mean values better reflect the general

performance of the model than picking the best epoch for each run.

The box plots of skill scores for predicting ≥ C flares are shown in Figure 5.5. Each

box contains 100 data points from 100 runs using randomly selected active regions for train-

ing/testing and dropping negative samples in the data sets. Because there are few active

regions and flare events during the three years from 2016 to 2018 (see Table 5.2), the skills

scores are less centered and the number of outliers is larger than those from other years.

The results show that training and testing on the data after 2015 produces better skill scores

than the earlier years. The FAR has the most substantial difference for data sets after and

before 2015, which is also the major reason for better HSS and TSS since the POD does not

vary much. We are not showing results for predicting ≥ M flares on each year separately

because the ≥ M flares are too rare to give any statistically significant results on such small

data samples.

The results in Figure 5.5 show that the prediction model has better performances for the

years 2015-2018 than for 2011-2014. To demonstrate this difference with better statistics, we

conduct the training/testing process on two data sets using these two time periods, and com-

pare the results. The data selecting strategy is the same as what we did for training/testing

on each year but now there are enough M and X flares to produce statistically robust results.

The skill scores for predicting ≥ C and ≥ M flares are shown in Figures 5.6 and 5.7, respec-

tively. For predicting ≥ C flares, the HSS, TSS scores are clearly and significantly better

for 2015-2018 than for 2011-2014. The box plots of POD overlap with each other while the

box plots of FAR are well separated. This result indicates that for capturing ≥ C flares in

the testing set, the model has similar performance when trained on the data samples from

two phases in a solar cycle. However, the model will produce much fewer false alarms if it

is trained on data samples from the declining phase in a solar cycle. For predicting ≥ M

flares, according to Figure 5.7, the difference of skill scores is less obvious. In general, the
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Figure 5.5: The box plots of skill scores for predicting ≥ C flares on different years from
2011 to 2018. The symbols in the figures are the same with previous box plots.

results from 2015-2018 show larger variance because there are fewer ≥ M flares in this time

range. The box plots of HSS, TSS and POD overlap to a large extent except the model gives

a higher FAR when trained/tested on year 2015-2018.

There is a significant difference between 2011-2014 and 2015-2018 for predicting ≥ C

flares, but not for ≥ M flares. A simple explanation could be different flare intensity distri-

butions in two phases of a solar cycle. For example, if the frequency of C and M flares are

better separated from each other in one of the time periods (i.e. there are relatively fewer

flares with energies near the C/M class boundary) then it will help the model to correctly

identify ≥ M flares. To check this possibility we show the distribution of flare events as a

function of energy on a log-log scale for the two time periods in Figure 5.8. The histograms

are well approximated with straight lines, indicating that the flare intensity distributions

approximately follow power laws [Lu and Hamilton, 1991]. While the amplitudes are differ-
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ent by about a factor of 3 (there are more flares during solar max than during solar min),

the slopes of the two lines are very close to each other. So there is no obvious difference in

the shape of the flare intensity distributions between the two phases of a solar cycle. There

seems to be some excess of flares near the C/M class boundary for 2015-2018, which may

contribute to the worse performance on predicting ≥ M flares than ≥ C flares for this time

period. However, we set the threshold of positive and negative classes to C8.0. All these

excess of flares are labeled as positive. The results show no difference in skill scores for two

time periods. Thus we conclude that difference of the skill scores in Figure 5.6 and 5.7 can-

not be simply explained by different flare intensity distributions in the two time periods. A

further possible explanation could be the coupled eruptions (or sympathetic flares) between

different active regions [Moon et al., 2002, Titov et al., 2012]. Sometimes one flare occurring

in one active region leads to the occurrence of another flare(s) in other active regions. There

are more active regions from year 2011 to 2014 and it is anticipated that more sympathetic

flares occur in this time range. The SHARP parameters may not contain enough information

to predict sympathetic flares.

5.6 Conclusion

In this paper, we build a data set covering active regions from 2010 to 2018 from Joint

Science Operations Center (jsoc.stanford.edu). Each data sample is the time sequence

of twenty SHARP parameters, which represent the magnetic field properties of an active

region. We develop an LSTM network to predict the maximum flare class Γ in the next 24

hours produced by an active region. The prediction task is reduced to a binary classification

when Γ is a combination of classes above a certain threshold. We consider three different

cases for Γ: ≥ M , ≥ C and ≥ A. The last case corresponds to predicting any flares. The

training/testing splitting is based on active regions, which guarantees that the model is

tested on data samples that it has never seen previously. The skill scores produced by the
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Figure 5.6: The box plots of skill scores for predicting ≥ C flares. The training/testing are
conducted within one of two time periods: 2011-2014 and 2015-2018. The symbols in the
figure are the same as in previous box plots.

model vary substantially for different years and we investigate the solar cycle dependence of

the model performance. The main results of this paper are summarized as follows:

1. Flare prediction models should minimize the cost function that is not necessarily pro-

portional or even vary monotonically with the various skill scores. This means that

comparison of model performance requires caution.

