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ABSTRACT

We prove that algebraic de Rham cohomology as a functor defined on smooth Fp-algebras
is formally étale in a precise sense. This result shows that given de Rham cohomology, one
automatically obtains the theory of crystalline cohomology as its unique functorial deformation. To
prove this, we define and study the notion of a pointed Gperf

a -module and its refinement which we
call a quasi-ideal in Gperf

a – following Drinfeld’s terminology. Our main constructions show that
there is a way to “unwind” any pointed Gperf

a -module and define a notion of a cohomology theory
for algebraic varieties. We use this machine to redefine de Rham cohomology theory and deduce its
formal étalness and a few other properties.
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CHAPTER I

Introduction

1.1 Overview of the results

Let X be a scheme over a field k. Grothendieck defined the algebraic de Rham cohomology
of X to be the hypercohomology of the algebraic de Rham complex Ω∗X [Gro66]. When k is a
field of characteristic zero, de Rham cohomology forms a Weil cohomology theory for smooth
proper varieties over k. But when k has positive characteristic, for example k = Fp, then the theory
of de Rham cohomology does not form a Weil cohomology theory. In particular, the de Rham
cohomology groups are killed by p. To rectify this situation, Grothendieck [Gro68] and Berthelot
[Ber74] devised the theory of crystalline cohomology. For a smooth algebraic variety X over Fp, its
(n-truncated) crystalline cohomology RΓcrys(X/Z/pn) is a deformation of de Rham cohomology;
in the sense that RΓcrys(X/Z/pn)⊗L

Z/pnZ Fp ≃ RΓ(X,Ω∗X). However, potentially there could exist
some other cohomology theory which is also a deformation of de Rham cohomology. Our goal
is to show that this does not happen. In particular, we show that de Rham cohomology theory for
varieties over Fp is formally étale. Thus, given the theory of de Rham cohomology, one can realize
crystalline cohomology as its unique deformation. To make this precise, we fix some notations. We
let AlgsmFp

denote the category of smooth Fp-algebras and CAlg(D(A)) denote the∞-category of
commutative algebra objects (in the sense of [Lur17, 2.1.3]) in the derived∞-category D(A) of
an Artinian local ring A with residue field Fp. In other words, CAlg(D(A)) is the∞-category of
E∞-algebras over A. We show the following

Theorem 1.1.1 (Theorem 5.0.1). Let

dR : AlgsmFp
→ CAlg(D(Fp))

be the algebraic de Rham cohomology functor. Given an Artinian local ring (A,m) with residue

field Fp, the functor dR admits a unique deformation

dR′ : AlgsmFp
→ CAlg(D(A)).
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Further, the deformation dR′ is unique up to unique isomorphism (More precisely, the space of

deformations of dR is contractible, see Remark 5.0.2).

Remark 1.1.2. Roughly speaking, Theorem 1.1.1 proves that the theory of crystalline cohomology
is the unique functorial deformation of de Rham cohomology theory. Thus, it offers a simple new
characterization of crystalline cohomology. More precisely, when A = Z/pn, the (n-truncated)
crystalline cohomology functor RΓcrys(( · )/Z/pn) is uniquely isomorphic to dR′, where the latter
is as characterized by Theorem 1.1.1.

The special analogue of Theorem 1.1.1 for A = Zp (instead of an arbitrary Artinian local
ring) was a result of Bhatt, Lurie and Mathew [BLM21, Thm. 10.1.2]. Our Theorem 1.1.1 gives
a generalization of their result, which works for arbitrary Artinian local rings A; the case when
A = Zp = lim←−Z/pn can now be deduced via a limit argument. Since Theorem 1.1.1 works with
arbitrary Artinian local rings, it establishes that the de Rham cohomology functor for smooth
varieties over Fp is “formally étale.” The proof of [BLM21, Thm. 10.1.2] due to Bhatt, Lurie and
Mathew crucially uses that Zp and other relevant rings appearing in their work are p-torsion free.
However, Artinian local rings with residue field Fp are always p-torsion, which presents major
difficulties in approaching Theorem 1.1.1 in a similar fashion.

We use a very different approach to prove Theorem 1.1.1. In fact, we develop a new approach to
the theory of algebraic de Rham cohomology, by compressing its “essence” in a simpler algebro-
geometric structure that we introduce, which we call a pointed Gperf

a -module (Definition 1.1.5);
these objects are closely related to some classical constructions in p-adic Hodge theory (see
Proposition 2.2.11). We study properties of pointed Gperf

a -modules and its closely related variant
called pointed Ga-modules in detail. Then we develop a machine called unwinding: for any pointed
Gperf

a -module X, we build a functor Un(X) by unwinding X, which can be regarded as a cohomology
theory for algebraic varieties. We show that de Rham and crystalline cohomology theory can be
rebuilt by unwinding specific pointed Gperf

a -modules (see Theorem 1.1.11). After establishing good
formal properties of the unwidning construction, we use it to approach Theorem 1.1.1. An outline
of the proof of Theorem 1.1.1 has been explained following the statement of Theorem 1.1.14 below.

Having briefly mentioned the key new players in the proof of Theorem 1.1.1, let us now take
a slightly more technical perspective and explain some of the relevant definitions and how they
enter the picture. The de Rham cohomology functor takes values in coconnective commutative
algebra objects in the derived category D(Fp). In order to avoid talking about deformation theory
in such a context, it would be convenient for us if we could work with discrete rings instead. In
order to do that, instead of working with de Rham cohomology theory, we work with derived de
Rham cohomology theory as defined and studied in [Ill72] and [Bha12]. We will write dR to denote
derived de Rham cohomology as well; it agrees with the usual algebraic de Rham cohomology for
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smooth schemes, so the notation is consistent. For our purposes, it has the technical advantage that
derived de Rham cohomology theory can be completely understood by its values on a certain class of
rings introduced by Bhatt, Morrow and Scholze [BMS19] called quasiregular semiperfect (QRSP)
algebras. We point out that somewhat similar class of rings appeared in the work of Fontaine and
Jannsen as well [FJ13]. If S is a QRSP algebra, its derived de Rham cohomology dR(S) is then
a discrete ring. Therefore, we are equivalently led to the study of dR as a functor from QRSP
algebras to discrete Fp-algebras. In fact, after some reductions that are carried out in Section 5.1,
Theorem 1.1.1 follows from the following statement formulated in purely 1-categorical language.
Below, QRSP denotes the category of QRSP algebras and AlgA denotes the category of discrete
A-algebras. We show the following

Theorem 1.1.3. Let dR : QRSP → AlgFp
be the derived de Rham cohomology functor. Given

an Artinian local ring (A,m) with residue field Fp, the functor dR admits a deformation dR′ :

QRSP→ AlgA which is unique up to unique isomorphism (cf. Section 5.1).

In Chapter III, more generally, we study the category Fun(QRSP,AlgFp
), where QRSP denotes

the category of QRSP algebras. We show that a certain class of functors, which includes the de
Rham cohomology functor, can be realized as some kind of “unwinding” (cf. Construction 3.4.4)
of a much smaller and more tractable structure which we call a pointed Gperf

a -module. In order to
make sure that the process of “unwinding” is well-behaved, we will need to study a special class of
pointed Gperf

a -modules, which we call quasi-ideals following Drinfeld [Dri21, Def. 3.1.3].

Definition 1.1.4. The functor AlgFp
→ AlgFp

that sends S 7→ S♭ := lim←−x 7→xp
S can be represented

by an affine ring scheme which we denote as Gperf
a . The underlying affine scheme is given by

SpecFp[x
1/p∞ ].

Definition 1.1.5. A pointed Gperf
a -module is the data of a Gperf

a -module scheme X equipped with a
map of Gperf

a -module schemes X → Gperf
a . The data of the map X → Gperf

a will be referred to as a
point (cf. Section 2.2). In Remark 2.1.21, we give some justifications for the terminology “point” in
this context.

Definition 1.1.6. A pointed Gperf
a -module is called a quasi-ideal in Gperf

a if the data of the point
denoted as d : X → Gperf

a sits in a commutative diagram as below (cf. Definition 3.3.12).

X ×X X ×Gperf
a

Gperf
a ×X X

id×d

d×id action

action
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The commutativity of the above diagram ensures that for an algebra R, the map X(R)→ Gperf
a (R)

viewed as a complex, where Gperf
a (R) sits in degree zero, has the structure of a differentially graded

algebra [Dri21, Remark 3.1.2].

Remark 1.1.7. Later on, we will need to work with Gperf
a -module schemes defined over an Artinian

local base ring A with residue field Fp. Most of our constructions are also defined in this generality.
However, for the overview, we assume that A is always Fp.

Example 1.1.8. Let W denote the ring scheme of p-typical Witt vectors. Then W has an endomor-
phism F which is called the Frobenius on W. Note that for any algebra S, the ring of Witt vectors
W (S) has an additive endomorphism V (called the Verschiebung), which induces an operator also
denoted as V on the group scheme underlying W. For x, y ∈ W (S), one has V (x) ·y = V (x ·F (y)).

Therefore, if F (y) = 0, we must have V (x) · y = 0. Further, note that VW (S) is an ideal of the
ring W (S) and there is a natural isomorphism W (S)/VW (S) ≃ S ≃ Ga(S). These observations
imply that the group scheme underlying the kernel of F on the ring scheme W, written as W [F ]

naturally has the structure of a Ga-module (see Definition 2.1.7).

We note that there is also a natural map W [F ] → Ga of Ga-module schemes. Pulling W [F ]

back along the map u : Gperf
a → Ga of ring schemes (Proposition 2.2.17) produces a Gperf

a -module
scheme which we call u∗W [F ]. Then u∗W [F ] can be equipped with the structure of a pointed
Gperf

a -module scheme which is further also a quasi-ideal in Gperf
a . We point out that the group

scheme W [F ] is isomorphic to the divided power completion of the additive group scheme Ga,
which is denoted as G♯

a in [Dri21]. This isomorphism is also proven in [Dri21, Lemma 3.2.6].

Our goal is to use the data of a pointed Gperf
a -module to produce a functor such as de Rham

cohomology in a lossless manner. Note that there is a natural functor G : QRSP→ AlgFp
which

sends S 7→ S♭, where S♭ denotes the tilt of S defined as S♭ := lim←−x 7→xp
S. In Construction 3.4.4,

we construct the (contravariant) unwinding functor denoted by Un which takes in the data of a
pointed Gperf

a -module as input and produces a functor from QRSP→ AlgFp
. As a basic example,

we note that the functor G is the unwinding of the pointed Gperf
a -module given by Gperf

a itself. Other
examples are noted in Example 1.1.10 and Theorem 1.1.11 below. Restricting our attention to
quasi-ideals satisfying a particular property, which we call nilpotent quasi-ideals (Definition 3.4.11),
we obtain the following.

Theorem 1.1.9 (Proposition 3.4.21). There is a fully faithful (contravariant) embedding of the

category of nilpotent quasi-ideals in Gperf
a inside Fun(QRSP,AlgFp

)G/ given by the unwinding

functor Un.
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Example 1.1.10. We note that SpecFp[x
1/p∞ ]/x can be equipped with the structure of a pointed

Gperf
a -module which we denote as α♮. Another way to describe α♮ is to say that it is the pointed Gperf

a -
module underlying the kernel of the map u : Gperf

a → Ga. It is also the same as u∗SpecFp where
SpecFp is the pointed Ga-module underlying the zero group scheme. Applying the unwinding
functor to α♮ gives the functor QRSP 7→ AlgFp

that sends S 7→ S.

Theorem 1.1.11. Derived de Rham cohomology naturally viewed as an object dR of the category

Fun(QRSP,AlgFp
)G/ is naturally isomorphic to the unwinding of the nilpotent quasi-ideal given

by u∗W [F ].

The above results indicate that properties of certain objects of Fun(QRSP,AlgFp
)G/ can be

deduced by studying nilpotent quasi-ideals or more generally pointed Gperf
a -modules which is the

subject of Chapter II. For example, we define a full subcategory of pointed Gperf
a -modules which

we call fractional rank-1 pointed Gperf
a -module (cf. Definition 2.2.18) which has an initial object

given by α♮. By applying the unwinding functor, using Example 1.1.10 and the universal property
of α♮ mentioned before, one gets the following result.

Theorem 1.1.12 (Proposition 4.0.6). The natural transformation gr0 : dR→ id coming from gr0 of

the Hodge filtration in derived de Rham cohomology is the unique natural transformation between

dR and id viewed as objects of the category Fun(QRSP,AlgFp
)G/.

We study a more refined class of objects which we call pure fractional rank-1 pointed Gperf
a -

module (cf. Definition 2.5.7). The full subcategory of pure fractional rank-1 pointed Gperf
a -module

has an initial object given by u∗W [F ]. By applying the unwinding functor, one gets a universal
property of the de Rham cohomology functor which we loosely state below.

Theorem 1.1.13 (Universal property of dR). Derived de Rham cohomology is a final object of a

certain full subcategory of Fun(QRSP,AlgFp
)G/ (cf. Proposition 4.0.5).

As an application of the universal property, we can deduce the following result [BLM21, Prop.
10.3.1].

Theorem 1.1.14 (Bhatt-Lurie-Mathew). If we consider algebraic de Rham cohomology as a functor

defined on smooth Fp-algebras denoted as dR, then any endomorphism of dR that commutes with

the gr0 map of the Hodge filtration dR→ id is identity.

Outline of the proof of Theorem 1.1.1. Once we have developed the properties of the unwinding
functor Un in Chapter III, we try to use it to prove Theorem 1.1.1 in Chapter V. We have noted that
dR is essentially the data of the quasi-ideal u∗W [F ]. Our strategy is the following.

1. We reduce the problem to the case where the base Artinian local ring A is Fp[ϵ]/ϵ
2.

5



2. Given any deformation dR′ of dR, we extract a quasi-ideal from dR′ denoted as r(dR′) which is
a deformation of u∗W [F ].

3. We show that dR′ is essentially determined by the quasi-ideal r(dR′).

4. We show that any deformation of u∗W [F ] to Fp[ϵ]/ϵ
2 as a pointed Gperf

a -module is uniquely
isomorphic to the trivial deformation obtained by base change. This is proven in Proposition 2.5.11.
Therefore r(dR′) is necessarily the trivial deformation of u∗W [F ] and by 3, dR′ is necessarily the
trivial deformation dR⊗ Fp[ϵ]/ϵ

2 as well.

Other approaches to Theorem 1.1.1. Our approach to Theorem 1.1.1 uses QRSP algebras in
an essential way in order to not deal with deformation theory of coconnective E∞-rings. Our
construction of the unwinding functor Un is also devised in a way to work with the category
Fun(QRSP,AlgFp

). However, in principle, this should not be absolutely necessary. Below we
attempt to loosely explain other possible approaches that could be seen as more natural.

By the reduction in Section 5.1, it is equivalent to address the version of Theorem 1.1.1 for the
category PolyFp

of finitely generated polynomial algebras over Fp instead of all smooth algebras.
Instead of studying the category Fun(QRSP,AlgFp

), we can study Fun(PolyFp
,CAlg(D(Fp))). A

functor F ∈ Fun(PolyFp
,CAlg(D(Fp))) that preserves coproducts would provide an Fp-coalgebra

object structure on the E∞-ring F (Fp[x]) coming from the Fp-coalgebra structure of Fp[x] as an
object of PolyFp

. One can also try to reverse the situation, i.e., given an E∞-ring K with the extra
structure of an Fp-coalgebra object, one can try to build a functor UnK : PolyFp

→ CAlg(D(Fp))

that would send Fp[x] 7→ K and extend in a coproduct preserving way. This version of “unwinding”
is explained in Example 3.0.1 (in a 1-categorical language). Assuming good properties of these
constructions, in order to approach Theorem 1.1.1, we are led to studying the deformations of the
E∞-ring dR(Fp[x]) along with the extra structure of an Fp-coalgebra object.

Using the stacky approach to p-adic cohomology theories due to Bhatt–Lurie [BL22] and
Drinfeld [Dri18] [Dri21], one can ask a similar question regarding deformation of the Fp-algebra
stack (A1

Fp
)
dR relevant to Theorem 1.1.1. This is a stack whose cohomology of the structure

sheaf recovers dR(Fp[x]). Deformations of (A1
Fp
)
dR as an Fp-algebra stack seems to be relevant to

Theorem 1.1.1. Further, using [Dri21, Prop. 3.5.1], (A1
Fp
)
dR is the cone of the quasi-ideal given by

W [F ]. Therefore, deformations of (A1
Fp
)
dR as an Fp-algebra stack seem related to deformations

of the quasi-ideal or the pointed Ga-module given by W [F ] which is studied in Chapter II of our
paper.

In the approach we have taken in this paper (which uses QRSP algebras) we can avoid talking
about higher categorical structures and obtain a purely 1-categorical formulation as mentioned
in Theorem 1.1.3. Further, the notion of a pointed Ga-module or a quasi-ideal comes out quite

6



naturally (cf. Proposition 3.4.8). As a downside, the construction of “unwinding” seems more
convoluted for QRSP than what it would be for PolyFp

. We use quasisyntomic descendability and
left Kan extensions to switch between QRSP and PolyFp

, which could potentially be avoided in the
other approaches outlined above.

In any case, we point out that a precise formulation of the deformation problems involving the
E∞-ring dR(Fp[x]) or the Fp-algebra stack (A1

Fp
)dR would likely be equivalent to Theorem 1.1.1

and therefore they are answered a posteriori after proving Theorem 1.1.1. Also, a comparison of
these approaches can lead to other questions as well. For example, motivated by Theorem 1.1.13,
one can attempt to formulate a universal property for the stack (A1

Fp
)dR in the category of Fp-algebra

stacks. In Remark 5.2.7, we explain a rough comparison between the stacky approach and the
approach taken in our paper.

1.2 Motivations and related work

In this section we describe the motivations behind the constructions appearing in this paper
and other related work. Our starting point was to approach Theorem 1.1.1 which asks about
deformations of a functor (instead of a single object) which we regard as somewhat difficult to
approach. The strategy of the proof outlined above is vaguely inspired by some constructions
from chromatic homotopy theory. Given a complex oriented multiplicative cohomology theory E∗,
one can extract a formal group law from it by looking at E∗(CP∞) and using the multiplication
CP∞ × CP∞ → CP∞. Further, given a formal group law, the Conner-Floyd construction [CF66]
defines a “cohomology theory” associated to it. Motivated by this picture, one can ask the following
naive question in our context.

Question. Is there a way to extract a “group like object” from de Rham cohomology (or its
deformations)? Further, is the theory of de Rham cohomology (and its deformations) determined by
this “group like object”?

By the de Rham-crystalline comparison theorem [Ber74, Thm. V.2.3.2], the theory of de
Rham cohomology is essentially determined by the theory of divided power structures. This can
be seen more concretely by using the work of Bhatt on derived de Rham cohomology [Bha12].
Given a QRSP algebra S, by [BMS19, Prop. 8.12], its derived de Rham cohomology dR(S) is
naturally isomorphic to the divided power envelope DS♭(I) where I := Ker(S♭ → S). Setting
S := Fp[x

1/p∞ ]/x and considering dR(Fp[x
1/p∞ ]/x), we get the ring of functions underlying

u∗W [F ] from Example 1.1.8. Further, the Hopf stucture of Fp[x
1/p∞ ]/x provides a Hopf structure

on dR(Fp[x
1/p∞ ]/x) which is the same as the Hopf algebra underlying the ring of functions on

u∗W [F ]. This addresses the first half of our question above and extracts the “group like object”

7



u∗W [F ] from dR.

For the second half, one needs to build the de Rham cohomology functor from the object
u∗W [F ]. By the isomorphism dR(S) ≃ DS♭(I) for a QRSP algebra S, it would be enough to
build divided power envelopes from u∗W [F ]. In [BO78, Appendix 2], Berthelot-Ogus constructs
the closely related divided power algebra ΓR(M) for any ring R and an R-module M by using a
particular R-module called exp(R). We note that there is an isomorphism exp(R) ≃ W [F ](R),

where the latter denotes the R-valued points of the group scheme W [F ]. This suggests that in
principle, it could be possible to build divided power envelopes from u∗W [F ]. However, we need
to equip the group scheme u∗W [F ] with more structure. This leads to the definition of a pointed
Gperf

a -module, which is the framework for our “group like object”. In Example 3.3.10, we see
that using the unwinding functor, it is indeed possible to directly build divided power envelopes
(and consequently derived de Rham cohomology) out of the pointed Gperf

a -module u∗W [F ]. This
addresses the second half of our question as well.

Let us now mention some independent related work that appeared during the preparation of
this paper. The connection between u∗W [F ] or W [F ] and de Rham cohomology also appears in
the stacky approach to p-adic cohomology theories by Drinfeld [Dri21]. The “crystallization” of
A1

Fp
is a stack that is obtained by taking the cone of the quasi-ideal W [F ] in Ga. The notion of a

quasi-ideal also appeared in the work of Drinfeld and in general, a ring stack can be created out of a
quasi-ideal by considering its cone. More details on these constructions can all be found in [Dri21].
For us, a quasi-ideal is used as a special kind of a pointed Ga or a Gperf

a -module for which the
unwinding functor is particularly well-behaved. In Proposition 3.2.20, we show that the (opposite)
category of quasi-ideals can be embedded in a certain naturally defined category.

A connection between W [F ] and Hodge cohomology appears in the work of Moulinos, Robalo
and Toën on Hochschild homology [MRT20]. In their context, Hodge cohomology appears as the
associated graded object of the HKR filtration on Hochschild homology. The authors construct a
filtered stack (over a p-adic base) which they call the filtered circle. The associated graded stack of
the filtered circle is given by the classifying stack BW [F ]. They show that Hochschild homology
can be studied through this filtered circle where the filtration on the filtered circle induces the
HKR filtration on Hochschild homology. Their work also gives a different way of thinking about
the group scheme W [F ]: the classifying stack BW [F ] is the affine stack corresponding to the
cosimplicial ring given by the trivial square zero extension Fp ⊕ Fp[−1]. The stack BW [F ] also
appears in the work of Toën in [Toe20], where it is used to define derived foliations on schemes.

A universal property of the Hodge completed derived de Rham complex was recently obtained
in [Rak20] and motivated us to look for a universal property for dR from our perspective as in
Theorem 1.1.13.
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Finally, as previously noted, the analogue of Theorem 1.1.1 for A = Zp (instead of an Artinian
local ring) was already known due to the work of Bhatt, Lurie and Mathew [BLM21, Thm. 10.1.2],
which they use to give a new proof of the de Rham Witt to crystalline comparison theorem of Illusie
[Ill79, Thm. II.1.4]. Theorem 1.1.1 in our paper also allows torsion base rings A, and one can
deduce [BLM21, Thm. 10.1.2] from it by a limit argument (see the discussion after Remark 1.1.2).
A variant of questions regarding endomorphisms of the de Rham cohomology functor appears in
the work of Li and Liu [LL20].

The idea of controlling de Rham cohomology theory by a single object (with appropriate
structure) originating from this paper has been pursued further in author’s subsequent joint work
with Li in [LM21], where all the endomorphisms of de Rham cohomology theory as a functor has
been classified in very general situations [LM21, Thm 1.1]. As a consequence of this classification,
one can deduce Drinfeld’s refinement of the Deligne–Illusie decomposition [LM21, Thm 1.6].
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CHAPTER II

Modules Over Ring Schemes

In this chapter, we begin with the definition of a Ga and Gperf
a -module leading up to the notion of

a pointed Ga or Gperf
a -module. Our final goal is to study the deformation of the pointed Ga-module

W [F ], which is obtained from the kernel of Frobenius on Witt vectors and its closely related variant
u∗W [F ], which is a pointed Gperf

a -module. This will in part be achieved via attaching universal
properties to the objects W [F ] and u∗W [F ] as objects in certain categories. The construction
of such categories leads to several refinements of the category of pointed Gperf

a -modules which
we call pointed Gperf

a -modules of fractional rank 1 (Definition 2.2.18), full of fractional rank 1

(Definition 2.3.4) and pure of fractional rank 1 (Definition 2.5.7).

Notation 2.0.1. We let N denote the monoid of nonnegative integers. The set of positive integers
will be denoted by N>0. For a fixed prime p, we let N[1

p
] denote the monoid of nonnegative elements

in Z[1
p
] ⊂ Q. The category of A-algebras will be denoted as AlgA. Its opposite category, i.e., the

category of affine scheme will be denoted by AffA. All schemes considered are affine schemes
unless otherwise mentioned. The group schemes we consider are always assumed to be commutative.
The notion of a Ga-module is valid over any base ring A. However, the notion of a Gperf

a -module
will require us to fix a prime p. In fact, Gperf

a -modules will only be defined over a base ring where p
is nilpotent.

2.1 Ga-modules

Let C be any category which admits finite products. Many of the familiar concepts from algebra
can be made sense of in the category C. For example, one may talk about any monoid M acting
on an object c of C, which is encoded by the data of a monoid homomorphism M → HomC(c, c).

One can also define the notion of a group object G of C and talk about G acting on an object of C.
Further, one can talk about the notion of a ring object of C. IfR is a ring object of C, then one can
define a notion ofR-module objects too. Many of the definitions we introduce in this section can
be understood and defined in this generality. We will only spell out these definitions in the more
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concrete cases as required for our paper. However, our definitions will be based on the Yoneda
lemma and they apply to the general situation of any category C with finite products.

Definition 2.1.1. Let R be an arbitrary ring and ModR be the category of R-modules. Let F :

Affop
A → ModR be a functor. We will say that F defines an R-module scheme over A, if the

set-valued presheaf underlying F is representable by an affine scheme over A.

From a categorical perspective, one can also say that an R-module scheme is simply an R-
module object in the category of affine schemes over A.

Remark 2.1.2. Note that if X is an R-module scheme, then by definition, X is equipped with
the structure of a commutative group scheme. Additionally, for every r ∈ R, there is a map
mr : X → X of group schemes, which is the analogue of “multiplication by r map” in the case of
usual rings and modules. These maps are required to satisfy certain conditions analogous to the
usual ones in algebra that we do not spell out here. All of these data and conditions are captured by
the functorial definition provided in Definition 2.1.1.

Remark 2.1.3. We point out that the ring R in Definition 2.1.1 is arbitrary and not required to be
an A-algebra.

Example 2.1.4. Taking X = SpecA[x], we see that X can be equipped with the structure of an
A-module scheme.

Remark 2.1.5. One can also similarly define a notion of R-module schemes that are not necessarily
affine. However, such non affine examples will not be necessary for us in this paper; so in
Definition 2.1.1, we restrict our definition to the affine case.

