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ABSTRACT

The field of high-energy-density (HED) physics features many problems of impor-

tance to society, including stellar formation in astrophysics as well as next-generation

energy technologies. Often, these systems involve complex fluid flows, such as mix-

ing between different fluids, that are influenced by radiation fields. Predicting the

evolution of these systems requires understanding the role of the two-way coupling

between radiation and the fluid flow. The development of experimental techniques

for creating and diagnosing HED systems has greatly expanded our understanding of

their evolution. However, these experiments are challenging, and the state of HED

plasmas often cannot be completely constrained by available diagnostics. Analytical

and computational tools provide valuable insight in predicting quantities that may

be difficult to glean from experiments.

Intense sources of radiation drive ablative flow in many applications, generating

impulse and driving a compression wave into the bulk material. Analytical models

exist to predict the impulse generated in materials exposed to radiation, but they de-

pend on the energy of the blown-off material, which in general is not known due to the

complex partitioning of energy that occurs in the system. The uncertainty associated

with measurements of x-ray spectra poses another difficulty in predicting the impulse

generated in an irradiated material. We address these issues via a data-driven ap-

proach to modeling the impulse generated in materials exposed to a given x-ray source

spectrum. We use data from high-fidelity simulations to inform an analytical model

xiii



for the impulse generated in a given material by an arbitrary radiation source. This

model also provides an analytical form for the impulse-spectrum sensitivity, a quantity

that is important for constraining the uncertainty in impulse resulting from uncer-

tainty in the source spectrum. The model for the impulse-spectrum sensitivity agrees

well with the sensitivity evaluated directly from simulations, requires significantly

less computation time, and can also be evaluated using data from experiments. This

work enables low-cost prediction of important quantities in the radiation-generated

impulse in materials. The modeling approach we propose greatly simplifies the study

of such systems, as well as the design of robust experiments.

Numerical simulation of HED systems poses a challenge, as the problems tend

to be multi-scale and involve fundamentally different, often competing, physical pro-

cesses. The discontinuous Galerkin (DG) method offers many advantages, particularly

as computing architectures evolve to offer exascale capabilities. In particular, DG of-

fers arbitrarily high-order accuracy with a compact stencil, making it well-suited

for parallel scaling. However, high-order methods have seen limited application to

the study of HED systems. As we are primarily interested in the study of multi-

material flows in intense radiation fields, we extend interface capturing techniques

used for classical fluid flows to radiation hydrodynamics in the framework of the DG

discretization. Our approach uses a careful, physically consistent treatment of mate-

rial interfaces, including a limiting procedure designed to prevent unphysical errors

that occur from other approaches. This development results in an approach that is

high-order accurate, conservative, physically consistent, and well-suited for parallel

computation of radiation hydrodynamics. We demonstrate these properties of the

method using one-dimensional verification problems, as well as a two-dimensional

problem relevant to HED science. This work demonstrates the promising application

of high-order numerical methods to practical problems in HED science, a field that

has seen limited application of such methods.
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CHAPTER I

Introduction

This chapter describes the scope of this dissertation and motivates the work within

using applications in the fields of physics and engineering. This research belongs in

the context of high-energy-density physics, which will be defined in the following

section along with other key physical concepts, such as radiation hydrodynamics.

Additionally, we detail the models we will use to describe the phenomena of interest,

as well as the assumptions upon which they rely. We discuss the motivation for

the specific approaches used in this work, namely high-order numerical methods and

sensitivity analysis. Finally, we provide an overview of this dissertation, including an

outline complete with the objective of each chapter.

1.1 High-energy-density physics

High-energy-density (HED) systems are loosely defined as systems featuring ma-

terial under extremely high pressures. A criterion for a more quantitative definition

has specified thermodynamic pressures of one million atmospheres, approximately 1

Megabar [1]. However, a more useful criterion simply requires pressures large enough

that traditional descriptions of condensed matter are insufficient, which can occur at

pressures on the order of 0.1 Mbar [2]. Accordingly, HED systems may involve an

array of effects that complicate their description, including non-ideal plasma effects
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such as strong Coulomb interactions [3, 4, 5], radiation effects that may dominate

the energy fluxes or energy densities of the system [6, 7, 8], and strongly relativistic

[9, 10] or strongly quantum-mechanical [11, 12] behavior. Each of these complicating

factors is rich enough to merit its own body of research, but in the present work we

restrict ourselves to studying the effects of radiation.

Recent development of HED science has occurred in large part due to revolution-

ary experimental techniques developed in the 1980’s and 1990’s. These developments

include high-energy laser systems that can concentrate large amounts of energy into

relatively small targets [13, 14, 15], wire-array Z-pinch systems that use the Lorentz

force to rapidly compress targets [16], as well as ultrafast laser systems achieving un-

precedented intensities, enabling laboratory study of relativistic systems [17]. Along-

side these methods for driving HED experiments evolved techniques for diagnosing

these systems, requiring imaging or spectroscopic measurement on sub-nanosecond

time-scales [18, 19]. These systems enabled laboratory study of new physical phe-

nomena that were previously only conceived of theoretically, most often in the field

of astrophysics. These techniques enabled development of intense sources of x-ray ra-

diation, which are used to drive experiments [20, 21, 22, 23] as well as in diagnostics

[24].

Radiation hydrodynamics is the study of systems in which the exchange of energy

and/or momentum with electromagnetic radiation significantly affects fluid flow [25].

Examples of flows that interact with radiation in this manner are virtually absent

from everyday life on Earth. However, the high-pressure environments of HED sys-

tems give rise to temperatures at which radiative energy fluxes are significant when

compared to those of the fluid. Such systems are said to be in the radiative flux

regime, and are frequently created and diagnosed in HED laboratory experiments

[26]. In the radiation-dominated regime, the energy content contained by the radia-

tion component of system is on the order of that of the material. Due to the extremely

2



high temperatures required, the radiation-dominated regime is more difficult to ob-

tain. However, many astrophysical systems, such stellar interiors, are in this regime.

We will discuss these regimes and other characteristics of radiation hydrodynamics

systems further in Section 1.3.2.

As discussed previously, the development of HED science was enabled by power-

ful experimental techniques, but computational tools have played arguably an equally

important role. HED experiments use an immense amount of energy and very high-

precision manufactured targets, which are often completely vaporized or unretrievable

afterwards. Therefore, experiments on current facilities are limited in terms of repeti-

tion rate [27]. Additionally, due to the difficulty of diagnosing HED systems, certain

quantities of interest may not be constrained by measurements obtained during ex-

periments. Computational codes that simulate different aspects of the experimental

system enable predictions important to the design of experiments [28]. Additionally,

numerical simulations allow researchers to vary parameters that cannot readily be

varied in the experiments, as well as inform the values of quantities that could not be

measured experimentally [29]. This benefitial relationship computation and experi-

ment is bilateral, as experimental methods enable new physical models employed in

simulations to be validated [30, 31].

HED systems are multiphysics systems, in which fundamentally different nonlinear

physical processes must be modeled. The presence of different physical processes typ-

ically causes a variety of physical scales (e.g., time scales, length scales) to exist. The

multiscale nature of HED systems poses a challenge for computational approaches, as

different scales and physics may require different solution methodologies (e.g., diffu-

sive processes are typically discretized differently than convective processes) [32]. This

difficulty is often handled through operator splitting, in which discretization is applied

to each scale or physical process separately [33]. An example of this type of approach

is implicit-explicit schemes, where terms that are stiff are integrated implicitly for
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stability [34]. Additionally, the complications inherent to multiphysics systems often

make traditional analytical approaches less feasible than in single-process systems.

In this context, data-driven approaches to developing analytical models have proven

useful in a number of multiphysics systems, including HED science [35, 36, 37].

In this work, we focus on radiation hydrodynamics phenomena in HED systems,

and make some assumptions that allow us to focus on this interplay between fluid flow

and radiation transport. We are particularly interested in HED systems featuring

phenomena that occur at interfaces between materials, including radiation-driven

ablation and blow-off at material surfaces, as well as the growth of hydrodynamic

instabilities that seed turbulent mixing in radiative environments. In particular, this

dissertation provides a data-driven modeling approach to describe radiation-driven

blow off in materials, and a computational approach to simulating instability growth

and turbulent mixing in multifluid radiation hydrodynamics systems.

1.2 Relevant applications

Radiation hydrodynamics systems appear in a number of areas in science and

engineering that are important to modern society. In addition to naturally existing

in astrophysical systems, radiation hydrodynamics is also relevant to energy tech-

nologies. We will find, in a more detailed discussion of these application areas, that

complex hydrodynamic flows often occur in radiative environments in HED systems.

A fundamental understanding of the interaction between intense radiation fields and

the evolution of these flows is crucial to each of these practical areas of science and

engineering.

1.2.1 Emission nebulae

Astrophysical systems feature phenomena that involve fluid flows interacting with

radiation fields. Due to the very low density of matter in the vast majority of space,
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radiation emitted by stars is able to stream large distances with little attenuation.

The radiative fluxes seen by celestial objects can therefore be large enough to directly

drive flow. One type of celestial object whose very origin is a direct consequence of the

interaction of intense radiation and hydrodynamics is cold pillar structures observed

in emission nebulae.

Emission nebulae form due to the intense ultraviolet radiation emitted from young

O and B-type stars, which travels through the near-vacuum of the interstellar medium

until encountering cold clouds comprised of molecular hydrogen gas. Absorption

of this radiation causes the clouds to ionize, expand, and rarefy, forming emission

nebulae containing relatively hot, ionized hydrogen [38, 39]. Often observed jutting

into these regions are relatively cold pillars of unionized (molecular) hydrogen, like

the Pillars of Creation shown in Figure 1.1. The Pillars of Creation are massive;

the vertical scale of the structures pictured in Figure 1.1 is approximately 70 light

years. While the exact mechanism for the formation of these cold molecular pillars

is debated, it is clear from velocity gradients measured across cold molecular pillars

that they were created by the hydrodynamic flow driven by radiative fluxes during

the formation of the emission nebula, and that this evolution is ongoing [40]. These

cold molecular pillars are continually irradiated, which causes the gas within them to

compress, a process that is believed to trigger the birth of new stars by gravitational

instabilities [41].

There are two competing theories explaining the mechanism for the creation of

cold molecular pillars that extend into emission nebulae. One theory describes the

pillars as being penetrating spikes of cold molecular hydrogen that grew as a result

of the Rayleigh-Taylor instability [42]. This instability arises as the photoionization

fronts that carve out the emission nebulae slow down, causing heavier molecular

hydrogen to accelerate into lighter ionized hydrogen [43, 44, 45]. The second theory

attributes the structures to pre-existing dense clumps within the cloud which retard
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Figure 1.1: Hubble Space Telescope image of the Pillars of Creation within the Messier
16 emission nebula. Reproduced with permission from www.nasa.gov.

the propagation of the ionization front, effectively shielding the gas behind it from

ionizing radiation [46, 47]. Computational and experimental studies have attempted

to re-create the development of these structures based on these two theories [48],

but as of this writing neither theory clearly prevails. Understanding the effects of

radiation in initiating the flows creating these structures — as well as the interplay

between radiation and hydrodynamics as they continue to evolve — is essential to

explaining the origins of important sites for stellar birth and cosmology.

1.2.2 Core-collapse supernovae

In addition to playing a role in the birth of stars, radiation hydrodynamics gov-

erns the death of stars as well. Stars larger than eight solar masses conclude their

lives in extremely powerful explosions called core-collapse, or Type-II, supernovae.

Core-collapse supernovae are the most powerful explosions in the universe, at their

peak releasing 1046 Watts in the form of neutrinos, which is as much instantaneous

power as the rest of the visible Universe combined [49]. These events are important
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cosmically: a large fraction of heavy elements were created in core collapse super-

novae, explosions that act to disperse these heavy elements throughout the universe.

In fact, humans are (by mass) approximately 60% comprised of oxygen that was cre-

ated and scattered by core collapse supernovae [50]. Here we describe the physics of

core collapse supernovae, the most common kind of supernova in the universe [51].

Massive stars begin in the main sequence, burning hydrogen in their cores via

nuclear fusion [52]. The fusion reaction generates neutrons, which exert a pressure in

hydrostatic equilibrium with the gravitational force pulling the star inward on itself.

The hydrogen fuses to form helium, which eventually replaces the center of the star.

As the star approaches the end of its life, burning hydrogen remains outside the new

helium core. This process continues, as heavier and heavier elements fuse in successive

interior layers of the star: hydrogen, helium, carbon, neon, oxygen, and then silicon.

Each stage causes the center of the star to grow hotter and denser. Eventually,

the silicon fuses to produce a core of about 1.5 solar masses of iron. Because the

nuclear binding energy per nucleon is at a maximum for iron, no more energy can be

produced by fusing iron and the fusion cycle stops. At this point gravitational forces

become dominant, driving the star’s iron core to collapse inward, achieving local flow

velocities of about a quarter of the speed of light (≈ 70,000 km/s) [53]. Because the

core collapses so quickly and the gravitational force is much weaker acting on lighter

elements far from the core, the less dense outer layers remain static. An iron core

that was the size of the Earth collapses into a sphere only 30 km in radius, creating

extremely high temperatures and densities. This process is eventually halted by the

short-range nuclear force, after the core has attained the nuclear mass density of

around 5 ×1014 g/cm3 [49].

The abrupt stagnation of the collapsing core causes a shockwave to propagate

outward, but this shockwave stalls at the outer edge of the core due to large neutrino

losses and photodisintegration. It is unclear why the stalled shockwave restarts its
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outward propagation. However, the incredibly hot, dense, neutron-rich core radiates

10% of its rest mass in the form of neutrinos; it is believed that the flux of neutrinos

from the core is sufficient at the stalled shock front to restart the shockwave [54].

As the rebound of the core ends and again falls inward, it generates a rarefaction

wave that catches the shock [55]. As these waves travels outward, they interacts with

stratified layers of decreasing density. Each interaction causes a reflected shock to

travel in the opposite direction. As the expanding ejecta decelerates, the material

interfaces located between the inward and outward-traveling shocks become unstable

to hydrodynamic instabilities, such as the Rayleigh-Taylor (RT) instability [42]. This

process is illustrated in Figure 1.2. The RT instability causes interpenetrating struc-

tures to grow between the layers composed of different elements. HED experiments

have shown that the growth of these structures are likely influenced by the magnitude

of radiative fluxes present in the system [56]. It is believed that the mixing between

these material layers may provide the conditions for synthesis for even higher elements

than those produced within the star [57]. Therefore, studying how radiation affects

the growth of RT and other instabilities is important to understanding the chemical

origins of our universe.

1.2.3 Inertial confinement fusion

Radiation hydrodynamics is also relevant to renewable energy technologies. Cur-

rent research in nuclear fusion is focused on reactions between hydrogen atoms, cre-

ating energy in the form of neutrons without generating harmful or polluting by-

products [58]. Unlike fission, fusion requires overcoming the Coulomb force that

repels like-charged atomic nuclei, which only occurs en masse given extremely hot,

dense conditions [59]. While mankind has been able to create these conditions within

thermonuclear weapons by use of a primary fission explosion [60], creating these con-

ditions in a controlled manner suitable for power production poses challenges. Among
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Figure 1.2: (a) Image of supernova remnant E0102.2-72, located in the Small Megal-
lanic Cloud, and (b) schematic showing structure and gradients of a supernova ex-
plosion. Reproduced with permission from Kuranz et al. [56].

the most promising schemes for controlled nuclear fusion is inertial confinement fu-

sion (ICF), a family of schemes for heating, compressing, and confining nuclear fusion

fuel using x-rays or lasers [61]. ICF has the potential of becoming a clean, renewable

source of energy that may require smaller facilities and less cost than other alterna-

tives [62]. Figure 1.3 is a schematic of the two main ICF schemes: indirect and direct

drive.

Indirect drive ICF utilizes powerful laser pulses to heat the inner wall of a gold

cylinder, known as a hohlraum, which houses a capsule containing fusion fuel. Heating

the hohlraum wall causes x-rays to be emitted, converting the laser energy into an

x-ray environment of millions of degrees [63]. The direct-drive scheme skips this

step, directly applying laser energy to the capsule. The capsule is composed of a

solid shell filled with a mixture of deuterium and tritium gas and comprised of an

outer ablator layer, typically made of plastic, Beryllium, or diamond, coated on the
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inside with a layer of cryogenically frozen deuterium-tritium fuel. The ablator layer of

the capsule absorbs x-rays (or laser beams), which cause it to ablate, or blow off. As

nature demands that momentum be balanced, the remaining capsule is driven inward,

accelerating to hundreds of kilometers per second [63]. As this spherical flow converges

at the center, it stagnates, forming a hot-spot in which densities of approximately 100

g/cm3 and temperatures of hundreds of millions of degrees are attained [64]. The hot-

spot needs to have sufficiently high densities to stop the reaction products (neutrons

and α-particles) created by fusing fuel elsewhere, so that these products can further

heat the fuel and produce a burning, self-heating plasma wherein the fuel ions fuse

in a chain reaction [65]. Achieving the in-flight velocities and hot-spot conditions

required to create a burning plasma requires a symmetric implosion, such that the

conversion of the kinetic energy of the shell to the internal energy of fuel within the

hotspot is efficient.

Figure 1.3: Schematic of indirect-drive (left) and direct-drive (right) inertial confine-
ment fusion configurations. Reproduced with permission from Betti et al. [61].
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Historically, the performance of ICF experiments has been limited by the growth

of in-flight asymmetries that prevent the implosion from being perfectly spherical [66].

These instabilities are seeded by various sources, including low-mode asymmetries in

the capsule shape and hohlraum drive, roughness on the surfaces of the ablator, and

the fill-tube used to inject the fuel [28]. While great progress has been made in lim-

iting these hydrodynamic instabilities, it is apparent that their further minimization

is essential to the success of inertial confinement fusion [67]. A recent ICF exper-

iment on the National Ignition Facility that demonstrated record-breaking neutron

yields of 1.7 MJ featured unprecedented implosion metrics, including inferred hot-

spot pressures and temperatures [68]. This result demonstrated that the ICF concept

is capable of producing a burning plasma for the first time. ICF features both com-

plex hydrodynamics driven by irradiation in the ablation of the fuel capsule, and the

evolution of interfacial instabilities and turbulent mixing in an intense radiative en-

vironment. As our knowledge of ICF continues to develop, understanding how these

radiation-hydrodynamics effects influence these experiments is a crucial ingredient to

the success of this promising technology.

1.3 Physical models and approaches

Implying summation over repeated indices, we write a general mixed hyperbolic-

parabolic system of partial differential equations with source terms as:

∂

∂t
q +

∂

∂xj
fj(q,p) + h(q,

∂q

∂xj
,p) =

∂

∂xj
gj(q,

∂q

∂xj
,p) + s(q,p). (1.1)

Here, t is the time variable, xj is the Eulerian spatial coordinate, q is the state

vector, p is the vector of (constant) parameters explicitly entering the system, fj is

the divergence-form hyperbolic flux, gj is the parabolic flux, h is the term containing

non-conservative products, and s is the source term.
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Here, we refer to fj as the divergence-form hyperbolic flux, as it’s contribution

to (1.1) can be written in vector form as ∇ · ~f = div(~f). A common example of an

equation containing a non-conservative product that cannot be written in divergence

form is the advection of a material in a flow with velocity uj, described using the

material (i.e., Lagrangian) derivative D/Dt

D

Dt
q =

∂

∂t
q + uj

∂

∂xj
q = 0. (1.2)

This equation states that the quantity q moves with the flow. So, we contain products

that are first-order in the spatial derivative, yet cannot be written in divergence form,

in the vector h, which we refer to as the non-conservative product term.

The vector p contains parameters specific to the models used to describe the

system. A common example would be constants that enter the equation of state or

some constitutive model describing the system under consideration.

In this section, we describe physical models that can be written in the form of

System (1.1). Here we describe models which apply only to a single fluid, in which the

equation-of-state properties are constant and uniform; modeling of multiple fluids will

be discussed in detail in Chapter 3 of this dissertation. In Sections 1.3.5 and 1.3.4 we

provide high-level discussion of the computational and analytical approaches taken

in this dissertation.

1.3.1 Hydrodynamics models

Here we discuss various models for describing fluid flow. We begin with the com-

pressible Euler equations, a system of nonlinear, hyperbolic conservation laws that

describe the flow of an inviscid, compressible fluid. We then consider viscosity and

heat conduction, ending up with the compressible Navier Stokes equations.

The Euler equations state the conservation of mass, momentum, and energy for

a fluid continuum. The assumption of a continuous fluid is typically valid in the
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systems of interest due to their density and the length-scales under consideration.

The state vector and divergence-form hyperbolic fluxes for this model are

q =


ρ

ρui

E

 , fj =


ρuj

ρuiuj + δijp

uj(E + p)

 . (1.3)

Here ρ is the mass density of the fluid, ui is the i-th component of velocity of the fluid,

p is the pressure of the fluid, and E is the total energy density of the fluid, comprised

of internal and kinetic contributions, E = ρe + 1
2
ρuiui. For the compressible Euler

equations, hj, gj, and s are zero. To close the Euler system of equations, we require

a thermodynamic equation of state (EOS) relating the specific internal energy e to

the pressure p and density ρ,

e = e(ρ, p). (1.4)

For instance, the ideal gas equation of state can be used to describe gases,

e =
p

ρ(γ − 1)
. (1.5)

Here γ is the adiabatic index, or ratio of specific heats. In the case of a single fluid,

where γ is constant and uniform, this parameter enters the vector p in Equation (1.1).

As the compressible Euler equations model inviscid, compressible fluid mechan-

ics, they admit the wave dynamics (e.g., normal and oblique shockwaves, rarefaction

waves, contact waves) that are present in fluid flows. The compressible Euler equa-

tions is a very useful model in certain limits, when mass, momentum, and energy are

transported via wave dynamics. In reality, the transport of momentum and energy of

fluids is also affected by internal friction caused by the property of viscosity. Viscosity

acts to resist deformation of fluid elements, dissipating kinetic energy to heat. The

compressible Navier-Stokes equations is an accurate model for compressible, viscous
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fluids and typically includes a term describing heat conduction as well. This model

consists of the state vector and hyperbolic fluxes of the compressible Euler equations

given by Equation (1.3), additionally modeling the diffusive processes of Fourier heat

conduction and Newtonian viscosity by incorporating the divergence of the parabolic

flux vector:

gj =


0

τij

uiτij −Qj

 . (1.6)

Here, the viscous stress tensor τij and the Fourier heat flux Qj are given by

τij = µ
(∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij
)

+ µB
∂uk
∂xk

δij, Qj = −κ ∂T
∂xj

. (1.7)

Here, the dynamic shear viscosity is µ, the bulk viscosity is µB, and the thermal

conductivity is κ. We require an equation of state relating the specific energy e to the

other thermodynamic properties. Following the ideal gas assumption, we may relate

the pressure to the temperature via

p = ρRT, (1.8)

where the gas constant per unit mass, R, is given in terms of the (universal) gas

constant per mole, Ru, by

R =
Ru

M
, (1.9)

where the molar mass of the gas is M . Using the ideal gas law, we write the equation

of state in terms of temperature and density, e(ρ, T ), as

e =
p

ρ(γ − 1)
=

R

γ − 1
T = cvT, (1.10)

where cv is the specific heat at constant volume. Accounting for additional physical
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effects upon the fluid involves augmenting the system with further fluxes or source

terms. For instance, an external gravitational field with acceleration gi is represented

by adding the source term,

s =


0

ρgi

ρgiui

 . (1.11)

In this case, the entries of the vector gi are further examples of additional parameters

that enter the vector p in the system (1.1).

1.3.2 Radiation-hydrodynamics models

Here we discuss models for radiation-hydrodynamics flows and the assumptions

we make in attaining the model used in this work. In general, this interaction involves

two-way coupling, so the energy of the radiation field must be solved for along with

the fluid quantities. In particular, we discuss the grey (i.e., single radiation energy)

non-equilibrium diffusion radiation hydrodynamics model, derived in Appendix A.

We also discuss the limitations of this model, as well as alternative approaches. The

state vector and hyperbolic fluxes for this model is:

q =



ρ

ρui

E

ER


, fj =



ρuj

ρuiuj + δij(p+ pR)

uj(E + p)

uj(ER + pR)


. (1.12)

These are the hyperbolic fluxes for the compressible Euler equations, with the addi-

tion of an equation transporting the radiation field energy density ER and the fluid

pressure in the momentum equation augmented by the radiation pressure pR. For

an isotropic radiation field, the radiation pressure is given in terms of the radiation

energy by pR = 1
3
ER. This assumption is discussed at length in Appendix A, and
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is valid in the presence of a sufficiently dense fluid. Here E is the total energy den-

sity comprised of internal and kinetic contributions of the fluid, E = ρe + 1
2
ρuiui.

In the radiation-hydrodynamics case, the fluid may be ionized such that E consists

of contributions from both ion and electron species. In this work, we use a ‘single

fluid’ approach that assumes that the mass, momentum, and energy of the ion species

dominates that of the electron species, so that E is dominated by the internal and

kinetic energy of the ion fluid. This is discussed in greater detail later in this section.

In radiation hydrodynamics, the radiation field and material interact through

different mechanisms. One such mechanism is in the work done on the flow by the

radiation field, which is represented by the non-conservative products in the vector:

h =



0

0

uj
∂
∂xj
pR

−uj ∂
∂xj
pR


. (1.13)

Additionally, we model the transport of photons using the diffusive radiative flux,

gj =



0

0

0

FR,j


, (1.14)

where the radiation diffusion model, discussed at length in Appendix A, models the

radiative flux as

FR,j = DR
∂

∂xj
ER, (1.15)
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where the diffusion coefficient is given as

DR =
c

3κR
. (1.16)

Here the Rosseland mean opacity κR governs the diffusion of photons throughout the

system. As described in in Appendix A, the radiation diffusion model results from

the assumption that the radiation field is isotropic, which is true in optically thick

systems where the photon mean-free path is very small. In the case where this model

is used in an optically thin system, significant modeling issues occur. As radiation

diffusion models result in an unbounded flux in the case of free-streaming radiation,

flux limiters are often employed to ensure that the magnitude of the radiative flux is

at most FR = cER by modifying the diffusion coefficient [69, 70, 71]. This ad hoc fix

increases the robustness of codes based on radiation diffusion, ensuring that physical

results are attained in both the diffusion and free-streaming limits. Here we employ

the radiative flux limiter of Morel [72],

DR =
c√

(3κR)2 + ( 1
ER

∂ER
∂xj

)2
. (1.17)

We observe that as κR → 0, FR is bounded to a magnitude of cER. In the limit where

κR is large, DR approaches the diffusion form in Equation (1.16). While flux-limited

diffusion causes the correct solution to be attained in the optically thick and optically

thin limits, it is not appropriate in systems with intermediate values of optical depth.

