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ABSTRACT

We calculate the cobordism ring of stably almost complex manifolds with involution, and
investigate the equivariant spectrum which represents it. We introduce the notion of geometrically
oriented spectra, which extends the notion of complex oriented spectra, and of which the geometric
cobordism spectrum is the universal example. Other examples of geometrically oriented spectra
include the Eilenberg-Maclane spectrum associated to a constant Mackey functor, and the connective
cover of equivariant complex K theory. On the algebraic side, we define and study filtered equivariant
formal group laws, which are the algebraic structures determined by geometrically oriented spectra.
We prove some of the fundamental properties of filtered equivariant formal group laws, as well as a
universality statement for the filtered equivariant formal group law determined by the geometric
complex cobordism spectrum.

v



CHAPTER 1

Introduction

If E is a commutative ring spectrum, then a complex orientation of E is a cohomology class
x ∈ Ẽ2(CP∞) whose restriction to CP1 ⊂ CP∞ corresponds to the unit 1 ∈ E0

∼= Ẽ2(CP1).
Such a complex orientation of E determines a well-behaved analogue of chern classes in E-
cohomology. Important examples of complex oriented spectra include the Eilenberg-Maclane
spectrum HZ, the complex K-theory spectrum K, and the complex cobordism spectrum MU .
In fact, MU is the universal complex oriented spectrum, which means that complex orientations
of E correspond to ring spectrum maps MU → E. For this reason, the spectrum MU plays a
distinguished role in stable homotopy theory.

Algebraically, complex orientations correspond to formal group laws. More precisely, a complex
orientation of E determines a formal group law FE(y, z) ∈ E∗[[y, z]], which encodes much
of the structure of the spectrum E. For example, the formal group law associated to HZ is
FHZ(y, z) = y + z, and the formal group law associated to K is FK(y, z) = y + z − vyz, where
v ∈ K∗ is the Bott element. In his celebrated theorem, Quillen [35] proved that the formal group
law FMU(y, z) ∈ MU∗[[y, z]] associated to the complex cobordism spectrum MU is universal,
which means that formal group laws over a commutative ring A correspond to ring homomorphisms
MU∗ → A. This result has served as an organizing principle for homotopy theory.

Seemingly unrelated to complex orientations and formal group laws is the geometric complex
cobordism ring Ω∗. Elements of Ω∗ are represented by stably almost complex manifolds, and we
declare [M ] = 0 in Ω∗ if there is a stably almost complex manifold W with boundary ∂W = M . By
work of Pontrjagin and Thom ([26], [27], [32]), there is a ring isomorphism Ω∗

∼=−→MU∗ which,
combined with Quillen’s theorem on the universality of MU∗, provides a fascinating link between
the topology of manifolds and the algebraic geometry of formal groups.

There is a G-equivariant analogue of this story when G is an abelian compact Lie group. In
[5] and [6], the authors develop the theory of complex oriented G-spectra, and their associated
G-equivariant formal group laws. They prove that the G-equivariant Thom spectrum MUG, which
has been studied extensively ( [11], [21], [22], [24], [33]), satisfies the desired homotopical universal
property, namely that complex orientations of a G-spectrum EG correspond to ring G-spectrum
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mapsMUG → EG. Moreover,MUG
∗ satisfies the expected algebraic universal property, namely that

G-equivariant formal group laws over a commutative ring A correspond to ring homomorphisms
MUG

∗ → A. This was first proved by Hanke and Wiemeler [14] in the case G = C2, and later by
Hausmann [15] for any abelian compact Lie group G using methods from global homotopy theory
[29].

There is however, one major result which does not generalize to the G-equivariant setting. The
geometric cobordism ring ΩG

∗ , whose elements are cobordism classes of stably almost complex
G-manifolds, does not coincide with the stable cobordism ring MUG

∗ when G is non-trivial. This
is related to the fact that transversality is not a generic property in the equivariant setting, so one
can not construct an inverse to the equivariant Pontrjagin-Thom map ΩG

∗ →MUG
∗ . For this reason,

calculating the geometric complex cobordism ring ΩG
∗ has proved difficult. In particular, the stable

cobordism ring MUG
∗ has been calculated in many cases (see [1], [18], [30], [31]), but there have

been no explicit calculations of ΩG
∗ for G a non-trivial group. Prior to the current work, it is known

only that ΩG
∗ is a free MU∗-module concentrated in even degrees when G is abelian [7], and when

G = D2p is the dihedral group of order 2p [2].
Since G-equivariant geometric complex cobordism is so poorly understood, we restrict to the

case G = C2 where we aim to develop a complete picture. One major accomplishment of the
present paper is a complete calculation of the C2-equivariant geometric complex cobordism ring
ΩC2
∗ (Theorem 3.0.1). Our calculation is based on the observation that there is a C2-spectrum ΩC2

whose coefficient ring naturally coincides with the geometric cobordism ring ΩC2
∗ . We call ΩC2 the

geometric cobordism spectrum, as opposed to the stable cobordism spectrum MUC2 . We extend our
calculation of ΩC2

∗ by calculating the entire RO(C2)-graded coefficients of ΩC2 (Theorem 3.0.3),
which are much more complicated than the Z-graded part ΩC2

∗ . Of particular importance is a certain
subring ΩC2

� ⊂ ΩC2
? , which we call the extended coefficients of ΩC2 , or the good range of ΩC2

? (see
section 2 for definition). This subring of ΩC2

? is especially well-behaved, and plays a prominent role
in our theory of “geometric orientations”.

Motivated by our analysis of ΩC2 , we develop a theory of geometrically oriented C2-spectra,
which extends the theory of complex-oriented C2-spectra. A geometric orientation of EC2 is a ring
C2-spectrum map ΩC2 → EC2 , subject to several mild flatness hypotheses (see Definition 3.0.4).
Our theory of geometrically oriented C2-spectra is interesting because of the wealth of naturally
occuring examples. For instance, the Eilenberg-Maclane C2-spectrum HZC2

is geometrically
oriented, as is the connective cover kC2 of C2-equivariant K-theory. We establish a connection
between geometrically oriented C2-spectra and thom isomorphisms for certain C2-equivariant
complex vector bundles (see 5.1.6 for a precise statement). We also develop a close link between the
theory of geometrically orientedC2-spectra and that of complex orientedC2-spectra. More precisely,
we prove that by inverting an element τ ∈ EC2

? , one can “stabilize” a geometrically oriented C2-
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spectrum EC2 to obtain a complex oriented C2-spectrum ÊC2 . We illustrate the general theory by
calculating the extended coefficient ring and stabilization of the geometrically oriented C2-spectra
ΩC2 , kC2 , and HZC2

(Theorem 3.0.7). For completeness, we calculate the full RO(C2)-graded
coefficients of ΩC2 and kC2 in section 6.1.

On the algebraic side, we develop a theory of filtered C2-equivariant formal group laws, which
are the algebraic structures determined by geometrically oriented C2-spectra (Definition 3.0.8).
The algebraic structure present on a filtered C2-equivariant formal group law is incredibly rich. In
particular, any “complete flag”, by which we mean a sequence of 1s and σs with each occuring
infinitely many times, determines a direct sum decomposition of the filtered C2-equivariant formal
group law. These direct sum decompositions are related by change of basis matrices, whose entries
are represented geometrically by C2-equivariant projective spaces. For this reason, the classes
[CP(m + nσ)] ∈ ΩC2

∗ play a priveleged role in our theory. We analyze these classes and their
interaction with filtered C2-equivariant formal group laws in section 5.5. Finally, we prove an
algebraic universality statement for the filtered C2-equivariant formal group law determined by the
universal geometrically oriented C2-spectrum ΩC2 (Theorem 3.0.10).

The present paper is organized as follows. In section 2, we establish notation and make the
definitions necessary to state our main theorems, which we do in section 3. In section 4, we
calculate the geometric cobordism ring ΩC2

∗ , as well as the good range ΩC2
� of the RO(C2)-graded

coefficients of ΩC2 . In section 5, we introduce our new notion of geometrically oriented C2-spectra,
and illustrate the theory by calculating the good range of the RO(C2)-graded coefficients of HZC2

and kC2 . On the algebraic side, we introduce the notion of filtered C2-equivariant formal group
laws, which are the algebraic structures associated to geometrically oriented C2-spectra, and prove a
universality statement for the filtered C2-equivariant formal group law associated to ΩC2 . In section
6, we calculate the full RO(C2)-graded coefficients of kC2 and ΩC2 , which is more difficult than
our calculations of kC2

� and ΩC2
� . Finally, in the Appendix, we prove a technical lemma needed in

section 4, and we give our new definition of “homological” C2-equivariant formal group laws. We
prove a version of Cartier duality in this setting, which confirms that our definition is compatible
with the original “cohomological” formulation of C2-equivariant formal group laws given in [5].
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CHAPTER 2

Definitions and Background

In this section, we make the definitions necessary to state our results. We begin by recalling
some basic notions from representation theory and C2-equivariant homotopy theory. Let C2 be
the group of order 2. We write R and Rα for the trivial and sign representations of C2, so the real
representation ring of C2 is

RO(C2) = Z[α]/(α2 − 1),

where 1 = [R] and α = [Rα]. We write C and Cσ for the complex trivial and sign representations
of C2, so the complex representation ring of C2 is

R(C2) = Z[σ]/(σ2 − 1),

where 1 = [C] and σ = [Cσ]. We consider R(C2) as a subgroup of RO(C2) by the assignment
m+nσ 7→ 2m+2nα. We work primarily with complex C2-representations, and in many cases omit
the adjective “complex”. If V is a C2-representation, we write dimV for the complex dimension of
V and |V | = 2 dimV for the real dimension of V . For m,n ∈ {0, 1, 2, . . . ,∞}, we write Cm,n or
Cm+nσ for the C2-representation

C⊕ · · · ⊕C︸ ︷︷ ︸
m times

⊕Cσ ⊕ · · · ⊕Cσ︸ ︷︷ ︸
n times

.

We write SV for the one-point compactification of V , which is a based C2-space with basepoint
∞ ∈ SV . We write CP(V ) for the C2-space of one-dimensional subspaces of V .

Next, we recall some basic notions from C2-equivariant stable homotopy theory. We work in
the category SpC2

of C2-spectra indexed on the complete complex C2-universe U = C∞,∞ in the
sense of [20]. There are many other point-set models for the category of spectra and C2-spectra,
such as orthogonal spectra and symmetric spectra [17]. For a comparison, see [23]. Our results
are independent of the particular point-set model of C2-spectra used, so it is of no substantial
consequence that we choose to work in the aforementioned category. A C2-spectrum EC2 assigns
to each finite-dimensional subrepresentation V ⊂ U a based C2-space EC2(V ), together with a
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coherent family of maps
SW−V ∧ EC2(V )→ EC2(W ) (2.0.1)

for each inclusion of finite-dimensional sub-representations V ⊂ W of U , where W − V is the
orthogonal complement of V in W . The maps adjoint to 2.0.1 are required to be homeomorphisms.
If they are not, we obtain the definition of a C2-prespectrum. The inclusion of C2-prespectra into
C2-spectra has a left adjoint called “spectrification”, so we can associate to any C2-prespectrum
EC2 a spectrum which, by a mild but common abuse of notation, we also denote EC2 .

The primary algebraic invariant of a C2-spectrum EC2 is the C2-Mackey functor π∗(EC2), which
we can think of as genuine C2-equivariant analogue of an abelian group. See [34] for a thorough
treatment of Mackey functors. It suffices for our purposes to know that a C2-equivariant Mackey
functor M is a diagram of the form

M(C2/e) M(C2/C2)

tr

γ

res

such that γ ◦ γ = 1, γ ◦ res = res, tr ◦ γ = tr, and res ◦ tr = 1 + γ. If EC2 is a C2-spectrum, then
for any m ∈ Z we have a Mackey functor M = πm(EC2) satisfying

M(C2/C2) = EC2
m = [Sm, EC2 ]C2 , and

M(C2/e) = Em = [C2/e+ ∧ Sm, EC2 ]C2 ,

where [XC2 , YC2 ]C2 denotes the abelian group of maps from XC2 to YC2 in the C2-equivariant stable
homotopy category Ho(SpC2

). We can define Mackey functors πm+nα(EC2) for m+nα ∈ RO(C2)

similarly, and we write π?(EC2) for the RO(C2)-graded homotopy Mackey functor of EC2 . Since
the underlying homotopy groups of the C2-spectra with which we work in this paper are well
understood, we focus on calculating the value EC2

? of π?(EC2) at C2/C2. In the present paper, it
will be natural to consider the subgroup EC2

� ⊂ EC2
? given by

EC2
� =

⊕
m∈Z and n≥0

πC2
m−nσ(EC2).

We call EC2
� the extended coefficient ring of EC2

∗ , or the good range of EC2
? .

We now define the geometric and stable cobordism spectra ΩC2 and MUC2 , which are our
primary objects of study. If V and V are unitary C2-representations, let GrV(V ) be the C2-space of
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complex dimV -dimensional subspaces of V ⊕ V. Let

MUV
C2

(V ) = Thom
(
ξV(V )→ GrV(V )

)
be the Thom space of the tautological vector bundle ξV(V ) over GrV(V ). For a fixedC2-representation
V, MUV

C2
is a C2-prespectrum indexed on U , with structure maps

SW−V ∧MUV
C2

(V )→MUV
C2

(W )

induced by the vector bundle maps W − V ⊕ ξV(V )→ ξV(W ). If V is a C2-universe, then MUV
C2

is a commutative ring spectrum, by which we mean a commutative monoid in the stable homotopy
category Ho(SpC2

).

Definition 2.0.2. We define the C2-equivariant geometric complex cobordism spectrum ΩC2 by

ΩC2 = MUC∞

C2
,

and we define the C2-equivariant stable complex cobordism spectrum MUC2 by

MUC2 = MUC∞,∞

C2
.

The inclusion of C2-universes C∞ → C∞,∞ induces a map ΩC2 → MUC2 , giving MUC2

the structure of an ΩC2-algebra. In section 4, we will prove that the C2-spectrum ΩC2 represents
geometric C2-equivariant complex cobordism, in that the Z-graded coefficient ring of ΩC2 coincides
with the ring of cobordism classes of stably almost complex C2-manifolds with involution. In the
unoriented case, the analogous fact holds for any finite abelian group G, by work of Conner and
Floyd [4]. In the complex case, this is not known in general.

Next we review the notion of (non-equivariant) formal group laws. We refer the reader to [16] and
[28] for more information about formal group laws. If A is a commutative ring, then a formal group
law over A is a power series F (y, z) ∈ A[[y, z]] satisfying the expected identity, associativity, and
commutativity axioms. For example, ifA is any commutative ring, we have the additive formal group
law F (y, z) = y+z overA, and the multiplicative formal group law F (y, z) = y+z−yz overA. If
E is a complex oriented spectrum, then E∗(CP∞) = E∗[[x]] and E∗(CP∞ ×CP∞) = E∗[[y, z]],
and the pullback of x along the multiplication map CP∞ × CP∞ → CP∞ is a formal group
law FE(y, z) ∈ E∗[[y, z]] over the coefficient ring E∗ ∼= E∗. For example, it turns out that
FHZ(y, z) = y + z is the additive formal group law, and FK(y, z) = y + z − vyz, where v ∈ K2 is
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the Bott element. More shockingly, Quillen proved that

FMU(y, z) =
∑
i,j≥0

ai,jy
izj ∈MU∗[[y, z]]

is the universal formal group law. The elements ai,j ∈MU∗ generate MU∗ as a ring, and it is often
convenient to think of MU∗ in terms of the presentation Z[ai,j : i, j ≥ 0]/ ∼, where we kill the
relations enforced by the identity, associativity, and commutativity axioms of a formal group law.

In our presentation of ΩC2
∗ , we reference certain elements ci,j ∈ MU∗ which are related to

the elements ai,j ∈MU∗ by formal group theoretic data. Although the definition of the elements
ci,j is provided in our theorem statement, we define these elements in detail here for the reader’s
convenience. If u and x are variables, we can expand the power series FMU(u, x) ∈MU∗[[u, x]] in
the variable x as follows,

FMU(u, x) = u+ (
∑

a1,ju
j)x+ (

∑
a2,ju

j)x2 + (
∑

a3,ju
j)x3 + · · · ∈MU∗[[u]][[x]]

The constant term in this power series is u, so in the ring (u−1MU∗[[u]]) [[x]] = MU∗((u))[[x]], the
element FMU(u, x) is a unit. Its multiplicative inverse is some power series

1

FMU(u, x)
= d0 + d1x+ d2x

2 + · · · ∈MU∗((u))[[x]]

whose coefficients d0, d1, d2, · · · ∈MU∗((u)) are Laurent series’ in u. We define ci,j ∈MU∗ to be
the coefficient of uj in di, so that

di =
∑
j∈Z

ci,ju
j ∈MU∗((u)).

