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Abstract 

Background: Numerous studies have reported that eveningness is associated with increased 

alcohol consumption. The dim light melatonin onset (DLMO) and circadian photoreceptor 

responsivity (post-illumination pupil response, PIPR) have rarely been assessed in the context of 

habitual alcohol consumption. This study aimed to examine sleep, circadian timing and 

photoreceptor responsivity in adult alcohol drinkers.  

Methods: Participants (21-45 years) included 28 light and 50 heavy drinkers. The 8-day study 

consisted of a week of adlib sleep monitored with wrist actigraphy, followed by a 9-hour 

laboratory session with a photoreceptor responsivity and circadian phase assessment. 

Results: The heavy drinkers obtained on average 28 more minutes of sleep (p=0.002) and 

reported more eveningness than the light drinkers (p=0.029). There was a trend for a shorter 

DLMO-midsleep interval (p=0.059) in the heavy drinkers, reflecting a tendency for them to sleep 

at an earlier circadian phase. The PIPR in the heavy drinkers was significantly smaller than in the 

light drinkers (p=0.032), suggesting reduced circadian photoreceptor responsivity in the heavy 

drinkers. A larger PIPR was significantly associated with a later DLMO in the light drinkers 

(r=0.44, p=0.019), but this relationship was absent in the heavy drinkers (r=-0.01, p=0.94). 

Conclusions: These results are consistent with earlier reports of more eveningness and a shorter 

DLMO-midsleep interval in association with heavier alcohol drinking. The novel finding of 

reduced circadian photoreceptor responsivity in the heavy drinkers is consistent with prior rodent 

studies. Future studies should explore the impact of habitual alcohol consumption on other 

measures of circadian photoreceptor responsivity.  

 

Keywords: alcohol, circadian, light, post-illumination pupil response 
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Introduction 

Numerous studies have reported that later circadian timing in humans, as reflected in proxy 

markers of circadian timing such as evening chronotype or later sleep timing, is associated with 

increased alcohol consumption. For example, adolescents with an evening preference reported 

almost twice the lifetime drinking occasions as compared to those with intermediate or morning 

preference (Urban et al., 2011). Other studies have reported that a high evening preference 

and/or later sleep times in adolescents was significantly associated with more alcohol use 

(Negriff et al., 2011, Pieters et al., 2010, Gau et al., 2007), significantly higher AUDIT scores 

(i.e., self-reported alcohol consumption, drinking behaviors, and alcohol-related problems; 

(Saxvig et al., 2012)) and greater alcohol misuse (Glozier et al., 2014). One longitudinal study of 

adolescents (12-21 years) found that evening preference was associated with more binge 

drinking and at-risk alcohol use at baseline, but also predicted binge drinking one year later 

(Hasler et al., 2017). The reported effects in these studies remained significant even after 

analyses were adjusted for factors such as pubertal development, age, sex, race/ethnicity, 

socioeconomic status, educational level and psychopathology. Similar associations have also 

been observed in adults (≥18 years). For example, adults with an evening preference and/or later 

sleep times were more likely to be alcohol drinkers (Wittmann et al., 2006, Whittier et al., 2014), 

consumed more alcohol (Tavernier and Willoughby, 2014, Kanerva et al., 2012, Adan, 1994, 

Van Reen et al., 2016), had higher AUDIT scores (Prat and Adan, 2011, Taylor et al., 2011, 

Taylor et al., 2020), and higher Alcohol Dependence scores (Hasler et al., 2013). Thus, the 

relationship between proxy markers of circadian timing and alcohol consumption is consistently 

reported.  
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This literature on circadian timing and alcohol consumption is however limited in at least two 

ways. First, proxy circadian markers, such as questionnaires, have been largely used, instead of 

biological markers of circadian timing. This is likely because the assessment of such biological 

markers is a time intensive process. For example, the assessment of the dim light melatonin onset 

(DLMO) typically requires half-hourly sampling of saliva in dim light (as light suppresses 

melatonin), in the 6 hours prior to habitual bedtime (Benloucif et al., 2008). Nonetheless, the 

DLMO is considered the gold standard circadian phase marker in humans (Lewy et al., 1999, 

Klerman et al., 2002). In the only two studies to date that have assessed the DLMO in the context 

of habitual alcohol drinking, one found later DLMO timing in emerging adult alcohol drinkers, 

and this was significantly associated with more drinking on the following weekend (Hasler et al., 

2019). In the other study, recently abstinent alcohol-dependent individuals had later DLMOs 

than healthy controls (Conroy et al., 2012). These results are consistent with the literature, but 

more studies with larger sample sizes are needed to assess the DLMO in relation to habitual 

alcohol consumption.  

