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Abstract 

Understanding factors controlling primary production is fundamental for the protection, 

management, and restoration of ecosystems. Tropical seagrass ecosystems are among the most 

productive ecosystems worldwide, yielding tremendous services for society. Yet they are also 

among the most impaired from anthropogenic stressors prompting calls for ecosystem-based 

restoration approaches. Artificial reefs are commonly applied in coastal marine ecosystems to 

rebuild failing fisheries and have recently gained attention for their potential to promote carbon 

sequestration. Nutrient hotspots formed via excretion from aggregating fishes have been 

empirically shown to enhance local primary production around artificial reefs in seagrass systems. 

Yet, if and how increased local production affects primary production at ecosystem-scale remains 

unclear, and empirical tests are challenging. We used a spatially explicit individual-based 

simulation model that combined a data-rich single-nutrient primary production model for seagrass 

and bioenergetics models for fish to test how aggregating fish on artificial reefs affect seagrass 

primary production at patch- and ecosystem-scales. Specifically, we tested how the aggregation of 

fish alters: (i) ecosystem seagrass primary production at varying fish densities and levels of 

ambient nutrient availability and (ii) the spatial distribution of seagrass primary production. 

Comparing model ecosystems with equivalent nutrient levels, we found that when fish aggregate 

around artificial reefs ecosystem-scale primary production is enhanced synergistically. This 

synergistic increase in production was caused by non-linear dynamics associated with nutrient 

uptake and biomass allocation that enhances aboveground primary production more than 

belowground production. Seagrass production increased near the artificial reef and decreased in 

areas away from the artificial reef despite marginal reductions in seagrass biomass at the ecosystem 

level. Our simulation's findings that artificial reefs can increase ecosystem production provide 



 

 

novel support for artificial reefs in seagrass ecosystems as an effective means to promote: 

(i) fisheries restoration – increased primary production can increase energy input into the food 

web, and (ii) carbon sequestration – via higher rates of primary production. Although our model 

represents a simplified, closed seagrass system without complex trophic interactions, it nonetheless 

provides an important first step in quantifying ecosystem-level implications of artificial reefs as a 

tool for ecological restoration. 

 

Keywords: agent-based simulation model, biogeochemical hotspot, coastal marine ecosystems, 

ecosystem productivity, excretion, fish, Haemulon plumeria, individual-based simulation model, 

nutrient, seagrass, Thalassia testudinum
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Introduction 

Predicting ecosystem productivity is a fundamental challenge in ecology and is necessary 

for effective management of ecosystem services. Essential to this is understanding the controls on 

primary production as it represents an important ecosystem service in of itself through the 

sequestration of carbon, and provides the energetic basis for secondary production, e.g., fisher ies 

(Ryther 1969). Coastal marine ecosystems are among the most productive ecosystems on the 

planet and have long provided an essential source of protein for coastal societies. More recently, 

coastal ecosystems are being acknowledged for the role they play in carbon sequestration. 

Mangroves and seagrass beds can sequester more carbon per unit area than any other ecosystem 

type (Mcleod et al., 2011), though seagrass carbon dynamics are complex and carbon emissions 

can exceed sequestration under specific conditions (Van Dam et al. 2021). Yet coastal ecosystems 

are also among the most globally degraded due to habitat degradation, over exploitation, and 

climate change (Lotze 2006; Halpern et al. 2008; 2012; Sale 2008). Ecosystem-based management 

approaches (Arkema, Abramson, and Dewsbury 2006), which seek to simultaneously restore 

coastal ecosystem structure and function are therefore emerging as promising avenues for holist ic 

ecosystem restoration. 

Artificial reefs (ARs), defined as structures on the seafloor that mimic some aspect of natural 

reefs, are widely touted as useful tools for restoring and rebuilding depleted fisheries (Carr and 

Hixon 1997), and more recently to promote increase carbon sequestration via increased seagrass 

primary production (Layman and Allgeier 2020) or increased coral growth rates (Allgeier et al., 

2020; Shantz et al., 2015). From a more traditional perspective, ARs are a fisheries-centr ic 

management tool, and have been widely utilized because they promote dense aggregations of fish 
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(Bohnsack, Johnson, and Ambrose 1991; Stone et al. 1991; Carr and Hixon 1997; Baine 2001; 

Seaman 2019). For example, Claisse et al. (2014) demonstrated that abandoned oil rigs off the 

coast of California have the highest rate of fish production of any system globally. Yet, despite 

their widespread use, and consistent evidence of high densities of fishes, it remains unresolved 

whether fish are simply attracted to the ARs or if the ARs increase local fish production. Two 

hypotheses frame the on-going debate: (i) ARs act as attractors of fish, moving fish that already 

exist in the system to a single location, and therefore potentially increasing the risk of overfishing, 

or (ii) ARs alter ecosystem dynamics such that they facilitate increased secondary production via 

mechanisms that may not otherwise occur in a structure-free environment (Bohnsack 1989; 

Grossman, Jones, and Seaman 1997; Wilson et al. 2001; Osenberg 2002; Powers et al. 2003; 

Sadovy and Domeier 2005). These competing hypotheses, dubbed the “attraction-produc tion 

debate,” have been at the center of decades of research that has largely used population- or 

community- level measures to quantify secondary production (e.g., Powers et al. 2003; Claisse et 

al. 2014). However, these methods do not disentangle the mechanisms by which production may 

be enhanced – either by increasing fishes access to basal resources, or by increasing the basal 

resources themselves. A complementary approach to understanding the extent to which ARs can 

enhance local fish production is to quantify if ARs increase the energy base of the local ecosystem 

via primary production that in turn can support increased production at higher trophic levels 

(Lindeman 1942; Ryther 1969; Layman and Allgeier 2020). Importantly, this approach also 

provides additional means to understand how ARs may promote other services such as carbon 

sequestration. 

ARs in shallow seagrass beds (dominated by Thalassia testudinum) have been shown to 

increase localized primary production through fertilization via nutrient excretion from aggregating 
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fishes (Bohnsack, Johnson, and Ambrose 1991; J.E. Allgeier, Yeager, and Layman 2013; J.E. 

Allgeier et al. 2018; Layman, Allgeier, and Montaña 2016), similar to consumer-mediated 

biogeochemical hotspots found in other systems (e.g., McIntyre et al. 2008; Atkinson et al. 2013). 

The proposed mechanism for increased production is that under ambient, low-nutrient conditions, 

seagrasses allocate most nutrients and energy to storage in their root structures, whereas, under 

high levels of enrichment from fish excretion, seagrasses shift resource allocation to aboveground 

primary production (Layman, Allgeier, and Montaña 2016). This allocation mechanism is also 

common among terrestrial plants (Chapin 1980; Shipley and Meziane 2002; Poorter et al. 2012), 

and has been demonstrated empirically in seagrass beds where local seagrass production adjacent 

to an AR with aggregating fish was shown to have enhanced seagrass growth rates ~200% higher 

than nonadjacent seagrass (J.E. Allgeier, Yeager, and Layman 2013). Because ambient nutrients 

must exceed a certain threshold to trigger aboveground production, this proposed mechanism also 

suggests that the loss of fishes from the open seagrass bed will not result in subsequent reductions 

of seagrass production because fishes in the open seagrass do not aggregate in densities suffic ient 

to sustain prolonged increases in nutrient availability and thus production. While this mechanism 

has been empirically supported through increased local production relative to production in open 

seagrass beds (J.E. Allgeier, Yeager, and Layman 2013; J.E. Allgeier et al. 2018; Layman, 

Allgeier, and Montaña 2016), discerning if total ecosystem production is enhanced due to the 

attraction of fishes remains challenging because it must be demonstrated that production is not 

declining in areas peripheral to the artificial structures.  

Here we create a model seagrass ecosystem to explicitly test the mechanisms by which 

ARs increase seagrass primary production around the AR, and at the scale of the entire ecosystem. 

