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Abstract 

 
Infectious disease modeling is a tool to understand disease characteristics of interest, 

which is often used to make predictions and guide public health policy. These models rely 

heavily on observational data, which greatly influence what models can be built and their 

resulting quality. Some model outputs may not have well developed analyses available, 

obscuring the general approach to answering specific research questions. In this dissertation, I 

explore the general process of obtaining, handling, and analyzing data, and apply these concepts 

to several different infectious disease modeling problems. The problems vary in both the type of 

disease explored and the scale they inhabit, ranging from molecular scale investigations within 

the host to population level questions. 

  In chapter 2, I employ host-level modeling to investigate why T cell activation is 

suppressed in Mycobacterium tuberculosis (Mtb) infections. Working at the within-host level, I 

modify a model of the immune system response to Mtb using an existing agent-based model 

(ABM). This methodology capitalizes on how ABMs facilitate capturing emergent behavior, in 

this case the immune system modulated formation of a granuloma to contain the Mtb infection. 

Our approach allowed us to view interactions of immune cells during granuloma formation and 

visualize how these interactions affect the ability of T cells to become activated over the span of 

an infection. I found recruitment of non-specific T cells and granuloma spatial characteristics 

contributed to crowding out of the few Mtb specific T cells within the granuloma cell, reducing 

the chances they could interact with and be activated by infected macrophages. 

  



 xvii 

In chapter 3, I explore how factors in hospital active surveillance for vancomycin 

resistant Enterococcus (VRE), such as non-compliance, affect our ability to estimate endemic 

rates within hospitals. Using electronic health records at an individual based level, I simulated 

patient infections using an ABM approach to establish a baseline for hospital infection. I 

modeled different compliance rates and testing strategies using cost-effective analysis to judge 

which type of surveillance strategy is most effective in identifying cases. Our analysis revealed 

that increasing the compliance rate of screening under any current active surveillance strategy 

maximized efficacy of identifying VRE cases. 

  In chapter 4, I explore risk factors that affected the COVID-19 case fatality rate (CFR) 

during the first wave of the pandemic. Having only access to county-level data, this population 

level study used a case-lag adjust, count-based regression approach to explore the relationship 

between CFR and other county level indicators such as comorbidity rates, healthcare 

infrastructure capacity, and non-pharmaceutical interventions. As the new disease was not yet 

endemic at the time of data collection, the case lag adjustment allowed consideration of the case 

deaths lag to properly estimate the case fatality rate. This study agreed with previous findings, 

including relationships between increased asthma occurrences and rates of CFR, and contributed 

new findings on risk factors, including reduced CFR with bans on religious gatherings.  

  Each infectious disease problem utilized the properties of the data and best-practice 

methodologies in order to best answer the research question, whether the problems involved 

exploring disease modeling at a county, institutional, or cell-level scale. These approaches taken 

to answer scientific questions should be at the forefront of all projects and will be necessary to 

build large, effective knowledge based from these efforts. 
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Chapter 1 Introduction 

 

Infectious disease modeling is a tool to understand disease characteristics of interest.1 

These characteristics can be focused at the population level, such as the spread of an epidemic 

through a community, or focused on an individual, such as disease progression. These tools can 

be used to predict future outcomes, such as outbreaks, and even to test different policies to curb 

spread and improve the outcomes of infected individuals. As data types and quantity expand and 

questions become more complex, policymakers increasingly rely on infectious disease modeling 

to assess and make decisions on available intervention options.2–4 

Infectious disease modeling involves mathematical models, which are descriptions of a 

system or process by using mathematical concepts.5 These systems or process are related to the 

elements required to generate phenomena that occur and/or are observed. There are many ways 

to characterize types of mathematical models, but for the purposes of this dissertation, I will 

focus on mechanistic and statistical models.6 Mechanistic models attempt to describe the specific 

pieces of a process that generate observations and require some sort of insight into 

parameterizing the underlying process that results in an outcome of interest. An example of 

mechanistic models are Susceptible Infected Recovered (SIR) models. SIR models rely on the 

understanding of underlying disease dynamics, using sets of equations to simulate the process of 

susceptible people becoming infected and recovering. Alternatively, when I don’t have insight 

into the underlying process statistical models are often used. These rely on patterns in 

observations to approximate outcomes, such as creating a regression to characterize the number 
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of people currently infected with a disease. The output data of regression would be the 

distribution of predictions, which can be presented as the point estimate which fits on the 

regression line, or simulated as a distribution based on the variance of the predictors. All of these 

mathematical models generate output data, which can be used to make predictions about the real 

world. 

To accurately characterize real-world problems, infectious disease models rely on 

observational data.7 These observational data are used to estimate the parameters of the model, 

such as transmission rate in SIR models or regression coefficients. In some cases, observations 

that are not currently available were previously used to directly calculate a parameter of interest, 

such as transmission rate. Since only the estimate is available, this value is directly input into the 

model. In other cases, parameters are calibrated to minimize the differences between 

observations and model predictions. The observational data may vary greatly in their 

characteristics. Some data may be aggregated to a certain community level or only as a 

categorical response (when it originally existed as a continuous variable), which may reduce 

signal detection and limit the scale of a mechanistic model. The quality of the observational data 

also has major impacts, not just in its accuracy, but its consistency, such as frequency of 

measurement, especially when linking up data from multiple sources.8–10 Just as important is 

how representative the data are of the population I would like to generalize and make inferences 

about. As model parameters rely on observational data, the characteristics of the data greatly 

influence what models can be built and the resulting quality and generalizability of their 

predictions. 

Once an infectious disease model is built, further analysis is required to gain insight into 

the problem of interest. All of these models generate output data in the form of predictions, but 
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the analysis of this data will depend on what type of output data are generated by the model and 

the specific question being asked. Sometimes these analyses are well established, such as in 

regression, where the significance of regression coefficients are tested based on the distributions 

of their fitted parameters. Other types of mathematical models may not have established and 

agreed upon analysis pipelines, or they may not match up with the type of question being asked, 

requiring the creation of new analysis methods. Due to the variability in established approaches 

to different types of data and subsequent analysis, it is useful to characterize the general 

approach of obtaining, handling, and analyzing data to answer scientific questions. Addressing 

these problems requires consideration of the type and restraints (such as protected data or 

something not possible to collect) of data that can be obtained and characteristics and issues 

found in the investigative focus.  

Over the last decade, the term data scientist has been used to describe the role of a 

researcher that has the skills needed to solve complex problems and the curiosity to explore what 

problems need to be solved using data. These individuals require skills in mathematics and 

statistics, computer programing, data engineering, as well as domain knowledge of a given field, 

or at least enough to collaborate. The process that data scientists take to answering questions 

involves many moving parts, but can be generally described as data collection, processing, and 

analysis. In this chapter I cover this process, highlighting examples of the diverse problems 

tackled during this dissertation. 

 

1.1 Determining goals and data collection 

1.1.1 Setting project goals 
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In general, the first part of any science project involves setting goals, which will 

eventually be used to data collection. What is the question I want to address? As a data scientist, 

this may be predefined by a standard operating protocol in the laboratory or can be created ad 

hoc through an exploratory method. In chapter 2, questions about T-cell activation in 

Mycobacterium tuberculosis (Mtb) infections arise from previous work and exploring relevant 

literature, while in chapter 3, questions about vancomycin resistant Enterococcus (VRE) 

screening compliance arose out of exploratory analysis of a large existing dataset, uncovering a 

problem I didn’t previously know was there. In chapter 4, the question asking what are risk 

factors for COVID case fatality, arose from an immediate public health need in the wake of a 

new emergent disease I had no previous experience with. 

 

1.1.2 Defining variables 

After goals are defined, key variables of interest need to be identified. What are the 

variables you need to answer your question? This may be something that evolves naturally from 

previous work, or you may have to actively research the subject to get an idea. In the VRE 

project, variables arose from quirks in data that spurred our question, while in the COVID 

project started with a previously unknown disease, so variables needed to be extrapolated from 

similar types of diseases found in the literature, being generous in include a large enough breadth 

of possible risk factors to explore. 

 

1.1.3 Assessing data collection methods with the analysis in mind 

Once you have identified both goals and variables of interest, viable data collection 

methods need to be assessed and chosen. Consideration should be given to which data will 
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maximize accuracy and precision and what resources are available. Will you be collecting the 

data yourself, or be using secondary sources? If you will be collecting your own data, what 

experimental design will be used? Is it even possible to get the data you need, or will you need to 

consider a proxy or even a simulation?  

There were a number of limitations that helped shaped the choices for data collection in 

the dissertation projects. In the Mtb project, it wasn’t possible to experimentally acquire 

longitudinal data on numbers of activated T cells in humans, so the main datasets were 

simulated, however it was calibrated based on other related experimental datasets. The COVID 

project had a constraint of relying on government datasets as it was certainly not feasible for our 

team to collect data on a new emerging disease on a national scale, while in the VRE project, 

data was already collected, but I had the ability to request from a large range of privileged data.  

In many cases, as a data scientist you may not have control over the data that are 

available to you if you are not included in the collection steps, but you can still assess if the data 

can in fact be used to address the goals of a project. Is the data available on the specific variable 

of interest, or is it a proxy (which if the proxy differs greatly may require more mechanistic 

modeling to get at the variable of interest)? Is the data biased in some way that makes it 

impossible to accurately measure the outcome of interest? In some cases, it may not be possible 

to answer a question after the fact, so it is important to be a part of the data collection process if 

possible. Sometimes it’s possible and even necessary to adjust questions and goals of your 

project based on accessible secondary data. 
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1.2 Data processing 

In any project that includes data analysis, after establishing project goals and collecting data, 

the next step is to process the data. This is a commonly overlooked step, but one of the most 

significant as a data scientist. Some statisticians claim about 80% of time on a project is used to 

process the data and about 20% on the actual analysis.11–13 Processing data generally covers the 

areas of structuring, quality control, and cleaning.  

 

1.2.1 Structuring data 

Structuring data are done to organize them into an appropriate form, either for 

downstream analysis, or quality checks.14 This can be done through combining multiple datasets, 

organizing data into columns and relational tables, as well as transforming existing variables to 

create new variables of interest. This can also include parsing free text and assigning meaning to 

codes to facilitate interpretation. In the VRE project, the main variable of interest was 

compliance with a protocol, was calculated from the data provided (which included tests 

conducted, previous results, timing of tests, and the location of patients). In the COVID project, 

deaths tended to lag behind the initial case diagnosis by about three weeks, causing an 

underestimate of the case fatality rate as the newly emerging disease was not yet endemic. The 

outcome of interest needed to be transformed, in this case lag adjusted, to account for the lag in 

case deaths to properly estimate the case fatality rate.  

 

1.2.2 Quality control/assessment 
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Within quality control are a number of elements, which include consistency, 

completeness, and accuracy.14 Consistency considers if formats and meaning of variables are 

consistent over time. If they are not, these variables may require more restructuring so all 

variables match the desired format. Completeness considers if I have all the data or if some of 

them are missing. If data are missing, ways to rectify this through supplemental sources or other 

means should be pursued. Accuracy considers observational error, which reflects biases that 

affect data, such as misclassification and recall.15 Accuracy can also include things such as 

instrumental error, when an instrument taking measurements is inaccurate due to internal issues 

such as calibration or faulty use by the operator. Environmental errors are also possible, due to 

changes in the environment such as temperature, humidity, and other environmental changes. In 

each of these cases, if there are issues in quality control, that will then lead to data cleaning.  

 

1.2.3 Data Cleaning 

Cleaning is often a vague term that can be specific to a number of different aspects. 

These include making corrections within data or removing low quality data, or can encompass 

everything in data processing including structuring and quality control.16,17 In general, some best 

practices for cleaning data include correcting data at the point of entry and developing a data 

quality strategy. In this strategy, expectations are set for your data, data quality key performance 

indicators are created, finding where most data errors occur, and developing a plan to ensure 

continuing performance of your data (such as when new data streams are added, or formats 

change over time due to changes in software).18 All of this connects to the idea of rigor and 

reproducibility. Rigor in collection, storage and use of data, making it as unbiased as possible 

and this process should be reproducible, In the COVID project, some variables were missing a 
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small percentage of values (<2%), so these were interpolated to improve completeness. In the 

VRE project, date formats in the electronic health records varied over different data pulls and 

needed to be standardized. This dataset also had a quirk in the data pull, where erroneous dates 

were added in places that needed to be removed. I knew in this dataset that misclassification did 

exist in our test outcomes, but since I did not have another means of fixing them, these had to be 

kept and accounted for later in analyses. 

 

1.3 Data analysis 

Once the data have been processed, the data analysis to address the question of the 

project can begin. The type of analysis that is chosen will depend heavily on the goals previously 

decided. The different possible approaches to analyzing data are vast and fill many textbooks, 

which include areas such as reproducibility and transparency, so I will cover only some 

highlights of types of analysis. In general, analysis will be determined by the project goals. Here, 

I will break this down based on whether the goal is to describe the data, identify relationships, or 

make predictions. In many cases, studies will have multiple objectives that result in different 

outcomes, sometimes encompassing all three areas. 

 

1.3.1 Descriptive statistics 

In many studies, descriptive statistics are used to summarize the characteristics of 

individual variables. This includes summary statistics, such as mean, standard deviations, box 

plots, histograms, etc. These descriptive statistics can be used to show the outcome of an 

experiment, or simply to characterize a population that will be studied. They can also be used on 

other related variables of interest as sanity checks. Part of the VRE project was to show what the 
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trends in VRE screening compliance were in our hospital historically. For the Mtb project, it was 

important to see that the distribution of values for immune cells in our simulations matched those 

done in previous outside collaboration experiments to confirm our simulated model was 

calibrated correctly. 

 

1.3.2 Relationships 

One of the biggest goals found in scientific studies is finding the relationship between 

two or more variables. The methodologies available are again vast and include methods such as 

statistical models (T tests, regression, etc) and mechanistic models (agent-based models (ABM), 

differential equations, etc). The choice in methodology is often influenced by the level of focus 

on the data generating process, or the process in the real world that generates the data. Does the 

study rely on understanding the underlying theory of the data generating process (mechanistic), 

or does the study rely on general observations rather than theory of the underlying data 

generating process (statistical). Additional methodologies can be stacked on top of these methods 

to further explore relationships, such as conducting sensitivity analyses on the outputs of ABMs 

to see what variables most affect certain model outputs. In chapter 4, I used a regression 

approach to quantify the relationship between possible risk factors and the COVID-19 case 

fatality rate (CFR). In the Mtb and VRE projects, sensitivity analysis was used to explore how 

intracellular processes as well as immune cell crowding influences activation of T cells, and look 

at the influence of VRE screening characteristics on VRE identification, respectively. 

 

1.3.3 Predictions 
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In some studies, the goal is to predict what will happen in the future, either what will 

happen if I perturb a system, or let things continue under current conditions. This goal often falls 

under the term forecasting. In some fields, a distinctive offshoot is called prescriptive modeling, 

in which the final output includes recommendations in the prediction to optimize the outcome. In 

the VRE project, I used a cost effectiveness analysis, which can be considered a form of 

prescriptive modeling. Using many different simulated outcomes, I were able to predict which 

VRE screening strategies would optimize our output, in this case detecting VRE cases within our 

hospital. 

 

1.4 Summary 

In this dissertation, I walk the reader through three case studies where I have apply these 

techniques to real-world problems from across the fields of bioinformatics and infectious disease 

modeling. As the aforementioned examples allude, this dissertation takes a deep dive into 

vancomycin resistant Enterococcus (VRE) hospital surveillance, Mycobacterium tuberculosis 

(Mtb) infection, and COVID-19 case fatality rate (CFR). 

In chapter 2, I look into why T-cell activation is lower than expected within the lungs 

during Mtb infections. Working at the host level, this project approaches modeling the immune 

system responds using an ABM. This takes advantage of how ABMs facilitate capturing 

emergent behavior, in this case the formation of a granuloma to contain the infection. This 

allowed us to view the interactions of immune cells in the granuloma and see how this 

interaction affects the ability of T cells to become activated over the span of an infection. I find 

that the spatial characteristics of a granuloma contribute to crowding out T cells, reducing the 

chances they could be activated by an infected macrophage. 
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In chapter 3, I explore how compliance and other factors of a hospital’s active 

surveillance protocol for VRE affect our ability to estimate the endemic rates within hospitals. 

Having access to electronic health records at an individual level, allowed me to simulate patient 

infections using an agent-based modeling (ABM) approach. Different compliance rates and 

testing strategies are simulated and cost-effective analysis is used to judge the type of 

surveillance strategy allows for the most effect in identifying cases. This allowed us to sort out 

that increasing the compliance rate of screening under any surveillance strategy was most 

effective at identifying cases. 

In chapter 4, I explore risk factors that affected the COVID-19 CFR during the first wave 

of the pandemic. Having only access to data at the county level, this population level study used 

a case lag adjusted count-based regression approach to explore the relationship between CFR and 

other county level indicators, ranging from comorbidity rates, to healthcare infrastructure 

capacity, to non-pharmaceutical interventions. As the disease was newly emerging and not yet 

endemic, the case lag adjustment allowed us to account for the lag in case deaths to properly 

estimate the case fatality rate. This study agreed with previous findings such as asthma rates 

increasing CFR and contributed new risk factors, such as banning indoor religious gatherings 

lowering CFR. 

Whether the problem at hand was exploratory, investigating effectiveness, or modeling 

the inner workings of a process, each infectious disease problem utilizes the properties of data 

collection, processing and analysis to best answer the problem. 
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Chapter 2 Spatial Organization and Recruitment of Non-Specific T Cells May Limit T 

Cell-Macrophage Interactions Within Mycobacterium tuberculosis Granulomas  

 

This chapter is a published work: 

Millar JA, Butler JR, Evans S, Matilla J, Linderman JJ, Flynn JL, Kirschner DE. (2021). Spatial 

organization and recruitment of non-specific T cells may limit T cell-macrophage interactions 

within Mycobacterium tuberculosis granulomas. Front Immunol. 11:613638.  

 

2.1 Abstract 

Tuberculosis (TB) is a worldwide health problem; successful interventions such as 

vaccines and treatment require a 2better understanding of the immune response to infection with 

Mycobacterium tuberculosis (Mtb). In many infectious diseases, pathogen-specific T cells that 

are recruited to infection sites are highly responsive and clear infection. Yet in the case of 

infection with Mtb, most individuals are unable to clear infection leading to either an 

asymptomatically controlled latent infection (the majority) or active disease (roughly 5%–10% 

of infections). The hallmark of Mtb infection is the recruitment of immune cells to lungs leading 

to development of multiple lung granulomas. Non-human primate models of TB indicate that on 

average <10% of T cells within granulomas are Mtb-responsive in terms of cytokine production. 

The reason for this reduced responsiveness is unknown and it may be at the core of why humans 

typically are unable to clear Mtb infection. There are a number of hypotheses as to why this 

reduced responsiveness may occur, including T cell exhaustion, direct downregulation of antigen 
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presentation by Mtb within infected macrophages, the spatial organization of the granuloma 

itself, and/or recruitment of non-Mtb-specific T cells to lungs. We use a systems biology 

approach pairing data and modeling to dissect three of these hypotheses. We find that the 

structural organization of granulomas as well as recruitment of non-specific T cells likely 

contribute to reduced responsiveness. 

 

2.2 Introduction 

Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb). It is 

one of the leading causes of death due to infectious disease, killing 1.7 million people per year.19 

The pathologic hallmark of this infection is the formation of lung granulomas, which are 

collections of host immune cells (e.g. macrophages & T lymphocytes) that organize in an attempt 

to contain and eliminate the infection.20–22 Although bacterial infection preferentially occurs 

within macrophages, T cells are key players in the proper functioning of granulomas, and are 

necessary for macrophage activation.20,23–25 

T cells play a central role in the host adaptive immune response. CD4+ T cells are 

activated by binding MHC class II (MHCII) complexes on the surface of antigen presenting cells 

like macrophages. CD4+ T cells provide help for CD8+ T cells and once activated, both CD4+ 

and CD8+ T cells serve a number of immune roles such as cytotoxic function, regulatory 

function, and cytokine production, (e.g. interferon-gamma (IFN-γ) and TNF) that recruit other 

immune cells and activate macrophages.26–29 Activated macrophages kill Mtb and also produce 

cytokines and chemokines that recruit other immune cells.20,30,31 Mtb-specific T cells play an 

important role in controlling Mtb infection by influencing the initiation and maintenance of the 

adaptive immune response, leading to formation of lung granulomas.32,33 T cells have been 
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shown to be necessary for control of Mtb infection in studies in non-human primates (NHPs) and 

mice,34–38 and also from studies from humans who are co-infected with HIV-1 and do much 

worse. Since granulomas are the infection sites within lungs and provide the potential for 

frequent interactions between Mtb and host immune cells, we expect them to be enriched in Mtb-

responsive T cells (i.e. producing cytokines in response to Mtb). Surprisingly, it has been 

observed that in granulomas from non-human primates, on average <10% of T cells are 

producing canonical T cell cytokines (IFN-γ, TNF, IL-2, IL-17, or IL-10) throughout the course 

of Mtb infection.39 This low level of cytokine-producing T cells could be one explanation for 

how granulomas balance excessive inflammation with bacterial control. Regardless, since 2 

billion people in the world are infected with TB, it is useful to understand this delicate balance of 

T-cell responsiveness and why the frequencies of cytokine-producing T cells in granulomas are 

lower than expected. 

There are a few lines of thinking that have been explored to date to explain these 

observed low levels of Mtb-responsive T cells observed during infection. One hypothesis is that 

T cells may become exhausted during Mtb infection, as exhausted T cells have been described in 

other chronic infectious diseases.40–43 However, we have shown through both experimental and 

computational work that T cell exhaustion is limited in most NHP TB granulomas.44 A second 

hypothesis is that T cells are down-regulated directly by the action of Mtb. Mtb’s role in 

regulating parts of the immune system has been established in studies involving Mtb-derived 

glycolipids inhibiting pathways in antigen presentation.45–49 Downstream, this would lead to 

reduced stimulation of T cells. A third hypothesis is that the spatial organization of granulomas 

affects the ability of T cells to reach macrophages and thus be activated via antigen 

presentation.50–52 The structural organization of granulomas tends toward a typical pattern: Mtb 
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are mostly found within the caseous necrotic core or in epithelioid macrophages adjacent to the 

core of granulomas, which is then surrounded by layers of macrophages and lymphocytes.53 We 

provided evidence that T cells had a higher likelihood of exhaustion after penetrating deeper into 

the granuloma where they could encounter Mtb antigen, but this penetration of T cells occurs 

infrequently in established granulomas.44 Compounding T cell-macrophage interaction dynamics 

is the recruitment of T cells into granulomas. T cells localize to and are rapidly recruited into 

mycobacterial granulomas in the absence of antigen recognition.54–56 If the majority of T cells 

recruited are Mtb non-specific, Mtb-specific T cells would be less likely to find macrophages 

and become fully activated due to crowding. Thus, a fourth hypothesis is that non-specific T 

cells are recruited to granulomas. During chronic infections, there are ongoing signals that can 

recruit non-specific T cells into lungs due to both the inflammatory nature of granulomas and 

also the highly vascularized lung environment. In addition, it has also been shown that 90% of 

non-Mtb-specific T cells are lung tissue resident memory T cells.57,58 Here we test hypotheses to 

determine the potential contribution of Mtb modulation, granuloma spatial organization, and T 

cell recruitment. Our goal is to determine how these factors contribute, either alone or together, 

to the relatively low levels of observed cytokine-producing T cells established within granulomas 

during Mtb-infected NHPs. 

To address these studies, we need an approach that can explore and compare these 

hypotheses. The spatial organization of granulomas is crucial to outcomes, as has been suggested 

in NHPs, mice and rabbit studies.54,59,60 In addition, temporal dynamics are important, tracking 

discrete cells and bacteria as they evolve over the course of granuloma formation and 

maintenance. Finally, events that participate in the immune response to Mtb occur over 

biological scales ranging from molecules to cells to tissue. Thus, our approach must 
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accommodate all of these features. To this end, we use a systems biology approach, pairing 

computational multi-scale modeling with experimental studies in NHPs. Our lab has previously 

created a multi-scale (intracellular through tissue scales) agent-based model (ABM), GranSim, 

that tracks bacteria and individual immune cells as agents.44,50,51,61–63 This model captures the 

host response to Mtb and allows spatial tracking of granuloma formation and function. It also 

tracks bacterial heterogeneity in terms of growth and division by following each individual 

bacterium within its micro-environments (intracellular, extracellular and trapped within caseum) 

over time. Using an agent-based model has the additional advantage that it can capture emergent 

behavior (in this case, the formation of the granuloma) through rules governing immune cell 

interaction. Herein, we modify GranSim to include an additional sub-model that tracks 

intracellular-level dynamics of macrophage antigen presentation to examine the impact of Mtb 

on antigen presentation and thus to T cell outcomes within granulomas. To do this, we integrate 

our previously published model of Mtb-mediated down-regulation of MHCII presentation of 

peptides64,65 within each macrophage in GranSim. This will allow us to explore mechanisms of 

Mtb downregulation of antigen presentation on T-cell responsiveness. At the same time, this 

multi-scale model can aid understanding of how granuloma structure impacts macrophage and T 

cell dynamics and also how recruitment to lung granulomas balances T cell specificity/non-

specificity. We pair our modeling studies with datasets from NHP granulomas to calibrate and 

validate our models and predictions. 

