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Joule heating induced during the process 
exponentially increases the drift velocity 
and the diffusivity of oxygen vacancies, 
and thus plays a critical role in the resis-
tive switching (RS) process.[7] In our pre-
vious work,[8] we have demonstrated that 
the internal device temperature T can be 
considered as a 2nd state-variable, which 
though not directly measurable can 
strongly affect the 1st state-variable (the 
size of the oxygen vacancy-based filament) 
evolution and the RS characteristics. Since 
the internal temperature rises during 
programming and spontaneously decays 
after removal of the applied pulses, heat 
can be accumulated from multiple pulses, 
depending on how closely the pulses are 
applied. Thus, the device conductance 
change is not only determined by the pre-
sent pulse but also by the relative timing 
of the pulses in the near history, allowing 

these so-called 2nd-order memristive devices to natively imple-
ment important synaptic plasticity effects such as spike timing 
dependent plasticity (STDP). Essentially, the spontaneous decay 
of the internal temperature can be regarded as playing a sim-
ilar role as the Ca2+ concentration in a biological synapse[9] to 
decode spike timing information, making it possible to achieve 
bio-realistic implementation of neuromorphic systems.[10]

However, previous studies on 2nd order memristors lack 
controllability of the 2nd state-variable. Instead, different 
shapes of signals[3,11,12] or additional heating pulse were used to 
achieve the desired STDP function.[8,13] In this work, through 
detailed physical modeling and experiments, we study methods 
to control the 2nd state-variable (internal temperature) and its 
effects on the switching dynamics of a 2nd-order memristor, 
including how the STDP time constant can be modified. When 
using the natively implemented STDP learning rule for unsu-
pervised learning in a spiking neural network,[14] we show the 
2nd-order devices can naturally uncover the correlation pattern 
in input spiking events.

2. Experimental Section

2.1. Device Model

The COMSOL Multiphysics model was developed following 
the previous work,[15] and extended it to 3D device structures. 

Memristive devices have demonstrated rich switching behaviors that closely 
resemble synaptic functions and provide a building block to construct 
efficient neuromorphic systems. It is demonstrated that resistive switching 
effects are controlled not only by the external field, but also by the dynamics 
of various internal state variables that facilitate the ionic processes. The 
internal temperature, for example, works as a second-state variable to regu-
late the ion motion and provides the internal timing mechanism for the native 
implementation of timing- and rate-based learning rules such as spike timing 
dependent plasticity (STDP). In this work, it is shown that the 2nd state-
variable in a Ta2O5-based memristor, its internal temperature, can be system-
atically engineered by adjusting the material properties and device structure, 
leading to tunable STDP characteristics with different time constants. When 
combined with an artificial post-synaptic neuron, the 2nd-order memristor 
synapses can spontaneously capture the temporal correlation in the input 
streaming events.
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1. Introduction

The exponential growth of integrated circuits’ density and func-
tionality due to transistor scaling has recently slowed down as 
the device size approaches sub-10 nm.[1] To meet the demands 
of modern applications such as artificial intelligence, autono-
mous vehicles, and Internet-of-Things, advanced devices and 
computing architectures are needed to achieve efficient large-
scale data analysis and storage in real time. Memristive devices 
offer high scalability, non-volatile storage, and rich switching 
dynamics that make them appealing candidates for in-memory 
computing and neuromorphic computing systems.[2–4] A 
standard memristor is a two-terminal device with a switching 
medium between the two electrodes (Figure 1a). It stores data in 
the form of different conductance values, as a result of internal 
ion (e.g., oxygen vacancy VO) re-distribution in the medium 
driven by the externally applied electric field.[5,6] Meanwhile, 
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This allowed to tune the electrode material properties and 
the structural dimension to study their effects on the internal 
dynamics of the 2nd-order memristor. It was assumed that 
the top and bottom electrodes were effective heat sinks so that 
1 μm away from the device the temperature of the electrode 
reached room temperature. The memristive devices and inter-
connecting wires were assumed to be surrounded by silicon 
dioxides. The peak temperature value in the switching layer 
was obtained from the temperature profile simulation at given 
time instances. Material properties, including heat capacity, 
thermal conductivity, and mass density were chosen from 
reported thin film values from literature.[16–18] The thermal 
conductivity was obtained using the following reported model 
as a function of T:[19]

