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ABSTRACT

Magnetic Resonance Imaging (MRI) is a foundational tool for medical and academic research.
Functional MRI (fMRI) and human brain research, for example, have become nearly synonymous
phrases. MRI results in a dense, high-dimensional, highly correlated 3D or 4D datatype only
digestible with concerted statistical effort. This dissertation focuses on developing new semipara-
metric Bayesian models and computational techniques to cope with some of the challenges that
arise with fMRI data.

The first project (Chapter 2) presents a model designed to integrate presurgical fMRI data col-
lected at two different spatial resolutions. Modern neuroradiologists use fMRI to map patient-
specific functional neuroanatomy to assist in presurgical planning. This application requires a high
degree of spatial precision, but in practice the fMRI signal-to-noise ratio decreases with increasing
spatial resolution. To mitigate this issue, our collaborator collected functional scans of preopera-
tive patients at high and low spatial resolutions. The data inherently exhibit different levels of noise
and lack a common spatial support, rendering them difficult to combine in a straightforward man-
ner. We solve this problem by modeling the mean image intensity function of both data sources
using a Gaussian process and develop a scalable posterior computation algorithm based on Rie-
mann manifold Hamiltonian Monte Carlo methods. We show in simulation our method enables
more accurate inference on image mean intensity than single-resolution alternatives, and further
illustrate our approach in analyses of preoperative patient images.

The second project (Chapter 3) is motivated by studies where heterogeneous latent imaging
subgroup effects may be present in the study population. We propose a Bayesian semiparametric
hierarchical model for image-on-scalar regression with subgroup detection. We model the mean
intensity of imaging outcomes with a mixture of spatially varying coefficient (SVC) regression
models, and take into account spatial dependence in the SVCs with Gaussian processes. Additional
individual-level covariates are used to inform the mixing distribution via a logistic stick-breaking
process prior. This class of prior admits individual-specific mixture weights and induces corre-
lation in mixture component assignments between individuals with similar covariate profiles. We
show through simulation our model can lead to superior clustering and feature estimation compared
to common unsupervised methods. Further, we illustrate our method via analysis of resting-state
fMRI data from the Autism Brain Imaging Data Exchange (ABIDE) study.
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In the third project (Chapter 4), we address an important issue in neuroimaging research: im-
proving spatial modeling of group-level effects of interest on the cortical surface. A state-of-the-art
image preprocessing tool computes cross-subject alignment of cortical features by first mapping
each hemisphere of the brain onto a sphere. Critically, this procedure enables a measure of great-
circle distance between cortical points. Geodesic distances along the cortical surface are more
biologically meaningful than the classically used Euclidean distance in 3D space. We propose a
Bayesian spatially varying coefficient model for imaging outcome data observed at locations on
a sphere, and use Gaussian processes to model the probability law governing the regression co-
efficient functions. We consider different approaches to approximate posterior inference with our
model and compare performance against standard vertex-wise analyses. Finally, we illustrate our
method in an analysis of fMRI task contrast data from a large cohort of children in the Adolescent
Brain Cognitive Development (ABCD) study.
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CHAPTER 1

Introduction

1.1 Functional Magnetic Resonance Imaging (fMRI): Data and
Standard Analysis Methods

1.1.1 FMRI data

Since its invention in the early 1970’s [119], magnetic resonance imaging (MRI) has been widely
used not only as clinical tool, but also as a foundational instrument of neurobiological and neu-
ropsychological research. MR images are captured using a series of magnetic pulses alternating
at precise frequencies. Briefly, these magnetic pulses are carefully engineered to interact with
the inherent spin of protons present in biological tissue [125]. Hydrogen-1 nuclei, for example,
are abundant in water and exhibit a natural spin. In different tissues, some proportion of present
hydrogen-1 nuclei can be induced to align their spin parallel to the direction of a strong magnetic
field. Synchronization of these nuclear spins then contributes to a bulk magnetization effect in
the tissue. If the initial external magnetic field is then perturbed by a second, spatially orthogonal
magnetic field, proton spin will gradually fall out of alignment with the initial field. This process
is termed “relaxation,” and forms the basis of a nuclear magnetic signal that can be detected by
special receiver coils. Measurement of this signal can be used to reconstruct three-dimensional
images that relate to proton densities and the magnetic susceptibility of different tissue types.
Spatial image reconstruction is made possible through application of varied magnetic field gra-
dients. These magnetic gradients are designed such that induced spatio-temporal fluctuations in
the nuclear relaxation-related signal can be processed and recorded as the Fourier transform of a
recognizable brain image, for example. Interested readers can find a much more comprehensive
introduction to MR physics in [125]. Modern scanners are engineered to produce powerful mag-
netic fields and can measure and reconstruct such images with a high signal-to-noise ratio (SNR)
[92]. MR scanners can in practice turn this SNR to the advantage of images with higher spatial
and/or temporal resolution. For example, high-field seven Tesla magnets have been used to capture
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structural images of the in vivo human brain with amazingly high spatial resolution. In this context,
image voxel (volumetric pixel) sizes have been achieved as small as 250×250×250 microns [e.g.,
106].

Functional MRI (fMRI) constitutes a procedure for collecting a series of MR images of tissue
over time, where a contrast agent can be used to enhance temporal changes in the signal [e.g.
9]. The blood oxygen level dependent (BOLD) signal commonly used in fMRI is an endogenous
contrast that measures the ratio of oxygenated and deoxygenated hemoglobin in the bloodstream
[120]. Measuring the BOLD signal comprises a minimally invasive technique researchers can use
to study metabolic activity in brain tissue, for example, in response to patterns of stimuli [138]. In
the brain, the BOLD signal is not directly related to neuronal activity, but rather acts as a correlate
of local field potentials, or the concerted activity of many nearby neurons sending and receiving
electrical currents (action potentials) within a particular frequency band [102]. Researchers may
study the relationship between this measure of local brain metabolism (or “activity,” loosely) and
behavioral output by scanning participants instructed to perform some experimentalized task. An
fMRI data set collected this way will typically consist of several hundred to several thousand time
series images per participant. The temporal resolution of fMRI is such that a single brain image
acquisition typically takes around two seconds or less to complete [see e.g., 3, 144]. How the
image intensity, measured at tens of thousands to hundreds of thousands of voxels, varies across
the timeseries can then be summarized statistically. Often, the analyst’s goal is to infer regions of
the brain that share common task-related activation patterns across a group of participants.

1.1.2 FMRI preprocessing

For group-level inference derived from fMRI data to make any sense in practice, the raw data
must at minimum be aligned to a common coordinate system and normalized in intensity. It is not
the object of this dissertation to make a full review of fMRI preprocessing methods. Rather we
acknowledge, broadly, that there are several important limitations to the data collection process
that must be accounted for via preprocessing, and that many methods have been developed to
accomplish these tasks. In general, fMRI preprocessing methods are not universally agreed upon
within the field, and altering the preprocessing protocol can have substantial impact on final results
[see e.g., 98, for an analytically-driven review].

A tremendous amount of work has contributed to the development of algorithms for within and
between participant image alignment and spatial feature normalization [e.g., 46, 47, 84, 137]. In-
tensity normalization, however, is a somewhat more open question in the scope of modern large
scale multi-cohort, multi-site imaging studies [2, 153]. Data collected in stages, on different scan-
ners, or with different scanning protocols can result in a mishmash of different baseline image
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intensities, SNRs, etc. across participants, all of which may be artifactual and mask true signal.
The current common practice for multi-site studies, for example, is simply to homogenize the
mean and variance of the data across collection sites. Image intensity normalization in this context
is still an area of active research, however [e.g., 25]. With these types of issues in mind, large-scale
imaging collective studies sometimes coordinate their fMRI collection and preprocessing protocols
[e.g., 67] so that the raw data ideally have less heterogeneity prior to preprocessing.

1.1.3 Standard applied methods for fMRI analysis

The canonical framework for fMRI analysis was created by Karl Friston and colleagues in the
early 1990s. The authors christened their approach “statistical parametric mapping” [49]. The
idea behind this framework is very straightforward: a series of statistical models are fit to the
data associated with each voxel in the brain, reducing the data to a summary or test statistic map
that characterizes the statistical evidence for a given hypothesis at a local level. In common use
cases, these “statistical parametric maps” (SPMs) might be constructed with t or z-statistic values
at every voxel, representing, loosely, the relative strength of evidence in favor of the experimental
null hypothesis. In this case, the SPM might represent on the order of 100,000 null hypothesis
tests, and so some multiplicity adjustment [e.g., 10, 117, 181] is usually necessary to make valid
claims about voxels where the researcher rejects the null hypothesis.

Following the SPM framework, a typical task-based fMRI analysis (of preprocessed data) might
proceed in two stages as follows. In the first stage, researchers construct a model for the within
subject time series data. This is usually accomplished with a general linear regression model with
some autoregressive assumption on the model errors (AR(1), say). For participant i, the mean
model design matrix, Zi, may denote a (T ×Q) matrix with rows corresponding to T time points
and columns corresponding to Q predictors. The Zi will typically contain a set of indicators
that mark task-on/task-off blocks in the time series convolved with a model for the hemodynamic
response function [e.g., 50]. Design matrices will also usually contain a set of participant-specific
nuisance terms to help regress out to potential sources of artifactual signal such as spikes due to
head motion. Typically, the models for the time series data will be fit in “embarrassingly parallel”
fashion by considering both voxels and patients as independent units of analysis. Models are then
fit to the data within each unit marginally.

Throughout this first stage, the coefficients on the task-based regressors are of primary interest.
Spatial regularization of the effects of interest is usually accomplished indirectly by applying a
spatial smoothing kernel to the timeseries data as a preprocessing step. For the sake of further
explanation, let γi(v) denote the regression coefficient for a task-on term for patient i at voxel v.
The γi(v) can be interpreted as the average relative response in brain activity related to task per-
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formance. In a second stage of analysis, researchers then gather the [γi(v)]Ni=1 together and regress
these on a group-level design matrix,X . In this example,X represents an (N ×P ) matrix, where
N is the number of participants, each measured on P corresponding regression predictors. Often,
X may simply contain a group-level intercept term. The goal of this straightforward two stage
strategy is to recapitulate inference from voxel-wise mixed-effects models in a computationally
efficient way. In general, assuming the errors in the first stage analyses are conditionally Gaussian,
then the second stage analysis can exactly recover the desired mixed effects estimates by using
weighted regression [e.g., 93]. In practice, this assumption can be reasonable, and the γi(v) can,
if desired, be weighted by the inverse of their variance estimates in the second stage analysis. It
can also be perfectly reasonable, however, to omit inverse variance weighting during the second
stage. Use of simplified assumptions in second stage modeling has been carefully considered and
validated by Mumford and Nichols [115].

The brilliance of the SPM framework lies in its computational efficiency and straightforward
implementation. Throughout this dissertation, we work entirely within the two stage analysis
paradigm and specifically attempt to improve upon the second, group-level stage of the analy-
sis. Among the most immediate statistical dissatsifactions with the classical method is the loss of
power that can result from (i) lack of explicit spatial regularization, and (ii) the voxel-wise mul-
tiple testing formulation. One of the central themes of this dissertation is that it can be beneficial
to construct an explicit model for spatial dependence in effects of interest rather than rely on a
somewhat ad hoc smoothing step. In the subsequent chapters, we build different Bayesian hierar-
chical models to address distinct clinical and research questions; underlying each proposed method
is the idea to specify a probability law for governing spatial regression coefficient processes. We
accomplish modeling of spatial dependence through use of Gaussian process priors, and explore
several different methods to render posterior computation tractable in this setting. Chapter 4 shows
to what extent our fully spatial modeling strategy can support enhanced statistical power relative
to the classical method, and eliminate the need for additional multiple comparisons corrections.

1.2 Gaussian processes

In this section, we discuss notation for general Gaussian process models, and outline the typical
computational strategy used to evaluate them.

1.2.1 Definition and notation

Gaussian processes represent an extension of the Gaussian distribution to an infinite dimensional
setting. As such, they can be used to specify a probability distribution on a functional space.
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Throughout this dissertation, we will borrow the notational convention in [134], and write for
example,

f(x) ∼ GP(m(x), K(x,x′)), (1.1)

to mean that we model the distribution of a function f(·) with a Gaussian process. In (1.1) we
take x,x′ ∈ X to represent generic inputs to f(·), m(·), and K(·, ·). Although generalizations to
multivariate processes exist, we will take f(·) to denote a univariate process that maps domain X
onto the real line (f : X → R).

Gaussian processes are characterized by their mean and covariance functions: m(·) and K(·, ·)
in (1.1) above, respectively. More formally, we can write that for any x,x′ ∈ X we have E f(x) =

m(x), and E{f(x) − m(x)}{f(x′) − m(x′)} = K(x,x′), where E(·) denotes the expectation
under (1.1). By this definition, for any finite set of unique {xi}ni=1, writing (1.1) as above implies
that f = [f(x1), . . . , f(xn)]T is multivariate Gaussian distributed,

f ∼ N (m,K),

where m = [m(x1), . . . ,m(xn)]T, and K = [K(xi,xj)]
n
i,j=1. This notation suppresses potential

dependence on any hyperparameters in m(·) and K(·, ·). Throughout this dissertation, we will as a
rule formulate our problems so that it makes sense to take m(·) to be the zero function (m(x) = 0

for all x). It is also quite common to use covariance functions of the form K(x,x′) = τ 2ρ(‖x −
x′‖;θ), where τ 2 is the marginal variance of f(·), and ρ(·;θ) is a stationary, positive definite
correlation function that depends on additional parameters θ.1 Due to the substantial history of
Gaussian smoothing in applied neuroimaging research, we will take the radial basis covariance
function,

K(x,x′) = τ 2 exp(−ψ‖x− x′‖ν), τ 2, ψ > 0, ν ∈ (0, 2], (1.2)

as a canonical example throughout, although many alternative choices exist (see for example the
small compendium of spatial covariance functions listed in [6, pp. 25–26]). In addition, we work
exclusively with Gaussian processes defined over a spatial input domain, where in this example X
will be a stand-in for a subset of R2 or R3 where brain signals are measured

1.2.2 Computation

Here, we outline the typical approach to posterior computation with Gaussian process models using
a toy example. In Fig. 1.1, we suppose that we have observed noisy data generated from some
unknown, nonlinear regression function with independent stationary Gaussian errors. We write our

1Note that in Chapters 2 and 3 we parameterize our problems such that θ includes τ2, and thus denotes the hyper-
parameters of the covariance, not the correlation.
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Figure 1.1: Gaussian process regression: toy example. In each subplot, observed data (y(xi); gray
dots) are shown overlaid with 20 random draws from the posterior distribution of the regression
function (magenta lines). In each case, the data are identical but posterior inference has been
conditioned on distinct choices of the Gaussian process covariance hyperparameters.

corresponding functional regression model,

y(xi) = f(xi) + ε(xi), ε(xi) ∼ N (0, σ2),

where xi ∈ R for i = 1, . . . , n. To complete a Bayesian hierarchical regression model for these
data, we assume

f(x) ∼ GP(0, K(x, x′)), σ−2 ∼ Gamma(1, 0),

where K(·, ·) is the radial basis covariance as in (1.2) with τ 2 = 1, and the error precision σ−2

is assigned an improper Gamma prior. In Fig. 1.1, we plot our toy data and overlay 20 draws
(in magenta) from the posterior distribution of f(·) for a coarse set of choices for the bandwidth
and exponent parameters, ψ and ν. In this limited example, although the individual samples of
f(·) look quite different across the panels in the figure, posterior estimation of quantities like the
pointwise mean and variance of f(·) at a given input are relatively insensitive to the covariance
hyperparameters.

For any new point x̃ ∈ R, we can sample the corresponding f(x̃) from its full conditional
distribution. Let y = [y(x1), . . . , y(xn)]T denote the vector of n observed responses, and simi-
larly let x = [x1, . . . , xn]T denote the locations where we have observed y. Also, as above let
K = [K(xi, xj)]

n
i,j=1 denote the n × n covariance matrix of f = [f(x1), . . . , f(xn)]T, and let

K(x, x̃) = [K(xi, x̃)]ni=1 denote the n-dimensional vector of cross-covariances between f and
f(x̃). In this example, we have constructed a model with full posterior conjugacy so that the
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conditional posterior of f(x̃) is trivially Gaussian with,

E{f(x̃) | y, ·} = KT(x, x̃)(K + σ2I)−1y, and

var{f(x̃) | y, ·} = K(x̃, x̃)−KT(x, x̃)(K + σ2I)−1K(x, x̃), (1.3)

using shorthand to express conditioning on σ2, ψ, and ν.
Notice how both the mean and variance in (1.3) require decomposition or inversion of the

n × n matrix K + σ2I . For n up to a few thousand, this computation can be handled efficiently
using Cholesky decomposition and fast routines to solve triangular linear systems. For very large
n, however, it can be impractical to even construct a dense n × n matrix, let alone compute its
Cholesky decomposition (an O(n3) operation). In the context of our applications in Chapters 2–4,
nwill equivalently be the number of spatial locations in an MR image where we observe brain data.
This number will range from over 200,000 in Chapter 2 to around 30,000 in Chapter 4. In each
chapter we explore a different computational scheme for dealing with data of this size. Chapter 2
uses a data augmentation approach based on the work of Wood and Chan [178]. In Chapter 3, we
work with a low-rank projection of the spatial process [after e.g., 7], and in Chapter 4 we apply
a sparse approximation of K−1 that retains a full-rank spatial process in the prior [following e.g.,
35].

1.3 Dissertation outline

The rest of this dissertation is organized as follows. In Chapter 2, we describe a model for presur-
gical fMRI data designed to integrate information from scans collected at different spatial resolu-
tions. This chapter is based on work published in [175]. We model z-statistic outcome images that
summarize task related activation patterns and use Gaussian process regression to infer the mean
spatial activation pattern at the highest available spatial resolution. The resulting information can
be incorporated by neuroradiologists and neurosurgeons into presurgical planning to help navigate
patients’ individual functional neuroanatomy. In Chapter 3, we consider the classical second stage
or group-level analysis paradigm in MRI analysis on the basis of the question: can we identify
latent subgroups of participants across which imaging outcomes may differ in some systematic,
meaningful way? We develop a semiparametric mixture of spatial regression models with mixture
weights governed by a logistic stick-breaking process [136]. Spatial regression coefficient func-
tions for each mixture component are modeled with Gaussian process priors. We apply this model
to neurotyping Autism spectrum patients, and find subgroups related to component scores of an
Autism Diagnostic Interview questionnaire [104]. In Chapter 4, we again consider group-level
regression analyses for MRI data with the specific goal of precise estimation of spatially vary-
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ing regression coefficient functions. At the time of writing, the companion paper for this chapter
has been submitted for publication [176]. With this project, we also give special attention to the
geometry of the cortical surface, and meaningful measures of distance in this context. We apply
this method to analyze fMRI working memory task contrast data collected from over 3,000 chil-
dren enrolled in the Adolescent Brain and Cognitive Development study. Finally, in Chapter 5 we
conclude with general discussions of our proposed methods and considerations for future work.
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CHAPTER 2

Bayesian Inference for Brain Activity from
Functional Magnetic Resonance Imaging Collected

at Two Spatial Resolutions

Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imag-
ing (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and
intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but
the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI
scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate
inference on brain activity by combining data with different resolutions. To this end, we develop
a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and
higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean inten-
sity function and develop an efficient, scalable posterior computation algorithm to integrate both
sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold
Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis
of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately
than alternatives that use either the high or standard resolution fMRI data alone.

2.1 Introduction

Neurosurgery presents a unique set of challenges to the operating surgeon. Treatment of brain
tumors, for example, is handled primarily by surgical resection when possible. Gliomas are often
infiltrative, however, and as a result may be impossible to remove entirely [88, 159]. Requiring
precise structural and functional information, the neurosurgeon’s goal is typically to resect as much
of the tumor as possible while avoiding damage to surrounding healthy areas of brain tissue. Al-
though the structure of the human brain shares a gross organization common across individuals,
functional neuroanatomy may vary between patients and within regions [e.g. 94], highlighting the

9



need for within-patient precision. Here we propose a model that leverages the massive amount of
spatial data available in individual functional magnetic resonance imaging (fMRI) scans to help
guide presurgical planning by identifying functionally relevant brain regions in a patient-specific
manner.

Traditionally, electrocortical interference is used to map brain functional organization during
surgery [e.g. 28], but this procedure is highly invasive, lengthens surgery duration, and cannot
be incorporated into presurgical planning [159]. Clinicians can also opt to use imaging meth-
ods to help inform patient-specific presurgical planning and intraoperative neuronavigation [e.g.
4, 118, 39, 150]. FMRI may be used, for example, to map patient-specific functional areas, but the
data come with an inherent trade off. Surgeons would like to collect information that is spatially
precise, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases, poten-
tially making functional mapping more difficult [16]. In practice, modern scanners are equipped to
handle a variety of image resolutions by modifying magnetic pulse sequences, so radiologists are
in principle able to collect any combination of scans advantageous for presurgical planning.

Our motivating datasets come from two separate fMRI experiments in which preoperative pa-
tients performed cognitive tasks chosen to localize brain regions involved in language processing
(see sections 2.2 and 2.4 for details). Each individual patient was administered their task over two
separate scanning runs, collected at different spatial resolutions. Details vary by patient, but in
both instances one run was collected at “standard” spatial resolution with voxel (volumetric pixel)
dimensions measuring approximately 3× 3× 3 mm3, and the other was collected at “high” spatial
resolution with approximately 2×2×2 mm3 voxels. Raw image time series data were preprocessed
using standard software [84, 179] to yield statistical parametric maps for each spatial resolution
that summarized patients’ fMRI activation over time. In this paper, we propose a new Bayesian
model to integrate both sources of data, leveraging the anatomical/spatial precision of high reso-
lution fMRI and the SNR of standard resolution fMRI for enhanced within-patient precision. The
primary goal of our model is to reduce spatial noise while making inferential statements identify-
ing functional regions at the highest resolution available. Conceptually, we accomplish this goal
by modeling the mean intensity function of both data sources as a Gaussian process. Gaussian
processes induce a probability measure on a functional space with distribution characterized by
a mean and covariance function [134]. Conditional on the covariance function hyperparameters,
which we estimate from data, we conduct fully Bayesian inference on the mean function measured
at voxel locations in the high spatial resolution image.

In addition to spatial precision, computational complexity is also a major concern since exces-
sive latency between preoperative scanning and a patient’s actual surgery is undesirable. Com-
putation with spatial Gaussian process models typically involve decomposition of an n × n ma-
trix, where n is the number of spatial locations. Between the two image types there are over
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200,000 unique spatial locations in each of our motivating datasets, rendering usual computational
approaches to inference intractable in most computing environments. Here, we outline a modifica-
tion of the typical Hamiltonian Monte Carlo (HMC) algorithm that makes this inference not only
feasible but computationally efficient. To do so, we propose a dual resolution mapping prior that
generalizes the existing Gaussian predictive process framework [e.g. 146, 7] to our setting with
multiple data sources. Our algorithm further harnesses a parameter expansion idea from [178]
to sample from the posterior using Riemann manifold Hamiltonian dynamics [62] in an ultrahigh
dimensional parameter space.

Our model is related to existing literature from the field of spatial satistics that consider the
“change of support problem” [e.g. 57, 53, 11]. Such models have been used, for example, to com-
bine data from air pollution monitoring sites with simulations from physical models for prediction
at unobserved locations and model validation. Studies such as these commonly model conditional
relationships between data sources, for example by regressing measured air pollution onto phys-
ical model output. Our multi-resolution imaging paradigm is related in the sense that we would
like to use standard resolution data to improve inference in high resolution space. This goal, how-
ever, is complicated by the fact that high and standard spatial resolution voxels in general only
partially overlap with their neighbors in their complementary image (see Fig. 2.1). We will, how-
ever, take a different approach by modeling both sources of data as joint outcomes. Not only does
this approach perhaps make more conceptual sense for modeling multiple image types, it permits
flexible and natural reconfiguration in response to real world challenges. For example, if only one
fMRI resolution or session is available presurgically, the missing data can be removed from the
joint outcome. Though we discuss our method exclusively in a functional neuroimaging context,
the method can easily generalize to other imaging modalities or indeed to spatial data with mixed
supports more broadly.

Whereas the inferential goal of most neuroimaging studies is to identify activated or deacti-
vated brain regions while controlling the family-wise error rate, we take a somewhat different
approach given specific presurgical needs. In a neurosurgical context, clinicians are typically more
concerned with inaccurate labeling of functionally important tissue as unimportant. To this end,
we adopt a decision theoretic rule from previous work to control the ratio of false negative to
false positive errors [101, 100, 114]. We show in simulation that our dual resolution method
achieves good accuracy for realistic effect sizes. Specifically, our method outperformed single
spatial resolution alternatives in terms of both false negative and false positive error rates when
the number of discoveries was fixed across methods. Software to fit the dual and single resolution
models discussed in this paper to data stored in the NIfTI data standard [29] is available online at
https://github.com/asw221/dualres.

The body of this paper contains descriptions of our motivating clinical datasets in section 2.2,
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and a summary of the method we propose to handle the unique challenges of those data in section
2.2.1. In sections 2.2.2 and 2.2.3, we elaborate on our approach to enable precise estimation and
computation in such a large parameter space. We discuss a strategy to conduct inference based on
weighted trade offs between false negative and false positive errors in section 2.2.4. We quantify
our method’s performance against single resolution alternative methods in section 2.3. Section
2.4 reports on analyses of real patient data using our proposed method for dual resolution fMRI.
Finally, we present an overall evaluation of our contributions in section 2.5.

High Resolution

Standard Resolution

Figure 2.1: Schematic of aims and difficulties with integration of fMRI data collected at multiple
spatial resolutions. Images collected at different resolutions exhibit inherently different levels of
noise. We would like to reduce spatial noise while making inferential statements at the highest
resolution available, but voxel locations may not align in general.

2.2 Data and methods

We developed the method presented here to analyze single-patient presurgical fMRI data collected
at two spatial resolutions. Our first motivating dataset comes from a 62 year old right handed
woman—“patient 1”—who presented difficulties with reading, finding, and comprehending words.
This patient was subsequently found to have a tumor in her left middle and inferior temporal
gyrus. Prior to surgery, the patient was scanned while performing a reading task to map brain areas
associated with reading non-final embedded clause sentences and language processing. Scans were
collected in two separate runs: once at standard 3× 3× 3.45 mm3 resolution (64× 64× 48 grid),
and once at high 1.8× 1.8× 2.3 mm3 resolution (120× 120× 62 grid).

Our second motivating dataset comes from an 18 year old right handed woman—“patient 2”—
who presented after a general seizure and was subsequently found to have a cavernoma in her
left temporal lobe (see Appendix G for more detail). For cavernomas in critical areas, presurgi-

12



cal fMRI is considered one option—as with brain tumors—to map brain function noninvasively
for presurgical planning and intraoperative neuronavigation. Patient 2 was also scanned prior to
surgery while performing a language processing task. Her standard resolution data were collected
with slightly smaller 3 × 3 × 3.3 mm3 voxels (64 × 64 × 48 grid), and her high resolution data
with 1.8 × 1.8 × 2.2 mm3 voxels (120 × 120 × 62 grid). As in this patient, cavernomas typically
cause profound T2∗-weighted MR signal loss, with blooming into surrounding brain tissue. Signal
loss is caused by abrupt differences in magnetic susceptibility in apposed tissues and is a common
occurrence in clinical fMRI (e.g. intratumoral hemorrhages can cause similar dropout). We use
this patient’s data to illustrate our model’s capacity to recover an estimate of activation in areas of
such fMRI signal loss.

FMRI time series preprocessing without spatial smoothing was performed prior to our analysis
using FSL software [84] and the FEAT tool [179]. As will become clear in section 2.2.1, our model
imposes smoothness on the image mean function, and so we avoided smoothing the data during
preprocessing (beyond the small amount of unavoidable smoothing that can occur when time series
images from the two spatial resolutions are motion corrected and co-registered with one another).
Smoothing is an otherwise ubiquitous step in typical fMRI pipelines, but over smoothing is not
desirable for presurgical planning applications as it may reduce spatial precision by, for example,
smearing activation into adjacent areas when the smoothing kernel is too wide. Data were corrected
for motion and temporally high pass filtered, and marginal linear models were fit to the time series
data at each voxel to create summary statistic maps of task-related activation.

Preprocessing resulted in one unsmoothed z-statistic contrast image for each fMRI resolution
that summarized task-related activation over the course of each respective scan. We went on to use
the generated test statistic maps as outcome data in our subsequent analysis, treating the images as
noisy measures of true activation. Although we may find it beneficial to include both spatial and
temporal data in our modeling framework in future work, the present model only explicitly repre-
sents a spatial process. As such, throughout the rest of this paper we will use “high resolution,” for
example, as a stand in for “high spatial resolution” etc. In the greater imaging community, how-
ever, “resolution” could in general relate to frequency of either spatial or temporal data collection,
or both. We give additional details regarding patient data collection and image preprocessing in
Appendix F.

2.2.1 Bayesian dual resolution mapping

Let B denote a generic brain image space, and let Bh ⊂ B and Bs ⊂ B denote the sets of spatial
locations in the brain where high and standard resolution functional MRI data are collected, re-
spectively. For reference, the number of voxels |Bh| ≈ 200, 000 in the high resolution image, and
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|Bs| ≈ 50, 000 in the standard resolution image. Each atom v ∈ B is a three dimensional vector of
spatial coordinates relative to some origin point v0 ∈ B; the Euclidean distance between any two
points, v,v′ ∈ B can be represented ‖v−v′‖2, and is typically measured in millimeters. Although
data at a given voxel is associated with a small volume, we follow common practice and essentially
treat that data as observed on location v exactly. In general, even voxels that overlap between the
two image types may not have the same centers, so that the set of points in the intersection Bh∩Bs

may be empty.
Conceptually, we motivate our proposed model as follows. Let Yh(vh) denote the high resolu-

tion imaging outcome at voxel vh, and let Ys(vs) denote the standard resolution imaging outcome
at voxel vs. For the same patient performing the same cognitive task in the same scanner, we
make the assumption that Yh(vh) and Ys(vs) are realizations from a unifying generative process.
Let N (µ, σ2) denote a Gaussian distribution with mean µ and variance σ2. We model the data as
jointly Gaussian,

Yh(vh) ∼ N (µ(vh), σ
2
h), vh ∈ Bh

Ys(vs) ∼ N (µ(vs), σ
2
s), vs ∈ Bs (2.1)

where µ(v) represents the expected intensity of brain activity in voxel v ∈ B, and σ2
h and σ2

s are
noise variances in the high and standard resolution images, respectively. Because our data were
not smoothed, we modeled noise as a spatially independent and additive process. Given the known
phenomenon that SNR increases with voxel volume [e.g. 16], we expect standard resolution images
to be less noisy than high resolution images. We therefore adopted a weakly informative prior for
the noise variances with the restriction σ2

h > σ2
s :

π(σ2
h, σ

2
s) ∝ σ−2h σ−2s 1(0 < σ2

s < σ2
h), (2.2)

where 1(·) ∈ {0, 1} is the event indicator function (1(A) = 1 if A occurs, and 0 otherwise).
For functional maps, we are primarily interested in making inferences about the mean intensity

function, µ(·), to which we assign a mean zero Gaussian process prior,

µ(v) ∼ GP(0, K(v,v′)). (2.3)

In our formulation, the function µ(·) captures all of the correlation between voxels and between the
two images; conditional on µ(·), Yh(vh) and Ys(vs) are mutually independent across all vh ∈ Bh

and vs ∈ Bs. We implicitly assume that the two brain images share a real-world coordinate system,
and that µ(v) is correlated with µ(v′) if the distance ‖v−v′‖2 is small. A variety of preprocessing
techniques have been developed to align 3D images and ensure the former assumption holds with
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minimal error [e.g. 137, 84].
Since anatomical precision is paramount in our application, we would like to conduct inference

on µ(·) for all locations in Bh. To facilitate this goal while simultaneously modeling the cross cor-
relation between µ(·) evaluated on locations inBh andBs, we introduce a nonstationary covariance
function to map between data sets. For any v,v′ ∈ B, let,

K(v,v′) =

k(v,v′) if v′ ∈ Bh

wT(v)k(Bh,v
′) otherwise,

(2.4)

where w(·) is a vector of weights in a finite basis (defined below; chosen so that the covariance
function is symmetric for all v,v′ ∈ B), and k(·, ·) is some positive definite function with range
R>0. In our application, we take k(·, ·) to be the isotropic radial basis function,

k(v,v′) = τ 2 exp(−ψ‖v−v′‖ν2), τ 2, ψ > 0, ν ∈ (0, 2], (2.5)

and extend the notation to apply to sets of locations so that k(Bh,v
′) = [k(vh,v

′)]vh∈Bh
is a vector

in R|Bh|. In (2.5), τ 2 > 0 is the “partial sill” or marginal prior variance of µ(·), the decay parameter
ψ > 0 defines the correlation bandwidth, and ν ∈ (0, 2] is the kernel exponent or smoothness
parameter. We define the covariance parameters θ = (τ 2, ψ, ν)T; ψ and ν, are commonly fixed
prior to analyses, but because of the abundance of spatial data in even a single brain image, in
practice we recommend estimating these parameters from data (see section 2.4.1 for details). The
custom kernel in (2.4) was designed to approximate a “Gaussian parent process” [7] with isotropic
radial basis covariance (2.5) everywhere in B. We arrange our presentation here to make clear
that we use (2.4) directly, and obtain exact inference with the prior (2.3) specified in this way. A
careful choice of the weight functionw(·), moreover, can render the problem more computationally
tractable.

