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Abstract

This article presents SlaterGPU, a graphics processing unit (GPU) accelerated library

that uses OpenACC to numerically compute Slater-type orbital (STO) integrals. The

electron repulsion integrals (ERI) are computed under the RI approximation using the

Coulomb potential of the Slater basis function. To fully realize the performance capa-

bilities of modern GPUs, the Slater integrals are evaluated in mixed-precision, result-

ing in speedups for the ERIs of over 80�. Parallelization on multiple GPUs allows for

integral throughput of over 3 million integrals per second. This places STO integral

throughput within reach of single-threaded, conventional Gaussian integration

schemes. To test the quality of the integrals, the fluorine exchange reaction barrier in

fluoromethane was computed using heat-bath configuration interaction (HBCI). In

addition, the singlet-triplet gap of cyclobutadiene was examined using HBCI in a tri-

ple-ζ, polarized basis set. These benchmarks demonstrate the library's ability to gen-

erate the full set of integrals necessary for configuration interaction with up to 6h

functions in the auxiliary basis.
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1 | INTRODUCTION

Advances in quantum chemistry and computer hardware have facilitated

the routine use of electronic structure simulations for chemical applica-

tions. Some of the most widely used theories make use of one-electron,

atom-centered basis functions1 to represent the electron density. The

simplest wave function that approximately solves the Schrödinger equa-

tion is Hartree–Fock (HF), which represents the wave function using a

single Slater determinant. While HF is not a quantitatively accurate the-

ory, it forms the basis for more sophisticated theories. In many canonical,

post-HF methods, evaluation of Hamiltonian elements in the Schrödin-

ger picture requires computing integrals of the form

Oμν¼ ⟨χμjbO1jχν⟩¼
ð
χμ rð ÞbO rð Þχν rð Þdr, ð1Þ

Oμνλσ ¼ ⟨χμ 1ð Þχν 1ð Þ bO2

��� ���χλ 2ð Þχσ 2ð Þ⟩

¼
ðð

χμ r1ð Þχν r1ð ÞbO2χλ r2ð Þχσ r2ð Þdr1dr2:
ð2Þ

The first equation denotes 1-electron quantities such as the over-

lap bO1¼1, the kinetic energy bO1¼�1
2r2, and the nuclear attraction

bO1¼ ZA
R1A

operators. 2-electron operators include the Coulomb repul-

sion bO2¼ 1
r12
, where r12 is the distance between electrons 1 and

2. Derivatives of these terms, for example with respect to nuclear

position, are also quantities of interest.

Amongst these integrals, the electron repulsion integrals (ERIs) are

the most difficult (and numerous) to evaluate, being 2-electron quanti-

ties that require six-dimensional integration. In addition, the 1
r12

operator

contains a singularity at every point in three-dimensional space, fur-

ther challenging their integration. Consequently, the choice of basis is

important for not only accurate representation of the molecular wave

function, but also for computational evaluation of integrals.

One physically motivated choice are Slater-type orbitals (STOs),

which are hydrogen-like orbitals of the form

S ζ,n, l,m, r,θ,ϕð Þ¼NSTOrn�1e�ζrZlm θ,ϕð Þ, ð3Þ
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where ζ is the exponent, n, l,m are the usual atomic quantum numbers,

r,θ,ϕ are spherical coordinates, NSTO is the normalization constant,

and Zlm are the spherical harmonics.1–3 The STOs can satisfy the Kato

cusp and exponential decay of atomic wave functions,1,4,5 making

them a natural basis choice for quantum chemical calculations. How-

ever, the ERIs over STOs do not have a known general analytic form.

