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ABSTRACT

This work focuses on the improvement of Kriging in Design and Analysis of Com-

puter Experiments (DACE) for multivariable problems through a specific sampling process

that couples two methods already known in the literature: Adaptive Kriging and Genetic

Algorithm. The special integration of these methods to enhance the sampling process is

the main contribution of this dissertation. This procedure optimizes the sampling process

of the metamodel finding specific location in the design space with relative few samples,

which brings higher fidelity and better performance than conventional methods based on

pure Conventional Kriging. Mean squared error (MSE) in Adaptive Kriging and its cou-

pling with MSE derivative (dMSE) in objective functions of Genetic Algorithm are the

metric used for sampling improvement. A dedicated random mesh is implemented in the

design space covering all variables of the problem. The Adaptive Kriging works as a first

contribution for sampling improvement, which is followed by the Genetic Algorithm based

on the NSGAII code. The Genetic operations are used to exploit such mesh in order to

identify specific locations with high potential for enhancement of metamodel fidelity with

relative low quantity of sample points. All of these steps configure the proposed method

called Hybrid Code that couples the Adaptive Kriging with Genetic Algorithm.

Three analytical problems are considered for Hybrid Code validation: Branin function

and Product Peak Integrand Family function for two and ten variables. Once the validation

is performed, the hybrid code is used to solve two numerical representative problems of

FEM engineering applications: cantilever beam and underwater explosion effect on a sub-

merged stiffened plate clamped at its edges. In each case, different commercial FEM code

have been used: ANSYS for the former and ABAQUS for the latter. In the cantilever beam

xii



problem, the output analyzed for each individual sample point are the equivalent stress at

the clamp location and vertical displacement at the free end of the beam. This problem

contains ten variables defined as thickness of each section of the beam. For the underwater

explosion problem by its turn, the output analyzed is the vertical displacement at the mid-

dle of the plate. This problem has six variables defined as the thickness of each structural

element of the plate, such as planking, bar, flange, etc.

In all analyses, the metamodel performance obtained by the proposed method is com-

pared with the one obtained from Conventional Kriging. The performance measurement

parameters are based on non-dimensional error in comparison to the known response and

the computational time required. The conclusion based on the results collected is that the

Hybrid Code generates a higher fidelity metamodel in a faster manner than the Conven-

tional Kriging for high-dimensional and/or more complex problems.

xiii



CHAPTER 1

Introduction

1.1 Motivation

As illustrated by Ye (2019) and Fernandez et al. (2019), in recent years, the evolution
of trade relations around the world has pushed different developments searching for global
optimization in different aspects such as time, performance and cost. These developments
are based on optimization process itself, machine learning evolution, statistical methods,
or by the processing capacity of computers. Considering the optimization process and ma-
chine learning evolution, specific techniques, named in the literature as Surrogate-Based
Global Optimization (SBGO), rise up as a large and complex niche that needs to superate
some obstacles.

In this scenario, the constraints that need to be overcomed can be identified as follow-
ing:

• Accuracy of models to be used in the optimization process.

• Quantity of available known data to explore the design space searching for the global
maximum/minimum solution.

The first obstacle is straightforward connected to metamodels that aims to speed up the
optimization process allied to the challenge of reaching a reasonable accuracy related to
the physical model that it represents.

In the second constraint, the availability of known data can configure a problem due to
the long time or impossibility to produce all necessary quantity. This scenario can become
worse when large amount of variables are involved. This situation imposes the considera-
tion of sparse data, which also contributes to the low fidelity of metamodels that impacts
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the performance faced on the first constraint.

A simple example that can illustrate both abovementioned aspects is shown in figure
1.1. The original function is represented by the blue line. Two different set of samples
are shown as green marks. In the top curves, bad samples are located in bad regions of
the design space, which produce a not accurate metamodel represented as red line. The
opposite occurs in the bottom curves, which specific locations of samples make possible to
improve the accuracy of the final metamodel.

Figure 1.1: Examples of bad and good sample points influence on the final accuracy of
metamodel for a single variable problem.

However, the most interesting scenario for investigation is when large quantity of vari-
ables are employed, which inflates the severity of two constraints previously mentioned
and imposes a huge challenge on the achievement of an efficient metamodel within an
acceptable computational time. Considering that, searching for a set of conditions with
relative low quantity of samples that make possible this achievement configures a signif-
icant evolution in general optimization process as discussed in H. Liu et al. (2016). For
fidelity issue, the combination of different metamodel methods has been the most recent
evolution technique. Such mixing approach is named as Hybrid Method and aims to get
the best advantages of each method to work symbioticaly on a single process. It addresses
to the called hybrid metamodel. For the sampling process, the mixing of different sampling
techniques such as Latin Hypercube Sampling (LHS) and Orthogonal Arrays (OA) is also

2



a relative recent evolution. Similarly to the previous mentioned technique, this aproach be-
comes the called hybrid sampling. As result, implementing such strategy in DACE context
becomes a logic application due to its relative faster and cheaper analysis.

Hence, this research applies the hybrid metamodel concept in the hybrid sampling anal-
ysis in order to reach a faster and more accurate metamodel. All details of this work are
described in next chapters.

1.2 Literature Review

1.2.1 DACE and DoE

The first aspect that is necessary to contextualize in the current work is the application
addressed to Design and Analysis of Computer Experiments (DACE), which is different
from the Design of Experiments (DoE) concept. Several authors explored DACE, such as
Sacks et al. (1989), T. Simpson et al. (2002), Etman (1994) in general approach. In DoE,
as classical definition, the manufacturing issues, human error, and other factors related to
physical experiments work as random input and induce to a probabilistic approach of the
problem treatment. Works that can be highlighted are Kleijnen et al. (2005) and Kleijnen
et al. (1997). In the opposite sense, DACE considers numerical models also in a proba-
bilistic approach, which has particular advantages over DoE such as being less expensive
and more flexible due to its ability to involve the representativeness of complex physical
models under large quantity of variables in a relatively easier manner. Also, this basic dif-
ference has a strong effect on the sampling process in the design space that allows DACE
to explore it easier (Sacks et al., 1989 and T. Simpson et al., 2002). Other works such as
T. W. Simpson et al. (2004) and Baco et al. (2019) make an interesting comparison be-
tween both techniques. In specific application of DoE and DACE, two works can be cited
as representative of both approaches. In the first work, Thurman et al. (2020) explores a
metamodel generation for finding side force coefficients on hydrodynamic bodies consid-
ering both DoE and DACE techniques and presents the comparison between them. The
authors indicate DoE as an efficient way to produce a metamodel preserving the link with
the physical phenomenon. Nevertheless, DACE is indicated by the authors as the potential
approach to produce more accurate metamodels. In the second work, Joe (2017) addresses
human factors to generate a metamodel in order to develop the modernization of control
rooms for nuclear power plant. This particular problem illustrates how much complex and
how many variables can be involved in a specific problem with relative difficulty to sample

3



the input data.

Figure 1.2 illustrates the relationship among physical problem, physical model and
metamodel. DoE and DACE uses the same parameter concepts, such as sample points
(xi and yi) and test points (xt and yt). However, DACE takes advantage of physical model
that considers a unique correlation between input sample xi and output yi (also between
the input test point xt and its output yt). Considering such relationship between input and
output, the sample points are used to get the metamodel. Next, the performance is verified
comparing the estimate output ŷt obtained from the input test points xt with the known
response yt. This comparison between yt and ŷt provides the error of the process ε.

Figure 1.2: Relationship among physical problem, physical model and metamodel. yi and
xi are considered as sample points and xt and yt are considered as test points.

Considering all aspects highlighted for DoE and DACE and specific characteristics of
the later approach based on its flexibility, relative low resources needed and capability to
investigate several different and complex problems in relatively short time, DACE has been
chosen as the context for the current research.

1.2.2 Hybrid Metamodels

Another aspect investigated in the literature is the pursue for an accurate metamodel. In
this context, Queipo et al. (2005), G. G. Wang et al. (2006), Forrester et al. (2009), Fernan-

4



dez et al. (2019) and Ye (2019) perform an overall review about this subject.

As G. G. Wang et al. (2006) describes in his study, an accurate metamodel can be
reached by the use of different solvers such as Kriging, Radial Basis Function (RBF),
Support Vector Machine (SVM) or Multivariate Adaptive Regression Splines (MARS) to
generate surrogates able to mimitize the real behaviour of the physical model. In this
context, the Kriging method rises up as a large employed solver that considers a determin-
istic response as random function from a given physical problem (Lophaven et al. (2002)).
However, there is no conclusion that one single method is the best solver to reach a global
precise surrogate. Each one has its own limitations and advantages depending on the type
of problem involved. On the opposite way, what has been indicated in the last develop-
ments are the combination of different methods. As explained by G. G. Wang et al. (2006)
and indicated by Fernandez et al. (2019), Ye (2019), K.-H. Lee et al. (2019) and Baquela
et al. (2019), the definition of hybrid metamodels consists on the result of such combination
collecting the best features that each single method has.

For example, Baquela et al. (2019) searches for a coupling between genetic algorithm
and Kriging that updates the metamodel in each iteration searching for the best surro-
gate composition. Searching for the same goal, K.-H. Lee et al. (2019) combines differ-
ent solvers reducing the design space. Similar approach was followed by Streltsov et al.
(1995) that implemented sequence of partial random sampling in design space searching
for global optimization. Gu et al. (2019) also worked with hybrid metamodels combin-
ing Kriging, RBF and quadratic functions starting from random sampling based on LHS.
Other authors worked on adaptive hybrid approach such as Zhang et al. (2012), Zhang et al.
(2013), Yu et al. (2014) and Zhou et al. (2016). In that sense, the adaptive characteristic is
based on the change of internal parameters that play different participation of each solver
in the pool where they are combined in the hybrid algorithm. Interesting to note that Zhang
et al. (2013) compared three different sampling approaches (LHS, Sobol’s quasi-random
sequence, and Hammersley sequence), but only one is chosen as the best within the analy-
sis performed. In that case, no mixing of sampling approach is adopted.

Nevertheless, good emphasis can be placed on Hacker et al. (2001) and L. Wang et al.
(2019) that propose inovative hybrid methods for more efficient optimization. Hacker et al.
(2001) considers the coupling of genetic algorithm with Sequential Linear Programming.
L. Wang et al. (2019) proposes a new algorithm based on comprehensive learning strategy
based on the combination of four different methods: Improved Particle Swarm Optimiza-
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tion (IPSO) algorithm, Improved Whale Optimization (IWO) algorithm, improved archive
mechanism and dual-population evolutionary mechanism.

What can be observed in the L. Wang et al. (2019) is that the hybrid technique not only
is applied on surrogate models, but also for sampling, storage information and other steps
of the whole process involved in the optimization operation. The next section explains the
developments of hybrid methods applied on sampling processes.