 

2.3 Methods 

2.3.1 Immunohistochemistry and imaging 
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Four randomly selected, formalin fixed paraffin embedded (FFPE) granulomas were 

derived from 3 cynomolgus macaques (Macaca fascicularis), necropsied at approx. 10-11 weeks 

post infection (Figures 2.1A–D), and were deparaffinized and antigen retrieval was performed as 

previously indicated.53 Granulomas were stained with cocktails of antibodies including 

polyclonal rabbit anti-CD3 (Agilent Technologies, Santa Clara, CA), IgG2a mouse anti-CD11c 

(clone 5D11; Leica Microsystems, Buffalo Grove, IL). Primary antibodies were labeled with 

fluorochrome-labeled secondaries including anti-isotype (IgG2a) specific antibodies (Jackson 

ImmunoResearch, West Grove, PA). Coverslips were mounted with Prolong Gold with DAPI 

(ThermoFisher Scientific) and the sections were imaged on an Olympus FluoView confocal 

microscope (Center Valley, PA) or Nikon e1000 epifluorescence microscope (Nikon 

Instruments, Melville, NY) with Nikon NIS Elements (Nikon Instruments). 
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Figure 2.1 Immunohistochemistry analysis of four non-human primates (NHP) granulomas. 
[Shown in Panels (A-D)] examining spatial distributions of both T cells and macrophages, and 
also where they intersect. Four distinct, randomly chosen granuloma images with extracted cell 
distributions. Column 1 shows the immunohistochemically stained preparation for CD3 (green), 
CD11c+ macrophages (red), and nuclei (dark blue). White points represent Geographical 
Information Systems Technology (GIS) analyses of these images revealing cell locations for T 
cells (Column 2), macrophages (Column 3), and their intersections (Column 4), as follows. Rows 
represent four distinct granulomas. The data for the cell numbers in these granulomas are given 
in Table 2.2. On average, about 9.75% (median 8.6%, StDev is 4.5%) of T cells interacted with 
macrophages. 
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2.3.2 Geographical information systems to extract T cell-macrophage interactions in a 

granulomas 

Granulomas were obtained and stained as described above. DAPI stained images were 

provided together with the IHC. We applied an unsupervised classification, iso-cluster, image-

classification process to four randomly selected, original immunohistochemically, stained NHP 

granuloma digital microscopy images. This initial classification technique generated between 28 

and 45 classifications. Classes correspond to different cell types, even portions of cells like cell 

borders, caseum, cellular debris, sample background, and co-expression. These initial 

classifications were collapsed to the single cell types of interest. For accuracy assessment, the 

classified image was superimposed onto the DAPI image to ensure that cell location and size 

were correct. In addition, this process removed cellular debris versus true cells. These classified 

raster images, where the objects in the image are defined by individual pixels instead of vectors, 

were then converted to vector-based or polygons and the polygons were then assessed for 

classification errors. The two different polygon images were subjected to a join technique that 

recorded the locations where different polygons intersected. From the classification process we 

created a raster, classified image. This raster image was converted to a vector (polygons) image 

(ArcPro 2.6). We extracted individual cell distributions by cell type (T cells and macrophages 

only). We then performed a spatial join (ArcPro 2.6) between the T cell/macrophage 

distributions based on cell-cell interactions to determine overlap and/or border interactions. The 

cells were marked on the images, and the numbers of each type together with the interactions 

were quantified. 

 

2.3.3 Multi-scale model overview 
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To test our three hypotheses and address how bacterial factors, granuloma spatial organization 

and T cell recruitment lead to reduced T-cell responsiveness, we create a next-generation 

computational model. Briefly, the main model (mesoscale) operates at the cellular/tissue scales, 

tracking host immune cells and individual Mtb in the immune system environment, leading to 

granuloma formation. GranSim is an agent-based model (ABM) drawing on well-described 

cellular and pro- and anti- inflammatory cytokine interactions that is continuously updated and 

curated with the latest data. These dynamics are all captured between immune cells and 

individual Mtb using stochastic simulations, operating in two dimensions (2D) [with versions 

working in three dimensions, but not used here66]. We now link an intracellular scale sub-model, 

capturing MHCII processing and presentation by macrophages using a system of ordinary 

differential equations (ODEs) previously described.64 The cellular/tissue scales and intracellular 

scale sub-model are linked through the processes of IFN-γ receptor ligand binding, Mtb antigens, 

and MHCII Mtb-peptide complexes on macrophage surfaces to activate T cells (Figure 2.2). 
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Figure 2.2 Multi-scale model schematic showing the integration of the intracellular scale model 
into the mesoscale cellular/tissue model. Within our combined multi-scale model, the 
cellular/tissue scale is modeled with GranSim, an agent-based model capturing dynamics of 
immune cells, effector molecules and mycobacteria within lungs leading to formation of 
granulomas. Full cellular and molecule dynamics are not shown for GranSim, only the places 
where the intracellular model links with GranSim. For the intracellular model, 14 non-linear 
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ordinary differential equations (ODEs) are represented by this schematic for 14 variables 
(published previously and listed in Table A.1 for reference here). GranSim linking is 
accomplished via inputs to ODEs (green arrows) including the concentration of free IFN-γ 
(calculated based on T cell numbers) and concentration of free Mtb antigen (calculated using the 
number of Mtb in a macrophage’s one Moore neighborhood). The ODE output of MHCII-Mtb 
complexes on a macrophage surface is linked back into GranSim (blue arrow). Once these 
macrophages reach a threshold of surface MHCII-Mtb complexes, they are able to activate T 
cells within their neighborhood. 
 

2.3.4 Cellular/tissue scale model 

Hybrid multi-scale model (GranSim) 

In this work we build an antigen presentation model into our existing hybrid multi-scale 

agent-based model (ABM) of granuloma formation, GranSim. GranSim has been curated and 

used for testing hypotheses in TB since 2004. The model has been developed in conjunction with 

extensive experimental datasets regarding the immune response to M. tuberculosis within the 

lungs of non-human primates (NHP), leading to the formation of granulomas50,51 (see our 

detailed website http://malthus.micro.med.umich.edu/GranSim for full model details, all 

published manuscripts using this model and an executable program). GranSim tracks the cellular 

immune response in lungs following infection with Mtb that ultimately leads to emergence of a 

granuloma (if the initial infection is not cleared). GranSim is an agent-based (individual-based) 

model that is comprised of five features: 

Agents 

Immune cells that are individually tracked as follows: four macrophage states (resting, 

activated, infected, and chronically infected- see below for more details), three T cell classes 

(cytotoxic, IFNγ producing, and regulatory), and cytokines and chemokines IFN-γ, TGF, IL10, 

TNF, CCL2, CXCL9, and CCL5. In addition, individual bacterium are each tracked and are in 
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one of three environments leading to different growth states (intracellular, extracellular and non-

replicating trapped in caseum). 

The environment 

The model environment represents a section of lung tissue that is 4 mm x 4 mm in size, 

allowing for granulomas to grow to a size that is average of what is observed in vivo. The grid is 

2D (although we have a 3D version available- see http://malthus.micro.med.umich.edu/3D-

GranSim/) and the model grid is subdivided into 20 micron x 20 micron microcompartments. 20 

microns is the average size of our largest immune cell class, macrophages. The lung grid also is 

populated with blood vessels that are placed on the grade based on NHP studies of healthy lungs. 

These portals are where cells, chemokines, or cytokines can enter the lung space. 

Rules 

Rules are based on probabilistic interactions between cells and the lung environment, 

derived and validated on extensive datasets of observed interactions of NHP immune cells and 

molecules. The list of rules is extensive and it is housed on our GranSim website. 

Parameters 

GranSim is parameterized by dozens of parameters that have been estimated on datasets 

over the past 15 years. Further, we study their values and impacts using both uncertainty and 

sensitivity analyses. The last piece of an ABM is to define the time steps of the fastest process 

occurring on the grid. Here, that process is molecular diffusion, which is on a time scale of 6 s. 

When simulated, GranSim computes rules and agents at the cell and molecular scale and leads to 

emergent behavior of a granuloma that reads out at the tissue scale. For an executable file and 

detailed model rules, please see our website which is continuously curated on a regular basis 

http://malthus.micro.med.umich.edu/GranSim. 
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2.3.5 Intracellular MHCII presentation model 

Antigen presentation occurs when an antigen presenting cell presents foreign antigenic 

peptides to T cells to activate an adaptive immune response. This process of antigen presentation 

occurs within lymph nodes on a continual basis and in other locations during infection. Within 

granulomas, activation of CD4+ T helper cells depends on presentation of Mtb derived peptide–

MHC class II complexes (pMHCII) presented on the surface of macrophages.31,67 T cell 

activation is required for granulomas to control infection, as it induces IFN-γ secretion, which, in 

conjunction with other factors, activates macrophages to kill Mtb.31 This is the key step in Mtb 

cell-mediated immunity and may help determine the outcome of infection.67 In baseline 

GranSim, T cells are recruited to the site of the infection as already activated, with their 

specificity based on parameter probabilities. This tended to overshoot the proportion of activated 

T cells as we identified previously in Figure A.1.39 

Previously, we created a model that describes MHC class II-mediated antigen 

presentation by antigen-presenting cells.64 This model is developed as an intracellular scale 

model representing a single antigen presenting cell (e.g. a macrophage). The model comprises 14 

ODEs and was created in the context of capturing datasets from multiple in vitro studies. The 

model includes all of the intracellular events occurring during the process of antigen 

presentation: INFγ-receptor ligand binding, leading to MHC class II transcription through CIITA 

and uptake of Mtb antigens and the creation of host “self”-peptides, both leading to MHCII 

peptide loading and expression on macrophage surface [see Table A.1 for a full list of variables 

and ODE equations from Chang et al.64]. This model was simulated over short time scales as the 

process of antigen presentation, and the in vitro studies that were used to develop this model, 
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occurred on a time scale of less than 100 h. This fast time-scale model is linked within 

macrophages in our longer time-scale model, GranSim, that represents approximately 1-year 

post-infection. This creates a hybrid model that crosses space and time scales ranging from 

intracellular to tissue and from minutes to months. The inclusion of these intracellular dynamics 

calibrates the proportion of activated T cells in GranSim to match T cell levels that we identified 

previously in Figure A.1.39 Below we describe how we linked these two model frameworks. 

 

2.3.6 Linking models 

There is currently no standard way to link different models, particularly models that are 

created with different formulations (ODEs, ABMs, PDEs, etc.).68 We connect the intracellular 

antigen presentation scale model to the cellular/tissue scale model, GranSim, in three ways. 

Figure 2.2 shows how the two models are linked, and Table 2.1 shows two linking equations and 

corresponding parameters for those processes. 

(1) MHCII transcription depends initially on IFN-γ- derived from CD4+ helper T cells 

binding to macrophages.68 Levels of binding are thus controlled by the presence of T 

cells near a macrophage. To link the ODEs and ABM (intracellular to cellular), we 

determine this concentration by calculating the number of T cells present in the 

neighborhood of a macrophage at any given time. A neighborhood is defined as a Moore 

neighborhood (nine grid squares) or the two-Moore shell neighborhood (16 grid squares). 

Macrophages can sample antigen from at least a two-Moore neighborhood (see Table 2.1 

for values and equations and calculations below). 

(2) The activation of T cells (CD4+ T helper cells) depends on the presentation of Mtb 

peptide–MHCII complexes on macrophage surface. The level of complexes seen on 
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macrophage surface depends on the concentration of Mtb antigens present in the 

surrounding medium.68 Mtb produces a variety of protein and glycolipid antigens. 

Glycopeptidolipid antigen are some of the most persistent, with only 1%–3% degradation 

after four days.69 To simulate Mtb antigens, we use dead Mtb as a proxy (dead Mtb are 

generated directly by macrophages killing them or indirectly by cytotoxic T cells killing 

infected macrophages). We calculate this concentration directly in GranSim by 

calculating how many dead Mtb are present in the neighborhood of a macrophage (see 

Table 2.1, and calculations below). 

(3) To analyze activation levels of T cells, we define how macrophages interact with T cells 

at given time and space points. A threshold number of Mtb peptide–MHCII on a 

macrophage surface are needed to activate T cells, and we set a binding threshold of 

120.70,71 Only macrophages that meet this threshold and are not chronically infected have 

an ability to activate a T cell (this includes currently infected macrophages and 

previously infected that cleared their bacterial load). We connect the output of an ODE 

representing the number of Mtb-MHCII complexes on the surface of a macrophage 

(Table A.1, variable !"
∗) to each individual macrophage within GranSim. For a 

macrophage to stimulate a T cell, it must be within a one-Moore neighborhood of a 

macrophage that has a number of Mtb-MHCII complexes that surpasses the binding 

threshold. 
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Linking Equation description Equation 
IFN-γ Receptor Ligand Binding  
Molar concentration of IFN-γ in a Moore neigh-
borhood of radius 2 around the macrophage (G) 

(#. of	γ	T	cells	in	1	Moore	Neighborhood) ∙ <=>?@A@B?C +
(#. of	γ	T	cells	in	Moore	Shell	Radius	2) ∙ <=>?@A@B?J  

Mtb Antigens  
Molar concentration of Mtb lipid antigen in a 
Moore neighborhood of radius 1 around the 
macrophage (A*) 

(#. of	bacteria	in	1	Moore	Neighborhood) ∙ <BLM@B?C  

 
Linking Parameter Parameter description Value            

<=>?@A@B?C  Molar concentration of IFN-γ in a 1 Moore neighborhood around a 
macrophage 2.0 ∙ 10@OM  

<=>?@A@B?J  Molar concentration of IFN-γ in a Moore shell of radius 2 around a 
macrophage 5.7 ∙ 10@CRM  

<BLM@B?C  Molar concentration of Mtb lipid antigen in a 1 Moore neighborhood 
around a macrophage 4.5 ∙ 10@TM  

<BUV@MWXY  Number of surface MHCII Mtb-peptide complexes required for binding 
T cells  1.2 × 10J  

 
Table 2.1 Equations and parameters for the new linking that are needed to combine the 
intracellular-scale model and GranSim. 
 

2.3.7 Linking equation calculations 

First, we calculate the production of free, extracellular IFN-γ. We use the following 

translations to perform the calculation in Table 2.1. IFN-γ produced per T cell: 0.0001 U;72 IFN-

γ molecular weight (mature dimer, biologically active): 34 kDa;73 Volume of 1 grid cell: 8.0x10-

12 L; Number of compartments in 2-Moore shell of radius: 16; IFN-γ U to µg: 2.x104 U = 1 µg.74 

Therefore, 

(1) IFN-γ produced/T cell: 1.5·1019 mol 

(2) IFN-γ produced/T cell in one compartment: 1.8·10-8M 

Thus, the Molar concentration of IFN-γ in a 2-Moore neighborhood (G), (where Tg is an IFN-γ -

producing T cell), is: 

(3) G = (#. of Tg)·2.0·10-9M + (#. of Tg) 5.7·10-10M 
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Similarly, we calculate production of extracellular Mtb antigens: Mtb Antigen mature weight 

(approx., range 10–40kDa): ~20 kDa;75,76 Volume of 1 grid cell: 8.0x10-12 L; Number of 

compartments in 1 Moore neighborhood: 9; Mtb biomass: 1.96x10-13 g;70,77 and Fraction of Mtb 

that are lipids: 0.33.77 

(4) Approx. lipid antigens produced/dead bacteria: 3.2·10-18mol 

(5) Approx. lipid antigens produced/dead bacteria in one compartment: 4.0·10-7M 

Therefore, the Molar concentration of Mtb lipid antigen in a 1-Moore neighborhood is: 

(6) A* = (#. of bacteria)·4.5·10-8M 

 

2.3.8 Parameter estimation: Literature and uncertainty and sensitivity analysis 

GranSim parameter values were estimated from literature [described in detail 

elsewhere51,61,62,78–80]. For the intracellular model, ODE parameter and initial condition values 

were also estimated from the literature [Chang et al.64. and shown again in Tables A.2 and A.3]. 

Linking parameters are calculated as shown above. If data were not available, we implemented 

uncertainty analysis using a Latin hypercube sampling scheme (LHS) [reviewed elsewhere81,82]. 

We use LHS to sample and find parameters for the ODEs that represent the dynamics within the 

macrophages (intracellular) and also to calibrate GranSim to experimental datasets. Extensive 

data on numbers of macrophages, Mtb, and T cells were provided by the Flynn lab as previously 

described.39,51,61,67,83 To narrow down parameter ranges and mechanisms of interest, we identify 

critical parameters that map to specific model mechanisms that impact model outputs. To do this, 

we take a two-step process: we pair LHS with Partial rank correlations (PRC) analysis 

(sensitivity), which allows us to quantify the correlation of model outputs with parameters, 

including those with non-linear relationships.81 We do this by calculating partial rank correlation 
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coefficients (PRCCs) that are between -1 and 1 and indicate the strength of the correlations. 

These are nonlinear correlations, so that is why they are ranked. PRCCs p-values were corrected 

for multiple testing using Bonferroni.84 

 

2.3.9 Mtb-mediated inhibition of antigen presentation 

Mtb may inhibit MHCII Mtb-antigen presentation within macrophages by interfering 

with MHCII mRNA transcription, antigen processing, MHCII maturation, and/or MHCII peptide 

loading.48,49,64 To determine if these fast-time and short physiological scale events manifested at 

the granuloma scale, we tested the effects of inhibiting these four processes on MHCII antigen-

presentation on downstream T cell activation. To do this, we examined a range of rates of down 

regulation of antigen processing (Table A.4) to be used with Michaelis–Menten dynamics (Table 

A.5), as done previously in.64 

 

2.3.10 T cell spatial characteristics 

Based on previous work, we have identified that the spatial organization of granulomas 

can be a determinant in granuloma outcomes.52 Thus, we separately explored the spatial 

organization of granulomas and the role that may play in reducing the number of Mtb-responsive 

T cells. To do this, we use the combined ODE-ABM multi-scale model with no inhibition of 

antigen-presentation processes. From these 500 simulations, 37 scenarios were removed as the 

bacterial infection did not occur or did not generate T cells within the first 50 days, leaving 463 

simulated granulomas to be analyzed. (Results using similar runs gave similar results.) We chose 

a replicate run of GranSim that fit the median characteristics of the 463 GranSim simulations 
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over the time scale of 200 days post infection (Figure A.2). These characteristics include: 

numbers of macrophages, Mtb counts, proportion of activated T cells, and average presentation 

of antigenic peptide–MHCII complexes on macrophage surface (see example median runs 

chosen based on these characteristics in Figure 2.3). We calculated minimum, average, and 

maximum distance of immune cell populations based on their relation to the granuloma center of 

mass [as in Renardy et al.85]. 
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Figure 2.3 Simulation GranSim output is consistent with NHP data. Time series plots showing 
the dynamics of both individual model outputs from the combined Multi-scale model. Panels (A, 
B) shows the variables in the intracellular model over time, and Panel (C, D) show the time 
series of total populations of immune cells [shown together with non-human primate (NHP) 
datasets from Wessler et al.86]. Panel (E) shows the CFU [shown together with NHP data sets 
from Wessler et al.66] and Panel (F) is a time series snapshot at day 60 of the Multi-scale 
GranSim granuloma model, 2x2 mm scale. Cell types in Panel (F): Macrophages: resting (green), 
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active (blue), infected (orange), chronically infected (red); T cells: Mtb-specific (dark pink), non 
Mtb-specific (light pink); caseation (tan); extracellular bacteria (dark yellow). 
 

2.3.11 Modeling recruitment of Mtb-specific versus non-specific T cells 

All T cells in the model (three functional classes: IFN-γ -producing T cells (Tgammas), 

cytotoxic T cells (Tcyts), and regulatory T cells (Tregs)) are recruited into GranSim as either 

specific or non-specific T cells.80,87 At each time step, at each vascular source from where cells 

are recruited, T cell classes are recruited as determined by the chemokine concentrations at each 

vascular source. Three parameters (Tgam.probCognate, TCyt.probCognate and 

Treg.probCognate) determine the ratio of Mtb-specific to non-specific T cells. Patankar et al. 

showed in mice granulomas that 5%–20% of T cells are Mtb-specific.88 Here, we varied the 

frequency of each Mtb-specific T cell class from 1%-25% to capture a potential larger range 

occurring within primates. Both specific and non-specific T cells enter the grid in a Th0 state that 

requires further stimulation to fully differentiate and perform effector function. Non-specific T 

cells remain in a Th0 state in the granuloma throughout the simulation and do not have the ability 

to kill Mtb. Both Mtb-specific and non-specific T cells have the ability to move on the grid and 

die from old age, or via TNF induced apoptosis. Macrophages with sufficiently bound surface 

MHCII receptors (larger than the MHCII binding threshold) can activate Mtb-specific T cells in 

their neighborhood. 

 

2.3.12 Computer simulations and visualization 

The 14 equation ODE model describing intracellular antigen presentation dynamics is 

solved within each macrophage within GranSim along with the new equation terms linking 
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models for each model time step. If the number of surface bound MHC II receptors of a 

macrophage is at or above a threshold (parameter MHCII Binding Threshold), then any specific 

Th0 cell in the 1-neighborhood of a macrophage’s transitions from the Th0 state to an active state. 

GranSim was implemented in C++ with Boost and FFTw libraries. Partial differential equations 

describing diffusion are solved using Alternating Direction Explicit method. MHCII dynamic 

ODEs are solved using Runga-Kutta 4 method. Simulations for parameter sweeps were run 

without graphical visualization. The graphics visualization version was then used to load saved 

simulation states and generate graphics images to visually track granuloma formation. 

Computational model simulations were performed on XSEDE’s Comet cluster and NERSC’s 

Cori and Edison systems. For details on the system we use see 

https://www.sdsc.edu/support/user_guides/comet.html. 

 

2.4 Results 

Our goal is to study three key hypotheses explaining the relatively low frequency of T 

cells producing cytokines in TB granulomas. We test each hypothesis individually using both 

temporal and spatial modeling and appropriate control studies. In some instances, we have data 

that have been derived herein to provide support for our predictions. 

 

2.4.1 Hypothesis 1: T cells are down-regulated directly by the action of Mtb 

To explore this hypothesis, we include the role of intracellular dynamics of MHCII-

mediated antigen presentation within macrophages within our multi-scale model of granuloma 

formation, GranSim. We then test four different types of down-regulation by Mtb on antigen 
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presentation individually and combine to observe the effects on downstream T cell activation. As 

a control, we implement no downregulation (as in the GranSim model without the submodel in 

place). 

We performed 500 simulations using a wide range of biologically relevant parameters 

values (generated by LHS, see Methods). Figure 2.3 shows outputs for both the intracellular 

scale model and cellular/tissue scale model for different variables of interest. Model dynamics 

agree with datasets derived from NHP studies on granulomas and other in vitro studies for 

intracellular dynamics.89–91 We also compared our model predictions to GranSim without MHCII 

presentation dynamics to confirm our model behaved accurately (positive control) (with values 

in Table A.5 set to 1, Figure A.3). Lastly, we calculated the numbers of Mtb-responsive T cells 

for 500 granulomas and compared it with data derived from 50 granulomas from an NHP study 

(Figure 2.4).39 
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Figure 2.4 Experimental and computational models both reveal low levels of Mtb-responsive 
cells producing interferon-gamma (IFN-γ) within the granuloma. Panel (A) shows the 
experimental proportion of T cells exhibiting an IFN-γ response in non-human primates from 
Gideon et al.,39 from 50 granulomas derived from 12 non-human primates (NHPs). Panel (B) 
shows our simulated prediction of the proportion of IFN-γ producing T cells in 500 simulated 
granulomas over the 28 weeks course of infection grouped to match the NHP dataset. 
 

MHC self-derived peptides increase T cell activation when MHCII peptide loading is 

inhibited 

We performed a sensitivity analysis on the intracellular-scale model (without Mtb 

assisted downregulation of MHCII presentation) and identified several parameters correlated 

with MHCII-mediated antigen presentation (Figure A.4). We found that increasing Mtb antigen 

processing rates by macrophages leads to increased levels of MHCII-Mtb presentation, but that 

these effects waned by 75 days post infection (Figure A.4). This matches general trends 

predicted in.64 We also found that increases in Mtb antigen degradation or increases in MHCII-

Mtb antigen dissociation leads to decreased MHCII-Mtb presentation on the surface of 

macrophages, also waning by 75 days post infection (Figure A.4). At the 75 days post in 

infection, Mtb levels within granulomas have leveled off, likely leading to diminishing returns 

for macrophage MHCII-Mtb presentation (Figure 2.3A). However, we did not identify 

correlations of antigen presentation parameters with a critical downstream effect, namely, levels 

of activated T cells within simulated granulomas. Previously a number of labs had identified 

different pathways in the antigen processing and presentation of MHCII-peptides by 

macrophages that were inhibited by Mtb.48,49 Chang used the single cell model to study how Mtb 

affects certain processes of MHCII presentation and specifically studied Mtb interference of 

MHCII transcription, MHCII maturation (CIITA translation rate), antigen processing, and 

MHCII peptide loading.64 We explored these same four processes within the linked multi-scale 
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model, where we tested a range for the maximum rate of Mtb down-regulation of each of the 

processes, at saturating bacterial levels, ranging from 25% to 100%. 

Of the four processes that we studied for inhibition by Mtb, we found that reducing 

MHCII peptide loading was the only process that had a significant effect on T-cell activation 

levels (Figure A.5). When Mtb acts to down regulate MHC II peptide loading, as the degradation 

rate of peptide-MHC complexes increases, all T cell classes showed increased levels of 

activation, but only after 100 days post infection (not shown, p < 0.0005). At this point in the 

infection as Mtb levels plateau (see Figure 2.3E, day 75), degrading peptide-MHC complexes 

may help remove MHCII complexes loaded with host “self”-peptide. Continually degrading 

these complexes may help cycle through peptides quicker, making it more likely that MHCII are 

loaded with Mtb-peptides. This cycling through of peptides may be the only way to maintain a 

certain threshold of MHCII complexes presenting Mtb when peptide loading is greatly inhibited 

and Mtb levels have fallen. However, this contribution is small when observed as a proportion of 

activated T cells (Figure A.5). As a control, we also performed a sensitivity analysis on Mtb-

induced downregulation of MHCII presentation for each of the processes, varying down 

regulation from 1% to 100% (Figure A.6). Any significant correlations with T-cell activation 

were small and transient, suggesting that these processes contribute very little. 