The difficulties of STO integration led to the expansion of STOs

in terms of Gaussian-type orbitals (GTOs)6

G α,n, l,m, r,θ,ϕð Þ¼NGTOe�αr
2
Slm r,θ,ϕð Þ, ð4Þ

where the Slm are the real solid harmonics.1 The GTOs benefit from

the Gaussian product rule, that is, the product of two GTOs is again a

GTO, which simplifies Equation (2) from a 4-center, 2-electron integral

to 2-center, 2-electron. The 2-center, 2-electron integral can be evalu-

ated over the Coulomb potential of one GTO reducing a six-

dimensional integral to three-dimensions. These nice analytical prop-

erties of GTOs facilitated the development of fast analytical integral

evaluation.7–11

While GTOs can be quickly evaluated using modern integral

libraries, they do not contain the correct short- and long-range behav-

iors expected in molecular wave functions.12 For example, the cusp

near the nucleus is important for computing properties such as

nuclear magnetic resonance shifts and polarizabilities,13,14 but the

cusp is not present in the GTO basis, and only crudely treated by

using contracted sets of GTOs. Exponential decay of the wave func-

tion for an accurate description is required for precise quantification

of the HOMO energy, but this behavior is also absent in GTOs.15

The imperfections of GTO basis sets have left room for the con-

tinued development and use of STOs for quantum chemical applica-

tions. Several schemes have been developed to compute general STO

integrals. One approach is to expand each STO in a very large number

of GTOs and compute the GTO integrals analytically.16–18 In addition,

Monte Carlo has been used to correct integrals over Gaussian expan-

sions to evaluate the Slater quantity.19 These schemes are prohibi-

tively expensive for routine use. While the focus of this article is on

the use of STOs in integrals such as Equations (1) and (2), STOs have

seen frequent use in quantum Monte Carlo wave functions, where

the 1- and 2-electron integrals are not important.20–23

An attractive alternative to explicit evaluation of STO ERIs

involves density fitting—in particular the resolution of the identity

(RI) approximation (see Section 2)—which allows Equation (2) to be

approximated as a tensor product of 2- and 3-index ERIs. Within the

RI approximation, one of the two electrons is described by a single

basis function. This facilitates the use of a Coulomb potential to repre-

sent one electron without relying on an explicit basis set product

rule—which does not exist for STOs—to condense multiple centers.

This simplification, which is only necessary for systems with at least

four distinct atomic centers, allows STO integration of ERIs to be

amenable to numerical quadrature schemes. The Amsterdam Density

Functional (ADF) package and other density functional theory (DFT)

codes implement a density fitting approach to use STOs in

DFT.3,13,24,25 Other density fitting frameworks have allowed STOs to

be used in approximate MP2,26 double-hybrid DFT,27 and Green's

function methods.28,29 These previous STO studies, however, did not

generate the full complement of ERIs required for correlated methods

such as those based on configuration interaction,30–33 multiconfigura-

tional self-consistent field34–37 and coupled cluster.38–41

This study introduces and benchmarks a graphics processing unit

(GPU) library for evaluating STO integrals for wave function theories.

The article will show that these can be accurately and efficiently eval-

uated using numerical integration by combining the RI approximation

with the STO Coulomb potential. The large number of processing

cores and high memory bandwidth make modern GPUs the architec-

ture of choice for evaluating and summing numerical grids. For addi-

tional performance, the integrals are also computed using mixed-

precision evaluation. Timings suggest that this library allows STOs to

be useful alongside strongly correlated wave function theories. Accu-

racy benchmarks indicate minimal loss in accuracy from using mixed-

precision relative to double-precision. The resulting code, called

SlaterGPU,42 is the first reported library to use GPUs to accelerate

STO integrals and evaluate the full set of 1- and 2-electron STO inte-

grals up to the 6h subshell as well as 5g for first derivatives for the

auxiliary basis.

2 | THEORY AND COMPUTATIONAL
DETAILS

The present STO integral scheme relies on numerical integration over

atom-centered grids. Grid-based integration can make use of single

instruction, multiple data parallelism and therefore can leverage GPU

hardware for acceleration. Even with this acceleration, the six-

dimensional ERIs remain too costly for routine computations. The

dimensionality of integration can be reduced, however, by employing

the RI approximation,43–45 where the Coulomb potentials for the aux-

iliary basis functions are known analytically. The various components

of the STO integral algorithm are explained in the following sections:

the RI, Grid Construction, Implementation on GPU, and Computa-

tional Details.