Furthermore, in optically thin regions, the radiative flux will be non-zero in any di-

rection where the gradient of radiative energy density is negative, i.e., the radiative

flux will act to diffuse radiative energy from regions of high energy to regions of low

energy. This means that, in two and three spatial dimensions, the flux limited diffu-

sion approach cannot follow shadows (regions of low radiative energy density where

free-streaming radiation should not reach due to an intervening optically-thick object)
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and may even result in calculation of a net force in the wrong direction from the uni-

directional irradiation of optically thick bodies [73]. Therefore, it is important that

the limitations of the flux-limited diffusion model be recognized, and that the model

not be employed to solve problems where these limitations are influential. Methods

exist that do not rely on the assumption of isotropy, such as variable Eddington tensor

[74], discrete ordinates [75] and Monte Carlo [76] methods. These methods typically

involve solving for directionally-dependent distribution functions, such as the specific

intensity in Equation (A.2), rather than moment quantities derived in Section A.1.2,

and as a result are typically much more computationally expensive.

Finally, the radiative source term drives the energies of the radiation field and the

material to equilibrium in a local sense via photoabsorption and emission processes:

s =



0

0

−SR

SR


. (1.18)

Where the source is given as,

SR = cκP (ER −B), (1.19)

where B is the frequency-integrated Planck intensity evaluated at the material tem-

perature T , B = aRT
4, where aR is the radiation constant. Thus the Planck mean

opacity κP governs the local equilibration of the radiation field and the fluid.

Typically, one would model the opacities κR and κP using data obtained from ex-

periment or an atomic-level calculation. In general, they are functions of the density

and temperature of the fluid: κP = κP (ρ, T ) and κR = κR(ρ, T ). This model for

grey radiation involves the solution of radiative quantities that have been integrated
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over frequency. The opacities used here are calculated by averaging the absorption

coefficient in some sense over the frequency spectrum, as given in Equations (A.35)

and (A.37). In some systems, the absorption coefficient may vary significantly over

frequency. Figure 1.4 shows an example of the dependence of the absorption coeffi-

cient on photon energy as a function of temperature. The absorption coefficient can

vary significantly over small ranges of photon energy, particularly near the bound-

free absorption edge (Carbon’s K-edge) which occurs at 283 eV. If this variation is

Figure 1.4: Spectral dependence of the absorption coefficient of carbon with a density
of 2.2 g/cm3, as a function of temperature. Reproduced with permission from Hau-
Riege [77].

significant in spectral regions where the radiation transport is significant, as often oc-

curs for non-Planckian radiation fields, the use of a single averaged value to describe

transport in this region may be insufficient. In these systems the grey approximation

is inadequate, and some model that provides spectral resolution of the unknown radi-

ation quantities should be used instead. In Appendix A, we derived the multi-group

model, which is one such model. However, solving for the many unknowns required

for multi-group calculations can be expensive, though methods for improving the cost

of the multi-group model have been proposed [78].
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We note that we can combine the material and radiation energies to derive a

conservation energy for the total energy:

∂

∂t
(E + ER) +

∂

∂xj
[uj(E + ER + p+ pR)] =

∂

∂xj
FR,j. (1.20)

In general, one would need to consider both electron and ion energies as unknowns,

replacing the equation governing material total energy density in Equations (1.12)

with separate equations for these two fluid species [79, 80, 81]. In such a model,

the electron fluid exchanges energy with the radiation field via the source term, and

the two species are coupled by a term depending on the ion-electron collision rate

and the difference between the temperatures of the two species. As the mass of a

proton is approximately 1,836 times that of an electron, the mass of the ion fluid is

much greater, even in the case of a fully ionized gas of an element of high atomic

number. As we are concerned with inertially dominated flows in which ions are the

important participant, we use a ‘single-fluid’ approach considering only momentum

transport due to the ion species. Therefore, we assume that the ion pressure (and

internal energy density) dominates, and so we solve an equation for the total material

energy density as a whole, where the internal energy of the material is that of the

ion species. Including the source term SR in this equation effectively implies the ions

and electrons are instantaneously coupled in our model. As the plasmas considered

in this work are non-magnetized, we consider them to be quasi-neutral and neglect

Coulomb interactions within the plasma. These assumptions greatly simplify the

equation of state of the fluid; as the ion species is essentially a monatomic gas, it is

valid to consider the ideal gas law for pressure, Equation (1.5), and for temperature,

Equation (1.10), where the molar mass is M = AmpNA/(Z + 1), where A is the

atomic mass, mp is the mass of a proton, NA is Avogadro’s number, and the average

ionization is Z. An example of where this assumption may break down is in certain

20



types of radiative shocks [82, 83].

One may also include other multiphysics effects in these models. In applications

where thermal conduction is important, one may include a heat flux term in the

parabolic flux vector in Equation (1.13) to model the conductive heat transport of

free electrons. This term is added similarly to that in the compressible Navier-Stokes

viscous fluxes in Equation (1.6). Many codes utilize the classic Spitzer-Harm [84]

form for electron conductivity of a collisional plasma. Similar to the case of radiation

diffusion, this result is only valid in a highly collisional, dense plasma. As the system

departs from this ideal, the streaming speed given by this treatment increases without

bound. Various approaches have modified the conductivity with flux limiters in past

studies [79, 85, 86] to limit the streaming speed to a physically sensible value. Highly

collisional plasma flows or flows that are turbulent may also require modeling of

viscosity of the ion species. Various models exist for the viscosity of high-energy-

density plasmas [87, 88] and viscous stress terms can be added to the parabolic

fluxes for the momentum and material energy in Equations (1.14), similar to the

compressible Navier-Stokes viscous fluxes in Equation (1.6).

1.3.3 Dimensional analysis

In multi-physics problems where multiple competing physical processes are being

modeled, it is often useful to non-dimensionalize the governing equations. This al-

lows one to study physical regimes through non-dimensional parameters and assess

the relative importance of the physical processes being considered. In some cases,

this allows one to neglect certain processes and simplify the equations. Addition-

ally, dimensional analysis allows the comparison of phenomena at different scales, as

non-dimensionalization reveals dimensionless parameters that, when their values are

similar, imply some physical similarity between systems at very different scales [89].

First we will demonstrate this process on the compressible Navier-Stokes equations,
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with state vector and hyperbolic fluxes given by Equation (1.3) and parabolic fluxes

given by Equation (1.6).

Selecting an appropriate scale length L, a sound-speed scale a0 (giving a time-

scale τ = L/a0), and a scale density ρ0, we define the non-dimensional independent

variables x′j = xj/L and t′ = t/τ , as well as the non-dimensional dependent variables

ρ′ = ρ/ρ0, u′j = uj/a0, p′ = p/(ρ0a
2
0), E ′ = E/(ρ0a

2
0), and T ′ = T/T0, where T0 =

a2
0/cv. Multiplying the conservation of mass equation by L/(ρ0a0), we obtain

∂

∂t′
ρ′ +

∂

∂x′j
(ρ′u′j) = 0. (1.21)

Next, we multiply the balance of momentum equation by L/(ρ0a
2
0),

∂

∂t′
ρ′u′i +

∂

∂x′j

[
ρ′u′iu

′
j + p′δij

]
=

∂

∂x′j

[
1

Reµ

(∂u′i
∂x′j

+
∂u′j
∂x′i
− 2

3

∂u′k
∂x′k

δij
)

+
1

ReµB

∂u′k
∂x′k

δij

]
.

(1.22)

Here Reµ = ρ0a0L/µ is the Reynolds number based on the dynamic viscosity and

ReµB = ρ0a0L/µB is the Reynolds number based on the bulk viscosity. Multiplying

the conservation of energy equation by L/(ρ0a
3
0)

∂

∂t′
E ′+

∂

∂x′j
u′j(E

′+p′) =
∂

∂x′j

[
u′i
Reµ

(∂u′i
∂x′j

+
∂u′j
∂x′i
− 2

3

∂u′k
∂x′k

δij
)

+
u′i

ReµB

∂u′k
∂x′k

δij + FoT
∂T ′

∂x′j

]
.

(1.23)

Here the thermal Fourier number is FoT = αT τ/L
2, where the thermal diffusivity is

αT = κ/(ρ0cv). The non-dimensional energy equation can also be written in terms

of the thermal Péclet number, PeT = La0/αT . The non-dimensional numbers that

emerge are each a ratio of different physical processes present in the compressible

Navier Stokes equations. For example, the Reynolds numbers are a ratio of inertial

forces to viscous forces (from dynamic/bulk viscosity) within the fluid flow. In the case

of a very large Reynolds number, the respective viscous term can be neglected. The

thermal Fourier number is the ratio of time scales associated with thermal conduction
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to that associated with the storage of thermal energy by increasing internal energy

in the flow. Similarly, the Péclet number is the ratio of time scales associated with

advection to that associated with thermal conduction. In the case of a small thermal

Fourier number (or large thermal Péclet number), the thermal conductivity term

can be neglected. If viscosity and heat transport are neglected, we are left with

the compressible Euler equations, in which inertial effects are the only means of

momentum and energy transport.

A similar procedure allows us to analyze the different regimes in the radiation-

hydrodynamics equations. We follow the convention in [90], and non-dimensionalize

the hydrodynamic quantities using the previous scale quantities L, a0, ρ0, and define

the non-dimensional variables x′j, t
′, ρ′, u′j, p

′, E ′, as in the hydrodynamic case. We

non-dimensionalize the radiation quantities using T0 = a2
0/(Rγ), and the radiation

constant aR: E ′R = ER/(aRT
4
0 ), p′R = pR/(aRT

4
0 ), and F ′R,j = FR,j/(caRT

4
0 ). Using

this non-dimensionalization, the equation of state in terms of pressure becomes,

e′ =
p′

ρ′(γ − 1)
, (1.24)

and in terms of temperature,

e′ =
T ′

γ(γ − 1)
= c′vT

′, (1.25)

The non-dimensionalization of the conservation of mass equation is the same as in

the compressible Navier-Stokes case, yielding Equation (1.21). We multiply the mo-

mentum equation by L/(ρ0a
2
0),

∂

∂t′
ρ′u′i +

∂

∂x′j

[
ρ′u′iu

′
j + (p′ +

1

R
p′R)δij

]
= 0. (1.26)

Here 1/R = aRT
4
0 /(ρ0a

2
0) is the radiation density ratio. This quantity indicates the
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relative importance of the energy densities (or, roughly, the pressures) of material

versus the radiation field in the radiation hydrodynamic system. We multiply the

conservation equation for total energy given in Equation (1.20) by L/(ρ0a
3
0),

∂

∂t′
(E ′ +

1

R
E ′R) +

∂

∂x′j
u′j(E

′ +
1

R
E ′R + p′ +

1

R
p′R) = Bo

∂

∂x′j
F ′R,j. (1.27)

Here the Boltzmann number Bo = caRT
4
0 /(ρ0a

3
0) is a ratio of radiative energy flux to

the energy flux due to hydrodynamic motion.

These dimensionless parameters enable us to define the regimes of radiation hydro-

dynamics. Considering air at atmospheric conditions, taking a0 as the sound speed,

1/R ≈ 4× 10−11 and Bo ≈ 3× 10−5. Clearly, in this case, all terms associated with

the radiation field can be neglected, recovering the Euler equations as given in Equa-

tion (1.3). Indeed, radiation-hydrodynamics phenomena do not occur at terrestrial

conditions. Both of these numbers scale positively with temperature, so the regimes

of radiation hydrodynamics tend to occur at higher than atmospheric temperatures.

For non-relativistic flows, Bo is significantly larger than 1/R. For this reason, as

temperature increases, values of Bo near unity while those of 1/R are orders of mag-

nitude smaller. This situation is known as the radiative flux regime, and in this case

all terms multiplying 1/R in Equations (1.26) and (1.27) may be neglected, while

the radiative flux term multiplying Bo must be included. As temperature increases

still, eventually both dimensionless numbers are large enough that none of the terms

in Equations (1.26) and (1.27) may be neglected. This situation is known as the

radiation-dominated regime. This concept is illustrated in Figure 1.5, where the solid

lines indicate where radiation energy fluxes become equivalent to those associated

with the hydrodynamic motion, and the dashed lines indicate where radiation energy

densities/pressures become equivalent to those of the fluid. We observe that at lower

densities lower temperatures are required to transition in radiation hydrodynamics
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regimes. The radiation dominated regime is only attained, at ordinary gas densities,

at temperatures above about 100 eV (1,160,452 K). The computational approach

taken in this work is applicable to the radiation-dominated regime, so may be used

in the most general radiation-hydrodynamic systems.

Figure 1.5: Regimes of radiation hydrodynamics, gray curves are for Xenon and black
curves are for CH plastic. Reproduced with permission from Drake [63].

While it is illustrative to non-dimensionalize the total energy equation in con-

sidering the regimes of radiation hydrodynamics, in reality we solve separate en-

ergy equations for material and radiation energy densities, with state vector and

divergence-form hyperbolic fluxes given in Equation (1.12) and non-conservative prod-

ucts, parabolic fluxes, and source terms given by (1.13), (1.14), and (1.18), re-

spectively. We non-dimensionalize the material energy equation as we did the to-

tal energy equation, introducing the non-dimensional variables σ′P = cLκP/a0, and

B′ = B/(aRT
4
0 ). Multiplying the material energy equation by L/(ρ0a

3
0),

∂

∂t′
E ′ +

∂

∂x′j
u′j(E

′ + p′) +
1

R
u′j

∂

∂x′j
p′R = − 1

R
σ′P (B′ − E ′R). (1.28)

We now non-dimensionalize the radiation energy equation, introducing the non-

dimensional variables D′R = c/(3κRLa0) and σ′P = (c/a0)κPL. Multiplying the mate-
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rial energy equation by L/(a0aRT
4
0 ),

∂

∂t′
E ′R +

∂

∂x′j
u′j(E

′
R + p′R)− u′j

∂

∂x′j
p′R −

∂

∂x′j
D′R

∂

∂x′j
E ′R = σ′P (B′ − E ′R). (1.29)

These are the equations we solve in practice, and that we refer to as the non-

dimensionalized non-equilibrium diffusion radiation-hydrodynamics equations. With

flux-limited diffusion, where the diffusion coefficient is given by (1.17), the non-

dimensional diffusion coefficient is given instead by,

D′R = (c/a0)/

√
(3κRL)2 + (

1

E ′R

∂E ′R
∂x′j

)2. (1.30)

This modification of the diffusion coefficient ensures that a mathematically sensible

value of the radiative flux is obtained in the diffusion (optically thick) and free-

streaming (optically thin) limits.

We note that when solving these non-dimensional equations, one must specify the

ratios 1/R = aRT
4
0 /(ρ0a

2
0) as well as c/a0. The speed of sound in air at 10 eV, a typical

temperature in HED systems, is approximately 6,800 m/s, while the speed of light is

approximately 3.0 ×108 m/s. The value of this ratio depends on the value chosen for

a0, but values of c/a0 ∼ 102−106 are reasonable in HED systems. For smaller values,

relativistic effects should be considered, meaning that the governing equations given

here are insufficient. One also needs to define κRL, κPL. As we discuss in Appendix

A, the opacity κR is related to the mean-free path in the material. So, the non-

dimensional quantity κRL is a measure of the optical depth of the system. For small

values of κRL, the system is optically thin, and for large values, the system is optically

thick. Many references note that near boundaries between materials, the opacity may

become small and the system may become optically thin [25, 63, 91]. The formulation

in Equation (1.30) ensures that the proper radiative flux value is obtained in optically

thin and thick regions. However, this scenario involves a transition, and at some point
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the optical depth will be on the order of unity. In this region, the use of flux-limited

diffusion is subject to serious modeling errors.

1.3.4 Sensitivity analysis

Oftentimes, the values of inputs into mathematical models are not known to a

high degree of certainty. In this situation, statistical distributions are useful for

representing the likelihood of an input attaining a certain value. When such models

are used to make predictions, those outputs are subject to uncertainty as well. As

some model predictions may be only as useful as they are accurate, it is important to

be able to constrain the uncertainty in modeling outputs that result from uncertainties

in specific inputs. Additionally, this may motivate efforts to place tighter constraints

on certain model inputs. Sensitivity analysis is an important practice in the field

of uncertainty quantification, wherein values of parametric sensitivities constrain the

uncertainty of model output due to uncertainty present in those parameters [92].

Sensitivity analysis has been employed in fields as diverse as biomedical engineering

[93], geophysics [94], chemical kinetics [95], and finance [96] in order to determine the

effect of changes in model parameters upon model solutions.

A physical system can be modeled mathematically (e.g., the system (1.1)) using

equations relating the vector of dependent variables q, defining the state of the system,

to the model parameters or inputs p, which contains model parameters and perhaps

initial and/or boundary conditions of the system, and the independent variables x =

(t, xj), which in general includes spatial and/or temporal coordinates. This model is

generally comprised of some number of equations (for example, each system described

in Sections 1.3.1 and 1.3.2), written concisely as

H(q(x),p(x),x) = 0. (1.31)
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Here H is a vector operator whose elements may consist of algebraic equations,

differential operators, integro-differential operators, or any combination/convolution

thereof. In general, sensitivity analysis concerns some vector of response quanti-

ties of interest, R(q(x),p(x)), which typically only depends on p implicitly through

Equation (1.31). There exist a number of approaches to sensitivity analysis, includ-

ing differential analysis [97], variance decomposition methods [98], and Monte Carlo

methods [99]. Differential sensitivity analysis is chiefly concerned with the determi-

nation of the sensitivities of response quantities to the various model parameters ∂R
∂p

.

In Chapter 2 of this dissertation, we apply sensitivity analysis to systems in which

intense radiation sources drive blow-off flow and generate impulse in metals.

1.3.5 High-order numerical methods

Experiments in HED science are expensive to conduct, as well as difficult to de-

sign and diagnose. It is common that the process of designing experiments requires

that certain quantities be predicted or estimated. Due to the expense and difficulty

of implementing preliminary proof-of-concept experiments, these predictions often

cannot be determined from previous experiments. Analytical prediction can be es-

pecially difficult in this field, as the system is governed by complex multi-physics

processes. An additional limitation in HED experiments is that it is often possible to

obtain measurement of only limited quantities during experiments due to diagnostic

limitations.

Computational simulation can be useful for addressing each of these issues; sim-

ulations are often used to predict quantities for experimental design, and to match

measured quantities from experiments and extract others that could not be accessed.

Simulations provide a relatively inexpensive tool that offer unlimited detail of the

entire evolution the system while accounting for all relevant physical processes. Ad-

ditionally, simulations can be used to explore the effects of certain physical processes
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systematically in a way that typically cannot be done with experimental methods.

In general, governing model equations, such as the general system (1.1), are dis-

cretized using numerical methods that approximate their solution. A given numerical

method has an associated error and order of accuracy, which means that the error

by some measure scales as Error ∼ ∆xOA, where ∆x is the size associated with the

numerical discretization and OA is the order of accuracy. High-order numerical meth-

ods are defined as having second-order accuracy or greater. Higher order methods

converge at a higher rate of accuracy, meaning that they generally obtain a lower error

with a given discretization. This means that high-order methods, in general, obtain

a certain level of error with fewer calculations, and are in general less expensive [100].

Due to this advantage, high-order numerical methods are particularly attractive for

applications where low-order methods would require prohibitively high resolutions.

One such application is in the direct numerical simulation (DNS) of turbulent flows,

where every physically relevant length and time-scale is resolved, including those due

to the small-scale motions responsible for turbulent dissipation [101].

Despite this advantage, most computational studies in industry as well as research

environments is done with methods that are at most second-order accurate. This ten-

dency is especially true in HED science, where the application of high-order methods

has been particularly limited. High-order methods tend to be more complicated,

more difficult to implement, and more difficult to analyze than low-order methods.

Another advantage of low-order methods is robustness, i.e., the ability to produce

stable and useful results for a wide range of problems. Additionally, increasing the

order of accuracy typically increases the computational stencil and the communica-

tion requirements of the implementation, which can cause a bottleneck during parallel

execution. Another issue is that high-order interpolation of discontinuities, such as

shockwaves and material interfaces, causes oscillations, which need to be damped by

either introducing dissipation through artificial viscosity [102] or limiting the values
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of the high-order representation [103].

In Chapter 3, we introduce a high-order numerical method for computing flows in

radiation hydrodynamics. Our method is based on the discontinuous Galerkin (DG)

discretization, which uses high-order polynomials to approximate the solution within

each computational element. Because these polynomials are supported (i.e., defined to

be nonzero) only in their corresponding element, the computational stencil for the DG

approach is compact. This means that the numerical treatment of fluxes only requires

communication between immediately adjacent elements, allowing for minimal latency

due to communication during computation on parallel architectures. We apply this

method to multi-material flows that interact with intense radiation fields according

to the models described in Section 1.3.2. It is our hope that by showcasing the

advantages of this method, we will demonstrate the potential usefulness that high-

order methods offer in HED science.

1.4 Dissertation overview

This dissertation introduces analytical and computational techniques useful for

studying flows in radiation hydrodynamics. We address two important gaps in knowl-

edge that exist in the currently available techniques used to describe radiation/material

interaction. The objectives of this work are (i) to develop a modeling approach for

predicting the impulse and uncertainty in impulse in materials irradiated by x-ray

sources subject to uncertainty, and (ii) to develop an approach for numerical simu-

lation of multi-material radiation hydrodynamics suitable for the study of mixing at

material interfaces.

Towards this first objective, Chapter 2 introduces a data-driven semi-analytical

model for studying systems in which deposited energy from intense radiation sources

causes surface material to blow off, driving motion of the remaining bulk material.

The model we present is useful for predicting the impulse imparted to a material
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by a given radiation spectrum. Furthermore, our model provides the sensitivity of

this impulse to the spectrum, allowing uncertainty in impulse to be constrained given

the uncertainty present in a measured radiation spectrum. Our modeling approach

is novel, and allows reliable prediction of impulse and impulse-spectrum sensitivity

using a relatively small set of data. While we use high-fidelity simulations to obtain

this data, experimental measurements can be used as well.

We address the second objective in Chapter 3, where we introduce a numeri-

cal method for computational investigation of multi-material flows in radiation hy-

drodynamics. Based on the DG discretization, our method is high-order accurate,

physically consistent at material interfaces, and conserves total energy. We use an

interface-capturing approach via a high-order limiting scheme that is designed to pre-

vent pressure and temperature errors at interfaces. We apply this limiting procedure

in a solution-adaptive fashion using a physics-based discontinuity sensor. Our scheme

offers promising advantages for parallel computation of phenomena occurring at ma-

terial interfaces in radiation hydrodynamics, which are a key aspect of HED science.

The extension of these types of high-order interface capturing schemes to the field of

radiation hydrodynamics is novel, and hopefully will provide a basis for wider use of

high-order schemes in the field of HED science.

In Chapter 4, we summarize this dissertation and the impact of its contributions.

Additionally, we discuss limitations of the approaches employed herein, and make

suggestions for future work.
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CHAPTER II

Analytical Modeling of Radiatively-Generated

Impulse in Materials 1

2.1 Abstract

High-intensity x-ray sources are used for a variety of purposes in HED physics.

Additionally, many engineering applications involve exposing materials to a high flu-

ence of radiation. Absorption of these x-rays heats the material, causing an increase

in pressure and driving material to blow off/ablate, imparting impulse to the bulk

material. Accurately modeling the physical processes involved in radiatively-driven

impulse in materials is challenging, as the material behavior is governed by complex

material opacity, constitutive, and equation of state relations. Analytical models for

radiatively-generated impulse in materials exist, but contain an unclosed term that

must be either modeled or fit using data. Additionally, uncertainties present in the

measurement of the detailed spectra of x-ray sources give rise to uncertainties in the

generated material impulse. We present a semi-analytical model for the impulse-

spectrum sensitivity, which governs the relationship between these uncertainties and

is especially useful for performing forward propagation of uncertainty. We use high-

fidelity simulations in which the modeling parameters have been selected to fit data

1This chapter was released by Lawrence Livermore National Laboratory as LLNL-TH-835682.
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from experiments of impulse generated by x-rays on the National Ignition Facility to

provide data for closure of the model for a few example materials. We also verify our

model for impulse-spectrum sensitivity by comparison to brute-force calculation of

sensitivity with this simulation approach. We then perform uncertainty propagation

using this sensitivity model to demonstrate the utility of this methodology in the

design of robust experiments.

2.2 Introduction

Significant progress has been made over the past few decades on the development

of high-intensity x-ray sources on facilities such as the Z machine at Sandia National

Laboratories [104], the Omega laser at the Laboratory for Laser Energetics [105],

and the National Ignition Facility (NIF) at Lawrence Livermore National Labora-

tories [106]. Many experiments in HED physics [55, 107] and inertial confinement

fusion [108, 109] have used high-intensity x-ray sources to drive hydrodynamic flows

of interest. Furthermore, x-ray sources are often used as probes and backlighters for

radiography in plasma experiments [110, 111]. Many applications also require ma-

terials to withstand large doses of irradiation, including the design of vehicles and

equipment for space travel [112, 113], the design of detectors in high-energy physics

[114], and the design of military communications systems [115]. Additionally, past

studies have focused on the response of planetary and meteorite materials to x-ray ir-

radiation to study the origin and evolution of the universe [116] and develop strategies

for near-Earth object impact hazard mitigation [117]. In these application areas, an

accurate representation of the radiation and material physics is essential to predicting

the impulse generated by a given radiation source.

As photons interact with a material, photoabsorption and inelastic scattering

deposit energy in the material as determined by the material’s opacity and the spectral

intensity of the x-ray source corresponding to the photons’ frequency [118]. The
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energy deposited contributes to phase change, ionization, or may increase the internal

energy of solid material. An increase in internal energy corresponds to a pressure

increase dictated by the material’s equation of state. Energy that goes into phase

change of the material or ionization acts to create liquid, gas, or plasma, causing

material to expand from, or blow off of, the bulk material, imparting impulse and

sending a compressive wave that travels both directions, the primary wave moving

into the bulk of the material. The resulting stresses may surpass the yield strength

of the material, resulting in strain or even failure. Additionally, as the compression

wave interacts with the front and rear surfaces of the bulk material, it reflects a

tensile wave that may cause solid material to fail in tension and fragment from the

bulk material. Past studies have attempted to model impulse generated by x-ray

irradiation using purely analytical methods, but due to the complicated nature of the

energy deposition mechanisms, analytical models include a term describing the final

energy of the blown-off material, a quantity that is generally unknown [119]. Prior

modeling efforts have arbitrarily set this term as the enthalpy of fusion or vaporization

of the material [120], or modeled this term from thermodynamic considerations that

rely on fixing the final state of the material [119]. In this work, we employ a data-

driven approach to fit an assumed functional form for this quantity, resulting in a

fully specified model for a given material that can be used for predictive calculation

of impulse.