To do so, we use an individual-based simulation framework that couples a single-nutrient primary 
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production model (DeAngelis 1992) and a fish bioenergetics model (Hanson et al. 1997; 

Deslauriers et al. 2017). The model is parameterized by substantial empirical data from ARs 

constructed in shallow seagrass beds in The Bahamas (J.E. Allgeier, Yeager, and Layman 2013; 

J.E. Allgeier et al. 2018; Layman et al. 2013; Layman, Allgeier, and Montaña 2016), and fish 

energetics of common species found on ARs in this region (J.E. Allgeier et al. 2015; 2020). We 

test whether increased production is possible at both the patch and ecosystem-scales by answering 

two interrelated questions: 

1) How do varying fish densities and initial seagrass biomass impact aboveground and 

belowground seagrass production in a system with or without an AR?  

2) How do aggregating fishes alter both the levels and spatial distribution of seagrass 

production around the AR?  

We address these questions by running simulations and altering three model components : 

(i) fish movement behavior, i.e., fish are either attracted to the AR or move randomly about the 

model environment (ii) the number of fish within the system, i.e., fish population size, and (iii) the 

initial seagrass biomass capacities in the system. Our model represents a simplified seagrass 

ecosystem in which the model environment is closed to maintain equal nutrient levels across 

simulations. This allows us to isolate the importance of ARs and fish aggregation for ecosystem 

primary production. Additionally, the model does not incorporate fish population dynamics or 

complex trophic dynamics. While these simplifications mean that our model does not precisely 

represent the reality of these complex ecosystems, they allowed us to specifically test for 

mechanisms by which fish aggregations may or may not alter primary production around artific ia l 

reefs. 
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Methods 

Our description of the individual-based simulation model (IBM) follows the Overview, 

Design, and Details (ODD) protocol (Grimm et al. 2020) and includes (denoted by subheadings 

below): a description of the general model purpose, state variables and scales, an overview of all 

processes and their scheduling (Figure 1), details about the design concept, a detailed description 

of all processes, and parametrization and initialization of the individual-based model. 

General Model Purpose 

We used an individual-based simulation model (DeAngelis and Grimm 2014) to understand 

the influence of fish aggregations around a single AR on standing seagrass biomass and production 

(both above- and belowground; AG and BG). The model environment simulates a shallow seagrass 

bed (~3m depth), similar to those of previous empirical studies (J.E. Allgeier, Yeager, and Layman 

2013; J.E. Allgeier et al. 2018; Layman et al. 2013; Layman, Allgeier, and Montaña 2016). 

Seagrass production is based on a single nutrient primary production model following DeAngelis 

(1992; detailed below). The primary production model allows seagrass to slough (or lose) biomass, 

take up nutrients from the water column, and grow biomass (in both the AG and BG tissues). The 

seagrass bed is populated with a single species of fish parameterized to resemble Haemulon 

plumerii, an abundant and common generalist species that are common throughout shallow coastal 

ecosystems in the Caribbean and that are frequently found to aggregate on ARs (Appeldoorn et al. 

2009). In the IBM, fish movement, consumption of biomass, and excretion of nutrients, is 

governed by principles of bioenergetics (Deslauriers et al. 2017; Hanson et al. 1997; Schreck and 

Moyle 1990; detailed below). Fish individuals perform two primary processes within our model: 

(i) they acquire nutrients through feeding, and (ii) they supply and move nutrients in the system 
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through excretion. Fish movement is simulated such that they either move randomly throughout 

the model environment, functioning as our control scenario by simulating no influence of the AR 

(herein random movement scenario) or are attracted towards and thus aggregate around the AR 

(herein attracted movement scenario). We did not incorporate any fish population dynamics or 

secondary production because we were primarily interested in testing the implications of ARs for 

primary production in the model environment. Thus, processes like mortality were simulated to 

maintain relatively consistent fish population size and body size distribution through time while 

allowing fish to grow according to their bioenergetics. In sum, this IBM framework allowed us to 

specifically test the influence of two treatments on primary production at the patch and ecosystem-

scale: (i) a continuous treatment of fish population size (herein fish density treatment), and (ii) a 

continuous treatment of different initial biomass values (herein biomass capacity treatment) under 

the random movement and attracted movement scenario to test the importance of fish aggregations 

around ARs.  

The model was constructed and analyzed in R programming language (R Core Team 2019). 

Model code and analysis scripts can be found https://doi.org/10.5281/zenodo.5889083 and 

https://doi.org/10.5281/zenodo.5847402, respectively. 

State variables and scales 

The seagrass bed model environment is simulated using a 100 x 100 cell grid (spatial extent) 

with a cell resolution of 1 x 1 m (spatial grain). Each grid cell contains seagrass biomass (separated 

into AG and BG), the water column nutrients pool, and detrital biomass. Fish individuals are 

described by their location (x-, and y-coordinates), body dimensions (length and weight), and 

nutrient reserves stored in their body. The x- and y-location of each fish individual allows us to 
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place each individual within a single cell, however several individuals can be present in a cell at 

the same time. 

The IBM simulates most processes every 120 minutes (1 iterations; temporal grain) for a 

total of 50 years (219000 iterations; temporal extent). All seagrass related processes (Processes (1) 

and (2) below) were simulated every 24 hours (i.e., 12 iterations). The temporal extent of 50 years 

was chosen because it represents sufficient time beyond which no major changes of the overall 

system were observed.  

Process overview and scheduling 

All processes are simulated in the model in the following order (Figure 1): (1) A fraction of 

the standing biomass sloughs to the detrital biomass – the exact amount is determined by the size 

of seagrass at that time step relative to minimum and maximum biomass values. Nutrient uptake 

is then calculated based on Michaelis-Menten uptake dynamics using seagrass biomass (post 

slough) and the concentration of available nutrients in the water column and nutrients are allocated 

as either BG or AG biomass; (2) A fraction of the total sloughed detrital biomass remineralizes to 

water column nutrients and biomass of dead fish individuals decomposes to the detrital biomass. 

(3) Fish individuals move around the seagrass bed. For the random movement scenario, the 

direction of movement is completely random and for the attracted movement scenario, fish 

individuals tend to move towards the AR; (4) A bioenergetics model is used to calculate respiration 

for fish individuals based on: water temperature (homogenous in model environment), body mass, 

and movement activity; (5) The energetic demand for growth is calculated based on demands for 

respiration, and fish individuals consume detrital biomass according to this demand, resulting in 

body mass accumulation (growth). During consumption and subsequent growth, fish individua ls 

also excrete nutrients on the grid cell they occupy. If the available detrital biomass (the energetic 



 

 8 

resource for fishes in our model environment) is less than energetic demand for growth and fish 

individuals do not have sufficient stored energetic reserves the fish individuals die and the biomass 

of dead individuals is added to the fish detrital biomass; (6) Background mortality occurs whereby 

the probability of dying increased with increasing body mass (biomass of dead individuals is added 

to the fish detrital biomass as well); (7) Lastly, nutrients and detrital biomass diffuse among 

neighboring grid cells. 

Design concept 

The IBM design allowed us to track standing seagrass biomass and seagrass production (our 

two primary response variables), the water column nutrient pool, and detrital biomass in a spatially 

explicit manner across the whole model environment. Characteristics of the fish individuals were 

also tracked including body length and mass, mortality, and spatial location within the model 

environment. Fish individuals do not interact with each other. For the attracted movement 

scenario, fish individuals are “aware” of the distance to the AR in their direct surrounding and 

minimized this distance. While most processes are deterministic after the initialization of the 

model environment, the fish movement (Process (3) above) and background mortality (Process (6) 

above) include stochasticity, i.e., distances and directions are sampled from log normal and 

uniform distributions, respectively, for fish movement, and background mortality is based on a 

body-size dependent mortality probability. 