Example 2.1.6. We note that SpecA[x] can be naturally equipped with the structure of a ring
scheme over A. We will denote this ring scheme by Ga. It represents the functor that sends an affine
scheme to its ring of global sections.

Definition 2.1.7 (Ga-module). Let us consider the category AffA and the presheaf of rings on AffA

represented by the ring scheme Ga. Let F be a presheaf of modules over the presheaf of rings
represented by Ga. We will say that F is a Ga-module over A, if the set-valued presheaf underlying
F is representable by an affine scheme over A. Morphisms of Ga-modules are defined as morphisms
of presheaves of modules over the presheaf of rings represented by Ga.

From a categorical perspective, one can simply say that a Ga-module is a Ga-module object in
the category of affine schemes over A.

Remark 2.1.8. Note that by definition, a Ga-module X has the structure of a commutative group
scheme. Further, there is also the Ga-action map act : X ×Ga → X. These data are subjected to
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the usual compatibilities which are all abstractly captured in Definition 2.1.7. For example, the
Ga-action must be compatible with the group operation mX : X ×X → X. Further, the Ga-action
must also respect the multiplication map mGa : Ga ×Ga → Ga coming from the additive group
scheme structure of Ga. We spell out the latter compatibility explicitly, which amounts to the
following commutative diagram. Below, we let ∆ : X → X ×X denote the diagonal map.

Ga ×X ×Ga Ga ×Ga ×X Ga ×X

Ga ×X ×X ×Ga X ×X X

≃

id×∆×id

mGa×id

act

act×act mX

(2.1.1)

Example 2.1.9. Ga itself can be equipped with the structure of a Ga-module. If A has char p, then
SpecA[x]/xp can be equipped with the structure of a Ga-module.

Remark 2.1.10. We note that the affine scheme underlying a Ga-module in particular has the action
of (Ga, · ), where the latter is considered to be a monoid scheme under multiplication; thus global
sections on it gives a nonnegatively graded Hopf algebra. In other words, every Ga-module has the
structure of a nonnegatively graded group scheme. If the underlying affine scheme of a Ga-module
is written as SpecB, then we have a direct sum decomposition B =

⊕
i∈N Bi coming from the

grading, where Bi denotes the summand of degree i. We refer to [MM65] for a study of graded
Hopf algebras.

Remark 2.1.11. The notion of a Ga-module extends to any scheme which is not a priori assumed to
be affine. However, we note that being a Ga-module imposes strong topological restrictions on the
underlying scheme. In fact, any scheme which can be equipped with the structure of a Ga-module
over a field is necessarily affine (see Remark 2.1.13). Thus, there is not much of a loss of generality
by defining the notion of Ga-modules only in the affine case, as we do in our paper. We thank
Drinfeld for pointing this out. Below, we prove a slightly more general proposition.

Proposition 2.1.12. Let G be a scheme over k equipped with a k-rational point given by c :

Spec k → G. Suppose that there is a map F : G × A1
k → G such that the restriction map

G×{1} → G is identity and the restriction map G×{0} → G is the composition G→ Spec k → G

(where the latter map comes from the chosen k-rational point). In this set up, if G can be equipped

with the structure of some group scheme, then G must be an affine scheme.

Proof. To prove this assertion, we can assume that k is algebraically closed. By the assumptions on
the map F : G× A1

k → G, it follows that G must be connected. By a modification of Chevalley’s
theorem due to Perrin [Per76, Cor. 4.2.9], there exists an exact sequence 0→ H → G→ A→ 0 of
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group schemes in the fpqc topology, where H is an affine group scheme and A is an abelian variety.
By hypothesis, we have a distinguished k-rational point c of G, whose image in A will be denoted
by c′ ∈ A(k). Our claim would follow if we prove that A(k) = 0, where A(k) denotes the k-valued
points of A. We let t ∈ A(k). Since G → A is an fpqc surjection, we can find an algebraically
closed field K, which contains k and such that there exists t′ ∈ G(K) which is mapped to the image
of t in A(K). Using t′ and the map F : G × A1

k → G supplied by our assumptions, we obtain a
map A1

K → AK such that {1} ∈ A1
K is mapped to the image of t in A(K) and {0} ∈ A1

K maps
to image of c′ in A(K). Any such map extends to a map P1

K → AK and since AK is an abelian
variety, any such map has to factor through the Jacobian of P1

K , which is a point. Thus the map
A1

K → AK is constant. By fpqc sheaf property, the map A(k)→ A(K) is injective. This implies
that t = c′ ∈ A(k). Since t was arbitrary, it follows that A(k) consists of a single point and thus
A(k) = 0, which gives the claim.

Remark 2.1.13. We clarify that in Proposition 2.1.12, we do not assume that the zero section of the
group scheme structure on G is the same as the k-rational point c. In the language of A1-homotopy
theory, the hypothesis in Proposition 2.1.12 means that the structure map G→ Spec k is a strict A1-
homotopy equivalence [MV99, 2.3]. Further, we point out that the hypothesis in Proposition 2.1.12
is satisfied for any Ga-module X, by considering the zero section Spec k → X itself to be the
rational point c and by taking F to be the Ga-module action map X × Ga → X. This gives the
conclusion that any Ga-module over a field is affine.

Proposition 2.1.14. The forgetful functor from the category of Ga-modules to the category of graded

group schemes is fully faithful.

Proof. Let SpecU and SpecV be two Ga modules and let SpecU → SpecV be a map of Ga-
modules. This is the data of a map V → U that is a Hopf algebra map and is equivariant with the
A[x]-coaction, i.e., commutes with the A[x]-coaction maps U → U [x] and V → V [x]. However,
the latter compatiblity can be checked after composing along the injective maps U [x] → U [x±1]

and V [x]→ V [x±1] and thus it is enough to provide a map V → U which is compatible with the
A[x±1]-coaction, i.e., a graded Hopf algebra map V → U.

Remark 2.1.15. Let us give a much more abstract generalization of Proposition 2.1.14 inspired
from a comment by the referee. If X is a topos and R is a ring object of X , one can consider
the category of R-module objects. The units in R can be viewed as a group object of X , which
we will denote asR×. Then there is a forgetful functor φ from the category ofR-modules to the
category ofR×-representations. Note that the category ofR×-representations can also be viewed
as the category of Z[R×]-modules of X . The forgetful functor φ can simply be identified with the
restriction of scalars along the natural map Z[R×] → R. Therefore, by the adjunction between
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restriction and extension of scalars, φ is surjective if and only if the counit is naturally isomorphic
to identity. The latter is equivalent to the natural map R ⊗Z[R×] R → R being an isomorphism.
Now, specializing to the case when X is the fpqc topos, R = Ga and R× = Gm, the condition
that the natural mapR⊗Z[R×] R → R is an isomorphism is implied by the fact that Z[Gm]→ Ga

is a surjection of sheaves. The last claim can be deduced by the observation that for any ring
S and an element f ∈ S, f is a sum of at most two units Zariskly locally on SpecS. Indeed,
SpecSf and SpecS1−f covers SpecS; on SpecSf , f is already a unit and on SpecS1−f , we have
f = 1 + (f − 1). This gives Proposition 2.1.14.

Remark 2.1.16. We note that a graded group scheme being a Ga-module is no extra data, but a
condition. This condition is not always satisfied. For example, the Witt group scheme W which
represents the functor AffA → Sets given by SpecB 7→ W (B) where W (B) is the ring of p-
typical Witt vectors of B is a graded group scheme but not a Ga-module. Indeed, for any b ∈ B,

multiplication by the Teichmüller lift [b] = (b, 0, . . . , 0, . . .) of b equips W with the structure of a
nonnegatively graded group scheme (cf. Remark 2.1.10). However, for t ∈ W (B) and b, b′ ∈ B, in
general, [b + b′] · t ̸= [b] · t + [b′] · t. Therefore, the graded group scheme W does not satisfy the
condition of being a Ga-module. cf. Remark 2.1.8, (2.1.1).

Proposition 2.1.17. Let SpecB be a Ga-module. Then as a graded algebra, the degree zero piece

of B is naturally isomorphic to A as an A-module. In other words, as a graded Hopf algebra, B is

connected.

Proof. First, by using the zero section of a group scheme, we note that the A-algebra structure
map A → B is injective. The Ga-module structure map is given by a map B → B[x]. Killing
x produces a map B → B whose kernel is I>0 :=

⊕
i>0Bi where B =

⊕
i≥0Bi. Further, using

the fact that SpecB is a Ga-module, we note that the map B → B obtained this way also has the
property that it factors through B → A, which is the zero map of the comultiplication. Since the
map A→ B is injective, this provides an A-algebra map B → A whose kernel is I>0. Thus B0 is
naturally isomorphic to A, as desired.

Remark 2.1.18. Let SpecB be a Ga-module as above. As noted in Remark 2.1.10, B has the
structure of a nonnegatively graded Hopf algebra. Let c : B → B ⊗B be the comultiplication map.
The proof of Proposition 2.1.17 shows that the (surjective) map z : B → A induced by the zero
section has kernel equal to I>0; this gives a natural isomorphism A ≃ B0. Therefore, for any b ∈ Bi,

such that i > 0, we have c(b) = p⊗1+1⊗q+c+(b), where p, q ∈ Bi and c+(b) ∈ I>0⊗A I>0. We
claim that p = q = b. To see this, we note that the composite map B

c−→ B⊗AB
id⊗z−−→ B⊗AA ≃ B

is the identity on B. Recalling the fact that the kernel of z is the ideal I>0, it follows that p = b.

Similarly one obtains q = b. To summarize, we see that if b ∈ B is a homogeneous element of
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degree > 0, then c(b) = b⊗ 1 + 1⊗ b+ c+(b), where c+(b) ∈ I>0 ⊗A I>0. This observation will
be used in the proof of Proposition 2.1.24.

Remark 2.1.19. By unwrapping Definition 2.1.7, one sees that a Ga-module over an arbitrary base
ring A is equivalent to the following:

1. For every A-algebra B, a B-module scheme SpecMB over B.

2. For every map B → B′ of A-algebras, an isomorphism resB′
B : MB⊗BB′ ≃MB′ . Further, in this

isomorphism, the B-action on the left hand side is compatible with the restriction of the B′-action
on the right hand side along the map B → B′. The latter is a condition and not extra data.

Further, a morphism of Ga-modules under this equivalence translates to the following:

1. For every A-algebra B, a morphism ΦB of B-module schemes over B.

2. For every map B → B′ of A-algebras, the maps Φ′B and ΦB are compatible with resB′
B .

Definition 2.1.20 (Pointed Ga-module). A Ga-module scheme X along with the data of a map
X → Ga of Ga-modules will be called a pointed Ga-module X . We will follow the convention that
the data of the map X → Ga will be simply called a point. Maps between pointed Ga-modules
are maps of Ga-modules that commute with the points. We denote the category of such objects by
Ga–Mod∗.

Remark 2.1.21 (cf. Remark 2.4.5). If X = SpecB is a Ga-module, then we note that giving a map
X → Ga of Ga-modules is equivalent to choosing an element of degree 1 in the graded algebra B.

This follows from the fact that if x is an element of degree 1 in B, then the comultiplication map
B → B ⊗A B sends x → x⊗ 1 + 1⊗ x. Thus a pointed Ga-module is the data of a Ga-module
SpecB and an element x ∈ B1 (where B1 is the degree 1 piece of B ). The choice of this element
x ∈ B1 is the reason we use the word “point” to talk about the map X → Ga; it is motivated by
the terminology in topology where a space Y and a choice of an element y ∈ Y is called a pointed
space. Using functor of points, in our case, this can also be interpreted as an X-valued point of Ga.

Remark 2.1.22. Ga can be naturally equipped with the structure of a pointed Ga-module using the
identity map Ga → Ga. In fact, Ga is the final object of Ga–Mod∗. The initial object of Ga–Mod∗

is given by the zero section SpecA → Ga. Proposition 2.4.10 and Remark 2.4.11 records more
examples of pointed Ga-modules.

Example 2.1.23. Let A be the base ring fixed as before. If M is an A-module, then Spec (SymA(M))

naturally has the structure of a Ga-module over A (cf. Remark 3.1.9). Below, we will show that if
A is a Q-algebra, then every Ga-module is of the form described above. We thank the referee for
bringing this to our attention.
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Proposition 2.1.24. Let A be a Q-algebra and X be a Ga-module over A. Then, there is an

A-module M such that we have an isomorphism X ≃ Spec (SymA(M)) of Ga-modules.

Proof. Let B := Γ(X,OX). As noted in Remark 2.1.10, we have natural a direct sum decomposi-
tion B =

⊕
i∈N Bi. Since X is a Ga-module, B has the structure of a connected (Proposition 2.1.17)

nonnegatively graded Hopf algebra. We will start by noting the following lemma, whose proof
follows from the discussion in Remark 2.1.18.

Lemma 2.1.25. We note that if b ∈ B is a homogeneous element such that deg b > 0, then the

comultiplication map B → B ⊗A B sends

b 7→ b⊗ 1 + 1⊗ b+
∑
u

b′u ⊗ b′′u,

where b′u, b
′′
u ∈ B are homogeneous elements of B such that deg b′u, deg b

′′
u > 0.

In particular, Lemma 2.1.25 implies that if b ∈ B1, then the comultiplication map B → B⊗A B

sends b→ b⊗ 1 + 1⊗ b. This implies that the natural map

F : SymA(B1)→ B

is a map of graded Hopf algebras. This constructs a map X → Spec (SymA(B1)) of graded
group schemes, which is automatically a map of Ga-modules by Proposition 2.1.14. To prove the
proposition, it would be enough to show that the map F : SymA(B1)→ B is an isomorphism of
A-algebras.

First we show that F is surjective. For this, we use the commutative diagram (2.1.1) that every
Ga-module X is required to satisfy. Applying the global section functor to (2.1.1), we obtain the
following commutative diagram of A-algebras.

A[t]⊗A B ⊗A A[t] B ⊗A (A[t]⊗A A[t]) B ⊗A A[t]

A[t]⊗A B ⊗A B ⊗A A[t] B ⊗A B B

≃

We will write A[t]⊗A B ⊗A A[t] ≃ B[t1, t2], where the isomorphism sends (t⊗ 1⊗ 1) 7→ t1 and
(1⊗ 1⊗ t) 7→ t2. We note that in order to show that F is surjective, by construction, it would be
enough to show that B is generated as an A-algebra by its degree 1 elements.

To this end, let b ∈ B be a homogeneous element of degree i > 1. By Lemma 2.1.25, the
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composite map B → B ⊗A B → B[t1, t2] from the above diagram sends

b 7→ ti1b+ ti2b+
∑
u

t
(deg b′u)
1 t

(deg b′′u)
2 b′u · b′′u,

where b′u, b
′′
u ∈ B are as described in Lemma 2.1.25. On the other hand, the composite map

B → B ⊗A A[t]→ B[t1, t2] sends b 7→ b(t1 + t2)
i. By the commutativity of the diagram, we have

the relation
b(t1 + t2)

i = ti1b+ ti2b+
∑
u

t
(deg b′u)
1 t

(deg b′′u)
2 b′u · b′′u (2.1.2)

in the ring B[t1, t2]. Since deg b′u, deg b
′′
u > 0 and deg b = i, it follows that deg b′u, deg b

′′
u < i.

Since the base ring A is assumed to be a Q-algebra, by comparing coefficients of ti−11 t2 from both
sides in the equation (2.1.2), we see that b =

∑
v c
′
vc
′′
v for some homogeneous elements c′v, c

′′
v ∈ B

such that deg c′v, deg c
′′
v < i. Since b ∈ B was an arbitrary element of degree > 1, inductively we

obtain that B is generated as an algebra by its degree 1 elements, which shows that F is surjective,
as desired.

Now we show that F is injective. By construction, F is a graded map and it induces an
isomorphism in degree 1. Let us assume for the sake of contradiction that F is not injective. Let n ≥
2 be the minimum integer such that F does not induce an injection on degree n. Let b1, . . . , bm ∈ B1

and i1, . . . , im ∈ N>0 be such that
∑m

r=1 ir = n and F (bi11 · · · bimm ) = 0; here bi11 · · · bimm is viewed
as an element of Symn

A(B1). We will show that bi11 · · · bimm = 0. Note that the comultplication
map B → B ⊗A B sends F (br) 7→ F (br) ⊗ 1 + 1 ⊗ F (br) for all 1 ≤ r ≤ m. It follows that∏m

r=1(F (br)⊗ 1 + 1⊗ F (br))
ir = 0, as a degree n element of B ⊗A B. The degree n summand of

B⊗AB further admits a decomposition
⊕

p+q=nBp⊗ABq as an A-module. Let dn−1,1 be the image
of
∏m

r=1(F (br)⊗ 1 + 1⊗ F (br))
ir under the A-module projection map B ⊗A B → Bn−1 ⊗A B1.

By construction, we have dn−1,1 = 0. Similarly, let cn−1,1 be the image of
∏m

r=1(br ⊗ 1 + 1⊗ br)
ir

under the projection SymA(B1)⊗A SymA(B1)→ Symn−1
A (B1)⊗A Sym1

A(B1). Since F was a map
of graded Hopf algebras, it induces a map Fn−1,1 : Symn−1

A (B1) ⊗A Sym1
A(B1) → Bn−1 ⊗A B1;

it also follows that Fn−1,1(cn−1,1) = dn−1,1 = 0. We already know that F is surjective. Therefore,
by the minimality of n, the map Symn−1

A (B1) → Bn−1 is an isomorphism. This implies that
Fn−1,1 is an isomorphism as well. Therefore, cn−1,n = 0. Now we note that the natural map
Symn−1

A (B1) ⊗A Sym1
A(B1) → Symn(B1) sends cn−1,1 7→ n(bi11 · · · bimm ). Since A is a Q-algebra,

it follows that bi11 · · · bimm = 0. This shows that F must induce an injection on degree n, which gives
the desired contradiction that finishes the proof.
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2.2 Gperf
a -modules

Below we define the notion of a Gperf
a -module which will be defined over a fixed ring A such

that pn = 0 in A for some n.

Proposition 2.2.1. The functor ( · )♭ : Affop
A → Sets given by SpecB → B♭, where B♭ :=

limx→xp B is naturally valued in rings.

Proof. This follows from the natural bijection B♭ ≃ limx→xp B/p, which holds since B, being an
A algebra, is p-adically complete.

Definition 2.2.2. The functor ( · )♭ from Proposition 2.2.1 is represented by SpecA[x1/p∞ ], which
can be naturally viewed as a ring scheme and will be denoted as Gperf

a when equipped with this ring
scheme structure.

Remark 2.2.3. When A is an Fp-algebra, the comultiplication of the Hopf algebra underlying
A[x1/p∞ ] can be described easily: it is given by the map A[x1/p∞ ]→ A[x1/p∞ ]⊗A A[x1/p∞ ] given
by x1/pn → x1/pn ⊗ 1 + 1⊗ x1/pn for all n. However, in general the comultiplication is less simple
to write down and we need to trace through the bijection B♭ ≃ limx→xp B/p. For example, when
A is a Z/p2Z algebra, the comultiplication is given by A[x1/p∞ ]→ A[x1/p∞ ]⊗A A[x1/p∞ ] which
sends x1/pn → x1/pn ⊗ 1 + 1⊗ x1/pn +

∑
0<i<p

(
p
i

)
xi/pn+1 ⊗ xp−i/pn+1

.

Remark 2.2.4. When A is an Fp-algebra, the A-algebra map A[x]→ A[x1/p∞ ] gives us a morphism
of ring schemes Gperf

a → Ga. At the level of functor of points, this morphism is induced by the
natural map B♭ → B, which is a ring homomorphism when B is an Fp-algebra. However, using
Remark 2.2.3 we can see that if p ̸= 0 in A, the natural map A[x]→ A[x1/p∞ ] is not a map of Hopf
algebras and hence does not give a morphism of ring schemes.

Definition 2.2.5 (Gperf
a -module). Let us consider the category AffA and the presheaf of rings on

AffA represented by the ring scheme Gperf
a . Let F be a presheaf of modules over the presheaf of

rings represented by Gperf
a . We will say that F is a Gperf

a -module over A, if the set-valued presheaf
underlying F is representable by an affine scheme over A. Morphisms of Gperf

a -modules are defined
as morphisms of presheaves of modules over the presheaf of rings represented by Gperf

a .

From a categorical perspective, one can simply say that a Gperf
a -module is a Gperf

a -module object
in the category of affine schemes over A.

Remark 2.2.6. Note that by definition, a Gperf
a -module scheme X has the structure of a commutative

group scheme. Further, there is also the Gperf
a -action map X × Gperf

a → X. To avoid confusion,
we clarify that a Gperf

a -module is not the same as a Gperf
a -module object in the category of perfect

schemes (when A = Fp). Further, the affine scheme underlying a Gperf
a -module need not be a perfect

scheme either.
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Example 2.2.7. When A has char. p, the scheme SpecA[x1/p∞ ]/x can be equipped with the
structure of a Gperf

a -module which we will denote as α♮. If p ̸= 0 in A, the Hopf structure of
A[x1/p∞ ] as described in Remark 2.2.3 does not induce a Hopf structure in the quotient A[x1/p∞ ]/x.

Remark 2.2.8. A Gperf
a -module SpecB naturally provides us a Gperf

m := SpecA[x±1/p
∞
]-equivariant

group scheme SpecB, or, more specifically in our case, an N[1/p]-graded group scheme structure on
SpecB. The summand of B of degree i ∈ N[1/p] will be denoted as Bi, so that B =

⊕
i∈N[1/p] Bi.

Further, the forgetful functor from Gperf
a -modules to N[1/p]-graded (or Z[1/p]-graded) group

schemes is fully faithful. The proof follows in a way entirely similar to the proof of Proposi-
tion 2.1.14.

Proposition 2.2.9. Let SpecB be a Gperf
a -module. Then as a graded algebra, the degree zero piece

of B is isomorphic to A as an A-module.

Proof. First, by using the zero section of a group scheme, we note that the A-algebra structure map
A → B is injective. The Gperf

a -module structure map is given by a map B → B[x1/p∞ ]. Killing
x1/pn for all n produces a map B → B whose kernel is I>0 :=

⊕
i>0Bi where B =

⊕
i∈N[1/p] Bi.

Further, using the fact that SpecB is a Gperf
a -module, we note that the map B → B obtained this way

also has the property that it factors through B → A which is the zero map of the comultiplication.
Since the map A → B is injective, this provides an A-algebra map B → A whose kernel is I>0.

Thus B0 is naturally isomorphic to A, as desired.

Remark 2.2.10. A Gperf
a -module over Fp amounts to the following data. For every Fp-algebra S,

we have an S♭-module scheme SpecMS over S such that for a map φ : S → R of Fp-algebras,
we have isomorphisms resRS : MS ⊗S R ≃ MR of R-algebras. Further, the action of S♭ on MS

provides an endomorphism of MS for every s♭ ∈ S♭ which under the isomorphism resRS corresponds
to the endomorphism induces by φ♭(s♭) on MR. Here φ♭ denotes the map S♭ → R♭. Using the map
S♭ → S for an Fp-algebra S, we see that it is enough to specify the same data only on perfect rings.

Proposition 2.2.11. Let (A,m) be an Artinian local ring with residue field Fp. For every perfect

ring R, let WA(R) := A ⊗Zp W (R). Then a Gperf
a -module over A is equivalent to the following

data:

1. For every perfect ring R, an R-module scheme SpecMR over WA(R).

2. For every map S → R of perfect rings, an isomorphism resRS : MS ⊗WA(S) WA(R) ≃ MR.

Further, in this isomorphism, the S-action on the left hand side is compatible with the restriction of

the R-action on the right hand side along the map S → R. The latter is a condition and not extra

data.

Further, a morphism of Gperf
a -module under this equivalence translates to the following data:
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1. For every perfect ring R, a morphism ΦR of R-module schemes over WA(R).

2. For every map S → R of perfect rings, the maps ΦR and ΦS are compatible with resRS .

Proof. Let R be a perfect ring. We note that WA(R) is an A-algebra. So given a Gperf
a -module

scheme over WA(R), we obtain an WA(R)♭-module scheme which will be denoted as MR. Thus
one direction of the proposition will follow from the following lemma.

Lemma 2.2.12. In the above set up, WA(R)♭ ≃ R.

Proof. This fact is rather classical and a proof can be found in [FF18, Prop. 2.1.2]. We will
explain a proof in our set up for the convenience of the reader. We start by noting that there is a
natural map WA(R)♭ := limx→xp WA(R)/p→ limx→xp WA(R)/m since p ∈ m. Since WA(R)/m

is isomorphic to R, which is a perfect ring, it will be enough to prove that the natural map is
an isomorphism. We know that the natural map limx→xp WA(R) → WA(R)♭ is a set theoretic
bijection since WA(R) is p-adically complete. Thus it is enough to show that the natural map
limx→xp WA(R)→ limx→xp WA(R)/m is a set theoretic bijection. First we check injectivity. Let
(an) and (bn) be two sequences in limx→xp WA(R) such that an = bnmodm. For every k, we have
ap

k

n+k = an and bp
k

n+k = bn. Since an+k = bn+k modm, one inductively checks using p ∈ m that
an = bn modmk+1. Since k was arbitrary, and the ideal m is nilpotent, this checks the injectivity.
For surjectivity, we fix (an) ∈ limx→xp WA(R)/m. We choose arbitrary lifts an of an to WA(R).

For every k, we have apn+k+1 = an+k modm. Thus, ap
k+1

n+k+1 = ap
k

n+k modmk+1. Since m is nilpotent,
the sequence k → ap

k

n+k is eventually constant, and we define the limit element to be bn. Now it
follows that bpn+1 = bn and bn lifts an, which proves the required surjectivity.

For the opposite direction, we are given with the data of an R-module scheme SpecMR over
WA(R) for every perfect ring R. In order to obtain a Gperf

a -module, we are required to provide
the data of a B♭-module scheme SpecMB over B for every A-algebra B. For this, we note the
following lemma.

Lemma 2.2.13. Let B be an A-algebra. There is a natural map WA(B
♭)→ B which induces an

isomorphism WA(B
♭)♭ → B♭.

Proof. There is a natural map B♭ → B/p → B/m. This gives a natural map of A-algebras
WA(B

♭) → B♭ → B/m. We note that WA(B
♭) is a flat A-algebra by definition. Since B♭ is

perfect, we have LB♭/Fp
= 0 implying LWA(B♭)/A = 0. This implies that WA(B

♭) is a formally étale
A-algebra. Since the map B → B/m has nilpotent kernel, it follows that the map WA(B

♭)→ B/m

lifts uniquely to provide a map WA(B
♭) → B, as desired. The map WA(B

♭)♭ → B♭ is an
isomorphism by Lemma 2.2.12.
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Now we can define MB := MB♭ ⊗WA(B♭) B. Then SpecMB automatically has the structure of
a B♭-module scheme. This data determines a Gperf

a -module.

