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Abstract 

This review article provides an overview of a range of recent technical developments in 

advanced arterial spin labeling (ASL) methods that have been developed or adopted by 

the community since the publication of a previous ASL consensus paper by Alsop et al. 

1.  It is part of a series of review/recommendation papers from the International Society 

for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. Here, we focus on 

advancements in readouts and trajectories, image reconstruction, noise reduction, partial 

volume correction, quantification of non-perfusion parameters, fMRI, fingerprinting, 

vessel selective ASL, angiography, deep learning, and ultra-high field ASL. We aim to 

provide a high level understanding of these new approaches and some guidance for their 

implementation, with the goal of facilitating the adoption of such advances by research 

groups and by MRI vendors. Topics that are outside the scope of this article, and are 

reviewed at length in separate articles, include velocity selective ASL, multiple-timepoint 

ASL, body ASL, and clinical ASL recommendations. 

Keywords:  

Arterial Spin labeling, Perfusion, CBF, vascular imaging, technical advances, MR imaging 

 



Introduction  

Since its introduction in the early 1990s, Arterial Spin Labeling (ASL) has proved to be a 

powerful non-invasive, non-contrast alternative to conventional perfusion imaging 

methods 2,3. The publication of a consensus paper on the clinical implementation of 

arterial spin labeling (ASL) in 20151 was instrumental in the adoption of ASL brain      

imaging in the clinic and provided a common reference for researchers. Also, it provided 

expert guidelines for ASL sequence implementation for the major MR manufacturers, who 

now all offer the same labeling strategy (pseudo-continuous ASL, PCASL) and similar 

readouts (3D spiral or GRASE).  Consequently, clinical applications of ASL have 

significantly increased, and a benchmark for comparison of future developments was 

established.  

Nevertheless, new variants and improvements in ASL acquisition design (see Figure 1) 

and ancillary measurements have been developed since 2015, aiming to improve image 

quality, provide more accurate cerebral blood flow (CBF) quantification or measure 

additional physiological parameters, and extend applications of ASL beyond the brain. 

This article will review new capabilities of ASL including vessel selective ASL, 

quantification of parameters beyond perfusion, the use of fingerprinting and deep learning 

techniques, ASL based fMRI, and post-processing techniques to improve image quality.   

We will describe these new techniques to provide a high level intuition and some 

suggestions for their implementation, which are based on the experience of the authors, 

with endorsement by the perfusion study group of the ISMRM.  Our goal is to facilitate 

R1.1 



and promote the adoption of such advances by research groups and by MR scanner 

vendors. 

Some topics will be out of the scope of this overview and will be reviewed in separate 

articles. For example, velocity selective ASL is one of the most significant innovations in 

the area of ASL, as it eliminates arterial transit time confounds and can provide a 

significant boost in SNR. Also, quantitative ASL using multiple timepoints allows more 

accurate estimation of perfusion as well as additional parameters, particularly the arterial 

transit time.  Furthermore, great advances have also been made in body ASL due to 

innovative technical developments.  These topics are quite extensive and each merit a 

review article in itself, so will not be covered in this article.  

 

Readout and trajectories  

The consensus paper recommended 3D segmented imaging sequences with Stack of 

Spiral (SoS) with Fast Spin Echo (FSE) or Cartesian Gradient and Spin Echo 

(GRASE).   2D multi-slice methods based on echo planar imaging (EPI) or 2D spirals with 

or without simultaneous multi-slice excitation are also possible 4–6, and may be useful at 

high field strengths where power deposition limits prohibit the use of multiple refocusing 

pulses, but 3D methods tend to be advantageous in terms of SNR and the effectiveness 

of background suppression, allowing full brain coverage in acceptable scan times. 

R2.2 
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However, both GRASE and FSE readouts use long echo trains to encode all the slices in 

the volume.  T2 decay along the echo train results in blurring in the slice direction, whilst 

T2* decay between refocusing pulses introduces in-plane blurring. Blurring can be 

mitigated to some extent by splitting the readout into more segments, but at the cost of a 

longer time to acquire each volume (reducing the temporal resolution) and increased 

sensitivity to inter-shot motion. Recently, several technical developments have been 

proposed to overcome some of these issues using novel acquisition schemes and image 

reconstruction techniques. 

Improvements in 3D segmented readouts 

Variable Flip Angle Design 

In conventional 3D readouts, the refocusing flip angle is constant and the resulting signal 

decays from one echo to the next, leading to through-slice blurring. Variable flip angle 

(VFA) designs can result in a more consistent signal across the echo train, reducing the 

signal modulation and thereby the blurring effect. For example, an extended phase graph 

approach can be used to design a flip angle schedule for 3D-GRASE, greatly reducing 

the width of the blurring point spread function7. This approach can also be combined with 

echo amplitude scaling of the k-space data to target a specific signal response 8. In 

addition to improving image quality, this approach also offers the possibility of significantly 

reducing the power deposition arising from the FSE echo-train. 



Improvements to spiral readouts 

Spiral trajectories can be quite sensitive to poor magnetic field homogeneity, eddy 

currents and imperfections in gradient performance, resulting in significant image blurring 

and distortion, especially when using high gradient slew-rates 9.  One solution is to 

measure the actual gradient trajectory and use this to improve image reconstruction 10,11. 

Another approach relies on improvements to spiral trajectories using a combination of 3D 

spiral in/out (referred to as cylindrical distributed spiral - CDS)   to reduce signal dropout 

and image blurring when compared to standard Stack-of-Spirals.  

Accelerated 3D readouts 

The TR of ASL is mainly limited by the labeling duration and post label delay, since the 

data acquisition time is only a small fraction of the TR, so accelerated sampling schemes 

do not significantly reduce the TR. However, undersampled 3D trajectories have been 

explored to reduce the echo train duration and/or the required degree of segmentation, 

which can be leveraged to improve temporal resolution and robustness to motion as well 

as mitigating blurring artifacts.  

In Cartesian imaging, for example, parallel imaging reconstruction using an improved 

GRAPPA kernel 13 provided higher SNR and reduced blurring due to the shortened TE 

and readout times 14,15 .  For non-Cartesian sampling, 1D acceleration in the slice direction 

combined with variable-density spirals can be used to reduce the echo train length, 

resulting in a significant reduction in blurring 16,17.   



CAIPIRINHA trajectories can further improve image quality for 3D-GRASE by reducing g-

factor noise amplification 18. A time-dependent CAIPIRINHA sampling pattern has 

additional advantages of allowing coil sensitivity maps to be generated from the different 

k-space data acquired over time, as well as being better suited to more sophisticated 

reconstruction approaches using spatio-temporal regularisation 19.  

