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ABSTRACT

Our modern era has seen an explosion in the amount of valuable information stored

in large and complex datasets. The growing scale, diversity of data structures, and

incomplete observations in these datasets pose new challenges for statistical learning.

Motivated by these challenges, this dissertation addresses three important problems

below.

(I) The first part of the dissertation presents how ordinary differential equations

(ODE) can be novelly used to enhance modeling flexibility and computational effi-

ciency in survival analysis for complex and incomplete censored data. Despite rich

literature on survival analysis, most existing statistical models and estimation meth-

ods still suffer from practical limitations such as restricted model capacity and a

lack of scalability for large-scale studies. We introduce a unified ODE framework

for survival analysis that allows flexible modeling and enables a statistically efficient

procedure for estimation and inference. In particular, the proposed estimation proce-

dure is computationally efficient, easy-to-implement, and applicable to a wide range

of survival models. Moreover, to accommodate data in diverse formats, we extend

the ODE framework by leveraging deep neural networks for powerful prediction.

(II) The second part of the dissertation focuses on statistical models for signed

networks. Statistical network models are useful for understanding the underlying

formation mechanism and characteristics of complex networks. However, statistical

models for signed networks have been largely unexplored. In signed networks, there

exist both positive (e.g., like, trust) and negative (e.g., dislike, distrust) edges, which

xvii



are commonly seen in real-world scenarios. The positive and negative edges in signed

networks lead to unique structural patterns, which pose challenges for statistical

modeling. In this part, we introduce a novel latent space approach for modeling

signed networks and accommodating the well-known balance theory in social science,

i.e., “the enemy of my enemy is my friend” and “the friend of my friend is my friend”.

The proposed approach treats both edges and their signs as random variables, and

characterizes the balance theory with a novel and natural notion of population-level

balance. This approach guides us towards building a class of balanced inner-product

models, and towards developing scalable algorithms via projected gradient descent

to estimate the latent variables. We also establish non-asymptotic error rates for the

estimates.

(III) The third part of the dissertation focuses on applications of statistical ma-

chine learning to healthcare. In particular, quick and accurate prediction of disease

progression can provide valuable information for clinicians to provide appropriate care

in a timely manner. The success of prediction models often relies on the availability of

a large number of labeled training data. However, in many healthcare settings, only

a small minority of available data is accurately labeled while unlabeled data is abun-

dant. Further, input variables such as clinical events in the medical records are usu-

ally of a complex, longitudinal nature, which poses additional challenges. Motivated

by the scarcity of annotated data, we propose a new semi-supervised joint learning

method for classifying clinical events data, which requires fewer labeled training data

while maintaining the same prediction performance when compared to the supervised

method.

xviii



CHAPTER I

Introduction

The modern era has seen an explosion in the amount of valuable information

stored in emerging datasets. For example, in healthcare, with the growing adoption

of electronic health record (EHR) systems, clinical data, including laboratory mea-

surements and results, diagnostic and procedure codes, and medication orders have

become widely available (Goldstein et al., 2017). The wealth of EHR data is a clear

benefit in that it has enormous potential for biomedical and healthcare research such

as studying drug safety and effectiveness (Lin and Schneeweiss, 2016), clinical knowl-

edge extraction (Hong et al., 2021), and risk predictive modeling (Bennett et al.,

2012). More examples in other disciplines include the wide usage of social media,

which provides rich relational information among users that can be used for recom-

mender systems (Sun et al., 2015); the availability of protein-protein interactions

could be analyzed to help assign protein function (Vazquez et al., 2003). Despite the

valuable information, the complexity of modern data also poses many new challenges

for statistical learning in scientific research and engineering applications, of which

three important such challenges are

1. Growing scale of datasets : Recent advances in data collection and storage pro-

vide massive amounts of data for research. For instance, the organ procurement

and transplantation network is a national transplant information database that

1



has collected and reported data on every organ donation, transplant event, and

waiting list candidate. Analyzing such medical records of millions of patients

with follow-up of over more than thirty years requires computationally efficient

statistical methods (He et al., 2017).

2. Diversity of data structures : In addition to the large scale, present-day data can

take diverse forms. As one example, EHR data in the medical information mart

for intensive care (MIMIC) database contains not only patients’ demographic

data, but also radiology images, clinical notes in free texts, and irregularly

time-stamped laboratory tests and physiological measurements (Johnson et al.,

2016). Moreover, connectivity and interaction relationships among individuals

of a complex system are often represented as networks such as social networks,

biological networks, and traffic networks (Newman, 2010). Given such diversity

of data structures, many traditional statistical methods originally developed for

standard vector data have become less suitable for complex data analysis due

to the lack of modeling capacity and flexibility.

3. Incomplete observations : In real-world data collections, the outcome of interest

may not be observed for various reasons. For example, when analyzing the sur-

vival time until death, we frequently observe censored data since patients may

opt out of the treatment during the study, in which case, instead of observing the

survival time, we record the time to the last follow-up (Miller Jr., 2011). There

are also cases in which the outcomes are completely unknown for a majority

of samples due to technical reasons or high cost of annotation, such as accu-

rate diagnostics of disease progression. Statistical methods that appropriately

leverage these complex and incomplete data for research are desirable.

The above challenges arising from statistical learning for large-scale and complex-

structured data lead to the following foremost research questions: methodologically,
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how to enhance the modeling flexibility given the diverse types of predictor variables

within data points and the relationships among data points; how to make appropriate

statistical inference and accurate predictions given incomplete observations that are

often encountered in various applications; and computationally, how to improve the

computational efficiency given the tremendous growth of available data points. In

particular, this dissertation addresses these questions in the following contexts.

(I) Unified ODE Framework for Large-Scale Survival Analysis. Survival

analysis is an important branch of statistical learning where the outcome of interest

is the time until occurrence of an event. In practice, some events may not be observed

due to a limited observation time window or missing follow-up, which is known as

censoring. In this case, instead of observing an event time, we record a censored

time, for example, the end of the observation window, to indicate that no event has

occurred prior to it. Survival analysis methods take into account the partial informa-

tion contained in the censored data and have crucial applications in various real-world

problems, such as modeling solar activity in astronomy, disease occurrence in health,

reliability of devices in engineering, and customer lifespan in marketing (Chen et al.,

2009; Miller Jr., 2011; Modarres et al., 2016). Despite the rich literature on survival

analysis, the growing scale and complexity of present-day data present new demands

that existing statistical models and estimation methods cannot entirely satisfy. Most

of these methods suffer from practical limitations including a lack of scalability for

large-scale data, statistically inefficient estimators, and complicated numerical imple-

mentations.

To address these issues, in Chapter II, we introduce a novel ordinary differen-

tial equation (ODE) approach to survival analysis. In particular, we recognize that

maximum likelihood estimation (MLE) with censored data can be viewed as an ODE

constrained optimization problem. This key observation has inspired us to take a

3



new perspective on modeling the time-to-event data – viewing the hazard as the

dynamic change of the cumulative hazard, and quantifying them together using an

ODE. Following this connection, we further propose a scalable procedure for esti-

mation and inference founded upon well-established numerical solvers and sensitivity

analysis tools for ODEs. Remarkably, this ODE approach has led to important gains

in modeling, computation, and statistical efficiency. 1) The proposed ODE modeling

framework is sufficiently general to unify many existing survival models, including

the proportional hazards model, the linear transformation model, the accelerated

failure time model, and the time-varying coefficient model. The generality of the

proposed framework serves as the foundation of a widely applicable estimation proce-

dure. 2) The proposed estimation procedure overcomes various practical limitations

of existing estimation methods, such as scalability against maximum partial likelihood

estimation for the time-varying Cox model, and statistical efficiency and numerical

stability against rank-based methods for the linear transformation model, which have

been demonstrated through extensive simulation studies. 3) We establish a new gen-

eral sieve M-theorem to establish the asymptotic distributional theory for complicated

bundled parameters induced by the ODE notion, and show the semi-parametric effi-

ciency of the proposed regression estimate. The new M-theorem can also be useful

for developing the asymptotic distribution of sieve estimators for other models.

To further accommodate data in diverse formats, such as longitudinal laboratory

test and radiology images, a promising idea is to leverage deep neural networks into

survival analysis due to their capability of automatic feature extraction from large-

scale raw data. While scalable learning of neural networks in classification or regres-

sion tasks is straightforward, the existence of censoring in survival analysis leads to

difficult-to-evaluate integrals in MLE, which imposes an intrinsic optimization chal-

lenge for training neural networks. To avoid computing this integral, most existing

methods either made additional structural assumptions (Katzman et al., 2018) or
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discretized the continuous event time with the cost of potential information loss (Lee

et al., 2018). However, the proposed ODE framework can be naturally extended with

deep neural networks and address the optimization challenge by using an efficient nu-

merical approach. Our approach shows strong prediction performance on large-scale

real-world data examples over existing state-of-the-art methods.

The materials in this chapter are mainly adapted from our research papers (Tang

et al., 2022a,b). Tang et al. (2022a) is a joint work with Kevin He, Gongjun Xu, and

Ji Zhu; Tang et al. (2022a) is a joint work with Jiaqi Ma, Qiaozhu Mei, and Ji Zhu.

(II) Latent Space Approach for Signed Networks. Networks represent con-

nectivity relationships between individuals in a complex system and are ubiquitous in

diverse engineering and scientific fields, such as biology, computer science, economics

and sociology. In a network, a node represents an individual and an edge between two

nodes indicates the presence of a certain relation. Real-world networks are heteroge-

neous in their variety of edge and node attributes. For example, in signed networks,

there exist both positive and negative edges, and such signed relationships are com-

mon. Examples include like and dislike relationships in social networks among users;

and cooperation and competition in international relation networks among countries.

While research on networks has steadily increased in recent years to understand the

underlying formation mechanism and characteristics of complex networks, most sta-

tistical network models focus on binary networks and are thereby inadequate for

modeling signed networks. Modeling signed networks is challenging not merely due

to the additional sign for each edge, but because the presence of positive and negative

edges depends on the other. In particular, the balance theory (Harary et al., 1953) in

social science postulates that balanced triangles (three nodes connected to each other

with a positive product of edge signs; see Figure III.1 in Chapter III for examples)

should be more prevalent than unbalanced triangles in signed networks. This the-
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ory directly coincides with the proverb, “the enemy of my enemy is my friend” and

“the friend of my friend is my friend”, for which recent studies have found empirical

evidence (Leskovec et al., 2010; Feng et al., 2020).

In Chapter III, we introduce a novel statistical framework to provide generative

models for signed networks while accommodating the balance theory. Specifically,

the proposed framework statistically formalizes the balance theory by introducing

the novel notion of population-level balance. This framework enables the investiga-

tion of the balance property for a general class of latent space models, where the

presence of an edge and its sign depend on nodes’ positions in a low-dimensional la-

tent space. Latent space models are particularly attractive due to their interpretable

structure, their nature for network visualization, and their ability for downstream

machine learning tasks, such as node clustering and classification, and network link

prediction. For this general class of latent space models, we derive practical condi-

tions for a model with inherent population-level balance, which has further guided us

to propose a class of balanced inner-product models. We have also developed scalable

estimation methods based on projected gradient descent algorithms and established

their non-asymptotic error rates. In addition, we apply the proposed approach to

an international relation network, which provides an informative and interpretable

model-based visualization of countries during World War II. The materials in this

chapter are adapted from joint work with Ji Zhu (Tang and Zhu, 2022+).

(III) Semi-Supervised Learning for Longitudinal Clinical Events Data.

Classification is one of the most important statistical learning tasks, of which the

goal is to predict the label, given input features using a previously trained model

or rule. In general, the success of prediction models relies on the accessibility of a

large number of labeled training data. However, in many healthcare settings, only

a minority of available data is accurately labeled, while unlabeled data is abundant.
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Thus, an attractive research direction is developing semi-supervised learning meth-

ods that can incorporate easy-to-collect unlabeled data to help improve prediction

accuracy. While there have been many works following this direction, there are fewer

works that can take longitudinal input such as laboratory tests and charted events

that are commonly seen in EHR. Further, most existing approaches separate feature

extraction using unlabeled data and building prediction models using labeled data

into two steps.

In Chapter IV, we propose a semi-supervised learning method targeting for longi-

tudinal clinical events data. Specifically, our model consists of a sequence generative

model and a label prediction model, and the two parts are learned end to end using

both labeled and unlabeled data in a joint manner to obtain better prediction per-

formance. With this approach, related data can cluster well in the learned feature

space under supervision from labeled data. We develop efficient algorithms based on

variational inference techniques to estimate parameters. Using five mortality-related

classification tasks on the MIMIC III database, we demonstrate that the proposed

method outperforms the purely supervised method that uses labeled data only and

existing two-step semi-supervised methods. Our approach can help reduce the cost of

collecting clinical labels in building prediction models. The materials in this chapter

are adapted from joint work with Jiaqi Ma, Akbar Waljee, and Ji Zhu (Tang et al.,

2020).
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CHAPTER II

Survival Analysis via Ordinary Differential

Equations

2.1 Introduction

Survival analysis is an important branch of statistical modeling, where the pri-

mary outcome of interest is the time to a certain event. In practice, event times

may not be observed due to a limited observation time window or missing follow-up

during the study, which is referred to as censored data. Survival analysis methods

handle these complex and incomplete censored data and have important applications

in various real-world problems, such as rehospitalization, cancer survival in health-

care, reliability of devices, and customer lifetime (Chen et al., 2009; Miller Jr., 2011;

Modarres et al., 2016).

Many statistical models have been developed to deal with censored data in the lit-

erature. For example, the Cox proportional hazard model is probably the most classi-

cal semi-parametric model for handling censored data (Cox, 1975), and it assumes that

the covariates have a constant multiplicative effect on the hazard function. Although

easy to interpret, the constant hazard ratio assumption is often considered as overly

strong for real-world applications. As a result, many other semi-parametric models

have been proposed as attractive alternatives, such as accelerated failure time (AFT)
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models, transformation models, and additive hazards models. See Aalen (1980), Buck-

ley and James (1979), Gray (1994), Bennett (1983), Cheng et al. (1995), Fine et al.

(1998), and Chen et al. (2002) for a sample of references. Given different assumptions

made in these semi-parametric models, different estimation and inference procedures

have also been developed accordingly, such as maximum partial likelihood based es-

timators (MPLE) (Zucker and Karr, 1990; Gray, 1994; Bagdonavicius and Nikulin,

2001; Chen et al., 2002), least square and rank-based methods (Buckley and James,

1979; Lai and Ying, 1991; Tsiatis, 1990; Jin et al., 2003, 2006), non-parametric max-

imum likelihood estimators (NPMLE) (Murphy et al., 1997; Zeng and Lin, 2007b),

and sieve maximum likelihood estimators (MLE) (Huang, 1999; Shen andWong, 1994;

Ding and Nan, 2011; Zhao et al., 2017).

Despite successful applications of these existing models and their estimation meth-

ods, the growing scale and diversity of formates of modern data poses new challenges

that are not entirely addressed. For example, electronic health records of millions of

patients over several decades are readily available, and they include laboratory test

results, radiology images, and doctors’ clinical notes (Johnson et al., 2016; Goldstein

et al., 2017). Research towards more flexible and scalable modeling of event times

has attracted great attention in recent years.

In this chapter, we introduce a novel Ordinary Differential Equation (ODE) notion

for survival analysis. We show that it provides a unified view of many existing survival

models and opportunities to develop more flexible model structures such as neural

networks and, more importantly, facilitates the development of a scalable and easy-to-

implement estimation and inference procedure, which can be applied to a wide range

of ODE survival models. We note that the proposed approach is founded upon well-

established numerical solvers and sensitivity analysis tools for ODEs, and it overcomes

various practical limitations of existing estimation methods when applied to different

survival models for large-scale studies.
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Specifically, the proposed framework models the dynamic change of the cumulative

hazard function1 through an ODE. Let T be the event time and X be covariates.

Denote the conditional cumulative hazard function of T given X = x as Λx(t). Then

Λx(t) is characterized by the following ODE with a fixed initial value

 Λ′
x(t) = f(t,Λx(t), x)

Λx(t0) = c(x)
, (2.1)

where the derivative is with respect to t, f(·) and c(·) are functions to be specified,

and t0 is a predefined initial time point. In particular, function c(·) determines the

probability of an event occurring after t0; for instance, Λx(0) = 0 corresponds to

the case when no event occurs before time 0. Further, function f(·) determines how

covariates x affect the hazard function at time t given an individual’s own cumulative

hazard. Thus, different specifications of the function f(·) lead to different ODE

models.

Next, we comment on both benefits of the ODE approach in terms of modeling

and computation and new theoretical challenges induced by the ODE notion, and

summarize our contributions below.

• Firstly, the ODE modeling framework is general enough to unify many afore-

mentioned existing survival models through different specifications of the func-

tion f(·), which serves as the foundation of a widely applicable estimation pro-

cedure that will be developed later. For example, the ODE (2.1) is equiva-

lent to the Cox model when f(·) takes the form α(t) exp
(
xTβ

)
for some func-

tion α(·), and it is equivalent to the AFT model when f(·) takes the form

q(Λx(t)) exp
(
xTβ

)
for some function q(·). Similarly, we can obtain many more

models such as the time-varying variants of the Cox model, the linear trans-

1The derivative of the cumulative hazard function describes the instantaneous rate at which the
event occurs given survival, and is a popular modeling target in survival analysis.
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formation model, and the additive hazards model to name a few (see Section

2.2 for details). We note that the ODE notion can provide new and sometimes

more explicit interpretations in terms of the hazard by re-writing the existing

models in the ODE form. In addition, the generality of the proposed framework

offers an opportunity for designing more flexible model structures and model

diagnostics.

• Secondly, and also more importantly, introducing the ODE notion facilitates

the development of a general and easy-to-implement procedure for estimation

and inference in large-scale survival analysis. In Section 2.3.1, we illustrate the

proposed procedure by using a general class of ODE models as an example.

In particular, this general class includes the most flexible linear transformation

model, where both the transformation function and the error distribution are

unspecified. Since the f(·) function for the general model contains both finite-

dimensional and infinite-dimensional parameters, we propose a spline-based

sieve MLE that directly maximizes the likelihood in a sieve space. We provide

an easy-to-implement gradient-based optimization algorithm founded upon lo-

cal sensitivity analysis tools for ODEs (Dickinson and Gelinas, 1976), where

numerical ODE solvers are used to compute the log-likelihood function and

its gradients. Since efficient implementations of both ODE solvers and splines

are available in many software, the resultant algorithm is easy to carry out in

practice. It is worth noting that, in comparison to existing estimation meth-

ods, the proposed procedure has advantages in various aspects, such as scala-

bility against MPLE for the time-varying Cox model, optimization-parameter

efficiency against NPMLE, statistical efficiency and numerical stability against

rank-based methods for the linear transformation model. We demonstrate these

advantages through extensive simulation studies. For example, when the sample

size is 8, 000, it takes the proposed ODE approach about 6 seconds to estimate
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the semi-parametric ODE-AFT model while the rank-based method needs 350

seconds.

• Thirdly, we note that the ODE notion brings new challenges to asymptotic

distributional theory. While many asymptotic distributional theories for M-

estimation in semi-parametric models have been developed (see Huang (1999),

Shen (1997), Ai and Chen (2003), Wellner and Zhang (2007), Zhang et al.

(2010), He et al. (2010), Ding and Nan (2011) for a sample of references), they

cannot be directly applied to our setting. Among them, the proposed the-

ory in Ding and Nan (2011) considers bundled parameters where the infinite-

dimensional parameter is an unknown function of the finite-dimensional Eu-

clidean parameter and has been applied to the AFT model, and recently, to

the accelerated hazards model in Zhao et al. (2017). However, for the general

class of ODE models, the estimation criterion is parameterized with more gen-

eral bundled parameters where the nuisance parameter is an unknown function

of not only finite-dimensional regression parameters of interest but also other

infinite-dimensional nuisance parameters. To accommodate this different and

challenging scenario induced by the ODE notion, we develop a new sieve M-

theorem for more general bundled parameters. By applying it to the general

class of ODE models along with ODE related methodologies (Walter, 1998), we

show consistency, asymptotic normality, and semi-parametric efficiency for the

estimated regression parameters. The proposed theory can also be extended to

develop the asymptotic normality of estimators for other ODE models.

• Finally, we recognize an intrinsic optimization challenge due to the existence

of censoring when leveraging highly flexible model structures such as neural

networks for survival analysis, and show how the proposed ODE framework can

be naturally used to address this optimization challenge, so as to accommodate
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data in diverse formats and make powerful predictions. In particular, we model

f(·) as a neural network taking the cumulative hazard Λx(t), the time t, and the

covariates x as inputs, and allow efficient estimation of the model in large-scale

applications using stochastic gradient descent. Compared with existing methods

in deep learning survival analysis (Faraggi and Simon, 1995; Ching et al., 2018;

Katzman et al., 2018; Lee et al., 2018; Gensheimer and Narasimhan, 2019;

Chapfuwa et al., 2018; Kvamme et al., 2019), our proposed method is able to

provide a broad family of continuous-time survival distributions without strong

structural assumptions and potential information loss from discretizing event

times.

The rest of this chapter is organized as follows. We introduce the ODE modeling

framework and present a general class of ODE models as special cases in Section 2.2.

We provide the estimation and inference procedure and related theoretical results in

Section 2.3. We present that the flexibility of this unified ODE framework allows us

to design a neural-network-based survival model for powerful predictions on complex

data in diverse formats in Section 2.4.

2.2 The Unified ODE Modeling Framework

To characterize the conditional distribution of T given X, the conditional hazard

function, denoted as λx(t) = Λ′
x(t), provides a popular modeling target as it describes

the instantaneous rate at which the event occurs given survival. In this paper, we

view the hazard function as the dynamic change of the cumulative hazard function

and quantify them using an ODE.

In our ODE framework, the hazard function depends not only on the time and

covariates but also on the cumulative hazard as shown in (2.1), where function f(·)

specifies the dynamic change of Λx(t) and covariates x serve as additional parameters
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in terms of the ODE. The initial value in (2.1) implies that, for an individual with

covariates x, the probability for an event to occur after t0 is controlled by exp(−c(x)).

For example, it is often the case that time 0 is defined prior to the occurrence of events,

which implies that an event always occurs after time 0, i.e. the survival function

Sx(0) = 1, and it follows that Λx(0) = 0. We use this initial value in the ODE

framework hereafter for simplicity, while the estimation method and the theoretical

properties established later can be extended to the general case where c(x) can be a

function of covariates. Under certain smoothness conditions (Walter, 1998, page 108),

the initial value problem (2.1) has exactly one solution, which uniquely characterizes

the conditional distribution of the event time.

Next, we present a general class of ODE models as an instantiation of the ODE

framework. Suppose there are two groups of covariates denoted by X ∈ Rd1 and

Z ∈ Rd2 respectively. We consider ODE models in the form of

Λ′
x,z(t) = α(t) exp

(
xTβ + zTη(t)

)
q(Λx,z(t)), (2.2)

where α(·) and q(·) are two unknown positive functions, and given an individual’s

own cumulative hazard, both covariates x and z have multiplicative effects on the

hazard, one with time-independent coefficients β ∈ Rd1 and the other with time-

varying coefficients η(t) ∈ Rd2 . Here η(·) = (η1(·), . . . , ηd2(·))T .1 We note that this

general class of ODE models is a specific example; other examples beyond this class

are included in Remark II.2 to further illustrate the flexibility of the proposed ODE

framework. In particular, this general class covers many existing models as special

cases. As shown below, model (2.2) reduces to the time-varying Cox model when

q(·) = 1, to the linear transformation model when covariates z are not considered,

and further reduces to the AFT model if α(·) = 1. In the following, we will also show

that by rewriting many existing models under the format (2.1), the ODE framework

1Throughout this chapter, we bold vectors only when each element is a function.
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brings them new interpretations in terms of the hazard function.

2.2.1 Cox Model and Time-Varying Cox Model

The Cox proportional hazard model assumes that the covariates have a multi-

plicative effect on the hazard function, i.e. λx(t) = α(t) exp
(
xTβ

)
, where α(t) is a

baseline hazard function and exp
(
xTβ

)
is the relative risk, and extensions of the Cox

model allow for time-varying coefficients (Zucker and Karr, 1990; Gray, 1994). Here

we write the Cox model with both time-independent and time-varying effects as a

simple ODE, whose right-hand side does not depend on the cumulative function, i.e.

Λ′
x,z(t) = α(t) exp

(
xTβ + zTη(t)

)
, (2.3)

which allows covariates x to have time-independent effects and covariates z to have

time-varying effects on the hazard function. The baseline hazard function α(t) and

time-varying effects η(t) can be specified in a parametric model or left unspecified in

a semi-parametric model.

2.2.2 Accelerated Failure Time Model

The AFT model assumes that the log transformation of T is linearly correlated

with covariates, i.e. log T = −XTβ + ϵ. In the proposed ODE framework, the AFT

model can be written as

Λ′
x(t) = q(Λx(t)) exp

(
xTβ

)
, (2.4)

where the function q(·) uniquely determines the distribution of error ϵ in the following

way. Let Hq(u) =
∫ − lnu

0
q−1(v)dv and Gq(u) = H−1

q (u), then Gq is the survival

function of δ = exp(ϵ) as shown in Bagdonavicius and Nikulin (2001). For example, if

q(t) = vk
1
v t1−

1
v , then δ follows a Weibull distribution with Gq(t) = exp(−ktv). When
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the error distribution is unknown (as in a semi-parametric AFT model), we can leave

the function q(·) unspecified.

The ODE (2.4) provides a new and clear interpretation on how covariates af-

fect the hazard for the AFT model. Specifically, it implies that given an individ-

ual’s own cumulative hazard, covariates x have a multiplicative constant effect on

the hazard function. Further, besides the direct effects of covariates, if q(·) is a

monotonic increasing function, then an individual with a higher cumulative hazard

at a particular time would have a higher “baseline” hazard. Note that although

we can also present the hazard directly as a function of covariates and time, i.e.

λx(t) = λδ(t exp
(
xTβ

)
) exp

(
xTβ

)
, the covariate effects are entangled with the base-

line hazard λδ in this representation, which is more difficult to interpret.

2.2.3 Linear Transformation Model

As an extension of the AFT model, the linear transformation model assumes

that, after a monotonic increasing transformation φ(·), the event time T is linearly

correlated with covariates, i.e. φ(T ) = −XTβ + ϵ. In the proposed ODE framework,

it can be written as

Λ′
x(t) = q(Λx(t)) exp

(
xTβ

)
α(t), (2.5)

where q(·) corresponds to the distribution of ϵ in the same way as in the AFT model,

and α(·) is uniquely determined by the equation φ(t) = log
∫ t

0
α(s)ds. In compari-

son to model (2.4), the hazard function at time t depends not only on the current

cumulative hazard and covariates, but also on the current time t directly.

Different specifications of φ(·) and ϵ have been proposed in the literature for the

linear transformation model. We consider the case where both the transformation and

the error distribution are unknown. This specification is especially preferred when

parametric assumptions on the transformation function or the error distribution can-

not be properly justified. However, when both q(·) and α(·) are unknown, they may
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not be identifiable. The equivalent linear regression representation, φ(T ) = −xTβ+ϵ,

allows us to see the identifiability issue clearly. Note that, when no covariate is associ-

ated with survival, i.e., β = 0, non-identifiability issue arises because parameters (φ, ϵ)

and (f(φ), f(ϵ)) give the same event time distribution for any arbitrary function f .

Therefore, we consider β ̸= 0, in which case Horowitz (1996) showed that the model

parameters are identifiable up to a scale and a location normalization under certain

regularity conditions. Following that result, we have developed Proposition 2.2.1 that

characterizes the identifiability of parameters in (2.5), while Proposition 2.2.2 pro-

vides necessary and sufficient degeneration conditions for AFT and Cox models. The

proofs are given in the Supplemental Material.

Proposition 2.2.1. Suppose at least one of the covariates in x is continuous and this

covariate has a non-zero β coefficient, which without loss of generality is assumed to

be positive. Let (q(·), β, α(·)) specify the survival distribution through (2.5). Then for

any other (q̃(·), β̃, α̃(·)) that gives the same survival distribution, if and only if there

exist positive constants c1 and c2 such that β̃ = c1β,
∫ t

0
α̃(s)ds = c2(

∫ t

0
α(s)ds)c1, and∫ t

0
q̃−1(s)ds = c2(

∫ t

0
q−1(s)ds)c1 for any t > 0.

Proposition 2.2.2. Suppose the conditions in Proposition 2.2.1 hold, then the linear

transformation model in (2.5) coincides with the Cox model if and only if there exist

positive constants c1 and c2 such that q(u) = c2u
1−c1, and it coincides with the AFT

model if and only if there exist positive constants c1 and c2 such that α(t) = c2t
c1−1

for t > 0.

Remark II.1. Note that the original forms of the AFT model and the linear trans-

formation model do not directly take time-varying coefficients. Existing works on the

linear transformation model that consider varying coefficients choose to model them as

a function of certain covariates rather than a function of time (Chen and Tong, 2010;

Qiu and Zhou, 2015). In contrast, the equivalent ODE forms of the AFT model in
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(2.4) and the linear transformation model in (2.5) can naturally accommodate time-

varying coefficients. For example, we can consider the generalization in (2.2), where

given an individual’s own cumulative hazard covariates z have time-varying multi-

plicative effects η(t) on the hazard. In particular, this generalization is equivalent to

a covariate-dependent transformation model

φZ(T ) = −XTβ + ϵ,

where φz(t) = log
∫ t

0
α(s) exp

(
z⊤η(s)

)
ds, i.e., covariates z have multiplicative time-

varying effect η(t) on the gradient of exp(φz(t)).

Remark II.2. The proposed ODE framework is general enough to cover other existing

models as well. For example, both the additive hazard model (Aalen, 1980; Mckeague

and Sasieni, 1994) and the additive-multiplicative hazard model (Lin and Ying, 1995)

can be viewed as a specific ODE model, i.e. Λ′
x,z(t) = r1(x

Tβ) + α(t)r2(z
Tη), where

r1(·) and r2(·) are some known link functions. Subsequently, the generalized additive

hazards model and the generalized additive-multiplicative hazards model (Bagdonavi-

cius and Nikulin, 2001) can be written as Λ′
x(t) = q(Λx(t))(r1(x) + α(t)r2(x)). The

generalized Sedyakin’s model (Bagdonavicius and Nikulin, 2001), which was proposed

as an extension of the AFT model, can also be viewed as a special case of (2.1) with

Λ′
x(t) = f(Λx(t), x).

Remark II.3. Further, the proposed ODE framework and the estimation method

in Section 2.3.1 can also be extended to deal with time-varying covariates. Suppose

the covariate is a stochastic process X(t), t ≥ 0 and TX(·) is the failure time un-

der X(·). Denote the conditional survival, the hazard function, and the cumulative

function by Sx(·)(t) = P{TX(·) ≥ t|X(s) = x(s), 0 ≤ s ≤ t}, λx(·)(t) = −
S′
x(·)(t)

Sx(·)(t)
,

and Λx(·)(t) = − log
(
Sx(·)(t)

)
, respectively. Then the ODE (2.1) can be extended to

Λ′
x(·)(t) = f(t,Λx(·)(t), x(t)). This extension also covers many existing models as spe-
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cial cases. For example, the linear transformation model with time-varying covariates

(Zeng and Lin, 2006) can be written as Λ′
x(·)(t) = q(Λx(·)(t)) exp

(
x(t)Tβ

)
α(t), and the

Cox model with time-varying covariates can be viewed as a special case with q(·) ≡ 1.

For presentation simplicity, we focus on models in the form of (2.2) in this paper.

2.2.4 Related Estimation Methods and Their Limitations

The maximum partial likelihood estimator (MPLE) (Cox, 1975) was first proposed

for the Cox model, and the asymptotic property of MPLE was established by An-

dersen and Gill (1982) via the counting process martingale theory. For time-varying

Cox models, many different estimation methods have been developed while relying

on maximizing the partial likelihood (Zucker and Karr, 1990; Gray, 1994). However,

evaluating the partial likelihood for an uncensored individual requires access to all

other observations who were in its risk set. This prevents parallel computing for

partial likelihood-based methods, which is a drawback when analyzing large scale

data.

For the linear transformation model, different specifications of the transformation

and the error distribution along with different estimation methods have been pro-

posed. For example, Cheng et al. (1995), Fine et al. (1998), Shen (1998), Chen et al.

(2002), and Bagdonavicius and Nikulin (1999) have considered an unknown trans-

formation with a known error distribution, which includes the Cox model and the

proportional odds model (Bennett, 1983) as special cases. The corresponding modi-

fied MPLE (Chen et al., 2002; Bagdonavicius and Nikulin, 1999), sieve MLE (Shen,

1998), and NPMLE (Murphy et al., 1997; Zeng and Lin, 2007b) have also been de-

veloped. However, due to the large number of nuisance parameters, it is difficult to

obtain NPMLE in practice, especially in large-scale applications. Alternatively, Cai

et al. (2005) considered a parametric Box-Cox transformation with an unknown error

distribution, which includes the semi-parametric AFT model as a special case, and
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least square and rank-based methods have been proposed to estimate the regression

parameters (Buckley and James, 1979; Lai and Ying, 1991; Tsiatis, 1990; Jin et al.,

2003, 2006). Nevertheless, they are not asymptotically efficient and may suffer ad-

ditional numerical errors resulting from discrete objective functions. Subsequently,

under the AFT model, Zeng and Lin (2007a) and Lin and Chen (2012) proposed

efficient estimators based on a kernel-smoothed profile likelihood, and Ding and Nan

(2011) developed an efficient sieve MLE. When both the transformation function and

the error distribution are unknown, a partial rank-based method has been proposed

(Khan and Tamer, 2007; Song et al., 2006), and its computation is analogous to that of

the partial likelihood, where the rank of an uncensored individual is determined by all

other individuals in its risk set, and thus the computational challenge for large-scale

applications still remains.

As evident from the above discussion, many existing estimation methods suffer

from important limitations in practice. In Section 2.3.1, we propose a scalable, easy-

to-implement and efficient estimation method that can be applied to a wide range of

models.

2.3 The Efficient Procedure for Estimation and Inference

In this section, we provide the estimation procedure in Section 2.3.1 and establish

the consistency and asymptotic normality of the estimates for statistical inference

in Section 2.3.2. Simulation studies and a real-world data example are presented in

Sections 2.3.3 and 2.3.4 respectively.

2.3.1 Maximum Likelihood Estimation

We propose a general estimation procedure that can be applied to a wide range

of ODE models. Here we use the ODE model in (2.2) as an illustrative example, and

the proposed estimation method can also be applied to other models such as those
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mentioned in Remark II.2.

We denote the event time as T , the censoring time as C. Let Y = min{T,C}

and ∆ = 1(T ≤ C), where 1(·) denotes the indicator function. Our data consist of

n independent and identically distributed observations {Yi,∆i, Xi, Zi}, i = 1, . . . , n.

Since α(·) and q(·) in (2.2) are positive, we set γ(·) = logα(·) and g(·) = log q(·).

Under the conditional independence between T and C given covariates (X,Z), the

log-likelihood function of the parameters (β, γ(·),η(·), g(·)) is given by

ln(β, γ(·), g(·),η(·)) =
1

n

n∑
i=1

[∆i{γ(Yi) +XT
i β + ZT

i η(Yi) + g(Λi(Yi; β, γ, g,η))}

(2.6)

− Λi(Yi; β, γ,η, g)],

where Λi(t; β, γ,η, g) denotes the solution of ODE (2.2) parameterized by (β, γ,η, g)

given covariates X = Xi and Z = Zi. The log-likelihood function (2.6) includes both

finite-dimensional parameter β and infinite-dimensional parameters γ,η, g.

We propose a sieve MLE that maximizes the log-likelihood over a sequence of

finite-dimensional parameter spaces that are dense in the original parameter space as

the sample size increases. The sieve space can be chosen as linear spans of many types

of basis functions with desired properties (Chen, 2007). In particular, we construct the

sieve space using polynomial splines due to their capacity in approximating complex

functions and the simplicity of their construction. Under suitable smoothness condi-

tions, γ0(·), η0(·), and g0(·), the true parameters associated with the data generating

distribution, can be well approximated by some functions in the space of polynomial

splines as defined in Schumaker (2007, page 108, Definition 4.1). Further, there exists

a group of spline bases such that functions in the space of polynomial splines can

be written as linear combinations of the spline bases (Schumaker, 2007, page 117,

Corollary 4.10). Different groups of spline bases may be used for the estimation of
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different parameters (γ,η) and g because of their different domains.

Specifically, we construct the proposed sieve estimator as follows. Let B ⊂ Rd1

be the parameter space of β. Let {B1
j , 1 ≤ j ≤ q1n} and {B2

j , 1 ≤ j ≤ q2n} be two

groups of spline bases that are used for the estimation of parameters (γ,η) and g

respectively. Here the number of spline bases, qin, should grow sublinearly in rate

O(nvi) for some vi ∈ (0, 0.5), i = 1, 2 for convergence guarantee (see Section 2.3.2

for rigorous definitions). Overall, we wish to find d2 + 1 members (γ, η1, · · · , ηd2)

from the space of polynomial splines associated with {B1
j }, one member g from that

associated with {B2
j }, along with β ∈ B to maximize the log-likelihood function (2.6).

Let Zi0 = 1, Zi = (Zi1, · · · , Zid2)
T . Then the objective function can be written as

ln(β, a, b) =
1

n

n∑
i=1

[
∆i{XT

i β +

d2∑
l=0

q1n∑
j=1

aljB
1
j (Yi)Zil +

q2n∑
j=1

bjB
2
j (Λi(Yi; β, a, b))}

− Λi(Yi; β, a, b)
]
, (2.7)

where a =
(
alj
)
j=1,··· ,q1n,l=0,··· ,d2

and b = (bj)j=1,··· ,q2n
are the coefficients of the spline

bases, and Λi(t; β, a, b) is the solution of

 Λ′
i(t) = exp

(
XT

i β +
∑d2

l=0

∑q1n
j=1 a

l
jB

1
j (t)Zil +

∑q2n
j=1 bjB

2
j (Λi(t))

)
,

Λi(0) = 0.
(2.8)

The proposed sieve estimators are given by β̂n = β̂, η̂n(·) =
(∑q1n

j=1 â
1
jB

1
j (·), . . . ,∑q1n

j=1 â
d2
j B

1
j (·)
)
, γ̂n(·) =

∑q1n
j=1 â

0
jB

1
j (·), and ĝn(·) =

∑q2n
j=1 b̂jB

2
j (·), where (β̂, â, b̂) max-

imizes the objective function (2.7).

Note that the objective function (2.7) contains the solution of a parameterized

ODE (i.e. (2.8)), and this is different from most traditional optimization problems.

In particular, it is nontrivial to evaluate the objective function and its gradient with

respect to parameters when there is no closed-form solution for the ODE. To address
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this optimization challenge, we develop a gradient-based optimization algorithm by

taking advantage of local sensitivity analysis (Dickinson and Gelinas, 1976; Petzold

et al., 2006) and well-implemented ODE solvers. Specifically, we evaluate the objec-

tive function and its gradient as follows:

1. we numerically calculate Λi(Yi; β, a, b) by solving (2.8) given the current param-

eter estimates β, a, b and covariates Xi, Zi, the initial value at t0 = 0, and the

evaluating time t = Yi;

2. we evaluate the derivative of Λi(Yi; β, a, b) with respect to the parameters β,

a, and b through solving another ODE which is derived by local sensitivity

analysis, and calculate the gradient of the objective function by the chain rule.

We summarize the results of the local sensitivity analysis in the following, and

provide detailed derivations in the Supplemental Material. The local sensitivity anal-

ysis is a technique that studies the rate of change in the solution of an ODE system

with respect to the parameters. There are two ways to obtain the sensitivity: forward

sensitivity analysis and adjoint sensitivity analysis. Both of them require solving an-

other ODE with some fixed initial value. For example, we consider to compute the

gradient of Λ(y; θ) with respect to its parameter θ, where Λ(t; θ) is the solution of

(2.8) and θ consists of parameters β, a, and b in our case. For presentation simplicity,

we denote the right-hand side of (2.8) by the function f(t,Λ; θ), i.e.

f(t,Λ; θ) = exp

XTβ +

d2∑
l=0

q1n∑
j=1

aljB
1
j (t)Zj +

q2n∑
j=1

bjB
2
j (Λ)

,
and its partial derivative with respect to θ and Λ by f ′

θ and f
′
Λ respectively. In forward

sensitivity analysis, it can be shown that the partial derivative of Λ(y; θ) with respect
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to θ is given by the solution of (2.9) at t = y, i.e. Λ′
θ(y; θ) = F1(y) with F1 satisfying

 F ′
1(t) = f ′

θ(t,Λ; θ) + f ′
Λ(t,Λ; θ)F1,

F1(0) = 0.
(2.9)

In the alternative adjoint sensitivity analysis, we can show that the partial derivative

can also be obtained by evaluating the solution of (2.10) at t = 0, i.e. Λ′
θ(y; θ) = F2(0)

with F2 satisfying

 (κ(t);F ′
2(t)) = (−κ · f ′

Λ(t,Λ; θ);−κ · f ′
θ(t,Λ; θ)),

(κ(t);F2(t))|t=y = (1;0).
(2.10)

Thus, after plugging the form of f(t,Λ; θ) into either (2.9) or (2.10), we can obtain

the gradients through solving the corresponding ODE. In Remark II.4, we compare

the computational complexity of forward and adjoint sensitivity analyses and provide

a general guidance on which sensitivity analysis to use when computing gradients

under survival ODE models.

It is worth noting that the proposed estimation method can be easily implemented

using existing computing packages. For example, the “Optimization Toolbox” in

MATLAB contains “fminunc” for unconstrained optimization and “fmincon” for con-

strained optimization; both require initialization and the objective function. In our

implementation, we also provide evaluation of the gradient for faster and more reli-

able computations. In particular, we compute both the objective function and the

gradient by well-implemented ODE solvers in MATLAB. In addition, we construct

the sieve space using B-splines for its numerical simplicity, whose implementation is

available in the “Curve Fitting Toolbox”.

Remark II.4. In general, forward sensitivity analysis is computationally more effi-

cient when the dimension of the ODE system is relatively large and the number of
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parameters is small, while adjoint sensitivity analysis is best suited in the complemen-

tary scenario. See Dickinson and Gelinas (1976) and Petzold et al. (2006) for more

details. For a general ODE model such as (2.1) where the size of the ODE system is 1

and the number of parameters increases as the sample size n grows, we can use the ad-

joint sensitivity analysis along with parallel computing for n independent individuals.

Alternatively, if the memory permits, we can combine ODEs for n individuals into a

large ODE system with n dimensions, which is larger than the number of parameters,

and then the forward sensitivity analysis is preferred.

Remark II.5. Moreover, we introduce a computational trick for the general class of

ODE models in (2.2) that can significantly accelerate the evaluation of the objective

and gradients, where we need to solve ODEs for n independent individuals. Specifi-

cally, the trick transforms the problem of solving n different ODEs at their respective

observed times into a problem of solving a single ODE at n different time points. More

generally, this trick can be applied to any ODE model where the right-hand side is

separable in the way that f(t,Λx; θ, x) = f1(t; θ, x)f2(Λx; θ) with two functions f1 and

f2. We refer to the Supplemental Material for more details about this computational

trick.

Remark II.6. The proposed sieve MLE can also be applied to many existing models.

For example, for the time-varying Cox model where q(·) = 1, we can remove the func-

tion g(·) from the objective function (2.6). For the semi-parametric AFT model where

Z is not considered and α(·) = 1, we can just keep parameters β and g(·) in (2.6).

For the linear transformation model, if either q(·) or α(·) is specified, we can replace

the corresponding term in (2.6) with the specified finite-dimensional parametric form.

Also note that in comparison to existing estimation methods in Section 2.2.4, the pro-

posed estimation method allows parallel computing, which is especially important for

large-scale applications. Specifically, since the log-likelihood of each individual only

depends on its own observations, the evaluation for independent data points can be
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carried out simultaneously. Further, compared with the NPMLE where the number of

optimization parameters is linear in n (Murphy et al., 1997; Zeng and Lin, 2007b),

the number of optimization parameters used in sieve MLE increases more slowly with

the sample size.

Remark II.7. The objective function (2.7) is convex with respect to β and a for the

(time-varying) Cox model, where the parameter b is not included, and the global opti-

mum can be achieved quickly. For the general case, the objective function is nonconvex

and the optimization algorithm may converge to a local optimum. Nevertheless, based

on our extensive simulation studies, the algorithm generally performs well with ap-

propriately chosen initialization, such as initializing the algorithm with the estimates

from the Cox model.

Remark II.8. Note that different identifiability conditions are required for different

survival models. Thus, we need to add corresponding constraints in the optimization

algorithm.

• For the general ODE model (2.2) where both covariates X (with time-independent

effects) and Z (with at least one non-zero time-varying effect) are considered,

two groups of parameters (β, γ, g,η) and (β̃, γ̃, g̃, η̃) give the same survival dis-

tribution if and only if β = β̃, γ = γ̃ + c, g = g̃ − c, and η = η̃ for some

constant c. To guarantee the identifiability, we can constrain either the value of

γ(·) at a fixed time point t∗ or the norm of γ(·), in which the former leads to a

linear constraint on the coefficients of spline bases.

• For the linear transformation model where the time-varying effects are not con-

sidered and at least one component of X has a non-zero coefficient, parameters

(β, γ, g) are identifiable up to two scaling factors as shown in Proposition 2.2.1.

To guarantee identifiability, we can put constraints on β and γ. For β, we can ei-

ther constrain the first element of β to be 1 (Khan and Tamer, 2007; Song et al.,
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2006), which can be naturally achieved by arranging covariates if we know which

covariate has a non-zero effect, or set ∥β∥ = 1. For γ, we can add a similar con-

straint as that for the general ODE model (2.2). Alternatively, we can put con-

straints on γ and g by setting
∫ t∗

0
exp(γ(s))ds = c1 and

∫ t∗

0
exp(−g(s))ds = c2,

with some positive constants c1 ̸= c2 > 0 and a fixed time point t∗. In our im-

plementation, we choose to use two linear constraints, i.e. set the first element

of β to 1 and γ(t∗) = 0 for simplicity in optimization.

2.3.2 Theoretical Properties

In this section, we study the theoretical properties of the proposed sieve MLE.

Although many works have investigated asymptotic distributional theories for M-

estimation with bundled parameters (Ai and Chen, 2003; Chen et al., 2003; Ding

and Nan, 2011), their results cannot be directly applied to our setting. In partic-

ular, the nuisance parameters in existing works often take the form of an unknown

function of only some finite-dimensional Euclidean parameters of interest. However,

our work focuses on a more general scenario, where the nuisance parameter is an

unknown function of not only the Euclidean parameters but also some other infinite-

dimensional nuisance parameters. To deal with theoretical challenges due to the

additional functional nuisance parameters, we develop a new sieve M-theorem for the

asymptotic theory of a general family of semi-parametric M-estimators. Moreover,

we apply the proposed general theorem to establish the asymptotic normality and

semi-parametric efficiency of the proposed sieve MLE β̂n when the convergence rate

of the sieve estimator of the nuisance parameter can be slower than
√
n. We present

regularity conditions and main theorems in this section and give all the proofs in the

Supplemental Material.

For the simplicity of notation, we focus on model (2.2) without covariates Z, i.e.

the linear transformation model (2.5), and the results can be similarly extended to
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the general case with additional regularity conditions on Z (see Remark II.11). Recall

that we have set γ(·) = logα(·) and g(·) = log q(·) to ensure the positivity of α(·) and

q(·) in (2.5). Then we reformulate the ODE model as follows,

 Λ′(t) = exp
(
xTβ + γ(t) + g(Λ(t))

)
Λ(0) = 0

. (2.11)

Note that the parameter β is identifiable when time-varying effects are considered,

but in (2.11) it is identifiable only up to a scaling factor when both γ and g are

unknown as shown in Proposition 2.2.1. To guarantee the identifiability, we constrain

the first element of β to be 1 and γ(t∗) = c with some constant c for simplicity in

optimization. Specifically, denote X = (X(1), X(−1)), β = (1, β̄T )T , γ̄(·) = γ(·)− γ(t∗)

with γ̄(t∗) ≡ 0, and X̄(1) = X(1)+γ(t
∗), then we haveXTβ+γ(t) = X̄(1)+X

T
(−1)β̄+γ̄(t).

We substitute β̄, γ̄, and X̄(1) by β, γ, and X(1) respectively for notational simplicity

hereafter, and the ODE (2.11) is then equivalent to

 Λ′(t) = exp
(
x(1) + xT(−1)β + γ(t) + g(Λ(t))

)
Λ(0) = 0

, (2.12)

with γ(t∗) ≡ 0. Before stating the regularity conditions, we first introduce some no-

tations. We denote the solution of (2.12) by Λ(t, x, β, γ, g) to explicitly indicate that

the solution of (2.12) depends on covariates x and parameters (β, γ, g). We denote

the true parameters associated with the data generating distribution by (β0, γ0, g0)

and simplify Λ(t, x, β0, γ0, g0) as Λ0(t, x). In addition, some commonly used nota-

tions in the empirical process literature will be used in this section as well. Let

Pf =
∫
f(x)Pr(dx), where Pr is a probability measure, and denote the empirical

probability measure as Pn.

Then we assume the following regularity conditions.
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(C1) The true parameter β0 is an interior point of a compact set B ⊂ Rd.

(C2) The density of X is bounded below by a constant c > 0 over its domain X ,

which is a compact subset of Rd+1, and P (X(−1)X
T
(−1)) is nonsingular.

(C3) There exists a truncation time τ <∞ such that, for some positive constant δ0,

Pr(Y > τ |X) ≥ δ0 almost surely with respect to the probability measure of X.

Then there is a constant µ = supx∈X Λ0(τ, x) ≤ − log δ0 such that Λ0(τ,X) =

− logPr(T > τ |X) ≤ µ almost surely with respect to the probability measure

of X.

(C4) Let Sp([a, b]) be the collection of bounded functions f on [a, b] with bounded

derivatives f (j), j = 1, . . . , k, where the kth derivative f (k) satisfies them-Hölder

continuity condition:

|f (k)(s)− f (k)(t)| ≤ L|s− t|m for s, t ∈ [a, b],

where k is a positive integer and m ∈ (0, 1] with p = m + k, and L < ∞ is a

constant. The true function γ0(·) belongs to Γp1 = {γ ∈ Sp1([0, τ ]) : γ(t∗) = 0}

with p1 ≥ 2 and the true function g0(·) belongs to Sp2([0, µ + δ1]) = Gp2 with

some positive constant δ1 and p2 ≥ 3.

(C5) Denote R(t) =
∫ t

0
exp(γ0(s))ds, V = X(1) +XT

(−1)β0, and U = eVR(Y ). There

exists η1 ∈ (0, 1) such that for all u ∈ Rd with ∥u∥ = 1,

uTV ar(X(−1) | U, V )u ≥ η1u
TP (X(−1)X

T
(−1) | U, V )u almost surely.

(C6) Let ψ(t, x, β, γ, g) = x(1)+x
T
(−1)β+ γ(t)+ g(Λ(t, x, β, γ, g)) and denote its func-

tional derivatives with respect to γ(·) and g(·) along the direction v(·) and w(·)

at the true parameter by ψ′
0γ(t, x)[v] and ψ

′
0g(t, x)[w] respectively, whose rigor-
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ous definitions are given by (A.19)-(A.20) in the Supplemental Material. For

any v(·) ∈ Γp1 and w(·) ∈ Gp2 , there exists η2 ∈ (0, 1) such that

(P{ψ′
0γ(Y,X)[v]ψ′

0g(Y,X)[w] |∆ = 1})2

≤η2P{(ψ′
0γ(Y,X)[v])2 |∆ = 1}P{(ψ′

0g(Y,X)[w])2 |∆ = 1}

almost surely.

Conditions (C1)-(C3) are common regularity assumptions in survival analysis.

Condition (C4) requires p2 ≥ 3 to control the error rates of the spline approximation

for the true function g0 and its first and second derivatives. Moreover, together with

p1 ≥ 2, (C4) will also be used to verify the assumptions (A4)-(A6) for the general

M-theorem (Theorem 2.3.3) when we apply it to derive the asymptotic normality of

the proposed sieve MLE (Theorem 2.3.2). A similar condition to (C5) was imposed by

Wellner and Zhang (2007) for the panel count data, by Ding and Nan (2011) for the

linear transformation model with a known transformation, and by Zhao et al. (2017)

for the accelerated hazards model. When the transformation function is known, con-

dition (C5) is equivalent to the assumption C7 in Ding and Nan (2011) and can be

verified in many applications as shown in Wellner and Zhang (2007). For the general

case where both the transformation function and the error distribution are unspeci-

fied, condition (C6) is assumed to avoid strong collinearity between ψ′
0γ(Y,X)[v] and

ψ′
0g(Y,X)[w].

Note that the parameter g(·) takes Λ(t, x, β, γ, g) as its argument in (2.12), which

involves the other parameters β and γ(·). Thus, β, γ(·) and g(·) are bundled parame-

ters. For any g(·) ∈ Gp2 , we directly consider the composite function g(Λ(t, x, β, γ, g))
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as a function from T × X × B × Γp1 to R. And we define the collection of functions

Hp2 = {ζ(·, β, γ) : ζ(t, x, β, γ) =g(Λ(t, x, β, γ, g)), t ∈ [0, τ ], x ∈ X , β ∈ B, γ ∈ Γp1 ,

g ∈ Gp2 such that sup
t∈[0,τ ],x∈X

|Λ(t, x, β, γ, g)| ≤ µ+ δ1},

with δ1 given in condition (C4). For any ζ(·, β, γ) ∈ Hp2 , we define its norm as

∥ζ(·, β, γ)∥2 =

∫
X

τ∫
0

[ζ(t, x, β, γ)]2dΛ0(t, x)dFX(x)

1/2

,

where FX(x) is the cumulative distribution function of X. Denote the parame-

ter θ = (β, γ(·), ζ(·, β, γ)) and the true parameter θ0 = (β0, γ0(·), ζ0(·, β0, γ0)) with

ζ0(t, x, β0, γ0) = g0(Λ(t, x, β0, γ0, g0)). Denote the parameter space by Θ = B × Γp1 ×

Hp2 . For any θ1 and θ2 in Θ, we define the distance

d(θ1, θ2) =
(
∥β1 − β2∥2 + ∥γ1 − γ2∥22 + ∥ζ1(·, β1, γ1)− ζ2(·, β2, γ2)∥22

)1/2
,

where ∥ · ∥ is the Euclidean norm and ∥γ∥2 = (
∫ τ

0
(γ(t))2dt)1/2 is the L2 norm.

Next, we construct the sieve space as follows. Let 0 = t0 < t1 < · · · < tK1
n
<

tK1
n+1 = τ be a partition of [0, τ ] with K1

n = O(nν1) and max1≤j≤K1
n+1 |tj − tj−1| =

O(n−ν1) for some ν1 ∈ (0, 0.5). Let TK1
n
= {t1, · · · , tK1

n
} denote the set of partition

points and Sn(TK1
n
, K1

n, p1) be the space of polynomial splines of order p1 as defined

in Schumaker (2007, page 108, Definition 4.1). Similarly, let TK2
n
be a set of partition

points of [0, µ] with K2
n = O(nν2) and max1≤j≤K2

n+1 |tj − tj−1| = O(n−ν2) for some

ν2 ∈ (0, 0.5), and Sn(TK2
n
, K2

n, p2) be the space of polynomial splines of order p2.

According to Schumaker (2007, page 117, Corollary 4.10), there exist two sets of

B-spline bases {B1
j , 1 ≤ j ≤ q1n} with q1n = K1

n + p1 and {B2
j , 1 ≤ j ≤ q2n} with

q2n = K2
n + p2 such that for any s1 ∈ Sn(TK1

n
, K1

n, p1) and s2 ∈ Sn(TK2
n
, K2

n, p2),
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we can write s1(t) =
∑q1n

j=1 ajB
1
j (t) and s2(t) =

∑q2n
j=1 bjB

2
j (t). Let Γp1

n = {γ ∈

Sn(TK1
n
, K1

n, p1) : γ(0) = 0}, Gp2
n = Sn(TK2

n
, K2

n, p2), and

Hp2
n = {ζ(·, β, γ) :

ζ(t, x, β, γ) = g(Λ(t, x, β, γ, g)), g ∈ Gp2
n , t ∈ [0, τ ], x ∈ X , β ∈ B, γ ∈ Γp1

n }.

Let Θn = B × Γp1
n × Hp2

n be the sieve space. It is not difficult to see that Θn ⊂

Θn+1 ⊂ · · · ⊂ Θ. We consider the sieve estimator θ̂n = (β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)),

where ζ̂n(t, x, β̂n, γ̂n) = ĝn(Λ(t, x, β̂n, γ̂n, ĝn)), that maximizes the log-likelihood (2.6)

(without covariates Z and parameter η) over the sieve space Θn. The consistency and

convergence rate of the sieve MLE θ̂n are then established in the following theorem.

Theorem 2.3.1. (Convergence rate of θ̂n.) Let ν1 and ν2 satisfy the restrictions

max{ 1
2(2+p1)

, 1
2p1

− ν2
p1
} < ν1 < 1

2p1
, max{ 1

2(1+p2)
, 1
2(p2−1)

− 2ν1
p2−1

} < ν2 < 1
2p2

, and

2min{2ν1, ν2} > max{ν1, ν2}. Suppose conditions (C1)-(C6) hold, then we have

d(θ̂n, θ0) = Op(n
−min{p1ν1,p2ν2, 1−max{ν1,ν2}

2
}).

Theorem 2.3.1 gives the convergence rate of the proposed estimator θ̂n to the true

parameter θ0, and its proof is provided in the Supplemental Material by verifying

the conditions in Shen and Wong (1994, Theorem 1). Note the subscripts 1 and

2 correspond to the space of the spline approximation for two infinite-dimensional

parameters γ and g, respectively. The restrictions on ν1 and ν2 are feasible for p1 and

p2 not far away from each other. For example, if p1 = p2 = p and ν1 = ν2 = ν, the

restriction on ν is equivalent to 1
2(1+p)

< v < 1
2p
, and the convergence rate becomes

d(θ̂n, θ0) = Op(n
−min{pν, 1−ν

2
}), which is the same as the case when there is only one

infinite-dimensional parameter (Ding and Nan, 2011; Zhao et al., 2017). Further, if

ν = 1
1+2p

, we have d(θ̂n, θ0) = Op(n
− p

1+2p ), which achieves the optimal convergence
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rate in the nonparametric regression setting.

Although the convergence rate for the nuisance parameter is slower than the typ-

ical rate n1/2, we will show that the sieve MLE of the regression parameter, i.e. β̂n, is

still asymptotically normal and achieves the semi-parametric efficiency bound. First,

we introduce two additional regularity conditions which are stated below.

(C7) There exist v∗ = (v∗1, · · · , v∗d)T and w∗ = (w∗
1, · · · , w∗

d)
T , where v∗j ∈ Γ2 and

w∗
j ∈ G2 for j = 1, · · · , d, such that P{∆A∗(U,X)ψ′

0γ(Y,X)[v]} = 0 and

P{∆A∗(U,X)ψ′
0g(Y,X)[w]} = 0 hold for any v ∈ Γp1 and w ∈ Gp2 . Here

U and V are defined the same as in condition (C5) and

A∗(t,X) =−
(
g′0(Λ̃0(t)) exp

(
g0(Λ̃0(t))

)
t+ 1

)
X(−1)

+ g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

) t∫
0

v∗(R−1(se−V ))ds+ v∗(R−1(te−V ))

+ g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

) Λ̃0(t)∫
0

exp(−g0(s))w∗(s)ds+w∗(Λ̃0(t)),

where Λ̃0(t) is the solution of Λ̃′
0(t) = exp

(
g0(Λ̃0)

)
with Λ̃0(0) = 0.

(C8) Let l∗(β0, γ0, ζ0;W ) =
∫
A∗(t,X)dM(t), where M(t) = ∆1(U ≤ t)−

∫ t

0
1(U ≥

s)dΛ̃0(s) is the event counting process martingale. The information matrix

I(β0) = P (l∗(β0, γ0, ζ0;W )⊗2) is nonsingular. Here for a vector a, a⊗2 = aaT .

The additional condition (C7) essentially requires the existence of the least fa-

vorable direction that is used to establish the semi-parametric efficiency bound. The

directions v∗ and w∗ may be found through the equations in (C7). We illustrate how

to construct v∗ and w∗ for the Cox model and the linear transformation model with

a known transformation respectively in Remark II.10. Condition (C8) is a natural

assumption that requires the information matrix to be invertible. The following the-
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orem establishes the asymptotic normality and semi-parametric efficiency of the sieve

MLE β̂n of the regression parameter for the general linear transformation model.

Theorem 2.3.2. (Asymptotic normality of β̂n) Suppose the conditions in Theorem

2.3.1 and (C7)-(C8) hold, then we have

√
n(β̂n − β0) =

√
nI−1(β0)Pnl

∗(β0, γ0, ζ0;W ) + op(1) →d N(0, I−1(β0))

with I(β0) given in condition (C8) and →d denoting convergence in distribution.

Theorem 2.3.2 states that β̂n is asymptotically normal with variance as the inverse

of the information matrix. In practice, the information matrix can be approximated

by the estimated information matrix of all parameters including the coefficients of

spline bases.

We note that the existing sieve M-theorem for bundled parameters (Ding and

Nan, 2011; Zhao et al., 2017) cannot be directly applied to prove Theorem 2.3.2,

because it does not allow the infinite-dimensional nuance parameter to be a function

of other infinite-dimensional nuance parameters. Therefore, to study the asymptotic

distribution of β̂n, we first establish a new general M-theorem for bundled parameters

where the infinite-dimensional nuisance parameter is a function of not only the Eu-

clidean parameter of interest but also other infinite-dimensional nuisance parameters.

The established M-theorem under such a general scenario then enables us to prove

Theorem 2.3.2 by verifying its assumptions for the linear transformation model. The

details are provided in the Supplemental Material. Since the new M-theorem can

be useful for developing the asymptotic normality of sieve estimators for other ODE

models, we state it below for readers of interest.

We first introduce the general setting and notation for the proposed sieve M-

theorem. Let m(θ;W ) be an objective function of unknown parameters θ = (β,γ(·),

ζ(·, β,γ)) given a single observation W , where β is the finite-dimensional parameter
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of interest, γ(·) = (γ1(·), . . . , γd2(·)) denotes infinite-dimensional nuisance parame-

ters, and ζ(·, β,γ) is another infinite-dimensional nuisance parameter that can be a

function of β and γ. Here “·” represents some components of W . Given i.i.d. ob-

servations {Wi}ni=1, the sieve estimator θ̂n = (β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)) maximizes the

objective function, Pnm(θ;W ), over certain sieve space. For example, θ̂n becomes

the sieve MLE if m is the log-likelihood function. We denote the derivative of m

with respect to β as m′
β, the functional derivative of m with respect to γj along the

direction v(·) as m′
γj
[v] for 1 ≤ j ≤ d2, and the functional derivative of m with re-

spect to ζ along the direction h(·) as m′
ζ [h], whose rigorous definitions are given in

the Supplemental Material. The following theorem then establishes the asymptotic

normality of the sieve estimator, β̂n, under the above general setting.

Theorem 2.3.3. (A general M-theorem for bundled parameters.) Under assumptions

(A1)-(A6) in the Supplemental Material, we have

√
n(β̂n − β0) = A−1

√
nPnm

∗(β0,γ0(·), ζ0(·, β0,γ0);W ) + op(1)

→d N(0, A−1B(A−1)T ),

where

m∗(β0,γ0(·), ζ0(·, β0,γ0);W ) = m′
β(β0,γ0(·), ζ0(·, β0,γ0);W )

−
d2∑
j=1

m′
γj
(β0,γ0(·), ζ0(·, β0,γ0);W )[v∗j ]

−m′
ζ(β0,γ0(·), ζ0(·, β0,γ0);W )[h∗(·, β0,γ0)],

B = P{m∗(β0,γ0(·), ζ0(·, β0,γ0);W )m∗(β0,γ0(·), ζ0(·, β0,γ0);W )T},

with v∗j = (v∗j1, . . . , v
∗
jd1

)T , h∗ = (h∗1, . . . , h
∗
d)

T and A given in the assumption (A3).

Remark II.9. The assumptions needed in Theorem 2.3.3 are similar to those in Ding
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and Nan (2011) (see the Supplemental Material for details). However, our proposed

theorem significantly differs from the main theorem in Ding and Nan (2011), because

the latter considers ζ(·, β) to be a function of only the finite-dimensional parameter β,

while we consider a more general scenario of bundled parameters, where the nuisance

parameter ζ(·, β,γ) can be a function of both the finite-dimensional parameter β and

other infinite-dimensional nuisance parameters γ. The proposed theorem nontrivially

extends the asymptotic distributional theories for M-estimation under this general

scenario.

Remark II.10. We note that to find the least favorable directions v∗ and w∗ required

in (C7), we may solve the equations in (C7), which can be simplified to equations

(A.41) and (A.43) provided in the Supplemental Material. For illustration, we provide

explicit constructions of the least favorable directions for the Cox model and for the

linear transformation model with a known transformation respectively. Specifically,

for the Cox model, we have g0 ≡ 0 and v∗ can be derived as

v∗(t) =
P{1(Y ≥ t)eX

T β0X}
P{1(Y ≥ t)eXT β0}

;

for the linear transformation model where γ0 is known, w∗ can be obtained as

w∗(t) = ϕϕϕ(t)− g′0(t)

t∫
0

ϕϕϕ(s)ds,

where

ϕϕϕ(t) =
(
g′0(t) exp(g0(t))Λ̃

−1
0 (t) + 1

) P{1(Λ0(Y,X) ≥ t)X}
P{1(Λ0(Y,X) ≥ t)}

with Λ̃0 defined in (C7).

Given the above constructions of the least favorable directions, we can further

simplify the non-singularity condition of the information matrix in (C8). For the

36



Cox model, the information matrix can be derived as

I(β0) =

∞∫
0

P
(
[−X + µ(t)]⊗2

1(U ≥ t)
)
dt,

where µ(t) = P{1(U ≥ t)eX
T β0X}/P{1(U ≥ t)eX

T β0} with U defined in (C5). Re-

spectively, for the linear transformation where γ0 is known, the information matrix

can be derived as

I(β0) =

∞∫
0

m2(t) · V ar(X|U ≥ t) · P (U ≥ t) · exp
(
g0(Λ̃0(t))

)
dt,

where m(t) = g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

)
t + 1. The non-singularity condition requires

the integral of a covariance matrix to be positive definite.

Remark II.11. Moreover, for the general class of ODE models that include covari-

ates Z with time-varying coefficients η(·) in (2.2), we have further established the

same convergence rate of the sieve estimator θ̂n in Theorem A.5.1 and the asymp-

totic normality of β̂n in Theorem A.5.2 in the Supplemental Material. In particular,

the conditions (C1)-(C8) have been revised to (C1′)-(C8′) with additional regularity

conditions on covariates Z. We refer to the Supplemental Material for the full list of

conditions, rigorous statements of theorems, and their proofs.

2.3.3 Simulation Studies

In this section, we use simulation studies to show the finite sample performance

of the sieve MLE under the time-varying Cox model and the general linear transfor-

mation model.
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Time-varying Cox model We generate event times from the model

Λ′
x(t) = α(t) exp(β1x1 + β2x2 + β3x3 + β4x4 + η(t)x5),

where (x1, x2, x3, x4, x5) follows a multivariate normal distribution with mean 0 and

autoregressive covariance truncated at ±2, β1 = β4 = 1, and β2 = β3 = −1. Let

η(t) = sin
(
3
4
πt
)
be a time-varying coefficient for x5 and the coefficients of all other

covariates be time-independent. The baseline hazard α(t) is set to 0.5. The censoring

times are generated from an independent uniform distribution U(0, 3), which leads

to a censoring rate around 50%. The sample size N varies from 1, 000 to 8, 000.

We fit both the log-transformed baseline hazard function logα(t) and time-varying

coefficient η(t) by cubic B-splines and set the number of knots Kn = ⌊N ′ 1
5 ⌋, i.e.,

the largest integer smaller than N ′ 1
5 , where N ′ is the number of distinct observation

time points. The interior knots are located at the Kn quantiles of the N ′ distinct

observation time points. We compare the estimation accuracy and the computing

time of the proposed sieve MLE with those of the partial likelihood-based estimator

implemented in the “coxph” function in R with the “tt” argument set as the same

cubic B-spline transformation of time.

Table II.1 summarizes the estimates of regression coefficients β1 and β2 based on

1000 replications. The estimates of the other two regression coefficients β3 and β4

perform similarly, and the results are included in the Supplemental Material. For

the time-varying coefficient η(t), we report the integrated mean square error (IMSE),

which is the weighted sum of mean square error (MSE) of pointwise estimates over

simulated time points from 0 to 2. As one can see, the mean and standard devia-

tion of IMSE of the proposed sieve estimator decrease as the sample size increases.

