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Abstract

Categorical data become increasingly ubiquitous in the modern big data era. In this

dissertation, we propose novel statistical learning and inference methods for large-

scale categorical data, focusing on latent variable models and their applications to

psychometrics. In psychometric assessments, the subjects’ underlying aptitude of-

ten cannot be fully captured by raw scores due to differing item difficulties. Latent

variable models, are popularly used to capture this unobserved proficiency. This

dissertation studies two types of latent variable models with categorical responses.

The first type assumes multiple discrete latent traits, commonly known as cognitive

diagnosis models (CDMs), a special family of discrete latent variable models. The

second type assumes a continuous latent score, commonly known as the item re-

sponse theory (IRT) models. Although both have been widely applied in large-scale

assessments, many challenges still exist for efficient learning and statistical inference.

This dissertation studies four important problems that arise in these contexts.

The first part develops novel algorithms to estimate large latent Q-matrix in

CDMs. Q-matrix plays an important role in CDMs; it specifies the inter-dependence

between items and subjects’ latent attributes. Accurate knowledge of Q-matrix is

critical for cognitive diagnoses, item categorization and assessment design. However,

in practice, many assessments either do not have accurate Q-matrix specification

or even do not provide Q-matrix. Furthermore, existing methods are not scalable

with the size of Q-matrix, despite the prevalence of large Q-matrix. We propose a

penalized likelihood approach, with computational complexity growing linearly with

Q sizes, to learn large Q-matrix from observational data. The estimation consistency

xviii



and the robustness of the proposed method across various CDMs are also established.

The second part develops learning and inference methods for a unidimensional

IRT model, the Rasch model, under the missing data setting. Data missingness is

prevalent in large-scale assessments; examples include SAT and GRE where subjects’

responses are combined from multiple tests administered year-round from a large

item pool. Direct inference to compare subjects’ latent scores under the missing

data setting remains open and challenging in the literature. In this part, we obtain

point estimators for the latent scores and derive their asymptotic distribution under

a flexible missing-entry design in double asymptotic settings. We show our estimator

is statistically efficient and optimal, which is amongst the first results in the binary

matrix completion literature.

The third part concerns measurement biases in IRT models. Novel estimation and

inference procedures are developed for biases brought by measurement non-invariant

items under the differential item functioning (DIF) framework. Existing methods

either require knowing anchor items, i.e. DIF-free items or adopt regularization to

ensure model identifiability where easy inference is not permitted. We propose a

novel minimal L1 condition for simultaneous DIF detection and model identification.

It does not require any knowledge of anchor items and permits easy inference for

both binary and multiple groups settings.

The fourth part considers privacy issues for releasing tabular (categorical) data

to the public. In the differential privacy (DP) framework, we recommend an optimal

mechanism, where data utility is maximized under a privacy constraint. Common

users’ practices, including merging related cells or integrating multiple data sources,

xix



are considered. Valid inference procedures are developed for the associated privacy-

protected data.
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CHAPTER I

Introduction

With categorical data becoming increasingly more ubiquitous nowadays, many

statistical models have been developed to analyze this type of data. In this disser-

tation, we study and propose new statistical estimation and inference methods for

categorical data, ranging from binary to multi-level count data, with a special focus

on latent variable models and their applications to psychometrics. In large-scale psy-

chometric assessments, binary data are often collected where a positive entry denotes

a correct response by a subject to a test item while a zero entry denotes otherwise.

An overall score is often far from sufficient to reflect the subject’s underlying levels

of aptitude. This is because items often have differing levels of difficulty and target

on different skill sets, and furthermore, different groups of subjects are often assessed

based on different sets of test items from a large item pool. Hence, direct compari-

son amongst subjects based on the overall score is likely to yield biased and unfair

ranking results. Subjects’ underlying levels of aptitude/proficiency is unobserved

and can be modelled naturally by latent variables. This links naturally to the latent
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variable models. In this dissertation, we study two types of latent variable models.

Both assume categorical manifest variables and are widely applied to the psychome-

tric assessments. The first type assumes that the subject’s level of proficiency can

be measured by multiple discrete latent attributes across a varying spectrum. While

the second type uses a continuous latent score to capture the subject’s aptitude. The

first type of models is commonly known as the latent class models or the cognitive

diagnosis models (CDMs) in the psychometric literature, a special class of discrete

latent variable models, and are widely applied to educational assessments (Junker

and Sijtsma, 2001; von Davier , 2008; Garćıa et al., 2014), psychiatric diagnosis of

mental disorders (Templin and Henson, 2006; de la Torre et al., 2018), epidemio-

logical and medical measurement studies (Wu et al., 2016). While the second type

of models falls in the category of item response theory (IRT) models. Popular IRT

models include the one-parameter Rasch model (Rasch, 1960), the two-parameter

logistic (2PL) model (Birnbaum, 1968), and three-parameter logistic model (3PL)

(Birnbaum, 1968), amongst many others. In this dissertation, we will study the ex-

isting and propose new statistical estimation and inference methodologies for models

that arise in these contexts.

Chapter II studies large-scale estimation problems in CDMs. The Q-matrix plays

an important role in CDMs. It specifies the inter-dependence structure between the

items and the subjects’ discrete latent attributes. Knowing the Q-matrix accurately

is crucial for valid cognitive diagnoses, item categorization and efficient assessment

design. However, in practice, many existing important assessments do not provide

accurate Q-matrix, not to mention many others do not even specify the Q-matrix.
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Therefore, learning the Q-matrix from observational data is of paramount impor-

tance and has drawn great research attention so far. Various approaches have been

proposed in the literature to estimate the Q-matrix (de la Torre, 2008; DeCarlo,

2012; Liu et al., 2012; Chiu, 2013; Chen et al., 2015; de la Torre and Chiu, 2016;

Xu and Shang , 2018; Chung and Johnson, 2018; Chen et al., 2018; Culpepper , 2019).

However, existing methods suffer from computational hurdles and are not scalable

with the size of the Q-matrix; they either break down or are extremely computation-

ally expensive even when the size of the Q-matrix is moderately large. In practice,

assessments with large Q-matrix is not uncommon, for which the existing estimation

methods are not feasible. Such examples can be found in many applications, such

as educational assessments (Lee et al., 2011; Choi et al., 2015; González and Wiberg ,

2017) and the medical diagnosis of disease etiology (Wu et al., 2016). Therefore,

it remains an open and challenging problem in the literature to learn the large Q-

matrix from observational data. In Chapter II, we propose a penalized likelihood

approach to learn the large Q-matrix from observational data. More specifically,

we identify the similarities between CDMs and the Restricted Boltzmann Machines

(RBMs), and proposed a penalized RBM to learn the Q-matrix. As far as we know,

our method is among the first ones in the literature that is scalable with the size

of the Q-matrix and meanwhile retains high estimation accuracy. Furthermore, we

demonstrate that the proposed method is robust to various types of CDMs and its

estimation consistency of the Q-matrix is also established. The applicability and

effectiveness of the proposed method is illustrated through an application to the

TIMSS mathematics data.
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Chapter III studies both large-scale learning and statistical inference problems

for an IRT model, the Rasch model (Rasch, 1960), under the missing data set-

tings. This links naturally to the model-based binary matrix completion problem.

Data missingness is prevalent in large-scale assessments; examples include SAT and

GRE where responses are collected and combined from multiple tests administered

throughout the year from a large item pool. In assessment analysis, one primary

goal is to compare/rank subjects based on their underlying levels of aptitude. Fur-

ther compounded by differing levels of item difficulty, direct comparison based on

subjects’ overall scores often lead to biased and unfair results. Existing methods,

though provide consistency guarantee for point estimates of the latent scores for

each candidates, they cannot perform uncertainty quantification under this missing

data setting. The latter is important because it helps determine the level of con-

fidence we can have on the ranking/comparison. In Chapter III, we first provide

point estimators for the subjects’ latent scores and establish theoretical guarantee

for their consistency. The remaining parts mainly focus on developing statistical

inference theories under this missing data setting in double asymptotic regime. The

intrinsic difficulty of the problem lies in the fact that the number of parameters

in the model would tend to infinity together with the number of observations, so

traditional inference results cannot be directly applied. The problem is further com-

plicated by the nonlinear logistic link in the Rasch model and various missingness

patterns present in the response matrix. The asymptotic distribution for any linear

form of the proposed estimator for the latent scores is established which permits easy

inference on the ranking/comparison. Moreover, a flexible missing-entry design, that
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does not require a random sampling scheme, is adopted, which is required by most of

the existing literature. The proposed estimator is statistically efficient and optimal,

in the sense that the Cramer-Rao lower bound is achieved asymptotically for the

model parameters. The results developed can be applied to a much wider horizon.

In the real data applications, besides considering the motivating example of linking

educational assessment results, we also demonstrate its applicability to linking the

US senate voting where the senators’ conservativeness scores are ranked even if the

senators had not served any overlapping terms.

Measurement biases are not uncommon in psychometric assessments. In large-

scale assessments, measurement biases can lead to unfair analysis results against

certain gender, races and etc, and is commonly studied under the differential item

functioning (DIF) in the literature. Chapter IV considers statistical estimation and

inference for measurement bias under an IRT model, the 2PL model (Birnbaum,

1968). Measurement bias is brought by measurement non-invariant instruments (e.g.

items) across different groups of subjects (Millsap, 2012). DIF analysis of item

response data aims to detect the measurement non-invariant items (i.e. DIF items) so

that biases can be removed by conditioning on the DIF effects. More precisely, a DIF

item has a response distribution that depends not only on the latent score measured

by the instruments but also the subjects’ group membership. Therefore, detection of

a DIF item involves comparing the item responses of different groups, conditioning

on the latent scores. However, the detection and inference for DIF items remain

open and challenging problems in the literature. The complexity of the problem lies

in that the individuals’ latent scores are not directly observable but are measured
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by the instruments which may contain DIF. In addition, different groups may have

different latent score distributions. Many approaches have been developed for DIF

detection under the IRT framework (Lord , 1980; Thissen, 1988; Raju, 1988, 1990;

Kim et al., 1995; Oort , 1998; Steenkamp and Baumgartner , 1998; Thissen, 2001;

Cai et al., 2011; Woods et al., 2013; Tay et al., 2015, 2016; Cao et al., 2017). The

validity of traditional methods for DIF detection relies heavily on the prior knowledge

about the anchor set, i.e. a set of DIF-free items, which is used to identify the

latent trait distribution. However, in practice, such anchor set is difficult to locate,

and the validity of the analysis results are highly sensitive to the correctness of the

anchor set specification (Kopf et al., 2015b). More recently, regularized estimation

methods (Magis et al., 2015; Tutz and Schauberger , 2015; Huang , 2018; Belzak and

Bauer , 2020; Bauer et al., 2020; Schauberger and Mair , 2020) were proposed to

tackle this problem that do not require knowledge about anchor items. However,

due to additional biases brought by the penalty, no direct/easy inference for DIF

effects are permitted. In Chapter IV, we propose a novel minimal L1 condition for

simultaneous DIF detection and model identification. The proposed method can

both accurately and computationally efficiently identify DIF items without requiring

any prior knowledge on the anchor set. It can also perform statistical inference

easily to quantify the uncertainties on the presence of DIF effects for each individual

item, yielding valid confidence intervals or p-values. The point estimation and valid

inference procedures lead to accurate detection of the DIF items, for which the type-I

errors can be controlled by the inference results. The proposed methods can tackle

both binary group DIF analysis and multiple group DIF analysis, while the latter is
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less frequently considered in the literature but are very common in practice. In the

end, we applied our method to PISA 2018 data to study the DIF effects brought by

the high-dimensional country factors. Our study demonstrates that massive bias can

occur if DIF effects are not taken into account.

Lastly, we consider privacy issues for releasing tabular (categorical) data to the

public. Personal privacy protection becomes increasingly more urgent and impor-

tant as tons of data are collected, transferred and released by different companies,

agencies and institutions every day. Removing personal identities from the record

alone is far from sufficient to protect individuals’ privacy. Data adversaries may still

be able to infer about an individual’s identity, leading to privacy breach. Famous

examples include the recovery of the anonymous location data (Golle and Partridge,

2009), privacy loss in genomic data (Wang et al., 2009a) and the Washington State

health record identification (Sweeney , 2013). Many statistical procedures to process

data have been proposed under the data differential privacy (DP) framework (Dwork

et al., 2006b) to protect individuals’ privacy (Rubin, 1993; Little, 1993; Raghunathan

et al., 2003; Reiter , 2005; Dwork et al., 2010; Drechsler , 2011; Mohammed et al.,

2011; Chaudhuri et al., 2012; Yu et al., 2014; Wang et al., 2015b; Raab et al., 2016;

Friedman et al., 2016). However, most of these procedures are developed to target

the release of summary statistics. But in practice, releasing the whole data set would

be more preferred by the practitioners to perform any analyses desired. This is es-

pecially true for tabular (categorical) data where operations such as merging related

cells or integrating statistical information obtained across different data sources can

be easily performed. On the inference front, dedication to practically conducting
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valid inferences on the altered privacy-protected data sets have only drawn attention

very recently (Sheffet , 2017; Degue and Le Ny , 2018; Ding et al., 2018; Barrientos

et al., 2019; Couch et al., 2019; Ferrando et al., 2022). Furthermore, no existing work

on inference covers the simple but common operations amongst practitioners such as

inter- (combine multiple tables) or intra- (combine interior categories within a table)

table merging on private tabular data. In Chapter V, we recommend an optimal

mechanism under the DP framework, focusing on releasing tabular data, such that

an optimal balance between preserving data utility and satisfying privacy require-

ment can be achieved. Valid inference procedures on the privacy-protected data are

developed, including those after performing inter- and intra- table merging opera-

tions. In the end, the proposed methods are applied to NCEDL’s multi-state study

of pre-kindergarten data set (M. Clifford et al., 2017) to demonstrate its practical

applicability.
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CHAPTER II

Estimation of Large Q-Matrix Using Restricted

Boltzmann Machines

2.1 Introduction

Cognitive Diagnosis Models (CDMs) are popular statistical tools widely applied

to educational assessments and psychological diagnoses, which have been receiving

increasingly more attention in the past two decades. In many modern assessment

situations, examiners are concerned with specific attributes that the subjects possess,

and thus a simple overall score is no longer sufficient to depict the whole picture of the

subjects. As a result, a finer evaluation of the subjects’ attributes is desired. CDMs

are such tools. They model the relationship between the test items and the subjects’

latent skills, which is helpful in assessment design and post-assessment analysis of

the subjects’ latent attribute patterns. CDMs have seen vast applications in multiple

scientific disciplines, including educational assessments (Junker and Sijtsma, 2001;

von Davier , 2008; Garćıa et al., 2014), psychiatric diagnosis of mental disorders
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(Templin and Henson, 2006; de la Torre et al., 2018), epidemiological and medical

measurement studies (Wu et al., 2016).

Many CDMs can be viewed as restricted latent class models that directly model

the response probabilities as functions of discrete latent attributes. A common goal

of cognitive diagnoses is to learn the subjects’ latent attributes, such as personalities

or skills, based on their responses to a combination of specially designed test items.

The Q-matrix plays a critical role in CDMs. It specifies the dependency structure

between the test items and the latent attributes. Knowing the Q-matrix accurately is

important because it is indispensable to cognitive diagnoses. Besides, the Q-matrix

itself can be used to categorize the test items and enable efficient design of future

assessments. However, in reality, many existing assessments do not even have the

Q-matrix explicitly specified. Even the assessment providers specify the Q-matrix

when designing the assessment, the specification may still be inaccurate. In many

cases, one test item may potentially be linked to multiple attributes, but usually

only the most direct and apparent ones are identified in the pre-designed Q-matrix.

Therefore, it is of paramount importance to develop methodologies to efficiently learn

the Q-matrix from the observational responses.

Various approaches have been proposed in the literature to learn the Q-matrix.

Those methods can be generally classified into two categories, validation of the exist-

ing Q-matrix (de la Torre, 2008; DeCarlo, 2012; Chiu, 2013; de la Torre and Chiu,

2016) and direct estimation of the Q-matrix from the observational data (Liu et al.,

2012; Chen et al., 2015; Xu and Shang , 2018; Chung and Johnson, 2018; Chen et al.,

2018; Culpepper , 2019). However, most of the existing estimation methods for the
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whole Q-matrix in general suffer from huge computational cost and are not scalable

with the size of the Q-matrix; they either break down or are extremely computation-

ally expensive even when the Q-matrix is moderately large. The high computational

cost stems from the large number of configurations of the Q-matrix. If we view

each binary element of the Q-matrix as a unique parameter, then the number of

different configurations would grow exponentially with the size of the Q-matrix. In

many applications, the number of latent attributes being tested is large, leading to a

high-dimensional space for all possible latent attribute patterns. It is not uncommon

that the number of potential attribute patterns is large, sometimes even larger than

the sample size, making the estimation even more difficult. Such examples can be

found in many applications, such as educational assessments (Lee et al., 2011; Choi

et al., 2015) and the medical diagnosis of disease etiology (Wu et al., 2016); for in-

stance, Section 2.5 presents a dataset from the Trends in International Mathematics

and Science Study (TIMSS), which has 13 binary latent attributes and 213 = 8192

attribute patterns while only 757 subjects. On the other hand, the number of items

being tested may also be large in many applications. One example is the TIMSS

mathematical test which often have more than 100 test items. Another example is

the ADM admissions test, which is given twice a year and is used as an entrance

test to universities and colleges, contains a total of 200 items (González and Wiberg ,

2017). Therefore, it remains an open and challenging problem to learn the large

Q-matrix from the observational data.

Borrowing the idea from the deep learning literature, we propose to use the

restricted Bolzmann machines (RBMs) to learn the large Q-matrix. An RBM is a

11



generative two-layer neural network that can learn a probability distribution over a

collection of inputs (Smolensky , 1986). Amongst these inputs, some are observed

variables while the others are latent variables that we do not observe, which matches

the restricted latent class CDM setting. The weight matrix W in RBMs determines

the relationship between the observed variables and the latent variables. By learning

this weight matrix W under the framework of RBMs, we show that the structure of

the Q-matrix in CDMs can be inferred accordingly. Although this is similar to the

maximum likelihood learning approach, by tapping on RBMs, fast learning of the

large Q-matrix can be achieved.

Our main contributions are that we identify the relationships between CDMs and

RBMs, and proposed a new way of learning the large Q-matrix efficiently. As far

as we know, our proposed method is among the first ones in the literature that is

scalable with the size of the Q-matrix (with computational cost of O(J×K)) while at

the same time retains high estimation accuracy. For example, comparing to Xu and

Shang (2018) which attains an estimation accuracy of 71.2% in the GDINA setting

with five independent latent attributes using 2000 observations, our method achieves

more than 86% overall accuracy and much faster computational speed. Another

interesting finding is that learning of the Q-matrix by RBMs is robust to different

CDMs, including the DINA, ACDM and GDINA models. We provide theoretical

guarantees under certain conditions and conduct simulation studies to support our

findings. Besides, because of the unsupervised learning nature of RBMs, the tradi-

tional cross-validation (CV) procedure are not directly applicable. As a result, we

also present a new CV procedure specifically to the Q-matrix learning setting.

12



The remaining parts of the chapter are organized as follows. Section 2.2 gives

a review on CDMs and RBMs, and discussion of their relationships and why the

learning of the Q-matrix by RBMs is achieveable across different CDMs. Section

2.3 introduces our proposed estimation method and the new CV procedure. Section

2.4 consists of simulation studies on three typical CDMs. Section 2.5 demonstrates

the performance of our proposed method through the data analysis on a TIMSS

mathematics data set. Section 2.6 concludes with discussions and potential future

directions. All the proofs and additional simulation results can be found in Appendix

A. The materials of this chapter are mainly based on Li et al. (2022a).

2.2 Estimation of Q-matrix Using RBMs

2.2.1 Review of CDMs

Many CDMs have been developed in recent decades, among which the Deter-

ministic Input Noisy output “And” gate model (DINA, Haertel , 1989; Junker and

Sijtsma, 2001) is one of the most popular and simple models and serves as the foun-

dation for many complex CDMs. Other popularly used CDMs include the Noisy

Input Deterministic “And” gate model (NIDA, Junker and Sijtsma, 2001), the Re-

duced Reparametrized Unified Model (R-RUM, Hartz , 2002), the General Diagnostic

Model (GDM, von Davier , 2005), the Deterministic Input Noisy “Or” gate (DINO,

Templin and Henson, 2006), the Log linear CDM (LCDM, Henson et al., 2008),

the Additive CDM (ACDM, de la Torre, 2011) and the Generalized DINA model

(GDINA, de la Torre, 2011).
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Consider a CDM with J items and K latent attributes. There are two types

of variables for each subject: the observed responses for J items Y = (Y1, ..., YJ)

and the latent attribute pattern α = (α1, ..., αK), which are both assumed to be

binary. Yj ∈ {1, 0} denotes whether the subject answers item j correctly and αk ∈

{1, 0} denotes possession or non-possession of the attribute k. The Q-matrix, Q =

(qj,k) ∈ {0, 1}J×K , specifies the dependence structure between the items and the

latent attributes; qj,k ∈ {1, 0} denotes whether a correct response to item j requires

the latent attribute k. If we denote the jth row of the Q-matrix to be qj, then qj

reflects the full attribute requirements of item j. For a latent attribute pattern α, we

say α possesses all the required attributes of item j if α ⪰ qj, where α ⪰ qj means

αk ≥ qj,k for all k = 1, ..., K. Different CDMs model the item response functions

P (Yj = 1 | α) differently with the item parameters constrained by the Q-matrix and

specific cognitive diagnostic assumptions. Below we introduce three popular CDMs

that will be considered in later discussions.

Example II.1 (DINA model). Let Yi,j ∈ {1, 0} denote whether subject i an-

swers item j correctly. Under the DINA model (Haertel , 1989; Junker and Si-

jtsma, 2001), for the jth item and the ith subject with the latent attribute pattern

αi = (αi,1, . . . , αi,K), the ideal response variable is defined as ξi,j =
∏

k:qj,k=1 αi,k =∏K
k=1 α

qj,k
i,k . The ideal response ξi,j = 1 only if αi ⪰ qj, that is, the subject i needs

to possess all the latent attributes required by the item j to have a positive ideal

response. The uncertainty is further incorporated by two parameters: the slipping

parameter sj and the guessing parameter gj. Specifically, sj = P (Yi,j = 0 | ξi,j = 1)

and gj = P (Yi,j = 1 | ξi,j = 0). The slipping parameter and the guessing param-
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eter further satisfy 1 − s > g, which indicates that the capable subjects will have

higher positive probability than the incapable ones. The DINA model is one of the

most restrictive and interpretable CDMs for dichotomously scored test items. It is

a parsimonious model that requires only two parameters for each item regardless of

the number of attributes required for the item. It is appropriate when the tasks call

for the conjunction of several equally important attributes, and lacking one required

attribute for the item is the same as lacking all the required attributes.

Example II.2 (ACDM). In the ACDM, mastering additional required attributes

will increase the positive response probability for the items. Specifically, if we take

the identity link function in the ACDM, then for the jth item and the ith subject

with attribute pattern αi = (αi,1, . . . , αi,K), we have

P (Yi,j = 1 | αi) = δj,0 +
K∑
k=1

δj,kαi,kqj,k, (2.1)

which implies that mastering the kth attribute increases the probability of success

on the item j by δj,k if the kth latent attribute is required by the item j. Since

there is no interaction term in (2.1), the contribution of each latent attribute is

independent from one another. If subject i lacks all the required attributes for item j,

the term
∑K

k=1 δj,kαi,kqj,k would be 0, and the intercept δj,0 represents the probability

of correctly answering the item j based on pure guessing. Furthermore, even if the ith

subject has all the required latent attributes of the item j, δj,0+
∑K

k=1 δj,kαi,kqj,k may

not sum to 1. In that case, 1 −
(
δj,0 +

∑K
k=1 δj,kαi,kqj,k

)
captures the probability of

making a careless mistake. The ACDM is more appropriate to use when the items call
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for independent latent attributes but with different contributions to correct response

to the items.

Besides the identity link function, other link functions are also proposed. One

commonly used link function is the logit link,

P (Yi,j = 1 | αi) = σ
(
δj,0 +

K∑
k=1

δj,kαi,kqj,k

)
. (2.2)

where σ(x) = {1 + exp(−x)}−1. Equation (2.2) is also equivalent to logit
{
P (Yi,j =

1 | αi)
}
= δj,0 +

∑K
k=1 δj,kαi,kqj,k, which is the log-odds of a positive response. The

interpretation would then become that each required latent attribute contributes

independently to the log-odds of correcting answering item j by δj,k in an additive

fashion.

Example II.3 (GDINA model). Both the DINA and ACDMmodels are special cases

of the more general GDINA model (de la Torre, 2011). In addition to the intercept

and the main effects in the ACDMs, the GDINA model also allows interactions

amongst the latent attributes. The equation (2.3) gives the item response function

for the GDINA model with identity link.

P (Yi,j = 1 | αi) =δj,0 +
K∑
k=1

δj,kαi,kqj,k +
K−1∑
k=1

K∑
k′=k+1

δjkk′αi,kαi,k′qj,kqj,k′ + ...

+ δj12...K

K∏
k=1

αi,kqj,k. (2.3)

The parameters in (2.3) can be interpreted as follows: δ0 is the probability of a

correct response when none of the required attributes is present; δk is the change

16



in the probability of a correct response when only mastering a single attribute αk;

δkk′ , a first-order interaction effect, is the change in the response probability due

to the possession of both αk and αk′ in addition to the main effects of mastering

the two individual attributes; and δ12...K represents the change in the probability of

a correct response due to the mastery of all the required attributes in addition to

the main effects and all the lower-order interaction effects. Similarly to the ACDM

model, P (Yi,j = 1 | αi) is not required to be 1 even when the subject i possesses

all the required attribute for the item j. In that case, 1 − P (Yi,j = 1 | αi) is the

probability of making a careless mistake. Moreover, the intercept δj,0 and the main

effects are typically non-negative, but the interaction effects can take on any values.

Therefore, the GDINA model is appropriate if the mixed effects of latent attributes

on the probability of a correct response is of interest.

2.2.2 Review of Restricted Boltzmann Machines

RBMs are generative models that can learn probabilistic distributions over a col-

lection of inputs. RBMs were initially introduced under the name Harmonium by

Smolensky (1986) and gained currency due to their fast learnability in the mid-2000.

It has found vast applications in dimension reduction (Hinton and Salakhutdinov ,

2006), classification (Larochelle and Bengio, 2008), collaborative filtering (Salakhut-

dinov et al., 2007) and many other fields.

RBMs can also be viewed as a probabilistic bipartite graphical models, with

observed (visible) units in one part of the graph and latent (hidden) units in the

other part. Typically all the hidden units and the visible units are binary. We denote
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the visible units by Y = {Y1, ...YJ} ∈ {0, 1}J and hidden units by α = {α1, ...αK} ∈

{0, 1}K respectively. One key feature of RBMs is that only interactions between

hidden units and visible units are allowed. Neither connections among the visible

units, nor any connections among the hidden units are allowed, as shown in Figure

2.1.

Hidden	units
Visible	units

Figure 2.1: A graphical illustration of RBM.

RBMs are characterized by the energy functions with the joint probability distri-

bution specified as

P (Y ,α;θ) =
1

Z(θ)
exp

{
− E(Y ,α;θ)

}
, (2.4)

where E(Y ,α;θ) is known as the energy function and Z(θ) is the partition function,

Z(θ) =
∑

Y ∈{0,1}J

∑
α∈{0,1}K

exp
{
− E(Y ,α;θ)

}
,
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which is intractable (Long and Servedio, 2010). In specific, the energy function is

given by

E(Y ,α;θ) = −bTY − cTα− Y TWα

= −
J∑

j=1

Yjbj −
K∑
k=1

αkck −
J∑

j=1

K∑
k=1

Yjwj,kαk, (2.5)

where θ = {b, c,W } are the model parameters, b ∈ RJ are visible biases, c ∈ RK

are hidden biases and W ∈ RJ×K is the weight matrix encoding the interactions

between the visible and the hidden units.

Since no “Y -Y ” or “α-α” interactions are allowed, the hidden and visible units

are conditionally independent given each other, and therefore the joint conditional

probability mass functions can be factored in to a product. This can be easily seen

from Equations (2.4) and (2.5). Specifically, we have

P
(
Y | α;θ

)
=

J∏
j=1

P
(
Yj | α; b,W

)
, (2.6)

P
(
Yj = 1 | α; b,W

)
= σ

(
bj +

K∑
k=1

wj,kαk

)
, (2.7)

and

P
(
α | Y ;θ

)
=

K∏
k=1

P
(
αk | Y ; c,W

)
, (2.8)

P
(
αk = 1 | Y ; c,W

)
= σ

(
ck +

J∑
j=1

wj,kYj

)
, (2.9)

where σ(x) = 1/{1 + exp(−x)} is the logistic sigmoid function.

19



RBMs and CDMs are in fact closely related. The binary observed item responses

and the latent attributes in CDMs can be viewed as counterparts to the visible units

and the hidden units in RBMs respectively. There is a direct connection between

the two. If we fit an ACDM with the logit link, where the conditional probability

mass function (2.2) of the observed responses is modeled as a sigmoid function of the

latent attributes, then it takes exactly the same form as the conditional probability

function (2.7) of a visible unit given the hidden units in RBMs. Moreover, in a

CDM, qj,k = 0 indicates that there is no interaction between the item j and the

latent attribute k, while in the weight matrix of an RBM, wj,k = 0 also implies no

interaction between the jth visible unit and the kth hidden unit. Therefore we would

expect that wj,k = 0 in an RBM whenever qj,k = 0 in a CDM.

Using the previous example in Figure 2.1 for illustration, on the left of (2.10)

is the weight matrix W of an RBM, where wj,k ̸= 0 indicates the presence of the

interaction between the visible unit Yj and the hidden unit αk. The corresponding Q-

matrix in a CDM can be implied as shown on the right. As we illustrate previously,

the non-zero entries in the Q-matrix of an ACDM can be inferred exactly from

the non-zero entries in the weight matrix W in an RBM. Interactions among the

latent attributes are allowed in the DINA and GDINA models, which violates the

assumptions of an RBM. However, the Q-matrix is still estimable in these models.

We will give detailed arguments in Section 2.2.3.
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W =



w11 0 w13 0

0 w22 0 w24

w31 0 w33 0

w41 0 0 w44

0 w52 w53 0


=⇒ Q =



1 0 1 0

0 1 0 1

1 0 1 0

1 0 0 1

0 1 1 0


(2.10)

2.2.3 Robust Estimation of Q-matrix

In the previous section, we have discussed that RBMs can be used to learn the

Q-matrix for the ACDM with logit link. A natural question to ask is whether we

can generalize this result to other CDMs such as the DINA and GDINA models.

In this section, we will illustrate that under certain conditions, robust estimation of

the Q-matrix by RBMs is indeed achievable for common CDMs. In particular, we

will demonstrate that the Q-matrix can be estimated correctly under the DINA and

GDINA settings.

We focus on the learning of a particular row of theQ-matrix. It is in fact a variable

selection problem of the required latent variables for that particular item of interest.

Conditional onα, we have discussed that RBMs are equivalent to the ACDMwith the

logit link, while the latter exactly corresponds to the logistic regression with canonical

link and additive main effects linear predictor. Therefore in essence, RBMs can also

be treated as main effect models. Starting with the simplest case, we shall first study

the model selection consistency with linear additive models when the true models

are the DINA or the GDINA model. Since it is still an open and challenging problem

to establish consistent variable selection under complex latent variable models, here
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we start with the ideal case by assuming {α1, ..., αK} are independent, that is, all

the latent variables are independent. Although this is a strong assumption and is

rarely fully satisfied in real world scenarios, it can be relaxed in practice which will

be discussed in Remark II.7.

Before giving formal statements, we first introduce some notations. Without loss

of generality, we focus on the analysis of the response to one single item. For a

subject with α = {α1, ..., αK}, the response to the considered item is denoted by Y ,

where for clarity, we omit the item index in the notation. Let K∗ to be the number

of required attributes for the item. Without loss of generality, we let the first K∗

attributes be the required attributes for this item, that is, the corresponding row in

the Q-matrix is q = (1, ..., 1, 0, ..., 0) with the first K∗ entries being 1 and all the

remaining K − K∗ entries being 0. For the response Y generated from the DINA

or the GDINA model, we denote E∗[Y | α] as the regression mean function for the

mis-specified linear regression model of Y on α1, ..., αK . We show in the following

propositions that the mis-specified mean function E∗[Y | α] can identify the required

attributes from the non-required ones.

Proposition II.4 (DINA model). Assume {α1, α2, ..., αK} are independent with

αk ∼ Beroulli(pk) where pk ∈ (0, 1), k = 1, 2, ..., K. If Y is generated from the DINA

model, then the mis-specified linear additive model of Y regressed on (α1, α2, ..., αK)

has the mean function in the form of E∗[Y | α] = β0+β1α1+β2α2+ ...+βKαK with

βl ̸= 0 for l = 1, 2, ..., K∗ and βk = 0 for k = K∗ + 1, ..., K.

Proposition II.4 states that under the independence condition and if the data is

generated from the DINA model, the significant variables included in the true model
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can be selected correctly using a mis-specified linear model with additive main effects

only.

Proposition II.5 (GDINA model). Assume {α1, α2, ..., αK} are independent with

αk ∼ Bernoulli(pk) where pk ∈ (0, 1), k = 1, 2, ...K. If Y is generated from the

GDINA model satisfying the monotonicity assumption (i.e. acquiring an additional

required skill αk, k = 1, 2, .., K∗, will always increase the probability of a correct

response), then the mis-specified linear additive model has the corresponding mean

function in the form of E∗[Y | α] = β0 + β1α1 + β2α2 + ... + βKαK with βl ̸= 0 for

l = 1, 2, ..., K∗ and βk = 0 for k = K∗ + 1, ..., K.

Similar to Proposition II.4, Proposition II.5 states that under suitable conditions,

the significant variables included in the true GDINA model can be selected correctly

using a mis-specified linear model with additive main effects only. The detailed

proofs for all the propositions can be found in Appendix A.

Propositions II.4 and II.5 demonstrate that the model selection consistency can be

achieved using a mis-specified linear main effect model. As we illustrated previously,

the conditional probability of a visible unit on the hidden units in RBMs can be

regarded as a main effect logistic regression model. Therefore we next give some

intuition on why the main effect logistic regression model will give a similar variable

selection result to the linear models. Consider a main effect logistic regression model

with the canonical link function, that is, logit
(
P (Y | α)

)
= β0 + β1α1 + ...+ βKαK .

Let Y = (Yi, i = 1, ..., N) denote the response vector for all the N subjects, and

let µ =
{
µi := P (Yi | αi), i = 1, ..., N

}
denote the response probabilities for the

subjects. We use A =
(
αi

)N
i=1
∈ {0, 1}N×K to denote the latent attribute matrix for
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the N subjects and A∗ to denote the N× (K+1) matrix [1;A] with the first column

being an all-one vector. In linear models, we usually use the least square estimation

to estimate the coefficients, while in logistic regression, the iteratively re-weighted

least square (IRLS) method is used. Next we will give some intuition on why these

two estimation methods will produce similar variable selection results.

Conditional on αi’s, in the (t+1)th step of IRLS, the updating rule for parameter

θ := (β0, β1, ..., βK) is

θ(t+1) =
(
A∗TW (t)A∗)−1

A∗TW (t)Z(t),

where Z(t) = A∗Tθ(t) + (W (t))−1(Y − µ(t)) is the tth step working response and

W (t) = diag
(
µ
(t)
1 (1−µ

(t)
1 ), ..., µ

(t)
N (1−µ

(t)
N )
)
is a diagonal weight matrix with diagonal

elements being the variance estimates for each Yi. Since there is no closed form

of IRLS estimator and there is randomness in the convergence process, it is very

challenging to study the theoretical properties of the θ estimated by IRLS. So we only

consider a one-step update of IRLS starting from the ideal case of true parameter

θtrue for illustration. It is reasonable to study this ideal case because IRLS will

converge close to the θtrue given the correct model specification and a large sample

size. If we start with the true parameters, that is, we let θ(0) = θtrue, then,

θ(1) =
(
A∗TWtrueA

∗)−1
A∗TWtrueZtrue,

where the working response, Ztrue = A∗Tθtrue + W−1
true(Y − µtrue) is just a linear

transformation of observed response Y . Note that this update takes the same form
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as the weighted least square estimation of regressing Ztrue onA∗. Hence, the variable

selection result in the linear model would be similar to that of the logistic regression.

Combining Propositions II.4 and II.5, we have justified that the learning of the Q-

matrix by RBMs is achievable across the DINA, ACDM and GDINA models with

both identity and logit links.

Remark II.6. In practice, it is not uncommon that some of the 2K latent attribute

patterns do not exist in the collected observations, especially when K is large. How

negatively will this impact on the model selection consistency? In the DINA model,

we see from the proof of Proposition II.4 (see Section A.2 in Appendix A) that to

ensure the variable selection consistency for each required attribute αk, k = 1, ..., K∗,

we need to observe data from subjects with
{
α | αk = 0, αi = 1, i = 1, . . . , k− 1, k+

1, . . . , K∗}and {α | αi = 1, i = 1, . . . , K∗}. In the GDINA model, from the proof

of Proposition II.5, we can see that to ensure the variable selection consistency for

each αk, k = 1, ..., K∗, we need to observe data from subjects with
{
α | αk = 0

}
and{

α | αk = 1
}
. Therefore, even though some of the latent patterns may not exist in

our observed data, the selection consistency is still achievable as long as the required

attribute patterns are present.

Remark II.7. The independence assumption on the latent attributes {α1, ..., αK}

can be relaxed to some extent in practice. To see this, consider the setting when

{α1, ..., αK} are possibly dependent but the response Y only directly depends on the

first K∗ attributes {α1, ..., αK∗}. Given α1, ..., αK∗ , the response Y is conditionally

independent of αk for all k = K∗ + 1, ..., K. When only α1, ..., αK∗ are present in

the linear regression model of Y regressed on α’s, consider adding in one additional
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αk, for any k = K∗ + 1, ..., K, into the regression model, then its coefficient can be

expressed as

βk =
Cov

(
Y − E∗[Y | α1, ..., αK∗ ], αk − E∗[αk | α1, ..., αK∗ ]

)
V ar

(
Y − E∗[Y | α1, ..., αK∗ ]

) , (2.11)

where we denote E∗[A | B] as the regression mean function of A on B. Since Y and αk

are conditionally independent given α1, ..., αK∗ , the numerator of (2.11) is expected

to be small. In real implementations, the shrinkage imposed by the L1 penalty in

our proposed method should be able to recover most of these 0’s. This is indeed

supported by our simulation results in Section 2.4, where we consider moderate to

high correlation regimes amongst the latent attributes and our proposed method still

achieves satisfactory estimation accuracy of the underlying Q-matrix. Note also that

in the special case when K∗ = 1, the covariance term in (2.11) can be shown exactly

equal to zero, in which case βk can be removed easily in the variable selection process.

For a more detailed discussion for the K∗ = 1 case, please refer to Section A.2 in

Appendix A.

Remark II.8. The rigorous consistency theory of using RBMs to learn the Q-matrix

under a general CDM setting can be difficult to establish. In the literature, even

when the true models are binary RBMs, consistency for training RBMs is an open

and challenging problem. Due to the intractable partition function in the binary

RBM, an approximate likelihood maximizing approach has to be employed, such as

the popularly used Contrastive Divergence (CD) algorithm that will be further intro-
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duced in Section 2.3. Even though there are many works in literature studying the

asymptotic properties of the CD algorithm (MacKay , 2001; Yuille, 2004; Carreira-

Perpinan and Hinton, 2005; Bengio and Delalleau, 2009; Sutskever and Tieleman,

2010; Jiang et al., 2018), whether and why the CD algorithm provides an asymp-

totically consistent estimate for binary RBMs are still open questions. Therefore,

establishing a consistency theorem using a mis-specified RBM model for the DINA

or the GDINA model as in this work is even more challenging, which is left for future

exploration. Nevertheless, the CD algorithm in practice has shown empirical success

in training RBMs, and our simulation results in Section 2.4 also demonstrate its

effectiveness in training RBMs to learn the Q-matrix in CDMs.

2.3 Proposed Estimation Method

In this section, we will introduce our proposed method in detail. As we have

illustrated in Section 2.2, non-zero entries in the Q-matrix can be inferred from the

corresponding non-zero entries in the weight matrix of RBMs. Therefore, we are

interested in a sparse solution of the weight matrix W . It is well known that L1

penalty has the property of producing sparse solutions (Rosasco, 2009). Hence, we

propose the following L1 penalized likelihood as our objective function,

min
θ
− log

{
P (Y ;θ)

}
+ λ

J∑
j=1

K∑
k=1

|wj,k|. (2.12)

where log{P (Y ;θ)} is the marginal log-likelihood of the observed responses Y , θ =

{b, c,W } are the model parameters, and λ is a non-negative tuning parameter for
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the L1 penalty.

Gradient descent algorithm is a standard numerical method to solve problem

(2.12). The likelihood part, following the derivation by Schlueter (2014), can be

shown that its gradient with respect to the parameters has the following decomposi-

tion:

∂

∂θ
log
(
P (Y ;θ)

)
=−

∑
α∈{0,1}K

P
(
α|Y ;θ

) ∂

∂θ
E
(
Y ,α;θ

)
+

∑
y∈{0,1}Jα∈{0,1}K

P
(
y,α;θ

) ∂

∂θ
E
(
y,α;θ

)
(2.13)

=EP (α|Y ;θ)

[
− ∂

∂θ
E
(
Y ,α;θ

)]
− EP (y,α;θ)

[
− ∂

∂θ
E
(
y,α;θ

)]
.

(2.14)

In deep learning literature, this is a well-known decomposition into the positive

phase and the negative phase of learning, corresponding to the two expectations in

(2.14) respectively. As the two expectations do not have closed forms and are not

directly tractable, researchers propose to approximate the gradient by estimating

these expectations through Monte Carlo sampling. In particular, the positive phase

corresponds to sampling the hidden units given the visible units, while the negative

phase corresponds to obtaining the joint hidden and visible samples from the current

model.

The bipartite graph structure of RBMs gives the special property of its conditional

distributions P (α | Y ) and P (Y | α) being factorial and simple to compute and

sample from, as shown in Section 2.2.2. Therefore, sampling for the positive phase
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is straightforward while obtaining samples from the model for negative phase is not

since it requires the joint hidden and visible samples. A widely used algorithm to

learn RBMs is known as the Contrastive Divergence (CD) algorithm, where the

negative phase is approximated by drawing samples from a short alternating Gibbs

Markov chain between visible units and hidden units starting from the observed

training examples (Hinton, 2002). In this work, we use a CD-1 algorithm where

Gibbs chains are run for 1 step to approximate the gradient of the log-likelihood part.

Specifically, given the original data Y (0), we first sample α(0) according to Equation

(2.8) and Equation (2.9) to approximate the positive phase. Then given α(0), we

sample Y (1) based on Equation (2.6) and Equation (2.7), and we use (Y (1),α(0)) to

approximate the negative phase.

At (t+ 1)th iteration, based on the sampled data, the parameters’ updates take

the same form as gradient descent if we do not consider L1 penalty,

w′(t+1)
j,k ← w

(t)
j,k + γ(t)

{ N∑
i=1

Y
(0)
ij P

(
αik = 1 | Y (0)

i ;θ(t)
)
−

N∑
i=1

Y
(1)
ij P

(
αik = 1 | Y (1)

i ;θ(t)
)}

,

(2.15)

b
(t+1)
j ← b

(t)
j + γ(t)

{ N∑
i=1

Y
(0)
i,j −

N∑
i=1

Y
(1)
i,j

}
/N, (2.16)

c
(t+1)
k ← c

(t)
k + γ(t)

{ N∑
i=1

P
(
αik = 1 | Y (0)

i ;θ(t)
)
−

N∑
i=1

P
(
αik = 1 | Y (1)

i ;θ(t)
)}

/N,

(2.17)

where Y
(0)
i = (Y

(0)
i1 , Y

(0)
i2 , . . . , Y

(0)
iJ ), Y

(1)
i = (Y

(1)
i1 , Y

(1)
i2 , . . . , Y

(1)
iJ ), and γ(t) is the

learning rate for the tth iteration. Here we denote the updated weight matrix by
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W ′ =
(
W ′

j,k

)
J×K

, since we also need to consider the gradient of the L1 penalty

term later, and thus Equation (2.15) is an intermediate update for the weight ma-

trix. Detailed derivations can be found in the notes written by Schlueter (2014). In

this work, we use a linearly decreasing learning rate scheme, which is guaranteed to

converge as shown in Collins et al. (2008).

For the L1 penalty, we adopt the implementation developed by Tsuruoka et al.

(2009), which can achieve more stable sparsity structures. As pointed out by Tsu-

ruoka et al. (2009), the traditional implementation of L1 penalty in gradient descent

algorithm does not always lead to sparse models because the approximate gradient

used at each update is very noisy, which deviates the updates away from zero.

The main idea of the implementation is to keep track of the total penalty and

the penalty that has been applied to each parameter, and then the L1 penalty is

applied based on the difference between these cumulative values. By doing so, it

is argued that the effect of noisy gradient is smoothed away. To be more specific,

at iteration t, let u(t) := λ
∑t

l=1 γ
(l) be the absolute value of the total L1 penalty

that each parameter could have received up to the point, where γ(l) is the learning

rate at step l. Let c
(t−1)
j,k :=

∑t−1
l=1(w

(l+1)
j,k − w′(l+1)

j,k ) be the total L1 penalty that wj,k

has actually received up to step t, where w′(l)
j,k is the intermediate update at step l

calculated by Equation (2.15). Then at iteration (t+ 1), we update w
(t+1)
j,k by

w
(t+1)
j,k ← max

{
0, w′(t+1)

j,k − (u(t) + c
(t−1)
j,k )

}
if w′(t+1)

j,k > 0,

w
(t+1)
j,k ← min

{
0, w′(t+1)

j,k + (u(t) − c
(t−1)
j,k )

}
if w′(t+1)

j,k ≤ 0.
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Since the updates in Equations (2.15), (2.16) and (2.17) require summations over

all the data samples, it would be computationally expensive when the sample size is

large. To reduce computational burden, we implement a batch version of the CD-1

algorithm in practice, where we only use a small batch of the whole data set in each

iteration. Specifically, we randomly partition the whole data set into B batches,

and iterating through all the batches is known as one epoch in machine learning

literature. Here we use Y =
{
Y(1),Y(2), . . . ,Y(B)

}
to denote the partitions, NB to

denote the batch size, and Nepoch to denote the number of epoches. The resulting

algorithm is summarized in Algorithm 1.
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Algorithm 1: CD-1 algorithm with L1 penalty

Input: Data Y =
{
Y(1),Y(2), . . . ,Y(B)

}
, λ, γ0, and Nepoch.

Output: Estimates Ŵ , b̂, ĉ.

Initialize w
(0)
j,k , b

(0)
j , c

(0)
k , u(0) = 0, c

(0)
j,k = c

(1)
j,k = 0;

for e = 0, . . . , Nepoch − 1 do

for b = 0, . . . , B − 1 do

t = e×B + b (the number of iterations);

γ(t) = γ0

t+1 ;

Y (0) ← Y(b+1);

Sample α(0) ∼ P
(
α | Y (0); c(t),W (t)

)
;

Sample Y (1) ∼ P
(
Y | α(0); b(t),W (t)

)
;

u(t) ← u(t−1) + λγ(t);

for j = 1, . . . , J, k = 1, . . . ,K do

w′(t+1)
j,k ← w

(t)
j,k + γ(t)

{∑NB

i=1 Y
(0)
ij P

(
αik = 1 | Y (0)

i

)
−
∑NB

i=1 Y
(1)
ij P

(
αik = 1 |

Y
(1)
i

)}
;

if t ≥ 2 then c
(t−1)
j,k ← c

(t−2)
j,k + w

(t)
jk − w′(t)

j,k;

if w′(t+1)
j,k > 0 then

w
(t+1)
j,k ← max

{
0, w′(t+1)

j,k − (u(t) + c
(t−1)
j,k )

}
;

else

w
(t+1)
j,k ← min

{
0, w′(t+1)

j,k + (u(t) − c
(t−1)
j,k )

}
;

end

end

for j = 1, ..., J do

b
(t+1)
j ← b

(t)
j + γ(t)

{∑NB

i=1 Y
(0)
i,j −

∑NB

i=1 Y
(1)
i,j

}
/NB ;

end

for k = 1, ...,K do

c
(t+1)
k ← c

(t)
k + γ(t)

{∑NB

i=1 P
(
αik = 1 | Y (0)

i

)
−
∑NB

i=1 P
(
αik = 1 | Y (1)

i

)}
/NB ;

end

end
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In our proposed algorithm, there are two tuning parameters: λ for the L1 penalty

and γ0 for the learning rate. To get good estimates of our model, we need to select

a suitable combination of hyper-parameters λ and γ0. A popularly used tuning

procedure is CV. However, as RBMs are unsupervised learning models, we cannot

rely on the so-called “test error” of the labels. Instead, since visible units are re-

sampled at each iteration in the CD algorithm, we may use the reconstruction error of

the visible units to assess the goodness of fit. Nevertheless, the visible reconstruction

error will always increase as the penalty coefficient λ increases, because larger penalty

would introduce more bias. Therefore, the traditional CV procedures would not

work here. To solve this problem, given values of λ and γ0, instead of directly using

the Ŵλ,γ0 obtained from a penalized RBM to compute the reconstruction error,

we propose to debias the non-zero entries in Ŵλ,γ0 by training an RBM with no

penalty but fixing the zero positions the same as those in Ŵλ,γ0 . The proposed CV

producedure is summarized below.

1. Split the data into M partitions. Each time we use one partition as the vali-

dation set and the remaining as the training set.

2. Apply the penalized CD Algorithm 1 to train the RBM on the training set

with pre-specified λ and γ0, and obtain the estimates Ŵλ,γ0 and Q̂λ,γ0 .

3. Use the training set again to debias the non-zero entries of Ŵλ,γ0 . Specifically,

we use Ŵλ,γ0 as the initial value and set λ = 0 in Algorithm 1 to train an

unpenalized RBM, and only update the non-zero entries of Ŵλ,γ0 while keeping

the zero entries unchanged. Hidden bias c and visible bias b are updated at
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each step as usual. This step give us the de-biased weight matrix W̌λ,γ0 .

4. Compute the reconstruction error on the validation set. In specific, at each

iteration of the CD algorithm, we fix W = W̌λ,γ0 , and only update the hidden

and visible biases. The reconstruction error is computed as the mean batch

squared error between the latest sampled visible batches {Y (1)
1 , ...,Y

(1)
m } and

the observational batches {Y (0)
1 , ...,Y

(0)
m } in the validation set.

5. For each combination of λ and γ0 in the subject set, we repeat Steps 2-4 across

all M validation sets. The Q̂λ∗,γ∗
0
corresponding to the smallest mean batch

squared error (see Section 2.4 for definition) is taken as the final estimate of

the Q-matrix.

Another main difference from the traditional CV procedure is we select the Q-

matrix corresponding to the smallest validation error instead of taking average of

the validation errors and then training a new RBM with the best tuning parameters

according to the smallest mean error. There are two advantages. On one hand, the

traditional way of averaging errors, though more stable, is very time-consuming in

this problem. On the other hand, the gradient descent steps in the CD algorithm

may only produce locally optimal results. To avoid being stuck in sub-optima, we

run the CD algorithm M times with different initializations and different training

and validation sets for each combination of λ and γ0, and select the estimated Q-

matrix corresponding to the smallest validation error. By doing so, the Q-matrix is

expected to be more accurately estimated.

Remark II.9. The computational cost of our proposed method only grows linearly
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in K and this enables estimation of very large Q-matrices. As far as we know, the

current methods in the literature have computational cost greater than O(K), with

the majority growing exponentially with K. For example, in Xu and Shang (2018),

they proposed to learn the Q-matrix by estimating the coefficients in the LCDM

plus a penalty term with the EM algorithm. In the E-step of the EM algorithm, 2K

posterior probabilities for each of the attribute patterns need to be updated.

2.4 Simulation Studies

We conduct simulation studies on three popular CDMs, the DINA, ACDM and

GDINA models, to study the performance of our proposed method in learning the

Q-matrix under different CDM settings. In particular, we examine the scalability to

the size of the Q-matrix and the estimation accuracy of the proposed algorithm.

We first introduce the metrics used to evaluate the performance of the proposed

estimation method. To measure the convergence of the algorithm, we investigate

the change in the mean batch errors against time. The mean batch error is the

reconstruction error between the latest sampled visible batches
{
Y

(1)
(1) , ...,Y

(1)
(B)

}
and

the original observed batches
{
Y

(0)
(1) , ...,Y

(0)
(B)

}
, where

{
Y

(0)
(1) , ...,Y

(0)
(B)

}
partitions the

whole observed data set into B batches. Given the batch-size NB, the mean batch

error is defined as

1

BNB

B∑
b=1

NB∑
i=1

J∑
j=1

(
Y

(1)
(b),i,j − Y

(0)
(b),i,j

)2
.

To evaluate the estimation accuracy, we report entry-wise overall percentage error

(OE), out of true positives percentage error (OTP) and out of true negatives per-
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centage error (OTN). Specifically,

OE :=
1

JK

J∑
j=1

K∑
k=1

1
{
q̂j,k ̸= qj,k

}
,

which is the percentage of wrongly estimated entries out of the total number of

entries in the Q-matrix.

OTP :=

∑J
j=1

∑K
k=1 1

{
q̂j,k = 0, qj,k = 1

}∑J
j=1

∑K
k=1 1

{
qj,k = 1

} ,

which is defined as the percentage of wrongly estimated entries out of all true positive

entries (i.e. entries 1) in the Q-matrix.

OTN :=

∑J
j=1

∑K
k=1 1

{
q̂j,k = 1, qj,k = 0

}∑J
j=1

∑K
k=1 1

{
qj,k = 0

} ,

which is defined as the percentage of wrongly estimated entries out of all true neg-

atives (i.e. entries 0) in the Q-matrix. A challenge in computing these errors arises

because the estimated Q-matrix can only be identified up to column permutations.

To solve this problem, we apply the Hungarian algorithm to match the columns of

the estimated Q̂ to the true Q-matrix by jointly minimizing the total column-wise

matching errors. Details of the Hungarian algorithm can be found in Kuhn (1955).

We consider different number of latent attributes K = 5, 10, 15, 20, 25. To ensure

the Q-matrix is identifiable so that it can be learned from the observational data, we
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specify it as follows:

Q =


IK

Q1

Q2

 , (2.18)

where IK is a K dimensional identity matrix; Q1 ∈ {0, 1}K×K with value 1 in the

(i, i)th entries for i = 1, ..., K and the (i, i + 1)th entries for i = 1, ..., K − 1, and

values 0 for all the other entries; Q2 ∈ {0, 1}K×K with value 1 in entries (i, i) for

i = 1, ..., K, (i, i − 1) for i = 2, ..., K and (i, i + 1) for i = 1, ..., K − 1, and value

0 for all the remaining entries. The above construction sets the number of items

to be J = 3K. This Q-matrix satisfies the identifiability conditions in Gu and Xu

(2019) and therefore is identifiable under the DINA setting in Simulation Study 2.4.1.

Moreover, this construction also ensures the (generic) identifiability of the ACDM

and GDINA models considered in Simulation Studies 2.4.2 and 2.4.3 (see Xu, 2017;

Gu and Xu, 2020b,a). A random design of the Q-matrix, in which its identifiability

is not be guaranteed, is also considered in Section A.1.1 of Appendix A.

In each simulation study, we consider two different sample sizesN = 2000 or 10000.

Both independent and dependent settings of latent attributes are explored. Denote

the latent attribute matrix by A =
(
αi

)N
i=1
∈ {0, 1}N×K , which depicts the la-

tent attribute patterns of the N subjects. We use two steps to simulate the latent

patterns (Chen et al., 2015). First, a Gaussian latent vector is generated for each

subject zi = (zi1, ..., ziK)
i.i.d.∼ N (0,Σ) for i = 1, ..., N , where Σ = (1−ρ)1K+ρ1K1

⊤
K ,

1K = (1, . . . , 1)⊤K , and ρ is the correlation between any two different latent attributes.
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In practice, since some attributes may be harder to master than others, different

thresholds are applied in the sampling of attribute profiles. In particular, for a given

K, we specify the thresholds ranging from −0.5 to 0.5, with a step size of 1/(K−1),

for each of attribute 1, 2, ...K respectively. Then αik = 1 if zik is greater than its re-

spective threshold and αik = 0 otherwise. For the independent setting, we set ρ = 0,

while for the dependent settings, we consider both a low correlation with ρ = 0.25

and a high correlation with ρ = 0.75. For the tuning of hyper-parameters, we take

the subject sets as λ ∈ {0.003, 0.004, ..., 0.015} and γ0 ∈ {0.5, 1, ..., 5.5}, and perform

5-fold CV to select the best estimated Q-matrix. For each setting, 100 repetitions

are simulated. The batch size and the number of epochs are fixed at 50 and 300

respectively.

2.4.1 Simulation Study 1. DINA Model

For the DINA test items, we consider two uncertainty levels, gj = sj = 0.1 or

gj = sj = 0.2 for all j = 1, ..., J . Figure 2.2 plots the mean batch errors against

time for the independent case with K = 5 (the first row) and K = 25 (the second

row) across different sample sizes and different noise levels. When K = 5, we can

see that the CD-1 algorithm converge well after 6 seconds for all different sample

sizes under different noise levels. This suggests that with a small number of latent

attributes, the sample sizes and the uncertainty levels do not affect the convergence

speed a lot. Focusing on the second row of Figure 2.2, we note that although the

size of the Q-matrix increases from 75 (K = 5) to 1875 (K = 25), the convergence

time only increases by around 10 seconds, and the CD-1 algorithm converges well
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after just 15 seconds even when K = 25. This indicates that the proposed method is

scalable with the size of the Q-matrix. Dependent settings have similar convergence

rates and hence the results are omitted.

Figure 2.3 and 2.4 plot different estimation errors against the sizes of the Q-

matrix for independent and dependent settings respectively. For the independent

case, in Figure 2.3, we can see that the OE stays below 16% across all the settings.