The Dante is a diagnostic with 18 filtered channels used in HED experiments to

measure spectrally-resolved x-ray fluxes [121]. Dante systems are commonly used in

HED experiments and are currently in use at the Omega laser facility [122] and the

NIF [123], with a similar system in use by the French Atomic Energy Agency [124].

X-ray spectral measurements using the Dante diagnostic are subject to uncertainties,

including those due to shot-to-shot variation [125] and the algorithm used to unfold

the raw data into detailed spectra [126]. In modeling radiatively-generated impulse
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in materials, uncertainty in the various model inputs, or parameters, (e.g., the initial

state of the material, parameters entering the constitutive relationships governing the

material, and the x-ray spectrum) result in uncertainty in the prediction of impulse.

We are interested in constraining the uncertainty in impulse that is due to uncertain-

ties in the source spectrum, a problem which we address using sensitivity analysis,

which was introduced in Section 1.3.4. In this study, we are concerned with differ-

ential sensitivity analysis, which uses various approaches to determine the values of

the derivatives of model outputs with respect to model parameters, such as direct

differentiation of the governing model [92], Green’s functions [127], and brute-force

model recalculation combined with finite differences [128]. Herein, we use this first

approach as our chief means of studying this quantity, and the last approach as a

means of verification and comparison.

In the current chapter of this dissertation, we develop a semi-analytical approach

to modeling the impulse-spectrum sensitivity of x-ray irradiated materials. First, we

establish context by describing an experimental platform for studying radiatively-

generated impulse in materials in Section 2.3. We will use data from these experi-

ments that characterize the x-ray source and material response in this work. Next,

our model is derived directly from the Bethe, Bade, Averell and Yos (BBAY) impulse

model [129] in Section 2.4. The model contains a term describing the energy of the

blown-off material, which is not known a priori. We use results from high-fidelity

1-D simulations with sophisticated photon transport, equation of state, and consti-

tutive models described in Section 2.5 to provide a data-driven representation of this

term. We employ a procedure that calibrates parameters used in these simulations to

achieve close agreement to experimental data. Our methodology of fitting coefficients

in an assumed functional form for the blown-off material energy given this data from

simulations is described in Section 2.6. Our model allows for predictive calculation of

impulse as well as impulse-spectrum sensitivity, enabling the propagation of uncer-
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tainty associated with the x-ray spectrum to constrain the resulting uncertainty in

impulse. We apply our methodology to two different irradiated materials, verifying

the results of our model using brute-force sensitivity evaluations directly from the

1-D simulations in Section 2.7. In Section 2.8, we demonstrate the application of

the model, constraining the uncertainty in material impulse using estimates of uncer-

tainty in x-ray spectrum due to shot-to-shot variation. The authors believe that the

approach outlined in this work will prove useful in the design of robust experiments

studying x-ray impulse generation in a range of materials given x-ray sources subject

to uncertainty in spectral content from a variety of sources.

2.3 Experiments of radiatively-driven impulse

An experimental platform for studying material response to intense x-ray sources

is under development at the NIF [130, 131, 132]. These experiments examine the

response of various materials to exposure to different x-ray sources heated and ionized

by the NIF laser beams, each emitting radiation in a different characteristic spectrum.

In this work, we consider results obtained with a Xenon gas pipe x-ray source, which

has been characterized in prior experiments [133]. The emission spectrum of the x-ray

source is measured by the Dante diagnostic. A detailed spectrum is obtained from the

18-channel Data data using the UNSPEC unfold algorithm [126]. A target positioner

holds the x-ray source equidistant in the line-of-sight of an array of material samples

held by the X-ray Transport and Radiation Response Assessment (XTRRA) test

cassette, shown in Figure 2.1 [131]. This apparatus holds multiple material samples

as they are exposed to a given x-ray source in a manner that enables the samples

to be recovered after the conclusion of the experiment. The apparatus also houses

instruments for diagnostic measurements characterizing the mechanical responses of

the samples during the experiment. As x-rays are absorbed by the material samples

and material blow-off occurs, a compression wave is driven into the remaining bulk of
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the material. The time history of the displacement of the rear surfaces of the material

samples caused by interaction with the compression wave is measured by Photon

Displacement Interferometry (PDI), which uses interference between incoming and

outgoing light waves to measure small displacements [134]. The PDI measurements

indicate the temporal shape of the compression wave, which displaces the rear surface

over a relatively short time as it interacts with the rear of the sample.

Figure 2.1: The XTRRA test casette used in radiatively-driven impulse experiments
on the NIF. The Test Object Holder Assembly windows contain the material samples,
which are exposed to x-ray emissions from a source material held within the snout
equidistant in the line-of-sight of each sample.

In our treatment of this problem, we rely on a few key assumptions. In these

experiments, the duration of the x-ray source is on the order of nanoseconds, whereas

bulk hydrodynamic motion is on the order of a tenth of a microsecond, as seen in the

simulation results in Section 2.5.1. These disparate time scales justify the approach

of treating radiation transport and hydrodynamics in a sequential fashion, which

both our simulation and modeling approaches rely upon. As the Dante diagnostic

measures source emission along a different axis than that seen by the material samples,

it is assumed throughout this work that the source is isotropic in spectral shape.

Additionally, the small diameter (3.0 cm) of the material samples relative the distance

to the source (10 cm) means that the distance to the source at the edges of the samples
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is less than 5% larger than at the center of the samples, so the variation in fluence

from one point to another across the face of a sample is negligible. This means that

blow-off is driven uniformly across the face of the sample. The samples have a large

aspect ratio, and are larger in diameter than in thickness (0.05 cm for Ti-64, 0.20

cm for Al-6061). A signal will traverse the thickness 30 times for Ti-64, and 7.5

times for Al-6061 before a signal from the boundary will travel to the middle of the

sample. Signals resulting from effects at the sample boundaries are thus unlikely to

affect the sample interior before the compression wave reaches the rear surface of the

sample. It is therefore reasonable to use one-dimensional simulations to represent

the hydrodynamics. The results in Section 2.5.2 indicate that these assumptions are

appropriate.

2.4 Impulse-spectrum sensitivity model

As described in Section 1.3.4, a physical system can be modeled mathematically

using equations relating the vector of dependent variables q, defining the state of the

system, to the model parameters or inputs p, including model parameters and per-

haps initial and/or boundary conditions of the system, and the independent variables

x. As we are primarily interested in the damage caused to materials in radiative envi-

ronments, we define our response quantity of interest, R(q(x),p(x)), as the impulse

imparted to the material. Throughout this study, we restrict ourselves to 1-D slabs

of material that are initially uniform. We also assume that exposure to radiation oc-

curs over a time-scale much smaller than that associated with the material response.

In this case, impulse is an integral quantity that characterizes the amount that the

blown-off material ‘pushes’ on the remaining bulk material due to the radiation-

deposited energy. The impulse imparted to a continuous material can be defined by

integrating the momentum over the slab or the pressure at the blow-off/bulk material

boundary over time, so long as the integration time far exceeds the time associated
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with blow-off:

I =

M∫
mB

u(m, t = τ)dm =

τ∫
0

p(m = mB, t)dt, (2.1)

where u is the material velocity, p is the material pressure, t is time, τ is a time-scale

associated with bulk material motion, m is the 1-D Lagrangian coordinate,

m =

x∫
0

ρ0(x̃, t)dx̃, (2.2)

M is the initial mass of the slab of material and mB is the value of the Lagrangian

coordinate corresponding to the blow-off/bulk material interface. Here ρ0 is the initial

density of the slab, which we assume to be uniform, and x is the Eulerian coordinate in

the slab. A hierarchy of analytical models have been developed to calculate radiation-

generated impulse [135]. Perhaps the most sophisticated is the BBAY model, written

for a 1-D slab of material as [129]:

I = α
[
2

mB∫
0

[
E(m)− Ef (m)

]
mdm

]1/2

. (2.3)

In Equation (2.3), E(m) is the initial energy deposited by x-rays within the slab,

Ef (m) is the final internal energy distribution of the blown-off material, α is a co-

efficient of integration, and mB is the coordinate where E = Ef . The BBAY model

(2.3) is a closed-form solution of the equations of motion; we derive this expression

in Appendix B. α is a constant, here assumed to be α =
√

2. Assuming that pho-

toabsorption is the dominant mechanism of energy deposition, and that the mass

absorption coefficient µ(e), dependent on photon energy e, is uniform within the slab,

we can write the initial energy deposition as:

E(m) =

∞∫
−∞

f(e)µ(e) exp [−µ(e)m] de, (2.4)
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where the spectral fluence of the incident x-ray field is f(e), with dimensions of energy

per unit area per unit photon energy. The total fluence is given by

F =

∞∫
0

f(e)de. (2.5)

In practice, we approximate the x-ray spectrum of the source using piecewise-constant

values within G number of groups with photon energy e ∈ [eg, eg+1]. This practice is

commonly performed to simplify the frequency dependence of material and unknown

radiation quantities [25, 91]. Using this approximation, the fluence of the g-th group

is computed as:

Fg =

eg+1∫
eg

f(e)de. (2.6)

In this case, we approximate the energy deposition with the expression

E(m) =
G∑
g=1

Fgµg exp [−µgm] , (2.7)

where µg is the mass absorption coefficient averaged over the g-th group.

We utilize the BBAY model (2.3) to derive an analytical expression for the impulse-

spectrum sensitivity. The derivative of the expression for energy deposition in Equa-

tion(2.4) with respect to the fluence of group g is,

∂E

∂Fg
= µgexp

[
− µgm

]
, (2.8)

Evaluating the functional derivative of the BBAY impulse model (2.3), and making

use of (2.8), we evaluate the sensitivity of impulse with respect to the fluence of group

g:

δI

δFg
=
α2

I

mB∫
0

µgexp
[
− µgm

][
1− ∂Ef

∂E

]
mdm. (2.9)
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As we evaluate the impulse-spectrum sensitivity using numerical methods, we refer

to this model as semi-analytical.

As the function Ef (m) is not known a priori, this term must be modeled. One

such effort is the McCloskey-Thompson model [119], which assumes that the blow-off

material isentropically expands to the triple point pressure and temperature. This is

a mathematically convenient, albeit arbitrary, state at which to fix the final energy of

the material. This model has been used to investigate trends in impulse dependence

on x-ray fluence in experiments [136, 137, 138]. More sophisticated models for Ef (m)

tend to have material parameters that are difficult to obtain experimentally [119],

and so may require individual calibration, which we prefer to avoid. Instead, we

use data from simulations using high-fidelity transport and constitutive models to

obtain a functional form for Ef (m), as will be discussed in Section 2.5. To verify this

analytical expression, we compare this semi-analytical model for impulse-spectrum

sensitivity to that evaluated by brute-force model reevaluation using finite differences

with simulations in Section 2.5.1.

2.5 Obtaining data to model Ef(m) function

Our approach to closure of Equations (2.3) and (2.9) involves using data from

simulations to fit an assumed analytical form of the function Ef (m), described in

Section 2.6. In the current section, we describe our methodology for conducting these

simulations. We outline our computational approach in Section 2.5.1. In Section 2.5.2

we describe our process of calibration, which allows us to achieve good agreement

between simulation and experiment. This process allows us to use a data-driven

approach for informing the function Ef (m), which enables our semi-analytical model

for the impulse as well as the impulse-spectrum sensitivity to be used to predict

quantities with a high degree of fidelity.
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2.5.1 Computational approach

Our computational approach involves the use of two simulation codes ran in suc-

cession, each simulating a different set of the physics of radiatively-driven blow-off and

impulse generation. We use the Mercury Monte Carlo particle transport code [139]

to calculate the radiation energy deposited in materials exposed to intense sources

of radiation. The Mercury code is capable of computing transport of neutrons, pho-

tons, and light elements with multigroup or continuous interaction cross-sections.

Our photon transport calculations include 3×106 marker particles with interaction

cross-sections from the Evaluated Nuclear Data Library [140]. The Monte Carlo ap-

proach enables us to account for the effect of coherent scattering with reasonable

computational cost. Though this effect is negligible at solid densities, this strat-

egy enables us to extend our approach to examine lower-density systems of interest.

We use time-integrated emission spectra, as measured by the Dante diagnostic dur-

ing radiatively-generated impulse experiments described in Section 2.5.2, to define

the source of photons in the simulations. An example of a time-integrated spectrum

measured from a Xenon source is shown in Figure 2.2a. As can be observed, unfolding

the Dante data with the UNSPEC algorithm results in fairly complex emission spec-

tra. The Monte Carlo simulations provide profiles of the internal energy deposited

within the material, initializing the internal energy in the hydrodynamics simulations

we conduct with the Ares code. The profile of energy deposited by the spectrum

shown in Figure 2.2a within a Ti-64 sample is shown in Figure 2.2b. Absorption of

radiation from this source results in an energy deposition profile that is monotonically

decreasing, as expected, and most of the energy is concentrated in the leading ∼ 10

µm of the sample.

We utilize the Ares code [141] to simulate the 1-D hydrodynamic response to the

energy deposition profile calculated by Mercury. Ares is an Arbitrary Lagrangian-

Eulerian hydrodynamics code with a variety of equations of state and constitutive
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(a) (b)

Figure 2.2: Mercury Monte Carlo photon transport code input and output. (a) Input:
time-integrated emission spectrum from a Xenon source measured by Dante, re-scaled
to 100 cal/cm2. (b) Output: resulting profile of internal energy deposition within a
1-D slab of Ti-64.

models for a diverse array of materials. The Livermore Equation of State (LEOS)

library contains tabulated equation of state data for a large variety of materials

[142, 143]. Additionally, experimentally-determined parameters for equation of state

and constitutive models such as the Steinberg-Guinan [144] and Steinberg-Lund [145]

constitutive models for metals, the Jones-Wilkins-Lee equation of state for high ex-

plosives [146], and the Mie-Gruneisen equation of state for shock-compressed solids

[147] are stored in the Steinberg-Guinan Equation of State (SGEOS) database [148].

Appropriate equations of state and constitutive data allow us to perform simulations

that model the details of the material blow-off, impulse generation, and compres-

sion wave propagation to a high degree of fidelity. Figure 2.3 shows momentum and

pressure profiles of the compression wave propagating through a 0.05 cm slab of Ti-

64 computed by Ares, resulting from the energy deposition profile shown in Figure

2.2b. The figures show a compression wave of fairly complex shape that evolves as it

propagates through the sample, reaching the rear surface of the 0.05 cm thick sample

around 7 ×10−2 µs. The shape of this compression wave determines how the rear sur-

face is displaced by the wave, as recorded with PDI data in the experiments described
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(a) (b)

Figure 2.3: Ares hydrodynamics code output, showing profiles of (a) momentum and
(b) pressure from a 1-D simulation of a 0.05 cm Ti-64 slab exposed to radiation from
a Xenon source. Profiles depict the propagation of a compression wave through the
material at 1×10−2 µs (blue), 4×10−2 µs (red), 7 ×10−2 µs (green).

in Section 2.3. We note that both of these quantities, momentum and pressure, can

be used to calculate the sample impulse with Equation (2.1). We model the Ti-64

with the LEOS and the Steinberg-Guinan constitutive model with material-specific

parameters given by the SGEOS database. We utilize experimental data to calibrate

the values of parameters not specified by these models, relating to the material’s

failure in tension, in Section 2.5.2.

2.5.2 Calibration of simulation model parameters

We first compare the PDI data from the NIF experiments to the computational

results. A Lagrangian tracer in the Ares simulations tracks the displacement of the

sample rear surface as the compression wave interacts with it for comparison to the

PDI data. Obtaining agreement with the experiment allows us to fix values of param-

eters entering Equation (1.31) relating to material properties, so that the sensitivity

of the impulse with respect to the radiative spectrum can be assessed. As the rear

surface displacement depends on the shape of the compression wave, we find that the

displacement results are highly sensitive to the material equation of state and con-
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stitutive treatment, and agreement with experimental data was only possible using

the most sophisticated models available. In this work, we consider a 0.2 cm thick Al-

6061 sample and a 0.05 cm thick Ti-64 sample exposed to a Xenon x-ray source. We

describe these materials with the LEOS equation of state and the Steinberg-Guinan

constitutive model in the case of Ti-64, while we find that the Johnson-Cook consti-

tutive model [149] gave better agreement for Al-6061. Nominal values for parameters

entering these models from the literature are used [148, 150]. We follow a calibration

procedure to determine quantities characterizing mechanical failure in tension, i.e.,

the minimum pressure pmin and the minimum compression ηmin that can be with-

stood by the material. In this section, we describe the procedure used to determine

the values of these parameters that result in the best agreement with the PDI data.

First, we conduct simulations sweeping the parameter space, varying pmin and

ηmin within a range to assess the agreement of simulated rear surface displacement

to that measured in experiments. This process allows us to assess whether a unique

point exists in the parameter space for which good agreement is achieved. For these

simulations, the Dante-measured time-integrated Xenon spectrum in Figure 2.2a is

used. Integrating this spectrum over frequency, the fluence delivered to each sample

is found to be 69 cal/cm2. Rear-surface displacement ∆x for varying ηmin and pmin

(measured in Mbar) are shown in Figures 2.4 and 2.5. As the compression wave

interacts with the rear surface, the displacement increases suddenly, and then coasts

at a constant velocity afterward. The prompt displacement, or the amount that the

displacement increases initially, is a direct function of the impulse generated in the

sample. So, it is very important that our simulations capture the prompt displacement

accurately. As Figures 2.4 and 2.5 show, the shape of the PDI time histories during

the prompt displacement and coasting periods are fairly sensitive to the values of

these parameters. These results show that for both materials, the best agreement is

attained for ηmin = 0.85 and pmin values below −0.03 Mbar.
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We further calibrate the values of ηmin and pmin to agree with the experimental

data using the minimization algorithm of Powell [151] implemented in the Python

SciPy library [152]. We also allow the fluence to vary, to account for uncertainty in

the fluence seen by each sample. This uncertainty is due in part to our assumption

of isotropy between the Dante and the sample viewing axes, as discussed in Section

2.3. For both materials, we use the initial guesses of ηmin=0.85, pmin=-0.04 Mbar,

and a fluence of 69 cal/cm2. We restrict the optimization to allow ηmin to vary in the

range [0.8,0.9], pmin in the range [-0.03,-0.05] Mbar, and the fluence to vary only by

10% of the initial guess. The initial guesses and range used for ηmin and pmin were

selected due to the agreement with experimental data shown in Figures 2.4 and 2.5.

The range for the fluence was selected as a reasonable zeroth-order estimate for the

uncertainty in the total fluence seen by the samples. We calculate the relative error

in rear-surface displacement, defined as

Relative error =
∣∣∣∆xAres −∆xPDI

∆xPDI

∣∣∣. (2.10)

The relative error is assessed at times when displacement is output by Ares, and

the PDI data is linearly interpolated between points to these times. The Powell

minimization routine minimizes the L2 norm of the relative error, computed as

L2 =

√√√√ 1

N

N∑
i=1

[Relative error]2i , (2.11)

where N is the number of times in the displacement time-history where the relative

error is assessed. The results in Figure 2.6 show that in the Ti-64 case, we achieve

an L2 = 0.0245 after 54 optimization iterations, where the values are: ηmin = 0.849,

pmin = −0.300 Mbar, and 62.7 cal/cm2. Figure 2.7 shows the Al-6061 case, where

we achieve an L2=0.142 after 33 optimization iterations, where the values are: ηmin
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= 0.846, pmin = -0.450 Mbar, and 75.9 cal/cm2. The figures indicate that we attain

reasonable agreement in both cases, with the relative error (excluding initial times,

where error is large in both cases) staying under 10% and 15% in the Ti-64 and

Al-6061 cases, respectively.

This calibration fully constrains the material parameters to be used in simulations

of radiative generation of impulse for both Ti-64 and Al-6061, allowing us to conduct

simulations in which the sample pressure loading, blow-off process, and compression

wave propagation are accurate to those observed in experiments, and so we may be

confident of the impulse values we calculate from our simulation approach. This result

is important because impulse calculated from these simulations will be used to obtain

coefficients in a functional form assumed for the Ef (m) function appearing in our

models for impulse and impulse-spectrum sensitivity in Section 2.6. The process of

calibrating the simulations to agree with experimental data allows us to inform our

model with quality data, enabling the model to be used for predictive calculation of

impulse and impulse-spectrum sensitivity by those designing experiments.
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Figure 2.4: Experimental displacement ∆x time history from PDI data (red) and
Lagrangian tracer from Ares simulations (blue). Tiles show sweep varying values
of pmin and ηmin for Ti-64 sample irradiated by a Xenon source at a fluence of 69
cal/cm2.
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Figure 2.5: Experimental displacement ∆x time history from PDI data (red) and
Lagrangian tracer from Ares simulations (blue). Tiles show sweep varying values of
pmin and ηmin for Al-6061 sample irradiated by a Xenon source at a fluence of 69
cal/cm2.
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(a) (b)

(c)

Figure 2.6: Optimization results for Ti-64 sample. (a) L2 error norm of the relative
error over optimization iterations, minimum occurs after 54 iterations. (b) Displace-
ment ∆x time-history from PDI data (blue) and Lagrangian tracer from Ares simu-
lation (red) corresponding to the minimal error. (c) Relative error in displacement
for simulation corresponding to minimal error.
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(a)
(b)

(c)

Figure 2.7: Optimization results for Al-6061 sample. (a) L2 error norm of the relative
error over optimization iterations, minimum occurs after 33 iterations. (b) Displace-
ment ∆x time-history from PDI data (blue) and Lagrangian tracer from Ares simu-
lation (red) corresponding to the minimal error. (c) Relative error in displacement
for simulation corresponding to minimal error.
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2.6 Data-driven model for Ef(m) function

We utilize data from the simulation approach described in Section 2.5 to perform

a least-squares fit for an assumed functional form of Ef (m). We use the approach

described in [119], in which it is assumed that the final blow-off energy can be written

as an expansion of the initial deposited energy,

Ef (m) = Ef (E(m)) =

q∑
j=0

cj[E(m)]j. (2.12)

We now describe our methodology for computing the coefficients cj. Assume a set

of n points of impulse-fluence data (Fi, Ii) for a given source and material, generated

via experiment or simulation. In particular, we evaluate the impulse as given by the

momentum integral in (2.1) from the simulations described and optimized in Section

2.5 for Ti-64 and Al-6061 exposed to a Xenon x-ray source. We scale the Xenon

spectrum shown in Figure 2.2a to different fluences to generate the points (Fi, Ii).

Here the initial energy deposition profile for the i-th data point is denoted Ei(m).

For each of these data points, we equate two different forms of (2.3),

mi(Ei)∫
0

[Ei(m)− Ei]mdm =

mi(E0)∫
0

[Ei(m)− Ef (Ei(m))]mdm, (2.13)

where Ei is a constant choice for Ef that forces (2.3) to be equal to Ii. Our imple-

mentation uses the bisection method [153] to determine Ei. Here mi(Ei) and mi(E0)

are the Lagrangian coordinate where Ei(m) becomes equal to Ei and E0, respectively.

E0 is the zeroth coefficient of the expansion (2.12), i.e., c0 ≡ E0. As the extent of

integration of the right-hand side of Equation (2.13) is m(E0), E0 must be treated as
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a known quantity. Rearranging, we have

mi(E0)∫
0

Ef (Ei(m))mdm =

mi(E0)∫
mi(Ei)

Ei(m)mdm+ Ei
[mi(Ei)]2

2
. (2.14)

Given that c0 ≡ E0 is known, we can write:

M∑
j=1

cj

mi(E0)∫
0

[Ei(m)]jmdm =

mi(E0)∫
mi(Ei)

Ei(m)mdm+
1

2

{
Ei [mi(Ei)]2 − E0 [mi(E0)]2

}
.

(2.15)

For ease of notation, we define the quantities,

Mij =

mi(E0)∫
0

[Ei(m)]jmdm, (2.16)

bi =

mi(E0)∫
mi(Ei)

Ei(m)mdm+
1

2

{
Ei [mi(Ei)]2 − E0 [mi(E0)]2

}
. (2.17)

Substituting (2.12) into (2.14), we have the linear system, applying over i = 1, ..., n,

j = 1, ..., q:

Mijcj = bi (2.18)

As n > q, this system is over-constrained. We use the standard least-squares method

[154] to calculate the vector cj, which minimizes the quantity ||bi − Mijcj||2, the

Euclidean norm of the residual vector. This vector is:

cj = (MjiMij)
−1Mjibi. (2.19)

We note that the choice of E0 is not important, as long as it is a small enough value

that the integration on the right-hand-side of (2.13) is performed over a sufficient

portion of the energy deposited: we use the value E0 = .001 × Emelt, where Emelt is
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Sample c1 c2/E0 c3/E
2
0

Ti-64 9.715×10−1 -2.820×10−8 1.474×10−15

Al-6061 9.211×10−1 -2.871×10−8 8.266×10−15

Table 2.1: Nondimensional coefficients of Ef (m) expansion obtained using least-
squares method with data from simulations.

the enthalpy of fusion for the material: Emelt = 286 J/g for Ti-64 and 380 J/g for

Al-6061 [155].

To provide the data for this procedure, we scale the Dante-measured spectrum

shown in Figure 2.2a to m = 5 fluence values linearly spaced from 100-500 cal/cm2

and conduct simulations described in Section 2.5 using those spectra. We measure the

impulse of the material in the simulation using the momentum integral in Equation

(2.1), defining the blow-off/bulk interface coordinate mB considering material melted

at some point in the simulation as blow-off. The coefficients resulting from the least-

squares procedure using this procedure are given in Table 1, non-dimensionialized by

the value of E0 for the material.

Figure 2.8 shows the impulse predicted by the BBAY model (2.3) with our pro-

posed Ef (m) expansion using the coefficients given in Table 1. We also plot results

using the McCloskey-Thompson model for Ef (m), using the estimated vaporization

energy Evap = 10Emelt as in Remo et al. [136]. We observe that our approach, by

design, does well at predicting impulse from the simulations, which here have been cal-

ibrated to agree with experiment. Our approach agrees with the simulated impulse

values to a much greater degree of accuracy than does the McCloskey-Thompson

model, which we find over-predicts the impulse considerably in accordance with the

findings in Remo et al. [136]. So, the BBAY model augmented with our data-driven

model for the Ef (m) function can be used for calculation of impulse from nomi-

nal x-ray spectra measurements with greater accuracy than the analytical modeling

approaches used in previous studies.
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(a) (b)

Figure 2.8: Impulse generated in (a) Ti-64 and (b) Al-6061 slabs from exposure to
Xenon x-ray source, calculated via the BBAY model with Ef closure (blue dashed
line), calculated as in Remo et al. [136] (green dashed line), and from simulations
(red squares).

