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-Abstract 

Memristive devices have demonstrated rich switching behaviors that closely resemble 

synaptic functions and provide a building block to construct efficient neuromorphic systems. It has 

been demonstrated that resistive switching (RS) effects are controlled not only by the external field, 

but also by the dynamics of various internal state variables that facilitate the ionic processes. The 

internal temperature, for example, works as a second-state variable to regulate the ion motion and 

provides the internal timing mechanism for the native implementation of timing- and rate-based 

learning rules such as spike timing dependent plasticity (STDP). In this work, we show that the 2
nd

 

state-variable in a      -based memristor, its internal temperature, can be systematically engineered 
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by adjusting the material properties and device structure, leading to tunable STDP characteristics with 

different time constants. When combined with an artificial post-synaptic neuron, the 2
nd

-order 

memristor synapses can spontaneously capture the temporal correlation in the input streaming events. 

 

1. Introduction 

The exponential growth of integrated circuits‟ density and functionality due to transistor 

scaling has recently slowed down as the device size approaches sub-10nm
[1]

. To meet the demands of 

modern applications such as artificial intelligence (AI), autonomous vehicles, and internet-of-things 

(IoT), advanced devices and computing architectures are needed to achieve efficient large-scale data 

analysis and storage in real time. Memristive devices offer high scalability, non-volatile storage and 

rich switching dynamics that make them appealing candidates for in-memory computing and 

neuromorphic computing systems.
[2–4]

 A standard  memristor is a two-terminal device with a 

switching medium between the two electrodes (Figure 1a). It stores data in the form of different 

conductance values, as a result of internal ion (e.g. oxygen vacancy     re-distribution in the medium 

driven by the externally applied electric field.
[5,6]

 Meanwhile, Joule heating induced during the process 

exponentially increases the drift velocity and the diffusivity of oxygen vacancies, and thus plays a 

critical role in the RS process
[7]

. In our previous work
[8]

, we have demonstrated that the internal device 

temperature T can be considered as a 2
nd

 state-variable, which though not directly measurable can 

strongly affect the 1st state-variable (the size of the oxygen vacancy-based filament) evolution and the 

RS characteristics. Since the internal temperature rises during programming and spontaneously decays 

after removal of the applied pulses, heat can be accumulated from multiple pulses, depending on how 

closely the pulses are applied. Thus, the device conductance change is not only determined by the 

present pulse but also by the relative timing of the pulses in the near history, allowing these so-called 

2
nd

-order memristive devices to natively implement important synaptic plasticity effects such as spike 
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timing dependent plasticity (STDP). Essentially, the spontaneous decay of the internal temperature 

can be regarded as playing a similar role as the Ca
2+

 concentration in a biological synapse
[9]

 to decode 

spike timing information, making it possible to achieve bio-realistic implementation of neuromorphic 

systems
[10]

. 

However, previous studies on 2
nd

 order memristors lack controllability of the 2
nd

 state-

variable. Instead,  different shapes of signals
[3,11,12]

 or additional heating pulse were used to achieve 

the desired STDP function
[8,13]

. In this work, through detailed physical modeling and experiments, we 

study methods to control the 2
nd

 state-variable (internal temperature) and its effects on the switching 

dynamics of a 2
nd

-order memristor, including how the STDP time constant can be modified. When 

using the natively implemented STDP learning rule for unsupervised learning in a spiking neural 

network
[14]

, we show the 2
nd

-order devices can naturally uncover the correlation pattern in input 

spiking events.  

 

2. Results and discussions 

As discussed earlier
[8]

, a memristor‟s 2
nd

 state variable can play a critical role to the evolution 

of the 1st state variable and the resulting RS characteristics. For example, the internal temperature T 

exponentially changes the ion diffusivity (D) and drift velocity (v): 

    
 

 
           

  

  
          (1) 

         
  

  
                         (2) 

where f is the escape-attempt frequency, a is the effective hopping distance, and Ea is the activation 

energy for VO migration.
[15]

 These parameters and temperature gradient drive the oxygen vacancy 

drift/diffusion, as described below: 
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  )        (3) 

Where    is the local oxygen vacancy density,      and     are the Fick diffusion flux and the drift 

flux terms, and     
   corresponds to the Soret diffusion effect, respectively.