There is a decreasing trend in the OE as the Q-matrix size increases due to the

increasing sparsity of the true underlying Q-matrix. Our proposed method performs

significantly better than the baseline method predicting all the entries of the Q-

matrix to be 0 (which would produce OE of 36% for K = 5). Furthermore, we note

that increasing uncertainty level will deteriorate the OTP, making the estimation of

positive entries harder. Increasing the sample size N would in general help improve

the estimation accuracy. For the dependent case, in Figure 2.4, we observe that the

results in the low correlation setting are very similar to that of the independent set-

ting. This suggests that our proposed method is robust when moderate correlations

amongst latent attributes exist. On the other hand, when the correlations amongst

the attributes are high, we see increments in all the three error metrics, OE, OTP

and OTN. The correlations amongst the attributes would compound the difficulty in

estimation of the Q-matrix. However, all the OE’s still stay well below 20%. Hence,

our proposed method can still achieve effective learning of the Q-matrix when the

correlations amongst the attributes are high.
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Figure 2.2: Plots of mean batch errors against time for the DINA data.
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Figure 2.3: Plots of different performance metrics against the size of the Q-matrix
for the DINA data (independent case).
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Figure 2.4: Plots of different performance metrics against the size of the Q-matrix
for the DINA data (dependent case with g = s = 0.1). Rows 1 and 2 correspond to
correlation settings 0.25 and 0.75 respectively.

2.4.2 Simulation Study 2. ACDM Model

We conduct similar analysis using data generated from the ACDM to examine

the convergence speed and estimation accuracy of our proposed method. Define K∗
j

to be the number of required attributes for the item j. Without loss of generality, we

let the firstK∗
j attributes be the required attributes for item j, i.e., the corresponding

row in the Q-matrix is qj = (1, ..., 1, 0, ..., 0) with the first K∗
j entries being 1 and all

the remaining K−K∗
j entries being 0. For an ACDM with the identity link function

2.1, we have P (Yj = 1 | 1K) = δj,0 +
∑K∗

j

k=1 δj,k := pj, the highest success probability

achievable for the most capable subjects. Similar to the DINA setting, two different
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uncertainty levels are considered: case 1. δj,0 = 0.1, pj = 0.9 for all j = 1, ..., J

and case 2. δj,0 = 0.2, pj = 0.8 for all j = 1, ..., J . For k = 1, ..., K∗
j , δj,k is set to

be (pj − δj,0)/K
∗
j , that is, the contribution of each required attribute to the success

probability is equal.

Figure 2.5 shows the convergence speed of our proposed method under the inde-

pendent setting. We observe similar patterns as in the DINA case: uncertainty levels

and samples sizes do not have significant impacts on the convergence speed. Our

proposed algorithm is scalable with the size of the Q-matrix in the ACDM setting.

Figure 2.6 and 2.7 plot different estimation metrics against the size of the Q-matrix

for independent and dependent settings respectively. From Figure 2.6, we can see

that the results are very similar to those observed in the DINA model setting, which

demonstrates that our proposed methods is effective in the ACDM data. Further-

more, for the dependent setting in Figure 2.7, we observe that when the correlation

is of 0.25, the estimation accuracy remains similar to that in the independent set-

tings. When the correlation is of 0.75, unlike in the DINA setting, the OE, OTP

and OTN only increase very slightly. In particular, the OE stays well below 16.5%

when K = 5, 10, ..., 25. This suggests that when the true data generating model

is the ACDM, our proposed method is robust when the correlations amongst the

attributes are high.
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Figure 2.5: Plots of mean batch errors against the time for the ACDM data. Case 1
represents the setting when δj,0 = 0.1, pj = 0.9 for all j = 1, ..., J . Case 2 represents
the setting when δj,0 = 0.2, pj = 0.8 for all j = 1, ..., J .
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Figure 2.6: Plots of different performance metrics against the size of the Q-matrix for
the ACDM data (independent case). Case 1 represents the setting when δj,0 = 0.1,
pj = 0.9 for all j = 1, ..., J . Case 2 represents the setting when δj,0 = 0.2, pj = 0.8
for all j = 1, ..., J .
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Figure 2.7: Plots of different performance metrics against the size of the Q-matrix
for the ACDM data (dependent case with δj,0 = 0.1, pj = 0.9 for all j = 1, ..., J).
Rows 1 and 2 correspond to correlation settings 0.25 and 0.75 respectively.

2.4.3 Simulation Study 3. GDINA Model

Let the highest success probability achievable for the most capable subjects be

P (Yj = 1 | 1K) := pj from Equation (2.3). Similar to the ACDM setting, we consider

two uncertainty levels: case 1. δj,0 = 0.1, pj = 0.9 for all j = 1, ..., J and case 2.

δj,0 = 0.2, pj = 0.8 for all j = 1, ..., J . Using the Q-matrix specified at the beginning

of this section, for each item j, we may have K∗
j = 1, 2 or 3. When K∗

j = 1, we set

δj,k = pj− δj,0. When K∗
j = 2, we let δj,k = δjkk′ = (pj− δj,0)/3 and when K∗

j = 3 we

set δj,k = δjkk′ = δjkk′k′′ = (pj− δj,0)/7. As such, the main effects and the interaction

terms are all assumed to have the same contributions to the probability of a positive
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response. Both independent and dependent settings are considered.

Convergence rates under independent setting are summarized in Figure 2.8. Sim-

ilar patterns to the DINA and the ACDM settings can be observed, indicating that

our algorithm is scalable to the size of the Q-matrix in the GDINA model. As be-

fore, dependent settings have similar convergence patterns, and hence the results

are not presented here. Behaviors of different estimation metrics over the size of the

Q-matrix for both the independent and dependent settings are summarized in Figure

2.9 and 2.10 respectively.

For the independent setting in Figure 2.9, slightly better estimation accuracy

can be observed than in the DINA and the ACDM settings. This suggests our

proposed methods is effective in the learning the Q-matrix from data generated

using the GDINA model. One thing to emphasize is that our method is competitive

amongst the existing algorithms in the literature. For example, comparing to a

similar simulation study in Xu and Shang (2018) for K = 5 independent attributes

and N = 2000, our overall estimation accuracy of around 87% is significantly better

than theirs, whose overall accuracy is 71.2%. Moreover, our method also has much

smaller computational cost than their method. For the dependent setting in Figure

2.10, we observe that the estimation accuracy remains similar to the independent

setting when the correlation is of 0.25. When the correlations increase to 0.75, all

the three error metrics only increase very slightly. This observation is similar to

the ACDM setting. The OE’s remain well below 16.5% for all K = 5, 10, ..., 25.

This suggests that when the true data generating model is the GDINA model, the

proposed method is fairly robust to high attribute correlations.
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Figure 2.8: Plots of mean batch errors against the size of theQ-matrix for the GDINA
data. Case 1 represents the setting when δj,0 = 0.1, pj = 0.9 for all j = 1, ..., J . Case
2 represents the setting with higher uncertainty levels when δj,0 = 0.2, pj = 0.8 for
all j = 1, ..., J .
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Figure 2.9: Plots of different performance metrics against the size of the Q-matrix for
the GDINA data (independent case). Case 1 represents the setting when δj,0 = 0.1,
pj = 0.9 for all j = 1, ..., J . Case 2 represents the setting with higher uncertainty
levels when δj,0 = 0.2, pj = 0.8 for all j = 1, ..., J .
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Figure 2.10: Plots of different performance metrics against the size of the Q-matrix
for the GDINA data (dependent case with δj,0 = 0.1, pj = 0.9 for all j = 1, ..., J).
Rows 1 and 2 correspond to correlation settings 0.25 and 0.75 respectively.

2.4.4 Attribute Classifications

As discussed in Section 2.2.3, the marginal distributions of the attributes are

mis-specified in RBMs, in which a conditional independent structure is assumed.

However, in practice, the latent attributes are often highly correlated and the con-

ditional independence assumption may not hold. This mis-specification in latent

attribute distributions is expected to bring in additional errors in the estimated Q-

matrix. In order to understand the practical implications of the mis-specification

in the estimated Q-matrix, we compare the commonly used attribute classification

accuracy (ACC) rate obtained using the estimated Q-matrix (Q̂) and the true Q-
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matrix (Q). In particular, when there are N subjects, the ACC of the k’th attribute

is defined as

ACC(k) :=
1

N

N∑
i=1

|α̂ik − αik|,

where α̂ik and αik represent the estimated and the true attribute values, respectively.

The simulation set-ups remain the same as the dependent settings in Section

2.4. All the DINA data, the ACDM data and the GDINA data are considered.

Attribute classifications are performed using the estimated Q̂ and the true Q under

the corresponding true underlying CDMs. The results are summarized in Table 2.1.

Not surprisingly, we observe that the ACC rates obtained using Q̂ are worse

than that using Q in all settings across all models. The errors in Q̂ stem from two

sources, the mis-specification error in the latent attributes’ marginal distribution and

the sample estimation error. On the other hand, we also note that the ACC rates

obtained using Q̂ do not deteriorate too much from using the true Q when sample

size is large, especially under the ACDM and GDINA models. This suggests the

Q-matrix estimation accuracy in the ACDM and GDINA models may be less prone

to the mis-specification in the latent attributes’ marginal distribution. Furthermore,

the ACC rates drop as the number of attributes increases in the model. This re-

flects the increasing difficulty in attribute classifications as the number of attributes

increments. Surprisingly, the ACC rates are generally higher when the correlation

amongst attributes is higher. This may be because the higher dependency among the

attributes results in fewer numbers of possible attribute patterns, making the esti-

mation relatively easier. Not so surprisingly, we also observe that increasing sample

size can in general help improve ACC rates.
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We also conduct simulation studies to explore the potential of using the proposed

method to perform latent attribute classifications directly. The performance of the

proposed method in attribute classifications is satisfactory. For more details on the

additional simulation results, please refer to Appendix A.

N = 2000 N = 10000
ρ = 0.25 ρ = 0.75 ρ = 0.25 ρ = 0.75

Model Q̂ Q Q̂ Q Q̂ Q Q̂ Q

K = 5
DINA 0.806 0.944 0.888 0.956 0.830 0.945 0.890 0.957
ACDM 0.812 0.926 0.911 0.946 0.921 0.928 0.915 0.948
GDINA 0.918 0.928 0.935 0.949 0.928 0.929 0.947 0.950

K = 10
DINA 0.801 0.939 0.898 0.954 0.811 0.940 0.894 0.956
ACDM 0.815 0.922 0.913 0.946 0.910 0.925 0.906 0.950
GDINA 0.885 0.924 0.939 0.949 0.926 0.926 0.899 0.951

Table 2.1: Average ACC rates out of 100 repetitions for K = 5, 10 attributes respec-
tively obtained using the true CDMs. Q̂ and Q denote the estimated Q-matrix from
the proposed method and the true Q-matrix respectively.

2.5 Real Data Analysis

We apply our proposed method to a TIMSS data set. TIMSS provides data on the

mathematics and science curricular achievement of the fourth and the eighth grade

students across countries such as the U.S. The data set contains 23 mathematical

items from TIMSS 2003 items and is packed in the CDM package in R (Robitzsch

et al., 2020). Both a binary scored subjects’ response matrix and an associated

expert constructed Q-matrix are included in the data set. In particular, the binary

response matrix consists of 757 observations, and it is therefore of dimension 757 by

23. The Q-matrix on the other hand specifies how the 23 items are related to 13
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binary mathematical skill attributes, as summarized in Table 2.2.

Skill attributes Items

1. Understand concepts of a ratio and a unit rate and use language appropriately 1, 7, 20

2. Use ratio and rate reasoning to solve real world and mathematical problems 3, 11, 15, 19, 22

3. Compute fluently with multi-digit numbers and find common factors and multiples 12, 18

4. Apply and extend previous understandings of numbers to the system of

rational numbers 4, 17, 23

5. Apply and extend previous understandings of arithmetic to algebraic expressions 8, 13, 16, 21

6. Reason about and solve one-variable equations and inequalities 2, 5, 6,10,14

7. Recognize and represent proportional relationships between quantities 3, 6

8. Use proportional relationships to solve multi-step ratio and percent problems 11

9. Apply and extend previous understandings of operations with fractions to

add, subtract, multiply, and divide rational numbers 4, 8, 18, 23

10. Solve real-life and mathematical problems using numerical and algebraic

expressions and equations 5

11. Compare two fractions with different numerators and different denominators;

Understand a fraction a/b with as a > 1 a sum of fractions 1/b 1, 9, 18

12. Solve multi-step word problems posed with whole numbers and having whole

number answers using the four operations, including problems in which remainders

must be interpreted. Represent these problems using equations with a letter standing

for the unknown quantity; Generate a number or shape pattern that follows a given

rule. Identify apparent features of the pattern that were not explicit in the rule itself 5 , 15

13. Use equivalent fraction as a strategy to add and subtract fractions 1, 12, 18

Table 2.2: Clusters of the 23 TIMSS 2003 mathematics items according to the un-
derlying skill attributes.
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Figure 2.11: Heat-plot of the expert constructed Q0. The white/black blocks corre-
spond to q0ij = 0/1 respectively.

Note that the providedQ-matrix may not fully represent the ground truth because

the construction of the Q-matrix by experts is almost always subjective. In this case,

the provided Q-matrix was constructed from the consensus of two experts. When

they are not able to reach an agreement for any item through discussion, a third

expert would step in to resolve the conflict. The percentage of two experts’ overall

agreement for the constructed Q-matrix is only 88.89%, according to Su et al. (2013).

We denote this expert constructed Q-matrix as Q0 and its (i, j)th entry as q0ij. A heat-

plot of Q0 is summarized in Figure 2.11. To demonstrate the practical implications of

our proposed method, we start with this expert constructed Q0 and explore further

whether our proposed method can improve on the quality of the Q-matrix to better

represent the ground truth.

We initialize the weight matrix with Q0 in our proposed method. The estimated
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Q-matrix is denoted as Q̂ and its (i, j)th entry as q̂ij. If we treat the expert con-

structed Q0 as the truth for evaluation purpose, then the entry-wise proportional

“error” rate, the out of true positives “error” rate and out of true negatives “error”

rate of Q̂ are 0.126, 0.053 and 0.139 respectively. The low “error” rates suggest

Q0 and Q̂ are similar and our proposed method can indeed recover the main latent

structure, especially the positive entries, in the expert constructed Q0.
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Figure 2.12: Heat-plot to compare between the estimated Q̂ and the expert con-
structed Q0. The white blocks represent entries (i, j) when both q̂ij = q0ij = 0. The
black blocks represent entries (i, j) when both q̂ij = q0ij = 1. The red blocks represent
entries (i, j) when q̂ij = 0 and q0ij = 1. The blue blocks represent entries (i, j) when
q̂ij = 1 and q0ij = 0.

Figure 2.12 presents the heat-plot of the comparison between the estimated Q̂ and

the expert constructed Q0. In particular, white and black entries represent the cases

when q̂ij = q0ij = 0 and when q̂ij = q0ij = 1 respectively. While blue and red entries

represent the cases when q̂ij = 1, q0ij = 0 and when q̂ij = 0, q0ij = 1 respectively. We
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see that the majority of the positive entries in Q0 are picked up by Q̂, and only 4

of them are predicted to be 0 in Q̂, as represented by the red blocks in Figure 2.12.

This suggests the proposed method can estimate the Q-matrix with high sensitivity.

Some of these false negatives do make sense. For example, item 5 describes three

figures arranged in matchsticks with some patterns and asks for the total number of

matchsticks that would be used to construct figure 10 if the pattern continues. It is

a pattern recognition problem and does not seem to be closely related to attribute

6, “reason about and solve one-variable equations and inequalities”. However, we

acknowledge that this data driven approach can sometimes make mistakes. For

example, the other three false negatives predicted may not make much sense. Take

item 10 for example, which reads “inequality equivalent to x/3 > 8”. It clearly

requires the knowledge of attribute 6, which is not successfully identified by the

proposed method. On the other hand, the white regions, representing the agreed

entry 0’s, occupy the majority of the plot. This suggests the specificity is controlled.

Moreover, we see some blue blocks scattering in Figure 2.12, which represent the

entries that are 0 in Q0 but are predicted to be 1 in Q̂. Some of these blocks capture

information that is neglected by the expert when constructing the Q-matrix. Take

item 22 for example, whose description is “At a play, 3/25 of the people in the

audience were children. What percent of audience is this?” In the expert constructed

Q-matrix, this item only requires mastering attribute 2. However, in our estimated

Q̂, this item is further related to attribute 4, “understanding of rational numbers”, 7,

“recognizing proportional relationships” and 9, “applying operations with fractions”.

Nevertheless, we also want to point out that the proposed method may over-select,
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resulting in redundant attributes being selected. For example, item 8 reads “If

x = 3, what is the value of −3x”. The proposed method predicts that it is related

to attribute 2, “Use ratio and rate reasoning to solve real world and mathematical

problems”, but in fact item 8 does not seem to be related to attribute 2. Therefore,

careful examination of the predicted entries is still needed, but it can potentially

help to improve the quality of the Q-matrix.

We further compare the goodness-of-fit of Q0 and Q̂ across different CDMs, in-

cluding the DINA, ACDM and GDINA models using both AIC and BIC as criteria.

We note that out of the three models tested, the ACDM gives the smallest values

of both AIC and BIC. Moreover, using Q̂ gives much smaller AIC (19348.71) than

using Q0 (19568.17) under the ACDM, which suggests the estimated Q̂ fits better

under the ACDM than the expert constructed Q0 in terms of AIC. On the other

hand, using Q̂ achieves a BIC value of 20313.98, slightly worse than a BIC value of

20286.44 obtained by using Q0. However, the two values are comparable in size and

the improvement is not significant. Nonetheless, since we do not know what the true

underlying model and the Q-matrix are, consultation to the domain experts is still

needed to make assertive conclusions about which of Q̂ and Q0 is better.

2.6 Discussions

In conclusion, our proposed method using RBMs with L1 penalty can achieve

both fast and accurate learning of the large Q-matrices in different types of CDMs.

This is shown by both the theoretical proofs developed in Section 2.2.3 and the

simulation studies carried out in Section 2.4. The real data analysis on TIMSS data
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set further suggests that our method can also work well in real world scenarios, and

thus it would provide a powerful tool in large-scale exploratory cognitive diagnosis

assessments.

We discuss some potential use cases of our proposed method. One potential use

case is to provide a reasonably accurate Q-matrix for cognitive diagnoses such as

latent attribute classifications, when no Q-matrix or only an inaccurately specified

Q-matrix is available. Depending on the accuracy requirements, the estimated Q-

matrix can either be used directly in CDMs to perform latent attribute classifications

or can serve as a starting point for domain experts for further refinement before use.

Another potential use case is to provide a Q-matrix estimate for test item catego-

rizations and enabling efficient design for future assessments. Similarly, whether the

estimated Q-matrix can be used directly depends on the accuracy requirements in

different real settings. To add reliability and confidence for direct usage, goodness-

of-fit measures such as AIC or BIC can always be evaluated and compared between

the estimated Q-matrix and the potentially inaccurate specified Q-matrix if it is

available, as a first step. If the goodness-of-fit of the estimated Q-matrix is bad,

then either the model used is not appropriate or the estimated Q-matrix is inaccu-

rate. In these cases, consultation to domain experts is still necessary. Nevertheless,

our proposed method may help reduce the burden placed on the experts. Based on

the estimated Q-matrix, if one finds out that additional items with specific q-vectors

need to be included in the test, then it is likely such an item is indeed missing from

the original test design. In this scenario, we recommend to include the additional

item into the test design to keep safe. Furthermore, in the case when the accuracy
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requirement is exceptionally high, our proposed method can still help. In this sce-

nario, we recommend to set the penalty term to be 0 and apply CD Algorithm 1

to train the original RBM on the whole data set to obtain Ŵ . Then for each item

j, experts can rank {|ŵjk| : k = 1, ..., K} in a descending order first and pay more

attention to those ŵjk with large absolute values as those correspond to the qjk that

are most likely to be 1’s.

Note that by initializing the RBM parametersW , b and c randomly, the proposed

estimation method assumes no prior knowledge of the Q-matrix. In practice, we may

have partial knowledge of the Q-matrix, using which we could potentially obtain a

better initialization of the parameters. For example, we may have a pre-specified

Q-matrix design with possible mis-specifications in some entries; in such cases, we

can initialize the weight matrix W and the visible bias vector b based on our prior

knowledge of the Q-matrix. Note that wj,k in W correspond to δj,kqj,k in the ACDM.

From the initialization perspective, we find what affects the learning accuracy most

significantly are the signs of the initial values. So, to keep things simple, we can

initialize W with the partially available Q-matrix directly. For the visible biases, if

the underlying model is believed to be the DINA model, by considering α = 0, we

can derive bj = log(gj/(1 − gj)). Under the ACDM or the GDINA model, we can

obtain bj = log(δj,0/(1− δj,0)) using a similar argument. Though we do not know gj

or δj,0 in reality, very likely these values are between 0 and 0.5, in which case bj < 0.

It is therefore reasonable to initialize each bj from a Uniform(−5, 0) distribution.

This would help improve the estimation accuracy.

Some limitations of our method include it does not take into account the inter-
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actions between the latent attributes due to the assumptions imposed on RBMs. In

many real world scenarios, it is not uncommon that the latent attributes interact with

one another and have joint effects on the distribution of the observed responses. One

potential way to solve this problem is to apply deep Boltzmann machines (DBMs)

to model the distribution of the responses. Since DBMs allow interactions between

the latent attributes, it will capture the interactions between the latent attributes

and take that into account. Moreover, this work focuses more on the estimation part

while inference on the estimated Q-matrix is not discussed. It would be interesting to

pin down the asymptotic distributional form of this Q-matrix estimator to facilitate

inferences such as hypothesis testing and constructing confidence intervals.
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CHAPTER III

Statistical Inference for Noisy Binary Matrix

Completion

3.1 Introduction

Noisy low-rank matrix completion is concerned with the recovery of a low-rank

matrix when only a fraction of noisy entries are observed. This topic has received

much attention in the past decade, as a result of its vast applications in practical

contexts such as collaborative filtering (Goldberg et al., 1992), system identification

(Liu and Vandenberghe, 2010) and sensor localisation (Biswas et al., 2006). While

the majority of the literature considers the completion of real-valued observations

(Candès and Recht , 2009; Candès and Tao, 2010; Keshavan et al., 2010; Koltchinskii

et al., 2011; Negahban and Wainwright , 2012; Chen et al., 2020a), many practical

problems involve categorical-valued matrices, such as the famous Netflix challenge.

Several works have been done on the completion of categorical matrix, including

Davenport et al. (2014) and Bhaskar and Javanmard (2015) for binary matrix, and
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Klopp et al. (2015) and Bhaskar (2016) for categorical matrix, whose entries can

take multiple discrete values. In these works, low-dimensional nonlinear probabilistic

models are assumed to handle the categorical data.

Despite the importance of uncertainty quantification to matrix completion, most

of the matrix completion literature focus on point estimation and prediction, while

statistical inference has received attention only recently. Specifically, Chen et al.

(2019a) and Xia and Yuan (2021) considered statistical inference under the linear

models and derived asymptotic normality results. The statistical inference for cate-

gorical matrices is more challenging due to the involvement of nonlinear models. To

our best knowledge, no work has been done to provide statistical inference for the

completion of categorical matrices. In addition to nonlinearity, another challenge

in modern theoretical analysis of matrix completion concerns the double asymptotic

regime where both the numbers of rows and columns are allowed to grow to infinity.

Under this asymptotic regime, both the dimension of the parameters and the number

of observable entries grow with the numbers of rows and columns. However, exist-

ing theory on the statistical inference for diverging number of parameters (Portnoy ,

1988; He and Shao, 2000; Wang , 2011) is not directly applicable, as the dimension

of the parameter space in the current problem grows faster than that is typically

needed for asymptotic normality; see Section 3.3 for further discussions.

In this chapter, we move one step further towards the statistical inference for the

completion of categorical matrix. Specifically, we consider the inference for binary

matrix completion under a unidimensional nonlinear factor analysis model with the

logit link. Such a nonlinear factor model is one of the most popular models for
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multivariate binary data, having received much attention from the theoretical per-

spective (Andersen, 1970; Haberman, 1977; Lindsay et al., 1991; Rice, 2004), as well

as wide applications in various areas, including educational testing (van der Linden

and Hambleton, 2013), word acquisition analysis (Kidwell et al., 2011), syntactic

comprehension (Gutman et al., 2011), and analysis of health outcomes (Hagquist

and Andrich, 2017). It is also referred to as the Rasch model (Rasch, 1960) in psy-

chometrics literature. Despite the popularity and extensive research of the model,

its use to binary matrix completion and related statistical inferences for the latent

factors and model parameters have not been explored. The considered nonlinear

factor model is also closely related to the Bradley-Terry model (Bradley and Terry ,

1952; Simons and Yao, 1999; Han et al., 2020) for directed random graphs and the

β-model (Chatterjee et al., 2011; Rinaldo et al., 2013) for undirected random graphs.

In fact, the considered model can be viewed as a Bradley-Terry model or β-model

for bipartite graphs (Rinaldo et al., 2013). However, the analysis of bipartite graphs

is more involved, for which the results and proof strategies in the existing works no

longer apply and new technical tools are needed.

Specifically, we introduce a likelihood-based estimator under the nonlinear factor

analysis model for binary matrix completion. Under a very flexible missing-entry set-

ting that does not require a random sampling scheme, asymptotic normality results

are established that allow us to draw statistical inference. These results suggest that

our estimator is asymptotically efficient and optimal, in the sense that the Cramer-

Rao lower bound is achieved for model parameters. The proposed method and theory

are applied to two real-world problems including (1) linking two forms of a college
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admission test that have common items and (2) linking the voting records from mul-

tiple years in the United States senate. In the first application, the proposed method

allows us to answer the question “for subjects A and B who took different test forms,

would subject A perform significantly better than subject B, if they had taken the

same test form?”. In the second application, it can answer the questions such as “Is

Republican senator Marco Rubio significantly more conservative than Republican

senator Judd Gregg?”. Note that Marco Rubio and Judd Gregg had not served in

the United States senate at the same time. We point out that the entry missing-

ness in these applications does not satisfy the commonly assumed random sampling

schemes for matrix completion.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the

considered Rasch model and discuss its application to binary matrix completion.

In Section 3.3, we establish the asymptotic normality for the maximum likelihood

estimator. A simulation study is given in Section 3.4 and two real-data applications

are presented in Section 3.5. We conclude with discussions on the limitations of the

current work and future directions in Section 3.6. The materials of this chapter are

mainly based on Chen et al. (2021b).

3.2 Model and Estimation

Let Y be a binary matrix with N rows and J columns and Yij ∈ {0, 1} be the

entries of Y , i = 1, ..., N , and j = 1, ..., J . Some entries of Y are not observable.

We use zij to indicate the missing status of entry Yij, where zij = 1 indicates that

Yij is observed and zij = 0 otherwise. We let Z = (zij)N×J be the indicator matrix
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for data missingness. The main goal of binary matrix completion is to estimate

E(Yij|zij = 0).

This problem is typically tackled under a probabilistic model (see e.g., Cai and

Zhou, 2013; Davenport et al., 2014; Bhaskar and Javanmard , 2015), which assumes

that Yij, i = 1, ..., N , j = 1, ..., J , are independent Bernoulli random variables, with

success probability exp(mij)/{1 + exp(mij)} or Φ(mij), where mij is a real-valued

parameter and Φ is the cumulative distribution function of the standard normal dis-

tribution. It is further assumed that the matrix M = (mij)N×J is either exactly

low-rank or approximately low-rank, where the approximate low-rankness is mea-

sured by the nuclear norm of M . Finally, a random sampling scheme is typically

assumed for zij. For example, Davenport et al. (2014) considered a uniform sampling

scheme where zij are independent and identically distributed Bernoulli random vari-

ables, and Cai and Zhou (2013) considered a non-uniform sampling scheme. Under

such a random sampling scheme, Z and Y are assumed to be independent and thus

data missingness is ignorable.

It is of interest to draw statistical inference on linear forms of M , including

the inference of individual entries of M . This is a challenging problem under the

above general setting for binary matrix completion, largely due to the presence of

a non-linear link function. In particular, the existing results on the inference for

matrix completion as established in Xia and Yuan (2021) and Chen et al. (2019a)

are under a linear model that observes mij + ϵij for the non-missing entries, where

ϵij are mean-zero independent errors. Their analyses cannot be directly applied to

non-linear models.
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As the first inference work of binary matrix completion with non-linear models,

we start with a basic setting in which we assume the success probability takes a

logistic form of M and each mij depends on a row effect and a column effect only.

Asymptotic normality results are then established for the inference ofM . Specifically,

this model assumes that

(1) given M , Yij, i = 1, ..., N , j = 1, ..., J , are independent Bernoulli random

variables whose distributions do not depend on the missing indicators Z,

(2) the success probability for Yij is assumed to be exp(mij)/{1 + exp(mij)} that

follows a logistic link,

(3) M has the model parameterization that mij = θi − βj.

In the rest, θi and βj will be referred to as the row and column parameters, respec-

tively. This parameterization allows the success probability of each entry to depend

on both a row effect and a column effect. We now introduce two real-world applica-

tion examples and discuss the interpretations of the row and column parameters in

these applications.

Example III.1. In educational testing, each row of the data matrix represents

an subject and each column represents an item (i.e., exam question). Each binary

entry Yij records whether subject i correctly answers item j. The row parameter θi is

interpreted as the ability of subject i, which is an individual-specific latent score, and

the column parameter βj is interpreted as the difficulty of item j, as the probability

of correctly answering an item increases with one’s ability θi and decreases with the

difficulty level βj of the item.
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In Section 3.5, we apply the considered model to link two forms of an educational

test, an important practical issue in educational assessment (Kolen and Brennan,

2014). That is, consider two groups of subjects taking two different forms of an edu-

cational test, where the two forms share some common items but not all, resulting in

missingness of the data matrix. As the two test forms may have different difficulty

levels, it is usually not fair to directly compare the total scores of two students who

take different forms. The proposed method allows us to compare subjects’ perfor-

mance as if they had taken the same test form and to also quantify the estimation

uncertainty.

Example III.2. Consider senators’ roll call voting records in the United States sen-

ate, and in this application, each row of the data matrix corresponds to a senator

and each column corresponds to a bill voted in the senate. Each binary response Yij

records whether the senator voted for or against the bill. It has been well recognized

in the political science literature (Poole et al., 1991; Poole and Rosenthal , 1991) that

senate voting behavior is essentially unidimensional, though slightly different latent

variable models are used in that literature. That is, it is believed that senators’

voting behavior is driven by a unidimensional latent factor, often interpreted as the

conservative-liberal political ideology. Moreover, it is a consensus that the Repub-

lican senators tend to lie on the conservative side of the factor and the Democratic

senators tend to lie on the liberal side, though there are sometimes a very small

number of exceptions. To apply the our method to senators’ roll call voting records,

we pre-process the data as follows. If bill j is more supported by the Republican

party than the Democratic party and senator i voted for the bill, then we let Yij = 1.
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If bill j is more supported by the Democratic party and senator i voted against the

bill, we let Yij = 1. Otherwise, Yij = 0. More details about this data pre-processing

can be found in Section 3.5. Under the considered model, the row parameter may

be interpreted as the conservativeness score of senator i. That is, the higher the

conservativeness score of a senator, the higher chance for him/her to support a bill

favored by the Republican party and to vote against a bill favored by the Democratic

party. The column parameter characterizes the bill effect.

In Section 3.5, we apply the model to link the roll call voting records from mul-

tiple years, where different senators serve different terms in the senate, resulting in

missingness of the data matrix. The model allows us to compare senators in terms of

their conservative-liberal political ideology, even if they have not served in the senate

at the same time.

As mentioned previously, the considered nonlinear factor model can also be

viewed as a Bradley-Terry model (Bradley and Terry , 1952) for directed graphs

that is commonly used for modeling pairwise comparisons. In Remark III.3 below,

we discuss this connection and explain the reason why the existing result such as

Han et al. (2020) does not apply to the current setting.

Remark III.3. Data Y under our model setting can be viewed as a bipartite graph

with N + J nodes. Its adjacency matrix takes the form

 NAN,N Y

(1N,J − Y )T NAJ,J

 , (3.1)

where NAN,N and NAJ,J are two matrices whose entries are missing and 1N,J is a
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matrix with all entries being 1. We let the value of 1−Yij be missing if Yij is missing

(i.e., zij = 0). Such a directed graph can be modeled by the Bradley-Terry model;

see Bradley and Terry (1952). In Han et al. (2020), asymptotic normality results

are established for n-by-n adjacency matrices that follow the Bradley-Terry model

when the graph size n grows to infinity. However, Han et al. (2020) only consider a

uniformly missing setting. That is, the probability that the edges between two nodes

are missing is assumed to be the same for all pairs of nodes. This assumption is

not satisfied for the adjacency matrix (3.1), due to the two missing matrices on the

diagonal. In fact, the asymptotic analysis under the current setting is more involved,

due to the need of simultaneously considering two indices N and J and the increased

complexity in approximating the asymptotic variance of model parameters.

Given data {Yij : zij = 1, i = 1, ..., N, j = 1, ..., J}, the log-likelihood function for

parameters θ = (θ1, ..., θN)
T and β = (β1, ..., βJ)

T takes the form

l(θ, β) =
∑

i,j:zij=1

[Yij(θi − βj)− log{1 + exp(θi − βj)}] . (3.2)

The identifiability of parameters θ and β is subject to a location shift. That is, the

distribution of data remains unchanged, if we add a common constant to all the θi

and βj, as the likelihood function in (3.2) only depends on the all differences θi−βj.

To avoid ambiguity, we require
∑N

i=1 θi = 0 in the rest. We point out that this

requirement does not play a role when we draw inference about any linear form of

M , as the location shift of θ and β does not affect the value of M . We estimate θ

69



and β by the maximum likelihood estimator

(θ̂, β̂) = argmax
θ,β

l(θ, β), s.t.,
N∑
i=1

θi = 0. (3.3)

The maximum likelihood estimator of θ and β further leads to the maximum like-

lihood estimator of M , m̂ij = θ̂i − β̂j. It is easy to see that (3.3) is a convex

optimization problem. Thanks to the low-rank structure of M , this problem can

be efficiently solved by performing alternating maximization, as often used for esti-

mating low-rank matrices (Chen et al., 2019b, 2020b; Udell et al., 2016). Such an

algorithm is implemented for the numerical studies, whose details are provided in

Algorithm 2 below.

3.3 Statistical Inference

In this section, we consider the statistical inference of any linear form of M .

Specifically, we use g : RN×J 7→ R to denote a linear function of M that takes the

form

g(M) =
N∑
i=1

J∑
j=1

wijmij, (3.4)

where the weights wij are pre-specified. It is straightforward that a point estimate of

g(M) is given by g(M̂) =
∑N

i=1

∑J
j=1wijm̂ij. Our goal is to establish the asymptotic

normality for g(M̂), based on which we can test hypothesis about g(M) or construct

confidence intervals. We provide two examples of g(M) that may be of interest in

practice.
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Algorithm 2: Alternating Gradient Ascent Algorithm

Input: Partially observed data matrix Y , learning rate γ, tolerance
threshold tol.

Output: Estimates θ̂, β̂.
Initialize θ(0) = {θ(0)i : i = 1, ..., N}, β(0) = {β(0)

j : j = 1, ..., J}
with θ

(0)
i , β

(0)
j ∼ Uniform(−c, c), i = 1, ..., N, j = 1, ..., J ,

JML(0) = 0,

JML(1) =
∑

i,j:zij=1

(
yij
{
θ
(0)
i − β

(0)
j

}
− log

[
1 + exp

{
θ
(0)
i − β

(0)
j

}])
;

while JML(1)−JML(0) > tol do
JML(0) =JML(1);
for i = 1, . . . , N do

θ
(1)
i ← θ

(0)
i + γ

(∑J
j:zij=1

[
yij −

{
eθ

(0)
i −β

(0)
j

}
/
{
1 + eθ

(0)
i −β

(0)
j

}])
;

end
for j = 1, . . . , J do

β
(1)
j ← β

(0)
j + γ

(∑N
i:zij=1

[
yij +

{
eθ

(1)
i −β

(0)
j

}
/
{
1 + eθ

(1)
i −β

(0)
j

}])
;

end

θ(1) = θ(1) −N−1
∑N

i=1 θ
(1)
i ;

β(1) = β(1) −N−1
∑N

i=1 θ
(1)
i ;

JML(1) =
∑

i,j:zij=1

(
yij
{
θ
(1)
i − β

(1)
j

}
− log

[
1 + exp

{
θ
(1)
i − β

(1)
j

}])
;

θ(0) = θ(1);

β(0) = β(1);
end

Example III.4. Consider g(M) = mij for entry (i, j) that is not observed, i.e.,

zij = 0. The asymptotic normality of m̂ij allows us to quantify the uncertainty in

our prediction exp(m̂ij)/{1 + exp(m̂ij)} of the unobserved entry.

Example III.5. Consider g(M) =
∑J

j=1(mij −mi′j)/J = θi− θi′ , that is of interest

in both educational testing and ranking. If we interpret the model as the Rasch

model in educational testing, then θi can be regarded as subject i’s ability level.

Subject i is more likely to answer any question correctly than subject i′ if θi > θi′ ,
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and vise versa. Therefore, even when two subjects do not answer the same test form,

the statistical inference of this quantity will allow us to compare their performance

and further quantify the uncertainty in this comparison. On the other hand, if we

draw connections to Bradley-Terry model in ranking, then θi can be interpreted as

subject i’s ranking criteria. The statistical inference on (θi−θi′) for any combination

of i, i′ would allow us to quantify the uncertainty in the rankings of all N subjects.

We first establish the existence and consistency for M , θ, and β. We denote

J∗ = min
{ J∑

j=1

zij : i = 1, ..., N
}
and J∗ = max

{ J∑
j=1

zij : i = 1, ..., N
}

as the minimum and maximum numbers of observed entries per row, respectively.

Similarly, we denote

N∗ = min
{ N∑

i=1

zij : j = 1, ..., J
}
and N∗ = max

{ N∑
i=1

zij : j = 1, ..., J
}

as the minimum and maximum numbers of observed entries per column, respectively.

Let ∥x∥∞ = max{|xi| : i = 1, ..., n} be the infinity norm of a vector x = (x1, ..., xn)
T .

Let θ∗, β∗ and M∗ be the true values of θ, β and M , respectively. Without loss of

generality, we assume N ≥ J. For simplicity, we also assume N∗ > J∗ and N∗ > J∗.

The following conditions are required.

Condition III.6. As N and J grow to infinity, the following are satisfied:

(a) There exists a constant k > 0, such that N∗ ≥ kN2/3 and J∗ ≥ kJ2/3;

(b) (J∗)
−1(logN) converge to 0;
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(c) There exist positive constants k1 and k2 such that k1J∗ ≤ J∗ ≤ k2J∗.

Condition III.7. There exists a constant c <∞ such that ∥θ∗∥∞ < c and ∥β∗∥∞ <

c.

Condition III.8. For any (i, j), there exists 1 ≤ i1, i2, ..., ik ≤ N and 1 ≤ j1, j2, ..., jk ≤

J such that zij1 = zi1j1 = zi1j2 = zi2j2 = ... = zikjk = zikj = 1.

We provide some discussions on Conditions III.6 and III.8. Condition III.6(a) re-

quires the number of observations for each parameter to grow to infinity at a suitable

rate. Under this requirement, the proportion of observable entries is allowed to decay

to zero at the rate (NJ)−
1
3 . Condition III.6(b) is a very mild technical condition that

requires J∗ to grow faster than log(N). Condition III.6(c) requires that J∗ and J∗

are of the same order. This assumption essentially requires a balanced missing data

pattern that has a similar spirit as the random sampling regimes for missingness

adopted in Cai and Zhou (2013) and Davenport et al. (2014). Condition III.8 is

necessary and sufficient for the identifiability of θ and β; see Proposition III.9 for a

formal statement.

Proposition III.9. If Condition III.8 holds, then θ and β are uniquely determined

by equations
∑N

i=1 θi = 0 and θi − βj = mij, i = 1, ..., N, j = 1, ..., J , for which

zij = 1.

If Condition III.8 does not hold, then there exists (θ̃, β̃) ̸= (θ, β), such that∑N
i=1 θ̃i = 0,

∑N
i=1 θi = 0, and θi − βj = θ̃i − β̃j, i = 1, ..., N, j = 1, ..., J, zij = 1.

Theorem III.10 below guarantees the existence and consistency of the maximum

likelihood estimator, when both N and J grow to infinity.
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Theorem III.10. Assume Conditions III.6, III.7 and III.8 hold. Then, as N, J

grow to infinity, maximum likelihood estimator (θ̂, β̂) exists, with probability tending

to 1. Furthermore, as N and J grow to infinity, we have

∥θ̂ − θ∗∥∞ = Op

{
(logN)

1
2J

− 1
2

∗
}
, ∥β̂ − β∗∥∞ = Op

{
(log J)

1
2N

− 1
2

∗
}
,

and

max
i,j
|m̂ij −m∗

ij| = Op

{
(log J)

1
2N

− 1
2

∗ + (logN)
1
2J

− 1
2

∗
}
.

To state the asymptotic normality result for g(M̂), we reexpress

g(M) = wT
g θ + w̃T

g β,

where wg = (wg1, · · · , wgN)
T and w̃g = (w̃g1, · · · , w̃gJ)

T . Note that this expression

always exists, by letting wgi =
∑J

j=1wij and w̃gj = −
∑N

i=1 wij. We introduce some

notations. Let σ2
ij = var(Yij) = exp(θ∗i − β∗

j )/{1+ exp(θ∗i − β∗
j )}2, σ2

i+ =
∑J

j=1 zijσ
2
ij,

and σ2
+j =

∑N
i=1 zijσ

2
ij. Further denote σ̂2

ij = exp(θ̂i − β̂j)/{1 + exp(θ̂i − β̂j)}2, σ̂2
i+ =∑J

j=1 zijσ̂
2
ij, and σ̂2

+j =
∑N

i=1 zijσ̂
2
ij to be the corresponding plug-in estimates. We use

∥ · ∥1 to denote the L1 norm of a vector. The result is summarized in Theorem III.11

below.

Theorem III.11. Assume Conditions III.6, III.7 and III.8 hold and J−2
∗ N∗(logN)2 →

0 as N →∞. Consider a linear function g(M) = wT
g θ + w̃T

g β with g(M) ̸= 0. Fur-

ther suppose that there exists a constant C > 0 such that ∥wg∥1 < C and ∥w̃g∥1 < C.
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Then

σ̃(g)−1
{
g(M̂)− g(M∗)

}
→ N(0, 1) in distribution,

where σ̃2(g) =
∑N

i=1w
2
gi(σ

2
i+)

−1 +
∑J

j=1 w̃
2
gj(σ

2
+j)

−1.

Moreover, σ̃(g) can be replaced by its plug-in estimator, i.e.,

σ̂(g)−1
{
g(M̂)− g(M∗)

}
→ N(0, 1) in distribution, (3.5)

where σ̂2(g) =
∑N

i=1w
2
gi(σ̂

2
i+)

−1 +
∑J

j=1 w̃
2
gj(σ̂

2
+j)

−1.

We now discuss the implications of Theorem III.11. For each θi, var(θ̂i) =

(σ2
i+)

−1
{
1 + o(1)

}
. It is worth noting that by the classical theory for maximum

likelihood estimation, (σ2
i+)

−1 is the Cramer-Rao lower bound for the estimation of

θi, when the column parameters β are known. Thus, the result of Theorem III.11

implies that θ̂i is an asymptotically optimal estimator for θi. Similarly, for each

βj, var(β̂j) = (σ2
+j)

−1
{
1 + o(1)

}
, which also achieves the Cramer-Rao lower bound

asymptotically, when the row parameters θ are known. Moreover, var(m̂ij) = var(θ̂i−

β̂j) =
{
(σ2

i+)
−1 + (σ2

+j)
−1
}{

1 + o(1)
}
. We end this section with a remark.

Remark III.12. The derived asymptotic theory is different from that for non-linear

regression models of increasing dimensions that has been studied in Portnoy (1988),

He and Shao (2000) and Wang (2011). To achieve asymptotic normality under the

setting of these works, one at least requires the number of observations to grow faster

than the square of the number of parameters. Under the setting of the current work,

the model has N + J − 1 free parameters, while the number of observed entries is

allowed to grow as slow as O((NJ)
2
3 ), which is much slower than (N +J −1)2. Even
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when there is no missing entries, the number of observed entries is NJ which does

not grow as fast as (N + J − 1)2.

3.4 Simulation Study

We study the finite-sample performance of the likelihood-based estimator. We

consider two settings: (1) N = 5000 and J = 200, and (2) N = 10000 and J = 400.

Missing data are generated under a block-wise design. That is, we split the rows into

five equal-sized clusters and the columns into four equal-sized clusters. We let each

row cluster correspond to the columns from a distinct combination of two column

clusters. Rows from the same cluster have the same missing pattern. Specifically,

their entries are observable and only observable, on the columns that this row cluster

correspond to. This missing data pattern can be illustrated by a five-by-four block-

wise matrix {(1, 0, 0, 1, 0)T , (1, 1, 0, 0, 1)T , (0, 1, 1, 1, 0)T , (0, 0, 1, 0, 1)T}, where 1 and 0

represent a submatrix with zij = 1 and 0, respectively. An illustration of the missing

pattern Z is illustrated in Figure 3.1. Under the first setting, N∗ = 2000, N∗ = 3000,

and J∗ = J∗ = 100. Under the second setting, N∗ = 4000, N∗ = 6000, and J∗ =

J∗ = 200. For each setting, θ is simulated from a uniform distribution over the space

{x = (x1, ..., xN)
T :

∑N
i=1 xi = 0,−2 ≤ xi ≤ 2}, and β is obtained by simulating

βj independently from the uniform distribution over the interval [−2, 2]. For each

setting, 2000 independent datasets are generated from the considered model.
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Figure 3.1: Heat map of Z. The black and white regions correspond to zij = 1 and
0, respectively.

Under setting (1), the mean squared estimation errors for M , θ and β are 0.067,

0.064 and 0.0028, respectively, across all relevant entries and all 2000 independent

samples. Under setting (2), these values read 0.033, 0.031 and 0.0013, respectively.

Unsurprisingly, increasing sample sizes can improve estimation accuracy.

We then examine the variance approximation in Theorem III.11. We compare

σ̂2(g), σ̃2(g) and s2(g), where s2(g) denotes the sample variance of g(M̂) that is

calculated based on the 2000 simulations. As σ̂2(g) varies across the datasets, we

calculate σ̄2(g) as the average of σ̂2(g) over 2000 simulated datasets. We consider

functions g(M) = mij, θi, βj, i = 1, ..., N, j = 1, ..., J . The results are given in

Figure 3.2, where panels (a)-(c) show the scatter plots of s2(g) against σ̄2(g) and

panels (d)-(f) show those of s2(g) against σ̃2(g). These plots suggest that σ̄2(g),

σ̃2(g), and s2(g) are close to each other, for the specific forms of g that are examined.
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Figure 3.2: Panels (a)-(c) plot s2(g) against σ̄2(g) for g(M) = mij, θi, and βj,
respectively. Panels (d)-(f) plot s2(g) against σ̃2(g) for g(M) = mij, θi and βj,
respectively. Each panel shows 100 randomly sampled mij, θi, or βj under each
setting. The line y = x is given as a reference.

To validate asymptotic normality, we compare the empirical densities of the 2000

sample estimates of m11, θ1 and β1 against their respective theoretical normal density

curves in Figure 3.3 for illustration. We can observe from Figure 3.3 that the em-

pirical distributions of the estimates agree well with their corresponding theoretical

distributions.
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Figure 3.3: Panels (a)-(c) presents the empirical densities (histograms) of m̂11, θ̂1 and
β̂1 under setting (1), respectively, out of 2000 simulations. Panels (e)-(g) presents the
empirical densities of m̂11, θ̂1 and β̂1 under setting (2), respectively, out of 2000 sim-
ulations. The curves are theoretical density curves of N(m11, σ̃

2(m11)), N(θ1, σ̃
2(θ1))

and N(β1, σ̃
2(β1)), respectively, included as references.

Furthermore, for each mij, θi, and βj, we construct its 95% Wald interval based

on (3.5), for which the empirical coverage based on 2000 independent replications is

computed. This result is shown in Figure 3.4, where the two panels correspond to

the two simulation settings, respectively. In each panel, the three box-plots show the

empirical coverage probabilities for entries of M , θ, and β, respectively. As we can

see, all these empirical coverage probabilities are close to the nominal level 95%.
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Figure 3.4: Panels (a) and (b) show the empirical coverage rates for the 95% Wald
intervals under settings (1) and (2), respectively.

3.5 Real-data Applications

In what follows, we consider two real-data applications.

3.5.1 Application to Educational Testing

We first apply the proposed method to link two forms of an educational test

that share common items. The dataset is a benchmark dataset for studying linking

methods for educational testing (González and Wiberg , 2017). It contains binary

responses from two forms of a college admission test. Each form has 120 items and

is answered by 2000 subjects. There are 40 common items shared by the two test

forms. There is no missing data within each test. Thus, N = 4000, J = 200, and

40% of the data entries are missing. We apply the proposed method to this dataset.

Making use of Theorem III.11, 95% confidence intervals are obtained for both the row

(i.e., person) parameters and the column (i.e., item) parameters. The results allow

us to compare students who took different test forms, as well as non-common items
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from the two forms. For illustration, we randomly choose 100 row parameters and

100 column parameters and show their 95% confidence intervals in Figure 3.5. Such

uncertainty quantification can be vital for colleges when making admission decisions.
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Figure 3.5: (a) 95% confidence intervals of 100 row parameters, with 50 randomly
selected from each group. (b) 95% confidence intervals of the 100 column parameters,
with 40 each randomly chosen from group 1 and group 2 and 20 randomly selected
from anchor items (i.e., common items).

3.5.2 Application to Senate Voting

We now apply the proposed method to the United States senate roll call voting

data. Data are from the 111th through the 113th congress that include the voting

records from January 11, 2009 to December 16, 2014. Quite a few senators did not

serve for the entire period.

To apply our method to senators’ roll call voting records with θi being interpreted

as the conservativeness score of senator i, we pre-process the data as follows. First,

five senators who did not serve for more than half a year during the period are

removed from the dataset, including Edward M. Kennedy, Joe Biden, Hilary Clinton,

Julia Salazar and Carte Goodwin. Second, 191 bills are removed, as all the observed
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votes to each of these bills are the same and consequently their maximum likelihood

estimates do not exist. After these two steps, the resulting dataset contains N =

139 senators and J = 1648 bills. Finally, for bill j that has a higher percentage

support within the Republican party than that within the Democratic party, we let

Yij = 1 if senator i voted for the bill and Yij = 0 if senator i voted against it. For

bill j that has a higher percentage support within the Democratic party than that

within the Republican party, we let Yij = 1 if senator i voted against the bill and

Yij = 0 if he/she voted for it. The value of Yij is missing, if the senator chose not

to vote or he/she was not in the senate when this bill was voted. For the final data

being analyzed, the proportion of missing entries is 26.1% and the connectedness

Condition III.8 is satisfied. The missingness pattern of the dataset is given in Figure

3.6. Note that in this example, N < J . However, our asymptotic results are still

applicable if we simply switch the roles of N and J in the required conditions.

Our asymptotic results allow us to compare senators’ ideological position, even

if they did not serve in the senate at the same time. For example, Judd Gregg

served in the senate between January 3, 1993 and January 3, 2011, while Marco

Rubio started his first term as a senator since January 3, 2011. In our model, Judd

Gregg (θi) and Marco Rubio (θk) have estimated conservativeness scores of 2.59 and

4.25, respectively. Applying our asymptotic results, we have θ̂i− θ̂k = −1.66 and its

standard error is 0.169. If we test H0 : θi = θk against H1 : θi ̸= θk, we obtain an

extremely small p-value of 9.0 × 10−23. Therefore, we conclude that senator Marco

Rubio is significantly more conservative than senator Judd Gregg.

In addition, we present in Tables 3.1 and 3.2 the ten senators with the largest

82



row parameter estimates, and the ten senators with the smallest row parameter

estimates. These results align well with the public perceptions about these senators.

For example, Jim Demint, who is ranked the most conservative senator in this dataset

by our method, was also identified by Salon as one of the most conservative members

of the senate (Kornacki , 2011). Our method ranks Mike Lee the second, though his

conservativeness score is not significantly different from that of Demint. In fact, in

2017, the New York Times used the NOMINATE system (Poole and Rosenthal , 2001)

to arrange Republican senators by ideology and ranked Lee as the most conservative

member of the Senate (Parlapiano et al., 2017). For another example, Brian Schatz

who is ranked to be the most liberal senator by our method, is well-known as a liberal

Democrat. During his time in the senate, he voted with the Democratic party on

most issues.

Finally, the 95% confidence intervals for all the row parameters are shown in

Figure 3.7 and a full list of rankings for all the 139 senators is given in the Appendix

section, where the corresponding row parameter estimates and their standard errors

are also presented.

Figure 3.6: Heat map of Z. The black and white regions correspond to zij = 1 and
0, respectively.
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Table 3.1: Ranking of the top 10 most conservative senators predicted by the model.
Rep and Dem represent the Republican party and the Democratic party, respectively.

Rank Senator (party) State Conservativeness Score (s.e.(θ̂))
1 Jim DeMint (Rep) South Carolina 5.87 (0.157)
2 Mike Lee (Rep) Utah 5.73 (0.138)
3 Ted Cruz (Rep) Texas 5.65 (0.195)
4 Tom Coburn (Rep) Oklahoma 5.25 (0.114)
5 Rand Paul (Rep) Kentucky 5.24 (0.129)
6 Tim Scott (Rep) South Carolina 5.17 (0.176)
7 Jim Bunning (Rep) Kentucky 4.92 (0.204)
8 Ron Johnson (Rep) Wisconsin 4.84 (0.119)
9 James Risch (Rep) Idaho 4.81 (0.102)
10 Jim Inhofe (Rep) Oklahoma 4.69 (0.103)

Table 3.2: Ranking of the top 10 most liberal senators predicted by the model. Rep
and Dem represent the Republican party and the Democratic party, respectively.

Rank Senator (party) State Conservativeness Score (s.e.(θ̂))
1 Brian Schatz (Dem) Hawaii -4.74 (0.468)
2 Roland Burris (Dem) Illinois -4.43 (0.297)
3 Mazie Hirono (Dem) Hawaii -4.17 (0.383)
4 Cory Booker (Dem) New Jersey -4.14 (0.572)
5 Tammy Baldwin (Dem) Wisconsin -3.90 (0.352)
6 Sherrod Brown (Dem) Ohio -3.89 (0.168)
7 Tom Udall (Dem) New Mexico -3.85 (0.165)
8 Dick Durbin (Dem) Illinois -3.83 (0.164)
9 Ben Cardin (Dem) Maryland -3.82 (0.163)
10 Sheldon Whitehouse (Dem) Rhode Island -3.74 (0.163)
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Figure 3.7: 95% confidence intervals of 139 row (i.e. senator) parameters in the
senate voting application.

3.6 Discussions

This chapter considers the statistical inference for binary matrix completion under

a unidimensional nonlinear factor model, the Rasch model. Asymptotic normality

results are established. Our results suggest that the maximum likelihood estimator is

statistically efficient, even though the number of parameters diverges. Our simulation

study shows that the developed asymptotic result provides a good approximation to

finite sample data, and two real-data examples demonstrate its usefulness in the

areas of educational testing and political science.

The current results can be easily extended to matrix completion problems with

quantized measurement that has a similar natural exponential family form. Admit-

tedly, the model considered may be oversimple for complex application problems, for
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example, certain collaborative filtering problems for which the rank of the underlying

matrix M may be higher than considered here and the underlying latent factors may

be multidimensional. The extension of the current results to more flexible models

is left for future investigation. As the first inference result for binary matrix com-

pletion, we believe the current results will shed light on the statistical inference for

more general matrix completion problems.
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CHAPTER IV

DIF Statistical Inference and Detection without

Knowing Anchoring Items

4.1 Introduction

Measurement invariance refers to psychometric equivalence of an instrument (e.g.,

a questionnaire or test) across several specified groups, such as gender and ethnicity.

The lack of measurement invariance suggests that the instrument has different struc-

tures or meanings to different groups, leading to biases in measurements (Millsap,

2012).

Measurement invariance is typically assessed by differential item functioning

(DIF) analysis of item response data that aims to detect the measurement non-

invariant items (i.e. DIF items). More precisely, a DIF item has a response distri-

bution that depends on not only the latent trait measured by the instrument but

also respondents’ group membership. Therefore, the detection of a DIF item involves

comparing the item responses of different groups, conditioning on the latent traits.
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The complexity of the problem lies in that individuals’ latent trait levels cannot be

directly observed but are measured by the instrument that may contain DIF items. In

addition, different groups may have different latent trait distributions. This problem

thus involves identifying the latent trait, and then conducting the group comparison

given individuals’ latent trait levels.

Many statistical methods have been developed for DIF analysis. Traditional

methods for DIF analysis require prior knowledge about a set of DIF-free items,

which is known as the anchor set. This anchor set is used to identify the latent trait

distribution. These methods can be classified into two categories. Methods in the

first category (Mantel and Haenszel , 1959; Dorans and Kulick , 1986; Swaminathan

and Rogers , 1990; Shealy and Stout , 1993; Zwick et al., 2000; Zwick and Thayer ,

2002; May , 2006; Soares et al., 2009; Frick et al., 2015) do not explicitly assume an

item response theory (IRT) model, and methods in the second category (Thissen,

1988; Lord , 1980; Kim et al., 1995; Raju, 1988, 1990; Cai et al., 2011; Woods et al.,

2013; Thissen, 2001; Oort , 1998; Steenkamp and Baumgartner , 1998; Cao et al.,

2017; Woods et al., 2013; Tay et al., 2015, 2016) are developed based on IRT mod-

els. Compared with non-IRT-based methods, an IRT-based method defines the DIF

problem more clearly, at the price of potential model mis-specification. Specifically,

an IRT model represents the latent trait as a latent variable and further character-

izes the item-specific DIF effects by modeling each item response distribution as a

function of the latent variable and group membership.

Anchor-set-based methods rely heavily on a correctly specified set of DIF-free

items. The mis-specification of some anchor items can lead to invalid statistical
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inference results (Kopf et al., 2015b). To address this issue, item purification meth-

ods (Candell and Drasgow , 1988; Clauser et al., 1993; Fidalgo et al., 2000; Wang

and Yeh, 2003; Wang and Su, 2004; Wang et al., 2009b; Kopf et al., 2015a,b) have

been proposed, which iteratively select an anchor set by stepwise model selection

methods. More recently, regularized estimation methods (Magis et al., 2015; Tutz

and Schauberger , 2015; Huang , 2018; Belzak and Bauer , 2020; Bauer et al., 2020;

Schauberger and Mair , 2020) have been proposed that use LASSO-type regularized

estimation procedures for simultaneous model selection and parameter estimation.