2. The LSTM based model achieves better HSS for predicting solar flares than the pre-

vious approaches such as MLP, SVM and DeFN. Using the time series information

improves relevant skills. Our results are also comparable with the recently published

work using a similar LSTM method.

3. Although more than 50% percent of skill scores of LSTM model can be acquired from

simple linear regression models, the non-linearity introduced by LSTM reduces the
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Figure 5.7: The box plots of skill scores for predicting ≥ M flares. The training/testing are
conducted within one of two time periods: 2011-2014 and 2015-2018.. The symbols in the
figure are the same as in previous box plots.

number of false alarms and improves the prediction skills of the model.

4. Previous works using active region data after 2015 for testing could introduce bias into

the skill scores. If the model is trained on 2011-2014 and tested on 2015, it produces

better skill scores than other combinations of training and testing years. This appears

to be related to the difference of the time sequence averaged values of the SHARP

parameters used for the input, although the physical interpretation is not revealed. A

possible way to avoid this issue is to mix active regions from different years both in

the training and the testing sets.

5. The skill scores from the model show statistically significant variation when different

years of data are chosen for training and testing. The years 2015 to 2018 have better

TSS, HSS and FAR for predicting ≥ C flares than the years 2011 to 2014 when the
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Figure 5.8: The histogram for C and M flares in two groups of years. The plot is in log-log
scale and the histograms are straight lines which shows the intensity of flares agrees with
the power-law distribution.

difference in flare occurrence rates is properly taken into account.

Based on the results presented in this paper, the LSTM is a valid method for the solar flare

prediction task. The skill scores from this paper are very close to those generated by other

different LSTM models indicates that the information contained in the SHARP parameters

is limited. In future work, we plan to use more observational information to further improve

the flare prediction skills.
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CHAPTER 6

Conclusions

As presented in the previous chapters, there are three major studies I conducted in this

dissertation:

1. I have developed a novel MHD with Adaptively Embedded Particle-In-Cell (MHD-

AEPIC) model and validated it through a geomagnetic storm simulation.

2. I have investigated the role of kinetic physics in magnetospheric sawtooth oscillations.

3. I have developed a new, machine learning-based solar flare forecasting model.

More details about the conclusions of the presented studies are described in this chapter. In

the end, I propose possible further investigations on these topics.

6.1 Summary of Results

In the first study of this dissertation, we have presented a newly developed MHD with Adap-

tively Embedded Particle-In-Cell (MHD-AEPIC) model. The PIC grid cells can be turned

on and off during the simulation due to the adaptive grid feature introduced by the PIC

model FLEKS. This feature enables the PIC regions to move with the reconnection sites to

save the computational cost substantially. We introduce three physics-based criteria to de-

termine the reconnection regions in the magnetotail. A geomagnetic storm event happened

on 2011-08-06 with minimum Dst around −120nT is simulated by the MHD-AEPIC model.
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The flapping motion of the magnetotail current sheet during the storm emphasizes the ad-

vantage of the adaptation feature of the MHD-AEPIC. We also simulate the same event

using ideal MHD and Hall MHD models, and we examine the results at multiple physical

scales:

1. The SYM-H and SME indexes are investigated as the global scale features, reflecting

the equatorial and auroral region disturbances, respectively. All three models produce

reasonable agreements of the global scale disturbances such as the main phase of the

storm or the increase of the auroral electrojet with the observations. However, no

significant difference is found among the three different models, which implies that

the global magnetosphere configuration of the three models is very close. The kinetic

model embedded in the magnetotail does not improve the global scale feature for this

specific geomagnetic storm.

2. For the mesoscale features, we compare the magnetic field components and ion profiles

between the Geotail observation and the simulation outputs. In this storm event,

MHD-AEPIC and ideal MHD models produce a similar agreement with the in-situ

observations of Geotail. We also compare the three models with respect to flux rope

structures in the current sheet. Only one major flux rope can be observed from the

ideal MHD simulation at the selected time, while Hall MHD and MHD-AEPIC tend

to produce more flux ropes at a wider range along the dawn-dusk direction.