1.2.3 Hybrid Sampling process

Hybrid sampling developments follow the same idea of hybrid metamodels, which is
based on the combination of different methods to improve the efficiency of a given process.
However, the main difference between hybrid metamodel and hybrid sampling approach is
the availability for the latter on more options of test criteria to check the efficiency of an
obtained sample. In such approach, the tests could be focused on internal sampling param-
eters, such as the maximum distance among the sampled points (Pan et al., 2014a).

In Pan et al. (2014b), a sequential optimization sampling based on extended radial basis
functions is proposed. In this work, two different phases have been implemented, In the
first one, the initial sample is obtained throught LHS. Then, the RBF takes place to gener-
ate a metamodel able to identify the extrema points of the response. From that step, density
functions are computed in order to find sparse regions. The minimum points from these
regions are added on the sampling as new points and this process continues until some fin-
ish criteria is satisfied. Interesting aspect in this work is the performance of the proposed
hybrid sampling in comparison to traditional methods based on pure LHS and pure RND,
which implements a sequential sampling getting information from the sample to foreseen
where new sample can be added in the design space. The limiting aspect on this proposed
algorithm is its parameterization, which is focused only on the maximum/minimum regions
of the response surface.

Ran et al. (2018) also discusses the effect of an efficient sampling on the accuracy of
the metamodel. Assuming one single stage of sampling is not enough to reach higher effi-
ciency, Ran et al. (2018) considers two steps of sampling adopting the Optimum Latin Hy-
percube Sampling (OLHS) coupled with restriction of design space. The OLHS approach
is a variance of LHS that is submited to an optimization process based on collumnwise-
pairwise exchange process. In such method, parts of the global design space are removed
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from the object of optimization sampling and focusing in regions of the global design space
that have potential for sampling improvement. Yao et al. (2013) also considers the hybrid
infill sample approach adopting the RBF neural network in two steps implementation. Ad-
ditionally, Pan et al. (2014a) uses the LHS concept to relocate the sample point that is not
well located from previous interation. In such processes, the sample does not change the
size, but keeps its searching for a better performance. However, according to the results
presented in all of these studies, some issues have been identified for high dimensional
and/or complex problems.

1.2.4 Proposed Algorithm

Regarding the reviewed literature, each proposed method presents an effort to maximize
the performance of the final metamodel. However, for high nonlinear and high dimension
problems, it becomes a challenge. In this context, the proposed algorithm goes in the same
hybrid approach direction considering the following:

• Spliting of design space, but not reducing it;

• Inserting the hybrid metamodel into the sampling process combining two different
metamodel solvers;

• Collecting the best sample set considering online approach 1 in order to generate the
final metamodel at once without the need to compare different metamodels to chose
the best; and

• Searching for less computational time.

In this context, the proposed algorithm considers Adaptive Kriging (AK) and Genetic
Algorithm (GA) as coupled solvers embedded in a code written in MATLAB. In next sec-
tion, the main contribution of this work is indicated based on the abovementioned approach.

1Online approach consists in obtaining the sample and its response during the processing cycle. In the
opposite, the offline method consists in getting all sample and finishing the whole process before obtaining
the response of such points.
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1.3 Dissertation Contribution

The main contribution of this dissertation is the use of hybrid metamodel concept in
the sampling process generating a new hybrid sampling method. This smart sampling op-
timizes the own metamodel generation using a relatively low number of sample points in
a faster computation time reaching high fidelity prediction. In order to pursue such main
contribution, other developments have also been achieved as following:

1. Appling the NSGA II genetic algorithm from Deb et al. (2002) on the sampling
process coupled with AK becomes an original way to build the HC for sampling ap-
plication. It allows to obtain a high fidelity metamodel in a relative faster process for
large quantity of variables;

2. Using a random mesh covering all variables of the problem instead of the traditional
cartesian mesh is also another original way to map the global design space. This
random approach, which is based on the centroid of cloud of points computing, is
applied on a sparse mesh divided in different zones of design space and covering a
large quantity of variables with relative low computational cost;

3. Implementing very sensible objective functions on NSGAII genetic algorithm based
on MSE and its derivative of MSE (dMSE) imposes a severe selective method to get
best individuals that optimize the sampling process; and

4. Speeding-up the GA convergence by monitoring the change of centroid location of
the generated populations. Such change implies on a faster convergence reaching
only few generations. This method has been chosen instead of checking directly how
the Pareto frontier is filled due to the the basic characteristic of the sampling process,
which is the main core of the proposed algorithm.

1.4 Dissertation Outline

Considering the elements pointed out so far, it is possible to describe the dissertation
outline starting by chapter 1, which has been composed by four parts: motivation, liter-
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ature review, dissertation contribution and dissertation structure. The first part described
the motivation to develop a more efficient method to generate a surrogate model than the
conventional ones available in literature (item 1.1). The second part presented a literature
review on this field and the contribution of the previous works in metamodel and optimiza-
tion developments (item 1.2). The third part indicated the new developments and the major
contributions of this dissertation (item 1.3). Finally, the last part presented the structure of
this dissertation (item 1.4).

Chapter 2 begins presenting the theoretical description and applications of the Kriging
Metamodel, its key factor based on the variogram estimator, and its uses in optimization
process. The theory described in this chapter is addressed to the method named on this work
as Conventional Kriging (item 2.1). Item 2.2 describes the spatial improvement method of
Conventional Kriging based on the Adaptive Kriging theory. The item 2.3 introduces the
theory of Genetic Algorithm and how it processes possible solutions to generate optimum
ones. It is also highlighted that the Genetic Algorithm considered in this research is related
to sampling method instead of an optimization tool. Finally, the item 2.4 describes the the-
ory of mixing algorithms generating the Hybrid Code.

Chapter 3 describes the overall architecture of the proposed algorithm beginning by the
description of the Conventional Kriging numerical implementation (item 3.1) and its adap-
tive method considering an enhancement of the first one (Adaptive Kriging – item 3.2).
Then, the Genetic Algorithm is described – item 3.3, and finally the complete scheme of
the Hybrid Code algorithm is presented (item 3.4).

In chapter 4, analytical benchmarks available in the literature are applied to the Hy-
brid Code for its validation. The mean error and time cost are the global efficiency criteria
used for comparison with the Conventional and Adaptive Kriging methods. In item 4.1,
the Branin function is used for validation and surrogate model comparisons. Also, a deeper
analysis and comparison on the sampling process applied for this bechmark is evaluated in
an example scenario. In Item 4.2, the Peak Family function with 2 variables and in item
4.3, the same function with 10 variables are used for comparison, also based on the global
efficiency criteria.

Chapter 5 presents engineering problems modeled by finite element method and their
structural responses applied on the Hybrid Code. Their results are also compared with the
ones obtained by Conventional Kriging method demonstrating the efficiency achieved by
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the new algorithm. In this context, item 5.1 presents the computations of a cantilever beam
and item 5.2 presents a more complex model, which is based on a representation of an
underwater explosion load on an orthotropic steel plate.

Finally, chapter 6 overviews new developments and results achieved by this research
(item 6.1) and lists the topics that can be addressed for future researches (item 6.2).
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CHAPTER 2

Theoretical description of Surrogate Models and
Genetic Algorithm

The first aspect that is important to highlight is the metamodel definition. In strict
sense, metamodel means model of a model. As seen in figure 1.2, the metamodel considers
the physical problem as a black box taking care only of its inputs and outputs. In opti-
mization problems, which are necessary to exploit several different combination of inputs
searching for an optimum solution, the metamodel becomes a feasible and cheap way to be
implemented. The challenge is to generate cost-effective metamodels with high fidelity on
physical models (e.g. minimum ε from figure 1.2).

This is the core of this research with focus on sampling process. Next topics will
present the theory of the typical Kriging method, based on DACE and named here as CK,
its improvement on the sampling process and known in the literature as AK, an approach
normally considered in optimization problems that is based on GA, and finally a new ap-
proach based on the mixing of such methods and called by this work as HC.

2.1 Conventional Kriging (CK)

The Kriging method was introduced by Danie G. Krige and formalized later by G.
Matheron. Such method is based on the spatial predicting process based on statistical anal-
ysis of minimum mean squared error that starts from known samples. The response for an
unknown location in the design space is estimated through the spatial variance analysis of
the sample called by variogram or correlatiogram (Cressie, 1993). There are different types
of kriging, such as simple, ordinary and universal.
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Simple kriging is based on the premise that the mean µ is known and constant in the
entire design space. Mathematically, it is described by the following equation:

y(x) = µ+ z(x), (2.1)

where z(x) is considered as the stochastic residuals of the estimative.

Ordinary kriging has the same general equation described by 2.1, but it is based on the
premise that the unknown response is a function of a constant and unknown mean plus the
stochastic residuals.

Finally, the universal kriging, which is considered by Sacks et al. (1989) and Cressie
(1993) following the DACE approach, assumes the existence of a trend on the response that
works as a non stationary function. In other words, the mean is variable and depends on its
location, which can be considered as a linear combination of known functions. Considering
that, based on Vlahopoulos et al. (2007), Cressie (1993) and Lophaven et al. (2002), such
approach has the following general equation:

y(x0) = F (β, x0) + z(x0), (2.2)

Where F (β, x0) becomes the regression model that is normally modeled by some polyno-
mial interpolation, while β is assumed as the regression parameters. It can be constant,
linear or quadratic according to Lophaven et al. (2002). This aspect will be further de-
scribed. For the stochastic residual, it can be modeled by different correlation models that
will also be presented in next subsection.

This research is based on the last kriging approach (universal kriging), which is called
by this dissertation as CK. The following topics focus on the description of such model.

2.1.1 Modeling of Universal Kriging

Based on Lophaven et al., 2002, the eq. 2.2 assumes the random process z(x) with
zero mean and covarianceR(xs) for the known points and r(x0) for the unknown response.
Also, it is assumed that the covariance R depends only on the distance between the sample
points h(xs) (which responses are known) and not on the location of those points (xs).
Thus, considering m as the quantity of sample points, let the following regression matrix
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F be described as:

F = [f(xs1)f(xs2) · · · f(xsm)] (2.3)

And:
ŷ(x0) = cTY, (2.4)

Where, Y is the known response matrix and c is a matrix of coefficients. In this context, the
error between the predicted response (ŷ) and the true value (y) can be derived as following:

ŷ(x0)− y(x0) =

= cTY − y(x0) =

= cT (Fβ + Z(xs))− (f(x0)
Tβ + z(x0)) =

= cTZ(xs)− z(x0) + (F T c− f(x0))
Tβ

(2.5)

Complying with unbiased condition:

F T c− f(x0) = 0

f(x0) = F T c
(2.6)

Considering the eq. 2.5 and the unbiased condition (eq. 2.6), the MSE named as δ can
be derived as:

δ = E[(ŷ(x0)− y(x0))
2] =

= E[(cTZ(xs)− z(x0))
2] =

= E[z(x0)
2 + cTZ(xs)Z

T (xs)c− 2cTZ(xs)z(x0)] =

= σ2(1 + cTRc− 2cT r),

(2.7)

Where σ2 is the variance of z.