Moreover, Yuan et al. (2021) proposed a visualization method for the detection of

DIF under the Rasch model (Rasch, 1960). Their methods are based on testing

differential item pair functioning, which does not require prior information of an

anchor set. Unfortunately, unlike many anchor-set-based methods with a correctly

specified anchor set, all these methods do not provide valid statistical inference for

testing the null hypothesis of “item j is DIF-free”, for each item j. Consequently,

the type-I error for testing the hypothesis cannot be guaranteed to be controlled

at a pre-specified significance level. Furthermore, although the regularized estima-

tion methods have been shown to accurately detect DIF items, they are typically

computationally intensive, since they involve solving multiple regularized maximum

likelihood estimation problems with different tuning parameters.

This chapter proposes a new method that can statistically accurately and com-

putationally efficiently estimate the DIF effects without requiring prior knowledge.

It draws statistical inference on the DIF effects of individual items, yielding valid

confidence intervals and p-values. The point estimation and statistical inference lead
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to accurate detection of the DIF items, for which the type-I error of DIF detection

can be controlled by the inference results. The method is proposed under a 2PL IRT

measurement model. The key to this method is a minimal L1 norm assumption for

identifying the true model.

Two-Parameter Logistic Model

The 2PL model (Birnbaum, 1968) is widely used to model binary item responses (e.g.,

wrong/right or absent/present). In the absence of DIF, the 2PL model assumes a

logistic relationship between Yij and θi, which is independent of the value of xi. That

is,

P (Yij = 1|θi = θ) =
exp(ajθ + dj)

1 + exp(ajθ + dj)
, (4.1)

where the slope parameter aj and intercept parameter dj are typically known as the

discrimination and easiness parameters, respectively. The right hand side of (4.1) as

a function of θ is known as the 2PL item response function.

The rest of the chapter is organized as follows. The first part, as summarized in

Section 4.2, focuses on developing binary group DIF analysis methods. In specific,

Section 4.2.1 introduces the model setup with DIF effects. Section 4.2.2 introduces

the related literature to our proposed method, including the likelihood ratio test

method and the L1 regularization type of methods. In Section 4.2.3, a new method

is proposed for the statistical estimation and inference on binary group DIF effects.

Simulation studies and a real data application to EPQ-R data are given in Sec-

tions 4.2.4 and 4.2.5, respectively. The second part, as summarized in Section 4.3,

extends the results in the first part of the chapter to deal with multiple group DIF
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analysis, with an emphasis on the application to PISA 2018 data. In particular,

Section 4.3.1 specifies the model set-up of the intended setting to handle multiple

group DIF problem. Section 4.3.2 gives the details of our proposed estimation, infer-

ence and a group clustering method based on detected DIF structures. A succinct

simulation study is included in Section 4.3.3 and an in-depth analysis on the PISA

2018 data can be found in Section 4.3.4. Lastly, we conclude this chapter with some

discussions on the potential limitations and some future directions of this work. The

materials of this chapter are mainly based on Chen et al. (2021a).

4.2 Binary Group DIF Detection and Inference

Consider N individuals answering J items. Let Yij ∈ {0, 1} be a binary random

variable, denoting individual i’s response to item j. Let yij be the observed value,

i.e., the realization, of Yij. For the ease of exposition, we use Yi = (Yi1, ..., YiJ) to

denote the response vector of individual i. We assume the individuals are from two

groups, indicated by xi = 0, 1, where 0 and 1 are referred to as the reference and focal

groups, respectively. We further introduce a latent variable θi, which represents the

latent trait that the items are designed to measure. DIF occurs when the distribution

of Yi depends on not only θi but also xi. More precisely, DIF occurs if Yi is not

conditionally independent of xi, given θi. Seemingly a simple group comparison

problem, DIF analysis is non-trivial due to the latency of θi. In particular, the

distribution of θi may depend on the value of xi, which confounds the DIF analysis.
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4.2.1 Model Set-up

When the items potentially suffer from DIF, then the item response functions

may depend on the group membership xi. In that case, the item response function

can be modeled as follows,

P (Yij = 1|θi = θ, xi) =
exp(ajθ + dj + γjxi)

1 + exp(ajθ + dj + γjxi)
, (4.2)

where γj is an item-specific parameter that characterizes its DIF effect. More pre-

cisely,

P (Yij = 1|θi = θ, xi = 1)/(1− P (Yij = 1|θi = θ, xi = 1))

P (Yij = 1|θi = θ, xi = 0)/(1− P (Yij = 1|θi = θ, xi = 0))
= exp(γj).

That is, exp(γj) is the odds ratio for comparing two individuals from two groups who

have the same latent trait level. Item j is DIF-free under this model when γj = 0.

We further make the local independence assumption as in most IRT models. That

is, Yi1, ..., YiJ are assumed to be conditionally independent, given θi and xi.

We assume the conditional distribution of θi given xi to follow a normal distri-

bution,

θi|xi ∼ N(µxi, 1).

Note that the latent trait distribution for the reference group is set to a standard

normal distribution to identify the location and scale of the latent trait. A similar

assumption is typically adopted in IRT models for a single group of individuals.
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Figure 4.1: The path diagram of the proposed model for DIF analysis. The subscript
i is omitted for simplicity. The dashed lines from x to Yj indicate the DIF effects.

The marginal likelihood function for the proposed model takes the form

L(Ξ) =
N∏
i=1

∫ ( J∏
j=1

exp(yij(ajθ + dj + γjxi))

1 + exp(ajθ + dj + γjxi)

)
1√
2π

exp

(
−(θ − µxi)

2

2

)
dθ, (4.3)

where Ξ = {µ, aj, dj, γj, j = 1, ..., J} denotes all the fixed model parameters.

The goal of DIF analysis is to detect the DIF items, i.e., the items for which

γj ̸= 0. Unfortunately, without further assumptions, this problem is ill-posed due to

the non-identifiability of the model. We discuss this identifiabibility issue below.

Note that for any constant c, the model remains equivalent, if we simultaneously

replace µ and γj by µ + c and γj − ajc, respectively, and keep aj unchanged. This

identifiability issue is due to that all the items are allowed to suffer from DIF, result-

ing in an unidentified latent trait. In other words, without further assumptions, it is

impossible to disentangle the DIF effects and the difference between the two groups’

latent trait distributions.
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4.2.2 Related Works

Many of the IRT-based DIF analyses (Thissen et al., 1986; Thissen, 1988; Thissen

et al., 1993) require prior knowledge about a subset of DIF-free items, which are

known as the anchor items. More precisely, we denote this known subset by A.

Under the model described above, it implies that the constraints γj = 0 are imposed

for all j ∈ A in the estimation. With these zero constraints, the γj parameters cannot

be freely transformed, and thus, the model becomes identifiable. Therefore, for each

non-anchor item j /∈ A, the hypothesis of γj = 0 can be tested, for example, by a

likelihood ratio test. The DIF items can then be detected based on the statistical

inference of these hypothesis tests.

The validity of the anchor-item-based analyses relies on the assumption that the

anchor items are truly DIF-free. If the anchor set includes one or more DIF items,

then the results can be misleading (Kopf et al., 2015b). To address the issue brought

by the mis-specification of the anchor set, item purification methods (Candell and

Drasgow , 1988; Clauser et al., 1993; Fidalgo et al., 2000; Wang and Yeh, 2003;

Wang and Su, 2004; Wang et al., 2009b; Kopf et al., 2015b,a) have been proposed

that iteratively purify the anchor set. These methods conduct model selection using

a stepwise procedure to select the anchor set, implicitly assuming that there exists a

reasonably large set of DIF items. Then DIF is assessed by hypothesis testing given

the selected anchor set. This type of methods also has several limitations. First,

the model selection results may be sensitive to the choice of the initial set of anchor

items and the specific stepwise procedure (e.g., forward or backward selection), which

is a common issue with stepwise model selection procedures (e.g., stepwise variable
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selection for linear regression). Second, the model selection step has uncertainty. As

a result, there is no guarantee that the selected anchor set is completely DIF-free,

and furthermore, the post-selection statistical inference of items may not be valid

in the sense that the type-I error may not be controlled at the targeted significance

level.

Regularized estimation methods (Magis et al., 2015; Tutz and Schauberger , 2015;

Huang , 2018; Belzak and Bauer , 2020; Bauer et al., 2020; Schauberger and Mair ,

2020) have also been proposed for identifying the anchor items, which also implicitly

assumes that many items are DIF-free. These methods do not require prior knowl-

edge about anchor items, and simultaneously select the DIF-free items and estimate

the model parameters using a LASSO-type penalty (Tibshirani , 1996). A regularized

estimation procedure solves the following optimization problem,

Ξ̂λ = argmin
Ξ
− logL(Ξ) + λ

J∑
j=1

|γj|, (4.4)

where λ > 0 is a tuning parameter that determines the sparsity level of the estimated

γj parameters. Generally speaking, a larger value of λ leads to a more sparse vec-

tor γ̂λ = (γ̂λ
1 , ..., γ̂

λ
J ). A regularization method (Belzak and Bauer , 2020) solves the

optimization problem (4.4) for a sequence of λ values, and then selects the tuning

parameter λ based on the Bayesian Information Criterion (Schwarz , 1978). Let λ̂ be

the selected tuning parameter. Items for which γ̂λ̂
j ̸= 0 are classified as DIF items

and the rest are classified as DIF-free items. While the regularization methods are

computationally more stable than stepwise model selection in the item purification
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methods, they also suffer from some limitations. First, they involve solving non-

smooth optimization problems like (4.4) for different tuning parameter values, which

is not only computationally intensive but also requires tailored computation code

that is not available in most statistical packages/software for DIF analysis. Second,

these methods may be sensitive to the choice of the tuning parameter. Although

methods and theories have been developed in the statistics literature to guide the

selection of the tuning parameter, there is no consensus on how the tuning parameter

should be chosen, leaving ambiguity in the application of these methods. Finally, as

a common issue of regularized estimation methods, obtaining valid statistical infer-

ence from these methods is not straightforward. That is, regularized estimation like

(4.4) does not provide a valid p-value for testing the null hypothesis γj = 0. In fact,

post-selection inference after regularized estimation was conducted in Bauer et al.

(2020), where the type I error cannot be controlled at the targeted level under some

simulation scenarios.

4.2.3 Proposed Method

In what follows, we propose a new method for DIF analysis that does not require

prior knowledge about anchor items. As will be shown in the rest, the proposed

method can not only accurately detect the DIF items, but also provide valid statis-

tical inference for testing the hypotheses of γj = 0.

We impose a condition for identifying the true model in the same spirit as the

sparsity assumption that is implicitly imposed in the regularized estimation and item

purification methods. Recall that the model remains equivalent, if we simultaneously
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replace µ and γj by µ + c and γj − ajc, respectively, and keep aj unchanged. Let

a∗j , d
∗
j , γ

∗
j , and µ∗ denote the true model parameters. To identify the true model, we

require the following minimal L1 (ML1) condition to hold

J∑
j=1

|γ∗
j | <

J∑
j=1

|γ∗
j − a∗jc|, (4.5)

for all c ̸= 0. This assumption implies that, among all models that are equivalent to

the true model, the true parameter vector γ∗ has the smallest L1 norm. Since the L1

norm measures the sparsity level of a vector (Tibshirani , 1996), the ML1 condition

tends to hold when γ∗ is sparse. Equivalently, we can rewrite (4.5) as

argmin
c

h(c) = 0, (4.6)

where h(c) =
∑J

j=1 |γ∗
j − a∗jc|. We show the function h(c) in Figure 4.2, where

J = 10, a∗j = 1 for all j, γ∗
j = 0 and 1 when j = 1, ..., 8 and j = 9, 10, respectively.

The following proposition provides a sufficient and necessary condition for the ML1

condition to hold. The proof is given in Appendix C.

Proposition IV.1. Condition (4.5) holds if and only if

J∑
j=1

|a∗j |
(
−I
(γ∗

j

a∗j
≥ 0
)
+ I
(γ∗

j

a∗j
< 0
))

< 0

and
J∑

j=1

|a∗j |
(
−I
(γ∗

j

a∗j
> 0
)
+ I
(γ∗

j

a∗j
≤ 0
))

> 0,
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Figure 4.2: Function h(c) =
∑J

j=1 |γ∗
j − a∗jc|, where J = 10, a∗j = 1 for all j, γ∗

j = 0
and 1 for j = 1, ..., 8 and j = 9, 10, respectively. The minimal value of h(c) is
achieved when c = 0.

where I(·) is the indicator function.

Consider a special case when a∗j = 1 for all j, i.e., the measurement model is a one-

parameter logistic model when there is no DIF. Then according to Proposition IV.1,

the ML1 condition holds, if and only if

J∑
j=1

I(γ∗
j ≥ 0) >

J∑
j=1

I(γ∗
j < 0)

and
J∑

j=1

I(γ∗
j ≤ 0) >

J∑
j=1

I(γ∗
j > 0),

i.e., the median of γ∗
1 , ..., γ

∗
J is 0. These inequalities hold for the example in Fig-

ure 4.2, where
∑J

j=1 I(γ
∗
j ≥ 0) = 10,

∑J
j=1 I(γ

∗
j < 0) = 0,

∑J
j=1 I(γ

∗
j ≤ 0) = 8 and∑J

j=1 I(γ
∗
j > 0) = 2.
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Corollary IV.2. Condition (4.5) holds if

J∑
j=1

|a∗j |I(γ∗
j = 0) > max

{
J∑

j=1

|a∗j |I(γ∗
j /a

∗
j < 0),

J∑
j=1

|a∗j |I(γ∗
j /a

∗
j > 0)

}
.

Corollary IV.2 can be derived from Proposition IV.1 that provides a sufficient

condition for the ML1 condition, which suggests that the ML1 condition holds when

γ∗
j = 0 for a sufficient number of items.

Parameter Estimation

We now propose a procedure for estimating the model under the ML1 condition.

This procedure is described in Algorithm 3 below.

Algorithm 3: ML1 Algorithm for Binary Group DIF Detection

Step 1: Solve the following MML estimation problem

Ξ̃ = argmax
Ξ

logL(Ξ), s.t. γ1 = 0. (4.7)

Step 2: Solve the optimization problem

ĉ = argmin
c

J∑
j=1

|γ̃j − ãjc| (4.8)

Output: The ML1 estimate γ̂j = γ̃j − ãj ĉ, µ̂ = µ̃+ ĉ, α̂j = α̃j, d̂j = d̃j.

We provide some remarks about these steps. The estimator (4.7) in Step 1 can be

viewed as the MML estimator of the model, treating item 1 as an anchor item. We

emphasize that the constraint γ1 = 0 in Step 1 is an arbitrary but mathematically
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convenient constraint for ensuring the estimability of the model when solving (4.8).

It does not require item 1 to be truely a DIF-free item. This constraint can be re-

placed by any equivalent constraint, for example, γ2 = 0, while not affecting the final

estimation result. Step 2 finds the transformation that leads to the ML1 solution

among all the models that are equivalent to the estimated model from Step 1. The

optimization problem (4.8) is convex that takes the same form as the Least Absolute

Deviations (LAD) objective function in median regression (Koenker , 2005). Con-

sequently, it can be solved using standard statistical packages/software for quantile

regression. In particular, the R package “quantreg” (Koenker et al., 2018) is used in

our simulation study and real data analysis.

The ML1 condition (4.5), together with some additional regularity conditions,

guarantees the consistency of the above ML1 estimator. That is, Ξ̂ will converge to

Ξ∗ as the sample size N grows to infinity. This result is formalized in Theorem IV.3,

with its proof given in the Appendix C.

Theorem IV.3. Let Ξ∗ = {µ∗, γ∗
j , d

∗
j , a

∗
j , j = 1, ..., J} be the true model param-

eters, and Ξ† = {µ†, γ†
j , d

†
j, a

†
j, j = 1, ..., J} be the true parameter values of the

equivalent model with constraint γ†
1 = 0. Assume this equivalent model satisfies

the standard regularity conditions in Theorem 5.14 of van der Vaart (2000) that con-

cerns the consistency of maximum likelihood estimation. Further, assume that the

ML1 condition (4.5) holds. Then |µ̂ − µ∗| = oP (1), |γ̂j − γ∗
j | = oP (1), |âj − a∗j | =

oP (1), and |d̂j − d∗j | = oP (1) as N →∞.

We further discuss the connection between the proposed estimator and the regu-

larized estimator (4.4). Note that Ξ̂ is the one with the smallest
∑J

j=1 |γj| among all
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equivalent estimators that maximize the likelihood function (4.3). When the solution

path of (4.4) is smooth and the solution to the ML1 problem (4.8) is unique, it is

easy to see that Ξ̂ is the limit of Ξ̂λ when the positive tuning parameter λ converges

to zero. In other words, the proposed estimator can be viewed as a limiting version

of the LASSO estimator (4.4). According to Theorem IV.3, this limiting version of

the LASSO estimator is sufficient for the consistent estimation of the true model.

Note that the consistency in Theorem IV.3 further implies that the DIF items

can be consistently selected by a simple hard-thresholding approach. Similar hard-

thresholding methods perform well for variable selection in regression models (Mein-

shausen and Yu, 2009). Given our ML1 estimate Ξ̂ and a pre-specified threshold

δ, this hard-thresholding method classifies the items for which |γ̂j| ≤ δ as the non-

DIF items and the rest as DIF items. Theorem IV.4 below describes the result on

selection consistency.

Theorem IV.4. Let {γ̂1, ..., γ̂J} be estimators of the DIF parameters returned by

Algorithm 3. For any fixed δ satisfying 0 < δ < min{|γ∗
1 |, ..., |γ∗

J |}, the probability

P (1{|γ̂j |≤δ} = 1{γ∗
j=0})

converges to 1, as the sample size N goes to infinity, for all j = 1, ..., J .

In practice, the value of δ can be chosen by BIC, similar to the choice of λ for the

LASSO procedure in Belzak and Bauer (2020). That is, we consider a sequence of δ

values. For each δ, the hard-thresholding method is applied to obtain an estimated

set of non-DIF items. We then refit the model with the γj parameters fixed to zero
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for j in this estimated non-DIF item set, and compute the corresponding BIC value.

We choose the δ that yields the smallest BIC values. The final classification of the

items is given by the results based on the chosen δ.

Statistical Inference

The statistical inference of individual γj parameters is of particular interest in the

DIF analysis. In fact, without the bias brought by the regularization tuning param-

eter, we can draw valid statistical inference on the DIF parameters γj.

Note that the uncertainty of γ̂j is inherited from Ξ̃, where
√
N(Ξ̃ − Ξ†) asymp-

totically follows a mean-zero multivariate normal distribution1 by the large-sample

theory for maximum likelihood estimation; see Appendix C for more details. We de-

note this multivariate normal distribution by N(0,Σ∗), where a consistent estimator

of Σ∗, denoted by Σ̂N , can be obtained based on the marginal likelihood. We define

a function

Gj(Ξ) = γj − aj × argmin
c

J∑
l=1

|γl − alc|,

where Ξ = {µ, al, dl, γl, l = 1, ..., J}. Note that the function Gj maps an arbitrary

parameter vector of the model to the γj parameter of the equivalent ML1 parameter

vector. To draw statistical inference, we need the distribution of

γ̂j − γ∗
j = Gj(Ξ̃)−Gj(Ξ

†).

By the asymptotic distribution of
√
N(Ξ̃ − Ξ†), we know that the distribution of

1Note that this is a degenerated multivariate normal distribution since γ̃1 = γ†
1 = 0.
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Gj(Ξ̃)−Gj(Ξ
†) can be approximated by that of Gj(Ξ

† + Z/
√
N)−Gj(Ξ

†), and the

latter can be further approximated by Gj(Ξ̃ + Z/
√
N) − Gj(Ξ̃), where Z follows

a normal distribution N(0, Σ̂N). Therefore, although function Gj does not have

an analytic form, we can approximate the distribution of γ̂j − γ∗
j by Monte Carlo

simulation. We summarize this procedure in Algorithm 4 below.

Algorithm 4: Inference

Input: The number of Monte Carlo samples M and significance level α.

Step 1: Generate M i.i.d. samples from a multivariate normal distribution
with mean 0 and covariance matrix Σ̂N . We denote these samples as Z1, ...,
ZM .

Step 2: Obtain em = Gj(Ξ̃ + Zm/
√
N)−Gj(Ξ̃), for m = 1, ...,M .

Step 3: Obtain the α/2 and 1− α/2 quantiles of the empirical distribution
of (e1, ..., eM), denoted by qα/2 and q1−α/2, respectively.

Output: Level 1− α confidence interval for γ∗
j is given by

(γ̂j − q1−α/2, γ̂j − qα/2). In addition, the p-value for a two-sided test of γ∗
j = 0

is given by ∑M
i=1 1{|ei|>|γ̂j |}

M
.

Algorithm 4 only involves sampling from a multivariate normal distribution and

solving a convex optimization problem based on the LAD objective function, both of

which are computationally efficient. The value of M is set to 10,000 in our simulation

study and 50,000 in the real data example below.

The p-values can be used to control the type-I error, i.e., the probability of

mistakenly detecting a non-DIF item as a DIF one. To control the item-specific

type-I errors to be below a pre-specified threshold α (e.g., α = 0.05), we detect the
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items for which the corresponding p-values are below α. Besides the type-I error, we

may also consider the False Discovery Rate (FDR) for DIF detection (Bauer et al.,

2020) to account for multiple comparisons, where the FDR is defined as the expected

ratio of the number of non-DIF items to the total number of detections. To control

the FDR, the Benjamini-Hochberg (B-H) procedure (Benjamini and Hochberg , 1995)

can be employed to the p-values.

4.2.4 Simulation Study

Simulation studies were conducted to evaluate the performance of the proposed

method and compare it with the likelihood ratio test (LRT) method (Thissen, 1988)

and the LASSO method (Bauer et al., 2020). Note that the LRT method requires a

known anchor item set. Correctly specified anchor item sets with different sizes will

be considered when applying the LRT method.

In the simulation, we set the number of items J = 25, and consider two settings

for the sample sizes, N = 500, and 1000. The parameters of the true model are

set as follows. First, the discrimination parameters are set between 1 and 2, and

the easiness parameters are set between −1 and 1. Their true values are given in

Table 4.1. The observations are split into groups of equal sizes, indicated by xi = 0,

and 1. The parameter µ in the structural model is set to 0.5, so that the latent trait

distribution is standard normal and N(0.5, 1) for the reference and focal groups,

respectively. We consider two settings for the DIF parameters, one with smaller

absolute DIF parameter values, and the other with larger absolute DIF parameter

values. Their true values are given in Table 4.1. For both sets of the DIF parameters,
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the ML1 condition is satisfied. The combinations of settings for the sample sizes and

DIF parameters lead to four settings in total. For each setting, 100 independent

datasets are generated.

Table 4.1: Discrimination, easiness and DIF parameter values used in the simulation
studies.

Item number aj dj γj (small DIF) γj (large DIF)

1 1.30 0.80 0.00 0.00
2 1.40 0.20 0.00 0.00
3 1.50 -0.40 0.00 0.00
4 1.70 -1.00 0.00 0.00
5 1.60 1.00 0.00 0.00
6 1.30 0.80 0.00 0.00
7 1.40 0.20 0.00 0.00
8 1.50 -0.40 0.00 0.00
9 1.70 -1.00 0.00 0.00
10 1.60 1.00 0.00 0.00
11 1.30 0.80 0.00 0.00
12 1.40 0.20 0.00 0.00
13 1.50 -0.40 0.00 0.00
14 1.70 -1.00 0.00 0.00
15 1.60 1.00 0.00 0.00
16 1.30 0.80 -0.60 -1.00
17 1.40 0.20 0.60 1.30
18 1.50 -0.40 -0.65 -0.90
19 1.70 -1.00 0.70 1.20
20 1.60 1.00 0.65 1.00
21 1.30 0.80 -0.60 -1.00
22 1.40 0.20 0.60 1.30
23 1.50 -0.40 -0.65 -0.90
24 1.70 -1.00 0.70 1.20
25 1.60 1.00 0.65 1.00

We first evaluate the accuracy of the proposed estimator Ξ̂ given by Algorithm 3.

Table 4.2 shows the mean squared errors (MSE) for µ and the average MSEs for
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ajs, djs, and γjs that are obtained by averaging the corresponding MSEs over the J

items. As we can see, these MSEs and average MSEs are small in magnitude and

decrease as the sample size increases under each setting. This observation aligns

with our consistency result in Theorem IV.3.

Table 4.2: Average mean squared errors of the estimated parameters in the simulation
studies. Mean squared errors are first evaluated by averaging out of 100 replications
and then averaged across 25 items to obtain the average mean squared errors for a,
d and γ. The mean squared errors for µ is presented.

Small DIF Large DIF
N = 500 N = 1000 N = 500 N = 1000

a 0.034 0.017 0.032 0.017
d 0.035 0.018 0.037 0.018
γ 0.058 0.027 0.061 0.028
µ 0.023 0.011 0.023 0.011

We then compare the proposed method and the LRT method in terms of their

performances on statistical inference. Specifically, we focus on whether FDR can

be controlled when applying the B-H procedure to the p-values obtained from the

two methods. The comparison results are given in Table 4.3. As we can see, FDR

is controlled to be below the targeted level for the proposed method and the LRT

method with 1, 5, and 10 anchor items, under all settings.

When anchor items are known, the standard error can be computed for each

estimated γj and thus the corresponding Wald interval can be constructed. We

compare the coverage rates of the confidence intervals given by Algorithm 4 and

the Wald intervals that are based on five anchor items. The results are shown in

Figure 4.3. We see that the coverage rates from both methods are comparable across
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Table 4.3: Comparison of the FDR of the proposed p-value based method and the
LRT method with 1, 5 and 10 anchor items respectively at the FDR control of 5%.
The values are averaged out of 100 replications.

N = 500 N = 1000
Small DIF Large DIF Small DIF Large DIF

p-value based method 0.034 0.029 0.027 0.025
LRT (1 anchor item) 0.029 0.039 0.031 0.034
LRT (5 anchor items) 0.021 0.026 0.027 0.027
LRT (10 anchor items) 0.011 0.014 0.018 0.017

all settings and are close to the 95% targeted level. Note that these coverage rates

are calculated based on only 100 replicated datasets, which may be slightly affected

by the Monte Carlo errors.

Furthermore, we compare the proposed hard-thresholding procedure with the

LASSO procedure, in terms of the accuracy in the detection of DIF items. For the

hard-thresholding procedure, 20 values of threshold δ are considered that are equally

spaced in [0, 0.9] and [0, 1.8] under the small and large DIF settings, respectively. For

the LASSO procedure, 20 values are considered for the tuning parameter λ that are

equally spaced in [0.008, 0.12] and [0.01, 0.15] under the small and large DIF settings,

respectively. The optimal values of λ and δ are chosen by BIC, which yield the

selection of DIF items for the two procedures, respectively. The selection accuracy is

evaluated by two metrics, the true positive rate (TPR) and false positive rate (FPR),

where the TPR is the expected ratio of the number of correctly detected DIF items to

the number of truely DIF items, and the FPR is the expected ratio of the number of

falsely detected DIF items to the number of non-DIF items. Table 4.4 shows the TPR

and FPR that are estimated based on the 100 simulation replications. As we can
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(a) N=500, small DIF
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(b)  N=500, large DIF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(c)  N=1000, small DIF
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(d) N=1000, large DIF
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(e) N=500, small DIF
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(f) N=500, large DIF

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(g) N=1000, small DIF
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(h) N=1000, large DIF
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Figure 4.3: Scatter plots of the coverage rates of the 95% confidence intervals for
γ∗
j ’s. x-axes and y-axes are labeled with item numbers and coverage rates respectively.

Panels (a) - (d) correspond to our proposed method, and panels (e) - (h) correspond
to the Wald intervals constructed with five anchor items.

see, the two methods have comparable TPR and FPR under all settings. It is worth

noting that the hard-thresholding method is computationally much faster than the

LASSO method, since it does not involve maximizing a regularized likelihood under

different tuning parameters.

Finally, we compare the detection power of different methods based on the re-

ceiver operating characteristic (ROC) curves. For a given method, an ROC curve is

constructed by plotting the true positive rate (TPR) against the false positive rate

(FPR) at different threshold settings. More specifically, ROC curves are constructed

for the hard-thresholding and the LASSO methods by varying the corresponding
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Table 4.4: Comparison of the TPR and FPR of the proposed hard-thresholding
method and the LASSO method. The optimal thresholds for the hard-thresholding
method and the optimal penalties for the LASSO method are selected using the BIC
criteria. The results are averaged out of 100 replications.

N = 500 N = 1000
Small DIF Large DIF Small DIF Large DIF

TPR
Hard-thresholing 0.598 0.967 0.855 1.000

LASSO 0.607 0.962 0.863 1.000

FPR
Hard-thresholding 0.019 0.015 0.015 0.009

LASSO 0.015 0.011 0.025 0.006

tuning parameters δ and λ. ROC curves are also constructed by thresholding the

p-values from the proposed method and the LRT method with 1, 5, and 10 anchor

items, respectively. Note that for the LRT method, the TPR and FPR are calculated

based on the non-anchor items. For each method, an average ROC curve is obtained

based on the 100 replications, for which the area under the ROC curve (AUC) is

calculated. A larger AUC value indicates the better detection power. The AUC

values for different methods across our simulation settings are given in Table 4.5.

According to the AUC values, the two proposed procedures (i.e., thresholding the p-

values from Algorithm 4 and the hard-thresholding procedure) and the LRT method

with 10 anchor items have similar detection power and perform better than the rest.

That is, without knowing any anchor items, the proposed procedures perform better

than the LRT method that knows 1 or 5 anchor items, and perform similarly as the

LRT method that knows 10 anchor items. The superior performance of the proposed

procedures is brought by the use of the ML1 condition, which identifies the model

parameters using information from all the items. Based on the AUC values, we also
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see that the LASSO procedure performs similarly as the proposed procedures under

the large DIF settings, but is less accurate under the small DIF settings.

Table 4.5: Comparison of AUC of the proposed p-value based method, the hard-
thresholding method, the LASSO method and the LRT method with 1, 5 and 10
anchor items respectively.

N = 500 N = 1000
Small DIF Large DIF Small DIF Large DIF

p-value based 0.937 0.990 0.986 0.992
Hard-thresholding 0.935 0.995 0.983 0.999

LASSO 0.918 0.992 0.956 0.999
LRT (1 anchor item) 0.840 0.957 0.907 0.986
LRT (5 anchor items) 0.931 0.988 0.979 0.990
LRT (10 anchor items) 0.950 0.992 0.979 0.989

4.2.5 Application to EPQ-R Data

DIF methods have been commonly used for assessing the measurement invariance

of personality tests (e.g., Escorial and Navas (2007), Millsap (2012), Thissen et al.

(1986)). In this section, we apply the proposed method to the Eysenck Personality

Questionnaire-Revised (EPQ-R, Eysenck et al. (1985)), a personality test that has

been intensively studied and received applications worldwide (Fetvadjiev and van de

Vijver , 2015). The EPQ-R has three scales that measure the Psychoticism (P),

Neuroticism (N) and Extraversion (E) personality traits, respectively. We analyze

the long forms of the three personality scales that consist of 32, 24, and 23 items,

respectively. Each item has binary responses of “yes” and “no” that are indicated

by 1 and 0, respectively. This analysis is based on data of an EPQ-R study collected

from 1432 participants in the United Kingdom. Among these participants, 823 are
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females and 609 are males. Females and males are indicated by xi = 0 and 1,

respectively. We study the DIF caused by gender. The three scales are analyzed

separately using the proposed methods.

The results are shown through Tables 4.6 - 4.8, and Figure 4.4. Specifically,

Tables 4.6 - 4.8 present the p-values for testing γj = 0 and the detection results

for the P, E, N scales, respectively. For each table, the items are ordered by the

p-values in an increasing order. The items indicated by “F” are the ones detected

by the B-H procedure with FDR level 0.05, and those indicated by “H” are the

ones detected by the hard-thresholding procedure whose threshold δ is chosen by

BIC. The item IDs are consistent with those in Appendix 1 of Eysenck et al. (1985),

where the item descriptions are given. The three panels of Figure 4.4 further give

the point estimate and confidence interval for each γj parameter, for the three scales,

respectively. Under the current model parameterization, a positive DIF parameter

means that a male participant is more likely to answer “yes” to the item than a

female participant, given that they have the same personality trait level. We note

that the absolute values of γ̂j are all below 1, suggesting that there are no items with

very large gender-related DIF effects.
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Figure 4.4: Plots of 95% confidence intervals for the DIF parameters γ∗′
j s on scale

P, N, and E data sets. The red horizontal lines denote γ = 0. Items are arranged
according to the increasing p-values.

Table 4.6: P-values for testing γ∗
j = 0 for items in P scale. Note that the items

are ordered in increasing p-values. Items selected by the B-H procedure with FDR
control at 5% and the proposed hard-thresholding method are identified using “F”
and “H”, respectively, besides the item numbers.

Item 14 FH 7 FH 34 H 81 H 95 H 2 H 30 H 73 H

p-value 0.0014 0.0015 0.0057 0.0061 0.0104 0.0140 0.0364 0.0619

Item 9 37 H 88 91 29 56 99 41

p-value 0.0625 0.0681 0.1235 0.2217 0.2304 0.2442 0.3389 0.3780

Item 12 68 5 79 96 21 64 18

p-value 0.4389 0.4557 0.4567 0.5187 0.5515 0.5529 0.5819 0.5888

Item 85 25 42 48 54 50 75 59

p-value 0.6080 0.7527 0.8441 0.8787 0.9447 0.9528 0.9559 0.9616

Table 4.7: P-values for testing γ∗
j = 0 for items in E scale. Note that the items

are ordered in increasing p-values. Items selected by the B-H procedure with FDR
control at 5% and the proposed hard-thresholding procedure are identified using “F”
and “H”, respectively, besides the item numbers.

Item 63 FH 36 FH 90 FH 6 FH 33 FH 67 FH 51 FH 78 FH

p-value 0.0000 0.0004 0.0006 0.0011 0.0013 0.0013 0.0016 0.0019

Item 94 FH 61 FH 58 FH 11 H 28 55 20 1

p-value 0.0031 0.0051 0.0199 0.0310 0.0644 0.0958 0.1278 0.4073

Item 40 16 69 24 45 47 72

p-value 0.6185 0.6439 0.7819 0.8371 0.9291 0.9364 0.9391
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Table 4.8: P-values for testing γ∗
j = 0 for items in N scale. Note that the items

are ordered in increasing p-values. Items selected by the B-H procedure with FDR
control at 5% and the proposed hard-thresholding procedure are identified using “F”
and “H”, respectively, besides the item numbers.

Item 8 FH 22 FH 87 FH 84 FH 70 FH 3 FH 74 FH 17 FH

p-value 0.0004 0.0006 0.0007 0.0014 0.0016 0.0026 0.0026 0.0037

Item 92 FH 83 FH 52 60 26 38 46 13

p-value 0.0130 0.0152 0.0264 0.0487 0.0994 0.1553 0.1856 0.2337

Item 100 43 80 31 65 97 76 35

p-value 0.3365 0.4417 0.4694 0.7116 0.7376 0.9220 0.9531 0.9550

From Tables 4.6 - 4.8, we see that all the three scales have some items whose

p-values are close to zero, suggesting gender DIF may exists across the three scales.

We list some example items with the smallest p-values for each of the three scales.

For the P scale, item 14 “Do you dislike people who don’t know how to behave

themselves?”, 7 “Would being in debt worry you?” and 34 “Do you have enemies

who want to harm you?” have the smallest p-values. As shown in Figure 4.4, the

estimated DIF parameters are positive for items 14 and 34 and negative for item 7.

For the E scale, items 63 “Do you nearly always have a ‘ready answer’ when people

talk to you?”, 36 “Do you have many friends?” and 90 “Do you like plenty of bustle

and excitement around you?” have the smallest p-values, where item 63 has positive

γ̂js, and items 36 and 90 have negative γ̂j. For the N scale, the top three items are 8

“Do you ever feel ‘just miserable’ for no reason?”, 22 “Are your feelings easily hurt?”

and 87 “Are you easily hurt when people find fault with you or the work you do?”,

where γ̂j are negative for all the items.

From Tables 4.6 through 4.8, we see that the selection based on the B-H proce-

dure with FDR level 0.05 is more conservative than the hard-thresholding approach
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since the number of items selected by the B-H procedure tend to be smaller than

that selected by the hard-thresholding approach. More precisely, the B-H procedure

detects 2, 11, and 10 items as DIF items from the P, E, and N scales, respectively,

and the hard-threhsolding procedure selects 9, 12, and 10 items, respectively. We

remark that the hard-thresholding procedure is based on the point estimate of the

items and thus does not always select the items with the smallest p-values. For ex-

ample, it detects item 37 as a DIF item but does not detects item 9, though item 37

has a larger p-value. This is because item 37 has a larger absolute value of γ̂j than

item 9.

4.3 Multiple Group DIF Detection and Inference

We extend the work from Section 4.2 to handle multiple group DIF analysis.

4.3.1 Model Setup

Here we introduce an additional parameter vector γj into (4.1) to incorporate

the potential DIF effect in item j brought by a p-dimensional categorical background

feature xi. xi segregates the individuals into different groups so that subjects within

each group have the similar proficiency distribution and suffer the same level of

DIF from each item. In specific, the p-dimensional categorical feature vector for

individual i is denoted as xi = (xi1, ..., xip), with one dimension taking value of one

and all other dimensions taking the value of zero. We make the assumption that the

log odds ratio of a correct response of individual i to item j depends linearly on the

DIF effect γT
j xi.
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In this case, the item response function is modeled as

P (Yij = 1|θi = θ,xi) =
exp

{
ajθ + dj + γT

j xi

}
1 + exp

{
ajθ + dj + γT

j xi

} , (4.9)

where we assume θi | xi ∼ N(µ1xi1 + ... + µpxip, 1(xi=0) + σ2
1xi1 + ... + σ2

pxip), i.e.

group k is assumed to have a mean proficiency distribution of µk and a group specific

variance of σ2
k. The indicator 1(xi=0) is included for model identifiability purpose.

We point out that this formulation corresponds to using a multiple group categorical

feature vector with (p + 1) categories, with one category captured by the baseline

when xi = 0, in which case the latent proficiency distribution is fixed to be a standard

normal. As such, each group k would be characterized by a unique mean µk and

variance σ2
k, except for the baseline group whose mean and variance are fixed to be

zero and one respectively.

However, similar to the binary group case, model (4.9) is not identifiable if no

additional constraints are imposed. Though a,d and σ can be uniquely determined,

µ and γ are indeterminate. To see this, consider ηij = ajθi + dj + γT
j xi. The

expectation of ηij would remain invariant, if we replace µk with µk + ck and γjk

with γjk − ajck for ck ∈ R and j = 1, ..., J. Consequently, model (4.9) would remain

invariant in these parameter settings, therefore not identifiable from response data.

4.3.2 Proposed Method

Let µ∗
k, σ

∗
k, a

∗
j , d

∗
j and γ∗

jk denote the true model parameters. In the same spirit of

the binary group case, we propose the following identifiability multiple group minimal

L1 condition to find a sparse and unique representation of {γ∗
jk : j = 1, ...J, k =
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1, ..., p},
p∑

k=1

J∑
j=1

|γ∗
jk| <

p∑
k=1

J∑
j=1

|γ∗
jk − a∗jck|, ∀ck ̸= 0. (4.10)

Note that we can view (4.10) separately for each k = 1, ..., p dimension. Condition

(4.10) then implies that each γ∗
k = {γ∗

jk, j = 1, ..., J} will have the smallest L1 norm.

Condition (4.10) tends to hold when γ∗
k is sparse since L1 norm measures the sparsity

level of a vector (Tibshirani , 1996). Similar to Proposition IV.1, we also provide the

necessary and sufficient condition in Proposition IV.5 below for Condition (4.10) to

hold. The proof for Proposition IV.5 is given in Appendix C.

Proposition IV.5. Condition (4.10) holds if and only if for any k = 1, ..., p,

J∑
j=1

|a∗j |
(
−I
(γ∗

jk

a∗j
≥ 0
)
+ I
(γ∗

jk

a∗j
< 0
))

< 0

and
J∑

j=1

|a∗j |
(
−I
(γ∗

jk

a∗j
> 0
)
+ I
(γ∗

jk

a∗j
≤ 0
))

> 0,

where I(·) is the indicator function.

The following corollary can be derived directly from Proposition IV.5 that pro-

vides a sufficient condition for the ML1 condition to hold. We remark that the ML1

condition will hold when γ∗
j,k = 0 for a sufficient number of items for each k = 1, ..., p.

Corollary IV.6. Condition (4.10) holds if for k = 1, ..., p,

J∑
j=1

|a∗j |I(γ∗
jk = 0) > max

{
J∑

j=1

|a∗j |I(γ∗
jk/a

∗
j < 0),

J∑
j=1

|a∗j |I(γ∗
jk/a

∗
j > 0)

}
.
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Estimation

We give a procedure for parameter estimation under Condition (4.10). The procedure

consists of two steps and is detailed in Algorithm 5.

Algorithm 5: ML1 Algorithm for Multiple Group DIF Detection

Step 1: Maximizing marginal log-likelihood

Ψ̃ = argmax
Ψ

logL(Ψ), s.t. {γ1k : k = 1, ..., p} = 0, (4.11)

where Ψ = {µ,σ,a,d,γ}.

Step 2: For each k = 1, ..., p, solve the optimization problem

ĉk = argmin
ck

J∑
j=1

|γ̃jk − ãjck| (4.12)

Output: The ML1 estimates γ̂jk = γ̃jk − ãj ĉk, µ̂k = µ̃k + ĉk, âj = ãj, d̂j = d̃j
and σ̂k = σ̃k.

Similarly, we point out that γ1 = 0 constraint is completely arbitrary, irregardless

of whether item 1 exhibits DIF. It simply provides a mathematically convenient way

to ensure estimability of parameters. Selecting any item j ∈ {1, ..., J} as the anchor

item will not affect the final output of Algorithm 5. The optimization problem (4.12)

can be solved using standard median regression approaches.

Similar to Theorem IV.3, Condition (4.10), together with some additional regu-

larity conditions, guarantees the consistency of the estimators returned by Algorithm

5. Consequently, DIF detection consistency can be guaranteed. This is formalized

in Proposition IV.7.

117



Proposition IV.7. Let Ψ∗ = {µ∗,σ∗,a∗,d∗,γ∗} be the true model parameters and

let Ψ̂ = {µ̂, σ̂, â, d̂, γ̂} be estimators returned by Algorithm 5. Assume the model

satisfies the standard regularity conditions in Theorem 5.14 of van der Vaart (2000)

and that Condition (4.10) holds. Then for j = 1, .., J, k = 1, ..., p, |µ̂k − µ∗
k| =

oP (1), |σ̂k − σ∗
k| = oP (1), |âj − a∗j | = oP (1), |d̂j − d∗j | = oP (1), |γ̂jk − γ∗

jk| = oP (1),

as N → ∞. Furthermore, for any δ satisfying 0 < δ < min{|γ∗
j,k| : γ∗

j,k ̸= 0}, the

probability

P (1{|γ̂jk|≤δ} = 1{γ∗
jk=0})

converges to 1, as N →∞, for all j = 1, ..., J and k = 1, ..., p.

Clustering

When dimension p is high and when γj is dense, it is difficult to understand the

underlying sources driving DIF effects based on the estimated γ̂j alone. Another

potential interest, when performing high dimensional DIF analysis, is to study the

relationships amongst the groups. To achieve these goals, we propose to apply hier-

archical clustering on (p + 1) groups based on the estimated γ̂ values. The explicit

procedure is summarized in Algorithm 6 below.

We remark that hierarchical clustering is particularly helpful in understanding

the relationships amongst the groups here because it displays clustering of all levels of

granularity. Moreover, groups classified into the same cluster will have similar DIF

patterns. Hence, DIF effects tend to vanish amongst groups within each clusters.

This can help reduce bias brought by DIF effects for those cross-group studies that

do not take DIF into account, if group comparisons are made within each clusters
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Algorithm 6: Group Clustering Algorithm

Input: The estimated γ̂ from Algorithm 5.

Step 1: Assign each k = 1, ..., p+ 1 into a separate cluster.

Step 2: Evaluate the distance matrix D ∈ R(p+1)×(p+1) with

Di,k =
{ J∑

j=1

(γ̂ji − γ̂jk)
2
} 1

2
.

Step 3: Group (i, k) into the same cluster for
(i, k) = argmini=1,...,p+1,k=1,...,p+1 Di,k.

Step 4: Update the distance matrix D:

Step 4.1: Index (i, k) as i and remove the k’th column and row from D.

Step 4.2: Update Di,l for l ̸= i with the average Euclidean distance
between clusters i and l.

Step 4: Repeat Steps 3-4 until a single cluster remains.

Output: A dendrogram, or a tree-like diagram recording the process of
merging.

only. This can be a useful tool because many practitioners will simply ignore the

DIF effects due to its additional complexity. We will also demonstrate its utility in

our application study on the PISA 2018 data in Section 4.3.4.

Inference

For DIF detection, whether a particular item exhibits DIF is often of interest. For an

item j, similar to the binary group case, the uncertainty of γ̂j stems from Ψ̃. Let Ψ† =

{µ†,σ†,a†,d†,γ†} denote the model parameters such that γ†
1 = 0. Note by large-
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sample theory for maximum likelihood estimation,
√
N(Ψ̃−Ψ†)→ N(0,Σ∗) as N →

∞. In practice, we can apply the Louis identity (Louis , 1982) to obtain a consistent

estimator Σ̂N , for Σ∗. Further note that by Condition (4.10) and Algorithm 5, we

can explicitly express γ̂j as

γ̂j = γ̃j − ãj argmin
{c1,...,cp}

p∑
k=1

J∑
l=1

∣∣γ̃lk − ãlck
∣∣.

Define a function

Gj(Ψ) = γj − aj argmin
{c1,...,cp}

p∑
k=1

J∑
l=1

∣∣γlk − alck
∣∣.

To draw statistical inference for γj, we need the distribution of

γ̂j − γ∗
j = Gj(Ψ̃)−Gj(Ψ

†).

By the asymptotic distribution of
√
N(Ψ̃ − Ψ†), we know that the distribution of

Gj(Ψ̃)−Gj(Ψ
†) can be approximated by that of Gj(Ψ

† +Z/
√
N)−Gj(Ψ

†), and the

latter can be further approximated by Gj(Ψ̃ + Z/
√
N) − Gj(Ψ̃), where Z follows a

multivariate Gaussian distribution N(0,Σ∗).

To test H0 : γj = 0, we suggest to use Hotelling test statistic Tj, specified as

follows,

Tj = γ̂T
j Σ̂

−1
HMjγ̂j.
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where Σ̂HMj is the sample covariance matrix of γ̂j. Though γ̂j may not be strictly

Gaussian due to the non-linear transformationGj,Monte Carlo method easily applies

and empirical null distribution of Tj can be generated, from which a p-value can be

returned. The exact procedure is summarized in Algorithm 7 below.

Algorithm 7: Inference for Multiple Group DIF Detection

Input: The number of Monte Carlo samples M .

Step 1: Evaluate γ̂j = Gj(Ψ̃).

Step 2: Generate M i.i.d. samples from N(0, Σ̂N). We denote these samples
as Z1, ..., ZM .

Step 3: Obtain ejm = Gj(Ψ̃ + Zm/
√
N)−Gj(Ψ̃), for m = 1, ...,M .

Step 4: Evaluate sample covariance matrix for ej, denote it by Σ̂HMj ∈ Rp×p.

Step 5: Compute the test statistic,

t̂j = γ̂T
j Σ̂

−1
HMjγ̂j.

Step 6: Evaluate empirical null distribution for Tj consisting of

{Ejm : Ejm = eT
jmΣ̂

−1
HMjejm,m = 1, ...,M}.

Step 7: Obtain the p-value,

pj =

∑M
m=1 1{Ejm>t̂j}

M
.

Output: The p-value pj.

We remark that similar to the binary group case, Algorithm 7 only involves sam-

pling from a multivariate normal distribution and solving a convex LAD objective

function. Both steps are computationally efficient which enables fast inference. Fur-
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thermore, p-values can be used to control the type-I error rate, and more strictly, the

False Discovery Rate (FDR) for DIF detection (Bauer et al., 2020) to account for

multiple comparisons when jointly testing for multiple items. Benjamini-Hochberg

(B-H) procedure (Benjamini and Hochberg , 1995) can also be applied here for better

FDR control.

4.3.3 Simulation Study

Simulation studies are carried out to compare the performance of the proposed

method and the traditional LRT method (Thissen et al., 1986; Thissen, 1988; Thissen

et al., 1993). Correctly specified anchor sets with sizes one, three and five are con-

sidered for the LRT method.

For both methods, the total number of test items is set to be J = 15. Two sample

size settings are considered with N = 1000 and 2000. The discrimination parameters

a are set between 1 and 2, and the easiness parameters d are set between −1 and

1. The exact values are summarized in Table 4.9 below. A p-dimensional variable x

is used to split the observations into (p+ 1) groups of equal sizes, captured by xi ∈

{(0, 0, ..., 0), (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0..., 0, 1)} for i = 1, ..., N. Two group sizes,

either five groups, i.e. p = 4, or ten groups, i.e. p = 9, are considered. The latent

traits θi are sampled from the Gaussian distribution with the corresponding mean

parameters µ = {0.5, 1, 0.75, 1.2} and {0.5, 0.6, 0.7, 0.8, 0.9, 1, 0.75, 0.85, 1.1}, respec-

tively, and standard deviation parameters σ = {0.5, 0.7, 0.9, 1.1} and {0.4, 0.5, 0.6, 0.7,

0.75, 0.8, 0.85, 0.9, 1.1}, respectively. We consider a small DIF setting and a large DIF

setting. In both settings, only the last three items are designed to exhibit DIF. In the
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Table 4.9: True discrimination and easiness parameter values used in the simulation
study for multiple group DIF analysis.

Item aj dj
1 1.30 0.80
2 1.40 0.20
3 1.50 -0.40
4 1.70 -1.00
5 1.60 1.00
6 1.30 0.80
7 1.40 0.20
8 1.50 -0.40
9 1.70 -1.00
10 1.60 1.00
11 1.30 0.80
12 1.40 0.20
13 1.50 -0.40
14 1.70 -1.00
15 1.60 1.00

small DIF setting, γ13 = γ14 = γ15 = {−0.4, 0.4,−0.5, 0.4} and {−0.4, 0.4,−0.5, 0.5,

0.35,−0.55,−0.45, 0.45, 0.55}, respectively. In the large DIF setting, γ13 = γ14 =

γ15 = {−1.2, 1,−0.8, 1.1} and {−1.2, 1,−0.8, 1.1, 0.7,−0.7,−1,−0.9, 1}, respectively.

This leads to eight different settings in total. 100 independent data sets are generated

for each setting.

We first evaluate the estimation accuracy of the proposed estimators in Algorithm

5. Table 4.10 below summarizes the results. Mean squared errors (MSEs) are first

evaluated by averaging out of 100 replications for all aj, dj, γj, µ and σ. Then

average MSEs are evaluated over the J items for aj, dj and γj. We observe that

these MSEs and average MSEs are small in magnitude, suggesting our proposed

estimators work well. We also point out that estimation accuracy tends to decrease
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as dimension p increases and sample size decreases.

Table 4.10: Average mean squared errors of the estimated parameters. Mean squared
errors are first evaluated by averaging out of 100 replications and then averaged across
15 items to obtain the average mean squared errors for a, d, γ, µ and σ. Small and
Large denote the small DIF setting and the large DIF setting, respectively.

p = 4 p = 9
Small Large Small Large

N = 1000 N = 2000 N = 1000 N = 2000 N = 1000 N = 2000 N = 1000 N = 2000
a 0.030 0.013 0.031 0.013 0.043 0.019 0.041 0.020
d 0.039 0.017 0.039 0.017 0.073 0.036 0.074 0.036
γ 0.079 0.041 0.085 0.043 0.147 0.074 0.157 0.079
µ 0.015 0.006 0.015 0.006 0.039 0.015 0.038 0.015
σ 0.006 0.003 0.007 0.003 0.010 0.005 0.010 0.005

We then compare the proposed method and the LRT method in terms of their

performance on statistical inference. In particular, we compare the performance of

the two methods in overall DIF detection for each items. For the proposed method,

as detailed in Algorithm 7, a Hotelling test statistic is introduced to test whether a

given item j exhibits DIF. For the LRT method, to test whether item j displays DIF,

γjk = 0 is imposed for k = 1, ..., p in the restricted model. While for the augmented

model, all DIF parameters, except for those in the anchor set, are freely estimated. A

Chi-squared distribution with p degrees of freedom is used to perform the LRT test.

We first explore whether item-wise type I error rate can be controlled and compare

the power of the two methods. The empirical type I error rates and the empirical

powers are summarized in Tables 4.11 and 4.12 below. Theoretical significance level

is set to be 5%. From Table 4.11, we first note that the type I errors can be controlled

well for the proposed method across all settings. While for the LRT method, the

type I errors are controlled well in most settings, except for the N = 1000 and p = 9
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case, in which the error rates are nearly 7%. This might be due to convergence

issue to asymptotic Chi-square distribution because of the smaller sample size and

the larger number of estimates in higher dimensional p. From Table 4.12, we note

the empirical powers of the proposed method outperform the LRT method with one

anchor item and are slightly lower than those with three anchor items. The results

are noteworthy because the proposed method does not require any prior knowledge

on anchor items. For the proposed method, we note that statistical powers tend to

drop when the dimension p increases, sample size decreases and the DIF parameters

(signals) are small. We also remark that in practice, it is increasingly more difficult

to locate an anchor item as dimension p becomes larger. Our proposed method

is particularly useful in these cases. Additional inference results on individual γjk

and the control for the false discovery rate (FDR) using the Benjamini-Hochberg

procedure for multiple testing on all items can be found in Appendix C.

Table 4.11: Average empirical type I errors of the proposed method and the LRT
method with 1, 3 and 5 anchor items respectively at significance level of 5%. Small
and Large denote the small DIF setting and the large DIF setting, respectively.

p = 4 p = 9
N = 1000 N = 2000 N = 1000 N = 2000

Small Large Small Large Small Large Small Large
Proposed method 0.030 0.031 0.039 0.034 0.015 0.018 0.023 0.026
LRT (1 anchor item) 0.040 0.040 0.035 0.036 0.065 0.069 0.039 0.041
LRT (3 anchor items) 0.038 0.038 0.049 0.050 0.067 0.062 0.037 0.036
LRT (5 anchor items) 0.060 0.057 0.040 0.037 0.069 0.069 0.041 0.041

Finally, we compare the detection power of the two methods using the receiver

operating characteristic (ROC) curves. An ROC curve is constructed by plotting the

true positive rate (TPR) against the false positive rate (FPR) at different thresh-

old settings. More specifically, ROC curves are constructed by thresholding the
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Table 4.12: Average empirical powers of the proposed method and the LRT method
with 1, 3 and 5 anchor items respectively at significance level of 5%. Small and Large
denote the small DIF setting and the large DIF setting, respectively.

p = 4 p = 9
N = 1000 N = 2000 N = 1000 N = 2000

Small Large Small Large Small Large Small Large
Proposed method 0.730 1.000 0.953 1.000 0.680 1.000 0.950 1.000
LRT (1 anchor item) 0.500 1.000 0.817 1.000 0.467 0.987 0.890 1.000
LRT (3 anchor items) 0.853 1.000 0.990 1.000 0.880 1.000 0.987 1.000
LRT (5 anchor items) 0.883 1.000 0.997 1.000 0.933 1.000 1.000 1.000

p-values, from zero to one with a step-size of 0.01, for the proposed method and the

LRT method, respectively. Note that for the LRT method, the TPR and FPR are

calculated based on the non-anchor items only. For each method, an average ROC

curve is obtained first based on the 100 replications, using which the area under

the ROC curve (AUC) is calculated. A larger AUC value indicates better detection

power. The AUC values for different methods across our simulation settings are

given in Table 4.13. We observe that the proposed method and the LRT method

with three anchor items have similar detection power and perform much better than

knowing only one anchor item. This result aligns with the empirical power results

in Table 4.12.

Table 4.13: Comparison of AUC of the proposed method and the LRT method with
1, 3 and 5 anchor items respectively. Small and Large denote the small DIF setting
and the large DIF setting, respectively.

p = 4 p = 9
N = 1000 N = 2000 N = 1000 N = 2000

Small Large Small Large Small Large Small Large
Proposed method 0.951 0.997 0.989 0.998 0.965 1.000 0.994 0.999
LRT (1 anchor item) 0.846 0.984 0.949 0.974 0.828 0.989 0.976 0.996
LRT (3 anchor items) 0.971 0.993 0.995 0.994 0.978 0.996 0.996 0.996
LRT (5 anchor items) 0.969 0.994 0.992 0.994 0.964 0.991 0.998 0.998
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4.3.4 Application to PISA 2018 Data

We apply our proposed method to PISA 2018 data. PISA is a worldwide study

by the OECD intended to evaluate the participating country’s educational systems

by measuring 15-year-old school students’ scholastic performance on mathematics,

science and reading (Araújo et al., 2021). It measures participants’ problem solving

and cognitive skills.

In this application, we explore the DIF effects brought by country factors in PISA

2018 reading, mathematics and science items separately. We focus on analysing the

37 OECD member countries. Only the computer-based and binary-scored items

are considered. Furthermore, only items with responses from at least one subject

from each of the 37 OECD countries are retained for valid γ̂jk. For reading items in

specific, the fluency items are not included as they are designed to provide additional

information about students’ reading ability towards the lower end of the reading

proficiency scale and has very small discriminative power and very low difficulty

levels (see Chapter 2 and Annex A of PISA (2020)). After data pre-processing,

the reading data set, the math data set and the science data set comprise 63, 43

and 76 cognitive items, respectively, and 290202, 145159 and 145228 observations

respectively. We regard country as a multi-level categorical variable, with each

category representing belonging to one of these 37 countries. To apply our proposed

method, countries are encoded by xi = (xi1, ..., xi36). In specific, Australia is set to

be the baseline for which xi = 0, and each of the remaining countries is encoded by

xi = {0, , ..., 0, xik = 1, 0, ..., 0}. We point out that the results would be invariant of

which baseline country is used, due to the symmetry in xi. The list of the OECD
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countries considered in the study is summarized in Table 4.14 where country index

equals k. We employ Algorithm 5 to learn the parameters in the proposed model

(4.9). All the parameter estimates can be found in the Appendix C

Table 4.14: List of OECD countries considered in the PISA study.