 

Second, the role of the intrinsically photosensitive retinal ganglion cells (ipRGCs), the primary 

circadian photoreceptors, in the relationship between alcohol use and circadian timing remains 

unexplored. IpRGCs transmit the light signal to the circadian pacemaker and therefore play a key 

role in influencing circadian timing (Berson et al., 2002). IpRGCs express melanopsin, a primary 

photopigment that can respond directly to light (Provencio et al., 2000). The melanopsin 

response in ipRGCs can be quantified with chromatic pupillometry, which examines the pupil 

diameter during a post-illumination period, termed the post-illumination pupil response (PIPR, 

(Gamlin et al., 2007)). The PIPR reflects ipRGC responses, providing quantification of 
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individual differences in melanopsin-driven sensitivity to light (Kardon et al., 2009, Zele et al., 

2019).  

 

The aim of this study was to compare sleep, circadian timing, and circadian photoreceptor 

responsivity in two carefully defined and distinct groups of relatively healthy adults who 

regularly consumed alcohol but had significantly different habitual alcohol use patterns. With 

this approach, sleep, circadian timing, and circadian photoreceptor responsivity could then be 

directly compared between light and heavy drinkers. Based on the pre-existing literature, it was 

hypothesized that relative to light drinkers, heavy drinkers would have later circadian timing as 

reflected in both proxy markers of circadian timing and in the gold standard DLMO. It was also 

hypothesized that such later circadian timing in the heavy drinkers would be positively 

associated with greater circadian photoreceptor responsivity (i.e., greater PIPR) to light in the 

afternoon/evening, as light exposure at this time of day is associated with phase delays. 

 

Materials and Methods 

Participants 

Participants were 78 alcohol drinking adults recruited through on-line advertisements who met 

criteria for light or heavy drinker. The screening process consisted of an online survey, followed 

by a telephone interview and then an in-person screening interview. Alcohol use had to be 

consistently reported on all three screening occasions for a candidate to be considered for the 

study with a consistent and predominant drinking pattern for a minimum of the past one year or 

longer. Based on prior work (Holdstock et al., 2000, King et al., 2002, King et al., 2011), 

inclusion criteria for heavy drinkers (n=50) were consumption of ≥10 standard alcoholic 

drinks/week and at least one weekly binge drinking occasion per week as per the NIAAA 
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definition of ≥5 drinks/occasion for male participants and ≥4 drinks/occasion for female 

participants (NIAAA 2005). Further, over the past year, the majority of heavy drinkers (96%, 

48/50) reported the first 5 drinks (4 for women) were consumed within the first two hours of an 

episode with fairly regular frequency. The inclusion criteria for light drinkers were consumption 

of 1-5 standard alcoholic drinks/week as the predominant drinking pattern, and no/rare (< 3 per 

year) episodes of binge drinking in the past year and any history of regular heavy drinking was 

exclusionary. For both drinking groups, participants could not report any past or current 

significant alcohol withdrawal symptoms (e.g., seizures), nor treatment for alcohol or substance 

abuse, nor describe any plans to immediately change their drinking pattern. 

 

Other inclusion criteria for both drinking groups were: 1) age between 21-45 years; 2) body mass 

index between 19-35 kg/m2; 3) no significant chronic disease (e.g. heart, lung, gastro-intestinal, 

vascular, endocrine, autoimmune disease, cancer); 4) no high likelihood of obstructive sleep 

apnea (Netzer et al., 1999) or restless leg syndrome (Hening and Allen, 2003); 5) no extremely 

short or long sleepers (defined as ≤ 5 hours/night, ≥10 hours/ night); 6) no reported eye disease 

or colorblindness (assessed with Ishihara test (Clark, 1924)); 7) no past or present psychotic or 

bipolar disorders, post-traumatic stress disorder, or obsessive compulsive disorder; 8) no current 

suicidal ideation or intent; 9) no significant anxiety or depressive symptoms (Beck Depression 

Inventory II ≥17 (Beck et al., 1996), State Trait Anxiety Inventory-Trait ≥80 (Spielberger et al., 

1970)); 10) no use of prescription medications (contraceptives, acne medications and inhalers for 

exercise-induced asthma permitted) or supplemental melatonin; 11) no heavy cigarette smoking 

or vaping (≥10 cigarette equivalents/day); 12) no travel across time zones in the past month; and 

13) no shift work currently or in past month. Female participants who were pregnant, breast-

feeding, perimenopausal or menopausal were excluded. At the in-person screening interview, all 
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participants had to have a breathalyzer reading of <.000 g/dL and a negative urine toxicology 

screen (for cocaine, amphetamine, methamphetamine, marijuana [tetrahydrocannabinol], opiate, 

phencyclidine, barbiturates and benzodiazepines), and were instructed to be drug free during the 

study. The overall goal was to generate two distinct and carefully characterized groups of 

relatively healthy adult alcohol drinkers, to better examine the sleep and circadian differences 

between them. See Table 1 for sample characteristics.  