[15,16]
 Thus, a 

memristor‟s RS characteristics are strongly affected by the internal Joule heating and heat dissipation 

dynamics, which can be mathematically described as 

  

  
  

            

 
 = cρ 

     

  
         (4) 

where   is the thermal conductivity, A is the area of the device, d is the distance between two 

temperature points T1 and T2, c is the specific heat and ρ is the material density (Figure 1a). Here T1 

represents the switching region temperature, and can be calculated as a function of t: 

                   ( 
  

 ρ 
 )           (5) 

Where T2 is the ambient temperature. From (5), the time   required for T1 to reach a specific 

temperature can be derived:  

    (
        

        
)
c  

  
         (6) 

where the dimensions of the device structure and the intrinsic material properties (c, , d, k, A) are 

known beforehand. Based on this understanding, we aim to control the internal temperature dynamics 

by adjusting these material and device parameters. 

 Since temperature rise and heat dissipation normally occur very fast (e.g. nanoseconds), it is 

generally desirable to slow down the temperature dynamics to more efficiently take advantage of the 
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2
nd

-order effects. For example, if the devices are used to directly process biological spike trains, a 

time constant ~ ms is desired. To achieve a longer time constant, Equation (6) suggests that heat 

conduction paths with smaller A and lower k are required. Experimentally, we inserted heat insulating 

(HI) layers (NiCr), whose thermal conductivity value is about one-fourth of the top and bottom 

electrode (Pd), between T1 and T2 on both sides (Figure 1b) to test k dependency. We also tested 

devices with different sizes, from 1 m
2
, 4 m

2
, 20 m

2
, 40 m

2
 to 100 m

2
, to verify A dependency. 

Figures 1b,c show the schematic cross-section view and the top view of such a thermally enhanced 

device having heat insulating layers in the extended top and bottom electrodes, respectively. 

A detailed device model
[15]

 based on the COMSOL Multiphysics tool was used to calculate 

the temperature profile and the oxygen vacancy density at various stages during device switching. 

Figure 1d shows the VO profile of the devices immediately after the forming process, with the upper 

panel showing the reference device without the HI layer (standard device), and the lower panel 

showing the device with the inserted HI layers (HI-device). The two cases show different VO 

distribution profiles that lead to different conductance values. Figure 1e plots the internal temperature 

distribution immediately after filament formation for the two cases. Thanks to the HI layers, the 

proposed HI-device can maintain the induced heat better, as shown in the lower panel. The enhanced 

thermally assisted ion diffusion/drift in turn results in the wider VO filament in the switching layer of 

the HI-device, compared with the standard device (Figure 1d).  

Figure 1f shows the electrical measurement results for a standard device and a HI-device, 

respectively. Compared with the standard device, the HI-device can be switched at a lower voltage 

and results in a higher on-current, which can be explained by its better heat accumulation capability as 

supported by the simulated temperature profiles and VO distribution profiles discussed above (Figures 

1d-e). Similarly, better heat trapping also allows the HI-device to reset at a lower voltage, due to its 
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elevated mobility at the elevated internal temperature, as explained by Equation (2). These 

experimental RS characteristics are in turn reproduced and supported by the Multiphysics simulation 

results (Figure 1g), for the same processes and device structures. 

The Ta2O5-based memristors also exhibit analogue conductance modulations (Figure 1h,i), 

when stimulated with consecutive potentiation or depression pulses. In the measurements, 100 

depression pulses were applied first to induce long-term depression (LTD), followed by 100 

potentiation pulses to induce long-term potentiation (LTP). Due to better heat accumulation, the HI-

device (Figure 1i) shows a wider conductance modulation range, even though pulses with lower 

amplitude (0.6V/0.85V) were applied during the LTP/LTD processes. 

