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Abstract

Understanding factors controlling primary production is fundamental for the

protection, management, and restoration of ecosystems. Tropical seagrass eco-

systems are among the most productive ecosystems worldwide, yielding tre-

mendous services for society. Yet they are also among the most impaired from

anthropogenic stressors, prompting calls for ecosystem-based restoration

approaches. Artificial reefs (ARs) are commonly applied in coastal marine eco-

systems to rebuild failing fisheries and have recently gained attention for their

potential to promote carbon sequestration. Nutrient hotspots formed via excre-

tion from aggregating fishes have been empirically shown to enhance local pri-

mary production around ARs in seagrass systems. Yet, if and how increased

local production affects primary production at ecosystem scale remains

unclear, and empirical tests are challenging. We used a spatially explicit

individual-based simulation model that combined a data-rich single-nutrient

primary production model for seagrass and bioenergetics models for fish to test

how aggregating fish on ARs affect seagrass primary production at patch and

ecosystem scales. Specifically, we tested how the aggregation of fish alters

(i) ecosystem seagrass primary production at varying fish densities and levels

of ambient nutrient availability and (ii) the spatial distribution of seagrass pri-

mary production. Comparing model ecosystems with equivalent nutrient

levels, we found that when fish aggregate around ARs, ecosystem-scale pri-

mary production is enhanced synergistically. This synergistic increase in pro-

duction was caused by nonlinear dynamics associated with nutrient uptake

and biomass allocation that enhances aboveground primary production more

than belowground production. Seagrass production increased near the AR and

decreased in areas away from the AR, despite marginal reductions in seagrass

biomass at the ecosystem level. Our simulation’s findings that ARs can

increase ecosystem production provide novel support for ARs in seagrass eco-

systems as an effective means to promote (i) fishery restoration (increased pri-

mary production can increase energy input to the food web) and (ii) carbon

sequestration, via higher rates of primary production. Although our model rep-

resents a simplified, closed seagrass system without complex trophic
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interactions, it nonetheless provides an important first step in quantifying

ecosystem-level implications of ARs as a tool for ecological restoration.

KEYWORD S
agent-based simulation model, biogeochemical hotspot, coastal marine ecosystems,
ecosystem productivity, excretion, fish, Haemulon plumeria, individual-based simulation
model, nutrient, seagrass, Thalassia testudinum

INTRODUCTION

Predicting ecosystem productivity is a fundamental chal-
lenge in ecology and is necessary for the effective man-
agement of ecosystem services. Essential to this is
understanding the controls on primary production
because it represents an important ecosystem service in
and of itself through the sequestration of carbon and pro-
vides the energetic basis for secondary production, for
example, fisheries (Ryther, 1969). Coastal marine ecosys-
tems are among the most productive ecosystems on the
planet and have long provided an essential source of pro-
tein for coastal societies. More recently, coastal ecosys-
tems are being acknowledged for the role they play in
carbon sequestration. Mangroves and seagrass beds can
sequester more carbon per unit area than any other eco-
system type (Mcleod et al., 2011), though seagrass carbon
dynamics are complex and carbon emissions can exceed
sequestration under specific conditions (Van Dam
et al., 2021). Yet coastal ecosystems are also among the
most globally degraded due to habitat degradation, over-
exploitation, and climate change (Halpern et al., 2008,
2012; Lotze, 2006; Sale, 2008). Ecosystem-based manage-
ment approaches (Arkema et al., 2006), which seek to
simultaneously restore coastal ecosystem structure and
function, are therefore emerging as promising avenues
for holistic ecosystem restoration.

Artificial reefs (ARs), defined as structures on the sea-
floor that mimic some aspect of natural reefs, are widely
touted as useful tools for restoring and rebuilding
depleted fisheries (Carr & Hixon, 1997) and, more
recently, to promoting increased carbon sequestration via
increased seagrass primary production (Layman &
Allgeier, 2020) or increased coral growth rates (Allgeier,
Andskog, et al., 2020; Shantz et al., 2015). From a more
traditional perspective, ARs are a fishery-centric manage-
ment tool and have been widely utilized because they
promote dense aggregations of fish (Baine, 2001;
Bohnsack et al., 1991; Carr & Hixon, 1997; Seaman, 2019;
Stone et al., 1991). For example, Claisse et al. (2014) dem-
onstrated that abandoned oil rigs off the coast of Califor-
nia have the highest rate of fish production of any system
globally. Yet, despite their widespread use and consistent

evidence of high densities of fishes, it remains unresolved
whether fish are simply attracted to the ARs or if the ARs
increase local fish production. Two hypotheses frame the
ongoing debate: (i) ARs act as attractors of fish, moving
fish that already exist in a system to a single location and,
therefore, potentially increasing the risk of overfishing;
or (ii) ARs alter ecosystem dynamics such that they facili-
tate increased secondary production via mechanisms that
may not otherwise occur in a structure-free environment
(Bohnsack, 1989; Grossman et al., 1997; Osenberg, 2002;
Powers et al., 2003; Sadovy & Domeier, 2005; Wilson
et al., 2001). These competing hypotheses, dubbed the
attraction-production debate, have been at the center of
decades of research that has largely used population- or
community-level measures to quantify secondary produc-
tion (e.g., Claisse et al., 2014; Powers et al., 2003). How-
ever, these methods do not disentangle the mechanisms
by which production may be enhanced, either by increas-
ing fishes access to basal resources or by increasing the
basal resources themselves. A complementary approach
to understanding the extent to which ARs can enhance
local fish production is to quantify if ARs increase the
energy base of the local ecosystem via primary produc-
tion that in turn can support increased production at
higher trophic levels (Layman & Allgeier, 2020;
Lindeman, 1942; Ryther, 1969). Importantly, this
approach also provides additional means to understand
how ARs may promote other services such as carbon
sequestration.

ARs in shallow seagrass beds (dominated by
Thalassia testudinum) have been shown to increase local-
ized primary production through fertilization via nutrient
excretion from aggregating fishes (Bohnsack et al., 1991;
Allgeier et al., 2013, 2018; Layman et al., 2016), similar to
consumer-mediated biogeochemical hotspots found in
other systems (e.g., Atkinson et al., 2013; McIntyre
et al., 2008). The proposed mechanism for increased pro-
duction is that under ambient, low-nutrient conditions,
seagrasses allocate most nutrients and energy to storage
in their root structures, whereas under high levels of
enrichment from fish excretion, seagrasses shift resource
allocation to aboveground (AG) primary production
(Layman et al., 2016). This allocation mechanism is also
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common among terrestrial plants (Chapin, 1980; Poorter
et al., 2012; Shipley & Meziane, 2002) and has been dem-
onstrated empirically in seagrass beds where local
seagrass production adjacent to an AR with aggregating
fish was shown to have enhanced seagrass growth rates
�200% higher than nonadjacent seagrass (Allgeier
et al., 2013). Because ambient nutrients must exceed a
certain threshold to trigger AG production, this proposed
mechanism also suggests that the loss of fishes from open
seagrass beds will not result in subsequent reductions of
seagrass production because fishes in open seagrass do
not aggregate in densities sufficient to sustain prolonged
increases in nutrient availability and, thus, production.
While this mechanism has been empirically supported
through increased local production relative to production
in open seagrass beds (Allgeier et al., 2013, 2018; Layman
et al., 2016), discerning whether total ecosystem produc-
tion is enhanced due to the attraction of fishes remains
challenging because it must be demonstrated that pro-
duction is not declining in areas peripheral to the artifi-
cial structures.