= + ⋅0.2 4(W/(m K))k T  (1)

Two separate physical structures were used as schematically 
shown in Figure  1a,b to model devices with and without the 
NiCr-based HI layer, respectively. Other physical assumptions 
were identical to the previous work.[15] The parameters used are 
listed in Table 1.

2.2. Device Fabrication

TaOx based memristors with different areas were fabricated 
through photolithography. The layout for the standard devices 
included memristors with sizes from 1 to 100 μm2. Device fab-
rication started with 35 nm  Pd bottom electrode deposition by 
photolithography, e-beam evaporation, and lift-off. It was fol-
lowed by sputtering of 30 nm TaOx using a Ta metal target in an  
Ar/O2 gas mixture (3% O2) at 400 °C. The pressure of the gas was  
≈5 mTorr. A 4-nm Ta2 O5 switching layer was then deposited by 
RF sputtering using a Ta2 O5 ceramic target in Ar with a pressure 
of ≈5 mTorr. Top electrode was deposited in the same way as the 
bottom electrode.[8,20] For the HI-device, 40 and 70 nm NiCr HI 
layers were added before the deposition of the bottom electrode 
and after that of the top electrode, respectively. The thickness of 
the top electrode was increased to 60 nm to ensure continuous 
connection over the step edges of the added HI layer.

2.3. Correlation Detection Simulation

The inputs had the same average firing rate (r) of ≈500 Hz. 
Group 1 (neuron 0–9) had the pairwise correlation parameter 
(c) of around 0.1, and group 2 (neuron 10–19) had correlation 
of around 0.2. The spiking events of the other 80 neurons were 
uncorrelated. The generation of the correlated spiking inputs 
followed the methods described in ref. [21]. The correlated spike 
trains Xk(t) were produced by conditioning their firing prob-
abilities on the activity of a common reference spike train XO(t). 
The equations of the conditional probabilities are shown below.

( 1| 1) 1oϑ ( ) ( ) ( )= = = = ∆ + − ∆P X T X T r T c r Tk  (2)

Figure 1. Schematic device structures for a device a) without and b) with the HI layers. c) Top view of a fabricated HI-device. d) Oxygen vacancy and  
e) temperature profile of the two cases, showing the device states immediately after forming. f) Experimentally measured DC I–V curves of the two 
types of devices. g) Simulated DC I–V curves of the two types of devices from the COMSOL Multiphysics model. Analog conductance modulation 
results through consecutive pulses for the h) standard device and i) HI-device.

Table 1. Material properties used in the COMSOL Multiphysics 
simulation.

Material Specific Heat [J kg−1K−1] Thermal conductivity 
[W m−1K−1]

Density[kg m−3]

NiCr 380 17 7750

Pd 240 71.2 1202
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( 1| 0) 1oϕ ( )( ) ( )= = = = ∆ −P X T X T r T ck  (3)

The pairwise correlation between two generated spike trains 
Xi(t) and Xj(t) can be calculated as following, which is equal to c.
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The artificial neuron was modeled as a leaky-integrate-and-
fire (LIF) neuron. The membrane potential was updated every 
2 μs according to Equation  (6), where τm= 100 μs and the 
threshold voltage was set as 5.