Remarkably, they are consistently smaller than those of the partial likelihood-based

estimator. For time-independent coefficients, the proposed sieve estimator performs
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Table II.1: Simulation results under time-varying Cox model.

N Method β1 = 1 β2 = −1 IMSE(η(t))
Bias SE ESE CP Bias SE ESE CP Mean SD

1000
ODE .008 .070 .070 .958 -.012 .076 .078 .955 .053 .041

Cox-MPLE .006 .070 .068 .952 -.010 .075 .075 .950 .109 .094

2000
ODE .004 .048 .048 .958 -.004 .053 .054 .957 .029 .021

Cox-MPLE .002 .048 .048 .956 -.003 .053 .053 .959 .053 .041

4000
ODE .003 .033 .034 .952 -.003 .038 .038 .938 .016 .011

Cox-MPLE .003 .033 .034 .950 -.002 .038 .037 .936 .026 .020

8000
ODE .000 .024 .024 .962 -.001 .026 .026 .938 .009 .006

Cox-MPLE .000 .023 .024 .959 -.001 .026 .026 .936 .013 .009

Bias is the difference between the mean of estimates and the true value, SE is the sample standard
error of the estimates, Mean is the mean of IMSE, and SD is the standard deviation of IMSE. ESE is the
mean of the standard error estimators by inverting the estimated information matrix of all parameters,
including the coefficients of spline bases, and CP is the corresponding coverage proportion of 95%
confidence intervals.

as well as the partial likelihood-based estimator. The mean of the standard error

estimator, which is obtained by inverting the estimated information matrix of all

parameters including the coefficients of spline bases, is approximate to the sample

standard error, and the corresponding 95% confidence interval achieves a proper cov-

erage proportion. From the left and middle panels of Figure II.1, we can see that the

means of the estimated α(t) and η(t) are close to the true functions, and the 95%

pointwise confidence bands cover the true functions well.

Figure II.1: True α0(t) and mean of α̂(t) (left); true η(t) and mean of η̂(t) (middle)
with the sample size N = 8000; log-log plot of mean relative computation time (right)
with respect to the sample size under the time-varying Cox model.
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It is also worth noting that, in comparison to the partial likelihood-based esti-

mation method whose relative computing time with respect to that with the small-

est sample size increases quickly as the sample size grows, the proposed estimation

method is computationally more efficient, especially when the sample size is large

(see the right panel of Figure II.1). When the number of knots increases with the

sample size, the computation time of the proposed method grows at a rate slightly

larger than the linear rate (but far below the quadratic rate).

Linear transformation model We generate event times from the model Λ′
x(t) =

q(Λx(t)) exp(β1x1 + β2x2 + β3x3)α(t). The covariates are independent normal with

mean 0 and standard deviation 0.5 truncated at ±2. We consider four different

settings for q(·) and α(·): 1) a constant q(t) = 1 and a monotonic increasing α(t) = t3,

in which case the Cox model is correctly specified; 2) a monotonic decreasing q(t) =

e−t and a constant α(t) = 2; 3) a monotonic decreasing q(t) = 2/(1+t) and a constant

α(t) = 1; 4) an increasing q(t) = log(1 + t)+2 and an increasing α(t) = log(1+ t). In

each setting, we generate the censoring time from an independent uniform distribution

U(0, c), where c is chosen to achieve approximately 25-30% censoring rates. The

sample size N varies from 1, 000 to 8, 000.

In setting 1), we compare the proposed sieve MLE for the ODE-Cox model, where

the function q(·) is set to 1, with the partial-likelihood based estimator implemented

using the R package survival. We fit logα(·) by cubic B-splines with ⌊N ′ 1
5 ⌋ interior

knots that are located at the quantiles of the distinct observation time points. In

setting 2), we compare the proposed sieve MLE for the ODE-LT model, where the

function q(·) is set to e−t, with the NPMLE for the equivalent logarithmic transfor-

mation model considered in Zeng and Lin (2007b). We fit logα(·) by cubic B-splines

with the same placement of interior knots. In setting 3), we compare the proposed

sieve MLE for the ODE-AFT model, where the function α is set to 1, with the rank-
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Table II.2: Estimates of regression coefficients under correctly-specified ODE-Cox
with q(·) ≡ 1, ODE-LT with q(t) = e−t, and ODE-AFT with α(·) ≡ 1. Bias, SE,
ESE and CP contain the same meanings as those in Table II.1.

β1 = 1 β2 = 1 β3 = 1
Method Bias SE ESE CP Bias SE ESE CP Bias SE ESE CP

1)
MPLE .002 .076 .075 .934 -.003 .075 .075 .941 -.001 .074 .075 .954

ODE-Cox .003 .076 .076 .936 -.002 .075 .076 .942 .000 .074 .076 .955

2)
NPMLE .004 .117 .115 .949 -.001 .114 .115 .951 .003 .113 .115 .960

ODE-LT .005 .117 .115 .950 -.000 .114 .115 .951 .003 .113 .115 .961

3)
Rank-based .004 .105 .102 .944 -.001 .102 .102 .950 .002 .100 .103 .954

ODE-AFT .000 .102 .097 .944 -.005 .100 .097 .944 -.002 .097 .097 .950

Setting 1): the Cox model is correctly specified. Setting 2): the logarithmic transformation model is correctly
specified. Setting 3): the AFT model is correctly specified.

Figure II.2: The log-log plots of mean relative computing time with respect to the
sample size under the ODE-LT, the ODE-AFT model, and the ODE-Flex model are
provided from left to right respectively.

based estimation approach implemented using the R package aftgee. We fit log q(t)

by cubic B-splines with ⌊N 1
7 ⌋ interior knots that are located at the quantiles of the

estimated cumulative hazards under the Cox model. In setting 4) (as well as settings

1)-3)), we fit the general linear transformation model (ODE-Flex) where both q(·)

and α(·) are unspecified, and compare the sieve MLE with the smoothed partial rank

(SPR) method in Song et al. (2006). Both methods constrain β1 = 1 for identifiabil-

ity guarantee. For the sake of space, the results of the setting 4) are provided in the

Supplemental Material.

Tables II.2 and II.3 summarize the estimates of regression coefficients with the
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Table II.3: Estimates of regression coefficients under the general linear transformation
model ODE-Flex with both q(·) and α(·) unspecified. Bias, SE, ESE and CP contain
the same meanings as those in Table II.1.

β2 = 1 β3 = 1
Setting Bias SE ESE CP Bias SE ESE CP

1) .008 .106 .107 .947 .012 .104 .107 .959

2) -.019 .161 .151 .927 -.016 .159 .151 .938

3) -.014 .134 .131 .941 -.012 .131 .132 .945

4) .001 .092 .090 .939 .005 .091 .090 .954

Figure II.3: The solid blue curves are the true q(·) (upper row) and α(·) (lower
row). The solid red curves are the means of corresponding estimated q̂(·) and α̂(·)
under the general linear transformation model. The dashed yellow curves represent
95% pointwise confidence bands over 1, 000 replications. From left to right, the four
columns correspond to settings (1)-(4) respectively.
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sample size N = 4, 000 based on 1000 replications. Full results for the other sample

sizes are provided in the Supplemental Material. Table II.2 indicates that when

any of the Cox model, the logarithmic transformation model, or the AFT model is

correctly specified, the sieve estimator for the corresponding correctly specified ODE

model achieves similar performance as the partial-likelihood based estimator for the

Cox model, the NPMLE for the logarithmic transformation model, or the rank-based

estimator for the AFT model. However, the relative computing time of the proposed

ODE approach increases linearly as the sample size grows while that of the NPMLE

for the logarithmic transformation model or the rank-based method for the AFT

model increases in a quadratic rate as shown in Figure II.2.

For the general linear transformation model, we find that the proposed ODE-Flex

method has advantages against the existing SPR method in terms of estimation accu-

racy, numerical stability, and computational efficiency. We refer to the Supplemental

Material for detailed results and comparison with SPR. From Table II.3, we can see

that the bias of the ODE-Flex estimator is nearly negligible in all settings. The stan-

dard error estimators are close to the sample standard errors, and the corresponding

95% confidence intervals achieve a reasonable coverage proportion. When the Cox

model, the logarithmic transformation model, or the AFT model is correctly speci-

fied, their estimators (in Table II.2) achieve smaller standard errors than those for

ODE-Flex (in Table II.3), which is expected because both q(·) and α(·) are unspec-

ified in ODE-Flex. Figure II.3 shows the mean of α̂(·) and q̂(·) respectively. As one

can see, the means of α̂(·) and q̂(·) under the general linear transformation model are

all close to the true functions. Moreover, the relative computing time of ODE-Flex

increases in a much smaller rate than that of SPR as the sample size grows as shown

in the right panel of Figure II.2.

Note we have also considered other alternative knots placements (see the Sup-

plemental Material) and our numerical results suggest that knot selection does not
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appear critical for the proposed method.

2.3.4 Data Example

In this section, we apply the proposed method to a kidney post-transplantation

mortality study. End-stage renal disease (ESRD) is one of the most deadly and costly

diseases in the United States. From 2004 to 2016, ESRD incident cases increased from

345.6 to 373.4 per million people, with Medicare expenditures escalating from 18 to

35 billion dollars (Saran et al., 2017). Kidney transplantation is the renal replacement

therapy for the majority of patients with ESRD. Successful kidney transplantation

is associated with improved survival, improved quality of life, and health care cost

savings when compared to dialysis. However, despite aggressive efforts to increase

the number of donor kidneys, the demand far exceeds the supply of donor kidneys

for transplantation and hence, the donor waiting list is very long. Currently about

130,000 patients are waiting for lifesaving organ transplants in the U.S., among whom

100,000 await kidney transplants and fewer than 15% of patients will receive trans-

plants in their lifetime. To optimize the organ allocation, further research is essential

to determine the risk factor associated with post-transplant mortality.

To better understand this problem, we considered the data obtained from the Or-

gan Procurement and Transplantation Network (OPTN). There were 146,248 patients

who received transplants between 1990 and 2008. Failure time (recorded in years)

was defined as the time from transplantation to graft failure or death, whichever oc-

curred first, where graft failure was considered to occur when the transplanted kidney

ceased to function. Patient survival was censored 6 year post-transplant or at the end

of study (2008). The median follow-up time was around 6 years and the censoring

rate was 62%. Covariates included in this study were age at transplantation, race,

gender, cold ischemic time, donation after cardiac death (DCD), BMI, expanded cri-

teria donor (ECD), dialysis time, comorbidity conditions such as glomerulonephritis,

44



polycystic kidney disease, diabetes, and hypertension. Detecting and accounting for

time-varying effects are particularly important in the context of kidney transplanta-

tion, as non-proportional hazards have already been reported in the literature (Wolfe

et al., 1999; He et al., 2017). Also, analyses with time-varying effects provide valuable

clinical information that could be obscured otherwise.

However, existing statistical softwares become computationally infeasible when fit-

ting a time-varying effects model on a data set as large as what we have here. Thus,

to estimate the potential time-varying effects, we fit the time-varying Cox model us-

ing the proposed sieve MLE, which is computationally scalable. Specifically, based

on previous studies, DCD, Polycystic, Diabetes and Hypertension are modeled with

time-independent effects, and the remaining variables are estimated with time-varying

effects. The time-varying effects are all implemented by cubic B-splines with 5 inte-

rior knots, which is chosen based on the Bayesian information criterion. Figure II.4

shows the estimated baseline hazard function. We can see that the post-transplant

mortality is high in the short term after surgery, with a weakening association over

time. Table II.4 summarizes the estimated time-independent effects, and Figure II.5

shows examples of fitted time-varying effects with 95% pointwise confidence inter-

vals, where the standard error estimators were obtained by inverting the estimated

information matrix of all parameters including time-independent coefficients and the

coefficients of spline bases. As one can see, the effects of baseline age varied over time,

resulting in an eventually strengthened association. Specifically, compared with the

reference group (age at transplantation between 19-39), patients 40 to 49 years of

age had a protective effect in the short term after transplantation. We can also see

that the high cold ischemic time is a risk factor for mortality in the short run, with a

weakening association over time. Thus, special care should be dedicated to improve

the short-term outcome. As expected, longer waiting times on dialysis (greater than

5 years) negatively impact post-transplant survival, especially in the short run. Male
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gender was not significantly associated with mortality immediately after the renal

transplantation but became a risk factor in the long run. As can be seen in Figure

II.5, underweight shows a protective effect in the short run, and then a slightly weak-

ening association over time, which confirms the previous finding of Lafranca et al.

(2015). The results regarding high BMI should be interpreted with caution. Al-

though higher levels of BMI in the general population are typically associated with

high mortality, in chronic kidney diseases, such as patients with kidney dialysis and

kidney transplantation, higher BMI has been associated with better survival, which

has been labeled as reverse epidemiology (Dekker et al., 2008; Kovesdy et al., 2010).

Our results show that both overweight and obesity improved survival in the short

term after kidney transplantation, but obesity became a risk factor after long-term

exposure. One possible explanation is that BMI is a complex marker of visceral and

nonvisceral adiposity and also of nutritional status including muscle mass (Kovesdy

et al., 2010), and the improved short-term outcome associated with higher BMI may

be related to differential benefits by one or more of these components. Our findings

indicate a need to critically reassess the role of BMI in the risk stratification of kid-

ney transplantation. A further assessment (such as sub-group analysis) of high BMI

that differentiates between visceral adiposity, nonvisceral adiposity and higher muscle

mass may improve risk stratification in kidney transplant recipients. In addition, our

results show that graft survival for patients with Glomerulonephritis is better than

patients with other primary diseases. Regarding racial disparities, the long-term sur-

vival outcomes for African Americans continue to lag behind non-African Americans.

Finally, as expected, the effect of expanded criteria donor (ECD) is not as good as

optimal donor. When a sub-optimal organ becomes available, patients and physicians

must decide whether to accept the offer and special care must be dedicated to improve

the survival benefit.
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Table II.4: Summary of estimates for time-independent effects in kidney post-
transplantation mortality study

Variables DCD Polycystic Diabetes Hypertension

EST −0.081 −0.511 0.333 −0.146
ESE 0.038 0.021 0.012 0.014

95% CI [−0.156,−0.007] [−0.553,−0.469] [ 0.310, 0.357] [−0.172,−0.119]
p-value 0.033 < 0.001 < 0.001 < 0.001

* EST is the estimated time-independent effect, ESE is the estimated standard error by inverting the
estimated information matrix of all parameters including the coefficients of spline basis, and CI is the
confidence interval.
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Figure II.4: Estimated baseline hazard α̂(t) using the the proposed sieve MLE method
for the kidney transplantation data.
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Figure II.5: Estimated time-varying effects using the proposed sieve MLE method for
the kidney transplantation data.
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2.4 Neural Network Extension for Powerful Prediction

Although the aforementioned models in Section 2.2 are useful, they often model

the effect of features on the survival distribution in a simple, if not linear, way. These

restrictions prevent the traditional models from being flexible enough to model com-

plex data in diverse formats. To this end, various deep neural network models have

been introduced into survival analysis due to their ability in automatically extracting

useful features from large-scale raw data (Faraggi and Simon, 1995; Ching et al., 2018;

Katzman et al., 2018; Lee et al., 2018; Gensheimer and Narasimhan, 2019; Chapfuwa

et al., 2018; Kvamme et al., 2019; Steingrimsson and Morrison, 2020; Zhao, 2021).

As a natural choice for estimating a probabilistic model, likelihood-based methods

have been widely used for both traditional and deep survival analysis. However, a

major challenge for scalable maximum likelihood estimation of neural network models

lies in difficult-to-evaluate integrals due to the existence of censoring. Specifically, for

an uncensored observation i whose event time T = ti is recorded, the likelihood is

the probability density function p(ti). But, for a censored observation j, only the

censored time C = tj is recorded while the event time T is unknown. The likelihood

of observation j is the survival function S(tj), which is the probability of no event

occurring prior to tj: S(tj) = P{T > tj} = 1 −
∫ tj
0
p(s)ds. This integral imposes an

intrinsic difficulty for optimization: evaluating the likelihood and the gradient with

respect to parameters requires the calculation of integrals, which usually has no closed

forms for most flexible distribution families specified by neural networks.

To address this challenge, most existing works try to avoid the integrals in the

following two ways: 1) making additional structural assumptions so that no integral is

included in the objective function, such as partial-likelihood-based methods under the

proportional hazard (PH) assumption (Cox, 1975), or making parametric assumption

that leads to closed-form integration in the likelihood (Wei, 1992); 2) discretizing the

continuous event time with pre-specified intervals so that the integral is simplified into
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a cumulative product. However, the structural and parametric assumptions are often

restrictive and thus limit the flexibility of the model (Ng’andu, 1997; Zeng and Lin,

2007b); further, stochastic gradient descent algorithms cannot be directly applied to

the partial-likelihood-based objective functions and thus limit the scalability of the

model. As for discretization of the event time, it will likely cause information loss

and introduce pre-specified time intervals as hyper-parameters.

In this section, we recognize that maximizing the likelihood function for cen-

sored data can be viewed as an optimization problem with differential equation (DE)

constraints, and thereby tackle the aforementioned optimization challenges with an

efficient numerical approach. On the basis of the unified ODE modeling framework

in Section 2.2, we propose to specify f(t,Λx(t), x) = h(Λx(t), t;x, θ) in (2.1), where

the function h(·, ·, ·, θ) is modeled by a neural network taking the cumulative hazard

Λx(t), the time t, and the feature x as inputs and parameterized by θ. Since the like-

lihood given both uncensored and censored data can be re-written in a simple form

of the hazard and the cumulative hazard, we can evaluate the likelihood function by

solving the ODEs numerically. Moreover, the gradient of the likelihood with respect

to θ can be efficiently calculated via adjoint sensitivity analysis, which is a general

method for differentiating optimization objectives with DE constraints (Pontryagin

et al., 1962; Plessix, 2006). We name the proposed method as SODEN, Survival

model through Ordinary Differential Equation Networks.

In comparison to existing methods described above, the proposed SODEN is more

flexible to handle event times allowing for a broad range of distributions without

strong structural assumptions. Further, we directly learn a continuous-time survival

model using an ODE network, which avoids potential information loss from discretiz-

ing event times. We empirically evaluate the effectiveness of SODEN through both

simulation studies and experiments on real-world datasets, and demonstrate that

SODEN outperforms state-of-the-art models in most scenarios.
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The rest of this section is organized as follows. In Section 2.4.1, we summarize

related work on deep learning survival analysis and the DE-constrained optimization.

In Sections 2.4.2 and 2.4.3, we describe the proposed model and the corresponding

learning approach respectively. We evaluate the proposed method using simulation

studies in Section 2.4.4 and on real-world data examples in Section 2.4.5.

2.4.1 Related Work

Deep survival analysis There has been an increasing research interest on uti-

lizing neural networks to improve feature representation in survival analysis. Earlier

works (Faraggi and Simon, 1995; Ching et al., 2018; Katzman et al., 2018) are adapted

from the Cox model. Recall that the Cox model (Cox, 1972) makes the proportional

hazard (PH) assumption where the ratio of the hazard function is constant over time.

Specifically, the hazard function consists of two terms: an unspecified baseline hazard

function and a relative risk function, that is

λx(t) = α(t) exp(g(x; θ)); (2.13)

and the relative risk linearly depends on features, that is g(x; θ) = xT θ. They adapted

the Cox model to allow nonlinear dependence on features but still make the PH as-

sumption. For example, Katzman et al. (2018) used neural networks to model the

relative risk g(x; θ) in (2.13). Kvamme et al. (2019) further allowed the relative

risk to vary with time, which resulted in a flexible model without the PH assump-

tion. Specifically, they extended the relative risk as g(t, x; θ) to model interactions

between features and time. These models are all trained by maximizing the partial

likelihood (Cox, 1975) or its modified version, which does not need to compute the

integrals included in the likelihood function. The partial likelihood function is given
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by

PL(θ;D) =
∏

i:∆i=1

exp(g(yi, xi; θ))∑
j∈Ri

exp(g(yi, xj; θ))
, (2.14)

where D = {(yi,∆i, xi) : i = 1, · · · , N}, Ri = {j : yj ≥ yi} denotes the set of in-

dividuals who survived longer than the ith individual, which is known as the at-risk

set. Note that evaluation of the partial likelihood for an uncensored observation re-

quires access to all other observations in the at-risk set. Hence, stochastic gradient

descent (SGD) algorithms cannot be directly applied to partial likelihood-based ob-

jective functions, which is a serious limitation in training deep neural networks for

large-scale applications. In the worst case, the risk set can be as large as the full data

set. When the PH assumption holds, i.e., the numerators and denominators in (2.14)

do not depend on yi, evaluating the partial likelihood has a time complexity of O(N)

by computing g(xi; θ) once and storing the cumulative sums. For flexible non-PH

models, under which the likelihood has the form as (2.14), the time complexity fur-

ther increases to O(N2). Although in practice one can naively restrict the at-risk

set within each mini-batch, there is a lack of theoretical justification for this ad-hoc

approach and the corresponding objective function is unclear.

On the other hand, SGD-based algorithms can be naturally applied to the original

likelihood function. Following this direction, Lee et al. (2018) and Gensheimer and

Narasimhan (2019) propose to discretize the continuous event time with pre-specified

intervals, such that the integral in the likelihood is replaced by a cumulative product.

This method scales well with large sample size and does not make strong structural

assumptions. However, determining the break points for time intervals is non-trivial,

since too many intervals may lead to unstable model estimation while too few intervals

may cause information loss.

We note that there are works that also consider a continuous event time but they

do not optimize the likelihood function. Instead, they target summary statistics of

the event time distribution such as the restricted mean survival time or the survival
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Model Non-linear No PH Assumption Continuous-time SGD

Cox ✗ ✗ ✓ ?1

DeepSurv ✓ ✗ ✓ ?
DeepHit ✓ ✓ ✗ ✓

Nnet-survival ✓ ✓ ✗ ✓

Cox-Time ✓ ✓ ✓ ?
SODEN (proposed) ✓ ✓ ✓ ✓

Table II.5: Comparison between the proposed method, SODEN, and related work,
Cox (Cox, 1972), DeepSurv (Katzman et al., 2018), DeepHit (Lee et al., 2018), Nnet-
survival (Gensheimer and Narasimhan, 2019), and Cox-Time (Kvamme et al., 2019).

probability at a fixed time point (Steingrimsson and Morrison, 2020; Zhao, 2021). We

also note that (Groha et al., 2020) proposes a neural-network-based ODE approach to

model the Kolmogorov forward equation that characterizes the transition probabilities

for multi-state survival analysis.

The proposed SODEN is a flexible continuous-time model and is trained by max-

imizing the likelihood function, where SGD-based algorithms can be applied. Ta-

ble II.5 summarizes the comparison between SODEN and several representative ex-

isting methods.

DE-constrained optimization DE-constrained optimization has wide and im-

portant applications in various areas, such as optimal control, inverse problems, and

shape optimization (Antil and Leykekhman, 2018). One of the major contributions

of this work is to recognize that the maximum likelihood estimation in survival anal-

ysis is essentially a DE-constrained optimization problem. Specifically, the maximum

1SGD algorithms for Cox, DeepSurv, and Cox-Time can be naively implemented in practice, but

not theoretically justifiable due to the form of the objective functions.
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likelihood estimation (MLE) for the proposed SODEN can be rewritten as

max
θ

N∑
i=1

∆i log h(Λxi
(yi), yi;xi, θ)− Λxi

(yi) (2.15)

subject to Λ′
xi
(t) = h(Λxi

(t), t;xi, θ)

Λxi
(0) = 0, i = 1, . . . , N

where the constraint is a DE parameterized by θ and the objective contains the solu-

tion of the DE. Therefore, maximizing the likelihood function for censored data that

contains the solution of the parameterized ODE can be viewed as an optimization

problem with DE constraints as shown in (2.15)2. By bringing the strength of existing

DE-constrained optimization techniques, we are able to develop novel numerical ap-

proaches for MLE in survival analysis without compromising the flexibility of models.

There has been a rich literature on evaluating the gradient of the objective function

in the DE-constrained optimization problem (Peto and Peto, 1972; Cao et al., 2003;

Alexe and Sandu, 2009; Gerdts, 2011). Among them, the adjoint sensitivity analysis

is computationally efficient when evaluating the gradient of a scalar function with

respect to large number of model parameters (Cao et al., 2003). Therefore, we use

the adjoint method to compute the gradient of (2.15), whose detailed derivation is

provided in Section 2.4.3.

DE-constrained optimization has also found its applications in deep learning.

Chen et al. (2018) and Dupont et al. (2019) recently used ODEs parameterized with

neural networks to model continuous-depth neural networks, normalizing flows, and

time series, which lead to DE-constrained optimization problems. Here, we share the

merits of parameterizing the ODEs with neural networks but study a novel application

of DE-constrained optimization in survival analysis.

2The optimization problem in (2.15) belongs to a subclass of DE-constrained optimization prob-
lems, with the generic form of minθ J(Λ, θ), subject to g1(Λ(t),Λ

′(t), t; θ) = 0 and g2(Λ(0); θ) = 0.
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2.4.2 Survival ODE Model through Neural Networks

We consider the cumulative hazard function Λx(·) through an ODE (2.16) with a

fixed initial value,  Λ′
x(t) = h(Λx(t), t;x, θ)

Λx(0) = 0
, (2.16)

where the function h determines the dynamic change of Λx(·): the derivative of

cumulative hazard at time t is determined by the current cumulative hazard Λx(t), the

current time t, and feature x through the function h parameterized by θ. The initial

value implies that the event always occurs after time 0 since Sx(0) = exp(−Λx(0)) = 1.

Given an individual’s feature vector x and the parameter vector θ, for any specific

time point t∗, the cumulative hazard Λx(t
∗) can be obtained as the solution of the

initial value problem (2.16) at the time t∗, and the hazard rate can be obtained as

λx(t
∗) = h(Λx(t

∗), t∗;x, θ). Therefore, the function h fully determines the conditional

distribution of the event time T . The existence and uniqueness of the solution can be

guaranteed if h and its derivatives are Lipschitz continuous (Walter, 1998). In this

chapter, we specify h as a neural network and the above guarantees hold as long as

the neural network has finite weights and Lipschitz non-linearities. In practice, we

do not require the initial value problem (2.16) to have a closed-form solution. We

can obtain Λx(t
∗) numerically using any ODE solver given the derivative function h,

initial value at t0 = 0, evaluating time t1 = t∗, parameters θ, and features x, that is

Λx(t
∗) = ODESolver(h,Λx(0) = 0, t1 = t∗, x, θ). (2.17)

We consider a general ODE form, where h(·, t;x, θ) is a feed-forward neural net-

work taking Λx(t), t, and x as inputs, and θ represents all parameters in the neural

network. Specifically, the Softplus activation function (Dugas et al., 2001) is used to

constrain the output of the neural network, i.e. the hazard function, to be always
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positive. We refer this general form as SODEN; note that SODEN is a flexible sur-

vival model as it does not make strong assumptions on the family of the underlying

distribution or how features x affect the event time.

Remark II.12. Although there are other modeling alternatives that can uniquely

characterize the event distribution such as the survival function, we choose to model

the hazard in ODE (2.16) for three reasons. First, the hazard function has been widely

used as the modeling target for summarizing survival data in the literature, due to

its meaningful interpretation and informativeness about the underlying mechanism

of events (Klein and Moeschberger, 2003, Chapter 2). Next, the hazard function is

easier to model compared to the survival function, in the sense that it requires fewer

constraints for the neural network structure under the ODE framework. For example,

if we replace the cumulative hazard Λx(t) with Sx(t) in ODE (2.16), we need to make

sure the solution not only being monotonically decreasing in t but also being within

[0, 1] for any t ≥ 0, which poses additional constraints on the structure of the neural

network h. Last but not least, the hazard function itself is of direct interest in many

applications. For example, recent works in operational planning requires knowledge of

the hazard rate of the waiting time until the customer abandons the queue (Ibrahim

and Whitt, 2009; Reed and Tezcan, 2012).

2.4.3 Model Learning

We optimize SODEN by maximizing the likelihood function given i.i.d. observa-

tions. The negative log-likelihood function of the ith observation can be written as

L(θ;Di) ≜ −∆i log h(Λxi
(yi), yi;xi, θ) + Λxi

(yi), (2.18)

where Di = (yi,∆i, xi) for i = 1, · · · , N , and Λxi
(yi), as given in (2.17), also depends

on parameters θ. Our goal is to minimize
∑N

i=1 L(θ;Di) with respect to θ.
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For large-scale applications, we propose to use mini-batch SGD to optimize the

criterion, where the gradient of L with respect to θ is calculated through the adjoint

method (Pontryagin et al., 1962). In comparison to naively applying the chain rule

through all the operations used in computing the loss function, the adjoint method

has the advantage of reducing memory usage and controlling numerical error explicitly

in back-propagation.

Next, we demonstrate how the gradients can be obtained.

Back-propagation through adjoint sensitivity analysis In the forward pass,

we need to evaluate L(θ;Di) for each i in a batch. While there might be no closed

form for the solution of (2.16), Λxi
(yi) can be numerically calculated using a black-box

ODESolver in (2.17) and all other calculations are straightforward. In the backward

pass, the only non-trivial part in the calculation of the gradients of L with respect

to θ is back-propagation through the black-box ODESolver in (2.17). We compute

it by solving another augmented ODE introduced by adjoint sensitivity analysis.

Specifically, let the adjoint a(t) satisfy a′(t) = − ∂h
∂Λ
a(t) with a(yi) = 1, and then

it follows that ∇θΛxi
(yi) =

∫ yi
0
a∂h
∂θ
dt. Therefore, the gradient can be obtained by

evaluating the following augmented ODE

 s′(t) = [h(Λ(t), t;xi, θ),−a(t) ∂h∂Λ ,−a(t)
∂h
∂θ
]

s(yi) = [Λxi
(yi), 1,0|θ|]

, (2.19)

with s(t) = [Λ(t), a(t), s̄(t)] at t = 0, i.e., ∇θΛxi
(yi) = s̄(0). Note that this ap-

proach does not need to access internal operations of ODE solvers used in the for-

ward pass. Moreover, modern ODE solvers allow one to control the trade-off between

the computing time and accuracy. Also note that a GPU-based implementation of

back-propagation following the above rule is available in the torchdiffeq library (Chen

et al., 2018).
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Mini-batching with time-rescaling trick We also provide a practical time-

rescaling trick for mini-batching to better exploit the existing GPU-based implemen-

tation of ODE solvers. Concatenating ODEs of different observations in a mini-batch

into a single combined ODE system is a useful trick for efficiently solving multi-

ple ODEs on GPU. However, the existing GPU-based ODE solvers and the adjoint

method in Chen et al. (2018) require that all the individual ODEs share the same

initial point t0 and the evaluating point t1 in the ODESolver (2.17), which is unfortu-

nately not the case in SODEN. For the ith observation in a mini-batch, the ODE (2.16)

in the forward pass needs to be evaluated at the corresponding observed time t1 = yi.

To mitigate this discrepancy, we propose a time-rescaling trick that allows us to get

the solution of individual ODEs at different time points by evaluating the combined

ODE at only one time point. The key observation is that we can align the evaluating

points of individual ODEs by variable transformation. Let Hi(t) = Λxi
(t · yi), for

which the dynamics is determined by

 H ′
i(t) = h(Hi(t), tyi;xi, θ)yi ≜ h̃(Hi(t), t; (xi, yi), θ)

Hi(0) = Λxi
(0 · yi) = 0

.

Since Hi(1) = Λxi
(yi) for all i, evaluating the combined ODE of all Hi(s) at s = 1

once will give us the values of Λxi
(yi) for all i. We therefore can take advantage of

the existing GPU-based implementation for mini-batching by solving the combined

ODE system of Hi(s) with the time-rescaling trick2.

2We note that some recently developed deep learning libraries (e.g., JAX (Bradbury et al., 2018))
could support mini-batching over complicated operations such as solving ODEs with different initial
and evaluating time points without using the time-rescaling trick. However, the proposed rescal-
ing trick provides an easy-to-implement extension for the torchdiffeq library and potentially other
frameworks.
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2.4.4 Simulation Study

In this section, we conduct a simulation study to illustrate that the proposed

SODEN can fit well with data when the commonly used PH assumption does not

hold. For ease of visualization, we consider events generated from two groups where

their survival functions cross each other, thus the PH assumption is violated. Further,

we also show the advantage of SODEN as a continuous-time model rather than a

discrete-time model.

Set-up We generate event times from the conditional distribution defined by the

survival function Sx(t) = e−2tI(x = 0) + e−2t2I(x = 1), where x follows a Bernoulli

distribution with probability 0.5 and I(·) is the indicator function. The binary feature

x can be viewed as an indicator for two groups of individuals. Note that the survival

functions of the two groups, S0(t) and S1(t), cross at t = 1, hence the PH assumption

does not hold. The censoring times were uniformly sampled between (0, 2), which led

to a censoring rate around 25%.

We apply the proposed SODEN and investigate the predicted survival functions

and hazard functions under x = 0 and x = 1 respectively. We also provide the

results of DeepHit (Lee et al., 2018), which is a discrete-time model without the PH

assumption3, to further illustrate the advantage of the continuous nature of SODEN.

We train both models on the same simulated data with sample size 10,000. The

reported results are based on 10 independent trials.

Results The results of SODEN are shown in the left column of Figure II.6. Note

that the Kaplan-Meier (KM) estimate for each group can be considered a gold stan-

dard under our simulation setting, and we also plot them in Figure II.6 as the true

survival functions corresponding to the data generating distribution. The predicted

survival functions generally agree well with the true survival functions (the upper-left

3See Appendix A.8 for more details about this model.
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Figure II.6: The survival functions (top row) and hazard functions (bottom row) of
two groups, x = 0 and x = 1. The left column shows the results of SODEN, and the
right column shows the results of DeepHit. In all figures, the results are the average of
10 independent trials and error bars indicate the standard deviation. The red curve
indicates the predicted function for group x = 1 and the blue curve indicates the
predicted function for group x = 0. The survival (Kaplan-Meier curves) and hazard
functions corresponding to the data generating distribution for the two groups are
shown in black curves (solid curves for group x = 0 and dashed curves for group
x = 1).

figure). The predicted survival functions of the two groups cross approximately at

t = 1, indicating SODEN can fit well with data not under the PH assumption. The

lower-left figure shows that the predicted hazard functions of SODEN agree well with

the true hazard functions when time is relatively small, but deviate from the true

hazard functions as time increases. This is anticipated as there are few data points

when t is large and there are many more data points when t is small. As a side note,

while the estimate of the survival function looks better than that of the hazard func-

tion when t is large, it is a visual artifact. As the survival function is monotonically

decreasing and bounded between 0 and 1, the deviation (as indicated by the error

bar) of the estimated survival function from the ground truth near the tail is visually

diminished. Relatively, the estimate of the survival function actually becomes worse

for larger time t.
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The results of DeepHit are shown in the right column of Figure II.6. Due to the

discrete nature of the model, both the survival functions and the hazard functions

predicted by DeepHit are step functions. While the predicted survival functions (the

upper-right figure) fit well with the true survival functions when t is small, the survival

functions of the two groups are not well separated when t is large. As for the hazard

function (the lower-right figure), similarly, the predicted hazard functions fit well

when t is small but fluctuate wildly when t is large.

2.4.5 Real-world Examples

In this section, we demonstrate the effectiveness of SODEN by comparing it with

five baseline models on three real-world datasets. We also conduct an ablation study

to show the benefits of not making the PH assumption.

2.4.5.1 Datasets

We conduct experiments on the following three datasets: the Study to Understand

Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT), the Molecu-

lar Taxonomy of Breast Cancer International Consortium (METABRIC) (Katzman

et al., 2018), and the Medical Information Mart for Intensive Care III (MIMIC)

database (Johnson et al., 2016; Goldberger et al., 2000).

SUPPORT andMETABRIC are two common survival analysis benchmark datasets,

which have been used in many previous works (Katzman et al., 2018; Lee et al., 2018;

Gensheimer and Narasimhan, 2019; Kvamme et al., 2019). We adopt the version pre-

processed by Katzman et al. (2018) and refer readers there for more details. Despite

their wide adoption in existing literature, we note that SUPPORT and METABRIC

have relatively small sample sizes (8.8k for SUPPORT and 1.9k for METABRIC),

which may not be ideal to evaluate deep survival analysis models.

In this paper, we further build a novel large-scale survival analysis benchmark
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Dataset N p
Censoring
rate

Censored time (Yrs) Observed time (Yrs)

Mean Median Mean Median

MIMIC 35,304 26 61% 0.21 0.02 1.50 0.42
(MIMIC-SEQ) (5+15×24)
SUPPORT 8,873 14 32% 2.90 2.51 0.56 0.16
METABRIC 1,904 9 42% 0.44 0.43 0.27 0.24

Table II.6: Summary statistics of three datasets. N is the sample size and p is
the number of features. MIMIC-SEQ uses 5 time-static features and 15 time series
features within the first 24 hours after admission.

dataset from the publicly available MIMIC database. The MIMIC database provides

deidentified clinical data of patients admitted to an Intensive Care Unit (ICU) stay.

We take adult patients who are alive 24 hours after the first admission to ICU. The

event of interest is defined as the mortality after admission. The event time is observed

if there is a record of death in the database; otherwise, the censored time is defined

as the last time of being discharged from the hospital. In MIMIC dataset, we extract

26 features based on the first 24-hour clinical data following Purushotham et al.

(2018). In addition, to further evaluate deep learning models on applications with

more complex data structure, we consider another feature set involving time series

for the same group of patients, which is named as MIMIC-SEQ for differentiation.

MIMIC-SEQ contains 5 time-static features and 15 time series features within the

first 24 hours after admission. Following the protocols described above, we are able

to get a dataset with over 35k samples.

The detailed summary statistics of the three datasets are provided in Table II.6.

In all datasets, the categorical features are encoded as dummy variables and all the

features are standardized.

2.4.5.2 Models for Comparison

We compare the proposed method with the classical linear Cox model and four

state-of-the-art neural-network-based models:
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• DeepSurv is a PH model which replaces the linear feature combination in Cox

with a neural network to improve feature extraction (Katzman et al., 2018).

• Cox-Time is a continuous-time model allowing non-PH, and is optimized by

maximizing a modified partial-likelihood based loss function (Kvamme et al.,

2019).

• DeepHit is a discrete-time survival model which estimates the probability mass

at each pre-specified time interval, and is optimized by minimizing the linear

combination of the negative log-likelihood and a differentiable surrogate ranking

loss tailored for concordance index (Lee et al., 2018).

• Nnet-Survival also models discrete-time distribution via estimating the con-

ditional hazard probability at each time interval (Gensheimer and Narasimhan,

2019).

Detailed model specifications and loss functions for the neural-network-based base-

lines can be found in Appendices A.7 and A.8. Note that on the MIMIC-SEQ dataset,

we only compare neural-network-based models.

In Section 2.4.4, we have shown that the proposed model, because of its flexible

parameterization, is able to fit well to the simulated data where the PH assumption

does not hold. Here we further conduct an ablation study on real-world datasets to

test the effect of the flexible parameterization. Specifically, we compare the general

form of the proposed SODEN, with two of its degenerate variants, SODEN-PH

and SODEN-Cox. SODEN-PH factorizes h(Λx(t), t;x, θ) = h0(t; θ)g(x; θ) as a mul-

tiplication of two functions to satisfy the PH assumption, where both h0 and g are

specified as neural networks. SODEN-Cox is a linear version of SODEN-PH where

g(x) = exβ. Notably, SODEN-Cox and SODEN-PH are designed to have similar

representation power as Cox and DeepSurv respectively.
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2.4.5.3 Evaluation Metrics

Evaluating survival predictions needs to account for censoring. Here we describe

several commonly used evaluation metrics (Kvamme et al., 2019; Wang et al., 2019a).

Time-dependent concordance index Concordance index (C-index) (Harrell Jr.

et al., 1984) is a commonly used discriminative evaluation metric in survival analysis,

and it measures the probability that, for a random pair of observations, the relative

order of the two event times is consistent with that of the two predicted survival prob-

abilities. The C-index was originally designed for models using the PH assumption,

where the relative order of the predicted survival probabilities for two given individu-

als does not change with time. Antolini et al. (2005) further propose time-dependent

C-index for models without PH assumption, where the relative order of the predicted

survival probabilities may be different if evaluated at different time points. In addi-

tion, Uno et al. (2011) introduce inverse probability weights to the C-index such that

it does not depend on the study-specific censoring distribution. Following Antolini

et al. (2005) and Uno et al. (2011), we adopt the inverse probability weighted time

dependent C-index in our evaluation, which is given by

Ctd =

∑
i:∆i=1

∑
j:yi<yj

I(Ŝxi
(yi) < Ŝxj

(yi))/Ĝ
2(yi)∑

i:∆i=1

∑
j:yi<yj

1/Ĝ2(yi)
,

where xi, yi, and ∆i are the features, observed time, and event indicator for individual

i; I(·) is the indicator function; Ŝxi
(t) is the predicted survival function at time t given

xi; and Ĝ(t) is the Kaplan-Meier estimator for the survival function of the censoring

time, i.e. P(C > t). Under the independence assumption between the censoring

time and the event time, Ctd converges to the discrimination measure P(Sxi
(Ti) <

Sxj
(Ti)|Ti < Tj).

In practice, the estimation of Ĝ(t) as well as the model predictions are rela-
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tively unstable for large t due to limited number of observations, yet they lead to

large inverse probability weights 1/Ĝ(t). Following Uno et al. (2011), we implement

a truncated version of time-dependent C-index within a pre-specified time interval

(0, τ), i.e.,

Ctd
τ =

∑
i:∆i=1,yi<τ

∑
j:yi<yj

I(Ŝxi
(yi) < Ŝxj

(yi))/Ĝ
2(yi)∑

i:∆i=1,yi<τ

∑
j:yi<yj

1/Ĝ2(yi)
.

We report results under various τ with Ĝ(τ) = 10−8, 0.2, and 0.4. When Ĝ(τ) = 10−8,

it is almost identical to the non-truncated version. Note that Ctd
τ =1 corresponds to

a perfect ranking of predicted survival probabilities and Ctd
τ =0.5 corresponds to a

random ordering.

Integrated Brier score For a binary classifier, the Brier score (BS) is defined as

the mean square difference between the predicted probability and the ground-truth

binary label. The metric BS can be decomposed into two components measuring

calibration and discriminative performance respectively. Given similar discriminative

performance, a lower BS indicates the closer the predicted survival probability Ŝx(t) is

to the true probability of experiencing the event after time t. We refer well calibrated

models to those with good probability estimates. Graf et al. (1999) generalized BS

to take account for censoring in survival analysis. Specifically, the BS for survival

analysis at time t is defined as

BS(t) =
1

N

N∑
i=1

{
(Ŝxi

(t))2I(yi ≤ t,∆i = 1)

Ĝ(yi)
+

(1− Ŝxi
(t))2I(yi > t)

Ĝ(t)

}
,

where the notations are the same as Ctd. As the predicted survival probability de-

pends on the time point of evaluation, we use integrated BS (IBS) to measure the
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overall BS on a time interval:

IBS =
1

tmax − tmin

tmax∫
tmin

BS(t)dt.

In practice, we choose the interval [0, tmax] with various tmax satisfying Ĝ(tmax) =

10−8, 0.2, and 0.4, and compute this integral numerically by averaging over 100 grid

points. The lower the IBS, the better the performance.

Integrated binomial log-likelihood Graf et al. (1999) also generalized the bino-

mial log-likelihood (BLL), which is a binary classification evaluation metric measuring

both discrimination and calibration, to survival analysis in a similar way as BS. The

BLL for survival analysis at time t is defined as

BLL(t) =
1

N

N∑
i=1

 log
(
1− Ŝxi

(t)
)
I(yi ≤ t,∆i = 1)

Ĝ(yi)
+

log
(
Ŝxi

(t)
)
I(yi > t)

Ĝ(t)

 ,

where the notations are the same as BS. We can also define the integrated BLL (IBLL)

to measure the overall performance from tmin to tmax, where

IBLL =
1

tmax − tmin

tmax∫
tmin

BLL(t)dt.

The higher the IBLL, the better the performance. Note that the IBS takes the squared

error in the loss, i.e., error2, while the negative IBLL accounts for error with scale

− log(1− error). Thus, in general, IBLL has larger magnitude than IBS and penalizes

more for larger error.

Negative log-likelihood Negative log-likelihood (NLL) corresponds to L(θ;Di)

in (2.18) and predictive NLL on held out data measures the goodness-of-fit of the

model to the observed data. However, NLL is only applicable to models that pro-
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vide likelihood, and it is not comparable between discrete-time and continuous-time

models due to the difference in the likelihood definition. We use NLL to compare

three variants of SODEN in the ablation study. The lower the NLL, the better the

performance.

2.4.5.4 Experimental Setup

We randomly split each dataset into training, validation and testing sets with a

ratio of 3:1:1. To make the evaluation more reliable, we take 5 independent ran-

dom splits for MIMIC(-SEQ), 10 independent random splits for SUPPORT and

METABRIC as their sizes are relatively small. For each split, we train the Cox

model on the combination of training and validation sets. For neural-network-based

models, we train each model on the training set, and apply early-stopping using the

loss on the validation set with patience 10. The hyper-parameters of each model are

tuned within each split through 100 independent trials using random search. We

select the optimal hyper-parameter setting with the best score on the validation set.

For continuous-time models, DeepSurv, Cox-Time, and SODEN, the validation score

is set as the loss. For discrete-time models, DeepHit and Nnet-Survival, the loss func-

tions (i.e., NLLs) across different pre-specified time intervals are not comparable so

the validation score is set as Ctd as was done in Kvamme et al. (2019).

For all neural networks, we use multilayer perceptrons (MLP) with ReLU acti-

vation in all layers except for the output layer. For SODEN, Softplus is used to

constrain the output to be always positive; for DeepHit and Nnet-Survival, Softmax

and Sigmoid are used respectively to return PMF and discrete hazard probability. For

the MIMIC-SEQ dataset, we incorporate a one-layer Gated Recurrent Units (GRU)

encoder into the model architecture of each deep survival model to learn feature rep-

resentation from sequence data. We use the RMSProp (Tieleman and Hinton, 2012)

optimizer and tune batch size, learning rate, weight decay, momentum, the number
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P(C > τ) Model Ctd
τ (↑) IBLL (↑) IBS (↓)

10−8 DeepSurv 0.685± .002 −0.335± .003 0.103± .001
Cox-Time 0.681± .002 −0.332± .003 0.103± .001
Nnet-Survival 0.679± .003∗ −0.331± .003∗ 0.104± .001
DeepHit 0.688± .002 −0.336± .005∗ 0.106± .001∗
SODEN (ours) 0.687± .002 -0.328± .004 0.103± .001

0.2 DeepSurv 0.685± .002 −0.400± .013 0.124± .003
Cox-Time 0.681± .002 −0.397± .011 0.125± .003
Nnet-Survival 0.679± .003∗ −0.396± .011∗ 0.126± .003
DeepHit 0.688± .002 −0.402± .012∗ 0.128± .004∗
SODEN (ours) 0.687± .002 -0.391± .011 0.125± .004

0.4 DeepSurv 0.740± .002∗ −0.386± .013∗ 0.121± .005∗
Cox-Time 0.744± .003∗ −0.382± .014∗ 0.120± .005∗
Nnet-Survival 0.737± .004∗ −0.391± .015 0.123± .006
DeepHit 0.752± .003 −0.381± .014 0.120± .005∗
SODEN (ours) 0.752± .003 -0.374± .013 0.118± .005

Table II.7: Comparison of time dependent concordance index (Ctd
τ ), integrated bino-

mial log-likelihood (IBLL), integrated brier score (IBS) on MIMIC-SEQ. The bold
and underline markers denote the best and the second best performance respectively.
The (±) error bar denotes the standard error of the mean. The asterisk (*) after a
baseline model performance indicates a significant (either positive or negative) differ-
ence between that baseline model and the proposed SODEN, under pairwise t-test
with p-value < 0.05.

of layers, and the number of neurons in each layer. The search ranges for the afore-

mentioned hyper-parameters are shared across all neural-network-based models on

each dataset. Additionally, we tune batch normalization and dropout for all neural-

network-based baseline models. For DeepHit and Nnet-Survival, we tune the number

of pre-specified time intervals. We also smooth the predicted survival function by in-

terpolation, which is an important post-processing step to improve the performance

of these discrete-time models. The tuning ranges of hyper-parameters are listed in

Appendix A.9.
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P(C > τ) Model Ctd
τ (↑) IBLL (↑) IBS (↓)

10−8 Cox 0.660± .001∗ −0.335± .003∗ 0.105± .001∗
DeepSurv 0.683± .001 −0.326± .005∗ 0.101± .001∗
Cox-Time 0.680± .001 −0.326± .003∗ 0.101± .001∗
Nnet-Survival 0.681± .001 −0.321± .002 0.101± .001
DeepHit 0.685± .002 −0.327± .003∗ 0.102± .001∗
SODEN (ours) 0.684± .002 -0.319± .003 0.100± .001

0.2 Cox 0.660± .001∗ −0.413± .007∗ 0.132± .003∗
DeepSurv 0.683± .001 −0.402± .006∗ 0.127± .002∗
Cox-Time 0.680± .001 −0.404± .007∗ 0.128± .002∗
Nnet-Survival 0.682± .001 −0.398± .007 0.127± .003
DeepHit 0.685± .002 −0.404± .008∗ 0.128± .002∗
SODEN (ours) 0.684± .002 -0.395± .006 0.126± .002

0.4 Cox 0.706± .003∗ −0.399± .018∗ 0.124± .007∗
DeepSurv 0.739± .003∗ −0.387± .016 0.120± .007∗
Cox-Time 0.737± .003∗ −0.387± .020∗ 0.120± .007∗
Nnet-Survival 0.741± .005 −0.386± .019∗ 0.120± .007∗
DeepHit 0.747± .004 −0.404± .023 0.128± .009
SODEN (ours) 0.746± .003 -0.379± .019 0.118± .007

Table II.8: Comparison of performance on MIMIC. The notations share the same
definitions as in Table II.7.

2.4.5.5 Results

Discriminative and calibration performance The comparison of model per-

formances on MIMIC-SEQ, MIMIC, SUPPORT, and METABRIC are respectively

reported in Tables II.7 to II.10.

We first consider the C-index metric, which measures the discriminative perfor-

mance. We observe that the proposed SODEN outperforms other continuous-time

models (Cox, DeepSurv, and Cox-Time). The differences in C-index are significant

on all datasets, except for those with large τ on MIMIC-SEQ and MIMIC. The gain

of SODEN against DeepSurv and Cox-Time demonstrates the benefits of not making

the PH assumption and having a principled likelihood objective. We also observe

that all neural network models significantly outperform the Cox model in almost all

cases.
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P(C > τ) Model Ctd
τ (↑) IBLL (↑) IBS (↓)

10−8 Cox 0.596± .002∗ −0.568± .001∗ 0.194± .001∗
DeepSurv 0.609± .003∗ -0.559± .002∗ 0.190± .001∗
Cox-Time 0.607± .004∗ −0.565± .002 0.191± .001
Nnet-Survival 0.624± .003 −0.570± .004 0.193± .001∗
DeepHit 0.631± .003 −0.583± .006∗ 0.197± .001∗
SODEN (ours) 0.627± .003 −0.563± .002 0.191± .001

0.2 Cox 0.596± .002∗ −0.585± .001∗ 0.201± .000∗
DeepSurv 0.609± .003∗ -0.577± .002 0.197± .001
Cox-Time 0.606± .004∗ −0.583± .002 0.199± .001
Nnet-Survival 0.623± .003 −0.586± .003 0.201± .001∗
DeepHit 0.630± .003 −0.601± .006∗ 0.205± .002∗
SODEN (ours) 0.627± .003 −0.579± .002 0.198± .001

0.4 Cox 0.595± .002∗ −0.602± .001∗ 0.208± .001∗
DeepSurv 0.608± .002∗ -0.595± .002 0.205± .001
Cox-Time 0.605± .004∗ −0.601± .002 0.207± .001
Nnet-Survival 0.623± .003 −0.602± .003 0.208± .001∗
DeepHit 0.630± .003 −0.619± .007∗ 0.212± .002∗
SODEN (ours) 0.626± .003 −0.597± .002 0.205± .001

Table II.9: Comparison of performance on SUPPORT. The notations share the same
definitions as in Table II.7.

For discrete-time models, Nnet-Survival and DeepHit show strong discriminative

performance on the C-index metric compared to continuous-time models in general.

This is not surprising due to the facts that 1) similar as SODEN, the discrete-time

models do not make strong structural assumptions; 2) the discrete-time models are

tuned with C-index as the validation metric, and DeepHit has an additional ranking

loss tailored for C-index. However, we find their advantage diminishes on MIMIC-

SEQ and MIMIC, where the data size is much larger. We suspect the information

loss due to discretizing the event time becomes more severe as the data size grows,

and will eventually turn to the discriminative performance bottleneck.

We then consider the IBLL and IBS metrics, which measure a combination of the

discriminative performance and the calibration performance. Overall, most models

are similarly well-calibrated. However, DeepHit is obviously less calibrated than most
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P(C > τ) Model Ctd
τ (↑) IBLLτ (↑) IBSτ (↓)

10−8 Cox 0.644± .006∗ −0.508± .009∗ 0.169± .002
DeepSurv 0.635± .007∗ −0.517± .011∗ 0.171± .003∗
Cox-Time 0.648± .007∗ −0.511± .009∗ 0.172± .003∗
Nnet-Survival 0.666± .005 −0.510± .007 0.171± .002∗
DeepHit 0.674± .006∗ −0.514± .004∗ 0.174± .002∗
SODEN (ours) 0.661± .005 -0.498± .008 0.167± .003

0.2 Cox 0.639± .006∗ −0.521± .006 0.176± .002
DeepSurv 0.635± .006∗ −0.530± .005∗ 0.179± .002∗
Cox-Time 0.647± .005∗ −0.531± .007∗ 0.179± .002∗
Nnet-Survival 0.662± .004 −0.523± .003 0.177± .001
DeepHit 0.671± .004∗ −0.533± .003∗ 0.182± .001∗
SODEN (ours) 0.659± .003 -0.516± .005 0.174± .002

0.4 Cox 0.637± .006∗ −0.521± .006 0.175± .002
DeepSurv 0.635± .006∗ −0.526± .005∗ 0.178± .002∗
Cox-Time 0.644± .005∗ −0.526± .006∗ 0.178± .002∗
Nnet-Survival 0.660± .003 −0.519± .003 0.176± .001
DeepHit 0.668± .004∗ −0.528± .003∗ 0.180± .001∗
SODEN (ours) 0.658± .004 -0.513± .005 0.173± .002

Table II.10: Comparison of performance on METABRIC. The notations share the
same definitions as in Table II.7.

other models, given it has the worst IBLL and IBS and the best C-index metric in

most settings. This may be due to the surrogate ranking loss used in DeepHit.

In summary, the proposed SODEN demonstrates significantly better discrimina-

tive performance than all continuous-time baseline methods on all datasets. On the

larger datasets (MIMIC-SEQ and MIMIC), SODEN achieves better or similar C-index

metric compared to the discrete models. The superior discriminative performance of

DeepHit comes at the price of the inferior calibration performance.

Finally, we remark that the event time and censoring time in MIMIC both have

heavily right-skewed distributions, as indicated by the large discrepancy between their

mean and median in Table II.6. On MIMIC and MIMIC-SEQ, including more testing

data near the tail in evaluation (Ĝ(τ) = 10−8 or 0.24) gives a worse Ctd
τ compared

4On MIMIC and MIMIC-SEQ, both Ĝ(τ) = 10−8 and Ĝ(τ) = 0.2 have a tiny number of samples
being excluded due to the right-skewness of the censoring distribution, and thus are close to the
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Dataset Metric (P(C > τ)) SODEN SODEN-PH SODEN-Cox

MIMIC-SEQ NLL 0.489± .072 0.520± .069∗ N/A
Ctd (10−8) 0.687± .002 0.682± .001∗ N/A
Ctd (0.2) 0.687± .002 0.683± .001∗ N/A
Ctd (0.4) 0.752± .003 0.739± .005∗ N/A

MIMIC NLL 0.411± .007 0.436± .007∗ 0.450± .006∗
Ctd (10−8) 0.684± .002 0.679± .002∗ 0.659± .001∗
Ctd (0.2) 0.684± .002 0.679± .002∗ 0.659± .001∗
Ctd (0.4) 0.746± .003 0.734± .003∗ 0.706± .003∗

SUPPORT NLL 0.676± .008 0.702± .008∗ 0.761± .022∗
Ctd (10−8) 0.627± .003 0.608± .003∗ 0.591± .003∗
Ctd (0.2) 0.627± .003 0.608± .002∗ 0.590± .004∗
Ctd (0.4) 0.626± .003 0.607± .002∗ 0.589± .004∗

METABRIC NLL 0.149± .015 0.176± .013∗ 0.167± .010∗
Ctd (10−8) 0.661± .005 0.640± .005∗ 0.642± .006∗
Ctd (0.2) 0.659± .003 0.639± .004∗ 0.638± .005∗
Ctd (0.4) 0.658± .004 0.639± .005∗ 0.636± .006∗

Table II.11: Comparison of negative log-likelihood (NLL) and time dependent con-
cordance index (Ctd

τ ) between SODEN and its degenerate variants, SODEN-Cox and
SODEN-PH, for ablation study. The bold, underline, and (±) error bar share the
same definitions as in Table II.7. The asterisk (*) indicates a significant difference
between the proposed SODEN and its degenerate variants, under pairwise t-test with
p-value < 0.05.

to including less tail samples (Ĝ(τ) = 0.4). This is because models tend to have

poor prediction performance near the tail due to limited number of observations, yet

these tail samples get large inverse probability weights. This also explains why the

differences in Ctd
τ among different models are less significant when including more tail

samples.

Ablation study While the trend over Cox, DeepSurv, and SODEN has supported

our conjecture that flexible parameterization by introducing non-linearity and not

making the PH assumption is important for practical survival analysis on modern

datasets, we further verify this conjecture by the ablation study with SODEN-PH

non-truncated version Ctd.
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Figure II.7: Kaplan-Meier curves of high/low-risk groups for SODEN on MIMIC.

and SODEN-Cox (see Table II.11).

First, we observe that the relative differences in the C-index metric among SODEN-

Cox, SODEN-PH, and SODEN are similar as those among Cox, DeepSurv, and SO-

DEN. In fact, we can see that the Ctd
τ ’s of SODEN-Cox and SODEN-PH in Table II.11

are respectively similar with those of their partial-likelihood counterparts Cox and

DeepSurv in Tables II.7 to II.10. This observation implies that 1) neural networks

can approximate the baseline hazard function as well as the non-parametric Bres-

low’s estimator (Lin, 2007); 2) maximizing the likelihood function with numerical

approximation approaches, where SGD based algorithms can be naturally applied,

can perform as well as maximizing the partial likelihood for PH models.

Second, SODEN outperforms SODEN-PH and SODEN-Cox in terms of NLL by

a large margin. The major difference between SODEN-PH and SODEN is that the

former is restricted by the PH assumption while the latter is not. The comparison

of NLL between SODEN-PH and SODEN provides a strong evidence that the PH

assumption may not hold on these datasets. Further, SODEN-Cox often being the

worst verifies again that both non-linearity and the flexibility of non-PH models

matter.
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Risk discriminating visualization We further provide visualization of risk dis-

crimination. We show the Kaplan-Meier curves (Kaplan and Meier, 1958) of high-risk

and low-risk groups identified by SODEN on the MIMIC dataset. We first obtain the

predicted survival probability for each individual at the median of all observed sur-

vival times in the test set. We then split the test set into high-risk and low-risk groups

evenly based on their predicted survival probabilities. The Kaplan-Meier curves for

the high-risk group, the low-risk group, and the entire test set are shown in Figure II.7.

The difference between high-risk and low-risk groups is statistically significant where

the p-value of the log rank test (Peto and Peto, 1972) is smaller than 0.001.

2.5 Discussion

In this chapter, we have proposed a novel ODE framework for survival analysis.

We revisit the rich literature of survival analysis and provide a unified view of many

existing survival models in Section 2.2. This unification merit serves as the foundation

of the proposed widely applicable estimation procedure. In particular, the proposed

estimation procedure is scalable and easy to implement based on well-developed nu-

merical solvers and local sensitivity analysis tools for ODEs. We have demonstrated

the effectiveness of the proposed method on both simulation studies and real-world

data examples.

In Section 2.3, we focus on estimation and inference for a general class of semi-

parametric ODE models, in which case the effects of certain covariates are often

of interest. We have established the consistency and semi-parametric efficiency of

the proposed sieve estimator, with a new general sieve M-theorem. The proposed

general theory derives the asymptotic distribution of bundled parameters, where the

nuisance parameter is a function of not only the regression parameters of interest but

also other infinite-dimensional nuisance parameters. Though we have only illustrated

the efficient estimation in the linear transformation model as an example to motivate
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such a theoretical development, the proposed general theory can be extended to other

models.

Further, the proposed ODE framework and the estimation method offer new op-

portunities for investigating more flexible model structures as well. In Section 2.4,

we have developed survival models with powerful representation learning via neural

networks to improve prediction performance. The proposed SODEN can model a

broad range family of continuous event time distributions without strong structural

assumptions and the algorithm scales well by allowing direct use of mini-batch SGD.

In addition, an interesting application of the unified ODE framework is to check

the model specification. In particular, the estimation and inference for a general ODE

model can help test whether a nested model is appropriate for a dataset. For example,

Proposition 2.2.2 implies that the function q(·) or α(·) in the linear transformation

model (2.5) should be a power function when it coincides with the Cox or the AFT

model. Though we have established the consistency of the functional parameters

q(·) and α(·) in the nonparametric linear transformation model, it is worthwhile

to further investigate their asymptotic distributional theory for model diagnostics

as future work. As a preliminary study, we have explored a heuristic parametric

approach for model diagnostics and provided its finite sample performance in the

Supplemental Material.

Finally, we note that a few recent works have tried to address the computation

burden of certain estimation methods for specific models on massive time-to-event

data. In particular, Wang et al. (2019b) proposed an efficient divide-and-conquer

(DAC) algorithm for the sparse Cox model. Kawaguchi et al. (2020) developed an

algorithm for reducing the computation cost of fitting the Fine-Gray (Fine and Gray,

1999) proportional subdistributional hazards model by exploiting its special structure.

Zuo et al. (2021) proposed a subsampling procedure to approximate the full-data

estimator for the additive hazard model. Note that most of these methods are tailored
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for a specific model while our method can be applied more broadly. Further, our

estimation procedure and these methods are not competitors. In contrast, some of

the techniques used in these methods, such as DAC, can be naturally integrated into

the proposed estimation procedure, which is an interesting future direction to be

explored.
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CHAPTER III

Latent Space Approach for Signed Networks

3.1 Introduction

Networks characterize connectivity relationships between individuals of a complex

system and are ubiquitous in various fields, such as social science, biology, transporta-

tion, and information technology (Newman, 2010). In a network, a node represents

an individual and an edge between two nodes indicates the presence of certain inter-

action or relation. Given the unique relational information represented by networks,

many statistical models have been developed to understand the underlying mecha-

nism of the system and help explain the observed phenomenon on networks; see for

example Goldenberg et al. (2010) for a comprehensive overview. One important class

of statistical models is the latent variable model, where the presence/absence of an

edge depends on the node latent variables. For example, stochastic block models use

latent categorical variables to describe the block structure among nodes (Abbe, 2018);

latent space models map nodes into a low-dimensional metric space while account-

ing for transitivity, homophily for node attributes, node heterogeneity and clustering

(Hoff et al., 2002; Krivitsky et al., 2009). Such latent variable models are attrac-

tive due to their interpretable structure, their nature for network visualization, and

their ability for downstream network-assisted learning such as node clustering, node

classification, and network link prediction.
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Figure III.1: Four types of triangles in signed networks, where the left two are bal-
anced and the right two are unbalanced.

Nonetheless, most statistical network models only focus on the presence/absence

of edges while ignoring different types of edges, which makes them inadequate for

modeling signed networks. A signed network consists of two types of edges, positive

edges and negative edges, and such polarized relationships are common in real-world

networks. For example, positive and negative edges may respectively correspond to

relationships of like and dislike in social networks, collaboration and competition

in trading networks, or alliance and militarized dispute in international relation net-

works. Modeling signed networks has its own unique challenges not merely due to the

additional sign for each edge, but more importantly, because the presence of positive

and negative edges affect each other in certain ways. There have been various social

theories that describe the structural pattern of signed networks (Guha et al., 2004;

Leskovec et al., 2010; Knoke, 2013), an important one being the structural balance

theory (Heider, 1946; Harary et al., 1953). Specifically, the balance theory describes

the distribution of different types of triangles (i.e. three nodes that are connected

with each other). A triangle in a signed network is called balanced if the product of

its three edge signs is positive; and it is called unbalanced otherwise (see Figure III.1

for examples). The balance theory postulates that balanced triangles should be more

prevalent than unbalanced triangles in signed networks, which directly coincides with

the proverb, “the enemy of my enemy is my friend” and “the friend of my friend is

my friend”. Moreover, recent studies have found empirical evidence of the balance

property in many real-world signed networks (Leskovec et al., 2010; Kirkley et al.,

2019; Feng et al., 2020).
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On the other hand, there have been very few statistical models for signed networks

that incorporate the balance theory into modeling. To the best of our knowledge, Derr

et al. (2018) is the only recent work; specifically, it extends the configuration model

(Chung and Lu, 2006) to signed networks with a focus on matching not only the

node degree distribution but also the sign distribution and proportion of balanced

triangles. Besides statistical models, there is a collection of work using low-rank

matrix completion approaches induced by the balance theory for learning tasks such

as sign prediction and clustering (Hsieh et al., 2012; Chiang et al., 2014). These works

assume that there are underlying signed edges (not allowing for zeros) between all

possible pairs of n nodes, and view the network as a fixed n × n adjacency matrix

with entries of {+1,−1}. In comparison, statistical network models can provide

statistically interpretable structures and account for noise in both signs and edges

by modeling network distributions that precisely quantify the randomness in the

observed data.

In this chapter, we propose a latent space approach to accommodate the balance

theory for signed networks in a statistically principled way. Specifically, we introduce

a novel definition of balance at the population level, which matches the balance theory

in nature while viewing an observed network as the realization of a random quantity.

For concreteness, we consider an undirected signed network with n nodes denoted by

a symmetric signed adjacency matrix A, with Aij = Aji = 1 if node i and node j

are linked by a positive edge, Aij = Aji = −1 if node i and node j are linked by a

negative edge, and Aij = Aji = 0 if there is no edge between i and j. We assume

there is no self-loop and thereby the diagonal elements of A are zeros. We assume Aij

to be random variables taking values in {−1, 0, 1} and define the notion of balance

at the population level as follows.

Definition 3.1.1 (Population-level balanced network). A network is population-level
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balanced if

E(AijAjℓAℓi

∣∣|AijAjℓAℓi| = 1) > 0, for any three different nodes (i, j, ℓ).

This definition suggests the expected product of signs on any triangle to be posi-

tive but does not require all triangles to be balanced in an observed signed network.

Furthermore, the stochastic notion in Definition 3.1.1 allows us to investigate what

generating mechanisms of signed networks are inherently of population-level balance.

Specifically, we will focus on a general class of latent space models, due to afore-

mentioned merits of latent space models. Rigorous descriptions are provided in Sec-

tion 3.2. The key finding is that, if there exists a partition of the latent space such

that edges tend to be positive within the same subset and negative between different

subsets, then the network generated from such a latent space model is population-level

balanced.

Based on this finding, we further propose a class of balanced inner-product models

that directly capture the population-level balance. A unique difference from latent

space models for unsigned networks is that we introduce an additional latent polar

variable for each node. In particular, when the product of latent polar variables of two

nodes has a large positive value, the sign of an edge between them is more likely to

be positive; for a node with the latent polar variable being zero, it has no preference

on the signs when forming edges with other nodes. We note that it is this novel

introduction of latent polar variables that enables modeling signed networks with the

population-level balance.

The rest of this chapter is organized as follows. We introduce the latent space ap-

proach for signed networks in Section 3.2, where we also provide a sufficient condition

for the population-level balance. We present the proposed balanced inner product

models in Section 3.3. We develop two scalable estimation methods in Section 3.4

and establish their non-asymptotic error rates in Section 3.5, which are further vali-

dated by simulation studies in Section 3.6. We demonstrate the effectiveness of the
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proposed approach in modeling a real-world signed network for international relations

in Section 3.7. All proofs are given in the Appendices.

3.2 A Latent Space Approach for Signed Networks

In this section, we propose a probabilistic generative process for undirected signed

networks with n nodes. Recall that A ∈ {1, 0,−1}n×n is the signed adjacency matrix.