Here we create a model seagrass ecosystem to explic-
itly test the mechanisms by which ARs increase seagrass
primary production around the AR, and at the scale of
the entire ecosystem. To do so, we use an individual-
based simulation framework that couples a single-
nutrient primary production model (DeAngelis, 1992)
and a fish bioenergetics model (Deslauriers et al., 2017;
Hanson et al., 1997). The model is parameterized by sub-
stantial empirical data from ARs constructed in shallow
seagrass beds in The Bahamas (Allgeier et al., 2013, 2018;
Layman et al., 2013, 2016) and fish energetics of common
species found on ARs in this region (Allgeier et al., 2015,
Allgeier, Cline, et al., 2020). We test whether increased
production is possible at both the patch and ecosystem
scales by answering two interrelated questions. First,
how do varying fish densities and initial seagrass biomass
impact AG and belowground (BG) seagrass production in
a system with or without an AR? Second, how do aggre-
gating fishes alter both the levels and spatial distribution
of seagrass production around the AR?

We address these questions by running simulations
and altering three model components: (i) fish movement
behavior, that is, fish either are attracted to the AR or
move randomly about the model environment; (ii) the
number of fish within the system, that is, fish population
size; and (iii) the initial seagrass biomass capacities in the
system. Our model represents a simplified seagrass ecosys-
tem in which the model environment is closed to maintain
equal nutrient levels across simulations. This allows us to
isolate the importance of ARs and fish aggregation for eco-
system primary production. Additionally, the model does
not incorporate fish population dynamics or complex

trophic dynamics. While these simplifications mean that
our model does not precisely represent the reality of these
complex ecosystems, they allowed us to specifically test for
mechanisms by which fish aggregations may or may not
alter primary production around ARs.

METHODS

Our description of the individual-based simulation model
(IBM) follows the Overview, Design, and Details (ODD)
protocol (Grimm et al., 2020) and includes (denoted by
subheadings given in what follows) a description of the
general model purpose, state variables and scales, an
overview of all processes and their scheduling (Figure 1),
details about the design concept, a detailed description of
all processes, and parameterization and initialization of
the IBM.

General model purpose

We used an IBM (DeAngelis & Grimm, 2014) to under-
stand the influence of fish aggregations around a single AR
on standing seagrass biomass and production (both AG and
BG). The model environment simulates a shallow seagrass
bed (�3 m depth), similar to those of previous empirical
studies (Allgeier et al., 2013, 2018; Layman et al., 2013,
2016). Seagrass production is based on a single nutrient pri-
mary production model following DeAngelis (1992),
detailed in what follows. The primary production model
allows seagrass to slough (or lose) biomass, take up nutri-
ents from the water column, and grow biomass (in both the
AG and BG tissues). The seagrass bed is populated with a
single species of fish parameterized to resemble Haemulon
plumerii, an abundant and common generalist species com-
mon throughout shallow coastal ecosystems in the Carib-
bean and frequently found to aggregate on ARs
(Appeldoorn et al., 2009). In the IBM, fish movement, con-
sumption of biomass, and excretion of nutrients are
governed by principles of bioenergetics (Deslauriers
et al., 2017; Hanson et al., 1997; Schreck & Moyle, 1990),
detailed in what follows. Individual fish perform two pri-
mary processes within our model: (i) they acquire nutrients
through feeding and (ii) they supply and move nutrients in
the system through excretion. Fish movement is simulated
such that they either move randomly throughout the model
environment, functioning as our control scenario by simu-
lating no influence of the AR (herein random movement
scenario), or are attracted to and, thus, aggregate around
the AR (herein attracted movement scenario). We did not
incorporate any fish population dynamics or secondary pro-
duction because we were primarily interested in testing the
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implications of ARs for primary production in the model
environment. Thus, processes like mortality were simulated
to maintain relatively consistent fish population size and
body size distribution through time while allowing fish to
grow according to their bioenergetics. In sum, this IBM
framework allowed us to specifically test the influence of
two treatments on primary production at the patch and eco-
system scales: (i) a continuous treatment of fish population
size (herein fish density treatment) and (ii) a continuous
treatment of different initial biomass values (herein biomass
capacity treatment) under the random movement and
attracted movement scenario to test the importance of fish
aggregations around ARs.

The model was constructed and analyzed in the R
programming language (R Core Team, 2019). Model code
and analysis scripts can be found at https://doi.org/10.
5281/zenodo.5889083 and https://doi.org/10.5281/zenodo.
5847402, respectively.

State variables and scales

The seagrass bed model environment was simulated
using a 100 � 100 cell grid (spatial extent) with a cell

resolution of 1 � 1 m (spatial grain). Each grid cell
contains seagrass biomass (separated into AG and
BG), a water column nutrient pool, and detrital bio-
mass. Individual fish are described by their location
(x- and y-coordinates), body dimensions (length and
weight), and nutrient reserves stored in their body.
The x- and y-location of each individual fish allows us
to place each individual within a single cell; however,
several individuals can be present in a cell at the
same time.

The IBM simulates most processes every 120 min
(one iteration, temporal grain) for a total of 50 years
(219,000 iterations, temporal extent). All seagrass-related
processes (Processes 1 and 2 in what follows) were simu-
lated every 24 h (i.e., 12 iterations). The temporal extent
of 50 years was chosen because it represents sufficient
time beyond which no major changes in the overall sys-
tem were observed.

Process overview and scheduling

All processes are simulated in the model in the following
order (Figure 1):

Seagrass biomass 
(aboveground) BAG

Detrital biomass D

Fish individuals

Seagrass biomass 
(belowground) BBG

Nutrient pool N
(2) Remineraliza�on

(1) Seagrass primary 
produc�on 

(3) Fish movement

(4) Respira�on

(5) Consump�on(5) Consump�on

(6) Mortality

Detrital biomass 
(fish) DFish

(1) Seagrass primary 
produc�on 

(7) Diffusion (7) Diffusion

(7) Diffusion

(2) Remineraliza�on

F I GURE 1 Overview of all model subprocesses and their scheduling (adapted from DeAngelis [1992]). Seagrass primary production is

calculated based on available nutrients in water column, and simultaneously seagrass biomass is sloughed to detrital biomass. The detrital

biomass is remineralized to water column nutrients. Individual fish move throughout the model environment, and their consumption (of the

detrital biomass) is determined by their respiration, which is largely influenced by body mass and movement activity. If consumption

requirements cannot be met, individuals die, adding their body nutrients to the fish detrital biomass. Nutrients and detrital biomass are

diffused among neighboring grid cells
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1. A fraction of the standing biomass sloughs to the
detrital biomass—the exact amount is determined by
the size of seagrass at that time step relative to mini-
mum and maximum biomass values. Nutrient uptake
is then calculated based on Michaelis–Menten uptake
dynamics using seagrass biomass (post slough), and
the available nutrients in the water column and nutri-
ents are allocated as either BG or AG biomass.

