
1. Introduction
Computation of electromagnetic fields radiated by a source in the vicinity of cylindrical structures is often needed 
in a wide range of applications. The generalized treatment of a point source radiating in a multilayer cylindrical 
structure was developed by Chew (1995). Electromagnetic radiation in the vicinity of the conducting cylinder 
was determined (Carter, 1943; Wait, 1959). The method of steepest descent was used to evaluate the far fields for 
sources in the vicinity of an infinitely long conducting cylindrical antenna (Lucke, 1951; Papas, 1949).

The closed form Green's function of a cylindrically stratified media was formulated (Tokgoz & Dural, 2000) by 
deforming the integration path from the real axis to the complex domain followed by the general pencil of func-
tion (GPOF) technique (Hua & Sarkar, 1989). The closed form Green's function using the rational function fitting 
method was reported by Okhmatovski and Cangellaris  (2004). The spectral domain mixed-potential Green's 
function was used (Bertuch et al., 2012) for the analysis of a perfect electric conducting (PEC) cylinder coated 
with a dielectric layer. An asymptotic extraction approach for the spectral domain mixed potential Green's func-
tion was developed (Ye et al., 2013) by expressing the reflection and transmission matrices in the ratio form. The 
evaluation of input impedance and mutual coupling of microstrip antennas on multilayer cylindrical structures 
were investigated (Karan & Ertürk, 2014). An efficient Green's function technique was proposed (Bhattacharya 
et al., 2017) for the evaluation of the input impedance of antennas in cylindrical multilayer configurations by 
decomposition of the spectral Green's function into particular and homogeneous parts. Guidance conditions and 
radiation characteristics of antennas in multilayer cylindrical configurations were investigated (Bhattacharya 
et al., 2020).

Numerical integrations on cylindrical Green's functions involve complex integration techniques in order to 
deal with the convergence of the Sommerfeld integral tail (Ebihara & Chew, 2003; Moon et  al.,  2014; Xing 
et  al.,  2018). Nine range conditioned approximations were used depending on the argument of the cylindri-
cal Bessel/Hankel functions in order to perform the spectral domain integration (Moon et al., 2014). Rescaled 
representations of modified cylindrical Bessel functions were employed (Xing et al., 2018) to achieve a robust 
formulation and address the numerical overflow and underflow problems under double-precision arithmetic for 

Abstract A numerical integration of the Sommerfeld integral is performed using the Schelkunoff 
formulation for cylindrical media. The Schelkunoff kernel for cylindrical media involves higher order modified 
Bessel functions with azimuthal summation over higher order modes. As such, the convergence characteristics 
of the cylindrical integral kernel are strongly dependent on complex linear combinations of higher order Bessel/
Hankel/modified Bessel functions, compared to the case of the planar media where only a single Bessel/
modified Bessel function of zeroth order is present. Two cylindrical configurations are analyzed using the 
new formulation, viz. a conducting cylinder and a dielectric-coated conducting cylinder. The branch-point 
singularity in the first configuration is removed using the angular transformation for the Sommerfeld/
Schelkunoff formulations. A path deformation technique is used for the second configuration to address the 
problem of poles and branch-point singularities on the real axis of integration. The in-depth analysis of the 
cylindrical kernels and the integrals with variation in the location of the observation point clearly bring out 
the  relative merits of both formulations for the cylindrical configurations, with the TE/TM coupling for the 
coated cylinder considered.

SHAIKH ET AL.

© 2022. American Geophysical Union. 
All Rights Reserved.

Schelkunoff Formulation of the Sommerfeld Integral for 
the Hertzian Dipole Located in the Vicinity of Cylindrical 
Structures
Tazeen Shaikh1  , Bratin Ghosh1  , Dhrubajyoti Bhattacharya2, and Kamal Sarabandi3

1Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India, 
2Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Bhagalpur, India, 
3Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA

Key Points:
•  The Schelkunoff kernel for cylindrical 

media involves higher order modified 
Bessel functions with higher order 
azimuthal modal summation

•  The Sommerfeld integral converges 
faster than Schelkunoff integral for 
large radial separation between source 
and field points

•  The Schelkunoff integral converges 
faster compared to Sommerfeld 
integral for large axial separation 
between source and field points

Correspondence to:
T. Shaikh,
tazeenshaikh@iitkgp.ac.in

Citation:
Shaikh, T., Ghosh, B., Bhattacharya, D., 
& Sarabandi, K. (2022). Schelkunoff 
formulation of the Sommerfeld integral 
for the Hertzian dipole located in the 
vicinity of cylindrical structures. Radio 
Science, 57, e2022RS007451. https://doi.
org/10.1029/2022RS007451

Received 15 FEB 2022
Accepted 12 AUG 2022

10.1029/2022RS007451
RESEARCH ARTICLE

1 of 15

https://orcid.org/0000-0002-3588-0138
https://orcid.org/0000-0003-3499-005X
https://doi.org/10.1029/2022RS007451
https://doi.org/10.1029/2022RS007451


Radio Science

SHAIKH ET AL.

10.1029/2022RS007451

2 of 15

the computation of electric potential due to arbitrary located point electrodes in cylindrically anisotropic layered 
media. A vertical tail approach was adapted (Ebihara & Chew, 2003) to address the highly oscillating horizontal 
tail of the Sommerfeld integral in the modeling of a vertical dipole antenna array in a borehole radar.

For the planar problem of a dipole radiating over a half-space, the radiated fields by the dipole are usually 
expressed by the Sommerfeld integral with transverse spectral expansion of fields. Alternative field solutions 
for a dipole radiating over a lossy conductor including the axial-transmission, radial-transmission and nonspec-
tral are developed and compared (Michalski & Mosig,  2015b). An extension to the dipole radiation over a 
multilayer and plasmonic media was reported by Michalski and Mosig (2015a). An alternative expression for 
fields produced by a dipole above a two-layered structure using longitudinal spectral expansion is presented 
(Bhattacharyya, 2018a, 2018b) in which it was shown that auxiliary fields need to be added to obtain source free 
spectral components.

An equivalent expression to the Sommerfeld integral, called the modified Sommerfeld integral was proposed by 
Schelkunoff (1936). The formulation (Schelkunoff, 1936) used the modified Bessel function of the second kind 
instead of the Bessel function which was conventionally used. Based on this, a spectral integration along the 
vertical wavenumber, referred to as the Schelkunoff integral, was used instead of the transverse spectral expan-
sion for the Sommerfeld half space problem (Dyab, Abdallah, et al., 2013; Dyab, Sarkar, et al., 2013; Sarkar 
et al., 2014). The formulation was used to compute the radiation from a vertical dipole over an imperfect ground 
(Dyab, Abdallah, et al., 2013; Dyab, Sarkar, et al., 2013). Absolute values of the Sommerfeld and Schelkunoff 
integrands were compared for various radial and vertical distances, and their relative convergence characteristics 
with large/small radial/vertical distances from the source were evaluated. It is illustrated that the Schelkunoff 
integral produces accurate results compared to the Sommerfeld integral for field computation at large radial 
distances from the source for the vertical electric dipole, by comparing calculated results with experimental data 
in the literature (Sarkar et al., 2014). The Schelkunoff formulation for the horizontal dipole over an imperfect 
ground was reported (Dyab et al., 2016), where the faster convergence of the Schelkunoff integral compared to 
the Sommerfeld was observed for large radial distances from the source.