Temporal properties of these 2
nd

 order memristors are also verified both computationally and 

experimentally. Simple, non-overlapping square pulses were used in these tests, as depicted in Figure 

2a. Pre- and Post- synaptic pulses were applied to the top and bottom electrode, respectively. Each 

pulse is designed to have a low amplitude that by itself is not enough to evoke conductance change.  

As discussed earlier, the time gap between pulses (Δt) plays a critical role in determining the internal 

temperature and allows the device to naturally decode input timing information. Figure 2b shows the 

simulated internal device temperature induced by two pulses with different Δt. As expected, smaller 

Δt leads to higher internal temperature because the residual heat from the 1st pulse is largely 

accumulated during the 2
nd

 pulse. To characterize the temporal dynamics of the heat decay process, 

we define the time window as the time gap between the two pulses in a pulse pair within which a 

measurable conductance change (i.e. 1µS) can be induced. When Δt is within the heat decay‟s time 

window the sufficiently elevated temperature experienced at the 2
nd

 pulse can induce a conductance 

change (Figure 2c). In particular, the polarity and amplitude of the conductance change depend on the 

sign and value of Δt , leading to the natively implemented spike-timing dependent plasticity rules, as 
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shown in Figure 2c. The experimental data are consistent with simulation results based on the 

Multiphysics device model, further supporting the roles of the internal dynamics in native STDP 

implementation.  

 More results can be obtained by repeatedly applying the STDP pulse pairs and observe the 

device response. The first half of Figure 2d shows the device response to 80 pulse pairs with a 

preceding post-synaptic pulse followed by a pre-synaptic pulse, while the 2
nd

 half showed subsequent 

response to 80 pulse pairs with a preceding pre-synaptic pulse followed by a post-synaptic pulse. The 

measurements were also performed for two Δt conditions. While pulse pairs with a 100ns time gap 

causes clear conductance modulations, the 10μs time gap pulse pairs cannot evoke conductance 

modulation even after repeated applications. These measurements again illustrate the importance of 

the short-term dynamics of the internal temperature to achieve STDP characteristics.  

 The device model further suggests how to tune the internal short-term heat dynamics. For 

example, based on Equation (6), the heat dynamics depend on material properties such as the heat 

capacity c, mass density  , thermal conductivity k, and device geometry A and d. In the following, we 

discuss experimental and simulation results by tuning these parameters to control the 2
nd

 order 

memristor‟s time constant and the STDP behavior.  

 First, a larger device area facilitates faster cooling, as evidenced in Equation (3). Figure 3a 

shows the simulated thermal distribution inside memristors having different electrode areas of 1 m
2 

and 100 m
2
, respectively. The results are captured at the beginning of the forming process. One can 

see that the peak temperature, which drives the ion migration, is significantly lower in the larger area 

device. This effect may be explained by the fact that the electrodes act as heat sinks to dissipate heat 
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produced by Joule heating, so devices with wider electrodes will have much faster heat dissipation 

than devices with narrower ones, thanks to its larger thermal conductance (
  

 
) 

[17]
.  

STDP characteristics measured from standard devices with different areas support these 

simulation results (Figure 3b). In the measurement, each conductance change value is calculated after 

the application of 100 pulse pairs, comprised of a pre-synaptic pulse of 0.9V and a post-synaptic pulse 

of 0.8V with 100ns pulse width, at a given Δt, and the results are averaged from 3 such measurements 

to reduce variations. The device is then reset to the same initial condition for the next measurement. t1 

and t100 represent time windows of the 1 m
2 
and 100 m

2 
device, respectively. As expected, the device 

with a smaller electrode area (1 m
2
) can afford a longer Δt (time window) for STDP owing to the 

slower cooling effect, while the device with a larger electrode area (100 m
2
) requires a much shorter 

time window. Figure 3c plots the dependency of the required time window on the device area: the 

experimentally measured time window is inversely proportional to the device area, agreeing with the 

analytical expression in Equation (6).  