Processes 

The formulas and parameters, including references, of all processes can be found in Table 1 

and Table 2, respectively. Starting parameter values for simulations are reported in Table 3.  
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(1) Seagrass primary production: Seagrass primary production is determined using a single-

nutrient, autotrophic model and included three subprocesses: biomass slough, nutrient uptake, and 

plant growth. 

 

(1.a) Biomass slough: Sloughed biomass (𝑆𝑆𝑖𝑖) represents the proportion (𝛼𝛼𝑖𝑖; 0 < 𝛼𝛼𝑖𝑖 < 1) of BG and 

AG biomass sloughed at each iteration (Table 1, Formula 1.1). A modifier (𝛽𝛽𝑖𝑖; Table 1, Formula 

1.2) decreases the fraction 𝛼𝛼𝑖𝑖 as the biomass approaches the minimum possible biomass, allowing 

the plant to grow more by sloughing less. In contrast, the modifier (𝛽𝛽𝑖𝑖) increases as biomass 

approaches the maximum possible biomass, thus increasing slough and stabilizing biomass to be 

maintained roughly at its maximum under high nutrient conditions. Sloughed biomass is added to 

the detrital biomass (𝐷𝐷) in each iteration (Table 1, Formula 1.3). 

 

(1.b) Nutrient uptake: Nutrient uptake from the water column follows Michaelis-Menten uptake 

dynamics and occurs in belowground- and aboveground biomass (BBG;  BAG) separately as a 

function of total plant biomass and water column nutrient availability (N; Table 1, Formula 1.4). 

The sum of AG and BG uptake (total nutrient uptake; 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ) is removed from the water column 

nutrients in each iteration (Table 1, Formula 1.5). 

 

(1.c) Plant growth: Plant growth is determined by converting the total uptake to biomass using the 

nitrogen content (percent dry weight) of belowground and aboveground biomass. Nutrient 

allocation to growth follows basic plant allocation rules such that maintaining BG biomass is 

prioritized over AG biomass (Appendix S1: Figure S1, S2). Specifically, if total nutrient uptake 

(converted to biomass equivalent using the nutrient content percent per dry weight) is smaller than 
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the sloughed BG biomass, all nutrients are allocated to BG biomass to minimize BG biomass loss 

(Table 1, Formula 1.6). If the total nutrient uptake is larger than the sloughed BG biomass, BG 

biomass is kept stable by allocating nutrients equivalent to the sloughed biomass. The remaining 

uptake has two fates: (i) if it is smaller than the sloughed AG biomass, all remaining nutrients are 

allocated to the AG biomass to minimize AG biomass loss (Table 1, Formula 1.6), (ii) if it is larger 

than the sloughed AG biomass, biomass is kept stable by allocating nutrients equivalent to the 

sloughed biomass. Finally, if any nutrients from uptake remain, they are shared between BG and 

AG biomass (Table 1, Formula 1.7, 1.8) based on a predetermined sigmoid function (described by 

a slope 𝑚𝑚 and midpoint 𝜏𝜏; Table 1, Formula 1.7, Appendix S1: Figure S2) that determines the 

ratios of the remaining nutrients allocated in AG or BG biomass (𝛿𝛿𝐵𝐵𝐵𝐵). Lastly, if the biomass of 

either AG or BG exceeds the maximum biomass in a cell after the nutrient allocation, it is reduced 

back to the maximum biomass value (𝐵𝐵𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) and the excess is added to the sloughed biomass. 

 

(2) Remineralization: A proportion (𝜖𝜖𝑖𝑖; 0 < 𝜖𝜖𝑖𝑖 < 1) of detrital biomass (𝐷𝐷) is remineralized and 

added to the nutrients pool (𝑁𝑁) each iteration (Table 1, Formula 2.1). Also, a fraction of the fish 

detrital biomass (𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓ℎ) is decomposed and added to the detrital biomass each iteration (Table 1, 

Formula 2.2). 

 

(3) Fish movement: Fish movement is based on randomly generated values for movement distance 

and direction. For each fish individual at each iteration, a distance is sampled from a log-normal 

distribution (with a mean 𝜆𝜆 and standard deviation σ), and a direction is sampled from a uniform 

distribution with a range of 0°-360°. In the attracted movement scenario, fish individuals perceive 

the relative distance to the AR and always move towards the AR as is determined by the shortest 
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distance based on one of three directions of movement from their current orientation (-45°,0° and 

45°). Because the direction in which fish individuals move depends on the original random 

orientation, they do not move straight towards the AR, but nevertheless are attracted towards the 

general orientation of the AR (Appendix S1: Figure S3). If an individual fish moves outside the 

model environment, it enters it on the opposite side again (“torus translation”). How far a fish 

individual moves in each iteration in relation to the maximum possible travel distance is used to 

calculate the movement activity, which in turn is used to calculate respiration in the bioenerget ics 

model. The maximum possible travel distance was determined by sampling 1,000,000 values from 

the corresponding log-normal distribution and setting the 95% percentile as maximum travel 

distance. 

 

(4) Fish respiration: Respiration (R), following assumptions of fish bioenergetics, depends on the 

water temperature and movement activity by fish individuals (Table 1, Formula 4.1, 4.2, 4.3, 4.4): 

 

(5) Fish consumption, growth, and mortality: Fish individuals grow in body length (G) at every 

iteration governed by the von Bertalanffy growth curve (Table 1, Formula 5.1). Length is then 

converted to weight using species-specific parameters 𝑎𝑎 and 𝑏𝑏 (Table 1, Formula 5.2). The amount 

that a fish must consume (C) to maintain energetic mass balance per iteration is then determined 

by back-calculating the consumption required to meet the demand for growth (Table 1, 

Formula 5.3). Fish individuals feed directly from the detrital biomass (converted to nutrients) of 

the grid cell they are located in. If there is more than sufficient detrital biomass available, fish 

consumed up to 5% of body mass extra nutrients and stored these nutrients as a nutrient “reserve” 

that could be used in situations in which fishes did not encounter sufficient detrital biomass in a 
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given cell. This reserve capacity is consistent with fish foraging behavior (Armstrong and 

Schindler 2011). Once a fish has consumed its required nutrients from the detrital biomass, 

excretion is calculated as the remaining nutrients assimilated but not used for other processes 

(Table 1, Formula 5.4) and fish individuals excrete nutrients in the grid cell they are located in. If 

a fish individual cannot meet its requirements from the detrital biomass or its reserves, it dies 

(herein "consumption mortality"; for more details on mortality see Process (6)).  

We acknowledge that the feeding directly from the detrital pool is an oversimplifica t ion 

but given that primary production is the energetic base of these food webs (Ryther 1969), and 

quantifying secondary production is not a goal of our study, we opted for the most simplis t ic 

trophic interactions possible that would still allow us to test our underlying questions.  

 

(6) Fish background mortality: In addition to consumption mortality, fish individuals can also die 

through aging, which is determined by a mortality probability that increases as individuals get 

closer to their maximum mass (Table 1, Formula 5.5). When a fish individual dies, its nutrients 

are initially fed into a separate detrital biomass pool (𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓ℎ), which allows these nutrients to diffuse 

through the environment before entering the regular detrital biomass through decomposition 

(Table 1, Formula 2.2), thus preventing large nutrient pulses in the grid cell on which they died. 

Lastly, after a fish individual dies, a new individual is created with the same initial body size as 

the recently dead fish individual at the beginning of its life span. The mortality probability is low, 

especially for smaller individuals. The main purpose of the background mortality is to maintain a 

relatively consistent fish population size and body size distribution rather than simulating fish 

population dynamics. 
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(7) Diffusion: Diffusion of nutrients and detrital biomass occurs throughout the model environment 

at every iteration. Diffusion occurs by each grid cell sharing a proportion of the nutrients and 

detrital biomass with the surrounding eight grid cells equally.  