Although previous wetlab and modeling studies showed that mycobacteria significantly 

inhibit antigen presentation processes, the focus of these in vitro studies was on less than 100 

h.48,49,64 However, our results suggest that bacterial mechanisms alone do not account for the 

observed low T-cell responsiveness levels of cytokine production observed in NHPs at a 

granuloma scale.39 
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2.4.2 Hypothesis 2: Spatial organization of granulomas affects the ability of T cells to reach 

macrophages and thus be activated via antigen presentation 

We test a second hypothesis, namely that the spatial arrangement of cells within 

granulomas may create insufficient numbers of interaction opportunities between macrophages 

and T cells. This would imply that even if Mtb downregulation of processes is important, the 

chances for impact are few. In other words, granuloma spatial characteristics may contribute to 

low T cell responsiveness.44 

To explore this idea, we used a two-pronged approach analyzing both experimental and 

simulated granulomas to better understand the spatial arrangements of immune cells. First, we 

randomly selected four experimental immunohistochemistry (IHC) images derived from four 

distinct NHP granulomas to directly identify and quantify the spatial organization between T 

cells and macrophages. We applied a novel approach using Geographical Information Systems 

Technology (GIS) similar to what we have done previously to analyze cell composition of 

granulomas [see Methods and Pienaar et al.92]. Here we not only identify the T cells and 

macrophage populations, but we additionally quantified the interaction overlap between T cells 

and macrophages, defined where these two cell boundaries intersect on the IHC image. We 

found that T cell-macrophage interactions occurred for, on average, only about 9.75% of the T 

cells identified (median: 8.6%, StDev: 4.5%), for at least the four granuloma that we examined 

(See Table 2.2). 

 

Granuloma CD3 CD11c CD3/CD11c Ratio contacts to T cells 
9714_30 4,969 9,876 491 0.098 
17613_37 15,448 3,943 1,127 0.073 
17613_51 8,612 4,496 1,397 0.162 
20612_29 3,284 5,535 197 0.060 
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Table 2.2 Geographical Information Systems Technology (GIS) analysis identifies numbers of 
immune cells. Includes cell types and numbers of contacts from four immunohistochemistry 
(IHC) granulomas. 
 

Next, we used simulated granulomas and performed the same analysis to predict spatial 

locations of interactions between T cells and activated macrophages. For this, we simulated 

GranSim and controlled for bacterial inhibition as a factor by removing all possible Mtb-

mediated down-regulation of MHCII presentation processes. We performed 500 simulations of 

granulomas and ran them out for 200 days post virtual infection. For each day during the virtual 

infection, we calculated median counts of T cells, new T-cell activation events, and numbers of 

distinct T cells that interacted with at least one macrophage in each of the 1-day intervals. 

Similar to the NHP granuloma T cell- macrophage interactions (Figure 2.1), we observed a 

similar order of magnitude difference between numbers of T cells and T cell-macrophage 

interactions, as well as new T cell activation events (Figure 2.5). This last feature is something 

we can uniquely track in GranSim. Distinct T cells that interacted with at least one macrophage 

occurred for only about 10% (with a range of 0%–22%, StDev: 4.4%) of all T cells identified for 

a given time point at 11-weeks post virtual infection and slowly declined to about 5% at 25-

weeks post virtual infection (Figure A.7). As a control, we compared model predictions of T 

cells activation to GranSim with varying ‘flexibility of T-cell density’ as follows. We allowed 

the maximum number of T cells that can fit within one grid compartment to vary from 2 to 5, 2 

being the default negative control (Figure A.8). Increasing the maximal allowable T cell density 

within a grid space did increase the proportion of activated T cells, but resulted in values that did 

not capture most of the data observed in the NHP study.39 We also performed a sensitivity 

analysis on T cell density over the same range (Figure A.9). Increasing the density of T cells is 

correlated with increasing T cell activation. However, increasing T cell density did not result in 
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higher Mtb clearance. As T cell density increased, we saw a stabilizing effect on Mtb CFU after 

day 50 (Figure A.10). This is likely due to increased crowding on the grid, where T cells can slip 

by, but larger macrophages become stuck, making it more difficult to find and kill Mtb. 

 

 
 

Figure 2.5 Simulated T cell/Macrophage Interactions in time Shows Spatial Analysis of 
Simulated Granulomas. Panel (A): Median count T cells over the course of Mtb infection 
compared with the median count of distinct T cells that interact with macrophages and new T 
cell activations per time step. Panel (B): Proportion of T cells found within the maximum 
boundary and average distance of antigen-presenting macrophages (measured from the 
granuloma center of mass) as compared with the proportion of total activated T cells (all 
activated T cells are Mtb-specific). These distances are shown spatially in Figure 2.6. 
 

The majority of T cells are not being stimulated 

Secondly, we test that the majority of T cells are not being stimulated. Both wetlab and 

computational studies to support the idea that within granulomas, T cells are often not 

sufficiently close to macrophages to become activated.50,51 We can use our simulations to 

determine how far each cell type is from the center of a granuloma. For each day of the virtual 

infection, we used GranSim to calculate median proportions of T cells found within both the 
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average and maximum distance of macrophages from the granuloma center of mass [as in 

Renardy et al.85]. These numbers are compared with the proportion of activated T cells (Figure 

2.5B). Within our simulations, roughly a third of T cells travel deep enough within the 

granuloma to have the possibility of reaching activated macrophages. Of these, about half made 

it past the average distance of T cell stimulating macrophages from the granuloma center of 

mass, increasing their chance of encountering a T cell stimulating macrophage (Figure 2.5B). 

To get a more detailed look at the simulated granulomas and spatial distributions of cells, 

we extracted the coordinates of all macrophage and T cell agents in our simulated granuloma 

(see Methods). In Figure 2.6, the distribution of macrophages (Figure 2.6A) and T cells (Figure 

2.6B) are drawn in relation to the granuloma center of mass. The area shaded gray is the 

distribution of activated T cells. At the height of T cell activation (occurring about 7-weeks post 

infection), almost all activated T cells (Figure 2.6A, shaded gray) can be found within the spatial 

region of macrophages that are able to stimulate T cells. That is, very few activated T cells are 

found near activated macrophages. This distribution of activated T cells can be divided further, 

with two thirds residing within the average distance of activated macrophages from the 

granuloma center of mass. About 90% of the activated T cells are found within the average Mtb-

specific T cell distance from the granuloma center of mass (Figure 2.6B). In general, the 

distribution of activated T cells closely follows the distribution of activating macrophages. Low 

T cell stimulation, taken together with limited T cell access to macrophages and an observed 

increase in T cell activation by increasing T cell density suggest that spatial mechanisms play a 

major role in the observed low T-cell responsiveness levels of cytokine production observed in 

NHPs at a granuloma scale. 
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Figure 2.6 Spatial analysis of granulomas showing distances between macrophages and T cells. 
Proportional distances of average maximum, and minimum (A) activated macrophages 
presenting antigen or (B) Mtb-specific T cells from the granuloma center of mass (7-weeks post 
infection). Maximum and minimum distances shown as solid circles, average distances show as 
dotted circles. Gray shaded areas encompass all activated Mtb-specific T cells present. Percent of 
all activated T cells is shown between minimum and average, as well as average and maximum 
distances for both (A) activated macrophages presenting antigen and (B) Mtb-specific T cells. 
 

2.4.3 Hypothesis 3: The majority of T cells within granulomas are non-Mtb specific 

To test the hypothesis that the majority of T cells within granulomas are non-Mtb 

Specific, we focus on the spatial distribution of Mtb-specific T cells (Figure 2.6). Given previous 

studies showing that T cells are recruited to macrophages indiscriminately,54–56 we expanded 

upon our study of the composition of Mtb-specific T cells within simulated granulomas. We use 

our multi-scale model to determine the proportion of Mtb-specific T cells within granulomas 

over the course of infection as compared to non-specific T cells present by comparing which 

frequencies match the dataset derived from NHP. To do this, we varied the frequency of Mtb-
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specific T cell classes from 1%-25% to capture a potential larger range occurring within 

primates.88 For each day of virtual infection, we used GranSim to calculate median, numbers, 

and proportions of Mtb-specific T cells versus non-specific T cells found within simulated 

granulomas (Figure 2.7). Within our simulations, non-Mtb-specific T cells greatly outnumber 

Mtb-specific T cells (Figure 2.7A). The proportion of Mtb-specific T cells peaks at around day 

40 at about 20% (Figure 2.7A) and declines to about 10% by 200 days post virtual infection. 

 

 
 

Figure 2.7 Varying levels of Mtb-specificity in granuloma T cells to match non-human primate 
(NHP) studies. Panel (A): The proportion of Mtb-specific T cells over the course of virtual 
infection. Panel (B) shows the CFU [shown together with 1,994 NHP granulomas (black 
circles)]. Highlighted in red are simulations where the probability of Mtb-specific T-cell classes 
recruited are allowed to exceed 10% (up to 25%). All other simulations are gray (1%–10%). 
 

Given the low number of Mtb-specific T cells within granulomas, we looked at how these 

simulations matched with NHP Mtb CFU data (Figure 2.7B). Highlighted in red are simulations 

where the probability of Mtb-specific T-cell classes recruited is allowed to exceed 10% (all other 

simulations are gray). Allowing recruitment of a great portion of Mtb-specific T cells results in 
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the majority of granulomas sterilizing by day 100 (226/229 = 0.987). The red simulations (Figure 

2.7B) also overlap with relatively few of the NHP CFU data points. This suggests that low levels 

of Mtb-specific T cells are what likely is present within granuloma, leading to the observed NHP 

Mtb CFU datasets (Figure 2.7B). Any further increases in levels of Mtb-specific T cells within 

granulomas leads to sterilization of 99% of all granulomas, which is not a typical outcome; more 

typically around 50%.60 As a control, we also performed a sensitivity analysis on Mtb-specific T 

cell proportions for each class of T cells represented in GranSim, varying specificity from 1% to 

25% (Figure A.9). The probability of IFN-γ producing T cells being Mtb-specific had the 

greatest effect on T cell activation and Mtb clearance. When T cells were first recruited, they had 

a strong, positive effect on the number and proportion of activated T cells. By day 50, this shifted 

to a negative correlation, due to the small numbers of activated T cells seen at this stage of 

infection. Increasing Mtb-specific IFN-γ producing T cells also increased the clearance of Mtb, 

matching the sterilization observed in Figure 2.7B. 

 

2.4.4 Combining the 3 hypotheses 

We performed a sensitivity analysis, varying parameters for all three hypotheses at the 

same time to search for combined effects, using the previously specified parameter ranges 

(Figure A.11). In general, correlation patterns for these input parameters in combination were 

similar to those seen when simulated separately (Figures A.6 and A.9). One difference we 

observed is that parameters controlling the proportion of Mtb-specific T cells continued to have a 

positive effect on the number and proportion of activated T cell past day 50. Together, these 

results suggest that the proportion of Mtb-specific T cells influences the observed low T-cell 
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responsiveness levels of cytokine production observed in NHPs at a granuloma scale and the 

other hypotheses may help extend these effects over time. 

 

2.5 Discussion 

Over 90% of Mtb infections in humans are well controlled and asymptomatic, known as 

Latent TB infection (LTBI), indicating that the immune response to Mtb, which is characterized 

by granuloma formation, is relatively successful at containing infection. Cynomolgus macaques 

also present with active or latent TB. As the majority of granulomas in both latent and even 

active NHPs eventually sterilize,60 this means that granulomas (on an individual basis) have the 

ability to clear infection. It is surprising that low T-cell activation levels through measuring IFN-

γ and other cytokine responses have been observed within non-human primate granulomas.39 

There are a number of hypotheses as to why low numbers of responsive T cells might be present 

in TB granulomas, including T cell exhaustion, Mtb-mediated downregulation of antigen 

presentation by macrophages, the spatial organization of cells within granulomas and the 

presence of non-Mtb specific T cells. We previously explored exhaustion; however, our results 

indicate that it cannot explain the observed low levels.44 Herein we explored the other three 

hypotheses as to why the numbers of Mtb-specific T cells are low. First, we focused on 

macrophages and their role in this outcome: We asked whether Mtb was down-regulating MHCII 

presentation of Mtb antigens and whether that reduced T cell activation. At the scale of the entire 

granuloma, we did not see significant differences in MHCII presentation of Mtb antigens by 

macrophages, with or without Mtb down-regulating of MHCII presentation (Figure A.5). 

Previous work suggesting that inhibition by Mtb was a key player in reducing MHCII 

presentation were based on studies that spanned time scales of 1-100 h, while granulomas 
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survive for months to years.48,49,64 The dynamics observed on the scale of a few hours may be 

washed out given the extended lifespan of macrophage and Mtb- dynamics with granulomas. 

Further, even if large scale reductions in antigen presentation are occurring, our further studies 

indicate that there are insufficient interactions occurring between T cells and macrophages for 

that to manifest as a key factor. 

Although we did not see a significant decline in MHCII presentation of Mtb antigens on 

the surface of macrophages at any given time, we did observe that only 5-10% of macrophages 

in our simulations were capable of activating T cells. In GranSim, only macrophages that have 

contact with both IFN-γ (via Stat 1) and Mtb or TNF (via NFkB) can present Mtb antigens via 

MHCII. Macrophages must continually receive those stimuli until they surpass an MHCII 

surface level threshold required to activate T cells.71 These activated macrophages were spatially 

located mostly within the center of our simulated granulomas, where they would have access to 

Mtb and Mtb antigens. Since many macrophages did not receive stimuli necessary for MHCII 

Mtb-antigen presentation, it is not surprising that the inhibition of antigen presentation by Mtb 

was minimal at the tissue scale. It is also possible that since our model does not account for the 

effect of chemokines attracting T cells to antigen presenting cells, and Mtb antigens do not 

include secreted antigens, antigen concentration and T cell numbers responsive to infection may 

be underestimated. However, in previous work, we have examined this idea of APCs secreting 

chemokines to attract T cells, and have shown that it leads to tremendous crowding around 

APCs, limiting stimulation.93 

Since direct inhibition of antigen-presentation by Mtb was insufficient to reduce T cell 

responsiveness, we explore the second hypothesis of how granuloma spatial structure may affect 

T cell activation. Our analysis of four HIC images from NHP granulomas suggest that there are 
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limited interactions between T cells and CD11c+ macrophages within granulomas, and further 

analysis with additional granulomas is warranted. Previous studies have also shown that within 

granulomas, T cells are highly motile but restricted by space, with movement occurring mostly at 

the borders of the granuloma.50,51,55 In addition, the typical structure for a granuloma is a 

lymphocytic cuff surrounding macrophages and other cells including bacteria and more 

centralized necrosis.94,95 All activated macrophages within our simulations are located near the 

center of granulomas and most T cells are unable to reach them. In fact, only about 5% of all T 

cells in GranSim interact with macrophages at any given time. Activated T-cell life spans are 

short (on average 3 days), so large numbers are unlikely sustainable. It should be noted that T 

cells can have functions other than cytokine production, and our study used only data on T cell 

production of IFN-γ. Assessing other T cell effector functions, such as other cytokines and 

cytotoxic potential, could result in an increase in numbers of T cells that are responsive to the 

infection. Within this study, low T cell stimulation, taken together with limited T cell access to 

macrophages and an observed increase in T cell activation by increasing T cell density suggest 

that the structural organization of the granuloma seems to impact the T cells in a significant 

manner. However, that does not rule out that other factors are playing a simultaneous role. What 

we have shown is that the spatial effects are necessary condition for this reduction in T cell 

responsiveness; however, it could certainly hold true that these other factors are also playing a 

role in augmenting those dynamics, albeit less significant. Our combined analysis of all three 

hypotheses simultaneously confirmed this. 

Continuing with the idea of limited T cell-macrophage interaction dynamics, we explore 

the issue of recruitment of Mtb-specific T cells into granulomas. Previous studies have shown 

that T cells localize to and are rapidly recruited into mycobacterial granulomas in the absence of 
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antigen recognition.54–56 One study found around 5-20% of CD4+ T cells recognize Mtb-infected 

macrophages by 19- to 22-weeks post infection.88 Comparatively in GranSim, 10%–20% T cells 

are Mtb-specific T cells 7- to 28-weeks post infection, with only Mtb-specific T cells given 

activation capabilities. When these percentages increase in GranSim, T cell activation goes up 

and the vast majority of granulomas are sterilized. Given that such a small percentage of T cells 

can recognize Mtb antigen, along with the limited migration of T cells, these two factors 

combine to make T-cell activation a rarer occurrence than one would expect. As most 

granulomas can sterilize or greatly reduce bacterial numbers, this level of T cell activation may 

generally be effective in conjunction with other help from the immune response. However, if 

specificity and location could be affected in a direct way, the numbers of activated T cells would 

increase and infection would likely be cleared within all granulomas. An appropriate vaccine 

could lead to this outcome. 
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Chapter 3 Assessing Strategies for Improving Detection of Colonization with Vancomycin 

Resistant Enterococcus in Hospitals 

 

3.1 Abstract 

Vancomycin resistant Enterococci (VRE) are a leading cause of nosocomial infections, 

with the major site of transmission being acute and long-term health care facilities. To combat 

VRE’s continued persistence, both the CDC and Society for Healthcare Epidemiology of 

America created recommendations for prevention and control. Due to the asymptomatic nature 

of VRE, these recommendations rely on the use of surveillance with the goal of identifying VRE 

colonized patients prior to spread. It is unknown how well various testing strategies identify 

VRE colonization status under different levels of transmission. We use an agent-based model of 

VRE transmission to simulate VRE spread using 6 years of hospital patient location and 

movement data to better understand the performance of different active surveillance protocols as 

well as the effect of improving compliance with these screening protocols. In these simulations, 

we varied parameters for VRE spread (the transmission rate and the proportion of patients 

colonized on admission) as well as compliance rates for different testing strategies and assessed 

the proportion of VRE positive patient days correctly identified. Cost effectiveness analysis was 

used to identify screening elements that increase the efficiency of identifying VRE cases. We 

identify that the current surveillance protocol that test patients on admission and weekly 

thereafter is consistent with simulations that miss 20-60% (depending on the compliance rate) of 

the patient-days of VRE colonization across the 9 hospital units that undergo active surveillance. 
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Maximizing compliance with the existing protocol improved the efficiency in detecting VRE 

more than increasing the frequency of testing. Improving compliance with existing surveillance 

protocols may be a simple and effective way to improve detection of VRE colonization. 

 

3.2 Introduction 

Vancomycin resistant Enterococcus (VRE), caused by Enterococcus faecium and 

Enterococcus faecalis, is a leading cause of nosocomial infections, with higher morbidity and 

mortality than vancomycin-susceptible Enterococci.96,97 It is a hospital-acquired pathogen, and 

the major reservoirs for transmission are asymptomatically colonized patients in acute and long-

term health care facilities.98,99 The risk of disease from infection has been linked with medical 

co-morbidities such as organ transplantation, intensive chemotherapy, and severity of illness.100–

102 VRE has also evolved resistance to other antibiotics, including daptomycin and linezolid, 

leading to worse patient outcomes.100,101,103,104 Since first identified in 1988, VRE spread rapidly, 

increasing in hospitals in the US between 1989-1993.105 VRE has become endemic in many 

hospitals in the US and in other countries.106,107 Currently VRE comprises >25% of all 

enterococcal bloodstream infections in the US.108,109 The increase in VRE in hospitals is thought 

to be attributed to its continued persistence within hosts, transmission between hosts, and its 

capacity to evolve resistance.110–112 In general, VRE responds poorly to aggressive infection 

prevention measures.113,114 Without effective intervention, hospital endemic VRE continues to 

persist.115,116 

Following the emergence of VRE, regulatory bodies in the US created recommendations 

to improve VRE prevention and control. In November 1994, the CDC’s Healthcare Infection 

Control Practices Advisory Committee (HICPAC) ratified recommendations for prevention and 
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control of vancomycin resistance.106 These recommendations include a variety of interventions to 

reduce doctor-to-patient and patient-to-patient transmission, as well as active surveillance 

through rectal cultures.117–119 The protocol for conducting active surveillance was less clear, with 

a note that, "The frequency and intensity of surveillance should be based on the size of the 

population at risk and the specific hospital unit(s) involved."106 In 2003, the Society for 

Healthcare Epidemiology of America (SHEA) expanded upon these guidelines, emphasizing that 

the asymptomatic nature of VRE lends itself to silent transmission and much of the VRE 

reservoir would be unrecognized without active surveillance cultures.120–124  Due to this, SHEA 

recommended the use of active surveillance with the goal to specifically identify the reservoir of 

VRE for spread.116,125–134 SHEA gave a number of different suggestions on how to perform 

active surveillance, based on the literature available at the time. These recommendations 

included who should be tested (patients at high risk for transmitting or acquiring VRE) and 

when/with what frequency. As for when patients should be screened, SHEA suggested screening 

on admission for patients with high risk for carriage of VRE and weekly for those at risk of 

acquisition.116,126,130,133,135 SHEA encouraged that active surveillance should be used throughout 

the healthcare system but tailored based on prevalence of VRE and risk factors for colonization. 

Protocols for VRE active surveillance in hospitals vary greatly, and in some hospitals is 

not practiced at all. The percentage of hospitals that participate in active screening for VRE in 

the US is unknown, but VRE screening is known to be variable in other countries, such as 

Canada (76%) and Switzerland (44%).136,137 Many types of screening protocols have been 

implemented, drawing upon recommendations from the CDC and SHEA. One of the most 

common screening protocols focuses on specific units deemed high risk for acquisition (such as 

ICU, transplant, or hematology units). Other variations include targeting patients prescribed 
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vancomycin, week or longer stay, previous hospital stay, and other patient characteristics that put 

patient at high risk (such as underlying disease or injection drug use).138,139 Regarding 

timing/frequency of screening, protocols often include a screen +/- 24-48 hours upon admission 

to the hospital or upon transfer to a high-risk unit. Periodic testing is also often carried out for 

patients deemed at high risk of acquisition usually 7-9 days after a previous test or on specific 

testing day of the week, but other variations include every 3-4 days to biweekly.113,140,141 Some 

also screen at discharge from a high-risk unit. 

How well hospitals adhere to their screening protocols is not well characterized in the 

literature. In practice, compliance is not often included in published studies. When it is reported, 

observed rates have varied wildly between 30-90%, but often 60-70% is seen.116,142–147 With 

variable rates of compliance and often little information on its characteristics (low compliance 

for certain timing of tests, certain units, etc.) it becomes difficult to judge the efficacy of any 

complimentary intervention meant to reduce VRE spread (contact precautions, hand hygiene, 

reducing antibiotic use, etc.). Before testing the efficacy of downstream interventions on 

transmission reduction, there is need to understand how well we are detecting cases, as 

undetected cases may mitigate efforts to reduce spread. 

Finding the optimal testing strategy to identify VRE cases has been elusive. Compared to 

the variety of protocols used, few studies have looked at optimal testing strategies. Most of the 

studies that look at active surveillance couple screening with downstream interventions such as 

contact precautions, focusing on the reduction of VRE as an outcome.113,141,145–147 Some studies 

have looked at how many more cases were captured with different testing strategies, but these 

often overlook compliance rate, or assume it is very high (90-100%%).148,149 
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To better understand the performance of different active surveillance protocols and the 

effect of compliance, we use a mathematical model of VRE transmission to simulate spread. The 

model utilizes existing hospital patient location and movement data. Model parameters are varied 

for VRE spread (transmission rate and proportion of patients infected on admission) as well as 

compliance rate for different testing strategies and assessed for the proportion of VRE positive 

patient days correctly identified. We also consider differences in identifying patients colonized 

with VRE prior to admission and those whom acquired it during their stay. We also provide 

estimates from a hospital, and calibrate transmission and compliance based on data from our 

active surveillance program. 

 

3.3 Methods 

3.3.1 Study location 

University of Michigan Healthcare system is an approximately 1000 inpatient bed 

hospital in Ann Arbor, MI. The system serves as a tertiary referral hospital for southeastern 

Michigan. This is a retrospective open cohort investigation of the effect of active screening 

compliance on VRE detection through June 1, 2013 through December 2019. 

 

3.3.2 Screening 

Active surveillance for VRE is conducted in 9 units where patients are deemed at higher 

risk for infection, including intensive care units, the hematology and oncology ward, and the 

bone marrow transplant ward. Patients are screened for VRE on admission to one of these units, 

and weekly afterwards if previous tests were negative. Patients are eligible for an admission test 

in a screening unit (+/- 24 hours within admission to unit) if they have not previously been tested 
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for VRE during their stay or their last test was negative. If an admission swab is negative (or 

missed), patients are eligible for periodic screening each week if their previous test was negative. 

If all tests during stay in screening unit are negative, patients are eligible for a discharge test (+/- 

24 hours within discharge from unit). Detection for VRE was conducted with rectal swab 

samples applied to Bio-Rad VRESelect chromogenic medium. 

 

3.3.3 Patient location and VRE testing data 

Location data for patients was pulled from the electronic health record (EHR) system to 

include all hospital admissions from January 1, 2012 through December 31, 2019. This totaled 

317,792 patients, 602,622 admissions, and 819,699 additional transfers between hospital units. 