Minimizing δ as a function of c and respecting the unbiased condition (eq. 2.6), the
lagrange multipliers (L, λ) can be applied in order to minimize δ as shown next:
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L(c, λ) = σ2(1 + cTRc− 2cT r)− λT (F T c− f)

∂L

∂c
(c, λ) = 2σ2(Rc− r)− λF

(2.8)

[
R F

F T 0

]
·

[
c

− λ
2σ2

]
=

[
r

f

]
(2.9)

Considering λ̃ equal to λ
2σ2 , the following solution can be obtained:

λ̃ = (F TR−1F )−1(F TR−1r − f)

c = R−1(r − Fλ̃)
(2.10)

Applying 2.10 into eq. 2.5:

ŷ(x0) = (r − Fλ̃)TR−1Y =

= rTR−1Y − (F TR−1r − f)T (F TR−1F )−1F TR−1Y =

= f(x0)
Tβ′ + rTR−1(Y − Fβ′),

(2.11)

Where β′ is (F TR−1F )−1F TR−1Y .

Also, the eq. 2.11 can be rewriten as shown next:

ŷ(x0) = f(x0)
Tβ′ + rRTγ (2.12)

Where γ is the correlation matrix:

Rγ = Y − Fβ′ (2.13)

Hence, the general equation of Universal Kriging stated by eq. 2.2 can be translated by
the eq. 2.12. The possible regression models that compose F and the alternatives for the
correlation function R in eq. 2.13 are described next.

2.1.2 Regression models

According to Lophaven et al. (2002), three different regression models can be used:
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Constant
f1(x) = 1 (2.14)

Linear
f1(x) = 1

f2(x) = x1

· ··

fn+1(x) = xn

(2.15)

Quadratic
f1(x) = 1

f2(x) = x1, · · ·, fn+1(x) = xn

fn+2(x) = x21, · · ·, f2n+1(x) = x1xn

f2n+2(x) = x22, · · ·, f3n(x) = x2xn

· ··

fp(x) = x2n,

(2.16)

Where p = 1
2
(n+ 1)(n+ 2) and n as the number of variables.

In this research, the quadratic regression model is the one considered for kriging equa-
tions.

2.1.3 Correlation models

The correlation function R(θ, h) relates the covariance of a given response with its
spatial location. However, the spatial dependence prescribed by such correlation is based
only on a defined vector h, which represents the distance among the points. The parameter
θ is an internal parameter computed from the following optimization solution:

θ ≡ |R|
1
nσ2 (2.17)

Then, according to Cressie (1993) and Lophaven et al. (2002), the correlation models are
expressed by equations 2.18 to 2.23 and illustrated in fig. 2.1.
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Linear function
R(θ, h) = max{0, 1− θ|hi|} (2.18)

Cubic function

R(θ, h) = 1− 3ξ2i + 2ξ3i , ξi = min{1, θ|hi|} (2.19)

Spline function

R(θ, h) = 1− 15ξ2i + 30ξ3i , 0 ≤ ξi ≤ 0.2

R(θ, h) = 1.25(1− ξi)3, 0.2 < ξi < 1

R(θ, h) = 0, ξi ≥ 1

ξ = θ|hi|

(2.20)

Spherical function

R(θ, h) = 1− 1.5ξi + 0.5ξ3i , ξ = min{1, θ|hi|} (2.21)

Exponential function
R(θ, h) = exp(−θ|hi|) (2.22)

Gaussian function

R(θ, h) = exp(−θh2i ) (2.23)

Although there is no conclusive approach on which correlation model is better (Bossong
et al., 1999, Ryu et al., 2002, and Cressie, 1993), the gaussian function was chosen in this
research as it fits better the metamodels used in the validation of the method described in
chapter 4.
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Figure 2.1: Example of different correlation functions

2.2 Adaptive Kriging (AK)

The key aspect of AK is to overcome the pure random approach of the Conventional
Kriging through a sistematic sampling based on specific metrics that allow the improve-
ment of final efficience on CK. There are different types of Adaptive Kriging methods that
differ on the particular criterion for sampling. Bouhlel et al., 2017 considered the gradient
of response for problems with large number of variables while Jones et al. (1998) assumed
the MSE of the design space. H. Liu et al. (2017) considered by its turn the maximum
error estimative. The common aspect on these approaches is the need to perform a first
Conventional Kriging loop to generate a basis metamodel before applying the criterion to
choose specific locations in the design space for new samplings.
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It is highlighted that the adaptive approach considered in this research is based on the
MSE criterion, which is determined throughout the design space. The maximum MSE
provides an idea about the error of the metamodel obtained from the first CK loop. In
this context, the overall MSE values are mapped in the design space considering the third
group of points named as control points (cp) (remember that there are other two set of
points named as sample and test points according to figure 1.2). The cp set consists on a
mesh distributed along the entire design space with the same variables of the sample and
test points. Details about control points mesh generation will be provided in chapter 3.

Therefore, after the first loop of Conventional Kriging, the large MSE locations are
identified and grouped in a smaller set of points. Then, the cp located on these regions are
ramdomly selected, added to the original sample and used to generate a new metamodel
using the same Kriging approach. Such process reduces the pure random aspect of CK
described by eq. 2.2. In this context, the new equation of the universal kriging for the
second loop becomes:

y(x0) = F (β, xMSE
0 ) + z(xMSE

0 ) (2.24)

Although the CK performance can be improved by such adaptive approach, this method
still faces some limitation due to the control points mesh size. If the number of cp is
small, the precision on the high MSE location decreases. If the opposite occurs in relation
to the cp mesh, the computation time is impacted due to the severe refinment of such
mesh. Considering that, the need to exploit other complementary methods that are able to
minimize the overall error of the estimation with reasonable computational time becomes
justified. The complementary approach used in this research is the Genetic Algorithm,
which is described in next topic. Chapter 4 will also show the comparative efficiency
between the Adaptive Kriging and its coupling with Genetic algorithm.

2.3 Genetic Algorithm (GA)

Also known as Evolutionary method, the GA applied in this research has been based
on the NSGAII code developed by Deb et al. (2002) and revisited by several other authors,
such as Yusoff et al. (2011), Eby et al. (1998) and Baquela et al. (2019). In general aspect,
this method mimics the mechanism of biologic species evolution through gene operations
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searching for better individuals after some population generations. Normally, such algo-
rithm is used for optimization process searching for best global or local solution, or even
for best metamodels to predict the desired response. Nevertheless, for the context of this
research, this method is applied on the improvement of a key step for metamodel genera-
tion based on the sampling process, similarly to the Adaptive Kriging approach.

Therefore, this topic will explain the main aspects of this process based on the NSGAII
algorithm and adapted to this current implementation covering the objective functions, gene
operation, and the elitism process.

2.3.1 Objective Functions

In GA, the sample points described in previous chapters about Conventional and Adap-
tive Kriging are called in this topic as individuals and their set is named as population. They
are ranked according to best scores using some metrics defined by the objective functions.
These functions are the first aspect that represents an adaptation from the original NSGAII
to the current work.

The development performed has similar approach to Maki et al. (2012), which estab-
lished a top and secondary objective functions. The initial population, which are the sample
points (sp), are used to provide enough elements in Kriging process to compute the MSE
values (eq. 2.7) for each individual of cp mesh. Taking into account these MSE values, the
first and top objective function is defined for each individual of such population defined in
the design space. The creation of cp mesh will be explained in detail on chapter 3.

Once the MSE value is computed for each cp, its respective dMSEv(xi) derived from
eq. 2.7 and related to each variable of the problem is also calculated. This parameter indi-
cates the location of maximum or minimum MSE. Then, it corresponds to the second and
third objective functions, or more if the problem has more than 2 variables. They work as
a secondary objective function.

Therefore, considering both types of objective functions (MSE and dMSE), the total
quantity of metrics becomes equivalent to the total number of variables plus one (v + 1):
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fo1 = MSE or fo1 = δ

fom = dMSEv(xi) or fom = ∂δ/∂xi,
(2.25)

Where fom is the objective function for m = {2, 3, ..., v + 1} and δ = MSE. Following
the eq. 2.7, these objective functions can be rewritten as following (eq. 2.26):

fo1 = max{MSE} = max{E[(ŷ(x0)− y(x0))
2]} = max{σ2(1 + cTRc− 2cT r)}

fom = min{dMSE} = min{2σ2((R− r)c′ − r′c)}
(2.26)

However, as mentioned before, the minimum dMSE can indicate two options: location
close to the maximum MSE or close to the minimum MSE. The first possibility is trivial
and desired. The second possibility can generate a problem due to the lack of contribution
on a better sampling performance. The way to solve this issue is the Paretto frontier method
already incorporated in NSGAII approach (Deb et al., 2002). After some generations, the
convergence of GA is achieved through the reaching on the best solutions in terms of com-
promise between maximum MSE and minimum dMSE for each population. This aspect
will better described in the Elitism Process. Moreover, in addition to that theoretical pro-
cess, for the current HC algorithm, an additional numerical feature has been considered in
this process, which is based on a severe selection criteria applied on the objective functions.
This feature will be detailed in the topic 3.3.1.

2.3.2 Gene Operations

Once collected the metrics from each individuals of a given population, they are sub-
mitted to two gene operations known as crossover and mutation. In fact, according to Deb
et al. (2002), half population are chosen as parents and they are submitted on such process:
90% of this set takes part on the crossover and the 10% complementary part participates on
the mutation process (figure 2.2).
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Figure 2.2: Genetic operations performed by NSGAII (Deb et al., 2002)

Basically, according to Deb et al. (1995), the crossover operation conserves the charac-
teristics of the parents to generate (or select) new individuals from the design space. Eq.
2.27 shows how this crossing can be processed.

bj = (2uj)
1
ρ+1 , for uj ≤ 0.5 and ρ = 20

bj = (
1

2(1− uj)
)

1
ρ+1

, for uj > 0.5 and ρ = 20

children1j =
1

2

(
(1 + b)parent1j + (1− b)parent2j

)
children2j =

1

2

(
(1− b)parent1j + (1 + b)parent2j

)
,

(2.27)

Where j ∈ {1, ..., v} and indicates a traceability with the respective parents. v corresponds
to the number of variables of the design space, ρ value is arbitrarily given by Deb et al.
(2002) and uj is a random number between 0 and 1.