Cartesian FSE  

Segmented FSE acquisitions with Cartesian encoding, where one line of k-space is 

acquired after each refocusing pulse, are workhorses of volumetric imaging, having 

excellent off-resonance robustness and anatomical fidelity.  While this makes FSE 

particularly attractive for body ASL and high-resolution ASL, long acquisition times are a 

major limiting factor if large volume coverage is required.  

Using a reduced field-of-view with selective excitation allowed the benefits of volumetric 

Cartesian encoding for renal imaging to be demonstrated 20. More time-efficient 

acquisitions with spiral re-ordering on a Cartesian grid 21, variable-density sampling 

combined with compressed sensing (CS) reconstruction for body 22 and brain imaging 23 

have also been demonstrated.  

Radial Trajectories  

Whilst conventional trajectories (e.g. 2D/3D EPI or spirals) are very efficient at covering 

large amounts of k-space quickly, they generally have a fixed spatial/temporal resolution 

and suffer from artifacts due to off-resonance effects and motion between shots. Radial 



k-space trajectories, which acquire a single line of k-space at a time through its centre 

with different orientation, sample fewer k-space points but allow the retrospective choice 

of spatial and temporal resolution for reconstruction, when using golden ratio 

sampling24,25; are intrinsically robust to motion; do not suffer from significant distortion, 

blurring or signal dropout artefacts; and tolerate relatively high levels of undersampling, 

particularly when combined with advanced reconstruction techniques (see below). 

Radial trajectories have been used fairly extensively for ASL angiography (see below), 

and more recently for assessing the labeling efficiency of velocity-selective ASL 

preparations 26, but a few new methods have explored their use for ASL perfusion imaging 

also. In the combined angiography and perfusion using radial imaging and ASL (CAPRIA) 

approach 27, a PCASL preparation is followed by a continuous golden ratio readout. 

Dynamic angiographic images are reconstructed using a small number of radial spokes 

from early timepoints, while the labeled blood still resides within the arteries. This results 

in a high temporal resolution and a high undersampling factor, but the sparse nature and 

high SNR of the angiographic signal means good quality images can still be 

reconstructed. Using the same raw data, perfusion images can be reconstructed from 

later time points, once the labelled blood arrives at the tissue.  

A golden ratio readout can also be combined with a time-encoded ASL preparation: this 

means fewer excitation pulses are needed to span a range of effective post labeling 

delays 28, allowing higher flip angles to be used without causing excessive signal 

attenuation. This boosts the SNR, in addition to the noise-averaging benefit of time-

encoding. Although potentially more time-efficient than separately acquired angiography 



and perfusion imaging, further studies are required to refine these techniques and test 

them in clinical cohorts. 

Cardiac Triggering  

The variability of blood flow velocity in the brain-feeding arteries affects the ASL labeling 

efficiency (in CASL and PCASL) and arterial transit time. These effects have been tested 

with cardiac gating in pulsed 29,30, pseudo-continuous 31 and velocity/acceleration-

selective ASL 32. For example, shorter bolus arrival time and a 16% higher perfusion 

signal in gray matter were found when triggering a PASL labeling module at systole 

compared to diastole, although the signal was similar at long TIs 29. Larger signal 

variations across the cardiac cycle have been demonstrated for velocity selective ASL 

(36%) and acceleration selective ASL (64%) compared to PCASL (25%) 32.  Similarly, 

stability gains were found in vessel-selective ASL by triggering 33. 

A PCASL study 31 triggered the end of the labeling period to a specific cardiac phase with 

a long labeling duration (>7s) and found no significant differences in vivo in the mean ASL 

signal and its stability. However, a second study 34 tested a non-triggered versus a cardiac 

triggered standard PCASL sequence with the parameters suggested in the consensus 

paper 1. The non-triggered PCASL sequence showed signal fluctuation near large vessels 

in single-shot acquisitions and also more artifacts in segmented acquisitions, whereas the 

cardiac triggered sequence demonstrated higher temporal SNR. 

Cardiac triggering improves stability at a cost of increased dead-time in the sequence 

whilst waiting for the next cardiac trigger. Triggers should be applied to the start of 



labeling, since triggering of the readout would lead to differences in PLD between 

acquisitions and thus imperfect subtraction of static signal between label and control 

condition. 

Suggestions 

The use of moderately segmented 3D readout schemes continues to be recommended 

for ASL, due to their high efficiency and SNR, and their ability to achieve spatially uniform 

background suppression. The use of parallel imaging with relatively low acceleration 

factors (e.g. 2 or 3) is also recommended when available (e.g. for Cartesian trajectories), 

particularly when combined with low g-factor methods such as CAIPIRINHIA. We 

encourage the further development and validation of newer techniques before they are 

used for clinical research applications. At this time, there is not a sufficient amount of 

evidence to recommend the general use of cardiac triggering with ASL. 

Advanced reconstruction techniques  

ASL-perfusion imaging has some inherent properties that make it well suited for 

acceleration and reconstruction using compressed-sensing (CS) methods. Particularly, 

CS has been shown to perform well when applied to ASL difference images by leveraging 

sparsity across the averages 22 or using a total generalized variation constraint in 

combination with a time-dependent CAIPIRINHA sampling pattern 35. Multi-delay ASL 

images can be further improved by additionally exploiting the redundancy among images 

(temporal sparsity) with different labeling duration and post-label delays. For example, an 

over-complete dictionary was built from the perfusion model and was used to sparsify the 



acquired ASL signal 36.  This helped reject noise and motion artifacts that could not be 

described by the perfusion signal model. 

Noise reduction  

Many strategies have been developed to improve ASL SNR using image processing 

techniques.  Spatial smoothing is a routine procedure for suppressing random noise in 

MRI and has been used frequently for ASL 14, but this further reduces the already low 

spatial resolution and blurs perfusion differences between tissue types. This can be partly 

addressed by using Wavelet denoising 37 or by a spatial kernel as part of partial volume 

correction approaches 38,39  . High-pass filtering can remove temporal noise 36, as the 

perfusion signal encoded in the label-control acquisition paradigm is located  in the high 

frequency band 41,42. 

Outliers, caused by physiological fluctuations or subject motion, are a major challenge for 

ASL MRI, especially due to the limited number of samples 39. Robust fitting 43 can address 

outliers at voxel-level though it does not take spatial information into account. Several 

empirical algorithms were introduced to remove outlier volumes or slices before 

calculating the final CBF map, which can be identified based on motion parameters and 

variation in the CBF time series 39 or using a M-estimator 44. An adaptive outlier cleaning 

algorithm (AOC, see Fig. 2) can iteratively identify outlier volumes based on the 

correlation of each remaining volume to the current mean image 45. This approach can 

be improved using structural information regularization 46, using a prior-guided slice-wise 

AOC method 47, or by accounting for relative motion 48. 