Data for rectal swabs testing data positive or negative for Vancomycin resistant 

Enterococcus faecium and faecalis were pulled from the EHR to include all tests conducted from 

June 1, 2013 through December 31, 2019. 88,320 total tests occurred (7,738 positive), 

corresponding to 43,541 patients. Blood clinical isolate testing data positive for Vancomycin 

resistant Enterococcus faecium and faecalis were pulled from the EHR to include all tests 

conducted from June 1, 2013 through December 31, 2019. 517 total tests occurred, 

corresponding to 318 patients. Non-blood clinical isolate testing data for positive for 

Vancomycin resistant Enterococcus faecium and faecalis were pulled from the EHR to include 

all tests conducted from June 1, 2013 through December 31, 2019. 1,830 total tests occurred, 

corresponding to 1,317 patients. 

 

3.3.4 Patient VRE status 
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A patient was considered to have VRE if they had at least 1 positive test (surveillance or 

clinical) during their hospital admission, which included 5,012 patients (with 7,080 admissions). 

A total of 10,085 tests were positive (7,738 surveillance, 318 blood, and 2,029 non-blood 

clinical). A patient was considered to have hospital acquired VRE if they had an initial negative 

swab sample within the first 72 hours of admission to the hospital, followed by a positive sample 

after 72 hours. There were 811 patients (with 830 admissions) who fit this definition. 

 

3.3.5 Hospital variable calculations 

VRE prevalence within the hospital was calculated as the total number of patient-days a 

patient is known to be VRE positive per 1000 patient-days. The proportion of patients positive 

for VRE on initial hospital admission was calculated as the proportion of patients who tested 

positive for VRE that were administered a test within the first 48 hours of admission to the 

hospital. 

Active surveillance compliance rates were calculated based on whether a patient was 

entering a unit (admission screening), was eligible for additional screening during their stay 

(periodic screening), or was leaving a unit (discharge screening). As mentioned previously, 

patients lost eligibility for further screening if their previous test was positive. 

Admission screening compliance was calculated as the number of eligible patients with a 

valid admission test (+/- 1 day from entering a screening unit) divided by the number of all 

patients that were eligible for screening. Periodic screening compliance was calculated as a ratio 

of patient-days in compliance with screening to the patient-days eligible for screening. If a 

patient had an admission test, they were considered compliant for 7 days after admission. If the 

patient did not have an admission test, they were considered compliant for 1 day after admission 
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as a grace period for screening. If the admission compliance time covered the rest of the patient’s 

stay, or the patient tested positive, the patient was considered compliant during the entire unit 

stay. If the admission compliance time did not cover the rest of the patients stay and they tested 

negative, the patient was considered compliant if they had a periodic or discharge screening 

before the previous compliance time elapsed. A patient with a periodic or discharge screen was 

considered compliant for 7 days after administering the test. If there were gaps in time between a 

compliance window from one test and a subsequent test, the time between would be considered 

non-compliant. (For example, administering an admission screening, followed by a periodic test 

9 days later, the patient would have 2 days where they were non-compliant.) Discharge screening 

compliance was calculated as the proportion of eligible patients with valid discharge test (+/- 1 

day from leaving a screening unit) from all patients that were eligible for screening. 

 

3.3.6 Modeling pathogen spread and testing 

To better understand the performance of different active surveillance protocols and the 

effect of compliance, we use a simulation of VRE transmission to simulate spread based existing 

hospital patient location and trajectory data. Briefly, the main model operates on a between-hosts 

scale, tracking patient infection status as patients move through the hospital. In this agent-based 

model, pathogens are considered agents and the presence of patients within hospital units allow 

for patient to patient transmission of VRE. These dynamics are all captured between patients 

based on known patient location trajectories and stochastic interactions of patients within units. 

Inputs to this model are [, the effective transmission rate, \, the recovery rate, ]R, the proportion 

of patients infected with VRE on admission to the hospital, and a file containing patient 

movements and times. 
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Transmission events occur based on a Poisson process, Pois([_`), where [ is the 

effective transmission rate, _ is the number of infected patients within a unit, and ` is the time 

the patient spends within that unit. [_` is the number of new infected patients that we would 

expect to occur over the time period, `, given the number of current infections and infection rate. 

Recovery events occur based on first calculating the number of patients that could recover for a 

given infection duration and the number of patients currently infected at that time step. To model 

recovery events, a Binomial process is used, B(b, 1 − e@Af), where b is the number of patients 

with current VRE infections, \ is the recovery rate, and g is amount of time since recovery was 

previously assessed (at least 6 hours). In this instance, 1 − e@Af is the per-capita probability of 

recovery for an infected patient. The number of patients that recover is then calculated from the 

Binomial distribution, with one draw per infected individual. The resulting number is used to 

choose the number of infected patients, at random without replacement, that will recover at that 

time point. 

The model input for ]R was calculated as the overall hospital average over the middle 

three years, 2015-2017, with a value of 0.06 that’s within the range observed in US academic 

centers.150 Recovery rate, \, was calculated using the catalytic model, \(h) = − lnj1 − k(h)l, 

where k(h) is the proportion of patients who converted from positive to negative since time h. 

\(h) was then averaged over all h, resulting in a value of 0.004 per day, within an order of 

magnitude of values found in the literature.150,151 [ was estimated to be 0.05 per day through 

varying [ from 0.01-0.20 and calibrating based on the overall number of tests conducted per unit 

and the proportion of positive tests observed (Figures B.1-B.2). 

Patient screening was modeled based on movement within screening units. Different 

periodic screening protocols were considered from once daily to every 14 days, as well as 
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including an initial admission screening to a unit. For each regimen, admission and periodic tests 

occurred based on unit specific compliance rates for each, either as the known average of that 

unit, or over a range of 10 to 100%. The result of the test would be decided based on the true 

infection status and the random assignment of false positives (range 0.05-5%), and false 

negatives (range 5-20%).152–155 

 

3.3.7 Sensitivity and cost effectiveness analysis 

To narrow parameters of interest, a partial rank correlation coefficient sensitivity analysis 

was conducted, using the R package sensitivity (v1.27.0). Parameters of interest were varied to 

characterize their uncertainty (Table B.1). The sensitivity analysis then characterizes how much 

relative influence a parameter has on the model output. Cost effectiveness analysis was 

conducted using the R package dampack (v1.0.1). This analysis helps to examine the cost and 

outcome of different interventions. In this analysis, cost was limited to the relative cost to the 

hospital for each screening conducted (1 screening equaling a cost of 1, 2 screening equaling a 

cost of 2, etc.). Interventions included different screening frequencies, different compliance rates, 

and combinations of both. All calculations, plots, and simulation of patient screening was 

conducted in R (v4.1.3). Simulation of pathogen transmission was implemented in Python 

(v3.8.8). Code is available in our GitHub repository. 

 

3.4 Results 

In general, the data from this hospital show that patients who test positive for VRE 

comprise about 1% of our patient population (Table 3.1). About 15% of VRE positive patients 

have an initial negative sample followed by a positive sample at least 72 hours later, meeting our 
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conservative definition of hospital acquired VRE. Overall, the majority of patients who test 

positive for VRE in our hospital visit at least one screening unit during their stay (~80%). Most 

of the VRE cases were detected though active surveillance swabs (~80%). 

 

 All patients All VRE positive Hospital Acquired 
Admissions    
All Hospital 460,703 6,751 1,005 
Visit 1+ Screen Unit 63,036 5,303 996 
Swab Tests    
Positive 7,060 7,060 1,281 
Negative 71,392 2,586 1,990 
Positive Clinical Test    
Blood 528 528 165 
Other 2,303 2,303 273 

Table 3.1 Totals of UM hospital admissions and tests for patients without positive VRE test result. 
Encompasses patients admitted between 2012-2019 at UM over the entire hospital. 
 

During the study period, the overall VRE incidence trended downward (Figure 3.1A). 

This pattern matches a similar trend observed in the proportion of patients positive for VRE on 

admission (Figure 3.1B). However, overall screening compliance also decreased about 20% 

during this time (Figure 3.1C). 
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Figure 3.1 Trends in UM hospital VRE cases and screening compliance 2013-2019. Panel A: 
Levels of VRE observed historically in screening units over time by month. Panel B: The 
proportion of patients tested for VRE during the first 48 hours of hospital stay that are VRE 
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positive. Panel C: VRE screening compliance rates observed in the hospital over time by month. 
Loess smooth shown as black lines for all panels. 
 

Screening compliance rates varied greatly between units and over time. While numbers 

differed between the different types of compliance, temporal trends were fairly consistent 

between them (Figures 3.2, B.3, B.4). Several units saw downward trends in compliance during 

all or the latter half of this observed time period, with several dipping below 50% in periodic 

screening compliance. Periodic, weekly follow-up compliance rates were generally higher than 

admission, while discharge compliance was almost always below 50%. 

 

 

Figure 3.2 Comparison of patient time in compliance with weekly swab tests performed in 
screening units by month. Loess smooth shown as black lines. 
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To estimate the VRE incidence captured through active surveillance we simulated 

pathogen transmission over our known patient’s movement trajectories over ranges of 

transmission rates, screening compliance rates, sensitivity and specificity of the screens, and 

proportion of patients positive for VRE on admission. Screening protocols were then applied to 

this simulated transmission patterns that varied the frequency of periodic testing and the 

inclusion of a unit admission screening. 

We performed a sensitivity analysis on our VRE simulations and identified compliance 

rate and testing frequency had the greatest impact on the percent of positive patient days detected 

(Figure 3.3). This relationship can be seen with the analysis expanded to individual screening 

units in Figure 3.4. Simulating the model and assuming perfect compliance, in most cases no 

more than 20% of positive patient days are missed even with periodic screening spaced out to 

once every two weeks (Figure 3.4). Simulating compliance dropping to 75% indicates that 

testing would be required every 2-5 days to capture the same amount VRE positive patient days, 

and we predict that testing every two days would be required once compliance hits 50%. The 

relationship between screening frequency and other parameters (transmission rate, screening 

compliance rates, and sensitivity and specificity of the screens) on the percent of positive patient 

days missed were generally less pronounced (see Figures B.5-B.13). 
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Figure 3.3 Results of sensitivity analysis. Partial rank correlation coefficients are shown for six 
model parameters inputs with their effects on the percent of VRE positive patient days detected 
as the output variable. 95% bootstrapped confidence intervals shown as error bars. 
 

 

Figure 3.4 Comparison of varying compliance rates and screening frequency on the percent of 
VRE positive patient days missed in all screening units. Black dots indicate the weekly screening 
regime used with current unit compliance rates for comparison. 
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3.4.2 Increasing screening compliance rate maximizes the effect of detecting VRE 

In order to identify an optimal testing strategy, we performed a cost effectiveness 

analysis, where cost was the number of tests conducted in a biweekly period (costs associated 

with the tests were considered to be additive) and effect was the percent of positive patient days 

detected. Both screening frequency and compliance were considered, where lower compliance 

rates would result in reduced cost due to missed screenings. Maximal efficiency in detecting 

VRE was characterized by screening regimes that had 100% compliance (Figure 3.5A). In our 

hospital, where compliance is around 75%, by increasing compliance to 100%, we would be able 

to identify 12 patient-days per 1,000 more than we currently do without making any other 

changes to current screening protocols (Figure 3.5B). 
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Figure 3.5 Testing strategies and hospital metrics of interest. Panel A: Cost effectiveness 
analysis comparing the relative costs related to testing with the percent of VRE positive patient 
days detected. Most incrementally efficient strategies are shown as diamond markers connected 
by a black line. All other strategies are shown as circle markers. Panel B: Incremental reduction 
in missed VRE patient days per 1,000 as compliance increases in screening units. Standard 
deviations shown as error bars. 
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and weekly thereafter with perfect compliance would capture 86% of positive patient days in 

screening units. In UM hospital, this would reduce the proportion of missed positive patient days 

by 43%. In order to capture around 90% of cases, testing would have to increase to every four 

days, almost doubling the weekly rate. In general, these finding agree with the guidelines 

outlined by CDC and SHEA recommending admission and weekly screening for VRE. Our 

finding of identifying percent of VRE positive patient days detected also match a recent 

modeling study estimating the percentage of VRE cases captured through active surveillance 

with this same screening strategy (87%).156 

In general, it has been difficult to tease out the efficacy of VRE interventions, such as 

isolating VRE positive patients, on reducing VRE transmission. The studies that have been 

conducted vary greatly in their efficacy. This may be due in part to low screening compliance 

rates, which are often between 60-70% but rarely reported. Of the studies available, we were 

unable to find any patient isolation intervention studies outside of model simulations where a 

screening compliance rate 90% or above was reported. However, in models where compliance 

was high, a reduction in VRE cases was observed where active surveillance was coupled with 

patient isolation procedures.148,149 Slip ups in active screening have already been reported to 

cause silent outbreaks that can be difficult to contain once in motion.157 Work that incorporates 

surveillance compliance rates is needed to better understand their effect on downstream patient 

isolation interventions. 

In addition to exploring differences in screening compliance, this modeling study had a 

number of strengths. First, instead of simulating patients, we used actual patient location data 

from our hospital over the span of 8 years. This allowed us to use complex trajectories and 

patient-to-patient interactions, including ICU stays greater than two weeks that were not included 
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in previous modeling studies. In this hospital, patients with hospital acquired VRE on average 

were admitted for over a month, highlighting the need to include longer-stay patients to properly 

capture these cases. We also looked at each screening unit separately instead of combining into a 

single unit/entire hospital. For simplicity of execution and interpretation, many modeling studies 

simulate VRE spread within a single hospital ward.148,149,156 By keeping the screening units 

separate, unit-based differences in length of patient stay and compliance highlight various 

magnitudes of change in capturing VRE cases. 

Despite these strengths, our study had several limitations. Our model included a number 

of simplifications, including that the risk of a patient transmitting VRE was the same for all units 

and did not vary with time. Unit based differences can be seen in our calibration for both the 

cardiac surgery ICU as well as the medical ICU (Figures B.1-B.2). These differences likely can 

be attributed to differences in the underlying patient characteristics of these units. The simulation 

also did not vary risk for  acquiring VRE based on other factors Patient, such as the unit they 

occupied or antibiotic use. Future models should consider how these factors vary based on the 

underlying patient populations or individuals at risk. We also focused our analysis on screening 

units instead of the entire hospital, which limits these findings to patients deemed at risk for 

VRE, instead of the hospital as a whole. Finally, our pathogen spread simulations did not 

consider the addition of isolation procedures once a patient was identified to be infected, as the 

effectiveness of these procedures is still a debated topic in the field. It is possible that use of 

downstream patient isolation may have lowered the overall number of VRE cases through 

reduced spread. Since admission plus weekly screening identified more than 90% of community 

acquired VRE cases (Figure B.14), it is possible that if isolation procedures are affective, we 
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could see a substantial reduction in cases and increase in identified cases without having to resort 

to greatly increasing testing frequency.  
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Chapter 4 Risk Factors for Increased COVID-19 Case-Fatality in the United States: A 

County-Level Analysis During the First Wave 

 

This chapter is a published work: 

Millar JA, Dao HDN, Stefopulos M, Estevam CG, Fagan-Garcia K, Taft DH, Park C, Alruwaily 

A, Desai AN, Majumder M. (2021). Risk factors for increased COVID-19 case-fatality in the 

United States: A county-level analysis during the first wave. PLoS One. 16(10):e0258308. 

 

4.1 Abstract 

The ongoing COVID-19 pandemic is causing significant morbidity and mortality across 

the US. In this ecological study, we identified county-level variables associated with the 

COVID-19 case-fatality rate (CFR) using publicly available datasets and a negative binomial 

generalized linear model. Variables associated with decreased CFR included a greater number of 

hospitals per 10,000 people, banning religious gatherings, a higher percentage of people living in 

mobile homes, and a higher percentage of uninsured people. Variables associated with increased 

CFR included a higher percentage of the population over age 65, a higher percentage of Black or 

African Americans, a higher asthma prevalence, and a greater number of hospitals in a county. 

By identifying factors that are associated with COVID-19 CFR in US counties, we hope to help 

officials target public health interventions and healthcare resources to locations that are at 

increased risk of COVID-19 fatalities. 
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4.2 Introduction 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) originated in 

Wuhan, China in November 2019 and has since spread to 210 countries worldwide.158 By the last 

day considered for inclusion in the present work, June 12th, 2020, SARS-CoV-2 had caused over 

2 million Coronavirus Disease 2019 (COVID-19) cases and 114,753 deaths in the United States 

(US).159,160 The excess mortality from COVID-19 is likely to be underestimated, and recent work 

estimates 912,345 deaths from COVID-19 between March 2020 and May 2021, compared to the 

officially reported 578,555 deaths.161 Early work on COVID-19 has highlighted patient 

characteristics that increase an individual’s risk of death,162,163 however it is unclear to which 

individual risk factors are best suited to understanding which populations are most at risk of high 

fatality rates from COVID-19. The distribution of infected cases and fatalities in the US has been 

heterogeneous across counties,164 and identification of sub-populations at risk of increased 

morbidity and mortality remains crucial to effective response efforts by federal, state, and local 

governments.165 Counties where governing officials are aware that their populations are at a 

higher risk of COVID-19 mortality, meaning the population experiences a higher case-fatality 

rate, may opt to tailor state policies or take earlier action to curtail the spread of SARS-CoV-2. 

Additionally, the federal government may opt to target vaccine resources to counties 

experiencing higher COVID-19 mortality rates. 

The case-fatality rate (CFR) is defined as the number of deaths divided by the total 

number of confirmed cases from a given disease.166 When a disease is non-endemic, the CFR 

fluctuates over time. During the beginning of an epidemic, there is often a lag when counting the 

number of deaths compared to cases and hospitalizations, leading to an underestimation of the 

CFR. Furthermore, CFR will fluctuate rapidly early in an epidemic when each additional case or 
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death has an excessive impact on calculating CFR. It is important to not only account for the lag 

between cases and deaths (i.e., lag-adjusted CFR), but also to ensure that the CFR is no longer 

fluctuating. 

In this study, our objective was to use a lag-adjusted CFR to conduct a county-level 

mortality risk factor analysis of demographic, socioeconomic, and health-related variables in the 

US during the first wave of the COVID-19 pandemic (March 28, 2020 to June 12, 2020). This 

will provide critical information on what population characteristics are most informative to 

identify counties at high risk of experiencing high COVID-19 mortality rates. We expand upon 

prior work by considering possible risk factors of an increased CFR from multiple categories 

(e.g., non-pharmaceutical interventions such as shelter-in-place orders,167 prevalence of pre-

existing conditions such as cardiovascular disease,168 and socio-economic circumstances such as 

hospital accessibility169) in a single model. This is also the first paper to focus on this range of 

risk factors during the first wave of the pandemic, so that results from this can be used for 

targeted intervention at the county level at the beginning of a pandemic. 

 

4.3 Methods 

All code for our work can be found on our GitHub repository.170 

 

4.3.1 Study population 

We conducted a cross-sectional ecological study to assess risk factors associated with an 

increased COVID-19 lag-adjusted CFR in US counties. Our study population included 3,004 

counties or county-equivalents with Federal Information Processing Standards (FIPS), a unique 
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code for US federal identification (Figure C.1). Only publicly available aggregate data were 

used; therefore, no IRB approval was required. 

 

4.3.2 County-level variables 

We identified potential risk factors across several different categories: demographic, 

socioeconomic, healthcare accessibility, comorbidity prevalence, and non-pharmaceutical 

interventions. Each category-targeted risk factor relevant to the risk of COVID-19 mortality by 

conducting a comprehensive review of existing literature by March 28, 2020 supplemented with 

variables relevant to other respiratory epidemics.171–173 Table C.1 provides detailed justifications 

for the inclusion of each risk factor. Only variables with publicly available data sources at the 

county- or state-level were included. Table C.2 lists data sources, variable descriptions, and 

manipulations (if applicable). We directly imported and cleaned the datasets using R (v3.6.3). 

We included five demographic variables: total population, population density, the 

percentage of the population over age 65, the percentage of population 17 or younger, and 

race/ethnicity. All demographic variable data were from the 2018 American Community Survey 

5-Year Data from the US Census annual survey, except for race/ethnicity data from the U.S. 

Census Populations with Bridged Race Categories.174 

We included 13 socioeconomic variables, with their data primarily from the 2018 

American Community Survey 5-Year Data.175 In addition to the commonly used socioeconomic 

variables, we included certain variables contributing to the composite Social Vulnerability Index 

(SVI). The SVI was created by the Centers for Disease Control and Prevention (CDC) to 

describe US geographic areas by their social vulnerability and has been validated by multiple 

studies within and outside of the CDC176–181 Social vulnerability is defined as “the characteristics 
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of a person or community that affect their capacity to anticipate, confront, repair, and recover 

from the effects of a disaster.”176 We included individual SVI variables on socioeconomic status, 

household composition and disability, minority status and language, and housing and 

transportation. We preferred to use the individual variables rather than overall SVI or by theme 

because we were most interested in understanding which components of social vulnerability 

contributed to increased CFR. 

We included 5 healthcare-related variables: number of hospitals per capita, number of 

ICU beds per capita, number of primary care physicians per capita, percentage of residents 

without health insurance, and percentage of Medicaid eligible residents. Variable data was from 

the Kaiser Health News,182 the Heart Disease and Stroke Atlas,183 and the 2018 American 

Community Survey 5-Year Data.175 

We included 18 comorbidity variables: diagnosed diabetes prevalence; diagnosed obesity 

prevalence; hypertension hospitalization and death prevalence, cardiovascular disease (CVD), 

chronic obstructive pulmonary disease (COPD), asthma, and cancer; Medicare beneficiaries with 

heart disease percentage, current smokers prevalence, and stroke-related hospitalization and 

mortality prevalence. Variable data was from the US Diabetes Surveillance System,184 the Heart 

Disease and Stroke Atlas,183 the Behavioral Risk Factor Surveillance System,185 and the State 

Cancer Profiles by the National Cancer Institute.186 

Non-pharmaceutical intervention data (including information on closing of public venues 

such as restaurants, gathering size limits, complete lockdown of non-essential activity in the 

county, if religious gatherings were included in gathering size limits, shelter-in-place orders, and 

social distancing mandates) were extracted from the COVID-19-intervention GitHub page, an 

open source data-sharing platform and compiled by Keystone Strategy.187 However, this resource 
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does not cover all counties, thus missing data was supplemented from a variety of governmental 

executive orders and news articles detailed in the supplementary code. Variables with dates were 

transformed to how many days the event occurred after the first case in a county. States where an 

intervention never occurred were given a zero. Since 47% of all counties did not ban religious 

gatherings, data on when religious gatherings were banned in a county was transformed into an 

indicator variable (1 if the ban occurred, 0 if not). 

 

4.3.3 Lag adjusted case-fatality rate (CFR) data and calculation 

To calculate CFR during the first COVID-19 wave in the US, we obtained open access 

county-level COVID-19 data from the New York Times through June 12, 2020, the date the 

CDC released guidance for easing restrictions as states began to reopen.159,188 Only data that 

contained FIPS county codes to identify case and death locations were included. County-level 

data for New York City, NY was accessed from the New York City Department of Health and 

Mental Hygiene.189 To calculate lag-adjusted CFR (laCFR), we used Nishiura et al.’s method, 

expanded upon by Russell et al., to account for the delay between COVID-19 diagnoses and 

deaths.190,191 We updated this approach by using time-from-hospitalization-to-death from the US 

population.191,192 The final dataset included 1,779 counties with 1,968,739 cases and 106,279 

deaths, comprising 96.8% of national cases and 96.8% of national deaths as of June 12, 2020. 

During the first wave of the pandemic, SARS-CoV-2 was non-endemic, leading the case-

fatality rate (CFR) to fluctuate over time. This is due to a lag when counting the number of 

deaths compared to cases and hospitalizations, leading to an underestimation of the CFR. The 

CFR continues to fluctuate rapidly early in an epidemic when each additional case or death has 
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an excessive impact on calculating CFR. It is important to not only account for the lag between 

cases and deaths (i.e., lag-adjusted CFR), but also to ensure that the CFR is no longer fluctuating. 

To do this, we use a method developed by Nishiura et al. and expanded upon by Russell 

et al., where case and death incidence data are used to estimate the number of cases with known 

outcomes, i.e. cases where the resolution, death or recovery, is known to have occurred [33, 

34]:190,191 
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∑ ∑ op@qrp

s
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m
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where om is the daily case incidence at time h, (with time measured in calendar days), rm is the 

proportion of cases with delay h between onset or hospitalization and death; `m represents the 

underestimation of the known outcomes and is used to scale the value of the cumulative number 

of cases in the denominator in the calculation of the laCFR. Russell et al. used the estimated 

distribution in Linton et al., based on data from China up until the end of January 2020. For this 

study, we instead used United States centric data from Lewnard et al., which estimates the 

distribution of time from hospitalization to death based on data from Washington and 

California.192 

Lewnard et al., fits the distribution conditionally on age resulting in a Weibull 

distribution for each age group.192 The overall distribution was obtained empirically by 

weighting the densities at time t across all age groups. Because of this, the overall distribution 

doesn’t have its own shape/scale parameters. However, we were able to estimate what these 

parameters would be by fitting a Weibull distribution that captures the 2.5, 25, 50, 75, and 97.5 

percentiles (1.6, 7.3, 12.7, 19.8, 37.4), as well as the average (14.5). 

Use of the laCFR assumes the measure has stabilized.190 Counties where the laCFR is 

still rapidly changing cannot be used in the study as these are not unbiased estimates of the true 
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CFR. laCFRs were calculated incrementally for each day and assessed whether they changed on 

average less than 1% a week for the last two weeks of available data. The final calculation based 

on all data available was used as the laCFR in our model. 