We note that ci,j = 0 if j < −i− 1.
Next, we establish the notation necessary to define filtered C2-equivariant formal group laws.

The category of (coassociative, cocommutative, counital) A-coalgebras is symmetric monoidal
under the tensor product ⊗A with unit A. We say D is an A-Hopf algebra if D is a group object in
the category of A-coalgebras. An example of such an object is the group algebra A[G] of a finite
abelian group G. The multiplication and antipode on the group object A[G] are induced by the
multiplication and inverse map on the group G. We will be interested in the case G = C∨2 is the
Pontrjagin dual of C2.

If x is an A-linear functional on D, we write 〈d, x〉 for the value of x at d ∈ D, and we write
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∩x for the comultiplication-by-x map

D D ⊗D D ⊗ A ∼= D.∆ 1⊗x

If D is an A-Hopf algebra equipped with an A-Hopf algebra map A[C∨2 ] → D, we write xσ ∈
HomA(D,A) for the functional 〈d, xσ〉 = 〈σd, x〉, and for any m,n ≥ 0, we write xm+nσ ∈
HomA(D,A) for the functional

〈d, xm+nσ〉 = 〈∆d, x⊗ · · · ⊗ x︸ ︷︷ ︸
m times

⊗xσ ⊗ · · · ⊗ xσ︸ ︷︷ ︸
n times

〉.

We can now state our definition of C2-equivariant formal group laws, and refer the reader to B for
further discussion.

Definition 2.0.3. A (homological) C2-equivariant formal group law (A,D) consists of a commuta-
tive ring A, an A-Hopf algebra D, a morphism of A-Hopf algebras A[C∨2 ]→ D, and an A-linear
functional x on D, such that

1. the sequence
0 A D D 0

η ∩x

is exact, and

2. if d ∈ D, then there exists m,n ≥ 0 such that

d ∩ xm+nσ = 0.

The final algebraic preliminary we need is the Rees construction, which arises in our calculation
of ΩC2

� . Suppose A is a commutative ring with an increasing filtration

F•A = (F0A ⊆ F1A ⊆ F2A ⊆ · · · ⊆ A).

The Rees algebra Rees(A) ⊆ A[t±1] is the subring of A[t±1] consisting of polynomials
∑
fit

i such
that fi = 0 if i < 0 and fi ∈ FiA if i ≥ 0. It is informative to think of Rees(A) as a deformation
with parameter t, generic fiber

Rees(A)/(t− 1) = A

and special fiber
Rees(A)/(t− 0) = Gr•A =

⊕
n≥0

FnA/Fn−1A.

8



CHAPTER 3

Statement of Results

Having developed the necessary background and notation, we can now state our results. Our
first major result is a calculation of the ring ΩC2

∗ of stably almost complex manifolds with involution.
We give a presentation of ΩC2

∗ as an algebra over the non-equivariant complex cobordism ring MU∗,
whose structure is well known.

Theorem 3.0.1. There is an isomorphism of graded rings

ΩC2
∗
∼= MU∗ [di,j, qj] /I

for i ≥ 1 and j ≥ 0, where

• I ⊂MU∗[di,j, qj] is the ideal generated by the relations

di,j+1(dk,` − ck,`) = (di,j − ci,j)dk,`+1

di,j+1(q` − p`) = (di,j − ci,j)q`+1

qj+1(q` − p`) = (qj − pj)q`+1

q0 = 0,

for i, k ≥ 1 and j, ` ≥ 0,

• ci,j ∈MU∗ is the coefficient of ujxi in
1

FMU(u, x)
∈MU∗((u))[[x]],

• pj ∈MU∗ is the coefficient of xj in FMU(x, x) ∈MU∗[[x]], and

• |di,j| = |ci,j| = 2(i+ j + 1), and |qj| = |pj| = 2j − 2.

Our next major result is a calculation of the extended geometric complex cobordism ring ΩC2
� ,

which is the “good range” of the RO(C2)-graded coefficients of ΩC2 . This ring ends up playing a
major role in our new theory of geometric orientations.

9



Theorem 3.0.2. Let ΩC2 denote the C2-equivariant geometric complex cobordism spectrum.

1. The extended coefficient ring ΩC2
� is given by

ΩC2
� =

ΩC2
∗ [µ, τ ]

τ(di,j − ci,j) = µdi,j+1

τ(qj − pj) = µqj+1

i ≥ 1 and j ≥ 0,

where |µ| = −σ, and |τ | = 2− σ. Additively,

ΩC2
∗−nσ = Ω̃C2

∗ (Snσ) ∼=
ΩC2
∗ {1, . . . , un}

uk(di,j − ci,j) = uk+1di,j+1

uk(qj − pj) = uk+1qj+1

i ≥ 1 and j ≥ 0,

where 0 ≤ k < n.

2. If we define the euler filtration ofMUC2
∗ by letting FnMUC2

∗ be the ΩC2
∗ -submodule generated

by 1, . . . , un ∈MUC2
∗ , then the map

ΩC2
� →MUC2

? = MUC2
∗ [τ±1]

identifies ΩC2
�
∼= Rees(MUC2

∗ ) with the Rees algebra of the euler filtration of MUC2
∗ .

3. The associated graded of MUC2
∗ with respect to the euler filtration is

gr•MUC2
∗ = ΩC2

∗ [µ]/(µdi,j, µqj), i, j ≥ 1.

Additively,

grnMUC2
∗
∼=

ΩC2
∗ n = 0

MU∗[d1, d2, . . . ] n > 0.

Finally, we complete our calculation of the full RO(C2)-graded coefficients of ΩC2 .

Theorem 3.0.3. The RO(C2)-graded coefficients of ΩC2 are listed below.

1.

ΩC2
∗+2n−2nα =

ΩC2
∗ {1, . . . , un}

uk(di,j − ci,j) = uk+1di,j+1

uk(qj − pj) = uk+1qj+1

i ≥ 1 and j ≥ 0

0 ≤ k < n

10



2.

ΩC2
∗−2n+2nα = MU∗{q1} ⊕ ΩC2

∗ ∩ (un)⊕MU∗−1[u]/

(
un,

n−1∑
`=0

pj+`u
`,
n−1∑
`=0

di,j+`u
`

)

We provide generators for the ideal ΩC2
∗ ∩ (un) ⊂ ΩC2

∗ in Proposition 6.2.3.

3.
ΩC2

∗+(2n+1)−(2n+1)α
∼= ΩC2

∗+2n−2nα/q1

4.
ΩC2

∗+(2n+1)α−(2n+1)
∼= ΩC2

∗+2nα−2n/q1.

Next, we develop our theory of geometric orientations, which illuminates the relationship
between geometric cobordism, C2-equivariant complex orientations, and C2-equivariant formal
group laws. Since complex orientations are represented by maps from MUC2 , it is natural to ask:
what structure on a commutative ring C2-spectrum EC2 is determined by a ring spectrum map
ΩC2 → EC2? We propose the following definition, which includes several flatness hypotheses
which provide us with necessary algebraic control.

Definition 3.0.4. Suppose EC2 is a commutative ring C2-spectrum. We say a ring C2-spectrum
map ΩC2 → EC2 is a geometric orientation of EC2 if

1. the transfer trC2
e : E∗ → EC2

∗ is injective, and

2. τ ∈ ΩC2
� maps to a non-zero divisor in EC2

� .

If we have specified such a map ΩC2 → EC2 , we say EC2 is geometrically oriented. There are
many interesting examples of geometrically oriented C2-spectra.

Proposition 3.0.5. The following C2-spectra are geometrically oriented.

1. The Eilenberg-Maclane spectrumHRC2
associated to a commutative ringR with no 2-torsion.

2. The connective cover kC2 of C2-equivariant K-theory.

3. The geometric cobordism spectrum ΩC2 .

The following result explains how our theory of geometric orientations relates to thom isomor-
phisms for C2-equivariant vector bundles.

11



Proposition 3.0.6. Suppose EC2 is a geometrically oriented C2-spectrum. If ψ → X/C2 is a
complex vector bundle over the orbits of a C2-space X , and ξ = p∗ψ is the pullback of ψ → X/C2

along the projection map p : X → X/C2, then there is a thom isomorphism

E∗C2
(X) = Ẽ∗+2 dim ξ

C2
(Xξ).

In section 4, we prove that inverting the element τ ∈ ΩC2
� determines an equivalence ΩC2 [1/τ ] '

MUC2 . Because of this equivalence, we can associate to any geometrically oriented C2-spectrum
EC2 the complex oriented C2-spectrum ÊC2 = EC2 [1/τ ]. Moreover, the coefficients of ÊC2

∗ can be
identified as

ÊC2
∗
∼= EC2

� /(τ − 1).

This suggests that the fundamental algebraic invariant of a geometrically oriented C2-spectrum EC2

is its extended coefficient ring EC2
� , since calculating this ring allows us to determine the associated

complex oriented C2-spectrum ÊC2 . We illustrate the general theory by calculating the extended
coefficient ring and stabilization of the geometrically oriented C2-spectra HRC2

, kC2 , and ΩC2 from
Proposition 5.5.4

Theorem 3.0.7. We calculate the extended coefficient ring and stabilization of the geometrically
oriented C2-spectra HRC2

, kC2 , and ΩC2 below.

1. If R is a commutative ring with no 2-torsion, then the Eilenberg Maclane spectrum HRC2

associated to the constant C2-Mackey functor R is geometrically oriented. The extended
coefficient ring of HRC2

is
HRC2

� = R[µ, τ ]/(2µ)

where |µ| = −σ and |τ | = 2 − σ. The stabilization of HRC2
is Borel cohomology with

coefficients in R,
HRC2

[1/τ ] ' F (EC2+, HR).

2. The connective cover kC2 of C2-equivariant K-theory is geometrically oriented. The extended
coefficient ring of kC2 is

kC2
� =

R(C2)[v, µ, τ ]

τ(σ − 1) = vµ

µ(σ + 1) = 0

where |v| = 2, |µ| = −σ, and |τ | = 2 − σ. The stabilization of kC2 is Greenlees’ ([9])
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equivariant connective K-theory

kC2 [1/τ ] ' kuC2 .

3. The geometric cobordism spectrum ΩC2 is geometrically oriented. The extended coefficient
ring of ΩC2 is

ΩC2
� =

ΩC2
∗ [µ, τ ]

τ(di,j − ci,j) = µdi,j+1

τ(qj − pj) = µqj+1

i ≥ 1 and j ≥ 0,

where |µ| = −σ and |τ | = 2− σ. The stabilization of ΩC2 is the stable complex cobordism
spectrum,

ΩC2 [1/τ ] 'MUC2 .

Next, we develop the algebraic side of our theory. While complex oriented C2-spectra determine
C2-equivariant formal group laws, we demonstrate that geometrically oriented C2-spectra determine
filtered C2-equivariant formal group laws. This is the main algebraic definition of the present paper,
and is an extension of the notion of C2-equivariant formal group laws as defined in [5].

Recall that a (homological) C2-equivariant formal group law over a commutative ring A consists,
in particular, an A-Hopf algebra D, and that if EC2 is a complex oriented C2-spectrum, then
(A,D) = (EC2

∗ , E
C2
∗ (CP∞C2

)) carries the structure of a C2-equivariant formal group law. If EC2 is a
geometrically oriented C2-spectrum with stabilization EC2 [1/τ ] ' ÊC2 , then the C2-spectra ÊC2

and ÊC2 ∧CP∞C2+ are filtered by certain RO(C2)-graded suspensions of EC2 and EC2 ∧CP∞C2+,
respectively. On the algebraic side, this is reflected in a filtration of the C2-equivariant formal
group law (ÊC2

∗ , Ê
C2
∗ (CP∞C2

)). This filtration is structurally rich when viewed in terms of certain
geometrically defined ÊC2

∗ -module bases of ÊC2
∗ (CP∞C2

). For any m,n ≥ 0, we define

Πm+nσ = [CP(m+ nσ) −→ CP∞C2
] ∈MUC2

∗ (CP∞C2
).

Since any C2-equivariant formal group law (A,D) is equipped with a map

(MUC2
∗ ,MUC2

∗ (CP∞C2
))→ (A,D),

this determines elements Πm+nσ ∈ D for any C2-equivariant formal group law (A,D). We prove in
section 5.5 that the elements Πρ1+···+ρi associated to a complete flag (ρi)

∞
i=1 form a free A-module

basis for D. We will now define a filtered C2-equivariant formal group law, which axiomatizes the
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properties of the filtrations

EC2
∗ ⊂ EC2

∗+|σ|−σ ⊂ · · · ⊂ ÊC2
∗

and
EC2
∗ (CP∞C2

) ⊂ EC2

∗+|σ|−σ(CP∞C2
) ⊂ · · · ⊂ ÊC2

∗ (CP∞C2
).

Definition 3.0.8. A filteredC2-equivariant formal group law (F•A,F•D) consists of aC2-equivariant
formal group law (A,D), and filtrations F•A of A and F•D of D, such that

1. Im(ΩC2
∗ → A) ⊆ F0A,

2. FnA is generated over F0A by 1, . . . , un, and

3. For any complete flag (ρi)
∞
i=1, we have

FnD =
{∑

aiΠρ1+···+ρi ∈ D : ai ∈ Fn+`iA
}
,

where `i is the number of copies of σ in (ρ1 + · · ·+ ρi−1)ρ−1
i .

Our definition is motivated by the following fact.

Theorem 3.0.9. If EC2 is a geometrically oriented C2-spectrum with stabilization ÊC2 = EC2 [1/τ ],
then the pair (F•Ê

C2
∗ , F•Ê

C2
∗ (CP∞C2

)) defined by

FnÊ
C2
∗ = EC2

∗+|nσ|−nσ, and

FnÊ
C2
∗ (CP∞C2

) = EC2

∗+|nσ|−nσ(CP∞C2
)

is a filtered C2-equivariant formal group law.

Next, we prove the following universality statement, which asserts that the structure of a filtered
C2-equivariant formal group law (F•A,F•D) is completely determined by F0A and the filtration
on the universal equivariant formal group law (MUC2

∗ ,MUC2
∗ (CP∞C2

)).

Theorem 3.0.10. If (F•A,F•D) is a filtered C2-equivariant formal group law, then

FnA = FnMUC2
∗ · F0A, and

FnD = FnMUC2
∗ · F0D.
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Finally, we analyze the classes πm+nσ = [CP(m+ nσ)] ∈ ΩC2
∗ , which play a prominent role

in our theory of filtered C2-equivariant formal group laws. In the following theorem, we give
an algebraic characterization of the elements πm+nσ, and identify these classes in terms of our
generators of ΩC2

∗ for some small values of m and n.

Proposition 3.0.11. The composite

ΩC2
∗ →MU∗ → H∗(MU) = Z[bi : i ≥ 1]

maps πm+nσ to

(m+ n)mm+n−1 = coeffxm+n−1

1

(1 + b1x+ b2x2 + · · · )m+n
,

and the composite

ΩC2
∗ → ΦMUC2

∗ → H̃∗(MU ∧BU+) = Z[bi, b
′
i : i ≥ 1][u±1]

maps πm+nσ to the sum(
coeffxm

1

(1 + b1x+ b2x2 + · · · )m(1 + b′1x+ b′2x
2 + · · · )n

)
u−n

+

(
coeffxn

1

(1 + b1x+ b2x2 + · · · )n(1 + b′1x+ b′2x
2 + · · · )m

)
u−m.

This characterizes the elements πm+nσ.

