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Abstract

Lower limb robotics holds a potential to transform human mobility by as-

sisting locomotor activities. Especially, robotic exoskeletons which assist lower

limbs by offloading the body from weight, can enable people to walk and run

farther with less effort, and carry heavy loads. Despite the promise of wearable

technologies, we don’t often see these devices in daily life. I argue that there is a

gap in howwe design and control robotic systems. To close this gap, I focus on

three key elements: actuation, control, and customization. First, I characterize

a high-performance brushless DC (BLDC) motor, which is an emerging actu-

ation system for lightweight and efficient robots. Second, I expand upon my

first work, and provide a tutorial for robot designers who want to utilize these

emerging motors for their robotic applications. This includes a consolidated

set of governing equations for modeling BLDCmotors, and common mistakes

from designers when interpreting specifications provided by motor manufac-

turers. Third, I transition to the control aspect, I describe an online customiza-

tion framework by optimizing user preference for controlling robotic exoskele-

ton. Lastly, I present an intent recognition system which predicts users’ intent

ahead of time, allowing seamless control across multiple activities. With these

key elements being addressed, my dissertation lays the groundwork for trans-

lating these technologies outside of the lab, in the real world.
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Chapter 1

Introduction

Lower-limb exoskeletons have the potential to improve the quality of life by assisting the

limbs by offloading the body from the stress and loading associated with the labor [1].

Due to the recent advancement in hardware technology, there has been a proliferation of

commercially available lower-limb exoskeletons for the past 20 years [2, 3, 4, 5]. The in-

crease of numbers in exoskeletons are largely driven by the accessibility of electric motors

which accounts for 72 % of lower limb exoskeletons [6]. Despite the growth of exoskele-

tons in the market, we don’t see these technologies regularly in our daily life. Assistive or

rehabilitation exoskeletons, which are targeted for clinical populations (e.g. paraplegic),

are often heavy or either fixed on a treadmill [7, 8, 9]. Vast majority of them use servo mo-

tors which accompany gear reduction and sensors for precise position measurement [10].

The introduction of gears and sensors results in increase of weight and frictions which

reduces the agility while limiting the operation time of the device due to the inefficiency

of the system. On the other hand, augmentative lower limb exoskeletons, augments the

able-bodied users’ activities by following users’ movement [11]. There has been innova-

tive lightweight designs introduced in the market such as HondaWalking Assist [12] and

Samsung GEMS [5], which employs high torque-density motors (e.g. brushless motors);

however, they are limited in providing the degree of torque assistance (peak torque of

6Nm and 12Nm for Honda Walking Assist and GEMS, respectively) that might be nec-
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essary to support the user. In addition, often the controllers accompanied with commer-

cially available exoskeletons, apply predefined kinematic or kinetic trajectories, which are

nonintuitive and may interfere with users intended movement [11]. Therefore, the use of

these technologies in daily lives remains limited.

A critical step in the development of lightweight, high performance exoskeletons is

the modeling and selection of brushless electric DC motors (BLDC) motors. Due to mul-

tiple benefits (e.g. reduction in friction, torque density) accompanied with BLDC motors

over brushed DC motors, BLDC motors has been gaining popularity as a choice for the

lightweight robotic applications [13, 14, 15, 16, 17]. The electromechanical modeling anal-

yses are often conducted as a priori, to ensure the motor is properly sized for the applica-

tion. In other words, modeling is conducted to ensure themotor meets the torque-velocity

requirements of the application while minimizing the mass of the motor. This process is

especially important for lightweight robotic systems, where mass dictates the success of

the applications. However, the proper assessment of BLDCmotors for use in these systems

has been challenging due to its obscurity in motor manufacturers’ datasheets, fromwhich

motor’s characteristic are obtained. A BLDC motor datasheet often contains inconsistent

representation across different manufacturers, while omitting important information re-

quired for analyzing the motors. For example, torque constants are typically reported

without any representations described (e.g. phase, RMS, q-axis); since BLDCmotors have

three alternating currents, it is unclear with respect to which currents are used to obtain

the constants. For certain BLDCmotors, they are application specific (e.g. drone motors),

which challenges the use in wearable robotics despite their benefits [18]. The confusion

is largely stemming from lack of understanding of the governing equations of BLDCMo-

tors and error in converting BLDC characteristics into ‘brushed motor’ analogue. Hence,

proper interpretation of the datasheet and understanding the operation principle of BLDC

motors are required to utilize BLDC motors for building efficient and high performance
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exoskeletons.

Despite the recent advancement in hardware driven by BLDC motors, developing an

intuitive and autonomous controller remains a challenge. Modern control strategies for

wearable robots include controller parameters to describe assistance profiles to the wearer

[19]. The strategies are comprised of torque control [16, 20, 21], position control [22, 23],

and impedance control [24, 25, 26, 27], etc. These parameters should be tuned to account

for specific activity or individuals. The choice of parameters are paramount since they

alter the gait mechanics, ultimately affecting physiology and experience of the user. In

general, there are two approaches to adjust these parameters: 1. expert-driven tuning

[28, 29, 30], 2. human-in-the-loop optimization [31, 20, 32, 33]. Expert-driven tuning in-

volves gait experts who observe the walking behavior of the user and adjust parameters

to match the kinetic or kinematic profile of natural biomechanics. Human-in-the-loop

uses an optimizer which automatically identifies the settings that minimize a physiologi-

cal objective (e.g. metabolic cost). While encouraging, expert-driven tuning requires ex-

pert knowledge, and human-in-the-loop optimization requires a certain time and a suite

of sensor setup to measure metabolic energy, which are both time and resource consum-

ing. Therefore, it is impractical to use these methods in real-world scenarios. Especially,

human-in-the-loop optimization uses a single physiological objective to minimize; where

it may not account for the myriad of factors that contribute to users while performing

daily activities. For example, when individuals are going down the stairs, they may pri-

oritize multiple objectives at the same time such as balance, walking speed and comfort

etc. One way to overcome the conventional methods is to tune parameters based on what

people want, using user preference. The user-preference-based tuning can attain more than

one objective while not relying on expert knowledge nor expensive sensors, which allows

optimizing controller parameters outside of laboratories.

Recently, studies on using user preference have been emerging as a strategy for con-

3



trolling wearable robots. One line of work investigates approaches where the user self-

explores the controller space (i.e. user-driven, self-tuning methods) [34, 35, 36]. While

promising, these tuning methods require the user to keep track of their exploration to

identify the settings, and every time they have to go through the procedure from the start.

In other words, it is unlikely users would remember the settings they explored from the

other day when they tune the settings. In addition, these approaches might not scale up

with the dimensions of the parameters. Another line of work studies tuning controllers

automatically based on preferences [37, 38, 39]. These studies used Bayesian optimization

by modeling a utility function using Gaussian Process and sample control parameters to

maximize the function. To validate their system, they applied it to Altlante, a full lower

body exoskeleton developed by Wandercraft combined with a controller stemming from

the bipedal robot community. As the robot is intended for clinical populations, it drives

and overrides the user’s movement. Therefore, it is unclear how this approach performs

on identifying users preference with augmentative robots where the controller has a sym-

biotic relationship with the users.

In large, the goal of exoskeleton is to build a controller which does not interfere with

the intendedmovement of thewearerwhile assisting the intendedmovement. In addition,

to enable the use of exoskeletons in daily lives, the controller should account for multiple

activities while transitioning to these activities seamlessly and autonomously. Many ap-

plications enable these activity transitions by using external commands from the users

such as key-fob cues, which are unintuitive and induce cognitive burden [40]. Thus, it

is crucial to develop a controller which infers the wearer’s intention in advance and acts

autonomously so that the wearer can perform and transition to different activities in a

seamless manner. One approach to infer the wearer’s intended activity is to use an intent

recognition framework [41, 42, 43, 44]. The approach predicts the upcoming activities of the

user in every walking step using sensor information from the user, robotic system, and
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environment with data-driven modeling and sensor fusion. Intent recognition system is

used as a high-level controller where it assigns activity-specific instruction to mid-level

controllers for how to provide mechanical effort. While promising, the activity-specific

controller assigned from the intent recognition system typically assigns a set of generic

control parameters independent from users. In other words, the assistance from the ex-

oskeletonmight not be optimal for individuals. Therefore, connecting the controllers with

mid-level controllers that personalize and optimize to users should be accompanied as a

holistic controller design.

While numerous designs and control of exoskeletons have been proposed, there is a

gap in how we design and control these systems efficiently and translate them into the

real-world. The main objective of my proposal is to close this gap by modeling and opti-

mizing the lower-limb exoskeleton from actuator to human level. The objective will be achieved

by following aims: characterization and modeling of BLDC motors (Chapter 2 and 3),

preference-in-the-loop optimization (Chapter 4), development of intent-recognition sys-

tem (Chapter 5). I believe these three aims lay the groundwork for the core elements of

exoskeletons: actuation, control and customization, and will translate exoskeleton tech-

nologies in everyday lives.
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Chapter 2

Empirical Characterization of a

High-performance Exterior-rotor Type Brushless

DCMotor and Drive

2.1 Abstract

Recently, brushless motors with especially high torque densities have been developed for

applications in autonomous aerial vehicles (i.e. drones), which usually employ exterior

rotor-type geometries (ER-BLDC motors). These motors are promising for other appli-

cations, such as humanoids and wearable robots; however, the emerging companies that

produce motors for drone applications do not typically provide adequate technical spec-

ifications that would permit their general use across robotics—for example, the specifica-

tions are often tested in unrealistic forced convection environments, or are drone-specific,

such as thrust efficiency. Furthermore, the high magnetic pole count in many ER-BLDC

motors restricts the brushless drives able to efficiently commutate these motors at speeds

This chapter is currently published in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)
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needed for lightly-geared operation. This paper provides an empirical characterization of

a popular ER-BLDC motor and a new brushless drive, which includes efficiencies of the

motor across different power regimes, identification of the motor transfer function coeffi-

cients, thermal response properties, and closed loop control performance in the time and

frequency domains. The intent of this work is to serve as a benchmark and reference for

other researchers seeking to utilize these exciting and emerging motor geometries.

2.2 Introduction

The usage of electric motors in autonomous aerial vehicles (i.e. drones) has advanced the

proliferation of new brushless motor sizes and geometries that may have important impli-

cations in other areas of robotics. These motor geometries were developed to provide the

high torque required for drone applications, without the need for a transmission. Trans-

missions are often undesirable because they universally add weight and audible noise, as

well as reduce the system’s efficiency and specific power—concepts which are especially

important for drones and other applications, such as wearable robots. Consequently, mo-

tor manufacturers have expanded the availability of high torque exterior-rotor type (ER-)

BLDC motors, which can be used in direct drive implementations for autonomous aerial

vehicles. These ER-BLDC motors are usually larger in diameter, ranging from 2 ∼ 11 cm

in diameter, while only being 1 ∼ 2 cm in axial length. The large diameter stems from the

substantial torque that can be required, as motor torque is proportional to the square of

the radius.

The development and usage of ER-BLDC motors in the drone industry have outpaced

rigorous electromechanical characterization of the motors and associated drives. These

motors have gained popularity due to their low cost and high performance; however, ob-

taining specifications for these motors can be challenging. With the exception of a few re-
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search groups that study the implementation of ER-BLDC motors in robotic applications

[13, 15, 45], the motor specifications that can be obtained are often sparse, result from un-

realistic testing conditions, or in units that are specific to drone applications (e.g. thrust ef-

ficiency). Furthermore, ER-BLDCmotors utilized in drone applications implement open-

loop commutation systems, known as ‘electronic speed controllers’ (ESCs). These ESCs

cannot operate at low speeds, and thus are not appropriate forwearable robotics tasks (e.g.

locomotion). In addition, many common commercially-available BLDC drives cannot ef-

ficiently commutate some ER-BLDC motors, and more specialized options must be used.

The high number of pole pairs causes an increase in the transition rate between motor

windings, which can exceed the computational limitations of modern BLDC drives [46].

Fortunately, new drive systems have been developed specifically to commutate the high

number of pole pairs in some ER-BLDC motors at speeds required for some applications

[47]. However, a rigorous, empirical characterization of these motors and drives is yet to

be completed.

In this paper, we performed an empirical electromechanical characterization of a new

ER-BLDCmotor (T-motorU8-KV100, Nanchang, Jiangxi, China), originally created for the

drone industry. In addition, our characterization provides insight into the performance

of a recently-developed brushless drive (model: Dephy Actuator Package (DAP), Dephy

Inc., Maynard, MA, USA) capable of efficiently commutating the high number of pole

pairs (N=21). The main contributions of this paper are the complete characterization of

a popular ER-BLDC motor and accompanying drive, which will serve as a benchmark for

use of these motors in wearable robotic applications; the characterization included iden-

tification of the motor’s transfer function coefficients (e.g. torque / back-EMF constants,

rotor inertia, and viscous damping parameters), the empirically-determined efficiencies

across a range of torque-speed regimes, the thermal response properties, and the closed-

loop control performance in the time and frequency domains.
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2.3 Characterization Methods

This study focuses on the empirical characterization of a popular ER-BLDC motor that

has had recent success in autonomous robotic applications, namely the T-motor U8-KV100

(Nanchang, Jiangxi, China) [25, 48, 15, 49, 50, 51]. To this end, we investigated two ver-

sions of the U8-KV100; the first version was the unmodified U8-KV100, and the second

version included a custom modified housing, which facilities use in our application area

of interest (e.g. wearable robotics). The modified U8-KV100 was designed by Dephy Inc.,

and is slightly lighter (230 g vs. 240 g) and substantially thinner (17 mm vs. 26 mm)

than the standard U8-KV100. Both motor versions have a diameter of 87 mm and the elec-

tromagnetic properties of the motors are identical. The brushless drive used in this study

was also developed byDephy Inc., and is based on the open-source Flexible, Scalable Elec-

tronics Architecture (FlexSEA) project developed for wearable robotics applications [47].

The custom modified U8-KV100 motor, coupled to a commercial version of the FlexSEA

brushless drive, are known together as the Dephy Actuator Package (DAP). The DAP en-

ables field oriented control of the 21 pole pairs at speeds relevant for wearable robotics

(∼300 rad/s) and uses a PWM frequency of 20 kHz. The DAP includes built-in low level

control, including position, current, and impedance control options. Within the drive, po-

sition and current feedback loops are closed at 1 kHz and 10 kHz respectively. Onboard

sensing includes electrical states of themotorwindings and bus, aswell as a nine-axis iner-

tial measurement unit (model: MPU-9250, InvenSense, San Jose, CA, USA), temperature

sensing, and a 14-bit absolute encoder (model: AS5047P ams AG, Premstaetten, Austria).

Motor line to line currents are measured via a 12-bit current sensor within the drive and

line to line voltages are provided from the drive, obtained bymultiplying PWMduty cycle

by bus voltage. Depending on the application, peripheral electrical hardware can commu-

nicate with the DAP via Bluetooth, Universal Serial Bus (USB), Serial Peripheral Interface
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Figure 2.1: Experimental setup for characterization of the ER-BLDC motor and drive. Two identical motors
were coupled through a common shaft which included a torque sensor. During operation, the drivingmotor
converted electrical power (P e

in) intomechanical power (Pm
out), while the drivenmotor convertedmechanical

power (Pm
in) into electrical power (P e

out).

(SPI), Inter-Integrated Circuit (I2C), and RS-485. The DAP can be used with higher-level

control systems to select control type, set controller gains, provide reference signals, and

acquire data [47, 25]. Detailed specifications of the motors are described in Table 3.2.

In this paper, the electrical state of the windings is represented using the brushed DC

electromechanical model for convenience and simplicity. That is, for our analysis, we con-

verted the 3-phase sinusoidal winding currents and voltages to fictitious direct current

and voltage (i.e. quadrature quantities). Using the direct-quadrature transformation[52],

we report values in terms of the q-axis, which rotates along the rotor shaft. For a sinu-

soidally wound BLDCmotor, this conversion is equivalent to the root-mean-square of the

3-phase currents, and enables discussion of electrical stateswithout including sinusoidally

varying voltages and currents.
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2.3.1 Efficiency

The efficiency of a motor and drive can be especially important for many applications.

Since both power and loss scale with current and velocity in the electrical and mechan-

ical domains, respectively, motor efficiency is dependent on the specific current-voltage

regimes of operation (or equivalently, torque-speed regime). To this end, we developed

an experimental dynamometer to assess motor and drive efficiency. Two ER-BLDC mo-

tors (DAPs)were coupled through a common rotational shaft. A contactless torque sensor

was secured within the common rotational shaft (model: TRS605, Futek Advanced Sen-

sor Technology, Inc., Irvine, CA, USA) (Fig. 2.1). The analog voltage from the torque

sensor was acquired by a 16-bit analog to digital converter (model: ADS 1115, Texas In-

struments, Dallas, TX, USA), which was recorded using a microcomputer (model: Rasp-

berry Pi 3 Model B, Raspberry Pi Foundation, Cambridge, UK). The microcomputer also

communicated via USB to the ER-BLDC drives, acquiring digitized data regarding motor

electromechanical state, angular velocity, bus current, winding current, bus voltage, and

winding voltage were obtained at 320 Hz, and stored with digitized torque data for post

processing. Both motors were powered by a common 36 V lithium polymer (LiPo) bat-

tery with a capacity of 950 mAH (model: 25087X2, Venom Power, Rathdrum, ID, USA).

In this experiment, onemotor operated in positive power (drivingmotor), while the other

motor provided a resistance, operating in negative power (driven motor). The use of two

identical motors (driving and driven) enabled quantification of efficiency for two (nearly)

opposite current-voltage conditions for a given current-voltage test. The equations gov-

erning the steady state operation of coupled motors are described as follows, converted

to the quadrature-based brushed electromechanical model. Applying Newton’s Second’s
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Law yields:

Driving: ��Jθ̈ = kti+ − bθ̇ − τL (2.1)

Driven: ��Jθ̈ = −kti− − bθ̇ + τL (2.2)

where i+ and i− are the q-axis winding currents of driving and driven motor, respectively;

J is the rotor’s moment of inertia; θ̇ is the angular velocity; θ̈ is the angular acceleration; kt

is the q-axis torque constant; τL is the load torque, and b is the viscous damping coefficient.

Jθ̈ are neglected, since both motors are steady state (i.e. constant velocity).

Using the traditional brushed electromechanical model, winding voltage can be de-

scribed by applying Kirchoff’s Voltage Law:

Driving: v+ = kbθ̇ + i+R +
�
�
�

L
di

dt
(2.3)

Driven: v− = −kbθ̇ + i−R +
�
�
�

L
di

dt
(2.4)

where v+ and v− are the q-axis winding voltages applied to driving and driven motor,

respectively, kb is the back-EMF constant, and R is the phase resistance of the windings.

Inductances (Ldi
dt
) are omitted as the motors are at steady state and the q-axis current is a

constant value. Finally, it should be noted that the motors were placed face-to-face; thus,

the angular velocities had opposite signs, while the torque had a consistent sign.

Efficiencies were investigated across a range of current-voltage conditions. In general,

the driving motor was operated at a fixed, open-loop q-axis voltage across the windings

that varied from 0 ∼ 39.2 V at 2.4 V intervals. In contrast, the driven motor was gener-

ally operated in closed-loop current control, with desired q-axis currents ranged from 0

∼ 19.8 A at 0.8 A intervals. Tested current-voltage conditions were required to satisfy the

inequality: v + 3.2i ≤ 80.8 where v, i are commanded voltage and current, respectively.
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In total, 678 combinations of voltage and current sets were tested. For each combination

of current and voltage, applied motor voltage was increased linearly for one second, with

one second of steady state behavior before the voltage was decreased linearly to zero over

an additional one second. Each test was a total a three seconds in duration. Three sec-

ond duration was chosen to balance the time required to safely reach steady state, while

limiting the thermal rise in winding temperature.

To quantify motor power and efficiency, the data were analyzed in Matlab (TheMath-

Works, Inc., Natick, MA, USA). The efficiency of driving motor was calculated as:

η+ =
τLθ̇

ib+v
b
+

(2.5)

where ib+ is the bus current, vb+ is the bus voltage, and their product ib+ · vb+ is the input

electrical power, averaged across the one second interval at steady state. The bus power

represents the electrical state of the power source (i.e. batteries). Similarly, we calculated

themechanical power as τL · θ̇, also averaged across the one second interval. The efficiency

of driven motor was quantified as:

η− =
ib−v

b
−

τLθ̇
(2.6)

which is the reciprocal of the driving motor’s efficiency, where the motor is driven by the

mechanical power from the driving motor, generating electrical power (ib− ·vb− ). Any con-

dition where the angular velocity was less than 0.1 rad/s was considered a stall condition,

and was not analyzed.
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2.3.2 System Identification

Torque / Back-EMF constant

A motor’s torque (or back-EMF) constant scales the conversion from electrical power to

mechanical power of the motor. We completed two tests to obtain estimates of the q-axis

torque constant and back-EMF constant separately. To quantify torque constant, the mo-

tor’s output shaft was mounted to the torque sensor, which was mechanically grounded

(i.e. in a stall condition). Current commands were provided to the drive by the micro-

computer. Currents were tested from -5 to 5 A at 1.0 A intervals. Each trial had a duration

of nine seconds following the onset of torque; first and last one second were removed

from analysis to ensure steady state behavior. Five trials were repeated at each current

level. Data collected by the microcomputer included desired winding current, measured

winding current, and measured torque at a sample rate of 250 Hz. The motor torque and

current during each trial were averaged across the seven second trial duration. Subse-

quently, the data from all trials were averaged to obtain a single current-torque value for

each current condition. The torque constant was obtained by linear regression between

the average measured torques and average measured winding currents. Goodness of fit

was determined by the coefficient of determination (i.e. R-squared).

Similarly, to quantify the back-EMF constant, the motor’s angular velocity was mea-

sured as a function of applied winding voltages. The motor’s rotor was able to spin freely,

operating at the no-load speed for each applied voltage. To calculate the back EMFvoltage,

we subtracted the voltage drop across the winding resistance (i ·R) from the applied volt-

age, the difference of which is the back-EMF (Eq. 2.3, 2.4) during steady state conditions.