Definition 2.2.14 (Pointed Gperf
a -module). A Gperf

a -module scheme X over A along with the data
of a map X → Gperf

a of Gperf
a -modules will be called a pointed Gperf

a -module X . We will follow
the convention that the data of the map X → Gperf

a will be simply called a point. Maps between
pointed Gperf

a -modules are maps of Gperf
a -modules that commute with the points. We denote the

category of such objects by Gperf
a –Mod∗.

Example 2.2.15. Let A be an Fp-algebra. The Hopf algebra A[x1/p∞ ]/x along with the natural
map A[x1/p∞ ]→ A[x1/p∞ ]/x equips SpecA[x1/p∞ ]/x with the structure of a pointed Gperf

a -module
scheme. This will be denoted as α♮. An analogue of this does not exist when A does not have
characteristic p.

Remark 2.2.16. Unlike the case of Ga-modules from Remark 2.1.21, for a Gperf
a -module X =

SpecB, it is not true that giving a map X → Gperf
a is equivalent to choosing an element of degree 1

in B.

For the remainder of this section, we will work over a base ring A of characteristic p.

Proposition 2.2.17 (Pullback functor). Let A be an Fp-algebra. Then there is a map of ring

schemes u : Gperf
a → Ga over A. Further, pullback along this map defines a fully faithful functor

u∗ : Ga–Mod∗ → Gperf
a –Mod∗.

Proof. The first part follows from the natural map S♭ → S for every A-algebra S since Gperf
a (S) =

S♭ and Ga(S) = S. For the second part, we start by defining the functor u∗. Let X be a pointed
Ga-module over A. We set u∗X := X×GaGperf

a . Then it follows that u∗X can be naturally equipped
with the structure of a pointed Gperf

a -module. This can also be seen using the functor represented
by u∗X . Let S be an A-algebra. Then we have a map X(S) → S of S-modules coming from
the pointed Ga-module structure of X. Thus we get a diagram X(S) → S ← S♭. By taking the
pullback, one obtains a map u∗X(S) ≃ N → S♭ of S♭-modules. This shows that there is a natural
map X → Gperf

a of Gperf
a -modules and demonstrates the pointed Gperf

a -module structure of u∗X .

It is clear that u∗ is faithful. To see that it is full, we take SpecM and SpecN to be two pointed
Ga-modules over A. Let f : u∗SpecM → u∗SpecN be a map of pointed Gperf

a -modules. Now
the graded algebra underlying u∗SpecM and u∗SpecN is given by M ′ := M ⊗A[x] A[x

1/p∞ ] and
N ′ := N ⊗A[x] A[x

1/p∞ ]. The map f induces a graded map on algebras f : N ′ → M ′. Now
considering the A-subalgebra of elements of integral degree in M ′ and N ′ we recover M and N

and also get a graded map f ◦ : N → M. Since f was a graded Hopf algebra map, it follows that
f ◦ is also a graded Hopf algebra map. This induces a map f◦ : SpecM → SpecN which by
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construction is a map of pointed Ga-modules. Now we note that applying u∗ to this map recovers
f . To see the last statement, we note that since f was a map of pointed Gperf

a –modules, the graded
Hopf algebra map f : N ′ →M ′ must send x1/pi 7→ x1/pi for i ≥ 0. This implies that the map f is
the map obtained from f ◦ by base changing along A[x]→ A[x1/p∞ ], which ultimately implies that
f = u∗f◦.

Definition 2.2.18 (Fractional rank 1). Let A be an Fp-algebra. A pointed Gperf
a -module X over A is

said to be of fractional rank 1 if it is isomorphic to u∗X ′ for a pointed Ga-module X ′.

Remark 2.2.19. If X = SpecV is a pointed Gperf
a -module of fractional rank 1 over Fp, then it

follows from the definition and Proposition 2.2.9 that the map of graded algebras Fp[x
1/p∞ ]→ V

corresponding to the point is an isomorphism in degrees < 1 and thus the pieces of degree < 1

of V are vector spaces of dimension 1. More precisely, let V<1 denote the algebra obtained by
killing the ideal of elements of degree ≥ 1. Further, let X be isomorphic to u∗SpecU for a pointed
Ga-module SpecU . Then V<1 ≃ Fp[x

1/p∞ ]/x⊗Fp U0 ≃ Fp[x
1/p∞ ]/x; where the last isomorphism

follows from Proposition 2.1.17. Also, we note that dimU1 = dimV1.

Example 2.2.20. Let A be an Fp-algebra and let us consider SpecA equipped with the pointed
Ga-module structure coming from the zero section of Ga. Then we have a natural isomorhism
u∗(SpecA) ≃ α♮ (Example 2.2.15). In particular, the pointed Gperf

a -module α♮ is of fractional rank
1.

2.3 The Hodge map

Proposition 2.3.1 (Hodge map). Let A be an Fp-algebra. Let X be a pointed Gperf
a -module over A

of fractional rank 1. Then there is a unique map α♮ → X in Gperf
a –Mod∗. This map will be called

the Hodge map.

Proof. This follows from Proposition 2.2.17 and Example 2.2.20.

Remark 2.3.2. We will later see (cf. Proposition 3.5.16) that the Hodge map α♮ → X corresponds
to the gr0 map of a certain kind of “Hodge filtration” that can be defined on a functor associated to
X.

Now we would like to study a “rigidity” property of the Hodge map α♮ → X from Proposi-
tion 2.3.1 under deformations. For this purpose, we make the following definition.

Definition 2.3.3. A pointed Ga-module X is said to be full of rank 1 if the map X → Ga induces a
surjection on the piece of degree 1 on the underlying graded algebra map obtained by taking global
sections.
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Definition 2.3.4 (Full of fractional rank 1). A pointed Gperf
a -module X over an Fp-algebra A is said

to be full of fractional rank 1 if it is of fractional rank 1 and the map X → Gperf
a induces a surjection

on the piece of degree 1 on the underlying graded algebra map obtained by taking global sections.

Remark 2.3.5. It follows from definitions that a pointed Gperf
a -module SpecV is full of fractional

rank 1 if and only if it is the image under u∗ of a full of rank 1 pointed Ga-module SpecU . In this
situation, when A = Fp, we have two cases.

Case 1. If the graded map Fp[x]→ U sends x→ 0, then V = U⊗Fp[x]Fp[x
1/p∞ ] = U⊗Fp

Fp[x1.p∞ ]

x
.

Thus the graded map Fp[x
1/p∞ ] → V corresponding to the pointed Gperf

a -module structure is an
isomorphism in degrees < 1 and x is sent to zero, so V has no non-zero elements in degree i for
1 ≤ i < 2.

Case 2. Otherwise, dimU1 = dimV1 = 1 and the graded map Fp[x] → U sends x to a basis
element of U1. Then the map Fp[x

1/p∞ ]→ V corresponding to the pointed Gperf
a -module structure

is an isomorphism in degrees i for 0 ≤ i < 2.

Proposition 2.3.6 (Rigidity of the Hodge map). Let X be a pointed Gperf
a -module over Fp which is

full of fractional rank 1. Let X ′ be a deformation of X as a pointed Gperf
a -module over Fp[ϵ]/ϵ

2.

Then the Hodge map α♮ → X admits a unique deformation α♮[ϵ]→ X ′.

Proof. We write X = SpecB and X ′ = SpecB′. We have a map Fp[ϵ][x
1/p∞ ]→ B′ coming from

the data of the point. By Remark 2.2.19, this is an isomorphism in degrees < 1 since it is so modulo
ϵ. Let B′<1 denote the graded algebra we obtain by killing the ideal of elements in degrees ≥ 1

in B. This gives an isomorphism of graded algebras B′<1 ≃
Fp[ϵ][x1/p∞ ]

x
. Thus the quotient map

B′ → B′<1 can be identified with a graded algebra map B′ → Fp[ϵ][x1/p∞ ]

x
or in other words, a graded

map α♮[ϵ]→ SpecB′. We note that both sides have the structure of pointed Gperf
a -modules and the

graded map of schemes we have constructed is compatible with the data of the points. Thus in order
to prove that it is a map of pointed Gperf

a -modules, we only need to check that B′ → Fp[ϵ][x1/p∞ ]

x
is a

map of graded Hopf algebras, i.e., the following diagram commutes.

B′ Fp[ϵ][x1/p∞ ]

x

B′ ⊗B′ Fp[ϵ][x1/p∞ ]

x
⊗Fp[ϵ]

Fp[ϵ][x1/p∞ ]

x

It is enough to check that the diagram commutes for homogeneous elements b ∈ B′. When
deg b < 1, it follows from the data of the points. By Remark 2.3.5, if X falls under Case 1,
then the diagram commutes for 1 ≤ deg b < 2, as b is necessarily zero in that case. If X falls
under Case 2, then the map Fp[x

1/p∞ ] → B is an isomorphism in degrees < 2. Therefore, the
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map Fp[ϵ][x
1/p∞ ] → B′ coming from the data of the point is an isomorphism in degrees < 2 as

well. Thus the diagram commutes for 1 ≤ deg b < 2 in this case as well. Now we suppose that
deg b ≥ 2. The comultiplication would send this to a homogeneous element of B′ ⊗B′. However,
any homogeneous element of degree ≥ 2 in B′ ⊗ B′ would have to be of the form

∑
u xu ⊗ yu

such that xu, yu are homogeneous elements in B′ and deg xu + deg yu = deg b ≥ 2, therefore
either deg xu or deg yu is ≥ 1, implying that

∑
u xu ⊗ yu is sent to zero under the lower horizontal

map. But since deg b ≥ 2, it is sent to zero by the upper horizontal map as well, which kills every
element in degree ≥ 1, verifying the commutativity of the diagram. The uniqueness follows from
the grading.

Example 2.3.7. We note that Proposition 2.3.6 is false if we do not assume the Gperf
a -module to

be full, i.e., assuming that the Gperf
a -module is of fractional rank 1 alone is not sufficient. We

consider the group scheme αp as a pointed Ga-module over Fp via the map Fp[x] → Fp[x]

xp that
sends x→ 0. Applying the functor u∗, we obtain a pointed Gperf

a -module via the map Fp[x
1/p∞ ]→

Fp[x1/p∞ ]

x
⊗Fp

Fp[t]

tp
. This can have deformations that do not admit a pointed Gperf

a -module map to
α♮[ϵ]. Indeed, we consider the graded algebra Fp[ϵ][x1/p∞ ]

x
⊗Fp[ϵ]

Fp[ϵ][t]

tp
. The Hopf structure has a

nontrivial deformation given by

t→ t⊗ 1 + 1⊗ t+ ϵ
∑
0<i<p

1

p

(
p

i

)
xi/p ⊗ x1−i/p.

This deformation further has the structure of a pointed Gperf
a -module. However, this does not have

a deformation of the pointed Gperf
a -module map Fp[x1/p∞ ]

x
⊗Fp

Fp[t]

tp
→ α♮ obtained by killing all

elements of degree ≥ 1. Indeed, any deformation of such a map would be given by killing all the
generators in degrees ≥ 1 as well, which would not be a Hopf map.

2.4 Cartier duality

In this section, we record a variant of Cartier duality in the graded situation. For more details on
such constructions we refer to [GR14, 1.6]. We will use this duality to study the deformation of
certain pointed Ga and Gperf

a -modules.

Definition 2.4.1. Let R be any ring. A nonnegatively graded module
⊕

i≥0 Vi over R is said to
be of free of finite type if Vi is a finite dimensional free module over R for every i ≥ 0. A graded
algebra over R will be called free of finite type of it is free of finite type as a module over R.

Definition 2.4.2. If M =
⊕

i≥0 Vi is a free of finite type graded module over R, then we can
define the dual of M as M∗ :=

⊕
i≥0 V

∗
i , where V ∗i denotes the dual of Vi. It follows that M∗∗ is

functorially isomorphic to M.
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Definition 2.4.3. Let S be a graded free of finite type Hopf algebra over R. Then S∗ also has the
structure of a graded free of finite type Hopf algebra over R. We call S∗ the Cartier dual of S. It
follows that S∗∗ is naturally isomorphic to S. Thus Cartier duality provides an anti-equivalence
between the category of nonnegatively graded free of finite type Hopf algebras over R with itself.

Definition 2.4.4. Let P1
∗ denote the category of nonnegatively graded affine group schemes X over

R whose underlying Hopf algebra is free of finite type along with the data of a map X → Ga of
graded group schemes such that at the level of graded algebras of global sections, this map induces
an isomorphism on degrees ≤ 1. The map X → Ga will be called a point. Morphisms between two
such objects are morphisms of graded group schemes that commute with the data of the points.

Remark 2.4.5. We recall that a nonnegatively graded Hopf algebra S over R is called connected
if the degree zero piece of S denoted as S0 is isomorphic to R as an R-module. Equivalently, S
is called connected if the structure map R → S induces isomorphism on the degree zero piece.
It follows from the definition that the underlying graded Hopf algebra Γ(X,OX) is connected
for an X ∈ P1

∗ . We note that if S is a connected nonnegatively graded Hopf algebra, then the
comultiplication on S sends an element x of homogeneous degree 1 to x⊗ 1 + 1⊗ x. In particular,
giving a map R[x] → S of connected nonnegatively graded Hopf algebras over a base ring R

amounts to choosing a homogeneous element of degree 1 in S.

Remark 2.4.6. The identity map Ga → Ga is the final object of P1
∗ .

Proposition 2.4.7 (Duality). We fix a base ring R as before. The category P1
∗ has a notion of duality

which sends an object SpecM → Ga to another object SpecM∗ → Ga, where M∗ is the Cartier

dual of the nonnegatively graded free of finite type Hopf algebra M. Further, this duality in P1
∗ is

involutive and thus provides an anti-equivalence of P1
∗ with itself. This duality in P1

∗ will be called

Cartier duality as well.

Proof. Let SpecM → Ga ∈ P1
∗ . We need to check that there is a map of graded Hopf algebras

R[x] → M∗ inducing isomorphism in degrees ≤ 1 which is further functorial and is compatible
with applying Cartier duality twice. First we note the following lemma.

Lemma 2.4.8. Let PL(R) denote the category whose objects are pairs (L, p) where L is a free

module of rank 1 over R and p is a basis of L as an R-module. Maps are defined in the obvious way.

Then there is a notion of functorial duality on PL(R) which is involutive and sends L 7→ L∗.

Proof. Our task is to construct a functor PL(R)→ PL(R) which we define by sending (L, p)→
(L∗, p∗) where p∗ : L→ R is the unique map that sends p→ 1. It is clear that p∗ is a basis for L∗. If
(L1, p1)→ (L2, p2) is an arrow in PL(R), then there is a natural map L∗2 → L∗1 which takes p∗2 to
p∗1, thus it is clear that our construction defines a functor. The natural isomorphism L ≃ L∗∗ sends
p→ p∗∗ so it follows that the functor we constructed is involutive.
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Now we note that the Cartier dual M∗ of M is again a connected Hopf algebra over R since M

is connected. By Remark 2.4.5, the map SpecM → Ga corresponds to an object (M1, t) ∈ PL(R),
where M1 denotes the degree 1 piece of M and t ∈ M1 is the image of x under the graded map
R[x] → M. By the above Lemma, duality provides us an object (M∗

1 , t
∗). By Remark 2.4.5,

this corresponds to a map SpecM∗ → Ga. By construction, the underlying graded algebra map
R[x]→M∗ induces an isomorphism in degrees ≤ 1. Thus SpecM∗ → Ga is naturally an object of
P1
∗ . The fact that this construction is functorial and involutive follows from the above Lemma.

Example 2.4.9. It follows that the category P1
∗ has an initial object G∗a → Ga, which is the Cartier

dual of the final object Ga → Ga and will be simply denoted by G∗a. By computing the Cartier dual,
it follows that the graded algebra underlying G∗a is the divided power polynomial algebra in one
variable. By construction, G∗a is a nonnegatively graded group scheme since it is the dual of Ga. It
also follows that in the graded algebra underlying G∗a, the summands of a fixed degree are all free
of rank 1. Let us mention the group scheme structure of G∗a more explicitly at the level of functor
of points. For an algebra B, the B-valued points of G∗a can be identified with the set of sequences
(b0, b1, . . . , bn, . . .), where bi ∈ B for i ≥ 0 are such that b1 = 1 and bnbm = (m+n)!

m!n!
bn+m. The

addition operation in the group scheme G∗a at the level of B-valued points can be described as

(b0, b1, . . . , bn, . . .) + (c0, c1, . . . , cn, . . .) = (d0, d1, . . . , dn, . . .), where dk :=
∑
i+j=k

bicj.

For b ∈ B, setting b · (b0, b1, . . . , bn, . . .) := (b0, bb1, . . . , b
nbn, . . .) describes the Ga-action on G∗a.

By using the relation bnbm = (m+n)!
m!n!

bn+m and the binomial theorem, one easily verifies that the
Ga-action on G∗a equips G∗a with the structure of a Ga-module.

Proposition 2.4.10. Let R be a Zp-algebra. Then G∗a as an object of P1
∗ over R is uniquely

isomorphic to W [F ]→ Ga, where the latter denotes the Kernel of Frobenius on the p-typical Witt

ring scheme (see Example 1.1.8). (In particular, W [F ] has the structure of a pointed Ga-module.)

Proof. For a proof, we refer to [Dri21, Lemma 3.2.6]. We explain sketch of a different proof. It is
enough to prove the claim when R = Zp. Since F : W → W is faithfully flat (see [Dri21, Section
3.4] and Example 1.1.8), W [F ] is a graded group scheme that is flat over Zp. For every i ≥ 0, the
summand of degree i in the graded algebra underlying W [F ] is a finitely generated flat module over
Zp and therefore must be free of finite rank. By going modulo p, one sees that these summands
of degree i must be free of rank 1 for every i ≥ 0. Thus one observes that W [F ] → Ga is an
object of P1

∗ . Since G∗a → Ga is an initial object of P1
∗ by Example 2.4.9, it follows that there is

a unique map G∗a → W [F ] in P1
∗ . In order to check that this map is an isomorphism, it is enough

to check it at the level of the induced map on graded algebras underlying the two group schemes.
For the latter, it is further enough to check it for the induced maps on summands of degree i, at

26



the level of Zp-modules. Since these summands all have rank 1, it is enough to check that these
maps are nonzero modulo p. However, the last statement can be seen directly by inspecting the
comultiplication of the Hopf algebras underlying G∗a and W [F ] after reducing modulo p.

Remark 2.4.11. Fix n ≥ 1. Let P1
∗<n

denote the full subcategory of P1
∗ spanned by the objects

SpecM → Ga whose underlying graded algebra M satisfies Mi = 0 for i ≥ n. Then P1
∗<n

is
preserved under Cartier duality. When R is a char. p base ring and n = pk, then the final object
of P1

∗<n
is given by αpk → Ga where αpk is the Ga-module underlying SpecR[x]/xpk . Its Cartier

dual is given by Wk[F ], where Wk is the kernel of Frobenius on the k-truncated p-typical Witt
ring scheme. The Hopf structure on the ring of functions on Wk[F ] is obtained by considering
the subalgebra of elements in degree < pk in the Hopf algebra underlying W [F ]. By duality,
Wk[F ]→ Ga is the initial object of P1

∗<n
. We note that Wk[F ] is also a Ga-module and thus Wk[F ]

has the structure of a pointed Ga-module. Explicitly, the graded R-algebra underlying Wk[F ]

(considered as a graded group scheme over R) is given by R[x0,x1,...,xk−1]

(xp
0,x

p
1,...,x

p
k−1)

, where deg xi = pi.

Example 2.4.12 (Duality in P1
∗ ). We consider the graded algebra Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

where deg x0 = 1

and deg xi = pk+i for i ≥ 1. This has a graded subalgebra given by Fp[x
pk

0 ,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

. Let us write
Fp[t0,t1,...,tn]

(tp0,t
p
1,...,t

p
n)

to denote the graded Hopf algebra underlying Wn+1[F ], where deg ti = pi for i ≥ 0.

Thus, the algebra Fp[x
pk

0 ,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

can be naturally equipped with the Hopf structure coming via

the isomorphism with Fp[t0,t1,...,tn]

(tp0,t
p
1,...,t

p
n)

that sends t0 7→ xpk

0 and ti 7→ xi for i ≥ 1. This equips the

graded algebra Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

with a graded Hopf structure which is uniquely obtained by sending

x0 7→ x0 ⊗ 1 + 1⊗ x0 and requiring that the graded subalgebra Fp[x
pk

0 ,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

equipped with the

aforementioned Hopf structure is a Hopf subalgebra. There is also a map Spec Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)
→ Ga

corresponding to the element x0 of degree 1 (see Remark 2.4.5) which makes the former an object
of P1

∗ .

We also consider the graded algebra Fp[y0,y1,...,yk]

(yp0 ,...,y
p
k−1,y

pn+1

k )
, where deg yi = pi. By quotienting with

ypk we obtain the graded algebra Fp[y0,y1,...,yk]

(yp0 ,...,y
p
k−1,y

p
k)

which has a Hopf structure coming from Wk+1[F ].

This induces a graded Hopf structure on Fp[y0,y1,...,yk]

(yp0 ,...,y
p
k−1,y

pn+1

k )
which is uniquely obtained by sending

ypk → ypk ⊗ 1 + 1⊗ ypk and requiring that the quotient map Fp[y0,y1,...,yk]

(yp0 ,...,y
p
k−1,y

pn+1

k )
→ Fp[y0,y1,...,yk]

(yp0 ,...,y
p
k−1,y

p
k)

is a map

of graded Hopf algebras, when the quotient is equipped with the aforementioned Hopf structure.
There is also a map Spec Fp[y0,y1,...,yk]

(yp0 ,...,y
p
k−1,y

pn+1

k )
→ Ga corresponding to the element y0 of degree 1 which

makes this an object of P1
∗ .

The above two objects of P1
∗ are Cartier dual of each other. Indeed, by killing the ideal of
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elements in degrees ≥ pk+1 in Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

, we obtain the sub Hopf algebra Fp[x0]/x
pk+1

0 . This

implies that killing the ideal of elements in degrees ≥ pk+1 in the Cartier dual Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

∗
we

get an isomorphism with the graded Hopf algebra Fp[y0,y1,...,yk]

(yp0 ,...,y
p
k−1,y

p
k)
. Under this isomorphism, yk is

identified with the basis element in degree pk of Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

∗
. Inspecting the comultiplication

in Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

, we conclude that the powers of the basis element in degree pk of Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)

∗

gives a basis element in degrees i for pk ≤ i < pk+n+1. This shows that the two objects of P1
∗

mentioned above are indeed dual to each other.

2.5 Deformations of some Ga and Gperf
a -modules

In this section, we study deformations of some pointed Ga (resp. Gperf
a )-modules. All deforma-

tions are required to be flat over the base. While studying deformations, we would like to make
use of certain universal properties. In order to formulate these universal properties, we will need to
restrict our attention to a suitable full subcategory of Ga–Mod∗ (resp. Gperf

a –Mod∗).

Definition 2.5.1. A pointed Ga-module X is said to be pure of rank 1 if the graded Hopf algebra
Γ(X,OX) is free of finite type and the map X → Ga induces an isomorphism in degree 1 at the
level of graded algebras of global sections. The full subcategory of such objects inside the category
Ga–Mod∗ will be called the category of pure rank-1 pointed Ga-modules.

Remark 2.5.2. Since (by using Proposition 2.1.17) the category of pure rank-1 pointed Ga-modules
is a full subcategory of P1

∗ , it follows that G∗a is the initial object in the category of pure rank-1
pointed Ga-modules. Therefore G∗a admits no nontrivial endomorphisms other than the identity
(over an arbitrary base ring). Over a Zp-algebra, W [F ] is isomorphic to G∗a and thus inherits the
same universal property.

Proposition 2.5.3. Let A be a Zp-algebra. Then W [F ] has no nontrivial endomorphism as a

pointed Ga-module over A.

Proof. This follows from Proposition 2.4.10 and Remark 2.5.2.

Proposition 2.5.4. Let (A,m) be an Artinian local ring with residue field k which has char. p > 0.

Then any deformation of the pointed Ga-module W [F ]k over A is uniquely isomorphic to W [F ]A.

Proof. Let X be any deformation of W [F ]k to A; in particular, X is flat over SpecA. Then X is
necessarily a pure rank-1 pointed Ga-module. Since W [F ]A is the initial object in the category of
pure rank-1 pointed Ga-modules, there is a unique map W [F ]A → X of pointed Ga-modules. This
map is an isomorphism after going modulo m, and therefore is an isomorphism. The uniqueness
follows from Proposition 2.5.3.
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Proposition 2.5.5. Let A be an Fp-algebra. Then the pointed Ga-module Wn[F ] defined over A

has no nontrivial endomorphisms.

Proof. Follows from Remark 2.4.11.

Proposition 2.5.6. Let (A,m) be an Artinian local ring over Fp with residue field k. Then any

deformation of the pointed Ga-module Wn[F ]k is uniquely isomorphic to Wn[F ]A.

Proof. Follows from Remark 2.4.11.

Definition 2.5.7 (Pure of fractional rank 1). Let A be a base ring of char. p > 0. A pointed
Gperf

a -module X over A is said to be pure of fractional rank 1 if it is isomorphic to u∗Y for some
pure rank-1 pointed Ga-module Y. The full subcategory of such objects inside Gperf

a –Mod∗ will
be called the category of pure fractional rank-1 pointed Gperf

a -module. This category is also the
essential image of the functor u∗ restricted to the category of pure rank-1 pointed Ga-modules.

Proposition 2.5.8. The category of pure fractional rank-1 pointed Gperf
a modules has a final object

given by Gperf
a . This category also has an initial object which is given by u∗W [F ].

Proof. This follows from the definition of pure fractional rank-1 modules by using Remark 2.5.2
and the fact that u∗ is fully faithful (Proposition 2.2.17).

Proposition 2.5.9. Let A be an Fp-algebra. Then u∗W [F ] has no nontrivial endomorphism as a

pointed Gperf
a -module over A.

Proof. This follows from Proposition 2.5.8.

Our next Proposition will deal with deformations of u∗W [F ]. We point out that using Proposi-
tion 2.5.4 and Proposition 5.2.6 one can directly prove Proposition 2.5.11 below. However, since the
proof of Proposition 5.2.6 uses the language of stacks, we prefer to record an elementary argument
in the case of u∗W [F ]. Before we begin, we record a lemma.