Example 3.0.12. For several small values of m and n, we express the element

πm+nσ = [CP(m+ nσ)] ∈ ΩC2
∗

in terms of our generators di,j, qj ∈ ΩC2
∗ :

π1+σ = −q2

π2+σ = d1,0 − a1,1q2

π2+2σ = 4d1,1 + 2q4 − 2q2q3 − q3
2 + (6b3

1 − 18b1b2 + 6b3)q1.
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CHAPTER 4

Equivariant Cobordism

Our goal in this section is to calculate the ring ΩC2
∗ of stably almost complex C2-manifolds with

involution, and the good range ΩC2
� of the RO(C2)-graded coefficient ring of ΩC2 . In section 4.1,

we prove that the map ΩC2 →MUC2 induces an equivalence ΩC2 [1/τ ] 'MUC2 , where τ ∈ ΩC2
� is

an element in the RO(C2)-graded coefficients of ΩC2 . This is a spectrum-level analogue of a result
of Brocker and Hook in the unoriented case [3]. We go on to prove that the Z-graded coefficient
ring of ΩC2 coincides with the geometric cobordism ring of stably almost complex C2-manifolds.
In section 4.2 we review known facts about the stable cobordism ring MUC2

∗ , and calculate a new
presentation of this ring, which is essential to our calculation of ΩC2

∗ and ΩC2
� in section 4.3.

4.1 Equivariant Thom spectra

In this section we prove that the stable cobordism spectrum MUC2 can be obtained from the
geometric cobordism spectrum ΩC2 by inverting an element τ in the RO(C2)-graded coefficient
ring of ΩC2 . Then, we prove that the Z-graded coefficient ring ΩC2 coincides with the geometric
cobordism ring of stably almost complex C2-manifolds with involution.

Recall that the C2-spectrum ΩC2 assigns to the subrepresentation Cσ ⊂ C∞,∞ of our chosen
C2-universe C∞,∞ the C2-space

ΩC2(Cσ) = Thom
(
ξC
∞

(Cσ)→ GrC
∞

(Cσ)
)
.

There is a point ∗ ∈ GrC
∞

(Cσ) corresponding to the line

C = span(0, 1, 0, 0, . . . ) ⊂ Cσ ⊕C∞,

and the inclusion ∗ → GrC
∞

(Cσ) is covered by a vector bundle map C → ξC
∞

(Cσ). Applying
Thom(−) to this vector bundle map gives us a map S2 → ΩC2(Cσ), whose homotopy class we call
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the weak thom class, denoted

τ = [S2 → ΩC2(Cσ)] ∈ ΩC2
2−σ.

The desired equivalence ΩC2 [1/τ ] ' MUC2 is a consequence of the following lemma, which
identifies the defining diagram of ΩC2 [1/τ ] with the geometrically defined filtration

ΩC2 = MUC∞

C2
⊂MUC∞+σ

C2
⊂MUC∞+2σ

C2
⊂ · · · ⊂MUC2 .

C∞+∞σ
= MUC2

Lemma 4.1.1. For each n ≥ 0, there is an equivalence

Σnσ−|nσ|ΩC2 'MUC∞,n

C2

such that the following diagram commutes in Ho(C2Sp).

ΩC2 Σσ−|σ|ΩC2 Σ2σ−|2σ|ΩC2 . . .

MUC∞
C2

MUC∞,1
C2

MUC∞,2
C2

. . .

τ

=

τ

'

τ

'
(4.1.2)

Proof. For any n ≥ 0 and C2-representation V , the embedding

V ⊕Cnσ ⊕C∞ ∼= V ⊕ 0⊕C∞,n → V ⊕Cn ⊕C∞,n

induces a homotopy equivalence

GrC
∞

(V ⊕Cnσ) GrC
∞,n

(V ⊕Cn).'

Applying Thom(−) to the induced map of vector bundles yields a homotopy equivalence

ΩC2(V ⊕Cnσ) MUC∞,n
C2

(V ⊕Cn).'

The spectrum V 7→MUC∞
C2

(V ⊕Cnσ) is a model for ΣnσΩC2 , and the spectrum V 7→MUC∞,n
C2

(V ⊕
Cn) is a model for Σ2nMUC∞,n

C2
, so these maps determine an equivalence ΣnσΩC2 ' Σ|nσ|MUC∞,n

C2
.

Smashing with S−|nσ| yields the desired equivalence

Σnσ−|nσ|ΩC2 'MUC∞,n

C2
.
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The homotopy commutativity of diagram 4.1.2 follows from the homotopy commutativity of the
following diagram of based C2-spaces.

ΩC2(V ⊕Cnσ) ∧ S2 ΩC2(V ⊕Cnσ) ∧ ΩC2(Cσ) MUC∞⊕C∞
C2

(V ⊕C(n+1)σ)

ΩC2(V ⊕C(n+1)σ)

MUC∞,n
C2

(V ⊕Cn) ∧ S2 MUC∞,n+1

C2
(V ⊕Cn) ∧ S2 MUC∞,n+1

C2
(V ⊕Cn+1)

'∧1

1∧τ

'

'

i∧1

Corollary 4.1.3. The map ΩC2 →MUC2 induces an equivalence

ΩC2 [1/τ ] 'MUC2 .

Proof.

ΩC2 [1/τ ] = hocolim
(
ΩC2 → Σσ−|σ|ΩC2 → Σ2σ−|2σ|ΩC2 → . . .

)
' hocolim

(
MUC∞

C2
→MUC∞,1

C2
→MC2U

C∞,2 → . . .
)

= MUC2

The final goal of this section is to identify the Z-graded coefficient ring of ΩC2 with the geometric
cobordism ring of stably almost complex C2-manifolds with involution, which we temporarily
denote ΩC2,geo

∗ . We refer the reader to [13] for a detailed discussion of the geometric cobordism
ring ΩC2,geo

∗ and the equivariant Pontrjagin-Thom construction. We mention only that an element
[M ] ∈ ΩC2,geo

n is represented by an n-dimensional C2-manifold M with a complex structure on
TM ⊕Rk for some k ≥ 0. The equivariant Pontrjagin-Thom construction determines a ring map
ΩC2,geo
∗ → ΩC2

∗ , and we will show that this is an isomorphism.

Proposition 4.1.4. The equivariant Pontrjagin-Thom map

ΩC2,geo
∗ → ΩC2

∗
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is an isomorphism.

Proof. Geometric cobordism defines a Z-graded homology theory on C2-spaces, and the Pontrjagin-
Thom construction defines a natural transformation from geometric cobordism to ΩC2-homology.
We can evaluate each homology theory on the cofiber sequence

EC2+ → S0 → ẼC2,

which yields the following diagram whose rows are exact.

. . . ΩC2,geo
∗ (EC2) ΩC2,geo

∗ Ω̃C2,geo
∗ (ẼC2) ΩC2,geo

∗−1 (EC2) . . .

. . . ΩC2
∗ (EC2) ΩC2

∗ Ω̃C2
∗ (ẼC2) ΩC2

∗−1(EC2) . . .

The map ΩC2,geo
∗ (EC2)→ ΩC2

∗ (EC2) is an isomorphism since equivariant transversality holds in the
presence of free group actions. By the 5-lemma, it suffices to prove that the map Ω̃C2,geo

∗ (ẼC2)→
Ω̃C2
∗ (ẼC2) is also an isomorphism. The geometric fixed point ring Ω̃C2,geo

∗ (ẼC2) is isomorphic to
the ring of “local fixed point data”

Ω̃C2,geo
∗ (ẼC2) ∼=

⊕
n≥0

MU∗−2n(BU(n)).

Elements of this ring are pairs (F, ξ) where F is a manifold and ξ is a vector bundle over F . The
isomorphism Ω̃C2,geo

∗ (ẼC2) ∼=
⊕

n≥0MU∗−2n(BU(n)) takes [M → ẼC2] to⊕
i

[MC2
i → BU(ni)],

where MC2
i are the components of the fixed point locus MC2 ⊂M , and the map MC2

i → BU(ni)

classifies the normal bundle ν |M
M
C2
i

. On the other hand, one can calculate Ω̃C2
∗ (ẼC2) = ΦΩC2

∗ by

calculating the geometric fixed point spectrum ΦΩC2 = (ΩC2 ∧ ẼC2)C2 of ΩC2 . This can be done at
the level of C2-spaces, since ΩC2 comes from an inclusion C2-prespectrum (see the proof of Lemma
4.3.3 for further detail). We find that

ΦΩC2 '
∨
n≥0

Σ2nMU ∧BU(n)+,

so by explicit computation, the map Ω̃C2,geo
∗ (ẼC2)→ Ω̃C2

∗ (ẼC2) is an isomorphism.
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4.2 Calculation of MUC2
∗

In this section we review known facts about the stable cobordism ring MUC2
∗ , and calculate a

new presentation of this ring which will be convenient for our calculation of ΩC2
∗ in the following

section. The ring MUC2
∗ can be calculated using the Tate diagram. We review the construction of

the Tate diagram briefly, and refer the reader to [12] for a more thorough exposition. Let EC2 be a
free C2-space which is non-equivariantly contractible, and consider the cofiber sequence

EC2+ → S0 → ẼC2

where the first map collapses EC2 to the non-basepoint of S0. The Tate diagram for MUC2 is

MUC2 ∧ EC2+ MUC2 EC2+ ∧ ẼC2

F (EC2+,MUC2) ∧ EC2+ F (EC2+,MUC2) F (EC2+,MUC2) ∧ ẼC2+,

'

where both rows are cofiber sequences of C2-spectra, and the vertical maps are obtained from the
collapse map EC2+ → S0 by applying F (−,MUC2). We are primarily interested in the right hand
square, which at the level of coefficients is

MUC2
∗ ΦMUC2

∗

MUhC2
∗ MU tC2

∗ .

The upper right, bottom left, and bottom right corners are the coefficients of the geometric, homotopy,
and Tate fixed points of MUC2 , respectively. In [18], Kriz proves that this square is a pullback of
rings, and identified the Tate square for MUC2

∗ with

MUC2
∗ MU∗(BU)[u±1]

MU∗[[u]]

[2]u

MU∗((u))

[2]u
,

where |u| = −2 and
[2]u =

∑
i,j≥0

ai,ju
i+j = p0 + p1u+ p2u

2 + . . . (4.2.1)

20



is the 2-series of the universal formal group law overMU∗. The vertical mapMU∗(BU)[u±1]→
MU∗((u))/[2]u is given as follows. We know that MU∗(BU(1)) = MU∗{β0, β1, . . . } where
{β0, β1, . . . } is dual to {1, x, x2, . . . } ⊂MU∗(BU(1)) = MU∗[[x]], and that

MU∗(BU) = MU∗[b
′
1, b
′
2, . . . ]

where b′i is the image of βi ∈MU∗(BU(1)) under the map induced by the inclusion BU(1)→ BU .
We use the symbols b′i to distinguish these elements from the coefficients bi of the exponential series
of the universal logarithm. The vertical map MU∗[b

′
i][u
±1]→MU∗[[u]]/[2]u is determined by

ub′i 7→
∑
j≥0

ai,ju
j,

which is the coefficient of xi in FMU(u, x) = u+ ub′1x+ ub′2x
2 + · · · ∈MU∗[[u, x]].

For reasons that will become clear in the next section, it is convenient for us to use a different
presentation of ΦMUC2

∗ in our calculation. More precisely, we will choose a new polynomial basis
for ΦMUC2

∗ , and emulate Strickland’s calculation of MUC2
∗ using this new polynomial basis. For

any i ≥ 0, define di ∈MU∗[b
′
i][u
±1] to be such that d0 + d1x+ d2x

2 + · · · ∈MU∗[b
′
i][u
±1][[x]] is

the multiplicative inverse of u+ ub′1x+ ub′2x
2 + · · · ∈MU∗[b

′
i][u
±1][[x]], i.e. such that

(u+ ub′1x+ ub′2x
2 + · · · )(1 + d1x+ d2x

2 + · · · ) = 1. (4.2.2)

For instance, we have d0 = u−1, d1 = −u−1b′1, and d2 = −u−1(b′1)2 + u−1b′2. Under the identifica-
tion ΦMUC2

∗ = MU∗[d
±1
0 , d1, d2, . . . ], the map to the Tate fixed points MU tC2

∗ = MU∗((u))/[2]u

is given by
di 7→

∑
j∈Z

ci,ju
j

which is the coefficient of xi in
1

F (u, x)
∈MU∗((u))[[x]].

We can now use the pullback square

MUC2
∗ MU∗[u

±1, d1, d2, . . . ] di

MU∗[[u]]/[2]u MU∗((u))/[2]u
∑

j∈Z ci,ju
j.

to calculate MUC2
∗ . For i ≥ 1 and j ≥ 0, let u, di,j, qj be variables with |u| = −2, |di,j| =
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2(i+ j + 1), and |qj| = 2j − 2. Let J ⊂MU∗[u, di,j, qj] be the ideal generated by the relations

di,j − ci,j = udi,j+1

qj − pj = uqj+1

q0 = 0

for i ≥ 1 and j ≥ 0. Define φ : MU∗[u, di,j, qj]/J →MU∗[u
±1, di] by

φ(di,j) = u−jdi −
∑
`<j

ci,`u
`−j, φ(qj) = −

∑
`<j

p`u
`−j, (4.2.3)

and φ(u) = u. Define χ : MU∗[u, di,j, qj]/J →MU∗[[u]]/[2]u by

χ(di,j) =
∑
`≥0

ci,j+`u
`, χ(qj) =

∑
`≥0

dj+`u
`,

and χ(u) = u.

Proposition 4.2.4. There is an isomorphism of graded rings

MUC2
∗
∼= MU∗[di,j, qj, u]/J.

Proof. Since the Tate square for MUC2
∗ is a pullback of rings, it suffices to show that

R MU∗[u
±1, d1, d2, . . . ]

MU∗[[u]]

[2]u

MU∗((u))

[2]u

φ

χ ψ (4.2.5)

commutes and is a pullback of rings, where R = MU∗[u, di,j, qj]/J . That the diagram commutes is
easily verified from the definitions of φ, χ, and ψ. To prove that the square is a pullback, it suffices
to show that

1. φ is an isomorphism after inverting u,

2. χ is an isomorphism after u-completion, and

3. R has bounded u-torsion.

The proofs of these facts are direct analogues of the arguments in ([31], Theorem 4), but we include
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them for completeness.

Proof of 1.: Since φ(u) = u is a unit in MU∗[u
±1, di], we have an induced map

φ : u−1R→MU∗[u
±1, di].

and its inverse is given by u 7→ u, and di 7→ di,0 +
∑

j<0 ci,ju
j .

Proof of 2.: Since MU∗[[u]]/[2]u is complete at u, we have an induced map

χ̂ : R∧u →
MU∗[[u]]

[2]u
.

If we define ρ : MU∗[[u]] → R∧u by u 7→ u, then the composite χ̂ ◦ ρ is the quotient map
MU∗[[u]]→MU∗[[u]]/[2]u, so χ̂ is surjective. By induction on m ≥ 1, we have the equalities

di,j −
m−1∑
`=0

ci,j+`u
` = di,j+mu

m

qj −
m−1∑
`=0

pj+`u
` = qj+mu

m

inR. This implies the equalities di,j =
∑

`≥0 ci,j+`u
` and qj =

∑
`≥0 pj+`u

` inR∧u , so ρ is surjective.
Since q0 =

∑
`≥0 p`u

` = [2]u = 0 in R∧u , ρ factors through a map ρ : MU∗[[u]]/[2]u→ R∧u . Since
ρ is surjective and χ̂ ◦ ρ = 1, we deduce that ρ is an isomorphism with inverse χ̂.

Proof of 3.: It suffices to prove that u is a regular element of R/q1. This is true since we can
write R/q1 = lim−→Ckwhere Ck is the ring

MU∗[u, di,k, qk : i ≥ 1]/(q0,

k−1∑
`=0

p`+1u
` + qku

k),

and u is a regular element of each Ck.

4.3 Calculation of ΩC2
∗ and ΩC2

�

In this section we calculate the geometric cobordism ring ΩC2
∗ , as well as the extended coefficient

ring ΩC2
� of the C2-spectrum ΩC2 . Recall that the inclusion of C2-universes C∞ → C∞,∞ induces
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a ring spectrum map
ΩC2 = MUC∞

C2
→MUC∞,∞

C2
= MUC2 .

This induces a map on geometric fixed points, which leads to the diagram

ΩC2
∗ ΦΩC2

∗

MUC2
∗ ΦMUC2

∗ .

(4.3.1)

Lemma 4.3.2. The square 4.3.1 is a pullback of rings.

Proof. Our square sits in the diagram

. . . ΩC2
∗ (EC2) ΩC2

∗ ΦΩC2
∗ ΩC2

∗−1(EC2) . . .

