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Abstract. Symmetric Nash equilibrium in strategical voting may re-
veal voters’ cardinal information, and voting rules that encourage strate-
gical voting may still be desirable. This paper provides such an example.
It shows that the symmetric Nash equilibrium of the extension of the
majority voting rule on the preference domain with only a Condorcet
cycle depends on the cardinal information of voters’ utility functions.
By comparing the result of this voting rule with that of the random
selection and the best total utility, the paper shows that this voting rule
will always be better than a random selection. Voters’ manipulation
reveals information about their utility function. This information sug-
gests a range for the best possible utility. The utility resulting from the
extension of the majority voting rule is always within this range.

Section 1. Introduction

This paper provides an example of a voting rule which Symmetric Nash
equilibrium in strategical voting reveals voters’ cardinal information. Though
this voting rule encourages strategical voting, it is still consequentially de-
sirable.

A voting rule may be evaluated either procedurally or consequentially. In
other words, we may evaluate a voting rule by assessing whether its process
is fair (the proceduralist approach) or whether it results in good outcomes
(the consequentialist approach).

Both the consequentialist and proceduralist approaches have been well
studied in the game-theoretic literature. Under the proceduralist approach,
whether a voting rule is fair or not is determined by whether it suffices “a
set of ideals with which any collective decision-making procedure ought to
comply”1 or not. One of such widely discussed ideals is strategyproofness.
The strategyproofness axiom requires voting rules to induce voters to vote
according to their true preferences, and to prevent them from voting strate-
gically. In the paper by Dasgupta and Maskin (2020),2 they prove that for

1. Jules Coleman and John Ferejohn, “Democracy and Social Choice,” Ethics 97, no. 1
(1986): 6–25, issn: 00141704, 1539297X, http://www.jstor.org/stable/2381403.

2. Partha Dasgupta and Eric Maskin, “Strategy-Proofness, Independence of Irrelevant
Alternatives, and Majority Rule,” 2020, eprint: AmericanEconomicReview:Insights.Forth
coming;2(4):1-16.
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any set of voters whose domain of true preferences is without Condorcet cy-
cles, the extension of the majority voting rule is strategyproof. In Gibbard
and Satterthwaite’s paper, they prove that in any non-dictatory determin-
istic ordinal system with more than two candidates, a given voting rule will
always be susceptible to strategic voting.34

Under the consequentialist approach, ideal good outcomes may be the
objectively better outcomes, or if there are no objectively better outcomes,
some good, compromised outcomes. If the objectively better outcomes exist,
the purpose of a voting procedure will be to collect information with the goal
of achieving a common goal. If there aren’t such outcomes, the purpose of
the voting rule will be to reconcile voters’ conflicting interests with the goal
of achieving some good compromises. The Condorcet Jury Theorem is one
of the crucial claims under the consequentialist approach that focuses on
information aggregation. The theorem assumes a set of voters (jury), every
one of whom chooses between a correct and an incorrect candidate. The
winner under this voting rule are they who are preferred by a majority. The
Condorcet Jury Theorem states that if the probability of each voter choosing
the correct outcome is greater than 50%, adding more voters increases the
probability that the majority will choose correctly. Also, as the number of
voters increases, the probability of a correct decision approaches 1. On the
other hand, if the probability of an individual choosing correctly is less than
50%, adding more voters reduces the probability of a correct choice by the
majority, and the probability of a correct decision is maximized for a jury
of size one.5

One of the interesting discussions that link the proceduralist and the
consequentialist approaches is the trade-off between strategyproofness and
Pareto efficiency. In this trade-off, it is assumed that only the better out-
comes under the consequentialist approach are considered Pareto efficient.
In Lin Zhou’s paper, they prove that symmetric mechanisms can’t have both

3. Allan Gibbard, “Manipulation of Voting Schemes: A General Result,” Econometrica
41, no. 4 (1973): 587–601, issn: 00129682, 14680262, http : / / www . jstor . org / stable /
1914083.

4. Mark Allen Satterthwaite, “Strategy-proofness and Arrow’s conditions: Existence
and correspondence theorems for voting procedures and social welfare functions,” Journal
of Economic Theory 10, no. 2 (1975): 187–217, issn: 0022-0531, https://doi.org/https:
//doi .org/10.1016/0022- 0531(75)90050- 2, https://www.sciencedirect.com/science/
article/pii/0022053175900502.