1

∑τ
( ) ( )= − +

=

dV t

dt

V
w X tm m

m i

n

i i  (6)

A multiplicative STDP learning rule was used for numerical sim-
ulation of conductance updates, where the parameters were fitted 
to the measurement data (area = 1 μm2 with HI layer) in Figure 2e.  
The parameters were set as following: Ap  = 0.23, Ad  = 0.23,  
τp = 56.3 μs, τd = 123.2 μs, η = 0.01, stdp_window = 200 μs.
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3. Results and Discussions

As discussed earlier,[8] a memristor's 2nd state variable can play 
a critical role to the evolution of the 1st state variable and the 
resulting RS characteristics. For example, the internal tempera-
ture T exponentially changes the ion diffusivity (D) and drift 
velocity (v):

1

2
· exp2= −






D a f

E

kT
a  (8)

Figure 2. Visualization of the internal heat dissipation dynamics for a) an HI-device and b) a standard device. The temperature profile was calculated 
at different time instances after the removal of a programming pulse. c) Internal peak temperature evolutions for the two devices obtained through 
COMSOL simulation. The peak temperature was recorded immediately after the removal of a programming pulse. d) STDP characteristics measured 
from the standard and the HI-device with 1 μm2 area, respectively. e) STDP characteristics measured from the HI-device having different areas.
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exp ·sinh /2( )= −





v af

E

kT
qaE kTa  (9)

where f is the escape-attempt frequency, a is the effective hop-
ping distance, and Ea is the activation energy for VO migra-
tion.[15] These parameters and temperature gradient drive the 
oxygen vacancy drift/diffusion, as described below:

d

d
·D

D D nD( )= ∇ ∇ − + ∇n

t
D n vn DS T  (10)

where nD is the local oxygen vacancy density, D∇nD and vnD are 
the Fick diffusion flux and the drift flux terms, and nD ∇DS T  
corresponds to the Soret diffusion effect, respectively.[15,22] 
Thus, a memristor's RS characteristics are strongly affected by 
the internal Joule heating and heat dissipation dynamics, which 
can be mathematically described as

d
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where k is the thermal conductivity, A is the area of the device, 
d is the distance between two temperature points T1 and T2, c is 
the specific heat, and ρ is the material density (Figure 1a). Here 
T1 represents the switching region temperature, and can be cal-
culated as a function of t:

0 exp1 1 2 2ρ
( )( ) ( )= − −
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where T2 is the ambient temperature. From Equation (12), the 
time t required for T1 to reach a specific temperature can be 
derived:
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where the dimensions of the device structure and the intrinsic 
material properties (c, ρ, d, k, and A) are known beforehand. 
Based on this understanding, we aim to control the internal 
temperature dynamics by adjusting these material and device 
parameters.

Since temperature rise and heat dissipation normally occur 
very fast (e.g., nanoseconds), it is generally desirable to slow 
down the temperature dynamics to more efficiently take advan-
tage of the 2nd-order effects. For example, if the devices are 
used to directly process biological spike trains, a time constant 
on the order of ms is desired. To achieve a longer time con-
stant, Equation  (13) suggests that heat conduction paths with 
smaller A and lower k are required. Experimentally, we inserted 
heat insulating (HI) layers (NiCr), whose thermal conductivity 
value is about one-fourth of the top and bottom electrode (Pd), 
between T1 and T2 on both sides (Figure 1b) to test k depend-
ency. We also tested devices with different sizes, from 1, 4, 20, 
and 40 to 100 μm2, to verify A dependency. Figure  1b,c shows 
the schematic cross section view and the top view of such a 
thermally enhanced device having HI layers in the extended top 
and bottom electrodes, respectively.

A detailed device model[15] based on the COMSOL Mul-
tiphysics tool was used to calculate the temperature profile 
and the oxygen vacancy density at various stages during device 
switching. Figure 1d shows the VO profile of the devices imme-
diately after the forming process, with the upper panel showing 
the reference device without the HI layer (standard device), and 
the lower panel showing the device with the inserted HI layers 
(HI-device). The two cases show different VO distribution pro-
files that lead to different conductance values. Figure  1e plots 
the internal temperature distribution immediately after fila-
ment formation for the two cases. Thanks to the HI layers, the 
proposed HI-device can maintain the induced heat better, as 
shown in the lower panel. The enhanced thermally assisted ion 
diffusion/drift in turn results in the wider VO filament in the 
switching layer of the HI-device, compared with the standard 
device (Figure 1d).