 

4.3.4 Statistical analysis 

To reduce multicollinearity, we eliminated linear combinations and variables with 

correlations >0.5 using the R package caret (v6.0.86). Remaining variables were screened for 

missingness and missing values were imputed using five imputations in the R package mice 

(v3.8.0).193 Data were randomly split into training (1,186 counties) and testing sets (593 

counties) to assess generalizability (a table of the characteristics can be seen in Table C.3). A 

negative binomial linear model with an offset for the number of COVID19 cases per county was 

chosen based on Kolmogorov-Smirnov and dispersion tests found in the R package DHARMa 

(v0.3.1). Variable selection was conducted using purposeful selection, an iterative process in 

which covariates are removed from the model if they are neither significant nor 

confounders.194,195 With clinical risk factors, purposeful selection outperforms other variable 

selection procedures and tests for the presence of confounders.194 Removing highly correlated 

variables beforehand reduces the chance of multicollinearity between non-significant variables 

that may have been retained in purposeful selection due to confounding effects. Per Bursac et al., 

we used the 0.1 α-level for initial selection using bivariate models and a change of >20% in any 

remaining model coefficients compared with the full multivariate model for confounding 

evaluation.194 All variables in the final model were significant at the 0.05 α-level, and no 

statistical confounders were included in the final model. 
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4.3.5 Model fit 

We observed the fit of the model using a half-normal plot (Fig 4.1A). The simulated 

envelope for the deviance residuals in the half-normal plot serves as a guide of what to expect 

under a well-fitted model, with most of our model’s deviance residuals lying within.196 We 

compared the mean and variance seen within our model predictions to the theoretical mean and 

variance expected in a Poisson and negative binomial model. After grouping the fitted 

predictions into 20 quantiles and calculating their means and variances, we saw the negative 

binomial model captures our data variance well.197 Loess smooth was used for the empirical 

mean (Fig 4.1A). As an additional check, we calculated the ratio of Pearson residuals to degrees 

of freedom, which was 1.04, indicating we accounted for most of the over-dispersion in laCFR 

using the negative binomial model. The Cox and Snell Pseudo R2 for our model was 0.86, which 

accounts for the majority of the variance present in our outcome variable. All variables had a 

variance inflation factor of less than 2, indicating collinearity was not an issue with our variables 

(Table C.4). 
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Figure 4.1 Assessing model fit. Plots showing (A) half-normal residuals and (B) mean-variance 
relationship of the observed county-level COVID-19 laCFRs. 
 

We checked the coverage, which is the probability that our model outcomes are found 

within our prediction interval. To estimate our predictive coverage (empirical coverage), we 

simulated a prediction interval. The coverage was 0.9730 for the training data and 0.9713 for 

testing data (Figure 4.2A). Similar to ROC, a gain curve plot measures how well the model score 

sorts the data compared to the true outcome value.198 When the predictions sort in exactly the 
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same order, the relative Gini coefficient is 1. When the model sorts poorly, the relative Gini 

coefficient is close to zero, or even negative. The relative Gini scores were high for both our 

training set and testing set. (0.9840 and 0.9829, respectively, Figure 4.2B). 

 

 
 

Figure 4.2 Assessing model generality. Plots showing (A) model outcomes found within the 
prediction intervals for training data and testing data for the county-level COVID-19 laCFRs and 
(B) gain curves for training data and testing data for the county-level COVID-19 laCFRs. 
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4.4 Results 

Of the 64 variables collected, 22 were retained for analysis after minimizing correlation 

(Tables C.1-C.4). Multiple imputation was used to correct for missingness (less than 2%) in two 

of the retained variables, neither of which appeared in the final model. Fifteen variables were 

significant in bivariate models in the first step of purposeful selection, and were included in the 

initial multivariate model. Eight variables were significant in the initial multivariate model and 

were retained in the final model. Including variables that were non-significant in the bivariate 

models with these eight variables did not significantly change the performance of the model, as 

determined by the Likelihood Ratio Test. No potential confounders were identified among the 

correlation minimized variables that were previously discarded due to non-significance in the 

models. 

The final model is shown in Table 4.1. The negative binomial model appears to be a good 

fit, capturing the mean-variance relationship observed in the data and displaying expected 

residuals (Figure 4.1A and 4.1B). The model was well-calibrated, with the training and testing 

model having comparable coverage and relative Gini score (Figure 4.2A and 4.2B). Since we 

used a negative binomial model with an offset, the exponentiated coefficients represent the 

change in laCFR observed for a one-unit increase in each continuous variable, assuming all other 

variables in the model are held constant. Four variables were inversely associated with laCFR: 

number of hospitals per 10,000 people (-32% laCFR per additional hospital per 10,000), banning 

religious gatherings during the initial state or county shutdown (-13% laCFR if religious 

gatherings were banned), percentage of housing units that were mobile homes (-0.79% laCFR 

per 1% increase in the proportion of mobile homes), and percentage of population without health 

insurance (-1.5% laCFR per 1% increase in percentage uninsured). Four variables were directly 
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associated with laCFR: percentage over age 65 (+4.5% laCFR per 1% increase in population 

over age 65), percentage Black or African American (BAA) (+0.97% laCFR per 1% increase in 

BAA population), percentage with asthma (+9.5% laCFR per 1% increase in asthma prevalence), 

and number of hospitals (+3.2% laCFR per one additional hospital). Figure 4.3 demonstrates the 

relationship between each variable and the laCFR over a range of values. We have stratified 

these variables further for comparison, and results can be found in Figures C.2-C.8. 

 

Variable Coefficient 95% CI p-value 
Intercept -4.5 (-5.1, -3.9) <0.001 
Percentage population aged 65+ 0.044 (0.030, 0.059) <0.001 
Percentage population Black or African American 0.0097 (0.0063, 0.013) <0.001 
Hospitals per 10,000 persons -0.39 (-0.59, -0.19) <0.001 
Asthma prevalence 0.091 (0.039, 0.14) <0.001 
Total number of hospitals 0.031 (0.0099, 0.054) 0.0017 
Ban on religious gatherings indicator -0.13 (-0.24, -0.030) 0.011 
Percentage housing stock that were mobile homes -0.0079 (-0.015, -0.0011) 0.024 
Percentage population without health insurance -0.015 (-0.029, -0.00021) 0.052 

 

Table 4.1 Parameter estimates for the final multivariate model of laCFR. 
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Figure 4.3 Percentage change in COVID-19 laCFR given a 1 unit increase in the variable for 
each individual variable. Estimate shown as black dots. 95% confidence interval shown in red 
using training data. 
 

4.5 Discussion 

In this ecological study of mortality due to SARS-CoV-2 infection during the first wave 

of COVID-19 in the US, we found that county-level laCFR was significantly associated with 

eight variables. Four variables–banning religious gathering, proportion of mobile homes, 

hospitals per 10,000 persons, and proportion of uninsured individuals in a county–were 

associated with decreased laCFR. Four variables–percentage of population over age 65, total 

number of hospitals per county, prevalence of asthma, and percentage of population BAA–were 

associated with increased laCFR. Each variable provided unique insights into factors that may be 

worth considering for county-level COVID-19 response efforts. 
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4.5.1 Inverse association with case-fatality rate 

Our model indicated a 13% reduction in the average laCFR for counties that banned 

religious gatherings compared to counties that did not. Gatherings often involve dense mixing of 

people in a confined space, sometimes over long periods of time,199 which drives COVID-19 

transmission.200 Interventions targeting increased physical distancing and limiting contact were 

introduced in some countries, including the closure of schools, places of worship, malls, and 

offices.199 Our model suggests that specifically exempting religious gatherings from bans may 

increase the laCFR, consistent with the combination of findings that [1] religious gatherings 

across the globe were linked to COVID-19 superspreader events201 and [2] older Americans 

(who are more likely to attend religious services than younger Americans202) are at increased risk 

of death due to COVID-19. 

The percentage of the population living in mobile homes was also associated with a 

decrease in laCFR. A 1% increase in mobile home living was associated with a 0.79% decrease 

in laCFR. While a small difference at first glance, it becomes more meaningful when considering 

the large variation in mobile home living across counties. Between counties at the 25th percentile 

of percentage living in mobile homes (4%) and 75th percentile (18%), the difference in the 

percentage of mobile home living correlated with an 11% decrease in laCFR. This might 

represent a built-environment effect, given that mobile homes have separate plumbing and 

ventilation unlike apartments and other multi-family residences. Recent work suggests that fecal 

aerosol transmission of SARS-CoV2 can occur.203 Ventilation patterns in apartment complexes 

represent additional opportunities for transmission.204 The benefit of separate units such as 

mobile homes may be especially important to low-income workers who are both more at risk of 
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death from COVID19 due to increased chance of having a co-morbid condition and more likely 

to live in multi-family housing with maintenance issues.205 

The number of hospitals per 10,000 was also inversely associated with laCFR. We found 

that for each additional hospital per 10,000 inhabitants, the laCFR decreased by 32%, despite the 

exclusion of other healthcare-related variables due to non-significance (e.g., ICU bed 

availability). Prior work demonstrated that the percentage of ICU and non-ICU beds occupied by 

COVID-19 patients directly correlated with COVID-19 deaths206 and a county with more 

hospitals per 10,000 inhabitants may be able to cope with more COVID-19 cases before reaching 

the same percentage of hospitals beds occupied as a county with fewer hospitals per 10,000 

inhabitants. Furthermore, because adding beds requires fewer resources than adding hospitals, 

the number of hospitals per 10,000 persons in a county might represent a greater ability to 

expand capacity. As a result, using hospitals per 10,000 may be a better indicator of healthcare 

capacity than the number of ICU beds early on in the pandemic. Because healthcare resources in 

the US correlate with community wealth,207 the rate of hospitals per 10,000 may also reflect 

increased community wealth and the protective effect of higher socio-economic status on health. 

More hospitals per 10,000 persons may also represent increased competition for patients, which 

is associated with decreased mortality from community-acquired pneumonia.208 

Unexpectedly, the percentage uninsured was inversely associated with laCFR. We found 

a 1.5% reduction in laCFR for every 1% increase in uninsured inhabitants. Prior studies found 

longer travel times to COVID-19 testing facilities were directly associated with percentage 

uninsured.209,210 Because uninsured persons may be unable to readily access testing, this finding 

may relate to incomplete reporting, such that only individuals who survive long enough are 
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tested for COVID-19, leading to a potential undercount of deaths attributable to SARS-CoV-2 

infection. 

 

4.5.2 Direct association with case-fatality rate 

In our model, a 1% increase in the population over 65 years old was associated with a 

4.5% increase in average laCFR. This is consistent with recent epidemiological studies 

demonstrating an association between the severity of COVID-19 infection and age. According to 

provisional death data from the National Center of Health Statistics, people aged 65 and older 

have a 90- to 630-fold higher risk of mortality due to COVID-19 than 18-29-year olds.211 

Also, directly associated with laCFR was the total number of hospitals per county, with 

an observed increase of 3.2% in average laCFR per additional hospital. This variable was 

strongly correlated with total population (r = 0.92). Given that the number of hospitals per 

10,000 was associated with decreased laCFR, this correlation suggests that total hospitals might 

be a proxy indicator for total population. Previous work assessed population density as a risk 

factor for increased laCFR, but not total population [43]. Since our analysis focused on the first 

wave of COVID-19, this variable could reflect overwhelmed healthcare systems in highly 

populated counties where most of the COVID-19 cases initially occurred.212 

Asthma prevalence was also directly associated with laCFR. A 1% increase in asthma 

prevalence was associated with a 9.5% increase in laCFR. Evidence regarding asthma as a risk 

factor in COVID-19 is mixed. Although the US CDC has determined that patients with moderate 

to severe asthma belong to a high-risk group,213 the Chinese CDC indicated that asthma was not 

a risk factor for severe COVID-19.214 One study showed that COVID-19 patients with asthma 

were of older age and had an increased prevalence of multiple comorbidities compared to those 
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without asthma,215 but that the presence of asthma alone was not a risk factor for increased 

mortality.215 Thus, despite our findings, it is unclear whether asthma has a direct impact on 

COVID-19 disease or if other factors may be associated with both asthma and COVID-19. One 

such potential confounder is exposure to air pollution, as air pollution is associated with both 

asthma and risk of death from COVID-19.216 

Finally, laCFR was directly associated with the percentage of the population identifying 

as BAA in a county. Our model showed that a 1% increase in BAA was associated with a 0.97% 

increase in the laCFR. This likely reflects the effects of structural racism in the US, where BAAs 

have fewer economic and educational opportunities than White Americans and as a result are 

exposed to increased risk of morbidity and mortality from COVID-19.217 Dalsania et al. also 

found that the social determinants of health contributed to an unequal impact of the COVID-19 

pandemic for BAA at the county level.218 A study by Golestaneh showed that US counties with 

BAA as the majority had three times the rate of infection and almost six times the rate of death 

as majority White counties.219 Factors underlying this trend include years of structural racism 

resulting in a lack of financial resources, increased reliance on public transportation, housing 

instability, and dependence on low-paying retail jobs.220 Our approach considered several other 

variables that might explain the effect but were either non-significant (e.g., household crowding, 

percentage of households without a vehicle, and county land area) or were correlated with 

percentage BAA (e.g. percentage single parent households and percentage living in poverty), 

further emphasizing the role of systemic racism in COVID-19 laCFR. 

 

4.5.3 Excluded predictor variables 
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In reducing multicollinearity and using purposeful selection, several variables were 

surprisingly excluded. One of these excluded variables was population density, although higher 

population density had been hypothesized to increase contact rate and non-adherence with 

physical distancing.200 Diabetes and cardiovascular disease were excluded, despite multiple 

studies reporting these conditions as risk factors for COVID-19 mortality.221,222 While these 

factors are important at an individual level to assess the mortality risk, our model suggests that 

other variables may be more informative at the county-level, underscoring the value of 

ecological studies. 

 

4.5.4 Study strengths and limitations 

This study had several strengths besides the benefits of an ecological design when 

considering population interventions. First, the data were nationally representative, including 

over 50% of all US counties. Our model captured the variability in the data and accounted for the 

observed data distribution. The model also captured almost all outcomes within the prediction 

interval for both training and testing data sets, with similar accuracy between them, which 

indicates that our model is generalizable within the US. Additionally, our model based laCFR 

calculations on the distribution of times from hospitalization to death from US data,192 which 

differed from earlier Chinese data.214 Using US-based distribution of times likely improved our 

laCFR estimation for this study. The final model included several variables previously attributed 

to higher laCFR (such as older age)211 and included a variable unique to the pandemic shutdown, 

i.e., banning religious gatherings, giving more nuanced insights into heterogeneous COVID-19 

mortality rates across counties. 
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Despite these strengths, our study had several limitations. First, under-reporting of cases 

might affect the accuracy of CFR calculation.223 The reported cases and deaths we used likely 

underestimated the true COVID-19 parameters. This underestimation was more among the 

asymptomatic and mild cases due to limited testing capacity and changes in testing practice; 

hence, the laCFR might have appeared inflated. Second, the type and timing of the tests used 

may have impacted the measured laCFR. Samples collected early during the infection can yield 

higher false negatives with RT-PCR tests.224 False negatives in critically-ill patients who later die 

could decrease the measured laCFR unless probable COVID-19 deaths are reported, while false 

negatives in mild cases who are not retested later could increase the measured laCFR as 

survivable cases go undetected. These are challenges for any CFR study and highlight the 

ongoing need for improved COVID-19 testing. Third, COVID-19 reporting practices vary 

widely by state. For example, Florida was found to report fewer COVID-19 deaths in the official 

tally than the Medical Examiners Commission.225 In addition to deliberate underreporting of 

deaths, states also vary in reporting of probable cases and deaths.226 Without national standards 

in the COVID-19 response, comparing case counts and deaths across state line–let alone county–

is deterred by lack of clarity about how these data differ.226 

Beyond these, our study was also limited by the fact that relevant data were frequently 

unavailable, including data on non-pharmaceutical interventions (NPI) and comorbidities. To 

limit missingness in the NPI data, we used state-level data when available given that counties 

also enforce state-level orders. However, there may be heterogeneity between county- and state-

level information making this a less effective approach. Other variables of interest were not 

available at the state- or county-level, including information on contact tracing efforts and 

community compliance with public health mandates. Funding to collect public health 
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information on more variables at a granular level would improve the information available to 

guide decision-making during emergencies. Another limitation was the highly correlated nature 

of the 64 variables considered for inclusion. Multicollinearity greatly affects the interpretability 

of coefficients and is rarely accounted for in epidemiologic studies.227 Highly correlated 

variables in a model are unstable and can bias standard errors, leading to unreliable p-values and 

unrealistic interpretations.227 Because we ensured our model interpretability by excluding highly 

correlated variables, not all of our collected 64 variables were screened for inclusion in the final 

model. 

Finally, our study period ended in mid-June. Recent work has divided the COVID-19 

pandemic in the USA into three waves, with the first wave running from late March 2020 until 

mid-June 2020.228 The exact day of June 12, 2020 was chosen because [1] enough cases had 

occurred in the US to obtain reliable estimates of laCFR by county and [2] it preceded CDC 

reopening guidance and a shift in reporting to the HHS Protect system, which is less readily 

available to the public than the prior CDC reporting system.229 The decision by the government 

to switch to the HHS Protect system hinders the ability of academic scientists to aid in the 

response to the on-going pandemic.229 Making these data more readily available to the public 

would permit inclusion of additional data for future research. 

 

4.6 Conclusion 

This study highlights several variables that were associated with county-level laCFR 

during the first wave of COVID-19 in the US. Though further research is needed to examine the 

effects of additional NPIs, our work provides insights that may aid in targeting response and 

vaccination efforts for improved outcomes in subsequent waves.
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Chapter 5 Discussion 

 

Over the course of my time as a doctoral student, I have been reflecting on my training 

and growth as a scientist. Over time, my previous experiences gained earning degrees in biology, 

epidemiology, statistics, and bioinformatics have converged into my identity as a data scientist. 

This has been solidified by the training process I have been privy to the structure of our doctoral 

bioinformatics program at University of Michigan. Instead of focusing on specific problems, the 

program allowed us to be broad thinkers, focusing on identifying methodologies appropriate to 

different problems. This idea was exemplified in our Preliminary Exam process to become a 

doctoral candidate. Instead of presenting on what we would work on during our dissertation, we 

needed to defend an idea for a scientific study that was different from what our lab worked on. 

The point was to test if we could address a problem by using the appropriate methodology and be 

able to defend it to established scientists in the field, without relying on practices already 

established in our lab. This preparation allowed for an easier transition into working on a number 

of very different studies for my doctoral work. These different projects highlighted different 

problems, different scales, and different constraints that added to my breath of training and 

flexibility working in different environments. 

In chapter 2, where I studied T cell activation in tuberculosis infection, I took advantage 

of a computational model of the immune system established in the lab for over a decade. Instead 

of starting from scratch, I started with a model with many moving parts, thousands of lines of 

code, that is actively worked on by others in the lab. The problem itself was incredibly 
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interesting, but working in this group environment proved to be an even more invaluable 

experience. Learning to work with an established computational model, contributing new 

features to the model, and using the collaborative knowledge in the lab to solve a problem helped 

me to become a more collaborative scientist. I worked within the constraints of an established 

system, but with the flexibility to change and improve. All the moving parts made the approach a 

little trickier, but the results were better for all the combined knowledge. This experience also 

allowed me the opportunity to contribute my statistical training to improve upon the analysis. 

While it wasn't the main focus of my project, I was happy to contribute statistical theory and 

improve some processes so that all people working on the project could benefit. This resulted in 

a number of other publications within the lab that I participated in.  

In chapter 3, hospital VRE screening compliance, this project came from an idea I had 

while working with a large electronic health records dataset for a different project. While 

attempting to model the transmission rate of VRE within our hospital, it occurred to me our 

estimates were only as good as the data we have available and I wondered how compliant our 

hospital was with screening. These musings led to questions such as: how does screening 

compliance affect the models our lab was trying to build, and in turn, how much would it affect 

other aspects within the hospital surveillance programs, such as downstream isolation precaution 

effectiveness. Eventually these concepts began to coalesce over the next few years. Turning to 

the literature, I quickly found that very few publications mentioned the subject of compliance in 

VRE screening and it had never been explored in any great detail.  

Once questions were pinned down, the methodology became a collaborative process, 

coming from both my advisor's extensive domain knowledge on the subject and my own training 

in statistics. The project became a balancing act of the sweet spot of how much data to show and 
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what information will be most useful in which context to which audience. Not knowing the main 

goal of the project from the beginning and having to discern the metrics of success while figuring 

out the goal made this one of the most challenging projects, but incredibly rewarding to see my 

findings help fill a hole in the literature, starting from a vague musing of data we had years 

earlier. 

In chapter 4, where I investigated risk factors for COVID case fatality rate, I joined an 

project where the question was established, but where the methods were not. I first joined as a 

volunteer statistician. There were some ideas of methods, but the goals seemed to be muddled 

and the methods did not make sense for the type of data available. A few months in, I pulled the 

team back and created a presentation to walk through and define our aims, what could be done 

given the available data and what we hoped to contribute to the field. I found myself at the edge 

of my knowledge base and fell back on my statistical foundation to give me enough to go in the 

right direction and learn. I spent weeks researching methods, creating our workflow, correcting 

mistakes, and walking through interpretations. From that point on, I helped lead the group of 

volunteers in the design and execution of the project. I realized for the first time that I was 

leading a diverse group of graduate students and postdocs in research. At that moment, I knew I 

had what it takes to be a scholar and help create and shape our field, and that I could lead a team 

and strengthen our workforce.  

 

5.1 Future directions of projects 

 Each of the projects contained in this dissertation not only advanced the field and my 

education, but they also created open directions for future work. In the Mtb project I explored T 

cell activation at the site of infection, and found recruitment of non-specific T cells and 
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granuloma spatial characteristics contributed to crowding out of the few Mtb specific T cells 

within the granuloma cell, reducing the chances they could interact with and be activated by 

infected macrophages. It might be hard to experimentally affect spatial characteristics of the 

granuloma to allow easier migration of T cells toward macrophages where they can be activated. 

However, it might be possible to increase the amount of Mtb-specific T cells that are recruited. 

There is also the question of the level of Mtb-specific T cells that would be needed to clear an 

infection. A recent study suggested non-specific T cells are required to keep the immune 

response going past the initial infection with Mtb.230 A next step we could take would be to 

conduct more simulations of Mtb infections with higher levels of antigen specific T cells to find 

the level needed for Mtb clearance. 

 In the VRE project, I explored ways to improve detection of patients colonized with VRE 

within a hospital. My analysis revealed that increasing the compliance rate of screening under 

any current active surveillance strategy maximized the efficacy of identifying VRE cases. An 

ongoing question in the field is whether isolating patients reduces the spread of VRE.231,232 Since 

few studies report the screening compliance of their hospitals and those that do are generally 

around 60-70%, it's difficult to address whether isolations procedures are effective.116,142,144,146 If 

VRE cases are being missed in screening, it's likely these cases continue to contribute to hospital 

spread, undermining downstream interventions, and obscuring evidence for their efficacy. In the 

future our work should expand to include the role of compliance and downstream isolation 

procedures and investigate whether these have an effect on optimal strategies. 

In the COVID project, we were interested in identifying risk factors for dying from 

COVID if infected, is the case fatality rates (CFR). My study agreed with previous findings, 

including relationships between asthma prevalence and CFR, but also contributed new findings 
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on risk factors, including reduced CFR with bans on religious gatherings. An important 

limitation of this study was that it only focused on the first wave of COVID in the United States. 

Future work to investigate whether these risk factors change, or stay the same as the US entered 

successive waves and COVID became more endemic. It would also be interesting to see how 

newer interventions and different sub lineages of COVID changed these risk factors and how 

quickly these shifts occurred. 

 

5.2 Personal impressions 

There were a number of impressions I was left with from the role as a data scientist on 

the projects in my dissertation and others in which I had supportive role.  

1) The process is rarely linear. In chapter 1, the overarching approach for the data 

analysis was laid out. But projects rarely follow this approach step by step. In reality, I often ran 

into issues at various steps, used research methods, tried new things, and circled back. This 

process often generated new ideas, which were addressed within the current project or made 

clear for future endeavors.  

2) Data analysis is often a compromise if you have no say in the data collection. There is 

a saying from the statistician Sir Ronald Fisher that goes along these lines: asking a statistician 

after the fact is like asking a mortician what could have been done.233 Unfortunately, many times 

data scientists don't have a say in the creation of the data, as it has already been collected. In 

other cases, resources, methodology constraints, or even ethical reasons may limit data 

collection. In all these cases, you do your best to meet the needs of the project with the data you 

get. But, in doing so the assumptions incorporated into the work need to be clearly 

communicated. The data scientist may not be able to measure exactly what was asked (e.g. a 
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proxy), precision may be sacrificed, or you may only look at an aggregate level, among many 

other compromises that can arise.  

3) Data quality checks are a must. As data streams expand, it becomes impossible to 

observe every single data point. Working out data assumptions and testing them becomes one of 

the most important steps in data processing, which is rarely covered in analysis classes.  

4) It's important to know the boundaries of your understanding. New projects often 

expand into areas we have not worked in before. This can mean a new type of data, or odd quirks 

or assumptions that needs to be addressed in the data. Our training gives us a foundation to work 

from and expand upon. It is crucial to understanding that you have the ability to learn and to 

expand upon your knowledge, though it may take time. Knowing when the required domain 

knowledge is beyond your current abilities or if the time frame needed to develop sufficient skill 

is unfeasible for the project will help you know whether to decline a project or to reach out for 

help from a collaborator. 