 

Design 

The study consisted of an 8-day protocol (Figure 1). On Day 1, participants attended the 

laboratory and received a wrist actigraphy monitor (30 second epochs, Actiwatch Spectrum, 

Respironics, Bend, OR) to wear on their non-dominant wrist for the duration of the protocol. 

They were instructed to press the event marker on the monitor before and after adlib sleep each 

night and completed daily sleep and event diaries which tracked sleep, caffeine, alcohol and 

medication use during the protocol. During this visit, participants also participated in a practice 

PIPR assessment (see below) to become familiar with the procedure (data not analyzed).  

 

On Day 8, participants arrived at the laboratory 9 hours prior to their habitual bedtime. They 

were instructed not to consume any alcohol or caffeine in the prior 24 hours, and no non-

steroidal anti-inflammatory drugs in the prior 72 hours, to avoid confounding melatonin levels 

(see below). They were breathalyzed to confirm recent alcohol abstinence. Following this, their 

wrist actigraphy data was downloaded, and they completed questionnaires, and underwent a 

circadian photoreceptor responsivity assessment (described below). Participants then completed 

a 6.5-hour circadian phase assessment session, which completed their laboratory session. They 

were not permitted to drive themselves home and so either travelled home via taxi/rideshare or 
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with a friend or family member who drove them. Participants started the study protocol and their 

laboratory session on a weekday (Monday, Tuesday, Wednesday or Thursday) or weekend 

(Saturday or Sunday). Friday nights were reserved for another study in the laboratory. Data 

collection occurred at both Rush University Medical Center and the University of Michigan, and 

the Institutional Review Boards at both institutions approved the study protocol. All participants 

gave written informed consent prior to participating. Participants were compensated $520 after 

they completed the 8-day protocol. 

 

Measures  

Wrist actigraphy 

Objective measures of sleep were derived from the 7 days of wrist actigraphy recordings made 

just prior to the laboratory session. Data were analyzed with the Actiware 6.0.9 program 

(medium sensitivity, Respironics, Bend, OR).  The setting of nightly rest intervals for analysis 

was guided by the event markers, sleep diaries, light data, and activity level (Patel et al., 2015).  

Objective actigraphic estimates of sleep timing (sleep onset time, final wake time), total sleep 

time (number of minutes scored as sleep in each rest interval) and sleep efficiency (proportion of 

time between sleep onset and final wake time scored as sleep in each rest interval, expressed as a 

percentage) were extracted for each study night, and averaged over the 7 days.  

 

Questionnaires 

At the start of the laboratory session, participants completed multiple questionnaires. Sleep 

quality and insomnia symptoms were assessed with the Pittsburgh Sleep Quality Index (Buysse 

et al., 1989) and Insomnia Severity Index (Bastien et al., 2001). Circadian preference was 

assessed with the Morningness-Eveningness Questionnaire (Horne and Ostberg, 1976) and 
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chronotype and social jet lag were assessed with the Munich ChronoType Questionnaire 

(Roenneberg et al., 2003). Current depressive and anxiety symptoms were assessed with the 

Beck Depression Inventory (Beck et al., 1961) and State Trait Anxiety Inventory-State 

Questionnaire (Spielberger et al., 1970). Attitudes to alcohol were assessed with a three-item 

version of the Alcohol Purchase Task (Amlung et al., 2015) which asked if drinks were free, how 

many drinks would the participant consume right now, and what maximum dollar amount they 

would pay for a single drink and for the drinking session in total. Participants also completed the 

Anticipated Biphasic Effects of Alcohol Scale (A-BAES) which assessed anticipated levels of 

stimulation and sedation after imagining drinking 4 alcoholic drinks (Earleywine and Martin, 

1993) and the Anticipated Drug Effects Questionnaire (A-DEQ) which asked how much they 

would feel, like and want more alcohol after consuming 4 alcoholic drinks (Fridberg et al., 

2017). 

 

Circadian Photoreceptor Responsivity 

The post-illumination pupil response (PIPR) was then assessed with a laboratory-made 

pupillometer, which consisted of blue (488 nm) and red (632 nm) LEDs. The light from the 

LEDs traveled though optic fibers before being combined in a spatial homogenizer and a 

diffuser, producing a highly uniform field. A field lens with a 2-mm artificial pupil was used to 

create a Maxwellian view (Kelbsch et al., 2019). The LED light outputs were digitally controlled 

by software developed in Objective-C on a Mac computer.   

 

For the PIPR assessment, participants entered a dark room, sat in a height adjustable chair, and 

rested their chin on a chin rest, which was adjusted to position their right eye in front of the 

artificial pupil to view the LED light. Light pulses (500msec) of red light (2000 Troland, which 
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quantified retinal illuminance based on light luminance in cd/m2 and pupil size in mm) or blue 

light (2000 Td) were applied to the right eye, in a 30° circular field, with the central 10.5° 

blocked to minimize the effect of macular pigment’s selective absorption. The diameter of the 

left pupil was recorded with an infrared camera from an Eyelink II eyetracker (SR Research, 

Canada) with a sampling rate of 250 Hz and spatial resolution of 0.1% of baseline pupil size.  