2.2.2 Construction of the covariance weights

By the definition of a Gaussian process, µ(v) and µ(v′) are jointly multivariate Gaussian dis-
tributed for any distinct locations v and v′. As a result, Gaussian process models promote natural
and flexible predictions of values of µ(·) at unobserved locations. For arbitrary collections of loca-
tionsU = {v1, . . . ,vn} ⊂ B and V = {v′1, . . . ,v′m} ⊂ B, we define µ(U) = [µ(vi)]

n
i=1 as a vector

in Rn; K(U,v) = [K(vi,v)]ni=1 as a vector in Rn; and K(U, V ) = [K(vi,v
′
j)]

n,m
i,j=1 as a matrix in

Rn×m. If, for example, V is a set of observed locations, and U are unobserved locations, then con-
ditional on µ(V ), µ(U) is multivariate Gaussian distributed with mean K(U, V )K(V, V )−1µ(V )

and variance K(U,U)−K(U, V )K(V, V )−1K(V, U).
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Since imaging data is collected on a dense grid we often have no need to predict outcomes at
unobserved or non-brain locations, except in cases of signal loss or other artifact. We made use
of the kriging or conditional distribution relationships above primarily to define the basis weight
function w(·) to integrate information from both high and standard resolution images. We con-
structed the basis weights in (2.4) so that w(v) ≈ K(Bh, Bh)

−1k(Bh,v), with the “approximate”
relation explained below. This formulation allowed us to leverage the relationship that wT(v)µh

approximates the prior conditional expectation of µ(v) given µh = µ(Bh). As such, our con-
struction in (2.4) generalizes a Gaussian predictive process framework [e.g. 146, 7] to our setting
with multiple data sources by using Bh as a high-dimensional reference set. In general, within this
framework we could have defined the weights w(·) based on any arbitrary set of knot locations
B∗ ⊂ B. Since inference at a fine spatial scale typically requires a dense set of knot locations [e.g.
157], we preferred to define w(·) based on all of Bh.

Our covariance function in (2.4) effectively employs kriging methods to map µ(Bh) onto the lo-
cations in Bs so that the standard resolution data can still inform µ(Bh) in the posterior. Switching
to vector notation, let µs = µ(Bs). We express the prior in (2.3),

π(µh,µs) = N

(
0,

[
Kh Kh,s

Ks,h Ks,hK
−1
h Kh,s

])
. (2.6)

where µh and µs are the means of the high, and standard resolution images, respectively; we
denote the marginal prior variance of µh by Kh = K(Bh, Bh), the prior covariance of µh and µs
byKh,s = K(Bh, Bs), etc. The obvious difficulty working with (2.6) directly is that the covariance
matrix is large and dense and we need to be able to compute its inverse in order to evaluate the
prior. We would like to make inferential statements about µh, but the dimension of the submatrix
Kh (nh ≈ 200,000) alone is prohibitive on most hardware architectures—such a matrix would
require over (1.8 × 105)2 × 32 = 129.6 Gb of memory just to store in a single precision floating
point format. Though the memory requirement could be reduced by storing just the upper or lower
triangle, to sample µh Cholesky decomposition of Kh would still require ≈ 1.9 × 1015 floating
point operations (FLOPs) to compute.

In (2.6), the covariance matrix has rank of at most nh, and the implied conditional density
π(µs | µh) is degenerate on Ks,hK

−1
h µh. Additionally, we represent the product K−1h Kh,s by

matrix WT = [w(vs)]vs∈Bs . To induce sparsity and save computational resources, we defined W
in terms of neighborhoods of voxels in Bh. For any v ∈ B, let Nh(v) denote a set of locations
in Bh in an r-neighborhood of location v, Nh(v) = {vh ∈ Bh : ‖vh−v‖2 ≤ r}. If Nh(v) is
empty, then we defined w(v) = 0; otherwise let KNh(v) = [k(vi,vj)]vi,vj∈Nh(v), let kNh(v) =

[k(vi,v)]vi∈Nh(v), and let w̃ = K−1Nh(v)
kNh(v) denote a vector with implicit dependence on Nh(v)

where each element corresponds with one location in Nh(v). For non-empty Nh(v), each element
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of w(v) similarly corresponds with one location in Bh. We defined those elements to be,

wi(v) =

w̃j if the jth location in Nh(v) corresponds to the ith location in Bh

0 otherwise.
(2.7)

WithWT = [w(vs)]vs∈Bs , the productWµh can be interpreted as a local kriging approximation of
µs conditional on µh. Our definition ofW is conceptually somewhat inspired by work on Nearest
Neighbor Gaussian Processes by [35, 44]. A sensitivity analysis over choice of r is available in the
Appendices.

The matrix W can be entirely precomputed given the kernel parameters, ψ, ν, and a neighbor-
hood radius, r. Equipped with the matrix W , samples from (2.6) can be drawn by first sampling
µh ∼ N (0,Kh), and then computing µs = Wµh. In practice we treat r as a hyperparameter and
condition analyses on it. In our data example (see section 2.4) we took the radius r to be roughly
one FWHM length based on estimated prior covariance and hyperparameters θ (section 2.4.1).
This choice was motivated by the desire to keep r roughly in line with the width of (2.5) while
keeping W only modestly expensive to compute: for this choice of r, typical neighborhood sizes
|Nh(v)| were on the order of 300–700 voxels in patient data. We next outline an efficient posterior
computation algorithm for µh.

2.2.3 Posterior computation
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Figure 2.2: Example circulant matrix embedding. The left-most panel shows an example 4 × 4
Toeplitz matrix (bold) embedded within a 6× 6 circulant matrix. In this simple example, the inner
Toeplitz matrix might correspond with locations on a 1D grid (center panel). Conceptually, the
outer circulant matrix can be taken to correspond with an extended grid, where an extended set of
vertices have been “wrapped around” a circle. In the more general case (right-most panel), blocks
Ci of a circulant-family matrix have symmetry such that Cm−i ≡ Ci.

To facilitate computation we embedded the random field µh within a much larger random field,
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which we will call u. Our goal in doing so was to be able to replace expensive matrix operations
with computations involving discrete Fourier transformations (DFTs) as we show below. Concep-
tually, the augmented parameter space we chose can be viewed to correspond with an extended grid
of locations with toroidal geometry. In our data application, the resulting extended grid has about
8.4× 106 elements (grid dimensions 256× 256× 128). We treat this extended grid as if it were a
part of Bh in the prior, with the result that the covariance of the field u has a nested block-circulant
structure. In the discussion to follow, we will use C to denote the prior variance of u. With this
construction, we have added a large number of auxiliary parameters, but have not changed the
effective prior on µh: the matrix Kh is a principal submatrix of C. Any Toeplitz-family matrix
can be embedded in a larger circulant-family matrix in this way. For additional exposition, Fig.
2.2 shows a simple example of this type of circulant embedding. In the figure, the left and center
panels illustrate circulant embedding for a 1D grid. If working on a 2D grid, then schematically
each block Ci in the right-most panel of Fig. 2.2 will be a circulant matrix; on a 3D grid each block
will itself be block-circulant, etc. This construction can be used to enable efficient simulation of
random Gaussian fields over dense grids as others have shown [e.g. 178, 140] and as we summarize
below.

Circulant matrix–vector products can be computed efficiently with DFT software. Given the
first row or column a—the so called base—of a circulant matrix A the product Ax can be ex-
pressed as the discrete convolution a ∗ x. Equivalently, by the discrete convolution theorem,
DFT(Ax) = DFT(a) � DFT(x), where � denotes an elementwise or Hadamard product. The
principle is the same with a nested block-circulant matrix like C: the matrix has a base, c, that is
efficient to work with using 3D DFTs. In the present case, c can be precomputed (see Appendix
C.2) from the original grid dimensions and covariance function K(·, ·). As with any circulant ma-
trix, C can be diagonalized by two Fourier matrices. If F denotes a scaled 3D DFT matrix, and
FH its adjugate, FHCF = diag(λ), where λ are the (complex) eigenvalues of C. With only the
base c in memory, λ = F(c)/N can be computed directly, where N is the number of elements in
c, and F(·) denotes the 3D discrete Fourier transform. We provide a simple algorithm to construct
c for any dense 3D grid in Appendix C.2.

Wood and Chan [178] took advantage of this relationship to propose an efficient algorithm for
simulation of random Gaussian fields when the covariance of the field can be embedded within
a circulant matrix. For example, in our setting, we could sample from the prior π(µh | θ) by
first drawing z ∼ CN (0, I), where CN (0, v) denotes the circularly symmetric complex normal
distribution with variance 2v. Let F -1(·) denote the 3D inverse DFT, let a◦b = [abi ] denote element-
wise or Hadamard exponentiation, and letRe(a) extract the real part of a complex vector a. With
λ computed as above, we could then set u← Re[F{λ◦1/2 � F -1(z)}], and obtain a prior sample
of µh by simply discarding extraneous elements of u.
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There is no direct extension of the above [178] algorithm for posterior simulation in our set-
ting. In part, this is because we use different noise variance terms for our two data sources (2.2).
Unless the diagonal noise terms are exactly equal, the joint posterior variance of (µT

h,µ
T
s )T will

not be Toeplitz in general. We still draw inspiration from the work of [178], however, and use the
circulant matrix relationships above to write an efficient Hamiltonian Monte Carlo algorithm for
posterior inference. Details of this algorithm are presented in Appendix C.1, but the key compo-
nents are: (i) as discussed, we embed µh in a higher dimensional random Gaussian field with a
circulant covariance matrix; and (ii) we construct a circulant “mass matrix” for our HMC. Modifi-
cation (i) allows us to be able to evaluate the log prior and compute its gradient, and modification
(ii) dramatically improves mixing of the HMC chains. As a result, our algorithm reduces the com-
putational requirement to evaluate the log prior on µh roughly to < 0.01 Gb and≈ 2×109 FLOPs.
We now turn to remark on how we summarize inference from our model in practice.

2.2.4 Functional region detection

FMRI detects functionally relevant brain regions by recording changes in oxygenated blood flow
(BOLD signal). In a typical study, practitioners identify these regions by thresholding voxelwise
statistical summaries in a manner that controls the false discovery rate [e.g. 61]. For presurgical
applications, it is at least as important to limit false negative reports, since errors of this kind may
potentially lead to damage of healthy tissue. To this end, we adapted a decision theoretic approach
following previous work [114, 101, 100]. We consider the loss function,

L(m, δ) =
∑
i

−f(mi)δi − {1− f(mi)}(1− δi)

+ k1f(mi)(1− δi) + k2{1− f(mi)}δi + tδi, (2.8)

where (k1, k2, t) are tunable constants, the mi = |µh,i|/
√

var(µh,i) are posterior t-statistic analogs
measuring pointwise signal strength in µh, and the δi ∈ {0, 1} are pointwise statistical decisions
(i.e. δi = 1 reports a finding at voxel i, and δi = 0 otherwise). The function f(·) can be any
monotonically increasing function restricted to [0, 1], and is intended to act as a proxy for π(δi =

1 | Yh,Ys,θ, r). Again, following previous work [101, 100], we take f(m) = m/M , where
M = maxi{mi}.

The loss function (2.8) is composed of five terms, each with a distinct importance:
−
∑

i f(mi)δi and −
∑

i{1− f(mi)}(1− δi) induce gains for correct discoveries and correct non
discoveries, respectively; k1

∑
i f(mi)(1− δi) penalizes false negative errors; k2

∑
i{1−f(mi)}δi

penalizes false positive errors; and t
∑

i δi penalizes the total number of discoveries. Optimal
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decisions δ∗i minimize the posterior risk and follow,

δ∗i = 1{f̄i ≥ (1 + k2 + t)/(2 + k1 + k2)}, (2.9)

where f̄i is the posterior expectation E{f(mi) | Yh,Ys,θ, r}, and the parameters (k1, k2, t) suggest
a threshold based on a trade off between false negative and false positive errors.

Thresholds can be tuned with domain expert guidance and/or varied dynamically, as a single
static threshold may not be sufficient for a surgeon’s needs [e.g. 159]. As a practical note, setting
k2 = t = 1 and varying k1 over the range [5, 12] can provide good guidance, with k1 = 7 a
reasonable default. In one of our patient data analyses (below), we set t = 1, k1 = 12, and
k2 = 1 for inference. As per our coauthor and collaborating neuroradiologist’s advice, this tuning
parameter choice penalizes false negative errors 12 times more heavily than false positive errors.
The other patient in our data was somewhat younger and less ill, with no interictal speech or
language impairments. Consequentially her z-statistic images appeared to have a better signal to
noise ratio. For this patient, the suggestion was to set k1 = 7 and use a seven fold penalty ratio
(not shown). In both cases, the corresponding activation thresholds were confirmed visually by
comparison with results from intraoperative electrocortical interference mapping.

2.3 Simulation studies

We quantified the advantages of our proposed method with easier to visualize simulations in two
dimensions. Our goal in simulation was to evaluate how well the proposed model and alternative
methods recovered activation patterns in data. Typical fMRI studies use significance testing as a
means to identify functionally relevant brain regions. To mimic this setting, our simulation designs
considered active regions embedded within low variance signal (see Fig. 2.3). As we discuss
below, we further tried to mimic the patient data by roughly matching simulated spatial signal
smoothness and signal-to-noise ratios to the real data.

2.3.1 Simulations on 2D grids

Figure 2.3 illustrates our general approach to data simulation. In the figure, active regions were
drawn in a midsagittal plane including a T-shaped region, a circular region, and a four voxel square.
These signals were created by smoothing binary images with a six millimeter full width at half
maximum (FWHM) Gaussian kernel, scaling by a factor of two, and thresholding the result at 0.4.
We then embedded the active regions within random draws from a 2D random field with mean
zero, marginal variance 0.2, and 6 mm FWHM Exponential or Gaussian correlation functions. We
treated the resultant images as true nonzero mean intensity images, with “active” voxels given only
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High Resolution Standard Resolution
Active Regions Mean Intensity Data Mean Intensity Data

Figure 2.3: Simulation design example with SNRh = 0.1 and SNRs = 0.2. Non-activation smooth
signal has marginal variance 0.2 and 6 mm FWHM Exponential correlation; activation signal has
mean 2.

by the smoothed T, circle, and square shapes; on average about 11% of activation-adjacent voxels
would have had signal strength within ±0.25 standard deviations of their active neighbors. As
per the patient data, we treated voxels in this plane as (1.8 × 1.8) mm for high resolution (4,722
voxels total), and as (3 × 3) mm for standard resolution (1,853 voxels). With our design, there
were exactly 450 active voxels in the high resolution slice (9.5%; see Fig. 2.3).

We adopted this method to generate “high resolution” mean images, or µh as in section 2.2.3,
and projectedµh into “standard resolution” space by multiplying byW as in section 2.2.2 to gener-
ate corresponding standard resolution mean images. In all simulation settings,W was constructed
using the true 6 mm FWHM Exponential or Gaussian background signal correlation functions, and
an extent radius r defined as the distance after which the correlation would drop below 0.05. To
simulate observed outcome data, we added independent Gaussian noise to the mean intensity im-
ages, modulated the noise variances to control SNRs of the simulated high and standard resolution
images, and ran 100 replicates per parameter combination. We took the SNR to be the ratio of
the second moment of the mean to the variance of the noise, and set this to be one of {0.1, 0.2}
for high resolution images (SNRh). We parameterized standard resolution noise in terms of the
ratio of standard to high resolution SNR (SNRs:SNRh), and set this ratio to one of {1, 2, 4}. In the
first case, the standard resolution image would not provide additional signal-to-noise support as it
typically would in real data. We considered this a worst case scenario. The latter two settings were
chosen so that the standard resolution image provided increasingly large signal-to-noise support,
where we expected our dual resolution method to dominate. In our analysis of the patient 1 data,
based on the fits of our high and standard single resolution alternative models, we estimated SNRh

≈ 0.18 and SNRs ≈ 0.44 based on their posterior means (ratio SNRs:SNRh ≈ 2.4).
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Model Kernel SNRs:SNRh SNRh MSE False –
Dual Exponential 1 0.1 0.20 31.8% (0.4)
High Exponential 1 0.1 0.23 34.0% (0.5)
Naive Exponential 1 0.1 0.30 43.6% (0.4)
Std Exponential 1 0.1 0.47 43.1% (0.6)
Dual Exponential 2 0.1 0.18 30.6% (0.4)
High Exponential 2 0.1 0.23 34.0% (0.5)
Naive Exponential 2 0.1 0.29 42.7% (0.4)
Std Exponential 2 0.1 0.43 40.6% (0.4)

Table 2.1: Selected results for estimation and inference quality in 2D simulations. Results for
the High resolution method do not change across the different SNR ratios, but are repeated to
facilitate comparison. Model denotes the image combination used in the analysis, and Kernel
gives the correlation pattern of low variance background signal. MSE refers to mean squared error
computed over the entire high resolution mean parameter vector; the simulation standard error of
this metric was on the order of 10−3 for all simulation settings and so was omitted for brevity.
False – reports the mean (SE) false negative error rate when the number of discoveries was fixed
at 450. One hundred replicates per parameter combination; additional results with different kernel
and SNRh parameter settings are summarized in Appendix D.

2.3.2 Recovery of simulated activation regions in 2D images

In each simulation, models were conditioned on the true θ = (τ 2, ψ, ν)T used to generate the low
variance mean fields. We chose to condition on the true θ so as to explicitly focus our simulation
results on estimation of and inference on the image mean intensities. We compared performance of
our dual resolution model (2.1) against single resolution alternative methods: (i) a related Gaussian
process model that only considered the high resolution data, (ii) the same model but considering
only standard resolution data (kriging the posterior mean of µs to the locations in Bh), and (iii) a
method that we term naive data averaging. For the alternative high and standard resolution models,
we used a Gaussian process to model the the mean of the data as in (2.3). For the naive alternative,
we estimated the matrix W (defined in section 2.2.2) from the data and used it to interpolate
standard resolution data into the high resolution space. We then treated a simple pointwise average
of the high and interpolated standard resolution images—i.e. Ȳhs = (Yh +WTYs)/2—as data in
the alternative high resolution model (i). This approach is conceptually similar to previous work
in this area [100]. The high resolution method (i) served as our primary comparison point both
because of its inherent spatial resolution and because it tended to be the best competing method in
our simulations (see section 2.3).

Table 2.1 presents selected results for estimation and inference quality in our 2D simulation set-
tings. Results are presented predominantly for the setting with SNRh = 0.1, the SNRs:SNRh ratio
set to two, and an Exponential correlation function to roughly approximate our patient data (also
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reflected in Fig. 2.3). We provide a comparison point with the SNR ratio equal to one for additional
interest. More extensive results are available in Appendix D. In the table, MSE denotes the mean
squared error of the estimated µh, computed over pixels in our simulated high resolution slices.
We treat MSE as a measure of estimation quality, and report that in all simulation settings con-
sidered, MSE was lowest for the dual resolution models. This result indicates that when the same
mean intensity function underlies both high and standard resolution images and the kernel func-
tion is estimated accurately, the model that used joint information from both imaging modalities
outperformed possible single resolution alternatives. Interestingly, when the background intensity
was generated with an Exponential kernel, as in Table 2.1, the model that used only high resolution
data was the second best performer, underscoring the importance of spatial precision in estimation.

We also report false negative rates—the measure of inference we are most concerned with in
our framework—for each model in Table 2.1. In the table, we set parameters k1, k2, and t in
our decision rule (2.9) independently for each model type so as to control the total number of
discoveries to exactly 450 (the same as the number of pixels we considered truly active in the
simulations). The actual decisions corresponding to these thresholds are shown in Fig. 2.4 (right)
for a single representative simulation iteration. We emphasize that thresholds here were chosen
as an objective point of comparison across the alternative methods, not by optimizing any kind of
inferential criteria. In Fig. 2.4 (left), we show that the dual resolution model would give superior
inference for any set of decision rule thresholds that fix the false negative rate at a single value
across all methods.

2.4 Patient data analysis

As noted, our first motivating dataset—“patient 1”—comes from a right handed 62 year old woman
who presented primarily with difficulties reading (pure alexia). This patient was found to have a
large tumor in her left middle and inferior temporal gyrus; following partial surgical resection,
the tumor was classified as a glioblastoma multiforme. Our second motivating dataset—“patient
2”—comes from an 18 year old right handed woman who presented after a general seizure. This
patient was found to have a relatively large cavernoma adjacent to insular cortex and the transverse
temporal gyrus. Both patients were scanned prior to surgery while performing a reading task with a
30 second on/off block design to map brain areas associated with reading and subsequent language
processing. The task consisted of silent reading in interleaved blocks of non-final embedded clause
sentences (on; eight blocks) and strings of consonants (control; eight blocks).

Details of our fMRI acquisition protocol and preprocessing are given in Appendix F. Prepro-
cessing resulted in one unsmoothed z-statistic image for each fMRI resolution that summarized
task-related activation over the course of the functional scans. We fit our model to the patient 1
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Figure 2.4: Inference quality in 2D simulations. (Left) Receiver operating characteristic (ROC)
curves comparing dual and single resolution methods to a naive data averaging approach in a
setting that matches the data in Fig. 2.3. The curves show that for almost any given false negative
rate, the dual resolution method can have a uniformly lower false positive rate than alternative
single resolution methods. The ×’s mark the thresholds used to generate the inferential summary
on the (right). These thresholds limit the total number of discoveries to 450 across all four methods.

z-statistic image data to compare relative performance against a set of similar single-resolution
alternative methods. With this analysis, our goal was to show how our method can be applied to
identify peritumoral activations in patient data and to illustrate potential benefits to inference using
combined spatial resolutions. In addition, we fit our model to the z-statistic images from patient 2
to illustrate the method’s capacity to recover an estimate of activation in regions with signal loss.
Signal loss in fMRI data can occur where tissue types with different magnetic field susceptibilities
neighbor one another. This is a common problem encountered in presurgical applications, and can
potentially lead to exclusion of areas of interest from the analysis [e.g. 68, 159].

2.4.1 Covariance estimation

We chose to estimate the Gaussian process covariance hyperparameters θ in the spirit of empirical
Bayes using the method of minimum contrast. Minimum contrast estimation (MCE) originates
from [37] as a moment estimation approach to spatial modeling. The method seeks to estimate
parameters of a function with a known form by minimizing some discrepancy criterion given data.
In our case we extracted empirical covariances between voxels at different distances (“empirical
covariogram”). We then selected θ to minimize a nonlinear least squares objective over (2.5),
treating the empirical covariogram as pseudo data. Appendix C gives a detailed overview of this
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Figure 2.5: Covariograms show empirical covariances between neighboring standard resolution
voxels as a function of distance overlaid with a parametric estimate of the covariance function.

procedure for interested readers, as well as a brief sensitivity analysis over our choice of covariance
function in (2.5).

This method is not without difficulty. For example, asymptotic theory suggests that empirical
covariogram estimation is biased [e.g. 34]. Although this bias does not decrease with increased
sampling density (“infill asymptotics”), it can be decreased by sampling data over increasing do-
mains [110, 158, 184]. This point is worth acknowledging because the kriging identity encoded in
our prior (2.6) makes estimation of the correlation relatively important. On the other hand, MCE is
computationally efficient and scalable to large datasets, and we found that it produced reasonable
estimates of the true covariance function in simulation (see Appendix C.3). One reason for this
may be that with fMRI data we have a tremendous amount of spatial information collected on a
dense grid. Although we can only estimate empirical covariances at a fixed set of distances, we
typically have tens of thousands of unique pairs of voxels separated by those distances. In Fig. 2.5,
we used the standard resolution images to estimate θ as we expect these data to have better SNR
and there is no theoretical benefit to adding infill locations as with the high resolution images. In
doing so, we make an appeal to the notion of a parent process [7] for π{µ(·)}, which could be
defined such that in the prior cov{µ(v), µ(v′)} = k(v,v′) for all v,v′ ∈ B.

For patient 1, an initial unrestricted estimate of θ yielded an estimated kernel exponent of
ν ≈ 1.25; for improved interpretability we reran our MCE procedure fixing ν = 1 to yield
θ = (0.887, 0.135, 1)T. Optimization was performed using the COBYLA algorithm [127] as im-
plemented by [86] in the popular NLopt library. The resulting covariance function is shown in
the left panel of Fig. 2.5, and corresponds to a 10.47 mm full width at half maximum (FWHM)
exponential correlation function. This estimate of θ was used for all of our analyses of patient 1’s
data; correspondingly, we set the neighborhood radius r to 10.35 mm in analyses of this patient’s
data.
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Similarly, we estimated θ = (0.785, 0.132, 1)T for patient 2. The resulting covariance function
(also shown in Fig. 2.5, right) corresponds to a 11.28 mm FWHM exponential correlation function;
we set r to 11 mm for analysis of this patient’s data. In Fig. 2.5, the exponential kernels appear
to fit the empirical covariograms quite well. The points at distances of 0 mm are not outliers but
estimates of the “sill” or marginal variance of the Ys which in our model is τ 2 + σ2

s . Consequen-
tially, our algorithm constrains τ 2 to be strictly less than the empirical variance of Ys, or whichever
image is used to construct the covariogram. In addition, the exponential models in Fig. 2.5 tend to
mildly but systematically underestimate the empirical covariances at displacements around 3 mm.
We discuss how these data points can be modeled more accurately, and elaborate on why it may or
may not be optimal to do so in the Appendix B.2.

2.4.2 Patient 1: Inference on the functional signals

We fit our model to the data from patient 1 described in section 2.2 with custom software written
in C++ that uses the Eigen [66] and FFTW [48] libraries for linear algebra and DFT operations,
respectively. For these analysis, we set the number of leapfrog steps L = 25 and ran three inde-
pendent HMC chains of 4,000 iterations each, discarding the first 1,000 as burnin, and thinning
the output to every third iteration thereafter. Univariate Gelman–Rubin statistics [60] were used
to evaluate voxelwise convergence of µh. This statistic was ≤ 1.03 for every voxel, suggesting
approximate convergence. Additionally, trace plots of means from six randomly selected voxels
are shown in in Appendix B.1 and show good mixing of the Markov chains.

Fig. 2.6 (left) shows posterior mean activation maps for a series of sagittal slices through the
patient’s tumor in left temporal lobe. Activations are overlaid on a high resolution, gadolinium
enhanced T1-weighted anatomical scan. In the figure, we have circled a peritumoral region that
was deemed to determine the surgical access considered. The patient’s tumor can be seen within
this circled region in all slices. As in our simulation studies, we compared performance of our
dual resolution model against single resolution alternatives: models considering only the high or
standard resolution data, and an additional setting using a naive average as data.

In Fig. 2.6 (right), we show that no matter the threshold applied to whole brain posterior activa-
tion maps, our dual resolution method identified at least as many active voxels in the peritumoral
region than if we had ignored the standard resolution data. A visual comparison of the posterior
mean of µ(·) for all four methods is shown in Fig. 2.7. We chose a single sagittal slice to represent
this comparison although the analysis was over the whole brain. Qualitatively, posterior means
from the dual and high resolution analyses appear substantially sharper than for the standard reso-
lution analysis. At the same time, differences are apparent in the dual and high resolution posterior
means, particularly around the edges of areas with high magnitude signal. We also plot voxelwise
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Figure 2.6: Patient 1: (Left) Thresholded posterior mean image shows peritumoral activation iden-
tified using our dual resolution method. The tumor is the region of mixed hypo- and hyperintensity
in the temporal lobe across slices; the peritumoral region is outlined in each panel (in cyan). Func-
tional activations are shown in warm colors, and functional deactivations are shown in cool colors,
with units on the z-statistic scale. Activation regions are shown setting k1 in our decision rule
(2.9) to 17 to enhance the visualization. Slices are shown proceeding lateral-to-medial through the
left hemisphere in left-to-right, top-to-bottom order. (Right) Cumulative counts of discoveries at
varying decision thresholds. Voxelwise discoveries in the peritumoral region plotted against whole
brain discoveries for both dual and high resolution methods.

comparisons of dual and high resolution posterior means and variances of µh in Fig. 2.7. In the
figure, voxels with high signal strength typically had higher magnitude posterior means estimated
with the dual resolution model; marginal variances of the µh,i, moreover, were lower with the dual
resolution model in about 72.4% of voxels. With respect to mean image smoothness, we estimated
(using our MCE procedure; see section 2.4.1) the standard resolution posterior mean image had
a kernel FWHM of about 17.3 mm, and the high resolution posterior mean image had a kernel
FWHM of about 13 mm. Appropriately, the dual resolution posterior mean image had a kernel
FWHM between these two, at about 14.4 mm. Relating back to Fig. 2.1, our initial goal in model-
ing joint data sources was to reduce noise inherent in the high resolution signal and leverage signal
strength from the standard resolution data. Taken all together, these results demonstrate that we
have met that goal.

Additional patient 1 model fit and diagnostic evaluations are given in Appendix B.1. In par-
ticular, we evaluated the residual independence approximation present in our model likelihood by
running our kernel estimation procedure (see section 2.4.1) on the model residual images. These
analyses suggested that residual correlation decayed to near zero within the smallest voxel dimen-
sion widths, leading us to conclude that residual independence was a reasonable approximation in
our data. Full results are available in Appendix B.1.
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Figure 2.7: Patient 1: visual comparison of posterior means in a single sagittal slice from four mod-
els fit to different combinations of whole brain patient data (middle). The (top) row of the figure
shows the raw data from the same slice at both high and standard resolution. Grayscale intensity is
shared across all subfigures. The (bottom) row shows a comparison of voxelwise posterior means
(bottom, left) and variances (bottom, right) of the elements of µh estimated using the proposed
model and a single (high) resolution alternative. The gray lines show identity relationships for
comparison; variances were lower using the dual resolution model in about 72.4% of voxels.

2.4.3 Patient 2: Recovery of lost signal

Similar to our analysis of patient 1, we fit our dual and single resolution models to the data from
patient 2. In this case, we ran five independent HMC chains for each model and set the chain length,
burnin, thinning rate, and number of leapfrog steps identically as above. Univariate Gelman–Rubin
statistics were ≤ 1.05, again suggesting approximate voxelwise convergence of µh. Our primary
goal with this analysis was to illustrate our method’s ability to recover estimates of activation from
regions of signal loss.

In this particular data set, the patient’s cavernoma caused a region of GE-EPI signal dropout,
with blooming along the left insular and upper temporal lobe (see Fig. 2.8, left). This is a com-
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Figure 2.8: Patient 2: (Left) Core regions of fMRI signal loss across the left temporal and insular
cortex are highlighted on high and standard resolution T2∗-weighted slices. (Right) Comparison of
the mean parameter for voxels in the core high resolution dropout region. We fit our dual resolution
model to parallel versions of the data with and without missingness. The posterior mean estimate
of µ(·) without missing data is shown on x-axis, with the difference in the estimates shown on
y-axis. Error bars give ± one standard error of the difference estimated across five HMC chains.

mon occurrence in clinical fMRI: brain lesions can induce signal loss and magnetic susceptibility
artifacts in gradient echo imaging. The functional signal is not “missing,” per se, but local signal
hypointensities can cause image preprocessing software to exclude affected areas from analysis
[68]. Such was the case here, and we leveraged this data structure to highlight our model’s predic-
tive ability. By adjusting brain/background thresholding in FSL, we created two versions of this
patient’s task contrast data: one where data in the core dropout region was completely masked out
of all analyses (with missing data), and one where voxels in this same region were included in all
analyses (without missing data). In this case, we were able to create parallel versions of the data
for this patient, though in more general practice it may sometimes be difficult to engineer the data
without missingness [68].