5. Marquis de Condorcet, “Essay on the Application of Analysis to the Probability of
Majority Decisions,” Paris: Imprimerie Royale, 1785,
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strategy-proofness and Pareto efficiency.6 One such example is given by Ab-
dulkadiroǧlu, Che, and Yasuda in their paper on school choice.7 Their paper
compares the non-strategy-proof mechanism—the Boston mechanism—with
the strategy-proof mechanism—the student-proposing deferred acceptance
(henceforth DA) mechanism. The paper points out that there is a clear wel-
fare loss associated with the DA relative to the Boston mechanism, which
loss can be seen as the ‘price’ paid for achieving strategy-proofness.

The trade-off between Pareto efficiency and strategy-proofness questions
our obsession with strategy-proofness. This paper takes the consequentialist
approach and studies the extension of the majority voting rule proposed in
Dasgupta and Maskin’s paper. Yet, instead of looking at the voting rule on
a preference domain without the Condorcet cycle, this paper focuses on vot-
ers’ behavior in a domain where the mechanism fails strategyproofness—the
domain with only the Condorcet cycle.

The following paper will first formalize the model of the extension of the
model of the majority voting rule on the preference domain with only a Con-
dorcet cycle. After quantifying and standardizing voters’ utility, the paper
will present the symmetric Nash equilibrium of the game. By applying a
utilitarian approach, the paper will evaluate the voting rule consequentially,
and compare the Nash equilibria with the outcome of random selections and
that of the best possible utility.

Section 2. Model

Let X = {x, y, z} be the set of three candidates for a given office, and
I = {1, 2, 3} the set of voters voting for the candidates. Each voter i ∈ I is
described by its utility function ui : X → [0, 1] such that

(1) max{ui(x′) : x′ ∈ X} = 1, and min{ui(x′) : x′ ∈ X} = 0.

Let the cumulative distribution function of voters’ utility of their second-
preference candidate be F (ti), where ti ∈ (0, 1) is the voter’s utility of their
second-preferred candidate. Note that since this paper discusses only the
symmetric Nash equilibrium in not weakly dominated strategy, the distri-
bution of ti is the same for all i ∈ I.

Let a voting rule be a function that takes a profile of voters’ utility func-
tion to a winner, which is one of the candidates in X. The winner of the
extension of the majority rule is the candidate who is preferred by more than
fifty percent of voters in each head-to-head contest with other candidates. If

6. Lin Zhou, “On a conjecture by gale about one-sided matching problems,” Journal
of Economic Theory 52, no. 1 (1990): 123–135, issn: 0022-0531, https://doi.org/https:
//doi.org/10.1016/0022- 0531(90)90070- Z, https://www.sciencedirect.com/science/
article/pii/002205319090070Z.

7. Atila Abdulkadiroğlu, Yeon-Koo Che, and Yosuke Yasuda, “Resolving Conflicting
Preferences in School Choice: The ”Boston Mechanism” Reconsidered,” American Eco-
nomic Review 101, no. 1 (February 2011): 399–410, https://doi.org/10.1257/aer.101.1.399,
https://www.aeaweb.org/articles?id=10.1257/aer.101.1.399.
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there isn’t such a candidate, then the winner is randomly selected from the
smallest set of candidates, in which set each candidate beats any candidate
in the complement set by a majority.

This paper analyzes the simplest Condorcet Cycle, in which three voters
vote for three candidates following the extension of majority rule. It assumes
that all voters are aware that if they vote according to their true preferences,
their votes will lead to a Condorcet Cycle.

Let � denote an ordering of the candidates. Without loss of generality,
assume voters’ preferences to be the ones shown in table 1.

Table 1. Voters’ Preferences of Candidates x,y, and z

Preference
Voter 1 x � y � z
Voter 2 y � z � x
Voter 3 z � x � y

Section 3. Symmetric Nash equilibrium

Theorem 3.1. In not weakly dominated strategies, if we rule out weakly
dominated strategies and only search for symmetric Nash equilibria, then
there is and only is a symmetric Nash equilibrium. In the symmetric Nash
equilibrium, voters share a threshold v0 ∈ (0, 1). Fix a voter whose true pref-
erence as x1 � x2 � x3 and let the utility of its second preferred candidate
be t. If t ≤ v0, the voter will report their true preferences x1 � x2 � x3; if
v0 ≤ t, voters will manipulate their preferences and report x2 � x1 � x3.

Proof. To prove the theorem, without loss of generality, the following will
first find the best response for voter 1, whose true preference is x � y � z.
The paper will then find the Nash equilibrium of the game by solving the
system of best response for all voters.

Voter 1’s best response is some combination of the preferences in the set
of Reported Preference (henceforth RP), where
(2)
RP = {x � y � z, x � z � y, y � x � z, y � z � x, z � x � y, z � y � x},

depending on other voters’ strategies, the probability of other voter playing
each strategy, and voter 1’s utility function.