Inversally to the crossover, the mutation needs only one single parent and its expression
is presented next as described in Deb et al. (1995):
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∆j = (2uj)
1

κ+1 , for uj < 0.5 and κ = 20

∆j = 1− (2(1− uj))
1

κ+1 , for uj ≥ 0.5 and κ = 20

children3j = parentj + ∆j,

(2.28)

Where j ∈ {1, ..., v} and indicates a traceability with the respective parents. v corresponds
to the number of variables of the design space, κ is arbitrarily chosen by Deb et al. (2002)
and uj is a random number between 0 and 1.

Note that each children obtained by the crossover or even by the mutation represents a
new particular location xi in the design space for the context of this research and new loop
of objective functions computation need to be performed.

2.3.3 Elitism Process

In this process, each individual of the population (parents + children) is scored consid-
ering the overall performance achieved by the objective functions and forming a group of
individuals named as non-dominated solutions (smallest rank). This comparative process
collects optimum data related to the objective functions using the Paretto frontier. By doing
that, each rank is computed allowing to choose the best individuals with better scores as
part of the next generation. NSGAII has a particular feature based on the crowding distance
considering the obtained metrics from the objective functions. This aspect imposes some
distance between the scores placed at the Paretto frontier, which implies on the adding
of some diversity on the next population. Such distance is normalized by the maximum
distance computed from each rank. After one single loop, the final set of chromossomes
configuration considering N individuals for a given population takes the form presented in
figure 2.3.

Figure 2.3: Chromossomes configuration computed by NSGAII (Deb et al., 2002)
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Through these generation loops, several new populations can be created searching for
even better scores from the objective functions. This process normally stops when its con-
vergence is reached. In the proposed algorithm, the method to define and to track such
convergence will be explained in chapter 3.

Figure 2.4 illustrates the relationship among the objective functions and how the opti-
mum individuals are identified in relation to the other ones. NSGAII identify the Paretto
frontier and the best individual can be collected from this set. The numeric method about
that specific selection is also explained in detail on chapter 3.

Figure 2.4: Theoretical Paretto frontier obtained from the relationship among involved
variables and objective functions. In this graph, only three objective functions (problem
with two variables) are presented for easy visualization.

2.4 Hybrid Methodology

Finally, as expected, the hybrid methodology joins all these approaches in a rational
method taking profit of the best advantages of each one in a single algorithm and achieving
the best optimization performance. Some researches that follows such method are Bouh-
lel et al. (2016), Baquela et al. (2019), K. Lee et al. (2019), Menz et al. (2019), Kleijnen
(2017), Dellino et al. (2009), Jeong et al. (2005), Y. Liu et al. (2014), Zhu et al. (2013)
and Tarek et al. (2006). In particular, the work done by Baquela et al. (2019) also tries to
combine the Kriging and the genetic algorithm methods. However, the key difference is
that the method proposed by Baquela et al. (2019) searches for the optimum metamodel
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through the computation of several ones using the GA and selecting the best ones from that
set. References Y. Liu et al. (2014) and Zhu et al. (2013) also have some similarity, as it
uses the GA application to update the metamodels achieving better performance. Differ-
ently from that works, the current research focuses on the straightforward adaptation for
this hybrid method on the sampling process inputting an adaptive process in the overall
code named here as Hybrid Code and generating a single metamodel with high fidelity and
relative low computational cost.

Hence, the proposed approach works with three processing layers getting a single and
relative efficient metamodel as shown in figure 2.5.

Figure 2.5: Global Hybrid Code flowchart.

Considering the Universal kriging or DACE as the starting task (Conventional Kriging),
the new cp mesh covering the entire design space in i zones takes into account all v vari-
ables works as the first processing HC layer. Then, the Adaptive kriging is implemented
as second layer considering MSE as criterion selection. Finally, the Genetic Algorithm
works as the third layer with v + 1 objective functions (MSE and dMSEv). This process
is able to reach even better new sample points (individuals) through gene operations from
cp mesh and their children. Next chapter will explain how these layers are computationally
implemented and how they communicate with each other.
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CHAPTER 3

Numerical Implementation

This chapter describes how each method is individually implemented and how they
are linked together in the Hybrid Code. All algorithms have been written in MATLAB
and for engineering applications, two finite element commercial softwares have been used:
ANSYS and ABAQUS. Moreover, the machine used to process all of them is intel(R)
core(TM) i7-2720QM 2.20 GHz and 8Gb for RAM memory.

Before continuing in the numeric description of each method, two main aspects have
been considered in all algorithm implementations and described in this section: the test
points and one metric chosen to evaluate the performace of the obtained metamodel, which
has been based on the normalized mean error.

• Test points

For all generated metamodel, it is necessary to evaluate its prediction performance tak-
ing into account new points sampled from the design space. These points are called test

points and they are sampled by RND approach employed in all the performed simulations
(see figure 1.2). For simplicity, 200 points (nt) are used in all of these cases.

• Normalized mean error

The metric chosen to evaluate the fidelity of each metamodel when compared to the
real function is the mean error (ε̄) computed from the difference between the response
prediction of the test point and its actual response, normalized by the maximum response
known from the set of test points (ymaxt ). Therefore, such evaluation metric is computed as
following:

ε̄ =
1

nt

nt∑
1

|ŷt − yt|
ymaxt

, (3.1)
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An additional metric used for global performance evaluation of the metamodel is the
consumed time related to its computing (e.g. learning stage) and trial performance (e.g.
trial stage) processes considering the due correlation with the mean error achieved. Both
metrics are presented in chapters 4 and 5.

3.1 Conventional Kriging

The first step of this algorithm is to collect the input data xi and yi from a given prob-
lem. These points are sampled using the RND method. As mentioned before, this part is
known as Learning Stage and important parameters are obtained from this set of points,
such as the correlogram, regression model and internal optimum parameter θ as described
by eq. 2.17. Once these information are obtained and used to generate the metamodel, the
test points are sampled and submitted to the metamodel for the final evaluation. This part
is known as Trial stage.

It is also important to highlight that, as mentioned in chapter 2, the interpolation model
and correlogram are quadratic and Gauss function, respectively. The following algorithm
1 presents an overview of the steps taken to get the metamodel and the measurement of its
performance. This algorithm is the basis of HC, which is described in section 3.4.

Algorithm 1: Conventional Kriging (CK) algortihm
Result: Metamodel obtained from CK and its mean error performance

1 Begin
2 Learning Stage routine:
3 sampling xi and yi through RND method
4 searching the minimum θ parameter for the correlogram function
5 Getting the metamodel from the interpolation and correlogram functions

6 Trial Stage routine:
7 for i=1 to t do
8 Applying the metamodel in each test point obtaining the ŷt and MSEt

9 computing the maximum response of the test points, ymaxt

10 computing the normalized error for each test point, εt = |ŷt−yt|
ymaxt

11 computing the mean error performance, ε̄, and the total time consumed, T
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3.2 Adaptive Kriging

The Adaptive Kriging, as described in Chapter 2, aims to provide a new sampling in
the design space from the results obtained in previous Conventional Kriging metamodel
in order to improve the accuracy of this estimator. In this context, two important features
are implemented in such algorithm: the control points mesh and its relation with specific
criteria (high MSE values). Both features are used to select new areas in the design space
to sample new points. They are described hereafter.

3.2.1 Control points mesh

In order to estimate the accuracy of the estimator in the entire design space, it is neces-
sary to generate a cloud of points called control points.

The generation of the control points mesh for a cartesian distribution is straightfor-
ward. The control points are equidistributed along the coordinates. The MSE values at
these points are mapped and the positions with the highest MSE (as seen in the red color
regions of figure 3.1) are the potential candidate areas for new additional points.

Figure 3.1: Cartesian mesh of control points for 2 variables problem generating MSE map
of the design space.

However, for problems with more variables, e.g. 3, 5, 10, ... , the computational time
involved to generate such mesh grows exponentially, which is proportional to the number
of points raised to the power of quantity of variables (N v), impacting the computational
time.
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The solution to overcome this obstacle is using a random or nearly random control point
distribution instead of equidistant coordinates. The method adopted is based on k-means
clustering (eq. 3.2), which means that the algorithm separates the cloud of points into
several different subclouds, called by zones. They are located in subspace regions of the
design space considering the euclidean distance of the points (xi) to the zone centroids (ci).
Such computation is performed in several iterations until its convergence (figure 3.2). For
this current work, 300 maximum iterations have been assumed as limit. This technique is
based on Lloyd (1982) and Arthur et al. (2007) and chosen for this mesh process due to the
influence of the distribution of the points on the topology of the design space. It has been
implemented in MATLAB according to reference MATLAB Manual - k-means Clustering

(2018).

d(xi, ci) = (xi − ci)(xi − ci)′

ci =

∑
xi

npoints

(3.2)

Figure 3.2: Kmeans iterations for zones convergence.

In this context, each zone becomes a small part of the complete domain that is filled by
one cluster of control points considering all variables of the problem. Figure 3.3 illustrates
the resulting control point mesh. The performance of this type of mesh for higher number
of variable problems is proportional to the number of points times the quantity of variables
(N · v), being much more efficient than the cartesian mesh. This meshing methodology has
been directly implemented in the code.

3.2.2 Control points mesh and MSE criterion

The MSE criterion for each zone in the control points mesh obeys the following rules:
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Figure 3.3: Random control points mesh based on subspace regions - each color represents
one zone.

• For variables less and equal to 4

It is assumed an initial sample of 3000 control points for each zone. Applying the MSE
criterion, this quantity reduces to 10 control points at each zone with the highest MSE
values.

• For variables larger than 4

It is assumed an initial sample of 7000 control points for each zone, which is reduced
by the MSE criterion to 50 control points at zone with the highest MSE values.

Following this approach, problems with large number of variables can be managed by
this Adaptive Kriging algorithm without huge impact on the computational time. For a
smaller number of variables, the number of control points is minimized while preserving
the overall performance of the predictor.

3.2.3 Algorithm overview

Applying the concepts presented in the previous items, the Adaptive Kriging is de-
scribed in the following algorithm 2:
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Algorithm 2: Adaptive Kriging (AK) algortihm
1 Begin
2 Conventional Kriging Algorithm 1:
3 sampling xi and yi through RND method;
4 searching the minimum θ parameter for the correlogram function;
5 Getting the metamodel from the interpolation and correlogram functions;

6 Random mesh routine:
7 Generating the random control points mesh;
8 Running the kmeans method identifing zones in the control points mesh;

9 Adaptive Kriging routine:
10 for i=1 to cp do
11 Applying the metamodel in each control point for each zone i obtaining

the MSEcp;

12 Identifying the maximum MSE locations for each zone (xcp);
13 Computing the real response of these maximum MSE locations (ycp);
14 Generating a new Kriging Metamodel considering new sample points

(xi + xcp; yi + ycp);

15 Trial Stage routine:
16 for i=1 to t do
17 Applying the metamodel in each test point obtaining the ŷt;

18 computing the maximum response of the test points, ymaxt ;
19 computing the normalized error for each test point, εt = |ŷt−yt|

ymaxt
;

20 computing the mean error performance, ε̄, and the total time consumed, T ;

3.3 Genetic Algorithm

The NSGA II Deb et al. (2002) is the Genetic Algorithm used in this research. Few
adaptations have been included in order to adjust it for the sampling purpose. The algorithm
overview and its main aspects are presented next.