We fit our models to both versions of the data to compare resulting functional estimates. In the
case of missing data, the Gaussian process formulation of our model enables natural prediction of
values of µ(·) for voxels with missing data. In the high resolution image, the region masked out
due to signal loss encompassed exactly 100 voxels, had a maximum length (measured anterior to
posterior) of around 25–26 mm, and was on average about 9.4 mm wide (lateral to medial) and 4.5
mm tall (dorsal to ventral). In the low resolution image, masked dropout was limited to only two
voxels given default brain/background thresholding in FSL. With typical preprocessing pipelines
we would generally expect more signal loss voxels to be excluded from high resolution images. In
Fig. 2.8 (right) we show, for our dual resolution method, the correspondence of predicted/estimated
voxelwise means in the dropout region for the two data variants. The figure shows excellent corre-
spondence: the Pearson correlation between the predictions and the estimates is 0.673, suggesting
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our method has a strong capacity for signal recovery in dropout regions of this size. Similar pre-
dictions/estimations using only the high resolution data also show good correspondence, but were
made with higher variance relative to our dual resolution approach in 81 of the 100 dropout region
voxels.

Similarly, across the whole brain, the marginal variances of µh for patient 2 were lower with
our dual resolution approach in about 62.4% of voxels (compared to the high resolution model).
Moreover, we estimated that the dual resolution posterior mean image smoothness had a kernel
FWHM of about 7.5 mm, while the high and standard resolution posterior mean image smoothness
FWHMs were about 7.6 mm and 13.5 mm, respectively. Overall, estimation and inference about
µh was more similar between our dual and high resolution models here than for the previous
patient. Altogether, results from our analysis of the patient 2 data again suggested our inference
benefited from combining information from both spatial resolutions, though the benefit may be less
pronounced compared to in patient 1. Based on our single data source high and standard resolution
alternative methods, we estimated that for patient 2, the standard resolution data provided only a
modest 5.4% improvement in SNR compared to the high resolution data. By contrast, for patient 1,
the standard resolution data provided approximately a 139% improvement in SNR, lending context
to the above result.

2.5 Discussion

Preoperative fMRI presents many interesting and unique statistical challenges from an applied per-
spective. Presurgical planning requires spatially precise localization of patient specific functional
neuroanatomy, but the current physical limitations of MR imaging technology lead to reductions in
the signal to noise ratio (SNR) with increases in spatial resolution. This inherent limitation has led
to the hypothesis that collecting fMRI data at multiple spatial resolutions may result in improved
functional region detection; our simulations in the present paper suggest that this may indeed be
the case. We have also shown how a simple decision rule can be applied by practitioners to infer
about functional regions given some desired trade off between false positive and false negative er-
rors. This is important because neuroradiologists and neurosurgeons may be more concerned with
false negative errors, which could lead to resection of functionally relevant tissue in practice.

With our present work, we propose to base inferences about functional regions on a joint model
for images collected at each spatial resolution. Modeling high dimensional correlated outcomes
can be quite challenging computationally, and the dataset presented the additional burden of inte-
grating two data sources with different spatial support sets. We circumvented this problem with a
Gaussian parent process approximation using only the highest collected resolution image’s voxel
locations as a primary support set, and embedding these locations within a larger, toroidal space,
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leading to computational gains. As a consequence, our Gaussian process model and related algo-
rithm has very natural extensions to cases with different numbers of data sources. For example, we
recognize that not every preoperative plan will rely on collecting both high and standard resolution
fMRI data. Our model can easily accommodate the situation where only one spatial resolution is
collected by simply dropping unobserved data from the joint outcome.

Just as easily, our model could accommodate data collected at additional spatial resolutions with
minimal added computational cost. In fact, in a different setting, we imagine our method could
be used for image based meta-analysis to synthesize results from multiple experimental studies.
In such a setting, posterior credible sets—Bayesian analogs of spatial confidence sets from [18]—
could be used to shift inferential focus back to limiting a family wise false positive error rate. With
the recent proliferation of large, multi-center imaging collectives [e.g. 166], we feel this may be a
promising area for further applied research.

One important limitation of our present model is that we treat both the prior mean model and
the errors within each image as stationary processes. In general, stationarity may not be a realis-
tic assumption for imaging data [e.g. 180]. In the case of our mean model, stationarity is only a
limitation of the prior: given the data the posterior may still reflect a non-stationary process. In
our analysis of the residual images from patient data we found that while there was some resid-
ual spatial autocorrelation, this autocorrelation in general decayed to near zero within one to two
voxel widths (see Appendix B.1 for figures). Thus we concluded that prior model mean-field sta-
tionarity can lead to reasonable posterior approximations for these data. Our model on the error
structure, however, is a bit more restrictive. We further note that residuals tended to show modestly
higher dispersion in gray matter than in white (see Appendix B.1). While we do not believe this
difference is so pronounced as to negatively impact our analyses, it may be worthwhile to explore
non-stationary error models. In general, this is a difficult issue. Allowing too much flexibility in
the error process may, for example, lead to model non-identifiability or similar complications.

In our simulations and analysis of patient data we showed that our dual resolution method bor-
rows strength from both data sources to improve inference, especially around the edges of active
regions, without sacrificing the spatial resolution of the high resolution data (confer from Figs. 2.7
and 2.4). To accomplish this task with patient images, we started from the output of typical single
subject fMRI analyses, treating summary statistics from voxelwise marginal time series models as
data. [17] similarly used summary statistics from voxelwise marginal models as data in a group
analysis in an experimental setting. Although their approach and setting was different from ours,
the authors also chose not to smooth their data during preprocessing and made a similar indepen-
dent noise approximation in their model likelihood as we do here [17]. We provide additional
evaluation of our independent and homogeneous residual noise approximations in Appendix B.1
and conclude that the approximations are reasonable in our patient data. While we might even-
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tually like to incorporate available time series information into our model, doing so would only
add to computational complexity, and it is unclear to what extent spatial inference would improve
as a result. At present, a handful of integrated spatiotemporal models have been developed for
fMRI studies, but nearly all of these are intended to be fit to single slice data, not whole brain [e.g.
124, 65, 99]. Only more recently have variational approximations been leveraged to enable whole
brain spatiotemporal inference at a reasonable computational cost [149]. In its current form, our
work uses summaries of temporal data to enable whole brain inference at a very fine spatial scale,
but there may be room to incorporate richer temporal information into our model as part of future
study.

Finally, in our work we estimated the Gaussian process hyperparameters θ = (τ 2, ψ, ν)T from
the data in the spirit of empirical Bayes. We accomplished this goal by minimizing a least squares
contrast function over an empirical covariogram estimated from the data. Other approaches to
learning these parameters include maximizing the data marginal likelihood [e.g. 110], and fully
Bayesian estimation [e.g. 7]. We chose our minimum contrast estimation (MCE) type approach
as it is generally more extensible to the size of our dataset. Computing the marginal likelihood
would involve inversion of an (n× n) matrix where n is the number of voxels or spatial locations.
Our posterior computation algorithm specifically avoids even constructing such a matrix, which is
impossible to store on most computer systems (see section 2.2.2). Fully Bayesian estimation of
θ on the other hand is possible, though still computationally demanding. The kernel bandwidth
and exponent parameters, ψ and ν, respectively, can be quite slow to update with multiple data
sources, and computation time is a concern in a preoperative setting. In contrast, the partial sill
variance τ 2 is straightforward to update in our framework, and an abundance of spatial data make
this parameter strongly identifiable. We considered updating τ 2 by default in our algorithm, but
found that it did not dramatically affect spatial inference in our data and sometimes led to slower
Markov chain mixing. As a result, we decided to condition inference on fixed θ by default in our
analyses and consider alternative estimation methods a possibility for future extension.

Conditional on θ, our method enables spatially precise inference on whole brain fMRI data
collected at multiple spatial resolutions. Despite the very high dimensional nature of our data, our
method is computationally efficient enough to be viable for application in presurgical planning. In
addition, we have shown through simulation that inference drawn from a joint model using both
available data sources can lead to substantial improvement over inference with single resolution
alternatives. We hope that this body of work will benefit the presurgical fMRI community, and
may find extension in experimental fields by supporting image based meta analysis and results
synthesis.
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CHAPTER 3

A Semiparametric Mixture of Spatial Regression
Models for Subgroup Effect Estimation in

Group-Level Imaging Studies

Unsupervised learning of class labels is an area of broad applied interest. Here, we propose a semi-
parametric hierarchical model for image-on-scalar regression in the presence of potential unknown
subgroup heterogeneity. We model the mean intensity of imaging outcomes as a mixture of regres-
sion models with spatially varying coefficient functions. In turn we use Gaussian process priors
to model spatial correlation in the regression coefficients. Additional participant-level covariates
are used to inform the mixing distribution by way of a logistic stick-breaking process prior. This
general class of prior allows construction of individual-specific mixture weights, inducing cor-
relation in mixture component assignments between individuals with similar covariate features.
We solve the problem of computing with high dimensional mixture components by projecting the
original data onto a lower dimensional subspace. An appealing consequence of this construction
is that subgroups are identified based on low-rank features in the data. We show in a simulated
toy example how our proposed method can lead to clustering and estimation performance superior
to common unsupervised methods. Finally, we illustrate use of our stick-breaking model in the
context of neurotyping in patients with Autism spectrum disorders using preprocessed single-site
data from the Autism Brain Imaging Data Exchange.

3.1 Introduction

Detecting meaningful subgroups in the absence of explicit cluster labels (unsupervised learning) is
an area of interest in many applied settings. For instance, one of the central goals of the precision
medicine initiative is ultimately to improve patient prognoses through use of individually targeted
treatment and prevention regimes [27]. Disease subtyping is widely recognized as an important
component of this general goal [see e.g. 77, 145, for reviews], and consequentially is an area
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of active research. Researchers, for example, have long sought meaningful subtyping within the
Autism spectrum disorders (ASD) [see 76, 167, for reviews]. Classically, subtyping of ASD has
been accomplished through analysis of patient profiles of one or more clinical severity indicators
[e.g. 64]. Only more recently have researchers begun to study possible ASD subtyping through
imaging biomarkers (neurotyping) [e.g. 40, 162].

In cases like these, the prevailing methodology is to apply a clustering algorithm or factor
analysis model to part of the data—e.g. the imaging outcomes—and then test for cluster-based
differences among remaining covariates—e.g. the clinical indicators. We posit that a fully gener-
ative model may lead to more accurate and meaningful estimation of subgroups in data with this
type of structure. With the present paper, we propose a semiparametric hierarchical model for
image-on-scalar regression in the presence of potential subgroup effect heterogeneity. Our pro-
posed method will be useful when group structure is not known but can be reliably inferred given
observed covariates. We accomplish this by modeling the mean intensity function of imaging out-
comes as a mixture of regression models with spatially varying coefficient functions. In turn, we
model the uncertainty in each spatially varying coefficient function using Gaussian process priors.
Individual-level covariates are used to inform the mixing distribution by way of a logistic stick-
breaking process (LSBP) prior on individual-specific mixture weights [136]. This general class
of prior induces correlation in mixture component assignments between individuals with similar
covariate features. Given data, the posterior distribution of the mixture weights can be used to help
impute and make inferences about latent subgroups and participant membership.

Here, we solve the problem of computing with high-dimensional mixture components by con-
ditioning on the hyperparameters of the Gaussian process covariance function and projecting the
original data onto a lower dimensional subspace. In practice, the covariance hyperparameters can
first be estimated from the data, and an optimal projection can be defined following the ideas of
[146, 134, 7, 45]. Though this form of low-rank projection entails some loss of information, in
practice it has been shown to perform reasonably well in the mean squared prediction error sense
[71]. Moreover, this construction implies that subgroups are defined based on low-rank spatial
features in imaging data: an idea we find intuitively appealing. We write our prior hierarchy so
that, using existing data augmentation schemes, full conditional updates are available for all of
our model parameters and reasonably efficient posterior inference can be achieved via Gibbs sam-
pling. We show in a simulated toy example how our proposed method can lead to clustering and
estimation performance superior to common unsupervised methods. Finally, we illustrate use of
our method in the context of ASD neurotyping using preprocessed single-site data from the Autism
Brain Imaging Data Exchange (ABIDE). Software for our method is available online.

The rest of this paper is organized as follows. We briefly introduce the LSBP prior in section 3.2,
and present our use thereof within the rest of our model hierarchy in section 3.3.1. We continue by
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describing our spatial regression approach in section 3.3.2, and outline our posterior computation
scheme in section 3.3.4. In section 3.4 we demonstrate the feasibility of our method in a simulated
toy example and compare against a modified k-means procedure. We illustrate use of our method
neurotyping ASD patients from the New York University cohort of the ABIDE I preprocessed data
in section 3.5. To end, in section 3.6 we discuss issues of computational scalability and consider
potential data-specific extensions of our method.

3.2 Logistic stick-breaking process models

Dirichlet process models [42, 14] have garnered wide use as a backbone of nonparametric Bayesian
statistics. The typical goal of such models is to approximate any general density function f(·) by
a weighted sum of simpler densities. The stick-breaking constructive definition of the Dirichlet
process [147] explicitly represents,

f(·) =
∞∑
k=1

ωkδθk , ωk = pk
∏
m<k

(1− pm), pk
iid∼ Beta(1, α), θk ∼ P0, (3.1)

where δθ is the Dirac measure with mass on θ, and P0 is some base distribution which generates
atoms (θk)

∞
k=1. With this construction, the ωk can be thought of as a countably infinite sequence

of random probability measures on each corresponding atom θk, such that limk→∞ ωk = 0 and∑
k ωk = 1 almost surely. The “concentration” parameter α > 0 controls how quickly the ωk

converge to zero. In general, P0 need not be a distribution over a subset of the real line, and
generalizations exist with P0 a distribution over some arbitrary multivariate or functional space.
For computational tractability, common solutions to estimate the posterior distribution of f(·) given
data (yi)

N
i=1 typically rely on imputing auxiliary cluster labels Ci for each datum yi. Cluster labels

can then be integrated out of the posterior to recover the nonparametric density.
Dependent Dirichlet process-type models were introduced by [108] to induce correlation in

the latent clustering process for data indexed by similar additional features, z [131]. For exam-
ple, to formulate the logistic stick-breaking process (LSBP), [136] began from the stick-breaking
construction above and redefined,

ωk(z) = pk(z)
∏
m<k

{1− pm(z)}, ln

{
pk(z)

1− pk(z)

}
= zTγk, γk ∼ πγ, (3.2)

where πγ is the prior placed on elements of the series of logistic regression coefficients, γk. This
construction, which we abbreviate by ω(z) ∼ LSBP(πγ), allows pk(z) and pk(z′) to be close to
one another for “similar” inputs z and z′, leading to correlated cluster assignments. In our present
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work, we leverage this idea to cluster outcome images given participant-level covariates z.

3.3 Methods

3.3.1 Proposed model

Let B denote a generic brain image space, and let B ⊂ B denote the sets of spatial locations in
the brain where fMRI data are collected. Each atom v ∈ B is a three dimensional vector of spatial
coordinates measuring distance from some origin point, v0 ∈ B; the Euclidean distance between
any two points, v,v′ ∈ B can be represented ‖v−v′‖, and is typically measured in millimeters.
Although data at a given voxel is associated with a small volume, we follow common practice and
treat that data as observed on location v exactly.

We denote imaging outcomes at specific voxels by yi(v), v ∈ B, where i = 1, . . . , N indexes
participants or images. Additionally, we define notation yi = [yi(v)]v∈B to refer to the entire brain
image outcome for participant i. We take each participant’s data to be referenced by sets of scalar
of covariates xi ∈ RP and zi ∈ RQ, that can describe participant or measurement characteristics
such as age or gender. We will link the xi to mean model structure, and the zi to the mixture
weight structure below. For brevity we also allow zi to include covariates that may be linked to
random effects in the study population. Let N (µ,Σ) denote the normal distribution with mean µ
and variance Σ. For many problems in applied imaging research it can be reasonable to model the
data as jointly Gaussian. We write,

yi(v) = µi(v,xi, zi) + εi(v) where εi(v) ∼ N (0, σ2(v)), (3.3)

for i = 1, . . . , N , and v ∈ B. In equation (3.3), we express imaging outcome yi(·) as the sum of
a mean image intensity function µi(·) and a non-stationary white noise process described by vari-
ance function σ2(·). Mean image intensity functions µi(·) are taken to depend on spatial location
as well as participant-level covariates. In writing the model this way, we make the (potentially
approximate) assumption that εi(v) is conditionally independent of εi(v′) for any two v,v′ ∈ B,
v 6= v′. Our prior on the µi(·), however, will induce spatial correlation in the corresponding yi(v)

and yi(v′) in section 3.3.2. Using the shape-rate parameterization of the Gamma distribution, we
assign the error process precision function σ−2(·) a weakly-informative hierarchical prior such
that,

σ−2(v)
iid∼ Gamma(1, ξ), π(ξ) ∝ 1(ξ > 0), (3.4)

taking 1(A) ∈ {0, 1} to denote the event indicator function (1(A) = 1 if event A occurs, and
0 otherwise). Given the large number of spatial locations in a typical imaging analysis, the error
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process rate parameter, ξ, will usually be strongly identified even with minimal prior information.
The likelihood in (3.3) is quite general and could be adapted to a variety of methods for imaging.

As written, we consider this model best for use with unimodal imaging outcomes, such as structural
images or task-based contrast data. Although the model could be extended to handle multimodal
images or time series data by incorporating additional structure in the µi(·), this is not our present
focus. The defining feature of our method lies in the construction of the prior for the regression
function µi(·). To induce a subgrouping effect construct, we model the mean intensity function for
each image using a mixture prior with,

µi(v,x, z) ∼
∞∑
k=1

ω†k(z)δµ†k(v,x)
, (3.5)

where the ω†k(·) are mixture weights, and δµ† is the Dirac measure as in section 3.2. Throughout,
we will use the dagger superscript to help us distinguish mixture component-specific parameters.
We use an LSBP prior (discussed in Section 3.2) to inform the mixture weights for each individual
given known subject-level covariates z,

ω†(z) ∼ LSBP(πγ), (3.6)

where each ω†k(·) maps RQ onto the unit interval. Notice from (3.2) that this choice of prior can lead
to different mixture weights for participants i and i′ when zi 6= zi′ . When individuals have similar
covariate profiles (e.g. in the supremum norm sense), however, their mixture weight functions will
also be similar a priori. This feature of the prior represents the belief that individuals with similar
covariate profiles are more likely to share patterns in their imaging outcomes. For the sake of
exposition, we will reserve discussion of our choice of prior πγ for the moment. It is enough to say
that it will be convenient to work within the Gaussian scale mixture family for conjugacy, and that
we center πγ on zero to encourage approximate sparsity in the γ†k. These choices roughly follow
those in [136].

3.3.2 Spatial regression model mixture components

In equation (3.5), the mixture components are random functions µ†k(·), that we in turn express as
a linear model with spatially varying coefficient functions. To induce spatial correlation in the
mean intensity across imaging outcomes, we use Gaussian processes to model the probability law
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governing each spatially varying coefficient function,

µ†k(v,x) =
P−1∑
j=0

xjβ
†
k,j(v), where β†k,j(v) ∼ GP(0, K(v,v′)), (3.7)

and where covariance functionK(·) is taken to parameterize the covariance of the spatial processes
β†k,j(·). Here, we center the spatially varying coefficient functions on zero without loss of general-
ity: this choice can typically be made reasonable in practice for example by centering the outcome
images yi on their global mean. In our application, we define K(·) based on a the notion of a
Gaussian parent process [7] with a stationary, isotropic correlation structure. We define our K(·)
so that the full-rank parent processes are projected onto low-rank bases. One appealing feature of
this construction is that it implies the components of our mixture prior can be distinguished based
on relatively low-dimensional features. We also make this choice for computational convenience
since for a typical imaging data set the number of voxels in B can make it difficult to impossible
to work with the full-rank Gaussian parent process.

To formalize our choice of K(·), let V∗ ⊂ B denote a set of M∗ = |V∗| knot locations in the
brain, and let ρ(v,v′) denote a positive definite correlation function such that ρ(v,v′) = 1 when
v = v′ and ρ(v,v′) ≤ 1 otherwise. Though many options are available for the choice of correlation
function, here we take ρ(v,v′) = exp(−ψ‖v−v′‖ν) to represent the two parameter radial basis
correlation function with decay hyperparameter ψ > 0 and exponent parameter ν ∈ (0, 2]. We
chose the radial basis function family here per the long history of Gaussian smoothing in applied
imaging analyses. This function is synonymous with the Gaussian kernel when the exponent ν = 2;
additional literature suggests that the exponential kernel (with ν = 1) may be more appropriate
for analysis of fMRI task data [65]. Let c∗(v) = [ρ(v,v∗)]v∗∈V∗ denote a vector in RM∗ , and
let C∗ = [ρ(v∗,v

′
∗)]v∗,v′∗∈V∗ denote the (M∗ ×M∗) dimensional correlation matrix evaluated at

locations in V∗. For any two v,v′ ∈ B, we take,

K(v,v′) = τ 2cT∗(v)C−1∗ c∗(v
′), (3.8)

where τ 2 > 0 is the marginal variance of the β†k,j(·). Expressing the Gaussian process covariance
function as in (3.8) has been shown to be “optimal” in the sense of minimizing the Kullback-
Leibler divergence from the full-rank Gaussian parent process [146, 7]. That is to say that if Π is
the full-rank parent process distribution defined with covariance function KΠ(v,v′) = τ 2ρ(v,v′)

everywhere in B, and Π∗ is a distribution from the class of distributions of projected processes
conditioned on knots V∗, then defining the projected process covariance as in (3.8) minimizes
D(Π∗ ‖Π), where D(·) denotes Kullback-Leibler divergence. With this construction, τ 2 can be
treated as a known hyperparameter or assigned a weakly-informative prior and estimated from the
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data. In the present paper, we take a hybrid approach and estimate θ = (τ 2, ψ, ν)T from the data in
an empirically Bayesian fashion. We will discuss this procedure in greater detail in section 3.3.5.

3.3.3 Prior on the logistic model sequence coefficients

Importantly, the mixture prior expressed in (3.5) and (3.7) assigns individual-specific weights to
the series of mixture components. The logistic stick-breaking prior in (3.6) uses individual-level
covariates to help inform the mixture weights. In this section, we complete construction of our
LSBP by describing the prior πγ on the sequence of logistic model coefficients (γ†k)

∞
k=1.

Above, we consolidated notation by lumping fixed and random clustering effects within each
vector γ†k. In our ensuing discussion, we assume the covariates zi contain at minimum a global
intercept term, and possibly additional terms linked to fixed and random clustering effects. We
use the Gaussian scale-mixture family to express our prior model for the corresponding γ†k. Let
Jf ⊂ {1, . . . , Q− 1} denote the index set of the fixed clustering effect coefficients for our model,
and let Jr ⊂ {1, . . . , Q−1} with Jf ∩Jr = ∅, denote the index set of one random clustering effect
component. For all k, we let,

γ†k,0 ∼ N (m0, η
2
0),

γ†k,j ∼ N (0, ζ†2k,jη
†2
k ), j ∈ Jf ,

γ†k,j ∼ N (0, ζ†2k,r), j ∈ Jr, (3.9)

where m0 and η20 > 0 are considered known hyperparameters, the product ζ†2k,jη
†2
k > 0 is the prior

variance of the fixed clustering effect coefficients, and ζ†2k,r > 0 is the prior variance of the random
clustering effect coefficients indexed by Jr. More complex models can be written, for example,
by adding extra random clustering effect and associated variance terms. In the present case, we
introduce approximate selection of the fixed clustering effects by assigning those coefficients the so
called horseshoe prior [21]. Other choices of prior could be made. For example, [136] explore the
spike-and-slab and Laplace priors, which are also both special cases of the Gaussian scale-mixture.
We express the prior on the on the fixed clustering effect hierarchical variance components,

η†k ∼ Cauchy+(0, 1), ζ†k,j
iid∼ Cauchy+(0, 1), for j ∈ Jf , (3.10)

where Cauchy+(a, b) denotes the half-Cauchy distribution with location a, shape b, and support on
non-negative real line R≥0. This class of prior aggressively shrinks “small” coefficients towards
zero, while leaving larger magnitude coefficients relatively unpenalized. For random clustering
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effect coefficient blocks, we assign the associated variance terms relatively non-informative priors,

π(ζ†−2k,r ) ∝ 1(ζ†−2k,r > 0). (3.11)

This construction mirrors the typical prior hierarchy for describing random effects in generalized
linear models.

We partition the component logistic model coefficients in this way to highlight the importance
of the component intercept parameters γ†k,0. The general Dirichlet process model (3.1) contains a
concentration parameter α which controls how quickly the sequence of mixture weights converges
to zero. In the posterior, the data inform the number of occupied mixture components or clusters.
A well known result for this family of models is that the expected number of clusters grows in
proportion to the concentration parameter α times the log of the sample size N . Unlike in the
Dirichlet process, the LSBP does not contain a single parameter that controls the mixture weight
convergence rate. Rather, the zi and the γ†k control the component mixture weights in a complex
way. In the absence of additional covariate information, however, the γ†k,0 play a role analogous to
the Dirichlet process concentration parameter.
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Figure 3.1: “Effective prior” on the number of active mixture components for N = 100 samples
as a function of the prior on the LSBP intercept parameters.

By assuming m0 and η20 fixed and constant across mixture components k = 1, 2, . . . we can
control the effective prior on the number of clusters we can expect to see occupied by N data
points. We study the nature of this “effective prior” in a small simulation, the results of which are
summarized in Fig. 3.1. In the figure, we sampled mixture weights for N = 100 individuals in the
absence of other covariate information, assigned individuals to specific mixture components using
multinomial sampling (truncating the infinite measure at N components), and counted the number
of assigned or active clusters. We repeated this procedure 2,000 times for handful of different m0
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and η0 combinations. Fig. 3.1 shows sideways histograms (counts unlabeled) of the number of
active clusters generated under varying m0 and η0. In general, as might be expected intuitively,
the hyperparameter m0 influences the expectation and η20 controls the spread of the number of
occupied clusters, given N (though this is not strictly true as can be seen in the m0 = −1 panel).
Further, we note that for a given choice of m0 and η20 , the expected number of active clusters grows
roughly linearly with log(N) (not shown).

3.3.4 Posterior computation

In this section we briefly outline a blocked Gibbs sampling algorithm for posterior computation
with our model. Derivations of the full conditional distributions for each block of parameters is
given in Appendix J. This approach requires us chiefly to truncate the infinite sequence of random
measures ω†k(·) at some manageable upper bound, which we will call T . Choice of T will in general
depend on the problem at hand, the sample size N , and, as we have seen in section 3.3.3, the prior
on the γ†k. In the greater Dirichlet process mixture model family literature, T is commonly chosen
between 10–50 to limit the total number of mixture components. When following this strategy for
computing with infinite mixture models, it can be important to assess sampling during run time to
ensure that the number of active mixture components is somewhat less than T .

Our Gibbs sampler also relies heavily on the introduction of latent data components. Most
importantly, we will introduce latent cluster labels Ci ∈ {1, . . . , T} to resolve the mixture model
for each individual i = 1, . . . , N . Given the cluster labels, the other model parameters can be
updated with relative ease. To update the γ†k, we will additionally have to introduce latent data to
facilitate sampling of logistic models. Published latent data formulations for logistic models are
available in [74] and [126].

Critically, by saving samples of C, we can also obtain inferential summaries about cluster as-
signments, leading to latent group identification. For statements about cluster assignment to make
sense, we must ensure that cluster labels retain their meaning over Markov chain Monte Carlo
(MCMC) iterations. It is a well known problem when working with mixture models that the like-
lihood is frequently invariant to permutations of the mixture component indices [e.g. 83]. This
can ultimately lead to the so called “label switching problem” where quantities associated with
cluster k at iteration t become associated with cluster k′ at iteration t′, and the notion of coher-
ent subgroup membership disintegrates in MCMC averages. Papastamoulis and Iliopoulos [122]
proposed an elegant solution to this problem that we employ here. Briefly, given a reference set
of cluster labels, (C∗i )Ni=1, the labels at iteration t, (C(t)i )Ni=1, can be realigned by minimizing some
function that measures the cost associated with changing label k into label k′. We follow [122],
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and use,

L
(
C∗, C

)
= −

N∑
i=1

1
(
C∗i = Ci

)
as our cost function. Finding a minimum cost relabeling solution is known as the “assignment
problem” [91], and can be solved quickly using a number of existing algorithms. For our purposes,
we have implemented the “primal-dual” algorithm of [20] to solve our cluster label assignment
problem efficiently.

Though this procedure can be fooled if, for example, the estimate of C∗ is poor, we have ob-
served it to work well practically. With a reasonable estimate of C∗, the [122] algorithm can
mitigate interpretive issues that arise due to label switching. Importantly, the per-iteration com-
putational cost of doing so grows with N but not with model complexity, and in many cases can
be negligible compared to other parameter updates. In practice, we allow MCMC chains free ex-
ploration of the posterior during burnin including label switching moves. We keep track of the
overall log posterior during warm up, and estimate C∗ as the clustering associated with the highest
value of the log posterior over burnin iterations. We can then permute the cluster labels in C∗ so
that indices k = {1, . . . , T} are sorted in descending order of their associated cluster sizes. Then
during sampling, we relabel and reorder the clusters based on C∗ to maintain consistent subgroup
meaning over saved iterations.

As a final note, it can be useful to think about reasonable soft starting points for our algorithm,
which may help accelerate convergence. In the present case, we have chosen to initialize our pos-
terior computation algorithm with a single k-means scan of the outcome images without reference
to any of the clustering covariates zi. With this scheme, we require only that the initial number of
clusters be less than or equal to T .

3.3.5 Estimation of the Gaussian process hyperparameters

In typical 2D spatial regression settings it is common to use Gaussian processes to model a spa-
tially correlated variance component [e.g. 33]. In cases like these, practitioners can estimate the
Gaussian process hyperparameters by integrating the Gaussian random field out of the likelihood
and maximizing with respect to θ [e.g. 110]. We can estimate θ prior to MCMC in the same
manner by first marginalizing the random function µi(·) out of the likelihood. This turns out to
be relatively easy since (i) our prior on the β†k,j(·) is conjugate to the likelihood; (ii) the mixture
weights ω†k(·) sum to one for any input; and (iii) we write our model with θ homogeneous across
all of the mixture components.

To develop the marginal likelihood for our problem, let s = 1, . . . ,M index the set of voxel
locations B, with M = |B|. Let yi denote the vectorized set of image outcomes for individual
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i so that yi,s = yi(vs), and let Σ = diag{σ2(v1), . . . , σ
2(vM)}. Also, let K denote the prior

covariance of one of the β†k,j(·) over all locations in B so that Ks,s′ = τ 2ρ(vs,vs′). Then, ignoring
the integration constant, we can write the log marginal likelihood of individual i’s outcome image,

f(yi | Σ,θ) = −1

2
ln det Λi −

1

2
yTi Ω

−1
i yi,

where Λi = Σ + xTi xiK. In practice, evaluating this function is not computationally tractable if
the number of locations in B is large enough: decomposition of the Λi is in general an O(M3)

operation, and can be very slow whenM is more than several thousand. We work around this issue
programmatically by simply evaluating f(·), etc. over some fixed subset of the locations in B. In
practice we have handled this by taking a random subset of B of a given size. For this optimization
step, we make the further simplifying approximation that σ2(v) ≡ σ2 for locations v in the spatial
subset. If for example the covariance function is taken of radial basis family as in (3.8), then these
simplifications mean that we only have to optimize f(·) over four parameters, (σ2, τ 2, ψ, ν). In the
present work, we have accomplished this with off-the-shelf software for constrained optimization
[127, 129]

3.4 Simulation study

3.4.1 Small 3D simulation design

We created a small scale simulation to study the performance of our method when subgroup mem-
bership is known, and to illustrate what we can expect to gain compared to simpler methods of
subgroup discovery. Fig. 3.2 gives a schematic example of our simulation design in this setting.
We simulated data on a 32× 32× 16 grid as follows. Each simulated individual i was assigned to
a discrete grouping covariate with ten levels. We treated this grouping factor as the zi; individuals
were evenly divided amongst the levels of this factor. As shown in the bottom of Fig. 3.2, the
levels of this grouping factor were differentially associated with each of nine true subgroups indi-
cated by the letters “A” through “I.” Conditional subgroup probabilities (shown in grayscale in the
bottom of Fig. 3.2) were sampled from an LSBP once and then fixed across our simulations. Letter
subgroup assignments, however, were resampled for each simulation iteration. Here we refer to
the subgroup assignments as the true cluster labels, which we denote by C?, where C?i = 1 denotes
letter “A” group membership, etc.