The test started with 3 trials of red LED light followed by 3 trials of blue LED light. Each trial 

lasted 35.5 sec (2 sec before light pulse, 0.5 sec light pulse, and 25 sec after lights off). The 

obtained pupil response curve for each trial was normalized to percentage of baseline pupil size 

(which was measured over 2 sec before light pulse). Then the normalized pupil response curve 

was averaged first for red LED and blue LED lights. Overall circadian photoreceptor 

responsivity for each participant was calculated as the difference between the red light (average 

of 3 trials) and blue light (average of 3 trials) pupil response curves at 6 seconds after each light 

pulse (i.e., net blue minus red, percent of baseline (Adhikari et al., 2016, Kelbsch et al., 2019)). 

 

Circadian Phase Assessment 

After the pupil responsivity testing, at 6.5 hours prior to habitual bedtime, participants entered a 

room in the laboratory specifically designed for circadian phase assessments. Participants 

remained awake and seated in dim lit (<5 lux, at level of eyes, in direction of gaze, measured 

every 2 hours, Extech EA33 light meter, Nashua, NH) and were continuously monitored by staff. 

After 30 minutes in the dim light, subjects gave a saliva sample every 30 minutes using 

Salivettes (Sarstedt, Newton, NC). Toothpaste or mouthwash were not allowed during the phase 

assessments. Small snacks and fluids were permitted, except in the 10 minutes before each 

sample, and subjects were required to brush their teeth and rinse with water while remaining 

seated 10 minutes before each sample if they had consumed food or drink. The samples were 
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centrifuged immediately upon collection and frozen. The samples were later shipped in dry ice to 

Solidphase (Portland, ME), which radioimmunoassayed the samples for melatonin using the 

Buhlmann RIA assay, which is the most accurate assay for salivary melatonin (Kennaway, 

2019). The assay sensitivity was 0.5 pg/ml. Intra-assay and inter-assay coefficients of variation 

for low levels of salivary melatonin are 20.1%, and 16.7%, respectively. A dim light melatonin 

onset (DLMO) was calculated for each participant, as the clock time (with linear interpolation) 

when the melatonin concentration exceeded the mean of three low, consecutive, daytime values 

plus twice the standard deviation of these points (Voultsios et al., 1997, Benloucif et al., 2008). 

This low threshold more closely tracks the initial rise of melatonin (Molina and Burgess, 2011). 

Like prior related studies (Hasler et al., 2019, Conroy et al., 2012) the alignment between sleep 

and circadian timing was also calculated, as the interval between DLMO and midsleep (halfway 

point between sleep onset and final wake time).  

 

Statistical Analysis  

All analyses were conducted using Stata 15.1 (StataCorp, College State, Texas). Independent 

samples t-tests were used to compare continuous variables between the two drinking groups and 

Chi-square tests were used for categorical variables. Group differences and the relationships 

between variables were explored using linear regression, which adjusted for variables known to 

impact sleep and circadian variables: age, sex, photoperiod (daylength) on the day of the 

laboratory session, and day of week of laboratory assessment (weekday or weekend). Statistical 

significance was determined at p<0.05. 
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Results 

Sample Characteristics 

The final sample consisted of 28 light drinkers and 50 heavy drinkers who participated from 

February 2017 - February 2020. Their demographics and baseline characteristics are shown in 

Table 1. There were plans to enroll more light drinkers, but the study ended abruptly with a 

laboratory shutdown due to the COVID-19 pandemic. The average age of the sample was in the 

late twenties. There were significantly more male participants in the heavy drinking group. There 

were no significant group differences in race or ethnicity, and both groups showed minimal 

depressive and anxiety symptoms, as expected from the screening criteria. There was also no 

group difference in the photoperiod (daylength), season, or day of the week of the laboratory 

session. The clock time of the laboratory session was not different between groups – the first 

saliva sample (first dot in Figure 1) occurred at 18:05 ± 1.23 in light drinkers and at 18:10 ± 1.31 

in the heavy drinkers (p=0.82). The circadian time of the laboratory session was derived post-hoc 

as the interval from the first saliva sample in the phase assessment (first dot in Figure 1) to the 

later calculated DLMO. There was a significant group difference in the circadian time of testing 

such that the heavy drinkers were assessed on average 36 minutes later relative to their DLMO 

than the light drinkers (Table 1). 