2.1 | Resolution of the identity

This section focuses on simplifying the challenging ERIs for numerical

evaluation. The expressions for numerically evaluating the 1-electron

integrals are listed in Section S1 of the Supporting Information. In the

RI approximation, the 4-index ERIs μνjλκð Þ are decomposed into ten-

sor products of 2- and 3-index integrals by representing the density in

terms of an auxiliary basis. Using the Coulomb metric, the integral can

be approximated with the expression43–45

μνjλκð Þ≈
X
PQ

μνjPð Þ PQð Þ�1 Qjλκð Þ¼
X
Q

BQ
μνB

Q
λκ , ð5Þ

where
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BQ
μν¼

X
P

μνjPð Þ PQð Þ�1=2: ð6Þ

In a numerical integration scheme, Equation (5) not only reduces

the count of numerical integrals for a given basis set size (N) from

O N4� �
to O N3

� �
, it also has a secondary consequence that is useful in

the context of STO basis functions. Specifically, the integral

Pjμνð Þ¼
ðð

χP r1ð Þ 1r12 χμ r2ð Þχν r2ð Þdr1dr2 ð7Þ

can be simplified to

Pjμνð Þ¼
ð
VP
C rð Þχμ rð Þχν rð Þdr ð8Þ

by using the known analytical form of the single-Slater Coulomb

potential. In spherical coordinates, this potential has the form3

VC ζ,n, l,m, r,θ,ϕð Þ¼ 4π 2ζð Þnþ 1=2ð Þffiffiffiffiffiffiffiffiffiffiffi
2nð Þ!p

2lþ1ð ÞZlm θ,ϕð ÞInl rð Þ, ð9Þ

where

Inl rð Þ¼ r�l�1
ðr
0
r0ð Þnþlþ1e�ζr0dr0 þ rl

ð∞
r

r0ð Þn�le�ζr0dr0: ð10Þ

Inl has analytic expressions using finite Laurent polynomials for each

n, l of interest.

For large angular momentum l, the Laurent expressions (see

Section S2 of the Supporting Information)—and especially their

derivatives—exhibit numerical instability, especially when using

mixed-precision arithmetic, which is essential for high performance

integral evaluation. This can result in nonsmooth integrals as shown in

Figure 1, which can in turn result in nonsmooth or discontinuous

energies. Instead of applying the Laurent expressions, Equation (10)

can be evaluated using lower incomplete gamma functions, which

have fast, numerically precise implementations.46 The final form of

Equation (10) used in the current implementation of SlaterGPU is

Inl rð Þ¼ r�l�1ζ�l�n�2

rζð Þ2lþ1 �lþnð Þ!� γ �lþnþ1ð , rζÞ½ �þ γ lþnþ2ð , rζÞ
n o

, ð11Þ

where γ s,xð Þ is the lower incomplete gamma function,

γ s,xð Þ¼
ðx
0
ts�1e�tdt: ð12Þ

After evaluation of all 2- and 3-center Coulomb integrals, the full

set of 4-index ERIs can be reconstructed using Equation (5). Sla-

terGPU therefore uses the RI approximation for Slater integrals, simi-

lar to prior implementations for DFT applications,24,25 but further

provides all 4-index integrals, ijjklð Þ, which are not generated or

required for DFT. This allows the SlaterGPU library to be useful for

wave function theories, which require a larger set of ERIs. In particu-

lar, while prior codes demonstrated applicability to l≤3,25,29 Sla-

terGPU is shown here to be useful for l≤ 5.

2.2 | Grid construction

When numerically evaluating integrals over atomic orbitals (AOs),

the choice of grid is important. The atom-centered grids used here

borrow their core concept from prior studies, especially those

involving integration of DFT functionals.24,47–51 The accepted

F IGURE 1 The 6Hj6Hð Þ integral is scanned in the
0:370,0:370,0:853ð Þ direction with the left center at the origin.
Evaluations are in mixed precision using either the Laurent polynomial

expansion of Equation (10) or the lower incomplete gamma function,
where mixed precision is defined similarly to Equation (14). Both basis
functions have m¼0 and ζ¼1

ALGORITHM 1 GPU compute structure for

generating 3-center ERIs

1: #pragma omp parallel for schedule(dynamic)

2: for A,B,C in Atom List //A,B overall Atoms, C ≥B.

3: Generate xA,xB ,xC ,w xAð Þ,w xBð Þ,w xCð Þ
4: x xA[xB[xC
5: w xð Þ w xAð Þ[w xBð Þ[w xCð Þ
6: for Pi in Aux(A).

