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Abstract7

This article presents SlaterGPU, a GPU accelerated library that uses OpenACC to numer-8

ically compute Slater-type orbital (STO) integrals. The electron repulsion integrals (ERI) are9

computed under the RI approximation using the Coulomb potential of the Slater basis func-10

tion. To fully realize the performance capabilities of modern GPUs, the Slater integrals are11

evaluated in mixed-precision, resulting in speedups for the ERIs of over 80×. Parallelization12

on multiple GPUs allows for integral throughput of over 3 million integrals per second. This13

places STO integral throughput within reach of single-threaded, conventional Gaussian inte-14

gration schemes. To test the quality of the integrals, the fluorine exchange reaction barrier in15

fluoromethane was computed using heat-bath configuration interaction (HBCI). In addition,16

the singlet-triplet gap of cyclobutadiene was examined using HBCI in a triple-ζ , polarized ba-17

sis set. These benchmarks demonstrate the library’s ability to generate the full set of integrals18

necessary for configuration interaction with up to 6h functions in the auxiliary basis.19
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SlaterGPU, a GPU accelerated library for numerically computing Slater-type orbital (STO) inte-
grals, is presented in this study. The library achieves speedups over CPU for the electron repul-
sion integrals of over 80×. By utilizing mixed-precision arithmetic and multi-GPU parallelism,
SlaterGPU achieves STO integral throughput of over 3 million integrals per second. SlaterGPU
also generates the full complement of electron integrals needed for methods such as full configu-
ration interaction.
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INTRODUCTION22

Advances in quantum chemistry and computer hardware have facilitated the routine use of elec-23

tronic structure simulations for chemical applications. Some of the most widely used theories make24

use of one-electron, atom-centered basis functions1 to represent the electron density. The simplest25

wave function that approximately solves the Schrödinger equation is Hartree-Fock (HF), which26

represents the wave function using a single Slater determinant. While HF is not a quantitatively27

accurate theory, it forms the basis for more sophisticated theories. In many canonical, post-HF28

methods, evaluation of Hamiltonian elements in the Schrödinger picture requires computing inte-29

grals of the form30

Oµν = 〈χµ |Ô1|χν〉=
∫

χµ(r)Ô(r)χν(r)dr, (1)31

Oµνλσ = 〈χµ(1)χν(1)|Ô2|χλ (2)χσ (2)〉32

=
∫ ∫

χµ(r1)χν(r1)Ô2χλ (r2)χσ (r2)dr1dr2. (2)33
34

The first equation denotes 1-electron quantities such as the overlap Ô1 = 1, the kinetic energy Ô1 =35

−1
2∇2, and the nuclear attraction Ô1 = ZA

R1A
operators. 2-electron operators include the Coulomb36

repulsion Ô2 =
1

r12
, where r12 is the distance between electrons 1 and 2. Derivatives of these terms,37

for example with respect to nuclear position, are also quantities of interest.38

Amongst these integrals, the electron repulsion integrals (ERIs) are the most difficult (and39

numerous) to evaluate, being 2-electron quantities that require six-dimensional integration. In40

addition, the 1
r12

operator contains a singularity at every point in three-dimensional space, further41

challenging their integration. Consequently, the choice of basis is important for not only accurate42

representation of the molecular wave function, but also for computational evaluation of integrals.43

One physically-motivated choice are Slater-type orbitals (STOs), which are hydrogen-like or-44

bitals of the form45

S(ζ ,n, l,m,r,θ ,φ) = NSTOrn−1e−ζ rZlm(θ ,φ), (3)46
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where ζ is the exponent, n, l,m are the usual atomic quantum numbers, r,θ ,φ are spherical co-47

ordinates, NSTO is the normalization constant, and Zlm are the spherical harmonics.1–3 The STOs48

satisfy the Kato cusp and exponential decay of atomic wave functions,1,4,5 making them a natu-49

ral basis choice for quantum chemical calculations. However, the ERIs over STOs do not have a50

known general analytic form.51

The difficulties of STO integration led to the expansion of STOs in terms of Gaussian-type52

orbitals6 (GTOs)53

G(α,n, l,m,r,θ ,φ) = NGTOe−αr2
Slm(r,θ ,φ), (4)54

where the Slm are the real solid harmonics.1 The GTOs benefit from the Gaussian product rule,55

i.e. the product of two GTOs is again a GTO, which simplifies Equation 2 from a 4-center, 2-56

electron integral to 2-center, 2-electron. The 2-center, 2-electron integral can be evaluated over57

the Coulomb potential of one GTO reducing a 6-dimensional integral to 3-dimensions. These nice58

analytical properties of GTOs facilitated the development of fast analytical integral evaluation.7–11
59