Suppose the latent space U0 is endowed with the probability measure Pu; B(·, ·) : U0×

U0 → (0, 1) is a function symmetric in its two arguments; f(·, ·) : U0×U0 → (−∞,∞)

is also a function symmetric in its two arguments.

Definition 3.2.1 (A general latent space model for signed networkG(n,U0, Pu, B, f)).

For 1 ≤ i ≤ n, let ui ∈ U0 be the latent vector independently sampled from the dis-

tribution Pu. Given the latent vectors of a pair of nodes i and j, independently of

other pairs, an edge between node i and node j is drawn with probability B(ui, uj),

i.e.,

|Aij|
ind.∼ Bernoulli(Pij) with Pij = B(ui, uj);

then for each edge (i.e. |Aij| = 1), independently of all others, it takes the positive

sign with logit f(ui, uj) and the negative sign otherwise, i.e.,

logit(Aij = 1
∣∣∣|Aij| = 1) = f(ui, uj).

We write A ∼ G(n,U0, Pu, B, f) to denote a signed network with n nodes generated

from the above procedure.

Note that in the network generative process in Definition 3.2.1, the first part for

generating edges covers many existing latent variable models for unsigned networks

as special cases by specifying different functions B(·, ·); the second part for generat-

ing signs further models the sign distribution through specifying the function f(·, ·).

Given this general class of latent space models for signed networks, next we iden-

tify the connection between the population-level balance and the key components
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of the model (Pu, B, f). As we will see, this connection serves as the foremost step

for incorporating the balance theory into modeling signed networks. The following

proposition provides a sufficient condition for the symmetric function f(·, ·) such that

the generated network is population-level balanced.

Proposition 3.2.1. Suppose a symmetric function f(·, ·) satisfies that

f(a, b) · f(b, c) · f(c, a) > 0, for any a, b, c ∈ U , (3.1)

where U is a subset of U0 with probability 1, i.e., Pu(U) = 1. Then, a network

A ∼ G(n,U0, Pu, B, f) is population-level balanced.

The proof of Proposition 3.2.1 is based on the fact that E(Aij|ui, uj) > 0 if and

only if the logit f(ui, uj) > 0 when the probability that an edge appears between node

i and node j is nonzero. The details are provided in the Supplemental Material. We

note that though there is room for relaxation of the requirement (3.1), its simplicity

provides a feasible direction for further analyses on the form of f .

Since not any arbitrary symmetric function f would satisfy (3.1), it is desirable

to study what characteristics the function f should have. To this end, we have

established the necessary and sufficient conditions in Theorem 3.2.2 for the function

f to satisfy (3.1).

Theorem 3.2.2. For a symmetric function f(·, ·) : U0 × U0 → (−∞,∞), f(a, b) ·

f(b, c) · f(c, a) > 0 holds for any a, b, c ∈ U , where U ⊂ U0 with Pu(U) = 1, if and

only if

(i) the function f is positive on U × U , i.e., f(a, b) > 0 for any a, b ∈ U ; or

(ii) there exists two nonempty subsets S and T , with S ∪ T = U and S ∩ T = ∅,

such that sign(f(a, b)) = 1(a ∈ S) · 1(b ∈ S) for any a, b ∈ U , where 1(event)

is not the usual indicator function, but rather equals 1 if the event holds and −1

otherwise.
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Theorem 3.2.2 implies that, for a function f to satisfy (3.1), if it is not always

positive, then U can be divided into two nonempty disjoint subsets such that the

function f is positive when the two arguments belong to the same subset and negative

otherwise. On the other hand, if the function f is always positive, it corresponds to a

trivial case in which the expected signs between all pairs of nodes are positive. Note

that when U is discrete and finite, Theorem 3.2.2 is a direct result of Harary et al.

(1953), while our theorem can be applied to more general latent spaces.

Next, we further illustrate the implication of Theorem 3.2.2 in choosing the func-

tion f to describe the population-level balance by taking commonly used latent spaces

as examples.

Example 1 The latent space U0 can be a finite set as in stochastic block models

(Abbe, 2018). Let U0 = {1, · · · , K} and ui denotes the community that node i belongs

to. Theorem 3.2.2 implies that the K communities can be further combined into two

groups and edges tend to be positive within the same group and negative between

different groups, as shown in the left side of Figure III.2. We provide a rigorous

description for the above result in the following corollary.

Corollary 3.2.1. For a finite set U0 = {1, . . . , K}, the symmetric function f(·, ·) :

U0 × U0 → (−∞,∞) satisfies that f(a, b) · f(b, c) · f(c, a) > 0 for any a, b, c ∈ U0,

if and only if there exists a grouping function g : {1, . . . , K} → {−1, 1} and some

constants qab = qba > 0 such that f(a, b) = qab · g(a) · g(b) holds for 1 ≤ a, b ≤ K.

Note that here the grouping function g identifies two antagonistic groups in the signed

network, where nodes from different groups tend to “dislike” each other.

Example 2 The latent space can also be a Euclidean space as in the latent distance

model and the latent projection model (Hoff et al., 2002). The following proposition

provides an important class of continuous symmetric functions for which the require-
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Figure III.2: Illustration of the latent space partition in Theorem 3.2.2. Left: U0 is a
finite set, where each color corresponds to a possible state in U0 and the two ellipses
correspond to the partition. Right: U0 is a Euclidean space, where the two colors
correspond to the partition.

ment (3.1) is satisfied.

Proposition 3.2.2. For the Euclidean space U0 = Rk, the requirement (3.1) holds if

f(a, b) = ϕ(a)ϕ(b), where ϕ(·) is a real-valued continuous function and Pu(u : ϕ(u) ̸=

0) = 1.

From the mathematical perspective, Proposition 3.2.2 is an obvious result based on

the inequality in (3.1). However, in combination with Theorem 3.2.2, it leads us to

a useful and interesting interpretation for the function ϕ. Specifically, ϕ(·) can be

viewed as the logit (or score) of any binary “classifier” that separates U0 into two

disjoint regions; the function f is positive if the two arguments are classified into

the same region and negative otherwise. As shown in the right panel of Figure III.2,

the boundary of the classifier tries to cut as many negative edges as possible while

retaining most positive edges within the same region.

Remark III.1. Moreover, our findings in this section can be generalized beyond tri-

angles.

First, though the balance theory describes patterns for triangles, the notion of

population-level balance in Definition 3.1.1 can be generalized to any ℓ-loops. Specifi-

cally, an ℓ-loop is defined as a path from a node to itself with length ℓ and is balanced

if the product of signs on the loop is positive. We say a network is population-level
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loop-balanced if for any ℓ ≥ 3 different nodes (i1, . . . , iℓ),

E(Ai1i2 · · ·Aiℓ−1iℓAiℓi1

∣∣|Ai1i2 · · ·Aiℓ−1iℓAiℓi1| = 1) > 0.

Second, it is not difficult to extend Proposition 3.2.1 to loop-balance. We can show

that a network A ∼ G(n,U0, Pu, B, f) is population-level loop-balanced if the function

f satisfies that for any ℓ ≥ 3,

f(a1, a2) · · · f(aℓ−1, aℓ)f(aℓ, a1) > 0, for any ai ∈ U , 1 ≤ i ≤ ℓ, (3.2)

where U is a subset of U0 with probability 1, i.e., Pu(U) = 1. Moreover, as a di-

rect result of Theorem 3.2.2, the necessary and sufficient conditions for a symmetric

function f to satisfy (3.2) are the same as those for satisfying (3.1). This implies

that, for a function f satisfying (3.1), the network A ∼ G(n,U , Pu, B, f) is not only

triangle-balanced but also loop-balanced at the population level.

Third, the definition of population-level (loop-)balance can be further generalized

to a general weighted network as the balance theory only focuses on the sign of the

product. Correspondingly, we require that E(sign(AijAjℓAℓi)
∣∣AijAjℓAℓi ̸= 0) > 0 for

any three different nodes (i, j, ℓ). These generalizations provide flexibility for modeling

real-world networks.

3.3 Balanced Inner-Product Models

Motivated by the key finding in Theorem 3.2.2, we propose two inner-product

models for signed networks that fall within the general class of latent space models

in Definition 3.2.1. Both models are inherently of population-level balance. We

first present the separate inner-product model and then introduce the joint inner-

product model by adding an additional structural assumption. We will demonstrate

the usefulness of this structural assumption in estimating the latent variables both

theoretically (if it is correctly specified) and empirically in subsequent sections.
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3.3.1 Separate Inner-Product Model

We assume that for any 1 ≤ i < j ≤ n, we have

|Aij| = |Aji|
ind.∼ Bernoulli(Pij), with logit(Pij) = Θij = αi + αj + z⊤i zj, (3.3)

where αi ∈ R and zi ∈ Rk (for i = 1, . . . , n) are latent variables. Further, indepen-

dently of all others, we also assume

logit(Aij = 1
∣∣∣|Aij| = 1) = ηij = vivj, (3.4)

where vi ∈ R for i = 1, . . . , n are also latent variables.

The proposed separate inner-product model has the capacity to capture various

commonly observed characteristics of signed networks. Specifically, the parameter αi

enables modeling node degree heterogeneity, of which a larger value leads to higher

probability of connecting with other nodes given other parameters fixed. Thus, we

call {αi}ni=1 degree heterogeneity parameters. Next, the inner-product formation be-

tween the latent position vectors zi and zj inherently models transitivity, i.e., nodes

with common neighbors (regardless of friend or enemy) are more likely to be linked.

Because the closer the latent position vectors of two nodes are in the latent space,

the higher inner product it is and more likely to connect with each other. Finally,

the parameters {vi}ni=1 model the distribution of signs through their product, which

satisfies the sufficient condition (3.1) for the population-level balance. In particular,

an edge between two nodes tends to have a positive sign when their latent variables

vi and vj have the same sign and a negative sign otherwise. Moreover, the magnitude

of vi controls the discrepancy level between positive and negative signs. Therefore,

we name them as latent polar variables. When all latent polar variables are zeros,

negative and positive signs are exchangeable.

Following Ma et al. (2020), which is for unsigned networks, we impose no distribu-

tional assumptions (prior) on the latent variables (αi, zi, vi) for the sake of modeling

flexibility and estimation scalability, in comparison to treating them as random and
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using Bayesian estimation approaches as in existing works (Krivitsky et al., 2009).

For presentation simplicity, we rewrite the model in matrix form. Specifically, we

have

Θ = α1⊤n + 1nα
⊤ + ZZ⊤, η = vv⊤,

where α = (α1, · · · , αn), 1n is the all one vector in Rn, Z = (z1, · · · , zn)⊤ ∈ Rn×k,

and v = (v1, · · · , vn)⊤ ∈ Rn.

Identifiability To ensure identifiability of parameters (α,Z, v), we provide addi-

tional constraints in Proposition 3.3.1. Given centered latent position variables, that

is JnZ = Z, where Jn = In − 1
n
1n1

⊤
n , the parameters are identifiable up to an orthog-

onal transformation and a sign flipping.

Proposition 3.3.1. Suppose two sets of parameters (α,Z, v) and (ᾱ, Z̄, v̄) satisfy

that A1) JnZ = Z and JnZ̄ = Z̄; A2) Z ∈ Rn×k is of full rank. Then, they specify

the same network distribution through (3.3) and (3.4) if and only if there exist an

orthogonal matrix O ∈ Rk×k with O⊤O = OO⊤ = Ik and κ ∈ {−1, 1} such that

α = ᾱ, Z = Z̄O, v = κv̄.

3.3.2 Joint Inner-Product Model

Based on the above separate inner-product model, we further consider the depen-

dency of the latent polar variable vi on the latent position variable zi. The idea of

introducing their relationship originates naturally from Proposition 3.2.2, where we

view the latent polar variable vi as a function of the latent position variable zi, i.e.,

vi = ϕ(zi) with some link function ϕ. Modeling such a link function ϕ can provide

more structural information of the network. On the other hand, there are flexibilities

in choosing the family of link function ϕ, which would lead to different shapes of the

latent space partition derived by ϕ. For the scope of this chapter, we assume ϕ is a

linear function in zi in the joint inner-product model, i.e., vi = w⊤zi+γ with w ∈ Rk
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and γ ∈ R, and discuss other nonlinear alternatives in Remark III.2. Specifically, the

joint inner-product model is given by (3.3) and replaces (3.4) with

logit(Aij = 1
∣∣∣|Aij| = 1) = ηij = (w⊤zi + γ)(w⊤zj + γ). (3.5)

In particular, the hyperplane {z ∈ Rk : w⊤z + γ = 0} separates the latent space into

two regions. A pair of nodes tend to have a positive edge when their latent positions

are located on the same side of the hyperplane and have a negative edge when their

latent positions are located on different sides of the hyperplane. If w = 0 and γ ̸= 0,

the sign of each edge has a homogeneous logit γ2 to be positive.

Identifiability For the joint inner-product model, the identifiability condition for

parameters (α,Z,w, γ) is established correspondingly in Proposition 3.3.2.

Proposition 3.3.2. Suppose two sets of parameters (α,Z,w, γ) and (ᾱ, Z̄, w̄, γ̄) sat-

isfy that A1) JnZ = Z and JnZ̄ = Z̄; A2) Z ∈ Rn×k is of full rank. Then, they

specify the same network distribution through (3.3) and (3.5) if and only if there exist

an orthogonal matrix O ∈ Rk×k with O⊤O = OO⊤ = Ik and κ ∈ {−1, 1} such that

α = ᾱ, Z = Z̄O, w = κO⊤w̄, γ = κγ̄.

Remark III.2. Though we use a linear link function in the joint inner-product model

(3.5), more flexible nonlinear functions can be considered. For example, we may as-

sume ϕ belongs to a reproducing kernel Hilbert space (RKHS) H associated with an

inner product ⟨·, ·⟩H under which H is complete. There is a positive semidefinite

kernel function K(·, ·) : Rk × Rk → R+ such that ϕ(zi) = ⟨ϕ,K(·, zi)⟩H. Multi-

ple choices of RKHS are available for practical use, including those with polynomial

kernel, Gaussian kernel, and Laplacian kernel (Scholkopf and Smola, 2018).
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3.4 Model Estimation

In this section, we develop two methods for fitting the proposed models (3.3)-

(3.5). Both methods minimize the negative log-likelihood function of the balanced

inner-product models through projected gradient descent.

Under balanced inner-product models, the negative log-likelihood function consists

of two parts. The first part is derived from the probability of forming edges:

Le(α,Z) =
∑
i<j

{
|Aij|Θij + log(1− σ(Θij))

}
,

where Θ = α1⊤n + 1nα
⊤ + ZZ⊤, and σ(x) = 1/(1 + exp(−x)) is the sigmoid func-

tion, which is the inverse of the logit function. The second part is derived from the

probability of assigning signs:

Ls(v) =
∑
i<j

{
|Aij|

1 + Aij

2
ηij + |Aij| log(1− σ(ηij))

}
,

where η = vv⊤, and when under the joint inner-product model, we further have

v = Zw + γ1n, or equivalently, v belongs to the column space of (1n, Z).

The first method estimates parameters (α,Z) and v separately by minimizing

Le(α,Z) and Ls(v) respectively. Hence we name it the separate estimation method.

Note that the separate estimation method does not depend on a specific relationship

between the latent polar variables v and the latent position vectors Z. Therefore, the

separate estimation method can always be applied regardless of the underlying link

function ϕ. Alternatively, we also propose a joint estimation method tailored for the

joint inner-product model, which exploits the structural assumption for more accurate

estimation. Specifically, we jointly estimate parameters (α,Z, v) by minimizing a

weighted sum of Le(α,Z) and Ls(v), while constraining v to be in the column space

of (1n, Z).

Notation Before presenting the algorithm details, we first introduce the following

general notations to be used hereafter. For any X ∈ Rd1×d2 , Xi∗ and X∗j denote the
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i-th row and j-th column of matrix X respectively, and for any function ω(·), ω(X)

represents applying the function ω(·) element-wisely to X, that is ω(X) ∈ Rd1×d2

and [ω(X)]ij = ω(Xij). We use ◦ to denote the Hadamard product, that is, for any

two matrices X, Y ∈ Rd1×d2 , X ◦ Y ∈ Rd1×d2 and [X ◦ Y ]ij = XijYij. Moreover, we

use ∥X∥F , ∥X∥op, ∥X∥∗, and ∥X∥max to denote the Frobenius norm, the operator

norm, the nuclear norm, and the max norm of a matrix respectively. We use col(X)

to denote the column space of X. For a vector x ∈ Rd, we use ∥x∥ to denote the

Euclidean norm.

3.4.1 Separate Estimation Method

First, to estimate parameters (α,Z), we solve the non-convex optimization prob-

lem below:

min
α∈R,Z∈Rn×k

−
∑
i,j

{
|Aij|Θij + log(1− σ(Θij))

}
, (3.6)

subject to Θ = α1⊤n + 1nα
⊤ + ZZ⊤ and Z = JnZ. In particular, the signed adja-

cency matrix enters the objective function through its absolute value, which leads

to the same optimization problem studied in Ma et al. (2020) when there is no edge

covariate. Here we adopt the projected gradient descent algorithm along with the ini-

tialization method proposed in Ma et al. (2020) because of their theoretical guarantee

and scalability to large networks. We provide the detailed description of the method

in Algorithm B.1 and the initialization algorithm in the Supplemental Material.

Next, to estimate the latent polar variables v, we solve another non-convex opti-

mization problem, i.e.,

min
v∈Rn

−
∑
i,j

|Aij|
{1 + Aij

2
ηij + log(1− σ(ηij))

}
subject to η = vv⊤. (3.7)

Similarly, we develop a fast gradient descent algorithm, which is summarized in Al-

gorithm B.2. We also use an initialization algorithm based on the universal singular

value thresholding proposed by Chatterjee (2015) (see the Supplemental Material).
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Remark III.3. We note that, although we use gradient descent algorithms for esti-

mating both (α,Z) and v, the subtle difference in their objectives makes the theory in

Ma et al. (2020) not directly applicable to (3.7). Specifically, unlike the objective in

(3.6), not all elements of the signed adjacency matrix contribute to the objective in

(3.7). Instead, only nonzero entries, i.e., {(i, j) : |Aij| = 1}, are used for inferring

the latent polar variables through (3.7). In this case, one key step in building the

improvement in errors of iterates in Ma et al. (2020) no longer holds. Therefore, we

establish a new error bound for Algorithm B.2 (see Section 3.5).

Remark III.4. We also note that our optimization problem in (3.7) is closely related

to the line of research on low-rank matrix estimation. See Koltchinskii et al. (2011);

Candes et al. (2013); Davenport et al. (2014); Chen and Wainwright (2015); Zheng

and Lafferty (2016); Wang et al. (2017) for a sample of references. In particular,

(3.7) can be viewed as a one-bit matrix completion problem, where we observe a ran-

dom subset of binary entries generated from a distribution determined by a low-rank

matrix. To solve this problem, Davenport et al. (2014) considered a convex relaxation

that replaces the low-rank constraint by the nuclear norm penalization. Though it

becomes a convex optimization problem, in general, solving such a nuclear-norm pe-

nalized optimization problem requires singular value decomposition at each iteration,

which is computationally expensive for large matrices. Alternatively, gradient de-

scent algorithms have been used for improving the computational efficiency. Chen and

Wainwright (2015) and Wang et al. (2017) have established convergence guarantees

and statistical errors for the gradient descent algorithms in application to low-rank

matrix estimation problems, which particularly cover the one-bit matrix completion

problem. However, theories in aforementioned works are based on the uniform ran-

dom sampling assumption, i.e., each entry of the matrix is observed independently with

a uniform probability p, while in our case, entries are observed with different proba-

bilities Pij. Thus, our theoretical analysis of the proposed gradient descent algorithm
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in Section 3.5 provides new results for one-bit matrix completion under non-uniform

random sampling.

3.4.2 Joint Estimation Method

Under the joint inner-product model (3.4)-(3.5), we propose to jointly estimate

parameters (α,Z, v) by re-parameterizing v = Zw + γ1n with w ∈ Rk and γ ∈ R.

By introducing a hyperparameter λ, we minimize the following weighted negative

log-likelihood,

Lλ(α,Z,w, γ) = −
∑
i,j

{
(1− λ)

[
|Aij|Θij + log(1− σ(Θij))

]
+ λ|Aij|

[1 + Aij

2
ηij + log(1− σ(ηij))

]}
,

subject to Θ = α1⊤n + 1nα
⊤ + ZZ⊤, Z = JZ, and η = (Zw + γ1n)(Zw + γ1n)

⊤.

Here λ controls the weight of relative information from the edge formation and

the sign assignment respectively. In particular, when λ = 0, no information from

the edge signs is used and the joint estimation reduces to the separate estimation for

(α,Z) in (3.6). Later in Section 3.5.2, we will theoretically show that, under certain

conditions, any positive λ below some threshold yields more accurate estimation of

latent position variables Z than the separate estimation (i.e., λ = 0), but the magni-

tude of the improvement depends on the choice of λ. In principle, we can select λ in a

data-driven manner by performing cross-validation on the observed signed adjacency

matrix, where we randomly mask a subset of entries, fit the joint inner-product model

by using the remaining entries, repeat the process multiple times, and then select λ

from a candidate set with the best average prediction performance on the holdout

entries. In practice, we find simply setting λ = 1/2 also works generally well, in which

case the solution becomes the usual maximum likelihood estimator.

To solve the above constrained minimization problem, we develop a projected

gradient descent algorithm, whose details are given in Algorithm III.1. Similar to
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Algorithm III.1: The projected gradient descent algorithm for joint esti-
mation
Input: signed adjacency network A ∈ Rn×n, latent space dimension K ≥ 1,

number of iterations T , initial values (α0, Z0, w0, γ0) with
(w0, γ0) = argmin

w∈Rk
,γ∈R Lλ(α0, Z0, w, γ), step sizes (τα, τz)

1 for t = 0, . . . , T − 1 do

2 Z̃t+1 = Zt − τz∇ZLλ =

Zt + 2τz
[
(1− λ)(|A| − σ(Θt))Zt + λ(|A| ◦ (A+ 1)/2− |A| ◦ σ(ηt))vtw⊤

t

]
;

3 αt+1 = αt − τα∇αLλ = αt + 2τα(1− λ)(|A| − σ(Θt))1n;

4 Zt+1 = JZ̃t+1;
5 (wt+1, γt+1) = argmin

w∈Rk
,γ∈R Lλ(αt+1, Zt+1, w, γ);

6 vt+1 = Zt+1wt+1 + γt+11n;

7 end

Output: (α̂, Ẑ, v̂) = (αT , ZT , vT )

Algorithm B.1, we first update α and Z by moving against their gradients. In partic-

ular, when updating Z in line 2, the gradient comes from not only the edge formation

likelihood but also the sign assignment likelihood, whose weights are adjusted by λ.

Then, after centering Z’s columns, we update (w, γ) by minimizing the objective while

fixing the current estimate of Z. Though the algorithm involves an inner non-convex

optimization in line 5, we find that, in practice, a simple one-step gradient descent

provides an effective approximation, i.e., replacing line 5 by wt+1 = wt+2τwλZ
⊤
t (|A|◦

(A + 1)/2 − |A| ◦ σ(ηt))vt and γt+1 = γt + 2τγλ1
⊤
n (|A| ◦ (A + 1)/2 − |A| ◦ σ(ηt))vt.

We initialize the algorithm by (α0, Z0) = (α̂, Ẑ) obtained from Algorithms B.1 and

(w0, γ0) = argmin
w∈Rk

,γ∈R Lλ(α0, Z0, w, γ), and set τZ = τ/max{∥Z0∥2op, ∥v0∥2},

τα = τ/(2n), and set τw = τ/(∥Z0∥2op∥v0∥2), τγ = τ/(n∥v0∥2) when using one-step

gradient descent approximation for line 5.

3.5 Theoretical Results

In this section, we establish high probability error bounds for the proposed two

estimation methods. Note for the separate estimation method, the error bound for
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estimating latent position vectors Z under model (3.3) and that for estimating la-

tent polar variables v under model (3.4) are derived separately. Thus, the separate

estimation method is robust in the sense that, when one of models (3.3) and (3.4)

is mis-specified, our theoretical results still hold for the other. On the other hand,

for the joint estimation method that utilizes the relationship between v and Z, we

further discuss how incorporating their dependency can help reduce the estimation

error of latent variables under the joint inner-product model (3.5).

3.5.1 Results for the Separate Estimation Method

We present theoretical guarantees of Algorithms B.1 and B.2 under the separate

inner-product model (3.3) and model (3.4) respectively. Note that the error bound for

the outputs of Algorithm B.1 is a straightforward result of Ma et al. (2020, Theorem

9) when there is no edge covariate; we adjust it in Proposition 3.5.1 for presenta-

tion coherence. Nonetheless, their theory cannot be directly applied to the setting

of Algorithm B.2, because only nonzero entries of the signed adjacency matrix are

included in the objective (3.7), which breaks an important step towards establishing

the estimation improvements for successive iterations in their proof. Therefore, our

established error bound for the outputs of Algorithm B.2 is a new result for a more

general setting, where entries are observed with non-uniform probabilities.

We describe error bounds for the outputs of Algorithms B.1 and B.2 with details

below. We firstly define the parameter spaces as

Fθ(n, k,M1,M2) =
{
α ∈ Rn, Z ∈ Rn×k,Θ ∈ Rn×n | Θ = α1⊤n + 1nα

⊤ + ZZ⊤, JnZ = Z,

max
1≤i≤n

∥Zi∗∥2, 2∥α∥max ≤
M1

2
, max
1≤i ̸=j≤n

Θij ≤ −M2

}
(3.8)

and

Fη(n,M3) =
{
v ∈ Rn, η ∈ Rn×n | η = vv⊤, ∥v∥2max ≤M3

}
. (3.9)

We allow k,M1,M2, andM3 in (3.8)-(3.9) to change with the network size n similarly
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as in Ma et al. (2020). Note that, given the inequalities in (3.8), it is straightforward to

see that, for any Θ ∈ Fθ(n, k,M1,M2), we have −M1 ≤ Θij ≤ −M2 for 1 ≤ i ̸= j ≤ n.

Therefore, M2, as the upper bound of logit-transformed probabilities of observing

edges, controls the network sparsity, of which a larger value leads to a sparser network.

The true parameters are denoted by (α∗, Z∗, v∗), Θ∗ = α∗1⊤n + 1nα
∗⊤ + Z∗Z∗⊤, and

η∗ = v∗v∗⊤.

Error bound for Algorithm B.1 Let (αt, Zt) be the updated parameters at the t-

th iteration in Algorithm B.1 and Θt = αt1
⊤
n+1nαt

⊤+ZtZt
⊤. Since the latent position

vectors Z ∈ Rn×k are identifiable up to an orthogonal transformation, we define the

distance between two latent matrices Z1 and Z2 as dist(Z1, Z2) = minO∈O(k) ∥Z1 −

Z2O∥F , where O(k) is the collection of all orthogonal matrices in Rk. Let Ot =

argminO∈O(k) ∥Zt − Z∗O∥F , ∆Zt = Zt − Z∗Ot, and ∆Θt = Θt −Θ∗.

For theoretical justification, in Algorithm B.1, we further assume projection onto

the constraint sets CZ = {Z ∈ Rn×k, JnZ = Z,max1≤i≤n ∥Zi∗∥2 ≤ M1/2} and Cα =

{α ∈ Rn, 2∥α∥max ≤ M1/2} at each iteration. The following proposition establishes

the high probability error bounds for estimating both the latent position matrix Z

and the logit-transformed probability matrix Θ.

Proposition 3.5.1. Set the step sizes as τz = τ/∥Z0∥2op, τα = τ/(2n) for any

τ ≤ c where c > 0 is a universal constant. Suppose 1) the initializers α0, Z0 in

Algorithm B.1 satisfy ∥Z∗∥2op∥∆Z0∥2F + ∥∆α01
⊤
n ∥2F ≤ c0e

−2M1∥Z∗∥4op/κ4Z∗ for a suffi-

ciently small positive constant c0, where κZ∗ is the conditional number of Z∗; and

2) ∥Z∗∥2op ≥ C1κ
2
Z∗
√
neM1−M2/2max{

√
τkeM1 , 1} for a sufficiently large constant C1.

Then there exist positive constants ρ, c1, and C uniformly over Fθ(n, k,M1,M2) such

that, with probability at least 1− n−c1, we have

∥Z∗∥2op∥∆ZT
∥2F , ∥∆ΘT

∥2F ≤ Cκ2Z∗e2M1nk ·max{e−M2 ,
log n

n
},

for some T ≤ log
(

M2
1

κ2
Z∗e

4M1−M2

n
k3

)
/ log

(
1− τ

eM1κ2
Z∗
ρ
)−1

.
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Error bound for Algorithm B.2 Let vt be the updated parameters at the t-

th iteration in Algorithm B.2 and ηt = vtvt
⊤. Similarly, as the latent polar variables

v ∈ Rn are identifiable up to a sign, we define the distance between two latent vectors

v1 and v2 as dist(v1, v2) = minκ∈{−1,1} ∥v1 − κv2∥. Let κt = argminκ∈{−1,1} ∥vt − κv∗∥

and ∆vt = vt − κtv
∗, and further let ∆ηt = ηt − η∗.

Although the error bound presented below does not rely on a specific generating

process of edges such as in model (3.3) and the parameter space Fθ(n, k,M1,M2) in

(3.8), it depends on the lower bound of the probability of observing an edge. For

notation consistency, we use M1 to denote the lower bound of the logit-transformed

probability matrix, i.e., Θij ≥ −M1 for 1 ≤ i, j ≤ n. Similarly, for theoretical

justification, we constrain v to be in the set Cv = {v ∈ Rn, ∥v∥2max ≤ M3} at each

iteration in Algorithm B.2. The following theorem establishes the high probability

error bounds for estimating the latent polar variables v and the logit-transformed

probability matrix η.

Theorem 3.5.1. Set the step size as τv = τ/∥v0∥2 for any τ ≤ c, where c > 0 is

a universal constant. Suppose 1) the initializer v0 in Algorithm B.2 satisfy ∥∆v0∥ ≤

c0e
−(M1+M3)/2∥v∗∥ for a sufficiently small positive constant c0; and 2) ∥v∗∥2 ≥ C1

√
n

eM1+M3 max{
√
τeM1+M3 , 1} for a sufficiently large constant C1. Then there exist pos-

itive constants ρ, c1, and C uniformly over Fη(n,M3) and M1 such that, with proba-

bility at least 1− n−c1, we have

∥v∗∥2∥∆vT ∥2, ∥∆ηT ∥2F ≤ Ce2(M1+M3)n,

for some T ≤ log
(

M2
3

e3(M1+M3)
n
)
/ log

(
1− τ

eM1+M3
ρ
)−1

.

Theorem 3.5.1 implies that the mean square error ∥∆ηT ∥2F/n2 is of order O(1/n),

which coincides with the existing error rate for one-bit rank-1 matrix completion

problems (Davenport et al., 2014; Chen and Wainwright, 2015), while our result

can be viewed as their extension to the case where entries of the one-bit matrix are
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randomly observed with non-uniform probabilities. In particular, for the more general

non-uniform case, the key ingredient in our proof is to derive a lower bound of the

sampling operator |A| ∈ {0, 1}n×n. We prove that the sampling operator |A| has a

positive lower bound, i.e., ∥|A| ◦ η∥F ≥ c∥η∥F with some c > 0, as long as η belongs

to a specific data-dependent set. This positive lower bound enables us to extend the

proof in Ma et al. (2020) when establishing iterative improvements. The proof of

Theorem 3.5.1 is given in the Supplemental Material.

Remark III.5. Note that the error bounds for v and η in Theorem 3.5.1 hold regard-

less of the concrete form of model (3.3). Therefore, the above results still hold even if

model (3.3) is mis-specified. But, it still depends on the lower bound of the probability

matrix of observing edges. The error bound implies that as M1 gets larger, the error

bound also becomes larger. Intuitively, when the lower bound of Θ decreases, there

might be fewer observed edges in the network and thereby the estimation errors for v

and η would be larger due to the lack of observations.

Remark III.6. The assumptions in both Proposition 3.5.1 and Theorem 3.5.1 re-

quire relatively good initializations of (α,Z, v). We note that the conditions for α0

and Z0 can be achieved with theoretical justification by the universal-singular-value-

thresholding (Chatterjee, 2015) based initialization algorithm proposed in Ma et al.

(2020). We further extend this algorithm to initialize v0. Based on our simulation

studies (see the Supplemental Material), we find that simple random initialization also

achieves similar estimation errors after the algorithm converges while requiring more

iterations for algorithm convergence.

3.5.2 Results for the Joint Estimation Method

We first present the convergence guarantee and the error bound for the estimators

obtained by Algorithm III.1. Then we further investigate how the joint estimation

method could improve the estimation of Z on top of the separate estimation.
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Under the joint inner-product model, we redefine the parameter space as

F(n, k,M1,M2,M3) =
{
α, v ∈ Rn, Z ∈ Rn×k,Θ, η ∈ Rn×n

∣∣
Θ = α1⊤n + 1nα

⊤ + ZZ⊤, JnZ = Z, η = vv⊤, v = Zw + γ1n,

max
1≤i≤n

∥Zi∗∥2, ∥α∥max ≤
M1

2
, max
1≤i ̸=j≤n

Θij ≤ −M2, ∥v∥2max ≤M3, ∥w∥ ≤M, |γ| ≤M ′
}
,

where k, M1, M2, and M3 are allowed to change with the network size n. Let

(α∗, Z∗, v∗) be the true parameters, where v∗ = Z∗w∗ + γ∗1n with some w∗ ∈ Rk

and γ∗ ∈ R.

Error bound for Algorithm III.1 Let (αt, Zt, vt) be the updated parameters

at the t-th iteration in Algorithm III.1. We assume the projection onto the same

constraint sets Cα, CZ , and Cv at the end of each iteration as those for Algorithms B.1

and B.2. The following theorem first guarantees that the error of iterates {(αt, Zt)}t≥0

converges up to a statistical error and then gives the high probability error bounds

for the estimators of Z and Θ.

Theorem 3.5.2. Set the step sizes as τZ = r0τ/∥Z0∥2op, τα = τ/(2n), and the

weight λ = λ̃r0/e
M1κ2Z∗ with r0 = min{1, ∥Z0∥2op/∥v0∥2} for any τ ≤ cτ , λ̃ ≤

cλ, where cτ and cλ are universal constants. Let ζn = max{∥|A| − P∥op, 1} and

φn = max{∥|A| ◦ ((1 + A)/2 − Q)∥op, 1}. Denote the error metric for iterates as

ẽZt = ∥∆Zt∥2F∥Z0∥2op+∥∆αt1
⊤
n ∥2F . Suppose the initializers α0, Z0 in Algorithm III.1 sat-

isfy ẽZ0 ≤ c0e
−2M1−3M3∥Z∗∥4op/κ4Z∗ for a sufficiently small positive constant c0, where

κZ∗ is the conditional number of Z∗. Then, we have

1. (Deterministic bounds for iterative errors) If ∥Z∗∥2op ≥ C0e
M1κ2Z∗ζnmax{1,

√
τkeM1+3M3/2κZ∗} and ∥v∗∥2 ≥ C0e

M1+M3φnmax{
√
τeM1/2+M3 , 1} for a suf-

ficiently large constant C0, then there exist universal positive constants ρ1, ρ2,
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C ′, and C ′′ such that for all t ≥ 0

ẽZt+1 ≤
(
1− r0τρ1

eM1κ2Z∗

)
ẽZt − λ

r0τρ2
eM3

min{∥|A| ◦∆ηt∥2F , e−M1∥∆ηt∥2F}

+ r0τC
′eM1ζ2nk + λr0τC

′′eM1+M3φ2
n.

2. (High-probability bounds) Suppose ∥Z∗∥2op ≥ C0e
M1−M2/2κ2Z∗

√
nmax{1,

√
τkeM1+3M3/2κZ∗} and ∥v∗∥2 ≥ C0e

M1+M3
√
nmax{

√
τeM1/2+M3 , 1} for a suf-

ficiently large constant C0. Then there exist positive constants ρ1, c, and C

uniformly over F(n, k,M1,M2,M3) such that, with probability at least 1− n−c,

we have

∥Z∗∥2op∥∆ZT
∥2F , ∥∆ΘT

∥2F ≤ Cκ2Z∗e2M1nk ·max{e−M2 ,
log n

n
, eM3−M1

1

κ2Z∗k
},

for some T ≤ log
(

M2
1

κ2
Z∗e

4M1+3M3−M2

n
k3

)
/ log

(
1− r0τρ1

eM1κ2
Z∗

)−1

.

The first part of Theorem 3.5.2 indicates that, compared to the separate estimation

method, the joint method involving the gradient of the sign likelihood leads to an extra

improvement on the error bound of iterates, which depends on ∆ηt , while introducing

another statistical error term φn. As a result, in the second part, the high probability

error bounds depend on the maximum of three terms, among which the first two

are the same as in Proposition 3.5.1 and the third is resulted from φn. When M3 ≤

M1−M2+log(κ2Z∗k), the maximum multiplier reduces to the one in Proposition 3.5.1.

Overall, the error bounds of Z and Θ for the joint estimation method are still in the

order O(nk), which is the same as that for the separate estimation method. In

addition, the following corollary gives the error bounds of vT and ηT obtained from

the line 5 in Algorithm III.1.

Corollary 3.5.1. For vt = Ztwt+γt1n with (wt, γt) = argmin
w∈Rk

,γ∈R Lλ(αt, Zt, w, γ),

we have ∥∆ηt∥F ≤ 16eM1+M3 max{ζn, φn}+eM1/2+M3(2+∥∆Zt∥F∥w∗∥)∥v∗∥∥∆Zt∥F∥w∗∥

for t ≥ 0. Suppose the conditions for high probability bounds in Theorem 3.5.2 hold,

then there exist positive constants ρ1, c, and C uniformly over F(n, k,M1,M2,M3)
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such that, with probability at least 1− n−c, we have

∥v∗∥2∥∆vT ∥2, ∥∆ηT ∥2 ≤ Ce3M1+2M3nk ·max{e
M3−M1

k
, κ2Z∗ max{e−M2 ,

log n

n
}},

for some T ≤ log
(

M2
1

κ2
Z∗e

4M1+3M3−M2

n
k3

)
/ log

(
1− r0τρ1

eM1κ2
Z∗

)−1

.

In particular, the deterministic error bound for ∆ηt consists of the statistical error

term max{ζn, φn} and the estimation error of Zt, and with high probability ∥∆ηT ∥2

is dominated by the estimation error of Zt and thus is also in the order O(nk).

One-step improvement Although Theorem 3.5.2 guarantees the convergence of

Algorithm III.1 up to certain statistical errors, the achieved error rate is in the same

order as that for the separate estimation method. To further investigate how exploit-

ing extra structural information in the joint inner-product model would help estimate

the latent variables, we consider the estimation error moving against the gradient one

step from the estimators obtained by the separate method below.

Suppose we are given estimators (ᾱ, Z̄) of latent variables obtained from the sep-

arate estimation Algorithm B.1 and an estimator v̄ = Z̄w̄ + γ̄1n. Then we update

the estimator of Z by one step through Algorithm III.1 as below:

Ẑ = Z̄ − 2τz(1− λ)(σ(Θ̄)− |A|)Z̄ − 2τzλ
(
|A| ◦ σ(η̄)−B

)
v̄w̄⊤, (3.10)

where Θ̄ = ᾱ1⊤n + 1nᾱ
⊤ + Z̄Z̄⊤, η̄ = v̄v̄⊤, and B = |A| ◦ (A + 1)/2. Note that

[B]ij = |Aij|bij with bij independently following Bernoulli(σ(η∗ij)) conditional on |A|.

The following proposition provides insights on under what scenarios the one-step

update in the joint estimation method could lead to better estimates of the latent

position vectors Z. In below, for ease of derivation, we consider the parameter space

F(n, k,M1,M2,M3) with fixed Mi (i = 1, 2, 3) and k.

Proposition 3.5.2. Given the estimators (ᾱ, Z̄) obtained from Algorithm B.1 and

the estimators (w̄, γ̄) that are independent of B conditional on |A| and satisfy ∥w̄ −

w∗∥2 + ∥γ̄ − γ∗∥2 = O(1/n). We update Z̄ for one step by (3.10) and obtain Ẑ.
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Suppose the conditions in Proposition 3.5.1 hold, and the singular values of the sample

covariance Z∗⊤Z∗/n are of constant order. Then there exists an optimal λopt that

minimizes E∥Ẑ − Z∗∥2F . Furthermore, if λopt > 0, we have E∥∆Ẑ∥2F < E∥∆Z̄∥2F for

any λ ∈ (0, 2λopt), and the improvement E∥∆Z̄∥2F − E∥∆Ẑ∥2F with λopt is at least∥∥|A| ◦ ξ ◦ T1∥∥2F (∥∥|A| ◦ ξ ◦ T1∥∥F −
∥∥|A| ◦ ξ ◦ T2∥∥F −

∥∥|A| ◦ ξ ◦ T3∥∥F )2
16
(∥∥|A| ◦ ξ ◦ ξ ◦ (T1 + T2 − T3)

∥∥2
op
+ E

∥∥B − |A| ◦ σ(η∗)
∥∥2
op
/(∥Z̄∥2op∥w̄∥4)

) ,
where Ti’s are given in (B.41)-(B.43) respectively for i = 1, 2, 3 in the Supplemental

Material with ∥T1∥F = O(1), ∥T2∥F = O(1)/∥w∗∥, and ∥T3∥F = O(1/
√
n), and

ξ is an element-wise positive constant matrix. Here E represents the conditional

expectation of B given |A|.

We provide the expression of the optimal λopt that minimizes E∥Ẑ − Z∗∥2F , the

proof of Proposition 3.5.2, and discuss when the conditional independence assumption

and the prerequisite error rate of (w̄, γ̄) in Proposition 3.5.2 hold in the Supplemental

Material. Since a positive λopt implies a strict decrease in the mean square error of Z

after one-step update, we further investigate in which case λopt tends to be positive.

In particular, λopt > 0 if and only if
∥∥|A| ◦ ξ ◦ T1∥∥F −

∥∥|A| ◦ ξ ◦ T2∥∥F −
∥∥|A| ◦ ξ ◦ T3∥∥F

is strictly positive. Our analysis on the upper bounds of the three terms suggests

that the first two terms are the dominating terms and a larger ∥w∗∥ more likely re-

sults in a positive λopt. Therefore, when the signal from the edge sign distribution is

strong, incorporating information from observed signs in the joint estimation method

is useful for improving the estimation of Z. Moreover, the magnitude of improve-

ment also depends on the levels of the signal and the noise in the sign distribution.

Specifically, as ∥w∗∥ ≍ ∥w̄∥ increases, the difference between the upper bounds of

the two dominating terms in the numerator increases while the upper bound of the

denominator decreases, therefore overall the improvement is likely to increase. This

implies that larger signals in the edge signs would lead to greater improvement in

estimating Z. On the other hand, we find that the improvement decreases when
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the noise E
∥∥B − |A| ◦ σ(η∗)

∥∥2
op
/∥Z̄∥2op in the edge sign distribution increases in the

denominator.

3.6 Simulation Studies

In this section, we conduct simulation studies to investigate how estimation errors

of the proposed methods depend on: 1) the network size and the dimension of latent

position vectors; 2) the network density; and 3) the proportion of positive edges.

Estimation methods We compare three estimation methods. In addition to the

separate estimation method and the joint estimation method introduced in Sec-

tion 3.4, we further add an intermediate method, one-step-joint estimation, to il-

lustrate the one-step improvement discussed in Proposition 3.5.2. Specifically, given

Z̄ and ṽ obtained from Algorithms B.1 and B.2 respectively, we compute the one-step-

joint estimators (JnẐ, v̄) by first updating v̄ = Z̄w̄+γ̄1n with w̄, γ̄ = argmin
w∈Rk

,γ∈R ∥ṽ−

Z̄w − γ1n∥ and then obtaining Ẑ by plugging (Z̄, v̄) into (3.10). We set λ = 1/2, so

that the joint estimation is the same as the maximum likelihood estimation.

Simulation settings For a given network size n and a latent position vector dimen-

sion k, we set the model parameters as follows. We first generate the latent positions

Zij
iid∼ N (0, 1) from the standard normal distribution, for 1 ≤ i ≤ n, 1 ≤ j ≤ k.

By centering columns of Z, we get Z∗ = JnZ, where Jn = In − 1
n
1n1

⊤
n . We further

normalize Z∗ element-wise such that ∥Z∗Z∗⊤∥F = n. Next, we generate the node

degree heterogeneity parameters α∗
i = −αi/

∑n
i=1 αi, where αi

iid∼ U(1, 3) is uniformly

distributed for 1 ≤ i ≤ n. Finally, we set w∗ = 1/
√
k·1k, γ∗ = 0, and v∗i = w∗⊤Z∗

i +γ
∗.

Given the true latent variables Z∗, α∗, and v∗, we randomly generate 20 replica-

tions of the signed adjacency matrix following (3.3) and (3.4), and fit models by three

estimation methods. For each method, we measure the relative errors for Z, v,Θ,
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and η. Due to the identifiability conditions in Proposition 3.3.2, we define the rela-

tive error for Z as ∥Ẑ − Z∗Q̄∥F/∥Z∗∥F , where Q̄ = argminQ∈O(k) ∥Ẑ − Z∗Q∥F and

O(k) is the collection of all orthogonal matrices in Rk. We define the error for v

as ∥v̂ − κ̄v∗∥/∥v∗∥, where κ̄ = argminκ∈{1,−1} ∥v̂ − κv∗∥. The relative errors for Θ

and η are defined as ∥Θ̂ − Θ∗∥F/∥Θ∗∥F and ∥η̂ − η∗∥F/∥η∗∥F respectively, where

Θ̂ = α̂1⊤n + 1nα̂
⊤ + ẐẐ⊤ and η̂ = v̂v̂⊤.

3.6.1 Varying the Network Size and the Dimension of the Latent Space

In Figure III.3, we summarize how estimation errors vary with different network

sizes. We fix k = 2 and vary n ∈ {500, 1000, 2000, 4000}. We can see that, for a

fixed dimension of the latent space, the relative errors of all three estimation methods

decrease in the rate of 1/
√
n as the network size n grows, which align well with the

theoretical error rates given in Section 3.5. Next, compared to the separate estimation

method, the joint estimation method consistently achieves smaller estimation errors

on all four quantities of interest across different network sizes. In addition, the one-

step-joint estimation that simply updates estimates by one-step gradient descent is

able to reduce the estimation errors compared to the separate estimation method.

In Figure III.4, we further summarize how estimation errors of Z and Θ vary

with different dimensions of the latent position vector. We fix n = 2000 and vary

k ∈ {2, 4, 8}. We find that, for a fixed network size, the relative errors increase in the

rate of
√
k as the dimension of latent position vector k grows. This also agrees well

with our theoretical results. The relative trend among the three estimation methods

for different k is similar as that in Figure III.3, where the joint estimation method is

consistently the best.
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Figure III.3: Log-log plots of relative errors with respect to the network size n. The
dimension of the latent position vector is fixed as k = 2.
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Figure III.4: Log-log plots of relative errors with respect to the dimension of the
latent position vector k. The network size is fixed as n = 2000.
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Figure III.5: Relative errors with respect to the network density. The network size is
fixed as n = 2000 and the dimension of the latent position vector is fixed as k = 4.
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3.6.2 Varying the Network Density

We investigate how estimation errors for three estimation methods vary with the

network density. To this end, we generate the node degree heterogeneity parameters

α∗
i = −ᾱ − αi/

∑n
i=1 αi where αi

iid∼ U(1, 3) is uniformly distributed for 1 ≤ i ≤ n.

We fix n = 2000 and k = 4, and vary ᾱ ∈ {0, 0.25, 0.5, 0.75, 1, 1.25}, which leads to

the network density ranging from 0.1 to 0.5.

Figure III.5 summarizes the relative estimation errors of Z and v over 20 repli-

cations under different network densities. We can see that both estimation errors

of Z and v for all three estimation methods decrease as the network gets denser,

and the joint estimation method achieves lower estimation errors than the other two

methods consistently across various network densities. In particular, when the net-

work is dense, the improvement in estimating Z from the joint estimation against

the separate estimation increases, which is expected because in joint estimation, the

observed edges’ signs are also useful for inferring Z and denser networks provide more

information. In addition, regarding the estimation error of v, the joint and one-step-

joint estimation methods that use the additional structural information between Z

and v perform more stably than the separate estimation method as the network gets

sparser.

3.6.3 Varying the Proportion of Positive Edges

We also investigate the effect of the proportion of positive edges on three esti-

mation methods. For this purpose, we change the simulation setting. Specifically,

we fix n = 2000 and k = 4, and vary γ∗ ∈ {0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8}, which re-

sults in the proportion of positive edges ranging from 0.52 to 0.91. To eliminate the

artificial effect resulting from varying γ∗ when evaluating the estimation error of v,

we focus on the estimation error of the centered v, i.e., vcen = Jnv. We define the

relative error for vcen as ∥Jnv̂ − κ̄Jnv
∗∥/∥Jnv∗∥ = ∥Jnv̂ − κ̄Z∗w∗∥/∥Z∗w∗∥, where
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Figure III.6: Relative errors with respect to the proportion of positive edges. The
network size is fixed as n = 2000 and the dimension of the latent position vector is
fixed as k = 4.

κ̄ = argminκ∈{1,−1} ∥Jnv̂ − Jnκv
∗∥.

Figure III.6 summarizes the relative estimation errors of Z and vcen over 20 repli-

cations under different proportions of positive edges. Overall, the joint estimation

method performs consistently the best among three methods and is robust across

different sign distributions. We note that the estimation error for Z for the separate

method does not change, because the generated absolute adjacency matrix |A| does

not change when varying γ∗ and thereby the separate estimates Ẑ stay the same. We

also observe that the optimal performance of the separate method for estimating v is

not achieved around 50% positive signs. This is because since positive and negative

signs are not exchangeable under the balance structural theory, the optimum should

not be expected to be 50% as in the standard binary classification setting where class

labels are exchangeable.
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3.7 International Relation Data

In this section, we apply the proposed method to an international relation data, i.e.

the Correlates of War (COW) (Izmirlioglu, 2017), to demonstrate how the proposed

method can be used to make informative interpretation and visualization of signed

networks. The COW dataset records various types of international relations among

countries, such as wars, alliances, and militarized interstate disputes. Similarly as

Kirkley et al. (2019), we construct a signed network of countries, where the positive

edges represent alliance relationships, and the negative edges represent the existence

of militarized disputes between countries. We take the snapshot of the records during

World War II (WWII), i.e., from 1939 to 1945. In particular, if two countries were

involved in both alliances and militarized disputes, we set the sign of their edge

to positive if the number of years of alliances is larger than that of the militarized

disputes, and we set the sign to negative otherwise. According to the COW records,

there are 68 countries that were involved in alliances or militarized disputes during

WWII, and the resulted signed network contains 566 positive edges and 519 negative

edges.

We fit two models to the COW dataset, one corresponding to the joint estimation

method and the other corresponding to the separate estimation method. For both

models, we set the dimension of the latent position vectors as k = 2, such that the

estimated Ẑ can be directly visualized on a 2-dimensional plane. The models fitted

by the joint estimation method and the separate estimation method are visualized

in Figure III.7 and Figure III.8 respectively. In both figures, each node represents a

country and their coordinates are given by Ẑ. The size of each node is determined

by the estimated degree heterogeneity parameter α̂, with larger nodes corresponding

to larger α̂i values. The color and the shape of each node i distinguish the estimated

latent polar variable v̂i. Specifically, if v̂i > 0, the node is visualized as a red circular

point; and if v̂i < 0, the node is visualized as a blue square point. For both the red

108



and the blue points, the larger the absolute magnitude |v̂i|, the darker the color. The

sign of each edge is also indicated in the figure, with dashed green being positive and

solid purple being negative.

Figure III.7 shows that the proposed model fitted by the joint estimation method

is able to capture important information in the signed network of countries dur-

ing WWII. First, in terms of the estimated node degree heterogeneity α̂, the top

11 countries are Germany, Italy, Japan, the United Kingdom (UK), Romania, the

United States (USA), Brazil, Bulgaria, Hungary, France, the Soviet Union (USSR).

In particular, UK, USA, USSR were the 3 leading countries of the Allies of WWII.

France played important and complicated roles in both the Allies and the Axis. Brazil

was the only South American country that actively participated in WWII. All other

countries were members of the Axis. Since members of the Axis were more active

than those of the Allies on average, it is reasonable that even small members have

high values of α̂. Second, regarding the estimated latent polar variable v̂, the model is

able to divide the countries into two groups (blue and red) that mostly align with the

division between the Axis and the Allies. As we assume a linear transformation from

Z to v, the plane (the space of Z) can be linearly separated into two areas with the

boundary illustrated by the grey dash-dotted line. We can see that edges crossing the

boundary are mainly negative (purple), while edges within the same side are mainly

positive (green). Finally, the estimated latent position vectors Ẑ also capture various

other interesting aspects. Within the Allies, Ẑ further clusters countries in Amer-

ica together (see the right part of the figure), among which most edges are positive

(green). The Middle East countries form a cluster as well (at the top of the figure),

though not as tight as countries in America. It is also interesting to see that France,

one of the major Allied powers in WWII, is positioned on the same side of Germany,

Italy, and Japan. This is because, after occupied by Germany, France was divided

into two political powers, Free France and Vichy France, with the latter collaborating
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Figure III.7: Visualization of the model fitted by the joint estimation method on
the COW dataset. The nodes are countries involved in WWII. The green dashed
lines represent positive edges (alliance) and the purple solid lines represent negative
edges. The node sizes are determined by the estimated node degree heterogeneity
parameters α̂. The node colors and shapes are determined by the estimated latent
polar variables v̂: for each node i, the node is a red circle if v̂i > 0 and a blue square
otherwise; and the larger absolute magnitude of v̂i, the darker the color. The grey
dash-dotted line represents the linear boundary between the red and blue nodes. To
make the visualization easier, we only labeled countries with degree greater than 5.
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with Germany and fighting against the Allies in several campaigns from 1940 to 1944.

On the other hand, the model fitted by the separate estimation method captures

useful information from the network (see Figure III.8) but not as interpretable as that

by the joint estimation method.

Specifically, the model fitted by the separate estimation method roughly captures

the division between the two alliances, but it mistakenly colors UK in blue together

with the Axis powers. Compared to Figure III.7, another country that is flipped in

terms of v̂ is Romania, which was considered as a member of the Axis during most of

the time of WWII. In addition, as the latent position vectors Ẑ and the latent polar

variables v̂ are estimated separately, the estimation of Ẑ is not aware of the signs

of the edges. As a result, the node positions in Figure III.8 do not reflect the two

alliances. In particular, Germany and Japan are placed in the center of the figure as

they have the most number of edges (counting both positive and negative edges), and

they separate countries in America (at the right of the figure) from other members of

the Allies (at the top-left corner).

3.8 Discussion

In this chapter, we propose a latent space approach that accommodates the struc-

tural balance theory for modeling signed networks. In particular, we introduce a

novel notion of population-level balance, which is a natural choice to characterize the

structural balance theory when we treat both the edges and their signs as random

variables. We develop sufficient conditions for a latent space model to be balanced at

the population level, and propose two balanced inner-product models following the

conditions. We also provide scalable estimation algorithms with theoretical guaran-

tees.

There are a few directions we may continue to explore in the future. First, the

joint inner-product model could be extended to have a nonlinear link function ϕ,
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Figure III.8: Visualization of the fitted model by separate estimation. The visual
semantics are the same as Figure III.7, except for there is no linear boundary between
the red and blue nodes.

112



which would increase the flexibility of the model. Second, we may generalize the

proposed approach to weighted signed networks to better leverage richer edge infor-

mation available in real-world networks. Finally, it is desirable to extend the latent

space approach for undirected networks to directed networks, which can be poten-

tially used to model other interesting social theories, such as the social status theory,

for signed networks.
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CHAPTER IV

Semi-Supervised Learning for Longitudinal

Clinical Events

4.1 Introduction

Deep neural network models have been increasingly used to analyze large-scale

electronic health records (EHR) and have shown superior prediction performances

in several medical tasks including automatic detection of diabetic retinopathy us-

ing medical images (Gulshan et al., 2016) and clinical text classification (Yao et al.,

2019). As opposed to medical images and clinicians’ text notes, input features such

as clinical events are usually of longitudinal nature. Specifically, sensor recordings,

laboratory test results, medications, and new diagnosis codes are recorded on each

clinical visit and may change over time. Such longitudinal nature is often accom-

panied by additional modeling challenges such as irregular time gaps between visits,

varying lengths of follow-ups, and complex missing patterns. Recurrent neural net-

works (RNNs), given their clear advantages in taking sequential inputs and successes

in natural language processing (NLP) (Wu et al., 2016), are a natural choice for han-

dling longitudinal inputs, and in recent years, they have been successfully used to

analyze clinical events data in different applications such as early detection of heart

failure (Choi et al., 2016), kidney failure after transplantation (Esteban et al., 2016),

114



and daily sepsis and myocardial infarction (Kaji et al., 2019).

Despite many existing successful applications of RNNs on the classification of

clinical events data, most of them rely on the accessibility of a large number of accu-

rately labeled training data. However, in many healthcare settings, qualified graders

and disease/domain experts are required to make an accurate diagnosis. Moreover,

invasive measurements may result in additional risk to patients and non-invasive mea-

surement may not be ubiquitous and may result in substantial cost. Therefore, it is

often difficult to collect a large number of accurate labels, which limits further ap-

plications of deep learning models on clinical events data when labels are scarce. On

the other hand, with the availability of routinely collected EHR, there usually exists

abundant and easy-to-collect unlabeled data. Therefore, our goal is to develop semi-

supervised learning methods for longitudinal clinical events which can incorporate

unlabeled data to help improve classification performance. Successful implementa-

tion of such methodology will help reduce costs of collecting clinical labels when

building prediction models.

Although there have been many works on semi-supervised learning in the field of

deep learning (Kingma et al., 2014; Odena, 2016; Narayanaswamy et al., 2017; Socher

et al., 2013), there are few works that take longitudinal input such as laboratory tests

and charted events that are commonly seen in EHR. Further, most existing approaches

treat feature extraction using unlabeled data and building prediction models using

labeled data as two separate steps (Dai and Le, 2015; Che et al., 2017; Ballinger

et al., 2018). The potential drawback of such a two-step approach is that the learned

feature representation in the first step receives no supervised guidance from labeled

data and, therefore, may not be specific to the desired task.

To overcome the lack of supervision in the first step, we propose to jointly learn

feature representation from both labeled and unlabeled data. Our model consists of

two parts: a sequence generative network for modeling longitudinal clinical events
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and a label prediction network which takes the hidden feature representation of the

sequence generative network as inputs. The two parts are learned end to end using

both labeled and unlabeled training data in a joint manner, such that the data could

be well separated in the shared feature space. We empirically show that the proposed

joint learning method significantly outperforms the two-step method when labels

are scarce. Furthermore, we consider two different generative models for modeling

longitudinal clinical events. In addition to the RNNs that have been used in the

aforementioned works, where all recurrent layers are deterministic, we also adopt

stochastic RNNs which contain an additional stochastic latent recurrent layer. Based

on our numerical experiments, taking stochastic RNNs as the generative model could

further improve the prediction performance in most cases.

The rest of this chapter is organized as follows. We introduce related work in

Section 4.2 and present the proposed semi-supervised joint learning approach with

technical details in Section 4.3. We demonstrate the effectiveness of the proposed

method in Section 4.4 and conclude this chapter with discussions in Section 4.5.

4.2 Related Work

Many semi-supervised learning methods have been proposed for deep learning

models (Kingma et al., 2014; Odena, 2016; Narayanaswamy et al., 2017; Socher et al.,

2013; Dai and Le, 2015). In particular, deep generative models have made great

progress on learning feature representations with little or no supervised informa-

tion in recent years (Cho et al., 2014; Chung et al., 2015; Kingma and Welling,

2014; Goodfellow et al., 2014), and have shown their advantages on unsupervised

and semi-supervised tasks. For instance, Kingma et al. (2014) proposed a two-step

semi-supervised learning method by first learning a low-dimensional feature repre-

sentation from unlabeled images via variational autoencoder (VAE) (Kingma and

Welling, 2014) and then learning an image classifier from labeled data. However,
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of the semi-supervised learning methods, only a few can be applied to accommo-

date longitudinal clinical events (Dai and Le, 2015; Che et al., 2017; Ballinger et al.,

2018). Among them, Dai and Le (2015) proposed to pre-train parameters in a RNN

encoder with large amounts of unlabeled data and then learn specific text classifica-

tion tasks starting with pre-trained initialization. Other unsupervised representation

learning algorithms such as word2vec (Mikolov et al., 2013) can also be used in the

pre-training step. They showed that such pre-training procedure using unlabeled

data could provide stable initialization and could be generalized well in different text

classification tasks. Following this approach, DeepHeart (Ballinger et al., 2018) also

pre-trained parameters in RNNs on unsupervised and weakly supervised tasks and

then built a prediction model for four conditions associated with cardiovascular risks

using labeled data. More recently, the ehrGAN (Che et al., 2017) was developed to

generate realistic patients’ clinical events via unsupervised learning. Based on the

implicit belief that the generated samples from ehrGAN with input x are likely to

have the same label as x, they were further used to produce pseudo labeled data

for supervised learning. However, this assumption may not hold in general since the

learning procedure of ehrGAN in the first step does not use any label information.

All of the aforementioned semi-supervised learning methods for classifying longi-

tudinal clinical events separate the learning process into two steps: (1) learn a deep

generative model using unlabeled data to either pre-train the parameters or augment

data; (2) learn a classifier for a specific classification task using labeled data based

on the pre-trained initialization or augmented labeled data obtained in the first step.

The key potential limitation of such two-step methods is that there is no or weak

supervision from labels in the first step. Although data points may cluster well in the

feature space by learning the intrinsic structure from unlabeled data, the clusters do

not necessarily correspond to the labels of interest. The joint learning approach in

our proposed method would make use of label information to help learn feature rep-
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resentation that can better separate data corresponding to the labels, and therefore,

obtain better prediction performance.

4.3 Semi-Supervised Joint Learning with Longitudinal Fea-

tures via Neural Networks

In this section, we first describe the problem setup of semi-supervised classifica-

tion for longitudinal features, using clinical events as a specific example. Then we

introduce the neural network models, and present the joint learning approach.

4.3.1 Problem Setup

We focus on two different types of features that are commonly seen in EHR: longi-

tudinal features and time-static features. Longitudinal features may include multiple

laboratory measurements, charted observations, and active treatments. These fea-

tures are recorded every time a patient comes for a clinical visit or new laboratory

tests or medications are ordered. We denote longitudinal features by x = (x1, · · · , xℓ),

where xj ∈ Rd1 for j = 1, · · · , ℓ, and ℓ is the length of the sequence and can be

different for different individuals. Time-static features may include gender, race, ad-

mission type, and age at enrollment, which are constant throughout the entire study.

We denote time-static features by w ∈ Rd2 . The label y ∈ {1, · · · , K} could be the

corresponding class associated with mortality or progression of diseases. In the semi-

supervised learning setting, we observe only a small number of labeled data (xi, wi, yi)

for i = 1, · · · , n and a large number of unlabeled data (xi, wi) for i = n+1, · · · , n+m,

where m is usually much greater than n. We aim to learn a classifier that maps (x,w)

to a class label y and incorporate both unlabeled and labeled data to improve pre-

diction performance.
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Figure IV.1: Model structure of two sequence generative networks and the label pre-
diction network, where circles represent the inputs and outputs, diamonds represent
deterministic hidden layers, and squares represent the stochastic latent recurrent layer
in VRNN.

4.3.2 Model Structure

We propose two neural network models whose architectures are given in Fig-

ure IV.1. Each model consists of two parts: (1) a sequence probabilistic generative

network for longitudinal features, which takes any sequence of longitudinal features

(x1, x2, · · · , xj−1) as inputs and models the distribution of features at the next time

step, i.e., p(xj|x1, · · · , xj−1); (2) a label prediction network which takes the hidden

recurrent layer of the sequence generative model and the time-static features as inputs

and outputs the probability for each class.
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Sequence generative network We consider two different generative models to

model what comes next in a sequence. The first one is a Gated Recurrent Units

(GRU) neural network. We choose GRU because it can better capture long-term

dependency due to the additional gate mechanisms compared with vanilla RNN (Cho

et al., 2014). The second one is a variational recurrent neural network (VRNN) which

contains an additional stochastic recurrent layer. It has been shown that introducing

a latent stochastic recurrent layer can provide significant improvements in natural

speech processing (Chung et al., 2015), and we adopt it here to examine its potential

advantages in modeling clinical events. We describe the two probabilistic models in

detail below.

RNN: As shown in the upper left corner of Figure IV.1, the hidden units in the recur-

rent layer h = (h1, · · · , hℓ) leverage historical information through the recurrent

connection hj = f(xj, hj−1), where f is a nonlinear transformation introduced

in GRU. The historical information stored in hj−1 determines the distribution

of longitudinal features at next time step. Specifically, the conditional density

of xj is given by p(xj;hj−1) = ψ(xj, hj−1), where ψ is an appropriate density

function. For example, if xj is continuous, we can use a multivariate Gaus-

sian distribution xj ∼ N (µx,j, diag(σ
2
x,j)), where [µx,j, σx,j] = ξ(hj−1) and ξ is

modeled by a fully connected neural network. Here we assume different com-

ponents of xj are uncorrelated conditional on hj−1 in p(xj;hj−1), but they can

be correlated in the marginal distribution p(xj). Since all transformations are

deterministic, the joint probability density of longitudinal features is given by

p(x) =
ℓ∏

j=1

p(xj|x1, · · · , xj−1) =
ℓ∏

j=1

p(xj;hj−1),

where h0 is usually set as a zero vector in practice.

VRNN: As shown in the bottom left corner of Figure IV.1, there is an additional

stochastic recurrent layer z = (z1, · · · , zℓ) compared to the RNN. In particu-
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lar, layer z is different from the standard hidden layer h since zj’s are random

variables while hj’s take deterministic values. The conditional distribution of

zj accesses the historical information through the hidden state hj−1. Specif-

ically, the variable zj is assumed to follow a multivariate Gaussian distribu-

tion with mean µz,j and variance diag(σ2
z,j), which are determined through a

fully connected neural network taking hj−1 as inputs. Moreover, the distribu-

tion of xj will not only be conditioned on hj−1 but also on the latent zj, i.e.

p(xj|zj;hj−1) = ψ(xj, ρ(zj), hj−1), where ψ is an appropriate density function

and ρ is a feature extractor with a two-layer fully connected neural network.

Note that, in contrast to the assumption in RNN, now different components of

xj can be correlated conditional on hj−1 in p(xj;hj−1), after marginalizing zj

in p(xj|zj;hj−1). Overall, the joint distribution of longitudinal features x and

latent recurrent features z is given by

p(x, z) =
ℓ∏

j=1

p(xj, zj|x1, · · · , xj−1, z1, · · · , zj−1) =
ℓ∏

j=1

p(xj|zj;hj−1)p(zj;hj−1),

where, similarly as RNN, h0 can be set as a zero vector. The hidden units are

updated through the recurrence equation hj = f(xj, [zj, hj−1]), where f is a

GRU module treating the concatenation of zj and hj as the hidden state.

Label prediction network The label prediction network takes the recurrent layer

of the sequence generative network and the time-static features as inputs and returns

the probability of belonging to each class. As shown on the right of Figure IV.1, we

first use a feature extractor ϕ for time-static features, where ϕ is a fully connected neu-

ral network taking w as inputs. Then we merge the information from both longitudinal

features and time-static features by concatenating the hidden feature representation

of the sequence generative network and the extracted features ϕ(w). Specifically, we

utilize the recurrent hidden layer h for RNN and µ̃z(x) = Ez∼q(z|x)z, the expecta-

tion of the approximate posterior q(z|x) (to be specified later in Section 4.3.3) of
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the stochastic recurrent layer z for VRNN. When different individuals have varying

lengths of longitudinal features, we can apply a max pooling layer on h(x) or µ̃z(x)

over the time steps before we concatenate them with ϕ(w). After merging the feature

representations, another fully connected neural network along with a Softmax output

layer φ is used to output the probability scores, i.e. p(y|x,w) = φ(y;h(x), ϕ(w)) for

RNN and φ(y; µ̃z(x), ϕ(w)) for VRNN.

4.3.3 Joint Learning

The sequence generative network and the label prediction network are learned

jointly end to end through shared parameters in the representation of longitudinal

features. Specifically, we minimize an objective function that consists of an unsuper-

vised loss and a supervised loss.