7: Compute VPi xð Þ.
8: for χμj in Basis(B).

9: Compute χμj xð Þ.
10: for χνk in Basis(C).

11: Compute χνk xð Þ.
12: for Pi �Aux Að Þ,μj �Basis Bð Þ,νk �Basis Cð Þ.
13: Pijμjνk

� � P
xVPi xð Þχμj xð Þχνk xð Þw xð Þ.

Aux(�) and Basis(�) denote the set of auxiliary and main basis functions

centered at �, respectively.
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route for integrating the exchange-correlation energy is to build

atomic grids as products of radial and angular grids, then reweight

these using Voronoi polyhedra centered about the nuclei. The

atom-centered grids are necessary to capture the spherical har-

monics and radial decay of AOs, while partitioning three-dimen-

sional space into polyhedra divides the grid into volumes centered

around each nucleus. The Voronoi boundaries are smoothed and

reweighted to avoid double counting of volume elements.48,49,51

This same framework is used in SlaterGPU, though only a maxi-

mum of three atom-centered grids are required for any given inte-

gral, since the ERIs only involve up to three centers at a time in

the RI approximation. In a polyatomic system, this greatly simplifies

the form of the integration grid, keeping each integral grid small

enough to be efficiently evaluated. The grids chosen for this imple-

mentation are the “Log3” grid from Mura and Knowles51 for the

radial component, and the Lebedev grid52 for the angular compo-

nent. Both grids are widely used in electronic structure codes.

Once each atom-centered grid is generated, and the Becke parti-

tioning scheme48 is applied, the 3-center integral μνjPð Þ can be eval-

uated over the grid points x and grid weights w xð Þ as

μνjPð Þ¼NSTO
VC

NSTO
χμ

NSTO
χν

X
x
VC xð Þχμ xð Þχν xð Þw xð Þ, ð13Þ

where VC , χμ , χν are the Coulomb potential and basis functions with

their respective normalization constants, NSTO
VC

, NSTO
χμ

, and NSTO
χν

, fac-

tored out. While Lebedev and Mura–Knowles grids are used with

Becke weights, any quadrature grid and weighting scheme can be

used in Equation (13). The 2-index integrals PjQð Þ are evaluated in a

similar manner.

2.3 | Implementation on GPU

All integral code in this study is written in C++ using OpenACC for

GPU acceleration, which has the advantage of being based on

pragma directives allowing the same code base to be compiled to

run on CPUs or GPUs. When evaluating Equation (10), a modified

version from the Cephes library53 was used for the lower incom-

plete gamma function, noting that OpenACC allows these imple-

mentations to be used directly. Most GPUs contain more single

precision compute units than double precision, so mixed precision

operations are an attractive choice in a practical

implementation.54–57 For example, the 2080-Ti contains 1
32 the

double precision units compared with single precision units, while the

GV100 contains 1
2 the double precision units compared with single

precision units. In SlaterGPU, mixed precision is available, where eval-

uations over the grid are performed using single-precision arithmetic,

and the final summation occurs in double precision. In mixed preci-

sion, Equation (13) becomes

μνjPð Þ64¼NSTO
VC

NSTO
χμ

NSTO
χν

X
x
VP xð Þ32χμ xð Þ32χν xð Þ32w xð Þ32, ð14Þ

F IGURE 2 The GPU
speedups over CPU for integral
evaluation on the 2080-Ti (top)
and GV100 (bottom) for various
alkanes using the DZP basis from
ADF. The speedups are
partitioned into the various
integrals. Speedups for mixed
(left) and double (right) precision

evaluations are also shown

TABLE 1 Double-precision timing data (in seconds) for various alkanes

Basis size CPU time 2080-Ti time V100 time

Molecule Main Aux Vne PjQð Þ μνjQð Þ Vne PjQð Þ μνjQð Þ Vne PjQð Þ μνjQð Þ
CH4 35 224 3.282 14.02 56.88 0.2483 0.4316 2.062 0.3583 0.1581 1.513

C3H8 85 516 40.28 67.98 786.2 2.452 1.835 28.00 2.991 0.6237 9.693

C5H12 135 808 166.1 163.5 3286 9.125 4.385 110.1 11.71 1.570 37.20

Note: Each atom contributes 46,200 grid points.
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where the subscript refers to the bits of precision of the quantity. Fac-

torization of the normalization constants reduces the number of float-

ing point operations required, which is essential for high performance.