3. The MHD-AEPIC model well reproduces the electron scale kinetic physics. We collect

electron macro-particle velocities at the magnetic reconnection’s inflow, outflow, and

electron diffusion regions (EDR). The velocity distribution functions (VDFs) at the

inflow and outflow regions agree well with the theoretical arguments and other PIC

simulations. The VDF at EDR shows excellent agreement between the simulation and

the MMS3 observation [Hwang et al., 2019]. This demonstrates that MHD-AEPIC can

produce electron scale physics within a single self-consistent global model.
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In the second study of this dissertation, we use the MHD with Embedded Particle-In-Cell

(MHD-EPIC) model to investigate the role of kinetic effects in the magnetospheric sawtooth

oscillations. A PIC box is applied in the magnetotail to simulate the kinetic reconnection.

The external solar wind driving is constant with a southward IMF Bz. Both strong and weak

solar wind driving conditions are applied in the MHD-EPIC simulations. To emphasize the

significance of the kinetic model, we also perform the simulation using ideal MHD and Hall

MHD models with the strong solar wind driving conditions for comparison. The MHD-EPIC

model can produce sawtooth oscillations without a time-varying ionospheric outflow, while

MHD models cannot yield similar features. This suggests that the kinetic reconnection in the

magnetotail can solely reproduce the periodic loading and unloading process of the magnetic

flux. The reconnection rate in the nightside simulated by the kinetic model is possibly

closer to the reality that cannot dissipate the incoming magnetic flux from the dayside. The

magnetic flux can accumulate in the nightside and then triggers the dipolarization that is

pointed as the direct mechanism of the sawtooth oscillations [Zhang et al., 2020]. Hence, we

conclude that sawtooth oscillations might be an intrinsic feature of the magnetosphere. We

also acknowledge discrepancies between the simulation outputs and the observations, which

means ionospheric outflow is a significant contributing factor to the sawtooth oscillations.

In the third study presented in this dissertation, we switch from the first-principle models

to machine learning methods and investigate the solar flare forecasting problem. We build a

data set of solar flares covering active regions from 2010 to 2018 from Joint Science Opera-

tions Center (jsoc.stanford.edu). We employ an LSTM network to predict the maximum

flare class Γ in the next 24 hours produced by an active region. The LSTM model achieved

better HSS than previous models, and using the time-series information improves relevant

skills. Despite illustrating the advantage of the LSTM model, we also point out that the skill

scores show statistically significant variation when the training/testing splitting is performed

on different combinations of years. The years 2015 to 2018 have higher TSS, HSS, and FAR

for predicting ≥ C flares than the years 2011 to 2014, when the difference in flare occurrence
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rates is appropriately considered.

6.2 Future Work

The results from the first and second studies in this dissertation exhibit an interesting per-

spective: the effects of kinetic physics in a global magnetospheric simulation are not that

straightforward. If the external solar wind is strong and variant, it is unlikely that the kinetic

physics can affect larger physical scales, such as the global indexes. However, if the external

solar wind is constant, the magnetosphere is more likely to evolve along with its intrinsic

physical laws. Thus kinetic physics affects the global features. Hence, we are interested

in applying the MHD-AEPIC model to more magnetospheric simulations under various so-

lar wind conditions and model setups for future work. Here are several tasks that can be

explored in the future:

1. Covering both the dayside and tail reconnection sites with PIC regions in one simu-

lation. This would enable more realistic reconnection at the magnetopause, which is

significant for the energy transported into the magnetosphere.

2. Using the MHD-AEPIC model to simulate more geomagnetic storms, eventually ex-

treme ones. So far, we only have one storm event that is simulated with kinetic physics.

The overall performance of the MHD-AEPIC model on storm simulations is still un-

known.

3. Studying the particle energization process in the magnetosphere. Current simulations

only investigate the particle velocity distributions. However, suprathermal particles

are often observed. The MHD-AEPIC model is perfect for investigating their heating

and accelerating mechanisms in a global context.

The solar flare forecasting in this dissertation shows tremendous potential for the machine

learning model in space weather applications. However, there are still open questions in the
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field, and several of the most important ones are listed below:

1. Enough information?

Although the LSTM model achieves good skill scores with the SHARP parameters as

input, it is still far from enough to establish a reliable forecasting system. One possible

reason is that the SHARP parameters lose too many features from active regions. Solar

images from magnetograms and extreme ultraviolet channels potentially contain more

information. Building machine learning models utilizing these extra data would help

understand what information is needed to make a good forecast.