The unsupervised loss is constructed by using the negative log-likelihood for lon-

gitudinal features x. For RNN, the unsupervised loss is given by

Lg(θg;x) ≜ − log p(x) = −
ℓ∑

j=1

log p(xj;hj−1) (4.1)

where θg represents all parameters of RNN. For VRNN, however, the marginal den-

sity function p(x) is intractable due to the highly non-linear dependency between

x and z. Thus, following Kingma and Welling (2014) and Chung et al. (2015), we

consider a variational lower bound of the marginal likelihood function by introducing

an approximate posterior model q(z|x), i.e.

log p(x) ≥ Ez∼q(z|x) log p(x|z)−KL(q(z|x)∥p(z)),

where KL is the Kullback–Leibler divergence. When the approximate posterior q(z|x)

equals the true posterior p(z|x), the gap between the log-likelihood and the lower

bound becomes zero. In practice, the approximate posterior model q(z|x) is chosen

to be

q(z|x) =
ℓ∏

j=1

q(zj|x1, · · · , xj, z1, · · · , zj−1) =
ℓ∏

j=1

q(zj|xj;hj−1),
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where q(zj|xj;hj−1) follows a multivariate Gaussian distribution whose mean and co-

variance are parameterized by a neural network taking xj and hj−1 as inputs. Overall,

the generative model p(x, z) and the approximate posterior model q(z|x) are learned

simultaneously by minimizing the negative lower bound

Lg(θg;x) = −Ez∼q(z|x)

ℓ∑
j=1

(log p(xj|zj;hj−1)−KL(q(zj|xj;hj−1)∥p(zj;hj−1))) ,

(4.2)

where θg represents all parameters of VRNN.

The supervised loss is given by the cross entropy between the true class label y

and the class probabilities returned by the label prediction network

Ld(θd, θ̃g; y, x, w) = − log p(y|x,w), (4.3)

where θd represents all parameters used in the time-static feature extractor ϕ and

classifier φ, and θ̃g are the parameters used in h or the approximate posterior model

q(z|x) that is a subset of θg.

The overall objective function is a weighted sum of the unsupervised loss and the

supervised loss

L(θg, θd) =
1

n

n∑
i=1

Ld(θd, θ̃g; y
i, xi, wi) + η · 1

n+m

n+m∑
i=1

Lg(θg;x
i), (4.4)

where the first term is an average over the labeled data, the second term is an av-

erage over both labeled and unlabeled data, and η is a weight hyperparameter. The

parameters θ̃g are included in both Ld and Lg and are iteratively updated using both

unlabeled and labeled data during training. Therefore, the representation of longitu-

dinal features is learned not only by the unsupervised generative task but also under

the supervision from the labeled data. Further, the hyperparameter η controls the

trade-off between the unsupervised learning and the supervised learning. A lower

value of η leads to a stronger supervision from labeled data but weaker unsupervised

learning from unlabeled data. For example, when η equals to zero, it is equivalent to

supervised learning using labeled data alone. Based on our numerical experiments, η
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is an important hyperparameter that needs to be tuned carefully.

4.4 Numerical Experiments

To demonstrate the effectiveness of joint learning, we evaluate the proposed method

by using five mortality-related classification tasks on the Medical Information Mart

for Intensive Care III (MIMIC) database (Johnson et al., 2016; Goldberger et al.,

2000). We aim to examine: 1) whether additional unlabeled longitudinal features

can help improve the prediction performance through semi-supervised learning ap-

proaches; 2) how the proposed joint learning method performs in comparison with

existing two-step semi-supervised learning methods; 3) how using the stochastic RNN

as the sequence generative model differs from using the deterministic RNN.

4.4.1 Datasets

The MIMIC database provides deidentified clinical data of patients admitted to

an Intensive Care Unit (ICU) stay. It has been used to benchmark the performance

of deep learning models for predicting the length of stay, phenotyping, ICD-9 code

group, in-hospital mortality (Harutyunyan et al., 2019), short-term mortality, and

long-term mortality (Purushotham et al., 2018). Nonetheless, the evaluation of semi-

supervised learning methods on MIMIC is still lacking. In this chapter, we predict

five mortality related tasks: in-hospital mortality, 2-day and 3-day mortality (short-

term mortality), and 30-day and 1-year mortality (long-term mortality). We focus

on adult patients who were alive the first 24 hours after the first admission to ICU,

which results in an analytic sample of 35,643 patients. Table IV.1 summarizes the

proportion of mortality for each task.

Following Purushotham et al. (2018), we take 15 longitudinal features from the

first 24 hours after admission to ICU. Specifically, they are the 3 types of Glasgow

Coma Scale scores, systolic blood pressure, heart rate, body temperature, PaO2,
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Table IV.1: The proportion of in-hospital mortality, 2-day mortality, 3-day mortality,
30-day mortality, and 1-year mortality in the admissions where adult patients were
alive the first 24 hours.

Total number
of admissions

In-hospital 2-day 3-day 30-day 1-year

35643 0.105 0.018 0.029 0.147 0.250

FiO2, urine output, white blood cells count, serum urea nitrogen level, serum bi-

carbonate level, sodium level, potassium level, and bilirubin level. Each longitudinal

feature is sampled hourly. We also use 5 time-static features: age, admission type, and

three chronic diseases diagnosis including metastatic cancer, hematologic malignancy,

and acquired immunodeficiency syndrome.

4.4.2 Methods for Comparison

Overall, we consider a supervised learning method that uses only labeled data

and three semi-supervised learning methods that can use both labeled and unlabeled

data. The supervised learning method MMDL combines an RNN for the longitudinal

features and a fully connected neural network for the time-static features, and is

trained by minimizing Ld in (4.3) with labeled data only (Purushotham et al., 2018).

We use Two-Step to refer to the two-step semi-supervised sequence learning method

used in Dai and Le (2015) and Ballinger et al. (2018). Specifically, it shares the same

architecture as MMDL, where the RNN is first trained by minimizing Lg in (4.1)

and then the label prediction network is learned by minimizing Ld in (4.3) starting

with the pre-trained initialization of θ̃g. The proposed methods are referred to as

Joint-RNN and Joint-VRNN respectively, and they are trained by minimizing the

overall loss L in (4.4) jointly. Joint-RNN shares the same architecture with MMDL

and Two-Step, while Joint-VRNN substitutes the RNN with an VRNN.
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For the comparison to be fair, in MMDL, Two-Step, and Joint-RNN, we adopt

exactly the same neural network architecture as used by Purushotham et al. (2018).

In Joint-VRNN, we also make the architecture choices as close to the former three

models as possible. Specifically, we use GRU for all recurrent units and the sigmoid

activation for non-linear transformations except for using a Softmax output layer

to return probability scores. Dropout is applied with rate 0.1 after each sigmoid

activation in the fully connected neural network. The numbers of layers and hidden

units in the recurrent layer h and the fully connected neural networks are the same

as those used by Purushotham et al. (2018). For VRNN, we fix the dimension of zj

as 8 and the number of hidden units in the feature extractor ρ(zj) as 32. Finally, as

all patients in this dataset have the same length of longitudinal features, we simply

concatenate h(x) or µ̃z(x) over the time steps when sending them as the inputs to

the label prediction network, following the implementation of MMDL.

4.4.3 Experiment Setting

We split the dataset into five folds for stratified cross-validation, among which

we use three folds for training, one fold for validation, and the remaining fold for

testing. To examine semi-supervised learning methods with various proportions of

labeled data, we randomly select a subset of the training folds as labeled data and

mask labels of the remaining training folds as unlabeled data. The proportion of

labeled training data varies from 1% to 100%. For each classification task, MMDL is

learned using only labeled training data and the other three semi-supervised learning

methods are learned using both the labeled and unlabeled training data. We report

the mean and standard error of the Area under the Receiver Operating Characteristic

curve (AuROC) across five testing folds to evaluate the prediction performance.

For the two joint learning methods (Joint-RNN and Joint-VRNN), we grid search

the weight hyperparameter η from {0.001, 0.01, 0.1, 1, 10} and choose the one with the
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highest AuROC on the validation fold separately during each round of cross-validation

to avoid information leakage. For better pre-training in the Two-Step method, we

further tune the non-architecture-specific hyperparameters, including the learning

rate and the dropout rate, in the first step. We grid search the optimal learning

rate from {0.001, 0.005, 0.01} and the optimal dropout rate from {0.1, 0.2, 0.5} with

the lowest Lg on a validation set. In the second step, we initialize θ̃g in the label

prediction network with the pre-trained values and train it using labeled data.

All models are implemented in PyTorch and trained with the RMSProp optimizer.

We fix the learning rate as 0.001 (except for the pre-training step of Two-Step) and

the batch size as 100, following the implementation of MMDL. We use early stopping

for all models when reaching the highest AuROC on the validation fold to prevent

overfitting.

4.4.4 Results

Figure IV.2 shows the AuROC of the four methods under various proportions of

labeled training data on five mortality-related classification tasks. First, we observe

that when labels are scarce, semi-supervised learning methods significantly outper-

form the supervised method (MMDL) on the five tasks in most cases. This implies

that semi-supervised learning methods which incorporate unlabeled data can help im-

prove prediction performance compared to the supervised method which uses labeled

data only. Further, we notice that, even in the fully labeled case, i.e. when the label

percentage is 100%, modeling what comes next in a sequence as an auxiliary task (as

joint learning methods do) could further improve the performance on classification

tasks.

Second, we observe that the joint learning methods obtain a higher AuROC by

a large margin compared to the existing two-step method, especially when predict-

ing short-term mortality. Moreover, the gain of the joint learning methods increases
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Figure IV.2: AuROC of the proposed joint learning methods (Joint-RNN and Joint-
VRNN), the two-step method (Two-Step), and the supervised method (MMDL) vs
the proportion of labeled training data on five tasks. The horizontal axis is in the
logarithmic scale with base 10. The results are averaged over five testing folds and
the error bars indicate the standard error of the mean.
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as the label percentage decreases. This implies that, although the pre-training step

of the two-step method might provide a potentially good initialization, the lack of

supervision from labels in the pre-training step would lead to limited improvement

on prediction performance in the second step. Instead, the proposed joint learn-

ing methods can take advantage of available labels and learn representations of the

longitudinal features under supervision from both labeled and unlabeled data.

Third, as shown in Figure IV.2, the Joint-VRNN that contains the stochastic

recurrent layer further improves the prediction performance in comparison with the

Joint-RNN. The gain is especially obvious for the long-term mortality prediction.

This extends the observation of the benefit of using latent random recurrent layers in

previous literature to modeling longitudinal features.

4.5 Discussion

In this chapter, we propose a semi-supervised joint learning method for classifying

longitudinal features, 2 with an application to clinical events. With joint learning,

the feature representation of the longitudinal information is learned under supervi-

sion from both unlabeled and labeled data so that related data can be separated well

corresponding to the labels. We compare the proposed methods with the existing su-

pervised learning method and two-step semi-supervised learning method. Our exper-

imental results verify that, by incorporating unlabeled data, semi-supervised learning

methods outperform the supervised method when labels are scarce, and among the

semi-supervised learning methods, the proposed joint learning methods can further

improve the prediction accuracy compared to the two-step method in most cases.

Notably, the horizontal difference between the curves of semi-supervised and su-

pervised methods indicates the difference on the usage of labeled training data to

maintain the same prediction performance. For example, as shown in Figure IV.2,

the Joint-VRNN method uses 2% labels to obtain 80% AuROC for 1-year mortality
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prediction while the supervised method needs 10% labels to achieve the same perfor-

mance. Therefore, the usage of semi-supervised learning met 2hods could help reduce

the cost of collecting clinical labels when building prediction models for applications

in healthcare.

We should note a few remarks on the proposed joint learning methods. First, when

there are multiple prediction tasks, the two-step method has the advantage that the

pre-training step only needs to be done once while the joint learning methods require

the training of the sequence generative network for each task. Second, compared to

the two-step method, the joint learning methods have one additional hyperparameter

η to be tuned. In practice, though, a simple grid search of η is enough to obtain

good performance as shown in our experiments. Third, Joint-VRNN has a higher

computational cost than Joint-RNN due to the sequential sampling. However, Joint-

VRNN demonstrates promising improvements in prediction accuracy compared to

Joint-RNN, which is especially important in healthcare applications.
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CHAPTER V

Conclusion and Future Directions

Motivated by the growing scale of datasets, the diversity of data structures, and

incomplete observations that are often encountered in various real-world applications,

this dissertation has focused on three directions. First, in Chapter II, we proposed

an ODE approach for censored data in survival analysis, which provides a unified

modeling framework and a scalable procedure for estimation and inference based on

well-established numerical solvers and tools for ODEs. Remarkably, the proposed

ODE approach improves computational efficiency and model expression power while

maintaining statistical efficiency. Next, in Chapter III, we developed a latent space

method for modeling heterogeneous network data. In particular, we focus on signed

networks with edge heterogeneity and the proposed latent space method accommo-

dates the important balance theory in social science and provides interpretable and

informative embeddings for network data. Finally, in Chapter IV, we proposed a

semi-supervised learning method for risk prediction on longitudinal clinical events.

Motivated by the longitudinal nature of EHR and the scarcity of annotated data, the

proposed method requires fewer labeled training data to obtain the same prediction

performance than using labeled data alone.

Moreover, there are some intriguing directions that are worth of future exploration.
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Bridging Differential Equations and Statistical Learning The differential

equation (DE) is a fundamental tool for describing dynamic systems in many disci-

plines, such as explaining the laws of physics, understanding the growth of diseases,

and demonstrating the motion of economic systems. In particular, recent work in

deep learning has forged a connection with DE. Such work is built in two ways: us-

ing deep neural networks for solving high-dimensional partial differential equations,

where finite difference methods become infeasible (Sirignano and Spiliopoulos, 2018);

and using ODEs for continuous modeling, such as modeling continuous-depth neural

networks to improve memory and parameter efficiency (Chen et al., 2018), and model-

ing continuous normalizing flows to reduce the computational burden while increasing

expressiveness (Grathwohl et al., 2019). Chapter II further identifies a new direction

to leverage DE to statistical learning for enhancing modeling flexibility and computa-

tional efficiency while maintaining statistical efficiency, which makes DE a promising

and versatile tool for statistical learning under various modern data settings.

One future direction is exploiting the ODE notion for general counting processes.

For example, we can analyze the recurrent event data in longitudinal studies and the

repeated directed interactions in dynamic networks through multivariate counting

processes, of which the intensity function can be modeled by DE. This approach may

inherit the merits of Chapter II in terms of modeling and computation and can be

potentially generalized to handle competing risks, interval-censored data, and dynamic

risk predictions using time-dependent covariates.

Embedding Learning and Statistical Inference for Network Data To an-

alyze heterogeneous network data, the network embedding method provides a low-

dimensional vector representation for each node that preserves the connectivity pat-

terns of networks. Learned embedding is useful for identifying underlying patterns,

visualizing networks, and downstream learning tasks (e.g., node clustering and clas-
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sification, and link prediction). Chapter III shows that the latent space approach is

flexible to develop interpretable and statistically principled network embedding via

model-based learning and inference. It would be worthwhile to further investigate

how the latent space approach can be used to model heterogeneous networks with

node attributes and network data beyond pairwise interactions.

In addition, while network embedding approaches have been successfully applied

to many downstream tasks, little is done to theoretically investigate how learned

embeddings affect the downstream task performance. The unsupervised embedding

such as Chapter III is entirely task-independent and may be too generic due to the lack

of supervision. One promising direction is to develop supervised or semi-supervised

network embedding learning methods through joint modeling when labeled training

data for the learning task is available.
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APPENDIX A

Appendix of Chapter II

This Appendix is structured as follows. We provide the detailed derivation of the

local sensitivity analysis and optimization algorithm in Section A.1. We present the

proposed general M-theorem for bundled parameters (Theorem 2.3.3) and its proof in

Section A.2. The proofs of Theorems 2.3.1 and 2.3.2 are given in Section A.3, those

of Propositions 2.2.1 and 2.2.2 are given in Section A.4. We further establish the

convergence rate and the asymptotic normality of the proposed sieve estimator for

the general class of ODE models in the presence of covariates Z with time-varying

coefficients in Section A.5. Additional simulation studies are provided in Section A.6.

A brief introduction to the partial likelihood-based method and discrete-time survival

models are given in Sections A.7 and A.8 respectively. The tuning ranges of hyper-

parameters for the neural-network-based models are listed in Section A.9.

A.1 Optimization Algorithm With Local Sensitivity Analysis

In this section, we first derive two types of local sensitivity analysis that can

be used to compute the gradient of the log-likelihood function when it contains the

solution of a general ODE. When the ODE is separable in the model formulation, we

introduce a trick to further accelerate the evaluation of the objective for n independent

observations in subsection A.1.1.
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We consider any parameterized survival model in the form of dΛx(t)/dt = f(t,Λx(t);x, θ)

Λx(t0) = c(x, θ)
, (A.1)

where θ denotes all the parameters. For example, for the general class of ODE models

in (2.8), the function f is given by the right hand side of (2.8), the parameter θ consists

of β, a, and b, the initial time point t0 = 0, and the initial value c(·) equals to zero.

Denote the solution of (A.1) by Λx(t; θ). Then under the non-informative censoring,

the log-likelihood function is given by

ln(θ) =
1

n

n∑
i=1

[∆i log f (Yi,ΛXi
(Yi; θ);Xi, θ)− ΛXi

(Yi; θ)] .

To obtain the maximum likelihood estimator, we propose a gradient-based optimiza-

tion algorithm which utilizes the local sensitivity analysis to compute the gradient.

By applying the chain rule, the gradient is given by

d ln(θ)

dθ
=

1

n

n∑
i=1

{[
∆i
f ′
2 (Yi,ΛXi

(Yi; θ);Xi, θ)

f (Yi,ΛXi
(Yi; θ);Xi, θ)

− 1

]
∂Λxi

(Yi; θ)

∂θ
+

∆i
f ′
4 (Yi,ΛXi

(Yi; θ);Xi, θ)

f (Yi,ΛXi
(Yi; θ);Xi, θ)

}
,

where we use the subscript 2 and 4 in the derivatives to indicate that the derivatives

are taken with respect to the first and the fourth argument of the function f respec-

tively. Then as long as we can derive the gradient of Λx(y; θ) with respect to θ for a

given y, we can obtain the gradient of the likelihood function for faster gradient-based

computations.

There are two commonly used types of local sensitivity analyses: forward sensi-

tivity analysis and adjoint sensitivity analysis (Dickinson and Gelinas, 1976; Petzold

et al., 2006). We first derive the corresponding ODE for the forward sensitivity anal-

ysis. Denote the partial derivatives of f(t,Λ;x, θ) with respect to θ and Λ by f ′
θ

and f ′
Λ, respectively. Under certain smoothness condition of f , there is one unique
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solution Λx(t; θ) of (A.1) and it satisfies

Λx(t; θ) =

t∫
t0

f(s,Λx(s; θ);x, θ)ds+ c(x, θ).

By interchanging the integral and partial differential operators, it follows that

∂Λx(t; θ)

∂θ
=

∂

∂θ

t∫
t0

f(s,Λx(s; θ);x, θ)ds+ c′θ(x, θ) (A.2)

=

t∫
t0

(
f ′
θ(s,Λx(s; θ);x, θ) + f ′

Λ(s,Λx(s; θ);x, θ)
∂Λx(s; θ)

∂θ

)
ds+ c′θ(x, θ),

where c′θ(x, θ) is the derivative of c(x, θ) with respect to θ. Therefore, ∂Λx(y; θ)/∂θ =

F1(y) with F1 satisfying dF1(t)/dt = f ′
θ(t,Λx(t; θ);x, θ) + f ′

Λ(t,Λx(t; θ);x, θ) · F1

F1(t0) = c′θ(x, θ)
. (A.3)

After plugging t0 = 0 and c(·) = 0, (A.3) becomes the initial value problem (2.9) in

Section 2.3.1.

Next, we derive the corresponding ODE for the adjoint sensitivity analysis. Since

Λx(t; θ) is solution of (A.1), for some appropriately chosen differentiable function

κ(t, θ) to be specified later, we have

Λx(t; θ) = Λx(t; θ)−
t∫

t0

κ(s, θ)
[∂Λx(s; θ)

∂s
− f(s,Λx(s, θ);x, θ)

]
ds.

By taking derivatives with respect to θ on both sides, it follows that

∂Λx(t; θ)

∂θ
=
∂Λx(t; θ)

∂θ
− ∂

∂θ

t∫
t0

κ(s, θ)
[∂Λx(s; θ)

∂s
− f(s,Λx(s, θ);x, θ)

]
ds

=
∂Λx(t; θ)

∂θ
−

t∫
t0

κ(s, θ)
∂

∂θ

[∂Λx(s; θ)

∂s
− f(s,Λx(s, θ);x, θ)

]
ds

=

t∫
t0

(1 + κ(s, θ))
∂

∂θ
f(s,Λx(s; θ);x, θ)ds+ c′θ(x, θ)

−
t∫

t0

κ(s, θ)
∂

∂s

[∂Λx(s; θ)

∂θ

]
ds,
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where the second equality holds because
t∫

t0

∂κ(s, θ)

∂θ

[∂Λx(s; θ)

∂s
− f(s,Λx(s, θ);x, θ)

]
ds = 0,

and the last equality holds by plugging (A.2) and exchanging the order of derivatives.

Using integral by parts, we have
t∫

t0

κ(s, θ)
d

ds

[dΛx(s; θ)

dθ

]
ds+

t∫
t0

dκ(s, θ)

ds

dΛx(s; θ)

dθ
ds =

(
κ(s, θ)

dΛx(s; θ)

dθ

)∣∣∣t
t0
.

Then it follows that

dΛx(t; θ)

dθ
=

t∫
t0

(1 + κ(s, θ))

(
f ′
θ(s,Λx(s; θ);x, θ) + f ′

Λ(s,Λx(s; θ);x, θ)
dΛx(s; θ)

dθ

)
ds

+ c′θ(x, θ) +

t∫
t0

dκ(s, θ)

ds

dΛx(s; θ)

dθ
ds−

(
κ(s, θ)

dΛx(s; θ)

dθ

)∣∣∣t
t0

=

t∫
t0

(1 + κ(s, θ))f ′
θ(s,Λx(s; θ);x, θ)ds

+

t∫
t0

dΛx(s; θ)

dθ

(
dκ(s, θ)

ds
+ (1 + κ(s, θ))f ′

Λ(s,Λx(s; θ);x, θ)

)
ds

+ (1 + κ(t0, θ))c
′
θ(x, θ)− κ(t, θ)

dΛx(t; θ)

dθ
.

Denote κ̃(t, θ) ≜ κ(t, θ) + 1 and choose proper κ̃(t, θ) that satisfies dκ̃(t, θ)/dt = −κ̃(t; θ)f ′
Λ(t,Λx(t, θ);x, θ)

κ̃(y; θ) = 1
, (A.4)

then the gradient of Λx(t, θ) with respect to θ is given by

dΛx(y; θ)

dθ
=

y∫
t0

κ̃(s, θ)f ′
θ(s,Λx(s; θ);x, θ)ds+ κ̃(t0, θ)c

′
θ(x, θ).

After plugging t0 = 0 and c(·) = 0, the above equation becomes

dΛx(y; θ)

dθ
=

y∫
0

κ̃(s, θ)f ′
θ(s,Λx(s; θ);x, θ)ds.

Together with (A.4), it shows that the solution of (2.10) at t = 0 gives the gradient of

Λx(y; θ) with respect to θ. Note that to solve (2.10) at t = 0, it requires evaluating the
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entire trajectory of Λx(t, θ) from y to 0. In our implementation, we combine ODEs

(A.1) and (2.10) into a larger ODE system, i.e., (Λ′(t);κ′(t);F ′
2(t)) = (f(t,Λ; θ);−κ · f ′

Λ(t,Λ; θ);−κ · f ′
θ(t,Λ; θ))

(Λ(t);κ(t);F2(t))|t=y = (Λx(y; θ); 1;0)
,

and evaluate it at t = 0, where Λx(y; θ) is available when computing the likelihood

function. As discussed in Section 3 of the main text, the proposed estimation methods

can be easily implemented using existing computing packages.

A.1.1 Acceleration trick for simultaneously solving separable ODEs for

n independent observations

Recall that evaluating the log-likelihood function requires solving ODEs for n

independent observations. For a general ODE model, as suggested in Remark II.4,

we can use either the adjoint method along with parallel computing or the forward

method by combining n ODEs into a large ODE system with n dimensions. The

complexity of both methods scales linearly with the sample size. We further introduce

a trick to reduce the absolute magnitude of computing time for separable ODEs, which

cover the general class of ODE models in (2.2) as a special case.

Specifically, we consider the separable ODE model in the form of dΛx(t)/dt = f1(t;x, θ1) · f2(Λx; θ2)

Λx(t0) = c
, (A.5)

with two functions f1 and f2. In particular, for the general class of ODE models

in (2.8),

f1(t;x, z, θ1) = exp

xTβ +

d2∑
l=0

q1n∑
j=1

aljB
1
j (t)zl


and

f2(Λx,z; θ2) = exp

 q2n∑
j=1

bjB
2
j (Λx,z(t))

.
For n independent observations {∆i, Xi, Yi}ni=1, we need to evaluate the solution of
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n different ODEs in (A.5), each of which is associated with Xi, at their respective

observed times Yi. The acceleration trick is based on the key observation that solving

(A.5) at y is equivalent to solving the problem dG(t)/dt = f2(G; θ2)

G(t0) = c
(A.6)

at
∫ y

t0
f1(t;x, θ1)dt+ t0, i.e.,

Λx(y; θ1, θ2) = G(

y∫
t0

f1(t;x, θ1)dt+ t0; θ2).

Therefore, we can instead solve a single ODE (A.6) at n different points {t0 +∫ Yi

t0
f1(t;Xi, θ1)dt}ni=1 to compute ΛXi

(Yi; θ1, θ2) for 1 ≤ i ≤ n. Moreover, given

ΛXi
(Yi; θ1, θ2), the gradient of ΛXi

(Yi; θ1, θ2) with respect to θ1 can be computed by

∂ΛXi
(Yi; θ1, θ2)

∂θ1
= f2(ΛXi

(Yi; θ1, θ2); θ2)

Yi∫
t0

∂f1(t;Xi, θ1)

∂θ1
dt.

And we can obtain the gradient of ΛXi
(Yi; θ1, θ2) with respect to θ2 by solving another

single ODE at n different points:

∂ΛXi
(Yi; θ1, θ2)

∂θ2
= G2(

y∫
t0

f1(t;x, θ1)dt+ t0; θ2),

where G̃(·; θ2) is the solution of dG̃(t)/dt = f2
′
θ2
(G; θ2) + f2

′
G(G; θ2) · G̃

G̃(t0) = 0
.

Based on our experiments, the proposed acceleration trick can significantly reduce the

absolute computing time of simultaneously solving separable ODEs for n independent

observations.
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A.2 The General Sieve M-theorem for Bundled Parameters

(Theorem 2.3.3) and Its Proof

In this section, we establish a new general sieve M-theorem for studying the asymp-

totic normality of M-estimators when the estimation criterion is parameterized with

more general bundled parameters. Note that the proposed M-theorem significantly

differs from Theorem 2.1 in Ding and Nan (2011) and Theorem 6.1 in Wellner and

Zhang (2007). They consider either well-separated parameters (Wellner and Zhang,

2007) or bundled parameters where the nuisance parameter can be a function of

only the finite-dimensional parameters (Ding and Nan, 2011); while we consider a

more general scenario of bundled parameters where the nuisance parameter can be

a function of both the finite-dimensional parameter β and other infinite-dimensional

parameters. Therefore, the proposed theorem nontrivially extends the asymptotic

distributional theories for M-estimation under this general scenario and is crucial

for studying the asymptotic normality of the sieve MLE for the general ODE model

in (2).

Specifically, given i.i.d. observations W1, · · · ,Wn ∈ W , we maximize an objective

function

1

n

n∑
1

m(β,γ(·), ζ(·, β,γ);Wi)

to estimate the unknown parameters (β,γ(·), ζ(·, β,γ)). Here β ∈ Rd1 denotes

the finite-dimensional parameter of interest, γ(·) = (γ1(·), . . . , γd2(·)) denotes nui-

sance infinite-dimensional parameters and ζ(·, β,γ) denotes another nuisance infinite-

dimensional parameter that is a function of β and γ(·). To accommodate this dif-

ferent and challenging scenario bundled parameters, we develop a new general sieve

M-theorem. We firstly introduce notation in Section A.2.1, and establish the asymp-

totic normality of the sieve estimator that maximizes the objective function over some

sieve parameter space in Section A.2.2.
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A.2.1 Notation

Here we follow notation used in Ding and Nan (2011) and Wellner and Zhang

(2007). Let θ = (β,γ(·), ζ(·, β,γ)), β ∈ B ⊂ Rd1 , γ ∈ Γd2 , and ζ ∈ H, where B is

the parameter space of β, Γ is a class of functions mapping from W to R and H is

a class of functions mapping from W × B × Γd2 to R. Let Θ = B × Γd2 ×H be the

parameter space of θ. The distance between θ1 and θ2 ∈ Θ is defined as

d(θ1, θ2) = {∥β1 − β2∥2 +
d2∑
j=1

∥γ1j − γ2j∥2Γ + ∥ζ1(·, β1,γ1)− ζ2(·, β2,γ2)∥2H}1/2,

where ∥ · ∥ is the Euclidean norm, ∥ · ∥Γ is some norm of Γ, and ∥ · ∥H is some

norm of H. Let Θn be the sieve parameter space, where Θn ⊂ Θn+1 ⊂ · · · ⊂ Θ

and the sequence becomes dense as n → ∞. We obtain the sieve M-estimator

θ̂n = (β̂n, γ̂n, ζ̂n(·, β̂n, γ̂n)) ∈ Θn by maximizing the objective function over the sieve

parameter space. We study the asymptotic normality of the sieve M-estimator of the

Euclidean parameter of interest, β̂n, as follows.

For any fixed γ(·) ∈ Γ, let {γη(·) : η in a neighborhood of 0 ∈ R} be a smooth

curve in Γ running through γ(·) at η = 0, that is γη(·)|η=0 = γ(·). Similarly, for any

fixed ζ(·, β,γ) ∈ H, let {ζη(·, β,γ) : η in a neighborhood of 0 ∈ R} be a smooth curve

in H running through ζ(·, β,γ) at η = 0, that is ζη(·, β,γ)|η=0 = ζ(·, β,γ). Assume

all ζ(·, β,γ) ∈ H are twice Frechet differentiable with respect to β and γ, and denote

V = {v : v(·) = ∂γη(·)
∂η

|η=0, γη ∈ Γ},

H = {h : h(·, β,γ) = ∂ζη(·, β,γ)
∂η

|η=0, ζη ∈ H, β ∈ B,γ ∈ Γd2}.

Assume the objective function m is twice Frechet differentiable. For 1 ≤ j ≤ d2,

we use the subscript 1, 2(j) or 3 in the derivatives to indicate that the derivatives

are taken with respect to the first, the j-th component of the second or the third

argument of the function, respectively. We use function v or h inside the square

brackets to denote the direction of the functional derivative with respect to γj or

ζ. Since for a small δ, we have ζ(·, β + δ,γ) − ζ(·, β,γ) = ζ ′β(·, β,γ)δ + o(δ), where
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ζ ′β(·, β,γ) = ∂ζ(·, β,γ)/∂β; then as shown in Ding and Nan (2011) on page 3036, it

follows that

lim
δ→0

1

δ
{m(β,γ(·), ζ(·, β + δ,γ);W )−m(β,γ(·), ζ(·, β,γ);W )}

= m′
3(β,γ(·), ζ(·, β,γ);W )[ζ ′β(·, β,γ)],

lim
δ→0

1

δ
{m′

3(β,γ(·), ζ(·, β + δ,γ);W )[h(·, β,γ)]−m′
3(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ)]}

= m′′
33(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ), ζ ′β(·, β,γ)],

lim
δ→0

1

δ
{m′

2(j)(β,γ(·), ζ(·, β + δ,γ);W )[v]−m′
2(β,γ(·), ζ(·, β,γ);W )[v]}

= m′′
2(j)3(β,γ(·), ζ(·, β,γ);W )[v, ζ ′β(·, β,γ)], for 1 ≤ j ≤ d2,

and

lim
δ→0

1

δ
{m′

3(β,γ(·), ζ(·, β,γ);W )[h(·, β + δ,γ)]−m′
3(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ)]}

= m′
3(β,γ(·), ζ(·, β,γ);W )[h′β(·, β,γ)].

Let ej = (0, . . . , 1, . . . , 0) ∈ Rd2 with the j-th element being 1. For 1 ≤ j ≤ d2,

we have ζ(·, β,γ + v · ej)− ζ(·, β,γ) = ζ ′γj(·, β,γ)[v] + o(∥v∥Γ) for a small v; then by

the definition of functional derivatives, it follows that, for 1 ≤ j ≤ d2,

m(β,γ(·), ζ(·, β,γ + v · ej);W )−m(β,γ(·), ζ(·, β,γ);W )

= m(β,γ(·), ζ(·, β,γ) + ζ ′γj(·, β,γ)[v] + o(∥v∥Γ);W )−m(β,γ(·), ζ(·, β,γ);W )

= {m(β,γ(·), ζ(·, β,γ) + ζ ′γj(·, β,γ)[v] + o(∥v∥Γ);W )

−m(β,γ(·), ζ(·, β,γ) + ζ ′γj(·, β,γ)[v];W )}

+ {m(β,γ(·), ζ(·, β,γ) + ζ ′γj(·, β,γ)[v];W )−m(β,γ(·), ζ(·, β,γ);W )}

= m′
3(β,γ(·), ζ(·, β,γ) + ζ ′γj(·, β,γ)[v];W )[o(∥v∥Γ)]+

m′
3(β,γ(·), ζ(·, β,γ);W )[ζ ′γj(·, β,γ)[v]] + o(∥ζ ′γj(·, β,γ)[v]∥Γ)

= m′
3(β,γ(·), ζ(·, β,γ);W )[ζ ′γj(·, β,γ)[v]] + o(∥v∥Γ),

where the last equality holds because

lim
v→0

m(β,γ(·), ζ(·, β,γ) + ζ ′γj(·, β,γ)[v];W )
[o(∥v∥Γ)

∥v∥Γ

]
= 0,

143



and o(∥ζ ′γj(·, β,γ)[v]∥Γ) = o(∥v∥Γ) for bounded functional derivatives. Similarly we

have for 1 ≤ j, ℓ ≤ d2,

m′
2(j)(β,γ(·), ζ(·, β,γ + v · eℓ);W )[v1]−m′

2(j)(β,γ(·), ζ(·, β,γ);W )[v1]

= m′′
2(j)3(β,γ(·), ζ(·, β,γ);W )[v1, ζ

′
γℓ
(·, β,γ)[v]] + o(∥v∥Γ),

m′
3(β,γ(·), ζ(·, β,γ + v · ej);W )[h(·, β,γ)]−m′

3(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ)]

= m′′
33(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ), ζ ′γj(·, β,γ)[v]] + o(∥v∥Γ),

m′
3(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ + v · ej)]−m′

3(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ)]

= m′
3(β,γ(·), ζ(·, β,γ);W )[h′γj(·, β,γ)[v]] + o(∥v∥Γ).

Based on the chain rule of the functional derivative, we have for 1 ≤ j, ℓ ≤ d2,

m′
β(β,γ(·), ζ(·, β,γ);W ) =

∂m(β,γ(·), ζ(·, β,γ);W )

∂β

= m′
1(β,γ(·), ζ(·, β,γ);W )

+m′
3(β,γ(·), ζ(·, β,γ);W )[ζ ′β(·, β,γ)],

m′
γj
(β,γ(·), ζ(·, β,γ);W )[v] = m′

2(j)(β,γ(·), ζ(·, β,γ);W )[v]

+m′
3(β,γ(·), ζ(·, β,γ);W )[ζ ′γj(·, β,γ)[v]],

m′
ζ(β,γ(·), ζ(·, β,γ);W )[h] = m′

3(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ)],

m′′
ββ(β,γ(·), ζ(·, β,γ);W ) =

∂m′
β(β,γ(·), ζ(·, β,γ);W )

∂β

= m′′
11(β,γ(·), ζ(·, β,γ);W )

+m′′
13(β,γ(·), ζ(·, β,γ);W )[ζ ′β(·, β,γ)]

+m′′
31(β,γ(·), ζ(·, β,γ);W )[ζ ′β(·, β,γ)]

+m′′
33(β,γ(·), ζ(·, β,γ);W )[ζ ′β(·, β,γ), ζ ′β(·, β,γ)]

+m′
3(β,γ(·), ζ(·, β,γ);W )[ζ ′′ββ(·, β,γ)],

m′′
γjγℓ

(β,γ(·), ζ(·, β,γ);W )[v1, v2] = m′′
2(j)2(ℓ)β,γ(·), ζ(·, β,γ);W )[v1, v2]

+m′′
2(j)3(β,γ(·), ζ(·, β,γ);W )[v1, ζ

′
γℓ
(·, β,γ)[v2]]
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+m′′
32(ℓ)(β,γ(·), ζ(·, β,γ);W )[ζ ′γj(·, β,γ)[v1], v2]

+m′′
33(β,γ(·), ζ(·, β,γ);W )[ζ ′γj(·, β,γ)[v1], ζ

′
γℓ
(·, β,γ)[v2]]

+m′
3(β,γ(·), ζ(·, β,γ);W )[ζ ′′γjγℓ(·, β,γ)[v1, v2]],

m′′
ζζ(β,γ(·), ζ(·, β,γ);W )[h1, h2] = m′′

33(β,γ(·), ζ(·, β,γ);W )[h1(·, β,γ), h2(·, β,γ)],

m′′
γjβ

(β,γ(·), ζ(·, β,γ);W )[v] =
∂m′

γj
(β,γ(·), ζ(·, β,γ);W )[v]

∂β

= m′′
2(j)1(β,γ(·), ζ(·, β,γ);W )[v]

+m′′
2(j)3(β,γ(·), ζ(·, β,γ);W )[v, ζ ′β(·, β,γ)]

+m′′
31(β,γ(·), ζ(·, β,γ);W )[ζ ′γj(·, β,γ)[v]]

+m′′
33(β,γ(·), ζ(·, β,γ);W )[ζ ′γj(·, β,γ)[v], ζ

′
β(·, β,γ)]

+m′
3(β,γ(·), ζ(·, β,γ);W )[ζ ′′γjβ(·, β,γ)[v]]

m′′
ζβ(β,γ(·), ζ(·, β,γ);W )[h] =

∂m′
ζ(β,γ(·), ζ(·, β,γ);W )[h]

∂β

= m′′
31(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ)]

+m′′
33(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ), ζ ′β(·, β,γ)]

+m′
3(β,γ(·), ζ(·, β,γ);W )[h′β(·, β,γ)],

m′′
ζγj

(β,γ(·), ζ(·, β,γ);W )[h, v] = m′′
32(j)(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ), v]

+m′′
33(β,γ(·), ζ(·, β,γ);W )[h(·, β,γ), ζ ′γj(·, β,γ)[v]]

+m′
3(β,γ(·), ζ(·, β,γ);W )[h′γj(·, β,γ)[v]],

m′′
γjζ

(β,γ(·), ζ(·, β,γ);W )[v, h] = m′′
2(j)3(β,γ(·), ζ(·, β,γ);W )[v, h(·, β,γ)]

+m′′
33(β,γ(·), ζ(·, β,γ);W )[ζ ′γj(·, β,γ)[v], h(·, β,γ)]

+m′
3(β,γ(·), ζ(·, β,γ);W )[h′γj(·, β,γ)[v]].

Following Wellner and Zhang (2007), we further define

S ′
β(β,γ(·), ζ(·, β,γ)) = Pm′

β(β,γ(·), ζ(·, β,γ);W ),

S ′
γj
(β,γ(·), ζ(·, β,γ))[v] = Pm′

γj
(β,γ(·), ζ(·, β,γ);W )[v],
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S ′
ζ(β,γ(·), ζ(·, β,γ))[h] = Pm′

ζ(β,γ(·), ζ(·, β,γ);W )[h],

S ′
β,n(β,γ(·), ζ(·, β,γ)) = Pnm

′
β(β,γ(·), ζ(·, β,γ);W ),

S ′
γj ,n

(β,γ(·), ζ(·, β,γ))[v] = Pnm
′
γj
(β,γ(·), ζ(·, β,γ);W )[v],

S ′
ζ,n(β,γ(·), ζ(·, β,γ))[h] = Pnm

′
ζ(β,γ(·), ζ(·, β,γ);W )[h],

S ′′
ββ(β,γ(·), ζ(·, β,γ)) = Pm′′

ββ(β,γ(·), ζ(·, β,γ);W ),

S ′′
γjγℓ

(β,γ(·), ζ(·, β,γ))[v1, v2] = Pm′′
γjγℓ

(β,γ(·), ζ(·, β,γ);W )[v1, v2],

S ′′
ζζ(β,γ(·), ζ(·, β,γ))[h1, h2] = Pm′′

ζζ(β,γ(·), ζ(·, β,γ);W )[h1, h2],

S ′′
γjβ

(β,γ(·), ζ(·, β,γ))[v] = S ′′
βγj

(β,γ(·), ζ(·, β,γ))[v] = Pm′′
γjβ

(β,γ(·), ζ(·, β,γ);W )[v],

S ′′
ζβ(β,γ(·), ζ(·, β,γ))[h] = S ′′

βζ(β,γ(·), ζ(·, β,γ))[h] = Pm′′
ζβ(β,γ(·), ζ(·, β,γ);W )[h],

S ′′
ζγj

(β,γ(·), ζ(·, β,γ))[h, v] = Pm′′
ζγj

(β,γ(·), ζ(·, β,γ);W )[h, v],

S ′′
γjζ

(β,γ(·), ζ(·, β,γ))[v, h] = Pm′′
γjζ

(β,γ(·), ζ(·, β,γ);W )[v, h].

Furthermore, for h = (h1, · · · , hd1)T ∈ Hd1 and v = (v1, · · · , vd1)T ∈ Vd1 , denote that

m′
γj
(β,γ(·),ζ(·, β,γ);W )[v] =

(m′
γj
(β,γ(·), ζ(·, β,γ);W )[v1], · · · ,m′

γj
(β,γ(·), ζ(·, β,γ);W )[vd1 ])

T ,

m′
ζ(β,γ(·),ζ(·, β,γ);W )[h] =

(m′
ζ(β,γ(·), ζ(·, β,γ);W )[h1], · · · ,m′

ζ(β,γ(·), ζ(·, β,γ);W )[hd1 ])
T ,

m′′
γjγℓ

(β,γ(·),ζ(·, β,γ);W )[v, v] =

(m′′
γjγℓ

(β,γ(·), ζ(·, β,γ);W )[v1, v], · · · ,m′′
γjγℓ

(β,γ(·), ζ(·, β,γ);W )[vd1 , v])
T ,

m′′
ζζ(β,γ(·),ζ(·, β,γ);W )[h, h] =

(m′′
ζζ(β,γ(·), ζ(·, β,γ);W )[h1, h], · · · ,m′′

ζζ(β,γ(·), ζ(·, β,γ);W )[hd1 , h])
T ,

m′′
γjβ

(β,γ(·),ζ(·, β,γ);W )[v] =

(m′′
γjβ

(β,γ(·), ζ(·, β,γ);W )[v1], · · · ,m′′
γjβ

(β,γ(·), ζ(·, β,γ);W )[vd1 ])
T ,

m′′
ζβ(β,γ(·),ζ(·, β,γ);W )[h] =

(m′′
ζβ(β,γ(·), ζ(·, β,γ);W )[h1], · · · ,m′′

ζβ(β,γ(·), ζ(·, β,γ);W )[hd1 ])
T ,
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m′′
ζγj

(β,γ(·),ζ(·, β,γ);W )[h, v] =

(m′′
ζγj

(β,γ(·), ζ(·, β,γ);W )[h1, v], · · · ,m′′
ζγj

(β,γ(·), ζ(·, β,γ);W )[hd1 , v])
T ,

m′′
γjζ

(β,γ(·),ζ(·, β,γ);W )[v, h] =

(m′′
γjζ

(β,γ(·), ζ(·, β,γ);W )[v1, h], · · · ,m′′
γjζ

(β,γ(·), ζ(·, β,γ);W )[vd1 , h])
T .

We define correspondingly

S ′
γj
(β,γ(·), ζ(·, β,γ))[v] = Pm′

γj
(β,γ(·), ζ(·, β,γ);W )[v],

S ′
ζ(β,γ(·), ζ(·, β,γ))[h] = Pm′

ζ(β,γ(·), ζ(·, β,γ);W )[h],

S ′
γj ,n

(β,γ(·), ζ(·, β,γ))[v] = Pnm
′
γj
(β,γ(·), ζ(·, β,γ);W )[v],

S ′
ζ,n(β,γ(·), ζ(·, β,γ))[h] = Pnm

′
ζ(β,γ(·), ζ(·, β,γ);W )[h],

S ′′
γjγℓ

(β,γ(·), ζ(·, β,γ))[v, v] = Pm′′
γjγℓ

(β,γ(·), ζ(·, β,γ);W )[v, v],

S ′′
ζζ(β,γ(·), ζ(·, β,γ))[h, h] = Pm′′

ζζ(β,γ(·), ζ(·, β,γ);W )[h, h],

S ′′
γjβ

(β,γ(·), ζ(·, β,γ))[v] = Pm′′
γjβ

(β,γ(·), ζ(·, β,γ);W )[v],

S ′′
ζβ(β,γ(·), ζ(·, β,γ))[h] = Pm′′

ζβ(β,γ(·), ζ(·, β,γ);W )[h],

S ′′
ζγj

(β,γ(·), ζ(·, β,γ))[h, v] = Pm′′
ζγj

(β,γ(·), ζ(·, β,γ);W )[h, v],

S ′′
γjζ

(β,γ(·), ζ(·, β,γ))[v, h] = Pm′′
γjζ

(β,γ(·), ζ(·, β,γ);W )[v, h].

A.2.2 The general sieve M-theorem

Recall that the sieve M-estimator θ̂n = (β̂n, γ̂n, ζ̂n(·, β̂n, γ̂n)) ∈ Θn maximizes

the objective function over the sieve parameter space Θn. Next, we establish the

asymptotic normality of the sieve estimator β̂n. The key difference between the

proposed new sieve M-theorem in this paper and Theorem 2.1 in Ding and Nan

(2011) is that the nuisance parameter ζ(·, β,γ) can be a function of not only Euclidean

parameter β but also other nuisance parameters γ(·).

To establish the asymptotic normality, we assume the following assumptions.

(A1) (Rate of convergence) For an estimator θ̂n = (β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)) ∈ Θn and

147



the true parameter θ0 = (β0,γ0(·), ζ0(·, β0,γ0)) ∈ Θ, d(θ̂n, θ0) = Op(n
−ξ) for

some positive ξ.

(A2) S ′
β(β0,γ0(·), ζ0(·, β0,γ0)) = 0, S ′

γj
(β0,γ0(·), ζ0(·, β0,γ0))[v] = 0 for all v ∈ Γp1

and 1 ≤ j ≤ d2, and S
′
ζ(β0,γ0(·), ζ0(·, β0,γ0))[h] = 0 for all h ∈ H.

(A3) (Positive information) There exists v∗
j = (v∗j1, · · · , v∗jd1)

T ∈ Vd1 , 1 ≤ j ≤ d2,

and h∗ = (h∗1, · · · , h∗d1)
T ∈ Hd1 such that for any v ∈ V and h ∈ H, 1 ≤ ℓ ≤ d2

S ′′
βγℓ

(β0,γ0(·), ζ0(·, β0,γ0))[v] =

d2∑
j=1

S ′′
γjγℓ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j , v]

+ S ′′
ζγℓ

(β0,γ0(·), ζ0(·, β0,γ0))[h
∗, v],

S ′′
βζ(β0,γ0(·), ζ0(·, β0,γ0))[h] =

d2∑
j=1

S ′′
γjζ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j , h]

+ S ′′
ζζ(β0,γ0(·), ζ0(·, β0,γ0))[h

∗, h].

Furthermore, the matrix

A = −S ′′
ββ(β0,γ0(·), ζ0(·, β0,γ0)) +

d2∑
j=1

S ′′
γjβ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j ]

+ S ′′
ζβ(β0,γ0(·), ζ0(·, β0,γ0))[h

∗]

= −P{m′′
ββ(β0,γ0(·), ζ0(·, β0,γ0);W ) +

d2∑
j=1

m′′
γjβ

(β0,γ0(·), ζ0(·, β0,γ0);W )[v∗
j ]

+m′′
ζβ(β0,γ0(·), ζ0(·, β0,γ0);W )[h∗]}

is nonsingular.

(A4) The estimator θ̂n = (β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)) satisfies

S ′
β,n(β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)) = op(n

−1/2),

S ′
γj ,n

(β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n))[v
∗
j ] = op(n

−1/2),

for 1 ≤ j ≤ d2, and

S ′
ζ,n(β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n))[h

∗] = op(n
−1/2).
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(A5) (Stochastic equicontinuity) For some positive C,

sup
d(θ,θ0)≤Cn−ξ,θ∈Θn

∥
√
n(S ′

β,n − S ′
β)(β,γ(·), ζ(·, β,γ))

−
√
n(S ′

β,n − S ′
β)(β0,γ0(·), ζ0(·, β0,γ0))∥ = op(1),

sup
d(θ,θ0)≤Cn−ξ,θ∈Θn

|
√
n(S ′

γj ,n
− S ′

γj
)(β,γ(·), ζ(·, β,γ))[v∗

j ]

−
√
n(S ′

γj ,n
− S ′

γj
)(β0,γ0(·), ζ0(·, β0,γ0))[v

∗
j ]| = op(1),

for 1 ≤ j ≤ d2, and

sup
d(θ,θ0)≤Cn−ξ,θ∈Θn

|
√
n(S ′

ζ,n − S ′
ζ)(β,γ(·), ζ(·, β,γ))[h∗(·, β,γ)]

−
√
n(S ′

ζ,n − S ′
ζ)(β0,γ0(·), ζ0(·, β0,γ0))[h

∗(·, β0,γ0)]| = op(1).

(A6) (Smoothness of the model) For some α > 1 with αξ > 1
2
, and for θ ∈ Θn

satisfying d(θ, θ0) ≤ Cn−ξ,

∥S ′
β(β,γ(·), ζ(·, β,γ))− S ′

β(β0,γ0(·), ζ0(·, β0,γ0))

− S ′′
ββ(β0,γ0(·), ζ0(·, β0,γ0))(β − β0)

−
d2∑
j=1

S ′′
βγj

(β0,γ0(·), ζ0(·, β0,γ0))[ej(γ − γ0)
T ]

− S ′′
βζ(β0,γ0(·), ζ0(·, β0,γ0))[ζ(·, β,γ)− ζ0(·, β0,γ0)]∥

= O(dα(θ, θ0)),

|S ′
γj
(β,γ(·), ζ(·, β,γ))[v∗

j ]− S ′
γj
(β0,γ0(·), ζ0(·, β0,γ0))[v

∗
j ]

− S ′′
γjβ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j ](β − β0)

−
d2∑
ℓ=1

S ′′
γjγℓ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j , eℓ(γ − γ0)

T ]

− S ′′
γjζ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j , ζ(·, β,γ)− ζ0(·, β0,γ0)]|

= O(dα(θ, θ0)), for 1 ≤ j ≤ d2,
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and

|S ′
ζ(β,γ(·), ζ(·, β,γ))[h∗(·, β,γ)]− S ′

ζ(β0,γ0(·), ζ0(·, β0,γ0))[h
∗(·, β0,γ0)]

− S ′′
ζβ(β0,γ0(·), ζ0(·, β0,γ0))[h

∗(·, β0,γ0)](β − β0)

−
d2∑
j=1

S ′′
ζγj

(β0,γ0(·), ζ0(·, β0,γ0))[h
∗(·, β0,γ0), ej(γ − γ0)

T ]

− S ′′
ζζ(β0,γ0(·), ζ0(·, β0,γ0))[h

∗(·, β0,γ0), ζ(·, β,γ)− ζ0(·, β0,γ0)]|

= O(dα(θ, θ0)).

The convergence rate in (A1) is a prerequisite for the asymptotic normality. As-

sumption (A2) is a common regularity assumption when m is the likelihood function,

and it usually holds for the score functions. The direction v∗
j and h∗ in (A3) are the

least favorable directions for maximum likelihood estimation, which may be found

through solving the equations in (A3). Assumptions (A4) and (A5) can be obtained

by the maximal inequality in Lemma 3.4.2 of (Billingsley, 2008, page 324) and the

Markov’s inequality. Assumption (A6) can be usually verified by the Taylor expan-

sion. We repeat Theorem 2.3.3 below for readers’ convenience, which is a general

sieve M-theorem for bundled parameters where the nuisance parameter ζ(·, β,γ) is a

function of the Euclidean parameter β and other nuisance parameters γ(·).

Theorem. Suppose that assumptions (A1)-(A6) hold, then

√
n(β̂n − β0) = A−1

√
nPnm

∗(β0,γ0(·), ζ0(·, β0,γ0);W ) + op(1)

→d N(0, A−1B(A−1)T ),

where

m∗(β0,γ0(·), ζ0(·, β0,γ0);W ) = m′
β(β0,γ0(·), ζ0(·, β0,γ0);W )

−
d2∑
j=1

m′
γj
(β0,γ0(·), ζ0(·, β0,γ0);W )[v∗j ]

−m′
ζ(β0,γ0(·), ζ0(·, β0,γ0);W )[h∗(·, β0,γ0)],

B = P{m∗(β0,γ0(·), ζ0(·, β0,γ0);W )m∗(β0,γ0(·), ζ0(·, β0,γ0);W )T},

150



and A is given in the assumption (A3).

Proof of Theorem 2.3.3. We prove the theorem by following the proof of The-

orem 6.1 in Wellner and Zhang (2007) and Theorem 2.1 in Ding and Nan (2011).

Assumptions (A1) and (A5) lead to

√
n(S ′

β,n − S ′
β)(β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n))−

√
n(S ′

β,n − S ′
β)(β0,γ0(·), ζ0(·, β0,γ0)) = op(1).

Note that S ′
β(β0,γ0(·), ζ0(·, β0,γ0)) = 0 by (A2), S ′

β,n(β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)) = op(n
−1/2)

by (A4), we have

√
nS ′

β(β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)) +
√
nS ′

β,n(β0,γ0(·), ζ0(·, β0,γ0)) = op(1). (A.7)

After combining the equation (A.7) and the equations in assumptions (A2) and (A6),

we have

S ′
β,n(β0,γ0(·), ζ0(·, β0,γ0)) + S ′′

ββ(β0,γ0(·), ζ0(·, β0,γ0))(β̂n − β0)

+

d2∑
j=1

S ′′
βγj

(β0,γ0(·), ζ0(·, β0,γ0))[ej(γ̂n − γ0)
T ]

+ S ′′
βζ(β0,γ0(·), ζ0(·, β0,γ0))[ζ̂n(·, β̂n, γ̂n)− ζ0(·, β0,γ0)]

= O(dα(θ̂n, θ0)) + op(n
−1/2) = op(n

−1/2).

The last equation holds because for α > 1 with αξ > 1
2
, assumption (A1) implies that

O(dα(θ̂n, θ0)) = Op(n
−αξ) = op(n

−1/2).

Similarly, we have for 1 ≤ j ≤ d2

S ′
γj ,n

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j ] + S ′′

γjβ
(β0,γ0(·), ζ0(·, β0,γ0))[v

∗
j ](β̂n − β0)

+

d2∑
ℓ=1

S ′′
γjγℓ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j , eℓ(γ̂n − γ0)

T ]

+ S ′′
γjζ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j , ζ̂n(·, β̂n, γ̂n)− ζ0(·, β0,γ0)]

= op(n
−1/2)
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and

S ′
ζ,n(β0,γ0(·), ζ0(·, β0,γ0))[h

∗(·, β0,γ0)] + S ′′
ζβ(β0,γ0(·), ζ0(·, β0,γ0))[h

∗(·, β0,γ0)](β̂n − β0)

+

d2∑
j=1

S ′′
ζγj

(β0,γ0(·), ζ0(·, β0,γ0))[h
∗(·, β0,γ0), ej(γ̂n − γ0)

T ]

+ S ′′
ζζ(β0,γ0(·), ζ0(·, β0,γ0))[h

∗(·, β0,γ0), ζ̂n(·, β̂n, γ̂n)− ζ0(·, β0,γ0)]

= op(n
−1/2).

Combining these equations with assumption (A3) leads to

{S ′′
ββ(β0,γ0(·), ζ0(·, β0,γ0))−

d2∑
j=1

S ′′
γjβ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j ]

− S ′′
ζβ(β0,γ0(·), ζ0(·, β0,γ0))[h

∗(·, β0,γ0)]}(β̂n − β0)

= −{S ′
β,n(β0,γ0(·), ζ0(·, β0,γ0))−

d2∑
j=1

S ′
γj ,n

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j ]

− S ′
ζ,n(β0,γ0(·), ζ0(·, β0,γ0))[h

∗(·, β0,γ0)]}

+ op(n
−1/2),

and equivalently,

−A(β̂n − β0) = −Pnm
∗(β0,γ0(·), ζ0(·, β0,γ0);W ) + op(n

−1/2).

Then under assumptions (A4) and (A5),

√
n(β̂n − β0) = A−1

√
nPnm

∗(β0,γ0(·), ζ0(·, β0,γ0);W ) + op(1)

→d N(0, A−1B(A−1)T ).

A.3 Proof of Theorems 2.3.1 and 2.3.2

Without loss of generality, we prove Theorems 2.3.1 and 2.3.2 in the case that

X(1) is not included in (2.12). The results in this section still hold if X(1) is included

due to the boundedness of X(1). For notational simplicity, we further replace X(−1)

by X in (2.12), which then becomes equivalent to the ODE in (2.11).
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We first introduce some common notations that will be used in the proof hereafter.

For any fixed γ(·) ∈ Γp1 , let {γη(·) : η in a neighborhood of 0 ∈ R} be a smooth curve

in Γp1 running through γ(·) at η = 0, that is γη(·)|η=0 = γ(·). Similarly, for any

fixed g(·) ∈ Gp2 , let {gη(·) : η in a neighborhood of 0 ∈ R} be a smooth curve in Gp2

running through g(·) at η = 0, that is gη(·)|η=0 = g(·). Denote

V = {v : v(·) = ∂γη(·)
∂η

|η=0, γη ∈ Γp1}

and

W = {w : w(·) = ∂gη(·)
∂η

|η=0, gη ∈ Gp2}.

Recall that Λ0(t, x) = Λ(t, x, β0, γ0, g0) and R(t) =
∫ t

0
exp(γ0(s))ds. Let Λ̃0(t) denote

the solution of Λ̃′
0(t) = exp

(
g0(Λ̃0)

)
with Λ̃0(0) = 0. It is straightforward to show that

Λ̃0(·) is the cumulative hazard function of R(T )eX
T β0 and Λ0(t,X) = Λ̃0(R(t)e

XT β0).

We use symbol ≳ to denote that the left side is bounded below by a constant times

the right side. We also use symbol ≲ to denote that the left side is bounded above

by a constant times the right side. If without further explanation, by default, the L2

norm of a function f(·) of t and x is given by

∥f(·)∥2 =

∫
X

τ∫
0

(f(t, x))2dΛ0(t, x)dFX(x)

1/2

,

and the supreme norm is given by ∥f(·)∥∞ = supt∈[0,τ ],x∈X |f(t, x)|. For any g ∈ Gp2 ,

the L2 norm is given by ∥g∥2 = (
∫ µ

0
(g(t))2dt)1/2 and the supreme norm is given by

∥g∥∞ = supt∈[0,µ] |g(t)|.

The rest of this section is structured as follows. Subsection A.3.1 introduces several

lemmas which will be used to prove Theorem 2.3.1 and 2.3.2. Subsections A.3.2 and

A.3.3 provide the proof of Theorem 2.3.1 by checking the conditions C1-3 in Shen and

Wong (1994, Theorem 1) and the proof of Theorem 2.3.2 by verifying assumptions

(A1)-(A6) of the proposed general M-theorem, respectively. Furthermore, we derive

in subsection A.3.4 the equivalent but more feasible equations for finding the least

favorable directions required in condition (C7) and provide explicit constructions for
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the Cox model and the linear transformation model with a known transformation as

illustration. Subsequently, we simplify the non-regularity assumption in Condition

(C8) in subsection A.3.5.

A.3.1 Lemmas

Lemma A.3.1. (Existence and uniqueness theorem.) For any x ∈ X , β ∈ B, γ ∈

Γp1 , g ∈ Gp2 under conditions (C1)-(C4), the initial value problem (2.11) has exactly

one bounded and continuous solution Λ(t, x, β, γ, g) on [0, τ ]. And its first and second

derivatives with respect to β ∈ B, γ ∈ Γp1 and the first derivative with respect to

g ∈ Gp2 are also bounded and continuous on [0, τ ].

Proof of Lemma A.3.1. Let f(t,Λ) = exp
(
xTβ + γ(t) + g(Λ)

)
, then by the mean

value theorem

|f(t,Λ)− f(t, Λ̃)| ≤ exp
(
xTβ + γ(t) + g(c)

)
|g′(c)| · |Λ− Λ̃| ≤ L|Λ− Λ̃|

holds for any (t,Λ) and (t, Λ̃) in [0, τ ] × [0, µ], where c ∈ [Λ, Λ̃] and L < ∞ under

conditions (C1)-(C4). This implies that f(t,Λ) satisfies the Lipschitz condition with

respect to Λ in [0, τ ]× [0, µ]. By Theorem 10.VI in Walter (1998, page 108), there is

exactly one solution to the initial value problem (2.11). The solution Λ(t, x, β, γ, g)

is bounded, continuous, and satisfies

Λ(t, x, β, γ, g) =

t∫
0

exp
(
xTβ + γ(s) + g(Λ(s, x, β, γ, g))

)
ds. (A.8)

In the following, we write Λ(t) = Λ(t, x, β, γ, g) for simplicity. Similarly to the above

derivation, for any β ∈ B, v ∈ V, w ∈ W, we have unique, bounded, and continuous

solutions of the following initial value problems:

dΛ′
β(t)

dt
= exp

(
xTβ + γ(t) + g(Λ(t))

)
{x+ g′(Λ(t))Λ′

β(t)}, Λ′
β(0) = 0, (A.9)

dΛ′
γ(t)[v]

dt
= exp

(
xTβ + γ(t) + g(Λ(t))

)
{v(t)

+ g′(Λ(t))Λ′
γ(t)[v]},Λ′

γ(0)[v] = 0, (A.10)
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dΛ′
g(t)[w]

dt
= exp

(
xTβ + γ(t) + g(Λ(t))

)
{w(Λ(t))

+ g′(Λ(t))Λ′
g(t)[w]}, Λ′

g(0)[w] = 0, (A.11)

dΛ′′
ββ(t)

dt
= exp

(
xTβ + γ(t) + g(Λ(t))

)
{[x+ g′(Λ(t))Λ′

β(t)][x+ g′(Λ(t))Λ′
β(t)]

T

+ g′′(Λ(t))Λ′
β(t)Λ

′
β(t)

T + g′(Λ(t))Λ′′
ββ(t)}, Λ′′

ββ(0) = 0, (A.12)

dΛ′′
γγ(t)[v1, v2]

dt
= exp

(
xTβ + γ(t) + g(Λ(t))

)
·

{(v1(t) + g′(Λ(t))Λ′
γ(t)[v1])(v2(t) + g′(Λ(t))Λ′

γ(t)[v2])

+ g′′(Λ(t))Λ′
γ(t)[v1]Λ

′
γ(t)[v2]

+ g′(Λ(t))Λ′′
γγ(t)[v1, v2]}, Λ′′

γγ(0)[v1, v2] = 0, (A.13)

dΛ′′
βγ(t)[v]

dt
= exp

(
xTβ + γ(t) + g(Λ(t))

)
·

{(v(t) + g′(Λ(t))Λ′
γ(t)[v])(x+ g′(Λ(t))Λ′

β(t))

+ g′′(Λ(t))Λ′
β(t)Λ

′
γ(t)[v]

+ g′(Λ(t))Λ′′
βγ(t)[v]}, Λ′′

βγ(0)[v] = 0, (A.14)

dΛ′′
gβ(t)[w]

dt
= exp

(
xTβ + γ(t) + g(Λ(t))

)
·

{(w(Λ(t)) + g′(Λ(t))Λ′
g(t)[w])(x+ g′(Λ(t))Λ′

β(t))

+ w′(Λ(t))Λ′
β(t) + g′′(Λ(t))Λ′

β(t)Λ
′
g(t)[w]

+ g′(Λ(t))Λ′′
gβ(t)[w]}, Λ′′

gβ(0)[w] = 0, (A.15)

dΛ′′
gγ(t)[w, v]

dt
= exp

(
xTβ + γ(t) + g(Λ(t))

)
·

{(w(Λ(t)) + g′(Λ(t))Λ′
g(t)[w])(v(t) + g′(Λ(t))Λ′

γ(t)[v])

+ w′(Λ(t))Λ′
γ(t)[v] + g′′(Λ(t))Λ′

γ(t)[v]Λ
′
g(t)[w]

+ g′(Λ(t))Λ′′
gγ(t)[w, v]}, Λ′′

gγ(0)[w, v] = 0. (A.16)

Next we verify that the derivative of Λ(t, x, β, γ, g) with respect to β follows the

ODE (A.9). By plugging in Equation (A.8) and (A.9), it follows that

lim sup
δ→0

1

|δ|
|Λ(t, x, β + δ, γ, g)− Λ(t)− Λ′

β(t)
T δ|
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= lim sup
δ→0

1

|δ|
|

t∫
0

exp
(
xT (β + δ) + γ(s) + g(Λ(s, x, β + δ, γ, g))

)
− exp

(
xTβ + γ(s) + g(Λ(s))

)
− exp

(
xTβ + γ(s) + g(Λ(s))

)
(xT δ + g′(Λ(s))Λ′

β(s)
T δ)ds

∣∣
≤ lim sup

δ→0

1

|δ|

t∫
0

| exp
(
xT (β + δ) + γ(s) + g(Λ(s, x, β + δ, γ, g))

)
− exp

(
xTβ + γ(s) + g(Λ(s))

)
− exp

(
xTβ + γ(s) + g(Λ(s))

)
(xT δ + g′(Λ(s))Λ′

β(s)
T δ)
∣∣ ds

≤
t∫

0

lim sup
δ→0

1

|δ|
| exp

(
xT (β + δ) + γ(s) + g(Λ(s, x, β + δ, γ, g))

)
− exp

(
xTβ + γ(s) + g(Λ(s))

)
− exp

(
xTβ + γ(s) + g(Λ(s))

)
(xT δ + g′(Λ(s))Λ′

β(s)
T δ)
∣∣ ds

=

t∫
0

exp
(
xTβ + γ(s) + g(Λ(s))

)
· g′(Λ(s)){lim sup

δ→0

1

|δ|
|Λ(s, x, β + δ, γ, g)− Λ(s)− Λ′

β(s)
T δ|}ds,

where the second inequality holds due to the reverse Fatou’s lemma. Using the

Gronwall’s inequality, we have that

lim sup
δ→0

1

|δ|
|Λ(t, x, β + δ, γ, g)− Λ(t)− Λ′

β(t)
T δ| ≤ 0,

which implies that the solution Λ′
β(t) of (A.9) is the derivative of Λ(t, x, β, γ, g) with

respect to β. The other first and second derivatives of of Λ(t, x, β, γ, g) with respect

to β, γ, g can be similarly derived, and we omit the details here.

Lemma A.3.2. Let ψ(t, x, β, γ, g) = log λ(t, x, β, γ, g) = xTβ+γ(t)+g(Λ(t, x, β, γ, g)),

and denote the first derivatives of ψ(t, x, β, γ, g) with respect to γ and g at the true

parameter (β0, γ0, g0) by ψ
′
0γ(t, x)[v] and ψ

′
0g(t, x)[w], respectively. For any ψ

′
0γ(·)[v] ∈

Eγ = {ψ′
0γ(·)[v] : ψ′

0γ(t, x)[v], t ∈ [0, τ ], x ∈ X , v ∈ Γp1}, the L2 norm of ψ′
0γ(·)[v] is
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defined as

∥ψ′
0γ(·)[v]∥2 =

∫
X

τ∫
0

(ψ′
0γ(t, x)[v])

2dΛ0(t, x)dFX(x)

1/2

.

