
Advances in Deep Reinforcement Learning: Intrinsic Rewards, Temporal Credit
Assignment, State Representations, and Value-equivalent Models

by

Zeyu Zheng

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2022

Doctoral Committee:

Professor Satinder Singh Baveja, Chair
Associate Professor Honglak Lee
Professor Richard L. Lewis
Professor David Silver, University College London

Zeyu Zheng

zeyu@umich.edu

ORCID iD: 0000-0002-1101-5991

© Zeyu Zheng 2022

Dedicated to mom and dad.

ii

ACKNOWLEDGMENTS

First of all, my deepest gratitude goes to my advisor, Prof. Satinder Singh. It is a great honor
to be your student. This thesis would not have been possible without your advice. In fact, you
mean more than an advisor to me. You were the person who opened the door of AI research for
me. Five years ago when I was applying to graduate schools, I had a strong interest but very little
background in AI. I did not have much hope when I cold emailed you. But you replied and offered
me the opportunity to join your lab. And that was where the journey started.

I would also like to thank my committee members, Prof. Rick Lewis, Prof. Honglak Lee, and
Prof. David Silver, for providing valuable feedback on my thesis. It was my fortune to have Rick as
a close collaborator throughout my PhD. It was also a great experience working with Dave during
my internship at DeepMind.

I want to say thank you to my former and current lab colleagues: Ethan Brooks, Wilka Car-
valho, Chris Grimm, John Holler, Aditya Modi, Junhyuk Oh, Janarthanan Rajendran, Max Smith,
Vivek Veeriah, Risto Vuorio, Qi Zhang, and Shun Zhang. Five years of PhD study have been an
unique journey in my life. It is my pleasure to share this experience with you. I am also grateful to
my coauthors and collaborators outside the lab: Andre Barreto, Gheorghe Comanici, Zhitao Gong,
Matteo Hessel, Manuel Kroiss, Nelson Vadori, Hado van Hasselt, Zhongwen Xu, and Daniel Zo-
ran. I have got so much inspiration from our conversations. What I learned from you is a lifelong
treasure to me. I want to thank my friends Haozhu Wang and Jiaxuan Wang for their friendship.
We had so much fun together. I would especially like to thank Junhyuk Oh, who has been amazing
as a colleague, a mentor, and a friend to me.

I want to give my special thanks to my girlfriend, Yidu Lu, for being my rock through this
journey. For every bit of progress, you were there to celebrate with me; for every setback, you
were there to comfort me. You have been my sunshine. I am deeply grateful for your presence in
my life.

Finally, I would like to thank my parents. It has been four years since the last time I was home.
The pandemic changed many things. But one thing that never changes is your unconditioned love
for me. Thank you again, truly, for everything.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . viii

ABSTRACT . ix

CHAPTER

1 Introduction . 1

1.1 Roadmap and Preview of Contributions . 3
1.2 Publications and Opensource Contributions . 5

2 Background . 7

2.1 Markov Decision Processes . 7
2.1.1 Episodes and Returns . 7
2.1.2 Policies and Value Functions . 8
2.1.3 Optimal Policies and Optimal Value Functions 8

2.2 Fundamental RL Algorithms . 9
2.2.1 Monte-Carlo Prediction . 9
2.2.2 Temporal-difference Learning . 9
2.2.3 Policy Gradient . 10
2.2.4 Actor-critic . 11

2.3 Modern DeepRL Implementations of RL Algorithms 12
2.3.1 Parallel Advantage Actor-critic . 13

3 On Learning Intrinsic Rewards for Policy Gradient Methods 15

3.1 Related Work . 16
3.2 Gradient-Based Learning of Intrinsic Rewards 18

3.2.1 LIRPG: Learning Intrinsic Rewards for Policy Gradient 19
3.3 Experiments on Atari Games . 22

3.3.1 Implementation Details . 22
3.3.2 Overall Performance . 23
3.3.3 Analysis of the Learned Intrinsic Reward 25

iv

3.4 Mujoco Experiments . 25
3.4.1 Implementation Details . 26
3.4.2 Overall Performance . 26

3.5 Conclusion . 28

4 What Can Learned Intrinsic Rewards Capture? . 29

4.1 Related Work . 31
4.2 The Optimal Reward Problem . 32
4.3 Meta-Learning Intrinsic Reward . 34

4.3.1 Architectures . 34
4.3.2 Policy Update . 34
4.3.3 Intrinsic Reward and Lifetime Value Update 35

4.4 Empirical Investigations . 36
4.4.1 Experimental Setup . 37
4.4.2 Exploring Uncertain States . 37
4.4.3 Exploring Uncertain Objects . 38
4.4.4 Exploiting Invariant Causal Relationship 40
4.4.5 Dealing with Non-stationarity . 41
4.4.6 Ablation Study . 41

4.5 Generalisation via Rewards . 41
4.5.1 Generalise to New Agent-Environment Interfaces 42

4.6 Conclusion . 44

5 Adaptive Pairwise Weights for Temporal Credit Assignment 45

5.1 Related Work . 46
5.2 Pairwise Weights for Advantages . 47
5.3 A Metagradient Algorithm for Adapting Pairwise Weights 50
5.4 Experiments . 51

5.4.1 Learned Pairwise Weights in A Simple MDP 52
5.4.2 The Key-to-Door Experiments . 55
5.4.3 Experiments on Standard RL Benchmarks 58

5.5 Conclusion . 59

6 Learning State Representations from Random Deep Action-conditional Predictions . 61

6.1 Related Work . 62
6.2 Method . 63

6.2.1 GVFs with Interdependent TD Relationships 63
6.2.2 A Random Question Network Generator 66
6.2.3 Agent Architecture . 67

6.3 Illustrating the Benefits of Deep Action-conditional Questions 68
6.3.1 Benefits of Depth and Action-conditionality: Illustrative Grid World . . . 69
6.3.2 Benefits of Random Question Nets: Illustrative Grid World 71
6.3.3 Ablation Study of Benefits of Depth and Action Conditionality: Atari . . 71
6.3.4 Robustness and Stability . 73

6.4 Comparison to Baseline Auxiliary Tasks . 73

v

6.5 Conclusion and Future Work . 75

7 G-VUZero: Planning with Models Learned Using Generalized Value-equivalence
Updates . 76

7.1 Related Work . 76
7.2 Background . 77

7.2.1 Value-equivalent models . 77
7.2.2 MuZero: VE models in practice . 78

7.3 Generalized Value-equivalence Updates . 79
7.3.1 Direct Value-equivalence Update . 79
7.3.2 Generalized Value-equivalence Update 80
7.3.3 Additional flexibility and potential benefits of G-VU 81
7.3.4 G-VUZero: Implementing G-VU with MuZero 81
7.3.5 VE Models as Sequence-value functions 83

7.4 Experiments . 83
7.4.1 Prediction . 84
7.4.2 Control . 85

7.5 Conclusion and Future Directions . 89

8 Conclusion . 90

8.1 Summary of Contributions . 90
8.2 Future Directions . 91

BIBLIOGRAPHY . 93

vi

LIST OF FIGURES

FIGURE

3.1 The LIRPG agent architecture. 19
3.2 Comparing LIRPG to three baselines in 16 Atari games. 24
3.3 Intrinsic reward variation and frequency of action selection. 25
3.4 Learning curves of LIRPG and baseline methods in Mujoco continuous control tasks. . 27

4.1 Illustration of the proposed multi-lifetime intrinsic reward learning framework. 33
4.2 Illustration of domains. 36
4.3 Evaluation of different reward functions averaged over 30 seeds. 37
4.4 Visualisation of the first 3000 steps of an agent trained with different reward functions

in Empty Rooms. 38
4.5 Visualisation of the learned intrinsic reward in Random ABC 39
4.6 Visualisation of the agent’s intrinsic and extrinsic rewards and the entropy of its policy

on Non-stationary ABC. 40
4.7 Evaluation of different intrinsic reward architectures and objectives. 40
4.8 Comparison to policy transfer methods. 42
4.9 Generalisation to new agent-environment interfaces in Random ABC. 43

5.1 A simple illustrative MDP. 49
5.2 The DAG experiment. 52
5.3 Inner loop-reset weight visualization. 54
5.4 The Key-to-Door experiment. 55
5.5 Learning curves for the KtD domain. 57
5.6 Relative performance of Meta-PWTD over A2C (λ = 0.95) 60

6.1 An example of a question network and the agent architecture. 64
6.2 The question networks we studied in our illustrative experiment. 68
6.3 The illustrative empty room experiment. 69
6.4 Visualization of the learned value functions in the empty room environment. 69
6.5 Learning curves of different question networks in six Atari games. 72
6.6 Scatter plots of scores in Breakout obtained by rGVFs with different hyperparameters. 73
6.7 Performance comparison in Atari and DeepMind Lab. 74

7.1 Illustration of VE updates. 79
7.2 The prediction experiment. 84
7.3 Learning curves for the first 20 million frames of training in Sokoban. 87
7.4 Learning curves in Minipacman. 88

vii

LIST OF TABLES

TABLE

5.1 Total regret on selected bsuite domains (low is good). 58

7.1 Success rates on the test set for different methods in Sokoban. 87

viii

ABSTRACT

Reinforcement learning (RL) is a machine learning paradigm concerned with how an agent learns
to predict and control its own experience stream so as to maximize long-term cumulative reward.
In the past decade, deep reinforcement learning (DeepRL), a subfield that aims to combine the
sequential decision-making techniques in RL with the powerful non-linear function approximation
tools offered by deep learning, has seen great success such as defeating human champions in the
ancient board game Go and achieving expert-level performance in complex strategy games like
Dota 2 and Starcraft. It has also had an impact on real-world applications. Examples include robot
control, stratospheric balloon navigation, and controlling nuclear fusion plasma.

This thesis aims to further advance DeepRL techniques. Concretely, this thesis makes contribu-
tions in the following four directions: 1) In reward design, we develop a novel meta-learning algo-
rithm for learning reward functions that facilitate policy optimization. Our algorithm improves the
performance of policy-gradient methods and outperforms handcrafted heuristic reward functions.
In a follow-up study, we show that the learned reward functions can capture knowledge about long-
term exploration and exploitation and can generalize to different RL algorithms and changes in the
environment dynamics. 2) In temporal credit assignment, we explore methods based on pairwise
weights that are functions of the state in which the action was taken, the state in which the reward
was received, and the time elapsed in between. We develop a metagradient algorithm for adapt-
ing these weights during policy learning. Our experiments show that our method achieves better
performance than competing approaches. 3) In state representation learning, we investigate using
random deep action-conditional prediction tasks as auxiliary tasks to help agents learn better state
representations. Our experiments show that random deep action-conditional predictions can often
yield better performance than handcrafted auxiliary tasks. 4) In model learning and planning, we
develop a new method for learning value-equivalent models, a class of models that demonstrates
strong empirical performance lately, that generalizes existing methods. Our experiments show that
our method can improve both the model prediction accuracy and the control performance of the
downstream planning procedure.

ix

CHAPTER 1

Introduction

Reinforcement learning (RL) [Sutton and Barto, 2018] is a machine learning paradigm concerned
with how an agent learns to predict and control its own experience stream so as to maximize the
accumulation of a scalar signal called reward. At each time step, the agent takes an action based on
its history of observations and actions in the environment. Through the action, the agent impacts
the environment and then receives the next observation and a reward signal. The mapping from a
history to an action (or a probability distribution over the action space) is called a policy. The goal
of an RL agent is to find a good policy so as to maximize the cumulative reward in the long term.

In the past decade, deep learning (DL) [LeCun et al., 2015], a field of machine learning con-
cerned with learning hierarchical representations of data from raw sensory inputs, has seen great
success and revolutionized various areas including computer vision [Krizhevsky et al., 2012, He
et al., 2016], speech recognition [Hinton et al., 2012], and natural language processing [Bahdanau
et al., 2015, Devlin et al., 2018]. Benefiting from recent advances in DL, RL also saw signif-
icant progress and made several groundbreaking achievements. For example, deep Q-network
(DQN) [Mnih et al., 2015] is the first RL agent that learned to play Atari 2600 video games [Belle-
mare et al., 2013] from raw pixels. AlphaGo [Silver et al., 2016] is the first computer program
that defeated a human champion in the ancient board game Go. OpenAI Five [Berner et al., 2019]
and AlphaStar [Vinyals et al., 2019] demonstrate human-level performance in challenging video
games like Dota 2 and StarCraft. In addition to simulated domains like games, RL also had an
impact on real-world applications such as robot control [Levine et al., 2016, Andrychowicz et al.,
2020], stratospheric balloon navigation [Bellemare et al., 2013], and controlling nuclear fusion
plasma [Degrave et al., 2022].

At the core of these recent advances is the combination of RL techniques and DL techniques.
By employing DL models (mostly deep neural networks) as powerful non-linear function approxi-
mators, RL agents can learn policies and/or value functions directly from raw sensory inputs. This
enables RL agents to scale up to high-dimensional domains that were thought intractable before
such as Go. Due to the success and the growing interest in combining RL and DL, the intersec-

1

tion of these two fields quickly evolved into a vital subfield called deep reinforcement learning
(DeepRL).

This thesis aims to further advance DeepRL techniques. To this end, we explore the following
four directions. The first direction is reward design. When formulating a task into an RL problem,
the agent designer needs to design a reward function that defines the desired behavior for the agent.
It is known that certain transformations of the reward function will not change the ordering over
policies [Ng et al., 1999]. However, they can change the learning efficiency for better or for worse.
Thus an important question in reward design is to find a reward function that can help the agent
learn the desired behavior efficiently. Finding such a reward function often requires a lot of human
effort and domain knowledge. Thus it would be appealing if the agent can learn an intrinsic reward

function for training itself. Chapter 3 and Chapter 4 address how to learn intrinsic reward functions.
The second direction is temporal credit assignment. How much credit/blame should an action take
for a later reward? This is the fundamental temporal credit assignment problem in RL. Most
existing methods assign credits based on recency. For each reward, actions closer in time receive
more credits and actions farther in time receive less credit. However, this simple heuristic ignores
the inherent structure of the environment and thus is ineffective at assigning credit. Chapter 5
studies how to enable an agent to discover useful structures of the environment so that it can
assign credit more effectively. The third direction is state representation learning. One of the most
prominent advantages of DeepRL is its ability to learn non-linear state representations from raw
inputs in an end-to-end manner. Usually rewards are the only learning signals. However, rewards
are often sparse and delayed and thus learning can be inefficient. One way of addressing this
learning inefficiency is to design unsupervised auxiliary tasks to help the agent learn better state
representations. In practice, simple auxiliary tasks often yield good state representations and strong
empirical performance. To explore the extreme, Chapter 6 presents an empirical study of using
random deep action-conditional predictions as auxiliary tasks for state representation learning. The
fourth direction is model learning. Model-based RL methods learn a simulator of the environment
and plan with the learned simulator. This simulator is called a model. Learning an accurate model
of the environment is the key to the success of model-based RL methods and thus it is critical
to learn a model efficiently. Chapter 7 addresses this problem and presents a new algorithm for
learning a specific class of models called value-equivalent models.

Chapter 3, Chapter 4, and Chapter 5 can also be viewed as addressing the topic of discovery in
RL. Instead of specifying “what” an agent needs to learn and “how” it learns, the discovery problem
asks how to enable an agent to discover the “what” and the “how”. Chapter 3 and Chapter 4 address
the “what” part and focus on discovering intrinsic reward functions. Chapter 5 addresses the “how”
part and focuses on discovering temporal credit assignment mechanisms.

2

1.1 Roadmap and Preview of Contributions

In this section, we first present a roadmap for this thesis. Then we give a preview for the contribu-
tion of each chapter. We finish by providing references to publications based on the work done in
this thesis.

Chapter 2 provides some background knowledge in RL and DeepRL. Chapter 3, 4, 5, 6, and 7
are the main contributions. Chapter 8 concludes this thesis and discusses future research direc-
tions. Chapter 3 and Chapter 4 address the reward design problem. In Chapter 3, we present
a meta-learning algorithm that learns an intrinsic reward function for policy-gradient-based RL
agents in a data-driven way. Then in Chapter 4, we study the property of the learned intrinsic
reward functions. Chapter 5 addresses temporal credit assignment. We explore a more general
temporal credit assignment mechanism and propose a practical meta-learning implementation of
it. Chapter 6 addresses state representation learning. We investigate how random deep action-
conditional predictions can form good auxiliary tasks that provide additional signals for learning
state representations. Chapter 7 addresses model learning. We focus on a specific class of models
called value-equivalent models and propose a new method for updating such models which gener-
alizes from existing methods. A more detailed preview for the contribution of each chapter is as
follows.

Learning Intrinsic Rewards for Policy Gradient Methods (Chapter 3)

This chapter addresses the reward design problem. In RL, the reward function defines the task and
thus is usually considered fixed and immutable. However, in practice, agent designers often find it
convenient to modify the reward function in a way that facilitates learning. Thus it is useful to dis-
tinguish two different kinds of rewards: the extrinsic rewards which capture the preference of the
agent designer over the agent’s behaviors and the intrinsic rewards which serve as learning signals
to improve the learning dynamics of the agent. This distinction is formalized in the optimal reward
framework [Singh et al., 2010]. Building on the optimal reward framework, the main contribution
of this chapter is a novel meta-learning algorithm for learning intrinsic rewards for policy-gradient
based learning agents. Through the empirical study in the Atari domain and the Mujoco contin-
uous control domain, we show that augmenting the policy learner with additive intrinsic rewards
learned by the proposed method yields better performance than the base policy learner. We also
show that using the learned intrinsic rewards performs better than using handcrafted heuristic in-
trinsic rewards.

3

What Can Learned Intrinsic Rewards Capture? (Chapter 4)

In the previous chapter, we developed a gradient-based meta-learning algorithm for learning an
intrinsic reward function for a policy gradient learning agent. In this chapter, we focus on under-
standing what can be captured by the learned reward functions. To investigate this, we propose
a scalable metagradient framework for learning useful intrinsic reward functions across multiple
lifetimes of experience. Through several proof-of-concept experiments, we show that it is fea-
sible to learn and capture knowledge about long-term exploration and exploitation into a reward
function. Furthermore, we show that unlike policy transfer methods that capture “how” the agent
should behave, the learned reward functions can generalise to other kinds of agents and to changes
in the dynamics of the environment by capturing “what” the agent should strive to do.

Adaptive Pairwise Weights for Temporal Credit Assignment (Chapter 5)

This chapter addresses temporal credit assignment in RL, i.e., how much credit (or blame) an
action should taken in a state get for a future reward. One of the earliest and still most widely
used heuristics is to assign this credit based on a scalar coefficient λ (treated as a hyperparameter)
raised to the power of the time interval between the state-action and the reward. In this chapter,
we explore heuristics based on more general pairwise weightings that are functions of the state in
which the action was taken, the state at the time of the reward, as well as the time interval between
the two. To set the pairwise weights properly, we develop a metagradient algorithm for adapting
these weight functions during the usual policy optimization process. Our empirical work shows
that it is often possible to learn these pairwise weight functions during learning of the policy to
achieve better performance than competing approaches.

Learning State Representations from Random Deep Action-conditional Pre-
dictions (Chapter 6)

This chapter addresses state representation learning in RL. It has been demonstrated that auxiliary
prediction tasks can help DeepRL agents learn better state representations. In this chapter, we
investigate using random prediction tasks as auxiliary tasks for state representation learning. Our
main contribution is an empirical finding that random General Value Functions (GVFs), i.e., deep
action-conditional predictions—random both in what feature of observations they predict as well
as in the sequence of actions the predictions are conditioned upon—form good auxiliary tasks for
RL problems. In particular, we show that random deep action-conditional predictions when used
as auxiliary tasks yield state representations that produce control performance competitive with
state-of-the-art handcrafted auxiliary tasks in both Atari and DeepMind Lab tasks. In another set

4

of experiments we stop the gradients from the RL part of the network to the state representation
learning part of the network and show, perhaps surprisingly, that the auxiliary tasks alone are
sufficient to learn state representations good enough to outperform an end-to-end trained actor-
critic baseline.

Planning with Models Learned Using Generalized Value-equivalence Updates
(Chapter 7)

This chapter addresses model learning. Specifically, we focus on a class of models called the value-
equivalent (VE) models [Grimm et al., 2020]. Existing implementations of value-equivalence
update the model by equating (a) the value of the state reached by taking a sequence of actions in
the environment with (b) the value of the state reached by taking the same action-sequence in the
model. The main contribution of this chapter is a new method called generalized value-equivalence
update (G-VU) that equates (a) the value of a state reached by taking an action sequence in the
environment followed by an action sequence in the model with (b) the value of a state reached by
taking the concatenation of the two action sequences entirely in the model. Crucially, G-VU is
not restricted to update only on action sequences experienced in the environment. We combine
G-VU with the state-of-the-art MuZero and build a new agent called G-VUZero. In particular, G-
VUZero updates the model on action sequences that are likely queried by the downstream MCTS
planner. Our empirical results show that G-VUZero outperforms MuZero in two planning-focused
environments, Sokoban and Minipacman.

1.2 Publications and Opensource Contributions

Some of the contributions of this thesis have been published in different venues in the past few
years. We also open-sourced the source code along with some of these published articles to support
reproducible research. We summarize the publications and the open-source contributions below.

Chapter 3 The research work in this chapter appears in: Zeyu Zheng, Junhyuk Oh, and Satin-
der Singh. On learning intrinsic rewards for policy gradient methods. In Advances in Neu-

ral Information Processing Systems, 2018. The source code is available online at https:
//github.com/Hwhitetooth/lirpg.

Chapter 4 The research work in this chapter appears in: Zeyu Zheng, Junhyuk Oh, Matteo
Hessel, Zhongwen Xu, Manuel Kroiss, Hado van Hasselt, David Silver, and Satinder Singh. What
can learned intrinsic rewards capture? In International Conference on Machine Learning, 2020.

5

https://github.com/Hwhitetooth/lirpg
https://github.com/Hwhitetooth/lirpg

Chapter 5 The research work in this chapter appears in: Zeyu Zheng, Risto Vuorio, Richard L
Lewis, and Satinder Singh. Adaptive pairwise weights for temporal credit assignment. In Proceed-

ings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022.

Chapter 6 The research work in this chapter appears in: Zeyu Zheng, Vivek Veeriah, Risto
Vuorio, Richard L Lewis, and Satinder Singh. Learning state representations from random deep
action-conditional predictions. In Advances in Neural Information Processing Systems, 2021. The
sourc ecode is available online at https://github.com/Hwhitetooth/random_gvfs.

6

https://github.com/Hwhitetooth/random_gvfs

CHAPTER 2

Background

This chapter provides a brief overview of some background knowledge in RL. We start by intro-
ducing Markov decision processes (MDPs) as a theoretical framework for RL and the notion of
value functions and policies. Then we introduce several fundamental RL algorithms that are used
by the work in the following chapters. Finally, we briefly review some modern implementations of
DeepRL agents.

2.1 Markov Decision Processes

In RL, the environment is usually modeled as a Markov decision process (MDP) [Puterman, 2014,
Sutton and Barto, 2018]. An MDP is a 4-tuple (S,A, P, r) where:

• S is a finite set of states;

• A is a finite set of actions;

• p : S × A × S → [0, 1] defines the transition probability to state s′ upon taking action a in
state s;

• r : S ×A → R defines the reward of taking action a in state s.

At every time step t, the agent observes the environment state St, takes an action At, and then
receives a reward Rt+1 and the next state St+1.

2.1.1 Episodes and Returns

Many applications come with a natural way of terminating the agent-environment interaction. We
say these environments are episodic and call the interaction sequence between the initial state and

7

the termination an episode. For an episode of length T , we define the return Gt as the cumulative
rewards after time step t:

Gt = Rt+1 +Rt+2 + · · ·+RT . (2.1)

We often find it convenient to work with the discounted return

Gt = Rt+1 + γRt+2 + · · ·+ γT−t−1RT , (2.2)

where γ ∈ [0, 1) is a discount factor.

2.1.2 Policies and Value Functions

The agent selects actions according to its policy π. π : S ×A → [0, 1] maps a state to a probability
distribution over the action space. We often denote the probability of taking action a in state s as
π(a|s). The value function of a policy π is defined as

vπ(s) = Eπ

[∞∑
t=0

γtRt+1|S0 = s

]
, (2.3)

Here we use Eπ[X] to denote the expectation of the random variableX when the agent’s actions are
sampled from the policy π. The constant dependency on the environment dynamics P is omitted
for brevity. The value vπ(s) of a state s denotes the expected cumulative rewards for the agent
when following policy π. Similarly, the action-value function is defined as

qπ(s, a) = Eπ

[∞∑
t=0

γtRt+1|S0 = s, A0 = a

]
, (2.4)

which denotes the expected cumulative rewards for the agent when the agent first takes action a and
then follows policy π in state s. The advantage function is the difference between the action-value
function and the state value function:

Ψπ(s, a) = qπ(s, a)− vπ(s). (2.5)

2.1.3 Optimal Policies and Optimal Value Functions

There exists at least one optimal policy whose state value is greater than or equal any other policy
for all states. We use π∗ to denote an optimal policy. By definition, all optimal policies share the

8

same value function called the optimal value function v∗:

v∗(s) = max
π

vπ(s) (2.6)

for all s ∈ S. All optimal policies also share the same optimal action-value function q∗:

q∗(s, a) = max
π

qπ(s, a) (2.7)

for all s ∈ S and a ∈ A. Given the optimal action-value function q∗, we can derive an optimal
policy by taking the greedy action with respect to q∗:

π∗(s) = argmax
a

q∗(s, a) (2.8)

for all s ∈ S. The goal of an RL agent is find an optimal policy π∗ such that the values for all
states are maximized.

2.2 Fundamental RL Algorithms

2.2.1 Monte-Carlo Prediction

Since the value function vπ of a policy π is usually unknown, we need to learn an approximation
v̂π instead. For brevity, we will omit the superscript unless it causes ambiguity. Learning the
approximated value function v̂ lies in the core of most RL algorithms. The most straightforward
way of learning such an approximated value function is by the Monte-Carlo method. We repeat-
edly sample episodes by interacting with the environment following policy π. For each episode
S0, A0, R1, S1, . . . , ST−1, AT−1, RT , we update the value function of each state in this trajectory as
follows:

v̂(St)← v̂(St) + α
[
Gt − v̂(St)

]
, (2.9)

where α is the step size or learning rate.