Parametrization and Initialization 

The model is constructed to simulate a shallow seagrass bed (~3 m depth) in The Bahamas, 

or any comparable subtropical or tropical seagrass ecosystems dominated by T. testudinum. The 

model was parameterized with data from over a decade of research in Bahamian seagrass 

ecosystems, and primarily from a single embayment (The Bight of Old Robinson, Abaco Island; 

Table 1). 

All seagrass processes were parameterized for a single seagrass species, T. testudinum. The 

species accounts for a majority of the aboveground biomass in seagrass beds of the Caribbean 

(Buesa 1974; Heck 1979), and, in particular, The Bahamas (Buchan 2000). Even though the model 

was designed to be flexible as to which nutrient drives production dynamics, processes are 

parameterized based on nitrogen (N) dynamics in the system. In order to use representative values 

for the minimum and maximum belowground- and aboveground seagrass biomass, we pooled 

several datasets (J.E. Allgeier, Yeager, and Layman 2013; J.E. Allgeier et al. 2018; Layman, 

Allgeier, and Montaña 2016, Shayka unpublished). In cases where parameters were not available 

from previous research from the authors, we used literature values from studies in comparable 

systems. For example, the most important literature-derived parameters were for seagrass AG and 

BG uptake dynamics (Michaelis-Menten), which were generated from a study of T. testudinum in 

the Gulf of Mexico (Lee and Dunton 1999). Parameters for which no literature values were 

available (𝛼𝛼𝑖𝑖; 𝜖𝜖𝑖𝑖; 𝜏𝜏;𝑚𝑚) were determined by running the IBM systematically for a range of values 

and eliminating all values that led to unrealistic results. For all fish growth processes using, we 
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used values from Fishbase (Froese and Pauly 2019) and previously published research from this 

same Bahamian ecosystem (J.E. Allgeier, Yeager, and Layman 2013; J.E. Allgeier et al. 2015) for 

H. plumerii.  

The initialization of AG and BG biomass were part of the simulation study (see Simula t io n 

experiment). The water column nutrient pool and detrital biomass were initialized at levels that 

were predetermined to maintain stable biomass of AG and BG biomass without fish in the model 

environment (i.e., growth equaled slough). Initial individual fish length was simulated randomly 

using a log-normal distribution. All temperature dependent processes operated at 26 °C, the 

approximate annual average water temperature in the Bight of Old Robinson, The Bahamas 

(Allgeier unpublished). 

Sensitivity analysis 

Sensitivity analysis explores how changes of model parameters result in changes of the 

model output and thus give insights into the importance of parameters (Pianosi et al. 2016; Thiele, 

Kurth, and Grimm 2014). First, we used a local, one-at-a-time sensitivity analysis in which each 

parameter was decreased and increased individually by 5% and 10%, respectively, and the BG and 

AG standing biomass and production were then compared to the unchanged parameters. For each 

changed parameter, we ran the model 25 times. Second, we ran a Sobol global sensitivity analysis 

(Sobol et al., 2007) using all parameters for which the relative output from the one-at-a-time 

analysis exceeded 5% change in relation to the unchanged parameters. This second test allowed 

us to explore interactions between parameters and the parameter space by using Latin hypercube 

sampling (n = 250 McKay, Beckman, and Conover 1979). For each parameter, the Sobol method 

generates a main effect 𝑆𝑆𝑖𝑖 and total effect STi  (main effect and interaction effect). While the sum 
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of all main effects cannot exceed one (𝑆𝑆𝑖𝑖 ≤ 1), the sum of total effects can be greater than one 

(STi > 1) if interactions between parameters are present. 

The midpoint 𝜏𝜏 of the sigmoid function that determines how nutrients are shared between 

BG and AG biomass is a key parameter of the IBM (Appendix S1: Figure S2). Thus, to determine 

whether 𝜏𝜏 heavily impacts the results, we ran the model for two additional values of 𝜏𝜏 = 1
2
 

(Appendix S1: Figure S5) and 𝜏𝜏 = 2
3
 (Appendix S1: Figure S6). 

Simulation experiment 

To test how the AR influences BG and AG seagrass primary production and biomass, we 

compared outcomes from models under two fish-behavior scenarios: (i) fish moved randomly 

about the model environment (random movement scenario), and (ii) fish were attracted to the AR 

(attracted movement scenario). Under each fish behavior scenario, we included two additiona l 

factorial treatments: (i) fish density treatment – fish population sizes were either 1, 2, 4, 8, 16, or 

32 individuals, and (ii) initial seagrass biomass capacity treatment – models were initialized under 

conditions in which both the AG and BG biomass started at either 25%, 50%, or 75% of their 

maximum capacity. Variation in fish densities allowed us to test how the absolute number of fish, 

and thus amount of excretion in the system, would affect primary production. Because the water 

column nutrient pool was initialized at levels that maintain table AG and BG biomasses, variation 

in initial seagrass biomass capacity allowed us to test how the initial water column nutrient pool 

of the system affected primary production. Fish densities were chosen to reflect a broad range of 

densities that occur in seagrass ecosystems throughout The Bahamas (J.E. Allgeier et al. 2015). 

For each combination of the two treatments (36 total), separate fish behavior scenarios (random 
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movement or attracted movement scenario) were simulated 25 times to capture the effects of 

stochasticity in the model.  

We used log response ratios (RR; Hedges, Gurevitch, and Curtis 1999) to evaluate the 

model outcomes between the rand movement and attracted movement scenario under all 

combinations of the two treatments (fish density and biomass capacity treatment). The log 

response ratio describes the proportional effect of an experimental scenario (here the attracted 

movement scenario) in comparison to a control (here the random movement scenario) 𝑅𝑅𝑅𝑅 =

log(𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) − log (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). To calculate uncertainties related to the RR we used 

bootstrapping to generate 95% confidence intervals (CI; 1000 bootstrap replicates; Efron and 

Tibshirani 1986) using the boot packages in R (Davison and Hinkley 1997), whereby RR > 0 

indicates a positive effect of the experimental scenario (i.e., attracted movement scenario), RR < 

0 indicates a negative effect, and statistical significance is indicated when the 95% CIs do not 

overlap zero. 

Results 

Sensitivity analysis 

The local, one-at-a-time sensitivity analysis showed that AG and BG production were 

sensitive to nine and two parameters, respectively, whereby a relative increase or decrease of 5% 

and 10% resulted in relative changes in aboveground production larger than 5%. AG and BG 

biomass showed a relative change of model output of more than 5% for one parameter each 

(Appendix S1: Table S1). 

The Sobol sensitivity analysis revealed no strong interactions between the 12 sensitive 

parameters of the local, one-at-a-time analysis as shown by total effects 𝑆𝑆𝑇𝑇𝑇𝑇 being not larger than 
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the main effects 𝑆𝑆𝑖𝑖. The AG biomass was primarily sensitive to the maximum AG and BG biomass. 

AG production was mainly sensitive to parameters related to fish consumption and growth 

processes: the length-weight relationship parameters and the maximum fish length. BG biomass 

was most sensitive to maximum BG biomass and to a lesser degree was sensitive to the length-

weight relationship parameters and the maximum fish length. BG production was sensitive to just 

two parameters: the maximum BG biomass and to a much lesser degree to the slough proportion 

(Appendix S1: Figure S4). 

In general, results were similar for the two midpoint 𝜏𝜏 parameter values 𝜏𝜏 = 1
2
 

(Appendix S1: Figure S6) and 𝜏𝜏 = 2
3
 (Appendix S1: Figure S7), particularly with respect to the 

patterns across all treatments. However, with increasing 𝜏𝜏 (i.e., higher BG biomass is required 

before AG receives a greater proportion of the excess nutrients taken up from the water column), 

the RR for AG production also increased. Simultaneously, also the relative decrease of BG 

production for the attracted movement scenario increased. Thus, the increase in total production 

decreased as well. 