Index 1 2 3 4 5
Country Australia Austria Belgium Canada Chile
Index 6 7 8 9 10
Country Colombia Czech Republic Denmark Estonia Finland
Index 11 12 13 14 15
Country France Germany Greece Hungary Iceland
Index 16 17 18 19 20
Country Ireland Israel Italy Japan Korea
Index 21 22 23 24 25
Country Latvia Lithuania Luxembourg Mexico Netherlands
Index 26 27 28 29 30
Country New Zealand Norway Poland Portugal Slovak Republic
Index 31 32 33 34 35
Country Slovenia Spain Sweden Switzerland Turkey
Index 36 37
Country United Kingdom United States

We first explore the overall DIF effects for each item brought by country factors.

As detailed in Section 4.3.2, we use the Hotelling statistic applied on γ̂j = {γ̂jk : k =

1, ..., 36} to measure the overall DIF exhibited by item j. To quantify the detection

uncertainty, we employ Algorithm 7 in Section 4.3.2 to obtain a valid p-value for each

item j. Using M = 10000 Monte Carlo samples, negligible p-values are obtained for

all the items in the three assessment domains. Therefore, we conclude that DIF

is prevalent in PISA 2018 data where most items are expected to suffer from DIF

brought by country factors. This is not surprising because PISA 2018 item design

puts more emphasis on comprehension skills (Araújo et al., 2021), which is more

prone to cultural and language impacts that are closely related to country factors.

This underscores the need for DIF analysis to ensure fair and accurate assessment of
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the participating country’s educational systems. The ranking of items based on the

overall DIF effect size (as measured by the Hotelling statistic, arranged in decreasing

orders) considered in the three assessment domains are summarized in Tables 4.15,

4.16 and 4.17. Greater attention may be needed for the high ranking items for any

future cross-country studies.

Table 4.15: Ranking of 63 PISA 2018 reading items in decreasing severity of DIF
effects brought by country factors, as measured by the Hotelling statistics.

Ranking 1 2 3 4 5 6 7
Item CR220Q04S CR220Q06S DR420Q02C DR406Q01C CR424Q02S DR219Q01ECDR219Q01C
Ranking 8 9 10 11 12 13 14
Item DR432Q05C CR227Q01S DR455Q03C DR453Q04C DR437Q07C DR455Q02C DR420Q06C
Ranking 15 16 17 18 19 20 21
Item CR412Q01S CR220Q01S DR406Q02C DR446Q06C DR453Q06C CR404Q07S DR466Q02C
Ranking 22 23 24 25 26 27 28
Item DR102Q05C CR437Q06S CR455Q04S CR466Q03S DR412Q08C CR412Q05S DR456Q02C
Ranking 29 30 31 32 33 34 35
Item CR455Q05S CR424Q03S CR220Q05S CR432Q06S DR432Q01C CR104Q02S DR460Q01C
Ranking 36 37 38 39 40 41 42
Item DR219Q02C DR102Q04C DR227Q03C CR111Q01S CR102Q07S CR437Q01S DR456Q06C
Ranking 43 44 45 46 47 48 49
Item CR460Q06S CR424Q07S CR456Q01S CR404Q06S DR227Q06C CR055Q01S DR055Q02C
Ranking 50 51 52 53 54 55 56
Item DR406Q05C DR055Q05C DR404Q10BCCR067Q01S CR104Q01S CR453Q05S CR453Q01S
Ranking 57 58 59 60 61 62 63
Item DR420Q09C CR404Q03S DR404Q10ACCR466Q06S CR460Q05S CR220Q02S CR446Q03S

Table 4.16: Ranking of 43 PISA 2018 math items in decreasing severity of DIF effects
brought by country factors, as measured by the Hotelling statistics.

Ranking 1 2 3 4 5 6 7
Item CM800Q01S CM420Q01S CM949Q02S CM915Q02S CM408Q01S CM828Q03S CM982Q03S
Ranking 8 9 10 11 12 13 14
Item CM915Q01S CM423Q01S CM982Q04S CM564Q01S CM998Q04S CM982Q02S CM803Q01S
Ranking 15 16 17 18 19 20 21
Item CM982Q01S CM411Q02S CM909Q01S CM906Q01S CM474Q01S CM446Q01S CM155Q04S
Ranking 22 23 24 25 26 27 28
Item CM603Q01S CM192Q01S CM559Q01S CM992Q02S CM033Q01S CM992Q01S CM447Q01S
Ranking 29 30 31 32 33 34 35
Item CM411Q01S CM464Q01S CM909Q02S CM564Q02S CM496Q01S CM155Q01S CM949Q01S
Ranking 36 37 38 39 40 41 42
Item CM00GQ01S CM305Q01S CM571Q01S CM034Q01S CM442Q02S CM496Q02S CM273Q01S
Ranking 43
Item CM909Q03S
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Table 4.17: Ranking of 76 PISA 2018 science items in decreasing severity of DIF
effects brought by country factors, as measured by the Hotelling statistics.

Ranking 1 2 3 4 5 6 7
Item CS408Q04S CS408Q05S CS657Q01S CS428Q01S CS607Q02S CS627Q01S CS625Q02S
Ranking 8 9 10 11 12 13 14
Item CS602Q04S CS608Q01S CS527Q03S CS415Q08S CS603Q03S CS602Q02S CS629Q02S
Ranking 15 16 17 18 19 20 21
Item CS413Q04S CS326Q04S CS527Q04S CS256Q01S CS645Q03S CS478Q03S CS415Q07S
Ranking 22 23 24 25 26 27 28
Item CS638Q04S CS603Q04S CS657Q02S CS438Q01S CS602Q01S CS607Q01S CS648Q03S
Ranking 29 30 31 32 33 34 35
Item CS413Q06S CS629Q04S CS615Q07S CS527Q01S CS627Q03S CS413Q05S CS648Q02S
Ranking 36 37 38 39 40 41 42
Item CS415Q02S CS478Q02S CS438Q02S CS604Q02S CS326Q03S CS408Q01S CS605Q03S
Ranking 43 44 45 46 47 48 49
Item CS634Q01S CS408Q01S CS326Q03S CS605Q03S CS610Q02S CS626Q02S CS466Q01S
Ranking 50 51 52 53 54 55 56
Item CS498Q02S CS626Q01S CS620Q02S CS627Q04S CS625Q03S CS603Q05S CS626Q03S
Ranking 57 58 59 60 61 62 63
Item CS634Q04S CS605Q02S CS608Q03S CS615Q05S CS643Q04S CS425Q05S CS638Q01S
Ranking 64 65 66 67 68 69 70
Item CS615Q01S CS657Q03S CS608Q02S CS646Q02S CS615Q02S CS620Q01S CS646Q03S
Ranking 71 72 73 74 75 76
Item CS635Q02S CS603Q01S CS646Q01S CS643Q01S CS428Q03S CS425Q02S

Next, we apply Algorithm 6 to group the countries so that DIF effects will vanish

within each clusters, and we also seek to study the relationships amongst these 37

OECD countries and discuss the potential sources driving the DIF effects based on

the learned γ̂ patterns. Essentially, countries are grouped into the same cluster if they

have similar DIF pattern exhibited by the items, i.e. similar (γjk, j = 1, ...J), and

the dissimilarity is measured by the Euclidean distance between the DIF patterns.

Furthermore, to remove noise in the trained γ̂, we also perform a simple principal

component analysis, where each country is represented in a Cartesian coordinate

system by projecting the corresponding γ̂k onto the first two principal components.

Similarity matrices based on the Euclidean distances depicting the closeness in rela-

tionship amongst these countries are also presented.
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For the reading data, the results are summarized in Figures 4.5, 4.6 and 4.7. We

find that countries that are close in geographical locations and share similar speaking

languages/cultures/history tend to have similar DIF patterns.

From Figure 4.5, we observe that Japan and Korea are the two most dissimilar

countries compared to other OECD countries. We point out that both Japan and Ko-

rea are east Asian countries, which have very different cultures and spoken languages

compared to other OECD countries. A full hierarchical clustering for countries based

on the reading data is presented in Figure 4.6. We note the former countries that be-

long to the British Empire, including the Ireland, United States, Canada, Australia,

New Zealand and the United Kingdom (Marshall , 2001), are clustered together in

the dendrogram. Those countries speak English as their official language and share a

deep-rooted British culture. Norway and Sweden, adjacent in geographical location,

are clustered together, both are not too far away from other Nordic countries such as

Iceland and Denmark. We point out that these countries share a common linguistic

heritage (Hovdhaugen et al., 2000). In particular, Danish, Icelandic, Norwegian and

Swedish belong to the North Germanic branch of the Indo-European languages. The

languages originated from a common Nordic language. Though having moved away

from each other during the past 1000 years, it is still possible for Danish, Norwegian

and Swedish speakers to understand each other. And these languages are taught in

school throughout the Nordic countries. We notice that western European countries

stay close in the dendrogram. Western European countries speak similar languages

which mostly fall within two Indo-European language families: the Romance lan-

guages, descended from the Latin of the Roman Empire and and the Germanic lan-
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guages (Renfrew , 1989). For example, Switzerland have German, French and Italian

as its official languages, while Luxembourg uses Luxembourgish, French and Ger-

man as its administrative languages. The central and eastern European countries,

consisting of Poland, Czech Republic, Slovak Republic, Hungary and Slovenia are

segregated closely to one another. Those countries also share similar history origins

where the central Europe comprises most of the territories of the Holy Roman Empire

(Wilson, 2011). Besides, these countries also speak similar languages. For example,

in Slovenia, Hungarian is co-official with Slovene in 30 settlements in 5 municipalities,

and Italian is co-official with Slovene in 25 settlements in 4 municipalities (languages

Slovene and Italians , 2002). Moreover, we note that the Baltic states stay close in the

dendrogram. The term includes Latvia, Estonia and Lithuania. These Baltic states

are not only close in geographical locations, but they also share similar languages,

cultures and history. For example, both the Latvian and Lithuanian languages be-

long to the Indo-European language family (Subačius and Tekorienė, 2002). All the

three Baltic states gained independence from the Russian Empire in between the two

world wars (Lehti and Smith, 2003) and eventually from the Stalinist Soviet Union

in 1991. Finland is adjacent to Estonia in geographical location, that might explain

why it is clustered together with the three Baltic countries. While south American

countries, comprising of Chile, Colombia and Mexico are grouped closely together.

We note that all the three nations speak Spanish, and they are also the founding

members of Pacific Alliance in 2011, which is an initiative of regional integration

to move progressively towards free mobility of goods, resources and people. Similar

patterns can be observed in Figure 4.7 where countries are represented by projecting
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the corresponding γ̂k onto the first two principal components.

Figure 4.5: Plots of the similarity matrix of all 37 OECD countries based on the
estimated DIF values for the PISA 2018 reading data. The level of dissimilarity
between two countries is proportional to the degree of darkness of the block.

Similar analyses are performed on the math data and the science data respec-

tively. In particular, results for math data set are summarized in Figures 4.8, 4.9 and

4.10. Results for the science data set are summarized in Figures 4.11, 4.12 and 4.13.
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Figure 4.6: Hierarchical clustering of countries based on γ̂jk values for the PISA 2018
reading data.

Again, we find that most of the OECD countries are very different from the two Asian

countries, Japan and Korea, and the transcontinental country, Turkey. Furthermore,

we notice some differences in clustering patterns on the math and the science data

compared with the reading data. Due to the generality and conciseness of mathe-

matical symbols, we conjecture that DIF on the math items stems also from the level
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Figure 4.7: Plot of the countries represented by the projection of γ̂k onto the first
two principal component based on the PISA 2018 reading data.

of economic development and math literacy rates, in addition to locations, languages

and cultures. This can be observed from the clustering patterns. For example, in

Figure 4.9, we first note that western European countries, north American countries

and Oceanic countries are close to each other in the dendrogram. These countries

are very well developed, have high math literacy rates and share inter-twined history

135



origins of mathematical education. Again, the Nordic countries have very similar

DIF patterns and are grouped together. This makes sense because Nordic countries

share very similar history and origin in math education (Lingefjärd , 2018). East-

ern European countries and the south American countries, on the other hand, stay

closer in the clustering. These countries are generally less developed and have lower

math literacy rate. While the two Asian countries, Korea and Japan, which have the

most dissimilar educational system to other OECD nations, stay alone in a separate

cluster.

For the science data, similar patterns can be observed to those in the math data

sets. One difference we would like to point out is that for the Nordic countries,

Denmark, Norway and Sweden are close to one another in the dendrogram, but are

relatively separated from Finland and Iceland. This makes sense because Denmark,

Norway and Sweden, often classified as the Scandinavian countries, are close to one

another in geographic locations. They are often viewed as forming a homogenous

unit in cultrual, social, economic and political matters. The two other countries

within the group of the Nordic countries, Finland and Iceland, are separated both

geographically, culturally and by language (Lingefjärd , 2018).

We remark that the clustering results can also be useful to facilitate analyses

that do not take DIF effects into account. Many practitioners do not consider DIF

when performing cross-country assessment analyses due to the additional complexity

involved (McConney et al., 2014; D’Agostino, 2016; Cordero et al., 2018, 2022; Joo

et al., 2021; Mazurek et al., 2021). The clustering results can help reduce the bias

introduced by the DIF effects in these cross-country analyses even if DIF is not taken
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Figure 4.8: Plots of the similarity matrix of all 37 OECD countries based on the
estimated DIF values for the PISA 2018 math data. The level of dissimilarity between
two countries is proportional to the degree of darkness of the block.

into account. To achieve so, practitioners just need to perform analyses cluster-

wise. Since DIF effects tend to be small within clusters; such analyses would be less

prone to biases brought by DIF with respect to country factors. To illustrate how

ignorance of the DIF effects can skew the analysis results, we compare country-wise
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Figure 4.9: Hierarchical clustering of countries based on γ̂jk values for the PISA 2018
math data.

average latent scores µk (level of examinees’ competency) using a 2PL model with

and without taking DIF into account for all the three assessment domains. We give

a ranking of countries, from the highest to the lowest, based on the their mean latent

proficiency scores in Tables 4.18, 4.19 and 4.20, on the reading, the math and the

science data respectively. We observe that on the reading data, the order of the
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Figure 4.10: Plot of the countries represented by the projection of γ̂k onto the first
two principal component based on the PISA 2018 math data.

rankings change significantly. This suggests DIF brought by country factors would

have massive impact on analysis results if they are not taken into account. However,

for the math and the science data, though the rankings are still visibly different,

they do not change as much as the reading data, suggesting DIF by country factors

would have relatively smaller impact on these analysis results. This observation is
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Figure 4.11: Plots of the similarity matrix of all 37 OECD countries based on the
estimated DIF values for the PISA 2018 science data. The level of dissimilarity
between two countries is proportional to the degree of darkness of the block.

confirmed by evaluating the Kendall’s rank correlations. We note a kendall’s rank

correlation of 0.841 for rankings based on the reading data, lower than that of 0.886

and 0.886 on the math and the science data respectively. The observation is in line

with our expectation since the design of the reading items involves a lot of wording
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Figure 4.12: Hierarchical clustering of countries based on γ̂jk values for the PISA
2018 science data.

description and requires more comprehension, which is more sensitive to country

related factors such as language and cultural effects. This suggests why DIF is more

severe in the reading items.
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Figure 4.13: Plot of the countries represented by the projection of γ̂k onto the first
two principal component based on the PISA 2018 science data.

4.4 Conclusion

We propose an ML1 condition for simultaneous DIF detection and model iden-

tifiability for 2PL models. The proposed method works for DIF analysis with high

dimensional features. Consistency results for the proposed estimators and DIF de-
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Table 4.18: Comparison of rankings of country-wise average latent skill levels between
2PL model without DIF and with DIF for the PISA 2018 reading data.

Ranking Without DIF With DIF Ranking Without DIF With DIF
1 Finland Estonia 20 Switzerland Austria
2 Estonia Finland 21 Austria Iceland
3 Poland Canada 22 United States Netherlands
4 Canada Poland 23 Latvia Latvia
5 Korea Ireland 24 Luxembourg Switzerland
6 Japan Sweden 25 Hungary Italy
7 Sweden Korea 26 Portugal Hungary
8 Norway Japan 27 Iceland Lithuania
9 Ireland Norway 28 Australia Spain
10 France New Zealand 29 Spain Luxembourg
11 Germany United Kingdom 30 Lithuania Portugal
12 Belgium Slovenia 31 Israel Israel
13 New Zealand Germany 32 Turkey Turkey
14 Slovenia France 33 Greece Greece
15 United Kingdom Belgium 34 Slovak Republic Slovak Republic
16 Czech Republic Denmark 35 Chile Chile
17 Denmark Czech Republic 36 Mexico Mexico
18 Italy United States 37 Colombia Colombia
19 Netherlands Australia

Table 4.19: Comparison of rankings of country-wise average latent skill levels between
2PL model without DIF and with DIF for the PISA 2018 math data.

Ranking Without DIF With DIF Ranking Without DIF With DIF
1 Japan Japan 20 Ireland Netherlands
2 Korea Estonia 21 Austria Italy
3 Estonia Korea 22 Iceland United Kingdom
4 Switzerland Switzerland 23 Portugal Ireland
5 Poland Poland 24 Italy Latvia
6 Australia Slovenia 25 Latvia Portugal
7 Slovenia Canada 26 Luxembourg Slovak Republic
8 Canada Denmark 27 Lithuania Luxembourg
9 Belgium Australia 28 Spain Spain
10 Denmark Belgium 29 Hungary Lithuania
11 Finland Finland 30 Slovak Republic United States
12 Netherlands Germany 31 United States Hungary
13 Czech Republic Austria 32 Israel Israel
14 Germany Czech Republic 33 Greece Greece
15 Norway Norway 34 Turkey Turkey
16 Sweden New Zealand 35 Chile Chile
17 United Kingdom France 36 Mexico Mexico
18 France Sweden 37 Colombia Colombia
19 New Zealand Iceland

tection accuracy are provided. Inference procedures to quantify the uncertainty in

item-wise DIF detection is developed. Our proposed method does not require any

prior knowledge about anchor items, permits easy statistical inference and enjoys
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Table 4.20: Comparison of rankings of country-wise average latent skill levels between
2PL model without DIF and with DIF for the PISA 2018 science data set.

Ranking Without DIF With DIF Ranking Without DIF With DIF
1 Estonia Korea 20 France France
2 Japan Estonia 21 Switzerland Latvia
3 Finland Japan 22 Norway Switzerland
4 Korea Finland 23 Portugal Portugal
5 Poland Canada 24 Latvia Norway
6 Canada Poland 25 Lithuania Lithuania
7 Slovenia Australia 26 Hungary Iceland
8 New Zealand United Kingdom 27 Luxembourg Luxembourg
9 United States New Zealand 28 Spain Hungary
10 United Kingdom United States 29 Iceland Italy
11 Germany Slovenia 30 Italy Spain
12 Sweden Germany 31 Israel Israel
13 Austria Czech Republic 32 Slovak Republic Slovak Republic
14 Australia Denmark 33 Turkey Turkey
15 Czech Republic Netherlands 34 Greece Greece
16 Ireland Austria 35 Chile Chile
17 Belgium Sweden 36 Mexico Mexico
18 Netherlands Belgium 37 Colombia Colombia
19 Denmark Ireland

fast computation.

There are numerous future works worth pursuing. First is to extend the current

setting to take potential DIF effects in slope parameters aj in 2PL model. The

current setting only allows detection of uniform DIF while rules out the potential

existence of non-uniform DIF effects. Considering DIF in slope parameters would

make it feasible to capture both uniform and non-uniform DIF effects. However,

we also remark on the potential drawbacks that the addition of high dimensional

DIF parameters in slope would compound the difficulty in parameter estimation,

and based on our initial exploration, much larger sample sizes are needed to ensure

accurate estimation. Another interesting direction is to extend current setting to

include high dimensional continuous features. One potential way is to employ feature

partitioning so that population can be segregated into different groups. However, an

appropriate objective function maximising potential DIF effects will be required to

144



perform reasonable partitioning of the features first, which can be complicated on

its own. These are left for future exploration.
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CHAPTER V

Inference for Optimal Differential Privacy

Procedures for Frequency Tables

5.1 Introduction

When releasing data to the public, a critical concern is the risk of exposing

individual information in the data set. Law enforcement, such as the European

General Data Protection Regulation, has made de-identification compulsory before

releasing data, i.e. removing personal identity from the record. However, even with

such measures, data adversaries may still be able to infer about an individual’s

identity. Some examples on privacy breach include the Netflix prize (Narayanan

and Shmatikov , 2008), the Washington State health record identification (Sweeney ,

2013), recovery of the anonymous location data (Golle and Partridge, 2009) and

privacy loss in genomic data (Wang et al., 2009a).

In the past two decades, a concept known as the data differential privacy (DP)

has been developed for the purpose of protecting against the risk of privacy loss.
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Dwork et al. (Dwork et al., 2006b) define the first formal definition of DP, which

relates the risk for privacy loss to how much the answer to a query would change

given the presence or absence of the most extreme person who is prone to privacy

breach. Machine-learning types of development quickly adopt the DP-concept. A

non-exhaustive list includes streaming (Dwork et al., 2010), data mining (Mohammed

et al., 2011), dimension reduction (Chaudhuri, Sarwate, and Sinha, 2012), genome-

wide association tests (Yu et al., 2014), Bayesian learning (Wang, Fienberg, and

Smola, 2015b) and recommender systems (Friedman, Berkovsky, and Kaafar , 2016).

In a separate front, efforts have been made to incorporate the DP framework into

the traditional disclosure-risk control data-synthesis approaches in which synthetic

datasets are generated to represent the original observed data (Rubin, 1993; Little,

1993; Raghunathan et al., 2003; Reiter , 2005; Drechsler , 2011; Raab et al., 2016).

In this direction, applications include creating private versions of discrete and cate-

gorical data (Charest , 2011; McClure and Reiter , 2012; Abowd and Vilhuber , 2008;

Hay et al., 2016; Quick , 2021), continuous data (Wasserman and Zhou, 2010; Snoke

et al., 2018), and network data (Karwa, Krivitsky, and Slavković, 2017; Karwa and

Slavković, 2016). Bowen and Liu (2020) provide a comprehensive review of the

private data synthesis methods.

The research on performing hypothesis tests within the framework of DP has

gained momentum lately and consists of diverse directions. For the traditional tests

applying to normal data, Sheffet (2017) considers the DP hypothesis testing and

confidence interval construction for ordinary least squares and ridge estimators in

linear regression. Barrientos et al. (2019) propose a differentially private mechanism
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to release the test statistic and p-value from testing a regression coefficient against 0

from a linear regression model. In anomaly detection, Degue and Le Ny (2018) design

a DP generalized likelihood ratio method to decide if data modeled as a sequence

of independent and identically distributed (i.i.d.) Gaussian random variables has a

given mean value. Ding et al. (2018) study how to conduct hypothesis tests on two

population means while preserving privacy under the more restrictive requirement

of local differential privacy. Campbell et al. (2018) provide a private analogue of

the ANOVA test. Task and Clifton (2016) and Couch et al. (2019) study non-

parametric DP rank-based tests. Generalizing a concept given by Wasserman and

Zhou (2010), Liu et al. (2019) investigate the relationship between differential privacy

framework and hypothesis testing with the goal of using testing analogue to further

refine optimal DP regime. Ferrando et al. (2022) consider using parametric bootstrap

to construct private confidence intervals and establish a consistency result for the

proposed intervals.

Most of the existing DP mechanisms are developed on releasing summary statis-

tics of the data set or responding to queries. On the testing front, the development

also mostly focuses on ‘perturbing’ summary statistics, e.g., test statistics or suffi-

cient statistics at parametric setting. Avella-Medina (2021) extends this direction

by working on the influence-function structure directly for M-estimators’ robust DP

inferences. Rogers et al. (2016) investigate the use of adaptive hypothesis testing for

p-value corrections and derive valid testing procedures under the challenging (ϵ, δ)-

DP scenarios. When it comes to releasing the dataset itself, which is essential in the

current data-sharing climate, data synthesis methods constructed under the Bayesian
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framework remain to be the dominating trend.

As for releasing tabular data, the summary cell counts are also observations. For

hypothesis testing using the DP-private tabular data, there are many research issues.

For example, suppose the cell counts are provided according to different genders and

races but the users are only interested at the variable race when the distributions of

cell counts do not differ for different genders. For the original data, users can simply

combine the categories from different genders and conduct testing on the merged

data directly. For the private data on the other hand, to the best of our knowledge,

an investigation of testing procedures has not been presented in the literature for

this simple and commonly used operation. The same statement applies when one

combine the observations collected from different locations or from different years in

an analysis.

There have also been some works dedicated to developing hypothesis-testing pro-

cedures on private tabular data sets. When adding noise to each cell of a contingency

table, Johnson and Shmatikov (2013) justify the practice of using classical statisti-

cal tests on the private tabular data theoretically by showing that the test statistic

computed from a noisy table still asymptotically has the same chi-squared distribu-

tion as using the classical method. In an earlier and pioneer work, Vu and Slavkovic

(2009) investigate the sample-size determination so that Chi-squared tests using ei-

ther the private tabular data or the original data can achieve the same power. That

is, the additional variation that is considered negligible asymptotically is not always

truly negligible – a statement supported by our numerical investigation. Wang et al.

(2015a) add Laplace errors to cell counts to create private tabular data and consider
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the additional variation in the testing procedures. They resort to Monte Carlo meth-

ods to ensure the validity of the testing methods. Besides creating their own version

of Monte-Carlo based methods, Gaboardi et al. (2016) add Laplace or normal errors

to create their private tabular data and use the structure to derive the corresponding

asymptotic distributions of the test statistics. Focusing on a simple Binomial setting

and using the positive count of the original data, Awan and Slavković (2018) extend

the use of the Neyman-Pearson lemma to construct the most powerful test under

DP. For frequency tables, these existing methods could not avoid the scenarios of

having negative cell counts.

As the cell counts in a frequency table can be presented as a one-way frequency,

we concentrate on this setting and recommend an optimal mechanism that satisfies

the standard ϵ-DP. Differing from most of the existing literature, the optimal proce-

dure does not add errors with an explicit form of distribution to the test statistics

or cell counts and only allows realization from the non-negative discrete values as

entries of private cell counts. The proposed procedures naturally avoids having neg-

ative cell counts without further truncating the private versions of the observations

at zero, thus are not subject to the induced biases or loss of utilities discussed in

Rinott et al. (2018). Valid procedures for carrying out goodness-of-fit tests on the

private tabular data are developed for the associated procedures. In particular, a

de-biased test statistic for the optimal procedure is proposed and its asymptotic dis-

tributions are derived. Finite sample approximating distributions for the Chi-square

goodness-of-fit test statistics on the commonly used Laplace and Gaussian mecha-

nisms (with/without post-processing of converting negative cells to zero) are also
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provided to adjust for the additional privacy-related noises injected so that valid in-

ference can be made in even relatively small sample settings. As far as we know, our

work is among the first to deal with statistical inference for DP mechanisms with such

post-processing. Furthermore, we identify an explicit rate requirement for privacy

regimes ϵ under which the inference procedures are valid. Moreover, we derive valid

procedures for goodness-of-fit tests on private data after performing some common

operations in practice, including inter-table merging (combine multiple tables) and

intra-table merging (combine interior categories within a table).

We organize the remaining of the chapter as follows. Section 5.2 reviews the

basic concepts of DP and some field standard DP mechanisms. Section 5.3 presents

the optimal mechanism. Inference procedures for goodness-of-fit tests are included

in Section 5.4, where both the inter-table and intra-table merging operations are

considered. Section 5.5 consists of simulation studies to compare the performance

of the optimal mechanism with the field standards. In Section 5.6, we apply our

proposed methods to NCEDL’s multi-state study data set to demonstrate the utility

of our proposed method. Section 5.7 concludes with discussions and some potential

future directions. The proofs for the developed theoretical results and some addi-

tional simulation results can be found in Appendix D. The materials of this chapter

are mainly based on Li et al. (2022b).

5.2 Review of DP Fundamentals

In this section, we review the basics of DP and some of the most commonly

used mechanisms in the literature. Differential privacy (DP) quantifies the degree
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of privacy protection in terms of privacy budget ϵ. Importantly, DP is a property

of the algorithms that produce the privacy-protected data and the algorithms are

often created according to a given utility function. Algorithms that satisfy the DP

criteria are referred to as differentially private algorithms. Before giving the formal

definition of DP, we first introduce some notations. We denote the original observed

count data cell and its private version as Y and Y ∗ respectively. We use Y ′ to

denote the neighbor of Y . Here neighboring data means Y and Y ′ only differ by one

individual. We state the formal definition of ϵ-DP.

Definition V.1 (ϵ-Differential Privacy). An algorithmM, is ϵ-DP if for all subsets

S ⊂ Range(M) and for all Y, Y ′ such that d(Y, Y ′) = 1, P (M(Y ) ∈ S)/P (M(Y ′) ∈

S) ≤ exp(ϵ).

In the definition above, ϵ > 0 is the privacy budget and d(Y, Y ′) = 1 means that

Y and Y ′ differ by one record, making them being the so-called neighbors. One

concern about algorithms that satisfy ϵ-DP is that they may inject large amount of

noise to statistical query results for the reason of attaining a strong privacy guar-

antee. The practice could result in poor data utility. Several relaxations have been

developed. Examples include the (ϵ, δ)-DP (Dwork et al., 2006a) and probabilistic

DP (Machanavajjhala et al., 2008). These are considered as relaxations because,

while still being ‘formal’, they offer slightly weaker privacy guarantees. Below we

give the formal definition of (ϵ, δ)-DP, which is commonly used in the literature.

Definition V.2 ((ϵ, δ)-Differential Privacy). An algorithmM, is (ϵ, δ)-DP if for all

subsets S ⊂ Range(M) and for all Y, Y ′ such that d(Y, Y ′) = 1, P (M(Y ) ∈ S) ≤

exp(ϵ)P (M(Y ′) ∈ S) + δ, where δ ∈ [0, 1].
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Note ϵ-DP is a special case of (ϵ, δ)-DP when δ = 0. The parameter δ adds a

small probability when the bound given in Definition V.1 does not hold. Next we

review some DP mechanisms that are considered as field standards, for the purpose

of comparison. Since we focus on studying frequency tables, we formalize these al-

gorithms using one-way frequency tables as observed data set D = (Y1, ..., YK). We

assume D ∼ Multinomial(n, P1, P2, ..., PK) here.

Laplace Mechanism (Lap). The Laplace mechanism can be applied to each of

the K cells independently via Y ∗
k ∼ Lap(yk, 1/ϵ) independently for k = 1, ..., K,

where Yk = yk is the actual observation made. Since we are dealing with count

data, we use a discretized version of Laplace distribution with probability mass func-

tion, P (Y ∗
k = y∗k | Yk = yk) = (1/C1) exp(−ϵ|yk − y∗k|), for any integer y∗k, where

C1 =
∑

l∈Z exp{−ϵ|yk − l|} = 1 + 2 exp(−ϵ)/{1− exp(ϵ)}.

It is well-known that the above procedure satisfies ϵ-DP. Since frequency tables

contain non-negative cell counts only, it is natural to perform post-processing to en-

sure all the private data entries are non-negative. Here we denote the Lap procedure

with the post-processing of converting all negative private entries to zero as the the

truncated Laplace (TLap) mechanism.

Gaussian Mechanism (GDP). Similar to the Laplace mechanism, the Gaussian

mechanism perturbs each of theK cells independently via Y ∗
k ∼N(yk, 2 log(1.25/δ)/ϵ

2)

independently for k = 1, ..., K. It has been shown in Dwork and Roth (2014) that

this procedure satisfies (ϵ, δ)-DP whenever 0 < ϵ, δ < 1. Again, we use a discretized
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version here with P (Y ∗
k = y∗k | Yk = yk) = (1/C2) exp{−(yk − y∗k)

2/(2σ2)}, for any

integer y∗k, where C2 =
∑

m∈Z exp{−(yk −m)2/(2σ2)}.

It has been shown in Canonne et al. (2020) that this discrete version has ap-

proximately the same privacy guarantee as the continuous Gaussian mechanism. For

comparison purpose only, we adopt this discrete version of the Gaussian mechanism.

Similarly, we consider the GDP with the post-processing of converting all negative

private entries to zero as the the truncated GDP (TGDP) mechanism.

Binomial-Beta McClure-Reiter Mechanism (MR). McClure and Reiter (2012)

proposed an approach to synthesize count data using Y ∗
k | D = (y1, ..., yK) ∼

Bin(n, (Yk + αk)/(n + αk + βk)) independently for each cell Yk, where αk = βk =

1/{exp(ϵ/n)− 1} makes this procedure satisfy ϵ-DP.

This is among the most commonly used data synthesis method, adapted to satisfy

the DP requirement. Its advantage is that it preserves the underlying data structure

in that, marginally, each Yk follows a Binomial distribution. However, this procedure

completely ruins the cell-wise information due to large α and β values and will in

general yield deteriorated utilities.

5.3 Optimal Mechanism

From the previous section, we know some existing privacy mechanisms have been

developed for releasing the frequency table data. However, these mechanisms are not

optimal and have other shortcomings. Take the most commonly used Laplace and

Gaussian mechanisms as examples; one of the main concerns is that negative count
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data are easily generated, which does not make any practical sense in the frequency

table setting. The popular existing methods that overcome this shortcoming often

bear a large amount of variation. Taking the MR mechanism as an example, we note

that, although the negative count issue is overcome, the damages to the utilities are

not always well controlled under the targeted privacy constraints. Furthermore, in

real applications, practitioners may face too many choices of mechanisms, often mak-

ing it difficult for them to pick up the “best” one to use. We also note that optimality

of DP algorithms in terms of utility maximization have been discussed by several

authors. For example, Ghosh, Roughgarden, and Sundararajan (2012) studies the

optimality of ϵ-differentially private mechanisms under a Bayesian framework. Geng

and Viswanath (2015) derives that the optimal ϵ-differentially private mechanism

for real-valued query functions takes the staircase-shaped probability densities that

are geometrically decaying. While Kairouz, Bonawitz, and Ramage (2016) proves

the optimality of the randomized aggregatable privacy-preserving ordinal response

algorithm and the k-ary randomized response algorithm, under the local differential

privacy framework. In this section, we seek to extend the universal optimality idea

from Ghosh et al. (2012), in which the mechanism allows a flexible design of loss

functions to measure utility, and the corresponding expected utilities are maximized

under any given privacy requirements, and we recommend an optimal mechanism for

the practitioners when applied to releasing the frequency-table type of data.

Before introducing the optimal mechanism, we first define some notations. Denote

the observed data as D = (y1, ..., yK), generated from Multinomial(n, P1, ..., PK).

The corresponding private data after DP procedures is denoted as D∗ = (y∗1, ..., y
∗
K).
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For notation simplicity, we denote i ∈ {0, 1, ..., n} as inputs (i.e. the values for yk).

Furthermore, we denote r as the private responses (i.e. the values for y∗k) where

r ∈ {0, 1, ..., n}. Let p = {pir : i = 0, 1, ..., n, r = 0, 1, ..., n} ∈ R(n+1)×(n+1) with pir

denoting the probability of mapping an input i to r. Then the optimal p, denoted as

p∗ ∈ R(n+1)×(n+1), minimizes the expected loss (i.e. maximizes the expected utility),

such that

p∗ = argmin
p

n∑
i=0

n∑
r=0

pirL(i, r), (5.1)

where L(i, r) can be any arbitrary loss function, subject only to the constraints that

L(i, r) are non-negative, and non-decreasing in |i−r| for each fixed i = 0, ..., n. Note

that p∗ = (p∗ir) defines a stochastic mechanism that maps an input i = 0, ..., n to an

output r = 0, ..., n. The commonly used loss functions include L1 and L2 losses.
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Algorithm 8: Optimal Mechanism
Input: Observed data D = (y1, ..., yK), privacy regime ϵ.

Output: Optimal perturbation matrix p∗, private data D∗.

Set α = exp(−ϵ); Initialize g, h, x ∈ R(n+1)×(n+1).

Step 1. Evaluate g corresponding to the truncated and discretized Laplace Mechanism.

for i = 0, 1, 2, ..., n do

for r = 0, 1, 2, ..., n do

if r = 0 or 1 then

gir = α|i−r|/(1 + α);

else

gir = α|i−r|(1− α)/(1 + α).

end

end

Step 2. Evaluate the “posterior” probabilities h as if using uniform prior on i.

for r = 0, 1, 2, ..., n do

s =
(∑n

i′=0 gi′r
)
;

for i = 0, 1, 2, ..., n do
hir = gir/s.

end

end

Step 3. Compute the optimal remap matrix x.

for r = 0, 1, 2, ..., n do
r∗ = argminj∈{0,...,n}

∑n
i=1 hirL(i, j).

for k = 0, 1, ..., n do

if k = r∗ then
xrk = 1.

else
xrk = 0.

end

end

Step 4. Evaluate the optimal perturbation matrix p∗.

for i = 0, 1, 2, ..., n do

for r = 0, 1, 2, ..., n do
p∗ir =

∑n
r′=0 gir′xr′r.

end

end

Step 5. Generate private frequency table.

for k = 1, 2, ...,K do
Sample y∗

k ∼ {0, 1, ..., n} according to {p∗ykr : r = 0, 1, ..., n};
D∗[k] = y∗

k.

end
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The optimal mechanism is detailed in Algorithm 8. Step 1 in Algorithm 8 evalu-

ates a perturbation matrix g corresponding exactly to the discretized Laplace Mech-

anism, but truncated at 0 and n. The tail probabilities beyond 0 and n are all

accumulated as the boundary probabilities. Its optimality has been demonstrated in

Geng and Viswanath (2014) and Ghosh et al. (2012). If we fix response r in Step 2,

we note that the vector h0r, ..., hnr can be interpreted as a list of posterior probabili-

ties conditioning on the response r with a uniform prior on the inputs i = 0, ..., n. We

will use h to evaluate an optimal remap specific to the loss function L(i, r), which

is presented in Step 3. Its main goal is to achieve the best balance between the bias

and variance so that the expected loss can be minimized. For a general loss function

L(i, r), step 3 seeks to find an optimal remap index r∗, for each response r = 0, ..., n,

such that

r∗ = arg min
j∈{0,...,n}

n∑
i=1

hirL(i, j).

Note that it is computed as the minimizer of the weighted expected loss. In reality,

this optimal remap often brings in some bias into the random error added, but the

output variance is significantly reduced which more than compensates for the bias.

Then the optimal remapping matrix x ∈ R(n+1)×(n+1) is set to be xrk = 1 if k = r∗

and xrk = 0 if k ̸= r∗. Finally in step 4, the optimal perturbation matrix p∗ can

be obtained by combining g and the optimal remap matrix x with p∗ = g × x,

where × here denotes the matrix multiplication. Lastly, to find the private data

cell y∗k, we can simply sample using r ∈ {0, 1, ..., n} with probability distribution

{p∗ykr : r = 0, ..., n}.

Remark V.3. In step 3, when L(i, r) = |i− r| is the L1 loss, optimal remap index is
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simply r∗=min{k = 0, 1, ..., n :
∑k

i=0 hir ≥ 0.5}. Step 3 in Algorithm 8 simply returns

r∗ as the ceiling function of the conditional median of {0, ..., n} with probabilities hir

for i = 0, ..., n in this case. Note that if we take L(i, j) = (i− j)2 as the squared loss,

then optimal r∗ can be evaluated as the ceiling function of the conditional mean of

{0, ..., n} with probabilities hir for i = 0, ..., n.

Remark V.4. Algorithm 8 has time complexity of O(n3) and space complexity of

O(n2) in general. Note that the time complexity is dominated by Step 3. In the

most commonly used L1 and L2 losses, short-cuts in Remark 1 can be used, in which

cases the time complexity can be reduced to O(n2), comparable to the field standards

the Laplace mechanism and the Gaussian mechanism.

Following from Theorem 3.1 in Ghosh et al. (2012) by taking a uniform prior on

the input {i = 0, 1, ..., n} with probability mass function P (i) = 1/(1 + n), it can be

shown that the p∗ obtained from the above steps solves the objective function (5.1)

while satisfying the ϵ-DP framework. This is formalized in the proposition below.

Proposition V.5. The perturbation matrix p∗ ∈ R(n+1)×(n+1) obtained through Steps

1 to 4 in Algorithm 8 solves the problem (5.1) with loss function L(i, r) that is non-

negative and non-decreasing in |i − r|, satisfying the following constraints: for any

0 < ϵ < ∞, (1) p∗ir − exp(ϵ)p∗(i+1)r ≥ 0 for i = 0, ..., n − 1, r = 0, ..., n and (2)

exp(ϵ)p∗ir − p∗(i+1)r ≤ 0 for i = 0, ..., n − 1, r = 0, ..., n. Therefore, the mechanism

described in Algorithm 8 satisfies ϵ-DP.

Note that here p∗ gives a perturbation matrix that is optimal in that it minimizes

the overall expected losses while satisfying the ϵ-DP framework. In the following sec-

tions, we will work with the optimal mechanism that minimizes the most commonly
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used expected L1 loss and develop inference procedures for it. At the same time, the

derivation applies to other losses as well.

5.4 Goodness-of-Fit Test

In this section, we develop procedures for conducting goodness-of-fit tests on

private data. Furthermore, we also consider common operations including both inter-

and intra-table mergings.

Assume the true data is D = (Y1, Y2, ..., YK) ∼ Multinomial(n, P1, P2, ..., PK).

Following a common practice, we release both D∗ =
(
Y ∗
1 , Y

∗
2 , ..., Y

∗
K

)
, the private

tabular data, and the private mechanism used to generate D∗. Suppose we are

interested in the goodness-of-fit test H0 : P1 = p1, P2 = p2, ..., PK = pK against

H1 : P1 ̸= p1 or P2 ̸= p2, ..., or PK ̸= pk. Note that unlike the Gaussian or

the Laplace mechanisms that inject a mean zero noise into each tabular cell, the

boundary truncation and the optimal remapping step in the optimal mechanism

will introduce some biases into the outputs to reach optimality. We propose a de-

biased goodness-of-fit test statistic on the private data generated from the optimal

procedures described in Section 5.3. Consider the test statistic T ∗
opt with

T ∗
opt =

K∑
k=1

(y∗k − npk − b(y∗k)√
npk

)2
=

K∑
k=1

T
′ 2
k ,

where b(y∗k) is the bias estimate stemming from the injected noise which can be

evaluated using Algorithm 9 below.
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Algorithm 9: Evaluation of Bias

Input: Private data D∗ and optimal perturbation matrix p∗.

Output: Bias terms b(y∗k) for k = 1, ..., K.

for k = 1, . . . , K do

1. fy∗k = (p∗0y∗k , p
∗
1y∗k

, ..., p∗ny∗k)
T/
(∑n

i=0 p
∗
iy∗k

)
;

2. Evaluate b = (b0, b1, ..., bn) :

for i = 0, 1, ..., n do

bi =
∑n

j=0 p
∗
ij(j − i);

end

3. b(y∗k) =
∑n

i=0 fiy∗kbi.

end

Remark V.6. Step 1 of Algorithm 9 seeks to find the list of probabilities of input

values (denoted as fy∗k) from which the observed private y∗k is likely to be sampled

from. While step 2 computes the list of expected biases if the input values are

0, 1, ..., n. Step 3 computes a weighted average of the expected biases to give the

final bias estimate at y∗k.

In order to take the second moment of the injected noise into account, we give

an estimate for the variance, v(y∗k), to approximate the variance of the injected noise

added to yk using Algorithm 10 below.
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Algorithm 10: Evaluation of Variance

Input: Private data D∗ and optimal perturbation matrix p∗.

Output: Variance terms v(y∗k) for k = 1, ..., K.

for k = 1, . . . , K do

1. fy∗k = (p∗0y∗k , p
∗
1y∗k

, ..., p∗ny∗k)
T/
(∑n

i=0 p
∗
iy∗k

)
;

2. Evaluate v = (v0, v1, ..., vn) :

for i = 0, 1, ..., n do

vi =
∑n

j=0 p
∗
ij(j −

∑n
j=0 jp

∗
ij)

2;

end

3. v(y∗k) =
∑n

i=1 fiy∗kvi.

end

Remark V.7. Step 1 of Algorithm 10 is exactly the same as in Algorithm 9. Step 2

of Algorithm 10 computes the list of expected variances given the possible original

observations of 0, 1, ..., n (we denote it as v = (v0, v1, ..., vn)). Step 3 computes a

weighted average of the expected variances to give the final estimate for the variance

term at y∗k.

We characterize the asymptotic null distribution of T ∗
opt in the following theorem.

Theorem V.8. Assume the private data are generated from the optimal procedure

with privacy regime ϵn satisfying ϵ−1
n n−1/2 → 0 as n → ∞. Then under the null

hypothesis H0 : P1 = p1, ..., PK = pK, for some 1 < K < ∞, T ∗
opt →

∑K
k=1 ΛkZk

in distribution, where Zk are i.i.d. χ2
1 random variables and Λk are the eigenvalues

of the matrix Σ ∈ RK×K where Σkk = 1 − pk + v(y∗k)/(npk) for k = 1, ..., K and

Σkj = −
√
pkpj for 1 ≤ k ̸= j ≤ K.
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Remark V.9. We can decompose y∗k = yk + errk, and Theorem V.8 takes the second

moment of errk into account so that the asymptotic null distribution can have better

finite sample properties when the sample size n is small and the privacy-protection

requirement is high (small ϵn). Furthermore, we state that the rate of decrease of

privacy regime ϵn cannot be faster than n−1/2 for the asymptotics to work. For much

perturbed outputs with small n and ϵn, inference procedures have low powers in

general. Under such scenarios, as shown in the numerical outcomes, our proposed

optimal procedure outperforms others. When an even smaller ϵn is required so that

the asymptotic fails, one perhaps should carefully consider whether it is meaningful

to release such a deteriorated data set.

Theorem V.8 can be generalized easily to any DP mechanisms whose injected

noises are additive to the true cell counts. Below we take the most commonly used

Laplace and Gaussian mechanisms (and their corresponding post-processing versions,

TLap and TGDP) as examples and derive their asymptotic distributions. We use a

standard Pearson Chi-square test statistic in the literature which is given as follows,

T ∗ =
K∑
k=1

(y∗k − npk)
2

npk
=

K∑
k=1

(y∗k − npk√
npk

)2
=

K∑
k=1

T 2
k .

Theorem V.10. Assume the privacy regime ϵn satisfying n−1/2ϵ−1
n → 0 as n→∞.

Under the null hypothesis H0 : P1 = p1, ..., PK = pK, for some 1 < K < ∞, the

following results hold.

(a). When the private data are generated from the ϵn-DP Laplace mechanism or

the ϵn-DP truncated Laplace mechanism (at zero). T ∗ →
∑K

k=1 ΛkZk in distribu-
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tion, where Zk are i.i.d. χ2
1 random variables and Λk are eigenvalues of the matrix

Σ ∈ RK×K where Σkk = 1 − pk + 2/(npkϵ
2
n) for k = 1, ..., K and Σkj = −

√
pkpj for

1 ≤ k ̸= j ≤ K.

(b). When the private data are generated from the (ϵn, δ)-DP Gaussian mecha-

nism or the truncated (ϵn, δ)-DP Gaussian mechanism (at zero) for some 0 < δ < 1.

T ∗ →
∑K

k=1 ΛkZk in distribution, where Zk are i.i.d. χ2
1 random variables and Λk are

eigenvalues of the matrix Σ ∈ RK×K where Σkk = 1−pk+(2 log(1.25/δ)−1)/(npkϵ
2
n)

for k = 1, ..., K and Σkj = −
√
pkpj for 1 ≤ k ̸= j ≤ K.

5.4.1 Merging Multiple Frequency Tables

The data users may often encounter the need to merge different private tabular

datasets. For example, the users may want to merge multiple data sets across differ-

ent time-periods or regions before performing statistical analysis. Merging multiple

frequency lists can increase sample size and therefore improve confidence when per-

forming statistical inference. In this section, we develop inference procedures that

can be applied to the merged private frequency tables.

Suppose the users are interested in merging C data lists j = 1, ..., C together,

with the j’th private data list denoted as D∗
j = {Y ∗

j1, Y
∗
j2, ..., Y

∗
jK} with sample size

nj. Further assume n =
∑C

j=1 nj. The merged data set can then be denoted as D∗
m =

{
∑C

j=1 Y
∗
j1, ...,

∑C
j=1 Y

∗
jK}. Furthermore, suppose the user knows the DP procedure

used to create each of the private data listsD∗
j . To testH0 : P1 = p1, P2 = p2, ..., PK =

pK against H1 : H0 does not hold on the merged data, We consider the following test
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statistic

T ∗
M =

K∑
k=1

(∑C
j=1 Y

∗
jk − npk − bM({y∗jk}Cj=1)√

npk

)2
=

K∑
k=1

T 2
mk,

where bM({y∗jk}Cj=1) =
∑C

j=1 b(y
∗
jk). Then Theorem V.11 characterizes the asymp-

totics of the T ∗
M under the null hypothesis. We give the results for both the recom-

mended optimal procedure and the commonly used mechanisms in the literature.

Theorem V.11. Assume ϵ−1
n n−1/2 → 0 as n → ∞. Under the null hypothesis H0 :

P1 = p1, ..., PK = pK, for some 1 < K,C <∞, the following results hold.

(a) If D∗
j are obtained from the optimal procedure with privacy regime ϵn, then

T ∗
M →

∑K
k=1 ΛkZk in distribution, where Zk are i.i.d. χ2

1 random variables and Λk

are the eigenvalues of the matrix Σ ∈ RK×K where Σkk = 1−pk+vM({yjk}Cj=1)/(npk)

for k = 1, ..., K with vM({yjk}Cj=1) =
∑C

j=1 v(y
∗
jk), and Σkj = −√pkpj for 1 ≤ k ̸=

j ≤ K.

(b) If D∗
j are obtained from the ϵn-DP Laplace mechanism or the truncated ϵn-

DP Laplace mechanism (at zero), then we set bM({y∗jk}Cj=1) = 0 in T ∗
M . We have

T ∗
M →

∑K
k=1 ΛkZk in distribution, where Zk are i.i.d. χ2

1 random variables and Λk

are the eigenvalues of the matrix Σ ∈ RK×K where Σkk = 1 − pk + 2C/(ϵ2nnpk) for

k = 1, ..., K and Σkj = −
√
pkpj for 1 ≤ k ̸= j ≤ K.

(c) If D∗
j are obtained from the (ϵn, δ)-Gaussian mechanism or the truncated

(ϵn, δ)-Gaussian mechanism (at zero) for some 0 < δ < 1, then we set bM({y∗jk}Cj=1) =

0 in T ∗
M . We have T ∗

M →
∑K

k=1 ΛkZk in distribution, where Zk are i.i.d. χ2
1 random

variables and Λk are the eigenvalues of the matrix Σ ∈ RK×K where Σkk = 1− pk +
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CvM/npk for k = 1, ..., K with vM = (2 log(1.25/δ) − 1)/ϵ2n, and Σkj = −
√
pkpj for

1 ≤ k ̸= j ≤ K.

5.4.2 Merging Cells Within a Frequency Table

Data users may also be interested in combining entries within a frequency table,

either because they are interested in a more general group of classes or because the

sample sizes of some cells are too small to carry out valid analysis. Similar to inter-

table merging, intra-table merging directly on the private tabular data accumulates

random noises in the merged cells, resulting in invalid analysis results if these noises

are not taken into account separately. In this section, we provide goodness-of-fit test

procedures that can be applied to the intra-table merged private data sets.

Without loss of generality, suppose the users are interested in merging the first M

cells of the private list D∗ = {Y ∗
1 , Y

∗
2 , ..., Y

∗
K} for some M < K. Denote the resulting

merged data set as D∗
m =

{∑M
k=1 Y

∗
k , Y

∗
M+1, ..., Y

∗
K

}
= {Y ∗

m1, Y
∗
m2, ..., Y

∗
m(K−M+1)}. To

test H0 : Pm1 = p1, Pm2 = p2, ..., Pm(K−M+1) = pK−M+1 against H1 : H0 does not

hold on the merged data set D∗
m. We consider

T ∗
M =

K−M+1∑
k=1

(Y ∗
mk − npk − bM(y∗mk)√

npk

)2
=

K−M+1∑
k=1

T 2
mk,

where bM(y∗m1) =
∑M

i=1 b(y
∗
i ) and bM(y∗mk) = b(y∗M+k−1) for k = 2, ..., K −M + 1.

The following theorem characterizes the asymptotic null distribution of T ∗
M . Again,

we give the results for both the recommended optimal procedure and the commonly

used mechanisms in the literature.
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Theorem V.12. Assume the privacy regime ϵn satisfies ϵ−1
n n−1/2 → 0 as n → ∞.

Under the null hypothesis Pm1 = p1, Pm2 = p2, ..., Pm(K−M+1) = pK−M+1, for some

1 < K <∞ and 1 ≤M < K, the following results hold.

(a) If D∗ are from the ϵn-DP optimal procedure, then T ∗
M →

∑K−M+1
k=1 ΛkZk in

distribution, where Zk are i.i.d. χ2
1 random variables and Λk are the matrix Σ ∈

R(K−M+1)×(K−M+1) where Σkk = 1 − pk + vM(y∗mk)/(npk) for k = 1, ..., K −M + 1,

with vM(y∗m1) =
∑M

i=1 v(y
∗
i ) and vM(y∗mk) = v(y∗M+k−1) for k = 2, ..., K −M +1, and

Σkj = −
√
pkpj for 1 ≤ k ̸= j ≤ K −M + 1.

(b) If D∗ are from the ϵn-DP Laplace mechanism or the truncated ϵn-DP Laplace

mechanism (at zero), we set bM(y∗mk) = 0 in T ∗
M . then T ∗

M →
∑K−M+1

k=1 ΛkZk in

distribution, where Zk are i.i.d. χ
2
1 random variables and Λk are the eigenvalues of the

matrix Σ ∈ R(K−M+1)×(K−M+1) where Σ11 = 1− p1 +MvM/npk for k = 1, ..., K and

Σkk = 1−pk+vM/npk for k = 2, ..., K−M +1, with vM = 2/ϵ2n, and Σkj = −
√
pkpj

for 1 ≤ k ̸= j ≤ K −M + 1.

(c) If D∗ are from the (ϵn, δ)-DP Gaussian mechanism or the truncated (ϵn, δ)-

DP Gaussian mechanism (at zero), we set bM(y∗mk) = 0 in T ∗
M . Then we have T ∗

M →∑K−M+1
k=1 ΛkZk in distribution, where Zk are i.i.d. χ2

1 random variables and Λk are

the eigenvalues of the matrix Σ ∈ R(K−M+1)×(K−M+1) where Σ11 = 1−p1+MvM/npk,

Σkk = 1 − pk + vM/npk for k = 2, ..., K −M + 1 with vM = (2 log(1.25/δ) − 1)/ϵ2n,

and Σkj = −
√
pkpj for 1 ≤ k ̸= j ≤ K −M + 1.
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5.5 Simulation Study

Various simulation studies are designed to examine and compare the effectiveness

of the recommended Opt procedure in Section 5.3 with the five methods, Lap, TLap,

GDP, TGDP and MR reviewed in Section 5.2; the latter five are commonly used

algorithms in the literature. Throughout the section, we consider three targeted

privacy regimes of ϵ = 0.25, 0.5, 0.75. L1 loss is used to compare the performance of

different procedures. We also numerically validate the inference procedures given in

Section 5.4.

5.5.1 Utility

Here, sample size n = 500 and observed counts of i = 5, 200, 450 are considered.

5000 Monte Carlo samples are generated for each setting and L1 losses are evaluated.

For the MR mechanism, α = β = 1999.5, 999.5, 666.2 are required to achieve ϵ =

0.25, 0.5, 0.75 respectively. For the GDP/TGDP, since the ϵ-DP does not exist, we

relax it to (ϵ, δ)-DP instead. It is a common practice to take δ ≤ 1/n and we set

δ = 1/500 = 0.002 in this case. For Lap, TLap and Opt, procedures are implemented

as described in Section 5.2 and Section 5.3 respectively. The distributions of the losses

across different settings are summarized and compared using box-plots in Figure 5.1.

From Figure 5.1, we note that the Opt mechanism improves utilities significantly in

comparison to the traditional data synthesis MR mechanism. We also observe that

the MR method’s utility varies with the observed values of i (5, 200, 450). The

closer the observed i-value is to n/2 = 250, the better the MR method’s utility.

Regardless of the values of i, MR mechanism’s performance is much worse than
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the other procedures. GDP/TGDP, on the other hand, though requiring further

relaxation on privacy regime with an additional δ of 0.002, its utility is still worse than

that of the Lap/TLap and the Opt across all scenarios. The truncated mechanisms

have similar performances as their counterparts, though they tend to give results

with lower variations as indicated by slightly smaller box sizes.

Overall, the Opt mechanism appears to achieve comparable utilities to the Lap/T-

Lap mechanisms. To examine closely, we present the Monte Carlo means and vari-

ances of the L1 losses in Table 5.1. Compared to the Lap/TLap mechanisms, we

observe that the Opt mechanism achieves smaller Monte Carlo means and similar

variances of the L1 losses under the same privacy constraints. The major improve-

ment of Opt is achieved under the most restrictive privacy regime, ϵ = .25 and for

the observed i = 5, most distant from the center n/2 and therefore more prone to

privacy risks. Moreover, we also point out that the truncated mechanisms, including

the TLap and the TGDP, are expected to perform no worse than their non-truncated

counterparts because converting negative cells to zero will produce private data closer

to their true underlying values which are always non-negative. Indeed, when the true

value is close to zero at i = 5 and when the privacy regime is high at ϵ = 0.25 (so

the injected noises are large and more negative cells would be converted to zero),

we observe significant improvements on the mean and variance of L1 losses for the

truncated versions over their non-truncated counterparts. While when the underly-

ing value is large and privacy regime is small, the improvement is not so obvious.

Some counter-intuitive observations are due to Monte Carlo errors.