2.2.2 Temporal-difference Learning

Another way of learning an approximated value function is by temporal-difference (TD) learning.
TD learning is one of the the most fundamental ideas in RL. In contrast to thee Monte-Carlo
approach, TD does not require complete episodes to make an update. Instead, TD can update the

9

approximated value of St immediately after observing St+1 and Rt+1:

v̂(St)← v̂(St) + α
[
Rt+1 + γv̂(St+1)− v̂(St)

]
. (2.10)

The is often called one-step TD. Accordingly, we call the quantityRt+1+γv̂(St+1) one-step return
and denote it by Gt:t+1. Moving beyond, n-step TD updates the value of St after n steps:

v̂(St)← v̂(St) + α
[
Gt:t+n − v̂(St)

]
, (2.11)

where Gt:t+n = Rt+1 + γRt+2 + · · · + γnv̂(St+n) is the n-step return. We can also make a
compound update by taking a convex combination of Gt:t+1, Gt:t+2, . . . , Gt:t+T = Gt. A specific
way of combining them with exponentially decayed weights is called λ-return:

G
(λ)
t = (1− λ)

T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt. (2.12)

2.2.3 Policy Gradient

Policy gradient methods [Sutton et al., 2000] are a class of algorithms that directly optimize a
parameterized policy πθ. θ denotes the parameters of the policy. Recall that the objective of an RL
agent is to maximize the long-term cumulative rewards:

J(θ) = Eπ[
T∑
t=1

γt−1Rt]. (2.13)

By the policy gradient theorem [Sutton et al., 2000], the gradient of this objective with respect to
the policy parameters θ is

∇θJ(θ) = Eπ
[
q(St, At)∇θ log πθ(At|St)

]
. (2.14)

The expectation in the above equation is hard to compute thus we often estimate it as follows. For
each episode trajectory S0, A0, R1, S1, . . . , ST−1, AT−1, RT , the policy gradient is estimated by

gθ =
T−1∑
t=0

Gt∇θ log πθ(At|St). (2.15)

Then we can update the policy parameters by gradient ascent:

θ ← θ + αgθ (2.16)

10

This algorithm is often called REINFORCE [Williams, 1992].
In practice, REINFORCE often suffers high variance in the gradient estimation. A common

technique for variance reduction is to subtract a baseline from the return:

gθ =
T−1∑
t=0

[
Gt − b(St)

]
∇θ log πθ(At|St). (2.17)

The baseline function b(St) can be any function as long as it does not depend on the action At
or any quantity that comes after time step t. One can show that the value function vπ is the
optimal baseline function for variance reduction. In that case, the policy gradient in Eq. 2.14 can
be rewritten as

∇θJ(θ) =Eπ
[(
q(St, At)− v(St)

)
∇θ log πθ(At|St)

]
=Eπ

[
Ψ(St, At)∇θ log πθ(At|St)

]
.

(2.18)

In practice, we often use the approximated value function v̂ instead because the true value function
vπ is unknown. The approximated policy gradient is computed as

gθ =
T−1∑
t=0

[
Gt − v̂(St)

]
∇θ log πθ(At|St). (2.19)

We denote
Ψ̂MC
t = Gt − v̂(St) (2.20)

and call Ψ̂MC
t the Monte-Carlo estimate of the advantage Ψ(St, At).

2.2.4 Actor-critic

We can combine policy gradient with TD learning by replacing the return Gt with an 1-step return
Gt:t+1. The resulting algorithm is called 1-step actor-critic [Sutton et al., 2000]. 1-step actor-critic
learns both an approximated value function v̂ and a parameterized policy πθ and updates them at
every time step as follows:

θ ←θ + απ
[
Gt:t+1 − v̂(St)

]
∇θ log πθ(At|St)

v̂(St)←v̂(St) + αv
[
Gt:t+1 − v̂(St)

]
.

(2.21)

απ and αv denote the learning rates for the policy and the approximated value function respectively.
We can easily generalize to n-step actor-critic by replacing the 1-step returnGt:t+1 in Eq. 2.21 with

11

the n-step return Gt:t+n. We can of course use the λ-return G(λ)
t as well. In that case, we denote

Ψ̂
(λ)
t = G

(λ)
t − v̂(St) (2.22)

and call Ψ̂(λ)
t the λ-estimate of Ψ(St, At).

2.3 Modern DeepRL Implementations of RL Algorithms

Thanks to the advances in modern hardware design and the development of complex benchmark
environments [Bellemare et al., 2013, Duan et al., 2016a, Beattie et al., 2016] in the past decade, we
are able to apply RL to problems with high-dimensional state spaces. In such cases, it is infeasible
to store or update the value and policy for each individual state. We must embrace function ap-
proximation. In modern DeepRL implementations, we often parameterize the approximated value
function v̂ and the policy π with deep neural networks. For example, in environments where the
observations are images, we often use convolutional neural networks (CNNs) [LeCun et al., 1998]
to parameterize v̂ and π.

Modern deep neural networks are extremely computation demanding thus their training of-
ten requires specialized hardware such graphic processing units (GPUs) and corresponding auto-
differentiation software tools [Abadi et al., 2016, Paszke et al., 2019, Bradbury et al., 2018]. As
part of the process, the DeepRL community adapted to some of the DL terminologies so that we
can benefit from the DL infrastructures more easily. One prominent instance is that instead of
defining updates, we often define loss functions and the actual updates are computed by stochastic
gradient descent (SGD). For example, we often define the loss function for policy gradient as

J(θ) = Eπ
[
Gt log πθ(At|St)

]
. (2.23)

It is worth highlighting that the TD update (Eq. 2.10 and Eq. 2.11) is not the gradient of any
function thus cannot be expressed by a loss function. To overcome this inconvenience, we often
define a mean-squared loss but apply a stop-gradient operation on the returns to recover the correct
TD update:

LTD = [v̂(St)− SG(Gt:t+n)]
2 , (2.24)

where SG(·) denotes the stop-gradient operation.
Modern deep neural networks are also data demanding. In supervised learning, people usually

need to collect a large scale dataset before they can train the neural networks. Due to the online
nature of RL, we must generate trajectory data on-the-fly, which makes the agent-environment
interaction process the bottleneck of the training pipeline. One solution to this problem is to

12

instantiate multiple parallel interaction processes to increase the throughput of data generation.
Each interaction process is often called an actor.

2.3.1 Parallel Advantage Actor-critic

A popular DeepRL agent called parallel advantage actor-critic (A2C) [Mnih et al., 2016] is used for
the work in Chapter 3, 4, 5, and 6. Here we provide an introduction of A2C. The work in Chapter 7
uses a different agent called MuZero [Schrittwieser et al., 2020]. We will delay the introduction of
MuZero to Chapter 7 as it is not related other chapters.

Algorithm 1 provides an overview of the algorithm. We learn a policy πθ and a value function
v̂ϕ and both of them are parameterized by deep neural networks. The weights of the networks are
denoted by θ and ϕ respectively. We use B parallel actors to generate the training trajectories. At
each iteration, we first run each actor for n steps in parallel and collect B n-step trajectories. Then
we compute the policy gradient loss for the policy on each trajectory and take the summation of
them:

J(θ) =
B∑
b=1

t+n−1∑
i=t

[
G

(b)
i:t+n − v̂(s

(b)
i)

]
log πθ(a

(b)
i |s

(b)
i). (2.25)

In addition, we also compute an entropy regularization for the policy:

Lent(θ) =
B∑
b=1

t+n−1∑
i=t

H
[
πθ(·|s(b)i)

]
, (2.26)

where
H[πθ(·|s)] = −

∑
a∈A

πθ(a|s) log πθ(a|s) (2.27)

denotes the entropy of the probability distribution over the action space in state s. The purpose of
this regularization is to encourage the policy to stay stochastic and avoid collapsing to a (nearly)
deterministic policy. So the overall loss function for the policy is

Lπ(θ) = −J(θ)− βLent(θ) (2.28)

where β is a scalar coefficient that controls the strength of the regularization. After that, we also
compute the TD loss for the value function:

Lv(ϕ) =
B∑
b=1

t+n−1∑
i=t

[
v̂ϕ(s

(b)
t)− SG(G

(b)
i:t+n)

]2
(2.29)

Lastly, we update the weights of the neural networks by stochastic gradient descent to minimize

13

Algorithm 1 Parallel Advantage Actor-critic
Input TD steps n, number of parallel actors B, entropy regularization β
Randomly initialize the policy network with parameters θ
Randomly initialize the value network with parameters ϕ
Initialize B parallel actors
repeat

Collect one n-step trajectory from each actor: {s(i)t , a
(i)
t , r

(i)
t+1, s

(i)
t+1, . . . , s

(i)
t+n}Bi=1

Compute the policy gradient loss J(θ) =
∑B

b=1

∑t+n−1
i=t

[
G

(b)
i:t+n − v̂(s

(b)
i)

]
log πθ(a

(b)
i |s

(b)
i)

Compute the entropy regularization Lent(θ) =
∑B

b=1

∑t+n−1
i=t H[πθ(·|s(b)i)]

Compute the policy loss Lπ(θ) = −J(θ)− βLent(θ)

Compute the value loss Lv(ϕ) =
∑B

b=1

∑t+n−1
i=t [v̂ϕ(s

(b)
t)− SG(G

(b)
i:t+n)]

2

Update θ and ϕ by stochastic gradient descent to minimize Lπ and Lv respectively
until done

the policy loss and the value loss respectively. This loop repeats until training terminates.

14

CHAPTER 3

On Learning Intrinsic Rewards for Policy Gradient
Methods

One of the challenges facing an agent-designer in formulating a sequential decision making task
as a reinforcement learning (RL) problem is that of defining a reward function. In some cases a
choice of reward function is clear from the designer’s understanding of the task. For example, in
board games such as Chess or Go the notion of win/loss/draw comes with the game definition,
and in Atari games there is a game score that is part of the game. In other cases there may not
be any clear choice of reward function. For example, in domains in which the agent is interacting
with humans in the environment and the objective is to maximize human-satisfaction it can be hard
to define a reward function. Similarly, when the task objective contains multiple criteria such as
minimizing energy consumption and maximizing throughput and minimizing latency, it is not clear
how to combine these into a single scalar-valued reward function.

Even when a reward function can be defined, it is not unique in the sense that certain transforma-
tions of the reward function, e.g., adding a potential-based reward [Ng et al., 1999], will not change
the resulting ordering over agent behaviors. While the choice of potential-based or other (policy)
order-preserving reward function used to transform the original reward function does not change
what the optimal policy is, it can change for better or for worse the sample (and computational)
complexity of the RL agent learning from experience in its environment using the transformed
reward function.

Yet another aspect to the challenge of reward-design stems from the observation that in many
complex real-world tasks an RL agent is simply not going to learn an optimal policy because of
various bounds (or limitations) on the agent-environment interaction (e.g., inadequate memory,
representational capacity, computation, training data, etc.). Thus, in addressing the reward-design
problem one may want to consider transformations of the task-specifying reward function that
change the optimal policy. This is because it could result in the bounded-agent achieving a more
desirable (to the agent designer) policy than otherwise. This is often done in the form of shaping
reward functions that are less sparse than an original reward function and so lead to faster learn-

15

ing of a good policy even if it in principle changes what the theoretically optimal policy might
be [Rajeswaran et al., 2017]. Other examples of transforming the reward function to aid learning
in RL agents is the use of exploration bonuses, e.g., count-based reward bonuses for agents that
encourage experiencing infrequently visited states [Bellemare et al., 2016, Ostrovski et al., 2017,
Tang et al., 2017].

The above challenges make reward-design difficult, error-prone, and typically an iterative pro-
cess. Reward functions that seem to capture the designer’s objective can sometimes lead to un-
expected and undesired behaviors. Phenomena such as reward-hacking [Amodei et al., 2016]
illustrate this vividly. There are many formulations and resulting approaches to the problem of
reward-design including preference elicitation, inverse RL, intrinsically motivated RL, optimal
rewards, potential-based shaping rewards, more general reward shaping, and mechanism design;
often the details of the formulation depends on the class of RL domains being addressed. In this
chapter we build on the optimal rewards problem formulation of Singh et al. [2010]. We discuss
the optimal rewards framework as well as some other approaches for learning intrinsic rewards in
Section 3.1.

Our main contribution in this chapter is the derivation of a new stochastic-gradient-based
method for learning parametric intrinsic rewards that when added to the task-specifying (here-
after extrinsic) rewards can improve the performance of policy-gradient based learning methods
for solving RL problems. The policy-gradient updates the policy parameters to optimize the sum
of the extrinsic and intrinsic rewards, while simultaneously our method updates the intrinsic re-
ward parameters to optimize the extrinsic rewards achieved by the policy. We evaluate our method
on several Atari games with a state of the art A2C (Advantage Actor-Critic) [Mnih et al., 2016]
agent as well as on a few Mujoco domains with a similarly state of the art PPO agent and show that
learning intrinsic rewards can outperform using just extrinsic reward as well as using a combina-
tion of extrinsic reward and a constant “live bonus” [Duan et al., 2016a]. On Atari games, we also
compared our method with a count-based methods, i.e., pixel-SimHash [Tang et al., 2017]. Our
method showed better performance.

3.1 Related Work

Optimal rewards and reward design. Our work builds on the Optimal Reward Frame-
work [Singh et al., 2010]. Formally, the optimal intrinsic reward for a specific combination of
RL agent and environment is defined as the reward that when used by the agent for its learning
in its environment maximizes the extrinsic reward. The main intuition is that in practice all RL
agents are bounded (computationally, representationally, in terms of data availability, etc.) and the
optimal intrinsic reward can help mitigate these bounds. Computing the optimal reward remains

16

a big challenge, of course. The paper introducing the framework used exhaustive search over a
space of intrinsic reward functions and thus does not scale. Sorg et al. [2010] introduced PGRD
(Policy Gradient for Reward Design), a scalable algorithm that only works with lookahead-search
(e.g., UCT) based planning agents (and hence the agent itself is not a learning-based agent; only
the reward to use with the fixed planner is learned). Its insight was that the intrinsic reward can be
treated as a parameter that influences the outcome of the planning process and thus can be trained
via gradient ascent as long as the planning process is differentiable (which UCT and related algo-
rithms are). Guo et al. [2016] extended the scalability of PGRD to high-dimensional image inputs
in Atari 2600 games and used the intrinsic reward as a reward bonus to improve the performance
of the Monte Carlo Tree Search algorithm using the Atari emulator as a model for the planning. A
big open challenge is deriving a sound algorithm for learning intrinsic rewards for learning-based
RL agents and showing that it can learn intrinsic rewards fast enough to beneficially influence the
online performance of the learning based RL agent. Our main contribution in this chapter is to
answer this challenge.

Reward shaping and Auxiliary rewards. Reward shaping [Ng et al., 1999] provides a general
answer to what space of reward function modifications do not change the optimal policy, specif-
ically potential-based rewards. Other attempts have been made to design auxiliary rewards with
desired properties. For example, the UNREAL agent [Jaderberg et al., 2017] used pseudo-reward
computed from unsupervised auxiliary tasks to refine its internal representations. In Bellemare
et al. [2016], Ostrovski et al. [2017], and Tang et al. [2017], a pseudo-count based reward bonus
was given to the agent to encourage exploration. Pathak et al. [2017] used self-supervised pre-
diction errors as intrinsic rewards to help the agent explore. In these and other similar exam-
ples [Schmidhuber, 2010, Stadie et al., 2015, Oudeyer and Kaplan, 2009], the agent’s learning
performance improves through the reward transformations, but the reward transformations are
expert-designed and not learned. The main departure point in this chapter is that we learn the
parameters of an intrinsic reward function that maps high-dimensional observations and actions to
rewards.

Hierarchical RL. Another approach to a form of intrinsic reward is in the work on hierarchical
RL. For example, FeUdal Networks (FuNs) [Vezhnevets et al., 2017] is a hierarchical architecture
with a Manager and a Worker learning at different time scales. The Manager conveys abstract
goals to the Worker and the Worker optimizes its policy to maximize the extrinsic reward and the
cosine distance to the goal. The Manager optimizes its proposed goals to guide the Worker to learn
a better policy in terms of the cumulative extrinsic reward. A large body of work on hierarchical
RL also generally involves a higher level module choosing goals for lower level modules. All of

17

this work can be viewed as a special case of creating intrinsic rewards within a multi-module agent
architecture. One special aspect of hierarchical-RL work is that these intrinsic rewards are usually
associated with goals of achievement, i.e., achieving a specific goal state while in our setting the
intrinsic reward functions are general mappings from observation-action pairs to rewards. Another
special aspect is that most evaluations of hierarchical RL show a benefit in the transfer setting with
typically worse performance on early tasks while the manager is learning and better performance
on later tasks once the manager has learned. In our setting we take on the challenge of showing
that learning and using intrinsic rewards can help the RL agent perform better while it is learning
on a single task. Finally, another difference is that hierarchical RL typically treats the lower-level
learner as a black box while we train the intrinsic reward using gradients through the policy module
in our architecture.

Meta RL. Our work in this chapter can be viewed as an instance of meta learning [Andrychowicz
et al., 2016, Santoro et al., 2016, Nichol and Schulman, 2018] in the sense that the intrinsic reward
function module acts as a meta-learner that learns to improve the agent’s objective (i.e., mixture of
extrinsic and intrinsic reward) by taking into account how each gradient step of the agent affects
the true objective (i.e., extrinsic reward) through the meta-gradient. However, a key distinction
from the prior work on meta learning for RL [Finn et al., 2017a, Duan et al., 2017, Wang et al.,
2016a, Duan et al., 2016b] is that our method aims to meta-learn intrinsic rewards within a single
task, whereas much of the prior work is designed to quickly adapt to new tasks in a few-shot
learning scenario. Xu et al. [2018b] concurrently proposed a similar idea that learns to find meta-
parameters (e.g., discount factor) such that the agent can learn more efficiently within a single task.
In contrast to state-independent meta-parameters in [Xu et al., 2018b], we propose a richer form
of state-dependent meta-learner (i.e., intrinsic rewards) that directly changes the reward function
of the agent, which can be potentially extended to hierarchical RL.

3.2 Gradient-Based Learning of Intrinsic Rewards

As noted earlier, the most practical previous work in learning intrinsic rewards using the Optimal
Rewards framework was limited to settings where the underlying RL agent was a planning (i.e.,
needs a model of the environment) agent that use lookahead search in some form (e.g, UCT). In
these settings the only quantity being learned was the intrinsic reward function. By contrast, in this
section we derive our algorithm for learning intrinsic rewards for the setting where the underlying
RL agent is itself a learning agent, specifically a policy gradient based learning agent.

18

Environment

Intrinsic Reward
(𝜼)

Policy
(𝜽)

∑

𝒔

𝒂

𝒓𝒆𝒙

𝒓𝒊𝒏

Agent
𝜵𝜼𝑱𝒆𝒙

𝜵𝜽𝑱𝒆𝒙+𝒊𝒏

Figure 3.1: The LIRPG agent architecture. Inside the agent are two modules, a policy function
parameterized by θ and an intrinsic reward function parameterized by η. In our experiments the
policy function (A2C / PPO) has an associated value function as does the intrinsic reward function
. As shown by the dashed lines, the policy module is trained to optimize the weighted sum of
intrinsic and extrinsic rewards while the intrinsic reward module is trained to optimize just the
extrinsic rewards.

3.2.1 LIRPG: Learning Intrinsic Rewards for Policy Gradient

Notation. We use the following notation throughout.

• θ: policy parameters

• η: intrinsic reward parameters

• rex: extrinsic reward from the environment

• rinη = rinη (s, a): intrinsic reward estimated by η

• Gex(st, at) =
∑∞

i=t γ
i−trexi

• Gin(st, at) =
∑∞

i=t γ
t−irinη (si, ai)

• Gex+in(st, at) =
∑∞

i=t γ
i−t(rexi + λrinη (si, ai))

• Jex = Eθ[
∑∞

t=0 γ
trext]

• J in = Eθ[
∑∞

t=0 γ
trinη (st, at)]

• Jex+in = Eθ[
∑∞

t=0 γ
t(rext + λrinη (st, at)]

19

• λ: relative weight of intrinsic reward.

The departure point of our approach to reward optimization for policy gradient is to distinguish
between the extrinsic reward, rex, that defines the task, and a separate intrinsic reward rin that
additively transforms the extrinsic reward and influences learning via policy gradients. It is crucial
to note that the ultimate measure of performance we care about improving is the value of the
extrinsic rewards achieved by the agent; the intrinsic rewards serve only to influence the change in
policy parameters. Figure 3.1 shows an abstract representation of our intrinsic reward augmented
policy gradient based learning agent.

Algorithm Overview. An overview of our algorithm, LIRPG, is presented in Algorithm 2. At
each iteration of LIRPG, we simultaneously update the policy parameters θ and the intrinsic reward
parameters η. More specifically, we first update θ in the direction of the gradient of Jex+in which is
the weighted sum of intrinsic and extrinsic rewards. After updating policy parameters, we update
η in the direction of the gradient of Jex which is just the extrinsic rewards. Intuitively, the policy is
updated to maximize the sum of extrinsic and intrinsic rewards, while the intrinsic reward function
is updated to maximize only the extrinsic reward. We describe more details of each step below.

Updating Policy Parameters (θ). Given an episode where the behavior is generated according to
policy πθ, we update the policy parameters using regular policy gradient using the sum of intrinsic
and extrinsic rewards as the reward:

θ′ = θ + α∇θJ
ex+in(θ) (3.1)

≈ θ + αGex+in(st, at)∇θ log πθ(at|st), (3.2)

where Equation 3.2 is a stochastic gradient update.

Updating Intrinsic Reward Parameters (η). Given an episode and the updated policy parame-
ters θ′, we update intrinsic reward parameters. Intuitively, updating η requires estimating the effect
such a change would have on the extrinsic value through the change in the policy parameters. Our
key idea is to use the chain rule to compute the gradient as follows:

∇ηJ
ex = ∇θ′J

ex∇ηθ
′, (3.3)

where the first term (∇θ′J
ex) sampled as

∇θ′J
ex ≈ Gex(st, at)∇θ′ log πθ′(at|st) (3.4)

20

Algorithm 2 LIRPG: Learning Intrinsic Reward for Policy Gradient
Input: step-size parameters α and β
Init: initialize θ and η with random values
repeat

Sample a trajectory D = {s0, a0, s1, a1, · · · } by interacting with the environment using πθ
Approximate∇θJ

ex+in(θ;D) by Equation 3.2
Update θ′ ← θ + α∇θJ

ex+in(θ;D)
Approximate∇θ′J

ex(θ′;D) on D by Equation 3.9
Approximate∇ηθ

′ by Equation 3.8
Compute∇ηJ

ex = ∇θ′J
ex(θ′;D)∇ηθ

′

Update η′ ← η + β∇ηJ
ex

until done

is an approximate stochastic gradient of the extrinsic value with respect to the updated policy
parameters θ′ when the behavior is generated by πθ′ , and the second term can be computed as
follows:

∇ηθ
′ = ∇η

(
θ + αGex+in(st, at)∇θ log πθ(at|st)

)
(3.5)

= ∇η

(
αGex+in(st, at)∇θ log πθ(at|st)

)
(3.6)

= ∇η

(
αλGin(st, at)∇θ log πθ(at|st)

)
(3.7)

= αλ
∞∑
i=t

γi−t∇ηr
in
η (si, ai)∇θ log πθ(at|st). (3.8)

Note that to compute the gradient of the extrinsic value Jex with respect to the intrinsic reward
parameters η, we needed a new episode with the updated policy parameters θ′ (cf. Equation 3.4),
thus requiring two episodes per iteration. To improve data efficiency we instead reuse the episode
generated by the policy parameters θ at the start of the iteration and correct for the resulting mis-
match by replacing the on-policy update in Equation 3.4 with the following off-policy update using
importance sampling:

∇θ′J
ex = Gex(st, at)

∇θ′πθ′(at|st)
πθ(at|st)

. (3.9)

The parameters η are updated using the product of Equations 3.8 and 3.9 with a step-size parameter
β; this approximates a stochastic gradient update (cf. Equation 3.3).

Implementation on A2C and PPO. We described LIRPG using the most basic policy gradient
formulation for simplicity. There have been many advances in policy gradient methods that reduce
the variance of the gradient and improve the data-efficiency. Our LIRPG algorithm is also compat-
ible with such actor-critic architectures. Specifically, for our experiments on Atari games we used

21

a reasonably state of the art advantage actor-critic (A2C) architecture, and for our experiments
on Mujoco domains we used a similarly reasonably state of the art proximal policy optimization
(PPO) architecture. 1

3.3 Experiments on Atari Games

Our overall objective in the following first set of experiments is to evaluate whether augmenting a
policy gradient based RL agent with intrinsic rewards learned using our LIRPG algorithm (hence-
forth, augmented agent in short) improves performance relative to the baseline policy gradient
based RL agent that uses just the extrinsic reward (henceforth, A2C baseline agent in short). To
this end, we first perform this evaluation on multiple Atari games from the Arcade Learning Envi-
ronment (ALE) platform [Bellemare et al., 2013] using the same open-source implementation with
exactly the same hyper-parameters of the A2C algorithm [Mnih et al., 2016] from OpenAI [Dhari-
wal et al., 2017] for both our augmented agent as well as the baseline agent. The extrinsic reward
used is the game score change as is standard for the work on Atari games. The LIRPG algorithm
has two additional parameters relative to the baseline algorithm, the parameter λ that controls
how the intrinsic reward is scaled before adding it to the extrinsic reward and the step-size β; we
describe how we choose these parameters below in our results.

We also conducted experiments against two other baselines. The first baseline simply added a
constant positive value as a live bonus to the agent’s reward at each time step (henceforth, A2C-
live-bonus baseline agent in short). The live bonus heuristic encourages the agent to live longer
so that it will potentially have a better chance of getting extrinsic rewards. The second baseline
augmented the agent with a count-based bonus generated by the pixel-SimHash algorithm [Tang
et al., 2017] (henceforth, A2C-pixel-SimHash baseline agent in short.)

Note that the policy module inside the agent is really two networks, a policy network and a
value function network (that helps estimate Gex+in as required in Equation 3.2). Similarly the
intrinsic reward module in the agent is also two networks, a reward function network and a value
function network (that helps estimate Gex as required in Equation 3.4).

3.3.1 Implementation Details

The intrinsic reward module has two very similar neural network architectures as the policy module
described above. It has a “policy” network that instead of a softmax over actions produces a scalar
reward for every action through a tanh nonlinearity to keep the scalar output in [−1, 1]; we will
refer to it as the intrinsic reward network. It also has a value network that estimates Gex; this has

1Our implementation is available at: https://github.com/Hwhitetooth/lirpg

22

the same architecture as the intrinsic reward network except for the output layer that has a single
scalar output without a non-linear activation. These two networks share the parameters of the first
four layers with each other. We keep the default values of all hyper-parameters in the original
OpenAI implementation of the A2C-based policy module unchanged for both the augmented and
baseline agents. We use RMSProp to optimize the two networks of the intrinsic reward module.
Recall that there are two parameters special to LIRPG. Of these, the step size β was initialized to
0.0007 and annealed linearly to zero over 50 million time steps for all the experiments reported
below. We did a small hyper-parameter search for λ for each game (described below).

3.3.2 Overall Performance

Figure 3.2 shows the improvements of the augmented agents over baseline agents on 15 Atari
games: Alien, Amidar, Asterix, Atlantis, BeamRider, Breakout, DemonAttack, DoubleDunk,
MsPacman, Qbert, Riverraid, RoadRunner, SpaceInvaders, Tennis, and UpNDown. We picked
as many games as our computational resources allowed in which the published performance of
the underlying A2C baseline agents was good but where the learning was not so fast in terms of
sample complexity so as to leave little room for improvement. We ran each agent for 5 sepa-
rate runs each for 50 million time steps on each game for both the baseline agents and augmented
agents. For the augmented agents, we explored the following values for the intrinsic reward weight-
ing coefficient λ, {0.003, 0.005, 0.01, 0.02, 0.03, 0.05} and the following values for the term ξ,
{0.001, 0.01, 0.1, 1}, that weights the loss from the value function estimates with the loss from
the intrinsic reward function (the policy component of the intrinsic reward module). We plotted
the best results from the hyper-parameter search in Figure 3.2. For the A2C-live-bonus baseline
agents, we explored the value of live bonus over the set {0.001, 0.01, 0.1, 1} on two games, Amidar
and MsPacman, and chose the best performing value of 0.01 for all 15 games. For the A2C-pixel-
SimHash baseline agents, we adopted all hyper-parameters from [Tang et al., 2017].