Figure  1f shows the electrical measurement results for 
a standard device and a HI-device, respectively. Compared 
with the standard device, the HI-device can be switched at a 
lower voltage and results in a higher on-current, which can 
be explained by its better heat accumulation capability as sup-
ported by the simulated temperature profiles and VO distribu-
tion profiles discussed above (Figure 1d,e). Similarly, better heat 
trapping also allows the HI-device to reset at a lower voltage, 
due to its elevated mobility at the elevated internal temperature, 
as explained by Equation (9). These experimental RS character-
istics are in turn reproduced and supported by the Multiphysics 
simulation results (Figure  1g),  for  the same processes and 
device structures.

The Ta2O5-based memristors also exhibit analogue conduct-
ance modulations (Figure 1h,i), when stimulated with consecu-
tive potentiation or depression pulses. In the measurements, 
100 depression pulses were applied first to induce long-term 
depression (LTD), followed by 100 potentiation pulses to 
induce long-term potentiation (LTP). Due to better heat accu-
mulation, the HI-device (Figure 1i) shows a wider conductance 
modulation range, even though pulses with lower amplitude  
(0.6 V/0.85 V) were applied during the LTP/LTD processes.

Temporal properties of these 2nd order memristors are also 
verified both computationally and experimentally. Simple, non-
overlapping square pulses were used in these tests, as depicted 
in Figure 3a. Pre- and post- synaptic pulses were applied 
to the top and bottom electrode, respectively. Each pulse is 
designed to have a low amplitude that by itself is not enough 
to evoke conductance change. As discussed earlier, the time 
gap between pulses (Δt) plays a critical role in determining the 
internal temperature and allows the device to naturally decode 
input timing information. Figure  3b shows the simulated 
internal device temperature induced by two pulses with dif-
ferent Δt. As expected, smaller Δt leads to higher internal tem-
perature because the residual heat from the 1st pulse is largely 
accumulated during the 2nd pulse. To characterize the tem-
poral dynamics of the heat decay process, we define the time 
window as the time gap between the two pulses in a pulse pair 
within which a measurable conductance change (i.e., 1 μS) can 
be induced. When Δt is within the heat decay's time window the 
sufficiently elevated temperature experienced at the 2nd pulse can  
induce a conductance change (Figure  3c). In particular, the 
polarity and amplitude of the conductance change depend on 
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the sign and value of Δt, leading to the natively implemented 
spike-timing dependent plasticity rules, as shown in Figure 3c. 
The experimental data are consistent with simulation results 
based on the Multiphysics device model, further supporting the 
roles of the internal dynamics in native STDP implementation.

More results can be obtained by repeatedly applying the 
STDP pulse pairs and observe the device response. The first 
half of Figure 3d shows the device response to 80 pulse pairs 
with a preceding post-synaptic pulse followed by a pre-synaptic 
pulse, while the 2nd half showed subsequent response to 80 
pulse pairs with a preceding pre-synaptic pulse followed by a 
post-synaptic pulse. The measurements were also performed 
for two Δt conditions. While pulse pairs with a 100 ns time gap 
causes clear conductance modulations, the 10 μs time gap pulse 
pairs cannot evoke conductance modulation even after repeated 
applications. These measurements again illustrate the impor-
tance of the short-term dynamics of the internal temperature to 
achieve STDP characteristics.

The device model further suggests how to tune the internal 
short-term heat dynamics. For example, based on Equation (13), 
the heat dynamics depend on material properties such as the 
heat capacity c, mass density ρ, thermal conductivity k, and device 
geometry A and d. In the following, we discuss experimental and 
simulation results by tuning these parameters to control the 2nd 
order memristor's time constant and the STDP behavior.