The motor was operated at a fixed, open-loop voltage across the windings, tested between

-22 and 22 V at 5.4 V intervals. Data collection protocol and post-processing procedures
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were identical to characterization of the torque constant.

Inertia and Viscous Loss

The rotor inertia and viscous loss properties have important effects on the dynamic re-

sponse, especially for ER-BLDC motors, which often have greater rotor inertia values. In

this experiment, the two coupled motors interacted, and the interaction dynamics were

used to estimate the inertia and viscous loss of the motor. The drivenmotor had themotor

leads open with no control commands present, and thus, acted as a pure inertia and vis-

cous load. To estimate motor properties, we used a non-parametric system identification

technique implemented in the frequency domain. The reference position trajectory was

provided by the microprocessor, and was a Gaussian random process, low-pass filtered

using a third order Butterworth filter with a cutoff frequency of 40 Hz, and was scaled to

a peak value of ± 180◦. Five trials were conducted, each with a duration of 60 seconds,

with data collected at a sample rate of 250Hz. Following data collection, Matlabwas used

to perform the system identification analyses with an input of load torque and output of

angular velocity. The frequency response was determined using Blackman-Tukey spec-

tral analysis—where the auto-spectrum and cross-spectrum are divided in the frequency

domain [53], with a window length of 100 samples and an overlap of zero samples. Fol-

lowing estimation of the frequency response, a first-order model was fit to the frequency

response data:
Θ̇(s)

TL(s)
=

1

Js+ b
(2.7)

The sum-squared error between the magnitude of the second-order model and the non-

parametric frequency response was calculated in the range of logarithmically spaced fre-

quencies where coherence was greater than 0.85. Coherence values closer to 1.0 indicate

linearity between the input and output, supporting our choice to use a linear model across
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the range of frequencies tested. The parameters for the first-order model (inertia and

damping) were chosen that minimize the corresponding error in the frequency response.

A single set of inertia and damping values were obtained by averaging the optimized pa-

rameters across all trials. The estimated parameters were used to compute the output

(angular velocity) of a separate validation dataset, and variance accounted for (VAF) was

used to estimate model agreement. Lastly, we repeated the same experiment without the

drivenmotor, therebymeasuring any inertia and damping associated with the torque sen-

sor and driving shafts. The inertia and damping of the sensor and shafts were removed

from the values obtained using both motors.

Additionally, damping coefficient was measured using a separate experiment inves-

tigating the relationship between angular velocity and winding current. Voltages were

commanded from -22 to 22 V at 5.4 V intervals to the drive, which corresponded to -160

rad/s to 160 rad/s at 27 rad/s intervals. The current and angular velocity for each set were

obtained by averaging the measured current and velocity during seven second duration,

and averaged again across the five trials for each set.

2.3.3 Thermal properties

Joule heating of the motor’s windings is among the chief limitations of system perfor-

mance. The flow of heat flux to the environment is governed by a combination of convec-

tion and conduction—first order ordinary differential equations (ODEs) that can be mod-

eled in the electrical domain (Fig. 2.2). To this end, we conducted experiments to quantify

the thermal properties of thewindings and housing structures of theDAP and the T-motor

KV100 separately. We applied 8 A of DC current across two of the three ER-BLDC leads.

Data were recorded for 65 minutes, which was known to enable the system to reach a

steady state temperature. Two approaches were used to determine the thermal proper-
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Figure 2.2: Analogous electrical circuit of the thermal modeling comprised of thermal resistances and ca-
pacitances.

ties, differing in how the temperature of the windings were obtained. First, temperatures

were directly acquired by infrared temperature camera (model: FLIROne Pro, Flir System

Inc., Wilsonville OR, USA). The temperature of the windings and housing were measured

and recorded everyminute (1/60Hz) in software. The overall winding temperature was a

weighted sum of the two different measured winding temperatures. Second, we recorded

the current and voltage applied to themotor using a 16-bit data acquisition system (model:

USB-6218, National Instruments Corporation, Austin, TX, USA) sampling at 580Hz. Mea-

sured currents and voltages were used to compute the instantaneous resistance, which is

related to the temperature via temperature coefficient of resistivity (TCR)[54]. Thermal

resistances and capacitances were obtained by fitting parameters of the first order ODEs

relating applied heat flux to temperature rise. Thermal impedances of each motor were

obtained by Newton’s law of cooling:

Q(s)

∆T (s)
=

1

RWA

+
1

RWH + RHA

CHARHAs+1

+ CWAs (2.8)

where Q is the heat flux, RWH , RHA, RWA are thermal resistances of the winding to hous-

ing (WH), housing to ambient (HA) and winding to ambient (WA), respectively and

When current passes between two leads in a delta winding configuration, two windings experience half
the current of the third winding; thus, the total heat generated can be calculated as a weighted sum.
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A B C

Figure 2.3: Total efficiencies (bus electrical power in; mechanical power out) of the actuator in different cur-
rent and voltage (a) and torque and velocity conditions (b). The yellow color spectrum represents positive
efficiency and the blue spectrum shows negative efficiencies. Negative efficiency occurs when the voltage
across the winding is larger than back-EMF, and only occurs during negative mechanical power. Efficiencies
less than -100% are depicted in black dots. (c) Plot depicts electrical power of the bus (c, left) and mechani-
cal power (c, right) of the motor for the 15.8 A and 24.5 V condition. During each current-voltage condition,
onemotor operated in positivemechanical power, while the other provided resistance, operating in negative
mechanical power. The relationships between the input and output powers provided the ability to assess
total efficiency across a range of torque-speed combinations. Note that the mechanical power coupling the
two motors is identical.

CWA, CHA are capacitances of the winding to ambient and housing to ambient, respec-

tively. We used a genetic algorithm-based optimization routine to minimize the sum-

squared error between the measured temperatures acquired by the thermal camera and

the temperatures governed by the ODEs from the thermal circuit. The parameters (ther-

mal resistances and capacitances) of the second-order model were chosen that minimizes

the error. The steady state temperatures of the windings and housing were obtained by

multiplying the heat flux (i2R) by the relevant thermal resistance. Note that the heat flux

changes as function of time, because the electrical resistance of the windings increases as

the temperature rises.
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2.3.4 Closed-loop Control

The drive within the DAP includes on-board closed loop control for position and current,

the performance of which were assessed in this section. For the position control tests,

the motor was able to spin freely; in contrast, for the current control tests, the motors ro-

tor was grounded (as in the previous experiments determined the back-EMF and torque

constants). Reference trajectories were provided by the microcomputer at a rate of ap-

proximately 725 Hz over USB to the drive.

We conducted step response tests to quantify the closed-loop controller performance

in the time domain. Reference step inputs were provided at 180◦, 360◦, and 720◦ for the

position control tests, and 3.3 A, 6.6 A, and 9.9 A for the current control tests (which ap-

proximately corresponds to 0.5 Nm, 1 Nm, 1.5 Nm respectively). Each trial had a duration

of three seconds and five trials were repeated at each step reference level. Rise time, over-

shoot, and steady-state error were calculated to quantify controller performance. Subse-

quently, these values were averaged across all trials and reference levels to obtain single

value for each parameter for both the position and current controllers.

We conducted frequency response tests to quantify the closed-loop controller perfor-

mance in the frequency domain. A Gaussian random process was low-pass filtered using

a third order Butterworth filter, which provided the time-varying reference input trajecto-

ries. The cutoff frequency of the low-pass filter was 70 Hz and 350 Hz for the position and

current control, respectively. The reference trajectories were then scaled to a peak value

of 180◦, 360◦, and 720◦ for the position control tests; 3.3 A, 6.6 A, and 9.9 A for the current

control tests. All trials had a duration of 10 seconds, and five trials were repeated at each

reference level. The frequency response was determined using Blackman-Tukey spectral

analysis with a window length of 1000 samples. Bandwidth was determined by the fre-

quency where the magnitude crossed -3 dB. Bandwidth values were averaged across all
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trials and reference levels to obtain single value for the position and current controllers.

A B C

Figure 2.4: Plots of no-load current (a), voltage-speed (b), torque-current (c) relationships. The slope of the
voltage-speed relationship is the back EMF constant, and the slope of the torque-current relationship is the
torque constant. The standard deviations of angular velocities, winding currents and voltage are depicted
vertically. Standard deviations for all lines are not visible as their errors are smaller than the scale of both
axes. Lines of best fit are shown.

2.4 Results

2.4.1 Efficiency

Efficiencies of the ER-BLDCmotor were calculated across the current-voltage and torque-

speed regimes (Fig. 2.3a, b), with a representative trial shown in Fig. 2.3c. In general,

efficiencies during positive power (quadrant one,>0 V,>0 rad/s) are all greater than zero

and over 65%, except during higher current (>∼20A,>∼2.8Nm) conditions. During neg-

ative power (quadrant two, <0 V, <0 rad/s), both positive and negative efficiencies were

observed. Lowandnegative efficienciesweremore prominent at higher current conditions

(>∼13 A, >1.8 Nm), but were present across all tested currents at low velocity (∼ 0V).

The mean value of positive efficiencies across all conditions was 56 ± 20 %.
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2.4.2 System Identification

Torque / Back-EMF constant

We observed the characteristic linear relationships between torque and q-axis current, as

well as q-axis voltage and angular velocity (Fig. 2.4b, c). The slope of the line of best fit

for the torque-current data (i.e. torque constant) was 0.141 Nm/A with 95% confidence

interval (C.I.) of [0.140, 0.142]Nm/A. The R-squared value for the line of best fitwas 0.999.

The slope of the line of best fit for the voltage-velocity data (i.e. back-EMF constant) was

0.137 V/rad/s (95% C.I.: of [0.135, 0.138] V/rad/s). The R-squared value for the line of

best fit was 0.999.

Inertia and Viscous Loss

The optimized values of inertia and damping coefficients of the second ordermodel across

all trials (Eq. 2.7) were 1.21·10−4 ± 1.95·10−6 kg·m2 and 2.6 ± 0.35 mNm/rad/s, respec-

tively. The data fit the model well, with a VAF of 83%. When the model was tested with a

separate, validation input, the VAF was also 83%.

The damping property of the motor was also investigated by analyzing the current-

angular velocity relationship at no-load speed (Fig. 2.4a). When linear regression was

used to estimate the current as a function of positive velocity, the slopewas 1.12mA/rad/s

(95% C.I.: [0.41, 1.82] mA/rad/s) and the offset was 65 mA. Using the torque constant

and representing these data in terms of torque, the slope was 0.16 mNm/rad/s (95% C.I.:

[0.06, 0.26] mNm/rad/s) and the offset was 9.1 mNm. The y-axis intercept indicates that

the damping behavior of the motor is nonlinear. The R-squared value for the line of best

fit was 0.77.
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2.4.3 Thermal properties

The thermal responses of both the T-motor (Fig. 2.5a) and DAP (Fig. 2.5b) show steep

rise in temperature initially, and gradually levels off as they reach steady-state. Measured

temperatures of the housing were lower than the winding for both T-motor and the DAP.

Temperatures estimated by theODE (Eq. 2.8) showed a better agreementwith the thermal

image data than temperatures estimated by the TCR. The steady state temperature of the

DAP (96.9◦C) was lower than that of the motor (102.7◦C). This discrepancy agrees with

the fact that the additional structural mass (7075-T6 Aluminum) of the DAP acted as a

heat sink, lowering the thermal resistance.

2.4.4 Closed-loop Control

Step responses of the current and position feedback control (first row of Fig. 2.6) show

accurate and persistent tracking performance (steady state error < 0.6%) across all refer-

ence inputs in time domain. For the position control, the average rise time and settling

time across all trials were 22.2 ± 6.1 ms and 60.3 ± 14.8 ms, respectively; for the current

control, the rise time and settling time were 5.0 ± 0.7 ms and 30.2 ± 16.9 ms, respectively.

Overall, the settling times of both controllers increase as the amplitude of reference step

inputs increase. Note that the rise and settling time of the current controller were less than

that of the position controller.

Bode plots for magnitude and phase (second and third rows of Fig. 2.6) shows varying

frequency response characteristics of the closed-loop systems at different reference inputs.

In general, for the position control, the bandwidths were approximately 15 ∼ 20 Hz; for

the current control, they were greater than 320Hz.
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B

Figure 2.5: Infrared thermal image (left) and thermal responses (right) of the T-motor (a) and DAP (b) at
steady state. The measured temperatures using the thermal imaging camera; estimated temperatures of the
winding and housing using the thermal model (Fig. 2.2) and TCR are depicted.

2.5 Discussion

In this paper, we quantified the time and frequency domain characteristics of a high-

performance ER-BLDCmotor and the closed-loop control performance of an accompany-

ing brushless drive. The motivation of this paper is to provide accurate and detailed spec-

ifications of a common ER-BLDC motor, the parameters of which are often unreported or

not generalizable beyond drone applications. We characterized the motor’s transfer func-
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tion, efficiency across torque-speed regimes, as well as thermal properties. Accurate and

detailed motor specifications are increasingly important, especially as ER-BLDC motors

developed for the drone industry are more commonly used in general robotic applica-

tions.

2.5.1 Efficiency

The efficiency pattern across torque-speed and current-voltage regimes were asymmetric

about the origin (Fig. 2.3). For the current-voltage representation, the asymmetry stems,

in part, from the x-axis representation of total voltage across the windings, rather than

the back-EMF. Thus, for a fixed voltage magnitude and current—that is, two points on

either side of the y-axis—the velocities associated with these current ±voltage pairs are

different (but the voltage drop across the resistance is identical); this mismatch in velocity

causes substantially different viscous losses on either side of the current-voltage regions.

This also accounts for the right-slanted lean in the negative power quadrant of the current-

voltage efficiency plot. Each combination tested at a fixed current has a winding voltage

difference of 2kbθ̇ (Eq. 2.3, 2.4). For the torque-speed representation, there is also some

asymmetry about the origin. This asymmetry is likely due to the differences in efficiencies

of the internal processes within the drive. The conversion of bus voltage to winding volt-

age ismore efficientwhen the system is operating in positive electrical power, as compared

to negative electrical power.

The total efficiency was often less than zero for negative power regimes (this can be

observed by the blue spectrum of colors in the efficiency plot (Fig. 2.3a-b, quadrant two)).

Efficiencies less than zero occur in negative power conditionswhen the voltage drop across

the winding resistance is larger than that of the drivenmotor’s back-EMF voltage. In other

words, this occurs when the winding current is larger than the maximum current induced
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from electromagnetic induction:

i− > imax =
kbθ̇

R
(2.9)

where the inducedmaximum current (imax) is defined as induced current when thewind-

ing voltage is zero (i.e. leads are shorted). Alternatively, in terms of electrical power, the

power loss across thewinding resistance is greater than themechanical power input. Thus,

positive electrical power is required from the power source, leading to an efficiency less

than zero. In certain cases, the negative efficiency may be < -100%. This occurs when the

power loss across the winding resistance is more than twice the mechanical power input.

2.5.2 System Identification

Torque / Back-EMF constant

In theory, the torque and back-EMF constants are equivalent in the brushed DC model.

In our characterization, there was a slight discrepancy (3% error) between these values.

This discrepancy may be explained by practical considerations, including that the motor

may not be perfectly sinusoidally wounded (i.e. has slight variation in amplitude of phase

back-EMF profile), in addition to any noise in the experimental measurements.

Viscous Loss

Nonlinear frictionwas observed in current-velocity relationshipwhen themotorwas spin-

ning freely (Fig. 2.4a). This nonlinearity (current-velocity values near the origin) indi-

cates the presence of coulomb friction, with an offset of 65 mA (9.1 mNm). For velocities

greater than zero, a constant slope was observed, which indicates a linear model may not

fit the data near zero velocity. We used a linear, time invariant approach to estimate the
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inertia and damping properties separately, and showed strong agreement between output

velocity and model-predicted values (VAF: 83%). This agreement indicates that inertia

dominated the torque response, with a limited contribution from the damping compo-

nent. Using the input velocity and estimated inertia and damping values, the damping

component contributed approximately 19% of the output torque and the inertia compo-

nent contributed approximately 81% of the output torque. Thus, although the damping

behavior was nonlinear, the usage of linear methods did not likely affect the analysis.

2.5.3 Thermal properties

Ultimately, a motor’s peak performance is limited by its ability to dissipate heat generated

by joule heating of the windings. To obtain the thermal characteristics of the motor, cur-

rent was applied across two leads and we measured the resulting temperature change.

These data were used to develop a thermal model, which enables simulation of the rise

in winding temperatures for arbitrary current inputs across different robotic applications

(assuming the conduction and convection-based thermal resistances do not change appre-

ciably). The thermal model predicts a maximum continuous q-axis current of 7.6 A and

7.7 A; a maximum instantaneous current (for 20 s) of 23.8 A and 28.7 A for the T-motor

and DAP, respectively, assuming a maximum permissible winding temperature of 125◦C.

2.5.4 Closed-loop Control

The closed loop performance differed substantially between control types (i.e. position

control and current control). The position control bandwidth was between 15 - 20 Hz,

while the current control bandwidth was greater than 320 Hz. In the time domain, the po-

sition control has a consistent velocity during the transient aspect of the step response; that

is, response did not varywith step size. This nonlinear behavior stems from themaximum
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voltage that can be applied, namely, the back-EMF voltage is limited by the power source

voltage (∼36 V), known as actuator saturation. The step response for the current control

had significant overshoot and a fast rise time (∼5 ms), when compared to position con-

trol. The increased overshoot can be explained, in part, by the numerator dynamics in the

plant’s transfer function for current control ( I(s)
V (s)

). The faster rise time may be explained

by the greater bandwidth of the electrical dynamics, when compared to the mechanical

dynamics of the plant ( θ(s)
V (s)

), as well as the lack of saturation.

2.5.5 Comparison to Maxon EC30 4-pole

ER-BLDCmotors have several advantages over commonly usedmotors often designed for

“pick and place" automation tasks. In the field of wearable robotics, the Maxon EC30 4-

pole is a common motor [55, 56], with a rated power of 200 W and a mass of 300 g. The

ER-BLDCmotors, such as the T-motor described in this work, have threemain advantages:

1) they have a higher torque density, 2) they are more efficient, and 3) they have a better

thermal resistance. The high torque density of ER-BLDC motors stems from the larger

motor radius, which increases torque by radius squared. A higher torque constant per-

mits a lower transmission ratio, which has several important advantages, including mass,

complexity, efficiency, and controllability. In addition, due to geometric factors, ER-BLDC

motors are more efficient. This can be observed by its greater motor constant, when com-

pared to the Maxon EC30 (T-motor: 0.23 Nm/
√
W vs. Maxon EC30: 0.04 Nm/

√
W). The

motor constant describes the thermal loss per unit torque. Finally, ER-BLDC motors may

be better at dissipating heat, resulting in a lower thermal resistance. This likely stems from

the increase in surface area to volume ratio, which predicts a 28% reduction in thermal re-

sistance, which in actuality, the thermal resistance of the T-motor (4.7 K/W) is 38% less

than that of the Maxon (7.6 K/W), where RWA ≫ RHA, RWH .

27



Figure 2.6: Position (yellow) and motor current (blue) step responses (first row) and bode plots (second
and third row) for the motor. Bandwidth of the motor was determined by the the frequency where the
magnitude crossed -3 dB (dashed line).
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Table 2.1: T-Motor & Dephy Actuator Specifications

T-motor Dephy Actuator
Characteristics
Terminal Resistance (mΩ) 186
Terminal Inductance (µH) 138a
Torque Constant, kt (Nm/A) 0.14b
Inertia (g·m2) 0.12± 0.002
Damping (mNm/(rad/s)) 0.16
Mechanical Time Constant (ms) 24.7 ± 1.2
Bus Voltage (V) 36
Max Continuous Current (A) 7.6b 7.7b
Peak Current - 20 s (A) 23.8b 28.7b
Winding Type Sinusoidal, Delta
Thermal
Thermal Resistance
Winding-Ambient (K/W) 9861.6 3416.3
Housing-Ambient (K/W) 4.2 3.5
Winding-Housing (K/W) 0.5 1.1
Time Constant Winding (s) 12.9 65.0
Time Constant Motor (s) 548.5 670.6
Control
Position Steady-state Error (%) 0.4 ± 0.2
Position Rise Time (ms) 22.2 ± 6.1
Position Settling Time (ms) 60.3 ± 14.8
Position Overshoot (%) 8.45 ± 3.59
Position Bandwidth (Hz) 15 ∼ 21
Current Steady-State Error (%) 0.6 ± 0.6
Current Rise Time (ms) 5.0 ± 0.7
Current Settling Time (ms) 30.2 ± 16.9
Current Overshoot (%) 39.8 ± 12.2
Current Bandwidth (Hz) > 320
Embedded System
Commutation Type FOC
PWM Frequency (kHz) 20
Other Specifications
Number of Pole Pairs 21
Number of Phases 3
Product
Total Weight (g) 240 230c

a Values reported by Dephy Inc.
b Quadrature quantities
c Weight excluding the embedded system
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Chapter 3

How to Model Brushless Electric Motors for the

Design of Lightweight Robotic Systems

3.1 Abstract

A key step in the development of lightweight, high performance robotic systems is the

modeling and selection of permanent magnet brushless direct current (BLDC) electric

motors. Typicalmodeling analyses are completed a priori, and provide insight for properly

sizing a motor for an application, specifying the required operating voltage and current,

as well as assessing the thermal response and other design attributes (e.g. transmission

ratio). However, to perform these modeling analyses, proper information about the mo-

tor’s characteristics are needed, which are often obtained from manufacturer datasheets.