Besides the time window Δt required for minimum conductance change, the characteristic 

time constant   in the STDP response can also be obtained by fitting the LTP and LTD portions 

following:  

         (  
|  |

 
 )          (7) 

The STDP time constants are extracted from devices with different areas presented in Figure3b and 

are plotted in Figure 3d, showing the STDP time constant also decreases with increasing device area. 

This observation can also be explained by the device model. Specifically, based on Equation (6) and 

(7),    can be derived as: 
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           (8) 

 

, showing inverse dependence of A. 

Figure 3e and Figure 3f show the dependency of STDP characteristics on pulse amplitudes for 

the two cases. The pulse amplitude has a strong effect on the size of the conductance change, but a 

weak effect on the STDP time constant. This observation can again be explained by the heat dynamics 

(i.e. Equation (6) and (8)), where the internal short-term dynamics is only determined by material and 

device parameters where the applied pulse amplitude only has an indirect effect. On the other hand, 

tuning the pulse amplitude may be useful if a larger or smaller STDP effect is desired without 

changing its temporal characteristics.  

 We next study the 2
nd

-order memristor‟s dependency on the thermal conductivity in the 

thermal conducting path. As introduced in Figure 1b and 1c, an additional low thermal conductivity 

layer (HI layer) is added between the anticipated high temperature source point (   in Figure 1b) and 

the cooling point (   in Figure 1b) to slow down the cooling process. The effect of the HI layer is first 

simulated, as shown in Figure 4a (with HI) and 4b (without HI). Each frame in the figures 

corresponds to a time instant after the application of a programming pulse, and the plots show the 

internal temperature distribution evolution for the two cases. As suggested by Equation (6) and (8), HI 

helps the device to reach a higher internal temperature, and traps heat longer than the standard device 

without the HI layer. Figure 4c plots the evolutions of the peak internal temperature for the two cases, 

highlighting the effects of inserting the HI layer in increasing the peak temperature and slowing down 

the heat dissipation process. 
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These effects were then tested in experimentally fabricated devices with the HI layer using 

post-synaptic pulse of 0.7V and pre-synaptic pulse of 0.9V with 100ns pulse width. Specifically, 

Figure 4d plots the STDP results obtained from a HI-device and a standard device, both having the 

same area of 1 m
2
. While the standard device exhibits an STDP time window shorter than 1 s, the 

HI-device exhibits a much longer time window of ~1ms. The time constant of the 1 m
2 

standard 

device and HI-device shown in Figure 4d are    : 808.4ns,   : 728.9ns) and (  : 496.0µs,   : 

353.2µs), respectively. The ability to slow down the heat dissipation and increase the STDP time 

window to ms level may open opportunities for the 2
nd

-order memristor devices and networks to 

directly interact with temporal signals at these time scales, i.e. neural recordings from biological 

networks
[18]

. Similar to the standard device, the time constant of the HI-device can also be adjusted by 

tuning the device area (A1), as shown in Figure 4e. with time constants of    : 496.0µs,   : 353.2µs) 

and    : 465.3µs,   : 324.7µs), for the  1 m
2
 and 4 m

2
 devices, respectively. The fitting parameters 

for Equation (7) are summarized in Table 1 below. 

Table 1. Fitting parameters for the measurement data of devices. 

Device Layer stack Cross-

sectio

nal 

Area 

Time 

constant 

of LTP 

(    

Time 

constant 

of LTD 

(    

Fitting 

paramete

r of LTP 

     

Fitting 

paramete

r of LTD 

     

Standard 

device 

Pd (35nm) – 

TaOx (30nm)– 

Ta2O5 (4nm) – 

Pd (30nm) 

 1 m
2
 728.9ns 808.4ns 0.00282 -0.00286 

100 

m
2
 

58.6ns 68.8ns 0.04373 -0.01120 
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HI-device NiCr (40nm) - 

Pd (35nm) - 

TaOx (30nm) - 

Ta2O5 (4nm) - 

Pd (60nm) – 

NiCr (70nm) 