Alternatively, spatial priors can be used on the resulting CBF and/or ATT maps 49,50 to 

reduce the effect of outliers, or a total generalized variation (TGV) regularized spatial-

temporal filtering algorithm can be used for directly denoising the raw ASL images19.  

Another strategy to denoise ASL data is to decompose the signal into components, and 

then regress out the ‘noise’ components. One approach is to use independent component 

analysis (ICA) with manual or automatic classification of components (e.g. by assessing 

if the spatial/temporal variations match the expected perfusion signal), which results in 

improved SNR and repeatability 51–53 (Fig. 3). Similarly, the Component-based noise 

correction method (CompCor) extracts principal components from noise regions of no 

interest which can be used as covariates in a general linear model (GLM) and improve 

the stability of the perfusion signal 54,55. Alternatively, a low-rank and sparse 

decomposition can separate the ASL image series into slowly changing perfusion and 

spatially sparse noise component 56.  

Recently, Deep Learning (DL) has been utilized for simultaneous denoising and resolution 

improvement in ASL 57–59 and various approaches have allowed a significant acquisition 

time reduction without sacrificing CBF quantification quality 60,61.  Unsupervised DL ASL 

denoising algorithms using autoencoder networks have also been proposed 62, reducing 

the burden of generating large amounts of training data. Deep CNNs have been used to 

enhance image quality of multi-timepoint ASL data acquired with a low number of 

averages 60, showing a 40% higher accuracy than the conventional averaging method 

when tested on ASL data of stroke patients. 



Different ASL acquisition strategies introduce different noise patterns, making it 

necessary to fully evaluate the capability of a model to transfer from one type of ASL data 

or population to another. However, it is important to be careful not to ‘over-denoise’ 

functional ASL images, as sometimes the activation itself is correlated with components 

identified as noise and suppressing too many temporal components may artificially 

increase functional connectivity. 

Partial Volume Correction  

ASL spatial resolution is typically much lower than the cortical thickness (average value 

~2.5 mm vs typical ASL resolutions of 4x4x4 mm3). In superficial brain regions, individual 

voxels are therefore highly likely to contain a mixture of gray matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF), which is known as the partial volume (PV) effect. 

Given that GM perfusion is approximately 2-5 times greater than WM perfusion 63,64, PV 

will have a large effect on CBF quantification. In ASL, the primary focus is often on GM-

CBF. PV effects bring two issues here: 1) actual GM content is still variable in nominally 

“GM voxels” causing potential GM-CBF underestimation; 2) the spatial distribution of 

predominantly GM voxels varies between subjects, causing a potential evaluation bias 

(Fig. 4). The importance of PV effects grows in longitudinal and cross-section studies 

where cortical thickness varies in time and across groups 65,66. Several algorithms have 

been proposed to correct for PV-effects at the voxel level, using fractional GM and WM 

maps obtained from segmenting structural images.   These algorithms either assume a 

locally homogeneous GM and WM CBF 63, leveraging the different kinetics in GM and 



WM (along with spatial regularization) 38, or use GM volume as a covariate in the statistical 

analysis 67.  

The quality of the fractional GM and WM maps along with co-registration, distortion 

correction and resolution errors 68 also propagate into the PV correction. However, these 

errors would have a similar influence on non-PV corrected GM-CBF evaluation using a 

GM mask 69, or alternative approaches using tissue classification from inversion recovery 

or a similar readout sequence 70.  It is important to note that the partial volume effect is a 

methodological artifact.  Correcting for it allows the investigator to examine changes in 

perfusion and grey matter volume as separate effects, even in patients where both are 

changing concurrently. For the latter, GM volume could be a covariate in statistical 

analyses; for the former, PV correction is more appropriate. These two issues are 

currently usually not separately addressed. 

Suggestions 

When processing ASL data, we recommend the use of motion correction (unless very 

strong background suppression is performed) and consideration of at least one denoising 

technique (such as adaptive outlier cleaning or component-based methods) if there are 

sufficient measurements to support them. Partial volume correction as an additional 

analysis is strongly recommended for studies focusing on specific tissue types, such as 

the grey matter, especially if a difference in tissue volumes - e.g. due to atrophy - is 

expected between participants  or cohorts. 



Other Parameters beyond Perfusion 

ASL data can also be used to quantify a number of other hemodynamic parameters, such 

as arterial transit time, arterial blood volume, arterial and venous blood oxygenation, and 

the metabolic rate of oxygen consumption.    

 

Blood Oxygenation and Oxygen consumption  

Spin labeling methods can be creatively applied to measure venous oxygen saturation 

(SvO2, or Yv are commonly used in the literature), from which oxygen extraction (OEF) 

and rate of metabolism (CMRO2) can be subsequently estimated. All three parameters 

are important indicators of brain health and function and are often perturbed in states of 

disease.  

One class of methods to estimate Yv first measures the T2 of venous blood, which is then 

calibrated to Yv using empirical or theoretical relationships, since blood T2 is directly 

related to the blood oxygenation fraction (Yv) 71. Oxygen extraction fraction (OEF) can 

then be estimated using the derived venous oxygenation (Yv) along with a measured or 

assumed value of arterial oxygenation (OEF is defined as the ratio of the extracted 

oxygenation to arterial oxygenation) . CMRO2 is calculated as the product of the assumed 

arterial oxygenation, OEF, and CBF.  

 



An effective way to measure T2 values of blood in vivo, is to apply T2 weighting 

‘preparation modules’, which consist of ±90° hard pulses enclosing a train of refocusing 

pulses with different echo times, immediately before image acquisition 72. This approach 

has been applied to determine blood T2 of coronary veins 73, brain sagittal sinus 74,75 and 

internal jugular veins 76–78. For abnormal blood composition such as sickle cell anemia, 

T2-based oximetry may require disease-specific calibrations 78,79.      

The main challenge of this approach, however, is isolating signal solely from venous 

blood without contamination from tissue, cerebrospinal fluid, or blood from other vascular 

compartments. Spin labeling methods provide a natural option to isolate vascular signal, 

since the intrinsic subtraction can eliminate signal from unwanted voxel constituents. 

T2-relaxation under spin tagging (TRUST) was the first spin labeling technique to target 

venous blood signal 74,80. TRUST modifies the pulsed ASL experiment by placing the 

inversion band above the imaging slab (instead of below) to invert venous spins flowing 

inferiorly. Control-label subtraction yields high signal exclusive to medium-to-large size 

veins within the imaging slab. A T2 preparation module or FSE readout generates multiple 

echoes to fit for venous blood T2, ultimately yielding high-SNR, global oxygenation 

measurements in short scan times.  