For simplicity, we generated individuals’ outcome images using a simple model with just two
spatially varying terms: a global intercept and a coefficient linked to a scalar covariate. Let βi,j(·)
be shorthand to refer to the true jth covariate function for individual i—i.e. β†C?i ,j(·) more pre-
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yi(·) βi,0(·) βi,1(·) εi(·)

= ++ xi,1

Figure 3.2: Simulation design with up to nine true subgroup effects corresponding to βi,1(·) equal
to a smoothed letter image (one of “A” through “I”) for each simulated individual i = 1, . . . , N .
The top row of the figure shows a schematic example of our data generating mechanism, while the
bottom row shows the true probability of subgroup assignment for simulated individuals in one of
ten discrete bins (Groups 1–10).

cisely. We sampled the intercept coefficients, βi,0(·), from a mean zero Gaussian process with a
six voxel full-width-at-half-maximum (FWHM) Gaussian covariance function (unit marginal vari-
ance). These parameters were resampled for each simulation iteration, but fixed within iteration
to be the same across all individuals so that βi,0(·) ≡ β0(·). Covariate coefficient images, βi,1(·),
were created by embedding binary images of capital English alphabet letters within the central six
(32×32) slices of otherwise null 3D images. We then smoothed the letter boundaries by convolving
the entire image with a two voxel FWHM Gaussian kernel. Letters were chosen as convenient ex-
amples of partially overlapping non-convex shapes. Certain pairs of letters exhibit a high degree of
overlap as well. In the B-D pair, for example, coefficient images have correlation close to 0.9. The
resultant βi,1(·) images were linked with scalar covariates xi,1, which we simulated as standard
normal variates. Finally, error images εi(·) were drawn from a stationary Gaussian white-noise
process with σ2(v) ≡ σ2 set to control the overall spatial signal-to-noise-ratio (SNR) to be either
0.1 or 1. Although stationarity of the error process represents a simplification of typical real data
settings, the spatial SNRs are somewhat more realistic. Our setting with SNR = 1 was designed
to mimic the (rather large) SNRs we have observed throughout different outcome image types in
the ABIDE data (see section 3.5.2), while in our experience SNR = 0.1 may be more realistic for
analysis of task-based fMRI contrast images. The top row of Fig. 3.2 shows the central 32 × 32
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slice of data for an example individual.

3.4.2 Simulation results

LSBP Patient GroupingTrue Patient Grouping k−Means Patient Grouping

0.00

0.25

0.50

0.75

1.00

Figure 3.3: Individual-level co-clustering incidence matrix. Each sub figure represents an N ×N
grid of pairwise probabilities that individual i belongs to the same group as individual j (dark—
high, light—low). (Left-most) In the true individual grouping matrix, blocks of dark tone corre-
spond, in this particular example, to data simulated with one of eight letter images for the covariate
coefficient ({A–G, I}). Compare against estimated individual co-clustering matrices discovered
by k-means regression (center) and our method (right).

In this section we first give an illustration of the gain that can result from using a covariate-aware
clustering method like ours versus a more typical approach to subgroup discovery. A number of
published papers have attempted to identify latent subgroups in neuroimage data using algorithmic
methods like k-means [40, 26, 82], or hierarchical clustering [78, 75, 38]. This procedure is known
as “neurotyping” [see e.g. 76]. Practitioners then try to associate identified clusters with individual-
level covariates for some post hoc measure of cluster validation. While this method of analysis may
work well for a given data set, we have noticed in simulation that clustering performance can be
unsatisfactory.

Here, we take k-means as an archetype for comparison. In the presence of mean model co-
variates, the general k-means algorithm can be improved upon by clustering regression models
instead of outcomes. Typically, k-means starts from an initial partition of the data and iteratively
reassigns each observational unit to the cluster with the nearest centroid [69]. If a regression-based
mean model is useful we can generalize this procedure to treat within-cluster regression models
as centroids rather than within-cluster means [e.g. discussed in 183]. In the case of neuroimag-
ing data, it is convenient and computationally fast to use the typical voxel-wise analysis to form
regression-based centroids for whole images. We have implemented such an algorithm here for
comparison, and illustrate its relative clustering performance in Fig. 3.3. In the figure, we chose
a representative example from our simulated data with the relatively easy setting spatial SNR = 1,
and N = 100. There were exactly eight true clusters in this particular iteration (see the left panel
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of Fig. 3.3), and we thus asked k-means to identify eight clusters given this oracle-like knowledge
of the truth. Anecdotally, applying some spatial smoothing to the outcome data prior to analysis
with our k-means regression procedure was critical to improve clustering performance, but only
up to a point. In this particular example, application of a six (or greater) voxel FWHM Gaussian
smoothing kernel led to degraded clustering performance; a two voxel FWHM kernel led to best
performance; not smoothing the data led to clustering with the worst concordance with the truth.
In contrast, our hierarchical mixture of spatial regressions model does not require the data to be
pre-smoothed: spatial smoothing is handled flexibly in (3.7) with Gaussian process priors on the
spatially varying coefficient functions.

In Fig. 3.3, we present the best case scenario for k-means regression (algorithm initialized to
eight clusters, outcome smoothed using a two voxel FWHM Gaussian kernel), and compare against
our covariate-informed LSBP model. The figure shows a set of N × N individual co-clustering
matrices where individuals have been sorted by their true subgroup membership. The leftmost
panel of the figure shows the true blocks of {A–G, I} individuals on the diagonal, the center panel
shows the co-clustering resulting from k-means regression, and the rightmost panel summarizes
the co-clustering probabilities estimated by our proposed LSBP method. The performance of our
LSBP method is far from perfect, but concordance with the truth is high nonetheless. Here, our
model only identifies the four major clusters ({A, B, C, E}), and generally confuses the other four
minority groups as likely belonging to their nearest majority relative. For example, most of the
errors made by our method result from combining subgroups D with B, F with E, and G with C.
Within the majority blocks, however, performance is quite good. For example, all of the individuals
in the true A block have over 90% posterior probability of membership to the first and largest
cluster. In contrast, k-means has split individuals in the true A block across four different clusters
here (this granularity is not quite apparent in the figure), and overall concordance with the truth is
somewhat limited.

With this example in mind, we went on to quantify both the clustering and estimation perfor-
mance of our proposed method in repeated simulation. We simulated data as in section 3.4.1 for
N = 100 and N = 300 individuals, repeating the simulation 50 times for each combination of
the spatial SNR and N . We fit our LSBP model to the data from each iteration using Gibbs sam-
pling and truncating the stick-breaking process at T = 15 components. In all cases, we set the
hyperparameters for the LSBP intercepts m0 = 0 and η20 = 0.5 to encourage the number of occu-
pied mixture components to be less than 15, and set the initial number of clusters to five. For the
spatial process components of our model, we conditioned on a set of 300 random knots sampled
uniformly throughout our 32 × 32 × 16 image grid. We also conditioned as well as on the true
Gaussian process covariance hyperparameters used to generate our spatial intercept β0(·). For each
simulation, we ran 7,000 total Gibbs sampling iterations, discarding the first 4,000 as burnin, and
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SNR N Method Mutual Info. RMSE: β0 RMSE: β1
0.1 100 LSBP 35.2% (0.6) 81.5 (3.6) 149.5 (2.3)
0.1 300 LSBP 52.5% (0.6) 139.2 (2.4) 181.1 (3.1)
1.0 100 LSBP 51.2% (0.8) 137.7 (3.0) 180.8 (2.5)
1.0 300 LSBP 66.7% (0.4) 153.7 (2.7) 188.0 (1.8)
0.1 100 k-means 36.6% (0.8) 1674.9 (101.4) 1365.1 (41.0)
0.1 300 k-means 31.9% (0.6) 808.3 (18.4) 755.6 (12.1)
1.0 100 k-means 36.3% (0.8) 592.0 (34.0) 492.6 (13.2)
1.0 300 k-means 32.4% (0.6) 280.2 (5.6) 294.0 (3.8)

Table 3.1: Inference quality for our proposed method when data exhibit different levels of noise.
Rows marked “LSBP” correspond to our proposed method; we have also included results from
k-means regression for reference. The spatial signal-to-noise-ratio (SNR; averaged over simulated
individuals) is given in the first column and reflects high (SNR = 0.1) and low (SNR = 1) noise
settings. The column “Mutual Info.” gives the mutual information between the true group labels
and the posterior distribution of cluster labels C. We express mutual information as a percentage
of the maximum possible value (perfect, noiseless concordance between the true and estimated
group labels). The “RMSE” columns give the root mean squared error for each spatial coefficient,
averaged over simulated subjects. Values in the RMSE columns have been scaled by multiplying
by 103 to facilitate comparison. Results are presented as mean (standard error).

saving 1,000 samples over the remaining 3,000 iterates.
Table 3.1 summarizes our LSBP method’s clustering accuracy over simulations using the mu-

tual information (MI) [148] between the true subgroup labels and posterior distribution of the
mixture component weights for each simulated individual. When used as a clustering metric, MI
can help us distinguish between two posterior distributions of cluster allocations that have the
same mode, say, but different levels of noise. In the table, we have expressed MI as a percentage
of the MI between the truth and itself (i.e. perfect, noise-free clustering); MI of 0%, moreover,
would correspond to independence between the truth and posterior distribution of the component
weights. For a frame of reference, in the example in Fig. 3.3, k-means regression has 35.1% MI
with the truth, while our LSBP approach has 57.9% MI. The root mean squared error (RMSE)
columns of Table 3.1, meanwhile, suggest good accuracy estimating the cluster-specific spatially
varying coefficient functions. RMSE is generally a little higher for the “β1” parameters than for
the spatial intercept parameters due to errors in the clustering. To help give a sense of scale, Table
3.1 also provides results for k-means regression (bottom rows). With the exception of the lowest
SNR/lowest N setting, our LSBP method performs dramatically better in terms of both clustering
and estimation accuracy.
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3.5 Analysis of data from the Autism Brain Imaging Data Ex-
change (ABIDE)

In this section we illustrate use of our proposed method using data from the Autism Brain Imag-
ing Data Exchange (ABIDE; Release I). ABIDE is the product of an international research con-
sortium whereby previously collected imaging and demographic data have been aggregated for
broad scientific use [36]. The ABIDE repository contains data from hundreds of patients with
Autism-spectrum behavioral disorders (ASD) and age-matched neurotypical control participants.
Data aggregated by the exchange focus on measures derived from resting state fMRI, an imaging
modality that has had broad utility in both clinical and neuropsychological research settings [e.g.
see 96, 154, for reviews]. Resting state fMRI measures low frequency fluctuations in the blood
oxygen level dependent signal in the absence of any explicit experimental paradigm, and has been
widely used to derive patterns of correlation or functional connectivity between brain regions [e.g.
13].

3.5.1 Description of the outcome image data

In total, the ABIDE contains data collected at 17 research institutions from across the continental
United States and Europe. We downloaded imaging data from the Processed Connectomes Project
[32] that were fully preprocessed using the Configural Pipeline for the Analysis of Connectomes
(C-PAC1). A complete description of preprocessing methods for this pipeline is available online.2

Briefly, standard fMRI time series correction steps were applied using AFNI software [30, 31],
and the data were registered to anatomical space using tools from FSL [152, 84]. Here, we con-
sider weighted degree centrality images as our outcome summary of resting state connectivity.
Weighted degree centrality is a graph theory summary statistic and simply reflects, for each node
in a weighted graph, a summation over all the connecting edge weights. In this case, each voxel
is treated as a node in a large graph, and edge weights are taken to be the correlations between
the time series data measured at each node. Additional details on centrality computation for the
C-PAC pipeline are available online.3 The version of the data we consider was derived from time
series that were temporally filtered using a 0.01–0.1 Hz band pass.

1https://fcp-indi.github.io
2http://preprocessed-connectomes-project.org/abide/cpac.html
3https://fcp-indi.github.io/docs/latest/user/centrality.html
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3.5.2 New York University subsample

In initial exploratory analyses of these data, we noticed that some of the largest differences be-
tween individual images could be explained by imaging site effects. Around four natural clusters
emerged dominantly on the bases of groups of collection sites. This result is not especially sur-
prising: although the weighted degree centrality images we consider were derived from intensity-
normalized time series, site effects due to scanner, fMRI protocol, or even demographic differences
can still persist in practice. Preprocessing for multi-site imaging studies is still an area of active
research [e.g. 25]. Exploring this issue further, we estimated the spatial signal-to-noise-ratios for
the data from each site. We constructed these estimates in the context of our proposed model using
maximum marginal likelihood to optimize the Gaussian process hyperparameters and spatial error
variance. We optimized over a set of 4,000 voxels sampled randomly from within a gray matter
mask. The range of spatial SNRs we estimated this way was roughly 0.46–0.84.

With the general goal in mind of estimating latent clusters related to potential Autism neu-
rotypes we simply subset the data to the cohort of ASD individuals imaged at New York Univer-
sity. The NYU cohort represents the largest single-site group in the ABIDE repository. We further
subset to the group of ASD patients with a complete set of Autism Diagnostic Interview-Revised
(ADI-R) scores available, resulting in a final sample of 64 ASD individuals. The ADI-R [143]
is an interview-based instrument with four component scores designed to differentiate Autism
from other developmental verbal or intellectual impairments. ADI-R scores have been validated
against clinical diagnoses [e.g. 104, 95], and have been used in research to help characterize and
understand Autism phenotypes [e.g. 79, 155]. A demographic summary of our subset of 64 ASD
patients is available in Table 3.2. In subsetting the data in this way we have chosen to prefer sim-
plicity and model structure generality over complete use of all of the information in the data. A
more data-specific method could of course be developed based on our model to more appropriately
incorporate the complex site heterogeneity we observe into the analysis.

3.5.3 Structure of our mean and clustering models

In general, given the somewhat elaborate hierarchy of our model, we find it most helpful to work
with relatively simple mean models and build up complexity in the clustering covariates. This
strategy can also be advantageous computationally. In the present context, we take our mean
model to be a spatially varying intercept so that the xi are simply scalars equal to one for all i. In
our clustering model, however, we consider a number of covariates including: diagnosis category
(Primary Autism, Asperger syndrome, Pervasive developmental disorder–not otherwise specified);
patient gender; patient age at scan; and the ADI-R component scores (A–Reciprocal Social Inter-
action; B–Communication; C–Restricted, Repetitive, and Stereotyped Patterns of Behavior; and
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Diagnosis Percentage (SD)
Primary Autism 71.88% (42.36)

Asperger Syndrome 23.43% (44.96)
PDD-NOS 4.69% (21.14)

Measure Mean (SD)
Age (yrs) 13.87 (5.61)

ADI-R Social 19.00 (5.73)
ADI-R Verbal 15.59 (4.49)

ADI-R RRB 5.41 (2.57)
ADI-R Onset 3.33 (1.36)
ADI-R Total 43.33 (10.92)

Fluid IQ 107.59 (15.72)
Performance IQ 108.89 (17.24)

Verbal IQ 105.34 (15.14)

Percentage (SD)
Male 90.62% (29.15)

Comorbidities 51.56% (49.98)
Medication 21.88% (41.34)

Table 3.2: Demographic information for the 64 Autism-spectrum patients scanned as part of the
NYU cohort. Rows “Comorbidities” and “Medication” respectively denote the proportion of pa-
tients experiencing one or more comorbidity factors, and patients prescribed some medication to
treat their behavioral disorder. ADI-R—Autism diagnostic interview, revised; RRB—Restricted,
repetitive, and stereotyped patterns of behavior; PDD-NOS—Pervasive developmental disorder,
not otherwise specified.

D–Abnormality of Development Evident at or before 36 Months). Each of the four ADI-R compo-
nent scores can take multiple ordinal values where higher numbers indicate increasing presence of
ASD symptoms. Linear terms for each of these covariates were treated as fixed clustering effects
in our prior (3.9). Non-binary covariates were first mean-centered and scaled by dividing by two
standard deviations. In addition to the linear terms, we created five sets of Gaussian bases to model
potential non-linear effects of age and the four ADI-R component scores. We associated each non-
linear basis with a separate random effect-like variance component in our prior (3.9). Bases were
constructed identically for each covariate, and followed the general form,

g(z; z∗, b) = exp
(
− b‖z − z∗‖2

)
,

given knot location z∗ and bandwidth parameter b. For each covariate, we took the ten internal
5th, . . . , 95th quantiles as knot locations, and set the corresponding bandwidth b to be two divided
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by the maximum absolute distance between the knots—i.e. if z∗l , l = 1, . . . , 10, represent knot
locations, we fixed b = 2/maxl,l′ |z∗l − z∗l′ |. This choice resulted in smooth bases for the age
and ADI-R score covariates. More work could be done to estimate or validate the knots and
bandwidths; our present focus is simply to illustrate how generalized additive-like constructs can
be incorporated into the logistic stick-breaking framework.

3.5.4 MCMC and model evaluation

Prior to fitting our model, we further preprocessed the degree centrality images by centering and
rescaling them (with scalar factors) to have marginally zero mean and unit variance. We computed
the scalar recentering and rescaling factors collapsing the data over all voxels and patients. We
estimated the Gaussian process hyperparameters using maximum marginal likelihood (see section
3.3.5). The resulting estimate, θ = (0.27, 0.03, 1.67)T corresponds to a sub-Gaussian, 12.6 mm
FWHM radial spatial basis with marginal variance 0.27. Spatial knot locations V∗ were sampled
uniformly over voxel locations in a gray matter mask. The number of knot locations |V∗| = 5, 600

was set to comprise about 11.3% of the total number of locations in the mask; with this config-
uration, the minimax distance between spatial knots was 9.5 mm. To set the hyperparameters of
our stick-breaking process (m0 and η20; see section 3.3.3), we looked to experimental literature.
Previous work on neurotyping ASD generally suggests between two and four neural subtypes [see
76, for a comprehensive review]. Given this prior knowledge, we set m0 = 0, and η20 = 0.5 to
place high “effective prior” mass around or slightly above this range. Algorithmically, we similarly
truncated stick-breaking after T = 12 components.
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Figure 3.4: Comparison of the empirical and posterior predictive distributions. The black line in
the left panel depicts a kernel density estimate of the empirical distribution of weighted degree
centrality across all voxels and individuals in our subsample. Gray lines reflect the uncertainty
in the kernel density estimate over the posterior predictive distribution. Similarly, the right panel
provides a Q-Q plot for the empirical and posterior predictive distributions of degree centrality.
Dots show the mean, and the dark gray ribbon shows 95% credible intervals for the predictive
quantiles.
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We fit our proposed model using Gibbs sampling as outlined in section 3.3.4. We ran a total of
4,500 Markov chain Monte Carlo iterations, discarding the first 2,500 as burnin and saving sampled
parameters from every other iteration thereafter. As discussed in [70] it can be difficult to assess
Markov chain mixing and convergence in models that have a stick-breaking representation. In part,
this issue arises due to multi-modality in the posterior. Hastie and colleagues suggest monitoring
the log marginal partition posterior (lnπ

[
C | {yi(·),xi, zi}Ni=1

]
in our notation) as a convergence

criterion [70], though this quantity is not analytically tractable in our case. Here, we somewhat
rudimentarily use additional Markov chains to assess stability of the between-chain modal cluster
assignments for each patient. We further appeal to the posterior predictive distribution for an
overall representation of model fit.

For the present analysis, we ran three total MCMC chains in parallel, and present inference
from the chain with the lowest deviance information criterion (DIC) [24, 156]. We found that the
modal cluster assignments for the other chains were 95.3% and 75.0%, respectively, in agreement
with that of the lowest DIC chain, suggesting reasonably stable cluster identification. In Fig. 3.4,
we present an overall assessment of the posterior predictive distribution. In the left panel of the
figure, we have overlaid a kernel density estimate (KDE) derived from the empirical distribution
of degree centrality on KDEs from derived from posterior predictive simulations. This sub-figure
shows how our mixture model is able to capture most features of the skewed degree centrality
distribution. Confer with the right panel of Fig. 3.4, where we translate this same information
into a Q-Q plot. Between the two panels of the figure, it is evident that our model fits the data
reasonably well, with the exception of the unusual flat left tail in the empirical distribution.

3.5.5 Posterior inference

In our model, the mixture components reflect expected imaging outcomes for hypothetical neu-
rotypes related to degree centrality in ASD patients. Fig. 3.5 summarizes covariate relationships
with modal cluster assignment as well as the posterior uncertainty in the clustering. We found
that there were three occupied clusters at the posterior mode (Fig. 3.5, right). The largest, cluster
one, was occupied by 50% of the sample; cluster two was occupied by 17.2% of the sample; and
the third cluster was occupied by 32.8% of the sample. Further, we found that identified clusters
were to some extent related to certain ADI-R component scores. In the left panel of Fig. 3.5, we
show box plots of ADI-R Communication and Repetitive, and Stereotyped Patterns of Behavior
(RRB) component scores for each cluster. As a convenient summary of this information we fit
proportional odds logistic regression models to the ordinal ADI-R component scores using modal
cluster membership indicators as predictors and controlling for age, sex, and diagnostic category.
Cluster two was associated in particular with lower ADI-R RRB scores: the odds of higher ADI-R
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Figure 3.5: Relationship between ADI-R components and hypothetical neurotypes (left). Box
plots show medians and interquartile ranges of ADI-R component scores for each cluster. Clusters
themselves are derived from the posterior mode summary. (Right) Patient co-clustering matrix.
Rows and columns in the matrix correspond to ASD patients from the NYU cohort: each (i, j) cell
in the grid reflects the pairwise posterior probability that patient i belongs to the same cluster as
patient j.

RRB scores were roughly 83% lower for cluster two patients than for cluster one (z = 2.49; confer
with Fig. 3.5). Similarly, we observed a suggestive association between Cluster three and ADI-
R Communication scores, with the odds of higher communication scores roughly 58% lower for
cluster three than for cluster one (z = 1.61). To a lesser extent, we also observed similar patterns
of results for the other two ADI-R component scores (not shown).

In Fig. 3.6, we show posterior mean z-statistic images for the differences between hypothetical
neurotypes. In the figure, we have thresholded the z-statistic contrasts based on posterior credible
bands. Posterior credible bands summarize the joint behavior of the contrasts over all voxels
simultaneously, and can be easily estimated from MCMC samples [see e.g. 142]. In Fig. 3.6, the
highlighted areas mark a set of voxels over which our model posterior suggests an 80% probability
the cluster differences are simultaneously less than zero. As the figure suggests, we observed
marked differences between cluster one and cluster two, with cluster two exhibiting lower average
degree centrality throughout most of the brain. This result can be interpreted to mean that the
average voxel-wise resting state functional connectivity graph is more dense overall for cluster
one patients than for cluster two patients. Concordantly, cluster one was associated with higher
median ADI-R subscores, and cluster two with lower ADI-R subscores (Fig. 3.5). This result
may partially help resolve differential reports of hypo- [e.g. 113] and hyperconnectivity [e.g. 161]
related to ASD. Addressing these differential findings is not a goal of the present analysis, however,
and it is difficult to say more without a formal comparison to neurotypical individuals.

Cluster three largely represented a middle ground between clusters one and two. In fact, as can
be seen in Fig. 3.5 (right), a small handful of patients tended to switch between clusters three and
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Figure 3.6: Differences in the expected degree centrality images between hypothetical neurotypes.
In the figure, color bars measure differences on a z-statistic scale, while “z = 72, . . .” corresponds
to the axial slice in anatomical MNI152 coordinates. Images were thresholded using a simultane-
ous 80% posterior credible band.

one or three and two. As such, in the present analysis no brain regions appeared significantly dif-
ferent between clusters two and three at the 80% simultaneous posterior credible level. Differences
between clusters one and three, however, are shown in Fig. 3.6. In this case, our credible band
highlighted a more select set of brain areas with significant contrast between the clusters. Selected
voxels appeared in the anterior cingulate cortex, the right frontal pole, and the frontal gyrus in-
cluding the superior, inferior, and middle divisions. This result is consistent with applied work that
has implicated the frontal pole and middle frontal gyrus in ASD neurotyping [82]. This study used
a k-means approach to cluster regional functional connectivity patterns derived from resting state
fMRI. Further, within their ASD clusters, the authors reported correlations between connectivity
(using network edge weights) and Communication and RRB subscores for the Autism Diagnostic
Observation Schedule (ADOS) [103], another clinical tool for characterizing ASD severity [82].
This overall pattern of results seems quite consistent with what we observe here.

Other similar findings have been reported for neurotypes estimated from structural MRI data
measures (regional gray matter volume or cortical thickness). In particular, two studies estimated
neurotypes from structural images using either k-means or hierarchical clustering [26, 76]. In both
cases the reports found relationships between their neurotypes and ADOS scores, though it should
be noted that the studies used overlapping samples.
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3.5.6 Comparison with other methods

We compared our analysis against results from unsupervised clustering methods: k-means; hier-
archical clustering using Euclidean distance and average, complete, or single linkage; and hierar-
chical clustering with feature selection [177] using Euclidean distance and average, complete, or
single linkage. In all cases, we fixed the number of desired clusters to three to be able to compare
with the results from our method. None of these methods were able to produce clustering with
greater than 48% similarity to ours, with the closest coming from standard hierarchical clustering
with average linkage. In addition, none of these comparison methods produced clusters that recov-
ered any kind of association with ADI-R subscores with the exception of k-means. Interestingly,
k-means identified clusters that were associated with ADI-R Communication scores controlling
for patient age, sex, and diagnostic category as in section 3.5.5. We assessed the stability of this
finding by running the k-means algorithm from 100 different starting points. In this small follow
up analysis, we found a significant relationship between clusters and the ADI-R Communication
scores in 54 out of 100 replicates.

3.6 Discussion

Models based on Dirichlet process mixtures of Gaussian processes have been proposed for non-
parametric regression-prediction with univariate outcomes [e.g. 132], and for modeling non-
stationarity in spatial processes in a single sample setting [e.g. 56]. Our framework, however, is
defined by high dimensional outcomes and potentially many subjects, and necessitates a somewhat
different approach. In our case, we utilize the logistic stick-breaking process [136] to model effect
heterogeneity across participants. We have used this mixture model formulation to induce a sub-
grouping effect construct where the mixture components are different regression models with spa-
tially varying coefficient functions. In a toy example, we have shown how our covariate-informed
approach to clustering and subgroup identification can yield superior results to a commonly used
unsupervised method. Finally, we have illustrated use of our method in application to neurotyping
Autism spectrum patient data from the ABIDE I database.

In our analysis of the ABIDE I data we selected patients from a single imaging site (New York
University) in order to avoid undesirable clustering dominated by site effects. In principle, our
model could be modified in a data-specific manner to be able to take full advantage of the rich
information in the ABIDE repository. These particular data seem to imply the need for some
form of a site-specific variance component external to the main clustering process. How best to
model this information in an identifiable way, however, requires careful thought. Assume for the
sake of argument that random effect-like, site-specific, spatial variance components were to be

55



included as explicit parameters in the model hierarchy. Estimation may then possibly become
numerically unstable if, for example, the LSBP returns a cluster allocation similar to the inherent
patient-within-site grouping. In addition, in our analysis of the ABIDE I data, we observed that the
signal-to-noise-ratios may differ quite substantially across the different data collection facilities,
potentially complicating the issue further. The need to address difficulties like these represents, in
miniature, the generally abundant possibilities for novel methods development in this area.

The method we present here may be limited in practical use due to the computational cost
associated with clustering spatial effects in a high-dimensional regime. To that end, it may be
of interest to adapt one of the fast, approximate posterior inference algorithms that have been
developed for Dirichlet process-family models [e.g. 174, 72] into the present setting. Use of either
the [72] stochastic variational or [174] local mode-finding algorithms would additionally simplify
the difficult task of assessing algorithmic convergence. As we have seen, and as has been studied
elsewhere [e.g. 70], diagnostic checking of MCMC output for infinite mixture models can be far
from trivial in large data settings. Nonetheless, our simulation results and data analysis demonstrate
the potential advantage that our proposed model (or indeed perhaps covariate-informed clustering
methods in general) may provide in certain settings. That we were able, albeit with a different
image modality and generally smaller sample size, to closely mirror existing findings from Autism
spectrum disorder neurotyping studies [82, 26, 76] is an encouraging result.
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CHAPTER 4

Bayesian Inference for Group-Level Cortical Surface
Image-on-Scalar-Regression with Gaussian Process

Priors

In regression-based analyses of group-level neuroimage data researchers typically fit a series of
marginal general linear models to image outcomes at each location in the images. Spatial regu-
larization of effects of interest is usually induced indirectly by applying spatial smoothing to the
imaging data prior to analyses. While this procedure often works well, resulting inference can
be poorly calibrated, particularly in smaller samples. Full spatial models for effects of interest
should lead to more powerful analyses, however the number of locations in a typical neuroimage
can preclude standard computation with explicit spatial models. Here we contribute a Bayesian
spatial regression model for group-level analyses, and study the utility of such a model in the con-
text of neuroimage data referenced by locations on the cortical surface. We induce regularization
of spatially varying regression coefficient functions through Gaussian process priors. When com-
bined with a simple nonstationary model for the error process, our prior hierarchy can lead to more
data-adaptive smoothing than standard methods. We achieve computational tractability through
Vecchia approximation of our prior which, critically, permits estimation of spatially varying coef-
ficient processes that retain full spatial rank. We outline several ways of working with our model
in practice and compare performance against standard vertex-wise analyses. Finally we illustrate
use of our method in an analysis of fMRI task contrast data (n-back task) from a large cohort of
children enrolled in the Adolescent Brain Cognitive Development (ABCD) study.

4.1 Introduction

Modern large-scale neuroimaging studies collect massive amounts of data, often across thousands
of patients, sometimes across several years [e.g. 2, 153, 166, 171]. Typically these studies collect
multiple structural and/or functional scans, with the aim to probe relationships between the images
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and patient-level characteristics. We focus here on an image-on-scalar regression treatment for this
general framework, where patients’ images are taken to be the response, and sets of individual-level
scalars are considered covariates.

Since neuroimages are spatially referenced data, we can cast the image-on-scalar problem as a
functional regression of the form,

yi(s) = xTi β(s) + ωi(s) + εi(s). (4.1)

In (4.1) we take yi(s) to be the imaging outcome for patient i (i = 1, . . . , N ) at location s ∈ S, and
coefficients of interest, β : S → RP , are treated as spatially varying. Further, we decompose the
error into a sum of ωi(·) and εi(·) terms, where ωi(·) reflects individual-level deviations from the
mean with an assumed spatial structure, and εi(·) is taken to be a white noise process. Many clas-
sical analysis methods in imaging can be cast within this framework. For example, in the typical
group-level functional magnetic resonance imaging (fMRI) analysis, the yi(·) might represent con-
trasts of parameter estimates from within-participant first level time series analyses, and xi ∈ RP

might include an intercept term along with any relevant covariate information. Often, univariate
models are fit marginally to the data from each location s in practice [e.g. 115]. This procedure
tremendously simplifies estimation by avoiding modeling spatial correlations in β(·) and ωi(·), but
can lead to poorly calibrated inference (for example, see attempts to improve the power of tests
derived from marginal ordinary least squares models by spatially pooling variance estimates in
[117, 160, 173]).

For model 4.1 to make sense practically, the images must have reasonably comparable support
in the spatial domain S. Though it is still an area of active research, a tremendous amount of study
has focused on methods to preprocess raw neuroimage data to help coregister the images across
patients and data collection sites [e.g. 46, 47, 84, 137]. In particular, certain neuroimage prepro-
cessing tools compute state-of-the art cross-subject alignment of cortical features by first mapping
each hemisphere of the cortex onto the surface of a sphere with minimal distortion [46, 47]. Fig. 4.1
gives an example of such a mapping. This procedure standardizes the spatial support for each hemi-
sphere of cortex, and has already been shown to lead to reduced spatial signal contamination and
result in more sensitive analyses [e.g. 19]. Part of the gain from this methodology is due to the nat-
ural construction of a gray matter surface-based coordinate system which more accurately reflects
the topology of primate cortex versus simple Euclidean distance in 3D space [46]. Recently, within
the statistical community, Mejia and colleagues [111] highlighted this preprocessing pipeline by
developing a cortical-surface-on-scalar regression model for task-based fMRI data. In their paper
[111], the authors propose a joint multi-subject spatio-temporal regression model, model their spa-
tial regression coefficients with Gaussian random fields, and derive an integrated nested Laplace
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approximation routine for approximate Bayesian inference. Per their data application, Mejia et

al. develop their model primarily for analysis of multi-subject fMRI data where the number of
subjects is not large [111].