In the proposed work, a formulation for antenna configurations for the dipole radiating in the vicinity of cylin-
drical structures is developed. The scattered fields are expressed in terms of modified Bessel functions of the 
first and the second kind of higher orders instead of Bessel and Hankel functions which are conventionally used 
in Sommerfeld integral. The presence of higher order azimuthal modes and azimuthal summation over higher 
order harmonics of Bessel/Hankel/modified Bessel functions in the Sommerfeld and Schelkunoff formulations 
in the current case is distinctly different from the planar media where only a single Bessel/modified Bessel 
function of zeroth order is present. Consequently, convergence characteristics in the current case are dominated 
by complex linear combinations of higher order Bessel/Hankel/modified Bessel functions instead of the Bessel/
modified Bessel function of zeroth order only in planar media. The technique is used for the analysis of two 
cylindrical structures, viz. a conducting cylinder and a dielectric-coated conducting cylinder illustrating two 
distinct approaches for the evaluation of the Sommerfeld/Schelkunoff integrals. The branch-point singularity in 
the integration along the real axis is removed by angular spectral representation in the case of the conducting 
cylinder for the Sommerfeld and Schelkunoff kernels. The parametric path deformation technique is used for the 
coated conducting cylinder to circumvent the pole and branch-point singularities along the real axis. The results 
obtained by both the formulations are compared in terms of their integrands as well as integrals for a wide range 
of field points to illustrate their relative merits for the cylindrical configurations, considering the TE/TM mode 
coupling for the coated cylinder. Though only a single layer of dielectric coating is considered in the work, the 
treatment can be extended to a multilayer cylindrical configuration.

The paper is organized as follows. In Section  2, the Sommerfeld formulation is used as a starting point for 
formulating the Schelkunoff integral. Techniques employed to solve the integrals for the conducting cylinder 
and for the dielectric-coated conducting cylinder are discussed. In Section 3, a detailed comparison between 
both the formulations is provided and the results for both the kernels and integrals for the conducting cylinder 
and the dielectric-coated cylinder are compared. The decay rates of the cylindrical kernels with increasing wave-
number are investigated. The rate of convergence for different field locations is also plotted and compared for 
both the integrals. Computation time required to achieve the same accuracy in the evaluation of the integrals are 
compared. The analysis distinctly highlights the relative merits of the two formulations for cylindrical structures. 
Section 4 contains the conclusion.
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2. Formulation
2.1. PEC Cylinder

A perfectly conducting cylinder with radius 𝐴𝐴 𝐴𝐴1 and excited by a 𝐴𝐴 𝐴𝐴𝐴—directed 
Hertzian dipole located in free space is shown in Figure 1. The locations of 
the source and field points in the outermost media (free space) are denoted 
by 𝐴𝐴 (𝜌𝜌

′
, 𝜙𝜙

′
, 𝑧𝑧

′
) and 𝐴𝐴 (𝜌𝜌𝜌 𝜌𝜌𝜌 𝜌𝜌) respectively. A time variation of 𝐴𝐴 𝐴𝐴

𝑗𝑗𝑗𝑗𝑗𝑗 is assumed and 
suppressed throughout the analysis.

The z-component of the electric and magnetic field radiated by the dipole in 
the vicinity of the cylinder is expressed through the Sommerfeld's identity as 
(Chew, 1995):

⎡
⎢
⎢
⎣

𝐸𝐸𝑧𝑧

𝐻𝐻𝑧𝑧

⎤
⎥
⎥
⎦
=

−𝑗𝑗

4𝜋𝜋𝜋𝜋𝜋𝜋0

∞∑

𝑛𝑛=−∞

e
−𝑗𝑗𝑛𝑛(𝜙𝜙−𝜙𝜙′)

∞

∫
−∞

𝑑𝑑𝑑𝑑𝑧𝑧e
−𝑗𝑗𝑑𝑑𝑧𝑧(𝑧𝑧−𝑧𝑧

′)𝐹𝐹 𝑛𝑛1

(
𝜌𝜌𝜌 𝜌𝜌

′
)
⋅
⃖⃖�⃖�𝐷

′

2 (1)

where

𝐹𝐹 𝑛𝑛1

(
𝜌𝜌𝜌 𝜌𝜌

′
)
= 𝐻𝐻

(2)

𝑛𝑛 (𝑘𝑘𝜌𝜌0𝜌𝜌)

[
𝐽𝐽𝑛𝑛

(
𝑘𝑘𝜌𝜌0𝜌𝜌

′
)
𝐼𝐼 +𝐻𝐻

(2)

𝑛𝑛

(
𝑘𝑘𝜌𝜌0𝜌𝜌

′
)
⋅ 𝑅𝑅

𝑠𝑠𝑠𝑠

21

]
 (2)

with

⃖⃖�⃖�𝐷
′

2 =
−𝑗𝑗

2

⎡
⎢
⎢
⎣

𝑘𝑘
2

𝜌𝜌0

0

⎤
⎥
⎥
⎦

 (3)

𝐴𝐴 𝐴𝐴
2

𝜌𝜌0
= 𝐴𝐴

2

0
− 𝐴𝐴

2
𝑧𝑧 and 𝐴𝐴 𝐴𝐴0 = 𝜔𝜔

√
𝜇𝜇0𝜖𝜖0 . In Equation 2, 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑥𝑥) and 𝐴𝐴 𝐴𝐴

(2)

𝑛𝑛 (𝑥𝑥) are the Bessel function of first kind and Hankel 
function of second kind of order n respectively and 𝐴𝐴 𝐼𝐼  denotes the 𝐴𝐴 2 × 2 identity matrix.

𝑅𝑅
𝑠𝑠𝑠𝑠

21 =

⎡
⎢
⎢
⎢
⎣

−
𝐽𝐽𝑛𝑛(𝑘𝑘𝜌𝜌0𝑎𝑎1)

𝐻𝐻
(2)

𝑛𝑛 (𝑘𝑘𝜌𝜌0𝑎𝑎1)
0

0 −
𝐽𝐽
′
𝑛𝑛(𝑘𝑘𝜌𝜌0𝑎𝑎1)

𝐻𝐻
(2)

𝑛𝑛

′

(𝑘𝑘𝜌𝜌0𝑎𝑎1)

⎤
⎥
⎥
⎥
⎦

 (4)

denotes the local reflection matrix obtained from the boundary conditions at the cylinder-free space interface.

Equation 1 can alternatively be represented by employing the transverse spectral expansion instead of the longi-
tudinal component using Equation 1 by Schelkunoff (1936) as:

⎡
⎢
⎢
⎣

𝐸𝐸𝑧𝑧

𝐻𝐻𝑧𝑧

⎤
⎥
⎥
⎦
=

−1

2𝜋𝜋𝜋𝜋𝜋𝜋0

2

𝜋𝜋

∞∑

𝑛𝑛=−∞

e
−𝑗𝑗𝑛𝑛(𝜙𝜙−𝜙𝜙′)

∞

∫
0

𝑑𝑑𝑑𝑑𝜌𝜌0

𝑑𝑑𝜌𝜌0

√
𝑑𝑑
2

0
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2

𝜌𝜌0

cos
(
𝑑𝑑𝑧𝑧

(
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′
))

𝐹𝐹 𝑛𝑛2

(
𝜌𝜌𝜌 𝜌𝜌

′
)
⋅
⃖⃖�⃖�𝐷

′

2 (5)

where

𝐹𝐹 𝑛𝑛2

(
𝜌𝜌𝜌 𝜌𝜌

′
)
= 𝐾𝐾𝑛𝑛

(
𝜌𝜌

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
𝐼𝐼𝑛𝑛

(
𝜌𝜌
′

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
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(
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√
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2
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2

0
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′

√
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2

0
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21 (6)

In Equation 6, 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑥𝑥) and 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑥𝑥) are modified Bessel functions of the first and second kinds respectively of order 
n, with

𝑅𝑅
𝑠𝑠𝑠𝑠

21 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−

𝐼𝐼𝑛𝑛

(
𝑎𝑎1

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)

𝐾𝐾𝑛𝑛

(
𝑎𝑎1

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

) 0

0 −

𝐼𝐼
′
𝑛𝑛

(
𝑎𝑎1

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)

𝐾𝐾
′
𝑛𝑛

(
𝑎𝑎1

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

 (7)

Figure 1. Configuration of a perfectly conducting cylinder excited by a 𝐴𝐴 𝐴𝐴𝐴—
directed Hertzian dipole.
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Equation 5 can be interpreted as the Schelkunoff integral for the cylindrical configuration that is obtained by 
modification in the Sommerfeld integral with change in the integration variable from 𝐴𝐴 𝐴𝐴𝑧𝑧 to 𝐴𝐴 𝐴𝐴𝜌𝜌 .