The blue bars in Figure 3.2 show the human score normalized improvements of the augmented
agents over the A2C baseline agents, the A2C-live-bonus baseline agents, and the A2C-pixel-
SimHash baseline agents. We see that the augmented agent outperforms the A2C baseline agent
on all 15 games and has an improvement of more than ten percent on 9 out of 15 games. As for the
comparison to the A2C-live-bonus baseline agent, the augmented agent still performed better on
all games except for SpaceInvaders and Asterix. Note that most Atari games are shooting games
so the A2C-live-bonus baseline agent is expected to be a stronger baseline. The augmented agent
outperformed or was comparable to the A2C-pixel-SimHash baseline agent on all 15 games.

23

Do
ub

le
Du

nk

M
sP

ac
m

an

At
la

nt
is

Ro
ad

Ru
nn

er

Sp
ac

eI
nv

ad
er

s

De
m

on
At

ta
ck

Qb
er

t

Ri
ve

rra
id

Br
ea

ko
ut

Am
id

ar

Al
ie

n

Be
am

Ri
de

r

Te
nn

is

As
te

rix

Up
ND

ow
n

−20

0

20

40

60

80

100

Re
la

tiv
e

Pe
rfo

rm
an

ce

2% 3% 3% 5% 5% 9% 10
% 14
%

14
%

16
%

16
% 20
% 31

% 44
% 18

9%

(a)

Sp
ac

eI
nv

ad
er

s

As
te

rix

M
sP

ac
m

an

At
la

nt
is

Ro
ad

Ru
nn

er

Do
ub

le
Du

nk

Br
ea

ko
ut

Te
nn

is

Qb
er

t

Am
id

ar

Al
ie

n

Be
am

Ri
de

r

Ri
ve

rra
id

De
m

on
At

ta
ck

Up
ND

ow
n

−20

0

20

40

60

80

100

Re
la

tiv
e

Pe
rfo

rm
an

ce

-1
1% -7
% 1% 2% 2% 3% 3% 6% 7% 8% 9% 10

%

12
%

38
%

17
9%

(b)

At
la

nt
is

Br
ea

ko
ut

As
te

rix

Do
ub

le
Du

nk

M
sP

ac
m

an

Ri
ve

rra
id

De
m

on
At

ta
ck

Ro
ad

Ru
nn

er

Be
am

Ri
de

r

Sp
ac

eI
nv

ad
er

s

Am
id

ar

Al
ie

n

Qb
er

t

Te
nn

is

Up
ND

ow
n

−20

0

20

40

60

80

100

Re
la

tiv
e

Pe
rfo

rm
an

ce

0% 4% 5% 6% 6% 7% 7% 7% 9% 11
% 15
%

15
% 18
% 32

%

62
%

(c)

Figure 3.2: (a) Improvements of LIRPG augmented agents over A2C baseline agents. (b) Im-
provements of LIRPG augmented agents over live-bonus augmented A2C baseline agents. (c)
Improvements of LIRPG augmented agents over pixel-SimHash augmented A2C baseline agents.
In all figures, the columns correspond to different games labeled on the x-axes and the y-axes show
human score normalized improvements.

24

0 2 4 6 8 10 12 14 16 18
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Alien

0 2 4 6 8
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Amidar

0 1 2 3 4 5 6 7 8
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Asterix

0 1 2 3 4 5 6 7 8
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
BeamRider

0 2 4 6 8 10 12 14 16 18
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Riverraid

Figure 3.3: Intrinsic reward variation and frequency of action selection. For each game/plot the
x-axis shows the index of the actions that are available in that game. The red bars show the means
and standard deviations of the intrinsic rewards associated with each action. The blue bars show
the frequency of each action being selected.

3.3.3 Analysis of the Learned Intrinsic Reward

An interesting question is whether the learned intrinsic reward function learns a general state-
independent bias over actions or whether it is an interesting function of state. To explore this
question we used the learned intrinsic reward module and the policy module from the end of a
good run (cf. Figure 3.2) for each game with no further learning to collect new data for each game.
Figure 3.3 shows the variation in intrinsic rewards obtained and the actions selected by the agent
over 100 thousand steps, i.e., 400 thousand frames, on 5 games. The red bars show the average
intrinsic reward per-step for each action. The black segments show the standard deviation of the in-
trinsic rewards. The blue bars show the frequency of each action being selected. Figure 3.3 shows
that the intrinsic rewards for most actions vary through the episode as shown by large black seg-
ments, indirectly confirming that the intrinsic reward module learns more than a state-independent
constant bias over actions. By comparing the red bars and the blue bars, we see the expected
correlation between aggregate intrinsic reward over actions and their selection (through the policy
module that trains on the weighted sum of extrinsic and intrinsic rewards).

3.4 Mujoco Experiments

Our main objective in the following experiments is to demonstrate that our LIRPG-based algo-
rithm can extend to a different class of domains and a different choice of baseline actor-critic
architecture (namely, PPO instead of A2C). Specifically, we explore domains from the Mujoco
continuous control benchmark [Duan et al., 2016a], and used the open-source implementation of
the PPO [Schulman et al., 2017] algorithm from OpenAI [Dhariwal et al., 2017] as our baseline
agent. We also compared LIRPG to the simple heuristic of giving a live bonus as intrinsic reward

25

(PPO-live-bonus baseline agents for short). As for the Atari game results above, we kept all hyper-
parameters unchanged to default values for the policy module of both baseline and augmented
agents. Finally, we also conduct a preliminary exploration into the question of how robust the
learning of intrinsic rewards is to the sparsity of extrinsic rewards. Specifically, we used the de-

layed versions of the Mujoco domains, where the extrinsic reward is made sparse by accumulating
the reward for N = 10, 20, 40 time steps before providing it to the agent. Note that the live bonus
is not delayed when we delay the extrinsic reward for the PPO-live-bonus baseline agent. We ex-
pect that the problem becomes more challenging with increasing N but expect that the learning of
intrinsic rewards (that are available at every time step) can help mitigate some of that increasing
hardness.

Delayed Mujoco benchmark. We evaluated 5 environments from the Mujoco benchmark,
i.e., Hopper, HalfCheetah, Walker2d, Ant, and Humanoid. As noted above, to create a more-
challenging sparse-reward setting we accumulated rewards for 10, 20 and 40 steps (or until the end
of the episode, whichever comes earlier) before giving it to the agent. We trained the baseline and
augmented agents for 1 million steps on each environment.

3.4.1 Implementation Details

The intrinsic reward function networks are quite similar to the two networks in the policy mod-
ule. Each network is a multi-layer perceptron (MLP) with 2 hidden layers. We concatenated the
observation vector and the action vector as the input to the intrinsic reward network. The first two
layers are fully connected layers with 64 hidden units. Each hidden layer is followed by a tanh
non-linearity. The output layer has one scalar output. We apply tanh on the output to bound the
intrinsic reward to [−1, 1]. The value network to estimate Gex has the same architecture as the
intrinsic reward network except for the output layer that has a single scalar output without a non-
linear activation. These two networks do not share any parameters. We keep the default values of
all hyper-parameters in the original OpenAI implementation of PPO unchanged for both the aug-
mented and baseline agents. We use Adam [Kingma and Ba, 2014] to optimize the two networks
of the intrinsic reward module. The step size β was initialized to 0.0001 and was fixed over 1
million time steps for all the experiments reported below. The mixing coefficient λ was fixed to
1.0 and instead we multiplied the extrinsic reward by 0.01 cross all 5 environments.

3.4.2 Overall Performance

Our results comparing the use of learning intrinsic reward with using just extrinsic reward on top
of a PPO architecture are shown in Figure 3.4. We only show the results of a delay of 20 here

26

0 2000004000006000008000000

500

1000

1500

2000

2500
Hopper

0 200000400000600000800000

500

0

500

1000

1500

2000

2500 HalfCheetah

0 2000004000006000008000000

500

1000

1500

2000

2500

3000 Walker2d

0 200000400000600000800000
500

400

300

200

100

0

100

200

300
Ant

0 2000004000006000008000000

100

200

300

400

500

600

700
Humanoid

PPO
PPO-live-bonus
PPO-LIRPG
PPO-LIRPG(R in)

Figure 3.4: The x-axis is time steps during learning. The y-axis is the average reward over the last
100 training episodes. The black curves are for the baseline PPO architecture. The blue curves are
for the PPO-live-bonus baseline. The red curves are for our LIRPG based augmented architecture.
The green curves are for our LIRPG architecture in which the policy module was trained with only
intrinsic rewards. The dark curves are the average of 10 runs with different random seeds. The
shaded area shows the standard errors of 10 runs.

. The black curves are for PPO baseline agents. The blue curves are PPO-live-bonus baseline
agents, where we explored the value of live bonus over the set {0.001, 0.01, 0.1, 1} and plotted
the curves for the domain-specific best performing choice. The red curves are for the augmented
LIRPG agents.

We see that in 4 out of 5 domains learning intrinsic rewards significantly improves the perfor-
mance of PPO, while in one game (Ant) we got a degradation of performance. Although a live
bonus did help on 2 domains, i.e., Hopper and Walker2d, LIRPG still outperformed it on 4 out of
5 domains except for HalfCheetah on which LIRPG got comparable performance. We note that
there was no domain-specific hyper-parameter optimization for the results in this figure; with such
optimization there might be an opportunity to get improved performance for our method in all the
domains.

Training with Only Intrinsic Rewards. We also conducted a more challenging experiment on
Mujoco domains in which we used only intrinsic rewards to train the policy module. Recall that
the intrinsic reward module is trained to optimize the extrinsic reward. In 3 out of 5 domains,
as shown by the green curves denoted by ‘PPO-LIRPG(Rin)’ in Figure 3.4, using only intrinsic
rewards achieved similar performance to the red curves where we used a mixture of extrinsic
rewards and intrinsic rewards. Using only intrinsic rewards to train the policy performed worse
than using the mixture on Hopper but performed even better on HalfCheetah. It is important
to note that training the policy using only live-bonus reward without the extrinsic reward would
completely fail, because there would be no learning signal that encourages the agent to move
forward. In contrast, our result shows that the agent can learn complex behaviors solely from the
learned intrinsic reward on MuJoCo environment, and thus the intrinsic reward captures far more

27

than a live bonus does; this is because the intrinsic reward module takes into account the extrinsic
reward structure through its training.

3.5 Conclusion

Our experiments on using LIRPG with A2C on multiple Atari games showed that it helped improve
learning performance in all of the 15 games we tried. Similarly using LIRPG with PPO on multiple
Mujoco domains showed that it helped improve learning performance in 4 out 5 domains (for the
version with a delay of 20). Note that we used the same A2C / PPO architecture and hyper-
parameters in both our augmented and baseline agents.

In this chapter, we derived a novel practical algorithm, LIRPG, for learning intrinsic reward
functions in problems with high-dimensional observations for use with policy gradient based RL
agents. This is the first such algorithm to the best of our knowledge. Our empirical results show
promise in using intrinsic reward function learning as a kind of meta-learning to improve the
performance of modern policy gradient architectures like A2C and PPO.

28

CHAPTER 4

What Can Learned Intrinsic Rewards Capture?

Reinforcement learning (RL) agents can store knowledge in their policies, value functions, state
representations, and models of the environment dynamics. These components can be the loci of
knowledge in the sense that they are structures in which knowledge, either learned from experi-
ence by the agent’s algorithm or given by the agent-designer, can be deposited and reused. The
objective of the agent is defined by a reward function, and the goal is to learn to act so as to max-
imise cumulative rewards. In this chapter we consider the proposition that the reward function
itself is a good locus of knowledge. This is unusual (but not novel) in that most prior work treats
the reward as given and immutable, at least as far as the learning algorithm is concerned. In fact,
agent designers often do find it convenient to modify the reward function given to the agent to fa-
cilitate learning. It is therefore useful to distinguish between two kinds of reward functions [Singh
et al., 2010]: extrinsic rewards define the task and capture the designer’s preferences over agent
behaviour, whereas intrinsic rewards serve as helpful signals to improve the learning dynamics of
the agent.

Most existing work on intrinsic rewards falls into two categories: task-dependent and task-
independent. Both are typically designed by hand. Hand-designing task-dependent rewards can
be fraught with difficulty as even minor misalignment between the actual reward and the intended
bias/goals can lead to unintended and sometimes catastrophic consequences [Clark and Amodei,
2016]. Task-independent intrinsic rewards are also typically hand-designed, often based on an
intuitive understanding of animal/human behaviour or on heuristics on desired exploratory be-
haviour. It can, however, be hard to match such task-independent intrinsic rewards to the specific
learning dynamics induced by the interaction between agent and environment. In this chapter,
we are interested in the comparatively under-explored possibility of learned (not hand-designed)
task-dependent intrinsic rewards. Although there have been a few attempts to learn useful intrinsic
rewards from experience [Singh et al., 2009, Zheng et al., 2018], how to capture complex knowl-
edge such as exploration across episodes into a reward function remains an open question.

We emphasise that it is not our objective to show that rewards are a better locus of learned
knowledge than others; the best locus likely depends on the kind of knowledge that is most useful

29

in a given task. In particular, knowledge captured in rewards provides guidance on “what” the
agent should strive to do while knowledge captured in policies provides guidance on “how” an
agent should behave. Knowledge about “what” captured in rewards is indirect and thus slower
to make an impact on behaviour because it takes effect through learning, while knowledge about
“how” can directly have an immediate impact on behaviour. At the same time, because of its
indirectness the former can generalise better to changes in dynamics and different learning agents,
as we empirically show in this chapter.

How should we measure the usefulness of a learned reward function? Ideally, we would like to
measure the effect the learned reward function has on the learning dynamics. Of course, learning
happens over multiple episodes, indeed it happens over an entire lifetime. Therefore, we choose
lifetime return, the cumulative extrinsic reward obtained by the agent over its entire lifetime, as the
main objective. To this end, we adopt the multi-lifetime setting of the Optimal Rewards Frame-
work [Singh et al., 2009] in which an agent is initialised randomly at the start of each lifetime and
then faces a stationary or non-stationary task drawn from some distribution. In this setting, the
only knowledge that is transferred across lifetimes is the reward instead of the policy. Specifically,
the goal is to learn a single intrinsic reward function that, when used to adapt the agent’s policy
using a standard episodic RL algorithm, ends up optimising the cumulative extrinsic reward over
its lifetime.

In previous work, good reward functions were found via exhaustive search, limiting the range
of applicability. We develop a more scalable gradient-based method for learning intrinsic rewards
by exploiting the fact that the interaction between the policy update and the reward function is
differentiable(see Chapter 3; also [Zheng et al., 2018]). Moreover, unlike the prior work, we
parameterize the reward function by a recurrent neural network unrolled over the entire lifetime
and train it to maximise lifetime return, which is crucial for the reward function to capture long-
term temporal dependencies (e.g., novelty of states across episodes). To handle long-term credit
assignment that spans the lifetime, we use a lifetime value function that estimates the remaining
lifetime return.

Our main contributions and findings are as follows: (1) Through carefully designed environ-
ments, we show that learned intrinsic reward functions can capture a rich form of knowledge such
as long-term exploration (e.g., exploring uncertain states) and exploitation (e.g., anticipating envi-
ronment changes) across multiple episodes. To our knowledge, this is the first work that shows the
feasibility of learning such complex knowledge into reward functions. (2) We show that “what to
do” knowledge captured by the reward functions can generalise to changing dynamics of the envi-
ronment and new learning agents, whereas policy transfer methods do not generalise well, which
provides insights into the usefulness of rewards as a locus of knowledge.

30

4.1 Related Work

Hand-designed Rewards There is a long history of work on designing rewards to accelerate
learning in reinforcement learning. Reward shaping aims to design task-specific rewards towards
known optimal behaviours, typically requiring domain knowledge. Both the benefits [Randlöv and
Alström, 1998, Ng et al., 1999, Harutyunyan et al., 2015] and the difficulty [Clark and Amodei,
2016] of task-specific reward shaping have been studied. On the other hand, many intrinsic rewards
have been proposed to encourage exploration, inspired by animal behaviours. Examples include
prediction error [Schmidhuber, 1991a,b, Oudeyer et al., 2007, Gordon and Ahissar, 2011, Mirolli
and Baldassarre, 2013, Pathak et al., 2017], surprise [Itti and Baldi, 2006], deviation from a default
policy [Goyal et al., 2018], weight change [Linke et al., 2019], and state-visitation counts [Sutton,
1990, Poupart et al., 2006, Strehl and Littman, 2008, Bellemare et al., 2016, Ostrovski et al., 2017].
Although these kinds of intrinsic rewards are not domain-specific, they are often not well-aligned
with the task that the agent is solving, and ignore the effect on the agent’s learning dynamics.
In contrast, our work aims to learn intrinsic rewards from data that take into account the agent’s
learning dynamics without requiring prior knowledge from a human.

Rewards Learned from Experience There have been a few attempts to learn useful intrinsic
rewards from data. Singh et al. [2009] introduced the Optimal Reward Framework which aims
to find a good reward function that allows agents to solve a distribution of tasks using exhaustive
search. The empirical study only showed simple intrinsic reward functions such as preference over
certain objects due to the inefficient exhaustive search method employed. Although there have
been follow-up works [Sorg et al., 2010, Guo et al., 2016] that use a gradient-based method, they
consider a non-parameteric policy using Monte-Carlo Tree Search. Our work is closely related
to the LIRPG algorithm in Chapter 3 which proposed a meta-gradient method to learn intrinsic
rewards. However, LIRPG considers a single task in a single lifetime with a myopic episode return
objective, which is limited in that it does not allow exploration across episodes or generalisation to
different agents. In contrast, our approach takes into account both the long-term effect of intrinsic
rewards on the learning dynamics and the lifetime history of the agent. We show this is crucial
for capturing long-term knowledge, such as seeking for novel states across episodes, which is
not achieved in previous work. Finally, unlike AGILE [Bahdanau et al., 2019] which showed
that a learned reward function can generalise to unseen instructions in instruction-following RL
problems, our work shows new and interesting kind of generalisation: to new agent-environment
interfaces and algorithms.

31

Meta-learning for Exploration and Task Adaptation Meta-learning [Schmidhuber et al.,
1996, Thrun and Pratt, 1998] has recently received considerable attention in RL. Recent advances
include few-shot adaptation [Finn et al., 2017a], few-shot imitation [Finn et al., 2017b, Duan et al.,
2017], model adaptation [Clavera et al., 2019], and inverse RL [Xu et al., 2019]. In particular, our
work is related to the prior work on meta-learning good exploration strategies [Wang et al., 2016b,
Duan et al., 2016b, Stadie et al., 2018, Xu et al., 2018a] in that both perform temporal credit assign-
ment across episode boundaries by maximising rewards accumulated beyond an episode. Unlike
the prior work that aims to directly transfer an exploratory policy, our framework indirectly drives
exploration via a reward function which can be reused by different learning agents.

Meta-learning Update Rules There have been a few studies that directly meta-learn how to
update the agent’s parameters via meta-parameters including discount factor and returns [Xu et al.,
2018b], auxiliary tasks [Schlegel et al., 2018, Veeriah et al., 2019], unsupervised learning update
rules [Metz et al., 2019], and RL objectives [Bechtle et al., 2019, Kirsch et al., 2019]. Our work
also belongs to this category in that our meta-parameters are the reward function used in the agent’s
update. In particular, our multi-lifetime formulation is similar to ML3 [Bechtle et al., 2019] and
MetaGenRL [Kirsch et al., 2019]. However, ML3 cannot generalise to different agent-environment
interfaces, whereas intrinsic rewards can as shown in Section 4.5. In addition, we propose to use
the lifetime return as opposed to the myopic episodic objective of ML3 and MetaGenRL, which is
crucial for cross-episode exploration.

Cognitive Study. Several cognitive science studies on the exploration-exploitation dilemma [Co-
hen et al., 2007, Wilson et al., 2014] have shown that humans use both a random exploration strat-
egy [Thompson, 1933, Watkins, 1989] and an information-seeking strategy [Gittins, 1974, 1979]
when facing uncertainty. Computationally, the former can be easily implemented, whereas the
latter usually requires carefully handcrafted methods to guide the agent’s behaviour. In this work,
we hypothesize and empirically verify that an information-seeking intrinsic reward function can
naturally emerge if it is useful for solving the tasks. The condition of being useful resembles a
recent study [Dubey and Griffiths, 2019] which posited that a rational agent should explore in a
way such that the usefulness of its knowledge is maximised.

4.2 The Optimal Reward Problem

We first introduce some terminology.

• Agent: A learning system interacting with an environment. On each step t the agent selects
an action at and receives from the environment an observation st+1 and an extrinsic reward

32

Lifetime	with	task

Intrinsic	Reward

Episode	1 Episode	2

Figure 4.1: Illustration of the proposed intrinsic reward learning framework. The intrinsic re-
ward rη is used to update the agent’s parameter θi throughout its lifetime which consists of many
episodes. The goal is to find the optimal intrinsic reward parameters η∗ across many lifetimes
that maximises the lifetime return (Glife) given any randomly initialised agents and possibly non-
stationary tasks drawn from some distribution p(T).

rt+1 defined by a task T . The agent chooses actions based on a policy πθ(at|st) parameter-
ized by θ.

• Episode: A finite sequence of agent-environment interactions until the end of the episode
defined by the task. An episode return is defined as: Gep =

∑Tep−1
t=0 γtrt+1, where γ is a

discount factor, and the random variable Tep gives the number of steps until the end of the
episode.

• Lifetime: A finite sequence of agent-environment interactions until the end of training de-
fined by an agent-designer, which can consist of multiple episodes. The lifetime return is
Glife =

∑T−1
t=0 γ

trt+1, where γ is a discount factor, and T is the number of steps in the
lifetime.

• Intrinsic reward: A reward function rη(τt+1) parameterized by η, where τt = (s0, a0, r1,
d1, s1, . . ., rt, dt, st) is a lifetime history with (binary) episode terminations di.

The Optimal Reward Problem [Singh et al., 2010], illustrated in Figure 4.1, aims to learn the
parameters of the intrinsic reward such that the resulting rewards achieve a learning dynamic for
an RL agent that maximises the lifetime (extrinsic) return on tasks drawn from some distribution.
Formally, the objective function is defined as:

J(η) = Eθ0∼Θ,T ∼p(T)

[
Eτ∼pη(τ |θ0)

[
Glife]] , (4.1)

where Θ and p(T) are an initial policy distribution and a distribution over possibly non-stationary
tasks respectively. The likelihood of a lifetime history τ is

pη(τ |θ0) = p(s0)
T−1∏
t=0

πθt(at|st)p(dt+1, rt+1, st+1|st, at),

33

where θt = f(θt−1, η) is a policy parameter as updated with update function f , which is policy
gradient in this chapter.1 Note that the optimisation of η spans multiple lifetimes, each of which
can span multiple episodes.

Using the lifetime return Glife as the objective instead of the conventional episodic return Gep

allows exploration across multiple episodes as long as the lifetime return is maximised in the long
run. In particular, when the lifetime is defined as a fixed number of episodes, we find that the
lifetime return objective is sometimes more beneficial than the episodic return objective, even for
the episodic return performance measure. However, different objectives (e.g., final episode return)
can be considered depending on the definition of what a good reward function is.

4.3 Meta-Learning Intrinsic Reward

We propose a meta-gradient approach [Xu et al., 2018b, Zheng et al., 2018] to solve the optimal
reward problem. At a high-level, we sample a new task T and a new random policy parameter θ at
each lifetime iteration. We then simulate an agent’s lifetime by updating the parameter θ using an
intrinsic reward function rη (Section 4.3.1) with policy gradient (Section 4.3.2). Concurrently, we
compute the meta-gradient by taking into account the effect of the intrinsic rewards on the policy
parameters to update the intrinsic reward function with a lifetime value function (Section 4.3.3).
Algorithm 3 gives an overview of our algorithm. The following sections describe the details.

4.3.1 Architectures

The intrinsic reward function is a recurrent neural network (RNN) parameterized by η, which pro-
duces a scalar reward on arriving in state st by taking into account the history of an agent’s lifetime
τt = (s0, a0, r1, d1, s1, ..., rt, dt, st). We claim that giving the lifetime history across episodes as in-
put is crucial for balancing exploration and exploitation, for instance by capturing how frequently
a certain state is visited to determine an exploration bonus reward. The lifetime value function is a
separate recurrent neural network parameterized by ϕ, which takes the same inputs as the intrinsic
reward function and produces a scalar value estimation of the expected future return within the
lifetime.

4.3.2 Policy Update

Each agent interacts with an environment and a task sampled from a distribution T ∼ p(T). How-
ever, instead of directly maximising the extrinsic rewards defined by the task, the agent maximises

1We assume that the policy parameter is updated after each time-step throughout the chapter for brevity. However,
the parameter can be updated less frequently in practice.

34

Algorithm 3 Learning intrinsic rewards

Input: p(T): Task distribution
Input: Θ: Randomly-initialised policy distribution
Initialise intrinsic reward η and lifetime value ϕ
repeat

Initialise task T ∼ p(T) and policy θ ∼ Θ
while lifetime not ended do
θ0 ← θ
for k = 1, 2, . . . , N do

Generate a trajectory using πθk−1

Update policy θk ← θk−1 + α∇θk−1
Jη(θk−1) using intrinsic rewards rη (Eq. 4.3)

end for
Update intrinsic reward function η using Eq. 4.4
Update lifetime value function ϕ using Eq. 4.6
θ ← θN

end while
until η converges

the intrinsic rewards (rη) by using policy gradient [Williams, 1992, Sutton et al., 2000]:

Jη(θ) = Eθ
[Tep−1∑

t=0

γ̄trη(τt+1)

]
(4.2)

∇θJη(θ) = Eθ
[
Gep
η,t∇θ log πθ(a|s)

]
, (4.3)

where rη(τt+1) is the intrinsic reward at time t, and Gep
η,t =

∑Tep−1
k=t γ̄k−trη(τk+1) is the return of the

intrinsic rewards accumulated over an episode with discount factor γ̄.

4.3.3 Intrinsic Reward and Lifetime Value Update

To update the intrinsic reward parameters η, we directly take a meta-gradient ascent step using the
overall objective (Equation 4.1). Specifically, the gradient is

∇ηJ(η) = Eθt,T
[
Glife
t ∇θt log πθt(at|st)∇ηθt

]
, (4.4)

The chain rule is used to get the meta-gradient (∇ηθt) as in Chapter 3. The computation graph of
this procedure is illustrated in Figure 4.1.