Taking voter 2 and 3 into consideration, in table 5 of the appendix, the
paper list the outcome for the |RP |3 = 63 = 216 possible combinations. The
six columns (RP1, RP2, RP3, RP4, RP5, RP6) in table 5 corresponds to the
six possible preferences Voter 1 may report. The 36 rows (Case1, ..., Case36)
correspond to the |RP |2 = 36 possible combinations of preferences Voter 2
and 3 may report. If the combination of preferences do not constitute a
Condorcet Cycle, the outcome will be denoted as one of x, y, z. Otherwise,
it will be written as Condorcet Cycle.
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As we can see from the table 5, for voter 1, reporting preference 1 (x �
y � z, the true preference) weakly dominates both reporting preference 4
(z � y � x) and preference 6 (z � x � y); reporting preference 3 (y � x � z)
weakly dominates reporting preference 5 (y � z � x). Therefore, in a
symmetric Nash equilibrium in not weakly dominated strategy, voter 1 will
report one of the preferences in the set

(3) {x � y � z, x � z � y, y � x � z}.

In a symmetric Nash equilibrium, all voters will adopt the same strategy.
Thus, for an arbitrary voter i whose true preference is x1 � x2 � x3, the
voter will report one of the preferences in the set

(4) {x1 � x2 � x3, x1 � x3 � x2, x2 � x1 � x3},

with a utility function ui : {x1, x2, x3} → [0, 1], where ui(x1) = 1, ui(x2) =
ti, ui(x3) = 0 for i ∈ I. To simplify the discussion of other voters’ proba-
bility of reporting each preference, the following assumes that voter 2 and
3 behave identically. Though adding this assumption may change voter 1’s
best response, it will not influence the symmetric Nash equilibria. With
this assumption, the paper denotes p1 the probability voter i will report
preference 1 (x1 � x2 � x3), p2 the probability it will report preference 2
(x1 � x3 � x2), and p3 (p3 = 1 − p1 − p2) the probability it will report
preference 3 (x2 � x1 � x3). The paper lists the preferences voters report
as well as their corresponding probabilities in table 2.

Table 2. Voters’ Reported Preference and Probabilities

Reported
Preference 1

(RP1)

Reported
Preference 2

(RP2)

Reported
Preference 3

(RP3)
Voter 2 y � z � x y � x � z x � y � z
Voter 3 z � x � y z � y � x y � x � z

Probability p1 p2 p3

Note: The RP of voters 2 and 3 and their probabilities.

After eliminating the weakly dominated strategies from table 5, and
adding the probability and payoff of each combination of voters 2 and 3’s
reported preference, we obtain table 6 in the appendix. The column Prob-
ability refers to the probability each combination will occur in a symmetric
Nash equilibrium. The column payoff refers to voter 1’s payoff in each
combination.

Fix p1, p2, t1, we can calculate voter 1’s expected utility when it reports
preference RP1, RP2, RP3, respectively:
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(5)
E(u1|RP1, p1, p2, t1) = p21

t1+1
3 + p1p2t1 + p1p3 + p1p2 + p22t1 + p2p3 + p23

E(u1|RP2, p1, p2, t1) = p1p3 + p1p2 + p22
t1+1
3 + p2p3 + p23

E(u1|RP3, p1, p2, t1) = p21t1 + p1p2t1 + p1p3t1 + p1p2t1 + p22t1 + p2p3t1

+p23
t1+1
3 .

Fix p1, p2, the equations above are linear functions of t. Thus, if the best
response of voter 1 exists, then the best response can be represented by either
no threshold, or one threshold v0 ∈ (0, 1), or two thresholds v1, v2 ∈ (0, 1),
where v1 < v2, such that:

• Case 1: voter 1 reports one preference independent of the value of
t1.
• Case 2: voter 1 reports one preference if t1 ≤ v0, and another pref-

erence if t1 ≥ v0.
• Case 3: voter 1 reports one preference if t1 ≤ v1, another preference

if v1 ≤ t1 ≤ v2, and another preference if t1 ≥ v2.
Fix reported preferences RP, p1, p2, and consider the functions in system

10 as functions of t1. The slopes of the functions of RP1, RP2, RP3 are

(6)

k1 =
1

3
p21 + p1p2 + p22,

k2 =
1

3
p22,

k3 = p21 + 2p1p2 + p1p3 + p22 + p2p3 +
1

3
p23,

respectively. Note that k2 < k1 < k3.
When t1 → 0, the expected utilities are

(7)


limt1→0E(u1|RP1, p1, p2, t1) = p21

1
3 + p1p3 + p1p2 + p2p3 + p23

limt1→0E(u1|RP2, p1, p2, t1) = p1p3 + p1p2 + p22
1
3 + p2p3 + p23

limt1→0E(u1|RP3, p1, p2, t1) = p23
1
3 .