First, a larger device area facilitates faster cooling, as evi-
denced in Equation (13). Figure 4a shows the simulated thermal 
distribution inside memristors having different electrode areas 
of 1 and 100 μm2, respectively. The results are captured at the 
beginning of the forming process. One can see that the peak 
temperature, which drives the ion migration, is significantly 
lower in the larger area device. This effect may be explained by 
the fact that the electrodes act as heat sinks to dissipate heat 
produced by Joule heating, so devices with wider electrodes will 
have much faster heat dissipation than devices with narrower 

ones, thanks to its larger thermal conductance (
kA

d
).[23]

STDP characteristics measured from standard devices with 
different areas support these simulation results (Figure 4b). In 

the measurement, each conductance change value is calculated 
after the application of 100 pulse pairs, comprised of a pre-
synaptic pulse of 0.9 V and a post-synaptic pulse of 0.8 V with 
100 ns pulse width, at a given Δt, and the results are averaged 
from 3 such measurements to reduce variations. The device is 
then reset to the same initial condition for the next measure-
ment. t1 and t100 represent time windows of the 1 and 100 μm2 
device, respectively. As expected, the device with a smaller elec-
trode area (1 μm2) can afford a longer Δt (time window) for 
STDP owing to the slower cooling effect, while the device with 
a larger electrode area (100 μm2) requires a much shorter time 
window. Figure  4c plots the dependency of the required time 
window on the device area: the experimentally measured time 
window is inversely proportional to the device area, agreeing 
with the analytical expression in Equation (13).

Besides the time window Δt required for minimum conduct-
ance change, the characteristic time constant τ in the STDP 
response can also be obtained by fitting the LTP and LTD por-
tions following:

expGG B
t

τ
∆ = ⋅ − ∆





 (14)

The STDP time constants are extracted from devices with 
different areas presented in  Figure 4b and are plotted in 
Figure 4d, showing the STDP time constant also decreases with 
increasing device area. This observation can also be explained 
by the device model. Specifically, based on Equations (13) and 
(14), τ can be derived as:

In
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showing inverse dependence of A.
Figure  4e,f shows the dependency of STDP characteristics 

on pulse amplitudes for the two cases. The pulse amplitude 

Figure 3. a) Schematic of the pre- and post-synaptic pulse pairs with a time gap (Δt) for STDP studies. b) Simulated internal temperature dynamics 
induced by pulse pairs, for two different Δt cases, where the maximum temperature inside the device was recorded as a function of time. c) Simulated 
(blue and red dots) and measured (green dots) STDP behaviors natively implemented in the standard device with device area 100 μm2. d) Long term 
conductance changes induced by sequentially applying pulse pairs, for two scenarios with Δt of 100 ns and 10 μs, respectively.
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has a strong effect on the size of the conductance change, but 
a weak effect on the STDP time constant. This observation can 
again be explained by the heat dynamics (i.e., Equations  (13) 
and (15)), where the internal short-term dynamics is only 
determined by material and device parameters where the 
applied pulse amplitude only has an indirect effect. On the 
other hand, tuning the pulse amplitude may be useful if a 
larger or smaller STDP effect is desired without changing its 
temporal characteristics.

We next study the 2nd-order memristor's dependency on the 
thermal conductivity in the thermal conducting path. As intro-
duced in Figure  1b,c, an additional low thermal conductivity 
layer (HI layer) is added between the anticipated high tempera-
ture source point (T1 in Figure  1b) and the cooling point (T2 
in Figure  1b) to slow down the cooling process. The effect of 
the HI layer is first simulated, as shown in Figure 2a (with HI) 
and 2b (without HI). Each frame in the figures corresponds to a 
time instant after the application of a programming pulse, and 
the plots show the internal temperature distribution evolution 
for the two cases. As suggested by Equations (13) and (15), HI 
helps the device to reach a higher internal temperature, and 
traps heat longer than the standard device without the HI layer. 
Figure 2c plots the evolutions of the peak internal temperature 
for the two cases, highlighting the effects of inserting the HI 
layer in increasing the peak temperature and slowing down the 
heat dissipation process.