In addition to making use of the greater quantity of single-precision

compute units in GPUs, single precision also reduces storage and

memory bandwidth demands by a factor of 2. A generalization of the

F IGURE 3 Multi-GPU speedups over single GPU and parallel efficiency for mixed (left) and double (right) precision evaluation of the 3-center
ERIs for C9H20. There are a total of 76,873,200 3-center integrals. Perfect scaling is plotted as a solid black line. All GPUs are co-located on a
single compute node. Single GPU run times were 125 and 542 s for mixed- and double-precision implementations, respectively

F IGURE 4 The max and average errors between mixed- and double-precision integral evaluation are plotted for various basis functions. All
basis functions have ζ¼1 and m¼0. The max and average errors are computed over internuclear distance scans based on the 16 all-positive
directions of a Lebedev grid

TABLE 2 Mixed-precision timing data (in seconds) for various alkanes

Basis size CPU time 2080-Ti time V100 time

Molecule Main Aux Vne PjQð Þ μνjQð Þ Vne PjQð Þ μνjQð Þ Vne PjQð Þ μνjQð Þ
CH4 35 224 2.095 8.686 34.34 0.2139 0.1076 0.4415 0.2708 0.1117 0.7867

C3H8 85 516 24.95 42.34 484.8 2.037 0.3838 6.029 2.795 0.4892 6.832

C5H12 135 808 95.62 98.58 1957 7.680 0.9275 24.12 10.58 1.109 26.21

Note: Each atom contributes 46,200 grid points.
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mixed precision procedure would be to adaptively determine which

integrals to evaluate at each level of precision, as has been done in

(analytic) GTO integration.57 This is not done here; instead, the accu-

racy of the mixed precision approach is evaluated in comparison to

double precision integration.

In the GPU computing framework, data transfers between CPU

and GPU incur large overhead penalties, and thus it is necessary to

minimize these transactions for maximum performance. As such, all

quantities in Equation (14) are generated and evaluated directly on

GPU. The grid x and its weights w xð Þ only depend on the set of atoms

and not the basis functions, so these are generated once for each

unique triad of atoms as described in Algorithm 1. Additional compu-

tations may be avoided by evaluating each VP, χμ , and χν on the grid

only once per triad of atoms. In other words, when evaluating

Pijμjνk
� �

, the quantities VP xð Þ, χμ xð Þ, and χν xð Þ are all computed and

stored as GPU arrays for all Pi on atom A, μj on atom B and νk on atom

C to avoid duplicating computations. These arrays can then be con-

tracted all at once in a single tensor operation as indicated in lines

11–12 of Algorithm 1. With OpenACC, the contraction on line 12 can

be handled using a single pragma directive containing the parallel and

reduction clauses. Sample OpenACC code is provided in Section S8 of

the Supporting Information. As the grid and weights are generated

directly on GPU, reuse of the grid benefits from the high memory

bandwidth of the GPU (�600 GB/s on the 2080-Ti). Once the inte-

grals are computed on GPU, a single data transfer step returns the

integrals to CPU memory. The code for numerically computing the

STO integrals is freely available on GitHub under an Apache 2.0

license with Commons Clause as noted in the Data Availability

Statement.

Multi-GPU parallelization is also implemented for a single node,

using OpenMP to manage the GPU processes. Each OpenMP thread

is assigned a GPU, and a manager-worker scheme is used for load

balancing, where the work is partitioned using sets of atoms to take

advantage of grid/weight reuse. The parallelization occurs over the

loop in Line 2 of Algorithm 1 and can be accomplished with a single

pragma directive, shown in Line 1.