The L2 norm of ψ′
0g(·)[w] ∈ Eg = {ψ′

0g(·)[w] : ψ′
0g(t, x)[w], t ∈ [0, τ ], x ∈ X , w ∈ Gp2}

is similarly defined. Under conditions (C2)-(C4), ψ′
0γ[·] : v → ψ′

0γ(·)[v] and ψ′
0g[·] :

w → ψ′
0g(·)[w] are bounded linear operators (from Γp1 to Eγ and from Gp2 to Eg). In

particular, the operators ψ′
0γ[·] and ψ′

0g[·] are bounded from below, i.e.,

∥ψ′
0γ(·)[v]∥2 ≳ ∥v∥2, for any v ∈ Γp1 , (A.17)

and

∥ψ′
0g(·)[w]∥2 ≳ ∥w∥2, for any w ∈ Gp2 . (A.18)

Proof of Lemma A.3.2. By solving initial value problems in (A.10)-(A.11), the first

derivatives of ψ(t, x, β, γ, g) with respect to γ and g at the true parameter (β0, γ0, g0)

are given by

ψ′
0γ(t, x)[v] = g′0(Λ0(t, x))Λ

′
0γ(t, x)[v] + v(t)

= g′0(Λ0(t, x)) exp(g0(Λ0(t, x)))e
xT β0

t∫
0

exp(γ0(s))v(s)ds+ v(t), (A.19)

ψ′
0g(t, x)[w] = g′0(Λ0(t, x))Λ

′
0g(t, x)[w] + w(Λ0(t, x))

= g′0(Λ0(t, x)) exp(g0(Λ0(t, x)))

Λ0(t,x)∫
0

exp(−g0(s))w(s)ds+ w(Λ0(t, x)),

(A.20)

We first verify that ψ′
0γ[·] is a bounded linear operator. Using (a+b)2 ≤ 2(a2+b2),

the L2 norm of ψ′
0γ(·)[v] is bounded by

∥ψ′
0γ(·)[v]∥22

≤ 2

∫
X

τ∫
0

g′0(Λ0(t, x)) exp(g0(Λ0(t, x)))e
xT β0

t∫
0

exp(γ0(s))v(s)ds

2

dΛ0(t, x)dFX(x)

157



+ 2

∫
X

τ∫
0

v(t)2dΛ0(t, x)dFX(x)

= 2

∫
X

τ∫
0

(g′0(Λ0(t, x)))
2 exp(2g0(Λ0(t, x)))e

2xT β0

 t∫
0

exp(γ0(s))v(s)ds

2

dΛ0(t, x)dFX(x)

+ 2

∫
X

τ∫
0

v(t)2dΛ0(t, x)dFX(x). (A.21)

By the Cauchy-Schwarz inequality, we have for t ∈ [0, τ ] t∫
0

exp(γ0(s))v(s)ds

2

≤
t∫

0

(v(s))2 ds

t∫
0

exp(2γ0(s))ds

≤
τ∫

0

(v(s))2 ds

τ∫
0

exp(2γ0(s))ds

≤ ∥v∥22τe2c1 ,

where c1 = maxs∈[0,τ ] γ0(s) < ∞ under (C4). It follows that the first term in (A.21)

is bounded above by

2∥v∥22τe2c1 ·
∫
X

τ∫
0

(g′0(Λ0(t, x)))
2 exp(2g0(Λ0(t, x)))e

2xT β0dΛ0(t, x)dFX(x) ≲ ∥v∥22,

because the integral is finite under (C2)-(C4). The second term in (A.21) is also

bounded by

2

∫
X

τ∫
0

v(t)2dΛ0(t, x)dFX(x)

=2

∫
X

τ∫
0

exp
(
xTβ0 + γ0(t) + g0(Λ0(t, x))

)
v(t)2dtdFX(x)

≤2

∫
X

τ∫
0

c2v(t)
2dtdFX(x) = 2c2∥v∥22,

where c2 = maxt∈[0,τ ],x∈X exp
(
xTβ0 + γ0(t) + g0(Λ0(t, x))

)
< ∞ under (C2)-(C4).

Therefore, ∥ψ′
0γ(·)[v]∥2 ≲ ∥v∥2 for any v ∈ Γp1 .
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Similarly, we can show that ψ′
0g[·] is a bounded linear operator by

∥ψ′
0g(·)[w]∥22 =

∫
X

τ∫
0

(ψ′
0g(t, x)[w])

2dΛ0(t, x)dFX(x)

=

∫
X

Λ0(τ,x)∫
0

g′0(t) exp(g0(t)) t∫
0

exp(−g0(s))w(s)ds+ w(t)

2

dtdFX(x)

≲
∫
X

Λ0(τ,x)∫
0

g′0(t) exp(g0(t)) t∫
0

exp(−g0(s))w(s)ds

2

dtdFX(x)

+

∫
X

Λ0(τ,x)∫
0

(w(t))2 dtdFX(x)

≲
∫
X

Λ0(τ,x)∫
0

(g′0(t))
2 exp(2g0(t))

 t∫
0

exp(−2g0(s))ds

 t∫
0

(w(s))2ds

 dtdFX(x)

+

∫
X

Λ0(τ,x)∫
0

(w(t))2 dtdFX(x)

≲

µ∫
0

(g′0(t))
2 exp(2g0(t))

 t∫
0

exp(−2g0(s))ds

 t∫
0

(w(s))2ds

 dt

+

µ∫
0

(w(t))2 dt,

where the second last inequality holds by the Cauchy-Schwarz inequality and µ =

maxx∈X Λ0(τ, x) given in condition (C3). The first term is further bounded by µ∫
0

(w(t))2dt

 µ∫
0

(g′0(t))
2 exp(2g0(t))

 t∫
0

exp(−2g0(s))ds

 dt ≲

µ∫
0

(w(t))2dt = ∥w∥22,

since the second integral is finite under conditions (C2)-(C4). Thus, ∥ψ′
0g(·)[w]∥2 ≲

∥w∥2 for any w ∈ Gp2 .

Next, we show that linear operators ψ′
0γ[·] and ψ′

0g[·] are bijective functions. Sup-

pose that ψ′
0γ(·)[v1] = ψ′

0γ(·)[v2] ∈ Eγ holds almost surely with respect to the measure

ρ(t, x) = Λ0(t, x)× FX(x). Using the ODE in (A.10), we have

vi(t) = ψ′
0γ(t, x)[vi]− g′0(Λ0(t, x))

t∫
0

ψ′
0γ(s, x)[vi]dΛ0(s, x), for i = 1, 2,
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and then v1 = v2 almost surely with respect to ρ, i.e.,
∫
X

∫ τ

0
(v1(t)−v2(t))2dρ(t, x) = 0.

It follows that∫
X

τ∫
0

(v1(t)− v2(t))
2dρ(t, x)

=

∫
X

τ∫
0

exp
(
xTβ0 + γ0(t) + g0(Λ0(t, x))

)
(v1(t)− v2(t))

2dtdFX(x)

≥
∫
X

τ∫
0

c3(v1(t)− v2(t))
2dtdFX(x) = c3∥v1 − v2∥22,

where c3 = mint∈[0,τ ],x∈X exp
(
xTβ0 + γ0(t) + g0(Λ0(t, x))

)
< ∞ under (C2)-(C4),

which implies that ψ′
0γ[·] is a bijective function from Γp1 to Eγ.

Similarly, suppose that ψ′
0g(·)[w1] = ψ′

0g(·)[w2] ∈ Eg holds almost surely with

respect to the measure ρ(t, x). Using the ODE in (A.11), we have

wi(Λ0(t, x)) = ψ′
0g(t, x)[wi]− g′0(Λ0(t, x))

t∫
0

ψ′
0g(s, x)[wi]dΛ0(s, x), for i = 1, 2,

and then w1(Λ0(t, x)) = w2(Λ0(t, x)) almost surely with respect to ρ. It follows that

0 =

∫
X

τ∫
0

(w1(Λ0(t, x))− w2(Λ0(t, x)))
2dρ(t, x)

=

∫
X

Λ0(τ,x)∫
0

(w1(t)− w2(t))
2dtdFX(x)

≳

supx∈X Λ0(τ,x)∫
0

(w1(t)− w2(t))
2dt = ∥w1 − w2∥22,

where the last inequality holds under condition (C2). So w1 = w2 ∈ Gp2 and ψ′
0g[·] is

a bijective function from Gp1 to Eg.

By bounded inverse theorem, it follows that the bijective bounded linear operators

ψ′
0γ[·] and ψ′

0g[·] have bounded inverse operator (ψ′
0γ)

−1[·] and (ψ′
0g)

−1[·]. Then, there

is a constant 0 < L <∞ such that

∥v∥2 = ∥(ψ′
0γ)

−1
[
ψ′
0γ(·)[v]

]
∥2 ≤ L∥ψ′

0γ(·)[v]∥2,

which implies that ψ′
0γ[·] is bounded from below since ∥ψ′

0γ(·)[v]∥2 ≥ 1/L∥v∥2. Anal-
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ogously, ψ′
0g[·] is also bounded from below, which can be obtained using the same

argument as above.

Lemma A.3.3. Let ζη(·, β, γ) be a smooth curve in Hp2 running through ζ(·, β, γ)

at η = 0, that is ζη(·, β, γ)|η=0 = ζ(·, β, γ). For any score function h(·, β, γ) with

ζ(·, β, γ) = g(Λ(·, β, γ, g)) in

H =

{
h : h(·, β, γ) = ∂ζη(·, β, γ)

∂η
|η=0, ζη ∈ Hp2

}
,

under conditions (C1)-(C4), there exists w ∈ W such that

h(·, β, γ) = w(Λ(·, β, γ, g)) + g′(Λ(·, β, γ, g))Λ′
g(·, β, γ, g)[w].

Proof of Lemma A.3.3. Since ζη(·, β, γ) is a smooth curve in Hp2 running through

ζ(·, β, γ) at η = 0, we can rewrite it in the form of ζη(·, β, γ) = gη(Λ(·, β, γ, gη)) where

gη is a smooth curve in Gp2 running through g at η = 0. For a small η, we have

gη = g + ηw + o(η) with w = ∂gη
∂η

|η=0 ∈ W. It follows that

lim
η→0

gη(Λ(·, β, γ, gη))− g(Λ(·, β, γ, gη))
η

= w(Λ(·, β, γ, g)).

Also, by the definition of functional derivatives, we have

g(Λ(·, β, γ, gη))− g(Λ(·, β, γ, g)) = g(Λ(·, β, γ, g + ηw + o(η)))− g(Λ(·, β, γ, gη))

= g′(Λ(·, β, γ, g))Λ′
g(·, β, γ, g)[ηw + o(η)]

+ o(∥ηw + o(η)∥)

= ηg′(Λ(·, β, γ, g))Λ′
g(·, β, γ, g)[w] + o(η),

where the last equality holds because

lim
η→0

g′(Λ(·, β, γ, g))Λ′
g(·, β, γ, g)[o(η)]
η

= g′(Λ(·, β, γ, g))Λ′
g(·, β, γ, g)

[
lim
η→0

o(η)

η

]
= 0.

Combining these two equations together, we have,

h(·, β, γ) = lim
η→0

gη(Λ(·, β, γ, gη))− g(Λ(·, β, γ, g))
η

= lim
η→0

gη(Λ(·, β, γ, gη))− g(Λ(·, β, γ, gη)) + g(Λ(·, β, γ, gη))− g(Λ(·, β, γ, g))
η

= w(Λ(·, β, γ, g)) + g′(Λ(·, β, γ, g))Λ′
g(·, β, γ, g)[w].
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Lemma A.3.4. Denote

l(β, γ, ζ(·, β, γ);W ) = ∆{XTβ + γ(Y ) + g(Λ(Y,X, β, γ, g))} − Λ(Y,X, β, γ, g)

= ∆{XTβ + γ(Y ) + ζ(Y,X, β, γ)}

−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
dt.

Under conditions (C1)-(C4) , l(β, γ, ζ(·, β, γ);W ) has bounded and continuous first

and second derivatives with respect to β ∈ B, γ ∈ Γp2, and ζ(·, β, γ) ∈ Hp1.

Proof of Lemma A.3.4. The derivatives with respect to the first, the second, and the

third argument of the objective function are

l′1(β, γ, ζ;W ) = ∆X −X

Y∫
0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
dt,

l′2(β, γ, ζ;W )[v] = ∆v(Y )−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
v(t)dt,

l′3(β, γ, ζ;W )[h] = ∆h(Y,X, β, γ)−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
h(t,X, β, γ)dt,

l′′11(β, γ, ζ;W ) = −XXT

Y∫
0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
dt,

l′′12(β, γ, ζ;W )[v] = −X
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
v(t)dt,

l′′13(β, γ, ζ;W )[h] = −X
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
h(t,X, β, γ)dt,

l′′23(β, γ, ζ;W )[v, h] = −
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
v(t)h(t,X, β, γ)dt,

l′′22(β, γ, ζ;W )[v1, v2] = −
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
v1(t)v2(t)dt,
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l′′33(β, γ, ζ;W )[h1, h2] = −
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
h1(t,X, β, γ)h2(t,X, β, γ)dt.

The derivatives with respect to β and γ of ζ(·, β, γ) are

ζ ′β(·, β, γ) = g′(Λ(·, β, γ, g))Λ′
β(·, β, γ, g),

ζ ′γ(·, β, γ)[v] = g′(Λ(·, β, γ, g))Λ′
γ(·, β, γ, g)[v],

ζ ′′ββ(·, β, γ) = g′′(Λ(·, β, γ, g))Λ′
β(·, β, γ, g)Λ′

β(·, β, γ, g)T

+ g′(Λ(·, β, γ, g))Λ′′
ββ(·, β, γ, g),

ζ ′′γγ(·, β, γ)[v1, v2] = g′′(Λ(·, β, γ, g))Λ′
γ(·, β, γ, g)[v1]Λ′

γ(·, β, γ, g)[v2]

+ g′(Λ(·, β, γ, g))Λ′′
γγ(·, β, γ, g)[v1, v2],

ζ ′′βγ(·, β, γ)[v] = g′′(Λ(·, β, γ, g))Λ′
β(·, β, γ, g)Λ′

γ(·, β, γ, g)[v]

+ g′(Λ(·, β, γ, g))Λ′′
βγ(·, β, γ, g)[v].

After some calculations using the chain rule, we have

l′β(β, γ,ζ(·, β, γ);W )

= ∆{X + ζ ′β(Y,X, β, γ)}

−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
[ζ ′β(t,X, β, γ) +X]dt

= ∆{X + g′(Λ(Y,X, β, γ, g))Λ′
β(Y,X, β, γ, g)} − Λ′

β(Y,X, β, γ, g),

l′γ(β, γ,ζ(·, β, γ);W )[v]

= ∆{v(Y ) + ζ ′γ(Y,X, β, γ)[v]}

−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
{v(t) + ζ ′γ(t,X, β, γ)[v]}dt

= ∆{v(Y ) + g′(Λ(Y,X, β, γ, g))Λ′
γ(Y,X, β, γ, g)[v]} − Λ′

γ(Y,X, β, γ, g)[v],

l′ζ(β, γ,ζ(·, β, γ);W )[h]

= ∆h(Y,X, β, γ)−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
h(t,X, β, γ)dt,
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l′′ββ(β, γ,ζ(·, β, γ);W )

= ∆ζ ′′ββ(Y,X, β, γ)−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
· [(X + ζ ′β(t,X, β, γ))(X + ζ ′β(t,X, β, γ))

T + ζ ′′ββ(t,X, β, γ)]dt

= ∆{g′′(Λ(Y,X, β, γ, g))Λ′
β(Y,X, β, γ, g)Λ

′
β(Y,X, β, γ, g)

T

+ g′(Λ(Y,X, β, γ, g))Λ′′
ββ(Y,X, β, γ, g)} − Λ′′

ββ(Y,X, β, γ, g),

l′′γγ(β, γ,ζ(·, β, γ);W )[v1, v2]

= ∆ζ ′′γγ(Y,X, β, γ)[v1, v2]−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
· {(v1(t) + ζ ′γ(t,X, β, γ)[v1])(v2(t) + ζ ′γ(t,X, β, γ)[v2])

+ ζ ′′γγ(t,X, β, γ)[v1, v2]}dt

= ∆{g′′(Λ(Y,X, β, γ, g))Λ′
γ(Y,X, β, γ, g)[v1]Λ

′
γ(Y,X, β, γ, g)[v2]

+ g′(Λ(Y,X, β, γ, g))Λ′′
γγ(Y,X, β, γ, g)[v1, v2]} − Λ′′

γγ(Y,X, β, γ, g)[v1, v2],

l′′γβ(β, γ,ζ(·, β, γ);W )[v]

= ∆ζ ′′γβ(Y,X, β, γ)[v]−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
· {(v(t) + ζ ′γ(t,X, β, γ)[v])(X + ζ ′β(t,X, β, γ))

+ ζ ′′γβ(t,X, β, γ)[v]}dt

= ∆{g′′(Λ(Y,X, β, γ, g))Λ′
γ(Y,X, β, γ, g)[v]Λ

′
β(Y,X, β, γ, g)

+ g′(Λ(Y,X, β, γ, g))Λ′′
γβ(Y,X, β, γ, g)[v]} − Λ′′

γβ(Y,X, β, γ, g)[v],

l′′ζβ(β, γ,ζ(·, β, γ);W )[h]

= ∆h′β(Y,X, β, γ)−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
· {(h(t,X, β, γ))(X + ζ ′β(t,X, β, γ)) + h′β(t,X, β, γ)}dt

= ∆{w′(Λ(Y,X, β, γ, g))Λ′
β(Y,X, β, γ, g)
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+ g′′(Λ(Y,X, β, γ, g))Λ′
g(Y,X, β, γ, g)[w]Λ

′
β(Y,X, β, γ, g)

+ g′(Λ(Y,X, β, γ, g))Λ′′
gβ(Y,X, β, γ, g)[w]}

− Λ′′
gβ(Y,X, β, γ, g)[w],

l′′ζγ(β, γ,ζ(·, β, γ);W )[h, v]

= ∆h′γ(Y,X, β, γ)[v]−
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
· {(h(t,X, β, γ))(v(t) + ζ ′γ(t,X, β, γ)[v]) + h′γ(t,X, β, γ)[v]}dt

= ∆{w′(Λ(Y,X, β, γ, g))Λ′
γ(Y,X, β, γ, g)[v]

+ g′′(Λ(Y,X, β, γ, g))Λ′
g(Y,X, β, γ, g)[w]Λ

′
γ(Y,X, β, γ, g)[v]

+ g′(Λ(Y,X, β, γ, g))Λ′′
gγ(Y,X, β, γ, g)[w, v]}

− Λ′′
gγ(Y,X, β, γ, g)[w, v],

l′′ζζ(β, γ,ζ(·, β, γ);W )[h1, h2]

= −
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
h1(t,X, β, γ)h2(t,X, β, γ)dt,

= −
Y∫

0

exp
(
XTβ + γ(t) + ζ(t,X, β, γ)

)
· {w1(Λ(t,X, β, γ, g)) + g′(Λ(t,X, β, γ, g))Λ′

g(t,X, β, γ, g)[w1]}

· {w2(Λ(t,X, β, γ, g)) + g′(Λ(t,X, β, γ, g))Λ′
g(t,X, β, γ, g)[w2]}dt,

All the above derivatives are bounded and continuous under conditions (C1)-(C4) by

Lemma A.3.1.

Lemma A.3.5. (Spline approximation) For γ0 ∈ Γp1, there exists a function γ0n ∈

Γp1
n such that

∥γ0n − γ0∥∞ = O(n−p1ν1).

For g0 ∈ Gp2, there exists a function g0n ∈ Gp2
n such that

∥g0n − g0∥∞ = O(n−p2ν2).
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Proof of Lemma A.3.5. Since γ0 ∈ Γp1 ⊂ Sp1([0, τ ]), by Corollary 6.21 in Schumaker

(2007), there exists a function in the polynomial space with order p1, i.e., γ̃0n ∈

Sn(TK1
n
, K1

n, p1), such that ∥γ̃0n − γ0∥∞ = O(n−p1ν1). It follows that

∥(γ̃0n(·)− γ̃0n(t
∗))− γ0∥∞ ≤ ∥γ̃0n − γ0∥∞ + |γ̃0n(t∗)|

= ∥γ̃0n − γ0∥∞ + |γ̃0n(t∗)− γ0(t
∗)|

≤ 2∥γ̃0n − γ0∥∞ = O(n−p1ν1),

where the second equality holds because γ0(t
∗) = 0 for γ0 ∈ Γp1 . Let γ0n(·) =

γ̃0n(·) − γ̃0n(t
∗), then γ0n(t

∗) = 0 and thereby we find γ0n ∈ Γp1
n such that ∥γ0n −

γ0∥∞ = O(n−p1ν1). The second part is a direct result of Corollary 6.21 in Schumaker

(2007).

Lemma A.3.6. (Bracket number of l(θ;W )) Let θ0n = (β0, γ0n(·), ζ0n(·, β0, γ0n)) with

ζ0n(t, x, β0, γ0n) = g0n(Λ(t, x, β0, γ0n, g0n)),

where γ0n and g0n are defined in Lemma A.3.5. Denote Fn = {l(θ;W ) − l(θ0n;W ) :

θ ∈ Θn}. Under conditions (C1)-(C4), the ϵ-bracketing number associated with ∥ · ∥∞

for Fn, denoted by N[ ](ϵ,Fn, ∥·∥∞), has the following upper bound for some constants

c1 and c2,

N[ ](ϵ,Fn, ∥ · ∥∞) ≲

(
1

ϵ

)c1qn1+c2qn2+d

.

Proof of Lemma A.3.6. Denote the ceiling of x by ⌈x⌉. Following the calculation in

Shen and Wong (1994, Page 597), we have that, for any ϵ > 0, there exists a set of

ϵ-brackets {
[γLl , γ

U
l ] : ∥γUl − γLl ∥∞ ≤ ϵ, l = 1, · · · ,

⌈
(
1

ϵ
)c1qn1

⌉}
such that for any γ ∈ Γp1

n , γLl (t) ≤ γ(t) ≤ γUl (t) holds on [0, τ ] for some 1 ≤ l ≤⌈
(1
ϵ
)c1qn1

⌉
. Similarly, there exists another set of ϵ-brackets{

[gLi , g
U
i ] : ∥gUi − gLi ∥∞ ≤ ϵ, i = 1, · · · ,

⌈
(
1

ϵ
)c2qn2

⌉}
such that for any g ∈ Gp1

n , gLi (t) ≤ g(t) ≤ gUi (t) holds on [0, µ] for some 1 ≤ i ≤
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⌈
(1
ϵ
)c2qn2

⌉
. Since B ⊂ Rd is compact, it can be covered by

⌈
c3(

1
ϵ
)d
⌉
balls with radius

ϵ, i.e. for any β ∈ B, there exists 1 ≤ k ≤
⌈
c3(

1
ϵ
)d
⌉
such that ∥βk − β∥ ≤ ϵ. Hence,

under condition (C2), |XTβ−XTβk| ≤ c4ϵ for some constant c4 > 0 and any X ∈ X .

By the mean value theorem, we have that

| exp
(
g(Λ) +XTβ + γ(t)

)
− exp

(
gLi (Λ) +XTβk + γLl (t)

)
|

= exp
(
ψ̃(t,Λ)

)
|g(Λ) +XTβ + γ(t)− gLi (Λ) +XTβk + γLl (t)|

≤ exp
(
ψ̃(t,Λ)

)
(|g(Λ)− gLi (Λ)|+ |XTβ −XTβk|+ |γ(t)− γLl (t)|)

≤ exp
(
ψ̃(t,Λ)

)
(∥g − gLi ∥∞ + |XTβ −XTβk|+ ∥γ − γLl ∥∞),

where ψ̃(t,Λ) = gLi (Λ)+XTβk + γLl (t)+ ξ(g(Λ)− gLi (Λ)+XT (β−βk)+ γ(t)− γLl (t))

for some ξ ∈ (0, 1) and is bounded under conditions (C1)-(C4). Hence,

| exp
(
g(Λ) +XTβ + γ(t)

)
− exp

(
gLi (Λ) +XTβk + γLl (t)

)
| ≲ ϵ

over (t,Λ) ∈ [0, τ ] × [0, b]. Employing Theorem 12.V of continuous dependence in

Walter (1998, page 145), we have |Λ(t,X, β, γ, g)−Λ(t,X, βk, γ
L
l , g

L
i )| ≤ c5ϵ for some

constant c5 > 0 and any t ∈ [0, τ ]. Denote Λilk(t, x) = Λ(t, x, βk, γ
L
l , g

L
i ). Define

m(θ;W ) = l(θ;W )− l(θ0n;W )

= ∆{XTβ + γ(Y ) + g(Λ(Y,X, β, γ, g))} − Λ(Y,X, β, γ, g)− l(θ0n;W ),

mL
ilk(W ) = ∆{XTβk − c4ϵ+ γLl (Y ) + gLi (ξ

L
ilk)} − Λilk(Y,X)− c5ϵ− l(θ0n;W ),

and

mU
ilk(W ) = ∆{XTβk + c4ϵ+ γUl (Y ) + gUi (ξ

U
ilk)} − Λilk(Y,X) + c5ϵ− l(θ0n;W ),

where ξLilk = argmin|s|≤c5ϵ g
L
i (Λilk(Y,X) + s) and ξUilk = argmax|s|≤c5ϵ g

U
i (Λilk(Y,X) +

s).

Note that [mL
ilk(W ),mU

ilk(W )] is a ϵ-bracket because

|mU
ilk(W )−mL

ilk(W )|

= |∆{2c4ϵ+ γUl (Y )− γLl (Y ) + gUi (ξ
U
ilk)− gLi (ξ

L
ilk)}+ 2c5ϵ|

≤ 2c4ϵ+ |γUl (Y )− γLl (Y )|+ |gUi (ξUilk)− gLi (ξ
U
ilk)|+ |gLi (ξUilk)− gLi (ξ

L
ilk)|+ 2c5ϵ
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≤ 2c4ϵ+ ∥γUl − γLl ∥∞ + ∥gUi − gLi ∥∞ + c7|ξUilk − ξLilk|+ 2c5ϵ

≤ 2c4ϵ+ ϵ+ ϵ+ 2c7c5ϵ+ 2c5ϵ ≲ ϵ,

where c7 = maxt∈[0,b] |(gLi )′(t)| in the second inequality. Hence ∥mU
ilk −mL

ilk∥∞ ≲ ϵ.

For any θ = (β, γ(·), ζ(·, β, γ)) with ζ(t, x, β, γ) = g(Λ(t, x, β, γ, g)), there exits

1 ≤ i ≤
⌈
(1
ϵ
)c2qn2

⌉
, 1 ≤ l ≤

⌈
(1
ϵ
)c1qn1

⌉
, 1 ≤ k ≤

⌈
c3(

1
ϵ
)d
⌉
such that gLi (t) ≤ g(t) ≤ gUi (t)

on t ∈ [0, µ], γLl (t) ≤ γ(t) ≤ γUl (t) on t ∈ [0, τ ], and |XTβk −XTβ| ≤ c4ϵ. It follows

that

mU
ilk(W ) = ∆{(XTβk + c4ϵ) + γUl (Y ) + gUi (ξ

U
ilk)}+ (c5ϵ− Λilk(Y,X))− l(θ0n;W )

≥ ∆{XTβ + γ(Y ) + gUi (ξ
U
ilk)}+ (c5ϵ− Λilk(Y,X))− l(θ0n;W )

≥ ∆{XTβ + γ(Y ) + gUi (Λ(t,X, β, γ, g))} − Λ(t,X, β, γ, g)− l(θ0n;W )

≥ ∆{XTβ + γ(Y ) + g(Λ(t,X, β, γ, g))} − Λ(t,X, β, γ, g)− l(θ0n;W )

= m(θ;W ),

where the second inequality holds because |Λ(Y,X, β, γ, g) − Λilk(Y,X)| ≤ c5ϵ. The

other side can be verified similarly. Therefore, we have

N[ ](ϵ,Fn, ∥ · ∥∞) ≲

(
1

ϵ

)c1qn1
(
1

ϵ

)c2qn2
(
1

ϵ

)d

=

(
1

ϵ

)c1qn1+c2qn2+d

,

which completes the proof.

Lemma A.3.7. For 1 ≤ j ≤ d, denote Fγ
n,j(η) = {l′γ(θ;W )[v∗j − vj] : θ ∈ Θn, vj ∈

Γ1
n, d(θ, θ0) ≤ η, ∥v∗j − vj∥∞ ≤ η} and F ζ

n,j(η) = {l′ζ(θ;W )[h∗j − hj] : θ ∈ Θn, hj ∈

H2
n, d(θ, θ0) ≤ η, ∥w∗

j − wj∥∞ ≤ η}, where v∗j is defined in condition (C7) and

h∗j(·, β, γ) = w∗
j (Λ(·, β, γ, g)) + g′(Λ(·, β, γ, g))Λ′

g(·, β, γ, g)[w∗
j ] with w

∗
j given in con-

dition (C7). Then under conditions (C1)-(C4) and (C7), we have

N[ ](ϵ,Fγ
n,j(η), ∥ · ∥∞) ≲

(η
ϵ

)c1qn1+c2qn2+d

and

N[ ](ϵ,F ζ
n,j(η), ∥ · ∥∞) ≲

(η
ϵ

)c3qn1+c4qn2+d

for some constants c1, c2, c3, and c4.
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Lemma A.3.8. For 1 ≤ j ≤ d, denote

F∗β
n,j(η) = {l′βj

(θ;W )−l′βj
(θ0;W ) :

θ ∈ Θn, d(θ, θ0) ≤ η, ∥g′(Λ(·, β, γ, g))− g′0(Λ0(·))∥2 ≤ η},

F∗γ
n,j(η) = {l′γ(θ;W )[v∗j ]−l′γ(θ0;W )[v∗j ] :

θ ∈ Θn, d(θ, θ0) ≤ η, ∥g′(Λ(·, β, γ, g))− g′0(Λ0(·))∥2 ≤ η},

and

F∗ζ
n,j(η) = {l′ζ(θ;W )[h∗j ]− l′ζ(θ0;W )[h∗j ] : θ ∈ Θn, d(θ, θ0) ≤ η},

where v∗j is defined in condition (C7) and

h∗j(·, β, γ) = w∗
j (Λ(·, β, γ, g)) + g′(Λ(·, β, γ, g))Λ′

g(·, β, γ, g)[w∗
j ]

with w∗
j given in condition (C7). Then under conditions (C1)-(C4) and (C7), we

have

N[ ](ϵ,F∗β
n,j(η), ∥ · ∥∞) ≲

(η
ϵ

)c1qn1+c2qn2+d

,

N[ ](ϵ,F∗γ
n,j(η), ∥ · ∥∞) ≲

(η
ϵ

)c3qn1+c4qn2+d

,

and

N[ ](ϵ,F∗ζ
n,j(η), ∥ · ∥∞) ≲

(η
ϵ

)c5qn1+c6qn2+d

for some constants ci, i = 1, . . . , 6.

The proofs of Lemma A.3.7 and A.3.8 follow a similar calculation as in Lemma

A.3.6 and therefore are omitted here.

A.3.2 Proof of Theorem 2.3.1

Proof of Theorem 2.3.1. We prove the theorem by checking the conditions C1-3

in Shen and Wong (1994, Theorem 1). Using the fact P{
∫ Y

0
f(t,X)dΛ0(t,X)} =

P{∆f(Y,X)}, we have

Pl(β, γ,ζ(·, β, γ);W ) = P{∆[XTβ + γ(Y ) + g(Λ(Y,X, β, γ, g))

− exp
(
XTβ + γ(Y ) + g(Λ(Y,X, β, γ, g))−XTβ0 − γ0(Y )− g0(Λ0(Y,X))

)
]}.
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It follows that, by the Taylor expansion,

Pl(β0, γ0, ζ0(·, β0, γ0);W )− Pl(β, γ, ζ(·, β, γ);W )

= P{∆[exp
(
XTβ + γ(Y ) + g(Λ(Y,X, β, γ, g))−XTβ0 − γ0(Y )− g0(Λ0(Y,X))

)
− 1− (XTβ + γ(Y ) + g(Λ(Y,X, β, γ, g))−XTβ0 − γ0(Y )− g0(Λ0(Y,X)))]}

=
1

2
A+ o(A), (A.22)

where A = P{∆[XTβ+ γ(Y )+ g(Λ(Y,X, β, γ, g))−XTβ0− γ0(Y )− g0(Λ0(Y,X))]2}.

After subtracting and adding the term g(Λ0(Y,X)), we have

A = P{∆[XT (β − β0) + γ(Y )− γ0(Y ) + g(Λ(Y,X, β, γ, g))− g(Λ0(Y,X))

+ g(Λ0(Y,X))− g0(Λ0(Y,X))]2}

= P{∆[(g′(Λ0(Y,X))Λ′
0β(Y,X) +X)T (β − β0)

+ g′(Λ0(Y,X))Λ′
0γ(Y,X)[γ − γ0] + γ(Y )− γ0(Y )

+ g′(Λ0(Y,X))Λ′
0g(Y,X)[g − g0] + g(Λ0(Y,X))− g0(Λ0(Y,X))

+ o(∥β − β0∥) + o(∥γ − γ0∥2) + o(∥g − g0∥2)]2},

where the second equality is obtained by using the Taylor expansion. Since Λ′
0β(t, x)

is bounded by Lemma A.3.1 and Λ′
0γ(·)[v] and Λ′

0g(·)[w] are bounded linear operators,

which can be verified using the same arguments as in Lemma A.3.2, we have

g′(Λ0(Y,X))Λ′
0β(Y,X)T (β − β0) = g′0(Λ0(Y,X))Λ′

0β(Y,X)T (β − β0)

+ o(∥β − β0∥) + o(∥g − g0∥2),

g′(Λ0(Y,X))Λ′
0γ(Y,X)[γ − γ0] = g′0(Λ0(Y,X))Λ′

0γ(Y,X)[γ − γ0]

+ o(∥γ − γ0∥2) + o(∥g − g0∥2),

g′(Λ0(Y,X))Λ′
0g(Y,X)[g − g0] = g′0(Λ0(Y,X))Λ′

0g(Y,X)[g − g0] + o(∥g − g0∥2).

Note that under conditions (C1)-(C4), we have

d2(θ, θ0) ≲ ∥β − β0∥2 + ∥γ − γ0∥22 + ∥g − g0∥22 ≲ d2(θ, θ0). (A.23)

170



Plugging these equations above into A, it follows that

A ≳ P{∆[(g′0(Λ0(Y,X))Λ′
0β(Y,X) +X)T (β − β0)

+ g′0(Λ0(Y,X))Λ′
0γ(Y,X)[γ − γ0] + γ(Y )− γ0(Y )

+ g′0(Λ0(Y,X))Λ′
0g(Y,X)[g − g0] + g(Λ0(Y,X))− g0(Λ0(Y,X))]2}

+ o(d2(θ, θ0)). (A.24)

Then, by solving the initial value problem in (A.9), we have

g′0(Λ0(Y,X))Λ′
0β(Y,X) +X = (g′0(Λ0(Y,X)) exp(g0(Λ0(Y,X)))R(Y )eX

T β0 + 1)X

= (g′0(Λ̃0(U)) exp
(
g0(Λ̃0(U))

)
U + 1)X

≜ ϵ1(U)X, (A.25)

with U given in condition (C5) and ϵ1 is a deterministic function.

Note that using equations (A.19) and (A.20) in Lemma A.3.2, we also have

ψ′
0γ(Y,X)[γ − γ0] = g′0(Λ0(Y,X))Λ′

0γ(Y,X)[γ − γ0] + γ(Y )− γ0(Y )

= g′0(Λ̃0(U) exp
(
g0(Λ̃0(U))

) U∫
0

(γ − γ0)(R
−1(se−V ))ds

+ (γ − γ0)(R
−1(Ue−V )) (A.26)

≜ ϵ2(U, V )[γ − γ0], (A.27)

which is a deterministic function of U and V given in condition (C5), and

ψ′
0g(Y,X)[g − g0] = g′0(Λ0(Y,X))Λ′

0g(Y,X)[g − g0] + g(Λ0(Y,X))− g0(Λ0(Y,X))

= g′0(Λ̃0(U) exp
(
g0(Λ̃0(U))

) Λ̃0(U)∫
0

exp(−g0(s))(g − g0)(s)ds

+ (g − g0)(Λ̃0(U)) (A.28)

≜ ϵ3(U)[g − g0], (A.29)

which is a deterministic function of U .
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Then, it follows from (A.24)

A ≳ P{∆[ϵ1(U)X
T (β − β0) + ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0]]

2}+ o(d2(θ, θ0))

= P{∆(ϵ1(U)X
T (β − β0))

2}+ P{∆(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])
2}

+ 2P{∆(ϵ1(U)X
T (β − β0))(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])}+ o(d2(θ, θ0))

≥ P{∆(ϵ1(U)X
T (β − β0))

2}+ P{∆(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])
2}

− 2|P{∆(ϵ1(U)X
T (β − β0))(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])}|+ o(d2(θ, θ0)).

(A.30)

By using the fact that

P{∆f(U,X)} = P{
Y∫

0

f(R(t)eX
T β0 , X)dΛ0(t,X)} = P{

U∫
0

f(t,X)dΛ̃0(t)},

we have

|P{∆(ϵ1(U)X
T (β − β0))(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])}|2

=

P


U∫
0

ϵ1(t)X
T (β − β0)(ϵ2(t, V )[γ − γ0] + ϵ3(t)[g − g0])dΛ̃0(t)


2

=

P


U∫
0

ϵ1(t)P{XT (β − β0)|U, V }(ϵ2(t, V )[γ − γ0] + ϵ3(t)[g − g0])dΛ̃0(t)


2

≤P


U∫

0

(ϵ1(t))
2
(
P{XT (β − β0)|U, V }

)2
dΛ̃0(t)


· P


U∫

0

(ϵ2(t, V )[γ − γ0] + ϵ3(t)[g − g0])
2dΛ̃0(t)

 ,

where the last step is obtained using the Cauchy-Schwartz inequality. Under Condi-

tion (C5), there exists η1 ∈ (0, 1) such that

(1− η1)(β − β0)
TP{XXT |U, V }(β − β0) ≥ (P{XT (β − β0)|U, V })2,

since the first element of β − β0 is zero with the identifiability constraint. Thus, we

have

|P{∆(ϵ1(U)X
T (β − β0))(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])}|2
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≤(1− η1)P


U∫

0

(ϵ1(t))
2(β − β0)

TP{XXT |U, V }(β − β0)dΛ̃0(t)


· P


U∫

0

(ϵ2(t, V )[γ − γ0] + ϵ3(t)[g − g0])
2dΛ̃0(t)


=(1− η1)P


U∫

0

(ϵ1(t)X
T (β − β0))

2dΛ̃0(t)


· P


U∫

0

(ϵ2(t, V )[γ − γ0] + ϵ3(t)[g − g0])
2dΛ̃0(t)


=(1− η1)P{∆(ϵ1(U)X

T (β − β0))
2}P{∆(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])

2},

and it yields from (A.30) that

A ≥ P{∆(ϵ1(U)X
T (β − β0))

2}+ P{∆(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])
2}

− 2(1− η1)
1/2(P{∆(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])

2})1/2·

(P{∆(ϵ1(U)X
T (β − β0))

2})1/2

≥ (1− (1− η1)
1/2){P{∆(ϵ1(U)X

T (β − β0))
2}

+ P{∆(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])
2}}

≳ P{∆(ϵ1(U)X
T (β − β0))

2}+ P{∆(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])
2}

= A1 + A2,

where the second inequality is obtained by 2ab ≤ a2 + b2.

For A1, under condition (C3), we have for t ∈ [0, τ ],

P{1(Y > t)|X} ≥ P{1((Y > τ)|X} ≥ δ0.

Then it follows that,

A1 = P{
Y∫

0

exp
(
XTβ0 + γ0(t) + g(Λ0(t,X))

) (
ϵ1(R(t)e

XT β0)XT (β − β0)
)2

dt}

= P{
τ∫

0

P{1(Y > t)|X}
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· exp
(
XTβ0 + γ0(t) + g(Λ0(t,X))

) (
ϵ1(R(t)e

XT β0)XT (β − β0)
)2

dt}

≥ δ0P{
τ∫

0

exp
(
XTβ0 + γ0(t) + g(Λ0(t,X))

) (
ϵ1(R(t)e

XT β0)XT (β − β0)
)2

dt}

= δ0P{
R(τ)eX

T β0∫
0

exp
(
g(Λ̃0(s))

) (
ϵ1(s)X

T (β − β0)
)2

ds}

≥ δ0P{
cR(τ)∫
0

exp
(
g(Λ̃0(s))

) (
ϵ1(s)X

T (β − β0)
)2

ds}

= δ0(β − β0)
TP{XXT}(β − β0)

cR(τ)∫
0

exp
(
g(Λ̃0(s))

)
(ϵ1(s))

2ds,

where the fourth equality is derived by variable transformation s = R(t)eX
T β0 and

c = minx∈X e
xT β0 , which is positive since X is bounded under condition (C2). As

condition (C2) implies that the smallest eigenvalue of P{XXT}, denoted by λ1, is

positive as well, we have (β−β0)TP{XXT}(β−β0) ≥ λ1∥β−β0∥2. Also, by definition

ϵ1(s) satisfies the equation g
′
0(Λ̃0(t))

∫ t

0
exp
(
g0(Λ̃0(s))

)
ϵ1(s)ds+1 = ϵ1(t), thus it can

not be a constant zero and
∫ cR(τ)

0
exp
(
g(Λ̃0(s))

)
(ϵ1(s))

2ds is bounded away from 0

below. Hence, A1 ≳ ∥β − β0∥2.

For A2, it is bounded below by

P{∆(ϵ2(U, V )[γ − γ0] + ϵ3(U)[g − g0])
2}

≥ P{∆(ϵ2(U, V )[γ − γ0])
2}+ P{∆(ϵ3(U)[g − g0])

2}

− 2|P{∆(ϵ2(U, V )[γ − γ0])(ϵ3(U)[g − g0])}|

≥ P{∆(ϵ2(U, V )[γ − γ0])
2}+ P{∆(ϵ3(U)[g − g0])

2}

− 2η
1/2
2 P{∆}(P{∆(ϵ2(U, V )[γ − γ0])

2})1/2(P{∆(ϵ3(U)[g − g0])
2})1/2

≥ (1− η
1/2
2 P{∆}){P{∆(ϵ2(U, V )[γ − γ0])

2}+ P{∆(ϵ3(U)[g − g0])
2}}

≳ P{∆(ϵ2(U, V )[γ − γ0])
2}+ P{∆(ϵ3(U)[g − g0])

2},

where the second inequality holds under condition (C6) because there exists some
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η2 ∈ (0, 1) such that

(P{ϵ2(U, Y )[γ − γ0]ϵ3(U)[g − g0]|∆ = 1})2 ≤

η2P{(ϵ2(U, Y )[γ − γ0])
2|∆ = 1}P{(ϵ3(U)[g − g0])

2|∆ = 1}.

Furthermore, the first term is bounded under condition (C3)

P{∆(ϵ2(U, V )[γ − γ0])
2} = P{∆(ψ′

0γ(Y,X)[γ − γ0])
2}

= P{
τ∫

0

P{1(Y > t)|X}(ψ′
0γ(t,X)[γ − γ0])

2dΛ0(t,X)}

≥ δ0P{
τ∫

0

(ψ′
0γ(t,X)[γ − γ0])

2dΛ0(t,X)}

≳ ∥γ − γ0∥22,

where the second inequality is obtained by Lemma A.3.2 because γ−γ0 ∈ Γp1 . Using

the same argument, we have P{∆(ϵ3(U)[g − g0])
2} ≳ ∥g − g0∥22. Therefore,

Pl(β0, γ0, ζ0(·, β0, γ0);W )−Pl(β, γ, ζ(·, β, γ);W ) =
1

2
A+ o(A)

≳ ∥β − β0∥2 + ∥γ − γ0∥22 + ∥g − g0∥22

≳ d2(θ, θ0),

which implies that

inf
d(θ,θ0)≥ϵ,θ∈Θn

Pl(β0, γ0, ζ0(·, β0, γ0);W )− Pl(β, γ, ζ(·, β, γ);W ) ≳ ϵ2.

Hence the condition C1 in Shen and Wong (1994, Theorem 1) holds with α = 1 in

their notation.

Next, we verify the condition C2 in Shen and Wong (1994, Theorem 1). It follows

that

(l(β, γ, ζ(·, β, γ);W )− l(β0, γ0, ζ0(·, β0, γ0);W ))2

= {∆XT (β − β0) + ∆[γ(Y )− γ0(Y )] + ∆[g(Λ(Y,X, β, γ, g))− g0(Λ0(Y,X))]

−
Y∫

0

[exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
− exp

(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
]dt}2
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≲ (XT (β − β0))
2 +∆(γ(Y )− γ0(Y ))2 +∆[g(Λ(Y,X, β, γ, g))− g0(Λ0(Y,X))]2

+ {
Y∫

0

[exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
− exp

(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
]dt}2

≲ ∥β − β0∥2 +∆(γ(Y )− γ0(Y ))2 +∆[g(Λ(Y,X, β, γ, g))− g0(Λ0(Y,X))]2

+

τ∫
0

[exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
− exp

(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
]2dt,

(A.31)

where the second inequality is obtained by the condition (C2) and the Cauchy-

Schwartz inequality

{
Y∫

0

[exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
− exp

(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
]dt}2

= {
τ∫

0

[1(Y ≥ t) exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
− exp

(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
]dt}2

≤
τ∫

0

1(Y ≥ t)dt

τ∫
0

[exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
− exp

(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
]2dt

≤ τ

τ∫
0

[exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
− exp

(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
]2dt.

For the second term in (A.31), we have

P{∆(γ(Y )− γ0(Y ))2}

= P

τ∫
0

1(Y ≥ t) exp
(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
(γ(t)− γ0(t))

2dt

≤
τ∫

0

P{exp
(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
}(γ(t)− γ0(t))

2dt

≲ ∥γ − γ0∥22, (A.32)

where the last inequality holds because exp
(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
is bounded
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under conditions (C1)-(C4). For the third term in (A.31), we have

P{∆[g(Λ(Y,X, β, γ, g))− g0(Λ0(Y,X))]2}

= P

Y∫
0

[g(Λ(t,X, β, γ, g))− g0(Λ0(t,X))]2dΛ0(t,X)

= P

τ∫
0

1(Y ≥ t)[g(Λ(t,X, β, γ, g))− g0(Λ0(t,X))]2dΛ0(t,X)

≤ P

τ∫
0

[g(Λ(t,X, β, γ, g))− g0(Λ0(t,X))]2dΛ0(t,X)

= ∥ζ(·, β, γ)− ζ0(·, β0, γ0)∥22, (A.33)

For the fourth term in (A.31), using the mean value theorem, it follows that

P{
τ∫

0

[exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
− exp

(
XTβ0 + γ0(t) + g0(Λ0(t,X))

)
]2dt}

= P{
τ∫

0

exp
(
2ψ̃(t,X)

)
[XT (β − β0) + (γ(t)− γ0(t))

+ g(Λ(t,X, β, γ, g))− g0(Λ0(t,X))]2dt}

≲ P{
τ∫

0

exp
(
2ψ̃(t,X)

)
{[XT (β − β0)]

2 + [γ(t)− γ0(t)]
2

+ [g(Λ(t,X, β, γ, g))− g0(Λ0(t,X))]2}dt}

= I1 + I2 + I3,

where ψ̃(t,X) = XTβ0+γ0(t)+g0(Λ0(t,X))+ξ(XT (β−β0)+γ(t)−γ0(t)+g(Λ(t,X, β, γ, g))

−g0(Λ0(t,X))) for some ξ ∈ (0, 1) and is bounded under conditions (C1)-(C4). Hence,

I1 ≲ (β − β0)
TP (XXT )(β − β0) ≤ λd∥β − β0∥2,

where λd is the largest eigenvalue of P (XXT ),

I2 ≲ ∥γ − γ0∥22,
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and

I3 = P{
τ∫

0

exp
(
2ψ̃(t,X)−XTβ0 − γ0(t)− g0(Λ0(t,X))

)
· [g(Λ(t,X, β, γ, g))− g0(Λ0(t,X))]2dΛ0(t,X)}

≲ P{
τ∫

0

[g(Λ(t,X, β, γ, g))− g0(Λ0(t,X))]2dΛ0(t,X)}

= ∥ζ(·, β, γ)− ζ0(·, β0, γ0)∥22.

Therefore, we have

P (l(β, γ,ζ(·, β, γ);W )− l(β0, γ0, ζ0(·, β0, γ0);W ))2

≲ ∥β − β0∥2 + ∥γ − γ0∥22 + ∥ζ(·, β, γ)− ζ0(·, β0, γ0)∥22

≲ d2(θ, θ0),

which implies that

sup
d(θ,θ0)≤ϵ,θ∈Θn

V ar{l(β, γ, ζ(·, β, γ);W )− l(β0, γ0, ζ0(·, β0, γ0);W )}

≤ sup
d(θ,θ0)≤ϵ,θ∈Θn

P{l(β, γ, ζ(·, β, γ);W )− l(β0, γ0, ζ0(·, β0, γ0);W )}2 ≲ ϵ2.

Thus the condition C2 in Shen and Wong (1994, Theorem 1) holds with β = 1 in

their notation.

Next we verify the condition C3 in Shen and Wong (1994, Theorem 1). By Lemma

A.3.6, we have

H(ϵ,Fn, ∥ · ∥∞) = log(N(ϵ,Fn, ∥ · ∥∞)) ≲ (c1qn1 + c2qn2 + d) log(1/ϵ)

≲ nmax{ν1,ν2} log(1/ϵ).

So the condition C3 holds with constants 2r0 = max{ν1, ν2} and r = 0+ in their

notations, which leads to τ = 1−max{ν1,ν2}
2

− log logn
2 logn

in their main result. We can select

slightly large ν̃1 and ν̃2 such that 1−max{ν̃1,ν̃2}
2

≤ 1−max{ν1,ν2}
2

− log logn
2 logn

for sufficiently

large n and still denote ν̃i by νi for i = 1, 2. Then, τ = 1−max{ν1,ν2}
2

. Also, since the

sieve estimator θ̂n maximizes the empirical log-likelihood over the sieve space Θn, the
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inequality (1.1) in Shen and Wong (1994) holds with ηn = 0. Therefore, by Theorem

1 in Shen and Wong (1994), we have

d(θ̂n, θ0) = Op(max{n− 1−max{ν1,ν2}
2 , d(θ0n, θ0), K

1/2(θ0n, θ0)}),

where K(θ0n, θ0) = P{l(θ0;W )− l(θ0n;W )}. Further, using the Taylor expansion for

P{l(θ0;W )− l(θ0n;W )} in (A.22), we have

K(θ0n, θ0) =
1

2
P{∆[γ0(Y ) + g0(Λ(Y,X, β0, γ0, g0)

− γ0n(Y )− g0n(Λ(Y,X, β0, γ0n, g0n))]
2}+ o(d2(θ0n, θ0))

≤ P{∆[g0(Λ(Y,X, β0, γ0, g0))− g0n(Λ(Y,X, β0, γ0n, g0n))]
2}

+ P{∆(γ0(Y )− γ0n(Y ))2}+ o(d2(θ0n, θ0))

≲ ∥ζ0(·, β0, γ0)− ζ0n(·, β0n, γ0n)∥22 + ∥γ0 − γ0n∥22 + o(d2(θ0n, θ0))

= O(d2(θ0n, θ0)),

where the first inequality is obtained by the fact (a+ b)2 ≤ 2(a2 + b2) and the second

inequality holds by using the same argument as in (A.32) and (A.33). Moreover,

d2(θ0n, θ0) ≲ ∥γ0−γ0n∥22+∥g0−g0n∥22 ≲ ∥γ0−γ0n∥2∞+∥g0−g0n∥2∞ = O(n−2min{p1ν1,p2ν2})

due to inequality (A.23) and Lemma A.3.5. Thus, we have

d(θ̂n, θ0) = Op(max{n− 1−max{ν1,ν2}
2 , n−min{p1ν1,p2ν2}}) = Op(n

−min{p1ν1,p2ν2, 1−max{ν1,ν2}
2

}),

which completes the proof.

A.3.3 Proof of Theorem 2.3.2

Proof of Theorem 2.3.2. We prove the theorem by verifying assumptions (A1)-

(A6) in Appendix A.2. By Theorem 2.3.1 we know that assumption (A1) holds

with ξ = min{p1ν1, p2ν2, 1−max{ν1,ν2}
2

}. It is straightforward to show that assump-

tion (A2) holds based on the fact that score functions have zero mean. To verify

assumption (A3), first, we will find v∗ = (v∗1, · · · , v∗d)′ and h∗ = (h∗1, · · · , h∗d)′ with

h∗(·) = w∗(Λ0(·)) + g′0(Λ0(·))Λ′
0g(·)[w∗] such that for any v ∈ V and h ∈ H with
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h(·) = w(Λ0(·)) + g′0(Λ0(·))Λ′
0g(·)[w],

S ′′
βγ(β0, γ0(·), ζ0(·, β0, γ0))[v] = S ′′

γγ(β0, γ0(·), ζ0(·, β0, γ0))[v∗, v]

+ S ′′
ζγ(β0, γ0(·), ζ0(·, β0, γ0))[h∗, v], (A.34)

S ′′
βζ(β0, γ0(·), ζ0(·, β0, γ0))[h] = S ′′

γζ(β0, γ0(·), ζ0(·, β0, γ0))[v∗, h]

+ S ′′
ζζ(β0, γ0(·), ζ0(·, β0, γ0))[h∗, h]. (A.35)

By Lemma A.3.4 and the property P{
∫ Y

0
f(t,X)dΛ0(t,X)} = P{∆f(Y,X)}, for any

v ∈ Vd, v ∈ V and h ∈ Hd with h(·) = w(Λ0(·)) + g′0(Λ0(·))Λ′
0g(·)[w], we have

S ′′
βγ(β0, γ0, ζ0)[v]− S ′′

γγ(β0, γ0, ζ0)[v, v]− S ′′
ζγ(β0, γ0, ζ0)[h, v]

=P{l′′βγ(β0, γ0, ζ0;W )[v]− l′′γγ(β0, γ0, ζ0;W )[v, v]− l′′ζγ(β0, γ0, ζ0;W )[h, v]}

=P{∆
[
g′0(Λ0(Y,X))Λ′

0β(Y,X) +X − g′0(Λ0(Y,X))Λ′
0γ(Y,X)[v]− v(Y )

−g′0(Λ0(Y,X))Λ′
0g(Y,X)T [w]−w(Λ0(Y,X))

]
(g′0(Λ0(Y,X))Λ′

0γ(Y,X)[v] + v(Y ))}

=P{∆(ϵ1(U)X − ϵ2(U, V )[v]− ϵ3(U)[w])ψ′
0γ(Y,X)[v]}, (A.36)

where the last equality holds with ϵ1, ϵ2, ϵ3, ψ
′
0γ given in (A.25)-(A.29) and U given

in the condition (C5). Similarly, for any v ∈ Vd, h ∈ Hd and h ∈ H with h(·) =

w(Λ0(·)) + g′0(Λ0(·))Λ′
0g(·)[w], we have

S ′′
βζ(β0, γ0, ζ0)[h]− S ′′

γζ(β0, γ0, ζ0)[v, h]− S ′′
ζζ(β0, γ0, ζ0)[h, h]

=P{∆(ϵ1(U)X − ϵ2(U, V )[v]− ϵ3(U)[w])ψ′
0g(Y,X)[w]}. (A.37)

Note that under condition (C7), there exists v∗ = (v∗1, · · · , v∗d)T andw∗ = (w∗
1, · · · , w∗

d)
T ,

where v∗j ∈ Γ2 and w∗
j ∈ G2 for j = 1, · · · , d, such that P{∆A∗(U,X)ψ′

0γ(Y,X)[v]} =

0 and P{∆A∗(U,X)ψ′
0g(Y,X)[w]} = 0 hold for any v ∈ Γp1 and w ∈ Gp2 . Since

A∗(U,X) = ϵ1(U)X−ϵ2(U, V )[v∗]−ϵ3(U)[w∗], plugging v = v∗ in (A.36) andw = w∗

in (A.37) we have equations (A.34) and (A.35) hold with v∗ and w∗ given in condition

(C7). Then it follows that

l′β(β0, γ0, ζ0;W )− l′γ(β0, γ0, ζ0;W )[v∗]− l′ζ(β0, γ0, ζ0;W )[h∗(·, β0, γ0)]
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=∆A∗(U,X)−
Y∫

0

A∗(R(t)eX
T β0 , X)dΛ0(t,X)

=∆A∗(U,X)−
R(Y )eX

T β0∫
0

A∗(t,X)dΛ̃0(t)

=

∫
A∗(t,X)dM(t) = l∗(β0, γ0, ζ0;W ),

with M(t) and l∗ given in condition (C8). Based on the zero-mean property of score

function together with the facts in (A.34) and (A.35), the matrix A in assumption

(A3) is given by

A = −S ′′
ββ(β0, γ0, ζ0) + S ′′

γβ(β0, γ0, ζ0)[v
∗] + S ′′

ζβ(β0, γ0, ζ0)[h
∗]

− S ′′
γγ(β0, γ0, ζ0)[v

∗,v∗] + S ′′
βγ(β0, γ0, ζ0)[v

∗]− S ′′
ζγ(β0, γ0, ζ0)[h

∗,v∗]

− S ′′
ζζ(β0, γ0, ζ0)[h

∗,h∗] + S ′′
βζ(β0, γ0, ζ0)[h

∗]− S ′′
γζ(β0, γ0, ζ0)[v

∗,h∗]

= P{(l′β(β0, γ0, ζ0;W )− l′γ(β0, γ0, ζ0;W )[v∗]− l′ζ(β0, γ0, ζ0;W )[h∗])⊗2}

= P{l∗(β0, γ0, ζ0;W )⊗2},

which is the information matrix for β0 and is nonsingular under condition (C8). Thus,

assumption (A3) holds.

To verify assumption (A4), we first note that the first part holds because β̂n

satisfies S ′
β,n(θ̂n) = 0 where θ̂n = (β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)). Next we need to show that

S ′
γ,n(θ̂n)[v

∗
j ] = op(n

−1/2). Since v∗j ∈ Γ2, by Lemma A.3.5 there exists v∗j,n ∈ Γ2
n such

that ∥v∗j,n− v∗j∥∞ = O(n−2ν1). Based on the fact that v∗j,n can be written as the linear

combination of basis functions B1
k for k = 1, . . . , q1n, we have S

′
γ,n(θ̂n)[v

∗
j,n] = 0.1 Since

1Note that we constrain the parameter γ(t∗) = 0 for identifiability guarantee. For any γ ∈ Γp1
n in

the sieve space, the constraint can be achieved by fixing the coefficient of one specific B-spline basis

(suppose it is indexed as the first basis and let a1 ≡ 0) and leaving coefficients of other bases as free

optimization parameters. Since θ̂n maximizes ln(θ) in the sieve space and v∗j,n ∈ Γ2
n can be written

as the linear combination of bases with the first coefficient a1 fixed as 0, we have the gradient of

ln(θ) with respect to γ along the direction v∗j,n at θ̂n equal to zero, i.e., S′
γ,n(θ̂n)[v

∗
j,n] = 0.
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S ′
γ(β0, γ0(·), ζ0(·, β0, γ0))[v∗j − v∗j,n] = 0, it suffices to show that for each 1 ≤ j ≤ d,

P{l′γ(θ̂n;W )[v∗j − v∗j,n]− l′γ(θ0;W )[v∗j − v∗j,n]}+ (Pn − P ){l′γ(θ̂n;W )[v∗j − v∗j,n]}

= I1n + I2n = op(n
−1/2).

We will first show that I1n is op(n
−1/2). Using the Taylor expansion for l′γ(θ̂n)[v

∗
j −v∗j,n]

at θ0, we have

I1n =P{(β̂n − β0)
T l′′βγ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n]

+ l′′γγ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n, γ̂n − γ0]

+ l′′γζ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n, ζ̂n − ζ0]},

where (β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n)) is some point between θ0 and θ̂n. Let Λ̃(t, x) = Λ(t, x, β̃n,

γ̃n, g̃n). Note that by solving initial value problems in Lemma A.3.1, we have Λ̃′
β(t, x)

and Λ̃′′
ββ(t, x) are bounded on t ∈ [0, τ ] and x ∈ X based on the boundedness of γ̃n, g̃n,

g̃′n and g̃
′′
n. Also, we have ∥Λ̃′

γ(·)[v]∥∞ ≲ ∥v∥∞ and supt∈[0,τ ],x∈X ∥Λ̃′′
βγ(t, x)[v]∥ ≲ ∥v∥∞.

It follows that

sup
t∈[0,τ ],x∈X

∥ζ̃ ′′βγ(t, x, β̃n, γ̃n)[v∗j − v∗j,n]∥

= sup
t∈[0,τ ],x∈X

∥g̃′′n(Λ̃(t, x))Λ̃′
β(t, x)Λ̃

′
γ(t, x)[v

∗
j − v∗j,n] + g̃′n(Λ̃(t,X))Λ̃′′

βγ(t, x)[v
∗
j − v∗j,n]∥

≲∥v∗j − v∗j,n∥∞,

and

P{∥l′′βγ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n]∥}

=P{
∥∥∥ τ∫

0

ζ̃ ′′βγ(t,X, β̃n, γ̃n)[v
∗
j − v∗j,n]1(Y ≥ t)dΛ0(t,X)

−
τ∫

0

exp
(
XT β̃n + γ̃n(t) + g̃n(Λ̃(t,X))

)
· {(v∗j (t)− v∗j,n(t) + g̃′n(Λ̃(t,X))Λ̃′

γ(t,X)[v∗j − v∗j,n])(X + g̃′n(Λ̃(t,X))Λ̃′
β(t,X))

+ ζ̃ ′′βγ(t,X, β̃n, γ̃n)[v
∗
j − v∗j,n]}1(Y ≥ t)dt

∥∥∥}
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≲ sup
t∈[0,τ ],x∈X

∥ζ̃ ′′βγ(t, x, β̃n, γ̃n)[v∗j − v∗j,n]∥+ ∥v∗j − v∗j,n∥∞ ≲ ∥v∗j − v∗j,n∥∞.

Therefore, the first term in I1n is dominated by

P{|(β̂n − β0)
T l′′βγ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n]|}

≤∥β̂n − β0∥P{∥l′′βγ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n]∥}

≲∥β̂n − β0∥∥v∗j − v∗j,n∥∞ ≤ d(θ̂n, θ0)∥v∗j − v∗j,n∥∞

=Op(n
−min{p1ν1,p2ν2, 1−max{ν1,ν2}

2
}) ·O(n−2ν1)

=Op(n
−min{(p1+2)ν1,p2ν2+2ν1,

1−max{ν1,ν2}
2

+2ν1}).

By solving initial value problems in (A.10) and (A.13) and the Cauchy-Schwarz in-

equality (similar arguments are used in Lemma A.3.2 to prove that linear operators

are bounded above), we have ∥Λ̃′
γ(·)[v]∥2 ≲ ∥v∥2 and ∥Λ̃′′

γγ(·)[ν1, ν2]∥2 ≲ ∥ν1∥∞∥ν2∥2.

It follows that

∥ζ̃ ′′γγ(·, β̃n, γ̃n)[v∗j − v∗j,n, γ̂n − γ0]∥2

=∥g̃′′n(Λ̃(·))Λ̃′
γ(·)[γ̂n − γ0]Λ̃

′
γ(·)[v∗j − v∗j,n] + g̃′n(Λ̃(·))Λ̃′′

γγ(·)[v∗j − v∗j,n, γ̂n − γ0]∥2

≲∥Λ̃′
γ(·)[v∗j − v∗j,n]∥∞∥Λ̃′

γ(·)[γ̂n − γ0]∥2 + ∥Λ̃′′
γγ(·)[v∗j − v∗j,n, γ̂n − γ0]∥2

≲∥v∗j − v∗j,n∥∞ · ∥γ̂n − γ0∥2,

and by the Cauchy-Schwarz inequality the second term in I1n is bounded by

(P{
∣∣l′′γγ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n, γ̂n − γ0]

∣∣})2
≤P{

∣∣l′′γγ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n, γ̂n − γ0]
∣∣2}

=P
{∣∣∣∆ζ̃ ′′γγ(Y,X, β̃n, γ̃n)[v∗j − v∗j,n, γ̂n − γ0]

−
τ∫

0

1(Y ≥ t) exp
(
XT β̃n + γ̃n(t) + g̃n(Λ̃(t,X))

)
· {ζ̃ ′′γγ(t,X, β̃n, γ̃n)[v∗j − v∗j,n, γ̂n − γ0]

+ ((v∗j − v∗j,n)(t) + g̃′n(Λ̃(t,X))Λ̃′
γ(t,X)[v∗j − v∗j,n])

· ((γ̂n − γ0)(t) + g̃′n(Λ̃(t,X))Λ̃′
γ(t,X)[γ̂n − γ0])}dt

∣∣∣2}
≲∥ζ̃ ′′γγ(·, β̃n, γ̃n)[v∗j − v∗j,n, γ̂n − γ0]∥22 + ∥v∗j − v∗j,n∥2∞ · (∥γ̂n − γ0∥22 + ∥Λ̃′

γ(·)[γ̂n − γ0]∥22)
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≲∥v∗j − v∗j,n∥2∞ · ∥γ̂n − γ0∥22 ≤ ∥v∗j − v∗j,n∥2∞ · d2(θ̂n, θ0).

So we have

P{
∣∣l′′γγ(β̃n, γ̃n(·),ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n, γ̂n − γ0]

∣∣}
= Op(n

−min{(p1+2)ν1,p2ν2+2ν1,
1−max{ν1,ν2}

2
+2ν1}).

Also, by subtracting and adding some terms and using ∥a + b∥2 ≤ ∥a∥2 + ∥b∥2, we

have

∥ζ̂ ′n,γ(·, β̂n, γ̂n)[v∗j − v∗j,n]− ζ ′0γ(·, β0, γ0)[v∗j − v∗j,n]∥2

=∥ĝ′n(Λ(·, β̂n, γ̂n, ĝn))Λ′
γ(·, β̂n, γ̂n, ĝn)[v∗j − v∗j,n]− g′0(Λ0(·))Λ′

0γ(·)[v∗j − v∗j,n]∥2

≤∥ĝ′n(Λ(·, β̂n, γ̂n, ĝn))Λ′
γ(·, β̂n, γ̂n, ĝn)[v∗j − v∗j,n]− g′0(Λ0(·))Λ′

γ(·, β̂n, γ̂n, ĝn)[v∗j − v∗j,n]∥2

+ ∥g′0(Λ0(·))Λ′
γ(·, β̂n, γ̂n, ĝn)[v∗j − v∗j,n]− g′0(Λ0(·))Λ′

γ(·, β0, γ̂n, ĝn)[v∗j − v∗j,n]∥2

+ ∥g′0(Λ0(·))Λ′
γ(·, β0, γ̂n, ĝn)[v∗j − v∗j,n]− g′0(Λ0(·))Λ′

γ(·, β0, γ0, ĝn)[v∗j − v∗j,n]∥2

+ ∥g′0(Λ0(·))Λ′
γ(·, β0, γ0, ĝn)[v∗j − v∗j,n]− g′0(Λ0(·))Λ′

0γ(·)[v∗j − v∗j,n]∥2

=J1 + J2 + J3 + J4.