In the last part of Table 5.1 under ‘Negative Proportion’, we report the proportion
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of Monte Carlo samples with at least one negative count. In reality, a negative cell

count will not be observed. Releasing a private table with a negative cell count will

likely reduce the users’ confidence in the quality of the released tables. We notice that

when ϵ = 0.25, the proportion of negative counts yielded from the Lap and GDP

versions of private tables are 12.3% and 36.8% respectively. In contrast, the Opt

mechanism ensures that no negative count will be generated. This characteristic

demonstrates the benefits of releasing Opt versions of private frequency tables as

compared to the traditional Lap or GDP mechanism without any post-processing

procedures.
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Figure 5.1: Utility comparison (L1 loss) amongst the Opt, Lap, TLap (truncated
Laplace), GDP, TGDP (truncated GDP) and MR mechanisms across different pri-
vacy regimes ϵ = 0.25, 0.5, 0.75 and observed data counts i = 5, 200, 450.
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ϵ = 0.25 ϵ = 0.5 ϵ = 0.75
i=5 i=200 i=450 i=5 i=200 i=450 i=5 i=200 i=450

Mean
Opt 2.94 3.98 3.93 1.79 1.90 1.88 1.23 1.20 1.24
Lap 3.97 4.04 4.08 2.03 1.96 1.96 1.31 1.27 1.33
TLap 3.44 3.99 4.15 1.84 2.04 1.94 1.31 1.31 1.34
GDP 11.08 11.04 10.98 5.41 5.61 5.76 3.75 3.42 3.63
TGDP 7.82 11.19 10.40 4.47 5.64 5.67 3.49 3.74 3.67
MR 217.55 44.20 177.89 195.79 39.80 160.05 178.20 36.45 145.29

Variance
Opt 10.03 15.53 15.60 3.06 4.11 3.94 1.84 1.86 1.96
Lap 16.68 16.67 16.60 4.58 3.97 4.17 1.96 1.83 1.95
TLap 9.69 17.29 17.26 2.98 4.04 4.35 1.66 1.80 1.87
GDP 68.61 71.93 69.33 15.87 18.90 17.84 8.40 7.73 7.56
TGDP 52.56 72.54 63.63 9.41 16.87 18.64 6.03 7.38 7.33
MR 121.85 126.44 125.23 118.62 129.83 123.29 115.95 122.04 118.34

Negative Proportion
Opt 0.000 0.000 0.000
Lap 0.123 0.037 0.009
TLap 0.000 0.000 0.000
GDP 0.368 0.210 0.104
TGDP 0.000 0.000 0.000
MR 0.000 0.000 0.000

Table 5.1: Mean, variance of the L1 losses and proportion of negative counts out
of 5000 Monte Carlo samples for different privacy regimes, ϵ = 0.25, 0.5, 0.75, and
observed counts, i = 5, 200, 450.

5.5.2 Goodness-of-fit Test

In this sub-section, we seek to numerically validate the inference procedures in

Section 5.4. Considering the frequency data D ∼ Multinomial(n, P1 = 0.1, P2 =

0.1, P3 = 0.8), we are interested in testing H0 : P1 = 0.1, P2 = 0.1, P3 = 0.8.

We consider differing sample sizes n = 100, 1000, under three privacy targets ϵ =

0.25, 0.5, 0.75. Setting the significance level to be 0.05, we evaluate 500 empirical test

statistics. First, we examine the use of the traditional Chi-square distribution with

K − 1 degrees of freedom as if the data is not perturbed. We check whether the em-

pirical type I errors could be controlled using this naive asymptotic null distribution

for the private data sets produced by the five mechanisms, Opt, Lap, TLap, GDP and

TGDP. The resulting average empirical type I errors are provided under the “Naive
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Method” scenario in Table 5.2. Except for the setups when the sample size is large

at n = 1000 and the privacy control is not strict with ϵ > 0.5, the average empirical

type I error rates are way above the targeted value of 0.05 for all the mechanisms.

That is, the use of the naive χ2
K−1 null distribution cannot control the type I error

in such cases. The situation is worse when the GDP or TGDP mechanisms are used.

When sample sizes are small at n = 100 or when the privacy regime is strict with

ϵ = 0.25, the naive method performs poorly and valid inference is impossible.

Next, we test the results in Theorems V.8 and V.10 under the same simulation

settings as above. The goal is to check whether the new test statistics and null

distributions derived can control the type I error rate well so that valid hypothesis

testing can be implemented. Under the “Proposed Method” scenario of Table 5.2, we

report the mean empirical type I errors obtained from the 500 simulated samples. In

contrast to the “Naive Method” scenario, the empirical type I errors are controlled

fairly well at around 5%. We point out that truncation tends to reduce the type I

error rate, especially when sample size is small and privacy regime is high.

n = 100 n = 1000
ϵ = 0.25 ϵ = 0.5 ϵ = 0.75 ϵ = 0.25 ϵ = 0.5 ϵ = 0.75

Naive Method
Opt 0.392 0.180 0.108 0.102 0.063 0.054
Lap 0.449 0.188 0.112 0.102 0.064 0.056
TLap 0.448 0.187 0.113 0.101 0.062 0.055
GDP 0.865 0.549 0.327 0.401 0.141 0.088
TGDP 0.865 0.549 0.327 0.401 0.141 0.088

Proposed Method
Opt 0.037 0.047 0.054 0.052 0.050 0.052
Lap 0.066 0.058 0.055 0.055 0.051 0.051
TLap 0.034 0.053 0.055 0.055 0.051 0.051
GDP 0.052 0.051 0.051 0.051 0.052 0.051
TGDP 0.023 0.028 0.038 0.051 0.052 0.051

Table 5.2: Mean empirical type I errors out of 500 simulated samples under two
study scenarios across different sample sizes n = 100, 1000 and different privacy
regimes ϵ = 0.25, 0.5, 0.75. The two scenarios are “Naive Method”: Chi-squre tests
for original data, “Proposed Method”: procedure proposed in Section 5.4.
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To compare the statistical powers, we consider the alternative hypotheses H1 :

P1 = p1, P2 = p1, P3 = 1−2p1, and explore the cases with p1 = 0.1, 0.11, 0.12, ..., 0.25

for n = 100 and p1 = 0.1000, 0.1025, 0.1050, ..., 0.1350 for n = 1000. The results

are summarized in Figure 5.2. In Figure 5.2, as the H1 hypothesized values depart

further from that in the H0, all mechanisms have the powers rising to 1. The Lap/T-

Lap mechanisms and the Opt procedures have significantly higher power than the

GDP/TGDP mechanisms, especially when the sample size and the ϵ-value is small

(n = 100 or ϵ = 0.25). The Lap/TLap and the Opt procedures perform similarly

with the Opt outperforming Lap/TLap slightly when the sample size is small. As n

and ϵ get larger, the differences in power amongst the mechanisms diminish. This

is reasonable because the random noise injected is inversely proportional to ϵ and

is scaled by
√
n in the test statistic. So, when the sample size increases, the noises

become increasingly more negligible. That makes the statistical powers for the mech-

anisms merge to the same performance level when the sample size becomes large.

We also note that post-processing of truncating at zero does not have much impact

on the statistical power.

Furthermore, we compare the power performance of the non-debiased and the

de-biased test statistics for the Opt under the same setting as above. The results

are summarized in Figure 5.3. We observe that the bias correction step can help

improve statistical power slightly when ϵ and sample size are small. On the other

hand, the simpler version without the bias-correction component is as competitive

in all settings.

Moreover, we also conduct simulation studies to validate the results given in The-
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orems V.11 and V.12 for inter- and intra-table merging. Simulation results show that

empirical type I errors can be controlled well using the approximate null distribution

developed, suggesting Theorems V.11 and V.12 provide valid inference procedures.

Our simulation results also show that the recommended Opt mechanism perform

the best in terms of the empirical powers. These additional simulation results are

included in Appendix D
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Figure 5.2: Empirical power comparison for five privacy procedures: Opt, Lap, TLap,
GDP and TGDP.
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Figure 5.3: Empirical power comparisons for the Opt procedures with and without
bias-correction.

5.6 Analysis of Children’s Early Development and Learning

Data

In this section, we consider an application to the data from the NCEDL’s multi-

state study (M. Clifford et al., 2017). The data set consists of 2982 records of 308

variables collected from pre-kindergarten children in 11 states of the United States of

America. We focus on one-way frequency tables and select two categorical variables

household type and family income to investigate the differences between the three

east coast states, Massachusetts, New York and New Jersey, and the other states.
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We start with the variable, household type. This is a variable with five categories

describing different household types: (I) single mom or dad, (II) mom and dad both

in home, (III) w/o dad, (IV) multiple adults, but parents/step-parents not both in

home, and (V) single adult, not mom or dad. After removing the instances with

missing outcomes and collapsing into frequency lists, the values, including those

from the three east coast states and the remaining eight states, are summarized in

Table 5.3.

(I) (II) (III) (IV) (V) n
Massachusetts 85 237 9 36 5 372
New York 48 83 4 24 3 162
New Jersey 66 174 18 51 4 313

Others 403 1241 143 251 21 2059

Table 5.3: One-way frequency table of the variable, household type, in Massachusetts,
New York, New Jersey and the other eight states (denoted as Others) in the NCEDL
study.

State by state for the three east coast states, we apply the three mechanisms

considered in Section 5.5 with ϵ = 0.25, 0.5, 0.75, and δ = 1/n (only for GDP and

TGDP) to these frequency tables. In particular, the Opt mechanism used here

optimizes against L1 losses and is implemented according to Algorithm 8. For each

case, 500 private samples are simulated. Using the New York state as an example,

we report the summarized utilities for the five DP-mechanisms. In Table 5.4, we

present the mean values of the private entries under each of the five categories, the

average entry-wise Monte Carlo standard errors (Ave. SD), the average entry-wise

L1 loss (Mean L1 loss), and the proportions of private datasets generated with at

least one negative entry out of 500 simulated samples (‘< 0’ Proportion). We note

that the Opt procedure will always produce private data with the smallest mean
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L1 losses as compared to the other methods, in line with the theoretical results in

Proposition V.5. The results also suggest that the improvement in the utility is a

result of the reduced uncertainty as illustrated by the smallest average Monte Carlo

SD’s achieved by the Opt mechanism. Furthermore, we observe that categories (III)

and (V) have close to 0 entries; thus their corresponding private versions for Lap and

GDP procedures might be negative, especially in high privacy regimes where noise

injected is large. Indeed, when ϵ = 0.25, the proportion of private frequency tables

produced by the Lap and GDP mechanisms with negative entries are quite high. In

reality, releasing such frequency tables could cause confusion and doubts amongst

users about the usefulness of the data sets.

(I) (II) (III) (IV) (V) Ave. SD Ave. L1 loss ‘< 0’ Proportion

ϵ = 0.25

OPT 48.00 82.70 5.37 24.12 4.89 4.87 3.44 0.00
Lap 47.59 82.99 3.76 23.88 3.07 5.74 4.01 0.35
TLap 47.87 83.10 4.76 24.13 3.96 5.23 3.70 0.00
GDP 48.29 82.45 3.96 23.64 3.12 12.87 10.26 0.63
TGDP 48.29 82.45 7.16 23.84 6.79 11.20 8.84 0.00

ϵ = 0.5

OPT 47.79 82.92 4.25 23.77 3.32 2.59 1.79 0.00
Lap 47.79 82.98 3.87 23.95 3.01 2.88 1.99 0.12
TLap 47.79 82.98 4.04 23.95 3.21 2.72 1.92 0.00
GDP 48.14 82.69 4.01 23.84 3.05 6.45 5.12 0.45
TGDP 48.14 82.69 4.95 23.84 4.35 5.86 4.67 0.00

ϵ = 0.75

OPT 48.02 83.04 3.94 23.91 2.98 1.80 1.20 0.00
Lap 47.88 83.01 3.92 23.96 3.00 1.93 1.31 0.06
TLap 47.88 83.01 3.97 23.96 3.08 1.86 1.28 0.00
GDP 48.10 82.82 3.99 23.87 3.05 4.30 3.42 0.31
TGDP 48.10 82.82 4.33 23.87 3.63 4.03 3.23 0.00

Table 5.4: Properties of private one-way frequency tables of the variable household
type in New York state. The summary statistics reported are: mean values of the
private entries under each of the five categories (I) to (V), average Monte Carlo
standard deviations of all the private data entries (Ave. SD), mean L1 loss with
respect to true values in Table 5.3 (Ave. L1 loss) and the proportion of 500 private
tables with at least one negative entry (‘< 0’ Proportion).

For the variable household type and using the entries from the other eight states,

we obtain the proportions under the five categories, p0 = (p01, · · · , p05)T , where
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p01 = 0.196, p02 = 0.603, p03 = 0.069, p04 = 0.122, p05 = 0.010 and use them

as the null-hypothesized values. Let PMA,ℓ, PNY,ℓ, and PNJ,ℓ, ℓ = 1, 2, · · · , 5, de-

note the population proportions of the five household type categories for the states

of Massachusetts, New York and New Jersey respectively. Here, we are interested

in testing whether the distribution(s) of the variable household type for the three

east coast states equal the null hypothesized value p0. Specifically, we have the

null hypothesis H0 : PMA,ℓ = p0ℓ, PNY,ℓ = p0ℓ, PNJ,ℓ = p0ℓ, for ℓ = 1, · · · , 5. The

goodness-of-fit testing procedures proposed in Section 5.4 are directly applicable

here for individual state and for the complex H0 for all three states as stated above.

We apply the test statistics constructed using results from Theorems V.8 and V.10.

For the Opt mechanism, bias correction using Algorithm 9 is applied. For the all

the private mechanisms tested, we add the three test statistics constructed using

the private data for each of the east coast states. From Theorems V.8 and V.10,

we know that asymptotically this combined test statistic is equivalent to the sum

of 15 weighted Chi-square random variables with one degree of freedom, where the

weights can be evaluated according to our results. To verify the effectiveness of

our proposed procedure under this finite-sample setting, we conduct a parallel sim-

ulation study. First, we generate new data sets assuming that the data generating

process is as in the H0 and the sample sizes are the same as those of the three

east coast states. To explore the statistical powers, we simulate data sets accord-

ing to the alternative hypotheses H1: PNJ,2 = 0.603, 0.603 + 0.005, ..., 0.603 + 0.05,

PMA,1 = 0.196, 0.196 − 0.005, ..., 0.196 − 0.05, and all the other terms in the H1 are

kept to be the same as in the H0. We set the level of significance to be 0.05. The
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empirical type I errors and powers are summarized in Table 5.5 and in Figure 5.4

respectively. We observe that the empirical type I errors are well controlled across

all three mechanisms and for all privacy regimes. The Opt mechanism attains the

highest power compared to the other methods, especially when the level of privacy-

protection is high.

ϵ = 0.25 ϵ = 0.5 ϵ = 0.75

Household type

Opt 0.055 0.052 0.053
Lap 0.062 0.055 0.054
TLap 0.058 0.055 0.054
GDP 0.050 0.051 0.053
TGDP 0.033 0.050 0.053

Income level

Opt 0.052 0.051 0.050
Lap 0.052 0.050 0.052
TLap 0.051 0.050 0.052
GDP 0.051 0.051 0.052
TGDP 0.044 0.050 0.051

Table 5.5: Mean empirical type I errors of the goodness-of-fit test using the private
data sets generated when H0 is true. The reported values are calculated using 500
simulated samples generated according to the NCEDL’s settings. Two variables
considered are household type and income level.

Next we compare the p-values obtained using the true data and using the private

data. In the simulation, p-values are evaluated on each of the 500 simulated private

data tables and the average is reported in Table 5.6. Using the true data, we obtain

a p-value of 0.0006, suggesting that the distributions of the variable household type

differ between the three east coast states and the other eight states considered in the

NCEDL study. However, in Table 5.6, we observe that all the p-values yielded from

the private data are inflated to some extent, due to the information loss as a result

of the random noises injected. When the privacy requirement is high at ϵ = 0.25,

none of the methods correctly rejects the potentially wrong H0. When ϵ = 0.5 and if

the level of significance is set to be 0.05, only the private data yielded from the Opt
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mechanism can correctly reject H0. When the privacy regime is set at ϵ = 0.75, the

Lap, TLap and Opt procedures produce satisfactory p-values with the Lap and Opt

mechanisms yielding a slightly lower average p-value than TLap. All the p-values

yielded from private data generated from GDP or TGDP mechanisms do not give

correct inference results. The numerical results here suggest that the chances of the

testing signals being undetermined increase with the levels of privacy requirements

(decrease with ϵ). The Opt mechanism tend to give the smaller deviations from the

truth, thus is more preferred to conduct private inferences.
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Figure 5.4: Empirical power comparisons for five privacy procedures: Opt, Lap,
TLap, GDP and TGDP on household type data.

ϵ = 0.25 ϵ = 0.5 ϵ = 0.75

Household type

Opt 0.372 0.042 0.006
Lap 0.326 0.068 0.006
TLap 0.394 0.054 0.010
GDP 0.450 0.297 0.157
TGDP 0.673 0.422 0.189

Income level

Opt 0.000 0.000 0.000
Lap 0.000 0.000 0.000
TLap 0.000 0.000 0.000
GDP 0.038 0.000 0.000
TGDP 0.022 0.000 0.000

Table 5.6: Average p-values of the goodness-of-fit tests using the private data sets in
the NCEDL studies. The reported values are calculated using 500 simulated samples.
Two variables considered are household type and income level.
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Hereafter, we consider another categorical variable family income which has

18 categories describing the income levels of the population. The categories are

(1) ≤ $5, 000, (2) $5,001 - $10,000, (3) $10,001 - $15,000,..., (18) ≥ $85, 001. There

are 354, 155 and 286 observations for the three east coast states, Massachusetts,

New York and New Jersey, respectively. It is a common operation to reduce the

total number of categories in a variable when the number of categories is large. The

results reported in Theorem V.12 provide theoretical support for reducing the num-

ber of categories via combining multiple cells into one. Here, for each state, the data

is collapsed into frequency tables with three categories: low income (≤ $20, 000),

middle income ($20, 001− $50, 000) and high income (≥ $50, 001), and denote them

as DMA, DNY and DNJ respectively. The three family income categories are con-

structed by respectively merging 4, 6, and 8 out of the original 18 categories into

three based on the corresponding income levels.

Goodness-of-fit tests are conducted to check whether the distributions of the vari-

able family income for the three east coast states differ from the targeted distribution

built from the other states. Following a similar operation as earlier for the variable

household type, for the 18 categories from the eight other states, the corresponding

proportions are p0 = (p0,1, · · · , p0,18)T , with the value of p0 = (0.099, 0.101, 0.119,

0.118, 0.106, 0.103, 0.074, 0.043, 0.036, 0.031, 0.020, 0.026, 0.022, 0.013, 0.012, 0.014,

0.013, 0.050)T . The act of combining categories leads to the null-hypothesized value of

pc0 = (0.437, 0.393, 0.170)T and the composite H0 : PMA,ℓ = pc0,ℓ, PNY,ℓ = pc0,ℓ, PNJ,ℓ =

pc0,ℓ, for ℓ = 1, 2, 3. For the power evaluation, we construct the alternatives from the

original 18 categories. Specifically, we set p1,6 = p0,6 − k△, and p1,4 = p0,4 + k△,
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where △ = 0.0025 and k = 0, 1, ..., 14, while keeping the rest of the H1 the same as

the H0. Note that p0,4 has the largest value amongst the 15 cell probabilities. The

significance level is set to be 0.05. The empirical type I errors under the H0 and the

statistical powers are shown in Table 5.5 and Figure 5.5, respectively. We observe

that the empirical type I errors are well controlled across all different mechanisms

and for all privacy regimes. The Opt mechanism attains comparable power to the

Lap/TLap method, but much larger than those from the GDP/TGDP mechanisms.
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Figure 5.5: Empirical power comparisons for five privacy procedures: Opt, Lap,
TLap, GDP and TGDP on the intra-table merged income level data.

Furthermore, we compare the p-values obtained from the true observations and

from the private data sets. A p-value of zero is obtained using the true data, sug-

gesting that the distribution for the variable income level of the east coast states

differs from that of the other eight states in the NCEDL study. For the private data,

p-values are evaluated on each of the 500 Monte Carlo samples and the averages

are reported in Table 5.6. In this case, the signal of true H1 is strong enough to

be detected for all the mechanisms using a level of significance of 0.05, and the Opt

approach attains one of the smallest p-values amongst the five mechanisms.
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5.7 Conclusion

In this chapter, we recommend a mechanism satisfying ϵ-DP, specifically appli-

cable to one-way frequency tables, which is optimal in the sense that the expected

losses are minimized under a given privacy constraint, where the losses are flexible.

Furthermore, we develop valid inference procedures for goodness-of-fit tests for the

private data, not only for the optimal mechanism, but also for the Laplace mechanism

and the Gaussian mechanism (with/without post-processing of converting negative

cells to zero). In fact, the inference procedures developed work for general mech-

anisms with additive noises. Everyday operations in practice, including merging

multiple frequency tables and combining categories within a table, are also consid-

ered. The valid inference procedures applicable to the private frequency tables are

derived. However, ϵ-DP procedures can be too noisy in practice and it might be

desirable to extend the current results to the (ϵ, δ)-DP framework. Currently, the

developments of the (ϵ, δ)-DP mainly focus on the Gaussian mechanism, under which

the numerical properties are vastly inferior to other mechanisms. The investigation

and developments of alternative (ϵ, δ)-DP mechanisms with satisfactory inference

characteristics are left as future work to explore.
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APPENDIX A

Appendix of Chapter 2

A.1 Additional Simulation Studies

A.1.1 Estimating Randomly Sampled Q-Matrix

In this section, we consider randomly sampled Q-matrix in a way that can sim-

ulate potentially more challenging scenarios. In specific, we include the one-, two-

and three-attribute item designs. The exact construction of the Q-matrix is as fol-

lows. Similar to the construction in the main article, we still fix the dimension of

the Q-matrix to be 3K by K, i.e. 3K items with K attributes. For each row j, we

first determine which item design it will take by a random sampling scheme. Let

M =
(
K
1

)
+
(
K
2

)
+
(
K
3

)
. The number of required attributes (denoted by n) for each

item is randomly sampled from {1, 2, 3} with probabilities {
(
K
1

)
/M,

(
K
2

)
/M,

(
K
3

)
/M}.

Then, n attributes are sampled without replacement from {1, 2, ..., K} with equal
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probabilities, the corresponding entries in qj will be set to 1 and the rest to 0. Note

that this random construction of the Q-matrix would somewhat simulate the ex-

treme situations where the easiest learned one-attribute items will be sampled with

the smallest probabilities. For example, whenK = 15, the probability to select a one-

attribute item is only 0.0261. Furthermore, we also point out that under this random

design, there will be a high chance the sampled Q-matrix is not identifiable, mak-

ing the estimation even more difficult. 100 replications for each of K = 5, 10, ..., 25

are considered and the average results are presented in Figure A.1. For illustration

purpose, we only consider the settings when N = 2000 and when the attributes are

independent, for the DINA, the ACDM, and a mixture of the DINA, ACDM, and

DINO data. For the data from a mixture of three models, the data are generated

from the DINA, ACDM and DINO models with proportions 0.35, 0.35, and 0.3,

respectively. All other set-ups remain the same as in Chapter II.

From Figure A.1, we can observe that the OE’s of our proposed method remain

controlled for three types of data. However, we can also see that the OE’s worsen

and the OTP’s become much more volatile compared to the fixed Q-matrix design

in Chapter II. This is not surprising because of the increased difficulty in the design

where the Q-matrices contain more two- and three-attribute items and the number

of non-identifiable Q-matrices increases significantly. In line with our observations

in the main article, we also observe the increased uncertainty level impact most

negatively on the OTP. However, overall, the proposed method still possesses certain

degrees of learning power of the Q-matrix even in such extreme situations.
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Figure A.1: Plots of different performance metrics against the sizes of the Q-matrix.
Rows 1 to 3 correspond to the DINA data, the ACDM data and a mixture of the
DINA, ACDM and DINO data, respectively. For the DINA and DINO data, two
uncertainty levels are represented by gj = sj = 0.1 and gj = sj = 0.2 for all items
j, where subscripts j are omitted in the legends. For both the ACDM data and the
GDINA data, cases 1 and 2 represent the settings when δj,0 = 0.1, pj = 0.9 and
δj,0 = 0.2, pj = 0.8 for all j = 1, ..., J respectively.
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A.1.2 Attribute Classifications in Correlated Settings

In this section, we explore the potential of our proposed method in learning the la-

tent attribute patterns. As discussed in Chapter II, the marginal distributions of the

latent attributes are mis-specified in RBMs. Therefore, we would like to explore to

what extent our proposed method can perform latent attribute classifications directly

when the conditional independence assumption is intensely violated. Similarly, ACC

rate is used to assess the performance. Recall that the ACC of the k’th attribute is

defined as

ACC(k) :=
1

N

N∑
i=1

|α̂ik − αik|,

where α̂ik and αik represent the estimated value and the true value respectively.

The simulation set-ups remain the same as in Chapter II. The recovered latent

attribute matrix corresponding to the optimal estimated Q-matrix is returned. All

the DINA, ACDM and GDINA data are considered. For each of the 100 replications,

the ACC rate for every attribute in each of the settings with K = 5, 10, ..., 25 is

evaluated. The setting-wise average ACC rate is evaluated by computing the average

ACC for each attribute out of 100 repetitions first, and then averaging out of all the

K latent attributes for each settings of K = 5, 10, ..., 25. The results are summarized

in Table A.1.

Overall, we can see that the proposed method performs well in attribute classifi-

cations with all ACC rates above 0.85. Furthermore, we also observe that the ACC

rates drop as the number of attributes increases in the model. The attribute patterns

would increase as the number of attributes increments, making the estimation more
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difficult. Similar to the observations made in the main article, we see the ACC rates

are generally higher when the correlations amongst attributes are higher. We also

point out that increasing sample size can in general improve ACC rates using the

proposed method. The performance of the proposed method is better on the ACDM

data and the GDINA data than on the DINA data. This is especially obvious when

K is relatively small at 5 and 10.

N = 2000 N = 10000
ρ = 0.25 ρ = 0.75 ρ = 0.25 ρ = 0.75

DINA ACDM GDINA DINA ACDM GDINA DINA ACDM GDINA DINA ACDM GDINA
0.898 0.916 0.916 0.917 0.927 0.924 0.903 0.916 0.917 0.918 0.932 0.931
0.897 0.896 0.900 0.888 0.902 0.903 0.901 0.907 0.911 0.885 0.911 0.912
0.878 0.876 0.880 0.880 0.888 0.893 0.891 0.887 0.893 0.880 0.897 0.900
0.875 0.863 0.869 0.879 0.885 0.889 0.883 0.879 0.882 0.874 0.894 0.893
0.866 0.853 0.857 0.875 0.883 0.887 0.877 0.868 0.874 0.874 0.887 0.890

Table A.1: Average ACC rates for using RBM on the DINA data, the ACDM data
and the GDINA data. Rows 1 to 5 correspond to the settings with K = 5, 10, ..., 25
respectively.

A.2 Proofs of Lemmas and Propositions

Before proving our main Propositions II.4 and II.5, we first give a lemma which

would be used in the proof of the main propositions.

Lemma A.1. Assume α are independent and αk ∼ Ber(pk) for k = 1, ..., K. If true

model with response Y satisfies either the GDINA model Equation (3) or the DINA

model P (Y = 1 | α) = g + (1− s− g)α1α2...αK∗ for some s, g satisfying g < 1− s,

then the mis-specified linear additive model of Y regressed on (α1, α2, ..., αK) has the

corresponding mean function in the form of E∗[Y | α] = β0+β1α1+β2α2+ ...+βKαK

with βk = 0 for k = K∗ + 1, ..., K.
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Proof of Lemma A.1. By the independence assumption and the linear regression the-

ory, we have for k = 1, . . . , K,

βk =
1

V ar(αk)
Cov

(
αk, Y

)
=

1

pk(1− pk)
Cov

(
αk, Y

)
.

Denote α1,...,K∗ := {α1, ..., αK∗}, then by the Law of Total Covariance, we have for

k = K∗ + 1, ..., K,

Cov
(
αk, Y

)
= E

[
Cov

(
αk, Y | α1,...,K∗

)]
+ Cov

(
E
[
αk | α1,...,K∗

]
,E
[
Y | α1,...,K∗

])
.

(A.1)

Applying the independence assumption again, we have

Cov
(
E
[
αk | α1,...,K∗

]
,E
[
Y | α1,...,K∗

])
= Cov

(
pk,E[Y | α1,...,K∗ ]

)
= 0.

Hence, we only need to consider the first term of (A.1). Referring to Figure A.2, we

know that in both the DINA and the GDINA model setting, Y ⊥⊥ αk | α1,...,K∗ for

all k = K∗ + 1, ..., K.

E
[
Cov

(
αk, Y | α1,...,K∗

)]
= 0.

Therefore,

βk =
0

pk(1− pk)
= 0 ∀k = K∗ + 1, ..., K.
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Figure A.2: Illustration of the conditional independence relationship between Y and
αk given α1, ..., αK∗ for all k = K∗ + 1, ..., K

.

Next we give the proofs of our main propositions.

Proof of Proposition II.4. First note that by Lemma A.1, we have βk = 0 for k =

K∗ + 1, ..., K.

In the DINA setting, we have

P (Y = 1 | α) =


1− s if α ≽ 1K∗

g otherwise,

or,

Y | α ∼


Ber(1− s) if α ≽ 1K∗

Ber(g) otherwise.

(A.2)
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Under the independence condition, for any k = 1, ..., K∗, we have

βk =
1

V ar(αk)
Cov

(
αk, Y

)
=

1

pk(1− pk)
Cov(αk, Y ).

Consider the following two events which partition the sample space of α,

E0,k :=
{
α1, ..., αk−1, αk+1, ..., αK∗ |

∏K∗

i=1,i ̸=k αi = 0
}
and

E1,k :=
{
α1, ..., αk−1, αk+1, ..., αK∗ |

∏K∗

i=1,i ̸=k αi = 1
}
.

Denote α1,...,K∗\k :=
{
α1, ..., αk−1, αk+1, ..., αK∗

}
. By the Law of Total Covariance,

we have

Cov
(
αk, Y

)
= E

[
Cov

(
αk, Y | α1,...,K∗\k

)]
+ Cov

(
E
[
αk|α1,...,K∗\k

]
,E
[
Y | α1,...,K∗\k

])
.

(A.3)

Applying the independence condition,

Cov
(
E
[
αk | α1,...,K∗\k

]
,E
[
Y | α1,...,K∗\k

])
= Cov

(
pk,E

[
Y | α1,...,K∗\k

])
= 0.

Hence, we only need to consider the first term of (A.3),

E
[
Cov

(
αk, Y | α1,...,K∗\k

)]
= E

[
E
[
αkY | α1,...,K∗\k

]
− E

[
αk | α1,...,K∗\k

]
· E
[
Y | α1,...,K∗\k

]]
. (A.4)

For a fixed k, define another two events: E2,k :=
{
α | αk = 0

}
and E3,k :=

{
α |
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αk = 1
}
. Then in the event of E0,k,

(A.4) =E
[
E
[
αkY | E0,k

]
− E

[
αk | E0

]
E
[
Y | E0,k

]]
=E

[
E
[
αkY | E0,k, E3,k

]
P (E3,k) + E

[
αkY | E0,k, E2,k

]
P (E2,k)

− E
[
αk]E

[
Y | E0,k

]]
=E

[
g · pk − pk · g

]
=0.

In the event of E1,k,

(A.4) =E
[
E
[
αkY | E1,k

]
− E

[
αk | E1,k

]
E
[
Y | E1,k

]]
=E

[
E
[
αkY | E1,k, E3,k]P (E3,k) + E

[
αkY | E1,k, E2,k]P (E2,k)

− E
[
αk

]
· E
[
Y | E1,k, E3,k

]
· P (E3,k)− E

[
αk

]
· E
[
Y | E1,k, E2,k

]
· P (E2,k)

]
=E

[
(1− s)pk + 0− pk(1− s)pk − pkg(1− pk)

]
=pk(1− pk)(1− s− g).

Since the above reasoning works for any k = 1, 2, ..., K∗, we must have for each
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k = 1, 2, ..., K∗,

βk =
1

pk(1− pk)
Cov

(
αk, Y

)
=

1

pk(1− pk)

(
0 · P (E0,k) + pk(1− pk)(1− s− g) · P (E1,k)

)
= (1− s− g)

K∗∏
i=1,i ̸=k

pi

̸= 0.

Proof of Proposition II.5. Note that by Lemma A.1, we have βk = 0 for k = K∗ +

1, ..., K.

Under the independence condition, for any k = 1, ..., K∗, we have

βk =
1

V ar(αk)
Cov

(
αk, Y

)
=

1

pk(1− pk)
Cov(αk, Y ). (A.5)

Denote S :=
{
1, 2, 3, ..., K∗}. We consider the following 2K

∗
events: E0 :=

{
α |

αl = 0,∀l ∈ S}, E1,i :=
{
α | αi = 1, αj = 0,∀j ̸= i ∈ S

}
for some i ∈ S (i.e.

events that only one of the required variables taking value of 1 and all others being

0), E2,(i,j) :=
{
α | αi = αj = 1, αk = 0,∀k ̸= i, j ∈ S

}
for some i ̸= j ∈ S

(i.e. events that any two of the required variables are 1 and all others being 0), ...,

EK∗ :=
{
α | αl = 1,∀l ∈ S

}
. Note that E0, E1,i for i ∈ S, E2,(i,j) for some i ̸= j ∈ S,

..., EK∗ partition the sample space of α. The response R would have the following
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distribution.

Y |α ∼



Ber(δ0) if E0

Ber(δ0 + δi) if E1,i

Ber(δ0 + δi + δj + δi,j) if E2,(i,j)

...

Ber
(
δ0 +

∑K∗

k=1 δk + ...+ δ12...K∗
)

if EK∗ .

(A.6)

By the Law of Total Covariance, we have

Cov
(
αk, Y

)
= E

[
Cov

(
αk, Y | α1,...,K∗\k

)]
+ Cov

(
E
[
αk|α1,...,K∗\k

]
,E
[
Y | α1,...,K∗\k

])
.

(A.7)

Similar to the DINA case, we also have

Cov
(
E
[
αk | α1,...,K∗\k

]
,E
[
Y | α1,...,K∗\k

])
= Cov

(
pk,E

[
Y | α1,...,K∗\k

])
= 0.

Hence, we only need to consider the first term of (A.7),

E
[
Cov

(
αk, Y | α1,...,K∗\k

)]
= E

[
E
[
αkY | α1,...,K∗\k

]
− E

[
αk | α1,...,K∗\k

]
· E
[
Y | α1,...,K∗\k

]]
. (A.8)

Fix a k ∈ S. Let S ′ :=
{
1, 2, ..., k−1, k+1, ..., K∗}. We can define new 2K

∗−1 events:

E∗
0 :=

{
α1,...,K∗\k | αl = 0 ∀l ∈ S ′}, E∗

1,i :=
{
α1,...,K∗\k | αi = 1, αl = 0,∀l ̸= i ∈ S ′}

196



for some i ∈ S ′, E∗
2,(i,j) :=

{
α1,...,K∗\k | αi = αj = 1, αl = 0,∀l ̸= i, j ∈ S ′}

for some i ̸= j ∈ S ′,..., E∗
K∗−1 :=

{
α1,...,K∗\k | αl = 1 ∀l ∈ S ′}. And define

E ′
0 :=

{
α | αk = 0

}
and E ′

1 :=
{
α | αk = 1

}
.

In the event of E∗
0 ,

(A.8) =E
[
E
[
αkY | E∗

0

]
− E

[
αk | E∗

0

]
E
[
Y | E∗

0

]]
=E

[
E
[
αkY | E∗

0 , E
′
1

]
P (E ′

1) + E
[
αkY | E∗

0 , E
′
0

]
P (E ′

0)

− E
[
αk

]
E
[
Y | E∗

0 , E
′
1

]
P (E ′

1)− E
[
αk

]
E
[
Y | E∗

0 , E
′
0

]
P (E ′

0)

=E
[
(δ0 + δk)pk + (1− pk) · 0− (δ0 + δk)p

2
k − δ0(1− pk)pk

]
=pk(1− pk)δk.

In the event of E∗
1,i for some i ∈ S ′,

(A.8) =E
[
E
[
αkY | E∗

1,i

]
− E

[
αk | E∗

1,i

]
E
[
Y | E∗

1,i

]]
=E

[
E
[
αkY | E∗

1,i, E
′
1

]
P (E ′

1) + E
[
αkY | E∗

1,i, E
′
0

]
P (E ′

0)

− E
[
αk

]
E
[
Y | E∗

1,i, E
′
1

]
P (E ′

1)− E
[
αk

]
E
[
Y | E∗

1,i, E
′
0

]
P (E ′

0)
]

=E
[
(δ0 + δi + δk + δik)pk + (1− pk) · 0

− (δ0 + δi + δk + δik)p
2
k − (δ0 + δi)(1− pk)pk

]
=pk(1− pk)(δk + δik).
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In the event of E∗
2,(i,j) for some i ̸= j ∈ S ′,

(A.8) =E
[
E
[
αkY | E∗

2,(i,j)

]
− E

[
αk | E∗

2,(i,j)

]
E
[
Y | E∗

2,(i,j)

]]
=E

[
E
[
αkY | E∗

2,(i,j), E
′
1

]
P (E ′

1) + E
[
αkY | E∗

2,(i,j), E
′
0]P (E ′

0)

− E
[
αk

]
E
[
Y | E∗

2,(i,j), E
′
1

]
P (E ′

1)− E
[
αk

]
E
[
Y | E∗

2,(i,j), E
′
0

]
P (E ′

0)
]

=E
[
(δ0 + δi + δj + δk + δij + δik + δjk + δijk)pk + (1− pk) · 0

− (δ0 + δi + δj + δk + δij + δik + δjk + δijk)p
2
k − (δ0 + δi + δj + δij)(1− pk)pk

]
=pk(1− pk)(δk + δik + δjk + δijk).

Continuing this process and substitute the relevant values into Equation (A.5),

we can show that

βk =



δk if E∗
0

δk + δik if E∗
1,i

δk + δik + δjk + δijk if E∗
2,(i,j)

...

δk +
∑K∗

i=1,i ̸=k δik + ...+ δ1...K∗ if E∗
K∗−1.

(A.9)

Since the above holds for all k = 1, 2, 3, ...K∗, we have for each k = 1, 2, 3, ...K∗,

βk =δk · P (E∗
0) +

∑
i∈S′

(δk + δik) · P (E∗
1,i) +

∑
i,j∈S′,i ̸=j

(δk + δik + δjk + δijk) · P (E∗
2,(i,j))+

...+
(
δk +

K∗∑
i=1,i ̸=k

δik + ...+ δ1...K∗
)
· P (E∗

K∗−1) (A.10)

198



Assuming monotonicity in acquiring an additional skill, we can show all the terms

in (A.10) are greater than 0. The first term is positive as both δk and P (E∗
0) are

positive. To see why the second term is positive, consider two examinees, one with

skill set α1 =
{
α | αi = 1, αl = 0, ∀l ̸= i ∈ S

}
while the other with skill set

α2 =
{
α | αi = αk = 1, αl = 0, ∀l ̸= i, k ∈ S

}
. Then we know according to

Equation (3), P (Y = 1 | α1) = δ0 + δi and P (Y = 1 | α2) = δ0 + δi + δk + δik. The

monotonicity assumption then implies P (Y = 1 | α2)−P (Y = 1 | α1) = δk+δik > 0.

Hence the second term is positive. We can use a similar strategy to show all the

terms in (A.10) are positive and thus reach the conclusion that βk ̸= 0 for each

k = 1, 2, 3, ...K∗.

Discussion of Remark II.7. Conditional on α1, α2, ..., αK∗ , consider adding one αk,

for any k = K∗ + 1, ..., K, into the main effect regression model, then its coefficient

can be expressed as

βk =
Cov

(
Y − E∗[Y | α1, ..., αK∗ ], αk − E∗[αk | α1, ..., αK∗ ]

)
V ar

(
Y − E∗[Y | α1, ..., αK∗ ]

) ,

where E∗[A | B] is the the regression mean function of A on B. In the special

case when K∗ = 1, we seek to show βk = 0. When K∗ = 1, note that we must

have E∗[Y | α1] = E[Y | α1]. This is because α1 can only take values of 0 or 1.

These two variability’s can be modeled exhaustively by the free intercept and the

only coefficient in the regression mean function. Note that when K∗ > 1, this may
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not hold in general. Note by the Law of Total Covariance,

Cov
(
Y − E∗[Y | α1], αk − E∗[αk | α1]

)
=E
{
Cov

(
Y − E[Y | α1], αk − E[αk | α1] | α1

)}
(A.11)

+ Cov
{
E
(
Y − E[Y | α1] | α1

)
, E

(
αk − E[αk | α1] | α1

)}
. (A.12)

Note (A.12) = 0 and

(A.11) =E
{
E
[(
Y − E[Y | α1]

)(
αk − E[αk | α1]

)
| α1

]
+ E

[
αk − E[αk | α1] | α1

]
E
[
αk − E[αk | α1] | α1

]}
=E
{
E
[
(Y − E[Y | α1])(αk − E[αk | α1]) | α1

]}
=E
{
E
[
Y αk − Y E(αk | α1)− αkE(Y | α1) + E(Y | α1)E(αk | α1) | α1

]}
=E
{
E[Y αk | α1]− E[Y αk | α1]− E[Y αk | α1] + E[Y αk | α1]

}
=0.

Where the second line follows from E
{
αk − E[αk | α1] | α1

}
= 0 and the third

line follows from the fact that E[Y | α1]E[αk | α1] = E[Y αk | α1] by the conditional

independence between Y and αk given α1. Therefore, βk = 0.
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APPENDIX B

Appendix of Chapter 3

Appendix B contains the proofs for theoretical results developed in Chapter III.

In specific, Section B.1 contains proofs of theorems and proposition, Section B.2

contains the proofs of the supporting lemmas, and a full list of rankings of senators

considered in real data application Section 3.5.2 according to their conservativeness

scores is included in Section B.3.

B.1 Proof of Theorems and Proposition

Proof of Theorem III.10. We start with defining some notations that are needed in

the proofs. Implicitly index J with N such that JN → ∞ as N → ∞ for notation

convenience. Note that this does not impose any rate requirement for N and J.

Let ΩN =
{
x = (xij : zij = 1, i = 1, ..., N, j = 1, ..., J) : xij = θi − βj, θi, βj ∈

R,
∑N

i=1 θi = 0
}
be a vector space. Define on ΩN a variance weighted inner product

[·, ·]σ with [x, y]σ =
∑N

i=1

∑
j∈SJ (i)

xijσ
2
ijyij for any x, y ∈ ΩN , where SJ(i) = {j =
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1, ..., J : zij = 1}, σ2
ij = exp(m∗

ij)/{1 + exp(m∗
ij)}2 and the subscript σ means the

inner product depends on σ2
ij, i = 1, ..., N, j = 1, ..., J, zij = 1. Denote the associated

norm as ∥ · ∥σ with ∥x∥2σ =
∑N

i=1

∑
j∈SJ (i)

x2
ijσ

2
ij for x ∈ ΩN . Let MN =

(
mij :

zij = 1, i = 1, ..., N, j = 1, ..., J,mij = θi − βj) ∈ ΩN , M
∗
N =

(
m∗

ij : zij = 1, i =

1, ..., N, j = 1, ..., J,m∗
ij = θ∗i − β∗

j ) ∈ ΩN and M̂N =
(
m̂ij : zij = 1, i = 1, ..., N, j =

1, ..., J, m̂ij = θ̂i− β̂j) ∈ ΩN . Note that as a result of Proposition III.9, for any linear

form g of M , g(M) can be re-expressed as a linear form of x ∈ ΩN , with g(x) =∑N
i=1

∑
j∈SJ (i)

wijxij, where we denote wij = wij(g), which depends on g, for notation

simplicity. Let Ω∗
N consist of all linear forms g on ΩN such that g(x) = 0 if x = 0

and x ∈ ΩN . Without loss of generality, we will work with g ∈ Ω∗
N in the proofs. For

any subset A ⊂ Ω∗
N , define ∥ ·∥σ(A) to be the norm on ΩN such that for any x ∈ ΩN ,

∥x∥σ(A) is the smallest non-negative number such that |g(x)| ≤ ∥x∥σ(A)σ(g) for any

g ∈ A, where σ(g) = supx∈ΩN
{|g(x)| : ∥x∥σ ≤ 1}. Let

EN =
(
Eij : zij = 1, i = 1, ..., N, j = 1, ..., J

)
,

with Eij = E[Yij] = em
∗
ij/(1+em

∗
ij), be the vector of expected responses corresponding

to the observed entries. Further define a residual alike vector RN ∈ ΩN satisfying

[x,RN ]σ =
N∑
i=1

∑
j∈SJ (i)

xij(Yij − Eij), x ∈ ΩN .
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Define an evaluation measure UN(·, ·) such that for any y, v ∈ ΩN , UN(y, v) ∈ ΩN is

defined by the equation

[x, UN(y, v)]σ =
N∑
i=1

∑
j∈SJ (i)

xij

{
σ2(yij)− σ2

ij

}
vij, x ∈ ΩN ,

where σ2(yij) = eyij/(1+eyij)2. Note when y is equal toM∗
N or when v is a zero vector,

then UN(y, v) = 0. Further denote that wi+ =
∑

j∈SJ (i)
wij, w+j =

∑
i∈SN (j) wij

and w++ =
∑N

i=1

∑
j∈SJ (i)

wij, where SN(j) = {i = 1, ..., N : zij = 1}. We then

extend the results in Haberman (1977) to prove the existence and consistency of the

maximum likelihood estimator M̂N .

We first establish the existence of M̂N by applying the fixed point theorems of

Kantorovich and Akilov (1964). We start with constructing a function FN on ΩN

with a fixed point M̂N . Consider FN(y) = y+rN(y) for y ∈ ΩN , where rN : ΩN 7→ ΩN

is defined by the equation,

[x, rN(y)]σ =
N∑
i=1

∑
j∈SJ (i)

xij

{
Yij − E(yij)

}
, x ∈ ΩN ,

where E(yij) = eyij/(1 + eyij). Note that FN has a fixed point ω ∈ ΩN if and only if

N∑
i=1

∑
j∈SJ (i)

xij

{
Yij − E(ωij)

}
= 0, x ∈ ΩN .

Let P be the orthogonal projection onto ΩN . Let Ê = {E(m̂ij) : i = 1, ..., N, j =

1, ..., J, zij = 1} and Yz = {Yij : i = 1, ..., N, j = 1, ..., J, zij = 1}. Then following from
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Berk (1972), M̂N is a maximum likelihood estimator of M∗
N if and only if PÊ = PYz.

Hence, M̂N exists if and only if ω exists. Furthermore, since the log-likelihood l(Yz, ·)

is strictly concave, if the maximum likelihood estimator M̂N of M∗
N exists, then it

must be unique. Therefore, if M̂N exists, ω = M̂N . So, we just need to verify the

conditions of the fixed point theorem to show that the fixed point ω indeed exists.

The Kantorovich & Akilov’s fixed point theorem requires construction of a se-

quence that converges to the fixed point. Consider the sequence {tNk : k = 0, 1, ...},

with tN0 = M∗
N and tN(k+1) = FN(tNk) for k = 0, 1, .... Note that tN1 = M∗

N + RN .

To check whether this sequence is well-defined and converges to M̂N , we need to

examine the differential dFNy of FN at y ∈ ΩN . Note that for y + v ∈ ΩN ,

[x, FN(y + v)− FN(y)]σ =
N∑
i=1

∑
j∈SJ (i)

xijσ
2
ij

[
vij + (σ2

ij)
−1
{
E(yij)− E(yij + vij)

}]
= −[x, UN(y, v)]σ + o(v),

where o(v)/∥v∥σ → 0 as ∥v∥σ → 0. It follows that dFNy(v) = −UN(y, v). Denote

∥dFNy∥σ(A) to be the smallest nonnegative number such that

∥dFNy(v)∥σ(A) ≤ ∥dFNy∥σ(A)∥v∥σ(A), v ∈ ΩN .

Let Ap be the set consisting of all the point maps fij on ΩN , i.e. fij(x) = xij for any

x ∈ ΩN . By Lemma B.1(c) below, there exist sequences fN and dN such that

∥dFNy∥σ(Ap) ≤ dN∥y −M∗
N∥σ(Ap) whenever ∥y −M∗

N∥σ(Ap) ≤ fN , y ∈ ΩN .
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Lemma B.1. Assume Conditions III.6, III.7 and III.8 hold. If Ap = {fij : i =

1, ..., N, j = 1, ..., J, zij = 1} such that fij(x) = xij for x ∈ ΩN . Let CN = |Ap|,

the cardinality of Ap. Then there exist sequences fN > 0 and dN ≥ 0 satisfying the

followings.

(a). As N →∞, f 2
N/ logCN →∞.

(b). As N →∞, f 2
N(N

−1
∗ + J−1

∗ )→ 0.

(c). If y, v ∈ ΩN and ∥y −M∗
N∥σ(Ap) ≤ fN , then there exists n < ∞ such that for

all N > n, ∥UN(y, v)∥σ(Ap) ≤ dN∥y −M∗
N∥σ(Ap)∥v∥σ(Ap). Furthermore, dNfN → 0

as N →∞.

As shown in Kantorovich & Akilov (1964, pages 695-711), if ∥RN∥σ(Ap) <

1
2
fN and dN∥RN∥σ(Ap) < 1

2
, then M̂N exists. By Lemma B.2 below, we have

P(∥RN∥σ(Ap) < 1
2
fN) → 1 as N → ∞. Therefore, it follows from Lemma B.1(c)

that with probability tending to 1, dN∥RN∥σ(Ap) <
1
2
fNdN → 0.

Lemma B.2. Let A ⊂ Ω∗
N . Let CN denote the cardinality of A. If there exist

sequences fN > 0 and dN ≥ 0 satisfying (a). 0 < CN < ∞ and f 2
N/ logCn → ∞ as

N → ∞, (b). If y, v ∈ ΩN and ∥y −M∗
N∥σ(A) ≤ fN , then there exists n < ∞ such

that for all N > n, ∥UN(y, v)∥σ(A) ≤ dN∥y −M∗
N∥σ(A)∥v∥σ(A), (c). dNfN → 0 as

N →∞. Then P
(
∥RN∥σ(A) < 1

2
fN
)
→ 1 as N →∞.

Hence, the conditions of the fixed point theorem are satisfied with probability

approaching 1. It then follows that the maximum likelihood estimators M̂N exists

with probability tending to 1. Since Condition III.8 holds, as a direct consequence of

Proposition III.9, the corresponding maximum likelihood estimators θ̂i, i = 1, ..., N
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and β̂j, j = 1, ..., J can be uniquely determined given M̂N . Therefore, with proba-

bility approaching 1 that they all exist, as N → ∞. The first part of the theorem

then follows.

Now we seek to prove the consistency results. Taking sequences fN and dN again

as satisfying the results in Lemma B.1 and A = Ap. Then both Lemmas B.2 and B.3

hold. From the results of Lemmas B.2 and B.3, it can be implied that as N → ∞,

with probability tending to 1 that,

∥M̂N −M∗
N∥σ(Ap) = O(fN). (B.1)

From Haberman (1977), σ(g) is in fact the standard deviation of g(M̂N). We further

note by Lemma B.4 below,

max
g∈Ap

σ(g) ≤ τ−1
2 (N−1

∗ + J−1
∗ )

1
2 , (B.2)

for some 0 < τ2 <∞.

Lemma B.3. Assume Conditions III.6, III.7 and III.8 hold. Let A ⊂ Ω∗
N . If there

exist sequences fN > 0 and dN ≥ 0 satisfying (a). P
(
∥RN∥σ(A) < 1

2
fN
)
→ 1 as

N → ∞, (b). If y, v ∈ ΩN and ∥y −M∗
N∥σ(A) ≤ fN , then there exists n < ∞ such

that for all N > n, ∥UN(y, v)∥σ(A) ≤ dN∥y −M∗
N∥σ(A)∥v∥σ(A), (c). dNfN → 0 as

N →∞. Then, as N →∞, with probability approaching 1 that,

∣∣∣∥M̂N −M∗
N∥σ(A)

∥RN∥σ(A)
− 1
∣∣∣ ≤ d

1
2
N → 0 and ∥M̂N −M∗

N −RN∥σ(A) ≤ dN∥RN∥2σ(A).
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Lemma B.4. Assume Conditions III.6, III.7 and III.8 hold and
∑N

i=1 θi = 0, the

asymptotic variance of the maximum likelihood estimator of m∗
ij, var(m̂ij), for any

i = 1, ..., N and j = 1, ..., J , takes the form,

var(m̂ij) = (σ2
i+)

−1 + (σ2
+j)

−1 +O(N−1
∗ J−1

∗ ) as N →∞.

Then as N →∞, we have with probability approaching 1 that

max
i,j,zij=1

|m̂ij −m∗
ij| = max

i,j,zij=1

|fij(M̂N)− fij(M
∗
N)|

= max
i,j,zij=1

|fij(M̂N −M∗
N)|

≤ max
i,j,zij=1

σ(fij)∥M̂N −M∗
N∥σ(Ap)

≤ ∥M̂N −M∗
N∥σ(Ap)

{
max
g∈Ap

σ(g)
}

= O
{
fN
(
N−1

∗ + J−1
∗
) 1

2

}
→ 0. (B.3)

The second last line follows from (B.1) and (B.2) and the last line follows from

Lemma B.1(b).

To derive explicit rates of convergence for ∥θ̂ − θ∗∥∞ and ∥β̂ − β∗∥∞, we adopt

a similar approach as in the derivation of convergence of maxi,j:zij=1 |m̂ij −m∗
ij|. In

particular, for the column parameters βj, we consider linear functions gj ∈ Ω∗
N such

that gj(x) = βj. We can construct gj as follows. The idea is to include all the

row parameters θi so as to use the identifiability constraint
∑N

i=1 θi = 0. For any
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i ∈ SN(j), we use mij = θi−βj in the construction. While for each i ∈ SNϕ
(j), where

SNϕ
(j) = {1, 2, ..., N}\SN(j), by Condition III.8, there must exist 1 ≤ ii1, ii2, ..., iik ≤

N and 1 ≤ ji1, ji2, ..., jik ≤ J such that

zi,ji1 = zii1,ji1 = zii1,ji2 = zii2,ji2 = ... = ziik,jik = ziik,j = 1.

Therefore, we can construct gj as

gj(x) =−
1

N

{ ∑
i∈SN (j)

mij

+
∑

i∈SNϕ
(j)

(
mi,ji1 −mii1,ji1 +mii1,ji2 −mii2,ji2 + ...−miik,jik +miik,j

)}
=βj.

Let Aβ =
{
gj : j = 1, ..., J

}
. Now consider a sequence fN satisfying the rate require-

ments f 2
N/ log J → ∞ and f 2

NN
−1/2
∗ → 0 as N → ∞. Then by Lemma B.5 below,

we can pick a sequence dN satisfying Lemma B.5(a) and Lemma B.5(b). Further-

more, by Lemma B.6 below, we know that σ2(gj) = (σ2
+j)

−1 +O
{
(N∗J∗)

−1
}
for any

gj ∈ Aβ. Therefore, there exist positive 0 < c1, c2 <∞ and some n such that for all

N > n,

c−1
1 N

− 1
2

∗ < max
j=1,...,J

σ(gj) < c−1
2 N

− 1
2

∗ .

Lemma B.5. Assume Conditions III.6, III.7 and III.8 hold. If Aβ = {gj : j =

1, ..., J} such that gj ∈ Ω∗
N and gj(x) = βj for x ∈ ΩN . Let CN = |Aβ| = J be
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the cardinality of Aβ. For any positive sequence fN such that f 2
N/ log J → ∞ and

f 2
NN

−1/2
∗ → 0 as N →∞, there exists a sequence dN ≥ 0 satisfying the followings.

(a). If y, v ∈ ΩN and ∥y −M∗
N∥σ(Aβ) ≤ fN , then there exists n < ∞ such that for

all N > n, ∥UN(y, v)∥σ(Aβ) ≤ dN∥y −M∗
N∥σ(Aβ)∥v∥σ(Aβ).

(b). dNf
2
N → 0 as N →∞.

Lemma B.6. Assume Conditions III.6, III.7 and III.8 hold and
∑N

i=1 θi = 0. The

asymptotic variance of the maximum likelihood estimator of an individual column

parameter, var(β̂j), asymptotically attains the oracle variance (σ2
+j)

−1 in the sense

that

var(β̂j) = (σ2
+j)

−1 +O(N−1
∗ J−1

∗ ) as N →∞.

Note that by taking sequences fN and dN satisfying the conditions in Lemma B.5

and setting A = Aβ, it can be shown easily that the results of Lemmas B.2 and B.3

still hold. Hence, it can be implied that as N →∞, with probability tending to 1,

∥M̂N −M∗
N∥σ(Aβ) = O(fN).
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Then as N →∞, we have with probability approaching 1 that,

max
j=1,...,J

|β̂j − β∗
j | = max

j=1,...,J
|gj(M̂N)− gj(M

∗
N)|

= max
j=1,...,J

|gj(M̂N −M∗
N)|

≤ ∥M̂N −M∗
N∥σ(Aβ) max

j=1,...,J
σ(gj)

< c−1
2 N

− 1
2

∗ ∥M̂N −M∗
N∥σ(Aβ)

= O
{
(log J)

1
2N

− 1
2

∗

}
as N →∞,

where the last step can be implied from the results in Lemma B.7 below applied to

the fact that ∥M̂N −M∗
N∥σ(Aβ) = O

(
fN
)
, and the rate requirement of fN in Lemma

B.5, where the minimum order of fN is determined by f 2
N/ log J → ∞ as N → ∞.

Therefore,

∥β̂ − β∗∥∞ = Op

{
(log J)

1
2N

− 1
2

∗

}
. (B.4)

Lemma B.7. Let aN and cN be positive sequences. As N → ∞, suppose that

aN = O(bN), for any sequence bN satisfying bN/cN → ∞. Then aN = O(cN) as

N →∞.

Now for the row parameters θi, we adopt a similar strategy by constructing linear

functions gi ∈ Ω∗
N such that gi(x) = θi. In specific, we can construct the linear
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function gi as follows.

gi(x) =
1

|SJ(i)|
∑

j∈SJ (i)

{mij + gj(x)} =
1

|SJ(i)|
∑

j∈SJ (i)

(θi − βj + βj) = θi,

where |SJ(i)| denotes the cardinality of SJ(i). Let Aθ consist of gi, i = 1, ..., N , i.e.