The QUIXOTIC method expands on TRUST by employing velocity-selective (VS) pulse 

trains to label blood accelerating from capillaries into the venous system. This allows T2 

measurement of venous blood on a voxel-by-voxel basis, and generation of Yv, OEF, and 



CMRO2 maps. QUIXOTIC, however, is limited by low SNR and error introduced by CSF 

contamination 81. The VSEAN technique mitigates these limitations by applying a unique 

VS excitation to acquire signal directly from slow-moving venous spins, thereby improving 

SNR and reducing CSF contamination 82. 

Suggestions 

TRUST MRI uses a straightforward spin labeling approach to robustly measure global venous 

oxygenation and is recommended for most applications. It is easily translated to clinical and 

research settings due to high SNR, short imaging times, and simple data analysis methods. 

Furthermore, TRUST has been extensively tested and validated, including across multiple sites 

and in several disease states 80,83–87. More advanced approaches such as QUIXOTIC or VSEAN 

allow voxel-wise oxygenation measurements and reflect the next generation of spin labeling 

oxygenation methods. However, these are currently reserved for the expert user in specialized 

scenarios, given limited SNR and complex acquisition and analysis strategies. 

MR Fingerprinting ASL 

A dynamic time series of images, in which the acquisition settings are varied in a pseudo-

random (but known) pattern, can be used to identify the underlying MR parameters of the 

tissue (such as its relaxation times) 88–91.   The specific combination of tissue MR 

parameters at each voxel produces a unique dynamic MR signal for that specific 

acquisition, and this signal can be predicted in simulation.  In MR fingerprinting, the 

parameter fits are carried out by identifying the signal from a pre-computed database, or 



“dictionary”, of signals that matches the observed signal most closely. The entry that is 

most correlated with the observation corresponds to the appropriate combination of MR 

parameters. 

The key features and advantages of the fingerprinting approach are that it produces joint 

parameter estimates from a given signal, and is robust to spurious signals, as long as 

their effect is not correlated with the parameter of interest.  Joint parameter estimation of 

variables, like T1 and T2 relaxation, eliminates coregistration and other biases from 

separate measurements or assumptions.  The dictionary matching process is generally 

very fast, but generating the dictionary is a computationally expensive process and can 

result in coarse granularity of the parameter estimates. 

Fingerprinting is an appealing strategy in the context of quantitative ASL for several 

reasons. Primarily, ASL is intrinsically low SNR 92 and the robustness of fingerprinting to 

noise offers a major benefit.  Second, quantification of ASL requires multiple parameters 

to be measured or assumed a priori.   This can introduce biases into the measurement if 

assumed, or coregistration errors and additional scanning time if those additional 

parameters are measured separately. In contrast, ASL fingerprinting has been 

successfully implemented by collecting a single time series of PCASL prepared images, 

in which the labeling duration varies according to a pseudo-random, predetermined 

schedule and the control/label condition of the PCASL preparation train is also 

randomized.  A post labeling delay is not necessary because the control PCASL periods 

serve as variable post labeling delays for modeling, since reduced flip angles are used to 

preserve some ASL signal from previous TRs. From this time series multiple parameters 



can be estimated by matching the signal to a precomputed dictionary, usually T1 

relaxation, perfusion, arterial blood volume and bolus arrival time.   

In several studies, ASL fingerprinting with dictionary matching was able to estimate the 

hemodynamic parameters of interest, showing good agreement with more established 

ASL techniques 93–97.  Recently, however, deep learning methods have been shown to be 

a powerful alternative to dictionary matching 95,97.  While the data acquisition portion of 

the method remains the same, the parameter estimation portion can be accomplished 

more efficiently using neural network regression (Figure 5). 

Suggestions 

ASL fingerprinting is a promising technique. Dictionary matching has been shown to be 

an effective way to estimate parameters, and neural network regression has been shown 

to offer clear advantages in terms of processing speed and granularity. However, ASL 

fingerprinting acquisition and processing methods are still evolving, so we refrain from 

making specific design Suggestions at this point. 

ASL angiography (ASL-MRA) 

ASL angiography (ASL-MRA) has many advantages over conventional contrast-

enhanced (CE) MR/CT methods 98: it allows vessel-selective labeling (especially useful 

for assessing arterial supply to e.g. arteriovenous malformations/fistulas 99–105) and has 

excellent flexibility in temporal and spatial resolution since the labeling and associated 

imaging readout can be repeated until the desired resolution is reached, unconstrained 

by the necessity to image the first passage of a contrast bolus.  



To achieve high spatial resolution, however, the entire scan-time is often used to acquire 

a large k-space matrix without signal averaging. When vessel-selective labeling is 

employed targeting multiple arteries, the total scan-time can become very long. 

Therefore, the use of acceleration techniques should be considered: for example, 

undersampled golden-angle stack-of-stars 106 and 3D radial “koosh-ball” acquisitions 

107,108, in conjunction with advanced image reconstruction techniques such as CS and k-

space weighted image contrast (KWIC) 109. Fortunately, ASL-MRA is well-suited for 

undersampled reconstruction because of its high sparsity in the image domain after 

subtraction, particularly when it is vessel-selective 110.  

Both Pulsed ASL (PASL) and Pseudo-Continuous ASL (PCASL) can be used for ASL-

MRA. PASL with a Look-Locker readout has already proved its clinical usefulness in 

several studies 102,105,111,112 and is particularly good at visualizing the early inflow phase 

of the proximal arteries. However, vessel-selective PASL has some difficulties (see 

below), which makes PCASL a preferred option for vessel-selective MRA.   PCASL  can 

also be combined with subtraction techniques to visualize blood inflow113–115.  

For static 3D-MRA, in contrast, PCASL’s long labeling duration is more advantageous for 

visualizing the whole arterial tree, and a hybrid of PCASL and PASL helps to minimize 

the signal loss in proximal vessels caused by fresh unlabeled blood flowing into the 

imaging volume 108,116. 

Recently, velocity selective static 3D-MRA 117–120 has also been demonstrated by utilizing 

Fourier Transform based velocity selective saturation pulse trains, which set the flowing 



spins in the pass-band and static spins in the saturation-band, before acquisition as a 

non-subtractive method.  