Note that

(8) limt1→0E(u1|RP1, p1, p2, t1) > limt1→0E(u1|RP3, p1, p2, t1),

(9) limt1→0E(u1|RP2, p1, p2, t1) > limt1→0E(u1|RP3, p1, p2, t1).

When t1 → 1, the expected utilities are
(10)
limt1→1E(u1|RP1, p1, p2, t1) = p21

2
3 + p1p2 + p1p3 + p1p2 + p22 + p2p3 + p23

limt1→1E(u1|RP2, p1, p2, t1) = p1p3 + p1p2 + p22
2
3 + p2p3 + p23

limt1→1E(u1|RP3, p1, p2, t1) = p21 + p1p2 + p1p3 + p1p2 + p22 + p2p3

+p23
2
3 .



SYMMETRIC NASH EQUILIBRIUM IN THE CONDORCET CYCLE 7

Note that

(11) limt1→1E(u1|RP1, p1, p2, t1) > limt1→1E(u1|RP2, p1, p2, t1).

According to the relationships between the slopes of the functions in sys-
tem 10, the possible best response functions for voter 1 are:

• Case 1: Report RP1 regardless of the value of t1
• Case 2:

(1) Reports RP2 if t1 ≤ v0, RP1 if t1 ≥ v0;
(2) Reports RP1 if t1 ≤ v0, RP3 if t1 ≥ v0;
(3) Reports RP2 if t1 ≤ v0, RP3 if t1 ≥ v0;

• Case 3: Reports RP2 if t1 ≤ v1, RP1 if v1 ≤ t1 ≤ v2, RP3 if t1 ≥ v2.
As an example, figure 1 visualizes the expected utility of different reported
preferences in Case 3.

Figure 1. Visualization of Expected Utility

Note: The expected utility of different reported
preferences with respect to voter 1’s utility to its

second preferred candidate.

Note that, fix p1, p2, the voter will play one of the strategies listed in the
cases above, but some of the listed strategies may not appear in voter 1’s
best response function. It is rather hard to write out the specific conditions
of p1, p2 for each strategy explicitly, the following will find the symmetric
Nash equilibrium by exclusion.

If voter 2 and 3 plays case 1, then p2 = p3 = 0, which contradicts with
the necessary condition of voter 1 plays case 1:

(12) limt1→1E(u1|RP1, p1, p2, t1) > limt1→1E(u1|RP3, p1, p2, t1).
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If voter 2 and 3 plays case 2 – (1), then p3 = 0, which contradicts the
necessary condition of voter 2 plays case 2 – (1):

(13) limt1→1E(u1|RP1, p1, p2, t1) > limt1→1E(u1|RP3, p1, p2, t1).

If voter 2 and 3 plays case 2 – (3), then p1 = 0, which contradicts with the
necessary consition of voter 1 plays case 2 – (3):

(14) limt1→1E(u1|RP1, p1, p2, t1) < limt1→1E(u1|RP3, p1, p2, t1).

Thus, two of the cases in the best responses may appear in symmetric
Nash equilibria. The one-threshold case is voter 1 reports RP1 if t1 ≤ v0,
reports RP3 if t1 ≥ v0 with conditions:

(15)

limt1→0E(u1|RP1, p1, p2, t1) ≥ limt1→0E(u1|RP2, p1, p2, t1)

limt1→1E(u1|RP1, p1, p2, t1) < limt1→1E(u1|RP3, p1, p2, t1)

E(u1|RP1, p1, p2, t
∗) ≤ E(u1|RP2, p1, p2, t

∗),

where E(u1|RP1, p1, p2, t
∗) = E(u1|RP3, p1, p2, t

∗).

Note that E(u1|RP1, p1, p2, t
∗) ≤ E(u1|RP2, p1, p2, t

∗) is implied by the other
three functions, and the conditions can be simplified into

(16) p2 < p1, p1 > p3.

The two-threshold case is voter 1 reports RP2 if t1 ≤ v1, reports RP1 if
v1 ≤ t1 ≤ v2, and reports RP3 if t1 ≥ v2, with conditions

(17)

limt1→0E(u1|RP1, p1, p2, t1) < limt1→0E(u1|RP2, p1, p2, t1)

limt1→1E(u1|RP1, p1, p2, t1) < limt1→1E(u1|RP3, p1, p2, t1)

E(u1|RP1, p1, p2, t
∗) ≥ E(u1|RP2, p1, p2, t

∗∗),

where E(u1|RP2, p1, p2, t
∗) = E(u1|RP3, p1, p2, t

∗∗).