3.3.1 Objective functions - MSE prioritization

According to topic 2.3.1, some additional particularities have been complemented in
the numeric implementation in order to improve the efficiency of the algorithm. In fact,
both objective functions (maximum MSE and minimum dMSE - eq. 2.26) used simultane-
ously may produce a drawback. If low dMSE is tracked, individuals placed at high and low
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MSE are selected. The same happens for high MSE location, where individuals can have
high and low dMSE.

In order to overcome this issue, besides of the normal Pareto frontier process considered
by NSGAII, the maximum MSE has been received a priority in relation to the lowest dMSE.
It means that for each population in each zone, the individuals that have MSE values lower
than the maximum one have their evaluation metric arbitarily changed: 1e − 11 for MSE
and 1e10 for dMSE. As result, such procedure selects only one individual that corresponds
to the maximum MSE as the best for a given population and for each generation in each
zone. The dMSE lowest values collected are only the ones correlated with the maximum
MSE individuals selected and then analysed together for best selection individuals. This
severe selective process forces to create a group of individuals composed by only the best
representatives for each generation and allows to the second objective function to be more
effective in further population generations. Thus, performing such process, all objective
functions are computed from each individual allowing to compose each chromossome fol-
lowing Deb et al. (2002). After some generations, until convergence, these individuals take
part on the Pareto frontier.

3.3.2 Convergence rate

This particular aspect has been discussed in the literature such as Ming et al. (2006),
Abu-Lebdeh et al. (2002), He et al. (2016), Louis et al. (1992), Sahin et al. (2010) and
Stark et al. (2002). These references focus in the optimization process, especially in the
Pareto frontier process, aiming to overcome the challenge to identify the global instead of
the local optimum solution.

For the sampling procedure adopted in this research, it is necessary to identify when the
best solution is achieved after some generations. This issue is solved by analysing the lo-
cation of the best individual selected from each generation obtained through the procedure
described in the previous topic (3.3.1). In summary, the convergence solution implemented
is based on the geographic location in the design space. It is established when the centroid
of each cloud of individuals obtained after each generation and normalized by complete
range of the domain changes less than 0.1% in comparison to the centroid achieved by
previous generation. Figure 3.4 illustrates this process. As consequence, convergence of
this GA is relatively faster in comparison with traditional genetic algorithms applied in
optimization problems, as it needs only few generations in the optimum search.
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Figure 3.4: Convergence process adopted for Genetic Algoritm based on the geographic
cloud centroid location.

3.3.3 Limit Boundaries of Design Space

Another relevant aspect added on NSGA II algorithm is the enforcement of boundaries
in the design space. The gene operations described by the topic 2.3.2 may result in indi-
viduals located out of the design space. If such result is obtained, these individuals are
neglected, not taking part on the Pareto frontier evaluation.

3.3.4 Final selection from Pareto Frontier

Once the convergence has been reached and the Pareto frontier has been evaluated, the
best individuals of each zone configure a set that joints both maximum MSE and minimum
dMSE characteristics. From this set, the best individual is randomly chosen in order to be
added as a new point in the original sample points set.

3.3.5 Algorithm overview

After the particular descriptions previously presented, it is adequate to show the overview
of the whole algorithm. As already mentioned, it is fully based on Deb et al. (2002) with
specific adjustments described before. In order to make easier its understanding, the algo-
rithm can be split in two parts: Introductory and Evolutionary part. The first part is focused
on the first generation and aims to compute the objective functions for each individual from
the population 0. The second part is related to computation of next generations, which in-
cludes objective functions, ranking, placing individuals on the Pareto frontier, selecting
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best individual of a given generation, and convergence monitoring.

Algorithm 3: Genetic Algorithm (GA) based on Deb et al. (2002) - Introductory
part

Result: Computing the Objective Functions MSE and dMSE for the first
generation of individuals.

1 Begin
2 collecting the xi by each individual for the first population;
3 computing the objective functions (MSE and dMSEv) for each individual;
4 setting the chromossome composition for each individual;
5 performing the elitism process through the rank of each individual for the first

population based on the fitness of their chromossome;
6 Assembling the final chromosome format;

Algorithm 4: Genetic Algorithm (GA) based on Deb et al. (2002) - Evolutionary
part

Result: Obtaining the best individual after some generations.

7 Begin
8 LOOP N=1 to number of generations (ngen)
9 selecting the best individuals of given population to generate their children;

10 performing the gene operations on the parents in order to get the children;
11 computing the overall population as parents + children;
12 Making sure that all individuals are inside of design space;
13 ranking all individuals;
14 sorting the individuals based on their rank;
15 computing the individual crowding distances;
16 grouping the best individuals in a pool through Pareto frontier;
17 computing the centroid of best individuals cloud in order to check the GA

convergence;
// To be continued ...
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18 Main Loop
19 LOOP continuation N=1 to ngen

20 if convergence achieved then
21 selecting the best individual from the Pareto frontier pool for a given

generation and consider as output;
22 stop the loop;

23 else
24 selecting the best individuals from the Pareto frontier pool for a given

generation and create next generation with new loop;

3.4 Hybrid Code

As already explained in topic 2.4 and illustrated on figure 2.5, HC combines all pre-
vious algorithms in a single code searching for the best sampling. This process aims the
achieving of a better metamodel able to generate a more accurate prediction. Basically, the
first part is composed by a random mesh able to cover the entire design space including
all variables involved on the problem (topic 3.2.1). In the second part, the AK described
in topic 3.2 takes place performing the first candidates selection from the control points
mesh. In sequence, such pre-selection becomes input to be considered by GA described
in topic 3.3, which performs severe selection for each population generation achieving the
best point for each zone of the design space that complies with both objective function
types described in topic 2.3.1 and eq. 2.26. Figures 3.5 and 3.6 show a detailed flowchart
of the overall code.
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Figure 3.5: Flowchart of the Hybrid Code - Overview.

Figure 3.6: Flowchart of the Hybrid Code - Adaptive Kriging and Genetic parts details.

In the first part, once the initial sample is selected by RND (x0 and y0), the control
points mesh is generated as shown in figure 3.3. Important to mention that the quantity of
zones to be considered for the control points mesh is an input by the user. In summary,
as it is presented in this chapter and in the chapter 2, the number of zones will depend on
the quantity of points desired to be added on the original sample by the HC since each
zone outputs one new point to be added on the sample. For example, if it is desirable to
add 10 points on the sample (named as Na on the algorithm), 10 zones are created in the
mesh. Then, the first part is the generation of the first kriging metamodel based on the
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known sample points (Basis Metamodel Generation). After that stage, the random mesh
takes place dividing the design space into zones. From the AK in Adaptive part, the MSE
for control points in each zone are computed. It selects the highest MSE locations for each
zone following the scheme described by the topic 3.2.2 and generates the first set of points
(population 0) to be the input for the GA. In the Genetic part, the code runs for each zone
as described in topic 3.3.

Another relevant aspect is the possibility to update the sample considering intermedi-
ate MSE evaluations. Such MSE updating consists on the division of desired points to be
added by HC into groups. After selecting the points of the first group, the Basis Meta-

model is updated and a new MSE map is evaluated in the whole control points mesh. From
these new results, new loop of AK and GA run for all zones and selecting the next group
of points to be added on the original sample. It repeats until completing the quantity of
desired points to be added in the original sample. This process is a tentative to improve
the final performance of HC and has been called in this dissertation as Basis Metamodel

loop. However, one important aspect needs to be observed: spliting the additional points in
group of loops means that the cp mesh will be splitted in the same fashion, but still covering
the overall design space. In this sense, the same geographic zones are considered in all of
these loops. For example, if the idea is to add 20 points in the original sample considering
2 loops, 10 zones covering the whole domain with 10 new additional points are created in
both scenarios. This process indicates if the quantity of zones also has some influence in
the final performance. As it is shown in the chapters 4 and 5, this additional process does
not bring a significant improvement considering the balance between the computational
time and mean error prediction.

The Final Evaluation takes place with the complete sample, which is used to generate
the final Kriging metamodel followed by its performance evaluation on test points. In order
to follow the same format of other methods presented, the HC is described by the following
algorithm 5, which is validated in chapter 4 through its comparison with Conventional and
Adaptive Kriging.
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Algorithm 5: Hybrid Code (HC) algorithm
1 Begin
2 Conventional Kriging Algorithm 1:
3 sampling xi and yi through RND method
4 searching the minimum θ parameter for the correlogram function
5 Getting the metamodel from the interpolation and correlogram functions

6

7 Random mesh Algorithm 2:
8 Considering number of points to be added number of points to be

added (Na) for the original sample
9 Generating the random control points mesh

10 Running the kmeans method identifing Na zones in the control points mesh

11

12 Adaptive Kriging Algorithm 2:
13 for i=1 to cp do
14 Applying the metamodel in each control point for each zone i obtaining

the MSEcp

15 Identifying the maximum MSE locations from each zone (xcp) in order to
get the population 0

16

17 Genetic Algorithm Introductory part - Algorithm 3:
18 collecting the xi by each individual for the first population
19 computing the objective functions (MSE and dMSEv) for each individual
20 setting the chromossome composition for each individual
21 performing the elitism process through the rank of each individual for the

first population based on the fitness of their chromossome
22 Assembling the final chromosome format

23

24 Genetic Algorithm Evolutionary part - Algorithm 4:
25 selecting the best individuals of given population to generate their children
26 performing the gene operations on the parents in order to get the children
27 computing the overall population as parents + children
28 Making sure that all individuals are inside of design space
29 ranking all individuals
30 sorting the individuals based on their rank
31 computing the individual crowding distances
32 Selecting the best individuals through Pareto frontier to make part on the

next generation
33 Computing the centroid of best individuals cloud to check the GA

convergence

// To be continued ...