Computing the true meta-gradient in Equation 4.4 requires backpropagation through the entire
lifetime, which is infeasible as each lifetime can involve thousands of policy updates. To par-
tially address this issue, we truncate the meta-gradient after N policy updates but approximate the

35

(a) Empty Rooms

A

B C

A

B C

(b) ABC

C
A

B

(c) Key-Box

Figure 4.2: Illustration of domains. (a) The agent needs to find the goal location which gives
a positive reward, but the goal is not visible to the agent. (b) Each object (A, B, and C) gives
rewards. (c) The agent is required to first collect the key and visit one of the boxes (A, B, and C) to
receive the corresponding reward. All objects are placed in random locations before each episode.

lifetime return Glife,ϕ
t ≈ Glife

t using a lifetime value function Vϕ(τ) parameterized by ϕ, which is
learned using a temporal difference learning from n-step trajectory:

Glife,ϕ
t =

n−1∑
k=0

γkrt+k+1 + γnVϕ(τt+n) (4.5)

ϕ′ = ϕ+ α′(Glife,ϕ
t − Vϕ(τt))∇ϕVϕ(τt), (4.6)

where α′ is a learning rate. In our empirical work, we found that the lifetime value estimates
were crucial to allow the intrinsic reward to perform long-term credit assignments across episodes
(Section 4.4.6).

4.4 Empirical Investigations

We present the results from our empirical investigations in two sections. In this section, the exper-
iments and domains are designed to answer the following research questions:

• What kind of knowledge is learned by the intrinsic reward?

• How does the distribution of tasks influence the intrinsic reward?

• What is the benefit of the lifetime return objective over the episode return?

• When is it important to provide the lifetime history as input to the intrinsic reward?

36

0 100 200
Num episodes

0.25

0.50

0.75

1.00
Ep

iso
de

 re
tu

rn
Empty Rooms

0 20 40

0.0

0.2

0.4

Random ABC

0 2500 5000

0.0

0.2

0.4
Key-Box

0 250 500 750 1000

0

1
Non-stationary ABC

Learned (ours)
Extrinsic-EP
Extrinsic-LIFE
Count-based
ICM
Near-optimal

Figure 4.3: Evaluation of different reward functions averaged over 30 seeds. The learning curves
show agents trained with our intrinsic reward (blue), with the extrinsic reward using the episodic
return objective (orange) or the lifetime return objective (brown), and with a count-based explo-
ration reward (green). The dashed line corresponds to a hand-designed near-optimal exploration
strategy.

4.4.1 Experimental Setup

We investigate these research questions in the grid-world domains illustrated in Figure 4.2. For
each domain, we trained an intrinsic reward function across many lifetimes and evaluated it by
training an agent using the learned reward. We implemented the following baselines.

• Extrinsic-EP: A policy is trained with extrinsic rewards to maximise the episode return.

• Extrinsic-LIFE: A policy is trained with extrinsic rewards to maximise the lifetime return.

• Count-based [Strehl and Littman, 2008]: A policy is trained with extrinsic rewards and
count-based exploration bonus rewards.

• ICM [Pathak et al., 2017]: A policy is trained with extrinsic rewards and curiosity rewards
based on an inverse dynamics model.

Note that these baselines, unlike the learned intrinsic rewards, do not transfer any knowledge across
different lifetimes. Throughout Sections 4.4.2-4.4.5, we focus on analysing what kind of knowl-
edge is learned by the intrinsic reward depending on the nature of environments. We discuss the
benefit of using the lifetime return and considering the lifetime history when learning the intrinsic
reward in Section 4.4.6.

4.4.2 Exploring Uncertain States

We designed ‘Empty Rooms’ (Figure 4.2a) to see whether the intrinsic reward can learn to encour-
age exploration of uncertain states like novelty-based exploration methods. The goal is to visit an
invisible goal location, which is fixed within each lifetime but varies across lifetimes. An episode
terminates when the goal is reached. Each lifetime consists of 200 episodes. From the agent’s per-
spective, its policy should visit the locations suggested by the intrinsic reward. From the intrinsic

37

(a) Room (b) Intrinsic (c) Count (d) ICM

Figure 4.4: Visualisation of the first 3000 steps of an agent trained with different reward functions
in Empty Rooms. (a) The blue and yellow squares represent the agent and the hidden goal, respec-
tively. (b) The learned reward encourages the agent to visit many locations if the goal is not found
(top). However, when the goal is found early, the intrinsic reward makes the agent exploit it with-
out further exploration (bottom). (c-d) Both the count-based and ICM rewards tend to encourage
exploration (top) but hinders exploitation when the goal is found (bottom).

reward’s perspective, it should encourage the agent to go to unvisited locations to locate the goal,
and then to exploit that knowledge for the rest of the lifetime.

Figure 4.3 shows that the learned intrinsic reward was more efficient than extrinsic rewards and
count-based exploration when training a new agent. We observed that the intrinsic reward learned
two interesting strategies as visualised in Figure 4.4. While the goal is not found, it encourages
exploration of unvisited locations, because it learned the knowledge that there exists a rewarding
goal location somewhere. Once the goal is found the intrinsic reward encourages the agent to ex-
ploit it without further exploration, because it learned that there is only one goal. This result shows
that curiosity about uncertain states can naturally emerge when various states can be rewarding in
a domain, even when the rewarding states are fixed within an agent’s lifetime.

4.4.3 Exploring Uncertain Objects

In the previous domain, we considered uncertainty of where the reward (or goal location) is. We
now consider dealing with uncertainty about the value of different objects. In the ‘Random ABC’
environment (see Figure 4.2b), for each lifetime the rewards for objects A, B, and C are uniformly

38

Episode 1

Episode 2 Episode 3

Vi
si

t A

Visit C

Episode 2 Episode 3

Visit C

Visit A

A=0.2 B=-0.5 C=0.1

Figure 4.5: Visualisation of the learned intrinsic reward in Random ABC, where the extrinsic
rewards for A, B, and C are 0.2, −0.5, and 0.1 respectively. Each figure shows the sum of intrinsic
rewards for a trajectory towards each object (A, B, and C). In the first episode, the intrinsic reward
encourages the agent to explore A. In the second episode, the intrinsic reward encourages exploring
C if A is visited (top) or vice versa (bottom). In episode 3, after both A and C are explored, the
intrinsic reward encourages revisiting A (both top and bottom).

sampled from [−1, 1], [−0.5, 0], and [0, 0.5] respectively but are held fixed within the lifetime.
A good intrinsic reward should learn that: 1) B should be avoided, 2) A and C have uncertain
rewards, hence require systematic exploration (first go to one and then the other), and 3) once it is
determined which of the two A or C is better, exploit that knowledge by encouraging the agent to
repeatedly go to that object for the rest of the lifetime.

Figure 4.3 shows that the agent learned a near-optimal exploration-then-exploitation method
with the learned intrinsic reward. Note that the agent cannot pass information about the reward
for objects across episodes, as usual in reinforcement learning. The intrinsic reward can prop-
agate such information across episodes and help the agent explore or exploit appropriately. We
visualised the learned intrinsic reward for different actions sequences in Figure 4.5. The intrinsic
rewards encourage the agent to explore towards A and C in the first few episodes. Once A and
C are explored, the agent exploits the largest rewarding object. Throughout training, the agent is
discouraged to visit B through negative intrinsic rewards. These results show that avoidance and
curiosity about uncertain objects can potentially emerge if the environment has various or fixed
rewarding objects.

39

470 480 490 500 510 520 530
Episodes

−4

−2

0

2

4
Ep

iso
de

 R
et

ur
n

Intrinsic
Extrinsic

470 480 490 500 510 520 530
Episodes

0.00

0.25

0.50

0.75

1.00

1.25

En
tro

py

Figure 4.6: Visualisation of the agent’s intrinsic and extrinsic rewards (left) and the entropy of its
policy (right) on Non-stationary ABC. The task changes at 500th episode (dashed vertical line).
The intrinsic reward gives a negative reward even before the task changes (green rectangle) and
makes the policy less deterministic (entropy increases). As a result, the agent quickly adapts to the
change.

0 100 200
Num episodes

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

Empty Rooms

0 20 40

0.0

0.2

0.4

Random ABC

0 2500 5000

0.0

0.2

Key-Box

0 250 500 750 1000

−0.5

0.0

0.5

1.0
Non-stationary ABC

LSTM-Lifetime
LSTM-Episode
FF-Episode

Figure 4.7: Evaluation of different intrinsic reward architectures and objectives. For ‘LSTM’ the
reward network has an LSTM taking the lifetime history as input. For ‘FF’ a feed-forward reward
network takes only the current time-step. ‘Lifetime’ and ‘Episode’ means the lifetime and episodic
return as objective respectively.

4.4.4 Exploiting Invariant Causal Relationship

To see how the intrinsic reward deals with causal relationship between objects, we designed ‘Key-
Box’, which is similar to Random ABC except that there is a key in the room (see Figure 4.2c).
The agent needs to collect the key first to open one of the boxes (A, B, and C) and receive the
corresponding reward. The rewards for the objects are sampled from the same distribution as
Random ABC. The key itself gives a neutral reward of 0. Moreover, the locations of the agent, the
key, and the boxes are randomly sampled for each episode. As a result, the state space contains
more than 3 billion distinct states and thus is infeasible to fully enumerate. Figure 4.3 shows
that learned intrinsic reward leads to a near-optimal exploration. The agent trained with extrinsic
rewards did not learn to open any box. The intrinsic reward captures that the key is necessary to
open any box, which is true across many lifetimes of training. This demonstrates that the intrinsic
reward can capture causal relationships between objects when the domain has this kind of invariant
dynamics.

40

4.4.5 Dealing with Non-stationarity

We investigated how the intrinsic reward handles non-stationary tasks within a lifetime in our ‘Non-
stationary ABC’ environment. Rewards are as follows: for A is either 1 or−1, for B is−0.5, for C
is the negative value of the reward for A. The rewards of A and C are swapped every 250 episodes.
Each lifetime lasts 1000 episodes. Figure 4.3 shows that the agent with the learned intrinsic reward
quickly recovered its performance when the task changes, whereas the baselines take more time to
recover. Figure 4.6 shows how the learned intrinsic reward encourages the learning agent to react
to the changing rewards. Interestingly, the intrinsic reward has learned to prepare for the change
by giving negative rewards to the exploitation policy of the agent a few episodes before the task
changes. In other words, the intrinsic reward reduces the agent’s commitment to the current best
rewarding object, thereby increasing entropy in the current policy in anticipation of the change,
eventually making it easier to adapt quickly. This shows that the intrinsic reward can capture
the (regularly) repeated non-stationarity across many lifetimes and make the agent intrinsically
motivated not to commit too firmly to a policy, in anticipation of changes in the environment.

4.4.6 Ablation Study

To study relative benefits of the proposed technical ideas, we conducted an ablation study 1) by
replacing the long-term lifetime return objective (Glife) with the episodic return (Gep) and 2) by
restricting the input of the reward network to the current time-step instead of the entire lifetime
history. Figure 4.7 shows that the lifetime history was crucial to achieve good performance. This
is reasonable because all domains require some past information (e.g., object rewards in Random
ABC, visited locations in Empty Rooms) to provide useful exploration strategies. It is also shown
that the lifetime return objective was beneficial on Random ABC, Non-stationary ABC, and Key-
Box. These domains require exploration across multiple episodes in order to find the optimal
policy. For example, collecting an uncertain object (e.g., object A in Random ABC) is neces-
sary even if the episode terminates with a negative reward. The episodic value function would
directly penalise such an under-performing exploratory episode when computing meta-gradient,
which prevents the intrinsic reward from learning to encourage exploration across episodes. On
the other hand, such behaviour can be encouraged by the lifetime value function, as long as it
provides useful information to maximise the lifetime return in the long term.

4.5 Generalisation via Rewards

As noted above, rewards capture knowledge about what an agent’s goals should be rather than how
it should behave. At the same time, transferring the latter in the form of policies is also feasible in

41

0 100 200
Num episodes

0.25

0.50

0.75

1.00
Ep

iso
de

 re
tu

rn
Empty Rooms

0 20 40

0.0

0.2

0.4

Random ABC

0 2500 5000

0.0

0.2

Key-Box

0 250 500 750 1000
−1

0

1
Non-stationary ABC

Intrinsic (ours)
RL2

MAML

Figure 4.8: Comparison to policy transfer methods.

our domains presented above. Here we confirm it by implementing and presenting results for the
following two meta-learning methods:

• MAML [Finn et al., 2017a]: A policy meta-learned from a distributions of tasks such that it
can adapt quickly to the given task after a few parameter updates.

• RL2 [Duan et al., 2016b, Wang et al., 2016b]: An RNN policy unrolled over the entire
lifetime to maximise the lifetime return, which is pre-trained on a distributions of tasks.

Although all the methods we implemented including ours are designed to learn useful knowledge
from a distribution of tasks, they have different objectives. Specifically, the objective of our method
is to learn knowledge that is useful for training “randomly-initialised policies” by capturing “what
to do”, whereas the goal of policy transfer methods is to directly transfer a useful policy for fast
task adaptation by transferring “how to do” knowledge. In fact, it can be more efficient to transfer
and reuse pre-trained policies instead of restarting from a random policy and learning using the
learned rewards given a new task. Figure 4.8 indeed shows that RL2 performs better than our
intrinsic reward approach. It is also shown that MAML and RL2 achieve good performance from
the beginning, as they have already learned how to navigate the grid worlds and how to achieve
the goals of the tasks. In our method, on the other hand, the agent starts from a random policy and
relies on the learned intrinsic reward which indirectly tells it what to do. Nevertheless, our method
outperforms MAML and achieves a comparable asymptotic performance to RL2.

4.5.1 Generalise to New Agent-Environment Interfaces

In fact, our method can be interpreted as an instance of RL2 with a particular decomposition of
parameters (θ and η), which uses policy gradient as a recurrent update (see Figure 4.1). While
this modular structure may not be more beneficial than RL2 when evaluated with the same agent-
environment interface, such a decomposition provides clear semantics of each module: the policy
(θ) captures “how to do” while the intrinsic reward (η) captures “what to do”, and this enables in-

42

0 10 20 30 40 50

0.0

0.2

0.4

Ep
iso

de
 R

et
ur

n
Random ABC

Original
Permuted
Extended

(a) Action space

0 50 100 150 200

0.0

0.2

0.4

Ep
iso

de
 R

et
ur

n

Random ABC

AC-Intrinsic
Q-Intrinsic
Q-Extrinsic

(b) Algorithm

0 10 20 30 40 50
0.0

0.2

0.4

Ep
iso

de
 R

et
ur

n

Permuted Random ABC

Ours
RL2
MAML

(c) Comparison to baselines

Figure 4.9: Generalisation to new agent-environment interfaces in Random ABC. (a) ‘Permuted’
agents have different action semantics. ‘Extended’ agents have additional actions. (b) ‘AC-
Intrinsic’ is the original actor-critic agent trained with the intrinsic reward. ‘Q-Intrinsic’ is a
Q-learning agent with the intrinsic reward learned from actor-critic agents. ‘Q-Extrinsic’ is the
Q-learning agent with the extrinsic reward. (c) The performance of the policy transfer baselines
with permuted actions during evaluation.

teresting kinds of generalisations as we show below. Specifically, we show that “what” knowledge
captured by the intrinsic reward can be reused by many different learning agents as follows.

Generalise to Unseen Action Spaces We first evaluated the learned intrinsic reward on new ac-
tion spaces. Specifically, the intrinsic reward was used to train new agents with either 1) permuted
actions, where the semantics of left/right and up/down are reversed, or 2) extended actions, with 4
additional actions that move diagonally. Figure 4.9a shows that the intrinsic reward provided use-
ful rewards to new agents with different actions, though it was not trained with those actions. This
is feasible because the intrinsic reward assigns rewards to the agent’s state changes rather than its
actions. The intrinsic reward captures “what to do”, which makes it feasible to generalise to new
actions, as long as the goal remains the same. On the other hand, it is unclear how to generalise
RL2 and MAML in this way.

Generalise to Unseen Learning Algorithms We further investigated how general the learned
intrinsic reward is by evaluating it on agents with different learning algorithms. Specifically, after
training the intrinsic reward from actor-critic agents, we evaluated it by training new agents through
Q-learning while using the learned intrinsic reward as denoted by ‘Q-Intrinsic’ in Figure 4.9b.
Interestingly, it turns out that the learned intrinsic reward is general enough to be useful for Q-
learning agents, even though it was trained for actor-critic agents. Again, it is unclear how to
generalise RL2 and MAML in this way.

43

Comparison to Policy Transfer Although it is impossible to apply the learned policy from RL2

and MAML when we extend the action space or when we change the learning algorithm, we
can do so when we only permute the actions. As shown in Figure 4.9c, both RL2 and MAML
generalise poorly when the action space is permuted for Random ABC, because the transferred
policies are highly biased to the original action space. Again, this result highlights the difference
between “what to do” knowledge captured by our approach and “how to do” knowledge captured
by policies.

4.6 Conclusion

In this chapter, we revisited the original optimal reward problem [Singh et al., 2009] and proposed
a more scalable gradient-based method for learning intrinsic rewards across lifetimes. Through
several proof-of-concept experiments, we showed that the learned non-stationary intrinsic reward
can capture regularities within a distribution of environments or, over time, within a non-stationary
environment. As a result, they were capable of encouraging both exploratory and exploitative
behaviour across multiple episodes. In addition, some task-independent notions of intrinsic mo-
tivation such as curiosity emerged when they were effective for the distribution over tasks across
lifetimes the agent was trained on. We also showed that the learned intrinsic rewards can generalise
to different agent-environment interfaces such as different action spaces and different learning al-
gorithms, whereas policy transfer methods fail to generalise to such changes. This highlights the
difference between the “what” kind of knowledge captured by rewards and the “how” kind of
knowledge captured by policies. The flexibility and range of knowledge captured by intrinsic re-
wards in our proof-of-concept experiments encourages further work towards combining different
loci of knowledge to achieve greater practical benefits.

44

CHAPTER 5

Adaptive Pairwise Weights for Temporal Credit
Assignment

The following umbrella problem [Osband et al., 2019] illustrates a fundamental challenge in most
reinforcement learning (RL) problems, namely the temporal credit assignment (TCA) problem.
An RL agent takes an umbrella at the start of a cloudy morning and experiences a long day at
work filled with various rewards uninfluenced by the umbrella, before needing the umbrella in
the rain on the way home. The agent must learn to credit the take-umbrella action in the cloudy-
morning state with the very delayed reward at the end of the day, while also learning to not credit
the action with the many intervening rewards, despite their occurring much closer in time. More
generally, the TCA problem is how much credit or blame should an action taken in a state get for
a future reward. One of the earliest and still most widely used heuristics for TCA comes from
the celebrated TD(λ) [Sutton, 1988] family of algorithms, and assigns credit based on a scalar
coefficient λ raised to the power of the time interval between the state-action and the reward. Note
that this is a recency and frequency heuristic, in that it assigns credit based on how recently and
how frequently a state-action pair has occurred prior to the reward. It is important, however, to also
note that this heuristic has not in any way shown to be the “optimal” way for TCA. In particular,
in the umbrella problem the action of taking the umbrella on a cloudy morning will be assigned
credit for the rewards achieved during the workday early on in learning and it is only after a lot
of learning that this effect will diminish. Nevertheless, the recency and frequency heuristic has
been adopted in most modern RL algorithms because it is so simple to implement, with just one
hyperparameter, and because it has been shown to allow for asymptotic convergence to the true
value function under certain circumstances.

In this chapter, we present two new families of algorithms for addressing TCA: one that gener-
alises TD(λ) and a second that generalises a Monte-Carlo algorithm. Specifically, our generalisa-
tion introduces pairwise weightings that are functions of the state in which the action was taken,
the state at the time of the reward, and the time interval between the two. Of course, it isn’t clear
what this pairwise weight function should be, and it is too complex to be treated as a hyperparam-

45

eter (in contrast to the scalar λ in TD(λ)). We develop a metagradient approach to learning the
pairwise weight function at the same time as learning the policy of the agent. Like other metagra-
dient algorithms, our algorithm has two loops: an outer loop that periodically updates the pairwise
weight function in order to optimize the usual RL loss (policy gradient loss in our case) and an
inner loop where the policy parameters are updated using the pairwise weight function set by the
outer loop.

Our main contribution in this chapter is a family of algorithms that contains within it the theoret-
ically well understood TD(λ) and Monte-Carlo algorithms. We show that the additional flexibility
of our algorithms can yield benefit analytically in a simple illustrative example intended to build
intuition and then empirically in more challenging TCA problems. A second contribution is the
metagradient algorithm to learn such the pairwise-weighting function that parameterises our fam-
ily of algorithms. Our empirical work is geared towards answering two questions: (1) Are the
proposed pairwise weight functions able to outperform the best choice of λ and other baselines?
(2) Is our metagradient algorithm able to learn the pairwise weight functions fast enough to be
worth the extra complexity they introduce?

5.1 Related Work

Several heuristic methods have been proposed to address the long-term credit assignment problem
in RL. RUDDER [Arjona-Medina et al., 2019] trains a LSTM [Hochreiter and Schmidhuber, 1997]
to predict the return of an episode given the entire state and action sequence and then conducts
contribution analysis with the LSTM to redistribute rewards to state-action pairs. Synthetic Returns
(SR) [Raposo et al., 2021] directly learns the association between past events and future rewards
and use it as a proxy for credit assignment. Different from the predictive approach of RUDDER
and SR, Temporal Value Transport (TVT) [Hung et al., 2019] augments the agent with an external
memory module and utilizes the memory retrieval as a proxy for transporting future value back
to related state-action pairs. We compare against TVT by using their published code, and we
take inspiration from the core reward-redistribution idea from RUDDER and implement it within
our policy gradient agent as a comparison baseline (because the available RUDDER code is not
directly applicable). We do not compare to SR because their source code is not available.

We also compare against two other algorithms that are more closely related to ours in their
use of metagradients. Xu et al. [Xu et al., 2018b] adapt λ via metagradients rather than tuning
it via hyperparameter search, thereby improving over the use of a fixed-λ algorithm. The Return
Generating Model (RGM) [Wang et al., 2019] generalizes the notion of return from exponentially
discounted sum of rewards to a more flexibly weighted sum of rewards where the weights are
adapted via metagradients during policy learning. RGM takes the entire episode as input and

46

generates one weight for each time step. In contrast, we study pairwise weights as explained
below.

Some recent works address counterfactual credit assignment where classic RL algorithms strug-
gle [Harutyunyan et al., 2019, Mesnard et al., 2020, van Hasselt et al., 2020]. Although they are
related to our work in that they also address the TCA problem, we do no compare to them because
our work does not focus on the counterfactual aspect.

5.2 Pairwise Weights for Advantages

At the core of our contribution are new parameterizations of functions for computing advantage
estimators used in policy gradient methods. Therefore, we briefly review advantages estimators in
policy gradient methods as our points of departure. For a more comprehensive review, please refer
to Chapter 2.

Advantage estimators Recall from Chapter 2 that the Monte-Carlo estimator of the advantage
function Ψ(St, At) is

Ψ̂MC
t = Gt − v̂(St), (5.1)

and the λ-estimator is

Ψ̂
(λ)
t =G

(λ)
t − v̂(St)

=
T∑

k=t+1

(γλ)k−t−1δk,
(5.2)

where δt = Rt + γv̂(St) − v̂(St−1) is the TD-error at time t. As a special case, when λ = 1,
it recovers the MC estimator [Schulman et al., 2015]. As noted above, the value for λ is usually
manually tuned as a hyperparameter. Adjusting λ provides a way to tradeoff bias and variance in
Ψ̂(λ) (this is absent in Ψ̂MC). Below we present two new estimators that are analogous in this regard
to Ψ̂(λ) and Ψ̂MC.

Proposed Heuristic 1: Advantages via Pairwise Weighted Sum of TD-errors. Our first new
estimator, denoted PWTD for Pairwise Weighted TD-error, is a strict generalization of the λ-
estimator above and is defined as follows:

Ψ̂PWTD
η,t =

T∑
k=t+1

fη(St, Sk, k − t)δk, (5.3)

47

where fη(St, Sk, k−t) ∈ [0, 1], parameterized by η, is the scalar weight given to the TD-error δk as
a function of the state to which credit is being assigned, the state at which the TD-error is obtained,
and the time interval between the two. Note that if we choose f(St, Sk, k − t) = (γλ)k−t−1, it
recovers the usual λ-estimator Ψ̂(λ).

Proposed Heuristic 2: Advantages via Pairwise Weighted Sum of Rewards. Instead of gener-
alizing from the λ-estimator, we can also generalize from the MC estimator via pairwise weighting.
Specifically, the new pairwise-weighted return is defined as

GPWR
η,t =

T∑
k=t+1

fη(St, Sk, k − t)Rk, (5.4)

where fη(St, Sk, k − t) ∈ [0, 1] is the scalar weight given to the reward Rk. The corresponding
advantage estimator, denoted PWR for Pairwise Weighted Reward, then is:

Ψ̂PWR
η,t = GPWR

η,t − v̂PWR(St), (5.5)

where vPWR(s) = Eθ[GPWR
η,t |St = s] and v̂PWR is an approximation of vPWR. Note that if we choose

f(St, Sk, k − t) = γk−t−1, we can recover the MC estimator Ψ̂MC.
The benefit of the additional flexibility provided by these new estimators highly depends on the

choice of the pairwise weight function f . As we will demonstrate in the simple example below, the
new estimators can yield lower variance and benefit policy learning if the function f captures the
underlying credit assignment structure of the problem. On the other hand, the new estimators may
not even be well-defined in the infinite-horizon setting if the pairwise weight function is chosen
wrongly because the weighted sum of TD-errors/rewards could be unbounded. Designing a good
pairwise weight function by hand is challenging because it requires both domain knowledge to
capture the credit assignment structure and careful tuning to avoid harmful consequences. Thus
we propose a metagradient algorithm to learn the pairwise weight function such that it benefits
policy learning, as detailed in § 5.3.

An Illustrative Analysis of the Benefit of the PWR Estimator. Consider the simple-MDP ver-
sion of the umbrella problem in Figure 5.1. Each episode starts at the leftmost state, s0, and
consists of T transitions. The only choice of action is at s0 and it determines the reward on the
last transition. A noisy reward ϵ is sampled for each intermediate transition independently from a
distribution with mean µ and variance σ2 > 0. These intermediate rewards are independent of the
initial action. We consider the undiscounted setting in this example. The expected return for state

48

s0

...
ε

ε ε +1

...ε ε ε −1

Figure 5.1: A simple illustrative MDP. The initial action determines the final reward but does not
impact the intermediate rewards. The consequence of the initial action is delayed.

s0 under policy π is
v(s0) = Eπ[G0] = (T − 1)µ+ Eπ[RT].

For any initial action a0, the advantage is

Ψ(s0, a0) = Eπ[G0|a0]− v(s0) = Eπ[RT |a0]− Eπ[RT].

Consider pairwise weights for computing Ψ̂PWR(s0, a0) that place weight only on the final transi-
tion, and zero weight on the noisy intermediate rewards, capturing the notion that the intermediate
rewards are not influenced by the initial action choice. More specifically, we choose f such that
for any episode, w0T = 1 and wij = 0 for other i and j. The shorthand wij denotes f(Si, Sj, j − i)
for brevity. The expected parameterized reward sum for the initial state s0 is

vPWR(s0) = Eπ[Gη,0] = Eπ[
T∑
i=t

w0tRt] = Eπ[RT].

If vPWR is correct, for any initial action a0, the pairwise-weighted advantage is the same as the
regular advantage:

Eπ[Ψ̂PWR
η (s0, a0)] = Eπ[Gη,0 − v̂PWR(s0)|a0]

= Eπ[
T∑
t=1

w0tRt]− vPWR(s0)

= E[RT |a0]− Eπ[RT] = Ψ(s0, a0).