Such joint multi-subject spatio-temporal methods are not easily extensible to large-scale imag-
ing studies. The number of spatial locations in a conventional neuroimage typically precludes
Bayesian computation in most computing environments except by methods that either approxi-
mate (a) the spatial process by low-rank projection or downsampling, or that approximate (b) the
posterior distribution with variational or Laplace family approximations [see e.g. 124, 149, 111]. In
general, low-rank projection methods can tend to miss or over smooth local features in data [e.g.
157], and both low-rank projection and variational approximation can commonly underestimate
posterior variance [e.g. 172, 133]. Integrated nested Laplace approximation, moreover, is thought
to give accurate and scalable approximations within a wide class of posterior distributions [e.g.
141], but its accuracy can sometimes suffer when model structure is complex [see e.g. 163]. Here,
we expand on this body of work and show how a Bayesian model with a prior hierarchy related
to that in [111] can permit estimation of coefficient functions that are realizations of numerically
full-rank spatial processes. To be able to extend our method to large-scale imaging studies we
contribute a spatial regression model intended primarily for group-level analyses of data indexed
by locations on the cortical surface. In the context of group-level fMRI studies, for example, our
method could simply be “plugged in” at the classical second-stage analysis, with individual-level
task contrast images taken to be the response. Our method can also be flexibly applied to analysis of
cortical thickness outcomes, or other structural indicators. We model the probability law governing
prior uncertainty in the functions β(·) and ωi(·) with Gaussian processes. Posterior computation
is enabled by Vecchia approximation of the spatial process [169, 35, 90] and empirical Bayesian
estimation of the spatial process hyperparameters. As a result of this computational innovation,
we are able to estimate spatially varying regression coefficient functions that are numerically full
spatial rank and thus suffer minimal approximation error.

Our model can be reasonably fit to the data from whole hemispheres of cortex using fast opti-
mization or scalable Markov chain Monte Carlo (MCMC) routines without the need to downsam-
ple the original data. Additionally, we elaborate on an approximate working model and related
Bayesian sampling scheme with computational complexity that scales almost independently of
N , further allowing our method to be viable for application to large-scale neuroimaging stud-
ies. Model computation with MCMC permits natural posterior inference on the spatial extent
of activation regions with simultaneous credible bands, which can facilitate spatial and multiple
comparisons consistent-inference. We show our method’s accuracy and sensitivity estimating the
spatial coefficient functions in simulation. Finally, we use our method to analyze n-back task con-
trast data (z-statistic images) from the second annual release of the Adolescent Brain Cognitive

59



Development (ABCD) imaging collective data. Software for our methods is available online at
https://github.com/asw221/gourd.

The body of this paper contains an elaboration of our spatial regression model hierarchy at
the beginning of section 4.2. We continue to discuss ways to consider working with this model
in sections 4.2.1 and 4.2.2. In section 4.2.3, we introduce an approximate working model that
results in comparable inference on the regression function of interest β(·) when N is moderate to
large. We elaborate on our general strategy for computation in the context of this working model in
section 4.2.4, and compare the performance of our approaches with standard vertex-wise univariate
regression methods in section 4.3. We apply our working model method in an example analysis of
n-back task contrast data from a large sample of children enrolled in the ABCD study in section
4.4. Finally, we discuss limitations and possible extensions of our methodology in section 4.5.

4.2 Methods

Figure 4.1: Example mapping of cortical surface coordinates onto a sphere. Left to right, the fig-
ure shows progressive inflation and warping of the right hemisphere of cortex. Gross anatomical
features are highlighted to help visualize the mapping. This procedure was introduced to facili-
tate state-of-the-art cross-subject alignment of cortical features, but can also be leveraged into a
mathematically convenient measure of geodesic distance along the cortical surface.

Throughout this work, we assume the single hemisphere, cortical surface-based, spherical coor-
dinate system of [46]. By isolating data from the cortical sheet we gain anatomical specificity and
a better connection to the underlying neurobiology. We simplify notation etc. by considering the
left and right hemispheres of cortex as separate outcomes in separate analyses. Let S denote the
set of coordinates on a sphere with a known radius R, and let S ⊂ S denote the set of vertices for
a single hemisphere of cortex at which we have observed MRI data. For reference, the data in our
application have all been mapped to a normalized template brain space with approximately 30,000
vertices in S. In native patient brain space, S may contain on the order of 150,000 vertices.

For any two s, s′ ∈ S , let d(s, s′) measure the great-circle distance between s and s′. Great-
circle distance is sufficient for our purpose; more generally, however, S might represent any topo-

60

https://github.com/asw221/gourd


logical surface, etc., and d(·, ·) any appropriate metric. As has been discussed by [46, 47, 111],
geodesic distances along the cortical surface are more meaningful than, say, simple Euclidean dis-
tances in the compact 3D volume. This is due to the fact that primate cortex is thought to be
organized by function topographically [e.g. 151], and exhibits a folded structure in higher mam-
mals to accommodate a larger cell body area [e.g. 23, 87]. Beginning from (4.1) above, we model
the data likelihood as multivariate Gaussian with a particular error structure. We write the data
likelihood:

yi(s) ∼ N (xTi β(s) + ωi(s), σ2(s)), i = 1, . . . , N, and s ∈ S, (4.2)

where N (µ,Σ) denotes the Normal distribution with mean µ and variance Σ; xi ∈ RP are co-
variates; β : S → RP are the primary effects of interest; and ωi : S → R reflect individual-level
deviations from xTi β(·). Conditional on xi, β(·), and ωi(·), we model the errors as a non-stationary
white noise process with spatial variances denoted by σ2 : S → R>0. Given the nature of typi-
cal data in group-level functional or structural MR image analyses, this data-level model may be
sufficient for a variety of studies.

Spatial dependence in our model arises entirely through our prior hierarchy on the effects β(·)
and ωi(·). Let Cθ{d(s, s′)} denote a positive definite stationary spatial correlation function defined
on S with parameter θ. For notational simplicity, we will drop the subscript θ throughout and use
C(·) to represent a correlation function with implicit dependence on θ. We model the distributions
of each spatially varying coefficient function,

βj(s) ∼ GP(0, ζ2j τ
2C{d(s, s′)}), j = 0, . . . , P − 1, (4.3)

with mean zero Gaussian processes with marginal variances given by the product ζ2j τ
2. This class

of prior for functional regression coefficients was originally proposed by [55] for general spatial
regression problems. We write the coefficient processes this way without loss of generality: while
zero mean processes are reasonable in our application, data from other imaging modalities may,
for example, require centering at the global mean for this formulation to make the most sense.
Many common constructions in linear regression can be extended to our spatial setting within this
framework. For example, by creating special groups of covariates in xi and placing additional
constraints on the corresponding ζ2j , we can easily extend our method to accommodate spatially
varying random effects and/or spatially varying penalized splines.

We similarly treat the individual-level deviations ωi(·) as spatially varying random effects with
prior mean zero and marginal variance τ 2,

ωi(s) ∼ GP(0, τ 2C{d(s, s′)}). (4.4)
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Typically, we would not think of the ωi(·) as parameters of interest, but they are not without utility.
We write the model this way to make clear how we decompose sources of spatial and non-spatial
signal. Though the model can be estimated by first integrating out the ωi(·), it can be helpful to
think about the ωi(·) as distinct components. For example, one could use a summary statistic of
each ωi(·)—such as their posterior variance, or `∞-norm, say—to help diagnose outliers in the data.
With this in place, we specify a relatively simple nonstationary process for the error precisions,

σ−2(s) | ξ iid∼ Gamma(1/2, ξ), ξ ∼ Gamma(1/2, 1), (4.5)

using the shape-rate parameterization of the Gamma distribution. With this formulation, the the
prior on each σ(s) is marginally half Cauchy with location zero and scale one. To round out our
model hierarchy, we place weakly informative priors on the remaining spatial variance compo-
nents,

τ−2 ∼ Gamma(1, 1/2), ζ−2j
iid∼ Gamma(1, 1/2). (4.6)

In practice, we have so much spatial data in imaging studies that the Gamma hyperparameters in
(4.6) above can be set to any “small” value without undue influence on the posterior.

As noted above, the correlation function C(·) can in general be any positive definite kernel
function defined so that C(0) = 1 and C(α) ≤ 1 for all α > 0. Given the substantial history
of Gaussian smoothing in applied MRI analysis, we will work chiefly with the two parameter
exponential radial basis function,

C(α) = exp(−ψ|α|ν), θ = (ψ, ν)T, ψ > 0, ν ∈ (0, 2], (4.7)

which is stationary, isotropic, and synonymous with the Gaussian kernel when ν = 2. In (4.7), ψ
is sometimes called the bandwidth or inverse length-scale parameter and controls how rapidly the
correlations decay, and ν is the kernel exponent or smoothness parameter. Alternative correlation
functions could be used instead. For example, Mejia and colleagues use the Matérn correlation
function [111] which is synonymous with the Gaussian kernel in a limiting case. Correlation
functions with polynomial tails [e.g. 107] may be even more relevant for situations in imaging
where the practitioner could expect parameters to have potential dependence at long-range. Myriad
options exist: the choice of correlation function can in some cases be more art than science, and
results may vary slightly depending on the selected kernel. We will discuss one data-driven way
the correlation function might be selected in practice in section 4.2.5. The same method can also
be used to estimate the correlation parameters θ for a given functional family.
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4.2.1 Conditional model

We outline two ways of working with model (4.1) in our setting, and also study the relative be-
havior of an approximate working model with connections to the standard vertex-wise analysis
framework. The regression model that we have outlined is difficult to work with without simpli-
fication for several reasons. The first and perhaps most obvious reason is the dimension of the
parameter space. Computational strategies for spatial modeling typically involve decomposition
of a dense spatial covariance matrix. In our case, a somewhat naive decomposition of the joint co-
variance of the βj(·) and the ωi(·) would be anO(M3(N +P )3) operation, where M is number of
vertices in S, and N and P are the sample size and number of regression predictors, respectively.
In Bayesian sampling algorithms, this decomposition often needs to be recomputed for each sam-
ple, which would be prohibitively expensive in our setting. For large enough data, even simply
evaluating the joint covariance of all of the βj(·) and ωi(·) is infeasible. The other difficulty work-
ing with the model as written is that decomposing the error structure into the sum of two spatially
varying terms (i.e., the ωi(·) and the εi(·)) renders the whole model at best weakly identifiable.

As we lay out in greater detail below in Section 4.2.4, we overcome the first difficulty by using
a conditional independence approximation to the model parameters’ spatial covariance, inducing
sparsity in the parameters’ spatial precision. This type of approximation can greatly reduce the
computational burden while retaining a covariance structure with full spatial rank, leading to high
accuracy and scalability [e.g. 35, 44]. We overcome the second difficulty in several different ways,
and we first introduce what we term the “conditional” approach to working with our model. We
base this approach off of the observation that if we knew the correct ωi(·) the remaining terms
in the model would be relatively easy to estimate. For this approach, our strategy will be first
to obtain a pseudo maximum a posteriori estimate of the ωi(·), and second to condition on those
estimates, sampling the other model parameters in an Empirically Bayesian way. To obtain these
estimates, we work with an approximate model that considers σ2(s) ≡ σ2 constant over all vertices
in S, and alternate conditional maximization of β(·) and the ωi(·) until convergence. Full details
are available in Appendix M. Once we have obtained our estimate of the ωi(·) in this way we
simply subtract the ωi(·) from the yi(·), and switch to an efficient Bayesian sampling algorithm
for the remaining parameters in the model (see section 4.2.4 for an overview). As we will see in
simulation below, this approach tends to work quite well, but carries the potential downside that,
by conditioning on a point estimate of the ωi(·), we may underestimate uncertainty in the βj(·) for
example.
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4.2.2 Marginal model

Alternatively, since the individual deviations ωi(·) are not typically of direct interest, we can first
integrate them out, leading to a marginal model with respect to the βj(·), σ2(·), etc. Marginalizing
out the ωi(·) is relatively straightforward given the conjugacy in our model hierarchy, and leads to
a rewritten likelihood with,

yi(s) = xTi β(s) + ε∗i (s), ε∗i (s) ∼ GP(0, H{d(s, s′)}), (4.8)

whereH{d(s, s′)} = τ 2C{d(s, s′)}+σ2(s)1{d(s, s′) = 0}, and 1(A) the event indicator function
(1(A) = 1 if eventA occurs, and 0 otherwise). A computational approach to (4.8) can then follow
by additional application of a conditional independence approximation [35, 44] to the covariance
of the ε∗i (·). In Appendix M, we outline a means of computing with model (4.8) based on esti-
mating θ, τ 2, and σ2(·) in an Empirically Bayesian way. Briefly, we take a two stage approach
to computation, first obtaining approximate (up to optimization tolerance) maximum a posteriori
estimates of β(·), θ, τ 2, and σ2(·). Second, we fix the covariance parameters θ, τ 2, and σ2(·) at
their approximate posterior modes and switch to an efficient MCMC routine to sample from the
conditional posterior of β(·). A sketch of our sampling algorithm is presented for a related model
in section 4.2.4. As will be seen in simulation, the marginal approach works quite well for estima-
tion of the βj(·), but has the disadvantage that since the ωi(·) have been integrated away, they are
not immediately available for outlier diagnosis, etc.

4.2.3 Working model

We also introduce a third, working model as a way to obtain approximate inference on the βj(·).
In general, including the ωi(·) as a separate correlated error component will not influence standard
estimators of the center of the posterior of the βj(·), such as the posterior mean. If out of sample
prediction of imaging outcomes is not a goal of the analysis, then the primary reason to include
a spatially correlated error component is to reduce the posterior variance of the βj(·). In a large
data setting, the gain in efficiency from including a correlated error component can be minimal to
negligible. A natural question, then is how well the resulting model performs when we replace the
likelihood with the approximation,

yi(s) = xTi β
w(s) + εwi (s), εwi (s) ∼ N (0, σ2(s)), (4.9)

where the prior structure on the βwj (·) and σ2(·) is the same as in (4.3) and (4.5) above. We term this
approximation our “working” model here. Our working model can be viewed as a generalization
of the standard vertex-wise GLM analysis paradigm in a spatial Bayesian context. The model
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implied by fitting vertex-wise marginal GLMs is a limiting case of our working model as τ 2 →∞
for select choices of the correlation function, C(α) = 1(α = 0), and (improper) prior on σ−2(·) ∼
Gamma(1, 0). Considering comparisons among our suite of methods, we will show in simulation
that for moderate to large sample sizes, the posterior of the βwj (·) for our working model is quite
similar to that of the βj(·) from either our conditional or marginal models.

4.2.4 Posterior computation

Since computation with the working model (4.9) is relatively simpler than for either the condi-
tional (4.2) or marginal (4.8) models, we will outline our general approach to computation in the
working model context. Posterior computation with the conditional and marginal models can be
accomplished in very similar fashion, and we reserve explicit discussion thereof for Appendix M.

Since we typically work on a fixed spatial domain S, let βj (dropping the superscript w for
simplicity) denote the random field [βwj (s)]s∈S for j = 0, . . . , P −1, and let β = (βT

0 , . . . ,β
T
P−1)

T.
Let C = [C{d(s, s′)}]s,s′∈S represent the (M ×M) spatial correlation matrix such that the prior
on each βj is equivalentlyN (βj | 0, ζ2j τ 2C). Similarly, let Σ represent the variance of εwi (·), here
an (M ×M) diagonal matrix with the σ2(s), s ∈ S on the diagonal; let X denote the (N × P )

matrix of participant-level covariates; let yi = [yi(s)]s∈S denote the vectorized outcome image for
participant i; and let y = (yT1 , . . . ,y

T
N)T represent the (NM × 1) vector of concatenated subject

outcomes.
With the data in this “long” format, the model can be conveniently expressed in terms of Kro-

necker products. With Z = diag(ζ20 , . . . , ζ
2
P−1), the conditional posterior variance of β can be

written,
var(β | y, ·) =

(
XTX ⊗Σ−1 +Z−1 ⊗ τ−2C−1

)−1
, (4.10)

using shorthand to express conditioning on Σ, Z, θ, and τ 2. Since the dimension of β grows
rapidly with P , it can be difficult or even impossible to work with (4.10) directly. Instead, we
outline two strategies to enable efficient posterior computation at this scale. The first strategy, as
alluded to above, is to replace C−1 with a sparse approximation C̃−1 such that C̃ ≈ C. In doing
so, we follow work on the so called “Nearest Neighbor Gaussian Process” [35, 44], replacing the
idea of k-nearest neighbors with small neighborhoods of fixed physical radius r. Briefly, we replace
C−1 with a conditional independence approximation, enforcing that C̃−1ij = 0 if d(si, sj) > r for
si, sj ∈ S. Similar ideas have been alternately called Vecchia approximation [169, 90], composite
likelihood [168], or Markov random field approximation [140], but in general can lead to highly
accurate and scalable approximations of full rank spatial models [see e.g. 163, 35, 71]. Working
with such an approximation of course introduces a hyperparameter, r, for the neighborhood radius
size. In practice we found that in a large data setting choice of r had very little effect on our
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analysis (see Appendix L.2 for a sensitivity analysis). In a small N setting, however, when the
prior has more influence on the posterior, r must generally be chosen large enough to obtain a
good approximation of the log prior. Anecdotally, we found that taking r ≥ 6 mm worked well in
simulation.

Although replacingC−1 with C̃−1 in (4.10) above lends sparsity and efficiency to computation
in our setting, it can still be burdensome to evaluate or decompose (4.10) even for moderate P . To
overcome this issue we propose an approximate quasi-Newton Hamiltonian Monte Carlo (HMC)
algorithm for sampling from the posterior of β, conditional on the other model parameters. HMC
is a hybrid, gradient-based MCMC method that is often more efficient in high dimensions relative
to other MCMC algorithms [116]. HMC can be used, here, to help avoid direct computation
with the very high dimensional matrix in (4.10). In the general HMC algorithm, sampling can
be improved by scaling the gradients by a “mass matrix,” M . In their highly influential paper,
Girolami and Calderhead showed that the most efficient version of this algorithm updates M to
be proportional to the posterior Fisher information matrix of the updated parameter [62]. A later
extension of HMC estimates the information matrix using first-order gradient information akin
to quasi-Newton optimization algorithms [52]. Obviously, since we are trying to avoid direct
computation with (4.10), neither working with the information matrix [var(β | y, ·)]−1, nor some
first-order estimate of this inverse is a practical solution. Instead, we can choose to use the prior
information matrix to “estimate” the posterior information in the spirit of these algorithms. Doing
so results in an efficient alternative. Taking M ∝ (Z−1 ⊗ τ−2C−1) and plugging in a sparse
approximation of C−1 as above can result in dramatic improvement in Markov chain mixing with
minimal increase in computation time. In practice, we found that we need not use the same C̃−1 in
M as in our approximation of the log prior. In fact, we found it better to use smaller neighborhood
radii in our construction ofM , and that keeping the neighborhood radius within the 2–4 mm range
here resulted in the best Markov chain mixing.

The algorithm we have outlined above can be reasonably used for efficient posterior computa-
tion even in very large data sets. In fact, given a set of sufficient statistics that can be computed with
one pass through the images, all of the parameter updates in our working model can be performed
without reference to the original data. This leads to computational time complexity that, save for an
initial data streaming step, is entirely independent of N . This has obvious advantages in large data
regimes. In applied fMRI analysis, for example, a common use case when working with task con-
trast images is to use a simple set of predictors: practitioners often require an intercept-only model,
or perhaps additionally desire to control for covariates age and sex, etc. We benchmarked our work-
ing model software for these use cases, analyzing task contrast data from the right hemisphere (≈
30,000 vertices) for close to 4,000 participants (a more detailed analysis is presented in section 4.4).
We found that streaming the images typically took around 100 ms or less per image (for images
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stored in the CIFTI/NIFTI-2 file format: https://www.nitrc.org/projects/cifti/).
Once the images were streamed and sufficient statistics computed, analysis with HMC took around
3.3 min per 1,000 iterations for the intercept-only model, or around 18.8 min per 1,000 iterations
for the three predictor model (intercept, age, and sex). Each analysis required less than 300 Mb
of free RAM to run, demonstrating the scalability of our approach. We ran this comparison on
a Dell PowerEdge R440 server with Intel® Xeon® Gold 6230 processors (2.1 GHz), limiting our
processes to use eight cores each.

4.2.5 Estimation of θ and C(·)

There are a number of ways to estimate θ in practice for a given correlation function C(·). Experi-
ence can guide practitioners to some extent: in applied imaging it is common to apply a Gaussian
smoothing kernel to data prior to analyses. In part, the goal of this practice is to approximate a full
spatial model for effects of interest [e.g. 165]. Commonly applied smoothing kernels are specified
by their full-widths-at-half-maxima (FWHMs), which are often chosen to be within a 4–12 mm
range [e.g. 112]. A 6 mm FWHM Gaussian kernel, for example, is nominally equivalent to a ra-
dial basis correlation function (4.7) with bandwidth parameter ψ = 0.077 and exponent parameter
ν = 2. These parameters can make for perfectly reasonable choices in practice: in our setting,
the posterior will typically not be overly sensitive to the choice of θ, especially for problems with
moderate to large N .

For general spatial modeling with Gaussian processes, other commonly used methods to esti-
mate the spatial correlation include variogram or covariogram estimation [e.g. 5, 34], and maxi-
mum marginal likelihood methods [e.g. 110]. These methods can also be used to select the cor-
relation function itself by taking, for example, the correlation function resulting in the best fit
to the variogram or the highest marginal likelihood. Here, we have used a maximum marginal
likelihood-based approach for a surrogate model to estimate the correlation function and corre-
sponding parameters in the spirit of Empirical Bayes. Appendix M.2 provides a full description of
this selection method for interested readers. In our analysis of the ABCD study data (section 4.4),
we estimated θ = (0.17, 1.38)T, which corresponds to a sub-Gaussian correlation function with
5.57 mm full-width-at-half-maximum.
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Figure 4.2: Simulation design. Data were simulated over a disc of 2,000 vertices on a spherical
surface. Effects of interest βj , j = 0, 1, 2 were simulated as hard-thresholded Gaussian fields each
with approximate 30% sparsity. Error terms ωi and εi were drawn from larger variance spatial
processes and dominate the spatial signals of interest such that the spatial signal-to-noise ratio was
controlled to be approximately 0.04. We have enhanced the contrast of the βj images for visual
clarity.

4.3 Simulation study

4.3.1 Simulation design

Our goal in simulation was to compare the performance of our two methods for estimating our
model against our “working model” and the standard vertex-wise marginal linear model approach.
In all cases, data were simulated from model (4.2) on a disc of 2,000 vertices on the cortical surface.
We designed our simulation to mimic the spatial smoothness and signal-to-noise ratio we estimated
from real data. Fig. 4.2 illustrates our approach to simulation. For each simulation iteration, we
generated spatially correlated and sparse βj = [βj(s)]s∈S , j = 0, 1, 2, by hard thresholding draws
from independent Gaussian processes with 6 mm FWHM exponential correlation functions. We set
the marginal variance parameter of each Gaussian field drawn this way to 0.04 and thresholded the
result at 0.08 so that each βj would be approximately 30% sparse on average. This level of sparsity
roughly matches the pseudo-sparsity we estimated from the real data: applying standard vertex-
wise GLM methods with a Bonferroni correction-based p-value threshold resulted in significant
findings over about 70% of the cortical surface. Since our prior model in (4.3) is non-sparse,
simulating the βj in this way actually reflects a setting with slight model misspecification. It is
advantageous to consider such a setting, however, since our criteria for model evaluation includes
measures of inferential accuracy. While we treated the field β0 as a spatially varying intercept
parameter, β1 and β2 were each paired with covariates. For subject i = 1, . . . , N , covariates
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(x1,i, x2,i)
T were drawn jointly from a multivariate Gaussian distribution with mean zero, unit

marginal variance, and correlation parameter 0.5.
In each simulation, we also generated the subject-level deviationsωi = [ωi(s)]s∈S as draws from

independent Gaussian processes with 6 mm FWHM exponential correlation functions. Again to
mirror estimates from the real data, we set the marginal variance of each ωi to 1.75. In a similar
vein, we drew each εi = [εi(s)]s∈S following a white-noise process with spatially constant variance
1.25. Under the above parameter settings, we controlled the spatial signal-to-noise ratio to be
approximately 0.04 (or equivalently, the spatial R2 was controlled to be approximately 3.8%). As
can be seen from Fig. 4.2, the error terms ωi and εi largely dominate the spatial signal. Within this
regime, we studied the behavior of our various comparison methods for increasing sample size,
replicating the simulation 50 times per sample size.

In all cases, we then fit our suite of methods to compared against the standard vertex-wise GLM
conditioning on the true correlation parameters (or smoothing the outcome images with exactly a 6
mm FWHM exponential kernel in the case of the standard method). For our suite of methods, we
used Vecchia approximations with 8 mm neighborhood radii to approximate the Gaussian process
priors on the βj(·) as discussed in section 4.2.4. Here, we give the standard vertex-wise analysis
paradigm a Bayesian treatment by replacing our priors on the βj(·) and σ2(·) with independent
Jeffreys priors as alluded to in section 4.2.3. Since the full conditional posterior distributions of
the resulting model parameters are quite easy to sample from we fit the vertex-wise model using
Gibbs sampling. Working with the model in this fashion allowed us to compare the standard
vertex-wise analysis to our proposed models in terms of full posterior inference. Namely, we used
posterior credible bands as a way to summarize the joint uncertainty in the βj(·) over all vertices
simultaneously. In a spatial modeling context, posterior credible bands are very natural and fully
Bayesian approach to inference, and can be easily estimated from MCMC samples [see e.g. 142].
Since credible bands reflect posterior probability statements about the joint behavior of the βj(·)
for all spatial locations, inference derived from them is fully multiple comparisons consistent.

4.3.2 Results of simulation comparisons

Table 4.1 summarizes the results of our simulation for increasing sample size. For each method
in the table, we report scaled absolute bias and variance as well as sensitivity and specificity rates
(True + and True −, respectively; expressed as percentages. Since the scale of each βj(·) is
the same for all j in simulation we report absolute bias and variance as averages over the en-
tire parameter vector β, so that the values in Table 4.1 can be interpreted as the scaled expected
point-wise bias or marginal variance of each βj(s). For example, the absolute bias column re-
ports 103/(3× 2, 000)

∑
j,s |β̂j(s)− βj(s)|, where β̂j(·) is the posterior mean estimate for a given
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Method N |Bias| Variance True + True −
Conditional 20 249.8 (3.9) 19.4 (0.4) 14.7 (0.7) 91.5 (0.4)
Marginal 20 178.1 (2.4) 17.5 (0.2) 4.0 (0.5) 98.5 (0.3)
Working Model 20 264.9 (4.4) 59.3 (1.8) 1.6 (0.1) 99.5 (0.1)
Vertex-wise GLM 20 228.1 (4.1) 77.7 (2.6) 0.0 (–) 100.0 (–)
Conditional 100 121.2 (1.5) 5.9 (<0.1) 26.2 (0.6) 95.1 (0.3)
Marginal 100 111.0 (1.3) 10.0 (<0.1) 7.2 (0.5) 99.6 (0.1)
Working Model 100 122.9 (1.5) 14.6 (0.2) 6.8 (0.3) 99.8 (<0.1)
Vertex-wise GLM 100 123.0 (1.3) 13.7 (0.2) 2.8 (0.4) 99.8 (<0.1)
Conditional 500 61.1 (0.4) 2.1 (<0.1) 53.6 (0.6) 98.0 (0.1)
Marginal 500 61.3 (0.4) 4.2 (<0.1) 27.5 (0.7) 99.9 (<0.1)
Working Model 500 61.2 (0.4) 4.4 (<0.1) 29.7 (0.5) 99.9 (<0.1)
Vertex-wise GLM 500 89.8 (0.3) 2.7 (<0.1) 29.3 (1.0) 96.2 (0.2)

Table 4.1: Simulation results focusing on parameter estimation (absolute bias and variance) and
inferential accuracy (true positive and true negative rates). Results are reported as mean (standard
error). Absolute bias and variance have been scaled by a factor of 103 to facilitate comparison; true
positive and negative rates (sensitivity and specificity, respectively) are expressed as percentages.

method (three predictors; 2,000 spatial locations; scaled by a factor of 103 to enhance the clarity
of the table). We constructed example inferential decisions based on 80% simultaneous credible
bands. The 80% credibility threshold was chosen to represent a selection that might reasonably
be applied in practice rather than by optimizing any kind of inferential criterion. In Table 4.1,
the True + column corresponds to the average percentage of cases where the true βj(s) 6= 0 and
the corresponding credible band does not include zero. Similarly, the True − column reports the
average percentage of cases βj(s) = 0 and the corresponding credible band covers zero.

The most immediate result of our simulations is that the marginal method of estimating our
model typically leads to the most accurate posterior mean estimate of β in the mean squared
error sense. For all methods under consideration, the point-wise bias dominates the point-wise
variance across all simulation settings. At large sample size, we note that both the marginal and
conditional methods of estimating our model as well as our working model tend to produce very
similar estimates and results. We explore this pattern further in Fig. 4.3, which summarizes the
similarity of the full posterior distribution of β, as estimated with our suite of methods. It is
clear from the figure that differences in estimation between methods decay as the sample size
increases. Interestingly, at small sample sizes, our conditional and working model methods have
higher absolute bias than the vertex-wise GLM, but quickly overtake the standard method as the
sample size increases. Bias does not decrease with increasing N as rapidly for the vertex-wise
GLM as for our suite of methods. The other major result indicated by our simulations is that, using
simultaneous credible bands for inference, the conditional method of estimating our model is the
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Figure 4.3: Comparison of the posterior distributions of β across our suite of methods. In the
left panel, 2-Wasserstein distance was computed using a Gaussian approximation to the posterior,
derived from MCMC samples. The center and right panels of the figure show the similarity in
the posterior mean and variance of β, summarized as the Euclidean and Frobenius norms of the
differences, respectively. Error bars are minimally visible, but show± 1 simulation standard error.

most powerful or sensitive among our methods under comparison. The sensitivity of this method,
however, is modestly lacking compared to our marginal and working model methods, which make
virtually no false positive errors even at smaller sample sizes.

This pattern of results can be somewhat difficult to summarize. Based on this simulation, we
cannot uniformly recommend any one method without knowledge of the practical goals of an in-
tended analysis. If estimation of β is of primary concern, then we would generally recommend our
marginal method if the sample size is small, or any of our suite of methods at larger sample sizes.
If inference is of primary concern, we might recommend our conditional method, for example,
for its high sensitivity. Alternatively, we might also recommend either our marginal or working
methods for their rather low false positive to true positive ratio.

4.4 Illustrative analysis of fMRI task contrast data

4.4.1 Description of the data and model setup

To illustrate use of our methodology, we applied our working model to analyze n-back task con-
trast data from the ABCD study, release 2.0.1 [85]. A brief comparison of estimation differences
between our working, conditional, and marginal model variants is available for these data in Ap-
pendix L.1. The ABCD study is the product of a large collaborative effort to study longitudinal
changes in the developing brain through childhood and adolescence, and to track biological and
environmental correlates of development [41]. Data collection and processing has been harmo-
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nized across 21 research sites in the continental United States. At the time of writing, the study
has collected baseline environmental, behavioral, genetic, and neuroimage data from over 11,800
children between the ages of 9–10 years. Longitudinal data has been collected at six month inter-
vals for a subset of children in the study; already over 3,600 children have been enrolled for over
2.5 years. Details regarding study design and recruitment [54], neurocognitive assessment [105],
neuroimage acquisition [22], and image preprocessing [67] are available in published literature.

For this illustration we will work exclusively with data from a subset of 3,267 children in the
baseline cohort that were scanned while performing an n-back task [8, 22] with pictures of human
faces expressing emotion as stimuli. The n-back task has enjoyed wide use in the neuropsycho-
logical and imaging community for its relationship with executive function and as a correlate of
working memory processes [e.g. 81, 121, 80]. Our subsample of children is limited to those who
scored at or above 60% correct on both 0-back and 2-back task conditions.