Through our own experience and communications with manufacturers, we have noticed

several common errors in modeling BLDCmotors that stem from a lack of understanding

of the governing equations, compounded by vague or inconsistent terminology used in

motor datasheets. The purpose of this tutorial is to concisely describe the governing equa-

This chapter is currently in preparation for submitting to a journal.
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tions for BLDC motor analyses and highlight three potential errors. We present a power-

invariant conversion from phase and line-to-line reference frames to a familiar q-axis DC

motor representation, which provides a “brushed" analogue of a three phase BLDCmotor

that is convenient for analysis and design. We highlight common errors including incor-

rect calculations ofwinding resistive heat loss, improper estimation ofmotor torque via the

motor’s torque constant, and incorrect estimation of the required bus voltage or resulting

angular velocity limitations. A unified and condensed set of governing equations is avail-

able for designers in Appendix 6.3. The intent of this work is to provide a consolidated

mathematical foundation for modeling BLDC motors that addresses existing confusion

and fosters high performance designs of future robotic systems.

3.2 Introduction

The success of numerous modern robotics and automation applications is predicated on

the use of brushless permanent magnet direct current (BLDC) electric motors. Electric

motors convert electrical energy to and from mechanical energy, which requires coordi-

nated interaction between electric andmagnetic fields that produce torque via the Lorentz

Law. Brushed electric motors often use mechanical contacts—termed brushes—to provide

energy to the motor’s winding that produces torque. More recently, BLDC motors have

been developed to address challenges associated with mechanical brushes, where BLDC

motors use multiple windings energized via electrical switching, a process known as elec-

tric commutation. The absence of mechanical brushes enables BLDC motors to have im-

proved efficiency, power density, longevity, and reduced audible noise [57, 58]. Conse-

quently, BLDC motors are a compact, highly controllable, and efficient actuation method

popular across a wide range of robotics applications.

The electromechanical design process often requires careful assessment of motor tech-
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nologies to ensure the motor is properly matched to the application. This is especially

important for certain areas of robotics, such as legged robots, wearable robots, or au-

tonomous vehicles, where actuatormass is a critical aspect of success. To ensure themotor

is properly matched, the torque-velocity requirements of the application are translated to

the required current, voltage, and thermal demands, typically assessed a priori. The re-

quired motor torque-velocity and current-voltage relationships are typically analyzed, in

addition to modeling the thermal dynamics during different use cases. This analysis is

critical to the design process because the results are used to specify the final components

that comprise the system. For example, the required voltage and current govern the power

supply demands, the required current is used to specify an appropriate motor driver, and

thermal rise governs whether the motor is properly sized for the application. To complete

these analyses in the design process, the parameters that govern BLDC motor operation

(e.g. torque constant, winding resistance, thermal resistance, etc.) are used, and are often

obtained from manufacturer-provided sources of information (i.e. motor datasheets).

Motor datasheets provide important specifications for determining the most appropri-

ate motor for a specific application; however, the ways these specifications are provided

can lead to common errors in motor analysis. Roboticists usually simplify three phase

BLDC motors to an analogous single phase “brushed" motor, which is convenient and in-

tuitive to assess, since it is described by a single current, voltage, resistance, inductance,

torque constant, etc. To this end, care must be used when reducing to the brushed elec-

tromechanical model when assessing BLDC motor technologies. For example, the wind-

ing resistance provided in manufacturer datasheets is often the terminal resistance, which

is conveniently measured across two leads of the windings; however, terminal resistance

is challenging to use in an equivalent single-phase “brushed" motor model analysis, and

if used improperly, causes inaccurate estimates of heat produced (i.e. Joule heating) that

can be over or under-estimated by as much as 100% (Appendix 6.7). Thus, clarity, stan-

32



Figure 3.1: The picture of the high-torque exterior-rotor type Brushless DC motor (T-Motor 100 KV, top left;
Dephy Actuator Package, top right), and examples of robots using BLDC motors: MIT Cheetah Robot [59]
(middle), the University of Michigan’s Open Source Bionic Leg [60] (bottom). Figures used with permis-
sion.

dardization, and a strongmathematical foundation are needed to ensure BLDCmotors are

able to be conveniently and accurately modeled for future robotics applications, especially

when motor mass is a driving design factor.

We believe this tutorial will be a helpful resource to designers studying the use of high-

performance BLDC motors, particularly in mobile robot applications (Fig. 3.1). In addi-
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tion to the importance of motor modeling in the design process, other recent work has

highlighted the need for greater standardization of analyses and terminology. This is ev-

idenced by recent characterizations of new motors that do not have adequate manufac-

turer specifications [18]. In addition, researchers have occasionally obtained parameters

that differ from what is provided by motor manufacturers [61]. Thus, an improved un-

derstanding of motor modeling and the underlying parameters will reduce the time and

cost associated with actuator design, use, and characterization [61, 62, 15, 63, 64, 65, 66,

67, 68, 69, 70, 26].

There are many different types of brushless motor topologies, which can add to chal-

lenges modeling their performance. In the most general description of brushless mo-

tors, there are two types, namely BLDC motors and asynchronous electric motors (i.e.

AC induction motors). Within BLDC motors, further separation can be made based on

the shape of their back electromotive force (back-EMF) profile, being either sinusoidal or

trapezoidally shaped. The waveform of the back-EMF profile stems from the distribution

of each winding and the shape of stator slots and magnetic poles. The back-EMF shape

affects the performance of motors and plays a role in the selection of an appropriate com-

mutation paradigm to maximize efficient torque production [71]. Some previous works

have denoted motors with trapezoidal back-EMF profiles as BLDC motors, with perma-

nent magnet synchronous motors (PMSM) being used to denote motors with sinusoidal

profiles [58, 72]. This naming convention has become confounded by newly popularized

“drone" style exterior-rotor type motors being described as BLDC, despite having a sinu-

soidal back-EMF profiles. Thus, in this work, we do not distinguish between PMSM and

BLDC motor types, and instead we limit our analysis to BLDC motors with a sinusoidal

back-EMF profile for ease of analysis.

In this paper, we describe the governing equations for brushless motor operation, and

highlight inconsistencies that stem from misinterpretation of motor datasheets. We pro-
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vide conversions from phase-based representations of motor current and voltage to a DC

representation using the quadrature-direct transformation; by converting to a DC repre-

sentation, the familiar and convenient single-phase (i.e. brushed) DCmotor analogue can

be used for interpretation and design. We introduce three common errors that arise when

motor characteristics from datasheets are used without proper conversions, namely incor-

rect calculations of resistive losses, inaccurate estimation of motor torque via the torque

constant, and improper determinations of maximum voltage needed for power supply

specification. The intent of thiswork is to improve understanding of howbrushlessmotors

are described by manufacturer datasheets, and to enable accurate and high performance

designs of future robotic systems.

3.3 Electromechanical Modeling of Motors

In this section, we describe the equations that govern brushed and BLDC motors, and

introduce the concept of electrical commutation for BLDC motors. Most importantly, we

present a brushedmotor representation of the BLDCmotor using direct-quadrature (d-q)

transformation. In this work, we assume these properties and assumptions for the BLDC

motor:

• Non-salient

• Three phase sinusodial back-EMF profile

• Identical mutual and self inductances

• d-q transformation is in phase with the rotor (Id = 0)

In this paper, we define saliency as magnetic saliency [73, 74], which describes if a motor’s winding in-
ductances vary as a function of rotor angle. Note that this is different from salient poles, which stems from
the physical characteristics of the magnetic poles. A motor could have salient poles but be a non-salient
motor under this definition; typical hobbyist brushless motors fall under this category [75].
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These assumptions provide amore convenient analytical approachwhile also representing

the real-world use case of BLDCmotors. For example, an exterior rotor type BLDCmotor

(Fig. 1) satisfies these assumptions when used with an off-the-shelf field oriented control

(FOC) controller and operating with a sufficient DC bus voltage / power supply (Section

3.4.1) [17].

In this paper, we define the winding reference frame to collectively describe the differ-

ent electrical references where superscript ϕ, l, ll and q denote a phase, line, line-to-line,

and q-axis quantities, respectively. Bold font denotes vectors or matrices, ¯bar represents

amplitude of a sinusoidal quantity, and we boxed the key equations of each sections. All

boxed equations are provided together in Appendix 6.3.

3.3.1 Brushed DC motors

To accurately understand BLDC motors, we first describe the equations that govern ideal

brushed DCmotors in the electrical andmechanical domains. By applying Newton’s Law,

we can obtain

J
d2θm
d2t

= KtI
a − b

dθm
dt
− τL (3.1)

where J is the inertia of the rotor,Kt is the torque constant, Ia is the armature current, b is

the viscous damping coefficient, θm dθm
dt

are the rotor angle and the rotor’s angular velocity,

respectively, and τL is the load torque. Applying Kirchoff’s Voltage Law (KVL) across the

winding yields:

V = RIa +Kb
dθm
dt

+ L
dIa

dt
(3.2)

where V is the voltage applied across the winding,Kb, is the back-EMF constant, R is the

resistance of the rotor winding, and L is the inductance of the winding. The term Kb
dθm
dt

is known as the back electromotive force (back-EMF), which is the generated voltage that
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opposes the voltage across the winding (V ). These two equations are the fundamental

relationships that govern ideal brushed DC motor operation.

3.3.2 BLDC motors

In this section, we describe the governing equations that underlie the operation of ideal

BLDC motors, beginning with a single phase, and expanding to three phase operation.

Similar to the equations governing brushed DC motors, we summarize BLDC models for

both the mechanical and electrical domains.

Per-phase modeling

We first begin by understanding how a single phase produces torque. Per-phase torque

production from a BLDC motor can be expressed as

τ ϕ = F × r = p(NIϕBϕ(θ)× ℓ)× r (3.3)

where p is the number of magnetic pole pairs, ϕ denotes the phase quantities, F is the

electromagnetic force vector calculated from the Lorentz Law, N is the number of indi-

vidual coils in the winding, B is the per-phase magnetic flux density vector, and ℓ is the

vector length of a coil side along the axis parallel to the rotation axis (perpendicular to the

magnetic field), r is the rotor radius, and Iϕ is the current flowing through one phase as

a function of time (Fig 3.2).

In this work, all angles for BLDC motors are represented in magnetic angles. When

BLDC motors have multiple pole pairs, one magnetic rotation is defined by a 1/p rotation

of the rotor:

θ = θm · p (3.4)
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Figure 3.2: A simplified depiction of an exterior-rotor type brushless motor shown with electromagentic
force diagram. The gray colored poles indicates that they are part of the same phase. Note that for vi-
sualization purposes, electromechanical quantities are depicted as a single pole value, although they are
per-phase quantities (magnified view of the figure).

Therefore, to obtain properties of BLDC motors with multiple pole-pairs (e.g. Kv) using

rotor displacement, the above transformation should be applied accordingly.

Since each winding is perpendicular to the magnetic flux density formed by the per-

manent magnets, the per-phase torque becomes:

τ ϕ = pNIϕ
∥∥Bϕ(θ)

∥∥∥ℓ∥∥r∥j (Bϕ(θ) ⊥ ℓ ⊥ r) (3.5)

τ ϕ = pNA
∥∥Bϕ(θ)

∥∥∥∥Iϕ
∥∥j (3.6)

where A = ℓr and j is a unit vector perpendicular to both electromagnetic force and the

rotor radius (vector going into the page in Fig. 3.2), where ∥·∥ represents the Euclidean

norm. As we assume the magnetic flux density of a BLDC motor is sinusoidal, the mag-

netic flux density can be expressed as a function of the magnetic angle of the rotor:
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∥∥Bϕ(θ)
∥∥ = B̄ϕ sin(θ) (3.7)

Therefore, the per-phase torque becomes:

τ ϕ = pNAB̄ϕIϕ sin(θ)j (3.8)

where the B̄ϕ is the amplitude of the per-phase magnetic field.

Eq. (3.3) can be further simplified by defining the per-phase torque constant:

τ ϕ = Kϕ
t I

ϕj (3.9)

where the per-phase torque constant is defined as:

Kϕ
t (θ) = pNAB̄ϕ sin(θ) (3.10)

and the per-phase torque constant is a function of the rotor’s position, where K̄ϕ(θ) is the

amplitude of the per-phase torque constant:

Kϕ
t (θ) =

¯
Kϕ

t sin(θ) (3.11)

The sinusoidally varying per-phase torque constant highlights the difference from the

brushed motor torque constant, which stems from the shape of the rotor magnetic flux

density across rotor angle [73].

The per-phase back-EMF can be calculated using Faraday’s Law:

V ϕ
e = Nr(Bϕ ×

dθ

dt
) · ℓ (3.12)
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where V ϕ
e is the per-phase back-EMF. Since the magnetic flux density and radius of the

coil are perpendicular, and the cross product of those are parallel to the vector length of

the coil, the per-phase back-EMF equation reduces to:

V ϕ
e = NA

∥∥Bϕ(θ)
∥∥∥∥∥∥dθdt

∥∥∥∥ (Bϕ(θ)×
dθ

dt
∥ ℓ) (3.13)

where magnetic flux density has a sinusoidal profile:

V ϕ
e = NAB̄ϕ sin(θ)p

dθm
dt

(3.14)

where dθ
dt

= pdθm
dt

. By defining the back-EMF constant, the expression becomes:

V ϕ
e = Kϕ

b (θ)
dθm
dt

(3.15)

where the per-phase back-EMF is the function of the rotor’s position:

Kϕ
b (θ) = pNAB̄ϕ sin(θ) (3.16)

Kϕ
b (θ) =

¯
Kϕ

b sin(θ) (3.17)

The per-phase back-EMF has the same profile as the torque constant, which also originates

from the shape of the flux density. Note that ideally the per phase back-EMF is identical

to the per-phase torque constant (i.e. Kϕ
b = Kϕ

t ).

Three-phase modeling

We now describe how individual phase models of a BLDC motor can be combined to

obtain the three-phase model. Total produced torque of the BLDC motor is derived from
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the three windings operating in parallel:

τ = (Kϕ
t,A(θ)IA +Kϕ

t,B(θ)IB +Kϕ
t,C(θ)IC)j (3.18)

which is the summation of each per-phase torque, where the phase torque constants are

identical and 120◦ out of phase:

Kϕ
t,A(θ) =

¯
Kϕ

t sin(θ) (3.19)

Kϕ
t,B(θ) =

¯
Kϕ

t sin (θ −
2π

3
) (3.20)

Kϕ
t,C(θ) =

¯
Kϕ

t sin (θ +
2π

3
) (3.21)

Similarly, the total back-EMF of the BLDC motor becomes:

Ve = Kϕ
b,A(θ)

dθm
dt

+Kϕ
b,B(θ)

dθm
dt

+Kϕ
b,C(θ)

dθm
dt

(3.22)

We can apply KVL on each phase quantity, which can be compactly expressed in matrix

form (Appendix 6.5).

3.3.3 Electric commutation for BLDC motors

To produce constant torque, BLDC motors require their windings to be sequentially en-

ergized at the appropriate time, a process known as electric commutation. This process

is performed by a microcontroller known as a brushless motor drive. To maximize the

torque production and minimize torque ripple, the driver should provide a current wave-

form that matches the back-EMF profile [73]. That is, for three-phase BLDC motors with

sinusoidal back-emf profiles, the optimal currents to maximize smooth torque production
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should be in phase with the back-EMF and sinusoidal:

IA = Īϕ sin θ (3.23)

IB = Īϕ sin (θ − 2π

3
) (3.24)

IC = Īϕ sin (θ +
2π

3
) (3.25)

where Īϕ is the amplitude of the phase current and currents are 120◦ out of phase, identical

to the phase of torque constants (3.19). For motors with a trapezoidal back-EMF profile,

phase currents that match the profile as closely as possible (i.e. trapezoidal commuta-

tion) should be applied to maximize efficient torque production [76]. By applying these

sinusoidal currents to the total torque (3.18, Fig. 3.3), the torque becomes:

τ =
¯
Kϕ

t Ī
ϕ
[
sin2(θ) + sin2(θ +

2

3
π) + sin2(θ − 2

3
π)
]
j (3.26)

τ =
3

2
¯
Kϕ

t Ī
ϕj (3.27)

by using trigonometry, shown below:

sin2(θ) + sin2(θ +
2

3
π) + sin2(θ − 2

3
π) =

3

2
(3.28)

This simplification consists of only DC quantities (i.e. torque scales linearly with am-

plitude of the phase current) and allows us to represent BLDC motors using the brushed

motor model. Some literature concludes the conversion to a single phase motor analogue

with this equation (3.27) by defining the brushed motor equivalent torque constant as

Kt = 3
2

¯
Kϕ

t and the amplitude of the phase current (Īϕ) as the brushed motor equiva-

lent current [73]. These different definitions of torque constants are valid for calculating

torque as long as the appropriate currents are used; however, these conversions result in
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Figure 3.3: A demonstration of torque production of a BLDC motor (3.18). The sum of three phase-torques
with constant amplitude results in total torque which is a DC value. Note that each winding produces a
torque with a sine squared profile, which results from the product of the sinusoidal torque constant and the
sinusoidal phase currents.

other analytic errors (e.g. inaccurate thermal loss). Consequently, in thiswork, we provide

a version of the single phase motor representation of a BLDC motor which not only satis-

fies (3.27), but also enables accurate modeling of other factors (e.g. resistive power loss,

back-EMF). Methods for appropriate conversions are detailed in the following sections.

3.3.4 d-q transformation

The power-invariant d-q transformation converts brushless motor quantities to a single

phase “brushed" motor equivalent representation while preserving power of the system.

The power invariant d-q transformation is a unitary transformation that converts three

phase axes in the stator frame of the motor to two axes fixed to a rotating coordinate frame

that rotates with the rotor’s magnetic angle (i.e. d-q axis). Conversion to the rotating ref-

erence frame of the rotor transforms sinusoidal functions of angle, such as current and

voltage, into effective DC values, forming an equivalent single phase brushedmotor ana-

Sometimes, a different form of the d-q transformation is used which scales the currents such that the q-
axis current is equal to the peak of a single phase current [77]. Since this amplitude-invariant form is a
non-unitary operation, it renders power calculations inaccurate and is therefore avoided in this analysis.
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logue for BLDC motors. The d-q transformation is composed of two transformations:

Clarke (C):
√

2

3

1 −1
2
−1

2

0
√
3
2
−

√
3
2

 (3.29)

Park (P ):

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 (3.30)

where C and P are Clarke and Park transformations, respectively, and the matrix product

of these transformations becomes the d-q transformation:

P ·C=
√

2

3

 cos(θ) cos
(
θ − 2

3
π
)

cos
(
θ + 2

3
π
)

− sin(θ) − sin
(
θ − 2

3
π
)
− sin

(
θ + 2

3
π
)
 (3.31)

By applying the d-q transformation to phase currents or voltages, the converted quadra-

ture quantities are described as follows:

Id
Iq

 = P ·C · Iϕ =

√
2

3

 cos(θ) cos
(
θ − 2

3
π
)

cos
(
θ + 2

3
π
)

− sin(θ) − sin
(
θ − 2

3
π
)
− sin

(
θ + 2

3
π
)
 ·


IϕA

IϕB

IϕC


(3.32)

=

√
2

3

 0

3
2
Īϕ


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Thus, the q and d-axis currents are

Iq =

√
3

2
Īϕ (3.33)

Id = 0 (3.34)

and the BLDC motor torque can be expressed as:

τq = K̄ϕ
t

√
3

2
Īϕ
√

3

2
j = Kq

t I
qj (3.35)

where the q-axis torque constant is defined as:

K̄ϕ
t

√
3

2
= Kq

t (3.36)

and superscript q denotes q-axis quantities of according constants, while the d-axis current

is zero. Similarly, we can define the back-EMF constant using the same conversion:

Kq
b =

√
3

2
·Kϕ

b (3.37)

where the phase back-EMF constant and phase torque constant are identical (Kϕ
t = Kϕ

b ).

This relationship shows that there is factor of
√

3
2
difference among quadrature and phase

quantities. Therefore, by applying Newton’s second law, we can obtain:

J
d2θm
d2t

= Kq
t I

q − b
dθm
dt
− τL (3.38)

Similarly, by applying the d-q transformation, the equivalent electrical circuit of a BLDC
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motor becomes:

V q = RϕIq +Kq
b

dθm
dt

+ LedIq
dt

(3.39)

where, Le is an effective inductance (i.e. stator inductance is invariant of rotor position

[78]). For full derivation, please refer to Appendix 6.6. Since neither self inductance nor

mutual inductance may be accessible, the effective inductance can be obtained through

terminal inductance as follows:

Wye: Le =
3

2
Lll

Delta: Le =
1

2
Lll

(3.40)

(3.41)

where, Lll represents the line to line or terminal inductance. This assumes the connection

scheme of phases as Fig. 1 of [79]. In this work, we assume identical self and mutual

inductances across different phases and their combinations. By applying the d-q transfor-

mation, the effective phase inductance is equal to the q-axis inductance (Appendix 6.6):

Le = Lq (3.42)

The d-q axis representation of a BLDC motor demonstrates that the motor can be fully

transformed to the single phase “brushed"motor representation that is helpful for analysis

and control.

3.3.5 BLDC motor winding configuration

To fully understand the relationships that govern BLDC motors and their characteristics,

wemust first understand themotor’swinding type. There are two types of commonBLDC

windings: wye (i.e. star) and delta (Fig. 3.4). The winding type of BLDCmotors is deter-
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mined by themanufacturer and can be chosen for a variety of factors. Delta woundmotors

are generally used when greater instantaneous current or torque is required. If equal line-

to-line voltages are applied to both motors, the entire voltage is applied across each phase

for a delta wound motor (V ll = V ϕ), whereas the line-to-line voltage is divided between

the phases for a wye wound motor (V ll/
√
3 = V ϕ). In addition, wye wound motors typ-

ically have greater efficiency in the lower velocity regions, while delta wound motors are

typically usedwhen greater efficiencies are desired in higher velocity regions [80]. Finally,

specific winding types may have benefits in certain applications (e.g. induction motors)

[73].