For J1, since γ̂n, ĝn and ĝ′n are bounded, we have ∥Λ′
γ(·, β̂n, γ̂n, ĝn)[v∗j − v∗j,n]∥∞ ≲

∥v∗j − v∗j,n∥∞ and it follows that

J1 ≤ ∥ĝ′n(Λ(·, β̂n, γ̂n, ĝn))− g′0(Λ0(·))∥2 · ∥Λ′
γ(·, β̂n, γ̂n, ĝn)[v∗j − v∗j,n]∥∞

≲ ∥ĝ′n(Λ(·, β̂n, γ̂n, ĝn))− g′0(Λ0(·))∥2 · ∥v∗j − v∗j,n∥∞

= Op(n
−min{p1ν1,(p2−1)ν2,

1−max{ν1,ν2}
2

}) ·O(n−2ν1)

= Op(n
−min{(p1+2)ν1,(p2−1)ν2+2ν1,

1−max{ν1,ν2}
2

+2ν1}),

where the third equality holds based on the same argument of Ding and Nan (2011)

on their page 3058. For J2, by using the mean value theorem, it follows that

J2 = ∥g′0(Λ0(·))(Λ′′
γβ(·, β̃n, γ̂n, ĝn)[v∗j − v∗j,n])

T (β̂n − β0)∥2

≲ ∥Λ′′
γβ(·, β̃n, γ̂n, ĝn)[v∗j − v∗j,n]∥2∥β̂n − β0∥

≲ ∥v∗j − v∗j,n∥∞ · ∥β̂n − β0∥
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= Op(n
−min{(p1+2)ν1,p2ν2+2ν1,

1−max{ν1,ν2}
2

+2ν1}),

where β̃n is a point between β̂n and β0, the second inequality is based on the bound-

edness of g′0, and the third inequality is obtained by solving the initial value problem

in (A.14) along with the boundedness of γ̂n, ĝn, ĝ
′
n, ĝ

′′
n and Λ′

β(·, β̃n, γ̂n, ĝn). By a

similar argument that we used for the second term in I1n, we have for J3,

J3 = ∥g′0(Λ0(·))Λ′′
γγ(·, β0, γ̃n, ĝn)[v∗j − v∗j,n, γ̂n − γ0]∥2

≲ ∥v∗j − v∗j,n∥∞ · ∥γ̂n − γ0∥2 = Op(n
−min{(p1+2)ν1,p2ν2+2ν1,

1−max{ν1,ν2}
2

+2ν1}),

and for J4

J4 = ∥g′0(Λ0(·))Λ′′
γg(·, β0, γ0, g̃n)[v∗j − v∗j,n, ĝn − g0]∥2

≲ ∥Λ′′
γg(·, β0, γ0, g̃n)[v∗j − v∗j,n, ĝn − g0]∥2

≲ (∥ĝn(Λ(·, β̂n, γ̂n, ĝn))− g0(Λ0(·))∥2 + ∥ĝ′n(Λ(·, β̂n, γ̂n, ĝn))− g′0(Λ0(·))∥2) · ∥v∗j − v∗j,n∥∞

= Op(n
−min{p1ν1,(p2−1)ν2,

1−max{ν1,ν2}
2

}) ·O(n−2ν1),

where γ̃n is a point between γ̂n and γ0 and g̃n is a point between ĝn and g0. Thus, we

have

∥ζ̂ ′n,γ(·, β̂n, γ̂n)[v∗j − v∗j,n]− ζ ′0γ(·, β0, γ0)[v∗j − v∗j,n]∥2

≲Op(n
−min{(p1+2)ν1,(p2−1)ν2+2ν1,

1−max{ν1,ν2}
2

+2ν1}),

and it follows that for the third term in I1n is bounded by

(P{
∣∣l′′γζ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n, ζ̂n − ζ0]

∣∣})2
≤P{

∣∣l′′γζ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[v∗j − v∗j,n, ζ̂n − ζ0]
∣∣2}

=P
{∣∣∣∆(ζ̂ ′n,γ(Y,X, β̂n, γ̂n)[v

∗
j − v∗j,n]− ζ ′0γ(Y,X, β0, γ0)[v

∗
j − v∗j,n])

−
τ∫

0

1(Y ≥ t) exp
(
XT β̃n + γ̃n(t) + g̃n(Λ̃(t,X))

)
· {(ζ̂n(t,X, β̂n, γ̂n)− ζ0(t,X, β0, γ0))

· ((v∗j − v∗j,n)(t) + g̃′n(Λ̃(t,X))Λ̃′
γ(t,X)[v∗j − v∗j,n])

+ ζ̂ ′n,γ(t,X, β̂n, γ̂n)[v
∗
j − v∗j,n]− ζ ′0γ(t,X, β0, γ0)[v

∗
j − v∗j,n]}dt

∣∣∣2}
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≲∥ζ̂ ′n,γ(·, β̂n, γ̂n)[v∗j − v∗j,n]− ζ ′0γ(·, β0, γ0)[v∗j − v∗j,n]∥22

+ ∥ζ̂n(·, β̂n, γ̂n)− ζ0(·, β0, γ0)∥22 · ∥v∗j − v∗j,n∥2∞

=Op(n
−2min{(p1+2)ν1,(p2−1)ν2+2ν1,

1−max{ν1,ν2}
2

+2ν1}).

Thus, we have I1n = Op(n
−min{(p1+2)ν1,(p2−1)ν2+2ν1,

1−max{ν1,ν2}
2

+2ν1}) = op(n
−1/2), be-

cause (p1 + 2)ν1 > 1/2, (p2 − 1)ν2 + 2ν1 > 1/2, and 4ν1 > max{ν1, ν2} under the

restrictions listed in Theorem 2.3.1.

Next we will use the maximal inequality in Lemma 3.4.2 of Van Der Vaart

and Wellner (1996) (on page 324) and the Markov’s inequality to show that I2n =

op(n
−1/2). By Lemma A.3.7, the ϵ-bracketing number associated with ∥ · ∥∞ norm for

the class Fγ
n,j(η) is bounded by (η/ϵ)c1qn1+c2qn2+d, which implies that

logN[ ](ϵ,Fγ
n,j(η), L2(P )) ≤ logN[ ](ϵ,Fγ

n,j(η), ∥ · ∥∞) ≲ (c1qn1 + c2qn2) log(η/ϵ).

It follows that the bracketing integral satisfies

J[ ](ϵ,Fγ
n,j(η), L2(P )) =

η∫
0

√
1 + logN[ ](ϵ,Fγ

n,j(η), L2(P ))dϵ ≲ (c1qn1 + c2qn2)
1/2η.

Here we choose ηn = O(n−min{2ν1,p2ν2, 1−max{ν1,ν2}
2

}) such that ∥v∗j−v∗j,n∥∞ = O(n−2ν1) ≤

ηn and d(θ̂n, θ0) = Op(n
−min{p1ν1,p2ν2, 1−max{ν1,ν2}

2
}) ≤ ηn for p1 ≥ 2, then l′γ(θ̂n);W )[v∗j −

v∗j,n] ∈ Fγ
n,j(ηn). For any l

′
γ(θ;W )[v∗j − vj] ∈ Fγ

n,j(ηn), we have

P{l′γ(θ;W )[v∗j − vj]}2

=P{∆((v∗j − vj)(Y ) + g′(Λ(Y,X, β, γ, g))Λ′
γ(Y,X, β, γ, g)[v

∗
j − vj])

−
Y∫

0

exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
{(v∗j − vj)(t) + ζ ′γ(t,X, β, γ)[v

∗
j − vj]}dt}2

≲∥v∗j − vj∥2∞ + ∥Λ′
γ(·, β, γ, g)[v∗j − vj]∥2∞

≲∥v∗j − vj∥2∞.

Also, supθ:d(θ,θ0)≤ηn;vj :∥v∗j−vj∥∞≤ηn |l′γ(θ;W )[v∗j − vj]| is bounded by some constant 0 <

M < ∞ (or slowly growing with n and it can be treated as bounded by the same

argument used in Shen and Wong (1994, page 591)). By the maximal inequality, it
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follows that

EP∥Gn∥Fγ
n,j(ηn)

≲ J[ ](ϵ,Fγ
n,j(ηn), L2(P ))

(
1 +

J[ ](ϵ,Fγ
n,j(ηn), L2(P ))

η2n
√
n

M

)
≲ (c1qn1 + c2qn2)

1/2ηn + (c1qn1 + c2qn2)n
−1/2

= O(n
max{ν1,ν2}

2 ) ·O(n−min{2ν1,p2ν2, 1−max{ν1,ν2}
2

}) +O(nmax{ν1,ν2}−1/2)

= O(n−min{2ν1−max{ν1,ν2}
2

,p2ν2−max{ν1,ν2}
2

,1/2−max{ν1,ν2}}) +O(nmax{ν1,ν2}−1/2)

= o(1),

where Gn =
√
n(Pn − P ) and the last equality holds because 0 < ν1, ν2 < 1/2,

4ν1 > max{ν1, ν2}, and p2ν2 > 2ν2 > max{ν1, ν2}. Then by the Markov’s inequality,

we have

I2n = n−1/2Gnl
′
γ(θ̂n;W )[v∗j − v∗j,n] = op(n

−1/2).

By combining I1n = op(n
−1/2) and I2n = op(n

−1/2), we have S ′
γ,n(θ̂n)[v

∗
j ] = op(n

−1/2).

Next, to verify the last part of (A4), we need to show that S ′
ζ,n(θ̂n)[h

∗
j ] = op(n

−1/2)

with h∗j(·, β̂n, γ̂n) = w∗
j (Λ̂(·))+ĝ′n(Λ̂(·))Λ̂′

g(·)[w∗
j ], where we write Λ̂(·) = Λ(·, β̂n, γ̂n, ĝn)

for notational simplicity. Since w∗
j ∈ G2, by Lemma A.3.5 there exists w∗

j,n ∈ G2
n such

that ∥w∗
j,n − w∗

j∥∞ = O(n−2ν2). It follows that S ′
ζ,n(β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n))[h∗j,n] = 0

with h∗j,n(·, β̂n, γ̂n) = w∗
j,n(Λ̂(·))+ ĝ′n(Λ̂(·))Λ̂′

g(·)[w∗
j,n]. Then it suffices to show that for

each 1 ≤ j ≤ d,

S ′
ζ,n(θ̂n)[h

∗
j ] = S ′

ζ,n(θ̂n)[h
∗
j − h∗j,n]

= P{l′ζ(θ̂n;W )[h∗j − h∗j,n]− l′ζ(θ0;W )[h∗j − h∗j,n]}

+ (Pn − P ){l′ζ(ζ̂n;W )[h∗j − h∗j,n]}

= I3n + I4n = op(n
−1/2),

since S ′
ζ(θ0)[h

∗
j − h∗j,n] = 0. We will take the similar arguments used in the proof of

S ′
γ,n(θ̂n)[v

∗
j ] = op(n

−1/2) to show that both I3n and I4n equal to op(n
−1/2).

For I3n, using the Taylor expansion for l′ζ(θ̂n)[h
∗
j − h∗j,n] at θ0, we have

I3n =P{(β̂n − β0)
T l′′βζ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[h∗j − h∗j,n]
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+ l′′ζγ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[h∗j − h∗j,n, γ̂n − γ0]

+ l′′ζζ(β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n);W )[h∗j − h∗j,n, ζ̂n − ζ0]},

where (β̃n, γ̃n(·), ζ̃n(·, β̃n, γ̃n)) is some point between θ0 and θ̂n. Let Λ̃(t, x) = Λ(t, x, β̃n,

γ̃n, g̃n). Note that by solving initial value problems in Lemma A.3.1, we have Λ̃′
β(t, x)

is bounded on t ∈ [0, τ ] and x ∈ X based on the boundedness of γ̃n, g̃n, and

g̃′n. Also, we have ∥Λ̃′
g(·)[w]∥∞ ≲ ∥w∥∞, ∥Λ̃′

γ(·)[v]∥2 ≲ ∥v∥2, and furthermore,

supt∈[0,τ ],x∈X ∥Λ̃′′
gβ(t, x)[w]∥ ≲ ∥w∥∞+∥w′∥∞ and ∥Λ̃′′

gγ(·)[w, v]∥2 ≲ (∥w∥∞+∥w′∥∞)∥v∥2.

Using the triangle inequality, it follows that

∥(h∗j − h∗j,n)(·, β̃n, γ̃n)∥∞ = ∥(w∗
j − w∗

j,n)(Λ̃(·)) + g̃′n(Λ̃(·))Λ̃′
g(·)[w∗

j − w∗
j,n]∥∞

≲ ∥w∗
j − w∗

j,n∥∞,

sup
t∈[0,τ ],x∈X

∥(h∗j − h∗j,n)
′
β(t, x, β̃n, γ̃n)∥ = sup

t∈[0,τ ],x∈X
∥(w∗

j − w∗
j,n)

′(Λ̃(t, x))Λ̃′
β(t, x)

+ g̃′n(Λ̃(t, x))Λ̃
′′
gβ(t, x)[w

∗
j − w∗

j,n]

+ g̃′′n(Λ̃(t, x))Λ̃
′
g(t, x)[w

∗
j − w∗

j,n]Λ̃
′
β(t, x)∥

≲ ∥w∗
j − w∗

j,n∥∞ + ∥(w∗
j − w∗

j,n)
′∥∞,

and

∥(h∗j − h∗j,n)
′
γ(·, β̃n, γ̃n)[γ̂n − γ0]∥2 = ∥(w∗

j − w∗
j,n)

′(Λ̃(·))Λ̃′
γ(·)[γ̂n − γ0]

+ g̃′n(Λ̃(·))Λ̃′′
gγ(·)[w∗

j − w∗
j,n, γ̂n − γ0]

+ g̃′′n(Λ̃(·))Λ̃′
g(·)[w∗

j − w∗
j,n]Λ̃

′
γ(·)[γ̂n − γ0]∥2

≲ (∥w∗
j − w∗

j,n∥∞ + ∥(w∗
j − w∗

j,n)
′∥∞)∥γ̂n − γ0∥2.

Therefore, by plugging the derivatives in Lemma A.3.4 and using the triangle inequal-

ity and the Cauchy-Schwarz inequality, I3n is dominated by

I3n ≲ sup
t∈[0,τ ],x∈X

|(β̂n − β0)
T (h∗j − h∗j,n)

′
β(t, x, β̃n, γ̃n)|+ ∥(h∗j − h∗j,n)

′
γ(·, β̃n, γ̃n)[γ̂n − γ0]∥2

+ ∥(h∗j − h∗j,n)(·, β̃n, γ̃n)∥∞ · P
{ τ∫

0

exp
(
XT β̃n + γ̃n(t) + g̃n(Λ̃(t,X))

)
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·
(
(X + g̃′n(Λ̃(t,X))T (β̂n − β0) + γ̂n(t)− γ0(t) + g̃′n(Λ̃(t,X))Λ̃′

γ(t,X)[γ̂n − γ0]

+ ζ̂n(t,X)− ζ0(t,X)
)2
dt
}1/2

≲ ∥β̂n − β0∥ · sup
t∈[0,τ ],x∈X

∥(h∗j − h∗j,n)
′
β(t, x, β̃n, γ̃n)∥+ ∥(h∗j − h∗j,n)

′
γ(·, β̃n, γ̃n)[γ̂n − γ0]∥2

+ ∥(h∗j − h∗j,n)(·, β̃n, γ̃n)∥∞ ·
(
∥β̂n − β0∥2 + ∥γ̂n − γ0∥22 + ∥ζ̂n − ζ0∥22

)1/2
≲ (∥w∗

j − w∗
j,n∥∞ + ∥(w∗

j − w∗
j,n)

′∥∞)d(θ̂n, θ0).

Based on the Corollary 6.21 in Schumaker (2007), we have ∥(w∗
j −w∗

j,n)
′∥∞ = O(n−ν2)

and

I3n = O(n−ν2) ·Op(n
−min{p1ν1,p2ν2, 1−max{ν1,ν2}

2
})

= Op(n
−min{p1ν1+ν2,(p2+1)ν2,

1−max{ν1,ν2}
2

+ν2})

= op(n
−1/2),

where the last equality holds because p1ν1 + ν2 > 1/2, (p2 + 1)ν2 > 1/2, and 2ν2 >

max{ν1, ν2}.

Next, we use the maximal inequality and the Markov’s inequality to show that

I4n = op(n
−1/2). By Lemma A.3.7, the ϵ-bracketing number associated with ∥ · ∥∞

norm for the class F ζ
n,j(η) is bounded by (η/ϵ)c3qn1+c4qn2+d, which implies that

logN[ ](ϵ,F ζ
n,j(η), L2(P )) ≤ logN[ ](ϵ,F ζ

n,j(η), ∥ · ∥∞) ≲ (c3qn1 + c4qn2) log(η/ϵ).

It follows that the bracketing integral satisfies

J[ ](ϵ,F ζ
n,j(η), L2(P )) =

η∫
0

√
1 + logN[ ](ϵ,F ζ

n,j(η), L2(P ))dϵ ≲ (c3qn1 + c4qn2)
1/2η.

Here we choose ηn = O(n−min{p1ν1,2ν2, 1−max{ν1,ν2}
2

}) such that ∥w∗
j−w∗

j,n∥∞ = O(n−2ν2) ≤

ηn and d(θ̂n, θ0) = Op(n
−min{p1ν1,p2ν2, 1−max{ν1,ν2}

2
}) ≤ ηn for p2 ≥ 3, then l′ζ(θ̂n;W )[h∗j −

h∗j,n] ∈ F ζ
n,j(ηn). For any l

′
ζ(θ;W )[h∗j − hj] ∈ F ζ

n,j(ηn), we have

P{l′ζ(θ;W )[h∗j − hj]}2

=P{∆((w∗
j − wj)(Y ) + g′(Λ(Y,X, β, γ, g))Λ′

g(Y,X, β, γ, g)[w
∗
j − wj])
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−
Y∫

0

exp
(
XTβ + γ(t) + g(Λ(t,X, β, γ, g))

)
{(w∗

j − wj)(t) + ζ ′g(t,X, β, γ)[w
∗
j − wj]}dt}2

≲∥w∗
j − wj∥2∞ + ∥Λ′

g(·, β, γ, g)[w∗
j − wj]∥2∞

≲∥w∗
j − wj∥2∞ ≤ ηn.

Also, supθ:d(θ,θ0)≤ηn;wj :∥w∗
j−wj∥∞≤ηn |l′ζ(θ;W )[h∗j −hj]| is bounded by some constant 0 <

M <∞. By the maximal inequality, it follows that

EP∥Gn∥Fζ
n,j(ηn)

≲ J[ ](ϵ,F ζ
n,j(ηn), L2(P ))

(
1 +

J[ ](ϵ,F ζ
n,j(ηn), L2(P ))

η2n
√
n

M

)

≲ (c3qn1 + c4qn2)
1/2ηn + (c3qn1 + c4qn2)n

−1/2

= O(n
max{ν1,ν2}

2 ) ·O(n−min{p1ν1,2ν2, 1−max{ν1,ν2}
2

}) +O(nmax{ν1,ν2}−1/2)

= O(n−min{p1ν1−max{ν1,ν2}
2

,2ν2−max{ν1,ν2}
2

,1/2−max{ν1,ν2}}) +O(nmax{ν1,ν2}−1/2)

= o(1),

where the last equality holds because 0 < ν1, ν2 < 1/2, 2ν2 > max{ν1, ν2} >

max{ν1, ν2}/2, and p1ν1 ≥ 2ν1 > max{ν1, ν2}/2 for p1 ≥ 2. Then by the Markov’s

inequality, we have

I4n = n−1/2Gnl
′
ζ(θ̂n;W )[h∗j − h∗j,n] = op(n

−1/2).

By combining I3n = op(n
−1/2) and I4n = op(n

−1/2), we verify that S ′
ζ,n(θ̂n)[h

∗
j ] =

op(n
−1/2). This completes the verification of the assumption (A4).

Now we verify assumption (A5). Since the proofs of three stochastic equicontinuity

equations are essentially based on the identical arguments, we only present the proof

of the first equation as follows. First, by Lemma A.3.8, the ϵ-bracketing number

associated with ∥ · ∥∞ norm for the class F∗β
n,j(η) is bounded by (η/ϵ)c1qn1+c2qn2+d,

which implies that the bracketing integral is bounded by (c1qn1 + c2qn2)
1/2η, i.e.

J[ ](ϵ,F∗β
n,j(η), L2(P )) ≲ (c1qn1 + c2qn2)

1/2η.

For any l′βj
(θ;W ) − l′βj

(θ0;W ) ∈ F∗β
n,j(ηn), by taking the Taylor expansion at θ0, it
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follows that

l′βj
(θ;W )− l′βj

(θ0;W ) =(β − β0)
T l′′βjβ

(β̃, γ̃(·), ζ̃(·, β̃, γ̃);W )

+ l′′βjγ
(β̃, γ̃(·), ζ̃(·, β̃, γ̃);W )[γ − γ0]

+ l′′βjζ
(β̃, γ̃(·), ζ̃(·, β̃, γ̃);W )[ζ − ζ0]

where (β̃, γ̃(·), ζ̃(·, β̃, γ̃)) is some point between θ0 and θ. By applying the triangle

inequality and the Cauchy-Schwarz inequality, we have

P{l′βj
(θ;W )− l′βj

(θ0;W )}2 ≤∥β − β0∥2P{∥l′′βjβ
(β̃, γ̃(·), ζ̃(·, β̃, γ̃);W )∥2}

+ P{l′′βjγ
(β̃, γ̃(·), ζ̃(·, β̃, γ̃);W )[γ − γ0]}2

+ P{l′′βjζ
(β̃, γ̃(·), ζ̃(·, β̃, γ̃);W )[ζ − ζ0]}2

=B1 +B2 +B3.

For B1, by Lemma A.3.4, l′′βjβ
(θ̃;W ) is bounded and it follows that B1 ≲ ∥β − β0∥2.

For B2, since g̃, g̃
′, g̃′′, Λ̃′

βj
(t, x) are bounded and ∥Λ̃′′

βjγ
(·)[v]∥2 ≲ ∥v∥2, by applying the

Cauchy-Schwarz inequality and the same arguments that are used in Lemma A.3.2

to prove that linear operators are bounded above, it follows that

B2 =P
{
∆ζ̃ ′′βjγ

(Y,X)[γ − γ0]−
Y∫

0

(
ζ̃ ′′βjγ

(t,X)[γ − γ0] + (Xj + g̃′(Λ̃(t,X))Λ̃′
βj
(t,X))

· (γ(t)− γ0(t) + g̃′(Λ̃(t,X))Λ̃′
γ(t,X)[γ − γ0])

)
dΛ̃(t,X)

}2

≲P{
Y∫

0

(ζ̃ ′′βjγ
(t,X)[γ − γ0])

2dΛ0(t,X)}

+ P{
Y∫

0

(γ(t)− γ0(t) + g̃′(Λ̃(t,X))Λ̃′
γ(t,X)[γ − γ0])

2dΛ̃(t,X)}

≲P{
Y∫

0

(g̃′(Λ̃(t,X))Λ̃′′
βjγ

(t,X)[γ − γ0])
2dΛ0(t,X)}

+ P{
Y∫

0

(g̃′′(Λ̃(t,X))Λ̃′
γ(t,X)[γ − γ0]Λ̃

′
βj
(t,X))2dΛ0(t,X)}
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+ P{
Y∫

0

(γ(t)− γ0(t) + g̃′(Λ̃(t,X))Λ̃′
γ(t,X)[γ − γ0])

2dΛ̃(t,X)}

≲∥γ − γ0∥22 ≤ η2.

For B2, similarly, we can show that

B3 =P
{
−

Y∫
0

(
(ζ ′βj

− ζ ′0βj
)(t,X) + (Xj + g̃′(Λ̃(t,X))Λ̃′

βj
(t,X))(ζ − ζ0)(t,X)dΛ̃(t,X)

+ ∆(ζ ′βj
− ζ ′0βj

)(Y,X)
}2

≲∥ζ − ζ0∥22 + ∥ζ ′βj
− ζ ′0βj

∥22 ≤ η2 + ∥ζ ′βj
− ζ ′0βj

∥22.

Furthermore, by using the triangle inequality together with the boundedness of Λ′
βj

and g′0, it follows that

∥ζ ′βj
− ζ ′0βj

∥22 = ∥g′(Λ(·, β, γ, g))Λ′
βj
(·, β, γ, g)− g′0(Λ0(·))Λ′

0βj
(·)∥22

≤ ∥g′(Λ(·, β, γ, g))Λ′
βj
(·, β, γ, g)− g′0(Λ0(·))Λ′

βj
(·, β, γ, g)∥22

+ ∥g′0(Λ0(·))Λ′
βj
(·, β, γ, g)− g′0(Λ0(·))Λ′

0βj
(·)∥22

≲ ∥g′(Λ(·, β, γ, g))− g′0(Λ0(·))∥22 + ∥Λ′
βj
(·, β, γ, g)− Λ′

0βj
(·)∥22

≲ ∥g′(Λ(·, β, γ, g))− g′0(Λ0(·))∥22 + d2(θ, θ0) ≤ η2.

Therefore, we have P{l′βj
(θ;W )− l′βj

(θ0;W )}2 ≲ η2. By Lemma A.3.4, we also have

∥l′βj
(θ;W )−l′βj

(θ0;W )∥∞ is bounded. We choose ηn = O(n−min{p1ν1,(p2−1)ν2,
1−max{ν1,ν2}

2
}).

Then by the maximal inequality, it follows that

EP∥Gn∥F∗β
n,j(ηn)

≲ (c1qn1 + c2qn2)
1/2ηn + (c1qn1 + c2qn2)n

−1/2

= O(n
max{ν1,ν2}

2 ) ·O(n−min{p1ν1,(p2−1)ν2,
1−max{ν1,ν2}

2
}) +O(nmax{ν1,ν2}−1/2)

= O(n−min{p1ν1−max{ν1,ν2}
2

,(p2−1)ν2−max{ν1,ν2}
2

,1/2−max{ν1,ν2}}) +O(nmax{ν1,ν2}−1/2)

= o(1),

where the last equality holds because p1ν1 ≥ ν1 > max{ν1, ν2}/2, (p2 − 1)ν2 ≥ 2ν2 >

max{ν1, ν2}/2 for p2 ≥ 3, and 0 < ν1, ν2 < 1/2. Thus, for ξ = min{p1ν1, p2ν2, 1−max{ν1,ν2}
2

}
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and Cn−ξ = O(n−min{p1ν1,p2ν2, 1−max{ν1,ν2}
2 ), by Markov’s inequality, we have

sup
d(θ,θ0)≤Cn−ξ,θ∈Θn

|Gn{l′βj
(θ;W )− l′βj

(θ0;W )}| = op(1),

which completes the verification of the first equation in the assumption (A5). The

other two stochastic equicontinuity equations in (A5) can be verified using the same

arguments.

Finally, we verify assumption (A6) using the Taylor expansion. Similarly, we just

prove the first equation, since the proofs of the other two equations are based on the

same arguments. By taking the Taylor expansion of l′β(θ;W ) at θ0, it follows that

l′β(θ;W )− l′β(θ0;W ) =l′′ββ(θ̃;W )(β − β0) + l′′βγ(θ̃;W )[γ − γ0] + l′′βζ(θ̃;W )[ζ − ζ0]

where θ̃ = (β̃, γ̃(·), ζ̃(·, β̃, γ̃)) is a point between θ and θ0. Thus,

P{l′β(θ;W )− l′β(θ0;W )− l′′ββ(θ0;W )(β − β0)− l′′βγ(θ0;W )[γ − γ0]− l′′βζ(θ0;W )[ζ − ζ0]}

= P
{
(l′′ββ(θ̃;W )− l′′ββ(θ0;W ))(β − β0)

}
+ P

{
l′′βγ(θ̃;W )[γ − γ0]− l′′βγ(θ0;W )[γ − γ0]

}
+ P

{
l′′βζ(θ̃;W )[ζ − ζ0]− l′′βζ(θ0;W )[ζ − ζ0]

}
After some direct calculation, we have∣∣∣P{l′′ββ(θ̃;W )− l′′ββ(θ0;W )

}∣∣∣
≤P
{ Y∫

0

∣∣∣ (exp(XTβ0 + γ0(t) + ζ0(t,X)
)
− exp

(
XT β̃ + γ̃(t) + ζ̃(t,X)

))
ζ̃ ′′ββ(t,X)

∣∣∣dt}

+ P
{∣∣∣ Y∫

0

(X + ζ ′0β(t,X))(X + ζ ′0β(t,X))T − (X + ζ̃ ′β(t,X))(X + ζ̃ ′β(t,X))TdΛ0(t,X)
∣∣∣}

+ P
{ Y∫

0

∣∣∣ (exp(XTβ0 + γ0(t) + ζ0(t,X)
)
− exp

(
XT β̃ + γ̃(t) + ζ̃(t,X)

))
· (X + ζ̃ ′β(t,X))(X + ζ̃ ′β(t,X))T

∣∣∣dt}
=K1 +K2 +K3.

For K1, by the mean value theorem and the Cauchy-Schwarz inequality, it follows
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that

K1 = P
{ Y∫

0

∣∣∣ exp(ψ̃(t,X)
)(

XT (β0 − β̃) + (γ0 − γ̃)(t) + ζ0(t,X)− ζ̃(t,X)
)
ζ̃ ′′ββ(t,X)

∣∣∣dt}
≲ ∥β0 − β̃∥+ ∥γ0 − γ̃∥2 + ∥ζ0 − ζ̃∥2 ≤ d(θ0, θ)

= O(n−min{p1ν1,p2ν2, 1−max{ν1,ν2}
2

}),

where ψ̃(t,X) = XTβ0+γ0(t)+ζ0(t,X)+ξ(XT (β̃−β0)+γ̃(t)−γ0(t)+ζ̃(t,X)−ζ0(t,X))

for some ξ ∈ (0, 1) and is bounded. For K2, by the Cauchy-Schwarz inequality and

the same arguments that are used to verify assumption (A4), we have

K2 ≲ P
{ τ∫

0

∣∣∣(ζ ′0β(t,X)− ζ̃ ′β(t,X))(X + ζ ′0β(t,X) + ζ̃ ′β(t,X))T
∣∣∣2 dΛ0(t,X)

}1/2

≲ ∥ζ ′0β(·)− ζ̃ ′β(·)∥2

≲ d(θ0, θ) + ∥g′0(Λ0(·))− g(Λ(·, β, γ, g))∥2

= O(n−min{p1ν1,(p2−1)ν2,
1−max{ν1,ν2}

2
}).

For K3, by applying the same arguments for K1, we can show that

K3 ≲ ∥β0 − β̃∥+ ∥γ0 − γ̃∥2 + ∥ζ0 − ζ̃∥2 = O(n−min{p1ν1,p2ν2, 1−max{ν1,ν2}
2

}).

Therefore,

P
{∣∣∣(l′′ββ(θ̃;W )− l′′ββ(θ0;W ))(β − β0)

∣∣∣}
= O(n−min{p1ν1,(p2−1)ν2,

1−max{ν1,ν2}
2

}) ·O(n−min{p1ν1,p2ν2, 1−max{ν1,ν2}
2

})

= O(n−min{2p1ν1,p1ν1+(p2−1)ν2,(2p2−1)ν2,
1
2
+p1ν1−max{ν1,ν2}

2
, 1
2
+(p2−1)ν2−max{ν1,ν2}

2
,1−max{ν1,ν2}})

= o(n−1/2),

where the last equality holds because p1 ≥ 2 and p2 ≥ 3, thus 2p1ν1 > p1/(p1 + 2) ≥

1/2, p1ν1 + (p2 − 1)ν2 >
p1

2(p1+2)
+ p2−1

2(p2+1)
≥ 1

2·2 +
1
2·2 = 1

2
, (2p2 − 1)ν2 >

2p2−1
2(p2+1)

> 1
2
,

p1ν1 ≥ 2ν1 >
max{ν1,ν2}

2
, (p2−1)ν2 > ν2 >

max{ν1,ν2}
2

, and max{ν1, ν2} < 1/2. Similarly,

we can show that

P
{∣∣∣l′′βγ(θ̃;W )[γ − γ0]− l′′βγ(θ0;W )[γ − γ0]

∣∣∣}
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= O(n−min{2p1ν1,p1ν1+(p2−1)ν2,(2p2−1)ν2,
1
2
+p1ν1−max{ν1,ν2}

2
, 1
2
+(p2−1)ν2−max{ν1,ν2}

2
,1−max{ν1,ν2}})

= o(n−1/2)

and

P
{∣∣∣l′′βζ(θ̃;W )[ζ − ζ0]− l′′βζ(θ0;W )[ζ − ζ0]

∣∣∣}
= O(n−min{2p1ν1,p1ν1+(p2−1)ν2,(2p2−1)ν2,

1
2
+p1ν1−max{ν1,ν2}

2
, 1
2
+(p2−1)ν2−max{ν1,ν2}

2
,1−max{ν1,ν2}})

= o(n−1/2).

Thus, it follows that

P{l′β(θ;W )− l′β(θ0;W )− l′′ββ(θ0;W )(β − β0)− l′′βγ(θ0;W )[γ − γ0]− l′′βζ(θ0;W )[ζ − ζ0]}

= O(n−min{2p1ν1,p1ν1+(p2−1)ν2,(2p2−1)ν2,
1
2
+p1ν1−max{ν1,ν2}

2
, 1
2
+(p2−1)ν2−max{ν1,ν2}

2
,1−max{ν1,ν2}})

= O(n−αξ)

where α = min{2p1ν1, p1ν1 + (p2 − 1)ν2, (2p2 − 1)ν2,
1
2
+ p1ν1 − max{ν1,ν2}

2
, 1
2
+ (p2 −

1)ν2 − max{ν1,ν2}
2

, 1 − max{ν1, ν2}}/min{p1ν1, p2ν2, 1−max{ν1,ν2}
2

} > 1 and αξ > 1/2.

This completes the verification of (A6).

Therefore, we have verified (A1)-(A6) and by Theorem 2.3.3, we have

√
n(β̂n − β0) = A−1

√
nPnl

∗(β0, γ0, ζ0;W ) + op(1) →d N(0, A−1B(A−1)T ),

where

l∗(β0, γ0, ζ0;W ) = l′β(β0, γ0, ζ0;W )−l′γ(β0, γ0, ζ0;W )[v∗]−l′ζ(β0, γ0, ζ0;W )[h∗(·, β0, γ0)]

and A is given by P{l∗(β0, γ0, ζ0;W )⊗2} = I(β0), as shown in the above verification

of (A3). Thus, A = B = I(β0) and A
−1B(A−1)T = I−1(β0). Therefore, we have

√
n(β̂n − β0) =

√
nI−1(β0)Pnl

∗(β0, γ0, ζ0;W ) + op(1) →d N(0, I−1(β0)),

which completes the proof.

A.3.4 Explanation of Condition (C7)

Condition (C7) assumes the existence of the least favorable directions which are

essential for semi-parametric efficiency. We may find v∗ and w∗ through equations
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in (C7). Specifically, v∗ and w∗ need to satisfy P{∆A∗(U,X)ψ′
0γ(Y,X)[v]} = 0 and

P{∆A∗(U,X)ψ′
0g(Y,X)[w]} = 0 for any v ∈ Γp1 and w ∈ Gp2 .

For the first equation, using the fact of P{
∫ Y

0
f(t,X)dΛ0(t,X)} = P{∆f(Y,X)}

and the equations in (A.19), we have for any v ∈ Γp1

P{∆A∗(U,X)ψ′
0γ(Y,X)[v]}

=P{
Y∫

0

A∗(R(t)eX
T β0 , X)

·

g′0(Λ0(t,X)) exp(g0(Λ0(t,X)))eX
T β0

t∫
0

exp(γ0(s))v(s)ds+ v(t)

 dΛ0(t,X)}

=P{
R(Y )eX

T β0∫
0

exp
(
g0(Λ̃0(t))

)
A∗(t,X)

·

g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

) t∫
0

v(R−1(e−XT β0s))ds+ v(R−1(e−XT β0t)

 dt}

=P{
R(Y )eX

T β0∫
0

v(R−1(e−XT β0s))

R(Y )eX
T β0∫

s

g′0(Λ̃0(t)) exp
(
2g0(Λ̃0(t))

)
A∗(t,X)dtds

+

R(Y )eX
T β0∫

0

v(R−1(e−XT βs)) exp
(
g0(Λ̃0(s))

)
A∗(s,X)ds}

=P{
∞∫
0

1(R(Y ) ≥ s) · v(R−1(s)) · eXT β0

·
( R(Y )eX

T β0∫
seX

T β0

g′0(Λ̃0(t)) exp
(
2g0(Λ̃0(t))

)
A∗(t,X)dt (A.38)

+ exp
(
g0(Λ̃0(se

XT β0))
)
A∗(seX

T β0 , X)
)
ds}

=

∞∫
0

v(R−1(s)) · P
{
1(R(Y ) ≥ s) · eXT β0

·
( R(Y )eX

T β0∫
seX

T β0

g′0(Λ̃0(t)) exp
(
2g0(Λ̃0(t))

)
A∗(t,X)dt (A.39)
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+ exp
(
g0(Λ̃0(se

XT β0))
)
A∗(seX

T β0 , X)
)}

ds, (A.40)

where the second equality is obtained by the variable transformation t̃ = R(t)xX
T β0

and further replacing the notation t̃ with t in the integral, and the third equality

holds by switching the order of integration. To make the equation (A.40) equal to

zero for any v ∈ Γp1 , we can take v∗ and w∗ satisfying

P{
R(Y )eX

T β0∫
seX

T β0

g′0(Λ̃0(t)) exp
(
2g0(Λ̃0(t))

)
A∗(t,X)eX

T β0dt}

= −P{1(R(Y ) ≥ s) exp
(
g0(Λ̃0(se

XT β0))
)
A∗(seX

T β0 , X)eX
T β0}. (A.41)

For the second equation in (C7), similarly, we have

P{∆A∗(U,X)ψ′
0g(Y,X)[w]}

=P{
Y∫

0

A∗(R(t)eX
T β0 , X)

·

g′0(Λ0(t,X)) exp(g0(Λ0(t,X)))

Λ0(t,X)∫
0

exp(−g0(s))w(s)ds+ w(Λ0(t,X))

 dΛ0(t,X)}

=P{
R(Y )eX

T β0∫
0

exp
(
g0(Λ̃0(t))

)
A∗(t,X)

·

g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

) t∫
0

w(Λ̃0(s))ds+ w(Λ̃0(t))

 dt}

=P{
U∫

0

 U∫
s

g′0(Λ̃0(t)) exp
(
2g0(Λ̃0(t))

)
A∗(t,X)dt+ exp

(
g0(Λ̃0(η))

)
A∗(t,X)


· w(Λ̃0(s))ds}

=

∞∫
0

w(Λ̃0(s))

· P{
U∫
s

g′0(Λ̃0(t)) exp
(
2g0(Λ̃0(t))

)
A∗(t,X)dt+ 1(U ≥ s) exp

(
g0(Λ̃0(s))

)
A∗(s,X)}ds.

To make it equal to zero for any w ∈ Gp2 , we can take v∗ and w∗ such that, for any
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η, A∗(t, x) satisfies
∞∫
s

P{1(U ≥ t)A∗(t,X)}g′0(Λ̃0(t)) exp
(
2g0(Λ̃0(t))

)
dt

= − exp
(
g0(Λ̃0(s))

)
P{1(U ≥ s)A∗(s,X)}. (A.42)

By taking derivatives with respect to s on both sides, we have

exp
(
g0(Λ̃0(s))

)dP{1(U ≥ s)A∗(s,X)}
ds

= 0,

which implies that P{1(U ≥ s)A∗(s,X)} is a constant. Then equation (A.42) holds

only if

P{1(U ≥ s)A∗(s,X)} = 0. (A.43)

Therefore, we can take v∗ andw∗ such thatA∗(t, x) satisfies equations (A.41) and (A.43).

Next, we provide solutions for the Cox model and the linear transformation model

with a known transformation function as illustration.

For the Cox model where g0 ≡ 0, it suffices to find v∗ such that the equation in

(A.41) holds with A∗(t, x) = −x+v∗(R−1(te−xT β0)), which implies that P{1(R(Y ) ≥

t)eX
T β0(v∗(R−1(t))−X)} = 0. We can take

v∗(t) =
P{1(Y ≥ t)eX

T β0X}
P{1(Y ≥ t)eXT β0}

.

For the linear transformation model where γ0 is known, it suffices to find w∗ such

that the equation in (A.43) holds with

A∗(t, x) =− (g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

)
t+ 1)x

+ g′0(Λ̃0(t) exp
(
g0(Λ̃0(t))

) Λ̃0(t)∫
0

exp(−g0(s))w∗(s)ds+w∗(Λ̃0(t)).

It follows that w∗ satisfies

g′0(Λ̃0(t) exp
(
g0(Λ̃0(t))

) Λ̃0(t)∫
0

exp(−g0(s))w∗(s)ds+w∗(Λ̃0(t))

= (g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

)
t+ 1)

P{1(U ≥ t)X}
P{1(U ≥ t)}

.

By taking the variable transformation t̃ = Λ̃0(t) and further replacing t̃ with t, it is
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sufficient to take w∗ such that g′0(t) exp(g0(t))
∫ t

0
exp(−g0(s))w∗(s)ds+w∗(t) = ϕϕϕ(t)

where ϕϕϕ(t) is given by

ϕϕϕ(t) =
(
g′0(t) exp(g0(t))Λ̃

−1
0 (t) + 1

) P{1(Λ0(Y,X) ≥ t)X}
P{1(Λ0(Y,X) ≥ t)}

.

It is straightforward to verify that w∗ can be taken as w∗(t) = ϕϕϕ(t)− g′0(t)
∫ t

0
ϕϕϕ(s)ds.

A.3.5 Simplification of Condition (C8)

Condition (C8) assumes non-singularity assumption of the information matrix.

We may simplify it to some sufficient conditions if we can find the least favorable

directions required in the condition (C7). Recall that we have provided explicit

constructions of the least favorable directions for the Cox model and for the linear

transformation model with a known transformation respectively in Section A.3.4. We

further reduce the non-singularity assumption for the above two cases as follows.

For the Cox model, we have g0 ≡ 0, Λ̃0(t) ≡ t, and the least favorable function v∗

can be derived as

v∗(t) =
P{1(Y ≥ t)eX

T β0X}
P{1(Y ≥ t)eXT β0}

.

It follows that the efficient score for β is

l∗(β0, γ0;W ) =

∞∫
0

A∗(t, x)dM(t) =

∞∫
0

[−X +
P{1(U ≥ t)eX

T β0X}
P{1(U ≥ t)eXT β0}

]dM(t),

where U = eX
T β0
∫ Y

0
exp(γ0(s))ds as defined in (C5) and M(t) = ∆1(U ≤ t) −∫ t

0
1(U ≥ s)ds is the event counting process martingale. Let µ(t) = P{1(U≥t)eX

T β0X}
P{1(U≥t)eX

T β0}
.

Then by the property of martingale, the information matrix is given by

I(β0) = P (l∗(β0, γ0;W )⊗2) = P

 ∞∫
0

[−X + µ(t)]⊗2
1(U ≥ t)dt


=

∞∫
0

P
(
[−X + µ(t)]⊗2

1(U ≥ t)
)
dt,

which reduces to the same information matrix of the MPLE for the Cox model. The

above information matrix is similarly assumed to be positive definite in Kalbfleisch
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and Prentice (2011, page 175). The non-singularity condition in (C8) can be satis-

fied if P
(
[−X + µ(t)]⊗2

1(U ≥ t)
)
is positive definite over a set of t with non-zero

measure.

For the linear transformation model with a known transformation, i.e. γ0 is known,

given the least favorable direction w∗ in Remark 8, the efficient score for β is

l∗(β0, ζ0(·, β0);W ) =

∞∫
0

m(t) [P (X|U ≥ t)−X] dM(t),

with m(t) = g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

)
t+ 1, and the information matrix is

I(β0) = P

 ∞∫
0

m(t)2 [P (X|U ≥ t)−X]⊗2
1(U ≥ t) dΛ̃0(t)


=

∞∫
0

m2(t) · P
(
[P (X|U ≥ t)−X]⊗2

1(U ≥ t)
)
· exp

(
g0(Λ̃0(t))

)
dt

=

∞∫
0

m2(t) · V ar(X|U ≥ t) · P (U ≥ t) · exp
(
g0(Λ̃0(t))

)
dt.

The information matrix takes a similar form as that in Ding and Nan (2011), where it

is assumed to be positive definite. Here we further investigate some sufficient condi-

tions for its non-singularity. The condition (C8) can be satisfied if m2(t) ·V ar(X|U ≥

t) · P (U ≥ t) is positive definite over a set of t with non-zero measure. In particular,

when the event time follows the AFT model with a Weibull error, i.e., γ0 ≡ 0 and

Λ̃0(t) = ktv, the information matrix becomes

I(β0) =

∞∫
0

v2 · V ar(X|CeXT β0 ≥ t) · P (CeXT β0 ≥ t) dF0(t),

where F0(t) = 1− exp(−ktv) and C is the censoring time. This information matrix is

nonsingular if the conditional variance V ar(X|CeXT β0 ≥ t) is positive definite for t

over certain interval.
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A.4 Proof of Propositions 2.2.1 and 2.2.2

The proof of Proposition 2.2.1 is based on the existing identifiability conditions

for the linear transformation model (Horowitz, 1996) when both the transformation

function and the error distribution are unknown.

Proof of Proposition 2.2.1. Suppose two groups of parameters (qi(·), βi, αi(·)) for i =

1, 2 give the same survival distribution. LetHi(u) =
∫ − lnu

0
q−1
i (v)dv, Gi(u) = H−1

i (u),

and φi(t) = log
∫ t

0
αi(s)ds for i = 1, 2. In the equivalent linear regression representa-

tion, we have that φi(T ) = −xTβi + ϵi specifies the same distribution of event time

T for i = 1, 2, where the survival function of exp(ϵi) is given by Gi. Note that, for

the linear transformation model φ(T ) = −x⊤β + ϵ with both φ and the distribution

of ϵ unspecified, Horowitz (1996, page 105) stated that the model parameters are

identifiable up to a scale and a location normalization when at least one of the co-

variates x has a non-zero β coefficient and the conditional probability distribution of

this covariate given the remaining covariates is absolutely continuous with respect to

Lebesgue measure. Since we assume that there is at least one of the covariates in x is

continuous and this covariate has a non-zero coefficient, following the identifiability

conditions stated in Horowitz (1996), there exist constants c1 > 0 and c2 such that

β1 = c1β2, φ1(t) = c1φ2(t) + c2 for any t > 0, and ϵ1 has the same distribution as

c1ϵ2 + c2, i.e.,

G1(t) = Pr(exp(ϵ1) > t) = Pr(exp(c1ϵ2 + c2) > t)

= Pr(exp(ϵ2) > (te−c2)1/c1)) = G2((te
−c2)1/c1).

After plugging the definitions of φi along with some calculations, we have for any

t > 0
t∫

0

α1(s)ds = ec2

 t∫
0

α2(s)ds

c1

.
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Let exp(−s) = G1(t) = G2((te
−c2)1/c1). Then by the definitions of Gi we have

t = H1(exp(−s)) =
s∫

0

q−1
1 (v)dv and (te−c2)1/c1 = H2(exp(−s)) =

s∫
0

q−1
2 (v)dv.

It follows that
∫ s

0
q−1
1 (v)dv = ec2

(∫ s

0
q−1
2 (v)dv

)c1 for any s > 0, which completes the

proof.

As a direct result of Proposition 2.2.1, Proposition 2.2.2 provides the necessary

and sufficient degeneration condition for AFT and Cox models.

Proof of Proposition 2.2.2. The linear transformation model in (2.5) coincides with

the Cox model if and only if there exists some positive function α̃ such that parameters

(1, β̃, α̃(·)) and (q(·), β, α(·)) give the same survival distribution. By Proposition 2.2.1,

there exists positive constants c1 and c2 such that
t∫

0

q−1(s)ds = c2t
c1 , β = c1β̃, and

t∫
0

α(s)ds = c2

 t∫
0

α̃(s)ds

c1

.

It implies that the function q satisfies q(t) = 1
c1c2

t1−c1 . Similarly, when the lin-

ear transformation model coincides with the AFT model, there exists some positive

function q̃ such that parameters (q̃(·), β̃, 1) and (q(·), β, α(·)) give the same survival

distribution. By Proposition 2.2.1, there exists positive constants c1 and c2 such that
t∫

0

q−1(s)ds = c2

 t∫
0

q̃(s)ds

c1

, β = c1β̃, and

t∫
0

α(s)ds = c2t
c1 .

It follows that the function α takes the form α(t) = c1c2t
c1−1, which completes the

proof.

A.5 Theoretical Properties for the General Class of ODE

Models and Their Proofs

In this section, we further establish the convergence rate and the asymptotic

normality of the proposed sieve estimator for the general class of ODE models in the

presence of covariates Z with time-varying coefficients. We reformulate the model to
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ensure the positivity of α(·) and q(·) in (2.2) below, Λ′(t) = exp
(
xTβ + γ(t) + zTη(t) + g(Λ(t))

)
Λ(0) = 0

, (A.44)

where γ(·) = logα(·) and g(·) = log q(·). Recall that, when there is at least one

non-zero time-varying effect, i.e., η(t) ̸= 0, two groups of parameters (β, γ, g,η) and

(β̃, γ̃, g̃, η̃) give the same survival distribution if only if β = β̃, γ = γ̃+c, g = g̃−c, and

η = η̃ for some constant c. To guarantee the identifiability, we constrain γ(t∗) = 0

with some fixed time point t∗.

Before stating the regularity conditions and main theorems, we firstly update the

notation to make them consistent with the model in (A.44). Let Z ∈ Rd2+1 substitute

(1, ZT )T and γ(·) substitute (γ(·), η1(·), . . . , ηd2(·))T for notational simplicity, then the

general class of ODE models is equivalent to Λ′(t) = exp
(
xTβ + zTγ(t) + g(Λ(t))

)
Λ(0) = 0

, (A.45)

with the first component of γ fixed at the time point t∗, i.e., γ1(t
∗) = c. We denote

the solution of (A.45) by Λ(t, x, z, β,γ, g) and the true parameters associated with

the data generating distribution by (β0, γ0, g0) and simplify Λ(t, x, z, β0,γ0, g0) as

Λ0(t, x, z).

To accommodate covariates Z with time-varying coefficients, we update the con-

ditions (C1)-(C8) to (C1′)-(C8′) with additional regularity conditions on covariates

Z and provide the theorem statements and the sketch of proof in the following sub-

sections.

A.5.1 Regularity conditions and main theorems

We assume additional regularity conditions on Z and list the updated conditions

below.

(C1′) The true parameter β0 is an interior point of a compact set B ⊂ Rd1 .
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(C2′) The joint density of X and Z is bounded below by a constant c > 0 over the

compact domain X × Z ⊂ Rd1+d2+1. P (XXT ) and P (ZZT ) are nonsingular.

(C3′) There exists a truncation time τ < ∞ such that, for some positive constant

δ0, Pr(Y > τ |X,Z) ≥ δ0 almost surely with respect to the joint probability

measure of X and Z. Then there is a constant µ = supx∈X ,z∈Z Λ0(τ, x, z) ≤

− log δ0 such that Λ0(τ,X, Z) = − logPr(T > τ |X,Z) ≤ µ almost surely with

respect to the joint probability measure of X and Z.

(C4′) Let Sp([a, b]) denote the collection of bounded functions f on [a, b] defined in

(C4). The true function γ0(·) belongs to Γp1
t∗ × Γp1 × · · · × Γp1︸ ︷︷ ︸

d2

, where Γp1 :=

Sp1([0, τ ]) and Γp1
t∗ := {γ ∈ Sp1([0, τ ]) : γ(t∗) = 0} with p1 ≥ 2, and the true

function g0(·) belongs to Gp2 := Sp2([0, µ + δ1]) with some positive constant δ1

and p2 ≥ 3.

(C5′) Denote Rz(t) =
∫ t

0
exp
(
zTγ0(s)

)
ds, V = XTβ0, and U = eVRZ(Y ). There

exists η1 ∈ (0, 1) such that for all u ∈ Rd1 with ∥u∥ = 1,

uTV ar(X | U, V, Z)u ≥ η1u
TP (XXT | U, V, Z)u almost surely.

(C6′) Let ψ(t, x, z, β,γ, g) = xTβ + zTγ(t) + g(Λ(t, x, z, β,γ, g)) and denote its func-

tional derivatives with respect to the entirety γ̄(·) = zTγ(·) and g(·) along the

direction v(·) and w(·) at the true parameter by ψ′
0γ̄(t, x, z)[v] and ψ

′
0g(t, x, z)[w]

respectively, whose rigorous definitions are given by (A.49)-(A.50). For any

v(·) = (v1, . . . , vd2+1)
T with vj ∈ Γp1 , 1 ≤ j ≤ d2 + 1, and w(·) ∈ Gp2 , there

exists η2 ∈ (0, 1) such that

(P{ψ′
0γ̄(Y,X,Z)[Z

Tv]ψ′
0g(Y,X,Z)[w] |∆ = 1})2

≤ η2P{(ψ′
0γ̄(Y,X,Z)[Z

Tv])2 |∆ = 1}P{(ψ′
0g(Y,X,Z)[w])

2 |∆ = 1}

almost surely.
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(C7′) There exist v∗
j = (v∗j1, · · · , v∗jd1)

T and w∗ = (w∗
1, · · · , w∗

d1
)T , where v∗jk ∈ Γ2 and

w∗
k ∈ G2 for 1 ≤ j ≤ d2 + 1, 1 ≤ k ≤ d1, such that

P{∆A∗(U,X,Z)ψ′
0γℓ

(Y,X,Z)[v]} = 0 and P{∆A∗(U,X,Z)ψ′
0g(Y,X,Z)[w]} = 0

hold for any v ∈ Γp1 , 1 ≤ ℓ ≤ d2 + 1, and w ∈ Gp2 . Here ψ′
0γℓ

(t, x, z)[v] denotes

the functional derivative with respect to the ℓ-th component of γ along the

direction v(·) at the true parameter, U and V are defined in condition (C5′),

and

A∗(t,X, Z) = −
(
g′0(Λ̃0(t)) exp

(
g0(Λ̃0(t))

)
t+ 1

)
X

+

d2+1∑
j=1

g′0(Λ̃0(t)) exp
(
g0(Λ̃0(t))

) t∫
0

Zjv
∗
j(R

−1
Z (se−V ))ds+ Zjv

∗
j(R

−1
Z (te−V ))


+ g′0(Λ̃0(t)) exp

(
g0(Λ̃0(t))

) Λ̃0(t)∫
0

exp(−g0(s))w∗(s)ds+w∗(Λ̃0(t)),

where Λ̃0(t) is the solution of Λ̃′
0(t) = exp

(
g0(Λ̃0)

)
with Λ̃0(0) = 0.

(C8′) Let l∗(β0,γ0, ζ0;W ) =
∫
A∗(t,X, Z)dM(t), whereM(t) = ∆1(U ≤ t)−

∫ t

0
1(U ≥

s)dΛ̃0(s) is the event counting process martingale. The information matrix

I(β0) = P (l∗(β0,γ0, ζ0;W )⊗2) is nonsingular. Here for a vector a, a⊗2 = aaT .

In the presence of covariates Z with time-varying coefficients, conditions (C2′)-

(C3′) contain additional common regularity assumptions for Z in survival analysis.

Condition (C4′) controls the error rates of the spline approximation for the true

time-varying coefficients. The expectation in condition (C5′) is further conditioned

on covariates Z. Condition (C6′) is similarly assumed to avoid strong collinearity

between ψ′
0γ̄(Y,X,Z)[v] and ψ

′
0g(Y,X,Z)[w] while γ̄ denotes the linear combination

zTγ. Condition (C7′) additionally requires the existence of the least favorable direc-

tions for time-varying coefficients and the information matrix in (C8′) also depends

on the additional least favorable directions. In particular, conditions (C1′)-(C8′) are

equivalent to conditions (C1)-(C8) respectively when Z only contains the intercept.
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Given the above regularity conditions, for the general class of ODE models in

(2.2), we can establish the same convergence rate of the sieve estimator as that in

Theorem 2.3.1 and the asymptotic normality as in Theorem 2.3.2. Since the theory is

investigated with the fixed number of covariates d1 and d2 as the sample size n grows,

including additional covariates Z with time-varying coefficients does not change the

nature of the proof. For presentation integrity, we provide rigorous definitions of the

corresponding parameter space, the sieve space, theorem statements, and a sketch of

proof that summarizes the main steps in the following subsection.

First, we define the parameter space and the associated distance when including

covariates Z with time-varying coefficients. We similarly define the collection of

functions

Hp2 = {ζ(·, β,γ) : ζ(t, x, z, β,γ) = g(Λ(t, x, z, β,γ, g)), t ∈ [0, τ ], x ∈ X , z ∈ Z, β ∈ B,

γ ∈ Γp1
t∗ × Γp1 × · · · × Γp1︸ ︷︷ ︸

d2

, g ∈ Gp2 such that sup
t∈[0,τ ],x∈X ,z∈Z

|Λ(t, x, z, β,γ, g)| ≤ µ+ δ1},

with δ1 given in condition (C4′). For any ζ(·, β,γ) ∈ Hp2 , we define its norm as

∥ζ(·, β,γ)∥2 =

 ∫
X×Z

τ∫
0

[ζ(t, x, z, β,γ)]2dΛ0(t, x, z)dFX,Z(x, z)

1/2

,

where FX,Z(x, z) is the cumulative distribution function of (X,Z). Denote the pa-

rameter θ = (β,γ(·), ζ(·, β,γ)) and the true parameter θ0 = (β0,γ0(·), ζ0(·, β0,γ0))

with

ζ0(t, x, z, β0,γ0) = g0(Λ(t, x, z, β0,γ0, g0)).

Denote the parameter space by Θ = B × Γp1
t∗ × Γp1 × · · · × Γp1︸ ︷︷ ︸

d2

×Hp2 . For any θ1 and

θ2 in Θ, we define the distance

d(θ1, θ2) =
(
∥β1 − β2∥2 + ∥γ1 − γ2∥22 + ∥ζ1(·, β1,γ1)− ζ2(·, β2,γ2)∥22

)1/2
,

where ∥ · ∥ is the Euclidean norm and ∥γ∥2 = (
∑d2+1

j=1

∫ τ

0
(γj(t))

2dt)1/2.

Next, we construct the sieve space by using the space of polynomial splines in a

similar way. Let Γp1
n = Sn(TK1

n
, K1

n, p1), Γ
p1
t∗,n = {γ ∈ Sn(TK1

n
, K1

n, p1) : γ(t∗) = 0},
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Gp2
n = Sn(TK2

n
, K2

n, p2), and

Hp2
n = {ζ(·, β,γ) : ζ(t, x, z, β,γ) =g(Λ(t, x, z, β,γ, g)), t ∈ [0, τ ], x ∈ X , z ∈ Z, β ∈ B,

γ ∈ Γp1
t∗,n × Γp1

n × · · · × Γp1
n︸ ︷︷ ︸

d2

, g ∈ Gp2
n }.

Let Θn = B × Γp1
t∗,n × Γp1

n × · · · × Γp1
n︸ ︷︷ ︸

d2

×Hp2
n be the sieve space. The sieve estimator

θ̂n = (β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)) maximizes the log-likelihood (2.6) over the sieve space

Θn. The convergence rate of the sieve MLE θ̂n and the asymptotic normality of the

sieve MLE β̂n of the regression parameter are then established in Theorem A.5.1 and

Theorem A.5.2 respectively.

Theorem A.5.1. (Convergence rate of θ̂n.) Let ν1 and ν2 satisfy the restrictions

max{ 1
2(2+p1)

, 1
2p1

− ν2
p1
} < ν1 < 1

2p1
, max{ 1

2(1+p2)
, 1
2(p2−1)

− 2ν1
p2−1

} < ν2 < 1
2p2

, and

2min{2ν1, ν2} > max{ν1, ν2}. Suppose conditions (C1′)-(C6′) hold, then we have

d(θ̂n, θ0) = Op(n
−min{p1ν1,p2ν2, 1−max{ν1,ν2}

2
}).

Theorem A.5.2. (Asymptotic normality of β̂n) Suppose the conditions in Theorem

A.5.1 and (C7′)-(C8′) hold, then we have

√
n(β̂n − β0) =

√
nI−1(β0)Pnl

∗(β0, γ0, ζ0;W ) + op(1) →d N(0, I−1(β0))

with I(β0) given in condition (C8′) and →d denoting convergence in distribution.

A.5.2 Sketch of proof

Given the updated conditions (C1′)-(C8′), the proof of Theorems A.5.1 and A.5.2

is based on the similar techniques and arguments as that of Theorems 2.3.1 and 2.3.2.

We provide the sketch of proof and highlight their main differences below.

Lemmas. The corresponding Lemmas A.3.1-A.3.8 in the presence of covariates Z

still hold under new conditions (C1′)-(C7′), which are used to prove Theorems A.5.1

and A.5.2. Specifically,
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• The existence and uniqueness of the solution Λ(t, x, z, β,γ, g) of the initial value

problem in (A.44) along with its derivatives in Lemma A.3.1, and the bounded-

ness and continuity of derivatives of l(β,γ, ζ;W ) in Lemma A.3.4 both hold due

to the boundedness of Z and the smoothness of η under conditions (C1′)-(C4′).

In particular, the derivatives are characterized by the corresponding updated

initial value problems with covariates Z. For example, initial value problems

(A.9)-(A.11) become (A.46)-(A.48) respectively as follows

dΛ′
β(t)

dt
= exp

(
xTβ + zTγ(t) + g(Λ(t))

)
{x+ g′(Λ(t))Λ′

β(t)}, (A.46)

dΛ′
γj
(t)[v]

dt
= exp

(
xTβ + zTγ(t) + g(Λ(t))

)
{zjv(t) + g′(Λ(t))Λ′

γj
(t)[v]}, (A.47)

dΛ′
g(t)[w]

dt
= exp

(
xTβ + zTγ(t) + g(Λ(t))

)
{w(Λ(t)) + g′(Λ(t))Λ′

g(t)[w]}.

(A.48)

• In Lemma A.3.2, we show that the operators ψ′
0γ̄[·] and ψ′

0g[·] are bounded from

below by the continuous dependence of the IVP solution on parameters in Wal-

ter (1998, page 145), where ψ′
0γ̄[·] denotes the functional derivatives with respect

to the entirety γ̄(·) = zTγ(·). By solving initial value problem in (A.47), the

first derivatives of ψ(t, x, β, γ, g) with respect to γ̄ and g at the true parameter

(β0, γ0, g0) are updated as

ψ′
0γ̄(t, x, z)[v] = g′0(Λ0(t, x, z))Λ

′
0γ̄(t, x)[v] + v(t)

= g′0(Λ0(t, x, z)) exp(g0(Λ0(t, x, z)))e
xT β0

t∫
0

exp
(
zTγ0(s)

)
v(s)ds+ v(t),

(A.49)

ψ′
0g(t, x, z)[w] = g′0(Λ0(t, x, z))Λ

′
0g(t, x, z)[w] + w(Λ0(t, x, z))

= g′0(Λ0(t, x, z)) exp(g0(Λ0(t, x, z)))

Λ0(t,x,z)∫
0

exp(−g0(s))w(s)ds+ w(Λ0(t, x, z)).

(A.50)

• The upper bounds of the ϵ-bracketing numbers associated with Fn, Fγℓ
n,j(η),
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F ζ
n,j(η), F

∗β
n,j(η), F

∗γℓ
n,j (η), F

∗ζ
n,j(η) for 1 ≤ ℓ ≤ d2+1, 1 ≤ j ≤ d1 in Lemmas A.3.6-

A.3.8 are updated as (1
ϵ
)c1qn1 (d2+1)+c2qn2+d1 and (η

ϵ
)c1qn1 (d2+1)+c2qn2+d1 , where d1

and d2 are dimensions of covariates X and Z respectively. Since we consider the

number of covariates di fixed as the sample size increases, the updated upper

bounds in the presence of Z would not change the convergence rate of the sieve

estimator and the nature of the proof.

Proof of Theorem A.5.1. To establish the overall convergence rate of the sieve

MLE θ̂n in Theorem A.5.1, we verify three conditions C1-C3 required in the main

theorem in Shen and Wong (1994). Specifically,

• The condition C1 in Shen and Wong (1994) specifies the increasing rate of the

expected log-likelihood ratio as the parameter θ moves away from the true value

θ0. We will prove that

inf
d(θ,θ0)≥ϵ,θ∈Θn

Pl(β0, γ0, ζ0(·, β0, γ0);W )− Pl(β, γ, ζ(·, β, γ);W ) ≳ ϵ2.

In the presence of covariate Z, we update

Pl(β,γ,ζ(·, β,γ);W ) = P{∆[XTβ + ZTγ(Y ) + g(Λ(Y,X,Z, β,γ, g))

− exp
(
XTβ + ZTγ(Y )−XTβ0 − ZTγ0(Y )

)
· exp(g(Λ(Y,X,Z, β,γ, g))− g0(Λ0(Y,X,Z)))]}.

Using the Taylor expansion along with the same arguments, we have

Pl(β0,γ0, ζ0(·, β0,γ0);W )− Pl(β,γ, ζ(·, β,γ);W )

≳ P{∆[(g′0(Λ0(Y,X,Z))Λ
′
0β(Y,X,Z) +X)T (β − β0)

+

d2+1∑
j=1

g′0(Λ0(Y,X,Z))Λ
′
0γj

(Y,X,Z)[(γ − γ0)
T ej] + ZT (γ(Y )− γ0(Y ))

+ g′0(Λ0(Y,X,Z))Λ
′
0g(Y,X,Z)[g − g0] + g(Λ0(Y,X,Z))− g0(Λ0(Y,X,Z))]

2}

+ o(d2(θ, θ0))

= P{∆[ϵ1(U)X
T (β − β0) + ϵ2(U, V, Z)[(γ(Y )− γ0(Y ))TZ] + ϵ3(U)[g − g0]]

2}
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+ o(d2(θ, θ0)),

where ϵ1, ϵ2, and ϵ3 are deterministic functions of Z, U , V given in condition

(C5′). Under the updated conditions (C5′)-(C6′), we can similarly derive that

Pl(β0,γ0, ζ0(·, β0,γ0);W )− Pl(β,γ, ζ(·, β,γ);W )

≳ P{∆(ϵ1(U)X
T (β − β0))

2}+ P{∆(ϵ2(U, V, Z)[(γ(Y )− γ0(Y ))TZ])2}

+ P{∆(ϵ3(U)[g − g0])
2}+ o(d2(θ, θ0)).

Given the boundedness of Z, the first and third terms are similarly bounded

below by ∥β − β0∥2 and ∥g − g0∥22 respectively. The second term is bounded

below by

P{∆(ϵ2(U, V, Z)[(γ(Y )− γ0(Y ))TZ])2} ≳ ∥(γ − γ0)
TZ∥22

=

τ∫
0

(γ − γ0)(t)
TP{ZZT}(γ − γ0)(t)dt

≥
τ∫

0

λ
(Z)
1 (γ − γ0)(t)

T (γ − γ0)(t)dt

= λ
(Z)
1 ∥γ − γ0∥22,

where λ
(Z)
1 is the smallest eigenvalue of P{ZZT}, which is positive due to the

nonsingularity in the updated condition (C2′). Therefore, we have

Pl(β0,γ0,ζ0(·, β0,γ0);W )− Pl(β,γ, ζ(·, β,γ);W )

≳ ∥β − β0∥2 + ∥γ − γ0∥22 + ∥g − g0∥22

≳ d2(θ, θ0).

• The condition C2 in Shen and Wong (1994) controls the decreasing rate of the

variance of the log-likelihood ratio as the parameter θ approaches the true value

θ0. We use the same arguments to show that

sup
d(θ,θ0)≤ϵ,θ∈Θn

V ar{l(β,γ, ζ(·, β,γ);W )− l(β0,γ0, ζ0(·, β0,γ0);W )} ≲ ϵ2.
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Note that the second term in (A.31) is replaced and upper bounded by

P{∆
(
ZT (γ(Y )− γ0(Y ))

)2}
= P

τ∫
0

1(Y ≥ t) exp
(
XTβ0 + ZTγ0(t) + g0(Λ0(t,X, Z))

) (
ZT (γ(t)− γ0(t))

)2
dt

≤
τ∫

0

sup
x∈X ,z∈Z,t∈[0,τ ]

{exp
(
xTβ0 + ZTγ0(t) + g0(Λ0(t, x, z))

)
}P
(
ZT (γ(t)− γ0(t))

)2
dt

≤
τ∫

0

sup
x∈X ,z∈Z,t∈[0,τ ]

{exp
(
xTβ0 + ZTγ0(t) + g0(Λ0(t, x, z))

)
}λ(Z)

d2+1 ∥γ(t)− γ0(t)∥2 dt

≲ ∥γ − γ0∥22,

where λ
(Z)
d2+1 is the largest eigenvalue of P (ZZT ).

• The condition C3 in Shen and Wong (1994) bounds the size of the space of

log-likelihood ratio induced by θ, i.e., Fn = {l(θ;W )− l(θ0n;W ) : θ ∈ Θn}. By

Lemma 6, we have the L∞-metric entropy of the space Fn bounded by

H(ϵ,Fn, ∥ · ∥∞) = log(N(ϵ,Fn, ∥ · ∥∞)) ≲ c1qn1(d2 + 1) + c2qn2 + d1

≲ nmax{ν1,ν2} log(1/ϵ),

as the number of covariates di is considered as fixed.

After verifying the conditions C1-C3, by Theorem 1 in Shen and Wong (1994), we

have for the sieve MLE θ̂n

d(θ̂n, θ0) = Op(max{n− 1−max{ν1,ν2}
2 , d(θ0n, θ0), K

1/2(θ0n, θ0)}),

where K(θ0n, θ0) = P{l(θ0;W )− l(θ0n;W )}. We can similarly show that K(θ0n, θ0) ≲

O(d2(θ0n, θ0)) by the Taylor expansion, so the convergence rate of θ̂n depends on the

sieve approximation error d(θ0n, θ0). Here θ0n = (β0,γ0n(·), ζ0n(·, β0,γ0n)) ∈ Θn with

ζ0n(t, x, z, β0,γ0n) = g0n(Λ(t, x, z, β0,γ0n, g0n)). Note that γ0n,j ∈ Γp1
n and g0n ∈ Gp2

are defined in Lemma 5 such that ∥γ0n,j − γ0,j∥∞ = O(n−p1ν1) and ∥g0n − g0∥∞ =

O(n−p2ν2), which is based on the existing spline approximation error in Corollary 6.21

in Schumaker (2007). Since d2(θ0n, θ0) ≲ ∥β0 − β0∥2 + ∥γ0n − γ0∥22 + ∥g0n − g0∥22 ≲
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∥γ0 − γ0n∥2∞ + ∥g0 − g0n∥2∞ = O(n−2min{p1ν1,p2ν2}), it follows that

d(θ̂n, θ0) = Op(n
−min{p1ν1,p2ν2, 1−max{ν1,ν2}

2
}).