2. A fraction of the total sloughed detrital biomass
remineralizes to water column nutrients, and the bio-
mass of dead individual fish decomposes to detrital
biomass.

3. Individual fish move around the seagrass bed. For the
random movement scenario, the direction of move-
ment is completely random, and for the attracted
movement scenario, individual fish tend to move
toward the AR.

4. A bioenergetics model is used to calculate respiration
for individual fish based on water temperature (homo-
geneous in model environment), body mass, and
movement activity.

5. The energetic demand for growth is calculated based
on demands for respiration, and individual fish con-
sume detrital biomass according to this demand,
resulting in body mass accumulation (growth). During
consumption and subsequent growth, individual fish
also excrete nutrients on the grid cell they occupy. If
the available detrital biomass (the energetic resource
for fishes in our model environment) is less than the
energetic demand for growth and individual fish do
not have sufficient stored energetic reserves, then the
individual fish die and the biomass of dead individuals
is added to the fish detrital biomass.

6. Background mortality occurs where the probability of
dying increased with increasing body mass (biomass
of dead individuals is added to the fish detrital bio-
mass as well).

7. Lastly, nutrients and detrital biomass diffuse among
neighboring grid cells.

Design concept

The IBM design allowed us to track standing seagrass
biomass and seagrass production (our two primary
response variables), the water column nutrient pool, and
detrital biomass in a spatially explicit manner across the
whole model environment. Characteristics of the individ-
ual fish were also tracked including body length and
mass, mortality, and spatial location within the model
environment. Individual fish do not interact with each
other. For the attracted movement scenario, individual
fish are “aware” of the distance to the AR in their direct
surrounding and minimized this distance. While most
processes are deterministic after the initialization of the
model environment, fish movement (aforementioned
Process 3) and background mortality (aforementioned
Process 6) include stochasticity, that is, distances and
directions are sampled from log-normal and uniform dis-
tributions, respectively, for fish movement, and back-
ground mortality is based on a body-size-dependent
mortality probability.

Processes

The formulas and parameters, including references, of all
processes can be found in Tables 1 and 2, respectively.
Starting parameter values for simulations are reported in
Table 3.

1. Seagrass primary production: Seagrass primary pro-
duction is determined using a single-nutrient, autotro-
phic model and includes three subprocesses: biomass
sloughing, nutrient uptake, and plant growth.

1.a. Biomass sloughing: Sloughed biomass (Si) repre-
sents the proportion (αi;0 < αi <1) of BG and AG biomass
sloughed at each iteration (Table 1, Formula 1.1). A mod-
ifier (βi; Table 1, Formula 1.2) decreases the fraction αi as

TAB L E 1 Overview of all functions used in individual-based simulation model ordered by subprocesses they are used in

Formula
no. Function Subprocess Formula Reference

1.1 Seagrass primary
production

Slough proportion of
biomass

Si ¼Bi� α� 1−βið Þð Þ DeAngelis (1992)a

1.2 Seagrass primary
production

Slough proportion modifier βi ¼ Bmax
i −Bi

� �
= Bmax

i −Bmin
i

� �
–

1.3 Seagrass primary
production

Slough biomass to detritus
biomass

Bi ¼Bi−Si;D¼DþSBGþSAG DeAngelis (1992)a

1.4 Seagrass primary
production

Ambient nutrient uptake Ui ¼ Bi�vmax
i �N

� �
= kmi þN
� �

DeAngelis (1992)

1.5 Seagrass primary
production

Total nutrient uptake N ¼N−UBGþUAG DeAngelis (1992)

(Continues)
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the biomass approaches the minimum possible biomass,
allowing the plant to grow more by sloughing less. In
contrast, the modifier (βi) increases as biomass
approaches the maximum possible biomass, thereby
increasing slough and stabilizing biomass to be
maintained roughly at its maximum under high nutrient
conditions. Sloughed biomass is added to the detrital bio-
mass (D) in each iteration (Table 1, Formula 1.3).

1.b. Nutrient uptake: Nutrient uptake from the water
column follows Michaelis–Menten uptake dynamics and
occurs in BG and AG biomass (BBG; BAG) separately as a
function of total plant biomass and water column nutri-
ent availability (N; Table 1, Formula 1.4). The sum of AG
and BG uptake (total nutrient uptake, U total) is removed
from the water column nutrients in each iteration
(Table 1, Formula 1.5).

TAB L E 1 (Continued)

Formula
no. Function Subprocess Formula Reference

1.6 Seagrass primary
production

Stabilize biomass IFU total < SBG� γBGð Þ!BBG ¼
BBGþUtotal=γBG

IFU total� SBG� γBGð Þ< SAG� γAGð Þ
!BAG ¼BAGþ U total�SBG� γBGð Þ=γAG

–

1.7 Seagrass primary
production

Sigmoid function biomass
allocation

δBG ¼ 1

1þ BBG
m

1−BBG
m

� �−υ; m¼ −log 2ð Þ
log τð Þ –

1.8 Seagrass primary
production

Biomass growth BBG ¼BBGþSBGþ
U total� SBG� γBGþSAG� γAGð Þð Þ�δ=γBG

BAG ¼BAGþSAGþ
U total� SBG� γBGþSAG� γAGð Þð Þ
� 1�δð Þ=γAG

–

2.1 Remineralization Remineralization of
detritus to nutrients

N ¼NþD� ϵi;D¼D−D� ϵi DeAngelis, (1992)a

2.2 Remineralization Decompose fish
detritus to
detritus

D¼DþDfish� ϵi Dfish ¼Dfish−Dfish� ϵi –

3.1 Fish movement Activity for respiration ACT¼ 1= λmaxþ1ð Þð Þ�distþ1 Allgeier, Cline, et al.
(2020)

4.1 Fish respiration Respiration of individual R Tð Þ¼Vx � e X� 1−Vð Þð Þ Hanson et al. (1997)

4.2 Fish respiration Temperature dependence of
respiration

V ¼ tempmax−tempð Þ= tempmax−tempoptim
� �

Hanson et al. (1997)

4.3 Fish respiration Temperature dependence of
respiration

X ¼ Z2� 1þ 1þ40=Yð Þ0:5� �2� �
=400 Hanson et al. (1997)

4.4 Fish respiration Temperature dependence of
respiration

Z¼ log tempQ10
� �� tempmax−tempoptim

� �
Hanson et al. (1997)