The winding type dictates how terminal (i.e. line-to-line) quantities are related to

phase quantities. Lines are defined as the three conductors that branch from the wind-

ings (A, B, and C), and line-to-line voltage is defined as the voltages referenced between

any two lines. The relationship between the phase quantities and line-to-line quantities

for each winding configuration are as follows:

Wye: V̄ ll =
√
3V̄ ϕ

Ī l =Īϕ

Delta: V̄ ll =V̄ ϕ

Ī l =
√
3Īϕ

(3.43)

(3.44)

(3.45)

(3.46)

Note that currents are referenced within a line, and voltages are measured between lines

(i.e. there is no such thing as line-to-line current). Depending on thewinding type, appro-

priate conversion factors should be applied to accurately convert between reference frames

(e.g. d-q transformation). Thus, knowing the winding type is crucial for estimating the

motor properties, which ultimately enables accurate modeling, analyses, and commuta-
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tion for robotics applications.

3.3.6 Resistive power loss

The heat produced from a motor’s windings are among the chief limiting factors in a mo-

tor’s performance. Thus, to appropriately size a motor for a specific task, the resistive

power loss and temperature rise of the windings is often investigated. We can calculate

the total resistive heating loss by summing individual losses of each phase:

P =(IϕA
2
+ IϕB

2
+ IϕC

2
)Rϕ (3.47)

=
3

2
Īϕ

2
Rϕ (3.48)

where each phase currents are provided as (3.23). Similar to the total torque, the total

power loss becomes a DC value. The power loss can also be represented in the q-axis

frame:

P = Iq2Rϕ (3.49)

where it reduces to the single phase brushed motor equivalent expression by using the

conversion factors (3.33, 3.36). Note that resistance used in the q-axis power loss formu-

lation is the resistance of a single phase.
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3.4 Implications in BLDC Analyses

3.4.1 BLDC datasheet variation

To optimally select BLDC motors for robotics applications, a priori modeling analyses are

conducted to properly specify the motor for the application; this is especially important

when motor mass is a key driver of system performance. The specific parameters needed

to conduct these analyses are often obtained from manufacturer datasheets. Inconsisten-

cies and sparse or ambiguous information provided in these datasheets can lead to er-

roneous results (Table 3.2). That is, manufacturers sometimes report motor parameters

with respect to different voltage and current references. Indeed, these parameters are of-

ten measured based on their simplicity or convenience, as opposed to what would most

readily be used in modeling analyses. Several common reference frames are described in

Table 3.3. In the proceeding sections, we describe common errors that arise from improp-

erly using motor parameters in BLDC modeling analyses. We provide conversions from

common values of voltage and current, and encouragemotor manufacturers to specify the

details of the provided parameters with emphasis on reporting with respect to the q-axis

representation.

Brushless motor drives that perform field oriented control and report q-axis current and voltage often
assume one motor winding type (e.g. wye) to perform their calculations. If the motor being used is delta
wound, appropriate conversions factors will be needed to ensure accurate calculation of expected motor
torque.
The analysis developed in this paper has neglected other sources of losses such as core losses due to hys-
teresis and eddy currents, bearing friction, air resistances etc. [74]. We chose to focus on Joule heating
because it is the dominant factor in temperature rise, and it can be challenging to obtain information for
other sources of losses from manufacturer datasheet.
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Thermal loss, resistance, and inductance

Thermal loss is a key driver of electromechanical performance; to minimize motor mass,

the windings are expected to rise in temperature, without exceeding the maximum per-

missible temperature. To correctly model the resistive heat loss, the heat produced by

all three windings is considered (3.47). Equivalently, the thermal loss can be calculated

from a single phase “brushed" motor analogue (3.49) using the q-axis current and phase

resistance. However, the resistance and current values used in these equations must be

paired appropriately; when modeling the resistive heat loss using the q-axis current, the

required winding resistance is the phase resistance. This is different from the motor’s

terminal resistance, which can be reported on BLDC motor datasheets. To convert from

terminal resistance to phase resistance, the winding type must be considered (Appendix

6.4). However, this conversion can be challenging, since many BLDC motor datasheets

do not include the motor winding type, and thus obscure the ability to calculate phase

resistance from terminal resistance. As an example of how resistive heat loss can be erro-

neously calculated by pairing the incorrect resistance and current, if terminal / line-to-line

resistance is used directly instead of the phase resistance, the predicted power loss will be

twice the magnitude for wye-wound motors and 33% less for delta-wound motors (Ap-

pendix 6.7).

To address this issue, terminal resistance can be scaled to the appropriate phase resis-

tance by (3.50) and (3.51), and used to calculate total resistive power loss (3.49):

Wye: Rϕ =
1

2
Rll

Delta: Rϕ =
3

2
Rll

(3.50)

(3.51)

Following the determination of the appropriate resistance values to use in power loss
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calculations, the expected rise in temperature can be obtained in simulation using the ther-

mal resistances and capacitances for the coupled winding-housing system dynamics[18].

Torque

The calculation of expected motor torque is a critical aspect of the design process. There

are two common errors that result from inaccurate usage of motor parameters; firstly,

some recently developed motors from the drone industry provide the velocity constant

(Kv) rather than torque constant, and this is sometimes erroneously converted directly to

the motor’s torque constant. Secondly, the current used in the formulation of the motor’s

torque constant reported in the datasheet may be ambiguous, and can cause torque esti-

mation error if the current used to determine the torque constant does not agree with the

current used to predict torque in modeling analyses. To address these challenges, appro-

priate conversion factors and explanations are provided in the paragraphs below.

To calculate expected motor torque, a single phase “brushed" motor analogue is typ-

ically used, in which the motor’s torque constant is multiplied by the effective winding

current. In some cases, motor manufacturers provide the voltage constant as a proxy for

the torque constant, and leave the torque constant determination to the designer since

these values are equivalent with proper commutation (i.e. the manufacturer only pro-

vides the reciprocal of the motor’sKb, known asKv). This may lead to a common error—

considering Kb equal to Kt—which is not necessarily true for brushless motors [74], de-

pending on the winding reference frame. For example, a common motor used in some

robotic applications is the T-motor KV100 (U8), where only the velocity constantKv ( 1
Kb

)

is provided as 10.47 rad/V·s (100 RPM/V). However, the reciprocal of this value actually

(nearly) describes the amplitude of the line-to-line sinusoidal back-EMF per unit angu-

lar velocity (i.e. K̄ ll
b ), which, because the motor is delta wound, represents the back-EMF

amplitude for a single phase as a function of rotor velocity (3.45). However, in practice,
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the amplitude of the line-to-line back-EMF is ∼5% to 10% greater than what would be ex-

pected using the manufacturer reported K ll
b (potentially converted from K ll

v ). To obtain

the q-axis torque constant for an equivalent single phase “brushed" motor, the amplitude-

based K̄ ll
b is multiplied by

√
3
2
, which can then be used with the q-axis current. Refer to

Appendix 6.8 for full derivation. Generalized for both winding types, the conversions are:

Wye: Kq
t =

1√
2
K̄ ll

b

Delta: Kq
t =

√
3

2
K̄ ll

b

(3.52)

(3.53)

The BLDC motor torque can be also calculated using the velocity constant, which is

agnostic to winding type:

τ =

√
3

2
K̄ ll

b Ī
l (3.54)

which can be derived from equations 3.59, 3.52, 3.53, 3.57 and 3.58.

Modeling expected motor torque can be further hindered by unclear representations

of torque constants from manufacturer datasheets. Informal communications revealed

several different current conventions used when reporting torque constants, which were

rarely explained on their datasheets or product literature. While our understanding of the

currents used by these manufacturers is reported in Table 3.4, it should be noted that it

was challenging to obtain the exact definitions of the currents used in torque constants

(which illustrates the issue) though we are grateful to the manufacturers who worked

with us. Thus, care must be used when interpreting torque constants, and we recommend

conversion of torque constants to the q-axis representation for accurate and convenient

modeling analysis. The following equations can be used to convert torque constants pro-

vided with different current references to the equivalent torque constant using the q-axis

winding reference frame:
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Wye: Kq
t =

√
3

2
¯
Kϕ

t

Delta: Kq
t =

√
3

2
¯
Kϕ

t

(3.55)

(3.56)

For convenience, we also provide the equations for q-axis current obtained using the

different winding reference frames:

Wye: Iq =

√
3

2
Īϕ =

√
3

2
Ī l

Delta: Iq =

√
3

2
Īϕ =

1√
2
Ī l

(3.57)

(3.58)

Thus, using the appropriately paired q-axis current and torque constant, the expected

torque can be modeled by:

τ = Kq
t I

q (3.59)

Voltage

An important factor in the design process is choosing the required bus (i.e. battery or

power supply) voltage. The bus voltage governs the maximum velocity at which a motor

can operate, assuming the motor is operating within other speed restrictions (e.g. bearing

maximum angular velocity). In a brushed “single phase" motor, the calculation of max-

imum no-load velocity is trivial, simply obtained using the bus voltage divided by the

back-EMF constant. However, when analyzing brushless motors, obtaining the maximum

velocity requires a more detailed analysis. To determine the maximum no-load velocity,

we need to consider the maximum amplitude of the motor’s line-to-line voltage, governed

by the motor’s winding type. The amplitude of the line-to-line voltage may exceed the

q-axis voltage, and thus designing based on the q-axis voltage may result in unexpected
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limitations to motor velocity. The amplitude of the motor’s line-to-line voltage can be ob-

tained using (3.60) and (3.61):

Wye: V̄ ll =
√
2V q =

√
2Kq

b

dθm
dt

Delta: V̄ ll =

√
2

3
V q =

√
2

3
Kq

b

dθm
dt

(3.60)

(3.61)

where Kq
b is the q-axis back-EMF constant (equivalent in magnitude to the q-axis torque

constant) and V q is obtained using the back-EMF constant and angular velocity. Solv-

ing these equations for velocity and substituting V bus for V̄ ll provides an estimate for the

maximum angular velocity for a given bus voltage under no load conditions:

Wye: dθm
dt max

=

√
1

2

V bus

Kq
b

Delta: dθm
dt max

=

√
3

2

V bus

Kq
b

(3.62)

(3.63)

In addition, there are other methods to calculate maximum velocity (e.g. using phase

quantities, including ¯
Kϕ

b ), however, we recommend using the q-axis representation for

consistencies with other analyses.

3.4.2 Standardizing Motor Analysis

Accurate modeling of the torque, velocity, current, and voltage needed for robotic applica-

tions is an important step in the design process. To ensure motor manufacturers provide

the necessary information needed to perform these analyses, we suggest a standard set of

Some BLDC drives will modify the commutation routine when V̄ ll is saturated at V bus–this enables the
motor to achieve a greater allowable velocity for a fixed V bus. When this occurs, the voltage and current
profiles can be become non-sinusoidal. This alteration generally causes a non-zero d-axis current that
effectively modifies the motor’s velocity constant. This approach can be used to increase or decrease the
motor’s velocity constant for a corresponding loss in efficiency but is outside the scope of this tutorial.
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information should be provided. Ideally, motor manufacturers would report information

with respect to the q-axis reference frame, however, if this is impractical, we recommend

the following. Datasheets could include line-to-line (terminal) resistance and inductance,

in addition to the winding type, which enables conversion to the q-axis reference frame.

The torque constant can be provided with respect to any winding reference frame, but the

current used in the quantification of torque constant must be clearly described. In addi-

tion, while somemanufacturers provide information on thermal dynamics (e.g. winding /

housing thermal resistances and time constants), many omit this information, leaving this

characterization to the community. Overall, each parameter should clearly indicate how it

relates to a specificwinding reference frame, and, if winding type is provided, conversions

can be performed with ease.

3.5 Conclusion

In this tutorial, we present the underlying mathematical modeling of brushed and brush-

less DC motors, as well as electrical commutation and winding configurations of BLDC

motors. Most importantly, we described common sources of error in BLDC motor model-

ing, which often stem from inconsistencies andmisinterpretation ofmanufacturer datasheets.

To address these errors, we provide explanations and conversions to the direct-quadrature

reference frame, which facilitates a convenient DC representation while conserving key

motor properties (e.g. resistive power loss). The intent of this tutorial is two fold: 1.

to guide engineers and robot designers who utilize BLDC motors in their application to

more accurately model and select a motor that is optimal for their application; and 2. to

highlight the need for greater standardization and details to be provided in manufacturer

datasheets (e.g. unit clarity, winding configuration, etc.). We hope that this work can

serve as a benchmark for standardizing BLDC motor modeling analyses while steering
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engineers and designers to more accurate and high performing system designs.
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Table 3.1: Nomenclature of electromechanical quantities

Notation Units Description
[̄·] Amplitude of a sinusoidal quantity
[·]ϕ A quantity in the phase reference frame
[·]ll or l A quantity in the line-to-line (terminal) or line reference frame
[·]q A quantity in the q-axis reference frame
[·]RMS The root-mean-square of a phase quantity
[·]A,B, or C Specific phase of a BLDC winding
I A Current
Ia A Armature current
V V Voltage
V bus V Bus voltage
V e V Back-EMF voltage
R Ω Electrical resistance
L H Inductance
Le H Effective inductance
Kt Nm/A Torque constant
Kb Vs/rad Back-EMF constant
Kv rad/Vs Velocity constant
τ Nm Torque
P W Resistive power loss
B T Magnetic flux density
F N Electromagnetic force
J Kgm2 Rotor inertia
θ rad Rotor angle
b Nm/rad/s Damping coefficient
ℓ m Length of a coil
r m rotor radius
d m Half width of a coil
N Number of coils in the winding
p Number of pole pairs
j Unit vector

For example, K̄ ll
v is the line-to-line velocity constant, which represents the

no load velocity divided by the amplitude of the sinusoidal line-to-line
(terminal) voltage (sometimes known as a motor’s Kv number), is ob-
tained by combining three different rows of the table.
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Figure 3.4: Depictions of delta (top) and wye (bottom) winding configurations.
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Table 3.2: Brushless Motor Specifications

Characteristics Definition & Comments

Terminal
Resistance (Ω)

Represents electrical resistance across two motor leads (line-to-line or
phase-to-phase resistance). Note that to estimate the phase resistance
(neutral-to-line), one should know the winding configuration of the motor,
which is typically not provided by the motor manufacturers. Appendix 6.4
details how to determine the winding type.

Torque
Constant, Kt

(Nm/A)

Ratio of torque output to provided current. Most of the cases for BLDC
motors, the correct unit of the current is not provided (e.g. whether this is
phase current or line current), which is the paramount factor for leading to
incorrect power loss of the motor.

Back-EMF
Constant, Kb

(V/(rad/s))

Induced voltage created by rotating a motor. Typically provided in
line-to-line reference frame, however; often the representations are omitted
in the datasheet.

Table 3.3: Common representations of current and voltage in brushless motors

Notation Description

Īq, V̄ q q-axis current / voltage, equivalent to RMS current /
voltage of all three phases†

Iϕ, V ϕ

Peak current/voltage of one phase, equivalent to
q-axis current/voltage using the power-varying
transform

I l, V ll

Line current and line-to-line voltage, measured
within or across two of the motor leads, respectively.
Conversion factors vary depending on winding type.

IRMS, V RMS RMS current/voltage for one phase

†
√∫ T

0 (Iϕ
2

A +Iϕ
2

B +Iϕ
2

C )

T
dt =

√
3
2
Īϕ = Iq
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Table 3.4: Different manufacturers’ representation of torque constants

Manufacturer Current in Kt

Maxon Īϕ

T-Motor Ibus

TQ Drive Īϕ

Micromo † IRMS

Kollmorgen Iq

Parker IRMS

Note that the above description is based on informal conversations with engineers from
each manufacture, not from official product documentation (it was unlisted). In
addition, the table only applies to FOC/Sine commutation.

† It is unclear whether they use RMS of three phases or a single phase, which should be
further investigated.
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Chapter 4

Preference-in-the-loop Optimization for Robotic

Ankle Exoskeleton

4.1 Abstract

A major challenge to the widespread success of augmentative exoskeletons is accurately

’tuning’ the controller to provide useful and symbiotic assistance. Often, the controller pa-

rameters are adjusted to optimize a physiological or biomechanical objective (e.g. metabolic

rate, kinematics). However, these approaches are time consuming and resource intensive,

while only enabling optimization of a single objective. In reality, exoskeleton user expe-

rience is derived from a myriad of factors, including comfort, fatigue, stability, among

others. The purpose of this work is to conveniently and automatically tune the exoskele-

ton controller settings to maximize user preference in real time (i.e. preference-in-the-

loop control). We propose a machine learning-based optimization framework to person-

alize controller settings in real-time. We utilize a previously-collected dataset to learn the

generic preference landscape with a neural network, then the learned landscape is used

This chapter is currently in preparation for submitting to a journal.
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to inform suggestions for an evolutionary strategy that optimizes the controller settings of

a novel user. The user provides their pairwise choice feedback through a interface via a

touchscreen. Our innovations are threefold: 1. optimizing user preference for a lower-limb

exoskeleton in amulti-dimensional controller space; 2. using a neural-network to learn the

preference landscape across multiple users; 3. employing black-box optimization + a neu-

ral network to efficiently identify the user’s preferred settings. Our results indicate that

users were able to identify optimized controller settings over randomly generated settings

with rate of 88% on average.

4.2 Introduction

Wearable robots, including exoskeletons and powered prostheses, hold a potential to im-

prove the quality of life by transforming the mobility of human [10, 26]. Millions of peo-

ple suffers from mobility issues due to aging, weakened muscles, stroke, and limb loss

etc [81, 82]. These individuals are likely to walk slower, fatigued easily, and prone to

fall which lead to secondary conditions including obesity, and depression [82, 83, 84, 85].

Robotic assistive technology could potentially address the issue stemming from mobility

by augmenting the locomotion by battery andmotor. Advancement inmicroprocessor and

electric motors enabled plethora of assistive robots; however, we don’t see these technolo-

gies often in everyday life, and one of the main reasons is that controlling these devices in

useful and desired way is challenging [26].

Modern control strategies typically includes a set of parameters (i.e. control laws)

to mathematically describe the assistance of wearable robots. These parameters should

be adjusted adequately such that it can be accustomed to an individual or an activity

[19]. To tune these control parameters, there are two conventional methods: 1. Expert-

based tuning by mimicking natural human locomotion. 2. Automatic tuning based on
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metabolic cost. Although these approaches hold potentials, one of the most limiting fac-

tor is that they focus on a single objective – they either only focus on kinematics / kinetics

or metabolic cost [31, 20]. In reality, there are multiple factors influences objectives, such

as stability and comfort, and these single-objective based tuning approaches may not cap-

ture these aspect [36]. As an alternative, we propose a paradigm shift in tuning control

parameters by leveraging user preference – asking people what they want. We argue that

human preference encompasses multiple physiological or biomechanical objectives such

as comfort, balance, fatigue etc. User preference-based tuning approach has a promise of

transforming the concept of tuning by easily being adopted by users without the need of

external devices (apart from the robot) while meeting the objectives of the users.

Recently, using user preference has been emerging as a tool for designing control strate-

gies. Previousworks fromour group used user-driven tuning approaches to identify users

preference for controlling exoskeletons and prostheses [35, 36]; however, since these ap-

proaches rely on user to explore the controller space, it may not scale to higher dimen-

sion. There has been automatic tuning methods to optimize preference using Bayesian

optimization; however, they primarily used a full-body robot exoskeleton (Atlante) where

robot drives themotion stemming from the field of bipedal robotics [38, 37, 39]. Therefore,

it is unclear how this approach would apply to devices that have symbiotic relationship

with the users (e.g. ankle exoskeletons, prostheses) where user drives the motion while

robot assists the movement in tandem.

In this work, we present a sample-efficient active learning strategy- based controller

for optimizing preference while user is in the loop. We used forced pairwise preference

feedback to elicit user preference. To this end, we first describe our novel algorithmic

contribution using a neural network and evolutionary strategy. Then we validate the pro-

posed algorithm both in simulation and hardware. For simulation, we study the sample

efficiency of the proposed method compared to the baseline evolutionary optimization
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strategy. For hardware validation, we conducted human subject experiment using ankle

exoskeleton system. Our contributions are threefold: 1. devising a sample efficient op-

timization algorithm for optimizing user preference 2. learning latent users preference

landscape across multiple subjects 3. optimizing user preference for controlling lower-

limb exoskeletons in high dimensional (four) space. The average validation accuracy of

88% on human subject testing demonstrates the feasibility of our approach in real-world

use case. The intent of our work is to present a framework for users to tune their con-

trollers automatically; we hope that this work can be a starting point for translating these

wearable technologies outside of laboratories, ultimately, in our daily lives.

4.3 Method

The proposed approach uses an active learning paradigm, where a learning algorithm

interactively queries a user’s preference to identify the optimal settings (e.g. torque as-

sistance setting for a wearable robot). The design principle of the algorithm is to build

a system which converges to preferred setting while minimizing the users’ query. There

are two components in the optimization algorithm, one is modeling the latent preference

function of the user, and the other is elicitation strategy which efficiently queries the users

based on the inferred preference function. For modeling the preference function, we em-

ploy neural networks (i.e. RankNet [86]) to estimate preferred settings given a pair of

parameter samples. In addition, the model provides estimation of a score for each pa-

rameter setting, which will be used to rank the given set of parameters (more than two).

We exploit an evolutionary algorithm (CMA-ES, 1 + λ [87, 88] ) as an elicitation method

to sample parameters for querying the user. Given the estimated score from RankNet,

CMA-ES selects the best parameter among the population in each generation. Our ap-

proach is inspired by [89]; however, it differs with the work by using RankNet instead of
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RankSVM [90], which accounts for nonlinearity of the preferencemodel. We validated the

proposed algorithm, namely RankCMAES, in both simulation and robotic hardware with

human subjects. The following sections describe the detail of the algorithm and validation

methodologies.