 

5.3 Future of the field 

Looking ahead as bioinformatics and data science in general evolves, there are a number 

of things we need to be aware of. One is new types of data and analyses are being released all the 

time. The avalanche of data types has continued in the past few decades.234 Along with this 

growth comes new, more complex methodologies to handle the data. Many people jump on a 

new methodology bandwagon without fully digging into the methods and assumptions that it was 

built upon. It is paramount to be cautious when applying a new methodology, especially one that 

is still under development, as all the kinks are rarely worked out completely in the first paper.  
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Another area that is often overlooked, is the amount of support needed for secondary 

analysis of data, especially using government datasets. Much of the public health field is working 

with secondary data that were acquired using complex sampling methodologies. Many of the 

new analysis methodologies being released have not been adapted to accommodate the 

assumptions of these datasets. An example of this can be seen in using various machine learning 

methods that sample from the data indiscriminately without considering the complex covariance 

structure generated by the sampling.235 More training needs to be provided to data scientist on 

what can and cannot currently be done with this data, because these errors are propagated 

through studies conducted by both early and established career scientists.236–238 

This leads me to one of the biggest challenges I see. In general, many students that 

become scientists are given the bare minimum of statistical training that inevitably lead to 

inappropriate statistical analysis and conclusions.239–242 This can be especially problematic in the 

data science field, which is filled with boot camps that try to get you up to speed by attempting to 

teach foundational knowledge in just a few weeks. The literature is littered with studies that use 

methodology incorrectly,243–250 which include peer reviewed papers. This has only increased by 

offering user friendly analysis packages, creating a black box of the methodologies, and users 

often using only default settings. More care needs to be put into explaining the issues, 

assumptions, and correct scenarios to use analysis methodologies. Understanding how to 

interpret statistics and judge their appropriateness needs to be taught more widely. We can start 

by including non-perfect data scenarios into training and teach how to work through those 

problems as this is almost always skipped over.  

If we're not careful, all of these advances will produce a plethora of studies, but the signal 

of what is good and useful will be lost in the noise. 
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Appendix A Supporting Information for Chapter 2   

 

 

 

Figure A.1 Comparison of proportion of activated T cells in GranSim simulations with MHCII 
presentation ODEs and without. Median is shown in black, with simulation runs shown in gray. 
NHP data is overlaid for each output.39 
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Figure A.2 Chosen runs of GranSim simulations (red) to best representation of the median 
values for outputs of interest (blue). GranSim runs that were not chosen are shown in black. 
Percentage of runs chosen is shown at the top of each column. For each 4 outputs, each of the red 
dots fit within a +/- 50% window of the median blue line and are chosen as good representations 
of all runs. 
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Figure A.3 Comparison of GranSim simulations with MHCII presentation ODEs and without. 
Median is shown in black, with simulation runs shown in gray. NHP data is overlaid for each 
output.86 
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Figure A.4 Results of a cellular level intercompartment sensitivity analysis. Here we fixed 
GranSim parameters and varied parameters within the intracellular scale model with a readout in 
the GranSim tissue scale model. Partial rank correlation coefficients (see Methods) for four time 
points are shown for six model parameters inputs with their effects on numbers of Mtb-peptide-
MHCII complexes on the surface of macrophages as the output variable. 
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Figure A.5 Proportion of activated T cells in simulated granulomas in GranSim run with MHC II 
dynamics. These compare inhibition of peptide loading through MHCII downregulation and the 
negative control of no inhibition over the 28 weeks course of infection. 
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Figure A.6 Results of a tissue scale intracompartment sensitivity analysis. Here we fixed 
GranSim and MHCII sub model parameters and varied downregulation linking parameters with a 
readout in the GranSim tissue scale model. Partial rank correlation coefficients (see Methods) for 
entire virtual infection are shown for the four downregulation process inputs with their effects on 
numbers of T cells, macrophages, and Mtb as the output variables. Only significant correlations 
shown (p<0.05). 
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Figure A.7 Proportion of T cells that interacted with at least one macrophage. Median is shown 
in black, with simulation runs shown in gray. GranSim run with MHC II dynamics, no inhibition 
of antigen presentation, and all other GranSim parameters set to default. 
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Figure A.8 Comparison of proportion of activated T cells in GranSim simulations with MHCII 
presentation ODEs, varying the maximum number of T cells that can fit within one grid 
compartment. Median is shown in black, with simulation runs shown in gray. NHP data is 
overlaid for each output (Gideon et al., 2015).39 
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Figure A.9 Results of an intracompartment sensitivity analysis. Here we fixed the MHCII sub 
model parameters and varied GranSim parameters for probability for T cell Mtb-specificity and 
separately ran and varied T cell density, with a readout in the GranSim tissue scale model. Partial 
rank correlation coefficients (see Methods) for entire virtual infection are shown for the four 
parameter inputs with their effects on numbers of T cells, macrophages, and Mtb as the output 
variables. Only significant correlations shown (p<0.05). 
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Figure A.10 Comparison of Mtb clearance in GranSim simulations with MHCII presentation 
ODEs, varying the maximum number of T cells that can fit within one grid compartment. 
Median is shown in black, with simulation runs shown in gray. NHP data is overlaid for each 
output.39 
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Figure A.11 Results of an intercompartment sensitivity analysis. Here we varied both 
simultaneously the GranSim parameters and the downregulation linking parameters with a 
readout in the GranSim tissue scale model. Partial rank correlation coefficients (see Methods) for 
entire virtual infection are shown for the eight parameter inputs with their effects on numbers of 
T cells, macrophages, and Mtb as the output variables. Only significant correlations shown 
(p<0.05). 
 

Probability Mtb−Specific
IFN−g Producing T cells

Probability Mtb−Specific
Cytotoxic T cells

Probability Mtb−Specific
Regulatory T cells

Max T cells
 per Compartment

Down Regulation
Antigen Processing

Down Regulation
MHCII Maturation

Down Regulation
MHCII Peptide Loading

Down Regulation
MHCII Transcription

Activated
T cells

All T cells
M

acs
M

tb C
FU

Proportion

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

−0.50
−0.25

0.00
0.25
0.50
0.75

0.0

0.5

−0.8
−0.4

0.0
0.4
0.8

−0.6
−0.3

0.0
0.3
0.6

−0.4
0.0
0.4
0.8

Days post infection

C
or

re
la

tio
n

IFN−g Producing T cells Cytotoxic T cells Regulatory T cells

All Macrophages MHC II Pres. Macs Mtb CFU



 107 

Table A.1 Differential equations describing molecular scale MHCII dynamics 
Equation description Equation 
IFN-γ Receptor Ligand Binding  
Change in number of free IFN-γ receptors !"

!#
= −&'()*+,)-. ∙ 0 + &'22)*+,)-3 + &456763  

Change in number of IFN-γ receptor ligand complexes !8
!#
= &'()*+,)-. ∙ 0 − &'22)*+,)-3 − &456763  

MHC Class II Transcription  
Change in levels of CIITA mRNA !9:

!#
= &;<(= >1 + @

8
"ABA

C − &D5E)FG,H=I=  

Change in levels of CIITA protein !J
!#
= &;KL=I= − &D5E)MN  

Change in levels of MHCII mRNA !9O
!#
= &;<(PN − &D5E)FG,HPIP  

Mtb Antigens/Peptides and Self-Peptides  
Change in molar concentration of Mtb antigens in endosomal 
compartments 

!Q
!#
= >&RS('

=
TUVVW

C X∗ − &D5E)HX − &L7KX  

Change in molar concentration of Mtb antigen-derived 
peptides in endosomal compartments 

!Z
!#
= &D5E)HX + (&'22)\]^_` − &'()\]^_ ∙ a) ∙ =

cdTUVVW
− &L7Ka  

Change in molar concentration of self-peptides in endosomal 
compartments 

!e
!#
= &K'f465 + g&D5E)\]^(_h +_h

∗) − &'()\]^_ ∙ i +

&'22)\]^_hj >
=

cdTUVVW
C − &L7Ki  

MHCII Translation & Peptide-MHCII Binding  

Change in number of free MHCII proteins in endosomal 
compartments 

!k
!#
= &;K=P + >1 + l

8
"ABA

C I − &'()\]^_ ∙ i + &'22)\]^_h −

&'()\]^_ ∙ a + &'22)\]^_` − &'f;_ + &S(_∗ − &D5E)\]^_  
Change in number of free MHCII proteins on cell surface !k∗

!#
= &'f;_ − &S(_∗ − &D5E)\]^_  

Change in number of MHCII self-peptide complexes in 
endosomal compartments 

!km
!#

= &'()\]^_ ∙ i − &'22)\]^_h − &'f;_h + &S(_h
∗ −

&D5E)\]^_h  
Change in number of surface MHCII self-peptide complexes !km∗

!#
= &'f;_h − &S(_h

∗ − &D5E)\]^_h
∗  

Change in number of MHCII Mtb-peptide complexes in 
endosomal compartments 

!kn
!#

= &'()\]^_ ∙ N − &'22)\]^_` − &'f;_` + &S(_`
∗ −

&D5E)\]^_`  
Change in number of surface MHCII Mtb-peptide complexes !kn∗

!#
= &'f;_` − &S(_`

∗ − &D5E)\]^_`
∗  
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Table A.2 Molecular scale MHCII dynamics parameters. (Estimated from Chang et al., 200564) 
Parameter Parameter description Value (LHS Ranges) 
&'()*+,)-  Association rate constant of IFN-γ receptor-ligand complex 1.2 × 10s s⁄ ,   (5.0 × 10w, 1.3 × 10s) 
&'22)*+,)-  Dissociation rate constant of IFN-γ receptor-ligand complex 9.8 × 10)| s⁄ ,  (2.0 × 10)|, 1.0 × 10)P) 
&45676  Rate constant for receptor internalization and recycling 2.5 × 10)} s⁄ ,  (1.4 × 10)�, 6.0 × 10)}) 
@  Scaling factor for CIITA transcription 4.5 × 10=,   (1.0 × 10=, 5.0 × 10=) 
&D5E)FG,H=  Rate constant for degradation of CIITA mRNA 2.1 × 10)� s⁄ ,  (7.0 × 10)s, 7.0 × 10)�) 
&D5E)M  Rate constant for degradation of CIITA protein 5.5 × 10)} s⁄ ,  (2.0 × 10)�, 8.0 × 10)}) 
&D5E)FG,HP  Rate constant for degradation of MHCII mRNA 1.7 × 10)� s⁄ ,  (2.0 × 10)w, 1.8 × 10)�) 

&RS('  Average rate of pinocytic uptake per cell 6.1 × 10)=sL s⁄ ,  (1.4 × 10)=s, 6.0 ×
10)=w) 

&D5E)H  Rate constant for antigen processing 1.6 × 10)| s⁄ ,  (6.4 × 10)�, 2.4 × 10)|) 
&L7K  Rate constant for antigen degradation 1.3 × 10)| s⁄ ,  (3.0 × 10)�, 3.0 × 10)|) 
&'()\]^  Association rate constant of peptide-MHC complexes 1.1 × 10P M ∙ s⁄ ,  (5.6 × 10Ñ, 5.6 × 10|) 
&'22)\]^  Dissociation rate constant of peptide-MHC complexes 1.3 × 10)P s⁄ ,  (8.0 × 10)}, 4.0 × 10)P) 
&D5E)\]^  Rate constant for degradation of peptide-MHC complexes 9.3 × 10)w s⁄ ,  (5.0 × 10)w, 1.3 × 10)�) 
l  Scaling factor for MHCII translation 4.2 × 10Ñ,   (4.0 × 10Ñ, 8.0 × 10Ñ) 

&'f;  
Rate constant of MHCII protein transport from endosomes to 
the plasma membrane 4.0 × 10)} s⁄ ,  (6.0 × 10)�, 3.0 × 10)|) 

&K'f465  Rate of self-peptide synthesis &L7K ∙ iÑ  
&;<(=  Rate constant for CIITA transcription &D5E)FG,H= ∙ I=,Ñ  

&;KL=  Rate constant for CIITA translation &D5E)M ∙
JÖ
9:,Ö

  

&;<(P  Rate constant for MHCII transcription &D5E)FG,HP ∙
9O,Ö
JÖ

  

&;K=P  Rate constant representing MHCII translation &D5E)\]^ ∙ Ü
kÖákÖ

∗ákm,Öákm,Ö
∗

9O,Ö
à  

&S(  Rate constant of MHCII protein internalization from the plasma 
membrane 

âäã
=)âäã

&'f; − &D5E)\]^  

å\**^  Total volume of the MHCII-accessible endosomal 
compartments 4.0 × 10)=wL  

0;';  IFN-γ receptors per cell 1.0 × 10}  
çS(  Fraction of all MHCII that are intracellular 3.3 × 10)=  
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çé'f(D  Fraction of all MHCII that are bound to self-peptide 8.0 × 10)=  
_;';  Total number of MHCII proteins on and in a macrophage 2.0 × 10�  
èQ  Avogadro’s number 6.02 × 10P|  
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Table A.3 Molecular scale MHCII dynamics variable initial conditions. (Estimated from Chang et al., 200564) 
Variable Variable description Value 
0Ñ  Number of free IFN- γ receptors 0;';  
3Ñ  Number of IFN- γ receptor ligand complexes 0 
I=,Ñ  Levels of CIITA mRNA 1 
NÑ  Levels of CIITA protein 1 
IP,Ñ  Number of MHCII mRNA 1 
XÑ  Molar conc. of Mtb antigens in endosomal compartments 0 
aÑ  Molar conc. of Mtb peptides in endosomal compartments 0 

iÑ  Molar conc. of self-peptides in endosomal compartments êëíìîUïW∙ñkm,Öákm,Ö
∗ óáêBòòîUïW∙km,Ö

êBãîUïW∙kÖ
  

_Ñ  Number of MHCII proteins in endosomal compartments çS( ∙ (1 − çé'f(D) ∙ _;';  
_Ñ
∗  Number of MHCII proteins on cell surface 

=)âäã
âäã

∙ _Ñ  

_h,Ñ  Number of MHCII self-peptide complexes in endosomal compartments 
âôBöãë
=)âôBöãë

∙ _Ñ  

_h,Ñ
∗   Number of MHCII self-peptide complexes on cell surface 

=)âäã
âäã

∙ _h,Ñ  
_`,Ñ  Number of MHCII Mtb-peptide complexes in endosomal compartments 0 
_`,Ñ
∗   Number of MHCII Mtb-peptide complexes on cell surface 0 

 
 
  



 111 

Table A.4 Molecular scale MHCII dynamics scaling factors used to represent Mtb down regulation of MHCII processes 
Parameter Parameter description Value 

õD5E)H  Maximum rate of Mtb down regulation of antigen processing (&D5E)H) achieved by the 
system, at saturating Mtb concentration 0.25 − 1.00  

õ;K=P  Maximum rate of Mtb down regulation of MHCII maturation (&;K=P) achieved by the system, 
at saturating Mtb concentration 0.25 − 1.00  

õ'()\]^  Maximum rate of Mtb down regulation of MHCII peptide loading (&'()\]^) achieved by 
the system, at saturating bacterial concentration 0.25 − 1.00  

õ;<(=  Maximum rate of Mtb down regulation of MHCII transcription (&;<(=) achieved by the 
system, at saturating Mtb concentration 0.25 − 1.00  

õúùL2  Number of intracellular Mtb at which the reaction rate is half of Mtb down regulation 5  
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Table A.5 Mtb down regulation of MHCII processes equations 
Equation description Equation 

Mtb down regulation of antigen processing mtbDownRegD5E)H = 1 −
!ëíìî®∙(#.\;é	S(	\ù6)

!´¨≠òá(#.\;é	S(	\ù6)
  

Mtb down regulation of MHCII maturation mtbDownReg;K=P = 1 − !AÆ:O∙(#.\;é	S(	\ù6)
!´¨≠òá(#.\;é	S(	\ù6)

  

Mtb down regulation of MHCII peptide loading mtbDownReg'()\]^ = 1 − !BãîUïW∙(#.\;é	S(	\ù6)
!´¨≠òá(#.\;é	S(	\ù6)

  

Mtb down regulation of MHCII transcription mtbDownReg;<(= = 1 − !AØã:∙(#.\;é	S(	\ù6)
!´¨≠òá(#.\;é	S(	\ù6)
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Appendix B Supporting Information for Chapter 3   

 

 

 

Figure B.1 Comparison of proportion of positive tests observed between actual events and 
simulated events in screening units. Loess smooth shown as black lines. 
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Figure B.2 Comparison of the overall number of tests conducted between actual events and 
simulated events in screening units. Loess smooth shown as black lines. 
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Figure B.3 Comparison of compliance rates of admission swabs performed in screening units by 
month. Loess smooth shown as black lines. 
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Figure B.4 Comparison of compliance rates of discharge swabs performed in screening units by 
month. Loess smooth shown as black lines. 
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Figure B.5 Comparison of varying compliance rates and screening frequency on the number of 
VRE positive patient detected days per 1,000 in all screening units. A indicates the admission 
screening compliance for a unit. P indicates the periodic screening compliance for a unit. 
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Figure B.6 Comparison of varying VRE transmission rates and screening frequency on the 
number of VRE positive patient detected days per 1,000 in all screening units. A indicates the 
admission screening compliance for a unit. P indicates the periodic screening compliance for a 
unit. 
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Figure B.7 Comparison of varying VRE transmission rates and screening frequency on the 
percent of VRE positive patient days missed in all screening units. A indicates the admission 
screening compliance for a unit. P indicates the periodic screening compliance for a unit. 
 

  

A: 63%,  P: 91%

A: 80%,  P: 68%

A: 88%,  P: 74%

A: 18%,  P: 56%

A: 86%,  P: 74%

A: 65%,  P: 51%

A: 64%,  P: 68%

A: 89%,  P: 80%

A: 81%,  P: 82%
Medical ICU Step Down Unit Surgical ICU

Cardiac ICU Cardiac Surgery ICU Hemmatology/Oncology

Bone Marrow Tras. 1 Bone Marrow Tras. 2 Burn ICU

2 6 10 14 2 6 10 14 2 6 10 14

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

Periodic Screening Frequency (Days Between Screens)

Tr
ue

 P
os

itiv
e 

Pa
tie

nt
 D

ay
s 

M
iss

ed
 (%

)

Transmission Rate 0.01 0.05 0.1 0.15 0.2



 120 

 

Figure B.8 Comparison of varying the proportion of patients that are positive for VRE on 
hospital admission and screening frequency on the number of VRE positive patient detected days 
per 1,000 in all screening units. A indicates the admission screening compliance for a unit. P 
indicates the periodic screening compliance for a unit. 
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Figure B.9 Comparison of varying the proportion of patients that are positive for VRE on 
hospital admission and screening frequency on the percent of VRE positive patient days missed 
in all screening units. A indicates the admission screening compliance for a unit. P indicates the 
periodic screening compliance for a unit. 
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Figure B.10 Comparison of varying VRE swab false positive rates and screening frequency on 
the number of VRE positive patient detected days per 1,000 in all screening units. A indicates the 
admission screening compliance for a unit. P indicates the periodic screening compliance for a 
unit. 
 

  

A: 63%,  P: 91%

A: 80%,  P: 68%

A: 88%,  P: 74%

A: 18%,  P: 56%

A: 86%,  P: 74%

A: 65%,  P: 51%

A: 64%,  P: 68%

A: 89%,  P: 80%

A: 81%,  P: 82%
Medical ICU Step Down Unit Surgical ICU

Cardiac ICU Cardiac Surgery ICU Hemmatology/Oncology

Bone Marrow Tras. 1 Bone Marrow Tras. 2 Burn ICU

2 6 10 14 2 6 10 14 2 6 10 14

40
80

120
160

40
80

120
160

40
80

120
160

Periodic Screening Frequency (Days Between Screens)

Tr
ue

 P
os

itiv
e 

Pa
tie

nt
 D

ay
s 

De
te

ct
ed

 p
er

 1
00

0

Test False Positive Rate 0.005 0.01 0.05



 123 

 

Figure B.11 Comparison of varying VRE swab false positive rates and screening frequency on 
the percent of VRE positive patient days missed in all screening units. A indicates the admission 
screening compliance for a unit. P indicates the periodic screening compliance for a unit. 
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Figure B.12 Comparison of varying VRE swab false negative rates and screening frequency on 
the number of VRE positive patient detected days per 1,000 in all screening units. A indicates the 
admission screening compliance for a unit. P indicates the periodic screening compliance for a 
unit. 
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Figure B.13 Comparison of varying VRE swab false negative rates and screening frequency on 
the percent of VRE positive patient days missed in all screening units. A indicates the admission 
screening compliance for a unit. P indicates the periodic screening compliance for a unit. 
 

  

A: 63%,  P: 91%

A: 80%,  P: 68%

A: 88%,  P: 74%

A: 18%,  P: 56%

A: 86%,  P: 74%

A: 65%,  P: 51%

A: 64%,  P: 68%

A: 89%,  P: 80%

A: 81%,  P: 82%
Medical ICU Step Down Unit Surgical ICU

Cardiac ICU Cardiac Surgery ICU Hemmatology/Oncology

Bone Marrow Tras. 1 Bone Marrow Tras. 2 Burn ICU

2 6 10 14 2 6 10 14 2 6 10 14

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

Periodic Screening Frequency (Days Between Screens)

Tr
ue

 P
os

itiv
e 

Pa
tie

nt
 D

ay
s 

M
iss

ed
 (%

)

Test False Negative Rate 0.05 0.1 0.15 0.2



 126 

 

Figure B.14 Incremental reduction in missed VRE patient days per 1,000 as compliance 
increases in screening units. Standard deviations shown as error bars. 
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Table B.1 Parameters used to model VRE cases detected 

Parameter description Baseline value (Range tested) 
Screening compliance rate 0.75,   (0.10, 1.00) 
Screening frequency (Biweekly period) 7,   (1, 14) 
Test sensitivity 0.90,   (0.80, 0.95) 
Test specificity 0.99,   (0.95, 0.995) 
Proportion of patients VRE positive on hospital admission 0.06,    (0.01, 0.20) 
Transmission rate 0.05,    (0.01, 0.20) 
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Appendix C Supporting Information for Chapter 4   

 

 

 

Figure C.1 COVID study population flow chart. Study population flow chart of counties 
included in the analysis. 
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Figure C.2 Percentage of county populations living in mobile homes shown as quantiles, over 
the range of observed values for the second variable. All other variables set at their median 
(religious gatherings set to 0). 
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Figure C.3 Total number of hospitals within a county shown as quantiles, over the range of 
observed values for the second variable. All other variables set at their median (religious 
gatherings set to 0). 
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Figure C.4 Number of hospitals per 10,000 county residents shown as quantiles, over the range 
of observed values for the second variable. All other variables set at their median (religious 
gatherings set to 0). 
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Figure C.5 Percentage asthma population within county shown as quantiles, over the range of 
observed values for the second variable. All other variables set at their median (religious 
gatherings set to 0). 
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Figure C.6 Percentage Black population within county shown as quantiles, over the range of 
observed values for the second variable. All other variables set at their median (religious 
gatherings set to 0). 
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Figure C.7 Percentage population 65 years and older within county shown as quantiles, over the 
range of observed values for the second variable. All other variables set at their median (religious 
gatherings set to 0). 
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Figure C.8 Percentage population 65 uninsured within county shown as quantiles, over the range 
of observed values for the second variable. All other variables set at their median (religious 
gatherings set to 0). 
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Table C.1 Justifications for COVID related variable inclusion 

Variable Topic Variable Code Variable Description Justifications 
Comorbidities como_allheartdis_hosp Heart Disease 

Hospitalization Rate per 
1,000 Medicare 
Beneficiaries, 65+ 

This variable is associated with the severity of and 
mortality due to COVID-19.251 

Comorbidities como_allheartdis_mort Heart Disease Death Rate 
per 100,000, 35+ 

This variable is associated with the severity of and 
mortality due to COVID-19.251 

Comorbidities como_asthma Age-adjusted prevalence of 
adults who have been told 
they currently have asthma 

This variable is associated with the severity of and 
mortality due to COVID-19.252 

Comorbidities como_cancer5yr Age adjusted incidence of 
all cancer-5-year 
prevalence 

This variable is associated with the severity of and 
mortality due to COVID-19.253 

Comorbidities como_COPD Age-adjusted prevalence of 
adults diagnosed with 
chronic obstructive 
pulmonary disease 

This variable is associated with the severity of and 
mortality due to COVID-19.254  

Comorbidities como_cvd_hosp Total Cardiovascular 
Disease Hospitalization 
Rate per 1,000 Medicare 
Beneficiaries, 65+ 

This variable is associated with the severity of and 
mortality due to COVID-19.251 

Comorbidities como_cvd_mort Total Cardiovascular 
Disease Death Rate per 
100,000, All Ages 

This variable is associated with the severity of and 
mortality due to COVID-19.251 

Comorbidities como_pdiabetes Age-adjusted prevalence of 
adults aged 20+ years with 
diagnosed diabetes (in %) 
by county 

This variable is associated with the severity of and 
mortality due to COVID-19.255 

Comorbidities como_htn_hosp Hypertension 
Hospitalization Rate per 

This variable is associated with the severity of and 
mortality due to COVID-19.256 
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1,000 Medicare 
Beneficiaries, 65+ 

Comorbidities como_htn_mort Hypertension Death Rate 
per 100,000 (any mention), 
35+ 

This variable is associated with the severity of and 
mortality due to COVID-19.256 

Comorbidities como_ 
medicareheartdizprev 

Prevalence (in %) of heart 
disease among Medicare 
beneficiaries 

This variable is associated with the severity of and 
mortality due to COVID-19.251 

Comorbidities como_pobesity Age-adjusted prevalence of 
adults aged 20+ years with 
obesity (in %) by county 

This variable is associated with the severity of and 
mortality due to COVID-19.257 

Comorbidities como_smoking Age-adjusted prevalence of 
adults who are current 
smokers (variable 
calculated from one or 
more BRFSS questions) 

This variable is associated with the severity of and 
mortality due to COVID-19.254 

Comorbidities como_stroke_hosp Stroke Hospitalization Rate 
per 1,000 Medicare 
Beneficiaries, 65+ 

This variable is associated with the severity of 
COVID-19.258 

Comorbidities como_stroke_mort Stroke Death Rate per 
1,000, 35+ 

This variable is associated with the severity of 
COVID-19.258 

Demographics demo_landarea County land area in square 
meters 

Historically, more rural areas saw a lower burden 
of infectious disease because smaller populations 
meant diseases were less likely to be circulating,259 
suggesting that counties with smaller populations 
or larger land areas may be less impacted if those 
who are unwell come into contact with fewer 
people allowing the disease to burn out before 
cases and CFR climb. 