In order to remove the branch-point singularity at 𝐴𝐴 𝐴𝐴𝑧𝑧 = 𝐴𝐴0 in the evaluation of the Sommerfeld integral in Equa-
tion 1, the integral in 𝐴𝐴 𝐴𝐴𝑧𝑧 is transformed to the 𝐴𝐴 𝐴𝐴 domain using the substitution:

𝑘𝑘𝑧𝑧 = 𝑘𝑘0 sin
(
𝛽𝛽
′
+ 𝑗𝑗𝛽𝛽

′′
)

 (8)

As such, on the main part of the contour 𝐴𝐴 0 ≤ 𝑘𝑘𝑧𝑧 ≤ 𝑘𝑘0 :

𝑘𝑘𝑧𝑧 = 𝑘𝑘0 sin 𝛽𝛽
′ (9)

𝑘𝑘𝜌𝜌0 = 𝑘𝑘0 cos 𝛽𝛽
′ (10)

while on the tail part of the integral (�0 ≤ �� ≤ ∞ ):

𝑘𝑘𝑧𝑧 = 𝑘𝑘0 sin

(
𝜋𝜋

2
+ 𝑗𝑗𝑗𝑗

′′

)
= 𝑘𝑘0 cosh 𝑗𝑗

′′ (11)

𝑘𝑘𝜌𝜌0 = −𝑗𝑗𝑘𝑘0 sinh 𝛽𝛽
′′ (12)

Using the above substitutions, Equation 1 can be represented as:

𝐸𝐸𝑧𝑧 =
−𝑗𝑗

4𝜋𝜋𝜋𝜋𝜋𝜋0

∞∑

𝑛𝑛=−∞

e
−𝑗𝑗𝑛𝑛(𝜙𝜙−𝜙𝜙′)

⎧
⎪
⎨
⎪
⎩

𝜋𝜋∕2

∫
0

𝑑𝑑𝑑𝑑
′
(
𝑘𝑘0 cos 𝑑𝑑

′
)3

cos
(
𝑘𝑘0 sin 𝑑𝑑

′
(
𝑧𝑧 − 𝑧𝑧

′
))

(−𝑗𝑗)𝐹𝐹𝑛𝑛3

(
𝜌𝜌𝜌 𝜌𝜌

′
)
+ 

∞

∫
0

𝑑𝑑𝑑𝑑
′′
(
𝑘𝑘0 sinh 𝑑𝑑

′′
)
𝑘𝑘
2

𝜌𝜌0
cos

(
𝑘𝑘0 cosh 𝑑𝑑

′′
(
𝑧𝑧 − 𝑧𝑧

′
))

(−𝑗𝑗)𝐹𝐹𝑛𝑛4

(
𝜌𝜌𝜌 𝜌𝜌

′
)
⎫
⎪
⎬
⎪
⎭

 (13)

where

��3 (�, �′) = � (2)
� (��0 cos �′) �� (�′�0 cos �′)

+� (2)
� (��0 cos �′)� (2)

� (�′�0 cos �′)
(

−
�� (�1�0 cos �′)
� (2)

� (�1�0 cos �′)

)

 (14)

��4 (�, �′) = � (2)
� (−���0 sinh �′′) �� (−��′�0 sinh �′′)

+� (2)
� (−���0 sinh �′′)� (2)

� (−��′�0 sinh �′′)
(

−
�� (−��1�0 sinh �′′)
� (2)

� (−��1�0 sinh �′′)

)

 (15)

The spatial domain fields can also be evaluated using the Schelkunoff integral in Equation 5. In order to circum-
vent the branch-point singularity in this case, we use the following substitutions in the complex 𝐴𝐴 𝐴𝐴 plane:

For the main part of the contour 𝐴𝐴 0 ≤ 𝑘𝑘𝜌𝜌0 ≤ 𝑘𝑘0 :

𝑘𝑘𝜌𝜌0 = 𝑘𝑘0 sin 𝛽𝛽
′ (16)

𝑘𝑘𝑧𝑧 = 𝑘𝑘0 cos 𝛽𝛽
′ (17)

For the tail part (�0 ≤ ��0 ≤ ∞ ):

𝑘𝑘𝜌𝜌0 = 𝑘𝑘0 sin

(
𝜋𝜋

2
+ 𝑗𝑗𝑗𝑗

′′

)
= 𝑘𝑘0 cosh 𝑗𝑗

′′ (18)

𝑘𝑘𝑧𝑧 = 𝑗𝑗𝑘𝑘0 sinh 𝛽𝛽
′′ (19)
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Equation 5 can now be written as:

𝐸𝐸𝑧𝑧 =
−𝑗𝑗

4𝜋𝜋𝜋𝜋𝜋𝜋0

(
2

𝜋𝜋

) ∞∑

𝑛𝑛=−∞

e
−𝑗𝑗𝑛𝑛(𝜙𝜙−𝜙𝜙′)

⎧
⎪
⎨
⎪
⎩

𝜋𝜋∕2

∫
0

𝑑𝑑𝑑𝑑
′
(−1)

(
𝑘𝑘0 sin 𝑑𝑑

′
)3

cos
(
𝑘𝑘0 cos 𝑑𝑑

′
(
𝑧𝑧 − 𝑧𝑧

′
))

𝐹𝐹𝑛𝑛5

(
𝜌𝜌𝜌 𝜌𝜌

′
)

 

+

∞

∫
0

𝑑𝑑𝑑𝑑
′′
(
𝑘𝑘0 cosh 𝑑𝑑

′′
)3
(𝑗𝑗)e

−(𝑧𝑧−𝑧𝑧′)𝑘𝑘0 sinh 𝑑𝑑
′′

𝐹𝐹𝑛𝑛6

(
𝜌𝜌𝜌 𝜌𝜌

′
)
⎫
⎪
⎬
⎪
⎭

 (20)

where

��5 (�, �′) = �� (���0 sin �′) �� (��′�0 sin �′)

+�� (���0 sin �′)�� (��′�0 sin �′)
(

−
�� (��1�0 sin �′)
�� (��1�0 sin �′)

)

 (21)

��6
(

�, �′
)

= ��
(

���0 cosh �′′) ��
(

��′�0 cosh �′′)

+��
(

���0 cosh �′′)��
(

��′�0 cosh �′′)
(

−
�� (��1�0 cosh �′′)
�� (��1�0 cosh �′′)

)

 (22)

2.2. Dielectric-Coated Conducting Cylinder

The next configuration to be investigated is shown in Figure 2. For the structure, a perfectly conducting cylinder, 
coated with a dielectric layer is illuminated by a 𝐴𝐴 𝐴𝐴𝐴—directed Hertzian dipole located in free space. The radii of the 
inner and outer cylindrical layers are 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 respectively, with 𝐴𝐴 𝐴𝐴2 and 𝐴𝐴 𝐴𝐴2 denoting the permittivity and permea-
bility of the dielectric layer respectively.