While GTOs can be quickly evaluated using modern integral libraries, they do not contain the60

correct short- and long-range behaviors expected in molecular wave functions.12 For example, the61

cusp near the nucleus is important for computing properties such as nuclear magnetic resonance62

shifts and polarizabilities,13,14 but the cusp is not present in the GTO basis, and only crudely63

treated by using contracted sets of GTOs. Exponential decay of the wave function for an accurate64

description is required for precise quantification of the HOMO energy, but this behavior is also65

absent in GTOs.15
66

The imperfections of GTO basis sets have left room for the continued development and use67

of STOs for quantum chemical applications. Several schemes have been developed to compute68

general STO integrals. One approach is to expand each STO in a very large number of GTOs69

and compute the GTO integrals analytically.16–18 Additionally, Monte Carlo has been used to70

correct integrals over Gaussian expansions to evaluate the Slater quantity.19 These schemes are71

prohibitively expensive for routine use. While the focus of this article is on the use of STOs in72

integrals such as Equations 1 and 2, STOs have seen frequent use in quantum Monte Carlo (QMC)73
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wave functions, where the 1- and 2-electron integrals are not important.20–23
74

An attractive alternative to explicit evaluation of STO ERIs involves density fitting—in partic-75

ular the resolution-of-the-identity (RI) approximation (see Theory and Computational Details)—76

which allows Equation 2 to be approximated as a tensor product of 2- and 3-index ERIs. Within77

the RI approximation, one of the two electrons is described by a single basis function. This facili-78

tates the use of a Coulomb potential to represent one electron without relying on an explicit basis79

set product rule—which does not exist for STOs—to condense multiple centers. This simplifica-80

tion, which is only necessary for systems with at least four distinct atomic centers, allows STO81

integration of ERIs to be amenable to numerical quadrature schemes. The Amsterdam Density82

Functional (ADF) package and other density functional theory (DFT) codes implement a density83

fitting approach to use STOs in DFT.3,13,24,25 Other density fitting frameworks have allowed STOs84

to be used used in approximate MP2,26 double-hybrid DFT,27 and Green’s function methods.28,29
85

These previous STO studies, however, did not generate the full complement of ERIs required for86

multiconfigurational methods such as those based on configuration interaction,30–33 multiconfigu-87

rational self-consistent field34–38 and coupled cluster.39–42
88

This study introduces and benchmarks a graphics processing unit (GPU) library for evaluating89

STO integrals for wave function theories. The article will show that these can be accurately and90

efficiently evaluated using numerical integration by combining the RI approximation with the STO91

Coulomb potential. The large number of processing cores and high memory bandwidth make mod-92

ern GPUs the architecture of choice for evaluating and summing numerical grids. For additional93

performance, the integrals are also computed using mixed-precision evaluation. Timings suggest94

that this library allows STOs to be useful alongside strongly correlated wave function theories.95

Accuracy benchmarks indicate minimal loss in accuracy from using mixed-precision relative to96

double-precision. The resulting code, called SlaterGPU,43 is the first reported library to use GPUs97

to accelerate STO integrals and evaluate the full set of 1- and 2-electron STO integrals up to the 6h98

subshell as well as 5g for first derivatives for the auxiliary basis.99
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THEORY AND COMPUTATIONAL DETAILS100

The present STO integral scheme relies on numerical integration over atom-centered grids. Grid-101

based integration can make use of single instruction, multiple data (SIMD) parallelism and there-102

fore can leverage GPU hardware for acceleration. Even with this acceleration, the 6-dimensional103

ERIs remain too costly for routine computations. The dimensionality of integration can be reduced,104

however, by employing the resolution-of-the-identity (RI) approximation,44–46 where the Coulomb105

potentials for the auxiliary basis functions are known analytically. The various components of the106