Demographics demo_p60more Percentage of population 
aged 60 years or older 

COVID-19 has a higher fatality rate for older 
populations, while sparing younger ages from more 
severe forms of the disease.260 
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Demographics demo_p65more Percentage of population 
aged 65 years or older 

COVID-19 has a higher fatality rate for older 
populations, while sparing younger ages from more 
severe forms of the disease.260 

Demographics demo_p45_64 Percentage of population 
aged 45 to 64 

COVID-19 has a higher fatality rate for older 
populations, while sparing younger ages from more 
severe forms of the disease.260 

Demographics demo_popdensity Population density Population density may make social distancing 
more challenging and may also result in a higher 
effective contact rate.200 

Demographics demo_population Total population of each 
county (same as 
demo_bridgedrace_total) 

Historically, more rural areas saw a lower burden 
of infectious disease because smaller populations 
meant diseases were less likely to be circulating,259 
suggesting that counties with smaller populations 
or larger land areas may be less impacted if those 
who are unwell come into contact with fewer 
people allowing the disease to burn out before 
cases and CFR climb 

Healthcare access 
& capacity 

hc_hospitals Number of Hospitals Counties with greater healthcare resources 
available will presumably be able to manage a 
higher case-load before becoming overwhelmed.261 

Healthcare access 
& capacity 

hc_hospitals_per10000 Number of Hospitals per 
10000 

Counties with greater healthcare resources 
available will presumably be able to manage a 
higher case-load before becoming overwhelmed.261 

Healthcare access 
& capacity 

hc_icubeds_per1000 Number of ICU beds per 
1000 

Counties with greater healthcare resources 
available will presumably be able to manage a 
higher case-load before becoming overwhelmed.261 

Healthcare access 
& capacity 

hc_icubeds Number of ICU beds per 
1000 

Counties with greater healthcare resources 
available will presumably be able to manage a 
higher case-load before becoming overwhelmed.261 

Healthcare access 
& capacity 

hc_icubeds_per60more Number of ICU beds per 
>60 year resident 

Counties with greater healthcare resources 
available will presumably be able to manage a 
higher case-load before becoming overwhelmed.261 
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Healthcare access 
& capacity 

hc_icubeds_per65more Number of ICU beds per 
>65 year resident 

Counties with greater healthcare resources 
available will presumably be able to manage a 
higher case-load before becoming overwhelmed.261 

Healthcare access 
& capacity 

hc_medicaid Medicaid eligible Uninsured Americans are less likely to access 
health care when needed, more likely to delay 
treatment, are at higher risk of hospitalization, and 
also more likely to have preventable illnesses or 
uncontrolled chronic illnesses, which may put them 
at higher risk of serious COVID-19 illness.262,263 

Healthcare access 
& capacity 

hc_Pnotinsured_acs Percentage without Health 
Insurance 

Uninsured Americans are less likely to access 
health care when needed, more likely to delay 
treatment, are at higher risk of hospitalization, and 
also more likely to have preventable illnesses or 
uncontrolled chronic illnesses, which may put them 
at higher risk of serious COVID-19 illness.262,263 

Healthcare access 
& capacity 

hc_primarycare Number of primary care 
physicians in the county 

Counties with greater healthcare resources 
available will presumably be able to manage a 
higher case-load before becoming overwhelmed.261 

Healthcare access 
& capacity 

hc_primarycare_per1000 Primary Care Physician per 
capita 

Counties with greater healthcare resources 
available will presumably be able to manage a 
higher case-load before becoming overwhelmed.261 

Non-
pharmaceutical 
intervention 

npi_keystone_closing_of_ 
public_venues 

Government order closing 
venues such as restaurants, 
theaters, and bars 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_gathering_ 
size_10_0 

Gathering size limited to 
10 or fewer people 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_gathering_ 
size_100_to_26 

Gathering size limited to 
26 to 100 people 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 
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Non-
pharmaceutical 
intervention 

npi_keystone_gathering_ 
size_25_to_11 

Gathering size limited to 
11 to 25 people 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_gathering_ 
size_500_to_101 

Gather size limited to 101 
to 500 people 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_lockdown Lockdown We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_non_ 
essential_services_ 
closure 

Government order closing 
non-essential services and 
shops 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_Other Other, unspecified, NPI We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_ 
religious_gatherings_ 
banned 

Cancellation of religious 
gatherings either explicitly 
or implicitly through 
gathering size limitations 
that do not exempt 
religious services 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_school_ 
closure 

Closure of schools and 
university 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_shelter_ 
in_place 

An order indicating that 
people should shelter in 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
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their homes except for 
essential reasons 

the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Non-
pharmaceutical 
intervention 

npi_keystone_social_ 
distancing 

Social distancing mandate 
of at least 6' between 
people 

We expect non-pharmaceutical intervention (NPI) 
can have an influence on COVID-19 mortality. At 
the time of variable inclusion, there were no 
published results for COVID-19 NPI yet. 

Socioeconomics ses_hhincome Median household income 
in the past 12 months 

For most racial groups, increased income correlates 
with improved health.264 

Socioeconomics ses_pnohighschool Percentage of no high 
school diploma by county 

There is an established association of lower 
educational attainment and poorer health, including 
chronic illness and mortality,265 along with the 
importance of high school education as a 
measure266 of this association. 

Socioeconomics ses_ppoverty Percentage of residents 
with income in the past 12 
months below poverty 
level by county 

For most racial groups, increased income correlates 
with improved health.264 

Socioeconomics ses_punemployed Percentage of unemployed 
(not in labor force) by 
county 

Unemployment is associated with poor health,267 
and also contributes to homelessness,268 which is, 
in turn, a risk for COVID-19 infection.269 

Social 
vulnerability 

sv_groupquarterspop Number of persons in 
institutionalized group 
quarters 

This variable is used to construct the Social 
Vulnerability Index (SVI). Group living 
arrangements represent increased risk of SARS-
CoV-2 transmission due to both difficulties in 
maintaining hygiene and social distancing in these 
settings and due to the risk that caregivers who 
visit multiple homes have an increased risk of both 
acquiring and spreading the virus.270 

Social 
vulnerability 

sv_p17below Age 17 or younger This variable is used to construct the Social 
Vulnerability Index (SVI). COVID-19 has a higher 
fatality rate for older populations, while sparing 
younger ages from more severe forms of the 
disease.260 
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Social 
vulnerability 

sv_pcrowding Percentage of occupied 
housing units with more 
people than rooms 

This variable is used to construct the Social 
Vulnerability Index (SVI). This variable represents 
increased challenges to social distancing. For 
instance, an individual falling ill in a crowded 
apartment will have more difficulty in self-
isolating than someone living in a spacious home. 
Individuals living in apartment complexes will 
have more difficulty in maintaining a 6-foot 
distance when outside than individuals with access 
to backyards.271,272 

Social 
vulnerability 

sv_pdisability Older than age 5 with 
disability 

This variable is used to construct the Social 
Vulnerability Index (SVI). This variable represents 
barriers to healthcare access and increased 
likelihood of greater health needs and worse 
outcomes from existing health conditions.273 

Social 
vulnerability 

sv_penglish Percentage of population 
(age 5+) who speak 
English "less than well" 

This variable is used to construct the Social 
Vulnerability Index (SVI). Populations with poor 
English skills are likely to have increased difficulty 
in accessing accurate health information and 
decreased visits to healthcare professionals.274 

Social 
vulnerability 

sv_pminority Percentage minority (not 
non-Hispanic White) 

This variable is used to construct the Social 
Vulnerability Index (SVI). The percentage of the 
county population who belongs to the racial 
minority is included for the same reason that 
different races/ethnicities were included as part of 
the demographic data above (Essentially, this is a 
grouping that includes all except non-Hispanic 
White. It can be understood as it might be better to 
use a composite variable to increase statistical 
power). Historically, more rural areas saw a lower 
burden of infectious disease because smaller 
populations meant diseases were less likely to be 
circulating,259 suggesting that counties with smaller 
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populations or larger land areas may be less 
impacted if those who are unwell come into contact 
with fewer people allowing the disease to burn out 
before cases and CFR climb. 

Social 
vulnerability 

sv_pmobilehome Percentage of total housing 
units with mobile home 

This variable is used to construct the Social 
Vulnerability Index (SVI). This variable represents 
increased challenges to social distancing. For 
instance, an individual falling ill in a crowded 
apartment will have more difficulty in self-
isolating than someone living in a spacious home. 
Individuals living in apartment complexes will 
have more difficulty in maintaining a 6-foot 
distance when outside than individuals with access 
to backyards.267,268 

Social 
vulnerability 

sv_pmultiunit Percentage of total housing 
units with 10 or more units 

This variable is used to construct the Social 
Vulnerability Index (SVI). This variable represents 
increased challenges to social distancing. For 
instance, an individual falling ill in a crowded 
apartment will have more difficulty in self-
isolating than someone living in a spacious home. 
Individuals living in apartment complexes will 
have more difficulty in maintaining a 6-foot 
distance when outside than individuals with access 
to backyards.267,268 

Social 
vulnerability 

sv_pnovehicle Percentage of households 
with no vehicle available 

This variable is used to construct the Social 
Vulnerability Index (SVI). Increased reliance on 
public transport will create more crowded transport 
and a higher risk of transmission.275 

Social 
vulnerability 

sv_singleparent Single-parent household 
with children under 18 

This variable is used to construct the Social 
Vulnerability Index (SVI). These households are 
likely to experience increased difficulties finding 
childcare. The potential impact on absenteeism for 
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healthcare workers could lead to higher mortality 
rates276 if more of the workforce are single parents. 

Demographics demo_bridgedrace_p_ 
american_indians_alaskan 

Percentage of (non 
Hispanic) American Indian 
or Alaska Native 

In the US structural racism leads to racial/ethnic 
populations’ lack of access to health care and 
receipt of low-quality health care, contributing to 
substantial health disparities,277 which may, in turn, 
result in worse outcomes for COVID-19 patients. 

Demographics demo_bridgedrace_p_ 
asians_pacific 

Percentage of (non-
Hispanic) Asian or Pacific 
Islander. 

In the US structural racism leads to racial/ethnic 
populations’ lack of access to health care and 
receipt of low-quality health care, contributing to 
substantial health disparities,277 which may, in turn, 
result in worse outcomes for COVID-19 patients. 

Demographics demo_bridgedrace_p_ 
blacks 

Percentage of (non-
Hispanic) Black or African 
American 

In the US structural racism leads to racial/ethnic 
populations’ lack of access to health care and 
receipt of low-quality health care, contributing to 
substantial health disparities,277 which may, in turn, 
result in worse outcomes for COVID-19 patients. 

Demographics demo_bridgedrace_p_hisp Percentage of Hispanic or 
Latino 

In the US structural racism leads to racial/ethnic 
populations’ lack of access to health care and 
receipt of low-quality health care, contributing to 
substantial health disparities,277 which may, in turn, 
result in worse outcomes for COVID-19 patients. 

Demographics demo_bridgedrace_p_ 
whites 

Percentage of (non-
Hispanic) White 

In the US structural racism leads to racial/ethnic 
populations’ lack of access to health care and 
receipt of low-quality health care, contributing to 
substantial health disparities,277 which may, in turn, 
result in worse outcomes for COVID-19 patients. 

Demographics demo_bridgedrace_total Total population of each 
county (same as 
demo_population) 

Historically, more rural areas saw a lower burden 
of infectious disease because smaller populations 
meant diseases were less likely to be circulating,259 
suggesting that counties with smaller populations 
or larger land areas may be less impacted if those 
who are unwell come into contact with fewer 
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people allowing the disease to burn out before 
cases and CFR climb 

Time days_since_first_case Number of days between 
first detected COVID19 
case and final date of 
included case data, New 
York City data by county 
from NYC public health 
website, Kansas City 
counties were excluded 

We expect this variable can have an influence on 
COVID-19 mortality. At the time of variable 
inclusion, there were no published results for this 
variable yet. 
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Table C.2 COVID related variables and data sources 

Model Inclusion 
Status 

Variable Code Level Data Data Source Year(s) 
Collected 

Variable Unit 
Description 

Included, linking 
variable 

FIPS County US Census TIGER shapefile 2018 ID number 

Excluded, highly 
correlated 

como_allheartdis_hosp County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2016-2018 Incidence per 1000, 
65+ 

Excluded, highly 
correlated 

como_allheartdis_mort County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2014-2016 Incidence per 
100,000 

Included in final 
model 

como_asthma State BRFSS 2018 Adjusted 
prevalence % 

Excluded, non-
significant in 
multivariate model 

como_cancer5yr County if 
available, 
o/w State 

NIH, National Cancer 
Institute, State Cancer 
Profiles  

2012-2016 5-year incidence 

Excluded, highly 
correlated 

como_COPD State BRFSS 2018 Adjusted 
prevalence % 

Excluded, highly 
correlated 

como_cvd_hosp County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2016-2018 Incidence per 1000, 
ages 65+ 

Excluded, highly 
correlated 

como_cvd_mort County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2016-2018 Incidence per 
100,000 

Excluded, non-
significant in 
bivariate model 

como_pdiabetes County CDC, US Diabetes 
Surveillance System 

2016 Percentage (%) 

Excluded, highly 
correlated 

como_htn_hosp County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2016-2018 Incidence per 1000, 
65+ 

Excluded, non-
significant in 
bivariate model 

como_htn_mort County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2016-2018 Incidence per 1000 

Excluded, non-
significant in 
multivariate model 

como_ 
medicareheartdizprev 

County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2018 Prevalence per 
1000, medicare 
beneficiaries 
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Excluded, highly 
correlated 

como_pobesity County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2016 Percentage (%) 

Excluded, non-
significant in 
bivariate model 

como_smoking State BRFSS 2018 Age adjusted 
prevalence 

Excluded, highly 
correlated 

como_stroke_hosp County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2018 Incidence per 1000 

Excluded, highly 
correlated 

como_stroke_mort County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2014-2016 Incidence per 1000 

Excluded, non-
significant in 
bivariate model 

demo_landarea County US Census TIGER shapefile 2018 Area in square 
kilometer 

Excluded, highly 
correlated 

demo_p60more County Bridged race 2010-2018 
average 

Percentage (%) 

Included in final 
model 

demo_p65more County Bridged race 2010-2018 
average 

Percentage (%) 

Excluded, highly 
correlated 

demo_p45_64 County Bridged race 2010-2018 
average 

Percentage (%) 

Excluded, highly 
correlated 

demo_popdensity County Bridged race 2018 Person per square 
kilometer 

Excluded, highly 
correlated 

demo_population County Bridged race 2018 Count 

Included in final 
model 

hc_hospitals County CDC, Interactive Atlas of 
Heart Disease and Stroke 
and demo_population 
variable 

2018 Total number of 
hospitals in county 

Included in final 
model 

hc_hospitals_per10000 County CDC, Interactive Atlas of 
Heart Disease and Stroke 
and demo_population 
variable 

2018 Number of 
hospitals per 10,000 
people in county 

Excluded, highly 
correlated 

hc_icubeds_per1000 County Kaiser Health News analysis 
of hospital cost reports filed 
to the Centers for Medicare 

2018/2019 Number per 1000 
persons in the 
county 
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& Medicaid Services 
American Community 
Survey, (5-year estimate) 

Excluded, highly 
correlated 

hc_icubeds County Kaiser Health News analysis 
of hospital cost reports filed 
to the Centers for Medicare 
& Medicaid Services 
American Community 
Survey, (5-year estimate) 

2018/2019 Number of ICU 
beds in county 

Excluded, non-
significant in 
multivariate model 

hc_icubeds_per60more County Kaiser Health News analysis 
of hospital cost reports filed 
to the Centers for Medicare 
& Medicaid Services 

2018/2019 Number per 1000 
persons aged 60+ 

Excluded, highly 
correlated 

hc_icubeds_per65more County Kaiser Health News analysis 
of hospital cost reports filed 
to the Centers for Medicare 
& Medicaid Services 

2018/2019 Number per 1000 
persons aged 65+ 

Excluded, highly 
correlated 

hc_medicaid County CDC, Interactive Atlas of 
Heart Disease and Stroke 

2018 Percentage (%) 

Included in final 
model 

hc_Pnotinsured_acs County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, non-
significant in 
bivariate model 

hc_primarycare County Health Resources and 
Services Administration, 
(Area Health Resources File) 

2016 Count 

Excluded, highly 
correlated 

hc_primarycare_per1000 County Health Resources and 
Services Administration, 
(Area Health Resources File) 

2016 Adjusted incidence 
rate per 1000 

Excluded, highly 
correlated 

npi_keystone_closing_of_ 
public_venues 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 
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Excluded, highly 
correlated 

npi_keystone_gathering_ 
size_10_0 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Excluded, highly 
correlated 

npi_keystone_gathering_ 
size_100_to_26 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Excluded, highly 
correlated 

npi_keystone_gathering_ 
size_25_to_11 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Excluded, highly 
correlated 

npi_keystone_gathering_ 
size_500_to_101 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Excluded, highly 
correlated 

npi_keystone_lockdown County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Excluded, highly 
correlated 

npi_keystone_non_ 
essential_services_ 
closure 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Excluded, highly 
correlated 

npi_keystone_Other County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Included in final 
model 

npi_keystone_ 
religious_gatherings_ 
banned 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 



 150 

Excluded, highly 
correlated 

npi_keystone_school_ 
closure 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Excluded, highly 
correlated 

npi_keystone_shelter_ 
in_place 

County KeyStone KeyStone 
Coronavirus City and 
County Non-Pharmaceutical 
Intervention Rollout Date 
Dataset 

2020 Date 

Excluded, non-
significant in 
multivariate model 

npi_keystone_social_ 
distancing 

County KeyStone Coronavirus City 
and County Non-
Pharmaceutical Intervention 
Rollout Date Dataset 

2020 Date 

Excluded, highly 
correlated 

ses_hhincome County US Census American 
Community Survey 5-Year 
Data 

2018 Median income in 
US Dollars 

Excluded, highly 
correlated 

ses_pnohighschool County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, highly 
correlated 

ses_ppoverty County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, non-
significant in 
multivariate model 

ses_punemployed County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, highly 
correlated 

sv_groupquarterspop County US Census American 
Community Survey 5-Year 
Data 

2018 Count 

Excluded, highly 
correlated 

sv_p17below County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 
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Excluded, non-
significant in 
multivariate model 

sv_pcrowding County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, highly 
correlated 

sv_pdisability County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, highly 
correlated 

sv_penglish County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, highly 
correlated 

sv_pminority County CDC SVI 2018 Percentage (%) 

Included in final 
model 

sv_pmobilehome County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, highly 
correlated 

sv_pmultiunit County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, non-
significant in 
multivariate model 

sv_pnovehicle County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, highly 
correlated 

sv_singleparent County US Census American 
Community Survey 5-Year 
Data 

2018 Percentage (%) 

Excluded, non-
significant in 
bivariate model 

demo_bridgedrace_p_ 
american_indians_alaskan 

County CDC, National Center for 
Health Statistics 

2010-2018 Percentage (%) 

Excluded, non-
significant in 
bivariate model 

demo_bridgedrace_p_ 
asians_pacific 

County CDC, National Center for 
Health Statistics 

2010-2018 Percentage (%) 

Included in final 
model 

demo_bridgedrace_p_ 
blacks 

County CDC, National Center for 
Health Statistics 

2010-2018 Percentage (%) 

Excluded, highly 
correlated 

demo_bridgedrace_p_hisp County CDC, National Center for 
Health Statistics 

2010-2018 Percentage (%) 



 152 

Excluded, highly 
correlated 

demo_bridgedrace_p_ 
whites 

County CDC, National Center for 
Health Statistics 

2010-2018 Percentage (%) 

Excluded, highly 
correlated 

demo_bridgedrace_total County CDC, National Center for 
Health Statistics 

2010-2018 Percentage (%) 

Excluded, highly 
correlated 

days_since_first_case County NYT COVID-19 Dataset Jan 21-Jun 
12, 2020 

Days 
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Table C.3 Descriptive statistics for county variables retained for analysis. Median and range shown for continuous variables. 

Variable Code 
Training Set 

(n=1186) 
Testing Set 

(n=593) 
Excluded 
(n=1364) 

como_asthma (%) 9.4 (7.4–12.8) 9.2 (7.4–12.8) 9.2 (7.4–12.8) 
como_cancer5yr (cases/5yr) 463.3 (272.1–1135) 457.8 (241–592.1) 451.0 (130.1–677.2) 
como_pdiabetes (%) 10.1 (1.5–33.0) 10.0 (1.7–24.6) 9.5 (1.8–32.3) 
como_htn_mort (deaths/100,000) 120.2 (20.4–400.6) 120.2 (18.7–442.2) 129.7 (26.5–592.1) 
como_medicareheartdizprev (%) 36.0 (22.1–55.2) 35.7 (19.5–49.3) 35.3 (18.0–53.5) 
como_smoking (%) 17.3 (9.0–26.8) 17.3 (9.0–26.8) 17.7 (9.0–26.8) 
demo_landarea (m2) 1535.8 (6.5–64008) 1505.1 (38.8–51954) 1743.8 (5.3–377034) 
demo_p65more (%) 15.8 (4.2–51.5) 15.6 (6.5–27.6) 19.1 (5.1–36.1) 
demo_bridgedrace_p_american_indians_alaskan 
(%) 

0.3 (0.0–73.4) 0.3 (0.1–92.2) 0.5 (0.0–93.9) 

demo_bridgedrace_p_asians_pacific (%) 0.9 (0.1–65.5) 1.0 (0.1–30.4) 0.5 (0.0–59.1) 
demo_bridgedrace_p_blacks (%) 4.6 (0.1–82.6) 5.5 (0.2–78.5) 1.1 (0.0–85.7) 
hc_hospitals (hospitals) 1.0 (0–32) 1.0 (0–79) 1.0 (0–8) 
hc_hospitals_per10000 (hospitals/10,000) 0.2 (0.0–3.8) 0.2 (0.0–4.7) 0.4 (0.0–8.5) 
hc_icubeds_per60more (beds/>60yr resident) 0.6 (0.0–8.2) 0.7 (0.0–7.0) 0.0 (0.0–101.1) 
hc_pnotinsured_acs (%) 9.0 (1.8–39.2) 9.4 (2.0–35.6) 9.3 (1.7–45.6) 
hc_primarycare (physicians) 1.9 (0.2–46.6) 1.8 (0.4–17.9) 2.3 (0.2–19.9) 
npi_keystone_religious_gatherings_banned (% 
counties that ban religious gatherings) 

52.4  54.8  47.3  

npi_keystone_social_distancing (days since 1st 
county case) 

3.0 (-46–76) 3.0 (-30–82) -8.0 (-84–46) 

ses_punemployed (%) 3.3 (0.5–9.5) 3.3 (0.5–13.6) 2.9 (0.0–16.5) 
sv_pcrowding (%) 0.8 (0.0–10.1) 0.9 (0.0–15.4) 0.9 (0.0–35.5) 
sv_pmobilehome (%) 9.5 (0.0–54.8) 8.7 (0.0–51.2) 12.2 (0.0–59.3) 
sv_pnovehicle (%) 5.8 (1.4–77.0) 5.9 (1.0–32.2) 5.4 (0.0–87.8) 
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Table C.4 Regression results. County-level predictors of COVID-19 laCFR in the United States. R2 = 0.8620. 

Variable 
Exp 

(Coeff.) 95% CI 
Std. 

Error Wald p-value VIF 
Intercept 0.0111 (0.0062, 0.0200) 0.2961 -15.2016 <0.0001  
Hospitals per 10,000 0.6773 (0.5549, 0.8248) 0.1013 -3.8485 0.0001 1.0636 
Religious Gatherings Ban 0.8752 (0.7894, 0.9702) 0.0526 -2.5315 0.0114 1.0592 
Pop. Not Insured (%) 0.9855 (0.9715, 0.9998) 0.0075 -1.9444 0.0519 1.6001 
Mobile Home Pop. (%) 0.9921 (0.9854, 0.9989) 0.0035 -2.2539 0.0242 1.7227 
Asthma Pop. (%) 1.0951 (1.0400, 1.1533) 0.0264 3.4378 0.0006 1.1489 
Pop. >= 65 Yrs. (%) 1.0453 (1.0308, 1.0605) 0.0069 6.4394 <0.0001 1.1405 
Total Hospitals in County 1.0316 (1.0100, 1.0522) 0.0099 3.1329 0.0017 1.1663 
Black Pop. (%) 1.0097 (1.0063, 1.0133) 0.0018 5.5012 <0.0001 1.2210 
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Appendix D Modulation of Bacterial Fitness and Virulence Through Antisense RNAs   

 

This appendix is a published work: 

Millar JA, Raghavan R. (2021). Modulation of bacterial fitness and virulence through antisense 

RNAs. Front Cell Infect Microbiol. 10:596277. 