4.3.1 Modeling Human Preference

We modeled human preference, in other words, estimated users’ latent preference func-

tion to identify which settings are better than the other. We employed a RankNet, which is

a gradient descent method originally developed for learning ranking problem (e.g. rank-

ing search results on the internet). For our case, we are not necessarily interested in rank-

ing the entire order of a set of settings, but more in modeling the landscape of human

preference to identify the best setting in the set. To elicit user’s preference, we used forced

pairwise choice paradigm – asking people to ask to choose the setting they relatively pre-

fer. Previous works demonstrated that pairwise feedback system is more reliable than

numerical scores (i.e. 1-10 absolute scale) [91, 92]. The feedback was provided as labels

for modeling the preference function. In mathematical formulation, given a true prefer-

ence function f : Rd → R, and a pair of settings xa, xb, a user prefers setting a over b (a ≻ b)

if f(xa) > f(xb). We denote ≻ to indicate users preference between a pair of settings. To

learn the estimate f̂ of the function, we minimized the cross-entropy loss between the

estimation of preference and true preference [93, 94]:

loss(f̂) = −
∑

δa log P̂ [xa ≻ xb] + δb log P̂ [xa ≺ xb] (4.1)
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where P̂ denotes the probability of preferring a setting using a logistic function:

P̂ [xa ≻ xb] =
exp

{
f̂(xa)

}
exp

{
f̂(xa)

}
+ exp

{
f̂(xb)

} (4.2)

and δ is a function which outputs binary number 0, 1 depending on the true preference

(i.e. training label):

δa = 1, δb = 0 if xa ≻ xb

δa = 0, δb = 1 if xa ≺ xb

(4.3)

4.3.2 Learning Preference Function

Dataset

We created a dataset by using a previous study from our group which identified pre-

ferred assistance settings across multiple users [36]. The assistance control parameters

included peak torque timing and peak torque, which are used to shape a torque profile

to be prescribed to a bilateral ankle exoskeleton [20] (Details in Sec. 4.3.5). We converted

12 subjects’ (Naive subjects) preferred setting composed of two parameters into pairwise

preferences, where each datumhad two sets of parameters and corresponding label which

denotes the preference. For example, if xa ≻ xb, two settings are xa, xb and the label is [1, 0].

To create user scores, we first fitted 2 dimensional Gaussian for individual users, and com-

pared the score from the estimated Gaussian to generate pairwise labels. In total, the size

of the data was 60,000 samples, where we uniformly sampled the settings in 2D parameter

space defined by the bounds in [36].
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Figure 4.1: Ranknet Architecture. During the training of the neural network, Ranknet takes two sets of
input (controller parameters) and minimize the cross-entropy loss between the output of the Ranknet and
ground-truth preference label. Each control parameters goes through the feed-forward network backbone
which is converted to an estimated score of corresponding setting. Then the difference of the scores are
calculated and converted to a probability of selecting one setting over another using sigmoid function.

Ranknet Architecture and hyperparameter search

We used a multi-layer feed forward neural network to model the preference function f̂ ,

which maps input (i.e. controller settings) to a score (i.e. latent user score). To find the

optimal number of hidden layers, neurons, and hyperparameters including regularization

rate and batch size, we performed Bayesian optimization (BO) to maximize the estimated

preference score, which is the output of the Ranknet. BO was used to identify the pa-

rameters in relatively few iterations compared to a grid search [95]. After the tuning, the

number of hidden layers, neurons per layer, type of activation function, regularization

rate, and batch size were chosen as 3, 200, tanh, 1e-4 and 16, respectively.
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Training Ranknet

We divided the dataset into training and validation set with 8:2 ratio across all subjects

data, and trained the Ranknet on the training set to minimize the cross-entropy loss (4.1).

We employed a stochastic gradient-based optimizer ADAM [96] with L1 and L2 regular-

ization to prevent overfitting. A number of epochs of 10 was used during the training

process.

4.3.3 Optimization of Human Preference

CMA-ES

We developed a sample efficient black box optimization to optimize human preference

(i.e. preferred parameters). The black box optimization, namely Covariance matrix adap-

tation evolution strategy (CMA-ES), was used since the true preference function of human

is unknown [87]. The overall procedure of optimization is as following: first, a population

of samples (e.g. controller settings) is generated from a multivariate normal distribution.

Second, the best candidate sample (i.e. elite) is comparedwith the parent sample, inwhich

the comparison is conducted by the user. Third, if the new candidate sample is better than

the parent, update the shape of the normal distribution (covariance matrix adaptation).

Compared to standard ES, the mean of the population’s distribution is updated based on

covariancematrix such that the likelihood of selection (e.g. preference) increases [87]. We

used 1 + λ CMA-ES [88], which is a variant of traditional µ, λ CMA-ES [87], where µ, λ

denotes number of parent, and offspring, respectively and , signifies that a new generation

is selected from only children / offspring, while+ denotes that new generation is selected

from a pool of children and parent. 1 + λ CMA-ES exploits success rule based size step

adaptation as opposed to path length control [88]. The main reason for the choice of the
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particular CMA-ES is that it has faster convergence (i.e. less number of function evaluation

before convergence) [97, 88]). Despite the fact that 1 + λ strategy may be prone to con-

verging to sub-optimal local minima, because of the expensiveness of function evaluation

due to nature of human subject experiment, we focused more on the sample efficiency of

the algorithm.

Combining Ranknet with human preference

We combined the model of human preference using Ranknet into the CMA-ES. We name

this algorthim as RankCMAES. The main innovation of the algorithm is that we combined

Ranknet to increase the sample efficiency by reducing the amount of queries we ask to

the user. The contribution on the algorithm are as follows: 1. Sorting offsprings is per-

formed by Ranknet. The best offspring was chosen based on the estimated score from

the pre-trained Ranknet, instead of eliciting users’ preference for all offspring candidates.

This significantly reduces the amount of queries required by users. 2. User’s pairwise

comparison is directly used for updating CMA-ES parameters. Specifically, user provides

pairwise preferences over a pair of single parent and best offspring. To balance the model

inaccuracy of Ranknet, we leverage user’s response for updating covariance matrix of the

CMA-ES. Therefore, only one user response per generation will be required to proceed

with the optimization. 3. Number of lambda decreased as optimization progressed. In ev-

ery N number of iterations, the number of offsprings (i.e. lambda) reduced by half, which

eventually reduces to 1+1 CMAES towards the end of the optimization. The scheduling

of lambda is exploited such that it balances the convergence speed with accuracy of op-

timization. Because the inevitable source of error in modeling of human preference, as

the parent approaches to the optimal parameters, it may lack the granularity of closely

reaching the optimal points compared to 1+1 CMAES. Therefore we can achieve fast con-

vergence speed while not sacrificing the optimization accuracy by leveraging the Ranknet
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when accuracy less matters, and gradually turning off the contribution of the Ranknet and

relying on the user more as generation increases. 4. Ranknet infers the estimated scores

based on the subspace of parameter space of the optimization. For example, Ranknet

estimates the score on based on peak torque timing and peak torque among four ankle ex-

oskeleton optimization parameters space (Sec. 4.3.5). This allows to use existing dataset

(Section 4.3.2), which prevents the need of extra data collection effort, which is expensive

due to the nature of human subjects experiment. The overall optimization procedure is

described in Algorithm 1.

Algorithm 1 Rank-CMAES
Parameter

x - input parameter for optimization
xg
parent - parent in g generation

xg
i - ith offspring in g generation

K - Number of total generation until termination
λsucc - number of successful candidates
psucc - success rate
C - covariance matrix

procedure RankCMAES(a, b)
Init xg

parent

while g < K do
for i=1,..,λ do

xg+1
i ∼ N(xg

parent, C)
end for
psucc = λsucc/λ
UpdateStepSize(psucc)
xg+1
best = Rank(xg+1

i=1,..,λ)[0] ▷ Sort by scores from Ranknet
if xg+1

best ≺ xg+1
parent then ▷ User provides the preference

xg+1
parent ← xg+1

best

UpdateCovariance(xg+1
parent, C, psucc)

end if
g ← g + 1

end while
end procedure
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4.3.4 Validation of Optimization: Simulation

We analyzed the performance of the proposed algorithm RankCMAES in simulation. In

large, the performance of the optimization can be measured by the number of generations

before the convergence, and how closely the optimization reaches the global optimum.

The procedure for the validation is as following: 1. we defined a synthetic preference pro-

file using 4 dimensional Gaussian for 12 synthetic users. Two parameters (peak torque

timing, peak torque) among 4 dimensional space was chosen in dataset described in Sec-

tion 4.3.2, in other words, only other two parameters (fall time, rise time) were syntheti-

cally generated. This choice of preferred settings was to resemble the real world case as

much as possible. 2. We performed 12 cross-validation to train Ranknet and test the op-

timization. Cross-validation was repeated for three times to account for stochasticity of

the algorithm. For the optimization, we fixed the number of generation to 150, and the

hyperparemters for Ranknet and CMA-ES was fixed across all validations. The number of

generations was selected based on the pilot study for a single synthetic subject. All scores

(i.e. function evaluations) were normalized to 0 to 1 scale.

We conducted ablation studies to further analyze RankCMAES. To study the effect

of Ranknet, we compared the proposed algorithm with 1+1 CMAES, which has same

amount of user response per generation. In addition, to investigate the effect of schedul-

ing of lambda – decreasing the number of offsprings as number of generation increases

– we compared the performance of the optimization with and without the scheduling.

Initially the number of lambda was 8, and every 10 generation, the number of lambda re-

duced to half until it became one. The number of lambda and reduction frequency were

determined by grid search to maximize the performance while other hyperparameters

were fixed. The procedure for validation was identical to the above.
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4.3.5 Validation of Optimization: Human Subject Experiment

Experimental Protocol

The purpose of the experiment was to validate the proposed optimization algorithm on

human subject testing (Fig. 4.2). To this end, subjects provided their pairwise preferences

by interacting with a touch screen tablet installed to the instrumented treadmill (Fig. 4.5),

while control parameters were optimized in real-time. Subjects walked on the treadmill

on a fixed speed of 1.2 m/s. A pair of controller setting was presented to the user using

a touch screen, and user provided their preference via the buttons on the user interface

on the screen (Sec. 4.3.5). As user pressed the button, the user experienced the change

to the corresponding setting. Typically it took 3-4 steps before the change was applied,

which we informed the users prior to the experiment to account for delay before making

a selection. The change of assistance was prescribed at the heel contact of the following

side of limb, right after the button was pressed. Once the users knows which setting they

prefer, they confirmed the setting via the user interface. The users were instructed to try

out the settings as much as possible without any time limit until they are certain which

setting they prefer. After user repeated the selection for total 50 times, user entered a

validation trial without being aware of it. We fixed the number of generations to 50, where

the number was decided based on pilot study that was known to reach convergence. The

optimized parameter was defined as the last parameter user selected before entering the

validation. For validation trial, the protocol was identical to the main optimization trials,

except one of the two settings corresponded to the optimized parameter while another

was a randomly generated control parameter. There was total 10 selections during the

validation trial.

The protocol composed of two practice sessions, and three main optimization sessions
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Suggests 
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Figure 4.2: Experimental setup for preference-in the-loop-optimization. A method which optimizes users
preferred torque profile by using pairwise preferences. Given two controller settings (parent, best off-
spring), user provides their selection of preferred setting using a touch screen interface. Using user feedback
information, CMA-ES updates parameter accordingly and generates new set of offsprings consists of control
parameters. Ranknet sorts the offsprings and present the best one to the user with the parent.

consists of optimization and validation trial as described above (Fig. 4.3). During first

practice session, subjects donned the ankle exoskeleton with actuation off while walking

on the treadmill. This session was to make sure the users are adjusted to the treadmill.

On the second practice session, subjects walked on the treadmill with the exoskeleton

actuation and optimization on while eliciting their preferences via tablet computer. User

was asked to repeat the settings until they are comfortable with the overall interface. After

the practice session ended, the main optimization session started. In every 10 minutes

and between every sessions, users took break which was notified via the touch screen by

prompting a pop-upwindow. The breakswere designed such thatminimize users’ fatigue

which may detriment the quality of the selection.
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Figure 4.3: Experimental protocol for human subject testing. The protocol consists of setup, two practice
sessions, preference elicitation, and validation sessions. The practice sessions were designed so that users
become familiar to the instruments and preference elicitation process. During the preference elicitation ses-
sion, user provided their preference between two settings (A, B). The last selected setting was defined as
final optimized setting and passed on to the validation session. Users were not aware of the validation ses-
sion, where users were comparing between the randomly generated control parameters with the optimized
parameters. The sequence of settings in each selection were randomized to prevent users from memorizing
the settings.

Subjects

We recruited total 14 able-bodied subjects (10 male and 4 female; average age 26.8 years;

height 173 cm, weight 69.3 Kg), which were composed of 8 users with prior experience

with a robotic exoskeleton or researchers in the field of wearable robotics (experienced

subjects), and 6 users with no prior experience with exoskeletons (naive subjects). The

information was self-reported from a questionnaire we provided prior to the experiment.

All subjects provided consent to a protocol approved by the University of Michigan Insti-

tutional Review Board.
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Ankle Exoskeleton System

Subjects donned powered bilateral ankle exoskeleton system (Exoboot-45, Dephy Inc.,

Maynamrd, MA), where both sides are symmetrical (Fig. 4.4 A). The exoskeleton pro-

vides unidirectional actuation, which is able to provide up to peak plantar-flexion torque

of 30 Nm about the ankle joint. The actuation are provided by brushless motors (T-motor

U8KV100, Nanchang, Jiangxi, China) bypulling in the cable that is connected to the boot’s

lever arm. The cable produces a nonlinear transmission (4∼17:1) over the range of ankle

angle motion. The torque is transmitted to the leg via shin cuffs and carbon fiber plate

embedded in the boots that is rigidly attached to a strut where the actuator is mounted.

The exoskeleton is equipped with onboard sensors including ankle joint, motor encoder,

IMU, motor current and voltage sensor. Each side of the exoskeleton had a mass of 1.4 Kg,

and peripherals including battery (25V LiPo) and the microprocessor (Raspberry Pi 3B+,

Cambridge, UK) for controlling the actuator systemweighed 1.2 Kg. The microprocessor,

which included higher level controller logic, communicated with the embedded system

(FlexSEA [47]) of the actuator via USB cables. The actuator system provides Python API

(Dephy ActPack) to command actuation and read sensors from the system. The main

controller script on the microprocessor ran on 200 Hz, communicating with a closed-loop

controller within the motor drive at 1 KHz and 10 kHz for position, and current control,

respectively [25].

Ankle Exoskeleton Control

The exoskeleton provided torque as a function of gait phase. Commanded ankle torque

(τankle) was converted to a desired current (i) using ankle transmission (TR) and motor

torque constant (KT ):

i = τankle/TR/Kt (4.4)
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where current and torque constant were represented in q-axis frame. For details on the

quantity and the unit please refer to Chapter 1 of the dissertation. The assistance torque

profile was shaped using four parameters: rise time, peak torque, fall time, and peak

torque magnitude, where the polynomial was defined by interpolation of the parameters

(Fig. 4.4 B). The methodology of shaping was originally developed by Zhang et al [20].

We used a finite-state-machine controller API for Dephy Exoboot developed by Shep-

herd et al [98]. The controller had four states to reflect human ankle joint kinematics.

During state 1 (reel-out), the cable was loosen using position controller to reach a desired

slack of the cable so that it minimized the resistance in swing-phase dorsiflexion while

providing a ground clearance. In state 2 (swing), the cable maintained a desired slack to

be much as transparent as possible by exerting zero torque. In state 3, after the heel strike,

A B

Figure 4.4: (A) Bilateral ankle exoskeleton system (Dephy Exoboot). The exoskeleton provides uni-
directional assistance through brushless motor and cable transmission during push-off. (B) Shaping of
the torque profile for controlling the exoskeleton. Four parameters: rise time, peak torque timing, fall time,
and peak torque magnitude, determine the shape of a polynomial.
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the cable was spooled into the actuator to be taught and ready to prescribe actuation in the

following state. In state 4, assistance torque profile was applied using open-loop torque

control, where the shape of the profile was defined by the method described in the previ-

ous paragraph. During the last state, assistance profile had a bias toruqe of 3 Nm before

rise time and after fall time.

The controller parameters were sampled from the CMAES optimization while abiding

by the bounds we predefined. The bounds of four control parameters was informed by

the literature’s on ankle exoskeleton [36, 20]. The bounds for the rise time, peak torque

timing, and fall time were from 10-40 % , 30-60 % , 5-20 % gait cycle, respectively, and the

bound for the peak torque magnitude was from 7.8 to 20.7 Nm.

Design of Graphic User Interface

The touch screen was composed of a total 4 buttons, which two buttons were ’tryout’ but-

tons (Setting A, Setting B), and other two were ’confirmation’ buttons under each tryout

buttons (Fig 4.5). Two settings were provided by the optimizer, where one was parent,

and another was offspring selected by Ranknet (Algorithm 1). Each tryout buttons of set-

ting A and setting B corresponded to a torque assistance setting of parent and offspring.

Whenever the user selected any of the tryout buttons, the respective button glowed to

show the user which setting they were experiencing. There was no limit on how many

times users can press these tryout buttons, since we allowed users to try as many times

they want before making a decision which one they prefer. Once the users are certain

which control setting they preferred, they pressed the respective confirm button. Based

on the selection made by the user, in the next pairwise comparison, the non-confirmed

setting was replaced by a set of control parameters recommended by the optimizer (i.e.

offspring). The placement of the previously selected control setting and the newly recom-

mended control setting was randomized so as to avoid scenarios where users remember
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the order of the placement. In case of validation trial, one of the tryout buttons correspond

to the optimized parameter, and another was the randomly generated parameter while the

procedure was identical to that of the main optimization trial as discussed above.

When users made a decision on which settings they preferred, user clicked on button

"confirm A" or "confirm B". Once user pressed the confirm buttons, a pop up window

appeared on the screen with a button "Click to Start Next Comparison" – by clicking this

button, the users started the next comparison and were presented with the same screen

with the 4 buttons. This pop up was added so that users could drive the pace of the

experiment. To prevent cases where user accidentally presses confirm before exploring

two settings, a warning pop-up window was prompted to the user in this scenario – a

pop up appeared on the screen with the message "Please explore both the control setting

1

C

BA
26 cm

17 cm

Figure 4.5: Setup of a graphic user interface (GUI). (A) A picture of subject interacting with the GUI while
walking on a treadmill with the exoskeleton. (B) The placement and dimensions of Microsoft Surface tablet
where the GUI was presented. (C) Buttons on the GUI: Setting A, Setting B, confirm A, confirm B. Setting
buttons allowed users to try out controller setting corresponding to each button. Once user decides which
setting they preferred, they clicked the according confirm button under the setting.
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before pressing confirm". This ensured that the users experience both the control settings

beforemaking a selection. Additionally, a pop up appearedwith themessage "Please reset

the Exoskeleton, Break Time!" and a button which enabled to rejoin the session every 10

minutes when the break time was reached. Also a pop up appeared on the screen with

the message "End of Trial!" after the completion of a single session (i.e. 60 selections).

Design of Communication System

We designed a multi-device wireless communication system for real-time optimization

while user is in the loop (Fig. 4.6). We used gRPC Remote Procedure Call (gRPC) for

communication between the three devices: Microsoft Surface tablet PC (GUI), Computer,

Raspberry Pi (RPi). gRPC is a communication framework which is lightweight, environ-

ment agnostic and efficient, which is suitable for our application. When the user makes

a selection (i.e clicks button on the touch screen), the GUI sends the user’s selection to

the computer via a wireless gRPCmessage. Based on the selection received from the GUI,

the desktop computer runs the optimization and sends the control parameters to the RPi.

The RPi updates the controller parameters based on the control parameters received from

the computer. The RPi sends the control commands to the embedded system (FlexSEA

[47]) on the Exoboot via a USB connection, and the embedded system sends the motor

commands to the brushless DC Motor on the Exoboot. When one session block ends, (i.e.

user has made 60 selections), the computer sends a message to GUI to to appear the pop-

up window on the screen to inform the user that session has ended. Additionally, once

break time is reached (every 10 minutes), the RPi sends a grpc message to the GUI to

make another pop-up appear.

To have a seamless real-time communication between the three device, we used multi-

threading to run multiple process in parallel. The controller on the RPi was running two

processes simultaneously, one to continuously listen to the message which contains the
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Figure 4.6: Schematic diagram of the communication system. The figure shows the communication loop
between three devices: Microsoft Surface tablet PC (GUI), desktop computer and Raspberry Pi+Exoboot.

control parameters sent by the computer, and another process to send the control com-

mands to the embedded system. The surface tablet also was running two processes si-

multaneously, one to display the GUI interface on the screen, and another to continuously

listen to the messages sent by the RPi and desktop computer to indicate that the break

time / end of session has reached.

Statistical Analysis

To quantify the success of the optimization in human subject testing, we used a metric

of validation accuracy – number of times user selected optimized torque control param-

eters over randomized parameters. During the main optimization sessions, we recorded

the control parameters during all generations including that of validation trial. First we
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analyzed the validation accuracy by calculating the mean and standard deviation across

trials per subjects. In addition, we compared the validation accuracy between naive and

knowledgeable subjects by using two-tailed t tests. The t tests were calculated across all

trials for both subject groups. The significance level was defined at 0.05

We hypothesized that as randomized profile deviates farther from optimized profile,

users will be able to distinguish the profiles better than it is close to each other. To eval-

uate the hypothesis, we used a linear mixed-effects models to measure the relationship

between RMSE of randomized and optimized profile, and number of times user selected

randomized over optimized profile (NTSR). NTSR was used as response variable, RMSE

as a fixed-effects term, and a random intercept that varies by subject. We calculated the

significance of the fixed effect coefficient to assess the statistical significance of RMSE on

NTSR. The significance levelwas defined at 0.05. All statistical calculationwere performed

using Matlab (MathWorks, Natick, MA).

4.4 Results

4.4.1 Learning Preference Function: Training Ranknet

We visualized Ranknet which was trained using the dataset as described in Sec. 4.3.2.