1 m
2
 353.2µs  496.0µs 0.00243 -0.00208 

4 m
2
 324.7   465.3   0.00156 -0.00141 

Finally, we verify the feasibility to perform efficient temporal computation with a 2
nd

-order 

memristor network through the natively implemented of STDP learning rule with device-fitted 

simulation. Spiking neural networks have attracted increasing interest in recent years, as they offer an 

appealing opportunity for highly efficient computation with sparse, binary spikes. It has been shown  

that STDP can help learn the input correlations by exploiting the timing information embedded in the 

spiking sequences
[19]

, and STDP memristor-based networks have been used to perform synaptic 

connection pattern reconstruction
[18]

, coincidence detection
[20]

, and correlation pattern detection
[21,22]. 

However, in general these prior studies do not rely on internal dynamics to perform computing, and 

the conductance changes need to be first computed in software and then programmed into the devices. 

Below we show that by taking advantage of the internal dynamics, the 2nd order memristors can 

directly uncover the temporal features hidden in the input spiking events, without external software 

computation and manual weight updates. 

In this study, the inputs are 100 spike trains each consisting of around 1000 spiking events, 

where the different input streams have different degrees of correlation (see Methods for more details). 

As shown in Figure 5b, each pre-synaptic input stream is fed into one memristor device, whose 

normalized conductance value represents the synaptic efficacy. The summation of the weighted post-

synaptic potential then updates the membrane potential Vm of the post-synaptic neuron based on the 

leaky-integrate-and-fire (LIF) neuron model. The post-synaptic neuron fires an action potential if Vm 
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surpasses the defined threshold value Vth (Figure 5a), and Vm is reset to the resting state after firing. 

During this process, the 2
nd

-order memristive devices naturally adapt their conductance states based 

on the relative timing between the pre- and post-synaptic spikes. Compared with random inputs, 

correlated inputs have a higher probability to precede a post-synaptic spike, as the arrival times have 

higher chance to coincide with each other to cause a larger increase in Vm
[19]

. The pre-post spike pairs 

then lead to potentiation of the corresponding synapses, which further increases the tendency to 

induce post-synaptic events. After this process, the correlated inputs can be identified from the 

uncorrelated ones, reflected by the clear separation of device conductance into several groups based 

on the degree of input correlation, as shown in Figure 5d and 5e. Inputs with higher correlation induce 

faster learning and higher memristor conductance values, while uncorrelated inputs do not induce 

significant conductance changes, as the LTP and LTD effects essentially cancel out each other, 

resulting in conductance distributions that match the correlation pattern in the inputs. 

Beyond the assumption that all devices are identical, we performed additional studies to 

evaluate how device-to-device (D2D) variations would impact the system performance. D2D 

variations drawn from a Gaussian distribution have been added to the amplitude (Ap) and relaxation 

time (p) of the STDP behavior. Standard deviations from 5%-15% have been simulated, which is 

comparable to the experimental measurement results in actual devices. Figure 5f shows that with 

increasing variations in Ap, the separation between groups of different correlation coefficients start to 

shrink. On the other hand, even with 15% percentage of standard variation, no overlapping between 

groups is observed. We also studied the influence of D2D variations of relaxation time. Figure 5g 

shows that the final histograms with different levels of p variations are almost identical, meaning that 

the system is insensitive to the variation of relaxation time. Therefore, the purposed system exhibits 

robustness to D2D variations. 
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3. Conclusion 

We demonstrate the ability to control the STDP characteristics, including the characteristic 

time constants of a 2nd order memristor, by controlling the device„s material parameters and 

structural dimensions. In contrast, different pulse amplitudes modify the size of the conductance 

changes without changing the characteristic time window. The ability to slow down the heat 

dissipation processes and extend the STDP time window allows the 2nd-order memristors to 

potentially be tailored to process temporal signals with specific temporal characteristics, such as 

neural recordings from biological networks. When integrated with a post-synaptic artificial neuron, 

the 2nd order memristor networks can capture the correlation in the pre-synaptic spikes in an 

unsupervised fashion, leading to inhomogeneous conductance distributions that match the correlation 

pattern of the input data.  