STO integral algorithm are explained in the following sections: the Resolution of the Identity, Grid107

Construction, Implementation on GPU, and Computational Details.108

Resolution of the Identity109

This section focuses on simplifying the challenging ERIs for numerical evaluation. The expres-110

sions for numerically evaluating the 1-electron integrals are listed in Section S1 of the Supporting111

Information. In the RI approximation, the 4-index ERIs (µν |λκ) are decomposed into tensor prod-112

ucts of 2- and 3-index integrals by representing the density in terms of an auxiliary basis. Using113

the Coulomb metric, the integral can be approximated with the expression44–46
114

(µν |λκ)≈∑
PQ

(µν |P)(PQ)−1(Q|λκ) = ∑
Q

BQ
µνBQ

λκ
, (5)115

where116

BQ
µν = ∑

P
(µν |P)(PQ)−1/2. (6)117

In a numerical integration scheme, Equation 5 not only reduces the count of numerical integrals118

for a given basis set size (N) from O(N4) to O(N3), it also has a secondary consequence that is119

useful in the context of STO basis functions. Specifically, the integral120

(P|µν) =
∫ ∫

χP(r1)
1

r12
χµ(r2)χν(r2)dr1dr2 (7)121
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can be simplified to122

(P|µν) =
∫

V P
C (r)χµ(r)χν(r)dr (8)123

by using the known analytical form of the single-Slater Coulomb potential. In spherical coordi-124

nates, this potential has the form3
125

VC(ζ ,n, l,m,r,θ ,φ) =
4π(2ζ )n+(1/2)√
(2n)!(2l +1)

Zlm(θ ,φ)Inl(r), (9)126

where127

Inl(r) = r−l−1
∫ r

0
(r′)n+l+1e−ζ r′dr′+ rl

∫
∞

r
(r′)n−le−ζ r′dr′. (10)128

Inl has analytic expressions using finite Laurent polynomials for each n, l of interest.129

For large angular momentum l, the Laurent expressions (see Section S2 of the Supporting130

Information)—and especially their derivatives—exhibit numerical instability, especially when us-131

ing mixed-precision arithmetic, which is essential for high performance integral evaluation. This132

can result in non-smooth integrals as shown in Figure 1, which can in turn result in non-smooth or133

discontinuous energies. Instead of applying the Laurent expressions, Equation 10 can be evaluated134

using lower incomplete gamma functions, which have fast, numerically precise implementations.47
135

The final form of Equation 10 used in the current implementation of SlaterGPU is136

Inl(r) = r−l−1
ζ
−l−n−2

{
(rζ )2l+1 [(−l +n)!− γ(−l +n+1,rζ )]+ γ(l +n+2,rζ )

}
, (11)137

where γ(s,x) is the lower incomplete gamma function,138

γ(s,x) =
∫ x

0
ts−1e−tdt. (12)139

After evaluation of all 2- and 3-center Coulomb integrals, the full set of 4-index ERIs can140

be reconstructed using Equation 5. SlaterGPU therefore uses the RI approximation for Slater141

integrals, similar to prior implementations for DFT applications,24,25 but further provides all 4-142
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Figure 1: The (6H|6H) integral is scanned in the (0.370,0.370,0.853) direction with the left center
at the origin. Evaluations are in mixed precision using either the Laurent polynomial expansion of
Equation 10 or the lower incomplete gamma function, where mixed precision is defined similarly
to Equation 14. Both basis functions have m = 0 and ζ = 1.

index integrals, (i j|kl), which are not generated or required for DFT. This allows the SlaterGPU143

library to be useful for wave function theories, which require a larger set of ERIs. In particular,144

while prior codes demonstrated applicability to l ≤ 3,25,29 SlaterGPU is shown here to be useful145

for l ≤ 5.146

Grid Construction147

When numerically evaluating integrals over atomic orbitals (AO), the choice of grid is important.148

The atom-centered grids used here borrow their core concept from prior studies, especially those149

involving integration of DFT functionals.24,48–52 The accepted route for integrating the exchange-150

correlation energy is to build atomic grids as products of radial and angular grids, then reweight151

these using Voronoi polyhedra centered about the nuclei. The atom-centered grids are neces-152

sary to capture the spherical harmonics and radial decay of atomic orbitals, while partitioning153