Estimated preference landscape from Ranknet had high score around peak torque timing

larger than 55 % gait cycle, in accordance with the dataset where most of the users’ pre-

ferred settings are clustered (Fig. 4.7). This means that during optimization, Ranknet will

sort offsprings based on the order in which has higher peak torque timing.
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A B

Figure 4.7: (A) Users’ preferred controller settings in previous work[36]. Note that the controller settings
are twodimension: peak torque timing andmagnitude, andusers are different from the subjects participated
in this study. (B) Estimated preference score from Ranknet. In accordance with subplot A, scores are higher
in the region where users settings are clustered.

4.4.2 Validation of Optimization: Simulation

We analyzed the performance of RankCMAES in simulated environment. The proposed

algorithm outperformed baseline 1+1 CMA-ES in 12 cross-validation. In general, RankC-

MAES the performance gap between two algorithms occurs around ∼ 30 generations,

where Ranknet assists the CMA-ES optimization. This highlights the effect of Ranknet

in the optimization. In addition, we studied the effect of lambda scheduling in perfor-

mance of RankCMAES. We can observe that the effect of scheduling is paramount, when

there is no scheduling, RankCMAES suffers to reach the global optimum.

4.4.3 Validation of Optimization: Human Subject Experiment

We calculated the validation accuracy rate of users selecting optimized control parameters

over randomly generated parameters. First, we analyzed themean and standard deviation

across trials per subject (Fig. 4.9 A). We noticed subjects with lower accuracy had higher
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Figure 4.8: Performance validation ofRankCMAES in simulation. (A)Effect of Ranknet. Comparison of opti-
mization results between RankCMAES and 1+1 CMAES. RankCMAES (blue) outperforms baseline CMAES
(orange). The dashed line shows the score of global optimum (upper bound). (B) Effect of lambda schedul-
ing. Comparison of optimization performance when the scheduling is off verses on. RankCMAES with
scheduling (blue) outperforms RankCMAESwithout the scheduling (orange).

variance. Overall, the average and standard deviation across all subjects were 87.8±10.6%,

which shows that users were able to discern and select optimized parameters. Secondly,

we calculated the mean and standard deviation of validation accuracy across knowledge-

able and naive subject groups (Fig. 4.9 B). The accuracy for knowledgeable subject group

and naive subject group were 93.8± 8.8% and 80.0± 17.1%, respectively. Knowledgeable

subjects statistically performed better in validation trial than naive subjects (P = 0.001).

To further check the plausibility of the validation trial, we analyzed the correlation be-

tween deviation of optimized and randomized torque profile and number of times user

selected randomized over optimized profile. To measure the deviation, we used root-

mean-square-error (RMSE) between optimized and randomized profile. We binned the

range of RMSE into three groups: RMSE of 0-3, 3-6, 6-9, to calculate the number of times

user selected randomized profile in each group. Since RMSE is a continuous variable, it

is nearly impossible for a RMSE to have more than one corresponding counts of selection,

which necessitates to group RMSE of certain ranges. The number of times user selected
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Figure 4.9: (A) Mean and standard deviation of validation accuracy across trials for all subjects. (B) Mean
and standard deviation of validation accuracy across knowledgeable and naive subject groups, respectively.
Error bar denotes a standard deviation, and star shows a statistical difference (P < 0.05). (C) Mean and
standard deviation of normalized number of times user selected randomized profile over optimized profile
(NTSR) across subjects. NTSR was measured by comparing between randomized and optimized profile
in torque-gait phase space during validation trials, and grouped in three different root mean square error
(RMSE). Line depicts the slope of linear-mixed effectsmodels. (D)An example plot of torque profileswhich
represents each RMSE group..

randomized profile was normalized (NTSR) to the total number user selections per RMSE

group to account for the stochasticity of sampling process of randomized profile. We ana-

lyzed the effects of RMSE onNTSR using linear mixed-effects model (LMEM). The model

showed negative linear significant relationship between RMSE and NTSR (P < 10−6),

where the level of significance was defined at α = 0.05 (Fig. 4.9C).
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We measured and visualized the average of the optimized control parameters across

trials for individual subjects. Overall, users had distinctive optimized parameters over

the range of permissible parameters (Fig. 4.10A). For peak torque timing, the parameters

ranged from 40 to 58% gait cycle, while most of the subjects were between 53 to 58% gait

cycle except two subjects. For peak torque magnitude, the parameters were between 12 to

20 Nm. The optimized rise time ranged from 20 to 33% gait cycle, while the optimized fall

time ranged from 6 to 30 % gait cycle. Additionally, we visualized the optimized torque

profile for all subjects. We were able to observe that optimized profiles covered wide area

within the allowable range of torque; however, peak torque timing were rather concen-

trated in relatively narrow range across subjects.

We visualized the progression of optimization for one representative subject (no. 7,

trial 3). We depicted the progression of selected torque profiles (Fig. 4.11 A), and se-

lected and non selected profiles (Fig. 4.11 B) from start to the end of the optimization (50

generations). We were able to observe that the users explored wide range of profiles be-

fore converging to the optimal profile. During the validation trial, user mostly selected the

optimized over randomized parameters (Fig. 4.11 C), except one case where randomized

profile was close to that of the optimized (Fig. 4.11 D).

4.5 Discussion

In this work, we proposed a sample-efficient active-learning strategy for optimizing users

preference while human is in the loop. To this end, we described the novelty in the algo-

rithm, and validated the performance in both simulation and human subject experiment

with a robotic ankle exoskeleton. The overall validation accuracy in human subject test-

ing were in average 88% across subjects. This accuracy indicates that user were able to

reliably distinguish and select preferred settings, and the algorithm were able to iden-
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Figure 4.10: (A) Users optimized control parameters averaged across trials. Left plot shows the control
parameters of peak torque timing andmagnitude, while right plot depicts the optimized control parameters
of rise time and fall time. The gray lines depicts the bounds of each control parameters. Different color codes
represents different subjects which corresponds to the subject number in subplot B. (B) Average torque
profiles of all subjects. The toe-off point was at 65% of the gait cycle, where the profile was not permitted to
prescribe larger than the bias torque (3 Nm). The gray lines depicts the bounds of the profile imposed by
control parameters.

tify users’ preferred control parameters. We also studied whether knowledge in wearable

robotics increases the validation accuracy, where knowledgeable users had statistically

significant higher accuracy. The motivation of this work is to provide a framework for au-

tomatically tuning users preference when users need to. Our algorithm enables for users

to tune the controller in real-time, by asking a simple binary question for current pair of

settings, without requiring users to remember and keep track of the previous settings they

have selected. This simple form of feedback significantly reduces the cognitive burden for

eliciting preferences. The work lays a cornerstone for automated tuning system of pow-

ered exoskeleton based on what people want, which can attain multiple objectives such

as comfort, balance and stability without the need of extra equipment. We believe that a

user preference has a strong potential to bring these emerging wearable robotics technol-

ogy outside of the lab, in community and at home.
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Figure 4.11: Progression of torque profiles of one representative subject (no.7, trial no.3) during main op-
timization trial (A) Selected torque profiles across number of generations. Red line depicts the optimized
profile (a profile user selected at the end of the optimization) (B) Selected and non selected torque profiles
across number of generations. (C) Torque profiles across validation trial. Green line represents randomly
generated torque profile. (D) Torque profiles when user selected randomized profile over the optimized.
For this particular subject, user selected the randomized (green) over optimized (red) for only one time
during the validation trial.
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4.5.1 Limitation

The human preference model (i.e. Ranknet) is pretrained and fixed during the optimiza-

tion procedure. In other words, the model is not updated based on a novel user. RankC-

MAES, which is rooted on CMAES, still optimizes and adapts to a new user; however,

since the model is fixed, a novel user’s preference landscape is unknown. Currently, the

model creates a single model across multiple user information, in other words, there is no

user-specific information contained in the model. This can potentially be an issue when a

new user does not follow the trend from the model. For example, subject no. 8 showed a

low optimized peak torque timing (38%) compared to other subjects (∼ 55%). In general,

Ranknet recommends settings that has higher peak torque timing during the optimiza-

tion process (Fig. 4.7), which may hindered the performance of the algorithm. Therefore,

this particular subject may have converged to a sub-optimal setting which resulted in the

lowest validation accuracy among subjects.

4.5.2 Validation of Optimization

The validation accuracy of ∼ 90% show that the proposed algorithm were able to opti-

mized the control parameters based on user preferences. During validation trial, users

were able to perceive the differences between optimized and randomized control parame-

ters, while able to identify the preferred settings repeatedly. The blindfold validation test

we designed is away to indirectly validate the performance of the optimization, but it does

not provide information on how close the optimized settings are to the global optimum in

parameter space. To mitigate the shortfall of the validation test, we further analyzed how

the accuracy (NTSR) decreases as the randomized parameters deviates from optimized

parameters (RMSE). The significant negative linear relationship between two parameters:

NTSR, RMSE, demonstrates that as the deviation of randomized and optimized parame-
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ters increases, users were able to identify the difference better. This implicitly manifests

the trend of the preference landscape, where hints the convexity of it. However, to ac-

curately identify a novel user’ landscape, a preference model should be fitted to the data

collected from the novel user as described above.

We further analyzed the validation accuracy bydividingusers into twodifferent groups

based on prior knowledge to exoskeletons (knowledgeable vs naive). We observed that

knowledgeable users performed statistically better than naive users. This may indicate

that knowledge on exoskeletons contribute to sensing and identifying preferred control

settings. Similar study was conducted previously from our research lab, where the preci-

sion in identifying preferred settings was compared between two groups [36]. Although

there were no statistical significance observed between two groups, knowledgeable group

had higher precision in average. This finding supports the possibility of knowledgeable

user having higher sensitivity than naive users on controller settings; however, separate

sensitivity analysis should be performed to verify the hypothesis. There has been a study

which investigated into measuring the sensitivity using the just-noticeable difference on

powered ankle exoskeleton, but it did not distinguish the group of subjects based on prior

knowledge on exoskeletons [21].

4.5.3 Future work

One way to address the limitation of the fixed preference model is to update or newly

train Ranknet based on new users’ preference feedback; however, the challenge is to care-

fully choosing the frequency of update, since we need to have abundant amount of data to

train neural networks, and updating too frequently may lead to catastrophic forgetting. In

addition, we can devise a neural-network architecture which contains user-specific infor-

mation. By having additional user ID as an input to the network, the model may be able
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to adapt to a novel user (i.e. meta-learning).

One of the novelties in our approach is that we trained and used Ranknet in lower di-

mension (two) and used for higher dimension (four) optimization problem. This demon-

strates two advantages: 1. Utilizing pre-existing, non-pairwise preference data [36]. This

removes a burden of collecting a new dataset, which is costly for human testing, and we

can convert into the data format we desire and use it in our optimization. 2. Extensibil-

ity to a higher dimension optimization. Similar to the study, we can reuse the data we

collected for four dimension and apply it to higher dimension problem. In other words,

the preference feedback we collected during the optimization experiment, can be a new

source of data for optimizing higher dimension control parameters. This does not mean

that the algorithm cannot use Ranknet for the same dimensional optimization problem.

To use Ranknet which is on the identical dimension, a data collection must be conducted

as a priori procedure for training Ranknet.
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Chapter 5

Image Transformation and CNNs: A Strategy for

Encoding Human Locomotor Intent for

Autonomous Wearable Robots

5.1 Abstract

Wearable robots have the potential to improve the lives of countless individuals; however,

challenges associated with controlling these systems must be addressed before they can

reach their full potential. Modern control strategies for wearable robots are predicated on

activity-specific implementations, and testing is usually limited to a single, fixed activity

within the laboratory (e.g. level ground walking). To accommodate various activities in

real-world scenarios, control strategies must include the ability to safely and seamlessly

transition between activity-specific controllers. One potential solution to this challenge is

to the infer wearer’s intent using pattern recognition of locomotion sensor data. To this

end, we developed an intent recognition framework implementing convolutional neural

This chapter is currently published in IEEE Robotics and Automation Letters ( Volume: 5, Issue: 4, Oct.
2020).
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networkswith image encoding (i.e. spectrogram) that enables prediction of the upcoming

locomotor activity of the wearer’s next step. In this paper, we describe our intent recogni-

tion system, comprised of amel-spectrogram and subsequent neural network architecture.

In addition, we analyzed the effect of sensor locations and modalities on the recognition

system, and compared our proposed system to state-of-the-art locomotor intent recogni-

tion strategies. We were able to attain high classification performance (error rate: 1.1%),

which was comparable or better than previous systems.

5.2 Introduction

Wearable robots, including powered prostheses and exoskeletons, have the potential to

improve people’s quality of life by enhancing their physical capabilities during locomo-

tion [16, 25]. Despite the promise of these wearable technologies, challenges remain in the

development of safe, intuitive, and versatile control systems. Recently, researchers have

demonstrated exoskeletons that are able to apply substantial assistance, as well as reduce

the metabolic expenditure during walking [16, 20]. To obtain these results, researchers

typically develop control approaches that are intended for single activities, often teth-

ered to a treadmill. For this approach to be applicable in daily life, these systems must

be able to encompass multiple activities, including walking, running, and stair ascent or

descent. To address the limitations associated with control systemsmeant for single activ-

ities, some researchers have developed methods for switching between multiple activity-

specific controllers; however, often these transitions are initiated by commands such as

visual, auditory, or touch (e.g. key-fob) cues which are non-intuitive and can increase

cognitive burden [40]. Thus, for users to naturally perform the activities of daily life, it is

imperative to develop control strategies that can infer thewearer’s intendedmovement au-

tomatically without requiring external commands, and autonomously transition between

92



different activity-specific controllers.

One approach to infer the wearer’s intended activity is to use an intent recognition

framework [40, 44, 42]. Intent recognition typically includes predicting the upcoming

activities of the user each step using information from the wearer, robotic system, or en-

vironment prior to completing the movement (e.g. before heel contact or toe off of the

current step) [41]. There have been several works that implemented intent recognition

strategies employing sensor fusion for improving the performance [44, 99]. While these

strategies demonstrated high performance on classifying users’ locomotor activities (error

rate < 2%), they often rely on hand-crafted features, such as the mean, standard devia-

tion, maximum and minimum of time-series data. This can be challenging because it may

require domain specific knowledge and trial and error approaches to extract meaningful

features [100].

Deep learning (DL) has been emerging as a tool to classify activities in human activity

recognition (HAR) or intent recognition tasks [101, 102, 103]. Especially, convolutional

neural networks (CNNs) have been used over other DL methods, due to their local de-

pendency and scale invariance, which captures the invariant features of the same activ-

ities with variations (e.g. walking) [101]. Combined with recent advancement in pro-

cessing capability and miniaturization of graphics processing units (GPUs), CNNs have

been extensively employed for mobile and wearable sensors based tasks. To increase the

performance of CNNs, several researchers have configured CNN architectures by adding

additional layers and nodes or combined with other DL architectures (e.g. CNN + Long

Short Term Memory) [104, 105]. These approaches can increase the computational com-

plexity, which may not be ideal for low-power on-board sensors or microcontrollers [106].

In addition, due to the increased number of parameters in these architectures, it may be

challenging to determine the optimal parameters from relatively small datasets [107].

To obtain better performance while minimizing the computational efforts, researchers
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in HAR have investigated various techniques for configuring input data, such as linear

interpolation, distance matrices, etc. [108]. Among these techniques, the use of image

transformation (i.e. 2D representation) of time-series data as an input to CNNs, have

been employed for classifying activities [102]. Especially, conversion to the spectrogram

captures frequency features of the signals and is robust against variance of sampling rate

[106]. While these image configuration techniques have achieved promising results, many

researchers have focused on classifying the activity after the movement completion, rather

than predicting the activity before the completion (i.e. intent). Specifically for HAR tasks

of walking activities, researchers have focused on classifying the activity of the current or

past step, rather than the activity of the subsequent step of the gait cycle [101, 106]. CNNs

have been used to predict locomotor intent for use in powered prostheses; however, they

either have directly applied time-series data or hand-crafted features as an input to the

CNN, which resulted in similar or inferior performance compared to the feature-based

classifiers (e.g. Linear Discriminant Analysis) [103, 109, 110]. Thus, the impact of these

image configuration methods applied to CNNs for locomotor intent recognition tasks re-

mains unknown.

The contributions from this paper include: (1)We propose a spectrogram-based CNN

recognition framework for predicting the intent of the lower-limb locomotor activities. In-

spired by [106], we modified this approach to be suitable for our tasks by developing an

analysis pipeline composed of a lightweight neural network architecture and a mel-scaled

spectrogram. (2) We compared the performance of our system to the state-of-the-art

(SOTA) locomotor intent recognition strategies using bilateral neuromechanical signals.

The proposed system achieved a classification error rate of 1.1%, which outperformed or

was comparable to previous works [44, 110]. (3) We characterized the effect of sensor

locations and modalities on the classifier performance; finally, (4) we qualitatively identi-

fied the region of the gait cycle responsible for the intention by visualizing the activation
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IMU: Waist

EMG: VL, RF, BF, ST
IMU: Thigh

GONIO: Knee
IMU: Shank
EMG: TA, MG, SOL
GONIO: Ankle

Figure 5.1: Instrumentation setup for the dataset.The EMG electrodes were placed on seven muscle groups
responsible for lower limb locomotion: tibialis anterior (TA), medial gastrocnemius (MG), soleus (SOL),
vastus lateralis (VL), rectus femoris (RF), biceps femoris (BF), and semitendinosus (ST). The GONIOs
were placed on knee and ankle joints and the IMUs were placed on the thigh and shank to measure angular
position and velocity. [111]

of the CNN. To our knowledge, this is the first work to use CNNs with image encoding of

frequency content for lower-limb intent recognition with bilateral neuromechanical sen-

sor fusion. The intent of our work is to enable future wearable robotic technologies to be

used outside the laboratory, where a diverse range of activities is required.

5.3 System Design

5.3.1 Dataset

We used a publicly available dataset composed of kinematic and muscle activity signals

to train our intent recognition framework. The dataset, named as the Encyclopedia of

Able-bodied Bilateral Lower Limb Locomotor Signals (ENABL3S), was chosen over other

datasets (e.g. UCI-HAR [112]), because it focuses on normal locomotion, includes rich

biomechanical signals from multiple sensor modalities, and sampling rates are sufficient

for online control purposes. The data were collected from wearable electrogoniometers
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Figure 5.2: Our proposed intent recognition pipeline from frequency domain representation, CNN archi-
tecture to the output activities. Convolutional layers consisted of kernels sized of 5x5, stride of 1, padding
of 2, and two sequential linear layers had hidden units of 6144 and 2000, respectively. The dropout with 0.5
probability was added to improve the generalizability of the proposed system.

(GONIO), surface electromyography (EMG) and internal measurement unit (IMU) sen-

sors. The sampling rate of EMG, GONIO and IMU sensors were 1000, 500, and 500 Hz

respectively and low-pass filtered at 350, 10 and 25 Hz respectively. All sensor data were

processed to identify right and left heel contact and toe off (i.e. gait events). These sensors

were placed on the lower limbs of 10 able-bodied human subjects (Fig. 1). Each subject

performed 25 repetitions of a circuit consisting of walking on level ground (LW), ascend-

ing/descending a ramp with a 10 degree incline (RA/RD), and ascending/descending a

four-step staircase (SA/SD). The odd-numbered trials had a sequence of these activities as

follows: LW→ SA→ LW→ RD→ LW, while even-numbered trials had LW→ RA→ LW→

SD→ LW. The ground truth label was marked by the experimenter using a key fob. The

preceding 500 ms of sensor data before each gait event was used as the input to our anal-

ysis pipeline and the activities after each gait event (i.e. upcoming activity) were used as

the label for prediction [111].
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Figure 5.3: A sample spectrogram (left) andmel-spectrogram (right) generated from the EMG signal of the
right TA. Lower frequency signals were amplified from the mel scale conversion.

5.3.2 CNN-based Intent Recognition

Image Encoding using Spectrograms

Due to the periodic nature of walking, we propose that the frequency domain information

from the time-series data provides amore effective representation of lower-limb locomotor

activities for CNN classification. To produce the frequency-domain representation, the

Short-Time Fourier Transform (STFT) was performed on time-series data:

STFT(x[n];w, k) =
∞∑

n=−∞

x[n]w[n− k]e−jωn (5.1)

where the signal x[n] was multiplied by a windowing function ω, shifted by an offset k.

The squaredmagnitude of the STFT produced a spectrogram, andwe further transformed

the spectrogram using nonlinear scaling known as the mel scale (Eq. 5.2) which demon-

strated its success as a pre-processing step in auditory classification tasks [113]. The mel

scale originates from representing the human auditory system such that it has percep-

tually equal pitch (i.e. frequency-scale) increments; in other words, as frequency (Hz)

increases, larger intervals of frequency are required to produce the same magnitude of

pitch increments. This scaling was chosen so that it amplifies the lower frequency content
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of the signal (Fig. 5.3), where much of the content of human locomotion is below 3.5 Hz

[114]. The mel scale can be computed using

2595 · log10
(
1 +

f

700

)
(5.2)

Lastly, the amplitudes were squared to further attenuate the higher frequency content and

transformed to a decibel scale. For the windowing function ω, a Hann window of length

20, with an offset k of 10 was used. When converting to the mel scale, the Hz scale was

partitioned into 10 bins (user-defined) prior to the transformation being applied. The

selection of 10 bins was to balance classifier performance and processing overhead. All

the steps outlined in this section were performed using the LibROSA package in Python

[115].

LIR-Net Architecture

We designed the CNN architecture which consists of a series of 2D convolutional lay-

ers and pooling layers, followed by fully-connected layers (Fig 5.2). This proposed net-

work is called Locomotor Intent Recognition-Net (LIR-Net), which is lightweight but pro-

vides high performance when classifying lower-limb neuromechanical spectrogram im-

ages. The spectrogram produced in the image encoding step (Section 5.3.2) was provided

as an input to the CNN and the softmax operation was applied to the output of the last

linear layer, which represented probability distribution of the predicted class.