Lemma 2.5.10. Let S =
⊕

i∈N[1/p] Si be a perfect, graded Fp-algebra. For a fixed n ∈ N[1/p], we

consider the ideal I :=
⊕

i≥n Si. Then there is a unique deformation up to unique isomorphism of

S/I over Fp[ϵ]/[ϵ
2] which is compatible with the grading.

Proof. This could also be proven by a graded version of the cotangent complex but we prefer to
give a direct proof. Let B =

⊕
i Bi be a deformation of S/I compatible with the grading. Since

(S/I)i = 0 for i ≥ n, by going modulo ϵ, it follows that Bi = 0 for i ≥ n. Note that, since S is
perfect, the natural map S → S/I lifts uniquely to give a map f : S[ϵ] := S ⊗ Fp[ϵ]/ϵ

2 → B.

Further, since S is perfect, this map is automatically graded. Indeed, for a homogeneous element
s ∈ S ⊂ S[ϵ], s1/p is also homogeneous and f(s1/p) is a homogeneous element if we go modulo
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ϵ. By taking p-th powers, that implies that f(s) is a homogeneous element. This shows that f is
a graded map. Now the map Si → (S/I)i is an isomorphism for i < n and zero for i ≥ n. Since
Bi is flat over Fp[ϵ]/ϵ

2, by going modulo ϵ (see Lemma 4.0.13), it follows that fi : S[ϵ]i → Bi is
an isomorphism for i < n, and is necessarily the zero map for i ≥ n since Bi = 0 for i ≥ n. This
shows that the kernel of f is I[ϵ] :=

⊕
k≥n S[ϵ]k. Now f is surjective, since it is a surjection modulo

ϵ. This shows that B ≃ S/I[ϵ], compatible with the grading. Uniqueness follows from grading and
by taking p-power roots.

Proposition 2.5.11. The pointed Gperf
a -module u∗W [F ] over Fp has no nontrivial deformation over

Fp[ϵ]/ϵ
2.

Proof. Since the Hopf algebra B underlying u∗W [F ] is not graded by nonnegative integers, the
theory of Cartier duality breaks down. Indeed, dimension of the piece of degree 1 in B ⊗Fp B is
infinite and thus does not behave well under duality. A priori, we cannot directly apply any of our
results above. Our proof will use some lemmas which will ultimately break it down to steps where
we are only dealing with finite type Hopf algebras.

Lemma 2.5.12. For n ≥ 0, the graded group scheme u∗Wn+1[F ] over Fp has no nontrivial

deformation over Fp[ϵ] := Fp[ϵ]/ϵ
2 as a graded group scheme. Further, u∗Wn+1[F ] ⊗Fp Fp[ϵ]

admits a unique endomorphism as a pointed Gperf
a -module.

Proof. We will break down the proof in a few steps.

Step 1. We write the graded algebra underlying u∗Wn+1[F ] as C =
Fp[x

1/p∞
0 ,x1,...,xn]

xp
i

, where deg xi =

pi. This admits a map of graded Hopf algebras Fp[x
1/p∞

0 ]→ Fp[x
1/p∞
0 ,x1,...,xn]

xp
i

. Let C ′ be the graded
Hopf algebra underlying the deformation of u∗Wn+1[F ]. Let C ′ :=

⊕
i∈N[1/p] C

′
i as a graded algebra.

By killing the ideal of elements of degree ≥ p, we obtain a ring C ′<p which is a deformation of
the graded algebra Fp[x

1/p∞

0 ]/xp
0 which has to be uniquely isomorphic to the trivial deformation by

Lemma 2.5.10. Thus, by taking grading into account, we see that C ′ has to be of the form

Fp[ϵ][X
1/p∞

0 , . . . , Xn]

(Xp
0 − c1ϵX1, X

p
1 − c2ϵX2, . . . , X

p
n)
,

where Xi is a lift of xi of degree pi and ci ∈ Fp. The comultiplication sends X1/pm

0 → X
1/pm

0 ⊗ 1 +

1⊗X
1/pm

0 in C ′ ⊗ C ′. This shows that there is map of graded Hopf algebras Fp[ϵ][X
1/p∞

0 ]→ C ′

which is a deformation of the map Fp[x
1/p∞

0 ] → C. Thus for k large enough, the graded Hopf
algebra map

Fp[ϵ][X
1/pk

0 ]→ C ′k :=
Fp[ϵ][X

1/pk

0 , . . . , Xn]

(Xp
0 − c1ϵX1, X

p
1 − c2ϵX2, . . . , X

p
n)
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is firstly a deformation of the graded Hopf algebra map Fp[x
1/pk

0 ] → Ck :=
Fp[x

1/pk

0 ,...,xn]

xp
i

, and

secondly the map of graded Hopf algebras Fp[ϵ][X
1/p∞

0 ] → C ′ is obtained by pulling back the
map Fp[ϵ][X

1/pk

0 ] → C ′k along Fp[ϵ][X
1/pk

0 ] → Fp[ϵ][X
1/p∞

0 ]. Thus, to prove Lemma 2.5.12, it is
enough to prove that Fp[ϵ][X

1/pk

0 ]→ C ′k is isomorphic to the trivial deformation of Fp[x
1/pk

0 ]→ Ck.

For the latter claim, by a shifting of degree, it is enough to prove that the pointed Ga-module
Spec Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)
→ Ga has no nontrivial deformations over Fp[ϵ]. Here deg x0 = 1 and deg xi =

pk+i for i ≥ 1.

Step 2. In order to prove that the pointed Ga-module Spec Fp[x0,x1,...,xn]

(xpk+1

0 ,xp
1,...,x

p
n)
→ Ga has no nontrivial de-

formations over Fp[ϵ], it is equivalent to prove the same for its Cartier dual, which by Example 2.4.12
is given by

Spec
Fp[x0, x1, . . . , xk]

(xp
0, . . . , x

p
k−1, x

pn+1

k )
→ Ga.

We let D denote the Hopf algebra Fp[x0,x1,...,xk]

(xp
0,...,x

p
k−1,x

pn+1

k )
. Then D/xp

k is isomorphic to Γ(Wk+1[F ],O) as

a graded Hopf algebra. Let D′ be a deformation of D. Then D′ as a graded algebra is of the form

Fp[ϵ][X0, X1, . . . , Xk]

(Xp
0 − c1ϵX1, . . . , X

p
k−1 − ckϵXk, X

pn+1

k )

where degXi = pi and Xi ∈ D′ is chosen to be a lift of xi ∈ D. Now D′/Xp
k is a deformation

of the graded Hopf algebra underlying Wk+1[F ], but the latter has no nontrivial deformations by
Proposition 2.5.6. Thus we obtain an isomorphism (D/xp

k)[ϵ] = Wk+1[F ][ϵ]→ D′/Xp
k of graded

Hopf algebras (which is also compatible with the pointed Ga-module structure). This lifts uniquely
to a map of graded algebras D[ϵ] → D′ as such a map is uniquely determined by the image of
x0, . . . , xk and they have a unique homogeneous lift. One also needs to check that xp

i is sent to
zero for 0 < i ≤ k − 1 and xpn+1

k is sent to zero which also follows from grading arguments. This
map by construction is an isomorphism on the level of graded algebras and it would be enough to
check that it is a Hopf algebra map, i.e., we need to prove that the maps D[ϵ] → D′ → D′ ⊗D′

and D[ϵ] → D[ϵ] ⊗ D[ϵ] → D′ ⊗ D′ agree. For that, we only need to check that the images of
x0, . . . , xk agree. It is known that they agree modulo the ideal (Xp

k ⊗1, 1⊗Xp
k) and thus by grading

they are actually the same. The map we constructed is also compatible with the pointed Ga-module
structure.

The statement about endomorphisms as pointed Gperf
a -module follows since Wn+1[F ][ϵ] has no

nontrivial endomorphism as pointed Ga-module by Proposition 2.5.5.

Lemma 2.5.13. The graded algebra underlying any deformation of u∗W [F ] as a graded group
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scheme is isomorphic to
Fp[ϵ][x

1/p∞

0 , x1, . . .]

xp
i

.

Proof. We write the graded algebra underlying u∗W [F ] as B =
Fp[x

1/p∞
0 ,x1,...]

xp
i

, where deg xi = pi.

Similar to the proof of Lemma 2.5.12, it follows that the graded algebra underlying global sections
of a deformation of u∗W [F ] is isomorphic to

B′ =
Fp[ϵ][X

1/p∞

0 , X1, . . .]

(Xp
0 − c1ϵX1, X

p
1 − c2ϵX2, . . .)

,

where Xi is taken to be a lift of xi of degree pi and ci ∈ Fp. Our goal is to prove that ci = 0 for all i.
Killing the ideal of elements of degree ≥ pn+1, we obtain the graded algebra

B′<pn+1 :=
Fp[ϵ][X

1/p∞

0 , X1, . . . , Xn]

(Xp
0 − c1ϵX1, . . . , X

p
n)

.

Further, this has a Hopf structure: this follows from the observation that the comultiplication in
B′ sends Xp

n 7→ Xp
n ⊗ 1 + 1⊗Xp

n. Now SpecB′<pn+1 as a graded group scheme is a deformation
of u∗Wn+1[F ], and thus by Lemma 2.5.12 must be uniquely isomorphic to the trivial deformation,
which implies ci = 0 for 0 < i < n+ 1. Since n was arbitrary, we are done.

Now we note that the algebra B underlying u∗W [F ] has the property that for every n ≥ 1, the
elements of degree < pn form a subalgebra denoted as τ<nB which is the graded Hopf algebra
underlying u∗Wn[F ]. By Lemma 2.5.13, it follows that elements of degree < pn in B′ also form
a subalgebra τ<nB

′ which has the structure of a graded Hopf algebra. Moreover, we observe that
τ<nB

′ is a deformation of τ<nB and thus by Lemma 2.5.12, there is a unique isomorphism of
graded Hopf algebras τ<nB[ϵ] → τ<nB

′ that sends x0 7→ X0. By taking colimit over n, we have
constructed an isomorphism B[ϵ]→ B′ of graded Hopf algebras. Finally, we recall that, as noted in
Remark 2.2.8, the grading determines the Gperf

a -module structure. This proves the proposition.

Remark 2.5.14. We point out that the statements of Lemma 2.5.10, Proposition 2.5.11 and their
proofs remain valid with Fp replaced by any perfect field of characteristic p > 0.

Remark 2.5.15. One can also approach Proposition 2.5.11 by first showing that any deformation of
u∗W [F ] must be a pullback of a deformation of W [F ]. This is essentially carried out in a purely
formal way in Section 5.2 by using the connection with de Rham cohomology. In Proposition 5.2.6,
we prove a generalization by using similar ideas.
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CHAPTER III

Construction of Functors Using Ga and Gperf
a -modules

In this chapter, our ultimate goal is to create functors from QRSP→ AlgA via an “unwinding”
process using the data of a pointed Gperf

a -module (cf. Section 3.4). This construction will be done
using a closely related variant: using the data of a pointed Gperf

a -module, we can “unwind” it to
construct a functor PI → AlgA, where PI denotes the category with objects (B, I) where B is
a perfect ring and I is an ideal. This is carried out in Section 3.3. Further, this construction for
PI has a closely related variant for the category CA consisting of objects (B, I) where B is an
A-algebra and I is an ideal of B. Given a pointed Ga-module, we can unwind it to create a functor
CA → AlgA. We will study this construction first in Section 3.2. Below we note an example which
aims to explain an analogue of the unwinding construction in a simpler case.

Example 3.0.1. Let C be a category with all colimits. Let c ∈ Cop be a commutative Fp-algebra
object in the category Cop. Therefore, the functor HomC(c, ·) is naturally valued in commutative
Fp-algebras, when c is viewed as an object of C. Let PolyFp

denote the category of not necessarily
finitely generated polynomial Fp-algebras. We will construct a functor Unc : PolyFp

→ C which
we may call the unwinding of c. For B ∈ PolyFp

, we define Unc(B) ∈ C such that we have a
natural functorial bijection HomC(Unc(B), d) ≃ HomAlgFp

(B,HomC(c, d)) for d ∈ C. This maybe
computed functorially as a colimit by using the natural diagram Fp[Fp[B]]→→Fp[B] in AlgFp

whose
coequalizer is B (this coequalizer diagram depends functorially on the ring B and is an instance of
the general “bar construction” in the context of monads). More precisely, the above coequalizer
diagram induces a diagram ∐

Fp[B]

(c)−→−→
∐
B

(c)

in C whose coequalizer is Unc(B); here the coproducts of c are taken over the sets underlying the
rings B and Fp[B]. Note that by construction, we have Unc(Fp[x]) ≃ c. Also, by construction,
Unc : PolyFp

→ C preserves coproducts. This whole discussion carries over even if Fp is replaced
by an arbitrary commutative ring.

This construction shows that given an object of the category C with appropriate extra structure,
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one can unwind it to create a functor from PolyFp
→ C. In this chapter, our goal is to develop a

similar formalism for the categories CA,PI and QRSP which would be useful to us in Chapter IV
and Chapter V.

3.1 Tensoring a module with a module scheme

In this section we record a construction which “tensors” a module with a module scheme and
gives an algebra as an output. In a category C with all coproducts, one can make sense of tensoring
an object c ∈ C with a set S, denoted as c ⊗ S, which has the property that we have a natural
isomorphism HomC(c ⊗ S, d) ≃ HomSets(S,HomC(c, d)) for d ∈ C. In this case, c ⊗ S is the
coproduct

∐
S c. Below, we carry out an analogue of this construction.

Construction 3.1.1. Let X = SpecB be an R-module scheme over A (Definition 2.1.1). In
this situation, we have a functor from AlgA → ModR which sends an A algebra S to X(S) :=

HomA(SpecS,X). This functor is limit preserving and by the adjoint functor theorem, it has a left
adjoint which will be denoted by TX( . ) : ModR → AlgA. In other words, we have the following
natural isomorphism

HomAlgA(TX(M), S) ≃ HomModR(M,X(S)).

Remark 3.1.2. Note that for an m ∈ M, we have a natural map HomModR(M,X(S)) → X(S)

obtained by evaluation at m ∈M. This induces a map denoted as evm : Γ(X,OX)→ TX(M) that
will be useful in Construction 3.5.1.

Remark 3.1.3. Let us also describe an explicit way to construct the algebra TX(M) for an R-
module M. Considering M as a set, first we take the coproduct of the algebra B = Γ(X,OX)

indexed over M. We will write this as
∐

M B. By the universal property of the coproduct, for
each m ∈ M, we have a map which we will write as m : B →

∐
M B. We also have a map

B → B⊗A B which is the comultiplication map and a map r : B → B coming from the R-module
action of SpecB for r ∈ R. Then TX(M) is the coequalizer of the following diagram indexed by
(R×M)

∐
(M ×M).

B
∐

M B B

B B ⊗A B

rm

r

m+n

m m⊗n

Proposition 3.1.4. In the above set up, we have

1. colimTX(Mi) ≃ TX(colimMi).
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2. TX(M)⊗A TX(N) ≃ TX(M ⊕N).

3. If M is a free R-module of rank 1, then TX(M) ≃ Γ(X,OX).

Proof. Follows from the construction of TX(M).

Example 3.1.5. When X is the zero group scheme SpecA over A, thought of as an R-module
scheme over A and M is any R-module, we have TX(M) ≃ A as an A-algebra.

Example 3.1.6. In the case where X = Ga = SpecA[x] viewed as an A-module scheme over A,
given any A-module M , we have TGa(M) ≃ SymA(M) as an A-algebra. This follows from the
universal property discussed in Construction 3.1.1 above.

Example 3.1.7. We mention an example that will be particularly important to us. Let G∗a be the
Cartier dual of Ga viewed as an A-module scheme over A. For an A-module TG∗

a
(M) ≃ ΓA(M).

This essentially follows from [BO78, Appendix 2] by observing that for an A algebra R, there
is a natural isomorphism of A-modules G∗a(R) ≃ exp(R) where exp(R) denote the elements
f(x) ∈ 1+xR[x] satisfying f(x+y) = f(x)f(y) which forms an abelian group by multiplication of
power series which further has an R-module structure given by r ·f(x) := f(rx) (cf. Example 2.4.9).

Remark 3.1.8. We point out that for a fixed R-module M , the association X 7→ TX(M) is a
contravariant functor. Further, in the set up of Construction 3.1.1, it follows that SpecTX(M) can
be naturally equipped with the structure of a R-module scheme over A for any fixed X.

Remark 3.1.9. If X is a Ga-module over A and M is any A-module, then SpecTX(M) is naturally
equipped with the structure of a Ga-module over A. Further, for any m ∈ M, the map X →
SpecTX(M) induced by evm from Remark 3.1.2 is a map of Ga-modules. Both of these statements
follow from the functorial descriptions provided in Construction 3.1.1. Therefore, the map evm :

Γ(X,OX) → TX(M) is a map of graded Hopf algebras. From Remark 3.1.3, it follows that the
elements in the images of the maps evm for all m ∈M generate TX(M) as an A-algebra.

3.2 Unwinding pointed Ga-modules

Notation 3.2.1. We fix an arbitrary base ring A as before. Let CA denote the category of pairs
(B, I) where B is an A-algebra and I is an ideal of B. Morphisms in CA between (B, I)→ (B′, I ′)

are defined as A-algebra maps B → B′ that maps I inside I ′.

Construction 3.2.2 (Unwinding). Let Ga–Mod∗ denote the category of pointed Ga-modules over
A. We will construct a (contravariant) functor

Un : Ga–Mod∗ → Fun(CA,AlgA).
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We will say that Un(X) is the functor obtained by unwinding the pointed Ga-module X. To
describe the construction, we fix an X ∈ Ga–Mod∗. Given (B, I) ∈ CA, we obtain a diagram
XB → Ga,B of B-module schemes by base changing to B. Now the ideal I can be regarded as
a B-module and thus by applying Construction 3.1.1, we obtain a map TGa,B

(I)→ TXB
(I). By

Example 3.1.6 we get a map of B-algebras SymB(I) → TXB
(I). Since I is an ideal of B, there

are natural maps SymB(I)→ B → SymB(I)→ TXB
(I). Thus by composing we get another map

SymB(I)→ TXB
(I). We denote the coequalizer of these two maps

SymB(I)
−→
−→ TXB

(I)

by EnvX(B, I). This is naturally a B-algebra. Now we define Un(X)(B, I) := EnvX(B, I).

Remark 3.2.3 (Unwinding via universal property). It would be very useful for us to have a
description of the universal property of EnvX(B, I) as a B-algebra. For a B-algebra S, we note
that Ga,B(S) = S is naturally a B-module. In fact, there is a map B → S of B-modules giving a
natural map I ⊂ B → S. This gives an element ∗ ∈ HomModB(I, S). Therefore, we obtain two
maps HomModB(I,X(S)) −→−→ HomModB(I, S). Here one of the maps (of sets) sends everything
to ∗ and the other one is the map induced by the data of the point X → Ga. We note that by
Construction 3.2.2, we have

HomAlgB(EnvX(B, I), S) ≃ Eq(HomModB(I,X(S)) −→−→ HomModB(I, S)).

Remark 3.2.4. We note that there is a natural functor G : CA → AlgA given by G(B, I) = B.

From Remark 3.2.3, we see that there is a natural isomorphism G ≃ Un(Ga). Let Fun(CA,AlgA)G/

denote the category of functors F : CA → AlgA equipped with a natural transformation G→ F.

The morphisms are required to be compatible with this data. It follows that in Construction 3.2.2,
we actually produced a (contravariant) functor

Un : Ga–Mod∗ → Fun(CA,AlgA)G/.

Example 3.2.5. The functor CA → AlgA given by sending (B, I)→ B/I is the unwinding of the
pointed Ga-module corresponding to the zero section SpecA→ Ga.

Example 3.2.6 (Divided power envelope via unwinding). We let the base ring A be Fp for simplicity.
The functor Un(G∗a) : CFp → AlgFp

takes a pair (B, I) to the divided power envelope DB(I). In
order to see this, we compute EnvG∗

a
(B, I) following Construction 3.2.2. This is computed as the

coequalizer of two maps
SymB(I)

−→
−→ TG∗

aB
(I).
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We note that by Example 3.1.7, TG∗
aB
(I) ≃ ΓB(I). Thus the claim EnvG∗

a
(B, I) ≃ DB(I) follows

from [BO78, Thm. 3.19] which says that DB(I) = ΓB(I)/J where J is the ideal generated by
φ(x)− x for all x ∈ I and φ : I → Γ1(I) is the natural map. Since G∗a ≃ W [F ] over Fp, we also
have EnvW [F ](B, I) ≃ DB(I).

Remark 3.2.7. Let X ∈ Ga–Mod∗ and let B be an A-algebra and f be a non-zero divisor in B.

Then we can explicitly describe EnvX(B, f). We note that the ideal I generated by f in this case
is free of rank 1 and thus there is an isomorphism TXB

(I) ≃ Γ(XB,OXB
) ≃ Γ(X,OX)⊗A B by

Proposition 3.1.4. Now EnvX(B, f) is the quotient Γ(X,OX)⊗AB
(t⊗1−1⊗f) where t is the image of x under the

map A[x]→ Γ(X,OX) corresponding to the data of the point i.e., the map X → Ga.

Remark 3.2.8. For any X ∈ Ga–Mod∗, it follows that Un(X)(B, 0) = EnvX(B, 0) ≃ B. This
follows since TXB

(0) ≃ B and therefore EnvX(B, 0) is a coequalizer of two B-algebra maps
B→→B that coincide. Thus the natural map G→ Un(X) induces isomorphism restricted to the full
subcategory spanned by objects of the form (B, 0).

Proposition 3.2.9. Let X ∈ Ga–Mod∗. Then EnvX(B[x], x) ≃ Γ(X,OX)⊗A B as a B-algebra.

The map EnvX(B[x], 0) → Env(B[x], x) identifies with the map B[x] → Γ(XB,OXB
) coming

from the data of the point X → Ga.

Proof. Using Remark 3.2.7, we have EnvX(B[x], x) ≃ Γ(X,OX)⊗AB[x]
t⊗1−1⊗x as B[x]-algebras from which

the proposition follows.

Given that there is a way to unwind the data of a pointed Ga-module X and obtain a functor
Un(X) : CA → AlgA, it is natural to ask if this is reversible, i.e., if there is a functor r from
Fun(CA,AlgA)G/ to Ga–Mod∗ such that applying r to Un(X) recovers the pointed Ga-module X.

There are multiple problems in achieving this as discussed below.

Firstly, defining the functor r is not possible unless we impose some conditions on the functor
F ∈ Fun(CA,AlgA)G/. Indeed, for every A-algebra B, we can look at the B-algebra F (B[x], x).

This has a B-action, however F (B[x], x) might not be a Hopf algebra. The functor F needs to
preserve some pushout diagrams for that to happen; this is taken into account in Definition 3.2.15.
Under these special assumptions on F it is indeed possible to define a functor r as desired. The
functor r is defined below in Proposition 3.2.17.

However, we note that not every pointed Ga-module can appear as image under the functor r of
an F ∈ Fun(CA,AlgA). Indeed, we have the following commutative diagram in CA.

37



(A[x], x)⊗ (A[x], x) (A[x], x)⊗ (A[x], 0)

(A[x], 0)⊗ (A[x], x) (A[x], x)

x→x⊗x

x⊗x←x

(3.2.1)

Applying F to the above diagram would impose extra conditions on the pointed Ga-module obtained
from F which need not be satisfied by every pointed Ga-module. Thus it is impossible to recover
X by using the functor r from Un(X) unless it satisfies some special conditions to begin with. To
account for this, we are naturally led to the notion of a “quasi-ideal” in Ga due to Drinfeld [Dri21,
Section 3.1].

Definition 3.2.10 (Drinfeld). A pointed Ga-module X with the data of the point denoted as
d : X → Ga will be called a quasi-ideal in Ga if the following diagram commutes.

X ×X X ×Ga

Ga ×X X

id×d

d×id action

action

By writing X = SpecB for a graded Hopf algebra B and t ∈ B for the fixed choice of the element
in degree 1 corresponding to the data of the point, we note that X is a quasi-ideal if and only if
b ⊗ tdeg b = tdeg b ⊗ b in B ⊗ B for every homogeneous b ∈ B. We let QID–Ga denote the full
subcategory of quasi-ideals in Ga inside Ga–Mod∗.

Remark 3.2.11. Using the inclusion QID–Ga → Ga–Mod∗ of categories and Construction 3.2.2
we obtain a (contravariant) functor still denoted us Un : QID–Ga → Fun(CA,AlgA)G/. We will
later see that this functor is fully faithful.

Proposition 3.2.12. Let B be an A-algebra. Let (fj)j∈J be a collection of non-zero divisors in

B and let I be the ideal generated by them. Let F be the free module over B spanned by xj for

j ∈ J . We assume that the B-module map F → I that sends xi → fi has kernel generated by

(fixj − fjxi) for i, j ∈J . Let X be a quasi-deal in Ga. Then the natural map∐
j∈J

EnvX(B, fj)→ EnvX(B, I)

is an isomorphism. Here the coproduct is taken in the category of B-algebras.

Proof. By Remark 3.2.3, EnvX(B, I) corepresents the functor H1 that sends

S 7→ Eq(HomB(I,X(S)) −→−→ HomB(I, S)),
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where one of the maps come from composing with X(S)→ S and the other one maps everything to
the element in HomB(I, S) corresponding to I ⊂ B → S. Given such an element in the equalizer,
by precomposing with the surjection F → I , we obtain a natural transformation from H1 to the
functor H2 that sends S → Eq(HomB(F,X(S)) −→−→ HomB(F, S)), where, as before, one of the
maps come from X(S) → S and the other one from sending everything to the B-linear map
F → I ⊂ B → S. Since F → I is a surjection, it follows that the map H1(S) → H2(S) is
injective. Below we check that this map is also surjective.

To show surjectivity, we need to show that any map u : F → X(S) which fits into the
commutative diagram

F X(S)

I S

factors through F → I. Let ui := u(xi) ∈ X(S). The map X → Ga induces a map on S-
valued points that we denote as d : X(S) → S. Since X is a quasi-ideal in Ga, it follows that
duj · ui = dui · uj. By the commutativity of the diagram this implies fj · ui = fi · uj in X(S) or
equivalently u(fjxi−fixj) = 0, i.e., the map indeed factors through I. Now the proposition follows
by using Remark 3.2.7 and noting that

∐
j∈J EnvX(B, fj) corepresents the functor H2.

Proposition 3.2.13. Let B be an A-algebra. Let S be any set. Let (B[S], (S)) denote the coproduct

of (B[x], x) over S. Let X be a quasi-ideal in Ga. Then the natural map∐
S

EnvX(B[x], x)→ EnvX(B[S], (S))

is an isomorphism of B-algebras. Here the coproduct is taken in the category of B-algebras. In

particular, we obtain an isomorphism (
∐

S Γ(X,OX))⊗A B ≃ EnvX(B[S], S) of B-algebras.