The typical readout for ASL-MRA is based on 3D gradient-echo sequences. However, 

with a Look-Locker readout, the repetitive excitation pulses can strongly attenuate the 

ASL signal when the flip angle is high.  This can be mitigated through the use of a 

balanced steady-state free precession (bSSFP) readout (Fig. 6) that recycles the 

transverse magnetization for the next excitation 114,121, or the use of a segmented EPI 

readout to reduce the number of excitation pulses whilst making the interval between RF-

pulses longer 98,115. However, off-resonance effects can cause loss of vessel depiction 

with bSSFP114 , so high B0 homogeneity is required (e.g. using a small FOV or lower B0 

field strength) and segmented EPI can suffer from ghosting due to strong pulsatile flow 

122, typically at the M1 section of the middle cerebral artery, although this is reduced when 

using right-left phase-encoding.  

ASL-MRA can be combined with perfusion imaging in a single sequence by sharing the 

labeling module, providing both macrovascular and microvascular information: besides 

CAPRIA27 (described earlier), time-encoded PCASL can be combined with a segmented 

EPI 4D-MRA readout, minimizing the number of excitation pulses required and preserving 

magnetization for a separate perfusion weighted readout 123.  

Suggestions 

For static 3D-MRA, PCASL (ideally  with PASL hybrid labeling) is recommended for 

visualizing the whole arterial tree. For 4D-MRA, PASL with a Look-Locker readout 



performs well for visualization of arterial blood as it flows into the brain. For vessel-

selective MRA, PCASL is the preferred option, to avoid the difficulties associated with 

slab-selective PASL. When employing PCASL, inflow subtraction should be considered 

to visualize the early inflow phase. Undersampled acquisitions in conjunction with 

advanced image reconstruction should be considered to minimize scan time. Readouts 

utilizing bSSFP or segmented EPI (with a factor of 3-7) help alleviate saturation of the 

ASL signal. However, in cases where B0 inhomogeneity or pulsatile ghosting are 

problematic, spoiled gradient-echo sequences with low flip angles are recommended.       

 

 

ASL fMRI 

Although hampered by its low SNR and acquisition speed, early work demonstrated that 

ASL offered several important advantages over blood oxygen level dependent (BOLD) 

functional MRI (fMRI). These include its quantitative nature and the temporal stability of 

the measurement - i.e., it is not subject to 1/f noise that plagues BOLD fMRI 41,42,124–126.  

These features make it more suitable for fMRI experimental paradigms that span longer 

periods of time (e.g. blocked designs with durations greater than a minute), such as 

applied in pharmacological fMRI or when studying conditions like sleep deprivation.  For 

example, in an extreme case, images of the control and active conditions were taken 30 

days apart and reliable activation maps of the motor cortex could still be obtained 124. 



Another advantageous feature of perfusion (and blood volume) based fMRI is that CBF 

and cerebral blood volume (CBV) changes are more specific to the parenchyma where 

the neural activity takes place, rather than the draining veins.  This feature makes it 

particularly appealing for layer specific fMRI, where BOLD imaging is unable to 

differentiate activity between cortical layers 127–130. 

ASL is also advantageous for fMRI in regions of high susceptibility induced static field 

inhomogeneities, such as the orbito-frontal cortex, the amygdala or the medial temporal 

lobe,  where BOLD techniques are prone to signal loss, since ASL does not depend on 

susceptibility contrast, and thus ASL images can be acquired using sequences with low 

T2* sensitivity 131. This feature of the technique makes it attractive for fMRI studies of 

spoken language because it is less sensitive than BOLD to speech-related motion and 

susceptibility confounds 132–134.  

ASL based fMRI sequences typically avoid acquiring segmented readouts, to ensure a 

sufficient temporal resolution.  Besides the traditional 2D multislice EPI readout, 3D stack 

of spirals 135 and 3D-GRASE readouts 136 are efficient approaches to collect all of k-space 

after a single labeling/control period.  An attractive acquisition strategy, using a pseudo 

golden-angle stack-of-spirals 3D RARE readout and CS reconstruction, has been recently 

proposed that yields high spatial resolution time averaged CBF maps and low spatial 

resolution measurements of CBF fluctuations 137. More recently, velocity selective 

labeling pulses have been shown to allow faster sampling and improved sensitivity 138 

and could become more widely adopted for perfusion-based fMRI. 



ASL has also found some use for assessing resting-state functional connectivity (RSFC). 

Early on it was shown that connectivity of the sensorimotor network could be detected 

with ASL by evaluating fluctuations in the CBF signal 139. Since then, several studies 

performed to identify resting state networks, applying different analysis methods, such as 

seed-based connectivity 140–142 , ICA 143–147 and whole-brain voxel level connectivi ty 

143,148, have found similar brain networks as those observed in resting state BOLD studies. 

As in the case of task activation studies, RSFC measured with ASL can potentially provide 

better localization of resting state networks than BOLD, despite the lower spatial 

resolution of the ASL images. The lower temporal resolution of ASL is not so much of a 

disadvantage, since resting state connectivity is based on the correlation of low frequency 

signal fluctuations.  

Suggestions 

ASL based fMRI can be achieved by combining a labeling scheme with a fast volumetric 

readout, such as a stack of spirals, combined with parallel imaging acceleration schemes. 

Background suppression and time-series denoising techniques, (see previous sections) 

can be extremely helpful for detecting activation. Velocity selective ASL has been shown 

to be advantageous because it allows faster sampling, given the negligible bolus arrival 

delays.  ASL based techniques hold great promise in layer specific fMRI. 



Vessel-selective ASL 

Often the total amount of blood perfusing a particular region of tissue is the main 

parameter of interest, but in some situations it is also desirable to know which artery the 

blood signal originated in.  One of the great advantages of ASL over other perfusion 

imaging modalities (e.g. PET, SPECT) is the ability to image the perfusion territory of a 

specific artery. The perfusion territories of the brain-feeding arteries demonstrate a wide 

variability due to anatomical variations in the cerebral vasculature and hemodynamic 

changes caused by cerebrovascular disease 149. Clinical applications of territorial 

perfusion imaging include assessment of collateral flow patterns in steno-occlusive 

disease and identifying the blood supply to ischemic lesions, arteriovenous malformations 

or tumors 150. 

Slab-selective Single Artery Labeling 

Some of the original techniques for vessel-selectivity restricted the spatial region over 

which an ASL inversion pulse acted, thereby only labeling a single vessel at a time. The 

most common approach is to use a conventional slab-selective inversion pulse but to 

angle it in such a way as to only cover the artery of interest 151–153. Efficient post-labeling 

saturation must then be used to remove any effect of the angled labeling pulses on tissue 

magnetisation within the imaging region. However, orientating the slab to cover only the 

artery of interest, which is often tortuous, is challenging. In addition, if only a limited vessel 

segment can be covered, then the bolus of labelled blood created is relatively small, the 

SNR of the resulting images is impaired and perfusion quantification is challenging. 