3-dimensional space into polyhedra divides the grid into volumes centered around each nucleus.154

The Voronoi boundaries are smoothed and reweighted to avoid double counting of volume ele-155

ments.49,50,52 This same framework is used in SlaterGPU, though only a maximum of three atom-156

centered grids are required for any given integral, since the ERIs only involve up to three centers at157
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a time in the RI approximation. In a polyatomic system, this greatly simplifies the form of the inte-158

gration grid, keeping each integral grid small enough to be efficiently evaluated. The grids chosen159

for this implementation are the "Log3" grid from Mura and Knowles52 for the radial component,160

and the Lebedev grid53 for the angular component. Both grids are widely used in electronic struc-161

ture codes. Once each atom-centered grid is generated, and the Becke partitioning scheme49 is162

applied, the 3-center integral (µν |P) can be evaluated over the grid points x and grid weights w(x)163

as164

(µν |P) = NSTO
VC

NSTO
χµ

NSTO
χν ∑

x
V̄C(x)χ̄µ(x)χ̄ν(x)w(x), (13)165

where V̄C, χ̄µ , χ̄ν are the Coulomb potential and basis functions with their respective normalization166

constants, NSTO
VC

, NSTO
χµ

, and NSTO
χν

, factored out. While Lebedev and Mura-Knowles grids are used167

with Becke weights, any quadrature grid and weighting scheme can be used in Equation 13. The168

2-index integrals (P|Q) are evaluated in a similar manner.169

Implementation on GPU170

All integral code in this study is written in C++ using OpenACC for GPU acceleration, which has171

the advantage of being based on pragma directives allowing the same code base to be compiled172

to run on CPUs or GPUs. When evaluating Equation 10, a modified version from the Cephes173

library54 was used for the lower incomplete gamma function, noting that OpenACC allows these174

implementations to be used directly. Most GPUs contain more single precision compute units175

than double precision, so mixed precision operations are an attractive choice in a practical im-176

plementation.55–58 For example, the 2080-Ti contains 1
32 the double precision units compared to177

single precision units, while the GV100 contains 1
2 the double precision units compared to single178

precision units. In SlaterGPU, mixed precision is available, where evaluations over the grid are179

performed using single-precision arithmetic, and the final summation occurs in double precision.180
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In mixed precision, Equation 13 becomes181

(µν |P)64 = NSTO
VC

NSTO
χµ

NSTO
χν ∑

x
V̄P(x)32χ̄µ(x)32χ̄ν(x)32w(x)32, (14)182

where the subscript refers to the bits of precision of the quantity. Factorization of the normalization183

constants reduces the number of floating point operations required, which is essential for high184

performance. In addition to making use of the greater quantity of single-precision compute units185

in GPUs, single precision also reduces storage and memory bandwidth demands by a factor of 2. A186

generalization of the mixed precision procedure would be to adaptively determine which integrals187

to evaluate at each level of precision, as has been done in (analytic) GTO integration.58 This is188

not done here; instead, the accuracy of the mixed precision approach is evaluated in comparison to189

double precision integration.190

Algorithm 1 GPU compute structure for generating 3-center ERIs
1: #pragma omp parallel for schedule(dynamic)
2: for A,B,C in Atom List //A,B over all Atoms, C ≥ B
3: Generate xA,xB,xC,w(xA),w(xB),w(xC)
4: x← xA∪ xB∪ xC
5: w(x)← w(xA)∪w(xB)∪w(xC)
6: for Pi in Aux(A)
7: Compute VPi(x)
8: for χµ j in Basis(B)
9: Compute χµ j(x)

10: for χνk in Basis(C)
11: Compute χνk(x)
12: for Pi ∈ Aux(A),µ j ∈ Basis(B),νk ∈ Basis(C)
13: (Pi|µ jνk)← ∑xVPi(x)χµ j(x)χνk(x)w(x)

Aux(·) and Basis(·) denote the set of auxiliary and main basis functions centered at ·, respectively.191