2.4 | Computational details

An all-electron double-zeta STO basis set with polarization func-

tions58 was used (denoted DZP) as the primary AO basis. The auxiliary

basis sets were taken from the same source. Full specification for the

primary and auxiliary basis sets are provided in Section S3 of the Sup-

porting Information. Unless otherwise specified, the integration grid

was a direct product of 60 radial points and 770 angular points

(Lebedev order 18). HF and heat-bath configuration interaction

TABLE 3 HF energies computed for several small molecules are
listed

Molecule DZP (32) DZP (64) 6-31G*

CH4 �40.199728 �40.199730 �40.194806
C2H6 �79.232585 �79.232593 �79.227194
C3H8 �118.269381 �118.269391 �118.261168
C4H10 �157.305952 �157.305972 �157.294705
C5H12 �196.342295 �196.342322 �196.328158
BH3 �26.395615 �26.395617 �26.390665
BF3 �323.166750 �323.166775 �323.142633
CF4 �435.667561 �435.667608 �435.642948
Cr(CO)6 �1714.832816 �1714.832901 �1714.469310

Note: The STO basis sets and grid used are described in the computational

details. The numbers in parenthesis in the header denotes the bits of

precision used for integral evaluation.

F IGURE 5 The value of 2-center ERIs are evaluated in mixed precision. All basis functions have ζ¼1 and the right basis is scanned radially
away from the origin in various directions. The directions selected are provided in the legend and were selected using the 16 all-positive
directions of an 86-point Lebedev grid. For all integrals shown here, m¼0. The legend entries are direction unit vectors
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(HBCI)30,59–62 were used as representative electronic structure

methods. The HBCI parameters used are detailed in the following sec-

tion. For GTOs, the 6-31G* basis with the RI-cc-pVTZ auxiliary basis

was used. All GTO integral evaluation was performed using the Libcint

library.63 Molecules were placed in standard nuclear orientations.64

The Nvidia HPC SDK 20.7 compiler suite with CUDA 11.0 was used

to compile all code. CPU code was run on Intel Xeon Gold 6242 pro-

cessors clocked at 2.8 GHz and GPU code was executed using the

Nvidia RTX 2080-Ti and GV-100 GPUs.

3 | RESULTS AND DISCUSSION

3.1 | Performance analysis

High throughput integral evaluation is necessary for any electronic struc-

ture theory code, regardless of basis set type. Grid-based numerical inte-

gration, however, requires orders of magnitude more floating point

operations than analytical integration. To achieve the integral perfor-

mance required, GPUs are used in this study for numerical integration of

STO integrals. These integrals include all of the common 2-center inte-

grals (overlap, electron-nuclear attraction, and kinetic energy) as well as

the 2- and 3-center Coulomb integrals needed for the RI approximation.

The relative speedup for numerical GPU integration compared with CPU

integration is visualized in Figure 2. In double precision, the 2080-Ti can

achieve over 30� speedup and the GV100 achieves �70� speedup,

allowing for tractable wall times for the integrals as listed in Table 1.

Even further performance can be gained by utilizing mixed precision,

showing speedups of over 60� and overall integral throughput

increasing by a factor of �4 for the 2080-Ti (see Table 2). The

speedup relative to CPU drops slightly to �55� on the GV100. The

performance behavior is a consequence of the hardware configuration

and the integral kernels being compute bound, with a detailed analysis

provided in the Supporting Information (Section S5).

Faster integral evaluation is also possible by distributing the

workload across multiple GPUs. To test multi-GPU scaling,

3-center ERIs were evaluated for C9H20, which has 76.9 million

ERIs, taking 125 s to compute in mixed precision and 542 s in

double-precision. Figure 3 shows the strong scaling performance

when evaluating the 3-center ERIs for C9H20, which maintains par-

allel efficiency greater than 75% on up to five GPUs for mixed-

precision evaluation and greater than 90% for double-precision

evaluations in this benchmark. Due to the reduced computational

demand of mixed-precision integration, the serial components and

communication overhead take up a proportionally larger amount

of computational time. Consequently, the parallel efficiency for

mixed-precision integral evaluation drops off more rapidly than for

double precision in strong scaling tests. However, this paralleliza-

tion scheme still allows STO integration to achieve greater than

75% parallel efficiency and overall integral throughput greater than

3 million integrals per second in mixed precision on five GPUs. For

comparison, Sun reported a throughput of approximately 6–8 mil-

lion explicitly calculated integrals per second per thread with

Libcint,63 thus placing STO integral throughput within reach of

analytical integral evaluation for GTOs. While the Libcint perfor-

mance was reported for 4-center ERIs, the comparison demon-

strates the feasibility of Slater integration under the RI

approximation. Additional developments in code optimization65

and screening protocols55 may narrow this gap further. Other grid-

based STO integral evaluation implementations13,25–29 do not

report timings nor do they use GPU acceleration. The closest

available performance comparison is an example where a

9-Gaussian expansion was used to approximate STO integrals,18

which would reduce throughput, relative to GTOs, by approxi-

mately a factor of 700 under the RI approximation.