As for variance, for any initial action a0, [Gη,0|a0] is deterministic because of the zero weight on
all the intermediate rewards and thus Ψ̂PWR

η (s0, a0) has zero variance. The variance of Ψ̂MC(s0, a0)

on the other hand is (T − 1)σ2 > 0. Thus, in this illustrative example Ψ̂PWR yields an unbiased
advantage estimator with far lower variance than Ψ̂MC.

49

Our example exploited knowledge of the domain to set weights that would yield an unbiased
advantage estimator with reduced variance, thereby providing some intuition on how a more flex-
ible return might in principle yield benefits for learning. Of course, in general RL problems will
have the umbrella problem in them to varying degrees. But how can these weights be set by the
agent itself, without prior knowledge of the domain? We turn to this question next.

5.3 A Metagradient Algorithm for Adapting Pairwise Weights

Recently metagradient methods have been developed to learn various kinds of parameters that
would otherwise be set by hand or by manual hyperparameter search; these include discount fac-
tors [Xu et al., 2018b, Zahavy et al., 2020], intrinsic rewards (Chapter 3 and 4; also see [Zheng
et al., 2018, Rajendran et al., 2019, Zheng et al., 2020]), auxiliary tasks [Veeriah et al., 2019],
constructing general return functions [Wang et al., 2019], and discovering new RL objectives [Oh
et al., 2020, Xu et al., 2020]. We use the metagradient algorithm from Xu et al. [2018b] for train-
ing the pairwise weights. The algorithm consists of an outer loop learner for the pairwise weight
function, which is driven by a conventional policy gradient loss and an inner loop learner driven
by a policy-gradient loss based on the new pairwise-weighted advantages. For brevity, we use Ψ̂η

to denote Ψ̂PWTD
η or Ψ̂PWR

η unless it causes ambiguity.

Learning in the Inner Loop. In the inner loop, the pairwise-weighted advantage Ψ̂η is used to
compute the policy gradient. We rewrite the gradient update from Eq. 2.18 with the new advantage
as

∇θJη(θ) = Eτ∼πθ [
T−1∑
t=0

Ψ̂η,t∇θ log πθ(At|St)], (5.6)

where τ is a trajectory sampled by executing πθ. The overall update to θ is

∇θJ
inner(θ) = ∇θJη(θ) + βH∇θH(πθ), (5.7)

where H(θ) is the usual entropy regularization term [Mnih et al., 2016] and βH is a mixing coef-
ficient. We apply gradient ascent to update the policy parameters and the updated parameters are
denoted by θ′.

Computing Ψ̂PWR
η with Equation 5.5 requires a value function predicting the expectation of

pairwise-weighted sums of rewards. We train the value function, v̂ψ with parameters ψ, along
with the policy by minimizing the mean squared error between its output v̂ψ(St) and the pairwise-

50

weighted sum of rewards Gη,t. The objective for training v̂ψ is

Jvη (ψ) = Eτ∼πθ [
T−1∑
t=0

(Gη,t − v̂ψ(St))2]. (5.8)

Note that Ψ̂PWTD
η does not need this extra value function.

Updating η via Metagradient in the Outer Loop. To update η, the parameters of the pairwise
weight functions, we need to compute the gradient of the usual policy loss w.r.t. η through the
effect of η on the inner loop’s updates to θ.

∇ηJ
outer(η) = ∇θ′J(θ

′)∇ηθ
′. (5.9)

where,

∇θ′J(θ
′) = Eτ ′∼πθ′ [

T−1∑
i=0

Ψt∇θ′ log πθ′(At|St)], (5.10)

τ ′ is another trajectory sampled by executing the updated policy πθ′ and Ψt is the regular advantage.
Note that we need two trajectories, τ and τ ′, to make one update to the meta-parameters η. The

policy parameters θ are updated after collecting trajectory τ . The next trajectory τ ′ is collected
using the updated parameters θ′. The η-parameters are updated on τ ′. In order to make more
efficient use of the data, we follow [Xu et al., 2018b] and reuse the second trajectory τ ′ in the next
iteration as the trajectory for updating θ. In practice we use modern auto-differentiation tools to
compute Equation 5.9 without applying the chain rule explicitly. Computing the regular advantage
requires a value function for the regular return. This value function is parameterized by ϕ and
updated to minimize the squared loss analogously to v̂ϕ.

5.4 Experiments

We present three sets of experiments. The first set (§5.4.1) uses simple tabular MDPs that allow
visualization of the pairwise weights learned by Meta-PWTD and -PWR. The results show that
the metagradient adaptation both increases and decreases weights in a way that can be interpreted
as reflecting explicit credit assignment and variance reduction. In the second set (§5.4.2) we test
Meta-PWTD and -PWR with neural networks in the benchmark credit assignment task Key-to-

Door [Hung et al., 2019]. We show that Meta-PWTD and -PWR outperform several existing
methods for directly addressing credit assignment, as well as TD(λ) methods, and show again that
the learned weights reflect domain structure in a sensible way. In the third set (§5.4.3), we evaluate

51

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

38

37

36

35

34

33

32

31

42

41

40

39

44

43

45

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

4 8 16
Depth

1.5

2.0

2.5

3.0

3.5

4.0

Ep
iso

de
s t

o
95

%
 S

co
re

1e3
Fixed λ=1.0
Meta-PWR
Meta-PWTD
H-PWR

Figure 5.2: (Left) Depth 8 DAG environment with choice of two actions at each state and rewards
along transitions. (Right) Learning performance of regular return, handcrafted weights, and fixed
meta-learned weights. Results are averaged over 5 independent runs. Low is good.

Meta-PWTD and -PWR in two benchmark RL domains, bsuite [Osband et al., 2019] and Atari,
and show that our methods do not hinder learning when environments do not pose idealized long-
term credit assignment challenges.

5.4.1 Learned Pairwise Weights in A Simple MDP

Consider the environment represented as a DAG in Figure 5.2 (left). In each state in the left part
of the DAG (states 0–14, the first phase), the agent chooses one of two actions but receives no
reward. In the remaining states (states 15–44, the second phase) the agent has only one action
available and it receives a reward of +1 or −1 at each transition. Crucially, the rewards the agent
obtains in the second phase are a consequence of the action choices in the first phase because
they determine which states are encountered in the second phase. There is an interesting credit
assignment problem with a nested structure; for example, the action chosen at state 1 determines
the reward received later upon transition into state 44. We refer to this environment as the Depth 8

DAG and also report results below for depths 4 and 16.
In the DAG environments we use a tabular policy, value function, and meta-parameter repre-

sentations. The parameters θ, ψ, ϕ, and η represent the policy, baseline for the weighted return,
baseline for the regular return, and meta-parameters respectively. The η parameters are a |S| × |S|
matrix. The entry on the ith row and the jth column defines the pairwise weight for computing the
contribution of reward at state j to the return at state i. A sigmoid is used to bound the weights to
[0, 1], and the η parameters are initialized so that the pairwise weights are close to 0.5. Note that

52

even in a tabular domain such as the DAG, setting the credit assignment weights by random search
would be infeasible due to the number of possible weight combinations. This problem is exac-
erbated by larger domains discussed in the following sections. For this reason, the metagradient
algorithm is a promising candidate for setting the weights.

Visualizing the Learned Weights via Inner-loop Reset. To see the most effective weights that
metagradient learned for a random policy, we repeatedly reset the policy parameters to a random
initialization while continuing to train the meta-parameters until convergence. More specifically:
the meta-parameters η are trained repeatedly by randomly initializing θ, ψ, and ϕ and running
the inner loop for 16 updates for each outer loop update. Following existing work in metagra-
dient [Veeriah et al., 2019, Zheng et al., 2020], the outer loop objective is evaluated on all 16
trajectories sampled with the updated policies. The gradient of the outer loop objective on the ith
trajectory with respect to η is backpropagated through all of the preceding updates to θ.

What pairwise weights would accelerate learning in this domain? Figure 5.2 (top) visualizes a
set of handcrafted weights for Ψ̂PWR in the Depth 8 DAG; each row in the grid represents the state
in which an action advantage is estimated, and each column the state in which a future reward is
experienced. For each state pair (si, sj) the weight is 1 (yellow) only if the reward at sj depends
on the action choice at si, else it is zero (dark purple; the white pairs are unreachable). Figure 5.2
(middle) shows the corresponding weights learned by Meta-PWR. Importantly, the learned pair-
wise weights have been increased for those state pairs in which the handcrafted weights are 1 and
have been decreased for those state pairs in which the handcrafted weights are 0. As in the analysis
of the simple domain in §5.2, these weights will result in lower variance advantage estimates.

The same reset-training procedure was applied to ΨPWTD. Figure 5.2 (bottom) visualizes the
resulting weights. Since the TD-errors depend on the value function which are nonstationary
during agent learning, we expect different weights to emerge at different points in training; the
presented weights are but one snapshot. But a clear contrast to reward weighting can be seen: high
weights are placed on transitions in the first phase of the DAG, which yield no rewards—because
the TD-errors at these transitions do provide signal once the value function begins to be learned.

Evaluation of the Learned Pairwise Weights. After the θ-reset training of the pairwise-weights
completed, we used them to train a new set of θ parameters, fixing the pairwise weights during
learning. Figure 5.2 (right) shows the number of episodes to reach 95% of the maximum score
in each DAG, for policies trained with regular returns, handcrafted weights (H-PWR), and meta-
learned weights. Using the meta-learned weights learned as fast as (indeed faster than) using
the handcrafted weights, and both were faster than the regular returns, with the gap increasing
for larger DAG-depth. We conjecture that the learned weights performed even better than the

53

H
an

dc
ra

ft
ed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

M
et

a-
PW

R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

M
et

a-
PW

T
D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.2 0.4 0.6 0.8 1.0

Figure 5.3: Inner loop-reset weight visualization: Top: Handcrafted pairwise weights for Depth 8
DAG; rows and columns correspond to states in Fig. 5.2. Middle: Meta-learned weights for Depth
8 DAG for Meta-PWR and Bottom: Meta-PWTD.

54

Figure 5.4: (Top) The three phases in KtD. The blue circle denotes the agent. (Bottom left) Vi-
sualization of Handcrafted weights in the KtD experiment. (Bottom right) Weights learned by
Meta-PWR in the µ = 5, σ = 5 configuration.

handcrafted weights because the learned weights adapted to the dynamics of the inner-loop policy
learning procedure whereas the handcrafted weights did not.

5.4.2 The Key-to-Door Experiments

We evaluated Meta-PWTD and -PWR the Key-to-Door (KtD) environment [Hung et al., 2019] that
is an elaborate umbrella problem that was designed to show-off the TVT algorithm’s ability to solve
TCA. We varied properties of the domain to vary the credit assignment challenge. We compared the
learning performance of our algorithms to a version of Ψ̂PWR that uses fixed handcrafted pairwise
weights and no metagradient adaptation, as well as to the following five baselines (see related
work in §5.1): (a) best fixed-λ: Actor-Critic (A2C) [Mnih et al., 2016] with a best fixed λ found
via hyperparameter search; (b) TVT [Hung et al., 2019] (using the code accompanying the paper);
(c) A2C-RR: a reward redistribution method inspired by RUDDER [Arjona-Medina et al., 2019];
(d) Meta-λ(s) [Xu et al., 2018b]: meta-learning a state-dependent function λ(s) for λ-returns; and
(e) RGM [Wang et al., 2019]: meta-learning a single set of weights for generating returns as a
linear combination of rewards.

Environment and Parametric Variation. KtD is a fixed-horizon task where each episode con-
sists of three phases (Figure 5.4 top). In the Key phase (15 steps in duration) there is no reward and
the agent must navigate to the key to collect it. In the Apple phase (90 steps in duration) the agent

55

collects apples; apples disappear once collected. Each apple yields a noisy reward with mean µ
and variance σ2. In the Door phase (15 steps in duration) the agent starts at the center of a room
with a door but can open the door only if it has collected the key earlier. Opening the door yields
a reward of 10. Crucially, picking up the key or not has no bearing on the ability to collect apple
rewards. The apples are the noisy rewards that distract the agent from learning that picking up the

key early on leads to a door-reward later. In our experiments, we evaluate methods on 9 different
environments representing combinations of 3 levels of apple reward mean and 3 levels of apple
reward variance.

Implementation. The agent observes the top-down view of the current phase rendered in RGB
and a binary variable indicating if the agent collected the key or not. The policy (θ) and the value
functions (ψ and ϕ) are implemented by separate convolutional neural networks. The meta-network

(η) computes the pairwise weight wij as follows: First, it embeds the observations si and sj and the
time difference (j− i) into separate latent vectors. Then it takes the element-wise product of these
three vectors to fuse them into a vector hij . Finally it maps hij to a scalar output that is bounded
to [0, 1] by sigmoid. We tuned hyperparameters for each method on the mid-level configuration
⟨µ = 5, σ = 25⟩ and kept them fixed for the other 8 configurations. Each method has a distinct
set of parameters (e.g. outer-loop learning rates, λ). We referred to the original papers for the
parameter ranges searched over.

Empirical Results. Figure 5.5 presents learning curves for Meta-PWTD, Meta-PWR, and base-
lines in three KtD configurations. Learning curves are shown separately for the total episode return

and the door phase reward, the latter a measure of success at the long-term credit assignment. Not
unexpectedly, H-PWR which uses handcrafted pairwise weights performs the best. The gap in
performance between H-PWR and the best fixed-λ shows that this domain provides a credit as-
signment challenge that the pairwise-weighted advantage estimate can help with. The TVT and
A2C-RR methods used a low discount factor and so relied solely on their heuristics for learning
to pick up the key, but neither appears to enable fast learning in this domain. In the door phase,
Meta-PWR is generally the fastest learner after H-PWR. Meta-PWTD, though slower, achieves op-
timal performance. Although RGM performs third best in the door phase, it does not perform well
overall, suggesting that the inflexibility of its single set of reward weights (vs. pairwise of Meta-
PWR) forces a trade off between short and long-term credit assignment. In summary, Meta-PWR
outperforms all the other methods and Meta-PWTD is comparable to the baselines.

Figure 5.4 presents a visualization of the handcrafted weights for H-PWR (bottom left) and
weights learned by Meta-PWR (bottom right). In each heatmap, the element on the i-th row and
the j-th column denotes wij , the pairwise weight for computing the contribution of the reward

56

0

5

10

15

20

Ep
iso

de
 re

tu
rn

μ=1, σ=0

40

45

50

55

60
μ=5, σ=5

90

95

100

105

110
μ=10, σ=10

0 1 2 3 4 5
1e7

0

2

4

6

8

10

Do
or

 p
ha

se
 re

wa
rd

0 1 2 3 4 5
1e7

0

2

4

6

8

10

0 1 2 3 4 5
1e7

0

2

4

6

8

10

H-PWR
RGM

best fixed λ=0.5
meta-λ(s)

TVT, γ= 0.92
Meta-PWR

A2C-RR, γ= 0.92
Meta-PWTD

Figure 5.5: Learning curves for the KtD domain. Each column corresponds to a different configu-
ration. The x-axis denotes the number of frames. The y-axis denotes the episode return in top row
and the door phase reward in bottom row. The solid curves show the average over 10 independent
runs and the shaded area shows the standard errors.

57

A2C A2C-RR RGM Meta-PWTD Meta-PWR
Catch 5975 5950 7849 6096 5967
Catch Noise 42221 42295 48268 41106 43076
Catch Scale 56800 57033 54421 48199 49361
Umbrella Length 38050 38083 40397 37973 38168
Umbrella Distract 37524 37433 40159 37226 36554
Cartpole 76874 71506 119102 65945 61752
Discount Chain 3554 3548 2444 1040 161

Table 5.1: Total regret on selected bsuite domains (low is good).

upon transition to the j-th state to the return at the i-th state in the episode. In the heatmap of
the handcrafted weights, the top-right area has non-zero weights because the rewards in the door
phase depend on the actions selected in the key phase. The weights in the remaining part of the
top rows are zero because those rewards do not depend on the the actions in the key phase. For
the same reason, the weights in the middle-right area are zero as well. The weights in the rest of
the area resemble the exponentially discounted weights with a discount factor of 0.92. This steep
discounting helps fast learning of collecting apples. The learned weights largely resemble the
handcrafted weights, which indicate that the metagradient procedure was able to simultaneously
learn (1) the important rewards for the key phase are in the door phase, and (2) a quick-discounting
set of weights within the apple phase that allows faster learning of collecting apples.

5.4.3 Experiments on Standard RL Benchmarks

Both the DAG and KtD domains are idealized credit assignment problems. However, in domains
outside this idealized class, Meta-PWTD and -PWR may learn slower than baseline methods due
to the additional complexity they introduce. To evaluate this possibility we compared them to base-
line methods on bsuite [Osband et al., 2019] and Atari [Bellemare et al., 2013], both standard
RL benchmarks. For these experiments, we did not compare to Meta-λ(s) because it performed
similarly to the fixed-λ baseline in previous experiments as noted in the original paper [Xu et al.,
2018b].

bsuite is a set of unit-tests for RL agents: each domain tests one or more specific RL-
challenges, such as exploration, memory, and credit assignment, and each contains several ver-
sions varying in difficulty. We selected all domains that are tagged by “credit assignment” and at
least one other challenge. These domains are not designed solely as idealized credit assignment
problems. We ran all methods for 100K episodes in each domain except Cartpole, which we ran
for 50K episodes. Each run was repeated 3 times with different random seeds. Table 5.1 shows the
total regret. Overall Meta-PWTD or -PWR achieved the lowest total regret in all domains except

58

for Catch. It shows that Meta-PWTD and -PWR perform better than or comparably to the baseline
methods even in domains without the idealized umbrella-like TCA structure.

To test scalability to high-dimensional environments, we conducted experiments on Atari. Atari
games often have long episodes of more than 1000 steps thus episode truncation is required. How-
ever, the returns in RGM and Meta-PWR are not in a recursive additive form thus the common
way of correcting truncated trajectories by bootstrapping from the value function is not applicable.
TVT also requires full episodes for value transportation. Therefore, we excluded RGM, TVT, and
Meta-PWR and only ran Meta-PWTD, A2C-RR and A2C. For each method we conducted hyper-
parameter search on a subset of 6 games and ran each method on 49 games with the fixed set of
hyperparameters. An important hyperparameter for the A2C baseline is λ, which was set to 0.95.

Figure 5.6 (inset) shows the median human-normalized score during training. Meta-PWTD
performed slightly better than A2C over the entire period, and both performed better than A2C-RR
Figure 5.6 shows the relative performance of Meta-PWTD over A2C. Meta-PWTD outperforms
A2C in 30 games, underperforms in 14, and ties in 5. These results show that Meta-PWTD can
scale to high-dimensional environments like Atari. We conjecture that Meta-PWTD provides a
benefit in games with embedded umbrella problems but this is hard to verify directly.

5.5 Conclusion

We presented two new advantage estimators with pairwise weight functions as parameters to be
used in policy gradient algorithms, and a metagradient algorithm for learning the pairwise weight
functions. Simple analysis and empirical work confirmed that the additional flexibility in our
advantage estimators can be useful in domains with delayed consequences of actions, e.g., in
umbrella-like problems. Empirical work also confirmed that the metagradient algorithm can learn
the pairwise weights fast enough to be useful for policy learning, even in large-scale environments
like Atari.

59

−40 −20 0 20 40
Assault

DemonAttack
Asterix

VideoPinball
Krull
Hero

Breakout
Amidar

StarGunner
BankHeist
BeamRider
RoadRunner

KungFuMaster
Boxing
Enduro

Freeway
Montezuma
PrivateEye

Venture
Chopper
Kangaroo
Seaquest
Frostbite

FishingDerby
Gopher

Asteroids
Pong

Gravitar
Tutankham
BattleZone
IceHockey
Riverraid

Centipede
NameThisGame

Robotank
Bowling

CrazyClimber
Atlantis

UpNDown
Zaxxon
Qbert

MsPacman
Alien

Tennis
Jamesbond

WizardOfWor
SpaceInvaders

DoubleDunk
TimePilot

-33.3%
-20.7%
-13.3%
-12.8%
-9.7%
-5.6%
-5.1%
-4.7%
-3.4%
-2.8%
-2.4%
-0.7%
-0.2%
-0.1%
0.0%
0.0%
0.0%
0.0%
0.0%

0.1%
0.1%
0.1%
0.2%
0.5%
0.5%
0.7%
0.8%
1.3%
1.3%
1.7%
1.7%
1.8%
1.9%
2.3%
2.7%
2.8%
3.3%
5.8%
6.7%
7.6%
10.1%
11.1%
12.2%
13.8%
15.2%
20.6%
28.5%
34.6%
63.8%

Figure 5.6: Relative performance of Meta-PWTD over A2C (λ = 0.95). All scores are averaged
over 5 independent runs with different random seeds. Inset: Learning curves of median human
normalized score of all 49 Atari games. Shaded area shows the standard error over 5 runs.

60

CHAPTER 6

Learning State Representations from Random Deep
Action-conditional Predictions

Providing auxiliary tasks to Deep Reinforcement Learning (Deep RL) agents has become an im-
portant class of methods for driving the learning of state representations that accelerate learning
on the main task. Some notable examples of existing auxiliary tasks include pixel control, reward
prediction, termination prediction, and multi-horizon value prediction (these are reviewed in more
detail below). In this work, we explore a different approach to providing auxiliary tasks in which
a set of random action-conditional prediction tasks are generated through a rich space of general
value functions (GVFs) defined by a language of predictions of random features of observations
conditioned on a random sequence of actions.

Our main, and perhaps surprising, contribution in this chapter is an empirical finding that aux-
iliary tasks of learning random GVFs—again, random in both predicted features and actions the
predictions are conditioned upon— yield state representations that produce control performance
that is competitive with state-of-the-art auxiliary tasks with hand-crafted semantics. We demon-
strate this competitiveness in Atari games and DeepMind Lab tasks, comparing to multi-horizon
value prediction [Fedus et al., 2019], pixel control [Jaderberg et al., 2017], and CURL [Laskin
et al., 2020] as our baseline auxiliary tasks. Note that while we present a reasonable approach to
generating the semantics of the random GVFs we employ in our experiments, the specifics of our
approach is not by itself a contribution (and thus not evaluated against other approaches to pro-
ducing semantics for random GVFs), and alternative reasonable approaches for generating random
GVFs could do as well.

Additionally, through empirical analyses on illustrative domains we show the benefits of ex-
ploiting the richness of GVFs—their temporal depth and action-conditionality. We also provide
direct evidence that using random GVFs learns useful representations for the main task through
stop-gradient experiments in which the state representations are trained solely via the random-
GVF auxiliary tasks without using the usual RL learning with rewards to influence representation
learning. We show that, again, surprisingly, these stop-gradient agents outperform the end-to-end-

61

trained actor-critic baseline.

6.1 Related Work

Horde and PSRs. Auxiliary tasks were formalized and introduced to RL in [Sutton et al., 2011]
through the Horde architecture. Horde is an off-policy learning framework for learning knowledge
represented as GVFs from an agent’s experience. Our work is related to Horde in the use of a
rich subspace of GVF predictions but differs in that our interest is in the effect of learning these
auxiliary predictions on the main task via shared state representations rather than to show the
knowledge captured in these GVFs. Our work is also related to predictive state representations
(PSRs) [Littman et al., 2001, Singh et al., 2004]. PSRs use predictions as state representations
whereas our work learns latent state representations from predictions. Recently, in the use of
deep neural networks in RL as powerful function approximators, various auxiliary tasks have been
proposed to improve the latent state representations of Deep RL agents. We review these auxiliary
tasks below. Our work belongs to this family of work in that the auxiliary prediction tasks are used
to improve the state representations of Deep RL agents.

Auxiliary tasks using predefined GVF targets. UNREAL [Jaderberg et al., 2017] uses reward
prediction and pixel control and achieved a significant performance improvement in DeepMind
Lab but only marginal improvement in Atari. Termination prediction [Kartal et al., 2019] is shown
to be an useful auxiliary task in episodic RL settings. SimCore DRAW [Gregor et al., 2019]
learns a generative model of future observations conditioned on action sequences and uses it as
an auxiliary task to shape the agent’s belief states in partially observable environments. Fedus et
al. [Fedus et al., 2019] found that simply predicting the returns with multiple different discount
factors (MHVP) serves as effective auxiliary tasks. MHVP relies on the availability of rewards and
thus is different from our work and other unsupervised auxiliary tasks.

Information-theoretic auxiliary tasks. Information-theoretic approaches to auxiliary tasks
learn representations that are informative about the future trajectory of these representations as the
agent interacts with the environment. CPC [van den Oord et al., 2018], CPC|action [Guo et al.,
2018], ST-DIM [Anand et al., 2019], DRIML [Mazoure et al., 2020], and ATC [Stooke et al.,
2021] apply different forms of temporal contrastive losses to learn predictions in a latent space.
CURL [Laskin et al., 2020] ignores the long-term future and applies a contrastive loss on the stack
of consecutive frames to learn good visual representations. PBL [Guo et al., 2020] focuses on
partially observable environments and introduces a separate target encoder to set the prediction
targets. The target encoder is trained to distill the learned state representations. SPR [Schwarzer
et al., 2020] replaces the target encoder in PBL with a moving average of the state representation
function. In addition to being predictive, PI-SAC [Lee et al., 2020] also enforces the state rep-

62

resentations to be compressed. SPR and PI-SAC focuses on data efficiency and only conducted
experiments under low data budgets. In these information-theoretic approaches, the targets are not
GVFs and despite some empirical success, none could learn long-term predictions effectively. This
is in contrast to GVF-like predictions which can be effectively learned via TD as in our work as
well as the work presented above.

Theory. A few recent works [Bellemare et al., 2019, Dabney et al., 2020, Lyle et al., 2021] have
studied the optimal representation in RL from a geometric perspective and provided theoretical
insights into why predicting GVF-like targets is helpful in learning state representations. Our work
is consistent with this theoretical motivation.

GVF discovery. Veeriah et al. [Veeriah et al., 2019] used metagradients to discover simple
GVFs (discounted sums of features of observations) In this chapter, we show that random choices
of features and random but rich GVFs are competitive with the state-of-the art of hand-crafted
GVFs as auxiliary tasks.

GVF RNNs. Rather than using GVFs as auxiliary tasks, General Value Function Networks
(GVFNs) [Schlegel et al., 2021] are a new family of recurrent neural networks (RNNs) where
each dimension of the hidden state is a GVF prediction. GVFNs are trained by TD instead of
truncated backprop through time. Our work relates to GVFNs in that both works use GVFs to
shape state representations. However, unlike GVFNs, our work uses GVFs as auxiliary tasks
and does not enforce any semantics to the state representations. Moreover, our empirical study
mainly focuses on the control setting where the agent needs to maximize its long-term cumulative
rewards, whereas [Schlegel et al., 2021] mainly focuses on time series modelling tasks and online
prediction tasks and demonstrated the superior performance of GVFNs over conventional RNNs
when the truncated input sequences are short during training.

6.2 Method

In this section we first describe the specific GVFs we studied in this chapter. Then we describe an
algorithm for the construction of random GVFs. We finish this section with a description of the
agent architecture used in our empirical work.