37



34 Main Loop // continuing...
35

36 Genetic Algorithm Evolutionary part - Algorithm 4:
37 if convergence achieved then
38 Selecting the best individual and consider it as output
39 Stop the loop
40 else
41 Creating the next generation and perform a new loop

42

43 Basis Metamodel loop updating MSE map:
44 if YES for New Basis Metamodel loop then
45 Reinitializing the overall run considering new MSE control points mesh

values

46

47 Final Evaluation Trial Stage:
48 else
49 Jointing the final set of new points to the original sample
50 Generating the final Kriging metamodel
51 Applying the final Kriging metamodel on the test points
52 computing the mean error performance, ε̄, and the total time consumed,

T
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CHAPTER 4

Hybrid Code Validation

In this chapter, the HC validation is demonstrated using three benchmark analytical
problems: Branin function for 2 variables and Product Peak Integrand Family function for 2
and 10 variables according to Surjanovic et al. (2020). For each of them, the performance of
HC is presented and compared with CK. In addition, a sensitive analysis also compares the
performance of HC with the code operating only with AK. In particular for such analysis,
the pure AK considered also the points with low dMSE in complement with the ones with
high MSE in order to be consistent when compared with HC. In that case, once these points
are grouped, only one is randomly selected as a representative of the best ones for each cp
mesh zone, similarly as it occurs in the HC process.

4.1 Branin Function

4.1.1 Function description

According to Surjanovic et al. (2020), Branin function has two variables and three
global minima. Its general definition is expressed by the following equation:

f(x) = a(x2 − bx21 + cx1 − r)2 + s(1− t) (4.1)

Considering the constants as a = 1, b = 5
4π2 , c = 5

π
, r = 6, s = 10, and t = 1

8π
, in

the range −5 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 15, the formulation and shape of Branin function
becomes as indicated in eq. 4.2 and presented in figure 4.1:

y =

(
x2 −

5

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10. (4.2)
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Figure 4.1: Branin function according to Surjanovic et al. (2020).

4.1.2 Sampling Process

One key aspect described in chapter 3 is the partition of design space into zones. Thus,
following the figure 3.3, the domain of Branin function has been divided in zones, accord-
ing to the different collors shown in figure 4.2.

Figure 4.2: Branin function domain divided by zones.

The sampling process applying adaptive and genetic algorithms is exemplified by the
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use of a Branin Function considering 20 initial sample points addressed for Conventional
Kriging. The use of HC supplies another 20 additional sample points.

In the first step, the initial sample points are obtained by RND procedure. These points
are highlighted in green in figure 4.3 and are in zones 3, 5, 6, 7, 10, 12, 14, 15, 16, 17 and
20.

Figure 4.3: Zone location of the initial sample obtained by pure RND.

The genetic process applied on each zone follows the algorithm 5 described in chapter 3.
The generations and the search for Pareto frontier are shown in Table 4.1 for each objective
function. In reality, such table presents four figures applicable for each zone. On north,
two figures are based on the objective function results. Considering the fact that the Branin
function has only two variables, three objective functions are defined in the GA: MSE,
derivative of MSE related to x1 (dMSE1) and derivative of MSE related to x2 (dMSE2).
They have been plotted on these figures with the MSE as the y-axis and dMSE1 and dMSE2
as x-axis. The values obtained from the last generation are identified by filled marks. The
values of each objective function correspond to the results before the change imposed by
MSE prioritization described in the topic 3.3.1. On the southwest, the cp mesh of respective
zone is identified over the Branin function for easy visualization. Finally, on the southeast
figure, the final sampling result obtained from such processing is showed considering red
points as identification of new samples reached by HC. In this figure, the green points are
the initial sample obtained from RND, which are the same ones presented in figure 4.3, and
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the light blue circles are the overall cp mesh. For each red point sampled, the respective
zone indicated in figure 4.3 is also presented.

Table 4.1: Generations convergence - Pareto frontier on each zone

Zone 1

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 2

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 3

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 4

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 5

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 6

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 7

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 8

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 9

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 10

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 11

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 12

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 13

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 14

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 15

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 16

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 17

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 18

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 19

Genetic objective functions

ZONE ADDED RED POINT
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Table 4.1: (continued)

Zone 20

Genetic objective functions

ZONE ADDED RED POINT
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In general, there is no straightforward correlation between the objective functions be-
haviour and the respective zone where they are evaluated. However, according to the fig-
ures, it is noticed that the objective function values are influenciated by the presence of
initial sample indicated by green points. Such relationship is due to the fact that these sam-
ple points are used to compute all MSE and dMSE values for the cp mesh through CK and
then, close to green points, the MSE values shall be relativey small. Also, it is important to
mention that in a single computation loop (see topic 3.4), one red point from a given zone
have no influence on the localization of next red point in next zone.

Therefore, it is possible to observe that zones with large relative distance from the ini-
tial sample points have relative high MSE and, as consequence, few generations computed
from GA. Such characteristic can be applied on zones 2, 4, 8, 9, 10, 13 and 15. In special,
zones 2, 4, and 13, demonstrate a linear relationship among the objective functions. In
opposite sense, the zones 1, 3, 5, 6, 7, 11, 12, 14 and 20 present high non-linear Pareto
frontier with relative higher GA participation.

Table 4.2 shows the final sampling obtained from GA and its comparison with the ones
obtained through the CK and AK methods. Such results also considers the sampling for
the Branin fuction related to an evolution from 20 to 80 points considering the already ex-
isting 20 initial sample points (green points). These initial points do not have necessarily
the same distribution due to their random selection. However, as already explained about
CK, the sampling is relatively weak, as it uses only the RND procedure. In AK, the sam-
pling improves, following the process described in the chapter 3 and in the beginning of
this chapter. However, it still fails to distribute the sample in a homogeneous way creating
some voids and aleatory configuration in the design space. Finally, the HC tries to uni-
formize the sample distribution into the design space. The next topic shows the efficiency
of metamodels generated by each sample, demonstrating the improvement achieved by HC.
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Table 4.2: Comparison of final sampling for CK, AK and HC

CONVENTIONAL KRIGING ADAPTIVE KRIGING HYBRID CODE

20 added points

30 added points

40 added points

50 added points
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Table 4.2: (continued)

CONVENTIONAL KRIGING ADAPTIVE KRIGING HYBRID CODE

60 added points

70 added points

80 added points

4.1.3 Validation

Focusing on performance measurement, the mean errors obtained in CK, AK and HC
are compared as indicated in figure 4.4.

The lower abciss axis indicates the total size of sample points while the upper axis indi-
cates the quantity of new points added on the sample by AK and HC. The range analyzed
for Branin is between 40 and 100 points considering a set of 20 and 80 new added points
on the sample. It means that AK and HC uses 20 fixed sample points to generate the Basis
Metamodel before the application of their respective method.

Therefore, it is possible to observe that CK presents the worst performance and AK
demonstrates an intermitent improvement. The best performance indicated in figure 4.4 for
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the range of the analyzed sample size is obtained by HC.

Figure 4.5 shows the bahavior of the HC after applying 3 loops for the Basis Metamodel
obtained by CK through the initial 20 fixed points, according to the concept explained in
topic 3.4. In this result, regardless the slight improvement achieved by the 3 loops case,
it does not represent a significant improvement in comparison to the one obtained by the
single loop.

Figure 4.4: Mean error comparison among CK, AK and HC methods for Branin function.

Figure 4.5: Mean error analysis for CK and Basis Metamodel loops in HC method for
Branin function.
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Regarding the computational time related to CK and HC methods, figure 4.6 shows the
difference among the methods using 1, 2 and 3 Basis Metamodel loops. As the Branin func-
tion is represented by a simple analytical equation, there is a large difference in time scale
between CK and HC, as the HC requires many more processing steps than CK. However,
as it is shown in topic 4.2.3, the HC has advantages when dealing with complex problems
that involves time consuming computations for obtaining the sample point results.

Figure 4.6: Computation time comparison among CK and HC with 1, 2 and 3 Basis
Metamodel loops for Branin function.

4.2 Product Peak Integrand Family Function

4.2.1 Function description

According to Surjanovic et al. (2020), the Product Integrand Family function is n-
dimensional and is described by eq. 4.3. The domain for xi is [0,1]. The parameters
ui and ai are 0.5 and 5, respectively. Figure 4.7 shows the function for 2 variables.

f(x) =
n∏
i=1

1

a−2i + (xi − ui)2
(4.3)
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Figure 4.7: Product Peak Integrand Family function for 2 variables according to Surjanovic
et al. (2020).

4.2.2 Validation for 2 variables

Similarly to the Branin function, the performance measurement analysis is determined
by the mean error comparison among CK, AK and HC presented in figure 4.8.

The lower axis shows the total number of sample points, which varies from 40 to 130
points. The number of new points, that are added to the initial sample by AK and HC, is
shown in the upper axis and varies from 30 to 120 points. Thus, the AK and HC uses 10
initial fixed sample points to generate the Basis Metamodel before the application of the
method.

The results show again the worst performance achieved by CK and an intermitent im-
provement obtained by AK. Even considering a singular better performance of AK over
HC on 70 sample size scenario, the last one shows the best overall performance.

67



Figure 4.8: Mean error comparison among CK, AK and HC methods for Product Peak
Integrand Family function of 2 variables.

Figure 4.9: Mean error analysis for CK and Basis Metamodel loops in HC method for
Product Peak Integrand Family function of 2 variables.

Considering again the Basis Metamodel generated by CK through the fixed 10 points,
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figure 4.9 shows the behavior of HC considering 3 loops. Differently than the Branin func-
tion, the 3 loops case shows a relative better performance for total sample size scenario
larger than 70 points.

Figure 4.10 compares the computational time between CK and HC for 1, 2 and 3 Basis
Metamodel loops. Similar short computation time have been captured for CK in compar-
ison to HC as presented in Branin function. However, focusing on the Basis Metamodel
loops, sometimes more generations from GA can be involved in HC computations for a
specific loop than other different loop scenario. It happens for the cases shown in figure
4.10, which leads to some fluctuations. However, no significant improvement of updating
loops for Basis Metamodel has been identified considering such results.

Figure 4.10: Computation time comparison between CK and HC with 1, 2 and 3 Basis
Metamodel loops for Product Peak Integrand Family function of 2 variables.

4.2.3 Validation for 10 variables

The validation procedure for the 10 variables case compares the mean errors from the
CK, AK and HC, which are shown in the graph of figure 4.11. The lower axis indicates
the total size of sample points with a range from 120 to 165 points. The upper axis shows
the quantity of new points added on the sample by AK and HC, which is between 50 and
95 points. Thus, the AK and HC uses the 70 sample points for CK to generate the Basis
Metamodel before the application of the methods.
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Similarly than before, the worst performance is indicated by CK, while AK shows an
intermitent improvement. HC shows the best performance in the overall range of the sam-
ple analyzed.

For Basis Metamodel generated by CK through fixed 70 points, figure 4.12 shows the
behavior of HC considering 3 loops. Similarly than before, no signficant difference is
observed among these three analyzed loops.

Figure 4.11: Mean error comparison among CK, AK and HC methods for Product Peak
Integrand Family function of 10 variables.

Figure 4.12: Mean error analysis for CK and HC method with Basis Metamodel loops for
Product Peak Integrand Family function of 10 variables.
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Regarding the computation time, figure 4.13 shows the time difference between CK and
HC for 1, 2 and 3 Basis Metamodel loops.