We focus our analysis on the relationships between task-related activation and individual-level
task accuracy, which has been studied previously [see e.g. 97, for a recent article]. In concert, our
analysis controls for various child-level characteristics and family-level demographic information.
We took 2- vs 0-back task contrast data (z-statistic scale) as our primary outcome and modeled
it as a function of 2-back task accuracy; child fluid intelligence; child age (months); child gender
(binary); parental education (five levels); parental marital status (binary); and family income (three
levels). We included first-order interactions between child gender and parental education; child age
and parental education; child age and child gender; child age and 2-back accuracy; and child gender
and 2-back accuracy. Table 4.2 gives a summary of the demographic information for this sample.
For interpretive purposes, we centered continuous covariates in the analysis on their respective
in-sample means, and we treated the in-sample modal demographic categories as baseline (female
child from a married household, at least one parent with a post graduate degree, and household
income greater than $100,000 USD/year). Given this coding scheme, the intercept parameters in
our spatial regression can be interpreted as the expected task contrast image for a typical in-sample
female child of average fluid intelligence that scored 80% correct on the 2-back task condition. For
visualization purposes, we scaled each continuous covariate by two standard deviations [58] so that
resultant coefficient images are more directly comparable with coefficient images for categorical
covariates. Although we will not have room here to give a full account of all of the effects we
estimate for our demographic and socio-economic predictors, interested readers can find a more
comprehensive report in Appendix L.1.

We chose covariates largely on the basis of known associations with general n-back task ac-
curacy [123]. In addition, we performed sets of exploratory analyses in the classic vertex-wise
framework without any spatial smoothing (not shown). These analyses served to help us visualize
and understand several important aspects of the data. First, we observed modest but present nonlin-
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ear patterns in the relationship between the contrast data and 2-back accuracy. Preferring simplicity
here, we found that these trends were reasonably well characterized by a quadratic model for 2-
back accuracy. Including this term in the analysis resulted in a total of P = 24 predictors including
the global intercept.

Additionally, since the ABCD data are naturally grouped by the study’s 21 data collection sites,
we explored the utility of including random site effects. For these data, the random site effects
explained less than 1% of the total variance in over 97% of vertices, and less than 0.1% of the
variance in nearly half of vertices. We ultimately concluded that site-specific random effects do
not critically influence results here. Again preferring simplicity, the results we show in the main
text do not include site effects as a variance component. Interested readers can find further analysis
to support this claim in Appendix L.1. As a final note before presenting results, the ABCD study
more broadly contains imaging data acquired from siblings. Around 20% of families in the ABCD
release 2.0 baseline data have two or more children enrolled in the study. This might additionally
suggest the need for a random family effects analysis. We avoid this issue entirely here: the cohort
that we analyze contains data from only one child per family in our subset. While our method is
capable of estimating effects like this in general, it would be very slow computationally to give a
fully Bayesian treatment to a large number of random spatial effects. A more specific tool could
be built on top of the methods we present here to include such variance components and/or treat
them as nuisance parameters.

We fit our model with Hamiltonian Monte Carlo (HMC) as noted in section 4.2.4. For this
analysis, we ran eight chains of 7,000 iterations each, discarding the first 5,000 as adaptation and
burnin, and saving 200 samples from the final 2,000 iterations of each chain. Convergence was
assessed via univariate folded and non-folded rank-normalized split R̂ [170] for each parameter
βj(·), and by visual examination of trace plots for subsets of these parameters. The folded split R̂
statistic was below the recommended threshold of 1.01 for over 99.9% of the βj(·) (the worst case
scenario was 1.02), indicating reasonable convergence in the posterior spread and tail behavior for
these parameters. Similarly, the worst-case non-folded split R̂ statistic was 1.04 across all βj(·),
indicating reasonable convergence of the center of the posterior distribution for these parameters.
We set the neighborhood radius of the Vecchia approximation of our prior precision to 8 mm, and
the neighborhood radius of our HMC mass matrix to 3 mm. While the algorithm can be quite sen-
sitive to the choice of mass matrix neighborhood radius, values in the range 2–4 mm led to efficient
and well-mixing chains both here and in simulation. For readers familiar with Hamiltonian Monte
Carlo: Metropolis-Hastings rates were tuned during burnin to be approximately 65%; automatic
tuning was achieved using the dual-averaging method presented in [73]. Additionally, we fixed the
number of numerical integration steps in our HMC to 35, which we noted produced well-mixing
chains.
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4.4.2 Summary of primary results

The primary results of our analysis are presented in Figs. 4.4 and 4.6. We consolidate the output
by focusing on results in the right hemisphere, and we note that in general results in the left
hemisphere are highly symmetric. Figs. 4.4 and 4.6 follow the same general format for different
terms in our model. In particular, Fig. 4.4 shows the posterior mean estimate of our model intercept
parameters (β0) and also gives a region of interest level summary of this term. Regions of interest
were taken from the Gordon 2016 cortical surface parcellation, which created was in part from
resting state functional connectivity maps and naturally groups brain regions within a network
community structure [63]. The atlas delimits 172 brain regions in the right hemisphere (161 in the
left), each grouped within one of 13 functional network communities.

To summarize our model intercept by brain region, we fit a series of mixed effect models to
MCMC samples of β0, taking advantage of the Gordon atlas’s grouped structure. We used this
modeling strategy to obtain region-level averages of our spatial intercept parameters, where each
region-level average is shrunk towards its network community mean. By repeatedly fitting this
model to each sample of β0, we obtain fully Bayesian point and interval estimates for the region-
level averages. The bottom panel of Fig. 4.4 displays point and multiple comparisons consistent
95% interval estimates for a subset of regions in the Gordon 2016 atlas. Although we model and
adjust the intervals based on all 172 regions in the atlas, we only show the region-level estimates
for regions belonging to communities: Cingulo-Opercular network, Default mode network, Dorsal
attention network, Fronto-Parietal network, and “None” (see Fig. 4.4). Results of this analysis
show that the largest activations occur in regions associated with the Dorsal attention, Fronto-
Parietal, and Cingulo-Opercular networks, with a handful of regions associated with the Default
mode network also showing significant activations. Similar conclusions were reached by [22] in a
smaller, preliminary subset of these data (N = 517). Data from another large collective imaging
study also support similar results in adults aged 22–37 years (N = 949) [97].

Fig. 4.5 depicts example spatial inference on the intercept parameters in the right hemisphere,
thresholding at what we might consider a small to medium effect size. In the figure, colored
regions denote areas where the posterior mean estimate of |β0(s)| is greater than 0.4. Since we are
modeling z-statistic outcomes, β0(s) > 0.4 can be interpreted to mean that roughly 2 out of every
3 “average” children in our sample would show task-related activation at location s (versus 1 in
3 showing deactivation; the statement can be reversed for β0(s) < 0.4). Regions of darker color
in Fig. 4.5 mark areas where our analysis suggests the probability that |β0(s)| > 0.4 is greater
than or equal to 80% simultaneously for all vertices s within those areas. This interpretation is
similar to the notion of “upper confidence sets” from [18]. Here, as in in section 4.3, we use
posterior credible bands [see e.g. 142] to create these inferential summaries. In principle, this type
of summary can be generated for other standardized or real-world measures of effect size, such as
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Figure 4.4: Model intercept coefficients summary. The upper left corner of the figure shows the
posterior mean estimate of the intercept, which can be interpreted as a one-sample t-test for the 2-
vs 0-back contrast, controlling for demographic information (see the main text for details). Forest
plots in the bottom row of the figure summarize the intercept parameters in terms of region-level
averages, with regions taken from the Gordon 2016 cortical surface parcellation [63]. Error bars in
the forest plots correspond to fully Bayesian 95% intervals that have been widened to be multiple-
comparisons consistent (Bonferroni adjustment). The upper right panel of the figure shows the
brain regions represented on the x-axis in the bottom row forest plots. Region numbers corre-
spond to the Freesurfer (https://surfer.nmr.mgh.harvard.edu/fswiki) labels for
the Gordon parcellation. Left to right the region labels read, Cingulo–Opercular: 145–164; De-
fault Mode: 68–88; Dorsal Attention: 189–201; Fronto-Parietal: 106–120; None: 22–47; Ventral
Attention: 213–224.

Cohen’s d or percent signal change, etc.
Similarly to Fig. 4.4, Fig. 4.6 summarizes results for the effect of 2-back accuracy rate on the

2- vs 0-back contrast. In the figure, coefficients for the linear and quadratic accuracy terms reflect
the expected change in activation between ten year old female children scoring 96% and 80% cor-
rect on the 2-back condition, respectively, holding all other demographic covariates constant. Our
analysis suggests high spatial overlap between the intercept and areas where average activation
increased linearly with increasing 2-back accuracy (confer from Figs. 4.4 and 4.6). Interestingly,
however, the quadratic accuracy term largely seems to reflect areas where average activation in-
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Figure 4.5: Model intercept for the right hemisphere: example signed discoveries using an 80%
posterior simultaneous credible band to infer locations where |β0(·)| > 0.4. Red regions corre-
spond to functional activations and blue regions correspond to deactivations. Darker colors indi-
cate regions of simultaneous posterior confidence that |β0(s)| is greater than 0.4 for all vertices s
in those regions. Lighter colors can be thought of as reflecting the spatial uncertainty in that claim
of posterior credibility.

creased supra-linearly with increasing 2-back accuracy. Based on our analysis, these areas are
more constrained to regions associated with the Dorsal-Attention and Fronto-Parietal networks
(Fig. 4.6). Model residual standard deviations for both hemispheres are shown in Fig. 4.7. In
general, areas with the highest residual variance overlap with areas activated in the 2- vs 0-back
contrast (confer from Figs. 4.4 and 4.7). This result indicates substantial variability in individual
responses in these regions. Overall, our fitted model explained about 6.2% of the total variance in
the task contrast images.

4.4.3 Goodness-of-fit evaluation

Finally, we assess the fit of our model using posterior predictive simulation [139, 59] and analysis
of model residuals. Selected results of these comparisons are presented in Fig. 4.8. In the figure,
we summarize the extent of discrepancy between the observed data and posterior predictions the
model would make for replicated data. To do this, we again leveraged the Gordon 2016 corti-
cal surface parcellation [63] and computed test descriptive statistics across subjects within each
brain region, comparing against the same statistics computed over synthetic data of the same size
simulated from our model. We explored the discrepancies in the predictive and empirical data
distributions based on measures of central tendency, spread, and several quantiles. Absolute dif-
ferences in the empirical values and the posterior predictive mean value are shown in Fig. 4.8 for
each brain region and for three such test statistics. To give a sense of scale, in the figure the largest
regional difference is < 0.2 (10th Quantile panel), whereas the range of the data is approximately
−13.7 to 17.1. In general, we found that discrepancies between the empirical and predictive dis-
tributions were extremely low for test statistics that summarize features of the central bulk of the
distributions. Features in the very tails of the empirical distribution were less well captured in
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Figure 4.6: Coefficient summary for 2-back condition accuracy rate (linear and quadratic terms).
The overall format of the figure is the same as in Fig. 4.4 above.

the predictive distribution, as might be expected for a normal model (not shown). In Fig. 4.8,
we also summarize goodness-of-fit by comparing standardized residual histograms for each brain
region. In the lower panel of Fig. 4.8, we ranked each brain region by their discrepancy with
a normal model and show residual histograms for the best, median, and worst-case regions. In
general, we again see evidence of excellent model fit throughout the central bulk of the data. Inter-
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Residual Standard Deviation
MedialLateral

Figure 4.7: Residual standard deviation for the right hemisphere. Areas of high residual variation
generally overlap with activation areas in the 2- vs 0-back contrast (confer with Fig. 4.4).

estingly, region 192 (worst-case fit) contained the highest overall mean parameter estimate within
the Dorsal-Attention network community for both the intercept and linear 2-back accuracy term
(Figs. 4.4 and 4.6; as in Fig. 4.4, “192” corresponds to the Freesurfer label for the Gordon atlas
region). This result may indicate, for example, that while the (simple) quadratic model we have
used for 2-back accuracy provides a reasonable fit to the task contrast data across most of the right
hemisphere, it may fail to perfectly encapsulate the complex task-related activation patterns in this
sample.

4.5 Discussion

This chapter proposes a Bayesian spatial model for group-level image-on-scalar regression anal-
yses, and illustrates several ways to consider working with the model in practice. We also show
how the spatial Gaussian process prior formulation and related approximation through conditional
independence methods can enable flexible and reasonably efficient computation with MCMC. Crit-
ically, our approach allows us to work with full-rank spatial processes, and does not rely on lossy
compression schemes like down-sampling or low-rank projection, which can be dissatisfying in
practice [e.g. 157]. We have shown in simulation that our strategy can improve on the standard
analysis stream in terms of finite sample bias, sensitivity, and specificity. We have also shown that
an approximate working model produces similar inference on the spatially varying coefficients
β(·) in settings with moderate to large N . Our working model is relatively easy to compute with,
and can be thought of as a generalization of the standard analysis stream. Finally, we illustrate use
of our method on task (n-back) contrast data from the Adolescent Brain Cognitive Development
study.
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None
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Figure 4.8: Goodness of fit checking. (Top) Absolute differences in the observed and mean poste-
rior predictive value for three different test statistics computed across all subjects and vertices for
each brain region in the Gordon 2016 parcellation [63]. Test statistics shown are the regional mean
and 10th and 90th quantiles. In the figure, predictive checking is homogeneous within each brain
region; the gray shows a boundary area not assigned to any particular region. (Bottom) Histograms
of standardized residuals from three different brain regions. Blue lines show the fit of model at the
posterior mean. The three different regions chosen show the best, the median, and the worst-case
scenarios for the model’s goodness-of-fit in these areas.

With the exception of a white-noise component our model error process, we express our model
as a sum of terms assigned stationary spatial priors in section 4.2. In general, spatial stationarity is
not considered a realistic assumption for imaging data [see e.g. 180, 1]. Although we use stationary
priors throughout for simplicity, in practice, given the data the posterior distribution of our model
parameters can still reflect non-stationary processes. In fact Figs. 4.4 and 4.6 illustrate clear
posterior mean field non-stationarity. In particular, the posterior mean of our model intercept and
linear 2-back accuracy rate coefficients suggest obvious mean-field non-stationarity. Moreover,
since our model on the white-noise process is inherently non-stationary, our prior hierarchy can
lead to more data-adaptive smoothing in the regression coefficients compared to standard analysis
streams where stationary spatial smoothing is applied, at some level, to the data.

As we alluded to in section 4.4.1, it may be of interest to build extensions to our method to
incorporate additional variance components for more complex or specific study designs. Such an
extension might correspond, for example, to the addition of random family effects in analyses of
the greater ABCD study sample. While our present model is technically capable of estimating such
effects by pooling the corresponding ζ2j across related terms, including a large number of random
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spatial effects in the analysis can be extremely demanding computationally. One workaround might
be to omit modeling spatial correlation structures for these terms, and treat them as pure nuisance
parameters. At the time of writing, we have not yet studied the practical consequences of doing so.

Other possible extensions of our method include modeling of fMRI time series data at the
individual or group level. Our present method does not require more than a minor modification of
the likelihood to be appropriate for individual-level fMRI time series analysis. In this single-patient
setting we might write a new data-level model,

yt(s) = xTt β(s) + εt(s), t = 1, . . . , T,

where T is the number of time points in the series. Here, we could retain the prior on β(·)
from (4.3) and assume the spatio-temporal errors εt(·) can be modeled approximately as an auto-
regressive process [e.g., 51, 182]. Additional flexibility could be incorporated into the model for
the εt(·) for example by allowing the temporal auto-regressive order also to vary with spatial loca-
tion [similar to 164].

As discussed in section 4.1, a Bayesian spatio-temporal model for analyzing multi-participant
time series data has already been proposed by Mejia et al. [111]. Although such an integrative
model is very attractive conceptually, the number of parameters required to be estimated grows
rapidly with increasing sample size N , creating the potential for a significant computational bot-
tleneck. Mejia et al. [111] approach this very difficult problem by limiting their method to small
sample studies, substantially down sampling the available spatial data, and constructing a numer-
ical approximation of the posterior. Though this procedure appears to work quite well in small
sample settings, cases where N is moderate to large may demand an alternative approach. With
the present chapter, we have proposed one such alternative. Our method can be reasonably used
in a large-sample group-level fMRI analysis setting by simply taking first-stage contrast images to
be the response. Within this framework, our proposed method gains the advantage of being able
to generate scalable, fully Bayesian inference for group-level image-on-scalar regression models.
Our choice of prior, moreover, additionally allows us to construct this inference in a way that re-
tains a full spatial rank posterior over the varying coefficient function β(·). Compared to relatively
more common low-rank posterior approximation schemes, the ability to work with full-rank spatial
processes may be highly desirable in applied settings.
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Descriptor Mean SD IQR
0-Back Accuracy 0.87 0.09 0.11
2-Back Accuracy 0.80 0.08 0.12

{0 - 2}-Back Difference 0.07 0.09 0.12
Age (yrs) 9.99 0.62 1.08
Fluid IQ 0.29 0.75 0.97

Percentage
Child Gender

Female 50.8%
Male 49.2%

Child Race/Ethnicity
Asian 2.4%
Black 8.8%

Hispanic 17.1%
Other 9.5%
White 62.2%

Household Income (US$/yr)
< 50K 22.4%

50K–100K 30.7%
≥ 100K 46.9%

Parental Education
< HS Diploma 2.1%

HS Diploma/GED 5.3%
Some College 23.0%

Bachelor 28.6%
Post Graduate Degree 41.0%

Parental Marital Status
Married Household 76.0%

Unmarried Household 24.0%

Table 4.2: Demographic information for children in our sample. Continuous covariates are sum-
marized by their mean, standard deviation and interquartile range; categorical covariates are sum-
marized by percentage of the sample in the respective category.
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CHAPTER 5

Discussion and Future Work

In this dissertation we have considered three different applications of Gaussian process priors to
model spatial structure in neuroimage data. Additionally, in each chapter we explored a different
method of computing with high-dimensional Gaussian processes [178, 7, 35]. We further deployed
the methods we proposed in each chapter to address three very distinct clinical and research ques-
tions each motivated by different data sets.

In Chapter 2, we were motivated by single patient fMRI task contrast data collected at two
different spatial resolutions. Single patient data was collected from a surgical candidate prior to
their operation. The objective was to map individual patient functional neuroanatomy and identify
eloquent brain tissue. Such a procedure can be used to inform preoperative planning of the surgical
access route. Presurgical planning requires spatially precise localization of functionally healthy
brain regions, but current physical limitations of MR imaging technology lead to a reduction in
the signal-to-noise ratio (SNR) with increasing spatial resolution. In a worst-case scenario, lower
SNR might lead to reduced sensitivity and resection of healthy brain tissue. To try to work with
this inverse SNR-voxel size limitation rather than against it, our collaborator collected scans at both
high and low spatial resolution. The resulting data, however, inherently exhibit different levels of
noise and lack a common spatial support, rendering them difficult to combine in a straightforward
manner.

We achieved integration of data over different spatial supports by modeling the mean inten-
sity function of both images with a unifying generative Gaussian process. To handle the massive
amount of spatial information in the data we leveraged a parameter expansion idea from [178] into
a relatively efficient posterior sampling algorithm using Riemann manifold Hamiltonian Monte
Carlo methods. Although our sampling algorithm is quite efficient considering the ultra high-
dimensional parameter space it operates in (the Wood and Chan parameter expansion trick in-
creases the dimension of our sampled parameter from about 300, 000 to approximately 8.4×106), it
can still take over 2 hours per 1, 000 iterations to run. While this is fast enough to be run overnight,
in general excess latency between presurgical scanning and inference is not desirable. One of the
most obvious next steps for this project is to consider faster posterior approximation schemes, and
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study the cost to inference they entail. In Chapter 2, our loss function-based approach to inference
relies only on pointwise estimates of the mean and variance of the function µ(·). Since this is
the case full posterior inference with MCMC may not be entirely necessary. I am also optimistic
about applying Vecchia approximation [169, 90] of the prior (similar to in Chapter 4) to our model
in this setting. Here, Vecchia approximation could for example be substituted for the joint prior
precision of (µT

h,µ
T
s )T and (potentially) eliminate the need to expand the parameter space or rely

on Hamiltonian Monte Carlo.
In Chapter 3 we proposed a model for covariate-informed unsupervised clustering of imaging

outcomes based on a mixture of spatially varying regression models. In this framework, the mix-
ture components can be thought of as the mean varying coefficient regression models for latent
subgroups. Given data, the model then learns patient-specific distributions for subgroup or cluster
assignment. We used a logistic stick-breaking process [136] to model patient-specific component
weights, and projected or “predictive” Gaussian processes [146, 7] to model the spatially varying
regression coefficient functions for each mixture component. Using existing data augmentation
schemes [74, 126], full conditional posterior updates are readily available for each parameter,
leading to relatively straightforward posterior inference using Gibbs sampling.

With this project, we were inspired by disease subtyping efforts in precision medicine. In
particular, there has been a recent push to identify Autism spectrum disorder neurotypes from
imaging-derived data [for reviews, see 76, 167]. The prevailing method in these types of studies is
to apply some unsupervised clustering method like k-means or hierarchical clustering to imaging
outcomes. In follow up post hoc analyses, researchers then partially validate identified clusters
using correlations with patient covariate information like clinical measures of Autism severity.
We have shown in simulation that this two-stage approach may produce very noisy clustering
patterns and thus be of limited use. Instead of this procedure, we propose our covariate-informed
clustering model for imaging outcomes, and show how such a model can lead to dramatically better
clustering and estimation. We have applied this method to single-site, resting state fMRI-derived
data from Autism spectrum patients and have obtained results that closely mirror existing findings
from different imaging modalities [82, 26, 76].

As we have seen, working with stick-breaking type models can be quite technically challenging.
This is especially true in high-dimensional outcome settings; doubly so if inference conditional on
cluster assignment is a requirement of the analysis. Both of these conditions are met by our model
in Chapter 3. For example, [70] study Markov chain mixing properties with Dirichlet process mod-
els in large data settings. In order to improve Markov chain mixing, [70] specifically induce label
switching moves in their sampling algorithm. In contrast, in order to obtain inference for cluster-
specific parameters, we have gone to some length to ensure that label-switching moves happen at
most infrequently after burnin. In doing so, we are essentially trying to trap our Markov chains
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“close” a single local clustering mode. From this perspective, it might make more sense to adopt
an alternative computational approach for our problem. Wang and Dunson [174], for example,
propose a Dirichlet process model approximation scheme using a greedy search algorithm to find a
local clustering mode. The authors then propose to fix that estimate of the clustering allocation and
condition any remaining analysis on it. This scheme, though not fully Bayesian, might ultimately
be more in line with the goal of estimating neurotypes. Given that there is so much applied interest
in this area, there may be a number of model extensions, reformulations, or estimation strategies
that could conceivably be useful for such problems.

In one sense, we took a step backward with Chapter 4. Rather than add complexity to or
continue to explore aspects of the model in Chapter 3, I wanted to simplify and focus in on the
spatially varying coefficient (SVC) regression part of the model. In Chapter 3, we used a reduced-
rank projection method to compute with spatially varying regression coefficient processes within
each mixture component. While this design encodes an intuitively appealing assumption that latent
mixture components in imaging should be determined by low-rank features in the data, in practice
results can be sensitive to the number of low-rank bases and model performance can suffer. In
the transition to Chapter 4, my goal was to study what it would take to compose a highly accurate
spatial regression model for group-level neuroimaging data. To this end, we developed several
models that treat regression coefficient functions βj(·) as spatially varying. In turn, we used priors
based on Gaussian processes and a measure of geodesic distance along the cortical surface to
model correlations in the βj(·) functions at nearby locations. Further, we achieved all of this using
a computational technique that is both scalable to number of locations on the cortical surface and

retains full spatial rank in the posterior distribution of the βj(·).
Typical practice in applied imaging studies is to induce indirect spatial regularization of re-

gression coefficients by smoothing the image data with a fixed-width kernel, and ignore spatial
information otherwise. In the statistical community, current approaches to SVC-type models for
group neuroimage data largely rely on lossy compression schemes like down sampling the data or
other form of low-rank projection (as we did in Chapter 3). In practice, however, low-rank methods
can be dissatisfying to work with (from a goodness-of-fit perspective [e.g. 157]; from an estimation
perspective [e.g. discussed in 35]; and to some extent from a predictive error perspective [e.g. see
methods comparison in 71]).

With Chapter 4, we propose an SVC regression model for group-level imaging data. We model
the probability law governing our SVC functions with Gaussian processes, and show how this
construction can naturally extend to data indexed by locations on the cortical surface. Critically,
we propose Vecchia approximation [169, 90] to enable computation of the log prior on our spatial
regression coefficient functions. As a result, we are able to estimate SVC functions that are nu-
merically full spatial rank and suffer minimal approximation error. Our method, moreover, permits
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relatively scalable, fully Bayesian estimation with Hamiltonian Monte Carlo.
One general issue with this framework is that by “scalable” we mostly mean in terms of the

computer memory required to run our associated software, which can be minimal even for massive
data sets. Our method is less scalable in terms of wall-clock time for models with a large number
of covariates. Since our entire goal is to be able to estimate full spatial rank SVC functions, the
number of raw parameters we are required to estimate increases dramatically with the number of
covariates in the model. This can pose a practical issue if, say, the analyst would like to compare
models over a set of candidates, or if study design entails a complex mean structure. An extension
of our current method is most immediately needed for just these scenarios: (i) efficient model com-
parison and (ii) fast approximation in high-dimensional covariate settings. On the other hand, since
our work in Chapter 4 enables gold-standard full-rank, full posterior inference for SVC regression
models, we can more fully explore the practical consequences of using various other posterior
approximation strategies such as mean-field variational inference [15], etc.

As discussed at the end of Chapter 4, another possible future direction for our cortical surface
regression modeling framework is an extension to spatio-temporal data. Such an extension may be
conceptually quite desirable for application to general fMRI studies. In the case of single-patient
data, our present method would not require more than a minor modification of the likelihood to be
applicable. We might write, for example,

yt(s) = xTt β(s) + εt(s), t = 1, . . . , T,

where T is the number of time points in the series, and εt(·) reflects a spatio-temporal error process.
In a typical applied fMRI analysis, working spatial independence approximations are used to com-
pute β(·) and any temporal autocorrelation parameters related to εt(·) in a tractable manner. We
might instead approach this problem by retaining our spatial Gaussian process prior on β(·) from
(4.3). Additional flexibility could then be built into the model by treating temporal autoregressive
order in the error process as spatially varying. Inspiration could be drawn from Teng et al. [164],
who similarly allowed spatial variation in the autoregressive order of temporal error processes.

In the single-patient spatio-temporal model proposed above, evaluation of the model log-
likelihood could be achieved in a manner very similar to that we used for our marginal model (4.8)
in Chapter 4. One of the defining features of autoregressive processes is conditional independence
between observations outside of some neighborhood. For example, modeling the temporal auto-
correlation pattern in the εt(s) with an AR(1) process would imply that, given εt−1(s) and εt+1(s),
εt(s) is independent of εt+k(s) for any |k| > 1. As a direct consequence of this specific structure,
all of the sparse precision techniques we develop and use throughout Chapter 4 are immediately
applicable to computation with the spatio-temporal model outlined above.
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APPENDIX A

Chapter 2: Software

A.1 Software

In this section we give a brief sketch of the command line tools we have written to implement
the methods discussed in Chapter 2. Software is available for download at https://github.
com/asw221/dualres, and should be compatible with any Unix-based system.

A.1.1 Dependencies

We require a C/C++ compiler compatible with the C++17 standard (e.g. gcc >= 8.3.0 should
suffice). At the time of writing, external dependencies include:

• The boost filesystem and math libraries

• The Eigen (3) linear algebra library

• The fftw Fourier transform library

• The nlopt library for non-linear optimization

• OpenMP

• zlib - (Likely already on your system)

A.1.2 Installation
We have used the cmake build system. Installation instructions assume dependencies have been
preinstalled and our source code downloaded from GitHub. We first require compilation of an
included NIFTI library:

cd /path/to/dualres/lib/nifti && make all
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Then from */dualres/lib/nifti, run:

mkdir ../../build && cd ../../build

cmake .. -DCMAKE_BUILD_TYPE=Release

make

A.1.3 Analysis of single-patient presurgical fMRI data

Dual- or single-resolution models can be fit to data stored using the NIFTI file standard with the
dualgpmf command.

Basic syntax might look like the following:

./dualres/build/bin/dualgpmf \

--highres /path/to/highres.nii \ # REQUIRED. Defines inference space

--stdres /path/to/stdres.nii \ # Auxiliary data

--covariance 0.806 0.131966 1 \ # [marg. var., bandwidth, exponent]

--neighborhood 6.9 \ # Kriging approximation extent (mm)

--output output_basename \ # Output file base name

--hmask /path/to/hresmask.nii \ # Mask for highres image input

--omask /path/to/outmask.nii \ # (Optional) Output image mask

--smask /path/to/sresmask.nii \ # Mask for auxiliary image input

--burnin 1000 \ # MCMC burnin iterations

--nsave 1000 \ # MCMC iterations to save

--thin 3 \ # MCMC post-burnin thinning factor

--leapfrog 25 \ # HMC number of integrator steps

--mhtarget 0.65 \ # HMC target acceptance rate

--threads 6 \ # Number of cores to use

--seed 48109 # URNG seed

The assumed Gaussian parent process covariance function for this project is the three parameter
radial basis function in equation (2.5). Above, the arguments to --covariance reflect the
marginal variance, bandwidth, and exponent parameter for that function. See the main text for
further details (Chapter 2).

A.1.4 Estimation of mean process covariance parameters

The dualgpmf program will estimate the covariance parameters using a minimum contrast
method if they are not specified by the user, but the user control over this feature is sparse. For an
enhanced interface and control over the estimation we provide estimate rbf, which exposes
more user options.

For example:
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./dualres/build/bin/estimate_rbf \

/path/to/input.nii \ # REQUIRED. Input image/data

--mask /path/to/mask.nii \ # Mask for image input

--xtol 1e-5 \ # Set numerical tolerance

--bandwidth 1.0 \ # } \

--exponent 1.5 \ # } - Fix given RBF parameters

--variance 1.0 \ # } /

--constraint # } - Constrain b/width <= expon

Covariance parameters estimated using estimate rbf can then be passed to dualgpmf us-
ing the --covariance flag as above. For further details about our minimum contrast estimation
method, see section 2.4.1 and Appendix C.
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APPENDIX B

Chapter 2: Additional Patient Data Analysis Results
and MCMC Diagnostics

B.1 Model diagnostics for Patient 1

In this section we include several of the general attempts we have made to probe Markov chain
convergence and model fit in our analysis of patient data.

µh 158815 µh 19562 µh 56378

µh 102989 µh 117750 µh 135263
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Figure B.1: Trace plots for the mean parameter of six random voxels from analysis of patient 1’s
data with our dual resolution model. Three different HMC chains are overlaid on one another in
each subfigure.

As discussed in the main text, Fig. B.1 shows trace plots for three chains of Hamiltonian Monte
Carlo (HMC) draws of the mean parameter for six random voxels. In all cases we examined, chains
appear to show good convergence and mixing. Fig. B.2 (left) shows empirical covariograms and
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Figure B.2: (Left) Residual covariograms for each method. The dotted lines show minimum voxel
dimensions for each resolution, suggesting that the residual independence approximation is rea-
sonable in these data. (Right) Dual resolution method residual histograms roughly separated by
gross tissue type. Residuals have modestly higher dispersion in gray matter than in white.

estimated covariance functions for residual images from each method. We found that the estimated
residual correlation functions’ full widths at half maxima were on the order of the minimum voxel
dimensions in all cases. These analyses suggested that residual correlation decayed to near zero
within the smallest voxel dimension widths, leading us to conclude that residual independence was
a reasonable approximation in our data.

The right panel of Fig. B.2 shows histograms of the residuals from our dual resolution method
roughly separated by gross tissue type. We chose to parse the residuals in this way due to some
concern that a homogeneous residual variance approximation may not be fully justifiable across
the whole brain. To construct this figure, we created non-overlapping gray and white matter tissue
labels using the FAST program from the FSL software suite [185], though the presence of the tumor
complicates this procedure. The figure suggests that residuals had modestly higher dispersion in
gray matter (standard deviation = 1.49) than in white (standard deviation = 1.31). If it were not
for the tumor, we might ideally only want to analyze gray matter voxels for signs of task-related
activation. Given the present context, however, this strategy is not completely possible. As it
stands, although it appears homogeneous residual variance may not strictly hold across different
tissue types, we do not believe the approximation is so poor as to grossly impact our analyses in a
negative way.