Comparisons between model environments for random movement and attracted movement 

scenario 

Under the random movement scenario (which we consider our control treatment), fish 

excretion was randomly distributed throughout the simulation environment, while for attracted 

movement scenario, excretion was greater in cells near the AR creating a biogeochemical hotspot 

(Appendix S1: Figure S3). In all cases higher fish densities resulted in greater amounts of nutrient 

excretion in the model environment. The total fish biomasses and total excretion amount was 

comparable between the random movement and attracted movement scenario across all fish density 
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and biomass capacity treatments (Figure 2). However, there were two exceptions: (i) for low 

seagrass biomass capacity (25%) and, (ii) for the highest fish densities (16, 32 individuals), for 

which nutrient excretion was significantly lower in the random movement scenario due to an 

increased mortality driven by less available detrital biomass. This increased mortality was not 

present for the attracted movement scenario because the increase in seagrass production from 

aggregated fish excretion and resultant increases in sloughed detrital material near the artific ia l 

reef exceeded the increased demand in fish consumption from the higher fish densities. 

How do varying fish densities, and initial seagrass biomass capacity impact total aboveground 

and belowground seagrass biomass and production? 

The attracted movement scenario decreased the standing AG biomass relative to the 

random movement scenario for almost all fish density and biomass capacity treatments (RR < 0; 

Figure 3, Appendix S1: Table S2) with exception of the fish densities with 1 fish individual and 

initial biomass capacities of 25% or 50%. For lower fish densities (2, 4 fish individuals), the 

standing AG biomass decreased only marginally. For higher fish densities (8, 16, 32 fish 

individuals), standing AG biomass decreased for all biomass capacities and differences were more 

pronounced. 

Standing BG biomass was less influenced by the different movement scenarios (RR < 0, 

Figure 3, Appendix S1: Table S2). The relative decrease in standing BG biomass was minimal for 

all biomass capacity treatments. Because BG biomass exceeded AG biomass by roughly two 

orders of magnitude, total biomass (AG + BG) was primarily driven by BG biomass with only 

minor decreases for 1,2, and 4 individuals and slightly higher decreases for 8, 16, and 

32 individuals for the attracted movement scenario. 
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In contrast to standing biomass, AG production increased under the attracted movement 

scenario for all fish densities (RR > 0, Figure 3, Appendix S1: Table S2). The relative increase in 

production increased especially for fish densities of 16 or more individuals and low initial biomass 

capacities. Generally, the relative change was higher for low initial biomass capacities and high 

fish densities. 

Belowground production decreased in the attracted movement scenario for almost all fish 

density and biomass capacity treatments (RR < 0; Figure 3, Appendix S1: Table S2). The decrease 

was far less pronounced than the increase in aboveground production - never exceeding -6%. Total 

production (AG + BG) largely reflected BG production at lower fish densities but reflected AG 

production at higher fish densities. The ecosystem-level increase in total production in the 

attracted movement scenario is synergistic because, despite having the same total nutrients within 

the system as the random movement scenarios, the aggregating behavior of the fish promoted non-

linear dynamics that allowed aboveground production to increase disproportionately relative to 

belowground production – thus generating a net increase in production at the ecosystem-scale. 

This contrast to the alternative outcome not supported by our study whereby by changing the 

availability of nutrients around the AR, seagrass production would have simply been reallocated 

spatially, but would not have changed at the ecosystem-scale.  

How does the presence of an AR alter both the levels and spatial distribution of seagrass 

production around the AR?  

For the attracted movement scenario, increased production was highest near the AR and 

decreased with distance from the AR for both AG and BG production (Figure 4). This trend was 

more pronounced for AG production and high fish density treatments (8, 16, 32 individuals). For 

cells further from the AR (> 30 m) the AR either had no influence or decreased production 
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regardless of the fish density. Standing AG biomass followed similar trends as AG production 

(Appendix S1: Figure S5). 

Within 3 m of the AR, mean AG production per m2 increased by 325% (for 1 individ ua l) 

up to 18996% (for 32 individuals), thus near the AR production was increased for all fish density 

and biomass capacity treatments under the attracted movement relative to the random movement 

scenario (Appendix S1: Table S3). Similarly, BG production per m2 within 3 m of the AR was 

increased under the attracted movement relative to the random movement scenario for all fish 

density and biomass capacity treatments. Values ranged between 8% (1 individual) to 456% 

(32 individuals). 

At the same time, mean AG production per m2 30 m away from the AR decreased under 

the attracted movement compared to the random movement scenario with values ranging from -

87% for 32 individuals to -9% for 1 individual (Appendix S1: Table S3). There were also 

decreases of BG production 30 m2 away from the AR under the attracted movement scenario, 

however, to a lesser degree with a maximum decrease of -41% for 32 individuals and no relative 

change for 1 individual. 

Differences in standing biomass under the random movement and the attracted movement 

scenario followed similar trends as production for both AG and BG (Appendix S1: Table S3). 

Within 3 m of the AR, both AG and BG biomass was increased, whereas increases were more 

pronounced for AG than for BG biomass. Simultaneously, 30 m away from the AR, both AG and 

BG biomass decreased under the attracted movement scenario. However, biomass increases close 

to the AR under attracted movement scenario close to the AR were less pronounced than 

production increases. 
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Discussion 

Our study shows that by initiating aggregating behavior of fish and thus a biogeochemica l 

hotspot, artificial reefs (ARs) can synergistically enhance total ecosystem primary production, but 

not necessarily total standing seagrass biomass, in a closed seagrass ecosystem. This finding 

contrasts the alternative, whereby the aggregating behavior and ensuing biogeochemical hotspot 

would have simply reallocated primary production with no net change in ecosystem-level primary 

production. Importantly, because we tested our hypotheses in closed systems, and the amount of 

total nutrients were identical across random movement and attracted movement scenarios, we can 

specifically identify the aggregation behavior of the fish around the AR as the primary driver of 

increased ecosystem primary production. However, the ultimate mechanisms that underpin the 

synergistic increase in production are associated with how nutrients are allocated to AG and BG 

biomass under increasing nutrient availability, and the underlying non-linear dynamics of the 

nutrient uptake and allocation thresholds that drive production. While our individual-based 

simulation model does not account for real-world trophic dynamics and does not quantify 

secondary production, it is mechanistic, structurally realistic, and spatially explicit (Grimm et al. 

2005) thus allowing us to disentangle the complex dynamics that lead to the synergistic primary 

production we found. As such, our findings provide novel evidence that ARs (within the bounds 

of the environment in which we model them) can enhance production via previously unrecognized 

bottom-up mechanisms, and therefore may be a useful tool for ecosystem-based conservation 

efforts targeting both fisheries and carbon sequestration in tropical coastal ecosystems.  

The two primary mechanisms that lead to synergistic ecosystem production are: (i) nutrient 

allocation rules for BG and AG production, and (ii) non-linear dynamics associated with nutrient 

uptake rates, and sloughing, largely in the AG biomass. Under the attracted movement scenario, 
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fish redistribute and concentrate nutrients by forming a biogeochemical hotspot around the AR. In 

nutrient-poor environments, seagrass, like most plants, prioritize BG production because this 

represents a more stable, long-term investment (Chapin 1980). As such, under conditions in which 

fish are not aggregating around the AR, nutrient availability is low enough such that BG growth is 

always prioritized (Layman, Allgeier, and Montaña 2016). For this reason, we see a slight 

reduction in BG production when fish aggregate around the AR (especially at higher fish 

densities), because the loss of fish from the open seagrass reduces the availability of nutrients for 

BG production in this part of the model environment. However, when environmental availability 

of nutrients becomes greater, seagrasses shift allocation from BG to AG production (Appendix S1: 

Figure S1). Therefore, the biogeochemical hotspot that results from fish aggregation around the 

AR ultimately drives a shift in nutrient allocation to AG production. Yet, under circumstances 

where all dynamics are linear and similar between AG an BG processes, seagrasses would simply 

reallocate (additively) where production was occurring both spatially within the model 

environment and within the seagrass itself (i.e., to AG production), and the expectation would be 

no net change to ecosystem-level production. However, nutrient uptake rates in AG biomass are 

both greater, and more non-linear than in BG biomass (Lee and Dunton 1999), such that, when 

allocation of nutrients shifts to promote aboveground production (i.e., when fish are aggregating 

around the AR), AG biomass can take up more nutrients per incremental increase in nutrient 

availability. Greater uptake rates lead to increased primary production. Further, the rate of 

sloughed biomass increases non-linearly per unit biomass such that with greater biomass, there is 

proportionally more slough, which means greater biomass turnover, and thus greater production. 