 

D.1 Abstract 

Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs 

(asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target 

genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate 

gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate 

bacterial fitness and increase virulence. We chose examples that underscore the variety observed 

in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated asRNA, 

and asRNAs that require other RNAs or RNA-binding proteins for stability and activity. We 

explore how asRNAs improve bacterial fitness and virulence by modulating plasmid acquisition 

and maintenance, regulating transposon mobility, increasing resistance against bacteriophages, 

controlling flagellar production, and regulating nutrient acquisition. We conclude with a brief 

discussion on how this knowledge is helping to inform current efforts to develop new 

therapeutics. 
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D.2 Introduction 

A major breakthrough in biology was the discovery of non-coding RNAs (ncRNAs) that 

regulate gene expression instead of coding for proteins. ncRNAs play important regulatory roles 

in all domains of life.278–281 In bacteria, ncRNAs regulate gene expression at the post-

transcriptional level by binding to messenger RNAs (mRNAs) to control several processes, 

including pathogenesis.282–284 Typically, ncRNAs that are encoded on the opposite strands of 

target genes (complementary to sense transcript) are known as cis-acting antisense RNAs 

(asRNAs), while an ncRNA that is encoded in a separate part of the genome in relation to its 

target mRNAs is called a trans-acting small RNA (sRNA).280,285,286 Regulatory RNAs generally 

have an advantage over regulatory proteins because their synthesis require lower energy and they 

act rapidly. In addition, their co-degradation along with target mRNAs allow precise control of 

regulatory circuits, which is key for bacteria to quickly adapt to host immune response.287,288 

asRNAs are particularly useful for rapid gene regulation because they bind to target mRNAs 

with perfect complementarity, whereas sRNAs form imperfect complementarity with target 

mRNAs and often require chaperone proteins such as Hfq and ProQ for stability and 

function.280,289–291 

Initially, asRNAs were thought to be rare in bacteria, and the pervasive antisense 

transcription observed in microarray-based studies were assumed to be experimental 

artifacts.280,292,293 Even with the advent of high-throughput sequencing, it was initially difficult to 

differentiate between bona fide asRNAs and transcriptional noise because of low sequence 

coverage.294–296 With the increase in sequencing resolution, recent studies have confirmed the 

presence of abundant asRNAs in bacteria and have revealed it to be a genome-wide 

phenomenon.280,297–299 
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asRNAs have been shown to modulate bacterial pathogenicity by either regulating the 

expression of virulence genes300 or by controlling biochemical processes that improve bacterial 

fitness, which in turn boosts virulence.282,301 In this mini review, we focus on the latter. In 

particular, we cover examples where we generally understand the mechanism of action and 

where the genome locations of asRNAs have been determined. We also chose examples that 

underscore the variety observed in nature, including short asRNAs and long asRNAs, those 

found in plasmids and those encoded on genomes, asRNAs that require binding stability from 

other RNAs or proteins, and asRNAs that work in concert with riboswitches. These examples are 

presented in several sections based on the main roles asRNAs play in pathogenesis: 1) 

acquisition and regulation of virulence plasmids, 2) modulation of transposon mobility, 3) 

increasing resistance against bacteriophages, 4) controlling flagellar production, and 5) 

regulating nutrient acquisition. 

 

D.3 Modes of antisense RNA-based improvement in fitness and virulence 

D.3.1 Acquisition and maintenance of virulence plasmids 

A major avenue through which bacteria acquire new virulence factors is by obtaining 

new plasmids via conjugation, a process that involves asRNAs. An example of this is F-like 

plasmids, which are part of a large group of conjugative plasmids frequently found in 

Escherichia coli and throughout Enterobacteriaceae.302 These plasmids frequently harbor 

accessory genes, including antibiotic resistance genes, enterotoxins, and other virulence genes.303 

Conjugation is encoded by the Tra-operon, with initiation requiring TraJ. Initiation is regulated 

by FinOP, which consists of the RNA binding protein FinO and FinP, an asRNA. FinP attaches 

to the ribosome binding site of traJ, inhibiting its translation and promoting mRNA degradation 
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(Figure D.1A). FinO contributes by helping promote FinP binding to traJ, as well as protecting 

FinP from RNase E cleavage.304 FinP levels are controlled by RNase E digestion, preventing 

binding to traJ. These processes play out temporally during conjugation, starting with initial high 

level of traJ expression, followed by dampening and repression, maintaining bacterial fitness by 

reducing the metabolic burden of the plasmid.305 

 

 
Figure D.1 Acquisition and regulation of virulence plasmids and modulation of transposons. 
Examples of asRNA post-transcriptional regulation of acquisition and regulation of virulence 
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plasmids and modulation of transposons. (A) finP control of plasmid acquisition through 
conjugation in E. coli F plasmid (NC_002483.1), (B) hok/sok toxin-antitoxin to maintain 
plasmids in S. flexneri R100 plasmid (NC_002134.1), (C) RNAI control of plasmid copy number 
in E. coli pColK plasmid (NC_006881.1), and (D) RNA-OUT regulation of transposase 
expression, controlling transposon movement in S. flexneri R100 plasmid (NC_002134.1). Each 
panel shows the relative position and size of the asRNA (blue), the target it regulates (green), and 
any factors required for stable binding (orange). In these examples, the successful binding of 
asRNA to its target promotes degradation. 
 

Once bacteria acquire advantageous virulence factors through plasmids, some plasmids 

are retained through toxin/antitoxin systems.306 These systems function by encoding a toxin and 

a paired strong antitoxin — many of which function as asRNAs, on the plasmid. During cell 

division, loss of the plasmid in a daughter cell results in loss of the strong antitoxin, leading to 

the death of cells without a plasmid copy. A well-studied system is the hok/sok system of R1 

plasmids in E. coli and R100 in Shigella flexneri, known for harboring various antibiotic 

resistance genes.307,308 This system encodes the Hok (host killing) toxin, which leads to cell death 

by depolarization of the cell membrane,309 and Sok (suppression of killing), an asRNA antitoxin, 

which degrades very quickly.306 Sok acts by binding to hok mRNA to block translation of the 

toxin (Figure D.1B). Within the E. coli chromosome, sok gene has a very weak promoter, 

resulting in the production of small amounts of antitoxin that are degraded quickly and are 

unable to keep up with the Hok toxin, leading to cell death. On the R1 plasmid, the sok gene has 

a strong promoter, producing many times more of Sok than Hok.310 Hence, if the cell contains an 

R1 plasmid, excess Sok continues to bind all of Hok and prevent cell death. This ensures that 

after cell division, E. coli daughter cells will survive only if they maintain the plasmid. Thus, the 

Sok asRNA maintains bacterial fitness by promoting the retention of the R1/R100 plasmid, 

which has been found to improve bacterial stress response and growth in growth-limiting 

conditions.311 
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Replication control is another asRNA-based mechanism used by bacteria to maintain 

plasmids. The presence of too many copies of a plasmid can increase the metabolic burden of the 

cell, lowering fitness through reduced growth rate and weakened competitiveness.312,313 

However, too few plasmid copies could result in the loss of a potentially useful plasmid in 

subsequent generations.314,315 Bacteria encode plasmid copy number control systems in order to 

maintain optimal number of plasmids. One that has been widely studied is found in ColE1-

related plasmids316 present in E. coli. The plasmid is named for containing the gene that encodes 

Colicin E1, the product of which is active against E. coli, as well as containing a gene for 

conferring immunity to Colicin E1. Under stressful conditions such as nutrient depletion, 

overcrowding, or antibiotics E. coli express Colicin E1, which promotes bacterial proliferation in 

mixed microbe niches such as the intestinal tract.317,318 To replicate the plasmid, RNAII (a pre-

primer) attaches to DNA at origin of replication. RNAII is then trimmed into a primer, which 

initializes plasmid replication. The 5′ region of RNAII contains the asRNA RNAI, which inhibits 

ColE1 plasmid replication (Figure D.1C). RNAI inhibits plasmid replication with the help of the 

Rom protein by binding to RNAII, preventing RNAII from binding to the plasmid origin of 

replication. As the copy number of ColE1 plasmid increases, so does the concentration of RNAI, 

resulting in a balance of copy number through negative control.319 This ensures that there are 

enough copies of the virulence plasmid to pass on to daughter cells, while maintaining fitness by 

reducing the metabolic burden of what are often large — sometimes hundreds of kilobases long, 

plasmids.320 

 

D.3.2 Regulation of transposon mobility 



 161 

Another role for asRNAs in maintaining bacterial fitness and virulence is by controlling 

the movement of transposons, which are genetic elements that move from one position to another 

within a genome.321 Insertion of transposons in virulence associated genes could reduce a 

bacterium’s pathogenicity or increase its susceptibility to antibiotics.322–324 In addition, 

transposable elements could modulate virulence by affecting biofilm formation325–327 and reduce 

fitness by interrupting metabolic genes.328–330 Bacteria defend against this by controlling 

transposases, the enzymes required for transposons’ mobility. An example of inhibition of 

bacterial transposase can be seen in the Tn10 transposable element, which is found in S. flexneri 

and other Enterobacteriaceae.331 Tn10 contains a number of tetracycline resistance genes and a 

pair of IS10 insertion sequences that each encode transposases that promote transposon mobility. 

IS10s also encode antisense RNA (RNA-OUT), which is found in the 5′-most segment of the 

transposase mRNA (RNA-IN). RNA-OUT inhibits transposase translation by binding RNA-IN 

and blocking ribosome binding site (Figure D.1D). As the Tn10 copy number increases, asRNA 

increases to suppress the transposition of the transposon;332 thus, bacteria are able to maintain 

fitness by reducing the chance of mobile elements disrupting essential genes or virulence factors. 

 

D.3.3 Modulation of bacteriophages 

During infection, pathogenic bacteria have to outcompete other bacteria that share their 

niche and defend against both internal and external threats. One of the major dangers that 

bacteria face is from bacteriophages, many of which have lysogenic and lytic growth cycles.333 

In the lysogenic cycle, phage DNA is integrated into the bacterial chromosome, allowing 

replication of the phage to occur more passively along with that of the bacterium. In lytic 

reproduction, the phage actively creates a large number of progeny and quickly lyse the bacterial 
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cell to continue its lifecycle. Temperate phages include both cycles and are found in about half of 

microbial genomes currently sequenced.334 While attempting to block infection by phages with 

lytic growth cycles often reduces virulence and fitness, allowing temperate phages to stay in the 

lysogenic cycle benefit bacteria by delaying eventual cell lysis.335–338 An example of this can be 

seen in Salmonella’s maintenance of lysogeny in P22 phages.339 In P22, lytic growth is inhibited 

by the regulatory protein C2, which blocks the transcription of proteins needed for the 

development of lytic cycle. The switch to lytic growth is brought on by the anti-repressor protein 

Ant, which blocks C2 binding to the OR and OL operators of the P22 phage. Repression of this 

progression into the lytic replication cycle can be accomplished through Sar, an asRNA in the 

intergenic region of arc-ant mRNA.340 Sar blocks the ant ribosome binding site, which results in 

a failure to produce Ant and thus increasing bacterial fitness by preventing the escape of the 

prophage from the lysogenic state (Figure D.2A). 
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Figure D.2 Modulation of bacteriophages, flagella production, and nutrient acquisition. 
Examples of asRNA post-transcriptional regulation in pathogenic bacteria to increase fitness 
during infection. Repression of temperate bacteriophages is seen in (A) sar repression of lytic 
growth in Enterobacteria P22 phage (NC_002371.2). sar blocks the anti-repressor ant from 
binding to C2 (orange), which prevents escape from lysogenic growth. Temperature dependent 
regulation in bacteria is represented by (B) Anti0677 control of flagella formation in response to 
temperature change in L. monocytogenes (NC_003210.1). Examples that highlight regulation of 
nutrient acquisition can be seen in (C) RNAα control of iron acquisition in V. anguillarum pJM1 
plasmid (NC_005250.1) and (D) AspocR/B12 riboswitch control of opportunistic propanediol 
catabolism in L. monocytogenes (NC_003210.1). Each panel shows the relative position and size 
of the asRNA (blue), and the target it regulates (green). In (A–C), the successful binding of the 
asRNA to its target promotes mRNA degradation, with iron required in (C) for stable binding. In 
(D), when B12 is absent, a full-length version of the asRNA is transcribed, which binds to pocR 
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mRNA and blocks propanediol fermentation. When B12 is present and binds to the riboswitch, 
transcription ends prematurely, resulting in the production of PocR, which promotes propanediol 
fermentation. 
 

D.3.4 Control of flagella production 

By modifying their outer structures bacteria evade immune response and improve 

persistence within hosts. An example of asRNA’s involvement in this process is observed in 

Listeria monocytogenes, where a long asRNA regulates flagella production in response to 

temperature.341 At 30°C, L. monocytogenes expresses flagella on its surface and exhibits 

swimming motility. Producing flagella requires the expression of a number of genes, including 

the flagellum export apparatus genes (fliP, fliQ, and fliR). When the temperature rises to 37°C, 

the motility gene repressor mogR switches off flagella formation.342 Overlapping fliP, fliQ, and 

fliR is a large asRNA, Anti0677, which negatively regulates their expression by promoting 

mRNA degradation by direct interaction (Figure D.2B). Additionally, the end of Anti0677 both 

contains the coding sequence for and drives the expression of MogR. These two effects — the 

antisense component Anti0677 and increased expression of MogR — together suppress flagella 

formation within the host, possibly reducing the host inflammatory response attempting to lyse 

the invading bacteria.343 The term “excludon” has been proposed for transcripts such as Anti0677 

that both code for proteins and regulate the expression of multiple genes or operons encoded 

divergently from them.344 

 

D.3.5 Regulation of nutrient acquisition 

Bacteria can optimize their growth rates by modulating nutrient acquisition. This 

capability bestows increased fitness to pathogens by allowing them to survive under nutrient-
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poor conditions such as infections.345,346 An example of this phenomenon is iron uptake 

suppression in the fish pathogen Vibrio anguillarum.344,347 Iron is an essential nutrient for most 

bacteria because it plays critical roles in numerous metabolic processes.348 V. anguillarum 

contains the pJM1 plasmid, which encodes most genes necessary for iron-anguibactin 

siderophore transport and biosynthesis.349 Among these are transport proteins FatA and FatB, 

which are encoded by genes fatA and fatB that are transcribed together as a polycistronic mRNA. 

An asRNA termed RNAα, which is encoded within fatB, is expressed in response to increasing 

iron levels. It binds to the fatB portion of the fatA-fatB mRNA and represses the translation of 

both genes (Figure D.2C). Iron further stabilizes the binding of RNAα to fatA-fatB mRNA, 

leading to its degradation. This system helps to reduce the fitness cost associated with metabolic 

burden by synthesizing iron siderophores only when confronted with iron-poor conditions, 

thereby allowing the bacterium to optimize its resources to outcompete other bacteria. 

Another example of improving metabolic fitness through regulating bacterial nutrient 

acquisition is the regulation of propanediol catabolism in L. monocytogenes.350 Propanediol is a 

byproduct of the fermentation of rhamnose and fucose, and is often produced by commensal 

bacteria in host intestines.351,352 Propanediol fermentation is facilitated through a coenzyme B12-

dependent process and can support bacterial growth by providing ATP.353 Some studies suggest 

that propanediol catabolism gives bacteria a competitive advantage, with mutations in related 

genes resulting in a virulence defect.354 Within L. monocytogenes, the presence of propanediol 

activates the transcription factor PocR, which controls the expression of propanediol catabolism 

genes that require vitamin B12 as a cofactor. On the opposite strand of pocR gene, there is a 

vitamin B12 riboswitch-regulated asRNA, AspocR (Figure D.2D). When vitamin B12 is absent, a 

full-length version of AspocR is transcribed, which inhibits pocR expression. When vitamin B12 
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is bound to the riboswitch, AspocR transcript ends prematurely, and hence cannot inhibit pocR. 

This leads to the production of PocR, which promotes the expression of propanediol catabolism 

genes. Thus, the riboswitch-regulated asRNA allows the expression of propanediol fermentation 

genes only when both propanediol and B12 are present, thereby reducing the fitness cost 

associated with unnecessary metabolic burden. 

 

D.4 Conclusions 

asRNAs are ubiquitous in bacteria and are involved in a multitude of pathogenesis-related 

mechanisms. The wide range of asRNA functions span the control of intra- and extra-

chromosomal DNA, as well as adaption strategies to improve persistence under changing 

environments. Some asRNAs are only found in specific bacterial species, while others are found 

across bacteria. Because asRNAs play important roles in modulating the fitness of pathogenic 

bacteria, current research is focused not only on identifying new asRNAs, but also to use them to 

our advantage by developing novel asRNA-based therapeutics. For instance, bacterial antibiotic 

resistance genes can be targeted with synthetic asRNAs, resulting in antibiotic sensitive 

bacteria.355,356 Other possible applications include using asRNA to silence bacterial metabolism 

or ribosomal protein coding genes (successfully shown in E. coli) and protection from 

bacteriophages in the production of live mucosal vaccines.357–359 Applications of these 

techniques beyond in vitro studies have been limited due to difficulties in delivering asRNAs to 

the site of infection.289,360 As these impediments are addressed, the use of asRNAs in therapeutics 

will likely expand and contribute to the understanding of the rich landscape of bacterial control 

systems. 
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Appendix E The GRE in Public Health Admissions: Barriers, Waivers, and Moving 

Forward   

 

This appendix is a published work: 

Millar JA. (2020). The GRE in public health admissions: Barriers, waivers, and moving forward. 

Front Public Health. 8:609599. 

 

E.1 Abstract 

In the wake of COVID-19, there is an urgent need for a diverse public health work force 

to address problems presented or exacerbated by the global pandemic. Educational programs that 

create our work force both train and shape the makeup of access through graduate applications. 

The Graduate Record Exam has a number of standing issues, with additional barriers created by 

the pandemic. We trace the GRE waiver movement over several years, focusing on the gradual 

adoption in CEPH accredited programs and the rapid expansion of temporary waivers as a 

response to testing access. Going forward, we need to consider gaps in waivers during the 

pandemic and how this data can be used to shape our future use of the GRE. 

 

E.2 Introduction 

As we move forward in the profession of public health, many of the problems presented 

or exacerbated by the COVID-19 global pandemic may require new solutions and a diversity of 
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thought and approaches to problem solving. The future of our public health workforce is shaped 

by decisions from our educational programs that decide who can access public health training 

and who designs the trainings. It is important that we consider how components of our graduate 

school applications currently shape our workforce and the possible barriers we create by the 

inclusion of testing metrics, such as the Graduate Record Exam (GRE). As the pandemic has 

unfolded, I have been active in collecting and sharing data on issues with the use of the GRE in 

public health admissions and I believe now is the time to re-think its problematic role in our 

public health workforce. 

 

E.3 Issues with the GRE 

Over the last decade, issues with how the GRE increases barriers to graduate education 

have been more widely discussed. The GRE may not predict academic success, with correlation 

between GRE and academic success appearing to be weak at best.361 Boston University School 

of Public Health found no significant difference in mean GRE component scores for achieving 

>3.0 GPA in 1st year MPH students.362 The Association of Schools and Programs of Public 

Health also found no correlation between GRE scores and final GPA after public health degree 

completion at several of its member schools.363 Colorado SPH found GRE scores to be a weak 

predictor of degree completion, with other variables such as undergraduate GPA better predictors 

of success.364 And University of Minnesota conducted a randomized assessment, finding GRE 

score didn't substantially influence admissions decisions.365 Because of the financial burden and 

gender & racial/ethnic biases within the test, use of the GRE in public health admissions may 

create barriers for underrepresented groups. One of the direct barriers the GRE creates is a 

financial burden, with testing costing $205, and $27 per school submission. Another issue is the 
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impact on diversity and inclusion efforts. Variation in scores by race and gender has been 

reported, with women and members of underrepresented racial and ethnic minority groups 

scoring lower than white and Asian men.366 Given that the GRE is not a convincing predictor of 

graduate school success, these barriers to entry are unnecessary. 

The inequalities in testing have been increased during the COVID-19 pandemic. In 

March 2020 as lockdowns began and testing centers closed, ETS rolled out a solution to testing 

access: the GRE at Home. This version allowed testing to continue online, but came with a 

number of hurdles.367 The requirement of a desktop or laptop and stable internet connection to 

take the GRE at Home are particularly problematic, given the digital divide that has become 

more consequential during the pandemic. A 2019 Pew Research Center survey found one in four 

American adults lack access to high-speed internet. This increases to half for adults with an 

annual income <$30,000 in major US cities.368 In another study looking at undergrads at a large 

Midwestern university, although 98% of students had access to laptops, 20% of students still had 

difficulty accessing necessary education technology.369 These technology barriers create a further 

divide to accessing the test and shut out many students.367 

 

E.4 GRE waiver movement 

Recently, the practice of waiving the GRE in graduate applications has spread. In 2016, 

the American Astronomical Society recommended the elimination of the GRE due to the test's 

poor predictions of success, correlations with gender, race, and socioeconomic status, and 

financial burden.370 In November 2017 Joshua Hall director of the Biological & Biomedical 

Science Program at University of North Carolina at Chapel Hill, created a list of Bio/Biomedical 

programs that waive the GRE requirement.371 By the end of 2018, almost half of all top 50 
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ranked molecular biology programs had waived this requirement, with the practice spreading to 

more STEM disciplines.372 In 2019, some of the first high-ranked public health programs started 

to waive the GRE, including Boston University SPH and University of Colorado SPH.362,364 In 

October 2019, a public health GRE waiver list of degrees/concentrations was created by Jess 

Millar, an Epidemiology MPH student at University of Michigan.373 At the time of its creation, 

48 CEPH accredited programs (one in four) had at least one GRE waiver. 

As COVID-19 started to spread in the United States and lockdowns were initiated, public 

health programs began to consider the possibility of temporarily waiving the GRE in light of 

barriers to the GRE at Home. By the beginning of April, Rutgers allowed temporary waivers for 

Fall 2020.374 By the end of May, at least 9 CEPH accredited programs participated in the 

temporary waiver, with Emory extending their waivers to Fall 2021.375,376 The public health GRE 

waiver list increased 68% during its first 7 months, going from 145 to 243 entries by May 2020. 

By the time the SOPHAS application opened in August, the list had increased another 350% to 

include 880 entries.377 As of September 20th, 2020, the list contains 1,201 entries from 150 

CEPH programs (just over three quarters). 560 of the entries are for concentrations/ degrees with 

a permanent GRE waiver, while 641 are temporary for COVID-19 

(https://www.frontiersin.org/articles/10.3389/fpubh.2020.609599/full#supplementary-material). 

 

E.5 Public health GRE waiver coverage not evenly spread 

The coverage of GRE waivers in public health programs is not equal, with very few 

programs allowing a blanket waiver to all graduate degrees. Among top 50 public health 

programs ranked by US World News, only 15 have a waiver for all degrees (permanent or 

temporary) as of September 20, 2020. Inclusion of a waiver also varies by concentration, with 
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some programs including permanent waivers for specific degrees or concentrations, and 

temporary or no waivers for others. Seventy percentage of degrees in CEPH accredited programs 

currently offer at least a temporary GRE waiver, but that percent drops as low as 59% for 

admissions to biostatistics-specific degree programs (Figure E.1A). These numbers drop to 33 

and 23%, respectively, when only counting permanent waivers. The divide in GRE waivers is 

more apparent between masters and doctoral degrees. Among CEPH accredited programs, only 

50% of degrees offer at least a temporary GRE waiver offered for doctoral degrees and 16% 

offer a permanent waiver (Figure E.1B). Most doctoral programs require doctoral interviews for 

admission. These can and have been used by other disciplines—such as the aforementioned 

STEM programs–to devise interview questions to help identity characteristics found in 

successful doctoral researchers and rely less on the GRE.378 
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Figure E.1 GRE Waiver Snapshot. Percent of degrees at CEPH accredited public health 
programs at U.S. universities that have a GRE waiver. All graduate degrees are shown in (A), 
while only doctoral degrees are shown in (B). Permanent GRE waivers are shown super imposed 
(black) over all GRE waivers (white). Percentage of degrees with any GRE waiver explicitly 
stated at the right of each bar. Not all degrees and concentrations were offered at each program. 
 

E.6 Conclusions 

The pandemic has made inequities in access to education more visible, through the digital 

divide, financial concerns, and resulting conversations of barriers for minority groups. As we 

make our way into the 2020–2021 academic year, public health programs that have not done so 

may want to consider instigating or expanding temporary GRE waivers to more degrees and 
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concentrations. Moving beyond the pandemic, there is a great deal more hesitancy on allowing 

more permanent GRE waivers. Several programs, such as Cornell, University of Iowa, and Ohio 

State, converted their temporary MPH GRE waivers to permanent.379,380 University of 

Washington took it a step further, and converted their temporary GRE waivers to permanent for 

both masters and doctoral degrees.381 

Few studies on the GRE in public health programs have been conducted, but that is 

beginning to change. Boston University and University of North Carolina at Chapel Hill are 

currently conducting three-year studies to look at the impact of removing the GRE requirement 

on diversity and student success.362,382 Several other programs are currently conducting 1-year 

pilot studies on the GRE waiver effect.383,384 Temporary waivers are an opportunity for public 

health programs to test the relevance of GRE scores in the application process and their 

prediction of student success. We have the opportunity to test how removing a barrier to public 

health education will affect the professionals we create and I hope we take it. 
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