These effects were then tested in experimentally fabricated 
devices with the HI layer using post-synaptic pulse of 0.7 V and 
pre-synaptic pulse of 0.9 V with 100 ns pulse width. Specifically, 
Figure  2d plots the STDP results obtained from a HI-device 
and a standard device, both having the same area of 1 μm2. 
While the standard device exhibits an STDP time window 
shorter than 1 μs, the HI-device exhibits a much longer time 
window of ≈1 ms.  The time constant of the 1 μm2 standard 
device and HI-device shown in Figure  2d are (τd: 808.4 ns, 
τp:  728.9 ns)  and  (τd:  496.0 μs, τp: 353.2 μs), respectively. The 
ability to slow down the heat dissipation and increase the STDP 
time window to ms level may open opportunities for the 2nd-
order memristor devices and networks to directly interact with 
temporal signals at these time scales, that is, neural recordings 
from biological networks.[24] Similar to the standard device, the 
time constant of the HI-device can also be adjusted by tuning 
the device area (A1), as shown in Figure 2e, with time constants 
of (τd: 496.0 μs, τp: 353.2 μs) and (τd: 465.3 μs, τp: 324.7 μs), for 
the 1 and 4 μm2 devices, respectively. The fitting parameters for 
Equation (14) are summarized in Table 2.

Finally, we verify the feasibility to perform efficient temporal 
computation with a 2nd-order memristor network through the 
natively implemented of STDP learning rule with device-fitted 
simulation. Spiking neural networks have attracted increasing 
interest in recent years, as they offer an appealing opportunity 
for highly efficient computation with sparse, binary spikes. It 

Figure 4. a) Internal temperature profiles of two standard devices with areas of 1 and 100 μm2, respectively. The temperature profiles were captured 
at the beginning of the filament formation. b) STDP behaviors experimentally measured from two fabricated devices with areas of 1 and 100 μm2, 
respectively. c) The extracted STDP time window as a function of device area. The solid line is a rational function fitting following Equation 13. d) The 
extracted STDP time constant as a function of the device area, along with a linear fit. STDP characteristics obtained with different pulse amplitudes for 
the two devices with areas of e) 1 and f) 100 μm2, respectively.
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has been shown that STDP can help learn the input correla-
tions by exploiting the timing information embedded in the 
spiking sequences,[21] and STDP memristor-based networks 

have been used to perform synaptic connection pattern recon-
struction,[24] coincidence detection,[25] and correlation pattern 
detection.[26,27] However, in general these prior studies do not 

Table 2. Fitting parameters for the measurement data of devices.

Device Layer stack Cross-sectional  
area

Time constant  
of LTP (τp)

Time constant  
of LTD (τd)

Fitting parameter  
of LTP, BGp

Fitting parameter 
of LTD, BGd

Standard device Pd (35 nm)–
TaOx (30 nm)–Ta2O5 (4 nm)–Pd (30 nm)

1 μm2 728.9 ns 808.4 ns 0.00282 −0.00286

100 μm2 58.6 ns 68.8 ns 0.04373 −0.01120

HI-device NiCr (40 nm)–Pd (35 nm)–TaOx (30 nm)–Ta2O5  
(4 nm)–Pd (60 nm)–NiCr (70 nm)