Proof. This follows from Proposition 3.2.12 and Proposition 3.2.9. Indeed, let us consider the
polynomial algebra B[S] on the set S. An element s ∈ S can be thought of as an indeterminate
s ∈ B[S]; the ideal (S) is the ideal generated by these indeterminates. Due to the fact that in the
polynomial ring B[t1, . . . , tr], the elements t1, . . . , tr are non-zero divisors and form a (Koszul)
regular sequence [Sta22, Tag 062D], one can apply Proposition 3.2.12 in this situation to calculate
EnvX(B[S], (S)); this gives us an isomorphism∐

s∈S

EnvX(B[S], s) ≃ EnvX(B[S], (S)).

Here the coproduct is being taken in the category of B[S]-algebras. For an element s ∈ S, let
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(S \ s) ⊂ S denote the complement of s. Then B[S] ≃ B[(S \ s)] ⊗B B[s], where B[s] is the
polynomial ring in the single indeterminate s. Therefore, EnvX(B[S], s) ≃ EnvX(B[(S \ s)]⊗B

B[s], (1 ⊗ s)) ≃ Γ(XB,O) ⊗B B[(S \ s)], as B[(S \ s)]-algebra. Here, the last isomorphism
follows from Proposition 3.2.9. Note that since X is a quasi-ideal in Ga, we have a map X → Ga

which gives an element t ∈ Γ(XB,OX) by passing to the map induced on the ring of global
sections. Further, by Proposition 3.2.9, the B[S] ≃ B[(S \ s)] ⊗B B[s]-algebra structure on
Γ(XB,O) ⊗B B[(S \ s)] is induced by the map of B[(S \ s)]-algebras B[(S \ s)] ⊗B B[s] →
Γ(XB,O)⊗B B[(S \ s)] that sends s 7→ t⊗ 1. Therefore,∐

s∈S

EnvX(B[S], s) ≃
∐
s∈S

Γ(XB,O)⊗B B[(S \ s)]

in the category of B[S]-algebras. However, one observes that the right hand side is isomorphic
to
∐

s∈S Γ(XB,O), where the coproduct is taken in the category of B-algebras; the B[S]-algebra
structure is given by the map B[S]→

∐
s∈S Γ(XB,O) which is obtained by taking coproduct of

the map B[x] → Γ(XB,O) that sends x 7→ t over the set S in the category of B-algebras. By
Proposition 3.2.9, we have

∐
s∈S EnvX(B[x], x) ≃

∐
s∈S Γ(XB,O), which finishes the proof.

Remark 3.2.14. The natural maps appearing in Proposition 3.2.12 or Proposition 3.2.13 exist for
any pointed Ga-module X. The fact that these maps are isomorphisms (in either of the propositions)
imply that X satisfies the property of being a quasi-ideal in Ga. This follows from Definition 3.2.10
and functoriality of Un(X) applied to the diagram in (3.2.1). We thank the referee for pointing this
out.

Definition 3.2.15. Let F ∈ Fun(CA,AlgA)G/ (Remark 3.2.4) be a functor which satisfies the
following conditions.

1. The natural map G(B, 0)→ F (B, 0) is an isomorphism for every A-algebra B.

2. The natural map F ((B[x], x)) ⊗B F ((B[x], x)) → F (B[x] ⊗B B[x], (x ⊗ 1, 1 ⊗ x)) is an
isomorphism.

3. The natural map F (A[x], x)⊗A B → F (B[x], x) is an isomorphism.

We denote the full subcategory of such functors inside Fun(CA,AlgA)G/ as Fun(CA,AlgA)
⊗
G/.

Remark 3.2.16. We note that the unwinding functor QID–Ga
op → Fun(CA,AlgA)G/ maps a quasi-

ideal inside the full subcategory Fun(CA,AlgA)
⊗
G/. Indeed, this follows from Proposition 3.2.9

and Proposition 3.2.13. Therefore, the unwinding functor factors to give a functor still denoted as
Un : QID–Ga

op → Fun(CA,AlgA)
⊗
G/.
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Proposition 3.2.17. Let F ∈ Fun(CA,AlgA)
⊗
G/. For every A-algebra B, SpecF (B[x], x) nat-

urally has the structure of a B-module scheme. Thus we obtain a (contravariant) functor r :

Fun(CA,AlgA)
⊗
G/ → QID–Ga.

Proof. We note that (B[x], x) is a cogroup object of CA(B,0)/
. Therefore, it follows from definitions

that SpecF (B[x], x) is a group scheme. The B-action on SpecF (B[x], x) is given by functoriality
along the arrows (B[x], x) → (B[x], x) given by x 7→ bx for b ∈ B. Therefore, SpecF (B[x], x)

is indeed naturally a B-module scheme over B. Remark 2.1.19 implies that varying this data
over all A-algebras B provides us with a Ga-module. Further, functoriality along the arrows
(B[x], 0) → (B[x], x) equips this Ga-module with the structure of a pointed Ga-module. To see
that it is a quasi-ideal in Ga, we use functoriality along the commutative diagram in (3.2.1).

Proposition 3.2.18. The functor r : Fun(CA,AlgA)
⊗
G/ → QID–Ga

op has a left adjoint given by Un

from Remark 3.2.16.

Proof. Let F ∈ Fun(CA,AlgA)
⊗
G/ and X ∈ QID–Ga

op. We prove that there is a natural bijection

Hom(Un(X), F ) ≃ Hom(X, rF ).

Applying r and noting that rUn(X) ≃ X by Proposition 3.2.9 and Proposition 3.2.13 provides
a map from the left hand side to the right hand side which will be called s. We will construct a
map the other way. We will first construct a map Un(rF )→ F. To do so, we note that there is an
isomorphism

φ : Hom((B, I), ·) ≃ Eq (Hom(I,Hom((B[x], x), ·)) −→−→ Hom(I,Hom((B[x], 0), ·)))

in Psh(Cop
A(B,0)/

). Here on the right hand side, one of the maps is induced by the map (B[x], 0)→
(B[x], x) in CA and the other map is obtained by sending everything to the element in

HomModB(I,Hom(B,0)((B[x], 0), ·))

corresponding to the map induced by the inclusion I ⊂ B and the fact that Hom(B,0)((B[x], 0), ·) is
naturally valued in B-algebras.

We note that F induces a map F op : Psh(Cop
A(B,0)/

)→ Psh(AlgopB ). Applying F op to the above
isomorphism φ and noting that F opHom(B,0)((B, I), ·) ≃ HomB(F (B, I), ·) we obtain a diagram

HomB(F (B, I), ·)→ (F opHom(I,Hom((B[x], x), ·)) −→−→ F opHom(I,Hom((B[x], 0), ·)))

in Psh(AlgopB ).
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Lemma 3.2.19. The following diagram in Psh(AlgopB ) commutes.

F opHomModB(I,Hom(B,0)((B[x], x), ·)) F opHomModB(I,Hom(B,0)((B[x], 0), ·))

HomModB(I,HomB(F (B[x], x), ·)) HomModB(I,HomB(F (B[x], 0), ·))

Proof. This follows from universal property and assumption 2 in Definition 3.2.15 on F . We will
show how to construct a map

F opHomModB(I,Hom(B,0)((B[x], x), ·))→ HomModB(I,HomB(F (B[x], x), ·)).

We note that I is the coequalizer of a diagram
(
FB×I

∐
I×I −→

−→ F I
)

of free B-modules where
the first map sends the basis elements x(b,i) → xbi and x(i,i′) → xi+i′ and the second map sends
x(b,i) → bxi and x(i,i′) → xi + xi′ . Therefore, HomModB(I,Hom(B,0)((B[x], x), ·)) is the equalizer
of the two maps ∏

I

Hom(B,0)((B[x], x), ·) −→−→
∏

B×I
∐

I×I

Hom(B,0)((B[x], x), ·).

One of the maps corresponds to the map determined by x(b,i) → xbi and x(i,i′) → xi+i′ . The other
map is induced by combining the maps∏

I

Hom(B,0)((B[x], x), ·)→ Hom(B,0)((B[x], x), ·)→ Hom(B,0)((B[x], x), ·),

where the first map is projection from i-th factor and the second map is obtained by using
(B[x], x)→ (B[x], x) that sends x→ bx for b ∈ B; and∏

I

Hom((B[x], x), ·)→ Hom((B[x], x), ·)× Hom((B[x], x), ·)→ Hom((B[x], x), ·)

where the first map is projection from (i, i′)-th factor and the last map uses the map (B[x], x)→
(B[x], x)⊗ (B[x], x) given by x→ x⊗ 1+1⊗x. Now universal property of limits and assumption
2 in Definition 3.2.15 constructs the desired map

F opHomModB(I,Hom(B,0)((B[x], x), ·))→ HomModB(I,HomB(F (B[x], x), ·))

and the naturality guarantees the commutativity of the diagram in the Lemma.
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Thus we obtain a map

HomB(F (B, I), ·)→ Eq (Hom(I,Hom(F (B[x], x), ·)) −→−→ Hom(I,Hom(F (B[x], 0), ·)))

in Psh(AlgopB ). Using Remark 3.2.3, we note that the right hand side is corepresented by EnvrF (B, I).
Thus we obtain a natural map EnvrF (B, I)→ F (B, I). This provides the map Un(rF )→ F that
we wanted. Now given a map X → rF in QID–Ga

op, we obtain a map Un(X)→ Un(rF )→ F.

This gives a map from Hom(X, rF ) to Hom(Un(X), F ) which will be called t. By Proposi-
tion 3.2.9, it follows that st is identity. In order to show that ts is identity, it will be sufficient
to show that if there are two natural transformations U, V : Un(X) → F that are mapped to the
same element by s then U and V are the same natural transformation. Note that we always have a
commutative diagram

Un(rUn(X)) Un(X)

Un(rF ) F

≃

U V

Since the upper horizontal arrow is an isomorphism, the above diagram shows that U and V are the
same natural transformation as desired.

Proposition 3.2.20. The functor

Un : QID–Ga
op → Fun(CA,AlgA)G/

is fully faithful.

Proof. Follows from Proposition 3.2.18 since rUn(X) ≃ X .

3.3 Unwinding pointed Gperf
a -modules I

In this section, we will record an analogue of the construction from previous section for pointed
Gperf

a -modules. In order to do that, some modifications are needed. As is the case with Gperf
a -

modules, we work with a fixed prime p.

Notation 3.3.1. Let PI denote the category of pairs (B, I) where B is a perfect ring and I is an
ideal. Morphisms are defined to be maps (B, I)→ (B′, I ′) where B → B′ is a ring homomorphism
such that I is mapped inside I ′. Let A be a fixed Artinian local ring with residue field Fp. Let
Gperf

a –Mod∗ denote the category of pointed Gperf
a -modules over A.
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Construction 3.3.2 (Unwinding). We will construct a (contravariant) functor

Un : Gperf
a –Mod∗ → Fun(PI,AlgA).

We will say that Un(X) is the functor obtained by unwinding the pointed Gperf
a -module X. To

describe the construction, we fix an X ∈ Gperf
a –Mod∗. Given (B, I) ∈PI, we obtain a diagram

XB → Gperf
a,B of B-module schemes over WA(B) by Proposition 2.2.11. Now the ideal I can

be regarded as a B-module and thus by applying Construction 3.1.1, we get a map TGperf
a,B

(I) →
TXB

(I). Since I ⊂ B, by the universal property of the construction in Construction 3.1.1, we obtain
a map TGperf

a,B
(I)→ WA(B). By composition, we get a map TGperf

a,B
(I)→ WA(B)→ TGperf

a,B
(I)→

TXB
(I). Therefore, we now have two maps

TGperf
a,B

(I) −→−→ TXB
(I).

We denote the coequalizer of the above diagram by EnvX(B, I) which is naturally a WA(B)-algebra.
Now we define Un(X)(B, I) := EnvX(B, I).

Remark 3.3.3 (Unwinding via universal property). We describe the universal property of EnvX(B, I)

as a WA(B)-algebra. For a WA(B)-algebra S, we note that Gperf
a,B (S) = S♭ is naturally a B-module.

In fact, there is a map B → S♭ of B-modules giving a natural map I → S♭. This gives an element
∗ ∈ HomB(I, S

♭). By Proposition 2.2.11, X can be regarded as a B-module scheme over WA(B).
Therefore, we obtain two maps HomB(I,X(S)) −→−→ HomB(I, S

♭). Here one of the maps (of sets)
sends everything to ∗ and the other one is the map induced by the data of the point X → Gperf

a . We
note that by Construction 3.3.2, we have

HomWA(B)(EnvX(B, I), S) ≃ Eq(HomB(I,X(S)) −→−→ HomB(I, S
♭)).

Remark 3.3.4. We note that there is a natural functor G : PI → AlgA given by (B, I) 7→ WA(B).

From Remark 3.3.3, it follows that G ≃ Un(Gperf
a ). Let Fun(PI,AlgA)G/ denote the category of

functors F : PI → AlgA equipped with a natural transformation G → F. The morphisms are
required to be compatible with this data. It follows that in Construction 3.3.2, we actually produced
a (contravariant) functor

Un : Gperf
a –Mod∗ → Fun(PI,AlgA)G/.

Remark 3.3.5. For any pointed Gperf
a -module X , we have the isomorphism Un(X)(B, 0) ≃

WA(B). This follows from the universal property of the unwinding construction. Thus the natural
map G→ Un(X) induces isomorphism restricted to the full subcategory of PI spanned by objects
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of the form (B, 0) for a perfect ring B.

Remark 3.3.6. We point out that unless A = Fp, sending (B, I) 7→ B/I is in general not an
object of Fun(PI,AlgA)G/ that can be obtained via applying the unwinding functor. When
we are working over A = Fp, the functor (B, I) → B/I is naturally isomorphic to Un(α♮),
where α♮ is the pointed Gperf

a -module as described in Example 2.2.15. Further, in this case, the
functor (B, I) 7→ (B/I)perf := colimx7→xp(B/I) is the unwinding of the pointed Gperf

a -module
corresponding to zero.

Remark 3.3.7. Let A → A′ be a map of Artinian local rings. Let (B, I) ∈ PI . We note
that WA′(B) ≃ WA(B) ⊗A A′. Further, if X is a pointed Gperf

a -module over A, then X ′ :=

X×SpecASpecA
′ is naturally a pointed Gperf

a -module over A′. From the universal property described
in Remark 3.3.3, it follows that

EnvX′(B, I) ≃ EnvX(B, I)⊗WA(B) WA′(B),

as a WA(B)-algebra. This implies that Un(X ′)(B, I) ≃ Un(X)(B, I)⊗A A′.

Having discussed the unwinding functor for pointed Ga and Gperf
a -modules, let us record a

statement regarding their compatibility. For simplicity, we work over the fixed base ring Fp. In this
case, one has the functor u∗ : Ga–Mod∗ → Gperf

a –Mod∗ from Proposition 2.2.17. We prove the
following

Proposition 3.3.8. Let X be a pointed Ga-module over Fp. Let (B, I) ∈ PI. Then there is a

natural isomorphism

EnvX(B, I) ≃ Envu∗X(B, I).

Proof. This follows by using the universal properties of EnvX(B, I) and Envu∗X(B, I) as a B-
algebra from Remark 3.2.3 and Remark 3.3.3 and the following pullback diagram of B-modules for
a given B-algebra S from Proposition 2.2.17.

u∗X(S) S♭

X(S) S

Example 3.3.9. In Remark 3.3.6 we stated that Un(α♮) is the functor that sends (B, I) ∈PI to
B/I. This also follows from Example 3.2.5 and Proposition 3.3.8.
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Example 3.3.10. We note that Un(u∗W [F ]) is the functor that sends (B, I) ∈PI to DB(I). This
follows from Example 3.2.6.

Proposition 3.3.11. Let X ∈ Gperf
a –Mod∗. Let B be a perfect ring. Then EnvX(B[x1/p∞ ], x) ≃

Γ(X,OX)⊗A WA(B) as a WA(B)-algebra. The map EnvX(B[x1/p∞ ], 0)→ EnvX(B[x1/p∞ ], x)

identifies with the map WA(B)[x1/p∞ ]→ Γ(X,OX)⊗A WA(B) corresponding to the data of the

point X → Gperf
a .

Proof. We compute using Construction 3.3.2. Since x is a non-zero divisor in B[x1/p∞ ], the ideal it
generates is free of rank 1. Therefore, by using Proposition 3.1.4, we see that EnvX(B[x1/p∞ ], x) is
computed as a coequalizer of the following diagram

WA(B[x1/p∞ ])[y1/p
∞
] −→−→ Γ(X,OX)⊗A WA(B[x1/p∞ ]).

Here one of the map corresponds to the map WA(B)[x1/p∞ ][y1/p
∞
] → WA(B)[x1/p∞ ] that sends

y1/p
n → x1/pn for all n and is a WA(B)[x1/p∞ ]-algebra map. The other map corresponds to the data

of the point, i.e., obtained by base changing a map A[y1/p
∞
]→ Γ(X,OX). Taking the coequalizer

we get the desired conclusion.

Definition 3.3.12. A pointed Gperf
a -module X with the data of the point denoted as d : X → Gperf

a

will be called a quasi-ideal in Gperf
a if the following diagram commutes.

X ×X X ×Gperf
a

Gperf
a ×X X

id×d

d×id action

action

We will denote the category of quasi-ideals in Gperf
a by QID–Gperf

a which is the full subcategory
spanned by quasi-ideals in Gperf

a inside Gperf
a –Mod∗.

Remark 3.3.13. Using the inclusion QID–Gperf
a → Gperf

a –Mod∗ of categories, we can define a
(contravariant) functor QID–Gperf

a → Fun(PI,AlgA)G/ which will again be called unwinding and
will be denoted by Un.

Proposition 3.3.14. Let B be a perfect ring. Let (fj)j∈J be a collection of non-zero divisors in

B and let I be the ideal generated by them. Let F be the free module over B spanned by xj for

j ∈ J . We assume that the B-module map F → I that sends xi → fi has kernel generated by

(fixj − fjxi) for i, j ∈J . Let X be a quasi-ideal in Gperf
a . Then the natural map∐

j∈J

EnvX(B, fj)→ EnvX(B, I)
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is an isomorphism. Here the coproduct is taken in the category of WA(B)-algebras.

Proof. Using Remark 3.3.3, this follows in a way similar to the proof of Proposition 3.2.12.

Proposition 3.3.15. Let B be a perfect ring. Let S be any set. Let (B[S1/p∞ ], (S)) denote the

coproduct of (B[x1/p∞ ], x) over S. Let X be a quasi-ideal in Gperf
a . Then the natural map∐

S

EnvX(B[x1/p∞ ], x)→ EnvX(B[S1/p∞ ], S)

is an isomorphism of WA(B)-algebras. Here the coproduct is taken in the category of WA(B)-

algebras. In particular, we obtain an isomorphism
∐

S Γ(X,OX)⊗AWA(B) ≃ EnvS(B[S1/p∞ ], S)

of WA(B)-algebras.

Proof. This follows from Proposition 3.3.11 and Proposition 3.3.14 in a way similar to the proof of
Proposition 3.2.13.

Definition 3.3.16. Let F ∈ Fun(PI,AlgA)G/ be a functor which satisfies the following conditions.

1. The natural map G(B, 0)→ F (B, 0) is an isomorphism for every perfect ring B.

2. The natural map F (B[x1/p∞ ], x) ⊗WA(B) F (B[x1/p∞ ], x) → F (B[x1/p∞ ] ⊗B B[x1/p∞ ], (x ⊗
1, 1⊗ x)) is an isomorphism.

3. The natural map F (Fp[x
1/p∞ ], x)⊗A WA(B)→ F (B[x1/p∞ ], x) is an isomorphism.

We denote the full subcategory of such functors inside Fun(PI,AlgA)G/ as Fun(PI,AlgA)
⊗
G/.

Remark 3.3.17. We note that the unwinding functor QID–Gperf
a

op → Fun(PI,AlgA)G/ maps
a quasi-ideal inside the full subcategory Fun(PI,AlgA)

⊗
G/. Indeed, this follows from Proposi-

tion 3.3.11 and Proposition 3.3.15. Therefore, the unwinding functor factors to give a functor still
denoted as Un : QID–Gperf

a
op → Fun(PI,AlgA)

⊗
G/.

Proposition 3.3.18. Let F ∈ Fun(PI,AlgA)
⊗
G/. For every perfect ring B, SpecF (B[x1/p∞ ], x)

is naturally a B-module scheme over WA(B). Consequently, we have a (contravariant) functor

r : Fun(PI,AlgA)
⊗
G/ → QID–Gperf

a .

Proof. We note that (B[x1/p∞ ], x) is a cogroup object of PI(B,0)/. Therefore, it follows from
definitions that SpecF (B[x1/p∞ ], x) is a group scheme. The B-action on SpecF (B[x1/p∞ ], x) is
given by functoriality along the arrows (B[x1/p∞ ], x)→ (B[x1/p∞ ], x) given by x1/pn → b1/p

n
x1/pn

for all n ≥ 1. Therefore, SpecF (B[x1/p∞ ], x) is indeed naturally a B-module scheme over WA(B).

Proposition 2.2.11 implies that varying this data over all perfect rings B provides us a Gperf
a -module.

Further, functoriality along the maps (B[x1/p∞ ], 0)→ (B[x1/p∞ ], x) equips this Gperf
a -module with

the structure of a pointed Gperf
a -module. To see that it is a quasi-ideal in Gperf

a , we use functoriality
along the following commutative diagram in PI.
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(Fp[x
1/p∞ ], x)⊗ (Fp[x

1/p∞ ], x) (Fp[x
1/p∞ ], x)⊗ (Fp[x

1/p∞ ], 0)

(Fp[x
1/p∞ ], 0)⊗ (Fp[x

1/p∞ ], x) (Fp[x
1/p∞ ], x)

x
1
pn→x

1
pn ⊗x

1
pn

x
1
pn ⊗x

1
pn←x

1
pn

Proposition 3.3.19. The functor r : Fun(PI,AlgA)
⊗
G/ → QID–Gperf

a
op has a left adjoint given by

Un from Remark 3.3.17.

Proof. The proof follows in a similar way to the proof of Proposition 3.2.18 once we note the
following statement about the category PI . Let B be a perfect ring so that (B, 0) is an object of
PI. Then there is an isomorphism

φ : Hom((B, I), ·) ≃ Eq
(
Hom(I,Hom((B[x1/p∞ ], x), ·)) −→−→ Hom(I,Hom((B[x1/p∞ ], 0), ·))

)
in Psh(PIop(B,0)/). Here one of the arrows is induced by the map (B[x1/p∞ ], 0) → (B[x1/p∞ ], x)

and the other map is obtained by sending everything to the element of

HomModB(I,Hom(B,0)((B[x1/p∞ ], 0), ·))

corresponding to the map induced by the inclusion I ⊂ B and the fact that Hom(B,0)((B[x1/p∞ ], 0), ·)
is naturally valued in B-algebras.

Proposition 3.3.20. The functor

Un : QID–Gperf
a

op → Fun(PI,AlgA)G/

is fully faithful.

Proof. Follows from Proposition 3.3.19 after noting that rUn(X) ≃ X by Proposition 3.3.11 and
Proposition 3.3.15.

3.4 Unwinding pointed Gperf
a -modules II

In this section, we record a variant of the construction appearing in the previous section. We
will use a pointed Gperf

a -module to produce a functor from QRSP algebras over Fp to AlgA. Our
goal is to formulate and prove an analogue of Proposition 3.3.20 in this context. We will begin by
recalling the definition of QRSP algebras from [BMS19, Def. 8.8].
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Definition 3.4.1. An Fp-algebra S is said to be semiperfect if the natural map S♭ → S is surjecrive.
S is called quasiregular semiperfect (QRSP) if S is semiperfect and the cotangent complex LS/Fp is
a flat S-module supported in (homological) degree 1.

Example 3.4.2. The algebra Fp[x
1/p∞ ]/x is an example of a QRSP algebra.

Remark 3.4.3. The condition on the cotangent complex appearing in Definition 3.4.1 is not relevant
for the constructions appearing in this section. However, this condition is important when we
compare our constructions with de Rham and crystalline cohomology in Chapter IV.

Construction 3.4.4. For a QRSP algebra S, by sending S 7→ (S♭,Ker(S♭ → S)) we can define
a functor QRSP → PI. Using Construction 3.3.2, this produces a (contravariant) functor Un :

Gperf
a –Mod∗ → Fun(QRSP,AlgA) which will again be called the unwinding of a pointed Gperf

a -
module when no confusion is likely to occur.

Remark 3.4.5. We note that the functor G : PI → AlgA that sends (R, I) 7→ WA(R) produces
a functor QRSP → AlgA that sends S 7→ WA(S

♭) which will again be denoted by G. It follows
from Remark 3.3.4 that we have actually produced a (contravariant) functor Un : Gperf

a –Mod∗ →
Fun(QRSP,AlgA)G/.

Example 3.4.6. The identity functor QRSP→ QRSP induces a functor QRSP→ AlgFp
which

is the unwinding of the pointed Gperf
a -module corresponding to α♮ over Fp. This follows from the

construction and Remark 3.3.6.

Definition 3.4.7. Let F ∈ Fun(QRSP,AlgA)G/ be a functor that satisfies the following conditions.

1. The natural map G(B)→ F (B) is an isomorphism for every perfect ring B.

2. The natural map F (B[x1/p∞ ]
x

)⊗WA(B) F (B[x1/p∞ ]
x

)→ F (B[x1/p∞ ]
x
⊗B

B[x1/p∞ ]
x

) is an isomorphism
for every perfect ring B.

3. The natural map F (Fp[x1/p∞ ]

x
) ⊗A WA(B) → F (B[x1/p∞ ]

x
) is an isomorphism for every perfect

ring B.

The full subcategory spanned by such functors inside Fun(QRSP,AlgA)G/ will be denoted as
Fun(QRSP,AlgA)

⊗
G/.

Proposition 3.4.8. Let F ∈ Fun(QRSP,AlgA)
⊗
G/. For every perfect ring B, SpecF (B[x1/p∞ ]

x
)

is naturally a B-module scheme over WA(B). Consequently, we have a (contravariant) functor

r : Fun(QRSP,AlgA)
⊗
G/ → QID–Gperf

a .