6.2.1 GVFs with Interdependent TD Relationships

In this chapter, we study auxiliary prediction tasks where the semantics of the predictions are
defined by a set of GVFs with interdependent TD relationships (this family of GVFs are often
referred as temporal-difference networks in the literature [Sutton et al., 2005, Sutton and Tanner,
2004]). The TD relationships among the GVFs can be described by a graph with directional edges,

63

f 1

1

23a 4 b

f 2

5

6

γ

(a)

O0, A0, . . . , Ot

St; θrepr

π, v̂; θRL ŷ; θans

LRL Lans

(b)

Figure 6.1: (a) An example of a question network. The squares represent feature nodes and circles
represent prediction nodes. (b) The agent architecture. The dashed cross denotes an optional
stop-gradient operation.

which we call the question network as it defines the semantics of the predictions.
Figure 6.1a shows an example of a question network. The two squares represent two feature

nodes and the six circles represent six prediction nodes. Node 1 (labeled in the circles) predicts the
expected value of feature f 1 at the next step. Implicitly, this prediction is conditioned on following
the current policy. Node 2 predicts the expected value of node 1 at the next step. Note that we
can “unroll” the target of node 2 to ground it on the features. In this example, node 2 predicts
the expected value of feature f 1 after two steps when following the current policy. Node 5 has a
self-loop and predicts the expectation of the discounted sum of feature f 2 with a discount factor
γ. We call node 5 a discounted sum prediction node. Node 3 is labeled by action a. It predicts
the expected value of node 1 at the next step given action a is taken at the current step. We say
node 3 is conditioned on action a. Similarly, node 4 predicts the same target but is conditioned on
action b. Node 6 has two outgoing edges. It predicts the sum (in general a weighted sum, but in
this chapter we do not explore the role of these weights and instead fix them to be 1) of feature f 1

and the value of node 5, both at the next step. In this case, it is hard to describe the semantic of
node 6’s prediction in terms of the features, but we can see that the prediction is still grounded on
feature f 1 and f 2.

Generalising from the example above, a question network with np prediction nodes and nf

feature nodes defines np predictions of nf features. We use Np to denote the set of all prediction
nodes and Nf to denote the set of all feature nodes. Let W be the adjacency matrix of the question
network. Wij denotes the weight on the edge from node i to node j. We define Wij ≜ 0 if there is
no edge from node i to node j. Now consider an agent interacting with the environment. At each
step t, it receives an observation Ot and takes an action At according to its policy π. Then at the

64

next step it receives an observation Ot+1. The feature fk(Ot, At, Ot+1) is a scalar function of the
transition. The agent makes a prediction ŷi(O0, A0, . . . , Ot) for each prediction node i based on
its history; this is computed by a neural network in our work. For brevity, we use fkt+1 and ŷit to
denote fk(Ot, At, Ot+1) and ŷi(O0, A0, . . . , Ot) respectively. The target for prediction i at step t is
denoted by yit. If prediction node i is not conditioned on any action, its target is

yit = Eπ
[∑
j∈Np

Wijy
j
t+1 +

∑
k∈Nf

Wikf
k
t+1

]
otherwise, if it is conditioned on action ai, its target is

yit = Eπ
[∑
j∈Np

Wijy
j
t+1 +

∑
k∈Nf

Wikf
k
t+1|At = ai

]
.

By the construction of the targets, the agent can learn the prediction ŷit via TD. If i is not condi-
tioned on any action, then ŷit is updated by

ŷit ←
∑
j∈Np

Wij ŷ
j
t+1 +

∑
k∈Nf

Wikf
k
t+1

otherwise, if i is conditioned on action ai, then ŷit is updated by

ŷit ←

∑
j∈Np

Wij ŷ
j
t+1 +

∑
k∈Nf

Wikf
k
t+1 if At = ai

ŷit otherwise

In an episodic setting, if the episode terminates at step T , we define yiT ≜ 0 and ŷiT ≜ 0 for all
prediction nodes i.

These GVFs represent a broad class of predictions. Many existing auxiliary prediction tasks can
be expressed by a question network. Reward prediction [Jaderberg et al., 2017] can be represented
by a question network with a single feature node representing the reward and a single prediction
node predicting the reward. Multi-horizon value prediction [Fedus et al., 2019] can be represented
by a similar question network but with multiple self-loop prediction nodes with different discounts.
Termination prediction [Kartal et al., 2019] can be represented by a question network with a feature
node of constant 1 and a self-loop node with discount 1.

65

6.2.2 A Random Question Network Generator

In this chapter, instead of hand-crafting a new question network instance as in previous work on the
use of predictions for auxiliary tasks, we verify a conjecture that a large number of random deep,
action-conditional predictions is enough to drive the learning of good state representations. To test
this conjecture, we designed a generator of random question networks from which we can take
samples and evaluate their performance as auxiliary tasks. Specifically, we designed a heuristic
algorithm that generates question networks with random features and random structures.
Random Features. We use random features, each computed by a scalar function gk with random
parameters. For any transition (Ot, At, Ot+1), the feature is computed as fkt+1 = |gk(Ot+1) −
gk(Ot)|. Instead of directly using the output of gk as the feature, we use the amount of change in
gk. A similar transformation was used in pixel control [Jaderberg et al., 2017].
Random Structure. We designed the random question network generator based on the follow-
ing intuition. Each prediction corresponds to first executing an open-loop action sequence then
following the agent’s policy. Along the trajectory, it accumulates a feature-value (this would be
the reward for the standard value function) at each step. Depending on the edges in the question
network, the accumulated features can be different for different steps. As we will illustrate in
Section 6.3, these predictions can provide rich training signals for learning good representations.
Specifically, the generator takes 5 arguments as input: number of features nf , the discrete action
setA, a discount factor γ, depth D, and repeat R. Its output is a question network that contains nf
feature nodes as defined above, and D+1 layers, each layer contains R×|A| prediction nodes ex-
cept the first layer which contains nf prediction nodes. We construct the question network layer by
layer incrementally from layer 0 to layer D. First, layer 0 has nf feature nodes and nf prediction
nodes; each prediction node has an edge to a distinct feature node with weight 1 on the edge and
has a self-loop with weight γ. Each prediction node in layer 0 predicts the discounted sum of its
corresponding feature and are not conditioned on actions. Then for each layer l (1 ≤ l ≤ D), we
create R × |A| prediction nodes. Each prediction node is conditioned on one action and there are
exactly R nodes that are conditioned on the same action. Each prediction node has two edges, one
to a random node in layer l − 1 and one to a random feature node in layer 0. Note that prediction
nodes in layer 1 do not necessarily connect to a self-loop prediction node in layer 0 - they may only
connect to a feature node. A constraint for preventing duplicated predictions is included so that any
two prediction nodes in layer l that are conditioned on the same action cannot connect to the same
prediction node in layer l−1. In our preliminary experiments, we tried adding self-loops to deeper
layers and allowing denser connections between nodes. Sometimes those additional loops and
dense edges caused instability during training. We leave the study of more sophisticated question
network structures to future work. Algorithm 4 shows the pseudocode for the random generator
algorithm.

66

Algorithm 4 A Random Question Network Generator
Input: number of features np, discount factor γ, action set A, depth D and repeat R
Output: a network G
G← an empty graph
roots← an empty set
leaves← an empty set
for i = 1 to np do

create a new feature node f in G
roots← roots ∪ {f}
leaves← leaves ∪ {f}
create a new prediction node v in G
leaves← leaves ∪ {v}
add edge < v, f, 1 > to G
add edge < v, v, γ > to G

end for
for d = 1 to D do
expanded← an empty set
for a ∈ A do
parent← randomly select R nodes from leaves without replacement
for p ∈ parent do

create a new prediction node v in G
mark v as conditioned on action a
expanded← expanded ∪ {v}
add edge < v, p, 1 > to G
f ← randomly select a node from roots
add edge < v, f, 1 > to G

end for
end for
leaves← expanded

end for

6.2.3 Agent Architecture

We used a standard auxiliary-task-augmented agent architecture, as shown in Figure 6.1b. We base
our agent on the actor-critic architecture and it consists of 3 modules. The state representation mod-
ule, parameterized by θrepr, maps the history of observations and actions (O0, A0, . . . , Ot) to a state
vector St. The RL module, parameterized by θRL, maps the state vector St to a policy distribution
over the available actions π(·|St) and an approximated value function v̂(St). The answer network
module, parameterized by θans, maps the state vector St to a set of predictions ŷ(St) equal in size
to the number of prediction nodes in the question network. Like in previous work, the augmented
agent has more parameters than the base A2C agent due to the answer network module. However,
the policy space and the value function space remain the same and these auxiliary parameters are

67

γ

(a)

a

a b

b

a b

(b)

γ γ

a b a b

a b a b

(c)

Figure 6.2: The question networks we studied in our illustrative experiment. (a) A discounted sum
prediction. (b) A depth-2 tree question network with 2 actions. The bottom right prediction node
predicts the sum of the values of the feature in the next two steps if action b were taken for both the
current and the next step. Other prediction nodes have similar semantics. (c) A random question
network sampled from rGVFs. There are 2 features and 2 actions, with depth and repeat set to 2.

only used for providing richer training signals for the state representation module.
We trained the network in two separate ways. In the auxiliary task setting, the RL loss LRL

is backpropagated to update the parameters of the state representation (θrepr) and the RL (θRL)
modules, while the answer network loss Lans is backpropagated to update the parameters of the
answer network (θans) and state representation (θrepr) modules. Note that the answer network loss
only affects the RL module indirectly through the shared state representation module. In the stop-
gradient setting, we stopped the gradients from the RL loss from flowing from LRL to θrepr. This
allows us to do a harsher and more direct evaluation of how well the auxiliary tasks can train the
state representation without any help from the main task. For LRL, we used the standard actor-critic
objective with an entropy regularizer. For Lans, we used the mean-squared loss for all the targets
and predictions.

6.3 Illustrating the Benefits of Deep Action-conditional Ques-
tions

The main aim of the experiments in this section is to illustrate how deep action-conditional predic-
tions can yield good state representations. We first use a simple grid world to visualize the impact
of depth and action conditionality on the learned state representations. Then we demonstrate the
practical benefit of exploiting both of these two factors by an ablation study on six Atari games.
In addition, to test the robustness of the control performance to the hyperparameters of the random
GVFs, we conducted a random search experiment on the Atari game Breakout.

68

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Millions of frames

0.0

0.1

0.2

0.3

0.4

0.5

discounted sum
random θrepr

tree, depth 1
tree, depth 2
tree, depth 3
tree, depth 4
end-to-end

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Millions of frames

0.00

0.05

0.10

0.15

0.20

0.25

0.30
rGVFs (1 rand. feat.)
rGVFs (4 rand. feat.)
rGVFs (16 rand. feat.)
rGVFs (64 rand. feat.)
rGVFs (touch)
tree (touch)

(c)

Figure 6.3: (a) The illustrative grid world environment. The blue circle denotes the agent and
the yellow star denotes the rewarding state. (b) MSE between the learned value function and the
true value function in the tree question networks experiment. (c) MSE between the learned value
function and the true value function in the random question networks experiment.

(a) (b) (c) (d) (e) (f)

Figure 6.4: Visualization of the learned value functions in the empty room environment. Bright
indicates high value and dark indicates low value. (a) The true values. (b) The discounted sum
predictions of the touch feature. (c) - (f) The prediction are defined by a full-tree-structured
question network regarding the touch feature. The depth of the tree increases from 1 to 4 from
(c) to (f).

6.3.1 Benefits of Depth and Action-conditionality: Illustrative Grid World

Although our primary interest (and the focus of subsequent experiments) is learning good policies,
in this domain we study policy evaluation because this simpler objective is sufficient to illustrate
our points and we can compute and visualize the true value function for comparison. Figure 6.3a
shows the environment, a 7 by 7 grid surrounded by walls. The observation is a top-down view
including the walls. There are 4 available actions that move the agent horizontally or vertically
to an adjacent cell. The agent gets a reward of 1 upon arriving at the goal cell located in the top
row, and 0 otherwise. This is a continuing environment so achieving the goal does not terminate
the interaction. The objective is to learn the state-value function of a random policy which selects
each action with equal probability. We used a discount factor of 0.98.

69

Specifying a question network requires specifying both the structure and the features. Later
we explore random features, but here we use a single hand-crafted touch feature so that every
prediction has a clear semantic. touch is 1 if the agent’s move is blocked by the wall and is 0

otherwise.
Using the touch feature we constructed two types of question networks. The first type is the

discounted sum prediction of touch (we used a discount factor 0.8) (Figure 6.2a). The second
type is a full action-conditional tree of depth D. There is only one feature node in the tree which
corresponds to the touch feature. Each internal node has 4 child nodes conditioned on distinct
actions. Each prediction node also has a skip edge directly to the feature node (except for the
child nodes of the feature node). Figure 6.2b shows an example of a depth-2 tree (the caption
describes the semantics of some of the predictions). We also compared to a randomly initialized
state representation module as a baseline where the state representation was fixed and only the
value function weights were learned during training.
Neural Network Architecture. The empty room environment is fully observable and so the state
representation module is a feed-forward neural network that maps the current observation Ot to a
state vector St. It is parameterized by a 3-layer multi-layer perceptron (MLP) with 64 units in the
first two layers and 32 units in the third layer. The RL module has one hidden layer with 32 units
and one output head representing the state value. (There is no policy head as the policy was given).
The answer network module also has one hidden layer with 32 units and one output layer. We
applied a stop-gradient between the state representation module and the RL module (Figure 6.1b).
Results. We measured the performance by the mean-squared error (MSE) between the learned
value function and the true value function across all states. The true value function was obtained
by solving a system of linear equations [Sutton and Barto, 2018]. Figure 6.3b shows the MSE
during training. Both the random baseline and the discounted sum prediction target performed
poorly. But even a tree question network of depth 1 (i.e., four prediction targets corresponding to
the four action conditional predictions of touch after one step) performed much better than these
two baselines. Performance increased monotonically with increasing depth until depth 3 when the
MSE matched end-to-end training after 1 million frames.

Figure 6.4 shows the different value functions learned by agents with the different prediction
tasks. Figure 6.4a visualizes the true values. Figure 6.4b shows the learned value function when
the state representations are learned from discounted sum predictions of touch. Its symmetric
pattern reflects the symmetry of the grid world and the random policy, but is inconsistent with the
asymmetric true values. Figure 6.4c shows the learned value function when the state representa-
tions are learned from depth-1-tree predictions. It clearly distinguishes 4 corner states, 4 groups of
states on the boundary, and states in the center area, as this grouping reflects the different prediction
targets for these states.

70

For the answer network module to make accurate predictions of the targets of the question net-
work, the state representation module must map states with the same prediction target to similar
representations and states with different targets to different representations. As the question net-
work tree becomes deeper, the agent learns finer state distinctions, until an MSE of 0 is achieved
at depth 3 (Figure 6.4e).

6.3.2 Benefits of Random Question Nets: Illustrative Grid World

The previous experiment demonstrated benefits of temporally deeper action-conditonal prediction
tasks. But achieving this by creating deeper and deeper full-branching action-conditional trees is
not tractable as the number of prediction targets grows exponentially. The previous experiment also
used a single feature formulated using domain knowledge; such feature selection is also not scal-
able. The random generator described in Section 6.2 provides a method to mitigate both concerns
by growing random question networks with random features.

Specifically, we used discount 0.8, depth 4, and repeat equal to the number of features for
generating random GVFs. Figure 6.3c shows the MSE of different random GVF variants. The
performance of random GVFs with touch—that is, random but not necessarily full branching
trees of depth 4—performed as well as touch with a full tree of depth 4. Random GVFs with a
single random feature performed suboptimally; a random feature is likely less discriminative than
touch. However, as the number of random features increases, the performance improves, and
with 64 random features, random GVFs match the final performance of touch with a full depth 4

tree.
The results on the grid world provide preliminary evidence that random deep action-conditional

GVFs with many random features can yield good state representations. We next test this conjecture
on a set of Atari games, exploring again the benefits of depth and action conditionality.

6.3.3 Ablation Study of Benefits of Depth and Action Conditionality: Atari

Here we use six Atari games [Bellemare et al., 2013] (these six are often used for hyperparameter
selection for the Atari benchmark [Mnih et al., 2016]) to compare four different kinds of random
GVF question networks: (a) random GVFs in which all predictions are discounted sums of distinct
random features (illustrated in Figure 6.2a and denoted rGVFs-discounted-sum in Figure 6.5); (b)
random GVFs in which all predictions are shallow action-conditional predictions, a set of depth-1
trees, each for a distinct random feature (denoted rGVFs-shallow in Figure 6.5); (c) random GVFs
without action-conditioning (denoted rGVFs-no-actions in Figure 6.5); and (d) random GVFs that
exploit both action conditionality and depth (illustrated in Figure 6.2c and denoted simply by
rGVFs in Figure 6.5).

71

0 50 100 150 200
Millions of frames

0

2500

5000

7500

10000

BeamRider

0 50 100 150 200
0

200

400

600

Breakout

0 50 100 150 200
−20

−10

0

10

20
Pong

0 50 100 150 200
0

5000

10000

15000

20000
Qbert

0 50 100 150 200

500

750

1000

1250

1500

1750
Seaquest

0 50 100 150 200

500

1000

1500

2000
SpaceInvaders

A2C rGVFs-shallow rGVFs-discounted-sum rGVFs-no-actions rGVFs

Figure 6.5: Learning curves of different question networks in six Atari games. x-axis denotes the
number of frames and y-axis denotes the episode returns. Each curve is averaged over 5 indepen-
dent runs with different random seeds. Shaded area shows the standard error.

Random Features for Atari. The random function g for computing the random features are
designed as follows. The 84 × 84 observation Ot is divided into 16 disjoint 21 × 21 patches, and
a shared random linear function applies to each patch to obtain 16 random features g1t , g

2
t , . . . , g

16
t .

Finally, we process these features as described in §6.2.2.
Neural Network Architecture. We used A2C [Mnih et al., 2016] with a standard neural network
architecture for Atari [Mnih et al., 2015] as our base agent. Specifically, the state representation
module consists of 3 convolutional layers. The RL module has one hidden dense layer and two
output heads for the policy and the value function respectively. The answer network has one
hidden dense layer with 512 units followed by the output layer. We stopped the gradient from the
RL module to the state representation module.
Hyperparameters. The discount factor, depth, and repeat were set to 0.95, 8, and 16 respectively.
Thus there are 16 + 8 ∗ 16 ∗ |A| total predictions. Random GVFs without action-conditioning has
the same question network except that no prediction was conditioned on actions. To match the total
number of predictions, we used 16 + 8 ∗ 16 ∗ |A| random features for discounted sum and 8 ∗ 16
features for shallow action-conditional predictions. Additional random features were generated by
applying more random linear functions to the image patches. The discount factor for discounted
sum predictions is also 0.95.
Results. Figure 6.5 shows the learning curves in the 6 Atari games. rGVFs-shallow performed
the worst in all the games, providing further evidence for the value of making deep predictions.
rGVFs consistently outperformed rGVFs-no-actions, providing evidence that action-conditioning
is beneficial. And finally, rGVFsperformed better than rGVFs-discounted-sum in 3 out of 6 games
(large difference in BeamRider and small differences in Breakout and Qbert), was comparable in 2

the other 3 games, and performed worse in one—despite using many fewer features than rGVFs-
discounted-sum. This suggests that structured deep action-conditional predictions can be more
effective than simply making discounted sum predictions about many features.

72

0 20 40 60 80 100
1 / (1 - γ)

450

500

550

600

650

700

750

0 4 8 12 16
depth

450

500

550

600

650

700

750

0 8 16 24 32
repeat

450

500

550

600

650

700

750

0 8 16 24 32
#features

450

500

550

600

650

700

750

Figure 6.6: Scatter plots of scores in Breakout obtained by rGVFs with different hyperparameters.
x-axis denotes the value of the hyperparameter. y-axis denotes the final game score after training
for 200 million frames. The red line in each panel is the line of best fit. The dotted horizontal lines
denote the performance of the end-to-end A2C baseline. The solid vertical lines denotes the values
we used in our final experiments.

6.3.4 Robustness and Stability

We tested the robustness of rGVFs with respect to its hyperparameters, namely discount, depth, re-
peat, and number of features. We explored different values for each hyperparameter independently
while holding the other hyperparameters fixed to the values we used in the previous experiment.
For each hyperparameter, we took 20 samples uniformly from a wide interval and evaluated rGVFs
on Breakout using the sampled value. The results are presented in Figure 6.6. The lines of best fit
(the red lines) in the left two panels indicate a positive correlation between the performance and the
depth of the predictions, which is consistent with the previous experiments. Each hyperparameter
has a range of values that achieves high performance, indicating that rGVFs are stable and robust
to different hyperparameter choices.

6.4 Comparison to Baseline Auxiliary Tasks

In this section, we present the empirical results of comparing the performance of rGVFs against the
A2C baseline [Mnih et al., 2016] and three other auxiliary tasks, i.e., multi-horizon value predic-
tion (MHVP) [Fedus et al., 2019], pixel control (PC) [Jaderberg et al., 2017], and CURL [Laskin
et al., 2020]. We conducted the evaluation in 49 Atari games [Bellemare et al., 2013] and 12

DeepMind Lab environments [Beattie et al., 2016]. It is unclear how to apply CURL to par-
tially observable environments which require long-term memory because CURL is specifically
designed to use the stack of recent frames as the inputs. Thus we did not compare to CURL in
the DeepMind Lab environments. Our implementation of rGVFs for this experiment is available
at https://github.com/Hwhitetooth/random_gvfs.
Atari Implementation. We used the same architecture for rGVFs as in the prior section. For
MHVP, we used 10 value predictions following [Fedus et al., 2019]. Each prediction has a

73

https://github.com/Hwhitetooth/random_gvfs

0 50 100 150 200
Millions of frames

0

20

40

60

80

100

120
M

ed
ia

n
hu

m
an

 sc
or

e
(%

)
Atari

(a)

0 50 100 150 200
Millions of frames

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
re

co
rd

 sc
or

e
(%

)

Atari

(b)

0 50 100 150 200
Millions of frames

0

5

10

15

20

25

M
ea

n
ca

pp
ed

 h
um

an
 sc

or
e

(%
)

DeepMind Lab

(c)

A2C
A2C + rGVFs
A2C + MHVP
A2C + PC
A2C + CURL

end-to-end
stop-gradient

Figure 6.7: (a) Median human-normalized score across 49 Atari games. (b) Mean record-
normalized score across 49 Atari games. (c) Mean capped human-normalized score across 12
DeepMind Lab environments. In all panels, the x-axis denotes the number of frames. Each dark
curve is averaged over 5 independent runs with different random seeds. The shaded area shows the
standard error.

unique discount factor, chosen to be uniform in terms of their effective horizons from 1 to 100

({0, 1 − 1
10
, 1 − 1

20
, . . . , 1 − 1

90
}). The architecture for MHVP is the same as rGVFs. For PC, we

followed the architecture design and hyperparameters in [Jaderberg et al., 2017]. For CURL, we
implemented it in our experiment setup by using the code accompanying the paper as a reference 1.
When not stopping gradient from the RL loss, we mixed the RL updates and the answer network
updates by scaling the learning rate for the answer network with a coefficient c. We searched c in
{0.1, 0.2, 0.5, 1, 2} on the 6 games in the previous section. c = 1 worked the best for all methods.
DeepMind Lab Implementation. We used the same RL module and answer network module as
Atari but used a different state representation module to address the partial observability. Specif-
ically, the convolutional layers in the state representation module were followed by a dense layer
with 512 units and a GRU core [Cho et al., 2014, Chung et al., 2014] with 512 units.
Results. Figure 6.7a and Figure 6.7b shows the results for both the stop-gradient and end-to-
end architectures on Atari, comparing to two standard human-normalized score measures (median
human-normalized score [Mnih et al., 2015] and mean record-normalized score [Hafner et al.,
2020]). When training representations end-to-end through a combined main task and auxiliary task
loss, the performance of rGVFs matches or substantially exceeds the three baselines. Although the
original paper shows that CURL improves agent performance in the data-efficient regime (i.e.,
100K interactions in Atari), our results indicate that it hurts the performance in the long run. We
conjecture that CURL is held back by failing to capture long-term future in representation learning.
Surprisingly, the stop-gradient rGVFs agents outperform the end-to-end A2C baseline, unlike stop-

1https://github.com/aravindsrinivas/curl_rainbow

74

https://github.com/aravindsrinivas/curl_rainbow

gradient versions of the baseline auxiliary task agents. Figure 6.7c shows the results for both stop-
gradient and end-to-end architectures on 12 DeepMind Lab environments (using mean capped
human-normalized scores). Again, rGVFs substantially outperforms both auxiliary task baselines,
and the stop-gradient version matches the final performance of the end-to-end A2C. Taken together
the results from these 61 tasks provide substantial evidence that rGVFs drive the learning of good
state representations, outperforming auxiliary tasks with fixed hand-crafted semantics.

6.5 Conclusion and Future Work

In this chapter we provided evidence that learning random deep action-conditional predictions
can drive the learning of good state representations. We explored a rich space of GVFs that can
be learned efficiently with TD methods. Our empirical study on the Atari and DeepMind Lab
benchmarks shows that learning state representations solely via auxiliary prediction tasks defined
by random GVFs outperforms the end-to-end trained A2C baseline. Random GVFs also outper-
formed pixel control, multi-horizon value prediction, and CURL when being used as part of a
combined loss function with the main RL task.

In this chapter, the question network was sampled before learning and was held fixed during
learning. An interesting goal for future research is to find methods that can adapt the question
network and discover useful questions during learning. The question networks we studied are
limited to discrete actions. It is unclear how to condition a prediction on a continuous action. Thus
another future direction to explore is to extend action-conditional predictions to continuous action
spaces.

75

CHAPTER 7

G-VUZero: Planning with Models Learned Using
Generalized Value-equivalence Updates

Model-based reinforcement learning (RL) methods such as Value Prediction Networks and the
state of the art MuZero use value-equivalence to learn models. Their implementation of value-
equivalence updates the model by equating (a) the value of the state reached by taking a sequence
of actions in the real world with (b) the value of the state reached by taking the same action-
sequence in the model. We present Generalized Value-equivalence Updates (G-VU) that equate (a)
the value of a state reached by taking an action sequence in the real world followed by an action
sequence in the model with (b) the value of a state reached by taking the concatenation of the two
action sequences entirely in the model. Crucially, this means that G-VU is not restricted to update
only on action sequences (and thus states) experienced in the world. Our algorithm G-VUZero
uses MuZero’s method for acting in the world via MCTS-planning, but uses G-VU model-updates
instead of the more restricted model-updates used by MuZero. In particular, we explore updating
the model for actions likely to be queried by the MCTS-planner while acting. Our empirical results
show that G-VUZero can sometimes outperform the strong MuZero baseline.

7.1 Related Work

Our work falls into the category of model-based approaches in RL. Learning a model of the en-
vironment can benefit the agent in various ways such as value learning or policy optimization by
simulating trajectories [Sutton, 1991, Oh et al., 2015, Racanière et al., 2017, Ha and Schmidhuber,
2018, Hafner et al., 2019a, 2020], guiding real-time action selection via lookahead search [Oh
et al., 2017, Hafner et al., 2019b, Hessel et al., 2021], improving state representation learn-
ing [Zhang et al., 2018, Hessel et al., 2021], and encouraging exploration [Oh et al., 2015, Pathak
et al., 2017, Filos et al., 2021]. See [Moerland et al., 2020] for a survey of model-based RL.