It is also observed in figures 4.11 and 4.12 a small decrease of the mean error with the
increase of the sample size for both methods CK and HC.

Regarding the computational time, figure 4.13 provides the overall time performence
between the methods, which has time and error difference scale between CK and HC. How-
ever, figure 4.14 shows the comparison of the computational time obtained by processing
additional points in CK method such that it reaches the same mean error of HC method.
The number of additional points added to CK are between 300 and 1100 points. Although
the final time scale shows the same order of magnitude between the methods with similar
accuracy (mean error), CK needs around 25 times more points than HC. Such representa-
tiveness for much more points for CK in relation to HC can make a large difference when
dealing with more complex problems.

Figure 4.13: Computation time comparison among CK and HC with 1, 2 and 3 Basis
Metamodel loops for Product Peak Integrand Family function of 10 variables.
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Figure 4.14: Computation time comparison between CK and HC with 1, 2 and 3 Basis
Metamodel loops for Product Peak Integrand Family function of 10 variables considering
extra sample points (300 to 1100) for CK.

4.3 General comments

As presented and discussed in this chapter, HC has been validated considering two an-
alytical functions: Branin and Product Peak Integrand Family for 2 and 10 variables. In
all cases, HC shows better mean error performance than CK and AK. Specifically for the
last method, its comparison with HC indicates that only the AK coupled with cp mesh that
brings the adaptative approach is not enough to obtain a robust metamodel with relative
high fidelity as HC does. GA complements the AK with cp mesh through gene operations
abling to exploit deeper the design space with new points to be added in the sample.

Similar mean error results achieved by using different number of loops is explained by
the high efficiency of the MSE parameter in identifying the new sample points. This is ver-
ified by checking that the original MSE obtained from the single Basis Metamodel loop at
each zone of the domain does not have a significant change in the following loops. In other
words, the updated Basis Metamodel has not significant difference from its original config-
uration. This behavior can be generalized for any type of problem. It also demonstrates a
weak influence on the quantity of zones to be meshed with the final sampling performance.
This aspect is confirmed in the next chapter with the simulation of engineering aplication
problems.
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Regarding the computation time, the results obtained from the Product Peak Integrand
Family function for 10 variables indicate that the time efficiency of HC increases with the
increasing of the quantity of variables. Such correlation also occurs due to the increase of
the general complexity in the problems calculation. Chapter 5 confirms these conclusions.
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CHAPTER 5

Application of the Hybrid Code on engineering
problems

Once HC has been validated in chapter 4, its application in engineering problems
through the use of FEM commercial codes configures the next step of analysis, which is
presented in this chapter. Considering that, two problems are analyzed: the cantilever beam
simulated in ANSYS and a more complex problem related to UNDEX scenario simulated
in ABAQUS.

5.1 Cantilever Beam

5.1.1 FEM Model

The cantilever beam has 10 sections with cross section dimensions equal to 0.5m x
0.5m. Each section has 1m length and its thickness varies as in figure 5.1. The thickness is
constrained such that it is either equal to its predecessor or decreases towards the free end.
This constraint is imposed only for the CK, cp mesh and test points. For simplicity, it is not
applied on the points generated by GA in HC.

Figure 5.1: Cantilever beam model.
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The geometry is shown in figure 5.1. The mesh uses SHELL281 quadratic shell ele-
ments according to Elements Reference - ANSYS Manual (2007). The boundary conditions
are clamped in one end and a local vertical force applied in the other end (figure 5.2).

Figure 5.2: Boundary conditions applied on the cantilever beam.

The material is common steel with linear mechanical properties (5.1).

Table 5.1: Material Properties

PROPERTY/PARAMETER MODEL INPUT VALUE

Elasticity Modulus 200 GPa
Poisson ratio 0.3

The maximum stress at the clamp section and the maximum displacement at the free
end are the outputs, as presented in an example of the stress results over the beam sections
shown in figure 5.3.

75



Figure 5.3: Example of stress results applied on the cantilever beam.

5.1.2 Displacement Results

The mean error for the displacement of the free end of the cantilever beam, obtained
from metamodels generated by HC and CK, is shown in figure 5.4. The total number of
sample points varies from 100 to 180 and the quantity of new points added by HC varies
from 10 to 90 points. The HC uses a metamodel generated by CK based on fixed 90 points
(Basis Metamodel). The result achieved by HC considering three Basis Metamodel loops
is shown in figure 5.5.

Figure 5.4: Mean error comparison betweeen CK and HC methods for the displacement
results of the cantilever beam.
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Figure 5.5: Mean error comparison betweeen CK and Basis Metamodel loops of HC for
the displacement results of the cantilever beam.

From the results shown in figures 5.4 and 5.5, the mean error from HC is approxi-
mately 4 times smaller than the mean error of CK for the first sample size scenario (100
total sample points). This difference reduces with the increase of the number of sample
points. Also, the use of Basis Metamodel loops does not improve considerably the mean
error performance of HC. From this result, it is possible to infer that, for problems of large
complexity, the need of a smaller number of sample points for obtaining the same mean
error, by the HC procedure, can be an advantage regarding the computational time.

Figures 5.6 and 5.7 presents the same results of the computation time, but in different
zoom. The results confirm the faster processing of the HC to obtain the same level of error
of the CK for more complex problems, as mentioned in topic 4.2.3. Figure 5.8 shows an
example of the time difference between the procedures for a 2% mean error.
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Figure 5.6: Computation time comparison between CK and HC for 1, 2 and 3 Basis
Metamodel loops related to Cantilever Beam in displacement results.

Figure 5.7: Computation time comparison, in a different time scale, between CK and HC
for 1, 2 and 3 Basis Metamodel loops related to Cantilever Beam in displacement results.
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Figure 5.8: Computation time analysis for a 2% mean error between CK and HC for 1, 2
and 3 Basis Metamodel loops related to Cantilever Beam in displacement results.

5.1.3 Stress Results

The mean error performance for the maximum stress at the clamped end of the beam,
achieved by HC and CK, is presented in figure 5.9. The total number of the sample points
are between 100 and 180 and the quantity of new points added by HC is the same number
of points used for the maximum displacement case (between 10 and 90 points). Figure
5.10 compares the mean error of the CK metamodel with the mean error of the HC, which
is approximately half the mean error achieved by CK for a small sample size. The mean
error performance of HC estabilizes for larger sample sizes. Regarding the number of Basis
Metamodel loops, no considerable difference in the mean error performance is noticed.
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Figure 5.9: Mean error comparison between CK and HC methods for Cantilever Beam in
stress results.

Figure 5.10: Mean error analysis for CK and Basis Metamodel loops for HC method
related to Cantilever Beam in stress results.

Figures 5.11 and 5.12 compare the computational time of HC and CK for different
sample size scales. These results confirm again the efficiency of HC for large quantity
of variables in comparison to the CK method. Establishing the same 1% mean error for
both methods in figure 5.13, it is noticed a computational time of the HC about 20% of
the computational time of the CK. In this analysis, the difference about computation time
spent by CK to achieve similar mean error performence than HC becomes huge (around
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5000 sec for CK against 1000 sec for HC).

Figure 5.11: Computation time comparison between CK and HC for 1, 2 and 3 Basis
Metamodel loops related to Cantilever Beam in stress results.

Figure 5.12: Computation time comparison ibetween CK and HC for 1, 2 and 3 Basis
Mtamodel loops related to Cantilever Beam in stress results (time scale from 550s to 900s).
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Figure 5.13: Computation time for a mean error of 1% between CK and HC for 1, 2 and 3
Basis Meamodel loops, related to Cantilever Beam in stress results.

5.2 Underwater Explosion

The UNDEX problem represents a specific class of engineering application since it
involves a very high dynamic problem in a short physical time frame (order of milisec-
onds). In the following subsections, the FEM model is described and the HC performance
is analyzed. The FEM model is simulated in ABAQUS solver.

5.2.1 FEM Model

In this FEM model, the explosion is modeled as a bubble of gas with high energy
following the Geers et al. (2005) and Geers et al. (2002) works described in Hibbitt et al.
(2018a), Hibbitt et al. (2018b) and eq. 5.1.

V̈ (t) =
4πac
ρf

Pc[0.8251exp(−1.338t

Tc
+ 0.1749exp(−0.1805t

Tc
)], (5.1)

Where:
V̈ (t) is the volume acceleration during the shock wave;
Tc = km

1/3
c (ac/m

1/3
c )B;

Pc = K(m
1/3
c /ac)

1+A;

mc, ac are the mass and radius of the explosive charge;
K, k, A and B are constants for the charge material;
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ρf is the mass density of the fluid;
t is time.

Such bubble of gas produces an incident pressure wave in the fluid as modeled by eq.
5.2.

pI(xj, t) ≡ pt(t)px(xj), (5.2)

Where:
px(xj) = 1

Rj
;

pt(t) =
ρf
4π

(
ac
Rj

)A
V̈

((
ac
Rj

)B
t

)
, for the shokwave phase assumed as tI < 7Tc;

pt(t) =
ρf
4π
V̈ = ρf (a

2ä+ 2aȧ), for the oscillation phase assumed as tI ≥ 7Tc;
Rj ≡‖ xs − xj ‖;
xj - location in the domain where the load is applied;
xs - location in the domain for the source point;
x0 - standoff reference point, which is located inside of the computational domain and in-
corporates the time-history of the incident wave.

Integrating these equations through fourth-order Runge-Kutta integrator with variable
time steps, the loading over some structure can be obtained. For this context, the present
work considers such loading on a stiffened submerged plate as described in the references
Woyak (2002) and Jen et al. (2010) and following the scheme presented in figure 5.14
considering a plate 4m x 4m clamped at its edges.

Figure 5.14: Global scheme of the UNDEX loading on a stiffened submerged plate.
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The geometry (figure 5.15) is modeled in ABAQUS with two different FEM mesh el-
ements: acoustic mesh for the fluid assuming 4-node linear acoustic tetrahedron element
(AC3D4) and lagrangean mesh for the stiffined plate assuming 4-node doubly curved thin
or thick shell, reduced integration, hourglass control and finite membrane strains (S4R),
according to Hibbitt et al. (2018b). Both are indicated in figure 5.16.

Figure 5.15: ABAQUS FEM model for UNDEX problem.

Figure 5.16: FEM mesh for the fluid and plate.