2. Interpretable models?

Can we distill some knowledge from a machine learning model and improve our under-

standing of the sun-earth system? So far, the machine learning models are like black

boxes. Making interpretable machine learning models would help us improve the model

performance and understand the critical factors in the complicated physical processes

in space weather.

3. Too often too quiet?

Space weather data sets are typically imbalanced: many days of quiet conditions and a

few hours of storms, or thousands of weak flares and dozens of strong flares. This poses

a serious problem in any machine learning algorithm that finds patterns in the data.

It is also problematic for defining meaningful metrics that actually assess the ability

of a model to predict interesting events, as we discussed in the Chapter 5. The first-

principle models can produce a large amount of data when certain extreme conditions,

like storms or X flares, are rare to happen in nature. One possible solution is to use

simulation data in the machine learning pipeline.
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APPENDIX

Reconnection Due to Numerical Resistivity

It is a common practice to rely on numerical resistivity to mimic reconnection physics in

global ideal and Hall MHD simulations. Analytic solutions of ideal MHD obey the frozen-in

condition: the magnetic flux through a surface co-moving with the plasma (i.e. the ion fluid)

does not change. For Hall MHD the magnetic flux is frozen into the motion of the electron

fluid. A consequence of the frozen-in condition is that if two plasma elements are connected

by a field line, then they remain connected forever, which means that magnetic reconnection

cannot take place.

In reality, and also in the kinetic PIC model, the electrons and ions can ”detach” from

the magnetic field lines in the ion and electron diffusion regions, respectively. In effect, this

allows the magnetic field lines to reconnect inside the electron diffusion region where the

frozen in condition does not apply. The simplest mathematical description of this process is

adding an Ohmic resistive term ηj into the induction equation:

∂B

∂t
= −∇× [−ue ×B+ ηj] (.1)

For constant resistivity η one can write this as

∂B

∂t
= −∇× [−ue ×B] + η′∇2B (.2)

where we used j = (1/µ0)∇×B, defined the magnetic diffusivity η′ = η/µ0 and exploited the
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divergence-free condition ∇ · B = 0. The usual argument in favor of using the ideal MHD

model is that numerical resistivity will behave similarly to the diffusive term η′∇2B and

indeed, numerical experiments show that magnetic reconnection remains a robust feature of

”ideal MHD” simulations. On the other hand, one would expect numerical diffusion to go to

zero with increased grid resolution, which implies that reconnection should disappear from

a well-resolved solution. In this appendix, we take a closer look and resolve this apparent

contradiction.

The main argument is that an ideal MHD reconnecting current sheet behaves like a

discontinuity and therefore the derivatives of the solution across the current sheet do not

converge to a finite value. In particular, the current density, obtained from the derivative of

the magnetic field, goes to infinity as the grid resolution is increased, while the numerical

diffusion goes to zero. Their product, which determines the reconnection rate, remains finite.

The global reconnection rate in the magnetosphere, in fact, is mostly set by the external

conditions. On the dayside, the solar wind brings in magnetic flux at a rate of |ux|Bz.

A fraction of this flux will reconnect at the dayside magnetopause for Bz < 0. Since the

magnetic flux attached to the Earth cannot grow without bound, there has to be a matching

reconnection rate in the magnetotail, which completes the Dungey cycle. This means that

the global time averaged reconnection rate is predominantly set by the external solar wind

and IMF driver, and not by the details of the physics at the reconnection sites [Gonzalez

et al., 2016].

We now look into more detail, how the numerical scheme actually achieves this. For finite

volume methods solving the

∂U

∂t
+∇ · F = 0 (.3)

equation, the numerical flux is calculated at the cell interfaces, and it depends on the right

and left states UR and UL extrapolated from the right and left directions, respectively, and
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the characteristic wave speeds. The Lax-Friedrichs flux is the simplest example:

FLF =
F (UR) + F (UL)

2
− 1

2
λmax(U

R − UL) (.4)

where F is the physical flux function. The first term contains the physical flux as the

average of F (UR) and F (UL). The second term introduces numerical diffusion to preserve

the monotonicity of the numerical solution. The numerical diffusion is proportional to the

fastest wave speed λmax corresponding to the fast magnetosonic wave in ideal MHD. The

UR − UL difference is some fraction of the difference between the cell center values on the

two sides of the cell:

(UR − UL)f = αf (Uk+1 − Uk) (.5)

Here f represents the index of the cell face between cells indexed by k and k+1. The fraction

0 ≤ αf ≤ 1 depends on the numerical scheme. For a first order scheme αf = 1. For a higher

order scheme, the fraction depends on the limiters used in the algorithm and the differences

of U in neighboring cells.