Aθ =
{
gi : i = 1, ..., N

}
. Take a positive sequence fN satisfying the rate requirements

f 2
N/ logN → ∞ and f 2

NJ
−1
∗ → 0 as N → ∞, then by Lemma B.8 below, we can

pick a sequence dN satisfying Lemma B.8(a) and Lemma B.8(b). Furthermore, by

Lemma B.9 below, we know that σ2(gi) = (σ2
i+)

−1 + O
{
(N∗J∗)

−1
}
for any gi ∈ Aθ.

Hence, there exist positive 0 < γ1, γ2 <∞ and such that

γ−1
1 J−1/2

∗ < max
i=1,...,N

σ(gi) < γ−1
2 J−1/2

∗ .

Lemma B.8. Assume Conditions III.6, III.7 and III.8 hold. If Aθ = {gi : i =

1, ..., N} such that gi ∈ Ω∗
N and gi(x) = θi for x ∈ ΩN . Let CN = |Aθ| = N be the

cardinality of Aθ. Then for any positive sequence fN such that f 2
N/ logN →∞ and

J−1
∗ f 2

N → 0 as N →∞, there exists a sequence dN ≥ 0 satisfying the followings.

(a) If y, v ∈ ΩN and ∥y−M∗
N∥σ(Aθ) ≤ fN , then there exists n <∞ such that for all

N > n, ∥UN(y, v)∥σ(Aθ) ≤ dN∥y −M∗
N∥σ(Aθ)∥v∥σ(Aθ).

(b). dNfN → 0 as N →∞.

Lemma B.9. Assume Conditions III.6, III.7 and III.8 hold and
∑N

i=1 θi = 0, the

asymptotic variance of an individual row parameter, var(θ̂i), asymptotically attains
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oracle variance (σ2
i+)

−1 in the sense that

var(θ̂i) = (σ2
i+)

−1 +O(N−1
∗ J−1

∗ ) as N →∞.

Note that by taking sequences fN and dN satisfying the conditions in Lemma B.8

and setting A = Aθ, it can be implied easily that Lemmas B.2 and B.3 still hold.

Similarly, from P(∥RN∥σ(Aθ) <
1
2
fN) → 1 and the results of Lemma B.3, it can be

implied as N →∞, we have with probability tending to 1 that,

∥M̂N −M∗
N∥σ(Aθ) = O(fN).

It follows, as N →∞, we have with probability approaching 1 that,

max
i=1,...,N

|θ̂i − θi| = max
i=1,...,N

|gi(M̂N)− gi(M
∗
N)|

= max
i=1,...,N

|gi(M̂N −M∗
N)|

≤ ∥M̂N −M∗
N∥σ(Aθ) max

i=1,...,N
σ(gi)

< γ−1
2 J

− 1
2

∗ ∥M̂N −M∗
N∥σ(Aθ)

= O
{
(logN)

1
2J

− 1
2

∗

}
as N →∞,

where the last step can be implied from the results in Lemma B.7 applied to the

fact that with probability tending to 1, ∥M̂N −M∗
N∥σ(Aθ) = O

(
fN
)
, and the rate

requirement of fN in Lemma B.8, where the minimum order of fN is determined by
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f 2
N/ logN →∞. It follows that,

∥θ̂ − θ∗∥∞ = Op

{
(logN)

1
2J

− 1
2

∗

}
. (B.5)

Combining (B.4) and (B.5), we have maxi,j |m̂ij−m∗
ij| = Op

{
(log J)

1
2N

− 1
2

∗ +(logN)
1
2J

− 1
2

∗
}
.

Therefore, the second part of the theorem follows.

Proof of Theorem III.11. We first seek to show |σ2(g)/σ̃2(g) − 1| → 0 as N →

∞, where σ2(g) = σ{g(M̂)}. Since Conditions III.6, III.7 and III.8 hold and

∥wg∥1, ∥w̃g∥1 < C, by Lemma B.10 below,

|σ2(g)− σ̃2(g)| = O(N−1
∗ J−1

∗ ) as N →∞. (B.6)

Hence, it follows

∣∣∣σ2(g)

σ̃2(g)
− 1
∣∣∣ = |σ2(g)− σ̃2(g)|

σ̃2(g)
→ 0 as N →∞,

where the last step follows from (B.6) and the definition of σ̃2(g).

Lemma B.10. Assume Conditions III.6, III.7 and III.8 hold and
∑N

i=1 θi = 0.

Consider a linear function g : ΩN 7→ R with g(x) =
∑N

i=1 hiθi +
∑J

j=1 h
′
jβj. If there

exists a positive C <∞ such that
∑N

i=1 |hi| < C and
∑J

j=1 |h′
j| < C, then

σ2(g) =
N∑
i=1

h2
i (σ

2
i+)

−1 +
J∑

j=1

h′2
j (σ

2
+j)

−1 +O(N−1
∗ J−1

∗ ) as N →∞.

Then if we can show σ(g)−1{g(M̂)− g(M∗)} → N(0, 1) in distribution, the first
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part of the theorem would follow directly. As a direct application of Proposition III.9,

we can re-write function g on ΩN using [·, ·]σ as follows. Let cN ∈ ΩN be defined by

the equation

g(x) = [cN , x]σ =
N∑
i=1

∑
j∈SJ (i)

cijxijσ
2
ij, x ∈ ΩN .

Then we can express,

g(M̂N)− g(M∗
N) = g

(
M̂N −M∗

N

)
=
[
cN , M̂N −M∗

N

]
σ

=
[
cN , M̂N −M∗

N −RN

]
σ
+
[
cN , RN

]
σ
. (B.7)

Recall that σ(g) = supx∈ΩN

{
|[cN , x]σ| : ∥x∥σ ≤ 1

}
, the supremum is attained at

x = cN/∥cN∥σ, so σ(g) = ∥cN∥σ. We consider two possible cases, wg = 0 in case 1

and wg ̸= 0 in case 2, and we seek to prove the result of the theorem hold under

both cases separately.

We first consider case 1. Similar as in the proof of Theorem III.10, we consider a

set Aβ consisting of linear functions gj ∈ Ω∗
N on ΩN such that gj(x) = βj with Aβ =

{gj : j = 1, ..., J}. We now pick a positive sequence fN satisfying f 2
N/ log J → ∞

and f 2
NN

−1/2
∗ → 0 as N →∞. Then by Lemma B.5, we can pick a sequence dN ≥ 0

satisfying Lemma B.5(a) and Lemma B.5(b). Furthermore, it can be implied that

Lemmas B.2 and B.3 still hold by taking A = Aβ. Moreover, Lemma B.6 implies

there exist 0 < γ1, γ2 <∞ and some n such that for all N > n,

γ−1
1 N

− 1
2

∗ < σ(gj) < γ−1
2 N

− 1
2

∗ , gj ∈ Aβ. (B.8)
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Now for any x ∈ ΩN ,

|g(x)| = |w̃T
g β|

≤ ∥w̃g∥1 max
j=1,...,J

{|βj|}

≤ C max
gj∈Aβ

{|gj(x)|}

= C max
gj∈Aβ

{ |gj(x)|
σ(gj)

σ(gj)
}

≤ C
{
max
gj∈Aβ

|gj(x)|
σ(gj)

}
max
gj∈Aβ

σ(gj)

= C∥x∥σ(Aβ) max
gj∈Aβ

σ(gj)

≤ Cγ−1
2 N

− 1
2

∗ ∥x∥σ(Aβ), (B.9)

where the second last step follows from the definition of ∥ · ∥σ(Aβ) and the last step

follows from (B.8). Since case 1 assumes wg = 0, so g(M) ̸= 0 implies w̃g ̸= 0. Then

as a direct consequence of Lemma B.10, there exists some 0 < γ3 <∞ such that for

all N > n,

σ(g) ≥ γ3N
− 1

2
∗ . (B.10)

As a result of (B.9), we have

∣∣∣[cN , M̂N −M∗
N −RN

]
σ

∣∣∣ ≤ Cγ−1
2 N

− 1
2

∗ ∥M̂N −M∗
N −RN∥σ(Aβ). (B.11)
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Note that from (B.7),

g(M̂N)− g(M∗
N)

σ(g)
=

[
cN , M̂N −M∗

N −RN

]
σ
+
[
cN , RN

]
σ

σ(g)

Rearrange gives as N →∞, with probability tending to 1 that,

∣∣∣g(M̂N)− g(M∗
N)

σ(g)
−
[
cN , RN

]
σ

σ(g)

∣∣∣ =
∣∣∣[cN , M̂N −M∗

N −RN ]σ

∣∣∣
σ(g)

≤ Cγ−1
2 N

− 1
2

∗

σ(g)
∥M̂N −M∗

N −RN∥σ(Aβ)

≤ Cγ−1
2 γ−1

3 dN
[
∥RN∥σ(Aβ)

]2
≤ 1

4
Cγ−1

2 γ−1
3 dNf

2
N

→ 0, (B.12)

where the second line follows from (B.11), the third line can be obtained from

(B.10) and Lemma B.3, the second last line can be implied by Lemma B.2 and

the last line follows from Lemma B.5. Hence, it turns out that it suffices to show[
cN , RN

]
σ
/σ(g) → N(0, 1). Write ZN = [cN , RN ]σ/σ(g) =

∑N
i=1

∑
j∈SJ (i)

{
cij(Yij −

Eij)
}
/∥cN∥σ for simplicity. The strategy is to show the moment generating function

of ZN , denoted as GZN
(t), converges to exp{t2/2}, the moment generating function of

the standard Gaussian. Write c′ij = cij/∥cN∥σ = cij/σ(g) for simplicity. We consider
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the log moment generating function of ZN ,

logGZN
(t) = logE

[
etZN

]
= logE

[
exp

{ t

σ(g)

N∑
i=1

∑
j∈SJ (i)

cij(Yij − Eij)
}]

=− t

N∑
i=1

∑
j∈SJ (i)

c′ijEij + log
N∏
i=1

∏
j∈SJ (i)

E
{
exp(tc′ijYij)

}
=− t

N∑
i=1

∑
j∈SJ (i)

c′ijEij +
N∑
i=1

∑
j∈SJ (i)

logE
{
exp(tc′ijYij)

}
=

N∑
i=1

∑
j∈SJ (i)

[
log
{
1 + exp(m∗

ij)
}−1

− log
{
1 + exp(tc′ij +m∗

ij)
}−1 − tc′ijEij

]
=

N∑
i=1

∑
j∈SJ (i)

[
log
{
h(m∗

ij)
}
− log

{
h(tc′ij +m∗

ij)
}
− tc′ijEij

]
, (B.13)

where h(mij) = {1+exp(mij)}−1. We can then apply Taylor expansion to log{h(tc′ij+

m∗
ij)} about m∗

ij. For some t′ = αt with 0 < α < 1,

log{h(tc′ij +m∗
ij)} = log{h(m∗

ij)} − Eijtc
′
ij −

t2

2
c′2ijσ

2(m∗
ij + t′c′ij).

Substitute into Equation (B.13),

logGZN
(t) =

t2

2

N∑
i=1

∑
j∈SJ (i)

c′2ijσ
2(m∗

ij + t′c′ij), ∥t′c′N∥σ(Aβ) ≤ fN . (B.14)

With ∥c′N∥σ = ∥cN∥σ/∥cN∥σ = 1, the summation term in (B.14) can be re-expressed
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as follows,

N∑
i=1

∑
j∈SJ (i)

c′2ijσ
2(m∗

ij + t′c′ij) =
N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗

ij + t′c′ij)− σ2
ij + σ2

ij

}
= ∥c′N∥2σ +

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗

ij + t′c′ij)− σ2
ij

}
= 1 +

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗

ij + t′c′ij)− σ2
ij

}
.

Note that

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗

ij + t′c′ij)− σ2
ij

}
=

1

σ(g)

N∑
i=1

∑
j∈SJ (i)

cij
{
σ2(m∗

ij + t′c′ij)− σ2
ij

}
c′ij

=
1

σ(g)
g
{
UN(M

∗
N + t′c′N , c

′
N)
}

≤ Cγ−1
2 N

− 1
2

∗

σ(g)
∥UN(M

∗
N + t′c′N , c

′
N)∥σ(Aβ)

≤ Cγ−1
2 N

− 1
2

∗

σ(g)
dN∥t′c′N∥σ(Aβ)∥c′N∥σ(Aβ)

≤ Cγ−1
2 N

− 1
2

∗

σ(g)
dNfN

≤ Cγ−1
2 γ−1

3 dNfN

→ 0 as N →∞.

The second line follows from Uij(M
∗
N + t′c′N , c

′
N) = (σ2

ij)
−1
{
σ(m∗

ij + t′c′ij) − σ2
ij

}
c′ij.

The third last step follows from ∥c′N∥σ(Aβ) ≤ ∥c′N∥σ = 1 and the last step can be

implied from Lemma B.5(b). Therefore, logGZN
(t)→ t2/2 as N →∞.

218



Now consider case 2. We adopt a similar strategy to derive asymptotic normality

as in case 1. Define Aθ,β to be a set consisting of linear functions gi, g
′
j ∈ Ω∗

N on ΩN

such that gi(x) = θi and g′j(x) = βj, with Aθ,β = {gi, g′j : i = 1, ..., N, j = 1, ..., J}.

The explicit forms of gi and g′j can be found in the proof of Theorem III.10.

From now onwards, we take sequences fN and dN as satisfying the conditions in

Lemma B.11 below. Note it can be implied that with such fN and dN , Lemmas B.2

and B.3 still hold by taking A = Aθ,β. From Lemmas B.6 and B.9, we know that for

any f ∈ Aθ,β, there exist 0 < c1, c2 <∞ and some n such that for all N > n,

c−1
1 N

− 1
2

∗ < σ(f) < c−1
2 J

− 1
2

∗ . (B.15)

Lemma B.11. Assume Conditions III.6, III.7 and III.8 hold and J−2
∗ N∗(logN)2 →

0 as N → ∞. If Aθ,β = {gi, g′j : i = 1, ..., N, j = 1, ..., J} such that gi, g
′
j ∈ Ω∗

N , and

gi(x) = θi and g′j(x) = βj for x ∈ ΩN . Let CN = |Aθ,β|, the cardinality of Aθ,β. Then

there exist sequences fN > 0 and dN ≥ 0 satisfying the followings.

(a). As N →∞, f 2
N/ logCN →∞.

(b). If y, v ∈ ΩN and ∥y −M∗
N∥σ(Aθ,β) ≤ fN , then there exists n < ∞ such that

for all N > n, ∥UN(y, v)∥σ(Aθ,β) ≤ dN∥y − M∗
N∥σ(Aθ,β)∥v∥σ(Aθ,β). Furthermore,

dNf
2
N → 0 as N →∞.
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Now for any x ∈ ΩN ,

|g(x)| = |wT
g θ + w̃T

g β|

≤
(
∥wg∥1 + ∥w̃g∥1

)
max

i=1,...,N,j=1,...,J
{|θi|, |βj|}

=
(
∥wg∥1 + ∥w̃g∥1

)
max
f∈Aθ,β

{|f(x)|}

=
(
∥wg∥1 + ∥w̃g∥1

)
max
f∈Aθ,β

{ |f(x)|
σ(f)

σ(f)
}

≤
(
∥wg∥1 + ∥w̃g∥1

){
max
f∈Aθ,β

|f(x)|
σ(f)

}{
max
f∈Aθ,β

σ(f)
}

< 2Cc−1
2 J

− 1
2

∗ ∥x∥σ(Aθ,β), (B.16)

where the last step follows from the definition of ∥ · ∥σ(Aθ,β), (B.15) and the assump-

tion that ∥wg∥1, ∥w̃g∥1 < C. Further note that since wg ̸= 0, as a direct consequence

of Lemma B.10, there exists some 0 < c3 <∞ such that for all N > n,

σ(g) ≥ c3J
− 1

2
∗ . (B.17)

As a result of (B.16),

∣∣∣[cN , M̂N −M∗
N −RN

]
σ

∣∣∣ ≤ 2Cc−1
2 J

− 1
2

∗ ∥M̂N −M∗
N −RN∥σ(Aθ,β).

Again, we have

g(M̂N)− g(M∗
N)

σ(g)
=

[
cN , M̂N −M∗

N −RN

]
σ
+
[
cN , RN

]
σ

σ(g)
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As N →∞, re-arrange gives with probability tending to 1 that,

∣∣∣g(M̂N)− g(M∗
N)

σ(g)
−
[
cN , RN

]
σ

σ(g)

∣∣∣ =
∣∣∣[cN , M̂N −M∗

N −RN ]σ

∣∣∣
σ(g)

≤ 2Cc−1
2 J

− 1
2

∗

σ(g)
∥M̂N −M∗

N −RN∥σ(Aθ,β)

≤ 2Cc−1
2 J

− 1
2

∗

σ(g)
dN
[
∥RN∥σ(Aθ,β)

]2
≤ 1

2
Cc−1

2 c−1
3 dNf

2
N

→ 0, (B.18)

Again, we can denote ZN =
[
cN , RN

]
σ
/σ(g) for notation simplicity. Similar as in

case 1, we just need to show ZN → N(0, 1). We consider the log moment generating

function of ZN , denoted as logGZN
(t). Write c′ij := cij/σ(g). Then similarly as in

the proof for case 1, we obtain

logGZN
(t) =

t2

2

N∑
i=1

∑
j∈SJ (i)

c′2ijσ
2(m∗

ij + t′c′ij), ∥t′c′N∥σ(Aθ,β) ≤ fN ,

where,

N∑
i=1

∑
j∈SJ (i)

c′2ijσ
2(m∗

ij + t′c′ij) = 1 +
N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗

ij + t′c′ij)− σ2
ij

}
.
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Note that

N∑
i=1

∑
j∈SJ (i)

c′2ij
{
σ2(m∗

ij + t′c′ij)− σ2
ij

}
=

1

σ(g)

N∑
i=1

∑
j∈SJ (i)

cij
{
σ2(m∗

ij + t′c′ij)− σ2
ij

}
c′ij

=
1

σ(g)
g
{
UN(M

∗
N + t′c′N , c

′
N)
}

≤ 2Cc−1
2 J

− 1
2

∗

σ(g)
∥UN(M

∗
N + t′c′N , c

′
N)∥σ(Aθ,β)

≤ 2Cc−1
2 J

− 1
2

∗

σ(g)
dN∥t′c′N∥σ(Aθ,β)∥c′N∥σ(Aθ,β)

≤ 2Cc−1
2 J

− 1
2

∗

σ(g)
dNfN

≤ 2Cc−1
2 c−1

3 dNfN

→ 0 as N →∞.

The second line follows from Uij(M
∗
N + t′c′N , c

′
N) = (σ2

ij)
−1
{
σ(m∗

ij + t′c′ij) − σ2
ij

}
c′ij.

The third last step follows from ∥c′N∥σ(Aθ,β) ≤ ∥c′N∥σ = 1 and the last step can be

implied from Lemma B.11(b). Therefore, logGZN
(t) → t2

2
as N → ∞. Hence, the

first part of the theorem follows.

Now we seek to prove the second part of the theorem. The strategy is to show
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|σ̂2(g)− σ̃2(g)|/σ̃2(g)→ 0 in probability as N →∞. Consider

|σ̂2(g)− σ̃2(g)|
σ̃2(g)

=

∣∣∣∑N
i=1 w

2
gi

{
(σ̂2

i+)
−1 − (σ2

i+)
−1
}
+
∑J

j=1 w̃
2
gj

{
(σ̂2

+j)
−1 − (σ2

+j)
−1
}∣∣∣∑N

i=1w
2
gi(σ

2
i+)

−1 +
∑J

j=1 w̃
2
gj(σ

2
+j)

−1

=

∣∣∣∑N
i=1 w

2
gi

{
σ2
i+−σ̂2

i+

(σ̂2
i+)(σ2

i+)

}
+
∑J

j=1 w̃
2
gj

{
σ2
+j−σ̂2

+j

(σ̂2
+j)(σ

2
+j)

}∣∣∣∑N
i=1w

2
gi(σ

2
i+)

−1 +
∑J

j=1 w̃
2
gj(σ

2
+j)

−1

≤

∣∣∣∑N
i=1w

2
gi

{∑
j∈SJ (i) |σ2

ij−σ̂2
ij |

(σ̂2
i+)(σ2

i+)

}
+
∑J

j=1 w̃
2
gj

{∑
i∈SN (j) |σ2

ij−σ̂2
ij |

(σ̂2
+j)(σ

2
+j)

}∣∣∣∑N
i=1w

2
gi(σ

2
i+)

−1 +
∑J

j=1 w̃
2
gj(σ

2
+j)

−1
.

(B.19)

Since m∗
ij, m̂ij ∈ R, 0 < σ2

ij, σ̂
2
ij < 1. Note that there exist 0 < c4, c5 <∞ that

σ2
i+, σ̂

2
i+ > c4J∗, σ2

+j, σ̂
2
+j > c5N∗.

Further note that there exists a positive c6 <∞ such that

max
i,j,zij=1

|σ2
ij − σ̂2

ij| ≤ c6 max
i,j,zij=1

|m∗
ij − m̂ij|

= op(1), as N →∞.

where the last line follows from (B.3). It follows

∑
j∈SJ (i)

|σ2
ij − σ̂2

ij|
(σ̂2

i+)(σ
2
i+)

= op
(
J−1
∗
)
, (B.20)∑

i∈SN (j) |σ2
ij − σ̂2

ij|
(σ̂2

+j)(σ
2
+j)

= op
(
N−1

∗
)
. (B.21)
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Moreover, we note that ∥wg∥1, ∥w̃g∥1 < C implies that
∑N

i=1w
2
gi < c7 and

∑J
j=1 w̃

2
gj <

c7 for some c7 <∞. From (B.19), it can be implied that

|σ̂2(g)− σ̃2(g)|
σ̃2(g)

= op(1), as N →∞,

where the above result follows from (B.20), (B.21) and the assumption that g(x) ̸= 0

for any x ∈ ΩN . Since we have shown σ̃(g)−1{g(M̂)− g(M∗)} → N(0, 1) in distribu-

tion in the first part of the proof, it follows that σ̂(g)−1{g(M̂) − g(M∗)} → N(0, 1)

in distribution as N →∞.

Proof of Proposition III.9. We prove the first part of the proposition by direct con-

struction; in particular, we find the solutions for θ and β, respectively, given equa-

tions
∑N

i=1 θi = 0 and θi − βj = mij, i = 1, ..., N, j = 1, ..., J , for which zij = 1.

We first construct the solution for βj, j = 1, ..., J . The idea is to include all

the row parameters θi so that we can apply the constraint
∑N

i=1 θi = 0. De-

note SJ(i) = {j = 1, ...J : zij = 1}, SN(j) = {i = 1, ..., N : zij = 1}, and

SNϕ
(j) = {1, 2, ..., N} \ SN(j). Then for any i ∈ SN(j), we use mij = θi − βj in

the construction. While for each i ∈ SNϕ
(j), applying Condition III.8, there must

exist 1 ≤ ii1, ii2, ..., iik ≤ N and 1 ≤ ji1, ji2, ..., jik ≤ J such that

zi,ji1 = zii1,ji1 = zii1,ji2 = zii2,ji2 = ... = ziik,jik = ziik,j = 1,
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with

mi,ji1 −mii1,ji1 +mii1,ji2 −mii2,ji2 + ...−miik,jik +miik,j

=(θi − βji1)− (θii1 − βji1) + (θii1 − βji2)− (θii2 − βji2)+

...− (θiik − βjik) + (θiik − βj)

=θi − βj.

Therefore, the solution for βj is simply

βj =−
1

N

{ ∑
i∈SN (j)

mij

+
∑

i∈SNϕ
(j)

(
mi,ji1 −mii1,ji1 +mii1,ji2 −mii2,ji2 + ...−miik,jik +miik,j

)}
.

To find solution for θi,

θi =
1

|SJ(i)|
∑

j∈SJ (i)

[
mij −

1

N

{ ∑
i′∈SN (j)

mi′j

+
∑

i′∈SNϕ
(j)

(
mi′,ji′1

−mi′
i′1,ji′1

+mi′
i′1,ji′2

−mi′
i′2,ji′2

+ ...−mi′
i′k,ji′k

+mi′
i′k,j

)}]
,

where |SJ(i)| denotes the cardinality of Sj(i). This concludes the proof for the first

part of the proposition.

We can view the row parameters and column parameters as a bipartite graph

G, with one part consisting of row parameters as nodes (denoted as {i = 1, ..., N}

for simplicity) and the other consisting of column parameters as nodes (denoted as
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{j = 1, ..., J} for simplicity). If zij = 1, then there is an edge connecting i and j in

G. For the second part of the proposition, note if Condition III.8 is not satisfied, then

there exists at least one pair of (i, j) such that there does not exist a path connecting

them in graph G. This means that claim: G can be separated into at least two

sub-graphs. Denote the two sub-graphs by G1 and G2 respectively. The above claim

can be proved by a contradiction argument as follows. Suppose not, then there exist

either i′1 ∈ G1 and j′2 ∈ G2 with zi′1j′2 = 1, or j′1 ∈ G1 and i′2 ∈ G2 with zi′2j′1 = 1. By

assumption there must exist a path connecting any two nodes within each of the two

sub-graphs, otherwise we could split G into two sub-graphs. Therefore, there must

exist a path connecting the pair (i, j). A contradiction.

Now, denote {θi1 , βj1 : 1 ≤ i1 ≤ N, 1 ≤ j1 ≤ J} and {θi2 , βj2 : 1 ≤ i2 ≤

N, 1 ≤ j2 ≤ J} as the values associated with the nodes in G1 and in G2 respectively

and together also serving as a solution set satisfying
∑N

i=1 θi = 0 and θi − βj =

mij, i = 1, ..., N, j = 1, ..., J, zij = 1. Let ni1 and ni2 denote the number of row

parameters in G1 and in G2 respectively. Let τ = ni1/ni2 . For any constant a, let

θ̃i1 = θi1 + a, β̃j1 = βj1 + a and θ̃i2 = θi2 − τa, β̃j2 = βj2 − τa. We can check easily

that (θ̃, β̃) is also a solution to the system but (θ̃, β̃) ̸= (θ, β). This concludes the

proof for the second part of the proposition.

B.2 Proofs of Supporting Lemmas

We first give some intuition on how to obtain the approximation formula for

σ2(g), as summarized in Lemmas B.12, B.13 and B.14 below. Lemmas B.12, B.13

and B.14 will be used in the proofs of other supporting lemmas, which will be given
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later in this section.

First note that it is a property of the exponential family that σ(g) = supx∈ΩN
{|g(x)| :

∥x∥2σ ≤ 1}. σ2(g) can be viewed as the solution to a constrained quadratic program-

ming problem, i.e.

max
θ,β

{ N∑
i=1

∑
j∈SJ (i)

wij(θi − βj)
}2

such that
N∑
i=1

∑
j∈SJ (i)

σ2
ij(θi − βj)

2 ≤ 1,
N∑
i=1

θi = 0.

(B.22)

An explicit form is often difficult to derive, so an approximation is desired for both

implementation and inference purposes. We consider a three-way decomposition of

the coefficients of g that lies in the constrained solution space, and convert this

quadratic programming to a linear system from which σ2(g) can be solved. The

results are summarized in Lemma B.12 below.

Lemma B.12. Define a vector d(g) =
{
dij(g) : i = 1, ..., N, j = 1, ..., J, zij =

1, dij(g) ∈ R
}
with a three-way decomposition dij(g) = b(g)+fi(g)+mj(g), such that

[d(g), x]σ = g(x) for x ∈ ΩN and fi(g),mj(g) satisfying

N∑
i=1

σ2
i+fi(g) = 0, (B.23)

J∑
j=1

σ2
+jmj(g) = 0. (B.24)
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Then, we have

σ2(g) = b2(g)σ2
++ +

N∑
i=1

σ2
i+f

2
i (g) +

J∑
j=1

σ2
+jm

2
j(g) + 2

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g).

(B.25)

Proof. Note σ2(g) is a solution to the quadratically constrained quadratic program-

ming problem (B.22). From Haberman (1977), the construction of d(g) in the lemma

lies in the required solution space of (B.22). As a result, σ2(g) can be expressed di-

rectly as σ2(g) = ∥d(g)∥2σ. We just need to find an explicit expression of ∥d(g)∥2σ in

terms of b(g), fi(g),mj(g).

First consider x ∈ ΩN such that xij = y are identical for all i = 1, ..., N, j =

1, ..., J, zij = 1. Then in such cases,

g(x) = [d(g), x]σ

=
N∑
i=1

∑
j∈SJ (i)

{
b(g) + fi(g) +mj(g)

}
σ2
ijy

= b(g)σ2
++y +

N∑
i=1

( ∑
j∈SJ (i)

σ2
ij

)
fi(g)y +

J∑
j=1

( ∑
i∈SN (j)

σ2
ij

)
mj(g)y

= b(g)σ2
++y +

N∑
i=1

σ2
i+fi(g)y +

J∑
j=1

σ2
+jmj(g)y

= b(g)σ2
++y, (B.26)

where the last step follows from (B.23) and (B.24). Also by the original definition of
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g, we have

g(x) =
N∑
i=1

∑
j∈SJ (i)

wijy = w++y. (B.27)

Since (B.26) and (B.27) hold for any y, we must have

b(g) = (σ2
++)

−1w++. (B.28)

Next consider x ∈ ΩN such that xij = yi, yi ∈ R, for any i = 1, ..., N, j = 1, ..., J, zij =

1, then

g(x) = [d(g), x]σ =
N∑
i=1

∑
j∈SJ (i)

dij(g)σ
2
ijyi =

N∑
i=1

yi

( ∑
j∈SJ (i)

dij(g)σ
2
ij

)
. (B.29)

From the original definition of g,

g(x) =
N∑
i=1

∑
j∈SJ (i)

wijyi =
N∑
i=1

yi

( ∑
j∈SJ (i)

wij

)
. (B.30)

Since (B.29) = (B.30) for any yi, it follows that

∑
j∈SJ (i)

dij(g)σ
2
ij =

∑
j∈SJ (i)

wij = wi+, i = 1, ..., N. (B.31)

229



Consider

fi(g) +mj(g) = dij(g)− b(g)∑
j∈SJ (i)

{
fi(g) +mj(g)

}
σ2
ij =

∑
j∈SJ (i)

{
dij(g)− b(g)

}
σ2
ij

σ2
i+fi(g) +

∑
j∈SJ (i)

σ2
ijmj(g) =

∑
j∈SJ (i)

dij(g)σ
2
ij − σ2

i+b(g)

σ2
i+fi(g) +

∑
j∈SJ (i)

σ2
ijmj(g) = wi+ − (σ2

++)
−1w++σ

2
i+, i = 1, ..., N, (B.32)

where the last line follows from (B.28) and (B.31). Similarly, we consider x ∈ ΩN

such that xij = yj, yj ∈ R for any i = 1, ..., N, j = 1, ..., J, zij = 1, then

g(x) = [d(g), x]σ =
J∑

j=1

∑
i∈SN (j)

dij(g)σ
2
ijyj

=
J∑

j=1

yj

( ∑
i∈SN (j)

dij(g)σ
2
ij

)
. (B.33)

Again by the original definition of g,

g(x) =
J∑

j=1

∑
i∈SN (j)

wijyj =
J∑

j=1

yj

( ∑
i∈SN (j)

wij

)
. (B.34)

Since (B.33) = (B.34) for any yj ∈ R, it follows

∑
i∈SN (j)

dij(g)σ
2
ij =

∑
i∈SN (j)

wij = w+j. (B.35)
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Similarly,

fi(g) +mj(g) = dij(g)− b(g)∑
i∈SN (j)

{
fi(g) +mj(g)

}
σ2
ij =

∑
i∈SN (j)

{
dij(g)− b(g)

}
σ2
ij

σ2
+jmj(g) +

∑
i∈SN (j)

σ2
ijfi(g) =

∑
i∈SN (j)

dij(g)σ
2
ij − σ2

+jb(g)

σ2
+jmj(g) +

∑
i∈SN (j)

σ2
ijfi(g) = w+j − (σ2

++)
−1w++σ

2
+j, j = 1, ..., J, (B.36)

where the last line follows from (B.28) and (B.35). Note that all b(g), fi(g),mj(g)

can be obtained by solving a system of N+J+1 linear equations from (B.28), (B.32)

and (B.36). Now we seek to derive a simplified expression for ∥d(g)∥2σ in terms of

b(g), fi(g),mj(g).

σ2(g) =∥d(g)∥2σ

=
N∑
i=1

∑
j∈SJ (i)

σ2
ij

{
b(g) + fi(g) +mj(g)

}2
=b(g)

N∑
i=1

∑
j∈SJ (i)

σ2
ij

{
b(g) + fi(g) +mj(g)

}
(B.37)

+
N∑
i=1

∑
j∈SJ (i)

fi(g)σ
2
ij

{
b(g) + fi(g) +mj(g)

}
(B.38)

+
N∑
i=1

∑
j∈SJ (i)

mj(g)σ
2
ij

{
b(g) + fi(g) +mj(g)

}
. (B.39)
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Let us consider each of these three terms separately,

(B.37) = b2(g)σ2
++ + b(g)

N∑
i=1

fi(g)
( ∑

j∈SJ (i)

σ2
ij

)
+ b(g)

J∑
j=1

mj(g)
( ∑

i∈SN (j)

σ2
ij

)

= b2(g)σ2
++ + b(g)

N∑
i=1

σ2
i+fi(g) + b(g)

J∑
j=1

σ2
+jmj(g)

= b2(g)σ2
++.

(B.38) = b(g)
N∑
i=1

fi(g)
( ∑

j∈SJ (i)

σ2
ij

)
+

N∑
i=1

f 2
i (g)

( ∑
j∈SJ (i)

σ2
ij

)
+

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g)

= b(g)
N∑
i=1

fi(g)σ
2
i+ +

N∑
i=1

σ2
i+f

2
i (g) +

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g)

=
N∑
i=1

σ2
i+f

2
i (g) +

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g).

(B.39) =b(g)
J∑

j=1

mj(g)
( ∑

i∈SN (j)

σ2
ij

)
+

J∑
j=1

m2
j(g)

( ∑
i∈SN (j)

σ2
ij

)

+
N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g)

=b(g)
J∑

j=1

σ2
+jmj(g) +

J∑
j=1

σ2
+jm

2
j(g) +

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g)

=
J∑

j=1

σ2
+jm

2
j(g) +

N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g).
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Combining three terms together, the result of the lemma follows with

σ2(g) =∥d(g)∥2σ = b2(g)σ2
++ +

N∑
i=1

σ2
i+f

2
i (g) +

J∑
j=1

σ2
+jm

2
j(g)

+ 2
N∑
i=1

∑
j∈SJ (i)

σ2
ijfi(g)mj(g).

As in the proof of Lemma B.12, we can solve a system of N+J+1 linear equations

from (B.28), (B.32) and (B.36) for fi(g), i = 1, ..., N , mj(g), j = 1, ..., J and b(g).

Then an exact expression for σ2(g) can be obtained by substituting these values into

(B.25). However, when N and J are large, it is difficult to solve this large system

of linear equations. Furthermore, to study the order of σ2(g), we need an analytical

form for analysis. The following set-ups are used to find an approximation for σ2(g).

Define γN > 0 to be the largest number such that for all i = 1, ..., N, j = 1, ..., J, zij =

1,

x2σ2
ij ≥ γN

( 1

|SJ(i)|
x2σ2

i+ +
1

|SN(j)|
x2σ2

+j

)
, x ∈ R, (B.40)

where |SJ(i)| and |SN(j)| are the cardinalities of SJ(i) and SN(j) respectively. Note

that there exist some γ > 0 such that γN > γ for all N. For i = 1, ..., N and
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j = 1, ..., J , further define

f ′
i(g) = (σ2

i+)
−1wi+ − (σ2

++)
−1w++, (B.41)

m′
j(g) = (σ2

+j)
−1w+j − (σ2

++)
−1w++, (B.42)

f ′′
i (g) = fi(g)− f ′

i(g), (B.43)

m′′
j (g) = mj(g)−m′

j(g), . (B.44)

Then for i = 1, ..., N, j = 1, ..., J with zij = 1, define

σ̌2
ij = σ2

ij − γN

( 1

|SJ(i)|
σ2
i+ +

1

|SN(j)|
σ2
+j

)
, (B.45)

d′ij(g) = b(g) + f ′
i(g) +m′

j(g), (B.46)

d′′ij(g) = f ′′
i (g) +m′′

j (g) = dij(g)− d′ij(g). (B.47)

By triangle inequality, (B.47) then implies

∥d′(g)∥σ − ∥d′′(g)∥σ ≤ ∥d(g)∥σ ≤ ∥d′(g)∥σ + ∥d′′(g)∥σ.

We seek to use ∥d′(g)∥σ as an approximation to σ(g) = ∥d(g)∥σ while showing

∥d′′(g)∥σ is a negligible term asymptotically under certain conditions. The analytical

expression for ∥d′(g)∥σ is given in Lemma B.13 below.
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Lemma B.13. If d′(g) is defined as in (B.46), then

∥d′(g)∥2σ =
N∑
i=1

w2
i+(σ

2
i+)

−1 +
J∑

j=1

w2
+j(σ

2
+j)

−1

+ 2
N∑
i=1

∑
j∈SJ (i)

wi+w+jσ
2
ij(σ

2
i+)

−1(σ2
+j)

−1 − 3w2
++(σ

2
++)

−1.

Proof. Following from the definition of d′(g), we can write

∥d′(g)∥2σ

=
N∑
i=1

∑
j∈SJ (i)

σ2
ij

{
b(g) + (σ2

i+)
−1wi+ + (σ2

+j)
−1w+j − 2(σ2

++)
−1w++

}2
= b(g)

N∑
i=1

∑
j∈SJ (i)

σ2
ij

{
b(g) + (σ2

i+)
−1wi+ + (σ2

+j)
−1w+j − 2(σ2

++)
−1w++

}
(B.48)

+
N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
i+)

−1wi+

{
b(g) + (σ2

i+)
−1wi+ + (σ2

+j)
−1w+j − 2(σ2

++)
−1w++

}
(B.49)

+
N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
+j)

−1w+j

{
b(g) + (σ2

i+)
−1wi+ + (σ2

+j)
−1w+j − 2(σ2

++)
−1w++

}
(B.50)

− 2
N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
++)

−1w++

{
b(g) + (σ2

i+)
−1wi+ + (σ2

+j)
−1w+j − 2(σ2

++)
−1w++

}
.

(B.51)
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We evaluate each of these four terms separately. For the first term,

(B.48) =b2(g)σ2
++ + b(g)

N∑
i=1

( ∑
j∈SJ (i)

σ2
ij

)
(σ2

i+)
−1wi+ − b(g)w++

+ b(g)
J∑

j=1

w+j − b(g)w++

=b2(g)σ2
++

=(σ2
++)

−1w2
++,

where the last line follows from (B.28). Now consider the second term,

(B.49) =b(g)w++ +
N∑
i=1

w2
i+(σ

2
i+)

−1

+
N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
i+)

−1wi+(σ
2
+j)

−1w+j − 2(σ2
++)

−1w2
++

=− (σ2
++)

−1w2
++ +

N∑
i=1

w2
i+(σ

2
i+)

−1 +
N∑
i=1

∑
j∈SJ (i)

wi+w+jσ
2
ij(σ

2
i+)

−1(σ2
+j)

−1.

Now consider the third term,

(B.50) =b(g)w++ +
N∑
i=1

∑
j∈SJ (i)

σ2
ij(σ

2
+j)

−1w+j(σ
2
i+)

−1wi+

+
J∑

j=1

w2
+j(σ

2
+j)

−1 − 2(σ2
++)

−1w2
++

=− (σ2
++)

−1w2
++ +

J∑
j=1

w2
+j(σ

2
+j)

−1 +
N∑
i=1

∑
j∈SJ (i)

wi+w+jσ
2
ij(σ

2
i+)

−1(σ2
+j)

−1.
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Now consider the last term,

(B.51) = −2b(g)w++ − 2(σ2
++)

−1w2
++ − 2(σ2

++)
−1w2

++ + 4b(g)w++

= −2(σ2
++)

−1w2
++ − 2(σ2

++)
−1w2

++ − 2(σ2
++)

−1w2
++ + 4(σ2

++)
−1w2

++

= −2w2
++(σ

2
++)

−1.

Combining all these four terms together, we obtain

∥d′(g)∥2σ =
N∑
i=1

w2
i+(σ

2
i+)

−1 +
J∑

j=1

w2
+j(σ

2
+j)

−1

+ 2
N∑
i=1

∑
j∈SJ (i)

wi+w+jσ
2
ij(σ

2
i+)

−1(σ2
+j)

−1 − 3w2
++(σ

2
++)

−1.

Hence the result of the lemma follows.

Lemma B.14 below gives an analytical upper bound for ∥d′′(g)∥σ so that we can

show it is a negligible term under certain conditions. Define

li = −
∑

j∈SJ (i)

w+jσ
2
ij(σ

2
+j)

−1 + w++σ
2
i+(σ

2
++)

−1, i = 1, ..., N, (B.52)

vj = −
∑

i∈SN (j)

wi+σ
2
ij(σ

2
i+)

−1 + w++σ
2
+j(σ

2
++)

−1, j = 1, ..., J. (B.53)

Lemma B.14. If li and vj are defined as in (B.52) and (B.53), respectively, then

∥d′′(g)∥σ ≤γ−1
N

[ N∑
i=1

l2i (σ
2
i+)

−1 +
J∑

j=1

v2j (σ
2
+j)

−1
]
.
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Proof. From the definitions of f ′′
i ,m

′′
j , li and vj as in (B.43), (B.44), (B.52) and

(B.53), respectively, it can be easily verified that

σ2
i+f

′′
i +

∑
j∈SJ (i)

σ2
ijm

′′
j = li, i = 1, ..., N,

σ2
+jm

′′
j +

∑
i∈SN (j)

σ2
ijf

′′
i = vj, j = 1, ..., J.

It can be shown ∥d′′(g)∥2σ =
∑N

i=1 f
′′
i li +

∑J
j=1m

′′
jvj, which can be seen as follows,

N∑
i=1

f ′′
i li +

J∑
j=1

m′′
jvj =

N∑
i=1

f ′′
i

(
σ2
i+f

′′
i +

∑
j∈SJ (i)

σ2
ijm

′′
j

)
+

J∑
j=1

m′′
j

(
σ2
+jm

′′
j +

∑
i∈SN (j)

σ2
ijf

′′
i

)
=

N∑
i=1

σ2
i+f

′′2
i +

J∑
j=1

σ2
+jm

′′2
j + 2

N∑
i=1

∑
j∈SJ (i)

f ′′
i m

′′
jσ

2
ij

=
N∑
i=1

∑
j∈SJ (i)

(f ′′
i +m′′

j )
2σ2

ij

= ∥d′′(g)∥2σ.

Furthermore, by Rao (1973),
∑N

i=1 f
′′
i li+

∑J
j=1m

′′
jvj is the largest value of

(∑N
i=1 xili+∑J

j=1 yjvj
)2
, for xi ∈ R, i = 1, ..., N and yj ∈ R, j = 1, ..., J such that

∑
i∈SN (j)

1

|SJ(i)|
σ2
i+xi = 0, j = 1, ..., J,

∑
j∈SJ (i)

1

|SN(j)|
σ2
+jyj = 0, i = 1, ..., N,

D(x, y) =
N∑
i=1

∑
j∈SJ (i)

σ2
ij(xi + yj)

2 ≤ 1.
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Note

N∑
i=1

∑
j∈SJ (i)

(xi + yj)
2σ̌2

ij

=
N∑
i=1

∑
j∈SJ (i)

(xi + yj)
2
{
σ2
ij − γN

( 1

|SJ(i)|
σ2
i+ +

1

|SN(j)|
σ2
+j

)}

=D(x, y)− γN

N∑
i=1

∑
j∈SJ (i)

(xi + yj)
2
{ 1

|SJ(i)|
σ2
i+ +

1

|SN(j)|
σ2
+j

}
=D(x, y)

− γN

{ N∑
i=1

(
x2
iσ

2
i+ +

∑
j∈Sj(i)

1

|SN(j)|
x2
iσ

2
+j

)
+

J∑
j=1

(
y2jσ

2
+j +

∑
i∈SN (j)

1

|SJ(i)|
y2jσ

2
i+

)}

− 2γN

J∑
j=1

yj

{ ∑
i∈SN (j)

1

|SJ(i)|
σ2
i+xi

}
− 2γN

N∑
i=1

xi

{ ∑
j∈SJ (i)

1

|SN(j)|
σ2
+jyj

}
=D(x, y)

− γN

{ N∑
i=1

(
x2
iσ

2
i+ +

∑
j∈Sj(i)

1

|SN(j)|
x2
iσ

2
+j

)
+

J∑
j=1

(
y2jσ

2
+j +

∑
i∈SN (j)

1

|SJ(i)|
y2jσ

2
i+

)}
.

Re-arrange gives,

D(x, y) =γN

{ N∑
i=1

(
x2
iσ

2
i+ +

∑
j∈Sj(i)

1

|SN(j)|
x2
iσ

2
+j

)
+

J∑
j=1

(
y2jσ

2
+j +

∑
i∈SN (j)

1

|SJ(i)|
y2jσ

2
i+

)}

+
N∑
i=1

∑
j∈SJ (i)

(xi + yj)
2σ̌2

ij

≥ γN

{ N∑
i=1

x2
iσ

2
i+ +

J∑
j=1

y2jσ
2
+j

}
.
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It follows that

∥d′′(g)∥σ ≤ γ−1
N

[ N∑
i=1

l2i (σ
2
i+)

−1 +
J∑

j=1

v2j (σ
2
+j)

−1
]
.

Next, we give proofs for the supporting lemmas used in the proofs of Proposi-

tion III.9 and the proofs of Theorems III.10 and III.11.

Lemma B.1. Assume Conditions III.6, III.7 and III.8 hold. If Ap = {fij : i =

1, ..., N, j = 1, ..., J, zij = 1} such that fij(x) = xij for x ∈ ΩN . Let CN = |Ap|, the

cardinality of Ap. There exist sequences fN > 0 and dN ≥ 0 satisfying the followings.

(a). As N →∞, f 2
N/ logCN →∞.

(b). As N →∞, f 2
N(N

−1
∗ + J−1

∗ )→ 0.

(c). If y, v ∈ ΩN and ∥y −M∗
N∥σ(Ap) ≤ fN , then there exists n < ∞ such that for

all N > n, ∥UN(y, v)∥σ(Ap) ≤ dN∥y −M∗
N∥σ(Ap)∥v∥σ(Ap). Furthermore, dNfN → 0

as N →∞.

Proof. Condition III.6(b) assumes J−1
∗ logN → 0. If xN ≪ yN means that y−1

N xN →

0 as N → ∞, then Condition III.6(b) implies that logN∗ ≪ J∗. Then there must
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exist a sequence fN > 0 such that logN∗ ≪ f 2
N ≪ J∗.

f 2
N/ logCN ≥

f 2
N

log(J∗N∗)

=
f 2
N

log J∗ + logN∗

≥ f 2
N

2 logN∗ →∞ as N →∞.

The first inequality follows from the fact that J∗N∗ ≤ CN ≤ J∗N∗. The last line

follows from logN∗ ≪ f 2
N . Therefore, the result of part (a) is satisfied. We further

note

f 2
N(N

−1
∗ + J−1

∗ ) ≤ 2f 2
N

J∗
→ 0 as N →∞. (B.54)

The last line follows from f 2
N ≪ J∗. Therefore, part (b) of the lemma follows. To

verify part (c), first note by Lemma B.4, for any point maps fij ∈ Ap, there exist

0 < τ1, τ2 <∞ such that for all N > n,

τ−1
1

(
N−1

∗ + J−1
∗
) 1

2 < σ(fij) < τ−1
2

(
N−1

∗ + J−1
∗
) 1

2 . (B.55)

By the definition of ∥ · ∥σ(Ap), we have for any y ∈ ΩN , fij ∈ Ap,

|fij(y)| ≤ ∥y∥σ(Ap)σ(fij). (B.56)
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It follows from (B.55) and (B.56) that for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|yij| ≤ τ−1
2 ∥y∥σ(Ap)

(
N−1

∗ + J−1
∗
) 1

2 . (B.57)

Since |σ2(yij)− σ2
ij| ≤ 1, note that there exists a positive τ3 < ∞ such that for any

y ∈ ΩN , one has for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|σ2(yij)− σ2
ij| ≤ τ3|yij −m∗

ij|. (B.58)

Since Ap consists of point maps only, by the definition of ∥ · ∥σ(Ap), we have

∥UN(y, v)∥σ(Ap) is the maximum value of |fij
{
UN(y, v)

}
|/σ(fij) over fij ∈ Ap.

Therefore, upper bounding ∥UN(y, v)∥σ(Ap) is equivalent to upper bounding all

|Uij(y, v)|/σ(fij). Note that for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|Uij(y, v)| =
∣∣∣ N∑
i′=1

∑
j′∈SJ (i′)

[
di′j′(fij)

{
σ2(yi′j′)− σ2

i′j′

}
vi′j′
]∣∣∣

≤
N∑

i′=1

∑
j′∈SJ (i′)

{
|di′j′(fij)|

}{
|σ2(yi′j′)− σ2

i′j′ |
}{
|vi′j′ |

}
≤

N∑
i′=1

∑
j′∈SJ (i′)

{
|di′j′(fij)|

}{
τ3|yi′j′ −m∗

i′j′|
}{
|vi′j′|

}
≤ τ−2

2 τ3
(
N−1

∗ + J−1
∗
){
∥y −M∗

N∥σ(Ap)∥v∥σ(Ap)
}{ N∑

i′=1

∑
j′∈SJ (i′)

|di′j′(fij)|
}
,

where the second last line follows from (B.58) and the last line follows from (B.57).
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Further note that

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(fij)| ≤
N∑

i′=1

∑
j′∈SJ (i′)

|d′i′j′(fij)|+
N∑

i′=1

∑
j′∈SJ (i′)

|d′′i′j′(fij)|.

By definition, d′i′j′(g) = (σ2
i′+)

−1wi′+ + (σ2
+j′)

−1w+j′ − (σ++)
−1w++ for any g ∈ Ω∗

N .

When g = fij, wi′+ = 0 if i′ ̸= i, and wi′+ = 1 if i′ = i, w+j′ = 0 if j′ ̸= j, and

w+j′ = 1 if j′ = j, and w++ = 1. Therefore, we can rewrite

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(fij)| =
N∑

i′=1

∑
j′∈SJ (i′)

∣∣∣(σ2
i′+)

−1wi′+ + (σ2
+j′)

−1w+j′ − (σ++)
−1w++

∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

(σ2
i′+)

−1|wi′+|+
N∑

i′=1

∑
j′∈SJ (i′)

(σ2
+j′)

−1|w+j′|

+
N∑

i′=1

∑
j′∈SJ (i′)

(σ++)
−1|w++|

=
∑

j′∈SJ (i)

(σ2
i+)

−1 +
∑

i′∈SN (j)

(σ2
+j)

−1 +
N∑

i′=1

∑
j′∈SJ (i′)

(σ++)
−1 ≤ τ4,

where τ4 is some positive constant such that τ4 < ∞. Note also that there exists

τ5 <∞ such that

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(fij)| ≤ (J∗N∗)
1
2∥d′′(fij)∥σ ≤ τ5.

As a result,

∥UN(y, v)∥σ(Ap) ≤ τ1τ
−2
2 τ3(τ4 + τ5)

(
N−1

∗ + J−1
∗
) 1

2

{
∥y −M∗

N∥σ(Ap)∥v∥σ(Ap)
}
.
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Therefore, we can set dN = τ1τ
−2
2 τ3(τ4 + τ5) (N

−1
∗ + J−1

∗ )
1
2 . By (B.54), we have

fN(N
−1
∗ + J−1

∗ )1/2 → 0 as N →∞. Therefore, it follows

dNfN = τ1τ
−2
2 τ3(τ4 + τ5)

(
N−1

∗ + J−1
∗
) 1

2 fN → 0, as N →∞.

Hence, the result of part (c) is also satisfied.

Lemma B.2. Let A ⊂ Ω∗
N . Let CN denote the cardinality of A. If there exist

sequences fN > 0 and dN ≥ 0 satisfying (a). 0 < CN < ∞ and f 2
N/ logCn → ∞ as

N → ∞, (b). If y, v ∈ ΩN and ∥y −M∗
N∥σ(A) ≤ fN , then there exists n < ∞ such

that for all N > n, ∥UN(y, v)∥σ(A) ≤ dN∥y −M∗
N∥σ(A)∥v∥σ(A), (c). dNfN → 0 as

N →∞. Then P
(
∥RN∥σ(A) < 1

2
fN
)
→ 1 as N →∞.

Proof. Denote A = {gk : k = 1, ..., CN} and let wk ∈ ΩN be defined for k =

1, ..., CN by gk(x) = [wk, x]σ, x ∈ ΩN . Let Wk = ∥wk∥−1
σ

∑N
i=1

∑
j∈SJ (i)

wijk(Yij −

Eij) for k = 1, ..., CN so that ∥RN∥σ(A) = maxk=1,...,CN
|Wk|. We consider the log

moment generating function of Wk, denoted as logGk(t). Write w′
k = wk/∥wk∥σ,
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k = 1, ..., CN , for simplicity, and we have

logGk(t) = logE[etWk ]

= logE
[
exp

{ t

∥wk∥σ

N∑
i=1

∑
j∈SJ (i)

wijk(Yij − Eij)
}]

= −t
N∑
i=1

∑
j∈SJ (i)

w′
ijkEij + log

N∏
i=1

∏
j∈SJ (i)

E
{
exp(tw′

ijkYij)
}
, by independence

= −t
N∑
i=1

∑
j∈SJ (i)

w′
ijkEij +

N∑
i=1

∑
j∈SJ (i)

logE
{
exp(tw′

ijkYij)
}

=
N∑
i=1

∑
j∈SJ (i)

[
log{1 + exp(m∗

ij)}−1 − log{1 + exp(tw′
ijk +m∗

ij)}−1 − tw′
ijkEij

]

=
N∑
i=1

∑
j∈SJ (i)

[
log{h(m∗

ij)} − log{h(tw′
ijk +m∗

ij)} − tw′
ijkEij

]
, (B.59)

where we have denoted h(x) = {1 + exp(x)}−1. We apply Taylor expansion to

log{h(tw′
ijk +m∗

ij)} with respect to m∗
ij. For some t′ = αt with 0 < α < 1, we have,

log{h(tw′
ijk +m∗

ij)} = log h(m∗
ij)− Eijtw

′
ijk −

t2

2
w′2

ijkσ
2
(
m∗

ij + t′w′
ijk

)
.

Substitute into (B.59),

logGk(t) =
t2

2

N∑
i=1

∑
j∈SJ (i)

w′2
ijkσ

2
(
m∗

ij + t′w′
ijk

)
, |t| ≤ fN .
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By Bahadur (1971),

P
(
Wk ≥

1

2
fN

)
≤ exp

(
− 1

4
f 2
N

)
Gk

(1
2
fN

)
, k = 1, ..., CN ,

and

P
(
−Wk ≥

1

2
fN

)
≤ exp

(
− 1

4
f 2
N

)
Gk

(
− 1

2
fN

)
, k = 1, ..., CN .

Furthermore note that,

logGk

(1
2
fN

)
, logGk

(
− 1

2
fN

)
≤ 1

8
f 2
N

(
1 +

dNfN
2

)
k = 1, ..., CN .

Applying the Bonferroni inequality,

P
{
∥RN∥σ(A) ≥

1

2
fN

}
≤ 2CN exp

{
− 1

8
f 2
N

(
1− dNfN

2

)}
= 2 exp

{
logCN −

1

8
f 2
N

(
1− dNfN

2

)}
→ 0 as N →∞,

where the last step follows from the assumption f 2
N/ logCN →∞ as N →∞. Hence

the result of the lemma follows.

Lemma B.3. Assume Conditions III.6, III.7 and III.8 hold. Let A ⊂ Ω∗
N . If

there exist sequences fN > 0 and dN ≥ 0 satisfying (a). P
(
∥RN∥σ(A) < 1

2
fN
)
→ 1

as N →∞, (b). If y, v ∈ ΩN and ∥y−M∗
N∥σ(A) ≤ fN , then there exists n <∞ such

that for all N > n, ∥UN(y, v)∥σ(A) ≤ dN∥y −M∗
N∥σ(A)∥v∥σ(A), (c). dNfN → 0 as
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N →∞. Then, as N →∞, with probability approaching 1 that,

∣∣∣∥M̂N −M∗
N∥σ(A)

∥RN∥σ(A)
− 1
∣∣∣ ≤ d

1
2
N → 0 and ∥M̂N −M∗

N −RN∥σ(A) ≤ dN∥RN∥2σ(A).

Proof. Write zN = ∥RN∥σ(A) for simplicity. Consider a sequence {hNk : k = 0, 1, ...},

with hN0 = 0 and hN(k+1) = zN+dNh
2
Nk/2 for k = 0, 1, 2, . . . .Define another sequence

lN =
2zN

1 + (1− 2zNdN)
1
2

.

By Kantorovich and Akilov (1964, pages 695-711), if zN < 1
2
fN and zNdN < 1

2
(which

hold with probability tending to 1 by (a), (b) and (c)), it follows

∥tNk − M̂N∥σ(A) ≤ lN − hNk, k = 0, 1, 2, ..., (B.60)

where {tNk : k = 0, 1, ...} is the sequence constructed in the proof of Theorem III.10.

When k = 0, (B.60) implies ∥M∗
N − M̂N∥σ(A) ≤ lN . When k = 1, (B.60) implies

∥M∗
N +RN − M̂N∥σ(A) ≤ lN − zN . (B.61)

It follows that
∣∣∥M∗

N − M̂N∥σ(A)− ∥RN∥σ(A)
∣∣ ≤ lN − zN , where

lN − zN =
zN{1− (1− 2zNdN)

1
2}

1 + (1− 2zNdN)
1
2

.

If we view x = zNdN and f(x) = {1−(1−2x)1/2}/{1+(1−2x)1/2}.We note f(0) = 0,

f(1/2) = 1 and f ′(0) = 1/4 < 1 and f ′′(x) > 0 for all x < 1/2. Therefore, f(x) < x
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for all x < 1/2. Hence, whenever dNzN < 1/2, we must have lN − zN ≤ dNz
2
N . We

know that with probability tending to 1 that dNzN < 1/2. Hence the second part

of the lemma follows from (B.61). Also as N → ∞, with probability approaching 1

that,

∣∣∣∥M̂N −M∗
N∥σ(A)− ∥RN∥σ(A)

∣∣∣2 ≤ dN∥RN∥2σ(A). (B.62)

Re-write (B.62), the result of the first part of the lemma then follows.