2.7 Results and model verification

In this section, we verify the results of the model by comparing to impulse-

spectrum sensitivity values calculated from simulations by brute-force model reeval-

uation using finite differences [128]. In particular, we evaluate the impulse-spectrum

sensitivity by perturbing the spectra, binned from the spectrum shown in Figure 2.2a

and re-scaled to the fluence values used in the least-squares approach in Section 2.6.

These spectra are used to compute the energy deposition profiles according to Equa-

tion (2.7) for use in the semi-analytical model, as well as to initialize Mercury code

for the simulations used here. We perturb the spectra used for brute-force sensitivity

evaluation using forward finite differences:

δI

δFg
≈ I(Fg + ∆F )− I(Fg)

∆F
. (2.20)

We find that this procedure works best if the bins are not uniformly spaced in photon

energy, but instead are selected to contain equal fluence. Here, ∆F is 16% of the total
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fluence. Figure 2.9 shows the impulse-spectrum sensitivity calculated using Equation

(2.9), using the fit for Ef (m) in Equation (2.12) with the coefficients given in Table

1, for both Ti-64 and Al-6061 evaluated at the spectra used in Section 2.6. Also in

this figure are the sensitivity results obtained from simulations using the approach

outlined in Section 2.5.1 with 250 energy groups, which we find to agree well with

the semi-analytical model. The edges in sensitivity occurring around 5 keV for Ti-64

and 1.5 keV for Al-6061 correspond to the K-edge transitions observed in the base

elements in these alloys, Titanium and Aluminum [156].

The semi-analytical model presented here does well at calculating impulse-spectrum

sensitivity without the need for running many simulations varying bin fluences; the

sensitivity results evaluated from simulations shown in Figure 2.9 required 2,510 total

simulations for each material, while only five simulations were used to fit the Ef (m)

function required for the model results. Experimental data could also be used for

this procedure. Furthermore, the impulse-spectrum sensitivity contains valuable in-

formation about how changes in different portions of the x-ray spectrum change the

impulse generated in the material. For example, the sensitivities shown in Figure

2.9 indicate the portions of the spectrum where a change in fluence would lead to

the largest change in the impulse. This is useful for applications where one seeks to

modify the spectrum seen by the material in order to minimize the imparted impulse,

e.g., in design of filters or coatings for damage mitigation.
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(a) (b)

Figure 2.9: Sensitivity of impulse generated in (a) Ti-64 and (b) Al-6061 slabs to
Xenon spectrum from semi-analytical impulse-spectrum sensitivity with Ef closure
(solid lines) and measured directly from simulations (pluses). Impulse-spectrum sen-
sitivity shown for baseline fluences of 100 cal/cm2 (red), 200 cal/cm2 (blue), 300
cal/cm2 (green), 400 cal/cm2 (purple), and 500 cal/cm2 (orange). At points where
the lines cannot be seen, they lie under their corresponding markers.

2.8 Application of impulse-spectrum sensitivity

In this section, we use the results of the semi-analytical model for impulse-spectrum

sensitivity to constrain the uncertainties in the generated impulse based on uncertain-

ties in the detailed x-ray source spectra. We consider an x-ray source spectrum where,

via some statistical methodology, the true value of a group’s fluence has been inferred

to lie within an interval ∆Fg of some nominal value F̄g. We write the fluence for a

group in such a spectrum as Fg = F̄g±∆Fg, where the quantity ∆Fg is the uncertainty

of the fluence of group g. Given this spectrum, we seek to determine the nominal

value and uncertainty of the impulse, i.e., I = Ī + ∆I. We calculate the nominal

impulse value using the BBAY model (2.1). We use the semi-analytical impulse-

spectrum sensitivity model in Equation (2.9) to evaluate the sensitivities δIg/δFg at

the nominal spectrum. Then, as a first-order approximation, we write the uncertainty

in impulse as

∆I ≈ δI

δF1

∆F1 +
δI

δF2

∆F2 + ...+
δI

δFG
∆FG, (2.21)
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(a) (b)

Figure 2.10: Time-integrated unfolded Dante spectra used to determine uncertainty
of Xenon spectrum due to shot-to-shot variation. (a) Unfolded data, grouped into 250
groups, (b) nominal spectrum and error bars created from two-sided 90% confidence
interval.

where the sensitivities are evaluated at the nominal spectrum.

To demonstrate this methodology, we compute statistical uncertainties of an en-

semble of time-integrated Xenon spectra measured by Dante in 17 different experi-

ments on the NIF [131]. As the source characteristics are nominally the same, and

the same method was used to unfold the spectra from the unfolded Dante data, we

attribute the variations in these x-ray spectra to shot-to-shot variation caused by

random fluctuations in the system [125]. We group the raw Dante spectra into 250

photon energy groups. The 17 spectra used are shown in Figure 2.10a. Considerable

variation can be observed between these spectra, which are collected from what are

nominally the same experiments. We then compute the mean fluence value F̄g for

each bin among the ns = 17 spectra as well as the variance Sg for each group. We

establish the uncertainty values of the x-ray fluence of each group using a two-sided

95% confidence interval assuming a Student’s t-distribution, which we choose due

to the fairly small sample size. We estimate the uncertainty in the fluence group g

as ∆Fg = t95%Sg/
√
ns where the appropriate t-score for a two-sided 95% confidence

interval with ns − 1 = 16 degrees of freedom is t95% = 2.12. The mean spectrum, in
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units of spectral fluence, with error bars corresponding to the uncertainty estimate

is shown in Figure 2.10b. The error bars shown here appear fairly small relative the

values of the spectrum, and in many practical cases where less data is available or one

is considering different sources of uncertainty, the uncertainty may be much larger.

We then evaluate the nominal impulse using the mean spectrum in (2.3), and the

uncertainty in impulse using (2.21), where the semi-analytical sensitivity model (2.9)

is used to calculate the sensitivity values at the mean spectrum. This uncertainty

quantification procedure results in an impulse estimate of I = 0.5792±0.0910 ktap

for Ti-64, and I = 0.8891±0.1281 ktap for Al-6061. The range of these uncertainty

estimates correspond to approximately 32% and 28% of the nominal impulse values,

respectively, which is significant. We note that our intention in this section is not

to perform a rigorous uncertainty quantification study, but to demonstrate the via-

bility of our impulse-spectrum sensitivity model in this context. This exercise also

demonstrates that even spectra constrained by relatively small error bars may result

in considerable uncertainty in impulse, depending on how the uncertainty values and

sensitivity values are distributed in the spectrum. For this reason, it is important

to analyze the impulse-spectrum sensitivity when designing experiments where the

radiation source is subject to uncertainties.

2.9 Conclusions

In this chapter, we presented a semi-analytical model for impulse-spectrum sensi-

tivity, a quantity that is useful for constraining the uncertainty in impulse generated

in materials by intense radiation sources where the source spectrum is subject to

uncertainties, as is the case for many HED experiments. Due to the complexity of

energy deposition in radiatively-driven blow-off and impulse generation in materials,

there is a term in our impulse-spectrum sensitivity model that cannot be known a

priori, describing the energy of the blown-off material Ef (m). We use a data-driven

59



approach to model this term using high-fidelity simulations, in which we calibrated

material parameters to match data from experiments of x-ray irradiated materials

on the National Ignition Facility. Then, we verified our model for impulse-spectrum

sensitivity, comparing to results obtained from brute-force reevaluation of sensitivity

with finite differences via these same simulations. We found that the procedure for

modeling Ef (m) works well, and allows our model to be used for predictive calcula-

tion of both impulse and impulse-spectrum sensitivity for a very small computational

cost compared to the brute-force approach. Experimental data could also be used to

fit the functional form of Ef (m) in our approach. We then demonstrated the via-

bility of this model for uncertainty propagation, employing this sensitivity model to

constrain uncertainty in material impulse due to estimates of uncertainty resulting

from shot-to-shot variation in experimentally measured x-ray spectra. This demon-

stration illustrates how simple and straightforward it is to use the semi-analytical

impulse-spectrum sensitivity model to constrain impulse relevant to an experiment.

Additionally, this example showed that seemingly slight uncertainty in source spectra

can cause relatively large uncertainties in impulse, and so it is important to study the

impulse-spectrum sensitivity function when designing experiments in which spectral

uncertainties exist and the impulse should be estimated/constrained. As the devel-

opment of high-fluence x-ray sources continues and radiatively-generated impulse in

materials is further explored, it is our hope that this model provides a useful tool for

design of future experiments.

60



CHAPTER III

Numerical Methods for Multi-Material Radiation

Hydrodynamics

3.1 Abstract

In multifluid simulations that model thermal transport, both pressure and temper-

ature errors may arise independently at material interfaces without careful treatment.

Particularly, in radiation hydrodynamics simulations, temperature errors caused by

a physically inconsistent treatment may be amplified through the source term and

result in large errors in every state variable within a few time steps. Additionally,

the nonlinear diffusion operator may act to propagate these errors through the do-

main, and the non-conservative products representing work done by the radiation field

provide a further mechanism to amplify these errors. These errors can pollute the

solution, affecting the evolution of small-scale flow features, and depending on the op-

tical properties of the fluid they can even cause unphysical values of density, pressure,

and/or temperature. We present a discontinuous Galerkin method for multi-material

flows in radiation hydrodynamics that prevents both pressure and temperature er-

rors at interfaces via a conservative and high-order accurate limiting scheme. Our

overall scheme is arbitrarily high-order accurate, respects conservation, and prevents

pressure and temperature errors at material interfaces and material contacts. In ad-
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dition, our method is compact, requiring communication only between neighboring

cells. We apply a physics-based discontinuity sensor for the radiation hydrodynamics

equations to limit only cells adjacent to discontinuities in the solution. We verify the

properties of this method using simple one-dimensional multifluid test problems. We

then apply the method to a two-dimensional problem relevant to high-energy density

(HED) science.

3.2 Introduction

Many HED phenomena (e.g., inertial confinement fusion, stellar supernovae) in-

volve flows of plasmas made up of different species in which a wide range of scales

are present [157]. The study of these flows relies heavily on numerical simulation to

represent radiation transport, ionization physics, and complex equation of state and

opacity relationships in complex three-dimensional geometries [158, 159]. For exam-

ple, comparison of quantities measured in inertial confinement fusion experiments to

simulation results has made apparent that predictive simulation efforts must account

fully for these multiphysics effects [28, 160, 161]. While the application of Reynolds-

averaged Navier-Stokes (RANS) [162], large-eddy simulation (LES) [163, 164], and

direct numerical simulation (DNS) [165] techniques to turbulent flows of traditional

fluids has been richly documented, the study of turbulent flows in HED systems is

dominated by the use of RANS models [166, 167]. It has been noted recently that

explicit LES — involving the use of a subgrid-scale model — has not been applied

to any HED problem [168], and a very limited number of studies examine aspects of

HED flows with fully-resolved DNS [169]. RANS models are not suitable in a variety

of HED problems depending on the geometry, the physics, and range of length scales

[170, 171]. As a result, modeling parameters must be calibrated for a specific case,

often using results from experiments [172] or simulations using a more sophisticated

turbulence treatment [173]. In the case of HED systems, these experiments are ex-
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pensive, and the diagnostics available often cannot probe all quantities necessary to

constrain the calibration. Due to these limitations, we are interested in numerical

methods appropriate for efficient direct numerical simulation of turbulent mixing in

HED problems, with an emphasis on multiphysics systems that model flows coupled

to radiative transport.

The discontinuous Galerkin (DG) method is an arbitrarily high-order accurate

discontinuous finite-element method that uses polynomial basis functions to support

the solution in each cell. As these basis functions are only supported on one cell in

the computational domain, inter-cell fluxes are handled using approximate Riemann

solvers as in the finite volume framework. For this reason, the discontinuous Galerkin

method is well-suited for execution on large parallel architectures, as increasing the

order of accuracy, even on unstructured meshes, does not increase the stencil size and

introduce latency due to communication time. Additionally, the DG discretization

for hyberbolic equations [174] is superconvergent in the cell-average error, converging

at a rate of 2P + 1, where P is the polynomial order of the basis [175]. Alternative

schemes based on the use of the recovery operator are available for discretizing hy-

perbolic and parabolic equations that enable even higher convergence rates without

extending the computational stencil [176]. The DG method can be naturally applied

on unstructured meshes, which is particularly valuable in solving practical problems

with complex geometries. Achieving high-order accuracy on unstructured meshes is

expensive and complicated for finite-volume methods [177], and has not been achieved

for finite difference methods. As with other high-order methods, the DG method re-

quires a limiting procedure to capture discontinuities. One early limiting approach

was the total-variation-bounded approach of Cockburn and Shu [178], which truncates

the high-order basis representation at discontinuities. Others have suggested limiting

approaches for the DG method that are high-order accurate [179, 180]. Particularly

promising are limiting schemes based on hierarchical reconstruction (HR) [181, 182],
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which is high-order accurate, conservative, and naturally adaptable to unstructured

grids. Our interests lie in the discontinuous Galerkin scheme due to its efficiency in

parallel execution at arbitrarily high orders of accuracy. The DG method has been

applied to the single fluid radiation-hydrodynamics equations by previous authors

[183, 184, 185]. Many previously proposed DG approaches for classical multi-material

flows have either lacked high-order accuracy, not conserved energy, or suffered from a

physically inconsistent treatment of interfaces [186, 187, 188]. As of this writing, the

DG method has not been applied to multi-material radiation hydrodynamics flows in

a manner that overcomes these difficulties.

Typically, Eulerian methods for solving multi-component flows fall under the cat-

egories of either interface capturing or interface tracking methods. Interface tracking

schemes include level-set [189] and volume-of-fluid [190] approaches, which are used

in some HED simulation codes [79, 158, 159, 191]. However, due to potential conser-

vation errors and challenges with interface reconstruction, we do not pursue interface

tracking approaches here. Interface capturing schemes are descendants of shock cap-

turing schemes, representing interfaces as abrupt changes in material properties reg-

ularized on the grid across a few grid cells. Additional mass conservation equations

must be solved with each additional component; however, it has been shown that

only a particular form of these transport equations prevents spurious pressure errors

from arising at interfaces when solving the compressible Euler equations [192, 193].

Furthermore, when thermal transport is included in the model (e.g., as in the com-

pressible Navier Stokes equations), care must be taken to prevent spurious tempera-

ture errors as well [194]. As the material interface is a linearly degenerate field, unlike

a shockwave, care must be taken to prevent the interface from over-diffusing, which

can be addressed by use of high-order accurate solution-adaptive [194, 195, 196] or

sharpening [197, 198] approaches that selectively apply or seek to reverse numerical

diffusion, respectively.
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In solving transport equations for the discontinuous material properties them-

selves, Abgrall [192] first showed that for ideal gases governed by the Euler equations,

an equation for a specific function of the adiabatic index γ must be solved in advection

form to avoid pressure oscillations and preserve mechanical equilibrium for isolated

interfaces. This approach was extended to the stiffened gas equation of state by

Shyue [193], who also introduced a scheme transporting the mass fraction (in advec-

tion form) of one of the fluids and calculating the material properties of the mixture

fluid from this quantity. This concept has been extended to Weighted Essentially

Non-Oscillatory methods [199, 200] and high-order finite differences [195, 201]. The

approach of Henry de Frahan et al. [196] introduced a limiting procedure based on

HR limiting that eliminates pressure oscillations using the γ-based method for the

Euler equations. Johnsen and Ham [202] demonstrated that temperature errors arise

from solving certain forms of transport equations as well, in the form of temperature

spikes at material interfaces and contacts, and suggest remedies for the γ and mass

fraction approaches. Models involving the transport of volume fraction, including the

seven-equation [203] and five-equation [204, 205] models, show promise in solving vari-

ous multifluid problems [206, 207, 208]. Furthermore, the five-equations approach has

been extended to multifluid flows governed by the compressible Navier-Stokes equa-

tions via a method that prevents pressure and temperature errors simultaneously in

a high-order finite volume scheme [194].

In many applications, it is important that errors in pressure and temperature are

prevented, as they may propagate to other flow variables and pollute the solution.

For example, in simulations of hydrodynamic instabilities, these errors can cause the

growth due to physical instability of purely numerical, unphysical flow features. In

turbulence simulations, they may affect important small-scale flow features, affecting

the turbulent energy cascade. Furthermore, in situations where the transport coeffi-

cients depend on temperature, such as Sutherland’s Law for temperature-dependent
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viscosity [209], temperature errors may be further amplified by the transport mecha-

nism, leading to severely incorrect temperature fields. This can be especially problem-

atic in simulations that model phase change, reacting flow, or other thermal processes.

The effect of pressure and temperature errors in multi-material radiation hydrody-

namics has been considered [191], but has not been addressed in a manner that

conserves material energy at the interface or avoids in interface reconstruction.

The objective of this work is to develop a robust, efficient, physically consistent,

and accurate method for high-resolution simulations of HED systems. To this end, we

propose a DG scheme to solve multi-material flows governed by the two-temperature

radiation-hydrodynamics equations with a grey non-equilibrium radiation diffusion

model [25, 63, 210]. Our approach can be extended to three-temperature models that

account for the energies ion and electron fluids separately [79], as well as multigroup

radiation transport [25, 63, 210]. To model material interfaces, we consider interface-

capturing approaches based on the γ-based model of Abgrall [192], the volume fraction

(five-equations model) [204, 205], and the mass fraction model [193]. This develop-

ment results in a scheme that achieves high-order accuracy with a compact stencil

even on unstructured meshes, conserves mass/momentum/energy, and prevents spu-

rious pressure and temperature errors at material interfaces. Previous applications

of the DG method to multi-material flows with thermal transport have not possessed

these properties; the method we present is novelly well-suited for studies of hydrody-

namic instabilities and turbulent mixing in HED systems, meeting all of the criteria

for a method favorable for DNS. The remainder of this chapter is organized as follows.

In Section 3.3, we present the physical model used here for multi-material radiation

hydrodynamics. In Section 3.4, we describe the numerical models we employ for in-

terface capturing. In Section 3.5, we present our DG discretization, as well at the HR

limiting scheme. In Section 3.6, we analyze the cause of pressure and temperature

errors at interfaces, and propose a strategy to prevent them. This strategy pertains
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to the transport equations solved for each interface-capturing approach, as well as

the manner in which the solution is limited using the HR limiting scheme. In Section

3.7, we provide results for one-dimensional test problems, verifying the properties of

our approach. We also provide results for a two-dimensional problem to demonstrate

the extension of the method to higher dimensions.

3.3 Physical model

3.3.1 Radiation-hydrodynamics model

We consider the grey non-equilibrium diffusion model of radiation hydrodynamics,

derived in Appendix A and discussed in detail in Section 1.3:

∂

∂t
ρ+

∂

∂xj
(ρuj) = 0, (3.1a)

∂

∂t
ρui +

∂

∂xj
[ρuiuj + (p+ pR)δij] = 0, (3.1b)

∂

∂t
E +

∂

∂xj
[uj(E + p)] + uj

∂

∂xj
pR = −SR, (3.1c)

∂

∂t
ER +

∂

∂xj
[uj(ER + pR)]− uj

∂

∂xj
pR −

∂

∂xj

[
DR

∂

∂xj
ER

]
= SR, (3.1d)

where ρ is the fluid mass density, uj is the velocity, p is the fluid pressure, pR is the

radiation pressure, E is the total fluid energy density, and ER is the radiation energy

density. The fluid total energy density is composed of internal and kinetic energies:

E = ρe + 1
2
ρujuj, where e is the fluid internal energy. This two-temperature model

treats the fluid as one species, effectively assuming that energy coupling between

electrons and ions is instantaneous. The approach we develop in this work can be

extended to three-temperature models that solve separate energy equations for the

ion and electron fluids. We discuss extension to the multigroup radiation diffusion

model in Appendix C.
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We use the flux-limited diffusion model of Morel [72]:

DR =
c√

(3κR)2 + ( 1
ER

∂ER
∂xj

)2
, (3.2)

where κR is the Rosseland mean opacity. Radiation diffusion models assume an

optically thick fluid where the radiation field is isotropic (i.e., pR = 1
3
ER), which is a

valid assumption in sufficiently dense systems. The form of flux-limited diffusion we

use in (3.2) adjusts the diffusion coefficient such that the correct solution is attained

in the both limits of optically thick and thin limits, as discussed in Section 1.3.2.

However, problems featuring material interfaces between optically thick and thin

systems may involve transition regions where the optical depth is on the order of

unity. As the material interfaces in this work are represented as discontinuities in

different quantities, regularized over a few grid cells, these transition regions are

typically small using our approach. However, the problems considered in this work

involve optically thick systems where LκR is very small.

The non-equilibrium source term is given as:

SR = cκP (B − ER), (3.3)

where B is the frequency-integrated Planck intensity evaluated at the material tem-

perature T , B = aRT
4. Under the conditions of interest, the Planck mean opacity

κP drives the radiation field and the material to equilibrium in a local sense via pho-

toabsorption and emission processes. In general, the Planck and Rosseland mean

opacities are functions of density and temperature: κR = κR(ρ, T ), κP = κP (ρ, T ).

To provide a more realistic treatment of radiation-material interaction, we calculate

the opacities using the inverse Bremsstrahlung form [211],

κ = κ0T
−7/2ρ2. (3.4)
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This model for the opacity dependence is used for the problems in this chapter unless

otherwise stated. In this chapter, we limit ourselves to systems where grey treatment

of radiation transport is sufficient. These are typically near-Planckian systems where

free-free (i.e., inverse Bremsstrahlung) absorption dominates. Furthermore, the model

in system (3.1) neglects viscosity, heat conduction, and mass diffusion.

An equation of state relating internal energy to pressure and temperature is re-

quired to close the system. For simplicity, we consider the ideal gas law,

p = ρRT, (3.5)

where the gas constant per unit mass, R, is given in terms of the gas constant per

mole, Ru, by

R =
Ru

M
. (3.6)

Here the molar mass of an ion species is M = AmpNA/(Z + 1), where A is the

atomic mass, mp is the mass of a proton, NA is Avogadro’s number, and the average

ionization is Z. Defining the internal energy as

e = cvT, (3.7)

we can write the ideal gas law in terms of pressure or temperature,

ρe =
p

γ − 1
= ρcvT, (3.8)

where γ is the ratio of specific heats. We note that the approach used here can be

extended to other equations of state.
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3.3.2 Multifluid modeling

Our work is based on interface capturing, where the same equations are solved

throughout the domain and abrupt changes in constitutive variables (eg. γ, cv, κP ,

κR) represent material interfaces. The volume fraction α(l) is the volume of fluid

l divided by the total volume in a control volume, and the mass fraction z(l) is the

mass of fluid l divided by the total mass in a control volume. By species conservation,∑
l α

(l) =
∑

l z
(l) = 1. The mixture density is written

ρ =
∑
l

ρ(l)α(l) =
∑
l

ρz(l). (3.9)

The specific internal energy of the mixture e is

e =
∑
l

z(l)e(l) and ρe =
∑
l

ρ(l)α(l)e(l). (3.10)

Therefore, the mass and volume fractions are related by

z(l) = ρ(l)α(l)/ρ. (3.11)

The adiabatic index of the mixture is given in terms of mass fraction as,

(
1

γ − 1

)
1

M
=
∑
l

z(l)

(
1

γ(l) − 1

)
1

M (l)
. (3.12)

For the pressure-based and temperature-based ideal gas law, the mixture internal

energy density in terms of volume and mass fractions is,

ρe =
p

γ − 1
=
∑
l

α(l) p(l)

γ(l) − 1
=

p

γ − 1
=
∑
l

z(l) ρp(l)

ρ(l)(γ(l) − 1)
, (3.13a)

ρe = ρcvT =
∑
l

α(l)ρ(l)c(l)
v T

(l) =
∑
l

ρz(l)c(l)
v T

(l). (3.13b)
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In the numerically diffused interface region, we assume isobaric (p(l) = p) and isother-

mal (T (l) = T ) behavior,

ρe =
p

γ − 1
= p

∑
l

α(l) 1

γ(l) − 1
= p

∑
l

z(l) ρ

ρ(l)(γ(l) − 1)
, (3.14a)

ρe = ρcvT = T
∑
l

α(l)ρ(l)c(l)
v = T

∑
l

ρz(l)c(l)
v . (3.14b)

The isobaric and isothermal assumptions applies to the numerical mixture region,

where the mixing occurs at a sub-grid level due to numerical dissipation. Finally, we

consider the mixture opacity to be weighted by mass fraction,

κR =
∑
l

z(l)κ
(l)
R , κP =

∑
l

z(l)κ
(l)
P . (3.15)

3.4 Numerical model

This methodology relies on numerical dissipation to stabilize interfaces, resulting

in numerical mixture regions proportional to the mesh size in which the interface is

smeared. We consider three distinct approaches multifluid flows:

• The γ approach [192, 193, 194]. It was shown that spurious pressure and tem-

perature oscillations at interfaces can be prevented by solving the equations

∂

∂t

(
1

γ − 1

)
+ uj

∂

∂xj

(
1

γ − 1

)
= 0, (3.16a)

∂

∂t
(ρcv) +

∂

∂xj
(ρcvuj) = 0, (3.16b)

along with the compressible Navier-Stokes equations using an appropriate dis-

cretization. The quantities 1/(γ−1) and ρcv transported via (3.16a) and (3.16b)

are used to compute pressure and temperature, respectively. As the γ-based ap-
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proach involves solution of equations for the equation of state quantities γ and

cv themselves, no mixture rule is required, and the material properties entering

the equation of state are used directly to calculate p and T from ρe. One can re-

cover the volume or mass fractions using this approach, assuming that there are

only two fluids present in the mixture regions with distinct γ and cv values. For

equations of state involving additional parameters, additional equations need

to be solved.

• The volume fraction (five-equations model) approach [205, 212]. This approach

requires transport of the volume fraction of fluid l, denoted α(l),

∂

∂t
α(l) + uj

∂

∂xj
α(l) = Γll′

∂

∂xj
uj, Γll′ =

α(l)α(l′)
[
ρ(l′)(c

(l′)
s )2 − ρ(l)(c

(l)
s )2

]
α(l)ρ(l′)(c

(l′)
s )2 + α(l′)ρ(l)(c

(l)
s )2

(3.17a)

∂

∂t
(ρ(l)α(l)) +

∂

∂xj
(ρ(l)α(l)uj) = 0, (3.17b)

where c
(l)
s is the hydrodynamic sound speed in fluid l [204]. Here, (3.17a) is used

to calculate pressure and (3.17b) to calculate temperature according to mixing

laws. The source term Γll′ is required for thermodynamic consistency [213], and

is zero in the limit of an infinitely-sharp interface. This approach is especially

useful for flows requiring tabular data for material properties.