We further examined posterior predictive distributions for the data from each voxel in the high
resolution image, and compared the distributions against the observed data (analysis not shown).
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Dual resolution model posterior predictive inverse quantiles for the observed data were roughly
uniform, suggesting that data outliers occurred no more or less frequently than would be expected
given the model.

B.2 Patient 2: Sensitivity analyses

In this section we include a brief sensitivity analyses related to the choice of neighborhood size
and covariance function in our dual resolution method.
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Figure B.3: Mean squared error (MSE) of the posterior expectation of µ(·) given fixed θ but
different values of r. The (left) panel shows MSE of µ(·) evaluated across the whole brain, while
the (right) panel shows the predictive MSE for voxels in patient 2’s dropout region. Thick and thin
lines give approximate 80% and 95% confidence intervals.

Our dual resolution mapping method relies on a neighborhood radius parameter r to construct
locally kriged samples of µs given µh (see section 2.2.2 in the main text). Conceptually, this
construction is somewhat inspired by the so called nearest neighbor Gaussian process [35, 44]. In
practice, we treat r as a hyperparameter and condition analyses on it, though it is of interest to
understand how the choice of r affects inference about µh. In our patient data analyses (sections
2.4.2 and 2.4.3 in the main text), we set r to be approximately equal to the estimated full kernel
width at half maximum. This resulted in neighborhood sizes on the order of 300–700 voxels for
our patient data.

To explore the influence of r on estimation and prediction, we fit our dual resolution model to
the patient 2 data under several different settings, all for fixed θ. As a comparison point, we took
the posterior mean of µ(·) fit to the data without missingness and conditioned on r = 11 mm. We
then compared against the posterior mean of µ(·) from repeat analyses of the with-missingness data
and varying values of r (see section 2.4.3 in the main text for an explanation of the two data sets).
For these repeat analyses, we chose values of r based on multiples of the largest high resolution
image voxel dimension (2.2 mm). Fig. B.3 summarizes this experiment in terms of the squared
error of µ(·) averaged over the whole brain (left) and voxels in the dropout region (right). From
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these results we conclude that as long as r is sufficiently large (≥ 6.6 mm or so; corresponding
to neighborhood sizes of at least 100–200 voxels), it does not appear to have much influence on
posterior estimates.

In our analysis of Patient 2’s covariogram, the exponential model we used tends to underesti-
mate the proximal empirical covariances. We chose to use the radial basis covariance function-
family largely because of the substantial history of gaussian smoothing in applied MRI analy-
sis. Additional literature suggests exponential smoothing kernels are perhaps more appropriate for
fMRI data [65]. We considered alternative covariance functions and their impact on our analysis,
and we summarize one such alternative here.

Figure B.4: Reanalysis of Patient 2’s covariogram. The red line reproduces the exponential co-
variance model from the main text; the blue line shows a rational quadratic covariance model.

In Fig. B.4, we compare the exponential covariance model from the main text against a rational
quadratic model, and find that the rational quadratic model fits the proximal empirical covariances
quite well. The specific rational quadratic model in the above figure is,

kR.Q.(v,v
′) = 1.25

(
1 +

‖v−v′‖2

16.67× 0.99

)−0.99
.

It is impossible to tell visually, but the rational quadratic model in Fig. B.4 is sub-optimal in
the sense that it has a very slightly higher residual weighted sum of squares than the exponential
model. Better than either might be some weighted linear or piecewise combination of the two.

Choice of the covariance function is more art than science. An interesting feature of this prob-
lem is that the empirical covariances will tend to overestimate the true mean field covariance if the
noise is positively correlated spatially. Assuming as we do in the main text that Y (v) = µ(v)+ε(v)

and that µ(v) ⊥ ε(v′) for all v,v′, the empirical covariances will be overestimates since,

cov{Y (v), Y (v′)} = cov{µ(v), µ(v′)}+ cov{ε(v), ε(v′)}.
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Figure B.5: The figure shows thresholded posterior inference of activation regions for Patient 2
in an example horizontal slice. The color scale is shared between sub figures and reflects an
approximate posterior probability of activation (range 0.3–1.0).

Although in our work we modeled the error structure as a white noise-type process for simplicity,
it is perhaps more realistic to assume the errors may be positively correlated over short distances.
If the errors are in fact correlated spatially, then it may be preferable to use a covariance model that
underestimates the proximal empirical covariances.

In practice we observed mild, intermittent spatial autocorrelation patterns in our residual im-
ages (see Section B.1 for example). We switched from the exponential to the rational quadratic
covariance function and did not find that this change ameliorated residual autocorrelation patterns.
Because the rational quadratic covariance model places higher correlation between proximal ele-
ments and decays more rapidly, we found that it yielded posterior inference that was both noisier
and less sensitive than our primary analysis (see Fig. B.5). Clearly results are sensitive to the
choice of covariance function to some degree, underscoring the importance of these issues.

93



APPENDIX C

Chapter 2: Computational Details

C.1 Detailed explanation of posterior computation scheme

In Section 2.2.3, we outlined a posterior computation algorithm for our model that relies on em-
bedding the covariance of µh in a higher dimensional nested block-circulant matrix. We present
the details of this algorithm here. Broadly, our posterior computation algorithm has a Hamiltonian
Monte Carlo (HMC) -within-Gibbs sampling structure. Full conditional updates are available for
all of our model parameters, but it is numerically challenging to evaluate or sample from the full
conditional distribution of µh.

In the main text, we discussed how we drew inspiration from the work of [178] to design an
efficient HMC algorithm to facilitate sampling ofµh. We elaborate on that algorithm in detail here.
First, we embed µh in a higher dimensional random field u, which is constructed so that the prior
variance of u is a nested block-circulant matrix C. The prior variance of µh—Kh—is a principal
submatrix ofC (see Fig. 2.2 in the main text for a schematic picture). We never actually construct
or store the full matrixC: its base c can be computed following Algorithm 2 below. With only the
base c in memory, the complex eigenvalues ofC can be computed using discrete Fourier transform
(DFT) software:

λ← F(c)/N,

where N is the number of elements in c.
Then, let ξ = u + vi represent a complex Gaussian random field with real part u, imaginary

part v, and with the prior properties that u ⊥ v and var(u) ≡ var(v) ≡ C. Writing out the prior
in terms of ξ,

ξ = u+ vi, u ∼ N (0,C), v ∼ N (0,C),

does not change our model, moreover: the imaginary and non-brain parts of ξ can simply be
integrated away to recover our original prior on µh. Similarly, our plan will be to obtain posterior
samples of ξ through HMC, and then simply discard extraneous elements to be left with a posterior
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sample of µh.
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Dual 2.76 2.32
High 1.88 2.05
Std 0.44 1.50

Figure C.1: Dual resolution algorithm efficiency (median ESS per iteration and per second) as a
function of integration steps L in analysis of whole brain patient data. ESS denotes the effective
sample size of elements of µh. Peak efficiency was estimated around L = 50. Analyses were
replicated 10 times for each value of L, and were timed on a Thelio System76 desktop with 62 Gb
of free RAM and 20 logical cores (3.3 GHz Intel® CoreTM i9 processors). Below the figure, we
summarize the overall computational burden for real patient data on this hardware and at L = 25
steps. Run time is given in hours per 1,000 iterations; our naive method has the same cost as the
high-resolution only method.

HMC relies on several tuning parameters, including the choice of momentum distribution, mass
matrix, step size, and number of numerical integration steps [116]. While a review of HMC-
flavored algorithms and tuning parameter selection is beyond the scope of this paper, we will detail
our approach to tuning parameter selection for model (2.1). Given the other tuning parameters and
a target Metropolis-Hastings rate (which we fixed at 65%), we tuned the step size ε during warm
up following the dual averaging method of [73]. We then fixed ε0 at the value of ε on the last
burnin iteration, and drew ε ∼ Uniform(0.9 ε0, 1.1 ε0) to induce random integration path lengths
(the product εL) during sampling, potentially helping the algorithm escape local modes [116]. To
inform selection of the number of leapfrog integration steps L, we performed repeated analyses of
patient data. Results of this experiment suggest L = 25 or L = 50 as practical starting points for
best algorithmic efficiency (see Fig. C.1).

Let,
L(ξ) = lnπ(ξ | Yh,Ys,µs,θ, σ2

h, σ
2
s , r)

represent the full conditional log posterior of ξ. Since exp{L(ξ)} is complex Gaussian, we in turn
chose a complex Gaussian distribution for HMC momenta. [62] suggest exploiting Riemannian
geometry in HMC by adapting the algorithm’s mass matrix, M , to the local curvature of the
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log posterior. The authors suggest that taking M proportional to the negative Hessian of the log
posterior leads to improved algorithmic efficiency in high dimensions, though this approach is not
typically feasible when the dimension of M is more than a few thousand. Up to a permutation of
ξ, in our model, we have that,

−∇2L(ξ) =

(
σ−2h I + σ−2s W

TW

0

)
+ FΛ−1FH, (C.1)

where Λ = diag(λ), and F is the 3D DFT matrix as in the main text. In the present case, (C.1)
is ultrahigh dimensional and impossible to work with directly, but by dropping the term involving
WTW , which is dense, and extending σ−2h I we can arrive at an alternative choice of mass matrix.
LetM(σ2

h) denote the matrix-valued function,

M (σ2
h) = F [Λ−1 + σ−2h I]FH, (C.2)

which, like C, is nested block-circulant, and easy to compute with. Circulant matrices have been
used successfully as preconditioners in other gradient-based optimization schemes for imaging
problems [e.g. 43]. If each element in Re(λ) is strictly greater than zero, M(σ2

h) is positive
definite and so can be used to define a metric tensor on a Riemannian manifold as in [62]. Some
additional intuition can be gained by considering how (C.1) relates to a missing data problem. If
we were only modeling high resolution data, and those data were observed on the entire extended
grid with variance σ2

h, then (C.2) would be exactly the negative Hessian of L(ξ).
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Algorithm 1 Riemann manifold HMC for dual resolution mapping models. F denotes the scaled
3D DFT matrix; products of the form, FHp = F -1(p), for example, can be computed efficiently
using DFT software.

1: procedure UPDATEMEAN(ξ; λ, σ2
h, ε, L)

2: Compute eigenvalues ofM (σ2
h):

3: λMi ← σ−2h + λ−1i
4: Set ΛM ← diag{λMi }, i = 1, . . . , dim(ξ)

5: Sample momentum, p ∼ CN (0,FΛMF
H)

6: Compute total energy, H ← −L(ξ) + 1
2
pHFΛ−1M F

Hp

7: Set ξnew ← ξ

8: for l in 1, . . . , L do . Leapfrog integrator
9: p← p+ ε

2
∇L(ξnew)

10: ξnew ← ξnew + εFΛ−1M F
Hp

11: p← p+ ε
2
∇L(ξnew)

12: Compute Hnew ← −L(ξnew) + 1
2
pHFΛ−1M F

Hp

13: Set ξ ← ξnew with probability α = min{1, exp(H −Hnew)}
14: Discard all elements of ξ that do not correspond to µh
15: Return posterior sample of µh

With all this in hand, samples ofµh can be drawn following Algorithm 1. In particular, note how
all products involving F can be computed with DFT software. In addition, the quadratic forms in
Algorithm 1 represent computations over ultrahigh dimensional components. The quadratic form
pHFΛ−1M F

Hp, for example, can be evaluated by computing,

φ← F -1(p),

into a temporary product, φ, and then summing over terms
∑

i φ̄i · φi/λMi , where ā denotes the
complex conjugate of a. When working in single precision, we found it necessary to use the Kahan
summation algorithm [89], or similar correction, to evaluate these long sums accurately.

Finally, our other parameters, µs, σ2
h, and σ2

s can easily be sampled with full conditional Gibbs
updates. We particularly note that our prior places the restriction σ2

h > σ2
s so that the conditional

posteriors of both nugget variance parameters are truncated inverse Gamma. We sometimes en-
countered numerical difficulty sampling these parameters during warm up. As a result, we chose to
ignore the restriction on σ2

h and σ2
s programmatically, and simply discard posterior samples where

the restriction was not satisfied. After warm up, however, we found that even when working with
patient data the posterior probability that σ2

h > σ2
s was effectively unity, and that we never had to

discard or post-process MCMC samples in this way.
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C.2 Circulant base construction

This section presents a simple algorithm to illustrate circulant matrix base computation for our
applications.

Algorithm 2 Compute the base of a circulant matrix associated with a 3D grid

1: procedure COMPUTECIRCULANTBASE(d, K(·, ·;θ))
2: Inputs: d, original 3D grid dimensions; K(·, ·;θ) covariance function parameterized by θ
3: Compute extended grid dimensions, d?i ← 2log2d2(di−1)e for i = 1, 2, 3

4: k ← 0, h← 1

5: Find location v1 associated with grid position (1, 1, 1)

6: for l in 1, . . . , d?3 do . Column-major order
7: j ← 0

8: if l ≤ d3 then k ← k + 1 else k ← k − 1

9: for m in 1, . . . , d?2 do
10: i← 0

11: if m ≤ d2 then j ← j + 1 else j ← j − 1

12: for n in 1, . . . , d?1 do
13: if n ≤ d1 then i← i+ 1 else i← i− 1

14: Find location v associated with grid position (i, j, k)

15: Compute ch ← K(v1,v;θ)

16: h← h+ 1

17: Return circulant matrix base, c

C.3 Covariance function estimation

In this section we detail our procedure to estimate isotropic covariance functions from 3D data;
in practice the method could be extended to arbitrary n dimensional data sources. The methods
considered herein are not new but are included for completeness. We also report simulation results
using this method to estimate the covariance from small three dimensional images and show that
the method has relatively small bias in most simulation settings.
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C.3.1 Minimum contrast estimation procedure

Algorithm 3 Minimum contrast estimation of θ: high level overview

1: procedure ESTIMATEIMAGECOVARIANCE(Y , k(·;θ), Θ) . With the argument to k(·;θ) the
Euclidean distance between any two points, ‖v−v′‖

2: Inputs: Image Y ; covariance function k(·;θ) parameterized by θ with feasible region Θ

3: Construct D ← EXTRACTCOVARIANCESUMMARY(Y ) . With D = (d, ĉ,ω)

4: Return arg minθ∈Θ

∑dim(ĉ)
i=1 ωi[ĉi − k(di;θ)]2

Algorithm 3 outlines our minimum contrast estimation (MCE) procedure at a high level. The
algorithm first extracts summary data D = (d, ĉ,ω) from the input data source Y , where ĉ are
empirical covariances between elements of Y offset by corresponding distances d, and ω is a set
of corresponding weights (defined below in algorithm 4). The algorithm then finds θ from within
constraint region Θ to minimize a weighted least squares contrast between the ĉi and k(di;θ).

With k(·;θ) taken to be the radial basis function as in (2.5), for example, the parameters θ
correspond to the marginal variance τ 2, correlation bandwidth ψ, and exponent ν. For this problem,
we took the feasible region Θ to constrain 0 < τ 2 < ĉ0, 0 < ψ, and 0 < ν ≤ 2, where ĉ0 is the
empirical variance of Y . For problems we consider, we found that the additional constraint ψ ≤ ν

frequently helped improve estimation.
Construction of D using a modified 3D raster scan is outlined in algorithm 4. In the algorithm,

empirical covariances between voxels and their neighbors are computed by shifting the (i, j, k)

index of each voxel by the rows of the matrix P (which is constructed with the procedure outlined
in Algorithm 5). The rows of P define a series of perturbations in a dense 3D raster scan. In
one dimension, a raster scan might only look ahead one pixel at a time so as to visit each pair of
adjacent pixels only once. In two dimensions, the procedure might be defined to look ahead one
pixel and look down one pixel for the same reason. In three dimensions, a simple raster might
look ahead, down, and to the right by one or more voxels. We designed our procedure to sample
local pairs of voxels more densely than this while still only visiting each unique pair once. Briefly,
our algorithm “looks ahead” by visiting pairs of voxels within an (n0 × n0 × n0) voxel cube such
that the polar and azimuthal angles of the search are between [0◦, 180◦). We further extended this
search by adding simple raster scan perturbations out to an n1 voxel distance. In algorithm 5, we
defined n0 = 18 voxels and n1 = 25 voxels by default. Our default values encompass a large
number of perturbations while limiting the total computation time to a few seconds for full scale
brain images.
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Algorithm 4 Compute empirical covariance summary data
1: procedure EXTRACTCOVARIANCESUMMARY(Y , n0, n1)
2: Inputs: Image Y with dimensions q ∈ R3. We set n0 = 18, and n1 = 25 by default
3: Set N ← q1 · q2 · q3 . N is the total number of voxels in image Y
4: Store P ← IMAGESCANPERTURBATIONS(n0, n1) . P is an (M × 3) matrix of integers
5: Allocate d ∈ RM , ĉ ∈ RM . d—perturbation distances; ĉ—empirical covariances
6: sab ← 0M , sa ← 0M , sb ← 0M . Accumulators for sufficient statistics
7: r ← 0M . Accumulators for counts of voxel pairs
8: Compute sufficient statistics for pairs of voxels separated by perturbation distances:
9: for h in 1, . . . , N do . Outer loop over voxels

10: Locate grid position (i, j, k) such that corresponds to voxel vh

11: if Yijk corresponds to brain data then
12: for m in 1, . . . ,M do . Inner loop over perturbations
13: (i′, j′, k′)← (i, j, k) + PT

m

14: if Yi′j′k′ corresponds to brain data then . Update sufficient statistics
15: sabm ← sabm + Yijk · Yi′j′k′
16: sam ← sam + Yijk; sbm ← sbm + Yi′j′k′

17: rm ← rm + 1

18: Compute distances and empirical covariances associated with grid perturbations:
19: “Locate” voxel v0 associated with grid position (i, j, k) = 03

20: for m in 1, . . . ,M do
21: “Locate” voxel v′ associated with grid position Pm
22: dm ← ‖v0−v′‖
23: if rm > 1 then
24: ĉm ← (sabm − samsbm/rm)/(rm − 1)

25: Set ωm ← #(d = dm) for m in 1, . . . ,M . Count of instances of unique elements in d
26: Set ωm ← 1/ωm if ωm > 0 and ωm ← 0 otherwise for m in 1, . . . ,M

27: Return D = (d, ĉ,ω)
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Algorithm 5 Construct matrix P of grid index perturbations for minimum contrast estimation
procedure.

1: procedure IMAGESCANPERTURBATIONS(n0, n1)
2: Inputs: positive integers n0, n1, n0 < n1

3: Construct principal direction matrixU ∈ R(14×3) such that each element Uij ∈ {−1, 0, 1};
the polar angle of each row of U is between [0◦, 180◦); and the azimuthal angle of each row
of U is between [0◦, 180◦). In our construction, U includes a row of all 0’s

4: Construct Q ∈ R(n3
0×3) with rows consisting of all 3-element permutations of elements of

(1, . . . , n0)

5: Compute P ← Q ∗U , where ∗ denotes the column-wise Khatri-Rao product
6: for k in n0 + 1, . . . , n1 do
7: P ← [PT k I3]

T

8: Remove duplicate rows from P

9: Return P

C.3.2 Simulations with minimum contrast estimation

Fig. C.2 presents the results of a simulation assessing the performance of our MCE procedure. We
simulated small 3D images on a (32 × 32 × 16) grid, treating voxels as isotropic 1 mm3. In our
simulation, we drew mean images from Gaussian processes with either Exponential or Gaussian
correlation functions; unit marginal variance; and either two, six, or ten mm full widths at half
maxima. Mean images were corrupted with independent Gaussian noise with the signal to noise
ratio set to 0.2 roughly to match our observed patient data and our 2D simulations in section 2.3.

Since the Gaussian predictive process basis described in section 2.2.2 relies only on the cor-
relation bandwidth and exponent parameters ψ and ν, the most important measure of estimation
success in our setting is recovery of the correlation function, not necessarily estimation of θ itself.
For any given dataset, the nonlinear least squares objective in algorithm 3 might be multimodal in
θ, but this is relatively unimportant if the resulting correlation functions at different modes behave
similarly.

In Fig. C.2, the red line in each panel shows the true correlation function used to generate un-
derlying mean images in simulation, and the corresponding gray lines show estimated correlation
functions from 100 repeated simulations. The table below the panels summarizes pointwise bias
and variance averaged over a grid of 1,000 equally spaced points from [0, 15] (mm). In the worst
case scenario (10 mm FWHM Exponential correlation function), pointwise mean squared error
was on average only about 3.8× 10−2, and was between [1.1, 7.5]× 10−2 for 95% of points on the
grid. Even with relatively small 3D images, these results suggest our MCE procedure can recover
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Kernel FWHM Bias Variance
Exponential 2 −6.73× 10−3 8.46× 10−4

Exponential 6 −6.04× 10−2 7.22× 10−3

Exponential 10 −1.47× 10−1 1.56× 10−2

Gaussian 2 6.70× 10−3 1.17× 10−3

Gaussian 6 −3.86× 10−3 3.45× 10−3

Gaussian 10 −3.07× 10−2 1.73× 10−2

Figure C.2: Recovery of the correlation function in small 3D images. Each gray line shows a
correlation function estimated in repeated simulation (true correlation functions for each panel
shown in red). In the table, Bias and Variance were computed pointwise and averaged over a dense
grid from [0, 15] (mm).

the true correlation functions reasonably well.
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APPENDIX D

Chapter 2: Additional 2D Simulation Results

D.1 Detailed Simulation Results with 2D Images

In this section we give results designed augment those reported in section 2.3.2 with additional
simulation settings. Tables follow the exact format of Table 2.1 in the main text. In all cases con-
sidered, our dual resolution method had the lowest mean squared error (MSE) and false negative
rate. Of potential interest, however, is that the high resolution-only method was the second best
performer when data were simulated with a marginal exponential correlation structure (Table D.1),
and the naive data averaging method was the second best performer when data were simulated with
a marginal Gaussian correlation structure (Table D.2).
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Model Kernel SNRs:SNRh SNRh MSE False –
Dual Exponential 1 0.1 0.20 31.8% (0.4)
High Exponential 1 0.1 0.23 34.0% (0.5)
Naive Exponential 1 0.1 0.30 43.6% (0.4)
Std Exponential 1 0.1 0.47 43.1% (0.6)
Dual Exponential 1 0.2 0.17 29.3% (0.4)
High Exponential 1 0.2 0.20 31.0% (0.4)
Naive Exponential 1 0.2 0.29 43.0% (0.3)
Std Exponential 1 0.2 0.43 40.6% (0.4)
Dual Exponential 2 0.1 0.18 30.6% (0.4)
High Exponential 2 0.1 0.23 34.0% (0.5)
Naive Exponential 2 0.1 0.29 42.7% (0.4)
Std Exponential 2 0.1 0.43 40.6% (0.4)
Dual Exponential 2 0.2 0.15 28.5% (0.3)
High Exponential 2 0.2 0.20 31.0% (0.4)
Naive Exponential 2 0.2 0.29 42.4% (0.3)
Std Exponential 2 0.2 0.41 40.5% (0.3)
Dual Exponential 4 0.1 0.16 29.5% (0.3)
High Exponential 4 0.1 0.23 34.0% (0.5)
Naive Exponential 4 0.1 0.29 42.3% (0.3)
Std Exponential 4 0.1 0.41 40.5% (0.3)
Dual Exponential 4 0.2 0.14 27.9% (0.3)
High Exponential 4 0.2 0.20 31.0% (0.4)
Naive Exponential 4 0.2 0.28 42.1% (0.3)
Std Exponential 4 0.2 0.40 40.8% (0.3)

Table D.1: Results for estimation and inference quality in 2D simulations when background signal
has an Exponential correlation structure. As in Table 2.1, results for the High resolution method do
not change across the different SNR ratios, but are repeated to facilitate comparison. MSE refers
to mean squared error computed over the entire high resolution mean parameter vector. False –
reports the mean (SE) false negative error rate when the number of discoveries was fixed at 450.
One hundred replicates per parameter combination.
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Model Kernel SNRs:SNRh SNRh MSE False –
Dual Gaussian 1 0.1 0.24 29.8% (0.3)
High Gaussian 1 0.1 0.28 34.1% (0.3)
Naive Gaussian 1 0.1 0.25 34.5% (0.3)
Std Gaussian 1 0.1 0.59 50.0% (0.4)
Dual Gaussian 1 0.2 0.17 24.2% (0.2)
High Gaussian 1 0.2 0.21 27.1% (0.2)
Naive Gaussian 1 0.2 0.19 27.1% (0.2)
Std Gaussian 1 0.2 0.58 43.5% (0.3)
Dual Gaussian 2 0.1 0.21 27.5% (0.2)
High Gaussian 2 0.1 0.28 34.1% (0.3)
Naive Gaussian 2 0.1 0.24 33.3% (0.3)
Std Gaussian 2 0.1 0.58 43.5% (0.3)
Dual Gaussian 2 0.2 0.15 22.8% (0.2)
High Gaussian 2 0.2 0.21 27.1% (0.2)
Naive Gaussian 2 0.2 0.18 26.4% (0.2)
Std Gaussian 2 0.2 0.57 38.6% (0.2)
Dual Gaussian 4 0.1 0.18 25.0% (0.2)
High Gaussian 4 0.1 0.28 34.1% (0.3)
Naive Gaussian 4 0.1 0.24 33.0% (0.3)
Std Gaussian 4 0.1 0.57 38.6% (0.2)
Dual Gaussian 4 0.2 0.12 21.1% (0.2)
High Gaussian 4 0.2 0.21 27.1% (0.2)
Naive Gaussian 4 0.2 0.18 25.9% (0.2)
Std Gaussian 4 0.2 0.54 34.8% (0.2)

Table D.2: Results for estimation and inference quality in 2D simulations when background signal
has a Gaussian correlation structure. As in Tables 2.1 and D.1, results for the High resolution
method do not change across the different SNR ratios, but are repeated to facilitate comparison.
MSE refers to mean squared error computed over the entire high resolution mean parameter vector.
False – reports the mean (SE) false negative error rate when the number of discoveries was fixed
at 450. One hundred replicates per parameter combination.
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APPENDIX E

Chapter 2: Symmetry of the Custom Covariance
Function

E.1 A Brief remark on the cross covariance between µ(Bh) and
µ(Bs) in our dual resolution mapping prior.

In the main body text, we defined a custom covariance function to help map between high and
standard spatial resolution images. We reproduce that covariance function here for convenience:

K(v,v′) =

k(v,v′) if v′ ∈ Bh

wT(v)k(Bh,v
′) otherwise,

wherew(·) ≈ K(Bh, Bh)
−1k(Bh, ·) (equations (2.4) and (2.5) in the main text). In our application,

we take k(·, ·) to be the isotropic radial basis function,

k(v,v′) = τ 2 exp(−ψ‖v−v′‖ν2), τ 2, ψ > 0, ν ∈ (0, 2].

Remark 1. Under our prior, cov{µ(vh), µ(vs)} = k(vh,vs) for any pair of vh ∈ Bh and vs ∈ Bs.

Proof. Notationally, it is most convenient to show this relationship when w(v) =

K(Bh, Bh)
−1k(Bh,v) exactly, though the method is still valid given our approximation in sec-

tion 2.2.2, equation (2.7). Per the definition of K(·, ·),

cov{µ(vh), µ(vs)} = wT(vh)k(Bh,vs)

= kT(Bh,vh)K(Bh, Bh)
−1k(Bh,vs).
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Let d = [1(vi = vh)]vi∈Bh
. Since K(Bh, Bh)d = k(Bh,vh) by definition, it follows that,

kT(Bh,vh)K(Bh, Bh)
−1k(Bh,vs) = dTk(Bh,vs)

= k(vh,vs).
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APPENDIX F

Chapter 2: Technical Details Regarding fMRI Data
Acquisition

F.1 Details of fMRI data collection and preprocessing

FMRI data collection and methods have been described previously [101]. Briefly, the patients
were scanned using a 3 Tesla TrioTim scanner (TQ engine, 32 channel head coil; Siemens Medical
Solutions, Erlangen) using gradient-echo echo-planar imaging (GE-EPI; 3000 ms repetition time;
30 ms echo time; 0.69 ms echo spacing; GRAPPA acceleration factor 2). High resolution structural
T1 weighted MPRAGE and T2 weighted FLAIR scans were also acquired to aid intraoperative
neuronavigation and fMRI data preprocessing. The high and standard spatial resolution scans
largely followed the same protocols, except that multi-band acceleration was used to increase the
spatial resolution of high resolution acquisitions while keeping the temporal resolution the same
between protocols (160 volumes were collected for each run).

FMRI time series preprocessing without spatial smoothing was performed prior to our analysis
using FSL software [version 6.0.4; 84] and the FEAT tool [version 6.00; 179]. Standard resolution
fMRI data were padded by 8 voxels in x and y (resulting in a 72×72×48 grid), and high resolution
data by 10 voxels in z (resulting in 120 × 120 × 72 grid). Given standard resolution voxel sizes
of 3× 3× 3.45 mm3 (patient 1) and 3× 3× 3.3 mm3 (patient 2), and high resolution voxel sizes
of 1.8× 1.8× 2.3 mm3 (patient 1) and 1.8× 1.8× 2.2 mm3 (patient 2) this padding ensured that
standard and high resolution data spanned the same field-of-view (FoV) within subject prior to
further processing. The difference in effective resolution between the two patients resulted only
from different interslice gaps (15% for patient 1 vs. 10% for patient 2; interslice gap was lowered
for patient 2 because of a smaller head size). Optimal within-subject alignment of the two runs
was then achieved by downsampling the volume used as the target reference for motion correction
in the high resolution run and supplying this downsampled image as an alternative reference image
for motion correction of the standard resolution time series. Per FSL default, we used the middle
volume of the recorded frames (the 80th of our 160 volume time series) as the target reference.
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This volume was downsampled to the gridding of the standard resolution run using FSLeyes (part
of FSL) using nearest-neighbor interpolation and no additional smoothing.

Data were temporally filtered using a 0.011 Hz high pass filter to remove low frequency drifts,
and marginal linear models were fit to the time series data at each voxel to create summary statistic
maps of task-related activation. In this last step, task related regressors were convolved with the
canonical hemodynamic response function; temporal derivatives of resulting functions were also
used as covariates of no interest. Preprocessing resulted in one unsmoothed z-statistic image for
each fMRI resolution that summarized task-related activation over the course of the scans. We went
on to use the generated test statistic maps as outcome data in our subsequent analysis, treating the
contrast images as noisy measures of true activation.
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APPENDIX G

Chapter 2: Cavernomas

G.1 Cavernomas and additional details about Patient 2

Cavernomas are a specific type of arteriovenous malformation without shunting. They contain
closely apposed, angiogenetically immature blood vessels, typically with intralesional bleeding
residuals. Cavernomas can be treated via microsurgical removal [e.g. 12]; if left untreated, they
may lead to seizures or progressive neurological deficits upon symptomatic micro- or macrohem-
orrhages. Our patient 2 was found to have a cavernous malformation (cavernoma) with chronic and
subacute hemorrhage (Zabramski type I) in her left temporal lobe close to the transverse temporal
gyrus and insular cortex.
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APPENDIX H

Chapter 3: Software

H.1 Software

In this section we give a brief sketch of the command line tools we have written to implement
the methods discussed in Chapter 3. Software is available for download at https://github.
com/asw221/stickygpm, and should be compatible with any Unix-based system.

H.1.1 Dependencies

We require a C/C++ compiler compatible with the C++17 standard (e.g. gcc >= 8.3.0 should
suffice). At the time of writing, external dependencies include:

• The boost filesystem and math libraries

• The Eigen (3) linear algebra library

• The nlopt library for non-linear optimization

• OpenMP

• zlib - (Likely already on your system)

H.1.2 Installation
We have used the cmake build system. Installation instructions assume dependencies have been
preinstalled and our source code downloaded from GitHub. We first require compilation of an
included NIFTI library:

cd /path/to/stickygpm/lib/nifti && make all

Then from */stickygpm/lib/nifti, run:

mkdir ../../build && cd ../../build

cmake .. -DCMAKE_BUILD_TYPE=Release

make
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H.1.3 Analysis of group-level MRI data with latent subgroup detection

The clustered spatially varying coefficient regression model we propose in Chapter 3 can be fit to
data stored in the NIFTI file standard with our sgpreg command.