For sake of simplicity, let us consider a current sheet parallel to the X − Y plane and

assume that Bx changes sign across the current sheet as we move in the Z direction. The

physical flux function in the Z direction is F = vzBx − vxBz. The numerical flux function

at the cell interface f is

FLF
f =

F (UR
f ) + F (UL

f )

2
− 1

2
λmax,fαf (Bx,k+1 −Bx,k) (.6)

The numerical diffusive part of the flux can be written as

F diff
f = −λmax,fαf∆z

2

Bx,k+1 −Bx,k

∆z
(.7)
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which is a numerical approximation of η′∂zBx with the numerical diffusivity

η′ =
λmax,fαf∆z

2
(.8)

For a smooth solution ∂zBx converges to a finite value as the grid is refined, while η′ converges

to zero because ∆z → 0. For a discontinuous solution, however, the difference Bx,k+1 −Bx,k

as well as λmax,f and αf all become independent of the grid resolution as ∆z → 0. This is

a direct consequence of the fact that neither the ideal MHD equations, nor the numerical

scheme has any intrinsic length scale other than the grid cell size. This means that the

current sheet will be resolved with a fixed number of grid points following a fixed numerical

profile (a series of the discrete values Bx,k across the current sheet) independent of the grid

resolution for small enough ∆z. Therefore the numerical reconnection rate will converge to

a finite value, determined predominantly by the external conditions (the external field B±ext
x

and the converging velocity u±ext
z outside the current sheet), instead of zero. In physical

terms, the numerical resistivity η′ goes to 0, but the current density (1/µ0)∆Bx/∆z goes to

infinity and their product remains finite.

The maximum possible numerical reconnection rate is λmax,f |B+ext − B−ext|/2 corre-

sponding to a current sheet where the magnetic field jumps from BL
x = Bx,k = B−ext

x to

BR
x = Bx,k+1 = B+ext

x across a single cell face, and λmax,f is the maximum (or average) of

the fast magnetosonic speeds taken at the two cell centers next to the face. The fraction αf

is 1 at this interface independent of the nominal order of the scheme, because all schemes

drop to first order at this type of numerical discontinuity due to the limiters. This maximum

numerical reconnection rate far exceeds the typical physical reconnection rate ≈ 0.1vA|Bext|,

where vA is the Alfvén speed, found in PIC simulations. The actual numerical profile re-

alized by the numerical scheme will have multiple points across the current sheet resulting

in a lower numerical diffusion rate than the theoretical maximum. In a 2 or 3 dimensional

system, the global reconnection rate will depend on many factors, including the presence of
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Hall physics, which has a major impact on the structure of the reconnection site [Birn et al.,

2001a] and the achievable reconnection rate.

Figure .1 shows that these theoretical considerations are indeed valid in a compli-

cated 3D magnetosphere simulation. We have performed two ideal MHD simulations with

∆x = 1/4RE and 1/8RE grid resolutions in the magnetotail, respectively. We compare the

numerical solution across the current sheet at the same place and same time. As the figure

shows, the number of grid cells, represented by the symbols, across the current sheet and

the magnetic field values at the cell centers are essentially the same in the two simulations.

The only change is the physical distance between the cells, which is reduced by a factor of

2 on the finer grid. As a result, the current density is twice higher, while the numerical dis-

sipation rate is half of those obtained on the coarser grid. In the end, the reconnection rate

is essentially the same in the two simulations, which results in essentially the same global

solution.
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Figure .1: (a) The Bx profiles across the current sheet from two simulations with different
grid resolutions in the magnetotail. The profiles are taken along the x = −20RE and y = 0
line from z = −5RE to 5RE. The symbols show the discrete values at the grid cell centers.
(b) The Jy current profiles taken at the same position as Bx in panel (a). (c) The meridional
cut of the simulation domain with Jy and magnetic field lines for 1/4RE grid resolution in
the magnetotail. (d) Same physical quantities as panel (c) but with 1/8RE grid resolution
in the magnetotail.
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G. Tóth, Y. J. Ma, and T. I. Gombosi. Hall magnetohydrodynamics on block adaptive grids.
J. Comput. Phys., 227:6967–6984, 2008. doi: 10.1016/j.jcp.2008.04.010.
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Gábor Tóth. Flexible, efficient and robust algorithm for parallel execution and coupling of
components in a framework. computer Physics communications, 174(10):793–802, 2006.
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