Models learned by different objectives capture different aspects of the environments. In this
chapter, we focus on a specific class of models called value-equivalent (VE) models [Grimm et al.,

76

2020] (previously known as “value-aware” model learning [Farahmand et al., 2017]). VE mod-
els focus on the task-related aspects of the environment, i.e., rewards and values. Examples of
VE models include value iteration networks [Tamar et al., 2016], TreeQN and ATreeC [Farquhar
et al., 2018], the Predictron [Silver et al., 2017], value prediction networks [Oh et al., 2017], and
MuZero [Schrittwieser et al., 2020]. By combining a learned VE model with Monte-Carlo tree
search (MCTS) [Kocsis and Szepesvári, 2006], MuZero demonstrates strong empirical success in
a wide range of environments including classic board games Go, Chess, and Shogi, Atari video
games, and continuous control tasks [Schrittwieser et al., 2020, Hubert et al., 2021]. Our work
proposes a novel general value-equivalence update (G-VU) for learning VE models. In particular,
we implement G-VU with MuZero and build a new agent called G-VUZero. However, G-VU is
not tied to MuZero and can be implemented with other VE models as well.

Recently, Farquhar et al. [2021] studied self-consistency (SC) in VE models and proposed an
update to enforce joint self-consistency between the model and the value function. Our work is
related to SC in that both G-VU and SC can update the model on action sequences that are not
experienced in the environment and thus can provide additional learning signals to the model. But
our work also differs from SC significantly. G-VU is a complete method for learning a VE model
with respect to the environment. In contrast, self-consistency is only a necessary condition for
value-equivalence but is not a sufficient condition. Therefore, SC must be combined with other
VE model learning methods such as MuZero. In our experiments, we compare G-VUZero to an
agent that combines MuZero and SC.

7.2 Background

In this section, we provide some background knowledge that our work builds upon. We first do
a brief review of the value-equivalence principle. Then we introduce the MuZero agent which is
used for our empirical study.

7.2.1 Value-equivalent models

Model-based reinforcement learning (MBRL) algorithms is a class of RL algorithms that learn an
approximated model of the environment as an intermediate step. We use m∗ = (r, p) to denote
the environment dynamics and m̂ = (r̂, p̂) to denote the approximated model. In this chapter, we
are interested in a particular class of models called value-equivalent (VE) models [Grimm et al.,
2020]. A model m̂ is said to be value-equivalent to the environment with respect to the policy π
and a function f if

T πm̂f = T πm∗f, (7.1)

77

where T πm denotes the Bellman operator [Bellman, 1966] induced by the policy π and the model
m. For brevity, we will omit the superscript π unless it causes ambiguity. By applying the Bellman
operator multiple times, we can generalize the definition of value-equivalence to order-k value-

equivalence [Grimm et al., 2021]. A model m̂ is order-k value-equivalent to the environment with
respect to the policy π and a function f if

T (k)
m̂ f = T (k)

m∗ f, (7.2)

where T (k) denotes k applications of the Bellman operator. By taking k to infinity, we obtain
proper value-equivalence (PVE) [Grimm et al., 2021].

7.2.2 MuZero: VE models in practice

Many existing model-based RL agents can be viewed as different implementations of VE models.
MuZero [Schrittwieser et al., 2020] is a particular instance that combines VE models with Monte-
Carlo tree search (MCTS) and demonstrates great empirical success. A MuZero agent consists of
three functions. In practice, the environment state st is rarely available and the agent only receives
an observation ot instead. Thus the representation function ŝt = hθr(ht) encodes a history ht =
(o0, a0, o1, . . . , ot) to a compact state vector ŝt. The dynamic function r̂k+1

t , ŝk+1
t = gθd(ŝ

k
t , a

k
t)

takes a state ŝkt and an action akt as inputs and outputs a reward prediction r̂k+1
t and a new state ŝk+1

t .
To distinguish real time steps and simulated time steps, we use superscripts to denote simulated
time steps. For example, ŝkt denotes the k-th simulated step starting from the state at real time
step t. Note that ŝ0t = ŝt. The prediction function v̂kt , π

k
t = fθp(ŝ

k
t) maps a state ŝkt to a value

prediction v̂kt and a policy prediction πkt . Let θr, θd, and θp denote the parameters of the three
functions respectively. The agent parameters θ = (θr, θd, θp) is the union of the parameters of the
three functions.

The parameters are updated as follows during training. For a trajectory ot, at, rt+1, ot+1, . . . ,
ot+K , we unroll the model from ŝt over the action sequence at, . . . , at+K−1 and obtain the reward
predictions, the value predictions, and the policy predictions along the way. Then the parameters
are updated by stochastic gradient descent to minimize the loss function

LMZ(θ) =
K∑
k=1

Lr(r̂kt , rt+k) +
K∑
k=0

Lv(v̂kt , v
target
t+k) +

K∑
k=0

Lπ(πkt , πMCTS
t+k), (7.3)

where Lr, Lv, and Lπ denote suitable loss functions for the reward prediction, the value pre-
diction, and the policy prediction respectively. The value target is the n-step return vtarget

t+k =∑n
i=1 γ

i−1rt+k+i + γnvMCTS
t+k+n. The policy target πMCTS and the bootstrap value vMCTS are com-

78

st st+1 · · · st+K

s1t

· · ·

sKt

at at+1 at+K−1

a t

a t+
1

a t+
K
−1

(a)

st · · · st+L

· · ·

sK−L
t+L

· · ·

sLt

· · ·

sKt

at at+L−1

b
L

b
K
−1

a t

a t+
L
−1

b
L

b
K
−1

(b)

Figure 7.1: Illustration of VE updates. (a) Direct VE updates. (b) Generalized VE updates.

puted based on the outputs of MCTS.

7.3 Generalized Value-equivalence Updates

In this section, we first provide a brief review on the direct value-equivalence update (D-VU) used
by existing agents. Then we propose a generalized value-equivalence update (G-VU) which is a
strict generalization of D-VU. After that, we discuss the additional flexibility provided by G-VU
and its potential benefit. We finish this section by presenting a new agent that combines G-VU
with MuZero, which we name G-VUZero.

7.3.1 Direct Value-equivalence Update

Many recently MBRL agents can be viewed as learning an approximated value function v̂ and a
VE model m̂ with respect to v̂ simultaneously. In this chapter, we are interested in the VE model
learning part. As suggested by Grimm et al. [2021], most of these existing methods are effectively
minimizing the order-k value-equivalence loss for all k = 1, . . . , K:

LD-VU(m̂) =
K∑
k=1

∥T (k)
m̂ v̂ − T (k)

m∗ v̂∥. (7.4)

79

However, it is often infeasible to compute this loss in practice because it requires the transition
function of the environment which is typically unknown. Therefore, we often approximate Eq. 7.4
by the following loss computed on a real state st and the subsequent action sequence at:t+K−1:

LD-VU(m̂|at:t+K−1) =
K∑
k=1

[
Lr(r̂kt , rt+k) + Lv(v̂kt , v̂t+k)

]
. (7.5)

Note that the action sequence at:t+K−1 can be sampled from any policy because Eq. 7.5 enforces
consistency on each individual action sequence. We call this the direct value-equivalence update
(D-VU) because Eq. 7.4 directly equates k applications of the model Bellman operator with k

applications of the environment Bellman operator. Figure 7.1a illustrates how the practical D-VU
loss is computed.

7.3.2 Generalized Value-equivalence Update

Note that if a model is order-k VE to the environment with respect to v̂ for all k = 1, . . . , K, it
also satisfies the following equation:

T (k)
m̂ v̂ = T (lk)

m∗ T (k−lk)
m̂ v̂, (7.6)

for all k = 1, . . . , K and any lk ∈ {1, . . . , k}. In fact, the other direction is also true, i.e., if Eq. 7.7
is satisfied for all k = 1, . . . , K and some lk ∈ {1, . . . , k}, then Eq. 7.4 is also satisfied for all
k = 1, . . . , K. Based on this observation, we propose a general value-equivalence update (G-VU)
that minimizes the following loss:

LG-VU(m̂) =
K∑
k=1

∥T (k)
m̂ v̂ − T (lk)

m∗ T (k−lk)
m̂ v̂∥. (7.7)

Different from D-VU, G-VU equates k applications of the model Bellman operator with k − lk

applications of the model Bellman operator followed by lk applications of the environment Bellman
operator. Note that D-VU is a special case of G-VU where lk = k for all k.

Like D-VU, the loss in Eq. 7.7 is often infeasible to compute in practice but we can approximate
it as follows. Starting from a real state st, we first execute an action sequence at:t+L−1 in the
environment and reach st+L, where L ≤ K is a hyperparameter. Then we unroll the model from
st+L along a second action sequence bL:K−1 and reach sK−L

t+L . After that, we unroll the model from
st along the concatenation of at:t+L−1 and bL:K−1 and reach sKt . Finally, we update the model to

80

minimize the following loss:

LG-VU(m̂|at:t+L−1, bL:K−1) =
L∑
k=1

[
Lr(r̂kt , rt+k) + Lv(v̂kt , v̂t+k)

]
+

K∑
k=L+1

[
Lr(r̂kt , r̂k−Lt+L) + L

v(v̂kt , v̂
k−L
t+L)

]
.

(7.8)

The first summation measures the errors between the reward predictions and the value predictions
along the simulated trajectory in the model and the rewards and the value predictions along the
real trajectory. This corresponds to the applications of the environment Bellman operator on the
RHS of Eq. 7.7. The second summation measures the errors between the reward predictions and
the value predictions along the simulated trajectory starting from st and the reward predictions and
the value predictions along the simulated trajectory starting from st+L. This corresponds to the
applications of the model Bellman operators on the RHS of 7.7. This loss function corresponds
to setting lk = min{k, L} for all k. Similar to D-VU, at:t+L−1 can be sampled from any policy
and bL:K−1 can be any action sequence of length K − L (there are exponentially many of them).
Figure 7.1b provides an illustration of the practical G-VU loss is computed.

7.3.3 Additional flexibility and potential benefits of G-VU

The flexibility that G-VU provides is that the second action sequence bL:K−1 does not need to
coincide with the agent’s actions in the environment. This enables updating the model on action
sequences that are not experienced in the environment. For D-VU, the updates are restricted to the
action sequence at:t+K−1 that is executed in the environment following st. But for G-VU, given the
same observed action sequence at:t+L−1, we can update the model on more action sequences by
sampling different suffixes bL:K−1. Therefore, G-VU could potentially improve the data efficiency
of model learning as it provides additional learning signals using the same amount of data. In
Section 7.4, we will provide empirical evidence supporting this hypothesis.

7.3.4 G-VUZero: Implementing G-VU with MuZero

Now we present a concrete implementation of G-VU with MuZero. We chose to adapt MuZero for
its strong empirical performance.

One important question we need to address is how to choose the suffix action sequence b. Recall
that there are exponentially many choices of b for a given L and K. But in practice we can only
choose a small set of bs for each model parameter update due to resource constraints, thus we want
to choose them wisely. Here we propose a heuristic that takes the downstream usage of the model

81

Algorithm 5 G-VUZero
Input Initial parameters θ
repeat

Collect a K-step trajectory st, at, rt+1, st+1, . . . , st+K
Compute the MuZero loss LMZ on at:t+K−1 by Eq. 7.3
Unroll the model for one step by at and obtain s1t
Run MCTS from s1t for M expansions and store the queried action sequences τ 1, . . . , τM

Compute the G-VU loss LG-VU = 1
M

∑M
i=1 LG-VU(θ|atτ i) by Eq. 7.9

Compute the total loss L = LMZ + LG-VU

Update the parameters θ by SGD to minimize the total loss L
until done

into account. In MuZero, the model is used by a MCTS planner to expand a search tree. Each
node in the search tree corresponds to a unique action sequence that the model is queried on. Our
heuristic is to update the model on the action sequences that are queried by the MCTS planner.
Intuitively, the predictions along these action sequences are more important because their accuracy
influences the outcome of the planner, whereas the predictions along other action sequences are
less important because they do not impact the planner as much. Therefore, we want to prioritize
updating the model on these important action sequences over the less important ones.

Concretely, to compute the G-VU loss, we first unroll the model from st for one step along at
to reach s1t . Then we run MCTS for M expansions and store the corresponding action sequences
{τ 1, . . . , τM}. The length of τ i is denoted by k(i). Instead of choosing a fixed prefix length L,
we choose an adaptive prefix length l(i) for each τ i as the longest common prefix between atτ i

and at:t+K−1. Here atτ i denotes the concatenation of at and τ i. Then the G-VU loss along atτ i is
computed as:

LG-VU(θ|atτ i) = Lr(r̂k(i)t , r̂
k(i)−l(i)
t+k(i)) + Lv(v̂k(i)t , v̂

k(i)−l(i)
t+k(i)) + Lπ(πk(i)t , π

k(i)−l(i)
t+k(i)). (7.9)

The overall G-VU loss is the average over all τ i. Note that there are two differences between
Eq. 7.8 and Eq. 7.9. First, we add a policy loss term to accommodate the policy component of
MuZero. Second, instead of accumulating the losses along the action sequence, we only compute
the loss on the final state of the model unrolling. This is to adapt to the tree structure of the MCTS
search tree so that we do not accumulate the loss on the same node multiple times.

Overall, the model is updated by stochastic gradient decent to minimize the sum of the MuZero
loss and the G-VU loss. Algorithm 5 provides an overview of the model learning algorithm. We
name this new agent G-VUZero.

82

7.3.5 VE Models as Sequence-value functions

Here we provide a new interpretation of VE models as recurrent implementations of sequence-

value functions. This interpretation provides a different perspective for understanding D-VU and
G-VU.

Similar to the commonly used state-value function and action-value function, we can define
sequence-value functions. For any policy π, its sequence-value function is defined as

vk(s, a0:k−1) = Eπ
[∞∑
i=0

γiRt+i+1|St = s, At = a0, . . . , At+k−1 = ak−1

]
. (7.10)

The superscript ·k indicates the length of the action sequence. Note that v0 is the state-value
function and v1 is the action-value function.

A VE model can be interpreted as a recurrent implementation of sequence-value functions. The
VE model shares the same inputs as the sequence-value function. It takes the state input s as the
initial hidden state and unrolls over the action sequence input a0:k−1 one step at a time. The value
prediction of the final state represents the sequence value.

Based on this correspondence, both D-VU and G-VU can be viewed as learning a set of
sequence-value functions via bootstrapping. The difference is in the bootstrapping targets. To
update v̂k(st, a0:k−1), D-VU bootstraps from v̂0(st+k) where st+k is the state the agent arrives at
after executing a0:k−1 from st. In contrast, G-VU bootstraps from v̂k−L(st+L, aL:k−1) where st+L
is the state the agent arrives at after executing the first L actions, a0:L−1, from st. Note that the
action sequence suffix aL:k−1 is not executed in the environment.

7.4 Experiments

We present two sets of experiments. The first set is in the prediction setting where the task is
to learn a VE model that predicts the rewards and the value of a fixed policy. We use a grid
world domain called Canal for this experiment. The main goal of this set of experiments is to
demonstrate that G-VU is more data efficient than D-VU because it can provide additional learning
signals to the model on the same real trajectory. The second set of experiments evaluates G-
VUZero in two planning-focused environments, Sokoban and Minipacman [Racanière et al., 2017,
Guez et al., 2019]. We compare G-VUZero to MuZero and self-consistent MuZero (MuZero-
SC) [Farquhar et al., 2021] to show that G-VU can further benefit the downstream planning and
improve the overall control performance. We also compare G-VUZero to a variant where the
action sequence suffices b are randomly sampled rather than being guided by MCTS to show that
it is important to choose the action sequence suffix b properly.

83

Player

Gem Bomb

Exit

(a)

0 1 2 3 4 5 6 7
Prediction length

0.0

0.2

0.4

0.6

M
ea

n-
sq

ua
re

d
er

ro
r

Value prediction
D-VU
G-VU

(b)

1 2 3 4 5 6 7
Prediction length

0.0

0.2

0.4

0.6

Reward prediction

(c)

Figure 7.2: The prediction experiment. (a) A snapshot of the Canal environment. (b) and (c)
Mean-squared errors of value prediction and reward prediction on the test set. The x-axis denotes
the length of the input action sequences to the model which we term “prediction length”. The y-axis
denotes the mean-squared errors of the predictions. Each curve is an average of 10 independent
runs with different random seeds. Standard errors are marked by the short bars. The dashed vertical
line separates the prediction lengths that the model was updated on during training and the longer
prediction lengths that the model was never updated on.

7.4.1 Prediction

We first evaluate G-VU in a prediction setting. We designed a simple grid world environment
called Canal. Figure 7.2a provides a snapshot of the environment. There are four different kinds
of entities in this environment: the agent, two gems, two bombs, and an exit. The initial locations
for the agent, the gems, and the bombs are randomly sampled at the beginning of each episode.
The column of the exit is also randomly sampled but it is always on the bottom row. The agent
moves down a row at every time step. There are 3 actions, one keeps the agent in the same column,
a second moves to the left column, and the third moves to the right column respectively. The agent
cannot move beyond the boundary of the screen and it will remain in the same column if it attempts
to do so. The agent gets a reward of 5 if it collects a gem and a reward of−5 if the collects a bomb.
An episode terminates when the agent hits the bottom row. It receives the reward of 1 if it hits the
exit or a reward of −1 otherwise.

The task is to learn a model that predicts the reward and the value of a random policy upon
executing an action sequence from a state. During training we generate trajectories by choosing
actions uniformly and learn a model by either D-VU or G-VU. After training, the model is evalu-
ated on a set of 10000 pre-sampled trajectories. The ground truth value for each state is solved by
solving the Bellman equation system analytically [Sutton and Barto, 2018].

84

Neural network architecture. The model consists of three functions: a representation function,
a transition function, and a prediction function. All of them are parameterized by neural networks.
The representation function consists of two convolutional layers and a fully-connected layer. The
transition function consists of two fully-connected layers. The input state and input action are
concatenated before being fed into the neural network. A skip connection adds the input state to the
output of the transition function. The prediction function consists of one hidden fully-connected
layer and one output layer. All convolutional layers contain 32 channels with 3 × 3 kernels. All
fully-connected layers contain 512 units. ReLU is applied after every hidden layer.

Hyperparameters. The discount factor was set to 0.97 through the experiment. The value func-
tion was updated by 1-step TD. We used a batch of 32 trajectories per update. We used the
Adam optimizer [Kingma and Ba, 2015] and searched the learning rate in {0.001, 0.0003, 0.0001,
0.00003} and selected 0.0001 as it performed the best for both D-VU and G-VU. We set K = 5

for both D-VU and G-VU and L = 1 for G-VU. We use a sliding window on the interaction stream
to sample the training trajectories so the total number of parameter updates are the same for D-VU
and G-VU.

Results. We train each model for 10 million environment steps and report the evaluation errors
of the final model after training. The value prediction errors are shown in Figure 7.2b and the
reward prediction errors are shown in Figure 7.2c. In both figures, the x-axis denotes the length
of the input action sequences to the model which we term “prediction length”. The y-axis denotes
the mean-squared errors of the predictions. We aggregate the prediction errors by the prediction
lengths. Each curve is an average of 10 independent runs with different random seeds. Standard
errors are marked by the short bars. G-VU (the blue curve) consistently achieves lower prediction
errors than D-VU (the red curve) on all prediction lengths. This shows that G-VU can indeed
improve the sample efficiency over D-VU by providing richer learning signals. Specifically, D-
VU only updates K predictions per real trajectory whereas G-VU updates |A|K−1 predictions per
trajectory. Another interesting observation is that G-VU performs better than D-VU even when the
prediction lengths are greater thanK = 5, as shown by the errors on the right of the dashed vertical
line. In other words, G-VU generalizes better than D-VU to action sequences that are longer than
what the model is trained on. We hypothesis that G-VU serves as a regularization by enforcing
consistency between predictions at consecutive steps thus yields better generalization.

7.4.2 Control

In the second set of experiments, we evaluate G-VUZero in two planning-focused environments:
Sokoban and Minipacman [Racanière et al., 2017, Guez et al., 2019]. We choose these two envi-

85

ronments because deep lookahead search is often required to achieve strong performance in these
environments. Thus they are suitable for demonstrating the benefits of G-VU on planning. We
compare G-VUZero to two baseline. The first one is MuZero. The second one is MuZero-SC
which augments MuZero by an additional loss that enforces joint self-consistency between the
model and the value function [Farquhar et al., 2021]. To evaluate the heuristic of guiding G-VU
with MCTS, we also include a variant of G-VUZero where the action sequence suffices b are
chosen by random sampling instead of MCTS. We denote this variant as G-VUZero-RS.

Environment specifications. Sokoban is a procedurally generated environment. Instead of gen-
erating the game instances on-the-fly, we sampled a random configuration from a pre-generated set
for each episode. We used the “unfiltered” set from [Guez et al., 2019]. We refer the readers to the
original articles for the full details of the environment [Racanière et al., 2017, Guez et al., 2019].
The only difference is that we did not apply the penalty at every step because we found MuZero
worked slightly better without the penalty. Minipacman is grid world that mimics the video game
MsPacman. We adopted the implementation from [Guez et al., 2019] where the progress bar for
eating a power pill was replaced by the color change of the ghosts. We refer the readers to the
original articles for the full details of both environments [Racanière et al., 2017, Guez et al., 2019].

Neural network architectures. G-VUZero, MuZero, and MuZero-SC share the same neural
network architecture and only differ in how the model is updated. For Sokoban, the represen-
tation function consists of two convolutional layers with kernel size 8 and 4 and strides 4 and 2

respectively and two residual blocks [He et al., 2016]. For the transition function, we applied a
pool-and-inject layer [Racanière et al., 2017] to the input abstract state to help capture global in-
formation. The action is first encoded as a one-hot vector and then broadcast to match the spatial
dimensions of the abstract states. We concatenated the output of the pool-and-inject layer and the
action encoding and fed them into a convolutional layer. We applied a skip connection and added
the input abstract to the output of this convolutional layer and feeding it into a residual block.
The prediction function consists of three separate networks with identical architectures for reward,
value, and policy respectively. Each network consists of a convolutional layer, a fully-connected
layer with 256 units, and an output layer. All convolutional layers used 64 3×3 kernels with stride
1 if not otherwise stated. We applied layer normalization [Ba et al., 2016] and ReLU activation af-
ter every hidden layer. The agent architecture for Minipacman is mostly the same as for Sokoban,
except that the first two convolutional layers of the representation function are replaced by a single
convolutional layer with 3× 3 kernels and stride 1.

86

0 5 10 15 20
Millions of frames

0.0

0.2

0.4

0.6

Su
cc

es
s r

at
e

Sokoban

MuZero
MuZero-SC
G-VUZero
G-VUZero-RS

Figure 7.3: Learning curves for the first 20 million frames of training in Sokoban. The x-axis
denotes the number of environment steps during training. The y-axis denotes the success rate on
the test set. Each curve shows the average success rate over 10 independent trials with different
random seeds. The shaded area shows the standard error.

Table 7.1: Success rates on the test set for different methods in Sokoban. We evaluated each agent
at 10, 20, 50, and 100 million frames during training. The corresponding success rates are shown
in different columns. Each entry shows the mean success rate across 10 independent trials with
different random seeds. The number in the parenthesis is the standard error. Best performance at
each evaluation point is highlighted in bold.

@10M @20M @50M @100M
MuZero 34.1(1.6) 68.5(1.5) 84.4(0.6) 87.5(0.8)
MuZero-SC 44.6(2.8) 72.6(1.1) 85.2(0.6) 87.5(0.6)
G-VUZero 50.0(1.5) 77.0(0.5) 88.9(0.6) 89.3(0.4)
G-VUZero-RS 49.7(1.8) 73.6(0.8) 86.4(0.7) 88.3(0.4)

Hyperparameters. Following Guez et al. [2019], we used a discount factor of 0.97 for Sokoban.
K was set to 5. The value function was updated by 5-step returns. We used a batch size of 256. We
used the Adam optimizer [Kingma and Ba, 2015] and searched the learning rate in {0.003, 0.001,
0.0003, 0.0001} and selected 0.001 as it worked the best for MuZero. We did not do a separate
search for other methods. For planning with MCTS, we set the search budget to 15 steps. The
temperature for action selection was initialized to 1 and decayed by a factory of 0.95 after 10000
parameter updates. For MuZero-SC, we searched the number of self-consistent steps in {3, 5, 8}
and selected 5. For G-VUZero and G-VUZero, we searched M in {3, 5, 8, 10} and selected 8. The
hyperparameters for Minipacman is mostly the same as for Sokoban, except the batch size was 128
instead of 256.

Results. Figure 7.3 and Table 7.1 summarize the results for Sokoban. Figure 7.3 shows the learn-
ing curves during the first 20 million frames of training. The x-axis shows the number of frames

87

0 10 20 30 40 50
Millions of frames

400

600

800

1000

Ep
iso

de
 re

tu
rn

Minipacman

MuZero
MuZero-SC
G-VUZero
G-VUZero-RS

Figure 7.4: Learning curves in Minipacman. The x-axis denotes the number of environment steps
during training. The y-axis denotes the episode return. Each curve shows the average success rate
over 5 independent trials with different random seeds. The shaded area shows the standard error.

and the y-axis shows the success rate on the test set. Each curve shows the average success rate
over 10 independent trials with different random seeds. The shaded area shows the standard error.
G-VUZero (the blue curve) achieves a higher success rate than both MuZero (the black curve) and
MuZero-SC (the red curve) at the early stage of training. Table 7.1 shows the agents’ success rates
at 10 million, 20 million, 50 million, and 100 million frames of training. The corresponding success
rates are shown in different columns. Each entry shows the average success rate across 10 inde-
pendent trials with different random seeds. The numbers in the parenthesis are standard errors.
As highlighted by the bold numbers, G-VUZero performs better than MuZero and MuZero-SC
throughout 100 million frames of training, though the differences become small as all methods
converge. Figure 7.4 shows the learning curves in Minipacman. The x-axis shows the number of
frames and the y-axis shows the episode return. Each curve is an average over 5 independent trials
with different random seeds. The shaded area shows the standard error. Again, G-VUZero (the
blue curve) performs better than both MuZero (the black curve) and MuZero-SC (the red curve).
These results show that the benefit provided by G-VU in model learning also carries over to the
downstream planning and improve the overall control performance of the agent. G-VUZero-RS
(the yellow curve) performs slightly worse than G-VUZero in Sokoban (Figure 7.3) but is clearly
subpar in Minipacman (Figure 7.4). This performance gap is due to the difference in choosing the
action sequence suffix b to apply G-VU on. By guiding G-VU with MCTS, G-VUZero can update
the model on the action sequences that can potentially impact the planner. Whereas G-VUZero-RS
chooses the action sequences randomly thus rendering the G-VU updates less effective. This result
suggests that G-VU needs to be guided by its downstream usage in order to maximize the benefits
of flexibly updating the model on action sequences that do not coincide with the real trajectories.