In the GPU computing framework, data transfers between CPU and GPU incur large overhead192

penalties, and thus it is necessary to minimize these transactions for maximum performance. As193

such, all quantities in Equation 14 are generated and evaluated directly on GPU. The grid x and its194

weights w(x) only depend on the set of atoms and not the basis functions, so these are generated195

once for each unique triad of atoms as described in Algorithm 1. Additional computations may be196
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avoided by evaluating each VP, χµ and χν on the grid only once per triad of atoms. In other words,197

when evaluating (Pi|µ jνk), the quantities VP(x), χµ(x) and χν(x) are all computed and stored as198

GPU arrays for all Pi on atom A, µ j on atom B and νk on atom C to avoid duplicating computations.199

These arrays can then be contracted all at once in a single tensor operation as indicated in lines200

11-12 of Algorithm 1. With OpenACC, the contraction on line 12 can be handled using a single201

pragma directive containing the parallel and reduction clauses. Sample OpenACC code is pro-202

vided in Section S8 of the Supporting Information. As the grid and weights are generated directly203

on GPU, reuse of the grid benefits from the high memory bandwidth of the GPU (∼ 600 GB/s on204

the 2080-Ti). Once the integrals are computed on GPU, a single data transfer step returns the in-205

tegrals to CPU memory. The code for numerically computing the STO integrals is freely available206

on GitHub under an Apache 2.0 license with Commons Clause as noted in the Data Availability207

Statement.208

Multi-GPU parallelization is also implemented for a single node, using OpenMP to manage209

the GPU processes. Each OpenMP thread is assigned a GPU, and a manager-worker scheme is210

used for load balancing, where the work is partitioned using sets of atoms to take advantage of211

grid/weight reuse. The parallelization occurs over the loop in Line 2 of Algorithm 1 and can be212

accomplished with a single pragma directive, shown in Line 1.213

Computational Details214

An all-electron double-zeta STO basis set with polarization functions59 was used (denoted DZP)215

as the primary atomic orbital basis. The auxiliary basis sets were taken from the same source.216

Full specification for the primary and auxiliary basis sets are provided in Section S3 of the Sup-217

porting Information. Unless otherwise specified, the integration grid was a direct product of 60218

radial points and 770 angular points (Lebedev order 18). Hartree-Fock and heat-bath configuration219

interaction30,60–63 (HBCI) were used as representative electronic structure methods. The HBCI220

parameters used are detailed in the following section. For GTOs, the 6-31G* basis with the RI-221

cc-pVTZ auxiliary basis was used. All GTO integral evaluation was performed using the Libcint222
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library.64 Molecules were placed in standard nuclear orientations.65 The Nvidia HPC SDK 20.7223

compiler suite with CUDA 11.0 was used to compile all code. CPU code was run on Intel Xeon224

Gold 6242 processors clocked at 2.8 GHz and GPU code was executed using the Nvidia RTX225

2080-Ti and GV-100 GPUs.226

RESULTS AND DISCUSSION227

Performance Analysis228

High throughput integral evaluation is necessary for any electronic structure theory code, regard-229

less of basis set type. Grid-based numerical integration, however, requires orders of magnitude230

more floating point operations than analytical integration. To achieve the integral performance231

required, GPUs are used in this study for numerical integration of STO integrals. These inte-232

grals include all of the common 2-center integrals (overlap, electron-nuclear attraction, and kinetic233

energy) as well as the 2- and 3-center Coulomb integrals needed for the RI approximation. The rel-234

ative speedup for numerical GPU integration compared to CPU integration is visualized in Figure235

2. In double precision, the 2080-Ti can achieve over 30× speedup and the GV100 achieves∼ 70×236

speedup, allowing for tractable wall times for the integrals as listed in Table 1. Even further per-237

formance can be gained by utilizing mixed precision, showing speedups of over 60× and overall238

integral throughput increasing by a factor of ∼ 4 for the 2080-Ti (see Table 2). The speedup rela-239

tive to CPU drops slightly to∼ 55× on the GV100. The performance behavior is a consequence of240

the hardware configuration and the integral kernels being compute bound, with a detailed analysis241

provided in the Supporting Information (Section S5).242

Faster integral evaluation is also possible by distributing the workload across multiple GPUs.243

To test multi-GPU scaling, 3-center ERIs were evaluated for C9H20, which has 76.9 million ERIs,244

taking 125s to compute in mixed precision and 542s in double-precision. Figure 3 shows the245

strong scaling performance when evaluating the 3-center ERIs for C9H20, which maintains paral-246

lel efficiency greater than 75% on up to 5 GPUs for mixed-precision evaluation and greater than247
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Figure 2: The GPU speedups for integral evaluation over CPU for the 2080-Ti (top) and GV100
(bottom) are shown for various alkanes using the DZP basis from ADF. The speedups are parti-
tioned into the various integrals. Speedups for mixed (left) and double (right) precision evaluations
are also shown.