Note that E(u1|RP1, p1, p2, t
∗) ≥ E(u1|RP2, p1, p2, t

∗∗) is implied by the
other three functions, and the conditions can be simplified into

(18) p2 > p1, p1 > p3.

If the best response exists, then the one-threshold case and the two-
threshold case are the only two remaining possibilities. Next, the paper
will rule out the two-threshold case and prove that the one-threshold case
is the only possible symmetric Nash equilibrium for this game.

To find the symmetric Nash equilibrium, this paper considers the prob-
ability of voter 2 and 3 reporting RP1 and RP2 the same as that of voter
1. The exact value of v0 and v1, v2 can be found by solving the following
systems.
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For the one-threshold case:

(19)



p1 = F (v0)

p2 = 0

p3 = 1− p1 − p2
E(u1|RP1, p1, p2, v0) = E(u1|RP3, p1, p2, v0)

p2 ≤ p1, p1 > p3

p1, p2, p3, v0 ∈ (0, 1);

and for the two-threshold case:

(20)



p1 = F (v2)− F (v1)

p2 = F (v1)

p3 = 1− p1 − p2
E(u1|RP2, p1, p2, v1) = E(u1|RP1, p1, p2, v1)

E(u1|RP1, p1, p2, v2) = E(u1|RP3, p1, p2, v2)

p2 < p1, p1 < p3

p1, p2, p3, v1, v2 ∈ (0, 1)

v1 < v2;

where F is the distribution function of voters’ utility for their second pref-
erence.

Let us consider first the system of the one-threshold case. System 19 can
be rewritten as

(21)


F (v0) = 3

v0+1 − 1

F (v0) ∈ [12 , 1]

v0 ∈ (0, 1).

On the domain of (0, 1), since F (v0) is an increasing function with range
(0, 1), and 3

v0+1 − 1 is a decreasing function with range (12 , 1), there is and
only is one solution to the first equation of the system, which solution suffices
the latter two inequalities in system 21. Therefore, system 19 has and only
has one solution.

Next, we will prove that the system doesn’t have any solution to the
two-threshold case. System 20 can be rewritten as

(22)


F (v2) = F (v1) · 2−v1v1+1

F (v2) · v2+1
2−v2 = F (v1) + 1

2F (v1) > F (v2) >
1+F (v1)

2

F (v1), F (v2) ∈ (0, 1).
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From the first two equations, we have

(23)

F (v2) ·
v2 + 1

2− v2
− F (v2) ·

v2 + 1

2− v2

= F (v1) ·
2− v1
v1 + 1

· v2 + 1

2− v2
− F (v1)− 1

= 0

Define function g such that for v1 ∈ (0, 1) and constant v2 ∈ (0, 1),

(24) g(v1) = F (v1) ·
2− v1
v1 + 1

· v2 + 1

2− v2
− F (v1)− 1.

Since g(0), g(1) < 0, if g(v1) = 0 has any solution on (0, 1), then there exists
a local extremum v′1 ∈ (0, 1) such that

(25)
dg(v1)

dv1

∣∣∣∣
v1=v′1

= 0, g(v′1) > 0.

The former gives us

(26)
dF (v1)

dv1
= F (v1) ·

2v1−1
(v1+1)2

2−v1
v1+1 −

2−v2
v2+1

.

Since F (v1) is a increasing function of v1,
dF (v1)
dv1

> 0, which gives us v′1 >
1
2 .

Thus

(27)

g(v′1) = F (v′1) ·
2− v′1
v′1 + 1

· v2 + 1

2− v2
− F (v′1)− 1

< F (v′1) · (
v2 + 1

2− v2
− 1)− 1

< F (v′1)− 1

< 0.

As a result, g(v1) ≤ g(v′1) < 0 for all v1 ∈ (0, 1). Thus, system 22 has no
solution.

Therefore, there is and only is a symmetric Nash equilibrium. �

Example 3.2 (Uniform Distribution). Let ti distributed uniformly over
(0, 1), id est F (ti) = ti. Plugging the distribution function to system 19, we
have

(28)


p1 = v0 = 0.7321

p2 = 0

p3 = 0.2679,

Therefore, the symmetric Nash equilibrium in not weakly dominated strat-
egy for this scenario is: for i ∈ {1, 2, 3}, if ui(x2) < 0.7321, voter i re-
ports its preference as x1 � x2 � x3; if ui(x2) > 0.7321, voter i re-
ports x2 � x1 � x3; otherwise, voter i is indifferent between reporting
x1 � x2 � x3 and x2 � x1 � x3.
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Example 3.3 (Truncated Normal Distribution). To generalize our distribu-
tion function, let voters’ utility of their second preference follows a truncated
normal distribution. Here, the truncated normal distribution is derived from
that of a normally distributed random variable by bounding the random
variable from both below and above. The cumulative distribution function
of the distribution is