Basic syntax might look like the following:

./sgpreg path/to/data*.nii.gz \

-x /path/to/x.csv # (R) Mean regression covars \

--mask /path/to/mask.nii # (R) Analysis mask (*.nii) \

--covariance 1 0.08 1 # Spatial cov. func. parameters \

--kmeans 5 # Initial clustering K \

--knots 1000 # Number of GP bases \

--lsbp-mu 0 # LSBP intercept hyper (mean) \

--lsbp-sigma 0.5 # LSBP intercept hyper (sd) \

-z /path/to/z.csv # LSBP fixed effects (*.csv) \

-re /path/to/re.csv # LSBP random effects (*.csv) \

--truncate 10 # LSBP max clusters \

--burnin 1000 # MCMC burnin iterations \

--nsave 1000 # MCMC samples to save \

--samples # MCMC/Flag: output _all_ samples \

--thin 5 # MCMC thinning factor \

--monitor # Flag: verbose messaging \

--output /output/path/prefix # Basename for output files \

--subset /path/to/subs.csv # Filename tokens: subset data*.nii \

--seed 48109 # URNG seed \

--threads 6 # Threads to use (OpenMP)

The assumed Gaussian parent process covariance function for this project is the three parameter
radial basis function in equation (see section 3.3.2). Above, the arguments to --covariance

reflect the marginal variance, bandwidth, and exponent parameter for that function. All of the
name/value paired arguments have reasonable default values except for those marked with an
‘(R),’ which are required to be specified. Random clustering effects can be included in the model
using the -re argument followed by a corresponding file name (with the file in *.csv format). All
of the covariates in the referenced file will be associated with their own series of variance compo-
nents (the ζ†2k,r in section 3.3.3). To include multiple random clustering effects in a generalized ad-
ditive way, simply include multiple -re re 1.csv ... -re re n.csv name/value pairs.
Random clustering effect parameters will be ordered in the γ†k in the same sequence they are input
in the call to sgpreg. They will always appear after any fixed clustering effects, mirroring the
layout of the prior in equation (3.9).

112



H.1.4 Estimation of mean process covariance parameters

Estimation of the spatial mean process covariance parameters θ can be accomplished using the
covest program. This function requires, at minimum, a list of data files stored (in the NIFTI
file format), a comma delimited file containing the mean regression model design matrix, and an
explicit analysis mask (also in the NIFTI format). Paths to multiple data files can be typed one
after the other, or wildcard completions can be used for convenience. Spatial covariance function
estimation is accomplished here by maximizing the marginal likelihood over a subset of locations
as noted in section 3.3.5.

Basic syntax might look like the following:

./covest path/to/data*.nii.gz \

--covariates /path/to/x.csv # REQUIRED. Mean model covars \

--mask /path/to/mask.nii.gz # REQUIRED. Analysis mask \

--huge 100 # Large parameter upper bound \

--seed 48109 # URNG seed \

--subsample 4000 # Subsample size (locations) \

--xtol 1e-8 # Convergence tolerance

Covariance parameters estimated using covest can then be passed to sgpreg using the
--covariance flag as above. The argument to --huge puts an upper bound constraint on
the covariance function marginal variance and bandwidth parameters. This can be useful for faster
convergence of the algorithm, and more stable results.

We provide the option to toggle between three different gradient-free optimizers. The default
option is to use the NEWUOA algorithm [128]; from experience BOBYQA [129] can give more
stable results, but is typically a little slower.

--bobyqa # Use BOBYQA optimizer

--cobyla # Use COBYLA optimizer

--newuoa # (D) Use NEWUOA optimizer

Three parameter radial basis and Matérn covariance functions are available for use with
covest and sgpreg. These options can be toggled using the flags below (without argument).
The default option is to use a radial basis covariance.

--radial-basis # (D) Radial basis covariance

--matern # Matern covariance

113



APPENDIX I

Chapter 3: Site Effects in ABIDE I

I.1 Site effects in ABIDE I
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Median distance between patient images

Imaging Sites

Figure I.1: Illustration of ABIDE I imaging site differences via hierarchical clustering of the me-
dian Euclidean distance between patient images across sites.

Here we give a brief illustration of how site effects can dominate the process of cluster identifi-
cation. In Fig. I.1, we have used hierarchical clustering (Ward linkage) to show proximity between
ABIDE I research sites. To make this figure, we computed the median Euclidean distance over all
pairs of participant images between each site and clustered the sites based on the median distances.
Median distances are shown on the x-axis in the figure. For reference, in the main text, the largest
Euclidean distance between the posterior means for clusters derived from single site patient data
was approximately 159.3 units (between clusters one and two).
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APPENDIX J

Chapter 3: Model Parameter Full Conditional
Distributions

In this section we present the full conditional distributions for all of our model parameters in block-
wise fashion. We will need to introduce several latent data constructs—the most central of these
being the cluster labels C—in order to express the full conditional posteriors of several model
parameters.

Nota bene: throughout this section, we always express the Gamma distribution using its shape-
rate parameterization.

J.1 Full conditional distributions for model parameters

J.1.1 Cluster labels

Let β†k : B → RP denote the regression coefficient function for cluster k so that β†k(·) =

[β†k,0(·), . . . , β
†
k,P−1(·)]T. Similarly, let βi : B → RP be shorthand to denote the spatially vary-

ing regression coefficient function for the ith individual. Given cluster assignment Ci = k, each
βi(·) ≡ β†Ci(·).

Truncating the logistic stick-breaking process at T components, the full conditional distribution
of each Ci is categorical with,

π(Ci = k | −) ∝ ω†k(zi) exp

(
− 1

2

∑
v∈B

σ−2(v)
{
yi(v)− xTi β

†
k(v)

}2)
.

This expression has an immediate “prior × likelihood” flavor. In our case, since the outcome
images are high dimensional objects, the exponential “likelihood part” will usually dominate in
the posterior. Proto-probabilities can be evaluated first on the log scale and then adjusted so that,
when exponentiated, the largest is numerically finite and greater than zero. These values can then
be rescaled to sum to one to recover π(Ci = k | −) for k = 1, . . . , T .
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J.1.2 White noise process parameters

The full conditional distribution of each σ−2(v) is,

π{σ−2(v) | −} ≡ Gamma
(

1 +
N

2
, ξ +

1

2

∑
i

{yi(v)− xTi βi(v)}2
)
.

The full conditional distribution of ξ is,

π(ξ | −) ≡ Gamma
(

1 +M,
∑
v∈B

σ−2(v)

)
,

where M is the number of voxels in B.

J.1.3 LSBP parameters

Updating the truncated LSBP parameters (γ†k)
T
k=1, requires the conceptual inclusion of auxiliary

data. The LSBP parameters are associated with the observed data only through the cluster labels C.
Working from the ground up, recall the constructive definition of the LSBP in equation (3.2). Let
Υik denote auxiliary latent data that takes the value 1 with probability pk(zi) and 0 with probability
1 − pk(zi) for individual i = 1, . . . , N and component k = 1, . . . , T . The γ†k can then be directly
thought of as logistic regression coefficients, where the [Υik]

N
i=1 act as binary outcome data. Using

the Υik, we construct,
Ωik = Υik

∏
k′<k

(1−Υik′),

so that the Ωik can be thought of as binary auxiliary latent data that take the value 1 with prob-
ability ω†k(zi) and 0 with probability 1 − ω†k(zi). Notice also that the Ωik are an equivalent way
of expressing the cluster labels Ci. If Ωik = 1 and Ωik′ = 0 for all k′ 6= k, then Ci must equal
k. Similarly, reversing the construction, if Ci = k, then it must be that Υik = 1 and Υik′ = 0 for
all k′ < k. The remaining Υik′ can be conceptually imputed conditional on the γ†k′ for all other
k′ > k.

Given the Υik, and the LSBP component hyperparameters, m0, η20 , η†2k , (ζ†2k,j)j∈Jf , and ζ†2k,r, the
LSBP coefficients γ†k can be updated according to one of the latent data formulations for logistic
regression models [i.e. 74, 126]. We have used the method due to Holmes and Held [74] in our
current implementation. This procedure requires the inclusion of further latent data so that the
conditional posterior of the γ†k can be expressed as a Gaussian scale-mixture.

In brief, to use the construction given in [74] we introduce a set of Gaussian scale param-
eters Φik such that the

√
Φik/4 are marginally Kolmogorov-Smirnov distributed. Let Φk =

diag(Φ1k, . . . ,ΦNk) be the diagonal matrix of the auxiliary Gaussian scales, and let Z =
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[z1, . . . ,zN ]T denote the N × Q matrix of clustering model terms. Now introduce latent data
κik into the prior hierarchy so that,

Υik =

1 if κik > 0

0 otherwise
with,

κik ∼ N (zTi γ
†
k,Φik).

Let κκκk collect the latent data into an N -vector with κκκk = (κ1k, . . . ,κNk)T. Finally, let mk

represent the prior mean, and Vk represent the prior variance of γ†k. In this case, Vk is simply a
diagonal matrix with the various η20 , etc., terms on the diagonal. The full conditional posterior of
the γ†k is then,

π(γ†k | −) ≡ N
(

(V −1k +ZTΦ−1k Z)−1(V −1k mk +ZTΦ−1k κκκk), (V
−1
k +ZTΦ−1k Z)−1

)
.

The algorithm(s) given in [74] are well documented, and include pseudocode for sampling what in
our notation are the Φik. Lastly, we note that neither the Ωik nor the Υik need to be evaluated or
kept in memory for this update scheme to work. Rather, we can use the cluster labels Ci directly to
infer the signs of the κik, thus skipping the step of constructing the Υik.

J.1.4 LSBP hyperparameters

The global shrinkage parameters on the fixed clustering effects coefficients (η†k)
T
k=1, can be sampled

from their full conditional distributions by reexpressing the induced prior on the η†−2k as a Gamma
scale mixture [following 109]. Our prior in equation (3.10) can be equivalently expressed,

η†−2k ∼ Gamma(1/2, ξη,k), ξη,k ∼ Gamma(1/2, 1).

Let Qf = |Jf | denote the number of fixed clustering effect parameters in each γ†k. The above
parameters then have full conditional distributions,

π(η†−2k | −) ≡ Gamma
(

1

2
+
Qf

2
, ξη,k +

1

2

∑
j∈Jf

γ†2k,j

ζ†2k,j

)
,

π(ξη,k | −) ≡ Gamma
(
1, 1 + η†−2k

)
.

The prior on the local shrinkage parameters for the fixed clustering effects (ζ†2k,j)j∈Jf can be ex-
pressed similarly with auxiliary parameters ξζ,kj . Their full conditional posterior distributions can
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be written,

π(ζ†−2k,j | −) ≡ Gamma
(

1, ξζ,kj +
γ†2k,j

2η†2k

)
,

π(ξζ,kj | −) ≡ Gamma
(
1, 1 + ζ†−2k,j

)
.

Distributions for the pooled shrinkage parameters for any random clustering effects can also be
written similarly. Let Qr = |Jr| denote the number of random clustering effect terms in the γ†k
indexed by Jr. The full conditional distribution of the corresponding ζ†−2k,r is,

π(ζ†−2k,r | −) ≡ Gamma
(

1 +
Qr

2
,
1

2

∑
j∈Jr

γ†2k,j

)
.

J.1.5 Cluster component regression parameters

To detail the full conditional distribution of the cluster-specific spatially varying regression coef-
ficient functions, we must again define some extra notation. It will be convenient here to work in
a vector-based format. Given our specific Gaussian process covariance structure in equation (3.8),
the regression coefficient functions β†k,j(·) can be thought of as projections of low-rank spatial
processes. For example, let

β̃†k,j ∼ N
(
0,C−1∗

)
denote an M∗-vector of random basis weights associated with knot locations V∗ for cluster k and
covariate j. The corresponding regression coefficient function evaluated at location v ∈ B is
equivalently, β†k,j(v) = τcT∗(v)β̃†k,j . A little algebra and standard multivariate normal theory is
enough to show this equivalence.

Let C̃ = [τc∗(v)]Tv∈B denote the M × M∗ basis matrix such that for any v ∈ B there is a
corresponding row of C̃—say row s—such that C̃T

s β̃
†
k,j = β†k,j(v). Let us also gather the β̃†k,j

together for j = 0, . . . , P − 1 and write the (PM∗ × 1) vector β̃†k = (β†Tk,0, . . . ,β
†T
k,P−1)

T. Given
that Ci = k, the likelihood for the ith individual is,

π(yi | −) ≡ N{(xTi ⊗ C̃)β̃†k,Σ},

reusing our notation yi and Σ from section 3.3.5, and where ⊗ denotes the standard Kronecker
product.

Let Ik = {i : Ci = k} denote the index set for the kth cluster. The full conditional posterior
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distribution of the β̃†k can now be expressed as Gaussian with,

E(β̃†k | −) =

(
IP ⊗C∗ +

∑
i∈Ik

xix
T
i ⊗ C̃TΣ−1C̃

)−1
vec

(
C̃TΣ−1

∑
i∈Ik

yix
T
i

)
, and

var(β̃†k | −) =

(
IP ⊗C∗ +

∑
i∈Ik

xix
T
i ⊗ C̃TΣ−1C̃

)−1
,

where vec(A) denotes the vectorization of matrix A. For clusters k such that Ik = ∅, the β̃†k can
be updated by sampling from the prior.
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APPENDIX K

Chapter 4: Software

K.1 Software

In this section we give a brief sketch of the command line tools we have written to implement
the methods discussed in Chapter 4. Software is available for download at https://github.
com/asw221/gourd, and should be compatible with any Unix-based system.

K.1.1 Dependencies

We require a C/C++ compiler compatible with the C++17 standard (e.g. gcc >= 8.3.0 should
suffice). External dependencies have been kept to a near minimum. At the time of writing, they
include:

• The Eigen (3) linear algebra library

• Expat - (Likely already on your system)

• zlib - (Likely already on your system)

Additionally, our software will make use of mathematical functions from boost if it is available.

K.1.2 Installation
We have used the cmake build system. With the dependencies preinstalled and our source code
downloaded from GitHub, compilation can be as simple as:

mkdir path/to/gourd/build && cd path/to/gourd/build

cmake .. -DCMAKE_BUILD_TYPE=Release

make
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K.1.3 Estimation of mean process covariance parameters

Estimation of the spatial mean process covariance parameters θ can be accomplished using the
gourd covest program. This function requires, at minimum, a list of data files stored in the
CIFTI/NIFTI-2 file format, and a GIFTI shape file. Paths to multiple data files can be typed
one after the other, or wildcard completions can be used for convenience. The gourd covest

program estimates the mean process spatial correlation hyperparameters by maximizing a surrogate
marginal likelihood over the full spatial data. We achieve this numerically by using a Vecchia
approximation of the marginal likelihood. Fur additional details, please refer to section 4.2.5 and
Appendix M.

Basic syntax might look like the following:

./gourd_covest path/to/data*.nii --surface path/to/surf.gii \

--radius 6.0 # Vecchia approximation radius (mm) \

--tol 1e-8 # Optimization tolerance (Default = 1e-6) \

--radial-basis

Implemented covariance function options include:

Covariance Functions:

--radial-basis (Default)

--rational-quadratic

--matern

All of these are treated as three parameter covariance functions, with the parameters corresponding
roughly to mean process (i) marginal variance, (ii) correlation bandwidth, and (iii) smoothness.
The --matern option is implemented directly using modified cylindrical Bessel functions, and
may be somewhat slow.

Options for the distance metric include:

Distance Metrics:

--great-circle (Default)

--euclidean

K.1.4 Bayesian estimation of spatially varying coefficient (SVC) regression
models

Our software contains several different programs that can be used to estimate group-level cortical
surface spatially varying coefficient regression models. The gourd gplm function, for example,
fits our working regression model (see section 4.2.3) and is suitable for moderate to very large data
sets. As above, we require input in the form of CIFTI/NIFTI-2 outcome images and a GIFTI shape
file.

Basic syntax might look like the following:
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./gourd_gplm path/to/data*.nii --surface path/to/surf.gii \

--covariates path/to/x.csv # Mean model design matrix \

--radial-basis # GP Covariance function selection \

--theta 1 0.08 1 # GP Covariance function hyperparams \

--neighborhood 8 # NNGP radius (for SVCs) \

--subset path/to/subs.csv # Filename tokens to subset data*.nii \

-o path/to/output/prefix # Output file location and prefix \

--burnin 4000 # MCMC burnin iterations \

--samples 1000 # MCMC samples to save \

--thin 5 # MCMC post-burnin thinning rate \

--steps 12 # HMC numerical integration steps \

--neighborhood-mass 2 # HMC mass matrix radius \

--seed 48109 # URNG seed

This program will output posterior mean and standard deviation images for the spatially varying
regression coefficients in CIFTI format. It will also produce a posterior mean residual standard
deviation image and a set of MCMC log files (tab delimited) containing saved samples of the
model parameters. Rows in the log files correspond to MCMC iterations. Posterior credible bands
can be constructed from the output MCMC log files using the gourd credband program:

./gourd_credband path/to/logfile.dat \

--surface path/to/surf.gii \

-ref path/to/reference.dtseries.nii \

-p 0.8 0.9 0.95

All arguments are required. The above syntax will read MCMC samples from ‘logfile.dat’
and pair them with a reference CIFTI file and GIFTI shape file to format the output. The program
will then compute 80%, 90%, and 95% simultaneous posterior credible bands for the associated
spatial parameter, and output the bands in separate CIFTI-format files.

Several other executables are packaged with this software suite. The gourd gplmce function
fits the conditional model variant described in section 4.2.1. The gourd gplmme function fits
the marginal model variant described in section 4.2.2. The gourd vwise glm function fits the
Bayesian equivalent of the vertex-wise general linear model we refer to throughout Chapter 4.
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APPENDIX L

Chapter 4: Additional Data Results

L.1 Additional ABCD study results
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Figure L.1: Regional average coefficients: fluid intelligence, linear term. Consistent with previ-
ous studies, fluid intelligence is positively correlated with task-related activation in functionally
relevant cingulo-opercular, dorsal-attention, and fronto-parietal network regions.

Here we complete our report of demographic effects on the 2- vs 0-back task contrast data
from the ABCD study. We again summarize results from the right hemisphere by averaging over
all vertices within brain regions from the Gordon 2016 cortical surface parcellation [63]. Figures
follow the same format as the primary model intercept and 2-back accuracy rate results figures
from the main text. Results in the left hemisphere were generally highly symmetric. Note that
the fluid intelligence results in Fig. L.1 are consistent with evidence from experimental studies
[e.g. 130, 97] regarding cingulo-opercular, dorsal-attention, and fronto-parietal network region
recruitment.
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Figure L.2: Regional average coefficients: additional demographic covariates. The majority of
these effects are relatively small in magnitude with the notable exception of a negative association
between child age and task-related activation in a functionally relevant fronto-parietal network
region (Freesurfer label: 106).
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Figure L.3: Regional average coefficients: parental education (compared to a “post-graduate de-
gree” reference group). The largest magnitude effects may suggest a pattern of decreased activation
in functionally relevant dorsal-attention and fronto-parietal network regions in children of parents
with less than “some college” education.
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Figure L.4: Regional average coefficients: first-order interaction terms between 2-back accuracy,
child age, and child sex. Most effects here are relatively small in magnitude.
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Figure L.5: Regional average coefficients: first-order interaction terms between child sex and
parental education. No clear pattern of results is apparent here as with the parental education main
effect terms.
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Figure L.6: Regional average coefficients: first-order interaction terms between child age and
parental education. The uncertainty in many of these coefficients is relatively large, but there
appears to be a consistent pattern of positive interactions in functionally relevant dorsal-attention
network regions. Interpretation of this result is somewhat complicated by the general pattern of
negative coefficients for the main effects of child age and parental education in these same regions.
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(n = 319)
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Figure L.7: Site-specific effects for the five largest and five smallest sites in our ABCD study
subset. We estimated the site-specific effects as random spatial intercepts using our working model
framework. Site effects appear reasonably consistent across the 21 study locations, with of course
smoother results evident for the largest sites.
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Figure L.8: Sensitivity of model estimation to varying conditional independence neighborhood
radii, r. Here, we explore the sensitivity of an intercept-only model for the ABCD study data at
varying r.

L.2 ABCD data analysis: MCMC diagnostics and sensitivity
analyses

In this section we describe additional sensitivity analyses and MCMC diagnostics we have per-
formed within the scope of the ABCD study data. We noted (in the main text and below in section
M.1) that computationally we use a specific sparse precision matrix approximation to induce con-
ditional independence between parameters at locations outside of an r-neighborhood of each other.
A natural question in this context is how sensitive the analyses are to the choice of the neighbor-
hood radius r. We briefly explored this question by repeatedly fitting our working model to the
ABCD study data, using a spatial intercept as the only predictor, and varying r in the construction
of our Vecchia approximation to the prior. Fig. L.8 summarizes the results of this sensitivity anal-
ysis. In the figure, the posterior mean estimate (top row) is not visibly sensitive to the choice of
r within a 2–12 mm range. The uncertainty in the spatial intercept (bottom row), moreover, is at
worst only modestly sensitive to small r.

A related question is how sensitive results are to the correlation function parameters θ. As
above, we repeatedly fit our working model using a spatial intercept as the only predictor. For these
analyses, we fixed our conditional independence neighborhood radius r = 8 mm and used radial
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Figure L.9: Sensitivity of model estimation to varying correlation function width. We again ex-
plored the sensitivity of an intercept-only model for the ABCD study data, this time for fixed r and
correlation function family. Here, we have varied the width of the correlation function to explore
the effect on estimation.
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Figure L.10: Density estimates of the posterior distribution of β3(·) for three different vertices
and constructed from 8 separate HMC chains. This diagnostic is for the analysis from the main
text where β3(·) represents the spatial coefficient function for the linear 2-back accuracy rate term.
Selected vertices are rank-ordered from left to right by the corresponding split folded R̂ statistic
for diagnosing MCMC convergence. The posterior densities appear to have converged reasonably
well across the different chains.

basis correlation functions with exponent parameter 1.38 as in the main text. Here we varied only
the width of the correlation to probe for sensitivity in the analysis. Fig. L.9 summarizes the results
of this analysis across the varying correlation widths. As before, the posterior mean (top row) is
not visibly sensitive to the width of the correlation within a 2–20 mm range. The uncertainty in the
spatial intercept (bottom row) is again modestly sensitive to the correlation width. The estimate of
the spatial standard error for the 20 mm full-width-at-half-maximum correlation appears perhaps
deteriorated (bottom right panel).

We also show an example MCMC convergence diagnostic for our analysis of ABCD study
data from the main text. Fig. L.10 shows representative posterior density estimates for the linear
2-back accuracy rate coefficient from three vertices, constructed from 8 HMC chains. In the fig-
ure, we have rank-ordered the selected vertices by the univariate split folded R̂ statistic [170] for
MCMC convergence (left to right, R̂ = 1 to R̂ = 1.01). The posterior densities show reasonable
convergence across the MCMC chains.

Finally, we give an informal comparison of realized estimation differences arising from use of
our conditional, marginal, and working model variants in practice. For this comparison, we fit our
various models to the real ABCD study data following the protocol described in section 4.4.1. Figs.
L.11 and L.12 summarize the results of this comparison due to both modeling and algorithmic
differences between the three methods. In particular, Fig. L.11 shows how the posterior means
of the βj(s) can be quite similar across our proposed methods despite differences in estimation
strategy. Fig. L.12 on the other hand shows that, relative to our working model variant, marginal
posterior variances of the βj(s) were systematically larger for the marginal model and smaller for
the conditional model in these data. We take these differences at face value here, and note only
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Figure L.11: Comparison of the posterior mean of β(·) estimated from posterior samples drawn
using each of our proposed conditional, marginal, and working model variants. Gray lines show
identity relationships for reference.

that in our simulation studies, both the marginal and working models performed quite well when
data were generated directly from the conditional model (see e.g. Table 4.1).

Figure L.12: Comparison of the marginal posterior variances of each βj(s), j ∈ 0, . . . , 23 and
s ∈ S, estimated from posterior samples drawn using each of our proposed conditional, marginal,
and working model variants. Gray lines show identity relationships for reference.
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APPENDIX M

Chapter 4: Details of Posterior Computation

M.1 Posterior computation

M.1.1 Computation for our working model

We begin here with a description of our posterior computation strategy for the working model, and
will then proceed by showing how this general plan can be modified to estimate the coefficients of
our main conditional and marginal model variants. As in the main text, for fixed spatial domain
S, let βj denote the random field [βwj (s)]s∈S for j = 0, . . . , P − 1, and let β = (βT

0 , . . . ,β
T
P−1)

T.
Let C = [C{d(s, s′)}]s,s′∈S represent the (M ×M) spatial correlation matrix such that the prior
on each βj is equivalentlyN (βj | 0, ζ2j τ 2C). Similarly, let Σ represent the variance of εwi (·), here
an (M ×M) diagonal matrix with the σ2(s), s ∈ S on the diagonal; let X denote the (N × P )

matrix of participant-level covariates; let yi = [yi(s)]s∈S denote the vectorized outcome image for
participant i; and let y = (yT1 , . . . ,y

T
N)T. Finally, let Z = diag(ζ20 , . . . , ζ

2
P−1).

To help stabilize our computational steps, we first compute a rank revealing decomposition of
the covariate matrix X . We will work here with the singular value decomposition (SVD) X =

UDV T, though the QR decomposition, etc. would work in the same way. In general, computing
the SVD is an O(NP 2) operation when P ≤ N ; even for relatively large P computing the SVD
of X takes a negligible amount of time compared to MCMC. For simplicity, we will assume here
that X is full column rank. Let γ = (V T ⊗ IM)β denote our parameter of interest, rotated by V .
The effective prior on γ is simply,

γ ∼ N
(
0,V TZV ⊗ τ 2C

)
,

which, as noted in the main text, can be efficiently approximated by plugging in a sparse matrix
C̃−1 such that C̃ ≈ C. Given C(·) we can easily construct such a C̃−1 following recipes from
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[44]. In turn, the log prior and its gradient can be approximated via,

lnπ(γ | Z,θ, τ 2) ∝ −1

2
γT
(
V TZ−1V ⊗ τ−2C̃−1

)
γ, (M.1)

and,
∇γ lnπ(γ | Z,θ, τ 2) = −

(
V TZ−1V ⊗ τ−2C̃−1

)
γ, (M.2)

respectively, where Kronecker identities facilitate evaluation. Similarly, the log likelihood can be
rewritten in terms of γ. Up to the integration constant, the log likelihood of our working model
can be written,

lnπ(y | Σ,γ) = −1

2
γT
(
D2 ⊗Σ−1

)
γ + γT

(
DUT ⊗Σ−1

)
y − 1

2
yT
(
IN ⊗Σ−1

)
y. (M.3)

From this expression, it can be seen that the part of the log likelihood that includes γ depends on the
data only through the sufficient statistic (UT⊗IM)y. This implies that, within our working model
framework, gradients and Metropolis-Hastings ratios can be computed efficiently with respect to γ.
Similarly, it can be shown that the residual sum of squares depends on the data only through (UT⊗
IM)y and an additional sufficient statistic,

∑
i y
◦2
i , where we use a◦b = (abi) to denote element-

wise or Hadamard exponentiation. This additional fact suggests that σ2(·) can be easily updated
without reference to the original data. With these two pieces in hand, we write our posterior
computation algorithm to alternate updating γ through Hamiltonian Monte Carlo (as discussed
in the main text), and drawing Gibbs samples to update all of the variance parameters. Samples
of γ can easily be rotated back into samples of β by applying the reverse transformation, β =

(V ⊗ IM)γ. Within each HMC iteration, we update the algorithm’s mass matrix via,

M(Z, τ 2) = V TZ−1V ⊗ τ−2C̃−1M , (M.4)

where C̃−1M is a sparse matrix again constructed so that C̃M ≈ C. We discussed the logic for doing
this in the main text.

M.1.2 Approximation for our “Conditional” model

Our computational strategy for the conditional method relies on the observation that the full con-
ditional distribution of the ωi is relatively easy to work with. Although it is too burdensome to
fully sample the ωi at each iteration of an MCMC routine, it takes only a modest amount of time
to find a maximum a posteriori (MAP) estimate of the ωi given an estimate of β. As we have
shown above, gradient-based updates are efficient to compute for β in our working model. We
first obtain an approximate MAP estimate of β using our working model with the restriction that
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σ2(s) ≡ σ2 for all locations s ∈ S. An estimate of this parameter can be computed quite quickly
using gradient ascent. With estimates of β, τ 2, and Σ in hand, the ωi can be set to their conditional
posterior mode analytically,

ωi ← (τ−2C−1 + Σ−1)−1Σ−1{yi − (xTi ⊗ Im)β},

using our sparse, conditional independence-type approximation of the matrix (τ−2C−1 + Σ−1)−1.
Maximizing with respect to β and ωi can be iterated if necessary for convergence. Once we have
a satisfactory estimate of ωi, we can easily subtract it from yi and switch to our working model
HMC algorithm for inference on β if desired.

M.1.3 Approximation for our “Marginal” model

Rather than fix a point estimate of the ωi as above, our strategy for the marginal model will be
to instead obtain a fixed estimate of the correlated error variance—H = τ 2C + Σ in the main
text—and use this estimate in our general HMC algorithm (described above). To compute with
the marginal method, we first obtain an initial estimate of β using gradient ascent in our working
model approximation as above. With this estimate in hand, we can estimate the marginal or sill
variance (τ 2 + σ2(s)) for each location s using the standard formula

∑
i{yi(s)− xTi β(s)}2/(N −

1). Then, again following [44], it is straightforward to construct a conditional independence-type
approximation H̃−1 such that H̃ ≈ H , and so that H̃ contains our estimates of the spatial sills
on the diagonal. To work with MCMC, H̃ can simply be substituted in place of Σ in our general
HMC outline above. For computational savings, we do not update H̃ over MCMC iterations when
we work with the model in this way.

M.2 Estimation of θ through maximum marginal likelihood

In general spatial kriging applications, it is common to estimate θ by maximum marginal likeli-
hood [e.g. 110, 135]. This can be done, for example by integrating out the mean model parameters
and optimizing the resulting marginal likelihood with respect to the covariance and correlation
parameters. Retaining the vector-based notation from our posterior computation sections and in-
tegrating the βj and ωi out of equation (1) in the main text, the marginal log likelihood (less the
integration constant) for our spatial regression model is,

f(y | θ,Σ,Z, τ 2) = −1

2

∑
i

ln det Ωi + yTi Ω
−1
i yi, (M.5)
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where Ωi = τ 2
(
1 +

∑
j ζ

2
j x

2
ij

)
C + Σ, and Σ is the (M ×M) sparse matrix with [σ2(s)]s∈S on

the diagonal. Equation (M.5) can of course be maximized directly, but at the cost of also solving
for M + P + 1 additional parameters in Σ, τ 2, and the ζ2j . Also, from a practical point of view,
it is somewhat undesirable that the marginal variance of yi depends on xi, implying the need to
re-optimize (M.5) every time a covariate is added to or removed from the model. Conceptually,
it does not make much sense to imagine that the spatial correlation structure of the model mean
parameters may change depending on the inclusion or exclusion of given covariates.

Instead of working with (M.5) directly, we choose to estimate θ by optimizing the marginal log
likelihood for a surrogate simpler model. To estimate θ, we replace (M.5) above with,

f̃(y | θ,Σ, τ 2) = −N
2

ln det(τ 2C + Σ) +−1

2

∑
i

yTi (τ 2C + Σ)−1yi, (M.6)

which, incidentally, is the unnormalized marginal likelihood for our working model with an inter-
cept as the only predictor. Equation (M.6) can be evaluated approximately either through use of a
conditional independence-type approximation of the matrix (τ 2C + Σ)−1, or by down-sampling
the yi to a more manageable number of spatial locations. We chose the former option in the present
paper, and in practice mean-center each image yi prior to optimization. While this approach can
work well, we have noticed anecdotally that it can also tend to underestimate the width of the cor-
relation function. Obtaining a good estimate of θ in more complex settings—as in (M.5)—remains
an open research question. We do not, however, expect inference on β(·), for example, to be overly
sensitive to the choice of θ, given a reasonable number of observations.

Finally, we have used the gradient-free optimization routine BOBYQA [129] to maximize
(M.6), which, surprisingly, improved performance over gradient-based optimizers (both run time
and stability). The BOBYQA algorithm works by iteratively constructing a quadratic approxima-
tion to the objective function at a set of interpolation points, which are themselves updated as a
trust region is progressively estimated [129]. The algorithm may fail if, for example, (M.6) exhibits
local behavior that cannot be well approximated by a quadratic function.
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