88

7.5 Conclusion and Future Directions

In this chapter we proposed the general value-equivalent update (G-VU) for learning VE models.
G-VU is a generalization of the direct value-equivalent update (D-VU) used by existing methods.
G-VU is more flexible than D-VU in that it can update the model on action sequences that are not
experienced in the environment. Our empirical results showed that G-VU is more data efficient
at learning VE models than D-VU. We combined G-VU with the state-of-the-art MuZero agent
and showed that the new agent, G-VUZero, outperformed MuZero in Sokoban and Minipacman.
We also proposed a heuristic that uses the downstream planner to guide G-VU for choosing which
action sequences to update the model on. We evaluated this heuristic in Sokoban and Minipacman
and showed that it performed better than a simple random sampling baseline. Although more
empirical work is needed, our results suggest that G-VU is an effective VE-model learning method
and can potentially benefit VE-model-based RL agents, including but not limited to MuZero.

One future direction is to apply G-VU to continuous action spaces. The main benefit of G-VU is
that it can update the model on more action sequences than D-VU with the same real trajectory. In
continuous control, there are effectively infinite action sequences for any length, which provides
more room for G-VU to improve. Meanwhile, it may be more important to choose the action
sequences wisely in the continuous control setting because randomly sampled action sequences
may have very little overlap with the ones queried by the planner. Another future direction is to
extend G-VU to other types of models. Although we derived G-VU from the value-equivalence
principle, the idea of bootstrapping from a later model prediction is more general and not limited
to VE models. It will be interesting to apply the idea of G-VU on other types of models, especially
models learned by self-supervised methods.

89

CHAPTER 8

Conclusion

In this chapter, we summarize the main contributions of this thesis and discuss some future direc-
tions for DeepRL research.

8.1 Summary of Contributions

Building on the recent success of DeepRL, this thesis attempted to further advance DeepRL tech-
niques by addressing challenges in the following directions: 1) reward design, 2) temporal credit
assignment, 3) state representation learning, and 4) model learning.

In Chapter 3, we built on the Optimal Rewards Framework and derived a novel meta-learning
algorithm, LIRPG, for learning intrinsic rewards for policy-gradient-based agents. Our empirical
study in the Atari domain and the Mujoco continuous control domain showed that LIRPG could
learn useful intrinsic reward functions that improved the performance of the policy learner. In
addition, we also showed that the learned intrinsic reward function performed better than two
handcrafted heuristic intrinsic reward functions.

In Chapter 4, we focused on understanding what can be captured by the learned intrinsic re-
ward functions. To investigate this, we proposed a scalable metagradient framework for learn-
ing useful intrinsic reward functions across multiple lifetimes of experience. Through a set of
proof-of-concept experiments, we showed that the learned intrinsic reward functions could capture
knowledge about long-term exploration and exploitation. Furthermore, we showed that the learned
reward functions could generalise to different RL algorithms and to changes in the environment
dynamics because they captured “what to do” instead of “how to do.”

In Chapter 5, in order to overcome the limitations of existing temporal credit assignment mech-
anisms, we explored heuristics based on more general pairwise weightings that are functions of the
state in which the action was taken, the state at the time of the reward, as well as the time interval
between the two. We developed a metagradient algorithm for learning these weight functions dur-
ing the usual policy optimization procedure. Our empirical work showed that it is often possible

90

to learn these pairwise weight functions during policy learning to achieve better performance than
competing approaches.

In Chapter 6, we investigated using random prediction tasks as auxiliary tasks for state rep-
resentation learning. We found that random general value functions (GVFs), i.e., deep action-
conditional predictions, form good auxiliary tasks for RL agents. Our empirical study on the Atari
benchmark and the DeepMind Lab benchmarks showed that learning state representations solely
via auxiliary prediction tasks defined by random GVFs outperformed the end-to-end trained A2C
baseline. Random GVFs also outperformed other handcrafted auxiliary tasks when being used as
part of a combined loss function with the main RL loss.

In Chapter 7, we presented generalized value-equivalence updates (G-VU) for learning value-
equivalent models. G-VU is more flexible than existing method because it can update the model
on action sequences that are not experienced in the environment. Our experiments showed that
G-VU was more sample efficient than existing methods in a prediction setting. When combined
with MuZero, the resulting agent G-VUZero demonstrated better the control performance than
MuZero in two planning-focused environments Sokoban and Minipacman. Moreover, we explored
applying G-VU on action sequences queried by the downstream MCTS planner and showed that
this version of guided G-VU performed better than applying G-VU on randomly sampled action
sequences. It is worth noting that learning a VE model itself serves as a good auxiliary task for
state representation learning [Hessel et al., 2021]. Similar to the random GVFs in Chapter 6, the
VE model predictions are both deep and action-conditional. In contrast to the random GVFs, a VE
model predicts rewards and values rather than unsupervised random features of the observations.
Moreover, G-VU is similar to the TD update in Chapter 6 in that they both update a prediction by
bootstrapping from other predictions at later steps. This connection suggests a future direction of
combining unsupervised off-policy prediction learning with model learning to improve both the
state representation and the model.

8.2 Future Directions

Learning from signals beyond the rewards Most existing DeepRL agents still learn solely from
rewards. Since rewards are usually sparse, learning only happens occasionally and is inefficient.
In Chapter 6, we demonstrated that random GVFs can form useful auxiliary tasks that provide
additional learning signals to an agent and help it learn better state representations. However, ran-
dom GVFs are hardly a principled solution to this problem. Due to their task-agnostic nature, they
may fail to capture important aspects of the environment and yield poor state representations. One
solution to this problem is to let the agents discover useful prediction tasks for themselves. Veeriah
et al. [2019] proposed a metagradient algorithm similar to LIRPG in Chapter 3 for discovering

91

useful auxiliary prediction tasks. However, the proposed method only demonstrated marginal per-
formance improvement in their empirical study. How to discover useful auxiliary tasks effectively
remains an open question. Another promising approach is to take advantage of the recent advances
in self-supervised learning. Recent work has shown that it is possible to learn good feature repre-
sentations for images [Oord et al., 2018, Chen et al., 2020, He et al., 2020, Chen and He, 2021] or
languages [Devlin et al., 2018, Brown et al., 2020] without any label. Adapting these techniques
to DeepRL may enable the agent to learn good state representations without reward signals. Some
recently work already demonstrated promise in this direction [Laskin et al., 2020, Lee et al., 2020]
but further research is still needed.

Temporal abstractions of behaviors Temporal abstraction of behaviors is still largely missing
in DeepRL agents. The option framework [Sutton et al., 1999] provides a theoretical framework for
studying temporal abstractions in RL. However, we have only seen limited success of combining
options with DeepRL so far. The biggest challenge is how to discover useful options. It is unclear
under what pressure useful abstractions of temporally extended behaviors will emerge. Some
early attempts used the same RL objective of maximizing cumulative rewards in a single-task
setting [Bacon et al., 2017]. But the discovered options often degraded to either primitive actions
or a policy that solves the task completely. Other works avoided this problem by setting a fixed
temporal resolution [Vezhnevets et al., 2017, Nachum et al., 2018]. But this approach limits the
expressiveness of the options and cannot scale well as the task horizons continue to increase.
Therefore, how to discover useful temporal abstractions of behaviors remains an open question to
the RL community.

Interfaces for goal specification In Chapter 3 we studied the reward design problem. Part of
the reason why reward design is challenging is that humans do not communicate their goals via
reward functions. The reward design process can be interpreted as translating human desire to a
form of goal specification that RL agents can understand. This translation is often challenging and
error-prone. In this thesis we made an attempt to address this problem and proposed a method
to mitigate this gap. But it still requires a reward function, though not necessarily an easy-to-
optimize one, to be given by the agent designer. It is still unclear what is the optimal interface for
communicating goals from human agent designers to RL agents. Humans are most comfortable
with communicating via languages. Therefore, we may prefer an interface that allows human to
specify goals via natural language. Recently, large language models (LLMs) like BERT [Devlin
et al., 2018] and GPT [Brown et al., 2020] show promise in comprehensive language understanding
and compositional generalization. Inspired by these recent success, one potential direction is to
explore how to design a natural-language-to-reward interface by using these LLMs.

92

BIBLIOGRAPHY

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: A system for
{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R. De-
von Hjelm. Unsupervised state representation learning in atari. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 8766–8779, 2019.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent
by gradient descent. In Advances in Neural Information Processing Systems, pages 3981–3989,
2016.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes
Brandstetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. In
Advances in Neural Information Processing Systems, pages 13544–13555, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations,
ICLR 2015, 2015.

93

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Arian Hosseini, Pushmeet Kohli, and
Edward Grefenstette. Learning to understand goal specifications by modelling reward. In Inter-
national Conference on Learning Representations, 2019.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Küttler, Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith
Anderson, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King,
Demis Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016.
URL http://arxiv.org/abs/1612.03801.

Sarah Bechtle, Artem Molchanov, Yevgen Chebotar, Edward Grefenstette, Ludovic Righetti,
Gaurav Sukhatme, and Franziska Meier. Meta-learning via learned loss. arXiv preprint
arXiv:1906.05374, 2019.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in Neural
Information Processing Systems, pages 1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taı̈ga, Pablo Samuel Castro, Nico-
las Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on op-
timal representations for reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
4360–4371, 2019.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/google/jax.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR, 2020.

94

http://arxiv.org/abs/1612.03801
http://github.com/google/jax

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758,
2021.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the prop-
erties of neural machine translation: Encoder-decoder approaches. In Dekai Wu, Marine
Carpuat, Xavier Carreras, and Eva Maria Vecchi, editors, Proceedings of SSST@EMNLP 2014,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar,
25 October 2014, pages 103–111. Association for Computational Linguistics, 2014. doi:
10.3115/v1/W14-4012.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

Jack Clark and Dario Amodei. Faulty reward functions in the wild. CoRR, 2016. URL https:
//blog.openai.com/.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyztsoC5Y7.

Jonathan D Cohen, Samuel M McClure, and Angela J Yu. Should i stay or should i go? how
the human brain manages the trade-off between exploitation and exploration. Philosophical
Transactions of the Royal Society B: Biological Sciences, 362(1481):933–942, 2007.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. CoRR, abs/2006.02243, 2020.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig
Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli,
Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau,
Olivier Sauter, Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet
Kohli, Koray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of toka-
mak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, Feb 2022.
ISSN 1476-4687. doi: 10.1038/s41586-021-04301-9. URL https://doi.org/10.1038/
s41586-021-04301-9.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Rad-
ford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https://github.
com/openai/baselines, 2017.

95

https://blog.openai.com/
https://blog.openai.com/
https://openreview.net/forum?id=HyztsoC5Y7
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://github.com/openai/baselines
https://github.com/openai/baselines

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep re-
inforcement learning for continuous control. In International Conference on Machine Learning,
pages 1329–1338, 2016a.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016b.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In Advances in
neural information processing systems, pages 1087–1098, 2017.

Rachit Dubey and Thomas L Griffiths. Reconciling novelty and complexity through a rational
analysis of curiosity. Psychological Review, 2019.

Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss function for
model-based reinforcement learning. In Artificial Intelligence and Statistics, pages 1486–1494.
PMLR, 2017.

Greg Farquhar, Kate Baumli, Zita Marinho, Angelos Filos, Matteo Hessel, Hado P van Hasselt, and
David Silver. Self-consistent models and values. Advances in Neural Information Processing
Systems, 34, 2021.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec:
Differentiable tree-structured models for deep reinforcement learning. In International Confer-
ence on Learning Representations, 2018.

William Fedus, Carles Gelada, Yoshua Bengio, Marc G. Bellemare, and Hugo Larochelle. Hyper-
bolic discounting and learning over multiple horizons. CoRR, abs/1902.06865, 2019.

Angelos Filos, Eszter Vértes, Zita Marinho, Gregory Farquhar, Diana Borsa, Abram Friesen, Fer-
yal Behbahani, Tom Schaul, André Barreto, and Simon Osindero. Model-value inconsistency as
a signal for epistemic uncertainty. arXiv preprint arXiv:2112.04153, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1126–1135. JMLR. org, 2017a.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual
imitation learning via meta-learning. In Conference on Robot Learning, pages 357–368, 2017b.

John Gittins. A dynamic allocation index for the sequential design of experiments. Progress in
statistics, pages 241–266, 1974.

John C Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society: Series B (Methodological), 41(2):148–164, 1979.

Goren Gordon and Ehud Ahissar. Reinforcement active learning hierarchical loops. In The 2011
International Joint Conference on Neural Networks, pages 3008–3015. IEEE, 2011.

96

Anirudh Goyal, Riashat Islam, DJ Strouse, Zafarali Ahmed, Hugo Larochelle, Matthew Botvinick,
Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the information bot-
tleneck. In International Conference on Learning Representations, 2018.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aäron
van den Oord. Shaping belief states with generative environment models for RL. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 13475–13487, 2019.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence
principle for model-based reinforcement learning. Advances in Neural Information Processing
Systems, 33:5541–5552, 2020.

Christopher Grimm, André Barreto, Greg Farquhar, David Silver, and Satinder Singh. Proper value
equivalence. Advances in Neural Information Processing Systems, 34, 2021.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, et al. An investigation of model-
free planning. In International Conference on Machine Learning, pages 2464–2473. PMLR,
2019.

Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward design
to improve monte carlo tree search in atari games. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, pages 1519–1525. AAAI Press, 2016.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A. Pires, Toby Pohlen,
and Rémi Munos. Neural predictive belief representations. CoRR, abs/1811.06407, 2018.

Zhaohan Daniel Guo, Bernardo Ávila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for mul-
titask reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 3875–3886. PMLR, 2020.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances
in neural information processing systems, 31, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In International Conference on Learning Representations,
2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pages 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. CoRR, abs/2010.02193, 2020.

97

Anna Harutyunyan, Sam Devlin, Peter Vrancx, and Ann Nowe. Expressing arbitrary reward func-
tions as potential-based advice. In Proceedings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, pages 2652–2658. AAAI Press, 2015.

Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Gheshlaghi Azar, Bilal Piot,
Nicolas Heess, Hado P van Hasselt, Gregory Wayne, Satinder Singh, Doina Precup, et al. Hind-
sight credit assignment. In Advances in neural information processing systems, pages 12467–
12476, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 9726–9735.
IEEE, 2020. doi: 10.1109/CVPR42600.2020.00975.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theo-
phane Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy
optimization. In International Conference on Machine Learning, pages 4214–4226. PMLR,
2021.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural net-
works for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal processing magazine, 29(6):82–97, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In International
Conference on Machine Learning, pages 4476–4486. PMLR, 2021.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. Nature communications, 10(1):1–12, 2019.

Laurent Itti and Pierre F Baldi. Bayesian surprise attracts human attention. In Advances in neural
information processing systems, pages 547–554, 2006.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

98

Bilal Kartal, Pablo Hernandez-Leal, and Matthew E. Taylor. Terminal prediction as an auxiliary
task for deep reinforcement learning. In Gillian Smith and Levi Lelis, editors, Proceedings of
the Fifteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
AIIDE 2019, October 8-12, 2019, Atlanta, Georgia, USA, pages 38–44. AAAI Press, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Louis Kirsch, Sjoerd van Steenkiste, and Juergen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. In International Conference on Learning Rep-
resentations, 2019.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pages 282–293. Springer, 2006.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25, 2012.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: contrastive unsupervised repre-
sentations for reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 5639–5650. PMLR, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, and Ser-
gio Guadarrama. Predictive information accelerates learning in RL. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Cam Linke, Nadia M Ady, Martha White, Thomas Degris, and Adam White. Adapting behaviour
via intrinsic reward: A survey and empirical study. arXiv preprint arXiv:1906.07865, 2019.

Michael L. Littman, Richard S. Sutton, and Satinder Singh. Predictive representations of state. In
Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances in Neural
Information Processing Systems 14 [Neural Information Processing Systems: Natural and Syn-
thetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada], pages 1555–
1561. MIT Press, 2001.

99

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks
on representation dynamics. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021,
Virtual Event, volume 130 of Proceedings of Machine Learning Research, pages 1–9. PMLR,
2021. URL http://proceedings.mlr.press/v130/lyle21a.html.

Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, and R. Devon Hjelm.
Deep reinforcement and infomax learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Thomas Mesnard, Théophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Haru-
tyunyan, Will Dabney, Tom Stepleton, Nicolas Heess, Arthur Guez, et al. Counterfactual credit
assignment in model-free reinforcement learning. arXiv preprint arXiv:2011.09464, 2020.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Meta-learning
update rules for unsupervised representation learning. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HkNDsiC9KQ.

Marco Mirolli and Gianluca Baldassarre. Functions and mechanisms of intrinsic motivations. In
Intrinsically Motivated Learning in Natural and Artificial Systems, pages 49–72. Springer, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-
level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pages 1928–1937, 2016.

Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based reinforcement learn-
ing: A survey. arXiv preprint arXiv:2006.16712, 2020.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Proceedings of the Sixteenth International
Conference on Machine Learning, pages 278–287. Morgan Kaufmann Publishers Inc., 1999.

Alex Nichol and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-
conditional video prediction using deep networks in atari games. Advances in neural information
processing systems, 28, 2015.

100

http://proceedings.mlr.press/v130/lyle21a.html
https://openreview.net/forum?id=HkNDsiC9KQ

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. Advances in neural
information processing systems, 30, 2017.

Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder
Singh, and David Silver. Discovering reinforcement learning algorithms. Advances in Neural
Information Processing Systems, 33, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive pre-
dictive coding. arXiv preprint arXiv:1807.03748, 2018.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Kat-
rina McKinney, Tor Lattimore, Csaba Szepezvari, Satinder Singh, et al. Behaviour suite for
reinforcement learning. arXiv preprint arXiv:1908.03568, 2019.

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-based ex-
ploration with neural density models. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 2721–2730. JMLR. org, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in Neurorobotics, 1:6, 2009.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–
286, 2007.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An impera-
tive style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2778–2787. JMLR. org, 2017.

Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete
bayesian reinforcement learning. In Proceedings of the 23rd International Conference on Ma-
chine Learning, pages 697–704. ACM, 2006.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo
Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al.
Imagination-augmented agents for deep reinforcement learning. Advances in neural informa-
tion processing systems, 30, 2017.

Janarthanan Rajendran, Richard Lewis, Vivek Veeriah, Honglak Lee, and Satinder Singh. How
should an agent practice? arXiv preprint arXiv:1912.07045, 2019.

101

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, pages 6553–6564, 2017.

Jette Randlöv and Preben Alström. Learning to drive a bicycle using reinforcement learning and
shaping. In Proceedings of the Fifteenth International Conference on Machine Learning, pages
463–471. Morgan Kaufmann Publishers Inc., 1998.

David Raposo, Sam Ritter, Adam Santoro, Greg Wayne, Theophane Weber, Matt Botvinick, Hado
van Hasselt, and Francis Song. Synthetic returns for long-term credit assignment. arXiv preprint
arXiv:2102.12425, 2021.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pages 1842–1850, 2016.

Matthew Schlegel, Andrew Patterson, Adam White, and Martha White. Discovery of pre-
dictive representations with a network of general value functions, 2018. URL https:
//openreview.net/forum?id=ryZElGZ0Z.

Matthew Schlegel, Andrew Jacobsen, Zaheer Abbas, Andrew Patterson, Adam White, and Martha
White. General value function networks. J. Artif. Intell. Res., 70:497–543, 2021. doi: 10.1613/
jair.1.12105. URL https://doi.org/10.1613/jair.1.12105.

Jüergen Schmidhuber, Jieyu Zhao, and MA Wiering. Simple principles of metalearning. Technical
report IDSIA, 69:1–23, 1996.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint confer-
ence on neural networks, pages 1458–1463, 1991a.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building
neural controllers. In Proc. of the international conference on simulation of adaptive behavior:
From animals to animats, pages 222–227, 1991b.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

102

https://openreview.net/forum?id=ryZElGZ0Z
https://openreview.net/forum?id=ryZElGZ0Z
https://doi.org/10.1613/jair.1.12105

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end
learning and planning. In International conference on machine learning, pages 3191–3199.
PMLR, 2017.

Satinder Singh, Michael R. James, and Matthew R. Rudary. Predictive state representations: A new
theory for modeling dynamical systems. In David Maxwell Chickering and Joseph Y. Halpern,
editors, UAI ’04, Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence,
Banff, Canada, July 7-11, 2004, pages 512–518. AUAI Press, 2004.

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In Pro-
ceedings of the annual conference of the cognitive science society, pages 2601–2606. Cognitive
Science Society, 2009.

Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically motivated
reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):70–82, 2010.

Jonathan Sorg, Richard L Lewis, and Satinder Singh. Reward design via online gradient ascent. In
Advances in Neural Information Processing Systems, pages 2190–2198, 2010.

Bradly Stadie, Ge Yang, Rein Houthooft, Peter Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and
Ilya Sutskever. The importance of sampling inmeta-reinforcement learning. In Advances in
Neural Information Processing Systems, pages 9280–9290, 2018.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 9870–9879. PMLR, 2021.
URL http://proceedings.mlr.press/v139/stooke21a.html.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

103

http://proceedings.mlr.press/v139/stooke21a.html

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming. In Proceedings of the Seventh International Conference on
Machine Learning, pages 216–224. Morgan Kaufmann, 1990.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

Richard S. Sutton and Brian Tanner. Temporal-difference networks. In Advances in Neural Infor-
mation Processing Systems 17 [Neural Information Processing Systems, NIPS 2004, December
13-18, 2004, Vancouver, British Columbia, Canada], pages 1377–1384, 2004.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211,
1999.

Richard S Sutton, David A McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pages 1057–1063, 2000.

Richard S. Sutton, Eddie J. Rafols, and Anna Koop. Temporal abstraction in temporal-difference
networks. In Advances in Neural Information Processing Systems 18 [Neural Information Pro-
cessing Systems, NIPS 2005, December 5-8, 2005, Vancouver, British Columbia, Canada],
pages 1313–1320, 2005. URL https://proceedings.neurips.cc/paper/2005/
hash/12311d05c9aa67765703984239511212-Abstract.html.

Richard S. Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M. Pilarski, Adam
White, and Doina Precup. Horde: a scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In Liz Sonenberg, Peter Stone, Kagan Tumer, and Pinar
Yolum, editors, 10th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2011), Taipei, Taiwan, May 2-6, 2011, Volume 1-3, pages 761–768. IFAAMAS, 2011.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
Advances in neural information processing systems, 29, 2016.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John
Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration
for deep reinforcement learning. In Advances in Neural Information Processing Systems, pages
2750–2759, 2017.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to
learn, pages 3–17. Springer, 1998.

104

https://proceedings.neurips.cc/paper/2005/hash/12311d05c9aa67765703984239511212-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/12311d05c9aa67765703984239511212-Abstract.html

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive pre-
dictive coding. CoRR, abs/1807.03748, 2018.

Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André Barreto, and Diana
Borsa. Expected eligibility traces. arXiv preprint arXiv:2007.01839, 2020.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L Lewis, Junhyuk
Oh, Hado P van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as
auxiliary tasks. In Advances in Neural Information Processing Systems, pages 9306–9317, 2019.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pages 3540–3549, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016a.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matthew M Botvinick. Learning to reinforcement
learn. ArXiv, abs/1611.05763, 2016b.

Yufei Wang, Qiwei Ye, and Tie-Yan Liu. Beyond exponentially discounted sum: Automatic learn-
ing of return function. arXiv preprint arXiv:1905.11591, 2019.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
England, 1989.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

Robert C Wilson, Andra Geana, John M White, Elliot A Ludvig, and Jonathan D Cohen. Hu-
mans use directed and random exploration to solve the explore–exploit dilemma. Journal of
Experimental Psychology: General, 143(6):2074, 2014.

Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a prior over
intent via meta-inverse reinforcement learning. In Proceedings of the 36th International Con-
ference on Machine Learning, pages 6952–6962, 2019.

Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. Learning to explore via meta-policy gradient.
In International Conference on Machine Learning, pages 5459–5468, 2018a.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
Advances in Neural Information Processing Systems, pages 2396–2407, 2018b.

105

Zhongwen Xu, Hado van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder Singh, and David Sil-
ver. Meta-gradient reinforcement learning with an objective discovered online. arXiv preprint
arXiv:2007.08433, 2020.

Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado P van Hasselt,
David Silver, and Satinder Singh. A self-tuning actor-critic algorithm. Advances in Neural
Information Processing Systems, 33, 2020.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learn-
ing. arXiv preprint arXiv:1804.10689, 2018.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In Advances in Neural Information Processing Systems, pages 4644–4654, 2018.

Zeyu Zheng, Junhyuk Oh, Matteo Hessel, Zhongwen Xu, Manuel Kroiss, Hado Van Hasselt, David
Silver, and Satinder Singh. What can learned intrinsic rewards capture? In International Con-
ference on Machine Learning, pages 11436–11446. PMLR, 2020.

106

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Roadmap and Preview of Contributions
	Publications and Opensource Contributions

	Background
	Markov Decision Processes
	Episodes and Returns
	Policies and Value Functions
	Optimal Policies and Optimal Value Functions

	Fundamental RL Algorithms
	Monte-Carlo Prediction
	Temporal-difference Learning
	Policy Gradient
	Actor-critic

	Modern DeepRL Implementations of RL Algorithms
	Parallel Advantage Actor-critic

	On Learning Intrinsic Rewards for Policy Gradient Methods
	Related Work
	Gradient-Based Learning of Intrinsic Rewards
	LIRPG: Learning Intrinsic Rewards for Policy Gradient

	Experiments on Atari Games
	Implementation Details
	Overall Performance
	Analysis of the Learned Intrinsic Reward

	Mujoco Experiments
	Implementation Details
	Overall Performance

	Conclusion

	What Can Learned Intrinsic Rewards Capture?
	Related Work
	The Optimal Reward Problem
	Meta-Learning Intrinsic Reward
	Architectures
	Policy Update
	Intrinsic Reward and Lifetime Value Update

	Empirical Investigations
	Experimental Setup
	Exploring Uncertain States
	Exploring Uncertain Objects
	Exploiting Invariant Causal Relationship
	Dealing with Non-stationarity
	Ablation Study

	Generalisation via Rewards
	Generalise to New Agent-Environment Interfaces

	Conclusion

	Adaptive Pairwise Weights for Temporal Credit Assignment
	Related Work
	Pairwise Weights for Advantages
	A Metagradient Algorithm for Adapting Pairwise Weights
	Experiments
	Learned Pairwise Weights in A Simple MDP
	The Key-to-Door Experiments
	Experiments on Standard RL Benchmarks

	Conclusion

	Learning State Representations from Random Deep Action-conditional Predictions
	Related Work
	Method
	GVFs with Interdependent TD Relationships
	A Random Question Network Generator
	Agent Architecture

	Illustrating the Benefits of Deep Action-conditional Questions
	Benefits of Depth and Action-conditionality: Illustrative Grid World
	Benefits of Random Question Nets: Illustrative Grid World
	Ablation Study of Benefits of Depth and Action Conditionality: Atari
	Robustness and Stability

	Comparison to Baseline Auxiliary Tasks
	Conclusion and Future Work

	G-VUZero: Planning with Models Learned Using Generalized Value-equivalence Updates
	Related Work
	Background
	Value-equivalent models
	MuZero: VE models in practice

	Generalized Value-equivalence Updates
	Direct Value-equivalence Update
	Generalized Value-equivalence Update
	Additional flexibility and potential benefits of G-VU
	G-VUZero: Implementing G-VU with MuZero
	VE Models as Sequence-value functions

	Experiments
	Prediction
	Control

	Conclusion and Future Directions

	Conclusion
	Summary of Contributions
	Future Directions

	Bibliography