F IGURE 6 Heatmaps of the relative error of HF energies when using mixed- versus double-precision integral evaluation are shown for
various alkanes using different angular and radial grid sizes

F IGURE 7 The SN2 reaction for fluoride exchange of
fluoromethane
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The large performance gain (�4� speedup) when using mixed

precision on the 2080-Ti units necessarily comes with some loss in

accuracy compared with double precision arithmetic. Therefore

tests of the mixed-precision integral evaluation are needed, in

order to gauge the quantitative tradeoff between accuracy and

speed.

3.2 | Mixed-precision evaluation

Numerical evaluation of integrals, whether done in single, double,

or mixed precision, will necessarily contain some residual error

with any finite grid. While this is expected with grid-based inte-

gration, estimates of the error and smoothness of the resulting

integrals are necessary to test the accuracy of the procedure.

First, a selection of 2-center ERIs were evaluated to determine

the relative loss in precision when using the mixed-precision pro-

cedure. For each PjQð Þ, the center Q was scanned radially away from

center P in 16 directions corresponding to all-positive vectors of an

86-point Lebedev grid. Figure 4 plots the max and average absolute

errors between mixed- and double-precision integrals at each dis-

tance. This indicates that the error of individual integrals are similarly

sized across various distances, with the errors all being less

than 8�10�5.

The next measure of performance for mixed-precision integration

is to evaluate the smoothness of the integrals with respect to changes

in nuclear position. Therefore 2-center ERIs were evaluated in mixed

precision as center Q is scanned radially for the same 16 directions as

before. These yield qualitatively smooth plots, as seen in Figure 5.

Additional plots for other basis set pairings are provided in Section S6

of the Supporting Information and show the same qualitative behavior

as this figure.

3.3 | Hartree–Fock and HBCI

Two levels of wave function-based electronic structure theory were

selected to provide practical tests for the Slater GPU integrals. First,

the HF energies for a set of benchmark molecules were computed

and these are listed in Table 3 (see Table S2 of the Supporting Infor-

mation for timing information). The DZP basis set, corresponding aux-

iliary basis sets, and grid described in the Computational Details were

used for these tests. Energies using the 6-31G* and RI-cc-pVTZ auxil-

iary GTO basis sets are also reported, to provide a baseline for com-

parison. The HF results for alkanes (CnH2n+2) show a slight increase in

the mixed-precision error as the chain length increases. This is shown

in Figure 6, which depicts the relative error of the HF energy when

using mixed- and double-precision at various grid sizes. The roughly

constant relative error as system size grows suggests that the mixed-

precision error is size extensive. Combined with Figures 4 and 5,

Figure 6 indicates that errors due to using mixed-precision integrals

may largely result in error cancellation.

The small error margins for STO integrals—as measured at

the HF level of theory—suggest that thermochemical properties

can be precisely evaluated. To test this hypothesis, an SN2

reaction involving fluoride exchange in fluoromethane was eval-

uated (Figure 7). Since the HF level of theory is not expected

to be quantitative, activation energies were computed not only

with HF, but also with the HBCI method, with ε1 set to 1.0 mHa

and ε2 set to 1.0 μHa. HBCI provides a close approximation to full CI,

and importantly, is tractable for the 20e� in 60 orbital system of inter-

est here. The activation energies of the exchange reaction using vari-

ous grids are reported in Table 4. At the grids considered, the change

in activation energy at the HF level is negligible between mixed and

double precision as well as between grid sizes. At the HBCI level,

more integrals contribute to the total energy. Consequently, the varia-

tion in the activation energy is larger for HBCI relative to

HF. However, the range of activation barriers for HBCI is still less than

half a kcal/mol.