(29) F (x, µ, σ, a, b) =
Φ(ξ)− Φ(α)

z
,

where ξ = x−µ
σ , α = 0−µ

σ , β = 1−µ
σ , z = Φ(β)−Φ(α), and Φ is the cumulative

distribution function of the standard normal distribution. Note that µ and
σ here are the mean and variance of Φ, but not necessarily the mean and
variance of the truncated normal distribution. By varying the µ and σ of
the distribution, we have the result in table 3.

Table 3. More General Symmetric Nash equilibrium

µ σ v0
1 0.5 0.5 0.7177
2 0.5 0.25 0.6838
3 0.2 0.25 0.5690
4 0.8 0.25 0.8111

Note: The mean µ and the variance σ of
the cumulative distribution function Φ,
and their corresponding threshold v0.

As shown in previous proofs and examples, the symmetric Nash equilib-
rium depends on the distribution function of voters’ utility. The intuition
behind this is that voters are motivated to manipulate their preferences if
they disfavor the Condorcet Cycle. The following will elaborate on this in-
tuition with the example in which voters’ utility distributed uniformly over
(0, 1).

Let voter 1’s true preference be x � y � z as before. Fix other voters’
reported preference, figure 2 shows the probability of each voting outcome
when the voter 1 reports RP1 (x � y � y) and RP3 (y � x � z), respec-
tively.

As we can see from the figure, by switching from RP1 to RP3, voter
1 increases the probability of its second-preferred candidate winning and
decreases the probability of the occurrence of the Condorcet Cycle. The
rationale behind this is that voters’ utilities to their second preference are
not the same as their expected utility resulting from the Condorcet Cycle.
This motivates voters to take risks and encourages them to vote according
to whether they want to avoid the Condorcet cycle or not.



12 ZOE ZHOU

Figure 2. Probability of Outcome for the Symmetric Nash
Equilibrium.

RP1. RP3.

Note: Probability of each candidate wining when the voter reports RP1
and RP3, respectively.

Section 4. Outcome Evaluation

In this section, this paper applies a utilitarian approach to evaluate the
voting outcome. Given the voters’ utility, the paper assumes that the greater
their expected total utility is, the better the outcome is. The following will
compare the outcome of the majority voting rule with that of the random se-
lection and the best total utility. It is through this comparison that we study
the mapping from the distribution of voters’ utility to their second-preferred
candidate to the expected value of voters’ total utility under different rules.

Next, the following will derive the general formula of the expected total
utility for the symmetric Nash equilibrium in the previous section. Denote
the probability density function for voters’ utility of their second-preferred
candidate as f(t), where t ∈ (0, 1) is the value of their utility to their
second-preferred candidate. Given a symmetric Nash equilibrium, there are
2× 2× 2 = 8 possible combinations of voters’ reported preferences. Let the
set {No.j : j ∈ J}, where J = {1, 2, ..., 8}, denote the set of combinations of
voters’ reported preferences. Let pNo.j be the probability that combination
No.j will happen in the symmetric Nash equilibrium. Let the reported
preference RP be a function of t such that
(30)
RP : (0, 1)→
{x � y � z, x � z � y, y � z � x, y � x � z, z � x � y, z � y � z}.

Let ui,j , where i ∈ I = {1, 2, 3} be voter i’s utility in combination No.j. Let

(31) Usum : (0, 1)× (0, 1)× (0, 1)→ [0, 3]

be the expected value of voters’ total utility.
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With all the notations above, voters’ expected total utility can be repre-
sented as:

(32) Usum(t1, t2, t3) =
∑
j∈J

pNo.j · (u1,j + u2,j + u3,j).

Therefore, the expectation of the random variable Usum is:

(33)

E[Usum(t1, t2, t3)]

=
∑
j∈J

pNo.j · E[u1,j + u2,j + u3,j |combination j]

=
∑
j∈J

pNo.j · E[u1,j + u2,j + u3,j |RP (t1), RP (t2), RP (t3)].

Table 7 of the appendix lists all possible combinations of reported prefer-
ences and their corresponding total utility. In the table, each row represents
a combination of the reported preferences. The columns refer to the prob-
ability that the corresponding case will occur in the symmetric Nash equi-
librium; the preferences reported by voters; the voting outcome; the sum of
voters’ utility, respectively. By plugging in the result in table 7 to equation
33, we have:

(34)

E[Usum(t1, t2, t3)]

= p21 ·
∫ v1

0
tdF (t) + (3 · p21 + 3 · p1 · p3 + p23) ·

∫ 1

v1

tdF (t) + 1.

calculation is included in appendix B.1.