Proof. This follows in a way similar to the proof of Proposition 3.3.18. We note that B[x1/p∞ ]
x

is a
cogroup object of QRSPB/. Therefore, it follows from the definitions that SpecF (B[x1/p∞ ]

x
) has the
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structure of a group scheme over WA(B). The B-action on SpecF (B[x1/p∞ ]
x

) is given by functori-
ality along the maps B[x1/p∞ ]

x
→ B[x1/p∞ ]

x
that sends x1/pn → b1/p

n
x1/pn for all n ≥ 1. Therefore,

SpecF (B[x1/p∞ ]
x

) is indeed naturally a B-module scheme over WA(B). Proposition 2.2.11 implies
that varying this data over all perfect rings B provides us a Gperf

a -module. Further, functoriality
along the maps B[x1/p∞ ] → B[x1/p∞ ]

x
equips this Gperf

a -module with the structure of a pointed
Gperf

a -module. To see that it is a quasi-ideal in Gperf
a , we use functoriality along the following

commutative diagram in QRSP.

Fp[x1/p∞ ]

x
⊗ Fp[x1/p∞ ]

x

Fp[x1/p∞ ]

x
⊗ Fp[x

1/p∞ ]

Fp[x
1/p∞ ]⊗ Fp[x1/p∞ ]

x

Fp[x1/p∞ ]

x

x
1
pn→x

1
pn ⊗x

1
pn

x
1
pn ⊗x

1
pn←x

1
pn

Remark 3.4.9. Note that we do not have a (contravariant) functor QID–Gperf
a → Fun(QRSP,AlgA)

⊗
G/

induced by the unwinding. Indeed, the unwinding of the quasi-ideal Gperf
a produces the functor

that sends a QRSP algebra S 7→ S♭ and does not satisfy the last two conditions of Definition 3.4.7.
One may use Lemma 3.4.15 to see the latter claim. Roughly speaking, since S♭ is defined via an
inverse limit, one cannot expect the unwinding of an arbitrary quasi-ideal (as in Construction 3.4.4)
to preserve the pushout diagrams demanded by Definition 3.4.7. However, we will work towards
rectifying this situation by restricting our attention to a special class of quasi-ideals. In any case, we
have the following proposition.

Proposition 3.4.10. Let r : Fun(QRSP,AlgA)
⊗
G/ → QID–Gperf

a
op be the functor from Proposi-

tion 3.4.8. Let F ∈ Fun(QRSP,AlgA)
⊗
G/. Then there is a natural transformation Un(rF )→ F in

Fun(QRSP,AlgA)G/.

Proof. This follows in a way similar to the proof of Proposition 3.2.18 once we note the following
statement about the category QRSP. Let S be a QRSP algebra. Let I := Ker(S♭ → S). Then there
is an isomorphism

φ : HomS♭(S, ·) ≃ Eq

(
Hom(I,HomS♭(

S♭[x1/p∞ ]

x
, ·)) −→−→ Hom(I,HomS♭(S♭[x1/p∞ ], ·))

)

in PSh(QRSPop

S♭/
). Here one of the arrows is induced by the map S♭[x1/p∞ ] → S♭[x1/p∞ ]

x
and the

other map is obtained by sending everything to the element of HomS♭Mod(I,HomS♭(S♭[x1/p∞ ], ·))
corresponding to the map induced by the inclusion I ⊂ S♭ and the fact that HomS♭(S♭[x1/p∞ ], ·) is
naturally valued in S♭-algebras.
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Definition 3.4.11 (Nilpotent quasi-ideals). Let X be a quasi-ideal in Gperf
a over Fp. We will call

X a nilpotent quasi-ideal in Gperf
a if the graded map Fp[x

1/p∞ ] → Γ(X,OX) corresponding to
X → Gperf

a is zero in large enough degrees. In other words writing t ∈ Γ(X,OX) as the image
of x, we need t to be a nilpotent element. We define NQID–Gperf

a to be the full subcategory of
QID–Gperf

a spanned by nilpotent quasi-ideals.

Example 3.4.12. The zero section SpecFp → Gperf
a viewed as a quasi-ideal in Gperf

a is an example
of a nilpotent quasi-ideal; this is also the initial object in the category NQID–Gperf

a . Further, we
note that α♮ and u∗W [F ] are both examples of nilpotent quasi-ideals in Gperf

a over Fp. However,
Gperf

a is not an example of a nilpotent quasi-ideal.

Remark 3.4.13. We note that for every Fp-algebra R, using the map X → Gperf
a , one gets a map

X(R) → R♭ at the level of R-valued points. Composing along the map R♭ → R, we get a map
w : X(R) → R. It follows that if X is a nilpotent quasi-ideal in Gperf

a , then w(z) is a nilpotent
element of R for every z ∈ X(R). One can analogously define a notion of “nilpotent quasi-ideals”
in Ga as well, which can be though of as an analogue of locally nilpotent ideals at the level of
R-valued points for every Fp-algebra R. Since we do not use the notion of nilpotent quasi-ideals in
Ga, we do not discuss them here.

Remark 3.4.14. In fact if X is a quasi-ideal in Gperf
a over Fp that is not isomorphic to Gperf

a then
X is a nilpotent quasi-ideal. To see this, we note that by writing X = SpecB for a graded Hopf
algebra B and ti for the image of xi under the map Fp[x

1/p∞ ]→ B (here i ∈ N[1/p]), we note that
X is a quasi-ideal if and only if b⊗ tdeg b = tdeg b⊗ b in B⊗B for every homogeneous b ∈ B. Now
b⊗ tdeg b = tdeg b ⊗ b implies that tdeg b and b are linearly dependent in the Fp vector space B. Thus
if X is not nilpotent, i.e., if ti ̸= 0 for all i, then any non-zero homogeneous b ∈ B is in the linear
span of ti. Thus as a graded algebra B ≃ Fp[x

1/p∞ ] and since the map Fp[x
1/p∞ ]→ B is a map of

graded Hopf algebras, it follows that the quasi-ideal X is isomorphic to Gperf
a .

We will now record a lemma.

Lemma 3.4.15. For a perfect ring B, let S := B[x
1/p∞

1 , . . . , x
1/p∞
n ] and I := (x1, . . . , xn). Then

(S/I)♭ = Ŝ, the I-adic completion of S. Further, kernel of the map (S/I)♭ → S/I is identified with

the ideal (x1, . . . , xn) in Ŝ.

Proof. This will follow from the more general fact that if S is a perfect ring and I is a finitely
generated ideal then (S/I)♭ is isomorphic to the I-adic completion of S denotes as Ŝ. We let
I [p

n] :=
{
xpn | x ∈ I

}
. Since S is perfect, it follows that I [pn] is an ideal of S. By sending an

element to its pn-th power we get an isomorphism ϕn : S/I → S/I [p
n]. These maps provide an

isomorphism of inverse systems as below.
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. . . S/I S/I S/I

. . . S/I [p
2] S/I [p] S/I

ϕ

ϕ2

ϕ

ϕ

Now since I is finitely generated,
{
I [p

n]
}

and {In} generates the same topology on S. This gives
the isomorphism (S/I)♭ ≃ Ŝ.

Proposition 3.4.16. Let X be a nilpotent quasi-ideal. Then Un(X)(B[x1/p∞ ]
x

) ≃ Γ(X,OX)⊗Fp B.

Proof. Un(X)(B[x1/p∞ ]
x

) by definition and Lemma 3.4.15 is Un(X)( ̂B[x1/p∞ ], x). Since x is a
non-zero divisor, this is computed as coequalizer of the two maps

̂B[x1/p∞ ][y1/p
∞
] −→−→ Γ(X,OX)⊗Fp

̂B[x1/p∞ ]

where one of the maps is induced by Fp[y
1/p∞ ] → Γ(X,OX) corresponding to the data of the

point. The other map is the ̂B[x1/p∞ ]-algebra map that sends y1/p
n → x1/pn . Since the quasi-

ideal is nilpotent, a power of y is sent to zero by the first map. Hence we obtain the required
isomorphism.

Proposition 3.4.17. Let X be a nilpotent quasi-ideal. Then

Un(X)

(
B[x1/p∞ ]

x
⊗B

B[x1/p∞ ]

x

)
≃ Un(X)

(
B[x1/p∞ ]

x

)
⊗B Un(X)

(
B[x1/p∞ ]

x

)
≃ Γ(X,OX)⊗Fp Γ(X,OX)⊗Fp B.

Proof. By definition and Lemma 3.4.15, the left hand side is isomorphic to

Un(X)(
̂

B[x
1/p∞

1 , x
1/p∞

2 ], (x1, x2)).

By regularity of (x1, x2) as an ideal of ̂
B[x

1/p∞

1 , x
1/p∞

2 ] and Proposition 3.3.14 that is computed as

EnvX(
̂

B[x
1/p∞

1 , x
1/p∞

2 ], x1)⊗ ̂
B[x

1/p∞
1 ,x

1/p∞
2 ]

EnvX(
̂

B[x
1/p∞

1 , x
1/p∞

2 ], x2).

By letting t1/p
n denote the image of y1/pn under the map Fp[y

1/p∞ ]→ Γ(X,OX) corresponding to
the data of the point, we obtain that the above expression is isomorphic to

̂
B[x

1/p∞

1 , x
1/p∞

2 ]⊗ Γ(X,OX)

(x
1/pn

1 ⊗ 1− 1⊗ t1/pn)
⊗ ̂

B[x
1/p∞
1 ,x

1/p∞
2 ]

̂
B[x

1/p∞

1 , x
1/p∞

2 ]⊗ Γ(X,OX)

(x
1/pn

2 ⊗ 1− 1⊗ t1/pn)
.
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Since X is nilpotent, a power of t is zero which along with Proposition 3.4.16 gives the required
conclusion.

Remark 3.4.18. More generally, the proof of Proposition 3.4.17 shows that for a nilpotent quasi-
ideal X , Un(X) commutes with finite coproducts of B[x1/p∞ ]

x
.

Proposition 3.4.19. The unwinding of a nilpotent quasi-ideal (over Fp) satisfies the properties in

Definition 3.4.7, i.e., we have a functor

Un : NQID–Gperf
a

op → Fun(QRSP,AlgFp
)⊗G/.

Proof. Let X be a nilpotent quasi-ideal. By definition, we need to check three properties for the
functor F := Un(X). The first one is that the natural map B → F (B) is an isomorphism for
every perfect ring B which follows from Remark 3.3.5. The other two properties follow from
Proposition 3.4.16 and Proposition 3.4.17.

Proposition 3.4.20. The functor r : Fun(QRSP,AlgFp
)⊗G/ → QID–Gperf

a
op factors to give a

functor r : Fun(QRSP,AlgFp
)⊗G/ → NQID–Gperf

a
op which admits a left adjoint given by Un from

Proposition 3.4.19.

Proof. First we prove that we indeed have a factorization which gives the functor

r : Fun(QRSP,AlgFp
)⊗G/ → NQID–Gperf

a .

By Remark 3.4.14, it would be enough to prove that the essential image of the functor r :

Fun(QRSP,AlgFp
)⊗G/ → QID–Gperf

a does not contain Gperf
a . We assume on the contrary that

there is an F ∈ Fun(QRSP,AlgFp
)⊗G/ such that rF ≃ Gperf

a as quasi-ideals in Gperf
a . This implies

that the arrow f : Fp[x
1/p∞ ]→ Fp[x

1/p∞ ]/x is sent to an isomorphism by F. The arrow f factors
as Fp[x

1/p∞ ] → ̂Fp[x1/p∞ ] → Fp[x
1/p∞ ]/x. Applying F to it and using the first property from

Definition 3.4.7 gives the following maps

Fp[x
1/p∞ ]→ ̂Fp[x1/p∞ ]→ F (Fp[x

1/p∞ ]/x)

whose composition is an isomorphism. This shows that there are maps Fp[x
1/p∞ ]→ ̂Fp[x1/p∞ ]→

Fp[x
1/p∞ ] whose composition is the identity. That implies that there is a map ̂Fp[x1/p∞ ]→ Fp[x

1/p∞ ]

that sends x→ x. But no such map can exist since 1+ x is a unit on the source but not on the target
of the map. Now the required adjunction follows from Proposition 3.4.10, Proposition 3.4.16 and
Proposition 3.4.17 (similar to the proof of Proposition 3.2.18) by noting the commutative diagram
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Un(rUn(X)) Un(X)

Un(rF ) F

≃

for any natural transformation Un(X)→ F where X ∈ NQID–Gperf
a and

F ∈ Fun(QRSP,AlgFp
)⊗G/.

Proposition 3.4.21. The functor

Un : NQID–Gperf
a

op → Fun(QRSP,AlgFp
)⊗G/

defined in Proposition 3.4.19 is fully faithful.

Proof. We fix two nilpotent quasi-ideals X and Y. By using Proposition 3.4.16 and Proposi-
tion 3.4.17, there are natural isomorphisms rUn(X) ≃ X and rUn(Y ) ≃ Y , where r is the functor
from Proposition 3.4.10. Therefore, Proposition 3.4.16 and Proposition 3.4.17 implies that Un
is faithful. To show that it is full, it would be enough to prove that if F and G are two natural
transformations between Un(X) and Un(Y ) such that they are the same transformation X → Y

in NQID–Gperf
a

op after applying r, then F = G. For this, we note the following commutative
diagram.

Un(rUn(X)) Un(X)

Un(rUn(Y )) Un(Y )

≃

F G

≃

The diagram above shows that F = G, as desired.

Alternatively, this follows from Proposition 3.4.20 since rUn(X) ≃ X for a nilpotent quasi-ideal
X.

Remark 3.4.22. More generally, let X and Y be two quasi-ideals in Gperf
a over an Artinian local

ring A with residue field Fp such that the functors Un(X) and Un(Y ) satisfies the three conditions in
Definition 3.4.7 and such that there are natural isomorphisms rUn(X) ≃ X and rUn(Y ) ≃ Y . Then
the above proof shows that there is a natural bijection HomQID–Gperf

a
(Y,X) ≃ Hom(Un(X),Un(Y ))

where the latter Hom is computed in Fun(QRSP,AlgA)G/.

Now we are ready to make the following definitions.
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Definition 3.4.23. We let
Fun(QRSP,AlgFp

)NUn
G/

denote the full subcategory of Fun(QRSP,AlgFp
)⊗G/ spanned by image of nilpotent quasi-ideals

under the functor Un from Proposition 3.4.19.

Definition 3.4.24. We let
Fun(QRSP,AlgFp

)rk=1,NUn
G/

denote the full subcategory of Fun(QRSP,AlgFp
)⊗G/ spanned by the unwinding of the nilpotent

quasi-ideals whose underlying pointed Gperf
a -module is of fractional rank 1 (Definition 2.2.18).

Definition 3.4.25. We let
Fun(QRSP,AlgFp

)pure rk=1,NUn
G/

denote the full subcategory of Fun(QRSP,AlgFp
)⊗G/ spanned by the unwinding of the nilpotent

quasi-ideals whose underlying pointed Gperf
a -module is pure of fractional rank 1 (Definition 2.5.7).

Thus we obtain the following chain of inclusion of categories

Fun(QRSP,AlgFp
)pure rk=1,NUn
G/ ⊂ Fun(QRSP,AlgFp

)rk=1,NUn
G/

⊂ Fun(QRSP,AlgFp
)NUn
G/ ⊂ Fun(QRSP,AlgFp

)⊗G/

which are all full subcategories of Fun(QRSP,AlgFp
)G/

Proposition 3.4.26. The category Fun(QRSP,AlgFp
)NUn
G/ has a final object given by the functor

( · )perf : QRSP→ AlgFp
that sends S 7→ Sperf := colimx 7→xpS.

Proof. This follows from the fact that the zero quasi-ideal SpecFp → Gperf
a is a nilpotent quasi-ideal

(Example 3.4.12), Remark 3.3.6 and Proposition 3.4.21.

Proposition 3.4.27. The category Fun(QRSP,AlgFp
)rk=1,NUn
G/ has a final object given by the

functor id : QRSP→ AlgFp
that sends S 7→ S.

Proof. This follows from Proposition 2.3.1, Example 3.4.6 and Proposition 3.4.21.

Proposition 3.4.28. The category Fun(QRSP,AlgFp
)pure rk=1,NUn
G/ has a final object given by the

functor Un(u∗W [F ]).

Proof. This follows from Proposition 2.5.8 and Proposition 3.4.21.
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3.5 The generalized Hodge filtration

Let X be a fixed pointed Gperf
a -module over Fp. The goal of this section is to construct

a decreasing filtration on the functor Un(X) defined on QRSP algebras which will be called
the “Hodge filtration”. This will be done by explicitly constructing a functorial filtration on
Un(X)(S) = EnvX(S

♭,Ker(S♭ → S)). We will show that under the assumption that X is a
fractional rank-1 pointed Gperf

a -module, gr0 of the filtration on Un(X)(S) identifies with S. This
induces a natural transformation gr0 : Un(X)→ id of functors. Under the additional assumption
that X is a nilpotent quasi-ideal, this natural transformation is the same as the one coming from
Proposition 3.4.27.

Construction 3.5.1 (Hodge filtration). Let X be a pointed Gperf
a -module over Fp. We will construct

a natural decreasing filtration on EnvX(B, I) for (B, I) ∈ PI. By Construction 3.1.1, for a
fixed i ∈ I , we have a natural map Γ(XB,OXB

) →
∐

I Γ(XB,OXB
) → TXB

(I), where the
first map maps Γ(XB,OXB

) to the i-th factor in the coproduct. The composite map is the map
evi : Γ(XB,OXB

)→ TXB
(I) defined in Remark 3.1.2.

By Construction 3.2.2, there is a natural surjection TXB
(I) → EnvX(B, I). Composing this

with evi, we obtain the map

[i] : Γ(XB,OXB
)→ EnvX(B, I).

If m ∈ Γ(XB,OXB
) is a homogeneous element, we will write [i]m := [i](m).

For a nonnegative integer n, we let FilnEnvX(B, I) denote the ideal of EnvX(B, I) generated
by the “monomials” of the form [i1]

m1 · · · [ik]mk such that
∑k

u=1 degmu ≥ n, for homogeneous
elements mu ∈ Γ(XB,OXB

) of integral degree, k ≥ 1 and for i1, . . . , ik ∈ I. This defines a
decreasing filtration which will be called the Hodge filtration on EnvX(B, I). A map φ : (B, I)→
(B′, I ′) sends [i]m → [φ(i)]m, so the construction is functorial.

Definition 3.5.2. Let X be a pointed Gperf
a -module over Fp and let S be a QRSP algebra. The

decreasing filtration defined by

FilnUn(X)(S) := FilnEnvX(S
♭,Ker(S♭ → S))

will be called the Hodge filtration on Un(X)(S).

Definition 3.5.3. Let ̂Un(X)(S) be the completion of Un(X)(S) with respect to the Hodge filtration.
Then the functor Ûn(X) will be called the Hodge completion of Un(X).
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Example 3.5.4 (I-adic filtration). Let X = Gperf
a (equipped with the natural structure of a pointed

Gperf
a -module). Then EnvX(B, I) ≃ B by Remark 3.3.4. In this case, the Hodge filtration identifies

with the I-adic filtration on B.

Example 3.5.5 (Divided power filtration). Let B be an Fp-algebra and I be an ideal of B. Then
there is a filtration on DB(I) given by setting Filn(DB(I)) to be the ideal generated by divided
power monomials [i1]

m1 · · · [ik]mk such that
∑k

u=1mi ≥ n and i1, . . . , ik ∈ I , which is called
the divided power filtration. We note that Fil0(DB(I)) = DB(I) and gr0(DB(I)) = B/I. If we
further assume that B is a perfect ring, then we have an isomorphism Envu∗W [F ](B, I) ≃ DB(I)

by Example 3.3.10 which is further a filtered isomorphism when we equip Envu∗W [F ](B, I) with
the Hodge filtration from Construction 3.5.1.

Remark 3.5.6. Let X be a pointed Ga-module over an arbitrary base ring A. Let (B, I) ∈ CA.

Similar to Construction 3.5.1, one has a map

[i] : Γ(XB,OXB
)→ EnvX(B, I)

obtained as a composition of evi : Γ(XB,OXB
) → TXB

(I) (Remark 3.1.2) and TXB
(I) →

EnvX(B, I). If m ∈ Γ(XB,OXB
) is a homogeneous element, we can again write [i]m := [i](m).

For a nonnegative integer n, we let FilnEnvX(B, I) denote the ideal of EnvX(B, I) generated
by the “monomials” of the form [i1]

m1 · · · [ik]mk such that
∑k

u=1 degmu ≥ n, for homogeneous
elements mu ∈ Γ(XB,OXB

), k ≥ 1 and for i1, . . . , ik ∈ I. This defines a decreasing filtration
which may again be called the Hodge filtration on EnvX(B, I).

Example 3.5.7. When X = Ga (equipped with the natural structure of a pointed Ga-module), we
have EnvX(B, I) ≃ B (Remark 3.2.4) and the Hodge filtration on the left hand side constructed in
Remark 3.5.6 identifies with the I-adic filtration on B.

Lemma 3.5.8. Let X be a pointed Ga-module over A and (B, I) ∈ CA. There is a natural

isomorphism gr0(EnvX(B, I)) ≃ B/I, where the gr0 on the left hand side is taken with respect to

the filtration constructed in Remark 3.5.6.

Proof. Note that the zero section SpecA→ Ga can be thought of as a pointed Ga-module which
admits a unique map to X (as a pointed Ga-module). Applying the unwinding construction
and using Example 3.2.5, we get us a natural map EnvX(B, I) → B/I. By functoriality of the
constructions appearing in Construction 3.1.1, Construction 3.2.2 and using Example 3.1.5, the map
EnvX(B, I)→ B/I fits into the following commutative diagram
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TXB
(I) B

EnvX(B, I) B/I.

We proceed towards computing the kernel of the map EnvX(B, I)→ B/I , which we will denote
by K. As noted in Remark 3.1.9, SpecTXB

(I) naturally has the structure of a Ga-module over B
and the map TXB

(I) → B is the map induced on global sections by the zero section SpecB →
SpecTXB

(I). We write TXB
(I) =

⊕
n∈N(TXB

(I))n. Since SpecTXB
(I) is a Ga-module, by

Proposition 2.1.17, it follows that (TXB
(I))0 is naturally isomorphic to B. Therefore, it follows that

the kernel of the composite map TXB
(I)→ B → B/I naturally identifies with I ⊕ (TXB

(I))>0,

where (TXB
(I))>0 :=

⊕
n>0(TXB

(I))n. We observe that all the arrows in the above diagram
are surjective. Therefore, by commutativity of the above diagram, the kernel K of the map
EnvX(B, I) → B/I is generated by the image of I ⊕ (TXB

(I))>0 under the map TXB
(I) →

EnvX(B, I).

By Construction 3.2.2, the map TXB
(I) → EnvX(B, I) is induced by taking coequalizer of

two arrows SymB(I)
−→
−→ TXB

(I). Using their descriptions from Construction 3.2.2 and writing
SymB(I) =

⊕
i∈N Sym

i
B(I), we see that one of the arrows map I = Sym1

BI inside (TXB
(I))1 and

the other one maps I = Sym1
BI inside (TXB

(I))0 = B by the natural inclusion I ⊂ B. Therefore,
under the map TXB

(I)→ EnvX(B, I), the image of I ⊂ (TXB
(I))0 is contained inside the image

of (TXB
(I))1. This implies that the kernel K of the map EnvX(B, I)→ B/I can be generated by

the image of (TXB
(I))>0 under the map TXB

(I)→ EnvX(B, I).

Finally, we note that image of (TXB
(I))>0 under the map TXB

(I)→ EnvX(B, I) generates the
ideal Fil1EnvX(B, I) as defined in Remark 3.5.6. Indeed, the last claim can be seen by considering
the map evi : Γ(XB,OXB

)→ TXB
(I) and recalling it’s properties from Remark 3.1.9 which imply

that the elements evi(u) for all i ∈ I and all u ∈ Γ(XB,OXB
) such that deg(u) ≥ 1 generate the

ideal (TXB
(I))>0 in TXB

(I). This finishes the proof.

Remark 3.5.9. The proof of Lemma 3.5.8 shows that the natural transformation EnvX(B, I) 7→
gr0(EnvX(B, I)) ≃ B/I described in Lemma 3.5.8 is the same as the one obtained by applying
the unwinding construction to the unique map from the zero section SpecA → Ga (viewed as a
pointed Ga-module) to X.

Remark 3.5.10. Let X be a pointed Ga-module over Fp. Let (B, I) ∈PI. By Proposition 3.3.8,
there is a natural isomorphism

EnvX(B, I) ≃ Envu∗X(B, I).
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By construction, it follows that this isomorphism is further a filtered isomorphism, where the
filtration on the right hand side is coming from Construction 3.5.1 and the one on the left hand side
is coming from Remark 3.5.6.

Remark 3.5.11. In the case when X is a pointed Ga-module over A, analogous to Definition 3.5.3,
one can define a functor Ûn(X) by completing with respect to the Hodge filtration on EnvX(B, I)

as constructed in Remark 3.5.6. As an example, when X = Ga (equipped with the structure of a
pointed Ga-module), Ûn(Ga)(B, I) is simply the I-adic completion of B.

Remark 3.5.12. Let Ĝa be the “formal affine line” over an arbitrary base ring A. More precisely, for
an A-algebra B, the B-valued points of Ĝa denoted as Ĝa(B) are defined to be the set of nilpotent
elements of B, i.e., the nilradical of B. This equips Ĝa with the structure of a “Ga-module”. There
is also a natural transformation of functors Ĝa → Ga, which, in some sense, equips Ĝa with the
structure of a “pointed Ga-module”. The constructions of our paper do not deal with examples
such as Ĝa that are not representable by an affine scheme and being representable is part of the
definition of a Ga-module for us. However, roughly speaking, the functor Ûn(Ga) as discussed in
Remark 3.5.11 could be thought of as “unwinding” of Ĝa. We thank the referee for suggesting to
include this remark.

Proposition 3.5.13. Let X be a pointed Gperf
a -module over Fp of fractional rank 1. Let S be a

QRSP algebra. Then the gr0 of the Hodge filtration on Un(X)(S) is naturally isomorphic to S.

Proof. We write I = Ker(S♭ → S). Since X is of fractional rank 1 (Definition 2.2.18), we have
gr0EnvX(S

♭, I) ≃ Envα♮(S♭, I) ≃ S. Indeed, the first isomorphism follows from Lemma 3.5.8,
Remark 3.5.10 and recalling that u∗(SpecFp) ≃ α♮ (when SpecFp is equipped with the structure
of a pointed Ga-module corresponding to the zero section SpecFp → Ga). Finally, the last
isomorphism follows from Remark 3.3.6.