. . . MUC2
∗ (EC2) MUC2

∗ ΦMUC2
∗ MUC2

∗−1(EC2) . . .

φΩ

φMU

whose rows are exact. The map ΩC2
∗ (EC2) → MUC2

∗ (EC2) is an isomorphism since ΩC2 and
MUC2 are split C2-spectra and ΩC2 →MUC2 is a non-equivariant equivalence. It is proved in [7]
that ΩC2

∗ →MUC2
∗ is injective, so Lemma 6.2.1 implies that the square is a pullback.

Having realized ΩC2
∗ as the pullback of the diagram 4.3.1, our next goal is to calculate

ΦΩC2
∗ → ΦMUC2

∗ ,

which we do in the following lemma.

Lemma 4.3.3. There is a ring isomorphism

ΦΩC2
∗
∼= MU∗[u

−1, d1, d2, . . . ]

such that the following diagram commutes.

ΦΩC2
∗ MU∗[u

−1, d1, d2, . . . ]

ΦMUC2
∗ MU∗[u

±1, d1, d2, . . . ]

∼=

∼=
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Proof. If EC2 is an inclusion C2-spectrum, which means that all of the adjoint structure maps
EC2(V ) → ΩW−VEC2(W ) are inclusions of based C2-spaces, then the geometric fixed point
spectrum can be calculated at the level of C2-spaces using the formula

(EC2 ∧ ẼC2)C2(V ) = colimW⊃V Ω(W−V )C2EC2(W )C2 .

Since both ΩC2 and MUC2 are inclusion C2-prespectra, we can use this formula to calculate that

ΦΩC2 '
∨
n≥0

Σ2nMU ∧BU(n)+,

ΦMUC2 '
∨
n∈Z

Σ2nMU ∧BU+,

and the map ΦΩC2 → ΦMUC2 is induced by the composites

BU(n)→ BU
i−→ BU

where i is the map classifying the additive inverse of stable vector bundles. We have

ΦΩC2
∗
∼=
⊕
n≥0

MU∗(BU(n))u−n

∼=
⊕
n≥0

MU∗{βi1 . . . βin : 0 ≤ i1 ≤ · · · ≤ in}u−n

∼= MU∗[u
−1, u−1b′i : i ≥ 1]

and the geometric fixed point map ΦΩC2
∗ → ΦMUC2

∗ corresponds to the composite

MU∗[u
−1, u−1b′i] ⊂MU∗[b

′
i][u
±1] MU∗[b

′
i][u
±1].

i∗

The H-space structure of BU gives MU∗(BU) = MU∗[b
′
i] the structure of a Hopf algebra over

MU∗, and the map i : BU → BU induces its antipode. Since the coproduct on MU∗(BU) satisfies
∆b′n =

∑
i+j=n b

′
i⊗ b′j , it follows that i∗(ub′i) = di is the coefficient of xi in the formal power series

1

u+ ub′1x+ ub′2x
2 + · · ·

= u−1 + d1x+ d2x
2 + · · · .

We deduce that the geometric fixed point map ΦΩC2
∗ →MUC2

∗ corresponds to the inclusion

MU∗[u
−1, d1, d2, . . . ]→MU∗[u

±1, d1, d2, . . . ].
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We can now deduce the structure of ΩC2
∗ from the pullback square

ΩC2
∗ MU∗[u

−1, di]

MUC2
∗ MU∗[u

±1, di].
φ

Theorem 4.3.4. There is an isomorphism of graded rings

ΩC2
∗
∼= MU∗[di,j, qj]/I

where I is generated by the relations

di,j+1(dk,` − ck,`) = (di,j − ci,j)dk,`+1

di,j+1(q` − p`) = (di,j − ci,j)q`+1

qj+1(q` − p`) = (qj − pj)q`+1

q0 = 0

for i, k ≥ 1 and j, ` ≥ 0.

Proof. First, we claim that the map

ΩC2
∗ →MUC2

∗ = MU∗[u, di,j, qj]/J

identifies ΩC2
∗ with the MU∗-subalgebra of MU∗[u, di,j, qj]/J generated by di,j, qj for i ≥ 1 and

j ≥ 0. If, for any f ∈MU∗[u
±1, di], we define degu f to be the highest power of u that occurs in

f , then MU∗[u
−1, di] ⊂ MU∗[u

±1, di] is the inclusion of all elements with u-degree ≤ 0, so the
pullback of φ along this inclusion is

ΩC2
∗ = {f ∈MUC2

∗ : deguφ(f) ≤ 0}.
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Recall that the ideal J is generated by the relations

di,j − ci,j = udi,j+1

qj − pj = uqj+1

q0 = 0

for i ≥ 1 and j ≥ 0. If f ∈MUC2
∗ , then using these relations, we can write f = f1 + f2, where f1

is a polynomial in {di,j, qj}, and f2 is a sum of terms of the form bu`di1,0 . . . dik,0 where b ∈MU∗,
` ≥ 1, and i1, . . . , ik ≥ 1. If f2 6= 0, then

degu φ(f) = degu φ(f1 + f2) = degu φ(f2) > 0,

so we deduce that if f ∈ ΩC2
∗ then f can be written as a polynomial in {di,j, qj}.

It follows that
ΩC2
∗
∼= MU∗[di,j, qj]/I

where I = J ∩MU∗[di,j, qj] is the elimination ideal of u. To complete our calculation of ΩC2
∗ ,

we must find generators of the elimination ideal I . The relations in J ⊂ MU∗[u, di,j, qj] assert
that the elements di,j − ci,j and qj − pj are divisible by the euler class u. In particular, for any
F,G ∈ {di,j − ci,j, qj − pj}, we have the relation

(F/u)G = F (G/u)

in ΩC2
∗ . These are precisely the relations listed in the statement of the theorem, and we will prove

that these generate the ideal I . In order to do this, we need a technical lemma (Lemma A.0.2) from
commutative algebra, which is essentially an application of Buchberger’s algorithm. Using the
notation of Lemma A.0.2, the result holds by setting

R = MU∗[di,0, q0 : i ≥ 1]/(q0),

{x1, x2, x3, . . . } = {di,j+1, qj+1 : i ≥ 1 and j ≥ 0}

{π1, π2, π3, . . . } =

{
ci,j − di,j i ≥ 1 and
pj − qj j ≥ 0

}
.

where, if xk = di,j+1 then πk = ci,j − di,j , and if xk = qj+1 then πk = pj − qj .

Having calculated ΩC2
∗ , our next goal is to calculate the extended coefficient ring ΩC2

� . This
amounts to calculating ΩC2

∗−nσ for each n ≥ 0. We begin by evaluating ΩC2
∗−nσ(−)→MUC2

∗−nσ(−)
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on the cofiber sequence
EC2+ → S0 → ẼC2

which yields the following diagram whose rows are exact.

. . . ΩC2
∗−nσ(EC2) ΩC2

∗−nσ MU∗[u
−1, di] . . .

. . . MUC2
∗−nσ(EC2) MUC2

∗−nσ MU∗[u
±1, di] . . .

φn

(4.3.5)

Lemma 4.3.6. The square

ΩC2
∗−nσ MU∗[u

−1, d1, d2, . . . ]

MUC2
∗−nσ MU∗[u

±1, d1, d2, . . . ]
φn

in the diagram above is a pullback of MU∗-modules.

Proof. Recall that the thom class τ−n ∈ MUC2
nσ−2n is represented by the map Snσ → MU(Cn)

associated to the vector bundle Cnσ → ∗, and the element un ∈ MUC2
−2n is represented by

the composite S0 ⊂ Snσ → MU(Cn). Since the map MUC2
∗ → MUC2

∗ (ẼC2) is given on
representatives by taking fixed points, and since

(S0 ⊂ Snσ →MU(Cn))C2 = (Snσ →MU(Cn))C2 ,

we deduce that the following diagram commutes:

MUC2
∗−nσ MU∗[u

±1, d1, d2, . . . ]

MUC2
∗−2n MU∗[u

±1, d1, d2, . . . ].

τ−n

φn

un

φ

This square sits inside of diagram 4.3.5 whose rows are exact. Since EC2+ ∧ Snσ is free as a based
C2-space, and ΩC2 and MUC2 are split C2-spectra, the map ΩC2

∗−nσ(EC2)→MUC2
∗−nσ(EC2) is an
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isomorphism. Our square fits into the commutative diagram

ΩC2
∗−nσ MU∗[u

−1, d1, d2, . . . ]

MUC2
∗−nσ MU∗[u

±1, d1, d2, . . . ]

MUC2
∗−2n MU∗[u

±1, d1, d2, . . . ].

ι

φn

τ−n ∼= un∼=

φ

and from this description of the map MUC2
∗−nσ →MU∗[u

±1, d1, d2, . . . ] it is clear that the maps φn
and ι mutually surject, so by Lemma 6.2.1 the diagram is a pullback of MU∗-modules.

Combining these results, we can calculate the extended coefficient ring ΩC2
� of the C2-spectrum

ΩC2 .

Theorem 4.3.7. Let ΩC2 denote the C2-equivariant geometric complex cobordism spectrum.

1. The extended coefficient ring ΩC2
� is given by

ΩC2
� =

ΩC2
∗ [µ, τ ]

τ(di,j − ci,j) = µdi,j+1

τ(qj − pj) = µqj+1

i ≥ 1 and j ≥ 0,

where |µ| = −σ, and |τ | = 2− σ. Additively,

ΩC2
∗−nσ = Ω̃C2

∗ (Snσ) ∼=
ΩC2
∗ {1, . . . , un}

uk(di,j − ci,j) = uk+1di,j+1

uk(qj − pj) = uk+1qj+1

i ≥ 1 and j ≥ 0,

where 0 ≤ k < n.

2. If we define the euler filtration ofMUC2
∗ by letting FnMUC2

∗ be the ΩC2
∗ -submodule generated

by 1, . . . , un ∈MUC2
∗ , then the map

ΩC2
� →MUC2

? = MUC2
∗ [τ±1]

identifies ΩC2
�
∼= Rees(MUC2

∗ ) with the Rees algebra of the euler filtration of MUC2
∗ .
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3. The associated graded of MUC2
∗ with respect to the euler filtration is

gr•MUC2
∗ = ΩC2

∗ [µ]/(µdi,j, µqj), i, j ≥ 1.

Additively,

grnMUC2
∗
∼=

ΩC2
∗ n = 0

MU∗[d1, d2, . . . ] n > 0.

Proof. We have shown that ΩC2
∗−nσ sits in the following pullback square:

ΩC2
∗−nσ MU∗[u

−1, d1, d2, . . . ]

MU∗[u
±1, d1, d2, . . . ]

MUC2
∗−2n MU∗[u

±1, d1, d2, . . . ]

un

so ΩC2
∗−nσ ⊂ MUC2

∗ consists of the elements whose image in MU∗[u
±1, di] have u-degree ≤ n.

Using our presentation of MUC2
∗ , one can check that any such element must be of the form

b0 + b1u+ · · ·+ bnu
n, so ΩC2

∗−nσ is generated over ΩC2
∗ by 1, . . . , un. We apply lemma A.0.2 from

Appendix A to obtain the presentation

ΩC2
∗−nσ =

ΩC2
∗ {1, . . . , un}

uk−1(di,j − ci,j) = ukdi,j+1

uk−1(qj − pj) = ukqj+1

where i ≥ 1, j ≥ 0, and 1 ≤ k < n. We can then calculate

GrnMUC2
∗ = ΩC2

∗−nσ/Ω
C2

∗−(n−1)σ
∼=

ΩC2
∗ {un}

undi,j+1 = 0

unqj+1 = 0

∼= MU∗[di,0 : i ≥ 1]{un},

where we have used our presentation of ΩC2
∗ to deduce that there are no relations between the

elements di,0.

30



CHAPTER 5

Geometric Orientations

In this section we introduce our new theory of geometrically oriented C2-spectra. In section 5.1
we define geometric orientations, provide some examples of geometrically oriented C2-spectra, and
prove some of the fundamental properties of such spectra. In sections 5.2 and 5.3, we investigate
the examples HZC2

and kC2 , which are the “additive” and “multiplicative” geometrically oriented
C2-spectra. In section 5.4 we define filtered C2-equivariant formal group laws, which are the
algebraic structures determined by geometrically oriented C2-spectra. Finally, in section 5.5, we
investigate the C2-equivariant projective spaces [CP(m+ nσ)] ∈ ΩC2

∗ which control the various
direct sum decompositions of a filtered C2-equivariant formal group law.

5.1 Definition and basic properties

In this section we develop the foundations of our theory of geometrically orientedC2-spectra. We
begin by reviewing the definition of a complex oriented C2-spectrum. Let U = C∞,∞ be a complete
complex C2-universe, so that CP∞C2

= CP(U) is the classifying space for C2-equivariant line
bundles. For any m,n ≥ 0, we write CP(m+nσ) ⊂ CP∞C2

for the sub-projective space associated
to the subrepresentation Cm,n ⊂ C∞,∞. We equip CP∞C2

with the basepoint ∗ = CP(1) ∈ CP∞C2
.

For each ρ ∈ {1, σ}, we have an inclusion

(Sρ
−1

, ∗) ' (CP(1 + ρ),CP(1)) ⊂ (CP∞C2
,CP(1)) = (CP∞C2

, ∗).

so if EC2 is complex stable, meaning that we have specified an equivalence Σσ−|σ|EC2 ' EC2 , we
can restrict a class x ∈ E2

C2
(CP∞C2

,CP(1)) to a class in E2
C2

(Sρ
−1
, ∗) ∼= E0

C2
. We now recall the

definition of a complex orientation of a C2-spectrum.

Definition 5.1.1. If EC2 is a complex stable commutative ring C2-spectrum, then a complex orien-

tation of EC2 is a cohomology class x ∈ E2
C2

(CP∞C2
,CP(1)) which restricts to 1 in

E0
C2
∼= E2

C2
(CP(1 + 1),CP(1)),
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and some unit in
E0
C2
∼= E2

C2
(CP(1 + σ),CP(1)).

Many of our favorite C2-spectra are complex oriented, such as F (EC2+, HZ), KC2 , and MUC2 .
In [6], Cole, Greenlees and Kriz prove that a complex orientation of EC2 is uniquely determined
by a commutative ring spectrum map MUC2 → EC2 . It is then natural to ask: what structure is
afforded to a C2-spectrum EC2 equipped with a commutative ring spectrum map ΩC2 → EC2? We
propose the following definition, which includes several flatness hypotheses in order to maintain
algebraic control.

Definition 5.1.2. Suppose EC2 is a commutative ring C2-spectrum. We say a commutative ring
spectrum map ΩC2 → EC2 is a geometric orientation of EC2 if

1. the transfer trC2
e : E∗ → EC2

∗ is injective, and

2. τ ∈ ΩC2
� maps to a non-zero-divisor in EC2

� .

If we have specified such a map ΩC2 → EC2 , we say EC2 is geometrically oriented. Many
important C2-spectra which fail to be complex oriented are in fact geometrically oriented. We list
some examples of geometrically oriented C2-spectra below, and we will investigate these further in
the following sections.

Example 5.1.3. The universal example of a geometrically oriented C2-spectrum is ΩC2 itself, which
is geometrically oriented by the identity map.

Example 5.1.4. Suppose R is a commutative ring with no 2-torsion. Then the C2-equivariant
Eilenberg-Maclane spectrum HRC2

associated to the constant Mackey functor R is geometrically
oriented.

Example 5.1.5. The connective cover kC2 = τ≥0KC2 of C2-equivariant K-theory is geometrically
oriented.

Before discussing the relationship between our new theory of geometric orientations, and the
classical theory of complex orientations, we make note of the following result, which establishes
the connection between geometric orientations and thom isomorphisms for certain complex vector
bundles.

Proposition 5.1.6. Suppose EC2 is a geometrically oriented C2-spectrum. If ψ → X/C2 is a
complex vector bundle over the orbits of a C2-space X , and ξ = p∗ψ is the pullback of ψ → X/C2

along the projection map p : X → X/C2, then there is a thom isomorphism

E∗C2
(X) = Ẽ∗+2 dim ξ

C2
(Xξ).