Subsection 4.1. Expected Total Utility and Comparison with Ran-
dom Selection.

Theorem 4.1. Voters will be the same, if not better off, under the symmet-
ric Nash equilibrium than under the rule of random selection.

Proof. The expected value for the random selection is

(35) Er[Usum(t1, t2, t3)] = 1 +

∫ 1

0
f(t) · tdt.

Thus,

(36)

E[Usum(t1, t2, t3)]− Er[Usum(t1, t2, t3)]

= (F (v1) + 1)[Er[Usum(t1, t2, t3)] · (F (v1)− 1) + 1]

≥ 0

Therefore, voters will always be better off under the symmetric Nash equi-
librium than under the rule of random selection. �

Example 4.2. By plugging in the values in both example 3.2 and 3.3,
we obtain the expected utility for the uniform and the truncated normal
distribution, which is shown in table 4 in the appendix. In the table, the
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column Uniform Distribution, Truncated Distribution, and the parameters
indicate which specific category of distribution that column refers to. The
row Random Selection corresponds to the expected value of the sum of
voters’ utility if the winner is selected randomly. The row Symmetric Nash
Equilibrium corresponds to the expected value of the sum of voters’ utility
in symmetric Nash equilibrium. As shown in table 4, compared to random
selection, voters are in general better off in the symmetric Nash equilibrium.

Table 4. Examples of Expected Sum

Expected
Total
Utility

Uniform
Distribution

Truncated Distribution

mean = 0.5
µ = 0.5
σ = 0.5

µ = 0.5
σ = 0.25

µ = 0.2
σ = 0.25

µ = 0.8
σ = 0.25

Random
Selection

1.5 1.5 1.5 1.2912 1.7088

Symmetric
Nash

Equilibrium
1.6699 1.6547 1.6169 1.3559 1.8179

Note: The expected total utility of random selection and symmetric Nash
equilibrium for different distribution functions of t.

Subsection 4.2. Case Study and Comparison with the Best Possible
Uitlity. With the approach of utilitarianism, we want to pick a candidate
that maximizes voters’ total utility. Ideally, we would want voters to expose
their utility functions so that we can pick a winner that maximizes their
total utility. This exposure is rarely realistic. However, in the game this
paper sets up, given voters’ true preferences and the Nash equilibrium they
were in, we can obtain information about their utility functions according
to the way they manipulate their preferences.

For example, in the symmetric Nash equilibrium, for a voter whose true
preference is x1 � x2 � x3, their utility to the second-preferred candidate,
which this paper denotes as t, is less or equal to v0; if they report x1 � x3 �
x2, then their utility to the second-preferred candidate is larger or equal to
v0.

We then revisit tables 7. Instead of presenting voters’ preferences ex-
plicitly, the paper denotes their reported preferences as RP1, RP2, RP3 as
indicated in table 2. The paper also adds the column Implication, which
records the information voters’ reported preferences indicate, and add the
column Best Utility, which keeps track of the best possible utility, which
gives us table 8. As we can see from the tables, voters’ manipulation reveals
information about their utility function. This information provides a range
for the best possible utility, and the utility resulted from the extension of
the majority voting rule is always within this range.
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Though ordinal voting rules don’t request voters’ utility functions, in some
contexts, voters nevertheless reveal information concerning the cardinal in-
formation about their utility functions. In the game this paper set up, it is
exactly through voters’ manipulation that voters reveal information about
their strength of preferences.

Section 5. Conclusion

This paper serves as a footnote for the discussion of the tradeoff between
strategyproofness and Pareto efficiency.

The studies of the extension of the majority voting rule oftentimes ex-
clude the discussion about the domain that induces the Condorcet cycle,
for including this domain will fail the strategyproofness axiom. This paper,
however, focuses only on this excluded domain and compares the same (yet
now non-strategyproof) majority voting rule with the strategyproof voting
rule–random selection. It shows that despite its strategyproofness, the out-
come of the rule of random selection is less, or at most equally as efficient
as the extension of the majority voting rule.

In this game setting, the Pareto efficient outcome is the best possible
outcome under the utilitarian approach. Though the information a voting
profile provides is not enough to determine the exact best possible utility,
it oftentimes nevertheless excludes some absolutely not best utility. While
the outcome of random selection may be excluded from this additional in-
formation, such information never precludes the outcome of the extended
majority voting rule. Thus, in the scenario this paper studies, the non-
strategyproofness voting rule is equally efficient as, if not more than, the
strategyproof voting rule.