Thus, the shift from BG to AG production and the fact that AG biomass, relative to BG biomass, 

can essentially have higher rates of biomass turnover per unit nutrient are the features of 
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T. testudinum dominated seagrass ecosystems that enable higher ecosystem production despite no 

change in absolute ecosystem nutrients – i.e., a synergistic ecosystem-level effect.  

Another important outcome of our model is that despite the ecosystem-level increase in 

primary production, we found that standing AG and BG biomass both decrease marginally at the 

ecosystem level. This decrease is in part due to the abovementioned turnover that is heightened 

near the reef which keeps standing biomass relatively low at any given time, along with the spatial 

composition and configuration of the model environment whereby there is simply more seagrass 

that is non-adjacent to the AR, than near the reef. While all patches are visited equally by fish in 

the random movement scenario, patches further away from the reef are seldomly visited in the 

attracted movement scenario (Appendix S1: Figure S2). In patches near the reef, we see significant 

increases in both AG and BG biomass, and for patches further from the reef, we generally see 

relatively smaller decreases (Figure 4). However, because there are more patches that experience 

these marginal decreases, the net effect at the ecosystem scale is a decrease in biomass.  

The fact that our model environment is closed is particularly relevant to the changes we 

found in both AG and BG biomass. In a closed environment, if fish are attracted to the AR the 

open seagrass becomes relatively void of nutrient input beyond what is remineralized from the 

detrital biomass. This is in sharp contrast to real-world seagrass ecosystems that are open and 

receive exogenous nutrient inputs from oceanic and terrestrial sources (Boyer et al., 2006) that can 

replenish nutrients as they are lost from the system. Therefore, if we open our model environment 

(i.e., to have exogenous inputs and losses to and from the whole model environment), exogenous 

nutrients to the system could, to some extent, mitigate this loss of fish individuals in the open 

seagrass. Further, opening the model environment and incorporating factors such as water currents 

at varying velocity could allow us to test the relative importance of nutrient redistribution and 
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concentration by fish individuals relative to exogenous nutrients. While we acknowledge the 

closed nature of our model environment is unrealistic (and that there are myriad other factors we 

did not include in our model – e.g., currents, AR location, AR size, etc.), the simplicity was 

intentional because it allowed us to hold absolute ecosystem nutrient concentrations constant 

among fish movement scenarios and thus was the most effective way to isolate the importance of 

the fish-mediated biogeochemical hotspot for ecosystem primary production.  

Ecosystem-based restoration and management is gaining substantial traction as an effective 

conservation strategy because of the increasing need restore multiple ecosystem functions in the 

face of increased and simultaneous anthropogenic stressors (Smith et al. 2007; Holsman et al. 

2020; Howell et al. 2021). Our findings have important implications for the use of ARs towards 

this end. ARs have long been touted as a potential tool to augment failing fisheries, but their 

application has been mired by concerns about whether they are simply attracting fishes, or actually 

increasing fish productivity – the attraction-production debate (Pickering and Whitmarsh 1997). 

While our models do not quantify secondary production, our results still provide good evidence 

that through bottom-up mechanisms, ARs should facilitate enhanced fish production in seagrass 

beds. Specifically, increased primary production will also facilitate increased secondary 

production via the increased energetic base of the whole ecosystem (Ryther 1969). Importantly, 

our findings of increased total primary production also suggest that ARs may be useful to help 

promote carbon sequestration because of the increased demand for C in photosynthes is. 

Interestingly, while heighted total primary production should increase the amount of C taken up 

by plants, it is the burial of the C in sediments, which occurs at the root-sediment interface, that is 

most important for mitigating climate change (Kennedy et al. 2010; Fourqurean et al. 2012; Marbà 

et al. 2015). In this sense, because we did find a slight reduction in BG production in the open 
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seagrass (non-adjacent to the reef), this indicates there could also be tradeoffs associated with ARs. 

However, without having simulated an open ecosystem, the extent to which this is ultimately a 

tradeoff or not, is difficult to discern. Nonetheless, the finding of a synergistic increase to total 

ecosystem primary production is encouraging for the application of ARs as a tool for conservation, 

but the extent to which this may occur requires further investigation.  

We acknowledge that our model is an oversimplistic representation of a seagrass 

ecosystem. Besides being a closed system, there are three primary ways our model deviates from 

the real-world. First, the seagrass community in our model environment is exclusively one species 

– T. testudinum. This species makes up the vast majority of biomass in Caribbean seagrass 

ecosystems (E. P. Green and Short 2003), and in particular The Bahamas (J.E. Allgeier, Yeager, 

and Layman 2013; J.E. Allgeier et al. 2018), but two other seagrass species and dozens of 

macroalgae species also thrive in these environments. While we acknowledge that these species 

could respond differentially to increased nutrients from aggregating fish, empirical evidence from 

Allgeier et al. (2018) showed that AR reduced seagrass community diversity and increased the 

dominance of T. testudinum, thus suggesting that the physiological mechanism of T. testudinum 

that lead to increased ecosystem production in our model environment are also likely occurring in 

the real world. Second, the movement behavior of the fish in our model is very simplistic (Watkins 

and Rose 2013). Because the simple aggregation of fish leads to increased production, we also 

expect fish movement behavior, both among- (A. L. Green et al. 2015; J.E. Allgeier, Adam, and 

Burkepile 2017) and within species (J.E. Allgeier et al. 2020) to have important ramifications for 

nutrient dynamics in these ecosystems. Future research should seek to test the importance of 

different fish behaviors. A third limitation of our model is that it does not generate estimates of 

secondary production or associated dynamics such as herbivory from fish and their prey. To do so 
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would require integrating fish and invertebrate population dynamics, their foraging behaviors, and 

their predator-prey interactions. Spatial dynamics of fishes could also be important in translocating 

nutrients both into and out of the modeled environment via movement (Harborne et al., 2017; 

Williams et al., 2018) or larvae (Allgeier et al., 2018). Currently, recruitment and mortality 

processes only ensure that total fish biomass is maintained throughout model runs, occluding the 

ability to realistically estimate secondary production. Further, in our model, fish directly consume 

seagrass detritus as their sole food source. While seagrass is both a food resource and an important 

habitat for invertebrates (Boström and Mattila 1999), how changes in seagrass production 

influences invertebrate secondary production is not well understood (de la Morinière et al. 2003). 

Relatedly, while mortality is based partly on consumption, fish growth is simulated to be constant 

following the von Bertalanffy growth curve whereby mortality occurs if consumption does not 

meet these requirements. Future research efforts should focus on incorporating food-dependent 

growth to explore potential feedbacks on ecosystem primary and secondary production. Integrating 

greater complexity into the food webs and fish population dynamics will be required to assess the 

potential of ARs to influence secondary production. 