The model parameters are listed in table 5.2.
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Table 5.2: FEM Model Parameters

PROPERTY/PARAMETER MODEL INPUT VALUE

Fluid Properties

Density 1025 kg/m3

Bulk modulus 2140.4 MPa

Structure Properties

Density 7850kg/m3

Elasticity Modulus 200 GPa
Poisson ratio 0.3
Yield stress 270 MPa

Rupture Stress 480 MPa

Plastic strain limit 0.36

Explosion model Parameters

Type of explosive charge TNT
Speed of sound 1500 m/sec
Gas specific heat ratio 1.27
Gravity acceleration 9.81 m/sec2

Atmospheric pressure 10e5 Pa
Flow drag coefficient 0.25
Flow drag exponent 2
K constant 52110000
k constant 9.95e-6
A constant 0.186
B constant 0.18
Kc constant 1045000000
Charge density 1654 kg/m3

mass 1kg

The results form ABAQUS solver are presented in figures 5.17 to 5.18 for the fluid and
structure, respectively.
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Figure 5.17: Isosurface of pressure field on the fluid acoustic elements
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Figure 5.18: Maximum equivalent stress for the stiffened plate

Considering an specific element and node in the mesh of the plate (element 6991 and
node 1443) and in the mesh of the fluid (node 127), it is possible to analyze the correspon-
dent kinematic behaviour, which brings the respective time evolution according to figures
5.19 to 5.22.
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Figure 5.19: Stiffened plate and the element 6991 / node 1443

Figure 5.20: Z displacement for node 1443 and equivalent stress for element 6991 of the
stiffened plate
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Figure 5.22: Pressure variation for node 127 of the fluid

Figure 5.21: Fluid and node 127.

The vertical displacement of node 1443 of the stiffened plate is the output to be moni-
tored. The thicknesses of the stiffeners are the variables, according to the range shown in
table 5.3.
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Table 5.3: Range of thicknesses adopted for each structural entity of the stiffened plate

Planking - 20mm to 40mm
Small web - 10mm to 25mm
Small flange - 15mm to 30mm
Big web - 10mm to 25mm
Big flange - 15mm to 30mm
Bar plate - 10mm to 25mm

The next subsection presents the results obtained by applying the CK and the HC pro-
cedures.

5.2.2 Results

Considering a set of initial sample and test points, the mean error performance can be
evaluated by the CK and HC. Figure 5.23 presents the results for a total number of sample
points between 29 and 33 points. The initial metamodel is generated by the CK procedure
with 28 fixed sample points (Basis Metamodel). The HC procedure generates one new
sample point at a time. The results are presented in figure 5.24 considering the 1 to 3 Basis
Metamodel loops applied on HC.

Figure 5.23: Mean error peformance for CK and HC related to UNDEX problem

90



Figure 5.24: Mean error comparison between CK and Basis Metamodel loops for HC
method related to UNDEX problem

The mean error obtained by HC in the scenario with 29 sample points has a magnitude
5 times smaller than the one obtained by CK. For more points added, the mean error dif-
ference reduces.

About the particular abrupt mean error drop ε̄ of CK and its fast agreement with HC
starting from 30 points presented in figure 5.23 and 5.24, it can be explained through two
main aspects. The first one is related to the Kriging convergence, which shall be compliant
with the regression formulation stated in eq. 2.16. Considering the assumed regression
model is quadratic, a minimum sample points p for a given quantity of variables n becomes
necessary for proper Kriging convergence, as illustrated in Figure 5.25.

Figure 5.25: Region of convergence for Kriging quadratic regression model

For the current UNDEX problem and considering such formulation, six variables im-
poses 28 points as minimum necessary sample size, which is applied for the Basis Meta-
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model generation. In this scenario and considering one additional point, CK demonstrates
relatively higher mean error achieved by a poor predictor. Such behavior is not observed
in HC results, which demonstrates lower mean error since the begin. Comparing both ap-
proaches, the smaller sample size corresponds to the interested scenario for HC.

The second aspect is related to the visualization of the samples resulted from CK and
HC, which is presented in figure 5.26 and 5.27. The green circles are the 28 initial sample
considered by the Basis Metamodel. The filled green points are the ones added by CK and
the filled red points are the ones related to HC. Two different total sample sizes have been
visualized: 29 and 30 points (1 and 2 added points by CK and HC). Considering that are
six variables in such problem, the first variable has been fixed and all faces of the domain
in relation to the first variable have been compared. What can be observed is the difference
between both methods for 29 total sample size considering the majority of such views. The
CK added sample is located in the interior of design space, while the HC sample is located
at the edges. Considering 30 total sample points, the second CK sample is located closer
to the edge approaching to the HC behaviour. This aspect agrees with the first aspect, con-
sidering the difficulty of prediction for CK assuming the minimum sample size.

Figure 5.26: Sample comparison results from CK (filled green point) and HC (filled red
point)
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Figure 5.27: Sample comparison results from CK (filled green point) and HC (filled red
point) - continuation

Regarding the computational time, HC also demonstrates to be more efficient than CK,
obtaining a smaller mean error in less time for the single Basis Metamodel loop (as shown
by the first three marks of the first loop on figure 5.28). As an example, for a 2% defined
level of mean error, CK demands around 6950 sec, while HC reaches the same performance
350 sec before (figure 5.29). For two and three Basis Metamodel loops, the performance
of HC presents the same order of magnitude for the performance of the single loop HC.

Figure 5.28: Computation time comparison between CK and HC for 1, 2 and 3 Basis
Metamodel loops related to UNDEX problem
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Figure 5.29: Computation time comparison between CK and HC with 1, 2 and 3 Basis
Metamodel loops, for a 2% mean error, related to UNDEX problem

5.2.3 General comments

The mean error and the computational time of the HC procedure show a better perfor-
mance than the ones from the CK procedure, according to the results obtained from the
cantilever beam and UNDEX problems. Additionally, for the cantilever beam problem, in-
creasing the number of variables improves even more the computational time performance
of the HC for all Basis Metamodel loops compared to CK, as indicated in figures 5.8 and
5.13. For UNDEX problem, although the quantity of variables is less than the cantilever
beam, HC still performs better than CK for single Basis Metamodel loop in terms of com-
putation time reaching on the same conclusion obtained from previous problems. For mean
error, all scenarios analyzed for HC reached a better behavior than CK.

A paticular discussion has been presented for the minimum sample size necessary to
allow the Kriging convergence depending on the quantity of involved variables and the best
HC performance for smaller samples when compared with CK, as observed in figures 5.23,
5.26 and 5.27.

Another relevant aspect is related to the complexity of the analyzed problems and the
type of output considered. If the vetical displacement results presented in the figure 5.4
and 5.23 are compared, similar mean error drop from lower to larger sample size can be
observed. This scenario is not quite the same when the stress result for cantilever beam is
analyzed, which needs more samples to make the CK results approaching the HC perfor-
mance. It can be explained through the typical stress behaviour that is more complex than
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the displacement output. Although the particular UNDEX problem analyzed focuses only
in the displacement result, the stress prediction achieved in the cantilever problem indicates
the HC reaching better performance for more complex problems.

In respect of Basis Metamodel loops, as demonstrated in chapter 4, there is no sig-
nificant improvement in using 2 and 3 loops over the single loop. In this context, as the
computation time is the priority parameter, the obtained results support the use of the single
loop HC as the most efficient procedure.
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CHAPTER 6

Conclusion and Future Research

In this new proposed method, elements from the general metamodel obtained by the CK
and its adaptive approach are combined with the evolutionary theory used in the NSGAII
into a single algorithm. This new approach of smart sampling aims to use minimum sample
data in order to generate an efficient metamodel with a better performance. Pursuing this
main goal, the proposed algorithm brings a sort of achievements that is summarized in the
next topic.

6.1 Achievements Overview of the New Approach

1. Combining GA with AK algorithm in a single hybrid method
It has been the main contribution based on a singular combination between GA and
AK to be applied on multivariable problems. Both procedures work in a collaborative
way providing their best intrinsic aspects in a single algorithm aiming to achieve an
optimum sample with relative low computation time and able to generate an efficient
metamodel.

2. Multivariable non-cartesian mesh based on zones of design space
For multivariable problems, a cartesian mesh is not time efficient due to the expo-
nential increasing of points that are needed to cover all design space. In order to
overcome this computation time difficulty, a random mesh separated in zones of de-
sign space through kmeans formulation is used. This original solution imposes a
more efficient exploitation of a given domain searching for best location to add new
sample points;

3. Selection criteria for Adaptive Kriging
MSE parameters have been considered in the selection criteria for AK algorithm.
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This aspect works as a filter to create the first population of points selected for each
zone in the GA.

4. Specific combination of objective functions implemented in NSGAII genetic al-
gorithm
Due to the GA participation in the overall algorithm and the main goal to provide
an efficient sample based on relative small sample size, a specific combination of
objective functions based on MSE and dMSE has been implemented. In this sense,
a gene selection has been implemented using the maximum MSE and low dMSE in
order to elect one single point from each zone of design space;

5. GA convergence
In order to mitigate the computation time and also taking into account the sampling
objective, a new GA convergence tracking has been implemented considering the
centroid of the population cloud obtained for each generation. This new approach
reaches the convergence in a relative short time after few generations;

These five achievements match with the main contribution of this research and provide
an overview about all aspects described in this dissertation. The next topic shows potential
aspects that can be deeper investigated considering the data obtained from this current
research.

6.2 Future Researches

From the contributions of this work, the following sugestions of future researches are
presented:

1. General learning machine improvement
The hybrid sampling described in this dissertation illustrates a learning machine pro-
cess dedicated to provide a suitable sample able to build an efficient surrogate model.
However, this process can be generalized on an algorithm able to predict any contin-
uous physical behavior in classical mechanics and fields of physics. In this context,
more complex physical models could be considered. The continous behavior is a
constraint for this analysis as the Kriging method is based on a continuous response
surface. If a discrete domain is object of analysis, another solver could be coupled
with GA, such as SVM, RBF or Neural Network (NNW). Nevertheless, the global
approach proposed in this work is still applicable for such scenario.
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2. Reducing of samples
One of the main goal pursued by HC is to provide minimum data able to generate
an efficient surrogate model. Although the results from the examples of chapters 4
and 5 show a considerable reduction in the sample size, the proposed quantity of
control points applied in problems that involve more variables could be not sufficient
to reach a relative small sample. In this context, a more robust criteria to fill the cp
mesh for larger quantity of variables than the problems explored in this dissertation
could be investigated in future work. This process can contribute to the robusteness
of cp mesh to more efficiently cover the design space and reduce the final sample
size as a consequence.

3. Order reducing
Another approach that could be added on this proposed method is the capability to re-
duce the order of a given problem considering only the most important variables. One
technique available in the literature is the Principal Component Analysis (PCA). The
main basis of this approach is to identify the strongest variables and to perform the
truncation of the problem computing only the more relevant variables for the solver.
The straighforward consequence is the reduction of the computational time. The dis-
advantage is a relative degradation of the final accuracy due to the truncation. In this
context, the use of HC with an improved criteria for cp mesh selection mentioned
in previous item could increase the global performance, covering only the important
variables. This development can become a new approach to deal with higher complex
multivariable problems that are usually constrained by large computational time.
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