Admittedly, while evaluating the outcome of the extension of the major-
ity voting rule, this paper uses only the symmetric Nash equilibrium and
doesn’t discuss the asymmetric Nash equilibrium. The dynamics between
asymmetric Nash equilibrium and the result of the random selection will be
an interesting topic for future studies.

Acknowledgements. I would like to express my gratitude to my supervi-
sor, professor Tilman Börgers, who guided me throughout this project.
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Appendix A. Tables

Note for table 5: The winner of the game in different voting profiles. The
six columns (RP1,RP2,RP3,RP4,RP5,RP6) in the table corresponds to the
six possible preferences Voter 1 may report. The 36 rows (Case1, ..., Case36)
correspond to the |RP |2 = 36 possible combinations of preferences voter 2
and 3 may report. If the combination of preferences does not constitute a
Condorcet Cycle, the outcome will be denoted as one of x, y, z. Otherwise,
it will be written as Condorcet Cycle.

Note for table 6: The winner and the payoff for voter 1 in different voting
profiles. After eliminating the weakly dominated strategies from table 5,
and adding the probability and payoff of each combination of voters 2 and
3’s reported preference, we obtain table 6.

Note for table 7: The probability, outcome, and the sum of voters’ util-
ity for each voting profile. In the table, each row represents a combination
of the reported preferences. The columns refer to the probability that the
corresponding case will occur in the symmetric Nash equilibrium; the pref-
erences reported by voters; the voting outcome; the sum of voters’ utility,
respectively.

Note for table 8: The implication of t, the sum of voters’ utility, and
the best utility for each voting profile. The column Implication records the
information voters’ reported preferences indicate. the column Best Utility
keeps track of the best possible utility.
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Appendix B. Proofs and Calculations

Subsection B.1. Additional Calculation for Section . For the ex-
pected utility of the Nash equilibrium,
(37)
E[Usum(t1, t2, t3)]

= p1 · p1 · p1 · E[1 +
1

3
· (t1 + t2 + t3)|t1 ≤ v0, t2 ≤ v0, t3 ≤ v0]

+ p1 · p1 · p3 · E[t1 + 1|t1 ≥ v0, t2 ≤ v0, t3 ≤ v0]
+ p1 · p1 · p3 · E[t3 + 1|t1 ≤ v0, t2 ≤ v0, t3 ≥ v0]
+ p1 · p3 · p3 · E[t1 + 1|t1 ≥ v0, t2 ≤ v0, t3 ≥ v0]
+ p1 · p1 · p3 · E[t2 + 1|t1 ≤ v0, t2 ≥ v0, t3 ≤ v0]
+ p1 · p3 · p3 · E[t2 + 1|t1 ≥ v0, t2 ≥ v0, t3 ≤ v0]
+ p1 · p3 · p3 · E[t3 + 1|t1 ≤ v0, t2 ≥ v0, t3 ≥ v0]

+ p3 · p3 · p3 · E[1 +
1

3
· (t1 + t2 + t3)|t1 ≥ v0, t2 ≥ v0, t3 ≥ v0]

= p31 · {1 + E[t|t ≤ v0]}+ p21 · p3 · {1 + E[t|t ≥ v0]}+ p21 · p3 · {1 + E[t|t ≥ v0]}
+ p23 · p1 · {1 + E[t|t ≥ v0]}+ p21 · p3 · {1 + E[t|t ≥ v0]}
+ p1 · p23 · {1 + E[t|t ≥ v0]}+ p1 · p23 · {1 + E[t|t ≥ v0]}+ ·p33 · {1 + E[v|t ≥ v0]}
= p31 · E[t|t ≤ v0] + (3 · p21 · p3 + 3 · p1 · p23 + p33) · E · [t|t ≥ v0] + 1

= p31 ·
∫ v0

0
f(t|t ≤ v0) · tdt+ (3 · p21 · p3 + 3 · p1 · p23 + p33) ·

∫ 1

v0

f(t|t ≥ v0) · tdt+ 1.

Since

(38) f(t|t ≤ v0) =
f(t)∫ v0

0 f(t)dt
=
f(t)

p1
,

we have

(39)

∫ v0

0
f(t|t ≤ v0) · dt = p1

−1
∫ v0

0
t · dF (t).

Similarly,

(40)

∫ 1

v0

f(t|t ≥ v0) · dt = p3
−1
∫ 1

v0

t · dF (t).

Thus,

(41)

E[Usum(t1, t2, t3)]

= p21 ·
∫ v1

0
tdF (t) + (3 · p21 + 3 · p1 · p3 + p23) ·

∫ 1

v1

tdF (t) + 1
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