32



Proof. Suppose we have a rank n vector bundle ξ = p∗ψ as above. Then since ψ → X/C2 is a
C2-equivariant complex vector bundle over a C2-space with trivial C2-action, the vector bundle ψ is
classified by a map X/C2 → GrC

∞
(Cn), and the pullback ξ = p∗ψ is classified by the composite

X → X/C2 → GrC
∞

(Cn).

Taking thom spaces on the corresponding map of vector bundles yields

Xξ → Thom(ξC
∞

(Cn)→ GrC
∞

(Cn)) = ΩC2(Cn)

which determines a thom class t(ξ) ∈ Ω̃2n
C2

(Xξ). Since EC2 is geometrically oriented, we can push
forward the class t(ξ) to a class t(ξ) ∈ Ẽ2n

C2
(Xξ). We can now make use of the Thom diagonal

δ : Xξ → X+ ∧Xξ. More precisely, we claim that the map E∗C2
(X)→ Ẽ∗+2n

C2
(Xξ) which send the

class ω ∈ E∗C2
(X) to the class of the composite

Xξ X+ ∧Xξ EC2 ∧ EC2 EC2 ,
δ ω∧t(ξ)

is an isomorphism. This follows from the fact that for any point x ∈ X , if we let ξx denote the fiber of
the vector bundle ξ over x ∈ X , the restriction of t(ξ) ∈ Ẽ2n

C2
(Xξ) to Ẽ2n

C2
(Sξx) ∼= Ẽ2n

C2
(S2n) ∼= E0

C2

corresponds to the unit 1 ∈ E0
C2

.

Having established the connection between geometrically oriented C2-spectra and thom isomor-
phisms for vector bundles, we will now investigate the connection betweeen geometric orientations
and complex orientations. A key observation is that we can associate to any geometrically oriented
C2-spectrum EC2 a complex oriented C2-spectrum ÊC2 in the following way. If EC2 is a geometri-
cally oriented C2-spectrum, then the element τ ∈ ΩC2

� maps to some element in τ ∈ EC2
� . Since

ΩC2 [1/τ ] 'MUC2 , and MUC2 classifies C2-equivariant complex orientations, inverting the class
τ ∈ EC2

� yields a complex oriented C2-spectrum

ÊC2 = EC2 [1/τ ] = hocolim
(
EC2

τ−→ Σσ−|σ|EC2

τ−→ Σ2σ−|2σ|EC2

τ−→ · · ·
)

which we call the stabilization of EC2 . The C2-spectrum ÊC2 inherits a multiplicative structure
from that of EC2 , and is filtered by the defining diagram

EC2 Σσ−|σ|EC2 Σ2σ−|2σ|EC2 · · · ÊC2 .
τ τ τ

Since we have assumed that multiplication by τ is injective in the good range EC2
� ⊂ EC2

? , this
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determines a filtration of the coefficients of ÊC2:

EC2
∗ ⊂ EC2

∗+|σ|−σ ⊂ EC2

∗+|2σ|−2σ ⊂ · · · ⊂ ÊC2
∗ .

We call this the euler filtration of ÊC2
∗ , for reasons that will become clear in Theorem 5.4.6. From

this perspective, EC2
� is the Rees Algebra of the filtered ring ÊC2

∗ , which interpolates between the
“generic fiber” ÊC2

∗ , and the “special fiber” gr•Ê
C2
∗ , as depicted below.

EC2
�

ÊC2
∗ gr•Ê

C2
∗

/τ−1 /τ−0

We can think of a mapEC2
� → A as a deformation of theC2-equivariant formal group law determined

by ÊC2
∗ = EC2

� /(τ − 1)→ A/(τ − 1). Having established some basic properties of geometrically
oriented spectra, we turn our attention to the examples HRC2

and kC2 .

5.2 Ordinary cohomology

The simplest example of a geometrically oriented C2-spectrum is the Eilenberg-Maclane spec-
trum HR associated to a commutative ring R with no 2-torsion. Recall that the constant Mackey
functor R is defined by

R(C2/e) = R = R(C2/C2).

The restriction resC2
e is the identity, and the transfer trC2

e is multiplication by 2. The Eilenberg-
Maclane spectrum HR represents R in the sense that

πn(HR) =

R n = 0

0 n 6= 0.

In the following theorem, we calculate the stabilization of the geometrically oriented C2-spectrum
HRC2

. Note that the RO(C2)-graded coefficient ring of HRC2
is well known, see for instance [19].

Theorem 5.2.1. If R is a commutative ring with no 2-torsion, then the Eilenberg-Maclane spectrum
HR is geometrically oriented. The extended coefficient ring of HR is

HRC2
� = R[µ, τ ]/(2µ)
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where |µ| = −σ and |τ | = 2− σ. The stabilization of HR is

HR[1/τ ] ' F (EC2+, HR).

Proof. The RO(C2)-graded coefficients of HRC2
are well known, and can be calculated using the

Tate diagram. The completion map

HRC2
→ F (EC2+, HRC2

) ' F (EC2+, HR)

exhibitsHRC2
as the connective cover of F (EC2+, HR), which is complex oriented. SinceHRC2

is
connective, this determines a geometric orientation ΩC2 → HRC2

. Since the completion map takes
τ ∈ HRC2

2−σ to a unit in F (EC2+, HR)C2
? , there is an induced map HRC2

[1/τ ]→ F (EC2+, HR)

which we claim is an equivalence. It is a non-equivariant equivalence sinceHRC2
→ F (EC2+, HR)

is a non-equivariant equivalence and τ is non-equivariantly homotopic to 1 ∈ HR{e}0 . Moreover,

HR[1/τ ]C2
∗ = HRC2

� /(τ − 1) = R[µ, τ ]/(2µ, τ − 1)

∼= R[u]/(2u)

= F (EC2+, HR)C2
∗ ,

so HRC2
[1/τ ]→ F (EC2+, HR) induces an isomorphism on πC2

∗ (−).

5.3 Connective K-theory

Our next important example of a geometrically orientedC2-spectrum is connectiveC2-equivariant
K-theory. Recall that if EC2 is a C2-spectrum, then the connective cover τ≥0EC2 is a C2-spectrum
equipped with a map τ≥0EC2 → EC2 such that πn(EC2) = 0 if n < 0, and πn(τ≥0EC2)→ πn(EC2)

is an isomorphism for n ≥ 0. Connective covers are unique up to canonical isomorphism in the
Ho(SpC2

). In the case EC2 = KC2 , we define kC2 = τ≥0KC2 to be the connective C2-equivariant
K-theory spectrum.

There is another important C2-equivariant analogue kuC2 of connective K-theory, which was
defined and studied by Greenlees in [8], [9], and [10]. While kuC2 is not actually the connective
cover ofKC2 , the C2-spectrum kuC2 enjoys many desirable properties: it is complex stable, complex
oriented, and Greenlees proves that the coefficient ring

kuC2
∗ = R(C2)[v, v−1J ]

∼= Z[u, v]/(2u+ vu2)
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classifies multiplicative C2-equivariant formal group laws in the sense of [5]. We write J ⊂ R(C2)

for the augmentation ideal of R(C2), which is generated by the element σ − 1 ∈ R(C2). For
this reason, it is the spectrum kuC2 whose properties mirror those of non-equivariant connective
K-theory.

The present theory of geometric orientations provides a new and interesting link between
these two C2-equivariant analogues of connective K-theory. In the next theorem, we calculate
the extended coefficient ring of the geometrically oriented C2-spectrum kC2 , and prove that the
stabilization of kC2 is Greenlees’ spectrum kuC2 .

Theorem 5.3.1. The connective cover kC2 = τ≥0KC2 of C2-equivariant K-theory is geometrically
oriented. The extended coefficient ring of kC2 is

kC2
� =

R(C2)[v, µ, τ ]

τ(σ − 1) = vµ

µ(σ + 1) = 0

where |v| = 2, |µ| = −σ, and |τ | = 2 − σ. The stabilization of kC2 is Greenlees’ equivariant
connective K-theory

kC2 [1/τ ] ' kuC2 .

Proof. The C2-spectrum kuC2 lies in a homotopy pullback square

kuC2 F (EC2+, ku)

KC2 F (EC2+, K).

The canonical map kC2 → KC2 and the completion map kC2 → F (EC2+, kC2) ' F (EC2+, ku)

induce a multiplicative map kC2 → kuC2 , and we will prove that this induces an equivalence
kC2 [1/τ ] ' kuC2 by calculating the extended coefficient ring of kC2 .

We claim that the map kC2

∗+|nσ|−nσ → KC2
∗ is injective with image

Jnv−n ⊕ · · · ⊕ Jv−1 ⊕R(C2)[v] ⊂ R(C2)[v±1] = KC2
∗ .

We prove this claim by induction on n, and the base case n = 0 follows from the definition of
connective cover. Applying kC2

∗−nσ(−)→ KC2
∗−nσ(−) to the cofiber sequence

S(σ)+ → S0 → Sσ.
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yields the diagram

· · · kC2
∗−nσ(S(σ)) kC2

∗−nσ kC2

∗−(n+1)σ kC2
∗−1−nσ(S(σ)) · · ·

· · · Z[v±1]{2 + uv} R(C2)[v±1] R(C2)[v±1] Z[v±1] · · ·u

(5.3.2)
whose rows are exact. By applying kC2

∗−nσ(−)→ KC2
∗−nσ(−) to the cofiber sequence

C2+ → S(σ)+ → ΣC2+

we can deduce that kC2
m−nσ(S(σ))→ KC2

m−nσ(S(σ)) is an isomorphism form ≥ 2n and kC2
∗−nσ(S(σ)+) =

0 for m < 2n. Exactness of the rows in 5.3.2 implies that kC2

m−(n+1)σ → KC2

m−(n+1)σ is an isomor-
phism if m ≥ 2(n+ 1), and kC2

m−(n+1)σ = 0 if m is odd or m < 0. If 0 < 2k ≤ 2(n+ 1), then our
diagram is

· · · 0 Jn−k kC2

2k−(n+1)σ 0 · · ·

· · · Z{1 + σ} R(C2) R(C2) Z · · ·σ−1

and exactness implies that kC2

2k−(n+1)σ = Jn+1−k. The presentation

kC2
�
∼=

R(C2)[v, µ, τ ]

τ(σ − 1) = vµ

µ(σ + 1) = 0

is obtained by setting µ = σ − 1 ∈ J = kC2
−σ, and τ = 1 ∈ R(C2) = kC2

2−σ.
Next, we’ll prove that the map kC2 [1/τ ]→ kuC2 is an equivalence. This map is a non-equivariant

equivalence since kC2 → kuC2 is a non-equivariant equivalence and τ is non-equivariantly homo-
topic to 1 ∈ k{e}0 . We have

k[1/τ ]C2
∗ = kC2

� /(τ − 1) = Z[u, v]/(2u+ vu2)

= kuC2
∗ ,
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so kC2 [1/τ ]→ kuC2 induces an isomorphism on πC2
∗ (−). We deduce that kC2 [1/τ ]→ kuC2 is an

equivalence.

5.4 Filtered C2-equivariant formal group laws

In this section we introduce and develop the theory of filtered C2-equivariant formal group laws,
which are the algebraic objects determined by geometrically oriented C2-spectra. Since a filtered
C2-equivariant formal group law is a C2-equivariant formal group law equipped with additional
structure, we begin by recalling the definition of a C2-equivariant formal group law.

Definition 5.4.1. A C2-equivariant formal group law (A,D) consists a commutative ring A, an
A-Hopf algebra D, a morphism A[C∨2 ]→ D of A-Hopf algebras, and an A-linear functional x on
D, such that

1. The sequence
0 A D D 0

η ∩x

is exact, and

2. if d ∈ D, then there exist m,n ≥ 0 such that

d ∩ xm+nσ = 0.

If EC2 is a complex oriented C2-spectrum, then the pair (EC2
∗ , E

C2
∗ (CP∞C2

)) carries the structure
of a C2-equivariant formal group law. The morphism EC2

∗ [C∨2 ] → EC2
∗ (CP∞C2

) is obtained by
applying EC2

∗ (−) to the inclusion

C∨2 = CP(1)qCP(σ)→ CP∞C2

and the linear functional x is the map EC2
∗ (CP∞C2

)→ EC2
∗ obtained by pairing with the complex

orientation x ∈ Ẽ2
C2

(CP∞C2
). We will show that when ÊC2 is the stabilization of some geometrically

oriented C2-spectrumEC2 , then the C2-equivariant formal group law (ÊC2
∗ , Ê

C2
∗ (CP∞C2

)) is afforded
the additional data of a filtration

FnÊ
C2
∗ = EC2

∗+|nσ|−nσ

FnÊ
C2
∗ (CP∞C2

) = EC2

∗+|nσ|−nσ(CP∞C2
).

The interaction of this filtration with the algebraic structure of the C2-equivariant formal group
law (ÊC2

∗ , Ê
C2
∗ (CP∞C2

)) is surprisingly rich and deep. We call the resulting structure a filtered
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C2-equivariant formal group law. In order to properly axiomatize this filtration, we must first
prove some structural results about C2-equivariant formal group laws. The proposition below,
which characterizes the additive and comultiplicative structure of a C2-equivariant formal group law
(A,D), is proved in Appendix B.

Proposition 5.4.2. Suppose (A,D) is a C2-equivariant formal group law. Then we can associate
to any sequence ρ1, . . . , ρn ∈ C∨2 an element β(ρ1, . . . , ρn) ∈ D, and these elements satisfy the
following properties:

1.

∆β(ρ1, . . . , ρn) =
n∑
i=1

β(ρ1, . . . , ρi)⊗ β(ρi, . . . , ρn),

2. If (ρi)
∞
i=1 is a complete flag, then

〈β(ρ1, . . . , ρi), x
ρ1+···+ρj−1〉 =

1 i = j

0 i 6= j.

3. The set {β(ρ1, . . . , ρi) : i ≥ 1} is a free A-module basis for D.

It turns out that the filtration afforded to (A,D) = (ÊC2
∗ , Ê

C2
∗ (CP∞C2

)) is much clearer when
viewed in terms of a different, geometrically defined A-module basis of D. For any m,n ≥ 0 we
have elements

πm+nσ = [CP(m+ nσ)] ∈ ΩC2
∗ , and

Πm+nσ = [CP(m+ nσ)→ CP∞C2
] ∈ ΩC2

∗ (CP∞C2
).

which map to elements πm+nσ ∈MUC2
∗ and Πm+nσ ∈MUC2

∗ (CP∞C2
).1 Since the pair (MUC2

∗ ,MUC2
∗ (CP∞C2

))

is the universal C2-equivariant formal group law, this determines elements πm+nσ ∈ A and
Πm+nσ ∈ D for every equivariant formal group law (A,D). The following theorem asserts
that {Πρ1+···+ρi : i ≥ 1} is an A-module basis of D, and identifies the coefficients of the change of
basis matrix from {Πρ1+···+ρi : i ≥ 1} to the canonical basis {β(ρ1, . . . , ρi) : i ≥ 1}.

Theorem 5.4.3. Suppose (A,D) is a C2-equivariant formal group law.

1The class of the map CP(m + nσ) → CP∞
C2

is well defined since the space of equivariant linear isometric
embeddings m+ nσ → C∞,∞ is connected.
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1. If ρ1, . . . , ρn ∈ C∨2 , then

Πρ1+···+ρn =
n∑
i=1

πρi+···+ρnβ(ρ1, . . . , ρi).

2. If (ρ1, ρ2, . . . ) is a complete flag, then the set {Πρ1+···+ρi : i ≥ 1} is a free A-module basis
for D.

We prove this theorem in section 5.5. Having developed the necessary background, we can now
state our main algebraic definition.

Definition 5.4.4. A filteredC2-equivariant formal group law (F•A,F•D) consists of aC2-equivariant
formal group law (A,D), together with a filtration F•A of A and F•D of D such that

1. Im(ΩC2
∗ → A) ⊆ F0A,

2. FnA is generated over F0A by 1, . . . , un ∈ A, and

3. For any complete flag (ρi)
∞
i=1,

FnD =
{∑

aiΠρ1+···+ρi ∈ D : ai ∈ Fn+`iA
}
,

where `i is the number of copies of σ in (ρ1 + · · ·+ ρi−1)ρ−1
i .

One of the main theorems of this section is that every geometrically oriented C2-spectrum
determines a filtered C2-equivariant formal group law which refines the C2-equivariant formal group
law associated to the complex oriented C2-spectrum ÊC2 .