 

Alcohol-Related Variables 

As expected, the heavy drinkers reported consuming more alcohol drinks per week, and having 

more alcohol binges per week, on an online 30 day timeline follow back questionnaire (Sobell 

and Sobell, 1995) collected at the in-person screening interview (Table 2). Similarly, as reported 

on the daily diaries during the baseline week, the heavy drinkers continued to drink more than 

the light drinkers, even though drinking was limited with the instruction to abstain from alcohol 
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in the 24 hours prior to the laboratory session. The heavy drinkers had a significantly higher 

AUDIT score than the light drinkers, which reflected potentially harmful or hazardous alcohol 

consumption (Babor et al., 1989). Most of the heavy drinkers did not meet criteria for an alcohol 

use disorder (AUD), with only 3 of them (6%) meeting criteria for mild AUD 2 or 3 symptoms 

according to the DSM-5 criteria. As expected on the Alcohol Purchase Task, heavy drinkers 

proposed drinking significantly more and paying significantly more for a drinking session than 

did light drinkers. Both groups reported similar levels of anticipated stimulation from 4 standard 

alcohol drinks, and the heavy drinkers anticipated significantly higher liking and wanting with 

lower levels of sedation and feeling alcohol effects, generally consistent with subjective 

responses measured in alcohol challenge research (King et al., 2011). 

 

Sleep and Circadian Variables 

On average, the heavy drinkers obtained 28 more minutes of sleep per night than the light 

drinkers (Table 3). This was mostly due to a later wake time in the heavy drinkers. The heavy 

drinkers reported more insomnia symptoms, but on average both groups did not show clinically 

significant insomnia symptoms (average Insomnia Severity Index score ≤7). Likewise, both 

groups had good sleep quality and good sleep efficiency. A significantly greater tendency to 

eveningness was observed in the heavy drinkers. A later average chronotype was also observed 

in the heavy drinkers, but this was not statistically significant. There was a trend for the heavy 

drinkers to have more social jet lag, although both groups on average had social jet lag of less 

than 2 hours. The DLMO occurred on average 32 minutes later in the heavy drinkers, although 

this was not statistically significant. There was a trend for a shorter DLMO to midsleep interval 

in the heavy drinkers, reflecting that they slept at an earlier circadian phase. There were seven 

participants with missing DLMOs – all were heavy drinkers. Two participants may have had 
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earlier DLMOs which could have been determined if the phase assessment had started earlier, 

two participants may have had later DLMOs which could have been determined if the phase 

assessment had ended later, and three participants showed a very erratic rise in melatonin such 

that a DLMO was not readily discernible. Lastly, the net difference between red and blue pupil 

response curves 6 seconds after the light pulse in the heavy drinkers was significantly smaller 

than in the light drinkers, suggesting reduced circadian photoreceptor responsivity in the heavy 

drinkers (Table 3, Figure 2).  

 

Associations Between Circadian Timing and Circadian Photoreceptor Responsivity 

In contrast to expectations, while heavy drinkers had a later average DLMO (but not statistically 

significantly so), they also had a significantly reduced PIPR, reflecting reduced circadian 

photoreceptor responsivity (Table 3, Figure 2). As the PIPR was assessed in the 

afternoon/evening hours, it was expected that more circadian photoreceptor responsivity, which 

should amplify phase-delaying effects of light in the evening, would associate with a later 

DLMO. To further explore this, the relationship between DLMO and PIPR were separately 

explored in each drinking group (Figure 3). In the light drinkers, greater circadian photoreceptor 

responsivity (larger PIPR) was significantly associated with a later DLMO as expected (r=0.44, 

p=0.019). However, in the heavy drinkers the correlation was neither significant nor meaningful 

(r=-0.01, p=0.94). These associations between DLMO and PIPR in each group were still 

observed after adjusting the analyses for sex, age, photoperiod, day of week of laboratory and 

even circadian time of testing (light drinkers, r=0.44, p=0.033; heavy drinkers r=-0.04, p=0.80). 

Circadian time of testing was derived post-hoc as the time interval from the first saliva sample to 

the DLMO. Thus, heavy alcohol consumption was associated with a smaller PIPR and the 

relationship between the DLMO and PIPR seen in the light drinkers was not present in the heavy 
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drinkers. 

 

Discussion 

In this study, two distinct and carefully characterized groups of relatively healthy adult alcohol 

drinkers were examined: light and heavy drinkers. Compared with the light drinkers, the heavy 

drinkers engaged in more alcohol drinking and binging behavior, both at screening and in the 

baseline week prior to the laboratory session. The heavy drinkers also reported more hazardous 

alcohol consumption on the AUDIT, were willing to pay more for a drinking session, and 

anticipated that after consuming 4 standard alcoholic drinks that they would feel less sedation, 

but like and want more alcohol, as compared with the light drinkers. The main sleep and 

circadian differences between the groups (after adjusting for age, sex, photoperiod, and day of 

week of laboratory assessment) were that the heavy drinkers woke about 30 minutes later and 

endorsed more eveningness. There was no group difference in the DLMO, but a trend towards a 

shorter DLMO to midsleep interval in the heavy drinkers. The heavy drinkers also exhibited a 

smaller PIPR, suggesting reduced circadian photoreceptor responsivity to light. 