Proof of Theorem A.5.2. To establish the asymptotic normality in Theorem A.5.2,

we similarly verify the assumptions (A1)-(A6) for the proposed general M-theorem

in Theorem 2.3.3 under the updated conditions (C1′)-(C8′). For example, to verify

assumption (A3), first, we need to find v∗
j = (v∗j1, · · · , v∗jd1)

′, 1 ≤ j ≤ d2 + 1, and

h∗ = (h∗1, · · · , h∗d1)
′ with h∗(·) = w∗(Λ0(·)) + g′0(Λ0(·))Λ′

0g(·)[w∗] such that for any

v ∈ V and h ∈ H with h(·) = w(Λ0(·)) + g′0(Λ0(·))Λ′
0g(·)[w],

S ′′
βγℓ

(β0,γ0(·), ζ0(·, β0,γ0))[v] =

d2+1∑
j=1

S ′′
γjγℓ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j , v]

+ S ′′
ζγl

(β0,γ0(·), ζ0(·, β0,γ0))[h
∗, v], (A.51)

S ′′
βζ(β0,γ0(·), ζ0(·, β0,γ0))[h] =

d2+1∑
j=1

S ′′
γjζ

(β0,γ0(·), ζ0(·, β0,γ0))[v
∗
j , h]

+ S ′′
ζζ(β0,γ0(·), ζ0(·, β0,γ0))[h

∗, h]. (A.52)

By Lemma A.3.4 and the property P{
∫ Y

0
f(t,X, Z)dΛ0(t,X, Z)} = P{∆f(Y,X,Z)},

for any vj ∈ Vd1 , v ∈ V and h ∈ Hd1 with h(·) = w(Λ0(·)) + g′0(Λ0(·))Λ′
0g(·)[w], we

have for 1 ≤ ℓ ≤ d2 + 1

S ′′
βγℓ

(β0,γ0(·), ζ0)[v]−
d2+1∑
j=1

S ′′
γjγℓ

(β0,γ0(·), ζ0)[vj, v]− S ′′
ζγl

(β0,γ0(·), ζ0)[h, v]

=P{l′′βγℓ(β0,γ0, ζ0;W )[v]−
d2+1∑
j=1

l′′γjγℓ(β0,γ0, ζ0;W )[vj, v]− l′′ζγℓ(β0,γ0, ζ0;W )[h, v]}

=P

{
∆

[
g′0(Λ0(Y,X,Z))Λ

′
0β(Y,X,Z) +X

−
d2+1∑
j=1

(
g′0(Λ0(Y,X,Z))Λ

′
0γj

(Y,X,Z)[vj] + vj(Y )Zj

)
− g′0(Λ0(Y,X,Z))Λ

′
0g(Y,X,Z)

T [w]−w(Λ0(Y,X,Z))

]
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·
(
g′0(Λ0(Y,X,Z))Λ

′
0γℓ

(Y,X,Z)[v] + v(Y )Zℓ

)}
.

Under the updated condition (C7′), there exist v∗
j = (v∗j1, · · · , v∗jd1)

T and w∗ =

(w∗
1, · · · , w∗

d1
)T , where v∗jk ∈ Γ2 and w∗

k ∈ G2 for 1 ≤ j ≤ d2 + 1, 1 ≤ k ≤ d1,

such that P{∆A∗(U,X,Z)ψ′
0γℓ

(Y,X,Z)[v]} = 0 hold for any v ∈ Γp1 , 1 ≤ ℓ ≤ d2 +1.

Therefore, we have that the equation (A.51) holds with v∗
j and w∗ given in condition

(C7′). Similarly, we can show that the equation (A.52) holds as well.

A.6 Additional Simulation Studies

In this section, we provide full results of simulation studies with various sam-

ple sizes and investigate 1) how the numerical performance of the proposed method

depends on the knot selection by comparing multiple natural knot selections; 2) a

heuristic parametric approach that applies the unified ODE framework along with

the proposed estimation and inference procedure for model diagnostics.

A.6.1 Time-varying Cox model

Table A.1 summarizes the estimates of regression coefficients β3 and β4 in the

time-varying Cox model that is considered in subsection 2.3.3. The proposed sieve

estimators for β3 and β4 perform similarly to those for β1 and β2 as shown in Table

II.1. The bias of the estimators for β3 and β4 decreases and becomes negligible as

the sample size increases. The estimated standard error by inverting the estimated

information matrix for all parameters including the coefficients of spline basis are

close to the sample standard error and the corresponding 95% confidence intervals

obtain reasonable coverage proportion.
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Table A.1: Simulation results under time-varying Cox model.

N Method β3 = −1 β4 = 1
Bias SE ESE CP Bias SE ESE CP

1000
ODE -.009 .076 .078 .942 .009 .068 .070 .948

Cox-MPLE -.007 .076 .075 .938 .007 .068 .068 .943

2000
ODE -.004 .052 .054 .965 .005 .047 .048 .955

Cox-MPLE -.003 .052 .053 .966 .004 .047 .048 .952

4000
ODE -.003 .037 .038 .951 .004 .034 .034 .951

Cox-MPLE -.003 .037 .037 .950 .003 .034 .034 .950

8000
ODE .000 .026 .026 .959 -.001 .024 .024 .947

Cox-MPLE .000 .026 .026 .952 -.001 .024 .024 .949

Bias is the difference between mean of estimates and the true value; SE is the sample
standard error of the estimates; ESE is the mean of the standard error estimators by
inverting the estimated information matrix of all parameters including the coefficients
of spline basis, and CP is the corresponding coverage proportion of 95% confidence
intervals.

A.6.2 Comparison with the method in Royston and Parmar (2002) under

the Cox model

In setting 1), we compare the proposed sieve MLE under the Cox model with

the parametric method in Royston and Parmar (2002), where the log-transformed

baseline cumulative hazard is modeled as a natural cubic spline function of the log-

transformed time. We implement it using the “flexsurvspline” function in the R

package flexsurv with the same number of interior knots, i.e., ⌊N ′ 1
5 ⌋. The sample size

N varies from 1000 to 8000.

Table A.2 summarizes the estimates of regression coefficients based on 1000 repli-

cates. We can see that both the proposed estimation method (ODE-Cox) and the

method in Royston and Parmar (2002) (flexsurv) perform similarly to maximum par-

tial likelihood estimation (MPLE) in terms of estimation accuracy. As shown in Fig-

ure A.1, the proposed method ODE-Cox achieves comparable integrated mean square

errors (IMSE) of the estimated cumulative hazard function to those of “flexsurv”. In

addition, the relative computing time (the computing time with respect to that with
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the smallest sample size 1000) of proposed method ODE-Cox increases slowly than

that of “flexsurv” as the sample size grows. We note that the increasing rate of the

relative computing time of the ODE-Cox is even slower than the linear rate, which

may be benefited from efficient implementation of existing numerical ODE solvers.

Table A.2: Simulation results under the Cox model.

N Method β1 = 1 β2 = 1 β3 = 1
Bias SE ESE CP Bias SE ESE CP Bias SE ESE CP

1000
MPLE .006 .153 .152 .948 .010 .157 .152 .944 .004 .152 .152 .950

ODE-Cox .009 .153 .157 .952 .013 .157 .157 .952 .007 .152 .158 .961

Flexsurv .007 .153 .152 .948 .011 .156 .151 .943 .005 .151 .152 .952

2000
MPLE .005 .106 .107 .954 -.002 .107 .107 .949 .006 .105 .107 .958

ODE-Cox .007 .106 .109 .956 -.001 .107 .109 .955 .007 .105 .109 .961

Flexsurv .006 .105 .107 .956 -.001 .107 .107 .950 .007 .105 .107 .955

4000
MPLE .002 .076 .075 .934 -.003 .075 .075 .941 -.001 .074 .075 .954

ODE-Cox .003 .076 .076 .936 -.002 .075 .076 .942 .000 .074 .076 .955

Flexsurv .002 .076 .075 .934 -.002 .075 .075 .942 -.001 .074 .075 .953

8000
MPLE -.002 .053 .053 .953 .000 .052 .053 .954 -.001 .053 .053 .944

ODE-Cox -.002 .053 .054 .953 -.000 .052 .054 .957 -.002 .054 .054 .947

Flexsurv -.001 .053 .053 .954 .000 .052 .053 .952 -.001 .053 .053 .944

Bias is the difference between the mean of estimates and the true value, and SE is the sample standard error
of the estimates. ESE is the mean of the standard error estimators, and CP is the corresponding coverage
proportion of 95% confidence intervals.

Figure A.1: Integrated mean square error (IMSE) of estimated baseline cumulative
hazard functions and the log-log plot of mean relative computing time with respect
to the sample size under the Cox model are provided from left to right.
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A.6.3 Comparison with the NPMLE (Zeng and Lin, 2007b) under the

linear transformation model

We have compared the proposed ODE approach and the NPMLE for the logarith-

mic transformation model in (Zeng and Lin, 2007b). Specifically, in the simulation

setting (2), we generate event times from the ODE

Λ′
x(t) = q(Λx(t)) exp(β1x1 + β2x2 + β3x3)α(t),

where functions q(t) = exp(−t) and α(t) = 2. It is equivalent to generate event times

with the cumulative hazard function

Λx(t) = G{exp(β1x1 + β2x2 + β3x3)Λ0(t)},

where G(u) = log(1 + u) and Λ0(t) =
∫ t

0
α(s)ds = 2t. For the NPMLE in Zeng

and Lin (2007b), note that the function G(·) is known and the baseline cumulative

hazard Λ0(·) is unknown. An EM algorithm was implemented in Matlab to compute

the NPMLE. To make fair comparison, we set the function q(·) known, i.e., q(t) =

exp(−t), and the function α(·) unknown for the ODE-LT. We fit logα(·) by cubic

B-splines and set the number of knots Kn as the largest integer below N ′ 1
5 , where

N ′ is the number of distinct observation time points. The sample size N varies from

1, 000 to 8, 000.

Table A.3 summarizes the estimates of regression coefficients β based on 1000

replicates. The proposed estimation method (ODE-LT) achieves similar estimation

accuracy of both β and the cumulative hazard (shown in the left panel of Figure A.2)

as the NPMLE. However, the relative computing time of the proposed method ODE-

LT increase linearly as the sample size grows while that of the NPMLE increases in

a quadratic rate as shown in the right panel of Figure A.2.
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Table A.3: Simulation results under the linear transformation model.

N Method β1 = 1 β2 = 1 β3 = 1
Bias SE ESE CP Bias SE ESE CP Bias SE ESE CP

1000
NPMLE .003 .227 .230 .954 .003 .236 .230 .949 .003 .229 .230 .954

ODE-LT .005 .227 .231 .956 .005 .237 .231 .949 .004 .229 .231 .955

2000
NPMLE -.002 .159 .162 .946 .003 .169 .162 .933 .006 .157 .162 .963

ODE-LT -.001 .159 .163 .947 .003 .169 .163 .933 .007 .157 .163 .961

4000
NPMLE .004 .117 .115 .949 -.001 .114 .115 .951 .003 .113 .115 .960

ODE-LT .005 .117 .115 .950 -.000 .114 .115 .951 .003 .113 .115 .961

8000
NPMLE -.005 .079 .081 .956 .000 .078 .081 .963 -.001 .079 .081 .950

ODE-LT -.004 .079 .081 .957 .001 .078 .081 .963 -.000 .079 .081 .951

Bias is the difference between the mean of estimates and the true value, SE is the sample standard error of the
estimates, and Mean is the mean of IMSE. ESE is the mean of the standard error estimators, and CP is the
corresponding coverage proportion of 95% confidence intervals.

Figure A.2: Integrated mean square error (IMSE) of estimated baseline cumulative
hazard functions and the log-log plot of mean relative computing time with respect
to the sample size under the linear transformation model are provided from left to
right.

A.6.4 Comparison with the rank-based method under the AFT model

In setting 3), we compare the proposed sieve MLE for the ODE-AFT model, where

the function α is set to 1, with the rank-based estimation approach implemented

using the R package aftgee. For the ODE-AFT model, we fit log q(t) by cubic B-

splines with ⌊N 1
7 ⌋ interior knots. Note that the argument of the function q(·) is

the cumulative hazard. Unlike fitting the function α(·) whose argument is the event

time in the ODE-Cox model, we do not observe the corresponding cumulative hazard
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directly. Therefore, we use the estimated cumulative hazards under the Cox model

as a remedy. Let Λ̂Cox
i denote the estimated cumulative hazard for individual i under

the Cox model. The interior knots are located at the quantiles of {Λ̂Cox
i }ni=1.

Table A.4 summarizes the estimates of regression coefficients β with varying sam-

ple sizes. Although the bias of the ODE approach is relatively greater than that

of the rank-based method when the sample size is small, the bias of the estimates

becomes negligible as the sample size increases. As shown in Figure A.3, the relative

computing time of the proposed ODE approach increases in a slower rate than that of

the rank-based method for the semi-parametric ODE-AFT model. Remarkably, the

proposed ODE approach takes just 6 seconds for estimating the ODE-AFT model

but the rank-based method takes 349 seconds when the sample size is 8, 000.

Table A.4: Simulation results under the AFT model.

N Method β1 = 1 β2 = 1 β3 = 1
Bias SE ESE CP Bias SE ESE CP Bias SE ESE CP

1000
Rank-based -.000 .204 .206 .952 -.009 .213 .205 .925 -.013 .200 .206 .942

ODE-AFT -.014 .197 .191 .944 -.024 .209 .192 .931 -.032 .199 .192 .932

2000
Rank-based -.002 .147 .145 .938 .005 .147 .145 .951 .004 .146 .146 .945

ODE-AFT -.010 .144 .137 .932 -.006 .144 .137 .937 -.005 .142 .137 .943

4000
Rank-based .004 .105 .102 .944 -.001 .102 .102 .950 .002 .100 .103 .954

ODE-AFT .000 .102 .097 .944 -.005 .100 .097 .944 -.002 .097 .097 .950

8000
Rank-based -.003 .071 .073 .956 .001 .071 .073 .962 .000 .072 .073 .949

ODE-AFT -.006 .070 .069 .950 -.003 .068 .069 .967 -.004 .071 .069 .945

Bias is the difference between the mean of estimates and the true value, and SE is the sample standard error of
the estimates. ESE is the mean of the standard error estimators, and CP is the corresponding coverage proportion
of 95% confidence intervals.

A.6.5 Comparison with the smoothed partial rank method under the

general linear transformation model

In settings 1)-4), we compare the sieve MLE for the general linear transformation

model (ODE-Flex), where both q(·) and α(·) are unspecified, with the smoothed

partial rank (SPR) estimation method in Song et al. (2006), which is a rank-based
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Figure A.3: Integrated mean square error (IMSE) of estimated baseline cumulative
hazard functions and the log-log plot of mean relative computing time with respect
to the sample size under the AFT model are provided from left to right.

estimation method for censored data. As the original code of SPR is not available,

we implement the SPR estimation and inference methods by our own, and we verify

that our implementations are able to reproduce the simulation results in Song et al.

(2006). Note that SPR introduces an additional parameter c in the objective function

to improve the estimation accuracy. We evaluate SPR with various values of the

parameter c and the sample size N under our data settings 1)-4). We observe that

SPR may return extreme estimates, so we count estimates with more than 5 deviation

from the truth as failed replications.

Tables A.5-A.6 summarize the estimates of β2 under settings 1)-4) over 1, 000

replications. (We observe similar performance for β3 and so we omit its results here.)

In terms of estimation accuracy, both the SPR estimator and ODE-Flex estimator

show negligible biases when the sample size is large. However, two inference methods

in Song et al. (2006) are sensitive to the choices of the parameter c : the sand-

wich estimator seriously underestimates the standard deviation for various values of

the parameter c and the corresponding coverage proportion is far below the nomi-

nal level; the weighted bootstrap estimator overestimates the standard deviation for

small values of c and underestimates it for relatively large values of c. In contrast, the

proposed ODE-Flex method performs well across various sample sizes: the standard
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Figure A.4: The log-log plot of mean relative computing time with respect to the
sample size under the nonparametric linear transformation model.

error estimators approximate the empirical standard deviations well and the coverage

proportions are close to the nominal level. In terms of numerical stability, the pro-

posed ODE-Flex method can stably return good estimates over 1, 000 replications,

especially for large sample sizes: only less than 1% replications meet with numerical

errors when N = 4, 000 and 100% replications successfully return accurate estimates

when N = 8, 000. We note that this result is reported under a universal precision

for ODE solvers and we find that these failed replications can be easily fixed by ad-

justing the precision of the ODE solver. However, the SPR method fails to return a

reasonable point estimator for more than 12% realized resampling on average when

computing the standard error estimator by the weighted bootstrap. We also observe

that it is difficult to obtain the SPR point estimator for larger sample size such as

N = 8, 000 or larger parameter c such as 10−1 and 1 (success rate less than 10%).

In terms of computation efficiency, as shown in Figure A.4, the computing time of

ODE-Flex increases in a much smaller rate than that of SPR as the sample size grows,

which implies that the proposed estimation method is computationally more efficient

for large sample size.
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Table A.5: Simulation results of β2 under the general linear transformation model
with both q(·) and α(·) unspecified in settings 1) and 2).

Method N c Sandwich Bootstrap Bootstrap
Bias SE ESE CP ESE CP Succ. % Succ. %

1)

SPR

1000
10−4 .030 .331 .000 .000 .697 .974 98.3 87.3
10−3 .034 .250 .000 .003 .478 .960 97.4 84.0
10−2 .048 .295 .002 .020 .103 .432 80.1 75.5

2000
10−4 -.003 .313 .000 .000 .668 .989 98.4 85.0
10−3 .013 .210 .000 .003 .314 .906 94.5 80.4
10−2 .007 .159 .002 .022 .033 .279 71.8 70.9

4000
10−4 .007 .153 .000 .001 .552 .994 97.9 83.1
10−3 .008 .120 .000 .000 .136 .762 95.2 77.7
10−2 .005 .105 .002 .022 .016 .222 67.7 67.8

N Bias SE ESE CP Succ. %

ODE-Flex

1000 .067 .248 .243 .958 93.6
2000 .024 .162 .158 .950 98.4
4000 .008 .106 .107 .947 99.5
8000 .012 .076 .075 .946 100.0

Method N c Sandwich Bootstrap Bootstrap
Bias SE ESE CP ESE CP Succ. % Succ. %

2)

SPR

1000
10−4 .082 .522 .000 .000 .739 .949 97.8 87.2
10−3 .091 .449 .000 .002 .538 .910 96.5 84.2
10−2 .104 .464 .003 .015 .166 .457 81.8 74.1

2000
10−4 .020 .347 .000 .000 .702 .988 98.3 85.5
10−3 .015 .320 .000 .000 .393 .895 95.5 80.3
10−2 .044 .337 .002 .005 .052 .262 75.7 69.3

4000
10−4 .014 .244 .000 .000 .585 .995 98.5 83.9
10−3 .019 .191 .000 .001 .183 .709 93.6 77.4
10−2 .022 .171 .002 .010 .019 .158 67.1 65.2

N Bias SE ESE CP Succ. %

ODE-Flex

1000 .024 .357 .312 .918 98.5
2000 .009 .246 .218 .931 99.5
4000 -.019 .161 .151 .927 100.0
8000 -.020 .113 .107 .939 100.0

Bias is the difference between the mean of estimates and the true value, and SE is the sample standard error
of the estimates. ESE is the mean of the standard error estimators, and CP is the corresponding coverage
proportion of 95% confidence intervals.
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Table A.6: Simulation results of β2 under the general linear transformation model
with both q(·) and α(·) unspecified in settings 3) and 4).

Method N c Sandwich Bootstrap Bootstrap
Bias SE ESE CP ESE CP Succ. % Succ. %

3)

SPR

1000
10−4 .053 .369 .000 .000 .779 .980 97.3 86.1
10−3 .056 .386 .000 .000 .529 .945 95.7 82.9
10−2 .079 .372 .004 .010 .128 .454 79.9 73.4

2000
10−4 .004 .304 .000 .000 .721 .992 97.8 84.4
10−3 .010 .308 .000 .000 .357 .888 96.0 79.2
10−2 .010 .222 .002 .016 .040 .251 74.8 68.3

4000
10−4 .005 .194 .000 .000 .602 .996 97.5 82.4
10−3 .007 .146 .000 .001 .154 .732 92.4 76.0
10−2 .011 .141 .002 .025 .020 .194 68.1 63.4

N Bias SE ESE CP Succ. %

ODE-Flex

1000 .016 .293 .270 .940 95.9
2000 .014 .197 .191 .948 99.0
4000 -.014 .134 .131 .941 99.7
8000 -.019 .088 .092 .957 100.0

Method N c Sandwich Bootstrap Bootstrap
Bias SE ESE CP ESE CP Succ. % Succ. %

4)

SPR

1000
10−4 .023 .349 .000 .000 .756 .987 97.1 84.3
10−3 .030 .226 .000 .003 .473 .963 95.4 80.5
10−2 .032 .227 .003 .022 .083 .417 77.9 71.8

2000
10−4 -.006 .253 .000 .000 .719 .993 97.5 82.0
10−3 .006 .147 .000 .002 .274 .902 95.2 76.8
10−2 .007 .136 .004 .034 .027 .275 73.8 66.9

4000
10−4 .001 .146 .000 .000 .574 .995 96.9 79.5
10−3 .004 .089 .000 .004 .108 .781 94.2 73.9
10−2 .000 .086 .002 .029 .019 .240 66.3 64.1

N Bias SE ESE CP Succ. %

ODE-Flex

1000 .020 .182 .191 .954 96.7
2000 .016 .132 .131 .958 98.8
4000 .001 .092 .090 .938 99.9
8000 .008 .062 .064 .960 100.0

Bias is the difference between the mean of estimates and the true value, and SE is the sample standard error
of the estimates. ESE is the mean of the standard error estimators, and CP is the corresponding coverage
proportion of 95% confidence intervals.

222



A.6.6 Dependence on knots selection

To investigate how the numerical performance of the proposed method depends

on the knot selection, we have done several simulation studies to compare two natural

placements of knots for the ODE-Cox model, the ODE-AFT model, and the general

linear transformation model. Specifically,

• For the ODE-Cox model, we compare the following two placements of knots

when using the B-spline to fit the function logα(·): (K1) the interior knots are

located at theKn = ⌊N 1
5 ⌋ quantiles of the distinct observation time points; (K2)

the interior knots equally separate the time interval from 0 to the maximum of

observed times.

• For the ODE-AFT model, we compare the following two placements of knots

when using the B-spline to fit the function log q(·): (K1) the interior knots

are located at the Kn = ⌊N 1
7 ⌋ quantiles of the estimated cumulative hazards

{Λ̂Cox
i }ni=1 under the Cox model; (K2) the interior knots equally separate the

interval from 0 to 2max1≤i≤n{Λ̂Cox
i }.

• For the general linear transformation model, we compare combinations of the

above knots placements when using the B-spline to fit both functions logα(·)

and log q(·): (K1) the interior knots for both functions are located at the corre-

sponding quantiles; (K2) the interior knots for both functions equally separate

the corresponding intervals.

Tables A.7-A.9 compare the estimates of regression coefficients β with two natural

placements of knots for the ODE-Cox model, the ODE-AFT model, and the general

linear transformation model respectively. Figures A.5-A.6 compare the integrated

mean square errors (IMSE) of estimated functions, and the computing time associ-

ated with K1 and K2 from left to right for the ODE-Cox model and the ODE-AFT
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Table A.7: Simulation results for two placements of knots under the Cox model.

N Knots β1 = 1 β2 = 1 β3 = 1
Bias SE ESE CP Bias SE ESE CP Bias SE ESE CP

1000
K1 .009 .153 .157 .952 .013 .157 .157 .952 .007 .152 .158 .961

K2 .009 .153 .157 .953 .013 .157 .157 .951 .007 .152 .158 .960

2000
K1 .007 .106 .109 .956 -.001 .107 .109 .955 .007 .105 .109 .961

K2 .006 .106 .110 .958 -.000 .107 .109 .956 .007 .105 .109 .960

4000
K1 .003 .076 .076 .936 -.002 .075 .076 .942 .000 .074 .076 .955

K2 .002 .076 .076 .937 -.002 .075 .077 .944 -.000 .074 .077 .955

8000
K1 -.002 .053 .054 .953 -.000 .052 .054 .957 -.002 .054 .054 .947

K2 -.001 .053 .054 .957 .001 .053 .054 .955 -.001 .053 .054 .949

Bias is the difference between the mean of estimates and the true value, and SE is the sample standard error
of the estimates. ESE is the mean of the standard error estimators, and CP is the corresponding coverage
proportion of 95% confidence intervals. In (K1), the interior knots are located at the Kn = ⌊N 1

5 ⌋ quantiles
of the distinct observation time points. In (K2), the interior knots equally separate the time interval from 0
to the maximum of observed times.

model. We can see that both two types of knot locations K1 and K2 return good esti-

mates of parameters and standard errors. Overall, our numerical results suggest that

knot selection does not appear critical for the proposed method in various simulation

settings.

A.6.7 Model diagnostics

In this section, we use the linear transformation model as an example to illus-

trate how the unification of the proposed ODE framework along with the proposed

estimation and inference procedure can be applied to model diagnostics and provide

preliminary numerical results.

Recall that, under certain regularity conditions in Proposition 2.2.2, the linear

transformation model, i.e., Λ′(t) = exp
(
xTβ + γ(t) + g(Λ(t))

)
Λ(0) = 0

,

reduces to the Cox model if and only if there exist positive constants c1 and c2 such

that g(t) = log c2+(1− c1) log t, and it reduces to the AFT model if and only if there
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Figure A.5: Integrated mean square error (IMSE) of estimated α(·) and the log-log
plot of the computing time with respect to the sample size under the Cox model are
provided from left to right.

Table A.8: Simulation results for two placements of knots under the AFT model.

N Knots β1 = 1 β2 = 1 β3 = 1
Bias SE ESE CP Bias SE ESE CP Bias SE ESE CP

1000
K1 -.014 .197 .191 .944 -.024 .209 .192 .931 -.032 .199 .192 .932

K2 -.001 .194 .197 .954 -.010 .203 .197 .943 -.017 .195 .197 .945

2000
K1 -.010 .144 .137 .932 -.006 .144 .137 .937 -.005 .142 .137 .943

K2 -.005 .143 .139 .941 .000 .143 .139 .942 -.001 .141 .139 .953

4000
K1 .000 .102 .097 .944 -.005 .100 .097 .944 -.002 .097 .097 .950

K2 .002 .102 .098 .936 -.002 .100 .098 .938 .001 .097 .098 .950

8000
K1 -.006 .070 .069 .950 -.003 .068 .069 .967 -.004 .071 .069 .945

K2 -.005 .070 .069 .951 -.001 .068 .069 .958 -.004 .071 .069 .942

Bias is the difference between the mean of estimates and the true value, and SE is the sample standard error
of the estimates. ESE is the mean of the standard error estimators, and CP is the corresponding coverage
proportion of 95% confidence intervals. In (K1), the interior knots are located at the Kn = ⌊N 1

7 ⌋ quantiles
of the estimated cumulative hazards under the Cox model. In (K2), the interior knots equally separate the
interval from 0 to two times the maximum of the estimated cumulative hazards.
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Figure A.6: Integrated mean square error (IMSE) of estimated α(·) and the log-log
plot of the computing time with respect to the sample size under the AFT model are
provided from left to right.

Table A.9: Simulation results for two placements of knots under the general linear
transformation model where both functions α(·) and q(·) are unknown.

Setting Knots β2 = 1 β3 = 1
Bias SE ESE CP Bias SE ESE CP

1)
K1 .008 .106 .107 .947 .012 .104 .107 .959

K2 -.002 .098 .097 .946 .000 .095 .097 .955

2)
K1 -.019 .161 .151 .927 -.016 .159 .151 .938

K2 .005 .152 .142 .936 .009 .155 .142 .931

3)
K1 -.014 .134 .131 .941 -.012 .131 .132 .945

K2 .002 .131 .124 .936 .004 .131 .128 .939

4)
K1 .001 .092 .090 .939 .005 .091 .090 .954

K2 -.002 .087 .084 .940 .002 .085 .084 .957

Bias is the difference between the mean of estimates and the true value, and SE is
the sample standard error of the estimates. ESE is the mean of the standard error
estimators, and CP is the corresponding coverage proportion of 95% confidence
intervals.
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exist positive constants c1 and c2 such that α(t) = log c2 + (c1 − 1) log t for t > 0.

Therefore, to check whether the Cox or the AFT model is correctly specified, we can

artificially create an additional basis function, B(t), that does not belong to the linear

span of {1, log t} and make inference about its coefficient.

Specifically, for checking the Cox model, we consider the following linear transfor-

mation model

Λ′
x(t) = exp

(
a1 log(Λx) + a2B(Λx) + xTβ + γ(t)

)
, (A.53)

with unspecified γ(·). Then a local test of the null hypothesis H0 : a2 = 0 is a test

for checking the Cox model specification. Correspondingly, a local test of the null

hypothesis H0 : b2 = 0 under the model with unspecified g(·):

Λ′
x(t) = exp

(
g(Λx) + xTβ + b1 log(t) + b2B(t)

)
(A.54)

is a test for checking the AFTmodel specification. We note that, underH0, the models

(A.53) and (A.54) are identifiable up to a constant respectively, which is a direct

result of Proposition 2.2.2. Thus, to guarantee the identifiability, we constrain a1 = 0

and b1 = 0 in the models (A.53) and (A.54) respectively. The proposed estimation

and inference procedure can be applied to obtain the estimates of (a2, β, γ(·)) or

(b2, β, g(·)) along with the local test of the corresponding H0.

Next, we examine the above method under the simulation settings (1) and (3) in

the main text, where the Cox and the AFT model are correctly specified respectively.

We consider two choices of the known basis function: B(t) = t and B(t) = log(1 + t).

And we fit the unknown functions γ(·) and g(·) by cubic B-splines with the same

placements of knots as described in the main text. The sample size varies from 1000

to 8000.

Table A.10 summarizes the estimates of the coefficients of interests based on 1000

replications. We can see that the bias of the estimator is nearly negligible in all

settings. When the sample size is large, the coverage proportion of 95% confidence

intervals, where the standard error estimator is obtained by inverting the estimated
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Table A.10: Simulation results for checking the Cox and the AFT model specification.

Setting B(t) = t B(t) = log(1 + t)
N 1000 2000 4000 8000 1000 2000 4000 8000

Cox is correctly
specified: a2 = 0

Bias .023 .007 .006 .003 .041 .000 .009 .007

SE .133 .087 .056 .033 .459 .314 .206 .112

ESE .136 .092 .062 .043 .467 .325 .226 .159

CP .949 .954 .956 .968 .943 .945 .956 .977

AFT is correctly
specified: b2 = 0

Bias -.003 .000 .003 .000 -.011 .003 .002 -.002

SE .182 .130 .083 .067 .423 .295 .198 .156

ESE .214 .155 .111 .079 .515 .376 .271 .195

CP .968 .960 .978 .961 .975 .963 .979 .964

Bias is the difference between the mean of estimates and the true value, and SE is the sample
standard error of the estimates. ESE is the mean of the standard error estimators, and CP is
the corresponding coverage proportion of 95% confidence intervals.

information matrix of all parameters including the coefficients of spline bases, is

slightly greater than the nominal level. The corresponding t-statistics would lead to

a conservative local test for H0. We also find that the sample standard errors of the

estimates vary with the choice of the basis B(·), and the ability to detect the model

specification depends on B(·) as well. It may be preferable to make both functions

γ(·) and g(·) unknown in the nonparametric linear transformation model for model

diagnostics, which requires the asymptotic distributional theory for the functional

parameters. We leave this interesting direction for future work.

A.7 Partial Likelihood Based Methods

The Cox model (Cox, 1972) and its extensions such as DeepSurv (Katzman et al.,

2018) and Cox-Time (Kvamme et al., 2019) consider the hazard function in a semi-

parametric way. Specifically, the conditional hazard function is factorized into two

terms: a non-parametric baseline hazard function and a parametric relative risk func-

tion, that is

λx(t) = h0(t) exp(g(t, x; θ)).
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The Cox model assumes a time-invariant linear relative risk where g(t, x; θ) = xT θ.

Subsequently, DeepSurv allows the relative risk to be a nonlinear function of feature

x, i.e. g(t, x; θ) = g(x; θ), but the proportional hazard assumption still holds; Cox-

Time further allows the relative risk function to depend on time, which can handle the

non-proportional hazard. In particular, DeepSurv and Cox-Time use neural networks

to model g(x; θ) and g(t, x; θ).

All the above models are fitted in two steps: the parameters in the relative risk

function are learned through maximizing the partial likelihood function (Cox, 1975);

the non-parametric cumulative baseline hazard function is obtained through the Bres-

low’s estimator (Lin, 2007) given the fitted relative risk in the first step.

Partial likelihood. The partial likelihood function is defined as

PL(θ;D) =
∏

i:∆i=1

exp(g(yi, xi; θ))∑
j∈Ri

exp(g(yi, xj; θ))
,

where Ri = {j : yj ≥ yi} denotes the set of individuals who survived longer than the

i-th individual, which is the so called at-risk set. The estimator of θ is obtained by

minimizing the negative log-partial likelihood function, that is

min
θ

∑
i:∆i=1

[−g(yi, xi; θ) + log
∑
j∈Ri

exp(g(yi, xj; θ))].

The partial likelihood function of each individual requires the access to the data

of all individuals in the at-risk set. Hence, stochastic gradient decent (SGD) based

algorithms cannot be directly applied. Although we can naively sample a mini-batch

and restrict the at-risk set to individuals who are included in the current mini-batch

in practice, there is a lack of theoretical justification.

Breslow’s estimator. In order to obtain the predicted survival function, we need

to estimate the cumulative hazard function. For models with the proportional hazard
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assumption, the estimated cumulative hazard function can be written as

Λ̂x(t) =

t∫
0

ĥ0(s)ds · exp
(
g(x; θ̂)

)
= Ĥ0(t) exp

(
g(x; θ̂)

)
,

where Ĥ0 is the estimated cumulative baseline hazard function. The Breslow’s esti-

mator for H0 is given by

Ĥ0(t) =
∑
i:yi≤t

∆i∑
j∈Ri

exp
(
g(xj; θ̂)

) .
For Cox-Time with non-proportional hazard, the estimated cumulative hazard func-

tion is given by

Λ̂x(t) =
∑
i:yi≤t

∆i∑
j∈Ri

exp
(
g(yi, xj; θ̂)

) exp
(
g(yi, x; θ̂)

)
.

The survival function can then be estimated by Ŝx(t) = exp
(
−Λ̂x(t)

)
.

A.8 Discrete-Time Methods

In the discrete-time setting, the range of possible values of the event time T

is divided into a set of disjoint intervals through pre-specified break points {t0 =

0, t1, · · · , tL}. Denote the intervals by Il = (tl−1, tl], l = 1, · · · , L. Suppose the prob-

ability of occurrence of the event in time interval Il is pl(x) ≥ 0 with
∑L

l=1 pl(x) = 1.

The cumulative distribution Fl and survival functions Sl are, respectively

Fl(x) = P{T ≤ tl|X = x} =
l∑

l=1

pj(x),

Sl(x) = P{T > tl|X = x} = 1− Fl = 1−
l∑

j=1

pj(x).

The conditional hazard probability λl(x) is the probability that the event occurs in

interval Il conditional on the survival up to the beginning of Il, which could also

determine the survival function through

λl(x) = P{T ∈ Il|T ≥ tl−1, X = x} =
pl(x)

Sl−1(x)
, Sl(x) =

l∏
j=1

(1− λj(x)).
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Under the conditional independence assumption of the event time and the censoring

time given features, the likelihood function is proportional to∏
i

pli(xi)
∆i(1−

li−1∑
j=1

pj(xi))
1−∆i =

∏
i

[λli(xi)

li−1∏
j=1

(1− λj(xi))],

where li is the index of time interval satisfying tli−1 < yi ≤ tli .

DeepHit (Lee et al., 2018) models the probability mass function where the out-

put of the neural network is a vector [p1(x), · · · , pL(x)]. In addition to the negative

log-likelihood (NLL) loss function, DeepHit considers another differentiable surrogate

ranking loss tailored for time dependent concordance index, that is

L2 =
∑

i:∆i=1

∑
j:li<lj

η(Fli(xi), Fli(xj)),

where η(x, y) = exp
(

−(x−y)
σ

)
and σ is a hyperparameter. They introduce another

hyperparameter α to control the trade-off between the ranking loss and the NLL loss.

Nnet-Survival (Gensheimer and Narasimhan, 2019) models the conditional

hazard probability where the output of the neural network is a vector [λ1(x), · · · , λL(x)],

and it is learned by maximizing the likelihood function.

A.9 Hyperparameter Tuning

We list the tuning ranges of hyperparameters for all neural network based models

on three datasets in Table A.11, where {·} represents the discrete search space and [·]

represents the continuous search space1. Specifically, we tune the rate of dropout and

batch normalization for DeepSurv, DeepHit, Nnet-Survival, and Cox-Time. We treat

the number of time intervals as a hyperparameter for DeepHit and Nnet-Survival.

We also tune two hyperparameters, α and σ, associated with the surrogate rank-

ing loss in DeepHit. Since the three datasets are of different sizes, we use different

1For the number of neurons, a real number is first sampled from the continuous space and then
rounded to the closest integer.
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search ranges for the batch size: {32, 64, 128, 256} for METABRIC, {128, 256, 512}

for SUPPORT, and {512, 1024} for MIMIC and MIMIC-SEQ. The discrete models

(DeepHit and Nnet-Survival) appear to be sensitive to the number of time intervals

on different datasets. Therefore we search the number of time intervals for these

two discrete models from {10, 50, 100, 200, 400} for the smaller datasets, METABRIC

and SUPPORT, and from {50, 100, 200, 400, 800} for the larger datasets, MIMIC and

MIMIC-SEQ.

Number of dense hidden layers {1, 2, 4}
Number of neurons in each dense hidden layer [22, 27]
Number of neurons in each GRU hidden layer [23, 28]
Learning rate [10−4.5, 10−1.5]
Weight decay [10−9, 10−4]
Momentum [0.85, 0.99]
Dropout (DeepHit, DeepSurv, Nnet-Survival, Cox-Time) {0, 0.1, 0.5}
Batch normalization (DeepHit, DeepSurv, Nnet-Survival, Cox-Time) {True,False}
α (Surrogate ranking loss in DeepHit) [0, 1]
σ (Surrogate ranking loss in DeepHit) {0.25, 1, 5}

Table A.11: Tuning ranges of hyperparameters for experiments on the real-world
datasets.
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APPENDIX B

Appendix of Chapter III

This Appendix is structured as follows. We provide the detailed description of

the separate estimation method in Algorithms B.1 and B.2 and their initialization

algorithms in Section B.1. In addition, we present the proof of Proposition 3.2.1 in

Section B.2; the proof of Theorem 3.2.2 in Section B.3; the proof of the identifiabil-

ity conditions in Proposition 3.3.1 and 3.3.2 in Section B.4; the proof of the error

bounds for estimating the latent polar variables v in Theorem 3.5.1 in Section B.5;

the proof of the error bounds for the joint estimation method in Theorem 3.5.2 and

Corollary 3.5.1 in Section B.6; and the proof of the one-step improvement of the joint

estimation method against the separate estimation method in Proposition 3.5.2 and

the discussion of when the conditional independence assumption and the prerequisite

error rate of (w̄, γ̄) in Proposition 3.5.2 hold in Section B.7.

B.1 Algorithms for the Separate Estimation Method

The separate estimation method estimates parameters (α,Z) and v separately

by minimizing Le(α,Z) and Ls(v) respectively. Below, we present two gradient de-

scent algorithms to solve the non-convex optimization problems in (3.6) and (3.7)

respectively.

First, to estimate parameters (α,Z), we adopt the projected gradient descent
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algorithm proposed in Ma et al. (2020) because of the theoretical guarantee and scal-

ability to large networks. Specifically, we first update parameters α and Z towards

the opposite direction of the gradient, and then project the updated Z by center-

ing its columns at each iteration. Although another projection constraint is needed

for retaining the range of parameters for theoretical justification in Section 3.5, our

simulation studies suggest that Algorithm B.1 itself works well in practice. We pro-

vide the detailed description of the method in Algorithm B.1. We set the step size

τz = τ/∥Z0∥2op and τα = τ/(2n) with some small constant τ .

Algorithm B.1: The projected gradient descent algorithm for estimating
(α,Z)

Input: absolute adjacency network |A| ∈ {0, 1}n×n, latent space dimension
k ≥ 1, number of iterations T , initial values (α0, Z0), step sizes
(τα, τz)

1 for t = 0, . . . , T − 1 do

2 Z̃t+1 = Zt − τz∇ZLe = Zt + 2τz(|A| − σ(Θt))Zt;
3 αt+1 = αt − τα∇αLe = αt + 2τα(|A| − σ(Θt))1n;

4 Zt+1 = JnZ̃t+1;

5 end

Output: (α̂, Ẑ) = (αT , ZT )

Next, to estimate the latent polar variables v, we develop a fast gradient descent

algorithm, which is summarized in Algorithm B.2. We set the step size as τv = τ/∥v0∥2

with some small constant τ .

Algorithm B.2: The gradient descent algorithm for estimating v

Input: signed adjacency network A ∈ Rn×n, number of iterations T , initial
values v0, step sizes τv

1 for t = 0, . . . , T − 1 do
2 vt+1 = vt − τv∇vLs = vt + 2τv(|A| ◦ (A+ 1)/2− |A| ◦ σ(ηt))vt;
3 end
Output: v̂ = vT

Proposition 3.5.1 and Theorem 3.5.1 indicate that Algorithms B.1 and B.2 require

relatively good initializations of (α,Z, v) for the guarantee of convergence and reach-
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ing statistical precision. In the rest of this section, we first introduce two theoretically

justified initialization algorithms and then present simulation studies to examine the

impact of initialization on the proposed non-convex optimization algorithms.

B.1.1 Initialization algorithms

For the initialization of Algorithm B.1, we adopt the theoretically justified initial-

ization algorithm in Ma et al. (2020), which first estimates the edge probability matrix

P by universal singular value thresholding (USVT) (Chatterjee, 2015) and then in-

verts the logit-transformed probability matrix to obtain the initial estimates (α0, Z0).

We adapt the algorithm so that no edge covariates are involved and summarize it in

Algorithm B.3. The following proposition indicates that Algorithm B.3 obtains good

enough initial estimates with proper choice of the threshold δ.

Proposition B.1.1 (Ma et al. (2020)). Suppose that ∥Z∗Z∗⊤∥F ≥ c0n for some

constant c0 > 0, then there exists constant c1 such that with probability at least 1−n−c1,

for any n ≥ C(k,M1, κZ∗), the output of Algorithm B.3 with δ ≥ 1.1
√
n satisfies the

initialization condition in Proposition 3.5.1.

Algorithm B.3: Initialization of Algorithm B.1 by USVT

Input: absolute adjacency network |A| ∈ {0, 1}n×n, latent space dimension
k ≥ 1, threshold δ

1 Let P̃ =
∑

si≥δ siuiv
⊤
i where

∑n
i=1 siuiv

⊤
i is the SVD of |A|; obtain P̂ by

elementwisely projecting P̃ to the interval [e−M1/2, 1/2]; let
Θ̂ = logit((P̂ + P̂⊤)/2);

2 Let α0 = Θ̂1n/n− 1n1
⊤
n Θ̂1n/(2n

2) that minimizes ∥Θ̂− α1⊤n − 1nα
⊤∥F w.r.t.

α;

3 Let Ĝ = PSn+(R) where R = Jn(Θ̂− α01
⊤
n − 1nα

⊤
0 )Jn = JnΘ̂Jn;

4 Let Z0 = UkD
1/2
k where UkDkU

⊤
k is the top-k singular value components of Ĝ;

Output: α0, Z0

For the initialization of Algorithm B.2, we propose an initialization algorithm

based on USVT with missing entries. In particular, we apply USVT to the ma-
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trix B, where Bij = (1 + Aij)/2 if there is an edge between node i and node j and

Bij = 0 otherwise. Then we similarly invert the logit-transformed probability ma-

trix. We summarize it in Algorithm B.4 below. The following proposition justifies

the proposed initialization algorithm when each edge is observed independently with

uniform probability p, the proof of which is given in Subsection B.1.3.

Proposition B.1.2. Suppose that each edge is observed independently with uniform

probability p ≍ e−M1 and ∥v∗∥2 ≥ c0n for some constant c0 > 0, then there exists

constant c1 such that with probability at least 1 − n−c1, for any n ≥ C(M3), the

output of Algorithm B.4 with δ ≥ 2.01
√
np̂ satisfies the initialization condition in

Theorem 3.5.1. Here p̂ is the proportion of observed edges.

Algorithm B.4: Initialization of Algorithm B.2 by USVT

Input: signed adjacency network A ∈ Rn×n, threshold δ
1 Let Q̃ =

∑
si≥δ siuiv

⊤
i where

∑n
i=1 siuiv

⊤
i is the SVD of B = |A| ◦ (1 + A)/2;

obtain Q̂ by elementwisely projecting Q̃ to the interval [e−M3/2, 1− eM3/2];

2 Let η̃ = logit((Q̂+ Q̂⊤)/2) and η̂ = PSn+(η̃);

3 Let v0 = U1D
1/2
1 where U1D1U

⊤
1 is the top-1 singular value components of η̂;

Output: v0

Although, in our case, an edge between nodes i and j is observed with non-uniform

probability Pij, the proposed algorithm works well in all the simulation studies.

B.1.2 Analyzing impact of initialization through simulation studies

In this section, we analyze the impact of initialization on the estimation errors and

the number of iterations till convergence. Here we compare the proposed initializa-

tion algorithm and random initialization for the separate estimation Algorithms B.1

and B.2 . To this end, we fix k = 2 and vary n ∈ {500, 1000, 2000, 4000}. For

Algorithm B.3, we choose δ = 2.01
√
n and set M1 = log(10). For Algorithm B.4,

we choose δ = 2.01
√
np̂ with p̂ =

∑
ij A

2
ij/n

2 and set M3 = log(5). We summarize
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the relative estimation errors of Z and v after convergence of the algorithm, and the

number of iterations required for convergence in Figure B.1.
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Figure B.1: Upper row: log-log plots of relative errors after convergence with respect
to the network size n. Lower row: the number of iterations until convergence with
respect to the network size n. The latent position vector dimension is fixed as k = 2.

We can see from Figure B.1 that the proposed initialization algorithms and random

initialization both achieve similar estimation errors for Z and v when the algorithms

converge, while the proposed algorithms requires fewer iterations to converge.
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B.1.3 Proof of Proposition B.1.2

Proof of Proposition B.1.2. Based on the established error rate of USVT in Chatter-

jee (2015, Theorem 2.7), we have

1

n2
∥Q̂−Q∗∥2F ≤ C(M1,M3)n

−1/3,

where C(M1,M3) is a constant that depends on M1 and M3. Since the function

logit(·) is 4eM3

2−e−M3
-Lipchitz continuous on the interval [e−M3/2, 1 − eM3/2] and Q∗ is

symmetric, we obtain that

1

n2
∥η̃ − η∗∥2F ≤ C ′(M3)

n2
∥(Q̂+ Q̂⊤)/2−Q∗∥2F ≤ C̃(M1,M3)n

−1/3.

Further, by definition of η0 = v0v
⊤
0 and η̂, and η∗ ∈ Sn

+ and rank(η∗) = 1, we have

∥η̂ − η̃∥F ≤ ∥η∗ − η̃∥F and ∥η0 − η̂∥F ≤ ∥η∗ − η̂∥F . Therefore, it follows that

∥η0−η∗∥F ≤ ∥η0−η̂∥F+∥η̂−η∗∥F ≤ 2∥η̂−η∗∥F ≤ 2∥η̂−η̃∥F+2∥η̃−η∗∥F ≤ 4∥η̃−η∗∥F .

Then, by Lemma B.5.6, we have

∥∆v0∥2 ≤
∥η0 − η∗∥2F

2(
√
2− 1)∥v∗∥2

≤ 8∥η̃ − η∗∥2F
(
√
2− 1)∥v∗∥2

≤ 8C̃(M1,M3)n
−1/3

(
√
2− 1)∥v∗∥2

n2

≤ 8C̃(M1,M3)n
−1/3

(
√
2− 1)∥v∗∥2

∥v∗∥4

c20
= C1(M1,M3)n

−1/3∥v∗∥2,

where C1(M1,M3) is a constant that depends on M1 and M3. We can choose large

enough n such that the initialization condition in Theorem 3.5.1 holds.

B.2 Proof of Proposition 3.2.1

To prove Proposition 3.2.1, we need the following lemma.

Lemma B.2.1. For any ℓ ≥ 1 random variables Ai, 1 ≤ i ≤ ℓ, taking values in

{1, 0,−1}, E(A1 · · ·Aℓ

∣∣|A1 · · ·Aℓ| = 1) > 0 if and only if E(A1 · · ·Aℓ) > 0.

Proof. Note that A1 · · ·Aℓ can only take values in {1, 0,−1}, it follows that

E(A1 · · ·Aℓ) = P (A1 · · ·Aℓ = 1)− P (A1 · · ·Aℓ = −1)

=[P (A1 · · ·Aℓ = 1
∣∣|A1 · · ·Aℓ| = 1)− P (A1 · · ·Aℓ = −1

∣∣|A1 · · ·Aℓ| = 1)]P (|A1 · · ·Aℓ| = 1)
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=E(A1 · · ·Aℓ

∣∣|A1 · · ·Aℓ| = 1)P (|A1 · · ·Aℓ| = 1).

Therefore, E(A1 · · ·Aℓ

∣∣|A1 · · ·Aℓ| = 1) > 0 if E(A1 · · ·Aℓ) > 0. The other direction

holds automatically because E(A1 · · ·Aℓ

∣∣|A1 · · ·Aℓ| = 1) > 0 implies P (|A1 · · ·Aℓ| =

1) > 0.

Proof of Proposition 3.2.1. For a network A ∼ G(n,U , Pz, B, f), we have

E(Aij|ui, uj) = P (Aij = 1|ui, uj)− P (Aij = −1|ui, uj)

= [P (Aij = 1|ui, uj, |Aij| = 1)− P (Aij = −1|ui, uj, |Aij| = 1)]P (|Aij| = 1|ui, uj)

= [σ(f(ui, uj))− (1− σ(f(ui, uj)))]B(ui, uj)

= [2σ(f(ui, uj))− 1]B(ui, uj).

Given that B(ui, uj) > 0, we have

sign(E(Aij|ui, uj)) = sign(2σ(f(ui, uj))− 1) = sign(f(ui, uj)).

Therefore, for a symmetric function f satisfying (3.1), it follows that

E(Aij|ui, uj) · E(Ajℓ|uj, uℓ) · E(Aℓi|uℓ, ui) > 0, with probability 1.

By the conditional independence among edges given their latent vectors, we have

E(AijAjℓAℓi) = E
(
E(AijAjℓAℓi|ui, uj, uℓ)

)
= E

(
E(Aij|ui, uj)E(Ajℓ|uj, uℓ)E(Aℓi|uℓ, ui)

)
> 0.

By Lemma B.2.1, the requirement in Definition 3.1.1 holds, which completes the proof

of Proposition 3.2.1.

B.3 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2. We first prove the direct part. Suppose the symmetric func-

tion f satisfies that f(a, b) ·f(b, c) ·f(c, a) > 0 holds for any a, b, c ∈ U , where U ⊂ U0

with Pu(U) = 1. Then, it follows directly that, for any a, b ∈ U , f(a, b) ̸= 0 and

f(a, a) > 0 since [f(a, a)]3 > 0. If the function f is not always positive on U × U ,
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then there exists a1 ̸= a2 ∈ U such that f(a1, a2) < 0. We construct two subsets of U

by

S = {s ∈ U : f(a1, s) > 0}, T = {t ∈ U : f(a1, t) < 0}.

Since f(a1, a1) > 0 and f(a1, a2) < 0, we have a1 ∈ S and a2 ∈ T , and thus they are

nonempty. It is obvious that S and T are disjoint. For any u ∈ U , since f(a1, u) ̸= 0,

u belongs to either S or T . Therefore, S ∪ T = U and S ∩ T = ∅.

Then, we show that sign(f(a, b)) = 1(a ∈ S) · 1(b ∈ S) for any a, b ∈ U . For any

s1, s2 ∈ S, we have f(s1, s2) · f(s2, a1) · f(a1, s1) > 0. By the construction of S, we

have f(s2, a1) > 0 and f(a1, s1) > 0, and it follows that f(s1, s2) > 0. Similarly, we

can show that f(t1, t2) > 0 holds for any t1, t2 ∈ T . For any s ∈ S and t ∈ T , we have

f(s, t) · f(t, a1) · f(a1, s) > 0. By the construction of S and T , we have f(a1, s) > 0

and f(t, a1) < 0, and thereby f(s, t) < 0. This has completed the proof of the direct

part.

Next, we prove the converse part. In case (i), a positive function f on U × U

automatically satisfies that f(a, b) · f(b, c) · f(c, a) > 0 for any a, b, c ∈ U . In case (ii),

suppose there exists two nonempty subsets S and T , with S ∪T = U and S ∩T = ∅,

such that sign(f(a, b)) = 1(a ∈ S)·1(b ∈ S) for any a, b ∈ U . Then for any a, b, c ∈ U ,

sign(f(a, b)) · sign(f(b, c)) · sign(f(c, a)) = [1(a ∈ S)]2[1(b ∈ S)]2[1(c ∈ S)]2 > 0,

or saying that f(a, b) · f(b, c) · f(c, a) > 0, which completes the proof.

B.4 Proof of Proposition 3.3.1 and 3.3.2 (Identifiability Con-

dition)

The proof of Proposition 3.3.1 is almost identical to that of Proposition 3.3.2 and

so we omit it here. Before presenting the proof of Proposition 3.3.2, we need the

following lemma.

Lemma B.4.1. For any two vectors v1, v2 ∈ Rn with v1v
⊤
1 = v2v

⊤
2 , we have v1 = v2
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or v1 = −v2.

Proof. If ∥v1∥ = 0, after right multiplying v2 on both sides of v1v
⊤
1 = v2v

⊤
2 , we have

0n = v2∥v2∥2. So v2 = v1 = 0n. If ∥v1∥ ≠ 0, after right multiplying v1 on both sides

of v1v
⊤
1 = v2v

⊤
2 , we have v1∥v1∥2 = v2(v

⊤
2 v1). This implies that v1 = κv2 with some

constant κ. By plugging v1 = κv2 into v1v
⊤
1 = v2v

⊤
2 , we obtain κ2v2v

⊤
2 = v2v

⊤
2 . So

κ2 = 1 and then v1 = v2 or v1 = −v2.

Proof of Proposition 3.3.2. Suppose two sets of parameters (α,Z,w, u) and (ᾱ, Z̄, w̄, ū)

yield the same edge connection probability and the same edge sign probability, i.e.,

α1⊤n + 1nα
⊤ + ZZ⊤ = ᾱ1⊤n + 1nᾱ

⊤ + Z̄Z̄⊤, (B.1)

(Zw + u1n)(Zw + u1n)
⊤ = (Z̄w̄ + ū1n)(Z̄w̄ + ū1n)

⊤. (B.2)

First, we show that α = ᾱ. By Assumption A1, we have JnZ = Z with Jn =

In − 1n1
⊤
n /n. Thus, ZZ⊤1n = ZZ⊤Jn1n = ZZ⊤(1n − 1n) = 0n. Similarly, we have

Z̄Z̄⊤1n = 0n. Then, left multiplying 1n to both sides in (B.1) yields

α1⊤n 1n + 1nα
⊤1n = ᾱ1⊤n 1n + 1nᾱ

⊤1n,

which is equivalent to α− ᾱ = −
∑n

i=1(αi − ᾱi)/n · 1n, i.e.,

α1 − ᾱ1 = · · · = αn − ᾱn = − 1

n

n∑
i=1

(αi − ᾱi).

Therefore, αi − ᾱi = 0, for 1 ≤ i ≤ n.

Now, we have ZZ⊤ = Z̄Z̄⊤ from (B.1). By the fact that, for any real matrix

M , rank(M) = rank(MM⊤), we obtain rank(Z̄) = rank(Z̄Z̄⊤) = rank(ZZ⊤) =

rank(Z). By Assumption A2, it follow that Z̄ is also full rank, i.e., rank(Z̄) =

rank(Z) = k. Denote the compact singular value decomposition of Z and Z̄ by

Z = U1Σ1V
⊤
1 and Z̄ = U2Σ2V

⊤
2 respectively, where Ui ∈ Rn×k with U⊤

i Ui = Ik,

Σi ∈ Rk×k is an invertible diagonal matrix, and Vi ∈ O(k), for i = 1, 2. Since

ZZ⊤ = Z̄Z̄⊤, it follows that U1Σ
2
1U

⊤
1 = U2Σ

2
2U

⊤
2 . By right multiplying U1Σ

−1
1 to
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both sides, we have

U1Σ1 = U2Σ
2
2U

⊤
2 U1Σ

−1
1 . (B.3)

Together with V ⊤
2 V2 = Ik, we obtain that

Z = (U1Σ1)V
⊤
1 = U2Σ2(V

⊤
2 V2)Σ2U

⊤
2 U1Σ

−1
1 V ⊤

1 = Z̄V2QV
⊤
1 ,

where Q = Σ2U
⊤
2 U1Σ

−1
1 . By further left multiplying Σ−1

1 U⊤
1 to both sides in (B.3),

we have

Ik = Σ−1
1 U⊤

1 · U2Σ
2
2U

⊤
2 U1Σ

−1
1 = (Σ−1

1 U⊤
1 U2Σ2)(Σ2U

⊤
2 U1Σ

−1
1 ) = Q⊤Q.

So Q ∈ O(k). It follows that Z = Z̄O, where O = V2QV
⊤
1 ∈ O(k).

Next, by Lemma B.4.1 and Equation (B.2), there exists κ ∈ {−1, 1} such that

Zw + γ1n = κ(Z̄w̄ + γ̄1n). Since Z = Z̄O, we have (κγ̄ − γ)1n = Z̄(Ow − κw̄). We

left multiply 1⊤n to both sides and obtain that

n(κγ̄ − γ) = (κγ̄ − γ)1⊤n 1n = 1⊤n Z̄(Ow − κw̄) = 1⊤n JnZ̄(Ow − κw̄) = 0,

where the last two equalities hold because JnZ̄ = Z̄ and 1⊤n Jn = 0⊤n . Thus, γ = κγ̄

and Z̄(Ow−κw̄) = 0n. Since Z̄ is full rank, we have Ow−κw̄ = 0k, i.e., w = κO⊤w̄.

This has completed the proof of the direct part.

Finally, for the converse part, the proof is straightforward by verifying Equations

(B.1) and (B.2) given that α = ᾱ, Z = Z̄O, w = κO⊤w̄, and γ = κγ̄.

B.5 Proof of Theorem 3.5.1

In this section, we establish the high probability error rate for estimating the

latent vectors v in Algorithm B.2. Throughout the proof, for any matrix X ∈ Rn×n,

let X0 ∈ Rn×n and [X0]ij = Xij1(i ̸= j). Let P = σ(Θ∗) and Q = σ(η∗), then

E(|A|) = P 0 and E(1+A
2

| |A|) = |A| ◦Q. Denote the error metric ∥v∗∥2∥∆vt∥2 at the

t-th iteration by et. For the convenience of analysis, we further let ẽt = ∥v0∥2∥∆vt∥2.

Under the assumption on the initialization, we have

∥∆v0∥ ≤ δ∥v∗∥, (1− δ)ẽt ≤ et ≤ (1 + δ)ẽt,
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for some sufficiently small δ ∈ (0, 1).

The proof of Theorem 3.5.1 relies on Lemmas B.5.1-B.5.4, whose proofs are sub-

sequently given in the subsection B.5.1. Other technical lemmas are provided in the

subsection B.5.2.

Lemma B.5.1. Let A ∈ Rn×n be the symmetric binary matrix. For any matrices

P,X ∈ Rn×n satisfying that ∥X∥F ≥ 2r
Pmin

∥A− P∥op∥X∥max,

∥A ◦X∥2F ≥ 1

2
Pmin∥X∥2F ,

where r is the rank of X and Pmin = mini,j Pij.

Lemma B.5.2. Let φn = max{∥|A|◦((1+A)/2−Q)∥op, 1}. If ∥∆vt∥ ≤ c0e
−(M1+M3)/2∥v∗∥

and ∥v∗∥2 ≥ CeM1+M3φn for sufficiently small constant c0 > 0 and sufficiently large

constant C > 0, and ∥|A| ◦∆ηt∥2F ≥ 1
4
e−M1∥∆ηt∥2F , then there exists universal positive

constants ρ and C ′ such that

ẽt+1 ≤ (1− τ

eM1+M3
ρ)ẽt + τC ′eM1+M3φ2

n.

Lemma B.5.3. Let φn = max{∥|A|◦((1+A)/2−Q)∥op, 1}. If ∥∆v0∥ ≤ c0e
−(M1+M3)/2∥v∗∥

and ∥v∗∥2 ≥ CeM1+M3φn · max{
√
τeM1+M3 , 1} for sufficiently small constant c0 > 0

and sufficiently large constant C > 0, and ∥|A| ◦ ∆ηt∥2F ≥ 1
4
e−M1∥∆ηt∥2F for t ≤ t0,

then for any 0 ≤ t ≤ t0,

∥∆vt∥ ≤ c0e
−(M1+M3)/2∥v∗∥.

Lemma B.5.4. Let φn = max{∥|A| ◦ ((1 + A)/2 − Q)∥op, 1} and ζn = max{∥A −

P∥op, 1}. There exists constants c and C = C(c) such that, uniformly over the pa-

rameter space with probability at least 1 − n−c, for any Θ ∈ Fθ(n, k,M1,M2), we

have

φn ≤ C
√
n and ζn ≤ C

√
n
√

max{e−M2 , log n/n}.

Proof of Theorem 3.5.1. We first derive the deterministic error bound under the as-

sumption that ∥v∗∥2 ≥ C1e
M1+M3φn · max{

√
τeM1+M3 , 1} for sufficiently large con-
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stant C1. We consider two cases, depending on whether ∆ηt belongs to the set

{∆ : ∥∆∥F
∥∆∥max

≤ 8eM1∥|A| − P∥op} or not.

Case 1. Suppose that there exists some T ≤ Tn
∆
= log

(
M2

3

e3(M1+M3)
n
)
/ log

(
1− τ

eM1+M3
ρ
)−1

such that ∥∆ηT ∥F ≤ 8eM1∥|A| − P∥op∥∆ηT ∥max. Since ∥∆ηT ∥max ≤ ∥vTv⊤T ∥max +

∥v∗v∗⊤∥max ≤ 2M3, and by Lemma B.5.6, it follows that

eT ≤ 1

2(
√
2− 1)

∥∆ηT ∥2F ≤ 128√
2− 1

M2
3 e

2M1∥|A| − P∥2op. (B.4)

Case 2. Suppose that ∥∆ηt∥F ≥ 8eM1∥|A| − P∥op∥∆ηt∥max holds for any t ≤ Tn.

Since the rank of ∆ηt = vtv
⊤
t − v∗v∗⊤ is at most 2 and Pmin = mini,j Pij ≥ 1

2
e−M1 , it

follows that

2 rank(∆ηt)

Pmin

∥|A| − P∥op∥∆ηt∥max ≤ 8eM1∥|A| − P∥op∥∆ηt∥max ≤ ∥∆ηt∥F .

By Lemma B.5.1, we have for any t ≤ Tn,

∥|A| ◦∆ηt∥2F ≥ 1

2
Pmin∥∆ηt∥2F ≥ 1

4
e−M1∥∆ηt∥2F .

Then by Lemma B.5.3, ∥∆vt∥ ≤ c0e
−(M1+M3)/2∥v∗∥ holds for any t ≤ Tn, and we

further apply Lemma B.5.2, there exists universal positive constants ρ and C ′ such

that for any t ≤ Tn

ẽt+1 ≤ (1− τ

eM1+M3
ρ)ẽt + τC ′eM1+M3φ2

n.

This implies that

ẽT ≤
(
1− τ

eM1+M3
ρ
)T

ẽ0 +
T−1∑
t=0

τC ′eM1+M3φ2
n

(
1− τ

eM1+M3
ρ
)t

≤
(
1− τ

eM1+M3
ρ
)T

ẽ0 + τC ′eM1+M3φ2
n ·

eM1+M3

τρ

=
(
1− τ

eM1+M3
ρ
)T

ẽ0 +
1

ρ
C ′e2(M1+M3)φ2

n.

Since (1− δ)ẽt ≤ et ≤ (1 + δ)ẽt for sufficiently small δ, we have

eT ≤ 2
(
1− τ

eM1+M3
ρ
)T

e0 +
1

ρ
C ′e2(M1+M3)φ2

n

= 2e3(M1+M3)
1

M2
3n
e0 +

1

ρ
C ′e2(M1+M3)φ2

n,
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where the second equality is obtained by plugging the definition of T . Note that

e0 ≤ c20e
−(M1+M3)∥v∗∥4 ≤ c20e

−(M1+M3)n2∥v∗∥4max ≤ c20e
−(M1+M3)n2M2

3 ,

it follows that

eTn ≤ 2c20e
2(M1+M3)n+

1

ρ
C ′e2(M1+M3)φ2

n. (B.5)

Thus, by combining the deterministic error bounds (B.4) and (B.5) in two cases

respectively, there always exists some T ≤ Tn with

eT ≤ C ′′e2(M1+M3) ·max{ M
2
3

e2M3
∥|A| − P∥2op, φ2

n, n}, (B.6)

where C ′′ is some universal constant and φn = max{∥|A| ◦ ((1 + A)/2−Q)∥op, 1}.

Next, we establish the high probabilistic error bound as follows. By Lemma B.5.4,

there exists c1 and C̃ = C(c1) such that uniformly over the parameter space

P
(
φn ≤ C̃

√
n, ζn ≤ C̃

√
n
√
max{e−M2 , log n/n}

)
≥ 1− n−c1 .

Denote the above event as E . Then on E , the assumption ∥v∗∥2 ≥ C1e
M1+M3φn ·

max{
√
τeM1+M3 , 1} holds for sufficiently large constant C1, and thereby from (B.6)

we obtain that

eT ≤ C ′′e2(M1+M3) ·max{ M
2
3

e2M3
C̃2nmax{e−M2 , log n/n}, C̃2n, n} ≤ Ce2(M1+M3)n,

where eM3 ≥M3 for M3 > 0 and C = C ′′C̃2.

Finally, by Lemma B.5.3 and Lemmas B.5.6-B.5.7, the error metric eT is equivalent

to ∥∆ηT ∥2F , i.e., there exists universal constants a1 and a2 such that a1eT ≤ ∥∆ηT ∥2F ≤

a2eT . So the above high probability bound also holds for the logit-transformed prob-

ability matrix of signs ∥∆ηT ∥2F , which completes the proof.

B.5.1 Proof of Lemmas B.5.1-B.5.4

Proof of Lemma B.5.1. Since ∥A ◦X∥2F =
∑

i,j A
2
ijX

2
ij =

∑
i,j AijX

2
ij and

∑
i,j(Pij −

1
2
Pmin)X

2
ij ≥ 1

2
Pmin∥X∥2F , it suffices to prove that∑

i,j

(Pij − Aij)X
2
ij ≤

1

2
Pmin∥X∥2F ,
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that is to say, ⟨P −A,X ◦X⟩ ≤ 1
2
Pmin∥X∥2F . To bound the left-hand side, note that

rank(X ◦X) ≤ rank(X)2 and ∥X ◦X∥F ≤ ∥X∥F∥X∥max, we have

⟨P − A,X ◦X⟩ ≤ ∥A− P∥op∥X ◦X∥∗

≤ ∥A− P∥op ·
√

rank(X ◦X)∥X ◦X∥F

≤ ∥A− P∥op · r∥X∥F∥X∥max

≤ 1

2
Pmin∥X∥2F .

The last inequality holds because ∥X∥F ≥ 2r
Pmin

∥A − P∥op∥X∥max, which completes

the proof.

In the following proof, for presentation simplicity, we let

h(η) = −
∑
i,j

|Aij|
1 + Aij

2
ηij + |Aij| log(1− σ(ηij)), (B.7)

and then ∇h(η) = |A| ◦ (σ(η)− 1+A
2
).

Proof of Lemma B.5.2. By the definition of kt+1 = argmink∈{−1,1} ∥vt+1 − kv∗∥, we

have

∥∆vt+1∥2 = ∥vt+1 − kt+1v
∗∥2 ≤ ∥vt+1 − ktv

∗∥2.