Lemma B.4. Assume Conditions III.6, III.7 and III.8 hold and
∑N

i=1 θi = 0, the

asymptotic variance of the maximum likelihood estimator of m∗
ij, var(m̂ij), for any

i = 1, ..., N and j = 1, ..., J , takes the form,

var(m̂ij) = (σ2
i+)

−1 + (σ2
+j)

−1 +O(N−1
∗ J−1

∗ ) as N →∞.

Proof. If zij = 1, then we can simply use a linear function fij with fij(x) = xij.

We apply ∥d′(fij)∥2σ to approximate σ2(fij). With wi+ = 1, wk+ = 0, for all k =

1, ..., i − 1, i + 1, ..., N, w+j = 1, w+l = 0 for all l = 1, ..., j − 1, j + 1, ..., J and

w++ = 1. We obtain

∥d′(fij)∥2σ = (σ2
i+)

−1 + (σ2
+j)

−1 +O
(
N−1

∗ J−1
∗
)

as N →∞.

If zij = 0, then we can apply Condition III.8, there must exist 1 ≤ i1, i2, ...., ik ≤ N

and 1 ≤ j1, j2, ...., jk ≤ J such that zij1 = zi1j1 = zi1j2 = zi2j2 = ... = zikjk = zikj = 1.
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Consider a linear function g2 defined as

gij(x) = xij1 − xi1j1 + xi1j2 − xi2j2 + ...+ xik−1jk − xikjk + xikj

= θi − βj.

In this case, similarly we have wi+ = 1, wk+ = 0, for all k = 1, ..., i − 1, i +

1, ..., N, w+j = 1, w+l = 0 for all l = 1, ..., j − 1, j + 1, ..., J and w++ = 1. Note

these values are exactly the same as those of g1. Therefore,

∥d′(gij)∥2σ = (σ2
i+)

−1 + (σ2
+j)

−1 +O
(
N−1

∗ J−1
∗
)

as N →∞.

In both cases, ∥d′′∥2σ has a small order. To see this, note that in both cases above,

lp =


−σ2

pj(σ
2
+j)

−1 + σ2
p+(σ

2
++)

−1 if zpj = 1

σ2
p+(σ

2
++)

−1 if zpj = 0

= O
(
N−1

∗
)

as N →∞, p = 1, ..., N.

vq =


−σ2

iq(σ
2
i+)

−1 + σ2
+q(σ

2
++)

−1 if ziq = 1

σ2
+q(σ

2
++)

−1 if ziq = 0

= O
(
J−1
∗
)

as N →∞, q = 1, ..., J.
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It follows that

∥d′′(fij)∥2σ = ∥d′′(gij)∥2σ ≤ γ−2
N

{ N∑
p=1

l2p(σ
2
p+)

−1 +
J∑

q=1

v2q (σ
2
+q)

−1
}2

= O
(
N−1

∗ J−2
∗
)

as N →∞,

where the last line follows from Condition III.6(a). Since for any g ∈ Ω∗
N ,

(
∥d′(g)∥σ − ∥d′′(g)∥σ

)2 ≤ σ2(g) ≤
(
∥d′(g)∥σ + ∥d′′(g)∥σ

)2
,

it follows var(m̂ij) = (σ2
i+)

−1 + (σ2
+j)

−1 +O(N−1
∗ J−1

∗ ) as N →∞.

Lemma B.5. Assume Conditions III.6, III.7 and III.8 hold. If Aβ = {gj : j =

1, ..., J} such that gj ∈ Ω∗
N and gj(x) = βj for x ∈ ΩN . Let CN = |Aβ| = J be

the cardinality of Aβ. For any positive sequence fN such that f 2
N/ log J → ∞ and

f 2
NN

−1/2
∗ → 0 as N →∞, there exists a sequence dN ≥ 0 satisfying the followings.

(a). If y, v ∈ ΩN and ∥y −M∗
N∥σ(Aβ) ≤ fN , then there exists n < ∞ such that for

all N > n, ∥UN(y, v)∥σ(Aβ) ≤ dN∥y −M∗
N∥σ(Aβ)∥v∥σ(Aβ).

(b). dNf
2
N → 0 as N →∞.

Proof. First we note since we have assumed N > J , we must have log J ≪ N
1/2
∗ by

Condition III.6(a), so the rate requirements for fN is valid. To find a valid dN , we

seek to upper bound ∥UN(y, v)∥σ(Aβ) and then show that dNfN → 0 as N →∞ for

all fN satisfying the rate requirements f 2
N/ log J →∞ and f 2

NN
−1/2
∗ → 0 as N →∞.
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For any y, v ∈ ΩN , by the definition of ∥ · ∥σ(Aβ), we have

∥UN(y, v)∥σ(Aβ) = max
gj∈Aβ

|gj{UN(y, v)}|/σ(gj).

First note that by Lemma B.6, σ2(gj) = (σ2
+j)

−1 + O
{
(N∗J∗)

−1
}
for any gj ∈ Aβ.

Therefore, there exist positive 0 < c1, c2 < ∞ such that for all N > n, c−1
1 N

−1/2
∗ <

σ(gj) < c−1
2 N

−1/2
∗ , for all gj ∈ Aβ. So we just need to find an upper bound for

|gj{UN(y, v)}| that holds for all gj ∈ Aβ. Consider

|gj{UN(y, v)}| =
∣∣∣ N∑
i′=1

∑
j′∈SJ (i′)

di′j′(gj){σ2(yi′j′)− σ2
i′j′}vi′j′

∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(gj)| · |σ2(yi′j′)− σ2
i′j′ | · |vi′j′ |.

Note 0 ≤ σ2(yij), σ
2
ij ≤ 1, so |σ2(yij) − σ2

ij| ≤ 1. It can be implied that there exists

some positive c3 < ∞ such that |σ2(yij) − σ2
ij| ≤ c3|gj(y − M∗

N)|. Again, by the

definition of ∥ · ∥σ(Aβ), we have |gj(y−M∗
N)| ≤ ∥y−M∗

N∥σ(Aβ)σ(gj). Therefore, for

all i = 1, ..., N, j = 1, ..., J, zij = 1,

|σ2(yij)− σ2
ij| ≤ c−1

2 c3N
−1/2
∗ ∥y −M∗

N∥σ(Aβ).

On the other hand, using a similar strategy, we can show that there exists a positive

c4 <∞ such that for all i = 1, ..., N, j = 1, ..., J, zij = 1,

|vij| ≤ c−1
2 c4N

−1/2
∗ ∥v∥σ(Aβ).
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Further note that

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(gj)| ≤
N∑

i′=1

∑
j′∈SJ (i′)

|d′i′j′(gj)|+
N∑

i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gj)|.

By definition, we know d′i′j′ = (σ2
i′+)

−1wi′+ + (σ2
+j′)

−1w+j′ − (σ2
++)

−1w++. For any

gj ∈ Aβ, wi′+ = −1/N, for i′ = 1, ..., N, w+j′ = −1 if j′ = j and w+j′ = 0 if j′ ̸= j,

w++ = −1. Hence,

d′i′j′(gj) =


− 1

N
(σ2

i′+)
−1 − (σ2

+j′)
−1 + (σ2

++)
−1 if j′ = j

− 1
N
(σ2

i′+)
−1 + (σ2

++)
−1 if j′ ̸= j.

It follows

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(gj)| ≤
J∗

N

N∑
i′=1

(σ2
i′+)

−1 +N∗(σ2
+j)

−1 +
N∑

i′=1

∑
j′∈SJ (i′)

(σ2
++)

−1 ≤ c5,

for some positive c5 <∞. On the other hand,

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gj)| ≤ (N∗J∗)
1
2∥d′′(gj)∥σ ≤ c6,

for some positive c6 <∞. The last step follows from Condition III.6(c) and Lemma
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B.6 which implies that ∥d′′(gj)∥2σ = O (N−1
∗ J−1

∗ ). Overall,

∥UN(y, v)∥σ(Aβ) = max
gj∈Aβ

|gj{UN(y, v)}|/σ(gj)

≤ max
gj∈Aβ

|gj{UN(y, v)}| · max
gj∈Aβ

{σ−1(gj)}.

≤ c1c
−2
2 c3c4(c5 + c6)N

− 1
2

∗ ∥y −M∗
N∥σ(Aβ)∥v∥σ(Aβ).

Note that by taking dN = c1c
−2
2 c3c4(c5 + c6)N

−1/2
∗ , part (a) of the lemma follows.

Furthermore, by the rate requirement of fN , for any positive sequence fN such that

log J ≪ f 2
N ≪ N

1/2
∗ , it can be seen easily that dNf

2
N → 0 as N → ∞. Therefore,

part (b) of the lemma follows.

Lemma B.6. Assume Conditions III.6, III.7 and III.8 hold and
∑N

i=1 θi = 0. The

asymptotic variance of the maximum likelihood estimator of an individual column

parameter, var(β̂j), asymptotically attains the oracle variance (σ2
+j)

−1 in the sense

that

var(β̂j) = (σ2
+j)

−1 +O(N−1
∗ J−1

∗ ) as N →∞. (B.63)

Proof. We seek to construct a linear function gj ∈ Ω∗
N such that gj(x) = βj so that

we can use ∥d′(gj)∥2σ defined in Lemma B.13 to approximate var(β̂j). To construct

such a gj, we may want to include all xij, i = 1, ..., N , in gj so that we can apply the

constraint
∑N

i=1 θi = 0 to solve for βj. For i ∈ SN(j), we use xij = θi − βj directly.

For each i ∈ SNϕ
(j), by Condition III.8, there must exist 1 ≤ ii1, ii2, ..., iik ≤ N and

1 ≤ ji1, ji2, ..., jik ≤ J such that zi,ji1 = zii1,ji1 = zii1,ji2 = zii2,ji2 = ... = ziik,jik =

253



ziik,j = 1, with

xi,ji1 − xii1,ji1 + xii1,ji2 − xii2,ji2 + ...− xiik,jik + xiik,j

=(θi − βji1)− (θii1 − βji1) + (θii1 − βji2)− (θii2 − βji2)+

...− (θiik − βjik) + (θiik − βj)

=θi − βj.

Therefore, we can construct g to be

gj(x) =−
1

N

{ ∑
i∈SN (j)

xij

+
∑

i∈SNϕ
(j)

(
xi,ji1 − xii1,ji1 + xii1,ji2 − xii2,ji2 + ...− xiik,jik + xiik,j

)}

=− 1

N

{( N∑
i=1

θi

)
−Nβj

}
=βj.

Use ∥d′(gj)∥2σ from Lemma B.13 to approximate σ2(gj), with wi+ = −1/N, for all

i = 1, ..., N , w+j = −1, w+l = 0 for all l = 1, ...j − 1, j + 1, ..., J and w++ = −1. It

follows

∥d′(gj)∥2σ = (σ2
+j)

−1 +
1

N2

N∑
i=1

(σ2
i+)

−1 +
2

N

∑
i∈SN (j)

σ2
ij(σ

2
i+)

−1(σ2
+j)

−1 − 3(σ2
++)

−1

=
(
σ2
+j

)−1
+O

(
N−1

∗ J−1
∗
)

as N →∞.
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To see whether ∥d′(gj)∥2σ is a good approximation for σ2(gj), we need to evaluate the

order of ∥d′′(gj)∥2σ from Lemma B.14. Note

li =


σ2
ij(σ

2
+j)

−1 − σ2
i+(σ

2
++)

−1 if zij = 1

−σ2
i+(σ

2
++)

−1 if zij = 0

= O
(
N−1

∗
)

as N →∞, i = 1, ..., N.

vq =
1

N

∑
i∈SN (q)

σ2
iq(σ

2
i+)

−1 − σ2
+q(σ

2
++)

−1

= O
(
J−1
∗
)

as N →∞, q = 1, ..., J.

Applying Lemma B.14, we have

∥d′′(gj)∥2σ ≤ γ−2
N

{ N∑
i=1

l2i (σ
2
i+)

−1 +
J∑

q=1

v2q (σ
2
+q)

−1
}2

= O
(
N−1

∗ J−2
∗
)

as N →∞,

where the last line follows from Condition III.6(a). Since

(
∥d′(gj)∥σ − ∥d′′(gj)∥σ

)2 ≤ σ2(gj) ≤
(
∥d′(gj)∥σ + ∥d′′(gj)∥σ

)2
,

It follows that var(β̂j) = (σ2
+j)

−1 +O (N−1
∗ J−1

∗ ) as N →∞.

Lemma B.7. Let aN and cN be positive sequences. As N → ∞, suppose that

aN = O(bN), for any sequence bN satisfying bN/cN → ∞. Then aN = O(cN) as
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N →∞.

Proof. We prove the lemma result by a contradiction argument. Suppose the lemma

result does not hold. Then there exists a subsequence Nn, such that

LNn =
aNn

cNn

→∞.

We define a sequence

bN =

 NcN if N /∈ {N1, N2, ...},

L
1
2
Nn

cNn if N = Nn.

Then bN satisfies bN/cN → ∞, but “aN = O(bN)” does not hold. Contradiction.

Hence, the lemma result holds.

Lemma B.8. Assume Conditions III.6, III.7 and III.8 hold. If Aθ = {gi : i =

1, ..., N} such that gi ∈ Ω∗
N and gi(x) = θi for x ∈ ΩN . Let CN = |Aθ| = N be the

cardinality of Aθ. Then for any positive sequence fN such that f 2
N/ logN →∞ and

J−1
∗ f 2

N → 0 as N →∞, there exists a sequence dN ≥ 0 satisfying the followings.

(a) If y, v ∈ ΩN and ∥y−M∗
N∥σ(Aθ) ≤ fN , then there exists n <∞ such that for all

N > n, ∥UN(y, v)∥σ(Aθ) ≤ dN∥y −M∗
N∥σ(Aθ)∥v∥σ(Aθ).

(b). dNfN → 0 as N →∞.

Proof. We first note that from Condition III.6(b), logN ≪ J∗ as N →∞. Therefore,

the rate requirements for the sequence fN , f
2
N/ logN →∞ and J−1

∗ f 2
N → 0 as N →
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∞, are valid. Now we seek to upper bound ∥UN(y, v)∥σ(Aθ) to find a sequence dN

and then show that dNfN → 0 for any fN satisfying f 2
N/ logN →∞ and J−1

∗ f 2
N → 0

as N →∞. For any y, v ∈ ΩN , by the definition of ∥ · ∥σ(Aθ),

∥UN(y, v)∥σ(Aθ) = max
gi∈Aθ

|gi{UN(y, v)}|/σ(gi).

Note that by Lemma B.9, we know that σ2(gi) = (σ2
i+)

−1 + O
{
N−1

∗ J−1
∗
}

for any

gi ∈ Aθ. Hence, there exist positive 0 < γ1, γ2 <∞ such that for any i = 1, ..., N,

γ−1
1 J−1/2

∗ < σ(gi) < γ−1
2 J−1/2

∗ .

So we just need to find an upper bound for |gi{UN(y, v)}| that holds for all gi ∈ Aθ.

For any gi ∈ Aθ, we have

|gi{UN(y, v)}| =
∣∣∣ N∑
i′=1

∑
j′∈SJ (i′)

di′j′(gi){σ2(yi′j′)− σ2
i′j′}vi′j′

∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(gi)| · |σ2(yi′j′)− σ2
i′j′ | · |vi′j′ |.

Since σ2(yij), σ
2
ij < 1, so |σ2(yij) − σ2

ij| ≤ 1. It can be implied that there exists a

positive γ3 < ∞ such that |σ2(yij) − σ2
ij| ≤ γ3|gi(y −M∗

N)|. From the definition of

∥ · ∥σ(Aθ), |gi(y−M∗
N)| ≤ ∥y−M∗

N∥σ(Aθ)σ(gi) for any gi ∈ Aθ. Then it follows that

for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|σ2(yij)− σ2
ij| ≤ γ−1

2 γ3J
−1/2
∗ ∥y −M∗

N∥σ(Aθ).
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Using a similar strategy, we can also show that there exists a positive γ4 < ∞ such

that for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|vij| ≤ γ−1
2 γ4J

−1/2
∗ ∥v∥σ(Aθ).

Similarly, we have

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(gi)| ≤
N∑

i′=1

∑
j′∈SJ (i′)

|d′i′j′(gi)|+
N∑

i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gi)|.

By definition, we know d′i′j′ = (σ2
i′+)

−1wi′+ + (σ2
+j′)

−1w+j′ − (σ2
++)

−1w++. For any

gi ∈ Aθ, wi′+ = 1 − 1/N, if i′ = i, and wi′+ = −1/N for i′ ̸= i, w+j′ = 0 for all

j′ = 1, ..., J and w++ = 0. Hence,

d′i′j′(gi) =


(1− 1

N
)(σ2

i′+)
−1 if i′ = i

− 1
N
(σ2

i′+)
−1 if i′ ̸= i.

It follows

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(gi)| =
∑

j′∈SJ (i)

(
1− 1

N

)
(σ2

i+)
−1 +

N∑
i′=1,i′ ̸=i

∑
j′∈SJ (i′)

1

N
(σ2

i′+)
−1 ≤ γ5,

for some positive γ5 <∞. On the other hand,

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gj)| ≤ (N∗J∗)
1
2∥d′′(gi)∥σ ≤ γ6,
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for some positive γ6 <∞. The last step follows from Condition III.6(c) and Lemma

B.9 which implies that ∥d′′(gj)∥2σ = O (N−1
∗ J−1

∗ ). Overall,

∥UN(y, v)∥σ(Aθ) = max
gi∈Aθ

|gi{UN(y, v)}|/σ(gi)

≤ max
gi∈Aθ

|gi{UN(y, v)}| · max
gi∈Aθ

{σ−1(gi)}

≤ γ1γ
−2
2 γ3γ4(γ5 + γ6)J

− 1
2

∗ ∥y −M∗
N∥σ(Aθ)∥v∥σ(Aθ).

So we can set dN = γ1γ
−2
2 γ3γ4(γ5+γ6)J

− 1
2

∗ . Furthermore, by the rate requirement of

fN , for any positive sequence fN such that (logN)1/2 ≪ fN ≪ J
1/2
∗ , we must have

dNfN → 0 as N → ∞. Therefore, both part (a) and part (b) of the lemma are

satisfied.

Lemma B.9. Assume Conditions III.6, III.7 and III.8 hold and
∑N

i=1 θi = 0, the

asymptotic variance of an individual row parameter, var(θ̂i), asymptotically attains

oracle variance (σ2
i+)

−1 in the sense that

var(θ̂i) = (σ2
i+)

−1 +O
(
N−1

∗ J−1
∗
)

as N →∞. (B.64)

Proof. We seek to construct a linear function gi ∈ Ω∗
N such that gi(x) = θi so that

we can use ∥d′(gi)∥2σ in Lemma B.13 to approximate var(θ̂i). Fix some j ∈ SJ(i), i.e.

zij = 1, since Condition III.8 holds, we can use the linear function gj constructed in

the proof of Theorem III.10 to represent βj, i.e. gj(x) = βj. Hence, gi can easily be
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constructed with

gi(x) =
1

|SJ(i)|
∑

j∈SJ (i)

{xij + gj(x)}

=
1

|SJ(i)|
∑

j∈SJ (i)

[
xij −

1

N

{ ∑
i′∈SN (j)

xi′j

+
∑

i′∈SNϕ
(j)

(
xi′,ji′1

− xi′
i′1,ji′1

+ xi′
i′1,ji′2

− xi′
i′2,ji′2

+ ...− xi′
i′k,ji′k

+ xi′
i′k,j

)}]
= θi.

We use ∥d′(gi)∥2σ from Lemma B.13 to approximate σ2(gi) , with wi+ = 1−N−1, wk+ =

−N−1, for all k = 1, ..., i − 1, i + 1, ..., N, w+j = 0, for all j = 1, ..., J, w++ = 0, we

obtain

∥d′(gi)∥2σ =
(
1− 1

N

)2
(σ2

i+)
−1 +

1

N2

N∑
k=1,k ̸=i

(σ2
k+)

−1

= (σ2
i+)

−1 +O
(
N−1

∗ J−1
∗
)

as N →∞.

To see whether ∥d′(gi)∥2σ is a good approximation for σ2(gi), we evaluate the order

of ∥d′′(gi)∥2σ. Note that in this case

lp = 0, p = 1, ..., N.

vq =


1
N

∑
k∈SN (q),k ̸=i σ

2
kq(σ

2
k+)

−1 − (1− 1
N
)σ2

iq(σi+)
−1 if ziq = 1

1
N

∑
k∈SN (q) σ

2
kq(σ

2
k+)

−1 if ziq = 0

= O
(
J−1
∗
)

as N →∞, q = 1, ..., J.
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It follows that

∥d′′(gi)∥2σ ≤ γ−2
N

{ N∑
i=1

l2i (σ
2
i+)

−1 +
J∑

q=1

v2q (σ
2
+q)

−1
}2

= O
(
N−2

∗ J−1
∗
)

as N →∞,

where the last line follows from Condition III.6(a). Since

(
∥d′(gi)∥σ − ∥d′′(gi)∥σ

)2 ≤ σ2(gi) ≤
(
∥d′(gi)∥σ + ∥d′′(gi)∥σ

)2
,

it follows that var(θ̂i) = (σ2
i+)

−1 +O(N−1
∗ J−1

∗ ) as N →∞.

Lemma B.10. Assume Conditions III.6, III.7 and III.8 hold and
∑N

i=1 θi = 0.

Consider a linear function g : ΩN 7→ R with g(M) =
∑N

i=1 hiθi +
∑J

j=1 h
′
jβj. If there

exists a positive C <∞ such that
∑N

i=1 |hi| < C and
∑J

j=1 |h′
j| < C, then

σ2(g) =
N∑
i=1

h2
i (σ

2
i+)

−1 +
J∑

j=1

h′2
j (σ

2
+j)

−1 +O
(
N−1

∗ J−1
∗
)

as N →∞.

Proof. By Proposition III.9, we can reexpress function g in terms of mij for i =

1, ..., N, j = 1, ..., J, zij = 1 with g(MN) =
∑N

i=1

∑
j∈SJ (i)

wij(g)mij. In particular, we

261



have,

wi+(g) = hi

(
1− 1

N

)
− 1

N

N∑
i′=1,i′ ̸=i

hi′ −
1

N

J∑
j=1

h′
j i = 1, ..., N,

w+j(g) = −h′
j, j = 1, ..., J,

w++(g) = −
J∑

j=1

h′
j.

We apply ∥d′(g)∥2σ from Lemma B.13 to approximate σ2(g). Note that

∥d′(g)∥2σ =
N∑
i=1

w2
i+(g)(σ

2
i+)

−1 +
J∑

j=1

w2
+j(g)(σ

2
+j)

−1

+ 2
N∑
i=1

∑
j∈Sj(i)

σ2
ij(σ

2
i+)

−1wi+(g)(σ
2
+j)

−1w+j(g)− 3(σ2
++)

−1w2
++(g)

=
N∑
i=1

h2
i (σ

2
i+)

−1 +
J∑

j=1

h′2
j (σ

2
+j)

−1 +O
(
N−1

∗ J−1
∗
)

as N →∞,

where the last step follows from the assumption that
∑N

i=1 |hi| < C and
∑J

j=1 |h′
j| <

C. To see whether ∥d′(g)∥2σ is a good approximation for σ2(g), we need to evaluate

the order of ∥d′′(g)∥2σ. Note that for i = 1, ..., N,

li = −
∑

j∈SJ (i)

σ2
ij(σ

2
+j)

−1w+j(g) + σ2
i+(σ

2
++)

−1w++(g)

=
∑

j∈SJ (i)

σ2
ij(σ

2
+j)

−1h′
j − σ2

i+(σ
2
++)

−1

J∑
j=1

h′
j = O

(
N−1

∗
)

as N →∞, (B.65)
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where the last step follows from
∑J

j=1 |h′
j| < C. Similarly for j = 1, ..., J,

vj =−
∑

i∈SN (j)

σ2
ij(σ

2
i+)

−1wi+(g) + σ2
+j(σ

2
++)

−1w++(g)

=−
∑

i∈SN (j)

σ2
ij(σ

2
i+)

−1
{
hi

(
1− 1

N

)
− 1

N

N∑
i′=1,i′ ̸=i

hi′ −
1

N

J∑
j=1

h′
j

}

− σ2
+j(σ

2
++)

−1

J∑
j=1

h′
j

=O
(
J−1
∗
)

as N →∞, (B.66)

where the last step follows from
∑J

j=1 |h′
j| < C and

∑N
i=1 |hi| < C. Hence, we have

∥d′′(g)∥2σ ≤ γ−2
N

{ N∑
i=1

l2i (σ
2
i+)

−1 +
J∑

j=1

v2j (σ
2
+j)

−1
}2

= O
(
N−1

∗ J−2
∗
)

as N →∞,

where the last step can be seen easily from (B.65), (B.66) and Condition III.6(a)

that there exists a constant k > 0, such that N∗ ≥ kN2/3 and J∗ ≥ kJ2/3. It follows

that

σ2(g) =
N∑
i=1

h2
i (σ

2
i+)

−1 +
J∑

j=1

h′2
j (σ

2
+j)

−1 +O
(
N−1

∗ J−1
∗
)

as N →∞.

Hence, the result of the lemma follows.

Lemma B.11. Assume Conditions III.6, III.7 and III.8 hold and J−2
∗ N∗(logN)2 →

0 as N → ∞. If Aθ,β = {gi, g′j : i = 1, ..., N, j = 1, ..., J} such that gi, g
′
j ∈ Ω∗

N , and
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gi(x) = θi and g′j(x) = βj for x ∈ ΩN . Let CN = |Aθ,β|, the cardinality of Aθ,β. Then

there exist sequences fN > 0 and dN ≥ 0 satisfying the followings.

(a). As N →∞, f 2
N/ logCN →∞.

(b). If y, v ∈ ΩN and ∥y −M∗
N∥σ(Aθ,β) ≤ fN , then there exists n < ∞ such that

for all N > n, ∥UN(y, v)∥σ(Aθ,β) ≤ dN∥y − M∗
N∥σ(Aθ,β)∥v∥σ(Aθ,β). Furthermore,

dNf
2
N → 0 as N →∞.

Proof. Since J−2
∗ N∗(logN)2 → 0 as N → ∞, there must exist a positive sequence

LN such that LN → ∞ but J−1
∗ N

1/2
∗ (logN)LN → 0 as N → ∞. Furthermore, note

that

log(CN) = log(N + J) ≤ log(2N) = log(2) + log(N) = O(log(N)) as N →∞.

Let f 2
N = {log(N)}LN . It is easy to see that the constructed fN satisfies part (a) of

the lemma.

Now we consider part (b). We seek to find an upper bound for ∥UN(y, z)∥σ(Aθ,β)

in order to find dN and then show that dNf
2
N → 0 as N → ∞. For any y, v ∈ ΩN ,

by the definition of ∥ · ∥σ(Aθ,β),

∥UN(y, v)∥σ(Aθ,β) = max
f∈Aθ,β

|f{UN(y, v)}|/σ(f).

First note from (B.63) and (B.64), we know that for any f ∈ Aθ,β, there exist
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0 < c1, c2 <∞ such that for all N > n,

c−1
1 N

− 1
2

∗ < σ(f) < c−1
2 J

− 1
2

∗ .

So we just need to find an upper bound for |f{UN(y, v)}| that holds for all f ∈ Aθ,β.

Note that

|f{UN(y, v)}| =
∣∣∣ N∑
i′=1

∑
j′∈SJ (i′)

di′j′(f){σ2(yi′j′)− σ2
i′j′}vi′j′

∣∣∣
≤

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(f)| · |σ2(yi′j′)− σ2
i′j′| · |vi′j′ |. (B.67)

Note 0 ≤ σ2(yij), σ
2
ij ≤ 1, so |σ2(yij)−σ2

ij| ≤ 1. It can be implied that |σ2(yij)−σ2
ij| ≤

c3|f(y −M∗
N)| for some positive c3 < ∞. By the definition of ∥ · ∥σ(Aθ,β), we have

|f(y −M∗
N)| ≤ ∥y −M∗

N∥σ(Aθ,β)σ(f). Hence, it follows that for any i = 1, ..., N, j =

1, ..., J, zij = 1,

|σ2(yij)− σ2
ij| ≤ c−1

2 c3J
−1/2
∗ ∥y −M∗

N∥σ(Aθ,β).

Using a similar strategy, we can show that there exists a positive c4 <∞ such that

for any i = 1, ..., N, j = 1, ..., J, zij = 1,

|vij| ≤ c−1
2 c4J

−1/2
∗ ∥v∥σ(Aθ,β).
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Further, note also that

N∑
i′=1

∑
j′∈SJ (i′)

|di′j′(f)| ≤
N∑

i′=1

∑
j′∈SJ (i′)

|d′i′j′(f)|+
N∑

i′=1

∑
j′∈SJ (i′)

|d′′i′j′(f)|.

By definition, d′i′j′ = (σ2
i′+)

−1wi′+ + (σ2
+j′)

−1w+j′ − (σ2
++)

−1w++. For any f ∈ Aθ,β,

either f = g′j or f = gi. When f = g′j, wi′+ = −1/N, for i′ = 1, ..., N, w+j′ = −1 if

j′ = j and w+j′ = 0 if j′ ̸= j, w++ = −1. Hence,

d′i′j′(g
′
j) =


− 1

N
(σ2

i′+)
−1 − (σ2

+j′)
−1 + (σ2

++)
−1 if j′ = j

− 1
N
(σ2

i′+)
−1 + (σ2

++)
−1 if j′ ̸= j

It follows

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(g′j)| ≤
J∗

N

N∑
i′=1

(σ2
i′+)

−1 +N∗(σ2
+j)

−1 +
N∑

i′=1

∑
j′∈SJ (i′)

(σ2
++)

−1 ≤ c5,

for some positive c5 <∞. Furthermore,

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(g′j)| ≤ (N∗J∗)
1
2∥d′′(g′j)∥σ ≤ c6,

for some positive c6 < ∞. The last step follows from Condition III.6(c) and (B.63)

which implies that ∥d′′(g′j)∥2σ = O (N−1
∗ J−1

∗ ). On the other hand, when f = gi, we

have wi′+ = 1−1/N, if i′ = i, and wi′+ = −1/N for i′ ̸= i, w+j′ = 0 for all j′ = 1, ..., J
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and w++ = 0. Hence,

d′i′j′(gi) =


(1− 1

N
)(σ2

i′+)
−1 if i′ = i

− 1
N
(σ2

i′+)
−1 if i′ ̸= i.

It follows

N∑
i′=1

∑
j′∈SJ (i′)

|d′i′j′(gi)| =
∑

j′∈SJ (i)

(
1− 1

N

)
(σ2

i+)
−1 −

N∑
i′=1,i′ ̸=i

∑
j′∈SJ (i′)

1

N
(σ2

i′+)
−1 ≤ c7,

for some positive c7 <∞. Furthermore,

N∑
i′=1

∑
j′∈SJ (i′)

|d′′i′j′(gi)| ≤ (N∗J∗)
1
2∥d′′(gi)∥σ ≤ c8,

for some positive c8 < ∞. The last step follows from Condition III.6(c) and (B.64)

which implies that ∥d′′(gi)∥2σ = O (N−1
∗ J−1

∗ ). Overall,

∥UN(y, v)∥σ(Aθ,β) = max
f∈Aθ,β

|f{UN(y, v)}|/σ(f)

≤ max
f∈Aθ,β

|f{UN(y, v)}| max
f∈Aθ,β

{σ(f)−1}

≤ c1c
−2
2 c3c4max{c5 + c6, c7 + c8}J−1

∗ N
1
2
∗ ∥y −M∗

N∥σ(Aθ,β)∥v∥σ(Aθ,β).

Note that in this case we can take dN = c1c
−2
2 c3c4max{c5 + c6, c7 + c8}J−1

∗ N
1/2
∗ . We

have

dNf
2
N = c1c

−2
2 c3c4max{c5 + c6, c7 + c8}J−1

∗ N1/2
∗ log(N)LN → 0 as N →∞.
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Hence both parts (a) and (b) of the lemma are satisfied.

B.3 Senator Rankings

With the same set-up as in Section 3.5.2 of Chapter III, we present a full list of

rankings for senators serving the 111th, the 112th and the 113th United States senate

according to their estimated conservativeness scores. The results are summarized in

Tables B.1 and B.2 below. We observe from Table B.1 that all the top 62 most

conservative senators predicted by the model are Republicans. While the Democrats

and the independent politicians are predicted to have much lower conservativeness

scores as presented in Table B.2. This aligns well with the public perceptions about

the Republican party and the Democratic party. Standard errors of the estimated

row parameters (i.e. senators’ conservativeness scores) are also included to facilitate

inferences.
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Table B.1: Ranking of the top 62 most conservative senators predicted by the model.
Rep represents the Republican party and states are listed in their standard abbrevi-
ations. θ̂ represents the conservativeness score of senators and s.e.(θ̂) is the standard
error of the estimated conservativeness score.

RankSenator State Party θ̂ s.e.(θ̂) RankSenator State Party θ̂ s.e.(θ̂)
1 Demint SC Rep 5.87 0.157 2 Lee UT Rep 5.73 0.138
3 Cruz TX Rep 5.65 0.195 4 Coburn OK Rep 5.25 0.114
5 Paul KY Rep 5.24 0.129 6 Scott SC Rep 5.17 0.176
7 Bunning KY Rep 4.92 0.204 8 Johnson WI Rep 4.84 0.119
9 Risch ID Rep 4.81 0.102 10 Inhofe OK Rep 4.69 0.103
11 Crapo ID Rep 4.56 0.097 12 Sessions AL Rep 4.48 0.096
13 Enzi WY Rep 4.36 0.094 14 Barasso WY Rep 4.35 0.094
15 Cornyn TX Rep 4.33 0.095 16 Rubio FL Rep 4.25 0.112
17 Ensign NV Rep 4.24 0.166 18 Vitter LA Rep 4.20 0.094
19 Fischer NE Rep 4.14 0.145 20 Toomey PA Rep 4.12 0.109
21 Kyl AZ Rep 4.10 0.115 22 Roberts KS Rep 4.06 0.091
23 Mcconnell KY Rep 4.02 0.089 24 Thune SD Rep 3.95 0.088
25 Burr NC Rep 3.95 0.090 26 Moran KS Rep 3.89 0.109
27 Grassley IA Rep 3.80 0.086 28 Shelby AL Rep 3.78 0.086
29 Boozman AR Rep 3.68 0.105 30 ChamblissGA Rep 3.65 0.087
31 Mccain AZ Rep 3.65 0.086 32 BrownbackKS Rep 3.61 0.153
33 Coats IN Rep 3.51 0.101 34 Johanns NE Rep 3.39 0.082
35 Isakson GA Rep 3.38 0.082 36 Hatch UT Rep 3.38 0.083
37 Lemieux FL Rep 3.34 0.188 38 Blunt MO Rep 3.31 0.099
39 Wicker MS Rep 3.29 0.080 40 Portman OH Rep 3.28 0.098
41 Corker TN Rep 3.27 0.080 42 Heller NV Rep 3.26 0.100
43 Hutchison TX Rep 3.25 0.105 44 Graham SC Rep 3.18 0.080
45 Flake AZ Rep 3.03 0.125 46 Ayotte NH Rep 3.02 0.095
47 Hoeven ND Rep 2.97 0.094 48 Bennett UT Rep 2.74 0.127
49 Alexander TN Rep 2.71 0.075 50 Kirk IL Rep 2.67 0.105
51 Cochran MS Rep 2.63 0.075 52 Chiesa NJ Rep 2.61 0.343
53 Gregg NH Rep 2.59 0.127 54 Martinez FL Rep 2.47 0.186
55 Lugar IN Rep 2.29 0.088 56 Bond MO Rep 2.25 0.118
57 MurkowskiAK Rep 1.47 0.066 58 Brown MA Rep 1.29 0.103
59 Voinovich OH Rep 1.22 0.102 60 Snowe ME Rep 1.06 0.080
61 Specter PA Rep 1.03 0.192 62 Collins ME Rep 0.82 0.064
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Table B.2: Ranking of the top 63-139 most conservative senators predicted by the
model. Dem and Ind represent the Democratic party and independent politician,
respectively. States are presented in their standard abbreviations. θ̂ represents the
conservativeness score of senators and s.e.(θ̂) is the standard error of the estimated
conservativeness score.

Rank Senator State Party θ̂ s.e.(θ̂) Rank Senator State Party θ̂ s.e.(θ̂)

63 Nelson NE Dem -0.05 0.084 64 Bayh IN Dem -0.13 0.104
65 Manchin WV Dem -0.66 0.099 66 Feingold WI Dem -0.92 0.115
67 Lincoln AR Dem -0.96 0.119 68 Mccaskill MO Dem -1.15 0.083
69 Webb VA Dem -1.49 0.108 70 Pryor AR Dem -1.63 0.094
71 Lieberman CT Dem -1.68 0.113 72 Heitkamp ND Dem -1.87 0.183
73 Donnelly IN Dem -1.87 0.182 74 Hagan NC Dem -1.90 0.100
75 Byrd WV Dem -2.00 0.217 76 Warner VA Dem -2.06 0.105
77 Landrieu LA Dem -2.07 0.106 78 Tester MT Dem -2.11 0.105
79 Baucus MT Dem -2.11 0.112 80 Bennet CO Dem -2.16 0.107
81 Klobuchar MN Dem -2.26 0.109 82 Conrad ND Dem -2.29 0.131
83 King ME Ind -2.30 0.208 84 Nelson FL Dem -2.32 0.112
85 Kohl WI Dem -2.34 0.131 86 Carper DE Dem -2.36 0.112
87 Udall CO Dem -2.39 0.113 88 Begich AK Dem -2.43 0.116
89 Dorgan ND Dem -2.44 0.167 90 Reid NV Dem -2.68 0.122
91 Shaheen NH Dem -2.76 0.125 92 Kaine VA Dem -2.80 0.246
93 Casey PA Dem -2.83 0.127 94 Cantwell WA Dem -2.84 0.127
95 Coons DE Dem -2.84 0.170 96 Specter PA Dem -2.84 0.222
97 Walsh MT Dem -2.85 0.395 98 Wyden OR Dem -2.97 0.132
99 Bingaman NM Dem -3.03 0.155 100 Johnson SD Dem -3.09 0.137
101 Stabenow MI Dem -3.11 0.137 102 Cowan MA Dem -3.19 0.439
103 Merkley OR Dem -3.19 0.140 104 Sanders VT Ind -3.23 0.143
105 Feinstein CA Dem -3.24 0.143 106 Kerry MA Dem -3.25 0.165
107 Kaufman DE Dem -3.28 0.219 108 Murray WA Dem -3.29 0.143
109 Heinrich NM Dem -3.30 0.290 110 Menendez NJ Dem -3.32 0.144
111 Inouye HI Dem -3.33 0.169 112 Boxer CA Dem -3.35 0.148
113 Dodd CT Dem -3.38 0.218 114 Warren MA Dem -3.45 0.307
115 Levin MI Dem -3.52 0.152 116 BlumenthalCT Dem -3.52 0.214
117 Kirk MA Dem -3.54 0.716 118 Akaka HI Dem -3.54 0.174
119 Franken MN Dem -3.55 0.166 120 Rockefeller WV Dem -3.56 0.161
121 Mikulski MD Dem -3.60 0.158 122 Leahy VT Dem -3.63 0.158
123 Harkin IA Dem -3.64 0.158 124 LautenbergNJ Dem -3.65 0.179
125 Schumer NY Dem -3.65 0.159 126 Reed RI Dem -3.67 0.157
127 Gillibrand NY Dem -3.67 0.158 128 Murphy CT Dem -3.68 0.327
129 Markey MA Dem -3.73 0.465 130 WhitehouseRI Dem -3.74 0.163
131 Cardin MD Dem -3.82 0.163 132 Durbin IL Dem -3.83 0.164
133 Udall NM Dem -3.85 0.165 134 Brown OH Dem -3.89 0.168
135 Baldwin WI Dem -3.90 0.352 136 Booker NJ Dem -4.14 0.572
137 Hirono HI Dem -4.17 0.383 138 Burris IL Dem -4.43 0.297
139 Schatz HI Dem -4.74 0.468
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APPENDIX C

Appendix of Chapter 4

Appendix C contains proofs of all the propositions and theorems developed in

Chapter IV, additional results for simulation studies and real application to PISA

2018 data, and discussion of the asymptotic distribution of Ξ̃ and the implementation

details of Algorithms 3 and 4 in Chapter IV.

C.1 Proofs of Propositions and Theorems

Proof of Proposition IV.1. Note h is differentiable for all c ̸= 0 with,

▽h(c) =
J∑

j=1

|aj| · sign(a∗jc− γ∗
j ), c ̸= 0.
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Further note that sign(a∗jc− γ∗
j ) = 0 when c = γ∗

j /a
∗
j . Hence we have

sign(a∗jc− γ∗
j ) > 0 whenever c >

γ∗
j

a∗j
, (C.1)

sign(a∗jc− γ∗
j ) < 0 whenever c <

γ∗
j

a∗j
. (C.2)

Consider the right derivative (positive directional derivative) of h at 0 from +1

direction,

∂h+(0) := lim
c↓0

h(c)− h(0)

c
.

By the definition of right derivative of h at 0, (C.1) and (C.2), we can rewrite ∂h+(0)

equivalently as follows,

∂h+(0) =
J∑

j=1

|a∗j |
(
−I
(γ∗

j

a∗j
> 0
)
+ I
(γ∗

j

a∗j
≤ 0
))

. (C.3)

Similarly, define the left derivative (negative directional derivative) of h at 0 from

−1 direction,

∂h−(0) := lim
c↑0

h(c)− h(0)

c
.

By the definition of left derivative ∂h−(0), (C.1) and (C.2), we can rewrite ∂h−(0)

equivalently as follows,

∂h−(0) =
J∑

j=1

|a∗j |
(
−I
(γ∗

j

a∗j
≥ 0
)
+ I
(γ∗

j

a∗j
< 0
))

. (C.4)
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Since h is convex, we must have argminc h(c) = 0 if and only if ∂h+(0) > 0 and

∂h−(0) < 0 (Boyd and Vandenberghe, 2004; Shor , 2012). From (C.3), (C.4) and the

fact that ML1 Condition (4.5) is equivalent to argminc h(c) = 0, the result of the

proposition follows directly.

Proof of Theorem IV.3. Since the model with constraint γ†
1 = 0 is identifiable, by

classical asymptotic theory for MLE (van der Vaart , 2000), we have Ξ̃ converges in

probability to Ξ†. That is, as N →∞, for any ϵ > 0, we must have with probability

tending to 1 that |µ̃ − µ†| ≤ ϵ, |γ̃j − γ†
j | ≤ ϵ, |ãj − a†j| ≤ ϵ and |d̃j − d†j| ≤ ϵ, for

any j = 1, ..., J . Denote f(c) =
∑J

j=1 |γ
†
j − ca†j| as a function of c. Similarly, denote

fN(c) =
∑J

j=1 |γ̃j − cãj|. Let c† = argminc f(c) and ĉ = argminc fN(c), respectively.

We seek to establish that ĉ will converge in probability to c† as N → ∞. First

note that by regularity conditions, there exists C1 < ∞ such that J, |γ†
j |, |a

†
j| ≤ C1.

Then, there must exist C2 <∞ such that |c†| ≤ C2. Furthermore, note fN is clearly

continuous and convex in c, so consistency will follow if fN can be shown to converge

point-wise to f that is uniquely minimized at the true value c† (typically uniform

convergence is needed, but point-wise convergence of convex functions implies their

uniform convergence on compact subsets). Following the model identifiability and

the ML1 condition (4.5), c† is unique. To see this, suppose for contradiction that

there exist c1 and c2 such that c1 ̸= c2 and c1 = argminc f(c) and c2 = argminc f(c).

First note that a†j = a∗j for all j = 1, ..., J. Then by model identifiability, there exists
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c3 such that γ†
j = γ∗

j + c3a
∗
j . So we have

c1 = argmin
c

J∑
j=1

|γ∗
j + (c3 − c)a∗j |

and

c2 = argmin
c

J∑
j=1

|γ∗
j + (c3 − c)a∗j |.

Hence, γ∗ = γ† +(c3− c1)a
∗
j and γ∗ = γ† +(c3− c2)a

∗
j . If ML1 condition (4.5) holds,

then c3 = c1 and c3 = c2. This contradicts the assumption c1 ̸= c2. Hence, c
† must

be unique. For any |c| ≤ C2,

|fN(c)− f(c)|

=
∣∣∣ J∑
j=1

(
|γ̃j − cãj| − |γ†

j − ca†j|
)∣∣∣

≤
∣∣∣ J∑
j=1

(
|(γ̃j − cãj)− (γ†

j − ca†j)|
)∣∣∣

=
∣∣∣ J∑
j=1

(
|(γ̃j − γ†

j ) + c(a†j − ãj)|
)∣∣∣

≤
J∑

j=1

(
|γ̃j − γ†

j |+ |c| · |a
†
j − ãj|

)
≤ Jϵ+ |c|ϵ.

≤ (C1 + C2)ϵ.
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Take ϵ1 = (C1+C2)ϵ, it follows that for any fixed |c| ≤ C2, P
(
|fN(c)−f(c)| ≤ ϵ1

)
→ 1

as N → ∞. Moreover, following from the uniqueness of c† and the continuity and

the convexity of fN(·) in c, we must have |ĉ− c†| = oP (1) as N →∞.

Note that µ̂ = µ̃+ ĉ, γ̂j = γ̃j − ĉãj, âj = ãj, d̂j = d̃j for all j = 1, ..., J. From the

model identifiability and the ML1 condition (4.5), we know that µ∗ = µ† + c†, γ∗
j =

γ†
j − c†a†j, a

∗
j = a†j, d

∗
j = d†j for all j = 1, ..., J. Since |ĉ− c†| = oP (1), |µ̃−µ†| = oP (1),

|γ̃j − γ†
j | = oP (1), |ãj − a†j| = oP (1), |d̃j − d†j| = oP (1) as N → ∞, it follows directly

from the Slutsky’s Theorem that |µ̂−µ∗| = oP (1), |γ̂j−γ∗
j | = oP (1), |âj−a∗j | = oP (1),

|d̂j − d∗j | = oP (1) as N →∞.

Proof of Theorem IV.4. Following from the results of Theorem IV.3, we have |γ̂j −

γ∗
j | = oP (1) as N →∞ for all j = 1, ..., J, i.e., for any ϵ > 0, limN→∞ P (|γ̂j − γ∗

j | ≤

ϵ) = 1. First note that |γ̂j − γ∗
j | = oP (1) implies that

∣∣|γ̂j| − |γ∗
j |
∣∣ = oP (1) as N →∞

for all j = 1, ..., J . That is, for any ϵ1 > 0, limN→∞ P (
∣∣|γ̂j| − |γ∗

j |
∣∣ ≤ ϵ1) = 1. When

γ∗
j ̸= 0, let ϵ2j := |γ∗

j | − δ. By the assumption that 0 < δ < min{|γ∗
j | : γ∗

j ̸= 0}, we

know that ϵ2j > 0. Take ϵ1 = 0.5ϵ2j. Then,

|γ̂j| − δ ≥ |γ∗
j | − ϵ1 − δ

= ϵ2j − ϵ1

=
1

2
ϵ2j.

Hence, we have

lim
N→∞

P (|γ̂j| − δ ≥ 1

2
ϵ2j) = 1,
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which then implies that

lim
N→∞

P (|γ̂j| − δ > 0) = 1.

Therefore, we have,

lim
N→∞

P (1{|γ̂j |≤δ} = 1{γ∗
j=0}) = 1.

C.2 Asymptotic Distribution of Ξ̃

Since the model is identifiable with constraint γ†
1 = 0 and all the regularity condi-

tions in Theorem 5.39 of van der Vaart (2000) are satisfied, hence, by Theorem 5.39

in van der Vaart (2000), Ξ̃ → N(Ξ†,Σ∗) in distribution as N → ∞. In practice, we

use the inverse of the observed Fisher information matrix, denoted by Σ̂N , which is a

consistent estimator of Σ∗, to draw Monte Carlo samples. Below, we give procedures

to evaluate Σ̂N from the marginal log-likelihood.

Following the notations in Chapter IV, we first provide the complete data log-

likelihood function,

l(Ξ;Y ) =
N∑
i=1

[
log
{ 1√

2π
exp

(
−(θi − µxi)

2

2

)}
+

J∑
j=1

{
yij(ajθi + dj + γjxi)− log(1 + exp{ajθi + dj + γjxi})

}]
.

Since the latent θi is considered as a random variable such that θi | xi ∼ N(µxi, 1),
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we will work with the marginal log-likelihood function,

mll(Ξ;Y ) =
N∑
i=1

log
{∫ ( J∏

j=1

exp(yij(ajθi + dj + γjxi))

1 + exp(ajθi + dj + γjxi)

)
1√
2π

exp

(
−(θi − µxi)

2

2

)
dθi

}
.

Note that the observed Fisher information matrix I(Ξ) cannot be directly ob-

tained from the mll(Ξ;Y ) due to the intractable integral. Instead, we apply the

Louis Identity (Louis , 1982) to evaluate the observed Fisher information matrix. Let

S(Ξ;Y ) and B(Ξ;Y ) denote the gradient vector and the negative of the hessian ma-

trix of the complete data log-likelihood function, respectively. Then by the Louis

Identity, I(Ξ) can be expressed as

I(Ξ) = Eθ[B(Ξ;Y ) | Y ]− Eθ[S(Ξ;Y )S(Ξ;Y )T | Y ] + Eθ[S(Ξ;Y ) | Y ]Eθ[S(Ξ;Y ) | Y ]T .

Denote pij = exp{yij(ajθi + dj + γjxi)}/[1 + exp{yij(ajθi + dj + γjxi)}]. Then, in

particular,

S(Ξ;Y ) =
∂l(Ξ;Y )

∂Ξ

=
{∂l(Ξ;Y )

∂µ
, ...,

∂l(Ξ;Y )

∂aj
, ...,

∂l(Ξ;Y )

∂dj
, ...,

∂l(Ξ;Y )

∂γj
, ...
}

=
{ N∑

i=1

xi(θi − µ), ...,
N∑
i=1

θi(yij − pij), ...,
N∑
i=1

(pij − yij), ...,
N∑
i=1

xi(yij − pij)
}
.

Furthermore, note that B(Ξ;Y ) = −∂2l(Ξ;Y )/∂Ξ∂ΞT is a (3J+1) by (3J +1) matrix
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with the only non-zero entries,

∂2l(Ξ;Y )

∂µ2
= −

N∑
i=1

xi,

∂2l(Ξ;Y )

∂a2j
= −

N∑
i=1

θ2i pij(1− pij),

∂2l(Ξ;Y )

∂d2j
= −

N∑
i=1

pij(1− pij),

∂2l(Ξ;Y )

∂γ2
j

= −
N∑
i=1

x2
i pij(1− pij),

∂2l(Ξ;Y )

∂aj∂dj
=

N∑
i=1

θipij(1− pij),

∂2l(Ξ;Y )

∂aj∂γj
= −

N∑
i=1

θixipij(1− pij),

∂2l(Ξ;Y )

∂dj∂γj
=

N∑
i=1

xipij(1− pij).

To implement, we can use Gauss Hermite quadrature to approximate the expectation

of these terms so as to obtain Î(Ξ̃). Then Σ̂N can be evaluated with Σ̂N = Î−1(Ξ̃).

This then enables Step 1 of Algorithm 1, where Monte Carlo samples of Ξ† can be

simulated from N(Ξ̃, Σ̂N).

Proof of Proposition IV.5. By considering for each of k = 1, ..., p, separately, the

proofs are essentially same as that for Proposition IV.1.

Proof of Proposition IV.7. Let Ψ† = {µ†,σ†,a†,d†,γ†} be the model parameters

such that γ†
1 = 0. Since model (4.9) with constraint γ†

1 = 0 is identifiable, by

classical asymptotic theory for MLE (van der Vaart , 2000), Ψ̃
p→ Ψ† as N → ∞.
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Equivalently, as N → ∞, for any ϵ > 0 and for all j = 1, ..., J, k = 1, ..., p, we

have with probability tending to 1 that |µ̃k − µ†
k| ≤ ϵ, |σ̃k − σ†

k| ≤ ϵ, |ãj − a†j| ≤ ϵ,

|d̃j − d†j| ≤ ϵ, |γ̃jk − γ†
jk| ≤ ϵ.

We fix a k ∈ {1, ..., p}. Note that the argument below would work for any k =

1, ..., p. Denote fk(ck) =
∑J

j=1 |γ
†
jk − cka

†
j| as a function of ck. Similarly, denote

fNk(ck) =
∑J

j=1 |γ̃jk − ckãj|. Let c†k = argminck fk(ck) and ĉk = argminck fNk(ck),

respectively. We aim to establish that ĉk will converge in probability to c†k as N →

∞. By regularity conditions, there exists Ck1 < ∞ such that J, |γ†
jk|, |a

†
j| ≤ Ck1.

Then, there must exist Ck2 < ∞ such that |c†k| ≤ Ck2. Furthermore, note fNk is

clearly continuous and convex in ck, so consistency will follow if fNk can be shown

to converge point-wise to fk that is uniquely minimized at the true value c†k (point-

wise convergence of convex functions implies their uniform convergence on compact

subsets).

Following the model identifiability and Condition (4.10), c†k is unique. To see

this, suppose for contradiction that there exist ck1 and ck2 such that ck1 ̸= ck2 and

ck1 = argminck fk(ck) and ck2 = argminck fk(ck). First note that a†j = a∗j for all

j = 1, ..., J. Then by model identifiability, there exists ck3 such that γ†
jk = γ∗

jk+ck3a
∗
j .

So we have

ck1 = argmin
ck

J∑
j=1

|γ∗
jk + (ck3 − ck)a

∗
j |

and

ck2 = argmin
ck

J∑
j=1

|γ∗
jk + (ck3 − ck)a

∗
j |.

Hence, γ∗
jk = γ†

jk − (ck3 − ck1)a
∗
j and γ∗

jk = γ†
jk − (ck3 − ck2)a

∗
j . If Condition (4.10)
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holds, then ck3 = ck1 and ck3 = ck2. This contradicts the assumption ck1 ̸= ck2.

Hence, c†k must be unique.

For any |ck| ≤ Ck2,

|fNk(ck)− fk(ck)|

=
∣∣∣ J∑
j=1

(
|γ̃jk − ckãj| − |γ†

jk − cka
†
j|
)∣∣∣

≤
∣∣∣ J∑
j=1

(
|(γ̃jk − ckãj)− (γ†

jk − cka
†
j)|
)∣∣∣

=
∣∣∣ J∑
j=1

(
|(γ̃jk − γ†

jk) + ck(a
†
j − ãj)|

)∣∣∣
≤

J∑
j=1

(
|γ̃jk − γ†

jk|+ |ck| · |a
†
j − ãj|

)
≤ Jϵ+ |ck|ϵ.

≤ (Ck1 + Ck2)ϵ.

Take ϵk1 = (Ck1+Ck2)ϵ, it follows that for any fixed |ck| ≤ Ck2, P
(
|fNk(ck)−fk(ck)| ≤

ϵk1
)
→ 1 as N → ∞. Moreover, following from the uniqueness of c†k and the

continuity and the convexity of fkN(·) in ck, we must have |ĉk − c†k| = oP (1) as

N →∞.

Note that µ̂k = µ̃k + ĉk, σ̂k = σ̃k, γ̂jk = γ̃jk − ĉkãj, âj = ãj, d̂j = d̃j for

j = 1, ..., J. From the model identifiability and Condition (4.10), we know that

280



µ∗
k = µ†

k + c†k, σ
∗
k = σ†

k, γ
∗
jk = γ†

jk − c†ka
†
j, a

∗
j = a†j, d

∗
j = d†j for all j = 1, ..., J. Since

|ĉk− c†k| = oP (1), |µ̃k−µ†
k| = oP (1), |σ̃k−σ†

k| = oP (1), |γ̃jk− γ†
jk| = oP (1), |ãj − a†j| =

oP (1), |d̃j − d†j| = oP (1) as N → ∞, it follows directly from the Slutsky’s Theorem

that |µ̂k − µ∗
k| = oP (1), |σ̂k − σ∗

k| = oP (1), |γ̂jk − γ∗
jk| = oP (1), |âj − a∗j | = oP (1),

|d̂j − d∗j | = oP (1) as N →∞. Hence the first part of the proposition follows.

Now for the second part of the proposition, first note that |γ̂jk − γ∗
jk| = oP (1)

implies that
∣∣|γ̂jk| − |γ∗

jk|
∣∣ = oP (1) as N → ∞ for all j = 1, ..., J . That is, for any

ϵk2 > 0, limN→∞ P (
∣∣|γ̂jk| − |γ∗

jk|
∣∣ ≤ ϵk2) = 1. When γ∗

jk ̸= 0, let ϵk3j := |γ∗
jk| − δ.

By the assumption that 0 < δ < min{|γ∗
jk| : γ∗

jk ̸= 0}, we know that ϵk3j > 0. Take

ϵk2 = 0.5ϵk3j. Then,

|γ̂jk| − δ ≥ |γ∗
jk| − ϵk2 − δ

= ϵk3j − ϵk2

=
1

2
ϵk3j.

Hence, we have

lim
N→∞

P (|γ̂jk| − δ ≥ 1

2
ϵk3j) = 1,

which then implies that

lim
N→∞

P (|γ̂jk| − δ > 0) = 1.

Therefore, we have,

lim
N→∞

P (1{|γ̂jk|≤δ} = 1{γ∗
jk=0}) = 1.

Therefore, the second part of the proposition follows.
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C.3 Additional Simulation Results for Multiple Group DIF

Analysis

We present some additional simulation results for Section 4.3.3 in Chapter IV.

It may be of interest of practitioners to perform statistical inference on individual

DIF effects γjk. We examine the validity of using the proposed method and the

LRT method to construct Wald intervals for individual γjk and check whether the

empirical coverage rate is close to the nominal values. For both the proposed method

and the LRT method, since empirical standard errors for each γ̂jk can be obtained

from M Monte Carlo samples directly, we first construct 95% Wald intervals for

each γjk and validate its coverage rate. The results are summarized in Figures C.1

and C.2. We observe that for both methods, the empirical coverage rates for 95%

Wald intervals are close to the nominal 95%, suggesting valid inference results for

individual γjk can be obtained.