• The mass fraction approach [193, 202]. This approach requires transport of the

mass fraction of fluid l, denoted z(l),

∂

∂t
z(l) + uj

∂

∂xj
z(l) = 0, (3.18a)

∂

∂t
(ρz(l)) +

∂

∂xj
(ρz(l)uj) = 0. (3.18b)

Equation (3.18a) is equivalent to (3.16a) if the molar masses of the two fluids
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is the same, which is not true in general. Johnsen and Ham [202] noticed that

errors occur if temperature is computed using (3.18a), and introduced (3.18b)

to calculate temperature instead.

3.5 DG discretization

We use the discontinuous Galerkin method to discretize the system (3.1). Though

we do not utilize the multigroup approach in this chapter, we discuss extending the

numerical method in this section to the multigroup equations in Appendix C. Without

loss of generality, we rewrite the one-dimensional form of the equations as an unsteady

transport equation for a vector of state quantities q with divergence-form hyperbolic

flux terms, non-conservative product terms, a diffusion term, and a source term:

∂

∂t
q + h(q)

∂q

∂x
+

∂

∂x
f(q) =

∂

∂x
g(q,

∂q

∂x
) + s(q). (3.19)

We discretize the solution domain Ω into E number of cells Ωe where Ω = ∪e=Ee=1 Ωe.

We denote the locations of the edges of cell e as xe±1/2. In each cell e, the solution

q is approximated by the finite-series expansion qh in terms of basis functions φej as

follows,

q(x)|x∈Ωe ≈ qh(x)|x∈Ωe = qhe =
P∑
j=0

q̂jeφ
j
e(x). (3.20)

Where q̂je are the solution degrees of freedom and a Lagrange basis is used.

We use the DG method to discretize Equation (3.19). The weak form of Equation

(3.19) is obtained by taking the inner product of the equation with test function
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φke(x):

∫
Ωe

φke
∂qhe
∂t

dx+
[
φkef

∗ − {φke}(hq)∗ − φkeg∗
]xe+1/2

xe−1/2
−
∫
Ωe

∂φke
∂x

[
f(qhe )− g(qhe ,σe)

]
dx

+

∫
Ωe

φke

[
h(qhe )

∂qhe
∂x
− s(qhe )

]
dx = 0,

(3.21)

where {ξ} = 1
2
(ξL + ξR), with L and R denoting the left and right cells at the cell

edge. Equation (3.21) can be written in semi-discrete form:

M jk
e

dq̂je
dt

+ Rk
f,e(q

h) + Rk
h,e(q

h) + Rk
g,e(q

h) + Rk
s,e(q

h) = 0, (3.22)

where the mass matrix for the cell e is

M jk
e =

∫
Ωe

φjeφ
k
edx, (3.23)

and the Rk
e vectors contain the residual vector contributions from the divergence-form

hyperbolic flux, non-conservative product, parabolic, and source terms, respectively.

Multiplying Equation (3.22) by the inverse of the mass matrix, we have the semi-

discrete form of the discontinuous Galerkin spatial discretization,

dq̂je
dt

+ Dj
f,e(q

h) + Dj
h,e(q

h) + Dj
g,e(q

h) + Dj
s,e(q

h) = 0, (3.24)

where the De
j vectors are the DG spatial discretization operators for each term corre-

sponding to the j-th unknown in cell e. We advance the semi-discrete system (3.24)

in time using the standard explicit four-stage fourth-order accurate Runge-Kutta

method [214]. We now describe how each term on the right-hand side of Equation

(3.24) is calculated.
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3.5.1 Advective terms

The residual vector for cell e used to discretize hyperbolic fluxes written in diver-

gence form is:

Rk
f,e(q

h) =
[
φkef

∗]xe+1/2

xe−1/2
−
∫
Ωe

∂φke
∂x

f(qh)dx (3.25)

The numerical flux function f∗ from the edge term approximately solves the Riemann

problem at the cell edges, where the solution is double-valued, to provide a unique

flux to be passed between these cells. Common choices of Riemann solvers include

the Roe [215], HLL [216], and Rusanov [217] fluxes. For the results shown in this

paper, we use the Rusanov flux:

f∗|xe+1/2
=

f(qhR) + f(qhL)

2
− s

2
(qhR − qhL), (3.26)

where s is the maximum wave-speed in the system. For the hyperbolic part of the

system (3.1), the wave-speeds are λ1 = u − a, λ2 = u, λ3 = u, λ4 = u + a, where

the radiation hydrodynamic sound speed is a =
√
c2
s + c2

R. Here, the hydrodynamic

sound speed is cs =
√
γp/ρ and the radiation sound speed is cR =

√
1
3
(ER + pR)/ρ.

The volume integral in Equation (3.25) is calculated by numerical quadrature.

System (3.1) contains work terms that appear in the radiation and material energy

equations as non-conservative products. Additionally, as described in Section 3.6.1,

transport equations for material properties and/or mixture fractions in advection

form, involving non-conservative products, need to be solved to prevent pressure and

temperature errors across material interfaces and contact waves. Del Maso et al.

[218] established the definition of weak solutions for non-conservative products. This

concept was later implemented for the discontinuous Galerkin method [219]. The
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residual vector discretizing non-conservative products for cell e is

Rk
h,e(q

h) = −
[
{φke}(hq)∗

]xe+1/2

xe−1/2
+

∫
Ωe

φkeh(q)
∂qh

∂x
dx. (3.27)

The edge term in this equation is evaluated as

(hq)∗|xe+1/2
=

1∫
0

h(ϕ(τ ; qL,qR))
∂ϕ

∂τ
(τ ; qL,qR)dτ, (3.28)

using a linear path between interface states, ϕ(τ ; qL,qR) = (qR − qL)τ + qL. We

analytically evaluate the integral in Equation (3.28), and evaluate the volume integral

term on the right-hand side of Equation (3.27) by numerical quadrature.

3.5.2 Diffusion terms

We use the BR-II scheme [220] for discretizing diffusion terms, written in the

mixed form [221]. The residual vector containing diffusive contributions is given as

Rk
g,e(q

h) = −
[
φkeg

∗]xe+1/2

xe−1/2
+

∫
Ωe

g(qh,σe)
∂φke
∂x

dx. (3.29)

Here the auxiliary variable σe(x) is an approximation of the gradient of q within Ωe,

supported by the same set of basis functions as in Equation (3.20),

σ(x)|x∈Ωe = σe =
P∑
j=0

σ̂jeφ
j
e(x). (3.30)

Here q∗ and σ∗ are the solution and gradient values at the cell edge, respectively,

used to evaluate g∗ = g(q∗,σ∗). In each cell e we enforce the auxiliary variable to be
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weakly equivalent to the gradient of the DG solution:

∫
Ωe

φkeσedx =

∫
Ωe

φke
∂qh

∂x
dx. (3.31)

Applying integration by parts yields:

∫
Ωe

φkeσedx =
[
φkeq

∗]xe+1/2

xe−1/2
−
∫
Ωe

∂φke
∂x

qhdx. (3.32)

To define the common edge solution value, the BR-II method uses the arithmetic

average of adjacent solution values at the edge: q∗ = {qh}. Consider the edge

between the cells Ωe and Ωe+1, located at xe+1/2. For the common solution gradient

at the edge, the left and right-hand localized gradients are formed in a manner that

combines the solution in Ωe and Ωe+1. These gradients are here given as:

gR,e =
P∑
j=0

ĝjR,eφ
j
e, gL,e+1 =

P∑
j=0

ĝjL,e+1φ
j
e+1, (3.33)

∫
Ωe

φkegR,edx = χ
[
φke(q

∗ − qhe )
]xe+1/2

xe−1/2
−
∫
Ωe

φke
∂qhe
∂x

dx, (3.34)

∫
Ωe+1

φkegL,e+1dx = χ
[
φke(q

∗ − qhe+1)
]xe+3/2

xe+1/2
−
∫

Ωe+1

φke
∂qhe+1

∂x
dx. (3.35)

Here χ is a stabilization parameter, taken as χ = 2 in 1-D [220]. The interfacial

gradient σ∗ at xe+1/2 is calculated as σ∗|xe+1/2
= 1

2
(gR,e + gL,e+1)|xe+1/2

. We note

that the method for multi-material radiation hydrodynamics outlined in this chapter

can be readily coupled with other diffusion discretizations for DG, such as the local

discontinuous Galerkin scheme [222] or the compact gradient recovery scheme [223].
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3.5.3 Source terms

The residual vector containing source contributions for cell e is,

Rk
s,e(q

h) = −
∫
Ωe

φkes(qh)dx. (3.36)

Like all other cell-interior integrals, we evaluate this term directly using numerical

quadrature.

3.5.4 Hierarchical reconstruction limiting

For problems featuring discontinuous solutions, limiting procedures are required

to damp the oscillations caused by high-order methods. We follow a two-step ap-

proach: we first identify discontinuities and, in these flagged cells, we apply the

hierarchical reconstruction (HR) limiting procedure [181, 182] to limit the solution,

which preserves high-order accuracy. The procedure involves recomputing solution

degrees of freedom, from those associated with the highest-order to the lowest-order

basis contribution, using a MUSCL [224] or WENO [225] approach. To perform this

procedure, we re-cast our DG approximation in Equation (3.20) in terms of Taylor

polynomials:

qhe (x) =
P∑
j=0

q̂T,je
xj

j!
. (3.37)

In practice, the transformation between the basis representation degrees of freedom

q̂je and the Taylor degrees of freedom q̂T,je is performed with a matrix multiplication

that can be pre-computed. To calculate the j-th limited coefficient, which we denote

here as ˜̂qT,je , we calculate the (j − 1)-th derivative of qhe (x) and write it in terms of

a linear polynomial Le(x) and a higher-order polynomial Re(x): ∂j−1/∂xj−1qhe (x) =
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Le(x) +Re(x). We approximate the cell averages in cell e and its neighbors as:

Le−1 =
∂j−1qhe−1

∂xj−1
− R̃e, Le =

∂j−1qhe
∂xj−1

− R̃e, Le+1 =
∂j−1qhe+1

∂xj−1
− R̃e, (3.38)

where R̃e is the cell average of cell e’s higher-order polynomial with limited higher-

order degrees of freedom, which we treat as if it extends into the neighboring cell.

We combine these cell averages using the MUSCL approach to reconstruct the new

linear polynomial Le, and in turn, the limited coefficient ˜̂qT,je . The inverse matrix

multiplication is then used to recompute ˜̂qje. This procedure preserves cell averages,

so results in an overall conservative method when coupled with a conservative DG

discretization, like the one we employ in Equation (3.25). We apply the limiting

procedure to flagged cells at each Runge-Kutta sub-step.

3.6 Preventing pressure and temperature errors

As we have discussed, in applications where small-scale flow features are impor-

tant, such as the study of hydrodynamic instabilities and turbulence, it is important

to prevent pressure and temperature errors that pollute the solution. In particular,

as the source term in Equations (3.1c) and (3.1d) explicitly depends on temperature

and the the source and diffusion terms depend implicitly on temperature through

the opacities via Equation (3.4), preventing temperature errors is crucial in radiation

hydrodynamics. In this work, we distinguish between the three following types of

discontinuities:

• single-fluid contact discontinuity: (uniform u, p+ pR, γ, cv, discontinuous ρ, T )

• material contact discontinuity: (uniform u, p+ pR, discontinuous ρ, T , γ, cv)

• material interface: (uniform u, p, pR, T , discontinuous ρ, γ, cv )
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Using the DG approach with HR limiting described in Section 3.5, the case of the

single-fluid contact does not require special treatment. However, it has been shown

that careful treatment is required for material contacts and material interfaces due to

pressure and temperature errors generated by physically inconsistent discretization.

Specifically, these errors have been observed in the form of pressure oscillations and

temperature spikes that form at both material interfaces and contacts [202]. Pres-

sure oscillations cause issues even for the Euler equations, where the the pressure

affects the momentum through the flux in the momentum equation, and then the

density through the continuity equation. However, temperature is not a quantity

that appears explicitly in the Euler equations, so temperature spikes do not affect

other variables. In systems that model thermal transport, such as the compressible

Navier-Stokes equations, special treatment is required to prevent temperature spikes,

which will propagate errors to other flow variables [194]. In our case, the radiation-

hydrodynamics equations have terms representing material/radiation interaction that

may amplify errors in the temperature fields, making a physically consistent treatment

especially important.

When designing a DG method for multi-material flows in radiation hydrodynam-

ics, there are two potential sources of pressure and temperature errors: (i) the form

of the extra mass conservation equation(s), and (ii) the limiting scheme applied at

elements containing material interfaces. In this section, we analyze the origins of

pressure and temperature errors in multi-material radiation hydrodynamics simula-

tions using our approach. First, we adapt the analysis of Abgrall [192] to identify

the form of the transport equations that must be solved for the γ-based, volume frac-

tion, and mass fraction approaches to prevent pressure and temperature errors for

material interfaces in multi-material radiation hydrodynamics flows. Next, we extend

the approach of Henry de Frahan et al. [196] to analyze the cause of pressure and

temperature errors due to the limiting scheme for the γ-based, volume fraction, and
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mass fraction approaches. We then design an approach based on HR limiting to pre-

vent pressure and temperature errors based on the approach in this same reference.

We address the case of the material contact in Section 3.7, where we solve a test

problem to show that our scheme avoids pressure oscillations and temperature spikes

for material contacts as well.

3.6.1 Preventing errors caused by form of transport equations

We consider the 1-D advection at constant velocity of a material interface in

thermomechanical equilibrium, situated at initial time between neighboring cells Ωe−1

and Ωe. Initially, p, u, T , and ER are uniform while ρ and the material properties vary

in general across the interface: ue−1 = ue = u > 0, pe−1 = pe = p, and Te−1 = Te = T ,

while ρe−1 6= ρe, γe−1 6= γe and (cv)e−1 6= (cv)e. We assume the radiation field is

initially in equilibrium with the material, where ER = aRT
4. In this case, the the

source, parabolic, and non-conservative product terms in Equations (3.1c) and (3.1d)

are identically zero initially. The exact solution after a single time-step gives the

velocity, pressure, and temperature as unchanged, while the interface has advected

some distance u∆t, where ∆t is the size of the time-step. This analysis makes use of

the properties derived in Appendix C.

The semi-discrete form of the continuity equation (3.1a) reduces to

dρ̂je
dt

+Dj
f,e(ρu) = 0. (3.39)

Since the velocity is uniform, we apply property (D.1),

dρ̂je
dt

+ uDj
f,e(ρ) = 0. (3.40)
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For the momentum equation (3.1b),

d(ρ̂u)je
dt

+Dj
f,e(ρu

2 + p+ pR) = 0. (3.41)

Applying properties (D.1) and (D.2), this equation becomes,

d(ρ̂u)je
dt

= −u2Dj
f,e(ρ). (3.42)

We thus obtain,

d(ρ̂u)je
dt

= u
dρ̂je
dt
. (3.43)

Therefore, the condition that velocity remain constant at the following time step is

obeyed.

The material energy equation, (3.1c), becomes, in the case of thermomechanical

equilibrium,

dÊj
e

dt
+Dj

f,e(u(E + p)) = 0, (3.44)

where we make use of the properties (D.3) and (D.5). Writing the total energy

as Êj
e = (ρ̂e)je + 1

2
u2ρ̂je, we use the momentum and continuity equations to reduce

Equation (3.44) to:

d(ρ̂e)je
dt

+ uDj
f,e(ρe) = 0. (3.45)

3.6.1.1 γ-based approach

Inserting the pressure-based equation of state,
(
ρ̂e
)j
e

= p
(

1̂
γ−1

)j
e
, into Equation

(3.45) yields,

d

dt

[
p

(
1̂

γ − 1

)j
e

]
+ upDj

f,e

(
1

γ − 1

)
= 0. (3.46)
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Expanding the temporal derivative,

[
dp

dt

(
1̂

γ − 1

)j
e

]
+ p

{
d

dt

(
1̂

γ − 1

)j
e

+ uDj
f,e

(
1

γ − 1

)}
= 0. (3.47)

We observe that the term in braces is the semi-discrete form of the equation

∂

∂t

(
1

γ − 1

)
+ u

∂

∂x

(
1

γ − 1

)
= 0. (3.48)

This equation states that the function 1
γ−1

is advected by the flow. If we ensure that

this result is enforced, Equation (3.47) implies that dp
dt

= 0 and the pressure remains

constant at the following time step. We use this equation to transport 1
γ−1

and to

calculate pressure for the γ-based approach.

Inserting the temperature-based equation of state,
(
ρ̂e
)j
e

= T
(
ρ̂cv
)j
e
, into Equation

(3.45) yields,

d

dt

[
T
(
ρ̂cv
)j
e

]
+ TDj

f,e

(
ρcvu

)
= 0. (3.49)

Expanding the temporal derivative,

[
dT

dt

(
ρ̂cv
)j
e

]
+ T

{
d

dt

(
ρ̂cv
)j
e

+Dj
f,e

(
ρcvu

)}
= 0. (3.50)

We observe that the term in braces is the semi-discrete form of the equation

∂

∂t

(
ρcv
)

+
∂

∂x

(
ρcvu

)
= 0. (3.51)

This equation states that the function ρcv is conserved. If we ensure that this result is

enforced, Equation (3.50) implies that dT
dt

= 0 and the temperature remains constant

at the following time step. We use this equation to transport cv and to calculate

temperature for the γ-based model.
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3.6.1.2 Volume fraction approach

Inserting the pressure-based equation of state,
(
ρ̂e
)j
e

= p
∑

l

(
α̂(l)

γ(l)−1

)j
e
, into Equa-

tion (3.45) yields,

d

dt

[
p
∑
l

(
α̂(l)

γ(l) − 1

)j
e

]
+ upDj

f,e

(∑
l

α(l)

γ(l) − 1

)
= 0. (3.52)

Expanding the temporal derivative,

[
dp

dt

∑
l

(
α̂(l)

γ(l) − 1

)j
e

]
+ p

∑
l

{
d

dt

(
α̂(l)

γ(l) − 1

)e
j

+ uDj
f,e

(
α(l)

γ(l) − 1

)}
= 0. (3.53)

Noting that the fluid equation of state property γ(l) is a constant, the term in braces

is the semi-discrete form of the equation,

∂

∂t
α(l) + u

∂

∂x
α(l) = 0, (3.54)

for each fluid species. This equation states that α(l) is advected by the flow. If we en-

sure that this result is enforced, Equation (3.53) implies that dp
dt

= 0 and the pressure

remains constant at the following time step. We use this equation to transport α(l)

and to calculate pressure in the volume fraction approach. This equation does not

include the source term in Equation (3.17a), required for thermodynamic consistency,

because the dilatation of the flow in this analysis is zero.

Inserting the temperature-based equation of state,
(
ρ̂e
)j
e

= T
∑

l

( ̂
ρ(l)α(l)c

(l)
v

)j
e
,

into Equation (3.45) yields,

d

dt

[
T
∑
l

( ̂
ρ(l)α(l)c

(l)
v

)j
e

]
+ TDj

f,e

(∑
l

ρ(l)α(l)c(l)
v u
)

= 0. (3.55)
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Expanding the temporal derivative,

[
dT

dt

∑
l

( ̂
ρ(l)α(l)c

(l)
v

)j
e

]
+ T

∑
l

{
d

dt

( ̂
ρ(l)α(l)c

(l)
v

)j
e

+Dj
f,e

(
ρ(l)α(l)c(l)

v u
)}

= 0. (3.56)

Noting that the fluid equation of state property c
(l)
v a constant, we observe that the

term in braces is the semi-discrete form of the equation,

∂

∂t
(ρ(l)α(l)) +

∂

∂x
(ρ(l)α(l)u) = 0, (3.57)

for each fluid species. This equation states that ρ(l)α(l), the mass of fluid l, is con-

served. If we ensure that this result is enforced, Equation (3.56) implies that dT
dt

= 0

and the temperature remains constant at the following time step. We use this equation

to transport ρ(l)α(l) and to calculate temperature in the volume fraction approach.

3.6.1.3 Mass fraction approach

Inserting the pressure-based equation of state,
(
ρ̂e
)j
e

= p
∑

l

(
ρ̂z(l)

ρ(l)(γ(l)−1)

)j
e
, Equa-

tion (3.45) becomes

d

dt

[
p
∑
l

(
ρ̂z(l)

ρ(l)(γ(l) − 1)

)j
e

]
+ upDj

f,e

(∑
l

ρz(l)

ρ(l)(γ(l) − 1)

)
= 0. (3.58)

Expanding the temporal derivative,

[
dp

dt

∑
l

(
ρ̂z(l)

ρ(l)(γ(l) − 1)

)j
e

]
+p
∑
l

{
d

dt

(
ρ̂z(l)

ρ(l)(γ(l) − 1)

)j
e

+uDj
f,e

(
ρz(l)

ρ(l)(γ(l) − 1)

)}
= 0.

(3.59)

Noting that the fluid equation of state property γ(l) is a constant, we observe that

the term in braces is the semi-discrete form of the equation

∂

∂t

(
ρz(l)

ρ(l)

)
+ u

∂

∂x

(
ρz(l)

ρ(l)

)
= 0, (3.60)

85



for each fluid species. This equation states that ρz(l)/ρ(l) is advected by the flow. If

we ensure that this is enforced, Equation (3.59) implies that dp
dt

= 0 and the pres-

sure remains constant at the following time step. We use this equation to transport

ρz(l)/ρ(l) and to calculate pressure in the mass fraction approach.

Inserting the temperature-based equation of state,
(
ρ̂e
)j
e

= T
∑

l

(
ρ̂z(l)c

(l)
v

)j
e
, Equa-

tion (3.45) becomes:

d

dt

[
T
∑
l

(
ρ̂z(l)c

(l)
v

)j
e

]
+ TDj

f,e

(∑
l

(ρz(l)c(l)
v u
)

= 0. (3.61)

Expanding the temporal derivative,

[
dT

dt

∑
l

(
ρ̂z(l)c

(l)
v

)j
e

]
+ T

∑
l

{
d

dt

(
ρ̂z(l)c

(l)
v

)j
e

+Dj
f,e

(
ρz(l)c(l)

v u
)}

= 0. (3.62)

Noting that the fluid equation of state property c
(l)
v is a constant, we observe that the

term in braces is the semi-discrete form of the equation,

∂

∂t

(
ρz(l)

)
+

∂

∂x

(
ρz(l)u

)
= 0. (3.63)

for each fluid species. This equation states that ρz(l), the mass of fluid l, is conserved.

If we ensure that this is enforced, (3.62) implies that dT
dt

= 0 and the pressure remains

constant at the following time step. We use this equation to transport ρz(l) and to cal-

culate pressure in the mass fraction approach. We observe that, via Equation (3.11),

the mass fraction and volume fraction approaches developed here are equivalent.

3.6.2 Preventing errors caused by limiting procedure

Solving the model equations as described in the previous section is not a sufficient

condition to preserve thermomechanical equilibrium at material interfaces; a limiting

scheme must be devised that does not introduce pressure and temperature errors. In
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this section, we demonstrate that applying the HR limiting scheme directly to the

total material energy introduces pressure and temperature oscillations at interfaces,

and we derive a scheme to overcome these drawbacks. We require a limiting scheme

that is (i) conservative, (ii) non-oscillatory, and (iii) high-order accurate. To describe

the issue and the remedy we take here, we follow the development in Henry de Frahan

et al. [196] and consider the variables Q, X, Y , and Z expressed as Taylor polynomials

as in Equation (3.37) as functions of x. In this section, it should be assumed that

all variable degrees of freedom correspond to the Taylor polynomial form rather than

the DG basis form, and the superscript T is dropped. The variables are assumed to

be related by some algebraic function f : Q = f(X, Y, Z).

By construction, HR limiting satisfies condition (iii). For requirement (i), the

limiting procedure must not change the cell-average value of the solution in each

cell, so
∫

Ωe
Qdx =

∫
Ωe
Q̃dx. For requirement (ii), if Z(x) is equal to a constant

Z(x) = a, that constant must be recovered after limiting through the function f ,

i.e., Z̃ = f−1(X̃, Ỹ , Q̃) = a. However, we must design our limiting procedure around

two nonlinear properties of the HR limiting procedure, which we verify in Appendix

D: (i) limiting is not necessarily distributive, i.e., limiting a sum of functions is not

equivalent to the sum of functions individually limited, and (ii) limiting a product of

functions is not necessarily conservative. In other words, we have: X̃ + Y 6= X̃ + Ỹ ,

and
∫

Ωe
X̃Ỹ dx 6=

∫
Ωe
XY dx. We propose to overcome these difficulties as follows:

(i) Distributive property. If Q(x) = f(X, Y, a) = aX + Y , and we limit to obtain

Q̃ = ˜aX + Y as well as X̃, Ỹ , in general we cannot recover the value of a by calculating

ã = f−1(X̃, Ỹ , Q̃) =
1

X̃
(Q̃− Ỹ ) =

1

X̃
( ˜aX + Y − Ỹ ) 6= a. (3.64)

This result is due to the nonlinear property of limiting sums. However, if we are to

calculate the value of Q̃ directly from the limited values of ãX, Ỹ in the first place,
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we can naturally recover a,

ã = f−1(X̃, Ỹ , Q̃) =
1

X̃
(Q̃− Ỹ ) =

1

X̃
(ãX + Ỹ − Ỹ ) = a. (3.65)

This methodology ensures that the constant a is recovered, and that the procedure

is non-oscillatory.

(ii) Conservation of a product. In general, if Q = f(X, Y, Z) = XY , and Q̃ = X̃Ỹ ,

then
∫

Ωe
Qdx 6=

∫
Ωe
Q̃dx. Using the chain rule, we express the degrees of freedom of

Q = XY ,

Q̂0 = X̂0Ŷ 0, (3.66a)

Q̂1 = X̂1Ŷ 0 + X̂0Ŷ 1, (3.66b)

Q̂2 = X̂2Ŷ 0 + 2X̂1Ŷ 1 + X̂0Ŷ 2, (3.66c)

... (3.66d)

Q̂n =
n∑
k=0

(
n

k

)
X̂(n−k)Ŷ k, (3.66e)

where
(
n
k

)
is the binomial coefficient. We then reconstruct the limited degrees of

freedom of Q using those of X and Y ,

˜̂
Qn =

n∑
k=0

(
n

k

)
˜̂
X(n−k)˜̂Y k. (3.67)

We impose conservation, requiring
∫

Ωe
Q̃dx =

∫
Ωe
Qdx. Enforcing this requirement

results in the constraints,

∑
k=0,2,4,...