4.5 Fish respiration Temperature dependence of
respiration

Y ¼ log tempQ10
� �� tempmax−tempoptimþ2

� �
Hanson et al. (1997)

5.1 Fish consumption,
growth, mortality

Length growth of individual G¼Linf 1−e−K t−t0ð Þ� �
Allgeier et al. (2015),

Froese &
Pauly (2019)

5.2 Fish consumption,
growth, mortality

Length–weight conversion W ¼a�Lb Froese & Pauly (2019)

5.3 Fish consumption,
growth, mortality

Consumption requirements C¼ GþR Að Þ
0:55

Allgeier et al. (2015)

5.4 Fish consumption,
growth, mortality

Nutrient excretion E = C − G Allgeier et al. (2015)

5.5 Fish background
mortality

Mortality probability P¼ eL−Linf Froese & Pauly (2019)

aThe formula used is modified from that in the reference.
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1.c. Plant growth: Plant growth is determined by con-
verting the total uptake to biomass using the nitrogen
content (percent dry weight) of BG and AG biomass.

Nutrient allocation to growth follows basic plant alloca-
tion rules such that maintaining BG biomass is priori-
tized over AG biomass (Appendix S1: Figures S1 and S2).

TAB L E 2 Values and references for all parameters used in the individual-based simulation model

Parameter
Formula no.
from Table 1 Description

Value
(BG/AG) Reference

α 1.1 Proportion of standing biomass that is
sloughed to detrital biomass

0.0001 Systematically explored value range

Bmin
i

1.2 Minimum standing biomass 275.89/8.87 Allgeier et al. (2013), Layman
et al. (2016), Shayka (unpublished)

Bmax
i 1.2 Maximum standing biomass 933.03/193.01 Allgeier et al. (2013), Layman

et al. (2016), Shayka (unpublished)

vmax
i 1.4 Maximum nutrient uptake rate 28.8125/12.825 Lee & Dunton (1999)

kmi 1.4 Half-saturation value of nutrient
uptake

366.0125/12.05 Lee & Dunton (1999)

γi 1.6, 1.8 Nutrient content percentage of
standing biomass per dry weight

0.0082/0.0144 Layman et al. (2016)

τ 1.7 Midpoint allocation function 1/4 Systematically explored value range

υ 1.7 Slope of allocation function 2.0 Systematically explored value range

ϵ 2.1, 2.2 Proportion of detrital biomass that is
remineralized/Proportion of fish
detrital biomass that is
decomposed

0.0001/0.5 Systematically explored value range

λ 3.1 Mean movement distance of
individuals

8 –

… Various Variance of random movement
distance

4.0 –

tempmax 4.2, 4.4, 4.5 Maximum water temperature for
respiration

40 Hanson et al. (1997), Allgeier
et al. (2015)

tempoptim 4.2, 4.4, 4.5 Optimum water temperature for
respiration

36 Hanson et al. (1997), Allgeier
et al. (2015)

tempQ10 4.4, 4.5 Rate at which respiration increases
over low water temp

2.1 Hanson et al. (1997), Allgeier
et al. (2015)

Linf 5.1 Maximum length of individual fish 41.6 Froese & Pauly (2019)

K 5.1 Growth coefficient 0.2 Froese & Pauly (2019)

a 5.2 Length–weight relationship 0.02566176 Froese & Pauly (2019)

b 5.2 Length–weight relationship 2.956776 Froese & Pauly (2019)

… Various Proportion of individuals’ body mass
that can be stored as reserves

0.05 –

… Various Nutrient proportion of individuals’
body mass

0.02999 –

… Various Proportion of nutrients diffused across
neighboring cells

2/3 –

… Various Proportion of detrital biomass diffused
across neighboring cells

1/3 –

… Various Proportion of fish detrital biomass
diffused across neighboring cells

1/3 –

Note: Values related to belowground biomass are abbreviated by BG, those related to aboveground biomass by AG. If parameters differed between BG and AG
or nutrients and (fish) detrital biomass, values are separated by a slash (/).
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Specifically, if total nutrient uptake (converted to bio-
mass equivalent using the nutrient content percentage
per dry weight) is smaller than the sloughed BG biomass,
all nutrients are allocated to BG biomass to minimize BG
biomass loss (Table 1, Formula 1.6). If the total nutrient
uptake is larger than the sloughed BG biomass, then the
BG biomass is kept stable by allocating nutrients equiva-
lent to the sloughed biomass. The remaining uptake has
two fates: (i) if it is smaller than the sloughed AG bio-
mass, all remaining nutrients are allocated to the AG bio-
mass to minimize AG biomass loss (Table 1, Formula
1.6), whereas (ii) if it is larger than the sloughed AG bio-
mass, the biomass is kept stable by allocating nutrients
equivalent to the sloughed biomass. Finally, if any nutri-
ents from uptake remain, they are shared between BG
and AG biomass (Table 1, Formula 1.7, 1.8) based on a
predetermined sigmoid function (described by a slope m
and midpoint τ; Table 1, Formula 1.7, Appendix S1:
Figure S2) that determines the ratios of the remaining
nutrients allocated in AG or BG biomass (δBG). Lastly, if
the biomass of either AG or BG exceeds the maximum
biomass in a cell after the nutrient allocation, it is
reduced back to the maximum biomass value Bmax

i

�
) and

the excess is added to the sloughed biomass.

2. Remineralization: A proportion (ϵi;0 < ϵi <1) of detri-
tal biomass (D) is remineralized and added to the
nutrient pool (N) at each iteration (Table 1, Formula
2.1). Also, a fraction of the fish detrital biomass (Dfish)
is decomposed and added to the detrital biomass at
each iteration (Table 1, Formula 2.2).

3. Fish movement: Fish movement is based on randomly
generated values for movement distance and direction.
For each individual fish at each iteration, a distance is
sampled from a log-normal distribution (with a mean λ
and standard deviation σ), and a direction is sampled

from a uniform distribution with a range of 0�–360�. In
the attracted movement scenario, individual fish per-
ceive the relative distance to the AR and always move
toward the AR, as is determined by the shortest distance
based on one of three directions of movement from their
current orientation (�45�, 0�, and 45�). Because the
direction in which individual fish move depends on the
original random orientation, they do not move straight
toward the AR but nevertheless are attracted toward the
general orientation of the AR (Appendix S1: Figure S3).
If an individual fish moves outside the model environ-
ment, it enters it on the opposite side again (so-called
torus translation). How far an individual fish moves in
each iteration in relation to the maximum possible travel
distance is used to calculate the movement activity,
which in turn is used to calculate respiration in the bio-
energetics model. The maximum possible travel distance
was determined by sampling a million values from the
corresponding log-normal distribution and setting the
95% percentile as maximum travel distance.

4. Fish respiration: Respiration (R), following assump-
tions of fish bioenergetics, depends on the water tem-
perature and movement activity by individual fish
(Table 1, Formulas 4.1, 4.2, 4.3, 4.4).