 

This study is only the third study in the literature to examine the DLMO, the gold standard 

circadian phase marker in humans, in the context of habitual alcohol drinking. The finding of 

more eveningness in the heavy drinkers is consistent with the broader literature (Negriff et al., 

2011, Pieters et al., 2010, Gau et al., 2007, Tavernier and Willoughby, 2014, Kanerva et al., 

2012, Adan, 1994, Van Reen et al., 2016). However, this greater eveningness was not reflected 

in a significantly later DLMO. Instead, there was a trend observed for a shorter DLMO-midsleep 

interval in association with heavy alcohol consumption which is consistent with the other DLMO 

and alcohol consumption studies (Hasler et al., 2019, Conroy et al., 2012). Indeed, the shorter 
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DLMO-sleep midpoint of about 25 minutes observed in the heavy versus light drinkers, matches 

the difference in the DLMO-sleep midpoint observed between recently abstinent alcohol 

dependent individuals and healthy controls (Conroy et al., 2012). Thus, heavy drinkers do not 

necessarily have later circadian timing per se, but instead have later circadian timing relative to 

the timing of their sleep, potentially reflecting greater circadian misalignment (Hasler et al., 

2019). Interestingly, the light and heavy drinkers did not meaningfully differ in their mood 

symptoms, nor in their sleep quality or sleep efficiency, and the heavy drinking was not 

associated with poor mood or sleep disturbance. In fact, the heavy drinkers actually obtained 

more sleep per night than the light drinkers. Thus, the heavy drinking was not associated with 

later bedtimes, and not simply due to the heavy drinkers having more evening hours available to 

them. One possibility is that circadian misalignment characterized by the shorter DLMO-sleep 

midpoint interval (phase angle) was associated with altered reward functioning and impaired 

impulse control (Hasler et al., 2021), leading in turn to more alcohol consumption (Hasler and 

Clark, 2013). Indeed, eveningness has been repeatedly linked to greater global impulsivity (e.g., 

(Russo et al., 2012, Kang et al., 2015), and was recently found to associate with multiple 

subdimensions of impulsivity measured at the state-level over and above the effects of actual 

sleep timing or duration (Hasler et al., 2022). Importantly, eveningness was associated with 

greater urgency (positive and negative), which has been particularly linked to alcohol use and 

related problems (Littlefield et al., 2014). This suggests that the clinical treatment of patients 

seeking treatment for heavy drinking may be enhanced by assessing circadian preference, as an 

eveningness tendency might indicate the utility of more attention to monitoring the role of 

impulsivity in the patients’ alcohol use, as well as consideration of their sleep schedules. 

Preliminary evidence suggests that imposing circadian misalignment impairs the neural 

underpinnings of impulse control (Hasler et al., 2021) while correcting it may reduce impulsivity 
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(Fargason et al., 2017) Lastly, there is evidence that later sleep/circadian timing may be 

associated with later timing of peak alcohol craving (Hisler et al., 2021), which could be 

informative for heavy drinking evening types.  

 

In the light drinkers, the anticipated relationship between circadian photoreceptor responsivity 

(PIPR) and DLMO was observed – namely that higher circadian photoreceptor responsivity was 

associated with a later DLMO. However, this relationship was not observed in the heavy drinkers 

who displayed a significantly reduced circadian photoreceptor responsivity (reduced PIPR). The 

reduced circadian photoreceptor responsivity in the habitual heavy drinkers may indicate 

impaired photoentrainment, leading to a disrupted relationship between light input and circadian 

timing. While acute alcohol intake does not alter pupil diameter with a steady light exposure 

(Brown et al., 1977), acute alcohol exposure has been reported to modulate the sensitivity of 

retinal neurons to various neurotransmitters such as gamma-aminobutyric acid (GABA) (Yeh 

and Kolb, 1997). The effects of an acute alcohol dose on PIPR have not yet been assessed. The 

possibility that a history of heavy alcohol use modulates circadian photoreceptor responsivity to 

light should be further explored with other methods, such as melatonin suppression to light 

(Phillips et al., 2019). While a single dose of alcohol was not shown to systematically alter 

circadian phase shifts to light in healthy humans (Burgess et al., 2016), robust evidence in 

rodents suggests chronic alcohol consumption can reduce photic inputs into the clock, disrupt 

circadian entrainment, and alter circadian period (Ruby et al., 2009, Brager et al., 2010). 

Circadian phase shifts to light remain to be studied in habitual heavy drinkers, and future 

research should try to tease apart the effects of heavy alcohol use from the effects of circadian 

misalignment. 
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This study has several strengths and several limitations. In terms of strengths, this is the largest 

study to date to examine habitual alcohol drinking and the DLMO, and it corroborates the pre-

existing literature that suggests an association between eveningness, a shorter DLMO-midsleep 

interval, and greater alcohol consumption. In addition, this is the first study to examine circadian 

photoreceptor responsivity in the context of habitual alcohol drinking, and it has revealed the 

possibility that heavy alcohol drinking may suppress melanopsin-driven pupil responsivity. 