Example 3.5.14. We point out that the assumption that X is fractional of rank 1 is crucial in
Proposition 3.5.13. Indeed, let us take X to be α♮ × α♮ considered to be a pointed Gperf

a -module via
projection onto the first component α♮×α♮ → α♮ composed with the natural map α♮ → Gperf

a . Then
X is not fractional of rank 1. Further, in this case, one computes directly that Un(X)(Fp[x1/p∞ ]

x
) ≃

Fp[u1/p∞ ,v1/p
∞

]

(u,v)
and under this identification, Fil1Un(X)(Fp[x1/p∞ ]

x
) is the ideal generated by the

elements uivj such that i+ j = 1. Therefore, gr0Un(X)(Fp[x1/p∞ ]

x
) is not isomorphic to Fp[x1/p∞ ]

x
.

Remark 3.5.15. Let X be a pointed Gperf
a -module over Fp of fractional rank 1. The natural

transformation gr0 : Un(X)→ id induced by Proposition 3.5.13 is the same as the one obtained
via the unwinding functor from the Hodge map defined in Proposition 2.3.1. This follows from
Remark 3.5.9 and Remark 3.5.10.
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Proposition 3.5.16. Let X be a nilpotent quasi-ideal over Fp which is of fractional rank 1 as a

pointed Gperf
a -module. Then the natural transformation gr0 : Un(X) → id is the unique natural

transformation between Un(X) and id viewed as objects of the category Fun(QRSP,AlgFp
)G/.

Proof. This follows from Proposition 3.4.27 and Remark 3.5.15.

Remark 3.5.17. As discussed in Remark 3.5.6, for a pointed Ga-module X over Fp, one can define
a Hodge filtration Filn on EnvX(B, I) for any Fp-algebra B and an ideal I ⊂ B. As a possible
application, one can define a candidate theory of D-modules for any given pointed Ga-module X.

In order to do so, we let J denote the kernel of the diagonal map B ⊗B → B. One can attempt to
define the ring of “differential operators” of B associated to X as

DX
B := lim−→

n

HomB(EnvX(B ⊗B, J)/Filn, B).

In the case when X is the pointed Ga-module given by W [F ], we recover the ring of crystalline
differential operators [BO78]. In the case when X is the pointed Ga-module given by Ga itself, we
recover Grothendieck’s ring of differential operators [Gro67].
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CHAPTER IV

Revisiting de Rham and Crystalline Cohomology via Unwinding

In this chapter, we will briefly recall the notion of derived de Rham cohomology. Our goal is
to provide a different definition of derived de Rham cohomology as the unwinding of a particular
quasi-ideal. The point of our definition is that a single object (a quasi-ideal in Gperf

a ) can recover the
entire theory of derived de rham cohomology via the unwinding functor. Thus many questions about
(derived) de Rham cohomology theory can be translated into a question about quasi-ideals and can
be approached in a direct manner. We will also provide a definition of crystalline cohomology as
the unwinding of some quasi-ideal in Gperf

a .

In order to achieve these goals, there is at least one immediate technical obstruction. The theory
of derived de Rham cohomology works with commutative algebra objects in derived categories,
whereas the notion of quasi-ideals only work with discrete rings. We are able to overcome this
difficulty by crucially relying on the notion of QRSP algebras (Definition 3.4.1) due to the work
of Bhatt, Morrow and Scholze [BMS19, Def. 8.8]. For our purpose, QRSP algebras are abundant
enough such that derived de Rham cohomology can be completely understood by its values on them,
and further, dR(S) is a discrete ring for a QRSP algebra S. These properties make it possible to
understand derived de Rham cohomology via the unwinding functor constructed in Section 3.4.

The following definition is from [Bha12, Rmk. 2.2].

Definition 4.0.1 (Derived de Rham cohomology). Derived de Rham cohomology is a functor
denoted as dR from the∞-category of simplicial commutative Fp-algebras to the∞-category of
commutative algebra objects in the derived ∞-category D(Fp) obtained by left Kan extending
the classical algebraic de Rham cohomology functor which sends a finitely generated polynomial
Fp-algebra P to the algebraic de Rham complex of P , i.e.,

0→ P → Ω1
P/Fp
→ Ω2

P/Fp
→ . . .→

For a smooth Fp-algebra, derived de Rham cohomology agrees with classical algebraic de Rham
cohomology [Bha12, Cor. 3.10]. By definition, the derived de Rham cohomology functor dR is
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determined by its restriction to polynomial algebras over Fp. Further, since dR has quasisyntomic
descent [BMS19, Ex. 5.12], the functor dR restricted to polynomial algebras can be completely
understood by restriction of dR to QRSP algebras by using descent along the map P → Pperf for
a polynomial algebra P and the fact that each term in the Čech conerve of P → Pperf is a QRSP
algebra.

Proposition 4.0.2. Let S be a QRSP algebra. Then dR(S) ≃ DS♭(I) where I := Ker(S♭ → S).

Proof. This is [BMS19, Prop. 8.12].

Proposition 4.0.3 (Derived de Rham cohomology via unwinding). As functors from QRSP →
AlgFp

, the functor dR and the functor Un(u∗W [F ]) are naturally isomorphic. Further, the Hodge

filtration on dR(S) coincides with the Hodge filtration on Un(u∗W [F ])(S) constructed in Sec-

tion 3.5.

Proof. This follows from [BMS19, Prop. 8.12], Example 3.3.10 and Example 3.5.5.

Remark 4.0.4. We point out that the functor dR : QRSP → AlgFp
can be seen as an object of

Fun(QRSP,AlgFp
)⊗G/. One may see this directly from [BMS19, Prop. 8.12] or use Proposition 4.0.3,

the fact that u∗W [F ] is a nilpotent quasi-ideal in Gperf
a (Example 3.4.12) and Proposition 3.4.19.

Proposition 4.0.5 (Universal property of dR). As a functor from QRSP→ AlgFp
, dR is the final

object of Fun(QRSP,AlgFp
)pure rk=1,NUn
G/ .

Proof. This follows from Proposition 3.4.28 and Proposition 4.0.3.

Proposition 4.0.6. The natural transformation gr0 : dR→ id coming from the Hodge filtration in

derived de Rham cohomology is the unique natural transformation between dR and id viewed as

objects of the category Fun(QRSP,AlgFp
)G/.

Proof. This follows from Proposition 3.5.16.

Proposition 4.0.7. The functor dR has no nontrivial endomorphisms as an object of

Fun(QRSP,AlgFp
)G/.

Proof. By Proposition 4.0.5, dR is the final object in a full subcategory of Fun(QRSP,AlgFp
)G/

which gives the claim.

Proposition 4.0.8. [BLM21, Prop. 10.3.1] If we consider dR as a functor defined on smooth Fp

algebras, then any endomorphism of dR that commutes with the gr0 map of the Hodge filtration

gr0 : dR→ id is identity.
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Proof. By left Kan extension, we obtain an endomorphism of dR : QRSP→ AlgFp
. We check that

this endomorphism is an endomorphism in the category Fun(QRSP,AlgFp
)G/. This will follow

by functoriality of dR along the arrows S♭ → S for a QRSP algebra S after noting that the
endomorphism is identity when restricted to perfect rings. But the latter follows by the hypothesis
that the endomorphism commutes with gr0 : dR→ id. Now by Proposition 4.0.7 and quasisyntomic
descent, we obtain the desired statement.

Next we study the crystalline situation. Our goal is to prove that the theory of derived crystalline
cohomology [BMS19, 8.2] can be entirely recovered from a single quasi-ideal in Gperf

a . By left Kan
extension and quasisyntomic descent, one can again restrict attention to only QRSP algebras. We
make the following definitions.

Definition 4.0.9. Let S be a QRSP algebra. We define Acrys(S) to be the p-adic completion of the
divided power envelope of W (S♭) → S. Here our divided powers are required to be compatible
with those on (p) ⊂ W (S♭).

Remark 4.0.10. From the first part of [BMS19, Thm. 8.14], it follows that Acrys(S) is flat over Zp

for a QRSP algebra S.

Definition 4.0.11. Let (A,m) be an Artinian local ring with residue field Fp and S be a QRSP
algebra. We will let RΓcrys(S)A := Acrys(S)⊗Zp A.

We note that RΓcrys(S)A is a flat A-algebra. Further, RΓcrys(S)A ⊗A Fp ≃ dR(S) by [BMS19,
Prop. 8.12]. Our goal is to prove the following.

Proposition 4.0.12 (Derived crystalline cohomology via unwinding). The functor RΓcrys(·)A :

QRSP→ AlgA is the unwinding of a quasi-ideal in Gperf
a over A.

Proof. There is a functor G : QRSP→ AlgA sending S 7→ WA(S
♭). By the natural identifications

WA(S
♭) ≃ W (S♭) ⊗Zp A ≃ Acrys(S

♭) ⊗Zp A = RΓcrys(S
♭)A and functoriality along S♭ → S,

we obtain a natural transformation G → RΓcrys(·)A. Thus we can view RΓcrys as an object of
Fun(QRSP,AlgA)G/. From Proposition 4.0.3, by going modulo m and using flatness we can
conclude that RΓcrys satisfies the three conditions of Definition 3.4.7 and thus is an object of
Fun(QRSP,AlgA)

⊗
G/. Therefore by Proposition 3.4.8, r(RΓcrys) is a quasi-ideal in Gperf

a over A. By
Proposition 3.4.10, there is a natural transformation Un(r(RΓcrys))→ RΓcrys. Since RΓcrys⊗AFp ≃
dR, it follows that r(RΓcrys) is a deformation of the quasi-ideal in Gperf

a given by u∗W [F ]. By
Remark 3.3.7, Un(r(RΓcrys)) ⊗A Fp ≃ Un(u∗W [F ]) ≃ dR. Thus the map Un(r(RΓcrys)) →
RΓcrys is a natural isomorphism by the following lemma.
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Lemma 4.0.13. Let (A,m) be an Artinian local ring. Let M → N be a map of A-modules where

N is flat. Suppose that M ⊗A A/m→ N ⊗A A/m is an isomorphism. Then the map M → N is

an isomorphism.

Proof. Since m is nilpotent, it follows that M → N is surjective. Let K := Ker(M → N). Then
we have an exact sequence 0→ K →M → N → 0. By flatness of N , we get an exact sequence

0→ K/mK →M/mM → N/mN → 0.

By hypothesis, we must have K/mK = 0. Again, since m is nilpotent, this implies K = 0, which
proves the lemma.

Indeed, for every QRSP algebra S, we have a map Un(r(RΓcrys))(S)→ RΓcrys(S)A which is
an isomorphism modulo m and RΓcrys(S)A is flat over A. Thus the map must be an isomorphism
by the lemma.

Remark 4.0.14. The functor QRSP → D(Zp) that sends S 7→ Acrys(S) defines a sheaf for the
quasisyntomic topology [BMS19, Lemma 4.27, Rmk. 8.15]. We note that if (A,m) is any Artinian
local ring with residue field Fp, then the functor ( · ) ⊗L

Zp
A : D(Zp) → D(A) preserves all

limits. Indeed, by using the m-adic filtration on A (which is finite and the graded pieces are finite
dimensional Fp-vector spaces), this boils down to showing that ( · ) ⊗L

Zp
Fp preserves all limits;

the latter claim follows because Fp is quasi-isomorphic to the two term complex (Zp
p−→ Zp). This

implies that the functor RΓcrys( · )A from Definition 4.0.11 maybe viewed as a quasisyntomic sheaf
(with values in D(A)). By [BMS19, Lemma 4.31], we obtain an extended functor still denoted as
RΓcrys( · )A : QSynFp

→ D(A), where QSynFp
denotes the category of quasisyntomic Fp-algebras

[BMS19, Def. 1.7]. By [BMS19, Ex. 5.12, Prop. 8.12], it follows that RΓcrys( · )A ⊗L
A A/m ≃ dR

as functors from QSynFp
→ D(A). Note that RΓcrys( · )A can be naturally enhanced as a functor

from QSynFp
→ CAlg(D(A)) and the isomorphism RΓcrys( · )A⊗L

A A/m ≃ dR remains true at the
level of functors from QSynFp

→ CAlg(D(A)).

Remark 4.0.15. By the proof of Proposition 4.0.12, we also saw that the quasi-ideal in Gperf
a given

by r(RΓcrys) is a deformation of u∗W [F ] over the ring A. Once we know this description, it is
not difficult to describe r(RΓcrys) explicitly. On the other hand, according to the proposition, this
quasi-ideal recovers derived crystalline cohomology for QRSP algebras via the unwinding functor.
Therefore, combining with Remark 4.0.14, this gives a way of defining crystalline cohomology
without mentioning divided power structures and using the pointed Gperf

a -module structure instead.
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CHAPTER V

Formal Étaleness of de Rham Cohomology

In this final chapter, our goal is to prove our main theorem that the functor dR is formally étale.
More precisely, we prove the following

Theorem 5.0.1. Let

dR : AlgsmFp
→ CAlg(D(Fp))

be the algebraic de Rham cohomology functor defined on the category of smooth Fp-algebras

AlgsmFp
. Given an Artinian local ring (A,m) with residue field Fp, the functor dR admits a unique

deformation

dR′ : AlgsmFp
→ CAlg(D(A)).

Further, the deformation dR′ is unique up to unique isomorphism. Here a deformation is supposed

to mean the data of isomorphism of functors dR′ ⊗L
A Fp ≃ dR. More precisely, the space of

deformations of dR (as defined in Remark 5.0.2) is contractible. cf. Remark 5.1.3.

Remark 5.0.2. In this remark, we clarify the∞-categorical technicalities underlying the notion of
the “space of deformations” that appears in Theorem 5.0.1. Note that we have a functor between
∞-categories

Fun(Algsm
Fp
,CAlg(D(A)))→ Fun(Algsm

Fp
,CAlg(D(Fp)))

obtained by using the functor ( · )⊗L
A Fp. Now dR can be seen as an object of the∞-category

Fun(Algsm
Fp
,CAlg(D(Fp))).

We define an∞-category

Def(dR) := Fun(Algsm
Fp
,CAlg(D(A)))×Fun(Algsm

Fp ,CAlg(D(Fp))) {dR} ,

where the fiber product is taken in the∞-category Ĉat∞ of (not necessarily small)∞-categories
[Lur09, Def. 5.5.3.1]. An object of Def(dR) is a functor dR′ : AlgsmFp

→ CAlg(D(A)) equipped
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with the data of an isomorphism of functors dR′ ⊗L
A Fp ≃ dR. One notes that every morphism in

Def(dR) is an equivalence. Thus Def(dR) is an∞-groupoid, which we informally call “the space
of deformations” of dR (see [Lur09, Def. 1.2.5.1, Rmk. 1.2.5.2 ]). Theorem 5.0.1 asserts that
Def(dR) ≃ {∗} . Note that the existence of crystalline cohomology (cf. Remark 4.0.14) assures that
Def(dR) is not the empty∞-groupoid.

Remark 5.0.3. We note that the functor dR : AlgsmFp
→ CAlg(D(Fp)) is left Kan extended from

its restriction to PolyFp
, where the latter denotes the category of finitely generated polynomial

Fp-algebras; this was observed in [Bha12, Cor. 3.10] and is a consequence of the derived Cartier
isomorphism [Bha12, Prop. 3.5]. In fact, according to Def. 2.1 and Rmk. 2.2 loc. cit. when we
consider derived de Rham cohmology, as a functor from the∞-category of simplicial commutative
Fp-algebras to the ∞-category CAlg(D(Fp)), it preserves all colimits. Concretely, the last fact
implies that derived de Rham cohomology functor sends a Tor independent pushout diagram of
ordinary rings to pushout diagrams of E∞-algebras.

5.1 First proof using deformation theory of u∗W [F ]

First we make some adjustments so that the values taken by dR are discrete rings as opposed
to commutative algebra objects in a derived category. As noted in Remark 5.0.3, the functor
dR : AlgsmFp

→ CAlg(D(Fp)) is left Kan extended from its restriction to PolyFp
. If dR′ : AlgsmFp

→
CAlg(D(A)) is a deformation of dR as in Theorem 5.0.1, by going derived modulo m, one sees
that the same property holds for dR′. Thus, by considering left Kan extensions, in order to prove the
statement regarding unique deformation in Theorem 5.0.1, it would be enough to prove the same
statement for the functor

dR : PolyFp
→ CAlg(D(Fp)).

Let dR′ : PolyFp
→ CAlg(D(A)) be a deformation of dR. To prove that dR′ is unique up to

unique isomorphism, we can again do a left Kan extension to obtain a functor dR′ : QSynFp
→

CAlg(D(A)) which extends dR′ from polynomial algebras, where QSynFp
denotes the category of

quasisyntomic Fp-algebras [BMS19, Def. 1.7]. By construction, dR′ is a deformation of the derived
de Rham cohomology functor dR : QSynFp

→ CAlg(D(Fp)). Now the category of quasisyntomic
Fp-algebras contains all the QRSP algebras. Therefore one can try to recover the functor dR′

restricted to finitely generated polynomial algebras P via descent along the (faithfully flat) map
P → Pperf . Here Pperf := colimx→xpP. The following lemma guarantees that this is possible by
using the notion of descendability [Mat16, Def. 3.18].

Lemma 5.1.1. Let P ∈ PolyFp
. Then the map dR′(P )→ dR′(Pperf) is descendable.
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Proof. This follows from the fact that dR(P )→ dR(Pperf) is descendable [BS19, Lemma 8.6] and
the fact that descendability can be checked (derived) modulo m since m is nilpotent. The latter
claim follows from [Mat16, Prop 3.24] and [Mat16, Prop 3.35]. The fact that descendability implies
descent along P → Pperf for dR′ follows from the fact that dR′ sends Tor independent pushout
diagrams in QSynFp

to pushouts in CAlg(D(A)) and [Mat16, Prop. 3.20]. The former fact can be
seen by using the same property for dR as noted in Remark 5.0.3 and going derived modulo m.

By using the above lemma and the fact that each term in the Čech conerve of P → Pperf is a
QRSP algebra, in order to prove Theorem 5.0.1, it is enough to prove the following statement.

• Let dR : QRSP → CAlg(D(Fp)) be the derived de Rham cohomology functor. Given
an Artinian local ring (A,m) with residue field Fp, the functor dR admits a deformation
dR′ : QRSP→ CAlg(D(A)) which is unique up to unique isomorphism.

Now we note again that dR(S) is a discrete ring for a QRSP algebra S. Thus dR′ is also a
discrete ring which is flat over A by [Sta22, Tag 051H]. Thus it is enough to prove the following
statement (Theorem 1.1.3).

• Let dR : QRSP→ AlgFp
be the derived de Rham cohomology functor. Given an Artinian

local ring (A,m) with residue field Fp, the functor dR admits a deformation dR′ : QRSP→
AlgA which is unique up to unique isomorphism.

Now we appeal to the general theory of deformations of (commutative) ring objects in a topos
due to Illusie [Ill71] to reduce the problem further. Let X denote the topos PShv(QRSPop) of
presheaves of sets on QRSPop. Then dR can be viewed as an Fp-algebra object in X and we are
trying to understand deformations dR′ of dR which are flat A-algebra objects. Since (A,m) is
an Artinian local ring, mn = 0 for some n > 0. By considering the m-adic filtration, we have a
tower A = A/mn → A/mn−1 → . . . → A/m2 → A/m = Fp, where kernel of each map is a
square-zero ideal. Note that by Definition 4.0.11, we already know that there exists a deformation
of dR over A given by dRA := RΓcrys( · )A (which is a flat A-algebra object). Therefore, in order
to prove that dRA is unique up to unique isomorphism as a deformation of dR, it is enough to
prove that dRA/mr+1 := dRA ⊗A A/mr+1 is unique up to unique isomorphism as a deformation of
dRA/mr := dRA ⊗A A/mr for all 1 ≤ r ≤ n− 1.

To this end, we will study the problem of deforming dRA/mr (considered as an A/mr-algebra
object) along the morphism A/mr+1 → A/mr. By construction, dRA/mr+1 is already one such
deformation; therefore, the obstruction class of deforming dRA/mr as in [Ill71, Cor. 2.1.3.3 (i)]
vanishes. In order to prove that dRA/mr+1 is unique up to unique isomorphism as a deformation, by
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[Ill71, Prop. 2.1.2.3, Cor. 2.1.3.3 (ii),(iii)], it is equivalent to show that

ExtidRA/mr (LdRA/mr ,m
r/mr+1 ⊗A/mr dRA/mr) = 0 (5.1.1)

for i ∈ {0, 1} ; here LdRA/mr denotes the contangent complex of the A/mr-algebra object dRA/mr

relative to A/mr as considered in [Ill71, Cor. 2.1.3.3], which can be viewed as an object in the
derived category of dRA/mr-module objects. Now we note that mr/mr+1 is naturally an A/m-
module, and mr/mr+1 ⊗A/mr dRA/mr ≃ mr/mr+1 ⊗L

A/mr dRA/mr ≃ mr/mr+1 ⊗L
A/m A/m ⊗L

A/mr

dRA/mr ≃ mr/mr+1 ⊗L
A/m dR (where we can switch between the derived and nonderived tensor

product by using flatness of dRA as an A-algebra object). Therefore, we have

ExtidRA/mr (LdRA/mr ,m
r/mr+1⊗L

A/mr dRA/mr) ≃ ExtidR(LdRA/mr ⊗L
dRA/mr dR,m

r/mr+1⊗L
A/m dR).

Using LdR to denote LdRA/m
defined above, by the base change formula [Ill71, Prop. 2.2.1], we

have LdRA/mr ⊗L
dRA/mr

dR ≃ LdR. In order to prove the vanishing in equation (5.1.1), equivalently,
we need to prove that

ExtidR(LdR,m
r/mr+1 ⊗Fp dR) = 0 (5.1.2)

for i ∈ {0, 1} . Since A is an artinian local ring with residue field Fp, it follows that mr/mr+1 is
a finite dimensional Fp-vector space. Therefore, to prove the vanishing in (5.1.2), it is enough to
show that ExtidR(LdR, dR) = 0 for i ∈ {0, 1} . Equivalently, it is enough to prove that equation
(5.1.2) holds for i ∈ {0, 1} in the special case when A = Fp[ϵ]/ϵ

2, m = (ϵ) and r = 1. Finally,
arguing backwards and using the reductions we have made so far, we see that in order to prove
Theorem 5.0.1, it is enough to prove the following proposition.

Proposition 5.1.2. Let dR : QRSP→ AlgFp
be the derived de Rham cohomology functor. Then

dR has no nontrivial deformation to Fp[ϵ] := Fp[ϵ]/ϵ
2. Further, the deformation is unique up to

unique isomorphism. (Here the trivial deformation is given by tensoring up to Fp[ϵ].)

Proof. We note that there is a natural transformation G → dR where G(S) = S♭. Thus dR

can be viewed as an object of Fun(QRSP,AlgFp
)/G. Since cotangent complex of a perfect ring

vanishes, the maps S♭ → dR(S) lifts uniquely to maps S♭[ϵ]→ dR′(S) for any deformation dR′

of dR. It follows that any deformation of dR and any endomorphism of dR as a deformation can
be studied as deformations and endomorphisms in the category Fun(QRSP,AlgFp[ϵ])/G. Further,
as noted in Remark 4.0.4, dR can be viewed as an object of Fun(QRSP,AlgFp

)⊗G/. Therefore,
by going modulo ϵ and using flatness, we see that any deformation of dR satisfies the three
conditions of Definition 3.4.7 and can be viewed as an object of Fun(QRSP,AlgFp[ϵ])

⊗
G/. Thus we

can also work inside the category Fun(QRSP,AlgFp[ϵ])
⊗
/G. Writing dR′ for a deformation of dR,

by using Proposition 3.4.8 and Proposition 4.0.3 we see that r(dR′) is a deformation of u∗W [F ]
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as a quasi-ideal in Gperf
a . By Proposition 3.4.10, there is a natural transformation Un(r(dR′))→

dR′. Going modulo ϵ and using Lemma 4.0.13, this natural transformation is actually a natural
isomorphism. By Remark 3.4.22 it would be enough to show that any deformation of u∗W [F ] to
Fp[ϵ] is uniquely isomorphic to the trivial deformation. This follows from Proposition 2.5.9 and
Proposition 2.5.11.

Remark 5.1.3. We note that the statement of Theorem 5.0.1 remains valid when Fp is replaced by
any perfect field of characteristic p. Indeed, the key calculation (involving deformations) that goes
into the proof above relies on Proposition 2.5.11, which, as noted in Remark 2.5.14, remains valid
over any perfect field of characteristic p. Furthermore, the theory of Gperf

a -modules developed in this
paper and the inputs we use from [BMS19] (such as [BMS19, Prop. 8.12]) remain valid when the
base is an arbitrary perfect field as well. We thank the referee for pointing this out.

5.2 Second proof using deformation theory of W [F ]

The goal of this subsection is to provide a slightly different proof of Proposition 5.1.2 that
avoids the use of deformation theory of u∗W [F ], i.e., Proposition 2.5.11. Instead, we would
use the deformation theory of W [F ] which is much easier to understand by universal properties
(Proposition 2.5.4) and the rigidity of the Hodge map (Proposition 2.3.6).

Lemma 5.2.1. Let dR : QRSP → AlgFp
be the derived de Rham cohomology functor. Let

dR′ : QRSP→ AlgFp[ϵ] be a deformation of dR. Then there exists a functor

dR′′ : PolyFp
→ CAlg(D(Fp[ϵ]))

which is a deformation of dR such that dR′ is the restriction of left Kan extension of dR′′ to QRSP

algebras.

Proof. Let P be a finitely generated polynomial algebra over Fp. Let C•(P ) denote the Čech
conerve of the map P → Pperf . We note that C•(P ) is a cosimplicial object in the category QRSP.
Applying dR′ to C•(P ) we obtain a cosimplicial Fp[ϵ]-algebra and we define dR′′(P ) to be the
totalization of this cosimplicial algebra as an object of CAlg(D(Fp[ϵ])). This defines the functor

dR′′ : PolyFp
→ CAlg(D(Fp[ϵ])).

First, we check that dR′′ defined as above is indeed a deformation of dR. By definition dR′′(P ) =

Tot(dR′(C•(P ))) which is an inverse limit of the pro-object {Totn(dR′(C•(P )))} . Since dR(P )→
dR(Pperf) is descendable [BS19, Lemma 8.6], it follows that {Totn(dR(C•(P )))} is a pro-constant
pro-object. Therefore, by Lemma 5.2.2, {Totn(dR′(C•(P )))} is a pro-constant pro-object. This
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proves that Tot(dR′(C•(P )))⊗Fp[ϵ] Fp ≃ Tot(dR(C•(P ))); thus dR′′ is indeed a deformation of
dR.