Experimental Section/Methods 

Device model: We developed the COMSOL Multiphysics model following the previous 

work
[15]

, and extends it to 3D device structures. This allows us to tune the electrode material 

properties and the structural dimension to study their effects on the internal dynamics of the 2
nd

-order 

memristor. We assumed that the top and bottom electrodes are effective heat sinks so that 1m away 

from the device the temperature of the electrode reaches room temperature. The memristive devices 

and interconnecting wires are assumed to be surrounded by silicon dioxides. The peak temperature 

value in the switching layer is obtained from the temperature profile simulation at given time 

instances. Material properties, including heat capacity, thermal conductivity, and mass density are 

chosen from reported thin film values from literature
[23–25]

. The thermal conductivity is obtained using 

the following reported model as a function T:
[26]
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k = 0.2T+4 (W/(m∙K)) 

We used two separate physical structures as schematically shown in Figure 1a),b) to model devices 

with and without the NiCr-based HI layer, respectively. Other physical assumptions are identical to 

our previous work
[15]

. The parameters used are listed in a table below. 

Table 2. Material properties used in the COMSOL Multiphysics simulation. 

Material Specific 

Heat 

[J/(kg∙K)] 

Thermal 

conductivity 

[W/(m∙K)] 

Density 

[kg/m
3
] 

NiCr 380 17 7750 

Pd 240 71.2 1202 

 

Device fabrication: We fabricated      based memristors with different areas through 

photolithography. The layout for the standard devices includes memristors with sizes from 1    to 

100   . Device fabrication starts with 35nm Pd bottom electrode deposition by photolithography, e-

beam evaporation and lift-off. It is followed by sputtering of 30nm      using a Ta metal target in an 

      gas mixture (3% O2) at 400°C. The pressure of the gas is ~5mTorr. A 4-nm        switching 

layer is then deposited by RF sputtering using a         ceramic target in Ar with a pressure of ~5 

mTorr. Top electrode is deposited in the same way as the bottom electrode
[8,27]

. For the HI-device, 

40nm and 70nm NiCr HI layers are added before the deposition of the bottom electrode and after that 
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of the top electrode, respectively. The thickness of the top electrode is increased to 60nm to ensure 

continuous connection over the step edges of the added HI layer.  

Correlation detection simulation: The inputs have the same average firing rate (r) of ~500Hz. 

Group 1 (neuron 0-9) has the pairwise correlation parameter (c) of around 0.1, and group 2 (neuron 

10-19) has correlation of around 0.2. The spiking events of the other 80 neurons are uncorrelated. The 

generation of the correlated spiking inputs follows the methods described in 
[19]

. The correlated spike 

trains Xk(t) are produced by conditioning their firing probabilities on the activity of a common 

reference spike train XO(t). The equations of the conditional probabilities are shown below. 

           |              √             (9) 

            |               √        (10)    

 The pairwise correlation between two generated spike trains Xi(t) and Xj(t) can be calculated 

as following, which is equal to c. 

 [    ]  ∑          |          (       |       )

     

 

                 =                                                 (11) 

    (     )  
   (     )

√          (  )

 
 [    ]   [  ] [  ]

√( [  
 ]   [  ]

 ) ( [  
 ]   [  ]

 
)

 

                       
                           

            
                                         (12) 
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 The artificial neuron is modelled as a leaky-integrate-and-fire neuron. The membrane 

potential is updated every 2 s according to equation (13), where   =100   and the threshold voltage 

is set as 5.  

      

  
  

  

  
 ∑        

 
                                                                                       (13) 

 A multiplicative STDP learning rule is used for numerical simulation of conductance updates, 

where the parameters are fitted to the measurement data (area = 1    with HI layer) in Figure 4e. 