Theorem 5.4.5. If EC2 is a geometrically oriented C2-spectrum with stabilization ÊC2 = EC2 [1/τ ],
then the pair (F•Ê

C2
∗ , F•Ê

C2
∗ (CP∞C2

)) defined by

FnE
C2
∗ = ÊC2

∗+|nσ|−nσ, and

FnÊ
C2
∗ (CP∞C2

) = EC2

∗+|nσ|−nσ(CP∞C2
)

is a filtered C2-equivariant formal group law.

Proof. It is clear that axiom (1) of a filtered C2-equivariant formal group law is satisfied since the
composite ΩC2 → MUC2 → ÊC2 lifts across the stabilization map EC2 → ÊC2 . We prove axiom
(2) in Proposition 5.4.6 and we prove axiom (3) in Proposition 5.4.8.
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Proposition 5.4.6. If EC2 is a geometrically oriented C2-spectrum, then for any n ≥ 0, the EC2
∗ -

module EC2

∗+|nσ|−nσ ⊂ ÊC2
∗ is generated by the euler classes

{uk ∈ ÊC2
−2k : 0 ≤ k ≤ n}.

In particular, the EC2
∗ -algebra ÊC2

∗ is generated by the euler class u ∈ ÊC2
−2.

Proof. Note that for any 0 ≤ k ≤ n, the submodule EC2

∗+|nσ|−nσ ⊂ ÊC2
∗ contains the euler class

uk =
[
S0 ⊂ Skσ → ΣkσEC2 ' Σ|kσ|Σkσ−|kσ|EC2 → Σ|kσ|ÊC2

]
∈ ÊC2

−|kσ|

associated to the C2-representation kσ. We prove that these elements generate EC2

∗+|nσ|−nσ by
induction on n ≥ 1. For the base case, we prove that if EC2 is geometrically oriented, then
EC2
∗−σ = ẼC2

∗ (Sσ) is generated over EC2
∗ by 1 and u. The C2-space Sσ = S2α has a cell structure

S0 Sα S2α

ΣC2+ Σ2C2+

and applying EC2
∗ (−) yields a spectral sequence E converging to EC2

∗−σ with E1 page

E1
p,q =


EC2
q p = 0

Ep+q p = 1, 2

0 else.

The differential E1
1,∗ → E1

0,∗−1 is the transfer, which is injective by assumption, so the differential
E1

2,∗ → E1
1,∗−1 is zero and the spectral sequence collapses at the E2 page to

E2
p,∗ = E∞p,∗ =


EC2
∗ /trC2

e p = 0

E∗ p = 2

0 else.

The unit 1 ∈ EC2
∗ /trC2

e represents u ∈ EC2
∗−σ. Since EC2 is an ΩC2-algebra and ΩC2 is a split

C2-spectrum, we know that EC2 is also a split C2-spectrum, which implies that the restriction
EC2
∗ → E∗ is surjective. We deduce that E∞∗,∗ is generated by 1 and u, hence so is the target EC2

∗−σ.
Suppose next that EC2

∗−nσ is generated as a EC2
∗ -module by 1, . . . , un. In order to prove that
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EC2

∗−(n+1)σ is generated as a EC2
∗ -module by 1, . . . , un+1, we smash the map τn : E → Σnσ−|nσ|E

with the cofiber sequence S(σ)+ → S0 → Sσ to obtain the following diagram whose rows are
exact.

· · · EC2
∗ (S(σ)) EC2

∗ EC2
∗−σ EC2

∗−1(S(σ)) · · ·

· · · EC2

∗+|nσ|−nσ(S(σ)) EC2

∗+|nσ|−nσ EC2

∗+|nσ|−(n+1)σ EC2

∗−1+|nσ|−nσ(S(σ)) · · ·

Since S(σ) is a free C2-space and τn is a non-equivariant equivalence, the maps

EC2
∗ (S(σ))→ EC2

∗+|nσ|−nσ(S(σ))

are isomorphisms. By taking kernels and cokernels of the middle horizontal maps, we obtain the
diagram

0 K EC2
∗ EC2

∗−σ C 0

0 K ′ EC2

∗+|nσ|−nσ EC2

∗+|nσ|−(n+1)σ C ′ 0

∼=

u

∼=

u

whose rows are exact. By our inductive hypothesis, we know that 1 ∈ EC2
∗−σ maps to a EC2

∗ -module
generator of C, hence the element 1 ∈ EC2

∗+|nσ|−(n+1)σ maps to an EC2
∗ -module generator of C ′. We

deduce that EC2

∗+|nσ|−(n+1)σ is generated as an EC2
∗ -module by 1 and

Im
(
EC2

∗+|nσ|−nσ
u−→ EC2

∗+|nσ|−(n+1)σ

)
= Im

(
EC2
∗ {1, . . . , un}

u−→ EC2

∗+|nσ|−(n+1)σ

)
= Im

(
EC2
∗ {u, . . . , un+1} → EC2

∗+|nσ|−(n+1)σ

)
,

from which it follows that EC2

∗+|(n+1)σ|−(n+1)σ is generated over EC2
∗ by 1, . . . , un+1.

Remark 5.4.7. We mention that the previous result does not necessarily hold for an ΩC2-algebra
EC2 failing the flatness hypotheses of a geometric orientation. For instance, the Eilenberg-Maclane
spectrum HF2C2

is an ΩC2-algebra, but HF2
C2

∗−σ has rank 3 over F2, so it can not be generated by
{1, u} over HF2

C2

∗ = F2.

Proposition 5.4.8. If EC2 is a geometrically oriented C2-spectrum with stabilization ÊC2 =
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EC2 [1/τ ], then for any complete flag (ρi)
∞
i=1, the map

EC2

∗+|nσ|−nσ(CP∞C2
)→ ÊC2

∗ (CP∞C2
) ∼=

∞⊕
i=1

ÊC2
∗ {Πρ1+···+ρi}

is injective, and identifies EC2

∗+|nσ|−nσ(CP∞C2
) with{∑

aiΠρ1+···+ρi ∈ ÊC2
∗ (CP∞C2

) : ai ∈ EC2

∗+|nσ|−nσ ⊂ ÊC2
∗

}
,

where `i is the number of copies of σ in (ρ1 + · · ·+ ρi−1)ρ−1
i .

Proof. Choose a complete flag (ρi)
∞
i+1 and set Vi = ρ1 + · · ·+ ρi. We can apply EC2

∗+|nσ|−nσ(−) to
the diagram

∗ CP(V1)+ CP(V2)+ CP(V3)+ CP(V4)+ · · ·

S0 SV1ρ
−1
2 SV2ρ

−1
3 SV3ρ

−1
4 · · ·

which yields a spectral sequence E with signature

E1
p,q = EC2

p+|nσ|−nσ(SVqρ
−1
q+1)⇒ EC2

p+q+|nσ|−nσ(CP∞C2
).

By mapping to the spectral sequence associated to the ÊC2-homology of this diagram, we deduce
that the spectral sequence collapses, which leads to the desired direct sum decomposition.

Our final major result of this section is a universality statement for the C2-equivariant formal
group law associated to the universal geometrically oriented C2-spectrum ΩC2 . This result asserts
that the the filtration present on a filtered C2-equivariant formal group law is completely determined
by F0A and the filtration on the universal C2-equivariant formal group law (MUC2

∗ ,MUC2
∗ (CP∞C2

)).

Theorem 5.4.9. If (F•A,F•D) is a filtered C2-equivariant formal group law, then

FnA = FnMUC2
∗ · F0A, and

FnD = FnMUC2
∗ · F0D.

Proof. Both equalities follow from the fact that FnA is generated over F0A by the elements
1, . . . , un ∈ FnMUC2

∗ .
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5.5 Equivariant projective spaces

In this section we identify the geometrically defined classes

πm+nσ = [CP(m+ nσ)] ∈ ΩC2
∗

in terms of purely algebraic data (Proposition 5.5.1). We describe a method for writing the classes
πm+nσ in terms of our generators of ΩC2

∗ , and illustrate this method for some small values of m and
n (Proposition 5.5.4). We then prove Theorem 5.4.3, which relates the geometrically defined classes
πm+nσ ∈ ΩC2

∗ and Πm+nσ ∈ ΩC2
∗ (CP∞C2

) to the algebraic structure of filtered C2-equivariant formal
group laws.

We have seen in the previous section that the filtration present on a filtered C2-equivariant formal
group law (F•A,F•D) is controlled by the euler class u ∈ A and the geometric classes πm+nσ ∈ A.
For this reason, we’d like to identify the classes πm+nσ ∈ ΩC2

∗ in terms of our presentation

ΩC2
∗ = MU∗[di,j, qj]/I

from Theorem 3.0.1, or at least identify these classes in terms of purely algebraic data. Before doing
so, we review the non-equivariant case.

Consider the non-equivariant complex projective space CP(k) = CPk−1 for some k ≥ 0. We
can detect the class [CP(k)] ∈MU∗ by applying the Hurewicz homomorphism

MU∗ → H∗MU = Z[b1, b2, . . . ],

which is injective. This map encodes characteristic numbers of stably almost complex manifolds, in
that the composite

MU∗ → H∗MU ∼= H∗(BU) ∼= Hom(H∗(BU),Z)

is adjoint to the pairing

H∗(BU)⊗MU∗ −→ Z

cI ⊗M 7→ 〈cI(ν), [M ]〉

where cI(ν) is the total chern class of the stable normal bundle ν of M , and [M ] ∈ H∗(M) is the
fundamental class of M . Since the stable normal bundle ν of CP(k) is equal to −k{γ1},2 this
implies that the image of [CP(k)] under the Hurewicz map is the coefficient of xk−1 in the power

2We write {ξ} for the stable equivalence class of a vector bundle ξ, and we write −ν for the ⊕-inverse of a stable
vector bundle ν.
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series
1

(1 + b1x+ b2x2 + · · · )k
.

By the Lagrangian inversion formula, this is equal to kmk−1 where x+m1x
2 +m2x

3 + · · · is the
functional inverse of x+ b1x

2 + b2x
3 + · · · . This calculation is originally due to Mischenko [25].

Let’s return to the C2-equivariant setting, where we’d like to describe the classes πm+nσ =

[CP(m+ nσ)] ∈ ΩC2
∗ in terms of purely algebraic data. We can use the fact that any class in ΩC2

∗ is
determined by its underlying class in MU∗, and its image in the geometric fixed point ring

ΦMUC2
∗ = MU∗[b

′
1, b
′
2, . . . ][u

±1].

This is because the kernel of ΩC2
∗ → ΦC2MU∗ is a free MU∗-module on q1, and the augmentation

ΩC2
∗ →MU∗ maps q1 to 2 ∈MU∗, which is not a zero divisor. We determine the image of πm+nσ

in MU∗ and ΦMUC2
∗ in the following proposition.

Proposition 5.5.1. The composite

ΩC2
∗ →MU∗ → Z[bi : i ≥ 1]

maps πm+nσ to

(m+ n)mm+n−1 = coeffxm+n−1

1

(1 + b1x+ b2x2 + · · · )m+n
, (5.5.2)

and the composite
ΩC2
∗ → ΦMUC2

∗ → Z[bi, b
′
i : i ≥ 1][u±1]

maps πm+nσ to the sum(
coeffxm

1

(1 + b1x+ b2x2 + · · · )m(1 + b′1x+ b′2x
2 + · · · )n

)
u−n (5.5.3)

+

(
coeffxn

1

(1 + b1x+ b2x2 + · · · )n(1 + b′1x+ b′2x
2 + · · · )m

)
u−m.

Proof. The augmentation maps πm+nσ to [CP(m + n)] ∈ MU∗, which was determined in our
non-equivariant discussion above. Thus, our main task is to determine the image of πm+nσ in the
geometric fixed point ring. Geometrically, the class πm+nσ = [CP(m+nσ)] maps in the geometric
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fixed points to[
CP(m),−{ν |CP(m+n)

CP(m) }
]
u−n +

[
CP(n),−{ν |CP(m+n)

CP(n) }
]
u−m ∈MU∗[b

′
i][u
±1],

where we have used the fact that elements of MU∗[b
′
i] = MU∗(BU) are represented by pairs [M, ξ]

of a stably almost complex manifold M equipped with a stable vector bundle ξ. In order to detect
the image of the classes [CP(k),−{ν |CP(k+`)

CP(k) }] in MU∗[b
′
i : i ≥ 1], we can apply the Hurewicz

homomorphism

MU∗[b
′
i] = MU∗(BU)→ H̃∗(MU ∧BU+) = Z[bi, b

′
i : i ≥ 1],

which is injective. Much like the case of the Hurewicz homomorphism MU∗ → H∗(MU), we can
think of MU∗(BU) → H̃∗(MU ∧ BU+) as encoding generalized characteristic numbers. More
precisely, we have a pairing

MU∗(BU)⊗H∗(BU)⊗H∗(BU) −→ Z

[M, ξ]⊗ cI ⊗ cJ 7−→ 〈cI(ν)cJ(ξ), [M ]〉

where ν is the stable normal bundle of M and [M ] ∈ H∗(M) is the fundamental class of M . This
map is adjoint to the map

MU∗(BU)→ Hom(H∗(BU)⊗H∗(BU),Z),

which corresponds to the Hurewicz homomorphism under the isomorphism

Hom(H∗(BU)⊗H∗(BU),Z) ∼= Hom(H∗(BU ×BU),Z)

∼= H∗(BU ×BU)

∼= H̃∗(MU ∧BU+).

The stable normal bundle of CP(k) is ν = −k{γ1}, and so

{ν |CP(k+`)
CP(k) } = −k{γ1}+ (k + `){γ1} = `{γ1}.

From this it follows that [CP(k),−{ν |CP(k+`)
CP(k) }] = [CP(k),−`{γ1}]. Since the direct sum of

vector bundles corresponds to the product on MU∗(BU), we can deduce that [CP(k),−`{γ1}]
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maps via the Hurewicz homomorphism to the coefficient of xk−1 in the power series

1

(1 + b1x+ b2x2 + · · · )k(1 + b′1x+ b′2x
2 + · · · )`

∈ Z[bi, b
′
i : i ≥ 1][[x]],

which implies the result.

We can use the previous proposition to express the classes πm+nσ ∈ MU∗[di,j, qj]/I in terms
of the generators di,j, qj for some small values of m and n. In order to do so, our first step is to
construct a lift π̃m+nσ ∈MU∗[di,j, qj] of the image of πm+nσ in Z[bi, b

′
i][u
±1]. We can do this using

the formulas 5.5.2, 5.5.3 , and the formula 4.2.3 of section 4.2 . Since the map ΩC2
∗ → ΦMUC2

∗ is
not injective, the lift π̃m+nσ might not be the right one. However, if we have such a lift π̃m+nσ, then
since the kernel of ΩC2

∗ → Z[bi, b
′
i][u
±1] is MU∗{q1}, we can deduce that

πm+nσ = π̃m+nσ + γq1

where γ = (m + n)mm+n−1 − |π̃m+nσ|, and |π̃m+nσ| denotes the image of π̃m+nσ under the
augmentation ΩC2

∗ →MU∗, which is determined by

di,j 7→ ci,j , qj 7→ pj.

We employ this strategy to calculate πm+nσ for some small values of m and n. The validity of
these equalities can be verified by considering the image of each side of the equation in Z[bi] and
Z[bi, b

′
i][u
±1].

Example 5.5.4. (m,n) = (1, 1)

π1+σ = −q2

Example 5.5.5. (m,n) = (2, 1)

π2+σ = d1,0 − a1,1q2

Example 5.5.6. (m,n) = (2, 2)

π2+2σ = 4d1,1 + 2q4 − 2q2q3 − q3
2 + (6b3

1 − 18b1b2 + 6b3)q1

Having analyzed the classes πm+nσ ∈ ΩC2
∗ , our next goal is to prove Theorem 5.4.3. In order to

do so, we’ll analyze the geometry of equivariant projective spaces, and the equivariant Pontrjagin-
Thom construction. If V is a C2-representation, write γ(V ) for the tautological line bundle on

47



CP(V ). Define a function s : C→ C by

s(λ) =

0 λ = 0

1
λ

λ 6= 0.

Lemma 5.5.7. Suppose V is aC2 representation andW = ρ1⊕· · ·⊕ρk where each ρi is irreducible.
Define

ν =
k⊕
i=1

ρ−1
i γ(V ).