For the current two-layered configuration, the radial dependence of fields in Equation 1 is given by:

𝐹𝐹 𝑛𝑛7

(
𝜌𝜌𝜌 𝜌𝜌

′
)
= 𝐻𝐻

(2)

𝑛𝑛 (𝑘𝑘𝜌𝜌0𝜌𝜌)

[
𝐽𝐽𝑛𝑛

(
𝑘𝑘𝜌𝜌0𝜌𝜌

′
)
𝐼𝐼 +𝐻𝐻

(2)

𝑛𝑛

(
𝑘𝑘𝜌𝜌0𝜌𝜌

′
)
⋅

̃
𝑅𝑅

𝑠𝑠𝑠𝑠

32

]
 (23)

where

̃
𝑅𝑅

𝑠𝑠𝑠𝑠

32 = 𝑅𝑅
𝑠𝑠𝑠𝑠

32 + 𝑇𝑇
𝑠𝑠𝑠𝑠

23 ⋅ 𝑅𝑅
𝑠𝑠𝑠𝑠

21

(
𝐼𝐼 − 𝑅𝑅

𝑠𝑠𝑠𝑠

23 ⋅ 𝑅𝑅
𝑠𝑠𝑠𝑠

21

)−1

⋅ 𝑇𝑇
𝑠𝑠𝑠𝑠

32 (24)

The local reflection and transmission matrices in Equation 24 are provided 
by Chew  (1995) with 𝐴𝐴 𝑅𝑅

𝑠𝑠𝑠𝑠

21  as defined in Equation  4 replaced by the local 
reflection matrix corresponding to the dielectric—PEC interface. The spatial 
domain fields for the Sommerfeld case can be obtained by substituting 

𝐴𝐴 𝐹𝐹𝑛𝑛1 (𝜌𝜌𝜌 𝜌𝜌
′
) by 𝐴𝐴 𝐹𝐹𝑛𝑛7 (𝜌𝜌𝜌 𝜌𝜌

′
) in Equation 1.

The radial dependence of fields in the Schelkunoff formulation in Equation 5 
is given by:

� �8
(

�, �′
)

= ��

(

�
√

�2
� − �2

0

)

��
(

�′
√

�2
� − �2

0

)

�

+��

(

�
√

�2
� − �2

0

)

��

(

�′
√

�2
� − �2

0

)

⋅ �̃
��
32 

(25)

where

̃
𝑅𝑅

𝑠𝑠𝑠𝑠

32 = 𝑅𝑅
𝑠𝑠𝑠𝑠

32 + 𝑇𝑇
𝑠𝑠𝑠𝑠

23 ⋅ 𝑅𝑅
𝑠𝑠𝑠𝑠

21

(
𝐼𝐼 − 𝑅𝑅

𝑠𝑠𝑠𝑠

23 ⋅ 𝑅𝑅
𝑠𝑠𝑠𝑠

21

)−1

⋅ 𝑇𝑇
𝑠𝑠𝑠𝑠

32 (26)

In Equation 26,
Figure 2. Configuration of a perfectly conducting cylinder coated with a 
dielectric layer excited by a 𝐴𝐴 𝐴𝐴𝐴—directed Hertzian dipole.
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𝑅𝑅
𝑠𝑠𝑠𝑠

32 = 𝐷𝐷
−1

𝑠𝑠𝑠𝑠 ⋅

[
𝐼𝐼𝑛𝑛

(
𝑎𝑎2

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

2

)
𝐼𝐼𝑛𝑛

(
𝑎𝑎2

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
− 𝐼𝐼𝑛𝑛

(
𝑎𝑎2

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
𝐼𝐼𝑛𝑛

(
𝑎𝑎2

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

2

)]
 (27)

�
��
23 = �

−1
�� ⋅

[

��

(

�2
√

�2
� − �2

2

)

��

(

�2
√

�2
� − �2

2

)

− ��
(

�2
√

�2
� − �2

2

)

��

(

�2
√

�2
� − �2

2

)]

 (28)

�
��
23 = �

−1
�� ⋅

[

��

(

�2
√

�2
� − �2

2

)

��

(

�2
√

�2
� − �2

0

)

−��

(

�2
√

�2
� − �2

0

)

��

(

�2
√

�2
� − �2

2

)]

 (29)

�
��
32 = �

−1
�� ⋅

[

��

(

�2
√

�2
� − �2

0

)

��

(

�2
√

�2
� − �2

0

)

− ��
(

�2
√

�2
� − �2

0

)

��

(

�2
√

�2
� − �2

0

)]

 (30)

where

𝐷𝐷𝑠𝑠𝑠𝑠 =

[
𝐼𝐼𝑛𝑛

(
𝑎𝑎2

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

2

)
𝐾𝐾𝑛𝑛

(
𝑎𝑎2

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
−𝐾𝐾𝑛𝑛

(
𝑎𝑎2

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
𝐼𝐼𝑛𝑛

(
𝑎𝑎2

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

2

)]
 (31)

and

𝐶𝐶𝑛𝑛 (𝑎𝑎2𝑥𝑥𝑖𝑖) =
1

𝑎𝑎2𝑥𝑥
2

𝑖𝑖

⎡
⎢
⎢
⎣

−𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑎𝑎2𝑥𝑥𝑖𝑖𝐶𝐶
′
𝑛𝑛 (𝑎𝑎2𝑥𝑥𝑖𝑖) 𝑛𝑛𝑛𝑛𝑧𝑧𝐶𝐶𝑛𝑛 (𝑎𝑎2𝑥𝑥𝑖𝑖)

𝑛𝑛𝑛𝑛𝑧𝑧𝐶𝐶𝑛𝑛 (𝑎𝑎2𝑥𝑥𝑖𝑖) 𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑎𝑎2𝑥𝑥𝑖𝑖𝐶𝐶
′
𝑛𝑛 (𝑎𝑎2𝑥𝑥𝑖𝑖)

⎤
⎥
⎥
⎦

 (32)

In Equation 32, 𝐴𝐴 𝐴𝐴𝑖𝑖 =

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

𝑖𝑖
 with 𝐴𝐴 𝐴𝐴 = 0 or 2 depending on the region of interest. 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑥𝑥) denotes either 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑥𝑥) or 

𝐴𝐴 𝐴𝐴𝑛𝑛(𝑥𝑥) corresponding to 𝐴𝐴 𝐶𝐶𝑛𝑛(𝑥𝑥) = 𝐼𝐼𝑛𝑛(𝑥𝑥) or 𝐴𝐴 𝐶𝐶𝑛𝑛(𝑥𝑥) = 𝐾𝐾𝑛𝑛(𝑥𝑥) matrices respectively. 𝐴𝐴 𝑅𝑅
𝑠𝑠𝑠𝑠

21 in Equation 26 is evaluated 
from Equation 7 with 𝐴𝐴 𝐴𝐴0 replaced by 𝐴𝐴 𝐴𝐴2 . The spatial domain fields for the Schelkunoff formulation for the coated 
conducting cylinder can be thereafter obtained by replacing 𝐴𝐴 𝐹𝐹𝑛𝑛2 (𝜌𝜌𝜌 𝜌𝜌

′
) in Equation 5 with 𝐴𝐴 𝐹𝐹𝑛𝑛8 (𝜌𝜌𝜌 𝜌𝜌

′
) .

In addition to the branch-point singularity for the conducting cylinder, the configuration in Figure 2 possesses 
poles along the original integration path. In order to circumvent this, the path of integration is deformed in the 
complex 𝐴𝐴 𝐴𝐴𝑧𝑧– plane for the Sommerfeld case as shown in Figure 3. This path is used instead of the triangular 
deformation by Karan and Ertürk (2014) to reduce the computational burden of evaluation along two paths above 
the real axis. The components of the deformed path are defined as follows:

Γ1 ∶ 𝑘𝑘𝑧𝑧 = 𝑘𝑘𝑘𝑘1
𝑡𝑡1

𝑇𝑇1

, 0 ≤ 𝑡𝑡1 ≤ 𝑇𝑇1 (33)

Γ2 ∶ 𝑘𝑘𝑧𝑧 = 𝑘𝑘𝑘𝑘1 +

(
(𝑘𝑘𝑘𝑘3 − 𝑘𝑘𝑘𝑘1)

𝑡𝑡2

𝜋𝜋

)
+ 𝑗𝑗𝑗𝑗2 sin (𝑡𝑡2) , 0 ≤ 𝑡𝑡2 ≤ 𝜋𝜋 (34)

Γ3 ∶ 𝑘𝑘𝑧𝑧 = 𝑘𝑘𝑘𝑘3 +

(
(𝑘𝑘𝑘𝑘4 − 𝑘𝑘𝑘𝑘3)

𝑡𝑡3

𝑇𝑇4 − 𝑇𝑇3

)
, 0 ≤ 𝑡𝑡3 ≤ 𝑇𝑇4 − 𝑇𝑇3 (35)

with 𝐴𝐴 𝐴𝐴𝐴𝐴1 = 𝑇𝑇1𝐴𝐴0 , 𝐴𝐴 𝐴𝐴𝐴𝐴3 = 𝑇𝑇3𝐴𝐴0 , 𝐴𝐴 𝐴𝐴𝐴𝐴4 = 𝑇𝑇4𝐴𝐴0 .