After plugging the definition of vt+1, it follows that

∥∆vt+1∥2 ≤∥vt − 2τv∇h(ηt)vt − ktv
∗∥2

=∥vt − ktv
∗∥2 − 4τv⟨vt − ktv

∗,∇h(ηt)vt⟩+ (2τv)
2∥∇h(ηt)vt∥2

=∥vt − ktv
∗∥2 − 4τv⟨(vt − ktv

∗)v⊤t ,∇h(ηt)⟩+ (2τv)
2∥∇h(ηt)vt∥2.

Note that (vt − ktv
∗)v⊤t = 1

2
(vtv

⊤
t − v∗v∗⊤) + 1

2
(vtv

⊤
t + v∗v∗⊤) − ktv

∗v⊤t , and by the

symmetry of ∇h(ηt), we have

⟨(1
2
(vtv

⊤
t + v∗v∗⊤)− ktv

∗v⊤t ,∇h(ηt)⟩ =
1

2
⟨∆vt∆

⊤
vt ,∇h(ηt)⟩.

After combining the above three equations, we obtain that

∥∆vt+1∥2 ≤∥∆vt∥2 − 2τv⟨∇h(ηt),∆vt∆
⊤
vt⟩ − 2τv⟨∇h(ηt),∆ηt⟩+ (2τv)

2∥∇h(ηt)vt∥2.
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Recall that τv = τ/2∥v0∥2. Multiplying both sides with ∥v0∥2, we have

ẽt+1 ≤ ẽt − τ⟨∇h(ηt),∆vt∆
⊤
vt⟩ − τ⟨∇h(ηt),∆ηt⟩+ τ 2

1

∥v0∥2
∥∇h(ηt)vt∥2.

Let H(η) = −
∑

i,j |Aij|Qijηij + |Aij| log(1− σ(ηij)) and then ∇H(η) = |A| ◦ (σ(η)−

Q). We further bound

ẽt+1 ≤ẽt − τ⟨∇H(ηt),∆ηt⟩ − τ⟨∇h(ηt)−∇H(ηt),∆ηt⟩ − τ⟨∇h(ηt),∆vt∆
⊤
vt⟩

+
τ 2

∥v0∥2
∥∇h(ηt)vt∥2

≤ẽt − τ⟨∇H(ηt),∆ηt⟩+ τ |⟨∇h(ηt)−∇H(ηt),∆ηt⟩|+ τ |⟨∇h(ηt),∆vt∆
⊤
vt⟩|

+
τ 2

∥v0∥2
∥∇h(ηt)vt∥2

:=ẽt − τD1 + τD2 + τD3 + τ 2D4. (B.8)

We first bound D1 from below. Note that

D1 = ⟨∇H(ηt),∆ηt⟩ = ⟨|A| ◦ (σ(ηt)−Q),∆ηt⟩ = ⟨σ(ηt)−Q, |A| ◦∆ηt⟩. (B.9)

Let H̃(η) = −
∑

i,j Qijηij + log(1− σ(ηij)). It is straightforward to verify that

∇H̃(η) = σ(η)−Q and for any η ∈ Fη(n,M3)

1

4
In2×n2 ⪰ ∇2H̃(η) = diag

(
vec
(
σ(η) ◦ (1− σ(η))

))
⪰ µIn2×n2 ,

where µ = eM3

(1+eM3 )2
≍ e−M3 . Thus, H̃(·) is µ-strongly convex and 1

4
-smooth. By

applying Lemma B.5.5 along with ∇H̃(η∗) = 0, we obtain

⟨∇H̃(ηt), |A| ◦∆ηt⟩ ≥
µ/4

µ+ 1/4
∥|A| ◦∆ηt∥2F +

1

µ+ 1/4
∥σ(|A| ◦ ηt)− σ(|A| ◦ η∗)∥2F

=
µ/4

µ+ 1/4
∥|A| ◦∆ηt∥2F +

1

µ+ 1/4
∥|A| ◦ (σ(ηt)−Q)∥2F (B.10)

Combining (B.9), (B.10), and ∥|A|◦∆ηt∥2F ≥ 1
4
e−M1∥∆ηt∥2F , we bound D1 from below,

D1 ≥
µ

µ+ 1/4

e−M1

16
∥∆ηt∥2F +

1

µ+ 1/4
∥|A| ◦ (σ(ηt)−Q)∥2F .

To bound D2, recall that φn = max{∥|A| ◦ ((1 + A)/2−Q)∥op, 1}, we have

D2 = |⟨|A| ◦ ((1 + A)/2−Q),∆ηt⟩| ≤ φn∥∆ηt∥∗ ≤ φn ·
√
2∥∆ηt∥F .

By Cauchy-Schwarz inequality, we have for any positive constant c1 to be specified
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later,

D2 ≤ c1∥∆ηt∥2F +
1

2c1
φ2
n. (B.11)

Therefore, by Lemma B.5.6,

D1 −D2 ≥ (
µ

µ+ 1/4

e−M1

16
− c1)∥∆ηt∥2F +

1

µ+ 1/4
∥|A| ◦ (σ(ηt)−Q)∥2F − 1

2c1
φ2
n

≥ 2(
√
2− 1)(

µ

µ+ 1/4

e−M1

16
− c1)∥v∗∥2∥∆vt∥2 +

1

µ+ 1/4
∥|A| ◦ (σ(ηt)−Q)∥2F

− 1

2c1
φ2
n

= 2(
√
2− 1)(

µ

µ+ 1/4

e−M1

16
− c1)et +

1

µ+ 1/4
∥|A| ◦ (σ(ηt)−Q)∥2F − 1

2c1
φ2
n

(B.12)

Next, we bound D3. Note that ∆vt∆
⊤
vt is a positive semi-definite matrix, we have

D3 = |⟨∇h(ηt),∆vt∆
⊤
vt⟩| ≤ ∥∇h(ηt)∥op∥∆vt∆

⊤
vt∥∗

= ∥∇h(ηt)∥op Tr
(
∆vt∆

⊤
vt

)
= ∥∇h(ηt)∥op∥∆vt∥2

≤ ∥∇H(ηt)∥op∥∆vt∥2 + ∥∇h(ηt)−∇H(ηt)∥op∥∆vt∥2

≤ ∥|A| ◦ (σ(ηt)−Q)∥op∥∆vt∥2 + φn∥∆vt∥2.

Since ∥∆vt∥ ≤ c0e
−(M1+M3)/2∥v∗∥, by Cauchy-Schwarz inequality,

∥|A| ◦ (σ(ηt)−Q)∥op∥∆vt∥2F ≤ c0e
−(M1+M3)/2∥|A| ◦ (σ(ηt)−Q)∥op∥v∗∥∥∆vt∥F

≤ c2∥|A| ◦ (σ(ηt)−Q)∥2op +
c20

4c2eM1+M3
∥v∗∥2∥∆vt∥2F ,

where c2 is a positive constant to be specified later. And given that ∥v∗∥2 ≥ CeM1+M3φn

for sufficiently large constant C, we have

φn∥∆vt∥2 ≤
∥v∗∥2∥∆vt∥2

CeM1+M3
=

et
CeM1+M3

.

Thus, it follows that

D3 ≤ (
1

CeM1+M3
+

c20
4c2eM1+M3

)et + c2∥|A| ◦ (σ(ηt)−Q)∥2op. (B.13)

Finally, to bound D4, by the assumption that ∥∆vt∥ ≤ c0e
−(M1+M3)/2∥v∗∥ for suffi-

ciently small constant c0, there exists constant C3 such that

D4 =
1

∥v0∥2
∥∇h(ηt)vt∥2 ≤

1

∥v0∥2
∥∇h(ηt)∥2op∥vt∥2
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≤ 1

∥v0∥2
(
∥∇h(ηt)−∇H(ηt)∥2op∥vt∥2 + ∥∇H(ηt)∥2op∥vt∥2

)
≤ 1

∥v0∥2
(
φ2
n∥vt∥2 + ∥|A| ◦ (σ(ηt)−Q)∥2op∥vt∥2

)
≤ C3(φ

2
n + ∥|A| ◦ (σ(ηt)−Q)∥2op). (B.14)

By plugging (B.12)-(B.14) into (B.8), it follows that

ẽt+1 ≤ ẽt − τ

(
2(
√
2− 1)(

µ

µ+ 1/4

e−M1

16
− c1)−

1

CeM1+M3
− c20

4c2eM1+M3

)
et

− τ

(
1

µ+ 1/4
− c2 − τC3

)
∥|A| ◦ (σ(ηt)−Q)∥2F + τ

1

2c1
φ2
n + τ 2C3φ

2
n,

where c1, c2 are arbitrary positive constants, c0 is a sufficiently small constant, and

C is a sufficiently large constant. Given that µ ≍ e−M3 , we choose c1 = e−(M1+M3)c,

c2 = c0, and c, τ small enough such that there exists some universal positive constants

ρ̃ and C ′,

2(
√
2− 1)(

µ

µ+ 1/4

e−M1

16
− c1)−

1

CeM1+M3
− c20

4c2eM1+M3
> ρ̃e−(M1+M3),

1

µ+ 1/4
− c2 − τC3 > 0, and

1

2c1
+ τC3 < C ′eM1+M3 .

Then, we obtain

ẽt+1 ≤ ẽt − τ ρ̃e−(M1+M3)et + τC ′eM1+M3φ2
n.

Recall that et ≥ (1− δ)ẽt. Let ρ = (1− δ)ρ̃, then we have

ẽt+1 ≤ ẽt − τ ρ̃(1− δ)e−(M1+M3)ẽt + τC ′eM1+M3φ2
n = (1− τρ

eM1+M3
)ẽt + τC ′eM1+M3φ2

n,

which completes the proof.

Proof of Lemma B.5.3. By the definition of ẽt, it is equivalent to show that

ẽt ≤ c20e
−(M1+M3)∥v∗∥2∥v0∥2

for any 0 ≤ t ≤ t0. We prove it by induction as below. For t = 0, it follows by the

initialization condition that

ẽ0 = ∥∆v0∥2∥v0∥2 ≤ c20e
−(M1+M3)∥v∗∥2∥v0∥2.

Suppose that we have ∥∆vt∥ ≤ c0e
−(M1+M3)/2∥v∗∥, then by Lemma B.5.2 we have for
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(t+ 1)-th iteration,

ẽt+1 ≤ (1− τρ

eM1+M3
)ẽt + τC ′eM1+M3φ2

n

≤ (1− τρ

eM1+M3
)c20e

−(M1+M3)∥v∗∥2∥v0∥2 + τC ′eM1+M3φ2
n

= c20e
−(M1+M3)∥v∗∥2∥v0∥2

(
1− τρ

eM1+M3
+
τC ′e2(M1+M3)φ2

n

c20∥v∗∥2∥v0∥2

)
,

where C ′ and ρ are some positive constants. Since ∥v∗∥2 ≥ CeM1+M3φn ·
√
τeM1+M3 ,

we have

e2(M1+M3)φ2
n ≤ ∥v∗∥4

τC2eM1+M3
≤ 4∥v∗∥2∥v0∥2

τC2eM1+M3
,

where the last inequality holds because ∥v0∥ ≥ ∥v∗∥−∥∆v0∥ ≥ (1−c0e−(M1+M3)/2)∥v∗∥ ≥

1/2∥v∗∥ for sufficiently small c0. Then it follows that

ẽt+1 ≤ c20e
−(M1+M3)∥v∗∥2∥v0∥2

(
1− τρ

eM1+M3
+

4C ′

c20C
2eM1+M3

)
≤ c20e

−(M1+M3)∥v∗∥2∥v0∥2,

where we choose C large enough such that C2 ≥ 4C′

c20τρ
. This completes the proof.

Proof of Lemma B.5.4. Let B ∈ {0, 1}n×n denote the symmetric matrix |A| ◦ (1 +

A)/2. Note that, conditional on the absolute adjacency matrix |A|, the elements of

the matrix B independently follow Bernoulli distribution with E(Bij

∣∣|Aij|) = |Aij|Qij

for all i > j. Since |Aij|Qij ≤ 1 always holds, by applying Lemma B.5.8, there exists

c and C = C(c) such that uniformly over Fη(n,M3) and the value of |A|

P
(
∥B − |A| ◦Q∥op ≤ C

√
n
∣∣∣|A|) ≥ 1− n−c

2
.

It follows that uniformly over Fη(n,M3) and M1

P

(∥∥∥∥|A| ◦ (1 + A

2
−Q

)∥∥∥∥
op

≤ C
√
n

)
= E|A|

[
P
(
∥B − |A| ◦Q∥op ≤ C

√
n
∣∣∣|A|)]

≥ 1− n−c

2
,

where |Aij| independently follows Bernoulli distribution with E(|Aij|) = Pij. This

implies that P (φn ≤ C
√
n) ≥ 1 − 1

2
n−c. In addition, by Lemma 22 in Ma et al.

(2020), we have P (∥|A| − P∥op ≤ C
√
n
√

max{e−M2 , log n/n}) ≥ 1− 1
2
n−c. Consider

the intersection of the above two events E , then P (E) ≥ 1− nc1 .
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B.5.2 Additional technical lemmas

Lemma B.5.5 (Nesterov (2013)). For a continuously differentiable function f , if it

is µ-strongly convex and L-smooth on a convex domain D, i.e., for any x, y ∈ D,

µ

2
∥x− y∥2 ≤ f(y)− f(x)− ⟨f ′(x), y − x⟩ ≤ L

2
∥x− y∥2,

then we have

⟨f ′(x)− f ′(y), x− y⟩ ≥ µL

µ+ L
∥x− y∥2 + 1

µ+ L
∥f ′(x)− f ′(y)∥2,

and

⟨f ′(x)− f ′(y), x− y⟩ ≥ µ∥x− y∥2.

Lemma B.5.6 (Tu et al. (2016)). For any X1, X2 ∈ Rn×k, then we have

dist(X1, X2)
2 ≤ 1

2(
√
2− 1)σ2

k(X1)
∥X1X

⊤
1 −X2X

⊤
2 ∥2F ,

where σk(X) is the smallest singular value of X.

Lemma B.5.7 (Tu et al. (2016)). For any X1, X2 ∈ Rn×k such that dist(X1, X2) ≤

c∥X1∥op with some constant c, then we have

∥X1X
⊤
1 −X2X

⊤
2 ∥F ≤ (2 + c)∥X1∥op dist(X1, X2).

Lemma B.5.8 (Lei and Rinaldo (2015); Gao et al. (2017)). Let A ∈ {0, 1}n×n be a

symmetric adjacency matrix with Aii = 0 for all i and P ∈ [0, 1]n×n be a symmetric

matrix, where Aij independently follows Bernoulli distribution with E(Aij) = Pij for

all i > j. Then, for any C0, there is a constant C = C(C0) such that

∥A− P∥op ≤ C
√
nPmax + log n

with probability at least 1− n−C0, where Pmax = maxi,j Pij.

B.6 Proof of Theorem 3.5.2 and Corollary 3.5.1

In this section, we establish the high probability error bounds for estimating the

latent vectors Z and v in Algorithm III.1. We first introduce some notations. Let
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Ot = argminO∈O(k) ∥Zt−Z∗O∥F , ∆Zt = Zt−Z∗Ot, and ∆αt = αt−α∗. To differentiate

the error metrics for v and Z, we rewrite the error metric et = evt and further define

the error metrics for Z as eZt = ∥∆Zt∥2F∥Z∗∥2op+2n∥∆αt∥2 and ẽZt = ∥∆Zt∥2F∥Z0∥2op+

2n∥∆αt∥2. Given (wt, γt) obtained from the line 5 in Algorithm III.1, we denote

vt = Ztwt + γt1n, ηt = vtv
⊤
t , and ∆ηt = ηt − η∗. The proof of Theorem 3.5.2 and

Corollary 3.5.1 relies on Lemmas B.6.1-B.6.4, whose proofs are subsequently given in

the subsection B.6.1.

Lemma B.6.1 (Iterative errors for Zt+1). Set the step sizes as τZ = r0τ/∥Z0∥2op,

τα = τ/(2n), and the weight λ = λ̃r0/e
M1κ2Z∗ with r0 = min{1, ∥Z0∥2op/∥v0∥2} for any

τ ≤ cτ , λ̃ ≤ cλ, where cτ and cλ are universal constants. Let ζn = max{∥|A|−P∥op, 1}

and φn = max{∥|A| ◦ ((1 +A)/2−Q)∥op, 1}. If 1) ∥∆Zt∥F ≤ c0e
−M1∥Z∗∥op/κ2Z∗ and

∥∆vt∥ ≤ c0e
−(M1+M3)/2∥v∗∥ for a sufficiently small constant c0; and 2) ∥Z∗∥2op ≥

C0e
M1κ2Z∗ζn and ∥v∗∥2 ≥ C0e

M1+M3φn for a sufficiently large constant C0, then there

exist universal positive constants ρ1, ρ2, C
′, and C ′′ such that

ẽZt+1 ≤
(
1− r0τρ1

eM1κ2Z∗

)
ẽZt − λ

r0τρ2
eM3

min{∥|A| ◦∆ηt∥2F , e−M1∥∆ηt∥2F}

+ r0τC
′eM1ζ2nk + λr0τC

′′eM1+M3φ2
n,

Lemma B.6.2 (Bound for ηt given Zt). Let ζn = max{∥|A| − P∥op, 1} and φn =

max{∥|A| ◦ ((1 + A)/2−Q)∥op, 1}. We have for t ≥ 0

∥∆ηt∥F ≤ 16eM1+M3 max{ζn, φn}+ eM1/2+M3(2 + ∥∆Zt∥F∥w∗∥)∥v∗∥∥∆Zt∥F∥w∗∥.

Lemma B.6.3. Let ζn = max{∥|A| − P∥op, 1} and φn = max{∥|A| ◦ ((1 + A)/2 −

Q)∥op, 1}. If 1) ∥∆Zt∥F ≤ c0e
−M1−3M3/2∥Z∗∥op/κ2Z∗ for a sufficiently small constant

c0; and 2) ∥Z∗∥2op ≥ CeM1κ2Z∗ζnmax{
√
τkeM1+3M3/2κZ∗ , 1} and ∥v∗∥2 ≥ CeM1+M3φn

max{
√
τeM1/2+M3 , 1} for a sufficiently large constant C. Then there exists a suffi-

ciently small constant c such that

∥∆vt∥ ≤ ce−(M1+M3)/2∥v∗∥.
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Lemma B.6.4. Set the step sizes as τZ = r0τ/∥Z0∥2op, τα = τ/(2n), and the weight

λ = λ̃r0/e
M1κ2Z∗ with r0 = min{1, ∥Z0∥2op/∥v0∥2} for any τ ≤ cτ , λ̃ ≤ cλ, where

cτ and cλ are universal constants. Suppose 1) ẽZ0 ≤ c20e
−2M1−3M3∥Z∗∥4op/4κ4Z∗ for a

sufficiently small constant c0; and 2) ∥Z∗∥2op ≥ CeM1κ2Z∗ζnmax{
√
τkeM1+3M3/2κZ∗ , 1}

and ∥v∗∥2 ≥ CeM1+M3φn max{
√
τeM1/2+M3 , 1} for a sufficiently large constant C.

Then for all t ≥ 0,

∥∆Zt∥F ≤ c0e
−M1−3M3/2∥Z∗∥op/κ2Z∗ .

Proof of Theorem 3.5.2. We first prove the deterministic bounds. Given the ini-

tialization assumption, by Lemma B.6.4 and Lemma B.6.3, we have ∥∆Zt∥F ≤

c0e
−M1−3M3/2∥Z∗∥op/κ2Z∗ and ∥∆vt∥ ≤ c0e

−(M1+M3)/2∥v∗∥ hold with a sufficiently small

constant c0 for all t ≥ 0. Then, by Lemma B.6.1, it follows that for any t ≥ 0

ẽZt+1 ≤
(
1− r0τρ1

eM1κ2Z∗

)
ẽZt − λ

r0τρ2
eM3

min{∥|A| ◦∆ηt∥2F , e−M1∥∆ηt∥2F}

+ r0τC
′eM1ζ2nk + λr0τC

′′eM1+M3φ2
n,

which proves the deterministic error bounds for iterates. This further implies that

ẽZT ≤
(
1− r0τρ1

eM1κ2Z∗

)T

ẽZ0 +
(
r0τC

′eM1ζ2nk + λr0τC
′′eM1+M3φ2

n

) T−1∑
t=0

(
1− r0τρ1

eM1κ2Z∗

)t

≤
(
1− r0τρ1

eM1κ2Z∗

)T

ẽZ0 +
(
r0τC

′eM1ζ2nk + λr0τC
′′eM1+M3φ2

n

)
· e

M1κ2Z∗

r0τρ1

=

(
1− r0τρ1

eM1κ2Z∗

)T

ẽZ0 + C ′e2M1ζ2nk
κ2Z∗

ρ1
+ λ̃r0C

′′eM1+M3φ2
n

1

ρ1

=
κ2Z∗e4M1+3M3−M2

M2
1

k3

n
ẽZ0 + C ′e2M1ζ2nk

κ2Z∗

ρ1
+ λ̃r0C

′′eM1+M3φ2
n

1

ρ1
,

where the last equality is obtained by plugging the definition of T . Note that

κ2Z∗e4M1+3M3−M2

M2
1

k3

n
ẽZ0 ≤ c0

κ2Z∗e2M1−M2

M2
1

k3

n

∥Z∗∥4op
κ4Z∗

≤ c0
κ2Z∗e2M1−M2

M2
1

k3

n

n2M2
1

k2

= c0κ
2
Z∗e2M1−M2nk,

where the first inequality is given by the initialization assumption and the second

inequality is based on the fact that k∥Z∗∥2op/κ2Z∗ = kσ1(Z
∗)2 ≤ ∥Z∗∥2F ≤ nM1. In
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addition, since eZT ≤ (1 + δ)ẽZT for sufficiently small δ, we obtain that

eZT ≤ 2ẽZT ≤ c0κ
2
Z∗e2M1−M2nk + C ′e2M1ζ2nk

κ2Z∗

ρ1
+ λ̃r0C

′′eM1+M3φ2
n

1

ρ1
. (B.15)

Next, we prove the high-probability bounds. By Lemma B.5.4, there exists c1 and

C̃ = C(c1) such that uniformly over the parameter space

P
(
φn ≤ C̃

√
n, ζn ≤ C̃

√
n
√
max{e−M2 , log n/n}

)
≥ 1− n−c1 .

Denote the above event as E . Then on E , the assumptions in the deterministic bounds,

i.e., ∥Z∗∥2op ≥ C0e
M1κ2Z∗ζn max{

√
τkeM1+3M3/2κZ∗ , 1} and ∥v∗∥2 ≥ C0e

M1+M3φn·

max{
√
τeM1/2+M3 , 1} hold for a sufficiently large constant C0, and thereby from (B.15)

we obtain that

eZT ≤ C̃2

ρ1
κ2Z∗e2M1nk ·max{C ′e−M2 , C ′ log n

n
, λ̃r0C

′′eM3−M1
1

κ2Z∗k
}

≤ C1κ
2
Z∗e2M1nk ·max{e−M2 ,

log n

n
, eM3−M1

r0
κ2Z∗k

} (B.16)

where C1 = max{C ′, λ̃C ′′} C̃2

ρ1
.

Proof of Corollary 3.5.1. By Lemma B.6.2, we have

∥∆ηt∥F ≤ 16eM1+M3 max{ζn, φn}+ eM1/2+M3(2 + ∥∆Zt∥F∥w∗∥)∥v∗∥∥∆Zt∥F∥w∗∥.

Furthermore, with a sufficiently small c0, we have

2 + ∥∆Zt∥F∥w∗∥ ≤ 2 + c0e
−M1−3M3/2∥Z∗∥op∥w∗∥/κ2Z∗ ≤ 2 + c0e

−M1−3M3/2∥v∗∥ ≤ 3,

where the last inequality is based on ∥v∗∥ ≥ ∥Z∗∥op∥w∗∥/κZ∗ and κZ∗ ≥ 1. It follows

that

∥∆ηT ∥F ≤ 16eM1+M3 max{ζn, φn}+ 3eM1/2+M3∥v∗∥∥∆ZT
∥F∥w∗∥.

Then, on the event E ,

∥∆ηT ∥2F ≤ 512e2(M1+M3)C̃2n+ 18eM1+2M3
∥v∗∥2∥w∗∥2

∥Z∗∥2op
∥Z∗∥2op∥∆ZT

∥2F

≤ 512e2(M1+M3)C̃2n+ 18eM1+2M3
M2

r0
eZT ,

since ∥w∗∥ ≤ M , r0 ≤ ∥Z0∥2op/∥v0∥2 ≍ ∥Z∗∥2op/∥v∗∥2, and ∥Z∗∥2op∥∆ZT
∥2F ≤ eZT . By
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plugging (B.16), we have

∥∆ηT ∥2F ≤ C2e
3M1+2M3nk ·max{e

M3−M1

k
, κ2Z∗ max{e−M2 ,

log n

n
}},

where C2 = max{512C̃2, 18C1M
2/r0}. This completes the proof.

B.6.1 Proof of Lemmas B.6.1-B.6.4

Proof of Lemma B.6.1. Let Ot+1 = argminO∈O(k) ∥Zt+1 − Z∗O∥F and

Õt+1 = argminO∈O(k) ∥Z̃t+1 − Z∗O∥F . For presentation simplicity, we define

g(Θ) = −
∑
i,j

|Aij|θij + log(1− σ(θij)).

By definition, we have

∥∆Zt+1∥2F = ∥Zt+1 − Z∗Ot+1∥2F ≤ ∥Zt+1 − Z∗Õt+1∥2F = ∥JZ̃t+1 − JZ∗Õt+1∥2F

≤ ∥Z̃t+1 − Z∗Õt+1∥2F ≤ ∥Z̃t+1 − Z∗Ot∥2F , (B.17)

where the second inequality holds due to the column-wise centralization in the pro-

jection step. For Z̃t+1 defined in line 2 in Algorithm III.1, we have

∥∆Zt+1∥2F ≤ ∥(1− λ)(Zt − 2τZ∇g(Θt)Zt − Z∗Ot) + λ(Zt − 2τZ∇h(ηt)vtw
⊤
t − Z∗Ot)∥2F

≤ (1− λ)∥Zt − 2τZ∇g(Θt)Zt − Z∗Ot∥2F + λ∥Zt − 2τZ∇h(ηt)vtw
⊤
t − Z∗Ot∥2F ,

where the second inequality is due to the Jensen inequality. Similarly, we have

∥∆αt+1∥2 = ∥(1− λ)(αt − 2τα∇g(Θt)1n − α∗) + λ(αt − α∗)∥2

≤ (1− λ)∥αt − 2τα∇g(Θt)1n − α∗∥2 + λ∥αt − α∗∥2.

It follows that

ẽZt+1 = ∥∆Zt+1∥2F∥Z0∥2op + 2n∥∆αt+1∥2

≤ (1− λ)
(
∥Zt − 2τZ∇g(Θt)Zt − Z∗Ot∥2F∥Z0∥2op + 2n∥αt − 2τα∇g(Θt)1n − α∗∥2

)
+ λ∥Zt − 2τZ∇h(ηt)vtw

⊤
t − Z∗Ot∥2F∥Z0∥2op

+ λ · 2n∥αt − α∗∥2

:= (1− λ)J1 + λ · J2 · ∥Z0∥2op + λ · 2n∥αt − α∗∥2. (B.18)
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Note that the term J1 is equivalent to the error at (t+1)-th iteration of Algorithm B.1,

where only the likelihood of observing edges is involved. Recall that we choose τZ =

r0τ/∥Z0∥2op with r0 = min{1, ∥Z0∥2op/∥v0∥2} ≤ 1. Therefore, by Lemma 25 in Ma

et al. (2020), there exist a constant c such that, for any r0τ ≤ τ ≤ c, there exist

universal positive constants ρ and C ′ such that

J1 ≤
(
1− r0τ

eM1κ2Z∗
ρ

)
ẽZt + r0τC

′eM1ζ2nk. (B.19)

For the term J2, we have

J2 = ∥∆Zt∥2F − 4τZ⟨Zt − Z∗Ot,∇h(ηt)vtw
⊤
t ⟩+ 4τ 2Z∥∇h(ηt)vtw

⊤
t ∥2F

= ∥∆Zt∥2F − 4τZ⟨Ztwt − Z∗Otwt,∇h(ηt)vt⟩+ 4τ 2Z∥∇h(ηt)vt∥2∥wt∥2

= ∥∆Zt∥2F − 4τZ
〈
vt − ktv

∗ + Z∗Ot(ktO
⊤
t w

∗ − wt) + (ktγ
∗ − γt)1n,∇h(ηt)vt

〉
+ 4τ 2Z∥∇h(ηt)vt∥2∥wt∥2,

where kt = argmink∈{−1,1} ∥vt − kv∗∥. The second equality is due to ∥v1v2⊤∥F =

∥v1∥∥v2∥ for any two vectors v1, v2; the third equality is obtained by adding and

subtracting the term ktv
∗ = ktZ

∗w∗ − ktγ
∗1n. Note that, by the definition of (wt, γt)

in line 5 in Algorithm III.1, the gradients of Lλ(αt+1, Zt+1, w, γ) with respect to w

and γ equal to zero, i.e., Z⊤
t ∇h(ηt)vt = 0 and 1⊤n∇h(ηt)vt = 0. Therefore, we have

that

⟨Z∗Ot(ktO
⊤
t w

∗ − wt),∇h(ηt)vt⟩ = ⟨(Z∗Ot − Zt)(ktO
⊤
t w

∗ − wt),∇h(ηt)vt⟩,

⟨(ktγ∗ − γt)1n,∇h(ηt)vt⟩ = 0.

It follows that

J2 = ∥∆Zt∥2F − 4τZ
〈
∆vt −∆Zt(ktO

⊤
t w

∗ − wt),∇h(ηt)vt
〉
+ 4τ 2Z∥∇h(ηt)vt∥2∥wt∥2

(B.20)

After plugging (B.19)-(B.20) and τZ = r0τ/∥Z0∥2op into (B.18), we obtain that

ẽZt+1 ≤(1− λ)

((
1− r0τ

eM1κ2Z∗
ρ

)
ẽZt + r0τC

′eM1ζ2nk

)
+ λ

(
∥∆Zt∥2F∥Z0∥2op + 2n∥αt − α∗∥2

)
− 4λr0τ ⟨∆vt ,∇h(ηt)vt⟩
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+ 4λr0τ
〈
∆Zt(ktO

⊤
t w

∗ − wt),∇h(ηt)vt
〉

+ 4λr20τ
2 1

∥Z0∥2op
∥∇h(ηt)vt∥2∥wt∥2

:=

(
1− (1− λ)r0τ

eM1κ2Z∗
ρ

)
ẽZt + (1− λ)r0τC

′eM1ζ2nk − 4λr0τ · J3

+ 4λr0τ · J4 + 4λr0τ
2 · J5. (B.21)

We first bound J3 and J5. Note that, in the proof of Lemma B.5.2, the terms have

been shown to be bounded by

−2J3 = −2 ⟨∆vt ,∇h(ηt)vt⟩ ≤ −D1 +D2 +D3,

and

J5 = r0
∥v0∥2

∥Z0∥2op
∥wt∥2D4 = min{ ∥v0∥2

∥Z0∥2op
, 1} · ∥wt∥2D4 ≤M2D4,

with Di, 1 ≤ i ≤ 4, given in (B.8). By plugging the bounds established in (B.10),

(B.11), (B.13), (B.14), and by Lemma B.5.6 evt ≤ ∥∆ηt∥2F/2(
√
2− 1), it follows that

−4λr0τJ3 + 4λr0τ
2J5 ≤− 2λr0τ

µ/4

µ+ 1/4
∥|A| ◦∆ηt∥2F

+ 2λr0τ

(
c1 +

1

CeM1+M3
+

c20
4c2eM1+M3

)
∥∆ηt∥2F

− 2λr0τ

(
1

µ+ 1/4
− c2 − 2τM2C3

)
∥|A| ◦ (σ(ηt)−Q)∥2F

+ 2λr0τ

(
1

2c1
+ 2τM2C3

)
φ2
n. (B.22)

where c1, c2 are arbitrary positive constants, C3 is a universal constant, c0 is a suffi-

ciently small constant, and C is a sufficiently large constant.

Next, to bound J4, we have

J4 =
〈
∆Zt(ktO

⊤
t w

∗ − wt)v
⊤
t ,∇h(ηt)

〉
≤ ∥∇h(ηt)∥op∥∆Zt(ktO

⊤
t w

∗ − wt)v
⊤
t ∥∗

≤ ∥∇h(ηt)∥op∥∆Zt(ktO
⊤
t w

∗ − wt)v
⊤
t ∥F

= ∥∇h(ηt)∥op∥∆Zt(ktO
⊤
t w

∗ − wt)∥∥vt∥

≤ (∥|A| ◦ (σ(ηt)−Q)∥op + φn) ∥∆Zt(ktO
⊤
t w

∗ − wt)∥ · 2∥v0∥,
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where the second inequality is due to rank(∆Zt(ktO
⊤
t w

∗ − wt)v
⊤
t ) = 1. The last

inequality is based on the triangle inequality and the assumptions ∥∆vt∥ ≤ δ∥v∗∥ and

∥∆v0∥ ≤ δ∥v∗∥. Furthermore, since

∥∆Zt(ktO
⊤
t w

∗−wt)∥ ≤ ∥∆Zt∥op∥ktO⊤
t w

∗−wt∥ ≤ ∥∆Zt∥F (∥w∗∥+∥wt∥) ≤ 2M∥∆Zt∥F ,

we obtain that

4λr0τJ4 ≤ 16λr0τM (∥|A| ◦ (σ(ηt)−Q)∥op + φn) ∥∆Zt∥F∥Z0∥op ·
∥v0∥
∥Z0∥op

≤ 16λr0τM (∥|A| ◦ (σ(ηt)−Q)∥op + φn) ∥∆Zt∥F∥Z0∥op ·
1

√
r0

≤ 16λ
√
r0τM (∥|A| ◦ (σ(ηt)−Q)∥F + φn) (ẽ

Z
t )

1
2

≤ 8λr0τM
2c4∥|A| ◦ (σ(ηt)−Q)∥2F + 8λr0τM

2c4φ
2
n + 8λτ(

1

c4
+

1

c4
)ẽZt ,

(B.23)

where the last inequality is due to the triangle inequality with some constant c4 to

be specified later. By plugging (B.22) and (B.23) into (B.21), we obtain that

ẽZt+1 ≤
(
1− (1− λ)r0τ

eM1κ2Z∗
ρ+

16λτ

c4

)
ẽZt + (1− λ)r0τC

′eM1ζ2nk

− 2λr0τ
µ/4

µ+ 1/4
∥|A| ◦∆ηt∥2F + 2λr0τ

(
c1 +

1

CeM1+M3
+

c20
4c2eM1+M3

)
∥∆ηt∥2F

− 2λr0τ

(
1

µ+ 1/4
− c2 − 2τM2C3 − 4M2c4

)
∥|A| ◦ (σ(ηt)−Q)∥2F

+ 2λr0τ

(
1

2c1
+ 2τM2C3 + 4M2c4

)
φ2
n,

where r0 = min{1, ∥Z0∥2op/∥v0∥2}, c1, c2, and c4 are arbitrary positive constants; ρ,

C3, and C ′ are universal constant; c0 is a sufficiently small constant; C is a suf-

ficiently large constant; and µ ≍ e−M3 . Given that λ = λ̃r0/e
M1κ2Z∗ , we choose

c1 = e−(M1+M3)c0/4, c2 = c0, c4 =
√
c, and λ̃, τ small enough such that there exists

some universal positive constants ρ1, ρ2, and C
′′,

(1− λ)r0τ

eM1κ2Z∗
ρ− 16λτ

c4
>

r0τ

eM1κ2Z∗
ρ1,

c1 +
1

CeM1+M3
+

c20
4c2eM1+M3

<
c0

eM1+M3
,
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µ/4

4(µ+ 1/4)
e−M1 − c1 −

1

CeM1+M3
− c20

4c2eM1+M3
> ρ2e

−(M1+M3)/8,

1

µ+ 1/4
− c2 − 2τM2C3 − 4M2c4 > 0,

1

2c1
+ 2τM2C3 + 4M2c4 < C ′′eM1+M3/2.

Then we obtain that

ẽZt+1 ≤
(
1− r0τ

eM1κ2Z∗
ρ1

)
ẽZt + (1− λ)r0τC

′eM1ζ2nk

− 2λr0τ
µ/4

µ+ 1/4
∥|A| ◦∆ηt∥2F + 2λr0τ

(
c1 +

1

CeM1+M3
+

c20
4c2eM1+M3

)
∥∆ηt∥2F

+ λr0τC
′′eM1+M3φ2

n.

To bound the second line, we similarly discuss two cases

1. Suppose that ∥∆ηt∥F ≤ 8eM1∥|A| − P∥op∥∆ηt∥max, then ∥∆ηt∥F ≤ 16M3e
M1ζn

as ∥∆ηt∥max ≤ ∥vtvt⊤∥max + ∥v∗v∗⊤∥max ≤ 2M3. It follows that

2λr0τ

(
c1 +

1

CeM1+M3
+

c20
4c2eM1+M3

)
∥∆ηt∥2F

≤ 2λr0τ
c0

eM1+M3
· 162M2

3 e
2M1ζ2n ≤ λr0τe

M1ζ2n,

because M2
3 ≤ eM3 and c0 is a sufficiently small constant. Then, we have

ẽZt+1 ≤
(
1− r0τ

eM1κ2Z∗
ρ1

)
ẽZt + r0τC

′eM1ζ2nk − λr0τρ2e
−M3∥|A| ◦∆ηt∥2F

+ λr0τC
′′eM1+M3φ2

n (B.24)

2. Suppose that ∥∆ηt∥F ≥ 8eM1∥|A|−P∥op∥∆ηt∥max. Since rank(∆ηt) is at most 2

and Pmin = mini,j Pij ≥ 1
2
e−M1 , it follows that

2 rank(∆ηt )

Pmin
∥|A| − P∥op∥∆ηt∥max ≤

8eM1∥|A| − P∥op∥∆ηt∥max ≤ ∥∆ηt∥F . By Lemma B.5.1, we have

∥|A| ◦∆ηt∥2F ≥ 1

2
Pmin∥∆ηt∥2F ≥ 1

4
e−M1∥∆ηt∥2F .

Then it follows that

− 2λr0τ
µ/4

µ+ 1/4
∥|A| ◦∆ηt∥2F + 2λr0τ

(
c1 +

1

CeM1+M3
+

c20
4c2eM1+M3

)
∥∆ηt∥2F

≤− 2λr0τ

(
µ/4

4(µ+ 1/4)
e−M1 − c1 −

1

CeM1+M3
− c20

4c2eM1+M3

)
∥∆ηt∥2F
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<− λr0τρ2e
−(M1+M3)∥∆ηt∥2F ,

and

ẽZt+1 ≤
(
1− r0τ

eM1κ2Z∗
ρ1

)
ẽZt + (1− λ)r0τC

′eM1ζ2nk − λr0τρ2e
−(M1+M3)∥∆ηt∥2F

+ λr0τC
′′eM1+M3φ2

n (B.25)

Combining (B.24) and (B.25) in two cases, we have

ẽZt+1 ≤
(
1− r0τ

eM1κ2Z∗
ρ1

)
ẽZt − λr0τρ2e

−M3 min{∥|A| ◦∆ηt∥2F , e−M1∥∆ηt∥2F}

+ r0τC
′eM1ζ2nk + λr0τC

′′eM1+M3φ2
n,

which completes the proof.

Proof of Lemma B.6.2. Given (wt, γt) obtained from the line 5 in Algorithm III.1, we

denote vt = Ztwt + γt1n and v∗t = ZtOtw
∗ + γ∗1n . Let ηt = vtv

⊤
t and η∗t = v∗t v

∗
t
⊤.

Since (wt, γt) minimizes the loss function Lλ(α,Z,w, γ) with (α,Z) fixed as (αt, Zt),

we have Lλ(αt, Zt, Otw
∗, γ∗) ≥ Lλ(αt, Zt, wt, γt). As the first part in the weighted loss

is constant given (α,Z) fixed, it follows that

0 ≥ Lλ(αt, Zt, wt, γt)− Lλ(αt, Zt, Otw
∗, γ∗)

= λ(h(ηt)− h(η∗t )), (B.26)

with h given in (B.7). It is straightforward to verify that for any η ∈ Fη(n,M3)

∇2h(η) = diag
(
vec
(
|A| ◦ σ(η) ◦ (1− σ(η))

))
⪰ µ · diag(vec(|A|))

with µ = eM3

(1+eM3 )2
≍ e−M3 . Therefore, we have

h(ηt)− h(η∗t ) ≥ ⟨∇h(η∗t ), ηt − η∗t ⟩+
µ

2
∥|A| ◦ (ηt − η∗t )∥2F . (B.27)

Combing (B.26) and (B.27), it follows that

µ

2
∥|A|◦(ηt − η∗t )∥2F ≤ −⟨∇h(η∗t ), ηt − η∗t ⟩

≤ |⟨|A| ◦ ((1 + A)/2−Q), ηt − η∗t ⟩|+ |⟨|A| ◦ (σ(η∗t )− σ(η∗)), ηt − η∗t ⟩|

= |⟨|A| ◦ ((1 + A)/2−Q), ηt − η∗t ⟩|+ |⟨σ(η∗t )− σ(η∗), |A| ◦ (ηt − η∗t )⟩|
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≤ φn ∥ηt − η∗t ∥∗ + ∥σ(η∗t )− σ(η∗)∥F · ∥|A| ◦ (ηt − η∗t )∥F

≤
√
2φn ∥ηt − η∗t ∥F + ∥σ(η∗t )− σ(η∗)∥F · ∥|A| ◦ (ηt − η∗t )∥F ,

where the second last inequality is due to the Holder’s inequality; the last inequality

holds because rank(ηt − η∗t ) is at most 2. By solving the above quadratic inequality

in terms of ∥|A| ◦ (ηt − η∗t )∥F and plugging µ ≍ e−M3 , we have

∥|A| ◦ (ηt − η∗t )∥F ≤ eM3∥σ(η∗t )− σ(η∗)∥F + eM3/2
√
φn ∥ηt − η∗t ∥F . (B.28)

Following the proof of Theorem 3.5.1, we consider two cases:

1. Suppose that ∥ηt − η∗t ∥F ≤ 8eM1∥|A| − P∥op∥ηt − η∗t ∥max. Since ∥ηt − η∗t ∥max ≤

∥vtvt⊤∥max + ∥v∗t v∗t ⊤∥max ≤ 2M3, it follows that

∥ηt − η∗t ∥F ≤ 16M3e
M1ζn. (B.29)

2. Suppose that ∥ηt − η∗t ∥F ≥ 8eM1∥|A| − P∥op∥ηt − η∗t ∥max. Since rank(ηt − η∗t ) is

at most 2 and Pmin = mini,j Pij ≥ 1
2
e−M1 , it follows that

2 rank(ηt − η∗t )

Pmin

∥|A|−P∥op∥ηt−η∗t ∥max ≤ 8eM1∥|A|−P∥op∥ηt−η∗t ∥max ≤ ∥ηt−η∗t ∥F .

By Lemma B.5.1, we have

∥|A| ◦ (ηt − η∗t )∥2F ≥ 1

2
Pmin∥ηt − η∗t ∥2F ≥ 1

4
e−M1∥ηt − η∗t ∥2F .

Plugging the above inequality into (B.28), we have

∥ηt − η∗t ∥F ≤ 2eM1/2+M3∥σ(η∗t )− σ(η∗)∥F + 2e(M1+M3)/2
√
φn ·

√
∥ηt − η∗t ∥F .

By solving the above quadratic inequality in terms of
√
∥ηt − η∗t ∥F , we have√

∥ηt − η∗t ∥F ≤ 2e(M1+M3)/2
√
φn +

√
2eM1/4+M3/2

√
∥σ(η∗t )− σ(η∗)∥F ,

and it follows that

∥ηt − η∗t ∥F ≤ 8eM1+M3φn + 4eM1/2+M3∥σ(η∗t )− σ(η∗)∥F

≤ 8eM1+M3φn + eM1/2+M3∥η∗t − η∗∥F , (B.30)

where the last inequality holds because σ′(·) ≤ 1/4.
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Combing the bounds (B.29) and (B.30) in two cases together, it follows that

∥∆ηt∥F ≤ ∥ηt − η∗t ∥F + ∥η∗t − η∗∥F

≤ 16eM1 max{M3ζn, e
M3φn}+ eM1/2+M3∥η∗t − η∗∥F

≤ 16eM1+M3 max{ζn, φn}+ eM1/2+M3∥η∗t − η∗∥F .

Since we have dist(v∗t , v
∗) ≤ ∥v∗t − v∗∥ = ∥(ZtOt − Z∗)w∗∥ ≤ ∥∆Zt∥op∥w∗∥ ≤

∥∆Zt∥F∥w∗∥, then, by Lemma B.5.7, it follows that

eM1/2+M3∥η∗t − η∗∥F ≤ eM1/2+M3(2 + ∥∆Zt∥F∥w∗∥)∥v∗∥ · dist(v∗t , v∗),

and ∥∆ηt∥F ≤ 16eM1+M3 max{ζn, φn}+ eM1/2+M3(2 + ∥∆Zt∥F∥w∗∥)∥v∗∥∥∆Zt∥F∥w∗∥.

Proof of Lemma B.6.3. By Lemma B.6.2, we have

∥∆ηt∥F ≤ 16eM1+M3 max{ζn, φn}+ eM1/2+M3(2 + ∥∆Zt∥F∥w∗∥)∥v∗∥∥∆Zt∥F∥w∗∥.

(B.31)

Note that, since ∥Z∗∥2op ≥ Cκ3Z∗ζn
√
τke2M1+3M3/2 and ∥v∗∥2 ≥ Cφn

√
τe3M1/2+2M3 for

a sufficiently large constant C, then we choose C large enough such that

16

C
√
τ min{1, κZ∗

√
k∥w∗∥2}

≤ c0.

By combining ∥v∗∥2 = ∥Z∗w∗∥2 + γ∗2n ≥ ∥Z∗∥2op∥w∗∥2/κ2Z∗ , it follows that

16eM1+M3ζn ≤ 16e−(M1+M3/2)

CκZ∗
√
τk

∥Z∗∥2op
κ2Z∗

≤ 16e−(M1+M3)/2

CκZ∗
√
τk

∥v∗∥2

∥w∗∥2
≤ c0e

−(M1+M3)/2∥v∗∥2,

(B.32)

16eM1+M3φn ≤ 16∥v∗∥2

C
√
τeM1/2+M3

≤ c0e
−(M1+M3)/2∥v∗∥2. (B.33)

Furthermore, since with a sufficiently small c0

∥∆Zt∥F∥w∗∥ ≤ c0e
−M1−3M3/2∥Z∗∥op∥w∗∥/κ2Z∗ ≤ c0e

−M1−3M3/2∥v∗∥,

where the last inequality is based on ∥v∗∥ ≥ ∥Z∗∥op∥w∗∥/κZ∗ and κZ∗ ≥ 1, then we

have

eM1/2+M3(2 + ∥∆Zt∥F∥w∗∥)∥v∗∥∥∆Zt∥F∥w∗∥ ≤ 3c0e
−(M1+M3)/2∥v∗∥2. (B.34)
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By plugging the bounds (B.32)-(B.34) into (B.31) and Lemma B.5.6, we have

∥∆vt∥ ≤ 1

2(
√
2− 1)∥v∗∥

∥∆ηt∥F ≤ 2

(
√
2− 1)

c0e
−(M1+M3)/2∥v∗∥,

which completes the proof.

Proof of Lemma B.6.4. We first prove that it suffices to show ẽZt ≤ c20e
−2M1−3M3∥Z∗∥4op/

4κ4Z∗ for all t ≥ 0. Because suppose the above bound for the error metric holds, then

we have that

∥∆Zt∥F (∥Z∗∥op − ∥∆Zt∥F ) ≤ ∥∆Zt∥F (∥Z∗∥op − ∥∆Zt∥op) ≤ ∥∆Zt∥F∥Zt∥op

≤ (ẽZt )
1
2 ≤ c0e

−M1−3M3/2∥Z∗∥2op/2κ2Z∗ .

By solving the above quadratic inequality in terms of ∥∆Zt∥F , we obtain that

∥∆Zt∥F ≤ ∥Z∗∥op
2

−

√
∥Z∗∥2op

4
−

c0∥Z∗∥2op
2eM1+3M3/2κ2Z∗

=

c0∥Z∗∥2op
2eM1+3M3/2κ2

Z∗

∥Z∗∥op
2

+

√
∥Z∗∥2op

4
− c0∥Z∗∥2op

2eM1+3M3/2κ2
Z∗

≤
c0∥Z∗∥2op

2eM1+3M3/2κ2
Z∗

∥Z∗∥op
2

= c0e
−M1−3M3/2∥Z∗∥op/κ2Z∗ .

Therefore, next, we prove ẽZt ≤ c20e
−2M1−3M3∥Z∗∥4op/4κ4Z∗ for all t ≥ 0 by induction

as below. The initialization assumption makes it hold for t = 0. Suppose ẽZt ≤

c20e
−2M1−3M3∥Z∗∥4op/4κ4Z∗ hold, then we have ∥∆Zt∥F ≤ c0e

−M1−3M3/2∥Z∗∥op/κ2Z∗ , and

further by Lemma B.6.3 we have ∥∆vt∥ ≤ ce−(M1+M3)/2∥v∗∥ with a sufficiently small

constant c. Then by Lemma B.6.1, it follows that

ẽZt+1 ≤
(
1− r0τρ1

eM1κ2Z∗

)
ẽZt + r0τC

′eM1ζ2nk + λr0τC
′′eM1+M3φ2

n

≤
(
1− r0τρ1

eM1κ2Z∗

)
c20e

−2M1−3M3
∥Z∗∥4op
4κ4Z∗

+ r0τC
′eM1ζ2nk + λ̃r20τC

′′eM3φ2
n

1

κ2Z∗

= c20e
−2M1−3M3

∥Z∗∥4op
4κ4Z∗

·

(
1− r0τρ1

eM1κ2Z∗
+

4r0τC
′e3(M1+M3)ζ2nκ

4
Z∗k

c20∥Z∗∥4op
+

4λ̃r20τC
′′e2M1+4M3φ2

nκ
2
Z∗

c20∥Z∗∥4op

)
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≤ c20e
−2M1−3M3

∥Z∗∥4op
4κ4Z∗

(
1− r0τρ1

eM1κ2Z∗
+

4r0C
′

C2c20e
M1κ2Z∗

+
4λ̃r20C

′′κ2Z∗∥v∗∥4

C2c20e
M1∥Z∗∥4op

)
,

where the last inequality is obtained by plugging ∥Z∗∥2op ≥ CeM1κ2Z∗ζn
√
τkeM1+3M3/2κZ∗

and ∥v∗∥2 ≥ CeM1+M3φn

√
τeM1/2+M3 . Given that r0 ≤ ∥Z0∥2op/∥v0∥2 ≍ ∥Z∗∥2op/∥v∗∥2,

we choose C large enough such that

4C ′

C2c20
<
τρ1
2

and
4λ̃r20C

′′κ2Z∗∥v∗∥4

C2c20∥Z∗∥4op
<

4λ̃C ′′κ2Z∗

C2c20
<
r0τρ1
2κ2Z∗

,

then it follows that

ẽZt+1 ≤ c20e
−2M1−3M3

∥Z∗∥4op
4κ4Z∗

,

which completes the proof.

B.7 Proof of Proposition 3.5.2 and Discussion on the As-

sumptions

From below, we consider the parameter space F(n, k,M1,M2,M3) with fixed Mi

and k.

B.7.1 Proof of Proposition 3.5.2

The following two lemmas are direct results of Proposition 3.5.1 and Theorem 3.5.1

respectively, which will be used to prove Proposition 3.5.2.

Lemma B.7.1. Given the estimators (ᾱ, Z̄) obtained from Algorithm B.1. Suppose

the conditions in Proposition 3.5.1 hold, and the singular values of the sample covari-

ance Z∗⊤Z∗/n are of constant order, then ∥∆Z̄∥F = O(1).

Lemma B.7.2. Given the estimators ṽ obtained from Algorithm B.2. Suppose the

conditions in Theorem 3.5.1 hold, and ∥v∗||2/n is of constant order, then ∥∆ṽ∥F =

O(1).

Proof of Proposition 3.5.2. Recall that ∆Z̄ = Z̄ −Z∗Ō with Ō = argminO∈O(k) ∥Z̄ −

Z∗O∥F . Without loss of generality, we assume Ō = Ik in the proof, otherwise we
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replace the output of Algorithm B.1 by Z̄Ō⊤. Therefore, ∆Z̄ = Z̄ − Z∗. Based on

the definition of Ẑ, we have

∥Ẑ − Z∗∥2F = ∥Z̄ − 2τz(1− λ)∇g(Θ̄)Z̄ − 2τzλ∇h(η̄)v̄w̄⊤ − Z∗∥2F

= ∥∆Z̄ − 2τzλ∇h(η̄)v̄w̄⊤∥2F

= ∥∆Z̄∥2F − 2τzλ⟨∆Z̄w̄,∇h(η̄)v̄⟩+ 4τ 2z λ
2∥∇h(η̄)v̄∥2∥w̄∥2,

where the second equality is due to the definition of Z̄. Recall that (ᾱ, Z̄) minimizes

g(Θ) subject to Θ = α1⊤n +1nα
⊤+ZZ⊤, which implies that ∇g(Θ̄)Z̄ = 0. Note that

v̄ is independent of B = |A| ◦ (A + 1)/2 conditional on |A|, and Z̄ only depends on

|A|. Therefore, we have

E⟨∆Z̄w̄,∇h(η̄)v̄⟩ =
〈
∆Z̄w̄,∇H(η̄)v̄

〉
+ E

〈
∆Z̄w̄,

(
∇h(η̄)−∇H(η̄)

)
v̄
〉

=
〈
∆Z̄w̄,∇H(η̄)v̄

〉
+ E

〈
∆Z̄w̄,

(
|A| ◦ σ(η∗)−B

)
v̄
〉

=
〈
∆Z̄w̄,∇H(η̄)v̄

〉
+
〈
∆Z̄w̄,E

(
|A| ◦ σ(η∗)−B

)
v̄
〉

=
〈
∆Z̄w̄,∇H(η̄)v̄

〉
,

where H(η) = −
∑

i,j |Aij|Qijηij + |Aij| log(1− σ(ηij)) and ∇H(η) = |A| ◦ (σ(η) −

σ(η∗)). And it follows that

E∥Ẑ − Z∗∥2F = ∥∆Z̄∥2F − 2τzλ
〈
∆Z̄w̄,∇H(η̄)v̄

〉
+ 4τ 2z λ

2 E∥∇h(η̄)v̄∥2∥w̄⊤∥2.

(B.35)

The above term is quadratic in terms of λ, therefore E∥Ẑ − Z∗∥2F is minimized at

λopt :=

〈
∆Z̄w̄,∇H(η̄)v̄

〉
4τzE∥∇h(η̄)v̄∥2∥w̄⊤∥2

. (B.36)

Note that if λopt is strictly positive, then for any λ ∈ (0, 2λopt), we have

−2τzλ
〈
∆Z̄w̄,∇H(η̄)v̄

〉
+ 4τ 2z λ

2 E∥∇h(η̄)v̄∥2∥w̄⊤∥2 < 0,

and it follows that

E∥∆Ẑ∥
2
F ≤ E∥Ẑ − Z∗∥2F < E∥∆Z̄∥2F ,

where the first inequality is based on the definition ∥∆Ẑ∥2F = minO∈O(k) ∥Ẑ−Z∗O∥2F .

Next, we analyze under which scenario λopt is more likely to be positive. For
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notational simplicity, we substitute [1n, Z̄], [1n, Ẑ], [γ̄, w̄
⊤]⊤, [γ̂, ŵ⊤]⊤, and w̄ by Z̄, Ẑ,

w̄, ŵ,and w̄(−1) respectively hereafter in the proof. Note that, after this substitution,

the values of ∥∆Z̄∥F , ∥∆Ẑ∥F , and ∆Z̄w̄ keep the same and we have v̄ = Z̄w̄. We

decompose η̄ − η∗ into terms

η̄ − η∗ = (∆Z̄w̄w̄
⊤Z̄⊤ + Z̄w̄w̄⊤∆⊤

Z̄) + Z∗(w̄w̄⊤ − w∗w∗⊤)Z∗⊤ −∆Z̄w̄w̄
⊤∆⊤

Z̄

:= T̃1 + T̃2 − T̃3.

Then we have

2
〈
∆Z̄w̄,∇H(η̄)v̄

〉
= 2
〈
∆Z̄w̄w̄

⊤Z̄⊤,∇H(η̄)
〉

=
〈
∆Z̄w̄w̄

⊤Z̄⊤ + Z̄w̄w̄⊤∆⊤
Z̄ ,∇H(η̄)

〉
=
〈
T̃1,∇H(η̄)

〉
,

where the second equality holds due to the symmetry of ∇H(η̄). Moreover, ∇H(η̄) =

|A| ◦ (σ(η̄) − σ(η∗)) = |A| ◦ σ′(η̃) ◦ (η̄ − η∗) with some [η̃]ij = η̃ij located between

η̄ij and η∗ij. Let ξ2ij = σ′(η̃ij) = σ(η̃ij)(1 − σ(η̃ij)) ≥ eM3

(1+eM3 )2
> 0 and ξ = [ξij], then

∇H(η̄) = |A| ◦ ξ ◦ ξ ◦ (T̃1 + T̃2 − T̃3). It follows that

2
〈
∆Z̄w̄,∇H(η̄)v̄

〉
=
〈
T̃1, |A| ◦ ξ ◦ ξ ◦ (T̃1 + T̃2 − T̃3)

〉
=
∥∥|A| ◦ ξ ◦ T̃1∥∥2F +

〈
|A| ◦ ξ ◦ T̃1, |A| ◦ ξ ◦ (T̃2 − T̃3)

〉
≥
∥∥|A| ◦ ξ ◦ T̃1∥∥F (∥∥|A| ◦ ξ ◦ T̃1∥∥F −

∥∥|A| ◦ ξ ◦ (T̃2 − T̃3)
∥∥
F

)
≥
∥∥|A| ◦ ξ ◦ T̃1∥∥F (∥∥|A| ◦ ξ ◦ T̃1∥∥F −

∥∥|A| ◦ ξ ◦ T̃2∥∥F −
∥∥|A| ◦ ξ ◦ T̃3∥∥F) ,

(B.37)

where the second equality holds because the elements of |A| are binary and thereby

|A| ◦ |A| = |A|. By Lemma B.7.1, we have
∥∥∆Z̄

∥∥
F

= O(1) and further
∥∥Z̄∥∥

op
≤∥∥Z∗

∥∥
op
+
∥∥∆Z̄

∥∥
op

≤ σ1(Z
∗) +

∥∥∆Z̄

∥∥
F
= O(

√
n), where σ1(Z

∗) is the largest singular

value of Z∗. Together with ∥∆w̄∥ = O(1/
√
n) and ∥w∗∥ ≤ ∥w̄∥ + O(1/

√
n), we can

bound each term below∥∥|A| ◦ ξ ◦ T̃1∥∥F ≤ 1

2

∥∥T̃1∥∥F ≤
∥∥Z̄w̄w̄⊤∆⊤

Z̄

∥∥
F
≤
∥∥Z̄∥∥

op

∥∥∆Z̄

∥∥
F

∥∥w̄∥∥2 = O(
√
n)
∥∥w̄∥∥2,
(B.38)
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∥∥|A| ◦ ξ ◦ T̃2∥∥F ≤ 1

2

∥∥T̃2∥∥F ≤ 1

2

∥∥Z∗∥∥2
op

∥∥w̄w̄⊤ − w∗w∗⊤∥∥
F

≤ 1

2

∥∥Z∗∥∥2
op

∥∥∆w̄

∥∥(∥∥w̄∥∥+ ∥∥w∗∥∥) ≤ O(
√
n)
∥∥w̄∥∥, (B.39)∥∥|A| ◦ ξ ◦ T̃3∥∥F ≤ 1

2

∥∥T̃3∥∥F ≤ 1

2

∥∥∆Z̄

∥∥2
F

∥∥w̄∥∥2 = O(1)
∥∥w̄∥∥2. (B.40)

The order in (B.40) suggest that the first two terms in (B.38) and (B.39) are the

dominating terms. Since the denominator in (B.36) is always positive, λopt is positive

if and only if the numerator E
〈
∆Z̄w̄,∇H(η̄)v̄

〉
is positive. The upper bounds in

(B.38) and (B.39) suggest that, with large enough ∥w̄∥, the upper bound of
∥∥|A| ◦

ξ ◦ T̃1
∥∥
F
is greater than that of

∥∥|A| ◦ ξ ◦ T̃2∥∥F , which more likely leads to a positive∥∥|A| ◦ ξ ◦ T̃1∥∥F −
∥∥|A| ◦ ξ ◦ T̃2∥∥F −

∥∥|A| ◦ ξ ◦ T̃3∥∥F and thereby a positive λopt based

on (B.37).

Finally, if λopt > 0, we choose λ = λopt. By plugging λopt into (B.35) and the

bound in (B.37), the improvement is at least

E∥∆Z̄∥2F − E∥∆Ẑ∥
2
F ≥ E∥∆Z̄∥2F − E∥Ẑ − Z∗∥2F =

(2
〈
∆Z̄w̄,∇H(η̄)v̄

〉
)2

16 E∥∇h(η̄)v̄∥2∥w̄(−1)∥2

≥

∥∥|A| ◦ ξ ◦ T̃1∥∥2F (∥∥|A| ◦ ξ ◦ T̃1∥∥F −
∥∥|A| ◦ ξ ◦ T̃2∥∥F −

∥∥|A| ◦ ξ ◦ T̃3)∥∥F)2
16 E∥∇h(η̄)v̄∥2∥w̄(−1)∥2

.

Further, we have

E∥∇h(η̄)v̄∥2 ≤ E∥∇h(η̄)∥2op∥Z̄∥2op∥w̄∥2

≤ ∥∇H(η̄)∥2op∥Z̄∥2op∥w̄∥2 + E
∥∥B − |A| ◦ σ(η∗)

∥∥2
op
∥Z̄∥2op∥w̄∥2

=
∥∥|A| ◦ ξ ◦ ξ ◦ (T̃1 + T̃2 − T̃3)

∥∥2
op
∥Z̄∥2op∥w̄∥2

+ E
∥∥B − |A| ◦ σ(η∗)

∥∥2
op
∥Z̄∥2op∥w̄∥2,

and ∥w̄(−1)∥ ≤ ∥w̄∥. Then it follows that

E∥∆Z̄∥2F − E∥∆Ẑ∥
2
F

≥

∥∥|A| ◦ ξ ◦ T̃1∥∥2F (∥∥|A| ◦ ξ ◦ T̃1∥∥F −
∥∥|A| ◦ ξ ◦ T̃2∥∥F −

∥∥|A| ◦ ξ ◦ T̃3∥∥F)2
16∥Z̄∥2op∥w̄∥4

(∥∥|A| ◦ ξ ◦ ξ ◦ (T̃1 + T̃2 − T̃3)
∥∥2
op
+ E

∥∥B − |A| ◦ σ(η∗)
∥∥2
op

) .
For better implication of the above improvement, we define Ti = T̃i/∥Z̄∥op∥w̄∥2 for
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i = 1, 2, 3, and based on the arguments in (B.38)-(B.40), they are bounded by∥∥T1∥∥F =

∥∥T̃1∥∥F
∥Z̄∥op∥w̄∥2

≤ 2

∥∥Z̄w̄w̄⊤∆⊤
Z̄

∥∥
F

∥Z̄∥op∥w̄∥2
≤ 2
∥∥∆Z̄

∥∥
F
= O(1), (B.41)

∥∥T2∥∥F =

∥∥T̃2∥∥F
∥Z̄∥op∥w̄∥2

≤

∥∥Z∗
∥∥2
op

∥∥∆w̄

∥∥(∥∥w̄∥∥+ ∥∥w∗
∥∥)

∥Z̄∥op∥w̄∥2
= O(1)

1∥∥w̄∥∥ , (B.42)

∥∥T3∥∥F =

∥∥T̃3∥∥F
∥Z̄∥op∥w̄∥2

≤
∥∥∆Z̄

∥∥2
F

∥∥w̄∥∥2
∥Z̄∥op∥w̄∥2

= O(1/
√
n), (B.43)

respectively. Then the improvement is at least

E∥∆Z̄∥2F − E∥∆Ẑ∥
2
F

≥
∥∥|A| ◦ ξ ◦ T1∥∥2F (∥∥|A| ◦ ξ ◦ T1∥∥F −

∥∥|A| ◦ ξ ◦ T2∥∥F −
∥∥|A| ◦ ξ ◦ T3∥∥F )2

16
(∥∥|A| ◦ ξ ◦ ξ ◦ (T1 + T2 − T3)

∥∥2
op
+ E

∥∥B − |A| ◦ σ(η∗)
∥∥2
op
/∥Z̄∥2op∥w̄∥4

) ,
which completes the proof. In particular, when ∥w∗∥ ≍ ∥w̄∥ increases, the upper

bound of numerator in the improvement increases and that of the denominator de-

creases, therefore the improvement more likely increases This implies that larger signal

in the edge signs would lead to greater improvement in estimating Z.

B.7.2 Discussion on the Assumptions in Proposition 3.5.2

We note that the prerequisite error rate of (w̄, γ̄) in Proposition 3.5.2 can be

achieved through first randomly sampling a subset of observed edges, then running

Algorithm B.2 to obtain the separate estimate ṽ, and finally regressing ṽ on Z̄ to

obtain (w̄, γ̄). The conditional independence assumption also holds in sequence if we

use the remaining observed edges for the one-step update. The following proposition

theoretically justifies the above procedure.

Proposition B.7.1. Suppose the conditions in Proposition 3.5.1 and Theorem 3.5.1

hold, and the singular values of the sample covariance Z∗⊤Z∗/n and ∥v∗||2/n are of

constant order. Given the estimators Z̄ and ṽ obtained from Algorithms B.1 and B.2

respectively, if we regress ṽ on Z̄ to obtain (w̄, γ̄), then we have ∥w̄−w∗∥2+∥γ̄−γ∗∥2 =

O(1/n).
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Proof of Proposition B.7.1. Without loss of generality, we assume Ō = argminO∈O(k)

∥Z̄ − Z∗O∥F = Ik and k̃ = argmink∈{1,−1} ∥ṽ − kv∗∥ = 1 in the proof, otherwise we

replace the outputs of Algorithms B.1 and B.2 by Z̄Ō⊤ and k̃ṽ respectively. Therefore,

∆Z̄ = Z̄−Z∗ and ∆ṽ = ṽ−v∗. By Lemmas B.7.1 and B.7.2, we have ∥Z̄−Z∗∥ = O(1)

and ∥ṽ− v∗∥ = O(1). We further substitute [1n, Z̄], [1n, Z
∗], [γ̄, w̄⊤]⊤, and [γ∗, w∗⊤]⊤

by Z̄, Z∗, w̄, and w∗ respectively, then the value of ∥∆Z̄∥ does not change and the

singular values of Z∗⊤Z∗/n are still of constant order. By the definition of w̄, we have

0 = Z̄⊤(ṽ − Z̄w̄) = Z̄⊤(ṽ − Z∗w∗ + Z∗w∗ − Z̄w∗ + Z̄w∗ − Z̄w̄). (B.44)

Since

∥Z̄⊤(ṽ − Z∗w∗)∥ = ∥Z̄⊤(ṽ − v∗)∥ ≤ ∥Z̄∥op∥ṽ − v∗∥ ≤ (∥Z∗∥op + ∥∆Z̄∥op)∥ṽ − v∗∥

≤ (∥Z∗∥op + ∥∆Z̄∥F )∥ṽ − v∗∥ ≤ (O(
√
n) +O(1))O(1) = O(

√
n),

∥Z̄⊤(Z∗ − Z̄)w∗∥ ≤ ∥Z̄∥op∥∆Z̄∥F∥w∗∥ = O(
√
n) · O(1) · O(1) = O(

√
n),

and, by Lemma B.5.7,

∥(Z̄⊤Z̄ − Z∗⊤Z∗)(w∗ − w̄)∥ ≤ ∥Z̄⊤Z̄ − Z∗⊤Z∗∥F∥w∗ − w̄∥

≤ 3∥Z∗∥op∥∆Z̄∥F∥w∗ − w̄∥ = O(
√
n),

we obtain from (B.44) that ∥Z∗⊤Z∗(w∗ − w̄)∥ = O(
√
n). Note that ∥Z∗⊤Z∗(w∗ −

w̄)∥ ≥ σ2
k(Z

∗)∥w∗ − w̄∥, where σk(Z
∗) is the smallest singular value of Z∗, and

by assumption there exist positive constants C1 < C2 such that C1n ≤ σ2
k(Z

∗) ≤

σ2
1(Z

∗) ≤ C2n. Therefore, we have

∥w∗ − w̄∥ ≤ O(
√
n)/σ2

k(Z
∗) = O(1/

√
n),

which completes the proof.
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