2

(k + 1)!
(
˜̂
Qk − Q̂k) = 0. (3.68)

This requirement gives P + 2 constraints for only P + 1 degrees of freedom. We
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combine the constraints for k = 2, 4, ... degrees of freedom into that for k = 0, and

reconstruct the limited degrees of freedom of Q from those of X and Z as,

˜̂
Qn =

n∑
k=1

(
n

k

)
˜̂
X(n−k)˜̂Y k, for n = 1, ..., P, (3.69a)

˜̂
Q0 = Q̂0 −

∑
k=2,4,...

1

(k + 1)!
(
˜̂
Qk − Q̂k). (3.69b)

Using this approach, if Z = a, then Z0 = a and Zk = 0 for k > 0, therefore Q̃ = aX̃,

guaranteeing this procedure is non-oscillatory. The procedure also enforces conser-

vation, so that the cell-average value of Q is not changed by the limiting procedure.

This procedure also preserves high-order accuracy by construction.

We consider three adjacent 1-D cells numbered e − 1, e, e + 1, where a material

interface in thermomechanical equilibrium advecting at a constant speed u is present

in cell e. Initially, p, u, T , and ER are uniform while ρ and the material properties

vary in general across the interface: ue−1 = ue = ue+1 = u > 0, pe−1 = pe = pe+1 = p,

and Te−1 = Te = Te+1 = T , while ρe−1 6= ρe 6= ρe+1, γe−1 6= γe 6= γe+1 and (cv)e−1 6=

(cv)e 6= (cv)e+1. For the volume fraction approach, (α(l))e−1 6= (α(l))e 6= (α(l))e+1,

(ρ(l)α(l))e−1 6= (ρ(l)α(l))e 6= (ρ(l)α(l))e+1, and similarly for the mass fraction approach.

We assume the radiation field is initially in equilibrium, with ER = aRT
4. In this case,

the source, parabolic, and non-conservative product terms are identically zero initially.

Without loss of generality, we consider a P = 1 representation using hierarchical

reconstruction limiting with a minmod reconstruction. In each cell, the solution is

represented by a linear expansion:

ρ(x) = ρ̂0 + ρ̂1x, ρu(x) = (ρ̂u)0 + (ρ̂u)1x,

E(x) = Ê0 + Ê1x, ER(x) = (ÊR)0 + (ÊR)1x.

(3.70)
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After limiting, the solution is:

ρ̃(x) = ˜̂ρ0 + ˜̂ρ1x, ρ̃u(x) = (̃ρ̂u)0 + (̃ρ̂u)1x,

Ẽ(x) =
˜̂
E0 +

˜̂
E1x, ẼR(x) = (̃ÊR)0 + (̃ÊR)1x.

(3.71)

For density, the limiting procedure leads to ˜̂ρ0
e = ρ̂e0 and ˜̂ρ1

e = 1
2
minmod(ρ̂0

e −

ρ̂0
e−1, ρ̂

0
e+1 − ρ̂0

e). For momentum density, the limiting procedure preserves a constant

velocity, (̃ρu)e = uρ̃e. To this point, the analysis is common to all three approaches

(γ-based, volume fraction, mass fraction). As the material energy is examined, we

consider each model individually.

3.6.2.1 γ approach

With the γ-based approach, the additional state variables are expanded linearly:

(
1

γ − 1

)
(x) =

̂( 1

γ − 1

)0

+
̂( 1

γ − 1

)1

x, (ρcv)(x) = (̂ρcv)
0

+ (̂ρcv)
1

x. (3.72)

After limiting these variables,

˜( 1

γ − 1

)
(x) =

˜̂(
1

γ − 1

)0

+

˜̂(
1

γ − 1

)1

x, (̃ρcv)(x) =
˜̂
(ρcv)

0

+
˜̂
(ρcv)

1

x. (3.73)

Limiting the total energy density using the pressure-wise form of the equation of

state,

˜̂
E1
e =

1

2
minmod

{
p

 ̂( 1

γ − 1

)0

e

−
̂( 1

γ − 1

)0

e−1

+
u2

2
(ρ̂0
e − ρ̂0

e−1),

p

 ̂( 1

γ − 1

)0

e+1

−
̂( 1

γ − 1

)0

e

+
u2

2
(ρ̂0
e+1 − ρ̂0

e)

}
. (3.74)
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Because minmod(x1+y1, x2+y2) 6= minmod(x1, x2)+minmod(y1, y2), we cannot factor

out the p from this equation, and we cannot assure that mechanical equilibrium is

maintained. Limiting of the total energy density using the temperature-wise form of

the equation of state produces:

˜̂
E1
e =

1

2
minmod

{
T

[
(̂ρcv)

0

e − (̂ρcv)
0

e−1

]
+
u2

2
(ρ̂0
e − ρ̂0

e−1),

T

[
(̂ρcv)

0

e+1 − (̂ρcv)
0

e

]
+
u2

2
(ρ̂0
e+1 − ρ̂0

e)

}
. (3.75)

We cannot factor out T from this equation, and therefore cannot assure that thermal

equilibrium is maintained.

However, we can enforce thermomechanical equilibrium by using HR limiting in

a manner consistent with our goals. Extending the approach of Henry de Frahan

et al. [196], we limit E = ρe + K in a manner that allows a constant pressure and

temperature to be recovered. For the γ-based approach, we limit ρ, ρu, p, T , 1/(γ−1)

and ρcv, such that the total energy is reconstructed as follows:

˜̂
En
e = ˜̂ρene +

˜̂
Kn
e for n = 1, 2, ..., P,˜̂

E0
e = Ê0

e −
∑

k=2,4,...

1

(k + 1)!
(
˜̂
Ek
e − Êk

e ),
(3.76)

where the constraint on n = 0 enforces conservation of total energy. We reconstruct

the kinetic energy K̃ using the limited values ρ̃ and ρ̃u. The internal energy is

calculated as: ˜̂ρene =
n∑
k=0

(
n

k

) ˜̂pn−ke

˜(
1̂

γ − 1

)k
e

. (3.77)

This limiting procedure is guaranteed to maintain pressure equilibrium and conserve

mass, momentum, and energy. This form of the internal energy is used to compute
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the pressure. We also calculate the internal energy as

˜̂ρene =
n∑
k=0

(
n

k

)
˜̂
T n−ke (̃ρ̂cv)ke . (3.78)

This limiting procedure is guaranteed to maintain temperature equilibrium and con-

serve material energy. This form of the internal energy is used to compute the tem-

perature.

3.6.2.2 Volume fraction approach

With the volume fraction approach, the additional state variables are expanded

linearly:

α(l)(x) = (α̂(l))0 + (α̂(l))1x, ρ(l)α(l)(x) = (ρ̂(l)α(l))0 + (ρ̂(l)α(l))1x. (3.79)

After limiting these variables,

α̃(l)(x) = (̃α̂(l))0 + (̃α̂(l))1x, ρ̃(l)α(l)(x) =
˜

(ρ̂(l)α(l))0
e +

˜
(ρ̂(l)α(l))

1

x. (3.80)

Limiting of the total energy density using the pressure-wise form of the equation of

state gives,

˜̂
E1
e =

1

2
minmod

{
p

[∑
l

(
α̂(l)

γ(l) − 1

)0

e

−
∑
l

(
α̂(l)

γ(l) − 1

)0

e−1

]
+
u2

2
(ρ̂0
e − ρ̂0

e−1)

p

[∑
l

(
α̂(l)

γ(l) − 1

)0

e+1

−
∑
l

(
α̂(l)

γ(l) − 1

)0

e

]
+
u2

2
(ρ̂0
e+1 − ρ̂0

e)

}
. (3.81)

Because minmod(x1+y1, x2+y2) 6= minmod(x1, x2)+minmod(y1, y2), we cannot factor

out the p from this equation, and we cannot assure that mechanical equilibrium is

maintained. Limiting of the total energy density using the temperature-wise form of
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the equation of state produces:

˜̂
E1
e =

1

2
minmod

{
T

[∑
l

(
̂

ρ(l)α(l)c
(l)
v )0

e −
∑
l

(
̂

ρ(l)α(l)c
(l)
v )0

e−1

]
+
u2

2
(ρ̂0
e − ρ̂0

e−1)

T

[∑
l

(
̂

ρ(l)α(l)c
(l)
v )0

e+1 −
∑
l

(
̂

ρ(l)α(l)c
(l)
v )0

e

]
+
u2

2
(ρ̂0
e+1 − ρ̂0

e)

}
. (3.82)

We cannot factor out the T from this equation, and we cannot assure that thermal

equilibrium is maintained.

However, we can enforce thermomechanical equilibrium by using HR limiting in

a manner consistent with our goals. For the volume fraction method, we limit ρ, ρu,

p, T , α(l) and ρ(l)α(l), such that the total energy is reconstructed as follows:

˜̂
En
e = ˜̂ρene +

˜̂
Kn
e , for n = 1, ..., P,˜̂

E0
e = Ê0

e −
∑

k=2,4,...

1

(k + 1)!
(
˜̂
Ek
e − Êk

e ),
(3.83)

where the constraint on n = 0 enforces conservation of total energy. We reconstruct

the kinetic energy K according to the limited values ρ̃ and ρ̃u. The internal energy

is calculated as: ˜̂ρene =
∑
l

n∑
k=0

(
n

k

) ˜̂pn−ke (̃α̂(l))ke

(
1

γ(l) − 1

)
. (3.84)

This limiting procedure is guaranteed to maintain pressure equilibrium and conserve

mass, momentum, and energy. This form of the internal energy is used to compute

the pressure. We also calculate the internal energy as

˜̂ρene =
∑
l

n∑
k=0

(
n

k

)
˜̂
T n−ke

˜
( ̂ρ(l)α(l))kec

(l)
v . (3.85)

This limiting procedure is guaranteed to maintain temperature equilibrium and con-

serve material energy. This form of the internal energy is used to compute the tem-

perature.
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3.6.2.3 Mass fraction approach

With the mass fraction approach, the additional state variables are expanded

linearly:

(
ρz(l)

ρ(l)
)(x) = (

ρ̂z(l)

ρ(l)
)0 + (

ρ̂z(l)

ρ(l)
)1x, ρz(l)(x) = (ρ̂z(l))0 + (ρ̂z(l))1x. (3.86)

After limiting these variables,

˜
(
ρz(l)

ρ(l)
)(x) =

˜
(
ρ̂z(l)

ρ(l)
)0 +

˜
(
ρ̂z(l)

ρ(l)
)1x, ρ̃z(l)(x) = (̃ρ̂z(l))0 + (̃ρ̂z(l))1x. (3.87)

Limiting of the total energy density using the pressure-wise form of the equation of

state gives,

Ẽe
1 =

1

2
minmod

{
p

[∑
l

(
ρ̂z(l)

ρ(l)(γ(l) − 1)

)0

e

−
∑
l

(
ρ̂z(l)

ρ(l)(γ(l) − 1)

)0

e−1

]
+
u2

2
(ρ̂0
e−ρ̂0

e−1),

p

[∑
l

(
ρ̂z(l)

ρ(l)(γ(l) − 1)

)0

e+1

−
∑
l

(
ρ̂z(l)

ρ(l)(γ(l) − 1)

)0

e

]
+
u2

2
(ρ̂0
e+1 − ρ̂0

e)

}
. (3.88)

Because minmod(x1+y1, x2+y2) 6= minmod(x1, x2)+minmod(y1, y2), we cannot factor

out the p from this equation, and we cannot assure that mechanical equilibrium is

maintained. Limiting of the total energy density using the temperature-wise form of

the equation of state produces:

Ẽe
1 =

1

2
minmod

{
T

[∑
l

(
̂

(ρz(l)c
(l)
v )0

e −
∑
l

(ρ̂z(l)c
(l)
v )0

e−1

]
+
u2

2
(ρ̂0
e − ρ̂0

e−1),

T

[∑
l

(ρ̂z(l)c
(l)
v )0

e+1 −
∑
l

(ρ̂z(l)c
(l)
v )0

e

]
+
u2

2
(ρ̂0
e+1 − ρ̂0

e)

}
. (3.89)

However, we can enforce thermomechanical equilibrium by using HR limiting in a

manner consistent with our goals. We cannot factor out the T from this equation,
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and we cannot assure that temperature equilibrium is maintained.

For the volume fraction method, we limit ρ, ρu, p, T , ρz(l)/ρ(l) and ρz(l), such

that the total energy is reconstructed as follows:

˜̂
En
e = ˜̂ρene +

˜̂
Kn
e , for n = 1, ..., P,˜̂

E0
e = Ê0

e −
∑

k=2,4,...

1

(k + 1)!
(
˜̂
Ek
e − Êk

e ),
(3.90)

where the constraint on n = 0 enforces conservation of total energy. We reconstruct

the kinetic energy K according to the limited values of ρ and ρu. The internal energy

is calculated as:

˜̂ρene =
∑
l

n∑
k=0

(
n

k

) ˜̂pn−ke

˜(
ρ̂z(l)

ρ(l)

)k
e

(
1

γ(l) − 1

)
. (3.91)

This limiting procedure is guaranteed to maintain pressure equilibrium and conserve

mass, momentum, and material energy. This form of the internal energy is used to

compute the pressure. We also calculate the internal energy as

˜̂ρene =
∑
l

n∑
k=0

(
n

k

)
˜̂
T n−ke

˜
(ρ̂z(l))kec

(l)
v . (3.92)

This limiting procedure is guaranteed to maintain temperature equilibrium and con-

serve material energy. This form of the internal energy is used to compute the tem-

perature.

The limiting procedure described for each model enables us to simultaneously

prevent pressure and temperature errors at interfaces. The form of equations (3.76),

(3.83), (3.90) guarantees that the total material energy is conserved with respect to

this limiting procedure, i.e.,
∫

Ωe
Edx =

∫
Ωe
Ẽdx. For the remainder of this work,

we refer to this procedure as pT -limiting to distinguish it from other approaches.
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As we have assumed that the radiation field is isotropic, we may directly apply HR

limiting to the radiation energy density without issue. However, if this was not the

case, as with variable Eddington tensor methods [74], this limiting procedure could

be extended to ensure oscillations in radiation pressure are not introduced.

3.6.3 Solution-adaptive approach

In general, limiting procedures reduce the order of accuracy of the method. There-

fore, it is advantageous to apply limiting only where it is necessary to reduce oscil-

lations to thereby reduce the amount of numerical dissipation introduced [226]. Nu-

merical dissipation may be problematic when simulating broadband problems such as

interfacial instabilities or turbulence. To effectively control the application of dissipa-

tion, we follow a solution-adaptive approach based on a discontinuity sensor, which

identifies the computational cells in which discontinuities are located. It is critical

that this sensor be discerning and compact, as the efficiency, accuracy, and stability

of the overall scheme rely on its ability to apply limiting where required. The DG

method offers important advantages over other methods. The compact stencil allows

limiting to be applied at flagged cells while the optimal order of accuracy can be

achieved in the very next cell. We extend the sensor of Henry de Frahan et al. [196]

to radiation hydrodynamics, which requires one additional sensor evaluation to detect

nonlinear radiative heat waves.

First we detect contact waves, where L and R denote the cell-average value in the

left and right cell of an edge, respectively. The sensor quantity is:

ξ =
|∆α∗2|
ρL + ρR

, Ξ =
2ξ

(1 + ξ)2
, (3.93)

where ∆α∗2 is the Roe-averaged wave strength associated with the contact wave in
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the system (3.1),

∆α∗2 = ∆ρ− ∆(p+ pR)

(a∗)2
. (3.94)

The the Roe-averaged sound speed is a∗ =
√

(c∗s)
2 + (c∗R)2, where the Roe-averaged

hydrodynamic sound speed c∗s is calculated from the Roe-averaged enthalpy and ve-

locity as in the familiar hydrodynamic case, and c∗R =
√

1
3
h∗R, where the radiation

enthalpy hR = ER+pR
ρ

is to be Roe-averaged. Similarly, we use a sensor to detect

material interfaces:

ζ =
|γR − γL|
γL + γR

, Z =
2ζ

(1 + ζ)2
. (3.95)

We use this sensor regardless of the interface capturing model we use, so γL/R must

be calculated from the cell-average value of α(l) or ρz(l)/ρ(l). We use the threshold

value of 0.01 for these sensors; if Ξ or Z are greater than this value, we limit both

cells L and R.

To detect shockwaves, we test the Lax entropy condition, given by:

uL − aL > u∗ − a∗ > uR − aR, (3.96)

which is true for a physical shockwave. If this condition is satisfied, then we use the

sensor

φ =
|pR − pL|
pL + pR

, Φ =
2φ

(1 + φ)2
, (3.97)

with a threshold of 0.001. Lastly, we introduce a final sensor to detect nonlinear

radiative heat waves, which form naturally from nonlinear diffusive processes and

require limiting. This sensor is given by,

ψ =
|(pR)R − (pR)L|
(pR)L + (pR)R

, Ψ =
2ψ

(1 + ψ)2
. (3.98)

We use a threshold of 0.01 for this sensor.
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3.7 Verification

To numerically demonstrate the properties of our method outlined above, we solve

the radiation-hydrodynamics equations in System (3.1) non-dimensionalized using the

convention in Section 1.3.3 for a series of test problems. We evaluate the L∞ error

norm of the variable q to demonstrate convergence rates:

L∞(q) = max
e=1,...,Ne

∣∣ 1

∆x

∫
Ωe

(q − qexact)dx
∣∣. (3.99)

We evaluate this integral using 2P + 1 quadrature points. For each problem in this

section, we use the non-dimensional parameter values 1/R = 1 and c/a0 = 102. In

each case, simulations are run with a Courant-Friedrichs-Lewy number of 0.85 and a

von Neumann number of 0.45.

3.7.1 High-order accuracy – smooth distribution in γ

We report the convergence of our method using a smooth 1-D interface advection

problem similar to that used in Ref. [196] to demonstrate that our proposed scheme

is high-order accurate while preventing spurious pressure and temperature errors. We

initialize a 1-D periodic domain x ∈ [−1, 1] in thermomechanical equilibrium:



ρ

u

p

γ


=



1 + 0.2cos(3πx)

1.0

1.0

1.4 + 0.2cos(πx)


. (3.100)

We initialize the radiation pressure as pR = p, from which we compute the radi-

ation energy density ER = 3pR, and the corresponding equilibrium temperature

T = (ER)1/4, which gives T ≈ 1.316. We show results for the γ-based method

only, as the convergence rate results for volume/mass fraction are the same. We set
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constant and uniform opacities such that DR = σP = 10−4 initially.

The L∞ error for T , p, 1/(γ − 1), and ρcv vs. cell size ∆x are shown in Figure

3.1 after one period of advection without limiting, with direct limiting of the state

variables qh, and with pT -limiting for P = 2. For this problem, we limit all elements

at each Runge-Kutta sub-step for the cases shown with limiting. Our DG method

without limiting converges at a rate of 2P +1, which is the expected ideal rate for the

discontinuous Galerkin method as described in Section 3.5.1. As we solve the appro-

priate forms of the transport equations derived in Section 3.6.1, no errors affect the

pressure and temperature fields in this case and the errors in these variables are near

machine precision. The DG method with limiting of the state variables qh converges

at a rate of P + 1, which is the expected rate for the discontinuous Galerkin method

with the HR limiting scheme. This manner of applying HR limiting introduces errors

in the pressure and temperature fields, as we have demonstrated, and these variables

now feature significant errors that converge at the expected rate. The DG method

with the pT limiting scheme converges with an order of accuracy of P + 1, indicating

that our pT limiting scheme, including reconstruction of the total material energy,

converges at the ideal rate for HR limiting. As this limiting scheme is designed to

prevent errors in pressure and temperature, the errors in these variables are near ma-

chine precision once again. This test problem demonstrates that our overall method,

including pT limiting, is high-order accurate.
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(a) No limiting (b) Limiting qh

(c) pT limiting

Figure 3.1: Normalized L∞ error norm for the 1-D smooth advection problem without
limiting (a), with direct limiting of the state variables qh (b), and with pT limiting (c).
Errors are shown for material pressure (blue diamonds), temperature (red squares),
1/(γ−1) (green triangles), and ρcv (purple circles). Guide lines shows slopes of 2P+1
(a,b) and P + 1 (c).

3.7.2 Preserving thermomechanical equilibrium – sharp interface advec-

tion

We consider the advection of a 1-D sharp interface to demonstrate that our overall

scheme preserves thermomechanical equilibrium for material interfaces. We initialize
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a periodic domain x ∈ [−1, 1] according to:

(ρ, u, p, γ) =


(1.0, 1.0, 1.0, 5/3), |x| < 0.5

(0.1, 1.0, 1.0, 7/5), otherwise.

(3.101)

The radiation pressure is pR = p, from which we compute the radiation energy density

and the equilibrium temperature as in the verification problem in Section 3.7.1. To

highlight the effect of optical properties of the material, we consider two cases of

opacities. These opacities are set such that, initially,

(DR, σP ) =


(10−4, 10−4), (a) weak source/diffusion,

(1, 1), (b) strong source/diffusion.

(3.102)

We use a uniform mesh of 128 cells with P = 2. The volume and mass fraction

approaches we derived are mathematically equivalent, so we show results for the γ

and volume fraction approaches. To demonstrate the errors that can occur and their

mechanisms of propagation, we compare our pT limiting procedure with three other

approaches: (i) direct limiting of the state variables qh, (ii) limiting for pressure

equilibrium only as in Equations (3.77) and (3.84), and (iii) limiting for temperature

equilibrium only as in Equations (3.78) and (3.85). For this problem, we limit all

elements at each Runge-Kutta sub-step. Each approach uses the transport equations

derived in Section 3.6.1, so that the sole source of pressure and temperature errors is

the limiting procedure.

The Figures 3.2 and 3.4 show pointwise error profiles after one period of advection

for the four approaches for the γ-based and volume fraction approaches, respectively.

As the mass fraction and volume fraction approaches are mathematically equivalent,

we do not show results for mass fraction. The L∞ errors in Figures 3.3 and 3.5 show

how these errors develop over time. Significant errors from the interface treatment
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have developed from all methods except pT limiting. These errors in temperature

and pressure cause errors in velocity through the pressure in the momentum equation

(3.1b). The magnitude and growth rate of the errors are much larger with strong

source/diffusion effects. We note that the mechanism of propagation of temperature

errors is different from that of pressure errors, as temperature does not appear in

the divergence-form hyperbolic fluxes of the system (3.1). Temperature errors prop-

agate to other variables through the radiation-material interaction terms. As the

importance of these terms decreases, temperature errors become inconsequential to

the other flow variables, as is the case in simulations of the Euler equations. This is

why the pressure and velocity L∞ errors are nearly equivalent in the case of limit-

ing for pressure equilibrium only and pT limiting for the weak radiation case. The

radiation-hydrodynamics equations contain physical mechanisms that make a phys-

ically consistent treatment of temperature especially critical. We conclude that the

pT limiting scheme maintains thermomechanical equilibrium to an acceptable margin

of error for the problem under consideration.
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Figure 3.2: Pointwise error for the 1-D sharp interface advection problem with the
γ-based method for weak source/diffusion (top row) and strong source/diffusion (bot-
tom row) effects. Limiting schemes: direct limiting of state variables qh (red solid
line), pressure equilibrium only (green dashed line), temperature equilibrium only
(blue dotted line), pT limiting (purple dashed line).

Figure 3.3: L∞ error vs. time for the 1-D sharp interface advection problem with
the γ-based method for weak source/diffusion (top row) and strong source/diffusion
(bottom row) effects. Limiting schemes: direct limiting of state variables qh (red
solid line), pressure equilibrium only (green dashed line), temperature equilibrium
only (blue dotted line), pT limiting (purple dashed line
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Figure 3.4: Pointwise error for the 1-D sharp interface advection problem with the vol-
ume fraction method for weak source/diffusion (top row) and strong source/diffusion
(bottom row) effects. Limiting schemes: conserved variables (red solid line), pressure
equilibrium only (green dashed line), temperature equilibrium only (blue dotted line),
pT limiting (purple dashed line

Figure 3.5: L∞ error vs. time for the 1-D sharp interface advection problem
with the volume fraction method for weak source/diffusion (top row) and strong
source/diffusion (bottom row) effects. Limiting schemes: conserved variables (red
solid line), pressure equilibrium only (green dashed line), temperature equilibrium
only (blue dotted line), pT limiting (purple dashed line
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3.7.3 Multifluid radiative shock tube

To demonstrate the applicability of our method to HED problems, we consider a

1-D shock tube problem, as shock tubes are commonly used in HED physics to study

radiative shockwaves [6] and hydrodynamic instabilities [227, 228]. We modify the

shock tube problem of Swesty and Myra [229] with 1-D initial conditions in x ∈ [−1, 1]

given by:

(ρ, u, p, γ, ER) =


(1.0, 0.0, 1.0, 5/3, 1.0), x < 0.5,

(0.125, 0.0, 0.1, 7/5, 0.1), x > 0.5.

(3.103)

We initialize the temperature in equilibrium with the radiation field. We define

opacities such that, initially, (DR, σP ) = (10−4, 10−4). We solve this problem with

128 cells with P = 2, and compare to a reference solution computed with 512 cells.

For this numerical test, we use the sensor developed in Section 3.6.3. Figure 3.6 shows

the results using the γ-based model at time t = 0.16, and Figure 3.7 shows the results

using the volume fraction model. For our pT limiting approach, no errors are visible

at the material contact, located near x = 0.65, for either approach, and the interface

and shock appear well-captured with this resolution. These results indicate that our

approach resolves material contacts, as well as material interfaces, without generating

temperature errors in the form of spikes or pressure errors in the form of oscillations.
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(a) Density (b) Velocity

(c) Total pressure (d) Temperature

(e) Ratio of specific heats (f) Radiation pressure

Figure 3.6: Profiles for 1-D multifluid radiative shock tube problem for the γ-based
approach at time t = 0.16. Shown here is our approach for preserving thermome-
chanical equilibrium (purple dashed line). Reference solution given by solid black
line.
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(a) Density (b) Velocity

(c) Total pressure (d) Temperature

(e) Volume fraction (f) Radiation pressure

Figure 3.7: Profiles for 1-D multifluid radiative shock tube problem for the volume
fraction approach at time t = 0.16. Shown here is our approach for preserving
thermomechanical equilibrium (purple dashed line). Reference solution given by solid
black line.
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3.7.4 Multifluid blast wave

We consider the two-dimensional expansion of a hot, dense gas into a surrounding

medium. Blast waves are relevant to HED phenomena, including core-collapse super-

novae [56] and nuclear explosions [230]. We initialize a 2-D domain x, y ∈ [0, 2] with

the conditions:

(ρ, u, v, p, γ, ER) =


(1.0, 0, 0, 1.0, 5/3, 1.0), r < R0,

(0.1, 0, 0, 0.01, 7/5, 0.1), r > R0.