In the above, it can be noted that 𝐴𝐴 0.5 ≤ 𝑇𝑇1 ≤ 0.8 . The parameter 𝐴𝐴 𝐴𝐴2 controls 
the deviation of the integration path from the real axis and it should be 
ensured that the path 𝐴𝐴 Γ2 must meet the real axis after avoiding all pole 
and branch-point singularities. A value of 𝐴𝐴 𝐴𝐴4 = 13 ensures convergence for 
the integrals on Path 3 for all the cases considered in the current work. 𝐴𝐴 𝐴𝐴4 
would however increase with the increase in the coating permittivity of 
the dielectric layer, that is constant in this case. The same path deforma-
tion is also used for the Schelkunoff integral by replacing 𝐴𝐴 𝐴𝐴𝑧𝑧 with 𝐴𝐴 𝐴𝐴𝜌𝜌0 in 
Equations 33–35.

Figure 3. Deformed integration path.
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3. Results and Discussion
In this section, the methodology developed in the previous section is used to investigate the convergence charac-
teristics of the Sommerfeld and Schelkunoff kernels for the conducting and the coated conducting cylinders. In 
addition, the characteristics of the above spectral integrals are also investigated.

The associated cylindrical kernels are distinctly different from that of the planar structures in a number of key 
points. The presence of azimuthal summation over higher order azimuthal harmonics in cylindrical structures is 
absent in planar configurations. This has a severe impact on the convergence characteristics since one has to deal 
with Bessel, Hankel and modified Bessel functions of higher and lower orders both rather than a single zeroth 
order Bessel or modified Bessel function for planar geometries. Particularly, the local reflection/transmission 
terms for the cylindrical configuration involve Bessel/Hankel/modified Bessel functions of higher and lower 
orders compared to the planar media case where the local reflection/transmission coefficients involve spec-
tral wave-numbers only. In addition, though the TE and TM modes are decoupled for planar structures or the 
conducting cylinder, such is not the case for the dielectric-coated cylinder where the TE/TM modes are coupled. 
The mode-coupling is incorporated by the reflection and transmission matrix in the formulation instead of the 
reflection and transmission coefficients for planar structures. Since the reflection/transmission matrices possess 
complex linear combinations of Bessel/Hankel/modified Bessel functions, this has a considerable impact on 
the stability and convergence characteristics of the kernel and the spectral integral in both the Sommerfeld and 
Schelkunoff formulations. In the following, the number of integration points, azimuthal modes, and the integra-
tion limits were appropriately chosen to achieve a convergence within 0.1% in the evaluation of the associated 
kernels and the spectral integrals. The computations are performed using MATLAB version R2019a on a desktop 
PC with Intel(R) Core(TM) i7-7700 CPU with a 3.6-GHz clock speed.

3.1. PEC Cylinder

In this section, the results for the Sommerfeld and Schelkunoff kernels and evaluation of the spatial domain fields 
using the Sommerfeld/Schelkunoff formulations for the conducting cylinder are discussed. The comparison of the 
absolute values of the Sommerfeld and the Schelkunoff kernels for the conducting cylinder is shown in Figure 4, 
for the cases where the axial separation between the observation and source points is much larger than the radial 
distance, is equal to the radial distance and is much smaller than the radial distance. The radius of the cylinder is 
taken as 𝐴𝐴 𝐴𝐴1 = 0.5𝜆𝜆0 with the Hertzian dipole located at 𝐴𝐴 𝐴𝐴

′ = 1𝜆𝜆0 , 𝐴𝐴 𝐴𝐴
′ = 0 , that is maintained constant throughout 

for all the cases discussed in the following for the conducting cylinder. In order to investigate the convergence 
behavior of the kernel, the Sommerfeld integral in Equation 1 is folded with the kernel represented as:

�̃��
��

=
−�

4���0

∞
∑

�=−∞

e−��(�−�′) cos
(

��
(

� − �′
))

(−�)�2
�0�

(2)
� (��0�)

[

��
(

��0�′
)

+� (2)
�

(

��0�′
)

(

−
�� (��0�1)
� (2)

� (��0�1)

)]

 
(36)

The Schelkunoff kernel can also be explicitly written as:

�̃�𝐺
𝐸𝐸𝑧𝑧

𝐽𝐽𝑧𝑧
=

−𝑗𝑗

4𝜋𝜋𝜋𝜋𝜋𝜋0

2

𝜋𝜋

∞∑

𝑛𝑛=−∞

e
−𝑗𝑗𝑛𝑛(𝜙𝜙−𝜙𝜙′)

−𝑘𝑘𝜌𝜌0

√
𝑘𝑘
2

0
− 𝑘𝑘

2

𝜌𝜌0

cos
(
𝑘𝑘𝑧𝑧

(
𝑧𝑧 − 𝑧𝑧

′
))

𝐾𝐾𝑛𝑛

(
𝜌𝜌

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)

 

⎡
⎢
⎢
⎢
⎢
⎣

𝐼𝐼𝑛𝑛

(
𝜌𝜌
′

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
+𝐾𝐾𝑛𝑛

(
𝜌𝜌
′

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
⎛
⎜
⎜
⎜
⎜
⎝

−

𝐼𝐼𝑛𝑛

(
𝑎𝑎1

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)

𝐾𝐾𝑛𝑛

(
𝑎𝑎1

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)

⎞
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

 (37)

Figure 4a shows the absolute value of the complex kernel in dB plotted against their respective wave numbers 
𝐴𝐴 𝐴𝐴𝑧𝑧∕𝐴𝐴0 and 𝐴𝐴 𝐴𝐴𝜌𝜌0∕𝐴𝐴0 for the Sommerfeld and Schelkunoff formulations at a frequency of 5 GHz for the structure 

in Figure 1. For the figure, the axial separation between the source and observation points (𝐴𝐴 10𝜆𝜆0 ) is much larger 
than their radial separation (𝐴𝐴 1𝜆𝜆0 ). A total of 5 eigenmodes are considered for the azimuthal summation in both 
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formulations. It can be observed from Figure 4a that the kernel of Sommerfeld integration is oscillatory and 
slowly convergent in comparison to the Schelkunoff kernel that exhibits fast convergence with respect to 𝐴𝐴 𝐴𝐴𝜌𝜌0∕𝐴𝐴0 . 
The faster decay of the Schelkunoff integral can be observed by expressing Equation 5 as:

⎡
⎢
⎢
⎣

𝐸𝐸𝑧𝑧

𝐻𝐻𝑧𝑧

⎤
⎥
⎥
⎦
=

−1

2𝜋𝜋𝜋𝜋𝜋𝜋0

2

𝜋𝜋

∞∑

𝑛𝑛=−∞

𝑒𝑒
−𝑗𝑗𝑛𝑛(𝜙𝜙−𝜙𝜙′)

⎧
⎪
⎨
⎪
⎩

𝑘𝑘0

∫
0

𝑑𝑑𝑘𝑘𝜌𝜌0

𝑘𝑘𝜌𝜌0

√
𝑘𝑘
2

0
− 𝑘𝑘

2

𝜌𝜌0

cos

(√
𝑘𝑘
2

0
− 𝑘𝑘

2

𝜌𝜌0

(
𝑧𝑧 − 𝑧𝑧

′
))

𝐹𝐹 𝑛𝑛2

(
𝜌𝜌𝜌 𝜌𝜌

′
)
⋅
⃖⃖�⃖�𝐷

′

2 

+

∞

∫
𝑘𝑘0

𝑑𝑑𝑘𝑘𝜌𝜌0

𝑘𝑘𝜌𝜌0

√
𝑘𝑘
2

0
− 𝑘𝑘

2

𝜌𝜌0

𝑒𝑒
−(𝑧𝑧−𝑧𝑧′)

√
𝑘𝑘
2

𝜌𝜌0
−𝑘𝑘

2

0𝐹𝐹 𝑛𝑛2

(
𝜌𝜌𝜌 𝜌𝜌

′
)
⋅
⃖⃖�⃖�𝐷

′

2

⎫
⎪
⎬
⎪
⎭

 (38)

where it can be observed that the integral kernel for 𝐴𝐴 𝐴𝐴𝜌𝜌0 > 𝐴𝐴0 possess an exponential decay that enhances with 
increasing axial separation between the source and observation points.