Important factors known a priori to impact sleep and circadian variables, such as age, sex, 

photoperiod (daylength), season, and day of week of laboratory assessment (weekday/weekend), 

were included in the analyses. Further, the study protocol timing was anchored to habitual 

bedtime, which led to participants being assessed around the same circadian time (average group 

difference of 36 mins), thus likely reducing variance in the data. Finally, calculating the PIPR as 

% of baseline reduces error due to individual differences in baseline pupil size, and using equal 

2,000 Td illuminance at the retina for red and blue light allowed for the adjustment of the 

response to blue light for non-specific effects on the PIPR as measured by the response to red 

light (i.e., autonomic influence on the PLR (Kelbsch et al., 2019)). In terms of limitations, this 

study may be underpowered as the recruitment of light drinkers was cut short due to the COVID-

19 pandemic. Additionally, this is a cross-sectional study, and causation of the reported group 

differences and associations cannot be determined. In terms of the PIPR, the absence of eye 

disease was only determined from participant self-report and ophthalmological exams were not 

conducted to confirm this, although prior studies with similar sample sizes found no previously 

unreported retinal health conditions (Roecklein et al., 2021). Furthermore, PIPR was only 

assessed in the evening, and given the circadian rhythm in PIPR (Zele et al., 2011), group 

differences in the PIPR in the morning may or may not have been different to what was observed 

in the evening. Finally, the heavy alcohol drinkers were screened to be relatively healthy and 
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therefore may not represent less healthy heavy alcohol drinkers who engage in other drug use 

such as cannabis or experience comorbid psychiatric disorders. Future research should compare 

these sleep and circadian variables between a healthy control group and patients meeting a 

diagnosis of AUD according to DSM-5 criteria. 

 

In summary, this study found that in generally healthy humans, heavy alcohol drinking was 

associated with more eveningness, a shorter DLMO-midsleep interval, and reduced circadian 

photoreceptor responsivity, as compared to light drinkers. Heavy drinking in this sample was not 

associated with poor mood or sleep disturbance. Future research should interrogate whether 

heavy habitual alcohol consumption is either a consequence or cause of reduced melanopsin-

driven retinal responsivity. 
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Figure Legends 

 

Figure 1. A representation of the 8-day study protocol, for a participant with an average bedtime 

of midnight. On Day 1, participants attended the laboratory and received a wrist actigraphy 

monitor and were instructed on how to complete daily diaries while sleeping adlib at home 

(participants were not required to follow a fixed 8-hour sleep schedule). On Day 8, participants 

arrived for the laboratory session 9 hours before their habitual bedtime. They completed 

questionnaires (Q), completed a circadian photoreceptor responsivity assessment (P) and then 

began a circadian phase assessment (dots represent timing of first and last saliva sample).  Time 

of arrival and departure from the laboratory on Day 8 is represented by square brackets. 

 

Figure 2. The averaged pupil response curves after red and blue LED lights in the light (top) and 

heavy alcohol drinkers (middle). The left y-axis shows the pupil size normalized to baseline in 

%, and the right y-axis shows the average corresponding pupil size in mm. The bottom figure 

shows the net red-blue difference in each drinking group (LD (lighter line)= light drinkers, HD 

(heavier line)=heavy drinkers), and highlights the reduced difference in the heavy versus light 

drinkers at 6 seconds after the light pulses. 

 

Figure 3. Scatterplots of the timing of the dim light melatonin onset (DLMO) versus the 

circadian photoreceptor responsivity (PIPR, which was calculated as the net difference at 6 

seconds from pupil response curves between the red and blue LED lights) in the light and heavy 

alcohol drinkers. The unadjusted correlations are shown. 
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Table 1. Sample characteristics. 

 Light Drinkers 
(n=28) 

Heavy 
Drinkers 
(n=50) 

p-value 

Age (mean, SD) 27.9 (5.9) 27.3 (5.1) 0.66 
Sex assigned at birth (%) 
     Male 
     Female 

 
32% 
68% 

 
56% 
44% 

 
0.04 

Race (%) 
Asian 
Black 
Other 
White 

 

 
18% 
21% 
4% 
57% 

 

 
16% 
4% 
4% 
76% 

 

 
0.10 

Ethnicity (%) 
    Hispanic/Latinx 

 
7% 

 
12% 

 
0.50 

Beck Depression Inventory (mean, SD) 1.26 (2.01) 1.66 (2.36) 0.46 
State Trait Anxiety Inventory-State (mean, SD) 40.93 (6.27) 40.10 (7.01) 0.61 
Laboratory session day of week (%) 
    Weekday 
    Weekend 