(3.104)

where r =
√
x2 + y2, and the dense gas has an initial radius R0 = 1. We smear the

initial discontinuity in volume fraction across a few cells using a hyperbolic tangent

function, following the approach in Ref. [231]. We define the opacities such that,

initially, (DR, σP ) = (10−4, 10−2) in the region r < R0, and (DR, σP ) = (10−3, 10−3)

in the region r > R0. These opacity values correspond to a higher opacity in the

expanding dense gas. The mixture opacities are calculated according to Equation

(3.15). We solve this problem on a structured 60 × 60 rectangular mesh with a P = 1

tensor product basis [232], using the volume fraction approach and our pT limiting

scheme with the sensor developed in Section 3.6.3. Figure 3.8 shows results of the

blast wave at time t = 0.40. We observe that no oscillations are visible in the pressure,

and the temperature monotonically varies across the material contact, located near

r = 1.5. We plot profiles along the 45◦ line in Figure 3.9, where we observe that the

pressure is non-oscillatory and the temperature profile is free of spikes/overshoots.

This problem demonstrates that our method extends to two-dimensions, and can be

used to study HED flows of practical importance.
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(a) Density (b) Material pressure

(c) Temperature (d) Volume fraction

(e) Radiation pressure

Figure 3.8: State variables for 2-D multifluid blast wave problem at time t = 0.40.
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(a) Density (b) Velocity

(c) Total pressure (d) Temperature

(e) Volume fraction (f) Radiation pressure

Figure 3.9: Lineout profiles for 2-D multifluid blast wave problem at time t = 0.40.
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3.8 Conclusion

In this chapter, we presented a numerical method based on the discontinuous

Galerkin (DG) scheme for computing multi-material flows governed by the radiation-

hydrodynamics equations. We derive a method for the γ-based, volume fraction (i.e.,

five-equations model), and mass fraction approaches for interface capturing. The

method is high-order accurate, conservative, compact, and prevents the development

of unphysical errors in pressure and temperature at material interfaces and contacts.

Preventing these errors is particularly important for the study of hydrodynamic in-

stabilities and turbulent mixing, as temperature errors generated by inconsistent ap-

proaches propagate via the source, radiation diffusion, and radiation-material work

terms to pollute other flow variables and affect small-scale flow features. This method

is naturally adaptable to unstructured meshes, and is well-suited for scaling to large

parallel computing architectures. These advantageous properties of our scheme rely

on (i) the solution of additional mass conservation equations in the proper DG form

for each interface-capturing approach, and (ii) the application of HR limiting in an ap-

propriate manner to avoid pressure and temperature oscillations simultaneously. We

develop a physics-based discontinuity sensor for the radiation-hydrodynamics equa-

tions to ensure that limiting is applied at discontinuities only. We demonstrate the

properties of the method using one-dimensional verification problems, and applied

the method to a 2-D problem relevant to HED science. This work demonstrates the

potential for application of high-order methods based on interface capturing to be ap-

plied to HED science. Our approach can be readily extended to more complex physical

models, including more extensive (or tabular, in the case of the volume-fraction ap-

proach) equations of state, three-temperature models, multigroup diffusion models,

and variable Eddington tensor models.
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CHAPTER IV

Summary and Future Work

4.1 Summary

This dissertation has introduced novel approaches in analytical modeling and nu-

merical simulation in the field of high-energy-density (HED) science. Specifically, we

have addressed two important deficiencies in available methods for the study of in-

teraction between fluid flows and radiation fields. The objectives of this dissertation

were to address these deficiencies by (i) developing a modeling approach for predict-

ing the impulse and uncertainty in impulse in materials irradiated by x-ray sources

subject to uncertainty, and (ii) developing an approach for numerical simulation of

multi-material radiation hydrodynamics suitable for the study of mixing at material

interfaces. The accomplishment of these objectives has ramifications in the field of

HED physics, and enables high-fidelity study of phenomena with applications in as-

trophysics and inertial confinement fusion.

To accomplish the first objective:

• We derived a semi-analytical model for impulse-spectrum sensitivity from the

Bethe, Bade, Averell and Yos (BBAY) model for impulse generation in an ir-

radiated material. Both the BBAY model and the derived impulse-spectrum
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sensitivity model require the energy of the blown-off material, Ef (m), which is

not known in general due to the complex partitioning of energy that occurs in

the blow-off process.

• We utilized the Mercury Monte Carlo transport code and the Ares hydrody-

namic code to conduct high-fidelity simulations of the x-ray deposition and

blow-off processes for two materials of interest. We optimized these simulations

to match data obtained from experiments on the NIF. These simulations were

then used to obtain a fit to the Ef (m) function using a fitting procedure that

requires only the impulse and fluence for a few blow-off realizations.

• We augmented the BBAY and sensitivity models with the Ef (m) function ob-

tained from the fitting procedure and found that the sensitivity model obtains

good agreement with the sensitivity evaluated directly from simulations. The

fitting procedure for the model requires a small fraction of the simulations re-

quired by the sensitivity evaluations, and can also use experimental data as an

input.

• We demonstrated the utility of this modeling approach in designing robust

experiments by applying it to a source with an uncertain spectrum. First,

we characterized the spectral uncertainty of an x-ray source due to shot-to-

shot variation from an ensemble of spectral measurements. Then, we used this

spectral uncertainty estimate to constrain the uncertainty in the impulse using

our model.

This work enables low-cost prediction of important quantities relevant to the radiation-

generated impulse in materials. It is our hope that our modeling approach will be

useful in the study of these systems, as well as in the design of robust experiments in

113



this area.

To accomplish the second objective:

• We developed a numerical approach for the multi-material radiation-hydrodynamic

equations based on the discontinuous Galerkin (DG) method. The discontin-

uous Galerkin method is arbitrarily high-order accurate, naturally extends to

unstructured meshes, and is compact, enabling it to scale well on large parallel

computing architectures.

• We derived the forms of transport equations that must be solved to prevent

spurious pressure and temperature oscillations at material interfaces using the

γ-based, volume fraction, and mass fraction approaches to interface capturing.

• We extended the solution-adaptive limiting approach of Ref. [196] to radiation

hydrodynamics. This approach uses hierarchical reconstruction (HR) limiting

in a manner that prevents spurious pressure and temperature oscillations and

preserves cell-average values. We also extended the discontinuity sensor to

the radiation-hydrodynamics equations. This limiting approach is high-order

accurate, non-oscillatory, and conservative.

• We demonstrated with one-dimensional validation problems that our overall

approach is high-order accurate and prevents oscillations at interfaces. By

comparison with other approaches, we showed that appropriate treatment is

especially important in radiation hydrodynamics, as mechanisms are present in

the governing equations that amplify errors caused by inconsistent treatments.

• We applied our method to a two-dimensional blast wave problem relevant to

HED physics.
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This work introduces a method with favorable properties for performing high-resolution

studies of hydrodynamic instabilities and turbulent mixing in HED systems. It is our

hope that this work encourages the further application of high-order methods to the

field of HED science.

4.2 Future work

This thesis invites several opportunities for improvements in the approaches to

both objectives. Here, we discuss limitations of this work and related potential ex-

tensions, both in methodology as well as in application to a broader range of problems.

4.2.1 Improvements to x-ray blow-off modeling approach

Potential for improvement exists in our modeling approach. While directly differ-

entiating the BBAY model is a straightforward approach to describing the impulse-

spectrum sensitivity, more sophisticated methods for evaluating the sensitivity in

a computationally feasible manner may exist. For example, variance decomposition

methods [98] and Monte Carlo methods [99] could provide a more accurate evaluation

of the sensitivity with reasonable cost. However, it is not clear that these methods

could use only experimentally-obtained impulse/fluence data as inputs. Furthermore,

our method for fitting the Ef (m) function could be improved by more sophisticated

methods for data-driven modeling, such as modal decomposition [233] and empirical

dynamic modeling [234].

More research is needed to verify the limitations of our model. For example, the

limitations of extending the model to a wider range of materials and sources, as well as

higher radiation fluences, have not been studied. The BBAY model has been applied

to describe blow-off caused by energy deposition from electron beams as well [119].

The case of laser-driven x-ray blow-off is currently being studied [235] experimentally.

It would be interesting to apply our modeling approach to systems driven by particle
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and laser beams. This would likely require using a different approach for evaluating

the deposited energy E(m), but theoretically the BBAY model should be applicable

to these systems, as the fundamental assumptions are valid in these cases as well.

4.2.2 Improvements to multi-material radiation hydrodynamics approach

A major limitation of our approach to computing radiation hydrodynamics with

the diffusion assumption is the time-stepping restrictions imposed by the nonlinear

diffusion term and the potentially stiff source term. Typically, these difficulties can

be overcome by implicit time-stepping methods, which often offer stability properties

that are independent of the time-step size [214]. However, this approach is at odds

with our approach for multi-material flows (which necessarily includes a specially-

designed limiting scheme), which would be quite difficult to adapt to implicit time-

stepping. The issue of these contrasting requirements has been addressed by previous

authors [79, 81, 191] by the use of implicit time-stepping for the diffusive and/or

source terms, while the advective terms are treated explicitly. However, these implicit-

explicit approaches are more difficult to apply to high-order methods. A promising

solution is offered by diagonally-implicit Runge-Kutta time-stepping methods, which

have been applied to DG [236] as well as to the radiation transport equation [237].

However, as of this writing, no author has applied these methods to the full radiation-

hydrodynamics equations.

Another area for potential improvement in this work is in the model equations

themselves. While we have proposed an extension to multigroup radiation diffusion,

the assumption of radiation diffusion in general severely limits the types of problems

that can be addressed. For example, radiation diffusion cannot follow shadows, a

limitation that in some cases can result in net forces in the wrong direction [73].

While other methods for radiation transport, such as variable Eddington tensor [74],

discrete ordinates [75] and Monte Carlo [76] methods, are more expensive, they may
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be worthwhile in circumventing these issues.

The numerical method developed in this thesis offers several key advantages that

are essential for direct numerical simulation of turbulent mixing in radiation hydro-

dynamics flows. Therefore, this scheme could be applied to study several interesting

problems of importance to HED physics that may develop into turbulent flows, in-

cluding the phenomenon of reshock in the Richtmeyer-Meshkov instability [168], the

shock-driven Kelvin-Helmholtz instability [166], and even hydrodynamic instabilities

in capsule implosions [28]. Any one of these problems could also be used as a frame-

work for a systematic comparison to methods based on interface tracking, which may

provide evidence supporting the further development of one of these approaches.

117



APPENDICES

118



APPENDIX A

Derivation of Radiation Hydrodynamics Equations

Here we derive the equations of radiation hydrodynamics as they are used through-

out the present dissertation. We follow the derivations in [25, 191, 238].

A.1 Description of radiative transfer

In this derivation, we employ the particle description for electromagnetic radia-

tion. While this description does not allow for a useful explanation of certain wave

phenomena such as diffraction and dispersion, we are concerned chiefly with energy

and momentum exchange between radiation and material particles. For these con-

siderations, the particle description is most useful, and it is widely used in describing

systems at densities typical of HED applications. The derivation detailed here is

consistent among many sources in the literature [63, 91, 210, 239].

Photons carry energy and momentum with them, despite being massless. They

may exert pressure upon surfaces, as well as exchange energy with other particles

through a variety of mechanisms, such as photoabsorption and inelastic scattering.

We assume that photons, between interactions with matter, travel at the speed of

light c in the direction given by the unit vector n. Each photon carries with it energy
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e = hν, where h is Planck’s constant and ν is the photon’s frequency, as well as

momentum p = e/c. However, we do not bother ourselves with a photon-by-photon

description of radiative transport here, as this approach requires solution techniques

that are very computationally expensive. In order to obtain a model that is tractable

for computational solution, we rely instead upon distribution functions.

A.1.1 Specific intensity and radiative transfer equation

A distribution function often used to describe a radiation field is the specific

intensity I(x, t; n, ν). It can be defined in terms of the energy crossing a differential

element of surface ds into the solid angle element dω, in the frequency element dν,

in time dt,

δEs = I(x, t; n, ν)n · dsdωdνdt. (A.1)

As such, this quantity has dimensions of energy per unit solid angle per unit time per

unit area per unit frequency. We note that the differential element of solid angle, dω,

can be written in terms of spherical coordinates as dω = sin(θ)dθdφ, where φ is the

azimuthal spherical angle and θ is the polar angle. The integral over all solid angles

is written here as
∮

4π
dω = 4π. The specific intensity is governed by the radiative

transfer equation:

1

c

∂I

∂t
+ n · ∇I = η − χI. (A.2)

in which the right-hand side describes interaction with matter through thermal ab-

sorption, thermal emission, and scattering. This equation can also be derived from

quantum electrodynamics [240]. The emissivity η(x, t; n, ν) represents the addition

of radiative energy to the radiation field due to the scattering and thermal emission

of photons. The extinction coefficient, χ(x, t; n, ν) governs the removal of radiative

energy from the radiation field from scattering and thermal absorption of photons.
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A.1.2 Moments of the radiative transfer equation

We define moments of the specific intensity with respect to the photon propagation

direction n. The zeroth moment is the spectral radiation energy density,

Eν(x, t; ν) =
1

c

∮
4π

I(x, t; n, ν)dω. (A.3)

The first moment is the spectral radiation flux,

Fν(x, t; ν) =

∮
4π

I(x, t; n, ν)ndω, (A.4)

and the second moment is the spectral radiation pressure tensor,

Pν(x, t; ν) =
1

c

∮
4π

I(x, t; n, ν)nndω. (A.5)

We use the subscript ν to indicate that a quantity has spectral dependence. Such de-

pendence can be removed by integration over frequency, as in calculating the radiation

energy density, ER(x, t) =
∫∞

0
Eν(x, t; ν)dν. Taking the zeroth moment of Equation

(A.2), we obtain an equation governing the spectral radiation energy density,

∂Eν
∂t

+∇ · Fν =

∮
4π

(η − χI)dω. (A.6)

Integrating over frequency, we obtain a statement of energy balance for the radiation

field,

∂ER
∂t

+∇ · FR =

∞∫
0

∮
4π

(η − χI)dωdν, (A.7)

where the two terms in the integral on the right-hand side account for addition and

removal of radiation energy, respectively, via interaction with matter. We denote the
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energy source term, the right-hand side of Equation (A.7), as

SE =

∞∫
0

∮
4π

[η(x, t; n, ν)− χ(x, t; n, ν)I(x, t; n, ν)] dωdν. (A.8)

Taking the first moment of Equation (A.2), we obtain

1

c2

∂Fν

∂t
+∇ ·Pν =

1

c

∮
4π

(η − χI)ndω. (A.9)

Integrating over frequency, we obtain a law governing the flux of the radiation field,

1

c2

∂FR

∂t
+∇ ·PR =

1

c

∞∫
0

∮
4π

(η − χI)ndωdν. (A.10)

We denote the flux source term, the right-hand side of Equation (A.10), as

SF =

∞∫
0

∮
4π

[η(x, t; n, ν)− χ(x, t; n, ν)I(x, t; n, ν)] ndωdν. (A.11)

We see from the system formed by Equations (A.7) and (A.10) that in taking succes-

sive moments of the radiative transfer equation, we continue to introduce still higher

moment quantities of the specific intensity, so in general we cannot obtain a closed

system of equations using this process alone. This closure problem will be discussed

further in Section A.4.1.

A.2 Radiation-material interaction terms

The source terms given by Equations (A.8) and (A.11) encode interaction between

the radiation field and intervening material. In general, these terms include effects

from thermal absorption and emission as well as scattering. Thermal processes couple

radiation quantities to the local state of the material, as the absorption/emission of
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photons causes transitions in electron energy states. In contrast, scattering is gener-

ally non-local as scattered photons can travel through many mean free paths. This

non-locality presents a great difficulty for computation. Scattering is an important

effect in diffuse gases, and as the density of the intervening material increases, the

absorption opacity becomes far larger than the scattering opacity for the photon fre-

quencies that contain a majority of the energy in typical HED sources (less than 5

keV). Therefore, in the dense systems of interest in HED sciences scattering can gen-

erally be neglected. Additionally, when measured at the laboratory-frame frequency

ν, these terms are complicated by the effects of aberration and Doppler shift. For the

purpose of yielding tractable models for radiation hydrodynamics, in this section we

address both of these issues to simplify the evaluation of these material-interaction

terms.

A.2.1 Thermal absorption and emission

In general, the extinction coefficient χ(x, t; n, ν) is calculated by the sum χ =∑
i niσi, where ni is the number density of particles of type i which absorb or scatter

photons of frequency ν with a cross-section σi(ν). Neglecting scattering, we replace

the extinction coefficient with the thermal absorption coefficient κaν(x, t; n, ν). The

thermal absorption coefficient is a material parameter that can be evaluated from

atomic kinetics, given the state of the material. A quantity used in dimensional

analysis of radiation hydrodynamics systems is the mean free path λν = 1/κaν . This

quantity scales with the mean distance a photon travels before being absorbed by

intervening material.

Additionally, we replace the emissivity with the thermal emissivity ηtν(xi, t;nj, ν).

If the system is in strict thermodynamic equilibrium, in which the material emits and

absorbs radiation as a blackbody, the Kirchhoff-Planck relation allows us to write the
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thermal emissivity in terms of the thermal absorption coefficient:

ηtν = κaνBν(ν, T ). (A.12)

Where Bν is the spectral energy density of a blackbody, which depends upon the

temperature of the material T ,

Bν(ν, T ) =
2hν3

c2

1

e
hν
kBT − 1

. (A.13)

Here, kB is the Boltzmann constant. Integrating Equation (A.12) over frequency,

ηt = κaB(T ) = κaσRT
4. (A.14)

Where σR is the Stefan-Boltzmann constant, and κa is the mean thermal absorp-

tion coefficient. In general, we extend this relationship from strict thermodynamic

equilibrium to local thermodynamic equilibrium (LTE), where gradients of material

quantities (density, temperature, pressure) occur on length-scales much larger than

the photon mean free path λν . This is discussed in greater detail in Section A.4.1.

A.3 Co-moving equations

Due to the effects of relativistic aberration and Doppler shift, the frequency and

directional dependence of the material interaction terms — and consequently the

unknown radiation quantities (ER,FR,PR) — are complicated when frequency is

measured in the laboratory frame. These effects include a dependence of both fre-

quency and direction upon the velocity of the background material u. However, if

the frequency is measured in the co-moving frame of the material, denoted as ν0,

the material interaction terms are isotropic. So, we transform Equations (A.7) and

(A.10) to be evaluated at ν0. In this section, we drop the arguments x, t from all
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quantities for convenience.

We could proceed by applying the Lorentz transformation to all quantities, but it

is conceptually simpler to consider Lorentz invariant quantities. We do not rigorously

justify each of these steps, and direct the reader to Mihalas and Mihalas [25] for a

more detailed treatment. One Lorentz invariant is the number of photons entering a

volume dV into the solid angle dω and frequency interval dν in time dt,

N =
η(n, ν)dωdνdV dt

hν
. (A.15)

The quantity νdνdω can be shown to be Lorentz invariant as well. Using these two

invariants together, we obtain

η(n, ν) =

(
ν

ν0

)2

η0(ν0). (A.16)

Where the emissivity in the co-moving frame, η0, is isotropic. Similarly for the ex-

tinction coefficient, the number of photons disappearing is invariant,

N =
χ(n, ν)I(n, ν)dωdνdV dt

hν
. (A.17)

The quantity I/ν3 is Lorentz invariant as well. This yields

χ(n, ν) =

(
ν0

ν

)
χ0(ν0). (A.18)

We evaluate η(n, ν) and χ(n, ν) at the Doppler-shifted co-moving frequency, correct

to O(u/c):

ν0 = ν

(
1− n · u

c

)
. (A.19)

Then, using Equations (A.16) and (A.18) and Taylor expanding in frequency up to
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O(u/c), we can write,

χ(n, ν) = χ0(ν)−
(

n · u
c

)[
χ0(ν) + ν

∂χ0

∂ν

]
, (A.20a)

η(n, ν) = η0(ν) +

(
n · u
c

)[
2η0(ν)− ν ∂η0

∂ν

]
. (A.20b)

Inserting these expansions into Equations (A.8) and (A.11), we have

SE =

∞∫
0

[4πη0(ν)− cχ0(ν)Eν ] dν +
u

c
·
∞∫

0

[
χ0(ν) + ν

∂χ0

∂ν

]
Fνdν, (A.21a)

SF = −1

c

∞∫
0

χ0(ν)Fνdν +
4πu

c2

∞∫
0

η0(ν)dν +
u

c
·
∞∫

0

[
χ0(ν) + ν

∂χ0

∂ν

]
PRdν. (A.21b)

We note that ν is still measured in the Eulerian frame, so these source terms are said

to be in the mixed form. Using the definitions in Equations (A.3) - (A.5), along with

the Lorentz invariance of I/ν3 and Equation (A.19), and retaining only terms up to

order O(u/c),

ER = ER,0 +
2

c2
u · Fν,0, (A.22a)

FR = FR,0 + ER,0u + u ·PR,0, (A.22b)

PR = PR,0 +
1

c2
(uFR,0 + FR,0u). (A.22c)

Similarly, we transform the source terms up to O(u/c),

SE = SE,0 + u · SF,0, (A.23a)

SF = SF,0 +
u

c
SE,0, (A.23b)
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where the source terms in the co-moving frame are

SE,0 =

∞∫
0

[4πη0(ν0)− cχ0(ν0)Eν,0(ν0)] dν0, (A.24a)

SF,0 = −1

c

∞∫
0

χ0(ν0)Fν,0(ν0)dν0. (A.24b)

Inserting these into Equations (A.7) and (A.10), we have

∂

∂t

[
ER,0 +

2

c2
u · Fν,0

]
+∇ ·

[
FR,0 + ER,0u + u ·PR,0

]
= SE,0 + u · SF,0, (A.25a)

1

c2

∂

∂t

[
FR,0 + ER,0u + u ·PR,0

]
+∇ ·

[
PR,0 +

1

c2
(uFR,0 + FR,0u)

]
= SF,0 +

u

c
SE,0.

(A.25b)

Retaining leading-order terms in the limit u/c� 1, Equations (A.25) become

∂ER,0
∂t

+∇ ·
[
FR,0 + ER,0u + u ·PR,0

]
= SE,0 + u · SF,0, (A.26a)

∇ ·PR,0 = SF,0. (A.26b)

A.4 Radiation hydrodynamics equations

For a radiation hydrodynamics system that is not in strict thermal equilibrium,

the total material energy density E and the radiation energy density ER are both

unknowns. So, in general, we solve two energy equations: one for the energy of the

material and one for the energy of the radiation field. These energy equations are

coupled together by the radiation-material interaction terms, and we must ensure that

energy transferred to/from the radiation field via these terms is conserved. Thus, we

modify the compressible Euler equations by the addition of the co-moving momentum
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and energy source leading terms:

∂

∂t
ρu +∇ ·

[
ρuu + pI

]
= −SF,0, (A.27a)

∂

∂t
E +∇ · u(E + p) = −SE,0 − u · SF,0. (A.27b)

We augment this system with Equation (A.26a), and simplify by inserting Equation

(A.26b):

∂

∂t
ρ+∇ · ρu = 0, (A.28a)

∂

∂t
ρu +∇ ·

[
ρuu + pI + PR,0

]
= 0, (A.28b)

∂

∂t
E +∇ · u(E + p) + u · ∇ ·PR,0 = −SE,0, (A.28c)

∂

∂t
ER,0 +∇ ·

[
FR,0 + ER,0u + u ·PR,0

]
− u · ∇ ·PR,0 = SE,0. (A.28d)

These are the basic equations behind our study of radiation hydrodynamics. So far,

we have made the assumption that the system is non-relativistic, i.e. u/c � 1. We

have also assumed a form of SE,0 that neglects the effect of scattering. Keeping in

mind that all radiation equations are evaluated at the co-moving frequency ν0, we

drop the 0 subscript from this point onward.

A.4.1 The diffusion assumption

In a gas at standard conditions, we can always specify the closure relation be-

tween the pressure p and internal energy e because the particle mean free path is

much smaller than the characteristic length-scale of the system. In general, radia-

tive transfer does not share this attribute with gas dynamics. Only in dense systems

far from boundaries, where the photon mean free path λν is much smaller than the

characteristic length scale can we impose an analytical closure relationship. Similar

to the process followed in fluid mechanics, we seek to relate the tensor Pν to Eν . We
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can define a mean radiation pressure: P̄ν = trace(Pν) = 1
3
Eν , where the last equality

can be shown simply because n is a unit vector. Furthermore, assuming the photon

distribution function is isotropic, ie. Pν = pνI, we obtain pν = 1
3
Eν .

Another consequence of this assumption is in determining the form of FR. Equa-

tion (A.26b) states:

∇ ·PR = −1

c

∞∫
0

χ(ν)Fν(ν)dν (A.29)

As we have assumed the radiation field is isotropic, we can write:

1

3
∇ER = −1

c

∞∫
0

χ(ν)Fν(ν)dν (A.30)

Integrating the right-hand side and replacing the extinction coefficient with a mean

value χ̄(ν),

FR = − c

3χ̄
∇ER (A.31)

Following the assumption of isotropy, radiation transport follows a diffusive flux law

similar to Fourier heat conduction in a fluid. One key difference is that, in general,

χ̄ depends on the state of the material, so in general radiation diffusion is non-linear

with a variable diffusion coefficient.

We may assess the validity of the diffusion coefficient by considering relative time-

scales between motion of the fluid and the diffusion of photons. Defining a charac-

teristic system length L and fluid speed u, we write the time scale of hydrodynamic

motion as τf = L/u. We write the time-scale of diffusion as τd = L2/DR, where DR

is the diffusion coefficient. Noting from the above result that DR ∼ cλν , we define

the time scale related to radiation diffusion as,

τd =
L2

cλν
. (A.32)
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The diffusion assumption is valid in the case that hydrodynamic motion transports en-

ergy much slower than radiation diffusion, (τf � τd). This is the equilibrium diffusion

regime, where the radiation field equilibrates to the fluid conditions faster than the

fluid can propagate disturbances. Thus, the radiation field is always a quantity that

is known, that instantaneously equilibrates with the fluid. The more generally ap-

plicable regime is that of non-equilibrium diffusion, where the flow transports energy

faster than radiation diffusion (τf ≤ τd). The non-equilibrium diffusion regime occurs

when the fluid is sufficiently opaque to trap and advect radiation energy along with

it, while the diffusion process transports radiative energy too slowly to redistribute

the radiation energy into equilibrium. We consider these regimes when describing

models of radiative hydrodynamics systems.