The convergence characteristics of the Sommerfeld and the Schelkunoff kernels for the same radial and axial 
separation between the field and observation points (𝐴𝐴 1𝜆𝜆0 ) is shown in Figure 4b. It is seen that both the kernels 
have the same convergence rate.

Figure 4. Comparison of the absolute values of the Sommerfeld and the Schelkunoff kernels for the perfectly conducting 
cylinder with variation in the radial and axial separation between the observation and source points: 𝐴𝐴 𝐴𝐴1 = 0.5𝜆𝜆0 , 𝐴𝐴 𝐴𝐴

′ = 1𝜆𝜆0 , and 
𝐴𝐴 𝐴𝐴

′ = 0 . (a) 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌
′
) = 1𝜆𝜆0, 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧

′
) = 10𝜆𝜆0 (b) 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌

′
) = 1𝜆𝜆0, 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧

′
) = 1𝜆𝜆0 , nd (c) 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌

′
) = 10𝜆𝜆0, 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧

′
) = 1𝜆𝜆0 .
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Figure 4c depicts the behavior of the two kernels with the radial separation between the source and observa-
tion points (𝐴𝐴 10𝜆𝜆0 ) much greater than their axial separation (𝐴𝐴 1𝜆𝜆0 ). It is observed that the Sommerfeld kernel 
converges much faster than the Schelkunoff. This can be explained by observing that the term 𝐴𝐴 𝐴𝐴

(2)

𝑛𝑛 (𝑘𝑘𝜌𝜌0𝜌𝜌) on the 
RHS of 𝐴𝐴 𝐹𝐹𝑛𝑛1 (𝜌𝜌𝜌 𝜌𝜌

′
) in Equation 2 leads to the decay in the Sommerfeld kernel for 𝐴𝐴 𝐴𝐴𝑧𝑧 > 𝐴𝐴0 through the identity 

𝐴𝐴 𝐴𝐴𝑛𝑛(𝑢𝑢) = (𝜋𝜋∕2)(−𝑗𝑗)
𝑛𝑛+1

𝐻𝐻
(2)

𝑛𝑛 (−𝑗𝑗𝑢𝑢) . On the other hand, the term 𝐴𝐴 𝐴𝐴𝑛𝑛

(
𝜌𝜌

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
 on the RHS of Equation 6 in the 

Schelkunoff kernel leads to a slower decay in the kernel due to its conversion to 𝐴𝐴 𝐴𝐴
(2)

𝑛𝑛 (𝑘𝑘𝜌𝜌0𝜌𝜌) over the entire range 
of integration. It may also be noted that the above results are independent of the absolute location of the dipole. 
Though not shown, the above conclusions are also valid for the 𝐴𝐴 𝐴𝐴𝐴 - and 𝐴𝐴 �̂�𝜙- polarizations of the dipole.

Next, the results of the Sommerfeld and Schelkunoff absolute integral values corresponding to the spatial domain 
electric field 𝐴𝐴 𝐴𝐴𝑧𝑧 is plotted in Figure 5. Figure 5a shows the variation of electric field with the radial location of the 
observation point at 𝐴𝐴 𝐴𝐴 = 100𝜆𝜆0 . It can be observed that the electric fields using the Sommerfeld and Schelkunoff 
formulations overlap exactly over a large range of radial locations of the observation point upto 𝐴𝐴 𝐴𝐴 = 500𝜆𝜆0 . The 
spatial domain electric field with variation in the axial location of the observation point is shown in Figure 5b at 

𝐴𝐴 𝐴𝐴 = 100𝜆𝜆0 . It is observed that the Sommerfeld and Schelkunoff formulations match over the entire range of 𝐴𝐴 𝐴𝐴∕𝜆𝜆0 
with the onset of oscillations for 𝐴𝐴 𝐴𝐴 𝐴 300𝜆𝜆0 . It can thus be seen that the Sommerfeld and Schelkunoff formula-
tions agree exactly with each other over a large range of radial and axial distances between the source and obser-
vation points. In order to overcome the overflow and underflow problem under finite double-precision arithmetic, 
range-conditioned cylindrical/modified-cylindrical functions are used in the areas of very large and very small 
arguments as defined in Moon et al. (2014, 2015).

The convergence characteristics of the Sommerfeld and Schelkunoff absolute integral values corresponding to 
the spatial domain electric field 𝐴𝐴 𝐴𝐴𝑧𝑧 with the order of the cylindrical functions at 𝐴𝐴 𝐴𝐴 = 100𝜆𝜆0 , 𝐴𝐴 𝐴𝐴 = 100𝜆𝜆0 is shown in 
Figure 6. It can be observed that convergence in both the Sommerfeld and Schelkunoff formulations is obtained 
after 9 terms.

Simpson's 𝐴𝐴 1∕3 rule have been used for the evaluation of the integrals, with 𝐴𝐴 𝐴𝐴 as the number of samples, as given 
below:

𝑥𝑥2𝑛𝑛

∫
𝑥𝑥0

𝑓𝑓 (𝑥𝑥)𝑑𝑑𝑥𝑥 ≈
ℎ

3
[𝑓𝑓0 + 4 (𝑓𝑓1 + 𝑓𝑓3 +⋯ + 𝑓𝑓2𝑛𝑛−1) + 2 (𝑓𝑓2 + 𝑓𝑓4 +⋯ + 𝑓𝑓2𝑛𝑛−2) + 𝑓𝑓2𝑛𝑛] (39)

where 𝐴𝐴 𝐴 =
𝑥𝑥2𝑛𝑛 − 𝑥𝑥0

𝑁𝑁−1
= 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 , 𝐴𝐴 𝐴𝐴 (𝑥𝑥𝑖𝑖) = 𝐴𝐴𝑖𝑖 .

In order to compare the efficiency of integral computation for the Sommerfeld and the Schelkunoff formulations, 
the computation time for evaluating the spatial domain electric fields using the two formulations are now inves-
tigated, for yielding the same accuracy. Figure 7a shows the time elapsed for the calculation of the integrals with 

Figure 5. Comparison of the absolute values of the Sommerfeld and the Schelkunoff integrals for the perfectly conducting 
cylinder at (a) 𝐴𝐴 𝐴𝐴 = 100𝜆𝜆0 and (b) 𝐴𝐴 𝐴𝐴 = 100𝜆𝜆0 . All other parameters same as in Figure 4.
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respect to variation in radial location of the observation point from 𝐴𝐴 5𝜆𝜆0 to 
𝐴𝐴 500𝜆𝜆0 at a constant axial location of 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 . It is observed that the compu-

tation time for the Sommerfeld integral is lower than the Schelkunoff inte-
gral for achieving the same accuracy, as also predicted through the conver-
gence characteristics of the respective kernels in Figure 4c. The computation 
time with variation in the axial location of the observation point is shown 
in Figure 7b, with 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 . The Schelkunoff formulation exhibits a better 
performance in this case, consistent with the convergence characteristics in 
Figure 4a.