 
42.9 
57.2 

 
40.0 
56.0 

 
0.92 

Photoperiod on day of lab session (mean, SD) 12.39 (2.24) 12.60 (1.96) 0.68 
Season on day of lab session 
     Winter 
     Spring 
     Summer 
     Fall 

 
18% 
32% 
25% 
25% 

 
14% 
42% 
24% 
20% 

 
0.84 

Circadian time of testing (mean, SD)* 2.50 (1.16) 3.10 (1.21) 0.049 
The mood questionnaires were collected at the start of the laboratory session. 
P values <0.05 are bolded. 
* circadian time of testing was the time interval from the first saliva sample to the later 
determined DLMO. 
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Table 2. Alcohol-related variables. 

 Light Drinkers 
(n=28) 

(mean, SD, range) 

Heavy Drinkers 
(n=50) 

(mean, SD, range) 

Adjusted 
p-value 

Alcohol drinks/week from TLFB 2.57 (1.09, 0.75-4.75) 17.89 (6.84, 9.5-46.75) <0.001 
Alcohol binges/week from TLFB 0.02 (0.07, 0-0.25) 2.0 (0.8, 0.75-5) <0.001 
Alcohol drinks in baseline week 3.50 (3.23, 0-12) 14.06 (11.86, 0-56.5) <0.001 
Alcohol binges in baseline week 0.11 (0.31, 0-1) 1.44 (1.33, 0-5) <0.001 
AUDIT 3.0 (1.2, 0-6) 11.4 (4.2, 5-21) <0.001 
Alcohol Purchase Task 
  Number of drinks 
  Maximum $ on single drink 
  Maximum $ on total drinks 

 
2.48 (1.50, 0-6) 

8.16 (3.83, 0-15) 
18.48 (9.93, 0-40) 

 
5.89 (2.72, 2-14) 
8.16 (3.29, 2-16) 
27.08 (9.93, 8-40) 

 
<0.001 
0.65 

<0.001 
Anticipated Biphasic Alcohol Effects 
  Stimulation 
  Sedation 

 
39.25 (16.98, 0-64) 
30.93 (15.74, 3-70) 

 
43.40 (10.07, 15-65) 
11.88 (9.15, 0-36) 

 
0.13 

<0.001 
Anticipated Drug Effects 
  Feel effects of alcohol 
  Like effects of alcohol 
  Want more alcohol 

 
80.3 (23.0, 0-100) 
61.3 (21.8, 0-100) 
24.7 (24.1, 0-77) 

 
54.5 (21.8, 0-99.5) 

75.4 (18.1, 10.5-100) 
67.6 (19.9, 14-100) 

 
<0.001 
0.002 
<0.001 

TLFB = 30-day timeline follow back questionnaire administered during the in-person screening 
interview. The AUDIT questionnaire was completed during the in-person screening interview.  
P-values were adjusted for age, sex, photoperiod, and lab assessment day (weekend/weekday).  
P values <0.05 are bolded. 
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Table 3. Sleep and circadian variables. 

 Light Drinkers 
(n=28) 

Heavy Drinkers 
(n=50) 

Adjusted 
p-value 

Sleep onset time (mean, SD) 00:23 (1.3) 00:15 (1.1) 0.308 
Final wake time (mean, SD) 07:40 (1.4) 08:08 (1.3) 0.218 
Total sleep time (hours; mean, SD) 6.71 (0.73) 7.18 (0.77) 0.002 
Sleep efficiency (%; mean, SD) 92.22 (2.91) 91.34 (3.19) 0.483 
Pittsburgh Sleep Quality Index (mean, SD) 3.00 (1.76) 3.60 (1.94) 0.205 
Insomnia Severity Index (mean, SD) 2.43 (1.81) 4.10 (3.38) 0.009 
Morningness-eveningness (mean, SD) 52.71 (9.97) 47.63 (7.80) 0.029 
Munich chronotype (h; mean, SD) 04:39 (1.41) 05:15 (1.17) 0.118 
Munich social jet lag (h; mean, SD) 1.29 (1.28) 1.75 (0.88) 0.055 
Dim light melatonin onset 
(mean, SD) 

20:35 (1.5) 21:07 (1.5) 0.254 

Dim light melatonin onset to midsleep interval 
(h; mean, SD) 

7.44 (0.76) 7.03 (1.0) 0.059 

Post-illumination pupil response  
(net difference, % baseline, 6 secs, mean, SD)* 

4.49 (2.55) 2.87 (3.13) 0.032 

P values were adjusted for age, sex, photoperiod, and day of week of laboratory assessment 
(weekend/weekday). 
* the group comparison of PIPR was also adjusted for the circadian time of assessment (the time 
interval between first saliva sample shortly after the PIPR and the DLMO, calculated post-hoc). 
P values <0.05 are bolded. 
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