Then the map

CP(V ⊕W )/CP(W )→ Th(ν → CP(V ))

[~v : λ1 : · · · : λk] 7→

∞ ~v = 0

([~v], s(λ1)~v, · · · , s(λk)~v) ~v 6= 0.

is an isomorphism of based C2-spaces.

We continue our notation from the previous lemma in the following.

Lemma 5.5.8. The composite

MUC2
∗ (CP(V ⊕W )) MUC2

∗ (CP(V ⊕W ),CP(W )) MUC2
∗ (D(ν), S(ν))

∼=

takes ΠV⊕W to
[
D(ν)

id−→ D(ν)
]
∈MUC2

∗ (D(ν), S(ν)).

Proof. We will construct maps fitting into the following commutative diagram.

CP(V ⊕W ) CP(V ⊕W )/CP(W )

CP(V ⊕W )× [0, 1] Th(ν)

D(ν) D(ν)/S(ν)

i0 ∼=

F

i1 ∼=
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The map i0 is defined by i0(x) = (x, 0). Using Lemma 5.5.7, we can identify

CP(V ⊕W ) \CP(W ) ∼= Th(ν) \ {∞} = E(ν)

with the total space of ν, so we can consider D(ν) ⊂ E(ν) as a subspace of CP(V ⊕W ). The map
i1 is then defined by i1(~v) = (~v, 1). We define the map F by

F (x, t) =

∞ x ∈ CP(W ) or x ∈ E(ν) has norm |x| ≥ 1/t

tan(π
2
t|x|)x x ∈ E(ν) has norm |x| < 1/t.

Then F extends the quotient maps CP(V ⊕W ) → Th(ν) and D(ν) → Th(ν), and F sends the
complement of P (V ⊕W )

∐
D(ν) in ∂ (CP(V ⊕W )× [0, 1]) to the basepoint of Th(ν), so F is

a cobordism between CP(V ⊕W )→ Th(ν) and D(ν)→ D(ν).

Lemma 5.5.9. The isomorphism

MU∗C2
(CP(V ⊕W ),CP(W )) ∼= MU∗C2

(D(ν), S(ν))

takes xW to the thom class τ(ν).

Proof. If we write W = ρ1 ⊕ · · · ⊕ ρk where each ρi is irreducible, then the diagram

CP(V ⊕W )/CP(W ) Th
(⊕k

i=1 ρ
−1
i γ(V )

)
∧k
i=1 CP(V ⊕ ρi)/CP(ρi)

∧k
i=1 Th

(
ρ−1
i γ(V )

)
∧k
i=1 CP(ρ−1

i V ⊕ 1)/CP(1)
∧k
i=1 Th(γ(ρ−1

i V ))

∧k
i=1 Σ2MUC2

∧k
i=1 Σ2MUC2

δ

∼=

∼=

∼=

∼=

∧k
i=1 x

=

commutes, where the composite of the vertical arrows on the left is xW , and the composite of the
vertical arrows on the right is τ(ν).
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Proposition 5.5.10. If V and W are C2 representations, then

〈ΠV⊕W , x
W 〉 = πV .

Proof. The Pontrjagin-Thom construction takes ΠV = [CP(V )→ CP(V )] ∈ ΩC2
∗ (CP(V )) to the

class of a map f : SX →MUC2(Y ) ∧CP(V ⊕W )+ such that CP(V ⊕W ) ⊂ X is the preimage
of the zero section of ξ(Y )→MUC2(Y ). By lemmas 5.5.8 and 5.5.9, the element

〈ΠV⊕W , x
W 〉 = 〈[D(ν)→ D(ν)], τ(ν)〉 ∈MUC2

∗

is represented by the composite

SX MUC2(Y ) ∧CP(V ⊕W )+ MUC2(Y ) ∧CP(V ⊕W )/CP(W )

MUC2(Y ) ∧ Th(ν)

MUC2(Y ) ∧MU(Y ′)

MUC2(Y ⊕ Y ′),

f

∼=

id∧g

where g : Th(ν)→MUC2(Y ′) is obtained by applying Th(−) to a vector bundle map ν → ξ(Y ′).
Since the isomorphism CP(V ⊕W )/CP(W ) ∼= Th(ν) identifies CP(V ) with the zero section of
ν, this composite is a model for πV ∈MUC2

∗ .

We now give the proof of Theorem 5.4.3.

Proof. Result (1) follows from Proposition 5.5.10 since

Πρ1+···+ρn =
n∑
i=1

〈Πρ1+···+ρn , x
ρ1+···+ρi−1〉β(ρ1, . . . , ρi)

=
n∑
i=1

πρi+···+ρnβ(ρ1, . . . , ρi).

Result (2) follows from (1) since the matrix expressing {Πρ1+···+ρi : 1 ≤ i ≤ n} in terms of the
basis {β(ρ1, . . . , ρi) : 1 ≤ i ≤ n} is invertible.
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CHAPTER 6

RO(C2)-Graded Calculations

In developing our theory of geometrically oriented C2-spectra, we calculated the extended coef-
ficient rings of various C2-spectra, most notably connective K-theory kC2 , and geometric cobordism
ΩC2 . While we only needed the extended coefficient ring of these geometrically oriented C2-spectra
to understand their stabilization and the structure of their associated filtered C2-equivariant formal
group law, it is of independent interest to understand the full RO(C2)-graded coefficients of these
spectra. The purpose of this section is to complete the calculation of kC2

? and ΩC2
? . The reader will

see that kC2
? and ΩC2

? are much more complicated than the extended coefficient rings kC2
� and ΩC2

� .
In particular, neither kC2

? nor ΩC2
? is concentrated in even degrees.

6.1 The RO(C2)-graded coefficients of kC2

We begin by calculating the RO(C2)-graded coefficients of the connective cover kC2 of C2-
equivariant complex K-theory. We illustrate the Mackey functor structure explicitly, since it is no
more difficult to do so. The labels �, ◦, n, and n/m in the statement of our calculation refer to the
C2-Mackey functors

� = R ◦ n n/m

Z[σ]/(σ2 − 1) Z{1 + σ} Z Z/2n−mZ

Z Z 0 0

1,σ 7→1 1+σ 7→217→1+σ 17→1+σ

where the value of each Mackey functor at C2/C2 is shown on top, and the value at C2/e is shown on
bottom. The reader should think of the Mackey functor n as the nth power Jn of the augmentation
ideal J ⊂ R, and n/m as the quotient Mackey functor Jn/Jm.
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Theorem 6.1.1. The RO(C2)-graded coefficients of the connective cover kC2 of equivariant K-
theory are depicted below.

α

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

1 � � � �

2 1 � � �

3 2 1 � �

4 3 2 1 �

1 1 1 1 1

2 1 1 1 1

3 2 1 1 1

4 3 2 1 1

1/2

1/32/3

1/42/43/4

1/2

1/32/3

◦

◦

◦

◦

◦

◦

◦

◦

◦◦

. . .

. . . . . .

Proof. We apply k−∗(−)→ ku−∗(−) to the cofiber sequence

S(nσ)+ → S0 → Snσ
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which yields the diagram

· · · k−∗−1(S(nσ)) k∗ k∗+nσ k−∗(S(nσ)) · · ·

· · · ku−∗−1(S(nσ)) ku∗ ku∗+nσ ku−∗(S(nσ)) · · ·un

whose rows are exact. The map k−∗(S(nσ)) → ku−∗(S(nσ)) is an isomorphism since S(nσ) is
free as a based C2-space, and kC2 → kuC2 is a non-equivariant equivalence. Since kuC2 is complex
stable, we know that ku∗+nσ ∼= ku∗+2n. Exactness of the rows implies that k∗+nσ → ku∗+nσ is an
isomorphism for ∗ ≥ 0, and k∗+nσ = 0 for ∗ < 2n. For any −2n ≤ −2m ≤ −2, the relevant part
of our diagram is

0 · k−2m+nσ 0 · k−2m−1+nσ 0

0 · R Jm · 0 0.

∼= ∼=
(σ−1)n

Exactness of the rows implies that

k−2m+nσ = ker
(
R

(σ−1)n−→ Jm
)

= ◦

and

k−2m+nσ = coker
(
R

(σ−1)n−→ Jm
)

= Jm/Jn ∼= m/n.

Finally, by applying k∗±2nα(−) to the cofiber sequence C2+ → S0 → Sα we can deduce the
structure of k∗±(2n+1)α from that of k∗+2nα.

6.2 The RO(C2)-graded coefficients of ΩC2

Next, we calculate the RO(C2)-graded coefficients of the geometric complex cobordism spec-
trum ΩC2 . The good range

ΩC2
� =

⊕
n≥0

ΩC2
∗−nσ

was already calculated in section 4.3. To calculate the remaining piece, we need the following
lemma, which we have already used several times in this paper.
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Lemma 6.2.1. If

0 A B C D E 0

0 A B′ C ′ D 0

ι

=

κ

β

λ

γ

µ

=

φ χ ψ

is a commutative diagram of abelian groups whose rows are exact, then

B ∼= ker
(
B′ ⊕ C C ′

χ−γ
)

and
D ∼= coker

(
B′ ⊕ C C ′

χ−γ
)
.

Proof. This is an elementary diagram chase.

We can now finish our calculation of the complete RO(C2)-graded coefficients of the geometric
complex cobordism spectrum ΩC2 .

Theorem 6.2.2. If n ≥ 0, then

1.

ΩC2
∗−2nα

∼=
ΩC2
∗ {1, . . . , un}

uk(di,j − ci,j) = uk+1di,j+1

uk(qj − pj) = uk+1qj+1

i ≥ 1 and j ≥ 0

0 ≤ k < n

2.
ΩC2

∗−(2n+1)α
∼= ΩC2

∗−2nα/q1.

3.
ΩC2
∗+2nα

∼= ΩC2
even+2nα ⊕ ΩC2

odd+2nα

where
ΩC2

even+2nα
∼= MU∗{q1} ⊕

(
(un) ∩ ΩC2

∗
)

and
ΩC2

odd+2nα
∼=

MU∗−1[u](
un ,

∑n−1
`=0 ci,j+`u

` ,
∑n−1

`=0 pj+`u
`
)

4.
ΩC2

∗+(2n+1)α
∼= ΩC2

∗+2nα/q1
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Proof. Our presentation of ΩC2
∗−2nα = ΩC2

∗−nσ was calculated in section 4.3. To calculate ΩC2
∗+2nα =

Ω−∗−2nα
C2

, we apply Ω∗C2
(−) to the diagram

S(2nα)+ S0 S2nα

S(2nα)+ ∧ S(∞α)+ S(∞α)+ S2nα ∧ S(∞α)+

which yields

0 ΩC2
∗−1+2nα

MU∗[[u]]
([2]u,un)

ΩC2
∗ ΩC2

∗+2nα MU∗{q1} 0

0 MU∗[[u]]
([2]u,un)

MU∗[[u]]
[2]u

MU∗[[u]]
[2]u

MU∗{q1} 0

= =

un

so Lemma 6.2.1 implies that the even and odd part of ΩC2
∗+2nα are isomorphic to

ker
(

ΩC2
∗ ⊕

MU∗[[u]]

[2]u
→ MU∗[[u]]

[2]u

)
and

coker
(

ΩC2
∗ ⊕

MU∗[[u]]

[2]u
→ MU∗[[u]]

[2]u

)
,

respectively. Our presentation of the cokernel is obtained by quotienting MU∗[[u]]/([2]u, un) by
the image of each of the generators di,j, qj ∈ ΩC2

∗ . To calculate a presentation of the kernel, we
consider the pullback square

ΩC2
even+2nα ΩC2

∗

MU∗[[u]]/[2]u MU∗[[u]]/[2]u.un

Since the kernel of each horizontal arrow is MU∗{q1}, we obtain a pullback square

ΩC2
even+2nα/q1 ΩC2

∗

(MU∗[[u]]/[2]u)/q1 MU∗[[u]]/[2]u.un

by killing q1 in the domain of each of the horizontal maps. This square identifies ΩC2
even+2nα with the
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kernel of ΩC2
∗ →MU∗[[u]]/[2]u, and since MUC2

∗ →MU∗[[u]]/[2]u induces an isomorphism

MUC2
∗ /(un) ∼= MU∗[[u]]/([2]u, un),

the kernel of ΩC2
∗ → MU∗[[u]]/([2]u, un) is the intersection of (un) ⊂ MUC2

∗ with ΩC2
∗ . We

provide generators for the intersection ideal (un) ∩ ΩC2
∗ in Proposition 6.2.3. Finally, to calculate

ΩC2

∗±(2n+1)α, we apply ΩC2
∗±2nα(−) to the cofiber sequence

C2+ → S0 → Sα

which yields
0→ Ω

{e}
∗±2nα → ΩC2

∗±2nα → ΩC2

∗+(2n+1)α → 0

and the result follows from the fact that Ω
{e}
∗±2nα

∼= MU∗{q1}.

The only part of ΩC2
? that we have not yet described explicitly is the intersection ideal (un)∩ΩC2

∗ .
The following proposition gives us a generating set for this ideal. Let S be the set of all monomials
in {di,j − ci,j, qj − pj : i ≥ 1 and j ≥ 0}. Consider the map φ : MU∗[di,j, qj] → MU∗[[u]]

determined by

φ(di,j − ci,j) = ci,j+1u+ ci,j+2u
2 + · · · ,

φ(qj − pj) = pj+1u+ pj+2u
2 + · · · .

Define a function φn : S →MU∗ by letting φn(m) be the coefficient of un in φ(m), i.e. so that

φ(m) = φ0(m) + φ1(m)u+ φ2(m)u2 + · · · .

We write |m| for the total degree of m, so for example |(di,j − ci,j)| = |(qj − pj)| = 1 and
|(di,j − ci,j)4(q` − p`)3| = 7.

Proposition 6.2.3. The ideal (un) ∩ ΩC2
∗ is generated by the nth power Jn of the augmentation

ideal of ΩC2
∗ , together with the collection of all elements of the form∑

m∈S,|m|<n

αmm ∈ ΩC2
∗ ,

with αm ∈MU∗ such that ∑
|m|≤k

φk(αm) = 0 ∈MU∗/2.
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for each 1 ≤ k ≤ n− 1.

Proof. By inspection of the corresponding quotient rings, we have J = (u)∩MUC2
∗ , which implies

Jn ⊂ (un) ∩ ΩC2
∗ . For this reason, it suffices to calculate the kernel of

ΩC2
∗ /J

n →MUC2
∗ /(un).

We can use the fact that f ∈ ΩC2
∗ is in (un) if and only if its image in each of

MUC2
∗ /(u), (u)/(u2), (u2)/(u3), . . . , (un−1)/(un)

is zero. Given any f ∈ ΩC2
∗ /J

n we can write

f = α1 +
∑
|m|<n

αmm

for some coefficients α1, αm ∈MU∗. The condition that f is zero in each of the associated graded
pieces is precisely the condition in the statement of the result, since MUC2

∗ /(u) = MU∗ and
(uk)/(uk+1) = MU∗/2{uk}.
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APPENDIX A

Eliminating the euler class u

The purpose of this appendix is two-fold. First, in section A, we prove a technical lemma from
commutative algebra which was needed in order to calculate our presentation of the geometric
cobordism ring ΩC2

∗ . Second, in section B, we review the theory of G-equivariant formal group
laws, as defined in [5], and prove that our new “homological” formulation of G-equivariant formal
group laws is equivalent to the original “cohomological” formulation. We can consider this as an
equivariant formal group theoretic version of Cartier duality, which asserts that a formal group is
determined by its algebra of (continuous) functions, or by its coalgebra of (compactly supported)
distributions.

In this section we prove the main technical result which allows us to calculate the relations
among the generators di,j, qj of the geometric cobordism ring ΩC2

∗ . Let R be a domain and consider
the ring

R[u, x1, x2, . . . ] = R[u, xi].

By a monomial in R[u, xi], we mean an element of the form umxn1
i1
. . . xnkik . We can order the

variables u, x1, x2, . . . by x1 ≺ x2 ≺ · · · ≺ u, and this induces an order on the set of monomials
in R[u, xi]. If q ∈ R[u, xi] is any polynomial, then we write M(q) for the greatest monomial that
occurs in q, and we write LT (q) for the leading term of q, which is just M(q) together with its
coefficient in R.