The number of integration samples 𝐴𝐴 𝐴𝐴 and cylindrical azimuthal harmonics 
𝐴𝐴 𝐴𝐴 required for convergence in the main and tail parts of the integral for both 

formulations is shown in Table 1. The time needed to compute the Sommer-
feld and Schelkunoff integrals is also shown for the cases 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌

′
) ≫ (𝑧𝑧 − 𝑧𝑧

′
) 

and 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧
′
) ≫ (𝜌𝜌 − 𝜌𝜌

′
) . It can be observed that the Sommerfeld formulation 

requires a significantly lesser computation time than the Schelkunoff for 
𝐴𝐴 (𝜌𝜌 − 𝜌𝜌

′
) ≫ (𝑧𝑧 − 𝑧𝑧

′
) . The difference arises due to the faster converging tail 

of the Sommerfeld kernel relative to the Schelkunoff tail as can be seen by 
comparing the number of samples in the Sommerfeld and Schelkunoff tails for 

this case. This is particularly contributed by the decaying 𝐴𝐴 𝐴𝐴𝑛𝑛

(
𝜌𝜌

√
𝑘𝑘
2
𝑧𝑧 − 𝑘𝑘

2

0

)
 

term in the Sommerfeld tail at a large radial distance. On the other hand, 
in addition to the presence of the 𝐴𝐴 𝐴𝐴

(2)

𝑛𝑛 (𝑘𝑘𝜌𝜌0𝜌𝜌) term in the Schelkunoff kernel, a relatively low axial separation 
between the source and field points impedes the exponential decay of the Schelkunoff tail, contributing to its 
slow convergence.

However, for 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧
′
) ≫ (𝜌𝜌 − 𝜌𝜌

′
) , the computation time for the Schelkunoff integral is much lower than the 

Sommerfeld, that can be principally seen in the large number of samples needed for the convergence of the 
Sommerfeld tail. This is principally attributed to the exponential decay of the Schelkunoff tail due to the large 
axial separation between the source and field points. On the other hand, the oscillatory exponential term in 
the  Sommerfeld tail, in addition to the slower radial decay of fields result in its slower convergence, causing about 
an 85% reduction in the number of samples in the Schelkunoff tail relative to the Sommerfeld.

3.2. Dielectric-Coated Conducting Cylinder

The performance of the Sommerfeld and Schelkunoff formulations for the dielectric-coated conducting cylin-
der is next investigated. The radius of the inner and outer layer of the cylinder are 𝐴𝐴 𝐴𝐴1 = 0.5𝜆𝜆0 and 𝐴𝐴 𝐴𝐴2 = 0.55𝜆𝜆0 

Figure 7. Variation in the computation time for the evaluation of the Sommerfeld and Schelkunoff integrals for the perfectly 
conducting cylinder with (a) radial location of the observation point at 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 and (b) axial location of the observation 
point at 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 . All other parameters same as in Figure 4.

Figure 6. Convergence of the absolute values of the Sommerfeld and the 
Schelkunoff integrals with order of cylindrical functions for the perfectly 
conducting cylinder at 𝐴𝐴 𝐴𝐴 = 100𝜆𝜆0 , 𝐴𝐴 𝐴𝐴 = 100𝜆𝜆0 . All other parameters same as in 
Figure 4.
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respectively with a coating permittivity of 𝐴𝐴 𝐴𝐴𝑟𝑟2 = 2.3 . The location of the dipole is the same as previously. The 
operating frequency is 5 GHz.

Figure  8a shows the convergence of the Sommerfeld and the Schelkunoff kernels when the axial separation 
between the observation and source points (𝐴𝐴 10𝜆𝜆0 ) is much larger than their radial separation (𝐴𝐴 1𝜆𝜆0 ). The Schelkunoff 
kernel is observed to converge much faster than the Sommerfeld in this case. The convergence characteristics 
of the two formulations are next investigated for equal radial and axial separations between the observation and 
source points in Figure 8b. The decay rate of both formulations is observed to be the same in this case. The kernel 
characteristics are then compared for the case when the radial separation is much greater than the axial separa-
tion. It is observed that the Sommerfeld formulation converges much faster than the Schelkunoff in this case. 

Observation point Sommerfeld formulation Schelkunoff formulation

Main part Tail part
Computation time 

(sec)

Main part Tail part
Computation 

time (sec)𝐴𝐴 𝐴𝐴 z N𝐴𝐴 𝐴𝐴 N𝐴𝐴 𝐴𝐴 N𝐴𝐴 𝐴𝐴 N𝐴𝐴 𝐴𝐴 

500𝐴𝐴 𝐴𝐴0 1.5𝐴𝐴 𝐴𝐴0 1,575 13 2,569 4 0.6368 1,575 13 4,401 13 1.969

1.5𝐴𝐴 𝐴𝐴0 500𝐴𝐴 𝐴𝐴0 2,001 14 28,701 11 12.12 2,305 15 4,189 14 2.5321

Table 1 
Comparison of the Sommerfeld and Schelkunoff Integration for the Conducting Cylinder

Figure 8. Comparison of the absolute values of the Sommerfeld and the Schelkunoff kernels for the dielectric-coated 
conducting cylinder with variation in the radial and axial separation between the observation and source points: 

𝐴𝐴 𝐴𝐴1 = 0.5𝜆𝜆0 , 𝐴𝐴 𝐴𝐴2 = 0.55𝜆𝜆0 , 𝐴𝐴 𝐴𝐴
′ = 1𝜆𝜆0 , and 𝐴𝐴 𝐴𝐴

′ = 0 . (a) 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌
′
) = 1𝜆𝜆0, 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧

′
) = 10𝜆𝜆0 (b) 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌

′
) = 1𝜆𝜆0, 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧

′
) = 1𝜆𝜆0 , and 

(c) 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌
′
) = 10𝜆𝜆0, 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧

′
) = 1𝜆𝜆0 .
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The above characteristics reflect similar behavior of the Sommerfeld and Schelkunoff kernels for the conducting 
cylinder and the coated conducting cylinder configurations. The number of azimuthal modes are taken to be 15 
in the above comparisons.

The absolute values of the Sommerfeld and Schelkunoff integrals for the coated conducing cylinder is next 
investigated. The integrals in this case, obtained through path deformation as described in Section 2.2, are eval-
uated for the same parameter values as in Figure 8. The absolute value of the spatial domain electric field with 
the variation in the radial distance is shown in Figure 9a. The axial location of the observation point in this case 
is at 𝐴𝐴 𝐴𝐴 = 3𝜆𝜆0 at 5 GHz while the radial location is varied from 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 to 𝐴𝐴 30𝜆𝜆0 . The parameters for path defor-
mation in Equations 33–35 for the Sommerfeld formulation are: 𝐴𝐴 𝐴𝐴1 = 0.5 , 𝐴𝐴 𝐴𝐴2 = 1.5 , 𝐴𝐴 𝐴𝐴3 = 3.5 , and 𝐴𝐴 𝐴𝐴4 = 13 . The 
Schelkunoff path deformation is performed using 𝐴𝐴 𝐴𝐴1 = 0.5 , 𝐴𝐴 𝐴𝐴2 = 1.5 , 𝐴𝐴 𝐴𝐴3 = 3 , and 𝐴𝐴 𝐴𝐴4 = 13 . It is observed that the 
Sommerfeld and Schelkunoff integrals match very well for the entire range of variation in 𝐴𝐴 𝐴𝐴 . Figure 9b shows 
the variation of the spatial electric field along the axial direction at 𝐴𝐴 𝐴𝐴 = 3𝜆𝜆0 . The Sommerfeld path deformation 
parameters for this case are: 𝐴𝐴 𝐴𝐴1 = 0.5 , 𝐴𝐴 𝐴𝐴2 = 1.5 , 𝐴𝐴 𝐴𝐴3 = 2 , and 𝐴𝐴 𝐴𝐴4 = 13 , while for the Schelkunoff case, the follow-
ing parameters are used: 𝐴𝐴 𝐴𝐴1 = 0.7 , 𝐴𝐴 𝐴𝐴2 = 1.5 , 𝐴𝐴 𝐴𝐴3 = 3 , and 𝐴𝐴 𝐴𝐴4 = 13 . A very good agreement is again observed 
between the two formulations over the entire range of 𝐴𝐴 0.1𝜆𝜆0 ≤ 𝑧𝑧 ≤ 10𝜆𝜆0 .