Despite these simplifications, our data-driven model, and the outcomes presented herein, 

provide an important first step towards a more mechanistic and spatially explicit understanding of 

how AR can enhance the energetic base of a seagrass ecosystem through altered nutrient dynamics 

associated with aggregating fishes. Additionally, our findings based on a theoretical simula t ion 

model should guide future empirical research (Grainger et al. 2022), such as species-specific 

movement behavior or larval dispersal dynamics near ARs. Our model and findings have important 

implications for (i) our understanding of the importance of non-linear dynamics for ecosystem-

level properties, and (ii) the potential application of ARs for ecosystem restoration and 
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management. Despite their increasing prevalence worldwide, there is still considerable uncertainty 

as to how AR structures alter both patch and ecosystem-scale dynamics across different types of 

marine ecosystems. Our simulation model demonstrates how the attraction of fishes to ARs can 

promote enhanced primary production in a coastal seagrass system. However, it remains to be 

determined how exactly this may translate to secondary production and AR application in fisher ies, 

and the extent to which this may influence carbon sequestration in seagrass ecosystems. Future 

empirical and modeling studies will be needed to determine the impact of AR structure on the 

broader suite of other marine ecosystems in which they are deployed (i.e., coral reefs), and their 

optimal management for multiple ecosystem services. 
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Tables 

Table 1: Overview of all functions used in the individual-based simulation model ordered by subprocesses they are used in. The * of the 

“References” column indicates that the used formula is modified from the reference. 

Formula # Description Formula Reference 

1.1 Seagrass primary production 
Slough proportion of biomass 

𝑆𝑆𝑖𝑖 = 𝐵𝐵𝑖𝑖 ∗ (𝛼𝛼 ∗ (1 − 𝛽𝛽𝑖𝑖)) (DeAngelis 
1992)* 

1.2 Seagrass primary production 
Slough proportion modifier 

𝛽𝛽𝑖𝑖 = (𝐵𝐵𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐵𝐵𝑖𝑖)/(𝐵𝐵𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐵𝐵𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) - 

1.3 Seagrass primary production 
Slough biomass to detritus biomass 

𝐵𝐵𝑖𝑖 = 𝐵𝐵𝑖𝑖 − 𝑆𝑆𝑖𝑖;  𝐷𝐷 = 𝐷𝐷 + 𝑆𝑆𝐵𝐵𝐵𝐵 + 𝑆𝑆𝐴𝐴𝐴𝐴  (DeAngelis 
1992)* 

1.4 Seagrass primary production 
Ambient nutrient uptake 

𝑈𝑈𝑖𝑖 = (𝐵𝐵𝑖𝑖  ∗ 𝑣𝑣𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑁𝑁)/(𝑘𝑘𝑖𝑖𝑚𝑚 + 𝑁𝑁) (DeAngelis 
1992) 

1.5 Seagrass primary production 
Total nutrient uptake 

𝑁𝑁 = 𝑁𝑁 − 𝑈𝑈𝐵𝐵𝐵𝐵 + 𝑈𝑈𝐴𝐴𝐴𝐴  (DeAngelis 
1992) 

1.6 Seagrass primary production 
Stabilize biomass 

𝐼𝐼𝐼𝐼 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < (𝑆𝑆𝐵𝐵𝐵𝐵 ∗ 𝛾𝛾𝐵𝐵𝐵𝐵 ) → 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 /𝛾𝛾𝐵𝐵𝐵𝐵  

𝐼𝐼𝐼𝐼 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − (𝑆𝑆𝐵𝐵𝐵𝐵 ∗ 𝛾𝛾𝐵𝐵𝐵𝐵 ) < (𝑆𝑆𝐴𝐴𝐴𝐴 ∗ 𝛾𝛾𝐴𝐴𝐴𝐴 ) →  𝐵𝐵𝐴𝐴𝐺𝐺 = 𝐵𝐵𝐴𝐴𝐴𝐴 + (𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑆𝑆𝐵𝐵𝐵𝐵 ∗ 𝛾𝛾𝐵𝐵𝐵𝐵 )/𝛾𝛾𝐴𝐴𝐴𝐴  

- 

1.7 Seagrass primary production 
Sigmoid function biomass allocation 

𝛿𝛿𝐵𝐵𝐵𝐵 = 1

1+�
𝐵𝐵𝐵𝐵𝐵𝐵

𝑚𝑚

1−𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚
�
−𝜐𝜐; 𝑚𝑚 = −log(2)

log (𝜏𝜏)
 - 
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1.8 Seagrass primary production 
Biomass growth 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑆𝑆𝐵𝐵𝐵𝐵 + (𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − (𝑆𝑆𝐵𝐵𝐵𝐵 ∗ 𝛾𝛾𝐵𝐵𝐵𝐵 + 𝑆𝑆𝐴𝐴𝐴𝐴 ∗ 𝛾𝛾𝐴𝐴𝐴𝐴 ))  ∗ 𝛿𝛿/𝛾𝛾𝐵𝐵𝐵𝐵  

𝐵𝐵𝐴𝐴𝐴𝐴 = 𝐵𝐵𝐴𝐴𝐴𝐴 + 𝑆𝑆𝐴𝐴𝐴𝐴 + (𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − (𝑆𝑆𝐵𝐵𝐵𝐵 ∗ 𝛾𝛾𝐵𝐵𝐵𝐵 + 𝑆𝑆𝐴𝐴𝐴𝐴 ∗ 𝛾𝛾𝐴𝐴𝐴𝐴 ))  ∗ (1 − 𝛿𝛿)/𝛾𝛾𝐴𝐴𝐴𝐴  

- 

2.1 Remineralization 
Remineralizat ion of detritus to 

nutrients 

𝑁𝑁 = 𝑁𝑁 + 𝐷𝐷 ∗ 𝜖𝜖𝑖𝑖 ;  𝐷𝐷 = 𝐷𝐷 − 𝐷𝐷 ∗ 𝜖𝜖𝑖𝑖 (DeAngelis 
1992)* 

2.2 Remineralization 

Decompose fish detritus to detritus 

𝐷𝐷 = 𝐷𝐷 + 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓ℎ ∗ 𝜖𝜖𝑖𝑖 

 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓ℎ = 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓ℎ − 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓ℎ ∗ 𝜖𝜖𝑖𝑖 

- 

3.1 Fish movement 
Activity for respiration 

𝐴𝐴𝐴𝐴𝐴𝐴 = (1/(𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  + 1))  ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 1 (J.E. Allgeier 
et al. 2020) 

4.1 Fish respiration 
Respiration of individual 

𝑅𝑅(𝑇𝑇) = 𝑉𝑉𝑥𝑥 ∗ 𝑒𝑒(𝑋𝑋∗(1−𝑉𝑉))  (Hanson et al. 
1997) 

4.2 Fish respiration 
Temperature dependence of 

respiration 

𝑉𝑉 = (𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)/(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ) (Hanson et al. 
1997) 

4.3 Fish respiration 
Temperature dependence of 

respiration 

𝑋𝑋 = (𝑍𝑍2 ∗ (1 + 40/𝑌𝑌)0.5)2)/400  (Hanson et al. 
1997) 

4.4 Fish respiration 
Temperature dependence of 

respiration 

𝑍𝑍 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑄𝑄10 ) ∗ (𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ) (Hanson et al. 
1997) 

4.5 Fish respiration 
Temperature dependence of 

respiration 

𝑌𝑌 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑄𝑄10 ∗ (𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 2) (Hanson et al. 
1997) 
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5.1 Fish consumption, growth, mortality 
Length growth of individual 

𝐺𝐺 = 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(1 − 𝑒𝑒−𝐾𝐾(𝑡𝑡−𝑡𝑡0) ) (J.E. Allgeier 
et al. 2015; 
Froese and 
Pauly 2019) 

5.2 Fish consumption, growth, mortality 
Length-weight conversion 

𝑊𝑊 = 𝑎𝑎 ∗ 𝐿𝐿𝑏𝑏 (Froese and 
Pauly 2019) 

5.3 Fish consumption, growth, mortality 
Consumption requirements 𝐶𝐶 =

𝐺𝐺 + 𝑅𝑅(𝐴𝐴)
0.55

 (J.E. Allgeier 
et al. 2015) 

5.4 Fish consumption, growth, mortality 
Nutrient excretion 

E = C - G (J.E. Allgeier 
et al. 2015) 

5.5 Fish background mortality 
Mortality probability 

𝑃𝑃 = 𝑒𝑒𝐿𝐿−𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 (Froese and 
Pauly 2019) 
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Table 2: Values and references for all parameters used in the individual-based simulation model. Values related to the belowground 

biomass are abbreviated by BG, values related to the aboveground biomass by AG. If parameters differed between BG and AG or 

nutrients and (fish) detrital biomass, values are separated by a dash (/). 