5. Fish consumption, growth, and mortality: Individual
fish grow in body length (G) at every iteration
governed by the von Bertalanffy growth curve
(Table 1, Formula 5.1). Length is then converted to
weight using species-specific parameters a and b
(Table 1, Formula 5.2). The amount that a fish must
consume (C) to maintain an energetic mass balance
per iteration is then determined by back-calculating
the consumption required to meet the demand for
growth (Table 1, Formula 5.3). Individual fish feed
directly from the detrital biomass (converted to nutri-
ents) of the grid cell they are located in. If there is

TAB L E 3 Starting values used in individual-based simulation model

Name Description Value Reference

bg_biomass Starting value of belowground
seagrass biomass

440.175, 604.46, 768.745 Allgeier et al. (2013), Layman
et al. (2016), Shayka (unpublished)

ag_biomass Starting value of aboveground
seagrass biomass

54.905, 100.94, 146.975 Allgeier et al. (2013), Layman
et al. (2016), Shayka (unpublished)

nutrients_pool Starting value of nutrients 0.0001100017, 0.0003205054,
0.0006315112

–

detritus_pool Starting value of detrital biomass 1.099907, 3.204733, 6.31448 –

pop_n No. individual fish 1, 2, 4, 8, 16, 32 –

pop_mean_size Mean length of individual fish 9 –

pop_mean_var Variation of mean length 3 –

water_temp Mean water temperature 26 Allgeier (unpublished)

Note: Values related to belowground biomass are abbreviated by BG, those related to aboveground biomass by AG.
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more than sufficient detrital biomass available, fish
consume up to 5% of body mass extra nutrients and
store these nutrients as a nutrient “reserve” that could
be used in situations in which insufficient detrital bio-
mass is encountered in a given cell. This reserve
capacity is consistent with fish foraging behavior
(Armstrong & Schindler, 2011). Once a fish has con-
sumed its required nutrients from the detrital bio-
mass, excretion is calculated as the remaining
nutrients assimilated but not used for other processes
(Table 1, Formula 5.4), and individual fish excrete
nutrients in the grid cell they are located in. If an indi-
vidual fish cannot meet its requirements from the
detrital biomass or its reserves, it dies (referred to here
as consumption mortality; for more details on mortal-
ity see Process 6). We acknowledge that feeding
directly from the detrital pool is an oversimplification,
but given that primary production is the energetic
base of these food webs (Ryther, 1969), and quantify-
ing secondary production is not a goal of our study, so
we opted for the most simplistic trophic interactions
possible that would still allow us to test our underly-
ing questions.

6. Fish background mortality: In addition to consumption
mortality, individual fish can also die through aging,
which is determined by a mortality probability that
increases as individuals get closer to their maximum
mass (Table 1, Formula 5.5). When an individual fish
dies, its nutrients are initially fed into a separate detrital
biomass pool (Dfish), which allows these nutrients to dif-
fuse through the environment before entering the regu-
lar detrital biomass through decomposition (Table 1,
Formula 2.2), thereby preventing large nutrient pulses
in the grid cell on which they died. Lastly, after an indi-
vidual fish dies, a new individual is created with the
same initial body size as the recently dead individual
fish at the beginning of its life span. The mortality prob-
ability is low, especially for smaller individuals. The
main purpose of the background mortality is to main-
tain a relatively consistent fish population size and body
size distribution rather than simulating fish population
dynamics.

7. Diffusion: Diffusion of nutrients and detrital biomass
occurs throughout the model environment at every
iteration. Diffusion occurs by each grid cell sharing a
proportion of the nutrients and detrital biomass with
the surrounding eight grid cells equally.

Parameterization and initialization

The model is constructed to simulate a shallow seagrass
bed (�3 m depth) in the Bahamas or any comparable

subtropical or tropical seagrass ecosystems dominated by
T. testudinum. The model was parameterized with data
from over a decade of research in Bahamian seagrass eco-
systems, and primarily from a single embayment (Bight
of Old Robinson, Abaco Island) (Table 1).

All seagrass processes were parameterized for a single
seagrass species, T. testudinum. The species accounts for a
majority of the AG biomass in seagrass beds of the Carib-
bean (Buesa, 1974; Heck, 1979) and, in particular, the
Bahamas (Buchan, 2000). Even though the model was
designed to be flexible as to which nutrient drives produc-
tion dynamics, processes are parameterized based on nitro-
gen (N) dynamics in the system. To use representative
values for the minimum and maximum BG and AG
seagrass biomass, we pooled several data sets (Allgeier
et al., 2013, 2018; Layman et al., 2016; Shayka unpublished).
In cases where parameters were not available from previous
research from the authors, we used literature values from
studies in comparable systems. For example, the most
important literature-derived parameters were for seagrass
AG and BG uptake dynamics (Michaelis–Menten), which
were generated from a study of T. testudinum in the Gulf of
Mexico (Lee & Dunton, 1999). Parameters for which no lit-
erature values were available (αi,ϵi,τ,mÞ were determined
by running the IBM systematically for a range of values
and eliminating all values that led to unrealistic results.
For all fish growth processes using, we used values from
Fishbase (Froese & Pauly, 2019) and previously published
research from this same Bahamian ecosystem (Allgeier
et al., 2013, 2015) for H. plumerii.

The initialization of AG and BG biomass was
part of the simulation study (see section “Simulation
experiment”). The water column nutrient pool and detri-
tal biomass were initialized at levels that were pre-
determined to maintain stable biomass of AG and BG
biomass without fish in the model environment
(i.e., growth equaled slough). Initial individual fish
length was simulated randomly using a log-normal distri-
bution. All temperature-dependent processes operated at
26�C, the approximate annual average water temperature
in the Bight of Old Robinson, the Bahamas
(J. E. Allgeier, unpublished).

Sensitivity analysis

Sensitivity analysis explores how changes in model
parameters result in changes in the model output and
thus give insights into the importance of parameters
(Pianosi et al., 2016; Thiele et al., 2014). First we used a
local, one-at-a-time sensitivity analysis in which each
parameter was decreased and increased individually by
5% and 10%, respectively, and the BG and AG standing
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biomass and production were then compared to the
unchanged parameters. For each changed parameter, we
ran the model 25 times. Second, we ran a Sobol global
sensitivity analysis (Sobol et al., 2007) using all parame-
ters for which the relative output from the one-at-a-time
analysis exceeded 5% change in relation to the
unchanged parameters. This second test allowed us to
explore interactions between parameters and the parame-
ter space using Latin hypercube sampling (n = 250
McKay et al., 1979). For each parameter, the Sobol
method generated a main effect Si and total effect STi
(main effect and interaction effect). Though the sum of
all main effects cannot exceed one (Si ≤ 1), the sum of
total effects can be greater than one (STi>1) if interac-
tions between parameters are present.