The convergence characteristics of the Sommerfeld and Schelkunoff absolute integral values corresponding to 
the spatial domain electric field 𝐴𝐴 𝐴𝐴𝑧𝑧 with the order of the cylindrical functions at 𝐴𝐴 𝐴𝐴 = 3𝜆𝜆0 , 𝐴𝐴 𝐴𝐴 = 3𝜆𝜆0 is shown in 

Figure 10. It can be observed that convergence in both the Sommerfeld and 
Schelkunoff formulations is obtained after 12 terms.

The variation in computation time for the two formulations with the radial 
location of the observation point is shown in Figure  11a at 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 . 
Comparing the results with Figure 7a, a significant enhancement in compu-
tation time is observed for the current configuration relative to the conduct-
ing cylinder for both the Sommerfeld and Schelkunoff formulations. The 
computation time for the Sommerfeld formulation that is significantly lower 
than the Schelkunoff formulation is largely contributed by the integration 
over Path 2 that is dependent on parameters for path deformation. Figure 11b 
shows the variation in computation time with the axial location of the obser-
vation point at 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 . For this case as well, the computation time for 
the better performing Schelkunoff formulation is essentially due to integra-
tion over Path 2. However, the difference in the computation times of the 
Schelkunoff versus the Sommerfeld formulation arises primarily due to their 
relative performances over Path 3, as is explored further.

Table  2 below demonstrates the characteristics of the Sommerfeld and 
Schelkunoff integrals with variation in the number of samples (𝐴𝐴 𝐴𝐴 ) and 

Figure 9. Comparison of the absolute values of the Sommerfeld and the Schelkunoff integrals for the dielectric-coated 
conducting cylinder at (a) 𝐴𝐴 𝐴𝐴 = 3𝜆𝜆0 , and (b) 𝐴𝐴 𝐴𝐴 = 3𝜆𝜆0 . All other parameters same as in Figure 8.

Figure 10. Convergence of the absolute values of the Sommerfeld and 
the Schelkunoff integrals with order of cylindrical functions for the 
dielectric-coated conducting cylinder at 𝐴𝐴 𝐴𝐴 = 3𝜆𝜆0 , 𝐴𝐴 𝐴𝐴 = 3𝜆𝜆0 . All other parameters 
same as in Figure 8.
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cylindrical harmonics needed for convergence over the deformed integral paths 1, 2 and 3 for the coated conduct-
ing cylinder for the cases 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌

′
) ≫ (𝑧𝑧 − 𝑧𝑧

′
) and 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧

′
) ≫ (𝜌𝜌 − 𝜌𝜌

′
) . For 𝐴𝐴 (𝜌𝜌 − 𝜌𝜌

′
) ≫ (𝑧𝑧 − 𝑧𝑧

′
) , the faster conver-

gence of the Sommerfeld tail over Path 3 relative to the Schelkunoff tail, as evident from the highly reduced 
number of samples over the Sommerfeld tail relative to the Schelkunoff tail, leads to a reduced computation 
time for the Sommerfeld formulation. For the case 𝐴𝐴 (𝑧𝑧 − 𝑧𝑧

′
) ≫ (𝜌𝜌 − 𝜌𝜌

′
) , the reduced computation time for the 

Schelkunoff formulation over the Sommerfeld case is contributed by the decaying Schelkunoff tail over Path 3 
relative to the Sommerfeld tail. It may be noted that the relative convergence behavior of the two formulations 
over Path 3 for the current configuration are contributed by similar terms as for the integral tails for the PEC 
cylinder.

4. Conclusions
The current work presents the rigorous investigation of the Sommerfeld and the Schelkunoff formulations for 
cylindrical structures. It is observed that the Sommerfeld formulation converges faster than the Schelkunoff 
formula tion for larger radial separation between the source and field points, relative to their axial separation, for 
both the conducting and the dielectric-coated conducting cylinder. On the other hand, for larger axial separation 
between the source and field points compared to their radial separation, the Schelkunoff formulation converges 
more rapidly relative to the Sommerfeld formulation. The above observations are also supported in the compari-
son of computation times for both formulations. As such, the appropriate formulation can be used depending on 
the relative radial and axial separation between the source and field points. The work also highlights the distinc-
tive features of cylindrical structures relative to planar structures investigated earlier. Particularly, the presence 
of higher order Bessel and Hankel functions and azimuthal summation over cylindrical harmonics for cylindrical 
structures is distinctly different from planar structures that involve the Bessel function of the zeroth order only 
without any azimuthal summation. As a result, the convergence characteristics for planar structures depend on the 
Bessel function of zeroth order for the Sommerfeld formulation and the modified Bessel function of zeroth order 
for the Schelkunoff formulation. On the other hand, convergence behavior for the kernel or the integral value 
for the Sommerfeld and/or Schelkunoff formulations for cylindrical structures is dominated by complex linear 

Figure 11. Variation in the computation time for the evaluation of the Sommerfeld and Schelkunoff integrals for the 
dielectric-coated conducting cylinder with (a) radial location of the observation point at 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 and (b) axial location of the 
observation point at 𝐴𝐴 𝐴𝐴 = 1.5𝜆𝜆0 . All other parameters same as in Figure 8.

Observation point Sommerfeld formulation Schelkunoff formulation

Path 1 Path 2 Path 3

Computation time (sec)

Path 1 Path 2 Path 3
Computation 

time (sec)𝐴𝐴 𝐴𝐴 z N𝐴𝐴 𝐴𝐴 N𝐴𝐴 𝐴𝐴 N𝐴𝐴 𝐴𝐴 N𝐴𝐴 𝐴𝐴 N𝐴𝐴 𝐴𝐴 N𝐴𝐴 𝐴𝐴 

50𝐴𝐴 𝐴𝐴0 1.5𝐴𝐴 𝐴𝐴0 87 13 2,543 12 11 5 8.494 129 8 649 13 9,963 27 41.58

1.5𝐴𝐴 𝐴𝐴0 50𝐴𝐴 𝐴𝐴0 193 12 1,231 11 1,583 24 14.86 83 13 1,483 13 51 3 4.0731

Table 2 
Comparison of the Sommerfeld and Schelkunoff Integration for Dielectric-Coated Conducting Cylinder
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combinations of higher order Bessel/Hankel functions and/or modified Bessel functions. The work presents two 
cylindrical configurations: a conducting cylinder and a dielectric-coated conducting cylinder that demonstrate 
two distinct analytical approaches for evaluating the spectral domain integral. Due to the presence of only the 
branch-point singularity for the case of the conducting cylinder, the relevant spectral integral can be evaluated and 
the integrable singularity removed by transformation to the 𝐴𝐴 𝐴𝐴 domain. However, due to the presence of poles and 
branch-point singularities along the real 𝐴𝐴 𝐴𝐴𝑧𝑧∕𝐴𝐴𝜌𝜌 axis for the dielectric-coated conducting cylinder, the Sommerfeld/
Schelkunoff integrals are evaluated along a deformed path. An in-depth investigation is carried out on the conver-
gence of the Sommerfeld and Schelkunoff kernels for the cylindrical structures, taking into account the mode 
coupling between the TE/TM modes in the latter case. In addition, computational aspects for the evaluation of the 
spectral domain integrals for the cylindrical structures is also examined, including the computation time, number 
of samples and the number of azimuthal modes to provide a complete perspective towards the performances of 
the Sommerfeld and Schelkunoff formulations for cylindrical structures.

Data Availability Statement
No external data sets are used for this research.
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