The parameters are set as following: Ap=0.23, Ad =0.23, p=56.3   , d=123.2    , =0.01, 

stdp_window=200 s.  

  

{
 
 

 
             (

        

  
)                           

                                                                 

                  (
        

  
)               
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Figure 1. a-b) Schematic device structures for a device without (a) and with (b) the HI layers. c) Top 

view of a fabricated HI-device. d) Oxygen vacancy and e) Temperature profile of the two cases, 

showing the device states immediately after forming. f) Experimentally measured DC I-V curves of 

the two types of devices. g) Simulated DC I-V curves of the two types of devices from the COMSOL 

Multiphysics model. h-i) Analog conductance modulation results through consecutive pulses for the 

standard device (h) and HI-device (i). 
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Figure 2. a) Schematic of the pre- and post-synaptic pulse pairs with a time gap (Δt) for STDP studies. 

b) Simulated internal temperature dynamics induced by pulse pairs, for two different Δt cases, where 

the maximum temperature inside the device was recorded as a function of time. c) Simulated (blue 

and red dots) and measured (green dots) STDP behaviors natively implemented in the standard device 

with device area 100 m
2
. d) Long term conductance changes induced by sequentially applying pulse 

pairs, for two scenarios with Δt of 100ns and 10µs, respectively.  
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Figure 3. a) Internal temperature profiles of two standard devices with areas of 1 m
2 

and 100 m
2
, 

respectively. The temperature profiles were captured at the beginning of the filament formation. b) 

STDP behaviors experimentally measured from two fabricated devices with areas of 1 m
2 

and 

100 m
2
, respectively. c) The extracted STDP time window as a function of device area. The solid line 

is a rational function fitting following Equation 6. d) The extracted STDP time constant as a function 

of the device area, along with a linear fit. e-f) STDP characteristics obtained with different pulse 

amplitudes for the two devices with areas of (e) 1    and (f) 100   , respectively. 
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Figure 4. a-b) Visualization of the internal heat dissipation dynamics for an HI-device (a) and a 

standard device (b). The temperature profile was calculated at different time instances after the 

removal of a programming pulse. c) Internal peak temperature evolutions for the two devices obtained 

through COMSOL simulation. The peak temperature was recorded immediately after the removal of a 

programming pulse. d) STDP characteristics measured from the standard and the HI-device with 

1m
2
 area, respectively. e) STDP characteristics measured from the HI-device having different areas. 
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Figure 5. a) Scheme showing the correlation detection setup. The network consists of a single post-

synaptic LIF neuron and an array of 2
nd

-order memristor synapses. b) Ground truth covariance matrix 

between the 100 input spike trains with fixed firing rate at 500Hz. The correlation within group 1 

(Neuron 0-9) is around 0.1, and the correlation within group 2 (Neuron 10-19) is around 0.2. The 

other 80 spike trains are uncorrelated. c) Raster plot of the 100 pre-synaptic neurons (grey) and the 

post-synaptic neuron (magenta), showing the neurons‟ firing patterns. d) Histogram and e) Line plot 

of the normalized device conductance evolution upon application of the input spike trains, showing 

the clear separation of device conductance values that form groups corresponding to different input 
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correlation coefficients. The synaptic devices receiving inputs with the highest correlation (10-19) 

evolve to form a group having the highest conductance values, while the synaptic devices receiving 

uncorrelated inputs (20-99) experience essential no conductance changes. f) and g) Histogram of the 

normalized final device conductance with different levels of D2D variations of f) Ap g) p. The D2D 

variations are assumed to be Gaussian in the studies, and the percentage values represent the standard 

deviation of the D2D variations normalized against the mean value.  
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TOC Graphic:  

 

 

By tuning material properties and device structures, the internal dynamics of a 2
nd

-order memristor 

can be tailored, allowing it to natively exhibit timing-based learning rules such as spike-timing 

dependent plasticity (STDP) with adjustable time constants. These memristors can be used to form 

bio-realistic networks and naturally process temporal data such as detecting correlation patterns in 

input spike trains. 
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