Super-selective Methods 

Vessel-selective labeling based on (P)CASL avoids some of the drawbacks of the slab-

selective PASL-based methods by using a secondary gradient perpendicular to the main 

labeling gradient axis.  If the gradient is rotated dynamically during the labeling period 

instead of applying this gradient in a continuous fashion, one can achieve a small labeling 

region.  Early vessel selective work using CASL essentially created a labeling plane that 

was not perpendicular to the flow direction and rotated about a target artery such that 

only the spins flowing through that artery would experience the adiabatic inversion that 

underlies CASL 154,155.  

A similar idea can be applied to PCASL methods by inserting in-plane gradient pulses 

between the individual RF labeling sub-pulses that make up a balanced PCASL labeling 

train (see Figure 7).  The effect is a phase distribution of the spins determined by their 

location along the in-plane gradient direction.  Matching the phase of the individual pulses 

in the labeling train to the phase of the spins at a specific vessel location allows the 

creation of a “labeling stripe” that tags spins flowing through that location by adiabatic 

inversion similar to non-selective PCASL.  The periodic nature of phase accrual means 

that if the in-plane gradient pulses were the same each time these conditions would be 

met at a number of stripes within the labeling plane.  In super-selective PCASL, the in-

plane gradient is rotated at varying increments between RF pulses in the PCASL train (in 

a continuous or pseudo-random fashion), and the RF phase adjusted such that only the 

spins flowing through one location in the plane will experience the adiabatic inversion 

process 156,157. 



The amplitude of the in-plane gradient blips determines the effective “labeling spot” size 

and must be chosen as a compromise between labeling efficiency/insensitivity to motion 

(larger spot size) and the potential for labeling other nearby arteries (smaller spot size). 

Moreover, the labeling plane needs to be oriented approximately perpendicular to the 

artery, intersecting at a straight part of the artery and without intersecting the tissue in 

which the relevant imaging is performed.  

Super-selective PCASL has already shown some promising results in patients with a 

range of cerebrovascular diseases, including steno-occlusive disease and arteriovenous 

malformation 150,158. Recent work on correcting for off-resonance effects and pulsatility is 

likely to further improve robustness 33. 

Vessel-Encoding 

Given a limited scan time, labeling methods with higher time efficiency are preferred, i.e., 

methods that can label several feeding arteries simultaneously, either by pulsed 159 or 

(pseudo-)continuous  labeling methods 160,161. In this type of approach, perfusion images 

are acquired in a few “encoding” steps. As described earlier (see figure 7), including an 

additional gradient blip within the PCASL labeling plane in a consistent direction, along 

with associated RF phase modulations, creates spatial labeling bands within the plane, 

without labeling the blood in other regions.  The encoding of arteries is achieved by 

labeling different sub-regions of the labeling plane over a series of readouts.  For PASL-

based approaches, this involves positioning the labeling slab to cover more than one 

artery at a time, although the difficulties in positioning this slab to cover tortuous arteries 

still remain, so PCASL-based approaches are generally preferred.  



In each of several readouts, the feeding arteries are labeled and encoded differently, e.g., 

inverted (label) and unperturbed (control) arterial magnetization are encoded as -1 and 

1, respectively. With the tissue signal always encoded as 1, an encoding matrix can be 

constructed to describe the signals acquired for all the encoding steps at the imaging 

slices 160 , e.g. 

[𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 𝑦𝑦4 ] =  [−1 1 − 1 1 1 − 1 1 − 1 − 1 − 1 1 1 1 1 1 1 ] × [𝐿𝐿 𝑅𝑅 𝐵𝐵 𝑇𝑇 ]  

where the measured signal vector, 𝑦𝑦 = [𝑦𝑦1 𝑦𝑦2 𝑦𝑦3  𝑦𝑦4 ]𝑇𝑇 and 𝑦𝑦𝑖𝑖 is the signal acquired in step 

𝑖𝑖; and the signal source vector 𝑥𝑥 = [𝐿𝐿 𝑅𝑅 𝐵𝐵  𝑇𝑇 ]𝑇𝑇, and L, R, B, and T are the signals from 

the left carotid, right carotid, basilar arteries, and brain tissue, respectively.  The observed 

signals (y) are a linear combination of the contributions (x), mixed by the encoding matrix, 

A, made of 1 and -1.  The contribution from each feeding artery can then be calculated 

by 𝑥𝑥 = 𝐴𝐴−1𝑦𝑦, where 𝐴𝐴−1 is the inverse or pseudo-inverse of the encoding matrix 𝐴𝐴. 

Using columns from a Hadamard encoding matrix (with elements of 1 or -1) to construct 

the encoding matrix 160, such as the one shown above, maximizes encoding and SNR 

efficiency 159. This leads to vessel-encoded ASL sometimes being referred to as 

“Hadamard-encoded” ASL, although this should not be confused with time-encoded 

methods, which also use Hadamard encoding 162. To distinguish 𝑁𝑁 vascular territory 

regions, the SNR for each feeding artery using Hadamard encoding is improved by a 

factor of √𝑁𝑁 compared to labeling each feeding vessel individually 159, given the same 

total acquisition time.  

Due to variation in the geometry of the feeding arteries and scanner hardware limitations, 

Hadamard encoding schemes may not always be feasible, or the planning/calculation 



process could be slow, although some automated methods to optimize the encodings 

have been proposed 163 164,165 161. Optimization of the labeling parameters can also 

improve the separation of arteries selected to be in label or control conditions 166 161. 

Due to field inhomogeneities such as B1 variation or off-resonance at the labeling sites, 

the actual labeling status of the feeding arteries may deviate from the designed values 

(e.g., encoded as 0 if the signal is saturated) and should be estimated from the data to 

accurately decode the vascular territory information 160. This can be done by estimating 

the encoded labeling efficiency of the ASL signal in each perfusion territory by k-means 

clustering and linear analysis 160, or using Bayesian inference framework with improved 

accuracy  .  

Some applications of vessel-encoded ASL include detecting/assessing collaterals   , or 

producing vessel-encoded angiograms 169 which can be used to assess the blood supply 

to arteriovenous malformations 170. 

Suggestions 

PCASL is the recommended method for vessel-selective ASL. When choosing between 

the vessel-encoded and super-selective labeling schemes, the purpose of the scan 

should guide the decision: when there is need to have insight into all (or the main) flow 

territories, vessel-encoded labeling using a Hadamard scheme is the most efficient 

method and will yield the highest SNR.  However, when there is specific interest in the 

flow territory of a single or a few arteries, especially in cases where these arteries are 

located intracranially or are part of  an unusual vascular anatomy, super-selective labeling 

is the method of choice: it allows the labeling plane to be optimally positioned for each 



artery and is perhaps the simplest to implement. However, in both methods,  imperfect 

labeling efficiency  must be accounted for when trying to quantify CBF or mixed perfusion 

fractions. 