We further explore whether the false discovery rate (FDR) can be controlled

in testing multiple items simultaneously. In specific, the Benjamini-Hochberg (B-

H) (Benjamini and Hochberg , 1995) procedure is applied to the p-values obtained

from the two methods. The results are given in Table C.1. As we can see, FDR is

controlled well below/around the targeted level of 10% for both the proposed method

and the LRT method with 1, 3, and 5 anchor items, under all settings.
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(a) N=1000, p=4, small DIF
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(b) N=1000, p=4, large DIF
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(c) N=1000, p=9, small DIF
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(d) N=1000, p=9, large DIF
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(e) N=2000, p=4, small DIF
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(f) N=2000, p=4, large DIF
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(g) N=2000, p=9, small DIF
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(h) N=2000, p=9, large DIF
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Figure C.1: Scatter-plots of the coverage rates of the 95% Wald intervals for γ∗
jk’s

using Algorithm 7. X-axis and Y-axis represent the item indices and coverage rates
respectively.

(a) N=1000, p=4, small DIF
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(b) N=1000, p=4, large DIF
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(c) N=1000, p=9, small DIF
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(d) N=1000, p=9, large DIF
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(e) N=2000, p=4, small DIF
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(f) N=2000, p=4, large DIF
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(g) N=2000, p=9, small DIF
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(h) N=2000, p=9, large DIF
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Figure C.2: Scatter-plots of the coverage rates of the 95% Wald intervals for γ∗
jk’s

using the LRT method with five anchor items. X-axis and Y-axis represent the item
indices and coverage rates respectively.
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Table C.1: Comparison of average FDR out of 100 Monte Carlo samples of the
proposed method and the LRT method with 1, 3 and 5 anchor items respectively
when FDR is set to be 10% with B-H procedure. Small and Large denote the small
DIF setting and the large DIF setting, respectively.

p = 4 p = 9
N = 1000 N = 2000 N = 1000 N = 2000

Small Large Small Large Small Large Small Large
Proposed method 0.053 0.055 0.071 0.058 0.007 0.020 0.027 0.024
LRT (1 anchor item) 0.072 0.061 0.044 0.042 0.052 0.102 0.048 0.040
LRT (3 anchor items) 0.046 0.050 0.070 0.078 0.043 0.070 0.053 0.056
LRT (5 anchor items) 0.088 0.088 0.056 0.052 0.106 0.096 0.057 0.054

C.4 Additional Results for PISA 2018 Application

Index the items used in the three test domains in Table C.2. We present the

estimated parameters for Model (4.9) in the main article on the reading, the math

and the science data respectively. The results for â and d̂ are summarized in Table

C.3. The results for µ̂ and σ̂ are summarized in Table C.4. The results for γ̂ are

summarized in Tables C.5 and C.6 for the reading data, Tables C.7 and C.8 for the

math data, and Tables C.9 and C.10 for the science data.

284



Table C.2: List of indices for the PISA 2018 reading items, the math items and the
science items respectively.

Index Reading Items Math Items Science Items Index Reading Items Math Items Science Items
1 CR424Q02S CM033Q01S CS408Q01S 39 CR104Q02S CM909Q03S CS527Q01S
2 CR424Q03S CM474Q01S CS408Q04S 40 DR466Q02C CM949Q01S CS527Q03S
3 CR424Q07S CM155Q01S CS408Q05S 41 CR466Q03S CM949Q02S CS527Q04S
4 CR220Q01S CM155Q04S CS413Q06S 42 CR466Q06S CM00GQ01S CS428Q01S
5 CR220Q02S CM411Q01S CS413Q04S 43 CR412Q01S CM998Q04S CS428Q03S
6 CR220Q04S CM411Q02S CS413Q05S 44 CR412Q05S CS634Q01S
7 CR220Q05S CM803Q01S CS635Q02S 45 DR412Q08C CS634Q04S
8 CR220Q06S CM442Q02S CS604Q02S 46 DR432Q01C CS629Q02S
9 CR067Q01S CM034Q01S CS625Q02S 47 DR432Q05C CS629Q04S
10 CR456Q01S CM305Q01S CS625Q03S 48 CR432Q06S CS648Q02S
11 DR456Q02C CM496Q01S CS626Q01S 49 DR219Q01C CS648Q03S
12 DR456Q06C CM496Q02S CS626Q02S 50 DR219Q01EC CS498Q02S
13 DR420Q02C CM423Q01S CS626Q03S 51 DR219Q02C CS605Q01S
14 DR420Q06C CM192Q01S CS425Q05S 52 DR460Q01C CS605Q02S
15 DR420Q09C CM603Q01S CS425Q02S 53 CR460Q05S CS605Q03S
16 DR455Q02C CM571Q01S CS438Q01S 54 CR460Q06S CS646Q01S
17 DR455Q03C CM564Q01S CS438Q02S 55 DR406Q01C CS646Q02S
18 CR455Q04S CM564Q02S CS608Q01S 56 DR406Q05C CS646Q03S
19 CR455Q05S CM447Q01S CS608Q02S 57 DR406Q02C CS620Q01S
20 CR055Q01S CM273Q01S CS608Q03S 58 CR227Q01S CS620Q02S
21 DR055Q02C CM408Q01S CS643Q01S 59 DR227Q03C CS645Q03S
22 DR055Q05C CM420Q01S CS643Q02S 60 DR227Q06C CS478Q02S
23 CR111Q01S CM446Q01S CS643Q04S 61 DR102Q04C CS478Q03S
24 CR446Q03S CM559Q01S CS610Q02S 62 DR102Q05C CS415Q07S
25 DR446Q06C CM828Q03S CS466Q01S 63 CR102Q07S CS415Q02S
26 CR437Q01S CM464Q01S CS256Q01S 64 CS415Q08S
27 DR437Q07C CM800Q01S CS326Q03S 65 CS627Q01S
28 CR437Q06S CM982Q01S CS326Q04S 66 CS627Q03S
29 CR404Q03S CM982Q02S CS602Q01S 67 CS627Q04S
30 CR404Q06S CM982Q03S CS602Q02S 68 CS607Q01S
31 CR404Q07S CM982Q04S CS602Q04S 69 CS607Q02S
32 DR404Q10AC CM992Q01S CS603Q01S 70 CS638Q01S
33 DR404Q10BC CM992Q02S CS603Q03S 71 CS638Q02S
34 CR453Q01S CM915Q01S CS603Q04S 72 CS638Q04S
35 DR453Q04C CM915Q02S CS603Q05S 73 CS615Q07S
36 CR453Q05S CM906Q01S CS657Q01S 74 CS615Q01S
37 DR453Q06C CM909Q01S CS657Q02S 75 CS615Q02S
38 CR104Q01S CM909Q02S CS657Q03S 76 CS615Q05S
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Table C.3: Estimated âj and d̂j parameters for Model (4.9) on the PISA 2018 reading
data, math data and science data respectively.

Reading Math Science Reading Math Science

Item Index âj d̂j âj d̂j âj d̂j Item Index âj d̂j âj d̂j âj d̂j

1 0.45 -0.61 0.74 1.89 0.98 0.23 39 0.52 -0.19 2.31 -1.02 1.01 -1.91
2 0.51 0.38 0.76 0.97 0.57 0.35 40 1.10 -0.48 1.28 1.22 0.42 0.70
3 1.33 1.59 1.01 1.34 0.88 -1.13 41 0.65 -2.59 1.19 -0.93 0.78 0.47
4 1.09 -1.40 0.77 0.44 1.49 -0.95 42 1.67 2.56 1.36 -3.22 1.10 0.17
5 1.36 0.72 1.28 0.22 0.96 -0.01 43 0.85 2.58 0.25 -0.57 1.44 1.63
6 1.14 0.32 0.76 -0.00 0.79 0.95 44 0.83 0.06 1.32 -1.62
7 1.92 2.58 1.63 -1.03 1.30 1.35 45 1.08 0.04 1.43 0.12
8 1.25 0.47 1.60 -1.07 0.84 -0.18 46 1.68 2.98 0.73 -0.17
9 1.17 1.81 1.13 -0.39 0.75 0.77 47 1.40 1.94 0.73 0.51
10 2.13 3.99 0.22 -0.31 1.06 0.16 48 1.78 -3.08 0.77 -0.33
11 1.16 1.73 1.34 0.17 0.75 0.64 49 1.31 2.49 0.51 0.58
12 1.28 1.28 1.03 0.99 0.74 0.22 50 1.08 1.42 0.60 -0.30
13 1.01 0.68 0.70 2.08 1.03 1.11 51 1.28 2.13 0.89 0.11
14 0.66 -0.42 1.11 -0.30 0.66 0.95 52 1.39 0.41 1.37 -0.88
15 0.86 0.93 0.83 -0.59 0.94 0.22 53 1.69 1.39 0.72 0.29
16 0.82 0.22 1.11 -0.12 0.88 1.44 54 0.86 0.32 1.73 2.57
17 0.94 1.84 0.58 -0.23 1.31 1.21 55 1.22 -0.27 1.11 0.35
18 1.24 0.56 0.67 -0.19 0.51 -0.53 56 1.31 0.88 0.93 1.10
19 1.38 -1.22 1.14 1.04 1.18 0.75 57 0.85 -0.87 0.99 1.97
20 1.41 1.31 0.80 -0.14 0.63 -0.10 58 0.86 0.02 0.76 -0.56
21 1.25 0.19 1.15 -0.13 2.00 2.07 59 1.31 0.21 0.92 0.28
22 1.83 1.37 0.94 0.56 1.65 0.25 60 1.49 1.69 1.19 0.12
23 1.45 0.78 1.45 1.49 1.59 -1.01 61 1.19 -1.60 0.71 0.45
24 1.78 3.33 0.74 0.49 1.28 2.34 62 1.08 -0.85 0.79 1.54
25 1.15 1.25 0.91 -0.76 0.87 1.03 63 1.23 2.31 1.50 2.08
26 0.68 -0.06 1.83 -1.61 0.66 2.63 64 0.97 0.36
27 0.76 -1.70 0.51 1.75 1.00 0.44 65 0.58 -0.29
28 0.89 0.18 0.70 1.89 0.84 -1.34 66 0.77 1.71
29 1.43 1.64 0.71 -0.54 1.15 2.23 67 1.27 1.36
30 0.85 0.06 0.93 0.56 0.65 -0.89 68 1.36 3.12
31 0.99 -0.76 1.23 -0.37 1.13 1.27 69 1.55 0.91
32 1.94 0.49 1.02 1.70 1.67 1.69 70 1.42 0.47
33 1.69 -0.52 1.59 -2.43 1.26 1.49 71 1.43 2.27
34 1.42 1.82 0.75 0.01 0.75 0.60 72 1.10 0.10
35 1.11 1.17 1.09 1.72 1.09 0.62 73 1.13 -1.47
36 1.35 -0.13 0.99 0.56 0.56 1.14 74 1.04 1.86
37 1.31 2.00 1.30 3.33 0.73 -0.39 75 1.49 -0.29
38 1.21 0.77 1.35 0.84 1.09 0.02 76 0.48 -1.46
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Table C.4: Estimated µ̂k and σ̂k parameters for Model (4.9) on the PISA 2018 reading
data, math data and science data, respectively.

Reading Math Science
Country µ̂k σ̂k µ̂k σ̂k µ̂k σ̂k
Australia 0.00 1.00 0.00 1.00 0.00 1.00
Austria -0.02 1.14 -0.02 1.20 -0.12 1.14
Belgium 0.08 1.07 -0.00 1.24 -0.13 1.10
Canada 0.28 1.06 0.05 1.15 0.09 1.07
Chile -0.40 0.96 -0.98 1.00 -0.69 0.93

Colombia -0.89 0.96 -1.35 0.99 -1.06 0.92
Czech Republic 0.02 1.08 -0.03 1.20 -0.09 1.09

Denmark 0.06 1.00 0.00 1.09 -0.10 1.05
Estonia 0.43 1.01 0.17 1.10 0.25 1.02
Finland 0.32 1.08 -0.00 1.07 0.18 1.13
France 0.09 1.08 -0.10 1.17 -0.14 1.05

Germany 0.12 1.13 -0.02 1.28 -0.06 1.16
Greece -0.28 1.06 -0.69 1.12 -0.68 0.91
Hungary -0.09 1.05 -0.41 1.18 -0.32 1.07
Iceland -0.03 1.25 -0.13 1.17 -0.29 1.09
Ireland 0.23 0.96 -0.15 1.04 -0.14 1.01
Israel -0.20 1.27 -0.48 1.34 -0.45 1.18
Italy -0.06 1.07 -0.14 1.20 -0.37 1.00
Japan 0.18 1.01 0.41 1.14 0.25 1.13
Korea 0.20 1.08 0.17 1.13 0.29 1.17
Latvia -0.05 1.00 -0.16 1.02 -0.15 0.98

Lithuania -0.10 1.06 -0.34 1.19 -0.27 1.06
Luxembourg -0.14 1.21 -0.30 1.26 -0.31 1.13

Mexico -0.73 0.88 -1.23 0.95 -0.99 0.80
Netherlands -0.05 1.08 -0.13 1.24 -0.11 1.18
New Zealand 0.17 1.11 -0.08 1.18 -0.01 1.17

Norway 0.17 1.13 -0.06 1.11 -0.20 1.10
Poland 0.27 0.99 0.09 1.17 0.09 1.08
Portugal -0.14 1.04 -0.16 1.18 -0.18 1.05

Slovak Republic -0.31 1.09 -0.29 1.23 -0.50 1.10
Slovenia 0.13 1.02 0.07 1.16 -0.03 1.03
Spain -0.12 0.96 -0.31 1.10 -0.39 0.98
Sweden 0.22 1.15 -0.12 1.15 -0.12 1.11

Switzerland -0.05 1.16 0.13 1.20 -0.16 1.10
Turkey -0.22 0.92 -0.70 1.17 -0.57 0.92

United Kingdom 0.16 1.03 -0.14 1.17 -0.00 1.08
United States 0.02 1.19 -0.35 1.24 -0.01 1.19
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APPENDIX D

Appendix of Chapter 5

Appendix D includes additional simulation results validating the inter- and intra-

table inference procedures and the proofs for the theoretical results developed in

Chapter V.

D.1 Additional Simulation Results

This section includes additional simulation results for validating inference pro-

cedures developed in Theorem V.11 for inter-table merging and Theorem V.12 for

intra-table merging.

D.1.1 Inter-Table Merging

We seek to numerically examine the results given in Theorem V.11. We consider

the same setting as in Chapter V, H0 : P1 = 0.1, P2 = 0.1, P3 = 0.8, and Dj ∼

294



Multinomial(nj, P1 = 0.1, P2 = 0.1, P3 = 0.8) for j = 1, 2 and n1/n2 = 3/7. Consider

merging two tables D∗
1 and D∗

2, with total counts n1 and n2 respectively. Let the

merged private table D∗ = D∗
1 + D∗

2 and consider sample sizes: n = n1 + n2 =

100, 1000. Setting the significance level to be 0.05, we evaluate 500 empirical test

statistics. For private data obtained by five DP methods, Opt, Lap, TLap, GDP and

TGDP, we check whether the empirical type I errors can be controlled as indicated

by the results in Theorem V.11. The reported average empirical type I error rates

under the “Inter-Table Merging” scenario in Table D.1 are controlled fairly well at

around 5% for all the mechanisms. We note that even for small sample sizes of

n1 = 30 and n2 = 70 and a high privacy requirement of ϵ = 0.25, the type I errors

can be well controlled.

n = 100 n = 1000
ϵ = 0.25 ϵ = 0.5 ϵ = 0.75 ϵ = 0.25 ϵ = 0.5 ϵ = 0.75

Inter-Table Merging
Opt 0.040 0.036 0.054 0.050 0.050 0.052
Lap 0.056 0.042 0.050 0.060 0.044 0.050
TLap 0.024 0.026 0.030 0.060 0.044 0.050
GDP 0.042 0.052 0.054 0.034 0.040 0.042
TGDP 0.020 0.018 0.024 0.034 0.040 0.038

Intra-Table Merging
Opt 0.031 0.050 0.052 0.051 0.051 0.053
Lap 0.058 0.052 0.051 0.052 0.050 0.053
TLap 0.037 0.049 0.050 0.052 0.050 0.053
GDP 0.051 0.051 0.052 0.050 0.050 0.051
TGDP 0.026 0.037 0.047 0.050 0.050 0.051

Table D.1: Mean empirical type I errors out of 500 simulated samples under two
study scenarios across different sample sizes n = 100, 1000 and different privacy
regimes ϵ = 0.25, 0.5, 0.75. The two scenarios are “Inter-Table Merging”: the infer-
ence methods proposed for the merging circumstances considered in Section 5.4.1
of Chapter V and “Intra-Table Merging”: the inference methods proposed for the
merging circumstances considered in Section 5.4.2 of Chapter V.

Similarly, empirical powers are evaluated and compared. The results are summa-

rized in Figure D.1 below. Overall, the testing procedures proposed in Section 5.4.1
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of Chapter V for the Opt and Lap methods yield good statistical power when we

merge the tables. Furthermore, we note that when sample sizes and ϵ are small

(n1 + n2 = 100, ϵ = 0.25), the Opt procedure yields visibly better power than the

field standard Lap/TLap mechanisms. In practice, data sets with smaller sample

sizes are prevalent and, more importantly, they are more prone to privacy risks and

the possibility of being merged is high, and as such might require a smaller and

stricter ϵ. The Opt procedure stands out in these settings.
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Figure D.1: Empirical power comparisons for five privacy procedures: Opt, Lap,
TLap, GDP and TGDP, on the inter-table merged private data sets.
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D.1.2 Intra-Table Merging

Next, we examine the numerical performance of the procedures presented in Sec-

tion 5.4.2 of Chapter V. AssumingD ∼Multinomial(n, P1 = 0.1, P2 = 0.1, P3 = 0.8),

we merge the first two cells of D∗ and consider the corresponding goodness-of-fit test

of H0 : Pm1 = 0.2, Pm2 = 0.8. Setting the significance level to be 0.05 and using

500 each per generated data sets with n = 100 and n = 1000, we check whether the

empirical type I errors can be controlled for the proposed procedures applying to the

corresponding D∗. From the results reported in Table D.1 “Intra-Table Merging”

scenario, we see that the empirical type I errors are controlled fairly well at around

5% for all settings.

Empirical powers are also evaluated by considering alternative hypotheses H1 :

Pm1 = pm1 = p1 + p2, Pm2 = 1 − pm1. We explore the cases with p1 = p2 =

0.1, 0.11, ..., 0.25 for n = 100 and p1 = p2 = 0.1, 0.1025, , ..., 0.135 for n = 1000.

The results are summarized in Figure D.2. We observe small improvements from

the Opt procedure over the Lap/TLap procedure when the sample sizes are small at

n = 100 and the privacy requirement is high at ϵ = 0.25; and the statistical powers

on private data generated from the Opt and Lap/TLap are superior to those from

the GDP/TGDP.
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Figure D.2: Empirical power comparisons for five privacy procedures: Opt, Lap,
TLap, GDP and TGDP, on the intra-table merged private data sets.

D.2 Proofs of the Theoretical Results

We first give four supporting lemmas that will be used in the proofs of the theo-

rems.

Lemma D.1. For any ϵn > 0, if ẽi = r − i for r = 0, ..., n with probability mass

gir as defined in Section 5.3 of Chapter V. Then for any i = 0, 1, ..., n, and for any

a > 0,

P
(
|ẽi/
√
n| > a

)
= O

(
e−aϵn

√
n
)

as n→∞.
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Proof. Note that in fact ẽi has a discretized Lap(0, 1/ϵn) distribution truncated at

0 and n. We start with the non-truncated but discretized Laplace distribution. Let

Y ∼ discretized Lap(0, 1/ϵn) with

P (Y = k) = e−ϵn|k|/C, k = ...,−2,−1, 0, 1, 2, ...

where C =
∑

m∈Z e
−ϵn|m| =

(
1+ 2e−ϵn/(1− e−ϵn)

)
. Now consider the truncated ver-

sion, ẽi, where the truncated tail probabilities are simply added to the corresponding

boundaries. For any i = 0, ..., n,

P
(∣∣∣ ẽi√

n

∣∣∣ > a
)
= P (|ẽi| > a

√
n) ≤ P (|Y | > a

√
n) = O

(
e−aϵn

√
n
)

as n→∞.

Lemma D.2 below characterizes the L1 distance between the remapped index and

the input index under the optimal remap x introduced in Section 5.3 of Chapter V.

Lemma D.2. Let P (i | r′) = α|i−r′|/
(∑n

i′=0 α
|i′−r′|) for i taking values in {0, 1, ..., n}

with 0 < α < 1 and for some fixed r′ ∈ {0, 1, ..., n}. Let r∗ be defined as

r∗ = min
k

{
k = 0, ..., n :

k∑
i=0

α|i−r′|/
( n∑
i′=0

α|i′−r′|) ≥ 1/2
}
. (D.1)

Then,

|r′−r∗| = O
(
max

{
− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)

})
as n→∞.
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Proof. Note that

n∑
i′=0

α|i′−r′| =
n−r′∑
i′=0

αi′ +
r′∑

i′=0

αi′ − 1

=
1− αn−r′+1

1− α
+

1− αr′+1

1− α
− 1

=
1 + α− αn−r′+1 − αr′+1

1− α
.

Consider
∑r∗

i=0 α
|i−r′|. We can have either r∗ ≤ r′ or r∗ > r′. When r∗ ≤ r′, we have

r∗∑
i=0

α|i−r′| =
r′∑
i=0

αi −
r′−r∗−1∑

i=0

αi

=
1− αr′+1

1− α
− 1− αr′−r∗

1− α

=
αr′−r∗ − αr′+1

1− α

Then by (D.1), we have for some 0 ≤ c ≤ 1/2, such that

c =
r∗∑
i=0

α|i−r′|/
( n∑

i′=0

α|i′−r′|
)
− 1

2
,

r∗∑
i=0

α|i−r′| = (0.5 + c)
( n∑
i′=0

α|i′−r′|),
αr′−r∗ − αr′+1 = (0.5 + c)(1 + α− αn−r′+1 − αr′+1),

|r′ − r∗| =
∣∣∣ log{(0.5 + c)(1 + α− αn−r′+1 − αr′+1) + αr′+1

}
/ logα

∣∣∣. (D.2)
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Now we discuss the order of (D.2). As n→∞,

(D.2) =


O
(
log{0.5(1 + α)}/ log(α)

)
if r′ = ω(1), r′ = o(n)

O
(
log{0.5(1 + α− αr′+1) + αr′+1}/ log(α)

)
if r′ = O(1)

O
(
log{0.5(1 + α− αn−r′+1)}/ log(α)

)
if r′ = Θ(n).

= O
(
log(0.5)/ log(α)

)
.

Note that c→ 0 as n→∞. Now we consider r∗ > r′,

r∗∑
i=0

α|i−r′| =
r′∑
i=0

αi +
r∗−r′∑
i=0

αi − 1.

=
1− αr′+1

1− α
+

1− αr∗−r′+1

1− α
− 1

=
1 + α− αr′+1 − αr∗−r′+1

1− α
.

Also from (D.1), we have

r∗∑
i=0

α|i−r′| = (0.5 + c)
( n∑
i′=0

α|i′−r′|)
1 + α− αr′+1 − αr∗−r′+1 = (0.5 + c)(1 + α− αn−r′+1 − αr′+1)

αr∗−r′+1 = −(0.5 + c)(1 + α− αn−r′+1 − αr′+1) + 1 + α− αr′+1

αr∗−r′ = −(0.5 + c)(1 + α−1 − αn−r′ − αr′) + 1 + α−1 − αr′

|r′ − r∗| =
∣∣∣ log

{
− (0.5 + c)(1 + α−1 − αn−r′ − αr′) + 1 + α−1 − αr′

}
logα

∣∣∣.
(D.3)
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Now we discuss the order of (D.3). As n→∞,

(D.3) =


O
(
| log(1

2
+ 1

2
α−1))/ log(α)|

)
if r′ = ω(1), r′ = o(n)

O
(
| log(1

2
+ 1

2
α−1 − 1

2
αr′)/ log(α)|

)
if r′ = O(1)

O
(
| log(1

2
+ 1

2
α−1 − 1

2
αn−r′)/ log(α)|

)
if r′ = Θ(n).

= O
(
− log(1 + 0.5α−1)/ log(α)

)
.

Hence, |r′ − r∗| = O (max {− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)}) as n →

∞.

Lemma D.3. Assume Y ∗
k and Y ∗

Tk are from the ϵn-DP Laplace and the truncated

ϵn-DP Laplace (at zero) mechanisms respectively, with the same underlying Yk ∼

Bin(n, pk) for pk ∈ (0, 1). Then for any 0 < △k < pk,

P (Y ∗
k ̸= Y ∗

Tk) = O
(
en(△k−pk)ϵn + e−2n△k

)
, as n→∞.

Proof. Note that

Y ∗
k = Yk + errk,

Y ∗
Tk = Yk + errk + bk,

where errk ∼ Lap(0, 1/ϵn) and bk is the bias term which can be expressed as follows,

bk =

{
0, if errk ≥ −Yk, (D.4)

−(Yk + errk), otherwise. (D.5)
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Note that for any 0 < △k < pk, we have

P (Y ∗
k ̸= Y ∗

Tk) =P (errk < −Yk)

=P (errk < −Yk |
|Yk − npk|

n
> △k) · P (

|Yk − npk|
n

> △k)

+ P (errk < −Yk |
|Yk − npk|

n
≤ △k) · P (

|Yk − npk|
n

≤ △k)

≤2P (errk < −Yk |
|Yk − npk|

n
| > △k) · e−2n△k

+ P (errk < −Yk |
|Yk − npk|

n
≤ △k) · 1 (D.6)

=P (errk < −Yk |
|Yk − npk|

n
≤ △k) +O

(
e−2n△k

)
=P (errk < −Yk | npk − n△k ≤ Yk ≤ npk + n△k) +O

(
e−2n△k

)
.

where (D.6) follows from Hoeffding’s inequality. Further note that

P (errk < −Yk | npk − n△k ≤ Yk ≤ npk + n△k) ≤ P
(
errk < n(△k − pk)

)
=

1

2
en(△k−pk)ϵn

= O
(
en(△k−pk)ϵn

)
.

Hence, we have

P (Y ∗
k ̸= Y ∗

Tk) = O
(
en(△k−pk)ϵn + e−2n△k

)
.

Lemma D.4. Assume Y ∗
k and Y ∗

Tk are from the (ϵn, δ)-DP Gaussian and the trun-
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cated (ϵn, δ)-DP Gaussian (at zero) mechanisms respectively, with the same underly-

ing Yk ∼ Bin(n, pk) for pk ∈ (0, 1). Then for any 0 < △k < pk,

P (Y ∗
k ̸= Y ∗

Tk) = O
(
exp

{
− 2n△k

}
+

1

nϵn
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

})
.

Proof. Note that

Y ∗
k = Yk + errk,

Y ∗
Tk = Yk + errk + bk,

where errk ∼ N
(
0, 2 ln{1.25/δ}/ϵ2n

)
and bk is the bias term which can be expressed

as follows,

bk =

{
0, if errk ≥ −Yk, (D.7)

−(Yk + errk), otherwise. (D.8)

Note that for any Y ∼ N(0, σ2), we have for any t ∈ (0,∞),

P (Y > t) ≤ σ

t
√
2π

e−
t2

2σ2 . (D.9)
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To see this, note

P (Y > t) =

∞∫
t

1√
2πσ2

e−
y2

2σ2 dy

≤ 1

t
√
2πσ2

∞∫
t

ye−
y2

2σ2 dy since
y

t
≥ 1 for y ∈ [t,∞)

=
1

t
√
2πσ2

[
− σ2e−

y2

2σ2

]∞
t

=
σ

t
√
2π

e−
t2

2σ2 .

Further note that for any 0 < △k < pk, we have

P (Y ∗
k ̸= Y ∗

Tk) =P (errk < −Yk)

=P (errk < −Yk |
|Yk − npk|

n
> △k) · P (

|Yk − npk|
n

> △k)

+ P (errk < −Yk |
|Yk − npk|

n
≤ △k) · P (

|Yk − npk|
n

≤ △k)

≤2P (errk < −Yk |
|Yk − npk|

n
| > △k) · e−2n△k

+ P (errk < −Yk |
|Yk − npk|

n
≤ △k) · 1

=P (errk < −Yk |
|Yk − npk|

n
≤ △k) +O(e−2n△k)

=P (errk < −Yk | npk − n△k ≤ Yk ≤ npk + n△k) +O
(
e−2n△k

)
.

where the ineqaulity in the third step can be obtained from Hoeffding’s inequality.
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By applying (D.9), we have

P (errk < −Yk | npk − n△k ≤ Yk ≤ npk + n△k)

≤ P
(
errk < n(△k − pk)

)
≤

√
ln{1.25/δ}√

πnϵn(pk −△k)
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

}
= O

( 1

nϵn
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

})
.

Hence, we have

P (Y ∗
k ̸= Y ∗

Tk) = O
(
exp

{
− 2n△k

}
+

1

nϵn
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

})
.

Next we give a proposition specifying the rate of convergence of root-n-scaled

random errors injected by the optimal mechanism with L1 loss.

Proposition D.5. For 0 < ϵn <∞ and some fixed i ∈ {0, 1, ..., n}, let erri = r − i

for r taking values in {0, ..., n} with probability mass p∗ir as defined in Section 5.3 of

Chapter V. Then for any a > 0,

P
(∣∣∣erri/√n∣∣∣ > a

)
= O

(
max{1 + eϵn/2, 2}e−ϵna

√
n
)

as n→∞.
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Proof. Consider

P
(∣∣∣erri√

n

∣∣∣ > a
)
= P (|erri| > a

√
n) =

∑
r:|r−i|>a

√
n,r∈{0,...,n}

p∗ir

=
∑

r:|r−i|>a
√
n,r∈{0,...,n}

( n∑
r′=0

gir′xr′r

)
=

n∑
r′=0

gir′
( ∑

r:|r−i|>a
√
n,r∈{0,...,n}

xr′r

)
, (D.10)

where xr′r is the (r′, r) entry of the optimal remap as defined in Section 5.3 of

Chapter V. Note that from the computation of the optimal remap x, for any given

r ∈ {0, ..., n}, xr,r∗ = 1 if r∗ equals the conditional median of i ∈ {0, ..., n} with

probability mass P (i | r′), and xr,r′ = 0 for all r′ ̸= r∗. Write α = e−ϵn . Note that

for any given r′ ∈ {0, 1, ..., n},

P (i | r′) = α|i−r′|∑n
i′=0 α

|i′−r′| .

By Lemma D.2, we know that

|r′ − r∗| = O
(
max

{
− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)

})
.

|r∗ − i|

= |r∗ − r′ + r′ − i| ≤ |r∗ − r′|+ |r′ − i|

≤ |r′ − i|+O
(
max

{
− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)

})
as n→∞.

(D.11)
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Note that there exists n′ such that for all n > n′, |r∗ − r′| ≤ C, where C = max
{
−

log(1+1/2α−1)/ log(α), log(1/2)/ log(α)
}
. Also note that whenever |r′−i| ≤ a

√
n−C,

we have |r∗ − i| ≤ a
√
n for n > n′. It follows that for all n > n′,

( ∑
r:|r−i|>a

√
n,r∈{0,...,n}

xr′r

)
= 0.

Hence for any n > n′,

(D.10) =
∑

r′:|r′−i|>a
√
n−C

gir′ ≤ 2P (y > a
√
n− C) = O(e−aϵn

√
n+Cϵn),

where Y has discretized Lap(0, 1/ϵn) distribution. Hence, it follows that

P
(∣∣∣erri√

n

∣∣∣ > a
)
= O

(
eϵn(C−a

√
n)
)

as n→∞. (D.12)

Since α = e−ϵn , further note that

C = max
{
− log(1 + 1/2α−1)/ log(α), log(1/2)/ log(α)

}
= max

{ log(1 + 1/2eϵn)

ϵn
,
log(2)

ϵn

}
.

Substitute into (D.12), we have

P
(∣∣∣erri√

n

∣∣∣ > a
)
= O

(
eϵn
(
max
{

log(1+1/2eϵn )
ϵn

,
log(2)
ϵn

}
−a

√
n
))

= O
(
max

{
1 +

eϵn

2
, 2
}
e−ϵna

√
n
)
.
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Next, we give proofs for the theorems. We start with proving Theorem V.10 first.

Proof of Theorem V.10. Note that

Tk =


1
√
npk

(
Y ∗
k − npk

)
=

√
n

pk

(Yk − npk
n

)
+

errk√
npk

, Lap, (D.13)

1
√
npk

(
Y ∗
k − npk

)
=

√
n

pk

(Yk − npk
n

)
+

errk√
npk

+
bk√
npk

, TLap, (D.14)

where errk ∼ Lap(0, 1/ϵn) and bk is the bias term which can be expressed as follows,

bk =

{
0, if errk ≥ −Yk, (D.15)

−(Yk + errk), otherwise. (D.16)

First, we seek to show that P (
∑

k (D.13)
2 ̸=

∑
k (D.14)

2) = o(1) as n → ∞, so

that we can ignore the bias term bk in the test statistic in the remaining proofs. Note

that for any 0 < △k < pk, by Lemma D.3, we have

P (bk ̸= 0) = O
(
en(△k−pk)ϵn + e−2n△k

)
. (D.17)
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Now take △k = min{p1, ..., pK}/2. Further note that

P (
∑
k

(D.13)2 ̸=
∑
k

(D.14)2)

= P (∪k{bk ̸= 0})

≤
K∑
k=1

P (bk ̸= 0)

= O
(
exp{−1

2
nϵnmin{p1, ..., pK}}+ exp{−nmin{p1, ..., pK}}

)
.

where the last step follows directly from (D.17) and the fact that K < ∞. Since

the privacy regime ϵn satisfying n−1/2ϵ−1
n → 0 as n→∞, it follows P (

∑
k (D.13)

2 ̸=∑
k (D.14)

2) = o(1) as n → ∞. Therefore, we can ignore the bias term bk in the

following proofs. Note that marginally, Yk ∼ Binomial(n, pk). By the Central Limit

Theorem (CLT), we know that (Yk − npk)/n will converge to a Gaussian variable as

n → ∞ since Yk can be viewed as a sum of n i.i.d. Ber(pk) under H0. As a direct

consequence of Lemma D.1, when the privacy regime ϵn satisfying n−1/2ϵ−1
n → 0 as

n → ∞, the second term in (D.13), errk/
√
npk

p−→ 0 as n → ∞. Therefore, overall,

Tk will converge to a Gaussian distribution as n→∞. However, instead of treating

errk/
√
n as 0, we take its first and second moments into account to have better fi-

nite sample approximations while maintaining correct asymptotic distribution. Note

errk ∼ Lap(0, 1/ϵn), we have E[Tk] = 0 and

V ar(Tk) =
1

npk
V ar(Y ∗

k ) =
1

npk

{
V ar(Yk) + V ar(errk)

}
= 1− pk + 2/(npkϵ

2
n).
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Note also that correlations amongst Yk induce correlations amongst Tk. For some

k ̸= j, consider,

Cov(Tk, Tj) = Cov
(√ n

pk

(Y ∗
k

n
− pk

)
,

√
n

pj

(Y ∗
j

n
− pj

))
=

1

n
√
pkpj

Cov
(
Yk + errk, Yj + errj

)
=

1

n
√
pkpj

Cov
(
Yk, Yj

)
= −√pkpj.

Let Σ be the covariance matrix of T = (T1, T2, ..., TK). Consider a matrix O =

[v1, ..., vK ] ∈ RK×K consisting of the orthonormal eigenvectors of Σ as columns. So

we must have ΣO = ΛO, where Λ is a diagonal matrix with diagonal elements

Λk being the eigenvalues of Σ with respect to vk. We require ||vk|| = 1 for all

k = 1, ..., K. So we must have OOT = OTO = IK . Consider transformed vector

T ′ = OT = (T ′
1, ..., T

′
K). First note that each T ′

k is asymptotically normal since it

is a linear combination of normal distributions. Further, we also have Cov(T ′) =

Cov(OT ) = Λ. Hence T ′
k are independent N(0,Λk) for k = 1, ..., K. So, T ∗ =∑K

k=1 T
2
k = T TT = T ′TT ′ →

∑K
k=1 ΛkZk, where Zk are i.i.d. Chi-square distribution

with degree of freedom of 1.

Now for part (b) of the theorem, again we can express

Tk =


1
√
npk

(
Y ∗
k − npk

)
=

√
n

pk

(Yk − npk
n

)
+

errk√
npk

, GDP, (D.18)

1
√
npk

(
Y ∗
k − npk

)
=

√
n

pk

(Yk − npk
n

)
+

errk√
npk

+
bk√
npk

, TGDP, (D.19)
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where errk ∼ N
(
0, 2 ln{1.25/δ}/ϵ2n

)
and bk is the bias term which can be expressed

as follows,

bk =

{
0, if errk ≥ −Yk, (D.20)

−(Yk + errk), otherwise. (D.21)

Similarly, we seek to show that P (
∑

k (D.18)
2 ̸=

∑
k (D.19)

2) = o(1) as n → ∞, so

that we can ignore the bias term bk in the test statistic in the remaining proofs. Note

that for any 0 < △k < pk, by Lemma D.4, we have

P (bk ̸= 0) = O
(
exp

{
− 2n△k

}
+

1

nϵn
exp

{
− n2ϵ2n(pk −△k)

2

4 ln{1.25/δ}

})
. (D.22)

Again we can take △k = min{p1, ..., pK}/2. Further note that

P (
∑
k

(D.18)2 ̸=
∑
k

(D.19)2)

= P (∪k{bk ̸= 0})

≤
∑
k

P (bk ̸= 0)

= O
(
exp

{
− nmin{p1, ..., pK}

}
+

1

nϵn
exp

{
− n2ϵ2nmin{p1, ..., pK}2

16 ln{1.25/δ}

})
,

where the last step follows directly from (D.22) and K < ∞. Again, since the

privacy regime ϵn satisfying n−1/2ϵ−1
n → 0 as n → ∞, it follows P (

∑
k (D.18)

2 ̸=∑
k (D.19)

2) = o(1) as n→∞. Therefore, we can ignore the bias term bk in the test

statistic. The remaining proof is similar to the Laplace case, except for the difference
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in the covariance Σ matrix. Note that in the case of (ϵn, δ)-Gaussian mechanism,

V ar(Tk) =
1

npk

(
V ar(Yk) + V ar(errk)

)
=

1

npk

(
npk(1− pk) + (2 log(1.25/δ)− 1)/ϵ2n

)
= 1− pk + {2 log(1.25/δ)− 1}/{npkϵ2n},

and Cov(Tk, Tj) = −
√
pkpj. Again, by considering the orthonormal eigenvectors and

corresponding eigenvalues Λk of Σ, we can arrive at the same conclusion that as

n→∞, T ∗ →
∑K

k=1 ΛkZk. Therefore, the results of the theorem follow.

Proof of Theorem V.8. The proof is similar as the proof of Theorem V.10 except

that there is an additional de-bias term in the test statistic and errk has probability

mass p∗k,· in this case.

We focus on T ′
k first,

T ′
k =

1
√
npk

(
Y ∗
k − npk − b(y∗k)

)
=

√
n

pk

(Yk − npk
n

)
+

errk − b(y∗k)√
npk

. (D.23)

Note that by CLT, we know that (Yk−npk)/n will converge to a Gaussian variable as

n→∞. As a direct consequence of Proposition D.5 and the fact that b(y∗k) = O(1),

the second term in (D.23) converges in probability to 0. Therefore, Tk converges in

distribution to a normal random variable as n → ∞. We just need to derive its

asymptotic mean and variance to pinpoint its distribution. Note that E[T ′
k] → 0.

Before giving an estimate for the variance, we first derive the order of V ar(errk).

Let αn = e−ϵn . Note that 0 < αn < 1. First consider ẽk = j − k for j = 0, 1, ..., n
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with probability mass gkj =
1−αn

1+αn
α
|j−k|
n for j = 1, ..., (n− 1), gkj = α

|j−k|
n /(1+αn) for

j = 0, n, with some fixed k ∈ {0, ..., n}. Note that

µ̃k := E[ẽk] =
n∑

j=0

gkj(j − k) =
1− αn

1 + αn

n−1∑
j=1

α|j−k|
n (j − k) +

α
|n−k|
n

1 + αn

(n− k)− kαk
n

1 + αn

= O(1) as n→∞.

Consider variance of ẽk,

V ar(ẽk) =
n∑

j=0

gkj
(
j − k − µ̃k

)2
=
1− αn

1 + αn

n−1∑
j=1

α|j−k|
n (j − k)2 − 2µ̃2

k +
1− αn

1 + αn

n−1∑
j=1

α|j−k|
n µ̃2

k

+
k2αk

n

1 + αn

+
α
|n−k|
n

1 + αn

(n− k)2 +
µ̃2
kα

k
n

1 + αn

+
µ̃2
kα

n−k
n

1 + αn

=O(1) as n→∞. (D.24)

Now denote µk := E[errk]. As a direct consequence of Lemma D.2, there exists a

constant C1 <∞ such that |µ̃k − µk| < C1 and C2 <∞ such that the input index r′
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and optimally remapped index r∗ satisfying |r′ − r∗| < C2. Then,

V ar(errk) =
n∑

j=0

p∗kj
(
j − k − µk

)2
≤1− αn

1 + αn

n−1∑
j=1

αC2+|j−k|
n (C1 + C2 + j − k − µ̃k)

2

+
αC2+k
n

1 + αn

(C1 + C2 + j − k − µ̃k)
2 +

αC2+n−k
n

1 + αn

(C1 + C2 + j − k − µ̃k)
2

=αC2
n

n∑
j=0

gkj

{
(C1 + C2)

2 + 2(C1 + C2)(j − k − µ̃k) + (j − k − µ̃k)
2
}

=αC2
n

{
(C1 + C2)

2 + 2(C1 + C2)(µ̃k − µ̃k) + V ar(ẽk)
}

=O(1) as n→∞, (D.25)

where the last step follows from (D.24). Now we can evaluate the variance term.

V ar(T ′
k) =

1

npk
V ar(Y ∗

k ) =
1

npk

(
V ar(Yk) + V ar(errk)

)
= 1− pk + V ar(errk)/(npk)

= 1− pk +O
( 1
n

)
as n→∞. (D.26)

The last step follows directly from (D.25). Note also that

1− pk + v(y∗k)/(npk) = 1− pk +O
( 1
n

)
as n→∞. (D.27)

We can see this from the construction of the variance estimate v(y∗k) in Algorithm 10

of Chapter V. First note that in the step 2 of Algorithm 10, vi = V ar(erri) = O(1).
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{fiy∗k : i = 1, ..., n} is a probability distribution such that
∑n

i=1 fiy∗k = 1. Hence,

v(y∗k) =
∑n

i=1 fiy∗kvi = O(1) as n→∞. From Equations (D.26) and (D.27), we have

∣∣∣V ar(T ′
k)−

(
1− pk + v(y∗k)/(npk)

)∣∣∣ = O
( 1
n

)
as n→∞.

Lastly, since Yk are correlated, T ′
k are correlated. For any k ̸= j, consider,

Cov(T ′
k, T

′
j) = Cov

(√ n

pk

(Y ∗
k

n
− pk

)
,

√
n

pj

(Y ∗
j

n
− pj

))
=

1

n
√
pkpj

Cov
(
Yk + errk, Yj + errj

)
=

1

n
√
pkpj

Cov
(
Yk, Yj

)
= −√pkpj.

Let Σ ∈ RK×K be a matrix with diagonal entries Σkk = 1 − pk + v(y∗k)/(npk) and

off-diagonal entries Σkj = −√pkpj for k ̸= j. Let Σ̃ be the covariance matrix of

T ′ = (T ′
1, T

′
2, ..., T

′
K). We have ∥Σ − Σ̃∥∞ = O(n−1), as n → ∞. Consider a matrix

O = [v1, ..., vk] ∈ RK×K consisting of the orthonormal eigenvectors of Σ as columns.

So we must have ΣO = ΛO, where Λ is a diagonal matrix with diagonal elements

Λk being the eigenvalues of Σ with respect to vk. We require ∥vk∥ = 1 for all

k = 1, ..., K. Following a similar argument as in the proof of Theorem V.10, we

can derive that T ∗
opt →

∑K
k=1 ΛkZk, where Zk are i.i.d. Chi-square distribution with

degree of freedom of 1.
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Proof of Theorem V.11. We start with proving part (a). Consider Tmk,

Tmk =
1
√
npk

( C∑
j=1

Y ∗
jk − npk − bM({y∗jk}Cj=1)

)
=

√
n

pk

(∑C
j=1 Yjk − npk

n

)
+

∑C
j=1

(
errjk − b(y∗jk)

)
√
npk

. (D.28)

Assume H0 is true, by CLT, we know that
(∑C

j=1 Yjk − npk

)
/n will converge

to a Gaussian distribution with mean 0 as n → ∞ since
∑C

j=1 Yjk can be viewed

as a sum of n = n1 + n2 + ... + nC i.i.d. Ber(pk) random variables. As a direct

consequence of Proposition D.5 and the facts that b(y∗jk), C <∞, when the privacy

regime ϵn satisfying n−1/2ϵ−1
n → 0 as n→∞, the second term of (D.28) will converge

in probability to 0 as n → ∞. Therefore, overall, Tmk will converge to a Gaussian

random variable. Denote Yk =
∑C

j=1 Yjk and Y ∗
k =

∑C
j=1 Y

∗
jk. Also

V ar(Tmk) =
1

npk
V ar(Y ∗

k ) =
1

npk

(
V ar(Yk) + V ar(

C∑
j=1

errjk)
)

=
1

npk

(
V ar(Yk) +

C∑
j=1

V ar(errjk)
)

= 1− pk +

∑C
j=1 V ar(errjk)

npk

= 1− pk +O
( 1
n

)
as n→∞. (D.29)

The last step follows from (D.25) where V ar(errjk) = O(1) and the fact that C <∞.
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Note also that

1− pk +

∑C
j=1 v(y

∗
jk)

npk
= 1− pk +O

( 1
n

)
as n→∞. (D.30)

Equation (D.30) follows from the facts that v(y∗jk) = O(1) as n→∞ (for details see

proof of Theorem V.8) and C <∞. From (D.29) and (D.30), we must have

∣∣∣V ar(Tmk)−
(
1− pk +

∑C
j=1 v(y

∗
jk)

npk

)∣∣∣ = O
( 1
n

)
as n→∞.

Lastly, since Yk are correlated, Tmk are correlated. For some k ̸= j, consider,

Cov(Tmk, Tmj)

= Cov
(√ n

pk

(Yk +
∑C

i=1 errik
n

− pk

)
,

√
n

pj

(Yj +
∑C

i=1 errij
n

− pj

))
=

1

n
√
pkpj

Cov
(
Yk +

C∑
i=1

errik, Yj +
C∑
i=1

errij

)
=

1

n
√
pkpj

Cov
(
Yk, Yj

)
= −√pkpj.

Similarly, let Σ ∈ RK×K be a matrix with diagonal Σkk = 1−pk+(
∑C

j=1 v(y
∗
jk))/(npk)

and off-diagonal Σkj = −
√
pkpj for k ̸= j. Let Σ̃ be the covariance matrix of TM =

{Tm1, ..., TmK}. We have ∥Σ − Σ̃∥∞ = O(n−1), as n → ∞. By a similar argument

as in the proof of Theorem V.8 we can derive that T ∗
M →

∑K
k=1 ΛkZk, where Zk are

i.i.d. Chi-square distribution with degree of freedom of 1 and Λk are the eigenvalues
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of Σ corresponding to a set of orthonormal eigenvectors of Σ. Hence, we have the

result of part (a) follows.

For part (b), note that

Tmk =


√

n

pk

(∑C
j=1 Yjk − npk

n

)
+

∑C
j=1

(
errjk

)
√
npk

, Lap, (D.31)√
n

pk

(∑C
j=1 Yjk − npk

n

)
+

∑C
j=1

(
errjk + bjk

)
√
npk

, TLap, (D.32)

where errjk ∼ Lap(0, 1/ϵn) and bjk is the bias term which can be expressed as follows,

bjk =

{
0, if errjk ≥ −Yjk, (D.33)

−(Yjk + errjk), otherwise. (D.34)

It can be shown that P (
∑

k (D.31)
2 ̸=

∑
k (D.32)

2) = o(1) as n → ∞. To see this,

note for any 0 < △jk < pk, by Lemma D.3, it follows

P (bjk ̸= 0) = O
(
en(△jk−pk)ϵn + e−2n△jk

)
. (D.35)

Take △jk = min{p1, ..., pK}/2 for all j = 1, ..., C. Further note that as n→∞,

P (
∑
k

(D.31)2 ̸=
∑
k

(D.32)2)

= P (∪k ∪j {bjk ̸= 0})

≤
K∑
k=1

C∑
j=1

P (bjk ̸= 0)

= O
(
exp

{
− 1

2
nϵn min{p1, ..., pK}

}
+ exp

{
− nmin{p1, ..., pK}

})
.
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where the last step follows directly from (D.35) and the fact that K,C < ∞. Since

the privacy regime ϵn satisfies n−1/2ϵ−1
n → 0 as n → ∞, it follows P (

∑
k (D.31)

2 ̸=∑
k (D.32)

2) = o(1) as n → ∞. Therefore, we can ignore all the bias terms bjk and

work only with (D.31) in the following proofs. The remaining proofs for part (b)

are similar as in part (a), except for the difference in Σ. In the case of ϵn-Laplace

mechanism in part (b), Cov(Tmk, Tmj) remains the same for j ̸= k but

V ar(Tmk) =
1

npk
V ar(Y ∗

k )

=
1

npk

(
V ar(Yk) + V ar(

C∑
j=1

errjk)
)

=
1

npk

(
V ar(Yk) +

C∑
j=1

V ar(errjk)
)

=
1

npk

(
npk(1− pk) + 2C/ϵ2n

)
= 1− pk + 2C/(ϵ2nnpk).

Now for part (c), again we can express

Tmk =


√

n

pk

(∑C
j=1 Yjk − npk

n

)
+

∑C
j=1

(
errjk

)
√
npk

, GDP, (D.36)√
n

pk

(∑C
j=1 Yjk − npk

n

)
+

∑C
j=1

(
errjk + bjk

)
√
npk

, TGDP, (D.37)

where errjk ∼ N
(
0, 2 ln{1.25/δ}/ϵ2n

)
and bjk is the bias term remains the same as
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before,

bjk =

{
0, if errjk ≥ −Yjk, (D.38)

−(Yjk + errjk), otherwise. (D.39)

Similarly, it can be shown that P (
∑

k (D.36)
2 ̸=

∑
k (D.37)

2) = o(1) as n → ∞. To

see this, note for any 0 < △jk < pk, by Lemma D.4, we have

P (bjk ̸= 0) = O
(
exp

{
− 2n△jk

}
+

1

nϵn
exp

{
− n2ϵ2n(pk −△jk)

2

4 ln{1.25/δ}

})
. (D.40)

Again, take△jk = min{p1, ..., pK}/2 for all j = 1, ..., C. Further note that as n→∞,

P (
∑
k

(D.36)2 ̸=
∑
k

(D.37)2)

= P (∪k ∪j {bjk ̸= 0})

≤
K∑
k=1

C∑
j=1

P (bjk ̸= 0)

= O
(
exp

{
− nmin{p1, ..., pK}

}
+

1

nϵn
exp

{
− n2ϵ2nmin{p1, ..., pK}2

16 ln{1.25/δ}

})
.

where the last step follows directly from (D.40) and the fact that K,C < ∞. Since

the privacy regime ϵn satisfying n−1/2ϵ−1
n → 0 as n→∞, it follows P (

∑
k (D.36)

2 ̸=∑
k (D.37)

2) = o(1) as n → ∞. Therefore, we can ignore all the bias terms bjk and

work only with (D.36). The remaining proofs for part (c) are similar to that in part

(a), except for the difference in Σ. In the case of (ϵn, δ)-Gaussian Mechanism in part
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(c), Cov(Tmk, Tmj) remains the same for j ̸= k but

V ar(Tmk) =
1

npk
V ar(Y ∗

k )

=
1

npk

(
V ar(Yk) + V ar(

C∑
j=1

errjk)
)

=
1

npk

(
V ar(Yk) +

C∑
j=1

V ar(errjk)
)

=
1

npk

(
npk(1− pk) + (2C log(1.25/δ)− 1)/ϵ2n

)
= 1− pk + C(2 log(1.25/δ)− 1)/(npkϵ

2
n).

We have both parts (b) and (c) of the theorem follow.

Proof of Theorem V.12. We start with part (a). Consider Tm1,

Tm1 =
1
√
np1

( M∑
k=1

Y ∗
k − np1 − bM({y∗j}Mj=1)

)
=

√
n

p1

(∑M
k=1 Yk − np1

n

)
+

∑M
k=1

(
errk − b(y∗k)

)
√
np1

. (D.41)

Assume H0 is true, by CLT, we know that
(∑M

k=1 Yk − np1

)
/n is Gaussian

asymptotically with mean 0 as n → ∞. Following from Proposition D.5 and the

facts that M, b(y∗k) < ∞, when the privacy regime ϵn satisfying n−1/2ϵ−1
n → 0 as

n → ∞, the second term of (D.41) will converge in probability to 0 as n → ∞.

Therefore, overall, Tm1 will converge to a Gaussian distribution. Following a similar

argument as the proof of Theorem V.10, we know that Tmk for k = 2, ..., K will

also converge to Gaussian random variables with mean 0 asymptotically. Denote
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Ym1 =
∑M

k=1 Yk and Y ∗
m1 =

∑M
k=1 Y

∗
k . Note

V ar(Tm1) =
1

np1
V ar(Y ∗

m1) =
1

np1

(
V ar(Ym1) + V ar(

M∑
k=1

errk)
)

=
1

np1

(
V ar(Ym1) +

M∑
k=1

V ar(errk)
)

= 1− p1 +O
( 1
n

)
as n→∞. (D.42)

For k = 2, ..., K,

V ar(Tmk) =
1

npk
V ar(Y ∗

mk) =
1

npk

(
V ar(Ymk) + V ar(errk)

)
= 1− pk +O

( 1
n

)
as n→∞. (D.43)

Equations (D.42) and (D.43) follow directly from (D.25) and the fact that M <

K <∞. Note also that

1− p1 +

∑M
j=1 v(y

∗
j )

np1
= 1− p1 +O

( 1
n

)
as n→∞. (D.44)

1− pk +
v(y∗k)

npk
= 1− pk +O

( 1
n

)
as n→∞. (D.45)

Equations (D.44) and (D.45) follow from v(y∗j ) = O(1) as n → ∞ (for more

details see proofs of Theorem V.8 and the fact that M < K <∞. From (D.42) and

(D.44), we have

∣∣∣V ar(Tm1)−
(
1− p1 +

∑M
j=1 v(y

∗
j )

np1

)∣∣∣ = O
( 1
n

)
as n→∞.
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Similarly, from Equations (D.43) and (D.45), we can derive for k = 2, ..., K,

∣∣∣V ar(Tmk)−
(
1− pk +

v(y∗k)

npk

)∣∣∣ = O
( 1
n

)
as n→∞.

Lastly, we derive covariance amongst Tmk, Cov(Tmk, Tmj) = −√pkpj, for any

k ̸= j. Similarly, let Σ ∈ R(K−M+1)×(K−M+1) be a matrix with diagonal entries Σ11 =

1− p1+(
∑M

j=1 v(y
∗
j ))/(np1) and Σkk = 1− pk + v(y∗k)/(npk) for k = 2, ..., K−M +1,

and off-diagonal entries Σkj = −
√
pkpj for k ̸= j. Let Σ̃ be the covariance matrix of

TM = (Tm1, ..., Tm(K−M+1)). We have ∥Σ− Σ̃∥∞ = O(n−1), as n → ∞. Then with a

similar argument as in the proof of Theorem V.10, T ∗
M →

∑K
k=1 ΛkZk, where Zk are

i.i.d. Chi-square distribution with degree of freedom of 1 and Λk are eigenvalues of

Σ corresponding to a set of orthonormal eigenvectors. Hence, the result of part (a)

follows.

For part (b) and (c), first note that using similar arguments as in the proof for

Theorem V.10(a) and V.10(b), it can be shown that the probability of test statistics

obtained from the Laplace/Gaussian mechanisms not equal to their counterparts

obtained from the truncated Laplace/Gaussian mechanisms tends to 0 exponentially

fast as n goes to infinity. Therefore, we can in fact ignore the truncation effect. The

proofs for the remaining are similar to the proof for part (a), except for the difference

in Σ. In the case of ϵn-Laplace mechanism in part (b), Cov(Tmk, Tmj) = −
√
pkpj for
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k ̸= j remains the same but

V ar(Tm1) =
1

np1
V ar(Y ∗

m1) =
1

np1

(
V ar(Ym1) + V ar(

M∑
k=1

errk)
)

=
1

np1

(
V ar(Ym1) +

M∑
k=1

V ar(errk)
)

= 1− p1 + 2M/(ϵ2nnp1).

For k = 2, ..., K,

V ar(Tmk) =
1

npk
V ar(Y ∗

mk) =
1

npk

(
V ar(Ymk) + V ar(errk)

)
= (1− pk) + 2/(npkϵ

2
n).

In the case of (ϵn, δ)-Gaussian Mechanism in part (c), Cov(Tmk, Tmj) = −
√
pkpj

for k ̸= j remains the same but

V ar(Tm1) =
1

np1
V ar(Y ∗

m1) =
1

np1

(
V ar(Ym1) + V ar(

M∑
k=1

errk)
)

=
1

np1

(
V ar(Ym1) +

M∑
k=1

V ar(errk)
)

= (1− p1) +M(2 log(1.25/δ)− 1)/(np1ϵ
2
n).

For k = 2, ..., K,

V ar(Tmk) =
1

npk
V ar(Y ∗

mk) =
1

npk

(
V ar(Ymk) + V ar(errk)

)
= (1− pk) + (2 log(1.25/δ)− 1)/npkϵ

2
n.
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The results of both part (b) and (c) follow from a similar argument as in the

proof of Theorem V.10.

326



BIBLIOGRAPHY

327



BIBLIOGRAPHY

Abowd, J. M., and L. Vilhuber (2008), How protective are synthetic data?, in In-
ternational Conference on Privacy in Statistical Databases, pp. 239–246, Springer,
New York, U.S.

Andersen, E. B. (1970), Asymptotic properties of conditional maximum-likelihood
estimators, Journal of the Royal Statistical Society: Series B (Methodological),
32 (2), 283–301.
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