An assumption that is often made alongside the diffusion assumption is that of

LTE, which assumes that spatial gradients in the material are much larger than

the photon mean free path. These two assumptions are not necessarily equivalent,

but both tend to apply in sufficiently dense systems. This condition is required for

the energies of the material and radiation field to be simultaneously defined at a

point (x, t) in such a way that they tend to equilibrate. This equilibration occurs

through radiation diffusion, as well as through the energy source term that accounts

for emission and absorption in Equation (A.24a). This is in contrast to the assumption

of strict thermodynamic equilibrium, in which the radiation field is a blackbody and

is given by the Planck function, Equation (A.13). The assumption of LTE and of

isotropy (and radiation diffusion) are often applied together, as they yield a tractable

mathematical description and both are valid for sufficiently dense systems far from

boundaries.
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A.4.2 Multigroup non-equilibrium diffusion

Here we describe the most general model for radiation hydrodynamics discussed

here, using a multigroup approach to discretize the radiation quantities with respect to

the frequency variable. Though the analysis in Section A.3 was applied to frequency-

integrated quantities, we can apply it similarly to the quantities integrated over fre-

quency groups. We break the frequency spectrum into G number of radiation groups

where frequency-dependent quantities are assumed piecewise constant in each group.

The g-th group spans the frequencies ν ∈ [νg, νg+1]. The g-th radiation energy density

is defined Eg =
∫ νg+1

νg
Eνdν. Applying the LTE assumption to each group, we evaluate

the source term in Equation (A.24a) using Equation (A.14) to obtain:

SE,g = c

νg+1∫
νg

κaν

[
4π

c
Bν(ν, T )− Eν

]
dν = cκP,g [Bg − Eg] , (A.33)

where the group-wise blackbody energy density is:

Bg(T ) =

νg+1∫
νg

4π

c
Bν(ν, T )dν, (A.34)

and the Planck mean opacity for group g is defined as:

κP,g =

∫ νg+1

νg
κaν(ν)Bν(ν, T )dν

Bg(T )
. (A.35)

Applying the diffusion assumption result in Equation (A.31), integrated over each

group rather than the entire spectrum, we obtain,

FR,g = − c

3κR,g
∇Eg, (A.36)
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where the Rosseland mean opacity for group g is defined by:

κR,g =
∂Bg(T )

∂T∫ νg+1

νg
1

κaν(ν)
∂Bν(ν,T )

∂T
dν
. (A.37)

We also have the assumption of isotropy for each group,

Pg = pgI =
1

3
EgI. (A.38)

Thus, evaluating (A.28d) group-wise results in G number of radiation energy equa-

tions:

∂

∂t
Eg+∇·[u(Eg + pg)]−

1

3
(∇·u)

 νg+1∫
νg

∂

∂ν
νEνdν

−u·∇pg = ∇· c

3κR,g
∇Eg+cκP,g [Bg − Eg] .

(A.39)

And the material energy equation:

∂

∂t
E +∇ · [u(E + p)] + u · ∇pR = −

∑
g

cκP,g [Bg − Eg] , (A.40)

where ER =
∑

g Eg and pR = 1
3
ER.

In practice, for each group g the Rosseland and Planck mean opacities are assumed

to be constant. In general, these quantities, along with the thermal absorption coef-

ficient κaν , may depend on material properties such as mass density and temperature.

We also solve the conservation of mass and momentum equations for the fluid:

∂

∂t
ρ+∇ · ρu = 0, (A.41a)

∂

∂t
ρu +∇ ·

[
ρuu + (p+ pR)I

]
= 0, (A.41b)

(A.41c)

This is the most detailed model for radiation hydrodynamics that will be discussed
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in this thesis, as it addresses the frequency dependence of the unknown radiation

quantities.

A.4.3 Gray non-equilibrium diffusion

Now, we assume that radiation is “gray”, or monoenergetic. This assumption is

often applied when the radiation energy is concentrated in a portion of the spectrum

over which the optical properties of the material don’t vary significantly. Effectively,

we ignore spectral variation of the radiation and material-interaction quantities, and

solve for the total radiation energy density, ER =
∑

g Eg. As in the multigroup case,

we employ the diffusion and LTE assumptions, integrating over the entire spectrum,

so that Equations (A.14), (A.36) and (A.38) result in:

∂

∂t
ρ+∇ · ρu = 0, (A.42a)

∂

∂t
ρu +∇ ·

[
ρuu + (p+ pR)I

]
= 0, (A.42b)

∂

∂t
E +∇ · [u(E + p)] + u · ∇pR = −cκP

[
aRT

4 − ER
]
, (A.42c)

∂

∂t
ER +∇ · [u(ER + pR)]− u · ∇pR = ∇ · c

3κR
∇ER + cκP

[
aRT

4 − ER
]
. (A.42d)

Note the presence of non-conservative terms as well as source terms in each energy

equation.

A.4.4 Gray equilibrium diffusion

Now, we insist that the radiation field and material are in strict thermodynamic

equilibrium. The source term in Equation (A.24a) becomes, making use of Equation

(A.14):

SE = 4πκB(T )− cκER. (A.43)
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If we assume also that the radiation and the material are in strict thermodynamic

equilibrium with one another, SE must be zero and the radiation energy density ER

is not an unknown and can be specified with the temperature alone:

ER =
4σB
c
T 4 = aRT

4. (A.44)

As solving an equation for the radiation energy density would amount to solving more

equations that unknowns, we solve the system (A.28) with a single energy equation

comprised of the sum of (A.28c) and (A.26a):

∂

∂t
ρ+∇ · ρu = 0, (A.45a)

∂

∂t
ρu +∇ ·

[
ρuu + (p+ pR)I

]
= 0, (A.45b)

∂

∂t
(E + ER) +∇ · [u(E + ER + p+ pR)] = ∇ · c

3κR
∇ER. (A.45c)
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APPENDIX B

Derivation of Analytical Impulse Models

This appendix details the derivation of the analytical impulse models utilized in

this dissertation. We follow the derivations in Reaugh et al. [119], the results of which

agree with other sources [120, 135]. In each case, we assume that energetic particles

deposit a specific energy profile E(m), in an initially uniform 1-D slab of material.

Each model involves the final specific energy distribution Ef (m), which cannot be

known a-priori, and instead must be modeled or obtained using data.

B.1 Whitener model

The Whitener model [135] is derived by assuming that, for each differential element

of material, the energy lost during the blow-off process is entirely converted into

kinetic energy:

E(m)− Ef (m) = ∆E(m) =
1

2
u2, (B.1)

where u is the material velocity. We note that this assumption implies that each

differential layer of the material is unimpeded by other layers from expanding from

the bulk material. Using the definition of the impulse, I =
∫ mB

0
udm, we obtain the
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expression

I =
√

2

mB∫
0

[
E(m)− Ef (m)

]1/2
dm. (B.2)

Here, mB is the blow-off interface Lagrangian coordinate, equal to the amount of

mass blown off of the slab. This model tends to significantly overestimate impulse,

and does not take into account the interaction of successive layers of material, which

exert pressure upon one another.

B.2 BBAY model

Unlike the Whitener model, the Bethe, Bade, Averell, and Yos (BBAY) model

is a closed-form solution of the equations of motion. We write the radiation hydro-

dynamics equations for a single fluid in 1-D Lagrangian coordinates to describe the

blow-off material:

∂x

∂m
= ν (B.3a)

Du

Dt
+
∂p

∂m
= 0 (B.3b)

De

Dt
+ p

Dν

Dt
= sR (B.3c)

where x is the Eulerian coordinate, ν = 1/ρ is the specific volume, e is the material

specific internal energy, p is the pressure, and sR(m, t) is the source term due to

absorption per unit mass. Here we use the Lagrangian material derivative:

D

Dt
=

∂

∂t
+

dx

dt

∂

∂x
(B.4)

where we note that

dx

dt
= u (B.5)
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The form of (B.3) neglects terms present in other treatments of radiation hydro-

dynamics, such as those presented in Appendix A. We also do not solve an energy

equation for the radiation field. This modeling approach is justified because in this

analysis, we assume that the duration over which radiation is heating the material,

the drive time τD, is small compared to the time scales associated with the hydro-

dynamic motion. Additionally, we assume that the heated material does not heat to

sufficiently high temperatures to emit substantial radiation itself. Therefore, there

is no two-way coupling between the fluid and radiation field, so we use equations

that govern the motion of the blow-off fluid, with a source term added to (B.3c) to

represent heating from radiation. This source term is nonzero during the drive time

only. To obtain an analytical solution to (B.3), we assume that the energy deposition

occurs at a constant rate over the drive time τD,

sR(m, t) =


(

1
τD

)
max { E(m)− Ef (m), 0 } , 0 ≤ t ≤ τD,

0, τD < t.

(B.6)

We note that, as stated previously, τD is (assumed) small over the hydrodynamic

times of interest. In fact, the current analysis seeks to find a closed-form solution to

(B.3) for times t > τD . Here E(m) is the profile of energy per unit mass deposited

within the material. We formally define the blow-off interface coordinate mB as:

E(mB) = Ef (mB). (B.7)

We define a new dependent variable Z as:

Z =

m∫
0

x(m̃, t)dm̃. (B.8)
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In terms of this new variable, we rewrite (B.3) and (B.5) as:

x = Z ′, (B.9a)

ν = Z ′′, (B.9b)

u = 9Z ′, (B.9c)

P = − :Z, (B.9d)

9e = sR + :Z 9Z ′′. (B.9e)

Here we denote partial derivatives with respect to the Lagrangian variable m by Z ′,

and the total derivative D/Dt by 9Z. We assume that the blow-off material obeys the

ideal gas law,

e = pν/(γ − 1). (B.10)

Substituting this equation of state, (B.9e) becomes:

;ZZ ′′ + γ :Z 9Z ′′ = (1− γ)sR. (B.11)

We assume that Z is separable,

Z(m, t) = zm(m)zt(t), (B.12)

which yields, after inserting into (B.11),

[
;ztzt + γ :zt 9zt

]
zmz

′′
m = (1− γ)sR. (B.13)
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Since sR is a function of m only, we can write separate equations that depend on t

and m,

;ztzt + γ :zt 9zt =


c1, 0 ≤ t ≤ τD,

0, τD ≤ t,

(B.14a)

zmz
′′
m = (1− γ)

sR
c1

=
(1− γ)

c1τD
max { E(m)− Ef (m), 0 } , (B.14b)

where c1 is a constant of integration. Inserting the general solution zt = tn into

(B.14a), valid for the interval 0 ≤ t ≤ τD, we find that n = 3
2

and c1 = 3
8
(3γ− 1). For

τD ≤ t, we can write (B.14a) as,

z
(1−γ)
t

d

dt

[
zγt :zt

]
= 0, (B.15)

which implies,

zγt :zt = c2, (B.16)

where c2 is a constant. We integrate (B.16) and enforce continuity at t = τD with the

conditions zt(τD) = τ
3/2
D and 9zt(τD) = 3

2
τ

1/2
D to obtain

9zt =

[
3τD
2β
− 3τ

(3γ−1)/2
D

2(γ − 1)
z

(1−γ)
t

]1/2

, (B.17)

where β =
[

3
2

+ 1
γ−1

]−1

= 3(γ−1)
4c1

. The equation (B.14b) becomes:

zmz
′′
m = −4

3

β

τD
max { E(m)− Ef (m), 0 } , (B.18)
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valid in the region 0 ≤ m ≤ mB. We enforce boundary conditions by requiring that

the left boundary is a free surface, and the blow-off interface is fixed

p(0, t) = −zm(0):zt = 0, (B.19a)

u(mB, t) = z′m(mB) 9zt = 0. (B.19b)

Here we evaluate the impulse as:

I =

∞∫
0

p(mB, t)dt = [ 9zt(0)− 9zt(∞)] zm(mB). (B.20)

Because zm(m) 9zt(0) = 9Z(m, 0) =
∫ m

0
u(m̃, 0)dm̃ and the initial velocity is zero,

u(m, 0) = 0, we obtain that 9zt(0) = 0. From (B.17), we obtain,

9zt(∞) =

√
3τD
2β

, (B.21)

which yields

I = −
√

3τD
2β

zm(mB). (B.22)

We further define the function:

F (m) =
4

3

β

τD
max { E(m)− Ef (m), 0 } . (B.23)

Rearranging (B.18), integrating, and employing the boundary condition z′m(mB) = 0

we obtain:

z′m(m) = −
m∫

mB

F (m̃)

zm(m̃)
dm̃. (B.24)
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Integrating once more, and employing the boundary condition zm(0) = 0 gives,

zm(m) =

m∫
0

 mB∫
m∗

F (m̃)

zm(m̃)
dm̃

 dm∗. (B.25)

Exchanging the order of integration, we have

zm(mB) =

mB∫
0

m̃F (m̃)

zm(m̃)
dm̃. (B.26)

One could solve (B.30) numerically, but the original BBAY derivation makes an ap-

proximation. We assume that the average of zm over the interval 0 ≤ m ≤ mB

is zm(mB)/α2, where α is a constant to be determined. Replacing zm within the

integrand with this average value yields

[zm(mB)]2 = α2

mB∫
0

m̃F (m̃)dm̃. (B.27)

Inserting this expression into (B.22) yields,

I = α
[
2

mB∫
0

m [E(m)− Ef (m)] dm
]1/2

. (B.28)

Thus we obtain the BBAY model as utilized throughout this work. We note that

one can confirm that the expression stands to reason by the following consideration.

If we consider a mass m within the blow-off from the slab, being pushed by the

energy contained in an incremental mass ∆m behind it, the final kinetic energy will

be 1
2
mu2 = (E − Ef )∆m. Thus, the square of the momentum at a point m is

(mu)2 = 2m(E − Ef )∆m. (B.29)
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Integrating over the blow-off region 0 ≤ m ≤ mB, we obtain the expression

I = α
[
2

mB∫
0

m [E(m)− Ef (m)] dm
]1/2

. (B.30)

Which, with the exception of the constant α, is the same expression obtained in this

derivation.
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APPENDIX C

Extending DG Approach to Multigroup Radiation

Hydrodynamics

This appendix describes the extension of our method to the multigroup radiation

diffusion equations. The form of System (3.1) assumes that the transport of radiation

energy can be adequately described by a single radiation energy density, and its

interaction with the material can be described using a single opacity. However, there

are problems in which the unknown radiation quantities depend strongly on frequency.

Multigroup treatment is necessary in cases where the spectrally dependent radiation

energy density Eν deviates significantly from Planckian. We derived the multigroup

equations in Appendix A. Rather than solving the single transport equation (3.1d),

one solves G equations, each governing the transport of radiation in the g-th frequency

group ν ∈ [νg−1/2, νg+1/2] :

∂

∂t
Eg+

∂

∂xj
uj(Eg+pg)−uj

∂

∂xj
pg−

1

3

∂uj
∂xj

νg+1/2∫
νg−1/2

∂(νEν)

∂ν
dν− ∂

∂xj
Dg

∂

∂xj
Eg = Sg. (C.1)

Here pg = 1
3
Eg. Note that ER =

∫∞
0
Eνdν, and Eg =

∫ νg+1/2

νg−1/2
Eνdν. The group-wise
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radiation diffusion coefficient is

Dg =
c

3κR,g
. (C.2)

And the group-wise source term is

Sg = cκP,g(Bg − Eg). (C.3)

Now, the source term in the material energy equation 3.1c will be replaced by

SR =
∑
g

cκP,g(Bg − Eg). (C.4)

Comparison with (3.1d) reveals that the only term in (C.1) that needs additional

numerical treatment is the integral term. We follow the approach of Ref. [79] and

consider logarithmically spaced frequency bins, i.e., ln νg+1/2− ln νg−1/2 = ∆(ln ν) is

constant for all groups. Then, we have

Eg =

νg+1/2∫
νg−1/2

Eνdν =

ln νg+1/2∫
ln νg−1/2

νEνd(ln ν) ≈ νEν∆(ln ν). (C.5)

This approximation allows us to approximate the integral in (C.1) as,

νg+1/2∫
νg−1/2

∂(νEν)

∂ν
dν ≈

Eg+1/2 − Eg−1/2

∆(ln ν)
. (C.6)

We interpolate using adjacent Eg values for the values at g±1/2. Once we have made

this simplification, we treat the integral term in Equation (C.1) as a non-conservative

advection term, and discretize it as described in Section 3.5.1.
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APPENDIX D

Properties of DG Discretization Operators and

HR Limiting Procedure

D.1 Properties of the DG weak form

In this appendix, we verify properties of the DG discretization operators that

we use in our analysis of pressure and temperature errors in Section 3.6.1. In the

following, X and Y are variables and a is a constant. Without loss of generality, we

assume an upwind flux, f∗|xe−1/2
= f e−1|xe−1/2

. We rely on the following properties

governing the discretization operator for the conservative advective flux:
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Dj
f,e(aX + Y ) = (M−1)jke R

k
f,e(aX + Y )

= (M−1)jke

{[
(aX̂m

e + Ŷ m
e )φme φ

k
e |xe+1/2

− (aX̂m
e−1 + Ŷ m

e−1)φme−1φ
k
e |xe−1/2

]
−
∫
Ωe

∂φke
∂x

(aXh + Y h)dx

}

= (M−1)jke

{
a
[
X̂m
e φ

m
e φ

k
e |xe+1/2

− X̂m
e−1φ

m
e−1φ

k
e |xe−1/2

]
− a

∫
Ωe

∂φke
∂x

Xhdx

+
[
Ŷ m
e φ

m
e φ

j
e|xe+1/2

− Ŷ m
e−1φ

m
e−1φ

j
e|xe−1/2

]
−
∫
Ωe

∂φke
∂x

Y hdx

}

= (M−1)jke
[
aRk

f,e(X) +Rk
f,e(Y )

]
= aDk

f,e(X) +Dk
f,e(Y ), (D.1)

Dj
f,e(a) = (M−1)jke

{
a
[
φke
]xe+1/2

xe−1/2
− a

∫
Ωe

∂φke
∂x

dx

}
=

(M−1)jke

{
a
[
φke
]xe+1/2

xe−1/2
− a

[
φke
]xe+1/2

xe−1/2

}
= 0. (D.2)

We also make use of the properties of the non-conservative advection, diffusion, and

source term discretization operators:

Dj
h,e(0) = −(M−1)jke

{[
{φke}(0)

]xe+1/2

xe−1/2
−
∫
Ωe

φke(0)dx

}
= 0, (D.3)

Dj
g,e(0) = −(M−1)jke

{[
φke(0)

]xe+1/2

xe−1/2
−
∫
Ωe

(0)
∂φke
∂x

dx

}
= 0. (D.4)

Dj
s,e(0) = −(M−1)jke

{∫
Ωe

φke(0)dx

}
= 0. (D.5)
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D.2 Properties of HR limiting

We now verify the nonlinear properties of HR limiting mentioned in Section 3.6.2

following the proofs in Ref. [196].

D.2.1 Addition

We consider the sum Q = X + Y , with two different limiting approaches: Q̃ =

X̃ + Y , and
˜̃
Q = X̃ + Ỹ . We consider three adjacent computational cells, e − 1, e,

and e + 1. Without loss of generality, we assume P = 1. In this case, we write the

Taylor polynomial representation of the variables as,

X(x) = X̂0 + X̂1x, Y (x) = Ŷ 0 + Ŷ 1x, (D.6)

before limiting, and

X̃(x) =
˜̂
X0 +

˜̂
X1x, Ỹ (x) =

˜̂
Y 0 +

˜̂
Y 1x, (D.7)

after limiting in each cell. HR limiting with MUSCL reconstruction gives:

˜̂
X1
e =

1

2
minmod

{
X̂0
e − X̂0

e−1, X̂0
e+1 − X̂0

e

}
, (D.8a)

˜̂
Y 1
e =

1

2
minmod

{
Ŷ 0
e − Ŷ 0

e−1, Ŷ 0
e+1 − Ŷ 0

e

}
. (D.8b)

Applying the limiting procedure to the sum of the two variables, we obtain

˜̂
Q1
e =

1

2
minmod

{
Q̂0
e − Q̂0

e−1, Q̂0
e+1 − Q̂0

e

}

=
1

2
minmod

{
(X̂0

e − X̂0
e−1) + (Ŷ 0

e − Ŷ 0
e−1), (X̂0

e+1 − X̂0
e ) + (Ŷ 0

e+1 − Ŷ 0
e )

}
. (D.9)
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Instead, summing the individually limited variables,

˜̂̃
Q1
e =

1

2
minmod

{
X̂0
e − X̂0

e−1, X̂0
e+1 − X̂0

e

}
+

1

2
minmod

{
Ŷ 0
e − Ŷ 0

e−1, Ŷ 0
e+1 − Ŷ 0

e

}
.

(D.10)

Because we have, in general, minmod(x1+y1, x2+y2) 6= minmod(x1, x2)+minmod(y1, y2),

we have that
˜̂
Q1
e 6=

˜̂̃
Q1
e, so X̃ + Y 6= X̃ + Ỹ .

D.2.2 Multiplication

Now, we let Q = XY , and Q̃ = X̃Ỹ in element e. By Equation (3.67), we have

Q̂0 = X̂0Ŷ 0, Q̂1 = X̂0Ŷ 1 + X̂1Ŷ 0, (D.11)

and in the other case,

˜̂
Q0 =

˜̂
X0˜̂Y 0,

˜̂
Q1 =

˜̂
X0˜̂Y 1 +

˜̂
X1˜̂Y 0, (D.12)

We evaluate the element averages of Q and Q̃ over the reference element x ∈ [−1, 1],

1

2

∫
Ωe

Qdx =
1

2
Q̂0 =

1

2
X̂0Ŷ 0 (D.13)

1

2

∫
Ωe

Q̃dx =
1

2
˜̂
Q0 =

1

2
˜̂
X0˜̂Y 0. (D.14)

Comparing the two, we see that in general
∫

Ωe
Qdx 6=

∫
Ωe
Q̃dx.
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M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk,

165



N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feld-
bauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pud-
lik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera,
T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-
Baeza, “SciPy 1.0: fundamental algorithms for scientific computing in Python,”
Nature Methods, vol. 17, no. 3, pp. 261–272, 2020.

[153] A. Eiger, K. Sikorski, and F. Stenger, “A Bisection Method for Systems of
Nonlinear Equations,” ACM Trans. Math. Softw., vol. 10, no. 4, p. 367–377,
1984.

[154] L. N. Trefethen and D. Bau III, Numerical linear algebra. Siam, 1997.

[155] J. J. Valencia and P. N. Quested, “Thermophysical Properties,” in Metals Pro-
cess Simulation, ASM International, 11 2010.

[156] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team.
NIST Atomic Spectra Database (ver. 5.9), [Online]. Available:
https://physics.nist.gov/asd [2022, June 12]. National Institute of
Standards and Technology, Gaithersburg, MD., 2021.

[157] Y. Zhou, T. T. Clark, D. S. Clark, S. Gail Glendinning, M. Aaron Skinner, C. M.
Huntington, O. A. Hurricane, A. M. Dimits, and B. A. Remington, “Turbulent
mixing and transition criteria of flows induced by hydrodynamic instabilities,”
Physics of Plasmas, vol. 26, no. 8, p. 080901, 2019.

[158] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker, E. Dendy,
R. Hueckstaedt, K. New, W. R. Oakes, D. Ranta, and R. Stefan, “The RAGE
radiation-hydrodynamic code,” Computational Science & Discovery, vol. 1,
p. 015005, nov 2008.

[159] S. H. Langer, I. Karlin, and M. M. Marinak, “Performance Characteristics of
HYDRA - a Multi-Physics Simulation Code from LLNL,” tech. rep., Lawrence
Livermore National Laboratory, Livermore, CA (United States), 2015.

[160] M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine,
T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of
National Ignition Facility targets,” Physics of Plasmas, vol. 8, no. 5, pp. 2275–
2280, 2001.

[161] D. S. Clark, A. L. Kritcher, J. L. Milovich, J. D. Salmonson, C. R. Weber, S. W.
Haan, B. A. Hammel, D. E. Hinkel, M. M. Marinak, M. V. Patel, and S. M.
Sepke, “Capsule modeling of high foot implosion experiments on the National
Ignition Facility,” Plasma Physics and Controlled Fusion, vol. 59, p. 055006,
mar 2017.

[162] G. Alfonsi, “Reynolds-Averaged Navier–Stokes Equations for Turbulence Mod-
eling,” Applied Mechanics Reviews, vol. 62, 06 2009. 040802.

166



[163] P. Sagaut, Large Eddy Simulation for Incompressible Flows. Springer, 2006.

[164] F. F. Grinstein, L. G. Margolin, and W. J. Rider, eds., Implicit Large Eddy
Simulation: Computing Turbulent Flow Dynamics. Cambridge University Press,
2010.

[165] P. Moin and K. Mahesh, “DIRECT NUMERICAL SIMULATION: A Tool
in Turbulence Research,” Annual Review of Fluid Mechanics, vol. 30, no. 1,
pp. 539–578, 1998.

[166] K. A. Flippo, F. W. Doss, E. C. Merritt, B. G. DeVolder, C. A. Di Stefano, P. A.
Bradley, D. Capelli, T. Cardenas, T. R. Desjardins, F. Fierro, C. M. Huntington,
J. L. Kline, L. Kot, S. Kurien, E. N. Loomis, S. A. MacLaren, T. J. Murphy,
S. R. Nagel, T. S. Perry, R. B. Randolph, A. Rasmus, and D. W. Schmidt, “Late-
time mixing and turbulent behavior in high-energy-density shear experiments
at high atwood numbers,” Physics of Plasmas, vol. 25, no. 5, p. 056315, 2018.

[167] K. Raman, J. Bender, C. Huntington, S. MacLaren, S. Nagel, and S. Prisbrey,
“Evaluating turbulence models at high energy densities,” NNSA Stewardship
Science Today, vol. 2, 3 2020.

[168] J. D. Bender, O. Schilling, K. S. Raman, R. A. Managan, B. J. Olson, S. R.
Copeland, C. L. Ellison, D. J. Erskine, C. M. Huntington, B. E. Morgan, and
et al., “Simulation and flow physics of a shocked and reshocked high-energy-
density mixing layer,” Journal of Fluid Mechanics, vol. 915, p. A84, 2021.
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