Deep Learning in ASL 

Machine learning applications are on a steep rise in the domain of medical imaging. 

Special attention should be given to deep convolutional neural networks (CNN), which 

have shown excellent performance in medical image analysis tasks 171. These methods 

are further supported by growing initiatives for public data sharing which enables building 

of large multi-center datasets, which are key in the effort to reliably train and validate a 

machine-learning model. Historically, multi-site ASL data sets have been notoriously 

difficult to combine due to inter-vendor implementation differences and a lack of protocol 

standardization; the previous consensus paper1 has helped to address these issues, and 

current efforts to standardize parameter notation as part of the new ASL BIDS extension 

172 and the Open Science Initiative for Perfusion Imaging (OSIPI) also aim to improve 

harmonization. 

This is a rapidly developing area, and we expect many new innovations to occur in the 

coming years. So far, four main types of tasks are typically solved using machine learning 

methods: parameter estimation, image denoising (described above), predicting images 

with different contrast and directly predicting diagnosis or disease severity. 



ASL quantification 

Deep learning provides a powerful way for solving complex non-linear inverse problems, 

such as the one posed by ASL, particularly in the fingerprinting application (described 

above).  In the case of ASL fingerprinting, neural network regression can be used to 

estimate multiple parameters independently, one at a time, without assuming the value 

of the other parameters.   

The general strategy is to generate a database of synthetic signals based on a physics 

based model, the pulse sequence parameters (e.g., labeling duration schedule, PLD, TR) 

and many parameter combinations.  This database of signals is then used to train a set 

of neural networks to output the desired parameters.  Once trained, each of the networks 

will take the observed signal as input and yield a parameter estimate as its output. 

Alternatively, experimental ASL data from a high quality data set in which the underlying 

parameters were known a priori can be used to train the neural networks, instead of using 

purely synthetic data from Bloch simulations 97.  

Training the neural networks requires a large database of signals, which is 

computationally expensive to synthesize and store.  However, the network needs only to 

be trained once.  After training, computation of the output (i.e., the parameter estimates) 

is extremely fast.  This approach offers an important advantage over dictionary learning:  

it allows for much finer granularity of the parameter estimates, whereas the dictionary 

entries are computed on a coarser grid of parameter values since the size of the dictionary 

grows exponentially with the grid size and the number of parameters (dimensions) that 

one wishes to estimate. 



In terms of ASL, this strategy has been demonstrated to estimate hemodynamic 

parameters from ASL fingerprints quite effectively 95,97, although a fingerprint’s sensitivity 

to perfusion and other hemodynamic parameters can be limited in some cases 95.  

Optimizing the fingerprint readout schedule to maximize the sensitivity to perfusion (using 

an objective metric of sensitivity, such as the Cramer-Rao bound) is crucial to obtaining 

reliable estimates.   As a result, perfusion, arterial transit time and arterial blood volume 

can be estimated reliably in addition to T1 relaxation time and the effective flip angle, 

giving good agreement with standard measurements 95,97.  

Machine Learning and ASL for diagnosis 

ML and DL give us means to study regional and voxel-wise patterns of pathological 

perfusion changes in more detail than a simple evaluation at specific pathology-related 

regions. Two distinct approaches are generally used for ASL: i) evaluation of regional 

mean CBF in anatomical regions based on atlases and then working in the vector space 

defined by these regions to, e.g., separate healthy controls from patients with a major 

depressive disorder 173, and ii) process the full voxel-wise CBF maps either using DL 

based on neural networks, or using a feature space reductions methods (such as PCA) 

and traditional ML algorithms (such as a Support Vector Machine: SVM). While DL-based 

methods can achieve higher performance, and they are not bound to predefined 

anatomical regions, such methods have numerous shortcomings. Much larger datasets 

are needed for training, they suffer from interpretability issues, can cue on non-perfusion 

based artifacts such as motion, and are computationally more demanding. The major 

hurdle is, however, the sensitivity of the ASL protocol - variations in acquisition 



parameters (commonly present in ASL) can render a well-performing method useless on 

another protocol.  

Despite the first examples of ML/DL applications emerging, they are still pilot studies 

conducted on a limited number of patients from a single cohort without an external 

validation and are thus far from wider adoption in clinical research. Standardizing image 

processing to decrease the between-center differences in data 174 is a way to gather larger 

datasets, necessary for both the ML and DL training.  

Suggestions 

While machine learning offers great promise, this field is still evolving.  We anticipate the 

continued development and validation of these techniques for ASL, particularly those 

which are robust to differences between sites, scanners and acquisition protocols. 

Ultra High Field (UHF): ASL at 7T 

 ASL should benefit at higher B0 field strengths from both the intrinsic SNR increase and 

the longer T1 relaxation time of blood. This large boost in SNR could be traded off for 

shorter scan times, higher spatial resolution and/or increased sensitivity to low levels of 

perfusion (such as in the white matter of the brain). The potential for improved SNR can 

be seen in PCASL images collected at 3T and 7T in figure 8.  PCASL images collected 

at 3T and 7T can be seen in figure 8. However, a number of technical challenges have 

prevented the widespread use of ASL at UHF 175. These include: i) increased main field 

(B0) inhomogeneity; ii) increased transmit RF (B1+) inhomogeneity, often with limited 
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coverage; iii) increased power deposition; iv) more rapid T2/T2* decay and v) increased 

physiological noise. 

  

Much of the early work on UHF ASL made use of a pulsed ASL preparation and imaging 

of only a limited region of the brain 176–178. More recent work utilising optimised PASL 

inversion pulses 179  as well as dielectric pads and simultaneous multi-slice EPI 6 has 

demonstrated improved labeling efficiency, brain coverage and temporal resolution. Such 

techniques show great promise, particularly for high spatial resolution functional imaging 

129,180, such as laminar fMRI, without the confound of draining veins that can bias 

conventional BOLD-based methods. Whilst promising, the main limitation of PASL at UHF 

is that labeling can only occur within a spatial region defined by the transmit RF coil: at 

7T, this is typically a head-only transmit coil, unlike the body coils used at lower field 

strengths. Therefore, there is a tradeoff between brain coverage and the remaining region 

within the head coil that is available for generating the bolus of labeled blood, which 

directly impacts the achievable SNR. 