90% for double-precision evaluations in this benchmark. Due to the reduced computational de-248

mand of mixed-precision integration, the serial components and communication overhead take249

up a proportionally larger amount of computational time. Consequently, the parallel efficiency250

for mixed-precision integral evaluation drops off more rapidly than for double precision in strong251

scaling tests. However, this parallelization scheme still allows STO integration to achieve greater252

than 75% parallel efficiency and overall integral throughput greater than 3 million integrals per253

second in mixed precision on 5 GPUs. For comparision, Sun reported a throughput of approxi-254

mately 6-8 million explicitly calculated integrals per second per thread with Libcint,64 thus plac-255

ing STO integral throughput within reach of analytical integral evaluation for GTOs. While the256

Libcint performance was reported for 4-center ERIs, the comparison demonstrates the feasibility257

of Slater integration under the RI approximation. Additional developments in code optimization66
258

and screening protocols56 may narrow this gap further. Other grid-based STO integral evalua-259
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tion implementations13,25–29 do not report timings nor do they use GPU acceleration. The closest260

available performance comparison is an example where a 9-Gaussian expansion was used to ap-261

proximate STO integrals,18 which would reduce throughput, relative to GTOs, by approximately a262

factor of 700 under the RI approximation.263

Table 1: Double-precision timing data (in seconds) for various alkanes. Each atom contributes
46,200 grid points.

Basis size CPU Time 2080-Ti Time V100 Time
Molecule Main Aux Vne (P|Q) (µν |Q) Vne (P|Q) (µν |Q) Vne (P|Q) (µν |Q)

CH4 35 224 3.282 14.02 56.88 0.2483 0.4316 2.062 0.3583 0.1581 1.513
C3H8 85 516 40.28 67.98 786.2 2.452 1.835 28.00 2.991 0.6237 9.693
C5H12 135 808 166.1 163.5 3286 9.125 4.385 110.1 11.71 1.570 37.20

Table 2: Mixed-precision timing data (in seconds) for various alkanes. Each atom contributes
46,200 grid points.

Basis size CPU Time 2080-Ti Time V100 Time
Molecule Main Aux Vne (P|Q) (µν |Q) Vne (P|Q) (µν |Q) Vne (P|Q) (µν |Q)

CH4 35 224 2.095 8.686 34.34 0.2139 0.1076 0.4415 0.2708 0.1117 0.7867
C3H8 85 516 24.95 42.34 484.8 2.037 0.3838 6.029 2.795 0.4892 6.832
C5H12 135 808 95.62 98.58 1957 7.680 0.9275 24.12 10.58 1.109 26.21

The large performance gain (∼ 4× speedup) when using mixed precision on the 2080-Ti units264

necessarily comes with some loss in accuracy compared to double precision arithmetic. There-265

fore tests of the mixed-precision integral evaluation are needed, in order to gauge the quantitative266

tradeoff between accuracy and speed.267

Mixed-Precision Evaluation268

Numerical evaluation of integrals, whether done in single, double, or mixed precision, will nec-269

essarily contain some residual error with any finite grid. While this is expected with grid-based270

integration, estimates of the error and smoothness of the resulting integrals are necessary to test271

the accuracy of the procedure. First, a selection of 2-center ERIs were evaluated to determine the272

relative loss in precision when using the mixed-precision procedure. For each (P|Q), the center Q273

was scanned radially away from center P in 16 directions corresponding to all-positive vectors of274
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Figure 3: Multi-GPU speedups over single GPU and parallel efficiency for mixed (left) and double
(right) precision evaluation of the 3-center ERIs for C9H20. There are a total of 76,873,200 3-
center integrals. Perfect scaling is plotted as a solid black line. All GPUs are co-located on a
single compute node. Single GPU run times were 125s and 542s for mixed- and double-precision
implementations, respectively.