Next, we need to check that the left Kan extension of dR′′ is naturally isomorphic to dR′ on
QRSP algebras. To do so, we will first construct a natural map dR′′(P ) → dR′(S) for a map
P → S where P is a finitely generated polynomial Fp-algebra and S is a QRSP algebra. Let C•(P )

denote the Čech conerve of P → Pperf and C•(S/P ) denote the Čech conerve of S → S ⊗P Pperf .

There is a natural map of cosimplicial rings C•(P )→ C•(S/P ). Applying dR′ we obtain a map
dR′(C•(P )) → dR′(C•(S/P )). Thus in order to construct the map dR′′(P ) → dR′(S), it would
be enough to show that Tot(dR′(C•(S/P ))) ≃ dR′(S), since by definition Tot(dR′(C•(P ))) ≃
dR′′(P ). For that, it would be enough to show that dR′(S) → dR′(S ⊗P Pperf) is descendable.
But that follows (by going modulo ϵ) since dR(S) → dR(S ⊗P Pperf) is descendable; this is
true because the latter map is a base change of the descendable map dR(P )→ dR(Pperf). Going
back, this constructs the required map dR′′(P )→ dR′(S). Now, writing dR′′(S) for the left Kan
extension of dR′′ evaluated at S, we obtain a natural map dR′′(S)→ dR′(S). By construction, this
map is an isomorphism after going (derived) modulo ϵ and thus must be an isomorphism.

The following lemma was used in the above proof.

Lemma 5.2.2. Let R be a ring and I be a nilpotent ideal. Let {Bn} be a pro-object in D(R). If

{Bn ⊗R R/I} is a pro-constant pro-object then {Bn} is pro-constant itself.

Proof. Let C be the collection of objects u in D(R) such that {Bn ⊗R u} is a pro-constant pro-
system. Then C is a thick tensor-ideal which contains R/I by assumption. Since R has a finite
filtration whose graded pieces are R/I-modules (i.e., the I-adic filtration) it follows that R ∈ C.
Since R is the unit under tensor this gives that {Bn} is pro-constant.

Second proof of Proposition 5.1.2. We follow the notations and the strategy from the first proof of
Proposition 5.1.2. Instead of invoking Proposition 2.5.11, by Proposition 2.5.4, it would be enough
to show that the pointed Gperf

a -module r(dR′) over Fp[ϵ] is isomorphic to u∗X where X is a pointed
Ga-module which is a deformation of W [F ]. Here the functor u∗ is from Proposition 2.2.17.

We note that for derived de Rham cohomology, there is a natural transformation gr0 : dR(A)→
A obtained from taking gr0 of the Hodge filtration. By left Kan extension from the case of
polynomial algebras, one sees that the relative derived de Rham cohomology satisfies dRB/A ≃
dR(B) ⊗dR(A) A, where the tensor product is taken using the gr0 map. This isomorphism also
appears in [GL21, Prop. 3.11]. Using Proposition 2.3.6 and applying the unwinding functor, one
obtains a natural transformation dR′ → id[ϵ] as functors from QRSP → AlgFp[ϵ] deforming the
gr0 : dR→ id transformation. Using the construction as in Lemma 5.2.1 and left Kan extension,
this extends to a natural transformation dR′′ → id[ϵ] as functors from AlgFp

→ CAlg(D(Fp[ϵ])).
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We will define dR′′′ on the category of arrows (A→ B) of Fp-algebras. We define dR′′′(A→
B) := dR′′(B) ⊗dR′′(A) A[ϵ] where we use the map dR′′(A) → A[ϵ]. Now this takes values in
CAlg(D(Fp[ϵ])) but we will only use it in case of objects (A→ B) where it would give a discrete
ring as output. We note that dR′′′(A → A) ≃ A[ϵ] and for a QRSP algebra S, dR′′′(S♭ → S) ≃
dR′′(S) ≃ dR′(S), where the last isomorphism comes from Lemma 5.2.1. Further dR′′′(Fp[x]→
Fp) is a discrete ring as it is so (derived) modulo ϵ by using [Bha12, Lemma 3.29]. It also follows
that dR′′′(Fp[x]→ Fp) is a flat algebra over Fp[ϵ]. We record two lemmas.

Lemma 5.2.3. Spec dR′′′(Fp[x]→ Fp) has the structure of a pointed Ga-module over Fp[ϵ] and it

is a deformation of W [F ] as a pointed Ga-module.

Proof. We note that in the arrow category of Fp-algebras, the object (Fp[x]→ Fp[x]) is a coring,
i.e., it corepresents the functor (A → B) → A which is naturally valued in rings. Further the
object (Fp[x] → Fp) is a a comodule over (Fp[x] → Fp[x]) since (Fp[x] → Fp) corepresents the
functor (A → B) → Ker(A → B) which is naturally an A-module and further admits a map
of A-modules Ker(A → B) → A. This provides a map (Fp[x] → Fp[x]) → (Fp[x] → Fp) of
(Fp[x]→ Fp[x])-comodules. Applying the de Rham cohomology functor dR to this yields a map
Fp[x] → dR(Fp[x] → Fp) of Fp[x]-comodules. Using the fact that dR(Fp[x] → Fp) ≃ Fp⟨x⟩
[Bha12, Lemma 3.29] and Proposition 2.4.10 we see that Spec dR(Fp[x]→ Fp) is isomorphic to
W [F ] as a pointed Ga-module. Now the lemma follows from applying dR′′′ to the same diagrams
and going (derived) modulo ϵ.

Lemma 5.2.4. The pullback u∗Spec dR′′′(Fp[x] → Fp) is isomorphic to r(dR′) as a pointed

Gperf
a -module.

Proof. We again look at the arrow category of Fp-algebras. The object (Fp[x
1/p∞ ]→ Fp[x

1/p∞ ]) is
a coring as it corepresents the functor (A→ B)→ A♭. The object (Fp[x

1/p∞ ]→ Fp[x
1/p∞ ]/x) is

a comodule over (Fp[x
1/p∞ ]→ Fp[x

1/p∞ ]) as it corepresents the functor (A→ B)→ Ker(A♭ →
B). Further, this produces a map (Fp[x

1/p∞ ] → Fp[x
1/p∞ ]) → (Fp[x

1/p∞ ] → Fp[x
1/p∞ ]/x) of

(Fp[x
1/p∞ ]→ Fp[x

1/p∞ ])-comodules. Lastly, we have a map f : (Fp[x]→ Fp[x])→ (Fp[x
1/p∞ ]→

Fp[x
1/p∞ ]). By taking pushout of the map

(Fp[x]→ Fp[x])→ (Fp[x]→ Fp)

of (Fp[x]→ Fp[x])-comodules along the map f we obtain the map

(Fp[x
1/p∞ ]→ Fp[x

1/p∞ ])→ (Fp[x
1/p∞ ]→ Fp[x

1/p∞ ]/x)
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of (Fp[x
1/p∞ ]→ Fp[x

1/p∞ ])-comodules. The rest follows from applying dR′′′ to all the diagrams.
Indeed, the statement of the lemma now depends upon certain natural colimit diagrams being
isomorphisms, which holds since they are known to be isomorphisms after going (derived) modulo
ϵ.

Now the two lemmas above show that r(dR′) is indeed a pullback of a deformation of W [F ] as
a pointed Ga-module, which finishes the proof.

Remark 5.2.5. The proof in Section 5.2 somewhat formally reduces the study of deformations of
the pointed Gperf

a -module underlying u∗W [F ] by showing that any such deformation over Fp[ϵ]/ϵ
2

must appear as a pullback of a deformation of W [F ] as a pointed Ga-module along the map of
ring schemes u : Gperf

a → Ga. This phenomenon seems to occur more generally under suitable
conditions. We formulate and sketch a proof of the following proposition which is motivated by
Drinfeld’s construction of taking the cone of a quasi-ideal in [Dri21]. We note that the construction
of taking the cone is valid for any pointed Ga-module X or any pointed Gperf

a -module Y . However,
the cone in this generality only has the structure of a group stack and not a ring stack.

Proposition 5.2.6. Let X be a pointed Ga-module which is full of rank 1 (cf. Definition 2.3.3). Let

M be a deformation of u∗X as a pointed Gperf
a -module over Fp[ϵ]/ϵ

2. Then M ≃ u∗X ′ where X ′ is

a deformation of X over Fp[ϵ]/ϵ
2 as a pointed Ga-module. Here u∗ is the functor constructed in

Proposition 2.2.17.

Proof. One can take the cone of the map M → Gperf
a to obtain a flat map f : Gperf

a → [Gperf
a /M ].

Here [Gperf
a /M ] has the structure of a group stack and the map f is additionally a map of group

stacks. Formation of the cone commutes with base change and therefore the cone of u∗X → Gperf
a

is given by Gperf
a → [Gperf

a /M ] × SpecFp. Since X is full of rank 1, by definition u∗X is full
of fractional rank 1 and hence by Proposition 2.3.6, there is a map α♮ → M of pointed Gperf

a -
modules. By taking cones, we obtain a map of group stacks Ga → [Gperf

a /M ] which factors the
map f along the map of ring schemes Gperf

a → Ga. Since the map Gperf
a → Ga is faithfully flat, it

follows that the map Ga → [Gperf
a /M ] is flat. By taking the kernel of the map Ga → [Gperf

a /M ],

we obtain a pointed Ga-module X ′ which is flat over SpecFp[ϵ]/ϵ
2. Since M is the kernel of f

by construction, it follows that u∗X ′ ≃ M. Since taking kernel commutes with base change, it
follows that X ′ × SpecFp is the kernel of Ga → [Gperf

a /M ]× SpecFp. Since u∗X is the kernel of
Gperf

a → [Gperf
a /M ]× SpecFp it follows that u∗X ≃ u∗(X ′ × SpecFp). This descends to a natural

isomorphism X ≃ X ′ × SpecFp by Proposition 2.2.17. Thus X ′ is indeed a deformation of X and
it meets the necessary requirements of the proposition.

Remark 5.2.7. We make an informal remark about some of the constructions that appear in this
paper. Using the constructions in Chapter III, for any quasi-ideal X in Ga over Fp, one can define
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a “cohomology theory” UX (equipped with a Hodge filtration) as a functor UX : QSynFp
→

CAlg(D(Fp)). To do so, let us assume that the quasi-ideal X is such that the functor Un(u∗X) :

QRSP→ CAlg(D(Fp)) is a sheaf [BMS19, Lemma 4.27]. Then, by [BMS19, Prop. 4.31], we get
an extended functor that we may call UX : QSynFp

→ CAlg(D(Fp)). We point out that it would be
interesting to isolate a certain class of quasi-ideals for which the sheaf property above is always
true. For example, it holds true when X = W [F ] or zero. Even if the sheaf property is not true, one
can always right Kan extend the functor Un(u∗X) along QRSP→ QSynFp

to obtain a functor UX
as above. In what follows, we let [Ga/X] denote the ring stack obtained by considering the cone of
the quasi-ideal X.

In Table V.1 below, we make a list of rough analogies and comparisons that explain the
constructions appearing in Proposition 5.2.6 from a cohomological perspective. The left hand side
of the table consists of certain geometric objects such as quasi-ideals or stacks and some natural
maps between them. The right hand side of the table consists of values of the cohomology theory
UX evaluated at certain Fp-algebras and some maps between them. In principle, (whenever u∗X is
a nilpotent quasi-ideal) one should expect to obtain the objects on the right hand side by applying
the derived global section (of the structure sheaf) functor RΓ( · ,O) to the objects on the left hand
side, i.e., UX(Fp[x]) ≃ RΓ([Ga/X],O), UX(Fp[x

1/p∞ ]/x) ≃ RΓ(u∗X,O) etc.

In the case when X = W [F ], the functor UX : QSynFp
→ CAlg(D(Fp)) is S 7→ dR(S) and

the stack [Ga/X] is (A1
Fp
)dR [Dri21, 1.5.1]. The fact that the objects on the right hand side of the

table are obtained by taking derived global sections of the corresponding objects on the left can be
seen by noting some facts from the stacky approach to de Rham cohomology [Dri21, 1.5.1, 3.5.1],
as well as some results on derived de Rham cohomology [BMS19, Prop. 8.12]. This also gives a
rough comparison between the stacky approach and the more explicit approach taken in our paper.
When X is the zero quasi-ideal, then the functor UX : QSynFp

→ CAlg(D(Fp)) is simply S 7→ S

and the stack [Ga/X] is simply Ga.

Table V.1: Quasi-ideals and cohomology theories

Quasi-ideals or stacks Cohomology theory

[Ga/X] UX(Fp[x])

Ga → [Ga/X] gr0Hodge : UX(Fp[x])→ Fp[x]

X = Ker(Ga → [Ga/X]) UX(Fp[x]→ Fp) = Fp ⊗UX(Fp[x]) Fp[x]

u∗X UX(Fp[x
1/p∞ ]/x)

α♮ → u∗X gr0Hodge : UX(Fp[x
1/p∞ ]/x)→ Fp[x

1/p∞ ]/x
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Remark 5.2.8. Antieau and Mathew asked us if the statement of Theorem 5.0.1 remains valid if A
is an animated Artinian local ring with residue field Fp. The answer in this case does not seem to
follow directly from the results in our paper. One can hope to carry out the strategy of the proof
in the case where A is a discrete ring, but for that one would have to talk about structures such as
pointed Ga-module or Gperf

a -module over an animated Artinian local ring A. We hope to address
this in future.

Remark 5.2.9. It seems to be an interesting question to classify all quasi-ideals in Ga or Gperf
a .

In particular, motivated by Drinfeld’s construction of prismatization, it seems interesting to study
the moduli stack Q of all quasi-ideals in Ga. There is a canonical ring stack R over Q obtained
by taking the cone of each quasi-ideal in Q. By using the stacky approach and the version of the
unwinding explained in Example 3.0.1, it seems plausible to construct a “universal cohomology
theory” U for varieties over Fp which would specialize to UX from Remark 5.2.7 for a quasi-ideal
X ∈ Q.
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APPENDIX A

An Elementary Construction of the Tensor of a Module with a Module
Scheme

In Section 3.1, we discussed how the construction of tensoring a module with a module scheme.
In this appendix, we will give a more elementary account of this construction (cf. Construction 3.1.1).
Let X = SpecB be an R-module scheme over A (Definition 2.1.1). We will describe an elementary
way to construct the algebra TX(M) for an R-module M. We include this appendix to give some
idea about the equations that are hiding behind the categorical approach taken in Chapter III.

Construction 1.0.1. Let us describe a canonical representative of TX(M) here. We take the
polynomial algebra on indeterminates (m,x) for every m ∈M and x ∈ B over the ring A and call
it F. Let I be the ideal generated by the following elements:

1) (m,x+ y)− (m,x)− (m, y)

2) (m,xy)− (m,x)(m, y)

3) (m, a)− a, where a ∈ X is a · 1 ∈ X for some a ∈ A.

4) (rm, x) − (m,mr(x)) where, for r ∈ R, let mr : B → B denote the “comultiplication by r”
map on B = Γ(X,OX).

5) (m+ n, x)−
∑

i(m,ui)(n, vi), where if m : B → B ⊗A B denotes the comultiplication on X ,
we choose a reprsentative of m(x) =

∑
i ui ⊗ vi. One can alternatively avoid this choice and do the

same for all such representatives. Because of the elements already added in I in 1, 2 and 3, it does
not matter.

Proposition 1.0.2. In the construction described above, one has an isomorphism

F/I ≃ TX(M)

of A-algebras.

Proof. The proof follows via a definition chase. Let S be an arbitrary A-algebra. By Construc-
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tion 3.1.1, it would be enough to show that there is a natural isomorphism

HomAlgA(F/I, S) ≃ HomModR(M,X(S)).

The right hand side amounts to giving an R-module map from M to X(S). Just giving a set
theoretic map from M to X(S) amounts to choosing elements (m,x) ∈ S for every m ∈M and x ∈
B such that the map from B → S given by x→ (m,x) is an A-algebra map. These corresponds to
the elements in 1,2 and 3 being in the ideal I . Secondly, one needs to guarantee that the set theoretic
map m → (m,−) := (x → (m,x)) from M → X(S) is an R-module map for the natural R-
module structures on both sides. For this, firstly, one needs to understand how to add (m,−)+(n,−)
in X(R). By a diagram chase, we note that, ((m,−)+(n,−)) = ((m,−)⊗ (n,−))◦m. Evaluating
this at x ∈ B corresponds to elements of the type 5 being in the ideal I. Secondly, the map
m → (m,−) needs to be R-linear. One notes that r · (m,−) = (m,−) ◦mr. Evaluating this at
x ∈ X corresponds to 4. However, by construction, this exactly amounts to giving an A-algebra
map from F/I to S. This finishes the proof.

Remark 1.0.3. The definition of the elements in type 5 appearing in Construction 1.0.1 was a bit
awkward. Alternatively, one could first take the ideal I ′ generated by elements of type 1, 2 and 3.
Form the quotient F/I ′. Then we have an A- algebra map (m,−) : X → F/I ′ for any m ∈ M

given by x→ (m,x). For m,n ∈M, the element in type 5 can be described as

(m+ n, x)− ((m,−)⊗ (n,−) ◦ m(x))

in F/I ′. Note that F/I ′ is the result of “tensoring” the A-algebra underlying X with the set

underlying M.

Remark 1.0.4. If X is a graded module scheme, i.e., if the algebra B = Γ(X,OX) has a grading
and m and ma etc. are graded homomorphisms with respect to the grading on X and the (induced)
grading on X ⊗X , then M ⊗X has a natural grading by setting deg(m,x) := deg x. To see this,
we see that setting deg(m,x) := deg x gives a grading on F and I is a homogeneous ideal with
respect to this grading by design.
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APPENDIX B

Some Instances of Nontrivial Deformations

In this appendix, we focus on the algebra Fp[x1/p∞ ]

x
. We will show that the algebra dR

(
Fp[x1/p∞ ]

x

)
has nontrivial deformations over Fp[ϵ] :=

Fp[ϵ]

ϵ2
along with lifts of all the functorial endomorphism

coming from endomorphisms of Fp[x1/p∞ ]

x
. More precisely, we will show that there is an algebra B,

flat over Fp[ϵ], which is a nontrivial deformation of dR
(

Fp[x1/p∞ ]

x

)
such that the map of monoids

dR : End

(
Fp[x

1/p∞ ]

x

)
→ End

(
dR

(
Fp[x

1/p∞ ]

x

))

induced by the functor dR factors over the map of monoids End(B)→ End
(

Fp[x1/p∞

x

)
, which is

obtained by reducing modulo ϵ. This shows the importance and effectiveness of the Hopf structures
appearing in Proposition 2.5.11 and also gives a sense of the strength of Theorem 1.1.1: one really
needs to work with a lot of data to obtain the uniqueness of functorial deformation; only considering
some of these data may lead to other deformations.

Notation 2.0.1. Let S be a ring and I be an ideal in S. We let EndI(S) denote the submonoid of
End(S) consisiting of maps φ : S → S such that φ(I) ⊆ I.

Remark 2.0.2. Under the above notation, there is a natural morphism of monoids EndI(S) →
End(S/I).

Before we state the next proposition, let us recall that there is an isomorphism

dR

(
Fp[x

1/p∞ ]

x

)
≃ Fp[x

1/p∞

0 , x1, . . . , xn, . . .]

(xp
i )

.

Proposition 2.0.3. The map of monoids

dR : End

(
Fp[x

1/p∞ ]

x

)
→ End

(
dR

(
Fp[x

1/p∞ ]

x

))
lifts to give a map
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u : End

(
Fp[x

1/p∞ ]

x

)
→ End(xp

i )

(
Fp[x

1/p∞

0 ]

xp
0

[x1, . . . , xn, . . .]

)
.

Proof. We start by defining a map

u′ : End

(
Fp[x

1/p∞ ]

xp

)
→ End(xp

i )

(
Fp[x

1/p∞

0 ]

xp
0

[x1, . . . , xn, . . .]

)
.

We note that End
(

Fp[x1/p∞ ]

xp

)
can be identified with certain elements of

(
Fp[x1/p∞ ]

xp

)♭
, i.e., those

elements that corresponds to a sequence (. . . , f3, f2, f1, 0) such that fp
i+1 = fi and fp

1 = 0. We
will let F1 be a choice of an element such that f1 = x0F1. Note that F1 is not well-defined,
however, F p

1 is well-defined, and independent of the choice of F1. We define the map u′ above by

setting u′(. . . , f2, f1, 0) to the endomorphism of Fp[x
1/p∞
0 ]

xp
0

[x1, . . . , xn, . . .] that sends x
1

pi

0 7→ fi+1

for i ≥ 0 and xi 7→ xiF
pi

1 for i ≥ 1. This defined a set theoretic map from End
(

Fp[x1/p∞ ]

xp

)
to

End(xp
i )

(
Fp[x

1/p∞
0 ]

xp
0

[x1, . . . , xn, . . .]

)
. Below we will check that it is a map of monoids.

Let us take two elements of End
(

Fp[x1/p∞ ]

x

)
, which we denote as f = (. . . , f2, f1, 0) and

g = (. . . , g2, g1, 0). Let us say that their composition g · f = h := (. . . , h2, h1, 0). Let us write
f1 =

∑
i(n)≥pn
n≥0

ai(n)x
i(n)/pn

0 . Then it follows that

h1 =
∑

i(n)≥pn
n≥0

ai(n)g
i(n)
n+1.

Setting r(n) := i(n)− pn, one has

h1 =
∑

r(n)≥0

(
ai(n)g

r(n)
n+1

)
g1 =

∑
r(n)≥0

(
ai(n)g

r(n)
n+1

)
x0G1.

Thus, we can set H1 :=
∑

r(n)≥0

(
ai(n)g

r(n)
n+1

)
G1, which satisfies h1 = x0H1. Thus, the endomor-

phism u′(g · f) = u′(h) sends x
1

pi

0 7→ hi+1 for i ≥ 0 and xi → xiH
pi

1 for i ≥ 1.

With the above understanding in mind, we verify that u′(g)u′(f) gives the same map. It is easy to

check that (u′(g)u′(f))(x
1

pi

0 ) = u′(h)(x
1

pi

0 ) for i ≥ 0. Next, we will check that (u′(g)u′(f))(xi) =

xiH
pi

1 . According to the notations introduced above, we can write F1 =
∑

i(n)≥pn
n≥0

ai(n)x
i(n)−pn

pn

0 so that
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f1 = x0F1. Therefore, we have

F p
1 =

∑
i(n)≥pn
n≥0

api(n) · x
i(n)−pn

pn−1

0 .

Now u′(g)(F p
1 ) =

∑
i(n)≥pn;n≥0

api(n)g
i(n)−pn
n . Thus, we have (u′(g)u′(f))(x1) = u′(g)(x1F

p
1 ) =

x1G
p
1u
′(g)(F p

1 ) = x1G
p
1

∑
i(n)≥pn;n≥0

api(n)g
i(n)−pn
n = x1H

p
1 . It follows similarly that (u′(g)u′(f))(xi) =

xiH
pi

1 for i > 1 as desired.

One constructs the map

u : End

(
Fp[x

1/p∞ ]

x

)
→ End(xp

i )

(
Fp[x

1/p∞

0 ]

xp
0

[x1, . . . , xn, . . .]

)

by using the isomorphism Fp[x1/p∞ ]

x
→ Fp[x1/p∞ ]

xp . Now going modulo the ideal (xp
1, . . . , x

p
n, . . .) in

the ring appearing on the right hand side, the map we get is the same as the map induced by dR.

For this, we actually check the induced map on crystalline cohomology and go modulo p. This ends
the proof.

We note that the map of monoids

u′ : End

(
Fp[x

1/p∞ ]

xp

)
→ End(xp

i )

(
Fp[x

1/p∞

0 ]

xp
0

[x1, . . . , xn, . . .]

)

constructed above gives rise to a map

u1 : End

(
Fp[x

1/p∞ ]

xp

)
→ End

(
Fp[ϵ][x

1/p∞

0 ]

xp
0

[x1, . . . , xn, . . .]

)

by base change along Fp → Fp[ϵ]. We note the following lemma.

Lemma 2.0.4. For all i ≥ 1, let ci ∈ Fp be any choice of elements and let I be the ideal

(xp
1−c1ϵx2, x

p
2−c2ϵx3, . . . , x

p
n−cnϵxn+1, . . .). The image of the map u1 above lies in the submonoid

EndI

(
Fp[ϵ][x

1/p∞

0 ]

xp
0

[x1, . . . , xn, . . .]

)
.

Proof. Let us say that f = (. . . , f2, f1, 0) ∈ End
(

Fp[x1/p∞ ]

x

)
, and as before, we write f1 = x0F1
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for some choice of F1. We need to prove that u1(f) preserves the ideal I. We note that u1(f) is the

Fp[ϵ]-algebra map that sends x
1

pi

0 7→ fi+1 for i ≥ 0 and xi 7→ xiF
pi

1 for i ≥ 1. Using this description,
we see that u(f)(xp

n − cnϵxn+1) = xp
nF

pn+1

1 − cnϵxn+1F
pn+1

1 = F pn+1

1 (xp
n − cnϵxn+1) ∈ I. This

finishes the proof.

Now we are ready to do the promised construction.

Construction 2.0.5. By the above lemma, we have a map

u1 : End

(
Fp[x

1/p∞ ]

xp

)
→ EndI

(
Fp[ϵ][x

1/p∞

0 ]

xp
0

[x1, . . . , xn, . . .]

)
.

We set

B :=
Fp[ϵ][x

1/p∞

0 , x1, . . . , xn, . . .]

(xp
0, x

p
1 − c1ϵx2, x

p
2 − c2ϵx3, . . . , x

p
n − cnϵxn+1, . . .)

for nonzero choices ci ∈ Fp. Then B is a nontrivial deformation of dR
(

Fp[x1/p∞ ]

x

)
. By construction,

have a map of monoids

u2 : End

(
Fp[x

1/p∞ ]

xp

)
→ End(B).

By using the isomorphism Fp[x1/p∞ ]

x
→ Fp[x1/p∞ ]

xp , we finally produced the necessary map of monoids

U : End

(
Fp[x

1/p∞ ]

x

)
→ End(B).

Going moduli ϵ in B, this reduces to the map

dR : End

(
Fp[x

1/p∞ ]

x

)
→ End

(
dR

(
Fp[x

1/p∞ ]

x

))
.

Thus, U gives the desired construction.

80



BIBLIOGRAPHY

[Ber74] P. Berthelot. Cohomologie cristalline des schémas de caractéristique p > 0. Lecture Notes
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[Ill72] L. Illusie. Complexe cotangent et déformations. II. Lecture Notes in Mathematics, Vol.
283. Springer-Verlag, Berlin-New York, 1972.

[Ill79] L. Illusie. Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm.
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