Lemma A.0.1. Let R be a domain and let I ⊂ R[u, x1, x2, . . . ] be the ideal

I = (uxi + pi : i ≥ 1)

for some p1, p2, · · · ∈ R[x1, x2, . . . ]. Then the intersection ideal I ∩R[x1, x2, . . . ] is equal to

J = (xipj − xjpi : i, j ≥ 1).
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Proof. We know that J ⊆ I ∩R[xi] since for any i, j ≥ 1 we have

xipj − xjpi = xi(uxj + pj)− xj(uxi + pi) ∈ I.

It remains to show that I ∩R[xi] ⊆ J. Suppose we have q1, . . . , qm ∈ R[u, xi] and

f =
m∑
t=1

qt(uxit + pit) ∈ R[xi].

We assume without loss of generality that is 6= it for s 6= t. After reordering the terms in the
sum we can assume that for some 1 < k ≤ m, the terms q1(uxi1 + pi1), . . . , qk(uxik + pik) have
the same leading monomial, and this is greater than the leading monomial in any of the terms
qk+1(uxik+1

+ pik+1
), . . . , qm(uxim + pim). We have

LT (qt(uxit + pit)) = LT (qt)uxit

since u is the greatest element in our order. Let ct ∈ R be the coefficient of LT (qt), so that
LT (qt) = ctM(qt). By assumption, we have M(qt)uxit = M(qs)uxis for all 1 ≤ s, t ≤ k. From
this we can deduce the equality

M(qt)

xis
=
M(qs)

xit

for all such s 6= t. Since all of the leading terms must cancel as they have u-degree 0, we must have
c1 + · · ·+ ck = 0. With these two equalities in mind, we can write

k∑
t=1

LT (qt)(uxit + pit) =
k∑
t=1

LT (qt)pit =
k∑
t=1

ctM(qt)pit

=
k−1∑
t=1

(c1 + · · ·+ ct) (M(qt)pit −M(qt+1)pit+1)

=
k−1∑
t=1

(c1 + · · ·+ ct)
M(qt)

xit+1

(xit+1pit − xitpit+1).

Call this polynomial g, and set f ′ = f − g. Then we have f = f ′ + g where M(f ′) ≺M(f) and
g ∈ J . We can apply this algorithm to f ′, and after finitely many iterations we will have written f
as a sum of elements of J , so we deduce that f ∈ J .

The same algorithm as in the proof above yields the following result.
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Lemma A.0.2. Let R be a domain and let I ⊂ R[u, x1, x2, . . . ] be the ideal

I = (uxi + pi : i ≥ 1)

for some p1, p2, · · · ∈ R[x1, x2, . . . ]. Then the R[xi]-submodule of R[u, xi]/I generated by
1, . . . , un is given by

R[xi]{1, . . . , un}
xipj − xjpi
uk+1xi + ukpi

i, j ≥ 1 and 0 ≤ k < n.
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APPENDIX B

Homological equivariant formal group laws

In this section we develop the theory of “homological” equivariant formal group laws, and
prove its equivalence to the definition given in [5]. While the body of this paper concerns the
group G = C2, in this section we work in the generality of an arbitrary finite abelian group G.
We begin by recalling the definition of a G-equivariant formal group law as defined in [5]. Write
G∨ = Hom(G,S1) for the Pontrjagin-dual of G. Suppose A is a commutative ring and R is a
complete topological A-algebra. The category of complete topological A-algebras is symmetric
monoidal under the completed tensor product ⊗̂ = ⊗̂A with unit A, regarded as a discrete A-algebra.
For this reason, we can make sense of a cogroup object in the category of complete topological
A-algebras, which we call a complete topological A-Hopf algebra. An example of a complete
topological Hopf algebra is the ring

AG
∨

=
∏
G∨

A

of A-valued functions on G∨, which is equipped with the product topology. If R is a complete
topological Hopf algebra equipped with a morphism R→ AG

∨ , then we can define a G∨ action on
R by rρ = (1⊗ evρ−1)∆r. For any V = ρ1 + · · ·+ ρk, we define

rV = rρ1 · · · rρk .

Definition B.0.1. A (cohomological) G-equivariant formal group law (A,R) consists of a commu-
tative ring A, a complete topological A-Hopf algebra R, a morphism R → AG

∨ , and an element
x ∈ R, such that

1. the sequence
0 R R A 0x ε

is exact, and

2. R = limR/(xV ).
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If EG is a complex oriented G-spectrum, then (A,R) = (E∗G, E
∗
G(CP∞G )) is naturally a G-

equivariant formal group law: The morphism E∗G(CP∞G ) → (E∗G)G
∨ is obtained by applying

E∗G(−) to the inclusion
G∨ ∼=

∐
ρ∈G∨

CP(ρ)→ CP∞G

and the coordinate x ∈ E∗G(CP∞G ) is the complex orientation of EG.
On the other hand, we can define a dual algebraic structure called a homological equivariant

formal group law, which axiomatizes the algebraic structure of (EG
∗ , E

G
∗ (CP∞G )). Before giving

the definition, we’ll review some necessary notation. Suppose D is an A-Hopf algebra equipped
with a map A[G∨]→ D. If x is an A-linear functional on D, we write 〈d, x〉 for the value of ∩x at
d ∈ D, and we write x for the comultiplication-by-x map

D D ⊗D D ⊗ A ∼= D.∆ ∩x

We can define a G∨ action on HomA(D,A) by

〈d, xρ〉 = 〈ρ−1d, x〉,

and for any V = ρ1 + · · ·+ ρk, we can define xV by

〈d, xV 〉 = 〈∆d, xρ1 ⊗ · · · ⊗ xρk〉.

Definition B.0.2. A homological G-equivariant formal group law (A,D) consists of a commutative
ring A, an A-Hopf algebra D, a morphism A[G∨]→ D, and an A-linear functional x on D, such
that

1. the sequence
0 A D D 0

η ∩x

is exact, and

2. if d ∈ D, then there exists V ∈ Rep(G) such that

d ∩ xV = 0.

We will prove that the data of a homological G-equivariant formal group law is equivalent to that
of a cohomological G-equivariant formal group law. We can do after proving some basic structural
results about homological G-equivariant formal group laws. We begin by describing the additive
and comultiplicative structure of such objects, which is relatively simple.
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Proposition B.0.3. If (A,D) is a G-equivariant formal group law, then there exists a unique family
of elements

{β(ρ1, . . . , ρn) ∈ D : n ≥ 1, ρi ∈ G∨}

satisfying the following properties:

1. β(ρ) ∈ D is the image of ρ ∈ A[G∨] under the structure map A[G∨]→ D.

2. β(ρ1, . . . , ρn) ∩ xρ1 = β(ρ2, . . . , ρn), and

3.

ε(β(ρ1, . . . , ρn)) =

1 n = 1

0 n > 1.

Proof. We construct the elements β(ρ1, . . . , ρn) ∈ D by induction on n ≥ 1. We define β(ρ1) ∈ D
to be the image of ρ1 ∈ A[G∨] under A[G∨]→ D. If we have defined β(ρ1, . . . , ρi) for all i < n,
then we define β(ρ1, . . . , ρn) ∈ D by first choosing any β ∈ D such that β ∩ xρ1 = β(ρ1, . . . , ρn),
and then defining

β(ρ1, . . . , ρn) = β − ε(β)β(ρ1).

Properties (1), (2), and (3) are satisfied by construction. Suppose that we have another fam-
ily of elements γ(ρ1, . . . , ρn) ∈ D satisfying properties (1), (2), and (3). We will prove that
β(ρ1, . . . , ρn) = γ(ρ1, . . . , ρn) by induction on n. The case n = 1 holds by property (1). Now

(β(ρ1, . . . , ρn)− γ(ρ1, . . . , ρn)) ∩ xρ1 = β(ρ1, . . . , ρn) ∩ xρ1 − γ(ρ1, . . . , ρn) ∩ xρ1

= β(ρ2, . . . , ρn)− γ(ρ2, . . . , ρn) = 0

so β(ρ1, . . . , ρn)− γ(ρ1, . . . , ρn) = aβ(ρ1) for some a ∈ A. But we compute

a = ε(aβ(ρ1)) = ε(β(ρ1, . . . , ρn)− γ(ρ1, . . . , ρn)) = ε(β(ρ1, . . . , ρn))− ε(γ(ρ1, . . . , ρn))

= 0

so β(ρ1, . . . , ρn)− γ(ρ1, . . . , ρn).

It turns out that the elements β(ρ1, . . . , ρi) associated to a complete flag (ρi)
∞
i=1 form a free

A-module basis for D.

Lemma B.0.4. If (A,D) is a G∨-equivariant formal group law and (ρi)
∞
i=1 is a complete flag, then

the set
{β(ρ1, . . . , ρn) : n ≥ 1}
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is an A-linear basis for D.

Proof. The elements β(ρ1, . . . , ρn) ∈ D determine an A-module map

ψ : A{β(ρ1, . . . , ρn) : n ≥ 1} → D

which we claim is an isomorphism. First, let’s show that ψ is surjective. Since (ρi)
∞
i=1 is a complete

flag, we know that for any d ∈ D, there is some n ≥ 1 such that d ∩ xρ1+···ρn = 0. If d ∩ xρ1 = 0

then d = aβ(ρ1) for some a ∈ A, so d is in the image of ψ. Suppose next that d ∩ xρ1+···+ρn = 0.
Then d ∩ xρ1+···+ρn−1 is in the kernel of ∩xρn , so d ∩ xρ1+···+ρn−1 = aβ(ρn) for some a ∈ A. Then

(d− aβ(ρ1, . . . , ρn)) ∩ xρ1+···+ρn−1 = aβ(ρn)− aβ(ρn)

= 0,

so by induction d− aβ(ρ1, . . . , ρn−1) is in the image of ψ, hence so is d. Next lets show that φ is
injective. Suppose a1, . . . , an ∈ A and

d = a1β(ρ1) + · · ·+ anβ(ρ1, . . . , ρn) = 0

in D. If n = 1, then d = a1β(ρ1) which is zero in D if and only if a1 = 0. Suppose inductively
that n > 1. Then d ∩ xρ1+···+ρn−1 = anβ(ρn) = 0, so an = 0, and by induction this implies that
a0 = · · · = an−1 = 0.

Next, we prove that the elements β(ρ1, . . . , ρi) ∈ D are dual to the linear functionals xρ1+···+ρi−1 .
If n = 0, then the symbol xρ1+···+ρn is understood to mean the counit x0 = ε : D → A.

Lemma B.0.5. If (A,D) is a G∨-equivariant formal group law and (ρi)
∞
i=1 is a complete flag, then

for any d ∈ D we have

d =
∑
i≥1

〈
d, xρ1+···+ρi−1

〉
β(ρ1, . . . , ρi).

Proof. Since (ρi)
∞
i=1 is a complete flag, we know that if d ∈ D then d ∩ xρ1+···+ρn = 0 for some

n ≥ 1. Suppose first that d ∩ xρ1 = 0. Then d = aβ(ρ1) for some a ∈ A, and we can compute

a = ε(aβ(ρ1)) = ε(d) =
〈
d, x0

〉
,
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so d = 〈d, x0〉 β(ρ1). If i > 0, then

〈
d, xρ1+···+ρi

〉
=
〈
d ∩ xρ1 , xρ2+···+ρi

〉
=
〈
0, xρ2+···+ρi

〉
= 0,

so the formula holds in the case n = 1. Suppose inductively that d ∩ xρ1+···+ρn = 0. Then
d ∩ xρ1+···+ρn−1 ∈ ker(∩xρn), so d ∩ xρ1+···+ρn−1 = aβ(ρn) for some a ∈ A, and applying ε shows
that a = 〈d, xρ1+···+ρn−1〉. We now have

d−
〈
d, xρ1+···+ρn−1

〉
β(ρ1, . . . , ρn) ∈ ker(∩xρ1+···+ρn−1),

so by induction we have

d−
〈
d, xρ1+···+ρn−1

〉
β(ρ1, . . . , ρn) =

∑
i≥1

aiβ(ρ1, . . . , ρi)

where

ai =
〈
d−

〈
d, xρ1+···+ρn−1)

〉
β(ρ1, . . . , ρn), xρ1+···+ρi−1

〉
=

〈d, xρ1+···+ρi−1〉 i < n

0 i ≥ n.

so

d =
n∑
i=1

〈
d, xρ1+···+ρi−1

〉
β(ρ1, . . . , ρi)

Our final step is to observe that 〈d, xρ1+···+ρi−1〉 = 0 if i > n.

Lemma B.0.6. If (A,D) is a G∨-equivariant formal group law and (ρi)
∞
i=1 is a complete flag, then

for any d′ ⊗ d′′ ∈ D ⊗D we have

d′ ⊗ d′′ =
∑
i,j≥1

〈
d′ ⊗ d′′, xρ1+···+ρi−1 ⊗ xρi+···+ρi+j−1)

〉
β(ρ1, . . . , ρi)⊗ β(ρi, . . . , ρj).
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Proof. If d′ ⊗ d′′ ∈ D ⊗D, then

d′ ⊗ d′′ =

(∑
i≥1

〈
d′, xρ1+···+ρi−1

〉
β(ρ1, . . . , ρi)

)
⊗ d′′

=
∑
i≥1

〈
d′, xρ1+···+ρi−1

〉
β(ρ1, . . . , ρi)⊗ d′′

=
∑
i≥0

〈
d′, xρ1+···+ρi−1

〉
β(ρ1, . . . , ρi)⊗

(∑
j≥1

〈d′′, xρi,...,ρi+j−1)〉 β(ρi, . . . , ρi+j)

)
=
∑
i,j≥1

〈
d′, xρ1+···+ρi−1

〉 〈
d′′, xρi+···+ρi+j−1

〉
β(ρ1, . . . , ρi)⊗ β(ρi, . . . , ρi+j)

=
∑
i,j≥1

〈
d′ ⊗ d′′, xρ1+···+ρi−1 ⊗ xρi+···+ρi+j−1

〉
β(ρ1, . . . , ρi)⊗ β(ρi, . . . , ρi+j).

and the result holds for sums of simple tensors by k-linearity.

The preceding result allows us to determine the comultiplicative structure of D.

Lemma B.0.7. The coproduct ∆ : D → D ⊗D is determined by

∆β(ρ1, . . . , ρn) =
n∑
i=1

β(ρ1, . . . , ρi)⊗ β(ρi, . . . , ρn).

Proof. First, note that if (ρi)
∞
i=1 is a complete flag, then

〈
β(ρ1, . . . , ρi), x

ρ1+···+ρj−1
〉

=

1 i− j

0 i 6= j.

We compute

∆β(ρ1, . . . , ρn) =
∑
i,j≥1

〈
∆β(ρ1, . . . , ρn), xρ1+···+ρi−1 ⊗ xρi+···+ρi+j−1

〉
β(ρ1, . . . , ρi)⊗ β(ρi + · · ·+ ρi+j)

=
∑
i,j≥1

〈
β(ρ1, . . . , ρn), xρ1+···+ρi+j−1

〉
β(ρ1, . . . , ρi)⊗ β(ρi + · · ·+ ρi+j)

=
n∑
i=1

β(ρ1, . . . , ρi)⊗ β(ρi, . . . , ρn).

Having developed some basic properties of homological G∨-equivariant formal group laws, we
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can prove our Cartier duality theorem for equivariant formal group laws.

Theorem B.0.8. If A is a commutative ring, then the functors

{
Cohomological G-equivariant

formal group laws over A

} {
Homological G-equivariant
formal group laws over A

}Homcts
A (−,A)

HomA(−,A)

are inverse equivalences of categories.

Proof. That the dual of a cohomological (resp. homological)G-equivariant formal group law carries
the structure of a homological (resp. cohomological) G-equivariant formal group law follows from
the fact that

Homcts
A (R⊗̂R,A) ∼= Homcts

A (R,A)⊗ Homcts
A (R,A)

resp.
HomA(D ⊗D,A) ∼= HomA(D,A) ⊗̂ HomA(D,A).

The assignments

R→ HomA(Homcts
A (R,A), A)

r 7→ evr

and

D → Homcts
A (HomA(D,A), A)

d 7→ evd

define natural isomorphisms. This can be verified by observing that

R ∼=
∞∏
i=1

A{xρ1+···+ρi−1} and D ∼=
∞⊕
i=1

A{β(ρ1, . . . , ρi)},

so the maps r 7→ evr and d 7→ evd are isomorphisms at the level of A-modules.
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