PCASL has the potential to overcome this obstacle since it is only the thin labeling plane 

which must be located within the sensitive region of the transmit coil: generation of long 

boluses of labeled blood should therefore still be possible whilst maintaining whole-brain 

coverage. However, PCASL is also particularly sensitive to all of the technical issues 

mentioned above, so much of the work in this area has focused on tackling these. B0 

inhomogeneity can be mitigated using a pre-scan to estimate field offsets at each vessel 

location which can then be corrected using transverse gradient blips between PCASL 

pulses 181 or phase correction schemes 182. Reduced B1+ amplitude in the labeling region 



can be partially compensated using high-permittivity pads 183, whilst transmit homogeneity 

at the labeled vessel locations can be improved using B1+ shimming 184,185 . Both of these 

approaches also help to improve transmit efficiency, reducing power deposition, 

particularly when variable rate selective excitation (VERSE) is applied 184,186, although 

this often appears to remain a limiting factor. Fast low-angle shot (FLASH)-based 

readouts show promise for limiting the impact of short T2 decay at 7T and are potentially 

more robust to physiological fluctuations 187,188. 

 

Despite these advances, it has proven difficult to realize the full theoretical potential of 

ASL at UHF. Future work to further reduce power deposition, allowing optimal labeling 

durations and background suppression to be achieved, perhaps utilizing full parallel 

transmission capabilities, is likely to help push this field forward in the future. 

 

Suggestions 

UHF PASL using appropriately optimized inversion pulses could be considered when very 

high spatial resolution is required, particularly for layer-specific functional imaging, 

although this becomes more challenging in inferior brain regions. While UHF PCASL 

shows great promise, technical challenges such as B1 inhomogeneity and power 

deposition have so far hindered its implementation, so further work in this area is 

encouraged to allow optimal labeling durations and background suppression to be 

achieved, perhaps utilizing full parallel transmission capabilities. 
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Figures and Captions 

 

 

Figure 1: The above diagram depicts the typical components of ASL pulse sequences, 

highlighting some advancements that have been made in recent years.   

 



 

Fig. 2. ASL CBF images of a cocaine addicted patient processed A) without outlier 

cleaning, B) using the original adaptive outlier cleaning algorithm, C) using the prior-

guided slicewise outlier cleaning algorithm. Outlier cleaning provided substantial CBF 

quality improvement in this case. Green boxes and red arrows were used to mark the 

places with significant CBF differences. (Figure reproduced from  45 with permission from 

the author) 

 



 

Figure 3: ICA-based denoising: some example data from the study by Carone et al. 51 

before (top row) and after (bottom row) denoising using FSL FIX. In this study of acute 

stroke patients, ASL data were acquired at five different PLDs in 4.5 mins. Each image 

above shows the average subtraction image after motion correction at one PLD (6 label-

control pairs), where the effect of denoising is most apparent. This approach gives a 

considerable reduction in artefacts related to motion and other sources, such as ghosting. 

Data kindly provided by Davide Carone and the AMICI study team. 



 

Figure 4 - Demonstration of  the need for partial volume correction (PVC) in ASL using 

three subjects: 1) a healthy adult, 2) an older adult with atrophy , and 3) an older adult 

with a unilateral infarct. a) Native space structural T1-weighted (T1w) images. b, c) T1w 

images overlaid, in red, with the gray matter (GM) tissue segmentations. The GM 
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segmentation was smoothed to the resolution of ASL images to express the partial 

volume of GM in each voxel of the ASL images. This GM image was then thresholded at 

b) 50% and c) 70% to create a mask of voxels with a GM content above the threshold. 

The 70% threshold on GM images is typically used for calculating the mean CBF in GM. 

These images show that, especially in clinical cases and thin cortical  regions, only a 

fraction of ASL voxels contain sufficient GM to pass the thresholding for GM CBF 

calculation, thus introducing a spatial bias in the resulting mean GM CBF. Use of PVC to 

obtain corrected GM CBF values is thus recommended, and using this in conjunction with 

a 50% threshold GM mask for the calculation of mean GM CBF results in reasonable 

spatial coverage while minimizing PV effects ( Figure reproduced from 174 with permission 

from the authors.) 
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Figure 5: Example workflow of ASL fingerprinting using a neural network.  Synthetic 

fingerprint signals are created from combinations of tissue parameters (perfusion, blood 

volume, bolus arrival time, magnetization transfer rate, T1, and flip angle in this case).  

These are used to train a set of neural networks that produce the parameter of interest 

as their output.  Once trained, each network can estimate the underlying tissue 

parameters, given an experimental fingerprint time series.  The diagram contains the 

results of simulations using synthetic parameter maps. 



 

Figure 6: Example transverse maximum intensity projection frame from a vessel-

encoded dynamic angiography sequence acquired with a balanced steady-state free 

precession readout (Okell et al. 2016). Color shows which proximal artery the blood 

signal originated from: the right/left internal carotid artery (RICA/LICA) or right/left 

vertebral artery (RVA/LVA). 

 



 

 

Fig. 7: Vessel-selective PCASL methods: The pulse sequence diagrams (left) of super-

selective (top) and vessel-encoded (bottom) PCASL are very similar. For super-selective 

labeling, the in-plane gradient blips (Gx, Gy) are rotated every RF pulse in a continuous 

or pseudo-random fashion, generating a single labeling “spot” (middle). Dotted RF lines 

represent the control condition. For vessel-encoding, the gradient blips are applied in a 

consistent direction, creating bands of label and control conditions across the labeling 

plane which are varied across a number of encoding cycles. For super-selective labeling, 

each artery of interest is labeled separately (middle) and then combined (right). For 

vessel-encoding, each encoding cycle generates images with different combinations of 

arteries in (ideally) label or control conditions, which are combined in post-processing to 

identify the signal arising from each artery. Color is used here to represent the origin of 



the blood signal (red = right internal carotid; green = left internal carotid; blue = right 

vertebral; magenta = left vertebral). 

 

 

 

Figure 8: Example PCASL CBF maps (in ml/100g/min) generated in the same subject 

using the same protocol at 3T and 7T. At this resolution (2x2x4 mm) the 3T data is 

relatively noisy, but the SNR increase at 7T gives a considerable improvement in image 

quality. However, in order to achieve reasonable quality perfusion images at 7T the 

labeling plane had to be positioned within the brain to avoid severe B0 and B1 

inhomogeneities, meaning whole brain coverage was not possible. In addition, the label 

duration had to be kept short (1400 ms) and it was only possible to use pre-saturation for 

background suppression, since additional inversion pulses would have exceeded SAR 

limits. Other imaging parameters: PLD = 2000 ms, TR = 4000 ms, readout scheme = 2D 

multi-slice EPI, number of slices = 10, TE = 13 ms, parallel imaging (GRAPPA) factor = 

2, scan time = 5 min.  
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