The midpoint τ of the sigmoid function that deter-
mines how nutrients are shared between BG and AG bio-
mass is a key parameter of the IBM (Appendix S1:
Figure S2). Thus, to determine whether τ heavily impacts
the results, we ran the model for two additional values of
τ¼ 1=2 (Appendix S1: Figure S5) and τ¼ 2=3
(Appendix S1: Figure S6).

Simulation experiment

To test how the AR influences BG and AG seagrass pri-
mary production and biomass, we compared outcomes
from models under two fish-behavior scenarios: (i) fish
moved randomly about the model environment (random
movement scenario) and (ii) fish were attracted to the
AR (attracted movement scenario). Under each fish-
behavior scenario, we included two additional factorial
treatments: (i) fish density treatment, in which fish popu-
lation sizes were either 1, 2, 4, 8, 16, or 32 individuals
and (ii) initial seagrass biomass capacity treatment, where
models were initialized under conditions in which both
the AG and BG biomass started at 25%, 50%, or 75% of
their maximum capacity. Variation in fish densities
allowed us to test how the absolute number of fish, and
thus amount of excretion in the system, would affect pri-
mary production. Because the water column nutrient
pool was initialized at levels that maintain table AG and
BG biomasses, variation in initial seagrass biomass capac-
ity allowed us to test how the initial water column nutri-
ent pool of the system affected primary production. Fish
densities were chosen to reflect a broad range of densities
that occur in seagrass ecosystems throughout the
Bahamas (Allgeier et al., 2015). For each combination of
the two treatments (36 total), separate fish-behavior sce-
narios (random movement or attracted movement sce-
nario) were simulated 25 times to capture the effects of
stochasticity in the model.

We used log response ratios (RRs) (Hedges et al., 1999)
to evaluate the model outcomes between the random
movement and attracted movement scenarios under all
combinations of the two treatments (fish density and
biomass capacity treatments). The log RR describes
the proportional effect of an experimental scenario
(here the attracted movement scenario) in comparison
to a control (here the random movement scenario)
RR¼ log xattractionð Þ� log xrandomð Þ. To calculate uncer-
tainties related to the RR we used bootstrapping to gener-
ate 95% confidence intervals (CIs) (1000 bootstrap
replicates) (Efron & Tibshirani, 1986) using the boot
packages in R (Davison & Hinkley, 1997), whereby
RR>0 indicates a positive effect of the experimental sce-
nario (i.e., attracted movement scenario), RR< 0 indi-
cates a negative effect, and statistical significance is
indicated when the 95% CIs do not overlap zero.

RESULTS

Sensitivity analysis

The local, one-at-a-time sensitivity analysis showed that
AG and BG production were sensitive to nine and two
parameters, respectively, whereby a relative increase or
decrease of 5% and 10% resulted in relative changes in
AG production larger than 5%. AG and BG biomasses
showed a relative change in model output of more than
5% for one parameter each (Appendix S1: Table S1).

The Sobol sensitivity analysis revealed no strong
interactions between the 12 sensitive parameters of the
local, one-at-a-time analysis as shown by the fact that the
total effects STi were not larger than the main effects Si.
The AG biomass was primarily sensitive to the maximum
AG and BG biomasses. AG production was mainly sensi-
tive to parameters related to fish consumption and
growth processes: the length–weight relationship param-
eters and the maximum fish length. BG biomass was
most sensitive to maximum BG biomass and was to a
lesser degree sensitive to the length–weight relationship
parameters and the maximum fish length. BG production
was sensitive to just two parameters: maximum BG bio-
mass and, to a much lesser degree, slough proportion
(Appendix S1: Figure S4).

In general, results were similar for the two midpoint τ
parameter values τ¼ 1=2 (Appendix S1: Figure S6) and
τ¼ 2=3 (Appendix S1: Figure S7), particularly with
respect to the patterns across all treatments. However,
with increasing τ (i.e., higher BG biomass is required
before AG receives a greater proportion of the excess
nutrients taken up from the water column), the RR for
AG production also increased. Simultaneously, the

10 of 19 ESQUIVEL ET AL.



relative decrease in BG production for the attracted
movement scenario also increased. Thus, the increase in
total production decreased as well.

Comparisons between model
environments for random movement and
attracted movement scenarios

Under the random movement scenario (which we con-
sider our control treatment), fish excretion was randomly
distributed throughout the simulation environment,
whereas for the attracted movement scenario, excretion
was greater in cells near the AR, creating a biogeochemi-
cal hotspot (Appendix S1: Figure S3). In all cases, higher
fish densities resulted in greater amounts of nutrient
excretion in the model environment. The total fish bio-
masses and total excretion amount were comparable
between the random movement and attracted movement
scenarios across all fish density and biomass capacity
treatments (Figure 2). However, there were two excep-
tions: for low seagrass biomass capacity (25%) and for the
highest fish densities (16 and 32 individuals), for which
nutrient excretion was significantly lower in the random
movement scenario owing to an increased mortality
driven by less available detrital biomass. This increased
mortality was not present for the attracted movement
scenario because the increase in seagrass production
from aggregated fish excretion and resultant increases in
sloughed detrital material near the AR exceeded the
increased demand in fish consumption from the higher
fish densities.

How do varying fish densities and
initial seagrass biomass capacity impact
total AG and BG seagrass biomass and
production?

The attracted movement scenario decreased the standing
AG biomass relative to the random movement scenario
for almost all fish density and biomass capacity treat-
ments (RR < 0; Figure 3, Appendix S1: Table S2), with
the exception of fish densities with one individual fish
and initial biomass capacities of 25% or 50%. For lower
fish densities (two or four individual fish), the standing
AG biomass decreased only marginally. For higher fish
densities (8, 16, 32 individual fish), standing AG biomass
decreased for all biomass capacities, and differences were
more pronounced.

Standing BG biomass was less influenced by the
different movement scenarios (RR < 0, Figure 3,
Appendix S1: Table S2). The relative decrease in standing

BG biomass was minimal for all biomass capacity treat-
ments. Because BG biomass exceeded AG biomass by
roughly two orders of magnitude, total biomass (AG + BG)
was primarily driven by BG biomass with only minor
decreases for 1, 2, and 4 individuals and slightly higher
decreases for 8, 16, and 32 individuals for the attracted
movement scenario.

In contrast to standing biomass, AG production
increased under the attracted movement scenario for all
fish densities (RR > 0, Figure 3, Appendix S1: Table S2).
The relative increase in production increased especially
for fish densities of 16 or more individuals and low initial
biomass capacities. Generally, the relative change was
higher for low initial biomass capacities and high fish
densities.