an 86-point Lebedev grid. Figure 4 plots the max and average absolute errors between mixed- and275

double-precision integrals at each distance. This indicates that the error of individual integrals are276

similarly sized across various distances, with the errors all being less than 8×10−5.277

The next measure of performance for mixed-precision integration is to evaluate the smoothness278

of the integrals with respect to changes in nuclear position. Therefore 2-center ERIs were evaluated279

in mixed precision as center Q is scanned radially for the same 16 directions as before. These yield280

qualitatively smooth plots, as seen in Figure 5. Additional plots for other basis set pairings are281

provided in Section S6 of the Supporting Information and show the same qualitative behavior as282

this figure.283

Hartree-Fock and HBCI284

Two levels of wave function-based electronic structure theory were selected to provide practical285

tests for the Slater GPU integrals. First, the Hartree-Fock energies for a set of benchmark molecules286

were computed and these are listed in Table 3 (see Table S2 of the Supporting Information for287

timing information). The DZP basis set, corresponding auxiliary basis sets, and grid described in288
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Figure 4: The max and average errors between mixed- and double-precision integral evaluation are
plotted for various basis functions. All basis functions have ζ = 1 and m= 0. The max and average
errors are computed over internuclear distance scans based on the 16 all-positive directions of a
Lebedev grid.
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Figure 5: The value of 2-center ERIs are evaluated in mixed precision. All basis functions have
ζ = 1 and the right basis is scanned radially away from the origin in various directions. The
directions selected are provided in the legend and were selected using the 16 all-positive directions
of an 86-point Lebedev grid. For all integrals shown here, m = 0. The legend entries are direction
unit vectors.
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the Computational Details were used for these tests. Energies using the 6-31G* and RI-cc-pVTZ289

auxiliary GTO basis sets are also reported, to provide a baseline for comparison. The HF results290

for alkanes (CnH2n+2) show a slight increase in the mixed-precision error as the chain length291

increases. This is shown in Figure 6, which depicts the relative error of the HF energy when using292

mixed- and double-precision at various grid sizes. The roughly constant relative error as system293

size grows suggests that the mixed-precision error is size extensive. Combined with Figures 4 and294

5, Figure 6 indicates that errors due to using mixed-precision integrals may largely result in error295

cancellation.296

Table 3: HF energies computed for several small molecules are listed. The STO basis sets and grid
used are described in the Computational Details. The numbers in parenthesis in the header denotes
the bits of precision used for integral evaluation.

Molecule DZP (32) DZP (64) 6-31G*
CH4 -40.199728 -40.199730 -40.194806
C2H6 -79.232585 -79.232593 -79.227194
C3H8 -118.269381 -118.269391 -118.261168
C4H10 -157.305952 -157.305972 -157.294705
C5H12 -196.342295 -196.342322 -196.328158
BH3 -26.395615 -26.395617 -26.390665
BF3 -323.166750 -323.166775 -323.142633
CF4 -435.667561 -435.667608 -435.642948

Cr(CO)6 -1714.832816 -1714.832901 -1714.469310
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Figure 6: Heatmaps of the relative error of HF energies when using mixed- vs double-precision
integral evaluation are shown for various alkanes using different angular and radial grid sizes.

The small error margins for STO integrals—as measured at the HF level of theory—suggest297
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Figure 7: The SN2 reaction for fluoride exchange of fluoromethane.

Table 4: HF and HBCI activation energies (kcal mol−1) of CH3F fluoride exchange at various
grid sizes using single- and double-precision integral evaluations. The number of radial points and
Lebedev order are provided for the radial and angular grids. The size of the angular grid is given
in parenthesis next to the Lebedev order.

Double Precision Mixed Precision
HF

Radial
Angular

17(590) 18(770) 19(974) 17(590) 18(770) 19(974)

50 18.4 18.4 18.4 18.4 18.4 18.4
60 18.4 18.4 18.4 18.4 18.4 18.4

HBCI
50 13.7 13.6 13.8 13.6 13.8 13.7
60 13.9 13.8 13.7 13.8 13.6 13.6

that thermochemical properties can be precisely evaluated. To test this hypothesis, an SN2 reaction298

involving fluoride exchange in fluoromethane was evaluated (Figure 7). Since the HF level of299

theory is not expected to be quantitative, activation energies were computed not only with HF, but300

also with the heat-bath configuration interaction (HBCI) method, with ε1 set to 1.0 mHa and ε2 set301

to 1.0 µHa. HBCI provides a close approximation to full CI, and importantly, is tractable for the302