TABLE 4 HF and HBCI activation
energies (kcal/ mol) of CH3F fluoride
exchange at various grid sizes using
single- and double-precision integral
evaluations

Double precision Mixed precision

Angular Radial 17 (590) 18 (770) 19 (974) 17 (590) 18 (770) 19 (974)

HF

50 18.4 18.4 18.4 18.4 18.4 18.4

60 18.4 18.4 18.4 18.4 18.4 18.4

HBCI

50 13.7 13.6 13.8 13.6 13.8 13.7

60 13.9 13.8 13.7 13.8 13.6 13.6

Note: The number of radial points and Lebedev order are provided for the radial and angular grids. The

size of the angular grid is given in parenthesis next to the Lebedev order.

TABLE 5 Relative energies of cyclobutadiene at D2h and D4h

geometries (kcal/mol)

Double precision Mixed precision

D2h D4h D2h D4h

Singlet 0.0 9.4 0.0 9.3

Triplet 36.2 14.2 36.2 14.2

Gap 36.2 4.8 36.2 4.9
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Another test using the HBCI method was the calculation of the

singlet-triplet gaps of cyclobutadiene at its D2h and D4h geometries

using a triple-ζ polarized basis set. Cyclobutadiene has a multirefer-

ence singlet ground state, due to its degenerate π orbitals in the D4h

geometry. The results, for HBCI parameters of ε1¼1:0 mHa and

ε2¼0:1 μHa, are given in Table 5. These demonstrate mixed-precision

errors of less than 0.1 kcal/mol. Furthermore, the singlet-triplet gap at

the D4h is consistent with prior full-CI using GTOs.31

One final test will further show the utility of the Slater GPU

integrals in quantum chemistry. Specifically, the geometric

gradients—which are essential in studying chemical reactions—were

evaluated using analytical nuclear derivatives of the quantities VP, μ,

and ν in Equation (13). As a benchmark, the fully symmetric BF3, BH3,

CF4, and CH4 molecules were symmetrically stretched. The HF ener-

gies as well as the projection of the mixed-precision HF geometric

gradient onto each A–X bond (A = B,C; X = H,F) are plotted in

Figure 8. As before, the mixed- and double-precision energies overlap

with one another. As for the gradient, the magnitude along each A–X

bond should be identical for all distances. This is largely achieved in

these test cases, however, there is some variation when fluorine is

present. For CF4, using the ADF fitting basis led to large gradient

errors, thus the auxiliary basis of fluorine was extended with addi-

tional functions (see Section S3 of the Supporting Information for

additional details). Since this addition resulted in substantially

improved gradients, the remaining variations for BF3 and CF4 are

attributed to an incomplete RI auxiliary basis. While this work has not

examined the choice of RI basis in detail, this subject will need to be

revisited in a future study.

4 | CONCLUSIONS

The SlaterGPU integral code is herein shown capable of evaluating

the full complement of ERIs needed for HF and post-HF theories.

Modern computer architectures combined with the RI approximation

have allowed STO integrals to be feasible even though analytic

expressions are currently unavailable. The use of mixed-precision inte-

gration allows further performance gains—achieving speedups greater

than 80� for the ERIs—with minimal loss to accuracy. In the future,

computing select integrals in double precision may mitigate errors due

to using mixed-precision integrals. The combination of GPU accelera-

tion, multi-GPU parallelization, and mixed-precision integration make

SlaterGPU competitive with single-threaded GTO integration with the

possibility of tuning SlaterGPU for additional performance.

The current implementation and basis sets are adequate for per-

forming correlated electronic structure computations at the full CI

level, however room for improvement remains in the STO RI gradi-

ents, where the available auxiliary basis sets appear to be inadequate.

Further development of auxiliary basis sets will be required before

STO integrals are generally useful for gradient computations.
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F IGURE 8 The Hartree–Fock geometric gradient projections (solid blue lines) of molecules with D3h and Td point groups are plotted as the
A–X bond distance is scanned, where A = B,C and X = H,F. Gradients were computed in mixed precision. The mixed-precision (solid green) and
double-precision (dotted red) Hartree–Fock energies at each point are also plotted. For CF4, the auxiliary basis for fluorine is extended with
additional 2p, 3d, 4f, and 5g functions
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