5.4 Experimental Protocol

The proposed system was evaluated against separate classifier configurations and com-

pared with different classification strategies using the ENABL3S dataset. Furthermore,
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we investigated the effect of sensor modalities and laterality groups, where modality de-

scribes sensor type (e.g. IMU, EMG, GONIO) and laterality describes the side of the leg

where a gait event was detected (e.g. ipsilateral, contralateral, and bilateral) [111]. Lastly,

we implemented feature (i.e. unit) visualization of LIR-Net to identify the frequency re-

gion of the input spectrogram where the units were most activated.

5.4.1 Classifier Configuration

Generic

A generic configuration is defined as when only signal data or features were given as an

input to a certain classification strategy without any information (i.e. ground truth) from

the current activity provided. The current activity was defined as the activity before each

gait event (i.e. before movement completion), whereas upcoming activity was defined as

the future activity after each gait event.

Mode-Specific

The mode-specific strategy encodes the environment knowledge by providing the infor-

mation of the current locomotor activity [40]. Specifically, the strategy employs separate

classifiers depending on the current activity (i.e. mode), which has different number of

outputs for each classifier (e.g. for the RA classifier, only transition to RA or LW is al-

lowed). Combinedwith heuristic feature-based classifiers (e.g. Linear Discriminant Anal-

ysis (LDA), Support Vector Machine (SVM)), this configuration demonstrated low error

rates (< 2%) when classifying the locomotor intent [44].
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5.4.2 Classification Strategies

Random Guesser

To understand the effect of distribution of the dataset on the classifier configurations, we

created a baseline system that predicts activity based on distribution of samples, thereby

always predicting the activity with the greatest likelihood.

Generic: Provided only the signal data without activity information, such a system can

be represented as follows:

în = argmax
i

P (i) (5.3)

where î, i are the predicted class (i.e. upcoming activity) and true class label respectively, n

represents the nth gait event, and P is the probability distribution of the class i. Therefore,

the class with the largest representation (LW, Tab. 5.1) was chosen every time.

Mode-Specific: Given the signal data and the current class of the signal data, we repre-

sented a similar system as follows:

în = argmax
i

P (i|in−1) (5.4)

where P is the probability distribution of the class i given a current activity (in−1) of nth

gait event. For example, given a RA, the classifier only outputs RA since the data distri-

bution of RA-RA is (13%) larger than RA-LW (2%).

Heuristic Feature-based Classifiers

LDA and SVM have demonstrated their validity as classifiers for intent recognition, be-

cause they provide low classification error while it is computationally efficient [40, 44].
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Table 5.1: Data distribution of Enabl3s

Transition
from to Number of

Samples#
Level walking
(LW) LW 8886 (42.87%)

RA 503 (2.43%)
RD 474 (2.29%)
SA 478 (2.31%)
SD 477 (2.30%)

Ramp ascent
(RA) RA 2740 (13.22%)

LW 481 (2.32%)
Ramp descent
(RD) RD 3416 (16.48%)

LW 471 (2.27%)
Stair ascent
(SA) SA 934 (4.51%)

LW 469 (2.26%)
Stair descent
(SD) SD 925 (4.46%)

LW 476 (2.30%)
# The count of each activity transitions
across all subjects.

Especially, LDA combined with the mode-specific configuration achieved SOTA perfor-

mance (1.43%) for intent recognition tasks [44]. To this end, we used LDA and SVM

for our baseline classifiers to be compared with our proposed system. For an input to the

classifiers, we used features previously known to be important for intent recognitionwhen

controlling poweredprostheses. Featureswere extracted from the time-series data, includ-

ing mean, standard deviation, maximum, minimum, initial, and final value, etc [44, 111].

Generic: The features extracted from bilateral sensor set with all sensor modalities of

ENABL3S were provided as an input to the classifier, which were 332 features in total. To

be consistent with the existing work, for the LDA classifer, features were normalized and

principal component analysis was applied to maintain 95% variance, while the prior was
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set to be equally probable. For the SVM, a linear kernel was chosen with a regulariza-

tion parameter of 10 [44]. The calculation was performed using the Sckit-learn software

package in Python.

Mode-Specific: Separate LDA and SVM classifiers were trained to encompass all the

gait events and locomotor activities. During the prediction, the mode-specific classifier

was selected based on the current locomotion activity. The predictions (i.e. output) of the

classifiers were limited by the number of transitions allowed on the previous activity.

LIR-Net

Generic: A generic configuration of LIR-Net followed the procedures of Section 5.3.2.

Mode-Specific: To provide the current activity information to the network, we provided

the mode information as a one-hot encoding vector and concatenated into the first linear

layer of our intent recognition pipeline (Fig. 5.2). We chose this approach rather than ex-

plicitly following the conventional mode-specific scheme (i.e. training separate classifiers

with differing number of output depending on the mode), since the performance of DL

will likely suffer from the scarcity of the training samples due to the splitting.

5.4.3 Performance Evaluation

We compared the offline performance using both classifier configurations. We divided the

dataset, including all sensor laterality groups andmodalities, into testing and training sets,

which were divided in two ways: 1. the division was randomized by 10-fold cross valida-

tion (90:10 split) within all subjects’ data (i.e. user-dependent); 2. one out of ten subject’s

data were withheld as testing set, while the other nine subjects were grouped as the train-

ing set. This was repeated 10 times until all subjects were tested once (i.e. leave-one-out

or user-independent cross validation) [40]. Each classifier was trained on the training set
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and evaluated on the testing set. For the user-dependent LIR-Net, the data were divided

into training, validation, and test sets (80:10:10), and after finding the best hyperparam-

eters, the validation set was added to the training set. Identical hyperparameters of the

user-dependent LIR-Net were used for the user-independent classifier. The error rate of

each classifier was determined by the number of correctly classified predictions divided

by the number of each test set. Error rates were further categorized based on whether the

misclassification occurred at the gait event where the previous and the following activities

were identical (i.e. steady-state) or different (i.e. transitional) [44].

We conducted statistical analyses separately for each error types, and analyzed all

classifiers on both classifier configurations and user-dependencies. We used three-way

ANOVAs with error rate as a dependent variable, and classifier type, configuration, and

user-dependency as independent variables, and subject as a random factor. We performed

a post hoc comparison test using Tukey’s Honestly Significant Difference Criterion (Tukey)

to determine the statistical difference between the pairs of interest (α = 0.05).

Training of LIR-Net

The network was trained to minimize the cross entropy loss which is described as:

Loss(q, p) = −
∑
i

q(i) log p(i) (5.5)

where the q(i) is the ground truth probability expressed as one-hot encoding and p(i) is

the predicted probability of class i. We used a stochastic gradient-based optimizer ADAM

[96] with L2 regularization to prevent overfitting.
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Hyperparameter Search of LIR-Net

We investigated different hyperparameters of LIR-Net to obtain the best performance. The

parameters associated with spectrogram implementation were fixed (Section 5.3.2). A

grid search was then performed on hyperparameters to maximize validation accuracy.

The hyperparameters found to give greatest accuracy were a batch size of 32, learning

rate of 10−5, L2 regularization strength of 10−3, and 200 epochs. All calculations were

performed using the PyTorch package [116].

Classification Latency of LIR-Net

The time required for the classifier to make a prediction is a critical factor in the real-time

usability of intent recognition systems. To evaluate the latency of LIR-Net, we measured

the elapsed time from spectrogram generation to prediction per activity using all sensors.

We calculated the latency using a single-board computer (model: Jetson Nano, NVIDIA,

Santa Clara, CA) with GPU acceleration. The calculation was repeated 10 times and was

averaged to obtain the latency.

Comparison to ResNet

To validate the design choice of LIR-Net architecture, we compared the performance of

ours with ResNet18 [117]. We used ResNet pre-trained on ImageNet to perform a fair

comparison due to our scarcity of the number of data samples compared to the complex-

ity of ResNet [118]. An identical training and evaluation procedure for LIR-Net was em-

ployed to quantify the performance of ResNet. A one-way ANOVA was used to measure

the statistical difference between the two architectures.
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5.4.4 Effect of Sensor Modalities and Locations on LIR-Net

To determine the effect of sensor types and locations, we trained LIR-Net classifiers on var-

ious subsets of the data and compared their performance. The subsetswere determined by

dividing the sensor data into four modality (EMG, GONIO, IMU, all) and three laterality

groups (contralateral, ipsilateral, bilateral). The LIR-Nets were trained on each laterality

group with a subset of the four modalities, and their error rates were recorded. The re-

maining sensor data were withheld during training. We divided all subsets of data into

testing and training sets, where the division was randomized by user-dependent 10-fold

cross validation.

We conducted statistical analyses of LIR-Nets by using a two-way ANOVA with the

overall error rate as the dependent variable, modality and laterality as independent vari-

ables, and subject as a random factor. We performed a post hoc comparison test using

Tukey’s Criterion to determine the statistical difference between the pairs of interest (α =

0.05).

5.4.5 Visualizing Activations of LIR-Net

Activation (i.e. output of the convolutional operations) visualization is a technique that

can provide greater understanding of the internal operations of CNNs [119]. To this end,

we visualized the activation of the trained LIR-Net after the first convolutional layer, given

one sample of spectrogram. This was accomplished by first localizing themaximum value

in each output channel (total 128 channels) and mapping each pixel from the first convo-

lutional layer back to the input space (i.e. receptive field), where a highly activated pixel

is likely important to the CNN. After identifying the mapping between the input and the

activations, the receptive field of the inputwasweighted by themagnitude of its according

maximal activation of each channel, and the max activations of all channels were summed
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Table 5.2: Error Rates of the Classifiers

User-Dependent User-Independent
Random LDA SVM LIR-Net Random LDA SVM LIR-Net

Overall (%)
Generic 47.99 [1.18]* 6.43 [0.53]* 4.30 [0.61]* 1.11 [0.26] 47.99 [2.65]* 12.21 [4.84]* 16.17 [7.27]* 7.75 [ 3.84]
Mode-specific 18.48 [1.03]* 1.85 [0.35]* 2.19 [0.20]* 1.52 [0.42] 18.52 [1.72]* 10.52 [4.55]* 9.16 [1.87]* 7.26 [3.42]
Steady-State (%)
Generic 47.42 [1.55]* 1.03 [0.20] 2.54 [0.52]* 0.54 [0.18] 47.46 [3.18]* 6.99 [6.21] 14.18 [8.69]* 5.45 [4.41]
Mode-specific 0.00 [0.00]* 1.32 [0.31] 1.19 [0.15]* 0.61 [0.23] 0.00 [0.00]* 10.08 [6.01] 7.39 [3.03]* 5.14 [3.95]
Transitional (%)
Generic 50.54 [2.00]* 30.26 [1.77]* 12.05 [1.76]* 3.64 [0.98] 50.46 [0.81]* 35.41 [7.67]* 25.08 [4.86]* 18.08 [6.43]
Mode-specific 100.00 [0.00]* 4.18 [1.17]* 6.60 [0.99]* 5.54 [1.94] 100 [0.00]* 12.37 [4.13]* 17.06 [5.46]* 17.03 [7.96]

Error rates (mean, [standard deviation]) of the generic and themode-specific classifiers using the bilateral sensors with all modalities.
Asterisks under random, LDA and SVM classifiers denotes statistically significant differences between the according classifiers and
LIR-Net. The difference between the generic and the mode-specific configurations were all significant across all error types regardless
of user-dependencies. Bold numbers represent the classifier with the lowest error rate for each type of error rate and configuration.

and then normalized to create an averaged activation in the input space.

5.5 Results

5.5.1 Performance Evaluation

We evaluated the performances of the classifiers on all classifier configurations and user-

dependencies (Fig. 5.4). The interaction between all pairs of classifier types, configu-

rations, and user-dependencies were all significant except the pair of configuration and

user-dependency (p = 0.63).

Effect of Configuration

Error rates of the classifiers on both classifier configurations were compared (Tab. 5.2).

The generic and mode-specific configurations were statistically different across all clas-

sifiers and types of error rates. In general, the mode-specific configuration lowered the

overall error rates of the random and heuristic-based classifiers, while the change in the

error rate of LIR-Net was minimal.
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Figure 5.4: Error rates of the classifiers on Generic and Mode-specific (Mode) configurations with user-
independent (Indep.) and user-dependent (Dep.) conditions.

Effect of Classifiers

Error rates of the random and heuristic classifiers were compared to that of LIR-Net (Tab.

5.2) for each configuration and user-dependency. In general, the error rates were statis-

tically different from LIR-Net across all error types, classifier configurations and user-

dependencies, except the steady-state error of the generic and mode-specific LDA clas-

sifiers. For overall errors, our proposed system achieved the lowest error rate (Depen-

dent: [Generic: 1.1%, Mode-specific: 1.5%], Independent: [Generic: 7.7%, Mode-specific:

7.2%]) on both configurations and user-dependencies; whereas for the steady-state er-
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ror, LIR-Net obtained the lowest error-rate on the generic configuration across all user-

dependencies (Dependent: 0.5%, Independent: 5.4%) and the random classifier had the

lowest error rate (0.0%) on the mode-specific configuration for both user-dependencies.

In practice, the mode-specific random classifier simply predicted the current activity as

the upcoming activity, which produced 0% error rates in steady-states. Since there were

more steady-state than transitional cases in the dataset, the overall error rate of the mode-

specific random classifier was lower than that of the generic classifier (Generic: 47.9 %,

Mode-specific: 18.4%). The generic LIR-Net reached the lowest transitional error rates,

while LDA had lowest transitional error within the mode-specific configurations across

all user-dependencies.

Effect of User-Dependencies

Wecompared the error rates of the classifiers in the presence of different user-dependencies.

The user-independent condition was statistically different from the user-dependent con-

dition. For all classifiers, the error rates increased with the user-independent condition

except the random classifier, the performance of which was governed by the distribution

of the data (Tab. 5.1).

Classification Latency of LIR-Net

The averaged latency was 136.07 ± 3.86 ms.

Comparison to ResNet

The overall error rate of the ResNet was compared with that of LIR-Net. The overall error

rate of the pre-trained ResNet (1.29 ± 0.20%) was not statistically different (p = 0.13) to

that of LIR-Net (1.11 ± 0.26%), which validated the choice of our network design.
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Table 5.3: LIR-Net performance on different sensor modalities and laterality groups

# of Sensor Sensor Type Ipsi (%) Contra (%) Bi (%)
I 4.68 [0.51] 5.99 [0.70] 2.58 [0.38]†

1 G 3.85 [0.43] 4.00 [0.57] 1.49 [0.29]†
E 7.66 [0.58] 8.00[0.51] 3.08 [0.46]†

I & G 3.05 [0.42] 3.33 [0.55] 1.29 [0.44]
2 I & E 3.96 [0.55] 4.42 [0.52] 2.17 [0.71]†

E & G 3.05 [0.55] 3.11 [0.32] 1.15 [0.26]
3 ALL 2.56 [0.50]* 2.89 [0.38]* 1.11 [0.26]

Overall error rates (mean, [standard deviation]) of LIR-Net using
all possible combinations of laterality groups and sensor modali-
ties: IMU (I), EMG (E), GONIO (G). The lowest error rates on each
number of modalities are bolded.

* Asterisks under ipsilateral (Ipsi) and contralateral (Contra) classi-
fiers denote the statistically significant differences between the ac-
cording laterality and the bilateral (Bi) sensor set when all modali-
ties are used.

† Daggers under sensor modalities denote the statistically significant
differences between the according modality and all combined sen-
sor (IMU & EMG & GONIO) with the bilateral sensors.

5.5.2 Effect of Sensor Locations and Modalities on LIR-Net

The overall error rate of LIR-Net was statistically compared across all combinations of sen-

sor laterality groups andmodalities. The interaction between themodalities and laterality

groupswas significant. The effect of laterality groupswas observed by comparing the clas-

sifier’s performance with all sensor modalities combined (Tab. 5.3). The error rate of the

bilateral sensor set was statistically less (1.11%) than either ipsilateral or contralateral set.

Similarly, the effect of sensor modalities was tested by comparing the performances of the

classifier using the bilateral sensor set. The statistical significance was measured between

all combined sensor modalities and individuals or combinations of two different sensor

modalities. As a result, the error rate of the all combined sensor sets was significantly less

than all individual sensor modalities and a pair of IMU and EMG sensors. For the single

109



Figure 5.5: A representative sample of the right shank IMU, right VL EMG, and right knee GONIO signals
(top three), and activation visualization of LIR-Net (bottom).

modalities with the bilateral sensor set, GONIO achieved the best performance, and for

the two modalities, EMG and GONIO combination attained the lowest error rate.

5.5.3 Visualizing Activations of LIR-Net

The network showed greater activations in the lower frequencies, where much of the in-

formation in the signals was localized (Fig. 5.5). Additionally, the greatest activations in

the low frequency area occurred near to the gait events.

5.6 Discussion

In this paper, we proposed a CNN-based intent recognition system that utilized the spec-

trogram to represent the frequency content of the input data. To this end, we studied the

effect of sensor modalities and laterality groups on the proposed system, visualized the
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activation of CNNs, and compared our system to the state-of-the-art (SOTA) intent recog-

nition classifiers [44, 110]. The overall error rate of our proposed systemwas 1.11%which

exceeded the performance of the existing work in a generic classification scheme. The mo-

tivation of this paper is to improve the prediction capabilities of lower-limb locomotor in-

tent recognition systems; ideally, providing a framework for autonomous wearable robots

which can assist wearers with a diverse range of activities encountered in the real-world.

5.6.1 Limitations

The error rates of the user-independent classifiers were statistically higher than that of

the user-dependent classifier. This result showed the classifiers, including our proposed

system, were not able to generalize well to novel subjects. The performance reduction of

our system was due to an increase in transitional error (LDA: +5%, SVM: +12%, LIR-Net:

+14%) across user-dependencies, compared to the increase in steady-state error (LDA:

+5%, SVM: +12%, LIR-Net: +5%). This relatively weak generalizability of LIR-Net to

novel users in transitional states is likely due to the unbalanced number of activity sam-

ples in the ENABL3S dataset; specifically, the number of transitions were less than that of

steady states (Tab. 5.1). This stems from the fact that the data collection was conducted

in a circuit that consisted of each activity, which is a convenient protocol, but may lead to

sparseness in transition data [44]. Although our system obtained the lowest transitional

error rates among all classifiers in the generic condition, the network had been trained and

biased to lowering the overall error. In addition, deep learning (DL) generally performs

better with more data, which may lead to greater improvements in performance when

data are added, when compared to other classical machine learning algorithms. Thus,

collecting more subject data with balanced number of samples, and techniques, such as

data augmentation, canmitigate this limitation and improve the DL-based classifier [103].
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5.6.2 Comparison to Past Works

Our proposed system was compared to the SOTA intent recognition systems using the

ENABL3S dataset [44, 110]. For the combined mode-specific and user-dependent condi-

tion, our system performed comparably (1.52%) to the previous work of (1.43% [44]); but

most importantly, in the generic classifier configuration, our work outperformed (1.11%)

the heuristic-feature based classifiers (LDA: 6.43%, SVM: 4.30%) and CNNswith heuristic

features as an input (3.7% [110]). Although mode-specific configurations could improve

system performance, in real-world scenarios, relying on accurate knowledge of the previ-

ous step’s activities (i.e. ground-truth) may be untenable. The performance of our intent

recognition system in generic configuration demonstrates that our approach can be gen-

eralized across different environment conditions with various sequences of activities.

5.6.3 Effect of Sensor Locations and Modalities on LIR-Net

In general, as we fused more senor modalities and lateralites, the performance of the

classifiers improved. This result was in accordance with the prior work using ENABL3S

[44, 110]. Our findings showedGONIOhad the best singlemodality performancewith the

bilateral sensor set; whereas IMU sensor data had the lowest error rate in previous works

[44, 110]. For twomodality sensors, EMG and GONIO combinations gave the best perfor-

mance agreeing with the prior work [110]. Interestingly, the IMU and GONIO, EMG and

GONIO combinations were not statistically different from all combined sensors, which

suggests near optimal performance may be obtained from limited sensor selections.
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5.6.4 Visualizing Activations of LIR-Net

Our technique of visualizing activations allowed a simple, but intuitive understanding of

which features were learned by the network (Fig 5.5). The network had high activations

nearby the gait events under the lower frequency region (<100 Hz). This shows that the

information that dictates activity transitions are concentrated on the signals close to toe-off

or heel-contact. To our knowledge, this is the first time that the activations of CNNs were

qualitatively analyzed within a gait cycle, which is critical for identifying the intent using

lower-limb neuromechanical signals. Although there was previous work visualizing the

features of a CNN in lower limb sensor signals, the visualization was less intuitive and

features were indistinguishable [109].

5.6.5 Application to Control of Wearable Robotics

Intent recognition is a control strategy which enables a wearable lower-limb robot to au-

tonomously switch between controllers responsible for a specific task by inferring the

wearer’s locomotor intent. Typically, intent recognition is used as a high-level controller in

a hierarchical control structure, where a mid-level controller encodes the activity-specific

instructions for how to provide mechanical effort (e.g. via impedance or position con-

trol), and a low-level controller tracks the desired reference trajectories (e.g. feedback

controller) [19]. A representative use case of the hierarchical controller is intent recogni-

tion in conjunctionwithmid-level finite-state controllers, where the gait cycle is divided by

distinctive phases, and the transitions between these phases are based on heuristic rules.

Since it is assumed that signals are stationary within each phase (i.e. identical activity),

recognition-based classification strategies mitigate the time-varying characteristics of sig-

nals during the gait cycle [42].