20e− in 60 orbital system of interest here. The activation energies of the exchange reaction using303

various grids are reported in Table 4. At the grids considered, the change in activation energy at304

the HF level is negligible between mixed and double precision as well as between grid sizes. At305

the HBCI level, more integrals contribute to the total energy. Consequently, the variation in the306

activation energy is larger for HBCI relative to HF. However, the range of activation barriers for307

HBCI is still less than half a kcal mol−1.308

Another test using the HBCI method was the calculation of the singlet-triplet gaps of cyclobu-309

tadiene at its D2h and D4h geometries using a triple-ζ polarized (denoted TZP) basis set. Cy-310

clobutadiene has a multireference singlet ground state, due to its degenerate π orbitals in the D4h311

geometry. The results, for HBCI parameters of ε1 = 1.0 mHa and ε2 = 0.1 µHa, are given in312

Table 5. These demonstrate mixed-precision errors of less than 0.1 kcal mol−1. Furthermore, the313
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singlet-triplet gap at the D4h is consistent with prior full-CI using GTOs.31
314

Table 5: Relative energies of cyclobutadiene at D2h and D4h geometries (kcal mol−1).
Double Precision Mixed Precision
D2h D4h D2h D4h

Singlet 0.0 9.4 0.0 9.3
Triplet 36.2 14.2 36.2 14.2

Gap 36.2 4.8 36.2 4.9

One final test will further show the utility of the Slater GPU integrals in quantum chemistry.315

Specifically, the geometric gradients—which are essential in studying chemical reactions—were316

evaluated using analytical nuclear derivatives of the quantities VP, µ , and ν in Equation 13. As a317

benchmark, the fully symmetric BF3, BH3, CF4, and CH4 molecules were symmetrically stretched.318

The HF energies as well as the projection of the mixed-precision HF geometric gradient onto each319

A-X bond (A=B,C;X=H,F) are plotted in Figure 8. As before, the mixed- and double-precision320

energies overlap with one another. As for the gradient, the magnitude along each A-X bond should321

be identical for all distances. This is largely achieved in these test cases, however, there is some322

variation when fluorine is present. For CF4, using the ADF fitting basis led to large gradient323

errors, thus the auxiliary basis of fluorine was extended with additional functions (see Section S3324

of the Supporting Information for additional details). Since this addition resulted in substantially325

improved gradients, the remaining variations for BF3 and CF4 are attributed to an incomplete RI326

auxiliary basis. While this work has not examined the choice of RI basis in detail, this subject will327

need to be revisited in a future study.328

CONCLUSIONS329

The SlaterGPU integral code is herein shown capable of evaluating the full complement of ERIs330

needed for HF and post-HF theories. Modern computer architectures combined with the RI approx-331

imation have allowed STO integrals to be feasible even though analytic expressions are currently332

unavailable. The use of mixed-precision integration allows further performance gains—achieving333

speedups greater than 80× for the ERIs—with minimal loss to accuracy. In the future, comput-334
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Figure 8: The Hartree-Fock geometric gradient projections (solid blue lines) of molecules with D3h
and Td point groups are plotted as the A-X bond distance is scanned, where A=B,C and X=H,F.
Gradients were computed in mixed precision. The mixed-precision (solid green) and double-
precision (dotted red) Hartree-Fock energies at each point are also plotted. For CF4, the auxiliary
basis for fluorine is extended with additional 2p, 3d, 4 f and 5g functions.

ing select integrals in double precision may mitigate errors due to using mixed-precision integrals.335

The combination of GPU acceleration, multi-GPU parallelization, and mixed-precision integration336

make SlaterGPU competitive with single-threaded GTO integration with the possibility of tuning337

SlaterGPU for additional performance.338

The current implementation and basis sets are adequate for performing correlated electronic339

structure computations at the full CI level, however room for improvement remains in the STO340

RI gradients, where the available auxiliary basis sets appear to be inadequate. Further develop-341

ment of auxiliary basis sets will be required before STO integrals are generally useful for gradient342

computations.343
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