Parameter Formula # 
from Table 1 

Description Value (bg / ag) Reference 

𝛼𝛼 1.1 Proportion of standing biomass that is sloughed to detrital 
biomass 

0.0001 Systematically explored value range 

𝐵𝐵𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  1.2 Minimum standing biomass 275.89 / 
 8.87 

(J.E. Allgeier, Yeager, and Layman 2013; 
Layman, Allgeier, and Montaña 2016; 

Shayka unpublished) 

 

𝐵𝐵𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 1.2 Maximum standing biomass 933.03 /  
193.01 

(J.E. Allgeier, Yeager, and Layman 2013; 
Layman, Allgeier, and Montaña 2016; 

Shayka unpublished) 

𝑣𝑣𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  1.4 Maximum nutrient uptake rate 28.8125 / 12.825 (Lee and Dunton 1999) 

𝑘𝑘𝑖𝑖𝑚𝑚 1.4 Half-saturation value of nutrient uptake 366.0125 / 12.05 (Lee and Dunton 1999) 

𝛾𝛾𝑖𝑖  1.6, 1.8 Nutrient content percent of standing biomass per dry weight 0.0082 / 0.0144 (Layman, Allgeier, and Montaña 2016) 

𝜏𝜏 1.7 Midpoint allocation function 1/4 Systematically explored value range 

𝜐𝜐 1.7 Slope of allocation function 2.0 Systematically explored value range 

𝜖𝜖 2.1, 2.2 Proportion of detrital biomass that is remineralized /  
Proportion of fish detrital biomass that is decomposed 

0.0001 /  
0.5 

Systematically explored value range 
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𝜆𝜆 3.1 Mean movement distance of individuals 8 - 

- various Variance of random movement distance 4.0 - 

𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  4.2, 4.4, 4.5 Maximum water temperature for respiration 40 (Hanson et al. 1997; J.E. Allgeier et al. 
2015)  

𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  4.2, 4.4, 4.5 Optimum water temperature for respiration 36 (Hanson et al. 1997; J.E. Allgeier et al. 
2015)  

𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑄𝑄10  4.4, 4.5 Rate at which respiration increases over low water temp 2.1 (Hanson et al. 1997; J.E. Allgeier et al. 
2015) 

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖  5.1 Maximum length of fish individuals 41.6 (Froese and Pauly 2019) 

K 5.1 Growth coefficient 0.2 (Froese and Pauly 2019) 

a 5.2 Length-weight relationship 0.02566176 (Froese and Pauly 2019) 

b 5.2 Length-weight relationship 2.956776 (Froese and Pauly 2019) 

- various Proportion of individuals’ body mass that can be store as 
reserves 

0.05 - 

- various Nutrient proportion of individuals' body mass  0.02999 - 

 various Proportion of nutrients that is diffused across neighboring cells 2/3 - 

- various Proportion of detrital biomass that is diffused across 
neighboring cells  

1/3 - 
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- various Proportion of fish detrital biomass that is diffused across 
neighboring cells 

1/3 - 
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Table 3: Starting values used in the individual based simulation model. Values related to the belowground biomass are abbreviated by 

BG, values related to the aboveground biomass by AG. 

Name Description Value Reference 

bg_biomass Starting value of belowground seagrass biomass 440.175, 604.46, 768.745 (J.E. Allgeier, Yeager, 
and Layman 2013; 

Layman, Allgeier, and 
Montaña 2016; Shayka 

unpublished) 

ag_biomass Starting value of aboveground seagrass biomass 54.905, 100.94, 146.975 (J.E. Allgeier, Yeager, 
and Layman 2013; 

Layman, Allgeier, and 
Montaña 2016; Shayka 

unpublished) 

nutrients_pool Starting value of nutrients 0.0001100017, 0.0003205054, 0.0006315112 - 

detritus_pool Starting value of detrital biomass 1.099907, 3.204733, 6.31448 - 

pop_n Number of fish individuals 1, 2, 4, 8, 16, 32 - 

pop_mean_size Mean length of fish individuals 9 - 

pop_mean_var Variation of mean length 3 - 

water_temp Mean water temperature 26 (Allgeier unpublished) 
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Figure Legends 

Figure 1: Overview of all model subprocesses and their scheduling (adapted from DeAngelis 

1992). Seagrass primary production is calculated based on the available nutrients in the water 

column and simultaneously seagrass biomass is sloughed to the detrital biomass. The detrital 

biomass is remineralized to water column nutrients. Fish individuals move throughout the model 

environment and their consumption (of the detrital biomass) is determined by their respiration 

which is largely influenced by body mass and movement activity. If consumption requirements 

cannot be met, individuals die, adding their body nutrients to the fish detrital biomass. Nutrients 

and detrital biomass are diffused among neighboring grid cells. 

 

Figure 2: Total fish biomass (upper panel) and total nutrient excretion by fish individuals (lower 

panel) after 50 simulation years. Colors indicate the random movement scenario (blue) and 

attracted movement scenario (red). Initial biomass capacities increase on the x-axis and fish 

densities across the panels from left to right. Error bars represent the standard error of the 25 

repetitions for each treatment level. Stars indicate significant differences between the values based 

on a t-test (* p < 0.05; ** p < 0.01; *** p < 0.001). 

 

Figure 3: Log response ratios of random movement and attracted movement scenario for 

aboveground, belowground and total standing biomass (blue) and production (red). Initial biomass 

capacities increase along the x-axis and fish densities increase across the panels from left to right. 

The percentage value describes the relative difference between the random movement and the 

attracted movement scenario of biomass (blue) and production (red). If percentage values are 

written in grey, the log response ratios overlapped zero, i.e., no significant difference was present. 
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Figure 4: Log response ratios of the random movement and attracted movement scenario for 

aboveground, belowground, and total production in distance to the artificial reef. Distances were 

classified into 5 m classes. Initial biomass capacities are indicated by colors and fish densities 

increase across the panels from left to right. 
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1992). Seagrass primary production is calculated based on the available nutrients in the water 
column and simultaneously seagrass biomass is sloughed to the detrital biomass. The detrital 
biomass is remineralized to water column nutrients. Fish individuals move throughout the model 
environment and their consumption (of the detrital biomass) is determined by their respiration 
which is largely influenced by body mass and movement activity. If consumption requirements 
cannot be met, individuals die, adding their body nutrients to the fish detrital biomass. Nutrients 
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Figure 2: Total fish biomass (upper panel) and total nutrient excretion by fish individuals (lower 
panel) after 50 simulation years. Colors indicate the random movement scenario (blue) and 
attracted movement scenario (red). Initial biomass capacities increase on the x-axis and fish 
densities across the panels from left to right. Error bars represent the standard error of the 25 
repetitions for each treatment level. Stars indicate significant differences between the values based 
on a t-test (* p < 0.05; ** p < 0.01; *** p < 0.001).  



Figure 3: Log response ratios of random movement and attracted movement scenario for 
aboveground, belowground and total standing biomass (blue) and production (red). Initial biomass 
capacities increase along the x-axis and fish densities increase across the panels from left to right. 
The percentage value describes the relative difference between the random movement and the 
attracted movement scenario of biomass (blue) and production (red). If percentage values are 
written in grey, the log response ratios overlapped zero, i.e., no significant difference was present.  



Figure 4: Log response ratios of the random movement and attracted movement scenario for 
aboveground, belowground, and total production in distance to the artificial reef. Distances were 
classified into 5 m classes. Initial biomass capacities are indicated by colors and fish densities 
increase across the panels from left to right. 
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