Belowground production decreased in the attracted
movement scenario for almost all fish density and bio-
mass capacity treatments (RR < 0; Figure 3,
Appendix S1: Table S2). The decrease was far less pro-
nounced than the increase in AG production, never
exceeding �6%. Total production (AG + BG) largely
reflected BG production at lower fish densities but
reflected AG production at higher fish densities. The
ecosystem-level increase in total production in the
attracted movement scenario was synergistic because,
despite having the same total nutrients within the system
as the random movement scenario, the aggregating
behavior of the fish promoted nonlinear dynamics that
allowed AG production to increase disproportionately rel-
ative to BG production, thus generating a net increase in
production at the ecosystem scale. This contrast to the
alternative outcome not supported by our study whereby
a change in the availability of nutrients around the AR
would have meant a simple spatial reallocation of
seagrass production, but it would not have changed at
the ecosystem scale.

How does the presence of an AR alter both
the levels and spatial distribution of
seagrass production around the AR?

For the attracted movement scenario, increased produc-
tion was highest near the AR and decreased with distance
from the AR for both AG and BG production (Figure 4).
This trend was more pronounced for AG production and
high fish density treatments (8, 16, 32 individuals). For
cells further from the AR (>30 m) the AR either had no
influence or decreased production regardless of the fish
density. Standing AG biomass followed similar trends as
AG production (Appendix S1: Figure S5).

Within 3 m of the AR, mean AG production per square
meter increased by 325% (for 1 individual) up to 18,996%
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(for 32 individuals); therefore, near the AR production was
increased for all fish density and biomass capacity treat-
ments under the attracted movement relative to the ran-
dom movement scenario (Appendix S1: Table S3).
Similarly, BG production per square meter within 3 m of
the AR was increased under the attracted movement rela-
tive to the random movement scenario for all fish density
and biomass capacity treatments. Values ranged between
8% (1 individual) and 456% (32 individuals).

At the same time, mean AG production per square
meter 30 m from the AR decreased under the attracted
movement compared to the random movement scenario,
with values ranging from �87% for 32 individuals to �9%
for 1 individual (Appendix S1: Table S3). There were also
decreases in BG production 30 m2 from the AR under the
attracted movement scenario, however, to a lesser degree,
with a maximum decrease of �41% for 32 individuals
and no relative change for 1 individual.

Differences in standing biomass under the random
movement and the attracted movement scenarios

followed trends similar to those of production for both
AG and BG (Appendix S1: Table S3). Within 3 m of the
AR, both AG and BG biomass was increased, whereas
increases were more pronounced for AG than for BG bio-
mass. Simultaneously, 30 m from the AR, both AG and
BG biomasses decreased under the attracted movement
scenario. However, biomass increases close to the AR
under the attracted movement scenario close to the AR
were less pronounced than production increases.

DISCUSSION

Our study shows that by initiating aggregating behavior of
fish and, thus, a biogeochemical hotspot, ARs can syner-
gistically enhance total ecosystem primary production, but
not necessarily total standing seagrass biomass, in a closed
seagrass ecosystem. This finding contrasts with the alter-
native, whereby the aggregating behavior and ensuing bio-
geochemical hotspot would have simply reallocated
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primary production, with no net change in ecosystem-level
primary production. Importantly, because we tested our
hypotheses in closed systems and the amount of total
nutrients were identical across random movement and
attracted movement scenarios, we can specifically identify
the aggregation behavior of the fish around the AR as the
primary driver of increased ecosystem primary production.
However, the ultimate mechanisms that underpin the syn-
ergistic increase in production are associated with how
nutrients are allocated to AG and BG biomasses under
increasing nutrient availability and the underlying
nonlinear dynamics of the nutrient uptake and allocation
thresholds that drive production. Though our IBM does
not account for real-world trophic dynamics and does not
quantify secondary production, it is mechanistic, structur-
ally realistic, and spatially explicit (Grimm et al., 2005),
thereby allowing us to disentangle the complex dynamics
that led to the synergistic primary production we found.
As such, our findings provide novel evidence that ARs

(within the bounds of the environment in which we model
them) can enhance production via previously
unrecognized bottom-up mechanisms and therefore may
be a useful tool for ecosystem-based conservation efforts
targeting both fisheries and carbon sequestration in tropi-
cal coastal ecosystems.

The two primary mechanisms that lead to synergistic
ecosystem production are (i) nutrient allocation rules
for BG and AG production and (ii) nonlinear dynamics
associated with nutrient uptake rates, and sloughing,
largely in the AG biomass. Under the attracted move-
ment scenario, fish redistribute and concentrate nutri-
ents by forming a biogeochemical hotspot around the
AR. In nutrient-poor environments, seagrass, like most
plants, prioritizes BG production because this represents
a more stable, long-term investment (Chapin, 1980). As
such, under conditions in which fish are not aggregating
around the AR, nutrient availability is low enough that
BG growth is always prioritized (Layman et al., 2016).
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For this reason, we see a slight reduction in BG produc-
tion when fish aggregate around the AR (especially at
higher fish densities) because the loss of fish from the
open seagrass reduces the availability of nutrients for
BG production in this part of the model environment.
However, when environmental availability of nutrients
becomes greater, seagrasses shift allocation from BG to
AG production (Appendix S1: Figure S1). Therefore, the
biogeochemical hotspot that results from fish aggrega-
tion around the AR ultimately drives a shift in nutrient
allocation to AG production. Yet, under circumstances
where all dynamics are linear and similar between AG
and BG processes, seagrasses would simply reallocate
(additively) where production was occurring both spa-
tially within the model environment and within the
seagrass itself (i.e., to AG production), and the expecta-
tion would be no net change to ecosystem-level produc-
tion. However, nutrient uptake rates in AG biomass are
both greater and more nonlinear than in BG biomass
(Lee & Dunton, 1999), such that, when allocation of
nutrients shifts to promote AG production (i.e., when

fish are aggregating around the AR), AG biomass can
take up more nutrients per incremental increase in
nutrient availability. Greater uptake rates lead to
increased primary production. Further, the rate of
sloughed biomass increases nonlinearly per unit bio-
mass such that with greater biomass, there is propor-
tionally more slough, which means greater biomass
turnover and, thus, greater production. Hence, the shift
from BG to AG production and the fact that AG bio-
mass, relative to BG biomass, can essentially have
higher rates of biomass turnover per unit nutrient are
the features of T. testudinum-dominated seagrass ecosys-
tems that enable higher ecosystem production despite
there being no change in absolute ecosystem
nutrients—a synergistic ecosystem-level effect.

Another important outcome of our model is that,
despite the ecosystem-level increase in primary produc-
tion, we found that standing AG and BG biomasses both
decrease marginally at the ecosystem level. This decrease
is in part due to the aforementioned turnover that is
heightened near the reef which keeps standing biomass
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relatively low at any given time, along with the spatial
composition and configuration of the model environ-
ment, whereby there is simply more seagrass that is non-
adjacent to the AR than near the reef. While all patches
are visited equally by fish in the random movement sce-
nario, patches further away from the reef are seldom vis-
ited in the attracted movement scenario (Appendix S1:
Figure S2). In patches near the reef, we see significant
increases in both AG and BG biomass, and for patches
further from the reef we generally see relatively smaller
decreases (Figure 4). However, because more patches
experience these marginal decreases, the net effect at the
ecosystem scale is a decrease in biomass.