The latency of our system was below what users may perceive (300 ms [120]) and
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within the time window required to ensure smooth transitions between activities follow-

ing the gait events [121]. The latency can be further reduced by exploiting optimal sen-

sor selection, and microcomputers with higher processing capabilities. Thus, this work

demonstrates the usability of these techniques in real-time control of wearable robots.
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Chapter 6

Conclusion

6.1 Concluding Remark

In this disseration, I discuss key elements of wearable robots that will potentially enable

these technology to be applicable in the real-world. I first describe the actuation element,

which is a driving force of robotic applications. To this end, in Chapter 2, I presented a

detailed analysis on high torque density brushless DC motor, where having a lightweight

actuators is a major factor reducing the overall weight of the robotic system. In Chapter 3,

I discuss the common limitations and misunderstanding when we are interpreting these

high performancemotors, despite the popularity of these motors in use of robotic applica-

tions. We also provide a detailed instructions of how to correctly model and understand

the specifications of the motors. In Chapter 4, I discuss the second element, which is per-

sonalization or customization of controller based on users’ preference. The assistance is

provided from the actuator, and it is important for shaping the actuation profile to meet

individual’s needs. In this work, I presented a system which can automatically optimize

users preferred controller setting in real-time. In Chapter 5, I touch on the last element,

which is controlling these wearable devices. Despite the advancement in hardware tech-

nology, how to provide seamless and environment-aware control is still a challenge. I
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provide a framework which uses machine learning to predict users’ intent for classifying

activities ahead of time. This information will be passed to an activity-specific controller

according to the activity that the user is currently in. I hope my contributions on these key

elements can push wearable systems outside of the research laboratories, and ultimately

translating these robots for use in daily life.

6.2 Discussion of Contributions

The following describes the contribution of each chapter in the dissertation.

6.2.1 Chapter 2

Thiswork (published in 2019 IEEE/RSJ International Conference on Intelligent Robots and

Systems [18]) provided accurate and detailed specifications of a common ER-BLDC mo-

tor, the parameters of which are often unreported or not generalizable beyond drone ap-

plications. We characterized the motor’s transfer function, efficiency across torque-speed

regimes, as well as thermal properties. Accurate and detailed motor specifications are in-

creasingly important, especially as ER-BLDCmotors developed for the drone industry are

more commonly used in general robotic applications.

6.2.2 Chapter 3

In this work (which is currently under review), we present the underlying mathemat-

ical modeling of brushed and brushless DC motors, as well as electrical commutation

and winding configurations of BLDC motors. Most importantly, we described common

sources of error in BLDCmotormodeling, which often stem from inconsistencies andmis-

interpretation of manufacturer datasheets. To address these errors, we provide explana-
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tions and conversions to the direct-quadrature reference frame, which facilitates a conve-

nient DC representationwhile conserving keymotor properties (e.g. resistive power loss).

This work will contribute to the robotics community by 1. guiding engineers and robot

designers who utilize BLDC motors in their robotic application to more accurately model

and select a motor that is optimal for their application; and 2. highlighting the need for

greater standardization and details to be provided in manufacturer datasheets (e.g. unit

clarity, winding configuration, etc.).

6.2.3 Chapter 4

Our novelty is in two fold (this work is currently in prepartion for a publication): 1. Algo-

rithmic contribution. As far as we know, the work presents a new algorithmic method of

learning and optimizing user preference. Specifically, we employ an active learning strat-

egy using a combination of neural networks and evolutionary algorithms, which differs

from previous works in the field of preference learning. In our investigation, we vali-

dated the proposed method reduces the amount of queries required for identifying the

optimal preferred setting. 2. Contribution to an application. We developed a framework

which can be extended for daily use for identifying users preference. In addition, we

used a lightweight, high torque output lower-limb exoskeleton system, which demon-

strates physiological benefits (e.g. metabolic cost) for able-bodied people. Preference-

based learning on these systems are not yet explored to the best of our knowledge.

6.2.4 Chapter 5

In this work (published in 2020 IEEE Robotics and Automation Letters [122]), we devel-

oped an intent recognition framework implementing convolutional neural networks with

image encoding (i.e. spectrogram) that enables prediction of the upcoming locomotor ac-
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tivity of the wearer’s next walking step. In this aim, we describe our intent recognition

system, comprised of a mel-spectrogram and subsequent neural network architecture. In

addition, we analyzed the effect of sensor locations andmodalities on the recognition sys-

tem, and compared our proposed system to state-of-the-art locomotor intent recognition

strategies.
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Appendix

6.3 BLDC motor modelling cheat sheet

This appendix provides a condensed set of equations that are intended to be more easily

referenced when analyzing BLDC motors in the design process. As a reminder, these

equations are intended for brushlessmotorswith a sinusoidal back-EMFprofile. The cheat

sheet includes governing equations of brushed and BLDC motors, and conversions for

representing BLDC motors as a single phase “brushed" motor analogue, which includes

a single current, voltage resistance, inductance, and torque / velocity constants, which

are more convenient to analyze during modeling and design specification. We advocate

for the DC representation (i.e. q-axis) of BLDC motors, which would provide convenient

and accurate analysis while conserving critical properties, such as resistive power loss and

torque production. For full derivation of the equations, please refer to the main sections

of the paper, where the equations included in this cheat sheet are denoted with boxes.

Equation numbers follow the numbering in the main sections.

6.3.1 Prerequisites

To convert to the q-axis DC representation of a selected BLDCmotor, the designer should

identify at least one frame of reference (q-axis, phase, line) for each electrical quantity.

These quantities include R,Kt, Kv, which typically can be obtained from manufacturer

datasheets; either (desired) current / voltage or torque / velocity in a specified reference
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frame;as well as the motor’s winding type (wye or delta). In addition, we provide a pro-

cedure for identifying the winding type of the motor in case they are not included in the

manufacturers’ specification (Appendix 6.4).

6.3.2 Governing motor equations

Brushed DC motor

J
d2θm
d2t

= KtI
a − b

dθm
dt
− τL (3.38)

V = RIa +Kb
dθm
dt

+ L
dIa

dt
(3.2)

Brushless DC motor

J
d2θm
d2t

= Kq
t I

q − b
dθm
dt
− τL (6.1)

V q = Rϕ · Iq +Kq
b

dθm
dt

+ LedIq
dt

(3.39)

•d
•q

 = PC


•ϕ
A

•ϕ
B

•ϕ
C


PC =√

2

3

 cos(θ) cos
(
θ − 2

3
π
)

cos
(
θ + 2

3
π
)

− sin(θ) − sin
(
θ − 2

3
π
)
− sin

(
θ + 2

3
π
)


(3.31)

where • denotes an arbitrary electrical quantity (e.g. current or voltage).
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6.3.3 Conversion to q-axis quantities

Wye: V̄ ll =
√
3V̄ ϕ (3.43)

Ī l =Īϕ (3.44)

Delta: V̄ ll =V̄ ϕ (3.45)

Ī l =
√
3Īϕ (3.46)

Resistance, resistive power loss, & inductance

Wye: Rϕ =
1

2
Rll (3.50)

Delta: Rϕ =
3

2
Rll (3.51)

P = Iq2Rϕ (3.49)

Wye: Lq =
3

2
Lll (3.40)

Delta: Lq =
1

2
Lll (3.41)

Current & torque

Wye:
√

3

2
Ī l =

√
3

2
Īϕ = Iq (3.57)

Delta:
√

1

2
Ī l =

√
3

2
Īϕ = Iq (3.58)
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Table 7.1: Conversion to phase / q-axis from line / terminal quantities

Parameter Equivalencies

Wye Delta

V̄ ϕ 1√
3
V̄ ll V̄ ll

Īϕ Ī l 1√
3
Ī l

Rϕ 1
2
Rll 3

2
Rll

Lq 3
2
Lll 1

2
Lll

V q 1√
2
V̄ ll

√
3
2
V̄ ll

Iq
√

3
2
Ī l

√
1
2
Ī l

Kq
t

1√
2
K̄ ll

b

√
3
2
K̄ ll

b

τ Kq
t I

q or
√
3
2
K̄ ll

b Ī
l

P Iq2Rϕ

Tabulated description of Section 6.3.3. Note, if converting from a manufacturer’s
reported Kv number (1/K ll

b ), see Section 3.4.1.

Wye: Kq
t =

√
3

2
¯
Kϕ

t (3.55)

Delta: Kq
t =

√
3

2
¯
Kϕ

t (3.56)

Wye: Kq
t =

1√
2
K̄ ll

b (3.52)

Delta: Kq
t =

√
3

2
K̄ ll

b (3.53)
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τ = Kq
t I

q (3.59)

τ =

√
3

2

¯
K ll

b Ī
l (3.54)

Voltage & angular velocity

Wye: V̄ ll =
√
2V q =

√
2Kq

b

dθm
dt

(3.60)

Delta: V̄ ll =

√
2

3
V q =

√
2

3
Kq

b

dθm
dt

(3.61)

Wye: dθm
dt max

=

√
1

2

V bus

Kq
b

(3.60)

Delta: dθm
dt max

=

√
3

2

V bus

Kq
b

(3.61)

6.4 Winding Type identification procedure

In this tutorial, one of the key attributes needed is the BLDCmotor’s winding type. Often,

this information is not included in motor specifications or datasheets. In this case, we

provide a procedure for identifying the winding type as described below.

Contact the manufacturer

The simplest method of identifying the winding type of a BLDC motor is to contact the

motor manufacturer. Importantly, wye wound motor types may be called “star" or “star-

serial".
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Visual Inspection

Another convenient method for identifying the motor’s winding type when the windings

are visible is to visually inspect them. Forwyewoundmotors, the leads of the three phases

are connected to form a neutral point (see Fig. 3.4) with the other ends of the phases being

themotor’s leads. Sometimes, this neutral point can be observed (i.e. under shrink wrap).

Alternatively, delta wound motors have no neutral points and the combination of each of

the phases are wired together to form the ends (see Fig. 3.4).

Thermal Imaging

Thermal imaging techniques provide a reasonably convenient and economical approach

for measuring the surface temperature of objects. The following describes the procedure

for identifying the winding configuration of a BLDC motor:

1. Connect two of the leads of the BLDC motor to a DC power supply. We commonly

use power supply currents from 4A to 8A.

2. Direct a thermal imaging camera to the motor.

3. Allow current to flow through the leads until some windings become visible in the

thermal camera, while not overheating the motor excessively.

In the example image (Fig. 7.1), only one set of windings is producing the majority of the

heat while two sets are producing less (4x less resistive loss), indicating that the motor is

delta wound. Wye wound motors would have two sets of windings producing more heat

with one set of windings unpowered.
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Figure 7.1: A delta wound motor with current flowing through two leads with the majority of the heat
produced through one phase. This method can be used to identify winding type by visual inspection.

6.5 Motor Physics

Here, we briefly review the fundamentals of brushed DC motor operation. Permanent

magnet electric motors create force via interaction between the magnetic field produced

from permanent magnets and an electromagnetic field produced by the windings. This

force is governed by the Lorentz Force Law. If we consider a one squared-loop of wire in

two magnets, the Lorentz Law can be expressed as:

F = I(ℓ×B) = I∥B∥∥ℓ∥n (ℓ ⊥ B) (6.2)

where F is the force created on one side of the wire,B is the magnetic field created by

the magnet, I is current flowing through the wire, and ℓ is the length vector of the wire
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parallel to the rotational axis, and n is a unit vector perpendicular to both wire and the

magnetic flux. Then, the torque acting on a whole loop becomes:

τ = 2F ×D =2∥D∥∥F ∥ sin(θm) j (6.3)

=2 ∥D∥∥ℓ∥∥B∥I sin(θm) j (6.4)

where D is a half of the width of the loop (Fig. 28-18 of [123]), and θ is the angle of the

loop, and j is a unit vector perpendicular to F andD. Please refer to Figure 28-18 of [123]

for depiction of the motor.

The relative movement of the coil caused by the Lorentz law in the magnetic field in-

duces a voltage (i.e. the back-EMF). The back-EMF is generated by the Faraday’s Law:

Ve =

∮
(v ×B) · dℓ = 2∥v∥∥B∥∥ℓ∥

= 2∥r∥dθm
dt
∥B∥∥ℓ∥ (v ×B ∥ ℓ)

where Ve, is the induced electromotive force voltage, and v is the tangential velocity of the

wire.

Torque & Back-EMF production

The torque acting on the rotor composed ofN number of coils is calculated by the Lorentz

Law:

τ = 2(IBNℓ)D sin(θm) j (6.5)

For the rotor rotate in a single direction (θ > 0), the current must reverse at ± 90 × n

(n = 1, 2, 3...). In a brushedmotor, this is enabled by the brushes andphysical commutator.
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Furthermore, by adding the loops of coils and offsetting from each other, a motor can

be developed which creates a nearly constant torque (i.e. no torque ripple) [124]. By

reflecting these changes, the torque exerted on the rotor can be expressed as:

τ = 2(IBNℓ)Dj = KtIj (6.6)

where the torque constant is defined as:

Kt = 2BNℓD (6.7)

Similarly, the back-EMF of a brushed motor can be calculated:

Ve = 2(D
dθm
dt

)BNℓ = Kb
dθm
dt

(6.8)

where Kb is the back-EMF constant defined as:

Kb = 2BNℓD (6.9)

These two equations (6.6), (6.8) demonstrate that the torque constant and back-EMF con-

stants are identical:

Kb = Kt (6.10)

Note that this relationship is only valid when using SI units. For different units, adequate

conversion should be included in the modeling analysis. The above property stems from
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the power conversion:

τ
dθm
dt

= IVe (6.11)

(KtI)
dθm
dt

= I(Kb
dθm
dt

) (6.12)

Kt
�
�

��
I
dθm
dt

= Kb
�
�

��
I
dθm
dt

(6.13)

where it represents the conversion from mechanical to electrical power in an ideal motor.

6.6 Conversion from brushless to single phase “brushed”

motor quantities (i.e. q-axis)

The following section describes a full derivation of the voltage equation that governs

BLDC motors. We start from voltage equations of each phase and convert those to the

d-q axes. We first introduce the concept of total flux-linkage, which is the total magnetic

flux through the windings. The name ‘flux-linkage’ stems from the fact that the windings

are linked by the shared magnetic flux [123]. The total flux-linkage is composed of self

and mutual flux-linkages between the stator windings, and the flux-linkages between the

permanent magnet and windings (i.e. rotor-stator flux-linkage):

Ψϕ = LϕIϕ +ΨR (6.14)

where, Lϕ and Iϕ denotes inductances and currents of all phases, and flux-linkages

of windings are denoted LϕIϕ and flux-linkages between the magnet and windings are
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denoted ΨR. Each element represents phase quantities of the flux-linkages:

Ψϕ =


Ψϕ

A

Ψϕ
B

Ψϕ
C

 ,ΨR =


ΨR

A

ΨR
B

ΨR
C

 (6.15)

Iϕ =


IϕA

IϕB

IϕC

 (6.16)

Lϕ =


Ls Lm Lm

Lm Ls Lm

Lm Lm Ls

 (6.17)

In balanced BLDC motors, the self inductances of each phase and mutual inductances

of each pair of phases are identical [125]. To derive the voltage equation of the motor,

Kirchoff’s Voltage Law can be expressed in matrix form as:

V ϕ = RϕIϕ +
dΨϕ

dt
(6.18)

where the equation of one representative phase is:

V ϕ
A = RϕIϕA +

d

dt
(LsI

ϕ
A + LmI

ϕ
B + LmI

ϕ
C) +

dΨR
A

dt
(6.19)

Since we assumed phase currents are sinusoidal and 120◦ out of phase, the phase currents

have following property:

IϕA + IϕB + IϕC = 0 (6.20)
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The above property simplifies the voltage equation (6.19) of a single phase to:

V ϕ
A = RϕIϕA + (Ls − Lm)

dIϕA
dt

+
dΨR

A

dt
(6.21)

= RϕIϕA + LedI
ϕ
A

dt
+

dΨR
A

dt
(6.22)

where, we define an effective inductance as:

Le = Ls − Lm (6.23)

and back-EMF of a phase as:

Ve,A =
dΨR

A

dt
= Kϕ

b,A

dθm
dt

(6.24)

Therefore, applying the same logic on all phases results in following expression:


VA

VB

VC

 =


Rϕ 0 0

0 Rϕ 0

0 0 Rϕ

 ·

IA

IB

IC

+


Le 0 0

0 Le 0

0 0 Le

 · ddt

IA

IB

IC

+


Kϕ

b,A

Kϕ
b,B

Kϕ
b,C

 dθm
dt

(6.25)

where the winding voltage and back-EMF constant of each phase is:

VA = V̄ ϕ sin(θ) (6.26)

VB = V̄ ϕ sin

(
θ − 2

3
π

)
(6.27)

VC = V̄ ϕ sin

(
θ +

2

3
π

)
(6.28)
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Kϕ
b,A = K̄ϕ

b sin(θ) (6.29)

Kϕ
b,B = K̄ϕ

b sin

(
θ − 2

3
π

)
(6.30)

Kϕ
b,C = K̄ϕ

b sin

(
θ +

2

3
π

)
(6.31)

where Vx, K
ϕ
b,x are phase voltages and phase back-EMF constants, respectively and V̄ ϕ, K̄ϕ

b

are amplitudes of each phase, which amplitudes are all identical.

By applying power invariant transformation (3.31) to the time derivative of the total

flux linkage [126]:

Q
d

dt
Ψϕ = Q

d

dt
(Q†Ψdq) (6.32)

= Q
d

dt
Q†Ψdq +

dΨϕ

dt
(6.33)

In here, we denote † as the right inverse (Q ·Q† = I). and Q = PC is the d-q transfor-

mation (3.29), (3.30). By converting all elements in the voltage equation to the d-q axis

(6.18):

V dq =

Vd

Vq

 ,Ψdq =

Ψd

Ψq

 (6.34)

Q
d

dt
Q† =

 0 −dθ
dt

dθ
dt

0

 (6.35)

Therefore by substituting above d-q quantities in the BLDC electrical equation, the d-q
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representation of the voltage equation becomes:

V d = RϕId +
dΨd

dt
− dθ

dt
Ψq (6.36)

V q = RϕIq +
dΨq

dt
+

dθ

dt
Ψd (6.37)

By further expanding the above equation using the flux-linkages:

V d = RϕId + Ld
dId

dt
+

dΨ̄R

dt
− dθ

dt
LqIq (6.38)

where,

Ψq = LqIq (6.39)

V q = RϕIq + Lq
dIq

dt
+

dθ

dt
(LdId + Ψ̄R) (6.40)

where,

Ψd = LdId + Ψ̄R (6.41)

which demonstrates themagnetic flux-linkage is only in the d-axis. Since the amplitude of

the magnetic flux-linkage (Ψ̄R) is constant and the d-q transformation is in phase with the

phase currents (Id = 0) (refer to the full list of assumptions in 3.3.2) the d-q axis voltage

equation reduces to:

V d = RϕId − dθ

dt
LeIq (6.42)

V q = RϕIq + LedIq
dt

+
dθm
dt

Kq
b (3.39)
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where Ψ̄R = pKq
b , and Ld = Lq = Le from the d-q transformation as follows [126]:

Ldq = QLϕQ† =

Ld 0

0 Lq

 =

Le 0

0 Le

 (6.43)

The last equality is due to the non-saliency of the rotor. This demonstrates the q-axis

voltage equation reduces to a DC representation, and agrees with the characteristics of

the surface permanent synchronous motor where reluctance is almost equal in d and q-

axis direction (i.e. saliency ratio of 1) [127, 128].

6.7 Accurate Power Loss of BLDCMotors

In the paper, we provided accurate calculation of electrical power consumption of BLDC

motors’ power loss of the motors in phase and q-axis quantities, which are agnostic to

the winding configuration (Section 3.3.6). However, typically electrical resistance is pro-

vided as terminal resistance, where conversion from terminal to phase resistance requires

a knowledge of themotor’s winding configuration. In this appendix, we demonstrate how

using terminal resistance inappropriately without the adequate use of conversion factor

can lead to imprecise power loss of the motors.

The following describe the power loss with respect to line-to-line (terminal) quantities

on each configuration of the motors. Using (3.49), for wye-wound motors:

Rϕ =
1

2
Rll (3.50)

P = Iq2Rϕ =
1

2
Iq2Rll (6.44)
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For delta-wound motors:

Rϕ =
3

2
Rll (3.51)

P = Iq2Rϕ =
3

2
Iq2Rll (6.45)

where ll denotes line-to-line quantities. The power loss (eq. 6.44, 6.45) shows that if one

considers the line-to-line quantities as brushed equivalent quantities (i.e. P = Iq2Rll),

the power loss would be two times higher for wye-wound and 2/3 times lower for delta-

wound than the actual power consumption. The susceptibility of making an error is com-

pounded by the fact that typically manufacturers’ datasheets report resistances as termi-

nal resistances. This demonstrates that inaccurate usage of electrical quantities can lead

to over or under-prediction of the power loss.

6.8 Accurate Torque Production of BLDCMotors

Wedescribe one of the errors during the process of estimating torque of BLDCmotors that

users are prone to make. Inaccuracy in applying the formula to a BLDCmotor stems from

pairing a torque constantKt with a different current value than the constant is defined in

reference to. As described in Sec. 3.4.1, a common error is to consider the back-EMF con-

stant Kb as torque constant Kt which is only true in certain reference frames (e.g. phase)

for BLDC motors. Specifically, manufacturers of exterior-rotor-type BLDC motors, also

known as dronemotors, typically report only the velocity constantKv which is the recipro-

cal of the back-EMF constantKb, where the velocity constant is represented in line-to-line

frame (3.45):

K̄ ll
v = 1/K̄ ll

b (6.46)
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We assume a delta configuration in this example, where the line-to-line voltage is identical

to phase voltage:

K̄ ll
b =

¯
Kϕ

b (6.47)

Since phase Kb is equal to phase Kt, by using the conversion of Kt described in the main

section (3.56), the q-axis torque constant becomes:

¯
Kϕ

b =
¯
Kϕ

t =

√
2

3
Kq

t (6.48)

Summing up the equations described above, the accurate form of torque estimation using

q-axis current becomes:

τ = Kq
t I

q =

√
3

2
¯
Kϕ

b I
q =

√
3

2
K̄ ll

b I
q =

√
3

2

1

K̄ ll
v

Iq (6.49)

Therefore, incorrectly using theKv as q-axis representation, thismay lead to
√

3
2
smaller

torque estimation than actual. Note that there can be variants of inaccurate estimations

depending on which pair of torque and current frame is selected, and the demonstrated

example is merely one of these potential sources of errors.
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