1 μm2 353.2 μs 496.0 μs 0.00243 −0.00208

4 μm2 324.7 μs 465.3 μs 0.00156 −0.00141

Figure 5. a) Scheme showing the correlation detection setup. The network consists of a single post-synaptic LIF neuron and an array of 2nd-order 
memristor synapses. b) Ground truth covariance matrix between the 100 input spike trains with fixed firing rate at 500 Hz. The correlation within group 
1 (neuron 0–9) is around 0.1, and the correlation within group 2 (neuron 10–19) is around 0.2. The other 80 spike trains are uncorrelated. c) Raster 
plot of the 100 pre-synaptic neurons (grey) and the post-synaptic neuron (magenta), showing the neurons’ firing patterns. d) Histogram and e) line 
plot of the normalized device conductance evolution upon application of the input spike trains, showing the clear separation of device conductance 
values that form groups corresponding to different input correlation coefficients. The synaptic devices receiving inputs with the highest correlation 
(10–19) evolve to form a group having the highest conductance values, while the synaptic devices receiving uncorrelated inputs (20–99) experience 
no noticeable conductance changes. Histogram of the normalized final device conductance with different levels of D2D variations of f) Ap and g) τp. 
The D2D variations are assumed to be Gaussian in the studies, and the percentage values represent the standard deviation of the D2D variations 
normalized against the mean value.
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rely on internal dynamics to perform computing, and the con-
ductance changes need to be first computed in software and 
then programmed into the devices. Below we show that by 
taking advantage of the internal dynamics, the 2nd order mem-
ristors can directly uncover the temporal features hidden in the 
input spiking events, without external software computation 
and manual weight updates.

In this study, the inputs are 100 spike trains each consisting 
of around 1000 spiking events, where the different input 
streams have different degrees of correlation (see Experimental 
Section for more details). As shown in Figure 5b, each pre-
synaptic input stream is fed into one memristor device, whose 
normalized conductance value represents the synaptic effi-
cacy. The summation of the weighted post-synaptic potential 
then updates the membrane potential Vm of the post-synaptic 
neuron based on the LIF neuron model. The post-synaptic 
neuron fires an action potential if Vm surpasses the defined 
threshold value Vth (Figure  5a), and Vm is reset to the resting 
state after firing. During this process, the 2nd-order memris-
tive devices naturally adapt their conductance states based on 
the relative timing between the pre- and post-synaptic spikes. 
Compared with random inputs, correlated inputs have a higher 
probability to precede a post-synaptic spike, as the arrival times 
have higher chance to coincide with each other to cause a larger 
increase in Vm.[21] The pre-post spike pairs then lead to poten-
tiation of the corresponding synapses, which further increases 
the tendency to induce post-synaptic events. After this process, 
the correlated inputs can be identified from the uncorrelated 
ones, reflected by the clear separation of device conductance 
into several groups based on the degree of input correlation, 
as shown in Figure 5d,e. Inputs with higher correlation induce 
faster learning and higher memristor conductance values, 
while uncorrelated inputs do not induce significant conduct-
ance changes, as the LTP and LTD effects essentially cancel out 
each other, resulting in conductance distributions that match 
the correlation pattern in the inputs.

Beyond the assumption that all devices are identical, we 
performed additional studies to evaluate how device-to-device 
(D2D) variations would impact the system performance. D2D 
variations drawn from a Gaussian distribution have been added 
to the amplitude (Ap) and relaxation time (τp) of the STDP 
behavior. Standard deviations from 5% to 15% have been simu-
lated, which is comparable to the experimental measurement 
results in actual devices. Figure 5f shows that with increasing 
variations in Ap, the separation between groups of different cor-
relation coefficients start to shrink. On the other hand, even 
with 15% percentage of standard variation, no overlapping 
between groups is observed. We also studied the influence of 
D2D variations of relaxation time. Figure  5g shows that the 
final histograms with different levels of τp variations are almost 
identical, meaning that the system is insensitive to the varia-
tion of relaxation time. Therefore, the purposed system exhibits 
robustness to D2D variations.

4. Conclusion

We demonstrate the ability to control the STDP characteris-
tics, including the characteristic time constants of a 2nd order 

memristor, by controlling the device‘s material parameters and 
structural dimensions. In contrast, different pulse amplitudes 
modify the size of the conductance changes without changing 
the characteristic time window. The ability to slow down the heat 
dissipation processes and extend the STDP time window allows 
the 2nd-order memristors to potentially be tailored to process 
temporal signals with specific temporal characteristics, such as 
neural recordings from biological networks. When integrated 
with a post-synaptic artificial neuron, the 2nd order memristor 
networks can capture the correlation in the pre-synaptic spikes in 
an unsupervised fashion, leading to inhomogeneous conductance 
distributions that match the correlation pattern of the input data.
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