The fact that our model environment is closed is partic-
ularly relevant to the changes we found in both AG and BG
biomass. In a closed environment, if fish are attracted to the
AR, the open seagrass becomes relatively void of nutrient
input beyond what is remineralized from the detrital bio-
mass. This is in sharp contrast to real-world seagrass ecosys-
tems that are open and receive exogenous nutrient inputs
from oceanic and terrestrial sources (Boyer et al., 2006) that
can replenish nutrients as they are lost from the system.
Therefore, if we open our model environment (i.e., to have
exogenous inputs and losses to and from the whole model
environment), exogenous nutrients to the system could, to
some extent, mitigate this loss of individual fish in the open
seagrass. Further, opening the model environment and
incorporating factors such as water currents at varying
velocity could allow us to test the relative importance of
nutrient redistribution and concentration by individual fish
relative to exogenous nutrients. While we acknowledge that
the closed nature of our model environment is unrealistic
(and that there are myriad other factors we did not include
in our model, e.g., currents, AR location, AR size), the sim-
plicity was intentional because it allowed us to hold abso-
lute ecosystem nutrient concentrations constant among fish
movement scenarios and thus was the most effective way to
isolate the importance of the fish-mediated biogeochemical
hotspot for ecosystem primary production.

Ecosystem-based restoration and management is
gaining substantial traction as an effective conservation
strategy because of the increasing need to restore multiple
ecosystem functions in the face of increased and simulta-
neous anthropogenic stressors (Holsman et al., 2020;
Howell et al., 2021; Smith et al., 2007). Our findings have
important implications for the use of ARs to this end. ARs
have long been touted as a potential tool to augment fail-
ing fisheries, but their application has been mired by con-
cerns about whether they are simply attracting fishes
or actually increasing fish productivity—the attraction–
production debate (Pickering & Whitmarsh, 1997). While
our models do not quantify secondary production, our
results still provide good evidence that through bottom-up

mechanisms, ARs should facilitate enhanced fish produc-
tion in seagrass beds. Specifically, increased primary pro-
duction will also facilitate increased secondary production
via the increased energetic base of the whole ecosystem
(Ryther, 1969). Importantly, our findings of increased total
primary production also suggest that ARs may be useful in
promoting carbon sequestration because of the increased
demand for C in photosynthesis. Interestingly, while
heightened total primary production should increase the
amount of C taken up by plants, it is the burial of the C in
sediments, which occurs at the root–sediment interface,
that is most important for mitigating climate change
(Fourqurean et al., 2012; Kennedy et al., 2010; Marbà
et al., 2015). In this sense, because we did find a slight
reduction in BG production in the open seagrass (non-
adjacent to the reef), this indicates there could also be
tradeoffs associated with ARs. However, without having
simulated an open ecosystem, the extent to which this is
ultimately a tradeoff or not is difficult to discern. Nonethe-
less, the finding of a synergistic increase in total ecosystem
primary production is encouraging for the application of
ARs as a tool of conservation, but the extent to which this
may occur requires further investigation.

We acknowledge that our model is an overly simplis-
tic representation of a seagrass ecosystem. Besides being
a closed system, there are three primary ways our model
deviates from the real world. First, the seagrass commu-
nity in our model environment is exclusively one
species—T. testudinum. This species makes up the vast
majority of biomass in Caribbean seagrass ecosystems
(Green & Short, 2003), and in particular the Bahamas
(Allgeier et al., 2013, 2018), but two other seagrass species
and dozens of macroalgae species also thrive in these
environments. While we acknowledge that these species
could respond differentially to increased nutrients from
aggregating fish, empirical evidence from Allgeier
et al. (2018) showed that AR reduced seagrass commu-
nity diversity and increased the dominance of
T. testudinum, suggesting that the physiological mecha-
nisms of T. testudinum that led to increased ecosystem
production in our model environment are also likely
occurring in the real world. Second, the movement
behavior of the fish in our model is very simplistic
(Watkins & Rose, 2013). Because the simple aggregation
of fish leads to increased production, we also expect fish
movement behavior, both among (Green et al., 2015;
Allgeier et al., 2017) and within species (Allgeier, Cline,
et al., 2020) to have important ramifications for nutrient
dynamics in these ecosystems. Future research should
seek to test the importance of different fish behaviors. A
third limitation of our model is that it does not generate
estimates of secondary production or associated dynam-
ics, such as herbivory from fish and their prey. To do so
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would require integrating fish and invertebrate popula-
tion dynamics, their foraging behaviors, and their
predator–prey interactions. The spatial dynamics of fishes
could also be important in translocating nutrients both
into and out of the modeled environment via movement
(Harborne et al., 2016; Williams et al., 2018) or larvae
(Allgeier et al., 2018). Currently, recruitment and mortal-
ity processes only ensure that total fish biomass is
maintained throughout model runs, occluding the ability
to realistically estimate secondary production. Further, in
our model, fish directly consume seagrass detritus as
their sole food source. While seagrass is both a food
resource and an important habitat for invertebrates
(Boström & Mattila, 1999), how changes in seagrass pro-
duction influences invertebrate secondary production is
not well understood (de la Morinière et al., 2003). Relat-
edly, while mortality is based partly on consumption, fish
growth is simulated to be constant following the von
Bertalanffy growth curve whereby mortality occurs if
consumption does not meet these requirements. Future
research efforts should focus on incorporating food-
dependent growth to explore potential feedbacks on eco-
system primary and secondary production. Integrating
greater complexity into the food webs and fish population
dynamics will be required to assess the potential of ARs
to influence secondary production.

Despite these simplifications, our data-driven model,
and the outcomes presented herein, provides an impor-
tant first step toward a more mechanistic and spatially
explicit understanding of how AR can enhance the ener-
getic base of a seagrass ecosystem through altered nutri-
ent dynamics associated with aggregating fishes.
Additionally, our findings based on a theoretical simula-
tion model should guide future empirical research
(Grainger et al., 2022), such as species-specific movement
behavior or larval dispersal dynamics near ARs. Our
model and findings have important implications for
(i) our understanding of the importance of nonlinear
dynamics for ecosystem-level properties and (ii) the
potential application of ARs for ecosystem restoration
and management. Despite their increasing prevalence
worldwide, there remains considerable uncertainty as to
how AR structures alter both patch- and ecosystem-scale
dynamics across different types of marine ecosystems.
Our simulation model demonstrates how the attraction
of fishes to ARs can promote enhanced primary produc-
tion in a coastal seagrass system. However, it remains to
be determined how exactly this may translate to second-
ary production and AR application in fisheries and the
extent to which this may influence carbon sequestration
in seagrass ecosystems. Future empirical and modeling
studies will be needed to determine the impact of AR
structure on the broader suite of other marine ecosystems

in which they are deployed (i.e., coral reefs) and their
optimal management for multiple ecosystem services.
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